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Abstract 

 

The blue-green alga Prochloron produces and exports cyclic octapeptides (patellamides) to its obligate 

host, the ascidian Lissoclinum patella, in large quantities. Since the CuII concentration in the ascidians 

is a factor of 104 greater when compared to the surrounding sea water, previous studies on model CuII 

complexes with synthetic cyclic octapeptide derivatives were performed and revealed these 

complexes to be efficient phosphatase- and carboanhydrase-mimics. Their biological role, however, 

is so far unknown.  

With the work presented in this thesis, the dependence of the phosphatase activity of dinuclear 

patellamide complexes on the side chain configuration as well as on the catalytic metal centre is 

explored. The results show that the complexes based on ligands with the natural R and S configuration 

of the patellamide-ligand backbone exhibit 3-5 times higher hydrolysis efficiencies as compared to 

complexes with ligands that exhibit 4S side chain configuration. Beyond that, the effect on 

phosphatase efficiency induced by the substitution of the catalytic metal centre CuII for ZnII was 

investigated. Since only one of the three ZnII patellamide complexes showed catalytic activity, a 

structural investigation was carried out. In addition to hydrolysis measurements this was 

accomplished by means of NMR, MS, ITC and a combined MM and QM study. The results indicate a 

similar binding behaviour of patellamides towards ZnII as shown for CuII, i.e. a coordination site 

spanned by two nitrogen atoms that are part of a heterocycle and a deprotonated amide nitrogen. 

Therefore, the lack of phosphatase activity might be caused by the small stability of these complexes 

under aqueous conditions, as used for the hydrolysis assay. 

In addition, α- and β-glycosidase- as well as β-lactamase-like activity of the CuII patellamide complexes 

was examined. It was shown that the imidazole-based complexes act as hydrolases not only for 

phosphate ester cleavage at pH 7-8 but also for the hydrolysis of glycosidic bonds at alkaline 

conditions (pH 10). Moreover, β-lactamase-like activity was observed at pH 11.5 for one of the 

patellamide based complexes. Consequently, these results indicate the ability of the CuII complexes 

to act as very efficient, pH-dependent catalysts. Recent findings from BEHRENDT et al. pointed to a 

rapid fluctuation of the pH in close proximity to Prochloron depending on the irradiance. Therefore, 

the glycosidase and lactamase results could indicate the dinuclear CuII complexes to adopt different 

functions during day- and night-time, respectively.  
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As a contribution towards the elucidation of the metabolic significance of the patellamide complexes, 

the formation of the complexes was investigated in vitro in buffer at pH 8.2 as well as in vivo. 

Therefore, a patellamide ligands with an appended reporter groups (RG) were prepared (see Figure 1).  

 

 

 

Figure 1. Model ligands with reporter groups Atto550 and Proxyl. 

 

The fluorescent tag Atto550 as well as the spin label Proxyl were chosen as the reporter groups. In 

vitro studies with H4pat-Atto550 indicate the formation of a CuII complex in buffer, however, results 

from EPR studies with the ligand H4pat-Proxyl and CuII could so far not verify this finding. In addition, 

a protocol for the uptake of patellamides by Prochloron was developed allowing the introduction of 

the ligand H4pat-RG into the cells. Results from flow cytometry as well as confocal microscopy support 

the formation of a CuII patellamide complex in vivo. In addition, preliminary in vivo hydrolysis 

measurements are presented.  

In conclusion, the work presented contributes to an improved understanding of the hydrolase-like 

activities of the patellamide-based copper(II) complexes and gives a first insight on the stabilities of 

the complexes in Prochloron cells.  
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Kurzfassung 

 

Die Blau-Grün Alge Prochloron produziert und exportiert in großen Mengen zyklische Oktapeptide 

(Patellamide) an ihren obligaten Wirt, Lissoclinum patella (Ascidie). Da die Kupfer(II)-

Ionenkonzentration in den Ascidien im Vergleich zum umgebenden Meerwasser um den Faktor 104 

erhöht ist, wurden Studien über vermeintliche Kupfer(II)-patellamid Komplexe durchgeführt. Mit Hilfe 

dieser Untersuchungen konnte gezeigt werden, dass es sich bei den dinuklearen Kupfer(II)-Komplexen 

der Peptide um effiziente Katalysatoren für biologisch relevante Hydrolysereaktionen handelt, wie 

z.B. Phosphatase und Carboanhydrase. Ihre Rolle im Stoffwechsel der Ascidien und der Blau-Grün 

Algen ist jedoch bisher noch unbekannt.  

In der vorliegenden Arbeit wurden Studien zur Abhängigkeit der Phosphataseaktivität der dinuklearen 

Kupfer(II)-Komplexe von der Seitenkettenkonfiguration der Liganden sowie vom katalytischen 

Metallzentrum durchgeführt. Die Ergebnisse zeigen, dass die Komplexe mit Liganden natürlicher RS 

Stereokonfiguration drei- bis fünffach erhöhte Hydrolyseeffizienz aufweisen im Vergleich zu 

Komplexen mit Liganden nicht-natürlicher Stereokonfiguration. Darüber hinaus wurde der Einfluss 

des Metallzentrums auf die Phosphataseeffizienz der Komplexe durch den Austausch von Kupfer(II) 

durch Zink(II) untersucht. Da nur einer der drei untersuchten Zink(II)-patellamid Komplexe 

katalytische Aktivität zeigte, wurde eine strukturelle Untersuchung der Komplexe durchgeführt. Dazu 

wurden neben den Hydrolysemessungen auch NMR-, MS- und ITC-Titrationen, sowie eine 

vergleichende MM- und QM-Studie unternommen. Die Ergebnisse der Untersuchung deuten auf ein 

ähnliches Bindungsverhalten von Zink(II) in Patellamiden wie bereits für Kupfer(II) gezeigt. Dabei 

bindet das Metallion in einer Bindungstasche, die von zwei Stickstoffen in einem Heterozyklus und 

einem deprotonierten Amidstickstoff aufgespannt wird. Die ausbleibende Phosphataseaktivität ist 

daher vermutlich auf eine mangelnde Stabilität der Zink(II)-Komplexe unter wässrigen Bedingungen 

zurückzuführen. 

Darüber hinaus wurden die α- und β-Glykosidase- sowie β-Lactamase-artige Aktivität der Kupfer(II)-

patellamid Komplexe untersucht. Es konnte gezeigt werden, dass die Imidazol-basierten Komplexe 

nicht nur Phosphatester bei pH 7-8 spalten können, sondern auch dazu in der Lage sind unter 

basischen Bedingungen (pH 10) glykosidische Bindungen zu hydrolysieren. Außerdem konnte β-

Lactamase-artige Aktivität bei pH 11.5 für einen der Patellamid-basierten Komplexe beobachtet 

werden. Diese Ergebnisse deuten darauf hin, dass die Kupfer(II)-Komplexe pH-abhängige, schaltbare 
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Katalysatoren sind. BEHRENDT et al. berichteten kürzlich, dass der pH Wert in unmittelbarer Nähe zu 

Prochloron in Abhängigkeit der Beleuchtungsstärke fluktuiert. Vor dem Hintergrund dieser Ergebnisse 

könnten die Hydrolyseergebnisse bedeuten, dass die dinuklearen Kupfer(II)-Komplexe verschiedene 

Funktionen im Laufe des Tages, in Abhängigkeit der Sonneneinstrahlung, erfüllen. 

Um einen Beitrag zur Aufklärung der metabolischen Bedeutung der Patellamid-Komplexe zu leisten, 

wurde die Bildung der Kupfer(II)-Komplexe in vitro (pH 8.2) sowie in vivo untersucht. Dazu wurden 

Patellamid-Liganden mit verschiedenen Reportergruppen dargestellt (siehe Abbildung 1). 

 

 

 

Abbildung 1. Modell-Liganden mit Reportergruppen Atto550 und Proxyl. 

 

Als Reportergruppen wurden zum einen der Fluoreszenzfarbstoff Atto550 gewählt, sowie zum 

anderen das Spin-Label Proxyl. In vitro Untersuchungen mit dem Liganden H4pat-Atto550 weisen auf 

die Bildung eines Kupfer(II)-Komplexes in gepufferter Lösung hin, allerdings konnten ESR-Experimente 

mit dem Liganden H4pat-Proxyl dieses Resultat bisher nicht eindeutig verifizieren. Im nächsten Schritt 

wurde ein Protokoll für die Aufnahme der Modell-Liganden in die Zellen etabliert. Die Ergebnisse von 

Durchflusszytometrie und Konfokalmikroskopie deuten auf die Bildung eines Kupfer(II)-patellamid 

Komplexes in vivo hin. Abschließend werden erste in vivo Hydrolysemessungen präsentiert. 

Folglich trägt die hier vorgelegte Arbeit zu einem besseren Verständnis der Hydrolase-artigen Aktivität 

der Patellamid-basierten Kupfer(II)-Komplexe bei und gibt einen ersten Einblick in die Stabilität der 

Komplexe in Prochloron Zellen. 
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1 State of the Art 

1.1 Prochloron - a special cyanobacterium 

 

The International Union of Geological Sciences (IUGS) is the body responsible for the official geological 

periodisation. To IUGS, the atmospheric scientists PAUL CRUTZEN and EUGENE STOERMER put forward the 

suggestion to call the era from the 1960s onwards 'Anthropocene'.1 If the commission decides in 

favour of granting this title, it would mean that humans consider themselves as predominantly 

responsible for the sedimentation observed on earth since then. 

Without the emergence of oxytrophic organisms, namely cyanobacteria, more than 2.5 billion years 

ago, there would neither be an Anthropocene nor anyone claiming that title to be suitable, simply 

because of the lack of air to breathe – there would not be sufficient dioxygen. The first organisms to 

produce dioxygen, as a very toxic waste product from the metabolic conversion of CO2, were 

cyanobacteria. This development was driven by the need of reduced carbon species for the growth of 

organisms, consequently the resulting amount of oxidation equivalents could not be buffered any 

longer by auxiliary substrates like reduced FeII or sulfur species (S-II) and therefore dioxygen was 

directly released to the atmosphere.2 Cyanobacteria are to date the only reported examples of 

oxyphototrophs among prokaryotes and are mainly responsible for the present composition of the 

biosphere and oxic atmosphere. This is the case due to their photosynthetic dioxygen production. 

Beyond that, scientists nowadays also agree, that all higher plants acquired their efficient 

machineries, chloroplasts and mitochondria amongst them, by the incorporation of prokaryotes as 

symbionts, emphasising their importance for the development of higher plants. This is commonly 

referred to as theory of symbiogenesis.3 

The hypothesis was first proposed by KONSTANTIN MERESCHKOWSKY in 1910 and did not gain much 

attention until almost seventy years later, when accumulating discoveries were made supporting 

endosymbiotic origins of mitochondria and chloroplasts. 4-6 Models for the prokaryotic ancestor of red 
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algal chloroplasts, the unicellular cyanobacteria, were found; only the potential model ancestor for 

the green algal chloroplast was missing – until the discovery of Prochloron.6-8 This photosynthetic 

symbiont of ascidians exhibits not only chlorophyll a, but also chlorophyll b, allowing a more efficient 

collection of sun light, like eukaryotes, i.e. higher plants and algae. However, it did not have blue or 

red protein pigments (phycobilins), which is in contrast to findings for other oxygenic photosynthetic 

prokaryotes, often exploiting the green pigment chlorophyll a and adjunctive phycobilins. These 

findings fostered further in-depth research on the biochemical features of Prochloron, its cytology, 

physiology, ecology and phylogeny, even though all of these studies were limited by the fact that 

Prochloron has to date not been brought into laboratory culture9,10 (there is a paper claiming the 

contrary11 but the report could not be confirmed). It was initially named Prochloron didemni7, 

nowadays however numerous clades have been found, and since it could not be associated with the 

blue-green algae (cyanobacteria), therefore it was grouped into a new sub-class, the prochlorophyta. 

During the course of research more prochlorophytes were found, resembling the particular 

membrane-bound chlorophyll a/b light harvesting complexes (LHC), which are not related to the 

chlorophyll a/b antenna in the LHC of eukaryotic oxyphototophs,12,13 namely Prochlorothrix and 

Prochlorococcus.14,15 They both lack phycobilin, but are in contrast to Prochloron free-floating and can 

be kept in culture (non-axenic). Since the genes coding for chlorophyll b synthesis in prochlorophytes 

are similar to the respective genes found in chlorophytes it is believed that they share an evolutionary 

ancestry16 or must have undergone a significant gene transfer. Contrastingly, the chlorophyll a/b LHC 

proteins evidently evolved independently in the algal classes.12 Accumulating information from 

nucleotide sequences indicate that the prochlorophytes are, despite their special pigment 

composition, related closely phylogenetically to the blue-green algae,17 and are therefore probably 

not the one missing link in chloroplast evolution but certainly belong to one of the lineages in the 

cyanobacteria in which chlorophyll b evolved.12,18 It is consequently believed that prochlorophyta can 

be subsumed into cyanobacteria or cyanophyta.19 

Prochloron is an extremely large prokaryote, with a diameter of 7-25 µm (see Figure 1.1). It is a 

spherical cell with thylakoid membranes stacked to the periphery. Prochloron is always found as an 

obligate symbiont of subtropical and tropical ascidians, like Diplosoma virens, Tridemnum cyclops, 

Didemnum molle and the genus Lissoclinum – Lissoclinum punctatum, Lissoclinum bistratum and 

Lissoclinum patella amongst them. Prochloron is the only reported obligate photosymbiont in the 

phylum chordata.20 This is particularly interesting, because a Prochloron draft genome was published21 
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that did not show any lack of relevant metabolic genes, which could explain why it can neither sustain 

photosynthesis nor reproduce ex hospite (outside the host). Currently research is being undertaken 

by KÜHL and BEHRENDT to unravel the secrets of Prochloron's precise microenvironment and 

consequently understand the requirements to transfer it to laboratory culture.9 

 

 

 

 

 

 

Figure 1.1. Left: Microscopy picture of Prochloron, showing the stacked thylakoid membranes inside (taken with 

a confocal microscope λexc=665 nm); middle: Lissoclinum patella colony ~200 cm2 on a coral; right: ~10 cm2 on a 

stone.  

 

For carbon assimilation, Prochloron, like other blue-green algae, uses carboxysomes,22 in which 

carbonic anhydrase is abundant, as well as Rubisco23 fixing it from CO2 to phosphoglyceric acid. It 

could be shown that there an active supply of organic products to its host is likely and these organic 

products seem to be early metabolites of the CALVIN cycle.24 Approximately 12-56% of the reduced 

carbon species are contributed from this translocation for host respiration and that is primarily host-

dependent.25,26 

With an oxygen evolving complex and electron transport observed via photosystem (PS) I and II, 

Prochloron's photosynthetic apparatus appears related to that of other cyanobacteria. Moreover, 

distinct light harvesting supercomplexes associated with the chlorophyll a/b proteins are existent in 

PSI and PSII27,28 allowing an efficient photosynthetic electron transport system. This leads to maximum 

quantum yields of PSII up to 0.82, which is significantly higher than for most cyanobacteria, but of the 

same order of magnitude as observed for higher plants.29,30  

The putative fixation of N2 by Prochloron is subject of ongoing discussion.21,31 Results indicating 

additional nitrogen fixation in the symbioses were provided by KOIKE et al. in 1993.32 Moreover, it 

could be shown that the major nitrogenous waste of the host is ammonium,33 which is taken up by 

Prochloron.34 PEARL raised the idea, that N2 fixation assists to meet the prokaryotic nitrogen 

requirements.35 This is supported by nitrogen isotope ratios measured in the L. patella and in 

Prochloron cells, which point to a nitrogenase activity.36 
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More recent studies focussed on the Prochloron genome, the microbiome as well as on the micro-

environment and added significantly to the understanding of the ecology of Prochloron.21,37,38 

Thereby it was demonstrated that Prochloron is subject to rapid and dynamic chemical changes in its 

direct environment.9 Upon irradiation, the pH as well as the O2 saturation levels are altered drastically 

within 15-30 min – changing the interior zone of the ascidians from an anoxic and neutral/slightly 

acidic environment (pH ~7.0) to a dioxygen super saturation level and strongly alkaline pH values (10.5) 

compared to the surrounding sea water (pH 8.2).9 Surprisingly, no photo inhibition was observed, 

even upon irradiance levels comparable to direct sunlight, and the photosynthesis recovered quickly 

after periods of extremely low dioxygen saturation levels.9 Since CO2 is absent at these alkaline 

conditions and photosynthesis consequently is solely dependent on HCO3
–, this points to an HCO3

– 

dependent carbon transport mechanism.39 These findings are in line with genome studies21 that prove 

the existence of low affinity carbon transport pumps and the lack of many carbon transporters that 

were found in other cyanobacteria.40 Apparently, these low affinity pumps are capable of transporting 

sufficient HCO3
– into the cells even under high irradiance.  

To what extent the biochemical and photosynthetic activity of Prochloron is influenced by the host is 

uncertain to date and subject of ongoing research.22,41 Implications on possible communication 

mechanisms across the cell membrane arose from secondary metabolites found inside Prochloron as 

well as in close proximity to it, in the ascidians. These secondary metabolites are small cyclic peptides, 

that are ribosomally expressed and are commonly referred to as cyanobactins.21,42,43  

 

1.2 Ribosomal expression of cyclic peptides 

 

Prochloron exhibits a rich variety in metabolites that are apparently expressed depending on which 

host it is living in symbiosis with. So far it could not be determined whether an epigenetic expression 

regulation governs the metabolite synthesis.  

The cyclic peptides were first discovered during the 1980s by researchers screening marine 

metabolites for potential pharmaceutical applications.44 Medicinal applications of the natural cyclic 

peptides and a series of synthetic derivatives have been studied thoroughly and it was shown that 

these peptides exhibit cytotoxic,44 antibacterial, antineoplastic and antiviral activities.45,46. Some of 

the metabolites found in host organisms of Prochloron are summarised in Figure 1.2. 
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Three different expression pathways are known for prokaryotes: the ribosomal production and post-

translational modification (RIPP), the production of a non-ribosomal pathway (NRP) and the mixed 

process, where polyketide synthases (PKS) and the non-ribosomal pathway intervene.47,48 

Typically, one would expect the NRP mechanism for the expression of small cyclic peptides with R-

amino acids in the scaffold, however, the cyanobactins found in L. patella, ascidiacylclamide, 

patellamides A-G and ulicyclamide, are all expressed via the RIPP mechanism, shown by NAISMITH and 

JASPARS in 2012.46,49,50 As this mechanism is usually only observed for peptides of metabolical 

importance, it gives rise to the hypothesis that the cyclic peptides might act as key metabolites. 51-53 

At the same time the patellamides show a similar size but increased flexibility as compared to the 

prosthetic group porphyrin in haem or chlorophyll.54 Thus, one might also encounter an involvement 

of the patellamides as multifunctional prosthetic groups in proteins to be their biological function. 

 

 

Figure 1.2. Ascidiacyclamide,55 Patellamide A,56 Ulicyclamide,57 Patellamide skeleton (see also Table 1.1), 
Westiellamide,58 Bistratamide D,59 schematic representation of one cyanobactine building block (left to right, 
top to bottom). The colour code in ascidiacyclamide shows the amino acid building blocks of one half of the 
molecule.60-62  
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Common chemical features of the cyanobactins are the heterocycles, i.e. thiazole, oxazole, as well as 

oxazoline, which are connected via peptide bonds. The amino acid residues are hydrophobic, and 

often originate from valine or iso-leucine. N-heterocycles result from the condensation of threonine, 

cysteine and serine side chains with carbonyl groups in the peptide sequence.62 Condensation of six 

or eight amino acids results in hexa- or octapeptides, and since the peptide functionalities are hidden 

in the heterocycle, the macrocycles are called pseudo-peptides (see Figure 1.2 for highlighted 

constituents and the corresponding amino acids and Table 1.1 for the side chains of patellamide A-G).  

 

Table 1.1. Amino acids contributing to the side chains of Patellamide A-G.56 

Patellamide R1 R2 R3 R4 R5 

A R-Val S-Ile R-Val S-Ile H 

B R-Phe S-Ile R-Ala S-Leu CH3 

C R-Phe S-Ile R-Ala S-Val CH3 

D R-Phe S-Ile R-Ala S-Ile CH3 

E R-Phe S-Ile R-Val S-Val CH3 

F R-Val S-Val R-Phe S-Val H 

G R-Ala S-Leu R-Phe S-Ile CH3 

 

The pseudo-octapeptides isolated from L. patella show a strong preorganisation for the coordination 

of metal ions with their 21-azacrown-7 and 24-azacrown-8 structures. Interestingly, none of the 

natural peptides exhibit imidazole heterocycles that are commonly conserved in metal ion binding 

sites of metabolic importance.2 The imidazole heterocycle could originate from the incorporation of 

2,3-diaminopropionic acid, a closely related analogue of serine, which would result in the formation 

of imidazole upon cyclisation. However, 2,3-diaminopropionic acid is of low natural abundance, which 

might be the reason why it is not part of the heterocycles.62-64 Another common feature in the cyclic 

octapeptides is the alternate R,S,R,S stereoconfiguration of the side chains, leading to a limited 

flexibility of the macrocycles. 

The rigidity of the systems was investigated by density functional theory (DFT), showing that it is 

primarily governed by the incorporated heterocycle.65,66 Thiazole is expected to be the most flexible 

moiety, exhibiting comparably small energy barriers (max. ~5 kJ/mol) for twisting along the dihedral 

Namide-Cα-Cazole-X (see Figure 1.2) as well as three minima at 30°, 80° and 160°.65,66 Oxazole shows higher 

energy barriers (~8 kJ/mol) and minima at 60° and 170°. The investigation of the imidazole heterocycle 
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gave energy barriers of approximately 30 kJ/mol and minima at 90° and 150° respectively, indicating 

imidazole-containing octapeptides to be the least flexible.65 

Analyses of the octapeptides by means of DFT calculations, in addition to X-ray crystallography and 

1H-NMR spectroscopy imply two different conformations: the saddle-shaped structure and the 

twisted structure, called 'figure-of-eight' conformation (see Figure 1.3).67 

In the saddle-shaped conformation all nitrogen atoms point towards the inside of the macrocycle, 

allowing the peptide to adopt C2 symmetry. The twisted figure of eight conformer on the other hand 

is characterised by intramolecular NH∙∙∙O=C and NH∙∙∙Ohet hydrogen bonds resulting in a less 

symmetrical conformation with the oxazoline ring rotated in a way, such that the nitrogen atoms of 

the oxazoline moieties are forced to face the outside of the macrocycle.68 

 

 

Figure 1.3. Preferred conformations of cyclic pseudo-peptides.67,69 

 

Less is known about the cyclic hexapeptides, like the bistratamides (see Figure 1.2), which could be 

extracted from Lissoclinum bistratum, first described by HAWKINS et al. in 1989.70 Although the exact 

expression mechanism was not elucidated, it is believed that Prochloron, the symbiont of L. bistratum, 

expresses the cyclic peptides as observed in the L. patella symbiosis. This is especially indicated by the 

fact that the bistratamides are mainly found in close proximity to the Prochloron cells, which suggests 

at least an involvement in the biosynthesis.70 Very closely related hexapeptides were found from the 

extraction of the terrestrial blue-green alga Westiellopsis prolifica ("The blue-green alga was collected 

from a mud sample"58), called westiellamides (see Figure 1.2).58 The structural difference between 

westiellamides and bistratamides is mainly the incorporation of a thiazole instead of an oxazoline. 

Both classes of cyclic hexapeptides were shown to be moderately cytotoxic.58,70 Interestingly 
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Westiellopsis prolifica, being a cyanophyte, could be grown in laboratory culture in BG 11 medium 

under axenic conditions – unlike all prochlorophytes.9 This however indicates that the cyclic peptides 

are not necessarily related by communication between the host ascidian and Prochloron, since 

Westiellopsis is a free-floating prokaryote. Nevertheless, given their high bioactivity, the cyclic 

peptides might play an important role in anti-predator mechanisms. However this is equally 

disputable, because of the sheer quantity of cyanobactins found in Lissoclinum patella and Lissoclinum 

bistratum – up to several percent of the dry weight.51,52 Consequently, the current focus of research 

is on the putative metabolic role of the cyclic peptides. The significantly increased metal ion 

concentration, in particular of CuII and ZnII to about 104-fold in comparison to the surrounding sea 

water implied a metal-coordination related metabolic role.71 Different functions have been discussed, 

the involvement in metal ion transport and storage as well as their role as potential prosthetic groups 

amongst them. Therefore, the coordination chemistry of natural cyclic hexa- and octapeptides was 

studied and is presented in the next paragraph.67,71 

 

1.3 Metal complexes of cyclic hexa- and octapeptides 

 

The metal ion concentrations (CuII and ZnII) found in ascidians are comparably high, which is surprising 

if compared to the cytotoxic effects known at these concentrations for other microorganisms.71 Given 

the constitution of the patellamides with four heterocyclic-nitrogen atoms and four amide-nitrogen 

atoms, pointing towards the inside of the cyclic peptide, potentially acting as donor atoms, the 

coordination chemistry of these macrocycles has been studied extensively in vitro.72 

ITC measurements, as well as data from CD, UV-vis and NMR spectroscopy indicate a metal ion binding 

of both CuII as well as ZnII with stability constants in the range of logK(ZnII)≈2-4 / logK(CuII)≈4-5.67 The 

X-ray structure of the dinuclear CuII complex of ascidiaycylamide with carbonate as a bridging coligand 

was the first natural metal complex that could be investigated in the solid state (and is shown in Figure 

1.4).71 In this complex, two metal ions are binding to the ligand, the CuII is coordinated by two 

heterocyclic nitrogens as well as a deprotonated amide nitrogen, providing a Nhet-Namide-Nhet binding 

motif. This is accompanied by acidification of the solution, since protons are released from the ligand 

upon complexation. Consequently, two equivalents of base have to be added in order to achieve the 

formation of a dinuclear complex.73 As the pH in sea water is approximately 8.2, which is slightly 
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alkaline, it is not unlikely, that the dinuclear copper(II) patellamide complexes are associated with the 

metabolic role of the cyclic octapeptides. 

 

 

Figure 1.4. Top and side view of the carbonato-bridged dinuclear CuII complex of ascidiacyclamide determined 
by X-ray crystallography (grey: C, yellow: S, blue: N, red: O).71 Reprinted with permission from 74 Copyright 2012 
Wiley-VCH. 

 

An investigation of the metal-binding capability of patellamide D by means of EPR, CD and UV-vis 

titrations indicated the following complexation scenario:71 

 

 

 

The addition of one equivalent of base leads to the deprotonation of the ligand, which alters the 

complex formation equilibrium in a way that allows the formation of a mononuclear copper(II) 

complex. Upon the addition of one more equivalent of base and copper, a dinuclear complex is 

observed. As soon as more equivalents of base are added, one of the copper(II) ions in the complexes 

is observed to be coordinated by a hydroxido coligand. Interestingly, the dinuclear patellamide 

complex with OH– as the coligand is observed to form a carbonato-bridged complex upon exposure 

to air, as shown for the respective ascidiacyclamide complex (see Figure 1.4).  
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1.4 Model peptides and their metal complexes 

 

Obtaining patellamides from natural sources is not only invasive, but also time-consuming and 

delivers comparably small amounts of the peptides, similar to recombinant expression. Therefore, a 

more efficient route was developed by HABERHAUER et al. to synthetically produce patellamides in a 

larger scale.62 An additional benefit of this technique is that variations in terms of ligand structure, i.e. 

preorganisation of the metal ion sites, as well as the donor sets and consequently the tuning of the 

electronics of the metal sites, became accessible.  

 

1.4.1 Synthesis of model patellamides 

 

The synthesis of the most accessible model patellamide H4pat2 is summarised in Scheme 1.1. 

By the choice of the amino acid, various side chains can be selected. With the technique shown in 

Scheme 1.1, imidazole moieties are obtained upon azeotropic removal of water in xylene. The natural 

peptide ascidiacyclamide as well as three model ligands that can be prepared analogously to the 

method described in the Scheme below are depicted in Figure 1.5 and 1.6. 

 

 

Scheme 1.1. Synthesis of H4pat2 as reported by HABERHAUER et al.62 
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Figure 1.5. Ascidiacyclamide (left) and synthetic pseudo-octapeptides H4pat1, H4pat2 and H4pat3.  

 

 

 

 

 

 

 

 

Figure 1.6. Top and side views of the crystal structures of H4pat1,75 H4pat2,76 and H4pat3 (grey: C, blue: N, red: O, 
hydrogen atoms are omitted for clarity).73 Adapted with permission from 77. 

 

HABERHAUER moreover developed an efficient route to oxazole-based ligands (see Scheme 1.2) and to 

a very close analogue of the natural ascidiacyclamide, H4pat5 (Scheme 1.3) with missing methyl groups 

in two of the side chains.61,72 

 

Scheme 1.2. Synthesis of H4patoxa as reported by HABERHAUER et al.62 
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Scheme 1.3. Synthesis of H4pat5 as reported by HABERHAUER et al.62 

 

The synthetic approach is very elegant, as all routes start from the same reactant, namely methyl 2-

((S)-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)-3-oxobutanoate (highlighted as A in 

Scheme 1.2) or the respective (R) configured equivalent (highlighted as A" in Scheme 1.3). In the 

subsequent step A/A" is reacted to the heterocycle of choice, i.e. either an imidazole, a thiazole, an 

oxazole or the respective oxazoline. These building blocks are N- as well as C- protected and upon 

deprotection that can be carried out giving quantitative yields, the building blocks are coupled by the 

coupling reagent FDPP (Pentafluorophenyl Diphenylphosphinate) with yields between 20-30%.47 

However, recently a cheaper and more efficient coupling reagent was developed, COMU ((1-cyano-2-

ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium-hexafluorophosphate); 

thus, in recent reports usually COMU was used as coupling agent.78,79 

Two components of the peptides are of crucial importance for the stereochemistry of the ligands: the 

heterocyclic moiety and the stereo-configuration of the side chains. The model patellamides H4pat1 

and H4pat5 show an alternate R,S,R,S configuration as observed in the natural products, resulting in a 

saddle-shaped preorganised geometry of the ligand (see Figure 1.6).67 H4pat2, H4patoxa and H4pat4, on 

the contrary, have an all-S configuration of the side chains and are therefore easier to prepare. On 

the other hand, they lack, as does H4pat1, two partially saturated heterocycles compared to the 

natural peptides. Only H4pat5 comprises both features, exhibiting oxazolines and thiazoles as 
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heterocyclic moieties. This is however not unimportant, since the oxazoline is not planar and is 

therefore influencing the potential metal ion binding behaviour, as also expected from the different 

pKa values of the heterocycles: N-methyl imidazole≈7.0, oxazole 0.8, oxazoline 4.8, thiazoline 2.5.80 

 

1.4.2 Metal complexes 

 

So far, the patellamide coordination chemistry has primarily concentrated on CuII. An important 

reason, apart from the putative relevance of CuII for the ascidians,72 is that UV-vis-, CD- and EPR 

spectroscopy in combination with force field and/or DFT calculations has allowed a thorough analysis 

of the solution structures, equilibria and hydrolase-type reaction pathways of these complexes.61,75,79-

84 These investigations showed that the model ligands are complementary for the binding of CuII and 

ZnII, like reported for the natural patellamides. Isothermal calorimetric studies indicate a higher 

stability constant for the dinuclear CuII complex with ligand H4pat1, a ligand composed of building 

blocks with alternating R and S side chains, mimicking the side chain arrangement of the natural 

patellamides (logK=6.2).67 The CuII complexes of ligands H4pat2, H4pat3 and H4patoxa show lower 

stabilities: logK=4.6; 5.2; 5.5; which is in the range of the stability constants observed for the CuII 

binding of natural octapeptides.79 From the collective data on the CuII binding behaviour of the model 

ligands, a cooperative binding is implicated.67 

UV-vis-, CD-, EPR-spectroscopy and mass spectrometry studies of the copper(II) complexes with 

various model patellamides77 revealed the solution equilibria shown in Scheme 1.4 (n.b. that the 

outside coordination does only occur for oxazole-based model patellamides). All investigations 

presented here were carried out in methanol with MeO– as the base for solubility reasons. Therefore, 

the pH of the solutions under investigation is not known and the results must hence be interpreted 

carefully, when speaking about the function and structure of the complexes at aqueous conditions. 

The Scheme 1.4 shows two different arrangements of the dinuclear copper(II) patellamide complex 

with one hydroxido-coligand: (a) the terminal binding mode and (b) the bridging mode, the latter of 

which has been confirmed with X-ray crystal structure determination (see Figure 1.7).67 
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Scheme 1.4. CuII complexation equilibria of model patellamides H4patn.77 

 

 

 

 

 

 

 

 

 

Figure 1.7. Top and side view of [Cu2(H2pat1)(µ-OH)(H2O)2]+ (orange: Cu, grey: C, blue: N, red: O, hydrogen atoms 
are omitted for clarity).67  

 

The binding motif of CuII in [Cu2(H2pat1)(µ-OH)(H2O)2]+ is in agreement with expectations from the 

crystal structure of the dinuclear CuII complex of ascidiacyclamide – the copper(II) cations are 
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coordinated by two heterocyclic nitrogens (imidazole in this case), and a deprotonated amide 

nitrogen. Additionally, each of the copper(II) ions is coordinated by a water molecule and a bridging 

hydroxido-coligand. This results in a square-pyramidal coordination environment for the CuII ions, 

which is also expected from EPR spectroscopy as well as DFT calculations.85 

Studies on putative zinc(II) complexes with model patellamides have been recently carried out, 

indicating an overall similar coordination behaviour as observed for the respective copper(II) 

species.47 Isothermal calorimetric measurements give an ambiguous number of binding events, i.e. 

1.51±0.16 (H4pat1) and 1.69±0.78 (H4pat2), however results from MS investigations indicate the 

complexes to be dinuclear. The stability constants determined for these species are logK1K2=5.0; 4.5 

for H4pat1 and H4pat2 respectively, which are in accordance with studies on natural peptides (vide 

supra). 

 

1.5 Observed catalytic activity observed for dinuclear patellamide complexes 

 

The driving force of patellamide complex investigations was always the urge to understand their 

potential biological role. As pointed out above, the slightly basic pH of seawater supports the 

assumption that the copper(II) patellamide complexes are formed in L. patella and Prochloron. Since 

the determined binding constants with CuII and ZnII are rather small, the function of the patellamides 

as chelators performing metal ion storage and transport is not very likely. Consequently, the potential 

role of the dinuclear complexes as catalysts was the focus of research. Dinuclear metal ion sites have 

various advantages compared to just one metal ion in the active site, i.e. a lower thermodynamic 

driving force for redox reactions due to charge-delocalisation, a decreased activation barrier for 

solvent and enzyme reorganisation, the preorientation and electrostatic activation of substrates as 

well as the easier formation of nucleophiles, which could in turn initiate hydrolysis.86 Moreover, the 

dinuclear sites are capable to stabilise transition states that are involved in the hydrolysis.86 Since 

dinuclear metal ion complexes are abundant as effective catalysts in nature, several studies on the 

putative catalytic reactivity of the model patellamide complexes were carried out and are summarised 

briefly in this section after a short excursion about copper cation based enzymes. 
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1.5.1 CuII in natural catalysts 

 

In nature, copper cations are predominantly found as the metal centres for catalysis of redox 

reactions, similar to FeII based enzyme sites.87 For example CuII is present in cytochrome c oxidase and 

in the CuIIZnII superoxide dismutase. Moreover, it is relevant for oxygen transport (hemocyanin) as 

well as electron transport, as observed in plastocyanin during photosynthesis.2 All these functions are 

enabled by the capability of copper ions to exist in two oxidation states, i.e. the oxidised (hard) +2 and 

the reduced (soft) +1 state. Similarly, as known for iron, the reduced form CuI can undergo FENTON 

chemistry with hydrogen peroxide.2 It is important to note, that prokaryotes (like Prochloron) have 

developed under anoxic conditions. This also means that copper was not soluble and consequently 

only available in small quantities.88,89 Therefore, some cyanobacteria, like Synechocystis sp. show an 

adapted metabolism depending on the relative metal ion availabilities.87 It can use plastocyanine (CuII) 

and cytochrom c (FeII) interchangeably as an electron carrier and thereby sustain its metabolism 

during times of iron(II) or copper(II) deficiency.87,90,91 

From a spectroscopic point of view three different 'classical' copper cation binding sites exist – type 

1, 2 and 3, as presented in Table 1.2.2 Often, combinations of multiple sites of one type are found in 

enzyme, e.g. 8 type 2 sites were reported for dopamine-β-monooxygenase.2 Equally, combinations of 

the three sites are found in natural enzymes, as for example trimers consisting of type 2 and type 3 

have been reported.2,92 For copper ion storage proteins, usually copper cations are found to adopt the 

+1 oxidation state and are bound to cysteinate residues.93  

Enzymes containing binding site 3 were found to serve for functions ranging from oxygen transport 

(haemocyanin) to monooxygenase activity (tyrosinase). Inspired by this, and as the patellamides were 

shown to bind two CuII ions similar observed for the type 3 sites, it was proposed by JASPARS and DE 

VISSER94 that the CuII complexes might be involved in oxygen activation. They implied by DFT 

calculations that the dinuclear CuII complex with a bridging carbonato ligand (see Figure 1.4) might be 

a precursor complex for the subsequent binding of oxygen, as the coligand forces the CuII complex to 

adopt a certain geometry, that is in turn preparing the complex for subsequent oxygen binding. These 

studies were supported by IR investigations revealing a Cu2O2 cluster formation (ligand: natural 

ascidiacyclamide).  
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Table 1.2. Typical copper centres and examples of their observed function, adapted from 2. 

Structure / Name / 
Characteristics 

Coordination geometry Typical Function 

Type 1 'blue' copper centres 
Distorted polyeder (3+2 

coordination) 

 

Electron Transport (Plastocyanin, 
Azurin) Blue Oxidases (Laccase, 

Ascorbate Oxidase) 

Type 2 non – blue copper centre 
Nearly planar coordination 

sphere 
Coordination number: 4 

 

Non – blue Oxidases (Galactose 
Oxidase, Amine Oxidase) 

Dioxygenases, terminal Oxidases 

Type 3 copper dimers 
Distance Cu-Cu: ≥360 pm 
Coordination number: 4 

 

Oxygen transport (Hemocyanine) 
Monooxygenases (Tyrosinase) 

 

 

The activation of dioxygen would imply that the copper(II) ions must undergo at some stage a change 

of oxidation state from +2 to +1, which is possible, if patellamides were to act as cofactors in 

hydrophobic environments or if the cells provided a sufficiently reductive milieu. The change in 

distance between the copper(II) centres, that one expects from a bridged coordination to a non-

bridged coordination (3.5 Å to 4.5 Å), would furthermore be in line with expectations for respective 

tyrosinase and catecholase systems.95,96 

In addition to the investigation of the dinuclear copper(II) patellamide complexes as potential oxygen 

activating enzymes, the crystal structure of the carbonato-bridged complex also stimulated research 
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on the potential role of dinuclear copper(II) patellamide complexes as carbonic anhydrases, which 

was consequently studied in detail. 

 

1.5.2 Carbonic anhydrase-like activity 

 

Experiments were carried out with labelled 13CO2  and 18OH2, which could prove the generation of 

labelled bicarbonate as well as labelled dinuclear patellamide complexes with carbonate as a coligand 

(observed by mass spectrometry).74 It is proposed, that one copper(II) centre coordinates the CO2 

molecule, and the second CuII coordinates water. The latter acts as a LEWIS acid and consequently 

causes a lower pKa value of the coordinated water, which is in turn deprotonated at physiological pH 

value (see Scheme 1.5).  

 

Scheme 1.5. Schematic representation of expected carbonic anhydrase-like activity of the dinuclear CuII 
patellamide complexes, adapted with permission from 77. 

 

This resulting hydroxido-ligand could then be activated to attack the carbon of CO2 nucleophilically.97 

Subsequent kinetic measurements at varying pH values proved the finding and showed that the 
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dinuclear CuII complex of H4pat1 is the fastest carbonic anhydrase model reported to date at pH 8.07 

(kcat=7.3x103 s-1).97 This finding is particularly interesting, since all known natural carbonic anhydrases 

are mononuclear enzymes with zinc(II) in the active site instead of copper(II).2 The respective 

dinuclear copper(II) complex of H4pat5 also showed a high activity (kcat=4.7x103 s-1), whereas for the 

complexes of the ligands exhibiting all-S conformation kcat values of ~1.8x103 s-1 were found. This 

means that the efficiency of the catalysis is more dependent on the conformation of the side chains 

than on the type of incorporated heterocycle. In the light of pH fluctuation upon altered levels of 

irradiation,9 these findings could imply that in darkness (acidic pH, low O2 saturation) respiration, i.e. 

carbohydrate catabolism, is triggered and produced CO2 is released efficiently. Upon exposure to 

sunlight (basic pH, O2 super saturation) on the other hand, the hydration of CO2 is catalysed, making 

it readily available for photosynthesis. 

 

1.5.3 Phosphatase-like activity 

 

As the carbonic anhydrase-like activity is related to a metal-ion assisted deprotonation of water, 

hydrolase activities were investigated. Initially phosphatase-like activity was studied, since alkaline 

phosphatase in E. coli, another prokaryote, was shown to be active at pH 8, the pH of sea water.98 

Consequently it was considered likely that the potential phosphatase like activity of dinuclear 

copper(II) patellamide complexes is taking place at physiological pH values as well. Bis(2,4-

dinitrophenyl)phosphate (BDNPP) was used as the phosphoester model substrate, due to the strong 

colour change upon hydrolysis, leading to simple and accurate spectrophotometric kinetic 

measurements.99 Similarly, as observed for the kinetic carbonic anhydrase investigations, the 

dinuclear CuII complex with the model ligand H4pat1 (RS) showed maximum activity and efficiency,100 

supporting the hypothesis that the natural conformation of the ligands adds to their catalytic 

efficiency (see Table 1.3).100 

The mechanism of the phosphatase activity is expected to be similar to the carbonic anhydrase activity 

with one copper(II) ion lowering the pKa value of the coordinated water to an extent that allows 

nucleophilic attack of the phosphoester, held in place by the second copper(II) ion. 
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Table 1.3. Hydrolysis data and kinetic properties of [MII
2(H2paty)(OH]+ for BDNPP hydrolysis.a) 

catalyst pHmax v0.max [Ms-1] pKa(I) pKa(II) γ 

[CuII
2(H2pat1)(OH)]+ b) 7.21 1.58x10-7 ± 3.00x10-9 6.91 ± 0.21 7.31 ± 0.20 0.079 ± 0.016 

[ZnII
2(H2pat1)(OH)]+ no complexation 

[CuII
2(H2pat2)(OH)]+ c) 6.69 1.40x10-8 ± 0.48x10-8 6.28 ± 0.28 7.04 ± 0.46 0.065 ± 0.033 

[ZnII
2(H2pat2)(OH)]+ no complexation 

[Cu2
II(H2pat3)(OH)]+ b) 6.50 3.45x10-8 ± 6.28x10-8 6.32 ± 0.57 6.58 ± 0.52 0.077 ± 0.132 

[ZnII
2(H2pat3)(OH)]+ b) 6.02 1.78x10-8 ± 2.24x10-9 5.32 ± 0.69 6.68 ± 0.71 0.080 ± 0.011 

a) The v0.max values depend on the BDNPP concentration, and this varies in some of the experiments,  

b) Data from the dissertation of MEHRKENS, 2015 47 

c) Data from reference 100 

 

Results of dinuclear ZnII complexes of H4pat1 and H4pat2 indicate a lower stability of the complexes 

under the conditions of the assay (buffer/MeCN/MeOH mixtures - MeCN and MeOH were required 

for solubility) compared to the stability constants determined with ITC in MeOH with MeO–  as the 

base. However, [ZnII
2(H2pat3)(OH)]+ shows phosphatase-like activity and exhibits a slightly more acidic 

optimum pH value. Although this is in contrast to the pKa values for the first deprotonation of the 

respective aqua complexes: ZnII, pKa=9.5 101, CuII, pKa=8.0.102,103 This is not an uncommon observation 

and is primarily related to the coordination geometries around the two metal ions. 

Overall, the results from model patellamide CuII complex investigations indicate a hydrolase-like 

activity to be their metabolic role.  
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2 Aim 

Previous work has focused on the structural features of copper(II) patellamide complexes as well as 

on their putative phosphatase and carbonic anhydrase activity. For these catalyses, maximum activity 

was observed for the dinuclear copper(II) complexes of the naturally configured H4pat1 ligand.97,100 

Building on this result, in the thesis presented here, a new ligand was developed with R and S 

stereochemistry and oxazole heterocycles, H4pat4 (see Figure 2.1). The aim was to investigate the 

ligand regarding its copper(II) complex formation and to study the conformation of the complexes, 

especially compared to complexes with H4pat1. In addition, it was envisaged to probe the potential 

phosphatase-like activity of the dinuclear copper(II) complexes with H4pat4 as well as with the closest 

analogue of the patellamides, H4pat5 (see Figure 2.1). The results of this study could consequently 

allow a conclusion about the influence of the side chain orientation for catalytic activity of the 

respective copper(II) complexes. 

 

 

Figure 2.1. Model patellamides H4pat4 and H4pat5. 

 

Spectroscopic evidence from the investigations concerning ZnII coordination chemistry and 

phosphatase-like activity delivered ambiguous results. Therefore, a detailed theoretical investigation 

of the binding sites of putative dinuclear ZnII complexes was carried out and is presented as the second 

part of Chapter 3. 
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The focus of Chapter 4 is on the application of dinuclear copper(II) patellamide complexes as catalysts 

for further hydrolase reactions at non-physiological pH values. For that, α-/β-glycosidase- and β-

lactamase-like activity were tested, all typically active at alkaline pH values, i.e. 9-11. The results of 

this study could assist in answering the questions as to whether the dinuclear copper(II) complexes 

are specific for carboanhydrase and phosphatase activity at pH 7-8, or if the complexes could act as 

multifunctional pH-dependent catalysts. 

So far, the hydrolase activities measured in vitro have given hints towards the metabolic relevance of 

patellamides being related with hydrolase activities of dinuclear CuII complexes. However, previously 

no in vivo measurements were carried out to test the hypothesis that the hydrolysis reactions are the 

metabolic role of the peptide complexes. Therefore, an investigation of the CuII binding behaviour of 

patellamides in Prochloron cells was carried out, together with preliminary in vivo hydrolase studies. 

For these studies, presented in Chapter 5, a patellamide-analogue was prepared and labelled with 

reporter groups (see Figure 2.2). Both a photosensitive group Atto550 and the spin label Proxyl were 

employed.  

 

 

 

Figure 2.2. Model ligands with reporter groups.  

 

Insight on the copper(II) binding behaviour of patellamides in Prochloron cells would be an important 

foundation for the investigation of the catalytic activity in vivo and consequently contribute to the 

understanding of the metabolic role of patellamides.  
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3 Phosphatase-like activity* 

Phosphatases, as well as phosphoryl group transfer kinases, are abundant and important enzymes in 

nature, participating e.g. in the regulation of phosphate levels in eukaryote cells, or in signal 

transduction.104 For phosphoryl transfer reactions often MgII is incorporated in the active site, 

coordinating the phosphoester and thus allowing the nucleophilic attack of the respective alcohol.104 

The hydrolytic enzymes alkaline phosphatase (AP) and serine/threonine phosphatases seem to be 

predominantly dependent on dinuclear FeII and ZnII cores.105 In other phosphatase enzymes like purple 

acid phosphatase (PAP), active sites composed of FeIII-FeII (mammals), FeIII-ZnII and FeIII-MnII (plants) 

were found.106,107 This is surprising, since FeII and MnII ions introduce the risk of free radical reactions, 

so called FENTON-type reactions, which are neither necessary for the function as phosphatase 

enzymes, nor beneficial for the organism. However, it has been suggested that mammalian PAPs 

might also be key regulators in the immune defence system by the generation of the afore-mentioned 

reactive oxygen species (ROS), like hydroxyl and superoxide radicals.108,109  

For a thorough understanding of the mechanism of this class of enzymes, as well as for the potential 

application as bioremediators and the development of anti-osteoporotic drugs, model catalysts were 

developed.105,110,111  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Model phosphatase complexes. Reprinted with permission from 105. 

                                                           
* Main parts of this Chapter are published in: 'Dinuclear Zinc(II) and Copper(II)/Zinc(II) complexes of artificial 

Patellamides as Phosphatase models', Peter Comba, Annika Eisenschmidt, Lawrence R. Gahan, Graeme R. 

Hanson, Nina Mehrkens, Michael Westphal, Dalton Trans. 2016, accepted manuscript. 



 

3 Phosphatase-like activity 

 

24 

In Figure 3.1 examples for model phosphatase complexes recently developed in the COMBA group are 

depicted. The respective ligands were designed with special emphasis on the second coordination 

sphere, allowing hydrogen bond formation.105 In addition to that, it could be shown that the 

asymmetry of the ligand allows modelling of the natural enzyme more accurately and contributes to 

a higher hydrolase activity.112-114 These two features are implemented in the complex 

[GaIIIZnII(H2SIM1)(solv)x]4+, which shows high catalytic efficiency (kcat/KM=1.07 M-1s-1) and moderate 

substrate affinity (7±1 mM).105 

 

3.1 Phosphatase-like activity of CuII patellamide complexes with natural side chain 

configuration 

 

The efficient phosphatase activity might play an important metabolic role of the dinuclear CuII 

complexes as shown in previous studies.79,100 As implicated from these investigations on the 

phosphatase and carbonic anhydrase-like activity, the configuration of the side chains of the pseudo-

octapeptides seems to be more important than the heterocyclic moieties for the catalytic rate and 

efficiency of the respective dinuclear copper(II) complexes. To support this finding, additional 

phosphatase investigations on dinuclear CuII complexes of the ligands H4pat4 and H4pat5 were carried 

out and are discussed here.115 

The model patellamide H4pat4 is an oxazole-based ligand that exhibits natural RS side-chain 

configuration. The synthesis was carried out analogously to the reported synthesis for an all-S oxazole 

ligand and is described in detail in the Experimental Section B.62 H4pat5, on the other hand, is the 

closest analogue to the natural ascidiacyclamide. It was already shown to form dinuclear CuII 

complexes85 which exhibit carbonic anhydrase activity.97 In this Chapter the properties and 

phosphatase-like activity of the respective dinuclear CuII complexes of H4pat4 and H4pat5  will be 

presented and compared with the imidazole based H4pat1 species.  

To gain insight in the conformation of the dinuclear copper(II) complexes, DFT calculations (DFT, 

UB3LYP, def2-TZVP; for a detailed explanation of the method see Experimental Section A2) have been 

carried out for two possible arrangements: a bridging hydroxido-coligand: A, [Cu2(H2patn)(µ-

OH)(H2O)2]+ and an isomer that exhibits a terminally bound hydroxido-coligand: B, 

[Cu2(H2patn)(OH)(H2O)3]+ (see Figure 3.2 and Table 3.1).  
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Figure 3.2. Possible structures of dinuclear CuII species of H4pat1, H4pat4
 and H4pat5. Top: schematic 

representation of the example complexes; Bottom: Structures from DFT optimisation for [Cu2(H2pat1)(µ-
OH)(H2O)2]+1A, [Cu2(H2pat4)(OH)(H2O)3]+  2B and [Cu2(H2pat5)(µ-OH)(H2O)2]+  3A-I as well as 
[Cu2(H2pat5)(OH)(H2O)3]+ 3A-II. I and II refer to different coordination modes in H4pat5. (orange: Cu, grey: C, blue: 
N, red: O, yellow: S, hydrogen atoms are omitted for clarity). 

 

Figure 3.3. Crystal structure of [Cu2ascid(HCO3)(H2O)3]+ 71 (orange: Cu, grey: C, blue: N, red: O, yellow: S, 
hydrogen atoms are omitted for clarity).71 
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The results of the structure optimisations for the dinuclear CuII complexes of H4pat1, H4pat4 and H4pat5 

are additionally compared to the carbonate-bridged dinuclear CuII complex of ascidiacyclamide (see 

Figure 3.3). Moreover, experimental structural parameters for complex 1A that were elucidated by X-

ray crystal structure determination by DOVALIL and are provided in Table 3.1.85,116 

 

Table 3.1. DFT computed and experimental structural parameters of the dinuclear CuII complexes of H4pat1, 
H4pat4, H4pat5 and ascidiacyclamide as shown in Figure 3.2 and Figure 3.3. a) from X-ray crystal structure 
determination.85,116 

 Species CuII∙∙∙CuII [Å] Angle between coordination 
planes [°] 

1A    [Cu2(H2pat1)(µ-OH)(H2O)2]+ 3.79 84 

1B        [Cu2(H2pat1)(OH)(H2O)3]+ 5.23 112 

1A [Cu2(H2pat1)(µ-OH)(H2O)2]+ a) 3.63 77 

2A    [Cu2(H2pat4)(µ-OH)(H2O)2]+ 3.72 91 

2B      [Cu2(H2pat4)((OH)(H2O)3]+ 5.25 120 

3A-I [Cu2(H2pat5)(µ-OH)(H2O)2]+ 3.81 86 

3B-I     [Cu2(H2pat5)(OH)(H2O)3]+ 5.31 106 

3A-II[Cu2(H2pat5)(µ-OH)(H2O)2]+ 3.56 52 

3B-II   [Cu2(H2pat5)(OH)(H2O)3]+ 5.14 79 

[Cu2ascid(µ-HCO3)(H2O)3]+  71 4.30 46 

 

As a result of the computations, similar CuII∙∙∙CuII distances in the complexes are expected, with 

approximately 3.8 Å for the µ-OH– (A) bridged species, and 5.2 Å for the non-bridged ones (B) for all 

investigated model patellamide complexes. The respective CuII∙∙∙CuII distance is approximately 0.2 Å 

shorter in the X-ray crystal structure of 1A as compared to the computed structure. A conformational 

change between the bridged and the terminally bound hydroxide coordination mode is also 

represented by the variation of the angle between the CuII coordination sites. In Figures 3.2 and 3.3 

the coordination planes are additionally highlighted as red and blue planes and are spanned by Nhet-

Namide-Nhet-CuII. An angle of 84-91° for the bridged and 106-120° for the non-bridged complexes is 

expected. In the structure obtained by X-ray crystallography, the planes exhibit an angle of 77°, which 

is slightly smaller than the predictions from DFT optimisation (84°).  

For the copper(II) complexes of the ligand H4pat5 two different coordination sites must be considered: 

I with the saturated part of the oxazoline heterocycle inside the coordination site of CuII and II with  

  



 

3 Phosphatase-like activity 

 

27 

the saturated carbon pointing away from the coordination site. The difference between the 

coordination mode is best represented in Figure 3.2, top right. The dinuclear CuII ascidiacyclamide 

complex with HCO3
– as a bridging coligand has been shown to exhibit coordination site II.71 Comparing 

the dinuclear copper(II) complex of the natural ascidiacyclamide and the copper(II) complexes of 

H4pat5 (3-II), it becomes obvious, that the CuII∙∙∙CuII distance in the natural ligand complex, with HCO3
– 

as a bridging coligand (4.30 Å), is just in between the distances observed for the OH– bridged (3.6 Å) 

and the non-bridged conformation (5.1 Å). Moreover, as expected, coordination site II allows the 

complexes to adopt a smaller angle between the CuII sites.71 This difference in distances is most likely 

caused by the different coligands OH– and CO3
2–, respectively. Interestingly, all CuII centres discussed 

above show a square pyramidal geometry of the donor atoms around the metal centre. Consequently, 

the following energy splitting of the 3d-orbitals due to the coordination of ligands is expected, as 

shown in Scheme 3.1. 

 

 

 

 

 

Scheme 3.1. Expected 3d-orbital splitting of CuII in the model patellamide complexes shown in Figures 3.2/3.3. 

 

To prove that H4pat4 does, as described for its all-S analogue,85 also form dinuclear CuII complexes, 

HR FAB (-) mass spectrometry was carried out. The expected mass signal for the dinuclear copper(II) 

complex with one hydroxide ion (see Table 3.2) is observed. As explained initially, in the further 

discussion the phosphatase activity of dinuclear copper(II) complexes of H4pat5, first described by 

DOVALIL,85 will be investigated alongside the H4pat4 species. Therefore, HR FAB (-) mass spectrometry 

was used to ensure the formation of the species reported in a previous thesis (see Table 3.2).85 

 

Table 3.2. Molecular formulae, experimental and calculated masses of the observed and dinuclear copper(II) 
complexes of H4pat4 and H4pat5 (HR FAB (-) MS). 

Species Molecular formula Experimental Calculated 

[Cu2(pat4)(OH)]– C36H45Cu2N8O9
– 859.1903 859.1902 

[Cu2(pat5)(OH)]– C36H49Cu2N8O7S2
– 895.1764 895.1758 

[Cu2(pat5)(OMe)]– C37H51Cu2N8O7S2
– 909.1921 909.1914 
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It is more likely that the non-bridged species of the complexes shown in Figure 3.2 

[Cu2(H2patn)(OH)(H2O)3]+ (B) is the active one, with the terminally coordinated hydroxide ion acting as 

the nucleophile, as substrate coordination may be preferred to such an active site. This is thought to 

be the case since the terminally bound hydroxide ions usually show higher activity as compared to 

bridging hydroxide ions.117,118 However, since it cannot be ascertained which of the two arrangements 

is the catalytically active one, in the following discussion it is referred to the dinuclear complexes of 

H4pat1 as 1, H4pat4 as 2, of H4pat5 as 3. For clarity, in the following discussion the aqua-ligands will be 

omitted in the molecular formulae.  

With the reported [Cu2(H2pat4)(OH)]+ and [Cu2(H2pat5)(OH)]+ species, prepared in situ, in the study 

presented here phosphatase-like activity was investigated. For that, the dependence of catalysis on 

pH was determined in the range between pH 5 and 11 in steps of 0.5 pH units or smaller using the 

activated model substrate BDNPP, as described previously.99,119,120 The method involves measuring 

spectrophotometrically the change in absorbance of the hydrolysis product of BDNPP, 2,4-

dinitrophenolate, which displays a strong absorption at 400 nm (ɛ = 12,100 M-1cm-1, 25°C)121,122; a 

multicomponent buffer is used for pH control (see Scheme 3.2). 

 

 

Scheme 3.2. Phosphate ester hydrolysis of model substrate BDNPP by catalyst. 

 

Based on experiments without copper(II), one and two equivalents of copper(II), only the dinuclear 

complex is assumed to be catalytically active. Consequently the data from the measured pH profiles 

were fitted by a non-linear regression to a MICHAELIS-MENTEN model, equation 3.1, which is based on 

a model for a diprotic system (see Scheme 3.3).99  

 

𝑣0 =
𝑣max (1 +

γ𝐾a2

[H+]
)

(1 +
[H+]
𝐾a1

+
𝐾a2

[H+]
)

 (3.1) 
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Scheme 3.3. Representation of the diprotic system with two active species99 (adapted from reference 105). 

 

Here, v0 is the initial and v0,max the maximum reaction rate, reached under given conditions and 

optimum pH. The factor γ is related to the relative activity of the two active species in equilibrium (EnS 

and En-1S); a value of γ below one corresponds to a more active EnS adduct and a value higher than 

one considers the deprotonated adduct En-1S as more active. The equilibrium constants for the two 

deprotonation steps pKa(I) and pKa(II) are given in Table 3.3.  

All measurements were carried out with a constant catalyst (40 µM) and substrate concentration 

(5 mM) in a 5 : 45 : 50 MeOH : MeCN : aqueous buffer mixture as solvent. The initial rates at each pH 

value were corrected for the corresponding autohydrolysis (blank) rates. The pH profiles are shown 

in Figure 3.4. The parameters obtained from fitting the pH profiles to equation 3.1 are summarised in 

Table 3.3.  

The pH optimum with maximum initial velocity, νmax, is almost identical for the complexes, with 7.73 

for 2 and 7.57 for 3. However, the pH range in which they are active, estimated by pKa(II)–pKa(I), varies 

significantly. Whereas pKa(I) for 2 is at 6.99, i.e. the first water, coordinated to the metal centre is 

deprotonated and could thus in turn undergo nucleophilic attack at the phosphoester, pKa(II) is at 

8.47, almost 1.5 pH units shifted. This is similar to other phosphatase model complexes,105 but 

different from the activity window observed for imidazole based cyclic peptides, that are usually 

observed to be active in a range of ca. 0.4-0.8 pH units (see Chapter 1.5.3). 
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Figure 3.4. pH profile of the BDNPP hydrolysis with 2 [Cu2(H2pat4)(OH)]+ (dashed) and 3 [Cu2(H2pat5)(OH)]+ 
(solid) [BDNPP] = 5 mM; [cat] = 40 µM, 25°C. Adapted from reference 115 with permission from The Royal 
Society of Chemistry. 
 

Table 3.3. Hydrolysis data and kinetic properties of 1 [Cu2(H2pat4)(OH)]+ and 2 [Cu2(H2pat5)(OH)]+ for BDNPP 
hydrolysis.115 

catalyst pHmax v0,max  [Ms-1] pKa(I) pKa(II) γ 

1 [Cu2(H2pat1)(OH)]+ 47 7.21 1.58x10-7 ± 3.00x10-9 6.91 ± 0.21 7.31 ± 0.20 0.079 ± 0.016 

2 [Cu2(H2pat4)(OH)]+ 7.73 3.64x10-8 ± 2.19x10-9 6.99 ± 0.35 8.47 ± 0.04 0.255 ± 0.016 

3 [Cu2(H2pat5)(OH)]+ 7.57 3.00x10-8 ±1.50x10-9 7.41 ± 0.37 7.71 ± 0.39 0.171 ±0.008 

 

The dinuclear complex 3 on the other hand shows a relatively narrow pH range of activity with pKa(II)– 

pKa(I) = 0.3, similar to [CuII
2(H2pat1)(OH)]+. Compared to the CuII ion with its first pKa=8.0 102,103, the 

naturally configured ligands (RS) do not seem to alter the acidity of the metal centre significantly. For 

the more rigid66 ligand H4pat1, with imidazole as a heterocycle the pKa of the water coordinated to 

one CuII centre is lowered to 7.2, compared to 6.5 for the 4S configured ligands H4pat2 and H4pat4 (pKa  

of not coordinated water: 15.7). Apart from the similarities in the pH optimum and pH range, the 

maximum velocity v0 observed at 5 mM BDNPP for 2 and 3 is found to be a third of that reported for 

the H4pat1 based systems. Subsequent measurements at the optimum pH in dependence of the 

substrate concentration were also fitted according to a MICHAELIS-MENTEN model (see Figure 3.5 and 

Table 3.4). Here, the concentration of BDNPP was varied between 1 and 10 mM. The data were fitted 

to equation 3.2, providing the MICHAELIS constant KM, which was used to determine kcat (equation 3.3). 
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The results are summarised and compared with the data obtained for the phosphatase-like activity of 

1, [CuII
2(H2pat1)(OH)]+ in Table 3.4. 

 

𝑣 = 𝑣𝑚𝑎𝑥 ∙
[𝑆]0

(𝐾𝑀 + [𝑆]0)
 

(3.2) 

  

𝑘𝑐𝑎𝑡 =
𝑣𝑚𝑎𝑥

[𝐾]0
 

(3.3) 

  

  

Table 3.4. MICHAELIS-MENTEN parameters for the phosphatase activities. Adapted from reference 115 with 
permission from The Royal Society of Chemistry. 

catalyst 
kcat 

x 10-3 [s-1] 
KM 

[mM] 
kcat/KM 

[M-1s-1] 

1 [Cu2(H2pat1)(OH)]+ 47 3.95 ± 0.07 26.4 ± 2.20 0.15 

2   [Cu2(H2pat4)(OH)]+ 6.60 ± 0.32 14.69 ± 10.28 0.45 

3   [Cu2(H2pat5)(OH)]+ 2.26 ±0.03 4.22 ± 1.56 0.53 

 

Figure 3.5. Overlay of MICHAELIS-MENTEN measurements of 2 (dashed), and 3 (solid) catalysed BDNPP hydrolysis; 
pH for the substrate dependence: 7.73 [Cu2(H2pat4)(OH)]+, 7.57 [Cu2(H2pat5)(OH)]+; [cat] = 30 µM; 25°C.115 

 

Compared to previously investigated dinuclear copper(II) patellamide based phosphatase models, 

[CuII
2(H2pat4)(OH)]+ , 2, exhibits the highest hydrolysis rate reported to date. The catalytic efficiency 

however is the second largest known, with the natural ligand system [CuII
2(H2pat5)(OH)]+, 3, being 

superior. This is the case despite its lower hydrolysis rate, but due to the very low substrate affinity 

(as compared to other model phosphatases).105 The hydrolysis rates reported for all three model 
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complexes presented are in the same range, while the substrate affinity varies greatly leading to 

significantly different efficiencies. Interestingly, the dinuclear copper(II) complex of H4pat1 shows the 

highest substrate affinity. The substrate affinity reported for the dinuclear copper(II) complex of 

H4pat4 however, is significantly smaller, which might be due to much lower pKa value of the oxazole 

system. The lowest substrate affinity is observed for the dinuclear complex of the ascidiacyclamide-

like ligand H4pat5. So, summing up the results for the dinuclear copper(II) complexes of ligands with 

natural side chain configuration but different donor sets, one can conclude, that the imidazole-based 

system 1 shows the lowest efficiency (0.15 M-1s-1), the oxazole based system 2 shows an efficiency 

that is increased by a factor of 3 as compared to the imidazole system (0.45 M-1s-1) and the system 

with thiazole and oxazoline heterocycles 3 shows maximum efficiency (0.53 M-1s-1).123 

Compared to the phosphatase activity of copper(II) complexes with 4S configured ligands and 

imidazole heterocycles H4pat2 and H4pat3 (with subtle changes in the residues attached to the 

imidazoles, see Figure 3.6), the catalytic efficiency of the complexes 2 and 3 with naturally configured 

ligands, is increased by a factor of approximately 3-5. This is predominantly caused by the comparably 

high hydrolysis rate of 2 and 3. The results from the study of dinuclear CuII complexes with naturally 

configured ligands, H4pat4 and H4pat5, support the hypothesis that the natural side chain orientation 

is crucial for a high efficiency. Additionally, it could be shown that the CuII complex of the oxazole 

based ligand H4pat4 shows a very large pH range of activity of ~1.5 pH units, whereas the H4pat1 and 

H4pat5 based complex show a narrow pH activity range of ~0.3 pH units.  

However, the patellamides might not be individually floating in the cytosol of Prochloron and L. 

patella. Instead it is not unlikely that they act as cofactors/prosthetic groups (like haem) in enzyme 

pockets, where an additional hydrogen bond network might stabilise the substrate as well as the 

attacking hydroxide group, which could lead to a significantly broader pH activity range. This would 

not be an uncommon observation, since catalytic metal ion sites in biology are all incorporated in a 

larger peptide environment (as discussed for the copper sites in the introduction 1.5.1).2 
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3.2 Phosphatase-like activity of ZnII patellamide complexes* 

 

3.2.1 Dinuclear ZnII patellamide complexes in solution 

 

In the previous section the peptide ligands were systematically changed and the effect of this on the 

hydrolase activity was investigated, indicating a strong importance of the choice of the natural 

stereoconfiguration. However, after changing the configuration of the side chains and the donor sites, 

a third approach to alter the phosphatase performance of the catalyst might be the exchange of the 

metal centre. Since ZnII often is the metal centre of choice for many reported enzymatic hydrolyses,124-

126 and as it is present at elevated quantities in ascidians with concentrations close to that of CuII,127 

the zinc(II) patellamide coordination chemistry has been investigated. The study comprises solution 

equilibria involving the imidazole based ligands H4pat1-H4pat3 (see Figure 3.6) with ZnII, complex 

stabilities and phosphatase activities.  

 

 

Figure 3.6. Chemical structure of H4pat1, H4pat2 and H4pat3. 

 

As discussed earlier, the complex stability constants were determined in MeOH with MeO– as a base 

for the model ligands H4pat1 and H4pat2 with CuII and ZnII. It could be shown that the ZnII complexes 

are one order of magnitude less stable than the respective CuII complexes. Since the results from CuII 

experiments indicate cooperative binding, a similar complexation behaviour is expected for the 

binding of ZnII ions, and this is supported by mass spectrometry. While the complexation of CuII is 

                                                           
* NMR titrations, MS and EPR experiments as well as phosphatase measurements mentioned in this Chapter were 
carried out by Dr. Nina Mehrkens. 
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driven by enthalpy, the binding of ZnII is mainly encompassed by a change in entropy (see Table 3.5). 

From published data on the crystal structures as well as NMR investigations it became obvious that 

the free ligands adopt the saddle-shaped conformation.72 It seems that the angle between both planes 

defined by the three donors (Heterocycle-Amide-Heterocycle) in H4pat1 is ideal for the coordination 

of two metal ions and for CuII it has been shown that coordination of the first metal centre 

preorganises the ligand for coordination of the second one, leading to cooperative binding of two 

metal ions.72,75 This is supported by the stability data reported in Table 3.5, indicating a higher degree 

of ligand preorganisation for the ligand with natural configuration of the side chains compared to the 

4S ligand H4pat2. 

 

Table 3.5. ZnII 47and CuII 73 stability constants as well as entropies and enthalpies of complexation with the 
patellamide derivatives H4pat1 and H4pat2 , obtained from calorimetry (ITC) in MeOH with MeO– as added base. 
a)  computed MII : L ratio; b) overall stability constant for L + 2M = M2L. 115  

 [Cu2(H2pat1)]2+ [Zn2(H2pat1)]2+ [Cu2(H2pat2)]2+ [Zn2(H2pat2)]2+ 

N a) 1.90±0.09 1.51±0.16 1.84±0.08 1.69±0.78 

K b) 1.71∙106±0.71 1.03∙105±0.30 4.03∙104±0.55 3.34∙104±0.57 

∆H [kJ/mol] 46.8±4.6 -40.86±0.77 84.52 ±7.7 -7.69±3.64 

∆S [J/(mol K)] 278.56 -41.04 371.53 60.67 

     

The formation of the dinuclear zinc(II) complexes was additionally studied by NMR spectroscopy, i.e. 

13C, 1H and 2D techniques (HMBC and HSQC). These data imply that [ZnII
2(H2pat1)(OH)]+ is a C2-

symmetric complex with two chemically different imidazole donor groups (see Figures 3.7, 3.8 and 

3.9).  

 

Figure 3.7. Nomenclature of H4pat1 and H4pat3 as used in the NMR spectra shown in Figures 3.8 and 3.9. Adapted 
from reference 115 with permission from The Royal Society of Chemistry. 
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Figure 3.8. 1H-NMR spectra of a) H4pat1, b) H4pat1+7.5 equivalents of MeO–, and c) [Zn2(H2pat1)(OH)]+ in CD3OD 

(10 mM), ν = 600 MHz, 25°C. Reprinted from reference 115 with permission from The Royal Society of 
Chemistry. 

 

Figure 3.9. 1H-NMR spectra of a) H4pat3, b) H4pat3 + 2eq. ZnOTf2, c) H4pat3 + 2eq. ZnOTf2 + 2eq. MeO–, d) H4pat3 
+ 2eq. ZnOTf2 + 4eq. MeO– e) H4pat3 + 2eq. ZnOTf2 + 8eq. MeO–in a CD3OD : CDCl3 mixture (3 : 1 v/v) (10 mM), 

ν = 600 MHz, 25°C. Reprinted from reference 115 with permission from The Royal Society of Chemistry. 
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Neither for H4pat1 nor for H4pat2 the formation of a mononuclear ZnII complex as an intermediate 

species was observed. This gives further support for the theory of cooperative binding, as discussed 

above.67,116 H4pat1 and H4pat2 only show complex formation upon addition of large amounts of base 

and in the absence of water, which is in contrast to observations for H4pat3 (see below). For the all-S 

configured ligand H4pat2 however, there is always free ligand in solution, even after the addition of 

an excess of base. These findings are in line with the observations from mass spectrometry and the 

slightly lower complex stability determined by ITC (see Table 3.5).  

The NMR titration of H4pat3 with ZnII and MeO– is represented in Figure 3.9. From the spectrum of the 

pure ligand it becomes obvious that the ligand adopts C2 symmetry. Upon addition of ZnII, the NMR 

spectrum changes immediately, indicating the binding of the cation without additional base. This is 

different than observed for H4pat1 and H4pat2. As soon as base is added to the solution of H4pat3 with 

ZnII, the complex is transformed to a new species, however no clear endpoint can be observed for that 

titration, analogous to the H4pat2 experiments. This is interpreted as an indication for a smaller 

cooperativity in the ZnII binding of H4pat3 and points to an equilibrium between the protonated ligand 

and the mononuclear complex as well as, upon addition of base, a dinuclear complex. 

This observation is similar to the respective CuII experiments, followed by EPR spectroscopy, validating 

the hypothesis that both metal cations exhibit similar complex building behaviour with H4pat3. The 

dinuclear ZnII complex is observed at a ligand : ZnII : base ratio of 1 : 2 : 2, and their intensities increase 

upon addition of base. However, due to the precipitation of Zn(OH)2 with >4 equivalents of added 

base, it was not possible to drive the equilibrium towards a single species.  

 

3.2.2 Phosphatase activity of dinuclear ZnII patellamide complexes 

 

The phosphatase-like activity of the ZnII patellamide complexes was investigated, following the 

procedure described in Chapter 3.1. All experiments were carried out in a 5 : 45 : 50 

MeOH : MeCN : aqueous buffer as solvent mixture, in contrast to the ITC and NMR experiments 

discussed above (MeOH and MeO–). The mixture was chosen for solubility of the complexes and the 

substrate and the buffer was used to adjust the pH. It could be shown that the dinuclear ZnII complex 

of H4pat3 exhibits substrate affinities similar to the respective CuII species and about twice the catalytic 

rate and efficiency, implying that the ZnII ion is coordinated by the ligand in a similar fashion (see Table 
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3.6). However, neither for the dinuclear [Zn2(H2pat1)(OH)]+ nor for the [Zn2(H2pat2)(OH)]+ complex 

catalytic activity was observed.  

 

Table 3.6. MICHAELIS-MENTEN parameters for the phosphatase activities. Adapted from reference 115 with 
permission from The Royal Society of Chemistry. 

catalyst kcat x 10-3 [s-1] KM [mM] kcat/KM[M-1s-1] 

[CuII
2(H2pat1)(OH)]+ a) 3.95 ± 0.07 26.4 ± 2.20 0.15 ± 0.03 

[ZnII
2(H2pat1)(OH)]+ No complexation 

[CuII
2(H2pat2)(OH)]+ b) 0.39 ± 0.03 5.5 ± 0.64 0.07 ± 0.05 

[ZnII
2(H2pat2)(OH)]+ No complexation 

[Cu2
II(H2pat3)(OH)]+ a) 2.34 ± 0.07 16.56 ± 1.61 0.14 ± 0.04 

[ZnII
2(H2pat3)(OH)]+ a) 4.89 ± 0.00 16.98 ± 0.05 0.29 ± 0.02 

a) Data from the dissertation of MEHRKENS, 2015.47 b) Data from reference 100. 

 

However, since mass spectrometry, 1H NMR spectroscopy and ITC measurements point to a complex 

formation, the question is raised whether or not the ZnII ions in H4pat1 and H4pat2 might be 

coordinated to a different binding site, i.e. the Namide-Nhet-Namide site, as opposed to the results for 

copper(II) complex of [Cu2H2pat1(µ-OH)(H2O)2]+ (Figure 1.4) and the carbonato-bridged dinuclear CuII 

complex of ascidiacyclamide (Figure 1.7).71 

 

3.2.3 Computational conformation prediction of dinuclear ZnII patellamide complexes in solution 

 

Whereas in all mono- and dinuclear CuII complexes of cyclic pseudo-octapeptides the metal centre is 

coordinated by two heterocycles and a deprotonated amide (H-site, see Figure 3.10), the dinuclear 

CuII complexes of westiellamide-type pseudo-hexapeptides exhibit CuII binding to two amides and one 

heterocyclic nitrogen (A-site).80,84  
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Figure 3.10. Possible coordination sites for patellamide complexes (ligand H4pat2; A: amide site, H: heterocycle 
site) and structural models of the observed dinuclear CuII complexes (A site) with a terminal (left) or a bridging 
(right) OH– group. Adapted from reference 115 with permission from The Royal Society of Chemistry. 

 

Since no phosphatase activity could be observed for the patellamide-type ZnII complexes of H4pat1 and 

H4pat2 (vide supra), one might expect a coordination mode that is different from the respective CuII 

complexes. Since 1H-NMR studies could only show the formation of a C2-symmetric species, it was 

difficult to find experimental evidence for either of the two possibilities (H or A sites, see Figure 3.10). 

Therefore, a molecular-mechanics-based structural and steric energy analysis was performed with the 

MOMEC programme and force field, since it is developed and suited for the description of transition 

metal complexes (for a detailed description of the method see Experimental Section A2).128-131  

The chemical environment of an atom in a molecule is presented in atom types in molecular 

mechanics force fields. For example, an sp3-hybridised carbon atom is assigned to the atom type CT. 

In MOMEC the atom type nomenclature was designed similarly to the AMBER force field.132 

For the patellamides and the copper(II) ion atom types were assigned as depicted in Figure 3.11 on 

the basis of published data.129,131,133-141 As a basis the established MOMEC97 force field was used 130 

and supplemented with parameters for stretches, bends and torsions between different atom types 

not present in the original force field (see Table 3.7). A detailed description of atom type 

parameterisation is given elsewhere.130 For the additional parameter optimisation an automatic 

procedure in the development version of MOMEC was used.142 

 



 

3 Phosphatase-like activity 

 

39 

 

Figure 3.11. Depiction of the different atom types in the ligand H4pat1. 

 

Table 3.7. Examples of introduced bond stretch parameters (STR), Angle bending parameters (BEN), periodicity 
and offset angle value for the torsional functions (TOR). FC = force constant, Ref.= Ideal value. The complete 
force field is given in the ESI of reference 115. 

Interaction  Atom type                                 FC [mdyn/Å] Ref. bond distance [Å] 

STR CU2P NAX  0.340 1.935 

STR CU2P ND  0.708 1.912 

STR CU2P OP  0.100 2.150 

   FC [mdyn/rad] Ref. angle [rad] 

BEN NAX ZN2 ND 0.050 1.571 

BEN ND ZN2 ND 0.013 1.571 

BEN NAX. ZN2 ND 0.015 1.571 

   FC [mdyn/rad] periodicity offset angle [rad] 

TOR **CAH CAH** 0.010 2.000 1.551 

TOR **CAH CT** 0.002 6.000 0.843 

TOR **CAH NAH** 0.017 2.000 1.570 

 

All possible dinuclear structures (H- and A-site, with a terminal or a bridging OH–, see Figure 3.10) for 

ZnII and CuII coordinated to H4pat1, H4pat2 or H4pat3 (with ligands di- or tetra-deprotonated for the H- 

and A-type structures, respectively) were optimised and then subjected to a conformational search 

via a Monte-Carlo/random kick algorithm.143,144 For the different structures, only one low energy 

conformation each was found, and these are given in Table 3.8; Figure 3.12 shows an overlay plot of 

the optimised lowest energy and the experimental structure of [Cu2(H2pat1)(OH)(H2O)2]+ (H-site, 

bridging OH–) for a visual validation that the force field can reproduce the structures.  
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Figure 3.12. a) Overlay plot of the crystal structure (yellow)75and the strain energy minimised structure (blue) 
of [CuII

2H2pat1(µ-OH)(H2O)2]+, and b) overlay plot of the corresponding crystal structure (yellow) and DFT-
optimised structure (bridging OH–, H-site). Quatfit was used for the overlay plots. Reprinted from reference 115 
with permission from The Royal Society of Chemistry. 

 

Table 3.8. Strain energies [kJ/mol] for the different coordination geometries of the dinuclear CuII and ZnII 
complexes (coligands and charges of the complexes omitted in the formulae) of H4patn.115  

  [M2(H2pat1)]+ [M2(H2pat2)]+ [M2(H2pat3)]+ 

  A H Δ(H-A) A H Δ(H-A) A H Δ(H-A) 

Cu2+ 
µ-OH 70.1 15.8 -54.3 42 30 -12 19.7 31.9 12.2 

OH 61.9 0 -61.9 33.6 0 -34 0 7.7 7.7 

Zn2+ 
µ-OH 39.1 0 -39.1 27.6 12.4 -15 25.8 45 19.2 

OH 39.4 10 -28.4 0 5 5 0 30.8 30.8 

           

The molecular mechanics based conformational analysis implies for the dinuclear CuII and ZnII 

complexes of H4pat1 and H4pat2 that the imidazole binding site (H) is favoured. This is in agreement 

with the available crystal structure of the hydroxide-bridged CuII complex of H4pat1.75 However, the 

force field calculations also suggest that, for the CuII complexes of H4pat3, the amide motif is preferred 

by 7.7 kJ/mol. Since the force field used for the ZnII complexes was based on a rather small set of 

experimental structural data, and because a structural force field does not necessarily allow the 

accurate prediction of relative stabilities,145,146 in addition to the fact that the number and mode of 

coordination of OH2 and OH– (terminal or bridging) is both unknown and difficult to predict with force 

field calculations, the molecular mechanics conformational search was supplemented by a DFT 

analysis of the low energy conformations of the dinuclear complexes of H4pat1, H4pat2 and H4pat3 (see 

Table 3.9; for computational details see Experimental Section A2). It emerges that there is only a small 

energy difference between structures with bridging and terminal OH–. Importantly, the energies of  
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the complexes with metal ions coordinated in the amide binding sites are, independent of the metal 

ion, the ligand or the type of structure (terminal or bridging OH–), exceedingly large. The strain induced 

to the ligands by dinuclear metal coordination to the amide sites is also reflected in the geometries of 

the optimised structures (DFT). While all structures with metal ions in the H-sites are saddle-shaped, 

i.e. similar to all structurally characterised CuII complexes,67 all optimised structures with metal ions 

in the A-sites are asymmetric and distorted (see Figure 3.13 and 3.14). 

In conclusion from the molecular mechanics and DFT-based computational analysis, it becomes 

obvious that, for all three ligands considered here, the site confirmed experimentally for the 

corresponding CuII complexes is also preferred by ZnII. Thus, it is expected that the ZnII complexes are 

structurally very similar to the well characterised CuII analogues, i.e. the two metal ions are both 

located in heterocycle pockets with two heterocycles and one amide each coordinated to the metal 

ions (H-site). 

 

Table 3.9. Energy differences [kJ/mol] for the different coordination modes (ORCA 3.0.1, B3LYP/def2-TZVP).115  

 [M2(H2pat1)]+ 

Heterocycle (H) 

[M2(H2pat2)]+ 
Heterocycle (H) 

[M2(H2pat3)]+ 
Heterocycle (H) 

Cu2+ 
µ-OH 0 0 0 

OH 26.0 39.4 38.1 

Zn2+ 
µ-OH 0 48.6 38.5 

OH 8.0 0 0 
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Figure 3.13. Calculated structures of dinuclear CuII H4pat1 complexes, right: Amide binding pocket, left: 
Heterocycle site, top: bridged coordination, bottom: non-bridged (orange: Cu, grey: C, blue: N, red: O, hydrogen 
atoms are omitted for clarity). Adapted from reference 115 with permission from The Royal Society of Chemistry. 

 

Figure 3.14. Calculated structures of dinuclear ZnII H4pat4 complexes, right: Amide binding pocket, left: 
Heterocycle site, top: bridged coordination, bottom: non-bridged (violet: Zn, grey: C, blue: N, red: O, hydrogen 
atoms are omitted for clarity). Adapted from reference 115 with permission from The Royal Society of Chemistry. 
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3.3 Summary and Conclusion 

 

In this Chapter it could be shown that the efficiency of phosphatase activity for dinuclear CuII 

complexes is maximum for ligands exhibiting the natural RS stereoconfiguration. Moreover, the 

dicopper(II) complexes of H4pat5 exhibit minimum substrate affinity and maximum catalytic efficiency 

(kcat/KM=0.53 M-1s-1) of all patellamide based phosphatase models reported to date. Firstly, this 

indicates that the natural steroconfiguration is crucial for high catalytic efficiencies. Secondly, it could 

be shown, that the catalytic efficiency is governed by the flexibility of the ligand, that is predominantly 

dependent on the heterocycles incorporated. The more flexible the ligand backbone, the higher is the 

catalytic efficiency that is observed.115 

From the computational investigations regarding the ZnII binding behaviour, the ZnII complexes are 

expected to be structurally similar to the CuII analogues. Consequently, the fact that neither 

[Zn2(H2pat1)(OH)]+ nor [Zn2(H2pat2)(OH)]+ exhibit phosphatase activity may be caused by the small 

stability of these complexes at the hydrolysis conditions (5 : 45 : 50 MeOH : MeCN : aqueous buffer).  
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4 Glycosidase- and β-Lactamase-like activity* 

Previous investigations pointed out that dinuclear CuII complexes show carboanhydrase-like activity 

at pH 8.1 as well as a phosphatase-like activity at pH 6.5–7.7.97,100 Whether or not the complexes are 

capable of catalysing further reactions, since they would be a rather rare example for CuII based 

enzymes in these classes, was the central question of subsequent research. For that reason, α- and β-

glycosidase as well as β-lactamase were chosen to be studied, as the respective assays are well 

established and the activities belong to the hydrolase enzyme class (Enzyme Commission Number3-

EC 3). In this Chapter the dinuclear CuII complexes of the cyclic pseudo-octapeptides H4pat1 (RS) and 

H4pat2 (4S), the solution structures of which are known from a combination of EPR spectroscopy, 

spectra simulations and molecular modeling61,72,81 are investigated. 

 

 

   

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.1. Possible structures of dinuclear CuII species of H4pat2: 4A [Cu2(H2pat2)(µ-OH)(H2O)2]+ (top) and 

4B [Cu2(H2pat2)(OH)(H2O)3]+ (bottom); (orange: CuII, grey: C, blue: N, red: O, hydrogen atoms are omitted for 
clarity).  

                                                           
* Main parts of this Chapter are published in 'Glycosidase and β-lactamase-like activity of dinuclear copper(II) 

patellamide complexes', Peter Comba, Annika Eisenschmidt, Nora Kipper, Jasmin Schießl, J. Inorg. Biochem. 2016, 

159, 70-75. 
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The synthesis of the ligands was accomplished as described previously.60-62,76 In addition to the µ-

hydroxido-bridged coordination mode, a dicopper(II) complex with a terminal OH– donor is also 

possible and both structures have been computed (DFT, UB3LYP, def2-TZVP, see Experimental Section 

A2) as discussed in the previous Chapter for 1 [Cu2(H2pat1)(OH)]+. Figure 4.1 shows the corresponding 

structures for 4A and 4B and Table 4.1 summarises structural information of the predicted structures. 

 

Table 4.1. DFT computed structural parameters of the dinuclear CuII complexes structures 1 and 4. 

Species CuII∙∙∙CuII [Å] Angle between coordination planes [°] 

1A [Cu2H2pat1(µ-OH)(H2O)2]+ 3.79 84 

1B     [Cu2H2pat1(OH)(H2O)3]+ 5.23 112 

4A [Cu2(H2pat2)(µ-OH)(H2O)2]+ 3.98 107 

4B     [Cu2(H2pat2)(OH)(H2O)3]+ 5.23 132 

   

The major difference between the bridged complex 4A and non-bridged complex 4B with the same 

ligand H4pat2 is the angle between the two copper(II) coordination planes (spanned by Nhet-Namide-Nhet 

and CuII). The angle between the two sites in 4A is 107°, 4B adopts a different conformation with a 

132° angle between the two sites (twist of the imidazole-amide-imidazole-copper planes). This leads 

to a larger distance between the copper(II) centres (3.98 Å in 4A, 5.23 Å in 4B). Compared to the 

complexes with natural side chain configuration 1A and 1B this means that the dinuclear CuII 

complexes with H4pat2 exhibit larger angles between the copper(II) coordination sites but show similar 

CuII∙∙∙CuII distances. 

 

4.1 Glycosidase-like activity 

 

Glycosyl transfer as well as hydrolase reactions are essential in biology since these reactions produce 

polysaccharides, which have storage, as well as structural functions, and show specific signalling 

roles.147 This leads their tasks to range from energy uptake to cell wall expansion and degradation. 

Consequently, a great variety of enzymes that can selectively hydrolyse glycosidic bonds, so called O-

glycosyl hydrolases, is provided by nature.147 A prominent example of this class of enzymes is the hen 

egg white lysozyme (HEWL) which is commonly used in biological laboratories to hydrolyse the cell 

walls of prokaryotes. In fact, HEWL was the first glycosyl hydrolase to have its 3D structure 

solved.148,149 The catalytically active amino acids were shown to be aspartate and glutamate residues, 
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which is in line with later findings for other hydrolases. However, for the viral neuramidase and 

bacterial sialidase enzymes, an additional tyrosine residue was found to be present in the active 

site.147 Neuramidase hydrolyses the glycosidic bond between sialic acid and other sugars and thus 

allows viral release. Variant 1 of neuramidase is known to most people, although they are probably 

not aware of it. It is referred to as 'N1' in the 'H5N1' influenza pandemic, H5 represents variant 5 of 

haemagglutinin, a carbohydrate binding protein. In version 5, a mutation alters the protein in a way 

that allows influenza to cross the species divide.150 

According to their structure, glycosidases are divided into approximately 100 families and 

subfamilies.151 Most of these have an organic active site responsible for the catalytic glycoside 

cleavage depicted in Scheme 4.1. The enzymatic hydrolysis takes place in most glycoside hydrolysis 

(GH) families via an acid catalysis requiring two components, a proton donor and a nucleophile 

(base).152,153 Two different mechanisms were first proposed by KOSHLAND:152 

 

Scheme 4.1. Two possible mechanisms of enzymatic glycosidic bond hydrolysis: (a) retaining mechanism, (b) 
inverting mechanism. Adapted from 147 Copyright 1995, with permission from Elsevier. 
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Depending on the distance between residues A and B, path (a) or (b) is favoured and thus, the 

anomeric configuration is retained (a) or inverted (b). The position of the proton donor A is in both 

scenarios within hydrogen-bond distance to the glycosidic oxygen. The base on the other hand is 

~5.5 Å distant from A, allowing the direct activation of the anomeric carbon in retaining enzymes, as 

opposed to ~10 Å, facilitating the binding of an additional water molecule between the substrate and 

B in the inverting scenario (see Scheme 4.1).154 Natural glycosidase activity is reported to be in the 

range of KM=4-14 mM and kcat=0.14-14 s-1 for α-glycosidase activity155 (substrate phenyl-α-glycoside) 

and KM=0.07 mM, kcat=169 s-1 for Agrobacterium β-glucosidase (substrate: 4-nitrophenyl-D-

glucoside).156  

Only family 4 has been reported to be NAD+ as well as probably Mn2+ dependent155,157 with a proposed 

active species shown in Figure 4.2. 

 

Figure 4.2. Proposed catalytically active species in BglT (6-phospho-β-glucosidase). Adapted from 155 Copyright 
2005, with permission from Elsevier. 

 

Here, kcat was found to be 1.9 s-1 and KM=41 µM with p-nitrophenol-β-glucopyranoside-6-phosphate 

as the substrate and the pH optimum at pH 8.0, pKa(I)=7.08 and pKa(II)=9.31. Although pKa(I) would 

be in the perfect range to correspond to a tyrosine-OH group, there was no conserved tyrosine residue 

found in the hydrolase family.155 

Given the importance of glycosidic bonds, artificial enzyme mimics were investigated to model the 

glycoside hydrolysis reactions. As the use of these enzymes for glycosyl transfer reactions is limited 

by their low availability,158 the design and evaluation of new glycosidase mimics with increased 
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selectivity and reaction yields is desirable. These could prove particularly useful as antiviral agents, 

food fillers, or as a new class of antibiotics.159 Apart from the study of metal ions accelerating the 

glycosidic bond cleavage, amongst them CuII, NiII, CoII, AlIII and LaIII, for a long time only substrates with 

an additional binding site for LEWIS acids like AlIII, ZnII and FeIII were investigated.159 Recently, a few 

studies on dinuclear copper(II) complexes as enzyme models for glycosidase have appeared.159-163  

The experimental investigations involved 4-nitrophenyl-α-D-glucopyranoside and 4-nitrophenyl-β-D-

glucopyranoside as glycosidase model substrates, since the hydrolysis product of these highly 

activated ethers are spectrophotometrically easily detectable (Scheme 4.2).159  

 

 

Scheme 4.2. Catalytic hydrolysis of 4-nitrophenyl-D-galactopyranoside.159 

 

Only few substrates have been reported, often based on 4-nitrophenole as the chromogenic group 

released upon hydrolysis.159-162 STRIEGLER et al.164 published model complexes working at an optimum 

pH of 10.5 with a rather high substrate affinity for 4-nitrophenyl-α-D-glucopyranoside of 138 mM (C) 

and 211 mM (D), respectively (see Figure 4.3), and kcat/KM=1.268x10-4 M-1s-1 and 3.949x10-5 M-1s-1. 

 

 

Figure 4.3. Dinuclear CuII complexes applied as model glycoside hydrolases.159 

 

For the investigation of the patellamide-based complexes 1 and 4 (see Figure 4.4) concerning their 

glycosidase-like activity, 4-nitrophenyl-α-D-glucopyranoside or 4-nitrophenyl-β-D-glucopyranoside 
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were employed as substrates. Setup and data processing of the assays was performed analogously to 

the procedure described in detail in Chapter 3.1. The corresponding pH profiles for α- as well as β-

glycosidase-like activity are shown in Figure 4.5. The determined pH profiles were fitted to equation 

4.1.99 The catalytic rates as well as the pH values for the two deprotonation steps pKa(I) and pKa(II) are 

given in Table 4.2. Since it cannot be determined with certainty which of the two arrangements is the 

catalytically active one, in the following it is referred to the dinuclear copper complexes of H4pat1 as 

1, H4pat4 as 2, of H4pat2 as 4. 

 

𝑣0 =
𝑣max (1 +

γ𝐾a2

[H+]
)

(1 +
[H+]
𝐾a1

+
𝐾a2

[H+]
)

 

 

(4.1) 

 

 

 

Figure 4.4. Schematic representation of 1A, 2B and 4B. A refers to the bridging OH– mode, B to the terminally 
bound mode. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. pH profiles of the [CuII
2(H4pat1)(OH)]+ (solid) 1, [CuII

2(H4pat2)(OH)]+ 4 (dashed) catalysed 4-
nitrophenyl-α-D-glucopyranoside (left) and 4-nitrophenyl-β-D-glucopyranoside (right) hydrolysis 
[substrate] = 10.5 mM; [cat] = 40 µM; 25°C.  
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Table 4.2. Hydrolysis data and kinetic properties of 1 [Cu2(H2pat1)(OH)]+ and 4 [Cu2(H2pat2)(OH)]+ for glycosidase 
activity.165 

Catalyst pHmax v0,max [Ms-1] pKa(I) pKa(II) γ 

α-glycosidase 
1 10.03 6.19 ± 0.53 9.86 ± 0.03 10.20 ± 0.14 0.1954 ± 0.0357 

4 9.92 1.11 ± 0.21 9.73 ± 0.09 10.09 ± 0.04 0.1748 ± 0.0417 

β-glycosidase 
1 10.36 3.36 ± 0.03 10.19±0.04 10.53 ± 0.04 0.2378 ± 0.0521 

4 9.43 5.86 ± 0.02 9.21 ± 0.02 9.64 ± 0.02 0.2435 ± 0.508 

       

The dinuclear CuII complex 2 (see Figure 4.4) that was shown to exhibit phosphatase activity in Chapter 

3 was also studied concerning its potential activity towards glycosidic bond cleavage, but did not show 

catalytic properties. 

Measurements at the optimum pH values in dependence of the substrate concentration of 1 and 4 

were fitted according to a MICHAELIS-MENTEN model (see Figure 4.6 and Table 4.3). Here, the 

concentration of 4-nitrophenyl-α/β-D-glucopyranoside was varied between 1 and 10 mM. The data 

were fitted to equation 4.2, providing the MICHAELIS-MENTEN constant KM, which was used to 

determine kcat (equation 4.3). 

 

𝑣 = 𝑣𝑚𝑎𝑥 ∙
[𝑆]0

(𝐾𝑀 + [𝑆]0)
 

(4.2) 

  

𝑘𝑐𝑎𝑡 =
𝑣𝑚𝑎𝑥

[𝐾]0
 

(4.3) 

 

The difference of the determined pKa values for α-glycosidase-like activity is approximately 0.4 pH 

units and the maximum activities are observed at pH=10.03 ([CuII
2(H4pat1)(OH)]+, 1 and 9.92 

([CuII
2(H4pat2)(OH)]+, 4. For the β-glycosidase-like activity, the difference between the determined pKa 

values is similar (0.3 for 1 and 0.4 for 4). The catalytic rates of 1 and 4 are of the same order of 

magnitude for α- and β-glycosidase. However, whereas α-glycosidase is catalysed by 1 and 4 at an 

optimal pH of ca. 10.0, the pH optima observed for β-glycosidase activity are shifted, to 9.4 for 4 and 

to 10.4 for 1.  

The uncatalysed background rate constants for α- and β-glycosidase are kuncat=0.0135x10-4 s-1 and 

kuncat=0.0286x10-4 s-1, respectively,166 and this corresponds to rate enhancements kcat/kuncat for the 

H4pat1 and H4pat2 based catalysts of 115 and 21 for α- and of 43 and 37 for β-glycosidase. That is, the 

catalyst with the configuration of the natural product (H4pat1) generally is a more efficient catalyst, 



 

4 Glycosidase- and β-Lactamase-like activity 

 

52 

and this observation was also made for the carbonic anhydrase and phosphatase activities, as pointed 

out in Chapter 3.97,100 Nevertheless, it seems that the side-chain configuration is less crucial for β-

glycosidase-like activity, since the catalytic rate is almost identical and the catalytic efficiency kcat/KM 

is even higher for 4 than observed for 1.  

 

 

 

 

 

 

 

 

 

Figure 4.6. Overlay of MICHAELIS-MENTEN measurements of 1 [Cu2(H2pat1)(OH)]+ (solid) and 4 [Cu2(H2pat2)(OH)]+ 
(dashed). Left: α-glycoside hydrolysis at pH 10.03 (1) and 9.92 (4). Right: β-glycoside hydrolysis: at pH 10.36 (1) 
and 9.43 (4). [cat] = 40 µM; 25°C. 

 

Table 4.3. MICHAELIS-MENTEN parameters for the glycosidase activities.165 

catalyst 
kcat 

x 10-3 [s-1] 
KM 

[mM] 
kcat/KM 

[M-1s-1] 

α-glycosidase 
1 1.55 ± 0.13 4.64 ± 0.43 3.30 

4 0.28 ± 0.01 1.90 ± 0.47 1.49 

β-glycosidase 
1 1.22 ± 0.09 3.56 ± 0.23 3.43 

4 1.08 ± 0.04 2.12 ± 0.17 5.09 

     

The fact that β-glycosidase shows higher catalytic efficiencies as compared with α-glycosidase-like 

activity might be caused by a lower activation energy for the formation of the respective catalyst-

substrate complex. This is probably rationalised by a smaller steric hindrance caused by the equatorial 

β-arrangement of the nitrophenol, which could in turn facilitate a more efficient hydrolysis, as 

opposed to the axial α-position. To demonstrate this, Figure 4.7 depicts the parallel arrangement of 

the nitrophenol ring to the CuII∙∙∙CuII vector as one example of possible arrangements for the enzyme-

model substrate complex. Since the pH optima for β-glycosidase however differ greatly, pH 10.4 for 1 

and 9.4 for 4, it must additionally be considered that the mechanisms might not be identical for the 

β-glycoside hydrolysis.  
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Figure 4.7. Putative structure of the catalyst-substrate complex consisting of 1A and the α–glycoside (left) as 
well as 1B and the β–glycoside (right), (orange: CuII, grey: C, blue: N, red: O, hydrogen atoms are omitted for 
clarity).  

 

One potential pathway would be similar to what was described for phosphatase activity: initially the 

substrate is complexed by one CuII ion (Cu1) and the other CuII (Cu2) coordinates water that is 

deprotonated at pH 10 and can thus act as a nucleophile and attack the anomeric carbon atom. 

Probably for 1, the bridged complex [Cu2(H2pat1)(µ-OH)(H2O)2]+ is the catalytically active species, 

which would be in line with higher pKa(I) values. 

Interestingly, other model glycosides (vide supra) also show an optimum performance in the range of 

pH 9.5-10.5. So far, it has not been studied whether and how this is related to the substrate used. 

Probably, the indigo based substrate that has been proposed as an alternative glycosidase substrate 

by BÖTTCHER recently should be prepared (the five step synthesis is reported) and tested to examine 

the potential substrate dependence of determined catalytic properties of the catalysts.167 

In addition, it must be considered that the complex prepared in situ with CuII and H4pat1 (and equally 

with H4pat2) can exhibit one pair of pKa values for each structural arrangement. Since 1 and 4 show 

activity at pH 10 (glycosidase) and pH 7.3 (phosphatase), in contrast to complex 2 that only seems to 

be active at pH 7, structural changes might be encountered, facilitating the various pH activity ranges. 

To support this assumption EPR spectra have been recorded at pH 7.3 and 10.0 of the respective CuII 

patellamide complexes, results of which will be presented in Chapter 4.3 after the study of the 

complexes as potential β-lactamase models. 
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4.2 β-Lactamase-like activity 

 

Six different subtypes of β-lactam antibiotics; penams, cephems, monobactams, clavams, penems and 

carbapenems are known.168 Five of them are readily hydrolysed by metallo-β-lactamases (MβLs), only 

monobactams withstand the hydrolases. This is a development that must be considered with concern, 

especially since carbapenems represent the group of β-lactams with the broadest spectrum of activity, 

that are at the same time resistant to other lactamases, namely serine-β-lactamases produced by 

resistant pathogens. In addition, the horizontal transference of resistance genes is widely observed 

and so far no therapeutic for metallo-β-lactamases has been reported.168 

The β-lactamases in general comprise, based on the respective amino acid sequence, the four classes 

A-D. Metallo-β-lactamases represent class B and require ZnII for activity. MβLs are also grouped in 

different subclasses B1, B2 and B3 (see Figure 4.8), although all show the same common fold and 

limited sequence homology.169 Recently, a further class B4 has been proposed.170,171 

The active site of B1 was shown to be dimetallic with two different coordination sites, which are 

depicted in Figure 4.8: the cysteine site (left) and the so called histidine site (right). In the cysteine site 

ZnII is coordinated in a trigonal bipyramidal fashion by cysteine, aspartate, a histidine and two 

water/hydroxido ligands, of which one acts as a bridging ligand to the second site. 

Figure 4.8. Structures of the active sites of MβLs. From left to right: B1 type from B. cereus; B2 type CphA from 
Aeromonas hydrophila; B3 type L1 from Stenotrophomonas maltophilia (grey spheres: ZnII, red spheres: O 
(water), solid bonds: coordinative bonds). Reprinted with permission from 169 Copyright American Chemical 
Society.  

 

The histidine site is constituted by three histidine residues and one water/hydroxido ligand, 

coordinating the second ZnII in a tetrahedral mode. Some mononuclear B1 sites are reported as well, 

in which the ZnII ion is coordinated in the histidine site. B2 sites on the other hand are always 

mononuclear and still exhibit full catalytic efficiency. The ZnII in the B2 site is found to be coordinated 
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in the cysteine site. The B3 site is very similar to B1 with the cysteine residue being replaced by a 

serine, which does not contribute to the coordinative bonds. Instead, the ZnII is coordinated by two 

histidines, aspartate and a water/hydroxido coligand. The replacement of the cysteine by histidine 

causes the coordination shell of the ZnII to be rotated by 80°.169 

The ZnII ions are thought to bind water and, due to their LEWIS acidity, decrease its pKa, resulting in a 

hydroxido complex. The detailed mechanism is not fully elucidated,169,171 however a proposed 

mechanism of the cleavage is shown in Scheme 4.3 for New Delhi Metallo-β-lactamase 1 (NDM-1).168 

 

Scheme 4.3. Proposed mechanism of the hydrolysis of β-lactam-antibiotics via NDM-1.168,171 

 

Upon cleavage of the amide bond, the formerly antibiotic compound cannot bind irreversibly to 

penicillin binding protein (PBP), which is responsible for the establishment of peptide bonds in murein, 

a component of the bacterial cell wall. Due to their broad substrate specificity profile and the high 

activity of class B metallo-β-lactamases, especially towards carbapenems, current research focuses on 

understanding this class of enzymes. Profound comprehension of the mechanism and the structures 

of metallo-β-lactamases might be the foundation for a potential application in bioremediation, as well 

as for sensible drug design.171 

Thus, model complexes were developed mimicking the natural enzymes. Often dinuclear ZnII 

complexes were investigated, but also examples of CoIII and CdII based models emerged, exhibiting 

similar activity.171,172 A comprehensive overview on model complexes is given in reference 171. For 

many ZnII based models, pKa values at physiological pH, i.e. 7-8 are found, with the CoIII and CdII based 

models shown to be efficient at more basic conditions (pH 8-10). Two examples of β-lactamase model 

complexes are depicted in Figure 4.9. 
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Figure 4.9. Examples of β-lactamase model complexes.171,172 

 

Complex E is a dinuclear ZnII complex, showing kobs of 0.228x10-3 s-1 at a catalyst concentration of 

500 µM and 37.5 µM nitrocefin.173 The CdII complex F, shows a pKa at 10.1 and a catalytic rate kcat of 

9.4 x 10-3 s-1 ([cat]=5 µM, [nitrocefin]=25 µM).172  

The uncatalysed background β-lactam hydrolysis rate is reported to be kuncat=2.5x10-6 s-1.174 The kinetic 

MICHEALIS-MENTEN data reported for natural β-lactamase activity are in the range of KM =16-100 µM 

and kcat=0.3-200 s-1 for Bacteroides fragilis and Aeromonas hydrophila, respectively (substrate 

nitrocefin).175 Nitrocefin is often used as a model substrate due to its hydrolysis-induced colour 

change, which can be monitored spectrophotometrically (see Scheme 4.4). 

 

 

Scheme 4.4. Schematic representation of β-lactam hydrolysis. 

 

Similar to the glycosidase-and phosphatase-like activity measurements, the optimal pH range for 

maximum lactamase activity of 1 and 4 was determined by pH-dependent measurements with a 

constant catalyst (5 µM) and substrate concentration (25 µM) in a 1:1 MeCN : buffer mixture as 

solvent at 37°C. The initial rates at each pH value were corrected for the corresponding auto hydrolysis 
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rates. For [Cu2(H2pat2)(OH)]+ 4 no activity could be observed. The pH profile for [Cu2(H2pat1)(OH)]+ 1 is 

shown in Figure 4.10 and the resulting kinetic parameters and pKa values are summarised in Table 4.4. 

 

Table 4.4. Kinetic data from pH profiles of [Cu2(H2pat1)(OH)]+ (1) for the hydrolysis of nitrocefin and the 
corresponding MICHAELIS-MENTEN parameters determined at pH 11.5.165 

catalyst pHmax v0, max 10-9 [M/s] pKa(I) kcat x 10-3[s-1] KM [µM] kcat/KM [M-1s-1] 

1 11.50 3.82 ± 0.03 ≈11.3 1.134 ±0.91 22.47 50.47 

 

 

 

 

 

 

 

 

 

Figure 4.10. Left: pH profile of the [Cu2(H2pat1)(OH)]+ 1 catalysed nitrocefin hydrolysis [nitrocefin] = 25 µM, 
[cat] = 5 µM, 37°C; the solid line is a basis spline function and not fit to a kinetic model. Right: Substrate 
dependent MICHAELIS-MENTEN measurement at pH 11.5. 

 

β-lactamase-like activity is observed at pH 11.5 with resulting kcat/KM=50.5 M-1s-1, and this is consistent 

with similar dinuclear model complexes as discussed above.172 It corresponds to a rate enhancement 

of kcat/kuncat=454. The mechanism of the catalytic bond cleavage is most likely similar to the proposed 

mechanism shown in Scheme 4.3, i.e. the catalytically active species might be the µ-OH– bridged 

species, 1A. The hydroxide ion might then act as a nucleophile and attack the carbonyl carbon in the 

β-lactam ring, resulting in bond cleavage between C and N. This could result in a complex, in which 

one copper(II) ion is coordinated by OH– (bound to the carbonyl C) and the other copper(II) ion is 

coordinated by the nitrogen of the former β-lactam ring. The active catalyst is probably recovered by 

the exchange of the product with water molecules. 

Since neither activity for complex 4 (imidazole-based ligand, 4S) nor for complex 2 (oxazole based, RS) 

was observed, the question as to whether this might be associated with a different complex geometry 

is dealt with in detail in the following.  

 

10.0 10.5 11.0 11.5
0E+00

1E-09

2E-09

3E-09

4E-09

[Cu
2
(H

2
pat1)(OH)]+

 

-Lactamase

v 0
[M

/s
]

pH

0 10 20 30 40 50

0E+00

2E-09

4E-09

6E-09
-Lactamase

 [Cu
2
(H

2
pat1)(OH)]+

 

v 0
[M

/s
]

Nitrocefin [mM]



 

4 Glycosidase- and β-Lactamase-like activity 

 

58 

4.3 EPR study of [Cu2(H2pat1)(OH)]+ and [Cu2(H2pat4)(OH)]+ at pH 7.3 and 10.0 

 

The previous parts of this Chapter showed that 1, [Cu2(H2pat1)(OH)]+ and 4, [Cu2(H2pat2)(OH)]+ 

hydrolyse α- and β-glucosides at pH 10, and 1 is also a potent lactamase model at pH 11.5. However, 

2, [Cu2(H2pat4)(OH)]+ (oxazole-based, RS) does not show hydrolysis-like activity under these basic 

conditions. Thus, the question is raised whether this is primarily due to the stability of the complex at 

a higher pH or whether the complex formed at pH 10 has a structure different from the species at pH 

7-8, when phosphatase activity is observed. In order to establish the stability constants in buffer, ITC 

measurements are in the focus of ongoing research, but so far no results were obtained. For that 

reason, EPR experiments have been carried out to characterise the respective species for 1 and 2 at 

pH 7.3 and pH 10.0, which correspond to the pH optima for 1 for phosphatase and glycosidase-like 

activity. 

EPR is a useful tool to investigate paramagnetic species like radicals and open shell metal ions. For 

metal ions, depending on the geometry of the complex, the electronic properties of the ions are 

altered and the concise arrangement of d orbital energy levels is influenced. Thus, EPR delivers for 

transition metal ions like CuII (d9, 2D) insight in the coordination geometry, possible dynamic processes 

as well as reaction dynamics. EPR is especially powerful when it comes to the estimation of the ligand 

field for CuII, since a view in the spectrum gives a hint on whether one should expect a trigonal 

bipyramidal (𝑑𝑧2  as the ground state d-orbital with one electron) or an elongated octahedral 

coordination environment (𝑑𝑥2−𝑦2).176 

Five contributions for the ground state of paramagnetic centres are expected and can be summarised 

in the Spin Hamilton operator as shown in equation 4.4, first described by ABRAGAM and PRYCE:177-180 

 

𝐻̂𝐴𝑃 =
µ𝐵

ħ
𝐵𝑔𝑆̂ + 𝑆̂𝐷𝑆̂ + ∑ 𝑆̂𝐴𝑘𝐼𝑘

𝑘

− ∑ 𝛾𝑘𝐵𝐼𝑘

𝑘

+ ∑ 𝐼𝑘𝑃𝑘𝐼𝑘

𝐼𝑘>1/2

   (4.4) 

 

Here, µB is the BOHR's Magneton, B the magnetic flux density, g and Ak are 3 x 3 matrices of the 

dimensionless magnetic moment g and of the hyperfine coupling constant Ak. P represents the 

quadrupole tensor and γk is the gyromagnetic ratio of the considered atomic nuclei. The first term 

describes the electron ZEEMAN interaction, the second term characterises the electronic quadrupole 

interaction (zero field splitting, zero for a system with one unpaired electron like CuII). The third term 
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comprises the hyperfine interaction, whereas the fourth term signifies the nuclear ZEEMAN interaction 

and the last term describes the nuclear quadrupole interaction.  

As soon as an external magnetic field is applied, the degenerate arrangements of the electron spin 

are split into two states. This interaction of the unpaired electron with the magnetic field B is 

described in the electron ZEEMAN term. A transition from the energetically favoured to the less 

favoured state of the electron spin can be achieved by supplying enough energy. The amount of 

energy needed depends on the magnetic field that splits the state. Typically, the employed techniques 

in the investigation of metal ions use magnetic fields with 0.3 T or 1.25 T; the corresponding energy 

necessary to populate the unfavoured spin state is in the microwave range of 8-12 GHz / 35 GHz and 

commonly referred to as X- and Q-band. 

 

𝛥𝐸 = ℎ𝜈 = 𝑔𝛽𝐵 

 

(4.5) 

The g value is often compared to the chemical shift δ observed in NMR spectroscopy and is 2.00232 

for a free electron (n.b. that in NMR the shift is reported relative to a standard, whereas absolute 

values are given for g). The deviation of the g-value from the value for the free electron originates 

from spin-orbit coupling that is unique for every element, and can be altered by its chemical 

environment. 

The hyperfine coupling (third term) refers to the interaction between the magnetic moment of the 

electron spin and the nuclear spin of the metal ion and the ligand. These nuclear spins are also 

quantised, induced by the field and can be described as: 

 

𝐸𝑀𝑆𝑀𝐼
= 𝑀𝑆

µ𝐵

ħ
𝑔𝐵 + 𝐴𝑀𝑆𝐼𝑀 (4.6) 

 

If the symmetry of the investigated metal centre is lower than cubic, anisotropy of g- and A-tensors is 

expected.178 In order to extract information from the spectra, simulations are carried out.  

In this case, simulations were performed with Molecular Sophe181 and XSophe,182 which employ the 

Spin Hamilton operator as shown in equation 4.4. Recorded spectra with corresponding simulations 

are given in Figure 4.11 for 1 [Cu2(H2pat1)(OH)]+ and in Figure 4.12 for 2 [Cu2(H2pat4)(OH)]+, 

respectively. 
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Figure 4.11. Experimental EPR spectra of the complex species 1 [Cu2(H2pat1)(OH)]+ (1 mM, I (9.635075 GHz) and 
III (9.636163 GHz)) and a CuII solution (1 mM, II (9.632445 GHz) and IV (9.635244 GHz)) at pH 7.3 (left) and pH 
10.0 (right) in a 3:1 MeOH : buffer solution.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Experimental EPR spectra of the complex species 2 [Cu2(H2pat4)(OH)]+ (1 mM, V (9.635573 GHz) and 
VI (9.634977 GHz)) and a CuII solution (1 mM, VII (9.635244 GHz)) at pH 7.3 (left) and pH 10.0 (right) in a 3:1 
MeOH : buffer solution.  
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Table 4.5. g- and A- tensors [10-4 cm-1] for the species labelled in Figure 4.11 and 4.12 (1 and 2) 

compared with previously characterised species of 1.85 

Species gx gy gz Ax Ay Az 

1 2 eq. MeO– 85 2.0719 2.0456 2.258 4.019 4.423 166.878 

1 3 eq. MeO– 85 2.0503 2.0539 2.2600 12.6896 9.2275 161.641 

1 pH 7.3 (I-II) 2.0895 2.0655 2.2530 0.8670 4.3750 168.00 

1 pH 10.0 (III-IV) 2.0779 2.0456 2.24983 4.99844 4.99687 165.00 

2 pH 7.3 (V) 2.0760 2.0615 2.27056 18.6 7.375 162.00 

2 pH 10.0 (VI-VII) 2.0950 2.0475 2.2575 17.0 13.7 164.00 

 

All previously published EPR experiments of patellamides with CuII were carried out in MeOH with 

MeO– as a base, without exact knowledge about the pH in solution. However, since the exact pH 

seems to be crucial for the catalytic activity of the complexes, in the EPR experiments shown here the 

solvent was chosen to be a mixture of buffer : MeOH 1 : 3, with methanol needed for the solubility of 

the ligand and for the formation of a proper glass at 30 K. Solubility was a problem, since the final 

complex concentration (the complexes were prepared in situ) in solution had to be 1 mM in order to 

obtain a reasonable signal/noise ratio from the EPR experiments. However, it would be preferable to 

carry out these experiments at the same concentrations at which the hydrolyses were investigated, 

i.e. 40 µM (glycosidase) and 5 µM (β-lactamase), respectively. 

Figure 4.11 shows the spectra recorded for 1 [Cu2(H2pat1)(OH)]+ at pH 7.3 and pH 10.0 as well as the 

corresponding spectra of a Cu(OTf)2 solution at the respective pH values. Moreover, a difference 

spectrum is shown, the result from subtracting the signal of the solvated CuII ion from the signal of 

the CuII complex. A simulation of the species observed in the difference spectrum was attempted, and 

the respective g- and A- tensors are summarised in Table 4.5. It is important to note that at pH 10 a 

small amount of precipitate was observed, which most likely corresponds to copper(II) hydroxide. 

Nevertheless, the spectra of the remaining solution indicated the formation of a copper(II) complex 

and were consequently interpreted. 

First and foremost, the spectra show that there is free CuII in the mixture at pH 7.3. Judging from the 

qualitative difference of the spectra it also seems that the amount of non-coordinated CuII is smaller 

at pH 10.0, which is expected, since one would expect a higher pH to cause the deprotonation of the 

ligands and consequently enable complex formation due to equilibria shifting. The EPR spectra 

indicate a square-pyramidal coordination, as observed previously85 and as expected by DFT as well as 
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a crystal structure.67 Due to the poor resolution of the spectrum, to which buffer as the solvent 

contributed, no hyperfine couplings were derivable. In addition, the spectra do not seem to show the 

presence of a dinuclear complex. There are different explanations for this; it could on the one hand 

mean that the spectrum is pseudo-mononuclear.85 This would be the case if dipole-dipole interactions 

of the CuII centres in the complexes are cancelled out, which is known in the literature for the 

respective dinuclear CuII complex of the natural ascidiacyclamide.71 It would be expected for an 

orientation of the g- and A-tensors of the CuII ions of α=54.7° and β=37.5° (EULER angles), which is also 

called the 'magic angle' setup. Another possible explanation for the absence of signals arising from a 

dinuclear species would be that the dinuclear complex is only formed in small quantities, enough to 

act as a catalyst, and the main species formed in aqueous solutions is the mononuclear species. 

Currently ITC measurements in aqueous solution are underway to shed more light on that matter. For 

the following discussion however, the complexes prepared in situ are referred to as dinuclear 

complexes. 

The quality of simulations is hampered by the line width of the experimental spectra, thus all data 

obtained must be interpreted with caution. If compared to the g- and A-values obtained for the same 

complex 1, [Cu2(H2pat1)(OH)]+ in MeOH with two equivalents of MeO– as a base,85 it becomes obvious 

that the ligand field orientation of 1 at pH 7.3 and pH 10.0 seem to be similar, albeit not identical.  

From the comparison of the DFT optimised structures of 1 and 2 (see Chapter 3.1), one would expect 

similar g- and A-tensors. Compared to the spectrum of 1 at pH 7.3 less uncoordinated CuII is present 

in the solution of 2 at pH 7.3. Probably this correlates with a higher stability of the complex and/or a 

lower pKa of the amide protons of the ligand. Since it was impossible to align the spectra of 2 and CuII 

at pH 7.3 in a way that would allow a subtraction giving a sensible spectrum corresponding to an 

either mono- or dinuclear CuII complex, no difference spectrum is shown and instead the simulation 

of the original spectrum is depicted (see Figure 4.12). Moreover, the simulation of the difference 

spectrum at pH 10.0 is shown. From these approximate simulations, it becomes clear that the ligand 

field indeed is similar to what is observed for 1, [Cu2(H2pat1)(OH)]+, but the A-tensors observed vary 

significantly (10 x 10-4 cm-1). In addition, the simulations of 2, [Cu2(H2pat4)(OH)]+ at pH 7.3 and pH 10.0 

imply a significantly different species at the respective pH values. This would support the hypothesis 

that the main species present at these pH values do differ. Consequently, the absence of catalytic 

activity of 2 at pH 10.0 might be caused by the formation of an inactive complex. 
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4.4 Conclusion 

 

In this Chapter it was shown that 1, [Cu2(H2pat1)(OH)]+, as well as 4, [Cu2(H2pat2)(OH)]+, catalyse the 

hydrolysis of α- as well as of β-glycosides at pH 10 and 1 additionally shows β-lactamase-like activity 

at pH 11.5. This means, that the patellamide-dicopper(II) complexes are among the few examples of 

dinuclear metal complexes acting as glycosidase-like model compounds.  

Taking into account the reactivity observed at alkaline pH values, the copper(II) complexes are 

expected to be dinuclear. This assumption was also confirmed by hydrolysis experiments with varying 

ligand : copper ratios. Concomitant EPR experiments however showed mononuclear species, which 

might be due to the fact that dinuclear complexes are appearing as pseudo-mononuclear due to magic 

angle setup. However, it can also not be excluded that the dinuclear copper(II) complex does exhibit 

very small stability constants in aqueous conditions and thus, only a small portion of copper(II) in the 

solution is complexed, leading to a signal that cannot be determined over the background signal of 

free copper(II) ions. Another possible explanation of the missing signal for a dinuclear copper(II) 

complex is the formation of a strongly antiferromagnetically coupled complex, and this theory will be 

discussed in depth in the next Chapter. Taking into account the broad reactivity pattern of these 

compounds with respect to hydrolysis reactions, namely phosphatase, carbonic anhydrase, 

glycosidases as well as β-lactamase, several questions emerge.  

First, it is uncertain whether the catalytic activities observed for the dinuclear copper(II) complexes 

can be associated with the function of the cyclic peptides in Prochloron or L. patella. Therefore, the 

next Chapter of this thesis is dedicated to in vivo studies towards an understanding of the stability of 

dinuclear copper(II) complexes with these naturally occurring ligands.  

Second, and not less important, is the question, whether all of the catalysed hydrolyses observed are 

of importance for the symbiosis partners. This question is the focus of ongoing research and is 

particularly interesting, in the light of the findings from KÜHL et al., who showed, that the pH in the 

host, Lissoclinum patella in close proximity to Prochloron cells does vary greatly from pH 7 in darkness 

to 11 upon irradiation of sunlight.9 Consequently, the dinuclear copper(II) patellamide complexes 

might act as light-dependent catalysts, provided the stability of the complexes is similar at these pH 

values in the cell and the oxidation state is identical (this question is addressed in detail in the next 

Chapter). If glycosidase as well as carbonic anhydrase activity were mediated by the same dinuclear 

copper(II) patellamide complexes in the cell, this would indicate that the same enzyme is capable of 



 

4 Glycosidase- and β-Lactamase-like activity 

 

64 

fixing carbon from CO2 as well as to catabolise the products from the assimilation (CALVIN-BENSON 

cycle). Prochloron could consequently use glucose as a carbon source to maintain its metabolism 

under non-photosynthetic conditions, similar as reported for Synechocystis.87 
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5 Is copper(II) coordinated to patellamides inside Prochloron cells?* 

Although synthetic models of the natural patellamides bind CuII and exhibit catalytic activity in vitro 

as dicopper(II) complexes, their biological role is still not known. In this Chapter the question is 

addressed as to whether the complexes of the cyclic pseudo-octapeptides are also formed inside the 

Prochloron cells. Therefore, a patellamide ligand with an appended reporter group (RG) was designed 

and studied concerning its binding behaviour towards CuII in vivo. 

The concentration of copper cations in living cells and their oxidation state is a topic that is not well 

studied for cyanobacteria. It is known that mammalian (eukaryotic) cells exhibit a reductive interior 

atmosphere,183 and the free copper cations are thus present as CuI ions.183 The copper ion 

homeostasis is regulated by a copper ion importing and exporting system and leads to a Cu cation 

concentration in the cell in the femtomolar range.183 Similar systems were also found for the 

prokaryotes Enterobacteria.184 Here, interior copper(II) concentrations of 10-6 M were reported, as 

compared to 10-8 M in the surrounding medium.184 From a proteomic study on Synechocystis sp. 

(cyanobacterium) it became clear that the export mechanism is the main regulator of the copper 

cation concentration.87 However, exact copper cation concentrations for cyanobacterial cells are not 

published so far. JASPARS et al. reported in 2001 that after extraction of the Prochloron cells in the 

DCM phase the copper(II) concentration was found to correspond to a 104 times enrichment 

compared to the surrounding sea water.185 Typically, the copper(II) and zinc(II) concentrations in sea 

water are in the range of 1.1-22.9 nM and 3.0-24.0 nM respectively.186,187 Obviously, the copper(II) 

concentration is subject to geological, environmental, seasonal as well as agricultural influences, but 

in the absence of data from the areas where Prochloron can be found, the data from reference 186, 

4 nM CuII and 6 nM ZnII, are taken as rough estimates. Thus, speaking of a 104 times increased 

concentration in the cells as compared to the surrounding sea water would correspond to an in vivo 

                                                           
* Main parts of this Chapter will be published in:'Is CuII coordinated to patellamides inside Prochloron cells?' Peter 

Comba, Annika Eisenschmidt, Lawrence R. Gahan, Dirk-Peter Herten, Geoffrey Nette, Gerhard Schenk, Martin 

Seefeld., manuscript in preparation. 
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concentration of 40 µM CuII and 60 µM ZnII. This in turn would be ten times more concentrated as the 

respective number given for Enterobacteria (as mentioned above). The question about the 

reductive/oxidative milieu in the cells remains. What is known is, as discussed in detail already, that 

depending on the level of irradiance, the pH is fluctuating and the same is true for the level of oxygen 

saturation (n.b.: the oxygen saturation and pH were not measured inside Prochloron cells, but in close 

proximity to it).9 As a consequence of this oscillation during day/night time, the oxidative environment 

might be correlated to the level of oxygen in the cells, but so far there is no proof for this hypothesis. 

If this was the case, one would expect an alkaline environment (pH 11) as well as dioxygen super 

saturation upon solar irradiation9 and consequently copper cations to be present as CuII. In the 

darkness, on the other hand, an interior milieu of pH 7.0 is expected together with an anoxic 

environment,9 which would favour CuI. So far, the coordination chemistry of CuI to patellamides was 

not studied in detail. Research in this field would certainly improve the understanding of relative 

stabilities of the putative copper(I) as compared to the copper(II) complexes. This leaves to 

summarise, that an approximate internal concentration of 40 µM for copper(II) and 60 µM for zinc(II) 

is expected in Prochloron and that copper is possibly divalent during exposure to sunlight and 

monovalent during darkness. 

After evaluating the metal ion concentration, it is important to get an understanding about potential 

chelators in addition to the patellamides, their concentrations and binding affinities for CuI/CuII and 

ZnII in the cells. Again, no data for Prochloron or similar cyanobacteria (prochlorophyta) is available 

(but this is the focus of ongoing research carried out by BEHRENDT and KÜHL). RABINOWITZ et al.188 

published absolute metabolite concentrations for E. coli and thus could show that amino acids like 

glutamate, glutamine, aspartate, valine and alanine, to mention a few, are present in the millimolar 

scale.188 Apart from amino acids, other metabolites like ATP, GTP and citrate are also present in similar 

concentrations.188 AKGÜL et al. presented a study on the amino acid composition of the dried 

cyanobacteria Nostoc spongiaeforme and Rivularia bullata. However, for the sample preparation, all 

peptides in the cell were hydrolysed first, thus the respective amount of amino acids reported does 

not correspond to the concentration of amino acids in solution. If one would nevertheless use these 

values and expects the native cyanobacteria to have an approximate water content of 70%,189 cytosol 

concentrations of the amino acids glycine, threonine and leucine of 37.9 mM, 25.5 mM and 28.8 mM 

had to be anticipated (and this resembles the composition of all proteins and metabolites in 

cyanobacteria). If that concentration was the metabolite concentration of amino acids in cytosol, it 
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would be about ten times as much as reported for E. coli. The binding constants of amino acid 

copper(II) complexes of the composition 1:1 are in the range of logK=7-9 and for the composition 2:1 

one expects logβ values between 12 and 16.190 These stability constants are significantly higher than 

the ones known for patellamide copper(II) complexes, that are typically in the range between 

logK1K2=4-6, depending on the patellamide backbone.67 Even despite the exact knowledge of the 

amino acid concentration in cyanobacteria and Prochloron in particular, one can estimate from the 

stability constants that the formation of copper(II) amino acid complexes should be preferred over 

the formation of patellamide complexes. But, as mentioned earlier, the stability constants greatly 

depend on the pH and the oxidation state of the copper cation. In addition, so far no experiments 

were carried out to elucidate whether or not the copper(II) patellamide complexes might be 

integrated in a protein as a prosthetic group. That would not be unexpected, since in nature all metal 

centres in enzymes are embedded in a larger protein.2,191-193 If that was the case, the stability 

constants measured previously for patellamides would be challenged.67 Thus, on the basis of what is 

known about prokaryotes and cyanobacteria, one would expect that the patellamides are most likely 

bound to a protein pocket exhibiting higher copper(II) stability constants than what was measured for 

the 'free' octapeptides. In order to support this hypothesis, native PAGE experiments with a cell lysate 

of Prochloron and added patellamide and a fluorescent tag were performed. Native PAGE was chosen, 

as the denaturing of proteins should be excluded in order to keep potential patellamide-protein 

interactions intact (see Experimental Section E). Only two bands were observed, none of which was 

fluorescent. Hence, as these experiments were not conclusive, they should be repeated/improved in 

order to evaluate the hypothesis raised with experimental proof.  

 

5.1 Synthesis of H4pat-RG 

 

The synthesis of the cyclic octapeptide H4pat-RG was accomplished analogously to the modular 

approach used for the synthesis of other cyclic peptides prepared for earlier studies (see Scheme 5.1 

for the synthesis of the patellamide-dye conjugate). The initial steps towards the formation of the 

monomer building blocks 5 and 6 were accomplished on the basis of a published approach.62  
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Scheme 5.1. Synthesis of H4pat-RG (14), the syntheses of 6 and 9 are omitted for clarity and were accomplished 
as described in 62. RG: Atto550 or Proxyl. 
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For that the α-Boc ԑ-Cbz protected lysine was activated by treatment with iso-butyl-chloroformate 

and coupled to the keto ester 2 to give the resulting amidoketone 3, which was reacted with 

methylamine in the presence of acetic acid under azeotropic removal of water from refluxing xylene 

giving building block 4. The deprotection of the Boc protecting group was accomplished by addition 

of TFA in DCM, which afforded 5. Analogously to the strategy reported for 4, the respective valine-

imidazole monomer was produced, which gave compound 6 after hydrolysis with NaOH in 

dioxane/MeOH. The coupling of 5 and 6 was accomplished through COMU activation and addition of 

EDIPA in dry DMF and yielded the dimer 7 in 55 % yield. 7 was subsequently deprotected at the N-

terminus, and coupled with 9, which was obtained analogously to the described route to 7, yielding 

the linear tetramer 10 in 48 % yield. Deprotection of the N- as well as the C-terminus produced 11, 

which was then cyclised in a high-dilution reaction to give 27 % of the Cbz-protected cyclic peptide 

12. This was followed by deprotection of the ԑ-N-terminus upon treatment with H2 and 5 % palladium 

on carbon, producing 13 in 84% yield, which could subsequently be reacted with the NHS activated 

ester of the respective reporter group in DMSO. Two different reporter groups were chosen: (I) 

Atto550, a rhodamine-based fluorescent dye (Figure 5.1), which alters the photophysical properties 

and (II) Proxyl, which alters the EPR signal upon copper(II) binding (Figure 5.2).  

 

 

 

 

 

 

 

 

Figure 5.1. Models of dinuclear [Cu2(H2pat-FT)] complexes; left: CuII coordinated by three water molecules and 
a hydroxido ligand, C4-chain perpendicular to the CuII∙∙∙CuII vector (⫠); right: CuII coordinated by two water 
molecules and a bridging hydroxido coligand, C4-chain parallel to the CuII∙∙∙CuII vector (ǁ), FT=fluorescent tag 
(orange: Cu, grey: C, blue: N, red: O, hydrogen atoms are omitted for clarity).  
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The adduct H4pat-Atto550 was purified by HPLC and characterised by UHPLC-MS as well as by UV-vis 

spectroscopy, whereas the H4pat-Proxyl ligand was purified by repetitive washing with ice brine 

solution and characterised by elemental analysis as well as UHPLC-MS. 

The choice of the appropriate fluorescent dye was crucial, since Prochloron is one of the few known 

examples of prokaryotic oxygenic autotrophs containing chlorophyll b in addition to chlorophyll a.6 

This means that the range for observation, often referred to as 'green gap' between 520 nm and 

600 nm, is narrow.194 Therefore, as a photophysically sensitive group Atto550 was chosen with an 

excitation maximum of λexc=554 nm and an emission maximum of λem=574 nm.  

Proxyl on the other hand was chosen as a spin-label due to its easy synthetic availability and its small 

size, as compared to e.g. Trityl.195 It was shown to have a lifetime of several minutes in vivo (in rats)196 

and since all EPR experiments envisaged are carried out in frozen solution, reduction inside the cells 

should be circumvented to an extent that allows use of Proxyl as a reporter in vivo. 

From structure optimisation of a conjugate with a rhodamine derivative (the structure of Atto550 is 

not yet available) it became clear that the distance between the CuII centres and the fluorescent tag 

(C1, Figure 5.1) is in the range between 13.5–25.4 Å (Cu1 and Cu2), depending on where the side chain 

is located relative to the CuII binding sites, i.e. parallel or perpendicular to the CuII∙∙∙CuII vector. For the 

perpendicular arrangement of the side chain to the CuII∙∙∙CuII vector distances between 13.5–21.7 Å 

are expected, whereas the C1-Cun distance is approx. 18.5–25.4 Å for the parallel orientation. The 

distances between the CuII ions and the O1 of the Proxyl group in H4pat-Proxyl are expected to be in 

the range of 11.2 to 17.6 Å (see Figure 5.2). 

 

 

 

 

 

 

 

 

Figure 5.2. Models of dinuclear [Cu2(H2pat-Proxyl)] complexes; left: CuII coordinated by two water molecules 
and a bridging hydroxido coligand, C4-chain perpendicular to the CuII∙∙∙CuII vector (⫠); right: CuII coordinated by 
three water molecules and a hydroxido ligand, C4-chain parallel to the CuII∙∙∙CuII vector (ǁ) (orange: Cu, grey: C, 
blue: N, red: O, hydrogen atoms are omitted for clarity).   
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5.2 Fluorescence spectroscopy 

 

Due to its high sensitivity, fluorescence spectroscopy is widely applied for imaging and sensing, 

especially in biological systems. It exploits the emission of light induced by the decay of an 

electronically excited singlet state. The term singlet means, that the electron in the excited orbital is 

oriented antiparallel to the second electron in the ground state orbital and the transition between 

the excited state S1 and the ground state S0 is consequently spin-allowed and happens rapidly. 

Fluorescence emission rates are typically in the range of 108-109 s-1. The lifetime τ is thus 10-8-10-9 s 

and describes the average time between excitation of an electron and the return to the ground state. 

The concise form of the absorption and emission spectra, as well as their position in the 

electromagnetic spectrum gives insight on the respective vibrational as well as rotational states of the 

investigated substance. The typical excitation and emission processes involving electronically excited 

species are visualised in a JABLONSKI diagram, as shown in Scheme 5.2.197 

 

 
 

Scheme 5.2. JABLONSKI diagram: depicting the excitation from the S0 singlet ground state to the S1, S2, excited 
singlet states and relaxation via Internal Conversion (IC), fluorescence, non-radiative decay and Intersystem 
Crossing (ISC) to T1-excited triplet state, that can relax to S0 via phosphorescence (dashed lines characterise non-
radiative transitions). 

 

Absorption transitions occur in 10-15 s, which is too short for a significant effect on the position of the 

nuclei (the BORN-OPPENHEIMER approximation). These excitations are described as vertical transitions 

and summarised as the FRANCK-CONDON principle. Upon excitation of S0 due to the absorption of a 

photon with the respective energy, the excited state reached relaxes rapidly to the lowest 
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electronically excited singlet state S1. This is believed to be the case since all excited singlet states are 

energetically very similar and not resolved in solution due to broadening induced by rotational terms. 

The relaxation process is described as Internal Conversion (IC) and typically happens within 10-12 s by 

the distribution of excess energy to rotations and vibrations in the molecule. Once the excited singlet 

state with the lowest vibrational quantum number is reached, light can be emitted and the singlet 

ground state S0 is regenerated.197 

An alternative relaxation path starting from S1 is called Intersystem Crossing (ISC) and leads to a triplet 

T1 state. This transition is spin-forbidden and so is the relaxation from T1 to S0, which is called 

phosphorescence. This leads to significantly smaller transition rates 103-1 s-1 and longer lifetimes 

(10 ms to 1 s) as compared to fluorescence. 

Since emission always occurs from S1 or T1, the emitted energy is smaller than the absorbed, as S1 and 

T1 are populated only after non-radiative conversion, which means a loss of energy. This leads the 

emitted wavelengths to be red-shifted, which is called STOKES shift that can be observed for example 

for the fluorescent dye Atto-550, of which the absorption and emission spectra are shown in Figure 

5.3. Fluorescent dyes are designed such that they have delocalised electrons in an extended π-system 

which have strong absorption and emission bands in the UV-vis region.  

 

Figure 5.3. Absorption and emission spectrum of Atto-550, λexc=554 nm, λem=574 nm. 

 

Since emission for fluorescence is solely observed from S1 to S0, the emission spectrum is independent 

on the excitation wavelength (KASHA's rule).197 Together with the FRANCK CONDON principle of vertical 

transitions this leads the absorption and emission spectra to be mirror images (see Figure 5.3), as the 

absorption spectrum consists of all rotational bands of S0 and the emission spectrum is composed of 

the respective rotational bands of the S1 state.  
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Fluorescence lifetime and quantum yield are common parameters for the description of fluorophores 

and can be related as shown in equation 5.1: 

 

𝑄 =
𝛾

𝛾 + 𝑘𝑛𝑟
 (5.1) 

 

Here, Q is the quantum yield, γ is the emissive rate of the fluorophore and knr signifies the rate of all 

non-radiative decays to S0 (see Figure 5.4). The quantum yield is typically below 1 and is strongly 

dependent on the temperature, the polarity of the solvent, the pH and the capacity for hydrogen-

bond formation.197 

 
 

Figure 5.4. Simplified JABLONSKI diagram emphasising on transition rates. 

 

The transition probability also defines the fluorescence lifetime τ: 

𝜏 =
1

𝛾 + 𝑘𝑛𝑟
 

(5.2) 

 

In the absence of non-radiative decay this leads to the intrinsic life time τ0: 

𝜏0 =
1

𝛾
 

(5.3) 

 

By dividing τ by τ0, the quantum yield is obtained. Non-radiative decays that lower the emission rate 

are summarised as fluorescence quenching. One of the possible mechanisms would for example be 

collisional quenching, where the energy of the excited fluorophore is transmitted to the quenching 

partner (n.b. that Q refers to the quenching partner in the following discussion and not to the 

quantum yield). This diffusion-controlled quenching mechanism is called dynamic quenching:123 

 

𝐹∗ + 𝑄 → 𝐹 + 𝑄∗ (5.4) 
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The collision between an excited fluorophore F* and Q leads to an energy transfer, providing F in S0 

and Q*, which releases its energy to its surrounding. This happens via a spin flip, since the resulting 

T1 states exhibit long lifetimes and are additionally quenched by Q in solution. Typical examples for Q 

are molecular dioxygen, acrylamide or I– and Br–. Since the phosphorescence transition is spin-

forbidden and consequently comparably slow, in liquids the transition T1→S0 happens usually non-

radiatively. The formation of a radical ion pair via electron transfer, which could recombine after non-

radiative decay is another possible relaxation mechanism, and is equally likely as a charge transfer for 

halogen ions. All these mechanisms affect the excited states of the fluorophore. Static quenching on 

the other side alters the ground state of the fluorophore, for example by formation of a complex.  

 

 

(5.5) 

 

[𝐹] =
[𝐹𝑄]

𝑘[𝑄]
 

(5.6) 

 

[𝐹]0 = [𝐹] + [𝐹𝑄] = [𝐹𝑄] (1 +
1

𝑘[𝑄]
) 

(5.7) 

 

For proportionality of the concentration to the measured intensity, the following expression can be 

deduced as the STERN-VOLMER equation for static quenching: 

 

𝐹0

𝐹
= 1 + 𝑘[𝑄] 

(5.8) 

 

The complex formed, FQ, is not fluorescent and consequently, the formation of the complex has no 

influence on the fluorescence life time, whereas dynamic quenching alters the lifetime of the 

fluorophore. In addition, static quenching is usually lower at higher temperatures, since the formation 

of the FQ complexes is temperature dependent and they are less stable at higher temperatures. 

Dynamic quenching on the contrary, is increased at higher temperatures, since the diffusion velocity 

is higher and thus more diffusion controlled collisions can happen. Often however, two or more 

regimes of quenching are observed, resulting in a combined quenching. This leads to several 

overlaying slopes in STERN-VOLMER plots, i.e. F0/F plotted to the concentration of the quencher [Q].197 
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5.2.1 CuII binding behaviour of H4pat-Atto550 in vitro 

 

The sensitivity of the fluorophore-labelled patellamide towards CuII in aqueous solution of H4pat-

Atto550 (1.8 μM in 100 mM TRIS buffer, pH 8.2 as observed for sea water198, T=298 K) was titrated 

with CuII (0.125–10 eq., using a CuSO4 solution in buffer). At each titration step, emission spectra were 

recorded. Upon addition of CuII a strong fluorescence quenching was observed (see Figure 5.5). The 

control experiments, i.e. titrations of H4pat-Atto550 with buffer and the titration of Atto-NHS with CuII 

lead to significantly smaller fluorescence intensity decreases (Figure 5.5). The quenching behaviour of 

the fluorescence-dye-conjugate is biphasic with CuII, as the quenching starts linearly and is followed 

by an additional quenching mechanism, observable at excess CuII. Static quenching should be 

observed due to CuII complexation of the patellamide ligand in the starting phase. Fluorescence 

lifetime measurements confirm this assumption (see Figure 5.6), as no changes are observed. The 

second phase of quenching might be due to a saturation effect but could also be caused by the 

formation of a dinuclear species. However, binding of CuII to patellamide derivatives has been found 

to show cooperativity in methanolic solutions, i.e. it is not likely that formation of dinuclear complexes 

only occurs after addition of 10 eq. of CuII.74 In first approximation the model for static quenching is 

applied to the initial linear slope in the STERN-VOLMER plot to the equivalent point (Figure 5.5).199 In 

this case, If is the fluorescence intensity measured at the metal ion concentration of each titration 

step. A linear fit yields the STERN-VOLMER constant KS of the respective CuII patellamide complex. 

 

 

 

 

 

 

 

 

 

Figure 5.5. Titration of the fluorescing dye-conjugate with CuII, measured by fluorescence spectroscopy 
(aqueous solution of H4pat- Atto550 in 100 mM TRIS buffer, pH 8.2, T=293 K). A Full emission spectrum and B 
STERN-VOLMER plot (H4pat-Atto550 + CuII, up triangle) compared to titrations of the conjugate H4pat-Atto550 + 
buffer (diamond) and Atto550-NHS + CuII (down triangle). 
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Figure 5.6. Fluorescence lifetime measurements: 100 mM TRIS buffer, pH 8.2, T=298 K. Concentrations: [H4pat-
Atto550]=1.8 μM [Atto550-NHS]=2.3 μM. 

 

The fit estimates Ks to be of the order of 1.35(2)x106 M-1. As the stability constant for the dinuclear 

CuII complexes of the model patellamides H4pat1 1.7x106 M-1 and H4pat2 are 4.03x104 M-1 respectively, 

the STERN-VOLMER constant Ks is within the expectations. Again, one must note, that the ITC stability 

constants were determined in methanolic solutions as opposed to buffered solutions used for the 

titration of the fluorescent tagged patellamide with CuII. Moreover, the model used for the 

determination of the STERN-VOLMER constant, clearly does not describe the whole curve observed and 

further investigations, e.g. by ITC, should be carried out to validate the binding affinity. One should 

also note that nothing is known about the charge of the fluorescent label, which, if it was negative it 

might contribute to the stability of the complex.  

 

5.2.2 Uptake of H4pat-Atto550 by Prochloron and its photophysical analysis 

 

For in vivo fluorescence imaging two different techniques were applied: single cell confocal 

microscopy and flow cytometry (FCM). Both techniques allow the determination of optical 

parameters of single complete cells instead of giving average values for the whole population.  

A simplified schematic light path for a confocal microscope is shown in Scheme 5.3. The technique 

was originally developed by MINSKY,200 who wanted to circumvent the constraints of wide-field 

fluorescence microscopes, which excite the complete sample simultaneously. The resolution of the 
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wide-field approaches is hampered by the fact that this technique gives information of the whole 

sample at once, leading to a major contribution from the background that is not in focus.201  

In confocal microscopy a collimated laser beam is coupled into the objective and leaves the objective 

focussed. At the focal point, the laser beam has a diffraction-limited dimension with an approximate 

diameter of 300 nm (the focal volume). This means that only a small area of the sample is illuminated 

and hence, the fluorescence measured corresponds mainly to the focal point due to the 

proportionality of the excitation to the observable intensity. Fluorescence light is detected through a 

pinhole to reduce the out-of-focus signal, which however also contributes to a loss of signal. To meet 

that obstacle, an avalanche photodiode (APD) is used. As a consequence of the setup, the confocal 

microscope exhibits a better lateral as well as axial resolution compared with wide-field techniques.202 

 

 
 

Scheme 5.3. Light path in a confocal microscope. Adapted from reference 202. 

 

Another detection method for the fluorescence of a population is flow cytometry. This technique 

quantifies various optical parameters of complete cells simultaneously with a high throughput rate.203 

A simplified schematic setup of a flow cytometer is shown in Scheme 5.4. Here, a peristaltic pump 

generates a fluidic flow that is hydrodynamically focussed using a sheath-air flow design. The resulting 

isolated particles in a fluid stream are characterised by a beam of light as they flow through the flow 

cell (see Scheme 5.3). As samples all cells or particles with the size in the range between 0.2 and 

150 µm are suitable, with the condition that cells must be disaggregated in order to analyse just one 

particle/cell at a given measuring interval. The characteristic measured variables are the forward 
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scattered light (FSC) and the side scattered light (SSC). Mostly diffracted light is measured with FSC 

and is proportional to the particle size. SSC on the other hand is proportional to internal complexity 

or cell granularity and depicts the primarily refracted and reflected light (see Scheme 5.4). In addition, 

the fluorescence at different wavelengths is observed (typically four channels between 400 nm and 

700 nm). The correlation of FSC and SSC provides information on subpopulations in the sample, which 

can be analysed separately. 

 

 

 

 

 

 

 

 

 

 

Scheme 5.4. Left: schematic representation of the fluidics in a flow cytometer. Right: representation of side 
scattered and forward scattered light from diffraction at a cell. Adapted from reference 204. 

 

In order to find the best method to stimulate the uptake of H4pat-Atto550 by Prochloron, different 

protocols were investigated.  

As not many reports have been published on the introduction of peptides into prokaryotes, standard 

techniques for the stimulation of biomolecule uptake, as established for Escherichia Coli, were 

applied,205 i.e. heat shock treatment at 42°C for up to 40 s and incubation at room temperature for up 

to 30 min. After the treatment the cells were washed twice and subsequently pulsed amplitude-

modulated photosynthesis measurements (PAM) were used to ascertain that the Prochloron cells 

were still photosynthetically active.206,207 The amount of patellamide taken up by the cells was 

determined by flow cytometry; here λexc=535 nm (excitation of H4pat-Atto550) and λexc=640 nm 

(excitation of chlorophyll b) were used as excitation wavelengths (Figure 5.7 C and D). It is apparent 

that the heat shock treatment (40 s at 42°C) leads to the same ratio of FL575/FL675 (i.e. the ratio of 

fluorescence by H4pat-Atto550 and chlorophyll b, respectively) of about 0.016, as observed for 

incubation for 30 min at room temperature. This indicates that the transport of patellamides into 
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Prochloron occurs by a passive mechanism. The setup of the experiment leads, after dilution with 

cyanobacteria and buffer, to the final concentration of 5.8x10-8 M for H4pat-Atto550 in the sample. 

With the expected passive mechanism, this concentration consequently is the maximum expected 

concentration inside the cells; however, this cannot be validated with an independent technique. If 

the mechanism is not passive, but the cell instead uses for example vesicles or the transport is 

accomplished via active transporters in the membrane, which are potentially gradient-driven, the 

concentration of H4pat-Atto550 in the cell might be higher or lower than the exterior concentration. 

Since the emission of chlorophyll b is very intense, it was also verified that the observed fluorescence 

intensity does not solely originate from the fluorescence of chlorophyll b. The corresponding 

experimental data from fluorescence spectroscopy and confocal microscopy are shown in Figure 5.7 

A and B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. A: Fluorescence intensity of a Prochloron sample treated with H4pat-Atto550 for 40 s at 42°C 
(λexc=500 nm); B: Fluorescence intensity from confocal microscopy; Prochloron treated with H4pat-Atto550 for 
40 s at 42°C (for raw data see Experimental Section F3); C and D: FL575/FL675, i.e. ratio of the fluorescence 
intensity of H4pat-Atto550 (FL575) vs. to the fluorescence intensity from chlorophyll b (FL675).  
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5.2.3 Treatment with CuII 

 

In order to establish a valid protocol to investigate the CuII binding behaviour of the fluorescent dye-

patellamide conjugate by means of flow cytometry and confocal microscopy, Synechococcus 

leopolienses (S.L.) and Prochlorothrix hollandica (P.H.) were studied. Both cyanobacteria are readily 

available from a cyanobacteria database, whereas Prochloron can only be handled for about 1-2 

weeks in hospite in a fresh water aquarium after sampling from tropical waters. S.L. was chosen as a 

model, since it is a cyanobacterium that is easy to handle. Consequently, it was used primarily to learn 

how to treat cyanobacteria in general. P.H. on the other hand is the taxonomically closest 

cyanobacterium to Prochloron, available from a database and was therefore used in a second step 

after establishing working routines with Synechococcus leopoliensis. Thus, all experiments with S.L. 

were carried out solely to establish a protocol and are not discussed in the following (see Appendix I). 

H4pat-Atto550 was added to the cyanobacteria, which were then heat shocked for 40 s at 42°C and 

subsequently chilled on ice for 1 min (a). Alternatively, samples (b) and (c) were incubated with H4pat-

Atto550 and 5 eq. of a CuII salt. After rinsing the cells, sample (c) was additionally treated with an 

excess of 10 eq. of cyclam (1,4,8,11-tetraazacyclotetradecane) relative to H4pat-Atto550, applied as a 

strong competitor for CuII coordination to reinstall the fluorescence upon removing CuII from H4pat-

Atto550. All samples were analysed by FCM and the mean ratio (and its SEM) of fluorescence observed 

at 575 nm, compared to fluorescence at 675 nm, was plotted (Figure 5.8 A).  

 

 

 

 

 

 

 

 

 

Figure 5.8. Mean and SEM of FL575/FL675 for A Prochlorothrix hollandica (n=12,000) and B Prochloron  
(n=4,000) treated (a) with H4pat-Atto550 (b) with H4pat-Atto550 and CuII and (c) with H4pat-Atto550 and CuII 
and subsequently cyclam (10 eq.). [ p ≥ 0.05 – not significant (n.s.), p ≤ 0.05 – Significant (*), p ≤ 0.01 – highly 
significant (**), p ≤ 0.001 extremely significant (***)]. n: number of cells per population, p: probability. 
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For Prochlorothrix hollandica samples (a) and (c) are not significantly different, whereas sample (b) 

shows a very large (p<0.001) difference compared to (a) and (c). This lends strong support for the 

hypothesis that CuII is binding to H4pat-Atto550 in Prochlorothrix hollandica. In addition, the binding 

constant of the CuII patellamide complex seems to be significantly smaller than that of the 

corresponding CuII-cyclam complex, which is in accordance with expectations, as the stability constant 

for [CuII(cyclam)]2+ is logK=14.7 (pH 7),208,209 orders of magnitude higher than what was observed from 

photophysical measurements for the H4pat-Atto550 ligand studied here (vide supra). Consequently, 

the established protocol was also applied to Prochloron cells. At least ten measurements at random 

positions within three Lab-Tek chambers were conducted per condition and the experiment was 

carried out twice. The results are summarised in Figure 5.8 B. It emerges that samples (a) and (c) are 

not significantly different, but sample (b) is significantly different from (a) and (c), exactly as observed 

for Prochlorothrix hollandica. This implies that the CuII-patellamide complex is stable in the Prochloron 

cells and, if it is a dinuclear complex, could consequently act as a phosphatase-, glycosidase-, β-

lactamase- and carbonic anhydrase-like catalyst, as observed in vitro. It should be noted here that in 

spite of Prochlorothrix hollandica being the taxonomically closest cyanobacterium it does contain 

significantly less chlorophyll b, compared to Prochloron which leads to larger values for the observed 

ratios FL575/FL675 in the range of 0.2-0.4 compared to the values observed for Prochloron (0.013-

0.020).  

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Left: confocal microscopy pictures of Prochloron cells and right: Mean and SEM of FL574 for 
Prochloron (n=600) treated (a) with H4pat-Atto550, (b) with H4pat-Atto550 and CuII, and (c) with H4pat-Atto550 
and CuII and subsequently with cyclam. 
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Samples prepared identically as described for FCM were also investigated concerning their relative 

brightness at 574 nm by confocal microscopy, and the results are depicted in Figure 5.9 (preliminary 

experiments with S.L. and P.H are shown in Appendix I.) In order to validate that the observed 

brightness originates solely from the fluorescent-dye-patellamide conjugate, the relative brightness 

of Prochloron at λem=574 nm was plotted as the first bar in Figure 5.9. Sample (b) shows a significantly 

lower brightness compared to samples (a) and (c) but at the same time sample (c) is significantly 

brighter than sample (a). This implies that CuII is binding to the patellamide-fluorescent-dye conjugate. 

Upon addition of an excess of cyclam, the added CuII as well as the endogenous CuII ions are removed 

by cyclam (the copper(II) concentration in L. patella is reported to be enriched 104 compared to the 

surrounding sea water).71 Although FCM does not show a significant difference for samples (a) and (c) 

of Prochloron (Figure 5.8), it is worth noting that the mean of the ratio FL575/675 of (c) is higher than 

the mean observed for (a) although the difference is not significant. The sample size for FCM is ~12,000 

per population, whereas the populations investigated with confocal microscopy consist of ~600 

Prochloron cells. Importantly, unlike the FCM data (normalised to background chlorophyll), the data 

from confocal microscopy are not normalised. 

To exclude the occurrence of an 'inner filter effect', additional absorption measurements of a sample 

of P.H. lysate treated identically (same population density and copper(II) concentration) to the 

samples prepared for FCM and confocal microscopy (see Experimental Section G) were carried out 

(see Figure5.10).* 

 

Figure 5.10. Absorption spectrum of a Prochlorothrix hollandica (P.H.) lysate solution treated with CuII and a 
solution of P.H. lysate solution treated with the equivalent volume of TRIS buffer. [CuII]= 2.9x10-7 M. 

                                                           
* The absorption experiment shown in Figure 5.10 was carried out by Martin Seefeld. 
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As a control sample the same volume as used for copper(II) addition was supplemented with TRIS 

buffer. P.H. was used, since no Prochloron was available. 

The absorption spectra show no difference between the sample treated with CuII and the control 

sample. This is interpreted as no significant change in the concentration of CuII complexes in the 

cytosol (over background) upon addition of Cu(SO4) in the concentration used for FCM and confocal 

microscopy experiments. If this result from the investigation of P.H. was transferable to Prochloron, 

for the FCM and confocal microscopy experiments this means that the absorption of copper(II) 

complexes formed in the cytosol with putative free amino acids/proteins/phosphates and other 

chelators does not absorb the fluorescence of the fluorescent tag Atto550 significantly over 

background. Consequently, no 'inner filter effect' is expected. Therefore, the lowered relative 

brightness of sample (b) compared to (a) and (c) cannot be caused by the absorption of the 

fluorescence from copper(II) complexes that could potentially form with amino acids or other 

metabolites. As a result, the collected data indicate that a copper(II) complex is formed with the 

patellamide H4pat-Atto550 in vitro as well as in vivo. However, by means of fluorescence spectroscopy 

it is impossible to predict whether the copper(II) complex formed is a mononuclear or a dinuclear 

species. 

This finding gives support for the hypothesis raised at the beginning of this Chapter: the patellamides 

seem to provide higher stability constants in the cells, probably as prosthetic groups in bigger proteins 

than expected so far,67 as otherwise no decrease in the fluorescence intensity would be expected.  

 

5.3 EPR investigations 

 

 

Figure 5.11. Spin-labelled ligand H4pat-Proxyl discussed in this Chapter. 

 

The spin-labelled ligand H4pat-Proxyl was investigated concerning its copper(II) binding behaviour. 

This was accomplished predominantly by means of X-band CW EPR as well as pulsed Q-band EPR and 
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DEER experiments. For a copper(II) complex of the H4pat-Proxyl ligand one would expect a coupling 

between the electron spin of the CuII ions and the electron of the Proxyl (NO) radical. This should lead 

to a broadening of both signals arising from the magnetic dipole interaction. The CuII in the complex 

moreover is expected to show different g- and A-tensors than those observed for non-coordinated 

CuII in solution.85  

The experiments reported in the previous section and this subsection are all carried out with the 

ultimate goal to establish whether CuII is binding to patellamides inside Prochloron cells and 

consequently, were performed in aqueous buffer solution. The experiments were carried out at 125 K 

(liquid N2 cooling) or 30 K (He cooling) as a frozen solution, giving a paramagnetic sample diluted in a 

glassy matrix. In order to prepare a glass from an aqueous solution, 10% glycerol was used. The glassy 

sample shows a superposition of orientations (also called 'polycrystalline'). Freezing leads the 

paramagnetic species to be immobile and oriented randomly in the magnetic field. Thus, the 

anisotropy of the g- and A-tensors can be observed (as opposed to room temperature measurements 

in which only isotropic g- and A-values are observable due to unconstrained tumbling in solution). 

Figure 5.12 shows CW EPR spectra at X band of H4pat-Proxyl (I), the in situ prepared copper(II) complex 

of H4pat-Proxyl (II) and CuII in MeOH with methanolate as the base. On the right, a difference spectrum 

of I-II is shown as well as a simulated spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. Left: experimental EPR spectra of the ligand H4pat-Proxyl (I (9.636287 GHz)), a solution of 1 eq. of 
H4pat-Proxyl and 5 eq. of CuII and 2 eq. of MeO– in MeOH (II (9.636125 GHz)) as well as a measurement of CuII 
and 2 eq. of MeO– in MeOH (9.635768 GHz)(top to bottom). The ligand concentration was chosen to be 500 µM 
(X-band). Right: difference spectrum of I and II and a simulation of the difference spectrum I-II.  
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Figure 5.13. Left top to bottom: experimental CW-EPR spectra of the ligand H4pat-Proxyl (9.45729 GHz), a 
solution of 1 eq. of H4pat-Proxyl and 5 eq. of CuII (9.45485 GHz), a solution of CuII (9.456059 GHz) and the 
simulation from Figure 5.12 (X-band). Right: first derivative of experimental spin-echo-detected EPR spectra of 
the ligand H4pat-Proxyl and 5 eq. of CuII (34.114 GHz) and a solution of CuII (34.17457 GHz). The ligand 
concentration was chosen to be 500 µM in TRIS buffer. 

 

These spectra given in Figure 5.12 show a copper(II) complex with the g- and A-tensors as listed in 

Table 5.1. Moreover, it becomes obvious that the species observed in the presence of ligand H4pat-

Proxyl is significantly different to CuII in solution. 

 

Table 5.1. g- and A- tensors [10-4 cm-1] of the difference spectrum shown in Figure 5.12 for H4pat-Proxyl + CuII. 

 gx gy gz Ax Ay Az 

H4pat-Proxyl + CuII 2.05 2.05 2.2481 4 4 162 

       

As discussed in detail in Chapter 4.3, the EPR signal is interpreted as pseudo-mononuclear. A 

broadening of the EPR signals, as mentioned earlier, was however not observed, predominantly 

obvious from the comparison of the NO-signal (see Figure 5.12 left). The absence broadening from 

magnetic dipole interaction is surprising, since the distance between the CuII centres and the NO-

radical is expected to be in the range of 11-17 Å (as reported from DFT calculations, discussed in 5.1). 

Although the strength of the interaction is proportional to r-3, usually broadening is observed for 

distances between 10 and 100 Å.210 
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As a next step the same measurements were carried out in TRIS buffer at pH 8.2, since these are the 

conditions used for Prochloron handling. The respective measured spectra are shown in Figure 5.13. 

The EPR signal arising from CuII in the spectrum containing ligand H4pat-Proxyl and CuII is not 

significantly different to the signal observed for CuII in TRIS buffer. In the light of the previous 

fluorescence studies, carried out at the same conditions, this indicates that the copper(II) complex 

probably shows a small stability constant in TRIS at pH 8.2, resulting in small intensities that are 

overlaid with the much stronger signal from unbound CuII ions. This suggestion is underpinned by the 

qualitative comparison of the simulation (from MeOH measurements) with the experimental spectra. 

Consequently, measurements at smaller proton concentrations were carried out (pH 10) in order to 

stimulate the deprotonation of the ligand, leading to increased formation of the copper(II) complex. 

The results are summarised in Figure 5.13 on the right. In addition, these spectra were recorded at Q-

band, i.e. at a higher magnetic field leading to a larger difference in the split states and thus a better 

resolved spectrum (whereas it is important to note, that one term of relaxation, the CURIE term is B-

dependent and thus leads to line broadening and potentially to a loss of information).178,211 Again, 

there is no difference between the copper(II) signals observed in the solution with H4pat-Proxyl and 

the spectrum of CuII in solution. Subsequently spectra with varying ligand : CuII concentrations ranging 

from 1 : 5 to 5 : 1 were recorded, none of them showing the formation of a complex to an extent that 

would be distinguishable from the free copper(II) signal. An additional explanation for the absence of 

signals arising from a copper(II) complex, could be the formation of an EPR-silent species, a rational 

example of which is the bridged dinuclear copper(II) complex. This hypothesis was checked by broken-

symmetry DFT calculations with ORCA to determine the exchange coupling constant (geometry-

optimised structures (ORCA), def2-TZVP, for a detailed review on the method see reference 212). A 

HEISENBERG-DIRAC-VAN VLECK Spin Hamilton operator213-216 is used for the description of the magnetic 

properties of the complex. J describes the spin coupling (see equation 5.9) and S1/S2 correspond to 

the spin operators217 of the metal centres.  

 

𝐻̂ = 2𝐽𝐶𝑢−𝐶𝑢𝑆̂1𝑆̂2 (5.9) 

 

For the calculation of J, the exchange coupling constant,218-222 a broken symmetry approach is applied 

for the DFT calculation (see equation 5.10). 
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𝐽𝐶𝑢−𝐶𝑢 =
𝐸𝐵𝑆 − 𝐸𝐻𝑆

〈𝑆̂〉𝐻𝑆
2 − 〈𝑆̂〉𝐵𝑆

2
 

(5.10) 

 

For the OH– bridged species antiferromagnetic coupling with an exchange coupling constant of  

JCu-Cu=–410 Hz (CuII∙∙∙CuII distance: 3.9 Å) was predicted, contrary to the non-bridged species  

(JCu-Cu=–6 Hz, CuII∙∙∙CuII distance: 5.3 Å). Thus, at 125 K, according to the BOLTZMANN distribution 0.89% 

of all molecules would be expected to populate the excited state of the bridged conformation (ratio 

of molecules in the excited state compared to molecules in the ground state at 30 K: 2.8x10-9). 

Consequently, no EPR signal is observable at that temperature, whereas an EPR signal for the non-

bridged conformation would be expected with 93% at 125 K and 75% at 30 K. This hypothesis could 

further be supported SQUID (superconducting quantum interference device) measurements with an 

appropriate amount of powder of the complexes.223 However, so far, the patellamide complex 

chemistry was always limited by the fact that attempted precipitation (e.g. in MeOH upon addition of 

diethylether) usually delivers a mixture of the ligand as a powder and the respective copper(II) salt as 

crystals and a small amount of complex as a powder (and this was also the case for the sample that 

was characterised via X-ray crystal structure determination 116). For SQUID measurements, however, 

the exact composition of the powder sample must be known. Therefore, temperature dependent 

EVANS NMR spectra should be preferred, as they can be carried out in solution which would also allow 

to use different solvents and compare the results.224,225 These experiments will be carried out as soon 

as possible. 

A well-established technique to measure distances of ca. 0.5-3 nm is the double electron-electron 

resonance (DEER),210,226 which is also known as PELDOR: pulsed electron-electron double resonance, 

and is the analogue of NMR spin echo double resonance. It measures dipolar coupling between 

unpaired electrons by pulsed EPR techniques. Since the dipolar coupling is dependent on the radial 

separation, conclusions can be drawn about the distance between the unpaired electrons (see 

equation 5.11):227 

 

𝐻̂𝑑𝑑 = −
𝜇0

4𝜋
𝑔1𝑔2𝜇𝐵

2 (
𝑆̂1𝑆̂2

𝑟3
− 3

(𝑆̂1𝑟)(𝑆̂2𝑟)

𝑟5 ) 
(5.11) 

 

DEER experiments were also carried out in a frozen solution to avoid averaging of the dipolar coupling 

term introduced from molecular tumbling. Initially a spin-echo-detected field sweep must be 
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performed to determine the pump and the observer frequency (this means that centre A is excited 

with the respective pump pulse and centre B is observed). The time-domain signal consists of two 

components: (a) an exponential decay arising from randomly distributed, non-fixed spins in the frozen 

solution, and (b) the modulation of the electron spin echo caused by the dipolar coupling between 

the spins, which can consequently be related to the distance.210,226,227 

This experiment was performed with a solution of H4pat-Proxyl and 3 eq. of CuII in TRIS buffer at pH 8.2 

and pH 10 at Q-band, but did not provide a modulation on top of the exponential decay. This indicates, 

as described above, that the copper(II) complex with H4pat-Proxyl is probably only present in small 

quantities that are overlaid by free CuII signals. 

As an alternative approach ESEEM (electron spin echo envelope modulation, two- or three-pulse) 

measurements could be carried out. Upon increasing the time between the pulses in ESEEM the echo 

signal decays exponentially primarily due to spin-lattice and spin-spin relaxation. Interactions with 

nuclei in chemically close proximity to the centre observed lead to a modulation of the exponential 

decay (quadrupole and hyperfine interactions).228,229 Consequently, a deuterated patellamide ligand 

is currently being prepared to apply this technique. 

Once the in vitro EPR experiments will be brought to a stage that allows the validation of the binding 

of copper(II) to the patellamides, in vivo experiments with Prochloron will have to be carried out. 

 

5.4 In vivo hydrolase 

 

Ultimately, the purpose of patellamide research is to understand their metabolic relevance or that of 

their copper(II) complexes. Since in vitro studies point to an involvement of the copper(II) complexes 

in catalytic reactions, in a proof-of principle study, the hydrolase activity was measured in Prochloron 

cells. These experiments are considered as preliminary and must be interpreted carefully, since the 

concentration of ligand inside the cells cannot be determined accurately, and the medium that 

Prochloron was kept in, BG 11, contains metal salts, specifically also divalent 3d-metal ions like ZnII 

(772 nM), CuII (316 nM) and MnII (3,471 nM) but also alkaline earth metal ions like CaII (245 μM) and 

MgII (304 μM).  

The substrate (nitrocefin for β-lactamase and SunRed substrate for phosphatase) was added to the 

Prochloron samples in BG 11 medium. Therefore, it is not entirely certain whether or not the 

measured kinetic data are related to hydrolase activities taking place outside or inside the cell. 
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However, no catalysts for β-lactamase or phosphatase activity would be expected to be present in the 

medium, consequently the hydrolysis observed is attributed to processes inside the cells.  

Three different samples were investigated: 

 

(i) Prochloron, 

(ii) Prochloron incubated at room temperature for 15 min with H4pat1 ([H4pat1] in the 

cuvette: 1 µM), and 

(iii) Prochloron incubated at room temperature for 15 min with H4pat1 (as per sample ii), with 

1:2 ligand : cyclam. 

 

After the incubation, the Prochloron cells were washed and subsequently investigated concerning the 

hydrolysis of model substrates. Detailed descriptions of the experimental setups are given in the 

Experimental Section. The velocity of the β-lactamase-like activity is shown in Figure 5.14 and was 

measured at pH 8.2. The difference observed for the lactamase rate for (i) Prochloron compared to 

(ii) Prochloron, incubated with the model patellamide H4pat1, is not significant. However, upon 

addition of cyclam (iii), the observed velocity decreases drastically to less than half of what is observed 

for samples (i) and (ii). This leaves the conclusion that the observed β-lactamase-like activity is 

probably 3d-metal ion dependent, i.e. CuII could be the active metal centre, but other transition 

metals are equally likely, since cyclam is not a CuII selective ligand. Similar to the lactamase 

measurement, the observations for phosphatase reactivity indicate a metal ion dependence (see 

Figure 5.14, right), whereas the addition of H4pat1 did not lead to an increased hydrolase rate.  

 

 

 

 

 

 

 

 

 

Figure 5.14. Rates of β-lactamase (left) and phosphatase activity (right) in Prochloron, Prochloron and H4pat1 
and Prochloron with H4pat1 and added cyclam respectively at pH 8.2. 
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If the concentration of natural patellamides as well as the concentration of other lactamase/ 

phosphatase enzymes was significantly higher than that of the model patellamide, no change of the 

hydrolase rate would be expected upon addition of the pseudo-octapeptides, as observed in the 

experiments. In order to prove this hypothesis, more experiments, e.g. including selective 

phosphatase inhibitors and more selective CuII ligands instead of cyclam, need to be carried out. In 

addition, single molecule FRET (FÖRSTER resonance electron transfer) experiments with a substrate 

that releases a fluorophore could be carried out with a fluorescent tag labelled patellamide copper(II) 

complex to examine the relative distance between the fluorescent groups.  

 

5.5 Conclusion 

 

In this Chapter the synthesis of a fluorescent-dye-derivatised and a spin-labelled patellamide is 

reported. The former was studied photophysically and by means of optical spectroscopy concerning 

its CuII ion sensing. It could be shown that the fluorescence of the ligand is CuII dependent with a 

STERN-VOLMER constant of Ks=1.35(2)x106 M-1, which is of the same order of magnitude as the binding 

constant observed for similar model patellamides.72 Moreover, it was revealed that the model peptide 

is taken up by the cell, probably by a passive mechanism. The imaging via flow cytometry as well as 

confocal microscopy studies imply that a CuII patellamide complex forms in the cells, as observed in 

vitro. From the fluorescence investigations, it is however unfortunately impossible to determine 

whether or not the complex formed is a mono- or a dinuclear complex. 

From the EPR study it became obvious that the binding constant of the copper(II) patellamide complex 

in buffer is small, leading to a signal which not was observable over the background signal (CuII). 

Although spectra recorded in MeOH as a solvent clearly showed the formation of a complex, no proof 

for a dinuclear complex could be obtained. In conclusion, further investigations by means of pulsed 

EPR will help to circumvent this obstacle and will shed light on the structure of the CuII patellamide 

complexes formed inside the cells. 

Preliminary hydrolysis studies indicate a 3d-metal ion dependence of the catalyses. In future 

experiments, methods will have to be explored in order to control the patellamide and copper(II) 

concentration as well as the activity of other phosphatase/lactamase enzymes.  

Altogether, the formation of CuII complexes inside Prochloron cells could be shown, but so far the 

existence of a dinuclear complex under aqueous conditions could not be proven. If the copper(II) 
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complex observed was dinuclear, this would indicate that the catalysis of various hydrolysis reaction 

observed in vitro, carbonic anhydrase, phosphatase, lactamase and glycosidase activities and probably 

others, not yet explored, might be the metabolic purpose of the patellamides.  
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6 Conclusion and outlook 

The work presented in this thesis focused on the potential metabolic role of patellamides and their 

dinuclear copper(II) complexes for Prochloron.  

 

The studies give further support for the hypothesis that the patellamide-ligand backbone, i.e. the 

stereoconfiguration of the iso-propyl side chains has a significant influence on the hydrolysis activity 

of the respective dinuclear copper(II) complexes. This was exemplified by the study of phosphatase-

like activity with two naturally R and S configured ligands H4pat4 and H4pat5 (the respective dinuclear 

copper(II) complexes are depicted in Figure 6.1).  

 

 
 

Figure 6.1. Schematic representation of the dinuclear CuII complexes under investigation concerning their 
phosphatase-like activity in Chapter 3.  

 

The dinuclear complex [Cu2(H2pat4)(OH)]+ exhibits the highest catalytic rate observed for a model 

patellamide complex to date as well as a high catalytic efficiency (kcat/KM=0.45 M-1s-1), whereas 

[Cu2(H2pat5)(OH)]+ showed maximum catalytic efficiency (kcat/KM=0.53 M-1s-1).123 If compared to the 

phosphatase activity of copper(II) complexes with 4S configured ligands and imidazole heterocycles 

the catalytic efficiency of the complexes [Cu2(H2pat4)(OH)]+ and [Cu2(H2pat5)(OH)]+ with naturally 

configured ligands, is increased by a factor of approximately 3-5. Compared to other model 
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phosphatase complexes, the H4pat4 and H4pat5 based dinculear copper(II) complexes exhibit 

efficiencies that are approximately half of the efficiencies reported for the best model compounds.105 

In addition, it could be shown, that the pH range for phosphatase activitiy is rather narrow (0.3 pH 

units) for the dinuclear copper(II) complexes of H4pat5 and all imidazole-based ligands (H4pat1-H4pat3). 

This is however not the case for [Cu2(H2pat4)(OH)(H2O)3]+ which shows broad activity between pH 7 

and 8.5.  

Furthermore, the ZnII complexes show a similar coordination motif as expected for CuII complexes, i.e. 

binding to the heterocycle pocket spanned by Nhet-Namide-Nhet. The lack of catalytic activity of the 

zinc(II)-based complexes is consequently likely to be caused by their small stability under aqueous 

conditions. 

The concise catalytic mechanism is currently investigated by means of DFT, including the formation 

of the catalyst-substrate complex, the nucleophilic attack of a metal-ion-stabilised hydroxide ion and 

the subsequent release of the product. 

 

With the study discussed in Chapter 4, the capacity of the patellamide based copper(II) complexes to 

act as catalyst for further hydrolases was explored. These investigations showed that the imidazole-

based complexes are potent hydrolases not only for phosphate ester cleavage but also for the 

hydrolysis of glycosidic bonds at alkaline conditions (pH 10). Interestingly, the copper(II) complexes 

show higher catalytic efficiencies for β-glycosidase (kcat/KM=3.43-5.09 M-1s-1) compared to α-

glycosidase activity (kcat/KM=1.49-3.30 M-1s-1). Probably, this is correlated with a lower activation 

energy for the formation of the respective catalyst-substrate complex, due to a smaller steric 

hindrance caused by the equatorial β-arrangement of the nitrophenol, which could in turn facilitate a 

more efficient hydrolysis, as opposed to the axial α-position. The dinuclear copper(II) patellamide 

complexes moreover show an efficiency that is ~104 times higher as compared with the model 

glycosidases reported by STRIEGLER et al. (kcat/KM=3.95x10-5-1.27x10-4 M-1s-1). 

In addition, β-lactamase-like activity was observed at pH 11.5 of [Cu2(H2pat1)(OH)]+ with an efficiency 

of kcat/KM=50.5 M-1s-1. This is consistent with similar dinuclear model complexes, that show efficiencies 

in the range of kcat/KM=100-200 M-1s-1.172  

The results of Chapter 4 point to a putative involvement of the complexes as tuneable pH-dependent 

catalysts. It is known that the pH in L. patella (in close proximity to Prochloron) is fluctuating strongly, 

depending on the irradiation level.9,38 Therefore, the results presented could mean that the complexes 

change their target reaction depending on the time of the day.  
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By introduction of different reporter groups to a patellamide the in vitro and in vivo stability of the 

dinuclear CuII complexes could be investigated. As reporter groups the spin label proxyl and the 

fluorescent dye Atto550 was chosen. In vitro EPR and fluorescence quenching experiments point to 

the formation of copper(II) complexes. From the titration of the fluorescent dye labelled patellamide 

with copper(II) the STERN-VOLMER constant could be estimated to be Ks=1.35(2)x106 M-1. This finding 

fits the expectations from isothermal calorimetric measurements, that were carried out previously in 

methanol.230 

In order to perform in vivo measurements, a protocol for the uptake of patellamides by Prochloron 

was established, which could be used to incubate the cells with the cyclic octapeptides. From in vivo 

fluorescence studies by flow cytometry and confocal microscopy one can conclude that the intensity 

of the reporter fluorescent tag Atto550 is decreased upon the addition of CuII compared to the 

fluorescence of chlorophyll b in the cells. This indicates the formation of a copper(II) complex in vivo 

in Prochloron. EPR experiments however, could not prove the existence of the complexes in the cells. 

Therefore, a deuterated ligand is currently prepared, which will subsequently be investigated 

concerning its CuII binding behaviour by ESEEM measurements.228 Moreover, isothermal calorimetric 

titrations of the model patellamides with CuII in buffer are in the focus of ongoing research. Results 

from this technique could support the formation of a dinuclear complex at aqueous conditions. 

Preliminary in vivo hydrolysis experiments support the involvement of a 3d-metal ion. Further studies 

will have to be carried out to validate whether or not copper(II) is the metal ion involved as well as to 

probe the potential role of the patellamides during the hydrolyses.  

 

So far, no experiments were conducted to investigate the stability of the copper(II) complexes in the 

host, L. patella. However, this is not unimportant, since large quantities of patellamides were found 

in the ascidians. Whether or not the complexes play a role for Prochloron and/or L. patella should be 

the focus of future research. 

Since patellamides were found in the hosts in close proximity to Prochloron and Prochloron could not 

be brought in laboratory culture to date, experiments on the potential influence of the concentration 

of patellamides in cell culture media on the viability of single Prochloron cells will be tested in future 

work. 

Apart from this approach, the formation and stability of copper(I) patellamide complexes should be 

investigated in detail, as well as their putative role as a tyrosinase/catecholase-like catalysts. This path 
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of research should especially be studied, as the oxygen saturation level varies greatly9 and 

consequently, a reducing environment in the Prochloron cell at darkness might be expected. 

Moreover, the intracellular environment in mammalian cells is anticipated to be reducing, which could 

particularly play a role for L. patella cells.231  
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Experimental Section 

A) General techniques  

A1) Materials, methods and analytical techniques 

 

Some of the reactions reported were carried out under an inert atmosphere of argon or nitrogen 

using standard SCHLENK-techniques. Glassware was heated and dried under vacuum prior to use. 

All chemicals were purchased from Sigma-Aldrich GmbH, ABCR GmbH & Co. KG and Merck at the 

highest available purity. Dry solvents were purchased and used as delivered. For optimised 

comprehensibility, names of compounds synthesised were simplified instead of usage of the exact 

IUPAC name. 

 

Chromatography 

Reactions were monitored by TLC on silica gel 60 F254 thin layer plates (POLYGRAM SIL G/UV, 

Machery-Nagel). UV light at an excitation wavelength λ=254 nm was applied to accomplish 

detection. Flash chromatography was performed using dried (overnight, 120°C) silica gel 60 (230-

400 mesh) from Sigma Aldrich. 

 

Mass spectrometry 

High resolution mass spectra (HR ESI MS) were recorded with a Finnigan MAT8230 and a Joel JMS-

700 spectrometer by Dr. Jürgen Gross and co-workers at the mass spectrometry facility in the 

Organic Chemistry department of Heidelberg University on a ICR Apex-Qe and a JEOL JMS-700. 

Atmospheric pressure chemical ionization mass spectra (APCI MS) were recorded on a Waters 

UPLC-SQD2 single quadrupole.  

 

NMR spectroscopy 

Nuclear magnetic resonance spectra were recorded with a Bruker Avance I (200 MHz) or a Bruker 

Avance III (600 MHz) spectrometer equipped with a cryoprobe. Chemical shifts δ are given in ppm 

and coupling constants J in Hz and refer to 3JH-H couplings. All spectra were calibrated using the 

residual 1H- or 13C-signals of the deuterated solvents. Spectra were recorded at 295 K. The 

following abbreviations are used to describe the multiplicities of the signals: s (singlet), bs (broad 

singlet), d (doublet), t (triplet), qn (quintet), m (multiplet). Signals were assigned using DEPT, HSQC 

and HMBC spectra. 
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Ligand syntheses 

The cyclic pseudo-peptides H4pat1, H4pat2 and H4pat5 were prepared according to previously 

described procedures.62,85 The synthesis of H4pat-Atto550, H4pat-Proxyl and H4pat4 were 

accomplished analogously to the previously reported pseudo-peptide syntheses62 and are 

described in detail in Part B of the Experimental Section. 

The purification of the dye conjugate H4pat-Atto550 was performed with a HPLC (Agilent, 

Waldbronn, serial number 1100), equipped with a binary pump G1312A, a degasser G1322A, a 

diode array detector G1315 A and a fluorescence detector G1321A. The chromatographic 

separation was performed using a reversed phase column from Knaur, Berlin (250 mm length, 

4 mm inner diameter, ODS-Hypersil with pore diameter of 5 μm).  

 

EPR experiments 

All X-band (9.462 GHz) continuous wave (CW) EPR spectra at 30 K were recorded with an Elexsyxs 

E500 spectrometer fitted with an ER 4116 DM dual mode resonator. Temperatures of 30 K at the 

sample position were delivered by an ER 4112HV-CF58uc In-Cavity Cryogen-Free VT System.  

All X-Band CW EPR spectra at 120-140 K were recorded with a Bruker Elex540 spectrometer using 

a Bruker super-high Q cavity. Frozen solution (110 - 140 K) X-band CW EPR spectra where recorded 

with a modulation amplitude of 0.5 mT, a modulation frequency of 100 kHz and a non-saturating 

microwave power of 20 mW (10 dB attenuation of a 200 mW source). Temperatures of 110-140 K 

at the sample position were delivered by a flow-through LN2 cryostat in conjunction with a 

Eurotherm B-VT-2000 variable temperature controller.  

Pulse EPR measurement were carried out on a Bruker X-/Q Elex580 spectrometer equipped pulse 

EPR & ENDOR Resonator (EN 5107D2) and a cryogen - free variable temperature cryostat from 

Cryogenic Limited (model PT415). The Q-band (34.2 GHz) field sweep FID-detected EPR spectra 

were recorded at 125 K by integrating over the FID created from a single pulse of length 600 ns 

(FID, free induction decay). The Q-band (34.2 GHz) field sweep echo-detected EPR spectra were 

recorded at 35K by integrating over the echo created from a two pulse /2 -  -  -  - echo, with 

t = 40 ns, t/2 = 80 and t = 240 ns. The fields at both X-band and Q-band (at 125 K) were calibrated 

using DPPH with the known g-value of 2.0036. 

All Spin Hamilton parameters were provided by computer simulations of the experimental spectra 

with XSophe182 or MoSophe181. For visualisation Xepr was used. 
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Elemental analysis 

All elemental microanalyses were recorded on a vario MICRO cube spectrometer (Elementar) at 

the microanalytical laboratory of the Heidelberg University. 
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A2) Computational methods 

 

DFT calculations 

DFT has been chosen as method for structural prediction, since the theoretical method is a 

reasonable compromise between accuracy and effort for the patellamide systems. It is usually 

(but not guaranteed) more accurate than the ab initio method HARTREE FOCK, since with HF the 

electron correlation energy can only partially be predicted.232 At the same time further wave-

function based correlated methods, like MØLLER PLESSET perturbation theory233 or coupled 

cluster,234 the HARTREE-FOCK based methods, would be preferable due to their higher accuracy, but 

are currently only feasible for small systems. 

The DFT states that all electronic ground state properties can be described by the electron density 

of the system.235 The intrinsic energy of a system in its electronic ground state can therefore be 

described by a functional that depends on the density. Since the electron density is only 

dependent on the three spatial vectors, unlike wave function based methods, which depend on 

the number of electrons in the system, DFT is in principle a much faster computational technique. 

Since the electronic energy in DFT is described as a functional of the electron density, this density 

has to be determined. This is accomplished incorporating the kinetic energy of the electrons, the 

kinetic energy of the cores, the electron-core attraction, the electron-electron repulsion and the 

core-core repulsion (equation A1).  

 

𝐸[ρ] = 𝑇𝑒 + 𝑇𝑛 + 𝑉𝑒𝑛[𝜌] + 𝑉𝑒𝑒[𝜌] + 𝑉𝑛𝑛 

 

(A1) 

 

Applying the BORN-OPPENHEIMER approximation, stating that the electron movement is 

independent of the core movement (since from the perspective of the electron the core is not 

moving) the electron movement can be described as a movement in a field of non-moving cores. 

This results in a kinetic energy of the cores of Tn=0 and causes the last term to be an additive 

summand. Moreover, the core-electron interaction is known. Thus, KOHN and SHAM proposed a 

procedure to deduce the remaining terms.236 It is based on the assumption, that the electron 

density of an interacting system can be approximated by a system, consisting of non-interacting 

quasi particles that can be described by orthogonal one-electron orbitals (which leads to similar 

computational costs as compared to HF methods but offers the benefit of ideally complete 

electron correlation). These particles would in turn only interact with the external potential Vext. 
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The electron density thus would only consist of the sum of square of all one-electron KOHN SHAM 

orbitals.  

 

𝜌𝐾𝑆 = ∑|𝜓𝑖
𝐾𝑆|

2
𝑁

𝑖=1

 
(A2) 

 

Here, 𝜌𝐾𝑆 should be equal to the actual density 𝜌. This Ansatz solves the problem of inaccurate 

description of the kinetic energy term T of the electron to a large extend. The remaining 

correction, i.e. for an interacting system, is collected as the kinetic and potential energy difference 

between the real and the reference system, which is commonly referred to as the exchange 

correlation functional (A3). The energy differences are described in equation A4 and A5. 

 

𝐸𝑥𝑐[𝜌] = 𝛥𝑇𝑒[𝜌] + 𝛥𝑉𝑒𝑒[𝜌] = 𝐸𝑥[𝜌] + 𝐸𝑐[𝜌] (A3) 
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𝑟𝑒𝑎𝑙[𝜌] − 𝑇𝑒
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(A4) 

 

𝛥𝑉𝑒𝑒[𝜌] = 𝑉𝑒
𝑟𝑒𝑎𝑙[𝜌] − 𝐽[𝜌] = 𝑉𝑒

𝑟𝑒𝑎𝑙[𝜌] −
1
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𝑁
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(A5) 

 

This leads to the description of the ground state (A6): 

 

𝐸[ρ] = 𝑇𝑒
𝐾𝑆[𝜌] + 𝑉𝑒𝑛[𝜌] + 𝑉𝑛𝑛 + 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌] (A6) 

  

The analytical solution of the exchange-correlation functional is not known, but different 

approximations have been proposed. Often the generalised gradient approximation (GGA) is used 

in order to compute the exchange-correlation term.237 The GGA method is based on the Local 

Density Approximation (LDA) and additionally includes local gradient information. This is 

especially desirable for the computation of transition metal complexes, since the electron density 

inhomogeneity is not well described in LDA. Typical functionals of this kind are the B88 exchange 

potential238 as well as the LEE, YANG, PARR (LYP)239 exchange correlation functional. To further 

improve the description of electron correlation, hybrid functionals were introduced. In these, the 

exchange energy is partially computed via HF methods. In this thesis, the B3LYP hybrid functional 
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was employed239-241, which consists of an LDA-exchange functional 𝐸𝑥
𝐿𝐷𝐴, an exact Hartree Fock 

exchange 𝐸𝑥
𝐻𝐹, BECKE's exchange functional 𝐸𝑥

𝐵88, the LDA- correlation functional (VOSKO, WILK, 

NUSAIR) 𝐸𝑐
𝑉𝑊𝑁, and the correlation functional from LEE, YANG and PARR 𝐸𝐶

𝐿𝑌𝑃,  

 

𝐸𝑥𝑐 = (1 − 𝑎)𝐸𝑥
𝐿𝐷𝐴 + 𝑎𝐸𝑥

𝐻𝐹 + 0.72𝛥𝐸𝑥
𝐿𝐷𝐴 + 0.19𝐸𝑐

𝑉𝑊𝑁 + 0.81𝐸𝐶
𝐿𝑌𝑃 (A7) 

 

For the hybrid functional B3LYP the parameter 'a' is set to a value of 0.2. It is called B3LYP, since it 

uses the exchange functional from BECKE (𝐸𝑥
𝐿𝐷𝐴) and the LEE, YANG, PARR correlation functional, and 

the latter three (3) terms (equation A7) are parameterised to experimental electron affinities, 

proton affinities and ionisation potentials. Thus, B3LYP can be considered a semi-empirical 

method. 

As basis sets for the orbitals, linear combinations of one-electron wave functions are employed. 

The minimum basis set would correspond to a description of a system with n electrons and n/2 

spin orbitals with n/2 basis functions. To improve the accuracy, double zeta (DZ) and triple zeta 

(TZ) basis sets were introduced, including twice or three times the number of basis functions, each 

with different spatial extend, compared to the minimum basis set. The additional incorporation 

of polarisation functions (from the mixing of molecular orbitals with atomic orbitals of higher 

orbital angular momentum quantum number) further improves the accuracy of orbital 

description. An example is the Valence Triple Zeta plus Polarisation (TZVP) first introduced by 

AHLRICHS.242 In this thesis the def2-TZVP243 basis set has been used, which is derived from the TZVP 

basis set and parameterised against experimental data and contains additional pseudo-potentials 

for transition metals. 

In this thesis fully optimised molecular structures were obtained through geometry optimisations 

employing the B3LYP 244 functional in conjunction with the def2-TZVP basis set.  

All calculations on the structure optimisations of dinuclear complexes 1A, 1B, 2A, 2B, 3A-I, 3B-I, 

3A-II, 3B-II, 4A, 4B and 5A-5L were performed with Gaussian 09.245 Solvation was approximated 

by the polarisable continuum model246 with the permittivity set to methanol. Frequency 

calculations were carried out on the optimised structures to validate the minimum structures. The 

coordinates of these species are given in the Appendix. 

Calculations on the validation of the binding sites (see Chapter 3.2) were performed with ORCA 

3.0.1.247 Solvation was approximated by the conductor-like screening model COSMO248 with the 

permittivity set to MeOH. Single point energy and frequency calculations were carried out on the 
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optimised structures. All plots of computed structures were produced with Avogadro 1.1.0.249 The 

coordinates of all relevant species summarised in the Supporting Information of reference 115. 

Broken-Symmetry DFT212,219,220 calculations were carried out with ORCA 3.0.1 on geometry 

optimised structures using B3LYP as a functional and def2-TZVP as the basis set.  

 

MM calculations 

MM calculations were carried out with the MM programme MOMEC3.128,250 The total strain energy 

𝐸𝑠𝑡𝑟𝑎𝑖𝑛 is calculated from the sum of the bond deformation 𝐸𝑏, angle deformation 𝐸𝜃 and torsion 

angle deformation 𝐸𝛷 as well as non-bonded interaction energies 𝐸𝑛𝑏. Out-of-plane deformation, 

electrostatic interactions and hydrogen bonding were excluded.  

 

𝐸𝑠𝑡𝑟𝑎𝑖𝑛 = ∑ 𝐸𝑏 + ∑ 𝐸𝑎 + ∑ 𝐸𝑡 + ∑ 𝐸𝑛𝑏 

 

(A8) 

 

𝐸𝑏 =
1

2
𝑘𝑠(𝑟𝑐 − 𝑟0)2 

 

(A9) 

 

𝐸𝑎 =
1

2
𝑘𝐵(𝜃𝑐 − 𝜃0)2 

 

(A10) 

 

𝐸𝑡 =
1

2
𝑘𝑇(1 − cos(𝑚𝜑𝑐−𝜑0) ) 

 

(A11) 

 

𝐸𝑛𝑏 = 𝐴𝑒−𝐵𝑑 + 𝐶𝑑−6 

 

(A12) 

 

with 𝑘𝑠, 𝑘𝐵, 𝑘𝑇 as potential constants and 𝑟0, 𝜃, and 𝜑 that are the strain-free (ideal) respective 

values. Out-of-plane deformation, electrostatic interactions and hydrogen bonding were 

excluded. The atom type labels were assigned according to the published atom types.129,131,251-258 

The MOMEC force field130 was taken and supplemented with parameters for stretches, bends and 

torsions between not yet parameterised atom types. Details on the parameter optimisation 

programme are discussed in ref 130. The force field and coordinates for all relevant species are 

summarised in the Supporting Information of reference 115. 
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A3) Hydrolysis measurements 

 

In vitro hydrolase experiments  

Preparation of the Multicomponent Buffer Solutions 

The aqueous buffer consisted of CAPS, N-cyclohexyl-3-aminopropanesulfonic acid, pKa = 10.40, 

CHES, 2-(N-cyclohexylamino)ethanesulfonic acid, pKa = 9.30, HEPES, 4-(2-hydroxyethyl)-1-

piperazinyl-ethanesulfonic acid, pKa = 7.55 and MES, 2-(N-morpholino)ethanesulfonic acid, 

pKa = 6.15. Lithium perchlorate was added to achieve a constant ionic strength of µ = 0.45. Each 

component was dissolved in Milli-Q water. A standard solution with 55.56 mM of the buffer 

components and 277.8 mM lithium perchlorate was prepared. Aliquots of 45 mL of the standard 

buffer were adjusted to the desired pH value by addition of 2M NaOH. A Metrohm 713 pH meter 

equipped with a KCl electrode was used to adjust pH values at 25°C. The pH-meter was calibrated 

with pH standard solutions at pH values of 4, 7 and 9. Subsequently the aliquots were filled up to 

50 mL leading to a final buffer concentration of 50 mM and 250 mM lithium perchlorate. Metal 

ions were removed by stirring adjusted buffers over night with Chelex 100, which was afterwards 

filtered off by using 45 µm syringe filters. Finally, all buffers were degassed by flushing N2 through 

the solution in an ultrasonic bath for 3 h in order to remove potentially dissolved CO2. 

 

Phosphatase-like activity 

The phosphatase-like activity was determined by measuring the hydrolysis of BDNPP. The 

hydrolysis product 2,4-dinitrophenolate was detected by monitoring the increase of a strong 

absorbance at 400 nm (ε = 12,100 M-1cm-1, 25°C).121,122 UV-vis data were recorded with a Jasco V-

570 spectrophotometer equipped with a Jasco ETC-505T cryostat (set to 25°C) and in 45 : 50 : 5 

MeCN : buffer : MeOH solutions. Initially, the optimum pH range for phosphatase activity was 

determined. The pH dependence of the catalysis rates was measured in steps of 0.5 pH units or 

smaller from pH = 4.5 to pH = 11.5, using time-course measurements at the fixed wavelength of 

λmax=400 nm. The stock solution concentration of cyclic pseudo-peptides were 1 mM (dry MeOH), 

CuII(CF3SO3)2 (25 mM, dry MeOH) and base (n-Bu4N(OMe), 25 mM, (dry MeOH). The final 

concentrations of the dicopper(II) complexes of the ligands (ligand : metal : base ratio of 1 : 2 : 2) 

in the cuvette were 40 µM. All solutions were degassed and kept under argon at 4°C. For the 

determination of pH-dependent reaction velocities a substrate concentration of 5 mM (MeCN) 

was chosen. Rates were obtained by employing the initial rate method. The reported rates are 
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averages with standard deviations from triplicates. Blank tests, the autohydrolysis of BDNPP 

determined in duplicate, were subtracted from the measured kinetic rates. Tests with a 

ligand : Cu : base ratio of 1 : 1 : 1 were carried out and gave results in the range of the blank tests. 

Subsequently, MICHAELIS-MENTEN99 measurements were carried out at the respective optimum 

pH.121 For substrate dependence measurements at constant pH the substrate concentration was 

varied between 0.25 – 10 mM. 

 

Glycosidase-like activity 

The glycosidase-like activity was determined by measuring the hydrolysis of 4-nitrophenyl-α-D-

glucopyranoside and 4-nitrophenyl-β-D-glucopyranoside. The hydrolysis product 4-

nitrophenolate was detected by monitoring the increase of a strong absorbance at 410 nm (ε is 

pH-dependent).  

Initially, the extinction coefficients of the product formation of 4-nitrophenolate in a 

multicomponent buffer were calculated by calibration curves for each pH value (pH = 5.5 – 11.5) 

using the LAMBERT BEER'S law (Table A1). The extinction coefficients at pH = 8.7 – 11.5 are similar 

to those determined for 4-nitrophenolate in CAPS buffer (ε = 16190 M-1cm-1).159 The extinction 

coefficients obtained (see Table A1) were used to convert the absorbance of the reaction product 

into molar amounts. 

UV-vis-spectra were recorded with a Jasco V-570 spectrophotometer equipped with a Jasco ETC-

505T cryostat at 25°C and in a 0.3 : 1.3 : 1 MeCN:buffer:MeOH solution. Using time-course 

measurements at fixed wavelengths (λmax=410 nm), spectrophotometric titrations were 

performed with a cyclic pseudo-peptide concentration of 1 mM (MeOHdry). CuII(CF3SO3)2 (25 mM, 

MeOHdry) and base (n-Bu4N)(OMe) (25 mM, MeOHdry) were added to different pH samples 

(ligand : metal : base ratio of 1 : 2 : 2). The final concentrations of the dicopper(II) complexes of 

H4pat1 and H4pat2 in the cuvette were 40 µM. All solutions were degassed and kept under argon 

at 7°C. Blank tests, the autohydrolysis of 4-nitrophenyl-α-D-glucopyranoside or 4-nitrophenyl-β-

D-glucopyranoside respectively, were subtracted from the reported kinetic rates. For the 

determination of pH dependent reaction velocities the substrate concentration of 30 mM 

(MeOHdry) was chosen. For substrate dependency measurements at constant pH the substrate 

concentration was varied between 1 – 50 mM. 
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Table A1. Extinction coefficients of 4-nitrophenolate in a multicomponent buffer (λmax=410 nm). 

pH value Extinction coefficient ε [M-1cm-1] 

5.636 172 ± 2 

5.981 306 ± 10 

6.775 1160 ± 90 

7.370 5352 ± 50 

7.746 7853 ± 133 

8.118 12423 ± 159 

8.767 16867 ± 1021 

9.210 18027 ± 201 

9.840 18658 ± 206 

10.190 20111 ± 61 

10.708 19541 ± 1260 

11.362 20495 ± 1191 

 

β-Lactamase-like activity 

The β-lactamase-like activity was determined by measuring the hydrolysis of nitrocefin. Reaction 

progress was monitored by observing a decrease of the strong absorbance of nitrocefin at 390 nm 

over a period of 420 s, whereas during the initial 120 s the equilibrium was reached, which is why 

these data have not been used for the analysis. As nitrocefin, as well as its hydrolysis product 

absorb at 390 nm, a corrected extinction coefficient (13415 M-1 cm-1) was used. UV-Vis-spectra 

were recorded with a Jasco V-570 spectrophotometer equipped with a Jasco ETC-505T cryostat at 

37°C and in a 1 : 1 MeCN:buffer solution. Using time-course measurements at fixed wavelengths 

(λmax=390 nm), spectrophotometric titrations were performed with a cyclic pseudo-peptide 

concentration of 1 mM (MeCNdry). CuII(CF3SO3)2 (25 mM, MeCNdry) and base (n-Bu4N)(OMe) 

(25 mM, MeCNdry) were added to different pH samples (ligand : metal : base ratio of 1 : 2 : 2). The 

final concentrations of dicopper(II) complexes of H4pat1 and H4pat2 in the cuvette were 5 µM. All 

solutions were degassed and kept under argon. Blank tests, the autohydrolysis of nitrocefin, were 

subtracted from the reported kinetic rates. For the determination of pH dependent reaction 

velocities the substrate concentration of 25 µM was chosen.  

Analogous to glycosidase activity measurements, initially the optimum pH range for lactamase 

activity was determined. The pH-dependence of the catalysis rates were measured in steps of 0.5 

pH units or smaller from pH = 9.0 to pH = 12.0. Subsequently MICHAELIS-MENTEN measurements 
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were carried out at the optimum pH value of 11.5. For substrate dependency measurements at 

constant pH the substrate concentration was varied between 10 - 50 µM.  

Time dependent UV-vis spectra monitoring β-lactamase-like activity were recorded on a J&M 

Tidas II with the programme Spectralysis 2.0 using an external cryostat Q-Blue Wireless 

Temperature Control in the range between 300 – 850 nm. These spectra were recorded at 37 °C 

at pH 11.5 with a nitrocefin concentration of 40 µM and a complex concentration of 5 µM for 

20 min at time intervals of ∆t=46.7 s (see Figure A1). The resulting spectra were corrected by 

subtraction the obtained spectrum of the complex. 

 

 

 

 

 

 

 

 

 

 

  

Figure A1. Time course measurement of nitrocefin hydrolysis by [Cu2(H2pat1)(OH)]+. Absorption of nitrocefin 
at λmax=399 nm decreases upon addition of the catalyst while the absorption of the hydrolysis product at 
λmax=486 nm increases (pH 10.0, concentrations as in the description). 

 

In vivo hydrolase experiments  

β-Lactamase-like activity 

Three different Prochloron samples were prepared:  

(I) 10 µL of Prochloron (in synthetic sea water, 35 ppt salinity, see Exp. Sec. D, OD750=0.8)  

(II) 10 µL of Prochloron incubated at room temperature for 15 min with H4pat1 (5 µL, 

1 mM, final concentration of ligand H4pat2 in the cuvette: 5 µM) and  

(III) Prochloron incubated at room temperature for 15 min with H4pat1 (like sample II), 

with additional 10 µL (1 mM) of cyclam.  

Finally, nitrocefin (2.5 µL, 10 mM) was added. All samples were filled to 1 mL by the addition of 

respective amounts of BG 11 medium (pH 8.2). For the determination of the β-lactamase-like 

activity the hydrolysis of nitrocefin was measured, i.e. the increase of the strong absorbance of 
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the hydrolysis product of nitrocefin at 496 nm (20,500 M-1cm-1) was monitored over a period of 

420 s, while the data of the initial 120 s were not used, as the equilibrium was reached during that 

time. Usually the decrease of the band of nitrocefin at 390 nm is monitored, but since the 

chlorophylls contained in Prochloron, show a strong absorption in that region, the increase of the 

hydrolysis product was chosen instead (λmax=496 nm). UV-vis-spectra data were recorded with a 

Jasco V-570 spectrophotometer equipped with a Jasco ETC-505T cryostat at 25°C and in a 

MeCN/buffer solution (1 : 1 v/v). Using time-course measurements at fixed wavelengths 

(λmax=496 nm), spectrophotometric titrations were performed. Hydrolysis measurements were 

recorded in triplicates. Blank tests (the autohydrolysis of nitrocefin) were measured in duplicates 

and subtracted from the reported kinetic rates. For the determination of pH-dependent reaction 

velocities the substrate concentration of 25 µM was chosen. Subsequently MICHAELIS-MENTEN 

measurements were carried out at pH 8.2. For substrate dependency measurements at constant 

pH the substrate concentration was varied between 10 – 50 µM.  

Phosphatase-like activity 

Three different Prochloron samples were prepared:  

(I) 1 µL of Prochloron (in artificial sea water, 35 ppt salinity, see Exp. Sec. D, OD750=0.06)  

(II) 1 µL of Prochloron incubated at room temperature for 15 min with H4pat1 (2 µL, 

100 µM, final concentration of ligand H4pat1 in the cuvette: 1 µM) and  

(III) Prochloron incubated at room temperature for 15 min with H4pat1 (like sample II), 

with additional 4 µL (100 µM) of cyclam. 

The phosphatase-like activity was determined using the Amplite Fluorimetric Alkaline 

Phosphatase Assay Kit (AAT Bioquest, Inc.) with SunRed substrate (added to 200 µL). All 

measurements were carried out in triplicates and blanks (duplicates) were subtracted from the 

data. The pH was kept at 8.7 using the prepared buffer from the Kit. The respective fluorescence 

emission measurements were performed on a Horiba Fluorolog-3 spectrometer with 

3 mm x 3 mm quartz cuvettes.  

 

Statistical analysis 

A One-way ANOVA was used for statistical analysis. The required level of significance was 

defined to be 5 % ( p ≥ 0.05 – not significant (n.s.), p ≤ 05 – Significant (*), p ≤ 01 – highly 

significant (**), p ≤ 0.001 extremely significant (***)). 
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B) Details of the syntheses 

 

General procedure for the formation of the oxazole monomer (GP 1) 

A flame-dried SCHLENK flask under an atmosphere of argon was charged with a solution of amide 

(1 eq.) in dry DCM before being cooled to 0°C. Then the required amount of triethylamine (4 eq.), 

triphenylphosphine (2 eq.) and carbon tetrachloride (2 eq.) were added. After 30 min the reaction 

mixture was allowed to warm to rt. Stirring was continued for additional five days. The solvent 

was removed under reduced pressure, the residue was dissolved in ethyl acetate, and then 

washed with saturated sodium hydrogen carbonate solution and brine. The combined organic 

layers were dried over Na2SO4. The solvent was concentrated under reduced pressure. The 

reaction mixture was purified by column chromatography over silica gel (PE:EE 3:1 v/v). 

 

General procedure 2 (GP 2) - cleavage of the methyl group 

The required amount of the protected compound (1 eq.) was dissolved in a mixture consisting of 

methanol/dioxane (10:7; resulting in a 0.08 M solution). Subsequently NaOH solution (2M, 10 eq.) 

was added dropwise at 0 °C and the reaction mixture was allowed to warm up to rt. Stirring was 

continued until TLC showed the consumption of all starting material. Then brine, HCl (1M) and 

DCM were added. The combined aqueous layers were repeatedly extracted with DCM. The 

combined organic layers were dried over Na2SO4. The solvent was concentrated under reduced 

pressure to yield the free acid. Remaining dioxane was removed through repetitive stripping with 

ethyl acetate. 

 

General procedure 3 (GP 3) - cleavage of the Boc group 

The required amount of the protected compound (1 eq.) was dissolved in ethyl acetate (resulting 

in a 0.1M solution). The solution was cooled to 0°C and TFA (3 mL/mmol starting material) was 

added dropwise. After 30 min the reaction mixture was allowed to warm to rt. Stirring was 

continued for additional three hours. The reaction mixture was concentrated under reduced 

pressure to provide a quantitative yield of the trifluoroacetate salt. Remaining solvent and TFA 

was removed through repetitive stripping with ethyl acetate. 

  



 

Experimental Section 

 

110 

General procedure 4 (GP 4) - peptide bond formation 

The required amount of acid monomer building block (1 eq.) was dissolved in dry DMF at rt. 

Afterwards EDIPA (3 eq.) was added dropwise and the solution was cooled to 0°C and COMU 

(0.98 eq.) was added. The ice bath was removed, allowing the reaction solution to warm to rt 

again and stirring was continued for additional one hour. The required amount of basic monomer 

building block (1 eq.) was added and the reaction mixture was stirred for at least 4 days. 

Consumption of the starting material was monitored by TLC. After complete conversion, the 

reaction mixture was diluted with ethyl acetate and washed with HCl (1M), saturated NaHCO3 

solution and brine. The combined organic layers were dried over MgSO4. The solvent was removed 

under reduced pressure. 
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Cyclic pseudo-octapeptide H4pat1 

 

 

 

According to GP 4 the dimeric building block 2-((R)-1-(2-((S)-1-amino-2-methylpropyl)-1,5-

dimethyl-1H-imidazole-4-carboxamido)-2-methylpropyl)-1,5-dimethyl-1H-imidazole-4-carboxylic 

acid (336 mg, 0.670 mmol, 1 eq.) was dissolved in 50 mL of dry DMF, EDIPA (431 mg, 0.582 mL, 

3.35 mmol, 5 eq.) and COMU (0.281 g, 0.657 mmol, 0.98 eq.) were added. The completion of the 

reaction was monitored by TLC, work up was carried out after seven days and delivered 186 mg 

(0.241 mmol, 36%) as a pale yellow powder. 

 

1H-NMR (600 MHz, MeOH-d4) δ = 0.89 (d, 3H, J = 6.9 Hz, CHCH3); 0.92 (d, 3H, J = 6.7 Hz, CHCH3); 

2.03-2.18 (m, 1H, CH(CH3)2); 2.54 (s, 3H, ChetCH3); 3.56 (s, 3H, NCH3); 5.16 (m, 1H, CαH); 8.20 (d, 

1H, J = 9.6 Hz, NH) ppm. 

13C-NMR (151 MHz, MeOH-d4) δ = 10.10, 10.58 (Imi-C-CH3); 18.41, 19.40, 20.01, 20.34 (CH(CH3)2); 

30.11, 30.62 (CH(CH3)2); 32.12, 33.32 (Val-Imi-N-CH3); 50.63, 50.97 CαH (Val-Imi); 132.18 

(ChetCONH); 135.42, 135.67 (ChetNCH3); 148.19, 148.74 (CAzol); 164.31 (CONH) ppm. 

HR (+) ESI MS m/z calcd. for [MH+] 773.4939, found 773.4925. 
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Cyclic pseudo-octapeptide H4pat2 

 

 

 

According to GP 4 the dimeric building block 2-((S)-1-(2-((S)-1-amino-2-methylpropyl)-1,5-

dimethyl-1H-imidazole-4-carboxamido)-2-methylpropyl)-1,5-dimethyl-1H-imidazole-4-carboxylic 

acid (1.52 g, 3.76 mmol, 1 eq.) was dissolved in 75 mL of dry DMF, EDIPA (1.458 g, 1.965 mL, 

11.28 mmol, 3 eq.) and COMU (1.576 g, 3.68 mmol, 0.98 eq.) were added. The completion of the 

reaction was monitored by TLC, work up was carried out after five days and delivered 560 mg 

(0.725 mmol, 19%) as a pale yellow powder. 

 

1H-NMR (600 MHz, MeOH-d4) δ = 0.87 (d, 3H, J = 6.7 Hz, CHCH3); 1.11 (d, 3H, J = 6.7 Hz, CHCH3); 

2.21 – 2.35 (m, 1H, CH(CH3)2); 2.48 (s, 3H, ChetCH3); 3.61 (s, 3H, NCH3); 4.97 (m, 1H, CαH); 7.81 (d, 

1H, J = 9.6 Hz, NH) ppm. 

13C-NMR (151 MHz, MeOH-d4) δ = 10.34 (Imi-C-CH3); 19.58, 20.06 (CH(CH3)2); 30.13 (Val-Imi-N-

CH3); 33.07 (CH(CH3)2); 50.29 CαH (Val-Imi); 129.70 (ChetCONH); 132.10 (ChetNCH3); 149.21 (CAzol); 

162.91 (CONH) ppm. 

HR (+) ESI MS m/z calcd. for [MH+] 773.4339, found 773.4328. 
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Synthesis of H4pat4 

 

Methyl 2-((S)-1-(tert-butoxycarbonylamino)-2-methylpropyl)-5-methyl-oxazole-4-carboxylate (1) 

 

 

 

According to GP 1 2.0 g (6.05 mmol; 1 eq.) of Methyl-2-((S)-(tert-butoxycarbonylamino)-3-

methylbutanamido)-3-oxobutanoate, 3.4 mL (24.22 mmol; 4 eq.) of triethylamine, 3.2 g 

(12.11 mmol; 2 eq.) of triphenylphosphine and 1.2 mL (12.11 mmol; 2 eq.) of carbon tetrachloride 

were dissolved in 125 mL dry DCM. Purification by column chromatography (petrol ether and ethyl 

acetate 3:1 v/v) afforded 1.27 g (4.07 mmol; 67 %) of 1 as a pale yellow oil. 

 

1H-NMR (200 MHz, CDCl3) δ = 0.91 (d, 3H, J = 6.8 Hz, CHCH3); 0.94 (d, 3H, J = 6.9 Hz, CHCH3); 1.45 

(s, 9H, C(CH3)3); 2.15 – 2.24 (m, 1H, CH(CH3)2); 2.63 (s, 3H, ChetCH3); 3.88 (s, 1H, CO2CH3); 4.72 (m, 

1H, CαH); 5.25 (d, 1H, J = 9.1 Hz, NH) ppm. 

 

(S)-2-(1-(tert-butoxycarbonylamino)-2-methylpropyl)-5-methyl-oxazole-4-carboxylic acid (2) 

 

 

 

According to GP 2 1270 mg (4.07 mmol; 1 eq.) of 1 and 20 mL (10 eq.) of NaOH were dissolved in 

dioxane/MeOH mixture (51 mL). This gave 863 mg (2.89 mmol; 71%) of 2 as a pale yellow oil. 

 

1H-NMR (200 MHz, CDCl3) δ = 0.92 (d, 3H, J = 6.9 Hz, CHCH3); 0.94 (d, 3H, J = 6.9 Hz, CHCH3); 1.41 

(s, 9H, C(CH3)3); 2.11 – 2.26 (m, 1H, CH(CH3)2); 2.64 (s, 3H, ChetCH3); 4.74 (m, 1H, CαH); 5.94 (d, 1H, 

J = 9.1 Hz, NH) ppm. 
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Methyl 2-((R)-1-(tert-butoxycarbonylamino)-2-methylpropyl)-5-methyl-oxazole-4-carboxylate (3) 

 

 

 

According to GP 1 2.0 g (6.05 mmol; 1 eq.) of Methyl-2-((R)-(tert-butoxycarbonylamino)-3-

methylbutanamido)-3-oxobutanoate, 3.4 mL (24.22 mmol; 4 eq.) of triethylamine, 3.2 g 

(12.11 mmol; 2 eq.) of triphenylphosphine and 1.2 mL (12.11 mmol; 2 eq.) of carbon tetrachloride 

were dissolved in 125 mL dry DCM. This afforded 1.57 g (5.03 mmol; 83 %) of 3 as a pale yellow 

oil. 

 

1H-NMR (600 MHz, CDCl3) δ = 0.88 (d, 3H, J = 6.8 Hz, CHCH3); 0.91 (d, 3H, J = 6.9 Hz, CHCH3); 1.42 

(s, 9H, C(CH3)3); 2.10 – 2.20 (m, 1H, CH(CH3)2); 2.61 (s, 3H, ChetCH3); 3.90 (s, 1H, CO2CH3); 4.72 (m, 

1H, CαH); 5.25 (d, 1H, J = 9.1 Hz, NH) ppm. 

13C NMR (151 MHz, MeOH-d4) δ = 12.06 (Imi-C-CH3); 17.95, 18.80 (CH(CH3)2); 28.31 (C(CH3)3);  

30.97(CH(CH3)2); 52.06 (CO2CH3); 79.95 (C(CH3)3); 127.25 (ChetCONH); 155.42 (Imi-C-CH3); 156.53 

(CO2-C(CH3)3); 162.17 (CO2CH3) ppm. 

(+) ESI MS: m/z calcd. for [MH+] 313.18, found 313.02, calcd. for [MNa+] 335.16, found 335.09. 
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(R)-1-(4-carboxylate-5-methyl-oxazol-2-yl)-2-methylpropan-1-ammonium trifluoroacetate (4) 

 

 

 

According to GP 3 1.57 g (5.03 mmol; 1 eq.) of 3 and 15.1 mL TFA were dissolved in 50 mL ethyl 

acetate. This yielded 1.64 g (5.04 mmol, quantitative) of 4 as a pale yellow oil. 

 

1H-NMR (600 MHz, MeOH-d4) δ = 1.02 (d, 3H, J = 6.9 Hz, CHCH3); 1.14 (d, 3H, J = 6.9 Hz, CHCH3); 

2.38 – 2.52 (m, 1H, CH(CH3)2); 2.59 (s, 3H, ChetCH3); 3.90 (s, 1H, CO2CH3); 4.38-4.52 (m, 1H, CαH); 

8.97 (m, 3H, NH3) ppm. 

13C-NMR (151 MHz, MeOH-d4) δ = 11.92 (Imi-C-CH3); 17.26, 19.47 (CH(CH3)2); 29.31(CH(CH3)2);  

51.15 (CO2CH3); 127.40 (ChetCONH); 157.37 (Imi-C-CH3); 162.25 (CO2CH3) ppm. 

(+) ESI MS m/z calcd. for [MH+] 213.12, found 213.01. 
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Methyl 2-((R)-1-((S)-1-(1-(tert-butoxycarbonylamino)-2-methylpropyl)-5-methyloxazole-4-

carboxamido)-2-methylpropyl)-oxazole-4-carboxylate (5) 

 

 

 

According to GP 4 0.75 g (2.51 mmol; 1 eq.) of 2, 1.09 g (3.27 mmol; 1.3 eq.) of 4, 1.06 g 

(2.46 mmol; 0.98 eq.) of COMU and 1.31 mL (7.54 mmol; 3 eq.) of EDIPA were dissolved in 150 mL 

dry DMF and stirred for 17 days. This yielded 1.08 g (2.19 mmol; 87%) of 5 as a pale yellow oil. 

 

1H-NMR (200 MHz, CDCl3) δ = 0.94 (d, 3H, J = 6.9 Hz, CHCH3); 0.95 (d, 3H, J = 6.9 Hz, CHCH3); 0.96 

(d, 3H, J = 6.8 Hz, CHCH3); 1.00 (d, 3H, J = 6.9 Hz, CHCH3); 1.46 (s, 9H, C(CH3)3); 2.08 – 2.21 (m, 1H, 

CH(CH3)2); 2.23 – 2.37 (m, 1H, CH(CH3)2); 2.59 (s, 3H, ChetCH3); 2.61 (s, 3H, ChetCH3); 3.90 (s, 1H, 

CO2CH3); 4.68 (m, 1H, CαH); 5.13 (m, 1H, CαH); 7.41 (d, 1H, J = 9.5 Hz, NH) ppm. 

(+) ESI MS m/z calcd. for [MNa+] 515.25, found 515.13. 
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Methyl 2-((R)-1-(1-((S)-1-(tert-butoxycarbonylamino)-2-methylpropyl)-5-methyloxazole-4-

carboxamido)-2-methylpropyl)-oxazole-4-carboxylic acid (6) 

 

 

 

According to GP 2 1.08 g (2.19 mmol; 1 eq.) of 5 and 30 mL of NaOH (aqueous, 2M, 30 eq.) were 

dissolved in dioxane/MeOH mixture (51 mL). This afforded 0.66 g (1.37 mmol; 63 %) of 6 as a pale 

yellow oil. 

 

1H-NMR (200 MHz, CDCl3) δ = 0.88 (d, 3H, J = 6.9 Hz, CHCH3); 0.92 (d, 3H, J = 6.9 Hz, CHCH3); 0.96 

(d, 3H, J = 6.8 Hz, CHCH3); 1.00 (d, 3H, J = 6.9 Hz, CHCH3); 1.46 (s, 9H, C(CH3)3); 2.08 – 2.21 (m, 1H, 

CH(CH3)2); 2.23 – 2.37 (m, 1H, CH(CH3)2); 2.59 (s, 3H, ChetCH3); 2.61 (s, 3H, ChetCH3); 4.69 (m, 1H, 

CαH); 5.14 (m, 1H, CαH); 7.43 (d, 1H, J = 9.7 Hz, NH) ppm. 
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Methyl 2-((R)-1-(1-((S)-2-methylpropyl-1-ammonium fluoroacetate)-5-methyl-oxazol-2-yl-4-

carboxamido)-2-methylpropyl)-oxazole-4-carboxylic acid (7) 

 

 

 

According to GP 3 0.66 g (1.37 mmol; 1 eq,) of 6 and 4.1 mL TFA were dissolved in ethyl acetate 

(20 mL). A quantitative yield was obtained 0.68 g (1.37 mmol; quantitative) of 7 as a pale yellow 

solid.  

 

1H-NMR (200 MHz, CDCl3) δ = 0.89 (d, 3H, J = 6.9 Hz, CHCH3); 0.92 (d, 3H, J = 6.9 Hz, CHCH3); 0.95 

(d, 3H, J = 6.8 Hz, CHCH3); 1.01 (d, 3H, J = 6.9 Hz, CHCH3); 2.09 – 2.20 (m, 1H, CH(CH3)2); 2.24 – 2.36 

(m, 1H, CH(CH3)2); 2.59 (s, 3H, ChetCH3); 2.61 (s, 3H, ChetCH3); 4.67 (m, 1H, CαH); 5.12 (m, 1H, CαH); 

7.46 (d, 1H, J = 9.7 Hz, NH) ppm. 

(+) ESI MS m/z calcd. for [M-] 377.18, found 377.49. 
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Cyclic pseudo-octapeptide H4pat4  

 

 

 

According to GP 4 0.68 g (2.26 mmol; 1 eq.) of 7, 0.95 g (2.22 mmol; 0.98 eq.) of COMU and 

1.18 mL (6.78 mmol; 3 eq.) of EDIPA were dissolved in 150 mL dry DMF. Work up and subsequent 

column chromatography (PE:EE 2:1) yielded 582 mg (37%) of the desired product as a white 

powder. 

 

1H-NMR (600 MHz, CDCl3) δ = 0.91 (d, 3H, J = 6.9 Hz, CHCH3); 0.95 (d, 3H, J = 6.9 Hz, CHCH3), 2.25-

2.32 (m, 1H, CH(CH3)2); 2.56-2.62 (m, 1H, CH(CH3)2); 2.65 (s, 3H, ChetCH3); 5.28 (m, 1H, CαH); 8.09 

(d, 1H J = 9.6 Hz, NH) ppm. 

13C NMR (151 MHz, MeOH-d4) δ = 14.17, 16.82 (Val-Imi-C-CH3); 20.40, 21.53 CH(CH3)2; 36.96 

(CH(CH3)2); 55.56 (CαH); 132.03 (ChetCONH) (ChetNCH3); 158.29 (CAzol); 165.01, 165.52 (CONH) ppm. 

HR (+) ESI MS m/z calcd. for [MNa+] 743.35, found 743.35. 

 

  



 

Experimental Section 

 

120 

[Cu2pat4(OH)]– 

 

20 µL of a methanolic solution of H4pat4 were treated with 2 eq. of (n-Butyl)4N(OMe) in MeOH 

and 2 eq. of Cu(OTf)2, which gave a blue solution. 

 

HR (-) FAB MS m/z calcd. for [Cu2pat4(OH)]- (C36H45Cu2N8O9
–) 859.1907, found 859.1903 (Int.: 

8x106, 47.4%) 

Experimental: 

 

Simulated: 
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Cyclic pseudo-octapeptide H4pat5 

 

According to GP 4 the dimeric building block (4S,5R)-2-((S)-1-(2-((R)-1-amino-2-methylpropyl)-5-

methylthiazole-4-carboxamido)-2-methylpropyl)-5-methyl-4,5-dihydrooxazole-4-carboxylic acid 

(320 mg, 0.647 mmol, 1 eq.) was dissolved in 40 mL of dry DMF, EDIPA (251 mg, 0.337 mL, 

1.941 mmol, 3 eq.) and COMU (0.271 g, 0.634 mmol, 0.98 eq.) were added. The completion of the 

reaction was monitored by TLC, work up was carried out after six days and delivered 142 mg 

(0.167mmol, 26%) as a pale yellow powder. 

 

1H-NMR (600 MHz, MeOH-d4) δ = 0.78 (d, 3H, J = 6.9 Hz, CHCH3); 0.92 (d, 3H, J = 6.6 Hz, CHCH3); 

0.97 (d, 3H, J = 6.8 Hz, CHCH3); 0.99 (d, 6H, J = 6.9 Hz, CoxaHCH3); 1.04 (d, 3H, J = 6.9 Hz, CHCH3); 

2.17 – 2.29 (m, 2H, CH(CH3)2); 2.54 (s, 3H, CthiaCH3); 4.02 (d, 1H, J = 6.3 Hz, CoxaHCH3); 4.78 – 4.82 

(m, 1H, CoxaHCH3); 5.02 (d, 3H, J = 8.7 Hz); 5.24 (dd, 1H, J = 9.7, 8.2 Hz, CHCthia); 7.61 (d, J = 9.7 Hz, 

NH); 8.63 (d, 1H, J = 8.2 Hz, NH) ppm. 

13C-NMR (151 MHz, MeOH-d4) δ = 11.92 (CthiaCH3); 18.42, 19,21, 19.47, 19.52 (CH(CH3)2); 21.87 

(CoxaHCH3); 31.82, 33.21 (CH(CH3)2); 52.19 (CHCoxa); 54.51 (CHCthia); 74.21 (CoxaHCO); 82.33 

(CoxaHCH3); 140.85 (CthiaCH3); 143.59 (CthiaCO); 161.42 (CHCoxa); 164.02 (CHCthia); 169.19 

(CthiaCONH), 171.21 (CoxaHCONH) ppm. 

HR (+) ESI MS m/z calcd. for [MH+] 757.9900, found 757.9972. 

 

  



 

Experimental Section 

 

122 

[Cu2pat5(OH)]– 

 

20 µL of a methanolic solution of H4pat5 were treated with 2 eq. of (n-Butyl)4N(OMe) in MeOH 

and 2 eq. of Cu(OTf)2, which gave a blue solution. 

 

HR (-) FAB MS m/z calcd. for [Cu2pat5(OH)]- (C36H49Cu2N8O7S2
–) 895.1764, found 895.1763 (Int.: 

2x106, 8.5%) 

HR (-) FAB MS m/z calcd. for [Cu2pat5(OMe)]- (C37H51Cu2N8O7S2
–) 909.1921, found 909.1920 

(Int.:3x106, 12.0%) 

 

Experimental:  

 

Simulated: 
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Synthesis of H4pat-Atto550 and H4pat-Reporter Group 

 

Scheme B1. Schematic synthesis of H4pat-RG (19), the syntheses of 11 and 14 are omitted for clarity and 
were accomplished analogously as described by HABERHAUER et al.62 RG: A: Atto550 or B: Proxyl.  
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Methyl2-((S)-6-(((benzyloxy)carbonyl)amino)-2-((tert-butoxycarbonyl)amino)hexanamido)-3-

oxobutanoate (8) 

 

The reaction was accomplished corresponding to literature procedures for similar compounds.62 

 

N-Boc-N’-Cbz-S-lysine (3.1 g, 12.4 mmol, 1 eq.) was dissolved in THF (90 mL) and N-

methylmorpholine (2.7 mL, 2.5 g, 24.8 mmol, 2 eq.) was added. The reaction mixture was cooled 

to -30°C. Iso-butylchloroformate (4.9 mL, 5.1 g, 37.1 mmol, 1 eq.) was added to the reaction 

mixture, which was subsequently stirred for 1h at -30°C. 1-methoxy-1,3-dioxobutan-2-

ammoniumchloride (3.0 g, 12.4 mmol, 1 eq.) was added and the reaction mixture was stirred for 

6 h at -30°C, then allowed to warm to room temperature and stirred overnight. The solvent was 

evaporated and the residue was dissolved in EtOAc. The solution was washed with water and 

saturated NaCl solution, and finally dried over Na2SO4. Evaporation of the solvent delivered the 

crude product, which was purified by flash column chromatography with PE:EE (1:1 v/v) as eluent 

to yield a colourless oil (5.1 g, 85 %) 

 

1H-NMR (600 MHz, CDCl3) δ = 1.35-1.41 (m, 2H, O-CH2 -Ph (Cbz)); 1.41 (s, 9H, C(CH3)3); 1.44-1.53 

(m, 2H, Cbz-NH-CH2-CH2-(CH2)2-); 1.60-1.67 (m, 1H, Cbz-NH-(CH2)3-CH2-); 1.76-1.84 (m, 1H, Cbz-

NH-(CH2)3-CH2-); 2.34 (s, 3H, COCH3); 3.07-3.23 (m, 2H, Cbz-NH-CH2-(CH2)3-); 3.68 (s, 3H, CO2CH3); 

4.10-4.20 (m, 1H, Cbz-NH-(CH2)4-CH); 4.96-5.03 (bs, 1H, NHCH); 5.13-5.27 (m, 2H, Ph-CH2); 5.20-

5.28 (m, 1H, COCH3-CH-CO2Me); 7.26-7.30 (m, 1H, Cbz); 7.33-7.36 (m, 4H, Cbz) ppm. 

13C-NMR (151 MHz, CDCl3) δ = 22.23 (Cbz-NH-(CH2)2-CH2-); 27.95 (COCH3); 28.29 (C(CH3)3); 29.44 

(Cbz-NH-(CH2)3-CH2-); 31.74 (Cbz-NH-CH2-CH2-); 40.34 (Cbz-NH-CH2-(CH2)3); 53.35 (Cbz-NH-(CH2)4-

CH); 54.20 (CO2CH3); 62.88 (COCH3-CH-CO2Me); 66.62 (Ph-CH2); 79.17 (C(CH3)3); 128.08 (o-C, Cbz); 

128.14 (o-C, Cbz); 128.50 (p-C, Cbz); 128.53 (m-C, Cbz); 136.63 (ipso-C, Cbz); 155.73 (CO2-C(CH3)3); 

156.62 (CO2-Bn); 166.41 (CO2-CH3); 171.08 (CO-NH); 198.23 (CH-COCH3) ppm. 

(+) ESI MS m/z calcd. for [MNa+] 516.24, found 516.23. 

Microanalysis: calcd. C 58.41%, H 7.15%, N 8.51%, found: 58.04%, 7.02%, 8.63%  



 

Experimental Section 

 

125 

Methyl(S)-2-(13,13-dimethyl-3,11-dioxo-1-phenyl-2,12-dioxa-4,10-diazatetradecan-9-yl)-1,5-

dimethyl-1H-imidazole-4-carboxylate (9) 

 

 

 

According to literature 62 the substrate 8 (13.0 g, 41.9 mmol, 1 eq.) was dissolved in 500 mL o-

xylene and glacial acid (23.8 mL, 25.2 g, 419 mmol, 10 eq.) and MeNH2 in EtOH (1.25 M, 18.1 mL, 

6.5 g, 210 mmol, 5 eq.) was added. The reaction mixture was stirred for 8 h at 160 °C. The solvent 

was removed and the residue dissolved in EtOAc. The organic layer was washed with NaHCO3 and 

brine, then dried over Na2SO4 and concentrated. Purification with flash column chromatography 

(SiO2, ethyl acetate/petrol ether 2:1 v/v) delivered the desired product as a white solid (9.65 g, 72 

%) 

 

1H-NMR (600 MHz, CDCl3) δ = 1.28-1.35 (m, 2H, O-CH2-Ph (Cbz)); 1.40 (s, 9H, C(CH3)3); 1.42-1.45 

(m, 2H, Cbz-NH-CH2-CH2-(CH2)2-); 1.86-1.94 (m, 1H, Cbz-NH-(CH2)3-CH2-); 1.94-2.00 (m, 1H, Cbz-

NH-(CH2)3-CH2-); 2.53 (s, 3H, Imi-C-CH3); 3.15-3.22 (m, 2H, Cbz-NH-CH2-(CH2)3-); 3.57 (s, 3H, Imi-N-

CH3); 3.86 (s, 3H, CO2CH3); 4.80-4.86 (m, 1H, Cbz-NH-(CH2)4-CH); 4.91-4.95 (bs, 1H, NHCH); 5.06-

5.11 (m, 2H, Ph-CH2); 7.29-7.33 (m, 1H, Cbz); 7.33-7.38 (m, 4H, Cbz) ppm. 

13C-NMR (151 MHz, CDCl3) δ = 10.20 (Lys-Imi-C-CH3); 22.71 (Cbz-NH-(CH2)2-CH2-); 28.32 (C(CH3)3); 

29.71 (Cbz-NH-(CH2)3-CH2-); 30.30 (Cbz-NH-CH2-CH2-); 34.02 (Imi-N-CH3); 40.55 (Cbz-NH-CH2-

(CH2)3); 53.41 (Cbz-NH-(CH2)4-CH); 56.06 (CO2CH3); 66.55 (Ph-CH2); 79.95 (C(CH3)3); 128.07 (o-C, 

Cbz); 128.11 (p-C, Cbz); 128.51 (m-C, Cbz); 136.68 (ipso-C, Cbz); 148.12 (Lys-Imi-C-CH3); 155.48 

(CO2-C(CH3)3); 156.46 (CO2-Bn); 165.84 (CO2CH3) ppm. 

(+) ESI MS m/z calcd. for [MH+] 489.26, found 489.21. 
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(S)-2-(13,13-dimethyl-3,11-dioxo-1-phenyl-2,12-dioxa-4,10-diazatetradecan-9-yl)-1,5-dimethyl-

1H-imidazole-4-carboxylic acid (10) 

 

 

 

According to GP 3 1.27 g (4.07 mmol, 1 eq.) of 9 and 20 mL (10 eq.) of NaOH (2 M, aq) were 

dissolved in dioxane/MeOH mixture (51 mL). This gave 863 mg (2.89 mmol; 71%) of 10 as a pale 

yellow oil. 

 

1H-NMR (600 MHz, CDCl3) δ = 1.28-1.35 (m, 2H, O-CH2 -Ph (Cbz)); 1.40 (s, 9H, C(CH3)3); 1.42-1.45 

(m, 2H, Cbz-NH-CH2-CH2-(CH2)2-); 1.86-1.94 (m, 1H, Cbz-NH-(CH2)3-CH2-); 1.94-2.00 (m, 1H, Cbz-

NH-(CH2)3-CH2-); 2.53 (s, 3H, Imi-C-CH3); 3.15-3.22 (m, 2H, Cbz-NH-CH2-(CH2)3-); 3.56 (s, 3H, Imi-N-

CH3); 4.80-4.86 (m, 1H, Cbz-NH-(CH2)4-CH); 4.91-4.95 (bs, 1H, NHCH); 5.06-5.11 (m, 2H, Ph-CH2); 

5.11-5.15 (m, 1H, COCH3-CH-CO2CH3); 7.29-7.33 (m, 1H, Cbz); 7.33-7.38 (m, 4H, Cbz) ppm. 

13C-NMR (151 MHz, CDCl3) δ = 10.21 (Lys-Imi-C-CH3); 22.32 (Cbz-NH-(CH2)2-CH2-); 28.32 (C(CH3)3); 

29.18 (Cbz-NH-(CH2)3-CH2-); 30.26 (Cbz-NH-CH2-CH2-); 33.92 (Lys-Imi-N-CH3); 40.40 (Cbz-NH-CH2-

(CH2)3); 53.32 (Cbz-NH-(CH2)4-CH); 62.88 (COCH3-CH-CO2CH3); 66.58 (Ph-CH2); 79.80 (C(CH3)3); 

127.27 (o-C, Cbz); 128.07 (p-C, Cbz); 128.50 (m-C, Cbz); 136.63 (ipso-C, Cbz); 148.29 (Imi-C-CH3); 

155.90 (CO2-C(CH3)3); 156.70 (CO2-Bn); 173.18 (COOH) ppm. 

(+) ESI MS m/z calcd. for [MH+] 475.25, found 475.26. 
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Val-Imi-NH3
+ TFA– (11) 

2,2,2-trifluoroacetic acid, (S)-1-(4-(methoxycarbonyl)-1,5-dimethyl-1H-imidazol-2-yl)-2-

methylpropan-1-iminium salt 

 

 

 

 

As described in GP 3 5.81 g of the monomer building block methyl (S)-2-(1-((tert-butoxycarbonyl) 

amino)-2-methylpropyl)-1,5-dimethyl-1H-imidazole-4-carboxylate (15.6 mmol, 1 eq.) and 46 mL 

TFA were dissolved in 150 mL ethyl acetate. This gave 5.29 g (14.8 mmol, 95%) as a colourless oil. 

 

1H-NMR (600 MHz, CDCl3) δ = 0.84 (d, 3H, J = 6.3 Hz, CHCH3); 1.08 (d, 3H, J = 6.9 Hz, CHCH3); 2.32 

– 2.43 (m, 1H, CH(CH3)2); 2.46 (s, 3H, ChetCH3); 3.60 (s, 3H, NhetCH3); 3.82 (s, 1H, CO2CH3); 4.45-4.58 

(m, 1H, CαH) ppm. 
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Lys(Imi)-Val(Imi) (12) 

Methyl2-((S)-1-(1,5-dimethyl-2-((S)-2,2,14,14-tetramethyl-4,12-dioxo-3,13-dioxa-5,11-

diazapentadecan-6-yl)-1H-imidazole-4-carboxamido)-2-methylpropyl)-1,5-dimethyl-1H-

imidazole-4-carboxylate 

 

 

 

According to GP 4, 10 (2.14 g, 4.503 mmol, 1 eq.) was dissolved in 200 mL of dry DMF, EDIPA 

(2.91 g, 3.92 mL, 22.5 mmol, 5 eq.), COMU (1.89 g, 4.41 mmol, 0.98 eq.) and Val-Imi-NH2 (11, 

synthesis reported in 62) (1.53 g, 4.50 mmol, 1 eq.) were added. The completion of the reaction 

was monitored by TLC, work up was carried out after six days and delivered 1.60 g (2.47 mmol, 

55%) as a white powder. 

1H-NMR (600 MHz, MeOH-d4) δ = 0.82 (d, 3H, CH(CH3)2, J = 6.7 Hz); 1.05 (d, 3H, CH(CH3)2, J = 6.6 

Hz); 1.29-1.35 (m, 2H, Cbz-NH-(CH2)2-CH2-CH2); 1.38 (s, 9H, C(CH3)3); 1.49-1.57 (m, 2H, Cbz-NH-

CH2-CH2-(CH2)2-); 1.81-1.88 (m, 1H, Cbz-NH-(CH2)3-CH2-); 1.89-1.96 (m, 1H, Cbz-NH-(CH2)3-CH2-); 

2.06-2.08 (m, 1H, CH(CH3)2); 2.46 (s, 3H, Val-Imi-C-CH3); 2.49 (s, 3H, Lys-Imi-C-CH3); 3.08-3.12 (m, 

2H, Cbz-NH-CH2-(CH2)3-); 3.51 (bs, 3H, Val-Imi-N-CH3); 3.65 (s, 3H, Lys-Imi-N-CH3); 3.81 (s, 3H, 

CO2CH3); 4.67-4.75 (m, 1H, CαH Lys-Imi); 5.03 (s, 2H, Ph-CH2); 5.06-5.11 (m, 1H, CαH Val-Imi); 7.24-

7.33 (m, 5H, Cbz) ppm. 

13C-NMR (151 MHz, MeOH-d4) δ = 9.83 (Val-Imi-C-CH3); 10.20 (Lys-Imi-C-CH3); 19.62, 19.87 

(CH(CH3)2); 24.67 (Cbz-NH-(CH2)2-CH2-); 28.71 (C(CH3)3); 30.50 (Cbz-NH-(CH2)3-CH2); 31.00 (Cbz-

NH-CH2-CH2-); 32.92 (Lys-Imi-N-CH3); 34.54 (Val-Imi-N-CH3); 38.66 (CH(CH3)2); 40.48 (Cbz-NH-CH2-

(CH2)3); 52.15 CαH (Val-Imi); 52.22 CαH (Lys-Imi); 68.18 (Ph-CH2);79.29 (C(CH3)3); 125.38 (ChetCO-

NH); 126.52 (ChetCO2CH3); 128.74 (o-C, Cbz); 128.94 (p-C, Cbz); 129.47 (m-C, Cbz); 131.28 

(ChetNCH3); 132.01 (ChetNCH3); 135.31 (ipso-C, Cbz); 152.23 (CAzol); 152.26 (CAzol); 153.42 (CO2-

C(CH3)3); 158.96 (CO2-Bn); 161.20 (CO2CH3); 164.42 (CONH) ppm. 

HR (+) ESI MS m/z calcd. for [MNa+] 704.3748, found 704.3776 
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NH2-Lys(Imi)-Val(Imi) (13) 

(S)-5-((tert-butoxycarbonyl)amino)-1-(4-(((S)-1-(4-(methoxycarbonyl)-1,5-dimethyl-1H-imidazol-

2-yl)-2-methylpropyl)carbamoyl)-1,5-dimethyl-1H-imidazol-2-yl)pentan-1-aminium 2,2,2-

trifluoroacetate (13) 

 

 

 

As described in GP 3, 1.60 g of 12 (2.47 mmol, 1 eq) and 10 mL TFA were dissolved in 50 mL ethyl 

acetate. This gave 1.63 g (2.464 mmol, quantitative) as a pale yellow oil. 

 

1H-NMR (600 MHz, MeOH-d4) δ = 0.84 (d, 3H, CH(CH3)2, J = 6.7 Hz); 0.97 (d, 3H, CH(CH3)2, J = 

6.5 Hz); 1.24-1.26 (m, 2H, Cbz-NH-(CH2)2-CH2-CH2); 1.50-1.59 (m, 2H, Cbz-NH-CH2-CH2-(CH2)2-); 

1.81-1.88 (m, 1H, Cbz-NH-(CH2)3-CH2-); 2.04-2.07 (m, 1H, CH(CH3)2); 2.16-2.24 (m, 1H, Cbz-NH-

(CH2)3-CH2-); 2.49 (s, 3H, Val-Imi-C-CH3); 2.64 (s, 3H, Lys-Imi-C-CH3); 3.15-3.20 (m, 2H, Cbz-NH-CH2-

(CH2)3-); 3.63 (bs, 3H, Val-Imi-N-CH3); 3.73 (s, 3H, Lys-Imi-N-CH3); 3.89 (s, 3H, CO2CH3); 4.87-4.94 

(m, 1H, CαH (Lys-Imi)); 5.07 (s, 2H, Ph-CH2); 5.13-5.18 (m, 1H, CαH (Val-Imi)); 7.28-7.39 (m, 5H, Cbz) 

ppm. 

13C-NMR (151 MHz, MeOH-d4) δ = 9.70, 9.92 (Val-Imi-C-CH3) / (Lys-Imi-C-CH3); 19.42, 19.63 

(CH(CH3)2);23.05 (Cbz-NH-(CH2)2-CH2-); 30.72 (Cbz-NH-(CH2)3-CH2-); 32.15 (Cbz-NH-CH2-CH2-); 

33.37 (Val-Imi-N-CH3); 35.34 (Lys-Imi-N-CH3); 38.64 (CH(CH3)2); 43.99 (Cbz-NH-CH2-(CH2)3); 50.98 

(CO2CH3); 51.82 CαH (Val-Imi); 52.25 CαH (Lys-Imi); 67.34 (Ph-CH2); 125.15 (ChetCO-NH); 125.96 

(ChetCO2Me); 128.74 (o-C, Cbz); 128.98 (p-C, Cbz); 129.47 (m-C, Cbz); 132.27 (ChetNCH3); 132.42 

(ChetNCH3); 134.28 (ipso-C, Cbz); 155.88 (CAzol); 156.19 (CAzol); 158.78 (CO2-Bn); 162.56 (CO2CH3); 

169.81 (CONH) ppm. 

(+) ESI MS m/z calcd. for [MH+] 582.3398, found 582.3402 
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Val-Imi-Val-Imi-OH (14) 

2-((S)-1-(2-((S)-1-((tert-butoxycarbonyl)amino)-2-methylpropyl)-1,5-dimethyl-1H-imidazole-4-

carboxamido)-2-methylpropyl)-1,5-dimethyl-1H-imidazole-4-carboxylic acid 

 

 

 

According to GP 2 1.2 g (2.41 mmol; 1 eq.) of the dimeric building block methyl 2-((S)-1-(2-((S)-1-

((tert-butoxycarbonyl) amino) -2-methyl propyl) -1,5-dimethyl -1H-imidazole-4-carboxamido)-2-

methyl propyl) -1,5-dimethyl-1H-imidazole-4-carboxylate and 40 mL of NaOH (aqueous, 2M, 

10 eq.) were dissolved in dioxane/MeOH mixture (150 mL). This afforded 850 mg (1.69 mmol; 70 

%) of 14 as a pale yellow oil. 

 

1H-NMR (200 MHz, CDCl3) δ = 0.86 (d, 3H, J = 6.7 Hz, CHCH3); 0.84 (d, 3H, J = 6.7 Hz, CHCH3); 0.91 

(d, 3H, J = 6.9 Hz, CHCH3); 1.02 (d, 3H, J = 6.8 Hz, CHCH3); 1.45 (s, 9H, C(CH3)3); 2.02 – 2.14 (m, 1H, 

CH(CH3)2); 2.14 – 2.23 (m, 1H, CH(CH3)2); 2.48 (s, 3H, ChetCH3); 2.54 (s, 3H, ChetCH3); 3.51 (s, 3H, 

ChetCH3); 3.60 (s, 3H, ChetCH3); 3.89 (s, 3H, CO2CH3); 4.92 (m, 1H, CαH); 5.19 (m, 1H, CαH) ppm. 
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Val(Imi)-Val(Imi)-Lys(Imi)-Val(Imi) (15) 

Methyl 2-((S)-1-(2-((S)-5-(((benzyloxy)carbonyl)amino)-1-(2-((S)-1-(2-((S)-1-((tert-

butoxycarbonyl)amino)-2-methylpropyl)-1,5-dimethyl-1H-imidazole-4-carboxamido)-2-

methylpropyl)-1,5-dimethyl-1H-imidazole-4-carboxamido)pentyl)-1,5-dimethyl-1H-imidazole-4-

carboxamido)-2-methylpropyl)-1,5-dimethyl-1H-imidazole-4-carboxylate  

 

According to GP 4, 13 (1.14 g, 1.68 mmol, 1 eq.) was dissolved in 100 mL of dry DMF, EDIPA 

(1.08 g, 1.46 mL, 8.39 mmol, 5 eq.), COMU (0.70 g, 1.65 mmol, 0.98 eq.) and Val(Imi)-Val(imi)-OH 

(14, synthesis reported in 62) (0.85 g, 1.68 mmol, 1 eq.) were added. The completion of the 

reaction was monitored by TLC, work up was carried out after 5 d and delivered 842 mg 

(0.79 mmol, 48%) as a pale yellow powder. 

 

1H-NMR (600 MHz, MeOH-d4) δ = 0.78-1.18 (m, 18H, CH(CH3)2); 1.23-1.29 (m, 2H, Cbz-NH-(CH2)2-

CH2-CH2); 1.51-1.60 (m, 2H, Cbz-NH-CH2-CH2-(CH2)2-); 1.82-1.96 (m, 1H, Cbz-NH-(CH2)3-CH2-); 2.00-

2.04 (m, 1H, Cbz-NH-(CH2)3-CH2); 2.03-2.15 (m, 3H, CH(CH3)2); 2.45, 2.47, 2.52, 2.57 (s, á 3H, Val-

Imi-C-CH3) / (s, 3H, Lys-Imi-C-CH3); 3.06-3.16 (m, 2H, Cbz-NH-CH2-(CH2)3-); 3.61, 3.64, 3.66, 3.70 

(bs, á 3H, (Val-Imi-N-CH3) / (bs, 3H, Lys-Imi-N-CH3); 4.65-4.75 (m, 1H, CαH (Val-Imi)); 4.94-5.13 (m, 

2H, CαH (Val-Imi)); 5.13-5.28 (m, 1H, CαH (Lys-Imi)); 7.23-7.34 (m, 5H, Cbz) ppm. 

(m, 2H, Ph-CH2) overlaid by MeOH-d4 

13C-NMR (151 MHz, MeOH-d4) δ = 9.57, 9.64, 9.68, 10.28 (Val-Imi-C-CH3), 18.51, 19.08, 19.18, 

19.39, 19.43, 19.74 (CH(CH3)2); 23.90 (Cbz-NH-(CH2)2-CH2-), 30.95 (Cbz-NH-CH2-CH2-), 31.35 (Val-

Imi-N-CH3), 32.04 (Lys-Imi-N-CH3), 36.67 (CH(CH3)2), 38.35 (Cbz-NH-(CH2)3-CH2-), 41.12 (Cbz-NH-

CH2-(CH2)3), 52.21, 52.30, 52.44, 53.80, CαH (Val-Imi), CαH (Lys-Imi), 54.29 (CO2CH3), 67.36 (Ph-

CH2), 125.46 (ChetCO-NH), 125.98 (ChetCO2Me), 128.42 (o-C, Cbz), 128.67 (p-C, Cbz), 129.19, (m-C, 

Cbz), 132.18 (ChetNCH3); 133.18 (ChetNCH3), 135.81 (ipso-C, Cbz), 154.34 (CAzol), 154.64 (CAzol), 

157.88 (CO2-C(CH3)3), 158.17 (CO2-Bn), 162.56 (CO2CH3), 169.81(CONH) ppm. 

HR (+) ESI MS m/z calcd. for [MNa+] 1090.6178, found 1090.6195.   
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H2N-Val(Imi)-Val(Imi)-Lys(Imi)-Val(Imi) (15A) 

Methyl 2-((S)-1-(2-((S)-1-(2-((S)-1-(2-((S)-1-amino-2-methylpropyl)-1,5-dimethyl-1H-imidazole-4-

carboxamido)-2-methylpropyl)-1,5-dimethyl-1H-imidazole-4-carboxamido)-5-

(((benzyloxy)carbonyl)amino)pentyl)-1,5-dimethyl-1H-imidazole-4-carboxamido)-2-

methylpropyl)-1,5-dimethyl-1H-imidazole-4-carboxylate 

 

 

 

As described in GP 3, 1.60 g of 15 (2.47 mmol, 1 eq.) and 10 mL TFA were dissolved in 50 mL ethyl 

acetate. This gave quantitative yield (1.63 g, 2.464 mmol) as a pale yellow oil. 

 

1H-NMR (600 MHz, MeOH-d4) δ = 0.80-1.13 (m, 18H, CH(CH3)2); 1.34-1.41 (m, 2H, Cbz-NH-(CH2)2-

CH2-CH2); 1.53-1.64 (m, 2H, Cbz-NH-CH2-CH2-(CH2)2-); 1.73-1.95 (m, 1H, Cbz-NH-(CH2)3-CH2-); 1.92-

2.03 (m, 1H, Cbz-NH-(CH2)3-CH2); 2.03-2.19 (m, 3H, CH(CH3)2); 2.49, 2.51, 2.55, 2.56 (s, á 3H, Val-

Imi-C-CH3) / (s, 3H, Lys-Imi-C-CH3); 3.10-3.18 (m, 2H, Cbz-NH-CH2-(CH2)3-); 3.62, 3.63, 3.68 (bs, á 

3H, Val-Imi-N-CH3); 3.70 (bs, 3H, Lys-Imi-N- CH3); 4.86-4.90 (m, 1H, CαH (Val-Imi)); 4.96-5.05 (m, 

1H, CαH (Lys-Imi)); 5.03-5.09 (m, 2H, CαH (Val-Imi); 5.22-5.33 (m, 1H, CαH (Lys-Imi)); 7.29.38 (m, 

5H, Cbz) ppm. (m, 2H, Ph-CH2) overlaid by MeOH-d4 

13C-NMR (151 MHz, MeOH-d4) δ = 9.43, 9.47, 9.53, 9.57 (Imi-C-CH3); 17.35, 18.16, 18.30, 18.92, 

19.37, 20.58 (CH(CH3)2); 24.16 (Cbz-NH-(CH2)2-CH2); 30.70 (Cbz-NH-CH2-CH2-); 31.37 31.97, 32. 20, 

32.79, (Val-Imi-N-CH3) / (Lys-Imi-N-CH3); 36.69 (CH(CH3)2); 38.36 (Cbz-NH-(CH2)3-CH2-); 39.54 (Cbz-

NH-(CH2)3-CH2-); 51.29 (CO2CH3); 52.79, 52.87, 53.02, 53.22 CαH (Val-Imi) / (Lys-Imi); 67.03 (Ph-

CH2); 128.38 (o-C, Cbz); 128.41 (p-C, Cbz); 128.69 (m-C, Cbz); 129.02, 129.21, 129.24 (ChetCONH); 

133.39, 134.74, 134.97, 135.22 (ChetNCH3); 136.48 (ipso-C, Cbz); 157.51 CO2Bn; 159.60, 159.89, 

160.15, 160.42 (CAzol); 164.87 (CONH); 173.01 (CO2CH3) ppm. 

APCI (+) MS m/z calcd. for [MH+] 968.58, found 968.70.  
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NH2-Val(Imi)-Val(Imi)-Lys(Imi)-Val(Imi)-OH (16) 

2-((S)-1-(2-((S)-1-(2-((S)-1-(2-((S)-1-amino-2-methylpropyl)-1,5-dimethyl-1H-imidazole-4-

carboxamido)-2-methylpropyl)-1,5-dimethyl-1H-imidazole-4-carboxamido)-5-

(((benzyloxy)carbonyl)amino)pentyl)-1,5-dimethyl-1H-imidazole-4-carboxamido)-2-

methylpropyl)-1,5-dimethyl-1H-imidazole-4-carboxylic acid 

 

According to GP 2, 15B (1.63 g, 2.464 mmol, 1 eq.) and 20 mL of NaOH (aqueous, 2M, 10 eq.) were 

stirred in a dioxane/MeOH mixture (100 mL). This yielded 1.60 g (1.676 mmol, 68%) as a white 

solid. 

 

1H-NMR (600 MHz, MeOH-d4) δ = 0.80-1.13 (m, 18H, CH(CH3)2); 1.34-1.41 (m, 2H, Cbz-NH-(CH2)2-

CH2-CH2); 1.53-1.64 (m, 2H, Cbz-NH-CH2-CH2-(CH2)2-); 1.73-1.95 (m, 1H, Cbz-NH-(CH2)3-CH2-); 1.92-

2.03 (m, 1H, Cbz-NH-(CH2)3-CH2-); 2.01-2.19 (m, 3H, CH(CH3)2); 2.49 (s, 3H, Val-Imi-C-CH3); 2.51 (s, 

3H, Val-Imi-C-CH3); 2.55 (s, 3H, Val-Imi-C-CH3); 2.56 (s, 3H, Lys-Imi-C-CH3); 3.10-3.18 (m, 2H, Cbz-

NH-CH2-(CH2)3); 3.62, 3.63, 3.68 (bs, 3H, Val-Imi-N-CH3); 3.70 (bs, 3H, Lys-Imi-N- CH3); 4.86-4.90 

(m, 1H, CαH (Val-Imi)); 4.96-5.05 (m, 1H, CαH (Lys-Imi)); 5.03-5.09 (m, 2H, CαH (Val-Imi)); 5.22-5.33 

(m, 1H, CαH (Lys-Imi)); 7.29.38 (m, 5H, Cbz) ppm. 

(m, 2H, Ph-CH2) overlaid by MeOH-d4 

13C-NMR (151 MHz, MeOH-d4) δ = 9.54, 9.59, 9.66, 9.71, (Val-Imi-C-CH3) / (Lys-Imi- CH3); 18.15, 

18.37, 18.57, 18.62, 19.44, 19.49 CH(CH3)2; 23.76 (Cbz-NH-(CH2)2-CH2); 30.75, 30.84, 31.64, (Val-

Imi-N-CH3) ; 33.01, 33.19 (Lys-Imi-N-CH3); 36.96 (CH(CH3)2); 38.64 (Cbz-NH-(CH2)3-CH2-); 39.99 

(Cbz-NH-(CH2)3-CH2); 50.38, 51.31, 53.56, 53.68 CαH (Val-Imi) / (Lys-Imi); 64.99 Bn (Ph-CH2); 128.00 

(o-C, Cbz); 128.28 (p-C, Cbz); 128.71 (m-C, Cbz); 128.97, 129.36, 129.47 (ChetCONH); 132.68, 

132.89, 135.02, 135.63 (ChetNCH3); 136.57 (ipso-C, Cbz); 153.49, 153.99, 154.58, 154.80 (CAzol); 

156.18 CO2Bn, 164.63 (CONH); 178.50 (COOH) ppm. 

APCI (+) MS m/z calcd. for [MH+] 954.57, found 954.63.  
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H4pat-Cbz (17) 

 

 

 

 

 

The cyclization of 16 was accomplished applying a high-dilution technique, similar, to the 

technique described in 259 using two syringe pumps. For that, the linear precursor 16 (551 mg, 

0.578 mmol, 1 eq.) was dissolved in 2.5 mL dry DMF and transferred into a syringe (solution 1), 

similarly 257 mg of COMU (0.600 mmol, 1.04 eq.) were dissolved in 10 mL of dry DMF and 

transferred into a syringe (solution 2). The solutions were then added to a mixture of 1.5 L of dry 

DMF and 0.503 mL of EDIPA at a rate of: solution 1: 0.02 mL/h and solution 2: 0.1 mL/h. Upon 

completion of addition the mixture was stirred for additional 12 h at rt. The reaction mixture was 

diluted with ethyl acetate and washed with 1 M HCl, saturated NaHCO3 solution and brine. The 

combined organic layers were dried over MgSO4 and the solvent was removed under reduced 

pressure. Purification was accomplished by flash column chromatography on a silica column 

(DCM:EE:MeOH 75:25:2) and gave 147 mg (0.157 mmol, 27%) of 17 as a pale yellow oil. 

 

1H-NMR (600 MHz, MeOH-d4) δ = 0.89-0.92 (m, 18H, CH(CH3)2); 1.31-1.39 (m, 2H, Cbz-NH-(CH2)2-

CH2-CH2); 1.56-1.63 (m, 2H, Cbz-NH-CH2-CH2-(CH2)2-); 1.85-1.89 (m, 1H, Cbz-NH-(CH2)3-CH2-); 1.93-

1.97 (m, 1H, Cbz-NH-(CH2)3-CH2); 2.02-2.09 (m, 3H, CH(CH3)2); 2.49-2.51 (m, 9H, Val-Imi-C-CH3); 

2.75 (s, 3H, Lys-Imi-C-CH3); 3.17-3.21 (m, 2H, Cbz-NH-CH2-(CH2)3-); 3.58 (bs, 3H, Lys-Imi-N-CH3); 

3.67 (bs, 9H, Val-Imi-N-CH3); 4.93-4.96 (m, 3H, CαH (Val-Imi)); 5.03 (s, 2H, Ph-CH2); 5.11-5.17 (m, 

1H, CαH (Lys-Imi)); 7.24-7.33 (m, 5H, Cbz) ppm. 

13C-NMR (151 MHz, MeOH-d4) δ = 9.61 11.15 (Val-Imi-C-CH3) / (Lys-Imi-C-CH3); 19.20, 19.23, 19.29, 

19.57 (CH(CH3)2); 23.72 (Cbz-NH-(CH2)2-CH2); 29.86, 30.42, 31.36, 31.42 (Val-Imi-N-CH3) / (Lys-Imi-

N-CH3); 36.66 (CH(CH3)2); 38.35 (Cbz-NH-(CH2)3-CH2-); 40.03 (Cbz-NH-CH2-(CH2)3); 50.99, 51.06, 

51.16 CαH (Val-Imi) / (Lys-Imi); 67.35 (Ph-CH2); 128.43 (o-C, Cbz); 128.63 (p-C, Cbz); 129.17 (m-C, 

Cbz); 130.29 (ChetCONH); 131.11 (ChetNCH3); 132.39 (ChetNCH3); 135.36 (ipso-C, Cbz); 154.72, 

155.35 (CAzol); 157.68 (CO2-Bn); 164.88 (CONH) ppm. 

APCI (+) MS m/z calcd. for [MH+] 936.56, found 936.68.  
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H4pat-NH2 (18) 

 

 

 

 

 

 

 

For the deprotection, 17 (100 mg., 0.107 mmol) was dissolved in 50 mL of ethyl acetate. 20 mg of 

Palladium on carbon (10 wt.% loading, dry basis, matrix activated carbon, wet support) was added 

and the reaction was refluxed under H2 atmosphere for 2 h. After the mixture was cooled down, 

the hydrogen-atmosphere was removed and the reaction mixture was filtered over celite. 

Removal of the solvent under reduced pressure gave 72 mg (0.090 mmol, 84 %) of a white 

powder. 

 

1H-NMR (600 MHz, MeOH-d4) δ = 0.89-0.92 (m, 18H, CH(CH3)2); 1.31-1.39 (m, 2H, Cbz-NH-(CH2)2-

CH2-CH2); 1.56-1.63 (m, 2H, Cbz-NH-CH2-CH2-(CH2)2-); 1.85-1.89 (m, 1H, Cbz-NH-(CH2)3-CH2-); 1.93-

1.97 (m, 1H, Cbz-NH-(CH2)3-CH2); 2.02-2.09(m, 3H, CH(CH3)2); 2.49-2.51 (m, 9H, Val-Imi-C-CH3); 

2.75 (s, 3H, Lys-Imi-C-CH3); 3.17-3.21 (m, 2H, Cbz-NH-CH2-(CH2)3-); 3.58 (bs, 3H, (Lys-Imi-N-CH3); 

3.67 (bs, 9H, Val-Imi-N-CH3); 4.93-4.96 (m, 3H, CαH (Val-Imi)); 5.11-5.17 (m, 1H, CαH (Lys-Imi)) ppm. 

13C-NMR (151 MHz, MeOH-d4) δ = 9.60, 11.13 (Val-Imi-C-CH3) / (Lys-Imi-C-CH3); 17.14, 18.06, 

18.41, 19.78 (CH(CH3)2); 23.72 (Cbz-NH-(CH2)2-CH2); 29.11, 29.38, 30.11 33.37 (Val-Imi-N-CH3) / 

(Lys-Imi-N-CH3); 35.34 (CH(CH3)2); 38.64 (Cbz-NH-(CH2)3-CH2-); 40.14 (Cbz-NH-CH2-(CH2)3); 50.63, 

50.97, 51.12 CαH (Val-Imi) / (Lys-Imi); 129.85 (ChetCONH); 132.41, 133.55 (ChetNCH3); 154.83, 

155.74 (CAzol); 167.96, 168.01 (CONH) ppm. 

APCI (+) MS m/z calcd. for [MH+] 802.52, found 802.30. 
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H4pat-Atto550 (19A) 

 

 

The labelling with the fluorescent tag was achieved by adding 10 µL of a 10 mg/mL solution of 18 

in 100 µL DMF and 50 µL EDIPA (excess) to the 20 µL of the NHS-activated fluorescent tag in a 

1.5 mL microtube. After shaking the samples mechanically for 30 s the reaction was left to react 

overnight at rt. After removal of the solvent under reduced pressure, the crude product was 

dissolved in 100 µL DMSO and purified by RP-HPLC (chromatogram below). 

 

APCI (+) MS m/z calcd. for [MH+] 1379.32, found 1379.29. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1. HPLC chromatogram of purification of H4pat-Atto550. 
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Proxyl-CH2-C(=O)-NHS (20) 

 

 

 

The synthesis of the NHS-activated Proxyl radical was accomplished according to a previously 

reported procedure 260. Initially Proxyl-COOH (100 mg, 0.535 mmol, 1 eq.) was dissolved in dry THF 

(15 mL) and DCC (121.5 mg, 0.600 mmol, 1.12 eq.) as well as NHS (68 mg, 0.6 mmol, 1.12 eq.) 

were added at room temperature and stirred for 16 h. The solution was filtered to remove the 

urea by product and the solvent was removed under reduced pressure. Purification was 

accomplished by flash column chromatography on a silica column with DCM:acetone 5:1 as eluent 

and collecting the yellow band. Removal of the solvent under reduced pressure delivered the 

product as yellow crystals, 120 mg (79%). 

 

FAB (+) MS m/z calcd. for [M+] 283.13, found 282.99. 

ESI (+) MS m/z calcd. for [M-+M+MeOH+2H+] 600.32, found 600.49. 

Microanalysis: calcd. C 55.12, H 6.76, N 9.89, found: C 54.98, H 6.79, N 9.28. 
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H4pat-Proxyl (19B) 

 

 

 

To a mixture of 20 mg of 18 (0.025 mmol, 1 eq.) in 3 mL of dry DMSO and 2 mL of EDIPA (excess), 

14 mg of 20 (0.049 mmol, 2 eq.) were added and the reaction mixture was stirred overnight. 

Subsequently the mixture was diluted by the addition of brine/ice and extracted with diethylether 

and ethyl acetate. Evaporation of the solvent gave 13 mg (0.013 mmol, 52%) of a pale yellow oil. 

 

FAB (+) MS m/z calcd. for [(M+MeOH)+]: 1001.64, found: 1001.63. 

Microanalysis: calcd. C 61.90, H 8.00, N 20.21, found: C 60.72,H 7.84, N 20.15. 
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C) Optical spectroscopy and photophysics of the H4pat-Atto550 conjugate 

 

As a copper(II) salt CuSO4x6H2O (analytical grade, 0.16 M aq. solution) was used for all 

photophysical experiments and fluorescence titrations.  

 

UV-Vis and fluorescence spectra  

UV-Vis absorption spectra were recorded with the Cary 60 UV-Vis spectrometer (Agilent) at room 

temperature and fluorescence spectra (quenching experiments) of the H4pat-Atto-550 - 

monitored with the 'Fluorolog 3' fluorescence spectrometer (Horiba). The measurements were 

carried out in quartz glass cuvettes. Fluorescence spectra (quenching experiments) of Atto550-

NHS were recorded with 'Cary Eclipse 500' fluorescence spectrometer (Varian, Darmstadt) with 

temperature control. The measurements were carried out in dark quartz glass cuvettes 

(Suprasil©, Hellma, Müllheim). 

 

Fluorescence lifetime measurements: Titration of H4pat-Atto550 with Cu(II) 

Fluorescence lifetimes were determined on a 'Fluotime 100' spectrometer with time-correlated 

single photon count card 'TCSPC TimeHarp 200' from PicoQuant. The excitation wavelength was 

generated by a pulsed diode 'PLS 500' (500 nm, 40 MHz) from PicoQuant with a pulse width of 

300 ps tuneable fibre coupled diode. The instrument response function was measured with 

colloidal SiO2 nano-particles (LUDOX®HS-40 (420816), Sigma-Aldrich). During the measurement, 

the excitation light was filtered with suited high-pass filters, data were analysed with the 

programme 'FluoFit' from PicoQuant. 

 

Fluorescence quenching experiments  

The metal salt used (analytical grade, Cu(SO4)x6H2O hydrate 0.16 M aq. solution) was diluted in 

doubly distilled H2O (0.01 M); a solution of H4pat-Atto550 was adjusted to 1.8 µM and prepared 

from high concentration aqueous solutions (doubly distilled water) by dilution into 100 mM TRIS 

buffer, pH 8.2, doubly distilled H2O. 

To 200 μL of H4pat-Atto550 in the required concentration, the metal salt in the required 

concentration was added in steps of 1 μL before measuring the fluorescence spectrum. The 

intensities were corrected by the corresponding dilution factor; the reported data are averages of 

triplicates. 
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Figure C1. Copper(II) dependent absorbance measurements; 100 mM TRIS buffer, pH=8.2, rt. [H4pat-

Atto550]= 1.8 μM, 1-10 eq. of copper(II). 
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D) Cyanobacteria handling, field site and sample collection 

 

For the experiments Prochlorothrix hollandica (SAG 10.89) and Synechococcus leopolienses (SAG 

1402-1) were purchased from the Culture Collection of Algae at Göttingen University and stored 

on the bench at room temperature and without direct light irradiation for a maximum of two 

weeks. 

Individual sponges and their coral rubble substrate were collected with a hammer and chisel. 

Prochloron samples were collected together with its host Lissoclinum patella at Heron Reef on 

snorkel. Intact specimens (5-25 cm2) of 5-20 mm thick L. patella were collected at low tide on 

snorkel on the outer reef flat and crest off Heron Island (First Point: S23°25′49.8, E151°57′15.8, 

Blue Pools: S23°26′03.2, E151°55′18.1,) in May 2016 covering coral patches on the outer reef flat 

and down to ∼4 m depth on the reef crest. All samples were immediately transported in a bucket 

with sea water back to Heron Island Research Station and subsequently kept in an outdoor 

aquarium, which was continuously flushed with fresh aerated sea water (24–26°C) from the reef. 

As reported previously,9 it is necessary to keep a continuous strong mixing of water in the 

aquarium to avoid the degradation of the ascidians. The aquaria were covered by a shading cloth, 

to prevent too high solar irradiance.  

Samples were then transported to the University of Queensland, St Lucia Campus, in a plastic bag, 

filled with fresh aerated sea water and oxygen, and transported in a cold box at 25°C by plane and 

6 h later put in an aquarium with synthetic sea water and constant water flow. The seawater is 

generated from Tropic Marine salt261 mixed with water (that was purified via reverse osmosis) to 

a salinity of 35 ppt (23-25°C; the water is not sterilised but pumped through system of sediment 

and biological filters). Under these conditions we were able to keep the sampled ascidians healthy 

and with Prochloron actively photosynthesising for nine days.  

Prochloron was collected using a pipette and by gently squeezing the middle section containing 

the cloacal cavity harbouring the deep green symbiont. 

Prior to all measurements the viability of the cells was tested with a ToxyPAM.206,207,262 Generally, 

specimens showed a high maximum PSII quantum yield of >0.6 for several hours after such 

handling indicative of fast recovery and minimal stress on Prochloron (Heinz Walz GmbH, 

Effeltrich). 

1 cm x 1 cm patches were additionally cut from L. patella with a sterilised razor blade and stored 

in 20% glycerol solution at -80°C, transported back to St Lucia on dry ice and stored at -80°C. 

Healing was observed for the patches which had been cut.  
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E) Native PAGE experiment with Prochloron 

 

Lysis buffer:  

1% lysozyme, 50 mM TRIS HCl pH 7.5, 100 mM NaCl, 5% glycerol, 1 mM EDTA, 1 mM DTT 

Sample buffer:  

62.5 mM TRIS HCl pH 6.8, 25% glycerol, 1% bromophenole blue 

Running buffer:  

25 mM TRIS HCl pH 8.3, 192 mM glycine 

separation gel: 

6%: 2 mL Acrylamide/Bisacrylamide 30%/0.8% w/v ; 7.89 mL 0.375 M TRIS HCl pH 8.8; 100 µL 10% 

ammoniumpersulfate solution; 10 µL TMEDA 

15%: 5 mL Acrylamide/Bisacrylamide 30%/0.8% w/v ; 4.89 mL 0.375 M TRIS HCl pH 8.8; 100 µL 

10% ammoniumpersulfate solution; 10 µL TMEDA 

 

3 mL of Prochloron extracted from the host were centrifuged down at 15.000 g for 5 min. The 

supernatant was discarded, and cells were resuspended to OD750=0.8 in TRIS buffer, pH 8.2. 

Disintegration was accomplished by incubation of 1 mL of the sample with 1 mL of lysis buffer for 

15 min at room temperature. Cell debris was spun down for 5 min at maximum speed. 1 mL of the 

supernatant was subsequently treated with 5 µL of a solution of H4pat-Atto550 (5x10-4M) and 

incubated for 15 min at room temperature. The electrophoresis was accomplished applying 200 V. 

To minimise the production of heat, and consequently to prevent the proteins from denaturation, 

the electrophoresis chamber was kept on ice. Staining was accomplished using COOMASSIE Blue. 
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F1) Protocol for the treatment of Prochloron (preparation of FCM and confocal 

microscopy experiments) 

 

For the preparation of samples for FCM and confocal microscopy 40 μL of a 2.4 µM solution 

(100 mM TRIS buffer, pH 8.2) of H4pat-Atto550 were added to 30 μL of the respective 

cyanobacteria at OD750=0.8 in BG 11 medium (sample a). For samples b and c 40 μL of a 2.4 µM 

H4pat-Atto550, with 5 eq. of copper(II) (CuSO4x6H2O) were used for the treatment of the cells. 

After heat shock treatment for 45 s at 40°C the samples were put on ice for 1 min. Washing with 

50 μL buffer followed. The cells were then resuspended in 10 μL of buffer and 90 μL of a 4 % PFA 

solution was added and the cells were incubated for 15 min. Again the cells were washed with 

50 μL buffer and either (samples a and b) resuspended in 50 μL of TRIS or (c) treated with 10 eq. 

of cyclam for 10 min. Sample c was afterwards washed with 50 μL of buffer and resuspended in 

50 μL of TRIS. All experiments were carried out in triplicates. For FCM the final suspensions were 

analysed within 1 h after preparation.  

For confocal microscopy the samples were placed in 8-well glass slides (ibidi GmbH, Lab-Tek) and 

the solvent was slowly evaporated under reduced pressure in a desiccator (1 h) and the cells were 

analysed immediately. 
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F2) Flow cytometry  

 

The Flow cytometry (FCM) experiments were performed on a C6 cytometer (Accuri). Fluorescence 

excitation was at λexc=535 nm and λexc=640 nm, and the respective emission was detected using a 

585/42 nm (FL1) and a 694/40 nm (FL2) filter. The mean ratio (and the respective SEM) of the 

fluorescence intensity observed at FL1 compared to FL2 is plotted. All flow cytometry 

measurements include minimum 4,000 events in the gated area and were carried out in triplicates. 
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F3) Confocal microscopy 

 

All Prochlorothrix hollandica and Synechococcus leopoliensis samples were measured using a 

confocal laser scanning microscope (Leica SP5), applying a 63x water immersion objective. The 

image parameters were chosen 2048x2048 by 16 bit at 200 Hz. Each picture represented an area 

of 246x246 µm, representing a two-fold oversampling by a spatial resolution of 132 nm per pixel. 

Atto550 was excited via pulsed white light laser (80 MHz, SuperK Extreme, Koheras) at 561 nm, 

intensity 70 %. Emission detection was done using photomultiplier tubes (PMT) within 574 – 

680 nm. At least ten measurements at random positions between one Lab-Tek chamber were 

conducted per condition.  

Prochloron samples were measured using a confocal laser scanning microscope (ZEISS LSM 710) 

applying a 63x oil immersion objective (C-Apochromat 63x/1.2 W Korr). The image parameters 

were chosen 1024x1024 by 16 bit at 100 Hz. Each picture represented an area of 135x135 µm, 

representing a two-fold oversampling by a spatial resolution of 132 nm per pixel. Atto550 was 

excited via pulsed white light laser at 561 nm, intensity 70 % (561 nm continuous wave Diode-

Pumped Solid State Laser DPSS on a ZEISS LSM 710 instrument). Emission detection was done 

using photomultiplier tubes (PMT) within 556-606 and 624-735 nm. At least ten measurements at 

random positions within three Lab-Tek chambers were conducted per condition.  

For quantification, Fiji software was used.263 Images were filtered by median, followed by 

background subtraction. Cells were selected using Otsu thresholding and subsequent particle 

analysis, followed by calculation of median intensity and standard error. 

Like shown for FCM, for the establishment of a protocol to treat Prochloron, initially 

Synechococcus leopoliensis (SAG 1402-1) and Prochlorothrix hollandica (SAG 10.89) were studied. 

The results for the flow cytometry experiment are given in the Appendix I. 

 

Measurement of the uptake of H4pat-Atto550 in Prochloron 

 

The uptake of Atto550 was verified by confocal microscopy (see Chapter 5.2.2, Figure 5.6B). The 

upper piture in Figure F1 shows Prochloron cells and their fluorescence intensity at 568, 573, 578, 

57 588, 598, …, 708, 718 nm (λexc=556 nm). The lower picture shows Prochloron cells, that were 

treated with Atto550 (λem(Atto550)=574 nm; λem(Chl b)=670 nm). The upper series the cells do not 

show fluorescence between 568-618 nm, but show strong fluorescence between 628-718 nm 

originating from chlorophyll b. The lower series however shows cells treated with H4pat-Atto550, 
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and these cells show two fluorescence ranges: between 568 nm and 598 nm and between 628-

718 nm. This is a good validation for the uptake of the patellamide-fluorescent dye conjugate. 

 

 

 

 

Figure F1. Raw data, microscopy picture series of Prochloron top: not treated, bottom: treated with H4pat-
Atto550 measured at emission wavelengths 568, 578, 588, 598,…,  708, 718 nm (left to right, top to bottom).  
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G) Absorption measurement of the Prochlorothrix hollandica lysate* 

 

5 mL of Prochlorothrix hollandica (P.H.) from culture were centrifuged down at 18.000 g for 5 min. 

The supernatant was discarded, and cells were resuspended to OD600=0.8 in TRIS buffer, pH 8.2. 

Disintegration was done using a sonicator (BW2070, Bandelin electronics Berlin GmbH) for 5x10 s 

at 75% of maximum power. In between repeats, lysate was chilled on ice for 1 min. Cell debris was 

spun down for 15 min at maximum speed. The supernatant was measured for absorbance 

properties (Cary 60 UV-Vis spectrometer (Agilent) at room temperature) with or without CuSO4 

(final concentration as described in E1: 2.9x10-7 M).As control the same volume of TRIS buffer was 

supplemented. 

 

 

                                                           
* The experiment discussed in this paragraph was carried out by Martin Seefeld. 
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Flow cytometry results for Synechococcus leopoliensis 

 

 

 

 

 

 

 

 

 

Figure AI-1. Mean and SEM of FL575/FL675 for Synechococcus leopoliensis (n=12,000) and treated with (a) 
with H4pat-Atto550 (b) with H4pat-Atto550 and Cu(II) and (c) with H4pat-Atto550 and Cu(II) and 
subsequently cyclam. 

 

Confocal microscopy results for Synechococcus leopoliensis and Prochlorothrix hollandica 

 

 

 

 

 

 

 

 

 

Figure AI-2. Mean and SEM -of FL574 for A Synechococcus leopoliensis and B Prochlorothrix hollandica; 
treated with (a) with H4pat-Atto550 (b) with H4pat-Atto550 and Cu(II) and (c) with H4pat-Atto550 and Cu(II) 
and subsequently cyclam. 
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Appendix II 

 

Cartesian Coordinates of Structures discussed in this thesis: 

Chapter 3 
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  Cu    -0.526502    1.548025   -0.023527 

  N      1.402306    0.923817    0.515869 

  N      0.499747    2.603469   -1.301258 

  N     -2.021195    2.994809   -0.546076 

  N     -3.831876    1.771377    1.334286 

  H     -3.048883    1.270793    0.924712 

  N      3.421349    0.366641    1.170841 

  N     -2.329109    4.870060   -1.661606 

  O      2.563998    3.595771   -1.596953 

  O     -5.193332    3.580628    1.179330 

  O     -1.626602    0.006729    0.690337 

  O     -0.537567    2.710562    2.225313 

  C      2.089617    0.106288    1.294323 

  C      3.581329    1.413747    0.280602 

  C      2.314541    1.741078   -0.120453 

  C      1.816571    2.748851   -1.082160 

  C     -0.196871    3.567341   -2.130750 

  H      0.375249    4.500753   -2.154845 

  C     -1.508612    3.811710   -1.450672 

  C     -3.432921    4.728497   -0.850081 

  C     -3.234741    3.558385   -0.151648 

  C     -4.170104    2.981719    0.836323 

  C     -4.751889    0.994911    2.152315 

  H     -5.545762    1.682119    2.437261 

  C      4.520990   -0.306638    1.854383 

  H      5.390449   -0.316224    1.203173 

  H      4.774408    0.208561    2.780463 

  H      4.249523   -1.334270    2.075036 

  C      4.905817    1.974774   -0.094357 

  H      5.530256    1.231708   -0.596963 

  H      4.750803    2.810600   -0.771040 

  H      5.453849    2.328785    0.781894 

  C     -0.400351    3.115629   -3.613481 

  H     -1.001818    3.899746   -4.084860 

  C     -1.169752    1.800796   -3.734003 

  H     -1.331409    1.557879   -4.785693 

  H     -2.147588    1.848446   -3.251894 

  H     -0.611103    0.978144   -3.285097 

  C      0.928454    3.045569   -4.366878 

  H      0.747024    2.807775   -5.417213 

  H      1.575392    2.270230   -3.953420 

  H      1.468036    3.992028   -4.318067 

  C     -2.099204    5.990295   -2.567221 

  H     -2.380196    6.917645   -2.074141 

  H     -1.045913    6.039994   -2.823681 

  H     -2.686293    5.875737   -3.477945 

  C     -4.533381    5.728793   -0.849324 

  H     -5.352332    5.365529   -0.238981 

  H     -4.892669    5.915102   -1.863778 

  H     -4.195314    6.684921   -0.440077 

  C     -4.096037    0.464462    3.454140 

  H     -3.277529   -0.203112    3.168244 

  C     -3.526602    1.615576    4.285177 

  H     -3.058274    1.226712    5.191082 

  H     -4.320483    2.303256    4.588926 

  H     -2.775446    2.181068    3.735750 

  C     -5.091516   -0.352565    4.282982 

  H     -4.601525   -0.739998    5.177200 

  H     -5.493044   -1.205615    3.733392 

  H     -5.931155    0.266639    4.609250 

  H      0.360768    2.990672    2.439432 

  H     -1.055719    3.524809    2.207503 

  Cu    -2.726787   -1.534823   -0.023612 

  C      1.499057   -0.982056    2.151554 

  C     -5.342533   -0.093274    1.294933 

  N     -4.655415   -0.910645    0.516134 

  N     -3.753262   -2.589885   -1.301509 

  N     -1.232268   -2.981425   -0.546690 

  O     -2.714678   -2.697042    2.224940 

  C     -5.567836   -1.727575   -0.120339 

  C     -5.070099   -2.735116   -1.082394 

  C     -1.744996   -3.798178   -1.451348 

  H     -3.612739   -2.976889    2.440548 

  C     -3.056795   -3.553654   -2.131250 

  C     -0.018678   -3.545092   -0.152520 

  H     -2.196554   -3.511317    2.207462 

  C     -6.834536   -1.400230    0.280983 

  O     -5.817684   -3.581752   -1.597424 

  N     -0.924572   -4.856531   -1.662526 

  N     -6.674322   -0.353443    1.171549 

  H     -3.628970   -4.487029   -2.155446 

  C     -2.853424   -3.101721   -3.613934 

  C      0.179363   -4.715111   -0.851139 

  C      0.916859   -2.968631    0.835402 

  C     -8.159097   -1.961012   -0.094107 

  C     -1.154652   -5.976646   -2.568246 

  C     -7.773684    0.319814    1.855559 

  H     -2.252061   -3.885812   -4.085488 

  C     -4.182283   -3.031423   -4.367218 

  C     -2.083928   -1.786931   -3.734311 

  C      1.279795   -5.715440   -0.850697 

  N      0.578856   -1.758276    1.333504 

  O      1.940048   -3.567698    1.178238 

  H     -8.004157   -2.796626   -0.771067 
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  H     -8.783468   -1.217727   -0.596473 

  H     -8.707166   -2.315281    0.782014 

  H     -0.873511   -6.904053   -2.075362 

  H     -2.208001   -6.026344   -2.824467 

  H     -0.567772   -5.861941   -3.479087 

  H     -8.643908    0.327841    1.205367 

  H     -8.025663   -0.194443    2.782558 

  H     -7.502788    1.347952    2.074605 

  H     -4.000896   -2.793500   -5.417532 

  H     -4.829113   -2.256078   -3.953605 

  H     -4.721955   -3.977832   -4.318494 

  H     -2.642482   -0.964314   -3.285220 

  H     -1.922347   -1.543862   -4.785978 

  H     -1.106052   -1.834720   -3.252298 

  H      2.098895   -5.352258   -0.240506 

  H      1.638851   -5.901677   -1.865245 

  H      0.941791   -6.671588   -0.441446 

  H     -0.204076   -1.257526    0.924032 

  H      2.292896   -1.669402    2.436245 

  C      0.843487   -0.451813    3.453617 

  H      0.024878    0.215762    3.168013 

  C      0.274332   -1.603079    4.284632 

  C      1.839122    0.365151    4.282341 

  H     -0.193837   -1.214357    5.190681 

  H      1.068337   -2.290726    4.588125 

  H     -0.476914   -2.168563    3.735317 

  H      1.349363    0.752241    5.176837 

  H      2.240307    1.218437    3.732877 

  H      2.678982   -0.253998    4.608142 

  H     -1.626406    0.006356    1.654304 
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  C     2.781258   -4.575026   -0.728404 

  C     3.080984   -3.249402   -0.556598 

  N     2.138056   -2.663191    0.268265 

  C     1.271923   -3.610101    0.599331 

  N     1.627248   -4.783981   -0.000607 

  C     4.144938   -2.415368   -1.171036 

  O     5.052097   -2.911379   -1.864371 

  Cu    2.646925   -0.586172    0.381898 

  O     1.260001    0.082157    1.525977 

  C     0.086712   -3.513791    1.528562 

  C     0.494079   -2.999808    2.936724 

  C    -0.716445   -2.749369    3.835539 

  N     3.276584    1.391409   -0.278510 

  C     3.246506    2.734326    0.092466 

  C     4.454077    3.310742   -0.235530 

  N     5.203202    2.311893   -0.822350 

  C     4.447523    1.184184   -0.859946 

  C     2.064947    3.480309    0.604886 

  O     2.042487    4.716814    0.553994 

  C     4.777494   -0.107247   -1.557512 

  C     4.480523   -0.052314   -3.099966 

  C     3.050675    0.384120   -3.423117 

  N     1.033534    2.758684    1.089291 

  C    -0.124617    3.405030    1.697963 

  C    -0.534282    2.714566    3.025047 

  C     0.638211    2.684541    4.010169 

  C    -1.295312    3.557615    0.747029 

  N    -2.110757    2.623635    0.271534 

  C    -3.116326    3.277544   -0.421297 

  C    -2.897122    4.627494   -0.380955 

  N    -1.738392    4.786760    0.351636 

  C    -4.199592    2.490862   -1.062482 

  O    -5.150328    3.028788   -1.657753 

  Cu   -2.448099    0.569011    0.048895 

  O    -0.579298   -0.136844   -0.067172 

  N    -3.344962   -1.314626   -0.297761 

  C    -3.361749   -2.625075    0.176794 

  C    -4.582394   -3.187231   -0.134920 

  N    -5.294051   -2.207862   -0.793375 

  C    -4.513341   -1.103097   -0.886058 

  C    -2.269213   -3.355766    0.872504 

  N    -1.030044   -2.805988    0.894036 

  C    -4.850524    0.200294   -1.558098 

  N    -3.999302    1.179729   -0.911746 

  O    -2.506478   -4.447284    1.398597 

  C    -4.629823    0.190639   -3.112459 

  C    -3.223470   -0.247650   -3.522095 

  C    -5.690996   -0.604111   -3.874432 

  O    -2.935968    0.249332    2.377608 

  O     4.279896   -0.712138    2.249806 

  N     3.967111   -1.118570   -0.905190 

  C    -1.733315    3.421103    3.665526 

  C     5.495750    0.775449   -3.888714 

  C     1.458515   -3.994058    3.592360 

  H     0.194305    4.414258    1.952333 

  H    -0.825005    1.686725    2.796701 

  H     0.333245    2.196588    4.937714 

  H     0.961402    3.699239    4.258483 

  H     1.497534    2.143784    3.615675 

  H    -2.025198    2.903910    4.580838 

  H    -2.603030    3.450851    3.007554 

  H    -1.483404    4.450767    3.934630 

  H     5.841711   -0.339710   -1.443515 

  H     4.597303   -1.090354   -3.414229 

  H     2.887922    1.439423   -3.191713 

  H     2.315955   -0.201273   -2.869283 

  H     2.854704    0.245800   -4.488414 

  H     5.405905    1.843971   -3.682297 

  H     6.522531    0.468109   -3.680019 

  H    -0.289431   -4.522531    1.683165 

  H     1.032707   -2.061735    2.808435 

  H    -0.383461   -2.398254    4.813923 

  H    -1.290897   -3.665822    3.984559 

  H    -1.382041   -1.993900    3.419280 

  H     1.777369   -3.622041    4.567187 

  H     2.355046   -4.156499    2.991736 

  H     0.973893   -4.961684    3.747177 

  H    -5.904483    0.443780   -1.385998 

  H    -4.751953    1.239835   -3.387694 

  H    -3.049393   -1.304260   -3.304596 

  H    -2.453807    0.336120   -3.016676 

  H    -3.091854   -0.106824   -4.596768 

  H    -6.703381   -0.298400   -3.602827 

  H    -5.597822   -1.679341   -3.708393 

  H     1.166139    1.757257    1.267449 

  H    -0.861318   -1.928964    0.411081 

  H    -5.574875   -0.435388   -4.946765 

  H     5.325273    0.641683   -4.958885 

  H    -3.406452    1.008370    2.744735 

  H    -3.531381   -0.500092    2.505477 

  H     4.979489   -1.308962    1.956064 

  H     3.992158   -1.059914    3.102988 

  H     1.182514   -0.305094    2.401181 

  H     0.161721   -0.026122    0.687317 
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  H    -0.186716    0.129219   -0.907574 

  C     3.461712   -5.641049   -1.511081 

  H     2.815552   -6.036729   -2.298860 

  H     4.350479   -5.219708   -1.972008 

  H     3.758468   -6.478482   -0.875176 

  C     0.934056   -6.065063    0.104116 

  H     1.202543   -6.678383   -0.750386 

  H     1.218154   -6.587702    1.017375 

  H    -0.141503   -5.913003    0.091173 

  C     6.602732    2.459560   -1.206430 

  H     7.006097    1.493371   -1.486204 

  H     6.703742    3.145834   -2.045429 

  H     7.170939    2.842977   -0.360921 

  C     5.002633    4.680485   -0.047955 

  H     5.243177    5.145229   -1.007828 

  H     4.271903    5.298951    0.460368 

  H     5.922724    4.655391    0.541343 

  C    -5.168794   -4.534919    0.096151 

  H    -4.391313   -5.227155    0.397196 

  H    -5.919902   -4.505626    0.890852 

  H    -5.659608   -4.905297   -0.805649 

  C    -6.691661   -2.346991   -1.190729 

  H    -7.091144   -1.375093   -1.455944 

  H    -6.787550   -3.017726   -2.042672 

  H    -7.264076   -2.744653   -0.355335 

  C    -3.662127    5.760726   -0.965691 

  H    -4.545189    5.365182   -1.459494 

  H    -3.974959    6.472449   -0.198267 

  H    -3.068347    6.308057   -1.702179 

  C    -1.121007    6.078918    0.646589 

  H    -1.406372    6.784842   -0.127775 

  H    -1.459181    6.458196    1.611080 

  H    -0.039189    5.976975    0.644155 
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2A 

 

110 

 

Cu -0.584883    1.475461   -0.069626 

N   1.372700    0.810696    0.290734 

N   0.375338    2.599392   -1.356491 

N  -2.131920    2.909824   -0.501194 

N  -3.821937    1.856373    1.608462 

H  -2.987829    1.381340    1.278947 

O   2.400771    3.681774   -1.635305 

O  -5.404960    3.399715    1.077837 

O  -1.648184   -0.020356    0.737717 

O  -0.481391    2.566248    2.144787 

C   2.107965   -0.035483    0.941434 

C   3.514223    1.385405    0.050282 

C   2.250312    1.723797   -0.293113 

C   1.692215    2.784224   -1.164094 

C  -0.370792    3.575767   -2.127627 

H   0.122945    4.552613   -2.080965 

C  -1.687237    3.685778   -1.442662 

C  -3.650455    4.489258   -0.967320 

C  -3.402421    3.417083   -0.168623 

C  -4.302197    2.893835    0.882841 

C  -4.681448    1.124150    2.524646 

H  -5.516382    1.781116    2.768962 

C   4.860227    1.920162   -0.232331 

H   5.483879    1.164032   -0.713760 

H   4.768081    2.780680   -0.890198 

H   5.357666    2.228184    0.689969 

C  -0.567928    3.227752   -3.638627 

H  -1.233569    4.006785   -4.024670 

C  -1.243722    1.872558   -3.848678 

H  -1.402140    1.697762   -4.913963 

H  -2.217371    1.814390   -3.358118 

H  -0.622679    1.060873   -3.465518 

C   0.746736    3.315774   -4.413391 

H   0.557687    3.157006   -5.477020 

H   1.454822    2.554927   -4.081427 

H   1.220463    4.290421   -4.292533 

C  -4.751669    5.456843   -1.141585 

H  -5.536937    5.248306   -0.422792 

H  -5.159033    5.389078   -2.153055 

H  -4.385484    6.475734   -0.997939 

C  -3.961704    0.736112    3.841551 

H  -3.097012    0.117142    3.581353 

C  -3.462977    1.988233    4.564968 

H  -2.933005    1.704885    5.475629 

H  -4.300475    2.629866    4.850808 

H  -2.781518    2.569575    3.945372 

C  -4.874745   -0.090065    4.751263 

H  -4.344650   -0.347367    5.668959 

H  -5.196942   -1.022484    4.285809 

H  -5.767976    0.475011    5.028817 

H   0.382246    2.641188    2.569158 

H  -0.858584    3.454155    2.178824 

Cu -2.882339   -1.445507    0.068722 

C   1.697475   -1.270653    1.689624 

C  -5.261128   -0.047990    1.787036 

N  -4.700468   -0.830165    0.918383 

N  -4.118778   -2.478123   -1.046153 

N  -1.487129   -2.842407   -0.802920 

O  -2.508557   -2.670298    2.192183 

C  -5.695078   -1.704512    0.480767 

C  -5.359148   -2.688476   -0.574121 

C  -2.141697   -3.544005   -1.677849 

H  -3.294835   -2.807460    2.734860 

C  -3.577517   -3.389388   -2.036933 

C  -0.182670   -3.372435   -0.800581 

H  -2.131793   -3.550283    2.067631 

C  -6.844014   -1.409918    1.131075 

O  -6.164286   -3.553229   -0.939712 

H  -4.058573   -4.369963   -1.950726 

C  -3.727574   -2.931518   -3.523650 

C  -0.134630   -4.378595   -1.713833 

C   0.934365   -2.931759    0.063831 

C  -8.221823   -1.938003    1.123800 

H  -3.183499   -3.681231   -4.107606 

C  -5.187323   -2.960299   -3.975964 

C  -3.094613   -1.565561   -3.790751 

C   0.886635   -5.325918   -2.202418 

N   0.647811   -1.931236    0.929936 

O   2.037176   -3.469041   -0.006753 

H  -8.285339   -2.749947    0.403724 

H  -8.934684   -1.157400    0.849902 

H  -8.498812   -2.314089    2.111094 

H  -5.247232   -2.720808   -5.039591 

H  -5.784877   -2.226471   -3.432887 

H  -5.637815   -3.940851   -3.820383 

H  -3.600246   -0.780424   -3.225898 

H  -3.177450   -1.319238   -4.850460 

H  -2.034331   -1.540471   -3.531477 

H   1.822741   -5.151057   -1.682819 

H   1.037298   -5.199118   -3.276888 

H   0.561747   -6.354659   -2.031158 

H  -0.223394   -1.423811    0.810319 

H   2.559158   -1.938111    1.684828 

C   1.293360   -1.003305    3.162550 
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H   0.389239   -0.385902    3.154736 

C   0.978385   -2.319707    3.874857 

C   2.385508   -0.230752    3.907199 

H   0.657095   -2.121471    4.898497 

H   1.865394   -2.956838    3.919444 

H   0.184361   -2.872176    3.374234 

H   2.079815   -0.064510    4.940770 

H   2.585295    0.745282    3.462856 

H   3.322513   -0.793038    3.922426 

H  -1.535015   -0.072504    1.693632 

O  81.443281   -0.335386    0.209826 

H  80.582413   -0.763025    0.284697 

H  82.078981   -1.032240    0.409473 

O  -2.553061    4.649081   -1.776849 

O  -6.560950   -0.345569    1.961119 

O  -1.386475   -4.476807   -2.269000 

O   3.416436    0.256006    0.836096 
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2B 

 

110  

 

C    3.810780   -3.936005   -0.269569 

C    3.787855   -2.583012   -0.261604 

N    2.627022   -2.161596    0.395040 

C    1.994298   -3.241990    0.743565 

C    4.701538   -1.582010   -0.874553 

O    5.775878   -1.922710   -1.391965 

Cu   2.728288   -0.024662    0.420253 

O    1.229053    0.392466    1.544486 

C    0.707892   -3.487668    1.489429 

C    0.741001   -2.956416    2.947424 

C   -0.511961   -3.390646    3.709065 

N    2.920715    1.954952   -0.383212 

C    2.480513    3.292455   -0.348510 

C    3.407393    4.049743   -0.996018 

C    4.035892    1.967488   -1.049839 

C    1.203631    3.813246    0.213909 

O    0.864273    4.974825   -0.016495 

C    4.837740    0.771324   -1.455992 

C    4.920777    0.622017   -3.013478 

C    3.551068    0.696638   -3.689750 

N    0.462397    2.965846    0.957403 

C   -0.724325    3.426261    1.659599 

C   -0.816877    2.813813    3.082799 

C    0.434752    3.149487    3.89456 

C   -2.001443    3.218098    0.879407 

N   -2.585730    2.167307    0.381308 

C   -3.819648    2.604803   -0.115538 

C   -3.924285    3.935220    0.102208 

C   -4.752780    1.632644   -0.740088 

O   -5.881746    1.967990   -1.125722 

Cu  -2.503404    0.094046    0.040914 

O   -0.556178   -0.255423    0.022089 

N   -2.996313   -1.916880   -0.417929 

C   -2.652504   -3.276404   -0.273863 

C   -3.648051   -4.013684   -0.838123 

C   -4.141778   -1.904069   -1.032490 

C   -1.461853   -3.858990    0.406928 

N   -0.450266   -3.021479    0.731653 

C   -4.922155   -0.688778   -1.417247 

N   -4.201641    0.417494   -0.817024 

O   -1.441951   -5.063580    0.655797 

C   -5.098096   -0.540875   -2.965428 

C   -3.776121   -0.650618   -3.725954 

C   -6.156044   -1.497023   -3.520121 

O   -2.843135   -0.360087    2.348417 

O    4.246256    0.235344    2.304826 

N    4.184466   -0.351430   -0.806744 

C   -2.070065    3.302090    3.815765 

C    5.921686    1.595022   -3.640157 

C    2.004498   -3.422036    3.676572 

H   -0.638253    4.509467    1.757825 

H   -0.883215    1.727838    2.969601 

H    0.356789    2.707944    4.893308 

H    0.538724    4.230865    4.019932 

H    1.345714    2.771314    3.436242 

H   -2.117204    2.850129    4.807159 

H   -2.993076    3.043860    3.294453 

H   -2.050099    4.387130    3.944195 

H    5.863888    0.894963   -1.087369 

H    5.315331   -0.384293   -3.152713 

H    3.130228    1.704964   -3.648828 

H    2.838644    0.010640   -3.229278 

H    3.640818    0.425613   -4.743215 

H    5.590081    2.631695   -3.569035 

H    6.901295    1.519045   -3.163012 

H    0.608903   -4.571761    1.536696 

H    0.747908   -1.865122    2.901750 

H   -0.505381   -2.960243    4.711522 

H   -0.549824   -4.477734    3.809668 

H   -1.424135   -3.063249    3.211586 

H    1.998149   -3.052969    4.702982 

H    2.916876   -3.058002    3.201666 

H    2.053099   -4.513154    3.716014 

H   -5.926818   -0.776197   -0.985482 

H   -5.478868    0.474470   -3.083187 

H   -3.370953   -1.665688   -3.690414 

H   -3.023760    0.031188   -3.326814 

H   -3.928689   -0.398121   -4.776746 

H   -7.102715   -1.396468   -2.984794 

H   -5.840693   -2.539609   -3.457802 

H    0.833380    2.045215    1.212311 

H   -0.500950   -2.045159    0.451353 

H   -6.342121   -1.270511   -4.571675 

H    6.048643    1.360364   -4.698863 

H   -3.409555    0.284498    2.790715 

H   -3.268041   -1.213524    2.501571 

H    5.119405   -0.137554    2.129520 

H    3.992322   -0.106558    3.171095 

H    1.264473    0.024888    2.432054 

H    0.163886    0.040351    0.759991 

H   -0.192829   -0.056675   -0.850128 

C    4.727870   -4.970565   -0.787578 

H    4.216722   -5.616962   -1.504255 

H    5.568455   -4.485953   -1.277020 
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H    5.099991   -5.599343    0.024342 

C    3.589392    5.481102   -1.311719 

H    3.539070    5.643731   -2.391180 

H    2.811611    6.063724   -0.830373 

H    4.570395    5.817925   -0.970244 

C   -3.933146   -5.448341   -1.042858 

H   -3.054040   -6.036572   -0.803409 

H   -4.754993   -5.769373   -0.397669 

H   -4.232097   -5.625905   -2.077373 

C   -4.939092    4.969808   -0.178092 

H   -5.789773    4.506468   -0.670798 

H   -5.273915    5.444557    0.746713 

H   -4.528821    5.748394   -0.824952 

O   -2.764590    4.320112    0.729168 

O   -4.586412   -3.132665   -1.315835 

O    2.665870   -4.350571    0.366326 

O    4.393896    3.199433   -1.431632 
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3A-I 

 

115 

 

  Cu     1.671776   -1.898371   -0.027856 

  N     -0.219789   -2.351297    0.677803 

  N      1.262096   -3.356618   -1.237853 

  N      3.746046   -2.310362   -0.815881 

  N      4.617669   -0.143413    0.855625 

  H      3.658795   -0.209519    0.531643 

  O      0.116434   -5.364079   -1.287707 

  O      6.742790   -0.897866    0.713067 

  O      1.729097    0.007940    0.626944 

  O      2.599959   -2.883043    1.941450 

  C     -0.959370   -2.201374    1.717105 

  C      0.268267   -4.192569   -0.912116 

  C      2.278905   -3.803036   -2.168085 

  H      2.329982   -4.896426   -2.157785 

  C      3.598509   -3.267397   -1.696534 

  C      5.974656   -2.799352   -1.308177 

  C      5.098712   -2.037743   -0.574733 

  C      5.561751   -0.986258    0.383787 

  C      4.967097    1.056290    1.600624 

  H      6.051827    1.058542    1.703855 

  C     -2.707641   -5.088665    0.666264 

  H     -3.540830   -4.415683    0.463156 

  H     -2.499244   -5.669709   -0.231174 

  H     -3.000590   -5.778313    1.457748 

  C      2.007147   -3.378634   -3.649403 

  H      2.873073   -3.736938   -4.216703 

  C      1.914209   -1.863334   -3.831910 

  H      1.770092   -1.624375   -4.887032 

  H      2.818013   -1.350066   -3.498394 

  H      1.066766   -1.452406   -3.280461 

  C      0.768638   -4.076939   -4.211795 

  H      0.669573   -3.851401   -5.275638 

  H     -0.140290   -3.734869   -3.713130 

  H      0.829842   -5.159294   -4.095238 

  C      7.467476   -2.821177   -1.394177 

  H      7.893065   -2.028465   -0.791513 

  H      7.788101   -2.704912   -2.431377 

  H      7.855464   -3.778637   -1.038753 

  C      4.351661    1.117641    3.025976 

  H      3.262127    1.149434    2.927436 

  C      4.728968   -0.133073    3.820289 

  H      4.312059   -0.072008    4.826860 

  H      5.814111   -0.222874    3.911414 

  H      4.347866   -1.039589    3.351519 

  C      4.796347    2.383218    3.767665 

  H      4.327792    2.419857    4.751650 

  H      4.527785    3.300186    3.241251 

  H      5.879519    2.388276    3.911525 

  H      2.080836   -3.516963    2.451282 

  H      3.494468   -3.245486    1.932477 

  Cu     1.554047    1.917456   -0.026210 

  C     -0.990838   -1.012746    2.643401 

  C      4.612820    2.239736    0.737935 

  N      3.566688    2.380638    0.005439 

  N      1.537175    3.349760   -1.334287 

  N     -0.656362    2.311885   -0.096466 

  O      1.342418    2.913863    2.132585 

  C      2.576129    4.191419   -1.380711 

  C     -0.817953    3.242758   -1.002508 

  H      2.007837    3.547687    2.428353 

  C      0.267755    3.765501   -1.896709 

  C     -1.852252    2.037359    0.579628 

  H      0.501337    3.281596    2.430778 

  O      2.592615    5.345036   -1.827665 

  H      0.209532    4.858616   -1.901974 

  C      0.044586    3.291688   -3.371741 

  C     -2.930186    2.773692    0.154207 

  C     -1.962805    1.005182    1.657601 

  C      5.847125    5.190449   -0.789855 

  H     -0.966715    3.623035   -3.631399 

  C      1.013079    3.978097   -4.335690 

  C      0.099108    1.771529   -3.525109 

  C     -4.369964    2.783435    0.558726 

  N     -0.903746    0.180840    1.815393 

  O     -2.968021    0.922846    2.360111 

  H      5.330775    5.793218   -1.536909 

  H      6.571884    4.551572   -1.295396 

  H      6.377005    5.860798   -0.113823 

  H      0.759697    3.710899   -5.363610 

  H      2.042935    3.664760   -4.154822 

  H      0.970217    5.063811   -4.243337 

  H      1.090252    1.387379   -3.277433 

  H     -0.115498    1.494015   -4.558593 

  H     -0.630506    1.265965   -2.889918 

  H     -4.565203    2.003026    1.283784 

  H     -5.009441    2.639509   -0.314511 

  H     -4.634562    3.746806    1.001044 

  H     -0.111054    0.241151    1.183310 

  H     -1.976248   -1.003436    3.107718 

  C      0.067457   -1.082394    3.776604 

  H      1.058722   -1.134069    3.316017 

  C      0.000736    0.169288    4.653147 

  C     -0.125661   -2.343462    4.625516 

  H      0.728942    0.092099    5.462126 
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  H     -0.989321    0.276383    5.103107 

  H      0.221084    1.073180    4.087373 

  H      0.652608   -2.401500    5.387273 

  H     -0.082702   -3.262098    4.038555 

  H     -1.092603   -2.322475    5.134137 

  H      1.896900    0.009721    1.576683 

  O    -79.277579   -0.094408   -0.434727 

  H    -78.416651   -0.033785   -0.005313 

  H    -79.914796    0.021061    0.279321 

  S      5.080162   -3.888718   -2.301857 

  S     -2.423940    3.840684   -1.102857 

  O      5.527516    3.215907    0.650826 

  O     -1.854318   -3.169870    1.951138 

  C      3.855609    3.541337   -0.888352 

  H      4.389694    3.140060   -1.757967 

  C      4.840765    4.337621   -0.059127 

  H      4.318251    4.874014    0.738714 

  C     -1.479149   -4.292156    1.045044 

  H     -0.750048   -4.868823    1.618927 

  C     -0.793810   -3.512071   -0.064816 

  H     -1.553967   -3.111242   -0.741910 
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3B-I 

 

115 

 

  N     1.239978   -2.793367   -0.035337 

  C     0.396413   -3.636875    0.443156 

  C     3.345284   -2.999101   -1.416686 

  O     4.139620   -3.717531   -2.040796 

  Cu    2.374270   -0.953333    0.281460 

  O     1.277380    0.023389    1.480567 

  C    -0.743139   -3.458721    1.434554 

  C    -0.308968   -2.857500    2.791752 

  C    -1.481839   -2.835399    3.774017 

  N     3.622487    0.865247   -0.256380 

  C     3.853469    2.162481    0.196577 

  C     5.171537    2.547478    0.170754 

  C     4.717070    0.297698   -0.699616 

  C     2.780264    3.158433    0.540332 

  O     3.041107    4.358058    0.436114 

  C     4.737822   -1.027821   -1.414005 

  C     4.841626   -0.847560   -2.971360 

  C     3.810274    0.128367   -3.538894 

  N     1.573182    2.704961    0.945138 

  C     0.574079    3.638867    1.465287 

  C     0.059157    3.216722    2.863982 

  C     1.220874    3.079804    3.851590 

  C    -0.560234    3.848666    0.488745 

  N    -1.530551    3.033371    0.202215 

  C    -3.416966    2.946652   -1.314803 

  O    -4.232123    3.558007   -2.211984 

  Cu   -2.432886    0.981241    0.465380 

  O    -0.776489   -0.203211    0.024863 

  N    -3.725433   -1.109258   -0.452056 

  C    -4.111307   -2.301469    0.119243 

  C    -5.460811   -2.565062    0.072631 

  C    -4.722624   -0.446678   -0.954086 

  C    -3.099266   -3.212879    0.736679 

  N    -1.830930   -2.732897    0.789275 

  C    -4.594561    0.869628   -1.698076 

  N    -3.600797    1.692512   -1.009106 

  O    -3.424452   -4.317406    1.172546 

  C    -4.243954    0.658070   -3.214832 

  C    -2.901880   -0.036686   -3.446012 

  C    -5.373865   -0.052235   -3.963441 

  O    -2.926497    0.658376    2.541666 

  O     3.893046   -1.613746    2.075127 

  N     3.529607   -1.739972   -1.025047 

  C    -0.972688    4.217664    3.393307 

  C     6.258406   -0.504756   -3.433402 

  C     0.869419   -3.634534    3.385836 

  H     1.071703    4.604582    1.551662 

  H    -0.426191    2.242266    2.757640 

  H     0.843545    2.766596    4.826479 

  H     1.733966    4.036008    3.983871 

  H     1.954675    2.343442    3.525804 

  H    -1.312356    3.912990    4.384306 

  H    -1.852575    4.285597    2.752205 

  H    -0.538925    5.216966    3.483286 

  H     5.626215   -1.587721   -1.101414 

  H     4.615403   -1.842268   -3.354566 

  H     4.032346    1.162339   -3.263812 

  H     2.802843   -0.105688   -3.191900 

  H     3.809075    0.072789   -4.629320 

  H     6.561253    0.501910   -3.137733 

  H     6.990919   -1.210922   -3.035805 

  H    -1.121705   -4.463045    1.621099 

  H     0.003028   -1.828422    2.608687 

  H    -1.176128   -2.359450    4.707251 

  H    -1.815293   -3.849394    4.007075 

  H    -2.332917   -2.280750    3.380505 

  H     1.150749   -3.208342    4.350030 

  H     1.749083   -3.604867    2.742436 

  H     0.603232   -4.681753    3.551151 

  H    -5.568382    1.369895   -1.676537 

  H    -4.173522    1.667037   -3.621796 

  H    -2.911236   -1.066029   -3.084628 

  H    -2.084964    0.489860   -2.951712 

  H    -2.683716   -0.059492   -4.515586 

  H    -6.337136    0.436188   -3.799995 

  H    -5.468428   -1.097970   -3.665120 

  H     1.458400    1.702058    1.155032 

  H    -1.627511   -1.810505    0.407775 

  H    -5.170765   -0.034603   -5.035838 

  H     6.311846   -0.549334   -4.523131 

  H    -3.256086    1.454867    2.977070 

  H    -3.616838   -0.005046    2.667089 

  H     4.348940   -2.446069    1.899581 

  H     3.641395   -1.649101    3.006075 

  H     1.314505   -0.277510    2.392643 

  H     0.007584   -0.097523    0.660727 

  H    -0.455878   -0.057982   -0.871354 

  C     5.838421    3.824063    0.573051 

  H     5.760019    4.568602   -0.220703 

  H     5.368177    4.245096    1.458657 

  H     6.895837    3.656184    0.778796 

  C    -6.250430   -3.731556    0.574305 

  H    -6.012516   -4.631767    0.005653 

  H    -6.009506   -3.939243    1.615924 
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  H    -7.320455   -3.545374    0.490312 

  S     6.121984    1.264151   -0.474953 

  S    -6.244068   -1.250123   -0.722974 

  O    -0.606216    5.032025   -0.142808 

  O     0.474357   -4.889409   -0.032572 

  C    -1.820321    5.048618   -0.962856 

  C    -2.343771    3.656225   -0.709294 

  H    -3.971744    4.471814   -2.379925 

  C     1.930804   -3.498242   -1.146092 

  H     1.376084   -3.256656   -2.061511 

  C     1.712347   -4.981186   -0.829272 

  C    -2.695298    6.217141   -0.525357 

  H    -2.134743    7.147301   -0.614271 

  H    -3.576611    6.299157   -1.163411 

  H    -3.026110    6.091456    0.505115 

  H    -1.492214    5.189729   -1.997608 

  H     1.457196   -5.553325   -1.716807 

  C     2.770403   -5.689787   -0.009664 

  H     2.396707   -6.662473    0.311036 

  H     3.661385   -5.837265   -0.617135 

  H     3.046396   -5.112418    0.874130 
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3A-II 

 

112 

 

  Cu      0.816328   -1.617483   -0.128173 

  Cu     -0.802165    1.643723   -0.162971 

  N       1.199566   -2.529643    1.537972 

  C       2.467478   -2.628059    1.954343 

  O       2.877564   -3.323080    2.894182 

  C       3.396147   -1.809340    1.121066 

  N       2.871970   -1.176803    0.004644 

  C       4.739615   -1.643710    1.305720 

  S       5.347530   -0.663433    0.022889 

  C       3.784932   -0.539252   -0.682446 

  C       3.552587    0.297244   -1.918937 

  C       3.144752   -0.521797   -3.169018 

  C       4.194822   -1.587997   -3.493902 

  C       2.923508    0.398697   -4.371334 

  N       2.584364    1.328189   -1.579454 

  C       2.880895    2.636854   -1.569461 

  O       3.949319    3.114717   -1.935427 

  C       1.748322    3.561626   -1.118015 

  C       2.288238    4.818096   -0.388550 

  C       2.038952    6.134892   -1.083062 

  N       0.798084    2.972994   -0.162034 

  O       1.553010    4.793255    0.887587 

  C       0.759122    3.735634    0.873508 

  C      -0.190145    3.511368    2.009298 

  C       0.500376    3.038296    3.327011 

  C       1.403633    1.821793    3.129416 

  C       1.238515    4.182727    4.025159 

  N      -1.176297    2.578371    1.494519 

  C      -2.438946    2.676603    1.925498 

  O      -2.839146    3.382077    2.862439 

  C      -3.375049    1.840588    1.120554 

  N      -2.864907    1.176859    0.015347 

  C      -4.717815    1.690190    1.323253 

  S      -5.344813    0.680504    0.074446 

  C      -3.789873    0.529534   -0.646111 

  C      -3.593141   -0.346314   -1.862113 

  C      -3.260213    0.424805   -3.164282 

  C      -4.322685    1.484036   -3.465780 

  C      -3.115823   -0.544984   -4.339701 

  N      -2.598699   -1.354419   -1.527588 

  C      -2.875712   -2.667267   -1.498577 

  O      -3.944775   -3.163024   -1.838567 

  C      -1.727656   -3.575713   -1.053761 

  C      -2.246561   -4.828982   -0.302930 

  C      -1.954868   -6.154558   -0.963858 

  N      -0.770943   -2.967545   -0.115054 

  O      -1.528409   -4.758640    0.981637 

  C      -0.734590   -3.702221    0.941460 

  C       0.214339   -3.451921    2.072678 

  C      -0.474164   -2.952209    3.380803 

  C      -1.368049   -1.732449    3.161596 

  C      -1.222825   -4.078925    4.096544 

  H       4.483199    0.817174   -2.147887 

  H       2.199746   -1.022889   -2.941072 

  H       5.165538   -1.128876   -3.698532 

  H       3.901208   -2.144950   -4.385228 

  H       4.331958   -2.302474   -2.680281 

  H       3.848067    0.913762   -4.643964 

  H       2.160583    1.151818   -4.174234 

  H       2.600890   -0.187255   -5.233377 

  H       1.206374    3.843338   -2.025139 

  H       3.340170    4.699462   -0.139301 

  H       0.978772    6.267103   -1.305802 

  H       2.596744    6.154264   -2.020599 

  H       2.378163    6.966478   -0.465318 

  H      -0.667825    4.471715    2.230073 

  H      -0.337260    2.743178    3.963519 

  H       0.879364    1.004787    2.632689 

  H       1.749671    1.453836    4.096787 

  H       2.288695    2.068478    2.536972 

  H       2.087021    4.535514    3.436248 

  H       0.576170    5.031953    4.206031 

  H      -4.524867   -0.888133   -2.028870 

  H      -2.305460    0.933375   -3.013927 

  H      -4.391207    2.233977   -2.677746 

  H      -5.307459    1.025529   -3.590698 

  H      -4.078533    2.002254   -4.394381 

  H      -4.055935   -1.067125   -4.533815 

  H      -2.342567   -1.292321   -4.161130 

  H      -2.846530    0.004443   -5.243266 

  H      -1.191917   -3.858353   -1.963778 

  H      -3.304013   -4.731003   -0.069937 

  H      -0.889988   -6.262150   -1.177306 

  H      -2.505846   -6.213453   -1.903743 

  H      -2.274215   -6.979861   -0.327260 

  H       0.692314   -4.407712    2.312241 

  H       0.364397   -2.652634    4.013993 

  H      -1.714307   -1.347255    4.122153 

  H      -2.253090   -1.982052    2.570388 

  H      -0.836773   -0.926595    2.654414 

  H      -2.079149   -4.427724    3.516649 

  H      -0.570568   -4.934495    4.284030 

  H       1.676342    1.018928   -1.242609 

  H      -1.693676   -1.028451   -1.203307 
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  O       0.003205   -0.005419   -1.059566 

  H      -0.017108   -0.026796   -2.022897 

  O      -1.545889    3.191900   -2.111208 

  H      -1.412606    3.221177   -3.066232 

  O       1.441921   -3.404877   -2.081101 

  H       1.488255   -4.244095   -1.606299 

  H      -1.624247    4.113567   -1.836827 

  H       2.170788   -3.443329   -2.712161 

  H      -1.595358   -3.724291    5.059363 

  H       1.620945    3.844665    4.990056 

  C      -5.607642    2.259639    2.380177 

  H      -5.873063    3.292767    2.145412 

  H      -6.529961    1.685927    2.466090 

  H      -5.097306    2.265168    3.340336 

  C       5.643689   -2.178757    2.368320 

  H       5.128198   -2.199026    3.325382 

  H       5.946457   -3.202506    2.137304 

  H       6.545254   -1.573237    2.456916 
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3B-II 

 

115 

 

  Cu   2.497601    0.266638   -0.288960 

  Cu  -2.657617   -0.215243   -0.389841 

  N    3.898789    0.420694    1.024595 

  C    4.290868    1.635735    1.407834 

  O    5.255265    1.916300    2.134034 

  C    3.402462    2.705371    0.844545 

  N    2.439084    2.338448   -0.085170 

  C    3.445324    4.038687    1.140497 

  S    2.243201    4.840072    0.203903 

  C    1.753499    3.363127   -0.533059 

  C    0.702655    3.416975   -1.627690 

  C    1.184776    2.792559   -2.962789 

  C    2.480552    3.463765   -3.431913 

  C    0.111673    2.922653   -4.048023 

  N   -0.599352    2.906360   -1.196644 

  C   -1.664835    3.727039   -1.074220 

  O   -1.594916    4.950283   -1.127328 

  C   -3.048228    3.059538   -0.940731 

  C   -4.065147    3.977485   -0.217174 

  C   -5.305478    4.322688   -1.005478 

  N   -3.087995    1.811707   -0.165748 

  O   -4.447044    3.176955    0.960609 

  C   -3.858154    1.998019    0.847596 

  C   -4.098458    0.944084    1.882995 

  C   -3.496529    1.333642    3.274916 

  C   -2.034499    1.773125    3.186058 

  C   -4.356748    2.359929    4.014015 

  N   -3.531409   -0.274251    1.333983 

  C   -3.851736   -1.446491    1.881660 

  O   -4.617055   -1.631210    2.841870 

  C   -3.156793   -2.594304    1.225212 

  N   -2.382773   -2.359854    0.096459 

  C   -3.187437   -3.891262    1.660583 

  S   -2.192408   -4.831622    0.625105 

  C   -1.807635   -3.456781   -0.337201 

  C   -0.920372   -3.685885   -1.550169 

  C   -1.588856   -3.313346   -2.894904 

  C   -2.980657   -3.942070   -3.014442 

  C   -0.718409   -3.749899   -4.079110 

  N    0.393312   -3.041654   -1.425659 

  C    1.418516   -3.609976   -0.742814 

  O    1.271923   -4.586179   -0.023988 

  C    2.806466   -2.952710   -0.954071 

  C    3.958936   -3.874061   -0.486178 

  C    4.899528   -4.346553   -1.567856 

  N    3.011396   -1.721856   -0.170227 

  O    4.697736   -3.028000    0.472502 

  C    4.067141   -1.871278    0.552277 

  C    4.603460   -0.779666    1.435809 

  C    4.444085   -1.105469    2.957917 

  C    3.010622   -1.479113    3.337134 

  C    5.449010   -2.155739    3.435385 

  H    0.528092    4.477154   -1.816267 

  H    1.391660    1.733826   -2.794979 

  H    2.319533    4.529172   -3.615689 

  H    2.815643    3.010914   -4.365518 

  H    3.289420    3.362997   -2.709521 

  H   -0.120664    3.973086   -4.242320 

  H   -0.815762    2.416292   -3.783440 

  H    0.474985    2.483878   -4.978389 

  H   -3.371186    2.861192   -1.967028 

  H   -3.576867    4.870126    0.163734 

  H   -5.797089    3.423334   -1.379666 

  H   -5.028196    4.946608   -1.856996 

  H   -6.009282    4.881045   -0.388239 

  H   -5.181343    0.841416    2.018776 

  H   -3.538896    0.401241    3.839174 

  H   -1.429430    1.042051    2.648346 

  H   -1.617044    1.881243    4.188807 

  H   -1.930559    2.738302    2.682790 

  H   -4.371827    3.323567    3.503612 

  H   -5.387929    2.014211    4.114608 

  H   -0.724841   -4.760938   -1.564244 

  H   -1.694604   -2.226167   -2.907733 

  H   -3.659074   -3.603486   -2.231278 

  H   -2.927739   -5.032552   -2.966255 

  H   -3.421920   -3.674818   -3.975662 

  H   -0.589896   -4.835414   -4.087503 

  H    0.272719   -3.296197   -4.071520 

  H   -1.199887   -3.464436   -5.015569 

  H    2.898799   -2.714393   -2.016460 

  H    3.562619   -4.704326    0.092834 

  H    5.312389   -3.506905   -2.129082 

  H    4.356190   -4.993307   -2.259224 

  H    5.718968   -4.921872   -1.137905 

  H    5.677631   -0.690749    1.235083 

  H    4.693357   -0.162478    3.446326 

  H    2.918554   -1.547592    4.422503 

  H    2.723313   -2.449080    2.922951 

  H    2.295478   -0.733350    2.987530 

  H    5.249426   -3.137741    3.004269 

  H    6.472581   -1.875070    3.178409 

  H   -0.777822    1.909237   -1.227617 

  H    0.601890   -2.291994   -2.067511 
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  H    5.393181   -2.252108    4.521381 

  H   -3.959655    2.520726    5.018394 

  O    0.638261   -0.150572   -0.798182 

  H   -0.191265   -0.018207   -1.447794 

  O    3.591692    0.398285   -2.452834 

  H    4.462567    0.808176   -2.376881 

  O   -1.497978   -0.041093   -1.915305 

  H   -1.852460    0.283729   -2.746424 

  O   -4.666675   -0.591550   -1.786329 

  H   -5.400913   -0.957886   -1.277464 

  H   -4.592918   -1.154689   -2.566821 

  H    3.732546   -0.392624   -2.987428 

  H    0.422245   -0.962666   -0.323959 

  C    4.334501    4.792558    2.076593 

  H    4.443707    4.252660    3.014839 

  H    5.332336    4.909184    1.649977 

  H    3.935363    5.785251    2.281262 

  C   -3.901638   -4.509260    2.820674 

  H   -4.981449   -4.432165    2.693419 

  H   -3.639804   -5.561802    2.923987 

  H   -3.648902   -3.992882    3.745682 
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  N   -2.968972   -1.155707    0.458711 

  N   -4.147120   -2.940851    0.959423 

  N   -3.492249    0.945974   -1.041551 

  N   -1.410520    2.551935   -0.713514 

  N   -1.819248    3.887773   -2.419178 

  N    0.708539    2.803663    1.236792 

  C   -4.098769   -1.181278   -0.332283 

  C   -4.850156   -2.285858   -0.034162 

  C   -3.015236   -2.235091    1.221900 

  C   -4.523939   -4.211423    1.571544 

  H   -3.733640   -4.942343    1.411637 

  H   -5.435162   -4.568934    1.103797 

  H   -4.706939   -4.086131    2.637028 

  C   -6.148243   -2.760811   -0.582699 

  H   -6.494125   -2.046137   -1.324631 

  H   -6.906685   -2.851520    0.198440 

  H   -6.049880   -3.736062   -1.065879 

  C   -4.320324   -0.078620   -1.287120 

  C   -3.577117    2.149179   -1.843232 

  H   -3.770023    1.891323   -2.890503 

  C   -4.691940    3.171789   -1.402548 

  H   -4.464191    4.099382   -1.935421 

  C   -6.099872    2.758536   -1.835018 

  H   -6.142332    2.537294   -2.902235 

  H   -6.794528    3.576555   -1.629146 

  H   -6.443293    1.874795   -1.299942 

  C   -4.651496    3.484826    0.093957 

  H   -5.394506    4.248520    0.331178 

  H   -4.882445    2.597677    0.685415 

  H   -3.678136    3.862406    0.410964 

  C   -2.246538    2.817918   -1.702748 

  C   -0.431667    3.543445   -0.755038 

  C   -0.674370    4.371746   -1.828455 

  C   -2.428221    4.436434   -3.625905 

  H   -1.664374    4.567453   -4.389414 

  H   -2.895669    5.398317   -3.418416 

  H   -3.177067    3.746340   -3.999898 

  C    0.040625    5.555840   -2.372983 

  H    0.355406    5.378771   -3.404592 

  H    0.915082    5.765152   -1.767874 

  H   -0.605071    6.437721   -2.375795 

  C    0.609818    3.751029    0.263981 

  C    1.941547    2.764005    2.026797 

  H    2.166523    3.789845    2.311441 

  C    1.792553    1.939502    3.323304 

  H    1.519186    0.916274    3.049322 

  C    0.697538    2.520286    4.219905 

  H   -0.272469    2.524864    3.726447 

  H    0.939672    3.546333    4.509906 

  H    0.607193    1.928557    5.132485 

  C    3.124369    1.875804    4.077160 

  H    3.016541    1.267216    4.975950 

  H    3.444995    2.873179    4.389766 

  H    3.920990    1.437116    3.473853 

  O   -5.179609   -0.143187   -2.181255 

  O    1.336426    4.747050    0.246700 

  C   -1.895559   -2.731788    2.097935 

  C    3.032604    2.284804    1.106614 

  N   -0.693450   -2.790768    1.265268 

  H   -2.128923   -3.754235    2.389943 

  C   -1.680314   -1.914642    3.389886 

  H   -0.270456   -1.888429    1.060841 

  C   -0.666161   -3.690881    0.243583 

  H   -1.402620   -0.894833    3.107686 

  C   -0.557116   -2.514472    4.238353 

  C   -2.977240   -1.831178    4.200392 

  C    0.378736   -3.487869   -0.773651 

  H    0.393457   -2.525064    3.708144 

  H   -0.798855   -3.540513    4.528845 

  H   -0.425796   -1.931732    5.151736 

  H   -2.822525   -1.219072    5.089884 

  H   -3.295335   -2.822575    4.533596 

  H   -3.794819   -1.386307    3.630477 

  N    1.431309   -2.588910   -0.646307 

  C    0.565342   -4.245336   -1.908035 

  C    2.264281   -2.849686   -1.640872 

  N    1.758517   -3.814674   -2.448886 

  C   -0.240397   -5.318729   -2.546623 

  C    3.638082   -2.251872   -1.667134 

  C    2.308338   -4.286345   -3.715272 

  H   -1.156470   -5.470078   -1.986670 

  H   -0.491036   -5.056785   -3.577503 

  H    0.310854   -6.262420   -2.574363 

  N    3.489965   -0.958485   -1.033182 

  H    4.012255   -2.138686   -2.688571 

  C    4.622415   -3.180688   -0.862999 

  H    3.205598   -3.725501   -3.951339 

  H    2.555032   -5.344751   -3.655060 

  H    1.578891   -4.131526   -4.508379 

  C    4.312996    0.050514   -1.346277 

  H    4.184336   -3.267655    0.136689 

  C    4.748356   -4.589934   -1.449698 

  C    6.015692   -2.566742   -0.711134 

  C    4.080201    1.206189   -0.456929 

  H    3.801963   -5.129662   -1.464728 

  H    5.440939   -5.175606   -0.842795 
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  H    5.149752   -4.563801   -2.465855 

  H    5.987971   -1.598062   -0.216459 

  H    6.499581   -2.436818   -1.680601 

  H    6.637495   -3.232141   -0.108051 

  N    2.980550    1.184669    0.376130 

  C    4.817166    2.335111   -0.220305 

  N    4.136119    3.007937    0.777847 

  C    6.086043    2.815724   -0.828538 

  C    4.521291    4.293442    1.353042 

  H    6.424278    2.078142   -1.551520 

  H    6.866350    2.954355   -0.076687 

  H    5.950310    3.768188   -1.346926 

  H    3.687593    4.988714    1.282543 

  H    5.359035    4.691705    0.790250 

  H    4.823160    4.174918    2.392518 

  Cu   1.905855   -0.590709    0.066220 

  Cu  -1.887403    0.603142    0.053114 

  H    0.322137    1.890776    1.003998 

  O   -1.447471   -4.642516    0.186372 

  O    5.183653    0.054286   -2.232289 

  O    0.016402    0.005993    0.676710 

  O    2.421564   -1.486578    2.253856 

  O   -2.280077    1.481143    2.272614 

  H    2.408318   -2.449417    2.178843 

  H    3.332830   -1.262898    2.481897 

  H   -3.173410    1.265651    2.568813 

  H   -2.248943    2.445554    2.237821 

  H    0.005798    0.021351    1.641708 
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  N      2.836831   -2.007203   -0.392240 

  N      4.009502   -3.020828   -1.957275 

  N      4.414245    0.151937   -0.311941 

  N      2.775991    2.104698    0.398856 

  N      2.939105    4.292029    0.271580 

  N     -0.271957    2.903754    0.711569 

  O      5.882671    1.579456   -1.374476 

  O     -0.222351    4.533952   -0.844591 

  C      2.081466   -3.061963   -0.898450 

  C      2.808432   -3.694800   -1.885197 

  C      3.993223   -2.028659   -1.034048 

  C      5.097798   -1.069052   -0.694000 

  H      5.736449   -0.885557   -1.562136 

  C      4.857332    1.348873   -0.710222 

  C      3.956710    2.430274   -0.246790 

  C      4.074900    3.791035   -0.331689 

  C      2.175723    3.245795    0.700342 

  C      0.871692    3.456403    1.433796 

  H      0.717958    4.535101    1.472917 

  C     -0.786511    3.547220   -0.357371 

  C      2.525286   -4.856766   -2.769895 

  H      1.565959   -5.287105   -2.508002 

  H      3.298832   -5.622457   -2.672150 

  H      2.500598   -4.550811   -3.819439 

  C      5.981275   -1.619769    0.472031 

  H      5.304984   -1.732021    1.326327 

  C      6.594899   -2.988921    0.167372 

  H      5.840608   -3.751973   -0.029394 

  H      7.182445   -3.328150    1.022328 

  H      7.268764   -2.940764   -0.691888 

  C      7.077279   -0.625812    0.858760 

  H      6.668289    0.349854    1.117087 

  H      7.788914   -0.489167    0.041120 

  H      7.628211   -1.000789    1.723875 

  C      5.143477    4.642539   -0.919197 

  H      5.933723    3.997056   -1.292325 

  H      5.566177    5.325447   -0.178590 

  H      4.767621    5.244879   -1.750136 

  C      2.618802    5.711422    0.401210 

  H      1.605230    5.886089    0.049384 

  H      3.308933    6.280521   -0.212860 

  H      2.721144    6.039310    1.434855 

  C      0.903535    2.953939    2.898333 

  H      0.961253    1.864190    2.871395 

  C     -0.369853    3.364865    3.644395 

  H     -1.275130    2.989681    3.167685 

  H     -0.448696    4.453780    3.702677 

  H     -0.346062    2.978043    4.664598 

  C      2.138841    3.476046    3.637669 

  H      3.068640    3.150531    3.170049 

  H      2.138545    3.107863    4.664668 

  H      2.141132    4.568420    3.680529 

  C      0.786130   -3.542487   -0.361475 

  N      0.249408   -2.884017    0.686672 

  O      0.245101   -4.551064   -0.832633 

  C     -0.889106   -3.458357    1.399952 

  C     -2.197770   -3.249170    0.672243 

  H     -0.725651   -4.535881    1.416862 

  C     -0.920122   -2.990318    2.876339 

  N     -2.800148   -2.108809    0.371830 

  N     -2.966112   -4.295023    0.250570 

  H     -0.970412   -1.900273    2.879618 

  C      0.354273   -3.420858    3.609091 

  C     -2.156400   -3.522462    3.606319 

  C     -3.986742   -2.433128   -0.263295 

  C     -4.106726   -3.793893   -0.344190 

  C     -2.646829   -5.714776    0.378878 

  H      1.256763   -3.037505    3.133838 

  H      0.429463   -4.510972    3.644321 

  H      0.336242   -3.055175    4.637184 

  H     -3.085509   -3.184523    3.146109 

  H     -2.153759   -3.175051    4.640530 

  H     -2.162085   -4.615352    3.627664 

  C     -4.886638   -1.348264   -0.722686 

  C     -5.179633   -4.644971   -0.924244 

  H     -1.628660   -5.887750    0.039689 

  H     -3.327855   -6.281625   -0.247418 

  H     -2.762749   -6.047672    1.409516 

  N     -4.421800   -0.151292   -0.349061 

  O     -5.931040   -1.575316   -1.356959 

  H     -5.972187   -3.999124   -1.291999 

  H     -5.597782   -5.327650   -0.180868 

  H     -4.809699   -5.247394   -1.757766 

  C     -5.103028    1.078192   -0.704651 

  C     -3.997364    2.041525   -1.032822 

  H     -5.747343    0.914357   -1.572732 

  C     -5.975644    1.616483    0.475976 

  C     -2.084722    3.072707   -0.892534 

  N     -2.839346    2.013734   -0.392663 

  N     -4.015722    3.043086   -1.945334 

  H     -5.290476    1.721693    1.323957 

  C     -6.591622    2.988445    0.188264 

  C     -7.068816    0.621300    0.867245 

  C     -2.814599    3.716273   -1.869380 

  H     -5.839248    3.753102   -0.009474 

  H     -7.170936    3.320798    1.051473 
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  H     -7.273569    2.947182   -0.664958 

  H     -6.659019   -0.355648    1.118766 

  H     -7.787452    0.488159    0.055334 

  H     -7.611798    0.993787    1.738510 

  C     -2.535971    4.892048   -2.736900 

  H     -1.588965    5.335934   -2.453397 

  H     -3.325222    5.642263   -2.647094 

  H     -2.484624    4.596889   -3.788678 

  Cu     2.631323   -0.001105    0.408538 

  Cu    -2.595849   -0.022663    0.271882 

  O      1.152832   -0.371941    1.606069 

  H     -0.161937    0.028660    1.629845 

  H      0.679304   -2.027665    1.046526 

  O     -1.185928    0.361043    1.648807 

  H     -1.523576    0.275855    2.547884 

  H     -0.732320    2.079678    1.083933 

  H      1.493138   -0.378370    2.508311 

  O      1.338622    0.495399   -1.971987 

  H      1.795153    0.050767   -2.697605 

  O     -1.272709   -0.385988   -1.651928 

  H     -1.209236   -1.338212   -1.788134 

  H     -0.362425   -0.041561   -1.763558 

  C      5.075121   -3.334199   -2.902402 

  H      5.540892   -4.286428   -2.652999 

  H      4.665147   -3.388301   -3.908898 

  H      5.826339   -2.553029   -2.872760 

  C     -5.082992    3.366902   -2.885125 

  H     -5.549653    4.315366   -2.623339 

  H     -4.673771    3.433615   -3.891150 

  H     -5.833213    2.584564   -2.864375 

  H      1.487210    1.439031   -2.113689 
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Table AII-1. Expected minimum and maximum distances from Cu1 and Cu2 to C1 of Rhodamine and O1 of Proxyl 
[Å]. 

 [Cu2(H2pat-FT)(OH)(H2O)3]2+ Cu2(H2pat-FT)(µ-OH)(H2O)2]2+ 

 dC1-Cu1 / dC1-Cu2 min. dC1-Cu1 / dC1-Cu2 max. dC1-Cu1 /dC1-Cu2 min. dC1-Cu1 / dC1-Cu2 max. 

⫠ 5A 18.32 / 20.88 5B 20.97 / 24.37 5E 18.36 / 23.96 5F 21.35 / 25.34 

ǁ 5C 13.65 / 16.65 5D 21.48 / 21.78 5G 18.52 / 19.32 5H 18.16 / 20.47 

 [Cu2(H2pat-Proxyl)(OH)(H2O)3]2+ Cu2(H2pat-Proxyl)(µ-OH)(H2O)2]2+ 

 dC1-Cu1 / dC1-Cu2 dC1-Cu1 /dC1-Cu2 min. dC1-Cu1 / dC1-Cu2 max. 

⫠ 5I 12.75 / 16.47 5K 13.71 / 12.38 

ǁ 5J 11.17 / 13.07 5L 12.62 / 17.66 

 

 

5A+B: [Cu2(H2pat-ǁ-FT)(OH)(H2O)]2+ 

 

5C+D: [Cu2(H2pat-⫠-FT)(OH)(H2O)]2+ 
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5E+F: [Cu2(H2pat-⫠-FT)(OH)(H2O)3]2+ 

 

5G+H: [Cu2(H2pat-ǁ-FT)(OH)(H2O)3]2+ 

 

5I: [Cu2(H2pat-⫠-FT)(OH)(H2O)3]2+ 

 

5J: [Cu2(H2pat-ǁ-FT)(OH)(H2O)3]2+ 
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5K: [Cu2(H2pat-⫠-FT)(µ-OH)(H2O)3]2+ 

 

5L: [Cu2(H2pat-ǁ-FT)(µ-OH)(H2O)3]2+ 
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184  

 

  N                4.961193    2.816602   -0.504434  

  N                5.458350    4.902274   -0.982230  

  N                3.102130    1.746833    1.025649  

  N                3.328766   -0.865715    0.646750  

  N                2.114656   -1.502742    2.373291  

  N                4.532980   -2.557718   -1.364336  

  C                4.233086    3.649177    0.319851  

  C                4.525803    4.955939    0.036575  

  C                5.702285    3.596974   -1.273503  

  C                6.119155    6.052430   -1.591751  

  H                7.196117    5.966514   -1.460761  

  H                5.774752    6.955734   -1.099454  

  H                5.875766    6.119862   -2.650362  

  C                4.006976    6.221438    0.620384  

  H                3.266700    5.976880    1.377377  

  H                3.538645    6.852864   -0.138305  

  H                4.801684    6.803553    1.093496  

  C                3.297976    3.046165    1.288665  

  C                2.182136    0.977865    1.837989  

  H                2.267113    1.276570    2.888724  

  C                2.591253   -0.450135    1.662442  

  C                3.266898   -2.258113    0.665937  

  C                2.521766   -2.661254    1.751969  

  C                1.329436   -1.449502    3.601567  

  H                1.771409   -2.111976    4.342757  

  H                0.300989   -1.756519    3.414978  

  H                1.336915   -0.437750    3.992940  

  C                2.152290   -3.999575    2.283188  

  H                2.522277   -4.127919    3.303626  

  H                2.576964   -4.772863    1.653648  

  H                1.066894   -4.125094    2.311574  

  C                3.795671   -3.145644   -0.382333  

  C                5.379048   -3.421707   -2.191185  

  H                4.771820   -4.278797   -2.475185  

  C                5.849755   -2.729973   -3.488441  

  H                6.421940   -1.838976   -3.213631  

  C                4.657256   -2.305865   -4.347709  

  H                4.007918   -1.605879   -3.825393  

  H                4.061389   -3.175590   -4.637575  

  H                5.006791   -1.821895   -5.261332  

  C                6.781471   -3.650734   -4.282289  

  H                7.131858   -3.142723   -5.181724  

  H                6.259356   -4.558172   -4.597304  

  H                7.659625   -3.947446   -3.706233  

  O                2.784779    3.705019    2.207663  

  O                3.558613   -4.355649   -0.379789  

  C                6.804561    3.128107   -2.186177  

  C                6.494926   -3.912331   -1.307511  

  N                7.685267    2.272029   -1.390334  

  H                7.388879    3.998954   -2.478281  

  C                6.318131    2.437249   -3.478189  

  H                7.315590    1.345178   -1.192299  

  C                8.390340    2.845980   -0.376312  

  H                5.765596    1.535844   -3.197235  

  C                7.499175    2.035392   -4.364142  

  C                5.355650    3.345868   -4.248868  

  C                8.976785    1.924063    0.610572  

  H                8.165873    1.336158   -3.862736  

  H                8.080482    2.914798   -4.654505  

  H                7.137425    1.558848   -5.276908  

  H                4.988848    2.831800   -5.138248  

  H                5.858605    4.258485   -4.579391  

  H                4.488692    3.633593   -3.651586  

  N                9.028565    0.543365    0.458108  

  C                9.688237    2.282294    1.733475  

  C                9.810848    0.092393    1.425405  

  N               10.196153    1.105127    2.241368  

  C                9.945090    3.591644    2.388313  

  C               10.305610   -1.321996    1.414723  

  C               10.947877    1.000477    3.487349  

  H                9.419879    4.376101    1.854999  

  H                9.609046    3.579831    3.428064  

  H               11.012496    3.827914    2.392856  

  N                9.239841   -2.081159    0.794649  

  H               10.502688   -1.690931    2.425266  

  C               11.634897   -1.399237    0.574916  

  H               11.151579   -0.042820    3.700388  

  H               11.890431    1.539611    3.412295  

  H               10.359279    1.416773    4.303027  

  C                9.066281   -3.375798    1.090070  

  H               11.375748   -1.001610   -0.411789  

  C               12.769414   -0.544282    1.147605  

  C               12.126496   -2.835813    0.385722  

  C                8.037543   -3.974895    0.216285  

  H               12.523272    0.516398    1.187166  

  H               13.653875   -0.644018    0.516102  

  H               13.048715   -0.873953    2.151440  

  H               11.384278   -3.465087   -0.101042  

  H               12.384457   -3.295711    1.341152  

  H               13.021498   -2.829527   -0.240406  

  N                7.285457   -3.139280   -0.583588  

  C                7.703518   -5.278426   -0.034327  

  N                6.721952   -5.218783   -1.006848  

  C                8.227900   -6.546220    0.539001  
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  C                6.025540   -6.364809   -1.584225  

  H                9.017203   -6.305661    1.246295  

  H                8.636765   -7.199901   -0.234890  

  H                7.450117   -7.102650    1.067941  

  H                4.951153   -6.226798   -1.483870  

  H                6.316470   -7.259606   -1.043982  

  H                6.290913   -6.487868   -2.633090  

  Cu               7.866389   -1.150062   -0.254176  

  Cu               4.415329    0.821276   -0.119001  

  H                4.946406   -1.658058   -1.126528  

  O                8.559592    4.064678   -0.302447  

  O                9.677267   -4.032281    1.949606  

  O                6.130137   -0.158902   -0.803556  

  O                8.818000   -0.882141   -2.462556  

  O                3.447816    0.550968   -2.319481  

  H                9.517401   -0.219572   -2.393987  

  H                9.266751   -1.698673   -2.716208  

  H                2.991844    1.357790   -2.590300  

  H                2.762211   -0.127678   -2.278821  

  H                6.087025   -0.144976   -1.767670  

  C                0.012972    2.434790    1.622628  

  H                0.102600    2.706636    2.678018  

  H                0.521166    3.220134    1.061424  

  C               -1.464859    2.395617    1.230079  

  H               -1.984670    1.625058    1.807284  

  H               -1.563322    2.119262    0.174961  

  C               -2.162555    3.737285    1.462785  

  H               -1.680731    4.518925    0.871600  

  H               -2.088573    4.020763    2.512190  

  N               -3.576476    3.716492    1.116908  

  H               -3.827008    3.813177    0.146643  

  C                0.698420    1.091051    1.384101  

  H                0.122762    0.317894    1.900432  

  H                0.665280    0.840716    0.319340  

  O               -4.350566    3.318551    3.209757  

  C               -4.565458    3.488046    2.009025  

  C               -5.975742    3.450508    1.445824  

  H               -6.543624    4.234392    1.955200  

  H               -5.978012    3.689333    0.379808  

  C               -6.649872    2.094225    1.685677  

  H               -6.592647    1.857635    2.750988  

  H               -6.086879    1.315464    1.160380  

  C               -8.108805    2.061829    1.230956  

  H               -8.670097    2.834564    1.768122  

  H               -8.167429    2.322586    0.168335  

  C               -8.774551    0.703792    1.455067  

  H               -8.694386    0.432605    2.513671  

  H               -8.224457   -0.064222    0.899816  

  C              -10.244668    0.672138    1.038257  

  H              -10.802510    1.424089    1.605757  

  H              -10.334193    0.951547   -0.016581  

  C              -10.897696   -0.703991    1.250384  

  H              -10.802009   -0.984867    2.302511  

  H              -10.347573   -1.450462    0.670764  

  C              -12.351810   -0.732915    0.854638  

  C              -13.358533   -0.484857    1.789894  

  C              -12.733718   -0.975722   -0.466901  

  C              -14.698102   -0.484209    1.424689  

  H              -13.093026   -0.294813    2.823112  

  C              -14.068656   -0.956970   -0.846454  

  H              -11.975870   -1.185419   -1.212540  

  C              -15.070550   -0.714143    0.097650  

  H              -15.457563   -0.290924    2.171575  

  H              -14.336087   -1.152931   -1.877034  

  C              -16.499229   -0.706916   -0.300250  

  C              -16.996025    0.281780   -1.171786  

  C              -17.384486   -1.689065    0.185515  

  C              -16.220242    1.351434   -1.701260  

  C              -18.369304    0.259974   -1.540840  

  C              -18.749813   -1.654234   -0.210903  

  C              -17.005572   -2.764530    1.037509  

  C              -16.758285    2.280632   -2.537918  

  H              -15.179467    1.426507   -1.422991  

  C              -18.931737    1.188186   -2.386264  

  C              -19.676936   -2.576065    0.216878  

  H              -15.972295   -2.848399    1.340010  

  C              -17.907375   -3.687540    1.470820  

  C              -18.133531    2.216190   -2.911237  

  H              -16.147823    3.086045   -2.924802  

  H              -19.982283    1.118203   -2.633102  

  C              -19.276112   -3.611062    1.075956  

  H              -20.702055   -2.496129   -0.118000  

  H              -17.592692   -4.496832    2.116533  

  O              -19.198417   -0.694008   -1.054251  

  N              -20.155249   -4.526347    1.518261  

  H              -19.865960   -5.272399    2.126921  

  H              -21.122889   -4.497198    1.246002  

  N              -18.646612    3.136880   -3.745025  

  H              -19.614781    3.115841   -4.015882  

  H              -18.075194    3.875352   -4.117643 
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 N    -4.357042   -2.235752    1.913240 

 N    -4.771151   -3.343353    3.764514 

 N    -2.117240   -1.710833    0.628944 

 N    -2.878681   -0.495625   -1.599011 

 N    -0.901921    0.293334   -2.174139 

 N    -5.347475   -0.283511   -3.088151 

 C    -3.161476   -2.523685    2.538126 

 C    -3.396479   -3.217463    3.694414 

 C    -5.314880   -2.730882    2.679438 

 C    -5.513456   -3.967578    4.855552 

 H    -6.194317   -3.241807    5.296089 

 H    -4.810836   -4.297584    5.613411 

 H    -6.069349   -4.832117    4.497784 

 C    -2.460136   -3.769436    4.709347 

 H    -1.442019   -3.556352    4.394880 

 H    -2.575520   -4.850395    4.818222 

 H    -2.617187   -3.317378    5.691809 

 C    -1.904655   -2.095551    1.894885 

 C    -1.001411   -1.292080   -0.193971 

 H    -0.291757   -0.707961    0.402411 

 C    -1.597196   -0.449356   -1.276671 

 C    -3.001597    0.196256   -2.802822 

 C    -1.771606    0.704050   -3.158461 

 C     0.514354    0.638527   -2.118703 

 H     0.632172    1.709322   -2.270656 

 H     1.071464    0.104418   -2.887557 

 H     0.912158    0.381294   -1.142766 

 C    -1.313935    1.534405   -4.303387 

 H    -0.881920    2.475109   -3.952536 

 H    -2.151954    1.752039   -4.955309 

 H    -0.543553    1.017002   -4.880838 

 C    -4.219279    0.254965   -3.627434 

 C    -6.632228    0.084083   -3.688378 

 H    -6.511596    0.000852   -4.766573 

 C    -7.777996   -0.862130   -3.270250 

 H    -7.875880   -0.821693   -2.181409 

 C    -7.478519   -2.303482   -3.686278 

 H    -6.565849   -2.678255   -3.226915 

 H    -7.371629   -2.377809   -4.771889 

 H    -8.298603   -2.958263   -3.386560 

 C    -9.107637   -0.396392   -3.871277 

 H    -9.915344   -1.053702   -3.546651 

 H    -9.075227   -0.427118   -4.963654 

 H    -9.365611    0.619774   -3.568147 

 O    -0.817482   -2.113379    2.494680 

 O    -4.206424    0.745548   -4.758575 

 C    -6.789293   -2.480416    2.502814 

 C    -6.869186    1.533170   -3.355552 

 N    -6.968446   -1.031835    2.396054 

 H    -7.292805   -2.795325    3.415191 

 C    -7.433883   -3.244134    1.326195 

 H    -6.689273   -0.631294    1.503553 

 C    -6.686864   -0.269873    3.489175 

 H    -6.964534   -2.903310    0.398665 

 C    -8.936693   -2.966885    1.248994 

 C    -7.172654   -4.748341    1.448771 

 C    -6.533703    1.175167    3.252129 

 H    -9.149239   -1.910454    1.095369 

 H    -9.435761   -3.286702    2.167815 

 H    -9.377798   -3.522346    0.419543 

 H    -7.598766   -5.272008    0.592028 

 H    -7.640014   -5.154894    2.349529 

 H    -6.107357   -4.982992    1.483859 

 N    -6.854833    1.811165    2.058548 

 C    -6.208754    2.122718    4.196566 

 C    -6.792791    3.110339    2.302070 

 N    -6.366377    3.340487    3.568992 

 C    -5.765355    2.023985    5.611780 

 C    -7.332603    4.101760    1.316632 

 C    -6.044076    4.628350    4.174003 

 H    -5.663959    0.981186    5.890944 

 H    -4.806014    2.527131    5.755501 

 H    -6.485800    2.496316    6.284880 

 N    -7.109180    3.493960    0.021509 

 H    -6.816406    5.063606    1.384031 

 C    -8.866083    4.324977    1.593862 

 H    -6.174619    5.415572    3.440117 

 H    -6.692545    4.824143    5.025977 

 H    -5.006871    4.625243    4.504575 

 C    -6.948347    4.255413   -1.068358 

 H    -9.318130    3.329753    1.530347 

 C    -9.158665    4.890592    2.986890 

 C    -9.530734    5.208761    0.536327 

 C    -6.906928    3.419422   -2.284960 

 H    -8.820135    4.236910    3.790189 

 H   -10.235839    5.016116    3.109178 

 H    -8.700153    5.873393    3.121968 

 H    -9.426364    4.800935   -0.466966 

 H    -9.107658    6.214693    0.537365 

 H   -10.597912    5.289317    0.754838 

 N    -6.824096    2.049824   -2.139966 

 C    -7.013794    3.738007   -3.611857 

 N    -6.989255    2.525697   -4.277088 

 C    -7.149237    5.054305   -4.290089 
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 C    -7.047088    2.348486   -5.725183 

 H    -7.183677    5.832219   -3.531935 

 H    -8.061066    5.107087   -4.889389 

 H    -6.303609    5.256655   -4.952135 

 H    -6.200346    1.749405   -6.053141 

 H    -6.992401    3.322789   -6.199427 

 H    -7.980273    1.869374   -6.017248 

 Cu   -6.748216    1.568209   -0.099067 

 Cu   -3.961107   -1.262057    0.090329 

 H    -5.357818   -0.359633   -2.072788 

 O    -6.597526   -0.752226    4.619963 

 O    -6.866822    5.494362   -1.106230 

 O    -5.775655   -0.260929   -0.183696 

 O    -8.922482    0.506692   -0.093164 

 O    -4.843543   -3.104115   -1.205584 

 H    -9.283272    0.599078    0.797991 

 H    -9.521564    1.006709   -0.661956 

 H    -4.605535   -3.947653   -0.800603 

 H    -4.418578   -3.108883   -2.072561 

 H    -6.414214   -0.925200   -0.471021 

 C     0.557675   -3.392773    0.016801 

 H     1.275967   -2.801049    0.591159 

 H    -0.093083   -3.875637    0.746802 

 C     1.303342   -4.456312   -0.791249 

 H     1.978600   -3.976177   -1.506337 

 H     0.592001   -5.044525   -1.380036 

 C     2.110265   -5.403573    0.100139 

 H     1.440264   -5.910153    0.798599 

 H     2.817893   -4.839109    0.705814 

 N     2.831949   -6.429085   -0.641976 

 H     2.295661   -7.218062   -0.974047 

 C    -0.257988   -2.470025   -0.886505 

 H     0.412446   -2.054185   -1.643847 

 H    -1.009739   -3.052951   -1.427394 

 O     4.561084   -7.349343   -1.742266 

 C     4.121501   -6.425390   -1.056416 

 C     4.991871   -5.254199   -0.625480 

 H     4.500490   -4.322590   -0.921728 

 H     5.025869   -5.236217    0.468753 

 C     6.408338   -5.297158   -1.189499 

 H     6.892582   -6.228418   -0.885501 

 H     6.363199   -5.319112   -2.281526 

 C     7.252889   -4.105759   -0.736026 

 H     6.761006   -3.174462   -1.039366 

 H     7.296537   -4.085461    0.358846 

 C     8.675061   -4.128461   -1.296803 

 H     8.631000   -4.153975   -2.391395 

 H     9.170188   -5.056203   -0.988843 

 C     9.521421   -2.934878   -0.855333 

 H     9.576092   -2.906949    0.237850 

 H     9.033484   -2.004731   -1.164450 

 C    10.947738   -2.969025   -1.429859 

 H    10.889108   -2.999311   -2.521296 

 H    11.436156   -3.894143   -1.112145 

 C    11.785959   -1.790180   -1.007093 

 C    11.782212   -0.603590   -1.743933 

 C    12.570568   -1.839037    0.146993 

 C    12.524940    0.497879   -1.341466 

 H    11.192969   -0.539594   -2.651180 

 C    13.332087   -0.749518    0.547859 

 H    12.594046   -2.746114    0.739419 

 C    13.315655    0.436743   -0.190641 

 H    12.508333    1.402464   -1.936059 

 H    13.934592   -0.816960    1.444788 

 C    14.128298    1.603267    0.232334 

 C    13.508008    2.795512    0.654055 

 C    15.535280    1.539314    0.217790 

 C    12.099960    2.979647    0.752777 

 C    14.314087    3.899048    1.047570 

 C    16.288976    2.672288    0.631757 

 C    16.285982    0.412804   -0.222990 

 C    11.558943    4.156372    1.172228 

 H    11.448762    2.158361    0.492392 

 C    13.787224    5.096924    1.471739 

 C    17.664418    2.692118    0.645106 

 H    15.756024   -0.459987   -0.574490 

 C    17.647095    0.412982   -0.218999 

 C    12.394097    5.253958    1.536728 

 H    10.484898    4.269614    1.240606 

 H    14.451552    5.901584    1.755753 

 C    18.374753    1.556788    0.225238 

 H    18.182279    3.583361    0.972479 

 H    18.194441   -0.455794   -0.560790 

 O    15.665245    3.807225    1.028181 

 N    19.718370    1.537426    0.228980 

 H    20.226377    0.729781   -0.087747 

 H    20.252035    2.338181    0.520493 

 N    11.844506    6.411074    1.943738 

 H    12.414453    7.194223    2.214276 

 H    10.846718    6.523130    1.993339 
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 N               -3.414428   -2.883216   -1.772807 

 N               -4.348199   -4.315091   -3.152405 

 N               -1.249404   -3.021317   -0.277725 

 N               -1.000161   -0.606656    0.784161 

 N                0.469439   -1.137940    2.339417 

 N               -2.035627    2.024392    0.181777 

 C               -2.787884   -4.104896   -1.639734 

 C               -3.353101   -5.012797   -2.494018 

 C               -4.360801   -3.039030   -2.683722 

 C               -5.272921   -4.874948   -4.133469 

 H               -6.295943   -4.749523   -3.784067 

 H               -5.065681   -5.933907   -4.245659 

 H               -5.146668   -4.392308   -5.100714 

 C               -3.037125   -6.443823   -2.746655 

 H               -2.196409   -6.729715   -2.120302 

 H               -2.772494   -6.619509   -3.792000 

 H               -3.882014   -7.092948   -2.503646 

 C               -1.667792   -4.226737   -0.687261 

 C               -0.126491   -2.918781    0.631202 

 H               -0.169642   -3.721707    1.375464 

 C                1.294110   -2.988328   -0.046900 

 H                2.000147   -2.657659    0.720185 

 C                1.711726   -4.407333   -0.436903 

 H                1.622262   -5.096528    0.403758 

 H-                2.755298   -4.399420   -0.760908 

 H                1.103349   -4.797666   -1.251004 

 C                1.431941   -2.034075   -1.234149 

 H                2.452497   -2.070237   -1.619796 

 H                0.757732   -2.317234   -2.043752 

 H                1.219931   -0.999591   -0.959588 

 C               -0.265907   -1.583074    1.289865 

 C               -0.668374    0.540857    1.502562 

 C                0.238372    0.210839    2.485472 

 C                1.340201   -1.930564    3.200572 

 H                1.105697   -1.722558    4.242357 

 H                2.386747   -1.691905    3.014663 

 H                1.173393   -2.985775    3.011955 

 C                0.907714    1.003522    3.550104 

 H                0.666062    0.606831    4.539497 

 H                0.584147    2.036439    3.495043 

 H                1.994723    0.968652    3.441289 

 C               -1.110416    1.905586    1.173482 

 C               -2.771536    3.287277    0.084055 

 H               -2.038937    4.086692    0.174705 

 C               -2.612350    3.504343   -2.485799 

 H               -1.974072    2.617910   -2.519868 

 H               -3.256265    3.449491   -3.368532 

 O               -1.208706   -5.329124   -0.346672 

 O               -0.644387    2.889298    1.752657 

 C               -5.431416   -2.031310   -3.009463 

 C               -3.684246    3.352605    1.279659 

 N               -6.051851   -1.640209   -1.742980 

 H               -6.197853   -2.536295   -3.594860 

 C               -4.942677   -0.817180   -3.828131 

 H               -5.492947   -1.013330   -1.168890 

 C               -6.757336   -2.582521   -1.058053 

 H               -4.202400   -0.277007   -3.230666 

 C               -6.100711    0.129213   -4.151490 

 C               -4.250208   -1.275110   -5.115257 

 C               -7.059873   -2.272464    0.349116 

 H               -6.569868    0.522221   -3.251346 

 H               -6.865704   -0.384210   -4.740358 

 H               -5.739985    0.975237   -4.739044 

 H               -3.875108   -0.410800   -5.664870 

 H               -4.948840   -1.803808   -5.769068 

 H               -3.403666   -1.935324   -4.918706 

 N               -6.857302   -1.029747    0.938074 

 C               -7.719703   -3.091889    1.237132 

 C               -7.444107   -1.080701    2.123009 

 N               -7.940647   -2.320752    2.358821 

 C               -8.163193   -4.508545    1.162400 

 C               -7.654480    0.165147    2.928618 

 C               -8.538752   -2.814222    3.594649 

 H               -7.851688   -4.939509    0.217478 

 H               -7.736055   -5.094173    1.980166 

 H               -9.251013   -4.586035    1.238836 

 N               -6.524238    1.009971    2.603799 

 H               -7.681597   -0.044826    4.001617 

 C               -9.015857    0.832275    2.504546 

 H               -8.515907   -2.032096    4.345053 

 H               -9.570669   -3.116798    3.426420 

 H               -7.968667   -3.667002    3.959133 

 C               -6.076615    1.914912    3.483688 

 H               -8.931456    0.998344    1.425588 

 C              -10.236193   -0.059414    2.752980 

 C               -9.235439    2.191935    3.171120 

 C               -5.037114    2.765970    2.870616 

 H              -10.197474   -0.996254    2.197981 

 H              -11.139406    0.463867    2.434550 

 H              -10.351840   -0.289198    3.815149 

 H               -8.433954    2.893856    2.950345 

 H               -9.309530    2.094577    4.255522 

 H              -10.168974    2.624848    2.804784 

 N               -4.538710    2.408921    1.634577 
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 C               -4.481804    3.952382    3.267641 

 N               -3.625088    4.310635    2.242692 

 C               -4.695202    4.766183    4.493682 

 C               -2.776716    5.498672    2.218981 

 H               -5.446916    4.276754    5.107292 

 H               -5.039905    5.774536    4.253301 

 H               -3.778673    4.859047    5.081633 

 H               -1.744791    5.206045    2.037525 

 H               -2.837401    5.991323    3.183748 

 H               -3.109567    6.193898    1.449856 

 Cu              -5.460593    0.635010    0.997122 

 Cu              -2.459163   -1.483051   -0.525867 

 H               -2.591482    1.191841   -0.004626 

 O               -7.151723   -3.622220   -1.589855 

 O               -6.466348    2.073932    4.652403 

 O               -4.007819   -0.099387   -0.286970 

 O               -6.647147    1.703022   -0.821045 

 O               -1.666435   -0.189428   -2.409847 

 H               -7.452132    1.192320   -0.976104 

 H               -6.950917    2.573549   -0.534084 

 H               -1.402483   -0.771745   -3.133346 

 H               -0.861657    0.277804   -2.152367 

 H               -4.058027    0.400407   -1.111139 

 C               -1.753315    4.766389   -2.582586 

 H               -1.066957    4.837686   -1.734474 

 H               -2.396027    5.651617   -2.542228 

 C               -3.514036    3.441456   -1.249274 

 H               -4.107678    4.357874   -1.185444 

 H               -4.236041    2.630104   -1.359726 

 C               -0.938045    4.805317   -3.878036 

 H               -1.609534    4.711039   -4.735032 

 H               -0.258896    3.955360   -3.921622 

 N               -0.175392    6.034446   -4.046962 

 H               -0.690886    6.856573   -4.328310 

 O                1.606887    7.395902   -3.940673 

 C                1.134431    6.268423   -3.791835 

 C                1.984355    5.090426   -3.338667 

 H                1.506562    4.620025   -2.474278 

 H                1.973470    4.335395   -4.131624 

 C                3.422836    5.467988   -2.999490 

 H                3.891657    5.928188   -3.872663 

 H                3.422007    6.231411   -2.217022 

 C                4.254273    4.268638   -2.542857 

 H                3.785771    3.813927   -1.662508 

 H                4.247154    3.500276   -3.324326 

 C                5.700719    4.636423   -2.210998 

 H                5.706957    5.414836   -1.439846 

 H                6.172062    5.079202   -3.095594 

 C                6.538526    3.450515   -1.733967 

 H                6.081145    3.013914   -0.840010 

 H                6.535096    2.666103   -2.497804 

 C                7.992769    3.837540   -1.416498 

 H                8.452707    4.255672   -2.316052 

 H                7.991860    4.630027   -0.663301 

 C                8.820888    2.679724   -0.921543 

 C                8.921354    2.398221    0.442620 

 C                9.490319    1.837980   -1.812728 

 C                9.669379    1.323762    0.904256 

 H                8.413619    3.034114    1.158251 

 C               10.224857    0.749401   -1.362780 

 H                9.441875    2.038602   -2.876506 

 C               10.328386    0.480752    0.005112 

 H                9.732360    1.131698    1.967784 

 H               10.738784    0.117646   -2.076143 

 C               11.126723   -0.670038    0.492513 

 C               10.737004   -1.990728    0.195445 

 C               12.289138   -0.462888    1.260376 

 C                9.567266   -2.339832   -0.536524 

 C               11.524173   -3.074248    0.673316 

 C               13.031626   -1.586217    1.718453 

 C               12.815881    0.816553    1.595103 

 C                9.239595   -3.637027   -0.787236 

 H                8.923547   -1.550510   -0.895393 

 C               11.211116   -4.391705    0.429919 

 C               14.177476   -1.469947    2.470741 

 H               12.302461    1.698791    1.242625 

 C               13.948856    0.952780    2.336858 

 C               10.061937   -4.701991   -0.313610 

 H                8.343927   -3.876024   -1.345401 

 H               11.850414   -5.172066    0.819561 

 C               14.658379   -0.193815    2.802762 

 H               14.697400   -2.362267    2.791375 

 H               14.330322    1.936862    2.575553 

 O               12.634144   -2.845016    1.414935 

 N                9.723892   -5.976781   -0.572960 

 H                8.897815   -6.196746   -1.102145 

 H               10.284209   -6.744715   -0.244963 

 N               15.772496   -0.039360    3.538327 

 H               16.299817   -0.831328    3.863917 

 H               16.121902    0.876160    3.763264 
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 N              -2.96952889   -1.15189307    0.45377586 

 N              -4.14894450   -2.93643911    0.95363442 

 N              -3.49070204    0.95011355   -1.04676225 

 N              -1.40835511    2.55497564   -0.71727241 

 N              -1.81524150    3.89108676   -2.42316279 

 N               0.70952666    2.80552852    1.23446312 

 C              -4.09880838   -1.17684629   -0.33797652 

 C              -4.85097187   -2.28104419   -0.04039861 

 C              -3.01686837   -2.23127954    1.21689541 

 C              -4.52683739   -4.20683562    1.56545757 

 H              -3.73681314   -4.93816264    1.40605468 

 H              -5.43793308   -4.56385428    1.09708693 

 H              -4.71048643   -4.08148544    2.63082305 

 C              -6.14893857   -2.75529995   -0.58982282 

 H              -6.49394967   -2.04041939   -1.33196128 

 H              -6.90795152   -2.84564025    0.19080418 

 H              -6.05076087   -3.73058524   -1.07297130 

 C              -4.31914713   -0.07403924   -1.29292281 

 C              -3.57440404    2.15339083   -1.84845735 

 H              -3.76674231    1.89567235   -2.89586662 

 C              -4.68898814    3.17656744   -1.40848483 

 H              -4.46039746    4.10406007   -1.94117211 

 C              -6.09684542    2.76406496   -1.84191354 

 H              -6.13870524    2.54288261   -2.90916661 

 H              -6.79121204    3.58243941   -1.63647844 

 H              -6.44108664    1.88048466   -1.30709927 

 C              -4.64938427    3.48953078    0.08805805 

 H              -5.39215427    4.25360439    0.32480779 

 H              -4.88119313    2.60248176    0.67932961 

 H              -3.67604004    3.86659127    0.40573110 

 C              -2.24357051    2.82142992   -1.70705740 

 C              -0.42895683    3.54597576   -0.75810484 

 C              -0.67050733    4.37444106   -1.83165501 

 C              -2.42311850    4.44010805   -3.63027845 

 H              -1.65869133    4.57075490   -4.39327040 

 H              -2.89020316    5.40222776   -3.42306889 

 H              -3.17207380    3.75041835   -4.00479800 

 C               0.04547095    5.55818059   -2.37566145 

 H               0.36085119    5.38098341   -3.40706540 

 H               0.91963114    5.76701465   -1.76995876 

 H              -0.59976239    6.44039878   -2.37887521 

 C               0.61195282    3.75298007    0.26161971 

 C               1.94198371    2.76519887    2.02529340 

 H               2.16730445    3.79091125    2.31012456 

 C               0.69637713    2.52205265    4.21755803 

 H              -0.27329620    2.52715454    3.72344982 

 H               0.60511115    1.93033890    5.13005628 

 O              -5.17786591   -0.13812610   -2.18763614 

 O               1.33909229    4.74862207    0.24486127 

 C              -1.89803865   -2.72859195    2.09366348 

 C               3.03340716    2.28546042    1.10582530 

 N              -0.69540248   -2.78817053    1.26180072 

 H              -2.13213234   -3.75092718    2.38547869 

 C              -1.68323340   -1.91160380    3.38578748 

 H              -0.27180031   -1.88604539    1.05768940 

 C              -0.66789838   -3.68826182    0.24010236 

 H              -1.40481769   -0.89193006    3.10380990 

 C              -0.56091806   -2.51205007    4.23498626 

 C              -2.98065889   -1.82749093    4.19542653 

 C               0.37778644   -3.48575985   -0.77642351 

 H               0.39000464   -2.52311990    3.70541447 

 H              -0.80338760   -3.53797487    4.52527973 

 H              -0.42990632   -1.92941077    5.14847777 

 H              -2.82622081   -1.21549701    5.08504377 

 H              -3.29949496   -2.81873336    4.52838202 

 H              -3.79762308   -1.38217302    3.62497915 

 N               1.43074312   -2.58735515   -0.64834183 

 C               0.56475755   -4.24328441   -1.91070895 

 C               2.26424561   -2.84853124   -1.64235725 

 N               1.75851973   -3.81322662   -2.45074442 

 C              -0.24111346   -5.31623406   -2.54987517 

 C               3.63837592   -2.25143386   -1.66767678 

 C               2.30894348   -4.28514028   -3.71677814 

 H              -1.15764068   -5.46712427   -1.99054199 

 H              -0.49092424   -5.05412304   -3.58091374 

 H               0.30966313   -6.26021185   -2.57727893 

 N               3.49050927   -0.95799192   -1.03377842 

 H               4.01329289   -2.13840745   -2.68885862 

 C               4.62168424   -3.18079201   -0.86291477 

 H               3.20665436   -3.72475666   -3.95222350 

 H               2.55504429   -5.34367708   -3.65643822 

 H               1.58010947   -4.12991252   -4.51036864 

 C               4.31427686    0.05058810   -1.34628567 

 H               4.18288957   -3.26756528    0.13647614 

 C               4.74728271   -4.59008301   -1.44957912 

 C               6.01517951   -2.56757906   -0.71009372 

 C               4.08148905    1.20635331   -0.45705304 

 H               3.80061827   -5.12931615   -1.46526289 

 H               5.43915261   -5.17613792   -0.84223255 

 H               5.14937367   -4.56412399   -2.46546578 

 H               5.98763265   -1.59890207   -0.21540309 

 H               6.49978634   -2.43787377   -1.67923140 

 H               6.63623036   -3.23332386   -0.10661744 

 N               2.98126854    1.18537838    0.37526758 



 

Appendix II 

 

197 

 C               4.81888465    2.33488198   -0.21989488 

 N               4.13751988    3.00802855    0.77782402 

 C               6.08842007    2.81485358   -0.82725980 

 C               4.52297732    4.29331204    1.35332273 

 H               6.42675462    2.07712041   -1.55004095 

 H               6.86829498    2.95305068   -0.07488078 

 H               5.95353216    3.76740653   -1.34570496 

 H               3.68968999    4.98902181    1.28228930 

 H               5.36130642    4.69115722    0.79110677 

 H               4.82408722    4.17459394    2.39299673 

 Cu              1.90585462   -0.58942725    0.06457405 

 Cu             -1.88676977    0.60640507    0.04896657 

 H               0.32280418    1.89285161    1.00137771 

 O              -1.44966670   -4.63948664    0.18233370 

 O               5.18552970    0.05393648   -2.23171347 

 O               0.01640200    0.00599300    0.67671000 

 O               2.42156400   -1.48657800    2.25385600 

 O              -2.28007700    1.48114300    2.27261400 

 H               2.40831800   -2.44941700    2.17884300 

 H               3.33283000   -1.26289800    2.48189700 

 H              -3.17341000    1.26565100    2.56881300 

 H              -2.24894300    2.44555400    2.23782100 

 H               0.00579800    0.02135100    1.64170800 

 C               1.03789467    3.96700973    4.62629366 

 H               0.50186951    4.65055610    4.00152060 

 H               2.08934374    4.13043605    4.51383619 

 C               1.79168972    1.94072832    3.32167098 

 H               2.85839196    1.91573240    3.40180543 

 H               1.39578707    0.96785322    3.52581587 

 C               0.63758706    4.19295874    6.09608986 

 H               1.16355466    3.50041902    6.71950531 

 H              -0.41609365    4.04264743    6.20592362 

 N               0.98046441    5.56657277    6.49171546 

 H               1.71492568    5.54460054    7.17001029 

 O              -1.34353695    5.71032524    6.92223601 

 C              -0.20234347    6.21929964    7.07120934 

 C              -0.27485634    7.36027798    7.88166123 

 H              -0.99438827    8.04058721    7.47625630 

 H              -0.56934408    7.07716986    8.87061359 

 C               1.10488947    8.04242721    7.93239533 

 H               1.81627557    7.37593461    8.37354999 

 H               1.41676963    8.29065571    6.93941327 

 C               1.01189629    9.32656377    8.77734833 

 H               0.68634622    9.07996938    9.76634194 

 H               0.31100141    9.99894302    8.32840234 

 C               2.39621641    9.99788795    8.84503613 

 H               2.69589324   10.29718880    7.86243102 

 H               3.10964213    9.30511373    9.23998883 

 C               2.32242578   11.23551929    9.75850405 

 H               2.03737586   10.93431249   10.74487163 

 H               1.59808891   11.92157615    9.37177148 

 C               3.70139743   11.91925378    9.80894544 

 H               4.43096669   11.22457024   10.16956087 

 H               3.97403354   12.24517485    8.82693474 

 C               3.63794209   13.13373022   10.75373133 

 C               3.90669111   12.97446632   12.11346675 

 C               3.31191080   14.39294320   10.25011004 

 C               3.84873809   14.07409810   12.96943002 

 H               4.16294525   11.98145419   12.51033259 

 C               3.25486186   15.49319461   11.10603184 

 H               3.10023974   14.51867971    9.17842225 

 C               3.52307013   15.33395732   12.46553352 

 H               4.05994231   13.94852651   14.04130738 

 H               2.99817587   16.48598396   10.70859526 

 C               3.45924639   16.54794790   13.41091884 

 C               4.60732278   17.31993223   13.61932392 

 C               2.25396458   16.86346461   14.04755886 

 C               5.84926197   17.01153294   12.97472225 

 C               4.54834575   18.44634656   14.49631608 

 C               2.19547457   17.98872960   14.92598705 

 C               1.06847273   16.08499347   13.84379395 

 C               6.95624365   17.78046457   13.18810370 

 H               5.88182636   16.14078409   12.30260569 

 C               5.73232829   19.22831221   14.69568924 

 C               0.95361845   18.29723544   15.57059884 

 H               1.12642329   15.22141585   13.16414338 

 C              -0.09719826   16.41019487   14.47443928 

 C               6.89687498   18.90574331   14.06168439 

 H               7.91067173   17.54805849   12.69308376 

 H               5.67381059   20.09303195   15.37380179 

 C              -0.15534047   17.53266825   15.35161950 

 H               0.92210159   19.16619405   16.24511998 

 H              -1.00949153   15.81533023   14.31991532 

 O               3.34376729   18.76031481   15.13496394 

 N               8.11459554   19.70417380   14.26309294 

 H               7.93444887   20.65560380   14.01343692 

 H               8.38853241   19.65776085   15.22372004 

 N              -1.43213809   17.84573101   16.00940331 

 H              -1.32393946   17.76954294   17.00060886 

 H              -1.70818391   18.77782646   15.77488940 
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 N                 -9.339038   -1.002190    0.838996 

 N                -11.123456   -1.370584    2.079790 

 N                 -9.925789    1.528333    0.283916 

 N                 -7.795660    2.704811   -0.728177 

 N                 -7.200960    4.819693   -0.859278 

 N                 -4.612081    2.721918   -1.535816 

 O                -10.749454    3.475821    1.211547 

 O                 -3.488839    4.673634   -1.756700 

 C                 -9.150073   -2.186187    1.545992 

 C                -10.264930   -2.420585    2.326170 

 C                -10.533624   -0.548169    1.175631 

 C                -11.087840    0.712244    0.573186 

 H                -11.724489    1.223208    1.300998 

 C                 -9.886818    2.825882    0.595449 

 C                 -8.681254    3.469903    0.013156 

 C                 -8.321279    4.790214   -0.057149 

 C                 -6.918663    3.541406   -1.257462 

 C                 -5.800850    3.225158   -2.224526 

 H                 -5.495108    4.169600   -2.669400 

 C                 -3.506407    3.486969   -1.408029 

 C                -10.634426   -3.501967    3.279065 

 H                 -9.852941   -4.251537    3.300005 

 H                -11.574885   -3.974926    2.985650 

 H                -10.771809   -3.105230    4.288545 

 C                -11.932968    0.436035   -0.714764 

 H                -11.260638   -0.083716   -1.406079 

 C                -13.143110   -0.467027   -0.463894 

 H                -12.858952   -1.453368   -0.095501 

 H                -13.689332   -0.616630   -1.396692 

 H                -13.836501   -0.017471    0.251015 

 C                -12.378587    1.744477   -1.371220 

 H                -11.529761    2.360164   -1.664658 

 H                -13.004802    2.329760   -0.693740 

 H                -12.964714    1.529669   -2.266857 

 C                 -8.938391    6.009919    0.528404 

 H                 -9.798912    5.715991    1.122290 

 H                 -9.269133    6.702295   -0.249758 

 H                 -8.235947    6.547844    1.169598 

 C                 -6.503872    6.046481   -1.240277 

 H                 -5.465220    5.827037   -1.468189 

 H                 -6.536940    6.742054   -0.405817 

 H                 -6.985704    6.507028   -2.103440 

 C                 -6.250520    2.301006   -3.383284 

 H                 -6.521754    1.332693   -2.957395 

 C                 -5.112524    2.100006   -4.388878 

 H                 -4.213406    1.690853   -3.928068 

 H                 -4.841661    3.047751   -4.861793 

 H                 -5.426374    1.412979   -5.176446 

 C                 -7.479557    2.872809   -4.097892 

 H                 -8.336979    2.974542   -3.433211 

 H                 -7.771373    2.214992   -4.918080 

 H                 -7.260063    3.855414   -4.524499 

 C                 -7.951698   -3.059563    1.488880 

 N                 -6.900674   -2.634992    0.753659 

 O                 -7.931344   -4.131403    2.106635 

 C                 -5.745962   -3.501697    0.520658 

 C                 -4.543595   -3.099181    1.342929 

 H                 -6.048099   -4.485619    0.873997 

 C                 -5.418921   -3.652780   -0.986690 

 N                 -3.658972   -2.140788    1.101438 

 N                 -4.163568   -3.803338    2.449783 

 H                 -5.169504   -2.666722   -1.381763 

 C                 -6.630834   -4.194514   -1.751439 

 C                 -4.214045   -4.575249   -1.201343 

 C                 -2.664235   -2.264764    2.057590 

 C                 -2.967741   -3.292920    2.907740 

 C                 -4.833170   -4.962936    3.036214 

 H                 -7.514207   -3.567226   -1.633145 

 H                 -6.887272   -5.200233   -1.408112 

 H                 -6.404362   -4.254181   -2.817150 

 H                 -3.307956   -4.191677   -0.733093 

 H                 -4.015341   -4.684263   -2.268700 

 H                 -4.410248   -5.572658   -0.798451 

 C                 -1.426810   -1.458367    1.933095 

 C                 -2.233387   -3.848147    4.075327 

 H                 -5.901650   -4.905748    2.850307 

 H                 -4.665496   -4.956215    4.109700 

 H                 -4.429666   -5.886881    2.620923 

 N                 -1.471277   -0.659630    0.861292 

 O                 -0.463118   -1.601273    2.703229 

 H                 -1.326908   -3.269162    4.226023 

 H                 -1.959575   -4.893762    3.914235 

 H                 -2.834074   -3.802102    4.986832 

 C                 -0.329000    0.109687    0.432997 

 C                 -0.903950    1.420008    0.001379 

 H                  0.373408    0.239732    1.260238 

 C                 -2.297686    2.864504   -0.819863 

 N                 -2.134933    1.523852   -0.469174 

 N                 -0.266276    2.612966   -0.018019 

 C                  1.151564   -1.844528   -0.367339 

 C                 -1.133609    3.549464   -0.533271 

 H                  0.442759   -2.538200    0.091956 

 H                  1.910941   -1.629177    0.391317 

 C                 -0.717839    4.969517   -0.688703 
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 H                 -1.519249    5.536910   -1.145430 

 H                  0.174628    5.046938   -1.314858 

 H                 -0.474613    5.414599    0.279802 

 Cu                -8.288696    0.638538   -0.243033 

 Cu                -3.170882   -0.217962    0.081200 

 O                 -6.911798   -0.364643   -1.174223 

 H                 -5.608452   -0.195014   -1.276756 

 H                 -6.988406   -1.792055    0.180058 

 O                 -4.527173   -0.215513   -1.510091 

 H                 -4.433615   -0.421862   -2.448094 

 H                 -4.561686    1.727805   -1.331131 

 H                 -7.270638   -0.773805   -1.969696 

 O                 -7.091603    0.850695    1.736171 

 H                 -7.503083    0.320365    2.432925 

 O                 -4.118517    0.577519    1.938288 

 H                 -3.830064    0.085049    2.716155 

 H                 -5.084319    0.606111    1.998444 

 C                -12.393687   -1.170985    2.769559 

 H                -13.127137   -1.908455    2.447367 

 H                -12.242122   -1.262860    3.843049 

 H                -12.771497   -0.177907    2.555092 

 C                  1.081965    2.896664    0.460121 

 H                  1.741435    3.131827   -0.374612 

 H                  1.059023    3.739690    1.147268 

 H                  1.469564    2.029608    0.984386 

 H                 -7.191312    1.769531    2.023204 

 C                  0.431835   -0.551185   -0.743435 

 H                  1.158664    0.166765   -1.136471 

 H                 -0.286926   -0.742461   -1.545706 

 C                  1.807440   -2.517033   -1.573540 

 H                  2.500826   -1.823862   -2.059809 

 H                  1.042077   -2.765407   -2.315710 

 C                  2.559617   -3.794604   -1.192683 

 H                  1.883597   -4.476656   -0.671189 

 H                  3.365791   -3.565528   -0.497539 

 N                  3.107984   -4.506436   -2.339440 

 H                  2.455332   -5.030212   -2.905560 

 O                  4.645048   -5.097681   -3.866116 

 C                  4.368254   -4.482593   -2.835416 

 C                  5.413386   -3.690432   -2.063506 

 H                  5.050301   -2.667764   -1.924443 

 H                  5.492957   -4.116281   -1.057914 

 C                  6.784269   -3.673599   -2.731728 

 H                  6.692722   -3.252037   -3.736206 

 H                  7.134916   -4.700066   -2.863903 

 C                  7.818964   -2.877921   -1.935098 

 H                  7.467772   -1.847761   -1.806219 

 H                  7.905862   -3.299599   -0.927230 

 C                  9.197148   -2.863719   -2.596713 

 H                  9.110185   -2.439015   -3.603135 

 H                  9.543380   -3.894865   -2.729560 

 C                 10.247490   -2.080550   -1.809688 

 H                  9.915994   -1.044927   -1.681641 

 H                 10.342153   -2.501846   -0.803587 

 C                 11.626118   -2.088574   -2.490999 

 H                 11.530446   -1.657432   -3.491122 

 H                 11.948698   -3.125140   -2.622485 

 C                 12.678455   -1.333709   -1.719987 

 C                 12.919873    0.019958   -1.963018 

 C                 13.428111   -1.961816   -0.722730 

 C                 13.869634    0.725409   -1.236199 

 H                 12.361367    0.531362   -2.738079 

 C                 14.392653   -1.270427   -0.002725 

 H                 13.263078   -3.011639   -0.510771 

 C                 14.624566    0.085839   -0.249331 

 H                 14.041804    1.772038   -1.453060 

 H                 14.962099   -1.783904    0.761619 

 C                 15.659983    0.828031    0.510148 

 C                 17.022952    0.502190    0.368235 

 C                 15.299968    1.872967    1.383190 

 C                 17.523975   -0.501473   -0.508107 

 C                 17.994689    1.229660    1.109185 

 C                 16.316799    2.571076    2.091268 

 C                 13.960728    2.276599    1.647072 

 C                 18.855361   -0.766375   -0.607156 

 H                 16.825125   -1.059970   -1.112956 

 C                 19.344342    0.976884    1.024477 

 C                 16.049509    3.602735    2.961134 

 H                 13.153892    1.754015    1.154896 

 C                 13.675212    3.293764    2.505443 

 C                 19.804292   -0.034040    0.166264 

 H                 19.210715   -1.533836   -1.282240 

 H                 20.034986    1.563769    1.614562 

 C                 14.719359    3.992265    3.181592 

 H                 16.866313    4.098154    3.467967 

 H                 12.648156    3.579973    2.690909 

 O                 17.619284    2.232350    1.938875 

 N                 14.419980    4.998468    4.020777 

 H                 15.138383    5.500439    4.513759 

 H                 13.466607    5.275527    4.178740 

 N                 21.114655   -0.312145    0.058526 

 H                 21.443227   -1.023624   -0.571177 

 H                 21.804137    0.203393    0.578014 
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 N                 8.606080   -3.039685    0.019806 

 N                10.249024   -4.323822   -0.695147 

 N                10.152721   -1.389653    1.413090 

 N                 8.767715    0.761408    2.046002 

 N                 9.381310    2.804107    2.588649 

 N                 6.066135    2.619699    1.856349 

 O                12.167358   -0.262852    1.356651 

 O                 6.161766    4.840259    2.280174 

 C                 8.126648   -3.836799   -1.015641 

 C                 9.152886   -4.642207   -1.468056 

 C                 9.875420   -3.365586    0.190276 

 C                10.710803   -2.718098    1.258747 

 H                11.749549   -2.644382    0.924549 

 C                10.931198   -0.307416    1.483382 

 C                10.132051    0.891943    1.844095 

 C                10.528225    2.161145    2.175632 

 C                 8.337352    1.923173    2.508873 

 C                 6.944123    2.277741    2.975699 

 H                 7.032479    3.191574    3.559191 

 C                 5.691394    3.897703    1.631797 

 C                 9.244862   -5.674556   -2.535632 

 H                 8.273635   -5.810608   -2.995219 

 H                 9.582697   -6.629577   -2.125697 

 H                 9.962881   -5.379724   -3.305596 

 C                10.680193   -3.515852    2.604851 

 H                 9.624788   -3.573324    2.892778 

 C                11.213117   -4.944859    2.475118 

 H                10.629939   -5.546314    1.776917 

 H                11.168120   -5.443038    3.444987 

 H                12.256896   -4.954866    2.151989 

 C                11.437711   -2.768427    3.704420 

 H                11.007273   -1.787081    3.897723 

 H                12.487449   -2.631776    3.434127 

 H                11.403294   -3.340491    4.633619 

 C                11.867696    2.806977    2.165750 

 H                12.597055    2.094156    1.792235 

 H                12.166215    3.121300    3.168945 

 H                11.882396    3.692761    1.526148 

 C                 9.350616    4.180631    3.078893 

 H                 8.365229    4.608390    2.920987 

 H                10.077125    4.767141    2.522629 

 H                 9.606222    4.214295    4.138538 

 C                 6.328549    1.202409    3.905059 

 H                 6.194142    0.288826    3.322067 

 C                 4.965278    1.659223    4.433708 

 H                 4.262020    1.891510    3.633937 

 H                 5.070214    2.553376    5.053964 

 H                 4.522081    0.876200    5.051140 

 C                 7.262330    0.890056    5.079216 

 H                 8.225906    0.500630    4.751816 

 H                 6.804846    0.141682    5.728241 

 H                 7.442730    1.784332    5.682051 

 C                 6.746533   -3.829053   -1.560960 

 N                 5.886215   -2.906379   -1.077237 

 O                 6.416471   -4.641462   -2.433845 

 C                 4.471498   -2.929339   -1.447204 

 C                 4.113337   -1.844834   -2.436853 

 H                 4.322826   -3.877978   -1.959277 

 C                 3.540061   -2.943051   -0.208611 

 N                 3.857184   -0.564246   -2.204741 

 N                 3.904049   -2.120420   -3.758077 

 H                 3.712553   -2.026415    0.357629 

 C                 3.855337   -4.141626    0.691983 

 C                 2.065825   -2.979903   -0.625772 

 C                 3.431680   -0.017828   -3.404522 

 C                 3.460825   -0.974184   -4.382536 

 C                 4.032197   -3.414882   -4.425072 

 H                 4.894677   -4.156202    1.019692 

 H                 3.656932   -5.081186    0.169521 

 H                 3.225151   -4.116309    1.582384 

 H                 1.777144   -2.106961   -1.210594 

 H                 1.429836   -3.010770    0.260333 

 H                 1.850641   -3.873588   -1.217943 

 C                 2.878374    1.357093   -3.425515 

 C                 3.088810   -0.916304   -5.820961 

 H                 4.787990   -4.014369   -3.926198 

 H                 4.342354   -3.248114   -5.452945 

 H                 3.076842   -3.940478   -4.424683 

 N                 2.900082    1.909911   -2.207874 

 O                 2.391277    1.859176   -4.451614 

 H                 2.774714    0.095397   -6.060635 

 H                 2.269014   -1.601936   -6.049161 

 H                 3.930130   -1.183708   -6.464748 

 C                 2.276240    3.181084   -1.933946 

 C                 3.222187    3.866123   -1.001365 

 H                 2.151421    3.750259   -2.858642 

 C                 4.695284    4.150060    0.564797 

 N                 4.009651    3.191170   -0.181700 

 N                 3.363825    5.201024   -0.833610 

 C                -0.175909    2.421366   -2.177377 

 C                 4.298618    5.407629    0.155459 

 H                 0.167477    1.443381   -2.524575 

 H                -0.296887    3.042357   -3.070392 

 C                 4.671151    6.785108    0.576580 
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 H                 5.386044    6.738067    1.388680 

 H                 3.791026    7.341321    0.909099 

 H                 5.112911    7.342456   -0.253764 

 Cu                8.246066   -1.161523    1.163875 

 Cu                4.091653    1.209851   -0.872834 

 O                 6.311976   -1.202193    1.328135 

 H                 5.383319   -0.297796    1.088013 

 H                 6.164186   -2.315124   -0.289577 

 O                 4.468413    0.314606    0.978740 

 H                 3.912115    0.150623    1.749990 

 H                 5.588104    1.863731    1.373963 

 H                 6.045404   -1.789435    2.044405 

 O                 8.257624   -0.166316   -0.934868 

 H                 8.567654   -0.796178   -1.600592 

 O                 5.967729    1.392127   -2.067276 

 H                 5.805885    1.213071   -3.001382 

 H                 6.730633    0.844846   -1.831330 

 C                11.583465   -4.878484   -0.896951 

 H                11.615531   -5.924443   -0.596020 

 H                11.853853   -4.800398   -1.947944 

 H                12.302336   -4.318394   -0.310040 

 C                 2.695321    6.257034   -1.585144 

 H                 1.988726    6.789417   -0.949319 

 H                 3.432455    6.959399   -1.968171 

 H                 2.160122    5.821708   -2.422356 

 H                 8.931024    0.528253   -0.908495 

 C                 0.884343    3.040260   -1.269500 

 H                 0.553153    4.032981   -0.948313 

 H                 0.999620    2.437863   -0.363562 

 C                -1.525786    2.265612   -1.476652 

 H                -1.882853    3.239880   -1.129695 

 H                -1.408395    1.637961   -0.587256 

 C                -2.585966    1.646356   -2.389548 

 H                -2.243287    0.675190   -2.754624 

 H                -2.758343    2.284685   -3.255047 

 N                -3.869283    1.457677   -1.730070 

 H                -3.958891    0.686536   -1.088989 

 O                -4.907477    3.269974   -2.615527 

 C                -4.928284    2.284592   -1.877251 

 C                -6.169513    1.915714   -1.083506 

 H                -6.414472    2.776874   -0.455481 

 H                -5.968677    1.074711   -0.415811 

 C                -7.362063    1.591340   -1.991815 

 H                -7.532875    2.434440   -2.665777 

 H                -7.111410    0.731274   -2.621419 

 C                -8.638875    1.291565   -1.206641 

 H                -8.890553    2.157439   -0.584113 

 H                -8.454277    0.460968   -0.516184 

 C                -9.830088    0.947143   -2.101109 

 H               -10.015486    1.776220   -2.793062 

 H                -9.577306    0.080512   -2.722134 

 C               -11.107666    0.649140   -1.316726 

 H               -11.372109    1.516164   -0.702703 

 H               -10.926435   -0.177403   -0.621904 

 C               -12.298861    0.292082   -2.221640 

 H               -12.483649    1.120200   -2.911018 

 H               -12.033417   -0.576013   -2.831383 

 C               -13.556807   -0.005232   -1.446575 

 C               -14.488484    0.997486   -1.170576 

 C               -13.810403   -1.286571   -0.951784 

 C               -15.634896    0.733260   -0.433189 

 H               -14.319126    2.001108   -1.542279 

 C               -14.943022   -1.556733   -0.196437 

 H               -13.111985   -2.088115   -1.161493 

 C               -15.873941   -0.548412    0.069821 

 H               -16.340980    1.529815   -0.235918 

 H               -15.115728   -2.560051    0.171717 

 C               -17.091894   -0.833936    0.866434 

 C               -16.992148   -1.183725    2.227220 

 C               -18.369106   -0.758703    0.277907 

 C               -15.769620   -1.254305    2.952677 

 C               -18.176602   -1.455708    2.965707 

 C               -19.518835   -1.031790    1.069098 

 C               -18.607375   -0.453258   -1.091809 

 C               -15.737390   -1.590729    4.271273 

 H               -14.847133   -1.026773    2.439351 

 C               -18.165510   -1.799402    4.297752 

 C               -20.800142   -0.977136    0.571216 

 H               -17.762005   -0.268758   -1.738050 

 C               -19.867133   -0.395186   -1.604069 

 C               -16.941465   -1.879258    4.979822 

 H               -14.794537   -1.634857    4.800551 

 H               -19.100031   -1.996378    4.805033 

 C               -21.002674   -0.647477   -0.778049 

 H               -21.635170   -1.191634    1.224125 

 H               -20.020718   -0.162038   -2.649654 

 O               -19.392003   -1.373111    2.373761 

 N               -22.240033   -0.576868   -1.297881 

 H               -23.054881   -0.758892   -0.737517 

 H               -22.384467   -0.343945   -2.265109 

 N               -16.891165   -2.211624    6.281145 

 H               -16.015036   -2.251671    6.772524 

 H               -17.727863   -2.398279    6.806803 
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 N                   7.084296   -2.533497   -0.427199 

 N                   8.939155   -3.702922   -0.201147 

 N                   5.741921   -3.808010    1.437164 

 N                   3.716148   -2.177738    2.086522 

 N                   2.541021   -1.972848    3.930364 

 N                   2.109247    0.710906    1.874818 

 O                   5.865949   -4.696888    3.554549 

 O                   0.872686    1.414030    3.637779 

 C                   8.107122   -1.880461   -1.114004 

 C                   9.270941   -2.609269   -0.969672 

 C                   7.618471   -3.629440    0.088440 

 C                   6.798254   -4.616841    0.868413 

 H                   7.401009   -5.073133    1.658633 

 C                   5.374122   -3.921783    2.718295 

 C                   4.261475   -3.001117    3.058591 

 C                   3.536669   -2.883662    4.211922 

 C                   2.666876   -1.575492    2.630400 

 C                   1.651967   -0.674688    1.969800 

 H                   0.790957   -0.647362    2.634463 

 C                   1.618737    1.673128    2.685916 

 C                  10.663640   -2.421373   -1.459044 

 H                  10.716033   -1.537541   -2.082057 

 H                  10.990521   -3.287590   -2.039575 

 H                  11.359861   -2.308371   -0.623538 

 C                   6.203691   -5.743842   -0.034264 

 H                   5.614194   -5.232750   -0.803490 

 C                   7.273773   -6.581315   -0.739016 

 H                   7.901462   -5.985174   -1.402603 

 H                   6.795920   -7.348743   -1.350292 

 H                   7.919141   -7.092753   -0.020640 

 C                   5.264814   -6.647621    0.767103 

 H                   4.431762   -6.089425    1.192197 

 H                   5.797715   -7.139253    1.584367 

 H                   4.855034   -7.424867    0.119357 

 C                   3.681246   -3.553755    5.530846 

 H                   4.543592   -4.213363    5.495085 

 H                   2.796070   -4.145430    5.776994 

 H                   3.826794   -2.829247    6.335585 

 C                   1.502728   -1.583351    4.882800 

 H                   1.128393   -0.593768    4.639285 

 H                   1.935869   -1.556827    5.879290 

 H                   0.685734   -2.305667    4.871387 

 C                   0.460956   -2.536426    0.672656 

 H                   1.092097   -3.290450    1.152516 

 H                  -0.422328   -2.419530    1.309502 

 C                   8.005568   -0.626697   -1.901240 

 N                   6.848021    0.070619   -1.875194 

 O                   8.976189   -0.241697   -2.565032 

 C                   6.651743    1.193019   -2.794705 

 C                   6.842631    2.535988   -2.127715 

 H                   7.455137    1.104671   -3.523334 

 C                   5.325500    1.090466   -3.592722 

 N                   5.980170    3.215244   -1.390888 

 N                   7.962669    3.294062   -2.333579 

 H                   4.498447    1.130303   -2.881155 

 C                   5.253224   -0.235045   -4.357020 

 C                   5.176636    2.262543   -4.568719 

 C                   6.549380    4.453029   -1.141088 

 C                   7.788693    4.515954   -1.718412 

 C                   9.137334    2.939890   -3.127522 

 H                   5.349320   -1.099665   -3.700205 

 H                   6.046510   -0.294178   -5.106743 

 H                   4.297504   -0.314667   -4.877592 

 H                   5.150414    3.226501   -4.061329 

 H                   4.248433    2.159720   -5.133078 

 H                   6.000369    2.277341   -5.287839 

 C                   5.740298    5.482179   -0.445810 

 C                   8.800372    5.604944   -1.757530 

 H                   9.280799    1.863725   -3.110009 

 H                  10.011163    3.415368   -2.690013 

 H                   9.024206    3.286261   -4.155410 

 N                   4.538184    4.977490   -0.162505 

 O                   6.163607    6.622143   -0.189198 

 H                   8.421646    6.454245   -1.195927 

 H                   9.003577    5.924985   -2.782425 

 H                   9.749091    5.287891   -1.317615 

 C                   3.496364    5.762577    0.471517 

 C                   2.827900    4.858850    1.472761 

 H                   3.934937    6.622290    0.986287 

 C                   2.478249    6.280053   -0.597131 

 C                   2.013287    3.073706    2.415414 

 N                   2.726432    3.548547    1.315310 

 N                   2.235396    5.246382    2.628726 

 H                   2.045715    5.384847   -1.057223 

 C                   1.336634    7.097087    0.013541 

 C                   3.182365    7.086879   -1.689473 

 C                   1.703953    4.133548    3.239010 

 H                   0.742036    6.519412    0.721976 

 H                   0.661439    7.433610   -0.775037 

 H                   1.711997    7.987440    0.524099 

 H                   3.925537    6.490492   -2.216724 

 H                   3.683744    7.961991   -1.270329 

 H                   2.451185    7.437209   -2.420643 

 C                   0.972912    4.241000    4.530317 
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 H                   0.606718    3.264666    4.824058 

 H                   0.126800    4.927282    4.443091 

 H                   1.624793    4.626874    5.318519 

 Cu                  5.208743   -2.285335    0.410098 

 Cu                  4.337502    3.068398   -0.343459 

 O                   4.680913   -0.885336   -0.803385 

 H                   4.118146    0.333323   -0.650598 

 H                   6.034173   -0.300522   -1.379738 

 O                   3.641299    1.278350   -0.415242 

 H                   2.947853    1.444224   -1.064689 

 H                   2.647029    0.972004    1.053492 

 H                   4.389403   -1.280877   -1.633230 

 O                   7.374931   -0.139255    1.379096 

 H                   8.321561    0.009428    1.270721 

 O                   5.768109    2.278950    1.236563 

 H                   6.473895    2.928352    1.347894 

 H                   6.228309    1.420765    1.171629 

 C                   9.897216   -4.697577    0.269250 

 H                  10.243453   -5.318224   -0.555592 

 H                  10.749068   -4.194551    0.721805 

 H                   9.427810   -5.328869    1.014625 

 C                   2.209089    6.586570    3.203193 

 H                   1.199069    6.993319    3.185081 

 H                   2.561235    6.546565    4.231799 

 H                   2.864484    7.236897    2.634853 

 H                   7.278930   -0.546300    2.247918 

 C                   1.207212   -1.203817    0.597904 

 H                   2.077736   -1.300274   -0.054327 

 H                   0.554436   -0.447411    0.155000 

 C                   0.031887   -3.044152   -0.703923 

 H                  -0.586791   -2.291865   -1.202632 

 H                   0.914709   -3.191957   -1.333642 

 C                  -0.745326   -4.360339   -0.623881 

 H                  -1.646653   -4.230226   -0.026999 

 H                  -0.140193   -5.113209   -0.113063 

 N                  -1.110750   -4.896799   -1.927932 

 H                  -0.379510   -5.351039   -2.456744 

 C                  -2.284204   -4.785403   -2.595834 

 O                  -2.402484   -5.248463   -3.730939 

 C                  -3.435327   -4.090403   -1.883575 

 H                  -3.662960   -4.651864   -0.971444 

 H                  -3.101257   -3.103839   -1.548742 

 C                  -4.690663   -3.955695   -2.739317 

 H                  -5.010958   -4.946892   -3.069262 

 H                  -4.451046   -3.395943   -3.647368 

 C                  -5.837944   -3.266387   -2.000167 

 H                  -6.075886   -3.829540   -1.090524 

 H                  -5.515399   -2.272711   -1.668929 

 C                  -7.099531   -3.129965   -2.853048 

 H                  -7.414675   -4.123515   -3.191141 

 H                  -6.862854   -2.560125   -3.758653 

 C                  -8.261540   -2.456799   -2.123627 

 H                  -7.958027   -1.460009   -1.787410 

 H                  -8.507586   -3.025992   -1.221225 

 C                  -9.520587   -2.331589   -2.997898 

 H                  -9.814602   -3.327765   -3.339548 

 H                  -9.276272   -1.749219   -3.890440 

 C                 -10.679880   -1.688400   -2.281314 

 C                 -11.585638   -2.456325   -1.546085 

 C                 -10.868039   -0.304864   -2.308095 

 C                 -12.634747   -1.867590   -0.853572 

 H                 -11.472766   -3.533684   -1.517261 

 C                 -11.925482    0.292162   -1.634930 

 H                 -10.181892    0.317297   -2.870595 

 C                 -12.821555   -0.483003   -0.893819 

 H                 -13.325524   -2.488055   -0.296859 

 H                 -12.048803    1.366942   -1.675893 

 C                 -13.953023    0.147749   -0.171710 

 C                 -14.011794    0.117285    1.235337 

 C                 -14.990524    0.785155   -0.879732 

 C                 -13.012556   -0.456402    2.070851 

 C                 -15.114006    0.721516    1.900456 

 C                 -16.062800    1.380441   -0.159603 

 C                 -15.073941    0.852642   -2.299133 

 C                 -13.123622   -0.451526    3.427491 

 H                 -12.142111   -0.899852    1.610544 

 C                 -15.246100    0.735282    3.269775 

 C                 -17.114773    2.018698   -0.774882 

 H                 -14.297367    0.387871   -2.888309 

 C                 -16.106993    1.478203   -2.926976 

 C                 -14.254218    0.140537    4.064967 

 H                 -12.348079   -0.892542    4.039791 

 H                 -16.109502    1.208762    3.716795 

 C                 -17.155572    2.087840   -2.176061 

 H                 -17.900570    2.453636   -0.172399 

 H                 -16.148350    1.513078   -4.007778 

 O                 -16.095656    1.330511    1.193550 

 N                 -18.164655    2.706114   -2.812910 

 H                 -18.197168    2.745699   -3.816965 

 H                 -18.919833    3.134788   -2.305903 

 N                 -14.350616    0.130851    5.405561 

 H                 -15.133256    0.550503    5.877340 

 H                 -13.635956   -0.289370    5.974343 
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  N  -3.406634    3.459937   -1.582015 

  N  -3.472743    5.461456   -2.503268 

  N  -3.428875    4.313935    0.902416 

  N  -4.200983    2.205473    2.365782 

  N  -5.199754    2.070040    4.316878 

  N  -5.314875   -0.900821    2.651052 

  O  -4.380733    5.823536    2.352889 

  O  -6.550171   -1.464723    4.464224 

  C  -3.698226    3.315007   -2.937854 

  C  -3.744552    4.568181   -3.515676 

  C  -3.259719    4.757696   -1.366250 

  C  -2.892613    5.297366   -0.013451 

  H  -3.363262    6.271044    0.149039 

  C  -4.117757    4.664095    1.994362 

  C  -4.546397    3.481528    2.781262 

  C  -5.167953    3.410495    3.996966 

  C  -4.592240    1.367312    3.316517 

  C  -4.348072   -0.118493    3.419945 

  H  -4.526332   -0.384547    4.459800 

  C  -6.313129   -1.580580    3.255856 

  C  -4.008824    5.048254   -4.899182 

  H  -4.151964    4.201751   -5.558722 

  H  -3.174016    5.650218   -5.266518 

  H  -4.902292    5.677764   -4.930738 

  C  -1.348839    5.439884    0.173396 

  H  -0.931916    4.441735   -0.000686 

  C  -0.704967    6.401282   -0.828728 

  H  -0.839106    6.079574   -1.862282 

  H   0.369339    6.457688   -0.645330 

  H  -1.105866    7.412775   -0.727258 

  C  -1.007932    5.858482    1.604848 

  H  -1.364365    5.132211    2.334059 

  H  -1.450724    6.827895    1.845221 

  H   0.074140    5.947509    1.717989 

  C  -5.710954    4.474295    4.881819 

  H  -5.570901    5.436676    4.397869 

  H  -5.200307    4.488988    5.847857 

  H  -6.776616    4.330592    5.075253 

  C  -5.744168    1.545769    5.568136 

  H  -6.068526    0.518915    5.430068 

  H  -6.603128    2.147336    5.853809 

  H  -4.996258    1.598599    6.360090 

  C  -1.863451    0.060245    4.018817 

  H  -1.943772    1.150800    4.063194 

  H  -2.076028   -0.308232    5.027885 

  C  -3.906962    2.049258   -3.683701 

  N  -3.961170    0.886262   -2.997155 

  O  -4.027382    2.078220   -4.914802 

  C  -3.962333   -0.387578   -3.719054 

  C  -5.338055   -1.007264   -3.809920 

  H  -3.681140   -0.134005   -4.739240 

  C  -2.881905   -1.372478   -3.200481 

  N  -5.976805   -1.722195   -2.899417 

  N  -6.063376   -0.993276   -4.969771 

  H  -3.112439   -1.610667   -2.160264 

  C  -1.491015   -0.733742   -3.262093 

  C  -2.891717   -2.676380   -4.005614 

  C  -7.128648   -2.203817   -3.499257 

  C  -7.199681   -1.753624   -4.789776 

  C  -5.698703   -0.357237   -6.233926 

  H  -1.435181    0.196657   -2.696894 

  H  -1.210081   -0.515136   -4.295616 

  H  -0.746637   -1.418962   -2.853303 

  H  -3.842164   -3.204220   -3.932270 

  H  -2.111926   -3.345249   -3.637951 

  H  -2.689222   -2.482722   -5.062677 

  C  -7.977719   -3.158525   -2.747732 

  C  -8.211499   -1.980669   -5.855422 

  H  -5.082531    0.515715   -6.040780 

  H  -6.606433   -0.038461   -6.739376 

  H  -5.164519   -1.058437   -6.876023 

  N  -7.437230   -3.375323   -1.547349 

  O  -9.021786   -3.650117   -3.209054 

  H  -9.004445   -2.607149   -5.456798 

  H  -7.773031   -2.479921   -6.722961 

  H  -8.647456   -1.040598   -6.202303 

  C  -8.008863   -4.308744   -0.595669 

  C  -7.900885   -3.660253    0.758531 

  H  -9.060699   -4.490981   -0.834151 

  C  -7.238878   -5.669497   -0.638327 

  C  -7.145764   -2.475421    2.421327 

  N  -6.930399   -2.822715    1.088179 

  N  -8.740606   -3.851093    1.805405 

  H  -6.204708   -5.437513   -0.361128 

  C  -7.779673   -6.692219    0.364336 

  C  -7.235005   -6.260942   -2.049049 

  C  -8.277352   -3.117592    2.873417 

  H  -7.699817   -6.348212    1.396041 

  H  -7.209427   -7.619625    0.288644 

  H  -8.825871   -6.934649    0.161869 

  H  -6.752307   -5.596614   -2.764343 

  H  -8.252094   -6.454047   -2.397077 

  H  -6.693778   -7.209115   -2.051614 

  C  -8.986150   -3.133388    4.181392 
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  H  -8.446923   -2.522663    4.895438 

  H  -9.063351   -4.151814    4.570423 

  H -10.003343   -2.745805    4.080365 

  Cu -3.490315    2.514849    0.256505 

  Cu -6.038441   -2.167292   -0.998071 

  O  -3.346972    0.738587   -0.475265 

  H  -4.024983   -0.415352   -0.291127 

  H  -3.787338    0.874357   -1.989579 

  O  -4.617744   -1.289762   -0.046399 

  H  -4.030097   -2.051362    0.022883 

  H  -5.097077   -1.088978    1.676833 

  H  -2.420379    0.549431   -0.664261 

  O  -6.270120    2.557140   -1.327125 

  H  -6.618538    2.951928   -2.135027 

  O  -7.135506   -0.180543   -0.873130 

  H  -7.868020   -0.206793   -1.501609 

  H  -6.709909    0.684689   -1.023867 

  C  -3.506003    6.911935   -2.656555 

  H  -2.663239    7.254862   -3.254550 

  H  -4.433875    7.203641   -3.143848 

  H  -3.461606    7.380690   -1.680464 

  C  -9.974700   -4.628029    1.819210 

  H  -9.866537   -5.511113    2.447204 

  H -10.785782   -4.012508    2.202507 

  H -10.218724   -4.937732    0.809252 

  H  -6.582833    3.123047   -0.611785 

  C  -2.905678   -0.497876    3.048816 

  H  -2.690065   -0.155579    2.034564 

  H  -2.847613   -1.589274    3.041408 

  C  -0.435745   -0.323154    3.629661 

  H  -0.345958   -1.411554    3.571440 

  H  -0.207905    0.067729    2.632988 

  C   0.599406    0.205138    4.625069 

  H   0.405530   -0.202528    5.616626 

  H   0.534143    1.293087    4.692041 

  N   1.968717   -0.139341    4.270325 

  H   2.448029    0.454536    3.615057 

  O   2.076886   -2.028799    5.511623 

  C   2.605199   -1.237320    4.729180 

  C   4.030036   -1.476842    4.247685 

  H   4.623053   -1.642024    5.151514 

  H   4.011159   -2.440140    3.728717 

  C   4.700235   -0.423464    3.366732 

  H   4.123332   -0.279844    2.446693 

  H   4.716624    0.540363    3.885764 

  C   6.132280   -0.808150    2.989062 

  H   6.717962   -0.954868    3.903020 

  H   6.120833   -1.774832    2.473868 

  C   6.824950    0.227978    2.104166 

  H   6.239441    0.371923    1.189130 

  H   6.833556    1.195715    2.617838 

  C   8.255382   -0.158474    1.730166 

  H   8.848396   -0.296591    2.639964 

  H   8.250582   -1.124610    1.215111 

  C   8.944200    0.884937    0.834638 

  H   8.953083    1.848016    1.351775 

  H   8.350890    1.018351   -0.074353 

  C  10.353502    0.503512    0.460578 

  C  11.442939    0.920326    1.228379 

  C  10.608491   -0.305059   -0.649254 

  C  12.740624    0.553085    0.898173 

  H  11.276448    1.548220    2.095764 

  C  11.900155   -0.694454   -0.976569 

  H   9.784598   -0.634567   -1.271363 

  C  12.985310   -0.265398   -0.207797 

  H  13.566817    0.893804    1.509332 

  H  12.068380   -1.318126   -1.845432 

  C  14.369372   -0.665728   -0.561478 

  C  14.775636   -2.009444   -0.455871 

  C  15.300480    0.291465   -1.008498 

  C  13.946703   -3.066128    0.015393 

  C  16.108533   -2.364471   -0.803315 

  C  16.621879   -0.120399   -1.335172 

  C  15.007206    1.671228   -1.198232 

  C  14.397750   -4.347642    0.099195 

  H  12.935354   -2.838135    0.318376 

  C  16.583230   -3.653191   -0.727229 

  C  17.587939    0.751270   -1.781859 

  H  14.007982    2.024344   -0.989999 

  C  15.948299    2.549165   -1.641655 

  C  15.732918   -4.677596   -0.280895 

  H  13.746850   -5.131674    0.463579 

  H  17.606253   -3.862287   -1.009130 

  C  17.272124    2.109858   -1.940271 

  H  18.576887    0.379069   -2.012263 

  H  15.698658    3.592967   -1.780330 

  O  16.984985   -1.421028   -1.224509 

  N  18.190933    2.991018   -2.371893 

  H  17.959299    3.960635   -2.502238 

  H  19.125146    2.700973   -2.605345 

  N  16.160578   -5.949019   -0.201385 

  H  17.100295   -6.201554   -0.454994 

  H  15.554823   -6.681773    0.125697 
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  N     5.106039   -2.495618    0.173610 

  N     6.656656   -3.872968   -0.573334 

  N     6.627718   -0.320003    0.089154 

  N     5.097302    1.811935    0.331116 

  N     5.394604    3.914489   -0.247210 

  N     2.149518    3.248325    0.518491 

  O     8.211736    0.773222   -1.186534 

  O     1.893225    5.430057   -0.023741 

  C     4.496304   -3.691880   -0.193238 

  C     5.463655   -4.557739   -0.663395 

  C     6.398608   -2.644294   -0.058027 

  C     7.378614   -1.548421    0.254041 

  H     8.204772   -1.573732   -0.462156 

  C     7.129170    0.722637   -0.576918 

  C     6.253760    1.913333   -0.424887 

  C     6.450312    3.218048   -0.794794 

  C     4.602436    3.033782    0.437687 

  C     3.401521    3.482249    1.238569 

  H     3.476838    4.562960    1.337325 

  C     1.452075    4.274476   -0.015111 

  C     5.418964   -5.948221   -1.191111 

  H     4.404815   -6.324848   -1.139478 

  H     6.073582   -6.605258   -0.613164 

  H     5.757845   -5.984617   -2.229936 

  C     7.971628   -1.671908    1.697104 

  H     7.111273   -1.653321    2.374990 

  C     8.729563   -2.980951    1.931283 

  H     8.093886   -3.858884    1.810960 

  H     9.119053   -3.002511    2.950442 

  H     9.582292   -3.076139    1.254689 

  C     8.868690   -0.476967    2.027149 

  H     8.323638    0.464440    1.978629 

  H     9.712413   -0.417136    1.335605 

  H     9.270514   -0.582085    3.036772 

  C     7.535216    3.864470   -1.579968 

  H     8.236117    3.100374   -1.903212 

  H     8.073624    4.604159   -0.982232 

  H     7.142963    4.377241   -2.461516 

  C     5.228703    5.362339   -0.358153 

  H     4.178640    5.623097   -0.267194 

  H     5.582652    5.681923   -1.334792 

  H     5.807745    5.873087    0.412016 

  C     3.379965    2.894962    2.671611 

  H     3.262500    1.812219    2.591305 

  C     2.204747    3.463902    3.472752 

  H     1.243139    3.281889    2.992811 

  H     2.311782    4.544064    3.603249 

  H     2.173991    3.010404    4.464804 

  C     4.694901    3.182563    3.403994 

  H     5.555445    2.741178    2.902032 

  H     4.653960    2.773265    4.414631 

  H     4.865375    4.259220    3.490202 

  C     3.047077   -3.999408   -0.107692 

  N     2.216779   -3.005750    0.277938 

  O     2.631727   -5.129725   -0.391851 

  C     0.800725   -3.265402    0.535227 

  C    -0.093296   -2.748824   -0.568272 

  H     0.701369   -4.349082    0.533236 

  C     0.360225   -2.782111    1.940313 

  N    -0.530855   -1.512792   -0.768675 

  N    -0.663872   -3.589111   -1.481367 

  H     0.506411   -1.701965    1.990472 

  C     1.210226   -3.442448    3.030498 

  C    -1.123084   -3.078204    2.187041 

  C    -1.438973   -1.574597   -1.812994 

  C    -1.528174   -2.860903   -2.270637 

  C    -0.485142   -5.036052   -1.587926 

  H     2.275976   -3.255238    2.900260 

  H     1.059801   -4.525245    3.035915 

  H     0.922042   -3.061380    4.011481 

  H    -1.772746   -2.569124    1.475592 

  H    -1.405754   -2.749689    3.188435 

  H    -1.322066   -4.151504    2.123194 

  C    -2.253848   -0.381520   -2.143964 

  C    -2.359791   -3.462752   -3.346277 

  H     0.504932   -5.312828   -1.237741 

  H    -0.578215   -5.322766   -2.631796 

  H    -1.246960   -5.558254   -1.008362 

  N    -1.950320    0.651477   -1.350539 

  O    -3.151142   -0.409850   -3.002038 

  H    -2.948468   -2.678638   -3.813464 

  H    -3.038173   -4.221781   -2.948901 

  H    -1.743125   -3.940755   -4.111146 

  C    -2.709357    1.877717   -1.367668 

  C    -1.681204    2.953319   -1.226978 

  H    -3.255180    1.973671   -2.309721 

  C     0.128618    3.976969   -0.610395 

  N    -0.539081    2.751948   -0.592541 

  N    -1.786954    4.231064   -1.658664 

  C    -4.890497    0.986758   -0.309402 

  C    -0.645838    4.902221   -1.281593 

  H    -4.503521   -0.031907   -0.390431 

  H    -5.451133    1.181697   -1.228833 

  C    -0.464874    6.342161   -1.609313 
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  H     0.471064    6.696231   -1.195253 

  H    -1.283550    6.939749   -1.200388 

  H    -0.456862    6.499550   -2.691174 

  Cu    4.745510   -0.327909    0.543813 

  Cu   -0.260765    0.676390   -0.435646 

  O     3.034094   -0.396005    1.458009 

  H     1.904736    0.258703    1.273876 

  H     2.604310   -2.113960    0.596983 

  O     0.895190    0.710138    1.306298 

  H     0.676574    0.873053    2.231960 

  H     1.715719    2.332665    0.596482 

  H     3.155495   -0.621018    2.387303 

  O     3.842009   -0.360089   -1.595800 

  H     4.042977   -1.201131   -2.029726 

  O     1.024450    0.414406   -2.240961 

  H     0.604873   -0.166280   -2.887156 

  H     1.922354    0.068959   -2.133050 

  C     7.935302   -4.387145   -1.052704 

  H     8.292988   -5.190140   -0.410148 

  H     7.817418   -4.765653   -2.065931 

  H     8.667577   -3.588012   -1.062644 

  C    -2.880482    4.810320   -2.430361 

  H    -3.434007    5.529511   -1.827571 

  H    -2.484554    5.310616   -3.311461 

  H    -3.554554    4.022596   -2.749715 

  H     4.317085    0.310159   -2.107328 

  C    -3.727604    1.971244   -0.205366 

  H    -4.120632    2.992195   -0.170133 

  H    -3.184460    1.810487    0.730669 

  C    -5.828674    1.081578    0.893487 

  H    -6.204275    2.104169    0.995700 

  H    -5.268472    0.857893    1.807725 

  C    -7.013820    0.126555    0.785180 

  H    -6.651508   -0.898110    0.648694 

  H    -7.604247    0.385505   -0.091587 

  N    -7.848478    0.214166    1.982903 

  H    -7.368664    0.457548    2.839259 

  C    -9.124217   -0.189041    2.187127 

  O    -9.611248   -0.170843    3.317518 

  C    -9.939349   -0.651210    0.984404 

  H    -9.265179   -0.930883    0.176385 

  C   -10.830622   -1.859282    1.318694 

  H   -10.254396   -2.782711    1.371502 

  H   -11.302546   -1.702894    2.288007 

  C   -11.887877   -1.910438    0.206067 

  C   -10.925253    0.411375    0.411434 

  N   -11.950798   -0.480407   -0.202880 

  O   -12.848331   -0.033426   -0.982667 

  C   -13.255687   -2.374275    0.705511 

  H   -13.602778   -1.751534    1.530992 

  H   -13.992808   -2.331871   -0.096405 

  H   -13.188062   -3.405126    1.056781 

  C   -11.441978   -2.755964   -0.995329 

  H   -10.443368   -2.476089   -1.333778 

  H   -11.428802   -3.812119   -0.721715 

  H   -12.135982   -2.623978   -1.826184 

  C   -11.610582    1.289141    1.468189 

  H   -10.902445    1.998933    1.896556 

  H   -12.414580    1.849937    0.990452 

  H   -12.029825    0.696820    2.279525 

  C   -10.298193    1.289456   -0.670746 

  H   -11.057975    1.927582   -1.121151 

  H    -9.530887    1.931345   -0.236384 

  H    -9.846416    0.685032   -1.458534 
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  N   -1.420162    3.998059   -0.147959 

  N   -1.993560    6.092834    0.229249 

  N    0.416116    3.887017    1.727663 

  N    0.796125    1.274265    2.188448 

  N    1.507126    0.193401    3.962955 

  N    0.022116   -1.914108    1.734191 

  O    0.910743    4.466203    3.897615 

  O    0.441327   -3.395769    3.395667 

  C   -2.609492    4.261682   -0.826431 

  C   -2.972635    5.572230   -0.587558 

  C   -1.074387    5.124561    0.455158 

  C    0.191788    5.236161    1.255420 

  H    0.051566    5.919900    2.097324 

  C    0.753720    3.627175    2.995742 

  C    0.945458    2.174833    3.231007 

  C    1.389915    1.513521    4.342059 

  C    1.155436    0.083159    2.648501 

  C    1.296531   -1.214701    1.891137 

  H    1.906047   -1.865945    2.514204 

  C   -0.275473   -3.010978    2.464055 

  C   -4.120323    6.412347   -1.025069 

  H   -4.752891    5.845883   -1.696653 

  H   -3.769243    7.311172   -1.537958 

  H   -4.715385    6.738643   -0.167750 

  C    1.399700    5.726842    0.395976 

  H    1.492876    5.010349   -0.427666 

  C    1.185727    7.116312   -0.209579 

  H    0.325347    7.152738   -0.879015 

  H    2.061899    7.400835   -0.794658 

  H    1.052094    7.874591    0.565851 

  C    2.696308    5.695328    1.207340 

  H    2.927386    4.691487    1.561131 

  H    2.631193    6.355742    2.075222 

  H    3.529356    6.035770    0.589490 

  C    1.727392    2.005148    5.703638 

  H    1.540461    3.074405    5.745440 

  H    2.777345    1.822141    5.945114 

  H    1.123171    1.513107    6.469481 

  C    1.999344   -0.864477    4.843584 

  H    1.605978   -1.825013    4.525254 

  H    1.655094   -0.664563    5.854936 

  H    3.089683   -0.886611    4.839006 

  C    3.440562   -0.550381    0.654786 

  H    3.475571    0.400253    1.194502 

  H    4.009675   -1.269919    1.252534 

  C   -3.378239    3.332072   -1.690625 

  N   -2.999696    2.036277   -1.757437 

  O   -4.347737    3.755172   -2.332506 

  C   -3.608743    1.148668   -2.749919 

  C   -4.664303    0.244108   -2.156250 

  H   -4.134018    1.810446   -3.435690 

  C   -2.557741    0.385928   -3.598383 

  N   -4.496053   -0.891362   -1.500094 

  N   -6.000037    0.460982   -2.357053 

  H   -1.982063   -0.255030   -2.927788 

  C   -1.600479    1.365076   -4.284877 

  C   -3.234877   -0.501866   -4.648052 

  C   -5.755310   -1.432216   -1.299445 

  C   -6.704836   -0.597722   -1.824022 

  C   -6.617711    1.573486   -3.075689 

  H   -1.090388    2.015371   -3.574149 

  H   -2.137953    2.000161   -4.993870 

  H   -0.839652    0.815601   -4.841612 

  H   -3.872718   -1.263636   -4.200601 

  H   -2.478224   -1.012497   -5.245854 

  H   -3.845075    0.097356   -5.329579 

  C   -5.863081   -2.785004   -0.703185 

  C   -8.186410   -0.708991   -1.883036 

  H   -5.994140    2.458051   -2.987811 

  H   -7.585902    1.783547   -2.628978 

  H   -6.761224    1.318942   -4.126372 

  N   -4.639285   -3.248827   -0.443873 

  O   -6.948813   -3.353313   -0.496384 

  H   -8.487753   -1.629078   -1.390313 

  H   -8.544733   -0.730552   -2.915155 

  H   -8.672674    0.132472   -1.383433 

  C   -4.410049   -4.575569    0.095517 

  C   -3.313889   -4.439017    1.118182 

  H   -5.319116   -4.947178    0.577123 

  C   -4.003669   -5.564476   -1.046090 

  C   -1.512549   -3.750872    2.128409 

  N   -2.350184   -3.535535    1.034665 

  N   -3.149751   -5.209033    2.221645 

  H   -3.075417   -5.166801   -1.470788 

  C   -3.722509   -6.980394   -0.536308 

  C   -5.059678   -5.599168   -2.152254 

  C   -2.009623   -4.797698    2.872944 

  H   -2.899326   -7.011288    0.178220 

  H   -3.447873   -7.625444   -1.372655 

  H   -4.605822   -7.416893   -0.063526 

  H   -5.197985   -4.620570   -2.609630 

  H   -6.024622   -5.932540   -1.764145 

  H   -4.753673   -6.296433   -2.934653 

  C   -1.554876   -5.466077    4.121912 
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  H   -0.626301   -5.019701    4.456736 

  H   -1.397001   -6.534834    3.956592 

  H   -2.301861   -5.366292    4.913849 

  Cu  -0.215567    2.486126    0.589172 

  Cu  -3.196697   -1.971777   -0.519581 

  O   -0.766609    1.192530   -0.727683 

  H   -1.179709   -0.092583   -0.672787 

  H   -2.153569    1.721450   -1.277309 

  O   -1.471222   -1.125113   -0.515456 

  H   -1.068614   -1.667684   -1.203706 

  H   -0.543890   -1.681256    0.923419 

  H   -0.277763    1.346586   -1.544609 

  O   -3.270280    2.306276    1.523716 

  H   -4.066326    2.845392    1.448726 

  O   -3.726109   -0.542320    1.166453 

  H   -4.686037   -0.549308    1.270088 

  H   -3.482523    0.402721    1.173167 

  C   -2.027788    7.435059    0.799998 

  H   -1.855441    8.184994    0.029712 

  H   -2.998601    7.608956    1.259100 

  H   -1.260625    7.525395    1.560101 

  C   -4.042985   -6.251593    2.713589 

  H   -3.575700   -7.231382    2.626572 

  H   -4.282842   -6.060051    3.757341 

  H   -4.961196   -6.243180    2.137140 

  H   -2.930625    2.475620    2.410120 

  C    1.993074   -1.027702    0.534439 

  H    1.420063   -0.326049   -0.075542 

  H    1.970816   -1.993278    0.022904 

  C    4.111977   -0.378272   -0.708083 

  H    4.073089   -1.317884   -1.266638 

  H    3.557323    0.360971   -1.295410 

  C    5.566936    0.068714   -0.584841 

  H    6.135236   -0.689405   -0.052941 

  H    5.620725    0.989263    0.006437 

  N    6.161431    0.290783   -1.899493 

  H    5.597727    0.824903   -2.548013 

  C    7.412007    0.060311   -2.364467 

  O    7.733620    0.445120   -3.489014 

  C    8.401677   -0.691585   -1.480904 

  H    8.098593   -0.604688   -0.439103 

  C    9.831451   -0.142073   -1.617162 

  H   10.046764    0.050980   -2.667084 

  H    9.956168    0.793263   -1.072168 

  C    8.537534   -2.212178   -1.795515 

  C   10.750702   -1.244483   -1.071320 

  C    8.463336   -2.565962   -3.287583 

  H    8.765986   -3.605404   -3.418182 

  H    7.443923   -2.455429   -3.657905 

  H    9.113970   -1.933068   -3.888624 

  C    7.561726   -3.080141   -1.002413 

  H    7.622611   -2.870062    0.066262 

  H    6.539613   -2.901714   -1.338372 

  H    7.789183   -4.134331   -1.157775 

  C   12.074290   -1.344554   -1.829227 

  H   12.668479   -2.179640   -1.458029 

  H   11.904381   -1.485522   -2.897413 

  H   12.646757   -0.426223   -1.689800 

  C   11.007915   -1.108441    0.436239 

  H   11.641267   -0.240791    0.627532 

  H   10.077625   -0.983974    0.992425 

  H   11.517347   -1.996417    0.812315 

  N    9.927951   -2.460481   -1.316481 

  O   10.392290   -3.635301   -1.184267 
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  N     -0.004124    2.196137   -0.815501 

  N     -0.414682    4.291589   -1.331755 

  N     -1.420204    0.367990    0.424898 

  N     -0.003812   -1.869692    0.261496 

  N     -1.141940   -3.022649    1.757519 

  N      2.171696   -2.803919   -1.382814 

  C     -1.166917    2.591568   -0.186450 

  C     -1.442256    3.896042   -0.496316 

  C      0.435719    3.243104   -1.492930 

  C     -0.235532    5.630201   -1.886031 

  H      0.701517    6.052076   -1.527230 

  H     -1.057077    6.257685   -1.557169 

  H     -0.237217    5.597711   -2.973647 

  C     -2.569546    4.778167   -0.093333 

  H     -3.247925    4.207966    0.535633 

  H     -3.121295    5.147783   -0.960841 

  H     -2.221040    5.645058    0.473353 

  C     -1.903687    1.601528    0.621357 

  C     -2.064350   -0.763510    1.055202 

  H     -2.399068   -0.500832    2.063947 

  C     -1.036520   -1.849872    1.085731 

  C      0.546598   -3.146229    0.362523 

  C     -0.151555   -3.865630    1.307325 

  C     -2.122052   -3.361283    2.783102 

  H     -1.612523   -3.778962    3.648848 

  H     -2.838276   -4.089563    2.403922 

  H     -2.649873   -2.464583    3.090568 

  C     -0.000412   -5.243620    1.843460 

  H      0.169799   -5.223392    2.922948 

  H      0.838996   -5.731952    1.362314 

  H     -0.902216   -5.835235    1.666120 

  C      1.608820   -3.678881   -0.505035 

  C      3.456859   -3.169234   -1.983871 

  H      3.367590   -4.200473   -2.319876 

  C      3.803380   -2.302818   -3.211686 

  H      3.851071   -1.258385   -2.891111 

  C      2.734645   -2.437755   -4.298637 

  H      1.752920   -2.124361   -3.947372 

  H      2.661597   -3.473816   -4.640431 

  H      2.996339   -1.820646   -5.159984 

  C      5.181056   -2.677380   -3.766589 

  H      5.433001   -2.032667   -4.609632 

  H      5.190480   -3.709751   -4.125708 

  H      5.970665   -2.571779   -3.020655 

  O     -2.850013    1.917493    1.361634 

  O      1.948198   -4.863280   -0.455331 

  C      1.772869    3.339165   -2.178509 

  C      4.481228   -3.121686   -0.880955 

  N      2.787702    2.955909   -1.195818 

  H      1.947685    4.385845   -2.421996 

  C      1.885674    2.527860   -3.486761 

  H      2.835685    1.959218   -0.996893 

  C      2.982832    3.774204   -0.124655 

  H      1.772325    1.467501   -3.242356 

  C      3.250383    2.738935   -4.145788 

  C      0.761220    2.898986   -4.458751 

  C      3.743601    3.203091    0.998956 

  H      4.069236    2.438841   -3.494600 

  H      3.391800    3.790424   -4.409774 

  H      3.318503    2.152349   -5.063492 

  H      0.835134    2.293124   -5.362752 

  H      0.832692    3.947681   -4.758932 

  H     -0.229126    2.735349   -4.030526 

  N      4.420903    1.989853    0.951345 

  C      4.029233    3.834794    2.188545 

  C      5.148793    1.928556    2.054674 

  N      4.909684    3.003357    2.847340 

  C      3.574949    5.120621    2.779413 

  C      6.206045    0.879853    2.220369 

  C      5.411966    3.237529    4.197168 

  H      2.860654    5.593637    2.114979 

  H      3.105319    4.958758    3.752733 

  H      4.415320    5.803136    2.931207 

  N      5.701445   -0.271158    1.501783 

  H      6.371889    0.631298    3.272361 

  C      7.555315    1.398922    1.599051 

  H      5.999071    2.384578    4.518052 

  H      6.033890    4.130431    4.226009 

  H      4.573064    3.362039    4.879659 

  C      6.059546   -1.508871    1.867188 

  H      7.318011    1.643847    0.558838 

  C      8.089440    2.666728    2.273225 

  C      8.647282    0.327503    1.588278 

  C      5.574889   -2.501025    0.886707 

  H      7.403860    3.509897    2.192637 

  H      9.023712    2.966410    1.795491 

  H      8.305563    2.495328    3.330733 

  H      8.341485   -0.566533    1.048745 

  H      8.925237    0.033063    2.601696 

  H      9.536745    0.726887    1.096039 

  N      4.698431   -2.082692   -0.093180 

  C      5.899987   -3.815265    0.685515 

  N      5.196014   -4.192640   -0.443504 

  C      6.808569   -4.720884    1.437396 
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  C      5.200576   -5.525360   -1.039724 

  H      7.259313   -4.160073    2.251926 

  H      7.603055   -5.114931    0.799363 

  H      6.269940   -5.571768    1.861819 

  H      4.176660   -5.862633   -1.183104 

  H      5.702322   -6.208806   -0.362529 

  H      5.731418   -5.520997   -1.990589 

  Cu     4.270687   -0.045696    0.178612 

  Cu     0.348700    0.158937   -0.407042 

  H      2.074638   -1.818395   -1.149360 

  O      2.578228    4.938355   -0.106422 

  O      6.730053   -1.825666    2.863699 

  O      2.403624    0.068858   -0.721274 

  O      5.350595    0.652926   -1.858100 

  O     -0.059556   -0.527401   -2.682332 

  H      5.626246    1.571510   -1.745059 

  H      6.166451    0.158813   -2.008666 

  H     -0.770342   -0.005152   -3.075159 

  H     -0.391275   -1.434261   -2.661423 

  H      2.543795    0.074727   -1.675999 

  C     -4.521085   -0.438032    0.184014 

  H     -4.855279   -0.203518    1.198272 

  H     -4.287088    0.515652   -0.290513 

  C     -5.648369   -1.131318   -0.582874 

  H     -5.895810   -2.084609   -0.106135 

  H     -5.308140   -1.366360   -1.597421 

  C     -6.912026   -0.278831   -0.666834 

  H     -6.676767    0.688285   -1.124145 

  H     -7.283521   -0.082769    0.335702 

  N     -7.941332   -0.964008   -1.444920 

  H     -7.612517   -1.461214   -2.262180 

  C     -3.273668   -1.317365    0.245676 

  H     -3.556831   -2.283156    0.673354 

  H     -2.916964   -1.520944   -0.768628 

  C     -9.291357   -0.921228   -1.365399 

  O     -9.980691   -1.498210   -2.207120 

  C     -9.935813   -0.158056   -0.212335 

  H     -9.235865    0.585691    0.165656 

  C    -11.224408    0.559984   -0.647366 

  H    -11.008708    1.467025   -1.211438 

  H    -11.807473   -0.101196   -1.286837 

  C    -11.986760    0.865352    0.649965 

  C    -10.371188   -1.040089    0.997787 

  N    -11.486076   -0.213704    1.544183 

  O    -12.002761   -0.451523    2.680002 

  C    -11.611911    2.228127    1.249857 

  H    -10.530245    2.349940    1.322984 

  H    -12.005944    3.030223    0.623832 

  H    -12.037433    2.330312    2.248828 

  C    -13.502798    0.753202    0.489788 

  H    -14.003640    0.905507    1.445905 

  H    -13.855394    1.513926   -0.208481 

  H    -13.783889   -0.226772    0.102019 

  C     -9.282227   -1.190281    2.059091 

  H     -9.685085   -1.695867    2.936202 

  H     -8.458016   -1.790148    1.671853 

  H     -8.895164   -0.218979    2.370206 

  C    -10.925200   -2.419736    0.615200 

  H    -10.123203   -3.072591    0.269472 

  H    -11.381620   -2.872649    1.495859 

  H    -11.673444   -2.354518   -0.172922 
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  N      2.054820    3.119290   -0.637798 

  N      3.135438    4.534667   -1.924056 

  N      0.947797    3.378504    1.738959 

  N     -0.259934    1.062499    2.183729 

  N     -0.595273    1.335228    4.345668 

  N     -1.131919   -1.153145    0.544210 

  C      2.301756    4.273034    0.076810 

  C      2.972855    5.171432   -0.708086 

  C      2.578415    3.297449   -1.839370 

  C      3.846640    5.075098   -3.078683 

  H      4.670045    4.414184   -3.342469 

  H      4.245804    6.049952   -2.819347 

  H      3.173593    5.190013   -3.926177 

  C      3.452807    6.549751   -0.422804 

  H      3.167547    6.813798    0.591969 

  H      3.017962    7.278310   -1.111101 

  H      4.540147    6.623530   -0.503441 

  C      1.813884    4.364045    1.466181 

  C      0.318277    3.312455    3.041625 

  H      1.036614    3.588190    3.821652 

  C     -0.944773    4.236675    3.224068 

  H     -1.427854    3.892624    4.143043 

  C     -0.592820    5.708888    3.444971 

  H      0.127745    5.831354    4.254596 

  H     -1.498629    6.260003    3.709299 

  H     -0.165946    6.160295    2.550962 

  C     -1.960512    4.083368    2.090963 

  H     -2.843508    4.689192    2.302770 

  H     -1.541867    4.421810    1.142076 

  H     -2.290947    3.050669    1.969165 

  C     -0.114983    1.890102    3.204670 

  C     -0.929573   -0.054276    2.681088 

  C     -1.127861    0.104926    4.034804 

  C     -0.545347    1.904771    5.687754 

  H     -0.152800    1.163916    6.381018 

  H     -1.539024    2.209424    6.014205 

  H      0.113880    2.766324    5.691556 

  C     -1.747574   -0.759008    5.073737 

  H     -1.027335   -0.997539    5.860513 

  H     -2.096007   -1.680800    4.622584 

  H     -2.594587   -0.256929    5.548215 

  C     -1.459896   -1.158750    1.865568 

  C     -1.307061   -2.398649   -0.206709 

  H     -2.287064   -2.790807    0.057474 

  C     -2.378440   -1.342566   -2.309787 

  H     -2.393122   -0.361695   -1.827472 

  H     -2.143681   -1.160782   -3.362830 

  O      2.187823    5.261238    2.238988 

  O     -2.184577   -2.028266    2.354547 

  C      2.730349    2.230204   -2.890905 

  C     -0.266722   -3.362020    0.299773 

  N      3.386836    1.088911   -2.251878 

  H      3.414808    2.604877   -3.650023 

  C      1.416983    1.835834   -3.599945 

  H      2.789377    0.541667   -1.636656 

  C      4.671525    1.244808   -1.827546 

  H      0.736654    1.417377   -2.852412 

  C      1.670951    0.782157   -4.680006 

  C      0.736265    3.067934   -4.203648 

  C      5.174568    0.226523   -0.890619 

  H      2.094672   -0.131457   -4.266977 

  H      2.357934    1.165716   -5.439295 

  H      0.734934    0.523159   -5.177892 

  H     -0.208999    2.782373   -4.667046 

  H      1.360460    3.519684   -4.979134 

  H      0.520297    3.831560   -3.454394 

  N      4.509557   -0.956180   -0.588578 

  C      6.419704    0.208155   -0.303505 

  C      5.362171   -1.695012    0.102929 

  N      6.511644   -1.012260    0.331941 

  C      7.529271    1.196291   -0.263146 

  C      5.080062   -3.141863    0.372069 

  C      7.636937   -1.427320    1.162574 

  H      7.233336    2.099424   -0.785083 

  H      7.789100    1.448463    0.767895 

  H      8.429615    0.798272   -0.738712 

  N      3.638753   -3.221970    0.485627 

  H      5.557907   -3.484050    1.294415 

  C      5.614295   -4.005992   -0.830479 

  H      7.418639   -2.388911    1.613171 

  H      8.543194   -1.510908    0.565568 

  H      7.793617   -0.696405    1.953962 

  C      3.067432   -4.175759    1.232197 

  H      5.115311   -3.603797   -1.718233 

  C      7.126665   -3.888259   -1.042438 

  C      5.231486   -5.482319   -0.707489 

  C      1.600906   -4.162267    1.059460 

  H      7.446332   -2.870452   -1.263963 

  H      7.424178   -4.508481   -1.889684 

  H      7.679954   -4.244179   -0.169759 

  H      4.154826   -5.625326   -0.642946 

  H      5.685803   -5.937653    0.174079 

  H      5.587686   -6.020256   -1.588879 

  N      1.028388   -3.109767    0.375248 
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  C      0.636695   -5.073501    1.396390 

  N     -0.544100   -4.548093    0.903946 

  C      0.731968   -6.373378    2.112090 

  C     -1.866667   -5.150870    1.042527 

  H      1.775748   -6.562435    2.348549 

  H      0.354850   -7.197774    1.502556 

  H      0.164317   -6.363063    3.045901 

  H     -2.550080   -4.431584    1.488622 

  H     -1.791023   -6.014480    1.694922 

  H     -2.244690   -5.476018    0.074509 

  Cu     2.526317   -1.762647   -0.211661 

  Cu     0.933548    1.799144    0.557111 

  H     -0.298927   -0.621316    0.298966 

  O      5.387711    2.164759   -2.227667 

  O      3.646411   -4.997164    1.962371 

  O      1.419425   -0.015727   -0.359464 

  O      2.261093   -2.229594   -2.570878 

  O     -0.994076    1.955089   -0.895877 

  H      3.114403   -2.065355   -2.992481 

  H      2.096686   -3.173475   -2.691292 

  H     -1.098768    2.857112   -1.223873 

  H     -1.790461    1.777687   -0.379591 

  H      0.917114   -0.049726   -1.182930 

  C     -3.763435   -1.986207   -2.216169 

  H     -4.071614   -2.096074   -1.172846 

  H     -3.733131   -2.993691   -2.642971 

  C     -1.244578   -2.189902   -1.724711 

  H     -1.258675   -3.180310   -2.188268 

  H     -0.280826   -1.753103   -1.992939 

  C     -4.824371   -1.169641   -2.957722 

  H     -4.531511   -1.053276   -4.003409 

  H     -4.887581   -0.164092   -2.545309 

  N     -6.144697   -1.789513   -2.947990 

  H     -6.290238   -2.533597   -3.616613 

  C     -7.201705   -1.606756   -2.123190 

  O     -8.216951   -2.291815   -2.255534 

  C     -7.107219   -0.529370   -1.048453 

  H     -6.064019   -0.268603   -0.896254 

  C     -7.708891   -1.006143    0.300348 

  H     -7.733818   -2.092027    0.355079 

  H     -7.075637   -0.651459    1.112759 

  C     -7.891341    0.771074   -1.404421 

  C     -9.126070   -0.411774    0.443601 

  C    -10.242738   -1.440206    0.231882 

  H    -10.237604   -2.161235    1.051112 

  H    -11.212522   -0.941159    0.220758 

  H    -10.099473   -1.972407   -0.706359 

  C     -9.324037    0.302392    1.786554 

  H     -8.560355    1.063505    1.951754 

  H    -10.303203    0.780068    1.822430 

  H     -9.264800   -0.423566    2.599070 

  C     -7.167180    2.005961   -0.839226 

  H     -6.262909    2.208545   -1.414746 

  H     -7.819544    2.877038   -0.907202 

  H     -6.884463    1.865489    0.204560 

  C     -8.191418    0.983753   -2.887314 

  H     -8.785703    1.887984   -3.012337 

  H     -7.263894    1.105867   -3.447265 

  H     -8.747622    0.146562   -3.306723 

  N     -9.165722    0.580069   -0.663991 

  O    -10.143577    1.378542   -0.811152 
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From 6 

"The Emerald Crystal Ball 

 

When the tides are warm and low 

Where the tropic sun has shone, 

That is where we look for Pro- 

chloron. 

 

On the shores of Mexico, 

Eniwetok and Ceylon 

Lurk didemnids bearing Pro- 

chloron. 

 

There are things we ought to know – 

Mysteries to think upon – 

Problems that relate to Pro- 

chloron. 

 

How to get the cells to grow: 

Media to grow them on – 

These are what we need for Pro- 

chloron. 

 

Progress has been somewhat slow 

Towards our chosen Rubicon: 

How to tame the tiny Pro- 

chloron. 

*** 

Prince, if you desire to know 

Where the last year's snows have gone 

Peer into the heart of Pro- 

chloron." 
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