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Kurzbeschreibung

Die vorliegende Arbeit behandelt die Modellierung von und Parameterschätzung in dynami-
schen Systemen mit Fokus auf Anwendungen in der Systembiologie. In dieser interdisziplinären
Forschungsarbeit zur Systembiologie von Krebserkrankungen wird ein prädiktives mathema-
tisches Modell intrazellulärer Wechselwirkungen zweier Zytokinsignaltransduktionswege ent-
wickelt und im Experiment bestätigt. Unerwartete Vorhersagen führen auf neue biologische
Erkenntnisse. Zur Modellkalibrierung kommen klassische Methoden der Parameterschätzung
in gewöhnlichen Differentialgleichungen zum Einsatz. Daran anknüpfend wird in dieser Arbeit
eine neue numerische Methode zur Parameterschätzung in stochastischen Einflüssen unter-
liegenden dynamischen Prozessen entwickelt, theoretisch untersucht, implementiert und ihre
Leistungsfähigkeit an Beispielen aus Systembiologie und Finanzwissenschaft demonstriert.

Viele Prozesse, insbesondere biologische, zeigen ein grundsätzlich gerichtetes Verhalten, das
zwar gewissen Gesetzmäßigkeiten unterliegt (etwa Stoffwechselprozesse oder Signaltransduk-
tionen), allerdings auch durch intrinsische Zufälligkeiten qualitativ und quantitativ erheblich
beeinflusst wird, sodass eine rein deterministisch-mechanistische Modellierung der auftreten-
den Vorgänge oft nicht zielführend ist.

Eine große Klasse solcher Systeme lässt sich durch nichtlineare mehrdimensionale stochas-
tische Differentialgleichungen (SDEs) adäquat beschreiben. Klassische stochastische Schätzver-
fahren, die auf (Approximation von) Übergangswahrscheinlichkeiten basieren, sind auf diese
Problemklasse u. a. wegen ihres Rechenaufwands und speziellen Anforderungen an die Mess-
daten oft nicht oder nur eingeschränkt anwendbar.

In dieser Arbeit wird ein neues Mehrzielverfahren entwickelt, das die dem beobachte-
ten Prozess entsprechende Realisierung der SDE stückweise durch deterministische Lösungen
gewöhnlicher Differentialgleichungen (ODEs) approximiert. Diese i. d. R. unstetige Konkatena-
tion der Trajektorien erlaubt zum einen die Wiedergabe stochastischer Effekte, zum anderen die
Darstellung des Parameterschätzproblems als deterministisches nichtlineares Optimierungs-
problem, das unter Verwendung effizienter ableitungsbasierter Verfahren gelöst werden kann.
In der vorliegenden Arbeit kommt hierzu ein verallgemeinertes GAUSS-NEWTON-Verfahren
zum Einsatz.

Die wesentlichen Ergebnisse und Resultate der vorliegenden Arbeit umfassen insbesondere:

• Es wird ein neues Verfahren zur Parameterschätzung in mehrdimensionalen nichtlinearen
SDEs entwickelt, das auf stückweiser Approximation durch Lösungen von ODEs basiert. An
Intervallgrenzen auftretende Sprünge werden zur Regularisierung verwendet. Unbekannte
Parameter und initiale Systemzustände werden mittels einer verallgemeinerten, gewichteten
Kleinste-Quadrate-Methode aus Messdaten geschätzt, die aus direkten Zustandsmessungen
oder aus durch Messfunktionen beschriebenen indirekten Beobachtungen stammen, mit
Fehlern behaftet und an beliebigen Zeitpunkten erfasst worden sein können. Nichtlineare
Parameter- und punktweise Zustandsbeschränkungen können als Gleichungs- und Unglei-
chungsbedingungen formuliert werden. Die resultierenden nichtlinearen beschränkten Opti-
mierungsprobleme werden unter Strukturausnutzung mit einem verallgemeinerten GAUSS-
NEWTON-Verfahren effizient gelöst.

• Es wird ein Beweis gegeben, dass im Falle einer asymptotisch gegen unendlich gehenden Zahl
von äquidistanten Mehrzielknoten die Unstetigkeiten (Sprünge) an den Intervallgrenzen
gegen null gehen.

• Eine numerische Analyse offenbart die Dünnbesetztheitsstruktur der auftretenden Glei-
chungssysteme. Es wird gezeigt, dass die Anzahl der Nichtnulleinträge nur linear in der
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Zahl der Mehrzielknoten (Zeitgitter) wächst und einer scharfen oberen Schranke genügt.
Zusätzlich wird bewiesen, dass sich unter Verwendung einer geeigneten (stabilen) Zerlegung
die Dünnbesetztheit erhalten lässt.

• Eine vergleichende Simulationsstudie zeigt, dass die Schätzungen sehr robust hinsichtlich
der Wahl der Sprunggewichte sind. Zusätzlich wird dargelegt, welchen Einfluss die Intensität
der Sprungregularisierung auf Schätzungen und approximierte Trajektorien hat.

• Es wird ein Lifting-Ansatz mit intervallweisen Parametersätzen, gekoppelt durch zusätzliche
Gleichungsbedingungen, entwickelt und seine numerischen Eigenschaften analysiert. Weiter
wird ein Homotopieverfahren zur Behandlung schwer lösbarer Probleme vorgeschlagen.

• Die Leistungsfähigkeit der Methode wird an Beispielen aus der Systembiologie, die jeweils
unterschiedliche Aspekte beleuchten, demonstriert. Insbesondere wird gezeigt, dass sich
die Methode auch zur Rekonstruktion von unbeobachteten Zuständen (engl. hidden state
estimation), sowie zur vollständigen Rekonstruktion von Trajektorien in Zeiträumen, in
denen keine Beobachtungen vorliegen, einsetzen lässt. Weiter wird ein Kriterium zur lokalen
Verfeinerung des Mehrzielgitters gegeben.

• Für einen durch einen LÉVY-Sprungprozess getriebenen ORNSTEIN-UHLENBECK-Prozess
(modifiziertes VAŠÍČEK-Zinsmodell) wird gezeigt, dass sich neben Gleichgewichtsniveau und
Steifigkeit aus den Sprungresiduen auch die Diffusionskonstante schätzen lässt.

• Im Softwarepaket :sfit wird eine effiziente Implementierung der in dieser Arbeit entwickel-
ten Parameterschätzmethode bereitgestellt, die auf Nutzerseite eine einfache symbolische
Problemformulierung erlaubt.

Teile dieser Arbeit entstanden im interdisziplinären Forschungsprojekt SBCancer der Helm-
holtz-Allianz Systembiologie und beschäftigen sich mit der Modellierung der Wechselwirkung
zweier an Krebs beteiligter Zytokin-Signalkaskaden in menschlichen Hautzellen. Vom Autor
wurde in enger Kooperation mit den beteiligten Biologen ein mathematisches Modell entwickelt
und durch Messdaten kalibriert. Die mittels diesem Modell berechneten kontraintuitiven Vor-
hersagen eines vorgeschlagenen Doppelstimulationsexperimentes konnten im Labor bestätigt
werden und führten auf neue biologische Erkenntnisse.

Wesentliche Beiträge und Neuerungen in dieser Arbeit sind die folgenden:

• Entwicklung eines mathematischen Modells eines Crosstalks der Signalwege zweier Zytokine
in menschlichen Keratinozyten (Zelllinie HaCaT). Die vom Modell vorhergesagte und zu-
vor unbekannte nichtlineare moderierende Wirkung von GM-CSF auf den IL-6-induzierten
JAK-STAT-Signalweg wurde im Labor in vitro nachgewiesen.

• Eine aufwendige mathematische Analyse des in der Zellbiologie häufig eingesetzten quanti-
tativen WESTERN-blot-Messverfahrens zeigt, dass etablierte Normalisierungstechniken, die
auf in angenommen konstanter Konzentration vorliegenden Haushaltsproteinen (engl. house-
keeping proteins) oder auf manuell hinzugefügten Kalibrierungsproteinen beruhen, extrem
anfällig für signalzerstörende statistische Artefakte sind. Zusätzlich wird gezeigt, dass sich
die häufig getroffene Annahme normalverteilter Fehler nach Anwendung dieser Normalisie-
rung i. d. R. nicht halten lässt.

• Eine auf Verstärkungsfaktoren beruhende Methode wird als Ersatz vorgeschlagen. Es wer-
den leicht nachzuprüfende Kriterien an die Rohdaten entwickelt, anhand derer entschieden
werden kann, ob die auf diese Weise prozessierten Messdaten weiterhin (approximativ) nor-
malverteilt sind. Des Weiteren werden in einer vergleichenden Simulationsstudie die Vor-
teile der vorgeschlagenen Verstärkungsfaktormethode (engl. amplifications factors method)
demonstriert.
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Abstract

This thesis comprises the modelling of and parameter estimation in dynamical systems, with a
focus on applications in systems biology. In an interdisciplinary research project on the systems
biology of cancer, we develop a predictive mathematical model of an intracellular crosstalk
in cytokine signalling. Expected and unexpected predictions are confirmed in experiments
and lead to new biological insights. For model calibration with measurement data, we apply
well established methods for parameter estimation in ordinary differential equation models.
Extending these to stochastic differential equations, we develop, analyse, and implement a
new method for parameter estimation in dynamical processes with noise, and demonstrate its
performance in several selected examples from systems biology and mathematical finance.

Many processes, especially in biology, obey deterministic ground rules (e.g. metabolic
processes or signal transduction pathways), but may be heavily influenced by fluctuations
and stochasticity inherent to the system that change its behaviour both qualitatively and
quantitatively. Therefore, frequently, a deterministic description is not constructive.

A large class of such systems can be adequately described by nonlinear multi-dimensional
stochastic differential equations (SDEs). Classical estimation techniques for SDEs, relying on
(approximations of) transition densities, are all too often not applicable to these problems,
due, inter alia, to their high computational costs and prerequisites on the measurements.

The proposed new method is based on the method of multiple shooting, using piecewise
deterministic solutions of ordinary differential equations (ODEs) to approximate the SDE
realization that corresponds to the studied process from which measurements have been taken.
The generally discontinuous concatenation of ODE trajectories mimics the consequences of
stochastic effects, and, further, allows to formulate the parameter estimation problem as a
deterministic nonlinear optimization problem that can be solved with efficient derivative-based
solution methods. In this thesis, a generalized GAUSS-NEWTON method is deployed.

Main results and contributions of this thesis are summarized in the following:

• We propose a new method for parameter estimation in nonlinear multi-dimensional SDEs,
based on a piecewise approximation by solutions of ODEs. Discontinuities (jumps) occur-
ring at the interval borders are used for regularization. Unknown parameters and initial
states are estimated by a generalized weighted least squares method from data that can
originate from direct complete or partial state measurements or from indirectly observed
quantities. Measurement data may be afflicted with errors and arbitrarily sampled. Non-
linear parameter and point constraints may be formulated as equality and inequality con-
straints. The resulting nonlinear constrained optimization problems are highly structured
and efficiently solved using a generalized GAUSS-NEWTON method.

• We give a proof that the discontinuities at the interval borders asymptotically tend to zero
if the number of equidistantly distributed shooting nodes goes to infinity.

• We show in a numerical analysis that the resulting equation systems are sparse, that
the number of nonzero elements depends only linearly on the number of shooting nodes,
and give sharp upper bounds. Moreover, we prove that the sparsity is maintained if an
appropriate (stable) decomposition is a applied.

• It is demonstrated in comparative simulation studies that the estimates are robust w.r.t. the
exact choice of jump regularization weights. Moreover, the effects of jump regularization
on estimates and approximated trajectories are investigated and described.

vi



• A lifting approach with per-interval parameter sets, coupled by additional equality con-
straints, is developed and its numerical properties are analysed. Moreover, we propose a
homotopy method for the treatment of hard problems.

• We demonstrate the performance of the new estimation technique in examples from systems
biology, each shedding some light on different aspects. Especially, we show that the method
can also be used for hidden state estimation and for trajectory reconstruction in time spans
without observations. Further, we derive a criterion for local grid refinement.

• We show for an ORNSTEIN-UHLENBECK process driven by a LÉVY jump process, that, in
addition to mean reversion level and mean reversion rate, also the diffusion constant may
be estimated by analysing the jump residuals.

• The software package :sfit is an efficient implementation of the proposed method, offer-
ing easy symbolic problem formulation to the user, from which the stochastic parameter
estimation problem can be automatically built and solved.

Parts of this work emerged in the interdisciplinary research project SBCancer of the Helmholtz
Alliance on Systems Biology. In close collaboration with expert biologists, we developed an
mathematical model for a crosstalk of two cytokines in human skin cells that interfere in a
signalling pathway frequently found aberrantly activated in cancer. After an extensive analysis
of the deployed measurement data processing, the model proposed by the author of this thesis
has been calibrated from experimental data. Its counter-intuitive predictions have been verified
in wet lab experiments and lead to new biological insights.

Main novelties and contributions in this thesis are:

• Development of a mathematical model of the crosstalk of two cytokines in human keratino-
cytes (HaCaT cell line). The predicted and hitherto unknown nonlinear moderating effects
of GM-CSF on the IL-6-induced JAK-STAT signalling pathway has been verified in vitro.

• An extensive mathematical analysis of the frequently utilized quantitative WESTERN blot-
ting measurement procedure shows that established data normalization methods, relying
on housekeeping proteins or manually added calibrator proteins, are prone to signal dete-
riorating statistical artefacts. Moreover, we show that the frequently declared assumption
of normally distributed measurement errors cannot be maintained if these normalization
techniques are applied.

• We propose as a remedy a normalization technique based on the calculation of amplification
factors, and develop criteria for (approximate) normally distributed errors. These criteria
can be easily checked using solely the raw measurement data. Moreover, we demonstrate the
advantages of the proposed amplification factors method in a large comparative simulation
study.
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Preface

Introduction

Modelling is a crucial term in the interdisciplinary research project SBCancer, embedded
in the Helmholtz Alliance on Systems Biology, that focusses on signalling in cancer and related
diseases. In its description, we read: “To promote the modelling activities [...] each of the bio-
medical projects is closely linked to theoretical projects.” For a fruitful collaboration across
disciplines, it is essential for both sides to learn the language of the other, as identical terms
all too often have different meanings. That this could lead to misunderstandings may be
illustrated by a brief anecdote from my personal experience.

At the project kick-off meeting with experimental biologists, we received a thorough in-
troduction to the biological background and to the measurement data available up to then.
They told us that they have a model at hand, but seemed unwilling to share it. Instead,
we were given a graphical illustration of the JAK-STAT signalling pathway, as it would be
more important to us to understand these principles (a scan from the original piece of paper
is printed above). We asked about the descriptive abilities of their model and were told that
it mimics growth, migration and invasion of (cancerous) epithelial cells into subjacent tissue,
and that it does this very well as comparisons to in vivo experiments with mice have shown –
sounds like very sophisticated work! A second time, we made a cautious request for that well
developed model, which again, however, just raised some eyebrows, as it would be “useless” to
us. A new project’s kick-off meeting is probably the worst place for offending sensibilities, so
we accepted without a further word of protest.

It finally turned out that the model they were speaking about was an organotypic co-
culture model : epithelial cells in a layer on top of a collagen gel populated with fibroblasts and
without direct contact to the nutrient medium, imitating physiological characteristics of skin
and its stroma (see the illustration in figure 3.2 on page 44). Indeed, a model with limited
usage for mathematicians.

This work is about mathematical models, and comprises especially the modelling of a crosstalk
in the intracellular JAK-STAT signal transduction pathway, triggered by external stimulation
with cytokines. We develop an ordinary differential equations model, thoroughly analyse the
measurement procedure and the data processing, and estimate unknown kinetic parameters,
leading to a calibrated model with experimentally verified predictive power. In view of fur-
ther applications, we develop a new method for parameter estimation in a class of stochastic
differential equations models, analyse the numerics behind, and demonstrate its successful
application on several example settings in systems biology and beyond.

Parameter estimation in differential equation models

Mathematical models form the basis of any computer-based simulation. In general, they
consist of two essential parts: the structure describing the players and interactions in the
studied system, and parameters that quantitatively characterize them.
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Frequently, the structure is sufficiently known, e.g. reaction partners and kinetics in a
biochemical process, parameters like rate constants and some or all initial system states, think
of the concentrations of certain proteins in living cells, however, have to be determined from
experimental data that is, except for a few cases, afflicted with errors.

The task of retrieving unknown quantities from observations, which is the central part
of this thesis, is known as parameter estimation, model fitting or model calibration. The
method of (weighted) least squares that determines unknown parameters p by minimizing
the squared distance of model simulations hi(p) and M observations ηi is a well established
technique for parameter estimation. If information about the variances σ2

i of measurement
errors are available, the reciprocals of these variances are used for weighting the squared
deviation between model and measurement. Using scalar quantities for ease of notation, the
least squares problem

p∗ = arg min
p

M∑

i=1

σ−2
i ·
(
hi(p)− ηi

)2
(1)

delivers the estimate p∗ for the vector of unknown parameters. It is known that the method
of (weighted) least squares delivers maximum likelihood estimates if a correct model is used,
i.e. a model that accurately describes the studied system, and if the measurement errors are
independent and normally distributed.

Most dynamical processes – may it be in biology, chemistry, physics, medicine, and also in
disciplines like finance, psychology, or social studies – can be mathematically modelled by
differential equations that describe their temporal development.

From the large mathematical toolbox labelled with “differential equations”, the modeller
has to select that tool that fits those properties of the studied system that shall be reproduced.
Ordinary differential equations (ODEs), are suitable, if observations taken from the studied
system are clearly reproducible, i.e., if the system behaves deterministically. Systems with
intrinsic stochasticity that lead to different outcomes in each experiment repetition, are often
well described by stochastic differential equations (SDEs).

There is a plethora of further types and subtypes of differential equations, e.g. partial
differential equations (PDEs) are the method of choice if spatial distribution is important,
delay differential equations, ordinary, partial, or stochastic ones, may be used to model systems
where the current state depends on its history. In this thesis, we focus on systems that are
described by ODEs and SDEs, primarily originating from biological settings.

The method of multiple shooting

A method for parameter estimation in ODE that has been successfully applied in many settings
is BOCK’s method of direct multiple shooting that parametrizes the state trajectory as follows:
A grid of shooting nodes is introduced, dividing the time horizon into separate intervals. To
every node, a shooting variable is associated that acts as initial value for the ODE on the
respective interval. Continuity of the final trajectory is guaranteed by imposing matching
conditions that force the state values at the end of each interval to coincide with the initial
values (i.e. the shooting variable) of the following one.

Main benefits of this methodology are stability and efficiency: Error propagation is in-
terrupted at every shooting node, circumventing rampant growth of parasitic solution compo-
nents, and measurement data can be used for initializing the shooting variables, accelerating
the solution finding process. Furthermore, the resulting systems are highly structured and the
respective initial value problems on each interval can be solved in parallel.
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Development of a predictive model for a signalling crosstalk in human
keratinocytes and improvements in measurement processing methods

The “classical” task of parameter estimation in ordinary differential equation models is still
of high importance and widely used. We apply these methods in a signal transduction model
that we newly developed within an interdisciplinary research project in the scope of SBCancer.

In close collaboration with expert biologists from the group “Tumour and Microenviron-
ment” headed by Margareta M. MÜLLER at the German Cancer Research Center (DKFZ) in
Heidelberg, a crosstalk of the two cytokines IL-6 (interleukin 6) and GM-CSF (granulocyte-
macrophage colony-stimulating factor) in human skin cells has been investigated. The involved
JAK-STAT signalling pathway is frequently found aberrantly activated in various cancers.

Illustration of the new crosstalk model

Since this crosstalk
has never been investi-
gated before – see the dis-
cussion of existing mod-
els of the JAK-STAT sig-
nalling pathways in sec-
tion 3.7 – a completely
new model was created
from scratch by the au-
thor of this thesis, with fo-
cus on comprehensibility
and interpretability.

The model was fitted
to wet lab measurements
originating from cell stim-
ulation experiments with

different stimulation settings, quantified by semi-quantitative WESTERN blotting. During
analysis of this data, we detected “spurious” signals that we were able to track down to the
frequently applied normalization technique based on manually added calibrator proteins. Pro-
cessing the data with the amplification factors method proposed by the author of this thesis
eliminated these artefacts.

We give an extensive mathematical analysis of both processing methods that elucidates
the made observations. We show why and to which extent the established data normalization
method relying on housekeeping proteins or manually added calibrator proteins is prone to sig-
nal deteriorating statistical artefacts, and we further demonstrate that the frequently declared
assumption of normally distributed measurement errors cannot be maintained in general if this
normalization technique is applied. The amplification factors method delivers stable and re-
producible results under only weak requirements, which are often fulfilled and – important for
wet lab experiments – easy to verify. Furthermore, it allows the comparison of data originating
from different blots and the errors can often be well approximated by a normal distribution.

We shortly mention at this place that the newly developed crosstalk model has proven its
predicitive capabilities in several verification experiments, and that a new co-stimulation series
proposed by the author has led to new biological insights. The model predicted a hitherto
unknown nonlinear dose-dependency of the IL-6 induced JAK-STAT signal on GM-CSF that
has been confirmed both qualitatively and quantitatively in subsequently performed wet lab
experiments. For details, we refer to chapter 3.
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Extension to systems with intrinsic noise: Parameter estimation in SDEs

Most processes – not limited to biological ones – follow certain basic principles but may be
influenced by intrinsic stochasticity that may significantly alter the system’s behaviour quan-
titatively and also qualitatively. In this case, a description with SDE is often necessary and
appropriate. Informally, we may interpret a certain class of SDEs, the ones with constant dif-
fusion, as ODEs “with noise”, if we compare the notation of ODE and those SDE in differential
form:

(ODE) dx = f(t, x, p) dt (SDE) dx = f(t, x, p) dt+D dWt

The drift f depends on current time t, current state x(t), and parameters p. The SDE formula
on the right has an additional diffusion term D dWt that denotes “white noise”, the formal
derivative of a WIENER process scaled with intensity D.

On small time scales, however, many of these (and other) SDE processes resemble ODE
processes, i.e. the stochasticity is not the dominating part of the system. See, i.e., the visual-
izations of a bistable allosteric enzyme regulation model in figure 5.2 on page 123.

From this observation, there arises the idea to use ODEs to approximate an SDE real-
ization. The time horizon is split into multiple intervals, in which only the drift part of the
SDE, i.e. the associated ODE, is used for simulating the process, and the SDE realization is
approximated by concatenating these “deterministic pieces” that describe the system for small
periods of time.

The new piecewise deterministic approach:
Approximating an SDE trajectory with ODE solutions.
The discontinuities αi are used for regulatization.

This resembles the direct multiple
shooting for parameter estimation in
ODE, but in contrast to that method,
we now do not impose matching con-
ditions at the shooting nodes but allow
discontinuities. These jumps may be in-
terpreted as cumulated stochasticity of
the preceding interval. It turns out that
simply concatenating interval-wise ODE
solutions may lead to wrong conclusions,
as we show in section 5.4.4 on page 145.
We can avoid that by using the jumps
for regularization.

Assume the shooting grid is given by τ0 < τ1 < ... < τm, and let us denote the ODE solution
in interval [τk, τk+1] by x(k)(t) ∈ IRnx , then instead of minimizing the least squares formulation
in eq. (1), we employ a regularized objective:

p∗ = arg min
p

M∑

i=1

σ−2
i ·
(
hi(p)− ηi

)2
+

m−1∑

k=1

nx∑

l=1

ω2
k,l ·
(
x

(k−1)
l (τk)− x(k)

l (τk)
)2

(2)

with appropriately chosen jump regularization weights ω2
k,l. The simulated measurements

hi(p), the model response, are now taken from the interval-wise trajectory approximations. A
rigorous formulation is given in the definition of the constrained nonlinear parameter estimation
problem 5.18 on page 144.

This piecewise deterministic approach allows the usage of derivative based optimization
methods while maintaining the ability to reflect stochasticity intrinsic to the SDE formulation.
If the parameter estimation problem (2), possibly with additional equality and inequality
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constraints, is solved with a GAUSS-NEWTON method, the occurring equation systems are
highly structured. This can be exploited for computational efficiency.

This new approach for parameter estimation in SDE models is subject of the fifth chap-
ter, where we start with a detailed introduction to the idea, and also give a literature review
and discussion of existing techniques for parameter estimation in SDE. Furthermore, we suc-
cessfully apply this method to examples from systems biology and mathematical finance, and
demonstrate that it delivers reliable and robust estimates.

An overview is also given in the subsequent Thesis Overview section.

Thesis overview

At this place, we present an overview about the contents of this thesis. Further details and
relevant references are given in the summaries at the beginning of each chapter.

A few words on the sectioning of this thesis: The first chapter introduces and discusses
a generalized GAUSS-NEWTON method for solving nonlinear least squares problems that arise
in the parameter estimation problems covered in this thesis. The second chapter reviews the
method of multiple shooting for solving parameter estimation problems in ODE models to
have them at hand when using them in chapter three for calibrating the cytokine crosstalk
model. Further, these techniques form the basis of the new parameter estimation method for
SDEs developed in the fifth chapter, after introducing the theoretical foundations of SDEs
and their numerical simulation in chapter four. Finally, in the sixth chapter, we demonstrate
the performance of the new method in several numerical examples, each elucidating different
aspects.

Chapter 1: Gauß-Newton for Constrained Least Squares Problems
The first chapter focuses on the GAUSS-NEWTON method for nonlinear least squares prob-
lems with equality and inequality constraints, as these form the basis for the new parameter
estimation method for stochastic systems in chapter 5.

We recapitulate the basic theory of constrained nonlinear optimization and formulate
optimality conditions in the sense of KARUSH-KUHN-TUCKER tuples. Some solution methods
for (un-)constrained linear least squares are presented, also for the rank deficient case.

The generalized GAUSS-NEWTON method, based on iteratively solving linearized problems,
is derived, and we show that the solution operator is a generalized inverse constructed from
objective and constraints gradients. A local convergence result of BOCK is given. The chapter
finishes with the presentation of two globalization methods.

Chapter 2: Parameter Estimation in Ordinary Differential Equation Models
In the second chapter, we discuss parameter estimation in ordinary differential equations,
establish the notation used in subsequent chapters, and show that the method of weighted
least squares delivers a maximum likelihood estimate if measurements are affected by additive
and normally distributed errors. Further, we introduce the concepts of structural and prac-
tical identifiability, addressing the question whether the available measurement data contains
enough information to reconstruct the unknown parameters.

Boundary value problems (BVPs) are the basis of the parameter estimation methods
discussed in this thesis. We present three widespread solution methods for BVPs, single
shooting, collocation, and multiple shooting, and discuss the pros and cons of these techniques.
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We detail the method of multiple shooting for solving BVPs and present and discuss
common techniques for generating derivatives of ODE solutions with respect to initial values
needed to apply the GAUSS-NEWTON solution method described in chapter 1: external nu-
merical differentiation (END, method of perturbed trajectories, finite differences, including
the 50 years old but still not widely known i-trick of LYNESS and MOLER), internal numerical
differentiation (IND, a principle avoiding inconsistencies by freezing adaptive components of
the integrator), the variational differential equations, and automatic differentiation (AD, al-
gorithmic differentiation), the latter implemented and used in combination with IND in the
software package :sfit developed in this thesis.

Subsequently, we formulate the nonlinear parameter estimation problem with an underly-
ing ODE model as an overdetermined BVP. The dynamics are treated using a multiple shooting
parametrization, continuity conditions ensure a continuous solution trajectory. We further ad-
dress the questions how the objective must be adjusted for correlated measurements, and how
errors in the independent variables (usually time) can be treated by total least squares.

The chapter closes with a statistical analysis of the generated solutions, giving (linearized)
confidence intervals for the estimated quantities.

Chapter 3: Development of and Parameter Estimation in a Crosstalk Model of
GM-CSF-mediated IL-6-induced JAK-STAT Signalling
The third chapter contains an application in biology of the parameter estimation methods
developed in chapter 2. We develop a mathematical model for an intracellular crosstalk in the
so-called JAK-STAT (Janus kinase / signal transducer and activator of transcription) pathway
in human skin cells, which is frequently found aberrantly activated in various cancers.

We first give an extensive introduction into the biological backgrounds of cytokines IL-6
(interleukin 6) and GM-CSF (granulocyte-macrophage colony stimulating factor), the deployed
HaCaT cell line, to the JAK-STAT signalling pathway, and their connection to cancer.

Further, we describe in detail the wet lab experiments to work out possible sources of error,
and investigate the processing method for data generated by the semi-quantitative WESTERN

blotting procedure. Presenting and using earlier work of MARSAGLIA on the ratio of normal
variables, we show that the commonly applied data normalization technique using calibrator or
house-keeping proteins leads to non-normally distributed data, and is very likely to introduce
severe artefacts or even totally destroy the signal of interest due to normalization.

We instead propose a different data processing method, the amplification factors method,
and show that it delivers approximately normally distributed data suitable for maximum like-
lihood parameter estimation using the method of weighted least squares. As an extra benefit,
the amplification factors method allows easy comparison of data generated in different exper-
iments, which is not the case for the other technique. Moreover, we show by comparing the
two data processing methods in an extensive simulation study that the amplification factors
method gives better results and is much more robust towards measurement errors.

A review of existing models of IL-6 induced JAK-STAT signalling shows that many are
built in great detail and heavily overparametrized for the available data. Furthermore, none of
them incorporates the desired crosstalk with GM-CSF. We therefore develop an ODE-based
crosstalk model from scratch, with a focus on comprehensibility and interpretability.

Using the wet lab data and the methods described in chapter 2, we estimate the unknown
kinetic parameters of the model, and use the fitted model to make predictions for the kinetics
of suppressors of cytokine signaling (SOCS). These were later verified in wet lab experiments.

xviii



Contents

Finally, we use the additional data of the model verification experiments to improve the
parameter estimates, and use the model to predict the cell’s behaviour under different co-
stimulation settings that were proposed by the author. The predictions show a counter-
intuitive nonlinear GM-CSF-dependent modulation of the IL-6 induced signal. The subse-
quently performed wet lab experiments confirmed these predictions both qualitatively and
quantitatively, leading to new biological insights.

Chapter 4: Introduction to Stochastic Differential Equations
In chapter four, we first recapitulate the basic concepts of probability theory needed to intro-
duce stochastic processes, focussing on the class of càdlàg processes, and give a definition and
some properties of WIENER processes.

Moreover, we motivate and formally derive WIENER-driven stochastic differential equa-
tions, define strong and weak solutions, and give existence and uniqueness results for stochastic
initial value problems (S-IVPs), based on the ITÔ theory of stochastic integrals given in ap-
pendix C. Furthermore, we discuss a third class of differential equations lying “in between”
ODE and SDE: random ordinary differential equations (RODEs).

We recall some numerical integration schemes for approximating strong solutions of S-IVPs,
especially the explicit and semi-implicit EULER-MARUYAMA and MILSTEIN schemes, which are
used for data generation in the numerical examples chapter 6, and give their respective orders
of weak and strong convergence. Also, some higher order integration schemes are discussed.

We conclude this chapter with a formal definition of and an introduction to LÉVY processes,
i.e. possibly discontinuous càdlàg processes, and present numerical integration schemes, which
are used in the numerical examples chapter for data generation.

Chapter 5: Parameter Estimation in Stochastic Differential Equation Models
In chapter five, we present a new method for parameter estimation in stochastic differential
equations, based on a piecewise deterministic approach.

We start with an example of allosteric enzyme regulation, showing that even small stochas-
ticity may completely alter the behaviour of a system both quantitatively and even qualita-
tively. Based on the observation that, for short time scales, ODE and SDE solutions do
resemble each other, we outline the idea of the new parameter estimation method: Splitting
the whole time horizon into multiple intervals as in the multiple shooting method for parame-
ter estimation in ODEs presented in chapter 2, but allowing jumps at the shooting nodes and
using relaxed continuity conditions for regularization.

Since this methodology only uses the drift part of the underlying SDE, we present the
LAMPERTI transform that can be used to transform an SDE with state-dependent diffusion
into one with constant diffusion.

We discuss existing methods for parameter estimation in SDEs, especially techniques for
(approximate) maximum likelihood estimation based on transition probabilities, which rely
on excessive sampling and are in general computationally very costly. We further discuss
the STRATONOVICH-KÁLMÁN-BUCY filtering technique for linear problems, as well as other
estimation methods, and give a note on assessing estimator performance.

In preparation to a later convergence result, we investigate the distance between solution
of stochastic and deterministic initial value problems at interval boundaries and the maximum
deviation over the full interval, and give bounds in expectation and mean-square for both
deviations.
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After these preparations, we establish the new method for parameter estimation in SDEs.
We introduce the required notation, give a detailed problem description, and describe how
to apply the GAUSS-NEWTON method described in chapter 1 for solving. An example on
estimating initial value and exponent of a WIENER-driven exponential illustrates the method
and shows that the jump regularization is indispensible for obtaining correct estimates. We
further establish a connection to the methods for parameter estimation in ODE in the so-called
multi-experiment setting with additional jump regularization, and prove that the piecewise
ODE solutions converge to the (realization of the) SDE if the sizes of the shooting intervals
decline to zero.

Subsequently, we perform a numerical analysis of the new method. We investigate the
sparsity pattern in the linear subproblems that occur in the GAUSS-NEWTON method, and
give a sharp upper bound on the number of nonzero elements in the residuals’ Jacobian. We
further show that the number of nonzero elements in the Jacobian grows only linearly in the
number of shooting nodes, while the total number of elements grows quadratically. Moreover,
we prove that sparsity in the Jacobian can be maintained if a suitable (stable) decomposition
is applied, and give a sharp upper bound for the number of nonzero elements in the resulting
decomposition factor.

We proceed with proposing a lifting method based on per-interval parameters, coupled by
additional equality constraints, and redo the numerical analysis for the lifted problem. We
conclude this chapter with a proposition for a homotopy in jump regularization that may help
to treat ill-posed problems.

Strategies for choosing and adjusting the shooting grid are discussed by means of the
BISTABAER example in section 6.3.3.7 on page 191. The software package :sfit, imple-
menting the ideas and methods of this thesis, is described in appendix S.

Chapter 6: Numerical Examples
The final chapter presents successful applications of the new parameter estimation method
in four distinct examples, elucidating different aspects. The respective sections comprise a
detailed description of the studied system, a visual comparison between ODE and SDE inter-
pretations, extensive simulation studies to assess the estimator performance, and the following
investigations:

In each simulation study, 100 realizations of the SDEs are simulated with different driv-
ing WIENER processes (or LÉVY processes in the ORNSTEIN-UHLENBECK example). Model
parameters are estimated using data retrieved in usually eight different scenarios constructed
from combinations of full and partial observations, exact and noisy measurements, and varying
jump regularization weights. All results are concisely tabulated and discussed.

The quality of the estimation method is described by the mean values of the estimates,
which are found to be close to the true values in all examples, and their spread in terms
of standard deviations, which are usually small, giving evidence for a reliable and robust
estimation technique.

Also, common to all four examples, we describe the measurement functions, shooting grid
and node initialization, as well as point and parameter constraints (if any). Further, we give
information about the sparsity of the residuals’ Jacobian and graphically display its sparsity
structure. Moreover, we investigate certain individual properties in the respective “a closer
look” sections.

In the FITZHUGH-NAGUMO oscillator example, prototypically describing an excitable sys-
tem with intrinsic noise, we analyse and illustrate in addition to the investigations stated above
the effects of different jump penalization weights on the recovered trajectories.
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In the example of calcium ion oscillations in eukariotic cells, we first prove that the system
is unidentifiable when using partial observations, and therefore select an identifiable subset
of parameters for these settings in the simulation study. Further and in addition to the
common tasks, we investigate the performance of our new estimation technique when having
only intermittent observation, i.e. no measurement data is available for prolonged periods of
time, and find that the trajectories in the unobserved areas are recovered surprisingly well (see
figure 6.10e on page 186), showing that our proposed estimation technique may also be used
for trajectory reconstruction.

In the allosteric enzyme regulation model BISTABAER, we show that the method – be-
sides estimating the unknown parameter values – successfully reconstructs the hidden intrinsic
control of the system (a bistable oscillator affected by the driving WIENER process). Moreover,
we give a strategy for local refinement of the shooting grid based on local residuum analysis.

In the final example of an ORNSTEIN-UHLENBECK mean reversion process, driven by a
discontinuous LÉVY process, we present a heuristic method for automatically placing shooting
nodes using solely the available measurement data without further information. In contrast
to the previous example, the jump weights are chosen as zero (as the actual trajectory is
discontinuous), and we show that also the diffusion parameter can be estimated from the
distribution of the jumps.

Appendix
The appendix A collects supplemental information about the IL-6/GM-CSF crosstalk model
developed in chapter 3. It presents the materials and methods used in the wet lab, explains
the calculation of absolute concentrations from WESTERN blot data, and gives a tabulated
overview of measurement data and parameter estimates.

In appendix B, we give some results on QR and SVD-based matrix decompositions, and
list different types of convergence of random sequences.

In appendix C, we derive the stochastic integrals of ITÔ and STRATONOVICH, give some
basic properties and results, and introduce some further notions that we use in chapters 4
and 5.

Finally, in appendix S, we present the software package :sfit that implements the ideas
and methods for parameter estimation in stochastic systems described in chapter 5, and give
step-by-step instructions to set up and solve parameter estimation problems.

Some historical notes
Throughout this thesis, we give some historical notes on selected topics. We like to explicitly
mention the following:

(i) A change in notation: From KUHN-TUCKER to KARUSH-KUHN-TUCKER points,
see footnote (1) on page 4

(ii) On the invention and first Fortran implementation of automatic differentiation
(AD), see footnotes (3) and (4) on page 34

(iii) The “evolution” of WIENER processes over centuries from first documented observa-
tions by INGEN-HOUSZ in 1784 and the rigorous existence proof by Norbert WIENER

in 1923, see section 4.2.1 and footnote (5) on page 106, and
(iv) The STRATONOVICH-KÁLMÁN-BUCY filter and an anticipating work of THIELE from

1880, see footnote (2) on page 127
Sources for further readings are given at the mentioned places.
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1 Gauß-Newton for Constrained Least Squares
Problems

This chapter contains the mathematical background for numerically solving the problems
stated in this thesis.

The first section gives a general introduction to nonlinear optimization. After the math-
ematical preliminaries are specified, we formulate standard optimality conditions in the sense
of KARUSH-KUHN-TUCKER points.

Section two discusses linear least squares problems and their (unique) solvability criteria.
Solution methods for unconstrained, equality-constrained and inequality-constrained problems
(based on active-set strategies) are given, also for the rank-deficient cases.

The last section introduces nonlinear least squares problems and discusses the generalized
GAUSS-NEWTON algorithm for solving them by iteratively improving an initial guess with
(damped) increments generated as the solution of linearized least squares problems. For these
linear least squares problems, we show that the solution operator may be written as a gener-
alized inverse constructed from objective and constraint gradients. After a local convergence
proof first stated by BOCK, we conclude the chapter with a globalization technique.

The presentation in this chapter mainly follows the descriptions in [NocedalWright2006],
[Bjorck1996], and [Bock1987].

On notation
For the sake of completeness and to introduce the notation used in this thesis, we repeat the
basic definitions of nullspace and range of a matrix and for balls in IRn.

1.1 Definition (Range and nullspace)
Let C ∈ IRm×n. Then, we define the range R(C) ⊆ IRm and the nullspace N (C) ⊆ IRn as

R(C) :=
{
y ∈ IRm

∣∣ ∃x ∈ IRn : y = Ax
}

N (C) :=
{
x ∈ IRn

∣∣ Cx = 0
}

�

1.2 Definition (Open and closed balls)
For a point x0 ∈ IRn and ε ≥ 0, we define

1. the open ball around x0 as Bo
(
x0, ε

)
:=
{
x ∈ IRn

∣∣ ‖x− x0‖ < ε
}

2. the closed ball around x0 as B
(
x0, ε

)
:=
{
x ∈ IRn

∣∣ ‖x− x0‖ ≤ ε
}

3. and write B
(
x0, ε

)
for any ball fulfilling Bo

(
x0, ε

)
⊆ B

(
x0, ε

)
⊆ B

(
x0, ε

)
. �
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1 Gauß-Newton for Constrained Least Squares Problems

1.1 Basic overview of constrained nonlinear optimization

We start with a general formulation of constrained nonlinear optimization problems (CNLP),
introducing basic notions, optimality concepts, and solution methods. The occurring functions
shall be sufficiently smooth, say, C3. We note that most results of this section also hold for
much weaker regularity assumptions.

1.3 Problem (CNLP)
Let f : IRnx → IR and ri : IRnx → IR (i = 1, ..., nec + nic),
where nec and nic denote the number of equality and inequality constraints.
Then, the constrained nonlinear problem is written as

min
x∈IRnx

f(x)

s.t. ri(x) = 0 (i = 1, ..., nec)

ri(x) ≥ 0 (i = nec + 1, ..., nec + nic)

For ease of notation, we unify the equality constraints in the function rec,
and the inequality constraints in the function ric:
rec : IRnx → IRnec with components reci (x) := ri(x) (i = 1, ..., nec)
ric : IRnx → IRnic with components rici (x) := rnec+i(x) (i = 1, ..., nic)

1.4 Remark
Depending on the situation, the notations of the constraints as scalar functions ri or as split
vector valued functions rec and ric have certain advantages and drawbacks. We thus use the
respective notation as appropriate. �

1.5 Definition (Feasible point, feasible set, local and global solution)
For the constrained nonlinear problem (CNLP), let x ∈ IRnx .

1. We call x a feasible point , if x fulfills the constraints, i.e. rec(x) = 0 and ric(x) ≥ 0.

2. The set X := {x ∈ IRnx
∣∣ rec(x) = 0 ∧ ric(x) ≥ 0} is called the feasible set for (CNLP).

3. A feasible point x∗ ∈ X is called a local solution or local minimizer , if there exists an
ε > 0 such that f(x∗) ≤ f(x) for all x ∈ X ∩B

(
x∗, ε

)
.

If the inequality holds strictly, x∗ is called a strict local solution or strict local minimizer .

4. A feasible point x∗ ∈ X with f(x∗) ≤ f(x) for all x ∈ X is called a global solution or
global minimizer . If the inequality holds strictly, x∗ is called a strict global solution or
strict global minimizer .

�
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1.1 Basic overview of constrained nonlinear optimization

1.6 Definition (Lagrangian multipliers)
The Lagrangian for the constrained minimization problem (CNLP) is defined as

L(x, λ) := f(x)−
nec+nic∑

i=1

λiri(x)

or, equivalently,

L(x, λec, λic) := f(x)−
nec∑

i=1

λeci r
ec
i (x)−

nic∑

i=1

λici r
ic
i (x),

where the vector of Lagrangian multipliers λ is split into a part λec = (λ1, ..., λnec)
T correspond-

ing to the equality constraints and λic = (λnec+1, ..., λnec+nic)
T corresponding to the inequality

constraints. �

1.7 Definition (Active set)
For every x ∈ IRnx , each of the inequality constraints in (CNLP) is either active, rici (x) = 0,
or inactive, rici (x) > 0.

1. Given a point x ∈ IRnx , the active set

A(x) :=
{
i ∈ {1, ..., nec + nic}

∣∣ ri(x) = 0
}

consists of the indices of all active constraints at this point x.

2. For notation, we split the active set into parts belonging to equality and inequality
constraints:

Aec(x) := {i = 1, ..., nec
∣∣ reci (x) = 0}

Aic(x) := {i = 1, ..., nic
∣∣ rici (x) = 0}

Thus, for a feasible point x ∈ X , we have Aec(x) = {1, ..., nec}.

�

Before we formulate optimality conditions of constrained nonlinear problems in section 1.1.1,
we introduce two common prerequisites on the regularity of feasible points.

1.8 Definition and Lemma (LICQ, MFCQ)
Let x ∈ X be a feasible point, and A(x) be its active set as in definition 1.7.

1. The point x fulfills the linear independence constraint qualification or LICQ, if the set
of gradients of active constraints

{∇ri(x)
∣∣ i ∈ A(x)} = {∇reci (x)

∣∣ i ∈ Aec(x)} ∪ {∇rici (x)
∣∣ i ∈ Aic(x)}

is linearly independent.

3



1 Gauß-Newton for Constrained Least Squares Problems

2. The point x fulfills the MANGASARIAN-FROMOVITZ constraint qualification or MFCQ,
if both following conditions hold:

a) the set of equality constraint gradients {∇reci (x)
∣∣ i ∈ Aec(x)} is linearly independent

b) for a certain vector w ∈ IRnx , it holds

∇reci (x)Tw = 0 for i ∈ Aec(x)

∇rici (x)Tw > 0 for i ∈ Aic(x)

3. The following implication holds: LICQ =⇒ MFCQ.

Proof: If LICQ holds for x, we can choose w as the solution of the system

∇reci (x)Tw = 0 for i ∈ Aec(x)

∇rici (x)Tw = 1 for i ∈ Aic(x)

and thus x fulfills the MFCQ. �

1.1.1 Optimality conditions

1.9 Theorem (Characterization of solutions: KARUSH-KUHN-TUCKER conditions)
Let x∗ be a solution of (CNLP), fulfilling the LICQ or MFCQ. Then, there exist Lagrangian
multipliers λec ∈ IRnec and λic ∈ IRnic , such that

∇xL(x∗, λec, λic) = 0 (1.0a)

rec(x∗) = 0 (1.0b)

ric(x∗) ≥ 0 (1.0c)

λic ≥ 0 (1.0d)

λici r
ic
i (x∗) = 0 (i = 1, ..., nic) (1.0e)

For a given solution x∗, the Lagrangian multipliers are unique, if the LICQ holds.

Proof: See [NocedalWright2006] chapter 12.3. �

The conditions in eqs. (1.0a) to (1.0e) are called the KARUSH-KUHN-TUCKER(1) (KKT)
conditions. Equations (1.0b) and (1.0c) ensure that x∗ is a feasible point of (CNLP) and
are thus called primal feasibility conditions. Equation (1.0a) is called stationarity condition,
eq. (1.0d) is called dual feasibility condition, and eq. (1.0e) the complementarity condition.

(1) The US-American mathematician William KARUSH, 1917–1997, first formulated equivalent conditions in
his master’s thesis Minima of Functions of Several Variables with Inequalities as Side Constraints in 1939,
though his work remained unpublished. For several decades, the optimality conditions from theorem 1.9
were known as the KUHN-TUCKER conditions, after Harold William KUHN, 1925–2014, and Albert William
TUCKER, 1905–1995, published their eponymous paper in 1951, unaware and independently of KARUSH’s
earlier work.
Richard COTTLE gives elucidating details about William Karush and the KKT theorem in M. GRÖTSCHEL

(ed.): Optimization Stories, Documenta Mathematica, Bielefeld, Germany, 2012, pp. 255–269.
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1.1 Basic overview of constrained nonlinear optimization

As the KKT conditions contain first order derivatives, and each solution x∗ fulfills them,
they are also known as first order necessary conditions. Further, any point fulfilling the
conditions (1.0a)–(1.0e) is frequently called a KKT point or stationary point of (CNLP), and
the tuple (x∗, λec, λic) is named a KKT tuple.

1.10 Definition (Strict complementarity)
Let (x∗, λec, λic) be a KKT tuple in the sense of theorem 1.9. If for each i = 1, ..., nic in the
complementarity condition eq. (1.0e) either λici = 0 or rici (x∗) = 0, but not both at the same
time, i.e.

λici r
ic
i (x∗) = 0 ⇐⇒ λici = 0 xor rici (x∗) = 0,

or, more verbose, we have λici = 0 if ric(x∗) > 0, and λici > 0 if ric(x∗) = 0, then we say that
the strict complementarity conditions hold. �

1.11 Definition (Set V (x∗))
Let (x∗, λec, λic) be a KKT tuple of (CNLP). Then, we define the set V (x∗) by

v ∈ V (x∗) :⇐⇒





∇reci (x∗)Tv = 0 for i ∈ Aec(x∗)
∇rici (x∗)Tv = 0 for i ∈ Aic(x∗) with λici > 0

∇rici (x∗)Tv ≥ 0 for i ∈ Aic(x∗) with λici = 0
�

1.12 Lemma
Let (x∗, λec, λic) be a KKT tuple of (CNLP). Then, it holds:

∀ v ∈ V (x∗) : vT∇f(x∗) = 0

Proof: Let v ∈ V (x∗). Using the stationarity condition eq. (1.0a) of the Lagrangian, we get

vT∇f(x∗) =
∑

i∈Aec
λeci v

T∇reci (x∗) +
∑

i∈Aic
λici v

T∇rici (x∗),

and the complementarity λeci v
T∇reci (x∗) = 0 ∀ i ∈ Aec(x∗) and λici v

T∇rici (x∗) = 0 ∀ i ∈ Aic(x∗)
from definition 1.11 completes the proof. �

1.13 Theorem (Second order necessary and sufficient conditions)
Let (x∗, λec, λic) be a KKT-tuple in the sense of theorem 1.9, and V (x∗) as in definition 1.11.

1. Second order necessary condition:
If x∗ is a solution of (CNLP) and the LICQ holds, i.e. the Lagrangian multipliers λec

and λic are unique, then

vT∇xxL(x∗, λec, λic)v ≥ 0 for all v ∈ V (x∗).
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1 Gauß-Newton for Constrained Least Squares Problems

2. Second order sufficient condition:
If x∗ ∈ X is a feasible point and there exist λec ∈ IRnec and λic ∈ IRnic fulfilling the KKT
conditions and

vT∇xxL(x∗, λec, λic)v > 0 for all v ∈ V (x∗), v 6= 0,

then x∗ is a strict local solution of (CNLP). Note that the LICQ are not required.

Proof: See [NocedalWright2006] chapter 12.4, also [Bertsekas1995] chapter 3.3. �

Most algorithms for finding a solution to problem (CNLP) rely on solving the KKT-system
in theorem 1.9 for finding candidate solutions that have to be approved being an actual solution,
e.g. by checking the second order sufficient conditions specified in theorem 1.13.2.

1.2 Linear least squares problems

In this section, we present basic methods for solving linear least squares problems with and
without (linear) constraints, as solving linear least squares problems founds the basis for finding
the solution of nonlinear problems in section 1.3.

1.2.1 Unconstrained linear least squares

We formulate the problem of unconstrained linear least squares:

1.14 Problem (LIN-LSQ)
Let C ∈ IRm×n, d ∈ IRm. Find x ∈ IRn as the solution of

min
x∈IRn

LS(x) =
1
2

∥∥Cx− d
∥∥2

2 (1.1)

1.15 Theorem (Unique solvability of problem (LIN-LSQ))
The function LS(x) in (1.1) is convex, and a unique solution exists if

m ≥ n (the system is not under-determined) (1.2)

and rank(C) = n (C ∈ IRm×n has full column rank) (1.3)

Proof: Convexity of LS(x) is obvious. Further, any solution x∗ of problem (LIN-LSQ) fulfills
∇LS(x∗) = CT (Cx∗ − d) = 0, leading to the normal equations CTCx∗ = CTd. If the above
conditions hold, x∗ is the unique solution, as CTC ∈ IRn×n is then non-singular. �
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1.2 Linear least squares problems

1.2.1.1 A solution method using QR decompositions

One common way [Bjorck1996] to solve unconstrained linear least squares problems that fulfill
the requirements for unique solvability in theorem 1.15 is via decomposing the system matrix
C, e.g. by QR factorizations or singular value decompositions.

We shortly describe a solution algorithm using an orthogonal QR decomposition. The QR
decomposition of C with column pivoting is given as

CP = QR̃ =
[
Q1 Q2

] [ R
0(m−n)×n

]
= Q1R

or equivalently

QTCP =

[
R

0(m−n)×n

]

where P ∈ IRn×n is a permutation matrix, Q =
[
Q1 Q2

]
∈ IRm×m orthogonal with subma-

trices Q1 ∈ IRm×n, Q2 ∈ IRm×(m−n), and a nonsingular upper triangular matrix R ∈ IRn×n.

Since multiplication with an orthogonal matrix does not change the Euclidean norm and
PP T = I, we can write

‖Cx− d‖22 =

∥∥∥∥
[
QT1
QT2

]
·
(
CPP Tx− d

)∥∥∥∥
2

2

=

∥∥∥∥
[

R
0(m−n)×n

]
· P Tx−

[
QT1d
QT2d

]∥∥∥∥
2

2

=
∥∥RP Tx−QT1d

∥∥2

2
+
∥∥QT2d

∥∥2

2

The second term is independent of x; therefore the minimum of problem (LIN-LSQ) is certainly
attained if x is chosen as the solution of RP Tx = QT1d, i.e.

x = PR−1QT1d

which is calculated by solving Rz = QT1d for z, and permuting z to restore the original order,
yielding x = Pz.

An additional benefit of the QR factorization is that the condition number of the system
matrix C is not altered; therefore this method is applicable also to badly conditioned problems,
where other factorizations or the solution via normal equations CTCx = CTd might fail.

1.2.1.2 The rank-deficient case

If in the linear least squares problem (LIN-LSQ), one or both of the conditions (1.2) or (1.3)
does not hold, i.e. one or both of

m < n (the system is under-determined)

or rank(C) < n (C is rank deficient)

are fulfilled, then (LIN-LSQ) has usually a set of solutions with same residual values. However,
there always exists a unique solution of minimum norm, as theorem 1.17 shows. Before we
state that, we need to introduce the term of a pseudo-inverse.
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1 Gauß-Newton for Constrained Least Squares Problems

1.16 Definition and Lemma (MOORE-PENROSE pseudo-inverse)
Let C ∈ IRm×n be a matrix with rank(C) = r. The MOORE-PENROSE pseudo-inverse or just
pseudo-inverse C† of C is uniquely defined by the four conditions

(1) CC†C = C (2) C†CC† = C†

(3) (CC†)T = CC† (4) (C†C)T = C†C .

More general, a matrix C+ fulfilling condition (2) is called a generalized inverse.

If C = UΣV T = U

[
Σ 0
0 0

]
V T is the SVD of C (see theorem B.4), the pseudo-inverse can be

written as

C† = V

[
Σ−1 0

0 0

]
UT

with Σ ∈ IRr×r. �

1.17 Theorem (Unique minimum-norm solution of problem (LIN-LSQ))
Let C ∈ IRm×n with rank(C) = r ≤ min{m,n}, and d ∈ IRm. Then, for the linear least
squares problem (LIN-LSQ)

min
x∈IRn

1
2

∥∥Cx− d
∥∥2

2

the solution x∗ given as

x∗ = C†d = V

[
Σ−1 0

0 0

]
UTd.

is the unique minimum-norm solution, i.e.

∀ x = arg min
x 6=x∗

1
2

∥∥Cx− d
∥∥2

2
: ‖x∗‖2 < ‖x‖2 .

Proof: Let C = UΣV T = U

[
Σ 0
0 0

]
V T the SVD of C.

We orthogonally transform x∗ and the right hand side vector d, yielding

x = V Tx∗ =

(
x1

x2

)
with x1 ∈ IRr, x2 ∈ IRn−r

d = UTd∗ =

(
d1

d2

)
with d1 ∈ IRr, d2 ∈ IRm−r

Then:

‖Cx∗ − d‖2 =
∥∥UT

(
CV V Tx− d

)∥∥
2

=

∥∥∥∥
[
Σ 0
0 0

](
x1

x2

)
−
(
d1

d2

)∥∥∥∥
2

=

∥∥∥∥
(

Σx1 − d1

−d2

)∥∥∥∥
2

and the residual norm is minimal for x1 = Σ−1d1, and independent of the choice of x2. Choos-
ing x2 = 0 is unique and minimizes ‖x‖2 =

∥∥V Tx∗
∥∥

2
= ‖x∗‖2, since V is orthogonal. �

8



1.2 Linear least squares problems

1.2.2 Linear least squares with equality constraints

Equipping the unconstrained least squares problem (LIN-LSQ) with linear equality constraints
leads to the linearly constrained linear least squares problem (LIN-LSQ-EC), which occurs as
a subproblem when solving constrained nonlinear least squares problems utilizing active-set
strategies as discussed in section 1.3.

1.18 Problem (LIN-LSQ-EC)
Let C ∈ IRm×n, d ∈ IRm, and m ≥ n, and further E ∈ IRnec×n, b ∈ IRnec , nec < n.
Find x ∈ IRn as the solution of

min
x∈IRn

LS(x) =
1
2

∥∥Cx− d
∥∥2

2

s.t. Ex− b = 0

1.19 Theorem (Unique solvability of problem (LIN-LSQ-EC))
Problem (LIN-LSQ-EC) is uniquely solvable if

rank(E) = nec (full rank of constraint matrix) (1.4)

and rank

[
C
E

]
= n (i.e. system is not under-determined) (1.5)

We give a constructive proof, that combines the proof of theorem 1.19 with a solution algorithm.

Proof (nullspace method):
First, compute an orthogonal basis of the nullspace of the constraint matrix, N (E), by calcu-
lating a QR decomposition of ET, implicitly exploiting the full rank assumption in eq. (1.4):

ET = Q ·
[
R
0

]
=
[
Q1 Q2

]
×
[
R
0

]

with an orthogonal matrix Q =
[
Q1 Q2

]
∈ IRn×n, Q1 ∈ IRn×nec , Q2 ∈ IRn×(n−nec) and

nonsingular triangular R ∈ IRnec×nec . Then, we have R(Q2) = N (E), because for every
y ∈ IRnec it holds:

EQ2y =
[
RT 0

]
·
(
QT1Q2y
QT2Q2y

)
=
[
RT 0

]
·
(

0
y

)
= 0

as Q is orthogonal. If x ∈ IRn satisfies the constraints, i.e. Ex = b, it can be orthogonally split:

x = x+Q2y with x = Q1R
−Tb

for arbitrary y ∈ IRn−nec , since Q2y ∈ N (E). Using Cx − d = Cx + CQ2y − d, it remains to
solve the reduced and unconstrained system

min
y∈IRn−nec

1
2

∥∥(CQ2)y − (d− Cx)
∥∥2

2
(1.6)

9



1 Gauß-Newton for Constrained Least Squares Problems

If we now use the full-rank condition (1.5), then for M ∈ IRm+nec×n defined as

M :=

[
C
E

]
·Q =

[
CQ1 CQ2

EQ1 EQ2

]
=

[
CQ1 CQ2

RT 0

]

we have rank(M) = n, i.e. all columns are linearly independent. It follows that rank(CQ2) =
n− nec, thus maximal. This ensures the unique solvability of the reduced unconstrained least
squares problem (1.6), e.g. again by QR decomposition:

CQ2 = Q̃ ·
[
R̃
0

]

with orthogonal Q̃ ∈ IRm×m and nonsingular upper triangular R̃ ∈ IR(n−nec)×(n−nec). Then,
splitting Q̃ =

[
Q̃1 Q̃2

]
, Q̃1 ∈ IRm×(n−nec), we get

y = R̃−1Q̃T1(d− Cx)

as the unique solution of the reduced unconstrained problem (1.6), and finally

x := x+Q2y

as the unique solution of problem (LIN-LSQ-EC). �

1.2.2.1 Two rank-deficient cases and inconsistency detection

If the full-rank condition of the constraint matrix (1.4) still holds, but the second
full-rank condition (1.5) does not hold, we can still compute a minimum norm solution using
the above nullspace approach.

Sticking to the notation of the proof of theorem 1.19, let y be the minimum norm solution
(see theorem 1.17) of the reduced unconstrained system (1.6):

y = (CQ2)†(d− Cx)

Then, since x ⊥ Q2y, for x = x+Q2y it holds:

‖x‖22 = ‖x‖22 + ‖Q2y‖22 = ‖x‖22 + ‖y‖22

i.e. with x we have found the unique minimum norm solution of problem (LIN-LSQ-EC).

If none of the full-rank conditions (1.4) and (1.5) hold, we loose the uniqueness of
the solution. If it is not known in advance, whether the full-rank conditions are fulfilled or
not, one might use a rank-revealing QR decomposition as in the direct elimination method
described below, and will at least end up in the minimum-norm solution (as long as there are
no inconsistent constraints).

10



1.2 Linear least squares problems

The method of direct elimination
Let r = rank(E) ≤ nec be the rank of the constraint matrix and

EP = Q ·
[
R11 R12

0 0

]

be a QR decomposition with column permutation of E (see theorem B.3), with permutation
matrix P ∈ IRn×n and R11 ∈ IRr×r upper triangular and nonsingular.

The constraint equation then reads as

[
R11 R12

0 0

]
P Tx−QTb = 0,

and by setting

x = P Tx =
(
x1 x2

)
with x1 ∈ IRr, x2 ∈ IRn−r

b = QTb =
(
b1 b2

)
with b1 ∈ IRr, b2 ∈ IRnec−r

the constraints reduce to

b1 =
[
R11 R12

]
· x = R11x1 +R12x2 =⇒ x1 = R−1

11

(
b1 −R12x2

)
. (1.7)

Note that b2 6= 0 means that the constraints are not consistent (see remark below).

Use eq. (1.7) to eliminate x1 from Cx− d, after permuting C by P , getting C := CP :

Cx− d = CPP Tx− d = Cx− d =
[
C1 C2

]
·
(
x1

x2

)
− d

=
[
C1 C2

]
·
(
R−1

11

(
b1 −R12x2

)

x2

)
− d

= C1R
−1
11

(
b1 −R12x2

)
+ C2x2 − d

=
(
C2 − C1R

−1
11 R12

)
x2 −

(
d− C1R

−1
11 b1

)
.

By setting C̃ = C2 − C1R
−1
11 R12 and d̃ = d − C1R

−1
11 b1, the original equality constrained

problem (LIN-LSQ-EC) becomes equivalent to the reduced unconstrained problem

min
x2∈IRn−r

1
2

∥∥C̃x2 − d̃
∥∥2

2
with C̃ ∈ IRm×(n−r)

1.20 Remark (Sequential least squares)
Inconsistent constraints Ex = b become apparent as b2 6= 0 in the direct elimination method,
and can therefore be detected during the solution process. If one proceeds anyways, the
solution x∗ calculated by the direct elimination method fulfills the constraints in the least
squares sense. That means, that x∗ is the solution of the sequential least squares problem

min
x∈X

1
2

∥∥Cx− d
∥∥2

2
with X = arg min

x∈IRn

1
2

∥∥Ex− b
∥∥2

2

�
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1 Gauß-Newton for Constrained Least Squares Problems

1.2.3 Linear least squares with inequality constraints

In this section, we shortly discuss problems of the following type:

1.21 Problem (LIN-LSQ-IC)
Let C ∈ IRm×n, d ∈ IRm, m ≥ n, E ∈ IRnec×n, b ∈ IRnec , nec < n, and G ∈ IRnic×n,
h ∈ IRnic . Find x ∈ IRn as the solution of

min
x∈IRn

LS(x) =
1
2

∥∥Cx− d
∥∥2

2

s.t. Ex− b = 0

Gx− h ≥ 0

Imprecise statement of inequality constrained problems
From a purely theoretical point of view, these inequality constrained problems are imprecisely
stated. Provided the system is solvable, at the solution point, say x∗, the i-th inequality
is either “active”, i.e. Gix

∗ − hi = 0, thus reduced to an equality, or it is “inactive”, i.e.
Gix

∗ − hi > 0 and thus superfluous. Therefore, in principle, inequality constrained problems
can be solved using methods for equality constrained problems, and, assuming consistent
constraints, the results of theorem 1.19 for (LIN-LSQ-EC) can be transferred to (LIN-LSQ-
IC).

However, the set of active inequality constraints is (in general) not known in advance, and
the solution methods presented in the previous section cannot be applied until the final active
set has been identified.

For solving problem (LIN-LSQ-IC), the active-set identifying algorithm 1.1 as outlined in
[Bock1987] can be used. The algorithm requires as initial guess a feasible point x0, that can
be generated by applying the same algorithm to the auxiliary problem [Schloeder1983]

min
x
‖Ex− b‖22 +

nic∑

i=1

min{0, Gix− hi}2

Once the final active set is identified, the (active) inequality constraints are treated as
equality constraints, thus theorem 1.19 applies and gives a solution strategy. In the case of
more than n active constraints in the solution, some must be redundant for solvability. In the
(common) case of less than n active constraints in the solution, a least squares solution is to
be determined following the strategies described in the preceding section 1.2.2.

12



1.2 Linear least squares problems

Algorithm 1.1 Solving (LIN-LSQ-IC), problem 1.21

Input: feasible point x0, problem data C, d,E, b,G, h

INITIALIZATION:
1: Set iteration counter k := 0
2: Set initial active set ASk := {i : Gix

0 − hi = 0}
STEP1: Determine next active constraint

3: Set Ack and ack as matrix and vector of equality and active inequality constraints

Ack :=

[
E

{Gi}i∈ASk

]
and ack :=

[
b

{hi}i∈ASk

]

4: Let xk be the solution of the equality-constrained problem
min
x∈IRn

1
2 ‖Cx− d‖

2
2 s.t. Ackx− ack = 0 (∗)

5: If xk − xk = 0
Go to STEP2

6: Check if a new inequality constraint becomes active on the line from xk to xk:
smax := max

{
s ∈ [0, 1]

∣∣ Gi(xk + s(xk − xk))− hi ≥ 0, i /∈ ASk
}

xk+1 := xk + smax(xk − xk)
7: If constraint i became active, i.e. Gixk+1 − hi = 0, add it to the active set:

ASk+1 := ASk ∪ {i}
k := k + 1
Go to STEP1

otherwise continue with STEP2

STEP2: xk is a stationary point of (∗)
8: Let λck =

(
λec, {λici }i∈ASk

)
be the respective multipliers.

9: If λici ≥ 0 ∀i ∈ ASk
go to KKT-POINT-FOUND

10: Choose i ∈ ASk with λici < 0 and remove it from the active set:
ASk := ASk\{i}

11: Go to STEP1

KKT-POINT-FOUND:

12: Set λec := λec, λici :=

{
λici for i ∈ ASk
0 otherwise

13: Return
(
xk, λ

ec, λic
)

as a stationary point of (LIN-LSQ-IC),

13



1 Gauß-Newton for Constrained Least Squares Problems

1.3 Generalized GAUSS-NEWTON for nonlinear least squares problems

1.3.1 The constrained nonlinear least squares problem (NONLIN-LSQ)

The statement of a constrained nonlinear least squares problem with equality and inequality
constraints is given in the following problem definition:

1.22 Problem (NONLIN-LSQ)
Let R : IRnx → IRnLS and ri : IRnx → IR (i = 1, ..., nec + nic).
Then, the constrained nonlinear least squares problem is written as

min
x∈IRnx

LS(x) :=
1
2

∥∥R(x)
∥∥2

2

s.t. ri(x) = 0 (i = 1, ..., nec)

ri(x) ≥ 0 (i = nec + 1, ..., nec + nic)

(1.8)

The function R is called the residual function, and nec and nic denote the number of
equality and inequality constraints, respectively.
For ease of notation, we unify the equality constraints in the function rec, and the
inequality constraints in the function ric:

rec : IRnx → IRnec with components reci (x) := ri(x) (i = 1, ..., nec)
ric : IRnx → IRnic with components rici (x) := rnec+i(x) (i = 1, ..., nic)

such that eq. (1.8) reads as
min
x∈IRnx

1
2

∥∥R(x)
∥∥2

2

s.t. rec(x) = 0

ric(x) ≥ 0

1.3.2 An iterative solution method based on solving linearized problems

Problems of type (NONLIN-LSQ) can be solved in an iterative procedure, where an initial
guess x0 is successively updated by the solutions ∆xk (search directions) of a series of lin-
earized problems, usually combined with a globalization technique like a line search to ensure
convergence from arbitrary points:

xk+1 := xk + αk ·∆xk
These intermediate problems are generated by applying a linearization “under the norm” to
the objective of (NONLIN-LSQ) as well as to the constraints:

1.23 Problem (NONLIN-LSQ-linearized)
For a given iterate xk ∈ IRnx , the search direction ∆xk ∈ IRnx is the solution of the
linearization of (NONLIN-LSQ):

min
∆xk

1
2

∥∥∇R(xk) ·∆xk +R(xk)
∥∥2

2

s.t. ∇rec(xk) ·∆xk + rec(xk) = 0

∇ric(xk) ·∆xk + ric(xk) ≥ 0

(1.9)

We denote that problem by (NONLIN-LSQ-linearized(xk)).

14



1.3 Generalized GAUSS-NEWTON for nonlinear least squares problems

The connection between original and linearized problem is established in the following result:

1.24 Lemma
(x∗, λec, λic) is a KKT-tuple of the nonlinear constrained problem 1.22 (NONLIN-LSQ)
⇐⇒ (0, λec, λic) is a KKT-tuple of the linearized problem 1.23 (NONLIN-LSQ-linearized).

Proof: The Lagrangian of (NONLIN-LSQ) is

L(x, λec, λic) =
1
2R(x)TR(x)− (λec)Trec(x)− (λic)Tric(x)

and the Lagrangian of (NONLIN-LSQ-linearized) is, for fixed x, given as

Llin(∆x, λec, λic) =
1
2

(
∆xT∇R(x)T∇R(x)∆x+ ∆xT∇R(x)TR(x) +R(x)T∇R(x)∆x+R(x)TR(x)

)

− (λec)T
(
∇rec(x)∆x− rec(x)

)
− (λic)T

(
∇ric(x)∆x− ric(x)

)

The proposition follows by application of theorem 1.9 to both problems. �

1.25 Theorem (Second order sufficient condition)
Let (x∗, λec, λic) be a KKT-tuple of (NONLIN-LSQ). If

vT∇2
xxL(x∗, λec, λic)v > 0 ∀ v ∈ V (x∗), v 6= 0

then x∗ is a strict local minimizer of (NONLIN-LSQ).

Proof: By theorem 1.13. �

Theorem 1.25 is a restatement of theorem 1.13, and does not demand any regularity on
the candidate point x∗. However, in general it is hard to verify this second order condition on
the cone V (x∗). If x∗ is regular, it is sufficient to verify the positive definiteness of the Hessian
of the Lagrangian on a subset Ṽ (x∗) ⊂ V (x∗). For the definition of that subset, we introduce
a notation for combined equality and active inequality constraints.

1.26 Definition (Combined equality and (strictly) active inequality constraints: rc, r̃c)
We combine equality constraints and active inequality constraint into rc, and equality con-
straints with strictly active inequality constraints into r̃c:

rc(x) :=

(
rec(x)
{rici (x)}i∈Aic(x)

)
, r̃c(x) :=

(
rec(x)

{rici (x)}i∈Aic(x),λici >0

)

�

1.27 Definition (Set Ṽ (x∗))
For a regular KKT point x∗, we define

Ṽ (x∗) := {v
∣∣ ∇r̃c(x∗)v = 0}

�

15



1 Gauß-Newton for Constrained Least Squares Problems

1.28 Theorem (Sufficient conditions for optimal solutions of (NONLIN-LSQ))
Let (x∗, λec, λic) be a KKT-tuple of the nonlinear constrained least squares problem (NONLIN-
LSQ). If the following conditions hold

(SC) Strict Complementarity (of the inequality constraints, see definition 1.10)

λici = 0 ⇐⇒ rici (x∗) >
6=

0 (1.10)

(CQ) Constraint Qualification (of full rank of linearized constraint matrix, cf. eq. (1.4))

rank
(
∇rc(x)

)
= nec + |Aic(x)| (1.11)

(PD) Positive Definiteness (of the Hessian of the Lagrangian, cf. theorem 1.25)

vT∇2
xxL(x∗, λec, λic)v > 0 ∀ v ∈ Ṽ (x∗), v 6= 0 (1.12)

then, x∗ is a strict local minimizer of (NONLIN-LSQ).

Proof: See [Bock1987], chapter 3.1 �

The following perturbation theorem for the linearized problem (NONLIN-LSQ-linearized)
proves that, under the given regularity conditions, it is sufficient to study equality constrained
problems, as the local convergence properties of the inequality constrained problem coincides
with the ones of an equality constrained problem in which only the active inequalities are
considered and combined with the equality constraints.

1.29 Theorem (Perturbation theorem for the linearized problem (NONLIN-LSQ-linearized))
Let L(xk) denote the linearized problem (NONLIN-LSQ-linearized(xk)). For a point xk ∈ IRnx ,
let (∆x, λec, λic) denote a KKT tuple of L(xk). Further, the sufficient conditions [SC], [CQ],
and [PD] shall be fulfilled. Then it holds:

1. (∆x, λec, λic) is the unique KKT tuple of L(xk), and ∆x is its strict minimizer.

2. The linearized problem is uniquely solvable on an environment X̃ of xk, i.e. for all
x̃ ∈ X̃(xk), the linearized problem L(x̃) has a unique KKT tuple (∆x̃, λ̃ec, λ̃ic) and ∆x̃
is its strict minimizer.

3. The set AicL(x̃)(∆x̃) of active inequality constraints of the linearized problem L(x̃) at the

minimizer ∆x̃ is the same for all x̃ ∈ X̃.

Proof: See [Bock1987], Theorem 3.1.29. �

1.30 Remark
The strict complementarity (SC) condition, eq. (1.10), ensures the constancy of the active set
on a whole environment of xk. �

For the linearized problems (NONLIN-LSQ-linearized(xk)), the following lemma gives a
more practical criterion to check the positive definiteness condition (PD).
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1.3 Generalized GAUSS-NEWTON for nonlinear least squares problems

1.31 Lemma ((PD) for the linearized problem (NONLIN-LSQ-linearized))
Let the assumptions of theorem 1.29 hold. Then, the positive definiteness condition (PD) of
theorem 1.28 is equivalent to a rank condition:

(PD) ⇐⇒ rank

(
∇R(x∗)
∇rc(x∗)

)
= nx

Proof: First, the Hessian of the Lagrangian of the linearized problem (NONLIN-LSQ-linearized)
is given as ∇2

xxL(x∗, λec, λic) = ∇R(x∗)T∇R(x∗), such that the positive definiteness condition
reads as (PD) : vT∇R(x∗)T∇R(x∗)v > 0 ∀ v ∈ Ṽ (x∗), v 6= 0

Second, we prove the equivalence: (PD) ⇐⇒ rank

(
∇R(x∗)
∇r̃c(x∗)

)
= nx.

“ =⇒ ′′ : Assume ∃ v 6= 0 :

(
∇R(x∗)
∇r̃c(x∗)

)
v = 0. Then, ∇r̃c(x∗)v = 0, and thus v ∈ Ṽ (x∗),

but for such v, (PD) says vT∇R(x∗)T∇R(x∗)v > 0. Contradiction!
“⇐= ′′ : For v ∈ Ṽ (x∗), we have ∇r̃c(x∗)v = 0, thus it must hold that ∇R(x∗)v 6= 0, and

therefore 0 < ‖∇R(x∗)v‖22 = vT∇R(x∗)T∇R(x∗)v.

Finally, the perturbation theorem 1.29 ensures∇r̃c(x∗) = ∇rc(x∗) on an environment of x∗. �

1.3.3 The generalized inverse as solution operator

The following theorem by BOCK (cf. [Bock1987], theorem 3.1.31) shows that the solution
operator for linear constrained least squares problems is itself linear and may be written as a
generalized inverse. As stated before theorem 1.29, we can restrict ourselves to linear equality
constraints without loss of generality.

1.32 Theorem (The generalized inverse)
Let xk ∈ IRnx , and abbreviate Rk := R(xk), ∇Rk := ∇R(xk), r

c
k := rc(xk), ∇rck := ∇rc(xk).

Consider the linear equality constrained least squares problem, originating from the lineariza-
tion (NONLIN-LSQ-linearized(xk)), with combined constraint function rc : IRnx → IRnc ,

min
∆x

1
2

∥∥∇Rk ·∆x+Rk
∥∥2

2

s.t. ∇rck ·∆x+ rck = 0 .

Combine F :=
(
Rk
rck

)
and J :=

(
∇Rk
∇rck

)
, and let (CQ) and (PD) be fulfilled on an environment

D = D(xk). Then it holds:

1. The problem has a unique (strict) solution ∆x.

2. There exists a linear map J+ : IRnLS+nc → IRnx with ∆x = −J+F .

3. The solution operator J+ fulfills J+JJ+ = J+, i.e. it is a generalized inverse.

4. Both, the generalized inverse J+ = J+(x) and J+(x)F (x) as functions of x are continu-
ously differentiable on the environment D.

5. The generalized inverse takes the form

J+ =
(
I 0

)((∇Rk)T∇Rk (∇rck)T
∇rck 0

)−1(∇Rk 0
0 I

)
. (1.13)

Proof: See [Bock1987], theorem 3.1.31. �
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1.33 Remark

1. Theorem 1.32 also holds for linear constrained least squares problems that do not origi-
nate from a linearization of (NONLIN-LSQ).

2. The generalized inverse J+ in eq. (1.13) is usually not explicitly computed and applied to
F to get the increment ∆xk, as the evaluation of ∇RTk∇Rk impairs the matrix condition.
Instead, the calculations are performed in terms of matrix decompositions as described
in section 1.2.2.

�

1.34 Theorem (Local convergence for constrained nonlinear least squares)
Let F :=

(
R
rc
)
∈ C1(D) and J :=

( ∇R
∇rc
)

denote the combined residuals and constraints function
of (NONLIN-LSQ) and its Jacobian, and let J+ denote the corresponding generalized inverse
in the sense of theorem 1.32, existing on the set D ⊂ IRnx . Further, J and J+ shall fulfill the
LIPSCHITZ conditions

∥∥J(y)+
(
J(x+ t(y − x))− J(x)

)
(y − x)

∥∥
2
≤ ωt ‖y − x‖22 with ω <∞

∥∥(J(z)+ − J(x)+
)(
F (x)− J(x)J(x)+F (x)

)∥∥
2
≤ κ ‖z − x‖2 with κ < 1

for all t ∈ [0, 1] and all x, y, z ∈ D with x− y = J(x)+F (x).
For an initial guess x0 ∈ D and subsequent iterates xk, we define

βk :=
∥∥J(xk)

+F (xk)
∥∥

2
(1.14)

δk :=
βkω

2
+ κ (1.15)

D0 := B
(
x0,

β0

1− δ0

)
⊂ D (1.16)

If δ0 < 1, then it holds:

1. The full step iteration

xk+1 := xk + ∆xk with ∆xk := −J(xk)
+F (xk) (1.17)

is well defined, and xk ∈ D0 ∀ k.

2. The iteration converges, i.e.

xk −→ x∗ ∈ D0 for k −→∞ and ∆x∗ = −J(x∗)+F (x∗) = 0.

3. An a priori estimation of the distances to the solution can be given as

‖xk − x∗‖2 ≤ δk0
β0

1− δ0
.

4. The speed of convergence is linear: ‖pk+1‖2 ≤ δj ‖∆xk‖2.

Proof: See [Bock1987], theorem 3.1.44. �
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1.3 Generalized GAUSS-NEWTON for nonlinear least squares problems

1.35 Remark

1. The local contraction theorem 1.34 is affine invariant.

2. The LIPSCHITZ constant ω is a measure for the curvature of the model, thus describing the
strength of its nonlinearity, and measuring the size of the area, in which the linearization
is a good approximation.

3. The LIPSCHITZ constant κ, termed incompatibility constant by BOCK, characterizes the
identifiability of the nonlinear model by disturbed data.

4. BOCK proves that the fixpoint of iteration in eq. (1.17) converges to a strict local mini-
mizer if κ < 1; thus it is stable against perturbations. Moreover, for κ > 1, the fix point
x∗ is still a stationary point, but not a minimizer ([Bock1987], theorem 3.1.68, instability
of minima with κ(x∗) > 1).

�

A note on the speed of convergence
The speed of convergence depends (1) on the nonlinearity of the underlying model and (2) on
the accuracy of the data. Both can be seen by comparing the true Hessian of the Lagrangian
that would be used by a classical NEWTON approach to the first order Hessian approximation
in the GAUSS-NEWTON algorithm.

The contribution of the least squares objective

min
x
LS(x) =

1
2

∥∥R(x)
∥∥2

2
with R(x) =

(
R1(x), ..., RnLS (x)

)T
(1.18)

to the Hessian of the Lagrangian reads as

∇2
xxLS(x) = ∇R(x)T∇R(x) +

nLS∑

i=1

Ri(x)∇2
xxRi(x) (1.19)

The first part, ∇R(x)T∇R(x) is exactly the Hessian of the Lagrangian of the linearized
problem (see the proof to lemma 1.31). It is also a good approximation of the Hessian of the
nonlinear problem, if (1) the nonlinearity is small, i.e. ∇2

xxRi(x) is small near the solution, or
(2) if the available data is accurate, i.e. Ri(x) is small at the solution.

Thus, if these conditions hold, the GAUSS-NEWTON Hessian approximation is close to the
exact Hessian, and the speed of convergence resembles a NEWTON method, i.e. up to quadratic.

1.3.4 Globalization

The local contraction theorem 1.34 proves the convergence of the full-step GAUSS-NEWTON

method when starting in the proximity of the solution – an assumption frequently found
violated in practical problems.

To increase the area of convergence, damped updates of the current iterate

xk+1 := xk + αk ·∆xk (1.20)

are used, in which the relaxation parameter αk is chosen in every iteration such that the
iterates approach the solution.
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1 Gauß-Newton for Constrained Least Squares Problems

For unconstrained problems, approaches like the classical ARMIJO-GOLDSTEIN backtrack-
ing line search ensure global convergence by using the objective itself for measuring the
progress.

For constrained problems, a common way to quantify the “approaching” to the solution is
by evaluating a piecewise continuously differentiable merit function or level function T (xk) that
shall decrease in every step, T (xk+1) < T (xk) (monotonicity test), and obey the compatibility
condition of falling in the direction of the increment:

d

dε
T (xk + ε∆xk)

∣∣∣∣
ε↘0+

< 0 (∆xk 6= 0).

For the level function

T1(x) :=
1
2

∥∥R(x)
∥∥2

2
+

nec∑

i=1

λeci
∣∣reci (x)

∣∣+

nic∑

i=1

λici
∣∣min{0, rici (x)}

∣∣

with upper bounds λeci > λeci and λici > λici for the Lagrangian multipliers, it can be shown
[Bock1987] that the series xk converges to an KKT point of the nonlinear least squares problem
(NONLIN-LSQ) for arbitrary initial guesses x0, if the step size αk in eq. (1.20) is chosen as

αk = arg min
α∈[0,1]

T1(xk + α∆xk).

The evaluation of T1 is based on the values of the functions R, rec, ric only (0-th order) and
does not take gradient or (approximated) curvature information into account, as the solution
method itself does. Thus, the direction of steepest descent of T1 and the search direction ∆xk
might be nearly perpendicular, leading to small step sizes even in the local area of contraction.

The iteratively adjusted natural level function [Bock1981; Deuflhard1974]

T k(x) :=
∥∥J(xk)

+R(x)
∥∥2

does not suffer from these problems. Further, (close to) optimal step length can be computed
in every iteration using estimates of the LIPSCHITZ constant ω (curvature). See [Bock1981;
Bock1987; Deuflhard1975] for details.

Restrictive monotonicity test
BOCK et al. [Bock2000b] suggest the restrictive monotonicity test (RMT) as a damping strat-
egy, for which they prove that the produced step length proposals do not lead to 2-cycles for
a certain choice of algorithm parameters. The RMT ensures that the performed step α∆xk
does not leave the area in which J(xk) is a good approximation of the local shape.

The interpretation of the RMT as a step size control for the explicit EULER method applied
to the continuous NEWTON method (DAVIDENKO differential equations, [Davidenko1953]) al-
lows a proof of convergence not relying on classical descent properties.

We refer to the original paper [Bock2000b].
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2 Parameter Estimation in Ordinary
Differential Equation Models

This chapter focuses on methods for parameter estimation in deterministic models, described
by ordinary differential equations.

The first section establishes the preliminaries for parameter estimation in correct dynam-
ical (ODE) models: the error model for measurement data, a derivation of the weighted least
squares objective for maximum likelihood parameter estimation, and the concepts of structural
and practical identifiability.

The second section copes with (2-point) boundary value problems (BVP). After a short
discussion of single shooting and collocation methods for solving BVPs, we present the method
of multiple shooting in detail, and compare and discuss different methods for derivative gener-
ation: external and internal numerical differentiation, simultaneous solution of the variational
differential equations, and automatic differentiation techniques.

In the third and fourth section, the constrained nonlinear parameter estimation problem
is derived. Starting from a continuous formulation, a multiple shooting parametrization with
point constraints is given, and the nomenclature used in this thesis is established.

Lastly, the fifth section closes this chapter with discussing an a posteriori statistical anal-
ysis of estimates.

With exception of the first section, which gives some preliminaries and introduces general
concepts, and the presentation of automatic differentiation methods, this chapter is, in prepa-
ration of the new results of chapter 5, mainly based upon notation and results of [Bock1987].

2.1 Preliminaries

2.1.1 Correct dynamical model

By the term dynamical model , we refer to a mathematical formulation of a real world process
that changes over time; may it be a chemical reaction system, changes in population, disease
spreading, or the movement of mass in a gravitational field.

Though we focus on formulations based on ordinary differential equations in this thesis
(and stochastic differential equations in chapter 5), we remark that it is also suitable to apply
the presented techniques to static models, e.g. when a dynamical system is in equilibrium.

By the term ODE model , we refer to the time development of state variables of an nx-
dimensional system of ordinary differential equations, usually stated in the form of an initial
value problem

ẋ = f(t, x, p), x(t0) = x0(p), x(t) ∈ IRnx , p ∈ IRnp , t ∈ [t0, tf ], (2.1)

that may explicitly depend on a parameter vector p. In general, the right hand side function
f : IR× IRnx × IRnp → IRnx is assumed to be sufficiently smooth, usually C3, though piecewise
LIPSCHITZ continuity is sufficient to guarantee the existence of a solution [Hairer2000].
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We further assume that these equations accurately describe the investigated real-world
process, in other words, we assume that the model is structurally correct, and only the param-
eter vector p is unknown.

On notation: x(t) vs. x(t; p) vs. x(t; tk, sk, p) vs. x(t; s, p)
We denote by x(t; p) the solution trajectory of initial value problems as in eq. (2.1) or boundary
value problems as in eq. (2.8) for a certain choice of parameters p, explicitly denoting the
dependence of the trajectory x(t) on the chosen parameter vector p.

The notation x(t; tk, sk, p) is used for solutions of initial value problems of type ẋ = f(t, x, p)
with x(tk) = sk, which will appear in the multiple shooting parametrization in problem 2.8.
Furthermore, we will write x(t; s, p) or also just x(t) for the concatenation of solutions of such
problems. If the context is clear, or there is no parameter vector, the “p” is omitted.

2.1.2 Simulated and real measurements and their errors

The goal of parameter estimation is to calculate the unknown parameters p ∈ IRnp from mea-
surements ηi taken from the real-world process described by eq. (2.1). The term measurement
in this context might be the quantification of a certain state variable xi at some time points
ti, or some nonlinear function depending on time, system state, and possibly some (unknown)
parameters, that themselves have to be determined by the measurements.

2.1.2.1 Measurement functions hi

Corresponding to the realization of measurements in the real-world process, the procedure of
taking measurements from the simulated model can be described mathematically by introduc-
ing measurement functions hi(t, x, p), with

hi : IR× IRnx × IRnp → IR,

depending on a known time point ti, the system’s state x(ti; p) at this time (which itself is
determined by the parameter vector p), and possibly explicitly on (some of) the parameters p.
For ease of notation, we assume the measurement functions to deliver scalar data. A vector-
valued function may be split into its components, resulting in multiple measurements at the
same time point. We therefore allow that time points ti might be the same for different choices
of i. We also frequently call hi(ti, x(ti; p), p) a model response at time ti.

We note that it might also be the case, that the time points, at which the measurements
are taken, are not known explicitly, but defined implicitly by the zero-crossing of a function.

2.1.2.2 Measurements ηi and their error model

We denote measurements taken from the real process by the Greek letter η. Measurements
are assumed to be scalar, numbered consecutively from 1 to nM , and the measurement ηi is
taken at time ti (i = 1, ..., nM ), with monotonically increasing time-points(1).

For a correct model described in eq. (2.1) and true parameters p∗, the i-th measurement
is assumed to be affected by independent, normally distributed additive errors εi with zero
mean and variance σ2

i :

ηi = hi(ti, x(ti; p
∗), p∗) + εi, εi ∼ N

(
0, σ2

i

)
(i = 1, ..., nM ). (2.2)

(1)This is just a technical assumption. In chapter 5, we will split the measurement times and values into disjoint
time intervals. A monotonic order allows a simple notation in that case.
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The supposed mean value of zero for the measurement error corresponds to the assumption
that the measurement equipment does not suffer from systematic errors – a desirable prereq-
uisite. For a systematic offset in the measured quantities, is it obvious how to preprocess the
data, such that the above model still suits.

Common factor of data variances
If the error variances σ2

i are only known up to a common factor βc, e.g. if only information
about the relative accuracy of measurements is given, the above error model is still adequate,
and the (unknown) common factor βc may be approximated by an independent estimator given
in remark 2.9(d).

Least squares for non-normally distributed data
Even in the case of a more complicated underlying error distribution, or in the case of imperfect
models, the weighted least squares method described in this chapter will still deliver an estimate
for the parameter values (the least squares estimate) that has shown to be of high usefulness
in many settings. Only the property of being a maximum likelihood estimate might not be
guaranteed anymore.

2.1.2.3 Assuming a normal distribution is often reasonable

In many (if not most) experimental settings, the experimenter has only limited information
on the exact error distribution of his measuring equipment. Most likely – and hopefully –
they will know about the mean and standard deviation. It can be shown (see [Bard1974],
p. 20) that, if looking for a probability density function maintaining the specified mean and

Figure 2.1: Distribution of female body size in Germany
in centimeters (bar plot) and an approximating normal distri-
bution (blue line).
Data: Sozio-oekonomisches Panel (SOEP), 2006.

standard deviation, the den-
sity of the normal distribu-
tion is the one to choose, as it
does introduce the least addi-
tional assumptions.

Further, the normal dis-
tribution describes many ob-
servations in nature very
well, e.g. the size of humans
(see section 2.1.2.3) though
it is obviously not the cor-
rect one, as it assigns pos-
itive probabilities to impos-
sible body sizes larger than,
e.g., three meters and even
to negative ones. However,
these tails of the distribution
are of very low measure and
in many cases it is appropri-
ate to ignore this misfit.

At last, the Central Limit Theorem of LINDEBERG and LÉVY states, to put it simply, that
the sequence of partial sums of any i.i.d. random variables converges to a normally distributed
random variable.
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2.1.3 Maximum likelihood estimation with weighted least squares

Assuming a normal distribution of the measurement errors εi ∼ N
(
0, σ2

i

)
, as stated in eq. (2.2),

the probability density function for εi is given as

p(εi) =
1√

2πσ2
i

exp

(
− ε2

i

2σ2
i

)
.

For pairwise uncorrelated measurement errors, corr(εi, εj) = 0 (i 6= j), i.e. independent normal
random variables, the joint probability distribution of ε = (ε1, ..., εnM )T dissects into the
product of the individual probability distributions

p(ε) =

nM∏

i=1

p(εi) = (2π)−
nM
2 ·

nM∏

i=1

σ−1
i exp

(
− ε2

i

2σ2
i

)

2.1 Definition (Residuals)
For a given set of parameters p, the residual Ri of the i-th measurement is the difference of
the actual measurement ηi and the model prediction hi(ti, xi(ti; p), p):

Ri(p) := ηi − hi(ti, xi(ti; p), p)

and we collect them in the vector of residuals R(p) =
(
R1(p), ..., RnM (p)

)T ∈ IRnM . �

2.2 Definition (Likelihood)
The likelihood function of the sample for a given set of parameters p is defined as

L(p) = p(R(p)) = p
(
(ηi − hi(ti, x(ti; p), p))i=1,...,nM

)

In the case of normally distributed measurement errors εi ∼ N
(
0, σ2

i

)
, the likelihood reads as

L(p) = (2π)−
nM
2 ·

nM∏

i=1

σ−1
i exp

(
−
(
ηi − hi(ti, x(ti; p), p)

)2

2σ2
i

)
(2.3)

�

For the true set of parameters p∗, the vector of residuals R(p∗) equals the vector of mea-
surement error ε, and thus the likelihood is L(p∗) = p(R(p∗)) = p(ε). If we were able to
measure without any error, i.e. ε = 0, the likelihood function would reach its maximum at the
true parameters.

Thus, if we find a global maximizer p = arg maxL(p) of the likelihood function, this set of
parameters p would accurately explain the observed measurements if the measurements were
error-free, and thus p = p∗. On the other hand, if ε 6= 0, maximizing the likelihood function
leads to an estimate p, that is the most likely set of parameters that would lead to the made
observations.

In the case of independent normally distributed errors (eq. (2.2)) with known variances
σ2
i , the formula for the likelihood is given in eq. (2.3). Instead of maximizing this product of
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exponentials, we apply the monotonous logarithm, as it does not change the maximizer, but
the product of exponentials may then be written as a sum of squares. By further removing
constant terms, and changing maximization to minimization of the negative, we end up in the
weighted least squares objective functional that forms the basis of this work:

p := arg max
p

logL(p)

= arg max
p

log

{
(2π)−

nM
2 ·

nM∏

i=1

σ−1
i exp

(
−
(
ηi − hi(ti, x(ti; p), p)

)2

2σ2
i

)}

= arg max
p
−nM

2
log(2π)−

nM∑

i=1

log(σi) +

nM∑

i=1

−(ηi − hi(ti, x(ti; p), p))
2

2σ2
i

= arg max
p
−1

2

nM∑

i=1

(ηi − hi(ti, x(ti; p), p))
2

σ2
i

= arg min
p

1

2

nM∑

i=1

(ηi − hi(ti, x(ti; p), p))
2

σ2
i

(2.4)

The global solution p of the above maximum likelihood problem eq. (2.4) is called the
maximum likelihood estimator or weighted least squares solution of the underlying parameter
estimation problem.

2.1.4 Structural and practical identifiability of parameters

There are many concepts of identifiability of parameters; for a detailed review we refer to
the papers of COBELLI and DISTEFANO [CobelliDiStefano1980] and MIAO et al. [Miao2011].
Here, we introduce the concepts of structural identifiability and practical identifiability for
parameters in nonlinear ordinary differential equations.

Structural identifiability
The term structural identifiability addresses the question, whether all parameters of a nonlinear
ODE may be estimated by a certain type of observation, e.g. full or partial state observations.
An obvious example for an structurally unidentifiable system is the following exponential with
unknown initial condition:

ẋ(t) = (p1 + p2)x(t), x(t0) = p0, t ∈ [t0, tf ]. (2.5)

Even when measuring arbitrarily many undisturbed state measurements, there is no chance
in inferring the values of p1 and p2 without additional information, that is, p1 and p2 are not
structurally identifiable.

On the other hand, their sum ps := p1 + p2 together with the initial value p0 may be
determined from a two exact measurements of x(t) at two distinct time points (provided x(t)
is not the zero function and ignoring any measurement error for the moment), i.e. the system

ẋ(t) = psx(t), x(t0) = p0, t ∈ [t0, tf ] (2.6)

with state observations (measurement function h(t, x(t), p) = x(t)) is structurally identifiable.
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Practical identifiability
On the other hand, the term practical identifiability addresses the question, whether the
amount and quality of actual available data is sufficient to calculate the unknown parameters.
Staying at the two parameter example eq. (2.6), a single measurement x(t1) with t1 ∈ (t0, tf )
is insufficient for determining ps and p0. Assuming error-free measurements, we need at least
two measurements of this type and quality at distinct time points.

In the case of noisy observations, no simple general scheme for practical identifiability may
be given. The accuracy and uncertainty of parameter estimates depends on the accuracy and
uncertainty of the observed data, and the minimum demands on quality of estimates depend
on the respective application purpose.

Solving the inverse problem of calculating parameters from measurement data in a nonlin-
ear ODE model, the uncertainty of the measurements propagates to the estimates in a usually
nonlinear way, and may be quantified using the FISHER information matrix , which is the
inverse of the covariance matrix of the estimated parameters.

Section 2.5 addresses the question of (un)certainty in terms of confidence regions originat-
ing from first order approximations of the covariance matrix of the estimates.

2.3 Definition (Structural global and local identifiability)
Let for an ODE model ẋ(t) = f(t, x(t), p) an observation z of the following form be given:

z = z(p) =




h(t1, x(t1; p), p)
...

h(tnM , x(tnM ; p), p)


 (2.7)

with parameter vector p taken from a parameter space P ⊆ IRnp . Then, we call the system

1. globally identifiable, if z(p1) = z(p2) ⇐⇒ p1 = p2 ∀p1, p2 ∈ P,
i.e. that identical observations are made if and only if the parameters are unique in the
whole parameter space P.

2. locally identifiable, if z(p1) = z(p2) ⇐⇒ p1 = p2 ∀p1, p2 ∈ U(p∗) ⊂ P,
i.e. that identical observations are made if and only if the parameters are unique in a
neighbourhood of a certain parameter value p∗.

We note that these definitions do not rely on any explicit initial condition of the ODE. �

Coming back to the above example of the simple exponential in eq. (2.6), the system is
thus globally identifiable. As an example for an only locally identifiable system, we have a
look at a trigonometric system with state observations:

ẋ(t) = cos(t+ p)

with solution x(t; p) = sin(t+ p) and observation(s)

z(p) =
(
x(t1; p), ..., x(tnM ; p)

)T
.

The parameter p introduces a phase shift of the sine, and since sin(t) = sin(t+ 2kπ) ∀k ∈ Z

Z

,
the system is not globally identifiable. However, if we restrict the parameter space to a
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neighbourhood of a certain p∗, say U(p∗) = [p∗ − 1, p∗ + 1] we may calculate the exact value
of p from a single exact measurement of the state x at an arbitrary time point. Multiple
measurements will, often, also ensure practical identifiability in the case of noisy measurements.

2.4 Lemma (Direct testing of structural identifiability)
In the case of (nonlinear) ODE, a necessary condition for global identifiability in terms of the
r.h.s. function f is given as:

f(t, x(t), p1) = f(t, x(t), p2) =⇒ p1 = p2 ∀p1, p2 ∈ P

�

2.2 Boundary value problems

Before discussing how to solve constrained parameter estimation problem as presented in
section 2.3, we introduce and discuss the underlying class of boundary value problems.

Problems of this class specify a trajectory by a system of ordinary differential equations
that has to be obeyed in a closed interval, together with some constraints on the system’s
states at the boundary points:

2.5 Problem (2-point boundary value problem)

ẋ = f(t, x(t)) t ∈ [t0, tf ]

c(x(t0), x(tf )) = 0
(2.8)

with a piecewise LIPSCHITZ-continuous r.h.s. function f : IR× IRnx → IRnx , differential
states x(t) ∈ IRnx in the time range t ∈ [t0, tf ], and a set of possibly coupled constraints
c : IRnx × IRnx → IRnc on the initial state x(t0) and the final state x(tf ).

Depending on the boundary constraints c(x(t0), x(tf )) = 0, there might be no solution,
several solutions or also an unique solution, e.g. c(x(t0), x(tf ) = x(t0) − x0 = 0 reduces the
boundary value problem to an initial value problem.

2.2.1 Single shooting

Since the solution of initial value problems

ẋ = f(t, x(t)) t ∈ [t0, tf ]

x(t0) = x0

is fully determined by the initial value x0, and IVPs form a subgroup in the framework of
boundary value problems, an intuitive, wide-spread, and easy to implement approach for
solving the boundary value problem 2.5 is to iteratively adjust the initial state x0 and (nu-
merically) calculate the trajectory and the final state x(tf ) until the boundary condition
c(x(t0), x(tf )) = 0 is fulfilled with a prescribed accuracy.
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This methodology of solving boundary value problems is known as single shooting method ,
the name arising from the militaristic metaphor of adjusting inclination and propellant of a
gun in order to hit a distant goal. There arise diverse problems with these approaches (both
militarily and mathematically; we focus on the latter).

A major difficulty is the inability of a numerical integrator to calculate a trajectory for
certain initial state vectors x0, e.g. due to cumulated error propagation over a large time
interval or exceeding step count limits. It might further happen that there does not exist a
trajectory on the whole interval [t0, tf ] for certain initial values. This poses strict limits on the
single shooting method.

Consider the two-dimensional example by BOCK [Bock1987] and BULIRSCH [Bulirsch1971],

ẋ1 = x2 x1(0) = 0
t ∈ [0, 1]

ẋ2 = µ2x1 − (µ2 + p2) sin(pt) x2(0) = π

having for p = π the analytical solution x1(t) = sin(πt), x2(t) = π · cos(πt), independent of µ.
The general solution is

ẋ1(t) = sin(πt) + ε1 sinh(µt) + ε2 cosh(µt), ε1 := (x2(0)− p)/µ
ẋ2(t) = π cos(πt) + ε1 cosh(µt) + ε2 sinh(µt), ε2 := x1(0)

and the Jacobian of the r.h.s. is
( 0 1
µ2 0

)
, with eigenvalues ±µ. Thus, even tiny deviations in

initial values or in the parameter p are massively amplified. Even for the 64bit floating point
approximation p = 3.141592653589793 on π, standard integrators(2) are incapable to calculate
the trajectory over the whole interval [0, 1] already for moderate values of µ, say 100.

A further drawback of the single shooting approach is that information about the state
trajectory, which is often available in the parameter estimation context in form of measure-
ments, cannot be incorporated to speed up or stabilize the solution process. A frequently used
remedy delivers the collocation method that we shortly sketch in the following section.

2.2.2 Collocation

The idea of collocation is to approximate the solution to the boundary value problem 2.5 by
a linear combination of simple functions like (piecewise) polynomials or splines.

The time domain [t0, tf ] is split into a grid G1 := {t0, ..., tN}, with t0 < t1 < ... < tN = tf ,
not necessarily equidistant. For each interval [ti, ti+1], a second grid G2 := {ρ1, ..., ρk}, with
0 ≤ ρ1 < ... < ρk ≤ 1 is used to generate the N · k collocation points

tcol

ij := ti + ρj(ti+1 − ti) (i = 0, ..., N − 1; j = 1, ..., k),

where the differential equation has to be fulfilled.

Let y(i) be a polynomial of degree k, order k + 1, on each interval of G1, defined by

y(i)(τ) =

k∑

s=0

a(i)
s τ

s with τ =
t− ti
ti+1 − ti

,

(2)e.g. the Matlab 2013a integrator ode45 with accuracy properties AbsTol set to 10−16 and RelTol set to its
minimum possible value of 2.22045 · 10−14 shows an error of more than 1010 at the final time point t = 1
without issuing a warning.
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using the Lagrangian interpolant form here. The coefficients a
(i)
s ∈ IRnx are determined by

requiring that

1. the approximative solution fulfills the differential equation at the collocation points, i.e.
ẏ(i)(tcol

ij) = f(tcol

ij , y
(i)(tcol

ij)) (i = 0, ..., N − 1, j = 1, ..., k)

2. the solution has a continuous trajectory, i.e. y(i)(ti+1) = y(i+1)(ti+1) (i = 0, ..., N − 2)

3. the boundary conditions are fulfilled, i.e. c
(
y(0)(t0), y(N−1)(tN )

)
= 0.

Note that there is (formally) no integration taking place, but a solution to a nonlinear
equation system has to be found. However, it can be shown that collocation is equivalent
to a certain RUNGE-KUTTA method, or more formally, that collocation delivers a continuous
interpolant of the points generated by this RUNGE-KUTTA method [Ascher1995]. The arising
equation system is usually very large, but also exhibits a sparsity pattern that can be used for
efficient solving using e.g. NEWTON-based algorithms.

In contrast to the single shooting approach, a priori knowledge about the system can (and
should) be used to initialize the solution.

The choice of the number of points in the inner grid G2 is naturally restricted by the
accepted maximum degree of the piecewise polynomials. There remains the question on the
choice of the grid points of G1. The answer strongly depends on the nonlinearity of the
underlying ODE, which is in many settings not known a priori and might depend on (unknown)
parameters. Adaptivity, however, is much harder to incorporate in collocation methods than in
numerical integration schemes, marking a main drawback of collocation methods when solving
possibly highly nonlinear differential equations.

2.2.3 Multiple shooting and derivative generation

2.2.3.1 The shooting grid and parametrization
In the single shooting approach for solving the boundary value problem 2.5, for every modifi-
cation of the initial state vector x0 at t0 the initial value problem

ẋ(t) = f(t, x(t)), x(t0) = x0, t ∈ [t0, tf ]

is solved by numerical integration over the whole time domain [t0, tf ]. In the multiple shooting
approach, as the name suggests, the time horizon is split by a grid, the shooting nodes tMS

k ,

t0 = tMS

0 < tMS

1 < · · · < tMS

nMS
= tf

into nMS intervals, not necessarily all of the same size, on each of which an initial value problems
is solved by numerical integration. To every time point tMS

k , an initial value sk ∈ IRnx (the
shooting variables) is associated, and on each interval the initial value problem

ẋ(t) = f(t, x(t)), x(tMS

k ) = sk, t ∈ [tMS

k , t
MS

k+1] (k = 0, ..., nMS − 1) (2.9)

is solved. We write the solution on the k-th interval as x(t; tMS

k , sk, p) to visualize the
dependence on the shooting node tMS

k , its value sk, and the parameter vector p. Concatenating
the interval solutions x(t; tMS

k , sk, p) leads to an usually discontinuous trajectory as illustrated in
figure 2.2a. To ensure a continuous solution, the continuity conditions or matching conditions

x
(
tMS

k+1; tMS

k , sk
)

= sk+1

[
= x

(
tMS

k+1; tMS

k+1, sk+1

)]
(2.10)
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s0 

s1 

s2 

s3 

s4 

(a) Initial trajectory

s0 

s1 

s2 

s3 

s4 

(b) Final trajectory, continuous

Figure 2.2: Solving boundary value problems by multiple shooting. Illustration of initial and final
trajectories of an 1-dimensional boundary value problem, whose continuity and boundary value matching
are enforced by eq. (2.11). The time domain has been split into four shooting intervals.

are added. Thus, having computed the interval solutions’ endpoint values x
(
tMS

k+1; tMS

k , sk, p
)
,

the following generally nonlinear equation system in the variables sk has to be solved:

F (s) =




c(s0, snMS)
x(tMS

1 ; tMS

0 , s0)− s1
...

x
(
tMS
nMS

; tMS

nMS−1, snMS−1

)
− snMS


 = 0 , s =




s0
...

snMS


 . (2.11)

The concatenation of the interval solutions, as illustrated in figure 2.2b,

x(t) := x(t; s) := x(t; tMS

k , sk) for t ∈ [tMS

k , t
MS

k+1] (2.12)

with s = (s0, ..., snMS) is then well defined, continuous, and a solution to the boundary value
problem 2.5. Note that the variables snMS at the last shooting node tMS

nMS
does not enter

eq. (2.12).

The introduction of intermediate state variables sk ∈ IRnx increases the number of un-
knowns to (nMS + 1) ·nx, resulting in a large nonlinear system of equations to be solved, which
seems undesirable at first glance. However, the special structure of the system (2.11) allows
an efficient solution with a NEWTON-type method [Bock1987; Albersmeyer2010], for which
derivative information is necessary (section 2.2.3.2).

The multiple shooting method combines the advantages of both the single shooting (sec-
tion 2.2.1) and the collocation method (section 2.2.2), while it gets rid of their respective
drawbacks. Knowledge of the underlying process, e.g. originating from experimental data, can
easily be incorporated in the solution process by appropriate initialization of the state values
sk at the shooting nodes. Since the initial value problems in eq. (2.9) are fully decoupled, they
can be solved independently and in parallel. Furthermore, error propagation from numerical
integration is interrupted at each shooting node, thus increasing stability.

For the reasons above, we choose the multiple shooting technique for solving the problems
discussed in this thesis.

30



2.2 Boundary value problems

2.2.3.2 Derivative generation

Solving eq. (2.11) requires the computation of derivatives of F . For that, we need to cal-
culate the derivatives (in this context frequently called sensitivities) of the interval solutions
x
(
tMS

k+1; tMS

k , sk
)

w.r.t. to the intermediate initial values sk.

Precomputed analytical derivatives are available only in rare special cases, their coding
is error prone and contrary to a still wide-spread belief they do not offer any advantages in
terms of computation speed when compared to automatic differentiation techniques that will
be discussed below.

External numerical differentiation (END)
The method of perturbed trajectories, mostly realized as finite differences, is a frequently used
approach to approximate directional derivatives. Using the one-sided finite differences scheme,
for a direction d, ‖d‖ = 1, and perturbation strength h > 0, one gets

d

dsk
x
(
tMS

k+1; tMS

k , sk
)
· d =

x
(
tMS

k+1; tMS

k , sk + hd
)
− x
(
tMS

k+1; tMS

k , sk
)

h
+O(h), (2.13)

thus the evaluation of a full Jacobian on each shooting interval can be calculated with nx
additional integrations, summing up to (nMS − 1)nx additional integrations in total. The error
might be decreased to O(h2) using central finite differences if one is willing to invest again
additional nx integrations per shooting interval.

If the integrator is available only as a black box, hence the notion external numerical
differentiation, the method of perturbed trajectories is the only one that can be applied.

The finite differences approximation requires the integration procedure to be differen-
tiable – an assumption that generally does not hold for error controlled integrators. Adaptive
components and the usage of iterative or approximative solvers render the numerical integra-
tion non-differentiable. The externally computed derivatives are thus inconsistent, as the
adaptive components may change for disturbed trajectories, and might not even be a rough
approximation to the right ones, especially if second or higher order derivatives are to be
computed.

Even if we assume a sufficiently smooth integration, there still are two sources of error:
truncation and rounding.

The truncation error originates from the truncation of the function’s TAYLOR series at
first order. As exactness in eq. (2.13) only holds for h −→ 0, a small value of h reduces the

truncation error.

The rounding error is unavoidable in floating point arithmetic as only a finite subset of
the rationals |Q may be represented. The rounding error shows its most malicious effects when
substracting two closely spaced values (cancellation) as it occurs in finite differencing with a
small h.

For a short discussion, let ϕ(x) be a sufficiently smooth real function. The one-sided finite dif-

ference approximationDh := ϕ(x0+h)−ϕ(x0)
h of the derivative ϕ′(x0) then has a maximum round-

ing error of εFD

round(h) ≈ 2εeval|ϕ(x0)|h−1, and a truncation error of εFD
trunc(h) ≈ 1

2 |ϕ′′(x0)|h,
where εeval denotes the relative error in the computation of ϕ, i.e. integrator precision in our
case. Differentiating the resulting total error

εFD

total(h) = εFD

round(h) + εFD

trunc(h) = 2εeval|ϕ(x0)|h−1 + 1
2 |ϕ′′(x0)|h
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with respect to h and setting the result to zero delivers the optimum choice of the finite
difference step size as

hopt = 4εeval
∣∣ϕ(x0)

/
ϕ′′(x0)

∣∣

with an error of
εFD

total(h
opt) = 2

√
εeval|ϕ(x0)ϕ′′(x0)|

in the approximation of ϕ′(x0). Thus, for a precision of ε in the derivative, the integrator must
be accurate up to ε2, or, in other words, one looses half of the significants by finite differencing.

Higher derivatives suffer even worse, rendering external numerical differentiation an com-
putationally costly though ineffective method.

If the underlying linear algebra is capable of processing complex-valued input, for a real-
valued but holomorphic function ϕ, there exists a remedy known as complex step derivative
approximation or i(maginary) trick , based on the work of LYNESS and MOLER [Ly-
nessMoler1967], [Lyness1967]. Their findings have been reformulated by SQUIRE and TRAPP

[SquireTrapp1998] to the approximation

ϕ′(x0) ≈ Imϕ(x0 + ih)

h
,

derived from the TAYLOR series ϕ(x0 + ih) = ϕ(x0) + ihϕ′(x0)−h2 ϕ
′′(x0)
2! − ih3 ϕ

′′′(x0)
3! +O(h3).

Taking the imaginary part and dividing by h delivers the above approximation of the first
derivative with error of O(h2). As the computation does not suffer from cancellation, (nearly)
arbitrarily small step sizes h, e.g.. h = 10−20 or even smaller, are admissible, effectively
eliminating the truncation error. It can be “shown to be very accurate, extremely robust and
surprisingly easy to implement, while retaining a reasonable computational cost”; and from the
viewpoint of accuracy and robustness, it is equivalent to automatic differentiation in forward
mode (see below), with slightly increased computational costs [Martins2003].

Internal numerical differentiation (IND)
If access to the integration routines is available, a technique called internal numerical dif-
ferentiation [Bock1981; Bock1983] drastically improves the situation. The idea is to fix all
adaptive components like step lengths, pivoting in the linear subproblems or other parame-
ters of iterative or approximative solvers, thus making the integrator a differentiable mapping
I : IR× IRnx → IRnx , accepting initial time and state as input and delivering the final state at
the interval’s right boundary (tMS

k , sk) 7→ I(tMS

k , sk) = x
(
tMS

k+1; tMS

k , sk
)
.

As presented in [Bock1981], IND computes “the derivative of the internally selected dis-
cretization scheme”. When using IND with automatic differentiation (see below), rather than
being a method for derivative generation, it is a principle avoiding inconsistencies between
integrator evaluations for marginally changed input. The main advantage: “The method is
stable in the sense that the ‘exact’ derivative of an adaptively chosen discretization scheme is
generated” [Bock1981].

Freezing the integrator’s adaptive components bears the risk, that the adaptive values
chosen for the nominal trajectory might not be adequate for the perturbed trajectory, e.g.
the prescribed integration error tolerances might be violated. This strongly depends on the
integrated function, but harsh violations are not to be expected.

A detailed discussion of IND can be found in [Albersmeyer2010; Beigel2012].
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2.2 Boundary value problems

Variational differential equations
A further common approach is to solve on each shooting interval the variational differential
equations

d

dt
G(t; tMS

k , sk) =
∂

∂x
f(t, x(t; tMS

k , sk)) ·G(t; tMS

k , sk) t ∈ [tMS

k , t
MS

k+1]

G(t; tMS

k , sk) = Inx×nx
(2.14)

as it can be shown that G(t; tMS

k , sk) = ∂
∂sk

x
(
tMS

k+1; tMS

k , sk
)

is the needed derivative (sometimes
called adjoint sensitivities). The variational differential equations can be conjointly integrated
with the original initial value problem, enlarging the system size from nx to (nx + 1)nx differ-
ential states, which might become computationally difficult for large systems. Care must been
taken due to the fact, that the numerical solution for the initial value problem might differ in
the augmented solution as the numerical integration scheme probably uses different adaptive
components. Again, by using IND one overcomes these problems.

Automatic differentiation
The method of automatic differentiation or algorithmic differentiation relies on systematic us-
age of the chain rule. We give a glimpse on the idea in the following. For a formal introduction
and detailed discussion, we refer to a definitive book on AD, e.g. the one by GRIEWANK and
WALTHER [GriewankWalther2008].

We start by having a look on how a function f : IRn → IRm, (x1, ..., xn) 7→ (y1, ..., ym) is
evaluated in a computer. During the calculation of the result vector y = f(x), a series of
intermediate values wi (i = 1, ..., N) is generated. This series can be arranged such that

a) (w1, ..., wn) = (x1, ..., xn) is the input vector
b) wn+k = ζk(w1, ..., wn, wn+1, ..., wn+k−1), the k-th intermediate value, depending only on

previous ones
c) (wN−m+1, ..., wN ) = (y1, ..., wm) the output vector.

Typically, the elementary functions ζk depend only on one or two previous variables, and
consist of elementary arithmetic, trigonometric functions, exponentiation, etc., for which dif-
ferentiation rules can be derived easily, i.e. ζ ′k is available.

In the forward AD or forward accumulation mode, for each intermediate wi, an addi-
tional value w′i is introduced to store derivative information. The values w′1, ..., w

′
n contain

the seed, i.e. the direction of the derivative that is to be calculated. For example, us-
ing the seed (w′1, ..., w

′
n) = (1, 0, ..., 0) delivers the value of the derivative ∂f

∂x1
(x1, ..., xn) in

(w′N−m+1, ..., w
′
N ). This is done by modifying the evaluation of the elementary functions ζk

such that they also augment these intermediate values w′i for derivative computation. For
example, if ζk(a, b) = a · b is the two-argument multiplication, the augmented elementary func-
tion then reads as ζ ′k(a, b, a

′, b′) = a · b′ + a′ · b. Table 2.1 shows how the forward AD mode is
applied in the evaluation of a simple example function.

In an implementation, this can be done by rewriting the input program (AD by source
transformation) or by augmenting the original operators in languages that support this (AD by
operator overloading). Conditional operators (like if) do not interfere with the above scheme,
and we may calculate derivatives even for non-differential operators like max by rewriting
max(a,b) by if a < b then a else b. Care must then be taken for the case a = b, e.g. by
ensuring that the respective derivative accumulators a′ and b′ coincide in this case. A rigorous
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2 Parameter Estimation in Ordinary Differential Equation Models

Table 2.1: Example on automatic differentiation. Evaluation of f(x1, x2) = x1 · sin(x2) − x1 and
the directional derivative ∂f

∂x1
(x1, x2) = sin(x2) − 1 by automatic differentiation in forward mode. The

direction (1, 0)T is put as seed in the intermediate variables (w′1, w
′
2). While evaluating the nominal value

f(x1, x2) in w5, the resulting derivative value is accumulated into w′5 at the same time.

Nominal value Directional derivative

f(x1, x2) = x1 · sin(x2)− x1
df
dx (x1, x2) ·

(
1
0

)

w1 = x1 w′1 = 1
w2 = x2 w′2 = 0
w3 = sin(w2) w′3 = cos(w2) · w′2 = cos(x2) · 0 = 0
w4 = w1 · w3 w′4 = w′1w3 + w1w

′
3 = 1 · sin(w2) + 0 · w1 = sin(x2)

w5 = w4 − w1 w′5 = w′4 − w′1 = sin(x2)− 1

approach delivering the denotational semantics based on λ-calculus and incorporating the
concept of CLARKE gradients can be found in [DiGianantonioEdalat2013].

There are further variants of AD, e.g. the backward mode, or the propagation of TAYLOR

coefficients for higher order derivatives, whose usage in the context of optimal control and
parameter estimation is discussed in [Albersmeyer2010].

When using AD during the solution of an initial value problem, the principle of IND is
automatically fulfilled since the derivative (or, respectively, the intermediate values needed for
its compilation) is computed at the same time together with the nominal trajectory, and the
computed derivatives are exact up to machine precision and consistent to the approximation
of the nominal trajectory.

Although the method dates back at least to the year 1952(3), with Fortran implemen-
tations already available in the 1960s(4) the method is still not as widespread as one would
expect regarding its advantages.

In this thesis, we implemented automatic differentiation in Common Lisp, based on a
suggestion of FATEMAN [Fateman2006] for generic arithmetic, and extended it for arbitrarily
high and mixed derivatives. See also appendix S.

(3)In the proceedings of the ACM SIGPLAN History of Programming Languages of 1978, a transcript of the
keynote address of Captain Grace Murray HOPPER, one of the builders of the first commercial large-
scale computer UNIVAC , is conserved, where she describes how they developed and realized the idea of
“analytical differentiation” on the vacuum tube based UNIVAC in the early 1950s. The idea was given
to Harry KAHRIMANIAN, who published the work at Temple University (Philadelphia/Pennsylvania) in
1953 [Kahrimanian1953]. Around the same time, John NOLAN submitted his master’s thesis at Boston
University with identical title “Analytical Differentiation on a Digital Computer” [Nolan1953], realizing
automatic differentiation on the Whirlwind I machine at MIT Digital Computer Laboratory.

(4)In an article from 1964, WENGERT proposed a “procedure for automatic evaluation of total/partial derivatives
of arbitrary algebraic functions” [Wengert1964] that relied on principles resembling the nowadays AD in
forward mode. As appendix, the article also contains subroutines in an early Fortran dialect for the
elementary functions addition, multiplication, and for the sine function, that automatically compute their
respective derivative. With techniques like operator overloading or source code transformation not available,
the programmer himself had to rewrite programs to use the augmented operators, rendering the technique
a “half-automatic” process.
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2.3 Constrained nonlinear parameter estimation problem

2.3 Constrained nonlinear parameter estimation problem

2.6 Definition (Weighted least squares objective)
Given the parameter-dependent dynamical model as initial value problem as in eq. (2.1),
ẋ = f(t, x, p), x(t0) = x0(p), and further the corresponding measurement model as in eq. (2.2),
ηi = hi(ti, x(ti; p

∗), p∗) + εi with εi ∼ N
(
0, σ2

i

)
(i = 1, ..., nM ), we define the weighted least

squares objective as
1

2

nM∑

i=1

(ηi − hi(ti, x(ti; p), p))
2

σ2
i

�

2.3.1 Additional constraints

2.3.1.1 Point constraints

In most cases, we have additional knowledge about the real-world process or the involved
parameters available, that can be represented in additional pointwise equality and inequality
constraints functions:

cec : IRnx × · · · × IRnx
︸ ︷︷ ︸

nEC times

×np → IRnec

and
cic : IRnx × · · · × IRnx

︸ ︷︷ ︸
nIC times

×np → IRnic

cec
(
x(tec1 ; p), ..., x

(
tecnEC

; p
)
, p
)

= 0 cic
(
x
(
tic1 ; p

)
, ..., x

(
ticnIC

; p
)
, p
)
≥ 0

that have to be fulfilled on specific time points {tec1 , ..., tecnEC
} or {tic1 , ..., ticnIC

}, respectively.
Equality constraints of this type may be used to force the trajectory to certain points, whereas
inequality constraints might be used to prevent the trajectory entering pathological regions,
or formulating restrictions on the parameters like non-negativity.

2.3.1.2 Exact measurements as point constraints

If some measurements with very high reliability (i.e. very small variance) are available, it
might be beneficial for the numerical solver to treat them as equality constraints, as their
inclusion into the objective functional with an extraordinary high weight would introduce the
disadvantages of penalty methods mentioned earlier, leading to badly conditioned problems.

2.3.2 Constrained parameter estimation problem with underlying ODE model

2.7 Problem (Constrained ODE parameter estimation problem - continuous version)

min
x,p

1

2

nM∑

i=1

(ηi − hi(ti, x(ti; p), p))
2

σ2
i

s.t. ẋ(t) = f(t, x, p) t ∈ [t0, tf ]

x(t0) = x0(p)

cec
(
x(tec1 ; p), ..., x

(
tecnEC

; p
)
, p
)

= 0

cic
(
x
(
tic1 ; p

)
, ..., x

(
ticnIC

; p
)
, p
)
≥ 0
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The initial conditions on the trajectory, x(t0) = x0(p) may also be formulated as (equality)
point constraints; however, having in mind the multiple shooting parametrization, we explicitly
state them here.

Using the multiple shooting parametrization described in section 2.2.3.1, we derive the
parametrized version of the above parameter estimation problem, now in variables s0, ..., snMS

(i.e. the state variables at the shooting nodes tMS

k (k = 0, ..., nMS)) and the vector p of unknown
parameters:

2.8 Problem (Constrained ODE parameter estimation problem - parametrized version)

min
s0,...,snMS ,p

1

2

nM∑

i=1

(ηi − hi(ti, x(ti; s, p), p))
2

σ2
i

s.t. ẋ(t; tMS

k , sk, p) = f(t, x, p) t ∈ [tMS

k , t
MS

k+1]

x
(
tMS

k ; tMS

k−1, sk−1, p
)
− sk = 0 k = 1, ..., nMS

cec
(
x(tec1 ; s, p), ..., x

(
tecnEC

; s, p
)
, p
)

= 0

cic
(
x
(
tic1 ; s, p

)
, ..., x

(
ticnIC

; s, p
)
, p
)
≥ 0

where TMS = {tMS

0 , ..., t
MS
nMS
} denotes the shooting grid, and {tec1 , ..., tecnEC

} and {tic1 , ..., ticnIC
} denote

the grids of equality and inequality constraints, respectively. Analogously as in section 2.2.3.1,
we note by x(t; tMS

k , sk, p) the solution of the respective initial value problem on the k-th interval.

2.9 Remark (Condensing, correlated measurements, total least squares, common factor)

(a) Condensing for reducing dimensionality
The multiple shooting parametrization leads to a highly structured problem. Application
of a condensing algorithm [Bock1987] reduces the high-dimensional system in problem 2.8
from (nMS + 1)nx + np to only nx + np variables, as the (increments of) shooting variables
s1, ..., snMS may be calculated using the (increment of) the shooting variable s0 at the
first node tMS

0 solely.

This technique also relies on the continuity condition eq. (2.10) that we are going to
omit in the SDE parameter estimation chapter 2. Thus, for details on condensing,
we refer to [Bock1987]. SCHLÖDER gives an extension to multi-experiment settings in
[Schloeder1987].

(b) Adjustments for correlated measurements
The objective of the parametrized problem 2.8 may be rewritten as

min
s,p

1
2

∥∥Σ−1(η − h(s, p))
∥∥2

(2.15)

with η := (η1, ..., ηnM )T being the vector of measurements, h(s, p) denoting the corre-
sponding model answer, and Σ := diag {σ1, ..., σnM } (see also section 2.4 for notational
details).

If the data variances are correlated with positive definite correlation matrix C ∈ IRnM×nM ,
the objective eq. (2.15) may be used with Σ−1 = C−1 to deliver a maximum likelihood
estimate [Bard1974].
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2.4 The solver’s view

(c) Total least squares for errors in independent variables (measurement times)
If the measurement time points are themselves variates of a normal distribution, i.e.

ηti = ti + εti εti ∼ N
(

0,
(
σti
)2 )

the method of total least squares may be applied by adding
1

2

nM∑

i=1

(
ηti − ti
σii

)2

to the
objective in problems 2.7 and 2.8.

(d) Estimating the common factor βc

If the common factor of the data (error) variances is not known a priori, then

b2 :=

∥∥Σ−1
(
η − h(s, p)

)∥∥2

(nM + nc)− (nx + np)

is an independent estimator for βc [Bock1987; Bard1974]. Here, nc denotes the sum of
equality constraints and active inequality constraints.

�

2.4 The solver’s view

For a numerical solver, the parametrized problem 2.8 is translated into a general form of
constrained nonlinear least squares problems that may be solved with the generalized GAUSS-
NEWTON method presented in chapter 1. We introduce a vector and matrix notation of the
appearing quantities that allows us a compact reformulation as problem 2.10.

Shooting variables s : s =




s0
...

snMS


 ∈ IR(nMS+1)·nx , sk =



sk,1

...
sk,nx


 ∈ IRnx (2.16a)

Parameter vector p : p =



p1
...
pnp


 ∈ IRnp (2.16b)

Measurements η:
Measurement weights Σ:

η =



η1
...

ηnM


 , Σ =



σ1

. . .

σnM


 (2.16c)

Model response h : h(s, p) =




h1(x(t1; s, p), p)
...

hnM (x(tnM ; s, p), p)


 (2.16d)
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2.10 Problem (Constrained nonlinear least squares problem)
Collecting the shooting variables s and the vector of unknown parameters p in the
vector z := (s0, ..., snMS , p) ∈ IRnz with dimension nz := (nMS + 1)nx + np, and using the
notations from eq. (2.16), we define:

R(z) = Σ−1(h(z)− η) vector of weighted resiudals

rec(z) =




cec1
(
x(tec1 ; s, p), ..., x

(
tecnEC

; s, p
)
, p
)

...
cecnec

(
x(tec1 ; s, p), ..., x

(
tecnEC

; s, p
)
, p
)

x(tMS

1 ; tMS

0 , s0, p)− s1
...

x
(
tMS
nMS

; tMS

nMS−1, snMS−1, p
)
− snMS




(original equality constraints)

vector of equality constraints

(continuity conditions)

ric(z) =



cic1
(
x
(
tic1 ; s, p

)
, ..., x

(
ticnIC

; s, p
)
, p
)

...
cicnic
(
x
(
tic1 ; s, p

)
, ..., x

(
ticnIC

; s, p
)
, p
)


 vector of inequality constraints

nrec = nec + nMSnx dimension of rec

nric = nic dimension of ric

such that R : IRnz → IRnM , rec : IRnz → IRnrec , and ric : IRnz → IRnric .

Then, the constrained nonlinear least squares problem may be written as

min
z∈IRnz

1
2

∥∥R(z)
∥∥2

s.t. rec(z) = 0

ric(z) ≥ 0

(2.17)

2.5 A posteriori statistical analysis of the solution

Since the vector of measurements η is a random variable, also the solution of the parameter
estimation problem 2.8 or the equivalent problem 2.10 will be a random variable.

Thus, the solution of a parameter estimation problem is incomplete if solely an estimation
on the parameters is delivered, but no information about the confidence in the estimated
quantities is provided.

For the analysis here, we assume that problem 2.10 has been successfully solved by the
generalized GAUSS-NEWTON algorithm presented in section 1.3 with solution z∗ that is not
rank-deficient. Combining the equality and active inequality constraints in rc, problem 2.10
then reads as

min
z∈IRnz

1
2

∥∥R(z)
∥∥2

s.t. rc(z) = 0
(2.18)

with z ∈ IRnz , R : IRnz → IRnM , rc : IRnz → IRnc .
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2.5 A posteriori statistical analysis of the solution

As in section 1.3, we investigate the linearization at the solution z∗, i.e. the problem

min
∆z∗

1
2

∥∥∇R∗ ·∆z∗ +R∗
∥∥2

s.t. ∇rc∗ ·∆z∗ + rc∗ = 0

with R∗ = R(z∗), ∇R∗ = ∇R(z∗), rc∗ = rc(z∗), ∇rc∗ = ∇rc(z∗). As in theorem 1.32, we further
combine

F =

(
R∗
rc∗

)
and J =

(
∇R∗
∇rc∗

)

and denote by

J+ =
(
I 0

)((∇R∗)T∇R∗ (∇rc∗)T
∇rc∗ 0

)−1(∇R∗ 0
0 I

)

the generalized inverse of J (theorem 1.32).

The following result for the linearized system delivers a linear approximation on the co-
variance of a computed solution z∗.

2.11 Lemma (Covariance of the estimates)
Let z∗ be the solution of problem 2.10, derived by the generalized GAUSS-NEWTON algorithm
from section 1.3. Using the notation above, we get for the expectation and variance of the
increment ∆z = −J+F , i.e. for the solution of the linearized problem:

IE[∆z] = 0

Cov[∆z,∆z] = J+

(
I 0
0 0

)(
J+
)T

(2.19)

Proof: First, using the error model in eq. (2.2), i.e. ηi = hi(z
∗) + εi with measurement errors

εi ∼ N
(
0, σ2

i

)
, we have IE[ε] = 0 and thus

IE[∆z] = IE

[
−J+

(
R∗
rc∗

)]
= −J+

(
IE[R∗]
IE[rc∗]

)

= −J+

(
IE
[
Σ−1(η − h(z∗))

]

0

)
= −J+

(
Σ−1IE[ε]

0

)
= 0

Second, since rc∗ = rc(z∗) = 0, and since rc∗ is not a random variable, we have IE
[
R∗(rc∗)

T
]

= 0
and IE

[
rc∗(r

c
∗)
T
]

= 0. We further get using Σ2 = Cov[ε, ε] = IE
[
εεT
]

and the symmetry of the
covariance that

IE
[
R∗RT∗

]
= IE

[
Σ−1

(
h(z∗)− η

)(
h(z∗)− η

)T
Σ−T

]
= Σ−1IE

[
εεT
]
Σ−1 = I

and thus finally

Cov[∆z,∆z] = IE
[
∆z∆zT

]
= IE

[
J+FF T(J+)T

]

= J+IE

[(
R∗RT∗ R∗(rc∗)

T

(
R∗(rc∗)

T
)T

rc∗(r
c
∗)
T

)]
(J+)T = J+

(
I 0
0 0

)
(J+)T

�
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2.12 Remark
If the covariances σi of the measurements ηi are only known up to a common factor βc, the
covariance matrix of ∆z reads as

Cov[∆z,∆z] = βcJ
+

(
I 0
0 0

)(
J+
)T

�

Approximation of the region of confidence
We conclude this chapter by giving a linear approximation (confidence intervals) on the indif-
ference region GN (α),

GN (α) :=
{
z
∣∣ rc(z) = 0, ‖R(z)‖2 − ‖R(z∗)‖2 ≤ γ2(α)

}

itself being an approximation on the (100·α)% confidence region, based on the GAUSS-NEWTON

solution z∗ of eq. (2.18). Here,

γ2(α) := χ2
nz−nc(1− α)

denotes the quantile of the χ2 distribution to probability α with nz − nc degrees of freedom.
A linear approximation to Gn(α) is given as

GL(α) =
{
z
∣∣ rc(z∗) +∇rc(z∗)(z − z∗) = 0,

‖R(z∗) +∇R(z∗)(z − z∗)‖2 − ‖R(z∗)‖2 ≤ γ2(α)
}

=
{
z
∣∣ z = z∗ − J+

(
δw
0

)
, δw ∈ IRnM , ‖δw‖2 ≤ γ2(α)

}
,

from which the following confidence intervals for the parameter estimates may be derived:

2.13 Theorem (Confidence intervals)

Let θi := γ(α) ·
√
Cii, where Cii = Cii(z

∗) denotes the i-th element of the main diagonal of
the covariance matrix in eq. (2.19). Then,

GL(α) ⊂ G∗ :=
nz×
i=1

[z∗i − θi]

i.e. the linear confidence region approximation GL is enclosed by the hyperrectangle G∗.

Proof: [Bock1987], pp. 136–138. �

Note that theorem 2.13 gives confidence intervals for both the parameter vector p and the
trajectory, described by the shooting variables s.

A detailed discussion on the statistical analysis of parameter estimates in the context of
linear and nonlinear constrained least squares problems based on the generalized inverse J+

as well as a comprehensive derivation of the formulas above is also found in [Lenz2014].
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3 Development of and Parameter Estimation in
A Crosstalk Model of GM-CSF-mediated
IL-6-induced JAK-STAT Signalling

In this chapter we develop and experimentally verify a mathematical model for an intracellular
crosstalk in human skin cells. Keratinocytes are stimulated by the two cytokines IL-6(1) and
GM-CSF(2) and the intracellular response of the JAK-STAT3(3) signalling pathway, which is
frequently found aberrantly activated in various cancers, is quantified by Western blotting.

Wet lab data is carefully analysed and a normalization method is proposed that – in con-
trast to other frequently used normalization techniques – allows using the methods developed
in chapter 2 for maximum likelihood parameter estimation.

Using these methods, we verify model predictions and gain new biological insights that
support the identification of new therapeutic intervention sites in cancer therapy.

The starting section 3.1 addresses the connection of the investigated signal transduction
pathway to cancer diseases.

Section 3.2 gives an introduction to the biological backgrounds of cytokine-induced cellular
signalling, presents previous experimental observations from proliferation assays, and describes
and illustrates in detail the procedures and steps of the Western blotting technique for cellular
protein quantification.

The third section 3.3 describes the four distinct experimental set-ups (three chosen by ex-
pert biologists and one subsequently proposed by the author) and present the raw measurement
data.

In section 3.4, we present some methods and criteria of MARSAGLIA for approximating
the ratio of normal random variates by a normal distribution.

Section 3.5 addresses the statistical analysis of the generated immunoblot data. It is shown
that a widespread data normalization technique using additional measurements of so-called
calibrator proteins is incompatible to the assumption of normally distributed measurement
errors. Further, it is shown in both an in silico study and in the actual in vitro measurements
that normalization by calibrator proteins is prone to heavily disturb the actual data and induces
severe artefacts. As an alternative, a different normalization technique, the amplification
factors method that requires no additional experimental effort, is proposed and analysed.
We further develop conditions under which the measurement error follows an approximate
normal distribution and give criteria for the experimenter that can be easily verified using the
experimental data.

(1)Interleukin 6, details in section 3.2.1
(2)Granulocyte-Macrophage Colony-Stimulating Factor, details in section 3.2.1
(3)Janus Kinase - Signal Transducer and Activator of Transcription 3, details in section 3.2.3
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3 A Crosstalk Model of GM-CSF-mediated IL-6-induced JAK-STAT Signalling

These methods are applied to the measurement data in section 3.6. Using WELCH’s two-
tailed t-test, it is further shown that the observed GM-CSF-moderated intensity variations in
the IL-6-induced signal is statistically significant.

In section 3.7, we start with a review of existing models for IL-6-induced JAK-STAT
signalling. As none of the literature models incorporates GM-CSF signalling, we develop a
new crosstalk model . Based on mass action kinetics, the presented ODE model proposes a
supportive kinase as the link between the two signalling pathways. Devised with a focus on
a small number of parameters to improve identifiability, the model is capable of qualitatively
and quantitatively reproducing the observations with a unique parameter set. Predictions on
the time course of a negative pathway regulator are successfully used for model verification by
experiments.

Finally, in section 3.8, a new biological insight proves the predictive power of
our model. We predict a nonlinear dose-dependency of the IL-6-induced signal on GM-CSF
and demonstrate it in in vitro experiments, showing that GM-CSF is a potent regulator of a
signalling pathways frequently found persistently activated in cancer cells, and as such it is a
target for therapeutic intervention.

All wet lab experiments have been performed in the group “Tumour and Microenvironment”
of Prof. Dr. Margareta M. MÜLLER(4) at the German Cancer Research Center (DKFZ) in
Heidelberg. The obligatory “materials and methods” section is found in appendix A.1.

Parts of the results presented in this chapter have been submitted as [Sommer2014] (accepted).

3.1 Cancer

Cancer is the name of a family of related diseases. Common to all is the unchecked growth of
cells, the natural replacement of aged and damaged cells, triggered by inter- and intracellular
communication, is disturbed.

Altered or impaired cytokine signalling and inflammation is frequently observed in can-
cer [Seruga2008], especially the pro-inflammatory properties of IL-6-type cytokines have been
linked to tumourigenesis [Putoczki2010]. Persistent JAK-STAT3 activation by IL-6 and the
IL-6-type cytokine IL-1 1 is known to maliciously affect the reproduction of intestinal epithe-
lial cells, and promotes gastric tumourigenesis [Ernst2008]. Impaired JAK-STAT3 signalling is
also found in various other cancers [Buettner2002].

Regulators of JAK-STAT3 signalling are therefore an important target for therapeu-
tic intervention in cancer, thus requiring the identification of new regulators and their
regulation mechanisms. In this study, we determined GM-CSF as such a potent regulator.

A review of the role of (disturbed) JAK-STAT signalling in cancer is given, e.g., by YU et
al. [Yu2014].

(4)Now: Faculty of Mechanical and Medical Engineering, Hochschule Furtwangen University
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3.2 Biological and experimental background

(a) IL-6 (PDB-1ALU) (b) GM-CSF (PDB-2GMF)

Figure 3.1: Biological assembly image of human IL-6 and GM-CSF as published in the RCSB Pro-
tein Data Bank

3.2 Biological and experimental background

3.2.1 The cytokines IL-6 and GM-CSF

Cytokines are small proteins that are involved in many cellular signalling processes in multi-
cellular organisms. They are released by cells and influence the behaviour of other cells or
themselves by binding to certain receptors. Cytokines play an important role in the immune
system, growth regulation and differentiation of certain cell types, as well as in inflammatory
processes. Disordered cytokine signalling is ubiquitously found in cancer [Seruga2008].

3.2.1.1 IL-6
Interleukin 6 (IL-6) is a multifunctional cytokine that is secreted by many cell types like
fibroblasts, endothelial cells, keratinocytes, macrophages, T and B lymphocytes as well as
various tumour cell lines [vanSnick1990]. It shows lots of opposite qualities, as it acts as both
pro- and anti-inflammatory protein. IL-6 also plays a two-sided role in cancer. It exhibits
pro-tumourigenic abilities as well as anti-tumourigenic properties, the latter for instance by
stimulating the anti-tumour activity of macrophages and preventing apoptosis in neutrophils,
thus increasing their cytotoxicity in tumours [Trikha2003].

3.2.1.2 GM-CSF
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a type I interleukin like IL-6,
and has pleiotropic functions. It is crucial in formation of blood cellular components, and
modulates differentiation and proliferation of many hematopoetic cells and their precursors
[deGroot1998]. Further, GM-CSF acts as an autocrine (i.e. self-stimulating) signalling molecule
in squamous cell carcinoma (SCC), where it stimulates growth and progression of tumour cells,
and it is frequently found in certain types of solid tumours, e.g. head and neck SCC [Ninck2003].

3.2.2 The HaCaT-ras A5 cell line, cancer, and their connection to IL-6 and GM-CSF

All experiments have been performed using an in vitro carcinogenesis model of human skin
keratinocytes. These HaCaT(5) cells, originating from keratinocytes that have been extracted
from the proximity of a melanoma of a 62-year old male patient in the 1980s, have been

(5)human adult low calcium high temperature keratinocytes; the cell line’s name reflects the original processing
conditions in the lab
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HaCaT keratinocytes 

fibroblasts 

type I collagen gel 

culture medium 

Figure 3.2: 3D organotypic co-culture model as stromal equivalent. Air exposed growth of epithelial
tumour cells (HaCaT A5 keratinocytes) on top of a type 1 collagen gel. Like in human skin, the gel is
pervaded by fibroblasts. A nutrient solution is located below the collagen gel without direct contact to the
top layer of keratinocytes.

shown to be immortal, non-tumourigenic, and exhibiting a normal differentiation capability
[Boukamp1988]. Due to these properties, HaCaT cells are used as a model for the investigation
of skin cancer in vitro.

A stable transfection of HaCaT with a the human ras oncogene [Fusenig1998] leads to a
tumourigenic phenotype. One of the resulting cell lines, HaCaT-ras A5, shows benign non-
invasive tumour growth in 3D organotypic co-culture (OTC) models (schema in figure 3.2
on this page) and in living mice (figure 3.3 on the next page, A-5C3 Control)) [Lederle2011;
Depner2014].

Additional transfection of HaCaT-ras A5 to constitutively overexpression and production
of IL-6 transforms the benign phenotype to a malignant one in vivo (figure 3.3 on the facing
page). With increasing IL-6 expression, also the invasive abilities of the tumour increase. By
application of an IL-6 neutralizing antibody, invasion of tumour cells into subjacent tissue can
be prevented (figure 3.3 on the next page, right), thus proving the facilitating effects of IL-6
on tumour progression.

Further, it has been shown that GM-CSF is also a potent activator of tumour progression
in both the HaCaT model of skin and in SCC of living patients [Mueller2001]. In the OTC
model, presence of GM-CSF results in invasive growth and tumour cell proliferation, whereas
in vivo the observed tumour growth is only transient [Obermueller2004].

3.2.3 Signalling pathways

One possibility for cells to react on environmental changes is via cytokine signalling. Cytokines
are secreted by cells in order to change the behaviour of certain target cells. The binding of a
cytokine to a cell surface receptor is recognized for example by conformational changes of the
receptor proteins that modify the activity of the intracellular parts of the receptor complex
and subsequently triggering intracellular processes. Binding of cytokines to a receptor may
activate, cease or modify specific signalling pathways, both independent of and depending on
ligand concentration.

For instance, the intracellular parts of a ligand-bound receptor may become activated by
phosphorylation of certain amino acids of the receptor protein, in most cases occurring on
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A-5C3  
Control  

A-5IL-6D 
Moderate IL-6 expression 

A-5IL-6F 
Strong IL-6 expression 

A-5IL-6E 
Strong IL-6 expression 

increasing IL-6 expression 

A-5IL-6E 
Strong IL-6 expression 

+ neutralizing  
IL-6 antibody 

H&E staining 

Figure 3.3: IL-6 facilitates tumour progression. HaCaT-ras A5 cells were stably transfected to con-
stitutively overexpress IL-6. Observation of growth behaviour, proliferation and invasion potential in the
OTC-Model (see figure 3.2 on the facing page) shows that IL-6 overexpression induces tumour cell inva-
sion into the collagen gel. This effect can be blocked with an IL-6 neutralizing antibody (right), proving
IL-6 plays an essential role in malign degeneration. OTC H&E staining pictures kindly provided by Mar-
gareta M. MÜLLER, see picture credits on page 240.

serine, threonin, tyrosine, or histidine residues, which become thereby binding sites of further
intracellular signalling molecules.

In many cases, a whole network of interior cell proteins is involved in transmitting the
external stimulus from the receptor to a target place inside, possibly forwarding the information
into the nucleus to initiate transcription of target genes. Subsequent protein neogenesis enables
the cell to react in a specific way to the signal.

These signalling pathways sometimes involve hundreds (or more) of substances, of which
many are not even identified yet. Further, there is no one-to-one relation between cytokines
and triggered signalling pathways; usually, more than one single pathway is activated by a
certain cytokine. Signalling pathways are cell-type specific (as different cell types may have
different receptors), and also dosage of stimulus as well as environmental conditions decide
about the response upon a certain signal.

In the case of IL-6 and GM-CSF, it is known that both cytokines trigger at least two
common signalling pathways, namely the MAPK/ERK(6) and the JAK-STAT(7) pathway, of
which we will focus on the latter.

3.2.3.1 IL-6-induced JAK-STAT signalling pathway

The predominant pathway that is activated by IL-6 is the JAK-STAT signalling pathway, to
which we give an introduction here. IL-6 first binds to its extracellular α receptor IL-6Rα(8)

before the IL-6-IL-6Rα-complex is recruited to the exterior part of the gp130 receptor. The sto-
ichiometry (hexameric, tetrameric, or other forms) is still under discussion [Groetzinger1999].

Once the ligand is bound, gp130 dimerises and initiates the intracellular signalling cascade
by recruiting receptor associated Janus kinases (JAK), followed by a mutual phosphorylation of
JAK and the cytoplasmic part of gp130. STAT proteins can bind to the now activated receptor

(6)Mitogen Activated Protein Kinase / Extracellular-signal Regulated Kinases, also known as Ras-Raf-MEK-
ERK pathway, a multi-tiered intracellular signalling cascade that communicates an extra-cellular signal to
the nucleus and DNA; plays an important role in cellular differentiation, growth, apoptosis, and many other
processes [Pearson2001]

(7)JAK: Janus Kinase, STAT: Signal Transducer and Activator of Transcription, details on this pathway are
given in the following sections and the reviews [Rawlings2004; Heinrich1998]

(8) The α receptor is not involved in the intracellular signal transduction, but binding to it is a requirement for
the subsequent binding to the cytokine receptor gp130. Other names for IL-6Rα are CD126 or gp80.
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nucleus 

STAT3 

STAT3 

STAT3 

SOCS3 

SOCS3 
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Figure 3.4: Simplified IL-6-induced JAK-STAT signalling pathway. The ligand IL-6 activated the
receptor gp130 by binding to it. STAT-3 molecules can bind to the activated receptor, get phosphory-
lated and form dimers, which are able to translocate into the nucleus. There, after inducing the transcrip-
tion of SOCS-3 mRNA, they get dephosphorylated, leave the nucleus and join the cytoplasmic pool of
monomeric STAT-3. The newly produced SOCS-3 mRNA is also exported to the cytoplasm and translated
into SOCS-3 protein, which can bind to the active receptor and cease the signalling cascade.

complex (mostly STAT-3 and STAT-1), become tyrosine-phosphorylated, and translocate into
the nucleus, where they regulate the transcription of target genes. Negative regulation of the
transcriptional activity of nuclear STAT is done by members of the PIAS(9) family. After
dephosphorylation, STAT returns into the cytoplasm.

The predominant ceasing factor of JAK-STAT signalling is the SOCS(10) family of feedback
inhibitors (in case of STAT-3 signalling, mostly SOCS-3), which interrupt the phosphorylation
of gp130, JAK and STAT molecules and thus initiate termination of signalling.

A simplified view on the pathway is depicted in figure 3.4 on the current page. Detailed
information on IL-6 and JAK-STAT signalling pathways can be found e.g. in the reviews
[Heinrich1998; Rawlings2004].

(9)Protein Inhibitor of Activated STAT
(10) Suppressor Of Cytokine Signalling
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3.2 Biological and experimental background

(a) Proliferation assay 1 (b) Proliferation assay 2

Figure 3.5: Proliferation of HaCaT in different stimulation scenarios
Proliferation of unstimulated HaCaT (both assays, leftmost bars, control), upon stimulation with IL-6 and
GM-CSF (both assays, middle bars), upon stimulation with IL-6 while blocking GM-CSF with antibodies
(section 3.2.4, rightmost bar), and upon stimulation with GM-CSF while blocking IL-6 with antibodies
(section 3.2.4, rightmost bar).
The term extinction refers to photometric measurements. It is proportional to the concentration of an
agent in solution. Figures kindly provided by Margareta M. MÜLLER, see picture credits on page 240.

3.2.3.2 GM-CSF-induced JAK-STAT signalling

Similar to IL-6, the GM-CSF ligand first binds to its cytokine-specific α chain GM-CSFRα. In
a second step, this complex of ligand and α receptor binds the common β chain (βc, CD131,
CSF2RB), a signal transducing receptor that is shared between multiple cytokines. Again,
binding of a ligand results in activation of receptor associated kinases, followed by phospho-
rylation of distinct STAT molecules (predominantly STAT-5). Tyrosine phosphatases and
the family of SOCS proteins have been described as negative feedback regulators in GM-CSF
signalling.

The reviews [deGroot1998; MartinezMoczygemba2003] give detailed information on cy-
tokine signalling via the common β chain.

3.2.4 Proliferation assays reveal a link between IL-6 and GM-CSF in HaCaT

Both factors, IL-6 and GM-CSF, stimulate the proliferation of HaCaT cells in vitro with
similar outcome when applied separately (figure 3.5). After 24 hours, the number of cells
roughly doubled (compare the stimulation bars of IL-6 and GM-CSF in figure 3.5 to the
control bars).

Stimulation with one agent while blocking the other using appropriate antibodies shows
a different outcome (rightmost white bars in section 3.2.4). Cell proliferation is only slightly
raised compared to control, and considerably lower compared to unblocked stimulation with
the other agent.

These observations indicate a reciprocal interaction between the two factors and point
to a connection of the signalling pathways of IL-6 and GM-CSF. Further experiments as
described in section 3.3 demonstrate interactions in the JAK-STAT signalling pathways.
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Table 3.1: Individual and shared components in JAK-STAT signalling.
IL-6 and GM-CSF share some signalling components. The mark X means that the respective component
takes an active role in the respective signalling pathway, whereas (X) in the transducer section codes a
less intense activation. The mark – means that the respective component is not or only weakly involved.

IL-6 GM-CSF

IL-6Rα X –
α receptors

GM-CSFRα – X

gp130 X –
β receptors

βc – X

JAK-1 X –
JAK-2 X Xtyrosine kinases
TYK-2 X –

STAT-1 (X) –
STAT-3 X (X)signal transducers
STAT-5 a/b (X) X

signal suppressors SOCS-3 X X

3.2.4.1 Known interconnections in GM-CSF and IL-6-induced JAK-STAT signalling

On the level of signal detection, IL-6 signals through its specific α receptor IL-6Rα and the
common gp130 receptor, while GM-CSF uses GM-CSFRα and the common β chain. At
receptor level, no shared components are currently known.

At the level of tyrosine kinases, IL-6 stimulation leads to an activation of JAK-1, JAK-2,
and TYK-2, while GM-CSF triggers the phosphorylation of JAK-2, rendering this specific
tyrosine kinase a possible interconnection point of both pathways. As a shared component,
there might be a concurrency situation upon co-stimulation with IL-6 and GM-CSF, which
is indeed observed (see table 3.3b). However, if JAK-2 had been a limiting factor, blocking
GM-CSF while simultaneously stimulating with IL-6 would not have resulted in the observed
lowered pSTAT-3 signal (see table 3.3c). In further conclusion, these observations also make it
very unlikely that the interconnection is due to other, – possibly unknown – shared and thus
limiting factors.

At the level of signal transducers, IL-6 is known to activate STAT-1, STAT-3, and STAT-5
a/b, while predominantly STAT-3 is used as transducer. GM-CSF activates STAT-3 and
STAT-5 a/b, where the latter are the main transducer molecules. Obviously, STAT-3 is a
common signal transducer of both cytokines. To give one result in advance: Although both
cytokines signal via STAT-3, we did not observe an increased STAT-3 activation in the IL-6
and GM-CSF co-stimulation experiments compared to sole IL-6 stimulation. In fact, we made
opposite observations (table 3.3b, see also section 3.6.2).

Table 3.1 summarizes JAK-STAT pathway component activation.
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3.2 Biological and experimental background

3.2.5 Data generation by quantitative immunoblotting (WESTERN blotting)

Immunoblotting or Western(11) blotting names the procedure of transferring proteins from
an electrophoresis gel onto a membrane, on which the proteins can be further processed and
detected.

In what follows, we give a description how the experimental data that was used in this
project has been produced. Having a view on the complexity on the involved processes, one
gets an impression about possible sources of error.

Though the presentation of experimental data as a time series might seem like samples
were taken from a single cell population after different amount of time, in fact, there are
multiple sets of cells in dishes, at least one for each time point, and they all differ in cell count.
Each Petri dish receives a stimulus individually.

We will describe and illustrate the individual steps of the experimental procedure in the
following sections 3.2.5.1 to 3.2.5.3.

3.2.5.1 Step 1: Cell preparation, stimulation, and lysis

1a) Seeding and growing of cells in multiple wells (splitting)
For each intended time point, a Petri dish with an (ideally fixed) amount of HaCaT cells
gets prepared and incubated with a nutrient solution until confluency(12) is reached.
Before stimulation, the nutrient solution is removed and replaced by a starvation medium
in order to synchronize cell cycles and to cease active intracellular signalling pathways.

t=0min t=5min t=10min t=15min t=20min t=25min t=30min t=45min t=60min t=90min t=120min 

(11)In the 1970s, Sir Edwin Mellor SOUTHERN developed a method for analysing DNA by separation according
to molecule size and transfer to a membrane (Edwin M. Southern: “Detection of specific sequences among
DNA fragments separated by gel electrophoresis”. J. Mol. Biol. 98 (Nov. 1975), pp. 503–517). The technique
was finally named after its inventor. In allusion to the remaining geographical directions, technically similar
RNA and protein detection techniques have been given the names of Northern and Western blotting. The
term Eastern blotting is not consistently used but refers to similar techniques.

(12)Confluency is the state when the dish surface is completely covered by a single layer of cells.
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1b) Stimulation
Stimulation is performed by substituting the starvation medium by a conditioned medium
containing the cytokines (IL-6 or GM-CSF) in each dish. At least one dish containing
unstimulated cells serves as control and reference.

t=0min t=5min t=10min t=15min t=20min t=25min t=30min t=45min t=60min t=90min t=120min 

1c) Harvesting the cells and
subsequent lysis
After certain periods of time (time
points 5, 10, 15, 20, 25, 30, 45, 60,
90, and 120 minutes are chosen ac-
cording to expert knowledge) the
cells of each plate are washed to re-
move the stimulating agent and put
on ice to stop ongoing interactions.
Cell lysates are then centrifuged for
separating the cytoplasmic fraction
from the more heavy-weight cell
parts like the nuclei, and the super-
natant is collected.

+ 

3.2.5.2 Step 2: Immunoprecipitation and gel electrophoresis

2a) Immunoprecipitation to con-
centrate proteins of interest
To separate the proteins of in-
terest from other substances (pu-
rification), specific antibodies are
added to the supernatant. The re-
sulting antibody-antigen complexes
bind to admixed insoluble beads of
agarose or sepharose in the microm-
eter range and can be extracted by
centrifugation (purification by im-
munoprecipitation). Further treat-
ment removes the beads, short term
boiling results in protein denatura-
tion.
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2b) Adding recombinant proteins
for calibration (optional)

Further, specially labelled (e.g. GST-
marked) recombinant proteins may be added
to serve as an internal standard. The idea
behind the addition of a recombinant protein
is to make the processing error trackable.
The recombinant proteins undergo all sub-
sequent processes identically as the proteins
of interest. Since the concentration of the
recombinant proteins is known, their fluctu-
ations can be used for correcting processing
errors. See section 3.5.2 for possible issues
in this approach.

2c) Loading of gels with identical amount of proteins, electrophoresis
The concentrated proteins are loaded onto different lanes of an SDS-polyacrylamide
electrophoresis gel (SDS-PAGE(13)) in an arbitrary order. The random placement breaks
the error correlation between neighbouring time points, such that errors in the gel do
not transfer in a correlated way to the signal (figure 3.7 on page 54).

+ 

– 

The gel is placed into a cooling bath, and an electrical current is applied for a couple
of hours (figure 3.6 on page 53). The negatively charged SDS linearizes and envelopes
the denatured proteins, allowing them to move through the gel, finally resulting in a
separation by molecule weight, since larger molecules move slower as they are retained
by the gel. Different electrical charges of the individual proteins are balanced by the
highly negatively charged SDS.

(13)Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis
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3.2.5.3 Step 3: Immunoblotting, immunolabelling and evaluation

3a) Immunoblotting to membrane

To extract the proteins, the gel
is positioned upon a nitrocellulose
membrane and a second, now per-
pendicular electrical current is ap-
plied, in which the proteins move
directed to the anode. After this
process, called blotting, the mem-
brane surface contains a flat image
of the former protein distribution in
the gel.

+ 

– 

3b) Application of primary and secondary antibodies (immunolabelling)
The membrane is incubated with specific primary antibodies that exclusively bind to
their target proteins. By washing the membrane, excess unbound antibodies are re-
moved. A secondary antibody, which binds exclusively to the primary one, is added for
detection of the target protein. The secondary antibody can be labelled by radioactive
substances or chemiluminescent markers, as in the experiments in our case. The emitted
light can be detected by photographic films or (semi-)automated machines like LumiIm-
ager(14).

(14)Roche Applied Science, Mannheim
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3c) Manual or automated evaluation (e.g. LumiImager, ImageJ)
Light intensity is (over a certain range) proportional to protein amount, but the propor-
tionality constant depends on gel, antibodies, and overall experimental procedure, and
is therefore unknown. Thus, data originating from different gels cannot be compared
without further processing, see section 3.5 for details.

To detect a second, different protein that is also present on the same gel, e.g. the GST-
labelled recombinant proteins manually added before immunoprecipitation, the antibodies can
be removed from membrane by incubation with a stripping buffer solution (consisting, e.g., of
Tris-HCl, SDS and β-mercaptoethanol, the latter detaches the antibodies). After stripping,
the membrane can be reprobed with different primary and secondary antibodies.

Further processing of measurement data is described in section 3.5.

+ 

- 
anode 

cathode 

running gel 

stacker gel 

sample probes 

isolating frames 

buffer solution 

buffer solution 

proteins 
heavy-weight 

low-weight 

Figure 3.6: Sketch of gel eletrophoresis. The running gel (blue) is framed between two isolating plas-
tic planes. Sample probes are put into the pockets of the stacker gel atop the running gel. The whole
frame is put into a buffer solution, and an electrical current is applied between anode and cathode. The
buffer solution ensures linearization and electrical neutrality of the sample proteins, which then can move
through the gel pores in the electrical field and are thus separated according to their molecular size. For
constant temperatures, the buffer solution may be externally cooled.
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Figure 3.7: Randomization breaks time correlation in errors. Without randomized sample placement,
gel defects (e.g. entrapped air) may induce a time correlated error, mimicking an actual signal (left). Ran-
domization breaks error correlation. (illustrative graphic)
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3.3 Experimental settings and raw measurement data

Table 3.2: Abbreviations of experimental settings.

Experimental Setting Abbreviation

(∗)Stimulation with IL-6 IL6+
(∗)Stimulation with IL-6 while blocking GM-CSF IL6+/GMCSF–

(∗∗)Stimulation with both IL-6 and GM-CSF IL6+/GMCSF+
Unstimulated unstim

(∗) stimulation setting chosen by expert biologists

(∗∗) co-stimulation setting proposed by the author

3.3 Experimental settings and raw measurement data

The proliferation experiments described in section 3.2.4 indicate an intracellular connection
between IL-6 and GM-CSF signalling pathways. In the first proliferation assay, the two IL-6
stimulation experiments draw special attention to themselves.

On the one hand, HaCaT keratinocytes have been stimulated with IL-6 solely; on the
other hand, stimulated with IL-6 while blocking GM-CSF with appropriate antibodies at
the same time. All other experimental parameters have been kept fixed. The observation
that the proliferation rate of the solely IL-6 stimulated cells was significantly higher than the
unstimulated control is not surprising, as IL-6 is known as a proliferative factor for many years.

Cells that have been stimulated with IL-6 with simultaneous blockade of GM-CSF, how-
ever, still show an increased growth compared to control, but, interestingly, reveal a signifi-
cantly lower proliferation compared to sole IL-6 stimulation.

This strongly suggests a crosstalk of the involved intracellular signalling pathways.

To systematically explore the interactions of IL-6 and GM-CSF signalling pathways in HaCaT
keratinocytes, the JAK-STAT pathway is a good candidate as it is shared by the signalling of
both cytokines. Especially the IL-6-induced STAT-3 activation has been shown to be positively
correlated to proliferation of HaCaT keratinocytes, and an inhibition of this signalling molecule
also inhibits cell proliferation [Nici2014].

As the proliferation assay shows the pro-proliferative effects of GM-CSF on HaCaT cells,
the author suggested to include a fourth experimental setting, in which the keratinocytes are
stimulated with both IL-6 and GM-CSF.

Simplifying the referencing, we introduce the following abbreviations for the four investi-
gated experimental settings:

• IL6+ for sole IL-6 stimulation,

• IL6+/GMCSF– for IL-6 stimulation with simultaneous blockade of GM-CSF

• IL6+/GMCSF+ for co-stimulation with both factors IL-6 and GM-CSF

• unstim for non-stimulated control experiments.

Table 3.2 summarizes these scenarios.
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3.3.1 Description of experimental procedure

Due to laboratory restrictions, no more than 11 samples can be blotted on the same gel.
The time points have been chosen by expert knowledge, close-meshed at the first half of the
observed time span of two hours. Samples are probed after 0, 5, 10, 15, 20, 25, 30, 45, 60, 90,
120 minutes.

For each time point, well plates with approximately 2 million cells are prepared and starved
for 24 hours to cease down proliferation and to synchronize cell cycle.

At the beginning of each time series, the starvation medium is removed and – with ex-
ception of the unstimulated control sample for t = 0min and the unstim setting – replaced
with a stimulation medium containing either IL-6 (experiment IL6+), IL-6 and a GM-CSF
blocking antibody (experiment IL6+/GMCSF–), or both IL-6 and GM-CSF (experiment
IL6+/GMCSF+).

At the respective time points, the stimulation medium is removed, the reaction is stopped,
and cells are lysed, centrifuged and the supernatant (containing the cytoplasmic fraction) is
kept on ice for further processing.

After samples for all time points have been taken, STAT-3 proteins are purified and de-
tected as described in section 3.2.5.

The four experiments are repeated in triplicates, yielding 131 values of raw data(15).

3.3.2 Raw measurement data

Table 3.3 lists the raw data obtained by quantitative immunoblotting upon the four different
experimental settings. The raw BLU data is illustrated in figure 3.8 on page 58.

Since the BLU measurement values are given in relative units that are incomparable be-
tween different experiments, they allow only a qualitative interpretation. In all three stimula-
tion experiments (IL6+, IL6+/GMCSF+, IL6+/GMCSF–, figure 3.8, rows 1–3), a steep rise
in cytoplasmic pSTAT-3 levels after stimulation can be observed, reaching a peak after 15–30
minutes, and subsequently monotonously declining to basal levels at around 90–120 minutes
after stimulation.

In unstimulated cells (unstim, figure 3.8, last row), a stable level of pSTAT-3 is detected
in the cytosol.

For further analysis, these raw measurements were processed as described in section 3.5.

(15) The 120-minutes data point in the first unstim replicate has not been taken (see table 3.3d), thus there are
131 = 3 · 11 · 4− 1 data points.
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Table 3.3: Time course data of pSTAT-3 upon four different stimulation settings. Measure-
ment values are in relative units (BLU), thus neither comparable between experiments nor between repli-
cates without further processing (see section 3.5). Times are given in minutes after stimulation. In 3.3d,
rep #1, there was no sample taken at time point 120.
mean: arithmetic mean value · sd: sample standard deviation (with BESSEL’s correction to ensure unbi-
ased sample variance) · cv: coefficient of variation

Time rep #1 rep #2 rep #3
0 25736 28128 87794
5 243000 348000 1060000

10 759000 1030000 2910000
15 839000 1160000 2100000
20 1190000 875000 3080000
25 1370000 1110000 4190000
30 1370000 716000 3690000
45 805000 545000 2360000
60 464000 352000 1780000
90 89580 104000 416000

120 31718 76681 131000
mean 653367 576801 1982254

sd 518285 426229 1427361
cv 0.7933 0.7390 0.7201

(a) Time course of pSTAT-3 upon
stimulation with IL-6

IL6+

Time rep #1 rep #2 rep #3
0 9315 380000 5200000
5 66842 1210000 10500000

10 75450 2500000 6670000
15 112000 4770000 63700000
20 156000 7010000 26000000
25 176000 6520000 85300000
30 148000 4220000 33200000
45 71949 2000000 20300000
60 23389 1430000 13300000
90 31244 210000 8450000

120 14696 45387 5410000
mean 80444 2754126 25275455

sd 59782 2504477 26374448
cv 0.7432 0.9094 1.0435

(b) Time course of pSTAT-3 upon
stimulation with IL-6 and GM-CSF

IL6+/GMCSF+

Time rep #1 rep #2 rep #3
0 440000 9670000 218000
5 1840000 40900000 106000

10 3610000 46200000 1290000
15 4410000 57700000 2840000
20 4350000 40000000 1160000
25 5780000 49600000 2300000
30 4590000 54900000 4700000
45 4550000 54900000 1530000
60 2120000 48200000 345000
90 1630000 15800000 109000

120 488000 20000000 52693
mean 3073455 39806364 1331881

sd 1834203 16914776 1465458
cv 0.5968 0.4249 1.1003

(c) Time course of pSTAT-3 upon
stimulation with IL-6 while blocking GM-CSF

IL6+/GMCSF–

Time rep #1 rep #2 rep #3
0 165000 11400000 5130000
5 164000 10400000 4120000

10 137000 11300000 6910000
15 199000 13000000 5210000
20 183000 8670000 6830000
25 219000 14300000 7100000
30 194000 13300000 5110000
45 185000 10600000 8500000
60 216000 11100000 5590000
90 175000 10100000 5270000

120 – 10200000 4890000
mean 183700 11306364 5878182

sd 25002 1637268 1282746
cv 0.1361 0.1448 0.2182

(d) Time course of pSTAT-3
in unstimulated cells

unstim
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Figure 3.8: BLU data of cytosolic pSTAT-3 measurements in four experimental settings. De-
picted here are the linearly interpolated raw BLU values of cytosolic pSTAT-3, which show similar qual-
itative behaviour in all three stimulation experiments (IL6+, IL6+/GMCSF+, and IL6+/GMCSF–), but
cannot be compared quantitatively without further processing (see section 3.5). In the unstimulated con-
trol experiments (unstim, bottom row), the basal level of cytosolic pSTAT-3 shows only small fluctuations.
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3.4 Theoretical preliminaries for immunoblot data analysis

3.4.1 Approximability of a ratio of normal variables by a normal distribution

MARSAGLIA, in his paper from 1965 [Marsaglia1965] and the follow-up paper 40 years later
[Marsaglia2006], investigates the distribution of the ratio of normal variables, as stated in the
paper titles. He develops the density function of such ratios, and gives theoretical and numer-
ical evidence for when approximation of these ratios by a normal distribution is appropriate.

We carve out some parts that we need to analyse the data obtained in the experiments
described in section 3.2.5.

The main idea is to transform a ratio of any jointly distributed normal variates W and
Z, possibly correlated, into a standard form (a+X)/(b+ Y ) with (non-negative) translations
a, b and two independent standard normally distributed random variables X,Y .

3.1 Proposition (Transformation into standard form (a+X)/(b+ Y ))
Let Z ∼ N

(
µZ , σ

2
Z

)
, W ∼ N

(
µW , σ

2
W

)
be two jointly distributed normal variables, and let

denote ρ := Cov[Z,W ]/(σZσW ) their correlation coefficient. Let further be X,Y ∼ N
(
0, 1
)

two independent standard normally distributed random variables, and choose

r :=
σW

kσZ
√

1− ρ2
, s := ρ

σZ
σW

, a :=

µZ
σZ
− ρµWσW

k
√

1− ρ2
, b :=

µW
σW

, k ∈ {−1, 1}

where k shall be chosen to guarantee sign(a) = sign(b).

Then, it holds:

1. Z − sW and W are independent normal variables

2. Var[Z − sW ] = σ2
Z(1− ρ2)

3.
Z

W
∼ 1

r

(
a+X

b+ Y

)
+ s and r(

Z

W
− s) = r

Z − sW
W

∼ a+X

b+ Y

Remark: Since the distributions of (a+X)/(b+ Y ) and (−a+X)/(−b+ Y ) are the same,
we can postulate the non-negativity of translation constants a and b.

Proof:
1. It holds: IE[(Z − sW )W ] = IE[ZW ]− sIE

[
W 2
]

= IE[Z]IE[W ] + Cov[Z,W ]− ρ σZ
σW

(
IE[W ]2 + Var[W ]

)

= µZµW + Cov[Z,W ]− Cov[Z,W ]

σ2
W

(
µ2
W + σ2

W

)

= µZµW − Cov[Z,W ]
µ2
W

σ2
W

= µZµW − ρ
σZ
σW

µ2
W

= IE[Z]IE[W ]− sIE[W ]2 = IE[Z − sW ]IE[W ]

2. Using the bilinearity of covariance and the definitions of ρ and s, we get

Var[Z − sW ] = Var[Z] + Var[−sW ] + 2 · Cov[Z,−sW ]

= σ2
Z + s2σ2

W − 2s · Cov[Z,W ] = σ2
Z(1− ρ2).
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3. We prove the second statement, as the first immediately follows. The numerator of
r is the standard deviation of W , and the denominator is the standard deviation of
Z − sW (except for the sign k). Thus, multiplying (Z − sW )

/
W by r results in a

random variable (Z − sW )
/(
kσZ

√
1− ρ2

)
∼ N

(
a, 1
)

in the numerator, as its mean is

IE[Z − sW ]
/(
kσZ

√
1− ρ2

)
=
(
µZ − µWρσZ

/
σW
)/(

kσZ
√

1− ρ2
)

= a. Further, we have
a random variable W

/
σW ∼ N

(
b, 1
)

in the denominator. Centering the random variables
in numerator and denominator completes the proof.

�

In his 2006 paper, MARSAGLIA investigates for which values of a and b the standard form
ratio T := (a+X)

/
(b+ Y ) can be approximated by a normal distribution. The resulting

distribution T does not possess any moments (as the respective integrals do not exist), never-
theless, for certain values of a and b, mean and standard deviation of an approximating normal
distribution can be computed.

3.2 Lemma
Let a, b be non-negative real numbers, and X,Y ∼ N

(
0, 1
)

two independent standard normally
distributed random variables, and T := (a+X)

/
(b+ Y ). Then, it holds:

1. The probability density of T is given as

fT (t) =
e−

1
2

(a2+b2)

π(1 + t2)

[
1 + qe

1
2
q2 ·
∫ q

0
e−

1
2
x2 dx

]
, q :=

b+ at√
1 + t2

. (3.1)

It is thus a convex combination

fT (t) = kf1(t) + (1− k)f2(t), with k := e−
1
2

(a2+b2)

of the unimodal CAUCHY density f1 and a bimodal density f2

f1(t) =
1

π(1 + t2)
, f2(t) =

q
∫ q

0 e
− 1

2
(x2−q2) dx

π(1 + t2) + (e
1
2

(a2+b2) − 1)
.

2. For a < 2.25 and b > 4, the distribution of T can be well approximated by a normal
distribution with mean value µ and variance σ2 given as

µ =
a

(1.01b− 0.2713)

σ2 = (a2 + 1)
/

(b2 + 0.108b− 3.795)− µ2
(3.2)

Proof (sketch):

1. Expressions for the cumulative distribution function F (t) = P (T < t) can be derived
using the bivariate normal distribution function L(h, k, ρ) = P [ξ ≥ h, η ≥ k] with stan-
dard normal variables ξ and η with Cov[ξ, η] = ρ and connective properties of L and
NICHOLSON’s V function V (h, q) =

∫ h
0

∫ qx/h
0 ϕ(x)ϕ(y) dy dx, with ϕ denoting the den-

sity of the normal distribution. Having the CDF F (t) of T , the density function fT (t) is
found by differentiation.
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2. The density fT (t) of T is a mixture of the unimodal CAUCHY density f1(t) =
(
π(1 + t2)

)−1

that is independent of a and b, and a second, bimodal density f2(t). For values of a ≤ 1,
the resulting density is always unimodal. When the asymptotic value ã ≈ 2.256058904
is exceeded, the resulting density is always bimodal. For values a ∈ (1, ã), the shape of
the density depends on b. There is a separating curve in the a-b-plane that is implicitly

given by d2f(t)
dt2

= df(t)
dt = 0. Points (a, b) lying left of this curve result in a unimodal,

points lying right of it in a bimodal density, though in many bimodal cases, the second
mode can be considered negligible for many practical settings. Figure 3.9 displays an
approximation on this separating curve.
Conditioning the denominator of T = (a+X)

/
(b+ Y ) by Y > −4 (this holds with a

probability greater than 99.9968%) ensures that all (conditioned) moments IE
[
T i
∣∣Y > −4

]

= IE
[
(a+X)i

∣∣Y > −4
]
· IE
[
1/(b+ Y )i

∣∣Y > −4
]

(X,Y independent) exist.
Using IE[A|B] = IE[1BA]

/
P (B), the conditional expectation (definition and lemma 4.13)

in the denominator can be computed as

IE
[
1/(b+ Y )i

∣∣Y > −4
]

=

∫∞
−4 ϕ(y)/(b+ y)i dy∫∞

−4 ϕ(y) dy
.

The formulas are derived by fitting curves to point evaluations of the first two conditioned
moments IE

[
1/(b+ Y )i

∣∣Y > −4
]

(i = 1, 2) at certain values of b.

For a full proof, we refer to [Marsaglia1965] and [Marsaglia2006], where also a numerically
obtained approximation of the uni-/bimodal separating curve is given. �

Figure 3.9: Curve separating between uni- and bimodal density of T = (a+X)/(b+ Y ). For
coordinates (a, b) to the left of the curve, the ratio distribution density of T is unimodal; for coordinates
lying right of the curve, it is bimodal. The separating curve is characterized by f ′′(t) = f ′(t) = 0. This
figure adapted from [Marsaglia2006] shows the numerical approximation for the separating curve given

therein: b(a) = 18.621−63.411a+84.041a2−54.668a3+17.716a4−2.2986a5
2.256058904−a . For picture credits see page 240.
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Figure 3.10: Densities of T = (a+X)/(b+ Y ) for distinct values of a and b. X and Y are inde-
pendent, standard normal variates. The density function of T is given in eq. (3.1). Values of a cover the
range of 0 to the asymptotic value ≈ 2.25, where unimodal distributions are possible. Values of b where
chosen to sample the interval [0, 4], with 4 being the lower bound for approximability of the ratio T by
a normal distribution. The depicted densities represent the possible shapes of the density function of the
ratio T . Figure adapted from [Marsaglia1965], see page 240 for picture credits.
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3.5.1 Semiquantitative immunoblotting

Since the development of the DNA blots by SOUTHERN more than 40 years ago, blotting meth-
ods have developed from qualitative to quantitative methods. Chemiluminescence detection by
charge-coupled devices strongly increased sensitivity and linear range compared to x-ray films
[Martin1994]. However, the resulting light units(16) are still a relative measure, that depends
on parameters like the electrophoresis gel, used antibodies, etc., and cannot directly be related
to absolute concentrations. As a consequence, data from different blots cannot be compared
without further processing(17).

The most obvious remedy is to add a dilution series of the protein of interest (or a recom-
binant analogon) on the gel. However, space in gels is restricted, sometimes to only 7 or 11
lanes, rendering this strategy inappropriate for time course studies.

In-place signal normalization and calibration techniques have been proposed [Schilling2005;
Schilling2005a], where housekeeping or manually added (recombinant) proteins are used for
signal normalization and correction. The idea is, that the added proteins undergo the same
processing in gel electrophoresis, blotting and detection such that their signal will reflect the
processing errors as their concentration is assumed constant. However, for these types of nor-
malization techniques, a very stable reference normalizer or calibrator signal is required, and
they may introduce strong artificial artefacts as we work out in section 3.5.3. Moreover,
they tend to change the underlying error model in an disadvantageous way.

We propose to use a quite simplistic technique called amplification factors method
(section 3.5.4) that calculates the x-fold increase in signal strength compared to a single(!)
reference point. Under only weak requirements, which are often fulfilled and – important for
wet lab experiments – easy to verify, this method delivers stable and reproducible results.

3.5.2 Analysis of WESTERN blotting data

Let nM be the number of measurement time points, and nrep the number of experiment
replicates(18). For the analysis, we assume that the cellular concentrations ν̂i only depend on
time ti (i = 1, ..., nM ) and are equal for all replicates j (j = 1, ..., nrep), i.e. that the cells always
behave identically upon stimulation and observed fluctuations are only due to measurement
errors(19).

Let η
(j)
i = η̂

(j)
i + ε

(j)
i be the measurement value in relative light units, taken by quantitative

immunoblotting, corresponding to time ti at the j-th replicate. Here, η̂
(j)
i = c(j)ν̂i denotes the

hypothetical true (but inaccessible) measurement value at time point ti, and c(j) is the unknown
blot/antibody-dependent proportionality constant for the true concentration ν̂i.

(16)Often called BLU, Boehringer Light Units, named after a provider of commercial solutions. Nowadays, the
abbreviation is more frequently read as Bioluminescence Light Unit, or the acronym RLU (Relative Light
Unit) is used.

(17)The Isogen Life Science company, a Dutch supplier of bio labs, warns in its documentation: “Compare within
the same blot. Due to transfer and handling differences, only compare proteins on the same blot and not
between blots.” Isogen Life Science: Important Factors in Performing Quantitative Western Blots. Nov. 2013.
url: http://www.isogen-lifescience.com/blotting/western-blotting-documentation/important-
factors-in-performing-quantitative-western-blots (visited on 08/08/2016)

(18)A replicate is an identical experiment blotted using a different gel.
(19)While the assumption of deterministic behaviour is questionable for a single cell, it is justified for the popu-

lation mean that is observed in the described experiments.
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The error in the measurements is modelled as an additive(20) normally distributed random

variable ε
(j)
i ∼ N

(
0, (σ

(j)
i )2

)
. In the following two sections 3.5.3 and 3.5.4, we analyse and

discuss two techniques for processing the raw measurement data.

3.5.3 Normalization using house-keeping or recombinant proteins (calibrators)

House-keeping proteins are believed to be expressed at a constant level and are therefore
often used for normalization and error correction, as they undergo identical experimental
processing(21).

The usage of antibodies with a weaker affinity to the protein of interest might result in
a high background signal, due to cross reactions to the epitopes of other proteins. The same
problems occur if no specific antibody is available, or when using generic phosphotyrosine
antibodies. These are cases, where proteins cannot be quantified by immunoblotting directly,
thus requiring a purification of the protein of interest by immunoprecipitation in advance (see
section 3.2.5.2).

Since house-keeping proteins like GAPDH(22) or β-actin(23) are lost during this purification
step, recombinant proteins are manually added prior to immunoprecipitation and later used
as normalizers.

A recombinant protein is an artificially produced variant of the target protein, with a
slightly different molecular weight but sharing the same epitopes. Thus they (are believed
to) behave identically and their error will reflect the processing error. As their concentration
is known, their deviation from a constant signal can be used to correct the signal of inter-
est. Normalization strategies using recombinant proteins are described e.g. in [Schilling2005;
Schilling2005a].

As we will see, however, this method may also lead to spurious outcomes, if the calibrator
signal is too noisy ([Schilling2005a] also discusses this case). Further, it changes the statistics
of the data as it involves the calculation of a ratio of two random variables.

3.5.3.1 Normalization affects error distribution

We start with a theoretical analysis by having a look at the distribution of data normalized
by this method. This applies to both using house-keeping or recombinant proteins.

Again, we write η
(j)
i for the i-th measurement on blot/membrane j of the signal of interest,

and denote by η
(j)
i,norm the respective measurement value of the normalizer in the same lane.

A signal measurement η
(j)
i is thus normalized as

η̃ji :=
η

(j)
i

η̃ji
=

η̂
(j)
i + ε

(j)
i

η̂
(j)
i,norm + ε

(j)
i,norm

, (3.3)

i.e. the normalized measurements η̃ji are indeed ratios of normal variates.

(20)By allowing the variances σ
(j)
i to depend on the time index i, also normally distributed multiplicative noise is

covered with this formulation, since η = aη̂, a ∼ N
(
1, σ2

)
can be written as η = aη̂ = (1+ε)η̂ = η̂+εη̂ = η̂+ε̂

with ε̂ ∼ N
(
0, η̂2σ2

)
(21)This assumption is only partly valid: The processing differs in general at least at the detection step, as

different primary antibodies are used
(22)Glyceraldehyde 3-phosphate dehydrogenase, an enzyme facilitating the break down of glucose in glycolysis
(23)Multifunctional protein forming microfilaments
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In section 3.4.1, we gave criteria to check whether these ratios can be reasonably approx-

imated by a normal distribution. Since the measurements of the signal η
(j)
i differ in time and

blot, it is impossible to estimate their moments unless one is willing to put several probes of
the same time point ti on the same blot j, that would rather not be practically performed(24).
Due to this, a direct examination of the ratio in eq. (3.3) cannot be done in general.

For a negative result concerning MARSAGLIA’s findings about approximability by a normal
distribution, it is sufficient to have information about the normalizer. As its concentration is
assumed constant (house-keeping or manually added), their signal is expected to be constant

per blot/membrane, and we can use the nM measurements η
(j)
i,norm(i = 1, ..., nM ) of the nor-

malizer signal and approximate the true normalizer signal on blot/membrane j by their mean
value:

η̂(j)
norm ≈ η(j)

norm
:=

1

nM

nM∑

i=1

η
(j)
i,norm approximation of true normalizer signal

and we might further get estimates of their variance and standard deviation.

For analysing the statistics of normalized measurements, we use the notation of sec-
tion 3.4.1, keeping both time-point-index i and blot-index j fixed, and set:

Z := η
(j)
i = η̂

(j)
i + ε

(j)
i signal with error

W := η
(j)
i,norm = η̂

(j)
i,norm + ε

(j)
i,norm normalizer with error

µZ mean of η
(j)
i , not accessible

σZ standard deviation of η
(j)
i , not accessible

µW := η̂(j)
norm mean value of normalizer

σW := σ(j)
norm standard deviation of normalizer

such that η̃ji =
η
(j)
i

η
(j)
i,norm

= Z
W .

Since signal of interest and normalizer are assumed uncorrelated in our case, the equations
for the constants a and b in proposition 3.1 reduce to

a :=
µZ
σZ

=
1

CVZ
and b :=

µW
σW

=
1

CVW
,

where CVZ and CVW again denote the coefficients of variation of the signal Z and the normal-
izer W respectively. From the conditions given by lemma 3.2 for approximability by a normal
distribution,

a < 2.25 and b > 4

we get the following condition on the coefficient of variation of the normalizer:

4 < b =
1

CVW
=⇒ CVW <

1

4
, (3.4)

thus requiring a “reasonably stable” normalizer signal.

(24)This would require the availability of large (and therefore expensive) electrophoresis gels. Even if these are
available, one would rather use the extra space for a finer time resolution or simultaneous evaluation of
multiple replicates instead of resampling probes of the same lysate on several lanes of the gel. Also, in cases
where the amount of protein to be quantified is very limited, there might be just enough protein available
for a single probe.
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Table 3.4: Measurements of recombinant STAT-3 have been performed in six experiments (see ta-
ble A.1). With the exception of #7, none of the measurement series fulfills the sufficient condition for
approximability by a normal distribution given in eq. (3.4).
Data origin: A, B, C: IL6+ · D, E: IL6+/GMCSF– · F: IL6+/GMCSF+ · G: unstim
mean: arithmetic mean value · sd: sample standard deviation (with BESSEL’s correction to ensure unbi-
ased sample variance) · cv: coefficient of variation

Measurements of recombinant STAT-3
time A B C D E F G

0 16278 68696 210000 438000 593000 331000 571000
5 52645 33238 455000 252000 1260000 430000 332000

10 58513 39359 431000 380000 879000 244000 495000
15 45761 64062 388000 288000 402000 207000 487000
20 29875 41054 234000 436000 1000000 390000 562000
25 34018 56970 292000 277000 908000 479000 436000
30 26978 17466 241000 164000 179000 438000 486000
45 20286 78551 177000 403000 700000 379000 764000
60 30328 40846 257000 289000 1580000 190000 517000
90 18766 68145 270000 359000 533000 424000 524000

120 13963 86380 173000 108000 871000 308000 517400

mean 31583 54070 284364 308545 809545 347273 517400
sd 14960 21209 98106 107557 393716 99010 104465
cv 0.4737 0.3922 0.3450 0.3486 0.4863 0.2851 0.2019

On the other hand, if the condition b > 4 is not fulfilled, from figure 3.10, one may
conclude by visual inspection of the densities of the ratio T = Z/W that small values of a
might still lead to approximability by a normal distribution. However, requesting small values
of a = CV −1

Z is equivalent to requiring a large coefficient of variation CVZ of the signal itself
– a condition that is most objectionable. A further theoretical investigation in the case b < 4
about approximability of T by a normal distribution is therefore dispensable for our purposes.

Table 3.4 lists the measurements of recombinant STAT-3 protein that was manually added
in fixed and known concentration to serve as normalizer. With coefficients of variations of 0.47,
0.39, 0.35, 0.35, 0.49, 0.29, and 0.20, all but the last one clearly exceed the limit of CVW < 1/4.

Moreover, since the distribution of the normalized data T = Z/W is quite awkward and
may even be bimodal, it is hard to derive an objective function that ensures a maximum
likelihood estimation of the unknowns.

3.5.3.2 Normalization may lead to spurious signals

While the mentioned results of non-approximability by a normal distribution are of rather
theoretical nature, figure 3.11 shows the possible practical distortive effects of normalization,
as they were observed while using recombinant STAT-3 proteins as normalizer.

The first column of figure 3.11 depicts the phospho-STAT-3 measurements upon different
IL-6 stimulation settings. The second columns shows the normalized signal, where the recom-
binant proteins were used to “correct” the phospho-STAT-3 measurements. In both columns,
the measurements are given relative to time point 0 (x-fold amplification), and the axes were
chosen to be equal. The signal of the normalizer (recombinant STAT-3 protein, in BLU) is
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Figure 3.11: Possible destructive effects of normalization. Linearly interpolated measurements of
phospho-STAT-3 signal (1st column), the normalized signal (2nd column) the reciprocal of the normalizer
(3rd column) and the normalizer itself (4th column). For the first and second column, amplification fac-
tors relative to time point 0 are depicted (column 2: after normalization). Units in columns 3 and 4 are
BLU−1 and BLU, respectively.
In red: The normalized signal is clearly shaped by the normalizer. Further, the normalization by recom-
binant STAT-3 might lead to tremendous differences in maximum amplification factors (peak levels in
columns 1 and 2). Data: A, B, C: IL6+ · D, E: IL6+/GMCSF– · F: IL6+/GMCSF+
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given in the last column. Ideally, a straight line of a constant value would be obtained, as
the recombinant protein is added in identical amounts to each probe. The third column is the
reciprocal of the normalizer (in BLU−1).

The red coloured graphs document the spurious signals introduced by this normal-
ization technique. The phospho-STAT-3 signals in B, D, and E are heavily distorted by
normalization, and are clearly shaped by the normalizer signal. In E, the shape of the normal-
ized signal is virtually identical to the reciprocal of the normalizer, i.e. we would get highly
similar kinetics even if we totally neglect the phospho-STAT-3 measurements!

Moreover, as one sees by comparing first to second column, the normalization drastically
affects the maximum amplification factors. The settings A, B, and C are the three replicates
of sole IL-6 stimulation, setting IL6+, and all three replicates show a maximum amplification
factor between 41 and 53-fold, whereas the maximum amplification factors of their normalized
counterparts vary between 32 and 100-fold.

Only in 2 out of these 6 experiments, in C and in F, the normalization did neither destroy
the signal’s shape nor had severe distortive effects on the signal levels.

Due to these disappointing results, the recombinant STAT-3 proteins were not further
used in the remaining experiments.

3.5.3.3 Leaving the linear range: saturation effects
What has not been discussed so far is the problem of saturation when using house-keeping
proteins as normalizers. Often, the target proteins are available in low concentration only.
In this case, the experimental layout is constructed in a way to have these low concentrated
proteins lying in the linear range of detection.

However, as most house-keeping proteins are quite abundant, their signal might leave the
linear range, as saturation effects occur. While it might be, in theory, possible to cope with
this by including MICHAELIS-MENTEN-like kinetics in the normalization procedure, this is
practically not accomplishable.

3.3 Conclusion
Normalization using house-keeping or recombinant proteins changes the error statis-
tics and may introduce spurious signals. Furthermore, saturation effects may result in
leaving the linear range of detection.

3.5.4 Amplification factors method

We write

m̂i =
η̂

(j)
i

η̂
(j)
0

=
ν̂i
ν̂0

(∀j)

for the unknown true amplification factors, which we approximate on a per-blot basis from
measurement data. We mark a reference measurement by an index of 0 (e.g. corresponding to
the measurement at the initial time point t0), and the approximation of m̂i on the j-th blot is
given by

m
(j)
i =

η
(j)
i

η
(j)
0

=
η̂

(j)
i + ε

(j)
i

η̂
(j)
0 + ε

(j)
0

= m̂i ·
η̂

(j)
0

η̂
(j)
0 + ε

(j)
0

+
ε

(j)
i

η̂
(j)
0 + ε

(j)
0

, (3.5)
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where we have a multiplicative bias εm and an additive error εa

εm(j) := η̂
(j)
0

/(
η̂

(j)
0 + ε

(j)
0

)
(3.6)

εa(i, j) := ε
(j)
i

/(
η̂

(j)
0 + ε

(j)
0

)
(3.7)

The multiplicative bias εm is a per-blot property, and only depends on the measurements
of the reference point, but not on other time points, whereas the additive error εa changes by
blot and time point. Both quantities are ratios of normally distributed variables.

We first analyse the additive error εa, using the measurements of cytosolic pSTAT-3 in
unstimulated cells (table 3.3d), as these don’t manifest any biological dynamic. For data gen-
erated from blot j for a time point i, using the same notation as in section 3.4.1, and assuming
that correlation of measurement errors has been avoided by randomization (section 3.2.5.2),
we have:

Z

W
:=

ε
(j)
i

η̂
(j)
0 + ε

(j)
0

, µZ = 0, µW = η̂
(j)
0 , σZ = σ

(j)
i , σW = σ

(j)
0 , ρ = 0. (3.8)

The exact values of µW , σW , and σZ are not available; the best we can do is to estimate
them using the arithmetic mean and sample standard deviation (with BESSEL’s correction
applied to ensure unbiased sample variance). Omitting the index j denoting the replicate, we
define for a fixed blot j:

µW :=
1

nM

nM∑

i=1

ηi, σW :=

√√√√ 1

(nM − 1)

nM∑

i=1

(ηi − µW )2, σZ :=

√√√√ 1

(nM − 1)

nM∑

i=1

η2
i (3.9)

approximating µW ≈ µW , σW ≈ σW , σZ ≈ σZ .

Using the unstimulated pSTAT-3 data, we further get:

r = rji :=
σW

σZ
√

(1− ρ2)
=
σ

(j)
0

σ
(j)
i

(varying for time indices i and blots j)

s = sji := ρ
σZ
σW

(fix for all time indices i and blots j)

a = aji :=
µZ − sµW
σZ
√

1− ρ2
(fix for all time indices i and blots j)

b = bji :=
µW
σW

=
η̂

(j)
0

σ
(j)
0

≈ µW
σW

(varying only for blots j)

The shape determining translation constants a and b are independent of the time indices
i, and fixed per blot j. Using the BLU measurement values of the unstim experiment from
table 3.3d, we get:

a(1) = 0, a(2) = 0, a(3) = 0

b(1) ≈ 7.35, b(2) ≈ 6.91, b(3) ≈ 4.58
(3.10)
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(a) a(1) = 0, b(1) ≈ 7.35 (b) a(2) = 0, b(2) ≈ 6.91 (c) a(3) = 0, b(3) ≈ 4.58

Figure 3.12: Distribution of additive error εa. Dark areas mark normalized histograms resulting of ten
million evaluations of T = (a+X)

/
(b+ Y ) with X,Y ∼ N

(
0, 1
)
. Cumulants µ and σ2 of the approxi-

mating normal distribution (red line) are calculated using formula (3.2).

which, for b, are the reciprocals of the coefficients of variation of the respective unstimulated
experiment, and the conditions for approximability by a normal distribution (a < 2.25, b > 4)
(see section 3.4.1) are fulfilled.

The standard deviations σ
(j)
i of the measurements η

(j)
i in relative light units are available

as estimates in eq. (3.9) only for the unstimulated setting. For the other experiments, there is

only exactly one sample for each time point on every blot, prohibiting to estimate σ
(j)
i from

data. However, it seems reasonable to assume that, for higher signal intensities, the variance
will also increase, but the coefficient of variation will be constant. Since the normalizing
constants b(j) (eq. (3.10)) are the reciprocals of the coefficients of variation we can extrapolate

values of b
(j)
i for the stimulation experiments e.g. by the worst-case value 4.58 (corresponding

to a CV of 0.2182 as observed in table 3.3d, rep #3, or less pessimistic to the mean value of
the b(j) above.

This leads us to the following conclusion:

3.4 Conclusion
The additive error term εa is approximately normally distributed.

For the multiplicative bias εm = η̂
(j)
0

/(
η̂

(j)
0 + ε

(j)
0

)
of the amplification factors m

(j)
i , the

methods developed by MARSAGLIA cannot be applied: since the standard deviation of the
(constant) numerator is zero, it cannot be transformed to the standard form.

To investigate the distribution of the multiplicative bias, we abbreviate

µ := η̂
(j)
0 , σ := σ

(j)
0 , X̃ := ε

(j)
0 ∼ N

(
0, σ2

)
, Ỹ := εm =

µ

µ+ X̃
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Thus, we have

Ỹ ∼ Y :=
1

X
, if X ∼ N

(
1,
(
σ
/
µ
)2)

,

having the same distribution as the multiplicative bias.

Conditioning the denominator with X > 0 (even for the worst observed coefficient of
variation in our case of measuring pSTAT-3 in unstimulated cells, see table 3.3d, we have
P (X < 0) ≈ 2 · 10−6) we can derive the cumulative distribution functionof Y as:

FY (x) = P (Y ≤ x) = P (
1

X
≤ x) = P (X ≥ 1

x
) = 1− P (X ≤ 1

x
) = 1− FX(

1

x
)

=
1

2
− 1

2
erf

(
1
x − µ√

2σ2

)
=

1

2
− 1√

π

∫ 1
x−µ√
2σ2

0
e−t

2
dt.

Taking the derivative w.r.t. x yields the probability density of Y as

fY (x) =
d

dx
FY (x) =

1√
2πσ2x2

e
−
(

1
x−µ√
2σ2

)2

. (3.11)

For measuring the similarity of two probability densities, we use the overlapping coefficient ,
as given in the following definition.

3.5 Definition (Overlapping Coefficient (OVL))
For two real probability density functions f(x) and g(x), the overlapping coefficient (OVL) is
defined as

OVL =

∞∫

−∞

min {f(x), g(x)} dx. (3.12)

�

Obviously, OVL ∈ [0, 1], and OVL = 1 denotes a full overlap of two densities (i.e. same
distribution). Note that the overlapping coefficient holds the relation OV L = 1 − D to the
widespread dissimilarity index D = 1

2

∫∞
−∞ |f(x)− g(x)| dx.

As INMAN and BRADLEY denote:

“The overlapping coefficient possesses three notable advantages as a measure of the
agreement between two distributions. First, it provides a common approach for the
measure of the similarity of these distributions in any distributional setting. Second,
OVL is based on a simple, easily comprehended concept of the agreement or simi-
larity of probability distributions. Third, the invariance of OVL under appropriate
transformation makes this measure of agreement attractive from the standpoint of
computation and estimation.” [InmanBradley1989]

Especially its invariance under continuously differentiable transformations in change of vari-
ables renders the overlapping coefficient a suitable measure for our case.

71



3 A Crosstalk Model of GM-CSF-mediated IL-6-induced JAK-STAT Signalling

(a) cv ≈ 0.136 (b) cv ≈ 0.145 (c) cv ≈ 0.218

Figure 3.13: Distribution of multiplicative bias εm. Filled area marks normalized histogram resulting
of ten million evaluations of T = 1

/
X with X ∼ N

(
1, σ̃2

)
. The theoretically derived density f1/X (see

eq. (3.11)) is printed as green line. Coefficients of variation of pSTAT-3 in the unstimulated setting (ta-
ble 3.3d) are used as standard deviation σ̃. Approximating normal distributions (red line) are derived by
maximizing the overlap (integral of minimum) of the normal density function and f1/X .

Figure 3.13 depicts the distribution of εm. It shows some positive skewness, and with over-
lapping coefficients of about 90%, approximability by normal distributions with a mean value
close to 1 and a small variance seems feasible.

There remains the questions, whether the shape of the distribution of the measured ampli-
fication factors is formed more by the slightly skewed multiplicative bias or by the (close to)
normally distributed additive error. To answer this, a simulation study was done.

From the wet lab data (table 3.3a), the maximum amplification factor due to stimulation
with IL-6 can be determined to lie around 50. For the simulation study, m̂ = 50 was used as the
experimentally non-accessible true amplification factor. Multiplicative bias εm and additive
error εa were calculated as described in the previous sections. Figure 3.14 shows the simulation
result.

With overlapping coefficients higher than 95% to a normal distribution with mean close
to 50, we come to the following conclusion towards the distribution of amplification factors:

3.6 Conclusion
The amplification factors method delivers approximately normally distributed quanti-
ties, whose mean is close to the true amplification factor.
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(a) cv ≈ 0.136 (b) cv ≈ 0.145 (c) cv ≈ 0.218

Figure 3.14: Distribution of simulated amplification factors. Filled area marks normalized histogram
resulting of ten million evaluations of simulated amplification factors. True amplification factor was m =
50. Coefficients of variation (cv) of pSTAT-3 in the unstimulated setting (table 3.3d) are used as standard
deviation σ0 of the reference points, whereas mσ0 was used in the amplified signal, resulting in the same
coefficients of variation.
The green lines indicate the estimated probability density derived by nonparametric kernel smoothing us-
ing normal kernel functions. Approximating normal distributions (red line) are derived by maximizing the
overlap (integral) of the normal density function and the estimated probability density function.
Note: This simulation takes into account only a single measurement of the maximum amplification factor.
For whole experiment simulations see figure 3.15.

3.5.5 Simulation study: Effect of normalization on signal intensity

To further investigate the effects of normalization using house-keeping or recombinant proteins,
we perform an in silico study on an artificially generated signal and normalizer signal.

We take a look at the signal intensity in terms of amplification factors on the noisy mea-
surements of the artificial signal itself, and of the normalized signal, processed by using the
artificial normalizer measurements.

3.5.5.1 Generation of the artificial signal

We apply a piecewise linear time transformation to a modified sine function to generate an
artificial signal that is remarkably similar to the experimentally observed kinetics in the IL6+
setting (compare section 3.6 on page 78 to the artificial signal in figure 3.15b).

The underlying sine function that we use as signal generator is given as

f(x) = 24.5 ·
(
1 + sin(x+ 1.5π)

)
+ 1. (3.13)

Further, the continuous piecewise linear time transformation,

T (t) =





π
25 t t ∈ [0, 30]
π
75 t+ 4

5π t ∈ [30, 60]
π

150 t+ 6
5π t ∈ [60, 120]

(3.14)

delivers a bijective mapping from the time domain [0, 120] into the interval [0, 2π].
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(a) raw sinusoidal signal... (b) ... transformed to artifical signal

Figure 3.15: Raw and time-transformed artificial signal.
The sinusoidal signal in (a) is generated by evaluating eq. (3.13) at time points t̃i = i/5 · π (i = 0..10),
equidistantly sampling the interval [0, 2π] for a whole period.
The artificial signal (b) is formed by applying the time-transformation T (eq. (3.14)) to the measurement
time points {0, 5, 10, 15, 20, 25, 30, 45, 60, 90, 120}.

To generate the artificial signal, for each time point ti ∈ {0, 5, 10, 15, 20, 25, 30, 45, 60, 90, 120},
the signal generator function f is evaluated at f(T (ti)) and scaled(25) by a fixed random num-
ber k ∼ U

(
500000, 1000000

)
, independent of i. Figure 3.15 shows both the artificial signal

generated by the procedure above (b) and the underlying sinusoidal base signal (a).

The artificial normalizer signal is generated by choosing a number k̃ ∼ U
(
500000, 1000000

)

and assigning it to all sample time points.

Both, the artificial and the normalizer signals are subsequently distorted by a multiplicative
normally distributed noise. It is obvious, that this distortion certainly changes the observed
maximum amplification factor. Indeed, it might also influence the time point where it is
observed, as, by chance, the (truly) highest signal might be distorted in a way that it is lower
than the signal observed at other time points.

3.5.5.2 Simulation results

As figure 3.16 shows, both expected types of errors occur. Ideally, i.e. without any error in the
measurements, a single bar at 50-fold containing 100% of the simulations would be observed,
and the time point histogram in the right column of figure 3.16 would consist of a single bar
at time point 25min.

Obviously, applying the normalization to the sinusoidal signal before calculating the ampli-
fication factors results in a much broader distribution of the observed maximum amplification
factor.

For a noise level of 10%, both mean maximum amplification factors of the signal itself
(52.1-fold) and of the (normalized signal (54.3-fold) are close to the true value of 50-fold;
however, their standard deviations differ considerably (6.7 vs. 10.0). For higher noise levels,
the mean value of the normalized signal deviates much faster from the true value than the
mean value of the unprocessed signal (noise level of 20%: 57.8-fold vs. 65.6-fold, noise level
of 30%: 65-fold vs. 78.1-fold). For the standard deviation, these effects are even worse (noise
level of 20%: 15.5 vs. 25.3, noise level of 30%: 26 vs. 39.2).

(25) Multiplying by k does not affect the subsequent calculations, but scales the raw artificial signal into a range
frequently observed in BLU data.
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The impact of measurement errors on the time point at which the maximum signal intensity
is detected is demonstrated in the rightmost pictures in figure 3.16. If solely the signal itself is
used to calculate the amplification factor (depicted as green boxes ), with increasing noise
level, the time point at which the maximum signal is observed spreads: For a noise level of
0.1, the correct time point is identified in more than two thirds of all cases (figure 3.16a); this
declines to still more 40% if a noise level of 0.3 (figure 3.16c) is simulated.

Again, the situation is worse if the signal is at first normalized (red boxes ): Even for
small disturbances (CV = 0.1), the time point of the maximum signal intensity is correctly
detected in only about half of all cases. For larger noise levels, this already declines to less
than 40% (CV = 0.2) or roughly 30% (CV = 0.3). In the case of the highest simulated noise,
two out of five measurements will show the maximum level more than 10 minutes away from
the true time point – in contrast to only 5% if the signal is not normalized.

3.7 Conclusion
Normalization with a house-keeping or manually added calibrator protein may massively
disturb the intensity and time point of the peak signal already at moderate noise levels.
Under same noise intensities, using solely the raw signal – as proposed in the amplifi-
cation factors method – delivers much better estimates on peak amplification and peak
time point (see figure 3.16).

We finish this small study with the remark that the underlying sampling is also influencing
the observation distribution. For example, a thinner sampling around the time point of the
maximum signal level (25min) would result in a narrower distribution of the detected time
points. Taking more samples generally results in a broadened histogram. For the simulation
study, we used the same sampling as in the real experiments (section 3.3).
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(a) Distribution of maximum amplification factors and their time points for a CV of 10%.

(b) Distribution of maximum amplification factors and their time points for a CV of 20%.

(c) Distribution of maximum amplification factors and their time points for a CV of 30%.

Figure 3.16: Normalization effects on distribution of maximum amplification factors and their
time point for different levels of noise: (a) CV = 0.1, (b) CV = 0.2, CV = 0.3.
In this simulation study, 1000000 artificial sinusoidal signals with a peak amplification factor of 50 reached
at 25min (see figure 3.15b) as well as the same amount of artificial normalizer signals were created; both
distorted by identically distributed noise to simulate measurement errors.
Shown are histograms of the observed maximum amplification factors with ( ) and without ( ) prior
normalization. Without any disturbance, a single bar at the 50-fold mark would be observed. From both
histograms, an estimated probability density was derived by nonparametric kernel smoothing using normal
kernel functions (thin green — and red — lines), to which normal distributions were fitted by maximiz-
ing the overlap (integral) of the respective estimated probability density function and the normal density
(thick green ---- and red ---- lines). The values of mean, sd (in green colour), mean, sd (in red colour) de-
note the empirical mean and standard deviations for each series. Amplification factors exceeding the inter-
val (1, 200) were excluded from all calculations.
The rightmost figures show the distribution of the time points, where the maximum signal was observed.
The symmetry around the true time point 25min is due to the symmetry of the underlying sine function.
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3.6 Results of the IL-6 stimulation experiments: Processed data

From the BLU measurement data given in table 3.3, molar concentrations have been calcu-
lated using the amplification factors of pSTAT-3 as described in appendix A.1.4. Figure 3.17
gives a graphical representation of the cytosolic phospho-STAT-3 time course upon the four
experimental settings. Depicted are the mean values (black plus signs, +) and their linear
interpolation (gray line, ---). The error bars originate from triplicate measurements and show
the measurements’ standard deviations for each time point. For comparison, the results of sole
IL-6 stimulation (section 3.6, IL6+) are copied to the other stimulation settings in light gray
tones.

In all three stimulation experiments (sections 3.6 to 3.6), a kinetic of similar quality is
observed. An initial rise of the signalling phospho-STAT-3 immediately follows the stimulation
and reaches a peak after around 25 to 30 minutes. The signal then slowly declines, reaching
basal levels after 90–120 minutes again. Contrary to the similar qualitative behaviour, the
outcomes differ significantly in their quantitative characteristic.

Sole stimulation with IL-6 (section 3.6, IL6+) results in a strong cellular response in
cytosolic phospho-STAT-3. The peak is reached at about 25 minutes after stimulation, showing
an approximately 47-fold increase of pSTAT-3 in the cytoplasm compared to basal level at the
initial time point t = 0min.

In contrast to that, co-stimulation with GM-CSF (section 3.6, IL6+/GMCSF+) leads to
a significantly lower response in cytosolic pSTAT-3. The peak is still reached after 25–30
minutes, however, only a 12-fold increase of the activated transducing protein is observed.

Similar observations are made if secreted GM-CSF is blocked by appropriate antibod-
ies while maintaining the IL-6 stimulation (section 3.6, IL6+/GMCSF–). While the peak of
pSTAT-3 in the cytosol is still achieved 25 minutes after stimulation, its level is again sig-
nificantly lower compared to the sole IL-6 stimulation setting: only a 18-fold increase after
stimulation is observed.

In unstimulated cells (section 3.6, unstim), a stable basal level of cytosolic phospho-STAT-3
is observed, varying no more than 1.3-fold (note the different scale).

3.6.1 Statistical analysis

To check whether the observed deviation in maximum cytosolic phospho-STAT-3 levels in
the co-stimulation and blocking experiments compared to sole IL-6 stimulation are due to
the different stimulation setting, and not due to random perturbations, we performed two-
tailed t-tests (WELCH’s t-test, [Welch1947]). Population variances have been estimated from
the unbiased sample variance (with applied BESSEL’s correction) retrieved from triplicate
measurements.

Table 3.5 gives an overview of the respective peak amplification factors of the phospho-
STAT-3 signal in every replicate of each experimental setting.

With p-values of less than 0.0049 for the IL6+/GMCSF– setting and less than 0.011 for
the IL6+/GMCSF+ co-stimulation setting, we can conclude that these observations are very
unlikely to be a random event but clearly resulting from the different stimulation settings. The
null hypotheses that the maximum amplification factors of IL6+ and IL6+/GMCSF+, or IL6+
and IL6+/GMCSF–, originate of independent observations with same mean (no assumptions
on the variances, as they might be influenced by different blots) have to be withdrawn with a
significance level of more than 98%.
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Figure 3.17: Measurements of cytosolic pSTAT-3 upon four experimental settings. Linearly in-
terpolated mean values of triplicate measurements, with error bars from empirical standard deviation. For
comparison, the course of sole IL-6 stimulation (a) is copied to (b) and (c) in light gray colours.
(a) Stimulation with sole IL-6 results in a 47-fold rise of cytoplasmic phosphorylated STAT-3 level relative
to time t = 0min. (b) Simultaneous stimulation with both IL-6 and GM-CSF leads to a significantly
lowered response compared to sole IL-6 stimulation, and results in an only 16-fold increase in cytoplasmic
pSTAT-3 level. (c) With blockade of GM-CSF with appropriate antibodies, IL-6 stimulation leads only to
a 14-fold increase in cytoplasmic pSTAT-3 concentration. (d) In unstimulated cells, a low but stable base-
level of phosphorylated STAT-3 is observed (note the different scale).

Table 3.5: Statistical analysis of pSTAT-3 peak levels.
Amplification factors (peak-to-unstimulated, rounded to nearest integer for replicates) upon different
stimulation settings. IL6+: Sole IL-6 stimulation, IL6+/GMCSF–: IL-6 stimulation with simultane-
ous GM-CSF blockade, IL6+/GMCSF+: Co-stimulation with IL-6 and GM-CSF. For the unstimulated
control unstim, fluctuation factors around the mean are given. Standard deviation (SD) is with applied
BESSEL’s correction.
The p-values denote the probability that the changes in the amplification factors compared to sole IL-6
stimulation are not due to the different stimulation setting.

amplification factors (peak to unstimulated)
experiment rep #1 rep #2 rep #3 mean SD p-value

IL6+ 53x 41x 48x 47.4x 6.0x —
IL6+/GMCSF– 13x 6x 22x 13.6x 7.8x < 0.0049
IL6+/GMCSF+ 19x 18x 16x 17.9x 1.3x < 0.011

unstim 0.7x–1.2x 0.8x–1.3x 0.7x–1.4x 1.0x — —
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3.7 Predictive crosstalk model of IL-6 and GM-CSF in JAK-STAT signalling

We thus formulate the following finding:

3.8 Conclusion
The observations of lowered response in IL-6-induced phospho-STAT-3 in the setting
of co-stimulation with IL-6 and GM-CSF, IL6+/GMCSF+, as well as in the setting of
IL-6 stimulation with simultaneous blocking of GM-CSF, IL6+/GMCSF–, compared to
sole IL-6 stimulation is with very high probability caused by the different stimulation
scenarios and not due to random events.

3.6.2 Summary of initial experimental results

Qualitatively, STAT-3 activation upon all IL-6 stimulation settings (i.e. IL6+, IL6+/GMCSF+,
and IL6+/GMCSF–) is as expected and as described in literature: A steep rise peaking around
15–25 minutes after stimulation followed by a slow decline back to basal levels due to pathway
down regulation.

However, the amplification factors approach reveals large quantitative differences in STAT-3
activation upon sole IL-6 stimulation (IL6+) and the GM-CSF-blocking (IL6+/GMCSF–) set-
tings, as the latter shows a much weaker STAT-3 activation.

While both cytokines, IL-6 and GM-CSF, have been shown to stimulate cell proliferation
(figure 3.5) and to activate STAT-3 ([Rawlings2004; Valdembri2002]), the co-stimulation set-
ting IL6+/GMCSF+ proposed by the author did not show the expected increased STAT-3
activation compared to sole IL-6 stimulation. In fact, we made the counter-intuitive observa-
tion that co-stimulation also results in a significantly lowered STAT-3 activation.

3.7 A quantitative and predictive model of a crosstalk of IL-6 and
GM-CSF in JAK-STAT signalling in HaCaT A5 benign tumour
keratinocytes

3.7.1 Review of existing models

There exist a number of mathematical models for the JAK-STAT pathway [Yamada2003;
Ghosh2011; Guerriero2009; Singh2006; Soebiyanto2007; Sun2008; Swameye2003], that address
signalling in a variety of cell types induced by different cytokines (IL-6 signalling in hepatocytes
[Singh2006], erythropoietin (EPO) signalling in BaF3 cells [Swameye2003], unified leukaemia
inhibitory factor (LIF) and oncostatin M (OSM) signalling via gp130 in MCF-7 cells [Guer-
riero2009]) or pure in silico experiments (EPO signalling [Sun2008], interferon (IFN) signalling
[Yamada2003; Soebiyanto2007]). Small-sized simplified models consisting of only a handful of
formal species and parameters [Sun2008; Swameye2003] stand in contrast to detailed ones
with dozens of species [Yamada2003; Guerriero2009; Singh2006], and most models are of a
qualitative or semi-quantitative nature.

Our model addresses a crosstalk in the signalling of two cytokines that signal via dis-
tinct receptor classes. Models describing signalling cascades induced by more than a single
source of stimulation are rare. One example is the JAK-STAT model of GUERRIERO et al.
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3 A Crosstalk Model of GM-CSF-mediated IL-6-induced JAK-STAT Signalling

[Swameye2003], which includes the competition between LIF and OSM that can both sig-
nal via a gp130/LIFR receptor complex and uses computational costly stochastic GILLESPIE

simulations.
YAMADA et al. [Yamada2003] perform in silico studies with a detailed model for IFN sig-

nalling with 31 formal species and 51 parameters, but their model is too large for the available
data, and it is unclear whether the manually tuned parameters therein can be conferred to
other models.

SOEBIYANTO et al. [Soebiyanto2007] applied model reduction to the model of YAMADA et
al., but using their simplified model for our purpose is cast into doubt by the authors’ report
that their simulation results contradict literature data for other cell lines.

SUN et al. [Sun2008] and SWAMEYE et al. [Swameye2003] use interpolated time-course
measurements of the receptor as a “driving function” (control, input), restricting the model
to the specific cell type and stimulation setting used for recording the input function.

GHOSH et al. [Ghosh2011] investigated cell proliferation during cancer metastasis. They
address intercellular communications and therefore combine the whole IL-6-induced intracellular
signalling in a single equation, derived from a minimalistic model, ignoring nuclear transcrip-
tion and neogenesis of any inhibitory protein like SOCS-3.

Figure 3.18: JAK-STAT model by STEVEN et al.
[Steven2009]. The model consists of 65 formal species, one
control (IL-6 stimulation), and 111 parameters that are man-
ually set to “reasonable” values.

The IL-6 stimulation model of
STEVEN et al. [Steven2009] (see fig-
ure 3.18) is based on the work of
SINGH et al. [Singh2006], and incor-
porates intracellular crosstalks be-
tween the JAK-STAT adopted from
YAMADA’s [Yamada2003] work and
the mitogen-activated protein ki-
nase/extracellular signal regulated
kinases (MAPK/ERK) pathways
adopted from SCHOEBERL et al.
[Schoeberl2002], but both triggered
by a sole stimulus of IL-6. STEVEN

et al. present an extensive mathe-
matical model consisting of 65 or-
dinary differential equations and
111 (unknown) parameters that de-
scribes the intracellular reactions.
Yet, the vast number of parame-
ters introduces a significant risk of
overfitting the comparatively sparse
data that is available, making it dif-
ficult to use this model by extend-
ing it with the GM-CSF signalling
part.

Summarizing, there are a bunch of existing models, but suffering from identical problems.
All models show a certain degree overparametrization, are on the one hand too detailed for
our purposes (see, e.g. figure 3.18), and do not contain essential pathway connections on the
other hand.
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3.7 Predictive crosstalk model of IL-6 and GM-CSF in JAK-STAT signalling

3.7.2 Our IL-6/GM-CSF crosstalk model

Figure 3.19 gives a detailed graphical representation of our crosstalk model.

Upstream of the signalling cascade are the receptors for IL-6 and GM-CSF, which can only
bind the appropriate proteins that are continuously secreted by the cells and can additionally
be given as external stimuli. We focus on the essential players on both the receptor activation
and the intracellular signal transduction levels to avoid extensive overparametrization of the
model. As the receptor formation stoichiometry of the IL-6 receptor has not yet been finally
determined [Schroers2005], both the IL-6 receptor and its β receptor gp130 have been unified to
a single “IL-6 receptor complex” species in the model, and the same simplification was applied
to the GM-CSF signalling components. Ligand binding to these complexes was modelled to be
sufficient for receptor activation, and the activation rates for both IL-6 and GM-CSF receptor
complexes were modelled to be equal.

An activated IL-6 receptor complex phosphorylates STAT-3 molecules and transforms
them into a signalling competent species, implicitly modelling dimerisation of activated STAT-3.
We modelled the activation of STAT-3 to be facilitated by a supportive kinase (SK) that is ac-
tivated by the ligand-bound GM-CSF receptor. Activated STAT-3 may enter the nucleus and
starts transcription of SOCS-3 mRNA, gets dephosphorylated by nuclear phosphatases and

Figure 3.19: The crosstalk model. 1© Continuous production and secretion of IL-6 and GM-CSF
2© Receptor activation through ligand binding 3© IL-6-induced phosphorylation of STAT-3 4© Nu-

clear import of activated STAT-3 protein 5© Transcription of SOCS-3 mRNA and export of deactivated
STAT-3 protein 6© Translation of SOCS-3 in the cytoplasm 7© SOCS-3 binds to active receptors thus
cancelling signal transduction 8© Degradation of SOCS-3 9© SK associates to and gets activated on
active receptor 10© Activated SK enhances IL-6-induced STAT-3 signalling 11© Overstimulation with
GM-CSF inhibits SK activation 12© Cytokines can be blocked with appropriate antibodies
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3 A Crosstalk Model of GM-CSF-mediated IL-6-induced JAK-STAT Signalling

Table 3.6: List of model species in our IL-6/GM-CSF crosstalk model.

Var. Species Name Meaning

x1 GMCSF auto-/paracrine GM-CSF
x2 GMCSF RC α and β receptor complex for GM-CSF
x3 GMCSF LRC ligand bound active GM-CSF receptor
x4 GMCSF LRC blocked overstimulated GM-CSF receptor complex
x5 IL6 auto-/paracrine IL-6
x6 IL6 RC α and β receptor complex for IL-6
x7 IL6 LRC ligand bound active IL-6 receptor
x8 STAT3 cytoplasmic STAT-3
x9 pSTAT3 cytoplasmic phospho-STAT-3
x10 pSTAT3 nuc nuclear phospho-STAT-3
x11 SK supporting kinase
x12 aSK active supporting kinase
x13 SOCS3 mRNA SOCS-3 mRNA in cytoplasm
x14 SOCS3 SOCS-3 in cytoplasm
x15 IL6 LRC SOCS3 SOCS-3 deactivated IL-6 receptor
x16 GMCSF LRC SOCS3 SOCS-3 deactivated GM-CSF receptor

leaves the nucleus again, refilling the cytoplasmic pool of STAT-3. The translation process of
SOCS-3 mRNA in the cytoplasm was simplified by the assumption that 10 proteins are built
from one mRNA. The translated protein then binds to active receptor complexes, eventually
ceasing signal transduction.

We addressed modelling the transient behaviour of phospho-STAT-3 in HaCaT keratinocytes
using solely mass action kinetics, since MICHAELIS-MENTEN type kinetics are applicable only
if the amount of substrate is much higher than the amount of enzyme, a condition that is
usually not fulfilled in signal transduction pathways (see, e.g., [Yamada2003]).

3.7.2.1 Model species and reaction scheme

Our model consists of 16 formal species, denoted either by a textual abbreviation in type-
writer letters (e.g. pSTAT3) or by a corresponding indexed variable (e.g. x9). Species names
in the model are chosen corresponding to cellular molecules or subunits, though simplified.
The acronym RC is short for receptor complex, combining all involved receptor subunits into
one virtual species. Analogously, LRC denotes a ligand receptor complex, coding a signalling
competent and ligand-bound active signalling receptor complex. A complete list of species is
given in table 3.6.

We formulated the model in 15 biochemical reactions, which we found to be a minimum
set describing the IL-6/GM-CSF crosstalk and JAK-STAT signalling cascade with the simpli-
fications described at the beginning of this section. All reactions are modelled as irreversible
biochemical reactions that can be translated into ordinary differential equations using the law
of mass action.

Table 3.7 lists the involved reactions in our crosstalk model. In table 3.8, the resulting
mathematical model is given in terms of a system of ordinary differential equations. The
derivation of initial values is discussed in section 3.7.4.
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3.7.2.2 Comprehensibility and interpretability as crucial points in our modelling
Concerning the fact, that there are only cytosolic phospho-STAT-3 and SOCS-3 measurement
data available for model calibration (see sections 3.7.5 to 3.7.7), the model is quite detailed,
though most of its formal species cannot be directly accessed by wet lab experiments. It is
therefore also afflicted with a certain degree of overparametrization.

While there exist efficient model reduction techniques (model order reduction, MOR) that
reduce the complexity of large-scale dynamical systems by finding lower-dimensional approxi-
mations producing the same input-output relations, we refuse to utilize these methods.

From our point of view, while building mathematical models of biological pathways, it is
of most importance that the mathematical model must stay understandable, i.e. there must
be a clear mapping between formal model species to real molecules or functional subsystems
in the cell, and from formal model parameters to real properties of biological processes like
reaction rates.

The application of automatic model order reduction techniques might deliver better esti-
mates in a reduced model (better in the sense of reduced parameter uncertainty), but at the
cost of losing the indispensable mapping between model and reality.

Table 3.7: Reactions in the crosstalk model. Underlying reactions in our IL-6/GM-CSF crosstalk
model. The educts GMCSF and IL6 consist of autocrine and external cytokine, with exception of the
GM-CSF receptor overstimulation reaction, where only externally applied cytokine is involved.

Description Par. Reaction equation

Autocrine IL-6 and GM-CSF production
GM-CSF production p1 ==> GMCSF

IL-6 production p1 ==> IL6

Ligand receptor interaction
activation of GM-CSF receptor p2 GMCSF + GMCSF RC ==> GMCSF LRC

activation of IL-6 receptor p2 IL6 + IL6 RC ==> IL6 LRC

GM-CSF receptor overstimulation p3 GMCSF LRC + GMCSF ==> GMCSF LRC blocked

Activation of supporting kinase and catalysis of STAT-3 activation
SK activation by GMCSF LRC p4 SK + GMCSF LRC ==> aSK + GMCSF LRC

aSK catalyses pSTAT-3 formation p5 aSK + IL6 LRC + STAT3 ==> aSK + IL6 LRC + pSTAT3

SOCS-3 interactions
SOCS-3 decay p6 SOCS3 ==>

SOCS-3 deactivates IL6 LRC p7 IL6 LRC + SOCS3 ==> IL6 LRC SOCS3

SOCS-3 deactivates GMCSF LRC p7 GMCSF LRC + SOCS3 ==> GMCSF LRC SOCS3

IL-6 signal transduction via JAK-STAT and SOCS-3 induction
STAT-3 phosphorylation IL6 LRC p8 IL6 LRC + STAT3 ==> IL6 LRC + pSTAT3

pSTAT-3 translocation into nucleus p9 pSTAT3 ==> pSTAT3 nuc

nuclear export of STAT-3 p10 pSTAT3 nuc ==> STAT3

induction/export of SOCS-3 mRNA p11 pSTAT3 nuc ==> STAT3 + SOCS3 mRNA

translation of SOCS-3 p12 SOCS3 mRNA ==> 10 * SOCS3
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3.7.3 ODE model formulation

Using the law of mass action to describe the reactions listed in table 3.7, we formulated the
following nonlinear ordinary differential equation (ODE) model of the IL-6/GM-CSF crosstalk
model in HaCaT-ras A5 keratinocytes, where u1 and u2 denote the external stimuli of GM-CSF
and IL-6 respectively.

Table 3.8: ODE model equations.

GMCSF: ẋ1 = +p1 − p2x1x2

GMCSF RC: ẋ2 = −p2(u1 + x1)x2

GMCSF LRC: ẋ3 = +p2(u1 + x1)x2 − p3x3u1 − p7x3x14

GMCSF LRC blocked: ẋ4 = +p3x3u1

IL6: ẋ5 = +p1 − p2x5x6

IL6 RC: ẋ6 = −p2(u2 + x5)x6

IL6 LRC: ẋ7 = +p2(u2 + x5)x6 − p7x7x14

STAT3: ẋ8 = −p5x7x8x12 − p8x7x8 + (p10 + p11)x10

pSTAT3: ẋ9 = +p5x7x8x12 + p8x7x8 − p9x9

pSTAT3 nuc: ẋ10 = +p9x9 − (p10 + p11)x10

SK: ẋ11 = −p4x3x11 + p5x7x8x12

aSK: ẋ12 = +p4x3x11 − p5x7x8x12

SOCS3 mRNA: ẋ13 = +p11x10 − p12x13

SOCS3: ẋ14 = −p7(x7x14 + x3x14) + 10p12x13 − p6x14

IL6 LRC SOCS3: ẋ15 = +p7x7x14

GMCSF LRC SOCS3: ẋ16 = +p7x3x14

3.7.4 Initial cell state

The diameter of HaCaT A5 cells was determined with a CASY cell counter (Millipore, Billerica,
MA) to be around 20 µm. Thus, the average HaCaT A5 cell volume was estimated to be
4.2 · 10−6 µL, assuming a spherical cell shape.

The total number of gp130 molecules on a single cell was determined to be roughly 2.0 · 104

by quantitative immunoprecipitation, resulting in a molar concentration of about 7.96 · 10−3

nmol/µL. The total number of STAT-3 molecules in HaCaT keratinocytes was determined
by the same methodology to be 3.7 · 105, resulting in a molar concentration of about 0.146
nmol/mL.

Using the amplification factors method, the initial concentration of cytosolic phospho-
STAT-3 was calculated as 4.51 · 10−3 nmol/mL.

Mass concentration of GM-CSF (8 pmol/mL per million cells) and IL-6 (6–14 pmol/mL
per million cells) secreted by unstimulated cells has been determined by ELISA and both
species were initialized with 0.4 · 10−6 nmol/mL in the model, corresponding to 10 pmol/mL
in the model for an assumed molar mass of 25 kDa both.
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Table 3.9: Initial values for the crosstalk model.

Var. Species Name Initial Value (nmol/mL)

x1 GMCSF 0.4 · 10−6

x2 GMCSF RC 7.957934 · 10−4

x3 GMCSF LRC 0
x4 GMCSF LRC blocked 0
x5 IL6 0.4 · 10−6

x6 IL6 RC 7.957934 · 10−3

x7 IL6 LRC 0
x8 STAT3 1.454126 · 10−1

x9 pSTAT3 4.511127 · 10−4

x10 pSTAT3 nuc 0
x11 SK 3.3 · 10−2

x12 aSK 0
x13 SOCS3 mRNA 0
x14 SOCS3 0
x15 IL6 LRC SOCS3 0
x16 GMCSF LRC SOCS3 0

Initial concentration of SK
was taken from the paper
[RamisConde2009], where the
concentration of the candi-
date kinase Src is given to be
3.3 · 10−2 nmol/mL.

The number of molecules
of the GM-CSF β receptor
(common β chain) is set to
one tenth of gp130 to approx-
imately 2000 receptors, which
is in good concordance to the
range reported in literature
(1518–3783 in [Williams1988],
1058–2304 in [Chiba1990]).

Section 3.7.4 summarizes
the values that have been used
to initialize the model.

3.7.5 Preliminary model calibration

The phospho-STAT-3 measurements upon the experimental conditions IL6+, IL6+/GMCSF+,
IL6+/GMCSF– and unstim were used to calibrate the model by applying the parameter esti-
mation techniques described in chapter 2.

As figure 3.20 shows, the model is able to reproduce the measurements of phospho-STAT-3
in the cytoplasm both qualitatively and quantitatively. The calibrated model captures the
cellular behaviour in all three stimulation settings IL6+, IL6+/GMCSF+, IL6+/GMCSF–
and in the unstimulated control experiment unstim with a single set of parameters.

In the simulations, peak levels of cytosolic phospho-STAT-3 are attained about 20–30
minutes after stimulation. This is in good concordance to the experimental observations. Also,
the simulated peak levels are close to the actual measurements, as far as the measurements’
time grid permits a conclusion.

Table 3.10 lists the parameter values that have been the result of the parameter estimation,
and have been used to create the simulations in figure 3.20. Also compare the final results in
table 3.12 and figure 3.23.

3.7.6 A confirmed prediction: SOCS-3 kinetics as model validation

The least a model should be able to do is to explain (or, say, reproduce) already existent data.
As shown in the previous section, our model complies with this requirement. We now take a
step forward and use the model to predict the kinetics of other parts of the studied pathway,
that we did not have observed until now.

We choose to forecast and measure the SOCS-3 protein in the cytosol, that is induced
after STAT-3 activation (see section 3.2.3.1). This protein is chosen for three reasons: First,
there is a one-to-one correspondence between the “real” SOCS-3 molecule in the living cell
and in our HaCaT keratinocyte model. Second, its basal level is low, and protein neogenesis
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Figure 3.20: Preliminary model calibration using solely pSTAT-3 measurements.
The calibrated model reproduces the measurements of cytosolic phospho-STAT-3 in the three stimulation
experiments (a) IL6+, (b) IL6+/GMCSF+, and (c) IL6+/GMCSF–, as well as in the unstimulated control
experiment unstim (d), both quantitatively and qualitatively, with a unique set of parameters.
The pictures show the simulated pSTAT-3 time course (thick blue line) of the respective experimental
setting, together with the linearly interpolated mean values of triplicate measurements, with error bars
from empirical standard deviation. For comparison, the course of sole IL-6 stimulation (a) is copied to (b)
and (c) in light gray colours. Note the different scaling in (d).
For model calibration, the cytosolic phospho-STAT-3 measurements (see table 3.3) have been used exclu-
sively. Compare section 3.7.6 and figure 3.23, where also SOCS-3 measurements, which have been taken
in subsequent experiments, are considered.

is inducible by IL-6 stimulation. And last, and this point is essential from the experimenter’s
point of view, it can be detected using well established laboratory protocols.

Using the preliminary parameter set given in table 3.10, we simulate the time course
of cytosolic SOCS-3 in the sole IL-6 stimulation setting IL6+. Section 3.7.6 visualizes the
prediction of cytosolic SOCS-3 concentration after stimulation with IL-6. While, formally,
the model gives a forecast in molar concentration, we adopt a cautious attitude and suggest
to interpret the prediction in a qualitative manner. What can be said, is, that up to 15–20
minutes after IL-6 stimulation, only a negligible amount of SOCS-3 protein will be produced,
but for the following 20 minutes, a fast rise of protein concentration is predicted, with a peak
level between 45 and 60 minutes after stimulation. Then, SOCS-3 protein concentration is
slowly declining to medium levels until the end of the observation horizon of 120 minutes.

To validate our model, we perform a further set of IL-6 stimulation experiments (IL6+)
and quantify the induced SOCS-3 protein by quantitative immunoblotting (section 3.2.5). As
section 3.7.6 shows, the actual measurements corroborate the predicted kinetics and validate
our model.
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Figure 3.21: Prediction and measurements of cytosolic SOCS-3 upon IL-6 stimulation.
(a) Forecast of cytosolic SOCS-3 concentration in the IL6+ experimental setting.
(b) Measurements of cytosolic SOCS-3 in relative light units (BLU) by quantitative immunoblotting.
The picture on the right shows linearly interpolated mean values of triplicate measurements, with error
bars originating from empirical standard deviation.

Table 3.10: Kinetic parameters used for SOCS-3 prediction.
Estimates obtained from parameter estimation using data of triplicate measurements of cytosolic phospho-
STAT-3 in the four experimental settings IL6+, IL6+/GMCSF+, IL6+/GMCSF–, and unstim.
The parameter estimates above were used for predicting the time course of cytosolic SOCS-3 protein upon
IL-6 stimulation (see section 3.7.6).

Par. Estimate Unit Meaning

p1 5.77 · 10−7 nmol
mL · min production rate of IL-6 and GM-CSF

p2 2.2 · 101 mL
nmol · min

activation rate of IL-6 receptor and GM-CSF receptor
upon ligand binding

p3 1.00 · 105 mL
nmol · min blockade of GM-CSF receptor upon overstimulation

p4 7.27 · 104 mL
nmol · min activation rate of SK by active GM-CSF receptor

p5 2.84 · 104 mL2

nmol2 · min SK enhanced STAT-3 activation on active IL-6 receptor

p6 1.00 · 10−1 min−1 degradation rate of SOCS-3 in cytosol

p7 3.04 · 103 mL
nmol · min deactivation rate of IL-6 and GM-CSF receptor by SOCS-3

p8 5.08 · 10−1 mL
nmol · min STAT-3 phosphorylation rate on active IL-6 receptor

p9 3.83 · 10−2 min−1 translocation of phospho-STAT-3 into nucleus

p10 4.16 · 10−2 min−1 export rate of nuclear STAT-3 into cytoplasm

p11 4.76 · 10−2 min−1 induction and export rate of SOCS-3 mRNA
by nuclear phospho-STAT-3

p12 1.40 · 10−1 min−1 translation rate of SOCS-3 mRNA in cytoplasm
(10 proteins from 1 mRNA)
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Table 3.11: Time course data of cytosolic SOCS-3 upon IL-6 stimulation.
Measurement values in relative units (BLU).

Time rep #1 rep #2 rep #3
0 8700000 4870000 10100000
5 1480000 7410000 23300000

10 2440000 8600000 7780000
15 2560000 5140000 9580000
20 3540000 5110000 8050000
25 4370000 8910000 3690000
30 8540000 1950000 43300000
45 30600000 36000000 29000000
60 63200000 47700000 19500000
90 29300000 34800000 36300000

120 31000000 9690000 62100000

Time course of SOCS-3 in setting IL6+.

3.7.7 Re-calibration using SOCS-3 data

Detection and quantification of SOCS-3 protein is done in the same way as the detection
of pSTAT-3 by using (semi-)quantitative immunoblotting, yielding relative light units (BLU)
proportional to the molecular concentration but with an unknown and blot-dependent propor-
tionality constant (parameter pSOCS).

Since we do not have a reliable estimate for the initial SOCS-3 concentration, we cannot
use the amplification factor method (see section 3.5.4) to calculate absolute concentrations
from the measurements. We therefore implement a traditional method and introduce a scaling
parameter that maps the BLU values onto molar concentration, and try to estimate this
scaling parameter from measurement data. Introducing three separate scaling parameters,
one for each blot as the pure teaching would require, would increase the uncertainty in all
parameters without any benefits for the model calibration. The restriction to a single scaling
parameter for the three replicates is justified by the observation, that the BLU measurements
are not only in the same order of magnitude, but also coincide in the nominal values for most
time points.

The additional quantitative SOCS-3 measurements can be used to further improve the
estimates of the kinetic parameters. Table 3.12 lists the parameter values of the re-calibrated
model, together with their standard error (diagonal elements of the covariance matrix approx-
imation), computed by the methods presented in section 2.5 on page 38.

Figure 3.23 on the next page compares the cytosolic phospho-STAT-3 data to the simula-
tion of the re-calibrated model. By visual inspection, it is very close to the preliminary fit not
using SOCS-3 data as in figure 3.20, while there are some subtle changes. The most prominent
difference is observed in the simulated pSTAT-3 time course upon sole IL-6 stimulation (set-
ting IL6+). The peak amplification factor is reduced from 57-fold in the preliminary towards
52-fold in the final fit, and thus moved closer to the experimentally observed mean factor of
47-fold. In figure 3.22, the model simulation of cytosolic SOCS-3 after model re-calibration is
shown to be in good concordance to the wet lab measurements.
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Figure 3.22: Model fit of cytosolic SOCS-3 upon IL-6 stimulation.
Simulated time course of IL-6-induced cytosolic SOCS-3 (blue line), and linearly interpolated mean values
of triplicate measurements, with error bars originating from empirical standard deviation.
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Figure 3.23: Final model calibration using pSTAT-3 and SOCS-3 measurements from four experi-
mental settings.
The calibrated model reproduces the measurements of cytosolic phospho-STAT-3 in the three stimulation
experiments IL6+ (a), IL6+/GMCSF+ (b), and IL6+/GMCSF– (c), as well as in the unstimulated control
experiment unstim (d), both qualitatively and quantitatively.
The pictures show the simulated pSTAT-3 time course (thick blue line) of the respective experimental
setting, together with the linearly interpolated mean values of triplicate measurements, with error bars
from empirical standard deviation. For comparison, the course of sole IL-6 stimulation (a) is copied to (b)
and (c) in light gray colours. Note the different scale in (d).
For model calibration, the cytosolic phospho-STAT-3 measurements (see table 3.3) as well as the SOCS-3
measurements (table 3.11) have been used. Compare figure 3.20 for a preliminary fit using solely pSTAT-3
measurements.
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3 A Crosstalk Model of GM-CSF-mediated IL-6-induced JAK-STAT Signalling

Table 3.12: Final estimates of kinetic parameters.
Estimates obtained from parameter estimation using the data of triplicate measurements of cytosolic
phospho-STAT-3 in the four experimental settings IL6+, IL6+/GMCSF+, IL6+/GMCSF–, and unstim,
as well as the data of triplicate measurements of cytosolic SOCS-3 in the IL6+ setting.
The mark indeterminate denotes estimated parameters that have a large confidence interval because they
have practically no measurable influence on the observed quantities. The parameter marked with * showed
an ever increasing value in parameter estimation without affecting the result and was therefore fixed to a
“sufficiently large” value. The parameter marked with ** (SOCS degradation) is highly coupled with the
parameter describing the SOCS transcription (a higher degradation rate can be counterbalanced with a
higher transcription rate) and is thus fixed to the denoted value. All values are rounded to 3 digits; non-
rounded ones are found in the appendix (table A.2). SE: Standard Error.

Par. Estimate Unit SE Meaning

p1 5.77 · 10−7 nmol
mL · min indeterminate production rate of IL-6 and GM-CSF

p2 1.82 · 101 mL
nmol · min 9.6 % activation rate of IL-6 receptor and GM-CSF receptor

upon ligand binding

p3 1.00 · 105 mL
nmol · min indeterminate* blockade of GM-CSF receptor upon overstimulation

p4 7.27 · 104 mL
nmol · min indeterminate activation rate of SK by active GM-CSF receptor

p5 3.17 · 104 mL2

nmol2 · min 39.8 % SK enhanced STAT-3 activation on active
IL-6 receptor

p6 1.00 · 10−1 min−1 indeterminate** degradation rate of SOCS-3 in cytosol

p7 3.00 · 103 mL
nmol · min 30.2 % deactivation rate of IL-6 and GM-CSF receptor

by SOCS-3

p8 6.13 · 10−1 mL
nmol · min 10.2 % STAT-3 phosphorylation rate on active IL-6 receptor

p9 3.75 · 10−2 min−1 5.3 % translocation of phospho-STAT-3 into nucleus

p10 2.15 · 10−2 min−1 43.4 % export rate of nuclear STAT-3 into cytoplasm

p11 3.97 · 10−2 min−1 17.3 % induction and export rate of SOCS-3 mRNA by
nuclear phospho-STAT-3

p12 1.40 · 10−1 min−1 indeterminate
translation rate of SOCS-3 mRNA in cytoplasm
(10 proteins from 1 mRNA)

pSOCS 9.38 · 10−10 nmol
mL · BLU 11.5 % scaling constant for SOCS-3 measurement data
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3.7 Predictive crosstalk model of IL-6 and GM-CSF in JAK-STAT signalling

Table 3.13: Phospho-STAT-3 peak levels in measurements, preliminary, and final calibrated
model. Maximum cytosolic phospho-STAT-3 concentration upon the three stimulation experiments IL6+,
IL6+/GMCSF+, and IL6+/GMCSF–, together with their respective time points and amplification factors.
The peak time ranges of the measurements consists of the time points of the samples taken one before
and one after the maximum. For the simulations, the peak time points rounded to minutes are given.
The peak concentrations of the measurement is the mean of triplicate measurements with empirical stan-
dard deviation, the same holds for the peak amplification factors of the measurements.
The simulated data displayed at prelim. fit and final fit was created using the model with the preliminary
parameter set given in table 3.10 and the final parameter set given in table 3.12.
The simulation of the IL6+/GMCSF– setting shows a slightly delayed time peak compared to the other
two stimulation settings (peak level is attained 28 minutes after stimulation compared to 22 minutes).
This seems to be supported by measurement data, however, due to the restricted time resolution, this
cannot be stated to be a significant finding.

IL6+ unit measurement prelim. fit final fit
peak time min 20–30 ≈ 22 ≈ 23
peak concentration pmol/mL 21.12 ± 2.55 25.42 23.76

peak mean amplification factor(∗) x-fold 46.8 ± 5.7 56.4 52.7

mean peak amplification factor(∗∗) x-fold 47.4 ± 6.0 56.4 52.7

IL6+/GMCSF+
peak time min 20–30 ≈ 22 ≈ 23
peak concentration pmol/mL 7.89 ± 0.47 6.40 6.72
peak mean amplification factor x-fold 17.5 ± 1.0 14.2 14.9
mean peak amplification factor x-fold 17.9 ± 1.3 14.2 14.9

IL6+/GMCSF–
peak time min 25–45 ≈ 28 ≈ 28
peak concentration pmol/mL 5.66 ± 3.00 5.26 5.72
peak mean amplification factor x-fold 12.6 ± 6.7 11.7 12.7
mean peak amplification factor x-fold 13.6 ± 7.8 11.7 12.7

(∗) The peak mean amplification factor is the maximum amplification factor observed over the mean values of
each time point · (∗∗) The mean peak amplification factor denotes the mean value of the maximum amplification
factors per replicate (which might occur at different time points).
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3 A Crosstalk Model of GM-CSF-mediated IL-6-induced JAK-STAT Signalling

3.8 New biological insight: Dose dependency on GM-CSF in
IL-6-induced phospho-STAT-3 signalling

A calibrated model allows us to make simulated experiments, and to make predictions about
the actual outcome, with the only cost being the computational effort. For a medium-sized
model like out HaCaT cell model, even this is negligible. On the other hand, real wet lab
experiments can easily cost hundreds of Euros each.

As seen from the IL6+/GMCSF+ experiments (section 3.6, table 3.3a), co-stimulation
with IL-6 and GM-CSF leads to a lower response in cytosolic phospho-STAT-3 compared to
the experiments with sole IL-6 stimulation, in which the (very low) physiological GM-CSF
level was maintained.

We therefore decided to predict the kinetics of cytosolic phospho-STAT-3 upon co-stimula-
tion with a fixed concentration of IL-6 (100ng/mL) and different doses of additional GM-CSF
(concentrations of 10pg/mL, 100pg/mL, 1ng/mL, 10ng/mL, and 100ng/mL) covering the range
between physiological and maximum experimental concentrations, to investigate whether there
is an “optimal” level of additional GM-CSF that results in a maximum pSTAT-3 response –
an intuitive expectation concerning the facts that both co-stimulation with as well as blockade
of GM-CSF leads to a decreased IL-6-induced STAT-3 activation.

3.8.1 Predicted GM-CSF dose dependency

Figure 3.24 depicts the predicted time course of cytosolic phospho-STAT-3 upon co-stimula-
tion with a fixed amount of IL-6 and different doses of GM-CSF. For comparison, the time
courses upon sole IL-6 stimulation as well as with simultaneous blockade of GM-CSF and
the unstimulated control (see section 3.7.7) are re-printed. As one can see from the image, a
negative correlation between additional GM-CSF and phospho-STAT-3 response is predicted.
None of the simulated co-stimulation experiments shows a higher response in STAT-3 activation
than in the sole IL-6 stimulation setting. A somehow counter-intuitive prediction, that was
confirmed when the actual wet lab experiments were performed (see figure 3.26).

As figure 3.25 shows, the maximum level of signalling competent and active IL-6-bound
gp130 ligand-receptor-complexes is reached 15 minutes after stimulation in the co-stimulation
experiment IL6+/GMCSF+. This time point was chosen for the experimental verification of
the predicted nonlinear dependency of IL-6-induced phospho-STAT-3 on GM-CSF concentra-
tion.

The model predicted an 22-fold rise in cytosolic phospho-STAT-3 15 minutes after stim-
ulation with 100ng/mL IL-6 and 100pg/mL of GM-CSF. After co-stimulation with 10ng/mL
GM-CSF, the simulation yields an 16.8-fold increase in cytosolic phospho-STAT-3. A simu-
lated co-stimulation with 1ng/mL results in an 15.6-fold increase of phospho-STAT-3 in the
cytosol, whereas a co-stimulation with only 100pg/mL of additional GM-CSF is predicted to
yield an only 12.4-fold increase in the cytosolic concentration of phospho-STAT-3.
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Figure 3.24: Prediction of time course in co-stimulation experiments. Depicted are the predicted
time courses of cytosolic phospho-STAT-3 upon co-stimulation with IL-6 (100ng/mL) and different doses
of GM-CSF (shades of blue). For comparison, the time-course of the unstimulated control (black), sole
IL-6 stimulation (red), as well as IL-6 stimulation while blocking GM-CSF (brown) is displayed. The time
point chosen for wet lab confirmation is illustrated as green dashed line.
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Figure 3.25: Predicted time course of activated IL-6/gp130 ligand receptor complex. Simulation
of the activated ligand-receptor-complex in the co-stimulation experiment IL6+/GMCSF+. The maxi-
mum level of active signalling IL-6-bound gp130 receptors is reached 15 minutes after stimulation with
100ng/mL of IL-6 and GM-CSF each.
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3 A Crosstalk Model of GM-CSF-mediated IL-6-induced JAK-STAT Signalling

3.8.2 Wet lab verification of GM-CSF dose dependency in IL-6-induced
phospho-STAT-3 signalling

The outcome of the co-stimulation experiments series is depicted in figure 3.26. Each group of
bars belongs to prediction and wet lab measurements of the amplification factors in cytosolic
phospho-STAT-3 for a different experimental setting. From left to right, the concentration
of GM-CSF increases, whereas the IL-6 concentration is constant. For comparison, also the
measurements of the IL6+ setting (sole IL-6 stimulation keeping the physiological GM-CSF
level) as well as the ones of the IL6+/GMCSF– setting (sole IL-6 stimulation while blocking
GM-CSF) are given.

The model predicted amplification factors after 15 minutes are depicted as light blue boxes
( ) in figure 3.26. Qualitatively, the measurements depicted as dark green boxes ( ) are in
good concordance with the prediction.

By delaying “model time” by only 3 minutes, we actually get a good quantitative concor-
dance between prediction and outcome. The predictions of amplification factors of cytosolic
phospho-STAT-3 12 minutes after stimulation are depicted as blue boxes ( ) in figure 3.26.
The displayed amplification factors are mean values originating from triplicate measurements.

Co-stimulation with a GM-CSF concentration of 100ng/mL yields a 11.3-fold increase in
cytosolic pSTAT-3, close to the prediction of a 10.5-fold increase. The observed rise to an 11.6-
fold level of pSTAT-3 in the co-stimulation experiment with 10ng/mL GM-CSF confirms the
predicted 12.7-fold rise. Furthermore, with a prediction of 13.5-fold increase and an observed
13.1-fold rise in cytosolic pSTAT-3 concentration, the model forecasts the outcome pretty
well. Last, in the experiment with 100pg/mL additional GM-CSF, where a 16.4-fold increase
is predicted, we observe a 14.9-fold increase in cytosolic pSTAT-3.

3.9 Conclusion
Our mathematical modelling revealed a nonlinear dose dependency on GM-CSF in IL-6-
induced phospho-STAT-3 signalling.

We predicted and experimentally verified (see figure 3.26) that the physiological
GM-CSF level is correlated to highest activation levels of cytosolic phospho-STAT-3
levels upon IL-6 stimulation.

3.8.3 Interpretation and outlook

What might be a next step? Our model enables us to simulate, e.g., knockout studies and
other interventions to specifically manipulate cellular levels of pSTAT-3. Such a study, however,
can not be solved but only be assisted by mathematical means, as it heavily relies on expert
knowledge of the biological interconnections to other pathways, proteins and signal transducers
inside and outside of cells.

Elevated levels of pSTAT-3 are known to be present in many human cancer types [John-
stonGrandis2011]. Further, the usage of GM-CSF in cancer therapy has been and currently still
is investigated, see i.e. [Kanerva2013]. As mentioned in the introduction (sections 3.1 and 3.2
on page 42ff), aberrant and persistent activation of pSTAT-3 is frequently found in cancer
[Ernst2008; Buettner2002; Yu2014].
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3.8 New biological insight: Dose dependency on GM-CSF

With our model, we have established a connection between the two cytokines GM-CSF and
IL-6 in JAK-STAT signalling, based on and supported by in vitro experiments and data. We
were able to prove the mediating effect of GM-CSF on IL-6-induced pSTAT-3, and developed
and validated a quantitative model for the occurring interactions, that may be used to predict
and strategically investigate the mediating effects of GM-CSF on pSTAT-3 activation, making
it possible to formulate and address new questions.

The discovered nonlinear influence of GM-CSF on IL-6-induced pSTAT-3 signalling gives
a promising target for the development of new therapeutic intervention methods, and further
research can be assisted by mathematical modelling.
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Figure 3.26: Dose dependency on GM-CSF in IL-6-induced phospho-STAT-3 signalling.
Phospho-STAT-3 induction upon co-stimulation with 100 ng/mL IL-6 and different doses of additional
GM-CSF (increasing from left to right), as well as an unstimulated control (first column) and phospho-
STAT-3 induction upon IL-6 stimulation while blocking GM-CSF with appropriate antibodies (second col-
umn). Model prediction ( light blue) shows a negative correlation between additional GM-CSF stimu-
lus and IL-6-induced cytosolic phospho-STAT-3. This negative correlation has been confirmed in the wet
lab experiments ( dark green). Delaying “model time” by 3 minutes gives a good quantitative concor-
dance between prediction ( blue) and actual measurements.
In the stimulation experiments, measurements are taken 15 minutes after stimulation. Depicted are mean
values from triplicate experiments with empirical standard deviation as error bars.

(∗) The IL6+/GMCSF– experiment (second column) corresponds to an overall GM-CSF level of 0 (zero)
pg/mL, as GM-CSF is blocked by appropriate antibodies. In the IL6+ experiment (third column), the
physiological GM-CSF level of about 10 pg/mL is maintained. Thus, there is experimental evidence that
the physiological level of GM-CSF is correlated to highest activation of cytosolic phospho-STAT-3 upon
IL-6 stimulation.

How to read the figure: For the co-stimulation experiment with 100ng/mL IL-6 and 1ng/mL GM-CSF (fifth column), the
model predicted a 16.8-fold rise in cytosolic phospho-STAT-3 15 minutes after stimulation. The experimental verification
yielded an actual mean value of 13.1-fold increase. Delaying the model time by 3 minutes results in a good quantitative
concordance of 13.5-fold increase (model prediction at 12 minutes after stimulation).
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4 Introduction to Stochastic Differential
Equations

In this chapter, we recapitulate the basics of measure theory and stochastic processes that are
required to introduce the concept of WIENER processes. Though these results may be found
in any textbook on probability, we restate them not only for the sake of completeness, but also
to establish the notation used in this thesis.

Following the introduction by [Oksendal1998], we develop stochastic differential equations
by modifying an ODE population growth example, affecting it by some noise. A formal
introduction and definition of the underlying stochastic ITÔ(1) integrals is given in appendix C.

We further discuss numerical integration schemes, especially the EULER-MARUYAMA sto-
chastic integrator, and their convergence properties.

To conclude this chapter, we give an introduction to SDE driven by LÉVY processes with
jumps and their numerical integration.

Main references for the presented results in this chapter are the textbooks of ØKSENDAL

[Oksendal1998], KLOEDEN and PLATEN [KloedenPlaten1995], and PROTTER [Protter2004].

4.1 Basic definitions and results

4.1.1 Random variables

4.1 Definition (σ-Algebra)
Let Ω be a set. A family A ⊆ P(Ω) of subsets of Ω, is called a σ-algebra, if it holds

i) Ω ∈ A ii) A ∈ A =⇒ Ac ∈ A iii) An ∈ A ∀ n ∈ IN =⇒
∞⋃

n=1

An ∈ A

where Ac := Ω\A denotes the complement of A. �

4.2 Lemma
Let A be a σ-algebra on the set Ω. Then, it holds:

1. ∅ ∈ A
2. An ∈ A ∀ n ∈ IN =⇒

∞⋂
n=1

An ∈ A
3. A,B ∈ A =⇒ A\B ∈ A
4. The intersection of any two σ-algebras is again a σ-algebra. �

(1) Kiyosi ITÔ (伊藤清), 1915–2008, Japanese mathematician and pioneer of stochastic integration and stochastic
differential equations. While the Hepburn romanization of his name is “Kiyoshi ITŌ” (with a macron), he
himself preferred the spelling ITÔ with a circumflex (Kunrei-shiki romanization).
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4 Introduction to Stochastic Differential Equations

4.3 Definition (Generating σ-algebra)
Let Σ ⊆ P(Ω) be a family of subsets of Ω. The smallest σ-algebra on Ω that contains Σ is
called the σ-algebra generated by Σ, and is written as:

σ(Σ) :=
⋂
{A ∈ P(Ω)

∣∣ Σ ⊂ A and A is a σ-algebra}. �

4.4 Definition (Measurable space, measure, measure space, probability space, completeness)
Let A be a σ-algebra on Ω.

1. The pair (Ω,A) is called a measurable space, and the setsA ∈ A are called theA-measurable
sets of Ω.

2. A function µ : A → [0,∞] is called a measure on the measurable space (Ω,A), if

(i) µ(∅) = 0 (ii) µ

( ∞⋃
d

n=1

An

)
=
∞∑

n=1

µ(An) for disjoint sets An ∈ A.

Then, for A ∈ A, the value µ(A) is called the measure of A.

3. The triple (Ω,A, µ) is called a measure space.

4. A measure space (Ω,A, IP) with IP(Ω) = 1 is called a probability space, and the measure
IP is called a probability measure. Further, for A ∈ A, the value IP(A) is called the
probability of A.

5. A probability space is said to be complete, if any subset of a set with probability 0 is
included in the underlying σ-algebra, i.e. ∀ B ⊂ A : A ∈ A, IP(A) = 0 =⇒ B ∈ A

�

A probability space (Ω,A, IP) is the underlying mathematical construct of probability theory
to model a random experiment. Here, the set Ω is the sample space that contains all possible
outcomes, whereas the σ-algebra A denotes a set of events that we are interested in. An event
is a set of one or multiple outcomes(2). Finally, the probability measure IP endows each event
A ∈ A with a certain probability IP(A).

4.5 Definition (Measurable function, generated σ-algebra)

1. Let f : Ω1 → Ω2 be a map between two measurable spaces (Ω1,A1) and (Ω2,A2). Then,
f is called a measurable function, if the preimage of every measurable set in (Ω2,A2) is
measurable in (Ω1,A1), i.e. if

f−1(A) ∈ A1 for every A ∈ A2,

and then we write f : (Ω1,A1)→ (Ω2,A2).

2. Let g : Ω1 → Ω2 be a map, and A2 be a σ-algebra on Ω2. Then we define σ(g), the
σ-algebra generated by g , by

σ(g) := {g−1(A) : A ∈ A2}. �

(2) Using the common “throwing once a dice” example, the sample space of possible outcomes may be chosen
as Ω = {1, 2, 3, 4, 5, 6}. The event “throwing a three” is then described by the set {3}, the event “throwing
an even number” by {2, 4, 6}.
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4.1 Basic definitions and results

4.6 Lemma
Let g : Ω1 → Ω2 be a map, A2 be a σ-algebra on Ω2, and σ(g) the σ-algebra generated by g.
Then, it holds:

1. σ(g) is a σ-algebra on Ω1.

2. σ(g) is the smallest σ-algebra on Ω1, such that g : (Ω1, σ(g))→ (Ω2,A2) is measurable.

�

4.7 Definition (Topological space, topology)
Let X be a set, and T ⊆ P(X ) a family of subsets of X . The pair (X , T ) is called a topological
space, if

i) X ∈ T and ∅ ∈ T

ii) A,B ∈ T =⇒ A ∩B ∈ T

iii) S ⊂ T =⇒ ⋃
A∈S

A ∈ T

Then, T is called a topology on X and we may write it as the set of all open subsets of X , i.e.
T = {X ⊆ X

∣∣ X is an open set}. �

4.8 Definition (BOREL σ-algebra)
Let (X , T ) be a topological space.

1. The BOREL σ-algebra IB is the σ-algebra that is generated by the open sets of X :

IB := IB(X ) := σ({A ⊂ X
∣∣ A is open}),

i.e. the BOREL σ-algebra is the smallest σ-algebra containing the open sets, and an
element B ∈ IB is called a BOREL set .

2. As a convention, a topological space is assumed to be endowed with its BOREL σ-algebra IB,
if not otherwise specified.

3. We write IBn for the BOREL sets in IRn, and IB for the BOREL sets in IR.

4. A measurable function X : (Ω,A)→ (IRn, IBn) is called BOREL measurable.

5. Let (IRn, IBn, λ) be a measure space. If the measure λ has the property

λ
(
[a1, b1]× [a2, b2]× ...× [an, bn]

)
= (b1 − a1) · (b2 − a2) · ... · (bn − an)

then it is called the LEBESGUE-BOREL measure(3).

�

(3) The LEBESGUE measure is the complete measure built from the LEBESGUE-BOREL measure by adding to
IBn all sets A ⊂ IRn with A ⊂ A ⊂ A, where A,A ∈ IBn and λ(A\A) = 0. The corresponding sets are called
LEBESGUE measurable and form the LEBESGUE σ-algebra (which is in some sense much larger than the
BOREL σ-algebra).
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4 Introduction to Stochastic Differential Equations

In what follows, the triple (Ω,A, IP) denotes a complete probability space if not otherwise
specified.

4.9 Definition and Lemma (Random variable, induced probability measure)

1. Let (Ω1,A1, IP) be a complete probability space and (Ω2,A2) be a measurable space.
A measurable map X : (Ω1,A1) → (Ω2,A2) is then called a (Ω2,A2)-valued random
variable on Ω1.

2. For abbreviation, if X : (Ω1,A1) → (IRn, IBn), instead of talking about an X as an
IRn-valued random variable on Ω1, we denote it for short as a random variable.

3. Let X : (Ω1,A1) → (IRn, IBn) be an random variable. Then, the distribution of X is
defined by µX(B) := IP

(
X−1(B)

)
for B ∈ IBn, and µx is a probability measure on

(IRn, IBn).

�

4.10 Definition (Indicator function)
Let Ω be a set, A ⊆ Ω a subset, and x ∈ Ω an element. The indicator function 1A : Ω→ {0, 1}
is defined as

1A(x) =

{
1 (x ∈ A)

0 (x /∈ A)

�

4.11 Definition (Stochastic independence)

1. A finite set A1, ...,An of sub-σ-algebras of A is stochastically independent , if for any
Ai ∈ Ai, it holds:

IP(A1 ∩A2 ∩ ... ∩An) = IP(A1) · IP(A2) · ... · IP(An)

An infinite set of sub-σ-algebras is said to be (mutually) stochastically independent , if
any finite subset is stochastically independent.

2. Random variables X1, X2, ... are stochastically independent , if the σ-algebras generated
by them, σ(X1), σ(X2), ... are stochastically independent.

3. Events A1, A2, ... ⊆ Ω are stochastically independent , if the σ-algebras generated by the
respective indicator functions, σ(1A1), σ(1A2), ..., are (mutually) stochastically indepen-
dent.
This corresponds to the definition from elementary probability, that two events A1,A2

are stochastically independent, if IP(A1 ∩A2) = IP(A1) · IP(A2).

The adverbs mutually and stochastically are often omitted. �

100



4.1 Basic definitions and results

The following compact definitions and results of the expectation and conditional expectation
of random variables are taken from [Oksendal1998] and extended to our need:

4.12 Definition and Lemma (Expectation)
Let X : (Ω,A)→ (IRn, IBn) be a random variable with distribution µX .

1. If

∫

Ω
|X(ω)| dIP(ω) <∞, then the number

IE[X] :=

∫

Ω

X(ω) dIP(ω) =

∫

IRn

x dµX(x)

is called the expectation of X w.r.t. the measure IP.

2. Let f : IRn → IR be BOREL measurable with

∫

Ω
|f(X(ω))| dIP(ω) <∞. Then:

IE[f(X)] :=

∫

Ω

f(X(ω)) dIP(ω) =

∫

IRn

f(x) dµX(x)

3. LetX1, X2 : Ω→ IR be two independent, real-valued random variables with IE[|X1|] <∞,
IE[|X2|] <∞. Then, the expectation of their product X1X2 is

IE[X1X2] = IE[X1] · IE[X2]

Note: The integrals are LEBESGUE integrals. �

4.13 Definition and Lemma (Conditional expectation)
Let (Ω,A, IP) be a probability space, X : Ω → IRn a random variable with IE[|X|] < ∞, and
H ⊂ A be a sub-σ-algebra. Then, the conditional expectation of X given H is a random
variable IE[X|H] : Ω→ IRn that fulfills the following conditions:

a) IE[X|H] is H-measurable

b) IE[1H · IE[X|H]] = IE[1H ·X] for all H ∈ H.

The conditional expectation is almost-surely unique. �

Defining a measure µ on H by µ(H) :=
∫
H X dIP (H ∈ H), then µ is absolutely contin-

uous w.r.t. IP|H (i.e. ∀H ∈ H : IP(H) = 0 =⇒ µ(H) = 0), thus, by the RADON-NIKODÝM

theorem, there exists a H-measurable function F on Ω, such that µ(H) =
∫
H F dIP ∀H ∈ H,

and F is almost-surely unique. This F is the conditional expectation.

An equivalent formulation of definition and lemma 4.13b) is given as

∫

H
IE[X|H] dIP =

∫

H
X dIP (∀H ∈ H).

Thus, the conditional expectation can be interpreted as the RADON-NIKODÝM derivative of µ
w.r.t. IP.
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4 Introduction to Stochastic Differential Equations

Without proof, we give some basic properties of the conditional expectation:

4.14 Lemma (Some properties of the conditional expectation)
Let (Ω,A, IP) be a probability space, X : Ω → IRn a random variable with IE[|X|] < ∞, and
H ⊂ A be a sub-σ-algebra. Additionally, let Y : Ω → IRn be a second random variable with
existing expectation and a, b ∈ IR. Then, it holds:

1. The conditional expectation is linear, i.e.
IE[aX + bY |H] = a · IE[X|H] + b · IE[Y |H]

2. IE[IE[X|H]] = IE[X]

3. IE[X|H] = X if X is H-measurable

4. IE[X|H] = IE[X] if X is independent of H
5. IE

[
XTY

∣∣H
]

= Y TIE[X|H] if Y is H-measurable

�

4.15 Definition and Lemma (Normal or GAUSSian distribution, POISSON distribution)
Let (Ω,A, IP) be a complete probability space.

1. Let X : Ω→ IRn be a random variable. X is said to be GAUSSian distributed or normally
distributed with expectation µ and covariance matrix Σ, if its density function is given
as

fX(x) =
1

(2π)
n
2 (det Σ)

1
2

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)

and we write X ∼ N
(
µ,Σ

)
.

2. In the special case that a normally distributed random variableX is centered (µ = 0 ∈ IRn)
and the components are uncorrelated (Σ = In×n), the density function reduces to:

fX(x) =
1

(2π)
n
2

exp
(
− 1

2‖x‖
2)

3. LetX : Ω→ IN0 be an integer-valued (discrete) random variable. X is said to be POISSON

distributed with parameter λ, if its probability mass function is given as

PX(k) =

{
e−λ · λkk! k ∈ IN0

0 otherwise

and we write X ∼ Poi
(
λ
)
.

4. For a POISSON distributed random variable X ∼ Poi
(
λ
)
, it holds:

IE[X] = λ and Var[X] = λ.

�
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4.1 Basic definitions and results

4.1.2 Stochastic processes

Stochastic processes can be defined as measurable mappings from any probability space into
arbitrary measurable spaces. Here, however, we restrict ourselves to IRn-valued stochastic
processes.

4.16 Definition (Stochastic process)
Let (Ω,A, IP) be a complete probability space, and T an index set (interpreted as interval of
time). Xt : Ω→ IRn shall be a random variable for every t ∈ T .
The parametrized collection of random variables

{Xt}t∈T

is called a stochastic process, and often written as Xt for short.
Usually, we choose w.l.o.g. T = IR+ := [0,∞). �

A stochastic process {Xt}t∈T can be interpreted as a mapping

X : Ω× T → IRn with (ω, t) 7→ Xt(ω) = X(ω, t).

such that, for each fixed time point t ∈ T , the map

ω 7→ Xt(ω) (ω ∈ Ω)

is a random variable, and for a fixed choice of ω ∈ Ω, the function

t 7→ Xt(ω) (t ∈ T )

is a certain realization or (sample) path of the stochastic process.

One must be precise when comparing stochastic processes, as the value of Xt(ω) depends on
t ∈ T and ω ∈ Ω, with T and Ω both being uncountable sets in general.

4.17 Definition (Version, modification, indistinguishability)
Let {Xt}t≥0 and {X̃t}t≥0 be two stochastic processes on (Ω,A, IP), i.e. X : (ω, t) 7→ Xt(ω) and
X̃ : (ω, t) 7→ X̃t(ω).

1. X̃t is a version or modification of Xt, if

∀ t ≥ 0 : IP
(
Xt=X̃t

)
= IP

(
{ω ∈ Ω

∣∣ Xt(ω) = X̃t(ω)}
)

= 1

2. X̃t and Xt are indistinguishable, if

IP
(
{ω ∈ Ω

∣∣ ∀ t ≥ 0 : X̃t(ω) = Xt(ω)}
)

= 1

i.e., Xt and X̃t have almost surely the same sample paths.
An equivalent characterization is: Xt and X̃t are indistinguishable, if there exists a subset
A ⊂ Ω with IP(A) = 1 and Xt(ω) = X̃t(ω) ∀ ω ∈ A and all t ≥ 0.

�
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4 Introduction to Stochastic Differential Equations

4.18 Example (Version, modification, indistinguishability)
Let T ∼ U

(
0, 1
)

be a uniformly distributed random variable, Xt := 1{t=T}, and X̃t := 0
the zero process. Then, for all t, we have IP(Xt 6= 0) = IP(T = t) = 0, or, equivalently,
∀t : P (Xt = X̃t) = 1, i.e.. Xt is a version of X̃t. But obviously, Xt is not indistinguishable
from the zero process X̃t, as its sample path t 7→ Xt(ω) always takes the value 1 for one certain
time point for every ω ∈ Ω. �

Througout this thesis, we will deal only with processes that fulfill the càdlàg property. As a
pleasant side effect, for càdlàg processes, being a version and being indistinguishable coincides:

4.19 Definition and Lemma (Càdlàg – continue à droite, limite à gauche)

1. Let I ⊆ IR. A function f : I → IRn is called càdlàg , if it is “continuous on the right” and
has “limits on the left”, i.e.

a) the right limit f(a+) := lim
x→a+

f(x) exists and f(a+) = f(a)

b) the left limit f(a−) := lim
x→a−

f(x) exists.

2. A stochastic process Xt on a probability space (Ω,A, IP) is called càdlàg , if almost all
its sample paths t 7→ Xt(ω) are càdlàg.

3. Let Xt and X̃t be càdlàg stochastic processes. If X̃t is a modification/version of Xt, then
Xt and X̃t are indistinguishable.

Proof: X̃t is a version of Xt, thus IP(Xt=X̃t) = 1 for all t ≥ 0.
Let A = {ω ∈ Ω

∣∣ ∃ t ≥ 0 : X̃t(ω) 6=Xt(ω)}. Then, since X̃t and Xt are càdlàg, we have

IP(A)=IP
(⋃

q∈|Q+

{
ω ∈ Ω

∣∣X̃q(ω) 6=Xq(ω)
})
≤∑q∈|Q+ IP

({
ω ∈ Ω

∣∣ X̃q(ω) 6=Xq(ω)
})

= 0.

�

We introduce two frequently referenced properties on the increments of stochastic processes.

4.20 Definition (independent and stationary increments)
Let Xt be a stochastic process.

1. Xt has independent increments, if for all 0 ≤ t0 < t1 < t2 < ... < tn the increments
Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtn −Xtn−1 are independent.

2. Xt has stationary increments, if the process Xt −Xs has the same distribution as Xt−s
for all 0 ≤ s < t <∞.

�
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4.2 The WIENER process and BROWNian motion

Figure 4.1: Five example realizations of standard WIENER processes in the time range [0, 100], gen-
erated by the explicit EULER-MARUYAMA scheme developed in section 4.4.1 with time steps of ∆t = 0.01.

4.2 The WIENER process and BROWNian motion

We introduce the notion of WIENER process and give a short survey of its development starting
from the observation of particle movement in BROWNian motion.

4.21 Definition (WIENER process, 1D)
Let (Ω,A, IP) be a probability space. A stochastic process {Wt}t≥0, Wt : Ω → IR, is called a
1D standard WIENER process, if

i) W0 = 0 with probability 1 (IP-almost surely),

ii) for two time points 0 ≤ s < t, the increments Wt −Ws are stationary and normally
distributed with mean zero and variance t− s, i.e. Wt −Ws ∼ N

(
0, t− s

)
,

iii) for each finite set of time points {t1, ..., tm}, the increments

Wt1 −Wt0 , Wt2 −Wt1 , ... , Wtm −Wtm−1

are stochastically independent,

iv) for ω ∈ Ω, the realization Xt(ω) is continuous with probability 1 (IP-almost surely).

Figure 4.1 shows the trajectories of five 1D standard WIENER processes. �

The continuity requirement in definition iv) is not mandatory. KOLMOGOROV’s continuity
theorem says that if there exist constants a, b > 0 and c <∞ for a stochastic process {Xt}t≥0,
such that IE[|Xt −Xs|a] ≤ c|t− s|1+b ∀ t, s ≥ 0, then there exists a continuous modification
X̃t of Xt, i.e. X̃t is continuous and IP(Xt = X̃t) = 1 ∀t ∈ [0,∞).

It can be shown that such constants a, b, c do exist for a WIENER process Wt (see, e.g.,
[Krylov2002]), and thus we can always construct a continuous version W̃t that is even indis-
tinguishable from Wt due to its càdlàg property.
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4 Introduction to Stochastic Differential Equations

4.22 Definition and Lemma (Drift and volatility, 1D)
drift!of a Wiener process@of a WIENER processLet Wt be a standard WIENER process, and
µ,D ∈ IR. The stochastic process

Xt := µt+DWt

is called a WIENER process (or BROWNian motion) with drift µ and volatility D.
For 0 ≤ s < t, the distribution of the increments is given as

Xt −Xs ∼ N
(
µ(t− s), D2(t− s)

)
.

�

4.2.1 BROWNian motion or WIENER process? – A short historical note

Introducing the BROWNian motion as a synonym for a WIENER process actually is a reversal of
history. It was BROWN(4) who studied the movement of small particles ejected from grains of
pollen suspended in water during the year 1827(5). He described a “rapid oscillatory motion”
[Brown1828] of those particles in his (initially unpublished) manuscript A brief account of
microscopical observations made in the months of June, July and August, 1827, on the particles
contained in the pollen of plants; and on the general existence of active molecules in organic
and inorganic bodies. BROWN stated, that this motion cannot be due to the vitality of living
organisms – a belief widely spread at this time and also BROWN’s initial guess – as he made
identical observations with dead materials.

It was Christian WIENER(6) who showed in 1863 by experiment that the quick and jerky
motion of small particles suspended in liquids is due to the motion of the liquids’ molecules
[Wiener1863].

It is not obvious that a stochastic process with the properties of definition 4.21 exists.
It took 60 years after Christian WIENER’s experimental demonstration, until his namesake
Norbert WIENER(7) – inspired by work of BACHELIER, EINSTEIN, SMOLUCHOWSKI, PERRIN,
and others – developed a rigorous mathematical proof using new techniques and results of
LEBESGUE and BOREL in measure theory [Wiener1923]. Rigorous proofs can also be found for
example in [IkedaWatanabe1981] or [Oksendal1998].

(4)Robert BROWN, 1773–1858, Scottisch botanist
(5)Johann INGEN-HOUSZ, 1730–1799, Dutch physiologist and botanist and the discoverer of photosynthesis

described a similar movement of charcoal dust in ethanol decades earlier than BROWN in 1784 in his
Bemerkungen über den Gebrauch des Vergrößerungsglases (Remarks on the usage of the magnifying glass,
[IngenHousz1784]):

”
Um es klar einzusehen, daß man sich aus Mangel der Aufmerksamkeit in seinem Urtheile hierüber betrügen

könnte, darf man nur in den Brennpunct eines Mikroskops einen Tropfen Weingeist sammt etwas gestoßener
Kohle setzen; man wird diese Körperchen in einer verwirrten beständigen und heftigen Bewegung erblicken,
als wenn es Thierchen wären, die sich reissend unter einander fortbewegen.“
— To see it clearly that one may deceive oneself in one’s verdict due to a lack of attentiveness, one only
has to put a drop of ethanol together with a little ground charcoal into the focus of a microscope; one will
find those corpuscles in a confused, persistent and boisterous motion, as if they were animalcules rapidly
moving among themselves.

The claim for discovering what is known today as BROWNian motion might thus be attributed to INGEN-

HOUSZ, though his experimental set-up also resembles the BÉNARD experiment. Possibly, the movements
observed by INGEN-HOUSZ might also have been due to RAYLEIGH-BÉNARD convection.

Peter HÄNGGI has collated many “historical items and surveys” about BROWNian motion on his web page at
University of Augsburg: http://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html

(6)Ludwig Christian WIENER, 1826–1896, German mathematician, physicist und philosopher
(7)Norbert WIENER, 1894–1964, US-American mathematician and philosopher, and considered the originator

of cybernetics
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4.3 Stochastic integrals and stochastic differential equations

We list some basic properties if WIENER processes. For proofs, we refer to the literature, e.g.
[Oksendal1998; Protter2004].

4.23 Lemma (Distribution of the WIENER process)
Let Wt be a standard WIENER process. Then, it holds:

1. Wt ∼ N
(
0, t
)
, that is IP

(
Wt ∈ (a, b)

)
= 1√

2πt

b∫
a
e−

x2

2t dx.

2. Wt and ∆Wt+s,s := Wt+s −Ws are identically distributed.

3. IE[Wt] = 0.
�

4.24 Definition and Lemma (WIENER process, nD)

Let W
(1)
t ,W

(2)
t , ...,W

(n)
t be stochastically independent standard WIENER processes. Then, the

stochastic process

Wt :=
(
W

(1)
t ,W

(2)
t , ...,W

(n)
t

)T

is called n-dimensional standard WIENER process, and for 0 ≤ s < t, the increments ∆Wt,s =
Wt −Ws ∈ IRn are stochastically independent and N

(
0, (t− s)In

)
normally distributed. �

4.25 Definition and Lemma (Drift and Variance, nD)
Let Wt be an n-dimensional standard WIENER process, and µ ∈ IRn, D ∈ IRn×n. The
stochastic process

Xt := µt+DWt

is called an n-dimensional WIENER process (or BROWNian motion) with drift µ and volatility
or variance DDT. Thus, we have

Xt −Xs ∼ N
(
(t− s)µ, (t− s)DDT

)
.

for the increments Xt −Xs and 0 ≤ s < t. �

4.3 Stochastic integrals and stochastic differential equations

In section 4.4 that copes with numerical integration of stochastic differential equations, we will
use a discrete reformulation of a stochastic initial value problem (S-IVP), and will develop a
simple numerical integration scheme (the explicit EULER-MARUYAMA) along the way.

Before that, we specify which type of solutions we are looking for and give some results
on the existence and uniqueness of solutions to stochastic initial value problems.

An introduction to the theory of the underlying stochastic integrals of ITÔ is found in
appendix C.
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4.3.1 From ordinary to stochastic differential equations

Inspired by the introduction of ØKSENDAL [Oksendal1998], we consider a classical population
growth model.

4.26 Problem (Population Growth)
Let N(t) denote the size of a population (in continuous units) at time t, with an initial
population of N0 ≥ 0. Further, let a(t) be the growth rate of the population at a certain
time point t.
Then, we can describe the time evolution of population size by the initial value problem

dN

dt
(t) = a(t)N(t), N(0) = N0 (4.1)

The growth function is usually not completely known, but can it can be modelled deter-
ministically by knowledge or assumptions on the environment, e.g. nutrition conditions.
However, even if we know a lot about the system, there remains some randomness, such that
the growth rate might be modelled as the sum of a deterministic function a(t) that is affected
by some noise:

a(t) = a(t) + “noise”

such that the above problem reads as

dN

dt
(t) = (a(t) + “noise”) ·N(t) = a(t)N(t) +N(t) · “noise”

The question arises, how to model the “noise”, and what its mathematical interpretation is.
More generally, one would like to study equations of the form

dXt

dt
=f(t,Xt) + g(t,Xt) · “noise”

or

dXt

dt
=f(t,Xt) + g(t,Xt) · Zt

with given drift function f , volatility function g, and a suitable “noise” process Zt.

We might introduce the term white noise process for Zt at this point. It is a generalized
stochastic process that can be interpreted as a probability measure on the space of tempered
distributions S ′

(
[0,∞)

)
(8), and we could finally interpret the BROWNian motion Wt as an

integral of the white noise process:

Wt =

∫ t

0
dZt and thus, formally,

dWt

dt
= Zt.

(8)The SCHWARTZ space S
(
[0,∞)

)
=
{
ϕ ∈ C∞

(
[0,∞)

) ∣∣ ∀α, β ∈ INn
0 : sup

x∈IRn
|xαDβϕ(x)| < ∞

}
is the

space of rapidly falling C∞-functions. A continuous linear mapping f : S ([0,∞)) → |C is called a tempered
distribution, and the set of all those mappings is S ′

(
[0,∞)

)
, i.e. the dual space of S

(
[0,∞)

)
.
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4.3 Stochastic integrals and stochastic differential equations

However, the latter equation states Zt being the time derivative of a WIENER process,
which is nondifferentiable almost everywhere. For solving stochastic differential equations,
fortunately, we do not need to study white noise processes first. Instead, we interpret SDEs
as a formal writing for stochastic integral equations, which can then be analysed and solved
with methods from the ITÔ calculus.

Analogously to solving an ordinary differential equation (more precisely, the initial value prob-
lem)

dx

dt
(t) = f(t, x(t)), x(t0) = xt0

by calculating the respective integral

x(t) = xt0 +

∫ t

t0

f(s, x(s)) ds,

and transfering this ansatz to a (preliminary) stochastic differential equation (again, more
precisely, a stochastic initial value problem, S-IVP)

dXt = f(t,Xt) dt+ g(t,Xt) dWt, Xt0 = xt0

leads to the stochastic integral equation

Xt = xt0 +

∫ t

t0

f(s,Xs) ds+

∫ t

t0

g(s,Xs) dWs

with a BROWNian motion or WIENER process Wt.

The first integral can be interpreted as an “ordinary” LEBESGUE-integral, if the drift
function f and its arguments are continuous almost everywhere. The second one, however,
has to be treated with care, as it is an integral with respect to a WIENER measure. In
appendix C, a short theoretical introduction to this kind of stochastic integrals is given.

We note that the initial value xt0 can also be random, though we will focus on a deter-
ministic initial state in the following discussion.

Similar to the deterministic case for non-autonomous ODE, any n-dimensional time-inhomo-
geneous SDE

dXt = f(t,Xt) dt+ g(t,Xt) dWt, Xt0 = xt0

can be written as a time-homogeneous one by transformation into an (n+ 1)-dimensional sys-
tem with an appropriate modification of the drift and diffusion functions f and g. Whereas
in the deterministic setting, the addition of the ODE d

dtxn+1 = 1 with initial condition
xn+1(t0) = t0 can be used as a substitute for the time variable, in the stochastic setting,
an additional differential state with drift f ≡ 1 and diffusion g ≡ 0 is added. Without loss of
generality, it would thus be sufficient to study time-homogeneous SDEs only.

However, for numerical research, it is common and computationally more efficient, to cope
with an explicit time-dependence. Thus and for the sake of simplicity, we investigate w.l.o.g.
processes with initial time point t0 = 0 and end time tf = T .
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4 Introduction to Stochastic Differential Equations

We formally restate a multi-dimensional stochastic initial value problem, where the underlying
ITÔ integral is driven by a WIENER process. An introduction to the ITÔ calculus is found in
appendix C. Conditions for existence and uniqueness of solutions are given in section 4.3.2.

4.27 Definition (SDE, S-IVP)
Let Wt be an nW -dimensional WIENER process, and let further be given a vector-valued
function f : IR× IRnx → IRnx and a matrix-valued function g : IR× IRnx → IRnx×nW .

1. We call f the drift , and g the diffusion function.

2. A stochastic initial value problem (S-IVP) is of the form

dXt = f(t,Xt) dt+ g(t,Xt) dWt, X0 = x0, t ∈ [0, T ] (4.2)

with initial state x0 ∈ IRnx .

3. The associated stochastic integral equation reads as

Xt = x0 +

∫ t

0
f(s,Xs) ds+

∫ t

0
g(s,Xs) dWs (4.3)

4. If the diffusion function g is a constant, independent of Xt, i.e. it has a representation
as a matrix in IRnx×nW , the system in eq. (4.2) is called an SDE with additive noise.
Otherwise, the SDE is said to have multiplicative noise.

For the broader class of LÉVY-driven SDE, where the driving WIENER process Wt is substi-
tuted by a LÉVY process, see section 4.5. �

4.3.2 Strong and weak solutions

When we look for a solution Xt of the S-IVP dXt = f(t,Xt) dt+ g(t,Xt) dWt, X0 = x0, there
are two kind of solutions, depending on whether the driving WIENER process Wt is given or
not.

In the first case, informally spoken, the WIENER process (or the underlying probability
space) is given and we try to find a solution process Xt to the S-IVP, which is then called
a strong solution. This kind of solution can be seen as being fully determined by the initial
value and the values of the driving WIENER process.

In the second case, we are looking for a pair (Xt,Wt), or a process Xt and an underlying
probability space (Ω,A, µ), that fulfills the S-IVP. This pair will be called a weak solution, if
it exists.

In the setting of estimating parameters from measured quantities, we have some measure-
ments of the stochastic process available (or of functions thereof), i.e. the driving WIENER

process has already been fixed and we are not free to choose one. Therefore, we are only
interested in strong solutions.

4.3.3 An existence and uniqueness result

The following theorem gives sufficient conditions on the drift and diffusion coefficient functions
such that a solution to an SDE exists. These are rather strong and clearly not necessary.
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4.28 Theorem (Existence and uniqueness theorem for stochastic differential equations)
Let f : [0, T ] × IRnx → IRnx be the drift function and g : [0, T ] × IRnx → IRnx×nW be the
diffusion function of the stochastic initial value problem

dXt = f(t,Xt) dt+ g(t,Xt) dWt, X0 = x0

on the interval [0, T ]. Then, there exists a unique time-continuous solution Xt(ω), if it holds:

(1) (measurability): f and g are measurable functions

(2) (LIPSCHITZ condition in space): There exists a constant L1 > 0, such that

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ L1|x− y|
for all x, y ∈ IRnx and t ∈ [0, T ]

(3) (linear growth bound): There exists a constant L2 > 0, such that

|f(t, x)|+ |g(t, x)| ≤ L2(1 + |x|)
where we set |g|2 :=

m∑
i=1

n∑
j=1
|gij |2 for the matrix-valued diffusion function g.

Futher, the solution process Xt fulfills IE

[
T∫
0

|Xt|2dt
]
<∞. �

The above theorem holds for random initial states, with x0 being a measurable random
variable such that IE[|x0|2] < ∞, i.e. the initial state must only be of finite variance. For a
proof, see [Oksendal1998], theorem 5.2.1.

Further, the global LIPSCHITZ condition 4.28(2) might be weakened to a local one, and it
can even be omitted if one is not interested in uniqueness. The linear growth bound 4.28(3)
ensures that |Xt| does not go to infinity in finite time, and can thus be weakened if we are
willing to accept that there might only exist solutions on a smaller interval, whose extent will
be usually depending on the initial value x0.

4.3.4 The bridge between ODE and SDE: random ordinary differential equations (RODE)

We shortly mention a class of differential equations located somewhere between ODE and
SDE: random ordinary differential equations (RODE ). A common interpretation of RODE is
to see them as pathwise ODEs that are driven by a (known) stochastic process in their r.h.s.
function. They have been studied extensively in the 1970s [Strand1970; Soong1973; Doss1977;
Sussmann1978], and are still receiving attraction [ImkellerSchmalfuss2001; AsaiKloeden2016],
as they deliver means to numerically solve (i.e. retrieve a certain realization) SDE using ODE
techniques.

4.29 Definition (Random Ordinary Differential Equation)
Let (Ω,A, IP) be a probability space, Zt : [0, T ] × Ω → IRnZ be a stochastic process with
continuous sample paths, and f : IRnZ × IRnx → IRnx continuous. Then, the system

ẋ(t) = f(x(t), Zt(ω)) (4.4)

is called a random ordinary differential equation (RODE ). �

There is a close relationship between SDE, RODE, and ODE, as eq. (4.4) denotes an
ODE for fixed ω ∈ Ω. Further, by allowing arbitrary ω, the driving process Zt puts us in the
stochastic setting.
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4 Introduction to Stochastic Differential Equations

WONG and ZAKAI et al. [WongZakai1965] showed the convergence of ODE to SDE driven
by a WIENER process Wt by using smooth approximations Wn

t that converge to Wt. It was first
shown by SUSSMANN [Sussmann1978] that a certain class of SDE can be solved by application
of ODE integration schemes to all sample paths of the intrinsic stochastic process, though this
is, from a numerical point of view, a rather theoretical result.

An RODE with a WIENER process in the r.h.s. function can be written as SDE in a quite
obvious way (restricted here to the scalar case, but the principle holds for any dimension of
the state variable x and the WIENER process Wt):

ẋ(t) = f(x(t),Wt) ⇐⇒ d

(
Xt

Zt

)
=

(
f(Xt, Zt)

0

)
dt+

(
0
1

)
dWt.

On the other hand, SDE may be reformulated as RODE as DOSS and SUSSMANN have
shown in the late 1970s for a certain form of noise [Doss1977; Sussmann1978]. This result was
extended a couple of years ago by IMKELLER and SCHMALFUSS [ImkellerSchmalfuss2001] to
all SDE with finite dimension. The following scalar example with additive noise shows the
idea of how this can be done. Using an ORNSTEIN-UHLENBECK process Zt that satisfies the
SDE dZt = −Zt dt+ dWt, the equivalence of RODE and SDE becomes obvious:

dXt = f(Xt) dt+ dWt ⇐⇒ ż(t) = f(z(t) + Zt) + Zt with z(t) := Xt − Zt
since Z0 = 0 holds for the ORNSTEIN-UHLENBECK process Zt, and X0 = z(0) for the initial
condition, we have z(t) = Xt−Zt = X0−Z0+

∫ t
0 f(Xs)+Zs ds = z(0)+

∫ t
0 f(z(s)+Zs)+Zs ds,

so z is (pathwise) differentiable.

Thus, in the case of WIENER processes, SDE and RODE may be considered equivalent.

4.4 Numerical integration of WIENER-driven SDEs

Formally, as stated above, the stochastic initial value problem (S-IVP) (4.2) is actually inter-
preted as the stochastic integral equation (4.3) with a driving BROWNian motion Wt.

This integral equation might, in rare cases, be analytically solved by methods of the ITÔ

calculus, resulting in a stochastic process Xt. We instead consider a discrete reformulation of
the stochastic initial value problem

dXt = f(t,Xt) dt+ g(t,Xt) dWt, X0 = x0, (4.5)

by replacing the time differential dt by increments ∆τk and the stochastic differential dWt by
increments (differences) of the BROWNian motion Wt:

X̃k+1 − X̃k = ∆X̃k = f(τk, X̃k)∆τk + g(τk, X̃k)∆Wk, X̃0 = x0, (4.6)

where X̃k := X̃τk is the discrete solution at time τk; further ∆τk := τk+1 − τk denotes the k-th
time increment, and ∆Wk := Wk+1 −Wk := Wτk+1

−Wτk the corresponding increment of the

WIENER process. For simplicity, we assume an equidistant time grid τk := k · TN (k = 0, ..., N).

One can show that this discretization converges to (a version of) the stochastic solution
process Xt, both in the strong and weak sense; two terms that we are going to define next.

112
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4.30 Definition (Weak and strong convergence)
Let Xt = Xt(ω) be a stochastic process on [0, T ], fulfilling the S-IVP

dXt = f(t,Xt) dt+ g(t,Xt) dWt, X0 = x0

and let X̃k = X̃k(ω) = X̃τk(ω) be a numerical approximation on Xτk on a time grid τk := k ·∆τ
(k = 0, ..., N) with ∆τ := T

N .

1. The numerical method is said to have strong order of convergence ρ if there exists a
constant C > 0 such that

IE
[∣∣Xτk − X̃k

∣∣
]
≤ C · (∆τ)ρ

at any fixed k ∈ {0, ..., N} and sufficiently small ∆τ .

Thus, the order of strong convergence quantifies the rate at which the mean of errors
decreases for step sizes ∆τ → 0.

2. The numerical method is said to have weak order of convergence ρ if there exists a
constant C > 0 such that

∣∣IE[Xτk ]− IE[X̃k]
∣∣ ≤ C · (∆τ)ρ

at any fixed k ∈ {0, ..., N} and sufficiently small ∆τ .

Thus, the order of weak convergence quantifies how fast the error of the means reduces.
�

4.4.1 EULER-MARUYAMA stochastic integrator

The integration scheme sketched in eq. (4.6) is called the EULER-MARUYAMA(9) or stochastic
EULER scheme. In the general multi-dimensional setting, where the n-dimensional stochastic
process Xt depends on m standard WIENER processes, the scheme for the stochastic initial
value problem on the time domain [0, T ]

dXt = f(t,Xt) dt+ g(t,Xt) dWt, X0 = x0, t ∈ [0, T ]

with drift function f : [0, T ] × IRn → IRn, diffusion function g : [0, T ] × IRn → IRm×n, initial
value x0 ∈ IRv, and constant time increments ∆τ := T

N (N ∈ IN), can be written as

X̃k+1 := X̃k + f(τk, X̃k)∆τ + g(τk, X̃k)∆Wk, X̃0 := x0 (4.7)

with X̃k being the approximation of Xτk at time points τk := k ·∆τ (k = 0, ..., N). As the
approximation at τk+1 only depends on the values at τk, the stochastic EULER-MARUYAMA

method is an explicit integration scheme that extends the classical explicit EULER method for
ordinary differential equations by a stochastic term.

The increments ∆Wk are derived from the driving m-dimensional WIENER process Wt, i.e.
∆Wk := Wτk+1

−Wτk . Since the component functions of Wt are mutually independent scalar
WIENER processes, the i-th component of increment ∆Wk can be chosen as a normally dis-
tributed random number with zero mean and variance ∆τ , such that ∆Wk ∼ N

(
0,∆τ · Im×m

)
.

Algorithm 4.1 gives an implementation of the EULER-MARUYAMA scheme in pseudo-code.

(9) Leonhard EULER, 1707–1783, Swiss mathematician, physicist, astronomer, and engineer
Gishiro MARUYAMA (丸山 儀四郎), 1916–1986, Japanese mathematician
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4 Introduction to Stochastic Differential Equations

Algorithm 4.1 EULER-MARUYAMA stochastic integrator

Integrates the S-IVP dXt = f(t,Xt) dt+ g(t,Xt) dWt, X0 = x0

by performing N EULER-MARUYAMA steps of length ∆t.

Input: f : IR× IRn → IRn, g : IR× IRn → IRn×m, t0 ∈ IR, x0 ∈ IRn, ∆t ∈ IR, N ∈ IN
Output: discrete trajectory X(0 :N)

1: function EulerMaruyama(f ,g,t0,x0,∆t,N)
2: X(0) := x0

3: for k = 0 to N − 1 do
4: Choose ∆W ∈ IRm with ∆Wi ∼ N

(
0,∆t

)
and ∆Wi,∆Wj independent for i 6= j

5: X(k + 1) := X(k) + f
(
t0 + k ·∆t,X(k)

)
·∆t+ g

(
t0 + k ·∆t,X(k)

)
·∆W

6: end for
7: return X
8: end function

As with every numerical method, the question arises whether an EULER-MARUYAMA ap-
proximation generated by algorithm 4.1 actually converges to the true solution process. The
following theorem answers this question, and aditionally gives a uniform error estimate over
the whole interval [0, T ].

4.31 Theorem (Strong convergence of the EULER-MARUYAMA scheme)
Let Xt be solution process of the S-IVP

dXt = f(t,Xt) dt+ g(t,Xt) dWt, X0 = x0

with drift and diffusion functions fulfilling a LIPSCHITZ condition in space

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ L1|x− y|,
a linear growth condition

|f(t, x)|+ |g(t, x)| ≤ L2(1 + |x|),
and a coupled condition

|f(s, x)− f(t, x)|+ |g(s, x)− g(t, x)| ≤ L3(1 + |x|) · |s− t| 12

for all time points s, t ∈ [0, T ] and vectors x, y ∈ IRn, and some constants L1, L2, L3 indepen-
dent of the integration stepsize ∆t.

Then, for X̃(T ) being the EULER-MARUYAMA approximation at time T , generated by algo-
rithm 4.1 with constant step size ∆τ , it holds

IE[XT − X̃(T )] ≤ C · (∆τ)0.5

for a constant C > 0, independent of ∆τ , i.e. the EULER-MARUYAMA scheme is strongly con-
vergent with order 0.5. �

For a proof, see, [KloedenPlaten1995], theorem 10.2.2, which is formulated in a more
general sense, as it also allows the initial value x0 to be a random variate. One can further
show that the EULER-MARUYAMA scheme has a weak order of convergence of 1.
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Figure 4.2: Comparing EULER-MARUYAMA approximations to a strong solution of an S-IVP.
Two EULER-MARUYAMA approximations of the solution of the S-IVP dXt = µXt dt+DXt dWt, X0 = 1,
µ = 2, D = 0.5, with stepsize 2−8 (blue line, ---) and with stepsize 2−5 (green line, ---). A linear interpola-
tion is performed between the distinct evaluation points.
The dense grid EULER-MARUYAMA approximation is on this scale practically indistinguishable from the
trajectory of the exact solution process Xt = X0 · exp

(
(µ− 1

2D
2)t+DWt

)
(thin red line, —).

For comparison, the deterministic counterpart X(t) = X0 · exp(µt) is added (thin dashed black line, – –).
In the lower part of the figure, the driving WIENER process that is used in the solution process and in the
EULER-MARUYAMA approximations is printed (thin gray line, —).

4.4.2 An illustrating example of EULER-MARUYAMA integration

As an illustrating example, we have a look at the 1-dimensional time-homogeneous S-IVP

dXt = µXt dt+DXt dWt, X0 = x0 (4.8)

with constant drift f(t, x) = µx, µ > 0, constant diffusion g(t, x) = Dx,D > 0, and given
initial value x0. For this simple S-IVP, using the ITÔ calculus, we can give a closed expression
for the solution process:

Xt = x0 · exp
(
(µ− 1

2D
2)t+DWt

)
. (4.9)

Once we have fixed the driving WIENER process Wt, this enables us to compare the true
solution process Xt given above to approximations X̃t generated by the EULER-MARUYAMA

method with different step sizes.

Figure 4.2 compares two approximative solutions of the S-IVP (4.8) generated by EULER-
MARUYAMA approximations with different step sizes to the solution process given in eq. (4.9).
Both the approximations and the solution process share the same driving WIENER process.
The dense grid EULER-MARUYAMA approximation is indistinguishable (visually, not in the
meaning of stochastic processes) from the solution process at this scale. Indeed, the maximum
pointwise error is around 0.6% for this specific realization. A linear interpolation between the
point evaluations is performed to get a continuous trajectory.
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4.4.3 Further integration methods

Besides the described EULER-MARUYAMA algorithm, there exist further methods for pathwise
simulations of stochastic processes, differing in their convergence properties inter alia. To give
one example, we establish the MILSTEIN scheme for stochastic integration.

The EULER-MARUYAMA scheme, restricted to the 1-dimensional case, reads as

Xk+1 := Xk + f∆τk + g∆Wk

where we omitted the arguments of drift and diffusion functions, i.e. f=f(τk, Xk), g=g(τk, Xk),
and noted Xk for the approximation instead of X̃k for increased readability. It is the simplest
method in the class of strong TAYLOR approximations. Similar to deterministic integration,
other methods can be constructed by truncating the TAYLOR series of the solution, for example
the method proposed by MILSTEIN(10) [Milstein1975], that extends the EULER-MARUYAMA

scheme by a single term:

Xk+1 := Xk + f∆τk + g∆Wk +
1
2gg

′ ((∆Wk)
2 −∆τk

)

where the prime denotes the derivative with respect to the state variable: g′(t, x) = dg
dx(t, x).

This scheme, the explicit MILSTEIN method , can be shown to increase the strong order of
convergence to 1.0, while maintaining weak order of 1.0, however, its calculation requires the
evaluation of the first derivative of the diffusion function. From the view point of convergence
order, the MILSTEIN method is the actual stochastic counterpart of the explicit EULER method
for ODEs.

Obviously, for SDEs with additive noise, i.e. the diffusion does not depend on the state
Xt, the MILSTEIN and the EULER-MARUYAMA scheme coincide as the derivative g′ vanishes.

(Semi-)Implicit integration schemes
The previously described EULER-MARUYAMA and MILSTEIN schemes are explicit schemes, as
the value at the next time step is determined by the value of the previous time point. Similar
to the deterministic setting, implicit integration schemes incorporate the unknown new state
Xk+1 on both sides of the equation.

Fully implicit stochastic integration methods suffer from the fact that the generated ap-
proximations will not have finite absolute moments, so a strong convergence analysis cannot be
performed. See [KloedenPlaten1995], chapter 12, for details. Semi-implicit methods, however,
contain the new iterate Xk+1 only in their drift function, while maintaining the term Xk in
the diffusion function.

The (semi-)implicit one-dimensional counterparts of the above two schemes are given as
the implicit EULER scheme

Xk+1 := Xk + f(τk+1, Xk+1)∆τk + g(τk, Xk)∆Wk

and the implicit MILSTEIN scheme

Xk+1 := Xk + f(τk+1, Xk+1)∆τk + g(τk, Xk)∆Wk +
1
2g(τk, Xk)g

′(τk, Xk)
(
(∆Wk)

2 −∆τk
)
.

(10) Grigory Noichowitsch MILSTEIN (former transcription: Mil’shtejn or Mil’shtein), Russian mathematician.
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In fact, a whole family of implicit schemes can be created by using a convex combination
αf(τk+1, Xk+1) + (1− α)f(τk, Xk) of implicit (α = 1) and explicit (α = 0) scheme.

Depending on the choice of the coefficients, the implicit EULER method achieves a strong
order of convergence of 0.5, the implicit MILSTEIN method reaches 1.0 – both corresponding
to their fully explicit counterparts.

The main advantage of implicit methods is, like in the deterministic case, their superior
behaviour on stiff systems. Stiffness in the context of SDEs is characterized by the LYAPUNOV

exponents of the (linearized) system. Widely spread LYAPUNOV exponents refer to widely
differing time scales in the solution, analogously to the real parts of the coefficient matrix’
eigenvalues in linear ODEs. We refer to [KloedenPlaten1995] for the topic of stability in
SDEs.

Higher order methods
We conclude this section by noting that there exist higher order methods that, however, become
computationally very costly and are often difficult to implement.

For example, the implicit order 2.0 strong TAYLOR scheme for the 1-dimensional time-
homogeneous STRATONOVICH S-IVP, taken from [KloedenPlaten1995], reads as

Xk+1 := Xk +
1
2

(
f(Xk+1) + f(Xk)

)
∆τk + g∆Wk + fg′

(
∆Wk∆τk −∆Zk

)

+ f ′g
(
∆Zk − 1

2 ∆Wk∆τk
)

+
1
2gg

′(∆Wk)
2

+
1
3!g(gg′)′(∆Wk)

3 +
1
4!g(g(gg′)′)′(∆Wk)

4

+ f(gg′)′J(0,1,1) + g(fg′)′J(1,0,1) + g(fg)′
(
J(1,1,0) − 1

4 (∆Wk)
2∆τk

)
,

where we have waived the argument Xk to the drift and diffusion functions, and f := f − 1
2gg
′.

The random variate ∆Zk :=
∫ τk+1

τk

∫ s2
τk

dWs1 ds2 is normally distributed with mean IE[∆Zk] = 0,

variance Var[∆Zk] = 1
3(∆τk)

3, and covariance IE[∆Zk∆Wk] = 1
2(∆τk)

2. To make it more read-
able, the above written functional J abbreviates multiple STRATONOVICH integrals:

J(j1, j2, j3) :=

∫ τk+1

τk

∫ τk+1

τk

∫ s2

τk

◦dW j1
s1 ◦dW j2

s2 ◦dW j3
s3 ,

with the convention dW 0
s = ds.

Thus, in every step k → k + 1 in the above scheme, derivatives up to third order of the
diffusion function and multiple STRATONOVICH integrals have to be evaluated, which makes
this approach computationally costly.

As a side note: The only reason why we switched here to the STRATONOVICH version is
that it is more convenient to write compared to the ITÔ version.

The (implicit) EULER or MILSTEIN methods already reach strong order of convergence of
0.5 and 1.0, respectively. In practical settings it might be questionable whether the additional
effort for reaching a strong order of 2.0 is beneficial. Although the above formulas simplify in
special setting like additive noise, it is often more convenient and computationally more efficient
to use lower order methods instead, not even speaking about the error-prone implementation
that are hard to check due to their stochastic nature.
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4 Introduction to Stochastic Differential Equations

4.5 LÉVY-driven SDE

The theory of stochastic integrals in appendix C and of stochastic differential equations dis-
cussed in section 4.3 is suited to WIENER processes driving the SDE. A more general class
of driving processes is the one of LÉVY processes, for which the theory may be extended
accordingly (see, e.g., [Protter2004; Bichteler2002]).

4.5.1 A short introduction to LÉVY processes

4.32 Definition (LÉVY process)
Let Xt be a stochastic process with X0 = 0 a.s. Then Xt is called a LÉVY process, if the
following conditions hold:

i) the sample paths of Xt are càdlàg a.s.,

ii) Xt has independent increments,

iii) Xt has stationary increments. �

4.33 Remark
The requirement in definition 4.32 of a LÉVY processes being càdlàg can be substituted by
requiring continuity in probability, i.e. for ε > 0 and t ≥ 0, it holds lim

h→0
IP
(
|Xt+h −Xt| > ε

)
= 0

(or, equivalently, lim
s→t

Xs = Xt in probability).

One can then show that for every LÉVY process there exists a càdlàg version of it. For a
proof, see e.g. [Protter2004]. �

4.34 Definition and Lemma (Counting process, (compound) POISSON process)

1. A stochastic process {Nt}t≥0 is called a counting process, if the following conditions hold:

a) Nt ∈ IN0 for all t ≥ 0

b) N(t) ≥ N(s) for t ≥ s
A counting process, as the name suggests, counts certain “events” – whatever they may
be – that have been occurred up to and including time t. Thus, the increment

∆N
(
(s, t]

)
:= N(t)−N(s)

is the number of events occurring in the interval (s, t].

2. A counting process {Nt}t≥0 is called a POISSON process with rate (or intensity) λ > 0,
if the following conditions hold:

a) N0 = 0 a.s.

b) the process has independent increments,
i.e. ∆N

(
(s, s+ t]

)
has the same distribution as ∆N

(
(0, t]

)
for all t > s ≥ 0.

c) the increments are POISSON distributed
i.e. ∆N

(
(s, s+ t]

)
∼ Poi

(
λ(t− s)

)
for all t > s ≥ 0.
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4.5 LÉVY-driven SDE

3. Let Nt be a POISSON process with rate λ > 0, and D(i) (i ∈ IN) independent and iden-
tically distributed random variables with common cumulative distribution function FD.
Further, D(i) shall be independent of Nt for all i ∈ IN and t ≥ 0. Then,

Xt :=

Nt∑

i=1

D(i) (4.10)

is called a POISSON process with rate λ and jump size distribution FD.

4. Every POISSON process and every compound POISSON process is a LÉVY process.

Proof: Let Nt be a POISSON process as above. Then, ∆N
(
(s, t]

)
∼ Poi

(
λ(t− s)

)
and also

∆N
(
(0, t− s]

)
∼ Poi

(
λ(t− s)

)
, i.e. the increments are stationary. Further, the increments are

also independent by definition and Nt is càdlàg by construction, thus Nt is a LÉVY process.
Let Xt be a compound POISSON process as above. Then, by construction, it is càdlàg and

has independent increments. For 0 ≤ s < t, we have (a) Xt − Xs =
∑Nt

i=1Di −
∑Ns

i=1Di =∑Nt
i=Ns+1Di and (b) Xt−s =

∑Nt−s
i=1 Di. The number of jumps in (a) is Nt −Ns which has the

same distribution as Nt−s in (b), since the POISSON process Nt has stationary increments, and
thus also Xt−Xs and Xt−s have the same distribution, as the Di are i.i.d. Thus, Xt is a LÉVY

process. �

Figure 4.3 shows two realizations of LÉVY processes: A POISSON process with rate λ = 5.0 and
a compound POISSON process with rate λ = 5.0 and standard-normally distributed jumps.

4.35 Remark (LÉVY-KHINTCHINE representation of LÉVY processes)
We note that every LÉVY process Zt may be decomposed

Zt = b(t) + aWt +Mt

into its deterministic drift b(t), a scaled WIENER process Wt, and a jump process Mt being
a superposition of independent POISSON processes, with Mt independent of Wt, W0 = 0, and
M0 = 0. �

4.5.2 Numerical simulation of LÉVY-driven SDE

Some numerical integration schemes for SDE with WIENER-driven diffusion are described in
section 4.4. There, we deal with ITÔ integrals w.r.t. WIENER processes, for which TAYLOR

expansions are available, giving rise to several integration schemes with (in principle) arbitrary
convergence rate [KloedenPlaten1995], with the EULER-MARUYAMA and MILSTEIN methods
being the most prominently used ones.

In this section, we give a short introduction to a closely related numerical integration
method for LÉVY-driven SDE that follows ideas analogous to the explicit EULER-MARUYAMA

method for WIENER-driven SDE.
We employ appropriate smoothness conditions on f and g (e.g. standard LIPSCHITZ condi-

tions) as well as a sufficient integrability condition on the driving m-dimensional LÉVY process
Zt (e.g. square integrability, IE

[
|Zt|2

]
<∞) for strong solutions to exist.
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4 Introduction to Stochastic Differential Equations

(a) Sample path of a POISSON process, rate λ = 5.0 (b) Sample path of a compound POISSON process,
rate λ = 5.0, jump size distribution FD∼N

(
0, 1
)

Figure 4.3: Sample paths of (compound) POISSON processes.

Let f : [0, T ]× IRn → IRn be the deterministic drift function, and g : [0, T ]× IRn → IRm×n be
a coefficient function for the driving LÉVY process Zt. Then

X̃k+1 := X̃k + f(τk, X̃k)∆τ + g(τk, X̃k)∆Zk, X̃0 := x0 (4.11)

delivers an EULER approximation X̃k of Xτk for the S-IVP

dXt = f(t,Xt) dt+ g(t,Xt−) dZt, X0 = x0 (4.12)

with initial value x0, constant time increments ∆τ := T
N (N ∈ IN), and τk := k · ∆τ for

k = 0, ..., N . Note that since Zt is càdlàg, the evaluation of the coefficient function g in the
S-IVP occurs at the left limits, “right before” a possible jump.

4.36 Remark
It would be mathematically sufficient to formulate a LÉVY-driven SDE as dXt = g(Xt−)dZt
due to the LÉVY-KHINTCHINE representation of Zt (see remark 4.35). �

4.37 Remark
If we are able to compute (simulate) the increments of the LÉVY process ∆Zk := Zτk+1

− Zτk
exactly, the method is called a genuine EULER method.

However, for many LÉVY processes, simulation of exact increments is computationally hard.
Often, approximations ∆Z̃k on the increments are used, introducing a second source of error
apart from the unavoidable discretization error. In this case, the method is frequently called
an approximative EULER method. �

Under mild assumptions on the first moment of Zt, and still requiring a finite second
moment of Zt, in addition to sufficient smoothness of f and g, it can be shown that the genuine
EULER method has an error of O(∆τ), see [ProtterTalay1997] and [DereichHeidenreich2011].
JACOD et al. [Jacod2005] give precise error bounds on both the genuine and approximate
EULER methods.
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5 Parameter Estimation in Stochastic
Differential Equation Models

In this chapter, we present and analyse a new method for parameter estimation in stochastic
differential equations, based on a piecewise deterministic approach.

In the first section, we give an introduction into the topic of parameter estimation in SDE,
describe our new approach in words, and formulate some technical assumptions.

Section 2 outlines existing estimation techniques for parameter estimation in continuous-
time SDE with discretely sampled observations. References are given within the discussion.

The third section presents some results (with proofs) on the distance of solutions of sto-
chastic initial value problems, S-IVP, to be defined in eq. (5.10), to the corresponding solutions
of deterministic initial value problems, D-IVP, defined in eq. (5.11). For both, distance at the
interval end as well the maximum distance throughout the interval, upper bounds in expecta-
tion and mean-square are given.

In section 4, we present our new approach, the piecewise deterministic parameter esti-
mation method for SDE in detail. After introducing notation and basic assumptions, mainly
to ensure existence of strong solutions to the SDE, the new method is derived on the basis
of the multiple shooting technique for parameter estimation in ODE presented in chapter 2.
The continuity condition is replaced by a carefully weighted jump regularization term in the
objective, allowing for a discontinuous trajectory and thus mimicking the stochasticity of an
SDE formulation. It is shown that this regularization is necessary in order to get correct pa-
rameter estimates. Further, results from the third section are used to prove that the jumps
asymptotically converge to zero if the number of equidistantly chosen shooting intervals goes
to infinity.

Section 5 gives an numerical analysis of the proposed method. The sparsity pattern of
the Jacobian of the combined residual vector , composed of measurement and jump residuals,
is investigated, and it is shown that the number of nonzero elements grows only linearly in
the number of shooting intervals. Further, we prove that the sparsity is maintained under
HOUSEHOLDER based decomposition techniques. The section concludes with the proposition
and analysis of a lifting technique based on interval-wise decoupling of parameters.

In section 6, we propose two extensions: an homotopy ansatz for pathological problems
and a grid refinement strategy that is elaborated in more detail in the numerical examples
chapter 6.

We also refer to appendix S for a discussion of the software package :sfit that implements
the presented parameter estimation method.

5.1 Introduction

In many settings, e.g. in cellular biology, occurring processes happen in a “mostly” determin-
istic way, so to speak. For example, in enzyme kinetics, the reactions follow clear principles:
reaction partners are known and if there are enough molecules of each occurring species, mod-
elling with ODE is appropriate (at least for a certain time horizon).
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5 Parameter Estimation in Stochastic Differential Equation Models

(a) deterministic (ODE) interpretation of the
BISTABAER model

(b) stochastic (SDE) interpretation of the
BISTABAER model

Figure 5.1: Stochasticity in the BISTABAER model completely alters its behaviour.
The ODE system (a) quickly approaches the steady state, whereas in the SDE interpretation (b),
ongoing transitions between two steady states are observed. See section 6.3 for details.

However, this is not always the case. As an illustrative example, we have a look at the
allosteric regulation(1) of an enzyme, which might switch between its inactive form X and
active form X∗ due to allosterically binding by its activator or inhibitor, respectively.

Figure 5.1 shows the time course of a simplified allosteric regulation model. In a deter-
ministic interpretation, the system quickly reaches its (quasi-)steady state, as can be seen on
section 5.1, whereas the stochastic version reveals a (random) switching between two stable
steady states.

In both settings, a hidden control (the bistable system L̇ = L(1−L4)) is implemented that
influences the amount of activator (effector) concentration (details are given in section 6.3). In
the ODE interpretation, this control system quickly reaches and remains on a (locally) stable
steady state, allowing the enzyme model to run towards its equilibrium. In the stochastic
setting, the bistable control system gets permanent input from a WIENER process. While the
control system tries to maintain its stability, a displacement by the driving WIENER process
that is high enough might bring the control system into the contraction area of the second
steady state, resulting in a different concentration of the activator. As a consequence, the
equilibrium point of the enzyme model is changed.

However, the underlying dynamics of this system are – in a way – deterministic: If we
knew the state of the (stochastically driven) control system L, the resulting kinetics can be
calculated using an ODE integrator to arbitrary precision.

In other cases, e.g. in mathematical finance, some general principles of interest rates are
known or assumed. Properties like (exponential) mean reversion to a level µ with reversion
rate θ can be described by a simple deterministic model

ẋ(t) = θ(µ− x(t)),

however, the actual sample paths are stochastic, possibly not even continuous (see section 6.4).

As soon as there are stochastic parts in a system, modelling with ODE is, in general, inap-
propriate, as the system is likely to show behaviour that one is unable to describe using pure
ODE formulations, albeit the main occurring processes possess deterministic properties.

(1) The activity of an enzyme might be regulated by one or more effector proteins, that bind to the enzyme at
its allosteric site (not the active site). An activator might stabilize an enzyme in its active form, whereas
the binding of an inhibitor might change the enzyme’s conformation in a way that the active site becomes
inaccessible to the substrate.
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5.1 Introduction

On notation: Xt vs. x(t)
Throughout this and the following chapter, capital letters with indices, e.g. Xt, denote sto-
chastic processes, especially solutions of an S-IVP

dXt = f(t,Xt) dt+ g(t,Xt) dWt , Xt0 = x0

whereas the corresponding ODE solution, i.e. the solution of the D-IVP

ẋ(t) = f(t, x(t)) , x(t0) = x0

is denoted by the respective small letter with arguments set in parenthesis, x(t).

5.1.1 The idea: ODE solutions resemble SDE solution paths on short time scales

When the influence of a driving stochastic process Wt is not “too strong”, we intuitively expect
a solution Xt of an SDE with constant diffusion D, i.e. with diffusion function g ≡ D,

dXt = f(Xt) dt+D dWt Xt0 = x0

to be close to the solution x(t) of the corresponding ODE with same initial value
ẋ(t) = f(x(t)) x(t0) = x0

at least for a small period of time. Indeed, this can be shown to true; estimates of the maximum
distance and of the distance at the interval and are given in section 5.3.

We can also make this observation in the introductory example of an allosteric enzyme
regulation model. Though the deterministic and stochastic interpretation differ qualitatively
over the whole time domain, the ODE and SDE trajectories stay closely together over a short
time span as depicted in figure 5.2.

If we know the state of the stochastically influenced system at a specific time point t,
say Xt, and simulate the corresponding ODE in the interval [t, t + ∆t] with this state as
initial condition, we may expect to stay “close” to the SDE solution, where the admissible
length ∆t obviously depends on the driving process’s activity in that interval. Thus, we
may try to approximate the solution process Xt over the whole time domain by a number of
discontinuously concatenated ODE solutions.

The finer we choose the grid of ODE approximations, the smaller the gaps eventually
become, approaching zero in the limit, as we will show in section 5.4.6.

(a) ODE interpretation (b) SDE interpretation

Figure 5.2: Short term similarity of ODE and SDE interpretation of the BISTABAER model.
This picture is a detail enlargement of figure 5.1. For a short time scale, the ODE and SDE trajectories
are very similar. The impact of the driving WIENER process manifests as a small jitter in the SDE interpre-
tation.
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5 Parameter Estimation in Stochastic Differential Equation Models

Clearly, if we already have the stochastic solution process Xt (i.e. a certain realization of it),
there is no need to approximate it any more. In the context of parameter estimation, we
(usually) do not have a continuous observation of the system, but rather some measurement
values of its state or functions thereof.

Now, the above observation gives rise to the following idea: Dissect the time horizon into
small intervals, and determine an ODE solution on each interval, such that their (discon-
tinuous) concatenation is close to the observations. Further, since the (unknown) stochastic
solution process is continuous, choose the initial conditions on each interval in a way such that
the discontinuities at the interval borders become small.

The above description resembles the method of multiple shooting for parameter estima-
tion in ODE (section 2.2.3). What is most important, is that this ansatz gives us access to
derivatives and allows the application of gradient-based optimization methods, although the
approximated stochastic process Xt is nowhere differentiable in general.

We will see, that this idea is not just a pious hope, as section 5.3 gives some general results
on the convergence of WIENER-driven SDE to ODE solutions. Further, section 5.4.6 gives a
convergence result for the proposed parameter estimation method.

The precise formulation of the parameter estimation method with jump regularization is
done in section 5.4.

5.1.2 SDE with constant diffusion by LAMPERTI transform

In this thesis, the focus lies on SDE with constant diffusion. Under the conditions of theo-
rem 4.28 (existence and uniqueness of SDE solutions), a 1-dimensional SDE

dXt = f(t,Xt) dt+ g(t,Xt) dWt (t ∈ [0, T ])

with state-dependent diffusion may be transformed into an SDE with constant diffusion D = 1,
using the LAMPERTI transform L(t,Xt) [Iacus2008; MollerMadsen2010; LuschgyPages2006],
which is based on the ITÔ formula (see, e.g. [Oksendal1998], Theorems 4.1.2 and 4.2.1):

Zt := L(t,Xt) :=

Xt∫

ξ

1

g(t, x)
dx (5.1)

with an arbitrary value ξ from the state space of Xt. We note that the LAMPERTI transfor-
mation in eq. (5.1) is bijective if g(t,Xt) > 0 ∀ (t,Xt), as for every t ∈ [0, T ], x 7→ L(t, x) is
continuous and strictly increasing [LuschgyPages2006].

The transformed process Zt solves the SDE

dZt =
[ d

dt
L
(
t,L−1(t, Zt)

)
+
f
(
L−1(t, Zt)

)

g
(
L−1(t, Zt)

) − 1

2

d

dx
g
(
t,L−1(t, Zt)

)]
dt+ 1 dWt

from which, after simulation, the original process may be reconstructed as Xt = L−1(t, Zt).
For time-independent diffusion g(Xt), the SDE for Zt simplifies to

dZt =
[f
(
L−1(Zt)

)

g
(
L−1(Zt)

) − 1

2

dg

dx

(
L−1(Zt)

)]
dt+ 1 dWt .
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The application of the LAMPERTI transform is limited by the fact that we need to able to
compute its inverse; however, this is possible for quite general classes of diffusion processes
[MollerMadsen2010].

A general multivariate version of the LAMPERTI transform is currently not available
[MollerMadsen2010], but MØLLER and MADSEN give a multivariate LAMPERTI transform for
the class of SDEs that are of the form

dXt = f(t,Xt) dt+ g(t,Xt)M(t) dWt with g(t,Xt) =

(
g1(t,X1,t)

. . .
gn(t,Xn,t)

)

with state variable Xt ∈ IRn, an n-dimensional WIENER process Wt ∈ IRn, a matrix func-
tion M(t) ∈ IRn×n of the time variable t, and a diagonal diffusion matrix g(t,Xt) ∈ IRn×n,
g(t,Xt) = diag {g1(t,X1,t), ..., gn(t,Xn,t)}, such that the state-dependent parts of the diffu-
sion are not influencing across components. Then, the 1-dimensional LAMPERTI transform,
eq. (5.1), can be applied component-wise.

We refer to [MollerMadsen2010] for details.

5.1.3 Restricting w.l.o.g. to time-homogeneous SDE

Using the “standard trick” of adding time as an extra dimension to the state vector, augmenting
its dimension by 1, we can always transform time-inhomogeneous SDE into time-homogeneous,
so it is sufficient to study time-homogeneous SDE (and the corresponding autonomous ODE).

5.2 Techniques of parameter estimation in SDE

There exists a large variety of estimation methods for SDE. Most methods are specific to differ-
ent classes of problems: e.g. state-independent vs. state-dependent diffusion, time-homogeneous
vs. time-dependent diffusion, continuous vs. discrete-time observations, equidistant vs. arbi-
trary sampling times, direct state observation vs. indirect/partial observation, exact vs. noisy
measurements, scalar vs. multi-dimensional processes, to name a few, and many methods are
tailored to problems belonging to certain combinations of these classes.

An overview of methods for state and parameter estimation in stochastic differential equa-
tions can be found e.g. in [Singer2002; Sorensen2004; Cysne2004] and the references therein.

Here, we present some work on estimation techniques for nonlinear SDE models with time-
discrete observations. The general parametrized continuous-time SDE model with discrete-
time measurements taken at time points ti is frequently written as

dXt = f(t,Xt, p) dt+ g(t,Xt, p) dWt Xt0 = x0(p) (t ∈ [t0, tf ]) (5.2)

ηi = hi(ti, Xti , p) + εi , (5.3)

with (nonlinear) drift f and diffusion g (see definition 4.27).

Frequently, only time-homogeneous SDEs

dXt = f(Xt, p) dt+ g(Xt, p) dWt Xt0 = x0(p) (t ∈ [t0, tf ]) (5.4)

are considered (cf. section 5.1.3).
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5 Parameter Estimation in Stochastic Differential Equation Models

5.2.1 Maximum likelihood, transition densities and the FOKKER-PLANCK equation

Most estimation methods rely on transition densities that describe the probability distribution
of the transition from one system state at a certain time into another at a later time. If these
transition densities are known, the likelihood function can be calculated and subsequently
a maximum likelihood estimator is derived. Under certain regularity conditions ([WongHa-
jek2012], Chapter 4), the transition densities may be calculated by solving a functional partial
differential equation, the so-called FOKKER-PLANCK equation 5.7 (see below).

5.2.1.1 Transition probability densities

We introduce the required notions for the special case of error-free full state observations, i.e.
ηi = h(ti, Xti , p) = Xti . To keep the writing short, we have here used one single measurement
function h(t,Xt, p) delivering possibly vector-valued measurements.

Writing IP(Xt ∈ B|Xs = y) for the conditional probability of observing Xt lying in a mea-
surable set B at time t, given that Xs = y at a previous time s < t, we can note the transition
(probability) density (or conditional (probability) density) as

p(t, x|s, y; p) =
∂

∂x
IP(Xt ≤ x|Xs = y; p)

that depends on the parameter vector p. Interpreting the initial condition Xt0 = x0(p) as an
observation, we further write X = {Xt0 , Xt1 , ..., XtN } for the collected observations at time
points t0, t1, ..., tN , and write for short

p(Xti+1 |Xti ; p) := p(ti+1, Xti+1 |ti, Xti ; p)

for the transition densities. Using the MARKOV property (ITÔ processes are “memoryless”),
the probability distribution of the observations X can be written as

p(X; p) = p(XtN , ..., Xt1 , Xt0 ; p) = p(Xt0 ; p) ·
N−1∏

i=0

p(Xti+1 |Xti ; p) .

5.2.1.2 Likelihood function and maximum likelihood estimator

We can now define the likelihood function (compare definition 2.2) as

L(p ;X) := p(X; p) (5.5)

and define the maximum likelihood estimator p̂ML in the usual manner:

p̂ML := arg max
p

logL(p;X) = arg max
p

log p(Xt0 ; p) +

N−1∑

i=0

log p(Xti+1 |Xti ; p) (5.6)

5.2.1.3 FOKKER-PLANCK equation

The required transition density p(t, x|s, y; p) is a solution of the FOKKER-PLANCK equation
(also known as KOLMOGOROV’s forward equation of diffusion), a functional partial differential
equation describing the time evolution of a probability density under drift f(t,Xt, p) and
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diffusion g(t,Xt, p), as in the SDE eq. (5.2):

∂

∂t
p(t, x|t0, x0; p) = −

∑

i

∂

∂xi

[
fi(t, x, p) · p(t, x|t0, x0; p)

]
(5.7)

+
1

2

∑

i,j

∂2

∂xi∂xj

[
Dij(t, x, p) · p(t, x|t0, x0; p)

]
(5.8)

with initial condition p(t0, x|t0, x0; p) = δ(x − x0), a DIRAC delta function, and a diffusion
tensor D := ggT [WongHajek2012].

5.2.1.4 Computing the maximum likelihood estimator from transition densities

To compute the maximum likelihood estimator p̂ML from the transition densities, the FOKKER-
PLANCK equation 5.7 must be solved repeatedly in a nonlinear optimization algorithm. For
linear drift and state-independent diffusion, the obtained densities are GAUSSian [Singer2002];
but analytical solutions are only available for very restricted special cases of scalar SDEs. In
the general multivariate case, the FOKKER-PLANCK equation is solved approximately, e.g.
by finite-difference or finite-element based methods [Pichler2013], matrix continued-fractions
[Risken1996], Metropolis Monte Carlo (MC) methods [Kikuchi1991], and other techniques.

Another frequently used technique for approximating the transition densities p(Xti+1 |Xti ; p)
is the MARKOV chain Monte Carlo (MCMC) method [Pedersen1995; Elerian2001].

We note that, as LO points out, many of these “discretized maximum likelihood” estima-
tors, which are based on a discretization of the underlying SDE (mostly using the EULER-
MARUYAMA method, see section 4.4.1), are not necessarily consistent ([Lo1998], Example
3). However, whether the strength of this inconsistency (bias) is meaningful depends on the
studied process and must be decided w.r.t. the concrete application.

For linear problems, the well known STRATONOVICH-KÁLMÁN-BUCY(2) filtering tech-
niques are considered the method of choice [Singer2004]. For linear SDE with discrete ob-
servations, a compact introduction to KÁLMÁN filtering is found in [Singer2004]. A recent

(2) Rudolf Emil KÁLMÁN, born 1930, Hungarian-American engineer and mathematician
Ruslan Leontievich STRATONOVICH, 1930–1997, Russian physicist and probabilist
Richard Snowden BUCY, born 1935, American mathematician

Though the mentioned “filter” was named after KÁLMÁN, many of his results were achieved in cooperation
with Richard BUCY, and frequently their paper [KalmanBucy1961] is given as original reference for the
KÁLMÁN-BUCY filter.

Hardly noticed in the Western world, STRATONOVICH developed a more general nonlinear filter earlier
[Stratonovich1960], that contained the linear KÁLMÁN-BUCY filter as a special case. Also to mention is
the work of Peter SWERLING, 1929–2000, American radar theoretician and statistician, who developed a
similar algorithm for estimating satellite orbits [Swerling1959].

Interestingly, already decades earlier in 1880, Thorvald Nicolai THIELE, 1838–1910, a Danish astronomer,
actuary and mathematician, developed a recursive least squares based regression method for noisy observa-
tions of the astronomical geodesy problem of determining the distance from Copenhagen (Denmark) to Lund
(Sweden). He observed that the errors in a time series of data appear to be systematic (but recognized that
no systematic correction is possible) and used a BROWNian motion to describe the accumulating errors. In
[Thiele1880; Thiele1880a], he “proposes a model consisting of a sum of a regression component, a Brownian
motion and a white noise for his observations, although he does not use these terms himself. He solves the
problem of estimating the regression coefficients and predicting the values of the Brownian motion by the
method of least squares and gives an elegant recursive procedure for carrying out the calculations. The
procedure is nowadays known as Kalman filtering” [Lauritzen1981].
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review of the KÁLMÁN filter and a novel derivation from NEWTON’s method for root finding
is also found in [Humpherys2012].

For nonlinear SDE with small sampling intervals ∆ti = ti+1 − ti, the transition densi-
ties may be approximated by conditional GAUSSian densities by linearizing the exact moment
equations (extended KÁLMÁN filter (EKF), or second-order nonlinear filter (SNF), [Jazwin-
ski1970]) or linearizing the SDE itself using ITÔ’s lemma as in the local linearization technique
of SHOJI and OZAKI [ShojiOzaki1997; ShojiOzaki1998]. Also to mention in this context is the
prediction error estimation method [Ljung2002; LjungSoderstrom1985].

Common to all these methods is that they rely on excessive sampling and are therefore
computationally very costly.

5.2.2 Other estimators

HANSEN presents the generalized method of moments (GMM) [Hansen1982] that minimizes
a function on the moments of the samples, derived from orthogonality conditions. HANSEN

and SCHEINKMAN [HansenScheinkman1995] give a recipe to formulate these conditions for
continuous-time MARKOV processes, i.e. also suitable for SDEs, with discrete-time observa-
tions. However, this technique relies on complete state observations at any point in time, and
thus, it’s applicability is limited to certain cases.

When using martingale estimation functions (MEF) [KesslerSorensen1999], the transition
densities are not necessarily approximated by (conditional) GAUSSian densities, but may have
more complex shapes. KESSLER and SORENSEN give criteria under which the developed esti-
mators are consistent. However, the actual construction of these MEF is problem-dependent,
as it requires the eigenfunctions of the generator Gp := f(x, p) d

dx + 1
2g(x, p) d2

dx2
(a differential

operator) of the SDE model in eq. (5.4).

There exist plenty of other estimation techniques, e.g. based on indirect inference [Gourier-
oux1993; BianchiCleur1996] and auxiliary models (e.g. the efficient method of moments (EMM)
of GALLANT and TAUCHEN [GallantTauchen1996]). In nonparametric approaches, conditional
densities are approximated by kernel density estimates, possibly without assuming a cer-
tain functional form of drift and diffusion functions [BandiPhillips2003], or, as in [Shoji2002;
Shoji2003], the coefficients of the TAYLOR series expansion of the drift are estimated. We refer
to the literature.

5.2.3 Assessing estimator performance

Comparisons of estimators are not frequently found in literature. The few comparisons that
have been done are often restricted to special classes of SDEs that can also be solved ana-
lytically to rate the estimator performance. For a discussion of the difficulties and pitfalls in
performance assessment, we refer to [Cysne2004].

One of the few actual evaluations of estimator performance is found in [ShojiOzaki1997].
They investigate five different estimators based on maximum likelihood and GMM on the basis
of two scalar SDEs, one linear system with state-dependent diffusion, dXt = (α1 +β1Xt) dt+
σ1Xt dWt, and a nonlinear system with constant diffusion, dXt = α2X

3
t dt + σ2 dWt, with

dense and equidistantly sampled, error free, direct observations over the whole time horizon
as required by many estimations methods.

The new method we propose in this thesis aims at solving complex multi-dimensional
problems with several parameters, unknown initial system state, and arbitrarily sampled, with

128



5.3 On the distance between SDE and ODE solutions

intermittent, partial and/or indirect observations, which may additionally be afflicted with
measurement errors, like the problems in the numerical examples chapter 6. For these types of
problems, no established test suites and protocols exist. Such a test suite has to be developed
in future work.

5.3 On the distance between SDE and ODE solutions

We have seen in the introductory example in section 5.1 and figure 5.1 that the addition of
even small stochasticity (or “intrinsic noise”) may completely alter the model behaviour seen
over the whole time domain.

For smaller time scales, as depicted for the same example in figure 5.2, SDE and ODE
solutions are quite similar. There arises thus the question to quantify the deviation between
an SDE model and its deterministic ODE counterpart.

To keep the writing short, but w.l.o.g.(3), we restrict ourselves here to time-homogeneous
SDEs (ODE: autonomous) with constant diffusion. Further, we require the drift function
f : IRnx → IRnx (ODE: r.h.s. function) to be LIPSCHITZ continuous with constant L, i.e.

∃ L > 0 : |f(x)− f(y)| ≤ L|x− y|, (5.9)

to ensure the existence of strong solutions of the SDE (ODE: unique solutions), see theo-
rem 4.28. Moreover, we omit the explicit notation of dependence on a parameter vector
p ∈ IRnp .

By Xt, we denote the (strong) solution process(4) of the stochastic initial value problem

S-IVP: dXt = f(Xt) dt+D dWt, X0 = X
(s)
0 (5.10)

and by x(t) the (unique) solution of the corresponding deterministic initial value problem

D-IVP: dx(t) = f(x(t)) dt, x(0) = X
(d)
0 (5.11)

in the time domain [0, T ] with non-random initial values X
(s)
0 and X

(d)
0 , constant diffusion

matrix D ∈ IRnx×nW , and an nW -dimensional WIENER process Wt.

We can the write the solutions Xt of the S-IVP as

S-IVP: Xt = X
(s)
0 +

t∫

0

f(Xs) ds+

t∫

0

D dWs (t ∈ [0, T ]) (5.12)

and the solution x(t) of the D-IVP as

D-IVP: x(t) = X
(d)
0 +

t∫

0

f(x(s)) ds. (t ∈ [0, T ]) (5.13)

(3) see section 5.1.2 and section 5.1.3
(4) i.e., driven by a certain realization of the driving WIENER process Wt
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Using this notation, we define the difference process ∆t, measuring the distance between
SDE solution Xt and ODE solution x(t):

5.1 Definition (Difference Process)
Let Xt be a strong solution process to the S-IVP (5.10), and x(t) the solution of the corre-
sponding D-IVP (5.11). Then, the stochastic process

∆t := Xt − x(t) (5.14)

is called the difference process of Xt and x(t). �

5.2 Definition (Maximum Process)
For a stochastic process Zt, we define

Z∗t := sup
0≤s≤t

|Zt|

as the maximum process of Zt. �

We note that throughout this chapter, for an n-dimensional vector x ∈ IRn, we write
|x| :=‖x‖2. The following lemma is frequently used:

5.3 Lemma (JENSEN’s inequality for concave functions)
Let g : IR→ IR be a concave function, and X an integrable real-valued random variable. Then,
it holds:

IE[g(X)] ≤ g
(
IE[X]

)
(5.15)

Proof: See, e.g., [Chung2000], Theorem 9.1.4. �

5.3.1 Some results on WIENER processes

Before starting the analysis of the difference process ∆t, we give some results about WIENER

processes.

5.4 Lemma (ITÔ integral over a constant matrix)

Let Wt = (W
(1)
t , ...,W

(nW )
t )T be an nW -dimensional WIENER process, and D ∈ IRnx×nW .

Then:

T∫

0

D dWs = D ·WT (5.16)
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Proof: We first show the result for a one-dimensional standard WIENER process Wt ∈ IR and
D ∈ IR. Using definition C.4 for the ITÔ integral, we have for any partition 0 = τ0 < ... < τm = T :

T∫

0

D dWs =
m−1∑

j=0

D ·∆Wj = D
m−1∑

j=0

(
Wτj+1 −Wτj

)
= D ·WT .

Thus, for a matrix-valued diffusion constant D ∈ IRnx×nW and an nW -dimensional WIENER

process Wt ∈ IRnW , using
∫ T

0 Dij dW
(j)
s = Dij ·W (j)

T , and using definition C.14 for the multi-
dimensional ITÔ-integral, we have

T∫

0

D dWs =




nW∑
j=1

T∫
0

D1j dW
(j)
s

...
nW∑
j=1

T∫
0

Dnxj dW
(j)
s




=




nW∑
j=1

D1j ·W (j)
T

...
nW∑
j=1

Dnxj ·W (j)
T




= D ·WT .

�

5.5 Lemma (Some expectations on the WIENER process)

Let Wt = (W
(1)
t , ...,W

(nW )
t )T be an nW -dimensional WIENER process.

1. For the expectation of the (squared) absolute value of Wt, it holds:

(a) IE
[∣∣Wt

∣∣] ≤
√
nW t and (b) IE

[∣∣Wt

∣∣2
]

= nW t

and for a one-dimensional WIENER process, i.e. nW = 1, we have IE
[∣∣W (1)

t

∣∣
]

=
√

2t
π .

We note that the above bound on IE
[∣∣Wt

∣∣] is sharp for nW →∞.

2. For the expectation of the running (squared) absolute supremum of Wt, it holds:

(a) IE

[
sup

0≤s≤t

∣∣Ws

∣∣
]
≤ 2
√
nW t and (b) IE

[
sup

0≤s≤t

∣∣Ws

∣∣2
]
≤ 4nW t

3. For a matrix D ∈ IRnx×nW and a compatible matrix norm ‖·‖, it holds:

IE
[∣∣DWt

∣∣2
]
≤ ‖D‖2 nW t

Proof: Using JENSEN’s inequality (lemma 5.3), DOOB’s maximal inequality for continuous

martingales (lemma C.11), the linearity of expectation, and t = Var
[
W

(j)
t

]
= IE

[
|W (j)

t |2
]
, we

find:

1. It holds:

(a) IE
[∣∣Wt

∣∣] = IE



√√√√

nW∑

j=1

|W (j)
t |2


 ≤

√√√√√IE



nW∑

j=1

|W (j)
t |2


 =

√√√√
nW∑

j=1

IE
[
|W (j)

t |2
]

=
√
nW t .

131



5 Parameter Estimation in Stochastic Differential Equation Models

(b) IE
[∣∣Wt

∣∣2
]

= IE



nW∑

j=1

∣∣W (j)
t

∣∣2

 =

nW∑

j=1

IE
[∣∣W (j)

t

∣∣2
]

= nW t

Further, for nW = 1, using W
(1)
t ∼ N

(
0, t
)

and f(x) = 1√
2πt
· e−x

2

2t , we get

IE
[∣∣W (1)

t

∣∣
]

=

∞∫

−∞

|x|f(x) dx = 2

∞∫

0

xf(x) dx =

√
2t

π

(
≤
√
t
)

2. For the expectation of the running supremum, we first show (b):

(b) IE

[
sup

0≤s≤t

∣∣Ws

∣∣2
]
≤ IE



nW∑

j=1

sup
0≤s≤t

∣∣W (j)
s

∣∣2

 =

IE is
linear

nW∑

j=1

IE

[
sup

0≤s≤t

∣∣W (j)
s

∣∣2
]

=
W

(j)
s

indep.

nW · IE
[

sup
0≤s≤t

∣∣W (1)
s

∣∣2
]

=
lemma
C.11

nW ·
(

2
2−1

)2 · IE
[∣∣W (1)

s

∣∣2
]

= 4nW t

(a) IE

[
sup

0≤s≤t

∣∣Ws

∣∣
]

= IE


 sup

0≤s≤t

( nW∑

j=1

∣∣W (j)
s

∣∣2
) 1

2


 = IE



(

sup
0≤s≤t

nW∑

j=1

∣∣W (j)
s

∣∣2
) 1

2




≤ IE


 sup

0≤s≤t

nW∑

j=1

∣∣W (j)
s

∣∣2



1
2

≤
(b)

2
√
nW t

3. Using the linearity of expectation and the compatibility of the matrix norm, we get

IE
[∣∣DWt

∣∣2
]
≤ IE

[
‖D‖2 ·

nW∑

j=1

(
W

(j)
t

)2] ≤ ‖D‖2 ·
nW∑

j=1

IE
[(
W

(j)
t

)2]
= ‖D‖2 nW t

�

5.3.2 Distance of S-IVP and D-IVP solutions

We formulate some results for one-dimensional, time-homogeneous (autonomous) systems.
These results will be generalized to arbitrary finite dimension later on.

Though most of these distance results are already known, the focus in literature usually lies
on estimating the probabilities for large deviations (large deviation theory for stochastic pro-
cesses based on the work of FREIDLIN and WENTZELL [FreidlinWentzell1998]). We therefore
give proofs suited to the purposes here.

We start with some results that we’ll rely upon in later proofs.
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5.6 Lemma (A quadratic inequality)
For any ai ∈ IRd (i = 1, ..., n; d ∈ IN), it holds:

∣∣
n∑

i=1

ai
∣∣2 ≤ 2n−1

n∑

i=1

|ai|2 (5.17)

Proof: We first proof the result for scalar values αi ∈ IR (i = 1, ..., n) by induction:

Case n = 1 is obvious. For n = 2, from |a1|2− 2|a1||a2|+ |a2|2 =
∣∣|a1| − |a2|

∣∣2 ≥ 0, by addition
of |a1|2 + 2|a1||a2|+ |a2|2, it follows 2|a1|2 + 2|a2|2 ≥ |a1|2 + 2|a1||a2|+ |a2|2 = (|a1|+ |a2|)2 ≥
|a1 + a2|2. Let now eq. (5.17) hold for n− 1. Then:
∣∣ n∑
i=1

ai
∣∣2 =

∣∣n−1∑
i=1

ai + an
∣∣2 ≤

n=2
2
(∣∣n−1∑
i=1

ai
∣∣2 +

∣∣an
∣∣2) ≤

i.h.
2·2n−2

n−1∑
i=1
|ai|2 +2|an|2 ≤ 2n−1

n∑
i=1
|ai|2 .

Now, for vectors αi ∈ IRd (i = 1, ..., n), we have:
∣∣ n∑
i=1

ai
∣∣2 =

d∑
j=1

∣∣ n∑
i=1

ai,j
∣∣2 ≤

ai,j
scalar

d∑
j=1

2n−1
n∑
i=1
|ai,j |2 = 2n−1

n∑
i=1

d∑
j=1
|ai,j |2 = 2n−1

n∑
i=1
|ai|2 .

�

5.7 Lemma (GRONWALL-BELLMAN inequality)
Let u and β be continuous, non-negative functions on I := [t0, tf ], and α be a continuous,
positive function and monotonously increasing function on I. Then, the following implication
holds:

u(t) ≤ α(t) +

t∫

t0

β(s)u(s) ds (t ∈ [t0, tf ]) =⇒ u(t) ≤ α(t)e
∫ t
t0
β(s) ds

(t ∈ [t0, tf ]) .

If, as a special case, α(t) ≡ a > 0 and β(t) ≡ b ≥ 0 are constants and [t0, tf ] = [0, T ], this
reads as

u(t) ≤ a+ b

t∫

0

u(s) ds (t ∈ [0, T ]) =⇒ u(t) ≤ aebt (t ∈ [0, T ]) .

Proof: See, e.g., [Pachpatte1998], Theorem 1.3.1. �

5.8 Lemma (CAUCHY-BUNYAKOVSKY-SCHWARZ inequality)
For square integrable real-valued functions f, g : IR→ IR, it holds

∣∣∣∣∣∣

∫

IR

f(x)g(x) dx

∣∣∣∣∣∣

2

≤
∫

IR

∣∣f(x)
∣∣2 dx ·

∫

IR

∣∣g(x)
∣∣2 dx .

Proof: See [Bouniakowsky1859]. �

5.9 Lemma (Distance between SDE and ODE solution - 1D)
Assume that the S-IVP (5.10) and D-IVP (5.11) are one-dimensional and time-homogeneous
or autonomous, respectively. Then, it holds: The difference ∆t at time t of the solution Xt of
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S-IVP and the solution x(t) of the corresponding D-IVP is bounded by

∣∣∆t

∣∣ ≤
(∣∣X(s)

0 −X(d)
0

∣∣+D|Wt|
)
· eLt, (t ∈ [0, T ]) (5.18)

where L denotes the LIPSCHITZ constant of the drift function f , and D is the SDE’s diffusion.

Note that
∣∣X(s)

0 −X(d)
0

∣∣ = |∆0| is the initial deviation of SDE and ODE solution.

Proof: Using
∫ t

0 dWs = Wt and the LIPSCHITZ continuity of f , we get:

|∆t| = |Xt − x(t)|

=

∣∣∣∣∣∣
(X

(s)
0 −X(d)

0 ) +

t∫

0

f(Xs)− f(x(s)) ds+

t∫

0

D dWs

∣∣∣∣∣∣

≤
∣∣X(s)

0 −X(d)
0

∣∣+

t∫

0

∣∣f(Xs)− f(x(s))
∣∣ ds+D|Wt|

≤
∣∣X(s)

0 −X(d)
0

∣∣+ L ·
t∫

0

∣∣Xs − x(s)
∣∣ ds+D|Wt|

=
∣∣X(s)

0 −X(d)
0

∣∣+D|Wt|+ L ·
t∫

0

|∆s| ds (5.19)

such that we can use the GRONWALL-BELLMAN inequality (lemma 5.7) to get

|∆t| ≤
(∣∣X(s)

0 −X(d)
0

∣∣+D|Wt|
)
· eLt =

(
|∆0|+D|Wt|

)
· eLt .

�

5.10 Corollary (Maximum deviation between SDE and ODE solution - 1D)
For the maximum difference between Xt and x(t) on the whole interval [0, T ], it holds:

∆∗T = sup
0≤t≤T

∣∣∆t

∣∣ ≤
(∣∣X(s)

0 −X(d)
0

∣∣+DW ∗T
)
· eLT . (5.20)

where again L denotes the LIPSCHITZ constant of the drift function f .

Proof: From inequality (5.19), using the monotonicity of the maximum process, we get:

∆∗t = sup
0≤s≤t

|∆s| ≤ sup
0≤s≤t

(
|∆0|+D|Ws|

)
+ sup

0≤s≤t
L ·

s∫

0

|∆r| dr

≤
(
|∆0|+DW ∗t

)
+ L ·

t∫

0

∆∗r dr

for all t ∈ [0, T ]. Application of the GRONWALL-BELLMAN inequality gives the desired result:

∆∗t ≤
(
|∆0|+DW ∗t

)
· eLt ∀ t ∈ [0, T ] .

�

134



5.3 On the distance between SDE and ODE solutions

5.11 Corollary (Difference between SDE and ODE solution with same initial value - 1D)

If S-IVP (5.10) and D-IVP (5.11) share the same non-random initial value X
(s)
0 = X

(d)
0 = x0,

then it holds for the difference process:

∣∣∆t

∣∣ ≤ D|Wt| · eLt (t ∈ [0, T ]) and ∆∗T ≤ DW ∗T · eLT .

Proof: Immediately follows from lemma 5.9 and corollary 5.10. �

5.12 Lemma (Distance and maximum deviation between SDE and ODE solution - nD)
Let Wt be an nW -dimensional WIENER process, and let

Xt = X
(s)
0 +

∫ t

0
f(Xs) ds+

∫ t

0
D dWs with X

(s)
0 ∈ IRnx ,Wt ∈ IRnW , D ∈ IRnx×nW

x(t) = X
(d)
0 +

∫ t

0
f(x(s)) ds with X

(d)
0 ∈ IRnx

be the solutions of S-IVP (5.10) and of D-IVP (5.11), W.l.o.g. assuming that S-IVP and D-IVP
are time-homogeneous or autonomous, respectively. Then, we have:

1. For any compatible matrix norm ‖·‖, it holds

∣∣∆t

∣∣ ≤ (|∆0|+ ‖D‖ |Wt|) · eLt, (t ∈ [0, T ]) (5.21)

where L denotes the LIPSCHITZ constant of the drift function f , and ∆0 = X
(s)
0 −X

(d)
0 .

2. For the maximum deviation between the SDE and ODE solution in [0, T ], it holds

∆∗T ≤
(
|∆0|+ ‖D‖W ∗T

)
· eLT . (5.22)

3. If S-IVP and D-IVP share the same initial value, i.e.
∣∣∆0

∣∣ =
∣∣X(s)

0 −X(d)
0

∣∣ = 0, we have

∆∗T ≤ ‖D‖W ∗T · eLT (for ∆0 = 0) . (5.23)

Proof: 1. is shown as in lemma 5.9, using now lemma 5.4 to get
∫ t

0 D dWs = DWt, and the
compatibility |DWt| ≤ ‖D‖ |Wt| of the matrix norm. 2. and 3. are proved analogously to
corollary 5.10, using 1. and again the compatibility of the matrix norm. �

The above results deliver an estimate on the difference process ∆t between the SDE
solution Xt and the ODE solution x(t) at any time t ∈ [0, T ], and therefore also an upper
bound on the maximum deviation ∆∗T over the whole time domain [0, T ].

If the time domain is small, i.e. for T → 0, the exponentials in eqs. (5.22) and (5.23) go
to 1, but the maximum WIENER process W ∗T has a positive probability of exceeding any given
value δ > 0, though “intuitively”, one expects it to be small, as W ∗0 = W0 = 0. However, the
bounds given in lemma 5.12 are themselves random variates and as such not very useful.

Finally, in the following theorems, we prove the stronger result that the solutions stay
close to each other in expectation and in mean square, that is – in this case – intuition is not
misleading (as it frequently is in probability theory).
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5.13 Theorem (Convergence of SDE and ODE solutions in expectation)

Let Wt = (W
(1)
t , ...,W

(nW )
t )T be an nW -dimensional WIENER process. With the same notation

and prerequisites as in lemma 5.12, it holds for the expected difference between S-IVP and
D-IVP solutions Xt and x(t):

IE
[∣∣∆t

∣∣] ≤
(∣∣∆0

∣∣+ ‖D‖
√
nW t

)
· eLt

and for the maximum difference:

IE[∆∗T ] ≤
(∣∣∆0

∣∣+ 2 ‖D‖
√
nWT

)
· eLT

with L being the LIPSCHITZ constant of the drift function f and D the SDE’s diffusion matrix.
Further,

IE
[∣∣∆t

∣∣] −→
t→0

0 if X
(s)
0 = X

(d)
0 .

i.e. for identical initial values, the SDE and ODE solutions converge in expectation for t→ 0.

Proof: Using the linearity of expectation in eq. (5.21) or eq. (5.22), respectively, and applying
lemma 5.5, i.e. IE

[∣∣Wt

∣∣] ≤ √nW t or IE[W ∗t ] ≤ 2
√
nW t.

Further, for same initial values, |∆0| = 0 and ‖D‖√nW t · eLt −→ 0 (t→ 0). �

5.14 Lemma (An integral estimate)
For Xt and x(t), the solutions of S-IVP (5.10) and D-IVP (5.11), respectively, it holds:

∣∣∣∣∣∣

t∫

0

f(Xs)− f(x(s)) ds

∣∣∣∣∣∣

2

≤ t ·
t∫

0

∣∣f(Xs)− f(x(s))
∣∣2 ds

Proof: The CAUCHY-BUNYAKOVSKY-SCHWARZ inequality (lemma 5.8), applied component-
wise, gives

∣∣∣∣∣∣

t∫

0

f(Xs)− f(x(s)) ds

∣∣∣∣∣∣

2

≤
t∫

0

∣∣f(Xs)− f(x(s))
∣∣2 ds ·

t∫

0

1 ds = t ·
t∫

0

∣∣f(Xs)− f(x(s))
∣∣2 ds

�

5.15 Theorem (Convergence of SDE and ODE solutions in mean square)

Let Wt = (W
(1)
t , ...,W

(nW )
t )T be an nW -dimensional WIENER process. With the same notation

and prerequisites as in lemma 5.12, it holds

IE
[∣∣∆t

∣∣2
]
≤
(

4
∣∣∆0

∣∣2 + 4 ‖D‖2 nW t
)
· e4t2L2

where D is the SDE’s diffusion matrix, ‖·‖ denotes any compatible matrix norm and L is the
LIPSCHITZ constant of the drift function f .
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Further,

IE
[∣∣∆t

∣∣2
]
−→
t→0

0 if X
(s)
0 = X

(d)
0 .

i.e. for identical initial values, the SDE and ODE solutions converge in mean square for t→ 0.

Proof: It holds for the expected squared deviation:

IE
[∣∣Xt − x(t)

∣∣2
]

= IE




∣∣∣∣∣∣
X

(s)
0 −X(d)

0 +

t∫

0

f(Xs)− f(x(s)) ds+DWt

∣∣∣∣∣∣

2



≤
lemma

5.6

IE


4
∣∣X(s)

0 −X(d)
0

∣∣2 + 4

∣∣∣∣∣∣

t∫

0

f(Xs)− f(x(s)) ds

∣∣∣∣∣∣

2

+ 4
∣∣DWt

∣∣2



=
IE is

linear

4 IE
[∣∣X(s)

0 −X(d)
0

∣∣2
]

︸ ︷︷ ︸
=
∣∣X(s)

0 −X
(d)
0

∣∣2
(non-random)

+4 IE




∣∣∣∣∣∣

t∫

0

f(Xs)− f(x(s)) ds

∣∣∣∣∣∣

2

+ 4 IE

[∣∣DWt

∣∣2
]

≤
lemmata

5.14 + 5.5

4
∣∣X(s)

0 −X(d)
0

∣∣2 + 4t · IE




t∫

0

∣∣f(Xs)− f(x(s))
∣∣2 ds


+ 4t · ‖D‖2 nW

≤
FUBINI,

f is LIPSCHITZ

4
∣∣X(s)

0 −X(d)
0

∣∣2 + 4tL2 ·
t∫

0

IE
[∣∣Xs − x(s)

∣∣2
]
ds+ 4t · ‖D‖2 nW

= 4
∣∣X(s)

0 −X(d)
0

∣∣2 + 4t · ‖D‖2 nW
︸ ︷︷ ︸

=:α(t)

+

t∫

0

4tL2

︸︷︷︸
=:β(s)

· IE
[∣∣Xs − x(s)

∣∣2
]

︸ ︷︷ ︸
=:u(s)

ds

with monotonically increasing α(t), such that the GRONWALL-BELLMAN inequality (lemma 5.7)
gives with α, β, and u as above:

IE
[∣∣Xt − x(t)

∣∣2
]
≤
(
4
∣∣X(s)

0 −X(d)
0

∣∣2 + 4t · ‖D‖2 nW︸ ︷︷ ︸
−→0 (t→0)

)
· e4t2L2

︸ ︷︷ ︸
−→1 (t→0)

−→
t→0

4
∣∣X(s)

0 −X(d)
0

∣∣2

tending to zero if the initial values X
(s)
0 and X

(d)
0 coincide. �

A similar result is obtained for the maximum mean square deviation between S-IVP and
D-IVP solution over the whole interval [0, T ], as given in the next theorem.
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5.16 Theorem (Maximum distance of SDE and ODE solutions in mean square)

Let Wt = (W
(1)
t , ...,W

(nW )
t )T be an nW -dimensional WIENER process. With the same notation

and prerequisites as in lemma 5.12, it holds for the maximal mean square distance between
S-IVP and D-IVP solution over the whole interval [0, T ]:

IE
[∣∣∆∗T

∣∣2
]

= IE

[
sup

0≤t≤T

∣∣∆t

∣∣2
]
≤
(

4
∣∣X(s)

0 −X(d)
0

∣∣2 + 16 ‖D‖2 nWT
)
· e4T 2L2

(5.24)

where D is the SDE’s diffusion matrix, ‖·‖ denotes a compatible matrix norm and L is the
LIPSCHITZ constant of the drift function f .

Proof: First,
∣∣∆∗T

∣∣2 =

(
sup

0≤t≤T

∣∣∆t

∣∣
)2

= sup
0≤t≤T

∣∣∆t

∣∣2, as |∆t| ≥ 0. Further, for every t ∈ [0, T ]:

IE

[
sup

0≤s≤t
|∆s|2

]
= IE


 sup

0≤s≤t

∣∣∣∣∣∣
X

(s)
0 −X(d)

0 +

s∫

0

f(Xr)− f(x(r)) dr +

s∫

0

D dWr

∣∣∣∣∣∣

2


≤
lemma

5.6

IE


 sup

0≤s≤t

{
4
∣∣∣X(s)

0 −X(d)
0

∣∣∣
2

+ 4

∣∣∣∣∣∣

s∫

0

f(Xr)− f(x(r)) dr

∣∣∣∣∣∣

2

+ 4

∣∣∣∣∣∣

s∫

0

D dWr

∣∣∣∣∣∣

2}


≤
lemma
5.14

IE


4
∣∣∆0

∣∣2 + sup
0≤s≤t

4s

s∫

0

∣∣f(Xr)− f(x(r))
∣∣2 dr + sup

0≤s≤t
4
∣∣DWs

∣∣2



≤
s≤t

4
∣∣∆0

∣∣2 + IE


 sup

0≤s≤t
4t

s∫

0

∣∣f(Xr)− f(x(r))
∣∣2 dr


+ IE

[
sup

0≤s≤t
4 ‖D‖2

∣∣Ws

∣∣2
]

≤
lemma 5.5
f LIPSCHITZ

4
∣∣∆0

∣∣2 + IE


 sup

0≤s≤t
4t

s∫

0

L2
∣∣Xr − x(r)

∣∣2 dr


+ 4 ‖D‖2 · 4nW t

≤ 4
∣∣∆0

∣∣2 + 16 ‖D‖2 nW t+ 4L2t · IE




t∫

0

sup
0≤s≤r

∣∣∆s

∣∣2 dr




=
FUBINI

4
∣∣∆0

∣∣2 + 16 ‖D‖2 nW t
︸ ︷︷ ︸

=:α(t)

+

t∫

0

4L2t

︸︷︷︸
=:β(r)

IE

[
sup

0≤s≤r
|∆s|2

]

︸ ︷︷ ︸
=:u(r)

dr .

With continuous, positive, monotonically increasing α and continuous β and u as above, the
GRONWALL-BELLMAN inequality (lemma 5.7) delivers eq. (5.24), completing the proof. �
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5.4 A piecewise deterministic parameter estimation method

5.4 A piecewise deterministic parameter estimation method

In this section, we first establish the notation needed for the formulation of the stochastic
parameter estimation problem in section 5.4.3 on page 143. The new method will be derived
on the basis of jump regularization in the ODE parameter estimation problem discussed in
chapter 2.

The same notation will be used for the numerical analysis in the subsequent section 5.5.

5.4.1 Notation and assumptions

5.4.1.1 Stochastic differential equation model

In what follows, we assume that observations originate from a single realization of a system
whose dynamics follow a stochastic differential equation with additive noise:

dXt = f(t,Xt, p) dt+D dWt (t ∈ [t0, tf ])

with drift f : [t0, tf ]× IRnx × IRnp → IRnx , fulfilling the prerequisites of theorem 4.28 to ensure
the existence of strong solutions, and constant diffusion D ∈ IRnx×nW with an nW -dimensional
driving WIENER process Wt ∈ IRnW .

The initial state Xt0 is not necessarily known. Further, we assume that the (stochastic)
noise is “small” or “non-dominating”, in the interpretation that, for a small time-horizon, the
system is well approximated by its corresponding ODE

dx = f(t, x(t), p) dt (t ∈ [τ, τ + ∆τ ]).

5.4.1.2 Shooting grid TMS

The time horizon [t0, tf ] is partitioned in nMS intervals, not necessarily of the same size, at the
time points t0 = tMS

0 < tMS

1 < ... < tMS
nMS

= tf , collected into the shooting grid

TMS =
{
tMS

0 , ..., t
MS

nMS

}
.

As a convention, we say interval k starts at the shooting node (time point) tMS

k , i.e. we start
counting the intervals at 0 (zero).

5.4.1.3 Shooting variables sk

The initial values (states) sk ∈ IRnx at the shooting nodes tk (k = 0, ..., nMS − 1) are combined
into the vector s:

s =




s0
...

snMS−1


 ∈ IRnMS·nx , sk =



sk,1

...
sk,nx


 ∈ IRnx (k = 0, ..., nMS − 1).

Note that there is no shooting variable at the last node tMS
nMS

.
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5.4.1.4 Parameter vector p
The (unknown) parameters of the deterministic drift term f(t, x(t), p) and of the measurement
functions hi(ti, x(ti; p), p) are combined in the vector p:

p =
(
p1, ..., pnp

)
∈ IRnp .

5.4.1.5 Measurement times ti and selector functions ι, ι, ι, κ
We assume that measurements of the stochastic process have been taken at not necessarily
distinct time point ti, which we store in the multiset

TM := {t1, ..., tnM }.

We further define the selector functions for the k-th shooting interval (k = 0, ..., nMS − 1)

ι(k) := min
{
i ∈ {1, ..., nM}

∣∣ tMS

k ≤ ti < tMS

k+1

}
(5.25a)

ι(k) :=

{
max

{
i ∈ {1, ..., nM}

∣∣ tMS

k ≤ ti < tMS

k+1

}
for k = 0, ..., nMS−2

max
{
i ∈ {1, ..., nM}

∣∣ tMS

k ≤ ti ≤ tMS

k+1

}
for k = nMS−1

(5.25b)

ι(k) :=
{
i
∣∣ ι(k) ≤ i ≤ ι(k)

}
(5.25c)

κ(t) := min
{
k ∈ {0, ..., nMS − 1}

∣∣ tMS

k ≤ t
}

(5.25d)

that give the first index, eq. (5.25a), and the last index, eq. (5.25b), of the measurement times
ti that lie in the k-th shooting interval, as well as the whole set of indices i that belong to
measurements in the k-th interval, eq. (5.25c). The last selector function in eq. (5.25d) returns
for a given time point t the respective shooting interval in which this time point falls.

We mention that the above definition of the selector functions ι and ι implies that mea-
surements taken at an inner shooting node tMS

k are always associated with the k-th interval
that begins at this node. This will be discussed in section 5.4.1.10 on page 142.

5.4.1.6 Measurement function hi, measurements ηi, measurement variances σ2
i

As in the ODE case, we assume having nM scalar measurements ηi ∈ IR (i = 1, ..., nM ), taken
at the not necessarily distinct time points ti. The measurements may be affected by normally
distributed and independent measurement errors εi ∼ N

(
0, σ2

i

)
(i = 1, ..., nM ).

If Xt is the true stochastic process, we may write the measurements as

ηi = hi(ti, Xt, p) + εi , εi ∼ N
(
0, σ2

i

)
(i = 1, ..., nM )

using the scalar measurement functions hi : IR× IRnx × IRnp → IR.
We denote by h(k) the vector of all measurements in the k-th shooting interval, i.e.

h(k) = h(k)(sk, p) =



hι(k)

(
tι(k), x(tι(k); p, t

MS

k , sk), p
)

...
hι(k)

(
tι(k), x(tι(k); p, t

MS

k , sk), p
)


 ∈ IR|ι(k)| (k = 0, ..., nMS − 1)

and collect them in the complete observation vector h:

h = h(s, p) =
(
h(0)(s0, p)

T
, ..., h(nMS−1)(snMS−1, p)

T
)T
∈ IRnM .
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Analogously, we collect the measurements in the k-th shooting interval into η(k), combine
all measurements in the vector η, and do the same combination for the respective standard
deviations in a per-interval-wise manner in Σ(k) and in total in Σ:

η(k) :=
(
ηι(k), ..., ηι(k)

)T ∈ IR|ι(k)| , η :=
(

(η(0))T, ..., (η(nMS−1))T
)T
∈ IRnM

Σ(k) := diag
{
σι(k), ..., σι(k)

}
∈ IR|ι(k)|×|ι(k)| , Σ := diag

{
Σ(0), ...,Σ(nMS−1)

}
∈ IRnM×nM

for k = 0, ..., nMS − 1.

5.4.1.7 Trajectory x(t) or x(t; s, p)

For t ∈ [tMS

k , t
MS

k+1], we denote by x(t; tMS

k , sk, p) the trajectory on the closed interval [tMS

k , t
MS

k+1],
i.e. x(t; tMS

k , sk, p) is the unique solution of the IVP

ẋ(t) = f(t, x(t), p) , x(tMS

k ) = sk , t ∈ [tMS

k , t
MS

k+1] (k = 0, ..., nMS − 1) .

Similar as in the ODE case in eq. (2.12), we define x(t) = x(t; s, p) to be the concatenation of
the interval solutions:

x(t; s, p) := x(t; tMS

k , sk, p) for t ∈ [tMS

k , t
MS

k+1) (k = 0, ..., nMS − 1) (5.26)

and set x
(
tMS
nMS

; s, p
)

:= x
(
tMS
nMS

; tMS

nMS−1, snMS−1, p
)

at the last shooting node. Doing so ensures
that x(t; s, p) is càdlàg on [t0, tf ]. Also see section 5.4.1.10 for the values at the shooting nodes.

5.4.1.8 Stochastic jumps αk and jump regularization weights ω2
k

Anticipating definition 5.17, we denote by αk the discontinuity at the inner shooting grid
point tMS

k (k = 1, ..., nMS − 1), and call it stochastic jump, i.e.

αk := x
(
tMS

k ; tMS

k−1, sk−1, p
)
− sk ∈ IRnx (k = 1, ..., nMS − 1)

and combine them into the vector α:

α =




α1
...

αnMS−1


 ∈ IR(nMS−1)·nx , αk =



αk,1

...
αk,nx


 ∈ IRnx (k = 1, ..., nMS − 1).

We endow every jump αk,l with a jump regularization weight ω2
k,l ∈ IR+

0 , and build the weight-
ing matrices

Ω(k) := diag {ωk,1, ..., ωk,nx} ∈ IRnx×nx (k = 1, ..., nMS − 1)

Ω := diag
{

Ω(1), ...,Ω(nMS−1)
}
∈ IR((nMS−1)nx)×((nMS−1)nx) .

5.4.1.9 Equality and inequality point constraints cec and cic

As in section 2.3.1.1, point constraints are described by

cec
(
x(tec1 ; p), ..., x

(
tecnEC

; p
)
, p
)

= 0 and cic
(
x
(
tic1 ; p

)
, ..., x

(
ticnIC

; p
)
, p
)
≥ 0

with dimensions cec(·) ∈ IRnec and cic(·) ∈ IRnic .
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5.4.1.10 Measurements at inner shooting nodes

The piecewise assembled deterministic trajectory x(t) (t ∈ [t0, tf ]), defined in eq. (5.26), is, in
general, discontinuous at the inner shooting nodes {tMS

1 , ..., t
MS

nMS−1}.
For measurements taken at these nodes thus arises the question which shooting interval

they should be associated with, i.e., shall we compute the residual by comparing the measure-
ment with the simulated measurement taken on the left limit lim

t↗tMS
k

x
(
t; tMS

k−1, sk−1, p
)

or on the
right limit lim

t↘tMS
k

x(t; tMS

k , sk, p) = sk?

Since the original (unknown) SDE trajectory is càdlàg, we associate, as a convention,
measurements taken at an inner shooting node tMS

k with the k-th interval; that means we
compare it to the simulated measurement taken at the right limit lim

t↘tMS
k

x(t; tMS

k , sk, p) = sk.

This choice is also reflected in the definition of the selector functions ι and ι in eq. (5.25).

5.4.2 A regularization of the multi-experiment case

As already mentioned in remark 2.9 on page 36, SCHLÖDER gives an extension of the ODE pa-
rameter estimation problem 2.8 for the multi-experiment case, in a general and comprehensive
formulation with multiple trajectories x(k) describing different experiments or experimental
set-ups, and goverend by differential equations ẋ(k)(t) = f (k)(t, x(k)(t), p), i.e. each experiment
might follow different kinetics [Schloeder1987].

Omitting the parts for stationarity and jump(5) conditions, the multi-experiment problem
for parameter estimation with data from md distinct experiments reads as

min
x,p

1

2

md−1∑

k=0

∥∥∥r(k)
(
x(k)(t

(k)
1 ), ..., x(k)(t

(k)
M ), p

)∥∥∥
2

2

s.t. ẋ(k) = f (k)(t, x(k), p) t ∈ [t
(k)
0 , t

(k)
f ]

cec
(
x(k)

(
t
(k)
1

)
, ..., x(k)

(
t
(k)
M

)
, p
)

= 0

cic
(
x(k)

(
t
(k)
1

)
, ..., x(k)

(
t
(k)
M

)
, p
)
≥ 0

(5.27)

The ODE parameter estimation problem 2.7 is a special case of eq. (5.27) with md = 1.
We also may interpret parameter estimation problems in SDE as a multi-experiment problem,
in which the individual experiments are run sequentially one after another, i.e. the SDE time
horizon [t0, tf ] is split by the grid points t0 = tMS

0 < tMS

1 < ... < tMS
nMS

= tf into md = nMS intervals,
such that the intervals’ boundaries in eq. (5.27) are given as t

(k)
0 = tMS

k and t
(k)
f = tMS

k+1 for
k = 0, ..., nMS − 1. The individual experiments follow the same kinetic, i.e. they share the same
r.h.s. function f (k)(t, x, p) ≡ f(t, x, p) ∀k.

(5) The jump conditions in the multi-experiment formulation of [Schloeder1987] describe discontinuous transi-
tions between different steady states xs and require stationarity, i.e. a vanishing r.h.s. function f(t, xs, p) = 0,
as well as an instability, i.e. d

dx
f(t, xs, p) must be singular. This kind of jumps is different from the ones

considered in this thesis.
The multi-experiment formulation also allows for discontinuities in the k-th experiment trajectory, described
by x(k)(τ+j ) = x(k)(τ−j ) +S(τkj , x

(k)(τkj ), p) with a known update function S at time points τkj (given explic-

itly or characterized implicitly by Z(τkj , x
(k)(τkj ), p) = 0). However, the original SDE trajectory is continous

and the update function S is unavailable.
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For intervals without observations, this leads into singular problems, since the trajectory,
say on the k-th interval, x(k)(t) may not be computed solely from the differential equation
(i.e. without, for example, an initial value). One remedy would be to abstain a trajectory in
intervals without observations, but that loses information: we know that the state value at
the end of the k-th interval is a good initial value for the subsequent interval k + 1. And this
information should be propagated to subsequent intervals.

Thus, to avoid singularity but maintain and use the available information, we may add
a jump regularization term to the objective of eq. (5.27), formulated as a sum of least
squares,

1

2

nMS−1∑

k=1

∥∥∥Ω ·
(
x(k−1)(tMS

k )− x(k)(tMS

k )
)∥∥∥

2

2

with some suitable weighting matrix Ω ∈ IRnx×nx , forcing the initial values of each interval to
stay “nearby” the final value of the preceding interval.

We do this for all intervals, as we approximate the SDE realization by solutions of ODEs,
leading to the stochastic parameter estimation problem formulated in the next section.

5.4.3 Stochastic parameter estimation problem with jump regularization

In contrast to the ODE parameter estimation described in chapter 2, in the setting of parameter
estimation in a WIENER-driven SDE, we do not implement continuity conditions but we allow
discontinuities at the shooting nodes tMS

k , as outlined in the previous sections.
These “jumps” collect and correct for the deviations between the solutions of the SDE

and the corresponding ODE (compare section 5.3). To give them a name, we formulate:

5.17 Definition (Stochastic jumps and jump regularization weights)
Suppose a multiple-shooting parametrization with shooting variables sk at nodes tMS

0 , ..., t
MS
nMS

is given. We then call the discontinuities at the (inner) shootings nodes tMS

1 , ..., t
MS

nMS−1

αk := αk(p, sk−1, sk) := x
(
tMS

k ; tMS

k−1, sk−1, p
)
− sk ∈ IRnx (k = 1, ..., nMS − 1) (5.28)

the stochastic jumps. By definition, αk denotes the jump at shooting node tMS

k .
By an additional index l, we denote the respective component:

αk,l =
[
x
(
tMS

k ; tMS

k−1, sk−1, p
)
− sk

]
l

(l = 1, ..., nx) (5.29)

With every jump αk,l we associate a jump regularization weight ω2
k,l ∈ IR+

0 , or jump weight for
short, building the weighting matrices

Ω(k) := diag {ωk,1, ..., ωk,nx} ∈ IRnx×nx (k = 1, ..., nMS − 1)

Ω := diag
{

Ω(1), ...,Ω(nMS−1)
}
∈ IR((nMS−1)nx)×((nMS−1)nx) .

Figure 5.3 gives an illustration of the jumps αk; also see figure 5.6. �

We may now formulate the constrained nonlinear stochastic parameter estimation problem
with point constraints as follows:
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Figure 5.3: Illustration of stochastic jumps αk at the inner shooting nodes tMS

k (k = 1, ..., nMS − 1).
The respective shooting variables sk are given as blue dots; the left limits x

(
tMS

k ; tMS

k−1, sk−1, p
)

of the
càdlàg trajectory x(t; s, p) are marked with small green dots. The sizes of the stochastic jumps αk are
highlighted by red braces. Also see figure 5.6.

5.18 Problem (Constrained nonlinear stochastic parameter estimation problem)

min
s0,...,snMS−1,p

1

2

nM∑

i=1

σ−2
i ·

(
hi(ti, x(ti; s, p), p)− ηi

)2
+

1

2

nMS−1∑

k=1

nx∑

l=1

ω2
k,l ·α2

k,l

s.t. ẋ(t; tMS

k , sk, p) = f(t, x, p) t ∈ [tMS

k , t
MS

k+1)

cec
(
x(tec1 ; s, p), ..., x

(
tecnEC

; s, p
)
, p
)

= 0

cic
(
x
(
tic1 ; s, p

)
, ..., x

(
ticnIC

; s, p
)
, p
)
≥ 0

with αk := x
(
tMS

k ; tMS

k−1, sk−1, p
)
− sk as defined in definition 5.17.

Using the vector notation from section 5.4.1, the objective of the above parameter estimation
problem 5.18 may be rewritten as

min
s,p

1
2

∥∥Σ−1
(
h(s, p)− η

)∥∥2

2
+

1
2

∥∥Ω ·α
∥∥2

2
.

Combining the individual parts of the objective into the combined residual vector F ,

F (s, p) :=

(
Σ−1

(
h(s, p)− η

)

Ω · α

)
∈ IRnM+(nMS−1)nx (5.30)

and unifying the equality point constraints into dec(s, p) := cec
(
x(tec1 ; s, p), ..., x

(
tecnEC

; s, p
)
, p
)
,

and the inequality constraints into dic(s, p) := cic
(
x
(
tic1 ; s, p

)
, ..., x

(
ticnIC

; s, p
)
, p
)
, we end up in

the problem
min
s,p

1
2

∥∥F (s, p)
∥∥2

2

s.t. dec(s, p) = 0

dic(s, p) ≥ 0

(5.31)

from the viewpoint of a numerical solver.
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5.4 A piecewise deterministic parameter estimation method

The problem in eq. (5.31) is of the same type as the discretized constrained nonlinear least
squares problem 2.10 in the ODE case and may thus be solved using the GAUSS-NEWTON

method as described in chapter 1.

We shortly mention a second interpretation of the jump regularization term in problem 5.18.
Driving the jump regularization weights ω2

k,l to infinity corresponds to solving the ODE pa-
rameter estimation problem 2.8 with a penality method, where the continuity conditions,
eq. (2.10), are shifted into the objective (not discussing the arising numerical difficulties here).

High jump regularization weights may thus be used to generate trajectories with smaller
jumps, which might be beneficial in some cases, e.g. as in the numerical examples for the
FITZHUGH-NAGUMO oscillator, section 6.1.

5.4.4 Imperative jump regularization: A WIENER exponential example

The question whether it is necessary to include the jump regularization term in the objective
instead of omitting them completely shall be shortly addressed here. On first sight, it might
seem reasonable to view the interval solutions as independent problems, which are only coupled
by the common parameters. If there is plenty of measurement data containing enough and
the right information (e.g. many full-state measurements with small measurement error), this,
indeed, may succeed. However, the following example shows that this approach might also
fail even in the case of error-free full-state measurements, and that the inclusion of the jump
regularization term in the objective leads to good estimates.

We investigate a WIENER-driven exponential, given as

dXt = pXt dt+D dWt, X0 = 1.0, p = 0.25, D = 2.0, t ∈ [0, 10], (5.32)

whose deterministic counterpart has the solution x(t) = X0 · ept.
Figure 5.4 shows simulation results for the above system. On the left, in (a), the deter-

ministic interpretation without diffusion is shown. On the right, in (b), a certain SDE solution
together with the underlying realization of the driving WIENER process is depicted.

Notably is the fact that this realization of Wt drives the system into negative states, giving
the impression of a negative initial value.

From this SDE solution, we take measurements at points {k+0.5, k+0.55
∣∣ k = 0, ..., 9},

from which the parameter p and initial state X0 shall be recovered. The time horizon is
equidistantly split in 10 shooting intervals; all jump regularization weights ω2

k are set to 1.0.
The values sk at the shooting nodes and the parameter p, in this example 11 unknowns, are
estimated by solving the parameter estimation problem 5.18 using the 20 state measurements.

Table 5.1 gives a description of the experimental set-up and shows the estimation results.
The method we propose in this thesis recovers both, the parameter p and the initial state X0.
Removing the jump regularization gives a much better fit in terms of residual reduction (a
residual norm of approx. 0.31 compared to 10.2 for exact measurements) but leads to improper
estimates.

The visualization in figure 5.5 sheds light on the cause. Without jump regularization, the
coupling between the interval solution is only by the parameter p, i.e. the state varibles at
the shooting nodes are independent from the state values at the previous interval’s end, and
can be freely chosen to minimize the residual, leading to a trajectory with large jumps at the
grid points. Moreover, by comparing figure 5.5c and figure 5.5d, and the respective results
in table 5.1, we see that without jump regularization, the results are not robust to
measurement noise: In both cases the residuals are small, but the estimates differ immensely.
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5 Parameter Estimation in Stochastic Differential Equation Models

(a) deterministic interpretation (b) with driving WIENER process

Figure 5.4: Trajectories of a WIENER exponential. Deterministic and stochastic interpretation of the
exponential system described in eq. (5.32), with p = 0.25 and initial value X0 = 1.0.
The impact of the driving WIENER process, displayed as second graph in the right figure, is clearly visible
in the WIENER exponential and manifests in jitter and even switching signs, changing it into a negativ
exponential despite a positiv initial value.

Also, given for comparison, fitting the deterministic exponential x(t) = X0 · ept is not
convincing. The residual norm is high, the estimate for p is poor, and the estimate of the
initial state X0 has the wrong sign. Clearly, as this realization of the WIENER process drives
the system into the negative halfspace, the initial value for a continuous exponential has to be
negative, i.e. the initial state X0 = 1.0 cannot be recovered.

As can be seen in figures 5.5a and 5.5b, the new method with jump regularization
is able to deliver good estimates, even in situations where other methods fail, and further
robustly approximates the trajectory for exact and noisy measurements in this
WIENER exponential example. We refer to chapter 6 for further successful applications of the
proposed method.

We show in appendix S.3.2, how this problem may be set up and solved using the software
package :sfit developed in this thesis.

Table 5.1: Estimation results for the WIENER exponential with and without jump regularization
for the system described by eq. (5.32). In the first column, exact state measurements, taken at time
points {k+0.5, k+0.55

∣∣ k = 0, ..., 9} have been have been used for the estimation. In the second col-
umn, every datapoint was additively disturbed by a random value drawn from a normal distribution with
zero mean and a variance of 0.25% of the respective measurement value. The shooting node variables
at time points {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} were initialized by the temporally most proximate measurement
data; the initial guess for the parameter was p0 = 0.5. Measurement variances σi and jump regularization
weights ω2

k were chosen as 1.0.
The letters (a)–(e) refer to the respective picture in figure 5.5; the values R and J refer to the 2-norm of
the residual vector and of the weighted jumps, respectively. Values rounded. Also see appendix S.3.2.

p∗ = 0.25 true exact measurements with measurement error
X∗0 = 1.0 values fig. estimate Res./Jmp. fig. estimate Res./Jmp.

with jump
regularization

(a)
p = 0.2896 R = 10.2

(b)
p = 0.2629 R = 20.4

X0 = 1.1841 J = 10.5 X0 = 1.0429 J = 14.8

without jump
regularization

(c)
p = 0.5133 R = 0.31

(d)
p = −1.3901 R = 2.85

X0 = 0.7317 J = 68.7 X0 = 1.5294 J = 1651.7

continuous
trajectory

(e)
p = 0.3461 R = 61.9

(f)
p = 0.3371 R = 82.6

X0 = −0.8410 J ≈ 10−10 X0 = −0.9192 J ≈ 10−10
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5.4 A piecewise deterministic parameter estimation method

(a) with jump regularization, exact measurements (b) with jump regularization, with measurement error

(c) without jump regularization, exact measurements (d) without jump regularization, with measurement error

(e) continuous trajectory, exact measurements (f) continuous trajectory, with measurement error

Figure 5.5: Fitted exponential trajectory with and without jump regularization for the cases of
the WIENER exponential parameter estimation problem as described in table 5.1. In (a) and (b), the fit
originating from the new method with jump regularization is depicted. The discontinuities at the shooting
nodes are clearly visible. Though the residual is much smaller in the settings (c) and (d) without jump
regularization, the resulting estimates are worthless. The continuous trajectory in (e) and (f), apparently
giving a good fit, also delivers unsatisfactory results. See table 5.1 for details.
The new method with jump regularization, shown in (a) and (b), successfully recovers both the kinetic
parameter and the initial state value.
Fitted trajectory as blue line (—), shooting nodes marked with a blue dot (•), measurements marked with
a red dot (•).
In appendix S.3.2 we show how to set up and solve this problem using the software package :sfit.

5.4.5 Choosing the jump regularization weights

The inclusion of jumps as regularization term in the objective as well as the choice of their
respective weights strongly depends on the concrete problem. Main factors are:

1. the dynamics of the system

2. the strength of diffusion

3. the realization of the driving process

4. the number of measurements in the respective interval

5. the variance of the measurement error

6. the length of the shooting intervals.
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Choosing the jump regularization weights currently requires knowledge about and experience
with the examined system.

Furthermore, one can adjust the regularization according to the purpose: higher weights
lead to a “less discontinuous” fitted trajectory, i.e. with smaller jumps at the shooting nodes
(cf. figure 6.5 on pages 172 and 173).

Investigations on example problems show that the estimation results are quite robust and
not very sensitive to the choice of weights over at least one order of magnitude (see chapter 6:
Numerical Examples, page 163ff).

5.4.6 A convergence result: Jumps approaching zero

The jump regularization in the parameter estimation problem 5.18,

1

2

nMS−1∑

k=1

nx∑

l=1

ω2
k,l ·α2

k,l with αk := x
(
tMS

k ; tMS

k−1, sk−1, p
)
− sk

rises some questions about what happens asymptotically if the number of shooting intervals
nMS tends to infinity: Does the sum (series) converge? Is

∑nx
l=1α2

k,l a null sequence? This
last question is of particular importance, as a positive answer implies asymptotically vanishing
stochastic jumps.

Piecewise solutions
For the analysis, as in section 5.3, we assume w.l.o.g. that the SDE/ODE system is time-
homogeneous/autonomous, and the time domain is [0, T ].

We split the time domain in nMS intervals of length h = T/nMS. Similar to the definitions
in eqs. (5.12) and (5.13), we introduce interval solutions X

(k)
t of S-IVP and x(k)(t) of D-IVP

on the intervals [tMS

k , t
MS

k+1], defined by the shooting grid

TMS = {tMS

0 , t
MS

1 , ..., t
MS

nMS
} with tMS

k = kh (k = 0, ..., nMS) and h =
T

nMS

.

For time-homogeneous SDE and autonomous ODE, we can change the integration limits of
the interval solutions such that each integration interval [tMS

k , t
MS

k+1) is shifted to [0, h). We
can do this also for integrals w.r.t. the WIENER process, since the WIENER increments are
independent.

Further, we do not write the dependence on the parameter vector p in this analysis.

5.19 Definition (Interval solutions X
(k)
t and x(k)(t) of S-IVP and D-IVP)

Assuming w.l.o.g. that the underlying SDE (ODE) is time-homogeneous (autonomous), let
the time domain [t0, tf ] of the original parameter estimation problem be shifted to [0, T ] with
T = tf − t0, and split in nMS intervals of length h = T/nMS.

We denote by X
(k)
t the solution of the S-IVP on the k-th interval with initial state X

(s)
0,k,

X
(k)
t = X

(s)
0,k +

t∫

0

f
(
X(k)
s

)
ds+

t∫

0

D dWs

(
t ∈ [0, h)

)
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5.4 A piecewise deterministic parameter estimation method

Analogously, we write x(k)(t) for the deterministic solution of the D-IVP on the k-th interval

with initial state X
(d)
0,k :

x(k)(t) = X
(d)
0,k +

t∫

0

f
(
x(k)(s)

)
ds

(
t ∈ [0, h)

)

Lastly, we write analogously to definition 5.1

∆
(k)
t := X

(k)
t − x(k)(t)

for the difference process on the k-th interval. �

The SDE solution is continuous (“has a continuous version”), i.e.

X
(s)
0,k = X

(k−1)
h (k = 1, ..., nMS − 1) (5.33)

and the SDE solution over the whole time domain [0, T ] is thus the (continuous) concatenation
of the above interval solutions, i.e. we write the complete solution process Xt as

Xt := X
(k)

t−tMS
k

for t ∈ [tMS

k , t
MS

k+1)

and, analogously, we write

x(t) := x(k)(t− tMS

k ) for t ∈ [tMS

k , t
MS

k+1)

for the piecewise continuous deterministic approximation x(t). Formally, we define the values

at the right interval boundary tMS
nMS

as XtMS
nMS

:= X
(nMS−1)
h and x(tMS

nMS
) := x(nMS−1)(h).

Figure 5.6 illustrates the above definitions.

Theorem 5.15 gives the result

IE
[∣∣∆(k)

t

∣∣2
]
−→ 0 (t→ 0) if X

(s)
0 = X

(d)
0 , (5.34)

i.e. if the initial values of S-IVP and D-IVP coincide. In this case, we can identify the jumps

αk = x(k−1)
(
tMS

k ; tMS

k−1, X
(s)
0,k−1

)
−X(s)

0,k with evaluations of the difference process ∆
(k−1)
t at the

end of the interval [0, h), i.e.

∣∣∆(k−1)
h

∣∣ =
∣∣X(k−1)

h − x(k−1)(h)
∣∣ =

∣∣X(s)
0,k − x(k−1)(h)

∣∣ =
∣∣αk
∣∣ , (5.35)

as X
(k−1)
h = X

(s)
0,k due to the continuity of the process Xt, eq. (5.33).

To analyse the properties of the parameter estimation method proposed in this thesis, and
the behaviour of the sum/series

∑nMS−1
k=1

∑nx
l=1α2

k,l for nMS → ∞, we have to understand αk
now as random variables(6).

(6) when analysing the method, we have to consider the whole set of SDE trajectories, not a certain realization.
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Figure 5.6: Illustration of interval solutions (illustrative image of quantities).
The continuous S-IVP solution trajectory is shown as blue solid line (—), the piecewise D-IVP solutions

as green solid lines (—). Initial values X
(s)
0,k of the interval S-IVPs are marked with a filled cyan dot (•),

and the respective D-IVP initial states X
(d)
0,k by a filled green dot (•). D-IVP states at the interval ends

are marked by an empty green dot (o). Explicitly depicted are the first three differences at interval start

∆
(k)
0 = |X(d)

0,k −X
(s)
0,k| and at interval end ∆

(k)
h .

For a single interval [0, T ], i.e. nMS = 1, theorem 5.15 gives

IE
[∣∣∆T

∣∣2
]
≤
(
4
∣∣X(s)

0 −X(d)
0

∣∣+ 4 ‖D‖2 nWT
)
· e4T 2L2

where L is the drift function’s LIPSCHITZ constant, D denotes the SDE’s diffusion matrix,
and nW is the dimension of the driving WIENER process. Dividing the interval [0, T ] in nMS

intervals, we get

IE

[
nMS∑

k=1

∣∣∆(k)
T/nMS

∣∣2
]
≤

nMS∑

k=1

(
4
∣∣X(s)

0,k −X
(d)
0,k

∣∣2 + 4 ‖D‖2 nW T
nMS

)
· e4(T/nMS )2L2

=
(

4

nMS∑

k=1

∣∣∆(k)
0

∣∣2

︸ ︷︷ ︸
= 0 by eq. (5.34)

+ 4nMS ‖D‖2 nW T
nMS

)
· e4(T/nMS )2L2

= 4 ‖D‖2 nWT · e4(T/nMS )2L2 −→ 4 ‖D‖2 nWT (nMS →∞)

i.e. the summed up squared differences at the interval borders have a finite expectation, for
which we can give a bound that is solely determined by the intensity of the diffusion and the
size of the full time domain.

By eq. (5.35), we can identify
∣∣αk
∣∣ =

∣∣∆(k−1)
h

∣∣ for k = 1, ..., nMS−1, and it immediately follows

IE

[
nMS−1∑

k=1

nx∑

l=1

∣∣αk,l
∣∣2
]
≤ 4 ‖D‖2 nWT · e4(T/nMS )2L2 −→ 4 ‖D‖2 nWT (nMS →∞)

i.e. the components αk,l of the stochastic jumps are null sequences.
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5.5 Numerical analysis of the proposed parameter estimation
method

5.5.1 Sparsity patterns in the linear subproblems

When solving the stochastic parameter estimation problem 5.18 with the GAUSS-NEWTON

method, there arises a special structure in the Jacobian of the linearized systems due to the
special form of the objective. This sparsity pattern could (and should) be exploited in the
determination of the increment ∆xk in the linearized subproblems, section 1.3.2.

The structure of the Jacobian of the constraints strongly depends on the concrete problem
and may vary from dense (for highly interconnected constraints across many shooting variables)
to very sparse (e.g. in the case of simple bound constraints or only local constraints within the
shooting intervals).

We focus in section on the frequent case of unconstrained problems (or problems with
simple bound constraints, as the affected variables can be easily eliminated from the system
in advance), and investigate the structure that occurs during computation of the increment
∆xk as solution of the linearized systems (see section 1.3.2). All these findings also hold in
the constrained case for the upper part of the system matrix in the linearized subproblems,
belonging to the combined residual vector of problem 5.18.

In the following, we analyse the structure of the combined residual vector F (s, p) defined in
eq. (5.30), which consists of the weighted residuals F1 = F1(s, p) := Σ−1

(
h(s, p)− η

)
and the

weighted stochastic jumps F2 = F2(s, p) := Ω ·α that we both split up into the parts belonging
to the individual shooting intervals:

F =

(
F1

F2

)
, F1 :=




F
(0)
1
...

F
(nMS−1)
1


 ∈ IRnM , F2 :=




F
(1)
2
...

F
(nMS−1)
2


 ∈ IR(nMS−1)nx (5.36)

where

F
(k)
1 :=

(
Σ(k)

)−1 ·
(
h(k)(sk, p)− η(k)

)
∈ IR|ι(k)| (k = 0, ..., nMS − 1)

F
(k)
2 := Ω(k) ·

(
x
(
tMS

k ; tMS

k−1, sk−1, p
)
− sk

)
∈ IRnx (k = 1, ..., nMS − 1)

(5.37)

denote the contributions from the respective shooting intervals.

The Jacobian J = J(s, p) thus has the form

J(s, p) =
dF (s, p)

d(s, p)
=




dF1
ds0
· · · dF1

dsnMS−1

dF1
dp

dF2
ds0
· · · dF2

dsnMS−1

dF2
dp


 =




dF
(0)
1

ds0
· · · dF

(0)
1

dsnMS−1

dF
(0)
1
dp

dF
(1)
1

ds0
· · · dF

(1)
1

dsnMS−1

dF
(1)
1
dp

...
...

...

dF
(nMS−1)
1
ds0

· · · dF
(nMS−1)
1

dsnMS−1

dF
(nMS−1)
1
dp

dF
(1)
2

ds0
· · · dF

(1)
2

dsnMS−1

dF
(1)
2
dp

...
...

...

dF
(nMS−1)
2
ds0

· · · dF
(nMS−1)
2

dsnMS−1

dF
(nMS−1)
2
dp




(5.38)
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Using the definitions of F
(k)
1 and F

(k)
2 , and writing Om×n for the m × n zero matrix, we get

for the individual derivatives of the residual functions:

dF
(k)
1

dsj
=

{(
Σ(k)

)−1 · d
dsk

h(k)(sk, p) for j = k

O|ι(k)|×nx for j 6= k
(k = 0, ..., nMS − 1)

dF
(k)
1

dp
=
(
Σ(k)

)−1 · d

dp
h(k)(sk, p) (k = 0, ..., nMS − 1)

and for the jumps:

dF
(k)
2

dsj
=





−Ω(k) for j = k

Ω(k) · d
dsk−1

x
(
tMS

k ; tMS

k−1, sk−1, p
)

for j = k − 1

Onx×nx otherwise

(k = 1, ..., nMS − 1)

dF
(k)
2

dp
= Ω(k) · d

dp
x
(
tMS

k ; tMS

k−1, sk−1, p
)

(k = 1, ..., nMS − 1)

i.e. the Jacobian J is indeed very sparse:

J =

dF
(0)
1

ds0

dF
(0)
1
dp

dF
(1)
1

ds1

dF
(1)
1
dp

...

dF
(nMS−1)
1

dsnMS−1

dF
(nMS−1)
1
dp

dF
(1)
2

ds0
−Ω(1) dF

(1)
2
dp

dF
(2)
2

ds1
−Ω(2) dF

(2)
2
dp

...

dF
(nMS−1)
2

dsnMS−2
−Ω(nMS−1) dF

(nMS−1)
2
dp

(5.39)

We explicitly point to the fact that the jump regularization weights matrices Ω(k) are also
very sparse, since they are diagonal matrices. Figure 5.7 depicts the sparsity pattern from two
estimation problems discussed in the numerical examples section 6.2.

More structure from problem-dependent properties and lifting
More structure may be induced depending on the specific problem: Measurement functions
depending on only a subset of all states create zeros in the respective parts of d

dsk
F

(k)
1 . Local

parameters, i.e. parameters whose influence is restricted to certain intervals, generate zeros in
both d

dpF
(k)
1 and d

dpF
(k)
2 of the remaining intervals. A thereby inspired lifting reformulation

leading to a complete interval-wise decoupling of the objective will be addressed in section 5.5.5.
We remark that the pattern displayed in eq. (5.39) and figure 5.7 is thus a “worst case”

setting in terms of density of the Jacobian.
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Figure 5.7: Sparsity patterns of the combined residual vector’s Jacobian in the calcium oscillator
examples from section 6.2, The full Jacobian J(s, p) always has the size (nM +(nMS−1)nx)×nMSnx + np).
In (b), full state measurements are taken in equidistant intervals, thus dF1

ds has block-diagonal structure.
With nx = 3, np = 12, nMS = 90, nM = 1803, the combined residual vector’s Jacobian has 1803 +
89 · 3 = 2070 rows and 3 · 90 + 12 = 282 columns. Only 31275 of 583740 elements are nonzero, i.e.
less than 5.4%. Note that due to the special structure of measurements, not the maximum number of
31317 = 1803 ·(3 + 12) + 89 ·(3 ·3 + 3 + 3 ·12) is observed. See section 6.2.3.1 for a description of the
measurement scheme.
In (a), a detail enlargement of the sparsity pattern belonging to the stochastic jumps of (b) is depicted.
The 3× 3 blocks originate from d

dsk−1
F

(k)
2 , whereas the diagonal matrices on the right of them are

d
dsk

F
(k)
2 = −Ω(k).

In (c), the full state observations have been done intermittently, i.e. there are shooting intervals with no
measurements, resulting in the multiple block-diagonal structure in the upper left part from dF1

ds . Here,
nx = 3, np = 12, nMS = 120, nM = 738. See section 6.2.3.8 for a description of the measurement scheme.

Sparsity pattern for constrained problems
In the setting of constrained problems (with the exception of simple bounds on the variables,
which can be easily eliminated from the linearized system, and constraints restricted on single
intervals), an additional horizontal band is added below the Jacobian in eq. (5.39), such that
the system matrix J in the linearized problems has the form

J =

(
J

)

with J as in eq. (5.39). The sparsity pattern of the block below J depends on the actual
constraints and may vary from very sparse (if only the constraints for the local parameters are
present) to dense.

5.5.2 Derivative generation

The upper part of the Jacobian J(s, p), i.e. d
d(s,p)F1, requires the calculation of the measurement

function derivatives:

dh(k)

dsk
=
∂h(k)

∂x
· ∂x
∂sk

and
dh(k)

dp
=
∂h(k)

∂x
· ∂x
∂p

+
∂h(k)

∂p
.

Depending on the implementation and software framework (deprecating finite difference meth-
ods here), one might (a) get the sensitivities ∂x

∂sk
and ∂x

∂p via the variational differential equa-
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tions, eq. (2.14), and determine the partial derivatives of the measurement function, ∂h(k)

∂x

and ∂h(k)

∂p analytically or via AD, or (b) retrieve the total derivatives dh(k)

dsk
and dh(k)

dp via an
AD-capable integrator while computing the simulated measurements. In the software package
:sfit implemented in this thesis, the latter approach is used.

5.5.3 Linear complexity growth: An upper bound on the number of nonzero
elements in the combined residual vector’s Jacobian J(s, p)

The maximum number of nonzero elements in the Jacobian J(s, p) of the combined residual
vector, eq. (5.39), that may be achieved if all measurements have non-vanishing sensitivities and
no local parameters are present, may be calculated from the number of states nx, the number
of shooting intervals nMS, the number of parameters np, and the number of measurements nM .

Given a certain system, the number of state variables nx and parameters np stay fixed,
and the question arises, how the complexity of the linear subproblems develops in terms of
measurements nM and especially in terms of an increasing number of shooting intervals nMS,
which might be needed to ensure a sufficient quality of approximation of the stochastic process’s
realization.

The total size of the Jacobian J(s, p) ∈ IR(nM+nx(nMS−1))×(nxnMS+np) is the sum of its four
quadrant derivatives, which have the dimensions

dF1

ds
∈ IRnM×nxnMS

dF1

dp
∈ IRnM×np

dF2

ds
∈ IR(nMS−1)nx×nxnMS

dF2

dp
∈ IR(nMS−1)nx×np

such that the total number of elements of J(s, p), denoted as ntotal(J), is

ntotal(J) = (nM + (nMS − 1)nx) · (nMSnx + np)

= n2
MSn

2
x + nMS(nxnp − n2

x) + nMSnMnx + nMnp − nxnp
= O(n2

MS) +O(nMSnM ) +O(nM )

that is, the total number of elements in the Jacobian is linear in the number of measurements
nM but growths quadratically in the number of shooting intervals nMS.

Number of nonzero elements in J(s, p) growths only linearly
Due to the special structure of the Jacobian, depicted in eq. (5.39), we have for the (maximum)
number of nonzero elements nnzmax of the respective parts of J(s, p):

nnzmax

(
dF1

ds

)
= nMnx nnzmax

(
dF1

dp

)
= nMnp

nnzmax

(
dF2

ds

)
= (nMS − 1)nx + nx = nMSnx nnzmax

(
dF2

dp

)
= (nMS − 1)nxnp

so we get for the total (maximum) number of nonzero elements of the Jacobian:

nnzmax

(
J(s, p)

)
= nMnx + nxnMS + nMnp + nxnMSnp − nxnp
= nM (nx + np) + nMSnx(1 + np)− nxnp = O(nMS) +O(nM ),

that is, the number of nonzero elements in J(s, p) grows only linearly in the number of shooting
intervals nMS.
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5.5.4 Maintaining sparsity in QR decomposition of the Jacobian J(s, p)

In the following, we stick to the assumption of absence of additional point constraints, as they
might change the sparsity properties of the linear problems. Simple bound constraints on the
optimization variables do not interfere with the analysis here. We will see that, using a sparse
and Q-less QR decomposition, the sparsity property of J will be maintained and transferred
to the decomposition factor R (definition 5.20 and theorem 5.21).

When solving the (unconstrained) stochastic parameter estimation problem 5.18 with the
GAUSS-NEWTON method of section 1.3, linear subproblems

min
∆x
‖J∆x+ F‖ (5.40)

have to be solved, where the combined residual vector F = F (s, p) =
(
F1(s, p)T, F2(s, p)T

)T
(see eq. (5.30)) consists of the weighted measurement residuals and the weighted stochastic
jumps at the current iterate x = (s, p), and J = J(s, p) = dF

d(s,p) is the respective Jacobian.

Having a (reduced or economy size) QR decomposition (with pivoting) of J ∈ IRm×n,
m > n, i.e. J = QR with orthogonal matrixQ ∈ IRm×n and upper triangular matrixR ∈ IRn×n,
the increment ∆x may be numerically stably calculated as

∆x = −R−1QTF . (5.41)

Rank-deficiency of J may be detected and handled by using a rank-revealing QR decomposition
as presented in section 1.3. We note that this problem is mathematically equivalent to solving
the (numerically unstable) normal equations JTJ∆x = −JTF .

The matrix Q is usually dense, but its explicit computation is avoidable as QTF may be
efficiently computed while decomposing J .

Due to the special structure of the Jacobian J , eq. (5.39), the sparsity pattern of R is
independent of the number of measurements nM and only determined by the number of state
variables nx, the number of parameters np, and the number of shooting intervals nMS.

5.20 Definition (Decomposition factor R)
We call the matrix R = QTJ ∈ IR(nMSnx+np)×(nMSnx+np) in eq. (5.41), stably computed by a QR
decomposition, the decomposition factor R(7). �

5.21 Theorem (A sharp upper bound on the number of nonzero elements in R)
By using a HOUSEHOLDER QR decomposition of J , we ensure that the decomposition factor
R always has at most

nnzmax(R) = (nMS − 1)n2
x + 1

2nx(nx + 1)nMS + nMSnxnp + 1
2np(np + 1) (5.42)

< nMSn
2
x + nMSnxnp + n2

p

nonzero elements, while in total R has

ntotal(R) = (nMSnx + np)
2 = n2

MSn
2
x + 2nMSnxnp + n2

p

elements, i.e. the occupancy is as low as O( 1
nMS

).

(7) Since JTJ = (QR)T(QR) = RTR, the matrix R is the CHOLESKY factor of JTJ , that one would compute
when solving the normal equations. In this thesis, the normal equations are nowhere used or solved.
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Further, the sparsity pattern of R always takes the form

R =

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. .

.

nx nx (nMS − 2)nx np

(nMS − 2)nx

nx

nx

np

(5.43)

Proof:
We first rewrite the respective blocks of J , eq. (5.39), as

Rk :=
dF

(k)
1

dsk
∈ IR|ι(k)|×nx PRk :=

dF
(k)
1

dp
∈ IR|ι(k)|×np k = 0, ..., nMS − 1

Sk :=
dF

(k+1)
2

dsk
∈ IRnx×nx PSk :=

dF
(k+1)
2

dp
∈ IRnx×np k = 0, ..., nMS − 2

Dk :=
dF

(k)
2

dsk
∈ IRnx×nx k = 1, ..., nMS − 1

(5.44)

where again |ι(k)| denotes the number of (scalar) measurements in the k-th shooting interval;
see eq. (5.25c) for the definition of ι(k). Note that Dk = −Ω(k) is a diagonal matrix.

Second, for easier analysis, we bring J in a standard form (a block-diagonal on the left plus
a band on the right) by permuting its rows, delivering the matrix J̃ :

J=

R0 PR
0

R1 PR
1

...

RnMS-1 PR
nMS-1

S0 D1 PS
0

S1 D2 PS
1

...

SnMS-2 DnMS-1 P
S
nMS-2

nx nx (nMS − 2)nx np

|ι(0)|

|ι(1)|

|ι(nMS − 1)|

nx

nx

nx

row

permutation 

R0 PR
0

S0 D1 PS
0

R1 PR
1

S1 D2 PS
1

...

RnMS-2 PR
nMS-2

SnMS-2 DnMS-1 P
S
nMS-2

RnMS-1 PR
nMS-1

. . .

nx nx (nMS − 2)nx np

|ι(0)|

nx

|ι(1)|

nx

|ι(nMS − 2)|

nx

|ι(nMS − 1)|

=: J̃

(5.45)
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We remind that the matrices Rk are non-square in general, though the above picture might
give this impression. The row permutation is not necessary, as for any permutation matrix P
we have

J = QR = P TPQR ⇐⇒ PJ = PQR ⇐⇒ J̃ = Q̃R

with permuted system matrix J̃ := PJ , orthogonal Q̃ := PQ and same decomposition factor R,
but the application of the row permutation described in eq. (5.45) allows an easier formulation
of the HOUSEHOLDER matrices that will be applied in the QR decomposition for finding the
decomposition factor R.

The first column j1 of the row-permuted Jacobian J̃ has the sparsity pattern

j1,l =

{
∗ for l = 1, ..., nx + |ι(0)|
0 for l ≥ nx + |ι(0)|+ 1

(5.46)

and its HOUSEHOLDER vector v1 := j1 − ‖j1‖ e1 has the same.

Thus, writing nJ := (nMS − 1)nx + nM for the number of rows of J , we see that the first
HOUSEHOLDER matrix that will be applied to J̃ has the form

H1 = InJ×nJ − 2
v1v

T
1

vT1v1
=

[
H̃1 O
O I

]
∈ IRnJ×nJ

with a generally dense matrix H̃1 ∈ IRnH1
×nH1 and nH1 = nx + |ι(0)|. Here, O and I denote

zero and identity matrices of suitable dimensions.

Due to that structure, the application of H1 to J̃ leads to a fill-in in the first |ι(0)| rows in
the columns nx + 1, ..., 2nx of H1J̃ , i.e. in the block right above D1 in eq. (5.45).

In general, the l-th HOUSEHOLDER matrix for l = 1, ..., (nMS − 1)nx, embedded in the space
IRnJ×nJ , has the form:

Hl =



I(l)1

H̃l

I(l)2


 ∈ IRnJ×nJ with dimensions

I(l)1 ∈ IRn
(l)
1 ×n

(l)
1

H̃l ∈ IRnHl×nHl

I(l)2 ∈ IRn
(l)
2 ×n

(l)
2

and

n
(l)
1 = l − 1 , nHl = nx +

⌊
l−1
nx

⌋
∑

r=0

|ι(r)| −
(
(l − 1) mod nx

)
, n

(l)
2 = nJ − n(l)

1 − nHl .

The identity matrix I(l)1 of dimension (l − 1) embeds the lower-dimensional HOUSEHOLDER

matrix
[
H̃l

I(l)2

]
into the IRnJ×nJ . The matrix H̃l is dense in general; the identity matrix I(l)2

at the lower right part is responsible for maintaining the sparsity.

The successive application of the HOUSEHOLDER matrices Hl while transforming J̃ in upper
triangular form always causes a fill-in of only

∑k−1
r=0 |ι(r)| rows above the blocks Dk in eq. (5.45),

leading to the sparsity structure depicted in eq. (5.43).

The remaining HOUSEHOLDER matrices H̃l for l = (nMS − 1)nx + 1, ..., (nMS − 1)nx + np,
working on the lower parts of the right band of PRk and PSk blocks, are usually dense but do
not interfere with the sparsity of H(nMS−1)nx · . . . · H1 · J̃ as they only act on the last nJ − l
columns and rows.

Figure 5.8 gives an illustration. �
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(a) Jacobian J̃ (b) decomposition factor R

(c) HOUSEHOLDER matrix H10 (d) H9 · ... ·H1 · J̃ (e) H10 · ... ·H1 · J̃

Figure 5.8: Examples of sparsity patterns of Jacobian J and decomposition factor R for an uncon-
strained problem with nMS = 6, nx = 3, np = 5, and {3, 2, 0, 4, 5, 2} scalar measurements in the respective
shooting intervals.
(a) shows the sparsity pattern of the row-permuted Jacobian J̃ in eq. (5.45), while (b) displays the spar-
sity pattern after an HOUSEHOLDER QR decomposition has been applied. The upper quadratic part is the
decomposition factor R, whose maximum number of nonzero elements nnzmax(R) = 186 is independent of
the number of measurements and only depends on nMS, nx, and np, see eq. (5.42).
The series at the lower part depicts exemplarily the fill-in effect of (intermediate) HOUSEHOLDER matrices:
(c) shows the sparsity structure of the tenth HOUSEHOLDER matrix H10, whose upper left identity is due
to the embedding to the correct space, and whose lower right identity is due to the sparsity structure of
the intermediate matrix H9 · ... ·H1 · J̃ that is displayed in (d); also see section 5.5.4. The fill-in effect of
its application is seen in (e), showing the intermediate matrix H10 · ... ·H1 · J̃ , where the fill-in has been
highlighted in a green box.
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5.5.5 Lifting with local parameters

While in the stochastic parameter estimation problem 5.18, p ∈ IRnp denotes a unique set of
parameters, one might introduce per interval parameters pk ∈ IRnp for k = 0, ..., nMS − 1, and
add linear constraints of the form

pk−1 − pk = 0 (k = 1, ..., nMS − 1) (5.47)

ensuring that the per interval parameters coincide in the solution. Mathematically, the addi-
tional (nMS − 1)np variables are determined by these additional constraints, so the degree of
freedom does not change, and the “lifted”’ problem is equivalent to the original one.

However, the enlarged search space gives additional structure to the (block-)sparse linear
systems. The lifted problem (compare section 5.4.3) may be formulated as:

5.22 Problem (Constrained nonlinear stochastic parameter estimation problem with
local parameters)

min
s0,...,snMS−1,
p0,...,pnMS−1

1

2

nM∑

i=1

σ−2
i ·

(
hi
(
ti, x(ti; s, p), pκ(ti)

)
− ηi

)2
+

1

2

nMS−1∑

k=1

nx∑

l=1

ω2
k,l ·α2

k,l

s.t. ẋ(t; tMS

k , sk, pk) = f(t, x, pk) t ∈ [tMS

k , t
MS

k+1)

x(tMS

k ; tMS

k , sk, pk) = sk k = 0, ..., nMS − 1

c̃ec
(
x(tec1 ; s, p), ..., x

(
tecnEC

; s, p
)
, p
)

= 0

cic
(
x
(
tic1 ; s, p

)
, ..., x

(
ticnIC

; s, p
)
, p
)
≥ 0

with αk := x
(
tMS

k ; tMS

k−1, sk−1, pk−1

)
−sk being the stochastic jumps at the inner shooting

nodes, p = (pT0, ..., p
T
nMS−1)

T ∈ IRnMSnp denoting the combined vector of the per-interval
parameters pk, and c̃ec combines the original point constraints cec and the linear con-
straints from eq. (5.47) for the local parameters.

With functions F1 and F2 as in eqs. (5.36) and (5.37), adjusted to the lifted problem 5.22,
and modifying the definition of PRk and PSk in eq. (5.44) to

PRk :=
dF

(k)
1

dpk
(k = 0, ..., nMS−1) and PSk :=

dF
(k+1)
2

dpk
(k = 0, ..., nMS−2)

the sparsity pattern of the combined residual vector’s Jacobian in the linear systems then has
the form (compare section 5.5.1):

J(s, p) =
dF (s, p)

d(s, p)
=

dF1
ds

dF1
dp

dF2
ds

dF2
dp





 =

dF1
ds0
· · · dF1

dsnMS−1

dF1
dp0
· · · dF1

dpnMS−1

dF2
ds0
· · · dF2

dsnMS−1

dF2
dp0
· · · dF2

dpnMS−1






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=

R0 PR
0

R1 PR
1

PR
nMS-2

RnMS-1 PR
nMS-1

S0 D1 PS
0

S1 D2 PS
1

SnMS-2 DnMS-1 P
S
nMS-2 PS

nMS-2

nx nx (nMS − 2)nx np np (nMS − 2)np

|ι(0)|

|ι(1)|

|ι(nMS − 2)|

|ι(nMS − 1)|

nx

nx

(nMS − 4)nx

nx

The matrix J(s, p) has now dimension (nM + (nMS − 1)nx)× (nMS(nx + np)); and we note
again that the matrices Rk and PRk are not square in general. The equality conditions eq. (5.47)
and the stochastic jumps establish the connection between the interval-wise problems in the
linearized subproblems.

We remark that a globalization technique as described in chapter 1 often benefits from an
initial infeasibility in the parameter constraints eq. (5.47), which is maintained as long as no
full steps are accepted. Further, the local area of contraction is often increased. For a general
discussion on lifting, we refer to [AlbersmeyerDiehl2010].

The sparsity structure in the QR decomposition of the Jacobian of the lifted problem,
however, is disturbed by both the additional two block (half-)diagonals of PRk and PSk and the
equality conditions on the per-interval parameters pk. Still, the resulting decomposition factor
Rlifted ∈ IR(nMS(nx+np))×(nMS(nx+np)) is sparse – but with a more complex structure – as it can be
shown by similar considerations as in section 5.5.4. It has the general form:

Rlifted =

. . .

. . . .

. . . . .

. . . . . .

. . . . . . .

. . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . .

. . . . . . .

. . . . . .

. . . . .

. . . .

. . .

. .

.

nx nx (nMS − 2)nx np (nMS − 1)np

(nMS − 2)nx

nx

nx

nMSnp

(5.48)

We note that there exist some edge cases of measurement time distribution within the
shooting intervals such that the decomposition factor Rlifted exhibits more zeros in the lower
right block diagonal.
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5.6 Extensions

5.6.1 A homotopy in jump regularization weighting

The objective in the stochastic parameter estimation problem 5.18 (see page 144),

min
s0,...,snMS−1,p

1

2

nM∑

i=1

σ−2
i ·

(
hi(ti, x(ti; s, p), p)− ηi

)2
+

1

2

nMS−1∑

k=1

nx∑

l=1

ω2
k,l ·α2

k,l , (5.49)

may be interpreted as a multi-objective optimization functional: Both the unknown
parameters shall be recovered (by the first weighted least squares term), and the concrete
realization of the underlying SDE’s trajectory shall be approximated (by jump regularization
in the second least squares term).

As shown in the numerical examples section, the proposed method is robust against mod-
erate changes in the jump regularization. For low jump regularization weights, however, the
computed solution might still recover the data – i.e. the first least squares term is close to
zero – but the thereby computed parameters might be wrong, as we have seen in the WIENER

exponential example in section 5.4.4 on page 145.
Also, for problems with complex dynamics, and depending on the available data quality

and quantity, finding a reasonable initialization for the shooting node variables can be a
hard subproblem – especially in the case of intermittent observations with long time periods
without any measurement.

With the results of section 5.3 (On the distance between SDE and ODE solutions) in
mind, it can be beneficial to initially stay “close” to the deterministic (ODE) trajectory. This
can be achieved by increased jump regularization weights. However, the whole idea of the
proposed parameter estimation method is thwarted if artificially high regularization weights
force a strong “binding” to the ODE trajectory.

For pathological cases, we propose to iteratively adjust the jump weights by a homotopy
strategy, by using the objective

min
s0,...,snMS−1,p

1

2

nM∑

i=1

σ−2
i ·

(
hi(ti, x(ti; s, p), p)− ηi

)2
+ µ · 1

2

nMS−1∑

k=1

nx∑

l=1

ω2
k,l ·α2

k,l , (5.50)

instead of the original one in eq. (5.49), with an homotopy parameter µ ∈ [1,∞). An infinite
value µ =∞, is equivalent to forcing continuity conditions (eq. (2.10)) on the trajectory, as in
the case of multiple shooting in ODE parameter estimation (section 2.2.3). The lower bound
value µ = 1 corresponds to the intended jump regularization weights.

By gradually driving the homotopy parameter µ from an initially large value down to
1 during the optimization, the optimizer has more control over the trajectory, progressively
allowing higher gaps at the shooting nodes. This may also speed up convergence for non-
pathological problems.

5.6.2 Shooting grid refinement

If one is in the lucky case of abundant high quality measurements, e.g. densely sampled tem-
perature data with low variances, one is able to identify areas where grid refinement would be
beneficial (see figure 6.14a on page 194 for an example). While manual refinement is always
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possible, this can be also done in an automated way: Intervals with considerably large residu-
als may be split, and the respective jump regularization weights should be adapted. A similar
approach can be used if extraordinary stochastic jumps are observed.

We discuss a strategy based on this methodology in the BISTABAER example in sec-
tion 6.3.3.7 on page 191.

5.7 Software package :sfit

The parameter estimation method described in this chapter has been implemented in the
software package :sfit, that is presented in appendix S.
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6 Numerical Examples

This chapter applies the methodology developed in chapter 5 to examples from biology and
finance. The results are appealing even for a näıve equidistant choice of the shooting grid.
We study the effects of this choice in the BISTABAER model example (section 6.3) in some
detail.

We further show that the proposed method may also be successfully applied to LÉVY-
driven SDEs with jumps, and give an example for which we are also able to estimate a diffusion
parameter.

The first example is the FITZHUGH-NAGUMO oscillator; a classical model for neuronal
firing, with two states and four parameters. Starting from the original ODE model, which rests
on its steady state without any excitation, an SDE formulation is retrieved that is affected by
noise in one component, leading to irregular “firing” of the modelled neuron (i.e. the oscillator
entering its limit cycle). The SDE model is used for artificial data generation.

A simulation study is performed for estimating the 4 model parameters from the generated
data. The intention of this series is to determine accuracy and standard deviation of the
estimation, to check for biased estimates, and to investigate the effect of different choices of
jump regularization weights. Inter alia, it is shown that higher jump regularization weights
are beneficial if the measurements are affected by additional measurement noise, and in partial
observation settings.

The second example copes with a model for calcium oscillations in eukariotic cells.
The system consists of a three dimensional state space, governed by 12 kinetic parameters.
An SDE formulation is retrieved, from which data for subsequent parameter estimation series
is generated, similar to the settings in the FITZHUGH-NAGUMO example. It is shown that
the system is unidentifiable for the partial observation of calcium only. A further parameter
estimation study is thus performed on a subset of parameters that are identifiable by sole
calcium measurements.

Further, for an example with intermittent observations, it is shown that the proposed
parameter estimation method is not only able to recover the kinetic parameters, but also to
regenerate intermediate (non-observed) parts of the trajectory with surprising accuracy.

As third example from biology, a bistable allosteric enzyme regulator model is investi-
gated. Internally driven by an (unobserved) bistable oscillator, which is driven by a WIENER

process in the SDE, the observed trajectories significantly differ in every realization.

Again, a parameter estimation series is performed for retrieving the two kinetic parameters
of the model from both error-free and noisy measurements. Further, it is shown that the hidden
internal control may be reconstructed.

The surprising finding of a lowered estimation accuracy when using error-free data is
investigated, explained, and a remedy in terms of either adjusting the shooting grid or the
jump regularization weights is given.
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The last example originating from finance proves the applicability of the proposed parameter
estimation method beyond its original design. Successful parameter estimation (with low
uncertainty) is shown for the ORNSTEIN-UHLENBECK or VAŠÍČEK model for the time
evolution of interest rates.

This 1-dimensional stochastic process is driven by a pure jump LÉVY process. Using
an automated shooting grid generation heuristic solely based on the available measurement
data, the mean reversion level and mean reversion rate parameters of the SDE’s drift term are
well recovered.

It is further shown that the process’ volatility (a diffusion parameter!) may be estimated
by analysing the distribution of the stochastic jumps αk.

6.1 The FITZHUGH-NAGUMO Oscillator

The FITZHUGH-NAGUMO (FHN) oscillator is a two-species model of an excitable system,
derived by Richard FITZHUGH(1) [FitzHugh1961] as a simplification of the original HODGKIN-
HUXLEY model [HodgkinHuxley1952] describing the initiation and propagation of action po-
tential in neuronal cells. Jin-ichi NAGUMO(2), together with Suguru ARIMOTO and Shuji
YOSHIZAWA derived the corresponding circuit model [Nagumo1962] for electronic simulation
on analog computers.

Nowadays known as FHN oscillator, the model was originally named BONHÖFFER-VAN

DER POL (BVP) model by its inventor, as it contains the VAN DER POL oscillator [vander-
Pol1926] for certain parameter values and “is also qualitatively similar to that proposed by
Bonhoeffer (1941, 1948, 1953) and by Bonhoeffer and Langhammer (1948) to describe the
Ostwald-Lillie iron wire model of nerve. These authors drew comparable phase planes, but
specified no equations” [FitzHugh1961].

The original BVP model derived by FITZHUGH, with an external stimulus ι(t) is given as

ẏ1 = γ(y2 + y1 − y3
1/3 + ι(t)) ẏ2 = −(y1 − α+ βy2)/γ

and can be transformed by coordinate transformation and re-parametrization into the system

ẋ1 = x1 − zx3
1 − x2 + I(t) ẋ2 = a(x1 + b+ cx2) (6.1)

where now I(t) acts as external stimulus. Without any excitation, the FHN has a stable node
or focus, which can be derived by computing the nullclines of eq. (6.1):

0 = x1 − zx3
1 − x2 0 = a(x1 + b+ cx2)

showing that there is no chance of estimating the value of parameter a by measuring only the
steady state values. For cz 6= 0, the cubic equation has a single real solution, delivering the
nullclines as:

x1 =
1

3 3
√

2cz
· k − 3

√
2(−c− 1) · 1

k
x2 = x1 − zx3

1 (6.2)

with k =
(√

729b2c4z4 + 108(−c− 1)3c3z3 + 27bc2z2
) 1

3
.

(1) Richard FITZHUGH, 1922-2007, American biophysicist
(2) Jin-Ichi NAGUMO, 1926–1999, Japanese physicist
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6.1 The FITZHUGH-NAGUMO Oscillator

(a) Time course of stimulated FITZHUGH-NAGUMO oscillator.

(b) Phase portrait of the above FITZHUGH-NAGUMO oscillator.

Figure 6.1: Time course and phase portrait of the FHN oscillator upon excitation by a piecewise
constant function I(t) (red line). While initially being in the steady state (cyan circle), the medium sized
first stimulation at t = 50 leads to a single excitation of the oscillator, followed by resting on an elevated
steady state (red circle). As soon as the first stimulation stops (t = 400), the system “falls back” towards
its original steady state.
The strong second stimulation at t = 500 forces the system to enter a limit cycle as long as the external
stimulus is present, again relaxing to the steady state as soon as the excitation vanishes (t = 850).
In this simulation, the kinetic parameters were chosen as a = 0.02, b = 0.7, c = −0.8, z = 0.25, with initial
values being very close to the steady state – see eqs. (6.2) and (6.3).
To display the time course in the phase portrait, some time points are marked in both plots (magenta
squares).
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6.1.1 Meaning of parameters

As a phenomenological description, parameter a determines the frequency of firing (excitation)
upon a constant lasting external impulse I(t) = i0, while parameter z determines the maximum
amplitude upon any (reasonable) external excitation. The remaining parameters b and c are
coupled and both influence the excitability of the FHN model in an absolute (b) and relative
(c) way, and both influence its ability of successive firing upon a lasting external impulse.

In figure 6.2, the sensitivities of the steady state around the true parameter values are
depicted. Comparing the sensitivity of the steady state value on the parameters b, c, and d,
it becomes obvious that the steady state value is mostly determined by z, and b and c have
opposite effects in about the same magnitude.

6.1.2 Expected bias in parameters b and c

With the estimation of parameter values of b and c in mind, the last finding together with the
formula for the steady state value of the FITZHUGH-NAGUMO oscillator, eq. (6.2), implies that
these two parameters are expected to be biased if the steady state is permanently disturbed
by a WIENER-driven noise.

We will find this presumption confirmed by the estimation series in section 6.1.4. Also
compare the elevated steady state upon excitation depicted in the phase portrait in figure 6.1b.

6.1.3 SDE formulation

For this numerical study, we choose the following parameter values, initial conditions, and
time domain:

a = 0.02, b = 0.7, c = −0.8, z = 0.25, D = 0.1

x1(t0) = −1.300, x2(t0) = −0.7506, [t0, tf ] = [0, 1000]
(6.3)

with initial conditions being close (up to 4 digits) to the steady state. Further, we set the
external stimulus function I in the first component to be a WIENER process, such that the
FHN oscillator model can be written as SDE with drift f and diffusion g:

dXt = f(Xt, p)dt+ g(Xt, p)dWt

f(Xt, p) =

(
x1 − zx3

1 − x2

a(x1 + b+ cx2)

)
, g(Xt, p) =

(
D 0
0 0

) (6.4)

with all kinetic parameters collected in the vector p = (a, b, c, z)T, and D denoting the diffusion
parameter.

Figure 6.3a shows the time course of an FHN oscillator with parameter values as in eq. (6.3)
for a certain realization of a driving WIENER process. The WIENER noise is clearly visible
in the first component. Due to the oscillator’s damping properties, the impact on the second
component is smoothed out and much smaller. A deterministic interpretation, i.e. as ODE
without diffusion, for the same set of parameters is depicted in figure 6.3b, where we observe
no changes in the system’s state, as without any external excitation, the excitable system stays
in its steady state.
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6.1 The FITZHUGH-NAGUMO Oscillator

Figure 6.2: Steady state sensitivities of the FITZHUGH-NAGUMO oscillator with respect to the pa-
rameters b, c, and z. Depicted are the derivatives of the steady state value (x1, x2), see eq. (6.2), around
the nominal values b = 0.7, c = −0.8, z = 0.25, varying one while keeping the others fixed (the steady
state value does not depend on parameter a). One can see that parameter z has the highest impact on
the steady state value at these parameter values.

6.1.4 Simulation study and a closer look at jump regularization effects

To investigate the performance of the estimation method described in section 5.4, we make
a test series consisting of 4 observation scenarios – full and partial state observations, exact
and noisy measurements – and two choices of jump regularization weights to investigate their
impact on the estimation.

The resulting 8 scenarios are:

(A) exact measurements, full observation, jump weight 1.0

(B) exact measurements, full observation, jump weight 10.0

(C) exact measurements, partial observation, jump weight 1.0

(D) exact measurements, partial observation, jump weight 10.0

(E) noisy measurements, full observation, jump weight 1.0

(F) noisy measurements, full observation, jump weight 10.0

(G) noisy measurements, partial observation, jump weight 1.0

(H) noisy measurements, partial observation, jump weight 10.0

For each setting, 100 realizations(3) of the stochastic FITZHUGH-NAGUMO oscillator eq. (6.4)
driven by a WIENER process acting on the first component with diffusion coefficient D = 0.1,
and kinetic parameter values given in eq. (6.3) were made, and the parameters therein esti-
mated using the method proposed in section 5.4.

(3) generated by a stochastic EULER scheme with step size 10−3
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6 Numerical Examples

(a) stochastic (SDE) interpretation of the FITZHUGH-NAGUMO model

(b) deterministic (ODE) interpretation of the same FITZHUGH-NAGUMO model

Figure 6.3: Simulation of the FITZHUGH-NAGUMO oscillator with a driving WIENER process effec-
tive on the first component. In the SDE interpretation, the first component (blue) of the FITZHUGH-
NAGUMO oscillator is disturbed by a driving standard WIENER process, visible as a “noisy” trajectory for
that component. The stability properties of the FITZHUGH-NAGUMO oscillator push both components
towards the steady state, unless the displacement by the WIENER process is too high; in that case, the
oscillator traverses its limit cycle and returns towards its steady state again.
The ODE interpretation (which is equivalent to an SDE interpretation with zero diffusion), shows no
activity at all, since the oscillator remains at its steady state.
The kinetic parameters are a = 0.02, b = 0.7, c = −0.8, z = 0.25, diffusion parameter D = 0.1; initial
values were chosen close to the steady state. Both simulations are generated by an Euler scheme with
stepsize 10−3.
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6.1 The FITZHUGH-NAGUMO Oscillator

6.1.4.1 Measurement functions and weights
All settings share the same sample interval of 5 time units, resulting in 201 full or partial state
observations. In the case of partial observation, only the first component x1 is measured. In
the “noisy” scenarios, normally distributed noise with zero mean and a standard deviation of
0.1 (about 10% of the steady state value) is added to the measurements.

That is, we have as measurement functions(4):

hi(x(ti)) = x(ti) ∈ IR2 (i = 1, ..., 201) for scenarios (A), (B), (E), (F)

hi(x(ti)) = x1(ti) ∈ IR1 (i = 1, ..., 201) for scenarios (C), (D), (G), (H)

with an equidistant measurement grid TM = {0, 5, 10, 15, ..., 1000}. Note that we have omitted
writing the dependence on the parameter vector p.

In the undisturbed settings, the measurement weights are chosen as 1.0, in the “noisy”
scenarios, the reciprocal of the above standard deviation is used(5).

6.1.4.2 Shooting grid and node initialization
The time domain [0, 1000] is divided into 50 evenly sized intervals, i.e. the shooting grid is

TMS = {tMS

0 , ..., t
MS

50} with tMS

0 = 0, tMS

50 = 1000, tMS

k = 20k (k = 1, ..., 49)

and the shooting node variables sk (k = 0, ..., 49) are initialized with their temporally most
proximate measurement.

In the partial observation settings (C), (D), (G), (H), the unobserved species x2 is
initialized with its approximate steady state value −0.7506.

6.1.4.3 Initial parameter guess and stopping criterion for the GAUSS-NEWTON solver
The initial guess of the parameters is set to 50% of the true values (see table 6.1), ensuring that
the local area of contraction of the GAUSS-NEWTON method is left, thus globalization takes
effect. We remark that also for more distant as well as randomized initial guesses, convergence
to the solution is observed.

The optimization is stopped when the maximum norm of the search direction ‖∆xk‖∞
(see section 1.3 on page 14) falls below 10−3.

6.1.4.4 Constraints on optimization variables
The following constraints (beyond reachable values for the FITZHUGH-NAGUMO oscillator) on
the state variables at the shooting nodes are set:

x1, x2 ∈ [−4, 4].

The following constraints on the kinetic parameters ensure the right sign of the parameters:

a ∈ [0.001, 0.1], b ∈ [0.01, 2], c ∈ [−2,−0.01], z ∈ [0.01, 1].

In the test series, no constraints are active in the solutions.

(4) we use a vector-valued measurement function here solely for the sake of convenient notation. Using scalar

measurement functions hi as required in section 2.1.2, we might write hi(x(ti)) =
{
x1(ti) if i ∈ 2IN− 1
x2(ti) if i ∈ 2IN with a

multiset TM = {0, 0, 5, 5, 10, 10, ..., 1000, 1000} holding the (now non-unique) measurement times.
(5) this increases the impact of measurements (in the least squares objective) in the noisy scenarios.
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Figure 6.4: Sparsity pattern of the combined residual vector’s Jacobian - FITZHUGH-NAGUMO

oscillator with full state measurements.
(a) Jacobian J with dimension 500× 104 (52000 elements), nonzero elements: 3088 (5.9%)
(b) decomposition factor R with dimension 104× 104 (10816 elements), nonzero elements: 756 (7.0%)
See section 5.5.1 for details on the sparsity pattern.

6.1.4.5 Sparsity pattern of the combined residual vector’s Jacobian

Figure 6.4 shows the sparsity pattern of the the combined residual vector’s Jacobian J , i.e. the
system matrix of the linearized problem without constraints, as well as the sparsity pattern of
its decomposition factor that may be used for solving the linearized problem.

With a total dimension of 500× 104, only 3088 (5.9%) out of 52000 elements are nonzero.
The decomposition factor R ∈ IR104×104 has roughly the same low occupancy rate of 7.0%.

See section 5.5.1 for details.

6.1.4.6 Results of the test series

The results of the test series are shown in table 6.1. As one would expect, having exact full
state measurements (scenarios (A) and (B) gives the best estimation results. For parameters
a, b, and z, the mean estimate is very close (0.3–2.6% relative error) to the true parameter
values, and the standard deviation of the parameter estimates is satisfying.

As already foreshadowed in section 6.1.2, parameters b and c that describe the steady
state value of the non-excited FITZHUGH-NAGUMO oscillator, show a small bias in most of the
testing scenarios, because of the enduring excitation by the driving WIENER process and thus
moving the steady state value to a (varying) elevated steady state (see figure 6.1b). Parameters
a and z may be recovered fairly well in all experimental settings.

For partial noisy observations (scenarios (G) and (H)), stronger jump regularization leads
to considerable improvement, as both the relative error of the estimates as well as their variance
is reduced (see the lower part of table 6.1; also compare the similar findings in the calcium
oscillation example in the next section).
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6.1 The FITZHUGH-NAGUMO Oscillator

Table 6.1: Estimation test series: FITZHUGH-NAGUMO oscillator. Results of parameter estimation on
100 independent simulations (in each setting) of a FITZHUGH-NAGUMO oscillator, whose first component
is affected by a WIENER process, eq. (6.4). For a discussion of the bias in parameters b and c, see sec-
tion 6.1.2. Initial guess for the kinetic parameters was 50% of the true values. Values rounded to 3 digits.

exact observations without measurement error

scenario (A) scenario (B)
true full observation full observation

parameter all jump weights 1.0 all jump weights 10.0
name value estimate ± SD (SD%) RelErr% estimate ± SD (SD%) RelErr%

a 0.02 0.021± 0.001 (3.8%) 2.6% 0.020± 0.001 (6.6%) 2.0%
b 0.7 0.698± 0.021 (3.0%) 0.3% 0.689± 0.059 (8.5%) 1.6%
c −0.8 −0.728± 0.057 (7.8%) 9.0% −0.692± 0.085 (12.2%) 13.5%
z 0.25 0.251± 0.009 (3.4%) 0.5% 0.253± 0.027 (10.8%) 1.2%

scenario (C) scenario (D)
true partial observation partial observation

parameter all jump weights 1.0 all jump weights 10.0
name value estimate ± SD (SD%) RelErr% estimate ± SD (SD%) RelErr%

a 0.02 0.021± 0.001 (4.0%) 6.0% 0.021± 0.001 (3.1%) 3.3%
b 0.7 0.645± 0.068 (10.6%) 7.9% 0.670± 0.039 (5.8%) 4.2%
c −0.8 −0.782± 0.092 (11.8%) 2.3% −0.713± 0.063 (8.9%) 10.9%
z 0.25 0.240± 0.013 (5.5%) 3.9% 0.236± 0.013 (5.3%) 5.7%
SD%: standard deviation of the estimate · RelErr%: relative deviation of the estimate from the true parameter value

noisy observations with measurement error ε ∼ N
(
0, 0.12

)

scenario (E) scenario (F)
true full observation full observation

parameter all jump weights 1.0 all jump weights 10.0
name value estimate ± SD (SD%) RelErr% estimate ± SD (SD%) RelErr%

a 0.02 0.020± 0.001 (6.7%) 0.8% 0.021± 0.002 (7.7%) 4.0%
b 0.7 0.686± 0.077 (11.2%) 2.0% 0.682± 0.064 (9.4%) 2.5%
c −0.8 −0.673± 0.108 (16.0%) 15.9% −0.770± 0.120 (15.6%) 3.7%
z 0.25 0.250± 0.009 (3.7%) 0.1% 0.255± 0.018 (7.1%) 1.9%

scenario (G) scenario (H)
true partial observation partial observation

parameter all jump weights 1.0 all jump weights 10.0
name value estimate ± SD (SD%) RelErr% estimate ± SD (SD%) RelErr%

a 0.02 0.021± 0.003 (14.1%) 6.4% 0.021± 0.001 (6.8%) 7.3%
b 0.7 0.509± 0.165 (32.4%) 27.3% 0.652± 0.094 (14.4%) 6.9%
c −0.8 −0.887± 0.238 (26.8%) 10.9% −0.783± 0.136 (17.4%) 2.1%
z 0.25 0.227± 0.020 (8.6%) 9.2% 0.237± 0.019 (7.9%) 5.1%
SD%: standard deviation of the estimate · RelErr%: relative deviation of the estimate from the true parameter value
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6.1.4.7 A closer look at a single realization
Figure 6.5 shows the fitted trajectories for a certain realization of a WIENER-driven FITZHUGH-
NAGUMO oscillator for each of the eight testing scenarios discussed in section 6.1.4.

As one can see by comparing figure 6.5a and figure 6.5b, smaller jump weights allow
a better reproduction of the influces of the driving WIENER process, while stronger jump
regularization leads to a “more steady” trajectory (in both settings, exact measurements are
used). Depending on the user’s intention, each of them might be more suitable.

The figures 6.5c to 6.5h show detail enlargements of the approximate interval [280, 620] of
the fitted trajectories in the respective scenarios. The interval contains one transit in the limit
cycle and a subsequent stay around the steady state.

Especially in the “noisy” scenarios, i.e. with additional measurement noise, the application
of higher jump regularization weights delivers a much “smoother” trajectory, which would be
beneficial if state estimation is a user goal.

Scenario (A): Exact measurements, full observation, jump weight 1.0

Scenario (B): Exact measurements, full observation, jump weight 10.0

Figure 6.5: FITZHUGH-NAGUMO example fit (continues on the facing page)
Fitted trajectories for scenarios (A) and (B) for a certain realization of the FITZHUGH-NAGUMO oscillator.
While in the low jump weight scenario (A) the trajectory “mimics” the driving WIENER process affecting
the first component, the higher jump weights in (B) act as regularization, leading to a “more continuous”
trajectory. The detail enlargements for scenarios (C) to (H) on the next page show this more clearly.

Fitted trajectory of component x1 as blue line (—), of component x2 as green line (—), shooting nodes
as dots in the respective colors (•, •). Measurements of x1 as small light blue dot (•), of x2 as small light
green dot (•).
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6.1 The FITZHUGH-NAGUMO Oscillator

Scenario (C): Exact measurements,
partial observation, jump weight 1.0

Scenario (D): Exact measurements,
partial observation, jump weight 10.0

Scenario (E): Noisy measurements,
full observation, jump weight 1.0

Scenario (F): Noisy measurements,
full observation, jump weight 10.0

Scenario (G): Noisy measurements,
partial observation, jump weight 1.0

Scenario (H): Noisy measurements,
partial observation, jump weight 10.0

Figure 6.5 (continued): Detail enlargement of the time interval [280, 620] of the respective scenarios.
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6.2 Calcium ion oscillations in eukariotic cells

Cells of animals and plants use changes in free cytoplasmic calcium concentration for informa-
tion processing and gene expression regulation. Theses changes in free calcium concentration
may be initiated by diverse kinds of external stimuli and intracellular conditions. Oscillations
of free calcium concentration have first been described by WOODS et al. [Woods1986] three
decades ago. The finding that the qualitative type of oscillation (“bursts” or “periodic spikes”)
depends on the stimulation agonist has lead to extensive studies of this cellular information
processing system.

KUMMER et al. developed a compact deterministic ODE model that is able to simulate
both types of oscillation by changing the kinetic parameters of the system [Kummer2000]. In a
subsequent paper [Kummer2005], they describe the “transition from stochastic to deterministic
behavior” depending on the overall count of particles involved.

The general scheme of calcium signalling in eucariotic cells is the following: Binding of
an agonist to a cellular surface recepter triggers the activation of a specific subunit (the α
subunit) of a certain type of receptor-bound intracellular G-protein(6), which in turn activates
PLC(7). This induces hydrolysis of the membrane lipid PIP2

(8) finally releasing IP3
(9). IP3

may now bind to membrane receptors of the endoplasmic reticulum which triggers the opening
of calcium channels and releasing high amounts of calcium (Ca) from intracellular stores into
the cytoplasm. By a mechanism called calcium-induced calcium release, this first release of
calcium is intensified and propagates the calcium signal.

In her 2005 paper, KUMMER compares the deterministic interpretation of the ODE system
eq. (6.5) to a stochastic interpretation based on GILLESPIE simulations [Gillespie1976]. She
shows that the two interpretations qualitatively diverge for low particle numbers. This makes
the calcium oscillator an interesting study object for the new parameter estimation method.
Parameter estimation on this model has also been studied by ZIMMER [Zimmer2015].

For a detailed discussion of the biological background, the derivation of this model, and
the meaning of its kinetic parameters, we refer to the original papers of KUMMER et al. and
the references therein.

We summarize the “core model” and investigate the applicability of our new parameter
estimation method. The model consists of only three species:

1) Gα, the concentration of active subunits of the G-protein

2) PLC, the concentration of active phospholipase C

3) Ca, the amount of free calcium in the cytoplasm

(6)G-proteins or guanine nucleotide-binding proteins denote a family of intracellular proteins that are ubiqui-
tiously coupled to cell surface or transmembrane receptors, playing a crucial role in signal transduction

(7)phosphoinositid-phospholipase C is a family of signal transducers, transmitting an external stimulus from the
membrane located G-proteins into the interior of the cell

(8)phosphatidylinositol 4,5-bisphosphate, a family of phospholipids located mostly at the interior side of the cell
membrane

(9)inositol 1,4,5-trisphosphate, a secondary messenger molecule that leaves the membrane and diffuses through
the cell, tranducing signals
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whose interactions are described by the ODE system

dGα

dt
= p1 + p2 ·Gα −

p3 ·Gα · PLC

p4 + Gα
− p5 ·Gα · Ca

p6 + Gα

dPLC

dt
= p7 ·Gα −

p8 · PLC

p9 + PLC

dCa

dt
= p10 ·Gα −

p11 · Ca

p12 + Ca

(6.5)

As parameter values, we choose the following values for the kinetic parameters (values from
[Kummer2000], figure 7, with an adapted value for p2 ensuring a limit cycle (regular oscil-
lations) in the deterministic interpretation, see figure 6.6a on the next page; original value:
p2 = 2.9259)

p1 = 0.212 p5 = 4.88 p9 = 29.09

p2 = 2.95 p6 = 1.18 p10 = 13.58

p3 = 1.52 p7 = 1.24 p11 = 153.0

p4 = 0.19 p8 = 32.24 p12 = 0.16

(6.6)

and initial concentrations

Gα(0) = PLC(0) = Ca(0) = 0.01 . (6.7)

6.2.1 SDE approximation and simulation

Exact stochastic simulations of the system eq. (6.5) would require time consuming GILLESPIE

simulations. Here, we use an SDE approximation for data generation. For a detailed discussion
of the applicability of this technique, we refer to [Gillespie2000] and the references therein
(especially to the work of KURTZ in the 1970s regarding the underlying chemical LANGEVIN

equation).

To generate artificial data, we formulate the SDE model with drift function f as described
by the ODE model, and constant diffusion function g acting solely on the PLC component
with intensity D = 0.2 and a (formally) three dimensional driving WIENER process Wt:

dXt = f(Xt, p) dt+ g(Xt, p) dWt

with f as in eq. (6.5), and g(Xt, p) ≡




0 0 0
0 D 0
0 0 0


 , D = 0.2

(6.8)

where p = (p1, p2, ..., p12)T denotes the vector of unknown parameters and initial concentrations
as specified in eq. (6.7).

Figure 6.6 compares a deterministic interpretation (i.e., with D = 0) with a certain stochastic
realization of the calcium oscillator SDE. While the deterministic system, after an initial
burst, enters a stable limit cycle, the stochastic analogon shows repeated spiking of calcium
concentration and partially prolonged phases of low calcium levels.
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(a) deterministic (ODE) interpretation of the same calcium oscillator model

(b) stochastic (SDE) interpretation of the calcium oscillator model

Figure 6.6: Simulation of the calcium oscillator with a driving WIENER process effective on the
PLC component. The ODE interpretation (which is equivalent to an SDE interpretation with zero diffu-
sion), enters a stable limit cycle after an initial burst.
Small disturbances by the driving WIENER process in the SDE interpretation lead to a qualitatively differ-
ent behaviour. Kinetic parameters are given in eq. (6.6), diffusion parameter D = 0.2; initial values as in
eq. (6.7).
Both simulations are generated by an EULER scheme with stepsize 10−3.
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6.2.2 (Un-)Identifiabilty of parameters in partial observations

The model (6.5) as developed by KUMMER is identifiable if full state measurements are avail-
able. However, the (formal) model species Gα and PLC combine several individual players of
the cells and are thus not accessible in biological experiments. The only measurable species is
Ca, the concentration of free calcium in the cytosol.

Unfortunately, this partial observability leads to structural unidentifiability of the model,
as the following calculation shows. Changing the amount of Gα and/or PLC by a constant
factor may always be compensated by a different choice of parameters.

We change the amount of active G-protein by a factor of g to G̃α := g ·Gα and the con-
centration of phospholipase C by a factor of k to P̃LC := k · PLC. With these new species, we
get:

dG̃α

dt
= g

dGα

dt
= g ·

(
p1 + p2

G̃α

g

)
− g ·

p3 · G̃α
g · P̃LC

k

p4 + G̃α
g

− g ·
p5 · G̃α

g · Ca

p6 + G̃α
g

= gp1 + p2 · G̃α −
g
kp3 · G̃α · P̃LC

gp4 + G̃α

− gp5 · G̃α · Ca

gp6 + G̃α

dP̃LC

dt
= k

dPLC

dt
= kp7 ·

G̃α

g
− k · p8 · P̃LC

k

p9 + P̃LC
k

=
k

g
p7 · G̃α −

kp8 · P̃LC

kp9 + P̃LC

dCa

dt
=

1

g
p10 · G̃α −

p11 · Ca

p12 + Ca

Thus, choosing the scaled parameters

p̃1 := g · p1, p̃2 := p2, p̃3 :=
g

k
· p3, p̃4 := g · p4,

p̃5 := g · p5, p̃6 := g · p6, p̃7 :=
k

g
· p7, p̃8 := k · p8,

p̃9 := k · p9, p̃10 := g−1 · p10, p̃11 := p11, p̃12 := p12

we get a structurally identical model as eq. (6.5). This means, we can compensate for higher
and lower levels of Gα and PLC by adjusting the kinetic parameters accordingly while main-
taining the level of Ca.

As concequence, the direct test for structural identifiability from lemma 2.4 fails, showing
that the system is structurally and hence practically not identifiable from sole Ca
measurements (as long as we do not force initial conditions, which are unknown here anyways,
or fix some parameters).

We note, that this simple transformation is not necessarily the only one; there might exist
other, more complicated choices of adjusted parameter values that can compensate for different
levels of Gα and PLC.
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6.2.3 Simulation study and a closer look at reconstructing intermittent observations

To investigate the performance of the parameter estimation technique developed in section 5.4
on the calcium oscillator problem, we make a study in which we estimate parameters in 100
distinct realizations. Since the complete set of parameters is structurally not identifiable for
partial (Ca only) observations as we have shown in section 6.2.2, we study the following four
full state observation scenarios for the full set of unknown parameters:

(A) exact measurements, full state observation, jump weight 1.0

(B) exact measurements, full state observation, jump weight 10.0

(C) noisy measurements, full state observation, jump weight 1.0

(D) noisy measurements, full state observation, jump weight 10.0

Further, we manually identified a subset of parameters that can be estimated from sole calcium
measurements and try to estimate this subset in the scenarios

(E) exact measurements, partial observation, jump weigth 1.0, selected parameter set

(F) exact measurements, partial observation, jump weigth 10.0, selected parameter set

(G) noisy measurements, partial observation, jump weigth 1.0, selected parameter set

(H) noisy measurements, partial observation, jump weigth 10.0, selected parameter set

For each setting, 100 realizations(10) of the stochastic calcium model driven by a WIENER

process acting on the PLC component with diffusion coefficient D = 0.2 and kinetic parameter
values given in eq. (6.6) were made and the generated artificial observations were used to
estimate the parameters.

6.2.3.1 Measurement functions, weights, and noise
All settings share the same sample interval of 0.1 time units, resulting in 601 full or partial
state observations. In the case of partial observation, only the species Ca (free calcium in the
cytosol) is measured. That is, we have as measurement functions(11):

hi(x(ti)) = x(ti) ∈ IR3 (i = 1, ..., 601) for scenarios (A) to (D)

hi(x(ti)) = x3(ti) ∈ IR1 (i = 1, ..., 601) for scenarios (E) to (H)

with an equidistant measurement grid TM = {0, 0.1, 0.2, 0.3, ..., 60}. Note that we have omitted
writing the dependence on the parameter vector p, and set x(t) := (Gα(t),PLC(t),Ca(t))T.

Artificial measurement noise and measurement weights
In the “noisy” scenarios, a relative measurement error is added, since the concentration of each
species varies in several orders of magnitude. To generate the noisy data, every evaluation of
the measurement function (applied to a simulation with true parameters) is disturbed by a
random value chosen from a normal distribution with zero mean and a variance adjusted to
1% of the measurement value (vector valued measurements are processed componentwise).

This procedure results in a standard deviation of each (scalar component of the) measure-
ment of 10%; a quite high disturbance. The variances are stored and used in the weighted
least squares part of the objective as measurement weights. In the undisturbed settings, the
measurement weights are chosen as 1.0.

(10) generated by a stochastic EULER scheme with step size 10−3

(11) We use vector-valued measurement functions solely for the ease of notation. See the respective footnote (4)
on page 169 for the FITZHUGH-NAGUMO measurement functions.
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6.2 Calcium ion oscillations in eukariotic cells

Figure 6.7: Initial trajectory in parameter estimation scenario (G) for a certain realization.
Initial trajectory after shooting node initialization as described in section 6.2.3.2. The applied initialization
method brings the node values for the unobserved species in a “physiologically realistic” range (compare
the solution trajectory of this problem as given in figure 6.9). Trajectory of component Gα as blue line
(—), of component PLC as green line (—), of component Ca as red line (—). Shooting nodes as dots in
respective colors (•, •, •). Measurements of Ca as small light red dot (•).

6.2.3.2 Shooting grid and node initialization

The interval [0, 60] is divided into 90 evenly sized intervals, such that

TMS = {tMS

0 , ..., t
MS

90} with tMS

0 = 0, tMS

90 = 60, tMS

k = 2
3k (k = 1, ..., 89)

and the shooting node variables sk (k = 0, ..., 89) are initialized by measurement data.

In the full state observation scenarios (A),(B),(C),(D), the node values are initialized
by the temporally most proximate measurement data, or 0 (zero), if the measurement value is
negative (which might be due to the applied measurement noise).

In the partial observation scenarios (E),(F),(G),(H), node values for the component Ca
are initialized from measurement data in the same way as above. The unobserved species are
initialized by an empirically derived inverse approximation:

Let c denote the measurement value of the observed Ca species. Then, initialize

Ca as max
{

0, c
}

Gα as max
{

0, log
(
10000 · Ca

)}

PLC as 1.75 ·max
{

0, log
(
10000 ·min{1,Ca}

)}

where we define log(0) := −∞. Figure 6.7 shows an example trajectory using this initialization.

6.2.3.3 Initial parameter guess and stopping criterion for the GAUSS-NEWTON solver

The initial guess of the parameters is set to 50% of the true values (see table 6.2), ensuring that
the local area of contraction of the GAUSS-NEWTON method is left, thus globalization takes
effect. We remark that also for more distant as well as randomized initial guesses, convergence
to the solution is observed.

The optimization is stopped when the maximum-norm of the search direction ‖∆xk‖∞
(see section 1.3 on page 14) falls below 5 · 10−3.
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Figure 6.8: Sparsity pattern of the combined residual vector’s Jacobian - Calcium oscillator with
full state measurements.
(a) Jacobian J with dimension 2070× 282 (583740 elements), nonzero elements: 31275 (5.4%)
(b) decomposition factor R with dimension 282× 282 (79524 elements), nonzero elements: 4659 (5.9%)
See section 5.5.1 for details on the sparsity pattern.

6.2.3.4 Constraints on optimization variables

To avoid negative protein concentrations and unphysiological states during solution, the fol-
lowing constraints on the state variables at the shooting nodes are set:

Gα, PLC, Ca ∈ [0, 50].

To avoid backward-occurring reactions and keeping the parameters in physiological ranges, the
following constraints on the kinetic parameters are set:

p1 ∈ [0.01, 1.0] (true value: 0.212), p7 ∈ [0.1, 10.0] (true value: 1.24),

p2 ∈ [0.1, 10.0] (true value: 2.95), p8 ∈ [1.0, 100.0] (true value: 32.24),

p3 ∈ [0.1, 10.0] (true value: 1.52), p9 ∈ [1.0, 100.0] (true value: 29.09),

p4 ∈ [0.01, 1.0] (true value: 0.19), p10 ∈ [1.0, 50.0] (true value: 13.58),

p5 ∈ [0.1, 10.0] (true value: 4.88), p11 ∈ [10.0, 500.0] (true value: 153.0),

p6 ∈ [0.1, 10.0] (true value: 1.18), p12 ∈ [0.01, 10.0] (true value: 0.16).

In the test series, no parameter constraints are active in the solutions. As one would expect,
some state variables attain the lower bound 0 (zero), see figure 6.9.

6.2.3.5 Sparsity pattern of the combined residual vector’s Jacobian

Figure 6.8 shows the sparsity pattern of the combined residual vector’s Jacobian J , i.e. the
system matrix of the linearized problem without constraints, as well as the sparsity pattern of
its decomposition factor that may be used for solving the linearized problem.

With a total dimension of 2070 × 282, only 31275 (5.4%) out of 583740 elements are
nonzero. The decomposition factor R ∈ IR282×282 has roughly the same low occupancy rate of
5.9%. See section 5.5.1 for details.
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6.2 Calcium ion oscillations in eukariotic cells

Table 6.2: Estimation test series: Calcium oscillator (full observations). Results of parameter esti-
mation on 100 independent simulations (in each setting) of the calcium oscillator, whose PLC component
is affected by a WIENER process, eq. (6.8). For jump weight 1.0, the initial guess for the kinetic parame-
ters was 50% of the true values. For jump weight 10.0, the results for jump weight 1.0 were used as initial
guess. Values rounded to 5 digits.

full observations of Gα, PLC, Ca — exact measurements

true scenario (A) scenario (B)
parameter jump weights 1.0 jump weights 10.0
name value estimate ± SD (SD%) RelErr% estimate ± SD (SD%) RelErr%

p1 0.212 0.2167± 0.0274 (12.68%) 2.23% 0.2307± 0.0730 (31.66%) 8.86%
p2 2.95 2.9527± 0.0078 (0.27%) 0.09% 2.9970± 0.0460 (1.54%) 1.60%
p3 1.52 1.5206± 0.0050 (0.33%) 0.04% 1.5461± 0.0234 (1.52%) 1.72%
p4 0.19 0.1845± 0.0166 (9.02%) 2.88% 0.1656± 0.0503 (30.40%) 12.84%
p5 4.88 4.7982± 0.0417 (0.87%) 1.68% 5.0628± 0.2058 (4.07%) 3.75%
p6 1.18 0.9788± 0.0834 (8.53%) 17.05% 1.4615± 0.3825 (26.18%) 23.86%
p7 1.24 1.2383± 0.0105 (0.85%) 0.13% 1.2416± 0.0134 (1.08%) 0.14%
p8 32.24 31.940± 1.2954 (4.06%) 0.93% 32.138± 1.5105 (4.70%) 0.32%
p9 29.09 28.744± 1.7553 (6.11%) 1.19% 28.909± 2.0603 (7.13%) 0.62%
p10 13.58 13.559± 0.0269 (0.20%) 0.15% 13.381± 0.1848 (1.38%) 1.46%
p11 153.0 152.72± 0.2953 (0.19%) 0.18% 150.99± 1.8837 (1.25%) 1.31%
p12 0.16 0.1596± 0.0004 (0.28%) 0.23% 0.1591± 0.0056 (3.55%) 0.55%

full observations of Gα, PLC, Ca — noisy measurementsa

true scenario (C) scenario (D)
parameter jump weights 1.0 jump weights 10.0
name value estimate ± SD (SD%) RelErr% estimate ± SD (SD%) RelErr%

p1 0.212 0.1924± 0.0373 (19.40%) 9.22% 0.1945± 0.0332 (17.08%) 8.24%
p2 2.95 2.9688± 0.0397 (1.34%) 0.64% 2.9743± 0.0340 (1.14%) 0.82%
p3 1.52 1.5317± 0.0235 (1.54%) 0.77% 1.5347± 0.0193 (1.26%) 0.97%
p4 0.19 0.2037± 0.0337 (16.55%) 7.22% 0.2002± 0.0281 (14.06%) 5.42%
p5 4.88 4.9647± 0.3462 (6.97%) 1.74% 4.8907± 0.2221 (4.54%) 0.22%
p6 1.18 1.3008± 0.7602 (58.45%) 10.24% 1.1303± 0.4123 (36.48%) 4.21%
p7 1.24 1.2296± 0.0353 (2.87%) 0.83% 1.2360± 0.0139 (1.13%) 0.32%
p8 32.24 31.686± 3.4231 (10.80%) 1.72% 32.084± 1.4260 (4.44%) 0.48%
p9 29.09 28.712± 4.5299 (15.78%) 1.30% 28.993± 1.9850 (6.85%) 0.33%
p10 13.58 13.425± 0.2658 (1.98%) 1.14% 13.491± 0.2490 (1.85%) 0.65%
p11 153.0 151.32± 2.8687 (1.90%) 1.10% 152.16± 2.6209 (1.72%) 0.54%
p12 0.16 0.1596± 0.0033 (2.12%) 0.24% 0.1608± 0.0030 (1.90%) 0.53%
SD%: standard deviation of the estimate · RelErr%: relative deviation of the estimate from the true parameter value

anormally distributed measurement noise with zero mean and standard deviation of 10% of the respective
measurement value (multiplicative noise), see section 6.2.3.1
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Table 6.3: Estimation test series: Calcium oscillator (partial observations). Results of parameter
estimation on 100 independent simulations (in each setting) of the calcium oscillator, whose PLC compo-
nent is affected by a WIENER process, eq. (6.8). As the full set of parameters is unidentifiable when using
partial observations of Ca only, an identifiable subset of parameters was estimated and the remaining were
kept fixed to their true values. For jump weight 1.0, the initial guess for the kinetic parameters was 50%
of the true values. For jump weight 10.0, the results for jump weight 1.0 were used as initial guess. Values
rounded to 5 digits.

partial observations of Ca only — exact measurements

true scenario (E) scenario (F)
parameter jump weights 1.0 jump weights 10.0
name value estimate ± SD (SD%) RelErr% estimate ± SD (SD%) RelErr%

p7 1.24 1.2328± 0.0534 (4.34%) 0.58% 1.2712± 0.0638 (5.02%) 2.52%
p9 29.09 29.445± 2.5795 (8.76%) 1.22% 27.989± 2.5813 (9.22%) 3.78%
p10 13.58 13.507± 0.0364 (0.27%) 0.53% 13.476± 0.1205 (0.89%) 0.76%
p11 153.0 152.22± 3.6164 (2.38%) 0.51% 153.83± 4.3694 (2.84%) 0.54%
p12 0.16 0.1585± 0.0036 (2.30%) 0.88% 0.1577± 0.0041 (2.64%) 1.39%

partial observations of Ca only — noisy measurementsa

true scenario (G) scenario (H)
parameter jump weights 1.0 jump weights 10.0
name value estimate ± SD (SD%) RelErr% estimate ± SD (SD%) RelErr%

p7 1.24 1.1462± 0.1089 (9.50%) 7.56% 1.2273± 0.0332 (2.71%) 1.02%
p9 29.09 33.917± 5.4398 (16.04%) 16.60% 29.640± 1.3839 (4.67%) 1.89%
p10 13.58 13.511± 0.2851 (2.11%) 0.50% 13.495± 0.0777 (0.58%) 0.62%
p11 153.0 146.48± 7.3676 (5.03%) 4.26% 151.58± 2.5347 (1.67%) 0.92%
p12 0.16 0.1588± 0.0081 (5.10%) 0.71% 0.1586± 0.0029 (1.83%) 0.83%
SD%: standard deviation of the estimate · RelErr%: relative deviation of the estimate from the true parameter value

anormally distributed measurement noise with zero mean and standard deviation of 10% of the respective
measurement value (multiplicative noise), see section 6.2.3.1

6.2.3.6 Results of the test series

Tables 6.2 and 6.3 give the parameter estimation results of the test series for full observations
in scenarios (A)–(D) and for partial observations scenarios (E)–(H), respectively. For all
tested scenarios, the overall performance of the proposed method is very satisfying.

In the full state observation scenario (A) with exact measurement data and jump regular-
ization weights of 1.0, the mean parameter estimates are very accurate: with the exception of
parameter p6, they have less than 3% error, and also show a small standard deviation in the set
of 100 realizations. The stronger jump regularization in scenario (B) leads to less accurate but
still satisfactory estimates with less than 2% error in 8 out of 12 parameters; again parameter
p6 shows an enlarged error. Thus, for exact measurements, the increased jump weights are
less beneficial.
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6.2 Calcium ion oscillations in eukariotic cells

In contrast to that, the estimates in the noisy full state observation scenarios significantly
benefit from stronger jump regularization. 9 out of 12 parameter estimates have a relative
error of less than 1% in the strong jump regularization scenario (D), with a maximum error of
about 8% in the remaining three parameters. Also, the estimates show fairly small variations
in the test series, again with exception of parameter p6 whose standard deviation lies around
36%.

Estimates for noisy measurements clearly benefit from higher jump weights
As table 6.3 shows, stronger jump regularization leads to better estimates in the noisy scenarios
(compare (G) to (H)). Better in two ways: the mean estimates are much closer to the true
parameter values (less than 2% error in contrast to a maximum relative error of 17% for weaker
jump regularization), and also the standard deviation of the estimates are considerably reduced
(below 5% in contrast to about 16%).

However, for undisturbed observations (E) and (F), this does, again, not hold: while the
standard deviation of the estimates are approximately identical, the relative errors of the mean
estimates are considerably increased, but still remain below 4%.

Very similar findings are discussed in the BISTABAER model in section 6.3 on page 187.

6.2.3.7 A closer look at a single realization

In figure 6.9, fitted trajectores of the calcium oscillator model to measurements of the scenarios
(A), (C), (E), (G) (all with jump regularization weights 1.0).

Base of all measurements is a certain realization of the calcium oscillator; therefore the
overall kinetics is identical in all fits. However, the employed measurement data differs: full
state or partial observations, exact or disturbed measurements (see the captions in figure 6.9).
Comparing the trajectories, we see that they differ mainly in the jumps at the nodes:

• With exact measurement data, scenarios (A) and (E), the trajectory resembles a contin-
uous one, the jumps at the shooting nodes small; too small to see at this level of detail.
Note that the original trajectory is indeed continuous, as the driving WIENER process is
continuous.
• In the fits for disturbed measurement data, scenarios (C) and (G), we observe bigger

jumps, as the optimization technique uses these additional degrees of freedom to cope
for the measurement noise.

If one requires for any reason a “more continuous” trajectory, increasing the jump regular-
ization would be an effective strategy. We refer to the FITZHUGH-NAGUMO example in sec-
tion 6.1.4.7, expecially to the detail enlargements in figure 6.5 on page 173, where this effect
is depicted.

6.2.3.8 Recovering trajectories in intermittent observations

As a final example with respect to the calcium oscillation model, we investigate two test cases
with intermittent full state observations: once with exact measurements and once with noisy
measurements. As in the previous example, the measurement noise follows the statements
given in section 6.2.3.1, i.e. the a noise level of 10% of the measurement values.

In contrast to the previously discussed test series with equidistant measurements through-
out the whole time domain [0, 60], the measurements are sampled intermittently. Starting at
time point 0, data acquisition occurs every 0.125 time units, running for 5 time units. After
a pause of 6 time units, data is sampled again for 5 units at the same time increments of
0.125, and so on, resulting in 246 measurement time points in total. In figure 6.10, the data
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Scenario (A): Exact measurements, full observation, jump weight 1.0

Scenario (C): Noisy measurements, full observation, jump weight 1.0

Scenario (E): Exact measurements, partial observation of Ca only, jump weight 1.0

Scenario (G): Noisy measurements, partial observation of Ca only, jump weight 1.0

Figure 6.9: Calcium oscillator example fit. Fitted trajectories of the four scenarios with jump weight
1.0 listed in section 6.2.3 for a certain realization of the calcium oscillator.
Fitted trajectory of component Gα as blue line (—), of component PLC as green line (—), of component
Ca as red line (—). Shooting nodes as dots in the respective colors (•, •, •). Measurements of Gα as
small light blue dot (•), of PLC as small light green dot (•), of Ca as small light red dot (•).
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acquisition intervals are marked in yellow color. Figures 6.10a and 6.10b depict the collected
measurement data.

Having in mind the findings from the calcium test series in section 6.2.3.6, the jump weights
are chosen as 1.0 in the exact measurement setting, and as 10.0 in the noisy data setting. The
time domain [0, 60] is divided into 120 intervals of the same size; node initialization is done
exactly as described in section 6.2.3.2.

Figures 6.10c and 6.10c show the trajectories of the fits using exact and noisy measure-
ments. For comparison, the original realization is given in figure 6.10e. In both settings, the
original trajectory is surprisingly well recovered – also in those areas, where no measurement
data was available (white background).

Trajectory and parameter reconstruction
As shown in table 6.4, the parameter values are recovered within the accuracy described in
the test series results of section 6.2.3.6.

The well reproduction of the mostly unobserved calcium oscillations in time span [38, 44]
may be attributed to the fact that it is already initiated at the end of measurement interval #4.
Quite impressive is the reproduction of the “bump” around t = 53, which lies in an completely
unobserved interval (compare again the samples in figures 6.10a and 6.10b). Surely, without
any data from the adjacent measurement intervals, such a close to perfect reconstruction would
be improbable. However, since there is no direct data available in the unobserved time spans,
the trajectory reconstruction of this WIENER-driven stochastic calcium oscillator
can be attributed mainly to the jump regularization technique proposed in this thesis.

Table 6.4: Estimation results with intermittent observations. Results of parameter estimation on
a certain realization of the calcium oscillator, whose PLC component is affected by a WIENER process,
eq. (6.8). The initial guess for the kinetic parameters was 50% of the true values. Values rounded to 4
digits after the decimal point.

test case with intermittent data acquisition

true exact measurements noisy measurements
parameter jump weights 1.0 jump weights 10.0
name value estimate RelErr% estimate RelErr%

p1 0.212 0.2583 (21.84%) 0.2261 (6.67%)
p2 2.95 2.9455 (0.15%) 2.9961 (1.56%)
p3 1.52 1.5148 (0.34%) 1.5421 (1.45%)
p4 0.19 0.1559 (17.95%) 0.1840 (3.14%)
p5 4.88 4.8006 (1.63%) 5.0503 (3.49%)
p6 1.18 0.9962 (15.57%) 1.3707 (16.16%)
p7 1.24 1.2326 (0.59%) 1.2036 (2.94%)
p8 32.24 32.7563 (1.60%) 33.2263 (3.06%)
p9 29.09 30.1799 (3.75%) 32.0433 (10.15%)
p10 13.58 13.5736 (0.05%) 13.3017 (2.05%)
p11 153.0 152.9277 (0.05%) 150.4137 (1.69%)
p12 0.16 0.1600 (0.02%) 0.1628 (1.73%)
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(a) intermittent measurements, exact data (b) intermittent measurements, noisy data

(c) fit to intermittent exact data, jump weight 1.0

(d) fit to intermittent noisy data, jump weight 10.0

(e) trajectory of original realization

Figure 6.10: Calcium oscillator fit to intermittent data. Fitted trajectories based on intermittent full
state observations of a certain realization of the calcium oscillator. See section 6.2.3.8 for a discussion.
Trajectory of component Gα as blue line (—), of component PLC as green line (—), of component Ca as
red line (—). Shooting nodes as dots in the respective colors (•, •, •). Measurements of Gα as small light
blue dot (•), of PLC as small light green dot (•), of Ca as small light red dot (•). The yellow rectangles
mark the intervals where measurement data has been sampled.
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6.3 The BISTABAER enzyme kinetics model

We come back to the introductory example in figure 5.1 on page 122, reprinted in figure 6.11.
The underlying equations describe an allosteric enzyme regulation model whose activator ef-
ficacy depends on an intrinsic control that may vary between two locally stable steady states
(resulting in ”high” and ”low” activator efficacy).

X X* 

A 

I 

k1 

k2 

X +A
k1−→ X∗ +A

X∗ + I
k2←− X + I

The enzyme X may exist in two conformations: an inac-
tive form X and an activated form X∗. The transition between
these two states is mediated by two proteins acting as allosteric
regulators: the activator A and the inhibitor I, which are both
present in constant concentration. This may be depicted as in
the reaction graph to the right.

The activator’s efficacy depends on an intrinsic control L;
the effective reaction speed of the activation step is modelled
as keff1 := k1 · (A + L). The internal control L is described
by the bistable differential equation d

dtL = L(s2−L4) with an
instable steady state L = 0 and two (real) locally stable states
at L = ±√s (for s > 0; in the example, we choose s := 1).

In the deterministic interpretation, the control L of the
allosteric regulator protein approaches its steady state concentration very fast (or stays on its
unstable steady state if no perturbation occurs), driving also the BISTABAER model into a
steady state as depicted in figure 6.11a. Introducing stochasticity in the system in terms of a
driving WIENER process acting on the control L leads to a fundamentally changed behaviour
of the system (figure 6.11b).

(a) deterministic (ODE) interpretation (b) stochastic (SDE) interpretation

Figure 6.11: Stochasticity in the BISTABAER model completely alters its behaviour. The ODE
system (a) quickly approaches the steady state, whereas in the SDE interpretation (b) transitions are ob-
served.

6.3.1 Model equations and parameters

The underlying model equations, reduced to a minimal set, read as:

dX

dt
= −keff1 XA+ k2X

∗I

dX∗

dt
= keff1 XA− k2X

∗I keff1 := k1 · (A+ L)

dL

dt
= L(1− L4)

(6.9)
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with initial conditions, time domain, and system constants

X(t0) = 50, X∗(t0) = 50, L(t0) = −1.0

[t0, tf ] = [0, 500], A := 1.7, I := 5
(6.10)

and kinetic parameters
k1 := 0.01, k2 := 0.004 (6.11)

used for the simulations in figure 6.11 and the estimation test series in section 6.3.3.

6.3.2 SDE model

As depicted in the introductory text, a WIENER process acts on the hidden internal control
L. To generate artificial data, we formulate the SDE model with drift function f as described
by the ODE model, and constant diffusion function g acting solely on the internal control L
with intensity D = 0.5 and a (formally) three dimensional driving WIENER process Wt:

dZt = f(Zt, p) dt+ g(Zt, p) dWt (6.12)

where Zt = (X(t), X∗(t), L(t))T is the state vector and p = (k1, k2)T denotes the vector of
unknown kinetic parameters. The drift function f is defined by the ODE model in eq. (6.9),
and the diffusion function g is defined as

g(Zt, p) :=




0 0 0
0 0 0
0 0 D


 , with D = 0.5.

Initial concentrations are as specified in eq. (6.10).

6.3.3 Simulation study and a closer look at grid refinement

To investigate the performance of the parameter estimation technique developed in section 5.4
on the BISTABAER problem, we study the following two scenarios for estimating the unknown
kinetic parameters k1 and k2:

(A) exact measurements, partial state observation of X and X∗

(B) noisy measurements, partial state observation of X and X∗

The jump weights are all set to 1.0.

For each setting, 100 realizations(12) of the allosteric regulation model eq. (6.12) driven by a
WIENER process acting on the hidden internal control L with diffusion coefficient D = 0.5, and
kinetic parameter values given in eq. (6.11) were made and the generated artificial observations
were used to estimate the parameters.

6.3.3.1 Measurement functions, weights, and noise
Measurements are available for the inactive and active form of the protein, i.e. we can measure
the model species X and X∗. Dropping the dependence on the parameters, the measurement

(12)generated by a stochastic EULER scheme with step size 10−2
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functions(13) thus are:

hi(x(ti)) = (x1(ti), x2(ti))
T ∈ IR2 (i = 1, ..., 1001)

where the state of the system eq. (6.12) is combined in the vector x(t) = (X(t), X∗(t), L(t))T.

In both scenarios, samples are taken every 0.5 time units, resulting is an overall amount
of 1001 measurements of X and X∗. In the “noisy” scenarios, normally distributed noise with
zero mean and a standard deviation of 2.5 is added to the measurements, leading to quite high
disturbances (see figure 6.13b). Measurement weights are chosen as 1.0 in the undisturbed
scenario; in the “noisy” scenario, the reciprocal of the above standard deviation is used.

6.3.3.2 Shooting grid and node initialization

The time domain [0, 500] is (näıvely, see the following remark) equidistantly partitioned into
100 shooting intervals, thus the shooting grid is given as

TMS = {5(i− 1) : i = 1, ..., 100} .
The shooting node values for X and X∗ are initialized with the temporally most proximate

measurement values; the component for the internal control L is always initiliazed with −1.0.

A remark on the näıve choice of the shooting grid
Having in mind the (hidden) bistable internal control L, the above choice is clearly not optimal.
Ideally, one would start a new shooting interval whenever the internal control L swaps and
approaches a different steady state(14). However, this BISTABAER example is ideal to inves-
tigate the robustness of the proposed parameter estimation method for a non-optimal choice
of the shooting grid (and, besides, the required information is not directly available from the
measurements). We will see how this affects the estimation in the discussion in sections 6.3.3.6
and 6.3.3.7.

6.3.3.3 Initial parameter guess and stopping criterion for the GAUSS-NEWTON solver

The initial guess of the parameters is set to 50% of the true values (see table 6.5), ensuring that
the local area of contraction of the GAUSS-NEWTON method is left, thus globalization takes
effect. We remark that also for more distant as well as randomized initial guesses, convergence
to the solution is observed.

The optimization is stopped when the maximum-norm of the search direction ‖∆xk‖∞
(see section 1.3 on page 14) falls below 5 · 10−2.

6.3.3.4 Constraints on optimization variables

To avoid negative protein concentrations and unphysiological states during solution, we set
some constraints on the state variables at the shooting nodes. Further, we employ some
restrictions on the admissible space foor the kinetic parameters to avoid backward-occurring
reactions and keeping their values in physiological ranges:

X,X∗ ∈ [0, 2000], L ∈ [−2, 2], k1, k2 ∈ [10−9, 10−1].

(13) We use vector-valued measurement functions solely for the ease of notation. See the respective footnote (4)
on page 169 for the FITZHUGH-NAGUMO measurement functions.

(14) Due to the driving WIENER process Wt, the internal control L will vary around a steady state value for
small disturbances (increments) of Wt, while a sufficiently large excitation might push it towards the other
locally stable steady state’s attractive region
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Figure 6.12: Sparsity pattern of the combined residual vector’s Jacobian - BISTABAER model .
(a) Jacobian J with dimension 2299× 302 (694298 elements), nonzero elements: 11388 (1.6%)
(b) decomposition factor R with dimension 302× 302 (91204 elements), nonzero elements: 1896 (2.1%)
See section 5.5.1 for details on the sparsity pattern.

In the test series, no parameter constraints are active in the solutions. In some rare cases(15),
the optimization variable for the state of the internal control L attains it’s bound.

6.3.3.5 Sparsity pattern of the combined residual vector’s Jacobian

Figure 6.12 shows the sparsity pattern of the combined residual vector’s Jacobian J , i.e. the
system matrix of the linearized problem without constraints, as well as the sparsity pattern of
its decomposition factor that may be used for solving the linearized problem.

With a total dimension of 2299 × 302, only 11388 (1.6%) out of 694298 elements are
nonzero. The decomposition factor R ∈ IR302×302 has roughly the same low occupancy rate of
2.1%. See section 5.5.1 for details.

6.3.3.6 Results of the test series

Table 6.5 shows the results of the test series. In both settings, the true values of k1 = 0.01 and
k2 = 0.004 of the kinetic parameters are reproduced: with exact observations to k1 = 0.00910
and k2 = 0.00362, with noisy observations to k1 = 0.01003 and k2 = 0.00396. In both settings,
the standard deviation of the estimated parameter values does not exceed 10%.

At first glance, it might be surprising that the estimation for noisy observation is much
better than for exact estimations (less than 1% error in the noisy scenario in contrast to 9% in
the exact scenario). There are (at least) two reasons: First, this is due to the ad hoc choice of
the shooting grid that collides with the stochastic changes of the internal control L, which is

(15) This is only observed in the first shooting interval. As there occurs no jump regularization at t = 0 (it’s the
first interval), the solver might choose a large absolute value for L to reduce the residual in the measurements
of X and X∗. Due to the high attractiveness of the steady states of L, this choice does not induce an increased
jump size at the subsequent shooting node.
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6.3 The BISTABAER enzyme kinetics model

switching between the two attractive regions of its locally stable steady states (see the remark
in section 6.3.3.2 and the discussion in section 6.3.3.7). Second, there is no clear choice of
measurement weights when the error variance is zero as it is for exact measurements.

One can see from the detail enlargements in figure 6.14a, that for exact measurements,
the improper choice of the shooting grid leads to increased residuals when the internal control
L switches towards a different steady state in the interior of a shooting interval. While,
in principle, this effect is also present in the noisy setting, it is strongly dominated by the
measurement noise (figure 6.14b).

As a remark: When being in the lap of luxury of having exact measurement values, it
would be easy to generate a perfect shooting grid for this BISTABAER example by ensuring
that shooting nodes are placed whenever the measurements of X and X∗ change their direction,
as this marks the swap towards a different steady state in the hidden control L. However, even
the ad hoc choice of the equidistant shooting grid delivers reasonable approximations on the
kinetic parameters.

6.3.3.7 A closer look at a single realization

Figure 6.13 shows the fitted trajectories for a certain realization of the stochastic BISTABAER
system eq. (6.12) for the two test scenarios described in section 6.3.3.

From visual inspection, the fit on the species X and X∗ looks satisfying; though a more
careful look reveals some relatively large deviations, e.g. at the shooting node at time t = 240
in figure 6.13a. These misfits are found also, but weaker, on several other places where the

Table 6.5: Estimation test series: BISTABAER allosteric regulation model. Results of parameter
estimation on 100 independent simulations (in each setting) of the BISTABAER model, whose internal
control L is affected by a WIENER process, eq. (6.12). Initial guess for the kinetic parameters was 50% of
the true values. Values rounded to 4 digits.

exact observations without measurement error

true scenario (A)
parameter observation of X and X∗

name value estimate ± SD (SD%) RelErr%

k1 0.01 0.00910± 0.00095 (10.40%) 8.99%
k2 0.004 0.00362± 0.00017 (4.67%) 9.46%

noisy observations with error ε ∼ N
(
0, 2.52

)

true scenario (B)
parameter observation of X and X∗

name value estimate ± SD (SD%) RelErr%

k1 0.01 0.01003± 0.00079 (7.86%) 0.28%
k2 0.004 0.00396± 0.00031 (7.89%) 1.01%

SD%: standard deviation of the estimate
RelErr%: relative deviation of the estimate from the true parameter value
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6 Numerical Examples

(a) Fit of species X and X∗ to exact data in scenario (A) (top), recovered intrinsic control L (bottom)

(b) Fit of species X and X∗ to noisy data in scenario (B) (top), recovered intrinsic control L (bottom)

Figure 6.13: Example fit of the BISTABAER model with exact and noisy measurements, together
with reconstructed intrinsic control L. See section 6.3.3.7 for a discussion, and figure 6.14a for detail en-
largements.
Fitted trajectory of X as blue line (—), of X∗ as green line (—), of L as red line (—). Shooting nodes
as dots in the respective colors (•, •, •). Measurements of X as small light blue dots (•), of X∗ as small
light green dots (•), of L as small light red dots (·).
Note that no samples of L were used while fitting.
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6.3 The BISTABAER enzyme kinetics model

trajectory shows a kink, e.g. in the time range [110, 155]. The detail enlargement of this time
span in figure 6.14a discloses that one reason is the ad hoc choice of the shooting grid.

On these intervals, the deterministic approximation may not cope with a switching internal
control, if the transition occurs in the interior of a shooting interval. This becomes obvious if
we focus on the three marked shooting intervals in figure 6.14a. For minimizing the objective in
problem 5.18, an “intermediate” trajectory is chosen (more precise: parameters that generate
this trajectory), minimizing both the residuals and the jumps at the shooting nodes.

Optimizing the shooting grid
In this example with dense and error-free measurements, the shooting grid might be adjusted
after a first solution has been computed, or even during the solution process. Unsuitable
shooting intervals may be detected by two markers: (1) an enlarged residual compared to
“low residual” intervals, and (2) larger jumps at the beginning or end. Already a bisection
of the respective intervals would strongly improve the fitting capabilities and may be easily
automated. Surely, this requires an appropriate adaption of the jump regularization weights
of the divided interval. Without using further knowlegde about the underlying mechanics,
a natural (not necessarily optimal) adjustment of the jump weights for a centrally divided
interval would be a factor of 1/2.

Indeed, adding 10 nodes at the intervals with highest residuals reduces the error in the
estimate of k1 by 11.0% and of k2 by 15.9% (see table 6.6)

Reconstruction of the hidden intrinsic control L
As the bottom parts of figures 6.13a and 6.13b show, the hidden bistable control L, which is
continuously disturbed by the driving WIENER process Wt is nicely reproduced.

Since there is no measurement data of L available, the only direct contribution of L to the
objective function occurs via the jump regularization term in the objective.

An interesting observation: In scenario (A) of exact measurements, the recovered intrin-
sic control L lies rather stable around its steady states, whereas the in the noisy scenario
(B), it shows higher fluctuations. This is an artefact of the used measurement weights: The
data is accurate, so their variance is 0, implying positive infinite weights. For standard least
squares parameter estimation in ODE, one could effectively use an arbitrary but common
weighting factor for the residuals. Actually, in this example, the residual weights were chosen
as 1.0, effectively assuming a variance of 1.0 of the measurements. As a consequence, the
jump regularization has an increased impact on the estimation. In practical settings, exact
measurements do not occur, thus using the reciprocals of the (then available) measurement
error’s variances in the weighted least squares part of the objective in problem 5.18 will avoid
this hassle completely.

Nevertheless, the above observation gives hints for improving the estimation in the exact
scenario: It might be beneficial for this example to use lower (or zero) regularization weights
for jumps in the hidden control L (equivalent effects are obtained by increasing the residual
weights (i.e. lowering their variance values). This is indeed successful, as a recalculation shows:
For this specific example, setting the regularization weights for jumps in L to zero leads to an
error reduction in the estimates of k1 and k2 by 21.6% and 10.0%, respectively (see table 6.6).

The doubling of shooting nodes combined with disabled jump regularization reduces the
error by even 71.1% and 62.4%, at the cost of increased computational effort.
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(a) fit with exact data, scenario (A) (b) fit with noisy data, scenario (B)

Figure 6.14: Detail enlargement of a BISTABAER fit of the time interval [110, 155]. The ad hoc
choice of the shooting grid (a) is not adapted to the fluctuations of the intrinsic control L (red dots),
leading to enlarged residuals and jumps in the respective intervals. In the noisy scenario (b), the measure-
ment noise dominates. Both figures originate from the same BISTABAER realization.
Visible here are the fitted trajectory of X as blue line (—) with respective shooting nodes as blue dots
(•) and measurements of X as light blue dots (•). The samples of the intrinsic control L are given for
comparison as small light red dots (·), with scale on the right axis.

Table 6.6: Improved estimates by adjusting grid and jump regularization weights. The table shows
the effects of grid and jump weight adjustments discussed in section 6.3.3.7 for the BISTABAER realiza-
tion depicted in figure 6.13a. The error reduction is given relative to the näıve grid with 101 equidistant
nodes and regularization weights of 1.0 for jumps in the L component.
The parameters’ true values are k1 = 0.01, k2 = 0.004. Values rounded to 3 digits.

setting estimate error reduction†

grid, L jump weights k1 k2 k1 k2

näıvea 1.0 0.00902 0.00365 — —
adjustedb 1.0 0.00913 0.00370 11.0% 15.9%
doubledc 1.0 0.00912 0.00370 9.5% 16.2%

näıve 0.0 0.00924 0.00368 21.6% 10.0%
adjusted 0.0 0.00935 0.00376 33.2% 32.3%
doubled 0.0 0.00972 0.00386 71.1% 62.4%

†compared to default setting (a) with näıve grid and L jump weights 1.0
anäıve grid by dividing the time horizon in 100 intervals of the same size
bmanually adjusted grid from (a), with additional grid points at timepoints

18.51, 118.1, 128.1, 147.1, 218.1, 243.1, 378.1, 383.1, 413.1, 432.1
cnäıve grid by dividing the time horizon in 200 intervals of the same size
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6.4 The ORNSTEIN-UHLENBECK model (driven by a LÉVY process)

Though the proposed parameter estimation method is developed for recovering parameters in
the drift term of the underlying SDE, under certain conditions, it is also capable to recover
parameters in the diffusion term. In this example, besides some drift parameters, it successfully
recovers the diffusion constant by an analysis of the jump distribution.

The classical ORNSTEIN-UHLENBECK(15) process (OU process) [UhlenbeckOrnstein1930]
is a stationary GAUSSian process, driven by a WIENER process, and defined as the solution of
the stochastic differential equation

dXt = θ(µ−Xt) dt+D dWt

where µ is the mean reversion level , θ the mean reversion rate, D the volatility , and dWt a
standard WIENER process. In financial applications, the OU process is known as VAŠÍČEK

model [Vasicek1977] for time evolution of interest rates.
A more general class of stochastic processes is the one of ORNSTEIN-UHLENBECK type

processes, in which the driving WIENER process of the classical OU process is substituted by
a LÉVY process (see section 4.5 on page 118) and that may be written as

dXt = θ(µ−Xt) dt+D dZt

where now Zt is the driving (LÉVY-)process.
ORNSTEIN-UHLENBECK processes and processes of ORNSTEIN-UHLENBECK type have a

wide range of application in physics (e.g. the HOOKEan spring), biology (molecular biology),
and especially finance (financial econometrics, [Barndorff2001]), where OU-type processes with
non-negative increments from a background driving LÉVY process (BDLP) guarantee positive
(nominal) interest rates. However, since the European dept crisis, reality also proved negative
nominal interest rates plausible.

Figure 6.15a shows a realization of an ORNSTEIN-UHLENBECK process with initial value
and parameters

X0 = 12.0, µ = 16.0, θ = 2.2, D = 4.5,

driven by a compound POISSON process(16) with intensity λ = 7.5 and standard normally
distributed increments.

6.4.1 A simple heuristic for placing the shooting nodes

The choice of a suitable shooting grid is cruical for this type of problem. An equidistant grid
will most likely lead to wrong results because fixed-sized shooting intervals spanning over one
or even multiple jump times of the BDLP will result in large residuals even for true initial
states and true parameters. Obvioulsy, the shooting grid should consist of all the jump times
of the background driving LÉVY process, since the trajectory between the discrete jumps is
continuous.

For a densely sampled trajectory without any measurement error, detection of jumps and
thus placement of shooting nodes may be done using a simple heuristic: If the value of two
successive measurements exceeds a certain limit ∆min (that clearly depends on the jumpsize
distribution of the BDLP), a shooting node is placed in between them.

(15) Leonard Salomon ORNSTEIN, 1880-1941, Dutch physicist
George Eugene UHLENBECK, 1900–1988, US-American physicist

(16) A compound POISSON process is a continuous-time LÉVY process whose jump times follow a POISSON

process and whose increments follow an arbitrary distribution that is independent of the jump time POISSON

process. See section 4.5 on page 118.
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(a) stochastic (SDE) interpretation of the ORNSTEIN-UHLENBECK model

(b) deterministic (ODE) interpretation of the same ORNSTEIN-UHLENBECK model

Figure 6.15: Realisation of an ORNSTEIN-UHLENBECK process with a driving compound POISSON

process. In the SDE interpretation, the POISSON distributed jumps of the driving compound POISSON

process Zt are clearly visible, arbitrarily pushing the ORNSTEIN-UHLENBECK process away from its mean
reversion level µ = 16.0. The process’ mean reversion rate θ = 2.2 determines the speed of reaching the
mean reversion level; the processes diffusion parameter D = 4.5 determines the influence by the driver.
The driving compound POISSON process Zt has intensity 7.5 with standard normally distributed incre-
ments.
The ODE interpretation is equivalent to an SDE interpretation with zero diffusion, showing an exponential
attraction towards the mean reversion level.
Both simulations are generated by an Euler scheme with stepsize 10−3.
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Let ηi be the measurement at time ti. Then, the shooting grid consists of initial time t0,
final time point tf , and the interior time points are chosen by the heuristic

if |ηi+1 − ηi| ≥ ∆min, add
ti + ti+1

2
to the shooting grid. (6.13)

The above heuristic only depends on the measurements, i.e., when sampled adequately,
only on the BDLP, and not on any further knowledge of the process realization. In our example
of a BDLP with standard normally distributed jump sizes and a diffusion coefficient of D = 4.5,
a value of ∆min = 0.5 will detect more than 90% of jumps when error-free measurements are
available. We note that the choice of ∆min depends on (1) the jump size distribution of the
BDLP and the diffusion coefficient D, (2) the sample interval, (3) the parameters of the system
(as, e.g., a higher mean reversion rate θ leads to bigger jumps for fixed sample times), and (4)
the noise level of the measurements.

6.4.2 No jump regularization

Since there are actual jumps in the ORNSTEIN-UHLENBECK process, it is not considered con-
structive to include a jump regularization term in the objective of the optimization problem,
but to retain a discontinuous trajectory. Thus, the jump weights in the objective of the pa-
rameter estimation problem 5.18 are chosen as zero, ω2

k,l = 0. In this setting, the parameter
estimation problem is structurally identical to the so-called multi-experiment setting for which
efficient solution methods have been developed by SCHLÖDER [Schloeder1987].

6.4.3 Assessing the diffusion parameter D by jump residuals

Though the estimation technique presented in this thesis only addresses parameters in the drift
function, there is in certain cases the possibility to estimate diffusion parameters en passant.
In this specific example, the stochasticity lies in the driving compound POISSON process, that
introduces jumps into the trajectory. Thus, the distribution of these discontinuities delivers
an approximation on the diffusion parameter D.

If we knew the times at which the driving process jumps, we would have the perfect grid
for placing the shooting nodes. Then, under the assumption of exact and suffiently many state
observations, the fitted trajectory’s discontinuities αk at these nodes are exactly the jumps
of the driving compound POISSON process. Thus, although these two assumptions will not
hold in general, we might still use information about the distribution of the jumps αk – more
precisely their standard deviation – as an approximation on the diffusion parameter D.

Two remarks on the estimation of the diffusion parameter
(1) The simple heuristic for placing the shooting nodes presented in eq. (6.13) cannot detect
jumps of the driving compound POISSON process smaller than the detection limit ∆min. Thus,
if we have exact measurements, even in the case of time-continuous observations, the above
described procedure for estimating D will deliver an over-estimation (in mean), because small
jumps below the threshold are left out.
(2) Application of heuristic (6.13) to a set of noisy observations for generating the shooting
grid is expected to deliver as well an over-estimation of D, if the detection threshold ∆min

is chosen too large, for the same reason as above. For small values of ∆min, it will deliver
an under-estimation of D, as some measurement noise from the tails of the errors’ normal
distribution will be mistakenly detected as jumps of the driving process.
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6.4.4 An example test case

Three estimation settings for a single realization of the compound POISSON-driven ORNSTEIN-
UHLENBECK process with initial state and parameters as in eq. (6.13) are depicted in fig-
ure 6.16:

(a) with exact measurement data and a shooting grid established by heuristic (6.13) with
∆min = 0.5

(b) with an additive normally distributed measurement noise with variance 1.0 and the same
shooting grid as in (a) (unrealistic set-up, for comparison)

(c) with the same noise as in (b) and a shooting grid generated by heuristic (6.13) with
∆min = 3.0.

For the test case (a), as one can see in figure 6.16a, the shooting grid built by the simple
heuristic eq. (6.13) delivers a nearly perfect fit, and the parameters are recovered when
using error-free measurements: θ = 2.1902 (true value: 2.2), µ = 15.981 (true value: 16.0).

For test case (b), figure 6.16b depicts the fit when using measurement data disturbed by
an additive normally distributed measurement error with zero mean and variance 1.0. As
the same shooting grid as in (a) was used (which is not available in general) the recovered
trajectory is close to the original one. Parameters are still well recovered, only slightly worse
than in the undisturbed case: θ = 2.2537, µ = 15.833.

Finally, the fit of scenario (c), which is the most realistic scenario, is shown in figure 6.16c.
An elevated jump detection level of ∆min = 3.0 for shooting grid generation by heuristic
eq. (6.13) is necessary due to the added measurement error. It can be seen that some shooting
nodes are newly created, e.g. in the time span [7, 8], while others vanished, as in the interval
[0.2, 1.2]. The parameters are still nicely recovered: θ = 2.2800, µ = 15.621.

Recovery of the diffusion parameter D
Further, in each of the above settings, also the diffusion parameter D can be recovered. Cal-
culating the standard deviation of the jumps of the respective trajectory (i.e. of the values αk
on the inner shooting nodes, see definition 5.17) delivers a fairly accurate estimate on the true
value D∗ = 4.5 of the diffusion parameter: (a) D = 4.5896, (b) D = 4.6256, (c) D = 4.5554.

6.4.5 Simulation study

We investigate the performance of the new parameter estimation method using 100 indepen-
dent realizations(17) of a compound POISSON-driven ORNSTEIN-UHLENBECK process, with the
three scenarios of

(A) no measurement error, shooting grid generated by heuristic (6.13) with ∆min = 0.5

(B) additive normal noise with zero mean and standard deviation 1.0, and same shooting
grid as in (A)

(C) same noise as in (B) but with a new shooting grid generated by heuristic (6.13) with
∆min = 3.0.

No jump regularization is included in the objective as stated earlier, as the driving compound
POISSON process is a true jump process.

(17) generated by an EULER scheme with step size 10−3
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(a) Trajectory of fitted process, error-free measurements, nodes by heuristic (6.13) with ∆min = 0.5

(b) Fit for noisy measurements using the same grid as in (a)

(c) Fit for noisy measurements using a new shooting grid produced by heuristic (6.13) with ∆min = 3.0

Figure 6.16: Example of fitted trajectories of an ORNSTEIN-UHLENBECK process.
In (b), the same shooting grid as in (a) was used, whereas in (c) a new grid was generated using the
heuristic (6.13) on the disturbed measurements.
In (c), new grid points are highlighted in green • and removed grid points are marked with a red x .
In all settings, jump regularization weigths were chosen as zero, since the driving compound POISSON pro-
cess has jumps.
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6.4.5.1 Measurement functions and weights
The measurement function is the identity function on the single state variable. Measurement
weights are set to 1.0 in both cases of exact and noisy measurements, as the variance for each
measurement is constant.

6.4.5.2 Shooting grid and node initialization
The shooting grid TMS is built by heuristic (6.13) with ∆min as given in the scenario descrip-
tions. Node values are initialized by the temporally most proximate measurement data.

6.4.5.3 Initial parameter guess and stopping criterion for the GAUSS-NEWTON solver
The initial guess of the parameters is set to 50% of the true values (see table 6.7), ensuring that
the local area of contraction of the GAUSS-NEWTON method is left, thus globalization takes
effect. We remark that also for more distant as well as randomized initial guesses, convergence
to the solution is observed.

The optimization is stopped as soon as the maximum norm of the search direction ‖∆xk‖∞
(see section 1.3 on page 14) falls below 10−6.

6.4.5.4 Constraints on optimization variables
The following constraints on the state variable at the shooting nodes and on the parameters
were used:

Xt ∈ [−1000, 1000], θ ∈ [0.1, 10], µ ∈ [0.1, 30].

In the test series, no constraints are active in the solutions.

6.4.5.5 Sparsity pattern of the combined residual vector’s Jacobian
Figure 6.17 shows the sparsity pattern of the combined residual vector’s Jacobian J , i.e. the
system matrix of the linearized problem without constraints, as well as the sparsity pattern of
its decomposition factor that may be used for solving the linearized problem.

With a total dimension of 1001× 74, only 3001 (4.1%) out of 74074 elements are nonzero.
The decomposition factor R ∈ IR74×74 has roughly the same low occupancy rate of 4.0%.

See section 5.5.1 for details.

6.4.5.6 Results
Table 6.7 shows the estimation results. The mean estimates of the kinetic parameters µ and θ
are very close to the true values in both scenarios (A) and (B) that share the same shooting
grid. When using exact measurement data (A), their standard deviations are small; the
artificial measurement noise in (B) enlarges this uncertainty slightly.

In scenario (C), where a new shooting grid is built, the mean reversion level µ is still
reproduced, but with an standard deviation enlarged to about 10%. The mean reversion
rate θ seems to have a systematic error, though the true value lies still within one standard
deviation of the estimate. As the noise is exactly the same in (C) as in (B), the quite accurate
estimation in (C) proves that this is due to the very simple heuristic for jump detection, and
may be obliterated by better adjusted shooting grids. See the remarks in section 6.4.3.

The estimates of the diffusion constant D depend on the shooting discretization and might
also be improved by a more accurate heuristic than the one in eq. (6.13). However, though the
diffusion constant is not at all included in the parameter estimation algorithm, it can be ap-
proximated fairly well by calculating the mean of the standard deviations of all discontinuities
(the αk) of the individual fitted trajectories.
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Figure 6.17: Sparsity pattern of the combined residual vector’s Jacobian - OU model
(a) Jacobian J with dimension 1001× 74 (74074 elements), nonzero elements: 3001 (4.1%)
(b) decomposition factor R with dimension 74× 74 (5476 elements), nonzero elements: 219 (4.0%)
See section 5.5.1 for details on the sparsity pattern.

6.4.6 Off-label applicability in jump processes

This example of the ORNSTEIN-UHLENBECK process illustrates the applicability of the pro-
posed parameter estimation method also in the setting of discontinuous jump processes, by
setting the jump regularization weights ω2

k to zero. Further, depending on the problem type,
analysing the distribution of the stochastic jumps αk allows the inference of the diffusion pa-
rameter D, that may be estimated as the standard deviation of the jumps at the inner shooting
nodes.
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Table 6.7: Estimation test series: ORNSTEIN-UHLENBECK process. Results of parameter estimation
on 100 independent realizations of an ORNSTEIN-UHLENBECK process driven by a compound POISSON

process. Initial guess for the parameters µ and θ is 50% of the true value. Parameter D is estimated as
the standard deviation of the jumps αk at the inner shooting nodes. Values rounded to 4 digits.

Scenario (A): exact observations a

parameter estimation results, no jump regularization
name value estimate ± SD (SD%) RelErr%

µ 16.0 15.82 ± 0.187 (1.2%) 1.1%
θ 2.2 2.181 ± 0.028 (1.3%) 0.8%
D 4.5 4.733 ± 0.440 (9.3%) 5.2%

Scenario (B): noisy observations, same grid b

parameter estimation results, no jump regularization
name value estimate ± SD (SD%) RelErr%

µ 16.0 15.82 ± 0.238 (1.5%) 1.1%
θ 2.2 2.183 ± 0.085 (3.9%) 0.8%
D 4.5 4.778 ± 0.434 (9.1%) 6.2%

Scenario (C): noisy observations, new grid c

parameter estimation results, no jump regularization
name value estimate ± SD (SD%) RelErr%

µ 16.0 16.12 ± 1.383 (8.6%) 0.8%
θ 2.2 1.912 ± 0.427 (22.3%) 13.1%
D 4.5 4.763 ± 0.465 (9.8%) 5.8%

ano measurement error, shooting grid by heuristic (6.13) with ∆min = 0.5
bmeasurement error ε ∼ N

(
0, 1.02

)
, same shooting grid as in (a)

cmeasurement error ε ∼ N
(
0, 1.02

)
, shooting grid by heuristic (6.13) with ∆min = 3.0

SD%: standard deviation of the estimate
RelErr%: relative deviation of the estimate from the true parameter value
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A Appendix to the Crosstalk Model of
GM-CSF-mediated IL-6-induced
JAK-STAT Signalling

A.1 Biological obligation: materials and methods

As common practice, the materials and methods section briefly summarizes the utilized cell
lines, reagents, laboratory equipment, and protocols. We include this section at this place for
the sake of completeness.

A.1.1 Cell culture

The cell line used in this study is the benign tumourigenic HaCaT-ras cell line A5 [Mueller2001;
Fusenig1998]. HaCaT A5 was cultivated in 4x modified Eagle’s medium (MEM), 10% fetal calf
serum (FCS) and 200 µg/mL neomycin (PAA, Colbe, Germany). Cells were passaged at a
split ratio of 1:10, routinely tested for mycoplasma contamination as described in [Stacey1997]
and always found to be negative.

A.1.2 Preparation of conditioned media and ELISA

Confluent HaCaT A5 cells were starved for 24 h in 4xMEM without FCS and then stimulated
with recombinant human IL-6 (100 ng/mL; R&D Systems). Conditioned medium was har-
vested 5, 10, 15, 20, 25, 30, 45, 60, 90 and 120 min post stimulation, centrifuged for 5 min at
10000 rpm and stored in aliquots at –80◦C. The cells were trypsinized and counted.

Secretion of GM-CSF was measured by ELISA using Quantikine Immunoassay kits (R&D
Systems, Minneapolis, MN). Samples were tested in duplicates and experiments repeated twice.

A.1.3 Quantitative immunoblotting

Confluent HaCaT A5 cells were starved for 24 h in 4xMEM without FCS and then treated as
follows: (i) stimulated solely with recombinant human IL-6 (100 ng/mL), setting IL6+, or
(ii) stimulated solely with recombinant human GM-CSF (100 ng/mL), or (iii) stimulated with
a combination of both factors (100 ng/mL each), setting IL6+/GMCSF+, or (iv) treated with
IL-6 (100 ng/mL) combined with GM-CSF blocking antibody (2 µg/mL; MAB215), setting
IL6+/GMCSF–, for 5, 10, 15, 20, 25, 30, 45, 60, 90 and 120 min with unstimulated cells as
control. All factors and antibodies were purchased from R&D Systems.

After stimulation, cells were washed with ice-cold TBS (10 mM Tris pH 7.4, 150 mM
NaCl) and lysed in 500 µL ice-cold NP-40 lysis buffer (150 mM NaCl, 20 mM Tris pH 7.4, 1
mM EDTA, 1 mM ZnCl2, 1 mM MgCl2, 1 mM Na3VO4, 10% Glycerin, 1% NP-40, protease
inhibitor cocktail (Roche Diagnostics GmbH, Mannheim, Germany)).

Cell lysates were rotated for 20 min at 4◦C, then centrifuged at 5000 rpm for 5 min at 4◦C.
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For immunoprecipitation (IP) the supernatant containing the cytoplasmic fraction was
incubated on a rotating wheel over night at 4◦C with antibodies and 5% Protein A-Sepharose
CL-4B (GE Healthcare, Uppsala, Sweden). The following antibodies were used: anti-STAT-3,
rabbit polyclonal (No. 9132, Cell Signaling Technology, Inc, MA); anti-gp130, rabbit polyclonal
(No. sc-655, Santa Cruz Biotechnology, CA); anti-SOCS-3, mouse monoclonal (Invitrogen,
Darmstadt Germany).

After incubation, the samples were washed with lysis buffer, eluted by boiling at 95◦C
in Laemmli sample buffer for 5 min, separated by SDS-PAGE and transferred to nitrocellu-
lose membranes. Membranes were blocked in TBS-T (TBS, 0.2% Tween-20) with 2% BSA
(PAA, Colbe, Germany) for 1 h at room temperature and incubated with primary antibody
over night at 4◦C. Primary antibodies: anti-phospho-STAT-3 (Tyr705), rabbit polyclonal
(No. 9131, Cell Signaling Technology); anti-phosphotyrosine, mouse monoclonal (clone 4G10,
No. 05-321, Millipore, MA); anti-SOCS-3, rabbit polyclonal (Abcam, Cambridge, UK). An-
tibodies were removed by treating the blots with β-mercaptoethanol and SDS as described
in [Klingmueller1995]. Reprobes for quantification of the total protein were performed with
the antibodies that were used for immunoprecipitation. Antibody binding was detected with
horseradish peroxidase conjugated secondary antibodies (Protein A-HRP, GE Healthcare) and
ECL reagent (GE Healthcare) according to the manufacturer’s instructions. The signal was
quantified by LumiImager using LumiAnalyst software (Roche Diagnostics). Experiments were
performed in triplicates.

For determination of endogenous protein levels of gp130, defined amounts of the respective
calibrators [Schilling2005] were added to cell lysates prior to immunoprecipitation. After quan-
tification of immunoblotting signals, calibration curves were calculated by regression analysis
of the dilution series of added recombinant calibrator proteins and concentrations could be
estimated in absolute molecule numbers per cell as described in [Schilling2005].

A.1.4 Estimating absolute concentrations from immunoblot data

Signal quantification of phospho-STAT-3 by LumiImager results in relative Boehringer Light
Units (BLU), which are not comparable between different blotting gels. To achieve compa-
rability and to convert the BLU values into absolute concentrations, data was processed as
described below. For each experiment, every BLU value in a time course was divided by the
respective value at time t = 0 min. The resulting data denote “x-fold amplification” in cy-
tosolic phospho-STAT-3 signal after stimulation, allowing the comparison of data obtained in
different experiments.

The total number of STAT-3 molecules in HaCaT cells was determined by quantitative
immunoprecipitation. To calculate the number of phosphorylated STAT-3 molecules we used
literature data, where the maximum answer in phospho-STAT-3 upon IL-6 stimulation is
described to be about 14.5% of total STAT-3 protein [Bohl2009]. Thus, the amplification
factors were then used to calculate the base phosphorylation level of cytoplasmic STAT-3
before stimulation using the formula

total number of molecules · percentage of activation

mean amplification factor on IL-6 stimulation

resulting in reproducible and statistically significant results.
To estimate absolute concentrations from the BLU measurement data, we used the method

for calculating phospho-STAT-3 molecules described above, and estimated the average volume
of HaCaT keratinocytes by measuring the cell diameter with a CASY cell counter (Millipore,
Billerica, MA) and assuming a spherical shape.
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A.2 Tabulated data

Initial molar concentrations for the remaining species were calculated from measured mass
concentrations (ELISA) according to the following formula:

molar concentration (in nmol/mL) =
mass concentration (in ng/mL)

molar mass (in Dalton)

under consideration of the volume of the medium or a single HaCaT cell, respectively.

A.2 Tabulated data

Table A.1 lists the complete experimental data. For parameter estimation, only the pSTAT-3
measurements were used after processing as described in section 3.5. Data analysis was also
done for recombinant (recSTAT3) and total (totSTAT3) pSTAT-3 (see section 3.5.3).

Table A.2 lists the exact values of the kinetic parameters for our model after parameter
estimation. See section 3.7.3, and also the text in table 3.12 for details.

Table A.1: Time course data upon four different stimulation settings. Measurement values are in
relative units (BLU), thus neither comparable between experiments nor between replicates. Times are
given in minutes after stimulation. The mark “–” means, that the respective experiment has not been
conducted. See section 3.5 for the applied data processing.

S
e
tt
in

g

Replicate #1 Replicate #2 Replicate #3

Time pSTAT3 recSTAT3 totSTAT3 pSTAT3 recSTAT3 totSTAT3 pSTAT3 recSTAT3 totSTAT3

u
n
st
im

u
la
te

d

0 165000 571000 841000 11400000 – – 5130000 – –
5 164000 332000 715000 10400000 – – 4120000 – –

10 137000 495000 1030000 11300000 – – 6910000 – –
15 199000 487000 1100000 13000000 – – 5210000 – –
20 183000 562000 1130000 8670000 – – 6830000 – –
25 219000 436000 1090000 14300000 – – 7100000 – –
30 194000 486000 1110000 13300000 – – 5110000 – –
45 185000 764000 1290000 10600000 – – 8500000 – –
60 216000 517000 1250000 11100000 – – 5590000 – –
90 175000 524000 997000 10100000 – – 5270000 – –

120 183700 517400 1055300 10200000 – – 4890000 – –

IL
6
+

0 25736 16278 206000 28128 68696 165000 87794 210000 –
5 243000 52645 429000 348000 33238 168000 1060000 455000 –

10 759000 58513 408000 1030000 39359 285000 2910000 431000 –
15 839000 45761 378000 1160000 64062 303000 2100000 388000 –
20 1190000 29875 224000 875000 41054 202000 3080000 234000 –
25 1370000 34018 284000 1110000 56970 261000 4190000 292000 –
30 1370000 26978 234000 716000 17466 159000 3690000 241000 –
45 805000 20286 170000 545000 78551 254000 2360000 177000 –
60 464000 30328 238000 352000 40846 183000 1780000 257000 –
90 89580 18766 270000 104000 68145 228000 416000 270000 –

120 31718 13963 162000 76681 86380 321000 131000 173000 –

IL
6
+
/
G
M
C
S
F
–

0 440000 438000 1010000 9670000 593000 – 218000 – –
5 1840000 252000 638000 40900000 1260000 – 106000 – –

10 3610000 380000 613000 46200000 879000 – 1290000 – –
15 4410000 288000 833000 57700000 402000 – 2840000 – –
20 4350000 436000 823000 40000000 1000000 – 1160000 – –
25 5780000 277000 211000 49600000 908000 – 2300000 – –
30 4590000 164000 424000 54900000 179000 – 4700000 – –
45 4550000 403000 547000 54900000 700000 – 1530000 – –
60 2120000 289000 666000 48200000 1580000 – 345000 – –
90 1630000 359000 622000 15800000 533000 – 109000 – –

120 488000 108000 211000 20000000 871000 – 52693 – –

IL
6
+
/
G
M
C
S
F
+

0 9315 331000 771000 380000 – – 5200000 – 8770000
5 66842 430000 917000 1210000 – – 10500000 – 2660000

10 75450 244000 718000 2500000 – – 6670000 – 673000
15 112000 207000 689000 4770000 – – 63700000 – 16700000
20 156000 390000 612000 7010000 – – 26000000 – 1070000
25 176000 479000 712000 6520000 – – 85300000 – 20000000
30 148000 438000 886000 4220000 – – 33200000 – 9210000
45 71949 379000 771000 2000000 – – 20300000 – 11300000
60 23389 190000 787000 1430000 – – 13300000 – 11200000
90 31244 424000 839000 210000 – – 8450000 – 20500000

120 14696 308000 685000 45387 – – 5410000 – 18300000
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Table A.2: Final estimates of parameters in the crosstalk model – non-rounded values. Non-
rounded parameter values retrieved for the model in section 3.7.3 after parameter estimation. See ta-
ble 3.12 for explanations. SE: Standard Error.

Par. Estimate Unit SE Meaning

p01 5.77211608 · 10−7 nmol
mL · min —*

production rate of IL-6 and GM-CSF

p02 1.81723897 · 101 mL
nmol · min 9.6 %

activation rate of IL-6 receptor and GM-CSF receptor
upon ligand binding

p03 1.00000000 · 105 mL
nmol · min —*

blockade of GM-CSF receptor upon overstimulation

p04 7.27351250 · 104 mL
nmol · min —*

activation rate of SK by active GM-CSF receptor

p05 3.16609443 · 104 mL2

nmol2 · min 39.8 % SK enhanced STAT-3 activation on active IL-6 receptor

p06 1.00000000 · 10−1 min−1 —*
degradation rate of SOCS-3 in cytosol

p07 3.00482209 · 103 mL
nmol · min 30.2 % deactivation rate of IL-6 and GM-CSF receptor by SOCS-3

p08 6.12798523 · 10−1 mL
nmol · min 10.2 % STAT-3 phosphorylation rate on active IL-6 receptor

p09 3.75073537 · 10−2 min−1 5.3 % translocation of phospho-STAT-3 into nucleus

p10 2.15261866 · 10−2 min−1 43.4 % export rate of nuclear STAT-3 into cytoplasm

p11 3.96962821 · 10−2 min−1 17.3 %
induction and export rate of SOCS-3 mRNA by nuclear
phospho-STAT-3

p12 1.40267745 · 10−1 min−1 —* translation rate of SOCS-3 mRNA in cytoplasm (10 pro-
teins from 1 mRNA)

pSOCS 9.40267745 · 10−10 min−1 11.5 % scaling constant for SOCS-3 measurement data

*parameter was fixed to specified value
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B Some Results on Matrix Decompositions
and Stochastic Convergence

B.1 QR decomposition of full rank matrices

As discussed in section 1.2, linear least squares problems LIN-LSQ

min
x∈IRn

1
2

∥∥Cx− d
∥∥2

2
with C ∈ IRm×n, d ∈ IRm

(B.1)

(unconstrained like above or with linear equality constraints like problem LIN-LSQ-EC on
page 9) can be solved using decompositions of the system matrices.

We summarize some results on QR decompositions of matrices; proofs can be found on
most textbooks of linear algebra.

B.1 Theorem (QR decomposition of full-rank matrices)
Let C ∈ IRm×n,m ≥ n, rank(C) = n. Then there exist an orthogonal matrix Q ∈ IRm×m and
a nonsingular upper triangular matrix R ∈ IRn×n such that C can be decomposed as:

C = Q ·
[

R
0(m−n)×n

]

�

By choosing the signs of the columns of Q in the right way, we can ensure positive diagonal
entries in R, and derive the following uniqueness result of the QR decomposition:

B.2 Theorem (Uniqueness of the QR decomposition)

Let C ∈ IRm×n,m ≥ n, rank(C) = n, and C = Q ·
[
R
0

]
with orthogonal Q ∈ IRm×m and

nonsingular upper triangular R ∈ IRn×n as in theorem B.1. Further, let Q be partitioned as

Q =
[
Q1 Q2

]
, Q1 ∈ IRm×n, Q2 ∈ IRm×(m−n).

Then we have

C =
[
Q1 Q2

]
·
[
R
0

]
= Q1R =⇒ Q1 = CR−1,

so Q1 is uniquely determined. �

The calculation of Q and R can be done using elementary orthogonal transformations, like
GIVENS rotations, HOUSEHOLDER transformations, or GRAM-SCHMIDT orthogonalization, or
variants of these. See, e.g., [GolubVanLoan1996].

The QR decomposition can also be applied to rank-deficient matrices C ∈ IRm×n with
rank(C) < n, which includes the setting of the system matrix C having more columns than
rows, i.e. m < n, as special case.
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B.3 Theorem (QR decomposition of rank-deficient matrices)
Let C ∈ IRm×n with rank(C) = r. Then there exist an orthogonal matrix Q ∈ IRm×m, a
nonsingular upper triangular matrix R11 ∈ IRr×r, and a permutation matrix P ∈ IRn×n such
that the matrix C can be decomposed as:

CP = Q ·
[

R11 R12

0(m−r)×r 0(m−r)×(m−r)

]

�

For a fixed permutation P , the matrices R11 and R12 are unique if we fix the signs of the
diagonal elements of R11 (e.g. all positive). In that case, also the first r columns of Q are
uniquely determined.

B.2 The singular value decomposition (SVD)

By choosing the right orthogonal coordinate systems, every matrix can be diagonalized by
finding its singular value decomposition (SVD). Though more expensive than QR decompo-
sitions, it offers much more insight into the underlying structures, and is used in many fields
of application, like pattern recognition, time-series analysis, image processing and for solving
least squares problems, especially in the rank-deficient case.

Though the formulation as well as applications for complex matrices exist, we restrict our-
selves here to the SVD for real matrices. The complex version reads identically when replacing
IR by |C, “orthogonal” by “unitary”, and “transposition” by “conjugate transposition”. For
proofs, we refer to, e.g., [GolubVanLoan1996].

B.4 Theorem (Singular Value Decomposition)
Let C ∈ IRm×n with rank(C) = r. Then there exist an orthogonal matrix U ∈ IRm×m, an
orthogonal matrix V ∈ IRn×n, and a diagonal matrix Σ ∈ IRm×n, such that

C = UΣV T, Σ =

[
Σ 0
0 0

]
∈ IRm×n, Σ =



σ1 0

. . .

0 σr


 ∈ IRr×r

with nonzero singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0. The column vectors ui of U =
(u1, . . . , um) are the left singular vectors of C, and the column vectors vi of V = (v1, . . . , vn)
are the right singular vectors of C. �

B.5 Theorem (Pseudo-inverse by SVD)
Let C ∈ IRm×n with rank(C) = r, and C = UΣV T a singular value decomposition as in
theorem B.4. Then, the pseudo-inverse or MOORE-PENROSE pseudo-inverse of C is given as

C† = V Σ†UT, Σ† =

[
Σ−1 0

0 0

]
∈ IRn×m, Σ−1 =



σ−1

1
. . .

σ−1
r


 ∈ IRr×r

Note that, while the dimension of Σ is m× n, its pseudoinverse Σ† has dimension n×m. �
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B.3 Convergence of random sequences

B.3 Convergence of random sequences

Here, we shortly summarize some common types of convergence of random sequences and give
some characterizations without proof. We have, again, (Ω,A, IP) a probability space, and
random sequences Xn(ω) −→ X(ω) (n→∞)

(I) Pointwise convergence, or sure convergence:

lim
n→∞

Xn(ω) = X(ω) ∀ω ∈ Ω (B.2)

(II) Convergence with probability 1, or almost sure convergence, or strong convergence:

IP
(

lim
n→∞

Xn = X
)

= IP
(
{ω ∈ Ω

∣∣ lim
n→∞

Xn(ω) = X(ω)}
)

= 1 (B.3)

(III) Mean square convergence, or convergence in L2:

IE
[
X2
]
<∞, IE

[
X2
n

]
<∞ ∀n, and lim

n→∞
IE
[
|Xn −X|2

]
= 0 (B.4)

(IV) Convergence in probability, or stochastic convergence:

lim
n→∞

IP
(
{ω ∈ Ω

∣∣ |Xn(ω)−X(ω)| ≥ ε}
)

= 0 ∀ ε > 0 (B.5)

(V) Convergence in distribution, or convergence in law, or weak convergence:

lim
n→∞

FXn(x) = FX(x) at all continuity points x (B.6)

with FX and FXn denoting the cumulative distribution functions of X and Xn.

Equivalently in terms of densities:

(VI) Weak convergence:

lim
n→∞

∞∫

−∞

f(x)dFXn(x) =

∞∫

−∞

f(x)dFX(x) (B.7)

for all test functions f : IR→ IR, continuous and with bounded support.
If the distribution functions possess densities pn and p, then this is equivalent to

lim
n→∞

∞∫

−∞

f(x)pn(x)dx =

∞∫

−∞

f(x)p(x)dx

Further, we have the following implications (this is not a complete list):

1) almost sure convergence (II)
=⇒ convergence in probability (IV)

=⇒ convergence in distribution (V)

2) mean sequare convergence (III)
=⇒ convergence in probability (IV)

=⇒ convergence in distribution (V)
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C The Stochastic Integral

This introduction to the stochastic integral is based on chapter 3 of the book of Bernt
ØKSENDAL [Oksendal1998]. We assume that the reader is familiar to the basic definitions
from probability theory in section 4.1.

In what follows, Wt is a standard WIENER process (BROWNian motion) on the time domain
[0,∞).

We restrict ourselves to real valued functions and conclude with a definition of an n-
dimensional stochastic integral. Most results extend analoguously to multi-dimensional func-
tions, but require much more theoretical preparation. We refer to [Oksendal1998], [Bichteler2002],
and [Protter2004].

C.1 The idiosyncrasy of stochastic integrals

Let f : [0, T ]×Ω→ IR be a stochastic process. It is a natural approach to approximate f(·, ω)
by a sum of piecewise constant functions

f(t, ω) ≈
m−1∑

j=0

f(tj , ω) · 1[τj ,τj+1)(t) (C.1)

using a time grid 0 = τ0 < τ1 < ... < τm = T and supporting points tj ∈ [τj , τj+1].

One might try to define a stochastic integral with respect to a WIENER process Wt similarly
to the RIEMANN-STIELTJES integral as:

T∫

0

f(t, ω) dWt(ω) := lim
m→∞

m−1∑

j=0

f(tj , ω) ·
(
Wτj+1 −Wτj

)
. (C.2)

However, this definition brings us into serious trouble, as the following example shows:

Let f(t, ω) = Wt(ω) be a WIENER process. Then, the functions

f1(t, ω) =

m−1∑

j=0

Wτj (ω) · 1[τj ,τj+1)(t)

f2(t, ω) =

m−1∑

j=0

Wτj+1(ω) · 1[τj ,τj+1)(t)

would be two approximations of f that only differ in the choice of the supporting points tj .
As |τj+1 − τj | −→ 0 (m→∞), both approximations converge to f .
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C The Stochastic Integral

For f1, we have chosen to evaluate f at the left boundary of the interval [τj , τj+1], and at
the right boundary for f2, leading to respective integrals

T∫

0

f1(t, ω) dWt(ω) = lim
m→∞

m−1∑

j=0

Wτj (ω) ·
(
Wτj+1 −Wτj

)

T∫

0

f2(t, ω) dWt(ω) = lim
m→∞

m−1∑

j=0

Wτj+1(ω) ·
(
Wτj+1 −Wτj

)
.

Assuming the linearity of the integral (as we seriously do not want to construct a nonlinear
integral), for any partition 0 = τ0 < τ1 < ... < τm = T , using the fact that a WIENER process
has independent increments, one gets

IE




T∫

0

f1(t) dWt


 = lim

m→∞

m−1∑

j=0

IE
[
Wτi ·

(
Wτj+1 −Wτj

)]

= lim
m→∞

m−1∑

j=0

IE
[
WτiWτi+1

]
− IE

[
W 2
τi

]
= lim

m→∞

m−1∑

j=0

(τi − τi) = 0

and

IE




T∫

0

f2(t) dWt


 = lim

m→∞

m−1∑

j=0

IE
[
Wτi+1 ·

(
Wτj+1 −Wτj

)]

= lim
m→∞

m−1∑

j=0

IE
[
W 2
τi+1

]
− IE

[
WτiWτi+1

]
= lim

m→∞

m−1∑

j=0

(τi+1 − τi) = T

The above example illustrates that, in spite of both functions f1 and f2 being good ap-
proximations of Wt, the value of the integral depends on the choice where the integrand is
evaluated, and these values do not converge no matter how we chose the partition of the time
domain – a less desired property of an integral. As ØKSENDAL writes:

“This reflects the fact that the variations of the paths of Wt are too big to enable
us to define the integral in the RIEMANN-STIELTJES sense. [...] In particular, the
total variation of the path is infinite, a.s.” [Oksendal1998]

C.2 ITÔ’s and STRATONOVICH’s integral

As exemplified in section C.1, the (expected) value of a stochastic integral

T∫

0

f(t, ω) dWt(ω) = lim
m→∞

m−1∑

j=0

f(tj , ω) ·
(
Wτj+1(ω)−Wτj (ω)

)
.

depends on the choice of the supporting points tj , of which there are two popular choices:
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C.3 Filtration, adaptation, and the “history of BROWNian motion”

1) tj := τj , the left boundary of the interval [τj , τj+1], leads to the ITÔ stochastic integral,
which is usually written as

T∫

0

f(t, ω) dWt

2) tj := 1
2(τj +τj+1), the middle point of the interval [τj , τj+1], leads to the STRATONOVICH

stochastic integral, usually written as

T∫

0

f(t, ω) ◦ dWt .

Both choices for tj are useful in different settings of theory and practial calculation. For
any continuously differentiable function g(t,W ), they can be easily converted into each other
by the formula

T∫

0

g(t,Wt) ◦ dWt =
1

2

T∫

0

∂g

∂W
(t,Wt) dt+

T∫

0

g(t,Wt) dWt.

C.2.1 Which integral to choose: STRATONOVICH or ITÔ?

In many settings, especially in biology, one would prefer the ITÔ interpretation, as it “does
not look into the future”. The advantage of the STRATONOVICH integral is that it leads to an
“ordinary” chain rule, whereas the chain rule of the ITÔ integral is different. Thus, as soon as
variable changes occur, the STRATONOVICH integral leads to “less complicated” formulas than
the ITÔ version. Another point is, that ITÔ integrals are martingales (see definition C.10),
whereas STRATONOVICH integrals are not, which makes the first one easier to compute.

However, as both integrals can be converted into each other for a wide class of integrands, it
is usually sufficient to investigate only one of them. For a deeper discussion, see [Oksendal1998],
chapter 3, and the references given therein.

C.3 Filtration, adaptation, and the “history of BROWNian motion”

Given a probability space (Ω,A, IP) and a random variable X : Ω→ IR, the σ-algebra A codes
the events that can be detected by the probability measure IP. What the single σ-algebra A
is for a single random variable X, is a whole family of σ-algebras for a stochastic process Xt.

C.1 Definition (Filtration, adapted process, simple process)
Let (Ω,A, IP) be a probability space, and X : [0,∞)× Ω→ IRn be a stochastic process.

1. A filtration is a family {Mt}t≥0 of increasing sub-σ-algebras Mt ⊂ A, such that
0 ≤ s < t =⇒ Ms ⊂Mt.
As a convention, we assume that M0 always contains all IP-null sets. Further, we fre-
quently write {Mt} or just Mt for {Mt}t≥0.

2. For a given filtration {Mt}, the process Xt is called Mt-adapted , if Xt(ω) is Mt-
measurable for each t ≥ 0.
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C The Stochastic Integral

3. For a filtration {Mt}, the quadruple (Ω,A, {Mt}, IP) is called a filtered probability space
or stochastic basis (again, we assume here that the filtered probability space is complete,
i.e. M0 contains all IP-null sets).

4. The filtration Nt := σ({Xs}s≤t), i.e. the σ-algebra generated by the random variables
Xs(ω); s ≤ t, is called the natural filtration of the process Xt. It describes the setting,
that for every time point t the whole information about the history of Xt is known up
to time t.

Ft denotes the natural filtration of an n-dimensional BROWNian motion Wt.
It is the smallest σ-algebra containing the sets {ω,Wt1(ω) ∈ B1, ...,Wtk(ω) ∈ Bk} with
tj ≤ t and Bj ∈ IBn being BOREL sets for all j ≤ k = 1, 2, 3, .... �

For a WIENER process Wt and its filtration Ft, a possible interpretation of an Ft-adapted
process {Xt} is that although Xs is a random variable for every time point s, its value is
completely defined by the path of the BROWNian motion {Wt}0≤t≤s up to that time point s.
The filtration Ft can thus be seen as the history of the WIENER process Wt up to time t.

C.4 The ITÔ integral

We have not said anything yet about the class of functions to integrate. Similarly to common
constructions of the LEBESGUE or RIEMANN-STIELTJES integral, we start with a definition
of the ITÔ integral for a class of simple (step) functions, and extend this definition to more
complicated functions that can be suitably approximated by simple functions.

C.2 Definition (class V)
Let (Ω,A, IP) be a complete probability space and {Ft} the natural filtration of a WIENER

process Wt. By V = V([0, T ]) we denote the class of real-valued functions f : [0,∞)× Ω→ IR
that fulfill the following conditions:

i) f is IB×A-measurable. Here, IB denotes the BOREL σ-algebra on [0,∞).

ii) f is Ft-adapted.

iii) IE

[
T∫
0

f(t, ω)2 dt

]
<∞. �

C.3 Definition (Simple processes)
An Ft-adapted process Xt ∈ V is called simple or elementary , if it is a random step function,
i.e. Xt can be written as

Xt(ω) =
m−1∑

j=0

ξj(ω) · 1[τj ,τj+1)(t)

for a time grid 0 = τ0 < τ1 < τ2 < ... < τm, and random variables ξj that are Ftj -measurable
(j = 0, ...,m− 1).

Note that, when we talk about a simple process, we always implicitly assume that it is
associated with a suitable time grid 0 = τ0 < τ1 < τ2 < ... < τm. �
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C.4 The ITÔ integral

In this survey, we restrict ourselves to integrals on the domain [0, T ], as we can easily define
integrals over intervals [a, b] (equivalently (a, b], [a, b), (a, b)) with nonrandom 0 ≤ a ≤ b ≤ T
by

b∫

a

Xt dWt :=

T∫

0

Xt · 1[a,b](t) dWt

C.4.1 The ITÔ integral in 1D

C.4 Definition (ITÔ integral for simple processes)
The ITÔ integral for a simple process Xt(ω) =

m−1∑
j=0

ξj(ω) · 1[τj ,τj+1)(t) is defined as

T∫

0

Xt(ω) dWt(ω) :=

m−1∑

j=0

ξj(ω) ·∆Wj(ω) (C.3)

with ∆Wj(ω) := Wτj+1(ω)−Wτj (ω). �

Now that we have the ITÔ integral for simple processes, we extend the definition to ar-
bitrary functions in V. Following ØKSENDAL, we do this in three steps. First, we show that
bounded continuous functions in V can be suitably approximated by elementary functions.
Second, we show that we can drop the continuity requirement, as we can approximate every
bounded function in V by continuous (and bounded) functions. Finally, we extend the ap-
proximability to arbitrary functions in V. We first introduce the following isometry that will
be needed in the more general definition C.7 of the ITÔ integral.

C.5 Lemma (ITÔ isometry for simple processes)

For any bounded and simple process Xt ∈ V, i.e. Xt(ω) =
m−1∑
j=0

ξj(ω) · 1[τj ,τj+1)(t), it holds:

IE







T∫

0

Xt(ω) dWt(ω)




2

 = IE




T∫

0

X2
t (ω) dt


 (C.4)

Proof: Setting ∆Wj := Wτj+1 −Wτj and using the linearity of expectation, we get:

IE







T∫

0

Xt(ω) dWt(ω)




2

 =

m−1∑

j=0

m−1∑

i=0

IE[ξi(ω)ξj(ω)∆Wi∆Wj ] =
(∗)

m−1∑

j=0

IE
[
ξ2
j (ω)

]
· (τj+1 − τj)

= IE



m−1∑

j=0

ξ2
j (ω) · (τj+1 − τj)


 = IE




T∫

0

m−1∑

j=0

ξ2
j (ω) · 1[τj ,τj+1)(t) dt


 = IE




T∫

0

X2
t (ω) dt




where we have used the independence of ξiξj∆Wi and ∆Wj for i < j in (∗). �
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C.6 Lemma (Approximability of Xt ∈ V by simple functions)

For every process Xt ∈ V, there is a sequence of simple processes X
(n)
t ∈ V, such that

IE




T∫

0

(
Xt −X(n)

t

)2
dt


 −→ 0 as n→∞.

Proof (sketch):

1. If Xt(ω) is bounded and continuous in t for each ω, then, for τ
(n)
j := j · Tn , the processes

X
(n)
t (ω) :=

n∑
j=0

X
τ
(n)
j

(ω) · 1[
τ
(n)
j ,τ

(n)
j+1

)(t) are simple processes in V and continuous in t for

each ω. Thus, X
(n)
t (ω) −→ Xt(ω) (n→∞) pointwise for each ω, and, since X

(n)
t is also

bounded, we have IE

[
T∫
0

(
Xt −X(n)

t

)2
dt

]
−→ 0 (n → ∞) by the bounded convergence

theorem.

2. Let Xt ∈ V be bounded, such that |Xt(ω)| ≤ K ∀ (t, ω). We approximate Xt using
a series of suitable convolution integrals. For that, we first construct a series hn that
converges to an identity. Let hn be a non-negative and continuous function on IR, with
∞∫
−∞

hn(x) dx = 1 and hn(x) = 0 for x ≤ − 1
n and x ≥ 0, such that supp(hn) = [− 1

n , 0].

Then, we set X
(n)
t (ω) :=

t∫
0

hn(s − t)Xs(ω) ds. It can be shown that X
(n)
t (·) is Ft-

measurable, and
T∫
0

(
Xs(ω) − X(n)

s (ω)
)2
ds −→ 0 (n → ∞) for each ω. Further, again

using the bounded convergence theorem, one gets IE

[
T∫
0

(
Xt −X(n)

t

)2
dt

]
−→ 0 (n→∞).

3. Now, let Xt ∈ V be an arbitrary process in V. Then, for every n ∈ IN,

X
(n)
t (ω) :=





−n if Xt(ω) < −n
Xt(ω) if − n ≤ Xt(ω) < n

n if Xt(ω) > n

is bounded, X
(n)
t ∈ V, and X

(n)
t −→ Xt (n → ∞). Using the dominated convergence

theorem, we finally get IE

[
T∫
0

(
Xt −X(n)

t

)2
dt

]
−→ 0 (n→∞), i.e. the desired result for

arbitrary processes Xt ∈ V.

�
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C.4 The ITÔ integral

C.7 Definition (ITÔ integral in 1D)

Let Xt ∈ V, and X
(n)
t ∈ V be a sequence of elementary processes as in lemma C.6, such that

lim
n→∞

IE




T∫

0

(
Xt(ω)−X(n)

t (ω)
)2
dt


 = 0.

Then, the ITÔ integral of Xt is defined as

T∫

0

Xt(ω) dWt(ω) := lim
n→∞

T∫

0

X
(n)
t (ω) dWt(ω) (C.5)

where the limit is taken in L2(IP), i.e. mean square convergence. �

The ITÔ isometry for simple processes (Lemma C.5) ensures, that the ITÔ integral is
well-defined, i.e. that the limit in eq. (C.5) exists and is independent of the choice of the

approximating processes X
(n)
t .

C.4.2 Properties of the ITÔ-Integral

C.8 Corollary (ITÔ isometry)
For Xt ∈ V, it holds:

IE







T∫

0

Xt(ω) dWt(ω)




2

 = IE




T∫

0

X2
t (ω) dt




�

C.9 Lemma (Properties of the ITÔ integral)
Let Xt, Yt ∈ V.

1. The ITÔ integral is linear, i.e. for α, β ∈ IR, it holds for almost all ω ∈ Ω:

T∫

0

(
αXt + βYt

)
dWt = α ·

T∫

0

Xt dWt + β ·
T∫

0

Yt dWt

2. For 0 ≤ S < U < T , it holds for almost all ω ∈ Ω:

T∫

S

Xt dWt =

U∫

S

Xt dWt +

T∫

U

Xt dWt
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C The Stochastic Integral

3. The expectation of an ITÔ integral is zero:

IE




T∫

0

Xt(ω) dWt(ω)


 = 0

4. The ITÔ integral

T∫

0

Xt dWt is FT -measurable.

Proof: By lemma C.6, it is sufficient to prove the propositions for simple processes. We take
the union of the partitions of [0, T ] for two simple processes Xt and Yt, i.e. we use a combined
time grid {τj}j=0,...,m−1, and set

Xt =

m−1∑

j=0

ξj · 1[τj ,τj+1) , Yt =

m−1∑

j=0

ζj · 1[τj ,τj+1)

1. Linearity:
T∫
0

(
αXt + βYt

)
dWt =

m−1∑
j=0

(
αξj + βζj

)
∆Wj

= α
m−1∑
j=0

ξj∆Wj + β
m−1∑
j=0

ζj∆Wj = α
T∫
0

Xt dWt + β
T∫
0

Yt dWt

2. Splitting the time grid at U , such that S = τ0 < τ1 < ... < τk = U < τk+1 < ... < τm = T ,
and using the linearity of the integral, we immediately get the result.

3. Since IE[∆Wj ] = 0, using the independence of Xτj and ∆Wj together with the linearity

of expectation, we get: IE

[
T∫
0

Xt(ω) dWt(ω)

]
=

m−1∑
j=0

IE[ξj∆Wj ] =
m−1∑
j=0

IE[ξj ]IE[∆Wj ] = 0.

4. Since ξj and ∆Wj are measurable w.r.t. T , also
T∫
0

Xt dWt =
m−1∑
j=0

ξj∆Wj is Ft measurable.

�

To show the continuity of ITÔ’s stochastic integral, we have to introduce the concept of
martingales.

C.10 Definition (Martingale)
Let (Ω,A, {Mt}, IP) be a filtered probability space, and Xt : [0,∞) × Ω → IRn be an n-
dimensional stochastic process. Xt is called a martingale with respect to the filtration {Mt},
if all of the following hold:

i) Xt is Mt-adapted, i.e. Xt is Mt-measurable for each t ≥ 0,

ii) IE[|Xt(ω)|] <∞ ∀t ≥ 0,

iii) IE[Xs|Mt] = Xt for all s ≥ t.
�
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C.4 The ITÔ integral

C.11 Lemma (DOOB’s inequalities for continuous martingales)
For a continuous martingale {Xt}t≥0 and p > 1, it holds for any t ≥ 0:

IE

[
sup

0≤s≤t

∣∣Xs

∣∣p
]
≤
( p
p−1

)p · IE
[∣∣Xt

∣∣p
]

(C.6)

and especially for p = 2:

IE

[
sup

0≤s≤t

∣∣Xs

∣∣2
]
≤ 4IE

[∣∣Xt

∣∣2
]
. (C.7)

Further, for all p ≥ 0, t ≥ 0, and λ > 0, it holds:

IP

[
sup

0≤s≤t

∣∣Xs

∣∣ ≥ λ
]
≤ IE

[∣∣Xt

∣∣p]

λp
. (C.8)

The first result in eq. (C.6) is frequently called DOOB’s maximal inequality for continuous
martingales, whereas the second eq. (C.8) is known as DOOB’s martingale inequality.

Proof: See, e.g., [MoertersPeres2010], Proposition 2.43 and Theorem 12.30, or [Kallenberg2002],
Proposition 7.16, and [KallenbergSztencel1991] for vector-valued martingales. �

C.12 Theorem (Continuity of the ITÔ integral)
Let (Ω,A, IP) be a probability space and Xt ∈ V a stochastic process, and define

Yt :=

t∫

0

Xs(ω) dWs(ω) (0 ≤ t ≤ T ).

Then:

1. Yt is an Ft-martingale.

2. Yt has a continuous version, i.e. there exists a process Zt on (Ω,A, IP) that is continuous
in t and IP(Zt=Yt) = 1 (0 ≤ t ≤ T ).

�

In the proof of theorem C.12, one shows for a series of simple processes X
(n)
t approximating

Xt that the ITÔ integral In(t, ω) of each X
(n)
t is continuous and a martingale w.r.t. Ft. Using

DOOB’s martingale inequality, one may choose a subsequence Ink(t, ω) of integrals, uniformly
convergent on [0, T ] for almost all ω ∈ Ω, whose limit is the t-continuous integral Zt. For
details, we refer again to [Oksendal1998].
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C The Stochastic Integral

C.4.3 Extension of the ITÔ integral to n dimensions

With definition C.7, we have established the 1-dimensional version of the ITÔ integral for
integrands from the class V, in whose definition C.2 we now relax the measurability condition

ii) Xt(ω) is Ft-adapted

to

ii)′ There exists an increasing family of σ-algebras {Ht}t≥0, such that
a) Wt is a martingale with respect to Ht
b) Xt is Ht-adapted.

This relaxation is (especially) important if the integrand and/or the differential of the ITÔ

integral contain coordinate processes of a multi-dimensional WIENER process. The relaxation
implies Ft ⊂ Ht and IE[Ws −Wt|Ht] = 0, which is sufficient to construct the ITÔ integral
analogously for the extended class of integrands. For a more detailed description we refer, e.g.,
to the textbook of ØKSENDAL [Oksendal1998].

Before defining the multi-dimensional ITÔ integral, we introduce a notation for n-dimensional
BROWNian motion and a class collecting the integrands described above:

C.13 Definition (Notation for n-dimensional BROWNian motion, class Vm×nH )
1. The set of processes fulfilling the relaxed formulation above, i.e. conditions i) and iii) of

definition C.2 and condition ii)′ above, for a given filtration H = {Ht}t≥0, is denoted as
V ′H.

2. Let W : [0,∞)× Ω→ IRn be an n-dimensional BROWNian motion.
Then, we denote its k-th coordinate function byWk(t, ω), and writeW = (W1,W2, ...,Wn)T,
omitting the arguments t and ω.

3. By F (n)
t we define the σ-algebra generated byW1(s1, ·),W2(s2, ·), ...,Wn(sn, ·) with sk ≤ t.

4. Let vij ∈ V ′H (i = 1, ...,m; j = 1, ..., n).
Then, we define Vm×nH (0, T ) as the set of m× n matrices V = [vij ] i=1,...,m

j=1,...,n
. �

C.14 Definition (The multi-dimensional ITÔ integral)
Let W be an n-dimensional BROWNian motion. For v ∈ Vm×nH , we define the multi-dimensional
ITÔ integral as the m column vector

T∫

0

v dW =

T∫

0



v11 · · · v1n
...

. . .
...

vm1 · · · vmn






dW1

...
dWn


 =




n∑

j=1

T∫

0

v1j(s, ω) dWj(s, ω)

...

n∑

j=1

T∫

0

vmj(s, ω) dWj(s, ω)




in which each component is a sum of 1-dimensional ITÔ integrals. �
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In this section, we give some basic information about the implemented software. We first
present the GAUSS-NEWTON solver :gnsolve that is based on the methods of chapter 1, and
give a short description of the ODE solver suite :clradau.

The final part of this section describes the software package :sfit, a framework that allows
the user to formulate the constrained nonlinear stochastic parameter estimation problems from
chapter 5 in a convenient way. Basic usage is demonstrated using the example of the calcium
ion oscillator in section 6.2. Further, we give the complete code for the WIENR exponential
example in section 5.4.4 that easily fits on a single page.

S.1 GAUSS-NEWTON solver :gnsolve

The GAUSS-NEWTON method presented in chapter 1 has been implemented in the Common
Lisp package :gnsolve. Inequality constraints are treated with an active-set method; simple
bounds are treated more effectively with a projection based strategy.

The class gnsolve::lsq-prob forms the basis class for least squares problems, with
specializations for nonlinear and linear least squares problems, unconstrained, equality con-
strained, inequality constrained, or both. The class gnsolve::lsq-sol abstracts a solution
to a least square problem.

As an example, the linear constrained least squares problem

min
x

1
2

∥∥Cx− d
∥∥2

s.t. Ex− b = 0
with C =

[
1 2 0
4 0 6
7 0 0
1 1 1
0 4 5

]
, d =

(
5.11
5.22
5.33
5.44
5.55

)
, E =

[
0 2 0
3 4 0

]
, b =

(
21.11
22.22

)
,

may be instantiated, solved (using the default solver), and printed by

(let* ((C #2a((1 2 0) (4 0 6) (7 0 0) (1 1 1) (0 4 5))) ;; least squares matrix
(d #(5.11d0 5.22d0 5.33d0 5.44d0 5.55d0)) ;; least squares rhs
(E #2a((0 2 0) (3 4 0))) ;; constraint matrix
(b #(21.11d0 22.22d0)) ;; constraint rhs
(lsqprob (make-instance ’lin-lsq-ec-prob :C C :d d :E E :b b :name "Txp"))
(lsqsol (solve-lin-lsq lsqprob))) ;; solve

(present-solution lsqsol))) ;; display solution

giving the output

Solution Txp-SOLUTION, generated at 2016-08-01-12-30-20-T4056436
of problem Txp, generated at 2016-08-01-12-30-20-T4056434:
Solved by solver #<FUNCTION SOLVE-LIN-LSQ-EC-DGGLSE>
Contents of optionset: [Type: NULL]
Solution vector: (first 3 of 3 components)
x( 0) = -6.666666666666666d0
x( 1) = 10.555000000000001d0
x( 2) = 0.1535752688172103d0
Residuals: (first 5 of 5 components)
r( 0) = -9.333333333333336d0
r( 1) = 30.9652150537634d0
r( 2) = 51.99666666666666d0
r( 3) = 1.3980913978494547d0
r( 4) = -37.437876344086064d0
Multipliers: (first 2 of 2 components)
µ( 0) = 403.44489695340496d0
µ( 1) = -159.9674283154121d0
Contents of optionset: [Type: NULL]
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Linear least squares

For linear least squares problems, different solvers are provided. Inequalities are treated
by an active-set strategy. For the common case with full-rank system matrix, a nullspace
method based on QR decompositions has been implemented. For (possibly) rank-deficient
problems, the generalized inverse can be computed (see section 1.3.3). Also, solvers based on
the LAPACK routines dgelss and dgglse computing minimum norm solutions are provided.

Sparse problems
For sparse equality constrained problems, a binding to the sparse direct solver SuperLU(1)

exists. The solution to the problem min 1
2 ‖Cx− d‖

2 s.t. Ex− b = 0 is thereby computed by
solving the sparse linear system




0 0 E
0 I C
−ET −CT 0





λ
r
x


 =



b
d
0




delivering the solution vector x, the Lagrangian multipliers λ and the residual vector r = d−Cx
simultaneously.

Nonlinear least squares

As presented in chapter 3, nonlinear least squares problems are solved in an iterative procedure,
in which an initial guess x0 is successively updated by the solutions ∆xk (search directions) of
a series of linearized problems. This applies directly to unconstrained and equality constrained
problems. Problems with inequality constraints are reduced to equality constrained problems
using an active-set strategy.

Globalization

To ensure global convergence, both a backtracking line search as well as the restrictive mono-
tonicity test (RMT, see section 1.3.4) are available.

S.2 Integrator :clradau
The integrator :clradau was developed and implemented in close collaboration with Mario
S. MOMMER(2) at the Interdisciplinary Center for Scientific Computing (IWR), Heidelberg
University.

:clradau is a solver suite for stiff and non-stiff ODE and index-1 DAE systems, providing
RUNGE-KUTTA based RADAU-IIa integration schemes(3) up to order 17 with variable (error-
controlled) step sizes.

Exact derivatives up to (in principle) arbitrary order are efficiently computed by algorith-
mic differentiation(4) (AD) and freezing the adaptive parts (internal numerical differentiation,
see section 2.2.3.2).

(1)James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu: “A supernodal
approach to sparse partial pivoting”. SIAM J. Matrix Analysis and Applications 20.3 (1999), pp. 720–755

(2)now: Modellierung und Systemoptimierung Mommer GmbH, Stettiner Straße 48, 69502 Hemsbach
http://www.msmommer.de

(3)In principle, every method that can be represented in a BUTCHER array is supported; besides the mentioned
RADAU schemes, also a set of order 4 LOBATTO IIIa/b/c integration schemes is directly available and
others may be upgraded easily.

(4) Based on a suggestion of FATEMAN [Fateman2006], we implemented automatic differentiation in Common
Lisp and extended it for arbitrarily high and mixed derivatives.
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S.3 Framework :sfit

The software package :sfit implements the methods for parameter estimation in stochastic
systems presented in chapter 5. It offers easy symbolic problem formulation to the user, from
which it generates stochastic parameter estimation problems as described in problem 5.18
and problem 5.22 (the latter with per-interval parameters). Bindings to the GAUSS-NEWTON

package :gnsolve allow efficient solution of these problems. Further, for simulation and theo-
retical studies, if offers a framework for artificial data generation using an EULER-MARUYAMA

stochastic integrator.

S.3.1 Formulating an sfit-problem: Calcium oscillator example

We here provide some presentation on how to formulate a stochastic parameter estimation
problem in :sfit, on the example of the calcium oscillator system studied in section 6.2.

The ODE system for the calcium oscillator was already given in eq. (6.5) on page 175 and
is repeated here for convenience:

dGα

dt
= p1 + p2 ·Gα −

p3 ·Gα · PLC

p4 + Gα
− p5 ·Gα · Ca

p6 + Gα

dPLC

dt
= p7 ·Gα −

p8 · PLC

p9 + PLC
(6.5)

dCa

dt
= p10 ·Gα −

p11 · Ca

p12 + Ca

S.3.1.1 Symbolic representation: states, parameters, and estimables
The macro sfit::make-rhs-code generates code representing the right hand side function.
It’s calling follows the rule

(sfit::make-rhs-code :states states-list

:parameters parameters-list

:rhs rhs-declaration

:result result-vector)

The lists states-list and parameters-list contain pairs of symbols and their default values
used in the model; the former collecting the state variables, the latter the model parameters.
Their form is ’((symbol1 value1) (symbol2 value2) ...), see the example below, and
also the notes on estimables below.

The rhs-declaration is a list of intermediate quantities used in the model’s right hand side
function, each following the scheme (quantity = (s-expression)).

These intermediate quantities may be accessed in the results-vector, which returns the
actual right-hand-side vector. The order of the result vector’s components must correspond to
the order of the states in state-list.

As a convention, the user is encouraged to store the states-list and parameters-list, and
also the estimables discussed below, in the special variables(5) *states*, *parameters*, and
*estimables*.

We note that this symbolic formulation has no negative impacts on speed, as the generated
code is compiled to machine code with execution speed comparative to native C code.

(5) In Common Lisp, a special variable defined with the defparameter macro may be seen as a global variable.
We note that :sfit does not access these special variables; we use them here for convenient notation.
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Of course, the user is free to formulate his own right-hand-side code without using the
interface provided by sfit::make-rhs-code, as long as his code generates a function with
signature

(lambda (time states parameters) ... (values rhs-vector)) (S.1)

taking the current time and the vectors of current state and parameters, and returning the vec-
tor of the ODE’s right hand side(6). This calling convention is generic in :sfit and :clradau

and used frequently.

We note that :sfit is prepared to support different models on the individual shooting
intervals, though that will not be discussed here.

Selecting the set of parameters to estimate: estimables
We shortly introduce here the concept behind estimables. Frequently, during parameter es-
timation, one does not know a priori about the identifiability of model parameters from the
available measurement data (see also section 2.1.4). Also, if one has gotten additional infor-
mation about parameter values, one might be interested in estimating only a subset of the
model parameters, while the other shall stay at some fixed (known) value. If, in a later stage,
the user would like to estimate a different set of parameters, he only has to adjust the set of
estimables without any further modification of the model.

Calcium oscillator example: state and parameter symbols

We first store the symbols for the states Gα,PLC, and Ca and the symbols for the parameters
p1 to p12 in two lists bound to the special variables *states* and *parameters*, consisting
of pairs of a symbol that is used in the right hand side and an associated value that is used
as default.
The position in the list corresponds to the component index in the respective vectors. The
user, however, may access the components simply by their name. Any admissible Lisp
symbol may be used as name.

(defparameter *states* ;; 3 states with initial concentrations

’((G 0.01d0) (PLC 0.01d0) (CA 0.01d0)))

(defparameter *parameters* ;; 12 kinetic parameters with default values

’((P1 0.106d0) (P2 1.475d0) (P3 0.76d0) (P4 0.095d0) (P5 2.44d0)

(P6 0.59d0) (P7 0.62d0) (P8 16.12d0) (P9 14.545d0) (P10 6.79d0)

(P11 76.5d0) (P12 0.08d0)))

In :sfit, the user explicitly specifies the (sub)set of parameters to be estimated. In this
calcium oscillator example, say, we are only interested in estimating the five parameters
p7, p9, p10, p11, and p12 of eq. (6.5), and thus store their symbols in the special variable
*estimables*:

(defparameter *estimables* ;; model parameters that shall be estimated

’(P7 P9 P10 P11 P12)) ;; others remain on their default values

(6) Technically, the user must provide code for the right hand side function, as the symbols will be interned in
the generic arithmetic package :GA, and subsequently used in the algorithmic differentiation package :DFC

for automatic derivative generation. The mentioned packages are part of the integrator suite :clradau.
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Calcium oscillator example: Generating r.h.s. code with sfit::make-rhs-code

Having defined the sets of state variables and parameters, we can now formulate the ODE
system given in eq. (6.5) using the macro sfit::make-rhs-code

(defparameter *ode-code*

(sfit::make-rhs-code

:states *states*

:parameters *parameters*

:rhs ((dG = (- (+ p1 (* p2 G))

(/ (* p3 G PLC) (+ G p4))

(/ (* p5 G Ca) (+ G p6))))

(dPLC = (- (* p7 G)

(/ (* p8 PLC) (+ p9 PLC))))

(dCa = (- (* p10 G)

(/ (* p11 Ca) (+ p12 Ca)))))

:result (vector dG dPLC dCa)))

The above call to sfit::make-rhs-code generates the following code:

(LAMBDA (TIME STATE PARAMETERS)

(DECLARE (IGNORABLE TIME STATE PARAMETERS))

(LET ((P1 (ELT PARAMETERS 0))

(P2 (ELT PARAMETERS 1))

(P3 (ELT PARAMETERS 2))

(P4 (ELT PARAMETERS 3))

(P5 (ELT PARAMETERS 4))

(P6 (ELT PARAMETERS 5))

(P7 (ELT PARAMETERS 6))

(P8 (ELT PARAMETERS 7))

(P9 (ELT PARAMETERS 8))

(P10 (ELT PARAMETERS 9))

(P11 (ELT PARAMETERS 10))

(P12 (ELT PARAMETERS 11))

(G (ELT STATE 0))

(PLC (ELT STATE 1))

(CA (ELT STATE 2)))

(DECLARE (IGNORABLE P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 G PLC CA))

(LET* ((DG (- (+ P1 (* P2 G)) (/ (* P3 G PLC) (+ G P4))

(/ (* P5 G CA) (+ G P6))))

(DPLC (- (* P7 G) (/ (* P8 PLC) (+ P9 PLC))))

(DCA (- (* P10 G) (/ (* P11 CA) (+ P12 CA)))))

(VECTOR DG DPLC DCA))))

S.3.1.2 Evaluation functions in package :evalfuncs
The class evalfuncs::evalfunc provides the basic function evaluation mechanism in :sfit.
An evalfunc object is instantiated by

(make-instance ’sfit::evalfunc

:funccode evalf-code

:times evalf-times

:type evalf-type)

In evalf-code, the code of the evaluation function has to be specified as ordinary Lisp code,
The code is compiled and the resulting function is bound to the slot ’func, for which the
reader function evalfuncs::func is available. The compiled function must return a vector ;
scalar values must be wrapped.
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By evalf-times, a list of time points when to evaluate the function is specified. Evaluation
functions are called at the specified time points during integration, and they are given the cur-
rent time, current state vector, and the vector of parameters, with the same calling convention
as in eq. (S.1).

The evalf-times argument specifies the kind of evaluation function. If the evaluation func-
tion shall be used as a measurement function in :sfit, the type :measurement is appropriate.
Predefined types are:

• :MEASUREMENT - Represents measurement functions as described in section 2.1.2.

• :EQUALITY - Evaluation function type for equality constraints.

• :INEQUALITY - Evaluation function type for inequality constraints.

• :NODEEVAL - This evaluation function type is used for function evaluation at the shooting
nodes at both the right and left limits, and is internally used to calculate the stochastic
jumps αk (see definition 5.17).

• :SIMULATION - Evaluation functions of this type may be used for visualization purposes.

• :PARAMEVAL - Reserved type, internally used.

The user is free to define and use additional types for special purposes; they are evaluated en
passant during integration, and do not interfere with the parameter estimation.

Ready-to-use evaluation function objects may be automatically created by the :sfit

package, if the package :measurement-handler is used for measurement management (dis-
cussed below).

Calcium oscillator example: evaluation function

In the calcium oscillator example, full state measurements of the system are taken at time
points {0, 0.25, 0.5, ..., 60}, i.e. one sample every 0.25 time units over the whole interval.
An adequate evaluation function object may be created by

(defparameter *evalf*

(make-instance ’sfit::evalfunc

:funccode ’(lambda (time states parameters)

"Full state evaler" states)

:type :MEASUREMENT

:times (loop for ti from 0.0d0 upto 60.0d0 by 0.25d0

collecting ti)))

The string "Full state evaler" is a user-chosen description of the evaluation function.

S.3.1.3 Convenient handling of measurements with the :measurement-handler
The management of measurements (of any kind) is simplified by using the interface provided
by the :measurement-handler package (or :mhandler for short). A measurement handler
object may be instantiated by

(defparameter *mhandler*

(make-instance ’mhandler::measurement-handler

:name "Calcium Oscillator measurements"

:measfuncscode (list ’(lambda (time states parameters)

"Full state evaler" states))))
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Here, as for the evaluation functions, the keyword :name is used to specify the name of the
measurement handler, and the argument to the :measfuncscode keyword is a list of codes
describing the individual measurement functions. From this list, evaluation functions will be
automatically created by :sfit.

In the calcium oscillator example, there is only a single measurement function returning
the full state vector.

Compiled functions are, after instantiation, available in the measfuncs slot of the measure-
ment handler object, for which a reader function mhandler::measfuncs is available. Thus, the
first measurement function may be accessed as (first (measfuncs *mhandler*)), the second
one by (second (measfuncs *mhandler*)), and so on. The position in the measfuncs list
corresponds to the order of the code definitions in the measfuncscode slot.

Using the mhandler::add-measurement method, measurement data may be added to a
measurement handler object according to the following call:

(add-measurement *mhandler* time measf data variance type)

After all data has been added to the measurement-handler, an update of the internal structures
must be triggered by invoking the method mhandler::consolidate-mhandler.

Calcium oscillator example: adding data to a measurement handler

If, e.g., in an actual or simulated experiment the vector #(8.981 16.55 0.6349) was mea-
sured using the first measurement function at time 7.5, with associated variances #(0.1 0.1

0.01) describing the accuracy of these measurements, the following line of code would be
appropriate:

(add-measurement *mhandler*

7.5 (first (measfuncs *mhandler*))

#(8.981 16.55 0.6349) #(0.1 0.1 1.0) :measurement)

(consolidate-mhandler *mhandler*)

The last line of code must be done after all data has been added to update internal struc-
tures.

We note that the user is not required to use a measurement-handler. :sfit itself uses a single
vector with all measurement data, and a second vector with the associated variances, stored in
the measurements and variances slots of an sfit-problem object, that can be automatically
built from a measurement handler, together with the corresponding evaluation functions.

The measurement handler is a convenient tool for managing measurements; it offers way
more data selection and processing methods than described here.

S.3.1.4 Simple bounds on estimable parameters and shooting variables
:sfit offers an easy way to formulate simple bounds on the estimables and on the state
variables at the shooting nodes on a per interval basis. This is done by a collection (list) of
bound-specifiers of type

(symbol interval-index lower-bound upper-bound)

where (1) symbol specifies the respective parameter or state symbol, i.e. a symbol present
in *states* or *estimables*, or T for all, (2) interval-index is the index (number) of a
shooting interval or T for all, (3) lower-bound is the lower bound value and (4) upper-bound
the upper bound value for the specified symbol.
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More special bound definitions overwrite more general ones. If no node initializer function
is specified, the default values (set up in the *states* variable above) are used for initialization.

As an example: ’(X1 3 0.0d0 10.0d0) represents the requirement that the amount of the
species X1 at the fourth shooting node (zero-based indexing!) must be between zero and ten.

Calcium oscillator example: specifying simple bounds

For our example here, we give a common bound for all state and parameter values on all
intervals, and specify some individual bounds for the estimable parameters.

(defparameter *bounds* ;; simple bounds

’((t t 0.0d0 50.0d0) ;; common bounds

(p7 t 0.1d0 10.0d0) ;; true value: 1.24

(p9 t 1.0d0 100.0d0) ;; true value: 29.09

(p10 t 1.0d0 50.0d0) ;; true value: 13.58

(p11 t 10.0d0 500.0d0) ;; true value: 153.0

(p12 t 0.01d0 10.0d0))) ;; true value: 0.16

S.3.1.5 Shooting node variables initialization

By a node initializer function, the initial values of the variables si at the shooting nodes can
be set. It has the form

(lambda (interval time state-symbol sfitp) ... (values inival))

where interval and time denote the number of the shooting interval and the associated time-
point for which an initial value is requested, the variable state-symbol contains the symbol
of the state variable that is to be initialized, and sfitp is the sfit-problem object. The
function must return a valid initialization value inival.

Calcium oscillator example: shooting node initialization

Assuming the measurement data is available in a measurement-handler object bound to the
slot mhandler of the sfit-problem, a typical node initializer function that initializes the
shooting node variables with the most proximate measurement data looks like

(defparameter *node-initializer*

(lambda (intvl time statesymb sfitp)

"Determine a value for the specified state symbol on specified time"

(let* ((mhandler (sfit::mhandler sfitp)) ;; use sfitp ’s mhandler

(measstruct (mhandler::get-measurement-nearby mhandler time

:restrict-to-type :measurement))

(data (mhandler::get-data measstruct)))

(ecase statesymb

(G (elt data 0))

(PLC (elt data 1))

(CA (elt data 2))))))
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S.3.1.6 Setting up the shooting grid

Instead of a set of grid points, a list of individual integration intervals

((start1 end1) (start2 end2) ... (startn endn))

is given to :sfit. This allows non-contiguous integration domains, e.g. for problems with
longer unobserved time ranges.

Calcium oscillator example: shooting grid initialization

In the calcium oscillator example, the shooting nodes are equidistantly distributed over the
whole time domain [0, 60], placed every ten time units, such that the list of intervals may
be specified as

(defparameter *msintervals*

(loop for i from 0.0d0 below 60.0d0 by 10.0d0

collecting (list i (+ i 10.0d0)))

giving the nested list of intervals

((0.0d0 10.0d0) (10.0d0 20.0d0) (20.0d0 30.0d0) (30.0d0 40.0d0) (40.0d0 50.0d0) (50.0d0 60.0d0))

as result.

S.3.1.7 Instantiating the sfit-problem
The class sfit::sfitp represents the stochastic parameter estimation problem 5.18, and its
variant problem 5.22 with local parameters.

The instantiation and primary configuration is done using the Lisp’s make-instance with
the following calling convention

(make-instance ’sfit-problem

:name problem-name

:model-code code-list

:model-parameters parameters-list

:model-estimables estimables-list

:model-states states-list

:node-initializer initializer-function

:msintervals intervals-list

:bounds bounds-spec

:mhandler mhandler

:use-local-parameters lp-flag

:evalfuncs evalfuncs-list

:measurements measurements-vector

:variances variances-vector

:measweights measweights-vector

:jumpweights jumpweights-vector

:userdata userdata

:msgrid shooting-grid

:solver-options solver-options)

The initialization arguments problem-name , code-list , parameters-list , estimables-list , states-list ,
initializer-function , intervals-list , bounds-spec , and mhandler correspond to the objects described
in the previous sections S.3.1.1 to S.3.1.6 and are sufficient to fully describe an sfit-problem;
see section S.3.2 for a complete example.

When set to T, the lp-flag indicates to automatically set up local parameters as in prob-
lem 5.22; setting it to NIL (default) leads to an unique set of parameters for all shooting
intervals as in problem 5.18.
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If no measurement-handler is used, the evalfuncs-list is a list of evaluation functions
as described in section S.3.1.2. Then, the measurements-vector contains all measurement data
as a single vector, as the evaluation of the evalfuncs deliver, with the associated variances
specified by the initialization keyword argument variances-vector, from which the measure-
ment weights are automatically calculated as squared reciprocals. Alternatively, they can be
directly specified in measweights-vector, in the same order as the measurements. The argument
jumpweights-vector specifies the jump regularization weights ω2

k,l of the stochastic jumps αk,l
(see definition 5.17). They can be given as a vector of the same length as the full jump vector
α, usually nx · (nMS− 1), or as a scalar value; the default is a jump regularization weight of 1.0
for all jumps.

The user can specify and store arbitrary data via the userdata keyword argument.
An alternative way to specifying the shooting intervals by the :msintervals is to deliver

the shooting-grid as a list of shooting nodes, from which the integration intervals will be
internally created.

Lastly, by specifying solver-options the underlying solver can be configured; the possible
options depend on the used solver. The default set of options is available in the special variable
sfit::*sfit-standard-solver-options*.

The resulting sfit-problem can be solved by invoking sfit::solve-with-gnsolve on it:
(solve-with-gnsolve *sfitp*)

Calcium oscillator example: instantiating the sfit-problem

With the above definitions from the previous sections, we have all the ingredients together
and preparations done to instantiate an sfit-problem by

(defparameter *sfitp*

(make-instance ’sfit-problem

:name "Calcium oscillator"

:model-code *ode-code*

:model-parameters *parameters*

:model-estimables *estimables*

:model-states *states*

:node-initializer *node-initializer*

:msintervals *msintervals*

:bounds *bounds*

:mhandler *mhandler*

:use-local-parameters NIL))

The value to the keyword :use-local-parameter specifies whether or not to use per-
interval parameters (see section 5.5.5). Here, its value is NIL, indicating that no local
parameters shall be used.
Finally, to start the solution process of the sfit-problem using the :gnsolve package, we
invoke the method sfit::solve-with-gnsolve on *sfitp*

(solve-with-gnsolve *sfitp*)

S.3.1.8 Printing information about an sfit-problem using describe-sfitp
Using the method sfit::describe-sfitp on an sfit-problem displays information about
that problem. The level of details may be chosen as argument to the keyword parameter
:verbosity. Valid are :minimum, :default, or :maximum.

An example output is given for the WIENER exponential example in the adjacent section.
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S.3.2 A complete example: WIENER exponential

Here, we show how to formulate and solve the stochastic parameter estimation problem for the
WIENER exponential discussed in section 5.4.4 on page 145. We present the whole code that
is necessary, beginning with listing the measurement data. As this is a stand-alone example,
we give explicit specifications here (e.g. bounds are not necessary).

(in-package :sfit)

;; set the measurement times and data
(defparameter *measurement-times*

#(0.5d0 0.55d0 1.5d0 1.55d0 2.5d0 2.55d0 3.5d0 3.55d0 4.5d0 4.55d0
5.5d0 5.55d0 6.5d0 6.55d0 7.5d0 7.55d0 8.5d0 8.55d0 9.5d0 9.55d0))

(defparameter *measurement-data*
#(0.79d0 1.12d0 4.94d0 5.37d0 -2.09d0 -1.5d0 -1.31d0 -1.82d0 -5.24d0 -5.42d0
-8.08d0 -7.94d0 -7.4d0 -7.7d0 -12.82d0 -13.6d0 -16.43d0 -16.91d0 -21.32d0 -21.58d0))

;; instantiate the measurement-handler with measurement function code
(defparameter *mhandler*

(make-instance ’mhandler::measurement-handler
:name "Wiener Exponential Data"
:measfuncscode ’((lambda (tt ss pp) ;; single measurement function

(declare (ignore tt pp)) ;; no need for time and parameter vector
"State Evaler" ss)))) ;; return full state vector ss

;; copy data into measurement-handler
(loop

for ti across *measurement-times*
for xi across *measurement-data*
with evalf = (first (mhandler::measfuncs *mhandler*))
doing

(mhandler::add-measurement *mhandler* ti evalf xi 1.0d0 :measurement)
finally

(mhandler::consolidate-mhandler *mhandler*))

;; set up ODE system, estimables and bounds
(defparameter *states* ’((X 0.01d0))) ;; true: 1.00 ;; single state X, initial guess 0.01
(defparameter *parameters* ’((p 0.01d0))) ;; true: 0.25 ;; single parameter p, initial guess 0.01
(defparameter *estimables* ’(p)) ;; select p to be estimated
(defparameter *ode-code* (sfit::make-rhs-code :states *states*

:parameters *parameters*
:rhs ((dX = (* p X )))
:result (vector dX)))

(defparameter *bounds* ’((T T -1.0d10 1.0d10) ;; common bounds
(p t -100.0d0 100.0d0))) ;; bounds on parameter p

;; initialization function for shooting nodes
(defparameter *node-initializer*
(lambda (intvl time statesymb sfitp)

(declare (ignore intvl))
"Determine a value for the specified state symbol on specified time/interval"
(let* ((mhandler (sfit::mhandler sfitp)) ;; get the sfitp’s mhandler

(measstruct (mhandler::get-measurement-nearby mhandler time :restrict-to-type :measurement))
(data (mhandler::get-data measstruct)))

(ecase statesymb
(X (elt data 0))))))

;; set the shooting intervals
(defparameter *msintervals*

(loop for i from 0.0d0 below 10.0d0 by 1.0d0
collecting (list i (+ i 1.0d0))))

;; initialize the sfit-problem
(defparameter *sfitp*

(make-instance ’sfit-problem
:name "Wiener exponential example"
:model-code *ode-code*
:model-parameters *parameters*
:model-estimables *estimables*
:model-states *states*
:node-initializer *node-initializer*
:msintervals *msintervals*
:bounds *bounds*
:mhandler *mhandler*
:allow-other-keys T
:add-node-evaluators T
:use-local-parameters NIL))

;; Solve the sfit-problem
(solve-with-gnsolve *sfitp*)
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The last call to sfit::solve-with-gnsolve then produces the following output:

INFO: Saving instantiation data

INFO: Processing mhandler...

INFO: ... using mhandler "Wiener Exponential Data" to initialize sfitp "Wiener exponential example"

INFO: ... ensuring no shooting nodes are on measurements

INFO: ... initializing evalfuncs

INFO: Using DFC:COMPILE-DIFFERENTIABLE-LAMBDA to compile evalfunc "State Evaler"

INFO: ... initializing measurements and variances

INFO: Processing of mhandler "Wiener Exponential Data" done.

INFO: No msyslist given. Building it.

INFO: Initializing shooting nodes using function

#<FUNCTION (LAMBDA (INTVL TIME STATESYMB SFITP) :IN "wienerexponentialexample.lisp") {1012FB94DB}>

INFO: ... updating msys’s

INFO: Adding node evaluators...

INFO: Using DFC:COMPILE-DIFFERENTIABLE-LAMBDA to compile evalfunc "Node eval for shooting nodes"

INFO: Initializing measurement weights from variances

INFO: Initializing VARIABLES vector...

INFO: Initializing variables

INFO: Initializing VARIABLES-SCALING vector...

INFO: ... initializing scaling (*use-scaling* = NIL)

INFO: Processing evalfuncs...

INFO: Initialization of SFIT-problem "Wiener exponential example" done.

INFO: Solving with :GNSOLVE

INFO: ITERATION #000 --- OBJECTIVE: 210.7487 [RESIDUAL-PART: 146.2050 JUMP-PART: 64.54376 ]

INFO: ITERATION #001 --- OBJECTIVE: 25.65407 [RESIDUAL-PART: 8.111939 JUMP-PART: 17.54213 ]

INFO: ITERATION #002 --- OBJECTIVE: 20.73017 [RESIDUAL-PART: 10.21355 JUMP-PART: 10.51662 ]

INFO: ITERATION #003 --- OBJECTIVE: 20.72096 [RESIDUAL-PART: 10.19394 JUMP-PART: 10.52702 ]

INFO: ITERATION #004 --- OBJECTIVE: 20.72092 [RESIDUAL-PART: 10.18772 JUMP-PART: 10.53319 ]

INFO: ITERATION #005 --- OBJECTIVE: 20.72092 [RESIDUAL-PART: 10.18730 JUMP-PART: 10.53361 ]

INFO: ITERATION #006 --- OBJECTIVE: 20.72092 [RESIDUAL-PART: 10.18727 JUMP-PART: 10.53364 ]

INFO: :GNSOLVE finished with status: SUCCESS

Contents of optionset [Type: CONS]:

KEY = ITERATIONS VAL = 7

KEY = LAST-PK-2NORM VAL = 1.5835941834291773d-6

KEY = LAST-PK-INFNORM VAL = 7.728591393232885d-7

KEY = MESSAGE VAL = Apparantly converged!

KEY = OBJ-VALUE VAL = 20.720917052698397d0

KEY = RESIDUAL-2NORM VAL = 6.437533231401357d0

KEY = STATUS VAL = SUCCESS

KEY = SUCCESS VAL = SUCCESS

KEY = TERMINATION-TESTS VAL = (MINIMUM-INCREMENT-NORM)

KEY = TIMING-REALTIME VAL = 0.181d0

KEY = TIMING-RUNTIME VAL = 0.364d0

Solution vector::

vector, length: 11, element-type: DOUBLE-FLOAT, lisp-type: (SIMPLE-ARRAY DOUBLE-FLOAT (11))

1.183 2.316 -0.6453 -1.845 -4.215 -6.203 -7.342 -10.84 -14.21 -18.58 0.2896

The solution vector, printed on the last line, consists of the 10 initial state values si at the
shooting nodes and the last value gives the estimate for the exponential parameter. The true
initial value is x∗(0) = 1.0 (estimated as 1.183, initial guess was 0.01); the true parameter
value is p∗ = 0.25 (estimated as 0.2896, initial guess was 0.01). See table 5.1 on page 146 in
section 5.4.4 for a detailed discussion.

We shortly mention that much more informational output, especially during the solution pro-
cess, is available and may be triggered by setting the respective output flags (documented in
the code).
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Printing information about the sfit-problem
Invoking the method sfit::describe-sfitp on an sfit-problem displays information about
it, as mentioned in section S.3.1.8.

We reprint here the information given for the above WIENER exponential example when
maximum detail level is requested:

(describe-sfitp *sfitp* :verbosity :maximum)

This information is highly beneficial during problem set-up and for debugging purposes.

Displaying stats of sfit-problem "Wiener exponential example" - created 2016-08-09-10-45-11-T256123

# SHOOTING-INTERVALS : 10

SHOOTING-INTERVALS : ((0.0d0 1.0d0) (1.0d0 2.0d0) (2.0d0 3.0d0) (3.0d0 4.0d0) (4.0d0 5.0d0) (5.0d0 6.0d0)

(6.0d0 7.0d0) (7.0d0 8.0d0) (8.0d0 9.0d0) (9.0d0 10.0d0))

# SHOOTING-NODES : 11

SHOOTING-GRID : (0.0d0 1.0d0 2.0d0 3.0d0 4.0d0 5.0d0 6.0d0 7.0d0 8.0d0 9.0d0 10.0d0)

VARIABLES-INIT : #(0.79d0 1.12d0 5.37d0 -1.5d0 -1.82d0 -5.42d0 -7.94d0 -7.7d0 -13.6d0 -16.91d0 0.01d0)

MHANDLER : #<MEASUREMENT-HANDLER {10143BEC73}>

# MEASUREMENTS : 20

# MEAS-VARIANCES : 20

NODE-Initializer : #<FUNCTION (LAMBDA (INTVL TIME STATESYMB SFITP)

:IN "wienerexponentialexample.lisp") {10143C021B}>

# VARIABLES : 11

--> # STATE-VARS : 10

--> # PARAMETERS : 1

LOCAL PARAMETERS : NIL

MODEL-CODE given : T

# EVALFUNCS : 2

# EVALFUNCTYPES : 2

SOLVER-OPTIONS : PRESENT

Information about the model (on availability):

MODEL-CODE : (LAMBDA (TIME STATE PARAMETERS)

(DECLARE (IGNORABLE TIME STATE PARAMETERS))

(LET ((P (ELT PARAMETERS 0)) (X (ELT STATE 0)))

(DECLARE (IGNORABLE P X))

(LET* ((DX (* P X)))

(VECTOR DX))))

STATE SYMBS : (X)

PARAMETER SYMBS : (P)

ESTIMABLE SYMBS : (P)

NON-ESTIM.PARAM.VALS : NIL

Description of the VARIABLES vector (value --> list-of-symbols-and-intervals)

Entry # 0: :STATE val= 1.1834 --> ((0 X))

Entry # 1: :STATE val= 2.3156 --> ((1 X))

Entry # 2: :STATE val= -0.64532 --> ((2 X))

Entry # 3: :STATE val= -1.8453 --> ((3 X))

Entry # 4: :STATE val= -4.2150 --> ((4 X))

Entry # 5: :STATE val= -6.2029 --> ((5 X))

Entry # 6: :STATE val= -7.3418 --> ((6 X))

Entry # 7: :STATE val=-10.838 --> ((7 X))

Entry # 8: :STATE val=-14.214 --> ((8 X))

Entry # 9: :STATE val=-18.576 --> ((9 X))

Entry # 10: :PARAMETER val= 0.28957 --> ((0 P) (1 P) (2 P) (3 P) (4 P) (5 P) (6 P) (7 P) (8 P) (9 P))

Details about the underlying SHOOTING NODES INITIALIZATION:

Total number of systems: 10

System #0 on interval [0.0d0, 1.0d0]: (X 0.79d0)

System #1 on interval [1.0d0, 2.0d0]: (X 1.12d0)

System #2 on interval [2.0d0, 3.0d0]: (X 5.37d0)

System #3 on interval [3.0d0, 4.0d0]: (X -1.5d0)

System #4 on interval [4.0d0, 5.0d0]: (X -1.82d0)

System #5 on interval [5.0d0, 6.0d0]: (X -5.42d0)

System #6 on interval [6.0d0, 7.0d0]: (X -7.94d0)

System #7 on interval [7.0d0, 8.0d0]: (X -7.7d0)

System #8 on interval [8.0d0, 9.0d0]: (X -13.6d0)

System #9 on interval [9.0d0, 10.0d0]: (X -16.91d0)
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S Software Package :sfit

Information about the evalfuncs:

# Evalfuncs: 2

Evalfunc #0

ID: #<EVALFUNC {101443B5E3}>

Name: State Evaler

Func: #<FUNCTION {101444F09B}>

Type: MEASUREMENT

Dim: NIL

Evals: 20

Times: #(0.5d0 0.55d0 1.5d0 1.55d0 2.5d0 2.55d0 3.5d0 3.55d0 4.5d0 4.55d0

5.5d0 5.55d0 6.5d0 6.55d0 7.5d0 7.55d0 8.5d0 8.55d0 9.5d0 9.55d0)

Evalfunc #1

ID: #<EVALFUNC {101443B603}>

Name: Node eval for shooting nodes

Func: #<FUNCTION {101444F11B}>

Type: NODEEVAL

Dim: NIL

Evals: 9

Times: #(1.0d0 2.0d0 3.0d0 4.0d0 5.0d0 6.0d0 7.0d0 8.0d0 9.0d0)
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Figure 3.1a on page 43: IL-6 (PDB-1ALU)
RCSB Protein Data Base: http://www.rcsb.org/pdb/explore.do?structureId=1ALU
Primary citation: Somers W., Stahl M., Seehra J. S.: A crystal structure of interleukin 6:
implications for a novel mode of receptor dimerization and signaling. EMBO J. 1997 Mar
3;16(5):989-97.

Figure 3.1b on page 43: GM-CSF (PDB-2GMF)
RCSB Protein Data Base: http://www.rcsb.org/pdb/explore.do?structureId=2GMF
Primary citation: Rozwarski D. A., Diederichs K., Hecht R., Boone T., Karplus P. A.: Refined
crystal structure and mutagenesis of human granulocyte-macrophage colony-stimulating factor.
Proteins. 1996 Nov;26(3):304-13.

Figure 3.3 on page 45: IL-6 facilitates tumour progression
Assembled with H&E stained OTC pictures kindly provided by Margareta M. MÜLLER and co-
workers of the group “Tumour and Microenvironment” at the German Cancer Research Center
(DKFZ) in Heidelberg (now: Faculty of Mechanical and Medical Engineering, Hochschule
Furtwangen University).

Figure 3.5 on page 47: Proliferation of HaCaT in different stimulation scenarios
Kindly provided by Margareta M. MÜLLER and co-workers of the group “Tumour and Microen-
vironment” at the German Cancer Research Center (DKFZ) in Heidelberg (now: Faculty of
Mechanical and Medical Engineering, Hochschule Furtwangen University).

Figure 3.9 on page 61: Curve separating between uni- and bimodal density of T = (a+X)/(b+ Y )
Adapted from George Marsaglia: “Ratios of Normal Variables”. Journal of Statistical Software
16.4 (May 2006), pp. 1–10. doi: 10.18637/jss.v016.i04. Figure 4.

Figure 3.10 on page 62: Densities of T = (a+X)/(b+ Y )
Adapted from George Marsaglia: “Ratios of Normal Variables and Ratios of Sums of Uniform
Variables”. Journal of the American Statistical Association 60.309 (1965), pp. 193–204. doi:
10.2307/2283145. Figure 1.

Figure 3.18 on page 80: JAK-STAT model by STEVEN et al.
Fnu Steven et al.: Mathematical model of IL6 signal transduction pathway. 2009. url: http:
//homepages.rpi.edu/~hahnj/Models/Updated_IL_6_Model.pdf (visited on 09/23/2014)
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