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“... the ways by which men arrive at knowledge of the celestial things are hardly less wonderful

than the nature of these things themselves”

- Johannes Kepler





Astrophysikalische Modellierung zeitaufgelöster

Himmelsdurchmusterungen

Zusammenfassung:

Das Ziel dieser Arbeit ist die Entwicklung und Anwendung algorithmischer Methoden für die Model-

lierung zeitaufgelöster Beobachtungsdaten. Solchen Methoden kommt im Kontext aktueller und zukün-

ftiger großangelegter zeitaufgelöster Himmelsdurchmusterungen besondere Bedeutung zu. Der Fokus der

Arbeit liegt auf der Quantifizierung und Charakterisierung der Variabilität astrophysikalischer Objekte

ausgehend von nichtsimultanen, lückenhaften zeitaufgelösten Multiband-Lichtkurven, die exemplarisch auf

Daten des Pan-STARRS1 (PS1) 3π angewandt werden. Variabilitätsamplituden und Zeitskalen werden

hierbei mittels Lichtkurven-Strukturfunktionen abgeschätzt. Anhand von PS1 3π-Daten in mit SDSS S82

überlappenden Regionen, für die bereits eine Klassifizierung vorliegt, wird ein Klassifizierungsalgorithmus

aus dem Bereich des Maschinellen Lernens trainiert, um QSOs und RR Lyrae anhand ihrer Variabilität

und mittleren Farben zu bestimmen.

Dieser Ansatz ermöglicht eine variabilitÃ€tsselektierte, annähernd vollständige und reine Auswahl von

QSO und RR Lyrae (außerhalb der galaktischen Scheibe, die in ihrer Kombination aus Flächenabdeck-

ung, Tiefe (Erfassung schwacher Objekte) und Zuverlässigkeit beispiellos ist. Sie enthält ∼4.8 × 104

hochwahrscheinliche RR Lyrae-Kandidaten im galaktischen Halo, sowie ∼3.7 × 106 hochwahrscheinliche

QSO-Kandidaten.

Die resultierende Karte der RR Lyrae-Kandidaten deckt 3/4 des Himmels ab und zeigt Strukturen bis in

130 kpc Entfernung mit 3% Entfernungsgenauigkeit. Insbesondere kann der Sagittarius stream, dargestellt

durch RR Lyrae, in noch nie dagewesener Qualität kartiert werden.

Darüber hinaus werden die Eigenschaften von PS1 3π und seine Rolle als Pilotprojekt für den zukünftigen

LSST dargelegt.

Astrophysical Modeling of Time-Domain Surveys

Abstract:

The goal of this work is to develop and apply algorithmic approaches for astrophysical modeling of time-

domain surveys. Such approaches are necessary to exploit ongoing and future all-sky time-domain surveys.

I focus on quantifying and characterizing source variability based on sparsely and irregularly sampled,

non-simultaneous multi-band light curves, with an application to the Pan-STARRS1 (PS1) 3π survey:

variability amplitudes and timescales are estimated via light curve structure functions. Using PS1 3π data

on the SDSS “Stripe 82” area whose classification is available, a supervised machine-learning classifier is

trained to identify QSOs and RR Lyrae based on their variability and mean colors.

This leads to quite complete and pure variability-selected samples of QSO and RR Lyrae (away from the

Galactic disk), that are unmatched in their combination of area, depth and fidelity. The sample entails

∼4.8× 104 likely RR Lyrae in the Galactic halo, and ∼3.7× 106 likely QSO.

The resulting map of RR Lyrae candidates across 3/4 of the sky reveals targets to ∼130 kpc, with dis-

tances precise to ∼3%. In particular, the sample leads to an unprecedented map of distance and width of

Sagittarius stream, as traced by RR Lyrae.

Furthermore, the role of PS1 3π as pilot survey for the upcoming LSST survey is discussed.
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Chapter 1

Introduction

During the last decades, a number of astronomical surveys has been carried out, monitoring

and mapping the sky with ranges from our own solar system and cosmic neighborhood, but

also to survey deeply into the cosmos. Whether they observe all-sky or not, whether they are

ground- or space-based: what many of them have in common is that they are multi-epoch surveys.

Advances both in instrumentation as well as in computer hardware and software design made these

challenging tasks possible.

With upcoming surveys like the Large Synoptic Survey Telescope (LSST, see the LSST Science

Book, Version 2.0 ), monitoring a large fraction of the sky at a high cadence, the data produced

at each night will easily exceed the terabyte scale.

Such data rates make data processing and astrophysical analysis even more challenging, but these

surveys will enable a more detailed view on variable and transient phenomena.

This thesis deals with the development of methods for quantifying astronomical properties of non-

simultaneous, sparse multi-band time-domain surveys in order to identify and classify variable

sources such as QSOs, RR Lyrae and Cepheids. The focus of the work is to develop and test a

methodology, based on so-called multi-band light-curve structure functions, that is then applied

to Pan-STARRS1 3π, but can be used for time-domain surveys in general.

In Chapter 2, an extensive introduction to variable astrophysical sources is given. The time-domain

appearance of such variable sources, as well as their astrophysical background is described. The

case of RR Lyrae and Cepheids as two examples for variable stars, as well as QSOs as an example

for a non-stellar variable source, are laid out in greater detail. Subsequently, an overview of

time-domain surveys is given.

Chapter 3 deals with the properties of Pan-STARRS1 3π as time-domain survey and addresses

how it can serve as a pilot survey for LSST. Sky coverage, wavebands, observational baseline and

the observational strategy, as well as caveats are described.

After describing pre-conditions and the environment of this thesis, the following chapters show

new research both in methodology and results.

In Chapter 4, the methodological concepts of finding variable sources, quantifying their astro-

statistical properties as well as automated source classification by machine-learning methods are

1



Chapter 1 Introduction

introduced. Here a focus is given to the question how to deal with the challenges that come

up when developing such methodology for non-simultaneous multi-band surveys. Additionally to

presenting known variability measures, such as single-band structure functions, in this chapter

also the newly developed multi-band structure function fitting is given. Chapter 4 also deals with

automated classification of sources by machine-learning classifiers and with the question how to

test and quantify the reliability of such methods. Here, concepts are given that are applied in the

following chapters to Pan-STARRS1 3π data.

The methodology presented in Chapter 4 – the newly developed multi-band structure fitting as

well as a machine-learning classifier – is applied in Chapter 5 to data from Pan-STARRS1 3π in

order to estimate variability measures such as amplitudes and time scales for all point sources

brighter than rP1=21.5 mag. The identification of QSOs and RR Lyrae candidates lead to a

catalog of 25.8× 106 variable sources. Chapter 5 extends a recent publication (Hernitschek et al.

2016) as well as shows further development and science.

Using the identified RR Lyrae candidates, the extent and geometry of Sagittarius (Sgr) stream

is mapped in Chapter 6. The geometry of the Sgr stream, as traced by RR Lyrae candidates, is

explored and quantified by fitting its spatial extend and width as a function of the angle Λ̃� in

its orbital plane.

Chapter 7 offers a summary and discussion of the presented methodology and obtained results.

The broader astrophysical context as well as the application of the new methodology to upcoming

surveys is discussed in more detail.

The Appendix gives a summary on time series analysis and Markov Chain Monte Carlo Methods,

as used in Chapter 5.

1.1 Research Questions

Many different astrophysical systems vary in brightness with time, Therefore, source classification

is one of the key issues of large all-sky time-domain surveys. The amount of data available from

nowadays surveys, and even more expected from upcoming, makes it absolutely necessary to apply

automated methods that are reliable, general and fast. The process has to be as automated as

possible, robust and reliable, it has to operate with sparse and heterogeneous data, and it has to

maintain a high purity (low false alarm rate). Furthermore, it has to be extensible for new types

of sources to identify.

In this context, this thesis deals with the development, test and application of a new approach

for quantifying statistical properties of non-simultaneous, sparse, multi-color light curves, assign-

ing measures, like amplitude and time scale, as well as fitting light curves to get derived mean

magnitudes.

2



1.1 Research Questions

As a first step, the light curve “structure function” is generalized to operate on multi-band light

curves in a consistent way. This approach is applied to data from the Pan-STARRS 1 3 π sky

survey (Chambers 2011). It is used to estimate variability measures for all point sources brighter

than rP1 = 21.5 mag and having a reasonable number of observational epochs.

The next challenge is then to use the photometric and variability information of the sources to

associate classification probabilities that any given source belongs to known types of variable

astrophysical sources. While doing so, various questions need to be addressed, related both to

data quality required for carrying out this task, caveats related to reddening and crowding, as

well as which statements can be made regarding reliability of the resulting classification.

To carry out such source classification from the PS1 3π data, the fact is used that the survey

overlaps with SDSS’s Stripe 82 (S82), an area on the sky with a rather complete inventory of

identified variable sources. These S82 classifications are taken as “ground truth”, and then a

Random Forest classifier is used to identify RR Lyrae and QSOs based on their variability.

The sources identified as being variable will then be used to build a catalog of all variable point

sources brighter than rP1 = 21.5 mag within PS1 3π. Based on the RR Lyrae candidates, the

distance precision of the RR Lyrae candidates will be estimated. As an astrophysical application,

the spatial extent of Sagittarius stream as well as its width can be traced.

3



Chapter 2

Variable Sources in Time Domain Surveys

In this chapter, an introduction to variable and transient astrophysical sources is given, and how

they are reflected in light curves.

The flow of this chapter follows mostly parts of the textbook by Catelan and Smith (2015)1. It

gives an own compressed summary, adapted to the background of this thesis. If not indicated

otherwise, figures are own graphics.

From an observational perspective, transients are sources that eventually fall below the detec-

tion limit when they are faint (such supernovae), whereas variables are sources that are always

detectable, but change in brightness on various time scales.

The chapter is organized as follows. After a short overview of the detection of variable sources in

history, variable sources are then grouped in types and sub-types by their light curve properties

and physical causes of their variability. Pulsation is then identified as cause of variability for many

variable stars, based on Catelan and Smith (2015). Subsequently, an overview of surveys being

capable of detecting such sources is given.

2.1 Variable Sources in History

An astronomical source is considered as variable, if its appearance in brightness or color changes

over time. Both the time-scales on which the variability happens and the amount (amplitude) of

variability can differ by order of magnitudes, with time scales ranging from milliseconds to years,

and brightness changes from fractions of a magnitude to several. Some sources vary regularly, or

periodically, some not.

Despite a few recordings of stars appearing and disappearing as well as changing their visual

appearance are known for more than 1000 years (Winkler et al. 2003), stars were considered as

having fixed properties, at least for most of the time between their birth and death.

The bright supernova in Cassiopeia, seen in 1572 described by Tycho Brahe, and o (Omicron) Ceti

by David Fabricius in 1596 are recognized as being the first recordings of variable stars (Hockey

2009).

1Catelan, M. and Smith, H. A. (2015). Pulsating stars. Wiley-VCH.
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Describing o Ceti as a nova by David Fabricius, it was re-discovered in 1638 by the Frisian

astronomer Jan Fokkes van Holwerd, known as Johannes Phocylides Holwarda (Hockey 2009;

Catelan and Smith 2015). He soon recognized that this star not only disappears, but subsequently

reappears. Holwarda assigned it a regular 11-month cycle.

During the following years, Johannes Hevelius carried out a detailed study of o Ceti and re-named

it Mira, the name used since then. Only a few years later, the period of the star was determined

to 33 days by Ismaël Boulliau, known as Ismaël Bullialdus (Hockey 2009). The discovery and

description of Mira, being the archetype of later so-called Mira variables, led to a few more dis-

coveries, like the discovery of the periodicity of χ Cygni in 1686 by Gottfried Kirch (Hockey 2009).

However, the cause of their periodicity was not understood yet. Despite Bullialdus suggested in

1667 that Mira’s change might be an effect of rotation, it took until the beginning of the 20th

century to understand more about variable stars based on spectroscopic measurements. By this

time, many types of variable stars today named Mira variables, RR Lyrae, Cepheids have been

discovered.

2.2 Time-Domain Appearance of Variable Sources

The time-domain appearance of variable sources is closely related to their discovery.

Before photographic methods or even telescopes came up, astronomers denoted time, position and

visual appearance of stars. Nowadays, methods can detect flux changes of fractions of a percent,

time scales from milliseconds to years, and also detect variability of faint sources like QSOs.

Sophisticated methods of observation and analysis can indicate the reason for the appearance of

a source.

A historic example on how a detailed light curve analysis helped with revealing the physics behind

the appearance is the star Algol, nowadays a prototype for eclipsing binaries. Early assumptions

on variable stars included the case of eclipsing binaries as well brightness changes caused by one

side of the star being significantly brighter than the other. Despite this is a reasonable assumption,

and indeed is the cause of variability in many cases, this does not explain the variability of all

stars. Detailed light curve analysis for certain classes of variable stars, such as Cepheids, revealed

that this cannot hold as a general model. Pointing to the difference in light curve shapes between

Algol-type and Cepheid-type stars, Plummer stated that the brightness change of Cepheids and

stars of similar light curves would be hard to explain with the assumption of eclipsing binaries

(Plummer 1913). This led to the hypothesis of radial pulsation.

So, light curves are both useful for detection of variable sources as well as they give hints on the

origin of variable sources. Once a classification scheme is built, light curve analysis is a major

resource for assigning types to light curves by classification.
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Chapter 2 Variable Sources in Time Domain Surveys

2.2.1 Light Curves

Light curves are time series gained from repetitive photometric observations of the same astro-

nomical source, showing the brightness variation of an object in certain bandpasses over a given

time.

They are extracted from exposures of distinct sky regions. The time sampling (cadence) can be

more or less regular. In general, ground based observations lead to more irregular sampling as

the repeated observation of sources is affected by seasonal effects as well as weather, atmospheric

and maintenance effects. Additionally, scheduling of multi-band surveys can also cause irregular

sampling. Many surveys, for instance Pan-STARRS1 (PS1) 3π, cannot observe simultaneously in

multiple bands; the Sloan Digital Sky Survey (SDSS) however is able to observe almost simulta-

neously. Irregularity in sampling is also caused by the order filters are used, the time needed to

change the filters, and the usage of certain filters only under certain atmospheric and astronomical

conditions as required in the survey design.

As an example for irregularity, a light curve from PS1 3π is shown in Fig. 2.1.
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Figure 2.1 Example light curve from PS1 3π, with 33 observational epochs within five bands over 3.75 years.
Magnitude uncertainties are indicating. Time is given in units of MJD = JD-2400000.5.

2.2.2 Analysis of Light Curves

Among light curve analysis, one distinguishes basically two types of methods: such made for

periodic variables, and such not requiring any periodicity in the light curve shape.

When dealing with periodic variables, the light curves can be compressed from the original ob-

served light curve to a phase- (or period-)folded one.
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2.2 Time-Domain Appearance of Variable Sources

Given the period P for a light curve with observations at time ti, the light curve can be phase-

folded by replacing the time axis by a phase φ =
(
t−t0
P
)
− E(t) (Hoffmeister et al. 1985), where

t is the time of an observation, t0 is some reference time, P is the period, and E(t) indicates the

integer part of (t− t0)/P, so phases are in the range [0, 1[. An example is shown in Fig. 2.2.
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Figure 2.2 The unfolded (a) and folded (b) light curve of the variable star AT And, based on observations

obtained during the Northern Sky Variability Survey (Woźniak et al. 2004). Time is given in units of MJD-50,000.

The period-folded light curve in Subfigure (b) shows the periodicity of the light curve clearly, whereas it is concealed

in the light curve itself. Taken from Catelan and Smith (2015).

By applying maximum-likelihood methods, this approach can lead to period determination. One

example for doing so is the Lomb-Scargle periodogram (named after Lomb (1976) and Scargle

(1982)), a method for finding periodicity in irregularly-sampled data. It is in many ways analogous

to the more familiar Fourier Power Spectral Density (PSD) often used for detecting periodicity

in regularly-sampled data.
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Chapter 2 Variable Sources in Time Domain Surveys

However, not all variable sources show a periodic behavior. Whereas e.g. RR Lyrae, Cepheids and

eclipsing binaries do (see Section 2.3), e.g. QSOs usually don’t show periodic variability. In order

to analyze such light curves, methods to determine variability time scales (instead of periods) and

amplitudes (instead of determining the amplitude from maximum and minimum flux) are used,

such as structure functions (Koz lowski et al. 2010; Kelly et al. 2009).

A structure function describes the mean squared difference (or, sometimes, root mean square

difference) between pairs of observations of some object’s brightness (or other property) as a

function of the time lag between the observations. In more detail, the structure function is a

description of a second-order statistic of the source’s brightness history.

A detailed introduction to structure functions and other methods for non-periodic as well as

irregularly sampled light curves can be found in Chapter 4.

Such approaches are both helpful for light curves of sources like QSOs showing stochastic behavior

as well as light curves of sources who vary periodically but whose light curve is irregularly due to

e.g. observational cadence and thus conceals periodicity. In the latter case, the more general non-

periodic approaches help with applying a common parametric description to all sources of a given

sample, irrespective if the individual source shows periodicity, and thus pre-selection of sources

that vary and might possibly be periodic. More computationally expensive methods, being able to

estimate periods even in such cases, can be applied subsequently. Such approaches are developed

and carried out as part of this thesis work, to first assign variability measures not demanding

periodicity, pre-selecting candidates for different types of variable sources, such as RR Lyrae,

Cepheids and QSOs among them, and apply period-estimation techniques to only the candidates

for variable sources.

Especially among the irregularly sampled light curves, approaches differ a lot for different signal-

to-noise ratio and cadence at hand. Also, care must be taken in carrying out cleaning of photo-

metric outliers. Approaches on outlier cleaning carried out as part of this thesis can be found in

Chapter 5.

2.3 A Tree for Variable Sources

As mentioned before, this thesis focuses on QSOs and a few classes of periodically variable stars.

Yet, nowadays more than 110 classes and subclasses of variable sources can be found in the

General Catalogue of Variable Stars (GCV, Kholopov et al. 1998, Combined General Catalogue

of Variable Stars, 4.1 Edition). Within the catalog, properties of the associated light curves are

given, such as their light curve amplitudes and (in the case of periodic variables) their periods,

as well as static properties such as luminosity classes.

Variable sources can be grouped in variability types and classes (Catelan and Smith 2015). The

shape of their light curves divide them into three variability types: regular, semi-regular and ir-

regular. Regular light curves show patterns repeated over time; a period can be assigned. Whereas
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2.3 A Tree for Variable Sources

semi-regular light curves show some periodicity superimposed with a non-periodic signal amount,

irregular light curves show no periodic behavior at all.

Variability classes can be assigned based on the cause for the variability (Watson et al. 2006).

Light curves can vary by physical effects of the source itself, or external by alignment effects due

to e.g. rotation or the observer’s position. The former are called intrinsic, whereas the latter are

called extrinsic variables. Examples for intrinsic variables are pulsating and eruptive variables,

whereas eclipsing variables belong to the class of extrinsic variables. Rotational variables are

assigned to the class of intrinsic or extrinsic variables, depending on the author, e.g. Eyer and

Mowlavi (2008) vs. Catelan and Smith (2015).

The “variability tree” by Eyer and Mowlavi (2008), shown in Fig. 2.3, gives an overview of the

most common variable stars and other variable sources like AGN and asteroids. The diagram is

based on photometric variability. Spectral line profile variations are not taken into account for

the scheme shown in the diagram.

In the following, a description of light curve appearance as well as underlying mechanisms is given

for some of them, based on Catelan and Smith (2015). A more detailed description of the sources

the analysis done in this thesis is carried out for – RR Lyrae, Cepheids and QSOs – is given in

Section 2.5.
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2.3 A Tree for Variable Sources

2.3.1 Extrinsic Variables

In the case of extrinsic variables, the cause for the variability in the observed light curve is due

to line-of-sight effects in binary or multiple star systems or the effect of the rotation of the source

itself. In binary or multiple systems, variability is caused by the fact that one component is passing

in front of the other as seen by the observer, whereas rotation can lead to variability due to star

spots, magnetism or changing in shape.

Among them, there are both regular variables like eclipsing binaries and rotating stars as irregular

variables like most asteroids.

Eclipsing Binaries

In eclipsing binary systems, variability in their brightness is caused by one component passing in

front of the other when orbiting around its companion (see Fig. 2.5). A nearly edge-on alignment is

required. Eclipsing binary stars play an important role in astrophysics, as they provide a robust

method to derive stellar properties like radii, masses and ages (Popper 1980; Andersen 1991;

Paczyński 1996).

Eclipsing binary stars can be divided into subclasses depending on the separation between the

components. In Fig. 2.4, the configuration for detached, semi-detached, and contact binaries is

shown. The black contour indicates the Roche volume, and the primary and secondary star are

indicated.

The Roche volume, or Roche lobe is the region around a star in a binary system bounded by a

critical gravitational equipotential. Within each Roche lobe, orbiting material is gravitationally

bound to that star. When the extent of stellar material of a star within a binary system exceeds

its Roche lobe, mass transfer to the companion star can occur. This is referred to as Roche-lobe

overflow.

Table 2.1 gives a summary of eclipsing binaries and their properties.
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Chapter 2 Variable Sources in Time Domain Surveys

(a) detached binary

(b) semi-detached binary

(c) contact binary

primary

secondary

Figure 2.4 The configuration for detached, semi-detached, and contact binaries. The black contour indicates the
Roche volume of the two stars.

t

flu
x

orbital period

secondary eclipse

primary eclipse

alignment

light curve

Figure 2.5 Alignment and resulting light curve for eclipsing binaries. The primary eclipse (where the secondary
star goes behind the primary) as well the secondary eclipse (where the secondary star goes in front of the primary)
are indicated.
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2.3 A Tree for Variable Sources

Rotational Variables

For rotational variables, variability in their brightness is caused by either a non-uniform surface

brightness or a flattened shape. To see variability, the rotation axis must not coincide with the

line of sight. Spots on stars, like also seen on our Sun, are caused by strong local magnetic

fields, leading to reduced surface temperature as the magnetic flux inhibits convection. Stars with

ellipsoidal shapes also show changes in brightness as they present varying areas of their surfaces

to the observer. The light curve is then modulated by these effects, depending on how the spots

pass the line of sight.

Fig. 2.6 shows the effect of rotation on light curves of stars with significant spots. The light curve

is clearly modulated on how the large spot passes the line of sight. Table 2.2 lists the most im-

portant types of rotational variable stars.

Figure 2.6 The effect of rotation on light curves of stars with significant spots, as shown on the example of FK
Comae Berenices. The left panel shows photometric observations (squares) as well as the reconstructed light curve
(lines). The map of the star is given on a grid of 40 latitudes and 80 longitudes across the stellar surface. Taken
from Korhonen et al. (1999) with modifications.
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Chapter 2 Variable Sources in Time Domain Surveys

Table 2.1. Summary of Eclipsing Binaries

Type Description

Algol-type eclipsing binaries (EA) • named after β Per (Algol)
• primary and secondary minima have striking different

depth
• beginning and end of eclipse well defined
• semi-detached or detached systems with

components having very different spectral types

β Lyrae eclipsing binaries (EB) • primary and secondary eclipses both prominent and
different

• close proximity of components results in ellipsoidal
shapes of the stars

W Ursae Major (UMA) eclipsing
binaries (EW)

• periods shorter than 1 day
• very tight systems
• contact binaries
• unlike EB, very small difference between primary and

secondary eclipse

R-type binaries • one component has a significant contribution from the
reflected light of its companion

Table 2.2. Summary of Rotational Variables

Type Description

AP stars, α2 Canum Venaticorum
(CVn) stars (ACV)

• partially slow rotators, periods 1/2 day to decades
• chemical pecularities due to strong constant magnetic

fields (∼kG) stabilize stellar atmosphere

SX Arietis (SXA) • B-type main sequence stars
• strong magnetic fields, intense He i and Si iii lines
• high-temperature analogues of ACV

By Draconis (Dra) stars (BY Dra) • cool main-sequence stars
• variability caused by starspots and fast rotation
• amplitude < 0.3 mag in V, P . 5 days
• long-term trends superimposed
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2.3 A Tree for Variable Sources

Planetary Transits

When Johannes Kepler figured out that the motion of the Venus is predictable, he derived that

Venus would pass in front of the Sun in 1631. This was the first prediction from what is called a

Venus transit, or in general, planetary transit. Despite it was not observed, as the Sun was below

the horizon as seen from Europe, later the calculations were proven to be right. Measurements of

the Venus’ motion across the Sun were made during the next transit in 1639. These measurements

by Jeremiah Horrocks and William Crabtree (Hockey 2009), carried out from two different spots

in England, enabled them to calculate the geometry between the Earth, Venus and the Sun.

Venus transits occur 4 times in 243 years: after 8, additionally 12.5, 8, and additionally 105.5

years. The reason for why this happens so rarely is because the planets are not exactly lined up

at the same angle towards the Sun.

Nowadays, the transit method is one of the ways that astronomers discover planets orbiting stars

other than the Sun, exoplanets. When a planet perfectly passes directly between us and a star,

a drop in the star’s brightness is detected. If such a brightness drop is detected at regular time

intervals and lasts a fixed length of time, then it is very probable that a planet is orbiting the

star and passing in front of it once every orbital period.

From the amount of decrease in brightness, the diameter ratio between the star and the planet

can be directly calculated. As the size of the star is known with considerable accuracy, the light

curve analysis gives a good estimate of the orbiting planet’s diameter.

Exoplanet surveys are e.g. carried out by the Kepler mission (Borucki et al. 2010). The Kepler mis-

sion, launched in March 2009, has already detected thousands of planetary candidates, including

several being Earth-sized and orbiting in their star’s habitable zone.

Asteroids

Asteroids are small bodies of the solar system, having sizes in the range of meters to hundreds

of kilometers. Most of them orbit in the so-called main belt between Mars and Jupiter, whereas

some of them have orbits that come close to the Earth’s orbit or even cross it, called near-

Earth asteroids. Asteroids can be described as irregular solid solar system bodies without any

atmosphere.

Similarly to planets, asteroids shine by light reflected from the Sun. The brightness being detected

changes for several reasons: As the distance of an asteroid to the Sun and the Earth changes while

it orbits the Sun, the brightness shows temporal change. Additionally, asteroids show brightness

variations caused by their irregular shape and their rotation, exhibiting different parts of the

surface. Also, eclipsing asteroids are possible.

The analysis of asteroid light curves gives information on the shape of the asteroid, its rotation

period and the spin axis direction. So far, models for more than 900 asteroids have been derived
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this way. They are stored in the Database of Asteroid Models from Inversion Techniques (DAMIT,

Ďurech et al. 1999).

Fig. 2.7 shows the light curve of the asteroid 2867 Steins, one of the two asteroids that Rosetta

was flying by on its way to comet 67 P/Churyumov-Gerasimenko. Asteroid 2867 Steins is one

of two asteroids (the other being 21 Lutetia) that Rosetta was flying by on its way to comet

67 P/Churyumov-Gerasimenko. The light curve (Küppers et al. 2007) shows the variation of the

asteroid’s apparent magnitude as measured by the OSIRIS Narrow Angle Camera on March 11,

2006 from a distance of 1.06 AU. The data show the asteroid has a spin period of 6.052 hours, in

good agreement with ground based observations.

Figure 2.7 The light curve of the asteroid 2867 Steins, showing an amplitude of 0.1 mag as the asteroid is rotating.
Taken from (Küppers et al. 2007).

2.3.2 Intrinsic Variables

In the case of intrinsic variables, light curve variability is caused by effects inherent to the source.

Among intrinsic variable stars, one can distinguish between the sub-classes of pulsating and

eruptive as well as cataclysmic variables. Other reasons for intrinsic variability of sources are e.g.

accretion effects found in AGN.

Pulsating Variables

During most stages of their life, most types of stars are in a stable equilibrium. But there are

certain stages in the life of stars where a stable equilibrium cannot be maintained. When this

occurs, the star is radiating more than its average luminosity, causing the star’s outer layers

to expand. The luminosity increases, as the density of the layer decreases due to expansion,
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Table 2.3. Summary of Pulsating Variables

Type Description

RR Lyrae stars, RR Lyrae
• periods between 0.2 and 1 day
• amplitudes of 0.5 to 1.5 mag
• standard candles used to measure distances to systems

containing old stellar population (e.g. Milky Way’s halo)
• for a more detailed description, see Section 2.5.1

δ Cephei stars, Cepheids
• periods between 1 and 5 days
• amplitudes of 0.5 to 2 mag in V
• standard candles, strong concentration towards the

Galactic plane
• for a more detailed description, see Section 2.5.2

Mira variables
• cool red giant star of spectral type Ke, Me, Se, or Ce
• period of 100–1,000 days, amplitude > 1 mag in IR,

2.5–11 mag in V
• strong stellar wind

δ Scuti stars • amplitudes from 0.003 to 0.9 mag in V
• period of a few hours
• used as standard cndles
• radial and non-radial pulsations

so it eventually cools, its ionization drops and it becomes more transparent to radiation. The

expansion thus reduces the internal pressure, leading the star to contract by gravity. When the star

contracts, the internal pressure will increase again to the point that it exceeds the gravitational

force contracting the star. It then expands, increasing its luminosity, and the cycle repeats.

Stars showing this pulsating behavior are present in various subclasses throughout the Hertzsprung-

Russell (HR) diagram. It turns out that there is a certain region in the HR diagram where stars

having a combination of temperature and luminosity have the proper conditions for this pulsation

mechanism. A schematic overview is shown in Fig. 2.9. Pulsating variables can be classified in

terms of their radial or non-radial pulsation, their excitation mechanisms triggering the pulsations,

as well as their evolutionary status in the HR diagram.

The subclass of radial pulsators includes RR Lyrae and Cepheids – the two classes among variable

stars, the analysis within the thesis deals with – as well as Mira variables.

Table 2.3 lists the most important types of pulsating variable stars.

A detailed description of the underlying pulsation mechanisms is given in Section 2.4, as well as

for RR Lyrae and Cepheids in Section 2.5.1 and 2.5.2.
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Eruptive Variables

Eruptive variable stars vary in brightness because of processes associated with magnetic fields,

such as flares that occur within the stellar atmosphere. The changes in luminosity coincide with

mass outflow in the form of stellar wind, or interaction with outside interstellar medium.

Eruptive variable stars exhibit irregular or semi-regular brightness variations caused by material

being erupted from the star. Eruptive variables include protostars – stars which haven’t reached

the main sequence yet – showing impressive flares, as well as giants and supergiants, who lose

their matter relatively easily and may also experience eruptions.

Eruptions are well-known also in our Sun; Fig. 2.8 shows a prominence eruption on the Sun,

where a giant eruption of solar material exploded off the surface of the Sun and is falling right

back.

Table 2.4 lists the most important types of eruptive variable stars.

Figure 2.8 On March 2, 2012, a giant eruption of solar material exploded up off the surface of the Sun, as captured
in this image from NASA’s Solar Dynamics Observatory. Known as a prominence eruption, most of the material
usually falls right back down on to the Sun. Credit: NASA/SDO.
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Table 2.4. Summary of Eruptive Variables

Type Description

UV Ceti stars (flare stars) • flares range from radio to X-ray
• flares can increase star’s brightness by up to 6 mag in V
• presumably young stars, preceeding T Tauri phase

T Tauri stars (TTS)
• identified by their optical variability and strong

chromospheric lines
• pre-main-sequence stars in the process of contracting to

the main sequence along the Hayashi track
• large areas of starspot coverage, and they have intense,

variable X-ray and radio emissions, often powerful
stellar winds

FU Orionis (FUOr) stars • pre-main sequence stars undergoing rapid accretion
• brightness increase by &4 mag, slow decline
• G-type supergiants, K–M giants/supergiants

Ex Lupi (EXor) stars • amplitude of 1 to 4 mag in V
• outbursts lasting 10 to 100 days, separated by several

months
• emission lines similar to T Tauri stars

Wolf-Rayet stars (WR) • strong broad emission lines of highly ionized He, N, C
• very high surface temperatures of ∼30,000–200,000 K
• highly luminous, ∼1000× L�

Luminous blue variable (LBV) stars • unstable supergiant stars
• periodic outbursts, occasionally larger eruptions
• temperature between 10,000 K and 25,000 K
• luminosity of 250, 000− 106L�

Herbig Ae/Be stars • pre-main-sequence star
• spectral type earlier than F0
• show Balmer emission lines
• show IR radiation excess due to circumstellar dust

R Coronae Boralis (R CrB) stars • luminosity varies in two modes: low ampluitude pulsation
with a few tenths of a mag, irregular with fading by
1 to 9 mag

• supergiants in the spectral classes F and G

γ Cassiopeiae (Be) stars • spectra vary over time
• non-supergiant stars with temperatures between 10,000

and 30,000 K
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Cataclysmic and Nova-like Variables (CV)

Cataclysmic variables are contact binaries consisting of a white dwarf and a low-mass main-

sequence star (K or M dwarf). The latter one, called secondary (in contrast to the primary white

dwarf) has filled the Roche volume, resulting in mass transfer onto the primary.

There are various subclasses of cataclysmic variables, mostly characterized by their magnetic

fields.

When an accretion disk develops due to the mass transfer, the cataclysmic variable is called a

dwarf nova. Also, among them there are various sub-classes depending on frequency and intensity

of outbursts.

The class of nova-like stars also includes supernovae. Initially assuming they are new stars (Hockey

2009), they are the most noticeable class of variable stars. Supernovae occur during the last

stellar evolutionary stages of a massive star’s life. For a short time of a few days, this causes

the appearance of a seemingly ‘new’ star with an apparent brightness of up to -6 to -7.5 mag,

depending on their distance. Then, it slowly fades from sight over weeks to months.

Supernovae can be classified according to their light curves and the absorption lines of different

chemical elements that appear in their spectra. The first element for division is the presence or

absence of a H line. If a supernova’s spectrum contains H lines, it is classified type II; otherwise

it is type I. In each of these two types there are subdivisions according to the presence of lines

from other elements or the shape of the light curve. The most important one is type Ia.

Type Ia supernovae show a line at 615.0 nm caused by singly ionized silicon (Si ii). They happen

when a white star as part of a binary system accretes matter from its companion and thus reached

its Chandrasekhar limit of 1.4 M�. When this mass limit is reached, the star becomes unstable

and undergoes a thermal runaway nuclear fusion reaction. The fact that all type Ia supernovae

explode at about the same mass results into a very narrow range of absolute magnitudes. This

makes them very useful as standard candles.

The blue and visual peak magnitudes of type Ia supernovae are given as (Hillebrandt and Niemeyer

2000):

MB ≈MV ≈ −19.3± 0.3 mag . (2.1)

Supernovae of type Ia are crucial in establishing the cosmological distance ladder to extragalactic

distances. They had been deciding in discovering the accelerated expansion of the Universe.

Supernovae are the source of many elements, especially the ones heavier than Fe, which are

produced in supernovae and ejected out into space.

Table 2.5 lists properties of supernovae, as well as cataclysmic variables and nova-like variables

in general.
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Table 2.5. Summary of Cataclysmic Variables

Type Description

Supernovae (SN)
• explosive event occurring at the last evolutionary

stages of a massive star
• seemingly ‘new’ star with an apparent brightness of up to

-6 to -7.5 mag
• supernovae are classified according their light curves and

absorption lines
• used as standard candles

Novae • close binary system in which a white dwarf accretes
matter from its companion

• nova results of the rapid fusion of the accreted H on the
white dwarf’s surface

• steep rise to peak, steadily decline
• brightens by >12 mag, decays over ∼25–80 days by 2 mag

Dwarf Novae
(Geminorum-type variable star)

• close binary system in which a white dwarf accretes
matter from its companion

• luminosity effects attributed to changes in the accretion
disk

• depending on sub-type, one or multiple outbursts can
happen

Recurrent Novae • same mechanism as for novae
• at least 2 outbursts over the past century, intervals

10–100 years
• brightens by 8–9 mag during outburst
• currently 10 recurrent novae known
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2.4 Pulsation as Cause of Variability

Despite many variable stars were known by the beginning of the 20th century, the cause of their

variability was not understood until this time. Historically, among the first assumptions for the

cause of variability were mostly eclipse or rotational models, pointing towards extrinsic causes for

variability.

The observation by Bélopolski (1895) of a radial velocity change during the light cycle of δ

Cephei (Hockey 2009; Catelan and Smith 2015) was actually an indicator for pulsation, but was

misinterpreted as an indicator for a binary star. However, the light curve shape didn’t match

to known binaries. In 1900, Schwarzschild (Schwarzschild 1900) found the change of color and

brightness in the Cepheid η Aquilae. This behavior doesn’t fit to binaries, but was also not

understood. The assumption of pulsation was brought up in 1914 by Harlow Shapley (Shapley

1914), making the binary hypothesis more unlikely by several arguments.

In the following, an overview is given on the structure and evolution of stars, and the driving

mechanisms behind the pulsation of stars.

2.4.1 Stellar Structure and Evolution

Nowadays, the theory of stellar structure and evolution is based on equations describing the hy-

drostatics (or hydrodynamics) of the stellar interior. Major contributions were made by Atkinson

(1931), Bethe (1939), Bethe and Marshak (1939) and Gamov (1939).

The description of stellar structure and evolution below is based mostly on Catelan and Smith

(2015).

In the following, a spherically symmetric, self-gravitating star is assumed. The properties of the

stellar matter at any point of the stellar interior are described with density ρ, temperature T ,

pressure P , entropy per unit mass S, coefficient of thermal conductivity per unit volume λ, and

the chemical composition, based on the abundance of elements Xi. The mass of the star is assumed

to be M , its radius R.

The basic set of equations of a star in hydrostatic and thermal equilibrium then consists of the

following four time-independent differential equations (Kippenhahn and Weigert 1990). Of them,

the first two describe the mechanical structure of the star, and the last two its energetic and

thermal structure:
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∂r

∂Mr
=

1

4πr2ρ
(2.2)

∂P

∂Mr
= −GMr

4πr4
(2.3)

∂L

∂Mr
= ε− εν − εg (2.4)

∂T

∂Mr
= −GMrT

4πr4P
∇ (2.5)

with

Mr: stellar mass enclosed in radius r of a star with total mass M (2.6)

L: luminosity in units of J s−1 (energy per unit time) (2.7)

ε: energy generation rate in the form of thermonuclear reactions (2.8)

εν : energy loss rate in the form of neutrinos, important in late (2.9)

stages of evolution

εg: work performed on the gas during any expansion or contraction (2.10)

of the star,

i.e., the total heat flux through a spherical shell with radius r, is given as luminosity L = 4πr2F =

−4πr2λ∂T/∂r.

The temperature gradient ∇ ≡ ∂ lnT
∂ lnP in Equ. (2.5) depends on the modus of energy transport,

being primarily radiative (∇rad), conductive (∇c) or convective (∇conv).

In the case of radiative transport, ∇ takes the form

∇ = ∇rad =
3

16πacG

κRLP

MT 4
(2.11)

where a = 4σ
c = 7.5657 × 10−16 Jm−3K−4 is the radiation constant, with the Stefan-Boltzmann

constant σ. The Rosseland mean opacity κR (per unit mass) is defined as

κR =

∞∫
0

1
κν

∂Bν(T )
∂T dν

∞∫
0

∂Bν(T )
∂T dν

(2.12)

with the coefficient of monochromatic radiative opacity (per unit mass) κν = 4acT 3

3ρ
1
c/ν , and the

monochromatic Planck function Bν (Catelan and Smith 2015).
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Convective regions in the interior of a star are identified by the Ledoux criteria (Ledoux 1947),

vrad > vad −
χµ
χT
∇µ (2.13)

with the molecular weight µ and

χµ ≡
(

d lnP

d lnµ

)
ρ,T

(2.14)

χT ≡
(

d lnP

d lnT

)
ρ,µ

(2.15)

∇µ ≡
(

d lnµ

d lnP

)
. (2.16)

In the absence of a chemical composition gradient ∇µ, this reduces to the Schwarzschild criterion

(Schwarzschild 1906) for the onset of convection ∇rad > ∇ad.

In the above, partial derivatives have been used to emphasize the non-stationary nature of the

physical solutions. They evolve over time as a consequence of the nuclear processes in the interior

of the star.

The fact that stars are radiating away energy, because they are luminous, implies they are not

stationary. Also, due to the nuclear processes providing the energy, their chemical composition

has to change over time. Therefore, the equations above have to be supplemented by a set of

equations to describe the evolution of the abundance ∂Xi/∂t and thus introducing a nuclear time

scale:

As the energy released by fusing a mass ∆M of H into He is ∼0.007 ∆Mc2, the time until the H

is exhausted, given the star’s current luminosity, will be:

tnuc =
0.007 ∆Mc2

L
, (2.17)

which is ≈ 1010 − 1011 yr for our Sun.

However, the actual lifetime of a star is only one tenth of tnuc because it changes its luminosity

to become brighter during its evolution.

In the following, the Equations (2.2) to (2.5) are modified to describe the time evolution of a

spherical symmetric star having a given distribution of chemical abundances Xi(Mr).

In the case of a pulsating star, the system is outside hydrostatic equilibrium, as there is no longer

perfect balance between pressure gradient and gravity. In this case, Equ. (2.2) to (2.5) changes

as the mass element will undergo acceleration, and becomes:
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∂r

∂Mr
=

1

4πr2ρ
(2.18)

∂P

∂Mr
= −GMr

4πr4
− 1

4πr2

∂2r

∂t2
(2.19)

∂Lr
∂Mr

= ε− T ∂S
∂t

= ε− εν − εg (2.20)

∂T

∂Mr
= − 3κLr

64π2acT 3r4
. (2.21)

Here, three kinds of derivatives appear:

• ∂2
r/∂t

2 in Equ. (2.19) describes hydrodynamical changes to the stellar structure. These

changes occur on the dynamical time scale τdyn =
(
R3

GM

)1/2
' (Gρ̄)−1/2.

• T∂S/∂t in Equ. (2.20) which is often written as an additional energy generation term εg:

εg = −T ∂s
∂t
. (2.22)

This term describes changes to the stars thermal structure, resulting from contraction (εg > 0)

or expansion (εg < 0). Such changes occur on the Kelvin-Helmholtz timescale

tKH =
GM2/R

L
. (2.23)

The Kelvin-Helmholtz time scale indicates the time required to radiate the current gravitational

binding energy of the Sun at its current luminosity; this is the timescale on which the Sun would

contract if its nuclear energy sources were turned off. For our Sun, tKH ∼ 3× 107 yr.

As τnuc � τKH � τdyn, changes in the stellar chemical abundance occur on much larger timescales

than the dynamical timescale.

If the time derivative in Equ. (2.19) vanishes, the star is in hydrostatic equilibrium. If the time

derivative in Equ. (2.20) vanishes, the star is in thermal equilibrium.

It is always assumed – no matter if the star is in hydrostatic or thermal equilibrium – that the

conditions of a local thermodynamic equilibrium are satisfied.

These equations have to be supplemented with boundary conditions (Catelan and Smith 2015).

The boundary conditions for the differential equations of stellar evolution constitute an important

part of the overall problem. At the stellar center, two adjustable parameters exist: The central

density ρc, and the central temperature Tc. At the stellar surface, there are also two adjustable

parameters: the stellar luminosity L and the radius R.
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Central boundary conditions

At the center (r = 0) of the star, the enclosed mass Mr, the radius r and the luminosity Lr have

to vanish and the energy generation rate must remain finite. Therefore, both Mr and L must

vanish at the center:

Mr = 0, Lr = 0 at r = 0.

As nothing is known a priori about the central values of P and T , the remaining two boundary

conditions must be specified at the surface rather than at the center.

Surface boundary conditions

At the surface (Mr = M), the boundary conditions are generally much more complicated than

at the center. The simplest option is to take the zero boundary conditions T = 0 and P = 0

at the surface. However, in reality, T and P never become zero because the star is surrounded

by an interstellar medium with low, but finite density and temperature. Another option is to

set the outer boundary conditions to ρ = 0, T =
(

L
8πR2σ

)1/4
, where σ is the Stefan-Boltzmann

constant.

A more realistic option is to identify the surface with the star’s photosphere, which is where

the bulk of the radiation escapes and which corresponds to the visible surface of the star. The

photospheric boundary conditions approximate the photosphere with a single surface at optical

depth τ = 2/3 (Catelan and Smith 2015). One can write

τph =

∞∫
R

κρdr ≈ κph

∞∫
R

ρdr, (2.24)

where κph is an average value of the opacity over all layers above the photosphere. Assuming

the atmosphere is geometrically thin, thus its extent is very small compared to R, it follows

dP
dr = −GM

r2
ρ ⇒ P (R) ≈ GM

R2

∞∫
R

ρdr. Since τph = 2/3 and T (R) ≈ Teff , the boundary conditions

can be written as

Mr = M : P =
2

3

GM

κphRL
, L = 4πR2σT 4. (2.25)

The Hertsprung-Russell Diagram

In 1912, two astronomers – Ejnar Hertzsprung and Henry Norris Russell – found independently

that when stars are plotted accordingly their temperature and luminosity, the majority of them

fall on a smooth curve (Hertzsprung 1911). The properties plotted originally were properties which

can be determined observationally, e.g. the absolute visual magnitude MV vs. the B − V color

index. The resulting diagram turned out to be a significant tool to understand stellar evolution,

and was thus named after Hertzsprung and Russell.
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Fig. 2.9 shows a Hertzsprung-Russell diagram (HR diagram) in logL/L� vs. log Teff with common

types of stars. Also, different types of pulsating stars within the region of instability, the instability

strip, are shown.

The basic HR diagram is a luminosity vs. temperature graph. The temperature may be replaced or

supplemented with spectral class or color index. The main spectral classes in order from hottest to

coolest are O, B, A, F, G, K and M. Within the HR diagram, the stars which lie along the nearly

straight diagonal line are known as main sequence stars. Those stars are still burning hydrogen

in their cores. The main sequence accounts for about 90 percent of the stellar population above

0.5 M� (Arnett 1996).

There is a correlation between a main sequence star’s mass and luminosity. Stars that are high

up on the main sequence are more massive. The relation, the mass-luminosity relation (Catelan

and Smith 2015), says that L ∝M3.5.

Stars younger and older than main sequence stars are called pre- and post-main sequence stars.

Stars that have evolved well beyond the main sequence are often on the red giant branch of the

HR diagram, or might be asymptotic giant branch stars. RR Lyrae are found on the horizontal

branch, or β Cephei stars on the upper main sequence.

The cooler, dimmer stars are found towards the lower right of the HR diagram, and the hotter,

more luminous stars in the upper left. Old red giants are found at the red giant branch (RGB).

Our own star, the Sun, is located nearly in the middle of both the temperature and luminosity

scales relative to other stars.

Because of the relation L = 4πR2σT 4, stars above the main sequence (having higher luminosity,

with the same temperature as cooler main sequence stars) have larger radii. Also, stars having

the same luminosity as dimmer main sequence stars, but are to the left of them (being hotter),

have smaller radii.

Stellar Evolution and the Instability Strip

One of the key concepts of modern astronomy is that stars change over time – they are born

from clouds of interstellar gas and dust, they shine over billions of years by light created through

nuclear fusion of hydrogen (H) in their cores, and eventually run out of their nuclear fuel and die.

During their last stages, they return some of their mass back to interstellar space, that will be

taken up into new generations of stars. The process of change a star undergoes during its lifetime

is called stellar evolution.

As such processes take millions to billions of years for a star, we can’t observe them directly.

However, there are many pieces of evidence that formed the current understanding of stellar

evolution. One was the understanding of the nuclear physics responsible for why stars shine over

such a long time, and the subsequent realization that their fuel is nuclear, and thus large but

finite.

Another piece of evidence was the observational study of star clusters – groups of stars all born

at the same time and place, and thus from the same composition under the same conditions –
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Figure 2.9 Schematic distribution of different types of pulsating stars across the Hertzsprung-Russell diagram.
The instability strip, including RR Lyrae and Cepheids, is indicated. Own figure; main features are taken from
Catelan and Smith (2015).

and the eventual realization that the properties of star clusters differ depending upon how old

they are.

During their evolution, almost all stars have phases of instability, leading to variability in their

light curves. Above, theoretical models of stellar structure and evolution and statements for

instability were given. Here, the problem is described and discussed from a more observational

view.

Stars being in a state of instability can be found in an area of the HR diagram called the instability

strip (Gautschy and Saio 1996). This is an area around 1000 K wide just above the main sequence,

as shown in Fig. 2.9. It includes Cepheid variables where it intersects the supergiants, RR Lyrae

variables where it crosses the horizontal branch, as well as δ Scuti stars, rapidly oscillating Ap

(roAp) stars and others near the main sequence.
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Stellar Mass and Stellar Evolution

The HR diagram indicates that a star of a given brightness could only lie within a certain range

of colors, and a star with a given color could only be found within a certain range of brightnesses.

More observational and theoretical research showed that the HR diagram represents a snapshot of

the evolutionary states of the stars within the diagram. As a star evolves, it changes in brightness

and color in a very predictable way, and stars of different masses change in very different ways.

The progress of a star’s life is predetermined by its mass, because mass is what determines the

amount of energy being produced and how fast its evolution will be.

In the HR diagram, four large regions can be identified (Catelan and Smith 2015):

• red dwarfs: M < 0.7 M�, their main sequence lifetime exceeds age of the Universe

• low-mass stars: 0.7 M� < M < 2 M�, they end lives as white dwarfs and possibly planetary

nebulae

• intermediate-mass stars: 2M� < M < 8 − 10 M�, similar to low-mass stars, but higher L,

they end as higher mass white dwarfs and planetary nebulae

• high-mass stars: M > 8 − 10 M�, distinctly different evolution paths, end as supernovae,

leaving neutron stars or black holes.

The age of a star tells which evolutionary stages it has passed. Both of this quantities are hard

to measure directly, but are related to temperature and luminosity. Within the HR diagram,

evolutionary tracks can be identified. Fig. 2.10 to 2.12 show them depending on the mass ranges

specified above. The following description of the evolutionary tracks of stars as depending on

their mass is oriented on Catelan and Smith (2015), with the evolutionary tracks therein based

on simulations by A. V. Sweigart using a 1D hydrostatic code.

Low-mass stars (Fig. 2.10) start from a molecular cloud that becomes unstable according to

the Jeans criterion for instability (Jeans 1902) and thus collapses and fragments (Bodenheimer

2003). The temperature at this early phase (isothermal phase) is of order 10 K and the cloud is

optically thin.

Eventually the opacity increases and the temperature rises, forming a proto-star l1 . A hydrostatic

core forms after 1.5 × 105 years (Wuchterl and Klessen 2001) l2 , luminosity and temperature

increase steadily. When accretion stops, the photosphere of the proto-star becomes visible l3 .

The star becomes fully convective, and luminosity decreases at about constant temperature,

leading to the vertical segment of the evolutionary track, the Hayashi track. After this point,

the proto-star becomes hotter and increases in brightness, while shrinking in size. Increasing core

temperature leads to incomplete CNO processing, with 12C being consumed into the core. Until
12C is exhausted, additional 5×107 years will have passed. The star has now reached the zero-age

main sequence (ZAMS) l4 . The star evolves along the much longer nuclear time scale, which is of

order 1010 years for low-mass stars. Temperature and luminosity slightly increase with time as H is

steadily transformed into He. When the star reached the turn-off point l5 , H burning stops to be
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a central process and instead becomes a shell-burning process. Not all the energy released by the

H-burning shell reaches the surface: part of it expands the star’s envelope. The star begins to cool

down and enters the subgiant phase. When the convective envelope reaches its maximum inwards

extension after additionally 109 years l6 , the dredge-up of material occurs. This material has been

partially processed nuclearly and includes a small amount of He. The H-burning shell continues

to advance outward in mass l7 , thus leading to a continued increase of mass in the He core. The

H-burning shell actually encounters the chemical composition discontinuity that was left behind

from the dredge-up phase. The remaining time on the RGB l8 is characterized by the increasing

size of the He core, which keeps on contracting and heating up. At this stage, large amounts of

energy are lost in the form of neutrinos. When temperature finally becomes high enough for the

He-burning reactions, this happens in a shell inside the He-rich core, leading to the helium flash.

The zero-age horizontal branch (ZAHB) l9 marks the onset of the He-burning phase. In the case

of low-mass stars, it is referenced to as the horizontal branch (HB) phase, because HB stars have

very nearly the same luminosity irrespective of mass. When He has been exhausted at the center

after additionally 108 years l10 , the star continues as a low-mass asymptotic giant branch (AGB)

star. An AGB star has an inert core comprised mostly of C and O, that burns He in a shell

and H in another shell further out. The onset of He-shell burning causes a temporary reversal in

the star’s evolutionary direction. This leads to the AGB clump in the observed color-magnitude

(CM) diagrams of well-populated globular clusters and old Local Group galaxies. The details of

the AGB phase, which lasts of order 107 years, depend strongly on the poorly known mass loss

rates. Once the AGB star’s envelope mass has become very low, a final mass ejection phase may

take place, the so-called superwind phase, leading to the formation of a post-AGB star. After a

quick evolution to the blue, the star finally settles on the white dwarf (WD) cooling sequence.

The evolutionary track of intermediate-mass stars is shown in Fig. 2.11 based on a 5 M�

rotating star model from Ekström et al. (2012).

The star is evolving along the ZAMS l1 , until the amount of H in the core becomes insufficient

to support the structure of the star through nuclear reactions. Thus the star contracts l2 . He is

exhausted in the core l3 , so a H-burning shell-narrowing phase follows. The convective envelope

extends inward l4 . When the star reaches the base of the RGB, dredge-up of nuclearly-processed

material toward the stellar surface happens l4 . After He ignition l5 , it goes to the “blue loop”l6 and finally forms a He-burning shell l7 .

The basic principles shown for low-mass stars apply also here. The main difference between low-

and higher-mass stars is whether or not ignition of core He-burning occurs under degenerate

conditions. In low-mass stars, the He core becomes highly degenerated by the time the triple-α

process is ignited at the tip of the RGB, leading to the helium flash. In turn, in intermediate-

and high-mass stars, He-burning commences long before degeneracy happens in the stellar core.

This results into an actual RGB sequence being much shorter than for low-mass stars.

Another difference between low- and high-mass stars is the presence of convective cores in the

latter due to the fact that temperatures are higher in the core of high-mass stars. A direct

consequence of the presence of fully mixed convective cores is that, by the time the core H is
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exhausted, the region that becomes devoid of its nuclear fuel is significantly larger than for low-

mass stars. In intermediate-mass stars, the core He-burning phase is characterized by prominent

“blue loops”. They can cross the Cepheid instability strip and thus give raise to the classical

Cepheids.

As in the case for low-mass stars, dredge-up occurs, but here, a second and third dredge-up

phase is possible. The second dredge-up, which takes place in stars more massive than 3 M�, is

analogous to the first. The third, however, is unique to AGB stars, and is intimately related to

thermal pulses.

The evolutionary track of a high-mass star is shown in Fig. 2.12 based on a 40 M� rotating

star model from Ekström et al. (2012).

The star is evolving along the ZAMS l1 , until the amount of H in the core is not able any longer

to support the structure of the star through nuclear reactions. This leads the star to contractl2 . He is exhausted in the core l3 , so a H-burning shell-narrowing phase follows. The convective

envelope extends inward l4 . When the star reaches the base of the RGB, dredge-up of nuclearly-

processed material toward the stellar surface sets on l4 . The C-burning phase l5 starts.

Even more so than in the case of intermediate-mass stars, the details of the evolution, and

especially the final stages, are affected by the assumptions regarding mass loss and overshooting

from the convective core.

What distinguishes high-mass stars clearly from intermediate-mass stars is the final product of

their evolution. For the same assumptions regarding mass loss, chemical composition and rotation,

stars above a certain initial mass of 8− 10 M� will not produce white dwarfs, but neutron stars

or black holes in their final stage.

Depending on the mass of the star, nuclear fuel burning may proceed all the way to the Si-

burning phase. The duration of each such phase is dramatically shorter than the previous one.

By comparing the evolutionary tracks in Fig. 2.10 to 2.12, one can notice that some high-mass

stars are expected to spend a significant fraction of their lives as either PV Tel, α Cyg or LBV

stars. High-mass stars, such as the one depicted in Fig. 2.12, spend quite little time, if any, as

red supergiant. As a consequence, one expects an upper limit for the masses of red variables: for

example, the so-called ultra-long period Cepheids with periods longer than about 80 days may

have masses reaching up to 15 or 20 M�. In contrast, lower-mass Cepheids likely have masses in

the range between 2.5 and 4.5 M�.

After the shell-narrowing phase l3 l4 , high-mass stars evolve back to blue. While doing so, the

lower-mass ones are missing entirely the red supergiant phase. In contrast, stars with masses

higher than 20 to 32 M� may become Wolf-Rayet stars.
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Figure 2.10 The evolution of a low-mass star in the Hertzsprung-Russell diagram. The numbers correspond to

specific episodes in the life of the star, as described in the text. Adapted from Catelan and Smith (2015).
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Figure 2.11 The evolution of an intermediate star in the Hertzsprung-Russell diagram. The numbers correspond

to specific episodes in the life of the star, as described in the text. Adapted from Catelan and Smith (2015).
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Figure 2.12 The evolution of a high-mass star in the Hertzsprung-Russell diagram. The numbers correspond to

specific episodes in the life of the star, as described in the text. Adapted from Catelan and Smith (2015).
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2.4.2 Stellar Pulsation Theory

Stars on the instability strip pulsate due to He iii (double-ionized helium). Whereas He is neutral

in the photoshere of A-F-G stars, deeper below the photosphere, at about 25,000 - 30,000 K, the

He ii layer (single-ionized helium) begins (Catelan and Smith 2015).

When the star contracts, the density and temperature of the He ii layer increases. He ii starts to

transform into He iii at about 35,000 - 50,000 K. The opacity of this layer increases due to the

ionization, and thus the energy flux from the interior of the star is effectively absorbed. The star

expands, and the temperature rises. After expansion, He iii begins to recombine into He ii and

the opacity of the star drops. This lowers the surface temperature of the star. The outer layers

contract and the pulsation cycle starts from the beginning.

Between a star’s radial pulsation and brightness variations, a phase shift can be observed. For

most Cepheids, this creates a distinctly asymmetric light curve, rising rapidly to maximum and

falling slowly back down to minimum, see Fig. 2.14. This phase shift is caused by the distance of

the He ii zone from the stellar surface.

The variations of these stars could be understood in terms of pulsations in the first radial mode,

where the star expands and contracts while preserving its spherical symmetry. It was realized by

Shapley (1914), that the period is approximately given by the dynamical time scale of the star:

τdyn '
(
R3

GM

)1/2

'
√
Gρ̄, (2.26)

where R is the radius of the star, M its mass, ρ̄ is the mean density and G is the gravitational

constant.

Later on, major contributions to the understanding of stellar pulsations were made by Eddington

(Eddington 1926). However, the identification of the actual cause of the pulsations, and of the

reason for the distinct instability strip, was first arrived at independently by Zhevakin (1953) and

by Cox and Whitney (1958).

The pulsation of a star, being a hydrodynamic phenomenon, should take place on the dynamical

time scale Equ. (2.26) roughly equal to the sound-crossing time. The speed of sound is given by

vs =

√
Γ1P

ρ
, (2.27)

where Γ1 is the first adiabatic coefficient, Γ1 ≡ 1 +
(
∂ ln p
∂ ln ρ

)
s
.

Assuming an ideal gas equation of state, this becomes

vs =

√
Γ1kBT

µmH
, (2.28)
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where for ionized matter, the mean molecular weight µ is represented by µ−1 = 2X + 3
4Y + 1

2Z

with the mass fractions X (of H), Y (of He) and Z (of all other elements, so-called “metals”).

For Γ1, the ratio of specific heats for an ideal monoatomic gas, γ = 5/3, is adopted. A reasonable

approximation for the temperature in Equ. (2.28) is provided by the temperature of the second

ionization of He of around 35,000 - 55,000 K (Zhevakin 1963; Christy 1966). This results into

vs ≈ 32.2 km s−1.

Following Catelan and Smith (2015), the timescale for the propagation of a sound wave through

the interior of a Cepheid can be assumed to be given by P ∼ 2R/vs. This equation can be

rewritten in terms of the star’s gravitational potential energy Ω, Ω ∼ −GM2

R by using the virial

theorem. In its simplest form, the virial theorem can be written as

Ω = −3

∫
M

P

ρ
dMr. (2.29)

Inserting (2.27) into (2.29) gives

Ω = −3

∫
M

v2
s

Γ1
dMr = −3

∫
M

v2s
Γ1

dMr∫
M

dMr
M = −3

〈
v2
s

Γ1

〉
M, (2.30)

where 〈 · 〉 averages over the whole star.

Using the approximation 〈v2
s/Γ1〉 ≈ 〈v1

s〉/〈Γ1〉, one gets the following expression for the speed of

sound:

vs ≈
(−Ω〈Γ1〉

3M

)1/2

. (2.31)

Equation (2.4.2) now gives

P ∼ 2R

vs
∼ 2

(
3

〈Γ1〉

)1/2
(
MR2

)1/2
(−Ω)1/2

∼
(
Iosc

−Ω

)1/2

, (2.32)

where the oscillatory moment of inertia Iosc is defined by

Iosc ≡
∫
r

r2 dMr. (2.33)

Catelan and Smith (2015) point out that Equ. (2.32) is analogous to many other expressions

describing oscillating mechanical systems. For instance,

P = 2π

√
m

k
(2.34)
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describes the oscillation period of an object of mass m attached to a spring of constant k (Hooke’s

Law),

P = 2π

√
I

K
(2.35)

describes the oscillation period of an object with moment of inertia I suspended by a string of

torsion coefficient K.

The calculations presented so far could be improved by taking into account the fact that the

sound speed changes along the path of the sound wave across the stellar interior. In this case,

Equ. (2.4.2) changes, as an estimate of the sound wave travel time back and forth across the

diameter of the star changes to

P = 2

R∫
0

dt(r) = 2

R∫
0

dr

vs(r)
= 2

R∫
0

dr√
Γ1(r)P (r)

ρ(r)

. (2.36)

For a proper integration of Equ. (2.36), the full form of the functions P (r), ρ(r) and Γ1(r) is

needed. They can be calculated using the equations of stellar structure.

In the homogeneous case with the assumption of constant ρ and Γ1, a period – mean density

relation can be derived, as first obtained by Ritter (1879). His relation

P
√
〈ρ〉 =

√
3π

2Γ1G
⇒ P ∝ 〈ρ〉−1/2 (2.37)

indicates that denser pulsating stars should have shorter pulsation periods than less dense stars.

Indeed, white dwarfs and δ Scuti stars show shorter periods than Cepheids and Mira.

Pulsation and Energy Conservation

In order to properly explain pulsating stars as thermodynamic engines, one must realize that

the εg term in Equ. (2.20) is necessary. As found by Eddington (1926), without the εg term, the

energy released by nuclear reactions or lost by neutrino emission would always be identical to

the change in the outward luminosity. This means that no individual star layer would be able to

cyclically absorb and release energy during a pulsation cycle.

Since εg represents the rate dQ/dt at which energy is absorbed or released per unit mass in a

given layer, following Catelan and Smith (2015) one can write Equ. (2.20) as

εg =
dQ

dt
= ε− εν −

∂L

∂Mr
, (2.38)

where the partial derivative symbol was used for Q, as Q is not a state variable.
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According to the First Law of Thermodynamics, the rate of heat input or loss Q per unit mass

into the layer can be expressed in terms of the rate change of the internal energy E per unit

mass of a given layer, minus the work performed by the layer upon its surroundings (Catelan and

Smith 2015):

dQ

dt
=
∂E

∂t
+ P

∂

∂t

(
1

ρ

)
. (2.39)

This can be rewritten as follows, by expressing E as E(ρ, P ):

∂E

∂t
=

(
∂E

∂P

)
ρ

∂P

∂t
+

(
∂E

∂ρ

)
P

∂ρ

∂t
(2.40)

∂Q

∂t
=

(
∂E

∂P

)
ρ

∂P

∂t
+

(
∂E

∂ρ

)
P

∂ρ

∂t

∂ρ

∂t
. (2.41)

It is convenient to write this in terms of luminosity L and effective energy generation rate εeff ≡
ε− εν . The detailed steps for doing so are e.g. described in Catelan and Smith (2015). One finally

obtains

∂ lnT

∂t
= (Γ3 − 1)

∂ ln ρ

∂t
+ (cvT )−1

(
εeff −

∂L

∂m

)
(2.42)

with the third adiabatic coefficient Γ3, Γ3 ≡ 1 +
(
∂ lnT
∂ ln ρ

)
s
.

Stability Conditions

The equations shown so far depict the adiabatic theory, which is successful at describing the

pulsation period of stars, but fails in at least two aspects: first, it cannot explain the phase lags

that are often observed between different physical quantities of a pulsating star; second, it is

unable to predict at all which stars will pulsate.

Starting with the conservation of momentum equation, it is described now, based on Catelan and

Smith (2015), how a non-adiabatic theory can describe which stars pulsate.

From Equ. (2.19), the conversion of momentum equation becomes

∂2r

∂t2
= −4πr2 ∂P

∂m
− GMr

r2
. (2.43)

Multiplying both sides of Equ. (2.43) by ∂r
∂t results in

∂r

∂t

∂2r

∂t2
= −4πr2∂r

∂t

∂P

∂Mr
− GMr

r2

∂r

∂t
. (2.44)
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The left-hand side of this equation can be also written as

∂r

∂t

∂2r

∂t2
= v

∂v

∂t
=

1

2

∂

∂t
v2, (2.45)

so that
1

2

∂

∂t
v2 =

(
−4πr2 ∂P

∂Mr
− GMr

r2

)
∂r

∂t
. (2.46)

Integration over the volume of the whole star gives∫
M

1

2

∂

∂t
v2 dMr =

∫
M

(
−4πr2 ∂P

∂Mr
− GMr

r2

)
∂r

∂t
dMr (2.47)

= − d

dt

∫
M

−GMr

r
dMr

− ∫
M

(
4πr2 ∂P

∂Mr

)
∂r

∂t
dMr. (2.48)

The integral in the first term on the right-hand side is the total gravitational potential energy of

the star. When performing the integration in the last term by parts, this gives∫
M

1

2

∂

∂t
v2 dMr = −dΩ

dt
−
[
4πr2P

∂r

∂t

]M
0

+

∫
M

P
∂

∂m

(
4πr2∂r

∂t

)
dMr. (2.49)

As the pressure at the surface of the star is many orders of magnitude lower than in the interior,[
4πr2P

∂r

∂t

]M
0

' 0. (2.50)

Therefore, with good approximation,∫
M

1

2

∂

∂t
v2 dMr ' −

dΩ

dt
+

∫
M

P
∂

∂Mr

(
4πr2∂r

∂t

)
dMr. (2.51)

From the conservation of mass, it follows that

∂

∂t

(
1

ρ

)
=

∂

∂Mr

(
4πr2∂r

∂t

)
, (2.52)

and therefore ∫
M

1

2

∂

∂t
v2 dMr ' −

dΩ

dt
+

∫
M

P
∂

∂t

(
1

ρ

)
dMr. (2.53)

If one integrates this equation over a complete pulsation cycle, the total mechanical work that is

transferred into kinetic energy of motion of the stellar layers is obtained:

W = −
∫
P

dΩ

dt
+

∫
P

dt

∫
M

P
∂

∂t

1

ρ
dMr. (2.54)
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Accordingly,

W = − [Ω[P0 +

∫
P

dt

∫
M

P
∂

∂t

(
1

ρ

)
dMr =

∫
P

dt

∫
M

P
∂

∂t

(
1

ρ

)
dMr, (2.55)

as the gravitational potential is purely conservative. Averaging over a full pulsation cycle gives〈
dW

dt

〉
≡ W

P =
1

P

∫
P

dt

∫
M

P
∂

∂t

(
1

ρ

)
dMr. (2.56)

Following (Catelan and Smith 2015), this finally implies a condition for pulsation:

If 〈dW/dt〉 > 0, the star maintains pulsation. When defining Ψ as the total pulsation energy

of the star (see e.g. Moya and Rogŕıduez-López 2010), a natural timescale for the growth (or

damping) of pulsations can be defined as follows (Rosseland 1949):

τ ≡ −1

2

dW/dt

Ψ
. (2.57)

Associated with this time scale, one also defines the so-called stability coefficient κ, κ ≡ τ−1.

κ > 0 implies overall damping and thus stability, whereas for κ < 0, the instabilities grow over

time, leading the star to pulsate.

Any regions in the star that contribute positively to Equ. (2.56) are called driving layers, whereas

those that contribute negatively are called damping layers.

Modifying Equ. (2.56) gives answers to the question which layers behave driving or damping.

From the First Law of Thermodynamics, one obtains at each of the star:

∫
P

P
∂

∂t

(
1

ρ

)
dt =

∫
P

dQ

dt
dt+

∫
P

∂E

∂t
dt =

∫
P

dQ

dt
dt+ [E[P0 =

∫
P

dQ

dt
dt, (2.58)

where the integral of the internal energy over a closed cycle cancels out. Therefore,〈
dW

dt

〉
=

1

P

∫
P

dt

∫
M

dQ

dt
dt. (2.59)

Using Equ. (2.38) and (2.42), one finds that

∂ lnP

∂t
= Γ1

∂ ln ρ

∂t
+
ρ

P
(Γ3 − 1)

dQ

dt
. (2.60)

At maximum compression, when ∂ ln ρ/∂t = 0, one gets(
∂ lnP

∂t

)
max.compr.

=
ρ

P
(Γ3 − 1)

dQ

dt
(2.61)
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with (Γ3 − 1)ρ/P ) > 0.

Therefore, if a layer of the star gains heat (dQ/dt > 0) during maximum compression, it will

also be building up pressure (∂ lnP/∂t > 0) at this point of time. This implies that the pressure

will be higher during expansion than during contraction. Exactly this is required to efficiently

maintain pulsation. In such a driving region, therefore the following relation is satisfied:

Vmax∫
Vmin

PdV > −
Vmin∫
Vmax

PdV. (2.62)

What exactly are now the driving mechanisms for pulsation?

2.4.3 Driving Mechanisms

As pointed out by Eddington (1926), to maintain pulsations, stars must operate pretty much

as thermodynamic engines with heat being added to matter at a high temperature only to be

withdrawn at a low temperature. The question is now, how does this exactly occur in stars?

Accounting to (Catelan and Smith 2015), the equation for the stability coefficient κ in the m-th

pulsation mode can be written as

κm = −

∫
M

(δT/t)m,ad δεeff dm

2ω2
mJm

+

∫
M

(δT/t)m,rad

(
∂δL
∂M

)
m

dm

2ω2
mJm

(2.63)

with Jm is the corresponding oscillatory moment of inertia.

The first term in Equ. (2.63) is associated with energy generation, and the second with energy

transfer. In the first case, when pulsations are excited, one refers to the ε mechanism, whereas in

the latter case, the κ and γ mechanisms are at play.

The ε Mechanism

Within the region of the star where the thermonuclear reactions take place, the temperature

increases during compression. This leads to an increase in the rate of energy generation, and vice

versa during the expansion. Thus, energy is gained by these layers during the compression, and

released during the expansion. As stated by Catelan and Smith (2015), this mechanism works

exactly as required to establish pulsational instability according to Equ. (2.56) and (2.63).

Thermonuclear reactions show a strong dependence on temperature. If the amplitude of the

temperature fluctuations in the energy-generation regions is sufficiently high in the course of

pulsations, such a supply of energy will indeed fluctuate over time, thus being naturally able to

maintain the pulsations. This is the so-called ε mechanism of stellar pulsation, where the ε is

the nuclear energy generation rate. In classical pulsators, such as RR Lyrae and Cepheids, the ε
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mechanism does not play an important role, whereas in other types of pulsating stars, it has been

claimed to be of considerable interest (Catelan and Smith 2015).

The κ and γ Mechanism

For most stars, the energy transfer, rather than the energy generation, is the main cause for pul-

sation. Pulsation will be excited when the stability coefficient κ in Equ. (2.63) becomes negative.

The second term in Equ. (2.63) then requires that during maximum compression (i.e., δT/T > 0),

∂δL/δm being negative, implying an increase in δL with increasing Mr (i.e., towards the surface

of the star). Thus, at least some layers of the star must gain energy during compression, and

release energy during expansion to maintain pulsation. Such layers are called driving layers. They

are typically associated with H and He partial ionization zones.

Assume now, that the Rosseland mean opacity Equ. (2.12) in a given layer of the star can be

approximated for simplicity by

κR ∝ ρnT−s. (2.64)

In the case of free-free absorption in a non-degenerate, fully ionized gas, the so-called Kramers

opacity law can be applied, by setting n = 1, s = 7/2:

κR ∝ ρT−7/2 (2.65)

that was derived by Eddington (1926) based on Kramer’s opacity law. According to this expres-

sion, there is a tendency that during compression, opacity decreases in the layers of a star, caused

by the rise in temperature.

However, there are a few “bumps” in the opacity, caused by the ionization of H and partial ioniza-

tions of He. In these regions, there is a tendency for the opacity to actually increase with increasing

temperature, so the s value in Equ. (2.64) becomes negative. The consequence of an increasing

opacity during compression is that the corresponding region of the star will “concentrate” energy

during compression, and more easily release it during the expansion, leading to pulsation.

This increase in the opacity is known as κ mechanism (Baker and Kippenhahn 1962). The effect

was first studied by S. A. Zhevakin and J. P. Cox (Cox and Whitney 1958; Cox 1960; Zhevakin

1963).

The increased ability of the same layers participating in the κ mechanism to gain heat during

compression is called γ mechanism (Cox 1963).

The classical κ and γ mechanisms explain the excitation of pulsation instabilities in stars within

the instability strip, such as RR Lyrae, Cepheids and δ Scuti stars.

Non-Radial Pulsations

The mechanisms presented so far describe radial pulsations. However, not all pulsating stars

pulsate radially.
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The discovery of the Sun’s 5-minute-oscillations (Leighton 1960; Leighton et al. 1962) hinted that

stars might pulsate in non-radial modes. Furthermore, it has led to the assumption that similar

pulsations might be detected in other stars when observational techniques improve.

Nowadays, the study of oscillation in stars – asteroseismology – requires the detection of a huge

range of pulsation modes, many of which are non-radial. Nowadays, asteroseismological studies

of stars have grown enormously in the course of the past several years. The results of the CoRoT

(Auvergne et al. 2008) and Kepler (Borucki et al. 2010) missions, among others, have enabled us

to gain insight into the physical processes of star interiors.

The κ and γ mechanisms, as described before, are successful in describing the pulsation of stars

located within the instability strip, but fail for many different types of other pulsating stars,

most of them non-radial pulsators. In hot pulsating stars, the metal opacity bump (due to an

increase in the heavy element contribution), rather than the opacity bump discussed before being

associated with the H and He partial ionization zones, is responsible for driving the oscillations

(metal bump mechanism, Simon (1982); Cox et al. (1992).

2.5 The Physics of Variable Sources

After giving an overview of the theory that describes the pulsation of stars, as well as the mecha-

nisms causing them to pulsate, this section focuses on the sources the analysis done in this thesis

is based on: RR Lyrae and Cepheids, as well as – despite being neither stars nor showing periodic

behavior – QSOs. All three types of variable sources can be detected and classified by using the

same methods shown in Chapter 5 and all three are of great interest for various purposes.

If not stated otherwise, in the following, periods are always given in units of days.

2.5.1 The Physics of RR Lyrae

With periods between 0.2 and 1.0 days, RR Lyrae stars are one of the most useful types of

variable stars used for exploring the distances and properties of old stellar populations. In the

HR diagram, they are found in the instability strip with absolute visual magnitudes near 0.6 and

mean effective temperatures ranging between about 6000 and 7250 K (Catelan 2004). RR Lyrae

stars are only found in systems that contain a stellar component older than about 10 Gyr, and

they are thus an important standard candle for determining distances to very old systems.

The prototype of this class of variable stars, RR Lyrae itself, was discovered by Williamina Fleming

on Harvard College Observatory photographs (Pickering et al. 1901). The class of variable stars

was then defined through observations of RR Lyrae stars in globular clusters. Between 1895

and 1898, Bailey and Pickering found more than 500 variable stars in a search of 23 globular

clusters (Bailey and Pickering 1913). Bailey noticed that many of these variables showed similar
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properties: their periods were mostly shorter than a day, and their amplitudes on the blue-

sensitive photometric plates were typically about 1 magnitude. These stars were first called cluster

variables, of which most are stars we call nowadays RR Lyrae stars, or short, RR Lyrae.

RR Lyrae Types and Light Curve Properties

Bailey (1902) divided the RR Lyrae stars in ω Cen (ω Centauri, NGC 5139) into three sub-classes,

now called Bailey types. They can be distinguished by light curve shape, period and amplitude.

Bailey type a stars show the largest amplitudes and the steepest rise to the maximum amplitude.

RR Lyrae of type b are similar to those of type a, but with smaller amplitudes and longer

periods. Type c RR Lyrae have shorter periods and lower amplitudes. Their light curves are more

symmetric than those of types a and b, and show an almost sinusoidal shape.

As the type a and b RR Lyrae stars form a continuous sequence in an amplitude-period diagram,

it is now usual to combine them into a single type RRac, leaving only the original Bailey type c

distinct (RRc). Additionally there is a type called RRd stars, which are double-mode pulsators,

unlike RRac or RRc (Nemec 1985). Among all types of RR Lyrae, RRab variables are the most

common, making up ∼91% of all observed RR Lyrae (Smith 2004). RRc variables account for

∼9% of the observed RR Lyrae, RRd are the rarest RR Lyrae and make up only ∼1% (Smith

2004).

Fig. 2.13 shows light curves of typical RRab and RRc stars. The light curves are given in the

ugriz filters used by the SDSS survey (York et al. 2000).

RR Lyrae show an increase in their amplitude as one goes from the near-infrared z filter to the

g filter, but with only a small change as one continues to the u filter. Towards the ultraviolet,

they reach amplitudes up to 4 magnitudes (Downes et al. 2004). When proceeding to the infrared

instead, the decline of the amplitude with increasing wavelength continues.

Whereas some RR Lyrae stars have light curves that repeat nearly perfect from one pulsation

cycle to the next, some RR Lyrae stars have light curves that change in a secondary period that

can be tens or hundreds of days long. These changes are called the Blazhko effect (Blažko 1907).

RR Lyrae Stars as Standard Candles

RR Lyrae stars are especially important as they can be used to measure distances to systems

containing old stellar populations, such as the Milky Way’s halo. They were first used by Harlow

Shapley to determine distances to globular clusters, leading to the awareness that the Sun is

located far from the center of our Galaxy (Shapley 1914).

Within a single globular cluster, all RR Lyrae have about the same visual apparent magnitude,

as they are in the HB stage of the evolution of low-mass stars. This makes RR Lyrae very good

standard candles.
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Figure 2.13 Examples of RRab and RRc light curves from OGLE-II. (a) shows a raw RRab light curve, (c) a raw
RRc light curve. In panels (b) and (d), the corresponding outlier removed smoothed light curves are shown. The
steep rise in the RRab light curve, in contrast to the almost symmetric nature of the RRc light curve, is clearly
visible. Taken from Deb and Singh (2010).

For distance determination, the apparent magnitude must be transformed to absolute magnitudes.

Until the 1960s, it was assumed that all RR Lyrae have the same absolute V band magnitude.

Later on, a dependency on metallicity was found (Sandage 1990a), that is generally expressed as

〈MV 〉 = a+ b[Fe/H]. A calibration by Benedict et al. (2011) results into the relation

〈MV 〉 = (0.214± 0.047)([Fe/H] + 1.5) + (4.5± 0.05). (2.66)

Longmore et al. (1986) found a linear relationship between the mean infrared K-band magni-

tude (λ ' 2.20 µm) and the logarithm of the RR Lyrae star’s fundamental-mode period. This

infrared period-luminosity relation has the advantage of being relatively insensitive to interstellar
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extinction. Also, it is relatively insensitive to the star’s [Fe/H] value. Updated relationships can

be found in Cáceres and Catalan (2008), indicating

Mz = 0.839− 1.295 logP + 0.211 logZ (2.67)

Mi = 0.908− 1.035 logP + 0.220 logZ (2.68)

for SDSS i and z bandpasses and metallicity Z, P in days.

The Evolution of RR Lyrae Stars

RR Lyrae are stars who have already left the main sequence (see Fig. 2.9), ascended the RGB,

undergone the He flash, and settled down to core He burning that characterizes stars on the HB.

It takes more than 10 Gyr until they reach the HB. The lifetime of RR Lyre stars is expected to be

in the order of 108 years (Koopmann et al. 1994). The variability of RR Lyrae stars is caused by

pulsation, being mainly driven by κ and γ mechanisms. The zone within the star where He goes

from being singly to doubly ionized is most important for driving the pulsations. RRab stars are

pulsating in the fundamental radial mode, whereas RRc stars are pulsating in the first-overtone

mode.

Period Changes

RR Lyrae can undergo period changes. This came apparent as the time spanned by observations

of the same RR Lyrae reached 100 years and more. Whereas some have stable periods, others

undergo significant changes. Such period changes have been observed for RR Lyrae in a number

of the Milky Way’s globular cluster (Catelan and Smith 2015). It was suggested by Sweigart and

Renzini (1979) that discrete mixing events in the semi-convective zone of RR Lyrae could lead to

period noise and thus period change. Cox (1998) proposed that small changes in the gradient of

the He composition in the regions of RR Lyre stars below the H and He convective zones might

produce the period changes.

Period Distributions: The Oosterhoff Groups

Oosterhoff, working on RR Lyrae within 5 globular clusters (Oosterhoff 1939), noted that they

could be divided into two groups according their period, now known as the Oosterhoff groups.

The globular clusters with a mean period of their RRab 〈Pab〉 near 0.55 days became known as

Oosterhoff type I clusters, whereas those with 〈Pab〉 near 0.65 days became known as Oosterhoff

type II clusters. Analysis of [Fe/H] showed that globular clusters of Oosterhoff type I are more

metal rich than those of Oosterhoff type II. There are various approaches to explain this difference.

RR Lyrae stars in Oosterhoff type II clusters are more luminous than those in Oosterhoff type I

clusters. The longer periods of Oosterhoff type II RR Lyrae would then be a result of their lower
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densities, according to the pulsation equation P
√
〈ρ〉 = Q. As a possible explanation, Sandage

(1981) suggested that a higher He abundance in the Oosterhoff type II clusters might account for

their different period. However, this does not explain why Oosterhoff type II clusters have higher

fractions of RRc stars than Oosterhoff type I clusters. Also it does not explain the higher period

change rates found in Oosterhoff type II clusters.

A different explanation that accounts for both the higher RRc fraction as well as mean period, was

proposed by van Albada and Baker (1973). They suggested the existence of a so-called hysteresis

zone near the center of the instability strip. Within this zone, both the fundamental and the

first-overtone modes can in principle be excited. RR Lyrae stars entering this zone of the HR

diagram would keep the pulsation mode that they had.

2.5.2 The Physics of Cepheids

Classical Cepheid variable stars are supergiants with periods in the range of 1–5 days. The light

curve amplitude is typically between 0.5 and 2 magnitudes in the V band, and the velocity

amplitude due to the pulsation is in the range of 30–60 km s−1.

Different to RR Lyrae, which can be found at all Galactic latitudes, Cepheids are strongly asso-

ciated with the Galactic plane. More than 800 Cepheids are known in the Milky Way, and a few

1000 have been found in the two nearest galaxies, the Magellanic Clouds.

Cepheids show a close relationship between period and luminosity, which was found by Henrietta

S. Leavitt in 1912 (Leavitt and Pickering 1912). This relation has given Cepheids a unique role

in establishing the distances of near galaxies and hence the distance scale of the Universe, the

“distance ladder”.

Cepheid Types and Light Curve Properties

Among Cepheids, two types can be distinguished: Classical Cepheids (or type I Cepheids) are

comparatively young stars of ages ∼108 yr with masses of 2 − 3 M�. They show a strong con-

centration towards the Galactic plane and have low space velocities. Their ages can be estimated

from star clusters. Within period-luminosity diagrams, they occupy a narrow strip.

Type II Cepheids are fainter than type I Cepheids of comparable period. From globular clusters,

as well as from being present in the Galactic halo, their age can be estimated as being up to

15× 109 yr. This implies that they must be less massive than type I Cepheids. Type II Cepheids

can also be distinguished from type I Cepheids by the shape of their light curves. Most type I

Cepheids, of which δ Cephei is a prototype, have asymmetric light curves, showing a steep rise to

their maximum and a slower decline. Type II Cepheids, in contrast, show almost sinusoidal light

curves.

Fig. 2.14 shows the light curves of the type I Cepheid SU Cygni in different photometric bands.

As also for the RR Lyrae stars, the amplitude decreases as one goes from the ultraviolet to the
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infrared. Some Cepheids of short periods have nearly sinusiodal light curves with amplitudes of

only 0.5 mag.
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Figure 2.14 Amplitude and phase variation of a typical Galactic Cepheid as a function of increasing wavelength.
Note for increasing wavelength the monotonic drop in amplitude, the progression toward more symmetric light
variation, and the phase shift of maximum toward later phases. The wavelength increases from top (ultraviolet,
blue, and visual) to bottom (red and near-infrared out to K=2.2 µm). Taken from Madore and Freedman (1991).
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Cepheids as Standard Candles

The relation between period and luminosity of a Cepheid comes directly from the Stefan-Boltzmann

law (Catelan and Smith 2015). When expressed in bolometric magnitude units,

Mbol = −5 log(R)− 10 log(Teff) + const. (2.69)

Combining this with the pulsation equation Equ. (2.37), one gets

logP + 0.5 log(M) + 0.3Mbol + 3 log Teff + const = logQ, (2.70)

where M is the stellar mass. From this, at a constant effective temperature, the period should

increase with increasing luminosity.

The period-luminosity relation was first found empirically by Leavitt and Pickering (1912), and

then calibrated by Shapley (1918).

Fig. 2.15 shows near-infrared period-luminosity relations for type I and type II Cepheids in the

Large Magellanic Cloud. For type I and type II, both the offset and the slope differ.
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Figure 2.15 Near-infrared period-luminosity relations for Cepheids of type I and II in the Large Magellanic Cloud.
Among type I, both fundamental and first overtone Cepheids are indicted. Adapted from Matsunga et al. (2009).

The Evolution of Cepheids

Cepheids of type I are stars who are more massive than the Sun, having evolved from main

sequence stars of 2–20 M�. Such a star starts pulsating as a Cepheid when it crosses the instability

strip on its way to the RGB and, later, during a blueward loop as it fuses He in its core.
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Like for other types of variables within the instability strip, κ and γ mechanisms within the H and

He partial ionized zones are the most important drivers for pulsation. The variability of Cepheids

of type I is caused by pulsations, being mainly driven by κ and γ mechanisms. The zone where

He goes from singly to doubly ionized is mostly important to the driving of the pulsation.

As the lifetimes of such massive stars like Cepheids of type I are short, they are relatively young

stars with ages in the range of 107 years for the brightest and most massive ones, to a few 108

for the faintest and less massive ones. For this reason, Cepheids of type I are found in systems

that have experienced recent star formation. Thus, within the Milky Way, Cepheids belong to the

young disk population.

In contrast, Cepheids of type II are old, evolved stars with low masses of about 0.5–0.6 M�. They

have evolved away from the main sequence, up to the giant branch, down the horizontal branch,

back up the AGB, but are experiencing He flashes as He burning briefly switches on. This shifts

the star to higher temperature and over the instability strip (Catelan and Smith 2015).

2.5.3 The Physics of QSOs

This type of variable sources differs in many ways from the ones discussed previously. First, QSOs

aren’t stars but are associated with the centers of active galaxies. Second, they show no periodic

behavior but stochastic. Third, their astronomical application is not distance estimation, but

establishing an astrometric reference frame.

QSOs are, like their higher-level type AGN, composed of supermassive black holes (SMBH) in

the order of 105 to 109 M� and surrounding accretions disks. The gas in the disk heats up during

accretion, resulting into the production of emission in the optical and ultraviolet range. Some

QSOs also show radio or X-ray emission. They luminosities can be as large as 1047 ergs s−1 in

tiny volumes (≈ 2× 1014 cm, Edelson et al. 1996).

QSOs were discovered during the first radio surveys in the late 1950s. Due to their star-like

appearance as point sources, but showing properties inconsistent with stars, they were named

“quasi-stellar objects”. The exact cause for their enormous total luminosities – of up to 104 times

the luminosity of a typical galaxy – within a small volume (as implied by Spitzer and Saslaw 1966)

were unclear until the physics of accretion disks were understood and imaging and spectroscopic

observations were available. Such observations can give evidence for the existence of massive

compact objects at the centers of galaxies (e.g. Kormendy et al. 1996a,b; Magorrian et al. 1998;

van der Marel et al. 1997). Observed line broadening (e.g. Peterson 1997) indicates the presence

of gas moving in a relativistic potential wall.

Light Curve Properties

Unlike variable stars, whose variability is often periodic or a least dominated by periodic com-

ponents, AGN (and thus QSOs) show mostly no periodic variability. In consequence, QSO light
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curves are described as a stochastic process, e.g. a Gaussian process (Rybicki and Press 1992),

whose parameters can be determined by using a structure function (Rybicki and Press 1992).

QSOs vary in every waveband. Continuum variability in the optical was established even before

the emission-line redshifts were understood.

Variability of QSOs occur on many different time scales. They range from weeks for changes

on the thermal time scales in the accretion disk, over months for superpositions of stochastic

processes up to several years for changes in the large-scale structure of accretion disks or lens

crossing times.

Most, but not all, AGN continuum spectra have a spectacularly different appearance from normal

galaxy spectra. Whereas in the UV, large fluctuations are common and occur on time scales from

weeks to years, in the optical, the fluctuations are rather small.

A particularly well observed example, NGC 4151, is shown in the top panel of Fig. 2.16 in its

UV, as well as one of NGC 5548 in the optical.
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Figure 2.16 (Top) A long-term UV (1455 Å) light curve for NGC 4151; (bottom) a shorter optical
(5100 Å) light curve for NGC 5548. In the UV, fluctuations of several are common and can occur on timescales
ranging from weeks to years. In the optical band, the fluctuations tend to be rather smaller. Taken from Krolik
(1999).
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The Importance of QSOs

Originally, active galactic nuclei were considered to be a rare phenomenon. However, studies on

the Palomar Survey (L. C. Ho and A. V. Filippenko and W. L. Sargent 1995) point a different

picture. Out of the Palomar Survey sample, 86% of the galaxies show emission lines, among them,

∼40% of the galaxies show H ii emission (an indicator for star formation), and ∼50% belong to

the active galaxies, in detail, ∼30% are low-ionization nuclear emission-line regions (LINER),

∼13% are Seyfert I and II, and ∼10% of all galaxies have a broad Hα component.

It is assumed that almost all galaxies undergo active phases during their evolution, so AGN

evolution is assumed to be closely related to galaxy formation and evolution in the Universe.

Their large luminosities make them to be traced even at high redshifts and thus large distances

and early stages of the Universe. As AGN are very good tracers of distributions of both visible

and dark matter (Ferrarese et al. 2001), they enable a view on the large-scale structures in the

early Universe. The evolution of supermassive black holes (SMBH) residing in the centers of AGN

can be probe the intergalactic medium (IGM).“Feedback” from AGN affects the host galaxies and

IGM (Silk and Rees 1998). Feedback in a galaxy is any process that heats or disrupts gas, and

hence decelerates star formation, as hot turbulent gas will collapse into stars much more slowly

than cold and stationary gas.

Despite from probing the early Universe, QSOs have another important application. The most

stable celestial reference frames used so far build on the positions of extragalactic sources such as

QSOs. The current IAU standard frame defining the coordinates on the sky is the ICRF-2, built

using radio interferometry (Fey et al. 2015). Its accuracy is 100 µas.

Such reference frames are used for astrometry, but also for geodesy and navigation. With the

data from the Gaia mission, for the first time an additional µas reference frame, but based on

observations in the optical wavelengths, will be available.

The Physics and Evolution of QSOs

Gravitational accretion onto compact objects provides very efficient conversion of potential and

kinetic energy into radiation. Such processes give a reasonable explanation for the observed high

luminosities and rapid variability of such sources.

When the accretion disk heats up, the ultraviolet and X-ray continuum emission is able to photo-

ionize and excite the diffuse cold atomic gas clouds close to the black hole. This leads to the produc-

tion of emission lines, which are then broadened due to the high velocities of the clouds,reaching

up to 10,000 kms−1 (Peterson 1997).

Despite such accretion processes, there is no evidence up to now what actually gives rise to QSO

variability. Large-scale changes in the amount of in-falling material (as discussed e.g. in Hopkins

and Beacom 2006) as well as disk instabilities (e.g. Schmidt et al. 2012) are considered as the

most probable causes for most of the observed variability.
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Other effects being discussed to contribute to the variability are microlensing by the host galaxy

(Hawkins 1996; Zackrisson and Bergvall 2003) and starbursts in the host galaxy (Aretxaga et al.

1997). Central SMBHs are widely believed to be found in the centers of most or all galaxies.

Furthermore, it is believed that almost all, or even all galaxies undergo active phases for about

107 to several billion years (Hopkins et al. 2005).

Whereas there are rare cases known in which AGN vary by several percent over a few nights

(Pollock et al. 1979), most AGN (and thus QSOs) show variation of just a few percent over

weeks to years. The fact that some show variations on very sort timescales is an indicator for the

existence of a very small region causing the variability, ranging from a few light-months to a few

light-days in diameter.

2.6 Surveys for Variable Objects

Due to the importance of various classes of variable sources – from QSOs to variable stars to

exoplanets – many of surveys focused and focuses on their observation.

In this section, a brief review on surveys enabling science in the time domain is given. Some of

them observe only small fields, whereas others are observing large portions of the sky (“all-sky

surveys”). Surveys represent a fundamental data basis for astronomy. They are used to map the

Universe in a systematic way, and thus discover new types of objects or phenomena. Some science

can be done with the survey data alone, some requires the combination of data from different

surveys, some requires a targeted follow-up of potentially interesting sources. Surveys can be used

to generate large, statistical samples of objects that can be studied as populations, or as tracers of

larger structures to which they belong. They can be also used to discover samples of rare objects,

and may lead to discoveries of some previously unknown types.

The exponential growth of data volume and complexity makes a broader application of data

mining and knowledge discovery technologies critical in order to take full advantage of this wealth

of information.

Surveys can be classified in regard to their scientific motivation and strategy, their wavelength

regime, ground-based vs. space-based, the temporal character (single- vs. multi-epoch, time do-

main), the type of observation (e.g. imaging, spectroscopy), their area coverage on the sky and

their depth.

Progress in astronomy has always been driven by technology. From the viewpoint of surveys, the

milestone technologies include the development of astrophotography (late 1800’s), Schmidt tele-

scope (1930’s), radio electronics (1940’s), space telescopes (1960’s) and digital detectors, notably

the CCDs (1980’s).

In this section, a review on past, current and planned time-domain surveys is presented, with

emphasis on photometric imaging surveys in the optical and infrared. The general and variety
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properties of photographic, digital, ground- and space-based surveys are presented, illustrated by

more details for a few outstanding examples. Finally, some prospects for the future are discussed.

2.6.1 Photographic Surveys

Repeatedly observing the sky was the starting point of astronomy in ancient times. Positions and

brightnesses of the same objects – mostly stars and planets – were reported for mythological as

well as calendrical reasons. The same striking sources were monitored repeatedly, leading to the

first sky charts of something nowadays called targeted astronomical observations.

In contrast, modern sky surveys are not targeted, but aim to map and characterize the astronom-

ical content of large fractions of the sky in a systematic manner.

Historically, surveying of the sky started with the naked eye, continued with telescopes, and one

could consider Charles Messier’s catalog2 from the middle of the 18th century – first listed 1771

– as a pioneer in searching for and describing astronomical sources.

The way of surveying the sky was revolutionized by the invention of photography at the end of the

19th century. The first surveys in the modern sense, not only containing positions and descriptions

but images, took place by systematically documenting large areas of the sky on photographic

plates. One of the most notable of those is the Harvard Plate Collection, which spans over a

century of sky coverage. It is currently digitized by the Digital Access to Sky Century on Harvard

(DASCH, Laycock et al. 2010) project.

One important discovery made from analyzing repeated observations on photographic plates was

the period-luminosity relation for Cepheids, found by Henrietta Leavitt (Leavitt and Pickering

1912) from stars in the Magellanic Clouds. This discovery laid the groundmark for the cosmological

distance scale and the breakthrough discovery of the expanding Universe by Edwin Hubble and

others in the 1920’s.

Despite being not a time-domain survey, it’s worth to mention here the Henry Draper Catalogue

(HD) from the early 20th century. The first version was published between 1918 and 1924 for

225,300 stars, and successively extended until 1949. In total containing ∼360,000 stars, it gives

spectral types based on objective prism plates. It is still in use. Currently, the Catalogue and

Extension are available from the VizieR service of the Centre de Données astronomiques at

Strasbourg as catalogue number III/135A.

In the 1930’s, Fritz Zwicky pioneered the field of sky surveys in a way that affected much of the

subsequent work. He built the first telescope on Mt. Palomar, an 18-inch Schmidt telescope, and

used it to search for supernovae.

A major milestone was the first Palomar Observatory Sky Survey (POSS-I), conducted from 1949

to 1958, which mapped 3/4 of the entire sky with two observations per source, one using blue-

2The Messier Catalog. SEDS Messier Database. http://messier.seds.org/
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and one using red-sensitive plates, down to 21 mag. It was continued from 1980 to 1999 as POSS-

II. It is an important resource for star movements due to the large temporal baseline of about

4 decades. POSS-I is currently available as digitized scans of the photographic plates from The

Minnesota Automated Plate Scanner Catalog of the Palomar Observatory Sky Survey, (MAPS

Catalog).

2.6.2 Digital/ CCD Surveys

Photographic surveys, as well as their derived catalogs, were published as books or small sets

of volumes that can be looked up. But as the data volumes rapidly increased in the 1990’s,

such catalogs soon contained millions of objects, so there was a transition to purely electronic

publications, nowadays being available as web-accessible archives.

Aside from the digitized versions of the photographic sky surveys, a major milestone was the

advent of the CCD surveys, like the Sloan Digital Sky Survey (SDSS). Due to such surveys,

astronomy transitioned from a relatively data-poor science, dealing with a few sources and a few

epochs of observations, to an immensely data-rich one. Thanks to the advent of several large-scale

surveys observing large fractions of the sky multiple times, our understanding of the time-variable

Universe has increased rapidly.

In the following, the most important digital sky surveys are ordered chronologically.

As one of the first digital sky surveys, the All Sky Automated Survey (ASA, Pojmanski 1997)

covers the entire sky using a set of small telescopes at Las Campanos Observatory, Chile, and

Haleakala, Maui. It was observing in V and I bands, with limiting magnitudes V∼14 mag and

I∼13 mag. The ASAS-3 Photometric V -Band Catalogue contains over 15 million light curves.

Another key contribution at that time was the Two Micron All-Sky Survey (2MASS, Skrutskie

et al. 2006), carrying out all-sky observation in the infrared. 2MASS was observing between 1997

and 2001, in two different locations at the U.S. Fred Lawrence Whipple Observatory on Mount

Hopkins, Arizona and at the Cerro Tololo Inter-American Observatory in Chile, each using a

1.3-meter telescope for the northern and southern hemisphere, respectively. The survey covered

four infrared bands, J (1.235 µm), H (1.662 µm), Ks (2.159 µm).

The goals of this survey included: Detection of galaxies in the “Zone of Avoidance”, a strip of sky

obscured in visible light by the Milky Way; detection of brown dwarfs; an extensive survey of low

mass stars; cataloging of all detected stars and galaxies.

Although 2MASS was primarily a single-epoch survey, approximately 30% of the sky was observed

multiple times. It produced an astronomical catalog with over 300 million observed objects, in-

cluding minor planets of the Solar System, brown dwarfs, low-mass stars, nebulae, star clusters

and galaxies. In addition, 1 million objects were cataloged in the 2MASS Extended Source Cat-

alog. The final data release for 2MASS occurred in 2003, and is served by the Infrared Science

Archive.

The science products of 2MASS are: Point Source Catalog (PSC) consisting of over 500 million
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stars and galaxies; Extended Source Catalog (XSC) consisting of 1.6 million resolved galaxies;

Large Galaxy Atlas (LGA) consisting of ∼600 nearby galaxies and globular clusters; All-Sky

Quicklook and Atlas images providing full coverage of the infrared sky.

The Sloan Digital Sky Survey (SDSS, York et al. 2000) is the first CCD photometric survey at

high Galactic latitudes, mostly in the northern sky. The imaging survey uses 5 passbands (ugrizy)

with limiting magnitudes of 22.0, 22.2, 22.2, 21.3 and 20.5 mag, respectively. Additionally, SDSS

spectra were collected by a series of spectroscopic programs.

The initial survey SDSS-I (2000-2005) covered ∼8,000 deg2. SDSS-II (2005-2008) is made up of

multiple surveys, among them the Sloan Legacy Survey that extended the area coverage to ∼8,400

deg2, and catalogued 230 million objects, the Sloan Extension for Galactic Understanding and

Exploration (SEGUE) that obtained almost 2.5 × 105 spectra over ∼3,500 deg2, and the Sloan

Supernova Survey which spectroscopically confirmed 500 type Ia supernovae in the redshift range

z = 0.05− 0.4.

SDSS-III was running from 2008 to 2014, using the Sloan Foundation 2.5-meter Telescope at

Apache Point Observatory in New Mexico. SDSS-III consists of four surveys, BOSS, APOGEE,

SEGUE-2, MARVELS.

SDSS-IV, the current survey (2014-2020), is consisting of sub-surveys for extending precision

cosmological measurements to a critical early phase of cosmic history (eBOSS), expanding its

revolutionary infrared spectroscopic survey of the Galaxy in the northern and southern hemi-

spheres (APOGEE-2), and for the first time using the Sloan spectrographs to make spatially

resolved maps of individual galaxies (MaNGA). Two smaller surveys will be executed as subpro-

grams of eBOSS: The Time Domain Spectroscopic Survey (TDSS) will be the first large-scale,

systematic spectroscopic survey of variable sources; while the SPectroscopic IDentification of

EROSITA Sources (SPIDERS) will provide a unique census of supermassive black-hole and large

scale structure growth, targeting X-ray sources from ROSAT, XMM and eROSITA (Clerc et al.

2016).

More than perhaps any other survey, SDSS has transformed the culture of astronomy in regards

to sky surveys: A major innovation of SDSS was the effective use of databases for data archiving,

as well as web-based interfaces for data access, being not only available within the community,

but public. Multiple well-documented public data releases were made using this approach with

the recent one, DR13, containing observations through July 2015.

The Nearby Supernova Factory (SNfactory, Aldering et al. 2002) operated by the Lawrence

Berkeley National Laboratory (LBNL) searches for type Ia supernovae in the redshift range

0.03 < z < 0.08 in order to establish the low-redshift anchor of the SN Ia Hubble diagram. This

survey was carried out from 2003 to 2008.

The Catalina Real-Time Transient Survey (CRTS, Drake et al. 2009) uses existing synoptic tele-

scopes and imaging data resources from the Catalina Sky survey (CSS, Drake et al. 2009) for

near-earth objects and potentially planetary hazard asteroids (NEO/PHA). The solar system ob-

jects remain in the domain of the CSS, while CRTS aims to detect astrophysical transient and
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variable objects from the same data stream. It started operation in 2007.

CRTS utilizes three wide-field telescopes: the 0.68-m Schmidt telescope at Catalina Station, AZ

(CSS), the 0.5-m Uppsala Schmidt (Siding Spring Survey, SSS) at Siding Spring Observatory,

NSW, Australia, and the Mt. Lemmon Survey (MLS), a 15-m reflector located at Mt. Lemmon,

AZ. They are operated for 23 nights per lunation, centered on new moon. Most of the observable

sky is covered up to 4 times per lunation. The total area coverage is ∼30,000 deg2, as it excludes

the Galactic plane within |b| < 10 − 15◦. In a given night, 4 images of the same field are taken,

separated by ∼10 min. The combined data stream covers up to 2,500 deg2 per night to a limiting

magnitude of V ∼ 19− 20 mag, and add up to 275 deg2 per night to V ∼ 21.5 mag. Date cover

time baselines from 10 min to years.

The Optical Gravitational Lensing Experiment (OGLE, Udalski 2003) is a long-term large-scale

sky survey searching for various variable and transient sources, among others microlensing. Its

main targets are the Magellanic Clouds and the Galactic Bulge. Those regions are the most

natural locations to conduct such search, as they have a large number of background stars that

are potential targets for microlensing during a stellar transit. As the optical depth for microlensing

is very small (about 10−6), a long-term large-scale survey is needed to detect them and to draw

conclusions from a statistically significant sample of microlensing events.

OGLE began regular observation in 1992. Since then, it has undergone various phases. The first

phase, OGLE-I (1992-1995), was the project pilot phase. For OGLE-II (1996-2000), a telescope

dedicated for this project, using an 8-chip mosaic CCD camera, was constructed. OGLE-III (2001-

2009) was primarily devoted to detecting gravitational microlensing events and transiting planets

the Galactic Bulge, the constellation Carina, and both Magellanic Clouds. OGLE-IV was starting

in 2010, using a 32-chip mosaic CCD camera with the main goal being to increase the number of

planetary detections using microlensing.

Within the first three phases, OGLE detected as many as 20 new extrasolar planets, more than

4000 microlensing events, and several hundred thousand new variable stars. An OGLE-III Online

Catalog of Variable Stars is available; its goal is to record all variable sources located in the

OGLE-III fields in the Magellanic Clouds and Galactic bulge. The data currently available include:

classical Cepheids in the Galactic Bulge, LMC and SMC; type II Cepheids in the Galactic Bulge,

LMC and SMC; anomalous Cepheids in LMC and SMC; RR Lyrae stars in the Galactic Bulge,

LMC and SMC; Long Period Variables in the Galactic Bulge, LMC and SMC; Double Period

Variables in LMC; R CrB stars in LMC; δ Scuti stars in LMC.

SkyMapper (S. C. Keller et al. 2007) was developed at the Australian National University.

The fully automated 1.35 m wide-angle telescope is located at Siding Spring Observatory, Aus-

tralia. Its camera covers a ∼5.7 deg2 field of view. Started operation in 2007, SkyMapper scanned

the entire southern sky 36 times in 6 filters (SDSS grizy), a Strömgen system-like u, and a narrow

V band near 4000 Å. It will generate ∼100 MB of data per second during every observed night,

totaling about 500 TB of data at the end of the survey.
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Whereas SkyMapper is observing the southern sky, its northern counterpart is Pan-STARRS.

The Panoramic Survey Telescope & Rapid Response System (Pan-STARRS, Chambers 2011) is a

wide-field panoramic sky survey developed at the University of Hawaii’s Institute for Astronomy.

The survey is operated by an international consortium of institutions. It is envisioned as a set of

four telescopes with a 3◦ field of view each, observing the same region of the sky simultaneously.

The telescopes are located at Haleakala Observatory on the island of Maui, Hawaii.

Up to now, only one telescope (PS1) is operating, it started operation in 2010. PS1 can cover up

to 6,000 deg2 per night and generates up to several TB of data per night; however, not all images

are saved, and the expected final output is estimated to be ∼1 PB per year.

The primary goal of PS1 is to survey ∼3/4 of the entire sky (the 3π survey) with 12 epochs in

each of the 5 bands (gP1, rP1, iP1, zP1, yP1). The coadded images should reach considerably deeper

than SDSS. A dozen key projects, some requiring additional observations, are also underway. The

data is restricted to the consortium members until completion of the PS1 3π survey.

The method on finding and classifying variable sources as part of this thesis work was applied to

PS1 3π data. A more detailed introduction to Pan-STARRS, and especially PS1 3π, is given in

Chapter 3.

The Palomar Transient Factory (PTF, Law et al. 2009) uses a 48-inch Schmidt telescope at

the Palomar Observatory. The data are taken in a point-and-stare mode, with 2 exposures per

field per night, mostly in the broad R and G bands. The survey is operational since 2009. PTF

reaches a depth of mR = 20.45 and mG = 21.0 and covers a few hundred deg2 per night. The

overall coverage is ∼1/2 of the entire sky. The survey’s cadence is mostly optimized for supernova

discovery. PTF was continued as i-PTF and led to the development of ZTF (Bellm 2014).

There are many other time-domain surveys using ground-based CCD observations, e.g. the Lincoln

Near-Earth Asteroid Research survey (LINEAR, Stokes et al. 1998), the Supernova Legacy Survey

(SNLS, Pritchet 2005), MACHO (Alcock et al. 2001), UKIRT Infrared Deep Sky Survey (UKIDSS,

Lawrence et al. 2007).

2.6.3 Space Telescope Surveys

Ground-based astronomy has several limitations: The main problems concern atmospheric seeing,

scattering of light in the atmosphere, and the absorption of radiation with wavelengths shorter

than 290 nm by oxygen and nitrogen.

Electromagnetic radiation of all wavelengths reaches Earth’s upper atmosphere from the Universe.

As different wavelengths can give information about different astrophysical processes, astronomers

are interested in examining the complete spectrum. However, radiation of different wavelengths

is absorbed by different amounts in the atmosphere.

O and N completely absorb all radiation with wavelengths shorter than 290 nm. Ozone (O3)

absorbs most of the ultraviolet. Electromagnetic radiation over a large range of infrared (IR)

wavelengths is absorbed by water vapor and CO2. This prohibits ground-based IR observation
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with the exception of the near-infrared wavelengths from 1 to 10 mm and the far infrared up to

10 µm.

A wholesale exploration of the mid/far IR regime requires a space-based platform, and the Infrared

Astronomy Satellite (IRAS, Beichman et al. 1986), launched in 1983, opened a huge new area of

research.

Some of the subsequent missions included the Wide-Field Infrared Survey Explorer (WISE Wright

et al. 2010), launched in 2009. His all-sky survey mapped the sky at four infrared wavelength

bands, 3.4, 4.6, 12 and 22 µm. WISE detected more than 250 million objects, including near-earth

asteroids (NEOs), brown dwarfs, QSOs, ultra-luminous starbursts and other sources of interest.

When the telescope run out of hydrogen for cooling, the mission was continued as NEOWISE, and

the survey continued for an additional four months using the two shortest wavelength detectors.

NEOWISE carried out measurements of asteroids and comets from images collected by the Wide-

field Infrared Survey Explorer (WISE) spacecraft. NEOWISE provides a rich archive for searching

for solar system objects.

Data from the original WISE as well as NEOWISE missions have already enabled research in

a variety of fields. With its increased sensitivity and time-domain information, combining them

to ALLWISE extends this, as well as opens avenues of study that were not possible with the

individual data.

The Hubble Space Telescope (HST, with its catalog, the Hubble Source Catalog as described in

Budavári and Lubow 2012), named in honor of astronomer Edwin Hubble, started its operation

in 1990. It is observing in the near ultraviolet, visible, and near infrared, using a primary mirror

with a diameter of 2.4 m. From its low Earth orbit position, being outside the influence of Earth’s

atmosphere, it is able to take extremely high-resolution images with an angular resolution of

0.05 arcsec and a pointing accuracy of 0.007 arcsec. The HST has made more than 1.2 million

observations since its mission began in 1990, resulting into ∼10 TB of new archive data per year

and up to now more than 14,000 scientific papers. The HST is still operating, and could continue

for decades.

The Spitzer Space Telescope (Spitzer, SST, Werner et al. 2004), named in honor of astronomer

Lyman Spitzer, who had promoted the concept of space telescopes in the 1940s, is an infrared

space observatory launched in 2003.

Spitzer is equipped with a 0.85 m primary mirror, that was cooled to 5.5 K, and follows a

heliocentric instead of geocentric orbit. Its three instruments enable astronomical imaging and

photometry from 3.6 to 160 µm, spectroscopy from 5.2 to 38 µm, and spectrophotometry from 5

to 100 µm.

The planned lifetime of the mission was 2.5 years with a possible extent of another 2.5 years until

the He supply for cooling was exhausted. When this happened in May 2009, the two shortest-

wavelength modules of the IRAC camera were still operable with the same sensitivity as before.

Spitzer was then continued as the so-called Spitzer Warm Mission. All Spitzer data, from both

the originally phase with the full waverange as well the limited warm phase, are archived at the
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Infrared Science Archive (IRSA).

Among many other spectacular results like finding the youngest stars ever detected, it has directly

captured light from exoplanets in 2005, namely from the “hot Jupiters” HD 209458b and TrES-1b

(Deming and Seager 2005; Charbonneau et al. 2005).

HST’s scientific successor, the James Webb Space Telescope (JWST Boccaletti et al. 2015), is

scheduled for launch in 2018. Its nominal mission time is five years, with a goal of ten years.

Different than the HST, it will observe from long-wavelength (orange-red) visible light, through

near-infrared to the mid-infrared (0.6 to 27 µm). It is currently under construction and scheduled

to launch in October 2018. The JWST has a larger primary mirror than the HST (6.5 meter,

segmented, resulting in a collecting area about five times as large as HST’s). The telescope will be

located near the Earth–Sun L2 point, allowing it to use a single sunshield to keep the instruments

below 50 K.

The design of JWST emphasizes the near to mid-infrared for three main reasons: high-redshift

objects have their visible emissions shifted into the infrared, as more distant an object is, the

younger it appears; cold objects such as debris disks and planets emit their radiation primarily in

the infrared; infrared radiation is better able to pass freely through regions of cosmic dust that

scatter radiation in the visible spectrum.

JWST’s primary mission encompasses four scientific goals: to search for light from the first stars

and galaxies that formed in the Universe after the Big Bang, to study the formation and evolution

of the first galaxies, to understand the formation of stars and planetary systems and to study

planetary systems including direct imaging of exoplanets. Many of them are beyond the reach of

current ground and space-based instruments.

Kepler (Borucki et al. 2010), named after the astronomer Johannes Kepler, is a space telescope

launched in 2009 in order to discover Earth-size planets orbiting other stars. Kepler is designed

to survey a portion of our region of the Milky Way to discover Earth-size exoplanets in or near

habitable zones and estimate how many of the billions of stars in the Milky Way have such planets.

Its photometer continually monitors the brightness of over 145,000 main sequence stars in a fixed

field of view. This data is transmitted to Earth, then analyzed to detect periodic dimming caused

by exoplanets that cross in front of their host star.

The initial planned operational time was 3.5 years, but greater-than-expected noise in the data,

from both the stars and the spacecraft, enforced additional time was needed to fulfill all mission

goals. Initially, in 2012, the mission was expected to be extended until 2016, but on July 14, 2012,

one of the spacecraft’s four reaction wheels used for pointing the spacecraft stopped turning,

and completing the mission would only be possible if all other reaction wheels remained reliable.

Then, on May 11, 2013, a second reaction wheel failed. This meant the current mission needed

to be modified to continue its search for exoplanets. Kepler was used further on in the so-called

K2 mission in order to detect habitable planets around smaller, dimmer red dwarfs (Howell et al.

2014).

As of September 2016, Kepler had found 2,330 confirmed exoplanets, along with a further 4,696
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unconfirmed planet candidates. Further 129 planets have been confirmed through Kepler’s K2

mission, and there are 458 K2 candidate exoplanets.

The Gaia mission (Prusti 2014), launched in December 2013 will provide fundamental data for

a better understanding of the structure of our Galaxy. Gaia started its scientific mission in July

2014 and has been mapping the Milky Way ever since.

Gaia is an ambitious mission to chart a three-dimensional map of the Milky Way in order to

reveal its composition, formation and evolution. Gaia will provide unprecedented positional and

radial velocity measurements with accuracies required to produce a positional kinematic census

of about one billion stars in the Milky Way and throughout the Local Group. This amounts to

about 1 percent of the Galactic stellar population.

As Gaia scans the sky, it creates a precise three-dimensional map of astronomical objects – stars,

asteroids, comets and other – throughout the Milky Way and map their motions. Gaia will mon-

itor each object about 70 times over a period of five years. From the observations, astrometric

parameters are determined: two corresponding to the angular position of a given object on the

sky, two for the derivatives of the object’s position over time, and the object’s parallax from

which distance can be calculated. Gaia will determine the position, parallax, and annual proper

motion of 1 billion stars with an accuracy of about 20 µas at 15 mag, and 200 µas at 20 mag. This

is an accuracy 100 times better than of Hipparcos. Additionally, positions will be determined a

magnitude of V = 10 down to a precision of 7 µas between 12 ,and 25 µas down to V = 15 mag,

and between 100 and 300 µas to V = 20 mag. The precision depends the color of the star.

Spectrophotometric measurements are carried out in order to provide the detailed physical prop-

erties such as luminosity, effective temperature, chemical composition and gravity for all observed

stars.

Similar to its precursor Hipparcos, Gaia is equipped with two telescopes. They provide two ob-

serving fields with a fixed angle of 106◦.5 between them. Gaia rotates continuously around an axis

perpendicular to the two telescopes’ lines of sight, and maintains a constant angle to the Sun.

While doing so, the spin axis has a slight precession across the sky. Thus, a reference system is

obtained by precisely measuring the relative positions of objects from both observing directions.

The radial velocity of the brighter stars is measured by an integrated spectrometer, making use

of the Doppler effect.

On September 12, 2014, Gaia discovered its first supernova in a galaxy about 500 million light-

years away. On July 3, 2015, a map of the Milky Way’s star density was released. On 13 September

2016, ESA has released a 3D map based on data from the the first 14 month of the mission, con-

taining over a billion stars, out of them 400 million newly found sources.

2.6.4 The Future of Surveys for Variable Sources

Synoptic surveys are now the largest data producers in astronomy, entering the Petascale regime,

opening the time domain for systematic exploration. Planned facilities for the next decade and
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beyond, such as LSST, and the Square Kilometer Array (SKA, Maartens et al. 2015) will revo-

lutionize our understanding of the Universe with nightly searches for changing sources over large

fractions of the sky. A great variety of interesting phenomena, spanning essentially all sub-fields

of astronomy, can only be studied in the time domain, and these new surveys are producing large

statistical samples of the known types of sources and events for further studies, and have already

uncovered previously unknown subtypes of these.

Such surveys are generating a new way of doing science, and prepare for even larger surveys to

come, e.g. LSST. Astrophysical and instrumentation knowledge, methodology in both astronomy

and data science, and experience that are being accumulated now are crucial to fully exploit such

forthcoming surveys.

Time-domain astronomy is clearly a part of astronomy depending strongly on computational

systems, and will increasingly depend on novel machine-learning and artificial intelligence (e.g.

structure finding) tools. The growth of data quantity, coupled with an improved data homogeneity,

its challenging but enables a new generation of statistical or population studies: with samples of

millions of sources, one could look for subtle effects being simply not accessible with more limited

data sets.

A number of important astrophysical phenomena can be discovered and studied only in time

domain, ranging from exploration of the Solar System to cosmological phenomena. In addition to

the studies of known time domain phenomena, e.g. variable stars, supernovae and quasars, there

is an obvious possibility of discovering new types of objects and phenomena.

Numerous surveys, studies and experiments have been conducted in this area, are in progress, or

are in the planning stages, indicating the growth interest in time-domain astronomy, leading to

the Large Synoptic Survey Telescope (LSST).

The field has been fueled by the advent of the new generations of digital synoptic time domain

surveys, which cover the sky many times, as well as the ability to respond rapidly to transient

events using robotic telescopes. This new growth area of astrophysics has been enabled by infor-

mation technology, continuing evolution from large panoramic digital sky surveys, to panoramic

digital sky “cinematography”, a term used in the context of LSST.

The data streams generated by panoramic digital synoptic sky surveys require rapid, real-time

processing of massive data streams, with event detection for follow-up, filtering, characterization,

and rapid publication of the data to the astronomical community.

The LSST, as described in the LSST Science Book, is a wide-field telescope that is currently

under construction at Cerro Paranal in Chile. The primary mirror will be 8.4 m in diameter, the

secondary 3.4 m. The large hole in the primary mirror reduces the collecting area to that of a

6.68 m telescope.

The LSST is planned to start observing in 2019, and will produce a 6-bandpass (0.3-11 µm,

ugrizy) wide-field, deep astronomical survey over 20,000 deg2 of the southern sky with up to
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1000 visits per field. The camera will be able to cover ∼9.6 deg2 in individual exposures. LSST

will take more than 800 panoramic images each night, with 2 exposures per field. This will lead

to 30 TB of data per night. By doing so, the accessible sky will be covered twice a week. The

data will be continuously generated and updated every observing night. Calibration and co-added

images, and the resulting catalog will be generated on a slower cadence. The final source catalog

after 10 years of observation is expected to have a data volume of 60 PB. Processing and analysis

of this huge amount of data introduces a number of challenges in the fields of real-time data

processing, distribution and archiving. A more detailed description of LSST is given in Chapter

3.

The Zwicky Transient Facility (ZTF, Bellm 2014) is an optical synoptic survey that builds on the

experience and infrastructure of the PTF. Using a new 47 deg2 survey camera, ZTF will survey

more than an order of magnitude faster than PTF to discover rare transients and variables.

ZTF is planned to start observing in 2017. Its main goals are searches for fast transients, young

supernovae, rare variables as well as counterparts to gravitational-wave detections.
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Chapter 3

PS1 3π as Time-Domain Survey & LSST Pilot Survey

Many astronomers and astrophysicists are not only interested in a couple of sources strongly

restricted by area and depth, but in explanations for phenomena that would involve data covering

huge ranges in area, magnitude range and also temporal resolution. Such an“ideal”data set would

help in mapping the Milky Way in its “complete” content, as well as to constrain simulations such

as on galaxy evolution.

Early Milky Way surveys (i.e., before SDSS) have suffered from shortage of data; to cope with

this, astronomers working with them had to heavily use analytic density laws (fitting functions for

density profiles as well as luminosity functions, being often inspired by extragalactic observations,

such as the luminosity function of galaxies, the color-luminosity relation, size-luminosity relation,

quantitative morphology of galaxies) to characterize the results. Nowadays large, deep and uniform

data sets, like SDSS and Pan-STARRS, have shifted the emphasis from model fitting towards

multidimensional mapping. Upcoming surveys covering the Milky Way and beyond will do this

even more.

Answering questions related to the important scientific problems of the next decade (such as

studying the evolution of our Milky Way and of galaxies in general, discovering the nature of

Dark Energy and Dark Matter, and opening up the time domain to discover rare transient and

variable objects down to faint magnitudes with a fast cadence) rely strongly on deep, wide-field

time-domain imaging of the sky in optical bands.

For the understanding of galaxy formation and evolution, it will be essential to examine the full

multidimensional distributions of their properties. As data sets and modeling techniques as well

as the performance of computing centers evolve, models will be tested not only by their capacities

in reproducing the mean trends in galaxy properties but by their ability to reproduce and explore

the full distribution.

The upcoming generation of synoptic sky surveys3, like LSST, will be operating in the Peta-

scale regime to fulfill these requirements. Surveys like Pan-STARRS are already preparing for

these challenges. This new generation of surveys does not only depend critically on the state of

information and computer technology, but will push it to a new performance regime.

3Here, this word is adopted from the LSST Science Book (LSST Science Collaborations and LSST Project 2009),
who use it to refer to “looking at all aspects of something”, derived from the Greek word “Synopsis”.
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This chapter deals with the time-domain properties of PS1 3π and why and how PS1 3π can

serve as a pilot survey for the upcoming LSST. Here, the question comes up on what is meant by

a “pilot survey” and why this is auxiliary for an upcoming survey.

In the case described here, a pilot survey is an existing survey that can act as a preliminary survey

with respective to an upcoming one. The pilot survey is fully operationally and scientifically used,

but can also be used to gather information for upcoming surveys, such as determining the efficiency

as well as caveats of future surveys.

For the reasons of similar sky coverage (PS1 3π has 30,000 deg2, whereas LSST has 20,000 deg2),

as well as for similar bandpasses (PS1 3π has gP1, rP1, iP1, zP1, yP1, whereas LSST ugrizy), and

also for the greater depth expected from LSST (PS1 3π has a single-exposure depth of gP1 < 22.0

mag whereas LSST has g < 25.0 mag) as well as LSST’s higher cadence (PS1 3π has ∼60 epochs,

whereas LSST will have ∼2000 epochs), PS1 3π can be seen as a pilot survey for LSST. As PS1

3π is multi-band with non-simultaneous observations, has a sparse time sampling and is covering

almost the same fraction of the sky as LSST, it can serve as a testing ground for various modeling

approaches, for variable sources and beyond. Studies on PS1 3π can help with developing multi-

band analysis methods, and also helps with doing science with preliminary LSST data.

In the following, first, a description of both surveys is given. Then, it is discussed why and how

PS1 3π can serve as a pilot survey for LSST, and for other multi-band synoptic sky surveys in

general.

3.1 The Pan-STARRS1 3π Survey

The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) consists of cur-

rently two telescopes, of which the first one, PS1, was used for the Pan-STARRS1 survey. Using

this 1.8 m, f/4.4 Ritchey-Chrétien telescope with a 3.2◦ field of view (FOV) (∼7 deg2), the PS1

survey began full science observation on 13 May 2010, and the observations for the all-sky survey

PS1 3π were completed in April 2014.

The Pan-STARRS project is a collaboration between the University of Hawaii Institute for As-

tronomy, MIT Lincoln Laboratory, Maui High Performance Computing Center and Science Ap-

plications International Cooperation.

Most of the PS1 observing time is dedicated to two surveys: The 3π survey, a survey of the entire

sky north of declination -30◦, and the medium-deep (MD) survey, a deeper, many-epoch survey

of 10 fields, each 7 deg2 in size (Chambers 2011).

In the following, science goals, as well as technical aspects of the PS1 survey, especially the PS1

3π survey, are described.
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3.1.1 The Telescope

The PS1 telescope is designed as a wide-field optical imager devoted to survey operations (Cham-

bers 2011). The telescope has a 1.8 m aperture primary mirror, f/4.4, having a FOV of ∼7 deg2.

It is using a 1.4 Gpixel camera (GP1) in its focal plane, with a resolution of 0.26 arcsec/pixel. Its

location on the peak of Haleakala on Maui offers a point-spread function (PSF) with a full-width

at half-maximum (FWHM) of about 1 arcsec (Hodapp et al. 2004; Kaiser et al. 2010; Tonry et al.

2012).

The camera is equipped with a 8× 8 array of orthogonal transfer array (OTA) CCDs. Each OTA

is further subdivided into an 8× 8 array of “cells”, each an independent 590× 548 µm pixel CCD

(Tonry et al. 2012).

PS1 is observing in the optical and near-infrared (near-IR), spanning 400-1000 nm. The filters are

designated gP1, rP1, iP1, zP1, yP1 in order to distinguish PS1 from other photographic systems

(see also Sec. 3.1.4). These filters are similar to those used in the SDSS (see Stubbs et al. 2010),

with the following differences: (i) PS1 has no u band whereas SDSS has, (ii) the gP1 filter extends

20 nm redwards of gSDSS, paying the price of 5577 Å sky emission for greater sensitivity and

lower systematics for photometric redshifts, (iii) the zP1 filter is cut-off at 920 nm, giving it a

different response than the detector-response defined zP1, (iv) PS1 has an additional near-IR y

band whereas SDSS has not; the yP1 filter covers the region from 920 nm to 1030 nm with the

red limit largely determined by the transparency of the silicon in the detector.

These filters and their absolute calibration are described in Stubbs et al. (2010) and Tonry et al.

(2012).

3.1.2 Science Goals

The Pan-STARRS system was originally designed for the purpose of detecting potentially haz-

ardous objects in the Solar System. But the wide-field, all-sky, multi-band and time-series nature

of the observations makes it also excellent suited for many other astronomical purposes, ranging

from Solar System astronomy to cosmology.

The PS1 Science Consortium defined 12 key projects, covering Solar system science right out

to cosmology. In detail, these key projects are: populations of objects in the inner Solar System;

populations of objects in the outer Solar System; low-mass stars, Brown Dwarfs, and young stellar

objects; search for exoplanets by dedicated stellar transit surveys; structure of the Milky Way

and the Local Group; a dedicated deep survey of M31; massive stars and supernova progenitors;

cosmology investigations with variables and explosive transients; galaxy properties; AGN and

high-redshift quasars; cosmological lensing; large-scale structure.
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3.1.3 Observing Strategy

PS1 3π has observed all the sky accessible from Hawaii, resulting in 30,000 deg2.

The PS1 3π observing strategy (Magnier et al. 2012) has a complex schedule in order to balance the

needs for the different survey science projects. At the end of the survey, a total of 12 observations

in each of the 5 filters was planned to be available for each part of the observable sky. This rather

theoretical value would apply in the case of a perfect survey, having a perfect focal plane without

any gaps or overlaps between neighboring observations. Indeed, gaps in the focal plane (between

cells, between chips, and from masked pixels) lead to an average fill-factor of ∼80% for single

exposures.

For the reason of neighboring exposures having both overlapping areas as well as gaps due to the

layout of chip and camera, and for the reason of observational gaps due to weather issues, the

total survey mission was extended to 5.7 years.

The temporal distribution of the 12 observations in each filter follows an elaborated schedule.

For scheduling observations, the following guidelines were set out as shown by Magnier et al.

(2012):

• TTI pairs:

Any specific field is always observed twice per night in a single filter, where the observations

take place within 20-30 minutes. Two observations being related in this way are called

“Transient Time Interval” (TTI) pairs. They allow for the discovery of moving objects

(asteroids and NEOS), but are also helpful for the detection of fast varying sources. TTI

pairs are mutually subtracted as part of the nightly processing; sources detected in the

difference image are then reported to the Moving Objects Pipeline Software (MOPS).

• scheduling of blue bands:

The blue bands (gP1,rP1,iP1) are observed close to opposition to enable asteroid discovery.

These observations normally occur within ∼1.5 months of opposition for any given field.

Thus any given field should be observed a total of 12 times in these 3 filters within a 2-3

month window each year.

• scheduling of red bands:

For the reddest two bands (zP1,yP1), the observations are scheduled as far from opposition

as feasible in order to enhance the parallax factors and allow for discovery of faint, low-mass

objects in the solar neighborhood. This constraint results in 2 observations in each of zP1,

and yP1 occurring roughly 4-6 month before and 4-6 month after opposition for any given

field.

Each year, each field was planned to be observed twice in the same filter with an additional TTI

pair of images, making for four images of each part of the sky per year in each of the five PS1

filters. The pointing of individual observations is then designed to both carefully cover the entire

3π region and trade-off between maximal overlaps and optimized image differencing. Whenever
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possible, the TTI pairs were obtained in the same pointing to minimize the area loss in the

difference image due to mismatched gaps.

The end result of the observing strategy is that the full 3π region is covered in a wide range of

time periods in each filter and shows a large range of spatial overlaps. The overlaps are important

for carrying out photometric and astrometric solutions.

3.1.4 Photometry

PS1 observations are done with exposure times between 30 and 60 s, leading to the limiting

apparent magnitudes for single exposures of gP1 < 22.0 mag, rP1 < 22.0 mag, iP1 < 21.9 mag,

zP1 < 21.0 mag, yP1 < 19.8 mag (point sources, 5σ) and for stacked images of gP1 < 23.4 mag,

rP1 < 23.4 mag, iP1 < 23.2 mag, zP1 < 22.4 mag, yP1 < 21.3 mag (point sources, 5σ), as stated

by Metcalfe et al. (2013) and Schlafly et al. (2014). The PS1 transmission curves are given in Fig.

3.5 at the end of the Section.

Each image requires about 2 GB of storage. The images are processed through the Image Process-

ing Pipeline (IPP Magnier 2006, 2007; Magnier et al. 2008), performing automatic bias subtrac-

tion, flat fielding, astrometry, photometry and image stacking and differencing for every image

taken. The nightly processing is carried out in a massively parallel fashion at the Maui High

Performance Computer Center.

Magnitudes

Traditionally, astronomical magnitudes are defined as 2.5 times the logarithm of the ratio of fluxes

given between the object of interest (and observed with the given telescope) to that of Vega

(observed with the same instrumentation). There are a couple of drawbacks of such a system,

including the strong dependence on the precision of Vega’s magnitudes in the used bandpasses,

and the problem of observing a bright star like Vega with modern instruments designed to observe

very faint sources.

For this reason, PS1 uses the alternative AB magnitude system, in which the magnitude of a

source is defined by the integral of the flux density spectrum multiplied by the overall throughput

as a function of wavelength for the given telescope (Oke and Gunn 1983).

For a source with a flux density spectrum of fν erg/sec/cm2/Hz and a telescope with a system

response of A(ν), the AB magnitude for a bandpass is defined to be

mAB = −2.5 log

∫
fν(hν)−1A(ν)dν∫

3631 Jy (hν)−1A(ν)dν
(3.1)

Using AB magnitudes, the accuracy of the calibration is limited by knowledge of the system

response including the atmosphere, and our knowledge of the spectral energy distribution of a

specific star of interest.
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Tonry et al. (2012) have determined the overall system zero points needed to place the PS1

magnitudes onto the AB system. For doing so, they have included information on the relative

spectral response of the system, the filter transmission curves and also the transmission of the

atmosphere at the site, using observations of selected spectro-photometric standards taken in

a photometric night. Additionally, a large number of stars having measured spectra were used

to provide additional constraints by making stellar locus diagrams. Comparison of the fluxes

predicted by this method, and the magnitudes observed in each of the bandpasses led to the

inclusion of tweaks to 12 system parameters in order to obtain the most precise magnitude

calibration. These tweaks are all at the ∼1%. Details on the PS1 photometric system can be

found in Tonry et al. (2012).

Photometric Calibration

Schlafly et al. (2012) have reported on the photometric calibration of the first 1.5 years of the

PS1 survey. In their analysis, performing a highly-constrained relative photometric calculation

called “ubercal”, they select only the photometric nights and assign each a single fitted zero point

and a single fitted value for the airmass extinction coefficient per filter. This requires an external

zero point definition; Schlafly et al. (2012) used the zero points from Tonry et al. (2012) for the

images. In the subsequent analysis, for each night, the zero point is determined by minimizing

the dispersion of the measurements of the stars gained from multiple nights. Additionally, they

determine flat-field corrections as part of the minimization process.

Schlafly et al. (2012) determined four distinct time periods (“seasons”) having quite consistent flat-

field corrections that are clearly different from the other seasons. The cause of this was identified

with specific changes in the optical system, namely small scale changes in the vignetting and the

PSF structure.

The resulting photometric ubercal system is shown by Schlafly et al. (2012) to have reliability

across the survey region as high as (8.0, 7.0, 9.0, 10.7, 12.4) millimags in (gP1, rP1, iP1, zP1, yP1),

respectively.

3.1.5 Data Releases

The internal 3π stacked catalogs were released in three subsequent processing versions (PV), with

each version corresponding to a higher number of individual exposures and improved photometry.

The current and final internal data release is PV3 (which will become the public release), reaching

a single-exposure depth of gP1 ∼ 22 mag (point sources, 5σ level) and covering a total baseline

of 5.7 years, whereas most of the observations are within 5 years.

PS1 3π PV3 contains at total of 3.0× 1010 detections for 6.0× 109 sources.

The work at hand is carried out with PV3 for final results, and using PV2 for pre-analysis and

during the methodology was designed. Fig. 3.2 shows the total number of exposures in PS1 3π
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for PV2 and PV3. Whereas PV2 has 2.85 × 105 exposures, PV3 has 3.75 × 105 exposures. PV3

observations cover a longer temporal baseline; whereas PV2 covers a baseline of 4.2 years (with

most observations within 3.6 years), the baseline of PV3 is ∼550 days longer.

Fig. 3.2 gives the total number of epochs per source in PS1 3π for PV2 and PV3. Whereas PV2

has an average of 55 epochs per source, PV3 has 72 because of its longer baseline. Both figures

refer to the total number of epochs taken, so no outlier cleaning was applied.
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Figure 3.1 Total number of exposures in PS1 3π PV2 and PV3. Whereas PV2 has 2.85× 105 exposures, PV3 has
3.75× 105 exposures. PV3 extends PV2 especially at mjd>56500 resulting in a baseline being ∼550 days longer.
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(a) bright limit: 15 < iP1 < 18
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(b) faint limit: 18 < iP1 < 21.5

Figure 3.2 Total number of epochs per source in PS1 3π PV2 and PV3, over all five bands. Whereas PV2 has
an average of 55 epochs per source in the bright limit (15 < iP1 < 18), PV3 has 72 because of the longer baseline
shown in 3.2. In the faint limit (18 < iP1 < 21.5), as shown in the lower panel, the distribution of the number of
epochs is flatter with a lower average number of epochs per source. The peaks at low number of epochs results from
very faint sources and detection errors, resulting in sources having only a very small number of epochs.
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3.2 LSST

The Large Synoptic Sky Telescope (LSST) is one out of the upcoming generation of synoptic sky

surveys that will fulfill the requirements for scientific fields such as exploring the evolution of our

Milky Way and of galaxies in general, discovering the nature of Dark Energy and Dark Matter,

and makes the discovery of rare transient and variable sources possible down to faint magnitudes

(LSST Science Collaborations and LSST Project 2009). All these topics rely strongly on deep,

wide-field time-domain imaging of the sky in optical bands.

The LSST will be sited on Cerro Pachón in the Northern Chilean Andes. This location enables

the observation of sky regions with up to δ < 35.5◦ at an airmass of 2.2 or less, resulting in a

0.6 mag loss of sensitivity at 500 nm compared to an observation in the zenith (LSST Science

Collaborations and LSST Project 2009). The site of LSST corresponds to an observable area

of 31,000 deg2; however, the main survey has only a coverage of 20,000 deg2, as it avoids the

confusion-affected parts of the Galactic plane.

In the following, science goals, as well as technical aspects of the LSST are described, based on

the LSST Science Book (LSST Science Collaborations and LSST Project 2009).

3.2.1 The Telescope

This science requirement, as described in LSST Science Collaborations and LSST Project (2009),

leads to a single wide-field telescope and camera which repeatedly surveys the sky with deep

short exposures, enabling a fast cadence. The three-mirror telescope is equipped with with a 8.4

m primary mirror, 3.4 m secondary mirror and 5.02 m tertiary mirror, resulting in an effective

aperture of 6.7 meters and FOV of 9.6 deg2. It is using a 3.2 Gpixel camera, with a resolution

of 0.2 arcsec/pixel. LSST will carry out a main survey of 20,000 deg2 of the sky in six broad

photometric bands ranging from u to y, imaging each region of the sky roughly 2000 times over

a ten-year survey life time.

LSST is currently under construction on El Peñón Peak of Cerro Pachòn in the Northern Chilean

Andes. Cherro Pachòn is also the site where the 8.2 m diameter Gemini-South and 4.3 diameter

Southern Astrophysical Research (SOAR) telescope are located. Previous observations with these

telescopes have confirmed the excellent imaging quality that can be obtained from this site. LSST

is expected to enter operations in 2022.

LSST’s wavelengh coverage is 320–1080 nm, ranging from the optical to the near-IR. The filter

set consists of ugrizy; out of them, five are concurrent in the camera at a time, providing an

almost simultaneous survey.

Further information on the main system and survey characteristics can be found in the LSST

Science Book (LSST Science Collaborations and LSST Project 2009).
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3.2.2 Science Goals

As a sensitive, multicolor time-domain survey over most of the sky, LSST will dramatically impact

nearly all fields of astronomy and many new areas of fundamental physics. The aim of LSST is to

observe deep, wide and fast; a strategy that will enable a broad range of scientific investigations.

LSST is designed to achieve multiple goals in four main science themes (LSST Science Collab-

orations and LSST Project 2009): taking an inventory of the Solar system, mapping the Milky

Way, exploring the transient optical sky, and probing Dark Energy and Dark Matter.

LSST will take an inventory of the Solar System and extend the boundaries of nowadays surveys

both for asteroids and trans-Neptunian objects. It can be anticipated that LSST will detect and

characterize over 80% of 140 m or larger killer asteroids, several million main-belt asteroids, and

over 100,000 trans-Neptunian objects.

LSST will map the Milky Way out to 400 kpc. The survey will enable the detection of RR Lyrae

in the halo out to 400 kpc, main-sequence stars to a distance of 100 kpc, and additionally will pro-

vide geometric parallaxes for all stars within 300 pc. Thus, it will take an inventory of the Milky

Way, unveiling its formation and accretion history. Additionally, LSST will carry out a census on

the stellar content of the Milky Way regarding kinematics and stellar composition (abundances).

Previous surveys, such as 2MASS, SDSS and PS1, have shown in great detail that the Galactic

halo is composed of stars accreted from companion galaxies. LSST will give a way more detailed

look at indicators of how our Galaxy formed and evolved.

As being a time-domain survey with a fast cadence, LSST will explore the transient and variable

optical sky with a variety of time scales in the range from 10 sec to the whole sky every few nights,

totaling 1000 visits over 10 years of survey mission. By carrying out these observations, LSST

will enable the scientific community to characterize a vast amount of objects being members of

already known classes – such as RR Lyrae or QSO – as well as finding members of rare classes

and discovering new classes. LSST’s high cadence in combination with its wide-area coverage and

great depth will enable the discovery and detailed analysis of objects being as rare as neutron

star and black hole binaries, as well as the optical counterparts to gamma-ray bursts.

Among known classes, especially pulsating variables such as RR Lyrae and Cepheids are of inter-

est. Progress in doing research on variable sources is nowadays limited as this requires observations

that not only cover the time domain in detail, but also the parameter space of possible pulsation

properties. LSST will be able to contribute by providing a substantial number of “complete” (i.e.,

having very high sampling) light curves for RR Lyrae in both Galactic and LMC globular clusters.

RR Lyrae pairs, being members of eclipsing binary systems are of special interest, as this will

enable an important test on stellar models: Models on stellar interiors can explain the pulsation

of stars, however, many models differ only in a tiny fraction of mass (e.g. Szabó et al. 2004). To

check them against observations at the required level of precision, the mass of the stars is needed

at the same precision. The only reliable method for doing so is calculating the mass from a binary

system. Additionally, the duration of the eclipses gives the radius of each member of the binary

system.
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The possibilities provided by LSST will even reach to cosmological scales, enabling to constrain

Dark Matter as well as Dark Energy. To achieve this task, LSST will provide a variety of tech-

niques for fundamentally test assumptions on cosmology and gravity theories. LSST will provide

a sample of 3 billion galaxies having excellent photometry and shape measurements, over 100,000

clusters of galaxies, and a sample of several million type Ia SNe. By detecting a vast number

of AGN, LSST will increase our understanding of such systems dramatically. LSST will enable

the scientific community to gain a considerably more detailed insight, and also the possibility

to compare observations to theoretical modeling of AGN feedback, which already indicated that

AGN play a key role in galaxy evolution. Furthermore, measuring distances, growth of structure

and curvature simultaneously for 0.5 < z < 3 , LSST data will tell about the nature of recent

acceleration if it is due to Dark Energy or modified gravity. Supernovae will provide high angular

resolutions in order to probe the homogeneity and isotropy of the Universe.

These areas highlighted here are just a few of the many on which LSST will have enormous

impact.

To give numbers, it is expected that the data gained from LSST will enable (LSST Science

Collaborations and LSST Project 2009):

1. The mapping of stellar number density with observations of ∼10 billion main sequence stars

to (unextincted) distances of 100 kpc over 20,000 deg2 of sky.

2. The mapping of stellar metallicity over the same volume, using observations of photometric

metallicity indicators in ∼200 million near turn-off main sequence (F/G) stars.

3. The construction of maps of other more luminous tracers, such as RR Lyrae variables, to

as far as 400 kpc; this is the approximate virial radius of the Milky Way.

4. The construction of high-fidelity maps of the tangential velocity field out to 10 kpc or more

at 10 km s−1 precision, and as far as 25 kpc at 60 km s−1 precision.

In the following, a more detailed description on two fields is given, namely science enabled by

mapping the Milky Way with LSST, and science that can be done with AGN.

As shown in the LSST Science Book (LSST Science Collaborations and LSST Project 2009),

maps of stellar distribution gained by LSST will allow measurements of structural parameters

such as densities and kinematics of all Galactic components (bulge, disk, halo) including such be-

ing only poorly observed yet (e.g., the disk scale length). Putting them together with kinematic

information, they will allow for the construction of global dynamical models of the Milky Way,

inferring the distribution of mass and the potential of the Milky Way. Furthermore, LSST will

put observational constraints on the distribution of matter in the Galactic disk and halo, as well

as of Dark Matter in the inner Galaxy.

LSST is able to achieve such a complete map of the Milky Way because its combination of the

following capabilities: LSST has a u band, which allows for the measurement of stellar metallicities

of near turn-off stars and for mapping them throughout the observed disk and halo volume.
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LSST is observing in the near-IR using its y band, which allows for the mapping of stellar number

densities and proper motions even in regions of high dust extinction.

Due to LSST’s well-sampled time domain nature, it will be capable of identifying variable stars

that play a key role as density and kinematic tracers out to large distances.

LSST will enable proper motion measurements for stars being 4 magnitudes fainter than will be

obtained by Gaia (LSST Science Collaborations and LSST Project 2009).

In total, LSST data will increase the amount of data available for Milky Way science by two

orders of magnitude (Ivezić et al. 2008).

Another large field that will be covered by LSST is science that can be done with AGN. There are

three ways on how to identify AGN in LSST data: using their colors in LSST’s six-band system,

using their variability, and matching the sources to data at other wavelengths gained by different

surveys.

For selection by color, LSST can benefit from the u band. At low redshifts (z . 2.5), quasars are

blue in u− g and g − r, and are well-separated from stars in color-space. At this redshift range,

the u-band data are crucial for selection of AGN, to distinguish AGN from white dwarfs and A

and B stars. High-redshift AGN will be easily distinguished; the y filter should allow quasars with

redshift of 7.5 to be selected.

In addition to color, variability is another strategy for AGN selection. The amplitude of AGN

variability depends upon rest-frame variability time scale, wavelength, luminosity, and possibly

also redshift (Berk et al. 2004). The cadence of LSST will be especially useful for selecting low-

luminosity AGN, which cannot be selected by color as they would be swamped by their hosts.

Variability time scales in combination with color also allow for clean separation of AGN from

variable stars. An approach for using variability and color information to select quasars in Pan-

STARRS 1 3π data is also shown in this thesis (see Chapter 5) and in Hernitschek et al. (2016)

(applied to a preliminary version of PS1 3π, PV2). It is expected that the efficiency of AGN

selection by variability alone may be comparable to the color selection efficiency (Sesar et al.

2007; Hernitschek et al. 2016).

Fig. 3.3 gives the number of high-redshift (z > 6) quasars that are expected to be found by LSST

as a function of redshift and limiting magnitude.
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10.1 AGN Selection and Census

i 0.5 1.5 2.5 3.5 4.5 5.5 6.5 Total

16 666 597 254 36 0 0 0 1550
17 4140 4630 1850 400 54 0 0 11100
18 19600 28600 10700 1980 321 19 0 61200
19 68200 131000 53600 8760 1230 115 0 263000
20 162000 372000 194000 35000 4290 441 1 767000
21 275000 693000 453000 113000 14000 1380 34 1550000
22 336000 1040000 756000 269000 41200 3990 157 2450000
23 193000 1440000 1060000 476000 103000 10900 527 3280000
24 0 1370000 1360000 687000 205000 27400 1520 3660000
25 0 314000 1540000 888000 331000 60800 4100 3140000
26 0 0 279000 760000 358000 86800 7460 1490000

Total 1060000 5390000 5720000 3240000 1060000 192000 13800 16700000

Table 10.2: Predicted Number of AGN in 20,000 deg2 over 15.7 < i < 26.3 and 0.3 < z < 6.7 with Mi ≤ −20. The
ranges in each bin are ∆i = 1 and ∆zem = 1, except in the first and last bins where they are 0.8 and 0.7, respectively.

Figure 10.4: Number of high-redshift (z > 6) quasars expected to be discovered in a 20,000 deg2 area as a function
of redshift and limiting magnitude. We use the luminosity function (LF) at z ∼ 6 measured by Jiang et al. (2009).
We assume that the density of quasars declines with redshift as measured in Fan et al. (2001, 2006a) and continues
to z > 6, with the same LF shape. Two vertical dashed lines indicate the 10-σ detection limit for LSST for a single
visit and for the final coadd.

353

Figure 3.3 Number of high-redshift (z > 6) quasars expected to be discovered in a 20,000 deg2 area as a function

of redshift and limiting magnitude. The vertical dashed lines indicate the 10σ detection limit for LSST for a single

visit and for the final coadded. Taken from LSST Science Collaborations and LSST Project (2009).

3.2.3 Observing Strategy

The fundamental basis of the LSST concept is to scan the sky deep, wide and fast with a single

observing strategy. LSST will use the six bandpasses ugrizy, of which five will be concurrent in

the camera at a time.

The chosen LSST science themes provide direct and indirect motivation for a sky coverage of

20,000 deg2 and a coadded depth of r∼27.5 mag, and for a number of other system parameters.

They also motivate for a uniform cadence, so ∼90% of the time will be spent on a uniform survey.

The remaining observation time will then be used to carry out very deep (single-visit r∼26)

observations, observations with very short revisit times (<1 minute), as well as observations

dedicated to regions such as the ecliptic, Galactic plane, and the Magellanic Clouds.

From LSST’s site on Cerro Pachòn in the Northern Chilean Andes, observations can be carried

out for sky regions with δ < 35◦.5, corresponding to an observable area of 31,000 deg2. However,

the main survey is only covering 20,000 deg2, as it avoids parts of the Galactic plane around the

Galactic center. In these regions, the high stellar density would lead to a confusion limit at much

brighter magnitudes than in the rest of the survey. For this reason, around the Galactic center, 30

observations in each of the LSST’s filters are scheduled with a roughly logarithmic distribution

in time.
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The expected airmass of 2.2 or less will result in a 0.6 mag loss of sensitivity at 500 nm compared

to an observation in the zenith (LSST Science Collaborations and LSST Project 2009). Sky regions

with −75◦ < δ < 15◦ can be observed with an airmass of 1.4 or smaller, providing especially good

image quality for weak lensing.

During the survey mission of 10 years, each patch of the sky will be visited 1000 times (where a

“visit” is defined as a pair of 15-second exposures, performed back-to-back in a given filter, and

separated by a four-second interval for readout and opening and closing of the shutter). 1000

visits implies that a single-visit depth is r∼24.5 mag, which is consistent with the coadded depth

constrain of r∼27.5. This will produce data with time-resolved astrometric and photometric data

for 20 billion objects.

For scheduling the observations, preference is given to the r and i band observations in the

presence of good seeing and low airmass. LSST will visit each field as often as possible twice with

visits in a 15–60 min time interval. This part of the observing strategy enables linking detection

of moving objects in order to provide motion vectors. Additionally, this time sampling enables

the measurement of short-period variability. Planning of observations is also done by ensuring

that the visits to each field are widely distributed in both position angle on the sky and rotation

angle of the camera. This should minimize systematics in the observations.

3.2.4 Photometry

The LSST filter set (ugrizy) is modeled on the system used for SDSS, covering the available wave-

length range with roughly logarithmic spacing and at the same time avoiding the strongest tel-

lurium features and sampling the Balmer break (LSST Science Collaborations and LSST Project

2009). The system is extended to the y band, in comparison to the SDSS filter set ending with

the z band, because the deep-depletion CCDs offer high sensitivity to 1 µm. The transmission

curves of LSST, in comparison to PS1, are given in Fig. 3.5 at the end of the Section.

In the following, photometric system capabilities are given as stated in LSST Science Collabora-

tions and LSST Project (2009):

(i) Single-visit depths (point sources, 5σ): u < 23.9, g < 25.0, r < 24.7, i < 24.0, z < 23.3,

y < 22.1 in AB mag

(ii) Baseline number of visits over 10 years: u: 70, g: 100, r: 230, i: 230, z: 200, y: 200

(iii) Coadded depths (point sources, 5σ): u < 26.3, g < 27.5, r < 27.7, i < 27.0, z < 26.2,

y < 24.9 in AB mag

(iv) Photometry accuracy (rms mag): repeatability 0.005, zeropoints 0.01.

Fig. 3.4 gives the coadded r band depth over the survey lifetime.
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Figure 3.4 The coadded depth of LSST in the r band (AB magnitudes) vs. the survey lifetime. 22% of the total

observing time (corrected for weather and other losses) will be allocated for the r band. The ratio of the surveyed

sky area to the field-of-view area will be 2,000. Adapted from LSST Science Collaborations and LSST Project

(2009).

3.2.5 Data releases

Each night, LSST will generate about 15 TB of data. The total amount of data collected over the

ten years of operation will be 60 petabytes (PB), and processing this data will produce a 15 PB

catalog database.

To handle this tremendous amount of data, the LSST data management system (DMS) (LSST

Science Collaborations and LSST Project 2009) will reduce the raw data to generate data products

and to make them available to scientists and the public. It will continuously process the incoming

stream of images in order to produce real-time transient alerts and to archive the raw images.

About once a year, a Data Release (DR) will be produced, being a stable self-consistent collection

of data products taken from the beginning of the survey mission to the cutoff date set for the

DR in case. In the end, there will be eleven data releases. The DMS also produces periodically

calibration data products such as flat fields.

Real-time alerts of LSST discoveries will be available on a webpage, additionally an auto email

alert service will be provided. This will permit users to custom filter alerts based on a number of

parameters. LSST alerts as well as educational programs will be available world-wide. Catalogs

and images itself will be available to scientists in the US and Chile, as well as to international

institutions that are supporting LSST operations.

The underlying DMS is developed as a new, general-purpose, high-performance, scaleable, well

documented, open source data processing software stack for O/IR surveys in general. Prototypes
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of this stack form the basis of the Hyper-Supreme Cam (HSC) Survey data reduction pipeline

(LSST Science Collaborations and LSST Project 2009).

3.3 The Capabilities of PS1 3π as LSST Pilot Survey

Based on the properties of PS1 3π and LSST, together with analysis carried out during this work

(see Chapter 5), it turns out that PS1 3π can serve as a valid pilot survey for the upcoming

LSST.

In the following, indicators for why PS1 3π can serve as a pilot survey are summarized:

purpose:

Both PS1 3π and LSST have a wide variety of science drivers, many of them overlapping and the

ones new with LSST are possible mostly due to higher cadence and deeper magnitude limits. For

two of the main LSST goals – mapping the Milky Way and especially its halo, observing AGN –,

methodology for analyzing time-domain data was developed for and tested with PS1 3π as part

of this work.

sky coverage:

Despite observing different parts of the sky, both surveys have about the same size of sky coverage

and have an overlapping region. The high sky coverage of 30,000 deg2 for PS1 3π, and of 20,000

deg2 for LSST, puts constraints on the methods suitable for analyzing the data. Methods not

needing much intervention after a test phase, methods being reliable, delivering automatically

stochastic constraints and being able to deal with various kinds of variable sources and being

fast are needed. These requirements are placed for data from PS1 3π, and even more from the

upcoming LSST. Methods for feature extraction from light curves, as well as machine learning

approaches that infer from such features were developed throughout this work and can be applied

also to LSST data. Methods being capable of evaluating sparse data in a reliable manner can help

especially during the first stages of LSST.

bands and magnitude limit:

Both surveys have similar bandpasses, gP1,rP1,iP1,zP1,yP1 for PS1 3π, ugrizy for LSST. The

LSST’s additional u band, known from SDSS, is extremely powerful for separating low-redshift

QSOs from hot stars. However, variability selection is crucial for low-luminosity AGN, which

cannot be selected by color as they would be swamped by their host galaxies. Variability and

variability-color selection was tested extensive within PS1 3π.

LSST will look much deeper than PS1 3π. Especially, it will be able to map the Milky Way to

greater distances and detail. This will provide a vast amount of sources, again requiring methods

being reliable, highly automated and fast.

cadence:

Both surveys are dedicated to time-domain science. LSST will have a much higher cadence and will

be almost simultaneous, while PS1 3π has a relatively sparse sampling and is not simultaneous.

80



3.3 The Capabilities of PS1 3π as LSST Pilot Survey

For this reason, methods capable of dealing with LSST may be allowed to comply with somewhat

less stringent requirements than methods for PS1 3π data. However, all methods developed here

for the non-simultaneous PS1 3π data are very general, so they can be very easily used for

simultaneous time-series data. Additionally, such methods can help for the case of not perfectly

simultaneous data, as LSST will observe through 5 out of 6 filters coincident. Methods for dealing

with non-simultaneous data are also necessary for incorporating data of other surveys, either

being non-simultaneous itself or not meeting the LSST cadence.

duration:

LSST will have an observational baseline more than twice as long as PS1 3π. Methods for PS1

3π are developed under the aspect of dealing with such a relatively short baseline in combination

with the sparse cadence. For this reason, methods developed for PS1 3π can be helpful especially

during the first months and years of LSST.

data storage and management:

For both PS1 3π and LSST, data storage, calibration and management is a huge challenge due

to the amount of data. Of course, this task will be ways more challenging for LSST. PS1 3π uses

PSPS (Public Science Product Subsystem) based on Large Survey Database (LSD Jurić et al.

2011) for data storage, enabling standard queries for position and cone search, as well as complex

queries in order to search for sources with very specific characteristics. LSD is a Python framework

and DBMS for distributed storage, cross-matching and querying of large survey catalogs (>109

rows, >1 TB), optimized for fast queries and parallelization for typical requirements on queries

in astronomy.

Using such an environment is essential as for working with local flat files, as often done for SDSS,

2MASS and other surveys, is not longer feasible for PS1 3π, LSST and other upcoming synoptic

sky surveys. Data from such surveys are also unsuitable for processing on a single machine, so

parallelization is crucial for processing and calibrating, providing, and evaluating data.

The experiences gathered from processing large surveys such as PS1 3π were used in order to

develop a software stack for LSST. LSST will use a comprehensive Data Management system

(Jurić et al. 2015) to process the amount of about 15 TB per night. It will produce data products

at several “levels”, including real-time alerts as well as data releases and added value catalogs.

To carry out this task, a new general-purpose, high-performance open source data processing

software stack was developed. Prototypes were tested with processing data from existing surveys

such as SDSS.

In the following, a summary on various science metrics for PS1 3π, LSST are given in Table 3.1,

with information from Metcalfe et al. (2013), Schlafly et al. (2014) and LSST Science Collabora-

tions and LSST Project (2009).

Additionally, the curves for PS1 3π and LSST are given in Fig. 3.5.
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Table 3.1. Comparison of Different Surveys

PS1 3π LSST

sky area 30,000 deg2 20,000 deg2 for main survey, up
to 31,000◦

sky region δ > −30◦ δ < 10◦ for main survey, up to
δ < 35.5◦

filters gP1,iP1,rP1,zP1,yP1 ugrizy

single exposure depths (point
sources, 5σ)

gP1 < 22.0, rP1 < 22.0,
iP1 < 21.9, zP1 < 21.0,
yP1 < 19.8

single-visit depths
u < 23.9, g < 25.0, r < 24.7,
i < 24.0, z < 23.3, y < 22.1
mag

coadded depths (point sources,
5σ)

gP1 < 23.4, rP1 < 23.4,
iP1 < 23.2, zP1 < 22.4,
yP1 < 21.3

u < 26.3, g < 27.5, r < 27.7,
i < 27.0, z < 26.2, y < 24.9
mag

median seeing FWHM 1.1” 1.0”

cadence 67 epochs over 5.5 years 1000 visits over 10 years

nightly data volume 1 TB 30 TB

catalog data volume ∼100 TB 30 PB
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Figure 3.5 Comparison of the total throughput of Pan-STARRS1 bandpasses gP1,iP1,rP1,zP1,yP1 (solid lines) and

LSST bandpasses u,g,r,i,z,y (dashed lines). The dashed black line gives the throughput of a standard atmosphere.

The primary differences are the additional u band in LSST, the greater near-IR sensitivity thanks to the wider y

band.

Pan-STARRS1 bandpasses from Tonry et al. (2012), standard atmosphere and LSST bandpasses from the LSST

project (https://github.com/lsst/throughputs/blob/master/baseline/README.md)
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Chapter 4

Classifying Variable Sources in Non-Simultaneous

Multi-Color Surveys

Classification of variable sources relies fundamentally on algorithms quantifying different aspects

of variability found in light curves. Since light curve data are, in general, sampled at irregular inter-

vals and span different bandpasses, classifying variable sources directly based on their light curves

would be both too challenging and too erroneous. For this reason, light curves are transformed

into a set of numbers (or higher-dimension analogs) describing their variability characteristics,

so-called features. This process, feature extraction, uses various methods generally known from

signal processing, as well as methods tailored to astronomical time series.

The purpose of the first part of this work is to build a many-class classification framework by

proper feature extraction and selection in the presence of noise and spurious data, and fast and

reliable classification based on those features.

The main challenges ahead of nowadays synoptic time-domain surveys are the timely identification

of interesting transients in the vast amount of photometric data for maximizing the utility of the

follow-up observations, as well as identification and classification of variable sources used mainly

for cosmological studies and studies of the Milky Way and Local Group.

Some methods draw on the methods developed earlier on for characterizing variability in single-

band data, so the description of possible methods applied to multi-band time domain surveys

starts with these methods.

Within Chapter 4, the methodological concepts of finding variable sources, quantifying their

astrostatistical properties as well as automated source classification by machine-learning methods

are introduced. Here a focus is given to the question how to deal with the challenges that come

up when developing such methodology for non-simultaneous multi-band surveys. Additionally to

presenting known variability measures, such as single-band structure functions, in this Chapter

also the newly developed multi-band structure function fitting is outlined in great detail.

This Chapter also deals with automated classification of sources by machine-learning classifiers

and with the question how to test and quantify the reliability of such methods. Here, known

machine-learning concepts from the literature are given that are tailored to the specific science

cases of this thesis and applied in the following chapters to Pan-STARRS1 3π data.
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4.1 Identifying Significantly Varying Sources in Single-Band Light

Curves

In contrast to targeted observations carried out for a specific science case, survey data have

often drawbacks like a scheduling of observations that doesn’t match exactly the requirements of

analysis. To alleviate this disadvantages and make full usage of the advantages of survey data,

carefully chosen analysis methods are necessary.

In general, some of the following properties may be found in time series data (Falk 2012):

• the data is not generated independently

• their dispersion varies in time

• they are often governed by a trend and/or have periodic components.

In the last decades, several time-series analysis methods have been developed to study the proper-

ties of variable sources while trying to overcome the limitations of the data. Most of such analysis

methods work on single bandpasses, and their ability to deal with measurement errors as well as

data gaps differs. Application of single-band methods to multi-band time-domain surveys is pos-

sible, if the light curve has high enough sampling to refer to only one bandpass, one is interested

in independent light curves in different bands, or used to construct multi-band methods based on

them.

Features should be chosen in a way that involves less computation effort – all-sky time-domain

surveys come with a tremendous number of sources – and should be as informative and discrim-

inative as possible, thus allowing machine learning to use them to distinguish between classes of

light curves. Such features can range from basic statistical properties such as the mean or stan-

dard deviation, to more complex time series characteristics such as the autocorrelation function

or the structure function.

For variable stars, features fall into two categories: those that are related to the period of a source,

ant those that are not. In the following, an overview of common methods for feature extraction

from periodic as well as aperiodic light curves is given. Methods being related to such used later

on in the analysis of PS1 3π light curves are highlighted in greater detail.

4.1.1 Single-Band Periodic Light Curve Features

Periodicity is the most prominent appearance of light curves. Periodicity can be found e.g. in

light curves of RR Lyrae and Cepheids. However, periodicity is not always present, and if the

source would be theoretically variable, this can be masked due to the cadence of the survey. For

this reason, it is important to apply feature-extraction methods that can deal with sparse and

unevenly sampled data in order to detect periodicity.
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Lomb-Scargle Periodogram

The Lomb-Scargle periodogram (Scargle 1982) is a common tool applied to time series for period

finding and frequency analysis. As it is able to handle unevenly spaced data points – as typically

found in time-domain surveys, at least after outlier cleaning –, preference is given over the Discrete

Fourier Transform (DFT).

The algorithm decomposes time series into linear composition of cosine and sine waves of the

form y = a cosωt+ b sinωt, carrying out a transformation from the time domain to the frequency

domain. The Lomb-Scargle periodogram is defined as

P (ω) =
1

2σ2
+


[
N∑
n=1

(mn − m̄) cos [ω(tn − τ)]

]2

N∑
n=1

cos2 [ω(tn − τ)]

+

[
N∑
n=1

(mn − m̄) sin [ω(tn − τ)]

]2

N∑
n=1

sin2 [ω(tn − τ)]

 (4.1)

where ω = 2πT , T being the period, and the time offset τ is defined by:

tan(2ωτ) =

N∑
n=1

sin(2ωtn)/

N∑
n=1

cos(2ωtn). (4.2)

Once the period is known, periodic light curves can be transformed so that each period is mapped

onto the same time axis, known as phase folding.

Given the period P for a light curve with observations at time ti, phase-folding replaces the time

axis by a phase φ =
(
t−t0
P
)
−E(t) (Hoffmeister et al. 1985), where t is the time of an observation,

t0 is some reference time, P is the period, and E(t) indicates the integer part of (t− t0)/P. This

results in replacement of the time axis by a phase axis, ranging [0, 1[. An example is shown in

Fig. 2.2.

4.1.2 Single-Band Non-Periodic Light Curve Features

In seeking to classify variable source light curves, it is not always possible to characterize flux

variations by detecting and characterizing periodicity. Reasons for this are both the non-periodic

nature of various variable sources (such as quasars), as well as time series who lack of periodic

information due to their sampling. Also, they are helpful for data sets assumed to be composed

of non-variable as well as variable sources of different classes: Non-periodic light curve features

can be helpful in determining e.g. variability amplitude and time scale for all light curves in a

given survey, in order to identify candidates for specific classes of variable sources, among them

periodic as well as aperiodic variables.

A summary on various features for single-band time series data is given in Nun et al. (2015).

Despite not used here, it provides a range of tools for single-band data, of which some might be

generalizeable to the multi-band case.
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Single-Band Structure Functions

Beyond simply establishing variability (by rejecting a null hypothesis of time-independent fluxes),

variable sources can and should be characterized by their variability amplitude and the timescales

over which they vary.

A useful and well-established tool in the field of variability is the structure function (Hughes

et al. 1992; Collier and Peterson 2001; Koz lowski et al. 2010) which measures the mean squared

magnitude difference for pairs of observations mi, mj that are separated by a given time lag,

tij , where V (tij) = 〈[mi −mj ]
2〉. The structure function is commonly characterized in terms of a

Damped Random Walk (DRW, see A.1.5) or a power law.

For a DRW, the structure function is specified by two parameters, ω and τ , and is given by

V (tij |τ, ω) = ω2(1− e−|tij |/τ ) . (4.3)

In this notation, ω2 reflects the expectation value for the squared magnitude difference, m2
ij ,

among measurements separated in time by tij . τ is called the decorrelation time of the DRW.

When parameterizing single-band variability using a power-law model for the structure function,

the structure function is instead specified by two parameters, then amplitude A and the power

law index γ as

V (tij |A, γ) = A

(
tij

1 yr

)γ
. (4.4)

The source variability is then characterized by two structure function parameters, (ω, τ) for the

DRW or (A, γ) for the power law, usually estimated by examining a likelihood function on a

parameter grid or by using MCMC (see A.2).

Objects of different classes typically occupy different regions in structure function parameter

space. The fitted structure function parameters can be used to select remarkably pure and com-

plete samples of variable sources of certain classes, which makes selection by structure function

parameters an efficient approach for both selecting stochastically varying and periodic variable

objects. Single-band structure function fitting in order to select samples of QSOs and RR Lyrae

was carried out e.g. by Schmidt et al. (2010). They selected complete and pure samples based on

the intrinsic SDSS S82 r-band light curves, characterized by a power-law structure function.

The structure function is considered by several researchers (e.g. Collier and Peterson 2001; Zu

et al. 2011; Hernitschek et al. 2015) to be an ideal method for studying the time-domain properties

of samples consisting irregularly sampled light curves of various classes. They can also used for

other light-curve related tasks, such as reverberation mapping, a technique to estimate a Black

Hole’s mass by measuring its broad-line region (Zu et al. 2011; Hernitschek et al. 2015).

Historically, the structure function has been used in the study of turbulent plasmas (Kolmogorov

1941a,b). It was later introduced to astrophysics by radio astronomers studying slow oscillations
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Figure 4.1 Example structure function fit for a SDSS S82 QSO in the r band. The solid black line shows the
expected mean light curve and the dashed lines shows the spread of light curve realizations about the mean being
consistent with the measurements.

in the interstellar medium (Rickett et al. 1984). The first systematic description of the structure

function methodology adjusted to the needs of astronomical data sets was made by Simoneti

et al. (1985) to demonstrate that the time-series of flat- and deep-spectrum radio sources differ

qualitatively. During the same period, Cordes and Downs (1985) estimate the structure function

of 21 pulsars, and Hjellming and Narayan (1986) derived the first quantitative structure function

results for the compact galactic radio source 1741-038. Subsequently, the structure function has

been employed for the study of the timing properties of higher energy bands.

Fig. 4.1 shows an example structure function fit, applied to the r band of a SDSS S82 QSO. The

expected mean light curve shape, as well as the spread of possible realizations being consistent

with the measurements are shown.

4.1.3 Multi-Band Periodic Light Curve Features

Multi-band all-sky surveys have the power to detect a huge amount of variable sources, among

them periodic variables such as RR Lyrae and Cepheids. During source classification, candidates

for such sources can be found by applying non-periodic methods. However, it is very important

to find out their period to make use of e.g. period-luminosity relations to infer their distance,

and also to get cleaner candidate samples by using the estimated period as feature in subsequent

classification.
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The multi-band nature of such data makes period estimation challenging, especially when the

light curves are also non-simultaneous. There are a couple of methods dealing with this issue. In

this section, two methods that are also applied to PS1 3π light curves are outlined.

Multi-Band Periodogram

The multi-band periodogram (VanderPlas and Ivezić 2015) is a generalization of the Lomb-Scargle

approach (see Section 4.1.1).

The light curves in each band are modeled as arbitrary truncated Fourier series, with the period

and phase shared across all bands. For this purpose, the model is composed of a Nbase-term

truncated Fourier “base model” that models the overall variability shared among all K, and a set

of Nband-term truncated Fourier fits so that each of it models the residual within a single band

from the shared variability accounted for in the base model.

The total number of parameters used for K filters is then MK = (2Nbase + 1) + K(2Nband + 1).

The model of the observed magnitudes is then:

yk(t|ω, θ) = θ0 +
∑Nbase

n=1 [θ2n−1 sin(nωt) + θ2n cos(nωt)] +

θ
(k)
0 +

∑Nband
n=1

[
θ

(k)
2n−1 sin(nωt) + θ

(k)
2n cos(nωt)

]
. (4.5)

An important property of this model is that the base parameter θ is shared among all bands,

whereas the offsets θ(k) are determined individually.

As an approach for period finding in multi-band light curves, VanderPlas and Ivezić (2015) suggest

a hybrid strategy composed of the multi-band periodogram and template fits (see below):

(i) Apply the multi-band periodogram to find candidate periods. This algorithm is relatively

fast and can be parallelized.

(ii) Apply a template-fitting algorithm to each candidate period. This step is more computa-

tionally intensive, so the previous step is required for pre-selection.

(iii) Evaluate the fits found by the template fitting using a goodness-of-fit statistic. If none of

the candidate periods is suitable, the template-fitting algorithm should be applied across

the full period range.

Template Fitting

Template fitting uses light-curve templates – either synthetic or from other surveys – in order to

fit them to light curves of presumably variable sources.

Such methods are specifically tailored to the class of variable sources one is looking for, and often

also to sub-classes. An example on template fitting is given in Sesar et al. (2010), who build a

system of SDSS ugriz RR Lyrae templates, containing both RRab and RRc templates. They

make use of the relatively large sample of RR Lyrae within SDSS S82, having densely sampled
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light curves as needed for making templates. Within S82, Sesar et al. (2010) pick light curves

with high S/N, apply period folding and subsequent B-spline interpolation. Among them, a set

of light curves smoothly covering the parameter space is chosen.

The usage of synthetic light curves can be very helpful if it is not possible to get real sample light

curves, but if possible, preference is given to real observational light curves of the desired class.

4.1.4 Multi-Band Non-Periodic Light Curve Features

To characterize variability sufficiently in order to identify and classify variable sources, features

being capable of describing multi-band light curves and not demanding periodicity are needed.

In the work at hand, the following non-periodic features are used: a generic and non-parametric

measure derived from χ2 statistics, and a novel generalization of structure functions to multi-band

light curves.

χ2-based Variability Quantity

As a very generic and non-parametric measure to characterize variability, the significance of

variability of a light curve can be defined by

χ̂2 =
χ2

source −Nd.o.f√
2Nd.o.f

, (4.6)

with

χ2
source =

∑
λ

N∑
i=1

(mλ,i − 〈mλ〉)2

σ2
λ,i

(4.7)

where N is the total number of photometric points for one object across all n bands, mλ,i denotes

a magnitude measured in band λ, 〈mλ〉 denotes the mean magnitude in band λ, the sum over λ is

over the PS1 bands gP1,rP1,iP1,zP1,yP1, and Nd.o.f = N − n is the number of degrees of freedom.

Assuming that most of the sources are not variable, the distribution of χ̂2 is expected to be a

unit Gaussian distribution. In contrast, varying sources should form a “tail” of higher χ̂2.

This is applied in Section 5.4.1 to PS1 3π data.

Multi-Band Structure Functions

The cadence of surveys like the SDSS provides data that allow application of the usual single-

band formulation of structure functions. However, the cadence of PS1 3π data, which observes

non-simultaneous in different bands with a small number of epochs per band (see Sec. 5.2), makes

it necessary to extend this approach for multi-band fitting. This approach, as developed within

this thesis, will turn the light curves in each band into an overall light curve that pools all the

information while keeping track of possibly different variability amplitudes in different bands.
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The model outlined here is applied in Chapter 5 to PS1 3π data and published in Hernitschek

et al. (2016).

If objects would show the same kind of variability in all observed bands, implementing such an

approach would simply entail determining the (time-averaged) mean color of the object and shift-

ing the light curves in the different bands to a common magnitude. However, most astrophysical

objects show wavelength depending variability, i.e. vary more at shorter wavelengths. To account

for this, the new multi-band model presented here has, beyond ω and τ , a set of temporal mean

magnitude parameters in each PS1 band, ~µ, and it links the variability amplitudes ω(b) in different

bands b by a power law with exponent α. Specifically,

α =
log(ω(b)/ω(r))

log(λb/λr)
, (4.8)

where λb is the effective wavelength of the band b.

To assign a likelihood to an object’s photometry, given a structure function model, this model

makes use of a Gaussian Process formulation (see A.1) for stochastic source variability. In contrast

to single-band structure function models (e.g. Rybicki and Press 1992; Zu et al. 2011; Hernitschek

et al. 2015), the Gaussian Process is not applied to any particular band but instead to an ar-

bitrarily constructed fiducial band which can be scaled and shifted onto the particular bands.

This permits simultaneous treatment of multiple bands, without requiring any simultaneous or

near-simultaneous observations. This makes the method ideal for application to surveys such as

PS1 3π, and is also helpful in cases where a survey with in principle simultaneous observations

becomes non-simultaneous due to outlier cleaning.

It is key in this context to realize that the fiducial band is a latent variable – it is never directly

observed; only the scaled and shifted versions are observed, where substantial measurement noise

is present.

The fiducial light curve can be described with a Gaussian process having zero mean and unit

characteristic variance, as done in the case of the single-band DRW model by Zu et al. (2011).

That is, the prior probability distribution function (pdf) for a set of N fiducial “magnitudes” ~q

that are instantiated at observed times tn is a multivariate normal distribution:

p(~q) = N (~q | 0, Cq) , (4.9)

where Cq is a N ×N symmetric positive definite covariance matrix. In the case of a DRW model,

Cq is given by

Cqnn′ = exp

[
−|tn − tn′ |

τ

]
. (4.10)

This is identical to the usual single band DRW covariance matrix, except for dropping a scale

factor ω2 from Equ. (4.10), because the fiducial band q was defined to have unit variance. This

factor reappears in our multi-band structure function through the scale factors that link the

fiducial band to observed bands.
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Consider now a given source having N observations across Nband different bands. The data con-

sist of the magnitude and uncertainty vectors ~m and ~σ, the times of observation tn, and the

corresponding bands bn. The source also has Nband temporal mean magnitudes ~µ. The N ×Nband

matrix M is defined so that

M~µ = [µ(b1), µ(b2), · · · , µ(bN )] . (4.11)

The likelihood of an individual measurement mn, given its observational uncertainty σn and a

value for the corresponding fiducial magnitude qn, is found by shifting and scaling the fiducial

magnitude and adding Gaussian noise. This makes the single-datum likelihood

p(mn | qn, bn, σ2
n) = N (mn |ω(bn)qn + µ(bn), σ2

n), (4.12)

where ω(bn) is the variability in bandpass bn relative to the unit variability of the unobserved

fiducial band.

Introducing the diagonal N×N matrix Ω, defined by Ωii = ω(bi), the full likelihood is given by

p(~m | ~q,Σ) = N (~m |Ω~q + M~µ,Σ2) , (4.13)

where Σ is a diagonal matrix with Σii = σi. Because everything is Gaussian, the latent fiducial

magnitudes never have to be explicitly inferred; they can all be marginalized out analytically.

This marginalization leads to the likelihood given the model, and the covariance matrix of the

data:

p(~m | structure function parameters, ~µ) = N (~m |M~µ,C) (4.14)

C = ΩCqΩ + Σ2 . (4.15)

This is identical to the case of a single-band DRW model, except the rows and columns of Cq

are scaled by amplitudes ω(bn), ω(bn′) for the bands bn and bn′ , and a contribution from the

photometric uncertainties is added to the diagonal:

Cnn′ = ω(bn)ω(bn′) exp

[
−|tn − tn′ |

τ

]
+ σ2

n δnn′ . (4.16)

Equations (4.14) through (4.16) provide a method for computing the probability of any set of

observed magnitudes m, given their meta data (tn, bn, σ2
n) and their structure function parameters

ω(b), τ .

The most interesting result here will be the structure function parameters and are relatively

uninterested in the exact mean magnitudes ~µ. This is exactly the same situation as in Zu et al.

(2011). Following that work, the likelihood of the structure function parameters, given the multi-

band data, marginalized over ~µ, is given by:

p(~m | structure function parameters) = L ∝ |C|−1/2|Cµ|1/2 exp
(
−χ2/2

)
(4.17)
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where

Cµ = (MTC−1M)−1

χ2 = (~m−M~µ)TC−1(~m−M~µ) .
(4.18)

It is important to note that the factor of |Cµ|1/2 in Equation (4.17) comes from the marginalization

over ~µ. Maximization over p(~m | SF parameters) is done to obtain best fit values of the structure

function parameters. Thus, ~µ is obtained as the maximum likelihood values of ~µ given the structure

function parameters. That is, the mean magnitudes are given by

~µ = (MTC−1M)−1MTC−1 ~m ,

and have variance Cµ.

Interpolating Multi-Band Light Curves with Uncertainties

One advantage of this approach is that it can be used to predict unobserved data based on

observed data. Because both the process is Gaussian and the noise is assumed to be Gaussian,

conditional predictions of the magnitudes can be made given the observed data and the structure

function. The analysis is exactly the same as in Rybicki and Press (1992), with the exception

of adopting the multi-band structure function C of Equation (4.16). The magnitudes m̃k at K

unmeasured times tk, taken through bandpasses bk, conditioned on the data in hand, are given

by:

p(m̃|~m) = N (m̃|µ̃, C̃) (4.19)

µ̃ = ~ν +X ·C−1 · [~m−M~µ] (4.20)

C̃ = Y −X ·C−1 ·XT (4.21)

~ν = [µ(b1), µ(b2), · · · , µ(bK)]. (4.22)

In the case of a multi-band DRW model,

Xkn = ω(bk)ω(bn) exp

[
−|tk − tn|

τ

]
(4.23)

Ykk′ = ω(bk)ω(bk′) exp

[
−|tk − tk′ |

τ

]
. (4.24)

Here m̃ is the column vector of conditional predictions, µ̃ and C̃ are a conditional mean vector

and a conditional variance matrix, (temporary) mean vector ν is K-dimensional, and the matrices

C̃, X, and Y are N ×N , K ×N , and K ×K respectively.

Fig. 4.2 shows an example structure function fit, applied to a PS1 3π PV3 light curve. The

expected mean light curve shape, as well as the spread of possible realizations being consistent

with the measurements are shown.
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Figure 4.2 Example structure function fit for a PS1 3π light curve. The upper panel gives the light curve, whereas

the lower panel shows the light curve fitted by a multi-band DRW structure function. The solid black line shows

the expected mean light curve Equ. (4.20), and the dashed lines shows the spread of light curve realizations about

the mean being consistent with the measurements, i.e. the variance Equ. (4.21) for the r band.

4.2 Classifying Variable Sources Using Machine-Learning Classifiers

Classification of variable stars – the identification of a certain source with a previously identified

class – presents several challenges. First, observational data of probably variable sources represents

not only a picture of the source itself, but is always influenced by noise, foreground effects (source

confusion, dust-caused reddening) as well as time-sampling effects acting as a window function

that may hide aspects as variability. Second, time-series data of a given survey alone provide an

incomplete picture of a given source as observations at certain wavelength ranges are missing

- typically, time-domain surveys observe in the optical and near-IR - and also, in most cases,

spectroscopic information is missing.

In order to overcome these effects, it is necessary to carefully carry out feature extraction including

correction for reddening and removing of unreliable measurements, as well as check whether it is
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required to add information from other surveys by cross-matching, as well as carefully choose a

classification algorithm that fits the need for accuracy and speed.

Several authors have used machine-learning methods to classify variable sources using their light

curves: Eyer and Blake (2004) use a Bayesian mixture-model classifier, and Debosscher et al.

(2009) experiment with several methods, including Gaussian mixture models, Bayesian networks,

and support vector machines (SVM), and Hernitschek et al. (2016) apply a Random Forest Clas-

sifier to preliminary PS1 3π data.

Providing a machine-learned classification that is accurate and fast is a challenging task on many

frontiers (see e.g. Eyer and Mowlavi 2008). In many cases, there may be only a light curves in

a given class to build the training set, making training and validation difficult. Even with many

labeled light curves provided, in the force of noisy, spurious and sparsely sampled data, there is

a limit to the statistical inferences that can be gained.

Whereas the previous section described methods for analyzing time-series data (such as light

curves) in order to provide so-called features, this section will now cover the topic of machine-

learning algorithms that can handle these features in order to produce statements about the

source classification.

One purpose of this work is to build a many-class classification framework by proper feature

creation and selection in the presence of such noise and spurious data, and fast and reliable clas-

sification based on those features. Also, a formalism for evaluating the results of the classification

is presented. The work makes use of features derivable from time-domain data in multiple band-

passes; in addition to innovative multi-band light curve features such as generalized multi-band

structure functions, color information is used.

Classification fundamentally relies upon the ability to recognize and quantify the differences

between light curves. To build a supervised machine-learning classifier, many light curves are

required for each class of interest. Given a set of sources whose class is already known and thus

having a class assigned (being labeled and make up the training set), done by e.g. methods that

rely on data not present in the survey that should be examined, a classifier learns a model that

describes each source’s class probability as function of its features. The training set can be built

by cross-matching sources of the survey of interest to already classified sources in other survey.

The other survey’s classification can rely on e.g. additional bands, complementary spectroscopic

information, better light-curve sampling or higher S/N. These members of the training set are

then used in the training and validation process, in order to both build a classifier that is capable

of classifying new sources, as well as estimating the strengths and weaknesses of the classifier.

This model is then used to automatically predict the class probabilities of new sources.

The work in hand deals only with supervised machine-learning approaches. However, there are

also unsupervised machine-learning classifiers.

Supervised learning is the machine learning task of inferring a function from labeled training

data, whereas unsupervised methods cannot depend on any labels. Unsupervised learning applies

therefore methods being related to density estimation to find structure in parameter space.
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In the following, only supervised machine-learning classifiers are considered, and an overview of

decision tree-based classifiers will be given.

Decision tree-based classifier are a a popular method for classification and regression in statistics

and machine learning since the 1980s (e.g. Breiman et al. 1984). Since about a decade, the

astronomical community is using tree-based techniques for several problems. For example, tree-

based classifiers have be used by Ball et al. (2006) for star-galaxy separation, by Bailey et al.

(2006) to identify supernova candidates, and are an important component of books dealing with

machine learning.

Decision-tree classifiers have been studied extensively in the past two decades and used heavily;

for an overview, see Richards et al. (2011). Many of these studies propose heuristics to construct

a tree either for optimal classification accuracy or to minimize its size.

There exists a huge range of tree-based classifiers, among them classification and regression trees

(CART Breiman et al. 1983), Random Forest Classifiers (RFC Breiman 1999, 2001) and Gradi-

ent Tree Boosting (Friedman 2001). Tree-based classifiers are powerful because they are able to

capture complicated interaction structures within the feature space, are robust to outliers, are

resilient to irrelevant features and offer feature importance ranking important for improving the

classifier and understanding its results. Also, they can cope with missing feature values, and are

computationally efficient and scaleable for large problems (Richards et al. 2011) as present in the

age of all-sky time-domain surveys.

In this section, an overview of three selected tree-based classification methods is given: classifica-

tion trees, Gradient Tree Boosting Classifier and Random Forest Classifier (RFC). This section

is mainly based on the introduction in classification trees by Richards et al. (2011). Additionally,

methods for measuring performance of classifiers and to chose the optimal set of features are

given.

4.2.1 Classification Trees

In a decision tree, an input is entered at the top and as it transverses down the tree the data is

divided into smaller and smaller subsets.

Tree-based machine learning algorithms use recursively binary partitioning to split the feature

space, R, into disjoint regions, R1, ..., RM . Each split is performed with respect to a single feature,

producing a partitioning of R into a set of disjoint “rectangles” in the feature space (represented

by the nodes of the tree). At each step, the algorithm selects both the feature and split point that

produces the smallest impurity in the two resultant nodes. The splitting process is recursively

repeated in order to build a tree with multiple levels (Richards et al. 2011).

To build a classification tree, begin with a training set of (feature, class) pairs {(Xi, Yi)}Ni=1 where

Xi denotes the vector of features of the i-th source in the training set, and Yi denotes the class

label of this i-th source. Yi can take any value in {1, ..., C} where C is the number of classes.
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Following Richards et al. (2011), at node m of the tree – representing a region Rm of the feature

space R – the probability that a source with features in Rm belongs to class c is estimated by

p̂mc =
1

N

∑
Xi∈Rm

I(Yi = c). (4.25)

This is the proportion of the Nm training set objects in node m whose class is c. The indica-

tor function I(Yi = c) is defined to be 1 if Yi = c and 0 else. During the tree-building process,

each subsequent split is chosen among all possible features and split points so that it minimizes

a measure of the resultant node impurity. Measures of the node impurity are e.g. the Gini in-

dex (Gini 1913)
∑
c 6=c′

p̂mcp̂mc′ or the entropy −
C∑
c=1

p̂mc log2 p̂mc. This splitting process is repeated

recursively until some pre-defined stopping criterion (such as the relative improvement in the

objective function) is reached. Once a classification tree is trained on a training set {(Xi, Yi)}Ni=1,

it is straightforward to predict the class of unseen data sets Xnew. Specifically, the algorithm

identifies the part of the decision tree Xnew resides in and then assigns a class according to that

node’s estimated probabilities given in Equ. (4.25). For example, if Xnew ∈ Rm, then the assigned

probability that the source is of class c is

p̂c(Xnew) = p̂mc, (4.26)

where p̂mc is defined in Equ. (4.25). Using Equ. (4.26), the predicted class is the class for which

the highest value of p̂c(Xnew) is reported, p̂(Xnew) = arg maxcp̂c(Xnew).

The classification output for each new source can then be described either as a vector of class

probabilities (giving the probability for each of the C classes) or as its predicted class (with the

highest probability).

Decision trees, automatically constructed by machine learning algorithms, can generate powerful

classifiers due to both their conditional structure and their high execution speed. The method

shown so far tempts to construct very large trees, as they will indeed fit the training set well.

However, decision trees often cannot be grown to the desired complexity because of loss of gen-

eralization accuracy on new (“unseen”) data occurs. Another problem is that trees can be prone

to be overly adapted to the training data, or being too complex and thus overfit data. On the

other hand, constructing a very lean tree will likely not be sufficient to capture the complexity

of the underlying process that led to the different classes well, and thus will be not sufficient for

classifying. In the end, the appropriate size of a classification tree depends on the complexity of

model necessary for the particular application at hand and hence should be determined by the

data.

The standard approach to this problem is to build a large tree and then to prune this tree to find

the sub-tree that performs best in verification methods like the approaches shown in Sec. 4.2.4.

Pruning back a fully-grown tree may increase the generalization accuracy at unseen data, often

at the expense of the accuracy on the training data. Probabilistic methods that allow descent

through multiple branches with different confidence measures also do not guarantee optimization
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of the training set accuracy. Apparently there is a fundamental limitation on the complexity of

tree classifiers – they should not be grown too complex to overfit the training data.

The development of ensemble methods has led to significant improvements in classification accu-

racy. Such methods grow many trees, forming an ensemble, and letting the trees “vote” for the

most probable class. Carrying out such a divide-and-conquer approach improves the classification

performance. The main principle behind ensemble methods is that a group of “weak” classifiers

can form a “strong” one. An example of such a method is bagging (Breiman 1996), where for the

construction of each tree a bootstrap sample (a random selection without replacement) is made

from the sources in the training set: given a specific training set T , form bootstrap training sets

Tk, construct classifiers h(x, Tk) and let these vote to form the bagged predictor.

Another example is random split selection (Dietterich 2000), selecting at each node a split at

random from among the K best splits. Randomized outputs (Breiman 1998, 1999) grows trees on

training sets with randomly perturbing the output of the original training set: For a fixed number

s, at each node, s best splits (in terms of minimizing deviance) are found and the actual split

is randomly uniformly selected from them. Random feature selection (Amit and Geman 1997;

Breiman 1999) looks for the best split over a random subset of the features. The random subspace

method by Ho (1998) does a random selection of a subset of features to grow each tree. Perfect

Random Trees Ensembles Cutler and Zhao (2001) uses an extreme randomness: at each node,

randomly choose a variable to split on, and on the chosen variable choose randomly uniformly

a split point between two randomly chosen points coming from different classes. The Random

Forest Classifier (Breiman (2001), see also Sec. 4.2.3 for a detailed description) is an ensemble

method where each tree depends on the values of a random vector sampled independently and

with the same distribution for all trees in the forest.

4.2.2 Gradient Tree Boosting Classifier

The Gradient Tree Boosting was first introduced as “Gradient Boosting Machine” by J.H. Fried-

mann (published later as Friedman 2001). The generalized class of algorithms as was described

as “functional gradient boosting” by Mason et al. (2009). The idea was originally brought up by

Breiman as “gradient boosting”. Breiman who showed that boosting can be interpreted as an

optimization algorithm over a suitable cost function.

Here, initially the Gradient Boosting as introduced in Friedman (2001) is described; this method

is more general and is not mandatory using trees.
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Algorithm 1: Gradient Boosting

Input: {(X, Yi)}Ni=1: training set

L(Y, F (X)): differentiable loss function

M : number of iterations

Output: Fm(X)

begin

initialize model with a constant value F0(X) = arg minρ
N∑
i=1

L(Yi, ρ)

for m = 1, ...,M do
(i) compute pseudo-residuals

Ỹi = −
[
∂L(Xi, F (xi))

∂F (Xi)

]
F (X)=Fm−1(X)

for i = 1, .., N (4.27)

am = arg mina,β

N∑
i=1

[
Ỹi − βh(Xi; a)

]2
(4.28)

where the function h(Xi; a) is a simple parameterized function of the input variables X,

characterized by parameters a = {a1, a2, ...}. h(Xi; a) is called the base learner.

(ii)

ρm = arg minρ

N∑
i=1

L(Yi, Fm−1(Xi) + ρh(Xi; am)) (4.29)

(iii) update model

Fm(X) = Fm−1(X) + ρmh(X; am) (4.30)

output FM (X)

Gradient boosting is typically used with decision trees (especially CART trees) of a fixed size

as base learners, leading to Gradient Tree Boosting. For this case, Friedman (2001) gives the

following modifications:
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Gradient boosting at the m-th step would fit a decision tree as base learner to pseudo-residuals.

For a tree with J terminal nodes, the tree partitions the feature space {Rj}J1 (that covers the

space of all joint values of features X) into J disjoint regions R1m, ..., RJm. Each regression tree

model has then the additive form

h(X; {bj , Rj} =

J∑
j=1

bj1(x ∈ Rj) (4.31)

The indicator function 1( · ) takes the value 1 if its argument is true, and 0 otherwise.

The model update in Algorithm (1) becomes now for a regression tree:

Fm(X) = Fm−1(X) + ρm

J∑
j=1

bjm1(X ∈ Rjm) (4.32)

with {Rjm}J1 being the regions defined by the terminal nodes of the tree at the m-th iteration.

J can be adjusted for the problem at hand. It controls the maximum allowed level of interaction

between variables in the model. Setting J = 2, will allow no interaction between variables, J = 3

allows the interaction between up to two variables, and so on.

4.2.3 Random Forest Classifier

Random Forests are among the recent additions to the ensemble methods and machine learning

toolbox. Classifier based on Random Forests are ensemble methods such that each tree depends

on the values of a random vector sampled independently and with the same distribution for all

trees in the forest. See Breiman (1999) and Breiman (2001) for a overview.

Classification trees, as described in Sec. 4.2.1, can work reliable in many cases. However, one of

their drawbacks is that such models tend to have high variance. Small changes in the composition

of the training set can led to very different tree structures. This drawback just follows from the

hierarchical nature of the tree model: small differences in the top few nodes can produce highly

different structure as those perburbations are propagated down the tree. To reduce the variance

of tree estimates, Random Forest Classifiers (RFC, Breiman 1999, 2001) uses an ensemble of trees

– a forest – and attempt to de-correlate the T trees by selecting a random subset Xtry of the

input features as candidates for splitting at each node during the tree-building process. The result

is that the final model has lower variance than a single tree. For a source to classify, the class

probabilities are estimated as the proportion of the T trees that predict each class. Again, as in

classification trees, classification output for each new source can then be described either as a

vector of class probabilities (giving the probability for each of the C classes) or as its predicted

class (with the highest probability).

To give the definition of Breiman (2001):

“A random forest is a classifier consisting of a collection of tree-structured classifiers {h(X,Θk)k=1,...}
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where {Θk} are independent identically distributed random vectors and each tree casts a unit

vote for the most popular class at input X.”

Breiman (1999) (see also Breiman 2001) formalized the concept of a Random Forest with M

trees as an estimatior using an ensemble of randomized trees {h(X,Θm),m = 1, ...,M} where the

{Θm} are independent identically distributed random vectors, and the m-th randomized tree is

an estimator h(X,Θm), where x is a feature vector. The predictions of the T randomized trees

are averaged to give the final prediction. (Other possible options are e.g. an average or weighted

average of all terminal nodes reached, or, in the case of categorial variables c, a voting majority.)

In Random Forest Classifiers, randomized trees are typically built without any pruning (Breiman

1999). The tree building continues until either the terminal node is pure in its classification (i.e.:

no further split can be done), or each terminal node contains no more than a pre-defined number

of training sample points to split on.

Practical Aspects of Random Forest Classifiers

In the following, the more practical aspects of using a Random Forest Classifier are discussed.

A Random Forest Classifier is trained by executing the steps as described in Algorithm (2).

Algorithm 2: Random Forest Classifier training

Input: {(X, Yi)}Ni=1: training set

M : number of trees

k: number of features to split on

Output: {h(X,Θm),m = 1, ...,M}: ensemble of randomized trees

begin

for m = 1, ...,M do

X̃ ( X: sample from X with replacement, |X̃| > 0.5|X|
select k features at random from all features

feature providing the best split, according to some objective function, is used for a

binary split on that node

output {h(X,Θm),m = 1, ...,M}

Depending on the value of k, there are three different systems:

• Random splitter selection: k = 1

• Breiman’s bagger: k = total number of predictor variables

• RFC: k � K where K is the number of features. Breiman suggests three possible values for

k: 1/2
√
K,
√
K, 2

√
K.
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It is important to note that (Breiman 2001): Having a large number of features, the eligible feature

set will be quite different from node to node. The greater the inter-tree correlation, the greater

the error rate of the Random Forest Classifier. For this reason, the trees must be as uncorrelated

as possible. With decreasing m, both the inter-tree correlation and the strength of individual

trees are decreasing. For this reason, so some optimal value of m must be discovered.

When applying Random Forest Classifiers, and tree-based classifiers in general, one should not

neglect the importance of hyperparameters. In contrast to parameters found within the

estimators, hyperparameters describe the execution of the algorithm itself. Usually they are fixed

before the training process begins.

Hyperparameters of Random Forest Classifiers are (Bernard et al. 2009):

• k, the subset of feature randomly drawn without replacement; this number allows to in-

troduce more or less randomization in the split selection, in such a in such a way that the

smaller the value of m, the stronger the randomization,

• M , the number of trees,

• the maximum depth.

In the context of machine learning, hyperparameter optimization is the problem of choosing a set

of hyperparameters, usually with the goal of optimizing a measure of the algorithm’s performance.

Often, hyperparameter tuning is carried out by a grid search, an approach that will methodically

build and evaluate a model for each combination of hyperparameters specified in a grid.

When using a Random Forest Classifier, one must be aware of their strengths and weak-

nesses.

Random Forest Classifier are superior to many other methods in terms of accuracy and efficiency,

and they are able to deal with unbalanced and missing data. Because the method averages the

predictions over multiple trees, the estimated classification probabilities are much more robust to

imbalanced training sets than methods using a single tree. They can be parallelized. The feature

importance in classification can be easily estimated.

Weaknesses of Random Forest Classifiers are that when used for regression, they are not able to

predict beyond the range in the training data. Additionally, they may over-fit data sets that are

particularly noisy for small number of trees.

4.2.4 Verification of Classification Results

Despite classifiers like the ones described above are robust, one should not apply them as a “black

box”, nor use the results without further verification. Also, classification probabilities are not

exactly what they might look at first glance.

There exist several concepts on how to test classifiers and verify their results.

102



4.2 Classifying Variable Sources Using Machine-Learning Classifiers

Precision and Recall, Purity and Completeness

The classifier predicts whether the input source would be a member of a certain class. The

classifier’s output is a number pclass ∈ [0, 1], often called “class probability”, but this value should

not be used directly in the sense of a probability. Instead a threshold on pclass is needed, and the

classification quality will then be calculated for sources above this threshold.

To quantify the quality of a classifier (see e.g. Fawcett 2006), consider a two-class problem (binary

classification), in which the outcomes are either positive (p), which means being of the desired

class, or negative (n). If the classification outcome is p and the actual value also p, this is called a

true positive (TP). If the outcome is p, but the actual value is n, then it is a false positive (FP).

Conversely, a true negative (TN) means that both the classification outcome and the actual value

are n, and a false negative means that the classification result is n for an actual value.

Precision P is then defined as

P =
TP

TP + FP
. (4.33)

Recall R is defined as

R =
TP

TP + FN
. (4.34)

Precision is a measure of result accuracy, while recall is a measure of how many of the truly

relevant sources are found.

A classifier with high recall but low precision finds many of the truly relevant sources (positives),

but also produces a lot of false positives. A classifier with high precision but low recall is highly

accurate, as it rarely produces false positives, but finds only a small fraction of the positives.

High scores for both indicate that the classifier is accurate (high precision) as well as able to find

a high fraction of the relevant sources (high recall). Typically, precision and recall are inversely

related. As precision increases, recall decreases, and vice versa.

In order to illustrate the performance of a classifier as its threshold on pclass is varied, Precision-

Recall curves (see e.g. Fawcett 2006; Davis and Goadrich 2006) are used. Such curves are created

by plotting precision vs. recall while the threshold on pclass is varied. An example is shown in Fig.

4.3.

The diagonal from (0,1) to (1,0) in Fig. 4.3 divides the recall-precision space. Points above the

diagonal indicate good classification results (better than random), whereas points below the di-

agonal indicate poor classification results (worse than random).

A classifier with high precision and recall, which would be the ideal case, would return all true

positives, while returning no false positives or false negatives, though having all sources classified

correctly. Thus, the Precision-Recall curve of the best possible classifier would be represented by

a point at (1,1). In realistic classifiers, having recall varying with the threshold on pclass, the ideal

curve would be precision(recall)=1.

The area under the curve can also be used as a measure for the quality of the classifier, as a high

area represents both high recall and high precision.
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Figure 4.3 Example Precision-Recall curve. The solid line indicates the Precision-Recall curve from some model,
the dashed line indicates the outcome of a random process. Points above the diagonal indicate good classification
results, whereas points below the diagonal indicate poor classification results.

Thresholds on pclass can be used to select samples of a desired purity or completeness. The above

defined precision corresponds to the purity of the sample, whereas the recall corresponds to the

completeness. As recall is defined as in Equ. (4.34), where TP+FN is independent of the threshold

on pclass, lowering the threshold may increase the completeness of the sample, as the number of

true positives increases.

Cross-Validation

Tests on classifiers should be done under conditions as close as possible to their desired application.

Cross-validation does this by training the classifier on all sources of the training set except a small

number, or even one (“leave one out”), of held-out sources. As belonging to the training set, the

class is also known for these held-out sources, so the classification accuracy can be examined on

them. As the held-out fraction is small, its influence on the training set can be selected. This

procedure is applied in turn for all sources of the training set.

A typical case is the “10-fold cross-validation” where in turn 10% of the training set’s objects are

held out. Finally, the results from each cross-validation run are collected for statistical analysis.

Measuring and Analyzing Feature Importance in RFC

An advantage of tree-based classifiers is that they allow to estimate the importance of each

feature in the model by construction. As trees are constructed by splitting on one feature at a

given time, a feature’s importance can be estimated by i.e. counting how often that feature is

split, or the decrease in node impurity for splitting on this feature. Another measure used quite
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often is referred to as the variable importance. This indicates roughly what the decrease in overall

classification accuracy would be if a feature were replaced by random permutation of its values,

i.e. if this feature would be useless or not exiting.

Analyzing the feature importance is a critical step in building a classification model. This helps

in eliminating useless features, and also incorporating additional features in a new version of the

model. Also, determining feature importance gives insight into the differences between particular

classes, in the cases described here different classes of of variable sources.
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Chapter 5

Finding, Characterizing and Classifying Variable Sources

in Multi-Epoch Sky Surveys: QSOs and RR Lyrae in PS1

3π Data

The methodology of how to classify variable sources in non-simultaneous multi-color surveys

described in the previous Chapter 4, among them the newly developed multi-band structure

function fitting, was applied to PS1 3π data in order to identify and classify variable sources.

In this chapter, detailed adaptions of the methodology, containing mainly structure function

fitting and machine-learning classification, that was laid out more general to PS1 3π data, as well

as results and an outlook for further applications are given.

The details of applying the general approach for classifying variable sources in non-simultaneous,

multi-color surveys to PS1 3π are shown. This new approach for quantifying statistical properties

of non-simultaneous, multi-color surveys through light curve structure functions turns PS1 3π

PV3 effectively into a ∼67 epoch survey.

A subsequent machine-learning classifier then assigns probabilities to each source whether it

is a QSO, RR Lyrae or, in later work, Cepheid. This approach is used to estimate variability

amplitudes and time-scales as well as mean colors and source types for almost all point-sources

in the survey.

Using PV3, aside from the Galactic plane, QSO and RR Lyrae samples of purity ∼80% and

completeness ∼80% can be selected. On this basis, a sample of 6.1× 105 QSO candidates, as well

as an unprecedentedly large and deep sample of 4.8×104 RR Lyrae candidates spanning distances

from ∼10 kpc to ∼130 kpc was selected for |b| > 20◦.

Using the RR Lyrae candidate sample, a distance precision of 4% within the Draco dwarf

spheroidal can be reached. Additionally, the extent of the Sagittarius stream is visible up to

130 kpc.

The work presented in the following is based on PS1 3π PV3 (see Section 3.1.5).

Before PV3 came out, most parts of the analysis shown here were done for the previous processing

version of PS1 3π, PV2, and published (Hernitschek et al. 2016, containing only PV2 results).

The work done on PV2 lead to a catalog of all likely variable point sources and QSOs within the

106



5.1 Introduction

survey, a total of 25.8× 106 sources, that was already published (Hernitschek et al. 2016).

A comparison between results from PV2 and PV3, as well as details of the methodology differing

between both versions is given throughout this Chapter.

The work presented here makes use of two methods developed by Branimir Sesar, namely the

outlier detection and cleaning (see Section 5.3.2) and methods on how to enhance the RR Lyre

sample purity even more as described in Section 5.6.

The RR Lyrae candidates found by the methods described here are used in the subsequent Chapter

6 to infer the geometry of Sagittarius stream out to 120 kpc, using a combined halo and stream

model. The approach described in Section 5.6 was developed by Branimir Sesar with contribution

from the author, and will is submitted as (Sesar, Hernitschek et al. 2016).

5.1 Introduction

In the context of time-domain astronomy, the Pan-STARRS1 survey (PS1) 3π (Chambers 2011)

offers a unique combination of area, time sampling and depth. PS1 data have been extensively

used to find and study transient sources, such as supernovae (Rest et al. 2014) or episodic black

hole accretion (Gezari et al. 2012), focusing mostly on the many-epoch coverage in the medium-

deep fields. It lends itself also to finding and characterizing sources of less ephemeral variability,

and can do so across most of the sky. Such sources of interest are, for example, QSOs and variable

stars, such as RR Lyrae.

PS1 3π is a multi-epoch survey that covered three quarters of the sky at typically 72 epochs

between mid 2009 and the end of 2014. Yet, in any one of its five bands (gP1, rP1, iP1, zP1, yP1), it

is only a few-epoch survey, and the observations in different bands are not taken simultaneously.

(For further details on PS1 3π, see 3.1.)

Though there are approaches for finding RR Lyrae in PS1 based on their variability properties

(e.g. Abbas et al. 2014a,b), there are no readily available approaches to exploit the full information

content of the data, e.g. to find, identify, and characterize variable sources generically.

In this Chapter, an approach to characterize variable sources in a survey such as PS1 3π is layed

out, developed, tested and finally applied to the full survey. The basic approach should also be very

relevant to the Large Synoptic Survey Telescope (LSST)4, which will also collect non-simultaneous

multi-band time-domain data. The methodology encompasses three basic steps: first, identifying

sources that clearly vary; second, characterizing their lightcurves with a multi-band structure

function; finally, using the identification of variable sources to train the classifier. The last step is

carried out using a Random Forest Classifier that takes the classification available for the Sloan

Digital Sky Survey (SDSS) Stripe 82 (S82) (Schneider et al. 2007; Schmidt et al. 2010; Sesar et al.

4LSST Science Collaborations and LSST Project 2009, LSST Science Book, Version 2.0, arXiv:0912.0201, http:
//www.lsst.org/lsst/scibook
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Surveys: QSOs and RR Lyrae in PS1 3π Data

2010) to classify variable sources within PS1 3π. Throughout this analysis, Stripe 82, which was

fully observed by the PS1 survey, serves as a testbed for many aspects of the analysis.

In the classification analysis, this work focuses on two classes of astrophysical objects: QSOs

and RR Lyrae. These objects have numerous applications. For example, the RR Lyrae can act

as tracers of the Milky Way’s stellar outskirts (Sesar et al. 2010, 2013a,b) with high distance

precision. Variability of QSOs is astrophysically interesting for a variety of reasons (Schmidt

et al. 2010; Morganson et al. 2014; Hernitschek et al. 2015), but QSO candidates may also serve

as reference sources for calibrating the astrometry of sources near the Galactic plane.

This Chapter is organized as follows. In Section 5.2, a brief description of the data used for the

analysis is provided. Beside PS1 3π light curves, this section also describes complementary WISE

data that prove important for QSO/RR Lyrae discrimination, as well as the existing QSO and

RR Lyrae classification in SDSS S82, which is central for training and validating a Random Forest

Classifier. Section 5.3 describes outlier cleaning for PS1 3π, where the approaches differ for PV2

and PV3.

In Section 5.4, the methodology is described that lead from PS1 3π lightcurves to QSO and

RR Lyrae candidates. Methods described previously in Chapter 4 are now tailored especially to

the needs of PS1 3π data. This section gives also information on how the classification available

for SDSS Stripe 82 helps in classifying variable objects in PS1 3π. Results are given in Section

5.5. Here it is demonstrated, relying on Stripe 82 data and faint RR Lyrae in Draco dSph as

ground truth, how well the identification and classification of variables with PS1 data works.

In particular, the purity and completeness of various QSO and RR Lyrae samples, e.g. at high

latitude and around the Galactic anticenter, are quantified and discussed. Finally, in this section,

the result on full PS1 3π is given, resulting in a catalog of QSO and RR Lyrae candidates across

three quarters of the sky.

Section 5.6 describes further approaches and results in the context of this work, showing how

period folding can lead to a cleaner RR Lyrae candidate sample as well as precise distance

estimation. Results of this Chapter are discussed in Section 5.7.

Larger figures are given in the Figure section of this Chapter, Section 5.8.

5.2 Data

The approach for calculating variability features and using them to detect and classify variable

sources is based on PS1 3π data, supported by time-averaged photometry from the Wide-field

Infrared Survey Explorer (WISE) survey. Sources from SDSS S82 as well as sources at Draco

dSph (Kinemuchi et al. 2008) serve as ground truth. In this section, the pertinent properties of

these surveys are described.
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5.2.1 PS1 3π Data

The PS1 survey (Kaiser et al. 2010) is collecting multi-epoch, multi-color observations undertaking

a number of surveys, among which the PS1 3π survey (Chambers 2011) is the largest. It has

observed the entire sky north of declination −30◦ in five filter bands (gP1, rP1, iP1, zP1, yP1) with

average wavelengths of 481, 617, 752, 866, and 962 nm, respectively (Stubbs et al. 2010; Tonry

et al. 2012) with a 5σ single-epoch depth of about gP1 < 22.0, rP1 < 22.0, iP1 < 21.9, zP1 < 21.0,

yP1 < 19.8 magnitudes, respectively.

In contrast to the SDSS filters, the gP1 filter extends 20 nm redwards of gSDSS, and the zP1 filter

reaches only to 920 nm. PS1 has no u band. In the near-IR, yP1 covers the region from 920 nm

to 1030 nm. A more detailed descriptions of PS1 3π is given in Section 3.1.

In the following, single-epoch photometry resulting in light curves from PS1 3π will be used in

order to specify variability, as well as to give near-IR and optical colors. A total of 1.1 × 109

sources within PS1 3π were selected for analysis.

All data processing shown in this work is carried out under PS1 catalog processing version PV3.

For comparison, attempts on PV2 are partially shown in order to illustrate both the effect of

available cadence as well as the power of certain methods even in the low-cadence domain.

5.2.2 WISE Data

Quasars are one of the biggest sources of contamination when selecting RR Lyrae stars, especially

at faint magnitudes. They overlap with RR Lyrae in g − r and redder optical colors (e.g. Sesar

et al. 2007), and may look as variable as RR Lyrae when observed in spase datasets such as PS1

(see e.g. Fig. 5.3). To better separate QSOs and RR Lyrae stars, PS1 3π data is supplemented

with the W12 color provided by the all-sky WISE mission.

WISE (Wide-field Infrared Survey Explorer) is a NASA infrared-wavelength astronomical space

telescope providing mid-infrared data with far greater sensitivity than any previous survey. It

performed an all-sky survey with imaging in four photometric bands over ten months (Wright

et al. 2010). Nikutta et al. (2014) have shown that the mid-infrared color W12 = W1−W2 > 0.5

is an excellent criterion to isolate QSOs, because W12 is an indicator of the hot dust torus in

AGN. To aid in the QSO identification, it is reasonable to find objects with these unusual W12

colors. It is necessary to make sure that these colors are not merely a consequence of poor WISE

photometry.

Cross-matching between WISE and PS1 3π is done using the nearest source within a 1” radius.

If a PS1 3π source does not have a WISE W1 or W2 measurement, or these measurements have

uncertainties ≥ 0.3 mag (i.e. the WISE detection is less than 5σ above the background), the W12

color is not used.
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For objects with good measurements (σW1 < 0.3, σW2 < 0.3), W12 is used as feature for classifi-

cation. Also, if both magnitudes are available, the iP1 −W1 color is used as feature for classifi-

cation.

2.6 × 108 out of the 1.1 × 109 selected objects from Sec. 5.2.1 have reliable W12 (σW1 < 0.3,

σW2 < 0.3, where σW1, σW2 are the errors given on the WISE magnitudes).

5.2.3 SDSS S82 Sources

The Sloan Digital Sky Survey (SDSS, York et al. 2000) is a major multi-filter imaging and spectro-

scopic survey using a dedicated 2.5-m wide-angle optical telescope at Apache Point Observatory

in New Mexico, United States. The Sloan Legacy Survey covers about 7,500 degrees of the North-

ern Galactic Cap in optical ugriz filters with average wavelengths of 355.1, 468.6, 616.5, 748.1

and 893.1 nm. In typical seeing, it has a 95% completeness down to magnitudes of 22.0, 22.2,

22.2, 21.3, and 20.5, for u, g, r, i, z, respectively. Additionally, the Sloan Legacy Survey contains

three stripes in the South Galactic Cap totaling 740 square degrees. The central stripe in the

South Galactic Cap, Stripe 82 (S82), was scanned multiple times to enable a deep co-addition of

the data and to enable discovery of variable objects.

Most of the observations of the SDSS S82 were obtained primarily for a supernova search, but

S82 has provided a wealth of information about transients and variable sources of many kinds.

S82 has ∼60 epochs of imaging data in ugriz, taken over ∼5 years, where extensive spectroscopy

provides a reference sample of nearly 10,000 spectroscopically confirmed quasars (Schneider et al.

2007; Schmidt et al. 2010). For S82, there is also a sample of 483 identified RR Lyrae available

(Sesar et al. 2010). The classification of QSOs and RR Lyrae in SDSS S82 will be used as a ground

truth. This means, they will be used as training set for classification as well as for testing how

well the classification method works (see Section 5.4).

5.3 PS1 Object Selection and Outlier Cleaning

Outlier detection and cleaning – the process of removing non-astrophysical photometric outliers

from light curves – as well as object selection – excluding some objects from processing – is crucial

in order to prepare for reliable determination of variability features. Outliers are prone to cause

spurious variability, leading to wrong variability estimates for the underlying source.

The method of outlier cleaning applied during this work differs between PS1 3π PV2 and PV3.

For PV2, a outlier cleaning based on hard detection cuts, mostly motivated by flags, was applied.

This method, developed by the author, was also published in Hernitschek et al. (2016).

Later on, for PV3, a machine-learning based outlier cleaning developed by Branimir Sesar was

applied.
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5.3.1 PV2

For outlier cleaning on PV2 data, a number of cuts on the PS1 data to remove outliers and

unreliable data were applied. These cuts fall into two categories: detection cuts that remove

individual detections, and object cuts that remove all detections of a source from the analysis.

Detection Cuts

The most important detection applied to PV2 removes data taken in non-photometric conditions,

according to Schlafly et al. (2012), and data from any Orthogonal Transfer Array (OTA) where

the detections of bright stars on that chip are on average over 0.02 mag too faint. These cuts

remove about 30% of detections.

The second most important detection applied removes observations which land on bad parts of the

detector, as indicated by having psf_qf_perfect < 0.95. This removes about 10% of detections.

Similarly importantly, any observation were excluded where the PSF magnitude is inconsistent

with the aperture magnitude by more than 0.1 mag or four times the estimated uncertainties,

removing 10% of detections.

Furthermore, any detections with problematic conditions noted by the PS1 pipeline are removed,

according to the detections’ flags. For the cleaning flags used, see Table 5.1 and also Magnier

et al. (2012). This eliminates only about 2% of detections.

Finally, an outlier cleaning based on the z-score of the individual measurements zi = (mi −
µ(bi))/σi is applied, where mi is a given magnitude measurement, σi is its uncertainty, and µ(bi)

is the error-weighted mean magnitude of all measurements of that source in its band bi. This is

limited to eliminate at most 10% of the detections of any individual source.

Fig. 5.1 gives the number of PV2 epochs, as well as their cadence, in each band after all of these

cuts have been applied. The average number of surviving epochs per source is 35 rather than the

total 55 observations shown in Fig. 3.2.

The detection cuts done for PV2 are summarized in Table 5.2. If a detection has one problematic

condition, it is likely also affected by other problematic conditions.

Object Cuts

Additionally to individual epochs, all detections of some objects are excluded from consieration.

When only a small number of epochs are sampled, tests had shown that structure function esti-

mation becomes unreliable.

To ensure that only objects are considered having enough epochs and high enough signal to noise

to be appropriate for variability studies and in particular having enough epochs for multi-band

structure function fitting, for PV2 only objects were selected having
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(i) 15 < 〈gP1〉, 〈rP1〉, 〈iP1〉 < 21.5, where 〈 · 〉 is the error-weighted mean magnitude after apply-

ing detection cuts

(ii) at least 10 epochs remaining after after applying detection cuts

Two additional criteria remove extended objects, as well as objects thought to have problematic

PS1 detections:

(iii) fewer than 25% of epochs eliminated by psf_qf_perfect≤0.95

(iv) fewer than 25% of epochs eliminated by |ap_mag - psf_inst_mag| ≥ max(4σ, 0.1).

Among sources within a magnitude range of 15 to 21.5, these two criteria each remove about

5% of PV2 sources. This was significantly more than expected. However, visual inspection of a

selection of affected sources indicates that these cuts were unnecessarily restrictive. These sources

could have in fact been included in the analysis without difficulty, but for PV2 this loss was

accepted. This loss was called a “selection loss” in Hernitschek et al. (2016), and it means that all

samples (QSOs, RR Lyrae, and variable objects in general) will be missing 10% of the objects.

For PV2, more than 3.88 × 108 objects across three quarters of the sky survived the cuts, and

were therefore processed in order to analyze the variability of them.
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Table 5.1. Bit-flags used to exclude bad or low-quality detections in PV2

FLAG NAME Hex Value Description

PM SOURCE MODE FAIL 0x00000008 Fit (non-linear) failed (non-converge, off-edge, run to zero)

PM SOURCE MODE POOR 0x00000010 Fit succeeds, but low-SN or high-Chisq

PM SOURCE MODE SATSTAR 0x00000080 Source model peak is above saturation

PM SOURCE MODE BLEND 0x00000100 Source is a blend with other sources

PM SOURCE MODE BADPSF 0x00000400 Failed to get good estimate of object’s PSF

PM SOURCE MODE DEFECT 0x00000800 Source is thought to be a defect

PM SOURCE MODE SATURATED 0x00001000 Source is thought to be saturated pixels (bleed trail)

PM SOURCE MODE CR LIMIT 0x00002000 Source has crNsigma above limit

PM SOURCE MODE MOMENTS FAILURE 0x00008000 could not measure the moments

PM SOURCE MODE SKY FAILURE 0x00010000 could not measure the local sky

PM SOURCE MODE SKYVAR FAILURE 0x00020000 could not measure the local sky variance

PM SOURCE MODE BIG RADIUS 0x00100000 poor moments for small radius, try large radius

PM SOURCE MODE SIZE SKIPPED 0x10000000 size could not be determined

PM SOURCE MODE ON SPIKE 0x20000000 peak lands on diffraction spike

PM SOURCE MODE ON GHOST 0x40000000 peak lands on ghost or glint

PM SOURCE MODE OFF CHIP 0x80000000 peak lands off edge of chip

Table 5.2. Cuts used to exclude bad detections in PV2

Condition Fraction of detections removed

Photometric conditions 0.29

|ap_mag - psf_inst_mag| < max(4×σm, 0.1) 0.10

psf_qf_perfect > 0.95 0.11

Pipeline flags (Tab. 5.1) 0.017

|zi − zmedian| < 5σ 0.02
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5.3.2 PV3

Machine learning can be a valuable tool in outlier detection to get precise, but not too restrictive

cuts. When processing light curves from PV3, instead of the detection cuts described above, a

machine-learning based outlier cleaning developed by Branimir Sesar was applied. In the following,

this method is described, together with changed object cuts being more sensible in the case of

PV3.

Detection Cuts by Machine Learning

This method uses not bit-flags or other hard cuts to exclude detections that are possible pho-

tometric outliers in PS1 3π light curves, but a machine-learning algorithm that more efficiently

identifies bad photometric data.

A non-astrophysical outlier (thus, caused not by variability of the physical source but by effects

related to the observational conditions such as instrumentation and atmosphere) is defined as a

photometric measurement deviating by more than 2.5σ from its “expected” value. The expected

value is calculated via a model, and σ gives the total photometrc uncertainty of the detection in

case.

In order to identify and subsequent remove such outliers, a machine-learning model was developed

that predicts whether a detection will be a photometric outlier or not. For doing so, properties

associated with a detection, e.g. position on the chip, bandpass, level of agreement with a PSF

model, seeing are investigated by the model being trained on a set of non-varying sources (bright

K and G stars).

Validation tests by Branimir Sesar have shown that the machine-learned outlier model is able

to identify 80% of all 2.5σ outliers, while misclassifying only 1 good observation for every found

true 2.5σ outlier. For comparison, the outlier cleaning applied to PV2 as described in Section

5.3.1 also identifies almost all of the 2.5σ outliers, but has the problem of misclassifying 8 good

observations as outliers for every found true 2.5σ outlier.

Another advantage of the new method is that feature importance can be used for understanding

what causes outliers.

After removing photometric outliers from PV3 light curves using this machine-learned outlier

model, the average number of observations per source is 67 (out of the initial 72).

The method described here is part of Sesar, Hernitschek et al. (2016) (submitted).

Object Cuts

Because of the higher number of epochs in PV3 at general, together with the improved outlier

cleaning by machine learning, the object cuts have changed from PV2 to PV3. To ensure reliable
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structure function estimation, the requirement on the total number of epochs remains, namely at

minimum 10 epochs over all bands.

No additional cuts are applied at this stage, to not restrict the number of sources more than

mandatory. Possibly magnitude cuts are applied after the light curves are processed, to select

samples tailored to the specific application and evolution.

5.3.3 Comparison PV2 vs. PV3

Fig. 5.1 depicts the total number of bright (15 < iP1 < 18) and faint (18 < iP1 < 21.5) PS1 3π

PV2 and PV3 epochs after outlier cleaning. In contrast, the total number of epochs before outlier

cleaning is given in Fig. 3.2.
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Figure 5.1 The typical number of observations for (a) bright and (b) faint sources in PV2 and PV3 after source

and detection outlier cleaning. For bright sources, the average number of epochs after outlier cleaning in PV3 is

67, in contrast to only 35 in PV2. For faint sources, the average number of epochs in PV3 is 40 in contrast to only

30 in PV2. This is an effect of having more epochs per source in PV3 than in PV2, as shown in Fig. 3.2, but also

an effect of the more sensible outlier cleaning provided for PV3.

A minimum number of 10 epochs after cleaning was enforced for further processing.

The work at hand is carried out with the current internal data release of the PV1 3π survey, PV3,

for final results, and uses PV2 for pre-analysis and during the methodology was designed. Results
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from PV2 are published in Hernitschek et al. (2016) and are given for comparison as far as it

is reasonable. Results on PV2 can show how much is possible with the methodology developed

within this work on even more sparse light curves.

5.4 Methodology

In this section, the three steps are described that are taken to identify and characterize variable

point sources: first, determine whether sources are variable; second, characterize their variability

with a structure function; and third, attribute classifications. Classification is carried out using a

Random Forest Classifier that utilizes a training set from SDSS S82 and Draco dSph. Throughout

the following steps, all data are conform to the selection requirements described in Section 5.2. Fig.

5.2 illustrates the logical flow of the methodology that is detailed in the following subsections.
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Figure 5.2 Logic flowchart for finding and classifying variable sources as set out in Section 5.4.
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5.4.1 Identifying Significantly Varying Sources

The description of the methodology starts by laying out a very generic and non-parametric mea-

sure for variability, simply to characterize the significance of variability by a scalar quantity.

Specifically, it is defined as

χ̂2 =
χ2

source −Nd.o.f√
2Nd.o.f

, (5.1)

with

χ2
source =

∑
λ

N∑
i=1

(mλ,i − 〈mλ〉)2

σ2
λ,i

(5.2)

where N is the total number of photometric points for one object across all n bands for the

source (for PS1 3π, n ≤ 5), the sum over λ is over the available bands (for PS1 3 π, ⊆
{gP1, rP1, iP1, zP1, yP1}), and Nd.o.f = N − n is the number of degrees of freedom.

Assuming that most of the sources are not variable, the distribution of χ̂2 is expected to be a

unit Gaussian. In contrast, varying sources should form a “tail” of higher χ̂2. Figure 5.3 shows

the normalized distribution of χ̂2, derived from the PS1 photometry of all selected objects in S82,

with known QSOs (blue) and known RR Lyrae (red) shown in separate (normalized) distribu-

tions. The “other” objects have a χ̂2-distribution close to that expected for non-varying sources

(dashed line), confirming that most sources in the sky are non-varying (within a level of less than

a few percent) and that the PS1 3π photometry is reliable. The QSOs and RR Lyrae appear well

separated in the normalized distibutions. However, there are only 458 RR Lyrae and 9045 QSO,

compared to ∼3.9× 106 “other” objects in SDSS S82 cross-matched to PS1 3π and surviving the

cuts of Sec. 5.3.2. Fig. 5.3 (b) shows how the distribution of “other” sources superimposes the

distribution of QSOs and RR Lyrae due to the high number of “other” sources.

Therefore, a simple criterion such as χ̂2 is insufficient to identify QSOs or RR Lyrae. In the

subsequent analysis, all objects are used, as χ̂2 serves only as a feature for the classifier and no

cut is placed on χ̂2. However, for RR Lyrae only, one could in principle restrict oneself to objects

with χ̂2 > 10 without losing completeness.
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Figure 5.3 Histograms for χ̂2 of the training set’s sources after outlier cleaning; PS1 photometry in S82 region,

type from SDSS.

(a) Normalized histogram, overplotted: theoretical expectation from unit Gaussian distribution (µ = 0, σ = 1). The

differences between the black histogram and the dashed line arises from a combination of noise-model imperfections

and actual variability of objects. The cutoff for the variability criterion (log10 χ̂
2 > 0.5 for the Catalog of Variable

Sources, see Sec. 5.5.4) is given as a grey line.

(b) Full histogram showing how the distribution of “other” sources superimposes the distribution of QSOs and RR

Lyrae due to the high number of “other” sources.
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5.4.2 Application of Multi-Band Structure Function Fitting to PS1 Data

The general technique for determining structure functions for multi-band, non-simultaneous data

– a novel method developed as part of this work – is already described in Section 4.1.4. The

key ingredient is a description of the ratios of the variabilities in the different bands, which is

characterized by a power law with exponent α (Equation (4.8)), which leads to a band-specific

variability amplitude. The other elements of the structure function analysis – variability, time

scale, and linear nuisance parameters (mean magnitudes) – are the same as in the single band case.

For the case of the PS1 3π data at hand, it turns out that α is poorly constrained for individual

objects, making it preferable to derive an external estimate of α from other data (SDSS S82), and

fix it for the subsequent PS1 3π analysis. Assuming Equ. (4.8), data from SDSS S82 were used

to derive characteristic values for α, leading to α ≈ −0.65 for QSOs and α ≈ −1.3 for RR Lyrae,

both with an uncertainty of 0.01, which is in good agreement with Sesar (2012). Experiments of

fitting PS1 3π data with both choices of α resulted in similarly good fits. Accordingly, a single

fixed α = −0.65 was chosen throughout this analysis. This choice of α corresponds to variability

amplitude ratios ω(b)/ω(r) = 1.175, 1.00, 0.88, 0.80, 0.75, where b represents the PS1 bands gP1,

rP1, iP1, zP1, and yP1.

With α fixed, the fit to each source is described by the time scale τ , an overall variability scaled

to the r band, ωr, and the mean magnitudes ~µ.

Fig. 5.4 shows four example fits to the PS1 photometry of objects in SDSS S82: one QSO, one

RR Lyrae, one “other” variable object and one seemingly non-varying object. For each object,

the light curve is shown as observed in the five bands (top panel), and the combined light curve

after shifting each band by the estimated µ(b); the structure function parameters ωr and τ are

listed for each case. Note that the QSO in Fig. 5.4 (a) has τ of over a year, while the RR Lyrae in

panel (b) has a τ of about a day. The Figure also shows the interpolated light curves, given the

observations and the structure function parameters, according to the technique of Rybicki and

Press (1992).

One could sensibly derive the pdf’s for the parameters ωr, τ and ~µ via MCMC (see A.2 in the

Appendix); however, it proved computationally less expensive by a factor of &100 to calculate

p(m|ωr, τ) based on a reasonable parameter grid. The linear optimization of the ~µ was computed

for each grid-point on a log-spaced grid of −2 < logωr/mag < 0.5, 0.04 < τ/day < 5000 with 20

values evenly spaced in logωr and 30 in log τ to find the best-fit structure function parameters

on the grid ωr,grid and τgrid. For a small subsample, it was verified that this approximation agrees

well with full MCMC runs. Fig. 5.5 shows the gridded log-likelihood estimates for the same four

sources as in Fig. 5.4. The panels show the 68% CI of the logL distribution and the maximum

likelihood values of the parameters.

Fig. 5.6 shows the distribution of variability parameters ωr and τ , for all PS1 objects in the SDSS

S82 area that survive the magnitude cut and which have significant variability, either satisfying

χ̂2 > 5 or χ̂2 > 30 for objects within the stellar locus. This Figure illustrates a number of points:

first, and unrelated to variability, it shows the power of the WISE color W1 −W2 to separate
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QSOs from other sources (Nikutta et al. 2014). Second, it shows that RR Lyrae and QSOs indeed

populate different areas of (ωr, τ) space. While they can only be roughly differentiated by their

amplitudes ωr, they have dramatically different time scales τ : RR Lyrae have typical τ∼1 day

and QSOs have τ∼100− 1000 days.

Additionally, a power law model for the structure function was tested. It provided worse separation

between QSO, RR Lyrae and other objects in the structure function parameter plane. This can

be explained by the cadence of the survey, as the definition of the power law makes the structure-

function fitting more sensitive to the TTI pairs.

Figures 5.3 and 5.6 show that the light curve parameters will be very helpful in classifying variable

sources. Yet, these figures also show that simple cuts on some parameters will not be optimal for

differentiating object classes. A more sophisticated machine-learning method is needed here.

The distribution of the variability timescale τ is shown in detail in Fig. 5.7. The distribution is

calculated from the PS1 3π photometry of a subsample of 2380 QSO, 362 RR Lyrae and 5196

“other” objects (black) surviving a magnitude cut of rP1 < 21.5 mag and having χ̂2 > 5, χ̂2 > 30

in the stellar locus of S82. The values were estimated by using a MCMC. Whereas the distribution

for the “other” sources shows white noise, RR Lyrae and QSO show distinct distributions. This

makes τ a sensible feature for distinguishing between QSO, RR Lyrae and “other”, presumably

not significantly variable sources.
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Figure 5.4 Examples of multi-band lightcurve models for different types of sources. In each figure, the upper panel

gives the PS1 lightcurve data points with error bars after outlier cleaning. The lower panel shows the lightcurve fit

by a multi-band DRW structure function. The solid lines represent the best fit mean model lightcurve Equ. (4.20).

The area between the dotted lines represents the variance Equ. (4.21) for the r band. For ωr and τ , the best MCMC

point-estimates of the parameters for each source are used.

122



5.4 Methodology

-1

0

1

2

3

-2 -1.5 -1 -0.5 0 0.5

lo
g
1
0
τ
/
d

ay
s

log10 ωr,grid/mag

-40

-30

-20

-10

0

lo
g
1
0
L
−

m
ax

(l
og
L)

(a) QSO, ωr,grid=0.21 mag, τgrid=990 days

-1

0

1

2

3

-2 -1.5 -1 -0.5 0 0.5
lo

g
1
0
τ
/
d

ay
s

log10 ωr,grid/mag

-50

-40

-30

-20

-10

0

lo
g
L
−

m
ax

(l
og
L)
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Figure 5.5 Gridded log-likelihood estimates for the structure function parameters. The figures show the 68% CI

of the of logL evaluated on the log-spaced grid for the sources shown in Fig. 5.4. The maximum is marked with a

cross, and the values of τgrid and ωr,grid corresponding to the cross are given in the caption.

5.4.3 Classification of PS1 3π Sources Using a Random Forest Classifier

For classifying objects based on variability measures and mean magnitudes calculated during

structure function fitting, as well as other features, a Random Forest Classifier (RFC) is used
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Figure 5.6 An extract of the feature space showing several features (for complete feature list, see Table 5.7) by
source class.
Structure function parameters and colors calculated from PS1 3π photometry for a subsample of 2380 QSO (blue),
362 RR Lyrae (red) and 5196 “other” objects (black) surviving magnitude cut rP1 < 21.5 and having χ̂2 > 5,
χ̂2 > 30 in the stellar locus of S82. Note that for this Figure the structure function parameter (ωr, τ) are obtained
using a MCMC, as the discrete griding of ωr and τ proved visually distracting. For ωr and τ , the best MCMC
point-estimates of the parameters for each source are used. The W12 color (bottom row) illustrates how powerful
WISE data are in separating QSOs from other sources (Nikutta et al. 2014). It is presumed that most “other”
sources with W12 > 0.5 are indeed QSOs missed by the SDSS classifiation.

(see Section 4.2.3). This machine-learning classifier is implemented in Python’s scikit_learn

package, an open-source Python package for machine learning (Pedregosa et al. 2011)5. Using a

training set, it gives the probability of a target set’s object being of a certain class (the class

5http://scikit-learn.org
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Figure 5.7 The variability timescale τ , calculated from PS1 3π photometry for a subsample of 2380 QSO (blue),
362 RR Lyrae (red) and 5196 “other” objects (black) surviving magnitude cut rP1 < 21.5 and having χ̂2 > 5,
χ̂2 > 30 in the stellar locus of S82. The values were estimated via MCMC. Whereas the distribution for the “other”
sources is white noise, RR Lyrae and QSO show distinct distributions.

probability), pQSO and pRRLyrae. The class probability should not be used as a probability, but

instead, purity and completeness should be calculated from the obtained the sample later on.

For using a RFC, a training set is needed, with observed object parameter values as well as

classification labels. In the following, this training set – that will also serve as a ground truth in

validation – is described.

The Training Set

The training set is built by cross-matching PS1 3π sources in dedicated regions to reliable classified

sources from catalogs. If the position of a source in one of these three catalogs matches the position

of the closest PS1 3π sources within 1”, the PS1 3π source is labeled according to the catalog.

The remaining PS1 3π sources in these regions are labeled as “other”, being neither QSO nor RR

Lyrae and being mostly non-variable.

The largest part of the training set consists of more than 3.9 × 106 PS1 3π sources located in

the SDSS S82 region (310◦ > α < 59◦, |δ| < 1.25◦) that meet the conditions described in Section

5.3.2 and are at least 24′ away from the center of globular cluster NGC 7089 (24′ is two times the

tidal radius, see Harris (1996)). To label the objects in the training set, they are matched to the
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Sesar et al. (2010) catalog of RR Lyrae as well as the spectroscopic QSOs (Schneider et al. 2007;

Schmidt et al. 2010).

Within S82, 9045 QSO and 461 RR Lyrae are cross-matched to PS1 3pi. Out of the RR Lyrae,

458 are outside of NGC 7089. Additionally, more than 3.9× 106 “other” objects are selected from

S82.

Additionally, for RR Lyrae, sources within Draco dSph are used (Kinemuchi et al. 2008). In SDSS

S82, the majority of RR Lyrae stars are located within 30 kpc of the Sun (83% of the sample,

(see Sesar et al. 2010) and thus are bright (rP1 < 18.5). To enhance the training set with fainter,

and thus more distant RR Lyrae stars, 269 RR Lyrae in the Draco dwarf spheroidal galaxy are

used, located at a heliocentric distance of ∼80 kpc (Kinemuchi et al. 2008).

Since these catalogs are based on observations that are slightly deeper and more numerous than

PS1 3π, the catalogs are considered to be 100% pure and complete up to the adopted PS1

magnitude limit, and likely beyond. Consequently, the labels of the sources within the training set

are considered as the “ground truth” when measuring the efficiency of our selection method (i.e.,

the selection completeness and purity). In the following, all numbers of purity and completeness

are given with respect to the cross-matched sources, i.e. 9073 QSOs and 727 RR Lyrae (458 in

S82, 269 in Draco dSph) in the training set.

The Feature Set

As a RFC cannot deal with measurement uncertainties by default, this issue is addressed by

extending the training set by copies of itself, sampled within the assumed errors of the PS1 and

WISE data. For each object in the training set, 5 samples are taken in addition to the original

one.

Furthermore, the training set is extended to account for uncertainties in reddening. Correction

for foregfround reddening is done by interpolating the extinction at the position in case using

the Schlafly et al. (2014) dust map with the extinction coefficients of Schlafly and Finkbeiner

(2011).
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The training set is then extended by presenting additional QSOs, RR Lyrae, and other objects to

the classifier, having artificially introduced a small dereddening error. This is done in the following

way:

(i) make E(B − V )sample drawn from Gaussian G(E(B − V )catalog, δE(B − V )

= 0.1E(B − V )catalog) at the position of the training set source

(ii) 5% chance that E(B − V )sample = 0, irrespective of catalog entry

(iii) sample new mean magnitudes in bands gP1, rP1, iP1, zP1, yP1 for PS1, and W1, W2 from

WISE within their errors

(iv) deredden them by E(B − V )sample

(v) brighten magnitudes so that rPS1 after dereddening by E(B − V )sample is the same as after

dereddening by E(B − V )catalog.

Features are derived from PS1 3π as well as WISE photometry, giving variability as well as color

features. Dereddened optical colors are useful as they provide a rough estimate of the spectral type,

and could help with identification of RR Lyre stars (which are A-F type stars). Thus, observed

PS1 3π magnitudes are corrected for extinction using the extinction coefficient of Schlafly and

Finkbeiner (2011) and the dust map by Schlafly et al. (2014) and calculate (g − r)P1, (r − i)P1,

(i− z)P1, (z − y)P1 colors from the mean magnitudes calculated by structure function fitting.

The Table 5.7 summarizes the feature set being used for the RFC.

Though the mean r band magnitude is helpful in detecting RR Lyrae in general, it is not here as it

introduces a too strong bias in distance, as the training set covers only the range 14.5 . rP1 . 21.5

and the aim is to identify candidates out to 22 mag. Among the colors, the dereddened (i− z)P1

is a helpful gravity indicator that helps to reduce contamination (Vickers et al. 2012).

When using a RFC, missing values have to be replaced by some dummy values (“imputation”)

in the training and target sets. A common solution is replacing missing values by the mean of

the available ones. This can be done not only for missing values, but also for values considered

as unreliable. As imputation of the median is impractical for the way the data are processed, an

imputation of -9999.99 is used instead and tested to behave comparably without effects on the

results. If for some reason an object is not observed in a particular PS1 3π band, the value of the

color involving that band is reset to -9999.99. Accordingly, imputation of -9999.99 is also used in

cases where σW1 > 0.3, σW2 > 0.3, or when magnitude errors are not available.

With the stellar locus defined as

stellar locus =


1, [(〈r〉P1 − 〈i〉P1) < 1.4(〈g〉P1 − 〈r〉P1 + 0.05)] &

[(〈r〉P1 − 〈i〉P1) > 1.4(〈g〉P1 − 〈r〉P1 − 0.05)]

0 else.

(5.3)
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Table 5.3. Feature set for the Random Forest Classifier

feature description

ωr,grid,τgrid best fit structure function parameter on log-spaced grid

χ̂2 normalized χ2 statistic, see Equ. (5.1)

(g − r)P1, (r − i)P1, (i− z)P1, (z − y)P1 colors from dereddened PS1 mean magnitudes

stellar_locus see Equ. (5.3)

W12 W1−W2, helps with QSO identification

iP1 −W1 separates RR Lyrae from QSO

To find the optimal hyperparameters (see Section 4.2.3), the GridSearchCV function available in

the scikit_learn package was used. GridSearchCV selects the test values of hyperparameters

from a grid, and then measures the performance of the classification model (for the given hy-

perparameters) using a 10-fold stratified cross-validation (for cross-validation, see Section 4.2.4 ).

In detail, the training set is split into 10 subsets using stratified splitting (i.e. making sure that

the ratio of RR Lyrae and non-RR Lyrae sources, or QSO and non-QSO sources is equal in both

sets). The model is then trained on 9 subsets, and the class probability is obtained from the model

trained in this way for the tenth subset. The performance on the classification is then evaluated

on this tenth set, and the whole procedure is repeated nine more times, each with a different

held-out set. The average of 10 performance evaluations is stored, and the set of hyperparameters

with the best average performance is finally used for training the classifier.

In order to rank the features by their importance (feature importance, see Section 4.2.3), the

built-in functionality of scikit_learn was used. Given that all features are available, the feature

importance order is as follows for QSOs:

ωr,grid, τgrid, χ̂2, stellar_locus, (g − r)P1, (r − i)P1, (i− z)P1, (z − y)P1, W12, iP1 −W1

and for RR Lyrae:

χ̂2, τgrid, ωr,grid, (i− z)P1,(g − r)P1, (r − i)P1, iP1 −W1, (z − y)P1, stellar_locus, W12.

This ranking can be understand when taking a look at the obtained purity-completeness curves

later on which clearly indicate that variability is crucial (see Sec. 5.4.4). Also, when taking a look

at Fig. 5.3, it is noticeable that χ̂2, separates better separates RR Lyrae out of the full sample,

than QSOs.

5.4.4 Verification of the Method Using SDSS S82 Classification Information

In order to test the efficacy of the selection and classification method, detailed testing was carried

out on the training set and especially on the S82 area, using PS1 3π lightcurves, with the training

set’s labels from S82 (Schneider et al. 2007; Sesar et al. 2010) and Draco dSph (Kinemuchi et al.
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2008) as the “ground truth” to quantify purity and completeness of the classifications. Purity and

completeness are always quantified with respect to a threshold of the class probability pRRLyrae

or pQSO, respectively. Given a threshold on the score and knowing the true class of each source in

the training set, one can measure the fraction of recovered RR Lyrae (or QSO), the completeness,

as well as the fraction of true RR Lyrae (or QSO) in the obtained sample, the purity.

For any one of the two categories, say RR Lyrae, one can define a candidate sample S by the choice

of a minimum pRRLyrae. On the basis of the S82 and Draco dSph ground truth, the completeness

and the purity of this sample can be defined (see Section 4.2.4). Here, purity is defined as the

fraction of all RR Lyrae stars in S, and the“completeness” is the fraction of actual RR Lyrae stars

contained in S. In both instances, one would expect completeness to be monotonic and purity

to be nearly monotonic in pRRLyrae. For the QSOs and any other class, analogous definitions

apply. Depending on context, a sample S is described either by a cut on pRRLyrae/QSO , or by the

corresponding purity and completeness of this sample as determined on the training set.

In order to give estimates on purity and completeness, again a 10-fold stratified cross-validation

is used. The model is trained on 9 subsets with a balanced ratio of sources from each class,

and purity and completeness when applying this model to the tenth subset are calculated. The

whole procedure is repeated 9 more times, each with a different held-out set. The average of 10

evaluations is finally used as purity and completeness. The spread of purity and completeness

based on the chosen training set can be estimated from the spread of the purity and completeness

obtained from the 10 individual runs.

For all purity-completeness plots in the following, a step size in pRRLyrae, pQSO of 0.001 was chosen.

Tables of purity and completeness with a stepsize of 0.01 are given in the Table Appendix, Section

B.1.

Fig. 5.8 shows purity-completeness curves (see Section 4.2.4) for the trade-off between purity and

completeness with respect to the total cross-matched sources. These values are calculated for all

sources in the training set, irrespectively of brightness. The purity-completeness curves are given

for using not only the full feature set, but various subsamples of the features for classification,

namely PS1 3π variability and color, PS1 3π variability only, PS1 3π and WISE color only. For

comparison, the case of using all features in the training set is given for PV2 as dashed line.

The left column refers to QSO classification, the right one to RR Lyrae classification. This Figure

shows that, as expected, for small completeness the purity is maximal, while the completeness

is maximized with severe expense to the purity. What compromise needs to be made between

completeness and purity in sample selection depends in detail on the science question, but the

top panels of Fig. 5.8 suggests that the purity increases only little at the expense of completeness

less than 80%. This may be a sensible threshold for an inclusive sample, whenever PS1 lightcurves

and mean colors, as well as WISE colors are available. At the top of the horizontal axis, the relation

between completeness and pRRLyrae, pQSO is indicated.
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The different lines in the upper panels of Fig. 5.8 illustrate the relative importance of the different

pieces of data that may enter the classification; the classification as not only carried out with the

full feature set from Table 5.7, but also tested the cases where only color-related or variability-

related information was used. Also the calculated feature importance, as given above, highlights

the rigorous importance of the variability features.

Fig. 5.8 shows that the variability information is absolutely indispensable to define a sample with a

sensible combination of purity and completeness for RR Lyrae as well as for QSO. These different

purity-completeness curves also indicate what one might expect for purity and completeness, when

a particular source lacks some information used as feature, for instance, a detection in WISE or

particular PS1 3π bands.

Given that the training set is finite in size, the purity and completeness will depend in detail on

the chosen training sample. The individual lines in the lower panels of Fig. 5.8 reflect different

samplings of the training set. For a training set of the size available in S82, the effect is noticeable,

but small.
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Figure 5.8 Trade-off between purity and completeness with respect to total cross-matched sources for different

pieces of information provided to the RFC. The upper panels show purity-completeness curves when PS1 variability

and PS1 + WISE colors, PS1 variability and colors only, PS1 variability only, PS1 + WISE colors are provided.

There is a limited purity and completeness that can be achieved with variability only (yellow line). As expected,

using all features (blue line) gives the best result quantified by purity and completeness.

The lower panel gives the impact of the training-set stochasticisty, illustrated by the dependence of purity and

completeness on the chosen training set sources (presuming PS1 variability and PS1 + WISE colors are provided).

The trade-off between purity and completeness is plotted from using 10 different randomly selected training sets, as

well as their mean (thick dark blue line, the same as the blue line in the upper panel). At the top of the horizontal

axis the relation between completeness, and pRRLyrae, pQSO is given. For RR Lyrae, with only 458 S82 RR Lyrae

and 269 Draco dSph RR Lyrae in the training set, the stochasticisty is noticeable. In contrast, for QSO with 9045

sources in the training set, it is negligible.

Tables of purity and completeness for the case of using all features (blue line) can be found in the Table Appendix,

Table B.1 for QSOs and B.3 for RR Lyrae, respectively.
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Dependence of Purity and Completeness on Source Brightness

The result shown in Fig. 5.8 is integrated over a range of distances (roughly 14.5 < rP1 < 22, or

∼5−120 kpc for RR Lyrae). Since it is reasonable to expect variations in purity and completeness

as a function of distance (or magnitude), a more detailed analysis is needed. It is likely that the

classification becomes more uncertain as sources get fainter and light curves become sparser and

noisier.

To specify the heliocentric distance dependence for RR Lyrae classification, the training set’s

ground truth used for verification was split up into sources with ∼40 kpc (14.5 < rP1 < 18.5)

and ∼80 kpc (19.7 < rP1 < 20.7). The obtained completeness and purity was then compared to

the one from the full sample reaching ∼14.5 < rP1 < 22. The rP1 = 18.5 mag brightness cut was

used because the vast majority of halo RR Lyrae stars are located within that magnitude range

(Sesar et al. 2010).

The resulting purity and completeness is given in Fig. 5.9 as well as in the Tables B.3 to B.5. At a

heliocentric distance of ∼40 kpc, for a completeness of 0.8, a purity of 0.86 can be reached, using

a pRRLyrae threshold of 0.27. At ∼80 kpc, the same threshold results into a completeness of 0.8,

purity of 0.8. For a threshold of 0.06, for sources at ∼40 kpc, the sample completeness is 0.98,

the purity 0.62, and for sources at ∼80 kpc, the sample completeness is 0.88, the purity 0.52.

As being interested in distant sources, for further analysis the following thresholds are used:

Sources of the sample that can be selected using pRRLyrae > 0.27 are referred to as “likely RR

Lyrae”, whereas those selected using pRRLyrae ≥ 0.06 are referred to as “possibly RR Lyrae”.

To specify the magnitude dependence of QSO classification, a subsample of the training set’s

QSOs were used, selected by 14.5 < rP1 < 20. The obtained completeness and purity was then

compared to the one obtained from the full sample. As for RR Lyrae, also for QSO a higher purity

at the same level of completeness can be reached for less faint sources. The resulting purity and

completeness is given in Fig. 5.10, as well as in the Tables B.1 and B.2.

Using again a threshold resulting into a completeness of 0.8, a purity of 0.8 can be reached using

pQSO ≥ 0.56. Using pQSO ≥ 0.31 instead, this results into a sample purity of 0.75, completeness

of 0.88.

For further analysis, the following thresholds are used:

Sources of the sample that can be selected using pQSO ≥ 0.56 are referred to as “likely QSO”,

whereas those selected using pQSO > 0.31 are referred to as “possibly QSO”.
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Figure 5.9 Trade-off between RR Lyrae purity and completeness with respect to total cross-matched sources for

different brightness limits. The equivalent heliocentric distance for each range of appparent magnitude is indicated.

At the top of the horizontal axis the relation between completeness and pRRLyrae is given. At the bright end,

14.5 < rP1 < 18.5, a significantly higher purity at the same completeness can be reached than for fainter sources.

The purity-completeness curve integrated over the full magnitude range is indicates as thick line. Tables of purity

and completeness for the different brightness limits can be found in the Table Appendix, Tables B.3 to B.5.
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Figure 5.10 Trade-off between RR Lyrae purity and completeness with respect to total cross-matched sources

for different brightness limits. At the top of the horizontal axis the relation between completeness and pRRLyrae is

given. As for RR Lyrae, also for QSO a higher purity at the same level of completeness can be reached for brighter

sources. The purity-completeness curve integrated over the full magnitude range is indicates as thick line. Tables of

purity and completeness for the different brightness limits can be found in the Table Appendix, Tables ?? to B.2.

5.4.5 Limitations of the Method

The method of automatic source classification is subject to several limitations. The most impor-

tant of these are:

(i) mismatch between assumptions on the ground-truth training set and other regions of sky,

(ii) incompleteness of the training set, and

(iii) the inhomogeneity of the available data over the sky.

These limitations are addressed in the following.

The classifier is trained using data on SDSS S82, supplemented by Draco dSph, where existing

large catalogs of RR Lyrae and QSOs provide an almost complete sample of objects in these

regions. After training the classifier, it is applied to other regions, where no similar classifications

already exist. In general, however, the application of the classifier to regions other than S82 and

Draco dSph is only justified when the region has distributions of RR Lyrae, QSOs, and potential

contaminants similar to that in S82. Over most of the high latitude sky, this is the case, and so

the method can be applied without difficulty.
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However, at low latitudes the number of contaminants is relatively much larger than the number

of RR Lyrae and QSOs in S82 and Draco dSph, since in these regions the data include very

large numbers of metal rich disk stars. Additionally, the data itself is qualitatively different: the

presence of reddening influences the observed colors of sources, and variation in reddening as a

function of distance means that even with a perfect 2D reddening map, dereddened colors may

no longer match the true colors of objects. Accordingly, at low latitudes one should not expect

such a classifier to perform with the same purity and completeness as at high latitudes, and our

S82-based estimates of purity and completeness will no longer apply.

The second problem with the technique is that even in high latitude regions, the adopted training

set is imperfect. This is especially the case for the adopted QSO training set. The method uses

spectroscopically selected QSOs from Schmidt et al. (2010), which are complete only down to

roughly an iP1-band magnitude limit of 21.25. Therefore, in the training set, fainter objects are

marked as non-QSOs, so the classifier learns to discard these objects – even when they are, in

fact, QSOs, as indicated by their WISE W1−W2 color and variability. This results in a quasar

sample whose purity and completeness is really only relative to S82 spectroscopic quasars, rather

than the underlying population of QSOs falling in our magnitude range.

A final concern with the method is that the ability to determine if an object is in fact a QSO or RR

Lyrae depends on what information is available for it. The purities and completenesses computed

are properties of the entire sample of selected objects. The assignment to classes of individual

objects within that sample may be relatively uncertain, if, for instance, those objects lack specific

PS1 colors or detections in WISE. Figure 5.8 serves to show what may happen to the purity and

completeness of subsamples of objects, for which only limited information is available.

5.5 Results

The method of variability characterization and subsequent Random Forest classification was then

applied to all sources in PS1 3π, with the selection criteria discussed in Section 5.3, resulting in a

total of more than 1.1×109 classified sources. Fig. 5.21 shows the all-sky projection of PV3 source

density within the cuts from Sec. 5.3. Here, the results of this classification are presented and

discussed. Throughout, the discussion focuses on two illustrative regimes of Galactic latitude, the

North Galactic cap and the Galactic anticenter region. Specifically these regions are selected:

• 0 < l < 360, 60 < b < 90 (around the Galactic north pole), about 2800 deg2, about 3.1×107

classified sources, source density 1.1× 104/deg2

• 165 < l < 195, −15 < b < 15 (around Galactic anticentre), about 900 deg2, about 3.9× 107

classified sources, source density 4.4× 104/deg2.

As the analysis considers RR Lyrae, but also QSOs, at low Galactic latitudes, a number of effects

in the candidate selection are likely to become important: first dust extinction at low latitudes

will push faint sources below the detection limit; imperfect dereddening may lead to differing
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de-reddened colors; and the training set, S82, is mostly at high Galactic latitudes with low dust,

leaving the classifier imperfectly prepared for very high level of Galactic disk star contaminants.

The coverage of the obtained sources is illustrated by selecting a sample of 1.5 × 105 highly

probable RR Lyrae (pRRLyrae > 0.27 expected purity of 0.8 and completeness of 0.8 at 80 kpc)

and plotting their angular distribution as Mollweide projection in Fig. 5.23. An analogous figure

was made for QSO (pQSO ≥ 0.56, expected purity of 0.8 and completeness of 0.8), as shown in

Fig. 5.22 containing 3.7× 105 sources.

From these plots – discussed in greater detail later on – a highly structured distribution of RR

Lyrae candidates and a homogeneous distribution of QSO candidates is visible.

Other large area maps of QSO candidates are shown in Fig. 5.11 for the North Galactic cap, in

Fig. 5.12 for the Galactic anticenter, and in Fig. 5.22 for the entire PS1 3π region. The analogous

maps for these three areas, but shown in RR Lyrae candidates are shown on Figures 5.14, 5.15

and 5.23.

For both QSOs and RR Lyrae stars the obtained samples of candidates constitute by far the largest

sets of high-quality candidates, both in terms of imaging depth, sky area and consequently sample

size, e.g. compared to Morganson et al. (2014), who found a QSO purity of 48% and completeness

of 67% for PS1-SDSS data.

In the following, all “purity” and “completeness” given for a threshold on pQSO, pRRLyrae refer to

the case having the full feature set from Table 5.7 available and referring to 19.7 < rP1 < 20.7

(∼80 kpc heliocentric distance), or 14.5 < rP1 < 20 for QSO.

5.5.1 QSO Candidates

QSOs should be distributed isotropically across the sky, with a mean number density of candi-

dates, of about 20 objects per deg2 in the magnitude range 15 < mag < 21.5 (Hartwick and

Schade 1990; Schneider et al. 2007; Schmidt et al. 2010). This allows for testing the large scale

homogeneity of our classification in areas of high Galactic latitude, and it allows to look at the

changing completeness and purity towards low latitudes. As contaminants are expected to in-

crease at low latitudes, many more candidates with low pQSO are expected towards the Galactic

plane. Until dust extinction and disk star contamination become severe, an approximately uniform

density of objects with high pQSO is feasible.

Some of these expectations are borne out in the candidate selection near the Galactic North pole:

as shown in Figure 5.11 the selection of candidates with pQSO > 0.56, accounting for a purity in

S82 of 0.8 and a completeness of 0.8, is uniform to a high degree.

In regions away from the Galactic plane, a homogeneous distribution of the QSO candidates

is found. Homogeneity is obvious in Fig. 5.11 as well as in Fig. 5.12 down to |b|∼ 10◦. For

pQSO ≥ 0.56, the source density is∼20 sources per deg2, in good agreement with the assumption.
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As depicted in Fig. 5.13, the number of sources per deg2 at a given minimum pQSO is comparable

for all |b| > 20◦, and comparable to S82. At high latitudes, the increase of candidates with pQSO

is similar on and off S82, as illustrated in Fig. 5.11. A sample selected using a lower threshold of

pQSO shows inhomogeneities caused by contamination at almost all Galactic latitudes.

Around the Galactic anticenter (see Fig. 5.12) for |b| . 10◦, the number of sources with high pQSO

per deg2 is much lower than around the Galactic north pole, by a factor of &10. This means that

higher overall source density does not lead to an (presumably erroneous) increase of the number

of candidate objects with a high pQSO. Indeed, the number of candidates per deg2 decreases,

caused by dust or varying WISE depth, to less than 10% of the sources at higher latitudes, and

even vanishes for high pQSO (see Fig. 5.13).

Across PS1’s entire 3π area, there are 3.7 × 105 likely QSO candidates with pQSO ≥ 0.56 (with

an expected high-latitude purity of 0.8, completeness of 0.8), and 6.9 × 105 possible candidates

(purity = 0.75, completeness=0.88) with pQSO ≥ 0.31.
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high latitude distribution of QSO candidates

purity, completeness given for 14.5<rP1<20
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Figure 5.11 High latitude angular distribution of likely and possibly QSO candidates. This Lambert’s Azimuthal

Equal-Area Projection with north polar aspect shows well the uniformity of the 5.1 × 104 likely and 9.3 × 104

possibly QSO candidates for b > 60◦.
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Figure 5.12 Low latitude angular distribution of likely and possibly QSO candidates around the Galactic anticen-

ter. Within the region shown here, there are 4.5×103 likely and 1.8×103 possibly QSO candidates. This Mollweide

projection shows how the area density for both likely and possibly candidates drops towards the Galactic plane,

caused by dust. A a contour plot of the reddening-based E(B − V ) dust map (Schlafly et al. 2014) overlayed.
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Figure 5.13 Area density of QSO candidates as function of the pQSO threshold. The area density of likely QSO

candidates at high latitude (b > 60◦) is in very good agreement with the one found on S82 for all pQSO. At low

latitudes around the Galactic center, as shown in Fig. 5.12, the area density drops depending on the pQSO threshold

to less than 10% of the high-latitude density. A small, but noticeable difference between S82 and the high-latitude

area is found for the brighter sources, see right panel of the Figure.

5.5.2 RR Lyrae Candidates

In this section, the properties of the resulting RR Lyrae candidate sample are presented and

discussed. In particular, it is tested whether the completeness and purity of the selection obtained

by the method is good enough to recover known halo substructure, as well as whether it can

compete with the classification from other surveys the method is not trained on.

Figures 5.14, 5.15 and 5.23 present the diagnostics of our RR Lyrae candidate identification,

analogous to the Figures for the QSO candidates. Because the angular and 3D distribution of RR

Lyrae is highly structured, diagnosing the quality of the candidate identification across PS1 3π is

more complex than for the QSOs. Even Figure 5.14, showing the distribution of likely RR Lyrae

candidates around the Galactic north pole, shows gradients and structure; the overdensity seen

between l = 220◦ and 315◦ is the Sagittarius (Sgr) tidal stream. The area density of the likely

candidates (pRRLyrae ≥ 0.27) fits with the expectation of about 1-2 RR Lyrae per deg2 from SDSS

S82 (Sesar et al. 2010).

At low latitudes, around the Galactic anticenter (see Fig. 5.15) where the total source density

is 4 times times higher, the number of RR Lyrae candidates with pRRLyrae ≥ 0.27 drops. The

area density of RR Lyrae candidates as function of the pRRLyrae threshold is shown in Fig. 5.16

for different magnitude and therefore assumed distance ranges. Whereas for high latitudes, the
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number of candidates is fewer by about 0.5 − 1 sources per deg2 than in S82, the density drops

more for the low latitudes (|b| < 20◦), and especially for the bright sources.

This may reflect the combination of higher contamination (reducing the number of pRRLyrae ≥
0.27 candidates), with actual RR Lyrae in the Galactic disk. The density of possible RR Lyrae

candidates, with pRRLyrae ≥ 0.06 is much higher than around the Galactic north pole, by a factor

of ∼6, which must reflect, foremost, increased contamination. In detail, the source densities are

as follows: at b > 60◦, the density of likely RR Lyrae candidates is 1.7/deg2, and the density of

possibly RR Lyrae candidates 2.9/deg2. At low latitudes, |b| < 20◦, the numbers are 3.1/deg2

and 10.1/deg2, respectively.

The panoptic view of the PS1-selected RR Lyrae candidates (Fig. 5.23) is quite striking, as it

reveals how prominent the Galactic disk and bulge are in the map of likely RR Lyrae candidates.

Note that this is in prominent contrast to the large-scale distribution of probable QSOs, whose

density drops towards the Galactic plane. Therefore, these data may, in addition to contaminants,

be revealing enormous numbers of RR Lyrae candidates throughout the disk and the bulge. Bulge

RR Lyrae have been surveyed extensively, e.g. by OGLE (Udalski 2003); yet, to date there have

been very few studies of RR Lyrae throughout the Galactic disk (Mateu et al. 2012). This survey

therefore represents the largest sample of Galactic disk RR Lyrae candidates, by a wide margin.

Of course, they require extensive verification and follow-up.

The obtained sample contains 1.5 × 105 likely candidates with pRRLyrae ≥ 0.27 (purity=0.8,

completeness=0.8). The sample contains furthermore 9.0×105 possibly halo RR Lyrae candidates

at Galactic latitudes of |b| > 20◦ outside of the bulge, having pRRLyrae ≥ 0.06 (purity=0.52,

completeness=0.88).

Within |b| < 20◦, where reddening and contamination make the method less likely to be reliable

(Section 5.4), the sample contains 1.0 × 105likely RR Lyrae candidates with pRRLyrae ≥ 0.27

and 3.8 × 105 possibly RR Lyrae candidates with pRRLyrae ≥ 0.06. Out of them, 3.2 × 104with

pRRLyrae ≥ 0.27 and 1.4×105 with pRRLyrae ≥ 0.06 belong to the bulge as being in a radius of 20◦

around the Galactic center. Within the complete area covered by PS1 3π, the sample contains

1.5× 105 likely and 4.7× 105 possibly RR Lyrae candidates.

At higher Galactic latitudes, the PS1 3π includes sky regions with known halo substructures or

satellite galaxies that contain RR Lyrae, and this can be used to verify our candidate selection.

Known structures, clusters and satellite galaxies are labelled6 in Fig. 5.23. Many of them show

up in the map of likely RR Lyrae. Note that M31 and M33 appear in these maps, presumably

because their (unreddened) Cepheids get misintepreted as RR Lyrae by our classifier.

In detail, the Galactic halo substructure as seen by RR Lyrae candidates is depicted in Section

5.5.3

6 http://homepages.rpi.edu/ newbeh/mwstructure/MilkyWaySpheroidSubstructure.html
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Figure 5.14 High latitude angular distribution of likely and possibly RR Lyrae candidates. This Lambert’s

Azimuthal Equal-Area Projection with north polar aspect shows well the inhomogeneity of the 4.8 × 103 likely

candidates for b > 60◦, caused by the Sagittarius stream.
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Figure 5.15 Low latitude angular distribution of likely and possibly RR Lyrae candidates around the Galactic

anticenter. This Mollweide projection shows how the area density for both likely and possibly candidates drops

towards the Galactic plane, caused by dust. A a contour plot of the reddening-based E(B− V ) dust map (Schlafly

et al. 2014) overlayed.
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Figure 5.16 Area density of RR Lyrae candidates as function of the pRRLyrae threshold. The area density of

likely RR Lyrae candidates at high latitude (b > 60 deg) is in very good agreement with the one found on S82 for

all pRRLyrae. At low latitudes around the Galactic center, as shown in Fig. 5.15, the area density of likely RR Lyrae

drops depending on the pRRLyrae threshold.
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Comparison to the Catalina Survey

Of course, PS1 3π is not the first large-area RR Lyrae survey at high Galactic latitudes; so in

selected areas, comparison is possible to previous surveys, e.g. SDSS (York et al. 2000), Catalina

(Drake et al. 2009), QUEST (Mateu et al. 2012), and PTF (Rau et al. 2009). Having used SDSS

S82 and Draco dSph in the training of the classifier, the analysis here focuses on the Catalina

Sky Survey (CSS Drake et al. 2009), which has covered the region around the Galactic north

pole down to b = 30◦, but only for bright sources ≤ 19 mag. CSS is a survey program for finding

new near-Earth objects, composed of the original Catalina Sky Survey (CSS), the Siding Spring

Survey (SSS) and the Mt. Lemmon Survey (MLS). Catalina photometry covers objects in the

range -75◦ < δ < 70◦ and |b| & 15◦. In addition to asteroid search, the complete Catalina data is

analyzed for transient sources by the Catalina Real-time Transient Survey (CRTS), resulting in

catalogs of RR Lyrae (Drake et al. 2009, 2013a,b). This is used to verify the RR Lyrae candidate

identification, by cross-matching in this region with respect to CSS and SSS. The following analysis

focuses on the magnitude range in common between both surveys ∼15 − 18.5 mag in order to

compare the RR Lyrae candidate sample obtained within this work to the RR Lyrae identified

by CSS.

The total number of CSS RR Lyrae with b > 30◦ is 6855. For 6825 of them, cross-matching finds

a PS1 3π source within 5” with pRRLyrae ≥ 0.27. The faintest 15 CSS sources, with V < 12.4,

never enter our analysis.

With respect to CSS, a completeness is obtained of 99% (i.e. finds 99% of their RR Lyrae), and

a cross-identified fraction of 42% (i.e. they find 42% of the RR Lyrae candidate sample from PS1

3π), if adopting the above magnitude cuts and pRRLyrae threshold.

When comparing to the SSS RR Lyrae, again the nearest match within a matching tolerance of

5” is used. Restricting to 15 < V < 18.5, there are 3148 RR Lyrae in the region covered both

by PS1 and SSS with −30 < δ < −15◦. Out of these, 3115 have pRRLyrae ≥ 0.27, resulting in a

completeness of 98%. To assess the cross-identified fraction, the area to consider is |b| > 15◦, as

SSS roughly misses |b| < 15◦. The number of PS1 RR Lyrae candidates in the overlapping region

and magnitude range and pRRLyrae ≥ 0.27 not cross-matched to SSS is 7539 The number of SSS

RR Lyrae within these boundaries is 2725.

In total, this results into a completeness with regard to SSS of 98%, and a cross-identified fraction

of 36%.

The sample of likely RR Lyrae candidates from PS1 3π contains ∼3 times more RR Lyrae can-

didates with pRRLyrae ≥ 0.27 than the pure samples of CSS and SSS RR Lyrae in the same area.

Taken together, CSS and SSS’s claim of 70% completeness (Torrealba et al. 2009) and the purity

of the PS1 3π RR Lyrae sample being 0.8 at pRRLyrae ≥ 0.27, about 56% of the candidates are

expected to be cross-identified in CSS or SSS; this is close to the actual fraction of 42% for CSS

within 5”. in the SSS, a lower cross-identified fraction of 36% is obtained; this suggests that the

completeness of the SSS is in fact lower than that of the CSS.
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5.5.3 Halo Substructure by RR Lyrae Candidates

Two decades ago, the Milky Way was not thought as an isolated system any longer, as a tidally

disrupted dwarf galaxy was found in a stream in the constellation Sagittarius - later called the

Sagittarius stream (Ibata et al. 1994). This started the discovery of a number of streams, and

highlighted that Milky Way-satellite, or n general galaxy-satellite interactions are a common

phenomenon. Also recent cosmological simulations predict tidal streams from disrupted dwarf

galaxies in the Milky Way’s halo (Bullock and Johnston 2005). At least 11 substantial streams

have been detected in the SDSS and 2MASS (Newberg et al. 2002; Majewski et al. 2003; Grillmair

2009).

The Galactic halo is nowadays known as a not homogeneous but structured part of the Milky

Way, containing debris streams from both disrupted and existing (i.e. the progenitor is still visible)

accreted satellites (i.e., globular clusters and dwarf galaxies). They were disrupted by tidal forces

and stretched into stellar tidal streams and clouds. Well-known examples are e.g. the Sagittarius

and Ophiuchus streams.

Stellar streams are of great interest as their orbits are sensitive tracers of the Galactic potential.

They are a probe the potential’s morphology and the total mass of the Milk Way, as disrupted

galaxies and globular clusters follow, and therefore trace, the orbit of their progenitor which

followed the gravitational potential (Koposov et al. 2010; Newberg et al. 2010; Sesar et al. 2014;

Belokurov et al. 2014). Stellar streams are also helpful tracers for galaxy evolution. As dynamical

times are very long in the outer regions of the halo, accreted material remains coherent for billions

of years (Johnston et al. 1996).

A Map of the Halo

The fact that almost every Milky Way dwarf satellite galaxy has at least one RR Lyrae star

(including the faintest one, Segue 1, Simon et al. 2011), enables them to be tracers to locate

extremely low-luminous Milky Way dwarf satellites by detecting the faint RR Lyrae within them

(Sesar et al. 2014).

The work at hand results into a panoramic map of the entire Milky Way north of δ∼30◦ (∼30,000

deg2), constructed by likely RR Lyrae candidates. Using single-epoch photometry reaching to

rP1∼22 mag, it is sensitive to stellar substructures with distances up to & 120 kpc. Within this

volume, the map recovers almost all previously reported streams and globular clusters.

The majority of stellar streams known nowadays has been discovered to SDSS, which observed

about 14,555 deg2 of the sky at a depth comparable to PS1 3π. As this area is completely con-

tained within PS1 3π, the ability to recover these features provides a check on the accuracy of

the methodology. As a reference, in the following Grillmair and Carlin (2016) is used. The map

shown in Fig. 5.23 clearly reveals all prominent structures that have been reported previously,
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and shows also sources in most fainter substructure. In particular, the map recovers many fea-

tures listed by Grillmair and Carlin (2016) clearly, namely the Sagittarius Stream, the Virgo

Overdensity, Boötes I dSph, Draco dSph, Sextans dSph, Ursa Minor dSph, as well as the globular

clusters NGC1904, NGC4590, NGC5024, NGC5053, NGC5272, NGC5466, NGC5897, NGC5904,

NGC6864, NGC6934, NGC6981, NGC7078, NGC7089. For others, scattered instances of some

RR Lyrae are found, such as Segue 2, Pisces II, Palomar 13.

In the following, dwarf spheroidals and globular clusters that are recovered clearly – e.g. with

an obvious number of stars in an overdensity – are given in alphabtical order. For each of them,

a Figure is given in the Figure section, and they are labeled in the map of likely RR Lyrae

candidates (Fig. 5.23). In the following, central coordinates are from the SIMBAD Astronomical

Object Database7(Wenger et al. 2000), and the apparent sizes from the paper given for each dwarf

spheroidal or globular cluster. Distances D in parsec were derived from

D = 10((〈rP1〉deredd−Mr+5)/5) (5.4)

where 〈rP1〉deredd is the dereddened rP1 mean magnitude. The absolute r band magnitude

Mr∼MV =0.60 mag is taken from Sesar et al. (2010).

Some of these objects show possibly tidal features, extending beyond their indicated sizes in

a stream-like way. This is especially the case for NGC 5024, NGC 5053, NGC 5272, NGGC

7075. As they are not found in literature, they need further investigation. But for possible tidal

features around globular clusters and dwarf spheroidals, this thesis does not contain a thorough

examination of false positives.

The apparent sizes are indicated as in the papers in case, where it was often not indicated how

this apparent size was derived.

Boötes I dSph (Boo I)

This dwarf spheroidal, located at l = 358◦.0361, b = 69◦.6423 at a heliocentric distance of

D∼60 kpc is described in Belokurov et al. (2006).

Boötes was found by Belokurov et al. (2006) in a systematic search for stellar overdensities carried

out in the north Galactic cap using SDSS DR5. It shows in the color-magnitude diagramm a well-

defined turn-off, red giant branch as well as an extended horizontal branch. With an absolute

magnitude of -5.8, it is one of the faintest known galaxies. From its isodensity contours, as shown

in Belokurov et al. (2006), its progenitor is likely a dwarf spheroidal galaxy.

Boötes I dSph as appearing in the likely RR Lyrae sample is shown in the upper left panel of Fig.

5.24. Within the apparent radius of 27′ indicated in the plot, 11 likely RR Lyrae candidates are

found, all at D∼60 kpc.

Draco dSph (Dra)

This dwarf spheroidal, located at l = 86◦.3679, b = 34◦.7217 at a heliocentric distance of

D∼76 kpc (75.8 ± 5.4 kpc by Bonanos et al. (2004), 82.4 ± 5.8 kpc by Kinemuchi et al. (2008),

7http://simbad.u-strasbg.fr/simbad/

147



Chapter 5 Finding, Characterizing and Classifying Variable Sources in Multi-Epoch Sky

Surveys: QSOs and RR Lyrae in PS1 3π Data

own estimate 75.8± 3.9 kpc) is described in Kinemuchi et al. (2008).

Draco dSph as appearing in the likely RR Lyrae sample is shown in the upper right panel of Fig.

5.24. A detailed analysis on found sources and estimated distances is given below in a separate

Subsection.

Sextans dSph (Sex)

This dwarf spheroidal, located at l = 243◦.5, b = 42◦.3 at a heliocentric distance of D = ∼85 kpc

is described in Irwin et al. (1990) Sextans dSph is reported by them as a newly found dwarf

elliptical galaxy, discovered using APM measures of UK Schmidt atlas glass copy IIIaJ survey

plates. The color-magnitude diagrams reveal a pronounced red horizontal branch and a well-

defined asymptotic giant branch typical for dwarf spheroidal systems.

Sextans dSph as appearing in the likely RR Lyrae sample is shown in the lower left panel of Fig.

5.24. Within the apparent radius of 45′ indicated in the plot, 140 likely RR Lyrae candidates are

found, most of them at D = ∼85− 90 kpc.

Ursa Minor dSph (UMi)

This dwarf spheroidal, located at l = 104◦.9527, b = 44◦.8028 at a heliocentric distance of

D = 69 ± 4 kpc is described in Mighell and Burke (1999). Ursa Minor dSph was discovered by

Wilson (1995) and Hubble independently. This faint dwarf spheroidal is the second closest satellite

of the Milky way. Color-magnitude diagrams show a strong horiziontal branch. Ursa Minor may

be the only dwarf galaxy within the Local Group that is composed only of stars older than 10

Gyr (Mateo et al. 1998).

Ursa Minor dSph as appearing in the likely RR Lyrae sample is shown in the lower right panel of

Fig. 5.24. Within the apparent radius of 15′ indicated in the plot, 74 likely RR Lyrae candidates

are found, most of them at D = ∼70 kpc.

NGC 1904

This globular cluster, located at l = 227◦.2291, b = −29◦.3515 at a heliocentric distance of

D∼13 kpc is described in Shapley and Sawyer (1927) NGC 1904 is a globular cluster in the Lepus

constellation, discovered by Pierre Méchain in 1780. It is one out of the two extragalactic globular

clusters in the Messier catalog (the other is Messier 54). Both are thought to belong to the Canis

Major Dwarf Galaxy.

NGC 1904 as appearing in the likely RR Lyrae sample is shown in the upper left panel of Fig.

5.25. Within the apparent radius of 4.8′ indicated in the plot, 28 likely RR Lyrae candidates are

found, with a distance of D = 12− 40 kpc.

NGC 4590

This globular cluster, located at l = 299◦.6258, b = 36◦.0508 at a heliocentric distance of

D∼10.3 kpc is described in Brocato et al. (1997) NGC 4590, also known as Messier 68 (M68) was

discovered by Charles Messier in 1780, and described by William Herschel later on. NGC 4590

has a highly eccentric orbit (ε = 0.5) reaching as far as 30 kpc from the Galactic center. Within

the cluster, a total of 50 variable stars are identified up to now, most of them RR Lyrae.

NGC 4590 as appearing in the likely RR Lyrae sample is shown in the upper right panel of Fig.

148



5.5 Results

5.25. Within the apparent radius of 5.5′ indicated in the plot, 41 likely RR Lyrae candidates are

found, among them 30 at D = ∼10 kpc.

NGC 5024

This globular cluster, located at l = 332◦.9630, b = 79◦.7642 at a heliocentric distance of D = ∼18

kpc is described in Shapley and Sawyer (1927) and Hessels et al. (2007). It is also known as Messier

53 (M53) and was discovered by Johann Elert Bode in 1775.

NGC 4590 as appearing in the likely RR Lyrae sample is shown in the lower left panel of Fig.

5.25. Within the apparent radius of 6.3′ indicated in the plot, 35 likely RR Lyrae candidates are

found, among them ∼20 at D = ∼20 kpc.

NGC 5053

This globular cluster, located at l = 335◦.6987, b = 78◦.9461 at a heliocentric distance of D∼17.8

kpc is described in Clement et al. (2001) and Boberg et al. (2015). NGC 5053 was discovered by

William Herschel in 1786. This globular cluster is located near the north Galactic cap, about 1◦

of M53, having old stars and being metal-poor. Its horizontal branch stars are about 16.65 mag,

its brightest stars up to 13.8 mag.

NGC 5053 as appearing in the likely RR Lyrae sample is shown in the lower left panel of Fig.

5.25. Within the apparent radius of 5.25” indicated in the plot, 11 likely RR Lyrae candidates

are found, among them 7 at 19 kpc.

NGC 5272

This globular cluster, located at l = 42◦.2170◦, b = 78◦.7069◦ at a heliocentric distance of D∼10.4

kpc is described in Paust et al. (2010). NGC 5272, also known as Messier 3 (M3) was discovered by

Charles Messier in 1764, and resolved into stars by William Herschel around 1784. This globular

cluster, one of the largest and brightest, is estimated 8 Gyr old. Among its ∼5× 105 stars, more

than 270 are variables, among them 133 RR Lyrae.

NGC 5272 as appearing in the likely RR Lyrae sample is shown in the lower right panel of Fig.

5.25. Within the apparent radius of 9′ indicated in the plot, 201 likely RR Lyrae candidates are

found, among them ∼55 at D = ∼10 kpc.

NGC 5466

This globular cluster, located at l = 42◦.1502, b = 73.5922 at a heliocentric distance of D∼15.9

kpc is described in Paust et al. (2010) and Buonanno et al. (1984). NGC 5466 was discovered by

William Herschel in 1784. It contains a certain horizontal branch of stars and is metal poor, what

makes it unusual. NGC 5466 might be the progenitor of the “45 Degree Tidal Stream” discovered

in 2006 (Grillmair and Johnson 2006).

NGC 5466 as appearing in the likely RR Lyrae sample is shown in the upper left panel of Fig.

5.26. Within the apparent radius of 5.5′ indicated in the plot, 31 likely RR Lyrae candidates are

found, among them ∼18 at D = ∼17 kpc.

NGC 5897

This globular cluster, located at l = 342◦.9460, b = 30◦.2943 at a heliocentric distance of D∼12.5

kpc is described in Clement et al. (2001) and Koch and McWilliam (2014). This globular cluster
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was discovered by William Herschel in 1784 and shows a low stellar density even in its center.

NGC 5897 as appearing in the likely RR Lyrae sample is shown in the upper right panel of Fig.

5.26. Within the apparent radius of 5.5′ indicated in the plot, 15 likely RR Lyrae candidates are

found, in the range D = 10− 50 kpc.

NGC 5904

This globular cluster, located at l = 3◦.8587, b = 46◦.7964 at a heliocentric distance of D∼7.5

kpc is described in Paust et al. (2010). NGC 5904, also known as Messier 5 (M5) was discovered

by Gottfried Kirch in 1702. It is one of the largest known globular clusters and assumed to be

about 13 Gyr old, thus being one of the oldest globular clusters in the Milky Way. Among 105

stars in NGC 5904 being variable, 97 are RR Lyrae.

NGC 5904 as appearing in the likely RR Lyrae sample is shown in the lower left panel of Fig.

5.26. Within the apparent radius of 11.5′ indicated in the plot, 284 likely RR Lyrae candidates

are found, among them ∼50 at D = ∼7 kpc, but also background stars distributed around 40

kpc.

NGC 6864

This globular cluster, located at l = 0◦.3031, b = −25◦.7480 at a heliocentric distance of D =

∼20.9 kpc is described in Skrutskie et al. (2006) and Harris (1996). NGC 6864, also known as

Messier 75 (M75) was discovered by Pierre Méchain in 1780. It has an apparent magnitude of

9.18 and is one of the more densely concentrated globular clusters known.

NGC 6864 as appearing in the likely RR Lyrae sample is shown in the lower right panel of Fig.

5.26. Within the apparent radius of 3.4′ indicated in the plot, 9 likely RR Lyrae candidates are

found, among them ∼5 at D = ∼21 kpc.

NGC 6934

This globular cluster, located at l = 52◦.1033, b = −18◦.8929 at a heliocentric distance of D = ∼16

kpc is described in Hessels et al. (2007). It was discovered by William Herschel in 1785.

NGC 6864 as appearing in the likely RR Lyrae sample is shown in the upper left panel of Fig.

5.27. Within the apparent radius of 3.6′ indicated in the plot, 20 likely RR Lyrae candidates are

found, among them 23 at D = ∼18 kpc.

NGC 6981

This globular cluster, located at l = 35◦.1623, b = −32◦.6831 at a heliocentric distance of D =

16.73± 0.36 kpc is described in Figuera (2011). It was was discovered by Pierre Méchain in 1780.

NGC 6981, also known as Messier 72 (M72) belongs to the apparently smaller and fainter globular

clusters in Messier’s catalog, being one of its farthest, beyond the Galactic center. Its brightest

stars are around 15.8 mag.

NGC 6981 as appearing in the likely RR Lyrae sample is shown in the upper right panel of Fig.

5.27. Within the apparent radius of 3.3′ indicated in the plot, 19 likely RR Lyrae candidates are

found, among them ∼18 at D = ∼18 kpc.

NGC 7078

This globular cluster, located at l = 65◦.0126◦, b = −27◦.3126 at a heliocentric distance of
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D = ∼10 kpc is described in Hessels et al. (2007) and Clement et al. (2001). NGC 7078, also

known as Messier 15 (M15) was discovered by Jean-Dominique Maraldi in 1746. Its brightest stars

have an apparent magnitude of 12.6, and its horizontal branch giants are at ∼15.9 − 16.8 mag

in V (Behr et al. 2000). In NGC 7078, more than 150 variable stars have been found (Clement

et al. 2001).

NGC 7078 as appearing in the likely RR Lyrae sample is shown in the lower left panel of Fig.

5.27. Within the apparent radius of 9′ indicated in the plot, 81 likely RR Lyrae candidates are

found, among them 29 at D = ∼12 kpc and a background at D = ∼40− 60 kpc.

NGC 7089

This globular cluster, located at l = 53◦.3709, b = −35◦.7698 at a heliocentric distance of D∼10

kpc is described in Hessels et al. (2007) and Lee and Carney (1999). NGC 7089, known as Messier

2 (M2) is one of the largest known globular clusters and was discovered by Jean-Dominique

Maraldi in 1746. The age of this compact and significant elliptical globular cluster is estimated

as 13 Gyr, thus one of the oldest of Milky Way’s globular clusters.

NGC 7089 as appearing in the likely RR Lyrae sample is shown in the lower right panel of Fig.

5.27. Within the apparent radius of 8′ indicated in the plot, 51 likely RR Lyrae candidates are

found, among them 8 at D = 10− 12 kpc and a background at D = ∼40− 60 kpc.

An obvious and large substructure spanning large fractions of the sky is the Sagittarius stream.

It will get an extra section here, and is discussed in detail in Chapter 6.

The Sagittarius Stream

The dominant substructure in the Galactic halo (aside from the Magellanic clouds) is the Sagit-

tarius tidal stream, with its leading and trailing arms (Majewski et al. 2003). Already in Figure

5.23, the Sagittarius tidal stream can be seen as an overdensity crossing l = 0◦ and l = 180◦. It is

useful to show the geometry of the Sagittarius stream by selecting stars near its presumed orbital

plane, and then showing a projected view of this orbital plane. Specifically, Fig. 5.17 shows the an-

gular and distance distribution for RR Lyrae candidates with pRRLyrae ≥ 0.27 (formal purity=0.8,

completeness=0.8) using the heliocentric Sagittarius (orbital plane) coordinates (Λ̃�, B̃�) defined

by Belokurov et al. (2014) and a distance modulus D from the mean magnitude 〈rP1〉. In this

coordinate system, the equator is aligned with the plane of the Sagittarius trailing tail, and Λ̃�

increases in the direction of Sagittarius motion. The latitude axis B̃� points to the Galactic North

pole.

Distances D in parsec were taken from

D = 10((〈r〉P1,deredd−Mr+5)/5) (5.5)

where 〈r〉P1,deredd is the dereddened rP1 mean magnitude.

The absolute r band magnitude Mr∼MV =0.60 mag is taken from Sesar et al. (2010) who used

the Chaboyer (1999) MV − [Fe/H] relation under the assumption that the mean metallicity of
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RRab stars is equal to the median metallicity of halo stars ([Fe/H] = −1.5, Ivezić et al. 2008).

As this analysis doesn’t distinguish between RRab and RRc stars from our analysis, and RRab

stars are most common, making up 91% of the observed RR Lyrae, Mr∼MV = 0.60 mag is used

for all RR Lyrae candidates.

Figure 5.17, showing the RR Lyrae candidates in the Sagittarius plane, provides a striking view

of the stream, with its trailing and leading arm to distances of about 100 kpc. The structure in

this Figure can be compared to to Fig. 6 in Belokurov et al. (2014) as well as to Fig. 6 and 17

in Law and Majewski (2010) that shows the best-fit N -body debris model in a triaxial halo and

observational constraints from 2MASS + SDSS for the leading and trailing arm.

The results can be compared to Ruhland et al. (2011), who traced the Sagittarius stellar stream

using BHB stars and compared it to Law et al. (2005). From the results of the work at hand, it

can be confirmed that there is an extension of the trailing arm at distances of 60− 80 kpc from

the Sun as given e.g. by Ruhland et al. (2011). Furthermore, a cloud-like overdensity is found at

Λ̃�∼110◦, 5 . D . 25 kpc, that can be identified with the Virgo overdensity. This overdensity

can be seen in a number of works (Ruhland et al. 2011; Cole et al. 2008; Newberg et al. 2007), but

the RR Lyrae candidates show the three-dimensional structure especially clearly. A more detailed

analysis on structure and geometry of Sagittarius stream can be found in the subsequent Chapter

6.
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Figure 5.17 The extent of the Sagittarius tidal stream from the distribution of likely RR Lyrae candidates
(pRRLyrae ≥ 0.27, purity=0.8, completeness=0.8) within ±9 deg of the Sagittarius plane, shown in Sagittarius
coordinates from Belokurov et al. (2014). The leading and trailing arm of Sagittarius stream can be identified, as
well as several substructures up to more than 120 kpc. Distances are from distance modulus of dereddened rP1

band mean magnitude. The longitudes of the crossing Galactic plane at l = 14◦ and l = 190◦ are marked.

Distance Accuracy from the Draco dSph

The Draco dwarf spheroidal galaxy (Draco dSph), at known distance and known to contain many

RR Lyrae, provides an opportunity to estimate the distance precision of the RR Lyrae candidates,

using their inferred mean magnitude in the rP1 band. Draco dSph is entirely dominated by old

stars, and is affected by near-negligible reddening, which increases the likelihood of dealing with

true RR Lyrae stars as compared to the candidates seen in the region of the Galactic disk. Out of

the 272 RR Lyrae listed by Kinemuchi et al. (2008), in 269 cases a cross-matching source within 1”

is found, all of them having pRRLyrae ≥ 0.27. Also, among the likely RR Lyrae candidates within

a 1.2 × 1.4 deg2 patch around Draco dSph, there are only slightly more than in the Kinemuchi

et al. (2008) set, namely 279. This results in a completeness of almost 100% w.r.t Kinemuchi

et al. (2008), and a cross-identified fraction of 96% (i.e., they find 96% of the likely RR Lyrae

candidate sample from PS1 3π within that region).

The first panel of Fig. 5.18 shows the angular distribution of the 279 sources within a 1.2×1.4 deg2

patch around Draco dSph, having pRRLyrae ≥ 0.27 (black points); the second panel shows their

distribution in distance D. The obtained result of 75.8± 3.9 kpc is in very good agreement with

Kinemuchi et al. (2008) who found a distance of 82.4 ± 5.8 kpc, and Bonanos et al. (2004) who
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found a distance of 75.8± 5.4 kpc. Remarkably, the variance in the estimated distances from the

likely RR Lyrae candidates is only ∼4 kpc, or 5% in distance. This provides an excellent empirical

estimate of the distance precision of RR Lyrae candidates, before period-fitting (Sesar et al in

prep). Note that many other satellites within ∼100 kpc also show clusters of RR Lyrae candidates

(see Fig. 5.23).

As Draco dSph is in the training set, it was sensible to test how much of Draco dSph can be found

without having it in the training set. In this case, among the likely RR Lyrae candidates within

a 1.2 × 1.4deg2 patch around Draco dSph 83 likely candidates with pRRLyrae ≥ 0.27 are found,

among them 71 within the Kinemuchi et al. (2008) sample, leading to a completeness of 30, and

a cross-identification fraction of 0.85.

This shows that the good match to the sample by Draco dSph is not only introduced by using

Draco dSph as part of the training set (i.e.: it is not only reproducing the training set). On the

other hand it shows how important it is to enhance the training set by Draco dSph RR Lyrae to

identify distant RR Lyrae.
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Figure 5.18 Illustration of the distribution and distance precision for RR Lyrae candidates (pRRLyrae ≥ 0.27)
around Draco dSph. (a) Angular distribution of likely candidates, compared to that of likely contaminants, (b) dis-
tance estimates from distance modulus of dereddened rP1 band mean magnitude for the likely RR Lyrae candidates
from panel (a). The distance estimates are in very good agreement with Kinemuchi et al. (2008) and Bonanos et al.
(2004).

The Halo Profile

In Fig. 5.19, the heliocentric distance distribution of RR Lyrae candidates with pRRLyrae ≥ 0.27

(purity=0.8, completeness=0.8) at Galactic latitudes |b| ≥ 20◦ is shown. Half of them are within

20 kpc. The most distant candidates with pRRLyrae ≥ 0.27 are ∼150 kpc away. An integrated
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profile related to a galactocentric halo density profile ρ∼D−2.62 is overplotted for illustrative

purposes. Such a halo profile is in the ball-park of recent determinations (Xue et al. 2015; Deason

et al. 2001; Sesar et al. 2013b). Comparing this profile to the distance distribution of our RR

Lyrae candidates, this is found to fit well up to ∼80 kpc.

The underlying halo model for the profile, ρhalo (Sesar et al. 2013b) is defined in Galactic coor-

dinates (l, b):

ρhalo(X,Y, Z) = ρ�RRL (R�/r)
n (5.6)

with

X = R� −D cos l cos b

Y = −D sin l cos b

Z = D sin b

r =
√
X2 + Y 2 + (Z/q)2

n = 2.62

R� = 8.0 kpc

q = 0.71

ρ�RRL = 4.5 kpc−1.

ρ�RRL is the number density of RR Lyrae at the position of the Sun.

5.5.4 The Catalog of Variable Sources in PS1 3π

While very useful for many Galactic studies, the existing catalogs of RR Lyrae stars (e.g. Vivas

et al. 2001; Sesar et al. 2010, 2013b; Drake et al. 2013b) are not ideal: they are either deep with

limited sky coverage (e.g., the SDSS Stripe 82 catalog covers 100 deg2 and is complete up to 110

kpc, Sesar et al. (2010)), or have a wide coverage but are not very deep (e.g. the CRTS catalog

overs 20,000 deg2 and is complete up to 30 kpc, (Drake et al. 2013b). Also, none of the above

catalogs cover the Galactic plane, and thus cannot support studies of the old (>10 Gyr) Galactic

disk.

For PS1 3π PV2, 3.88 × 108 PS1 3π sources that fulfil the cuts described in Sec. 5.3.1 were

processed. Supplementary to Hernitschek et al. (2016), the paper based on PV2, a catalog of all

likely variable point sources in PS1 and of all likely QSOs is provided, having a total of 2.6× 107

sources. The catalog includes all sources fulfilling the criterion of log10 χ̂
2 > 0.5 (see Fig. 5.3) or

W12 > 0.5. The latter criterion is intended to ensure that variability statistics are provided for

almost all QSOs.

The Catalog of Variable Sources is available in its entirety in machine-readable format in the

supplementary material to Hernitschek et al. (2016). A table structure is shown here for guidance

regarding its form and content.
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Figure 5.19 Distribution of the heliocentric distance estimates for halo RR Lyrae candidates (pRRLyrae ≥ 0.27,
|b| > 20◦). The corresponding apparent rP1 band magnitude, with no reddening assumed, is given. Distance
estimates are done from distance modulus of dereddened rP1 band mean magnitude. The figure shows the distances
for the 47,886 out of 48,199 halo RR Lyrae candidates within |b| > 20◦ having rP1 band mean magnitude available.
An integrated number density profile from Equ. (5.6), ∼D−1.62 is overplotted.

For PV3, a similar catalog can be built from the 1.1 × 109 sources that were processed. Under

the same criterion as above, it would contain 7.7× 107 sources (unpublished).

5.6 Period Finding for RR Lyrae Candidates

In a subsequent work by Branimir Sesar (Sesar, Hernitschek et al. 2016), features extracted by the

author (see Table 5.7) are used together with template fitting in order to determine periods of RR

Lyrae candidates and thus enhance the sample purity even more. The method is outlined here,

as the cleaner sample together with precise distance estimates is used in the analysis presented

in Chapter 6.
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Table 5.4. The Catalog of Variable Sources in PS1 3π

Column FITS Format Code Description

1 E right ascension in degrees

2 E declination in degrees

3 E scalar variability quantity χ̂2, Equ. (5.1)

4 E best fit structure function parameter ωr (r band variability amplitude) on log-spaced grid

5 E best fit structure function parameter τ (time scale) on log-spaced grid

6 E error-weighted mean gP1 band magnitude 〈gP1〉

7 E error-weighted mean rP1 band magnitude 〈rP1〉

8 E error-weighted mean iP1 band magnitude 〈iP1〉

9 E error-weighted mean zP1 band magnitude 〈zP1〉

10 E error-weighted mean yP1 band magnitude 〈yP1〉

11 E W1-W2 color from WISE

12 E pQSO

13 E pRRLyrae

Note. — Structure of the Catalog of Variable Sources in PS1 3π. The Catalog of Variable Sources is available for PV2 in its
entirety in machine-readable format in the supplementary material to Hernitschek et al. (2016). A table structure is shown here
for guidance regarding its form and content.

5.6.1 Template Fitting

For period finding, a template based method was applied. The paper by Sesar, Hernitschek et

al. (2016) states that previous tests with the multi-band periodogram of VanderPlas and Ivezić

(2015) (for a description see Sec. 4.1.3) had shown that it will fail with the data at hand for nearly

half of the S82 RR Lyrae with PS1 3π photometry. The reason is that the model by VanderPlas

and Ivezić (2015) is a mathematical multi-band light curve, thus for sparse data, the optimal

estiamated light-curve shape (the best-fit model) will not necessarily be physical.

Sesar, Hernitschek et al. (2016) adopt a set of 482 of griz models, consisting of the lightcurve

templates derived in the work by Sesar et al. (2010) from SDSS S82 RR Lyrae (with SDSS

photometry). In total, the template set consists of 379 type ab multi-band templates and 104

type c multi-band templates for RRab and RRc stars, respectively.

In the subsequent analysis, Sesar, Hernitschek et al. (2016) use all yPS1 and zPS1 observations as

if they would be from the same band (zPS1), as they had found from phased PS1 3π light curves

of RR Lyrae that both are identical within photometric uncertainties.

To find the best-fit values of these parameters, the phase of each light curve given an assumed

period P is

φ(t|P, φ0) =
(t− 2400000) moduloP

P + φ0. (5.7)
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In this equation, t is given in heliocentric Julian days, and the phase offset −0.5 < φ0 < 0.5 is

used to enforce the maximum of the light curve occurring at φ = 0.

Then, a χ2-like statistic is minimized,

χ2
k =

∑
m=gP1,rP1,iP1,zP1,yP1

Nobs∑
n=1

(
mn −mk(φ(tn|P, φ0)|F, r′)

σmn

)2

. (5.8)

In this equation, σmn is the photometric uncertainty for the n-th observation in the m =

gP1, rP1, iP1, zP1, yP1 band. Sesar, Hernitschek et al. (2016) use the Differential Evolution al-

gorithm of Storn and Price (1997) in order to minimize. this algorithm is very fast compared to

others tested, and is already implemented in scipy (Millman and Aivazis 2011).

During the template fitting, to a given PS1 3π light curve first every template is fitted. While

doing so, the minimization is constrained to periods from 0.4–0.9 days for type ab templates, and

to 0.2–0.5 days for type c templates, as being typical for these classes. After that, depending on

the type of the best-fit template, only type ab or c are fitted, now setting a more restrictive prior

on the permissible periods, begin in the range of 2 min around the previous best-fit template. For

further inference, only the best-fit outcome from this method is used.

As a test set, the S82 periods from SDSS were used by Sesar, Hernitschek et al. (2016). The

method is capable of recovering the period for 85% out of 440 RR Lyrae. Even with a precision

of 1 sec, the method can recover the period for 73% from PS1 3π photometry.

Thus, period estimation from template fitting is a powerful tool in feature extraction for subse-

quent classification.

5.6.2 A Cleaner Sample

The method is then applied by Sesar, Hernitschek et al. (2016) to full PS1 3π, where a more rigid

cut than the one described in Section 5.3.2 is needed. For being processed, they require that the

sources meet the following conditions after outlier cleaning took place:

(i) at least two epochs in each gP1, rP1, iP1 bands, and at least a total of two epochs in zP1,

yP1

(ii) a total of at least 23 epochs

(iii) an uncertainty-weighted mean magnitude of 15 < 〈m〉 < 21.5 in at least one of the gP1, rP1,

iP1 bands.

Sesar, Hernitschek et al. (2016) use the estimated period P, a set of 10 features comparable to

the ones used within this work (see Table 5.7), as well as ∼20 other features. The complete set

of features is described in Sesar, Hernitschek et al. (2016) and are used to train a supervised

classifier comparable to the approach described in Section 5.4.3.

The important differences are:
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(i) the training set is similar to the S82-part of the training set used in this work (see Section

5.4.3), with the difference of sources must have at minimum 23 (instead of 10) epochs

(ii) the feature set of Table 5.7 is adopted, but replaced the feature stellar_locus (see Equ.

(5.3)) used by Hernitschek et al. (2016) with gP1 − iP1

(iii) instead of a RFC, a gradient boosting (as described in Section 4.2.2, implemented as XGBoost

(Chen and Guestrin 2016) is used.

The approach uses three subsequently more detailed classifiers to overcome the huge computa-

tional effort of template fitting. As one template fitting takes ∼30 min CPU time per source, it

will not be feasible to carry it out for the majority of the sources.

The three subsequent classifiers, as outlined in Sesar, Hernitschek et al. (2016) use

(i) optical/NIR colors and variability features

This analysis uses the feature set of Table 5.7, but replace the feature stellar_locus by Her-

nitschek et al. (2016) by gP1 − iP1. The analysis is in purity and completeness comparable to the

results presented by the author in Sec. 5.5.2. The classifier by Sesar, Hernitschek et al. (2016)

also selects samples that are, for example, ∼80% pure and ∼80% complete. A cut is set on the

outputted classification score to reduce the sample by more than three orders of magnitude, while

losing only 2% of the true RR Lyrae.

(ii) multi-band periodogram

Multi-band periodograms are calculated for the sources passing step (i). The best 20 periods,

as well as their power (i.e. height of the periodogram at the given period) are extracted. The

classifier now uses the features of (i) plus the 20 best periods and their powers, resulting in 50

features.

(iii) template fitting

To sources with a high classifier score from (ii), template fitting is applied.

This strategy avoids wasting CPU time for estimating periods or fitting templates to sources that

are likely not RR Lyrae.

Comparing the purity and completeness of this classifier to the one by the author as described

in Sec. 5.5.2, after the final step (iii) samples that are, for example, 90% pure and 90% complete

can be selected.

Fig. 5.20 compares the purity-completeness curves from the classifier developed in this work to

the purity-completeness curves after step (iii) from Sesar, Hernitschek et al. (2016) in order to

show the remarkably high purity and completeness that can be reached using multi-band template

fitting.

For exploring the Galactic halo, precise distances are important. To estimate distances, methods

as Equ. 5.5 rely on knowledge on the metallicity, that is mostly not available.

Having the period at hand due to the analysis described before, it can be used for a more precise

distance determination. In detail, this period can be used in combination with a period-absolute
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Figure 5.20 Trade-off between purity and completeness for the classifier within this work and the classifier of
Sesar, Hernitschek et al. (2016).
Comparison of both classifiers for the (a) bright, (b) faint end of the sample. For both magnitudes ranges, the
classifier by Sesar, Hernitschek et al. (2016) using period fitting provides a significant improvement, enabling the
selection of samples being almost 100% pure at a completeness of ∼80% (faint end) or even > 90% (bright end).

magnitude-metallicity (PLZ) relation to measure the distances of RR Lyrae with a precision of

3% without knowledge on the metallicity (Sesar, Hernitschek et al. 2016).

The distance estimation by Sesar, Hernitschek et al. (2016) relies on empirical studies by Catelan

et al. (2004), Sollima et al. (2006), Marconi et al. (2015) and other. They have shown that the

absolute magnitude of a RR Lyrae can be modeled as

M = α log10(P/Pref) + β([Fe/H]− [Fe/H]ref) +Mref + ε (5.9)

where Mref is the absolute magnitude at a reference period Pref and metallicity [Fe/H]ref . The

variables α and β give the dependence of the absolute magnitude on period and metallicity,

respectively. The intrinsic scatter in the absolute magnitude is modeled by ε, being a standard

normal variable with mean 0 and standard deviation σM .

The details of how to constrain distances using this method are outlined in detail in Sesar,

Hernitschek et al. (2016).

In the end, distance moduli of PS1 3π RR Lyrae candidates are computed from the flux-averaged

mean iP1 magnitude as

MiP1 = −1.77 log10(P/0.6) + 0.49 (5.10)
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with an uncertainty in MiP1 of 0.06 mag, i.e. a ∼3% uncertainty in distance.

These distances of a sample selected by the method described in Section 5.6.2 (having a purity

of 0.9, completeness of 0.8 at 80 kpc) will be used in Chapter 6 in order to precisely map the

geometry of Sagittarius stream.

5.7 Discussion and Outlook

This part of the work entails how to identify, characterize and classify variable (point) sources in

the PS1 survey, the most extensive, deep, multi-band, wide-area, multi-epoch imaging survey to

date. Because photometry in different bands of PS1 is not observed simultaneously (as they were

e.g. in SDSS), a new methodology for multi-band fitting of structure functions was developed,

implemented and carefully tested, used to characterize non-simultaneous multi-band lightcurves.

This allows to assign to each of 1.1 × 109 point sources in PS1 3π a basic, χ2-based variability

indicator, a variability amplitude (in the rP1-band) ωr, and a variability time-scale τ .

The analysis then focused on the identification of two classes of variable sources among these

objects, QSOs and RR Lyrae stars. Because it aids enormously in the identification of QSOs,

additional to PS1 3π photometry, complementary WISE data was used. To classify objects on

the basis of this mean photometry and lightcurves, the fact was utilized that SDSS Stripe 82

is covered by PS1 3π, as well as Draco dSph, providing together a full inventory of QSOs and

RR Lyrae in these areas. Taking this as ground truth, a Random Forest Classifier was trained to

classify all sources in PS1 3π that have at least 10 epochs after outlier cleaning.

To test the effects of missing information on classification, the classification was not only carried

out with the full available feature set of variability parameters and colors from PS1 together with

WISE colors, but also with more restricted pieces of information, using only color-related and

only variability-related parameters. This had shown that the variability information is absolutely

indispensable to define a sample with an interesting combination of purity and completeness.

One important limitation of the classification is that it relies on SDSS S82 for QSOs and RR

Lyrae, supplemented for faint RR Lyrae within Draco dSph. While this area covers a wide range

in Galactic latitude, 20◦ < b < 70◦ for S82 and ∼1 deg2 for Draco dSph, there is no training in the

Galactic plane. While the number of very likely RR Lyrae candidates, pQSO/RRLyrae > 0.27 drops

near the Galactic plane, the number of possible RR Lyrae candidates, with pRRLyrae ≥ 0.06 is

much higher than around the Galactic north pole, by a factor of ∼6, which must reflect, foremost,

increased contamination. In detail, the source densities are as follows: at b > 60◦, the density of

likely RR Lyrae candidates is 1.7/deg2, and the density of possibly RR Lyrae candidates 2.9/deg2.

At low latitudes, |b| < 20◦, the numbers are 3.1 deg2 and 10.1 deg2.

This fact implies, unsurprisingly, the likely presence of a considerably higher contamination, at

least for samples with purity < 0.8, than tests in S82 would imply. The purity of low-latitude

samples must be settled with follow-up observations and analysis. However, at higher Galactic
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latitudes, & 20◦, PS1 3π appears to remain quite complete in its selection to rP1∼21 mag, which

enables candidate selection to more than ∼140 kpc.

As the treatment of reddening is limited right now, care must be taken applying any values of

purity and completeness to regions of high reddenings.

Across the entire 3π, the analysis of PS1 3π PV3 identified 1.5× 105 RR Lyrae candidates with

pRRLyrae ≥ 0.27. Based on the training, a purity and completeness of both 0.8 is expected among

cross-matched sources. As mentioned above, these numbers on purity and completeness only apply

away from the Galactic plane, and the bulge.

With this caveat on the low-latitude sample purity, the spatial distribution of RR Lyrae candidates

is as follows: Within |b| < 20◦, i.e. near the disk, there are 1.0× 105 likely RR Lyrae candidates

with pRRLyrae ≥ 0.27 and 3.8× 105 possibly RR Lyrae candidates with pRRLyrae ≥ 0.06. Of them,

3.2×104 with pRRLyrae ≥ 0.27 and 1.4×105 with pRRLyrae ≥ 0.06 may be in the bulge as being in

a radius of 20◦ around the Galactic center. Here the selection cuts on the parameter pRRLyrae are

mentioned rather than purity and completeness, because the mapping to purity and completeness

in S82 may not apply at such low latitudes. In the Galactic halo, at Galactic latitudes of |b| > 20◦

there are 4.8×104 candidates with pRRLyrae ≥ 0.27, some extending to distances as large as ∼150

kpc.

This is the most extensive and faintest RR Lyrae candidate sample to date, extending to consid-

erably fainter magnitudes than e.g. the CRTS sample of RR Lyrae stars.

Using the selected RR Lyrae in Draco, distances derived from 〈rP1〉 and Mr = 0.6 are precise

to 6% at a distance of ∼80 kpc. A projection of the candidate sample into the orbital plane of

the Sagittarius stream reveals the stream morphology clearly. Additionally, this sample shows

a bunch of streams and satellites clearly. This indicates that this sample will be excellent for

mapping stellar (sub-)structure in the Galactic halo.

Furthermore, there are 3.7 × 105 likely QSO candidates over the total PS1 3π area at a level of

purity of 0.8, completeness of 0.8 (pQSO ≥ 0.56), and 6.9 × 105 possible candidates at a level of

purity of 0.75, completeness of 0.88 (pQSO ≥ 0.31). At |b| > 20◦, there are 3.3 × 105 candidates

with pQSO ≥ 0.56 and 6.1 × 105 candidates with pQSO ≥ 0.31. The selection of candidates is

homogeneous to a high degree away from the Galactic plane. Around the plane, the number

density of QSO candidates with high pQSO decreases because of dust.

Over all, this work has resulted in estimation of variability parameters and mean magnitudes for

more than 1.1× 109 sources, and a catalog of variable sources of almost 2.58× 107 objects, being

available as a 3π value-added catalog. These parameters of course allow the source classification

based on different training sets than the one presented here.

These results of PS1 3π variability studies in the Milky Way context offer the possibility for all-

sky detection of variable sources in general and to use RR Lyrae to precise distance estimates for

finding streams and satellites. QSO candidates will be used as a reference frame for Milky Way
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astrometry, to get absolute proper motions and study Milky Way disk kinematics. The general

approach enables also the selection of Cepheid variables, as briefly summarized below.

Candidates of periodic variables can be processed further to increase their purity. As approaches

for period finding and fitting are very computational expensive, it is necessary to apply it to

pre-selected candidates (VanderPlas and Ivezić 2015). This is especially outlined by the approach

of Sesar, Hernitschek et al. (2016).

Several approaches for detecting period lightcurve signals exist for well-sampled single-band data

(e.g. Sesar et al. 2010; Graham et al. 2013), but must be adopted for the randomly sampled multi-

band lightcurves as present from PS1 and LSST. Promising approaches for detecting periodicity

in sparsely sampled multi-band time domain data are the multiband periodogram (VanderPlas

and Ivezić 2015) as well as lightcurve template fitting (Sesar, Hernitschek et al. 2016).

Looking forward to catalogs of variable stars from Pan-STARRS, LSST and other multi-band

all-sky time-domain surveys, the general approach of multi-band structure functions and mean

magnitudes as features for a machine-learning classifier meets the constraints of being able to deal

with noisy observational through different bands, accompanied by data from other surveys, and

is fast enough to provide a sample pure and complete enough for further lightcurve analysis.

Cepheids

The approach applied so far in order to find highly pure and complete QSO and RR Lyrae

candidate samples can be extended to find Cepheids in PS1 3π.

Cepheids in the Milky Way’s disk are interesting as they are tracers of structure and evolution

of the inner disk. High dust reddening and dust obscuration, as well as high source density poses

difficulties to map the inner Galaxy down to |b| < 5◦. Attempts were made by the VISTA Variables

in the Via Lactea (VVV) ESO Public Survey (Catelan et al. 2011), using near-infrared time-series

photometry, who revealed 35 classical Cepheids (Dékány et al. 2015).

In the following, a brief outlook is given on how the approach presented so far can be extended

for Cepheids.

In order to build a training set, mock light curves are generated. Most of the known Milky Way

Cepheids are too bright to build a training set of appropriate size. The following procedure is

carried out to generate mock light curves (Laura Inno 2015, unpublished):

(i) Producing normalized light-curves templates in PS1 3π gP1, rP1, iP1, zP1, yP1 bands based

on 131 Cepheids from Monson and Pierce (2011) and the color transformation from Tonry

et al. (2012).

(ii) Selecting PS1 3π sample light curves at various lines of sight close to the Galactic plane to

obtain epoch sampling, together with reddening information from Marshall et al. (2006).
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(iii) Make mock curves based on the obtained epoch sampling and reddening: each of the 131

Cepheids is ”placed” at various lines of sight (thus, epoch sampling and reddening applied).

Additionally, photometric errors are modeled.

The training set is composed of these mock light curves, plus PS1 3π light curves of “other”

sources (being not known as Cepheids, QSO or RR Lyrae).

Training and classification is then done as previously or RR Lyrae: The feature set shown in Table

is used to train a RFC, using variability and colors from PS1 3π, colors from WISE. Once likely

Cepheid candidates are found, template fitting similar to that for RR Lyrae (see Sec. 5.6.2) is

carried out.

For testing the classification, 46 Cepheids from the Kiso Observatory Survey (unpublished) are

used, all of them within |b| < 2◦. Within 0.1◦ × 0.1◦ around each known Kiso Cepheid, PS1 3π

light curves are obtained and classified.

True Cepheids from Kiso get typically a pCepheid≥0.98 what is comparable to a completeness of 0.99,

purity of 1. There are typically <10% sources getting a 0.4 < pCepheid<0.8, and the vast majority

of sources has a pCepheid<0.1. In total, among 40522 sources in the sample, 109 are identified as

likely Cepheids with pCepheid>0.98.

With respect to Kiso, for pCepheid≥0.98 a completeness is obtained of 0.8 (i.e. finding 80% of their

Cepheids, 37 out of 46), and a cross-identified fraction of 0.33 (i.e. they find 33% of the Cepheid

candidate sample from PS1 3π, 37 out of 109), if adopting the above magnitude cuts and pRRLyrae

threshold. This points vaguely to a completeness of ∼0.8, purity of ∼0.33 for Cepheid candidates,

but requires further investigation and possibly improvement of the feature set.

Technical Remarks

For the whole project, a total of 3.3× 105 CPU hours of super-computing time was used by the

author for PV2 and PV3 data each, among them 3.28 × 105 CPU hours for structure-function

fitting and 680 for classification.

The computations are performed using C++ code for structure function estimation, and Python

for classification.

An additional 4.0 × 105 CPU hours was used for the subsequent period finding by Branimir

Sesar.

The PS1 3π catalog used in this work to obtain light curves is stored in the Large Survey Database

(LSD) format (Jurić et al. 2011), which allows for a fast and efficient manipulation of very large

catalogs (>109 objects).
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Figure 5.21 Density of processed 1.1× 109 PS1 3π sources as Mollweide projection in Galactic coordinates using
the healpy (https://healpy.readthedocs.org) pixelation.
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Figure 5.22 Angular distribution of the 3.7 × 105 likely QSO candidates (0.56 ≤ pQSO, purity=0.8, complete-
ness=0.8), shown in Mollweide projection in Galactic coordinates. A contour plot of the reddening-based E(B−V )
dust map (Schlafly et al. 2014) is overlayed.
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Figure 5.23 Angular distribution of the 1.5 × 105 likely QSO candidates (0.27 ≤ pQSO, purity=0.8, complete-
ness=0.8), shown in Mollweide projection of Galactic coordinates. A contour plot of the reddening-based E(B−V )
dust map (Schlafly et al. 2014) is overlayed, as well as identified known objects of the Milky Way spheroid sub-
structure and its neighborhood.
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Figure 5.24 Dwarf spheroidals visible in the RR Lyrae candidate sample; central coordinates are from SIMBAD,

and the apparent sizes from the paper given for each dwarf spheroidal. A description of these sources is given in

Sec. 5.5.3.
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Figure 5.25 Globular clusters (I) visible in the RR Lyrae candidate sample; central coordinates are from SIMBAD,

and the apparent sizes (indicated as red circles) from the paper given for each globular cluster. A description of

these sources is given in Sec. 5.5.3. The seemingly strong features in NGC 5053, NGC 5024, NGC 5272 have not

yet been verified.
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Figure 5.26 Globular clusters (II) visible in the RR Lyrae candidate sample; central coordinates are from SIMBAD,

and the apparent sizes (indicated as red circles) from the paper given for each globular cluster. A description of

these sources is given in Sec. 5.5.3.
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Figure 5.27 Globular clusters (III) visible in the RR Lyrae candidate sample; central coordinates are from

SIMBAD, and the apparent sizes (indicated as red circles) from the paper given for each globular cluster. A

description of these sources is given in Sec. 5.5.3.
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The Geometry of Sagittarius Stream

Stellar streams are of great interest as their orbits are sensitive tracers of the Milky Way’s gravita-

tional potential. As stellar streams as tracers of the gravitationally potential trace the mass, and

thus the potential, enclosed in the orbit, it is crucial to have streams at large distances. Methods

to constrain the mass by inferring the stream’s progenitor orbit have mostly been carried out for

closer systems, so for the GD-1 stream being only ∼15 kpc from the Galactic center (Koposov

et al. 2010). However, there are numerous attempts on carrying this out for the Sagittarius tidal

stream (e.g. Law et al. 2005; Peñarrubia et al. 2010; Gibbons et al. 2014).

The Sagittarius tidal stream is of special interest as of all known tidal streams belonging to the

Milky Way, as it reaches out to more than 100 kpc and is the only stream that shows two nearly

complete orbital loops, one called the “leading arm” and the other called the “trailing arm”.

The main aim of this Chapter is to develop, test, apply and discuss a method to map the geometry

of the Sagittarius (Sgr) stream. In the past, a few attempts have been carried out using N -body

simulations constrained by observational data (e.g. Fellhauer et al. 2006; Law and Majewski 2010).

Such methods suffer from the drawback that they are very computationally expensive. As having a

reasonable high number of sources available by using the highly pure RR Lyrae candidate sample

with precise distances as described in Sec. 5.6.2, the geometry of the Sgr stream can be directly

fitted by a density model.

The structure of the Chapter is as follows: First, the data selected for the fitting are briefly

described. In the methodology section, the underlying halo and stream model, as the fitting

method are described. Results are given, analyzed and compared to previous publications. The

Chapter concludes with a discussion of the results.

6.1 Data

In order to map the geometry of the Sgr stream, the sample of likely RR Lyrae candidates

obtained after period fitting, as described in Sec. 5.6.2, is used. these sample has a purity of 0.9,

completeness of 0.8 at 80 kpc. Heliocentric distance estimates come from the method described

in Sec. 5.6.2.

For describing the angular and distance distribution of these sources, the heliocentric Sagittarius
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coordinates (Λ̃�, B̃�) as defined by Belokurov et al. (2014) are used. In this coordinate system,

the equator B̃� = 0◦ is aligned with the plane of the stream. The source sample is then restricted

to the sources within |B̃�| < 9◦ as also seen in the plots by Belokurov et al. (2014). This sample

is plotted in Fig. 6.1, where the angular distance to the Sgr plane is indicated by color-coding.
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Figure 6.1 RR Lyrae candidates within |B̃�| < 9◦ as obtained after period fitting (see Sec. 5.6.2). The Sgr stream

is clearly visible up to ∼130 kpc. The angular distance to the Sgr plane B̃� = 0◦ is indicated by color-coding.

Compared to the RR Lyrae candidate sample obtained without period fitting (see Fig. 5.17 in

Section 5.5.3), the sample obtained after period fitting traces the Sgr stream with better contrast,

thanks to higher purity of 0.9 compared to 0.8 before. Sources are found out to a heliocentric

distance of more than 130 kpc.

Belokurov et al. (2014) have demonstrated that the trailing arm of the Sgr stream can be traced

out to its apocenter at ∼100 kpc. Belokurov et al. (2014) give also a trace of the stream’s leading

arm to its apocenter at ∼50 kpc. The enormous extent of the Sgr stream has therefore only

recently became apparent. It spans a huge range of distances, unparalleled when compared to

other debris belonging to the Milky Way.

6.2 Methodology

In the following, the methodology for tracing the Sgr stream is described. Also, information on

the test of the fitting method is given.
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6.2.1 The Model

The distribution of RR Lyrae candidates is modeled as a composition of a power-law halo model

ρhalo in Galactic coordinates describing the background, and a Gaussian describing the heliocentric

distance Dsgr and width σsgr of the stream. Data will be fitted in Λ̃� slices. This leads to the

following model for the observed distances D:

p̂(D|~p) =(1− fsgr)
ρhalo(l, b,D, q, n)

Dmax∫
Dmin

ρhalo(l, b,D, q, n)dD

+ fsgr
ρsgr(l, b,D,Dsgr, σsgr)

Dmax∫
Dmin

ρsgr(l, b,D,Dsgr, σsgr)dD

(6.1)

with the parameter set ~p = (fsgr, Dsgr, σsgr, n), composed of the fraction of the stars fsgr being in

the Sgr stream at the given Λ̃� slice, the heliocentric distance of the stream Dsgr, its line-of-sight

width σsgr, and the power-law index n of the halo model.

The underlying halo model ρhalo (Sesar et al. 2013b) is defined in Galactic coordinates (l, b):

ρhalo(X,Y, Z) = ρ�RRL (R�/r)
n (6.2)

with

X = R� −D cos l cos b

Y = −D sin l cos b

Z = D sin b

r =
√
X2 + Y 2 + (Z/q)2

n = 2.62

R� = 8.0 kpc

q = 0.71

ρ�RRL = 4.5 kpc−1.

ρ�RRL is the number density of RR Lyrae at the position of the Sun, q gives the halo flattening.

The underlying stream model is a Gaussian, defined in Galactic coordinates (l, b) and Galacto-

centric distance r, where r is given as function of the heliocentric distances D, Dsgr,

ρsgr(l, b,D,Dsgr, σsgr) =
1√

2πσsgr

exp

(
−(r(D)− r(Dsgr))

2

2σ2
sgr

)
D2. (6.3)
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6.2.2 The Fitting Method

For fitting, the data is splitted in slices of Λ̃�, each 10◦ wide. Data is not binned in D.

The halo power law index n is fitted individually for each Λ̃� slice to account for incompleteness

of the data, the flattening parameter q is kept fixed at 0.71.

The likelihood of the model given the data is then estimated as

L(~p|Dobs,i) =
∑
i

ln p̂(Dobs,i|~p) + ln prior (6.4)

with

ln prior =



1, if 0 < fsgr < 1

1.70 < n < 10

1 < σsgr[kpc] < 6

Dminprior < Dsgr < Dmaxprior

−∞, else

(6.5)

with Dminprior, Dmaxprior indicated in Fig. 6.2.

Dminprior, Dmaxprior are basically constrained by the minimum and maximum distance in the Λ̃�

slice in case, but are also set in order to mask dense regions at low heliocentric distances as well

as to separate the leading and trailing arm where both are present at the same line of sight. The

prior given by Dminprior, Dmaxprior is indicated in Fig. 6.2.

The likelihood of the model given the data is explored using the Affine Invariant Markov chain

Monte Carlo (MCMC) ensemble sampler (Goodman and Weare 2010) as implemented in the

emcee package (Foreman-Mackey et al. 2012). For a description of the algorithm, see Section

A.2.3.

To gain confidence in any inferences obtained from the fitting method, it was tested on mock

data using a mock halo sampled from the underlying halo model, superimposed by a mock stream

inserted as a stellar density sheet, whose number density is uniform perpendicular to the line of

sight, and Gaussian along the line of sight. The fraction of the stream stars w.r.t. the halo stars,

described by fsgr, was subsequently lowered. Also, the fit was carried out in the limit of many

and few stars in each Λ̃� slice to make sure that reasonable fits can be obtained for densities like

the ones present for the PS1 3π RR Lyrae candidates.

6.3 Results

The model given in Sec. 6.2.1 was then applied to the complete sample of candidates within

|B̃�| < 9◦. In Fig. 6.2, the extent of the Sgr stream as well its fitted distance and width are
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depicted. Here, the extent of the Sgr stream is traced in both its leading and trailing arm by Dsgr,

shown as black points centered on the Λ̃� slice in case. Its line-of-sight width σsgr is indicated by

black bars. The grey areas mark the priors set on Dsgr.

The fitted parameters are given in Tab. B.6 and B.7 in the Table Appendix.

It is clearly visible that the distance and width estimates trace the stream well all the way out

to more than 100 kpc, with individual sources tracing it even out to more than 130 kpc. From

this detailed picture of the Sgr stream, many features can be seen in great detail, some of them

reported previously.

(i) The stream shows clearly distinct leading and trailing arms. The shape and extent looks

similar to those found by Belokurov et al. (2014), see also Section 6.3.4.

(ii) The stream turns over at Λ̃�∼70◦ and Λ̃�∼170◦. These are the leading and trailing apoc-

enters, according to Belokurov et al. (2014), Fig. 6 therein.

(iii) The overdensity found at Λ̃� ∼ 95◦ and Λ̃� ∼ 180◦, which was previously reported by Sesar

(2012) as moving group, and by Drake et al. (2013a) as new stream, can now clearly be

associated with the distant part of the trailing arm.

(iv) An apparent continuation of the stream at Λ̃� ∼ 180 deg, reaching up to 130 kpc, is clearly

visible. This feature was previously predicted by Gibbons et al. (2014) from dynamical

models of the stream. According to them, this feature of the stream is debris from the

most recent orbital passage. The Gibbons et al. (2014) model also explains the two moving

groups found by Sesar (2012) and Drake et al. (2013a) as debris from the oldest and from

the most recent stripping epochs. This is discussed in Sesar, Hernitschek et al. (2016) in

detail. Finding this feature in observational data is a new discovery, possible thanks to the

wide and deep view of the Galactic halo possible through PS1 3π, and the precise RR Lyrae

candidate selection possible through methods like shown in Section.

In the following, the results are laid out in greater detail and compared to previous distance

estimates by Belokurov et al. (2014).
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Figure 6.2 (a) The extent of the Sagittarius stream from the RR Lyrae candidates within ±9◦ of the Sagittarius

plane, shown in Sagittarius coordinates from Belokurov et al. (2014). The best fit model, obtained for 10◦ slices

in Λ̃�, is overplotted. The black points indicate the center of the Λ̃� slices used to estimate the distance Dsgr. (b)

Alternative cylindric projection. 178
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6.3.1 Fits to Individual Λ̃� Slices

Each distance and width estimate (Dsgr, σsgr) in Fig 6.2 is obtained by optimizing Equ. (6.4)

using a MCMC.

The following Figures 6.3 and 6.4 show these fits to individual slices in Λ̃�. Here, also the previ-

ously mentioned issue with sample incompleteness becomes obvious.

Fig. 6.3 gives the fits for a 10◦ wide slice centered on Λ̃� = 10◦ and Λ̃� = 50◦, respectively. In

these directions, only the leading arm is present. The plot indicates the prior on Dsgr, in these

cases, only set by the minimum and maximum distance available from sources in the Λ̃� slice

in case. The distribution of the sources is shown, overplotted with the model from the best-fit

parameters given as a solid blue line. The spread of transparent blue lines gives the spread of

models within the 2σ range obtained by the MCMC.

In both cases, a halo profile much steeper than the n = 2.62 from the Sesar et al. (2013b) model

is obvious. For Λ̃� = 10◦ (a), n reaches even the upper limit set by the prior. This is caused by

sample incompleteness, leading the MCMC to choose a steeper profile even if the distribution of

more distant sources indicates a flatter.

The estimate of Dsgr and σsgr is clearly seen as being sensible in Fig. 6.3 (b). Here, the 2σ range

on the estimated parameters is very small, and the parameters fit well to what one would guess

by visual inspection.

Even in Fig. 6.3 (a), where the 2σ range becomes significantly larger, a sensible estimate is found

that fits well in the picture, see Fig. 6.2.

Fig. 6.4 gives the fits for Λ̃� = 150◦, where both leading and trailing arm are in the line of sight.

Using distinct priors on Dsgr, separates both debris and gives precise estimates on distance and

width of both leading and trailing arm (see also Fig. 6.2 around Λ̃� = 150◦). This illustrates the

importance of carefully set priors.
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Figure 6.3 Combined halo and stream fit for a 10◦ wide slice centered on Λ̃� = 10◦ and Λ̃� = 50◦, respectively.

At the Λ̃ shown here, only the leading arm of the Sgr stream is present.

The source distance distribution is shown, overplotted with the model from the best-fit parameters given as solid

blue line. The spread of transparent blue lines gives the spread of models within the 2σ range obtained by the

MCMC. The plots indicate the prior on Dsgr, in these cases, only set by the minimum and maximum distance

available from sources in the Λ̃� slice in case.
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Figure 6.4 Combined halo and stream fit for a 10◦ wide slice centered on Λ̃� = 150◦ where both the leading and

trailing arm of the Sgr stream are present. The figure is similar to Fig. 6.3, but showing the influence of a carefully

chosen prior to separate both debris. Using distinct priors on Dsgr, precise estimates on distance and width of both

leading and trailing arm are possible.
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6.3.2 The Width of Sagittarius Stream

Fig. 6.5 shows the estimated line-of-sight width σsgr of the stream, vs. Λ̃�, given for the leading

and trailing arm. The 2σ interval is indicated, as well as the prior on σsgr, set to 1 < σsgr [kpc] < 6.

As also visible from Fig. 6.2(a), but now more obvious, the stream tends to broaden along its

orbit from ∼1.75 kpc to 5 kpc for the leading arm, or 6 kpc (reaching the upper limit set by

the prior) for the trailing arm, reaching its largest width close to the apocenters. However, it is

imporant to note the large 2σ range.

Belokurov et al. (2014) give the leading tail’s apocenter at 71◦.3 ± 3◦.3 and the trailing tail’s

apocenter at 170◦.5± 1◦ From the fit in 10◦ wide slices in Λ̃�, the leading tail’s apocenter can be

estimated as being between Λ̃� = 60◦ and 70◦ where Dsgr reaches its largest extent of 48.5− 49.6

kpc, and the trailing tail’s apocenter being at Λ̃�∼170◦ reaching its largest extent of 92.0 kpc.

Except towards the apocenters, σsgr raises also towards the“end”(the largest Λ̃�) of the respective

trailing or leading arm.
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Figure 6.5 The width σsgr of the Sagittarius stream from the RR Lyrae candidates within ±9◦ of the Sagittarius

plane. Error-bars indicate the 2σ range of the σsgr estimates. The grey area indicates the prior on σsgr, set to

1 < σsgr [kpc] < 6. A trend in the width can be seen, reaching maximum around the apocenters and towards the

largest Λ̃� of each the leading and trailing arm, respectively.

6.3.3 Bifurcation

Belokurov et al. (2006) used a color cut to select the upper main-sequence and turnoff stars

belonging to the Sgr stream. By doing so, they found a branching of the stream in the Galactic

northern hemisphere, called the bifurcation. Starting at α ∼ 190◦, the lower and upper declination

branches of the stream, labeled A and B respectively, can be traced at least until α ∼ 140◦. As

stated by Fellhauer et al. (2006), the bifurcation likely arises from different stripping epochs, the
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young leading arm providing branch A and the old trailing arm branch B of the bifurcation.

Belokurov et al. (2006) states that branch B is significantly brighter and hence probably slightly

closer than A. Their Fig. 4 shows a noticeable, but small difference in the distances estimated for

branches A and B of 3 to 15 kpc. Also simulations by Fellhauer et al. (2006) find branch B being

closer than branch A.

This brought up the question if this distance difference can also be found from the PS1 3π RR

Lyrae candidate sample. For doing so, distance estimates were done for small patches on both

branches, as shown by the polygons in Fig. 6.6. Belokurov et al. (2006) used a similar approach for

their sources selected from SDSS Data Release 5, but with smaller and rectangle-shaped patches.

Each patch was then fitted by the halo and stream model as described above in Section 6.2.1 in

order to derive distance estimates.

The fitting led to the distance estimates as shown in Fig. 6.6 and in Tab. B.2 in the Table

Appendix. Indeed a small distance difference between the two branches can be found, branch B

being closer than branch A. However, because of the large distance uncertainty (see 2σ range

indicated in Fig. 6.6 and in the table) this is not a significant result indicating such a distance

difference between both branches.
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Figure 6.6 Heliocentric distance estimates for patches covering the branches A and B of the Sagittarius stream

in equatorial coordinates (α, δ). For each patch, the fit using the halo and stream model as described above in

Section 6.2.1 was carried out derive distance estimates. The points set at the centroid of each polygon indicate the

heliocentric distance D in kpc as estimated from the sample within each polygon. The 2σ range is indicated.

6.3.4 Comparison to the Model by Belokurov et al. (2014)

The best estimate of the heliocentric distances for a large part of the Sgr stream obtained so far

come from Belokurov et al. (2014). In Fig. 6.7, the obtained heliocentric distances from Belokurov
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et al. (2014) (Figure 6 therein) are shown together with the Dsgr obtained within the work at

hand.

They are in good agreement, however, Belokurov et al. (2014) does not trace the complete stream,

and they don’t give estimates on its width. Also, the distances from Belokurov et al. (2014) show

a slight trend towards larger values.

As Belokurov et al. (2014) show, the apocenter of the leading trail is placed at ∼50 kpc and

the trailing debris are revealed to reach out to ∼100 kpc from the Galactic center. The opening

angle between the positions of the two apocenters, as viewed from Galactic center, is measured

by Belokurov et al. (2014) to be 99◦.3±3◦.5. From the tracing done in this work using the PS1 3π

RR Lyrae candidates, the leading tail’s apocenter can be estimated as being between Λ̃� = 60◦

and 70◦ where Dsgr reaches its largest extent of 48.5− 49.6 kpc, and the trailing tail’s apocenter

being at Λ̃�∼170◦ reaching its largest extent of 92.0 kpc. Keeping in mind that the analysis here

was carried out using 10◦ wide slices in Λ̃�, this is in good agreement.

0 50 100 150 200 250 300 350

Λ̃¯

0

20

40

60

80

100

120

D
 [

kp
c]

Sgr leading 
 arm

Sgr trailing arm

Dsgr [kpc]

σsgr [kpc]

Dsgr2σ interval [kpc]

Belokurov+2014

Figure 6.7 Comparison of the heliocentric distance estimates of the Sgr stream between this work and Belokurov

et al. (2014). The Dsgr, shown as black points together with their 2σ uncertainties (blue-green bars) and estimated

stream width σsgr, are compared to the estimates from Belokurov et al. (2014) (orange points) with their uncer-

tainties. The distances from Belokurov et al. (2014) show a slight trend towards larger values. Over all, the distance

estimates are in good agreement.
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6.4 Discussion

In this Chapter, a method for fitting the geometry of the Sagittarius stream was developed,

assuming a halo model as given by Sesar et al. (2013b) (shown here in Equ. (6.1)) and the line-

of-sight density of the Sagittarius stream approximated by a Gaussian distribution centered on

the distance Dsgr, having the line-of-sight width σsgr. This model was used to estimate distance

and width of the Sgr stream as given by RR Lyrae candidates (completeness=0.8, purity=0.9,

distance precision of 3%) resulting from the classification that incorporates period fitting.

The fitting resulted into the first complete (i.e., spanning 0◦ < Λ̃� < 360◦) trace of Sgr stream’s

heliocentric distance, as well as line-of-sight width. Besides the distinct trace itself, another im-

portant finding was the discovery of the continuation of Sgr stream out to more than 120 kpc

near its trailing apocenter. This confirms the simulations done by Gibbons et al. (2014).

Having now a model of the geometry of the Sgr stream at hand, it can be used to further constrain

the Milky Way’s potential.
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Chapter 7

Summary and Discussion

In this thesis, techniques for identifying, characterizing and classifying astronomical sources from

multi-band light curves were developed and applied. The methods were then applied to the specific

case of light curves from Pan-STARRS1 3π, which are very sparse with about 65 observations

(distributed among 5 bands) spread over a timeline of roughly 4 years.

In order to characterize variability, the approach fits multi-band, sparse light curves to extract

features for subsequent machine learning. Structure function fitting was generalized to the fitting

of structure functions for non-simultaneous, multi-band light curves; this new methodology was

implemented, carefully tested and applied. This allows to assign to each of 1.1×109 point sources

in PS1 3π a set of variability-based features, mainly a variability timescale and a variability

amplitude, together with mean magnitudes.

The obtained features were then used to train and apply a supervised machine-learning classifier,

analyzing PS1 3π data in the SDSS Stripe 82, where there is (presumably) complete identification

of RR Lyrae stars and QSO. This made it possible to identify highly pure and complete samples of

RR Lyrae and QSOs throughout PS1 3π; first tests show also the promising possibility of finding

Cepheids in the Milky Way’s disk.

In total, a sample of 1.5× 105 likely RR Lyrae candidates in PS1 3π were identified, for which –

based on SDSS S82 tests – a purity and completeness of each 0.8 for sources at a distance of 80

kpc (and a higher for closer sources) can be expected. Furthermore, a sample of 3.7× 105 likely

QSOs at the same level of purity and completeness expected for sources within 14.5 < rP1 < 20

is obtained.

The selection of candidates is homogeneous across the survey to a high degree away from the

Galactic plane. Near the plane, the number density of highly likely RR Lyrae as well as QSO

candidates decreases because of dust and source crowding. A projection of the RR Lyrae candidate

sample into the orbital plane of the Sagittarius stream reveals the stream morphology clearly.

Optimal variable source classification was carried out with the just-described variability features,

colors from PS1 3π and WISE colors. But also classification with more restricted pieces of infor-

mation, only color related or only variability-related features was carried out. This reveals that

the variability information is absolutely indispensable to define a sample of RR Lyrae or QSO

with an interesting combination of purity and completeness. Furthermore it shows what one can
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expect for purity and completeness if sources lack specific pieces of information.

Resulting RR Lyrae and QSO samples

Across the entire 3π, 1.5× 105likely RR Lyrae candidates were identified. Based on the training

in S82, a purity (under circumstances comparable to S82) of 0.8, and completeness of 0.8 is

expected. As mentioned above, these numbers on purity and completeness only apply away from

the Galactic plane, and the bulge. Among them, at |b| > 20◦, 4.8× 104 candidates are identified,

and 9.0 × 104 with a completeness of 0.88, purity of 0.52. The sample within the Galactic halo

extends to distances as large as ∼140 kpc. The selection of candidates is distributed according to

expectations to a high degree away from the Galactic plane, showing the structured Milky Way

halo in great detail. Around the plane, the number density of highly likely RR Lyrae candidates

drops, caused by dust and source crowding.

Furthermore, 3.7 × 105 likely QSO candidates were identified over the total PS1 3π area at the

same level of purity and completeness, 0.8. The QSO selection of candidates is isotropic to a high

degree away from the Galactic plane.

One important limitation of the classification is that it relies on SDSS Stripe 82; while this area

covers a wide range in Galactic latitude, 20◦ < b < 70◦, no training set exists in the Galactic

plane. While the number of very likely RR Lyrae candidates drops near the Galactic plane, the

number of possible candidates with less purity does not. This implies, unsurprisingly, having

considerably higher contaminations towards the plane. The purity of low-latitude samples must

be settled with follow-up observations and analysis. However, at high galactic latitudes, PS1 3π

appears to remain quite complete in its selection to nearly rP1∼22 mag for QSO and RR Lyrae,

which enables RR Lyrae candidate selection to nearly ∼140 kpc. This is the most extensive and

faintest RR Lyrae candidate sample to date, extending to considerably fainter magnitudes than

e.g. the CRTS sample of RR Lyrae stars. Using the RR Lyrae in Draco, it is shown that distances

derived from 〈rP1〉 are precise to 6% at a distance of ∼80 kpc.

Candidates of periodic variables can be processed further to increase their purity. As approaches

for period finding and fitting are very computational expensive, it needs to be applied to pre-

selected candidates. Starting with the RR Lyrae candidates described here, Sesar et al. (2016),

produced an even cleaner sample of RR Lyrae candidates by direct light curve fitting, with a

completeness of 0.8 and purity of 0.9.

These results of PS1 3π variability studies in the Milky Way context offer for all-sky detection

of variable sources. RR Lyrae can be used to precise distance estimates for finding streams and

satellites, as carried out within this work for Draco dSph and the Sagittarius stream. QSO can-

didates will be used as a reference frame for Milky Way astrometry (what is beyond this thesis),

to get absolute proper motions and study Milky Way disk kinematics.

Over all, this work has resulted in estimation of variability parameters and mean magnitudes for

more than 1.1× 109 sources, and a catalog of variable sources obtained from a previous PS1 3π
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processing version, containing almost 2.58× 107 objects, being available as a 3π value-added cat-

alog. As all obtained variability features provided by the catalog are general, this catalog allows

further source classification based on different training sets than the one presented here. This

makes it possible to explore the catalog in order to find variables of other classes than the ones

discussed here.

Fitting the Geometry of Sagittarius Stream

A projection of the RR Lyrae candidate sample into the orbital plane of the Sgr stream reveals its

morphology clearly. The geometry of the Sgr stream was explored, quantified by its spatial extend

and width as a function of the angle Λ̃� in its orbital plane. The geometry of the Sgr stream was

fitted with a model that assumed a power-law halo for the background and the line-of-sight density

of the Sagittarius stream approximated by a Gaussian distribution centered on the heliocentric

distance and a line-of-sight width. This model was used to estimate distance and width of the Sgr

stream as given by RR Lyrae candidates from Sesar et al. (2016) (completeness=0.8, purity=0.9,

distance precision of 3%) resulting from the classification that incorporates period fitting.

The fitting resulted into the first complete (i.e., spanning the complete angular distribution) trace

of Sgr stream’s heliocentric distance, as well as the first comprehensive mapping of the line-of-sight

depth. Besides the distinct trace itself, this dataset enabled the discovery of the continuation of

Sgr stream out to more than 120 kpc near its trailing apocenter (Sesar et al. in prep.), in accord

with the simulations by Gibbons et al. (2014). The precision of the model obtained from the data

shows that this sample is excellent for mapping stellar (sub-)structure in the Galactic halo.

Having this model of the geometry of the Sgr stream at hand, it can be used in subsequent work

to further constrain the Milky Way’s potential.

Outlook and Conclusion

In this thesis, a thorough study of automated variable source classification from sparse, unevenly

sampled multi-band light curves was developed and carried out, and it was shown that this can

produce excellent samples of well-classified variables. The author attributes this success to all of

the following advances: usage of non-periodic, general light-curve features; usage of a supervised

machine-learning classifier; extension of the classification process by features specific for the as-

sumed class of source (i.e. periodic features for likely RR Lyrae to constrain the sample even

more).

In this thesis, three science cases were explored, namely time-series evaluation and fitting, source

classification, and structure/overdensity fitting. Such applications are very common in a number

of studies. For this reason, throughout this thesis, a high value was set on the fact that developed

modeling techniques are as general as possible to enable both an extension to further classes of

variable sources, and the application to upcoming all-sky time-domain surveys. The analysis had

shown that machine-learning approaches are a powerful tool to inspect data sets being large,
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sparse and showing multi-dimensional feature spaces that can not easily separated using hard

pre-set cuts.

However, it is important to note that such approaches need to be carefully tested on comparable,

reliable data, supported by either other surveys or mock data. Care must be taken in translating

science cases and their questions into a form that is “understandable” by a supervised (or unsu-

pervised) machine-learning approach - e.g. selecting a set of features that can act as a proxy for

the source classes in case and let the classifier select the manifestation being relevant for each

class in order to classify.

Additionally, it is important to notice that it is much harder to understand the results of a

machine-learning method than of a “classical” one.

Among upcoming surveys, where the methods presented here can be applied to, LSST is of special

interest. For this purpose, a detailed comparison between the technical aspects of both surveys

and their possibilities regarding source classification was done. The methodology developed and

applied here will be helpful in the early stages of LSST, when only a few observations on a short

baseline are available. Also, LSST will carry out a sub-survey observing the Galactic plane with

a cadence comparable to PS1 3π, with 12 observations in each of its ugrizy bands on a baseline

of 4 years. Compared to PS1 3π, LSST will offer observations by 2 mag deeper, down to 24 mag

in i band, making it possible to study RR Lyrae even close to the Galactic plane.
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Appendix

A.1 Time Series Analysis

In this chapter, the mathematical background of time series models and analysis is presented.

This is mostly based on Coad (2012) and Rybicki (1994).

A.1.1 Stationary Time Series Models

A time series is given as a sequence of random variables {Xt}t=1,2,···. Since there may be an infinite

number of random variables, we consider multivariate distributions of random vectors, that is, of

finite subsets of the sequence {Xt}t=1,2,··· in order to describe time series.

Definition 1. A time series model for the observed data {xt} is defined to be a specification of

all of the joint distributions of the random vectors X = (X1, · · · , Xn)T, n = 1, 2, · · · of which

{xt} are possible realizations, that is, at all of these probabilities

P (X1 ≤ x1, · · · , Xn ≤ xn), −∞ < x1, · · · , xn <∞, n = 1, 2, · · · . (A.1)

Such a specification is rather impractical. Instead, consider the first and second-order momenta

of a joint distribution, that is the expectation values

E(Xt) and E(Xt+∆tXt) for t = 1, 2, · · · and ∆t = 0, 1, 2, · · · , (A.2)

and use these so-called second-order properties in order to describe the properties of the time

series.

Definition 2. {Xt} is a Gaussian time series if all of its joint distributions are multivariate

normal, that is, if for any collection of integers i1, · · · , in the random vector (Xi1 , · · · , Xin)T has

a multivariate normal distribution.
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Weak Stationarity and Autocorrelation

For a n-dimensional random vector X, one can calculate the covariance matrix. As a time series

usually involves a large (infinite in theory) number of random variables, this results into a very

large number of pairs of variables. So the autocovariance γ is defined as an extension of the

covariance matrix,

γ(xt+∆t, xt) = Cov(Xt+∆t, Xt) (A.3)

for all indices t and lags ∆t.

Definition 3. A time series {Xt} is called weakly stationary or just stationary if

(i) E(Xt) = µXt = µ <∞, that is, the expectation of Xt is finite and is not depending on t and

(ii) γ(xt+∆t, xt) = γτ , that is, for each ∆t, the autocovariance of (Xt+∆t,Xt) is not depending

on t.

Remark 1. If {Xt} is a weakly stationary time series, then the autocovariance γ(xt+∆t, xt) may

be viewed as a function of ∆t. It is called the autocovariance function (ACVF). When it is clear

which time series it refers to, it is often written as γ(∆t).

Note that

γ(0) = Var(Xt), (A.4)

that is, the variance is constant for all t.

Definition 4. Similarly, the autocorrelation function (AFC) is defined by

ρX(∆t) =
γX(∆t)

γX(0)
= Corr(Xt+∆t,Xt) (A.5)

for all t and ∆t.

Example 1. White noise

A sequence {Xt} of uncorrelated random variables, each with zero mean and variance σ2, is called

white noise. It is denoted by

{Xt} ∼WN(0, σ2). (A.6)

The name ”white” indicates that all possible periodic oscillations are present with equal strength,

so it is an analogy with white light.

Example 2. MA(1) process

The series defined by the combination of two neighboring white noise variables given by

Xt = Zt + θZt−1, t = 0,±1,±2, · · · (A.7)

where

{Zt} ∼WN(0, σ2) (A.8)

and θ is a constant, called a first order moving average, what is denoted by MA(1). WN(0, σ2)

refers to white noise.
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A.1.2 Sample Autocorrelation Function

The autocorrelation function is a helpful tool in time series analysis. It is used for assessing the

degree of dependence and in recognizing what kind of model the time series follows.

When trying to fit a model to an observed time series, the so-called sample autocorrelation function

based on the data is used. It is defined analogously to the ACF for a time series {Xt}.

Definition 5. Let x1, · · · , xN be observations of a time series. Then the sample autocovariance

function is defined by

γ̂(∆t) =
1

n

n−|∆t|∑
t=1

(xt+|∆t| − x̄), −n < ∆t < n (A.9)

where

x̄ =
1

n

n∑
t=1

xt. (A.10)

The sample autocorrelation function is defined by

ρ̂(∆t) =
γ̂(∆t)

γ̂(0)
− n < ∆t < n. (A.11)

Remark 2. For a lag ∆t ≥ 0, the sample autocovariance function is approximately equal to the

sample covariance of the n−∆t pairs (x1, x1+∆t), · · · , (xn−∆t, xn). Note that, in (A.9), the sum

is divided by n, not by n−∆t, and also the overall mean x̄ is used for both xt and xt+∆t.

The role of the ACF in prediction

Suppose that {Xt} is a stationary Gaussian time series and Xn is an observed value. Then we

would like to predict Xn+∆t with high precision. The mean square error,

MSE = E
[
{Xn+∆t − f(Xn+∆t|Xn)}2

]
(A.12)

is a good measure of precision of the prediction. It is minimized when the function f is the

conditional expectation of Xn+∆t given Xn, that is

f(Xn+∆t|Xn) = E(Xn+∆t|Xn). (A.13)

For a stationary Gaussian time series, using the equation for conditional expectation and variance

of a bivariate normal random variable:

E(Xn+τ |Xn = xn) = µn+∆t + ρ(τ)σn+∆tσ
−1
n (xn − µn) = µ+ ρ(∆t)(xn − µ) (A.14)

and

Var(Xn+τ |Xn = xn) = σ2
n+τ

{
1− ρ(τ)2

}
. (A.15)
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From this it follows that as ρ(τ) → 1, the value of the precise measure MSE → 0. This means

that, the higher the correlation is at lag τ , the more precise is the prediction of Xn+τ based on

the observed Xn. Similar conclusions can be drawn about the prediction of Xn+τ based on the

observed Xn, Xn−1, · · · .

Properties of the ACVF and ACF

In this section, some basic properties of the autocovariance function (ACVF) are outlined, as

described in Coad (2012).

Proposition 1. The ACVF of a stationary time series is a function γ( · ) such that

(i) γ(0) ≥ 0

(ii) |γ(∆t)| ≤ γ(0) for all ∆t

(iii) γ( · ) is even, that is, γ(∆t) = γ(−∆t) for all ∆t.

Proof.

(i) That is obvious, as γ(0) = var(Xt) ≥ 0.

(ii) From the definition of correlation and stationarity of the time series, we have

|γ(∆t)| = |ρ(∆t)|σ2, (A.16)

where σ2 = Var(Xt). Also, |ρ(∆t)| ≤ 1. Hence,

|γ(τ)| = |ρ(∆t)|σ2 < σ2 = γ(0). (A.17)

(iii) Thus, γ(∆t) = Cov(Xt+∆t, Xt) = Cov(Xt, Xt+∆t) = γ(−∆t).

Another important property of the ACVF is given by the following theorem.

Theorem 1. A real-valued function defined on the integers is the autocovariance function of a

stationary time series if and only if it is even and nonnegative definite.

Proof. A real-valued function κ defined on the integers is nonnegative definite if

n∑
i,j=1

aiκ(i− j)aj ≥ 0 (A.18)
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for all positive integers n and real-valued vectors a = (a1, · · · , an)T.

Consider a vector random variable X = (X1, · · · , Xn)T whose covariance matrix C is given by

C =


γ(0) γ(1− 2) · · · γ(1− n)

γ(2− 1) γ(0) · · · γ(2− n)
...

...
. . .

...

γ(n− 1) γ(n− 2) · · · γ(0)

 . (A.19)

Then, letting Z = (X1 − E(X1), · · · , Xn − E(Xn))T, we can write

0 ≤ Var(aTZ) =E
{

(aTZ)(aTZ)T
}

=E
{
aTZZTa

}
=aTCa =

n∑
i,j=1

aiγ(i− j)aj .
(A.20)

Hence, γ(τ) is a non-negative definite function.

A.1.3 Strict Stationary Time Series Models

A more restrictive definition of stationarity involves all the multivariate distributions of the subsets

of time series random variables.

Definition 6. A time series {Xt} is called strictly stationary if the random vectors

(Xt1 , · · · ,Xtn)T and (Xt1+∆t, · · · ,Xtn+∆t)
T have the same joint distribution for all sets of indices

{t1, · · · tn} and for all integers ∆t and n > 0. It is written as

(Xt1 , · · · ,Xtn)T d
= (Xt1+∆t, · · · ,Xtn+∆t)

T, (A.21)

where
d
= means ”equal in distribution”.

Definition 7. Properties of a Strictly Stationary Time Series

(i) The random variables Xt are identically distributed for all t.

(ii) Pairs of random variables (Xt,Xt+∆t)
T are identically distributed for all t and ∆t, that is

(Xt,Xt+∆t)
T d

= (X1,X1+τ )T

(iii) The series Xt is a weakly stationary time series if E(X2
t ) <∞ for all t.

(iv) Weak stationarity does not imply strict stationarity.

Proofs of this properties can be found in Coad (2012).
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A.1.4 Random Walk

A Random Walk is a time series where each point of time in the series moves randomly away

from its current position. The model can then be written as

Xt = Xt−1 + Zt, (A.22)

where Zt is a white noise variable with zero mean and variance σ2. This model is not stationary.

Repeatedly substituting for past variables results in

Xt = Xt−1 + Zt

= Xt−2 + Zt−1 + Zt

= Xt−3 + Zt−2 + Zt−1 + Zt

...

= X0 +

t−1∑
j=0

Zt−j .

(A.23)

If the initial value X0 is fixed, then the expectation value of Xt is fixed and equal to X0, that

is,

E(Xt) = E

X0 +
t−1∑
j=0

Zt−j

 = X0. (A.24)

In contrast, the variance and covariance depend both on time and the lag.

Since the white noise variables Zt are uncorrelated, the variance is

Var(Xt) = vVar

X0 +

t−1∑
j=0

Zt−j


= Var

 t−1∑
j=0

Zt−j


=

t−1∑
j=0

Var (Zt−j)

= tσ2

(A.25)
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Figure A.1 Different realizations of a 1D Random Walk time series with 200 time steps.

and the covariance

Cov(Xt, Xt−τ ) = Cov

 t−1∑
j=0

Zt−j ,

t−τ−1∑
k=0

Zt−τ−k


= E


 t−1∑
j=0

Zt−j

(t−τ−1∑
k=0

Zt−τ−k

)
= min(t, t− τ)σ2.

(A.26)

It is evident from this that the random walk meanders away from its initial value in no particular

direction without showing any clear trend, but, at the same time, is not stationary. An example

showing different realizations of a 1D Random Walk time series is given in Fig. A.1.4.

A.1.5 Damped Random Walk - The Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process (named after Leonard Ornstein and Georg Eugene Uhlenbeck)

is a stochastic process that original describes the velocity of a massive Brownian particle under

the influence of friction. The process is stationary, Gaussian and Markovian, allows linear trans-

formations of its space and time variables; it is the only nontrivial process satisfying all three

conditions. Over time, the process tends to drift toward its long-term mean; such a process is

called mean-reverting. The process can be considered as a modification of the damped random

walk in continuous time, or Wiener process, in which the properties of the process have been

changed in a way that it has a tendency to move back towards a central location (its mean),

having a greater attraction when the process is further away from the center, which makes its
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Figure A.2 Different realizations of a 1D Damped Random Walk time series with 200 time steps.

movement being“damped”. Thus it is commonly named the Damped Random Walk. The following

description of the Damped Random Walk is based on Rybicki (1994).

Representation via a Stochastic Differential Equation

A Damped Random Walk Xt satisfies the following stochastic differential equation:

dXt = τ(µ−Xt)dt+ ω dWt (A.27)

where ω > 0, τ > 0 and µ are parameters and Wt denotes the Random Walk.

An example showing different realizations of a 1D Damped Random Walk time series is given in

Fig. A.1.5.

The Structure Function and Joint Probability Distribution

The Damped Random Walk has zero mean and the exponential correlation function

Φ(∆t) = 〈x(t) + x(t+ ∆t)〉 = ω2 exp

〈
−|∆t|

τ

〉
. (A.28)

The constants ω2 and τ are, respectively, the variance and the decorrelation time of the process.
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The structure function is then defined as

V (∆t) =
1

2
〈[x(t) + x(t+ ∆t)]2〉 = Φ(0)− Φ(∆t) = ω2

[
1− exp

(
−|∆t|

τ

)]
. (A.29)

Let now ti, 1 ≤ i ≤ n be an ordered set of times, t1 < t2 < ... < tn, and let xi = x(ti) be the

values of the process at those times. Then from the definition of a Gaussian process, the joint

probability function of the set of values xi is given by

Pn(x1, ..., xn) = [det(2πCn)]−1/2 exp

(
−1

2
xTC−1

n x

)
(A.30)

where the n-dimensional vector x has components xi and the n × n matrix Cn has components

Cij = Φ(ti − tj).

As shown by Rybicki and Press (1995), Cn has a simple inverse, the tridiagonal matrix

Tn = C−1
n =



d1 −e1

−e1 d2 −e2

−e2 d3 −e3

. . .
. . .

. . .

−en−2 dn−1 −en−1

−en−1 dn


(A.31)

where the elements not indicated are 0. Defining

ri =

{
0, i = 0

exp
[
− ti+1−ti

τ

]
, 1 ≤ i ≤ n− 1

(A.32)

where the quantities ei and di are given by

ei =


0, i = 0

ri/(1− r2
i ), 1 ≤ i ≤ n− 1

0, 1 = n

(A.33)

and

di = 1 + riei + ri−1ei−1, 1 ≤ i ≤ n. (A.34)

Using the tridiagonal matrix Equ. (A.31), the quadratic form in the exponent of Equ. (A.30) can

be written as

Qn ≡ xTC−1
n x = ω−2

n∑
i=1

(dix
2
i + 2ei−1xixi−1) (A.35)
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Substituting for di gives

Qn =

n∑
i=1

[
(1− ri−1ei−1)x2

i + 2ei−1xixi−1

]
− ω2

n∑
i=1

rieix
2
i

= ω−2
n∑
i=1

[
1− ri−1ei−1)x2

i + 2ei−1xixi−1 − ri−1ei−1x
2
i−1

]
. (A.36)

To end up with the second for, the index in the second sum was shifted. Using the definitions for

ei and di from Equ. (A.33) and (A.33),

Qn = ω−2
n∑
i=1

(xi − ri−1xi−1)2

1− r2
i−1

. (A.37)

The joint probability distribution function Pn can now be expressed as

Pn(x1, ..., xn) = [det(2πCn)]−1/2 exp

(
−

n∑
i=1

(xi − ri−1xi−1)2

2ω2(1− r2
i−1)

)
. (A.38)

Mathematical properties

The Damped Random Walk is an example of a Gaussian process having a bounded variance

and admits a stationary probability distribution, in contrast to the Random Walk; the difference

between the two is their ”drift” term. For the Dandom Walk, the drift term is constant, whereas

for the Damped Random Walk it depends on the current value of the process: if the current value

of the process is less than the (long-term) mean, the drift will be positive; if the current value of

the process is larger than the (long-term) mean, the drift will be negative, attracting towards the

mean.

In other words, the mean acts as an equilibrium level for the process. This gives the process its

informal name ”mean-reverting”. The stationary (long-term) variance is given by

Var(xt) =
ω2

2τ
. (A.39)
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A.2 Markov Chain Monte Carlo Method

For estimating the maximum of a distribution that cannot be solved analytically, a rough approx-

imation can be made on a parameter grid. However, for many reasons it is preferred to sample

from this distribution instead. Such reasons are:

• having a high-dimensional distribution: A grid with N points in d-dimensional parameter

space will demand Nd function evaluations (“curse of dimensionality”), while the conver-

gence of a MCMC is O(N−1/2), which is dimensionally independent.

• being interested in not only the approximated maximum, but other statistical properties of

the distribution

• having a distribution with steep maxima that might be missed if the parameter grid is too

approximate, thus resulting in high computation time for a fine grid.

In this case, the Markov Chain Monte Carlo (MCMC) method is very useful to sample from the

distribution.

This introduction in Markov Chains is mostly based on Richey (2010), Brooks et al. (2011) and

Weinzierl (2000) who give an overview of MCMC research and its application.

A.2.1 The Beginning of Markov Chain Monte Carlo Methods

In 1947, von Neumann and others were working on methods to estimate neutron diffusion and

multiplication rates in fission devices. Von Neumann proposed the plan to create a large number

of simulated neutrons and use the computer to randomly simulate how they pass through the

fissionable material. After doing so, the number of neutrons remaining is counted in order to

estimate the desired rates. From this point forward, randomized simulations became an important

technique in physics and engineering and have soon be called Monte Carlo methods.

Later, Metropolis (1953) simulated a liquid that is in equilibrium with its gas phase. To find out

about the thermodynamic equilibrium, they simulated the dynamics of the system, and let it run

until it reaches equilibrium. They realized that they did not need to carry out such a detailed

an complicated simulation; it would be enough to simulate some Markov chain having the same

equilibrium distribution. Simulations following the scheme of Metropolis (1953) are said to use

the Metropolis algorithm.

The Metropolis algorithm was used by chemists and physicists for similar problems, but was

not widely known among other fields until the 1990’s. A generalization by Hastings (1970) led

to the Metropolis-Hastings algorithm. A special case of the Metropolis-Hastings algorithm was

introduced by Geman and Geman (1984), called the Gibbs sampler. After Gelfand and Smith

(1990) made the wider Bayesian community aware of the Gibbs sampler, it was rapidly realized

that most Bayesian inference could be done by Markov Chain Monte Carlo methods. Problems

200



A.2 Markov Chain Monte Carlo Method

that had previously been undoable, or extremely hard to solve, then suddenly became solveable

in straightforward manner.

Nowadays, MCMC methods are a widely known tool among various scientific fields, from physics

to life sciences, and a lot of special cases for dedicated applications exist.

A.2.2 Markov Chains

A Markov chain is a series of stochastic events whereby the state of the process at the next time

step, t+ 1, depends on:

(i) the current state of the process (e.g., contained in a state matrix)

(ii) the probability of changing to another state in the next time step (e.g., defined in a transition

matrix).

Given a finite state space S = {1, 2, · · · , N}, a Markov chain is a stochastic process that is defined

by a sequence of random variables Xi ∈ S, for i = 1, 2, · · · , such that

p(Xn+1 = xn+1|X1 = x1, · · · , Xn = xn) = p(Xn+1 = xn+1|Xn = xn). (A.40)

In other words, the conditional distribution Xn+1 given X1, ..., Xn depends only on Xn, and

the set from which Xn take values in S. Here, only Markov chains for which this dependence

is independent of n are considered; such Markov Chains are said to have stationary transition

probabilities. When the state space is countably infinite, one can think of an infinite transition

matrix.

This gives a N ×N transition matrix Pij = (pij), defined by

Pij ≡ P (Xn+1 = j|Xn = i). (A.41)

Note that for i = 1, 2, · · · , N ,
N∑
j=1

pij = 1. (A.42)

The (i, j)-entry of the kth power of P gives the probability of transitioning from state i to state

j in k steps.

But most Markov chains at interest in MCMC have uncountable state space, so we must think

of it as a conditional probability distribution.

Two desirable properties of a Markov chain are:

(i) it is irreducible: for all states i and j, there exists k such that (Pk)i,j 6= 0
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(ii) it is aperiodic8: for all states i and j, gcd
{
k : (Pk)i,j > 0

}
=1.

An irreducible, aperiodic Markov chain must have an unique distribution π = (π1, π2, · · · , πN ) on

the state space S (πi = the probability of state i) with the property that π = πP.

A Markov chain is said to be stable on the distribution π, or that π is the stable distribution for

the Markov chain. If π is the stable distribution for an irreducible, aperiodic Markov chain, then

we can use the Markov chain to sample from π.

Drawing Samples

To obtain a sample, select s1 ∈ S arbitrary. Then for any k > 1, if sk−1 = i, select sk = j with

probability Pij . The resulting sequence s1, s2, · · · has the property that as M →∞,

| {k ≤M and sk = j} |
M

→ πj (A.43)

with probability 1.

Any large (but finite) sub-sequence approximates a sample drawn from π. Often, the first m terms

of the sequence are discarded, and remaining sm+1, sm+1, · · · , sM are used.

When doing so, the process of removing the first m samples is referred to as “burn-in” (see also

Sec. A.2.4).

No matter how they are obtained, samples from π provide a way to approximate the properties

of π. For example, suppose f is any real-valued function on the state space S and the expectation

value needs to be approximated,

E [f ] =

N∑
i=1

f(i)πi. (A.44)

8A state i has period k if any return to state i must occur in multiples of k time steps. Formally, the period of a
state is defined as

k = gcd{n : Pr(Xn = i|X0 = i) > 0}
(where ”gcd” is the greatest common divisor).
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To do so, select a sample s1, s2, · · · , sM from π and the ergodic theorem9 guarantees that

1

M

M∑
i=1

f(si)→ E [f ] (A.47)

as M →∞ with the convergence O(M−1/2).

Stationarity

Some Markov chains possess a unique equilibrium distribution. Informally, this means that if

starting the chain somewhere in the state space and run the chain long enough, the chain will

settle into an equilibrium distribution independent of the initial condition. We say that the chain

becomes stationary.

A sequence X1, X2... of random elements of some set is called a stochastic process (Markov chains

are a special case). A stochastic process is stationary if for every positive integer k the distribution

of the k-tuple

(Xn+1, ..., Xn+k) (A.48)

does not depend on n.

In a Markov chain, the conditional distribution of (Xn+2, ..., Xn+k) given Xn+1 does not depend

on n. It follows that a Markov chain is stationary if and only if the marginal distribution of Xn

does not depend on n.

Stationarity implies stationary transition probabilities from Xn to Xn+1, but not vice versa.

Consider an initial distribution concentrated at one point. The Markov chain can be stationary

if and only if all elements are concentrated at the same point, that is, X1 = X2 = ..., so the

chain goes nowhere and does nothing. Conversely, any transition probability distribution can be

combined with any initial distribution, including those concentrated at one point. Such a chain

is usually no stationary, even though the transition probabilities are stationary.

9Ergodic Theorems concern the limiting behavior of averages over time. The most famous ergodic theorem is the
one for independent random variables.

Theorem 2. Let P be irreducible and let π0 be an arbitrary distribution. Suppose Xn ∼Markov(π0, P ) and set
the number of visits to state i before time n as

Ni(n) =

n−1∑
k=0

1(Xk = i). (A.45)

So, Ni(n)/n is the proportion of time spent in state i before n. Then,

P

(
Ni(n)

n
→ 1

mi
as n→∞

)
= 1 (A.46)

where mi = Ei(Ti) is the expected return time to state i.
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A.2.3 Markov Chain Monte Carlo Sampling

MCMC algorithms are a widely used tool for sampling from, and calculating integrals of, compli-

cated and high dimensional distributions that occur in a range of contexts, from computational

physics and engineering to Bayesian statistics. If one would carry out these integrations in a

straight forward manner, by evaluating the distribution deterministically over the entire state

space at a set resolution, the time necessary for the computation would quickly become pro-

hibitive. MCMC algorithms take a different approach. Rather than providing a high dimensional-

ity result only at the end of the computation, the MCMC algorithm takes a stochastic approach,

and provides an approximation that gradually becomes more accurate over the time the program

executes.

MCMC algorithms are based on the idea that, if we don’t know how to analytically solve for a

distribution, say for a posterior distribution, then we can at least learn about it by constructing

a Markov chain whose stationary distribution is the one that we are interested in learning about.

If a Markov chain is constructed in the right way, one can use the MCMC to learn about a

distribution to arbitrary precision.

Starting from a initial sample (either randomly generated or given by some reasonable choice)

over the state (parameter) space, the algorithm uses a stochastic transition function to produce

new, though not necessarily different in value, sample using a proposal distribution. There is

an acceptance probability for the newly generated sample, and it is what guarantees the chain

will become an approximation of the target distribution that should be sampled. The transition

function is then recursively applied to each newly sample, resulting in a chain of samples.

Update mechanisms of interest preserve a specified distribution, that is, if the state has the

specified distribution before update, then it has the same after the update. This leads to the

construction of Markov chains to sample the distribution. Update mechanism are called elemen-

tary if it is not made up of parts that are themselves update mechanisms preserving the specified

distribution.

As long as the transition function can take the chain over the target distribution’s entire state

space, the chain will finally approximate the target distribution, and as the algorithm runs that

approximation will become more accurate. Once the chain has covered the area of state space of

statistical interest, the chain is said to have mixed.

It is one very desirable property to have a fast mixing chain, as that means that the distribution

will have ”forgotten” (it depends not longer on) where it has started and so has no bias toward

being in the start location. However, it is also often the case that the chain will be initialized in

a region of extremely low probability. The first stretch of the chain will then make the rest of

the chain a biased approximation for all but very large numbers of samples. For this reason, it

is often the case that a section of the chain at the beginning is removed once it has reached a

region of non-negligible probability, or a few thousand samples. The removed section of the chain

is called the burn-in.
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Metropolis-Hastings Markow Chain Monte Carlo Algorithm

The main features of Monte Carlo Markov chains for sampling from a distribution with density

p(x) are Hastings (1970):

(i) The computations depend on p(x) only through ratios of the form p(x′)/p(x), where x′

and x are sample points. Thus, the normalizing constant of p(x) need not to be known, no

factorization of p(x) is necessary, and the methods are very easily implemented on a com-

puter. Additionally, conditional distributions do not require special treatment and therefore

the methods provide a convenient means for obtaining correlated samples from conditional

distributions.

(ii) A sequence of samples is obtained by simulating a Markov chain. The resulting samples are

therefore correlated and estimation of the standard deviation of an estimate and assessment

of the error of an estimate may require more care than with independent samples.

The basic MCMC algorithm is the Metropolis-Hastings Algorithm as described in the following.

Suppose that the specified distribution – the desired stationary distribution of the MCMC sam-

pler in case – has a (general) unnormalized density p. Thus p is a nonnegative-valued function

that integrates to a value that is finite and nonzero.

The Metropolis-Hastings Algorithm uses a stochastic transition function q(x∗|x(i)) = x(i) +

N(O, I) which results in a step of random direction and length in the state space from the

previous point. A commonly used proposal distribution here is a Gaussian distribution centered

at x(i), which tends to move to points nearby x(i) and thus explores the probability space using

a random walk. When the current state at iteration i is x(i), a move to a state x∗ is proposed.

Then the Hastings ratio

r(x(i), x∗) =
p(x∗)q(x(i)|x∗)
p(x(i))q(x∗|x(i))

(A.49)

is calculated.

The proposed move to the newly generated sample x∗ is accepted with a probability α(x(i), x∗) =

min
(
1, r(x(i), x∗)

)
. The state x(i+1) after the update is x∗ with probability α(x(i), x∗), and the

new state x(i+1) is x(i) with probability 1− α(x(i), x∗). This is the Hastings update.

If one attempts to move to a point being more probable than the current one, the move will

always be accepted. If a move to a less probable point is attempted, the move is sometimes re-

jected, and the more the relative drop in probability, the more likely the new point is rejected.

This guarantees the chain will become an approximation of the target distribution p(x).

The transition function is then recursively applied to each new sample, which produces a chain of

samples. The random choice of a new parameter value is influenced by the current value. As long

as the transition function can take the chain over the entire state space of the target distribution,

the chain will eventually approximate this distribution. As the algorithm runs, the approximation
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will increase in accuracy.

Algorithm 3: Metropolis-Hastings MCMC

Input: p(x): probability distribution

q(x): proposal distribution

Niter: number of sample iterations

x(i): current state at iteration i

x∗: proposed state

Output: {xi}: chain of samples

begin

initialization x(0)

for i = 1, ..., Niter do

sample u ∈ U [0, 1]

sample x∗ ∈ q(x∗|x(i))

α(x(i), x∗) = min
(

1, p(x
∗)q(x(i)|x∗)

p(x(i))q(x∗|x(i))

)
if u < α then

x(i+1) = x∗

else

x(i+1) = x(i)

The Hastings ratio Equ. (A.49) is undefined if p(x(i)) = 0, thus one must always arrange that

p(x(i)) > 0 in the initial state. There is no problem if p(x∗) = 0, as in this case, all that happens

is that r(x(i), x∗) = 0 and the proposal x∗ will accepted with zero probability. For this reason,

the Metropolis-Hastings update can never move to a proposed state having p(x∗) = 0. Note that

the proposal x∗ must satisfy q(x(i)|x∗) > 0 with probability 1 because q(x(i)| · ) is the conditional

density of x∗ given x(i). Hence, still assuming p(x(i)) > 0, as the Hastings ratio is well defined,

the denominator of the Hastings ratio is nonzero with probability 1. Note that either term of

the numerator of the Hastings ratio can be 0, so the proposal is almost surely rejected, as either

p(x∗) = 0 or q(x∗|x(i)) = 0. So, there is no need to arrange for proposals being always possible

values of the desired equilibrium distribution. The only demand is to ensure that one’s imple-

mentation of the (unnormalized) density function p works when given any possible proposal as

an argument, including giving p(x∗) = 0 for invalid x∗.

There are some special cases of the general updating process, the above Metropolis-Hastings

update. The Metropolis update describes the case of q(x(i)|x∗) = q(x∗|x(i)) for all x(i) and x∗. For
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a symmetric proposal density like a Gaussian distribution being centered at x(i), it is q(x(i)|x∗) =

q(x∗|x(i)), so it cancels out. Then the Hastings ratio Equ. (A.49) reduces to

r(x(i), x∗) =
p(x∗)

p(x(i))
(A.50)

and is called the Metropolis ratio or odds ratio.

In the special case of a Gibbs update, the proposal is from a conditional distribution of the

desired equilibrium distribution. Thus, it is always accepted. Gibbs updates have one property

not shared by other Metropolis-Hastings updates: they are idempotent, meaning the effect of

multiple updates is the same as the effect just one.

Using the transition function q(x∗|x(i)) = x(i) + N(O, I) the Metropolis-Hastings MCMC algo-

rithm will eventually approximate any distribution it is given.

In practice, of course, reliable results as soon as possible are required. In order to make sure the

chain mixes quickly, the random step should be wide enough to mix quickly, meaning the average

acceptance isn’t too high, and to make sure that the average rate of new states that are accepted

is not too low reducing deficiency of the algorithm.

This is where the idea of adaptive MCMC comes in, which aims to automatically tune the pa-

rameters of the transition function (i.e., the width of the random step distribution) towards good

acceptance rates. There are several ones, e.g. the Parallel Tempered MCMC algorithm, where so-

called ”hot” chains are more eager to accept jumps to lower likelihood and hence sample a broad

range of the parameter space, whereas ”cooler” chains are more aversely to do so. We present here

the one that is used in the program developed through this work, the Affine Invariant Markov

Chain Monte Carlo (MCMC) Ensemble sampler.

Affine Invariant Markov Chain Monte Carlo (MCMC) Ensemble Sampler

The paper of Goodman and Weare (Goodman and Weare 2010) and a more implementation-

related paper of Foreman-Mackey et al. (Foreman-Mackey et al. 2012) show an advanced usage

of an ensemble of so-called walkers in the Affine Invariant Markov Chain Monte Carlo (MCMC)

Ensemble sampler. Its implementation emcee is used throughout the work resented in this thesis.

MCMC sampling methods typically have parameters that must be justified for a specific problem.

For example, a step size that is sensible for some probability density π(x) with x ∈ Rn, may work

poorly for the scaled probability density

πλ(x) = λnπ(λx) (A.51)

where λ ∈ R is very large or very small. The performance in sampling the density πλ that is

independent of λ.
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Affine invariant samplers can be implemented in several ways. The method described here simul-

taneously evolves an ensemble of K walkers S = {Xk} where the walkers are almost like separate

Metropolis-Hastings chains but the proposal distribution for a given walker k depends on the

positions in the N -dimensional parameter space of the K − 1 walkers in the complementary en-

semble S[k] = {Xj , ∀j 6= k}.
To update the position of a walker k at position Xk, a walker Xj is drawn randomly from the

complementary ensemble S[k], and a new position in parameter space is proposed as

Xk(t)→ Y = Xj + Z [Xk(t)−Xj ] (A.52)

with Z being a random variable drawn from some distribution g(Z = z).

The distribution g has to fulfil

g(z−1) = zg(z)

to make the proposal of (A.52) symmetric in the sense that P (Xk(t)→ Y ) = P (Y → Xk(t)). On

that condition, the sampling chain will satisfy detailed balance if the proposed state is accepted

with probability

q = min

(
1, ZN−1 p(Y )

p(Xkt)

)
. (A.53)

This is done for each walker in the ensemble following the algorithm shown in to complete one

update step.

For the distribution g, Goodman and Weare (2010) and Foreman-Mackey et al. (2012) are using

g(z) =

1
c

1√
z

if z ∈
[

1
a , a
]

0 otherwise

with a normalizing constant of

C =
1

2

(√
a− 1√

a

)
The parameter a > 1 can be adjusted to improve performance and is set to 2 in most cases.

This algorithm outperforms standard MCMC methods like the Metropolis-Hastings algorithm in

producing independent samples with a much shorter autocorrelation time Foreman-Mackey et al.

(2012). Faster convergence is preferred due to the reduction of computational costs as the number

of computations being necessary to obtain the equivalent level of accuracy can be reduced.
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Algorithm 4: Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler

Input: p(x): probability distribution

q(x): proposal distribution

Niter: number of sample iterations

K: number of walkers

x
(i)
k : current state at iteration i for walker k

x∗: proposed state for walker k

Output: {xik}: chain of samples for walker k

begin

initialization x(0)

for i = 1, ..., Niter do

for k = 1, ...,K do

draw a walker xj at random from the complementary ensemble S
(i)
[k]

sample z ∈ g(z)

sample x∗ = xj + z[x
(i)
k − xj ] ∈ q(x∗|x∗x

(i)
k )

α(x
(i)
k , x

∗) = zN−1 p(x∗)q(x
(i)
k |x

∗)

p(x
(i)
k )q(x∗|x(i)k )

if u < α then

x
(i+1)
k = x∗

else

x
(i+1)
k = x

(i)
k

Parallel Affine Invariant Markov Chain Monte Carlo (MCMC) Ensemble Sampler

For most applications on nowadays computing facilities, it is needed or at last sensible to par-

allelize the algorithm. Due to the fact that the algorithm is based on an ensemble of walkers,

it seems tempting to simple parallelize the algorithm by simultaneously advancing each walker

based on the state of the ensemble instead of evolving the walkers in series. Unfortunately, this

subtly violates detailed balance of the chain. Instead, the full ensemble has to be split up in two

subsets S(0) = {xk,∀k = 1, · · · ,K/2} and S(1) = {xk, ∀k = K/2 + 1, · · · ,K} and simultaneous

update all walkers in S(0) based only on the positions of the walkers in the complementary set

S(1). Then, based on the new positions in S(0), S(1) is updated. In this case, the outcome is a

valid step for all of the walkers.

This algorithm is shown below. It is similar to Algorithm (4) but the computationally expensive

inner loop can now run in parallel, so one can take now advantage of generic parallelization that

makes this algorithm extremely powerful.
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Algorithm 5: Parallel Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble

sampler

Input: p(x): probability distribution

q(x): proposal distribution

Niter: number of sample iterations

K: number of walkers

Output: {xik}: chain of samples for walker k

begin

initialization x(0)

for i = 1, ..., Niter do

for b = 0, 1 do

for k = 1, ...,K/2 do

draw a walker xj at random from the complementary ensemble S
(∼b)(i)
[k]

x
(i)
k = S

(b)
k

sample z ∈ g(z)

sample x∗ = xj + z[x
(i)
k − xj ] ∈ q(x∗|x∗x

(i)
k )

α(x
(i)
k , x

∗) = zN−1 p(x∗)q(x
(i)
k |x

∗)

p(x
(i)
k )q(x∗|x(i)k )

if u < α then

x
(i+1/2)
k = x∗

else

x
(i+1/2)
k = x

(i)
k

i = i+ 1/2

A.2.4 Application of MCMC Methods

Despite there exists a lot of theory on the convergence of Markov chains, for carrying out a

MCMC application, more practical approaches are needed. Without them, not much more than

the output would be known about the Markov chain. This could lead to erroneous results on the

one hand, and waste of a lot of computation time on the other hand due to chains running too

long.

For this reason, it is important to have some methods at hand that give information on the internal

states of MCMC and also give hints on the reliability of the results obtained by MCMC.
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Pseudo-Convergence

A Markov chain can appear to have converged to its equilibrium distribution when it has not.

This is often caused by a state space being poorly connected. In this case, it takes many iterations

to get from one part of the state space to another in order to explore the state space fully, or

maybe the chain never finds the other part as it ”gets stuck” in one. When the number of steps

needed for transition between these parts exceeds the length of the simulated Markov chain, the

Markov chain can appear to have converged but the distribution it appears to have converged to

is only the equilibrium distribution conditioned on the part in which the chain was started. This

phenomenon is known as pseudo-converge. It has also been called “multimodality” since it may

occur when the equilibrium distribution is multimodal. But multimodality does not necessarily

cause pseudo-convergence when the troughs between the different parts of the state space are not

severe. Also, pseudo-convergence does not only happen when in the presence of multimodality.

Approaches to overcome the problem of pseudo-convergence are Affine Invariant MCMC sam-

pler.

Autocorrelation Function

As a measure for the “quality” of an algorithm, the inverse convergence rate can be measured by

the autocorrelation function. This is an estimate of the number of steps needed in the chain in

order to draw independent samples from the target chain. A more efficient chain has a shorter

autocorrelation time.

Something else to keep in mind is the error of the MCMC as all draws one gets after a finite number

of iterations are only approximations to the true quantity one wants to compute. Determining how

long we have to run the chain before we feel sufficiently confident that the MCMC algorithm has

produced reasonably accurate draws from the distribution is therefore a very important problem.

This standard error is usually given by the ratio between the sample standard deviation and

square-root of the sample size n as shown below:

σn =

√√√√ 1

n

n∑
i=1

(Xi − µn)2

where Xi are the individual draws and

µn =
1

n

n∑
i=1

Xi.
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Length of Runs, Number of Runs

Without further investigation, one has no idea how many iterations are required to achieve a

good mixing of the chain. A good indicator time-series plots (e.g. Fig. A.3) which give valuable

information about mixing.

The phenomenon of pseudo-covariance brought up the idea of comparing multiple runs of the

same sampler started at different points in state space. If the multiple runs appear to converge

to the same distribution, then – according to the multistart heuristic – one can trust the result.

However, this assumes that each part of the state space contains at least one starting point. If

this cannot be guaranteed, the multistart heuristic is worse than useless, as it can give confidence

that all is well while in fact your results are completely erroneous.

Burn-in

Burn-in is a term that describes the practice of neglecting some iterations at the beginning of a

MCMC run, and also refers to the iterations being thrown away. The Markov chain is executed

for n steps (the burn-in period) during which all data is thrown away. After the burn-in the chain

is running as described above, using each iteration in the subsequent MCMC calculations. Fig. x

illustrates the issue that burn-in addresses. In this figure, the starting position is chosen far out

in the tail of the equilibrium distribution.

The special case of a Markov chain started close to the center of a (symmetric) equilibrium

distribution would not require a burn-in.

Run Time

Metropolis (1953) has shown that the chain will reach a stationary state in finite time. However,

this finite time does not necessarily mean a practically useful one. His proof also says nothing

about how long to run the MCMC to achieve the desired amount of precision. These are two

practical issues that need to be addressed in any MCMC analysis: How many iterations should

the burn-in take and how long should the chain run after the burn-in. Both issues depend critically

on how well the chain explores the state space (mixing).

Stationarity

Reaching stationarity means that the current state is independent of the chain’s starting points

in state space. This properly implies that if the chain is started with different initial conditions,

the chain will eventually end up sampling in the same place, no matter where we started. MCMC

algorithms are guaranteed to reach stationarity, but this guarantee says nothing about whether

that will occur in any practically amount of time or not. There are a few diagnostic plots being
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helpful to reduce the amount of time, as well as being reasonable certain that stationarity is

reached.

Diagnostic Plots

Stationarity is hard to proof. However, one of the simplest but very informative plots that is able

to indicate that stationarity has not been achieved is to simply visualize the state of the Markov

chain (the value it takes out of the state space) through iterations. Plotting each parameter as a

function of iteration number to produce a time series plot of the chain.

In Fig. A.3, multiple walkers of a Parallel Affine Invariant MCMC Ensemble are shown.

It is quite evident from plot (a), that stationarity has not yet been reached. Each chain of the

ensemble quickly diverges from it (b), the burn-in period has been removed, and the chain appears

to be stationary.

It is quite evident from Fig. A.3, that in (a) stationary has not been achieved. The chain quickly

diverges from its initial point, presumably towards stationary state. In Fig. (b), chains from the

same process are shown that where the burn-in period is removed. No trend is evident, good

mixing of the chains.

Additionally, visualizing the marginal posterior distributions helps to get a sense of where the

parameters are in the state space.

213



A Appendix

30

40

50

60

70

p
a
ra

m
e
te

r

0        10       20       30     40
               step number

(a)

200         300           400         500
              step number

20

30

40

50

60

70

p
a
ra

m
e
te

r

(b)

Figure A.3 Time series plot of a model parameter as the chain progresses. Multiple walkers of a Parallel Affine

Invariant MCMC Ensemble are shown.

In plot (a), step zero was the initial point for the parameter. The chain hasn’t reached stationarity yet as is evident

by their trend. In plot (b), the burn-in period has been removed, and the chain appears to be stationary.
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B.1 Expected Selection Completenesses and Purities

These tables give the obtained selection completeness and purity for QSO and RR Lyrae at

different magnitude ranges, as obtained in Chapter 5.

215



B Tables

Table B.1. Expected Selection Completeness and Purity for QSO

threshold on pQSO completeness purity threshold on pQSO completeness purity

0.00 1.00 0.00 0.51 0.52 0.78
0.01 0.96 0.21 0.52 0.51 0.78
0.02 0.94 0.30 0.53 0.50 0.79
0.03 0.93 0.35 0.54 0.49 0.79
0.04 0.92 0.38 0.55 0.48 0.80
0.05 0.91 0.41 0.56 0.47 0.80
0.06 0.90 0.43 0.57 0.46 0.81
0.07 0.89 0.45 0.58 0.45 0.81
0.08 0.89 0.47 0.59 0.44 0.81
0.09 0.88 0.48 0.60 0.43 0.82
0.10 0.87 0.50 0.61 0.42 0.82
0.11 0.86 0.51 0.62 0.41 0.83
0.12 0.85 0.52 0.63 0.40 0.83
0.13 0.85 0.53 0.64 0.39 0.84
0.14 0.84 0.54 0.65 0.38 0.84
0.15 0.83 0.55 0.66 0.37 0.84
0.16 0.82 0.56 0.67 0.36 0.85
0.17 0.81 0.57 0.68 0.35 0.85
0.18 0.81 0.58 0.69 0.34 0.86
0.19 0.80 0.58 0.70 0.32 0.86
0.20 0.79 0.59 0.71 0.32 0.86
0.21 0.79 0.60 0.72 0.30 0.86
0.22 0.78 0.61 0.73 0.29 0.87
0.23 0.77 0.61 0.74 0.28 0.87
0.24 0.76 0.62 0.75 0.27 0.88
0.25 0.75 0.63 0.76 0.26 0.88
0.26 0.75 0.63 0.77 0.25 0.88
0.27 0.74 0.64 0.78 0.24 0.89
0.28 0.73 0.65 0.79 0.23 0.89
0.29 0.72 0.65 0.80 0.22 0.90
0.30 0.71 0.66 0.81 0.20 0.90
0.31 0.71 0.67 0.82 0.19 0.90
0.32 0.70 0.68 0.83 0.18 0.91
0.33 0.69 0.68 0.84 0.17 0.92
0.34 0.68 0.68 0.85 0.15 0.92
0.35 0.67 0.69 0.86 0.14 0.92
0.36 0.66 0.70 0.87 0.13 0.92
0.37 0.65 0.70 0.88 0.12 0.92
0.38 0.65 0.71 0.89 0.10 0.92
0.39 0.64 0.71 0.90 0.09 0.93
0.40 0.63 0.72 0.91 0.08 0.93
0.41 0.62 0.73 0.92 0.06 0.94
0.42 0.61 0.73 0.93 0.05 0.94
0.43 0.60 0.74 0.94 0.04 0.95
0.44 0.59 0.74 0.95 0.03 0.94
0.45 0.58 0.75 0.96 0.02 0.96
0.46 0.57 0.75 0.97 0.01 0.96
0.47 0.56 0.76 0.98 0.01 0.96
0.48 0.55 0.76 0.99 0.00 0.92
0.49 0.54 0.77 1.00 0.00 0.00
0.50 0.53 0.77
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Table B.2. Expected Selection Completeness and Purity for QSO within 14.5 < rP1 < 20

threshold on pQSO completeness purity threshold on pQSO completeness purity

0.00 1.00 0.01 0.51 0.79 0.80
0.01 0.99 0.38 0.52 0.78 0.80
0.02 0.98 0.49 0.53 0.77 0.81
0.03 0.98 0.54 0.54 0.78 0.81
0.04 0.97 0.58 0.55 0.76 0.81
0.05 0.97 0.60 0.56 0.75 0.81
0.06 0.97 0.62 0.57 0.74 0.81
0.07 0.96 0.64 0.58 0.73 0.81
0.08 0.96 0.65 0.59 0.72 0.82
0.09 0.96 0.66 0.60 0.71 0.82
0.10 0.95 0.67 0.61 0.70 0.82
0.11 0.95 0.68 0.62 0.69 0.82
0.12 0.95 0.69 0.63 0.68 0.83
0.13 0.94 0.69 0.64 0.66 0.83
0.14 0.94 0.70 0.65 0.65 0.83
0.15 0.94 0.71 0.66 0.64 0.84
0.16 0.93 0.71 0.67 0.63 0.84
0.17 0.93 0.72 0.68 0.61 0.84
0.18 0.93 0.72 0.69 0.59 0.85
0.19 0.93 0.72 0.70 0.58 0.85
0.20 0.92 0.73 0.71 0.57 0.85
0.21 0.92 0.73 0.72 0.55 0.85
0.22 0.92 0.73 0.73 0.54 0.86
0.23 0.91 0.74 0.74 0.52 0.86
0.24 0.91 0.74 0.75 0.50 0.86
0.25 0.91 0.74 0.76 0.48 0.86
0.26 0.90 0.75 0.77 0.47 0.87
0.27 0.90 0.75 0.78 0.45 0.87
0.28 0.90 0.75 0.79 0.43 0.87
0.29 0.89 0.75 0.80 0.41 0.88
0.30 0.89 0.75 0.81 0.39 0.88
0.31 0.88 0.75 0.82 0.36 0.88
0.32 0.88 0.75 0.83 0.34 0.89
0.33 0.88 0.76 0.84 0.32 0.89
0.34 0.87 0.76 0.85 0.30 0.89
0.35 0.87 0.76 0.86 0.28 0.90
0.36 0.86 0.76 0.87 0.25 0.90
0.37 0.86 0.76 0.88 0.23 0.90
0.38 0.85 0.77 0.89 0.20 0.91
0.39 0.85 0.77 0.90 0.18 0.92
0.40 0.85 0.78 0.91 0.16 0.92
0.41 0.84 0.78 0.92 0.13 0.92
0.42 0.84 0.78 0.93 0.11 0.93
0.43 0.83 0.78 0.94 0.08 0.94
0.44 0.83 0.79 0.95 0.05 0.95
0.45 0.82 0.79 0.96 0.03 0.96
0.46 0.82 0.79 0.97 0.02 0.95
0.47 0.81 0.79 0.98 0.001 1.00
0.48 0.81 0.79 0.99 0.00 1.00
0.49 0.80 0.80 1.00 0.00 0.00
0.50 0.79 0.80
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Table B.3. Expected Selection Completeness and Purity for RR Lyrae within ∼130 kpc

threshold on pRRLyrae completeness purity threshold on pRRLyrae completeness purity

0.00 1.0 0.00 0.51 0.65 0.83
0.01 0.93 0.28 0.52 0.64 0.84
0.02 0.92 0.37 0.53 0.63 0.84
0.03 0.91 0.43 0.54 0.63 0.84
0.04 0.90 0.47 0.55 0.63 0.84
0.05 0.89 0.51 0.56 0.61 0.85
0.06 0.89 0.53 0.57 0.60 0.85
0.07 0.88 0.55 0.58 0.58 0.85
0.08 0.88 0.57 0.59 0.58 0.85
0.09 0.87 0.59 0.60 0.56 0.85
0.10 0.87 0.60 0.61 0.55 0.85
0.11 0.86 0.62 0.62 0.54 0.85
0.12 0.86 0.63 0.63 0.53 0.85
0.13 0.85 0.64 0.64 0.52 0.85
0.14 0.85 0.65 0.65 0.50 0.85
0.15 0.84 0.66 0.66 0.50 0.86
0.16 0.84 0.67 0.67 0.49 0.86
0.17 0.84 0.68 0.68 0.47 0.86
0.18 0.84 0.69 0.69 0.46 0.86
0.19 0.84 0.70 0.70 0.45 0.86
0.20 0.83 0.70 0.71 0.43 0.86
0.21 0.82 0.71 0.72 0.42 0.86
0.22 0.82 0.71 0.73 0.40 0.86
0.23 0.82 0.71 0.74 0.38 0.87
0.24 0.81 0.72 0.75 0.36 0.88
0.25 0.81 0.73 0.76 0.35 0.88
0.26 0.81 0.73 0.77 0.33 0.88
0.27 0.80 0.74 0.78 0.32 0.88
0.28 0.80 0.75 0.79 0.31 0.88
0.29 0.79 0.76 0.80 0.29 0.88
0.30 0.79 0.76 0.81 0.27 0.88
0.31 0.78 0.76 0.82 0.24 0.90
0.32 0.78 0.77 0.83 0.22 0.90
0.33 0.77 0.78 0.84 0.21 0.90
0.34 0.76 0.78 0.85 0.19 0.90
0.35 0.76 0.79 0.86 0.17 0.89
0.36 0.76 0.79 0.87 0.15 0.88
0.37 0.75 0.80 0.88 0.13 0.89
0.38 0.74 0.80 0.89 0.11 0.89
0.39 0.74 0.80 0.90 0.10 0.90
0.40 0.73 0.81 0.91 0.08 0.90
0.41 0.72 0.81 0.92 0.06 0.94
0.42 0.72 0.81 0.93 0.05 0.92
0.43 0.71 0.81 0.94 0.03 0.89
0.44 0.71 0.81 0.95 0.02 0.83
0.45 0.71 0.82 0.96 0.01 0.82
0.46 0.69 0.82 0.97 0.01 0.80
0.47 0.69 0.83 0.98 0.00 1.00
0.48 0.68 0.83 0.99 0.00 0.00
0.49 0.67 0.83 1.00 0.00 0.00
0.50 0.66 0.83

218



B.1 Expected Selection Completenesses and Purities

Table B.4. Expected Selection Completeness and Purity for RR Lyrae within ∼40 kpc
(14.5 < rP1 < 18.5)

threshold on pRRLyrae completeness purity threshold on pRRLyrae completeness purity

0.00 1.00 0.00 0.51 0.80 0.86
0.00 0.99 0.42 0.52 0.80 0.86
0.00 0.99 0.50 0.53 0.79 0.87
0.00 0.98 0.55 0.54 0.79 0.87
0.04 0.98 0.59 0.55 0.78 0.87
0.05 0.98 0.60 0.56 0.78 0.87
0.06 0.98 0.62 0.57 0.77 0.87
0.07 0.97 0.64 0.58 0.76 0.87
0.08 0.97 0.65 0.59 0.74 0.87
0.09 0.97 0.67 0.60 0.73 0.87
0.10 0.96 0.69 0.61 0.71 0.87
0.11 0.95 0.69 0.62 0.70 0.87
0.12 0.95 0.70 0.63 0.69 0.87
0.13 0.95 0.70 0.64 0.68 0.88
0.14 0.94 0.70 0.65 0.67 0.88
0.15 0.94 0.71 0.66 0.66 0.88
0.16 0.94 0.72 0.67 0.65 0.89
0.17 0.94 0.73 0.68 0.63 0.89
0.18 0.94 0.73 0.69 0.61 0.89
0.19 0.93 0.74 0.70 0.60 0.88
0.20 0.93 0.74 0.71 0.59 0.89
0.21 0.92 0.75 0.72 0.58 0.89
0.22 0.92 0.76 0.73 0.56 0.88
0.23 0.92 0.76 0.74 0.54 0.88
0.24 0.92 0.76 0.75 0.52 0.88
0.25 0.91 0.77 0.76 0.50 0.88
0.26 0.91 0.77 0.77 0.48 0.88
0.27 0.91 0.78 0.78 0.46 0.89
0.28 0.91 0.78 0.79 0.45 0.90
0.29 0.91 0.79 0.80 0.42 0.89
0.30 0.91 0.79 0.81 0.39 0.89
0.31 0.91 0.79 0.82 0.37 0.89
0.32 0.91 0.80 0.83 0.36 0.91
0.33 0.90 0.80 0.84 0.34 0.91
0.34 0.90 0.80 0.85 0.33 0.93
0.35 0.90 0.81 0.86 0.31 0.93
0.36 0.89 0.82 0.87 0.28 0.95
0.37 0.88 0.82 0.88 0.27 0.95
0.38 0.88 0.83 0.89 0.25 0.96
0.39 0.87 0.83 0.90 0.24 0.96
0.40 0.87 0.83 0.91 0.21 0.97
0.41 0.86 0.83 0.92 0.18 0.97
0.42 0.85 0.83 0.93 0.14 0.96
0.43 0.85 0.84 0.94 0.11 0.97
0.44 0.84 0.84 0.95 0.08 0.97
0.45 0.84 0.84 0.96 0.06 1.00
0.46 0.83 0.84 0.97 0.04 1.00
0.47 0.82 0.84 0.98 0.02 1.00
0.48 0.82 0.85 0.99 0.00 0.00
0.49 0.81 0.85 1.00 0.00 0.00
0.50 0.80 0.85
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Table B.5. Expected Selection Completeness and Purity for RR Lyrae within ∼80 kpc
(19.7 < rP1 < 20.7)

threshold on pRRLyrae completeness purity threshold on pRRLyrae completeness purity

0.00 1.00 0.00 0.51 0.71 0.85
0.01 0.95 0.26 0.52 0.70 0.86
0.02 0.94 0.36 0.53 0.69 0.86
0.03 0.91 0.40 0.54 0.67 0.87
0.04 0.90 0.45 0.55 0.66 0.87
0.05 0.89 0.49 0.56 0.66 0.87
0.06 0.88 0.52 0.57 0.64 0.87
0.07 0.88 0.54 0.58 0.64 0.87
0.08 0.86 0.57 0.59 0.64 0.88
0.09 0.85 0.59 0.60 0.63 0.88
0.10 0.85 0.61 0.61 0.62 0.88
0.11 0.84 0.64 0.62 0.62 0.88
0.12 0.84 0.65 0.63 0.60 0.88
0.13 0.83 0.66 0.64 0.60 0.89
0.14 0.83 0.68 0.65 0.58 0.88
0.15 0.83 0.69 0.66 0.58 0.90
0.16 0.83 0.70 0.67 0.57 0.90
0.17 0.82 0.71 0.68 0.57 0.90
0.18 0.82 0.72 0.69 0.55 0.90
0.19 0.82 0.73 0.70 0.54 0.90
0.20 0.81 0.74 0.71 0.54 0.90
0.21 0.81 0.75 0.72 0.53 0.90
0.22 0.81 0.76 0.73 0.52 0.90
0.23 0.80 0.77 0.74 0.50 0.90
0.24 0.80 0.78 0.75 0.50 0.90
0.25 0.80 0.79 0.76 0.48 0.91
0.26 0.80 0.79 0.77 0.46 0.91
0.27 0.80 0.80 0.78 0.45 0.91
0.28 0.80 0.80 0.79 0.43 0.91
0.29 0.80 0.80 0.80 0.43 0.91
0.30 0.80 0.80 0.81 0.42 0.90
0.31 0.80 0.81 0.82 0.40 0.90
0.32 0.80 0.81 0.83 0.40 0.91
0.33 0.80 0.81 0.84 0.39 0.91
0.34 0.77 0.81 0.85 0.38 0.92
0.35 0.76 0.81 0.86 0.33 0.93
0.36 0.76 0.82 0.87 0.31 0.93
0.37 0.76 0.82 0.88 0.30 0.93
0.38 0.76 0.82 0.89 0.27 0.92
0.39 0.75 0.83 0.90 0.25 0.92
0.40 0.75 0.83 0.91 0.23 0.92
0.41 0.75 0.83 0.92 0.19 0.90
0.42 0.75 0.84 0.93 0.17 0.91
0.43 0.74 0.84 0.94 0.13 0.89
0.44 0.74 0.85 0.95 0.10 0.89
0.45 0.73 0.84 0.96 0.07 0.88
0.46 0.73 0.85 0.97 0.04 0.86
0.47 0.73 0.85 0.98 0.02 0.88
0.48 0.72 0.85 0.99 0.01 1.00
0.49 0.73 0.85 1.00 0.00 0.00
0.50 0.71 0.85
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B.2 Sagittarius Stream

B.2 Sagittarius Stream

These tables give the geometry of the Sagittarius stream, represented by its extent and width as

inferred from the analysis in Chapter 6.
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Table B.6. Fitted Parameters for Sagittarius Stream, Leading Arm

Λ̃� [◦] fsgr a Dsgr [kpc]b Dsgr 2σ interval [kpc] σsgr [kpc]c σsgr 2σ interval [kpc]

10 0.05315 13.062 [5.164, 26.718] 2.588 [1.039, 5.702]
20 0.05039 39.084 [34.246, 41.965] 1.706 [1.017, 5.206]
30 0.05119 41.628 [39.326, 43.656] 2.125 [1.162, 3.799]
40 0.37902 45.274 [44.742, 45.771] 3.615 [3.246, 4.050]
50 0.51720 49.858 [49.534, 50.169] 3.319 [2.966, 3.686]
60 0.61343 51.828 [51.406, 52.262] 4.475 [3.894, 5.026]
70 0.40678 48.549 [48.024, 49.061] 3.659 [3.078, 4.435]
80 0.35617 45.562 [44.775, 46.326] 4.634 [3.861, 5.535]
90 0.21225 40.088 [39.040, 41.173] 4.022 [2.738, 5.566]
100 0.22411 35.702 [33.760, 37.238] 4.712 [3.009, 5.930]
110 0.22507 30.744 [29.218, 31.830] 3.245 [2.274, 5.017]
120 0.21835 26.364 [22.988, 28.630] 4.246 [2.374, 5.907]
130 0.06867 21.364 [20.056, 28.786] 3.308 [1.157, 5.865]
140 0.13778 19.368 [16.743, 39.772] 2.382 [1.043, 5.029]
150 0.17783 16.329 [15.058, 19.319] 3.929 [1.985, 5.637]
160 0.36354 87.929 [86.482, 89.264] 4.683 [3.479, 5.846]

afraction sources in Sgr stream

bmean heliocentric Sgr stream distance

cSgr stream line-of-sight width

Table B.7. Fitted Parameters for Sagittarius Stream, Trailing Arm

Λ̃� [◦] fsgr a Dsgr [kpc]b Dsgr 2σ interval [kpc] σsgr [kpc]c σsgr 2σ interval [kpc]

100 0.05428 55.155 [51.360, 57.960] 2.858 [1.236, 5.764]
110 0.05463 64.423 [54.662, 72.917] 3.421 [1.055, 5.873]
120 0.05886 56.539 [52.621, 66.671] 2.610 [1.066, 5.743]
130 0.07754 66.502 [62.112, 71.374] 4.583 [1.512, 5.935]
140 0.09194 79.711 [71.569, 84.388] 5.076 [2.051, 5.970]
150 0.30275 81.575 [79.894, 83.197] 5.255 [4.073, 5.961]
160 0.36581 87.959 [86.625, 89.198] 4.714 [3.534, 5.822]
170 0.52524 92.008 [90.682, 93.355] 5.902 [5.490, 5.996]
180 0.32859 87.550 [85.294, 89.928] 5.591 [4.431, 5.984]
190 0.08368 59.629 [42.281, 71.322] 3.051 [1.070, 5.883]
200 0.52845 53.135 [51.472, 54.817] 5.668 [4.840, 5.984]
210 0.56103 43.055 [41.427, 44.669] 5.634 [4.577, 5.984]
220 0.69129 36.552 [35.313, 37.770] 5.752 [5.061, 5.988]
230 0.53671 31.050 [30.087, 32.572] 5.630 [4.728, 5.984]
240 0.56661 27.889 [26.354, 29.187] 4.690 [3.621, 5.841]
250 0.64931 25.148 [23.634, 26.438] 5.089 [4.093, 5.937]
260 0.42848 24.436 [22.627, 25.939] 4.837 [3.288, 5.916]
270 0.49886 20.295 [18.264, 22.408] 5.400 [3.753, 5.979]
280 0.32116 20.032 [17.885, 48.008] 4.388 [3.065, 5.806]
290 0.26776 21.107 [18.780, 23.070] 4.533 [2.536, 5.925]
300 0.36671 20.730 [18.747, 22.387] 4.987 [3.569, 5.941]
310 0.45996 21.174 [19.509, 22.636] 4.924 [3.750, 5.922]
320 0.49185 21.391 [19.767, 22.747] 4.804 [3.688, 5.888]
330 0.37186 20.075 [17.979, 22.012] 5.100 [3.488, 5.954]
340 0.44994 20.701 [19.321, 22.260] 5.629 [4.779, 5.984]
350 0.46107 27.089 [26.926, 56.072] 1.254 [1.051, 3.732]

afraction sources in Sgr stream

bmean heliocentric Sgr stream distance

cSgr stream line-of-sight width
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Table B.8. Possibly Sagittarius Stream Bifurcation

α [◦] a δ [◦] b fsgr c Dsgr [kpc]d Dsgr 2σ interval [kpc] σsgr [kpc]e σsgr 2σ interval [kpc]

215 5 0.45309 49.02 [48.446, 49.620] 2.970 [2.379, 3.805]
204.783 8.391 0.37612 45.800 [44.847, 46.714] 4.500 [3.598, 5.474]
189.524 8.333 0.26316 40.513 [38.800, 42.410] 4.821 [2.054, 5.933]
189.444 15.667 0.16247 35.414 [32.233, 38.279] 4.877 [2.494, 5.957]
169.63 12.333 0.1954 26.075 [12.705, 34.648] 5.265 [1.962, 5.977]
170.256 22.641 0.20342 14.897 [11.666, 29.689] 4.161 [1.425, 5.960]
150.556 13.972 0.30127 20.563 [15.400, 24.890] 5.29 [2.369, 5.980]
149.841 26.27 0.19247 16.365 [12.347, 20.292] 5.00 [2.170, 5.956]

abfor each polygon, the centroid of its (α, δ) is given, as used in Fig. 6.6.

cfraction sources in Sgr stream

dmean heliocentric Sgr stream distance

eSgr stream line-of-sight width
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