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Zusammenfassung

Diese Arbeit betrachtet robuste Strategien der optimalen Versuchsplanung zur

Diskriminierung zwischen mehreren nichtlinearen Regressionsmodellen. Für

solche Strategien entwickelt sie neue �eorie, e�ziente Algorithmen und Im-

plementierungen. Darüber hinaus schlägt sie neue Techniken und Algorithmen

zum Vergleich und zur Bewertung der praktischen Leistungsfähigkeit solcher

Strategien vor, und setzt diese in mehreren umfangreichen Fallstudien ein. Die

gewonnenen Ergebnisse zeigen den Erfolg der neuen Strategien.

Die Beiträge derArbeit sind in verschiedenenGebieten Fortschritte gegenüber

existierenden�eorien und Methoden:

◾ Die Arbeit schlägt neuartige “modell-robuste” datenbasierte Approximations-
formeln vor für die Kovarianzen von Maximum-Likelihood-Schätzern und

von Bayesschen A-Posteriori Verteilungen von Parametern. Diese Formeln

sind geeignet um Parameterunsicherheit zu quanti�zieren, selbst wenn das

zugrundeliegende Modell sowohl nichtlinear als auch systematisch falsch ist.

◾ Im Rahmen der Arbeit werden statistische Maße und angepasste e�ziente
Algorithmen entwickelt, mit denen Approximationen für die Kovarianz von

Maximum-Likelihood-Schätzern für Parameter auf Basis von Simulations-

studien bewertet werden können. Die Algorithmen sind in vollständig

parallelisierter Form im Programmpaket DoeSim implementiert.

◾ In einer umfangreichen numerischen Fallstudie wird mit Hilfe von DoeSim
die modell-robuste Formel für die Kovarianz von Maximum-Likelihood-

Schätzern für Parameter mit ihrem “klassischen” Gegenstück verglichen. Die

Ergebnisse zeigen die klare Überlegenheit der modell-robusten Formel.

◾ Die Arbeit schlägt zwei neuartige sequenzielle Designkriterien zur Mod-
elldiskriminierung vor. Diese berücksichtigen Parameterunsicherheit mit

Hilfe der neuen modell-robusten Formel für die Kovarianz der A-Posteriori

Verteilung der Parameter. Es wird gezeigt, dass beide Kriterien eine Verbes-

serung gegenüber einer häu�g angewendeten Approximation des Box-Hill-

Hunter-Kriteriums darstellen, da sie dessen Überbewertung der erwarteten

Informationsmenge auf einem Experiment vermeiden.
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◾ Die Arbeit stellt klar, dass das verbreitete Gauss-Newton-Verfahren im
Allgemeinen ungeeignet ist, um im Kontext von Modelldiskriminierung

Least-Squares-Schätzer für Parameter zu berechnen. Darüber hinaus zeigt

sie, dass eine grosse Klasse von Optimierungsproblemen der Optimalen

Versuchsplanung zurModelldiskriminierung intrinsisch nicht-konvex ist, und

dass dies sogar unter stark vereinfachenden Annahmen gilt. Nicht-konvexe

Probleme sind NP-schwer und damit besonders schwer mit numerischen
Methoden zu lösen.

◾ Die Arbeit entwickelt ein Paket zur quantitativen Bewertung und zum Ver-
gleich sequentieller Versuchsplanungsstrategien zur Modelldiskriminierung.

Das Paket umfasst neue statistische Maße für deren praktische E�zienz

und problemangepasste Algorithmen für die Berechnung dieser Maße. Eine

moderne, modulare und parallelisierte Implementation wird im Programm-

paket DoeSim realisiert. Damit ist es möglich, ein breites Spektrum der

Eigenscha�en von Designstrategien zu analysieren, welche diese unter den

Schwankungen von Messdaten aufweisen.

◾ Die praktische Leistungsfähigkeit von vier etablierten und drei neuen se-
quenziellen Designkriterien zur Modelldiskriminierung wird in ein einer

umfangreichen Simulationsstudie untersucht. Die Studie wurde mit DoeSim

durchgeführt und umfasst eine grosse Zahl von Modelldiskriminierungs-

Problemen. Sie untersucht unter anderem den Ein�uss von verschiedenen

Größenordnungen von Messunsicherheit und von der Anzahl der rivalisieren-

den Modelle.

Zentrale Ergebnisse sind, dass eine häu�g angewendete Approximation des

Box-Hill-Hunter-Kriteriums bei Problemen mit mehr als zwei Modellen

ine�zient ist, dass alle parameter-robusten Designkriterien tatsächlich die

einfache Hunter-Reiner-Strategie übertre�en, und dass die neu vorgeschlage-

nen Designkriterien immer unter den e�zientesten zu �nden sind. Sie zeigen

besondere deutliche Vorteile in anspruchsvollen Modelldiskriminierung-

Problemen zwischen vielen Modellen und grosser Messunsicherheit.
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Abstract

�is thesis investigates robust strategies of optimal experimental design for

discrimination between several nonlinear regression models. It develops novel

theory, e�cient algorithms, and implementations of such strategies, and provides

a framework for assessing and comparing their practical performance.�e frame-

work is employed to perform extensive case studies. �eir results demonstrate

the success of the novel strategies.

�e thesis contributes advances over existing theory and techniques in various

�elds as follows:

◾ �e thesis proposes novel “misspeci�cation-robust” data-based approxima-

tion formulas for the covariances of maximum-likelihood estimators and of

Bayesian posterior distributions of parameters in nonlinear incorrect models.

�e formulas adequately quantify parameter uncertainty even if the model is

both nonlinear and systematically incorrect.

◾ �e thesis develops a framework of novel statistical measures and tailored

e�cient algorithms for the simulation-based assessment of covariance approx-

imations for maximum-likelihood estimator for parameters. Fully parallelized

variants of the algorithms are implemented in the so�ware package DoeSim.

◾ Using DoeSim, themisspeci�cation-robust covariance formula formaximum-
likelihood estimators (mles) and its “classic” alternative are compared in an

extensive numerical case study. �e results demonstrate the superiority of the

misspeci�cation-robust formula.

◾ Two novel sequential design criteria for model discrimination are proposed.
�ey take into account parameter uncertainty with the new misspeci�cation-

robust posterior covariance formula. It is shown that both design criteria

constitute an improvement over a popular approximation of the Box-Hill-

Hunter-criterion. In contrast to the latter, they avoid to overestimate the

expected amount of information provided by an experiment.

◾ �e thesis clari�es that the popular Gauss-Newton method is generally not
appropriate for �nding least-squares parameter estimates in the context of
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model discrimination. Furthermore, it demonstrates that a large class of

optimal experimental design optimization problems for model discrimination

is intrinsically non-convex even under strong simplifying assumptions. Such

problems areNP-hard and particularly di�cult to solve numerically.

◾ A framework is developed for the quantitative assessment and comparison of
sequential optimal experimental design strategies for model discrimination. It

consists of new statisticalmeasures of their practical performance and problem-

adapted algorithms to compute these measures. A state-of-the-art modular

and parallelized implementation is provided in the so�ware package DoeSim.

�e framework permits quantitative analyses of the broad range of behavior

that a design strategy shows under �uctuating data.

◾ �epractical performance of four established and three novel sequential design

criteria for model discrimination is examined in an extensive simulation study.

�e study is performed with DoeSim and comprises a large number of model

discrimination problems. �e behavior of the design criteria is examined

under di�erent magnitudes of measurement error and for di�erent number of

rival models.

Central results from the study are that a popular approximation of the Box-

Hill-Hunter-criterion is surprisingly ine�cient, particularly in problems

with three or more models, that all parameter-robust design criteria in fact

outperform the basic Hunter-Reiner-strategy, and that the newly proposed

novel design criteria are among the most e�cient ones. �e latter show

particularly strong advantages over their alternatives when facing demanding

model discrimination problems withmany rivalmodel and largemeasurement

errors.
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Introduction

Model-based simulation and optimization and the related numerical

techniques play a central role in science, industry, and economy.�ey are in

fact o�en regarded as a “third pillar” of science besides theory and experiment.

�eir practical success crucially depends on the qualitywithwhich the underlying

models reproduce those aspects of the considered processes that are of interest.

Building su�ciently good models is o�en a challenging task that requires

substantial experimental e�ort, making it a potentially time-consuming, costly,

and error-prone procedure. Any �eld that applies model-based methods can

thus greatly bene�t from techniques that help to reduce this e�ort.

Preface

On an abstract level, many processes can be described as follows: they are ma-

nipulable trough a number of independent variables (experimental conditions)

and provide a number of observables quantities (observations, outcome, data)

as output. An experiment is characterized by the condition under which it is

performed and the resulting outcome.

A particular outcome is unpredictable: replicated experiments under the same
condition do not necessarily provide the same results. �is unpredictability is

called “experimental uncertainty,” and is o�en attributed to the presence of

measurement errors. In the limit of many replications, however, the frequency
of the outcomes follows a well-de�ned distribution that is determined by the

nature of the considered process. A process of this type can be represented

mathematically by a collection of random variables, called a “stochastic process.”

In practice, the actual distribution of the data is unknown, a lack of knowledge

called “structural uncertainty.” To dealwith this uncertainty, onemight formulate

a number of parametric regression models. Each model, and each parameter of

each model, speci�es for all considered experimental conditions a candidate for

the unknown distribution of the corresponding outcomes. We refer to such a

collection as a “model family.”
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Introduction

Parameter Estimation and Model Discrimination
Models andmodel families aim to approximate the process. �e practical success

of any model-based method is limited by the related approximation quality. It is

hence natural to ask for a parameter under which a given model describes the

process “best.” In a model family, one might be interested in a corresponding

“best” model. What might be considered as “best” depends, of course, on the

intended purpose of the model.

In practice, the “best” parameters or “best” models are unknown. When

experimental data is available, the following two classes of empirical (=data-

based) problems arise:

Parameter estimation (pe)1
Given a parametric model and experimental data, identify a “best”

parameter.

Model discrimination (md)2
Given several parametric models and experimental data, �nd the “best”

model.

A parameter of a given model is said to be “correct3,” if the associated model

predictions are experimentally indistinguishable from the process. A model is

called correct, if a correct parameter exists for it.

A correct parameter or a correct model are “best” in any practical sense. If

they exist, identifying them is the natural aim of parameter estimation andmodel

discrimination, respectively. Albeit correctness is a fairly strong assumption, it is

commonly made to simplify the statistical and mathematical problems arising

in various model-based methods.

Parameter estimation is a well-examined central problem of statistical infer-

ence, since it appears in di�erent variants in almost all empirical sciences. �e

statistical background of parameter estimation can be found in the book by

Lehmann and Casella [170], for example. �e resulting optimization problems

and corresponding numerical methods are examined, for instance, by Bard [23]

and Walter and Pronzato [263].

A frequently considered special case is that of least-squares estimation, for

which e�cient numerical methods and highly developed implementations are

available. A general overview of suitable methods is given by Nocedal and

1Sometimes called “parameter identi�cation.”
2Also referred to as “model selection” and “model identi�cation.”
3Alternative terms are “true” or “correctly speci�ed.”
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Wright [194]. Contributions for problems involving di�erent types of di�erential

equations come for example from Bock [35], Schlöder [223], Bock, Kostina, and

Schlöder [36], Hatz [114], Kostina [149], Kühl et al. [155], and Lenz [172].

Model discrimination problems are classically approached with statistical

hypothesis testing, for example discussed in detail by Lehmann and Romano

[171]. Ando [7] discusses the corresponding Bayesian methods.

Whatever method is applied to these problems, it can only solve the problem

approximately, because the underlying data is subject to random �uctuations. For

manymethods one can show, fortunately, that the approximation quality increases

with the number of available experiments, assuming that certain regularity

conditions are met. One can therefore expect to obtain better approximations

for a “best” parameter or “best” model by performing additional experiments.

Optimal Experimental Design
Performing experiments may be costly in terms of money, time, or other limited

resources. �e aim of reducing these costs leads to the following optimal

experimental design (oed) problems:

Optimal experimental design for parameter estimation (oed/pe)
Given a parametric model, certain experimental capabilities, and a

parameter estimation method, determine the experimental conditions

which aremost suitable for approximating a sought-a�er “best” parameter

with that method.

Optimal experimental design for model discrimination (oed/md)
Given several parametric models, certain experimental capabilities, and a

model discrimination method, determine the experimental conditions

which are most suitable for approximating a sought-a�er “best” model

with that method.

�ese problems lead to constrained optimization problems, their objective

functions are called “design criteria.”

Which of the experimental conditions are actuallymost useful depends on the
process, and possibly on the “best” parameter or “best” model. Since they are

unknown, oeds problem arising in practice are generally optimization problems

under uncertainty. �eir solutions will typically deviate from the actuallymost
useful experimental conditions. �e smaller these deviations, the more “robust”

is the design criterion.

3



Introduction

�is thesis focuses on the practically important sequential approach, in

which experiments are designed, performed, and analyzed a�er one another

[10, 152]. In each step of such a procedure, the additional data tends to reduce the

structural uncertainty. A “sequential” design criterion applied there can increase

its robustness by properly taking into account suitable empirical quanti�cations

of the current uncertainty.

Model discrimination problems typically arise in early stages of model

building, when the uncertainties are particularly large. It is the aim of oed/md

to e�ciently reduce the uncertainty about the sought-a�er “best” model, yet

not the corresponding parameter uncertainty. In fact, optimal designs for

model discrimination are typically ine�cient for parameter estimation [13,

97]. �erefore, model discrimination problems o�en involve large parameter

uncertainties, and the relatedoptimal experimental design can bene�t particularly

from suitable robusti�cation techniques.

Optimal Experimental Design for Parameter Estimation

�e fundamental theory of oed for parameter estimation is well studied.

Practically dominant are the so-called “alphabetic” design criteria going back to

Kiefer and Wolfowitz [143], extensively discussed in the books by Fedorov [95],

Atkinson and Donev [11], and Pukelsheim [206].

A focal point of research is currently the development of related e�cient

numerical methods. Optimal designs for dynamic or distributed models based

on ordinary di�erential equations, di�erential-algebraic equations, and partial

di�erential equations are treated by Asprey and Macchietto [9], Bock, Kostina,

and Schlöder [36], Körkel [147], and Körkel et al. [148], to mention a few.

�e so-called “Bayesian” design criteria have recently gained popularity in

several applied �elds. �ese design criteria can be regarded as generalizations

of their non-Bayesian counterparts to cases in which prior knowledge is not

negligible compared to the available experimental data. Details can be found

in the reviews by Chaloner and Verdinelli [66] and von Toussaint [259] and

references provided therein.

Design Criteria for Model Discrimination

Optimal experimental design for model discrimination is a far less homogeneous

�eld than that for parameter estimation. A plethora of design criteria are available

that rely on a wide range of statistical concepts, make varying assumptions

4



about process and models, and apply di�erent approximations. Most of them are

connected to one of the three strategies presented in the following. Details can

be found in the reviews by Burke [59], Franceschini and Macchietto [103], Hill

[116], Kreutz and Timmer [152], and Steinberg and Hunter [238].

Hunter-Reiner Strategy

Hunter and Reiner [129] are possibly the �rst to suggest a sequential design

criterion for model discrimination. It is based on the idea to perform that

experiment underwhich themodel predictions aremaximally di�erent. Atkinson

and Fedorov [21, Sec. 3] provide a rigorous justi�cation for it.�e design criterion

can be generalized straightforwardly to accept multivariate data and respect

experimental uncertainty [88]. In this form – referred to as “Hunter-Reiner

(hr)-criterion” – it is restricted to two rival models and neglects parameter

uncertainty.

It is nevertheless still popular, presumably because it is easy to implement

and cheap to compute. At the time of writing (May 19, 2016), Web of Science4

lists 115 citations of [129], of with 20 are from the year 2010 or later. With minor

modi�cations it is applicable to dynamic processes with time-dependent controls,

and to models based on ordinary di�erential equations (odes) or di�erential-

algebraic equations (daes) [10, 80, 120, 221].

Buzzi-Ferraris Strategy

A novel sequential design criterion for model discrimination was proposed by

Buzzi-Ferraris and Forzatti [63], and was further extended by Buzzi-Ferraris

et al. [61] and Buzzi-Ferraris, Forzatti, and Canu [64]. �is “Buzzi-Ferraris

(bf)-criterion” essentially generalizes the hr-criterion such that it incorporates

parameter uncertainty.

�e bf-criterion has received considerable attention: at the time of writing,

Web of Science knows 89 citations of the three papers suggesting the bf-criterion,

of which 34 are from the year 2010 or later.

�edesign criterion is popular among practitioners,but also stimulated further

theoretical work: Schwaab et al. [225] proposes a data-adaptive multi-model

generalization, Chen and Asprey [67] adopt it to dynamic processes with time-

dependent controls, and Schwaab, Monteiro, and Pinto [224] and Donckels et al.

[81] improve its parameter-robustness. �e suggestions of the latter two were

4http://www.webofscience.com
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Introduction

applied just recently by Stamati et al. [237]. None of these modi�cations, however,

changed the- underlying concept. �e study by Donckels et al. [82] compares

di�erent variants of the bf-criterion.

Box-Hill-Hunter Strategy

Box and Hill [42] and Hill and Hunter [118] follow a conceptually di�erent

approach. �ey propose to measure the model uncertainty by the Shannon

entropy of the posterior model probabilities, and to use the expected reduction of

model uncertainty resulting from an additional experiment as design criterion for

md.�is “Box-Hill-Hunter (bhh)-criterion” makes very few assumptions about

the considered process and models, and incorporates experimental uncertainty,

model uncertainty and parameter uncertainty in a natural way.

�e bhh-strategy was an early and seminal approach for oed for md. It gave

rise to a huge body of follow-up works that both advanced the underlying theory

and applied the strategy in practice. Currently, no less than 270 citations of [42]

are known onWeb of Science, with 42 of them coming from the last six years.

In its general form, the bhh-criterion involves several integrals that typically

lack a closed-form solution. Due to the curse of dimensionality, numerical

approximations are computationally intractable for all but very simple model

discrimination problems.

As remedy, Box, Hill and Hunter suggested an approximation that has a closed

form under the common assumption that the data is normally distributed with

known covariance. Early on, this approximation has been criticized as being an

upper bound of a design criterion to bemaximized [185]. Nevertheless, this “upper-
bound approximation” has become and remains a popular design criterion. Just

recently, Zhang et al. [269] proposed its usage in process engineering, and Pham

and Tsai [202] adopted it to spatio-temporal models and applied it to design

optimal observation networks in a real-world problem.

6
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Aims and Contributions of this�esis
�is thesis aims to develop theory, algorithms, and actual implementations of new

and practically applicable robust methods for designing optimal experiments

that discriminate between several nonlinear multivariate parametric regression

models. Furthermore, it strives to establish a framework of theoretical concepts,

methods, and implementations that allows to numerically assess and compare

the practical performance of di�erent model discrimination methods and related

robusti�cation techniques.

To this end, this thesis contributes novel results and advances over existing

techniques in various areas that are described in the following.

Empirical Quanti�cation of Parameter Uncertainty
It lies in the very nature of optimal experimental design (oed) problems formodel

discrimination that they are o�en subject to substantial parameter uncertainty.

Corresponding design criteria may hence bene�t strongly from techniques that

quantify this uncertainty empirically, that is, based on available experimental

data. �is thesis makes the following contributions to this �eld.

Approximations of PMLE Covariance

From the point of view of frequentist statistics, the uncertainty about the

parameters of a model can be quanti�ed based on the covariance matrix

of the corresponding parameter maximum-likelihood estimator (pmle). In

the common case that this covariance is unknown, one reverts to empirical

approximations.

�is thesis proposes a novel “misspeci�cation-robust” empirical approxima-

tion that is based on the �rst and second derivatives of the model responses

with respect to the parameters. �e approximation has a number of appealing

properties: (a) it consistently generalizes the commonly applied “classic” alter-

native that is based on �rst-derivatives only, (b) but – much in contrast to the

latter – does not assume that the model is locally a�ne-linear or correct, (c) it is

applicable to the practically important class of models for normally distributed

data with known covariances, and (d) it can be expected to be exact in the limit

of in�nitely many experiments. No comparable formula has been reported in

literature.

�e novel approximation constitutes an improvement over its classic coun-

terpart, since it quanti�es parameter uncertainty more adequately in model

7



Introduction

discrimination problems, which contain incorrect model by de�nition.

Posterior Parameter Covariance Approximation

From a Bayesian perspective, uncertainty in parameters can be expressed through

the covariance of their posterior distribution, supposed that the model meets

the classic assumptions of local linearity or correctness.

Central results concerning the posterior distribution in incorrect nonlinear

models have become available only recently [144]. Based thereon, this thesis sug-

gests a novel “misspeci�cation-robust” formula for the empirical approximation

of the posterior parameter covariance in nonlinear incorrect models for normally

distributed observations with known covariances.

�e novel formula overcomes the assumptions of local linearity or correctness

that underlie the commonly applied alternative, yet is a consistent generalization

of it. As such, it promises to be a more adequate quanti�cation of parameter

uncertainty in model discrimination problems.

Framework for Assessing PMLE Covariance Approximations

�e thesis develops a framework that allows to assess and compare the quality

of di�erent approximations of the parameter maximum-likelihood estimate

(pmle) covariance. It consists of statistically well-founded quality measures,

numerical algorithms for their e�cient computation, and a state-of-the-art

implementation in the so�ware package DoeSim. �e framework is the �rst

that allows the quantitative analysis of di�erent empirical approximations for

maximum-likelihood estimator (mle) covariance.

Case Studies: Quanti�cation of Parameter Uncertainty

�e quality of the classic and the misspeci�cation-robust pmle covariance

approximations are examined in an extensive numerical case study, using the

DoeSim implementation of the previously proposed framework. �e case study

comprises twelve nonlinear models for the water-gas shi� reaction (wgsr)

reaction, which were collected by Schwaab, Monteiro, and Pinto [224] and

Schwaab et al. [225]. �e rival models show di�erent magnitudes of structural

“incorrectness.”

�e results demonstrate that the misspeci�cation-robust formula is asymp-

totically exact, and show that it is clearly superior to its classic counterpart in
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all considered cases, except if little data is available. �ese results seem to be the

�rst published quantitative analysis of pmle covariance approximations.

Design Criteria for Model Discrimination
Established Design Criteria with Enhanced Parameter-Robustness

�e derived misspeci�cation-robust formulas for quantifying parameter uncer-

tainty can be applied to improve any parameter-robust design criterion that uses

the classic formulas.

We demonstrate that by proposing a new and misspeci�cation-robust variant

of the Buzzi-Ferraris (bf)-criterion. It is the �rst design criterion proposed in

literature that is parameter-robust and does not rely on the assumption that all

underlying models are correct or locally a�ne-linear. We show that if they are,

however, the new design criteria consistently reduces to the original bf-criterion.

Novel Design Criteria

�is thesis contributes two novel design criteria for model discrimination under

the assumption of normally distributed data with known covariance. �ey both

possess the following promising properties.

◾ �ey are lower bounds of the Box-Hill-Hunter (bhh)-criterion under
regularity conditions. �e proof is given that is based on the recent

information-theoretic inequalities by Hershey and Olsen [115] and Huber

et al. [125]. Despite being lower bounds to the actual quantity of interest,

they are statistically meaningful by themselves.

◾ �ey are parameter-robust, quantifying parameter uncertainty based on

the newly proposed misspeci�cation-robust formulas for the posterior

parameter covariance.

◾ �ey are model-robust, using a novel formula for the posterior probability

of a model which is applicable even if the models have di�erent numbers

of parameters.

◾ �ey are consistent generalizations of the simple and sound established

multivariate Hunter-Reiner-criterion [129].

◾ �ey come with a natural support for discrimination among more than

two models.
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Currently, no other design criterion for model discrimination has been reported

which one of the �rst three properties. �ese properties provide strong argu-

ments to expect that both design criteria outperform the popular upper-bound

approximation of the bhh-criterion and the multivariate Hunter-Reiner (hr)-

criterion.

Optimization Problems in the Context of Model Discrimination

Parameter estimation is an integral part of most strategies for optimal experimen-

tal design for model discrimination. Newton’s method and the Gauss-Newton

method are particularly popular for computing unconstrained least-squares

parameter estimates, see Nocedal and Wright [194, Sec. 10] and the references

provided therein. In the context of model discrimination, the Gauss-Newton is

applied, for example, by Schwaab, Monteiro, and Pinto [224].

�is thesis shows that these methods are generally not appropriate in the
context of model discrimination. �e same is shown for sequential quadratic

programming (sqp) methods with exact Hessians or Gauss-Newton Hessian

approximations, which might be applied to compute such estimates under

equality constraints.

Furthermore, it is demonstrated that a large class of optimal experimental

design problems for model discrimination (md) is intrinsically non-convex
even under strong simplifying assumptions. Such problems areNP-hard and
particularly di�cult to solve numerically. �e computational complexity of

optimal experimental design for model discrimination has so far not been

discussed in literature in the detail given here.

Numerical Framework for Analyzing Model Discrimination Strategies

�e thesis provides a numerical framework for comparing and assessing strategies

for optimal experimental design for model discrimination (oed/md). It consists

of (a) statistical measures of the practical performance of a design criterion

for solving a md problem, (b) a set of problem-adapted algorithms for their

computation, and (c) a state-of-the-art implementation in the so�ware package

DoeSim.

�e architecture of DoeSim is completely modular and allows to exchange

and recombine the algorithmic components of an md strategy without e�ort.�e

package can autonomously simulate replicated runs of the sequence of designing,

performing, and analyzing experiments in an md problem speci�ed by the user.

�e replicated runs can be performed fully in parallel to take full advantage
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of today’s hardware. Based on replicated runs, the performance of the applied

design criterion can be studied on a quantitative level. �e implementation also

contains tools for in-depth a priori and a posteriori analyses of the md problem

and o�ers rich visualization capabilities.

It is common practice in literature to examine the behavior of design criteria

for md on the basis of a single simulation of the considered sequential procedure,

neglecting the random nature of the data. Contrary to this practice, the provided

framework permits to analyze the full spectrum of the behavior that a design

criterion shows under �uctuating data.

Case Studies: E�ciency of Design Criteria for Model
Simulation studies of sequential design criteria for md typically rely one set of

simulated data. Examples are the results of [81, 186, 224, 225, 234, 248], to mention

a few. Since the data is inherently subject to random �uctuations, little general

conclusions can be drawn from such results. Comparisons between di�erent

sequential criteria based on simulations of are rarely found in literature. �ose

available, for example [34, 185], compare two design criteria at most.

�is thesis contains an extensive simulation study of di�erent design criteria

for model discrimination, including (a) a multivariate generalization of the

Hunter-Reiner-criterion, (b) the Buzzi-Ferraris-criterion, (c) its newly proposed

misspeci�cation-robust counterpart, (d) a variant of the classic upper-bound

approximation of the bhh-criterion, (e) the two novel misspeci�cation-robust

lower-bound approximations of the bhh-criterion, and (f) a model-independent

and data-independent strategy for reference. �ey are examined on the basis of

various md problems among rival models for the water-gas shi� reaction, which

were collected by Schwaab, Monteiro, and Pinto [224] and Schwaab et al. [225]

to study md strategies. �e results are obtained from the previously described

so�ware package DoeSim.

�e considered case studies are novel in several aspects:

◾ �ey capture the statistical properties of design criteria for md under the

random �uctuations of the input data.

◾ �ey examine the in�uence of di�erent magnitudes of measurement error

onto the behavior of the design criteria.

◾ �ey systematically examine the in�uence of the number of rival models

on their behavior.
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◾ �ey comprise several of the fundamental design criteria for md.

◾ �e considered set of md problems is much larger than in previously

known comparisons.

�e following previously unknown observations are made in the study:

◾ �e popular upper-bound approximation of the bhh-criterion is surpris-

ingly ine�cient, particularly in model discrimination problems with three

or more models.

◾ All of the considered parameter-robust design criteria outperforms the
Hunter-Reiner-strategy in most cases.

◾ In all considered cases, the novel robust design criteria were among the
most e�cient ones for solving the md problems.�ey showed particularly

strong advantages over their alternatives in demanding md problems with

many rival model and large measurement errors.

�esis Overview
�is thesis is subdivided in four parts composed of nine chapters and three

appendices as follows.

Part I concerns the theoretical foundations.

Chapter 1 de�nes the necessary fundamental concepts of “process” and

“model family,” and states the central questions of model discrimination (md)

and related optimal experimental design (oed). Furthermore, it introduces the

Kullback-Leibler information criterion (klic), a measure for the process–model

discrepancy. It discusses the properties of its minimizers, which formalize the

notions of “best” parameters and “best” models.

Chapter 2 is concerned with statistical inference, which forms the basis of any

oed strategy. It focuses on results that do not rely on the common but strong

assumption that the underlyingmodel (family) is correct, and points out in which

areas such non-classic results are lacking.

To that end, it de�nes central concepts of statistical inference – likelihood

function, information matrices, estimators, consistency and e�ciency – such

that they are applicable in possibly incorrect models. Based thereon, it surveys

central results of maximum-likelihood estimators, particularly the conditions

for consistency and asymptotic normality. Furthermore, it sets forth how the
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Bayesian approach to inference can be applied to collections of several models,

and surveys recent results concerning the consistency and asymptotic normality

of the posterior distributions of parameters in incorrect models.

Chapter 3 focuses on statistical inference under the common assumptions of

normally distributed data, known observation covariances, and locally a�ne-

linear models. It is shown that under these assumptions, the central quantities of

maximum-likelihood estimation and Bayesian inference reduce to conveniently

simple forms, mostly sums-of-squares and matrices. �ese quantities permit

the e�cient numerical treatment of statistical inference. Furthermore, the

assumption of normality and known covariances is used to derive a novel

“misspeci�cation-robust” formula that quanti�es the parameter uncertainty even

if the underlying model is incorrect and nonlinear.

Chapter 4 is the �rst of Part I which treats optimal experimental design. �e

chapter introduces the theoretical basics and considers strategies for md that are

based on frequentist inference, particularly on maximum-likelihood inference. It

discusses in detail Kullback-Leibler (kl)-optimal designs and T-optimal designs,

which are the theoretically ideal designs for md. Although they depend on

quantities that are unknown in practice, they de�ne the aim that any practical

approach for e�ciently solving md problems should strive for.

�en, two of the most popular sequential strategies for optimal experimental

design for model discrimination (oed/md) are reviewed: the Hunter-Reiner

(hr)-strategy and the Buzzi-Ferraris (bf)-strategy. �e latter is used as basis for

proposing a novel design criterion that uses the misspeci�cation-robust formula

for quantifying parameter uncertainty.

Chapter 5 focuses on Bayesian approaches to optimal experimental design for

model discrimination. It examines the de-facto standard Box-Hill-Hunter (bhh)

strategy, which is based on the information-theoretic concept of entropy. It is

clari�ed that this design criterion has no closed-form solution even under the

comfortable assumptions of normally distributed data with known covariances.

�e popular closed-form upper-bound approximation is brie�y reviewed.

�e remaining chapter is dedicated to novel design criteria for md. To that

end, two information-theoretic inequalities are discussed that were discovered

only recently. Based thereon, two new lower-bound approximations of the bhh-

criterion are derived anddiscussed,with a focus under their robustness properties.

It is shown that they are consistent with the hr-criterion.

�e thesis continues in Part III with numerical methods and results.

Chapter 6 considers numerical methods required in the context of oed/md. It

discusses optimization techniques for least-squares problems that result from the
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aim of �nding maximum-likelihood estimates in the context of md. In particular,

it shows that such problems have some intrinsic properties whichmake Newton’s

method and the popular Gauss-Newton method are inappropriate for solving

them.

Furthermore, it examines optimization problems arising from oed/md, with

a focus on their computational complexity. Essentially, it clari�es that such

problems areNP-hard even under strong simplifying assumptions, whichmakes
them di�cult to solve numerically. A simple grid search is described as remedy

for low-dimensional problems.

�e chapter �nishes with a short introduction to low-discrepancy sequences,

which can be used to generate start values for local optimization techniques, and

to generate space-�lling experimental designs.

Chapter 7 compares the classic empirical approximation for the covariance

of a parameter maximum-likelihood estimators (pmles) with the novel robust

alternative proposed in Chap. 3. It derives suitable quantities for measuring

the approximation quality between covariance matrices and develops e�cient

algorithms for their numerical computation. �e algorithm is implemented in

the so�ware package DoeSim.

�e chapter then presents and discusses numerical results of an extensive case

study performed with DoeSim. �e study assesses and compares the classic and

the misspeci�cation-robust formulas based on models for the water-gas shi�

reaction (wgsr) reaction [225].�e results demonstrate that themisspeci�cation-

robust formula is clearly superior to its classic counterpart.

Chapter 8 develops a framework for the numerical assessment of sequential

design criteria for md. It derives two statistical measures for the performance

of design criteria with respect to solving md problems. One is based on the

concept of T-optimality introduced in Chap. 4, the other on Bayesian posterior

probabilities discussed in Chap. 3. It then brie�y reviews various sequential

design criteria for md and shows that they can be expressed in a uniform form.

Based on this representation, a Monte Carlo method is developed that allows

to e�ciently compute the introduced performance measures for a given design

criterion in a user-speci�ed md problem. �e algorithm is implemented in the

so�ware package DoeSim.

Chapter 9 uses the framework from the preceding chapter to examine

established and newly proposed sequential design criteria for md in an extensive

simulation study. �e considered md problems are based on the models for the

wgsr reaction that were introduced in Chap. 7. �e design criteria are examined

in md problems with a di�erent number of models and di�erent magnitudes
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of measurement error. �e results demonstrate that the newly proposed design

criteria perform signi�cantly better than established alternatives and thus have

the potential to save considerable experimental e�ort.

�e appendix collects various results for the convenience of the reader.

Appendix A treats some basics concerning norms, matrices and derivatives.

Appendix B contains some results from probability theory and statistics. Appen-

dix C summarizes and interprets essential concepts from information theory:

entropy, Kullback-Leibler distance, and mutual information. A bibliography it

provided at the end of the thesis.
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Part I.

�eoretical Foundations

Cey say thatUnderstanding ought to work by the rules of right reason.
Cese rules are, or ought to be, contained in Logic; but the actual
science ofLogic is conversant at present only with things either certain,
impossible, or entirely doubtful, none of which (fortunately) we have
to reason on.Cerefore the true Logic for this world is the Calculus of
Probabilities, which takes account of the magnitude of the probability
(which is, or which ought to be in a reasonable man’s mind).

James Clerk Maxwell in a letter to Lewis Campbell, circa July 1850,

cited by Campbell and Garnett [65, p. 80]
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This chapter introduces the fundamental concepts of this thesis: a formaliza-

tion of a real-world process providing intrinsically random (not necessarily

normally distributed) data and “model families”, collections of competing

parametric regression models for such a process.

A�er introducing these concepts in Sec. 1.2, we use them in Sec. 1.3 to outline

the central questions of this thesis: (a) what are the limits to what we can learn

about a particular process using a given model family, (b) what can we learn

about it in practice from available data, and (c) which experiments are best for

collecting additional data for improving our knowledge?

Question (b) gives rise to parameter estimation (pe) andmodel discrimination

(md) problems. Selected methods of statistical inference for their solution are

treated in Chaps. 2 and 3. Question (c) leads to optimal experimental design

(oed) problems, which are the focus of this thesis. �ey are considered in detail

in Chaps. 4 and 5.
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1. Processes, Model Families and their Discrepancy

As preparation, Sec. 1.4 focuses on (a). We avoid the common but strong

assumption that the model family contains a “perfect” description of the process,

that is, we allow the model family to be misspeci�ed or incorrect. �en, the aim

can only be to identify the model family member that “most adequately” (but

possibly not perfectly) describes the process. We introduce a suitable discrepancy

measure and discuss the properties of its minimizers, which state the limit of

attainable knowledge in the sense of (a).

�e concepts, terminology and notation provided in this chapter form a

framework that allows us to express problems of pe,md and oed and the involved

uncertainties in incorrect model families in a uni�ed fashion in the subsequent

chapters.

1.1. Notation
We use the following notational conventions throughout this thesis.

Scalars and vectors, and scalar-values and vector-valued function are typeset

in Latin or Greek letters like µ, c, θ, or Ψ . Matrices and matrix-valued functions
are displayed in Latin or Greek uppercase boldface letters like A, C, or F̃n . �e
i-th scalar component of vector v is written as [v]i or v i . Likewise, the scalar
component in row i and column j of matrix M is written [M]ij or mij. Scalar or
vector-valued random variables are represented by calligraphic uppercase letters

likeM, Y , or Q. Sets and ordered lists use an alternative calligraphic font, for
exampleI orM.
A blackboard-bold style is used for di�erent classes of objects, without risk of

ambiguity:N,N, R, R
+, and R+

 represent the natural numbers, the natural

numbers including zero, the real numbers, the positive real numbers, and the

non-negative real numbers, respectively. �e symbolsP [⋅],E [⋅], andC [⋅] stand
for the operators of probability, expectation, covariance from probability theory,

respectively. Finally,H[⋅],D[⋅∥⋅] and I[⋅∥⋅] are the information-theoretic opera-
tors of entropy, Kullback-Leibler distance, and mutual information, respectively.

�e latter are de�ned in Appendix C.

LetX and Y be arbitrary sets and let f ∶X ↦ Y. �e expressions

{ f (x) ∶ x ∈X} and ( f (x) ∶ x ∈X) (1.1)

denote the set and the family, respectively, of elements f (x) from Y with
index x from the index setX. In contrast to an indexed set, an indexed family
may have several identical members.
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1.2. Data-Generating Processes and Model Families

Let (x , y) ↦ f (x , y) be an arbitrary two-argument function. �e expression
f (⋅, y) refers to the function x ↦ f (x , y), that is, to the one-argument function
obtained by �xing the second argument of f to the value y. �erefore, f (⋅, y)
and f (⋅, y) are generally di�erent functions if y ≠ y. �e notation is used
likewise for functions with more than two arguments.

Di�erent probability density functions (pdfs) share the same symbol – usually

p(⋅) – and are distinguished by their arguments only. �at is, if U and V are
continuous (as opposed to discrete) random variables, their pdfs are denoted

p(u) and p(v), respectively. Despite they both use the same symbol p(⋅), the
expressions p(u) and p(v) refer to two di�erent functions. �e same convention
is used for the probability mass function (pmf) of discrete random variables.

1.2. Data-Generating Processes andModel Families
�is section introduces the fundamental concepts of “process” and “model

family” that are used throughout this thesis.

1.2.1. Multivariate Nonlinear Data-Generating Processes
�e center of interest in this thesis is a type of process that is manipulable trough a

certain number of independent variables and yields a �xed number of observable

quantities as output.

De�nition 1.1 (Observation Domain, Control Domain)

Let nx , ny ∈ N. �e experimental domain X is a non-empty Lebesgue-

measurable subset of Rnx . �e observation domain Y is a non-empty
Lebesgue-measurable subset of Rny .

Elements fromX represent the availablemeans andmethods ofmanipulating the
process of interest. A point x ∈X is hence called experimental condition.

Element from Y represents observed outputs of the process. A point y ∈ Y
is accordingly referred to as observation, experimental outcome, or

experimental result.

�e considered type of process is intrinsically random (=aleatory) in the

sense that the observations obtained from replicated experiments under the

same experimental condition exhibit random �uctuations. �e distribution
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1. Processes, Model Families and their Discrepancy

characterizing these �uctuations, however, depends deterministically on the

experimental condition. Such a process can be characterized as follows.

De�nition 1.2 (Process, Observable)

A process is a function q∶ Y ×X ↦ R+
 for which p(y ∣ x) is a probability

density function (pdf) in y under all experimental conditions x ∈ X. An
observable Yx is a continuous (as opposed to discrete) Y-valued random
vector distributed according to pdf q(⋅ ∣ x).

�e vertical bar in q(y ∣ x) indicates q is a pdf in the quantity y on the le�, and
that the de�nition of this pdf depends parametrically on the quantity x on the
right.

Strictly speaking, q should be called “probabilistic description of the process”,
since the term “process” typically refers to an entity of the real-world and not

to a mathematical concept. Since this thesis focuses, with very few exceptions,

only on this probabilistic description, the chosen terminology is favored for its

brevity.

�e distributions speci�ed by the process under di�erent experimental

conditions are not necessarily unique, it is possible that q(⋅ ∣ x) = q(⋅ ∣ x′) under
di�erent experimental conditions x ≠ x′. �e process may be nonlinear in the
experimental condition in the sense that q(y ∣ x) for a given y is a nonlinear
function of x.
�e function q describes the probabilistic properties of observations. Given

the process, the probability of observing a value in a measurable subset A of Y
under experimental condition x is

P [Yx ∈ A] ≡ ∫
A

q(y ∣ x)dy. (1.2)

If the expectation of the observable Yx exists, it can be written as

Yx ≡ η̄(x) + Ē(x), (1.3a)

consisting of the non-random observation mean η̄(x) ∶= E [Yx] and the
random contribution Ē(x) ∶= Yx − η̄(x), whose pdf is related to that of Yx by a
simple translation,

Ē(x) ∼ q(y − η̄(x) ∣ x), (1.3b)
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1.2. Data-Generating Processes and Model Families

which implies the identityE [Ē(x)] ≡ . A particular observation y ∈ Y obtained
from the process under experimental condition x can then be written as

y ≡ η̄(x) + є, where є is a realization of Ē(x). (1.4)

�is representation suggests to identify η̄(x) with the observable part of a purely
deterministic process and Ē(x) with random �uctuations, for example caused by
measurement errors or uncontrolled in�uences on the process. Our notion of
process may therefore comprise a description of the data acquisition methods or
the measurement apparatus.

1.2.2. Families of Multivariate Nonlinear Regression Models
�is thesis considers the case that several competing parametric regression

models, subsumed in what we call a model family, are available for a given

process.

De�nition 1.3 (Regression Model, Model Family)

Let M ∶= {, . . . , nM} be the model index set. For all µ ∈ M, let the
parameter domain Qµ be a possibly empty subset of Rnθµ , with nθ µ ∈ N.

For all x from the experimental domainX, all µ ∈ M and all θµ ∈ Qµ , let

p(y ∣ x , µ, θµ) be a pdf in the argument y from the observation domain Y.
�e regression model µ ∈ M or simply a model µ is the indexed family

(p(⋅ ∣ ⋅, µ, θµ) ∶ θµ ∈ Qµ), (1.5)

and a model family is the indexed family

(p(⋅ ∣ ⋅, µ, θµ) ∶ µ ∈ M, θµ ∈ Qµ). (1.6)

We refer to a function p(⋅ ∣ ⋅, µ, θµ) as model (family) member.

�e vertical bar in p(y ∣ x , µ, θµ) indicates p is a pdf in the quantity y on the
le�, and that the de�nition of this pdf depends parametrically on the quantities

on the right.

�is de�nition implies that the parameters in a model family are model-

local, that is, each model µ ∈ M depends only on the parameter θµ ∈ Qµ

and not on any of the parameters (θν ∈ Qν ∶ ν ≠ µ). �is property gives us

23



1. Processes, Model Families and their Discrepancy

the freedom to combine regression models with completely unrelated internal

formulations within one a model family.

�e pdf p(⋅ ∣ x , µ, θµ) may depend nonlinearly on both the experimental
condition x and the parameter θµ .

Let Ỹ(x , µ, θµ) be a continuous (as opposed to discrete) Y-valued random
vectordistributed according to pdf p(⋅ ∣ x , µ, θµ) and suppose that its expectation
exists. Analogously to (1.3), Ỹ(x , µ, θµ) can then be written as

Ỹ(x , µ, θµ) ≡ ηµ(x , θµ) + E(x , µ, θµ), (.)

with the non-random (model) response ηµ(x , θµ) ∶= E [Ỹ(x , µ, θµ)] and
the random contribution E(x , µ, θµ) ∶= Ỹ(x , µ, θµ) − ηµ(x , θµ) distributed
according to

E(x , µ, θµ) ∼ p(y − ηµ(x , θµ) ∣ x , µ, θµ), (1.8)

which implies E [E(x , µ, θµ)] = . �is representation suggests to interpret
ηµ(x , θµ) as a description of the deterministic part η̄(x) of the process and
E(x , µ, θµ) as a description of its additive random contribution Ē(x). In practice,
regression models are in fact o�en speci�ed in the form of (1.7) and (1.8) in the

�rst place.

�e responses ηµ might be determined implicitly. For example, they might
be composed of the values that a solution of a system of ordinary di�erential

equations or partial di�erential equations takes at the points in time or space

where measurements are made.

�e considered concepts of process and model family are rather general.

�ey may be univariate, ny = , or multivariate, ny > . �ey may have
non-normal distributions, with covariances that (if they exist) depend on the
experimental condition (=heteroscedasticity) and non-diagonal, representing
correlations. Furthermore, the pdfs speci�ed by a model family may be over-
lapping, meaning that there may be values (x , µ, θµ) ≠ (x′ , ν, θν) for which
p(⋅ ∣ x , µ, θµ) = p(⋅ ∣ x′ , ν, θν). �is comprises the important special case that a
model is nested within another model, that is, is a special case of it.
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1.2. Data-Generating Processes and Model Families

1.2.3. Experimental Designs
�e following de�nition introduces a convenient way of representing collections

of several experimental conditions.

De�nition 1.4 (Design, Exact Design)

A design is a function

ξ∶X ↦ [, ] with �nite support and ∑
x∈supp(ξ)

ξ(x) = . (1.9)

�e value ξ(x) is the weight assigned to experimental condition x. �e set
of designs is denoted Ξ. A design ξ ∈ Ξ is exact, i� for all x ∈X it holds that

ξ(x) = r(x)
n
, where r∶X ↦N and ∑

x∈supp(ξ)
r(x) = n. (1.10)

�e value nξ(x) = r(x) is the number of replications assigned to

experimental condition x. �e set of all n-experiment exact designs is denoted
Ξn ⊆ Ξ.

Formally, a design is a normed measure or probability measure over the

experimental domainX with �nite support. Where necessary, we write ξn to
emphasize that a design is a n-experiment exact design.
A n-experiment exact design speci�es a set ofmutually distinctive experimental

conditions supp(ξ) = {x , . . . , xs} and associated integer replication numbers
nξ(x i) = nξ(x i), for all i ∈ {, . . . , s}. �e conditions of any �nite number of
experiments can thus be represented by an exact design and vice versa.

For a non-exact design ξ there exists no number of experiments n ∈ N such

that nξ(x) is integer. In general, a (possibly non-exact) design is therefore not
uniquely associated with the conditions of a �nite number of experiments. It can,

however, be approximated arbitrarily well by an n-experiment exact design with
large n, since the set of rational numbers (containing the weights of exact designs)
is dense in the set of reals (containing the weights of exact and non-exact designs).

�e other way round, there are e�cient strategies for rounding non-exact designs

to exact ones, for example described by Pukelsheim and Rieder [207] and the

references given therein.

Let be two designs and let c ∈ (, ). Any convex combination cξ + ( − c)ξ̃
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1. Processes, Model Families and their Discrepancy

de�ned by

cξ(x) + ( − c)ξ̃(x), for all x ∈ supp(ξ) ∪ supp(ξ̃), (1.11)

is again a design, with supp(cξ + ( − c)ξ̃) = supp(ξ) ∪ supp(ξ̃). If the exact
designs ξn and ξ l describe the conditions of n ∈ N and l ∈ N di�erent

experiments, then the n + l-experiment exact design n

n+l
ξn + l

n+l
ξ l describes

the conditions of the joint collection of all n + l experiments.

1.3. Outline: Data-Related Problems
Suppose we are interested in a particular real-world process. We do not know the

process behavior, but have assembled one or several tentative regression models

for it and have performed some experiments. �is typical practical situation

might be formalized as follows.

Scenario 1.5 (Fundamental Setting)

(i) A process according to Def. 1.2 is given.

(ii) �e function q characterizing the process is unknown.

(iii) �e data dn ∈ Yn is available from the process, consisting of n obser-
vations from the observation domain Y, obtained in n ∈ N statistically

independent experiments performed under known conditions described

by the n-experiment exact design ξn .

(iv) A model family from Def. 1.3 is given for describing the process.

For each model µ ∈ M, the parameter domain Qµ is compact and

p(y ∣ x , µ, θµ) is continuous with respect to θµ for all y ∈ Y and all
x ∈ supp(ξn) for all n ∈ N.

(v) Additional experiments can be performed under any condition from

the experimental domainX. Under given conditions, the additional
experiments are statistically independent of each other and from the

previous ones.

Here and in the following a function is unknownmeans that it is not possible

to evaluate it for any argument from its domain. �is scenario is starting point
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for the remaining thesis. Various variants and special cases of it appear in the

subsequent chapters. �e continuity assumed in assumption (iv) is required to

ensure that the Kullback-Leibler information criterion (klic) that we introduce

in Sec. 1.4.2 is well de�ned.

1.3.1. Extended Notation

In the context of scenario 1.5, the following extended notation is used for all

n ∈ N.

According to Def. 1.4, the number of replications of the experiment under

condition x ∈ supp(ξn) is rn(x) ∶= nξn(x). �e observation resulting from
replication no. j ∈ {, . . . , rn(x)} of the experiment under x ∈ supp(ξn) is
denoted y j(x) ∈ Y.

An observation y j(x) is considered as a realization of the observable Yx .
Likewise, the vector of data dn ∈ Yn which summarizes the observations from the
n experiments is a realization of the sampleDn , a random variable taking values
in Yn . �e sample Dn is composed of the observables Yx with x ∈ supp(ξn),
replicated according to rn(x).
�e probability density function (pdf) of Dn is denoted q(dn ∣ ξn), and

the corresponding pdf speci�ed by model µ with parameter θµ is denoted
p(dn ∣ ξn , µ, θµ). Since the experiments are independent by assumption, the
density assigned by the process to the data dn obtained under ξn is

q(dn ∣ ξn) =∏
x∈supp(ξn)

rn(x)

∏
j=
q(y j(x) ∣ x) (.)

and the corresponding density of model µ with parameter θµ is

p(dn ∣ ξn , µ, θµ) =∏
x∈supp(ξn)

rn(x)

∏
j=
p(y j(x) ∣ x , µ, θµ). (1.13)

Analogously to Defs. 1.2 and 1.3, the vertical bar in q(⋅ ∣ ⋅) and p(⋅ ∣⋯) indicates
that the functions are pdfs in the quantity on the le�, and that the de�nitions of

these pdfs depend parametrically on the quantities on the right.
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1.3.2. Experimental and Structural Uncertainty
Scenario 1.5 involves two types of uncertainty that need to be clearly distinguished.

Repeated observations obtained under the same experimental condition

x ∈ X exhibit random �uctuations. �e ensuing uncertainty about the par-

ticular outcome of a not yet performed experiment is called experimental

uncertainty1. It complicates inferences from the data about the process.

�e probabilities of the possible observations under experimental condition

x ∈ X are determined by the pdf q(⋅ ∣ x). �e lack of knowledge about the
function q is called structural uncertainty.
We shall see in Chaps. 2 and 3, that under certain regularity conditions, the

random �uctuations of the data tend to cancel out in the long run, so that

structural uncertainty can be reduced by extending the data base. To what extent

it can be reduced is determined by the model family, in particular by the bias or

mismatch between the “best” model family member and the process.

1.3.3. Central Questions
We can now give a �rst outline of the central problems considered in this thesis.

�ey arise from scenario 1.5 and can in general terms be stated as follows:

(Q1.1) Given a model family, what is theoretical limit of what we can learn about
the process q, that is, to which theoretical limit can we reduce the structural
uncertainty?

(Q1.2) Given the model family and the available experiments, what can we learn
about the unknown process q, that is, how far can we reduce the structural
uncertainty? (statistical inference)

(Q1.3) Given the model family and the available experiments, under which
conditions shall we perform additional experiments to improve our
knowledge about the unknown process q, that is, to reduce the structural
uncertainty? (optimal experimental design)

�e questions build on each other and must be considered consecutively.

Question (Q1.1) can be interpreted as a question of �nding the model family

member with the lowestmismatch to the process. In this sense, (Q1.1) is answered

in the next section. Question (Q1.2) is a question from the �eld of statistical

inference, which comprises, among others, the problem classes of parameter

1Alternative terms are “observation error” or “observational variability”.
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estimation and model discrimination. Methods for statistical inference are

considered in Chaps. 2 and 3. Question (Q1.3) leads to problems of optimal

experimental design (oed), which are the focus of this thesis. �ey are treated

in Chaps. 4 to 5.

1.4. Measuring the Process–Model Discrepancy
Essentially, all models are wrong, but some are useful.

Box and Draper [44, p. 424]

Amodel family can be considered as a collection of attempts tomimic or describe

the unknown process. In particular, model µ ∈ M with parameter θµ ∈ Qµ gives

rise to the approximation

p(⋅ ∣ ξ, µ, θµ) ≈ q(⋅ ∣ ξ) (1.14)

for the process under the exact design ξ. We refer to the error of this approxima-
tion (in an as yet unspeci�ed measure) as discrepancy. Among the members

of the model family, usually some approximate the process more adequately

than others. Typically, the discrepancy is design-dependent: a model family

member that adequately describes the process well under a particular design

might perform badly under a di�erent design.

Suppose we are interested in the process behavior under the exact design

ξ. Without additional assumptions, our aim in scenario 1.5 can at most be to
identify that model family member with exhibits the lowest mismatch under ξ.
Question (Q1.1) can thus be split up into the following two questions.

(Q1.4) How can wemeasure the discrepancy2 of a model µ ∈ M with parameter

θµ ∈ Qµ under a given design, that is, how can we measure the error of

approximation (1.14)?

(Q1.5) For which model µ̄(ξ) ∈ M and which corresponding parameter θ̄(ξ) ∈
Qµ is the mismatch minimal in terms of the measure from (Q1.4), and

how low is it?

To be well-posed, (Q1.5) requires the sought-a�er best quantities to be unique, or,

in the language of statistical inference, to be identifiable. Depending on our

2Other common terms are “mismatch” or “bias”.
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interests, we may in (Q1.5) be interested in the values µ̄(ξ) and θ̄(ξ) themselves,
as they might give us insights about the mechanism governing the process under

ξ, or in the corresponding probability density function (pdf) p(⋅ ∣ ξ, µ̄(ξ), θ̄(ξ))
for predicting the process behavior under ξ.
Any of these “minimal-mismatch” quantities depend on the design of interest

ξ. Without additional assumption, we can generally not conclude from having
minimal mismatch under ξ to having minimal mismatch under any other design
ξ′ ≠ ξ.
When we answer (Q1.4) and (Q1.5), we de�ne which quantities are of interest

for us in the given model family. �e aim of learning something from data about

the unknown process, as stated in (Q1.2), can then be expressed as learning

something about these unknown “best” quantities.

1.4.1. Correct Parameters, Models and Model Families
Let us �rst consider the special case that the model family is capable of “perfectly”

describing the process in the sense that approximation (1.14) is exact.

De�nition 1.6 (Correct Parameter, Model and Model Family)

Let ξ ∈ Ξ be a possibly non-exact design.

(i) Parameter θµ ∈ Qµ of model µ ∈ M is correct under ξ, i�

q(y ∣ x) = p(y ∣ x , µ, θµ) for all observations y ∈ Y (1.15)

under all experimental conditions x ∈ supp(ξ). �e parameter is
correct, i� (1.15) holds under all x ∈X. �e parameter is incorrect
(under ξ), i� it is not correct (under ξ).

(ii) Model µ ∈ M is correct (under ξ), i� there exists a correct parameter
(under ξ) inQµ .�emodel is incorrect (under ξ), i� it is not correct
(under ξ).

(iii) �e model family is correct (under ξ), i� there exists a correct
model (under ξ) inM. �e model family is incorrect (under ξ), i�
it is not correct (under ξ).

To emphasize that we do not assume that a particular parameter, model or model
family is correct (for a design), nor assume that it is incorrect, we say that it is

30



1.4. Measuring the Process–Model Discrepancy

possibly incorrect. A parameter or a model that are correct (under a design)

are not necessarily unique. Parameters andmodels that are correct do not depend

on any particular design. Accordingly, a correct parameter and a correct model

are in fact correct for any design ξ ∈ Ξ.
Under a model µ ∈ M and a parameter θµ ∈ Qµ that are correct for design

ξ, approximation (1.14) is exact.�en, it is theoretically possibly to identify the
unknown process under ξ using the given model family, that is, it is possible to
completely dispose of the structural uncertainty under ξ in terms of (Q1.1) by
identifying the model and the parameter that are correct parameter for ξ.
Many important results from statistical inference are derivedunder correctness

assumptions. Under real-world conditions, however, they rarely hold: looking

close enough typically reveals a mismatch between model family and process.

Correctness can be considered as a binary measure for the mismatch in the

sense of (Q1.4). A correct model family member has mismatch zero, non-correct

ones have non-zero mismatch. Among the latter, some will describe the process

better than others. We now introduce a continuous measure for their mismatch.

1.4.2. Kullback-Leibler Information Criterion (KLIC)

In principle, anymeasure for the dissimilarity of pdfs is a candidate for answering

(Q1.4). A comprehensive class of such measures are the so-called f -divergences,
independently introduced by Csiszár [76] and Ali and Silvey [6]. A summary of

their properties plus some novel results are given by Liese and Vajda [175].

A popular member of this class is the Kullback-Leibler distance (kld). In its

terms, the discrepancy of model family member p(⋅ ∣ x , µ, θµ) for describing the
process q(⋅ ∣ x) under the experimental condition x ∈X is

∫
Y

q(y ∣ x) ln q(y ∣ x)
p(y ∣ x , µ, θµ) dy. (1.16)

An overview of the kld and its properties is given in Appendix C. �e additivity

of the kld for independent random variables, see Prop. C.4property (v), suggests

the following measure for the discrepancy under a given design.

De�nition 1.7 (Kullback-Leibler Information Criterion (KLIC))

�e Kullback-Leibler information criterion (klic) of model µ ∈ M
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with parameter θµ ∈ Qµ under design ξ is

δ(µ, θµ , ξ) ∶= ∑
x∈supp(ξ)

ξ(x) ∫
Y

q(y ∣ x) ln q(y ∣ x)
p(y ∣ x , µ, θµ) dy, (1.17)

supposed the right-hand side exists.

Under mild regularity conditions on the process and the model, notably parame-

ter continuity as assumed in assumption (iv) of scenario 1.5, the klic exists and is

continuous with respect to θµ . �ey are satis�ed, for example, if both process and
model are normal distributions with unit covariance and if the model responses

are continuous in the parameter. Details on the regularity conditions can be

found in the works of White [267, Asmps. A1–A3(a) and subsequent comments].

�e klic assigns a real number to each pair of a model and a parameter:

the smaller its value, the more does the corresponding model family member

adequately describe the process. Note that the klic is also de�ned for non-exact

designs.�e klic is widely used formeasuring the discrepancy of a hypothesized

distribution with respect to the actual one. Several authors use it as a starting

point for deriving empirical criteria for the selection of the most adequate model

for a given process. �e probably most prominent representative here is the

information criterion of Akaike [2, 3], other examples are the criteria of Bozdogan

[47, 48] and Sawa [220] and Sin andWhite [233]. Vuong [261] starts from the klic

to develop generalized likelihood-ratio tests for falsifying incorrect models. �e

klic also plays a key role in the �eld of estimation, particularly in the extension

of the maximum-likelihood method for possibly incorrect models developed by

White [267] which are treated in Sec. 2.4.

�e following properties make the klic an attractive candidate for measuring

the discrepancy in the sense of (Q1.1).

Proposition 1.8 (Fundamental Properties of the KLIC)
Under the previously mentioned regularity conditions, the klic exists and has

the following properties.

(i) δ(µ, θµ , ξ) ⩾  for all θµ ∈ Qµ . (non-negativity)

(ii) δ(µ, θµ , ξ) =  if and only if q(⋅ ∣ x) = p(⋅ ∣ x , µ, θµ) for all x ∈ supp(ξ),
which is equivalent to the statement that µ is a correct model under ξ
and θµ is a correct parameter under ξ. (consistency with correctness)
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(iii) If p(⋅ ∣ x , µ, θµ) = p(⋅ ∣ x , ν, θν) for all x ∈ supp(ξ), then δ(µ, θµ , ξ) =
δ(ν, θν , ξ). (invariance)

(iv) δ(µ, θµ , ξ) is continuous with respect to θµ . (continuity)

Proof Items (i) to (iii) are direct carry-overs from the kld properties properties (i)–(iii)
of Prop. C.4, respectively. In particular, (i) is a corollary of Prop. C.4property (i), (ii) follows

from Prop. C.4property (ii) and Def. 1.6, and (iii) results from Prop. C.4property (iii). A

proof of (iv) is given by White [267]. ◻
�e klic is not ametric, since it is not symmetric and does not satisfy the triangle
inequality. It is, however, a premetric which implies a concept of “closeness”

between the process and the model family member speci�ed by µ and θµ .
Furthermore, property (ii) tells us that the klic consistently extends the concept

of correctness under a design.

As per (iii), the klic is invariant to distribution-preserving transformations

and as such independent of formulation details of the model family. Using a

di�erent ordering, scaling or physical interpretation of the parameter vector,

permuting model indices, or reformulating the underlying equations leaves the

klic unchanged as long as the resulting distribution is the same.

From the experimenter point of view, errors in approximation (1.14) for

observations that are frequent in practice (areas where q(⋅ ∣ x) is large) are
practically more severe than approximation errors for rarely encountered

observations (areas where q(⋅ ∣ x) is small). �e more likely an observation, the
more should an approximation error for this observation contribute to the overall

approximation error. �e klic ful�lls this requirement, since the deviations

between process and its approximation for given y and x, as measured by the
log-term in the integrand of (1.17), are weighted with the probability density

q(y ∣ x) of actually observing y under x.

1.4.3. KLIC-Best Parameters and Models
�e properties of the klic suggest the following rules:

◾ Given a model µ ∈ M, consider parameter θµ ∈ Qµ as better under design

ξ than parameter θ̃µ ∈ Qµ , i� δ(µ, θµ , ξ) < δ(µ, θ̃µ , ξ).

◾ Given a model family, consider model µ ∈ M as better under design ξ
than model ν ∈ M, i� minθ µ δ(µ, θµ , ξ) < minθν δ(ν, θν , ξ).
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�esecond rulemeans thatmodels are compared based on theminimal klic they

can achieve by varying their parameter. �is rule is consistent with the proposal

that “[. . . ] the adequacy of a postulated model is measured by the minimum

possible klic distance between the model and the true distribution” given by

Sawa [220, Rule 2.1(i)]. Equipped with these rules we can now rigorously de�ne

minimum-mismatch models and parameters in the sense of (Q1.5) on p. 29.

De�nition 1.9 (KLIC-Best Parameter, KLIC-Best Model)

(i) Parameter θµ(ξ) of model µ ∈ M is klic-best under design ξ, i�

θµ(ξ) ∈ argmin
θ µ∈Qµ

δ(µ, θµ , ξ). (1.18)

(ii) Model µ(ξ) is klic-best under design ξ, i�

µ(ξ) ∈ argmin
µ∈M

min
θ µ∈Qµ

δ(µ, θµ , ξ), (1.19)

or equivalently, i�

µ(ξ) ∈ argmin
µ∈M

δ(µ, θµ(ξ), ξ). (1.20)

�ese de�nitions are consistent generalizations of those given by Akaike [2],

Sawa [220], and White [267] and by Vuong [261]. Parameters satisfying (i) are

occasionally referred to as “pseudo-correct” or “pseudo-true” in literature. We

prefer the term “klic-best” due to its suggestiveness. In situations where it

introduces no ambiguity, we sometimes simply speak of “best” instead of klic-

best models and parameters.

Corollary 1.10 (Consistency of KLIC-Best with Correct Models and Parame-
ters)

(i) Suppose the model family is correct under design ξ. If model µ ∈ M is

klic-best under ξ, then it is also correct under ξ, and vice versa.
(ii) Suppose model µ ∈ M is correct under design ξ. If parameter θµ ∈ Qµ

is klic-best under ξ, then it is also a correct under ξ, and vice versa.

Proof Follows immediately from Prop. 1.8(ii) and Def. 1.9. ◻
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1.4. Measuring the Process–Model Discrepancy

�e set of parameters (models) that are klic-best for a particular design are

hence a superset of the set of parameters (models) that are correct under that

design. Being klic-best under a design is thus a consistent generalization of

being correct under a design. Under a model and a parameter that are klic-best

under a design, the error in approximation (1.14) is minimal in the klic sense; if

the parameter is correct under the design, the approximation is exact.

Existence and Uniqueness

�e parameter domainQµ is compact and under certain regularity conditions,

the klic has a lower bound according to Prop. 1.8(i) and is continuous in θµ
according to Prop. 1.8(iv). �us, a best parameter for model µ follows from the
extreme value theorem. If a best parameter exist for each model of the family, a

best model exists sinceM is �nite.

Recall from Def. 1.6 that correct models are de�ned only within correct model

families, and that correct parameters are de�ned only within correct models. In

contrast, every model family contains a klic-best model, and every model has a
klic-best parameter,much in accordance with the intuitive understanding of the
word “best”.

Additional conditions are required to ensure that they are unique, or, in the

language of statistical inference, identifiable.

De�nition 1.11 (Identi�ability)

(i) A klic-best parameter of model µ ∈ M is identifiable under

design ξ, i� it is unique, that is, i� there is exactly one minimizer of
δ(µ, θµ , ξ) with respect to θµ ∈ Qµ .

(ii) �e klic-bestmodel is identifiable under design ξ, i� it is unique,
that is, i� there is exactly one minimizer of minθ µ∈Qµ δ(µ, θµ , ξ) with
respect to µ ∈ M.

Identi�ability, particularly for klic-best parameters, is crucial for several results

from statistical inference (discussed in detail in Chap. 2) that are central for this

thesis. In practice, it is unknown whether identi�ability holds, since the process

and thus the klic δ(µ, θµ , ξ) and its minimizers are unknown.
Techniques for empirically detecting non-identi�ability are a well-established

part of statistical inference, which we shall not consider here. Instead, we shall

o�en assume that identi�ability holds, silently implying that the adequate
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statistical methods are applied to detect violations of this assumption. A fairly

general result concerning identi�ability of klic-best parameters is White [267,

�m. 3.1], which comprises the “classic” results of Rothenberg [214, �m. 1] and

Bowden [38] as special cases.

1.4.4. KLIC-Based Assessment of Model Families
Summarizing the results of this section, (Q1.4) and (Q1.5) on p. 29 can be answered

as follows:

(A1.4) �e mismatch of model µ ∈ M with parameter θµ ∈ Qµ under design ξ,
that is, the error of approximation (1.14), is given by the klic δ(µ, θµ , ξ).

(A1.5) �e mismatch of model µ ∈ M is minimal under parameters minimizing

δ(µ, θµ , ξ) with respect to θµ ∈ Qµ , that is, under klic-best parameters.

�e mismatch of a model family is minimal under models and corre-

sponding parameters minimizing δ(µ, θµ , ξ) with respect to µ ∈ M and

θµ ∈ Qµ , that is, under klic-best models and corresponding klic-best

parameters.

Klic-best parameters (models) are theoretical concepts, characterizing the

best approximations of the process available within a given model (family). In

practice, the process and thus the klic-best parameters andmodels are unknown.
We refer to our lack of knowledge about them as model uncertainty and

parameter uncertainty, respectively. In principle, they can be reduced

empirically. Suitable methods are discussed in the next chapter. By reducing the

parameter and model uncertainty we indirectly reduce the structural uncertainty,
down to the (possibly non-zero) limit de�ned by the klic-best model and

parameter.

Alternatives to the KLIC

�e klic is a well motivated and broadly accepted measure of discrepancy.

Nevertheless, any member of the large class of so-called f -divergences might be
used alternatively, as mentioned in the introduction of Sec. 1.4.2. One might ask

for the reason of choosing the klic.

�is thesis aims to improve certain optimal experimental design (oed)

strategies which are based on (a) likelihood-based inference and (b) Bayesian

inference. Both approaches are broadly accepted and have a well elaborated body
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1.4. Measuring the Process–Model Discrepancy

of theory and widely available technically mature so�ware. With their help, one

can empirically identify klic-best parameters andmodels – but only them. If one
chooses a di�erent discrepancy measure than the klic, the established methods

and implementations from (a) and (b) cannot longer be used.

�e results of Liese and Vajda [175, Sec. VIII] indicate that it is possible to

generalize methods from likelihood-based inference to general discrepancy

measures based on f -divergences. �ese methods are, however, still subject
to ongoing research and do not have gained the maturity of (a) and (b). Since the

aim of this thesis is to improve oed strategies, and not to develop novel inference

methods, we use the klic.
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2. Statistical Inference in Families of Possibly
Incorrect Models

Standard statistical practice ignores model uncertainty. Data
analysts typically select a model from some class of models
and then proceed as if the selected model had generated the
data.Cis approach ignores the uncertainty inmodel selection,
leading to over-con�dent inferences and decisions that are
more risky than one thinks they are.

Hoeting et al. [119, Abstract]
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2. Statistical Inference in Families of Possibly Incorrect Models

This chapter is concerned with the question of statistical inference raised

in (Q1.2) on p. 28: “Given the model family and the available data, what can

we learn about the unknown process?” �e theory provided by this chapter (and

its special cases considered in the next chapter) form the basis for the optimal

experimental design (oed) strategies considered in the second part of this thesis.

Statistical inference under the “classic” assumption that the model is correct

has gained a certain maturity and is treated in many textbooks. �is chapter,

however, takes the view that “essentially, all models are wrong,” (Box and Draper

[44, p. 424]) and tries to avoid this common, but strong assumption.

Certain “classic” results of statistical inference can and have been generalized

to possibly incorrect models, while for other results it remains unclear whether

such generalizations are possible at all, or the necessary steps have not been taken

yet. Some areas of inference in possibly incorrect models are still subject to active

research. Essential results have emerged only in the last years and cannot be

assumed to be commonly known.

�is chapter focuses on “non-classic” results from statistical inference which

do not rely on correctness assumptions, and points out in which areas such
non-classic results are lacking. �e discussions of this chapter help to clarify the

explicit and implicit assumptions made by the oed strategies considered later.

Section 2.1 de�nes the considered scenario and formalizes the central questions

of statistical inference. Section 2.2 introduces the likelihood and the related

information matrices, central quantities for statistical inference, and Sec. 2.3 sum-

marizes required essential concepts of estimation theory. A�er these preparations,

we survey the major frequentist approach of maximum-likelihood estimation in

Sec. 2.4. �e alternative Bayesian approach to inference is examined in Sec. 2.5.

Both are summarized and compared in Sec. 2.5.4.

Besides certain regularity conditions, this chapter makes no assumptions

about the distributions speci�ed by the process and the model family. In the

next chapter, we focus on the special cases of normal distributions and (local)

linearity, under which many of the complex expressions introduced here simplify

to both intuitively appealing and computationally tractable forms. Much of the

widely-used classic formulas and results can be found there.

2.1. Fundamental Assumptions and Questions
�e following scenario summarizes the central assumptions of this chapter.
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2.1. Fundamental Assumptions and Questions

Scenario 2.1 (Statistical Inference)

(i) A process according to Def. 1.2 is given.

(ii) �e function q characterizing the process is unknown.

(iii) Data is available from the process, consisting of observations from

the observation domain Y, obtained from a sequence of statistically
independent experiments numbered , , . . . performed under known

conditions from the experimental domainX.

For all n ∈ N, the n-experiment exact design describing experiments 
to n is denoted ξn , the data resulting from these experiments is denoted
dn ∈ Yn , and the corresponding sample is denoted Dn .
�e total number of replications of experiments under condition x ∈
supp(ξn) is nξn(x). �e observation resulting from the j-th replicated
experiment under x is denoted y j(x) ∈ Y.

(iv) A model family from Def. 1.3 is available for describing the process.

For each model µ ∈ M, the parameter domain Qµ is compact (and

thus Lebesgue-measurable), and p(y ∣ x , µ, θµ) is twice continuously
di�erentiable and Lebesgue-measurable with respect to θµ for all y ∈ Y
and all x ∈ supp(ξn) for all n ∈ N.

(v) As a consequence of assumption (ii), it is not known whether the

model family is correct for any of the designs (ξn ∶ n ∈ N) and the
Kullback-Leibler information criterion (klic)-best models and klic-

best parameters for these designs are unknown.

�e remaining chapter considers this scenario without explicitly referring to it.

�is scenario is closely related to scenario 1.5. In contrast to the latter, it does not

allow performing new experiments, but instead assumes in assumption (iii) that

a sequence of experiments has already been performed. In practice, this sequence
will be �nite, yet for the examination of asymptotic behavior, we allow it to be

in�nite.

�e additional assumptions of compactness, di�erentiability andmeasurability

in assumption (iv) – quite common in statistical inference – permit using

di�erential calculus and the extreme value theorem for parameter inference,

and to de�ne probability density functions (pdfs) over the parameter domain,
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2. Statistical Inference in Families of Possibly Incorrect Models

which is required for Bayesian inference.

�e sequence of exact designs ξ , ξ , . . . de�ned in assumption (iii) are built
upon each other by successively adding the condition of the next experiment.

�e index n of the design ξn thus serves two purposes: it indicates its position in
the design sequence and speci�es the number of experiments that is describes.

We continue to use the notation introduced in Sec. 1.3.1. In particular, rn(x) ∶=
nξn(x) denotes the number of replications of the experiment under condition
x ∈ supp(ξn), and y j(x) ∈ Y denotes the observation resulting from replication
no. j ∈ {, . . . , rn(x)} of the experiment under x ∈ supp(ξn), for all n ∈ N.

Furthermore, q(dn ∣ ξn) denotes the pdf of the sampleDn , and p(dn ∣ ξn , µ, θµ)
denotes the corresponding pdf speci�ed by model µ with parameter θµ , for all
n ∈ N.

2.1.1. Central Questions
Suppose we agree to measure the discrepancy between model family members

and the process with the klic. �en, the aim of learning something about the

unknown process, informally stated in (Q1.2) on p. 28, can be stated as follows.

(Q2.1) What can we learn about the unknown klic-best parameter(s) of a
given model empirically, that is, based on the data dn obtained under
design ξn? How can we quantify the corresponding parameter uncertainty
empirically?

(Q2.2) Based on (Q2.1), what can we learn empirically about the unknown pdf(s)
of a given model corresponding to the klic-best parameter(s)?

(Q2.3) Based on (Q2.1), what can we learn empirically about the unknown klic-
best model(s) of the family? How can we quantify the model uncertainty
empirically?

(Q2.4) Based on (Q2.1) and (Q2.3), what can we learn empirically about the
unknown pdf(s) of the model family corresponding to the klic-best
model(s) and the klic-best parameter(s)?

�ese rather general questions can be stated more precisely once one decides for

a certain approach for statistical inference. Question (Q2.1) leads to problems of

parameter estimation and (Q2.3) to problems of model selection. If it is

not possible in (Q2.3) to determine a unique best approximation for the klic-best

model from the available data, one speaks of a model discrimination (md)

42



2.1. Fundamental Assumptions and Questions

problem. Questions (Q2.2) and (Q2.4) are the basis for making predictions

of future observations and derived quantities.

2.1.2. Assumptions on the Experimental Conditions

To answer these questions, the methods considered here impose additional as-

sumptions on the experimental conditions. Consider the sequence of experiments

from assumption (iii) of scenario 2.1 and let x(i) ∈X denote the condition of the

i-the experiment, for all i ∈ N.

Sampling Experiments from a Design

We are particularly interested in experiments that aim to approximate a certain

design, for example one of the optimal designs introduced later. �e sequence

of experiments is sampled from design ξ, i� their conditions x() , x() , . . .
are chosen such that the corresponding design sequence ξ , ξ , . . . converges to
a limit design ξ, which may be non-exact. When speaking of the convergence
of designs we speak of the convergence of normed (=probability) measures,

considered in detail by Bilingsley [31].

Independently and Identically Distributed (IID) Observables

An important special case of experiments sampled from an design are exper-

iments with independently and identically distributed (iid) observables. �e

observables of the experiments under conditions x() , x() , . . . are iid, i� they
have the sample distribution for all i , j ∈ N, that is, i�

q(y ∣ x(i)) = q(y ∣ x( j))∀y ∈ Y. (2.1)

Under iid observables, any of the designs ξn from assumption (iii) can without
loss of generality (wlog) be considered as a one-point design putting full weight

at the �xed experimental condition x ∈ {x(i) ∶ i ∈ N}. Consequentially, parame-
ters that are best or correct for ξn are independent of n, and the corresponding
sample Dn is composed of n repetitions of the observable Yx .
Several important results from statistical inference are based on the assump-

tion of iid observables. It is, however, usually not satis�ed in scenarios 1.5 and 2.1,

where experiments have been and can be performed under arbitrary conditions.
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Experiments Sampled from a Design have Asymptotically IID Observables

�e following argumentation shows that the assumption of iid observables is

less restrictive than it seems.

Consider the experimental setting described by the n-experiment exact design
ξn with supp(ξn) = {x , . . . , xs}. �e number of replications of the experiment
under condition x ∈ supp(ξn) is rn(x) ∶= nξn(x), see Def. 1.4. Without
additional assumptions about the distributions of the corresponding observables

Yx , . . . ,Yxs , the experiments are independently but not identically distributed
(inid). Now summarize the experimental conditions of all experiments in the

“extended experimental condition”

x′ ∶= [ x⊺ . . . x⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
rn(x) reps.

. . . x⊺s . . . x⊺s
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
rn(xs) reps.

]⊺ , (.)

and merge the corresponding observables into the “extended” observable

Y ′
x′ ∶= [Y⊺

x
. . . Y⊺

x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
rn(x) reps.

. . . Y⊺
xs
. . . Y⊺

xs

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
rn(xs) reps.

]⊺ . (2.3)

If the experiments under each condition x i , i ∈ {, . . . , s} is replicated c ⋅ rn(x i)
times, with c ∈ N, the resulting sample consists of c identically distributed
replications of the “extended” observable Y ′

x′ . In other words, when sampling

from an n-experiment exact design, the assumption of iid observables is
automatically satis�ed on a “higher level,” whenever the total number of

experiments is an integer multiple of n.
�is argument can be generalized to experiments that are sampled from a

particular design. If the design sequence ξ , ξ , . . . converges to the exact design
ξ with s ∈ N support points, the observables resulting from ξ i are approximately
iid (in the previously described generalized sense) if i ≫ s. �is asymptotic
result remains even true if ξ is non-exact, since any non-exact design with s
support points can be approximated arbitrary well by an exact i-experiment
design if i ≫ s.
In summary, if we sample statistically independent experiments from a

(possibly non-exact) design, the resulting sequence of appropriately summarized

observables is approximately iid in the large-sample limit or asymptotically

iid.
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2.2. Likelihood and Information Matrices

2.2. Likelihood and InformationMatrices
Ce likelihood function and derived quantities based on the
likelihood function are the basis for all statistical inference
based on mathematical modeling.

Reid [211, Conclusion]

�is section introduces and discusses central quantities of statistical inference:

the likelihood function and so-called information matrices derived from it. �ey

are used extensively in this and the next chapter dealing with statistical inference,

and in Chaps. 4 to 5 dealing with optimal experimental design (oed). Further

details can be found in the overview article of Reid [211] or in the standard works

of Edwards [86] and Pawitan [200].

2.2.1. Likelihood

�e likelihood is proportional to the joint probability density that a model

and a parameter assign to a sample, evaluated at given data and a given design,
considered as function of the model index and the parameter. In our case, the

joint probability density is given by (1.13), leading to the following de�nition.

De�nition 2.2 (Likelihood)

Given the data dn ∈ Yn obtained from n ∈ N experiments performed

under the n-experiment exact design ξn , the likelihood is the function
p(dn ∣ ξn , µ, θµ) de�ned in (1.13) considered as function of µ ∈ M and θµ ∈ Qµ ,

with dn and ξn being �xed.

By de�nition, the likelihood is a non-negative scalar function. Recall that

rn(x) = nξn(x) denotes total number of replications of experiments under
condition x ∈ supp(ξn), and that y j(x) ∈ Y denotes the observation resulting
from corresponding j-th replication. Since the experiments are statistically
independent, the likelihood has the representation

p(dn ∣ ξn , µ, θµ) =∏
x∈supp(ξn)

rn(x)

∏
j=
p(y j(x) ∣ x , µ, θµ), (2.4)
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see (1.13). For the corresponding log-likelihood

ln p(dn ∣ ξn , µ, θµ) = ∑
x∈supp(ξn)

rn(x)

∑
j=
ln p(y j(x) ∣ x , µ, θµ) (2.5)

we use the convention ln  ∶= −∞ so that it takes values in [−∞,∞).
Some authors reserve the term “likelihood” for the case that themodel (family)

is correct for ξn , and use the term “pseudo-likelihood” if the model (family)
is incorrect. For convenience, we do not make this distinction, but explicitly

mention whenever we assume correctness.

�e notation demands some explanation. �e likelihood p(dn ∣ ξn , µ, θµ) is a
function of µ and θµ , while the de�nition of that function depends parametrically
on the data dn and the design ξn . �e (seemingly unusual) order of arguments
was chosen to be compliant with the usual notation for conditional probabilities,

which we require later in the context of Bayesian inference. At this point, neither

of the quantities ξn , µ or θµ has a probabilistic interpretation, so that the vertical
bar ( ∣ ) is semantically equivalent to a comma.
�e likelihood ismeaningful only in relative terms. In general, it can be de�ned

to be any function proportional to p(dn ∣ ξn , µ, θµ), with any non-negative factor
of proportionality c(dn , ξn) that is independent of the model family. Inferences
drawn from the likelihood are invariant to the choice of c(⋅). For more details
we refer to the paper of Reid [211]. De�nition 2.2 represents the common and

convenient choice c(dn , ξn) ≡ .
�e likelihood of model µ and parameter θµ equals the probability density of
obtaining the data dn under design ξn , if the data follows the distribution speci-
�ed by model µ with parameter θµ . In this sense, the likelihood p(dn ∣ ξn , µ, θµ)
can be regarded as the “plausibility” that the data dn obtained under ξn originates
from the distribution speci�ed by model µ with parameter θµ .

�e likelihood has several attractive properties: it is universal in the sense that
it is de�ned for anymodel, it is simple, its de�nition requiring nothingmore than a
model and data, and is invariant under bijective reparameterizations. Furthermore,
one can show that the likelihood is amaximally condensed representation of the
information in the data from which nothing can be omitted without loss, a
property called “minimal su�ciency.” �ese properties are main reasons of the

outstanding role of the likelihood for statistical inference. Details are available in

several textbooks, for example in that of Pawitan [200, Chaps. 2 and 3].
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2.2.2. Information Matrices

Formodels that are di�erentiable with respect to the parameter one can de�ne so-

called information matrices, which are matrix-valued functions capturing

some kind of “information” contained in the gradient and the curvature of the

likelihood function. Information matrices play a central role for quantifying

the parameter uncertainty in both classic maximum-likelihood estimation and

Bayesian inference.

In the following, let∇and∇denote the gradient and the Hessian di�erential

operator, respectively,with respect to the parameter vector θµ , and letC [⋅] denote
the covariance of a random vector.

Expected Information Matrices

De�nition 2.3 (Expected Information Matrices)

Let ξ be a (possibly non-exact) design. �e expected Hessian-based
Fisher information of model µ ∈ M is

F̃ µ(θµ , ξ) ∶= −∑
x∈supp(ξ)

ξ(x)E [∇
ln p(Yx ∣ x , µ, θµ)], (.)

its expected gradient-based Fisher information is

G̃µ(θµ , ξ) ∶= ∑
x∈supp(ξ)

ξ(x)C [∇ln p(Yx ∣ x , µ, θµ)], (.)

and its expected sandwich information is

S̃µ(θµ , ξ) ∶= (F̃ µ(θµ , ξ))−G̃(θµ , ξ)(F̃ µ(θµ , ξ))− , (2.8)

supposed the right-hand sides exists.

By de�nition, all introduced matrices are nθ µ × nθ µ and symmetric positive

semi-de�nite (spsd). �e involved expectations and covariances are calculated

using the process-speci�ed probability density functions (pdfs) q(⋅ ∣ x) for the
observables Yx .
If evaluated at an n-experiment exact design ξn , comparison with Def. 2.2
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reveals that they simplify according to

F̃ µ(θµ , ξn) = − 
n

E [∇
ln p(Dn ∣ ξn , µ, θµ)], and (.)

G̃µ(θµ , ξn) = 
n

C [∇ln p(Dn ∣ ξn , µ, θµ)]. (2.10)

Since the log-likelihood is of O(n), the expected information matrices are of
O().

Relation to Identi�ability of KLIC-Best Parameters

Kullback-Leibler information criterion (klic)-klic-best parameters are mini-

mizers of the klic. Under certain regularity conditions, their identi�ability can

be related to the curvature of the klic in their vicinity.

�eorem 2.4 (Identi�ability of KLIC-Best Parameters, White [267,
�m. 3.1])

Suppose that for model µ ∈ M and some design ξ, the klic δ(µ, θµ , ξ) and
F̃ µ(θµ , ξ) exist and are continuous in θµ , for all θµ ∈ Qµ . Let θ̄µ be an interior
point ofQµ . �en, under regularity conditions, the following statements hold.

(i) If θ̄µ is an identi�able klic-best parameter under ξ and F̃ µ(θµ , ξ)
has constant rank for all θµ from an open neighborhood of θ̄µ , then
F̃ µ(θ̄µ , ξ) has full rank (and is thus invertible).

(ii) If θ̄µ is a klic-best parameter under ξ and F̃ µ(θ̄µ , ξ) has full rank (and
is thus invertible), then θ̄µ is identi�able.

�is is a straightforward generalization of a result of White [267, �m. 3.1] to

experimental settings described by design ξ.�ementioned regularity conditions
are listed and discussed there in detail. It comprises as special cases the “classic”

results of Rothenberg [214, �m. 1] and Bowden [38], which assume a correct

model.

Item (ii) clari�es that a full-rank matrix F̃ µ(θ̄µ , ξ) is a necessary condition
for identi�ability of θ̄µ . In several of the subsequent theorems, identi�ability is
assumed anyhow. To ensure invertibility of F̃ µ(θ̄µ , ξ), they hence only have to
add the assumption that F̃ µ(θµ , ξ) has constant rank in vicinity of θ̄µ .
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Expected Information Matrices under Correctness

In classic likelihood theory, the term “expected Fisher information” sometimes

refers to F̃ µ and sometimes to G̃µ . �e next theorem states that both matrices
are in fact equal, if the classic correctness assumption is met.

�eorem 2.5 (Information Matrix Equality)

Suppose that model µ ∈ M is correct for the exact design ξ and that

(i) the model has an identi�able correct parameter θ̄µ under ξ,

(ii) θ̄µ is an interior point of the parameter domainQµ , and

(iii) F̃ µ(θµ , ξ) has constant rank for all θµ in an open neighborhood of θ̄µ .

�en, under some regularity conditions,

S̃µ(θ̄µ , ξ) = (F̃ µ(θ̄µ , ξ))− = (G̃µ(θ̄µ , ξ))− . (2.11)

Proof Given, for example, by Vuong [260, Lem. 2.1(ii)]. ◻
�e regularity conditions are listed and discussed in detail by Vuong [260,

Asmps. 1–4]. �ey ensure, among others, that the klic and the expected

information matrices exists and are continuous with respect to the parameter,

that the klic-best parameter exists, and that di�erentiation under the integral

sign of the expectation is possible. According to Vuong [260, Lem. 5.1], they are

met under the common assumptions of normality and (local) linearity which we

consider in Chap. 3 and for all our numerical results in Chap. 9.

�e matrix F̃ µ is based on the Hessian of the log-likelihood, while the matrix
G̃µ is de�ned in terms of its gradient. �e second equality in (2.11) thus allows
to conveniently replace second derivatives by �rst derivatives. For this reason,

the simpler form G̃µ is o�en preferred in classic likelihood theory, where the
model is assumed to be correct for ξn . Since we explicitly do not want to make
this assumption in general, we have to distinguish between F̃ µ and G̃µ .

Empirical Hessian-Based Fisher Information

�e expectation and covariance appearing in the expected information matrices

are calculated over the pdfs q(⋅ ∣ x) speci�ed by the process. �erefore, the
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2. Statistical Inference in Families of Possibly Incorrect Models

expected information matrices are unknown in practice (scenario 2.1). In contrast,
the empirical Hessian-based Fisher information de�ned in the following are
independent of the unknown process, but in turn depend on the observed data.

De�nition 2.6 (Empirical Hessian-Based Fisher Information Matrix)

Let dn be the data obtained under n-experiment exact design ξn , and let
rn(x) ∶= nξn(x) denote the number of replications of the experiment under
x ∈ supp(ξn). �e empirical Hessian-based Fisher information

matrix of model µ ∈ M is

F µn (θµ , dn , ξn) ∶= − 
n
∇
ln p(dn ∣ ξn , µ, θµ)

= − 
n∑

x∈supp(ξn)

rn(x)

∑
j=
∇
ln p(y j(x) ∣ x , µ, θµ). (2.12)

�e de�nition implies that F µn is a spsd nθ µ×nθ µ matrix ofO()with respect to n.
It is de�ned as empirical counterpart of F̃ µ from (2.6) with a law of large numbers
inmind,which states that the sum 

n ∑
n
i=(Ui −E [Ui]) converges to zero in some

sense as n goes to in�nity, supposed that the random vectors Ui satisfy various
regularity conditions. Note that there is no direct empirical counterpart of G̃µ in
this sense, and thus also not of S̃µ .

2.3. Basics of Estimation�eory
�is section examines properties of estimators, that is, data-based approximations

for unknown quantities, with a focus on the assessment of their quality.

2.3.1. Estimation Problems
For the sake of generality, let us consider a generalized type of model: Let W
be an non-empty subset of Ru and p(y ∣ x ,w) be a probability density function
(pdf) in the argument y from the observation domain Y for all experimental
conditions x from the experimental domainX and all w ∈ W. We shall consider
the indexed family (p(⋅ ∣ ⋅,w) ∶ w ∈ W) as model in this section. No confusion

with the “model” from Def. 1.3 shall occur.

An estimator is a function of the data that aims to approximate a (typically

unknown) quantity, the estimand.
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De�nition 2.7 (Estimand, Estimator, Estimate)

LetT be a non-empty subset of Rv .

(i) An estimand is a value t̄ ∶= f (w̄) ∈T, where f ∶ W ↦T is a function
that is independent of any particular data and w̄ is a �xed, non-random
element from W.

Let Dn be the sample corresponding to n experiments under the exact design
ξn , and let the data dn be a realization of Dn .

(ii) An estimator for an estimand t̄ is aT-valued function t de�ned over
the domains of the sample and the corresponding design. GivenDn and
ξn , the estimator is aT-valued random variable written T̂n ∶= t(Dn , ξn).

(iii) An estimate t̂n ∶= t(dn , ξn) is a realization of an estimator T̂n , that is,
a value that it takes under the particular data dn .

An estimand is some quantity of interest which is unknown – otherwise there

would be no need to approximate it from data. �e function f introduces some
�exibility in the choice of the quantity of interest. �e case that we are interested

in a particular value in W corresponds to the special case f = idW .

An estimate is considered as an approximation for the estimand, t̂n ≈ t̄ .
�e problem of �nding an estimate from a given design and corresponding

data is called an estimation problem. Any T-valued function of data
and design, whatever simple or crude, might be considered as an estimator.

A reasonable measure for the quality of this approximation has to take into

account the distribution of the estimator T̂n . It is convenient to distinguish
between the accuracy and the precision of the approximation: the smaller

the discrepancy between estimator and estimand “in the average”, the more

accurate is the approximation; the smaller the amount of random �uctuations

around this mean, the more precise is it.

If the domain W can be equipped with the Euclidean norm ∥⋅∥, a popular
choice for the estimator quality is the mean-squared error

E [∥T̂n − t̄∥

] = ∥E [T̂n] − t̄∥


 + trC [T̂n], (2.13)

where the equality is due to (B.1).�e smaller the �rst term on the right-hand side,

a l norm on the bias E [T̂n] − t̄ , the higher the accuracy of the estimator.
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2. Statistical Inference in Families of Possibly Incorrect Models

�e lower the second term on the right-hand side, the trace of the estimator

covariance, the higher its precision.

Other measures for estimator quality than the mean-squared error lead to

othermeasures of accuracy and precision.�e expected absolute loss, for example,
leads to median-unbiasedness estimators and median absolute deviation. For

the considerations in this thesis, however, the mean-squared error su�ces.

2.3.2. Estimator Accuracy: Unbiasedness and Consistency
A common notion, motivated by (2.13), is to consider an estimator as “perfectly

accurate” if it coincides with the estimand in the (arithmetical) average.

De�nition 2.8 (Unbiased Estimator)

�e estimator T̂n is unbiased for estimand t̄ , i� its expectation exists and
E [T̂n] = t̄ .

Unbiasedness is a desirable property for an estimator, but is, however, not invari-

ant to nonlinear reparameterizations. An unbiased estimator for the variance,

for example, is biased for the standard deviation and vice versa. Furthermore,

unbiased estimators o�en perform badly in other terms of estimator quality.

In many cases, it su�ces to assess an estimator based on its accuracy in the

large-sample limit only.

De�nition 2.9 (Asymptotically Unbiased and Consistent Estimators)

�e sequence of estimators T̂ , T̂ , . . . is

(i) asymptotically unbiased for t̄ , i� their expectations exists for all
n ⩾ s ∈ N and limn→∞ E [T̂n] = t̄ ,

(ii) weakly consistent for t̄ , i� T̂n
pÐ→ t̄ , for n →∞, and

(iii) strongly consistent for t̄ , i� T̂n
a.s.Ð→ t̄ , for n →∞.

�e symbols
pÐ→ and a.s.Ð→ denote convergence in probability and almost sure

convergence, respectively, see Def. B.2 on p. 293. In cases where it introduces

no ambiguity, we adopt the usual terminology and speak of “the estimator T̂n”
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2.3. Basics of Estimation Theory

instead of “the sequence of estimators T̂ , T̂ , . . .” As laid out in Appendix B,
strong consistency implies weak consistency and asymptotic unbiasedness, but

weak consistency does not imply asymptotic unbiasedness.

If the domainT is non-convex, the expectation of the estimator E [T̂n]may
take a value outside of T in Rv . Such a value might not have an interpreta-

tion in terms of the underlying model and might hence not be a reasonable

approximation for the estimand. For non-convexT , the concepts of (asymptotic)
unbiasedness might hence be meaningless. �e notions of weak and strong

consistency, however, remain sensible.

�is limitation particularly applies to all discrete estimators and estimands,
since all discrete subsets (e.g. the model index setM) of Rv are non-convex.

Furthermore, weak and strong consistency are identical for discrete T, since
almost sure convergence and convergence in probability are identical for discrete

random variables, see Def. B.2 and the subsequent comments.

2.3.3. Precision of Parameter Estimators: E�ciency
Suppose the aim is to estimate the Kullback-Leibler information criterion (klic)-

best parameter of model µ ∈ M under a given design. According to (2.13), we

can in this case (the parameter domain is Euclidean) measure the precision of

an estimator based on its covariance. For this important case one can state a

general lower bound for the covariance of a large class of estimators in terms of

the expected sandwich information (2.8).

�eorem 2.10 (Cramér-Rao Inequality for Possibly Incorrect Models)
Let ξn be a n-experiment exact design and assume that

(i) the model has an identi�able klic-best parameter θ̄µn under ξn ,

(ii) θ̄µn is an interior point of the parameter domainQµ ,

(iii) the expected Hessian-based Fisher information F̃ µ(θµ , ξn) has constant
rank for all θµ in an open neighborhood of θ̄µn , and

(iv) Q̂µn is an unbiased estimator of θ̄µn whose covariance matrix C [Q̂µn]
exists and has full rank.

�en, under some regularity conditions,

C [Q̂µn] ⩾ 
n
S̃µ(θ̄µn , ξn), (2.14)
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2. Statistical Inference in Families of Possibly Incorrect Models

where the matrix inequality is meant in the sense that the le�-hand side minus

the right-hand side is a positive semi-de�nite matrix. If the assumptions hold

in the limit n →∞, then also the inequality holds asymptotically.

�is inequality is a generalization of the eponymous theorem of Cramér [75] and

Rao [210] (explicitly stated in the next section) for possibly incorrect models.

�e right-hand side of (2.14) is also referred to as the Cramér-Rao lower bound.

�is theorem is a simpli�ed variant of that given by Vuong [260, �m. 4.1]. �e

regularity conditions are the same required for �m. 2.5.

�is theorem establishes a lower bound to the unknown covariance of any

unbiased estimator for the klic-best parameter in terms model-based quantities.

Remarkably, this bound also holds for incorrect models.An estimator which always
meets this bound is termed efficient.

De�nition 2.11 (E�cient Estimator)

An estimator Q̂µn is efficient, i� equality in (2.14) holds regardless which
value θ̄µn takes inQµ .

It is practically most crucial that equality in (2.14) holds regardless of the value of
klic-best parameter. Since the latter is unknown in practice, it would be of little

practical help to know that an estimator is e�cient for a particular value only.

�e mean-squared error (2.13) of an unbiased estimator is

∥E [Q̂µn] − θ̄µn∥



´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= due to unbiasedness

+ tr(C [Q̂µn]) = 
n
tr(S̃µ(θ̄µn , ξn)). (2.15)

E�cient estimators are unbiased by de�nition. Taking this equality together with

inequality (2.14) tells us that e�cient estimators are the best possible estimators in
the sense of the mean-squared error.
In practice (scenario 2.1), the Cramér-Rao lower bound is unknown, since

the matrix S̃µ as well as the klic-best parameter θ̄µn depend on the unknown
process. �at is, if we can show that an estimator is e�cient, we know that it is

best possible estimator in terms of the mean-squared error, but we still cannot

quantify its precision.
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�e Special Case of a Correct Model

If the model is correct under the considered design,�m. 2.10 reduces to the well-

known classic Cramér-Rao inequality which states that the estimator covariance

is bounded from below by the inverse of the expected Fisher information at the

correct parameter for that design.

�eorem 2.12 (Classic Cramér-Rao Inequality)

Consider the same setting as in �m. 2.10. In addition, assume the model is

correct for design ξn and let θ̄µn denote the correct parameter. �en,

C [Q̂µn] ⩾ 
n
F̃−(θ̄µn , ξn)

(.)= 
n
G̃−(θ̄µn , ξn) (2.16)

where the matrix inequality is meant as previously.

Proof Originally given byCramér [75] andRao [210]. Is a corollary of�ms. 2.5 and 2.10.◻
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2. Statistical Inference in Families of Possibly Incorrect Models

2.4. Maximum-Likelihood Estimation
Sampling experiments [. . . ] have shown, however, that the
maximum likelihood method produces acceptable estimates
in many situations. Whereas better methods may be avail-
able for speci�c cases, a powerful argument for the use the
maximum likelihood method is the generality and relative
ease of application.

Bard [23]

Maximum-likelihood estimation is a major branch of frequentist inference and

a popular choice of practitioners thanks to its generality and simplicity. In

particular, it is an essential ingredient for the frequentist optimal experimental

design (oed) strategies considered in Chap. 4.

A classic assumption of maximum-likelihood theory, made in many publica-

tions and textbooks, is that the consideredmodel is correct. We want to avoid this

comparably strong assumption as far as possibly. We hence survey less familiar

non-classic results that allow incorrect models, but contain the classic results as

special case.

�e corresponding branch of non-classicmaximum-likelihood theory – called

“quasi-likelihood” by some – goes back to the works of Huber [126] and White

[267] and Burguete,Gallant, and Souza [58]. An extensive source about likelihood

theory is the book of Pawitan [200].

2.4.1. Basic Approach

Recall from Sec. 2.2 that the likelihood of a given parameter can be interpreted

as the plausibility that the data originates from the distribution speci�ed by the

model with that parameter. �is interpretation suggests to use a maximizer of

the likelihood – a maximum-likelihood estimate (mle) – to approximate the

Kullback-Leibler information criterion (klic)-best parameter.

De�nition 2.13 (Maximum Likelihood Estimate/Estimator (MLE))

(i) A parameter θ̂µn ∶= θ̂µn(dn , ξn) is a parameter maximum-likeli-

hood estimate (pmle), i�

θ̂µn(dn , ξn) ∈ argmin
θ µ∈Qµ

p(dn ∣ ξn , µ, θµ). (2.17)
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�e corresponding estimator Q̂µ ∶= θ̂µn(Dn , ξn) is aQµ-valued random

variable, its probability density function (pdf) is denoted p(θ̂µ ∣ µ, ξn).

(ii) A model µ̂n ∶= µ̂n(dn , ξn) is a model maximum-likelihood

estimate (mmle), i�

µ̂n(dn , ξn) ∈ argmin
µ∈M

max
θ µ∈Qµ

p(dn ∣ ξn , µ, θµ), (2.18)

or equivalently, i�

µ̂n(dn , ξn) ∈ argmin
µ∈M

p(dn ∣ ξn , µ, θ̂
µ
n(dn , ξn)). (2.19)

�e corresponding estimator M̂n ∶= µ̂n(Dn , ξn) is aM-valued random
variable, its probability mass function (pmf) is denoted p(µ̂ ∣ ξn).

It follows from assumption (iv) of scenario 2.1 that the likelihood (2.4) is

continuouswith respect to the parameter. Since the parameter domain is compact,

the existence of pmles follows from the extreme value theorem. If pmles exists

for all models µ ∈ M, a mmle exists sinceM is �nite. In general, parameter and

mmles are not unique.

A pmle is considered as a point approximation for the corresponding

unknown klic-best parameter, θ̄µn ≈ θ̂µn . �e uncertainty about the unknown
klic-best parameter is determined by the density p(θ̂µ ∣ µ, ξn) of the pmle.�e

more it “accumulates” in vicinity of θ̄µn , the smaller the parameter uncertainty.
Various uncertainty quanti�cations can be derived from p(θ̂µ ∣ µ, ξn), for
example con�dence intervals, the mean-squared error (2.13), or similar measures

for the quality of the approximation θ̄µn ≈ θ̂µn .
Likewise, a mmle is considered as a point approximation for the corre-

sponding unknown best model, µ̄n ≈ µ̂n . Being a discrete index set, the
domainM of a model maximum-likelihood estimator (mmle) has no associated

concept of “closeness” whatsoever,which complicates the quanti�cation ofmodel

uncertainty. Appealing concepts like con�dence regions or mean-squared error,

for example, cannot be reasonably de�ned for mmles. Consequentially, model

uncertainty is usually not expressed in terms of the density p(µ̂ ∣ ξn) of the mmle.

In fact, there is no single commonly agreed “standard” approach in frequentist

inference for quantifying model uncertainty.
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2. Statistical Inference in Families of Possibly Incorrect Models

An important argument for maximum-likelihood estimators (mles) is their

asymptotic behavior. It justi�es to use them as approximation for the unknown

klic-best quantities in large samples, allows to empirically quantify the associ-

ated uncertainty, and to make robust predictions. �e central asymptotic results

are considered in the subsequent Secs. 2.4.2 to 2.4.4, their practical application

for answering (Q2.1)–(Q2.4) is discussed in Sec. 2.4.5.

2.4.2. Consistency and Asymptotic Normality of Parameter
MLEs

Suppose the experiments are sampled from design ξ, such that ξ , ξ , . . .
converges to ξ. Let θ̄µ be a klic-best parameter of model µ ∈ M under ξ. Under
regularity conditions, parameter maximum-likelihood estimators (pmles) are

strongly consistent estimators of the klic-best parameter under the limit design,

Q̂µn
a.s.Ð→ θ̄µ , for n →∞, (2.20)

Furthermore, they are under additional regularity assumptions normally distrib-

uted in the large-sample limit,

Q̂µn
∞∼ N(θ̄µ , n− S̃µ(θ̄µ , ξ)), (2.21)

with a mean given by the klic-best parameter of the limit design, and a

covariance given by the corresponding expected sandwich information divided

by the sample size. �e mentioned regularity conditions are discussed later.

Since ξn converges to ξ, also θ̄µn converges to θ̄µ , so that (2.21) can also be
stated as

Q̂µn
∞∼ N(θ̄µn , n− S̃µ(θ̄µn , ξn)). (2.22)

Relation (2.20) implies that pmles are asymptotically unbiased, so that the gen-

eralized Cramér-Rao inequality (�m. 2.10) applies. Comparing the asymptotic

covariance from (2.22) with the Cramér-Rao lower bound from (2.14) reveals

that pmles are asymptotically e�cient. Hence, pmles are in the large-sample limit
the most accurate and most precise estimators of the klic-best parameter in terms
of the mean-squared error.
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References and Historical Remarks

�e �rst proof of consistency and asymptotic normality of what we call pmles is

given by Doob [84]. A frequently cited variant is the proof given by Wald [262].

�ey both make the classic assumptions of a correct model and independently

and identically distributed (iid) observables. Proofs under these assumptions can

nowadays be found in most relevant textbooks, for example in that of Lehmann

and Casella [170, Sec. 6.3].

A series of publications examines pmles in possibly incorrect models, but

still assume iid observables. In that setting, Huber [126] seems to be the �rst to

state su�cient conditions for consistency and asymptotic normality. While being

very general, his conditions are practically di�cult to verify. �e seminal work of

White [267] provides comparably simpler conditions. �ey can nowadays also be

found in some textbooks, for example in that of Pawitan [200, Sec. 13.4]. White’s

paper is likely to be one of themost in�uential publications concerningmaximum-

likelihood estimation in possibly incorrect models. Some of the numerous follow-

up publications are compiled in the book of Fomby and Hill [101]. White [265]

himself elaborated his ideas further in his book.

�ese publications limit their considerations to iid observables. As argued in

Sec. 2.1.2, one can hope that their results can be generalized to independently

but not identically distributed (inid) experiments that are sampled from an

experimental design, as assumed here. Such generalizations in fact exist, yet are

little known. Based on the work of Souza [236] and Gallant and Holly [104],

Burguete, Gallant, and Souza [58, �ms. 2 and 4] prove strong consistency and

asymptotic normality for a broad class of estimators under a rather general set of

su�cient conditions.�eir results comprise (2.20) and (2.21) in possibly incorrect

models and inid experiments sampled from a design as special case.

Regularity Conditions

�e full list of conditions su�cient for (2.20) and (2.21) in the considered scenario

is rather long. �ey are generalizations of those listed by White [267, A1–A6],

and special cases of those given by Burguete, Gallant, and Souza [58, Asmps. 1–6].

Besides certain technicalities, the strong consistency (2.20) requires that

(a) the experiments are sampled from design ξ, as already mentioned,

(b) the klic δ(µ, θµ , ξ) exists and is continuous in θµ , for all θµ ∈ Qµ , and

(c) the model has an identi�able klic-best parameter θ̄µ ∈ Qµ under ξ.
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In addition, the asymptotic normality (2.21) requires – again omitting certain

technicalities – that

(d) θ̄µ is an interior point ofQµ ,

(e) F̃ µ(θµ , ξ) exist and is continuous in θµ , for all θµ ∈ Qµ ,

(f) F̃ µ(θµ , ξ) has constant rank for all θµ in an open neighborhood of θ̄µ ,

(g) G̃µ(θµ , ξ) exist and is continuous in θµ , for all θµ ∈ Qµ , and

(h) G̃µ(θ̄µ , ξ) has full rank.

�is list is not meant to be exhaustive. For details, we refer to the previously cited

original works.

Condition (a) ensures that there is asymptotically enough “repetition” in

the sample, which is required for applying central limit theorems and laws of

large numbers. Together with the assumed compactness ofQµ , condition (b)

ensures the existence of a klic-best parameter. Condition (c) makes the

inference problem well posed. Condition (d) ensures the existence of an open

neighborhood of θ̄µ , required for local Taylor series approximations and certain
convergence theorems. Condition (e) allows to apply certain mean value

theorems and uniform laws of large numbers. Together with condition (c),

condition (f) guarantees that F̃ µ(θ̄µ , ξ) is invertible according to �m. 2.4(i).
Condition (g) is analog to condition (e). Finally, condition (h) is necessary to

guarantee that S̃µ(θ̄µ , ξ) has full rank and is thus a proper covariance matrix.
As pointed out by Huber [126, Sec. 2] and Bunke and Milhaus [55, Rem. 4], a

generalized type of strong consistency holds even if the klic-best parameter is

not identi�able. To the best of our knowledge, there is not proof of asymptotic

normality not requiring identi�ability.

�e Classic Special Case of a Correct Model

Suppose the model is correct for ξ and let θ̄µ be a corresponding correct
parameter. Under regularity conditions, a pmle is a strongly consistent estimator

of the correct parameter,

Q̂µn
a.s.Ð→ θ̄µ , for n →∞, (2.23)
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and is asymptotically normally distributed,

Q̂µn
∞∼ N(θ̄µ , (nF̃ µ(θ̄µ , ξ))−). (2.24)

According to (2.11), the matrix F̃ µ may be replaced by G̃µ . Recalling Cor. 1.10
and the information matrix equality (�m. 2.5), one can easily see that relations

(2.23) and (2.24) are special cases of (2.20) and (2.21), respectively.

Relations (2.23) and (2.24) are well-known classic results of maximum-

likelihood theory. For the case of iid observables, they go back to Le Cam [166],

and can nowadays be found in most textbooks, for example in those of Lehmann

and Casella [170, Chap. 6] or Pawitan [200, Chap. 9]. �e iid assumption is not

essential and can be replaced by weaker requirements. Philippou and Roussas

[203] and Sweeting [242] prove consistency and asymptotic normality of pmles

in correct models under very general conditions. �eir results imply that (2.23)

and (2.24) hold under conditions (a)–(f) on p. 59 and on the facing page.

2.4.3. Consistent Estimation of Parameter MLE Covariance

In practice, the asymptotic covariances given in (2.21) and (2.24) are unknown,

since they directly depend on the unknown process via the involved expected

information matrices, and indirectly via the best or correct parameter. Under

certain conditions examined in this section, these covariance can be estimated

consistently.

�is section uses the same setting and notation as the previous one, with

the generalization that Q̂µn is not necessarily a pmle, but may be any strongly

consistent estimator of θ̄µ .

Correct Models

Suppose that model µ ∈ M is correct under ξ and let θ̄µ be a corresponding
correct parameter. �e pmle covariance is then asymptotically the inverse of

nF̃ µ(θ̄µ , ξ). Under regularity conditions, notably conditions (a)–(e) on p. 59
and on the facing page,

F µn (Q̂µn ,Dn , ξn)
a.s.Ð→ F̃ µ(θ̄µ , ξ) element-wise, for n →∞. (2.25)

Due to the information matrix equality (�m. 2.5), the relation remains valid if

F̃ µ(θ̄µ , ξ) is replaced by G̃µ(θ̄µ , ξ).
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2. Statistical Inference in Families of Possibly Incorrect Models

According to �m. 2.4(ii), conditions (c) and (f) imply that F̃ µ(θµ , ξ) is
invertible in vicinity θ̄µ . Consequentially, the inverse of F µn (Q̂µn ,Dn , ξn) under
conditions (a)–(f) on p. 59 and on p. 60 exists asymptotically almost surely,

allowing the strongly consistent estimation of the asymptotic pmle covariance.

�ese are classic results of maximum-likelihood theory. Proofs and more

details can be found in most relevant textbooks, for example in that of Pawitan

[200, Sec. 9.9].�ey are also contained as special cases in the more general results

of Burguete, Gallant, and Souza [58, �m. 4].

Possibly Incorrect Models

Now drop the assumption that model µ is correct under ξ and let θ̄µ be a
corresponding klic-best parameter.�e pmle covariance is then asymptotically

n− S̃µ(θ̄µ , ξ) = (nF̃ µ(θ̄µ , ξ))−G̃µ(θ̄µ , ξ)(F̃ µ(θ̄µ , ξ))− . (2.26)

Relation (2.25) can straightforwardly be generalized to this case. Under regularity

conditions,

F µn (Q̂µn ,Dn , ξn)
a.s.Ð→ F̃ µ(θ̄µ , ξ) element-wise, for n →∞. (2.27)

�e results ofWhite [267,�m. 3.2] imply that (2.27) holds under the assumption

of iid observables and under certain regularity conditions including condi-

tions (b)–(e) on p. 59 and on p. 60. �e more general results of Burguete, Gallant,

and Souza [58, �m. 4] imply that it remains valid if the iid assumption is

replaced by condition (a) on p. 59. As in the correct case, adding condition (f)

ensures that the inverse of F µn (Q̂µn ,Dn , ξn) exists asymptotically almost surely
and is a strongly consistent estimator of the inverse of F̃ µ(θ̄µ , ξn).
It remains to derive a strongly consistent estimator of G̃µ(θ̄µ , ξ). Since the

information matrix equality does not apply here, (2.27) does not automatically

provide a consistent estimator for G̃µ(θ̄µ , ξ), as it does in the case of a correct
model.

Assuming iid observables, White [267, �m. 3.2] derives an estimator for

G̃µ(θ̄µ , ξ) and thus for S̃µ(θ̄µ , ξ) that are strongly consistent under regularity
conditions including conditions (b)–(h). White [267, Footnote 3] believed

that the assumption of iid observables is not crucial and conjectured that the

straightforward generalizations of his estimators to inid experiments remain

strongly consistent. Chow [70] shows, however, that this is not the case. In a reply
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2.4. Maximum-Likelihood Estimation

to Chow, White [266] admits that in possibly incorrect models

with observables not identically distributed [. . . ] a consistent

estimator [of G̃µ(θ̄µ , ξ) and thus of S̃µ(θ̄µ , ξ)] is not generally
available unless the true model [= the process in our terminology]

is known.

Ten years later, he repeated this statement [265, Sec. 8.3]. �e results of Burguete,

Gallant, and Souza [58, �m. 4] support this conclusion.

To the best of our knowledge, no generally valid consistent estimators of
G̃µ(θ̄µ , ξ) and thus of S̃µ(θ̄µ , ξ) are known at present.�e practical implications
of this lack are discussed in Sec. 2.4.5. In Sec. 3.4, we propose a novel estimator

for S̃µ(θ̄µ , ξ) that is strongly consistent under certain additional assumptions
which are frequently made in practice.

2.4.4. Consistency of Model MLEs

Suppose experiments are sampled from design ξ, so that the sequence of designs
ξ , ξ , . . . converges to the ξ. Let µ̄ be a klic-best model under ξ.
Under regularity conditions, mmles are consistent estimators of the best

model,

M̂n

a.s.Ð→ µ̄, for n →∞. (2.28)

Since mmles take values in the �nite setM they are discrete estimators and the
concepts of strong and weak consistency coincide, see (B.3). We hence simply

speak of “consistency.”

Discrete mles like M̂n have received little explicit attention in literature so

far, particularly in possibly incorrect models. Recently, Choirat and Seri [69,

Prop. 1] showed that discrete mles in possibly incorrect models are consistent

estimators of the corresponding klic-minimal value. �eir proof requires

only mild regularity conditions, but is formulated for iid observables only. As

discussed in Sec. 2.1.2, one can expect that their result remains valid for inid

experiments as long as the corresponding designs describing them converges to

some limit design as the sample size increases.

Suppose that for each model µ ∈ M, the conditions for the strong consistency
of pmles are satis�ed, in particular conditions (a)–(c) on p. 59, and µ̄ is
identi�able. �en, mmles meet the prerequisites of Choirat and Seri in the

large-sample limit, leading to (2.28).
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2.4.5. Practical Application

How can maximum-likelihood estimation be applied in scenario 2.1 to answer

the central questions (Q2.1)–(Q2.4)?

To ease the following discussion, presume that all regularity conditions

required for consistency and asymptotic normality of parameter and mmles are

satis�ed. In particular, suppose that experiments are sampled from design ξ, that
the klic-best parameter θ̄µ under ξ is identi�able in each model µ ∈ M, and
that the klic-best model µ̄ under ξ is identi�able.

Basic Inferences not Taking into Account Parameter Uncertainty

In practice, a pmle θ̂µn for model µ ∈ M can be determined from the data dn
obtained under design ξn by maximizing the likelihood p(dn ∣ ξn , µ, θµ) with
respect to θµ ∈ Qµ . It us an empirical approximation of the corresponding

unknown klic-best parameter,

θ̄µ
∞≈ θ̂µn . (2.29)

Given pmles θ̂µn for all models µ ∈ M, a mmle µ̂n can be determined in
practice bymaximizing p(dn ∣ ξn , µ, θ̂

µ
n)with respect to µ ∈ M. It is an empirical

approximation of the unknown best model,

µ̄
∞≈ µ̂n . (2.30)

Approximation (2.29) suggests the empirical approximation

p(y ∣ x , µ, θ̄µ) ∞≈ p(y ∣ x , µ, θ̂µn) (2.31)

for the klic-best pdf of model µ under experimental condition x ∈ X. A
corresponding approximation for the unknown klic-best pdf p(y ∣ x , µ̄, θ̄) of
the model family under x is obtained by evaluating the right-hand side of (2.31)
at the mmle, that is, for µ = µ̂n .
All these approximations are empirical, meaning that they depend only

on known quantities and can thus be evaluated in practice. �e consistency of

pmles (2.20) and mmles (2.28) tells us that they improve with the sample size

and are asymptotically exact.�ey are hence justi�ed in su�ciently large samples,

as indicated (
∞≈) in the formulas.
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2.4. Maximum-Likelihood Estimation

Taking into Account Parameter Uncertainty in Correct Models

If model µ is correct, then the pmle is asymptotically normal with mean θ̄µ and
covariance (nF̃ µ(θ̄µ , ξ))−, see (2.24). �e matrix F̃ µ(θ̄µ , ξ) is unknown, but
can be approximated by its empirical counterpart,

F̃ µ(θ̄µ , ξ) ∞≈ F̂ µn ∶= F µn (θ̂µn , dn , ξn), (2.32)

Combined with (2.29) these relations suggest the empirical approximation

p(θ̂µ ∣ µ, ξn)
∞≈ ϕ(θ̂µ ∣ θ̂µn , (nF̂ µn )

−) (2.33)

for the unknown distribution of the pmle, where ϕ(⋅) denotes the pdf of a
normal distribution, see Def. B.8 on p. 296.

�is approximation allows to empirically quantify the parameter uncertainty.

Common characterizations of uncertainty like con�dence regions can be derived

from it. Furthermore, it allows to empirically approximate functions of the

unknown klic-best parameter in a parameter-robust way, taking into

account the variability of the estimate. A popular example using an expected

value approach is the empirical approximation

p(y ∣ x , µ, θ̄µ) ≈ ∫
Qµ

p(y ∣ x , µ, θ̂µ)p(θ̂µ ∣ µ, ξn)dθ̂µ

∞≈ ∫
Qµ

p(y ∣ x , µ, θ̂µ)ϕ(θ̂µ ∣ θ̂µn , (nF̂ µn )
−)dθ̂µ , (2.34)

a parameter-robust counterpart of (2.31).

�e strong consistency and the asymptotic normality of pmles and of

the empirical Hessian-based Fisher information matrix justi�es to use (2.33)

and (2.34) in su�ciently large samples, as indicated (
∞≈) in the formulas.

Taking into Account Parameter Uncertainty, Incorrect Models

If the model is possibly incorrect, then the pmle is still asymptotically normal

around θ̄µ , yet with covariance n− S̃µ(θ̄µ , ξ), see (2.21). Unfortunately, as
discussed in Sec. 2.4.3, no generally valid consistent estimator is available for

S̃µ(θ̄µ , ξ), except for the special case of iid observables. For possibly incorrect
models, there is hence no analog to approximations (2.33) and (2.34)
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2. Statistical Inference in Families of Possibly Incorrect Models

Consequentially, if models that might be incorrect, it is not possible using pmles
to empirically quantify the parameter uncertainty and to make parameter-robust
approximations.�e empirical parameter-unrobust point approximations (2.29)–
(2.31) remain untouched from this problem.

A nearby remedy is to use (2.33) nevertheless even if the model might be

incorrect, tolerating that a central underlying assumption is violated. �is is the

choice made – knowingly or not – by most of the established “parameter-robust”

oed strategies, particularly by those considered in Chaps. 4 and 5.

As a main result of this thesis, we show in Sec. 3.4 that the asymptotic
covariance of pmles can be estimated consistently under the common additional
assumptions that the observation covariances are known, the process is normal and
the rival models are normal. Based on that novel result, we determine the error
introduced when applying (2.33) to incorrect models, formulate a counterpart of

this approximation that is applicable also in incorrect models, and propose new

parameter-robust oed strategies.

Summary

It is their generality which gives the discussed mle-based empirical approxi-

mations their great practical signi�cance. Since they hold for a broad class of

model families, they constitute a uni�ed set of methods with a wide range of

applications. And because they hold regardless of the actual distribution of the

sample (except for regularity conditions), they permit to use these methods in

practice where this distribution is unknown.

Using maximum-likelihood estimation one can answer the central questions

(Q2.1)–(Q2.4) as follows: using pmles and mmles, the unknown klic-best

parameters of each model, the unknown best model and the associated best pdfs

can be approximated arbitrarily well as the amount of available data increases.�e

relevant parameter-unrobust empirical approximations are applicable regardless

if the model is correct or not.

In a correct model, the parameter uncertainty can be quanti�ed via an

empirical large-sample approximation of the density of the pmle. Based thereon

one can evaluate the parameter-robust approximations for the unknown klic-

best pdf of the model, which can be used for predicting the process behavior.

In incorrect models, however, the parameter uncertainty cannot be quanti�ed

empirically in a reliable way, corresponding parameter-robust approximations

are not available.

To quantify the model uncertainty and to make corresponding model-
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robust predictions, one typically resorts to di�erent techniques than maximum-

likelihood estimation.

2.5. Bayesian Inference
[. . . ] a probability p is an abstract concept, a quantity that we
assign theoretically, for the purpose of representing a state of
knowledge [. . . ] or that we calculate from previously assigned
probabilities using the rules [. . . ] of probability theory.

Jaynes [130, p. 8] on probability in Bayesian statistics.

�is section deals with Bayesian inference, that is, methods of inference based

on Bayesian statistics. �ese methods form the basis of the optimal experimental

design (oed) strategies considered in Chap. 5.

Bayesian inference under the “classic” assumption that the underlying model

is correct has gained a certain maturity. As in the previous sections, we try to

avoid this assumption, since it is usually violated in practical problems of model

discrimination (md). In the “non-classic” setting of possibly incorrect models,

central results were obtained rather recently. �is section gives an overview of

these little-known results.

Lee [169] provides an introduction to Bayesian statistics, Robert [213] gives a

decision-theoretic motivation. �e extensive book of Jaynes [134] even advocates

Bayesian statistics as “the logic of science.” Comprehensive references for

Bayesian inference are the books of Bernardo and Smith [28] and Box and Tiao

[45] and O’Hagan and Forster [195].

2.5.1. Outline of the General Approach

In frequentist inference, like in the previously discussed maximum-likelihood

estimation, the only genuine source of “randomness” are the �uctuations of

the data. �is experimental uncertainty is described by the distribution

of the sample. Epistemic uncertainty, that is, uncertainty due to a lack

of knowledge (e.g. about the Kullback-Leibler information criterion (klic)-

best parameters and models) is quanti�ed indirectly based on statistics, that

is, functions of the data, for example maximum-likelihood estimates (mles).

�ese statistics are only random inasmuch as they are functions of the sample.

Without experimental uncertainty, there is no natural way of expressing epistemic
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2. Statistical Inference in Families of Possibly Incorrect Models

uncertainty in frequentist inference.

�is is di�erent in Bayesian inference: there, probability distributions are

directly used to represent “states of knowledge” or “beliefs” (see introductory

quote of the section). �at is, both experimental uncertainty and epistemic
uncertainty are represented by probability distributions.

Let us outline some key ingredients of Bayesian inference. Suppose the

hypotheses H , . . . , Hm shall be assessed in the light of the evidence E. �e

probability of Hi under E, denoted P [Hi ∣E], can be calculated via Bayes’
theorem,

P [Hi ∣E] = P [Hi]
P [E ∣Hi]

P [E] , (2.35)

which is actually a corollary from the de�nition of conditional probability. Bayes

[25] was the �rst to propose it in a non-trivial case for statistical inference, but

the formula did not gain much attention until it was “rediscovered” by Laplace

[163].

In Bayesian terminology, P [Hi] is the prior (probability), P [Hi ∣E] is
the posterior (probability), P [E ∣Hi] is the likelihood, and P [E] ∶=
∑mi= P [Hi]P [E ∣Hi] is the marginal likelihood. �e latter is a normaliz-

ing factor ensuring that the posterior probabilities sum up to . It is o�en omitted

and Bayes’ theorem is simple written as P [Hi ∣E] ∝ P [Hi]P [E ∣Hi].
In Bayesian inference, this theorem is applied as follows to assess the validity

of the hypotheses. �e prior and posterior probabilities are interpreted as the

belief in Hi before and a�er taking into account E, respectively. �e likelihood
corresponds to a model that speci�es probabilities for obtaining certain evidence

if the hypothesis was true. Given a model and a prior, Bayes’ theorem allows to

calculate the posterior once the evidence is available. �e posterior is considered

as an improvement over the prior and is used for all further calculations, possibly

as new prior in the next step of inference when additional evidence gets available.

�is procedure is called Bayesian updating.

Predictions or approximations for unknowns are obtained through averaging

over the available priors or posteriors. If X is some unknown quantity of interest

(for example an unobserved experimental result), andP [X ∣Hi] it its probability
under the assumption that hypothesis Hi is true, then

P [X ∣E] =
m

∑
i=

P [X ∣Hi]P [Hi ∣E] (2.36)
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is the Bayesian prediction for X given the evidence E, or simply the posterior

prediction. Bayesian predictions are thus intrinsically probabilistic.

�e prior o�ers a natural and consistent way to regard previous knowledge

both from preceding experiments as well as from other sources like literature

or a priori considerations. �is property is o�en considered as a main strength

of the Bayesian approach. It is, however, also a primary point of critique, since

it forces the Bayesian to formulate a prior even if no previous information is

available, which might introduce a certain arbitrariness into the inferences.

2.5.2. Application to Model Families

�e Bayesian approach applies to scenario 2.1 as follows. For clarity, we use a

convenient “overloaded” notation in which di�erent densities share the same

symbol p(⋅) and are distinguished solely by their arguments, as noted in the
introduction of Sec. 1.3.1 on p. 27.

Inference in Single Regression Models

Previous knowledge (or previous uncertainty, we use these terms interchangeably

here) associated with the parameter of model µ ∈ M is represented by the

parameter prior p(θµ), a probability density function (pdf) over the
parameter domain Qµ . Knowledge or uncertainty a�er taking into account
the data dn obtained from n ∈ N experiments described by the exact design ξn is
represented by the parameter posterior p(θµ ∣ dn , ξn), also a pdf overQµ .

�e parameter posterior can for all θµ ∈ Qµ be determined via Bayes’ theorem

p(θµ ∣ dn , ξn) ∝ p(θµ)p(dn ∣ ξn , µ, θµ) (2.37)

from the corresponding prior and from the likelihood p(dn ∣ ξn , µ, θµ) of model
µ discussed in Sec. 2.2. �e factor of proportionality in (2.37) is determined by
the requirement that the pdf integrates up to  overQµ .

�e parameter posterior is the pivot for any further inferences in the model.

It can be used to derive point estimators, to quantify uncertainty, or to make

predictions. We shall see in Sec. 2.5.3 that it does under certain assumptions

actually represent knowledge about the klic-best parameter of the model.
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Predictions based on Single Regression Models

�e actual distribution of experimental outcomes under condition x ∈ X is

described by the unknown pdf q(y ∣ x). For all x ∈X, the pdf

p(y ∣ x , µ, dn , ξn) ∶= ∫
Qµ

p(y ∣ x , µ, θµ)p(θµ ∣ dn , ξn)dθµ (2.38)

is the posterior prediction of model µ for the experimental outcome
under x, that is,

q(y ∣ x) ≈ p(y ∣ x , µ, dn , ξn). (2.39)

�is prediction takes into account all available knowledge about the parameter in

terms of the posterior distribution (as opposed to a point estimator) and can thus

be considered as “robust” with respect to the parameter uncertainty, or simply

as “parameter-robust.”

Inference in a Family of Regression Models

When the parameters are model-local, as we assume here, their priors and

posteriors can be speci�ed and treated independently for each model µ ∈ M. In
a given family of models distinguished with a �nite model index setM, it then
remains to represent the knowledge (or uncertainty) about themodels themselves.

�is is done via the model prior p(µ), a probability mass function (pmf) over

the model index setM. A�er taking into account the data dn obtained under
design ξn , the knowledge is represented by the model posterior p(µ ∣ dn , ξn),
also a pmf over the model index setM. For all µ ∈ M, it can be determined via
Bayes’ theorem

p(µ ∣ dn , ξn) ∝ p(µ)p(dn ∣ ξn , µ) (2.40)

from the model prior and from the marginal likelihood

p(dn ∣ ξn , µ) ∶= ∫
Qµ

p(dn ∣ ξn , µ, θµ)p(θµ)dθµ . (2.41)

�e factor of proportionality in (2.40) is determined by the condition that the

probabilities add up to  overM.
We shall see in Sec. 2.5.4 that the model posterior does actually represents
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knowledge about the klic-best model in the family. Based on the model posterior
one can derive point estimators for the latter or quantify the associated model

uncertainty. Together with parameter posteriors for each model, one can also

make predictions.

Predictions based on a Family of Regression Models

For all x ∈X, the pdf

p(y ∣ x , dn , ξn) ∶= ∑
µ∈M

p(y ∣ x , µ, dn , ξn)p(µ ∣ dn , ξn) (2.42)

is the posterior prediction of the model family for the experimental

outcome under x, that is,

q(y ∣ x) ≈ p(y ∣ x , dn , ξn). (2.43)

Since it incorporates all parameter posteriors and the model posterior, this

prediction can be considered as both “model-robust” and “parameter-robust.”

�e technique of forecasting the process behavior based on the weighted

predictions of several individual models is known as “Bayesianmodel averaging.”

It provides generally better average predictive accuracy than using a single model.
For details we refer to the works of Dawid [77], Draper [85], and Madigan and

Ra�ery [179] and to the overview given by Hoeting et al. [119] and the references

provided therein.

2.5.3. Large-Sample Behavior in Single Regression Models

Consistency of the Parameter Posterior

Under regularity conditions, the parameter posterior is consistent in the sense

that it accumulates arbitrarily close to the klic-best parameter with probability

 in the large-sample limit:

∫
Bµ

p(θµ ∣Dn , ξn)dθµ
pÐ→

⎧⎪⎪⎨⎪⎪⎩

 if θ̄µ ∈ Bµ

 otherwise
, as n →∞, (2.44)
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for any open subsetBµ ofQµ . Furthermore, its maximizer or mode is under

regularity conditions a consistent estimator for the klic-best parameter:

argmax
θ µ∈Qµ

p(θµ ∣Dn , ξn)
pÐ→ θ̄µ , for n →∞. (2.45)

�e regularity conditions are discussed later.

�ese relations suggest the following conclusions with regard to (Q2.1) on p. 42:

by increasing the amount of available data, the Bayesian approach permits to

identify the unknown klic-best parameter empirically with arbitrary precision.
�e knowledge which the parameter posterior represents is under the given

assumptions in fact knowledge about the klic-best parameter.

Asymptotic Normality of the Parameter Posterior

Under certain regularity conditions, including those required for consistency,

the parameter posterior is in the large-sample limit normally distributed around

klic-best parameter,

p(θµ ∣ dn , ξn)
∞≈ ϕ(θµ ∣ θ̄µ , (Pµ(θ̄µ) + nF̃ µ(θ̄µ , ξ))−). (2.46)

Its covariance is determined by the expected Hessian-based Fisher information

matrix F̃ µ from (2.6) and the prior information matrix, de�ned as

Pµ(θµ) ∶= −∇
ln p(θµ) (2.47)

for all θµ ∈ Qµ , where ∇denotes the Hessian di�erential operator with respect

to θµ .
In nonlinear models, the parameter posterior (2.37) can typically not be

expressed in a closed form. Numerical approximations are possible, but o�en

computationally expensive. In practice, it o�en su�ces to use the following easier-

to-compute large-sample normal approximation that can be derived from (2.46).

If the sample size n is large, the klic-best parameter θ̄µ can be well approximated
empirically by the parameter maximum-likelihood estimate (pmle) θ̂µn =
θ̂µn(dn , ξn), see (2.20), and the expected Fisher information F̃ µ(θ̄µ , ξ) can
be well approximated by its empirical counterpart F̂ µn ∶= F µn (θ̂µn , dn , ξn), see
(2.25). Applying these substitutions to (2.46) yields the empirical large-sample
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approximation

p(θµ ∣ dn , ξn)
∞≈ ϕ(θµ ∣ θ̂µn , (P̂µn + nF̂ µn )

−), (2.48)

where P̂µn ∶= Pµ(θ̂µn). �e right-hand side of (2.48) depends only on known
quantities and on empirical data (unlike (2.46)), and can be evaluated in practice

once the experiments have been performed.

Consistency of the Posterior Prediction

If the parameter posterior is consistent, it follows from a generalization of

Slutsky’s �eorem (�m. B.4) that under mild regularity conditions

p(y ∣ x , µ,Dn , ξn)
pÐ→ p(y ∣ x , µ, θ̄µ), for n →∞, (2.49)

for all y ∈ Y under all x ∈X, so that

p(y ∣ x , µ, θ̄µ) ∞≈ p(y ∣ x , µ, dn , ξn). (2.50)

�ese relation are the Bayesian answer to (Q2.2) on p. 42: by increasing the

amount of available data, Bayesian inference permits to identify the klic-best

pdf of a model with arbitrary precision.

Of all the pdfs {p(y ∣ x , µ, θµ) ∶ θµ ∈ Qµ} speci�ed by the model, that one
associated with the klic-best parameter θµ = θ̄µ exhibits the lowest discrepancy
to the process under design ξ in terms of the klic (see Sec. 1.4), which suggests
the approximation

q(y ∣ x) ≈ p(y ∣ x , µ, θ̄µ) (2.51)

for experiments performed under x ∈ supp(ξ). Taking together (2.50) and (2.51)
and regarding that by assumption ξn ≈ ξ for large n thus justi�es (2.43) in large
samples. In other words, the posterior prediction p(y ∣ x , µ, dn , ξn) is in large
samples a “best guess” for the experimental outcome under x, given model µ
and the data dn obtained under ξ. �e quality of this guess depends, of course,
on the details of the model formulation.

If model µ is correct (under ξ), then (2.51) and thus (2.43) are in exact in the
large-sample limit for all x ∈X (for all x ∈ supp(ξ)).
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References and Historical Remarks

Results stating asymptotic normality of parameter posteriors in our terminology

are also referred to as “Bernstein-Von-Mises theorems,” in honor of Richard von

Mises and Sergei Natanowitsch Bernstein, even if the earliest proof was given by

Doob [83]. Under the assumptions of a correct model he proves that the posterior

concentrates under mild conditions in an arbitrarily small neighborhood of the

correct parameter in the sense of (2.44). Based thereon he proves consistency of

Bayes estimators as in (2.45) for almost all values that are possible for the correct
parameter. Under stronger assumptions, Le Cam [165, 166] proves consistency for

all values of the correct parameter and also normality of the posterior in the sense
of (2.46). �is line of argumentation culminated in the work of Schwartz [226,

227], whose central result can be paraphrased as “a Bayes estimator is consistent

if a consistent estimator exists.”

It took some time until these results were generalized to possibly incorrect

models. Berk [26, 27] shows that under some regularity conditions the posterior

converges in a weak sense to a degenerate distribution over the set of klic-best

parameters – similar to (2.44) – even if the model is incorrect. �is property

does not su�ce, however, to ensure consistency of Bayes estimators. A big step

was taken by Bunke and Milhaus [55], who state su�cient conditions for the

consistency of Bayes estimators like (2.45) and for their large-sample normality.

Some of their ideas were developed further recently by Lee andMacEachern [168]

for the special case of models from the minimal standard exponential family,

which also includes normal models that we consider in the next chapter.

Bunke and Milhaus and Lee and MacEachern consider the distribution of

Bayesian (point) estimators which are derived from the posterior, but did not

consider the distribution of the posterior itself. �is gap was recently closed by

Kleijn [145] and Kleijn and van der Vaart [144], who show that for the large class
of so-called “local asymptotic normality” models, the posterior is asymptotically
normal as in (2.46), even if the model is incorrect.

Regularity Conditions

Kleijn and van der Vaart [144] show that parameter posteriors are asymptotically

normal under a set of fairly general conditions. In the setting considered here,

they reduce to conditions similar to those required for asymptotic normality of

parameter maximum-likelihood estimators (pmles). In addition, it is required

that the parameter prior p(θµ) is positive in a neighborhood of θ̄µ . Kleijn and
van der Vaart [144, Sec. 2.2] focus on independently and identically distributed
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(iid) observables. �is limitation can be relaxed to the assumption that the

experiments sampled from a design, as discussed in Sec. 2.1.2. In the words of

Gelman et al. [106, Appendix B.1], “the key condition [for asymptotic normality]

is that there be ‘replication’ at some level [. . . ]”

Summed up, asymptotic normality of parameter posteriors requires, besides

certain technicalities, that conditions conditions (a)–(f) on p. 59 and on p. 60

are met and that the parameter prior does not vanish in vicinity of the klic-best

parameter.

2.5.4. Large-Sample Behavior in Families of RegressionModels

As previously, assume that the experiments are sampled from a design ξ, such that
the design sequence ξ , ξ , . . . converges to ξ. Consider a family of regression
models distinguished by indices from the �nite setM, and suppose that the
klic-best model µ̄ ∈ M under ξ is identi�able and that each model µ ∈ M has

an identi�able klic-best parameter θ̄µ ∈ Qµ under ξ.

Consistency of the Model Posterior

Under regularity conditions, the model posterior converges with increasing

sample size to a degenerate distribution putting full mass at the best model

µ̄ with probability , that is,

p(µ ∣Dn , ξn)
pÐ→

⎧⎪⎪⎨⎪⎪⎩

 if µ = µ̄
 otherwise

, for n →∞. (2.52)

which implies that its maximizer is a consistent estimator of the klic-best model,

argmax
µ∈M

p(µ ∣Dn , ξn)
a.s.Ð→ µ̄, for n →∞. (2.53)

Note that strong and weak consistency coincide in this case, since the model

index set is discrete, see (B.3). �ese relations show that the Bayesian approach

thus permits to identify the unknown klic-best model arbitrary well if enough

experimental data is available,which answers (Q2.3) on p. 42.�emodel posterior

can hence be interpreted as knowledge about the klic-best model.
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�eMarginal Likelihood in Large Samples

According to Bayes’ theorem (2.40), the model posterior is proportional to

the product of the model prior and the marginal likelihood (2.41). In general,

the integral in the latter has no closed-form representation. Approximating it

numerically is possible, yet o�en too expensive computationally. In the following

we introduce popular closed-form approximations of the marginal likelihood.

�e resulting approximate formulas for the model posteriors are discussed in

the next section.

�e method of Laplace [162] allows to approximate inde�nite integrals of the

form ∫A (x) exp(−n f (x))dx, if they exist, where n is a large natural number,
A ⊆ Rm , f is twice di�erentiable and has a unique maximum on A, and  is
di�erentiable and non-zero at the maximizer of f . �e underlying idea is to use
a second-order Taylor approximation of f around its maximum.�e resulting
integral is then a Gaussian integral with a known closed-form solution. Azevedo-

Filho and Shachter [22] provide a detailed discussion of Laplace’s method in the

context of Bayesian inference.

Applying Laplace’s method to the logarithm of the marginal likelihood (2.41)

yields the large-sample approximation

ln p(dn ∣ ξn , µ)
∞≈ ln p(dn ∣ ξn , µ, θ̌

µ
n)

− 
 ln det(P̌

µ
n + nF̌ µn ) + ln p(θ̌µn) + 

nθ µ ln(π) +O(n−), (2.54)

where θ̌µn denotes the maximizer (or “mode”) of the parameter posterior. If the
sample size n is large, theO() term P̌µn ∶= Pµ(θ̌µn) is negligible compared to the
O(n) term nF̌ µn ∶= nF µn (θ̌µn , dn , ξn), and the posterior mode θ̌µn approximately
equals the pmle θ̂µn based on the n experiments. Furthermore, the empirical
Fisher information F̂ µn ∶= F µn (θ̂µn , dn , ξn) is under the regularity conditions
discussed in Sec. 2.4.3 a consistent estimator of its expected counterpart

ˆ̃F µn ∶=
F̃ µ(θ̂µn , ξn). �e relative error of these approximations is O(n−⁄), so that

ln p(dn ∣ ξn , µ)
∞≈ ln p(dn ∣ ξn , µ, θ̂

µ
n)

− 
 ln det(n

ˆ̃F µn ) + ln p(θ̂µn) + 
nθ µ ln(π) +O(n−⁄). (2.55)

Substituting ln det(n ˆ̃F µn ) = ln det( ˆ̃F µn ) + nθ µ ln n and omitting all O() terms
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yields

ln p(dn ∣ ξn , µ)
∞≈ ln p(dn ∣ ξn , µ, θ̂

µ
n) − 

nθ µ ln n +O(). (2.56)

�e prior

p(θµ) = ϕ(θµ ∣ θ̂µn , ( ˆ̃F µn )
−
), (2.57)

may be regarded as representing “as much information as a single average

experiment.” Strictly speaking, it is not a proper parameter prior, though, since
it depends on the design and the data. It is, however, a reasonable representation

of the common situation that little, but not much prior information is available.

Under this prior

ln p(θ̂µn)
(B.b)= 

 ln det(
ˆ̃F µn ) − 

nθ µ ln(π), (2.58)

so that (2.55) simpli�es to the same form as (2.56), except that the error is then

only of O(n−⁄).

�eModel Posterior in Large Samples

Applying approximation (2.56) for all models µ ∈ M in Bayes’ theorem (2.40)

leads to the large-sample approximation

ln p(µ ∣ dn , ξn)
∞≈ ln p(µ) + ln p(dn ∣ ξn , µ, θ̂

µ
n) − 

nθ µ ln n + cn . (2.59)

for the model posterior. �e constant cn ∈ R+
 is determined by the requirement

that the posterior model probabilities sum up to . Note that both cn and the
pmles θ̂µn in the right-hand side of (2.59) may depend on the data dn and the
design ξn .

In general, approximation (2.59) has an absolute error of O() like (2.56). �e
relative error, however, typically vanishes asymptotically with n− because the
log-likelihood term ln p(dn ∣ ξn , µ, θ̂

µ
n) is of O(n), see (2.5). If one assumes that

all parameter priors are “little informative” in the sense of (2.57), then (2.59) has

even an asymptotically vanishing absolute error of only O(n−⁄).
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Consistency of the Posterior Prediction

Suppose that the parameter posterior of model µ̄ and the model posterior are
consistent, and that (2.49) holds for the klic-best model µ̄. �en it follows from
a generalization of Slutsky’s �eorem (�m. B.4) that under mild regularity

conditions

p(y ∣ x ,Dn , ξn)
pÐ→ p(y ∣ x , µ̄, θ̄), as n →∞, (2.60)

for all y ∈ Y and under all x ∈X. In other words, the posterior prediction (2.42)
converges in probability to the klic-best pdf of the model family.

�is relation can be interpreted in a similar fashion as (2.49). �e posterior

prediction p(y ∣ x , dn , ξn) of the model family is in large samples a “best guess”
for the experimental outcome under x, given the data dn obtained under ξ,
justifying (2.43). If model µ̄ is correct (under ξ), then this approximation is also
exact in the large-sample limit for all x ∈X (for all x ∈ supp(ξ)).

Discussion and References

Proofs for the consistency of posteriors over discrete sets under iid observables

can be found in textbooks on Bayesian inference, for example in that of Gelman

et al. [106, Appendix B]. As discussed in Sec. 2.1.2, one can expect that those

results remain valid for independently but not identically distributed (inid)

experiments, as long as they are sampled from an experimental design, as we

assume here.

Suppose that for each model µ ∈ M, the conditions for the asymptotic
normality of the parameter posterior are satis�ed, in particular conditions (a)–

(f) on p. 59 and on p. 60. Furthermore, assume that the model family has an

identi�able klic-best model µ̄ under ξ and that the model prior does not vanish
there, p(µ̄) > . �en, model posteriors asymptotically meet the prerequisites
for consistency as described by Gelman et al., Appendix B, leading to (2.52)

and (2.53).

Laplace-based approximations for the marginal likelihood like (2.54)–(2.56)

are common in Bayesian inference. �ey were proposed and used, for example,

by Kass and Ra�ery [139], Ra�ery [208], and Ra�ery, Madigan, and Volinsky

[209] and Draper [85]. More applications are listed by the references provided

therein.

Such Laplace-approximations are typically motivated heuristically. Kass, Tier-

ney, and Kadane [140] seem to be the only ones providing a rigorous treatment,
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which, however, seems to apply to correct models only. �ey provide regularity

conditions [140, Sec. 3, Items (i)–(iv)] ensuring that Laplace approximations

of the marginal likelihood (and similar quantities) are asymptotically exact.

�eir conditions resemble those required for asymptotic normality of parameter

posteriors discussed in Sec. 2.5.3. In addition, they comprise the requirement

that the log-likelihood is six times continuously di�erentiable with respect

to the parameter, and that these derivatives are asymptotically bounded in a

neighborhood of the correct parameter.

To the best of our knowledge, Laplace-based approximations of the marginal

likelihood in possibly incorrect models have not been treated rigorously so far.

�e similarity of the regularity conditions provided by Kass, Tierney, and Kadane

[140] to the regularity conditions for parameter posteriors, however, suggests that

a generalization to incorrect models is possible. From a strict point of view, the

Laplace-based approximation (2.59) for the model posterior has to be considered

as a heuristics in incorrect models.

Summary

�is chapter dealt with statistical inference in families of parametric regression

models. It focused on the real-world situation that the considered model (family)

may be incorrect, and stated the empirical questions that arise if one agrees to

measure its discrepancy to the process with the Kullback-Leibler information

criterion (klic).

A�er the necessary preparatory steps, the major frequentist approach of

maximum-likelihood estimation and the alternative Bayesian approach were

surveyed. In both approaches there exist asymptotic results that allow to apply

a small uni�ed set of formulas for inferences in a wide range of processes and

models, only restricted by certain regularity conditions.

In short, given enough data,maximum-likelihood estimation as well as Bayesian
inference allow to approximate unknown klic-best parameters, klic-best model
and the associated model family members arbitrarily well. Remarkably, this is true
regardless if the model family is correct or incorrect.�ere are, however, subtle
yet important di�erences between both approaches concerning the ability to

empirically quantify the related uncertainties.

If experiments are sampled from design ξ, parameter maximum-likelihood
estimators (pmles) and parameter posteriors of a model µ ∈ M exhibit

remarkably similar behavior in the large-sample limit: both are described by a
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normal distribution around the klic-best parameter θ̄µ under the limit design
ξ.
If the model is correct under ξ, the covariance of both is asymptotically

equal to the inverse of nF̃ µ(θ̄µ , ξ). For parameter posteriors, this asymptotic
covariance formula remains valid even without the assumption of a correct

model. In contrast, parametermaximum-likelihood estimates (pmles) in possibly
incorrect models have an asymptotic covariance of n− S̃µ(θ̄ , ξ). Kleijn and van
der Vaart [144] discuss this discrepancy and show that the di�erence between the

asymptotic covariances can be substantial. In large samples, thematrix F̃ µ(θ̄µ , ξ)
can be well approximated by its empirical counterpart F̂ µn ∶= F µn (θ̂µ , dn , ξn). For
the matrix S̃µ(θ̄ , ξ), however, such an empirical approximation is not available.
In maximum-likelihood estimation and Bayesian inference, the distributions

of a pmle and a parameter posterior, respectively, describe the uncertainty about

the unknown klic-best parameter. In correct models, both approaches lead to

asymptotically compliant descriptions, which can be approximated empirically

based on F̂ µn . In possibly incorrect models, however, both approaches provide
asymptotically di�erent descriptions of the parameter uncertainty. Furthermore,

empirically quantifying the parameter uncertainty is generally possible only in

the Bayesian approach, but not using maximum-likelihood estimation.

�e lack of a consistent estimator for S̃µ(θ̄µ , ξ) in general does not rule out
the possibility that one exists under additional assumptions. In fact, as a main
result of our thesis, we propose in Sec. 3.4.1 a novel estimator for it under the

common assumptions of a normal model and known observation covariance.

For all models meeting these assumptions, this estimator allows us to empirically

quantify the parameter uncertainty in a maximum-likelihood framework even in

possibly incorrect models. �is estimator allows us to propose novel parameter-

robust design criteria in Chap. 5.

Discrete maximum-likelihood estimators (mles) like model maximum-

likelihood estimator (mmle) are considered rather infrequently in frequentist

inference, and less even their distribution. In particular, there is no equally general

result about the asymptotic distribution of mmles as there is for pmles, to the

best of our knowledge. Typically, a frequentist resorts to other techniques than

maximum-likelihood estimation, like statistical hypothesis testing, if confronted

with a �nite family of rival models.

In Bayesian inference, however, asymptotic approximations for model pos-

terior are available through the method of Laplace. �ey can be evaluated

from given data and thus allow to quantify model uncertainty empirically. So

far, however, strict regularity conditions for the asymptotic validity of those
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approximations are available only for correct models. �ere are reasons, however,

to hope that they can be generalized to possibly incorrect models, as in the case

of parameter posteriors.

In the next chapter, we consider the results provided here under the common

assumptions of normality and (local) linearity. Many well-known formulas can

be found there. �e results of this and the next chapter form the basis for optimal

experimental design (oed) strategies considered in the second part of this thesis.
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3. Inference under Normality and Linearity
for Practical Computation

[. . . ] the statistician knows [. . . ] that in nature there never
was a normal distribution, there never was a straight line, yet
with normal and linear assumptions, known to be false, he can
o�en derive results which match, to a useful approximation,
those found in the real world.

Box [43, Sec. 2.5]
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So far, few assumptions have been made about the distributions of the

observables and the corresponding predictions speci�ed by the model family.

�is chapter considers selected results of statistical inference under certain
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commonly considered additional assumptions: known observation covariances,

normally distributed observables and models, and locally a�ne-linear models.

While these assumptions are typically not exactly met in practice, they o�en lead

to conveniently simple results which are o�en useful approximations and are

the basis for e�cient numerical treatment and computation. �e results derived

here form the basis for several of the design criteria considered in Chaps. 4 to 5

as well as for the applications and numerical results of Chap. 9.

�e chapter is structured similarly to the previous one. Section 3.1 intro-

duces the additional assumptions and the associated notation and formalism.

Sections 3.2 and 3.3 contain the technical derivations of the Kullback-Leibler

information criterion (klic), the likelihood, information matrices and related

concepts under these assumptions.

Maximum-likelihood estimation is considered in Sec. 3.4, with a focus on

the quanti�cation of parameter uncertainty. As one of the central results of this

thesis, a novel “robust” formula for the asymptotic covariance of parameter

maximum-likelihood estimator (pmle) is proposed and examined. It is valid

even for models that are both incorrect and nonlinear, much in contrast to its
typically used “classic” counterpart. �is new results are the basis for the novel

parameter-robust design criteria introduced in Chap. 5. Section 3.5 considers

Bayesian inference under the additional assumptions.

3.1. Preliminaries: Central Assumptions
�e following scenario summarizes the fundamental assumptions made in this

chapter.

Scenario 3.1 (Statistical Inference)
(i) A process according to Def. 1.2 is given.

(ii) �e function q characterizing the process is unknown.

(iii) Data is available from the process, consisting of observations from

the observation domain Y, obtained from a sequence of statistically
independent experiments numbered , , . . . performed under known

conditions from the experimental domainX.

For all n ∈ N, the n-experiment exact design describing experiments 
to n is denoted ξn , the data resulting from these experiments is denoted
dn ∈ Yn , and the corresponding sample is denoted Dn .
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(iv) A model family from Def. 1.3 is available for describing the process.

For each model µ ∈ M, the parameter domain Qµ is compact (and

thus Lebesgue-measurable), and p(y ∣ x , µ, θµ) is twice continuously
di�erentiable and Lebesgue-measurable with respect to θµ for all y ∈ Y
and all x ∈ supp(ξn) for all n ∈ N.

(v) As a consequence of assumption (ii), it is not known whether the

model family is correct for any of the designs (ξn ∶ n ∈ N) and the
Kullback-Leibler information criterion (klic)-best models and klic-

best parameters for these designs are unknown.

�is scenario is identical to scenario 2.1 considered in the last chapter, it is repeated

here for completeness.

3.1.1. Notation and Terminology

We continue to use the notation introduced in Sec. 1.3.1. In particular, rn(x) ∶=
nξn(x) denotes the number of replications of the experiment under condition
x ∈ supp(ξn), and y j(x) ∈ Y denotes the observation resulting from replication
no. j ∈ {, . . . , rn(x)} of the experiment under x ∈ supp(ξn), for all n ∈ N.

Furthermore, q(dn ∣ ξn) denotes the probability density function (pdf) of the
sample Dn , and p(dn ∣ ξn , µ, θµ) denotes the corresponding pdf speci�ed by
model µ with parameter θµ , for all n ∈ N.

In addition, we use the following de�nitions. �e observation mean is

η̄(x) ∶= ∫
Y

yq(y ∣ x)dy = E [Yx], (3.1)

and the response of model µ ∈ M is

ηµ(x , θµ) ∶= ∫
Y

yp(y ∣ x , µ, θµ)dy, (3.2)

supposed that the expectations exist. Let ηµ
l
(x , θµ) denote the l-th component of

vector ηµ(x , θµ), and ∇ and ∇denote the gradient and the Hessian di�erential

operator, respectively, with respect to θµ . �e response Jacobian of model
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µ ∈ M is the ny × nθ µ matrix

Jµ(x , θµ) ∶= ∇ηµ(x , θµ), (3.3)

and response Hessians of model µ are the nθ µ × nθ µ matrices

Hµ
l
(x , θµ) ∶= ∇ηµ

l
(x , θµ), with l ∈ {, . . . , ny}. (3.4)

supposed that the response is su�ciently di�erentiable with respect to θµ .

3.1.2. Known Observation Covariances

De�nition 3.2 (Known Observation Covariances)

�e observation covariances are known under design ξ, if for all
x ∈ supp(ξ), the observation covariance C [Yx] exists, has full rank and
is known. Without loss of generality (wlog), we then assume that

C [Yx] = C [Ỹ(x , µ, θµ)] = I (3.5)

under all x ∈ supp(ξ), for all µ ∈ M, and all θµ ∈ Qµ . �e observation

covariances are known, i� they are known under all designs ξ ∈ Ξ.

�is is an assumption about an actual property of the process. In practice, we do
not know how well it is actually met. If experimental data is available, violations

of this assumption can in principle be detected (in a probabilistic sense) using

statistical hypothesis tests. Any practical application of a result ormethod derived

under this assumption should be accompanied by suitable statistical tests to detect

(in a probabilistic sense) if it is violated. Performing such tests are standard tasks

from applied statistics that we shall not mention anymore.

Note that if the observation covariances are known under ξ, then the
observation mean η̄(x) exists under all x ∈ supp(ξ).
Equation (3.5) mandates some explanation: If the observation covariances

Ω(x) ∶= C [Yx] are known under some design, the generalized standard
deviations Ω⁄(x) and their inverses Ω−⁄(x) exist and are known, too. �e
matrix square root is de�ned in�m. A.2. Instead of Yx , one can then consider
the normalized observables

Ỹ(x) ∶= Ω−⁄(x)Yx , (3.6)
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which have unit covariance by de�nition, since

C [Ỹ(x)] = C [Ω−⁄(x)Yx] = Ω−⁄(x)C [Yx]Ω−⁄
⊺(x)

= Ω−⁄(x)Ω(x)Ω−⁄⊺(x) = I . (3.7)

Any result based on Ỹ(x) can be generalized to an observable Yx with known,
full-rank covariance Ω(x) using the inverse of transformation (3.6). �e
corresponding transformation formulas for central quantities of this chapter

are summarized at the end of the chapter in Tab. 3.1 on p. 113.

Expressions (3.6) and (3.7) justify to assume wlog that C [Yx] = I. If the
observation covariance is known, this knowledge can be incorporated into the

model formulation, such that one can wlog assume that C [Ỹ(x , µ, θµ)] = I.

3.1.3. Normal Processes and Models

De�nition 3.3 (Normal Process under Known Observation Covariances)

Suppose the observation covariances are known under design ξ. A process q is
normal under ξ, i� for all y ∈ Y and under all x ∈ supp(ξ),

q(y ∣ x) = ϕ(y ∣ η̄(x), I) (B.b)= exp(− 
 ∥η̄(x) − y∥ + ny ln(π)).

(3.8)

�e process is normal, i� it is normal under all designs ξ ∈ Ξ.

Like Def. 3.2, this is an assumption about the property of the actual process whose
validity we do not know in practice. Any practical application of results based

on Def. 3.3 should likewise be accompanied by suitable statistical tests to ensure

that it properly re�ects the actual process under consideration.

In many cases, assuming a normal distribution for an observable can be

justi�ed by the central limit theorem, which roughly says that the observable is

approximately normal if its randomness has its source in many additive random

contributions, regardless of their individual distribution laws.
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De�nition 3.4 (Normal Model under Known Observation Covariance)

Suppose the observation covariances are known under design ξ. Model µ ∈ M
is normal under ξ, i� for all y ∈ Y, all θµ ∈ Qµ and under all x ∈ supp(ξ),

p(y ∣ x , µ, θµ) = ϕ(y ∣ ηµ(x , θµ), I)
(B.b)= exp(− 

 ∥ηµ(x , θµ) − y∥ + ny ln(π)), (3.9)

and the response ηµ(x , θµ) is Lebesgue-measurable with respect to θµ for all
x ∈ supp(ξ). �e model is normal, i� it is normal under all designs ξ ∈ Ξ.

�is is an assumption about a choice of the scientist, that is twofold motivated by
the previous assumptions.

If we actually assume that process is normal and the observation covariance
is known, and regard a model as an attempt to describe the process, it would be

plainly illogical to consider any other model class than that speci�ed by Def. 3.4.

Second, even if we do not assume the process to be normal, but still know the
observation covariance, the principle of maximum entropy (see Appendix C

on p. 302) suggests using a normal model, since that has minimal “prejudice”

among all distributions with given covariance, see Prop. C.9.

3.1.4. Locally A�ne-Linear Models

De�nition 3.5 (Locally A�ne-Linear Model)

Model µ ∈ M is locally affine-linear around parameter θ̃µ ∈ Qµ

under design ξ, i� under all x ∈ supp(ξ) and all θµ in a neighborhood of θ̃µ ,
its response ηµ(x , θµ) exist, is Lebesgue-measurable and di�erentiable with
respect to θµ , and the error of approximation

ηµ(x , θµ) ≈ ηµ(x , θ̃µ) + Jµ(x , θ̃)(θµ − θ̃µ) (3.10)

is small (in a yet to be de�ned sense). It is locally affine-linear around

θ̃µ , i� it is locally a�ne-linear around θ̃µ ∈ Qµ under all designs ξ ∈ Ξ.

�is de�nition purposely leaves open how to measure the error of the approxi-

mation, and when to consider it as “small”. �e technical details could easily be
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speci�ed, but are not required in this thesis. If model µ is locally a�ne-linear
around θ̃µ , we write its approximate response as

ηµ(x , θµ) ≈ Jµ(x , θ̃)θµ + hµ(x , θ̃µ),
with hµ(x , θ̃µ) ∶= ηµ(x , θ̃µ) − Jµ(x , θ̃µ)θ̃µ . (3.11)

3.2. Measuring the Process–Model Discrepancy
We are now equipped to consider the de�nitions related to process–model

discrepancy from Sec. 1.4 under the additional assumptions of this chapter.

If the observation covariances are known and model µ ∈ M are normal and

correct, process andmodel can di�er only in theirmeans η̄ and ηµ , respectively. A
correct parameter (Def. 1.6) can thus be characterized in the following simpli�ed

way.

Corollary 3.6 (Correct Parameters under Known Observation Covariances
and Normal Models)

Suppose that the observation covariances are known (under design ξ) and
model µ ∈ M is normal (under ξ). �en, parameter θµ ∈ Qµ is correct (under

ξ), i� the process is normal (under ξ) and

η̄(x) = ηµ(x , θµ) (3.12)

under all x ∈X (under all x ∈ supp(ξ)).

�e de�nitions of correctness for models and model families (Items (ii) and (iii)

of Def. 1.6) remain unchanged.

De�nition 3.7 (Noncentrality)

Suppose the observation covariances are known under design ξ and the
response ηµ(x , θµ) of model µ ∈ M exist under all x ∈ supp(ξ). �e
noncentrality of model µ is

λµ(θµ , ξ) ∶= ∑
x∈supp(ξ)

ξ(x)∥ηµ(x , θµ) − η̄(x)∥ . (3.13)
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3. Inference under Normality and Linearity

If both process and model are normal, the distributions speci�ed by process and

model can di�er only in their respective means η̄ and ηµ . Being a weighted sum
of squares over their di�erence, the noncentrality λµ(θµ , ξ)measures the overall
discrepancy between model µ with parameter θµ and the process under design
ξ.

Corollary 3.8 (KLIC and KLIC-Best Parameters and Models under Known
Observation Covariances and Normality)

Suppose that under design ξ, the observation covariances are known and the
process and all models µ ∈ M are normal. �en the following statements hold.

(i) �e Kullback-Leibler information criterion (klic) from Def. 1.7 equals

half the noncentrality,

δ(µ, θµ , ξ) = 
 λµ(θµ , ξ). (3.14)

(ii) Parameter θµ(ξ) is klic-best under design ξ, i�

θµ(ξ) ∈ argmin
θ µ∈Qµ

λµ(θµ , ξ). (3.15)

�e parameter is identifiable, i� it is a uniqueminimizer.

(iii) Model µ(ξ) is klic-best under design ξ, i�

µ(ξ) ∈ argmin
µ∈M

λµ(θµ(ξ), ξ). (3.16)

�e model is identifiable, i� it is a uniqueminimizer.

Proof Item (i) follows from the expression for the Kullback-Leibler distance (kld)
between normal distributions from (�m. C.10) and the de�nition of the noncentrality

(Def. 3.7). Based thereon, (ii) and (iii) follow immediately from the de�nition of best

parameters and best models (Def. 1.9). ◻
Recall that the klic (like the kld) is generally not a metric in the space of
distributions. Under the considered additional assumptions, it reduces to the

noncentrality, which notably is a metric between the model responses and the
observation means under the given design.
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3.3. Likelihood and InformationMatrices

�e central results frommaximum-likelihood estimation and Bayesian inference

considered in the previous chapter are expressed in terms of the likelihood and

the information matrices introduced in Sec. 2.2. Here, we derive the particular

simpler forms that these quantities take under the additional assumptions of this

chapter. �is section contains the technical derivations only, its results become

meaningful in the context of maximum-likelihood and Bayesian inference

considered in the subsequent Secs. 3.4 and 3.5.

3.3.1. Likelihood

De�nition 3.9 (Sum of Squared Residuals (SSR))

Let dn ∈ Yn be the data obtained under the n-experiment exact design ξn and
let rn(x) ∶= nξn(x) denote the number of replications of the experiment under
x ∈ supp(ξn). Suppose that under ξn , the observation covariances are known
and the response ηµ(x , θµ) exists. �e sum of squared residuals (ssr)

of model µ is

sµ(θµ , dn , ξn) ∶= 
n∑

x∈supp(ξn)

rn(x)

∑
j=

∥ηµ(x , θµ) − y j(x)∥

 . (3.17)

A minimizer of the ssr with respect to θµ ∈ Qµ is a least-squares (lsq)

estimate. �e ssr is the empirical counterpart of the noncentrality.

Corollary 3.10 (Likelihood and Parameter and Model MLEs under Known
Observation Covariances and Normal Models)

Let dn be the data obtained under the n-experiment exact design ξn . �e
following statements hold if the observation covariances under ξn are known
and all models µ ∈ M are normal under ξn .

(i) �e log-likelihood is proportional to the negative ssr,

ln p(dn ∣ ξn , µ, θ
µ
) = − n (s

µ
(θ µ , dn , ξn) + ny ln(π)). (3.18)
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(ii) Parameter θ̂µ(dn , ξn) is a parameter maximum-likelihood estimate
(pmle), i�

θ̂µ(dn , ξn) ∈ argmin
θ µ∈Qµ

sµ(θµ , dn , ξn), (3.19)

that is, i� it is a least-squares (lsq) estimate.

(iii) Model µ̂(dn , ξn) is a model maximum-likelihood estimate (mmle), i�

µ̂(dn , ξn) ∈ argmin
µ∈M

sµ(θ̂µ(dn , ξn), dn , ξn). (3.20)

Proof Item (i) results from substituting the probability density function (pdf) of a normal
distribution (B.12b) into the log-likelihood (2.5) and writing the result using the ssr (3.17).

Items (ii) and (iii) follow immediately by applying (i) to Def. 2.13. ◻

3.3.2. Information Matrices
It is convenient to de�ne the additional matrices. Let ξ be some design and
µ ∈ M. Suppose that under all x ∈ supp(ξ), the observation mean η(x) exists
and the response ηµ(x , θµ) is twice di�erentiable with respect to θµ . Let η̄ l(⋅)
and ηµ

l
(⋅) denote the l-th component of η̄(x) and ηµ(⋅), respectively. We de�ne

the following matrice:

Mµ(θµ , ξ) ∶= ∑
x∈supp(ξ)

ξ(x)Jµ⊺(x , θµ)Jµ(x , θµ), (.)

Ñ µ(θµ , ξ) ∶= ∑
x∈supp(ξ)

ξ(x)
ny

∑
l=

(ηµ
l
(x , θµ) − η̄ l(x))Hµl (x , θ

µ), (.)

R̃µ(θµ , ξ) ∶= (Mµ(θµ , ξ) + Ñ µ(θµ , ξ))−Mµ(θµ , ξ)

⋅ (Mµ(θµ , ξ) + Ñ µ(θµ , ξ))− . (3.23)

�ese matrices depend on the unknown observation mean, but do not involve

any data.

Let ξn be a n-experiment exact design ξn , and let rn(x) ∶= nξn(x) denote
the number of replications of the experiment under x ∈ supp(ξn). Suppose that
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ηµ(x , θµ) is twice di�erentiable with respect to θµ under all x ∈ supp(ξn). Let dn
be data obtained under ξn , and yjl(x) be the l-th component of the observation
made in the j-th repetition of the experiment under x and de�ne

N µ(θµ , dn , ξn) ∶= 
n∑

x∈supp(ξn)

rn(x)

∑
j=

ny

∑
l=

(ηµ
l
(x , θµ) − yjl(x))Hµl (x , θ

µ).

(3.24)

�is matrix is data-dependent, but does not involve any unknown function

derived from the process.

All these matrices are nθ µ × nθ µ and symmetric. Furthermore,Mµ and R̃µ are
symmetric positive semi-de�nite (spsd), if they exist. If evaluated for an exact

n-experiment design, all matrices are of O() with respect to n.

�eorem 3.11 (Information Matrices under Known Observation Covari-
ances, Normal Models and Correctness)
Suppose that under design ξ and under exact design ξn , the observation
covariances are known, model µ ∈ M is normal, and its responses ηµ(x , θµ)
are di�erentiable twice in θµ . Let dn be the data obtained under ξn . �en,

F µn (θµ , dn , ξn) = Mµ(θµ , ξn) + N µ(θµ , dn , ξn), (.)

F̃ µ(θµ , ξ) = Mµ(θµ , ξ) + Ñ µ(θµ , ξ), (.)

G̃µ(θµ , ξ) = Mµ(θµ , ξ), (.)

and all matrices exist. If Mµ(θµ , ξ) + Ñ µ(θµ , ξ) is invertible, also

S̃µ(θµ , ξ) = R̃µ(θµ , ξ). (3.28)

If, in addition, the model is correct under ξ and θ̄µ is a corresponding correct
parameter, then

F̃ µ(θ̄µ , ξ) = G̃µ(θ̄µ , ξ) = Mµ(θ̄µ , ξ), (.)

and the matrices exit. If Mµ(θ̄µ , ξ) has full rank (and is thus invertible), also

S̃µ(θ̄µ , ξ) = (Mµ(θ̄µ , ξ))− . (3.30)
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Proof For clarity, we omit the model index µ in the proof.
�e l-th component of the vectorYx , y, y j(x), and η(x) are denotedYl(x), y l , yjl(x),

and η l(x), respectively. As the observation covariances are known, η̄(x) = E [Yx] exists
and C [Yx] = I for all the conditions from the support of ξ and ξn .
Since the model is normal, ln p(y ∣ x , θ) = − 

 ∥η(x , θ) − y∥ + const. �e correspond-
ing gradient and Hessian with respect to the parameter are

∇ln p(y ∣ x , θ) (A.)
= −J⊺(x , θ)(η(x , θ) − y) and (.)

∇

ln p(y ∣ x , θ) (A.)

= −J⊺(x , θ)J(x , θ)

−

ny

∑
l=

(η l(x , θ) − y l)H l(x , θ), (3.32)

respectively. Equalities (3.25)–(3.27) are then derived as follows:

Fn(θ , dn , ξn)
(.)
= − 

n∑
x∈supp(ξn)

rn(x)

∑
j=
∇


ln p(y j(x) ∣ x , θ)

(.)
= 

n∑
x∈supp(ξn)

rn(x)

∑
j=

⎛

⎝
J⊺(x , θ)J(x , θ) +

ny

∑
l=

(η l(x , θ) − yjl(x))H l(x , θ)
⎞

⎠

(.),(.)
= M(θ , ξn) + N (θ , dn , ξn), (.)

F̃(θ , ξ) (.)= −∑
x∈supp(ξ)

ξ(x)E [∇

ln p(Yx ∣ x , θ)]

(.)
= ∑
x∈supp(ξ)

ξ(x)
⎛

⎝
J⊺(x , θ)J(x , θ) +

ny

∑
l=

(η l(x , θ) −E [Yl(x)])H l(x , θ)
⎞

⎠

(.),(.)
= M(θ , ξ) + Ñ (θ , ξ), and (.)

G̃(θ , ξ) (.)= ∑
x∈supp(ξ)

ξ(x)C [∇ln p(Yx ∣ x , θ)] (.)

(.)
= ∑
x∈supp(ξ)

ξ(x)C [−J⊺(x , θ)(η(x , θ) − Yx)] (.)

= ∑
x∈supp(ξ)

ξ(x)(J⊺(x , θ)C [Yx]J(x , θ)) (.)

= ∑
x∈supp(ξ)

ξ(x)J⊺(x , θ)J(x , θ) (.)
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(.)
= M(θ , ξ). (3.39)

Based thereon, (3.28) follows from (2.8) and (3.23). Under the assumption of a correct

model, η i(θ̄)− η̄ i =  for all i ∈ {, . . . , s}, see Cor. 3.6, and thus Ñ (θ̄ , ξ) ≡ . Substitution
into (3.25)–(3.28) leads to (3.29) and (3.30). ◻

It is important to realize that none of these results relies on the assumption that

the observables are normally distributed.

Corollary 3.12 (Identi�ability of KLIC-Best Parameters underKnownObser-
vation Covariances, Normal Models and Correctness)

Suppose that under design ξ, the observation covariances are known, model
µ ∈ M is normal, and the model response ηµ(θµ , x) is twice continuously
di�erentiable with respect to θµ . Let θ̄µ be an interior point ofQµ . �en, under

regularity conditions, the following statements hold.

(i) If θ̄µ is an identi�able Kullback-Leibler information criterion (klic)-
best parameter under ξ and Mµ(θµ , ξ) + Ñ µ(θµ , ξ) has constant rank
for all θµ in an open neighborhood of θ̄µ , thenMµ(θ̄µ , ξ) + Ñ µ(θ̄µ , ξ)
has full rank (and is thus invertible).

(ii) If θ̄µ is a klic-best parameter under ξ andMµ(θ̄µ , ξ) + Ñ µ(θ̄µ , ξ) has
full rank (and is thus invertible), then θ̄µ is identi�able.

If model µ is correct under ξ and θ̄µ is an interior point ofQµ , also the next

two statements hold.

(iii) If θ̄µ is an identi�able correct parameter under ξ and Mµ(θµ , ξ) has
constant rank for all θµ from an open neighborhood of θ̄µ , then
Mµ(θ̄µ , ξ) has full rank (and is thus invertible).

(iv) If θ̄µ is a correct parameter under ξ and Mµ(θ̄µ , ξ) has full rank (and
is thus invertible), then θ̄µ is identi�able.

Proof �e proof follows from applying�m. 3.11 to �m. 2.4. ◻
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3.4. Maximum-Likelihood Estimation

�is section deals with maximum-likelihood estimation in possibly incorrect

models under the additional assumptions of known observation covariances and

normal processes and models. In Sec. 3.4.1 we present formulas for the large-

sample covariance of parametermaximum-likelihood estimators (pmles), which

apply to models that may be both nonlinear and incorrect. �ey are essentially
special cases of the general formulas given in Sec. 2.4.2, but have to the best of our

knowledge not been stated explicitly so far. In Sec. 3.4.2 we examine the relation

of these formulas to the “classic” ones which rely on assumptions of correctness

or local linearity. As a main result of this thesis, we show in Sec. 3.4.3 that the

asymptotic pmles covariance in possibly incorrect normal nonlinear models can
in fact be consistently estimated – much in contrast to the general case discussed

in Sec. 2.4. Section 3.4.4 describes how these results are applied in practice.

�roughout this section wemake the following assumptions:�e experiments

are sampled from design ξ, such that the design sequence ξ , ξ , . . . converges to
ξ. �e Kullback-Leibler information criterion (klic)-best parameter θ̄µ under
ξ is identi�able in each model µ ∈ M, and the klic-best model µ̄ under ξ
is identi�able. �ese are the assumptions made in the general treatment of

maximum-likelihood estimation in Sec. 2.4. In addition, we assume in this

section that under ξ and under all (ξn ∶ n ∈ N), the observation covariances
are known and all models µ ∈ M are normal.

Furthermore, Q̂µn ∶= θ̂µ(Dn , ξn) denotes a pmle of model µ ∈ M and

θ̂µn ∶= θ̂µ(dn , ξn) a corresponding estimate. Likewise, M̂n ∶= µ̂(Dn , ξn)
denotes a model maximum-likelihood estimator (mmle) and µ̂n ∶= µ̂(dn , ξn) a
corresponding estimate.

3.4.1. Large-Sample Properties of Parameter MLEs

Section 2.4.2 discussed the large-sample behavior of pmles in general. Its main

result (2.21) is that under suitable regularity conditions, pmles are asymptotically

normal with mean θ̄µ and covariance 
n
S̃µ(θ̄µ , ξ), where S̃µ is the expected

sandwich information from (2.8). �e main e�ect of the additional assumptions

considered here are simpli�ed expressions for the asymptotic pmle covariance,

direct consequences of �m. 3.11.

Under these assumptions, S̃µ simpli�es as stated in (3.28), leading to the large-
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sample approximation

C [Q̂µn]
∞≈ 
n
R̃µ(θ̄µ , ξ) (3.40)

for pmle covariance, with R̃µ from (3.23). �is approximation is justi�ed
even in models that are incorrect. In other words, it is robust with respect

to systematical model errors. We refer to its right-hand side as the robust

covariance formula for pmles. It depends on the unknown process both

via the matrix R̃µ and via the best parameter θ̄µ .

Regularity Conditions

�e regularity conditions for asymptotic normality of pmle in general are dis-

cussed in Sec. 2.4.2,Under the considered assumptions, they simplify signi�cantly.

Apart from some technicalities, (3.40) requires that

(a) the experiments are sampled from design ξ, as already mentioned,

(b) the model response ηµ(θµ , x) is twice continuously di�erentiable with
respect to θµ for all x ∈ supp(ξ),

(c) θ̄µ ∈ Qµ is an identi�able best parameter of model µ,

(d) θ̄µ is an interior point ofQµ ,

(e) Mµ(θµ , ξ) + Ñ µ(θµ , ξ) has constant rank for all θµ from an open
neighborhood of θ̄µ , and

(f) Mµ(θ̄µ , ξ) has full rank.

Condition (a) guarantees su�cient “repetition” in the sample, required for

applying central limit theorems and laws of large numbers. Condition (b)

is necessary to ensure that the involved information matrices exist and are

continuous with respect to the parameter. Condition (c) makes the inference

problemwell posed. Condition (d) ensures that an open neighborhood of θ̄ exists.
Together with the latter, condition (e) ensures that Mµ(θ̄µ , ξ) + Ñ µ(θ̄µ , ξ) is
invertible, according to Cor. 3.12(i). Finally, condition (f) is necessary to ensure

that R̃µ(θ̄µ , ξ) has full rank and is thus a proper covariance matrix.
Note that a normal process is not required. If a normal process is assumed, the

conditions can be simpli�ed further based on the results summarized in Sec. 3.2.
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Special Case: Correct Model

Suppose model µ is correct under ξ and let θ̄µ be a corresponding correct
parameter. Relation (2.24) states the asymptotic distribution of pmles for correct

models in general. Under the additional conditions considered here, the involved

information matrices simplify according to (3.29), leading to

C [Q̂µn]
∞≈ (nMµ(θ̄µ , ξ))− . (3.41)

�is approximation is a well-known result that can be found in many textbooks,

for example in those of Pawitan [200, Chap. 9] or of Lehmann and Casella [170,

Chap. 6]. We refer to its right-hand side as the classic covariance formula

for pmles. It can also be derived by replacing the correctness assumption by the

assumption that the model is locally a�ne-linear around θ̄µ .

�e correctness assumption implies that Ñ µ(θ̄µ , ξ) = . Accordingly,
conditions (e) and (f) simplify to the requirement that Mµ(θµ , ξ) has constant
rank in an open neighborhood of θ̄µ .

3.4.2. Comparison of Classic and Robust Parameter MLE
Covariance

If the model is correct or locally a�ne-linear around the best parameter, the

asymptotic pmle covariance is described by the classic covariance formula (3.41).

If the model is both nonlinear and incorrect, this formula is not longer adequate
and its robust counterpart (3.40) needs to be used. What error is made if the

classic formula is applied in this case nevertheless?

For clarity, consider a particular model of the family and omit the model index

µ and use the abbreviations M̄ ∶= M(θ̄ , ξ), ¯̃N ∶= Ñ (θ̄ , ξ), and ¯̃R ∶= R̃(θ̄ , ξ).
�e question can then be restated as “What is the error when approximating
¯̃R through M̄−?” To answer this question we �rst introduce an alternative

representation of R̃µ .
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Series Representation of Matrix R̃

De�ne the nonlinearity1

γ(θ , ξ) ∶= ∑
x∈supp(ξ)

ξ(x)
ny

∑
j=

∥H j(x , θ)∥

F . (3.42)

For a model whose responses are a�ne-linear in θµ , γ(⋅, ξ) ≡ . �is de�nition,
together with the de�nitions of the noncentrality λ from (3.13) and of matrix Ñ
from (3.22), imply the inequality

∥Ñ (θ , ξ)∥F ⩽ λ(θ , ξ)γ(θ , ξ), for all θ ∈ Q. (3.43)

�eorem 3.13 (Series Representation of Matrix R̃)

Let ξ be some design. Suppose M(θ , ξ) + Ñ (θ , ξ) is invertible and M(θ , ξ)
has full rank (and is thus invertible) and

γ(θ , ξ)λ(θ , ξ) < ∥M−(θ , ξ)∥−F . (3.44)

�en, the matrix R̃ from (3.23) can be expressed as the power series

R̃(θ , ξ) = M−(θ , ξ)
∞

∑
k=

(k + )(−Ñ (θ , ξ)M−(θ , ξ))k . (3.45)

Proof For brevity we omit the arguments θ and ξ in the proof. Since M is invertible, R̃
can be rewritten as

R̃ = (M + Ñ )
−M(M + Ñ )

−
= ((I + Ñ M−

)M)
−
M((I + Ñ M−

)M)

= M−
(I + Ñ M−

)
−
MM−

(I + Ñ M−
)
−
= M−

(I + Ñ M−
)
−
. (3.46)

�e Neumann series ∑
∞

i=(−Ñ M
−
)
i
converges to (I + Ñ M−

)
−
, if ∥Ñ M−

∥

F
< .

Details can be found in most textbooks of functional analysis, for example that of Werner

[264, Chap. 2]. If γ λ = , the latter condition is satis�ed, since then Ñ =  and ∥Ñ M−
∥

F
=

. For the case γ λ ≠  we get the upper bound ∥Ñ M−
∥

F
⩽ ∥Ñ ∥


F
∥M−

∥

F
⩽ γ λ∥M−

∥

F

1�e provided de�nition is not a generally suitable measure of nonlinearity, as it only takes into
account curvature and ignores all higher derivatives. Since the latter do not play a role in the
considerations of this section, the provided de�nition su�ces.

99



3. Inference under Normality and Linearity

from the sub-multiplicativity of the norm and from (3.43). �erefore, the inequality

γ λ∥M−
∥

F
<  from (3.44) is a su�cient condition for the convergence of the Neumann

series. Substituting the series into (3.46) gives

R̃ = M−
(
∞

∑
i=

(−Ñ M−
)
i
)



= M−
∞

∑
i , j=

(−Ñ M−
)
i+ j
. (3.47)

To transform this double sum into a single one of the form∑
∞

k= ck(−Ñ M
−
)
k
, we have

to appropriately weight each summand with its multiplicity in the double sum, denoted

ck . Calculating ck amounts to answering the question “how many pairs (i , j) ∈ N ×N

are there with i + j = k?” �e answer ck = k +  leading to (3.45) can also be formally
derived from the multinomial theorem. ◻
Equipped with this theorem we can make some quick qualitative considerations

considering the sought-a�er approximation error. We use the abbreviations

γ̄ ∶= γ(θ̄ , ξ) and λ̄ ∶= λ(θ̄ , ξ). If theorem applies, it tells us that

¯̃R = M̄− − M̄− ¯̃N M̄− + M̄− ¯̃N M̄− ¯̃N M̄− +O((γ̄ λ̄)). (3.48)

In otherwords, the classic covariance formula (3.41) using M̄− is an approximation
of zeroth order in γ̄ λ̄ of its robust counterpart (3.40) using ¯̃R .�e classic formula
can hence be expected to be adequate for models that are not too nonlinear in

the parameter or do not exhibit too much systematical error in the sense that the

product γ̄ λ̄ is substantially smaller than ∥M̄−∥−F . In other words, the asymptotic
covariance of pmles is a�ected by systematical model errors only if its responses

are nonlinear, and depends on second derivatives of the responses only if the

model is incorrect.

Approximation Error

�e relative error made when using M̄− to approximate ¯̃R is

∥M̄− − ¯̃R∥
F

∥M̄−∥F
. (3.49)

A short calculation using the series representation (3.45), inequality (3.43),

the triangle inequality and the sub-multiplicity of ∥⋅∥F provides the series of
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3.4. Maximum-Likelihood Estimation

inequalities

∥M̄− − ¯̃R∥
F

∥M̄−∥F

(.)=
∥M̄− − M̄−∑∞k=(k + )(− ¯̃N M̄−)

k

∥
F

∥M̄−∥F
(.)

⩽ ∥I −
∞

∑
k=

(k + )(− ¯̃N M̄−)
k

∥
F

(.)

= ∥I − I −
∞

∑
k=

(k + )(− ¯̃N M̄−)
k

∥
F

(.)

⩽
∞

∑
k=

(k + )∥(− ¯̃N M̄−)
k

∥
F

(.)

⩽
∞

∑
k=

(k + )∥ ¯̃N k∥
F
∥M̄−k∥F (.)

⩽
∞

∑
k=

(k + )(λ̄γ̄)
k/∥M̄−∥kF . (3.55)

If λ̄γ̄ is su�ciently smaller than ∥M̄−∥−F , the �rst summand (λ̄γ̄)⁄∥M̄−∥F
dominates the sum in the last expression and is hence a good approximation for

the error bound.

Remarkably, only the product of noncentrality λ̄ and incorrectness γ̄ enters
the error bound. Hence, a su�ciently small systematic error can compensate for
large nonlinearity of the model and vice versa.�is might explain why the classic
covariance formula o�en turns out to be adequate even if its premise of a correct

model is violated.

�e error bound (3.50) depends on quantities that are unknown practice.

As discussed in the next section, M̄− can under mild conditions be estimated

consistently. Based on the strong consistency of the pmle, it should be possible

to show the same for λ̄ and γ̄ .

3.4.3. Consistent Estimation of Parameter MLE Covariance

Neither the classic nor the robust formulas for the pmles covariance can be

evaluated in practice. Under certain conditions examined in this section, they

can be estimated consistently by their empirical counterparts. �is topic was

considered on a general level in Sec. 2.4.3.
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3. Inference under Normality and Linearity

�is section uses the same setting and notation as the previous one, with the

di�erence that Q̂µn may be any strongly consistent estimator of the best parameter
θ̄µ under ξ, and is not necessarily a parameter maximum-likelihood estimate
(pmle).

Correct Models

Let us start with the classic assumption that model µ ∈ M is correct under ξ and
let θ̄µ denote a corresponding correct parameter. �e pmle covariance is then

asymptotically given by (3.41), and is unknown since θ̄ unknown. Under these
assumptions, �m. 3.11 can be applied to (2.25), leading to

Mµ(Q̂µn , ξn) + N µ(Q̂µn ,Dn , ξn)
a.s.Ð→ Mµ(θ̄µ , ξ)

element-wise, for n → ∞. (3.56)

In fact, all elements ofN µ(Q̂µn ,Dn , ξn) converge almost surely to zero in a correct
model, so that

Mµ(Q̂µn , ξn)
a.s.Ð→ Mµ(θ̄µ , ξ) element-wise, for n →∞. (3.57)

�is relation could also be derived more directly using the strong consistency

of pmles and a generalized variant of Slutsky’s theorem stated in �m. B.4.

�e required regularity conditions are essentially a subset of those required for

asymptotic normality, particularly conditions (a)–(d).

IfMµ(θµ , ξ) has constant rank in vicinity of θ̄µ , it has full rank and is invertible
Cor. 3.12(iii), so that the inverse of Mµ(Q̂µn , ξn) exists asymptotically almost
surely. �erefore, (nMµ(Q̂µn , ξn))

−
is a strongly consistent estimator of the

asymptotic pmle covariance (nMµ(θ̄µ , ξ))−.
One o�en encounters the following alternative derivation for this classic result.

Assume that the model is possibly incorrect, but locally a�ne-linear around

Q̂µn under ξ. It is a classic result of linear maximum-likelihood theory, found
in most textbooks, that the exact pmle covariance in the linearized model is
(nMµ(Q̂µn , ξn))

−
, regardless of the sample size n. �is expression can then be

considered as approximation for the pmle covariance in the actually nonlinear
model.

Exchanging the correctness assumption with a linearity assumption thus leads

to the same formula, a result that does not surprise considering the discussion
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3.4. Maximum-Likelihood Estimation

of the last section.

Possibly Incorrect Models

�e situation gets more complicated without the classic assumptions of correct-

ness and/or local linearity. We know from Sec. 2.4.2 that the pmle covariance

is in general – without any assumptions of linearity, normality or correctness –

asymptotically given by 
n
S̃µ(θ̄µ , ξ), see (2.21). Unfortunately, no generally valid

consistent estimator for S̃µ(θ̄µ , ξ) is available, as discussed at the end of Sec. 2.4.3.
In the following we show that in the particular case of known observation

covariances and a normal model, where S̃µ(θ̄µ , ξ) = R̃µ(θ̄µ , ξ), such an
estimator does in fact exist, even if themodel is nonlinear and incorrect. Applying

�m. 3.11 to (2.27) tells us that

Mµ(Q̂µn , ξn) + N µ(Q̂µn ,Dn , ξn)
a.s.Ð→ Mµ(θ̄µ , ξ) + Ñ µ(θ̄µ , ξ) (3.58)

element-wise for n →∞, under regularity assumptions including conditions (a)–
(d).

If we add condition (e), it follows from Cor. 3.12(i) that the sum ofMµ(θµ , ξ)
and Ñ µ(θµ , ξ) is invertible in vicinity of θ̄µ . �erefore, the inverse of the sum
Mµ(Q̂µn , ξn)+N µ(Q̂µn ,Dn , ξn) exists asymptotically almost surely and can thus
be used to consistently estimate the �rst and the last factor of R̃µ(θ̄ , ξ) de�ned
in (3.23).

It remains to �nd a strongly consistent estimator of the middle factor of

R̃µ(θ̄ , ξ). One can show that �rst and second summand in the le�-hand side
of (3.58) converge separately to the corresponding summands in the right hand
side. Or, alternatively, one can use the generalized variant of Slutsky’s theorem

(�m. B.4) and the strong consistency of pmles to show that

Mµ(Q̂µn , ξn)
a.s.Ð→ Mµ(θ̄µ , ξ) element-wise, forn →∞, (3.59)

again under certain regularity conditions, notably conditions (a)–(d). Adding

condition (f) ensures that Mµ(Q̂µn , ξn) and thus R̃µ(θ̄ , ξ) has full rank asymp-
totically. �e following conjecture summarizes this argumentation.

Conjecture 3.14 (Consistent Estimation of PMLE Covariance in Possibly
Incorrect Normal Models under Known Observation Covariances)
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3. Inference under Normality and Linearity

Suppose that under design ξ, the observation covariances are known andmodel
µ ∈ M is normal. De�ne the empirical counterpart of R̃µ(θµ , ξ) as

Rµ(θµ , dn , ξ) ∶= (Mµ(θµ , ξ) + N µ(θµ , dn , ξ))−Mµ(θµ , ξ)
⋅ (Mµ(θµ , ξ) + N µ(θµ , dn , ξ))− , (3.60)

supposed the inverse exists. Under the same regularity conditions ensuring

the asymptotic normality of pmles, notably conditions (a)–(f) on p. 97,

Rµ(Q̂µn ,Dn , ξn) exists asymptotically almost surely and element-wise

Rµ(Q̂µn ,Dn , ξn)
a.s.Ð→ R̃µ(θ̄µ , ξ), for n →∞ (3.61)

�is conjecture suggests that 
n
Rµ(Q̂µn ,Dn , ξn) is a strongly consistent estimator

of the asymptotic pmle covariance 
n
R̃µ(θ̄µ , ξn) in normal models with known

observation covariances. Under the common assumptions of known observation
covariances and a normal model, the asymptotic covariance of pmles can esti-
mated consistently, even in models that are nonlinear and incorrect, and under
independently but not identically distributed (inid) experiments. To the best of our
knowledge, this is a previously unstated result. It permits to empirically quantify

the parameter uncertainty and to make parameter-robust predictions. We use it

eventually to propose novel parameter-robust design criteria in Chap. 5.

�e key to this result is the equality G̃µ(θµ , ξ) = Mµ(θµ , ξ) from (3.27) which
relies on known observation covariances and a normal model. It can be seen

in (3.35) and (3.37) that in fact both assumption are vital: Under normality, the

covariance of the log-likelihood gradient reduces to a linear function of the

observation covariances, and only if the latter are known the resulting formula

can actually be evaluated.

3.4.4. Practical Application

To ease the following discussion presume that all regularity conditions are

satis�ed that ensure the consistency and asymptotic normality of parameter

and mmles.
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3.4. Maximum-Likelihood Estimation

Empirical Approximations of Unknown KLIC-Best Parameters and Models

In practice, a pmle θ̂µn can be determined from the data dn obtained under design
ξn by minimizing the sum of squared residuals (ssr) sµ(θµ , dn , ξn) with respect
to θµ ∈ Qµ . It is an empirical approximation for the corresponding unknown

best parameter,

θ̄µ
∞≈ θ̂µn . (3.62)

When we say that the approximation is empirical, we mean that it can be

evaluated based on the data, and does not depend on any unknown quantities.

�e pmle is asymptotically normal with mean θ̄µ and covariance given by 
n

times the matrix R̃µ(θ̄µ , ξ), see (3.40). �is matrix is unknown, but can be
approximated by its empirical counterpart,

R̃µ(θ̄µ , ξ) ∞≈ R̂µn ∶= Rµ(θ̂µn , dn , ξn), (3.63)

see Conj. 3.14. Put together, these relations suggest the empirical approximation

p(θ̂µ ∣ µ, ξn)
∞≈ ϕ(θ̂µ ∣ θ̂µn , n R̂

µ
n) (3.64)

for the unknown distribution of a pmle. It is the counterpart of (2.33) for a normal

model with known observation covariances. In contrast to the latter, (3.64) is even
valid if themodel is incorrect.Common characterizations of parameteruncertainty
like con�dence regions can be derived from it and remain meaningful regardless

if the model if correct or not.

�e matrix Rµ explicitly depends on the data, and can thus be evaluated only
a�er performing experiments. In contrast, thematrixMµ appearing in the classic

counterpart of (3.64) is independent of the data, and can thus be evaluated even

before performing experiments. It is thus not possible to use (3.64) directly for
designing optimal experiments with the aim of identifying the best parameter.

One can, however, use it to robustify sequential design criteria with respect to the

current parameter uncertainty. We use (3.64) in Chap. 5 to derive such enhanced

parameter-robust design criteria.

Given pmles θ̂µn for all models µ ∈ M, a model maximum-likelihood estimate

(mmle) µ̂n can be determined in practice by minimizing sµ(θ̂µn , dn , ξn) with
respect to µ ∈ M. It is an empirical approximation of the unknown best model,

µ̄
∞≈ µ̂n . (3.65)
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3. Inference under Normality and Linearity

Due to the consistency of parameter and mmle, these approximations improve

with the sample size and are exact in the large-sample limit.

Empirical Approximations of Derived Quantities

�e previous relations suggest further empirical approximations for functions

of the unknown best parameter and/or model. In particular, applying (3.62) to

the normal probability density function (pdf) of model µ from (3.9) leads to the
approximation

p(y ∣ x , µ, θ̄µ) ∞≈ ϕ(y ∣ ηµ(θ̂µn , x), I) (3.66)

for the klic-best pdf of the model under experimental condition x ∈ X, a
special case of (2.31).

Based on (3.64) a parameter-robust counterpart of (3.66) can be derived using

an expected value approach. �e general form of this approximation, previously

stated in (2.34), is

p(y ∣ x , µ, θ̄µ) ≈ ∫
Qµ

p(y ∣ x , µ, θ̂µ)p(θ̂µ ∣ µ, ξn)dθ̂µ . (3.67)

Under the considered assumptions, the parameter θµ enters the model only
via the model responses ηµ(x , θµ), see (3.8). Approximation (3.67) can thus be
rewritten as

p(y ∣ x , µ, θ̄µ) ≈ ∫
Qµ

p(y ∣ x , µ, η̂µ)p(η̂µ ∣ x , µ, ξn)dη̂µ , (3.68)

where p(y ∣ x , µ, ηµ) is the pdf under x speci�ed by model µ for a given value
ηµ ∈ Y of the model response, and p(η̂µ ∣ x , µ, ξn) is the pdf of ηµ(Q̂µn , x), that
is, the pdf of the response under x evaluated at the pmle Q̂µn ∶= θ̂µ(Dn , ξn).
Assume that the model is locally a�ne-linear around the pmle θ̂µn , such

that its response can be written as in (3.11). It then follows from the asymptotic

normality of pmles (3.64) and the basic transformation rule (B.14) for a�ne-

linear functions that

p(η̂µ ∣ x , µ, ξn)
∞≈ ϕ(η̂µ ∣ ηµ(x , θ̂µn), n Ĵ

µ
n(x)R̂µn Ĵµn

⊺(x)). (3.69)
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Since the observation covariances are known and the model is normal,

p(y ∣ x , µ, ηµ) = ϕ(y ∣ ηµ , I). (3.70)

A�er substituting the last two relations, (3.68) turns into an integral over a product

of two normal distributions. It can be solved analytically using (B.15), giving rise

to the empirical parameter-robust approximation

p(y ∣ x , µ, θ̄µ) ∞≈ ϕ(y ∣ ηµ(x , θ̂µn), I + 
n
Ĵµn(x)R̂µn Ĵµn

⊺(x)). (3.71)

�is approximation is analog to (2.34), yet remains valid even for incorrectmodels.

It relies on a local linearization in vicinity of the pmle for propagating the pmle

variability. It does, however, not make linearity assumptions for determining the

pmle variability in the �rst place.

Its validity relies on the accuracy of (3.69). Considering (3.67), we can expect

(3.69) to be accurate if the responses are approximately linear in areas where

the density of the pmle ϕ(θ̂µ ∣ θ̂µn , n R̂
µ
n) is “large.” As the sample size increases,

this density accumulates in an arbitrary small area around the pmle. One can

thus expect that the crucial approximation (3.69) is accurate in su�ciently large

samples.

Approximations for the unknown klic-best pdf p(y ∣ x , µ̄, θ̄) of the model
family under x are obtained by evaluating the right-hand sides of (3.66) and (3.71)
at the mmle, that is, for µ = µ̂n .

3.5. Bayesian Inference

Bayesian inference was treated in general in Sec. 2.5. �is section treats it under

additional normality and/or linearity assumptions. �e following formulas and

approximations follow from substituting the equalities derived in Sec. 3.3 into

the general counterparts from Sec. 2.5.

�roughout this section we consider scenario 3.1 and make the following

additional assumptions: �e experiments are sampled from design ξ, such that
the design sequence ξ , ξ , . . . converges to ξ. �e Kullback-Leibler information
criterion (klic)-best parameter θ̄µ under ξ is identi�able in each model µ ∈ M,
and the klic-best model µ̄ under ξ is identi�able. Under all designs ξ and ξn ,
the observation covariances are known and all models µ ∈ M are normal. In
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3. Inference under Normality and Linearity

addition, all models have a normal parameter prior

p(θµ) ∶= ϕ(θµ ∣ θµ , P
µ−), for all θµ ∈ Qµ

, (3.72)

where θµ ∈ Qµ and Pµ is a real-valued symmetric positive de�nite (spd) (and
thus invertible) nθ µ × nθ µ matrix. �e matrix Pµ is a parameter-independent
special case of the general prior information matrix Pµ(θµ) de�ned in (2.47).
For all n ∈ N, we write dn for the data obtained under the n-experiment

exact design ξn and θ̂µn ∶= θ̂µ(dn , ξn) ∈ Qµ for the corresponding parameter

maximum-likelihood estimate (pmle) and use the abbreviations

M̂µ
n ∶= Mµ(θ̂µn , ξn), η̂µn(x) ∶= ηµ(x , θ̂µn), (.)

N̂ µn ∶= N µ(θ̂µn , dn , ξn), Ĵµn(x) ∶= Jµ(x , θ̂µn), and (.)

ŝµn ∶= sµ(θ̂µn , dn , ξn). (3.75)

Note that (3.72) contains the “little information” normal prior from (2.57) as

special case for

θµ ∶= θ̂µn and Pµ ∶= M̂µ
n + N̂ µn , (3.76)

supposed M̂µ
n + N̂ µn is invertible.

3.5.1. Single Regression Models
Consider a single regression model µ ∈ M.

Inference

Under the considered assumptions, the general empirical large-sample approxi-

mation for the parameter posterior (2.48) simpli�es to

p(θµ ∣ dn , ξn) ≈ ϕ(θµ ∣ θ̂µn , n B̂
µ
n

−), where B̂µn ∶= 
n
Pµ + M̂µ

n + N̂ µn .
(3.77)

Like its general counterpart, approximation (3.77) remains adequate even if the

models is both nonlinear and incorrect. �e pmle θ̂µn can be regarded as a point
approximation for the unknown klic-best (or correct) parameter θ̄µ of the
model and the covariance 

n
B̂µn

−
as a quanti�cation of the associated uncertainty.
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Under the little informative normal prior de�ned by (3.76),

B̂µn = n+
n

(M̂µ
n + N̂ µn ). (3.78)

�e popular “classic” alternative

p(θµ ∣ dn , ξn) ≈ ϕ(θµ ∣ θ̂µn , n M̂
µ
n

−) (3.79)

can be interpreted analogously to (3.77). It can be derived in two ways. First, it is

a special case of (3.77) under the assumptions that model µ is correct and that the
sample size n is large. �en, the matrix N̂ µn vanishes, see�m. 3.11, and theO( 

n
)

term 
n
Pµ is negligible compared to the O() term M̂µ

n , so that (3.77) reduces

(3.79).

Alternatively, it can be justi�ed for samples of any size n ∈ N based on

the assumption that the model is locally a�ne-linear around θ̂µn (but possibly
incorrect) and that the parameter prior p(θµ) is locally uniform2 (but not
necessarily normal). �is derivation, supposedly �rst given by Box and Hill

[42, (7.9)], is common in literature.

Both ways imply that (3.79) is inadequate for models that both signi�cantly
nonlinear and substantially incorrect, unlike (3.77).

Predictions

Under considered assumptions and together with the parameter posterior approx-

imation (3.77), the posterior prediction (2.38) of the model for an observation

under the experimental condition x ∈X is approximately

p(y ∣ x , µ, dn , ξn) ≈ ∫
Qµ

ϕ(y ∣ ηµ(x , θµ), I)ϕ(θµ ∣ θ̂µn , n B̂
µ
n

−)dθµ .

(3.80)

2A parameter prior is locally uniform if it does not change much over the regions in which
the likelihood has non-diminishing values, and do not take on large values outside these
regions, so that Bayes’ theorem for the parameter posterior simpli�es to p(θµ ∣ dn , ξn) ≈

cµ p(dn ∣ ξn , µ, θµ).
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3. Inference under Normality and Linearity

If the model is also assumed to be locally a�ne-linear around θ̂µn , the integral
has a closed-form solution, leading to

p(y ∣ x , µ, dn , ξn) ≈ ϕ(y ∣ η̂µn(x), I + 
n
Ĵµn(x)B̂µn

−
Ĵµn

⊺(x)), (3.81)

�e derivation follows the same steps leading from (3.67) to (3.71). �e response

η̂µn(x) predicts the average outcome of an experiment under condition x, based
on the model and on the n available experiments. �e covariance matrix
quanti�es the total uncertainty about the outcome of an experiment under x,
given the model and the experiments. �e matrix is composed of the identity

matrix I representing the experimental uncertainty (see (3.5)) and the matrix

n
Ĵµn(x)B̂µn

−
Ĵµn

⊺(x) which quanti�es, in a locally linear approximation, the
propagation of the parameter uncertainty onto the prediction η̂µ(x).
Approximation (3.81) relies on a local linearization for propagating the

uncertainty described by the parameter posterior onto the model response, but

makes no linearity assumptions for determining the parameter posterior itself.

�e “classic” counterpart of (3.81) based on (3.79) is

p(y ∣ x , µ, dn , ξn) ≈ ϕ(y ∣ η̂µn(x), I + 
n
Ĵµn(x)M̂µ

n

−
Ĵµn

⊺(x)). (3.82)

Compared to (3.81) it relies either on an additional correctness assumption or on

an additional local linearization, as discussed in the previous section.

Approximation (3.82) is well known and has, for example, been used by

Hill and Hunter [118, (2.4)] and Box and Hill [42, (4.12)] in the context of

optimal experimental design (oed). For models that are both nonlinear and

incorrect, it is likely to be less adequate than (3.81), which we use for in our novel

misspeci�cation-robust design criteria proposed in Chap. 5.

Distribution of Parameter Posteriors and PMLEs

As discussed in Sec. 2.5.4, the distributions of parameter posteriors and parameter

maximum-likelihood estimators (pmles) are asymptotically equal if the model

is correct, but are di�erent otherwise due to di�erent covariances. Under the

assumptions considered in this section, the covariances are related as follows.

In large samples, the O( 
n
) prior information matrix Pµ in (3.77) can be

neglected, the pmle θ̂µn can be replaced by its limit value θ̄µ and the empirical
information matrices M̂µ

n and N̂
µ
n can according to (3.56) be replaced by

M̄µ ∶= Mµ(θ̄µ , ξ) and ¯̃N µ ∶= Ñ µ(θ̄µ , ξ), respectively. Taken together, these
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substitutions lead to the large-sample approximation


n
(M̄µ + ¯̃N µ)

−
(3.83)

for covariance of the parameter posterior. �is formula is generally di�erent

from the corresponding formula


n

¯̃Rµ = 
n
(M̄µ + ¯̃N µ)

−
M̄µ(M̄µ + ¯̃N µ)

−
(3.84)

for the large-sample pmle covariance from (3.40). �erefore, maximum-like-

lihood inference and Bayesian inference do generally lead to di�erent quanti�-

cations of parameter uncertainty. If the model is correct under ξ or is locally
a�ne-linear around θ̄µ , however, both approaches are consistent, since then
¯̃N µ = , so that formulas reduce to 

n
M̄µ−.

3.5.2. Families of Regression Models

Now consider a family of regression models with indices from the �nite model

index setM.

Inference

Under the assumptions considered here, the empirical large-sample approxima-

tion (2.59) for the model posterior reduces for all µ ∈ M to

p(µ ∣ dn , ξn)
∞≈ cn p(µ) exp(− n ŝ

µ
n)n−nθµ / , (3.85)

a product of four easily interpretable factors. �e normalization factor cn ∈ R+

ensures that the probabilities sum up to one, and p(µ) is the prior probability of
model µ. �e third factor exp(− n ŝ

µ
n) is an exponentially decreasing function of

the sum of squared residuals (ssr) which penalizes the lack-of-�t of model µ.
�e fourth factor is a decreasing function of the number of parameters in the

model which penalizes over-parameterized (or rewards parsimonious) models.

As discussed in Sec. 2.5.4, approximation (3.85) is particular good under the

“little informative” normal prior, which is here speci�ed by (3.72) and (3.76).

Independently from the publications leading to (3.85), formulas for model

posteriors in normal models have been derived by Box and Henson [39, 40]

and Box and Hill [42] and Stewart, Henson, and Box [240], culminating in
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the approximation of Stewart, Shon, and Box [239] that is identical to (3.85)

except that its last factor is −nθµ / instead of n−nθµ /. �eir formula relies on
various assumption (particularly locally uniform parameter priors) which are

not required for (3.85).

Predictions

�eposterior prediction of the model family for the experimental outcome under

x ∈X, de�ned as

p(y ∣ x , dn , ξn)
(.)= ∑

µ∈M

p(y ∣ x , µ, dn , ξn)p(µ ∣ dn , ξn), (3.86)

can be approximated empirically using (3.81) or (3.82) and (3.85). �e resulting

probability density function (pdf) is then a convex combination of normal

pdfs, a so-called “Gaussian mixture.” Such distributions can typically not be

approximated well by a (single) normal pdf. �at is, even under the normality
and linearity assumptions considered here, the posterior prediction of the model
family for the outcomes of unperformed experiments remains non-normal.
�is non-normality complicates the formulation of Bayesian design criteria

formodel discrimination (md). In Chap. 5 we describe the established techniques

used to deal with this non-normality and introduce novel design criteria using

enhanced techniques.

3.5.3. Regularity Conditions
As discussed in Sec. 2.5.3, parameter posteriors are asymptotically normal under

essentially the same regularity conditions ensuring the asymptotic normality of

pmles, plus the requirement of a non-vanishing prior around the best parameter.

�e latter is automatically met under a normal prior, whose support is the whole

parameter domain. In addition, consistency of the model posterior requires an

identi�able klic-best model and a prior that does not vanish there.

�erefore, the empirical large-sample approximation of this chapter can be

expected to be valid under the given assumptions if conditions (a)–(e) on p. 97

are met, the best model µ̄ is identi�able and p(µ̄) > .
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Table 3.1.: Central quantities of statistical inference under normality with known unit
and non-unit observation covariance.

De�nition for

Quantity C [Yx] = I C [Yx] = Ω(x)

f (⋅) — f̃ (⋅) ∶= Ω−⁄(x) f (⋅)
for any f ∈ {Yx , y j(⋅), η̄(⋅), ηµ(⋅), hµ(⋅), J µ(⋅)}

Hµ
j
(x , θ µ) (3.4) H̃µ

j
(x , θ µ) ∶=

ny

∑
l=1

σjl(x)H
µ

l
(x , θ µ)

where σjl(x) is the ( j, l)-th element of Ω−⁄(x)
λµ(θ µ , ξ) (3.13) ∑

x∈supp(ξ)

ξ(x)∥ηµ(x , θ µ) − η̄(x)∥2
Ω−1(x)

sµ(θ µ , dn , ξn) (3.17) 1
n∑
x∈supp(ξn)

rn(x)

∑
j=1

∥ηµ(x , θ µ) − y j(x)∥
2
Ω−1(x)

Mµ
(θ µ , ξ) (3.21) ∑

x∈supp(ξ)

ξ(x)J µ⊺(x , θ µ)Ω−1(x)J µ(x , θ µ)

Ñ µ(θ µ , ξ) (3.22) ∑
x∈supp(ξ)

ξ(x)
ny

∑
l=1

(η̃µ
l
(x , θ µ) − ˜̄η l(x))H̃

µ

l
(x , θ µ)

N µ(θ µ , dn , ξn) (3.24) 1
n∑
x∈supp(ξn)

rn(x)

∑
j=1

ny

∑
l=1

(η̃µ
l
(x , θ µ) − ỹjl(x))H̃

µ

l
(x , θ µ)
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Part II.

Optimal Experimental Design (OED)
forModel Discrimination (MD)

Of the two, design and analysis, the former is undoubtedly of greater
importance. Ce damage of poor design is irreparable; no matter
how ingenious the analysis, little information can be salvaged from
poorly planned data. On the other hand, if the design is sound, then
even quick and dirty methods of analysis can yield a great deal of
information.

Box and Hunter [41, Sec. 3]
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The previous two chapters concerned the questions of what and how knowl-

edge about an unknown process can be obtained empirically, that is, from

given experimental data.�is and the next chapter deal with the question (already
posed in (Q1.3) on p. 28) of experimental design:

(Q4.1) Given a model family, under which conditions shall experiments be
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4. Fundamentals and Frequentist Strategies of OED

performed in order to improve the knowledge about the unknown process,
or in in other terms, to reduce the structural uncertainty?

Performing experiments is typically costly in terms of time, money, or other lim-

ited resources. One is thus interested in minimizing the number of experiments

required to achieve a desired level of empirical knowledge, or in a �xed number

of experiments that provide a maximal amount of knowledge. �ese aims lead to

optimization problems know as optimal experimental design (oed) problems.

�is chapter introduces fundamental concepts and considers strategies for

solving oed problems that are based on frequentist inference, particularly on

maximum-likelihood inference. Oed strategies based on Bayesian inference are

treated in the in next chapter.

Section 4.1 introduces the necessary basic concepts and examined properties

of oed problems in general and their special cases of local and sequential oed

problems. Section 4.2 introduces and discusses Kullback-Leibler (kl)-optimal

designs and T-optimal designs, which are the theoretically best designs for model

discrimination (md). Albeit they depend on quantities that are unknown in

practice, they de�ne the aim that any practical approach for e�ciently solving

md problems should strive for. Section 4.3 discusses two popular sequential

strategies for md: the Hunter-Reiner (hr)-strategy and the Buzzi-Ferraris (bf)-

strategy.

A main result of this thesis is the new empirical formula for the covariance

of parameter maximum-likelihood estimator (pmle) for models that are both

nonlinear and incorrect models that we proposed in Sec. 3.4. In Sec. 4.4 we show

it can be used to derive new design criteria for md with improved parameter-

robustness, using the bf-criterion as example.

Section 4.1 and the kl-optimality in Sec. 4.2 make very few assumptions about

the distributions of process and models family. T-optimality in Sec. 4.2, and

Secs. 4.3 and 4.4 make the common assumptions of known covariance matrices

and normal models that were considered in Chap. 3 in the context of statistical

inference.

4.1. Optimal Experimental Design Problems

In the remaining chapter we consider the following scenario without further

referencing it explicitly.
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4.1. Optimal Experimental Design Problems

4.1.1. Problem Statement

Scenario 4.1 (Optimal Experimental Design)

(i) A process q(y ∣ x) according to Def. 1.2 is given. Its observation domain
Y and its experimental domainX are compact.

(ii) �e function q characterizing the process is unknown.

(iii) A model family is given for describing the process according to Def. 1.3.

For each model µ ∈ M, the parameter domainQµ is compact, and the

function p(y ∣ x , µ, θµ) is continuous with respect to θµ for all y ∈ Y
and all x ∈X, and is continuous with respect to x for all y ∈ Y and all
θµ ∈ Qµ .

(iv) �e model family is correct. It contains an identi�able (that is, exactly

one) correct model µ̄ ∈ M which contains an identi�able correct

parameter θ̄ ∈ Qµ̄ .

(v) �e data ds ∈ Ys is available from the process, consisting of s ∈ N

observations from the observation domain Y, obtained in s statistically
independent experiments performed under known conditions described

by the s-experiment exact design ξs .

(vi) Additional experiments can be performed under arbitrary conditions

from the experimental domainX. Under given conditions, the corre-
sponding observables are statistically independent of those from the

previous experiments and among each other.

(vii) Data analysis and inference is possible following each individual addi-

tional experiment.

�is scenario is a special case of scenario 1.5. It adds certain regularity assumptions

about process andmodel family in (i) and (iii), the strong but essential assumption

(iv) of correctness and identi�ability, and the elementary prerequisite (vii) for

a sequential data-adaptive approach. �e role of assumptions (iv) and (vii) is

discussed later.

Recall from Def. 1.6 that a parameter θµ ∈ Qµ of model µ ∈ M is correct,

i� the corresponding model family member perfectly describes the process in
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the sense that

q(y ∣ x) = p(y ∣ x , µ, θµ) for all (y, x) ∈ Y ×X. (4.1)

Furthermore, a model µ is correct, i� it contains a correct parameter exists in
its parameter domainQµ , and a model family is correct, if it contains a correct

model in the model index setM. Items (ii) and (iv) hence imply that

(viii) neither µ̄ nor θ̄ are known.

Notation

We use the following notation in the context of scenario 4.1. �e set of all designs

(normed measures with �nite support) over the experimental domain X is

denoted Ξ.
Consider n ∈ N experiments performed under the exact design ξ ∈ Ξ. We

write x i ∈X for condition of the i-th experiment (in an arbitrary enumeration)
and y i ∈ Y for the resulting observation, for all i ∈ {, . . . , n}.
Any observation y i is considered as a realization of the corresponding

observable Yx i , a Y-valued random variable. Likewise, the vector of data d is a
realization of the sampleD ∶= [Yx . . . Yxn ], a random variable taking values
in Yn .

�e probability density function (pdf) ofD is denoted q(d ∣ ξ), and the corre-
sponding pdf speci�ed by model µ with parameter θµ is denoted p(d ∣ ξ, µ, θµ).
It follows from (vi) that the density assigned by the process to the data d obtained
under ξ is

q(d ∣ ξ) =
n

∏
i=
q(y i ∣ x i), (4.2)

and the corresponding pdf speci�ed by model µ with parameter θµ is

p(d ∣ ξ, µ, θµ) =
n

∏
i=
q(y i ∣ x i , µ, θµ). (4.3)

We write θ̂µ ∈ Qµ for a parameter maximum-likelihood estimate (pmle) of

model µ based on data d and ξ, and Q̂µ for the corresponding estimator, see
Def. 2.13.
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OED for Model Discrimination and/or Parameter Estimation

Let Ξ be the set of designs over the experimental domainX. If one is interested
in the unknown correct model µ̄, scenario 4.1 gives rise to the question

(Q4.1) Under which design ξ ∈ Ξ shall experiments be performed that are “best”
for making empirical inferences about the unknown correct model µ̄?

�e class of problems arising from this question is typically referred to as

optimal experimental design (oed) for model discrimination

(md). If one is interested in the unknown correct parameter θ̄µ ∈ Qµ of some

model µ ∈ M that one supposes to be correct, one is faced with the question

(Q4.2) Under which design ξ ∈ Ξ shall experiments be performed that are “best”
to make empirical inferences about the unknown correct parameter

θ̄µ ∈ Qµ of a given model µ ∈ M, assuming that it is correct?

�e class of problems arising from this question are usually referred to as

optimal experimental design (oed) for parameter estimation (pe).

�e names for these problem classes stem from the classic solution approaches:

performing experiments underwhich the rivalmodelsmake di�erent predictions,

so that one can discriminate between them by comparisonwith experimental data,
and performing experiments that are bene�cial for inference using parameter

estimation techniques. �e names are used, however, even when di�erent
approaches are used, like in Bayesian inference.

If one is interested in both the correct model and its correct parameter, one
typically proceeds consecutively: �rst, experiments are performed until one �nds

a satisfactory well candidate for the correct model, then one focuses on that

model and performs experiments to learn more about its correct parameter.

�is two-phase procedure is commonly considered in theory and applied in

practice. For details we refer to the review of Franceschini and Macchietto [103]

and the references given therein. In both phases additional data needs to be

collected, so that suitable optimal experimental design (oed) methods for model

discrimination (md) and parameter estimation (pe) answering (Q4.1) and (Q4.2)

can reduce the required experimental e�ort.

�is thesis focuses on oed strategies for md which deal with (Q4.1). Before

we study related solution strategies in more detail, we discuss relevant general

aspects of oed problems in the remaining section.
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Correctness and Identi�ability are Essential Assumptions

Items (Q4.1) and (Q4.2) are only well posed under assumption (iv), which ensures

that the quantities of interest – the correct model and/or its correct parameter –

exist and are unique. Without the assumption of identi�ability, several correct

models might exists with several correct parameters, leaving the ambiguity in

which of them one is actually interested in.

Without assuming that the model family is correct, a correct model and/or a

correct parameter might not exist at all. �en, one might be tempted to focus

the interest on the model and/or the parameter that are best in the sense of the

Kullback-Leibler information criterion (klic), see Sec. 1.4. Klic-best models

and parameters, however, do generally depend on the chosen design, so that it is

not possible to choose a design independent from the quantity of interest. �ere

is hence no direct counterpart of (Q4.1) and (Q4.2) for klic-best models and

parameters.

4.1.2. A General View on OED Problems

Besides identifying the correct model and/or the correct parameter, there is a

plethora of goals that one might want to attain through experimentation. �e

general problemof �nding experimentswhich aremost “useful” for the particular

goal can be formalized as follows.

Problem 4.2 (Optimal Experimental Design)

Let Ξ be the set of designs over the experimental domainX. Given a subset
Ξ′ ⊆ Ξ of admissible designs and a design criterion Ψ ∶ Ξ ↦ R, �nd a

Ψ-optimal design

ξ⋆ ∈ argmax
ξ∈Ξ′

Ψ(ξ). (4.4)

�e design criterion Ψ(ξ) anticipates or predicts how “useful” the data obtained
under design ξwill be for reaching the desired goal. Naturally, a design criterion is
speci�c for this particular goal and for themethods of inference used for analyzing

the data. A design criterion is model-based if it uses one or several models

for predicting the process behavior. It is data-based or data-adaptive if it

takes into account data available from performed experiments. If Ξ′ is a proper
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subset of Ξ the oed problem is constrained. In the remaining section we
only consider unconstrained oed problems.

Kiefer and Wolfowitz [143] were probably the �rst to consider oed problems

of this type. Fedorov [99] gives a brief an overview over the �eld of oed problems,

and Atkinson and Bailey [17] survey its history up to the year 2001. Standard

references for oed are the books of Atkinson and Donev [11], Fedorov [95],

Fedorov and Hackl [96], and Pukelsheim [206] and Cox and Reid [74]. Oed

problems are optimization problems in the space of measures, since designs

are normed measures with �nite support on the experimental domainX, see
Def. 1.4. Molchanov and Zuyev [188] examine the problem on this general level

and provide a general algorithm for solving it numerically.

Relaxation of OED Problems to Continuous Designs

One could think of limiting the maximization in (4.4) to exact n-experiment
designs with n ∈ N, since only they can be realized in practice. As a consequence,

one would need to specify the number of experiments n before solving the oed
problem, which might not be desirable or not even possible. Furthermore, the

weights of an exact design take values in a discrete set,which introduces an integer

aspect into the optimization problem (4.4), complicating both its theoretical

analysis as well as its numerical solution.

For these reasons it is convenient to perform the optimization in oed problems

over designs which might be non-exact. �is relaxation goes back to Kiefer and

Wolfowitz [143] and has since then become a de-facto standard in oed. We apply

this relaxation in all oed problems considers in the remainder of this thesis.

In practice, exact n-experiment designs are used to approximate optimal
designs obtained from the relaxed problem. By increasing the total number

of experiments n, such approximations can be made arbitrarily precise. Suit-
able rounding strategies are described by Pukelsheim and Rieder [207] and

Pukelsheim [206, Chap. 12] and references given therein.

OED as Optimization under Uncertainty

A typical way to derive a design criterion is to formulate a real-valued function

u(ξ, d)whichmeasures how “useful” the data d obtained under the exact design
ξ actually is for whatever goal one aims to achieve through experimentation.
An ideal design would thus maximize u(ξ, d) with respect to ξ ∈ Ξ. Since
experiments are designed before they are performed, but the data d is known only
a�erwards, such an ideal design cannot be determined before experimentation.
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�e next step towards a practicable design criterion is thus to deal with this

experimental uncertainty by formulating a data-independent function U(ξ) that
approximates or predicts u(ξ, d),

U(ξ) ≈ u(ξ, d) for all ξ ∈ Ξ. (4.5)

�e function U(ξ) might take into account the probabilities of obtaining
particular data which are described by the function q characterizing the process.
�en,U depends parametrically on q, written asU(ξ; q). A typical example is the
expected value approximation U(ξ; q) ∶= ∫ u(ξ, d)q(d ∣ ξ)dd. Correct models
and correct parameters, de�ned as solutions of equation (4.1), depend implicitly

on q. When the goal is to identify one of them, the functions u and U will thus
generally depend on q. In practice, however, also the function q is unknown, so
that also designs maximizing U(ξ; q) cannot be determined.
To obtain a practically evaluable design criterion one further needs to dealwith

this structural uncertainty by formulating a function Ψ(ξ) that is independent of
q and approximates U(ξ; q),

Ψ(ξ) ≈ U(ξ; q) for all ξ ∈ Ξ. (4.6)

�e function Ψ does not depend on any unknown quantity and can thus be used
in practice to determine optimal designs. To improve the quality of (4.6), the

function Ψ might take into account all available knowledge about the process,
expressed for example in terms of a model family and related parameter and

model estimates or posteriors obtained from previous experiments.

In general, optimal experimental design problems appearing in practice

are thus optimization problems under uncertainty, namely the experimental

uncertainty and the structural uncertainty. �e actual “usefulness” of an optimal

design ξ⋆ ∈ argmax
ξ∈Ξ
Ψ(ξ) – given by u(ξ⋆ , d) – depends on the quality of

approximations (4.5) and (4.6) dealing with these uncertainties.

Locally Optimal Designs

Assume thatmodel µ ∈ M and parameter θµ ∈ Qµ are correct.�en, the function

q(y ∣ x) characterizing the process can be replaced by the model family member
p(y ∣ x , µ, θµ) under all x ∈X, see (4.1). LetΨ(ξ; µ, θµ) be the function obtained
by performing this substitution to the functionU(ξ; q) from the previous section.
�en, Ψ(⋅; µ, θµ) depends only on known quantities, so that its maximizer can
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actually be determined in practice, leading to the following class of oed problems.

Problem 4.3 (Local Optimal Experimental Design)

Let Ψ(ξ; µ, θµ) be a local design criterion, a function that maps from

Ξ to R, depends parametrically on model µ ∈ M and parameter θµ ∈ Qµ ,

and does not depend directly or indirectly on the unknown process. Find a

locally optimal design

ξ⋆(µ, θµ) ∈ argmax
ξ∈Ξ

Ψ(ξ; µ, θµ). (4.7)

In practice, it is of course not known whether the underlying assumption holds

that model µ and parameter θµ are correct. Nevertheless, locally optimal designs
are useful for examining the general structure of optimal designs and their

dependency on the correct model and the correct parameter. Furthermore, local

design criteria can be used to derive practically evaluable design criteria by using

prior and/or empirically obtained partial knowledge about correct models and

correct parameters.

4.1.3. Sequential Construction of Optimal Designs
Assume that model µ̄ ∈ M and parameter θ̄ ∈ Qµ̄ are correct and letΨ(ξ; µ̄, θ̄) =
U(ξ; q) be a corresponding local design criterion as de�ned in the preceding
section. In practice, optimal designs ξ⋆(µ̄, θ̄) ∈ argmax

ξ∈Ξ
Ψ(ξ; µ̄, θ̄) are

unknown. As discussed in the previous two chapters, uncertainty about µ̄ and θ̄
can be expressed empirically and tends to decrease (under regularity conditions)

as more data is available. In turn, empirical approximations forΨ(ξ; µ̄, θ̄) tend to
get better under reduced uncertainty. If it is possible to analyze the data and adapt

the design once a new observation gets available, as assumed in (vi) and (vii),

these relations suggest a sequential approach to determine ξ⋆(µ̄, θ̄), in which
experimentation, inference and design are repeated consecutively.

Sequential Procedure

Algorithm 4.1 on the next page outlines the essential elements of a sequential

design procedure, using the symbolF to denote the model family and U to

denote prior knowledge.
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Such sequential procedures are commonly applied in practice and have,

for example, been proposed by Asprey and Macchietto [10], Franceschini and

Macchietto [103], and Kreutz and Timmer [152].

Algorithm 4.1: Sequential design procedure.
input : experimental domainX ⊆ R

nx , model familyF, knowledge U

output : design ξn , data dn , and knowledge Un from n ∈ N experiments

1 n ← ;
2 while not terminate(Un− ,F) do // termination check
3 choose xn ∈X based onF and Un− ; // design experiment
4 get random variate yn from q(y ∣ xn); // perform experiment
5 let ξn be the design constituted by x , . . . , xn ;
6 let d⊺n ∶= [y⊺ . . . y⊺n];
7 infer empirical knowledge Un from U , ξn , dn , andF; // analyze exps.

8 end
9 return ξn , dn , Un

�e procedure is terminated iteration n −  if the available empirical knowl-
edge Un− su�ces to consider the problem as solved. Otherwise, the procedure
continues.

In the design phase, the condition xn for the next experiment is chosen. �e
choice, possibly made by solving a sequential oed problem (discussed later),

might take into account the available empirical knowledge Un−, which itself
might depend on the design ξn− and the data dn−.
Subsequently, the experiment under xn is performed and the resulting

observation yn ∈ Y is recorded. In the inference phase, the empirical knowledge
Un is updated from the design and data of all n available experiments and the
prior knowledge.�e procedure then continues with the termination check using

the updated empirical knowledge.

�e procedure is called data-adaptive, if and only if xn depends in any
iteration n ∈ N on at least one of the previous observations y , . . . , yn−.
In early stages of the procedure, little is known about the unknown correct

model and the unknown correct parameter, such that designed experiments tend

to be somewhat tentative. While the procedure continues and more observations

are obtained, the empirical knowledge about these unknown gets more precise.

�is improved knowledge in turn allows to choose experiments which provide

informative observations more reliably.
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For all n ∈ N, design ξn can be considered as a predictor for the unknown
sought-a�er optimal design ξ⋆(µ̄, θ̄) and xn+ as a corrector that takes into
account the new insight from the observation recently made under xn and drives
the resulting overall design ξn+ towards ξ⋆(µ̄, θ̄).

Sequential OED Problem

�e design(⋅) step inAlg. 4.1 on the facing page is crucial for the overall e�ciency
of the procedure. In the inference(⋅) step one can only try to extract as much
knowledge from the data as possible, but it depends on the chosen experimental

conditions how much information it contains in the �rst place.

Problem 4.4 (Sequential Optimal Experimental Design)

Let dn be the data obtained from n previous experiments described by the
exact design ξn . Let Ψn(x; dn , ξn) be a corresponding sequential design
criterion, a continuous function thatmaps from the experimental domainX
toR and depends parametrically on dn and ξn . Find an experimental condition

xn+ ∈ argmax
x∈X

Ψn(x; dn , ξn). (4.8)

Limitation to a Single Experiment

It is common and convenient to limit the maximization in sequential oed

problems as in (4.8). A sequential procedure whose design criterion considers

only the next experiment but ignores the possibility of further subsequent
experiments is unlikely to be the most e�cient procedure possible. Several early

works, for example those of Bradt and Karlin [50] and DeGroot [78], indicate

that sequential oed problems that take into account subsequent experiments are

di�cult to handle both theoretically and numerically. �e sequential design

criterion in (4.8), however, may in fact consider the possibility of further

experiments. It simply yields only the one condition required for the next

experiment as output, see (vi) and (vii).

Statistical Dependence between Data-Adaptively Designed Experiments

Adaptively choosing experimental conditions introduces statistical dependencies

in the sample: �e experimental condition xn+ in (4.8) is determined based on
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the design ξn and the data dn of all preceding experiments , . . . , n. Since the data
is subject to random �uctuations, so is xn+. �e observable of experiment n + 
is hence not statistically independent of the preceding observables Yx , . . . ,Yxn .
�e e�ect of these dependencies are, however, not too severe. In particular,

the likelihood retains its additive form (2.5), since it involves only the conditional

densities of the model family for given experimental conditions. Since xn+ is
typically chosen based on all preceding experiments, the dependency between
the observable of experiment n +  and any particular previous observable Yx i
with i ⩽ n tends to decrease as n goes to in�nity.

4.1.4. Additional Normality Assumptions
In several sections of this and the next chapter we consider scenario 4.1 under

the following additional normality assumptions. We list them here to avoid

repetitions.

(ix) �e observation covariance Ω(x) ∶= C [Yx] exists, has full rank
and is known under all experimental conditions x ∈X.

(x) �e rival models are normal,

p(y ∣ x , µ, θµ) = ϕ(y ∣ ηµ(x , θµ),Ω(x)) (.)

= exp(− 
 ∥ηµ(x , θµ) − y∥Ω−(x) + ny ln(π))

for all y ∈ Y, all x ∈X, all µ ∈ M and all θµ ∈ Qµ .

Here and in the whole chapter, the symbol ϕ denotes the pdf of a normal
distribution, see (B.12).

(xi) �e response ηµ(x , θµ) of each model µ ∈ M is continuous in x for all
θµ ∈ Qµ and is twice continuously di�erentiable in θµ under all x ∈X.

Combined with the correctness assumption (iv) of scenario 4.1, these additional

assumptions have the following implications.

(xii) �e process is normal,

q(y ∣ x) = ϕ(y ∣ η̄(x),Ω(x)), (.)

= exp(− 
 ∥η̄(x) − y∥Ω−(x) + ny ln(π))
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with observation mean η̄(x) = η µ̄(x , θ̄), for all y ∈ Y and all x ∈X.

(xiii) �e observation mean η̄(x) is continuous in x.

�en, (ii) of scenario 4.1 implies that

(xiv) the observation mean η̄ is unknown.

�e observation mean is then in fact the only aspect of the process that remains

unknown.

�ese assumptions are o�en good approximations of the situation found

in practice. �ey permit to use the inference results from Chap. 3, which are

bene�cial for solving the arising oed problems numerically.

Notation

Under assumptions (ix) and (x), a pmle of model µ ∈ M based on data d and
ξ reduces to a least-squares (lsq) estimate, that is, a minimizer of the sum of
squared residuals (ssr)

sµ(θµ , d , ξ) = 
n

n

∑
i=

∥ηµ(x i , θµ) − y i∥Ω−(x i) (4.11)

with respect to θµ ∈ Qµ , see Def. 3.9 and Cor. 3.10 and Tab. 3.1 on p. 113. Let ∇
and ∇denote the gradient and the Hessian di�erential operator, respectively,

with respect to θµ . For all experimental conditions x ∈X, we write

η̂µ(x) ∶= ηµ(x , θ̂µ), (.)

Ĵµ(x) ∶= ∇ηµ(x , θµ)∣
θ µ=θ̂ µ , and (.)

Ĥµ
j
(x) ∶= ∇ηµ

j
(x , θµ)∣

θ µ=θ̂ µ
, (4.14)

for the response of model µ ∈ M, its Jacobian, and the Hessian of its j-th
component ηµ

j
(x , θµ), respectively, evaluated at the pmle.

Furthermore, we de�ne the symmetric positive semi-de�nite (spsd) nθ µ ×nθ µ

matrices

M̂µ ∶= 
n

n

∑
i=
Ĵµ

⊺(x i)Ω−(x i)Ĵµ(x i) (.)
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and the symmetric nθ µ × nθ µ matrix

N̂ µ ∶=
n

∑
i=

ny

∑
j=

(η̂µ
j
(x i) − yij)

ny

∑
k=

σjk(x)Ĥµj (x), (4.16)

where η̂µ
j
(x) and yij are the j-th component of η̂µ(x) and y i , respectively, and

σjl(x) is the ( j, k)-th component ofΩ−⁄(x). For details, see Sec. 3.3 and Tab. 3.1.

4.2. KL-Optimality and T-Optimality: Optimal
Designs for Model Discrimination

�is section introduces Kullback-Leibler (kl)-optimal designs, and their special

case under normality assumptions known as T-optimal designs. From a widely

accepted point of view, they are the best designs for model discrimination (md)

in the sense of (Q4.1) that are theoretically possible. Kl-optimal designs and their

local counterparts depend on unknown quantities and can thus not be directly

determined in practice. �e remaining sections of this chapter and the whole

next chapter consider sequential procedures for approximating them based on

experimental data.

4.2.1. History and Related Literature

Atkinson and Fedorov [21] introduce the concept of T-optimality for the

problem of discriminating between two univariate normal nonlinear models,

proposing as design criterion the special case of (4.30) for ny = . Without using
this name, Fedorov [93] introduces a similar concept. We shall refer to their ideas

and results as classic T-optimality. Essentially, their strategy formalizes the

intuitive ideas formulated by Hunter and Reiner [129]. Fedorov [94] and Dette

and Tito� [79] analyze the T-criterion in more detail. Kuczewski [153] considers

related computational aspects. A summary of classic T-optimality can be found

in the book of Atkinson and Donev [11, Chap. 20].

To overcome the limitations of locally optimum designs, Leon and Atkinson

[173], Leon [174] and Atkinson [14] studied the e�ects of prior information,

resulting in a theory of Bayesian T-optimality. �e relations of classic T-

optimality to other strategies for optimal experimental design (oed) for md,

especially those proposed by Hunter and Reiner [129], Atkinson and Cox [19]
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and Box andHill [42], are discussed and reviewed by Atkinson [15], Hill [116] and

Atkinson [12]. �e relations to oed for parameter estimation (pe) are examined

by Fedorov and Khabarov [97].

In a series of publications, Uciński and Bogacka [248, 249, 250, 251, 252] gen-

eralize classic T-optimality to multivariate models, dynamic models, unknown

observation covariance, sampling design, function-valued design variables

and constrained designs. We refer to these extensions as generalized T-

optimality.

López-Fidalgo, Tommasi, and Tranda�r [177] generalize the idea of T-opti-

mality further to non-normal models, resulting in the concept of (two-model)

kl-optimality.�ey limit their considerations to two rivalmodels andpropose

design criterion (4.25). Further results on the properties of kl-optimal designs

and algorithms for their numerical construction are provided by Aletti, May,

and Tommasi [4], May and Tommasi [183], and Tommasi, Santos-Martín, and

Rodríguez-Díaz [246] and Aletti, May, and Tommasi [5]. Tommasi and López-

Fidalgo [245] introduce a Bayesian variant of kl-optimality that takes into

account prior information. �ese results are clari�ed and presented with some

examples in Tommasi and López-Fidalgo [243].

�e publications listed so far consider md problems only between two
models. Atkinson and Fedorov [20] used a worst-case approach to generalize the

classic two-model T-criterion to several rival models, essentially proposing the

univariate special case of design criterion (4.28). Tommasi [244] proceeded

di�erently: they formulated a multi-model kl-criterion which relies on an

extended meta-model which contains all rival models as special case.

A general algorithm for the numerical construction of locally optimal designs

is described by Fedorov and Hackl [96]. López-Fidalgo, Tommasi, and Tranda�r

[177] describe an adaption of this algorithm for the computation of locally kl-

optimal designs, Aletti, May, and Tommasi [4] re�ne it and examine necessary

conditions for its convergence, as do Aletti, May, and Tommasi [5].

In contrast to the historical order, we �rst introduce kl-optimality and then

the special case of T-optimality.

4.2.2. KL-Optimality

Consider scenario 4.1 and assume we are interested in identifying the unknown

correctmodel µ̄ ∈ M. If we aim to gain knowledge about µ̄ based on experimental
data we are faced with (Q4.1), which can be formalized as follows.
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Recall from Sec. 1.4.2 that the Kullback-Leibler information criterion (klic)

δ(ν, θν
, ξ) ∶= ∑

x∈supp(ξ)
ξ(x) ∫

Y

q(y ∣ x) ln q(y ∣ x)
p(y ∣ x , ν, θν) dy (4.17)

measures the discrepancy of model ν with parameter θν under design ξ to the
process. Instead via the de�ning equation (4.1), correct and incorrect models can

alternatively be characterized via the klic according to Prop. 1.8(ii) as follows.

If model ν ∈ M is correct, then it contains a parameter (the correct one) at

which it exhibits no discrepancy to the process under all possible designs,

min
θν∈Qν

δ(ν, θν
, ξ) =  under all designs ξ ∈ Ξ. (4.18)

If model µ is not correct, then there exists at least one design ξ ∈ Ξ under which
it exhibits a non-vanishing discrepancy to the process at any parameter, even

those minimizing the klic, so that

min
θν∈Qν

δ(ν, θν
, ξ) > . (4.19)

�e key to the derivation of a design criterion for md is that non-zero discrepan-

cies can in principle be detected empirically, and that the larger the discrepancies
are, the easier is it to detect them. Suitable methods are discussed later.

In order to empirically identify model ν as incorrect, one would thus perform
experiments under a design maximizing (4.19). Such a design is speci�c for the

considered model ν. If the aim is to �nd one design for empirically identifying
several incorrect models, some kind of compromise is necessary. In the context
of T-optimal designs, Atkinson and Fedorov [20, Sec. 1] advocated the following

approach:

Since the purpose of the experiment is to �nd the true model,

and we are assuming that one model is true, then, at some stage,

the problem will become that of discriminating between the true

model and the model, or models, closest to it.

Applying this worst-case approach to the situation at hat, one would choose the

design maximizing (4.19) for the incorrect model with the smallest klic. �is

approach gives rise to an oed problem with the following design criterion.
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De�nition 4.5 (KL-Criterion)

Assume there are at least two rival models, nM ⩾ . Suppose the klic

δ(µ, θµ , ξ) exists and is continuous in θµ for all µ ∈ M, all θµ ∈ Qµ and

all ξ ∈ Ξ. �e kl-criterion is the function K∶Ξ ↦ R de�ned for all ξ ∈ Ξ as

K(ξ) ∶= min
ν∈M
ν≠µ̄

min
θν∈Qν

δ(ν, θν
, ξ). (4.20)

A maximizer of K(ξ) over all ξ ∈ Ξ is a kl-optimal design.

Note that without the limitation ν ≠ µ̄ in the outerminimization, the kl-criterion
would be identically zero according to (4.18). Under a kl-optimal design, the

“best” among the incorrectmodel family members exhibit the largest discrepancy
to the process, and is thus easiest to detect as incorrect empirically. All other

incorrect models have an even larger discrepancy, regardless of their parameter.

In this sense is a kl-optimal design the sought-a�er “best” design for solving

the md problem in the sense of (Q4.1).

A kl-optimal design cannot be determined in practice, since the kl-criterion

directly depends on the correct model µ̄ and on the process q, which are both
unknown. A kl-optimal design is thus a theoretical ideal case which one can aim
to approximate in practice.

Local KL-Optimality

�e klic (4.17) depends explicitly on the unknown probability density functions

(pdfs) q(y ∣ x) of the process. Replacing the latter by their counterparts speci�ed
by model µ with parameter θµ yields the function

δ(ν, θν
, ξ ∣ µ, θµ) ∶= ∑

x∈supp(ξ)
ξ(x) ∫

Y

p(y ∣ x , µ, θµ) ln p(y ∣ x , µ, θ
µ)

p(y ∣ x , ν, θν) dy,

(4.21)

essentially a model family-based counterpart of the klic. It gives rise to the

following local counterpart of Def. 4.5.
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De�nition 4.6 (Local KL-Criterion)

Assume that for a given model µ ∈ M and a given parameter θµ ∈ Qµ , the

function δ(ν, θν , ξ ∣ µ, θµ) exists and is continuous in θν for all ν ∈ M, all
θν ∈ Qν and all ξ ∈ Ξ. �e local kl-criterion (for µ and θµ ) is

(.)

K(ξ ∣ µ, θµ) ∶= min
ν∈M
ν≠µ

min
θν∈Qν

δ(ν, θν
, ξ ∣ µ, θµ) for all ξ ∈ Ξ. (4.23)

A maximizer ξKL(µ, θµ) of K(ξ ∣ µ, θµ) over all ξ ∈ Ξ is a locally kl-

optimal design.

�e function δ(ν, θν , ξ ∣ µ, θµ) and hence the local kl-criterion depend solely
on known or user-speci�ed quantities, so that locally kl-optimal designs can in
fact be determined in practice, in contrast to kl-optimal designs from Def. 4.5.

Suppose model µ ∈ M is correct and has a correct parameter θµ ∈ Qµ . �en,

q(y ∣ x) = p(y ∣ x , µ, θµ) for all y ∈ Y and all x ∈X, see Def. 1.6, and thus

δ(ν, θν
, ξ ∣ µ, θµ) = δ(ν, θν

, ξ) for all ξ ∈ Ξ. (4.24)

If, in addition, model µ is identi�able (excluding the possibility that the family
contains other correct models), then ξKL(µ, θµ) = ξKL. In other words, a locally
kl-optimal design for model µ with parameter θµ is kl-optimal if µ and θµ are
correct.

Suppose that there are only two rival models, µ ≠ ν, and assume without loss
of generality (wlog) that model µ is the identi�able correct one. �en, the local
kl-criterion reduces to

K(ξ, µ, θµ) = min
θν∈Qν

δ(ν, θν
, ξ ∣ µ, θµ), (4.25)

which is design criterion originally introduced by López-Fidalgo, Tommasi,

and Tranda�r [177] under the name “kl-criterion.” We use the same name for

the multi-model variants in Defs. 4.5 and 4.6 since they are a straightforward

generalizations.
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Statistical Motivation

Model ν ∈ M is correct if and only if the statistical hypothesis

∃θν ∈ Qν ∀x ∈X ∶ Yx ∼ p(y ∣ x , ν, θν) (Hν)

is true, see (4.1) and Def. 1.6. A conservative approach for identifying the correct

model empirically is to consider all rival models as “tentatively” correct and try
to falsify the corresponding hypothesis based on the available data.
In frequentist inference this is done using statistical hypothesis tests

or simply tests, rules for deciding whether a statistical hypothesis is inconsistent

with the available data and shall thus be “rejected” (=considered as false), or not.

Due to the random nature of the data, the decisions of a test might be erroneous.

�e quality of a test can be assessed by the probability α ∈ (, ) of a type
I error that an actually true hypothesis is erroneously rejected, and by the

probability β ∈ (, ) of a type II error that an actually false hypothesis is not
rejected.

Among themany possible tests, one is interested in those with lowprobabilities

for both error types. In most cases, however, one has to make a compromise, since
reducing the one error probability leads to an increase of the other. Classically,

one prede�nes an acceptable level for the probability of a type I error and then

looks among the tests meeting this constraint for those with a small probability

of a type II error.

Consider the special case of only two rival models µ ≠ ν with �xed parameters
θµ and θν , respectively, and assume wlog that model µ is the correct one. �en,
hypothesis Hν is false, and a good statistical test should have a low probability

of not rejecting it. Let βν
min(ξn) be theminimal type II error probability among

all possible tests for Hν which are based on data obtained under the exact n-
experiment design ξn . It follows from the results of Kullback [159, Sec. 4.3], that

βν
min(ξn)

∞≈ exp(−n δ(ν, θν
, ξn)). (4.26)

�e lowest possible type II error probability that can be achieved asymptotically

by any test for Hν thus drops exponentially with the associated klic of model ν.
In the considered special case, a kl-optimal design is simply a maximizer of the

klic of model ν, that is,

ξKL ∈ argmax
ξ∈Ξ

δ(ν, θν
, ξ). (4.27)
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In this case, a kl-optimal design minimizes the lowest possible probability of a

type II error that any test for the false hypothesis Hν can achieve asymptotically.

In the general case of several rival models with free parameters, a kl-optimal

design maximizes the minimal value that the klic attains among all incorrect

models and their parameters, see (4.20). Accordingly, a kl-optimal design
minimizes the lowest type II error probability that is asymptotically possible in the
worst case. Remarkably, this result does not depend on the signi�cance level α
that chosen for the applied test.

�e actual type II error probability achieved in practice depends on the
particular test that is applied. Based on the Neyman-Pearson lemma one can

show that the type II error probability of a likelihood-ratio test asymptotically

meets this lower bound under mild regularity conditions. In short, kl-optimal
designs maximize the probability of empirically detecting an actually incorrect
model with a likelihood-ratio test, supposed the sample is su�ciently large. Kl-
optimal designs are hence in fact the sought-a�er “ideal” designs for solving md

problems as stated in the introductory question.

A similar statistical justi�cation is given by López-Fidalgo, Tommasi, and

Tranda�r [177, Sec. 2]. It is a consistent generalization of the argumentation used

by Fedorov and Malyutov [98, Sec. 7], Fedorov [93, (4)], Dieses [80, Sec. 3.2.1]

and Kuczewski [153, Sec. 3.2.1] for the classic T-criterion, and of that used by

Uciński and Bogacka [252, Sec. 2] for the multivariate T-criterion.

4.2.3. T-Optimality: KL-Optimality under Normality

We can now introduce the well-known concept of T-optimality. Introduced by

Atkinson and Fedorov [21] in 1975, it preceded the introduction of kl-optimality

by López-Fidalgo,Tommasi, andTranda�r [177] by over 30 years.We shall see that

T-optimality is a special case of kl-optimality under the common assumptions

of known observation covariances and normality.

�e following de�nitions comprise several of the generalizations that were

proposed for the original T-optimality of Atkinson and Fedorov [21]. In contrast

to some of the original literature, we explicitly distinguish between T-optimality

and its local counterpart.

De�nition 4.7 (T-Criterion)

Consider scenario 4.1 under the additional normality assumptions (ix) to (xi)

and suppose there are at least two rival models, nM ⩾ . �e T-criterion is
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the function T ∶Ξ ↦ R de�ned for all ξ ∈ Ξ as

T(ξ) ∶= min
ν∈M
ν≠µ̄

min
θν∈Qν

∑
x∈supp(ξ)

ξ(x)∥ην(x , θν) − η̄(x)∥Ω−(x) . (4.28)

A design ξT maximizing T(ξ) over all ξ ∈ Ξ is a T-optimal design.

Observe that the sum of squares in (4.28) is the noncentrality λν(θν , ξ) for
known, non-unit observation covariances, see Tab. 3.1 on p. 113. A T-optimal

design maximizes the noncentrality of the worst model with the worst parameter.

De�nition 4.8 (Local T-Criterion)

Consider scenario 4.1 under the additional normality assumptions (ix) to (xi)

and suppose there are at least two rivalmodels, nM ⩾ . Let µ ∈ M and θµ ∈ Qµ .

�e local T-criterion (for µ and θµ ) is for all ξ ∈ Ξ de�ned as

T(ξ ∣ µ, θµ) ∶= min
ν∈M
ν≠µ

min
θν∈Qν

∑
x∈supp(ξ)

ξ(x)∥ην(x , θν) − ηµ(x , θµ)∥Ω−(x) .

(4.29)

A design ξT(µ, θµ) maximizing T(ξ ∣ µ, θµ) over all ξ ∈ Ξ is a locally T-
optimal design (for µ and θµ ).

�is design criterion is an instance of a local design criterion from Prob. 4.3.

T-optimality as de�ned here is a straightforward generalization of the univariate

T-optimality considered by Atkinson and Fedorov [20, 21], and is consistent with

the multivariate T-optimality of Uciński and Bogacka [248, 249, 250, 251, 252].

T-optimality is a special case of kl-optimality.

Corollary 4.9 (Consistency of KL-Optimality and T-Optimality)

Under the additional normality assumptions (ix) to (xi), K(ξ) = 
T(ξ) for all

ξ ∈ Ξ, and K(ξ ∣ µ, θµ) = 
T(ξ ∣ µ, θµ) for all µ ∈ M, all θµ ∈ Qµ and all ξ ∈ Ξ.

Accordingly, any (locally) kl-optimal design is (locally) T-optimal.

Proof �e proof is essentially an application of�m. C.10 to the klic from (4.17) and its

model family-based counterpart (4.21). For the univariate special case an explicit proof is

given by López-Fidalgo, Tommasi, and Tranda�r [177, �m. 2]. ◻

137



4. Fundamentals and Frequentist Strategies of OED

Consider the special case that there are only two rival models µ ≠ ν. �en, the
local T-criterion for model µ with parameter θµ ∈ Qµ reduces to

T(ξ ∣ µ, θ µ) = min
θν∈Qν

∑
x∈supp(ξ)

ξ(x)∥ην
(x , θν

) − ηµ(x , θ µ)∥
Ω−(x)

. (4.30)

�e local T-criterion for model ν with parameter θν ∈ Qν is analog.

4.2.4. Discussion
To the best of our knowledge, the kl-criterion in the multi-model form stated

in (4.23) has not been proposed so far. It is, however, fully consistent with the

multi-model T-criterion of Atkinson and Fedorov [20], as shown in Cor. 4.9, and

with the two-model local kl-criterion proposed by López-Fidalgo, Tommasi,

and Tranda�r [177], see (4.25). Technically, the local multi-model kl-criterion

is a rather good-natured generalization of its two-model counterpart, since it

extends it only by a minimization over the �nite setM ∖ {µ}.
�e two-model local kl-criterion is

(a) a concave function of ξ, as shown by Tommasi [244], and

(b) is upper semi-continuous in ξ if equippedwith a propermetric for designs,
as shown by May and Tommasi [183].

�ese properties ensure the existence of a kl-optimal design, supposed that the

incorrect model has an identi�able best parameter under that design. Aletti, May,

and Tommasi [5] show that under mild regularity conditions,

(c) the two-model local kl-criterion is also a continuous function of ξ if
equipped with a proper metric for designs, and

(d) a corresponding optimal design it is invariant to a scale-position transfor-

mations of the experimental domain.

�e discussion provided by Atkinson and Fedorov [20] suggest that these

properties also hold for the multi-model kl-criterion under the following

additional assumptions:

(xv) Each model µ ∈ M has an identi�able (that is, unique) klic-best parame-

ter θ̄µ(ξ) ∈ Qµ under ξ, which satis�es θ̄µ(ξ) ∈ argmin
θν∈Qν δ(ν, θν , ξ)

by de�nition.
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(xvi) �e model family has an identi�able “second-best” model in the sense of

the klic, meaning that argmin
ν∈M∖{µ̄}

δ(ν, θ̄ν(ξ), ξ) is unique.

�ese assumptions are required to ensure that theminimums in (4.20) are unique.

Support

Kl-optimal designs and T-optimal designs are not necessarily exact designs. Any

non-exact design with s support points can, however, be approximated by an
n-experiments exact design if n ≫ s. �e next theorem shows that T-optimal
design have typically few support points.

�eorem 4.10 (Support of Locally T-Optimal Designs, Fedorov [94])

Consider Def. 4.8 for the special case of two rival models µ ≠ ν and univariate
observables ny = , and assume wlog that model µ is the identi�able
correct one. If (i) ην(θν , x) is continuous on Q × X, (ii) Qν is convex,

(iii) (ηµ(θµ , x) − ην(θν , x)) is a convex function of θν for all x ∈ X, and
(iv) the minimum in (4.30) is unique, then a T-optimal design has not more

than nθν +  support points.

If the incorrect model is a�ne-linear, ην(x , θν) = Jν(x)θν + hν(x), assump-
tions (iii) and (iv) always hold. �en, in fact, the number of support points is

equal to nθν +  as shown by Dette and Tito� [79, Cor. 3.2]. According to Uciński
and Bogacka [251, Rem. 3], the theorem can be extended to the multivariate

T-criterion of the type stated in (4.29).

Dette andTito� [79, Sec. 4.2] suggest that this result is also valid for kl-optimal

designs, with  + nθ µ + nθν support points. In the examples regarded by López-

Fidalgo, Tommasi, and Tranda�r [177] and in follow-up papers by Tommasi

[244] and Tommasi and López-Fidalgo [245] and Tommasi and López-Fidalgo

[243], kl-optimal designs could in fact be well approximated by designs with

few support points.

4.3. Two Popular Sequential Design Criteria

�is section examines two popular sequential strategies for e�ciently solving

model discrimination (md) problems that are based on frequentist inference.
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Hunter and Reiner [129] are probably the �rst to propose a data-adaptive

sequential procedure for designing optimal experiments for md. Procedures of

the same type are proposed by Fedorov [91] and Fedorov and Malyutov [98],

Fedorov [93, Sec. IV] and Atkinson and Fedorov [21, Sec. 3]. In honor of their

inventors, we refer to this approach as Hunter-Reiner (hr)-strategy. It is

likely to be also the most-cited approach for optimal experimental design (oed)

for md and has found many applications, for example given in the publications

of Asprey and Macchietto [10], Chen and Asprey [67], Dieses [80], and Espie

and Macchietto [88] and Ho�mann [120].

�eir design criterion has great intuitive appeal and is easy to grasp, but has

several de�ciencies from today’s point of view. It is nevertheless still important,

since it turns out to be a special case or a limit case of several more sophisticated

design criteria and is comparably cheap to compute. Under mild conditions, the

designs constructed in the hr-procedure converge to a T-optimal design.

For the problem of discriminating between several univariate nonlinear

normalmodels,Buzzi-Ferraris andForzatti [63] developed a sequential procedure

and a corresponding design criterion. �e idea was modi�ed and extended to

the multivariate case by Buzzi-Ferraris et al. [61] and Buzzi-Ferraris, Forzatti,

and Canu [64]. Some details are clari�ed in the reply of Buzzi-Ferraris [62] to the

work of Michalik, Stuckert, and Marquardt [186]. Since the authors did not name

their approach, we shall refer to it as Buzzi-Ferraris (bf)-strategy. In this

section we consider the bf-strategy for discriminating between two models. �e

multi-model extension suggested in the same paper is considered in Sec. 4.5.

At their core, the sequential procedures of the hr-strategy and the bf-strategy

are similar. �eymainly di�er in their stop criteria and their design criteria. Both

are based on the classic empirical formulas from maximum-likelihood inference

summarized in the following.

4.3.1. Considered Scenario and Sequential Procedure

Both strategies are based on scenario 4.1 under the additional normality assump-

tions (ix) to (xi), and consider only two di�erent rival models with indices µ ∈ M
and ν ∈ M, µ ≠ ν.

Classic Empirical Formulas of Maximum-Likelihood Inference

Frequentist inference in the considered scenario is treated in detail in Sec. 3.4.

We repeat it here for completeness and to introduce conveniently simpli�ed
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notation.

Let d ∈ Yn be the data obtained from n experiments performed under
design ξ ∈ Ξ, and let θ̂µ ∈ Qµ be a corresponding parameter maximum-

likelihood estimate (pmle) of model µ. A well-known classic approximation for
the distribution of a the corresponding estimator Q̂µ is

Q̂µ a∼ ϕ(θµ ∣ θ̂µ , n−M̂µ−), (4.31)

with the matrix M̂µ from (4.15). �e corresponding classic approximation for

the distribution of experimental outcomes under condition x ∈X is

q(y ∣ x) ≈ ϕ(y ∣ η̂µ(x), T̂ µ(x)), for all y ∈ Y. (4.32)

�e function η̂µ(x) (see (4.12)) predicts the average experimental outcome under
x ∈X, based on model µ and the available experiments. �e ny × ny matrix

T̂ µ(x) ∶= Ω(x) + V̂ µ(x) (4.33)

quanti�es the total uncertainty about the actual outcome of an experiment under
x, given model µ and the available experiments. It is composed of the matrix
Ω(x) representing the experimental uncertainty and the matrix

V̂ µ(x) ∶= n− Ĵµ(x)M̂µ− Ĵµ
⊺(x). (4.34)

which quanti�es, in a locally linear approximation, the propagation of the

parameter uncertainty onto the prediction η̂µ(x).
Approximation (4.31) can be motivated in two ways. Assuming that

(v) model µ is locally a�ne-linear (Def. 3.5) around the pmle θ̂µ

justi�es it for samples of any size n ∈ N. Such a derivation is given, for example,

by Buzzi-Ferraris, Forzatti, and Canu [64]. Alternatively, assuming that

(vi) model µ is correct,

justi�es it for large sample sizes n. It is then a special case of (3.64). Approxima-
tion (4.32) relies in any case on assumption (v).
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Sequential Procedure

�e original bf-strategy is limited to observation covariances that are indepen-

dent from the experimental condition. We took the additional (simple) steps to

generalize it to observation covariances that might depend on the experimental

condition. Furthermore, the bf-strategy is originally formulated for several

models. Here, we only consider the comprised two-model case. Multi-model

generalizations are discussed in Sec. 4.5.

Algorithm 4.2: Sequential procedure of the Hunter-Reiner strategy and the Buzzi-
Ferraris strategy.

input : two di�erent rival models with indices µ ≠ ν
s ∈ N previous experiments, design ξs , data ds

output : set of non-rejected modelsMn , either empty or singleton

1 for n = s to∞ do
2 foreach λ ∈ {µ, ν} do
3 θ̂λ

n ← argminθ λ∈Qλ sλ(θλ
, dn , ξn); // lsq estimation

4 end
5 Mn ∶= {λ ∈ {µ, ν} ∣ model λ passed adequacy test using dn and ξn};
6 if ∣Mn ∣ <  then return Mn ; // termination check

7 xn+ ← argmaxx∈X Ψ(x; µ, ν, θ̂ µn , θ̂ν
n , ξn , dn); // design experiment

8 yn+ ← realization of Yxn+ ; // perform experiment
9 ξn+ ← n

n+ ξn + 
n+ ξxn+ ; // update design

10 d⊺n+ ← [d⊺n y⊺n+]; // extend data vector

11 end

For e�ciently solving the md problem from (Q4.1) in this setting, both the

hr-strategy and the bf-strategy propose a sequential approach. Its central steps

are described by Alg. 4.2. Both strategies actually propose more sophisticated

stop criteria than shown there. We do not discuss them here since our focus are

the involved sequential oed problems.

Starting from two models and s previous experiments, Alg. 4.2 performs
the following steps. Using all available experiments, it �rst calculates pmle

θ̂µn for both models, which are least-squares (lsq) estimates under the given
assumptions.

�en, it assesses the adequacy of both models via adequacy tests based on

available data and parameter estimates. If a model λ fails the test, the hypothesis
that µ is correct is rejected. If only one test fails, the procedure stops and returns
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the index of the remaining model. If both tests fail, it stops and returns an empty

set. Under certain regularity conditions (partially discussed later), the procedure

terminates with probability tending to µ as n →∞.
If both tests succeed, the procedure continues to gather more data. It selects

the experimental condition xn+ for the next experiment by solving a sequential
oed problem for md with the design criterion Ψ (discussed in the next section),
using the latest parameter estimates θ̂µn and θ̂ν

n . �e conditions of all available

experiments are then described by the design ξn+, which is determined from
the corresponding design ξn from the previous iteration and the design ξxn+
which puts full weight at xn+.
It applies the new experimental condition xn+ to the process and records the

resulting data yn+. �en, it continues with parameter estimation in the hope
that the previous and the newly gathered experimental results are su�cient to

meet the stopping criterion.

4.3.2. �e HR-Criterion and the BF-Criteria

�emain di�erence between the hr-strategy and the bf-strategy is the particular

form of the sequential design criterion Ψ used to determine the conditions of
the next experimental design in Alg. 4.2.

De�nition 4.11 (HR-Criterion)

�e hr-criterion for discrimination between two models fromM is the

function H∶X ×M ×M ↦ R de�ned under all x ∈X and for all µ, ν ∈ M as

H(x; µ, ν) ∶= ∥ηµ(x , θ̂µn) − ην(x , θ̂ν
n)∥



Ω−(x) . (4.35)

Hunter and Reiner [129] derive this design criterion from log-likelihood statistic

used in a likelihood ratio test for the md problem. �eir derivation rests upon

the crucial assumption that exactly one of the two rival model is correct.

We write H(x; µ, ν, θ̂µ , θ̂ν) to emphasize that the hr-criterion depends

parametrically on the pmles of both rival models. Using this notation, the hr-

procedure is the special case of Alg. 4.2 for the choice

Ψ(x; µ, ν, θ̂µn , θ̂ν
n , ⋅, ⋅) ∶= H(x; µ, ν, θ̂µn , θ̂ν

n), for all x ∈X. (4.36)
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De�nition 4.12 (BF-Criteria [61, 64])

Let X′ be the set of all x ∈ X under which T̂ µν(x) ∶= T̂ µ(x) + T̂ν(x)
is invertible. �e bf-criterion and the modified bf-criterion for

discrimination between twomodels fromM are the functions B∶X′×M×M ↦
R and B̃∶X′ ×M ×M ↦ R, respectively, de�ned under all x ∈X′ and for all

µ, ν ∈ M as

B(x; µ, ν) ∶= ∥ηµ(x , θ̂µ) − ην(x , θ̂ν)∥
(T̂ µν(x))

− and (.)

B̃(x; µ, ν) ∶= B(x; µ, ν) +  tr(Ω(x)(T̂ µν(x))−). (4.38)

�e bf-criterion was introduced by Buzzi-Ferraris et al. [61] and Buzzi-Ferraris

and Forzatti [63] and the modi�ed variant by Buzzi-Ferraris, Forzatti, and Canu

[64]. Both variants are derived from the aim of �nding the best experimental

condition for falsifying the hypothesis that the responses of both rival models are

equal, a�er averaging out the parameter uncertainty (in terms of the distribution

of the parameter maximum-likelihood estimators (pmles)). �e derivation does

not require any of the models to be correct, but assumes that both models are

locally a�ne-linear around their pmles. Furthermore, it makes the assumption

that the pmle of bothmodels are statistically independent.�e latter assumption

is typically not met in practice, and particularly not in Alg. 4.2. �e inventors are

well aware of that and propose to consider the design criterion as a heuristic.

Backtracking the de�nition of T̂ µν in Sec. 4.3.1 reveals that this matrix

depends on the pmles of both models and on the underlying design. We write

B(x; µ, ν, θ̂µ , θ̂ν , ξ) to emphasize this dependency. With this notation, the bf-
procedure is the special case of Alg. 4.2 for

Ψ(x; µ, ν, θ̂µn , θ̂ν
n , ξn , ⋅) ∶= B(x; µ, ν, θ̂µn , θ̂ν

n , ξn) (4.39)

for all x ∈X. BothDefs. 4.11 and 4.12 are instances of a sequential design criterion
Prob. 4.4.
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4.3.3. �e In�uence of Uncertainties on the Design Criteria
HR-Criterion

�e hr-criterion can be considered as an one-experiment approximation of the

two-model T-criterion (4.30), where the involved unknown parameters have

been replaced by the available pmles.

�e response ηµ(x , θ̂µn) is the prediction of models µ for the average outcome
of an experiment under x, based on the parameter estimate θ̂µn obtained in n
previous experiments. �e observation covariance Ω(x) quanti�es the amount
of random �uctuations of observations under x, that is, the uncertainty of an
experiment under x.
�e hr-criterion is thus the di�erence between the predictions of models

µ and ν for the average outcome of an experiment under x, based on available
pmles, relative to the experimental uncertainty. In short, under an hr-optimal

experimental setting, the di�erence between the model predictions is maximal

relative to the experimental uncertainty.

�e hr-criterion is robust with respect to experimental uncertainty in the sense
that it takes into account the random�uctuations of the designed experiment. It is,

however, not parameter-robust, since it does not take into account the variability
of the pmles.

BF-Criteria

�e bf-criterion has the same shape as the T-criterion. It also measures the

di�erence between the predictions of both models, but relative the sum of the

total uncertainties of both rival models described by the matrix T̂ µν , see (4.33)

�e �rst term of the modi�ed bf-criterion is the bf-criterion, the second

summand is the trace of a matrix product. �is product can be rewritten as

Ω(x)(T̂ µν(x))− = (T̂ µν(x)Ω−(x))−

= ( + V̂ µ(x)Ω−(x) + V̂ ν(x)Ω−(x))− , (4.40)

with V̂ µ(x) from (4.34). It quanti�es the parameter-induced uncertainties in the
model predictions represented by V̂ µ(x), relative to the experimental uncertainty
represented by Ω(x).
If Ω(x)(T̂ µν(x))− is “large” under x, the actual behavior of an experiment

under x can be expected to di�er from itsmodel-basedpredictions in amagnitude
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exceeding that of the experimental uncertainty. It thus has a large probability of

being simply ine�cient for md in practice. �e additional term in the modi�ed

bf-criterion penalizes such undesirable experimental conditions.

Relation between HR-Criterion and BF-Criteria

Proposition 4.13 (BF-Criteria under Small Uncertainties)

If the parameter-induced uncertainties in the responses of both models

vanish, V̂ µ(x) = V̂ ν(x) =  under all experimental conditions x ∈ X,
then B(x; µ, ν) ∝ H(x; µ, ν) and B̃(x; µ, ν) ∝ H(x; µ, ν) for all x ∈ X.
Consequentially, so that bf-optimal designs (original and modi�ed) are hr-

optimal.

Proof One can easily see from the given de�nitions that V̂ µ(x) = V̂ ν
(x) =  implies

that T µν
(x) = Ω(x). Applying this equation to the bf-criteria and substituting the

de�nition of the hr-criterion yields the equality B(x; µ, ν) = H(x; µ, ν) and B̃(x; µ, ν) =
H(x; µ, ν) + ny . ◻
�ematrix V̂ µ(x) quanti�es, in a�ne-linear approximation, the uncertainty in
the response of model µ due to parameter uncertainty a�er n experiments in
terms of n−M̂µ−, see (4.31) and (4.34). �e hr-criterion is therefore a special

case of both bf-criteria for vanishing parameter uncertainty. Reversely, the bf-

criteria can be viewed as parameter-robust generalizations of the hr-criterion.

Based on Prop. 4.13 and some continuity arguments one can derive the

following approximate results. If the parameter-induced uncertainty in themodel

responses is signi�cantly smaller than the experimental uncertainty, that is, if

∥V̂ µ(x)∥ ≪ ∥Ω(x)∥ and ∥V̂ ν(x)∥ ≪ ∥Ω(x)∥ for all x ∈X, (4.41)

with some matrix norm ∥⋅∥, then B and B̃ are approximately proportional to the
hr-criterion.

Under certain regularity conditions discussed in Secs. 3.4.1 and 3.4.3, the

inverse of matrix nM̂µ converges to zero as the sample size n tends to in�nity,
so that V̂ µ(x) vanishes asymptotically under all x ∈X. �en, (4.41) is satis�ed
in large samples. �erefore, both bf-criteria reduce asymptotically to the hr-

criterion under certain regularity conditions.
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4.3.4. Convergence to T-Optimal Designs

�eorem 4.14 (Convergence of the Hunter-Reiner Procedure)

Assume that the responses of both rival models µ and ν are linear in their
parameter θµ and θν , respectively. If the sequence of designs ξs , ξs+ , . . .
constructed by Alg. 4.2 on p. 142 with the hr-criterion (4.35) converges to

a design under which the Kullback-Leibler information criterion (klic)-best

parameters of both models are identi�able, then this design is almost surely

T-optimal.

Proof Proof are given by Fedorov andMalyutov [98,�m. 7.2] and Fedorov [93,�m. 3].◻
�e hr-procedure is thus a data-adaptive procedure for the sequential construc-

tion of T-optimal designs. �e available proofs of convergences are, however,

limited to the univariate case and to linear models. A look at the proof of

[93, �m. 3] suggests, however, that a generalization to the multivariate case

should easily be possible. �e linearity assumption, however, cannot be easily

circumvented. From a practical point of view, one thus uses the hr-procedure

as a heuristic approach for e�ciently solving md problems.

To the best of our knowledge, the asymptotic behavior of the bf-procedure

has not been examined rigorously. Suppose the sequence of designs constructed

by the procedure converges to a limit design ξ, and assume that under this design,
the regularity conditions for the consistency and asymptotic normality of pmles,

discussed in Sec. 3.4.1, are met for each both rival models λ ∈ {µ, ν}. �en, the
pmle covariances given by the matrices n−M̂λ− vanish asymptotically, so that

T̂ µν
n converges to Ω−, and both bf-criteria reduce to the hr-criterion. �e

bf-procedure is then asymptotically equivalent to the hr-procedure, which

convergences to a T-optimal design under the previously given assumptions.

Since bf-optimal experiments are, however, not necessarily e�cient for

reducing the parameter covariance, a large number of experiments might be

required in practice until this limiting behavior of the bf-procedure gets visible.

4.4. NewMisspeci�cation-Robust Sequential Design
Criteria

In Sec. 3.4 we proposed a new empirical formula for the covariance of parameter

maximum-likelihood estimator (pmle) for models that are both nonlinear and
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incorrect models. Here, we show it can be used to derive new design criteria for

model discrimination (md) with improved parameter-robustness.

4.4.1. Classic and Robust Formulas for the Distribution of
PMLEs

�e classic empirical approximation

Q̂µ a∼ N(θ̂µ , n−M̂µ−), (4.42)

with M̂µ from (4.15), for the distribution of a pmle of model µ ∈ M is based on

the assumption that the model is correct and/or that is has locally a�ne-linear

responses around around θ̂µ . As discussed in Sec. 3.4.2, this relation remains
appropriate if the model is “almost” correct or “weakly” nonlinear. It is generally

inappropriate, however, if the model is both signi�cantly incorrect and properly
nonlinear.

In Sec. 3.4 we proposed the new robust empirical approximation

Q̂µ a∼ N(θ̂µ , n−R̂µ) (4.43)

for the distribution of a pmle, see (3.64), where

R̂µ ∶= (M̂µ + N̂ µ)−M̂µ(M̂µ + N̂ µ)− (4.44)

with N̂ µ(x) from (4.16). As discussed in Sec. 3.4.2, this approximation is justi�ed
even for models that are both incorrect and nonlinear. Furthermore, it is a
consistent generalization of (4.42): if model µ is locally a�ne-linear around
θ̂µ , then the Hessians of its response components almost vanish, so that N̂ µ ≈ 
and thus R̂µ ≈ M̂µ−. If the model is correct, these approximate equalities hold

asymptotically.

In the class of md problems arising from scenario 4.1, (a) all rival models

may be nonlinear, (b) all of them are incorrect except for exactly one, and

(c) this correct model is unknown. �erefore, the classic approximation (4.42) is

generally inadequate for all models except one, which is unknown. Nevertheless,

various frequentist design criteria use it for empirically quantifying the parameter

uncertainty of the rival models. In the following, we show how such a design

criterion can be reformulated to overcome this drawback. We use the Buzzi-

Ferraris (bf)-criterion (Def. 4.12) as example. �e argumentation can be applied
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likewise to any other frequentist design criterion for md which quanti�es the

parameter uncertainty based on (4.42).

4.4.2. BF-Criteria with Improved Parameter-Robustness

We propose to replace the classic approximation (4.42) in both bf-criteria by its

robust counterpart (4.43) for both rival models µ and ν. Analog to the matrix
T̂ µν used in the bf-criterion, the matrix

V̂ µν(x) ∶= Ω(x) + n− Ĵµ(x)R̂µ Ĵµ⊺(x) + n− Ĵν(x)R̂ν Ĵν
⊺(x)

describes the common total uncertainty of both models µ and ν about the
outcome of an experiment under condition x ∈X. It takes into account both the
experimental uncertainty in terms of Ω(x) and the parameter uncertainty in
terms of R̂µ and R̂ν . Replacing T̂ µν in both bf-criteria by V̂ µν(x) leads to the
following design criteria.

De�nition 4.15 (Robust BF-Criteria)

LetX′ be the set of all x ∈X under which V̂ µν(x) is invertible. �e robust
counterparts of the bf-criteria for discrimination between two models fromM
are the functions B′∶X′ ×M ×M ↦ R and B̃′∶X′ ×M ×M ↦ R, respectively,

de�ned under all x ∈X′ and for all µ, ν ∈ M as

B′(x; µ, ν) ∶= ∥ηµ(x , θ̂µ) − ην(x , θ̂ν)∥
(V̂ µν(x))

− and (.)

B̃′(x; µ, ν) ∶= B′(x; µ, ν) +  tr(Ω(x)(V̂ µν(x))−). (4.46)

It is obvious from the derivation that B′(x; µ, ν) ≈ B(x; µ, ν) and B̃′(x; µ, ν) ≈
B̃(x; µ, ν) for all x ∈X if the responses of both models µ and ν are locally a�ne-
linear around around their parameter maximum-likelihood estimates (pmles).

If model µ is correct,

V̂ µν(x) ∞≈ Ω(x) + n− Ĵµ(x)M̂µ Ĵµ
⊺(x) + n− Ĵν(x)R̂ν Ĵν

⊺(x)

for large n. If model ν is correct, V̂ µν(x) simpli�es likewise. If both models are
correct, then V̂ µν(x) ∞≈ T̂ µν . �is case, however, is excluded by the assumption
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that exactly one of the rival models is correct. Unless both rival models are a�ne-

linear, the bf-criteria and its robust counterparts proposed here are di�erent

design criteria.

4.4.3. Discussion

�e design criteria B′ and B̃′ have largely similar properties as B and B̃,
respectively, which are discussed in Secs. 4.3.3 and 4.3.4. In particular, they

are robust with respect to the experimental uncertainty and the parameter

uncertainty and reduce under regularity conditions asymptotically to the Hunter-

Reiner (hr)-criterion.

�e intent of using the robust pmle covariance formula (4.44) instead of its

classic counterpart is to capture the parameter uncertainty of the incorrect model

more adequately. �e aim is to make the optimal experiments obtained from the

new design criteria B′ and B̃′ less susceptible to �uctuations in the parameter
estimates, compared to those obtained from the bf-criteria B and B̃.
�e robust covariance formula is, however, based on an approximation that

is valid only in the large-sample limit. It can thus not be determined a priori

whether using it actually pays o� in practice, where sample sizes are �nite and

possibly small. Using Monte-Carlo simulations, we compare the classic and the

robust covariance formulas in Chap. 7, and the corresponding variants of the

bf-criteria in Chap. 9.

4.5. Sequential Multi-Model Design Criteria

�e sequential strategies for model discrimination (md) considered so far are

suited for discriminating between exactly two rival models.�is section discusses
various approaches for generalizing them to several models. Bayesian design
criteria for md, which typically come with an intrinsic support for several models,

are discussed in detail in Chap. 5.

4.5.1. Problem Statement

Consider a family of nM ⩾  models, without loss of generality (wlog)

distinguished by indices fromM ∶= {, . . . , nM}. Assume that exactly one of the
models µ̄ ∈ M is correct, but which one is not known to us. We aim to identify it
empirically, that is, based on experimental data.
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We proceed sequentially, designing, performing, and analyzing one experi-

ment a�er another, as described by Sec. 4.5. �e iteration index is denoted n.
For all n ∈ N, let xn ∈ X be the condition under which the n-th experiment
is performed, and let ξn be the exact design describing the conditions of
experiments  to n.
We aim to keep the experimental e�ort for solving this problem low through

optimal experimental design (oed). To that end, we require a sequential

multi-model design criterion Ψ̃n ∶X ↦ R with the following property: if

the experiments are performed under conditions maximizing it,

xn+ ∈ argmax
x∈X

Ψn(x), for all n ∈ N , (4.47)

then the resulting sequence of designs ξ , ξ , . . . converges, preferably fast, to
a design ξ⋆ that is e�cient for identifying the correct model. Examples for the
latter are a Kullback-Leibler (kl)-optimal design, or a T-optimal design if the

observation covariances are known and the models are normal.

4.5.2. CommonMulti-Model Design Criteria
E�cient experiments for md are model-dependent: Am experimental condition

that is e�cient for discriminating between model µ ∈ M and model ν ∈ M
is not necessarily e�cient for discriminating between model µ and a di�erent
model λ ∈ M. A sequential multi-model design criterion must hence make a
compromise between the in�uence of the several rival models fromM.
�e relevant literature provides a plethora of sequential multi-model design

criteria for md. �ose from the frequentist school, which we consider here, are

typically heuristic generalizations of a sequential two-model design criterion that

use di�erent compromises for the in�uence of the several models. It seems that

rigorous proofs for their asymptotic e�ciency (like convergence to a kl-optimal

or a T-optimal design) are rare. A notable exception is the multi-model Hunter-

Reiner (hr)-criterion of Atkinson and Fedorov [20] considered in Sec. 4.5.3.

In the following we sketch some popular frequentist multi-model design

criteria. Details can be found in the given references. For all n ∈ N, let Ψn ∶X ×
M ×M ↦ R be a sequential design criterion for discriminating between two

models fromM in iteration n. Suppose the design criterion is invariant under
an exchange of the models, that is, Ψn(x; µ, ν) = Ψn(x; ν, µ), for all x ∈X and

all µ, ν ∈ M. Examples for Ψn are the hr-criterion (Def. 4.11), the Buzzi-Ferraris
(bf)-criterion (Def. 4.12), and its misspeci�cation-robust extension (Def. 4.15).
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Pair of Seemingly Easiest/Hardest-to-Discriminate Models

�e value Ψn(x; µ, ν) is a prediction (based on n previous experiments) for the
utility of an experiment under x for discriminating between models µ and ν.
�is interpretation can be used to derive sequential multi-model design criteria

as follows.

Onemight perform that experiment underwhich the predicted utility is largest

among selected pairs of di�erent models, which corresponds to

Ψ̃n(x) = max
µ ,ν∈Mn
µ>ν

Ψn(x; µ, ν), for all x ∈X, (4.48)

whereMn ⊆ M. �is choice focuses the experiment on the pair of models that
seems easiest to discriminate. Alternatively, one might focus it on the model pair

that seems hardest to discriminate by choosing

Ψ̃n(x) = min
µ ,ν∈Mn
µ>ν

Ψn(x; µ, ν), for all x ∈X. (4.49)

�is �rst approach is, for example, suggested and used by Buzzi-Ferraris et al.

[61], Buzzi-Ferraris and Forzatti [63], and Buzzi-Ferraris, Forzatti, and Canu [64]

and by Chen and Asprey [67, Sec. 6] for the bf-criterion. �e second approach

is applied by Cooney and McDonald [72] to the hr-criterion.

ChoosingMn such that it includes only models that are “compliant” in some

sense with the results of the n available experiments, one can reduce the risk of
spending experimental e�ort on discriminating between models that are likely

to be incorrect.

Generally, the computational e�ort for evaluating (4.48) and (4.49) is nM
times the e�ort required to evaluate Ψn .

Pair of Currently Best Models

Design criteria (4.48) and (4.49) choose a pair of models to discriminate between

based on the predicted experimental utility. We discussed in Sec. 4.1.2 that such
predictions are subject to various uncertainties, whose magnitude might be

di�cult to estimate. An less fragile variant is to choose a pair of models solely

based on their compliance with the available data.

Following a worst-case approach, one might choose

Ψ̃n(x) = Ψ(x; µn , νn), for all x ∈X, (4.50)

152



4.5. Sequential Multi-Model Design Criteria

where µn and νn are the models which explain the currently available data from
the n experiments “best” and “second-best” in some sense. �is design criterion
is essentially an a posteriori counterpart of (4.49).

Atkinson and Fedorov [20] propose this approach to generalize the hr-

criterion to several models. It is considered in detail in Sec. 4.5.3.

Evaluating this multi-model design criterion requires the same computational

e�ort as evaluating one two-model design criterion, plus the e�ort for identifying

the best and second best model, which o�en comes for free since the necessary

inferences are performed anyhow.

Equally Distributed Interest

If one wants to distribute the in�uence of the rival models on the resulting

multi-model design criterion more evenly, one might choose

Ψ̃n(x) = ∑
µ ,ν∈Mn
µ>ν

Ψn(x; µ, ν), for all x ∈X. (4.51)

As previously, the limitation to models fromMn ⊆ M might reduce to the risk

of wasting experimental e�ort on models which are likely to be incorrect.

Buzzi-Ferraris, Forzatti, and Canu [64] propose this approach as alternative

to (4.48) for generalizing the bf-criterion to several models. �is suggestion was

used in the computations of Schwaab et al. [225, Exs. 1–4]. Asprey andMacchietto

[10] and Espie and Macchietto [88] suggest it as multi-model generalization

of the hr-criterion, using χ lack-of-�t tests to determine the set of data-
compliant models. �is approach was used by Cooney and McDonald [72] for

their computations.

�e computational e�ort for evaluating it scales with nM in general

Bilinear Weighting

Design criterion (4.51) can be further generalized by weighting the in�uence

of each model pair onto the resulting multi-model design criterion. Suppose

that for each model µ ∈ M a weight wµn ∈ R+
 is available which quanti�es the

“plausibility” that µ is the correct model, given the results of n experiments,
and de�ne w⊺ ∶= [w

n . . . wnM
n ]⊺. One might then perform the experiment
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maximizing the multi-model design criterion de�ned as

Ψ̃n(x) = ∑
µ ,ν∈M
µ>ν

wµnwν
nΨn(x; µ, ν) = w⊺nΨn(x)wn , for all x ∈X, (4.52)

where Ψn(x) is an nM × nM matrix that has the component Ψn(x; µ, ν) in row
µ and column ν on the upper or lower triangle and is zero otherwise.
�is design criterion is a bilinear form in the model weights. �e in�uence

of each pair of rival models onto this design criterion increases linearly in their

joint plausibility wµnwν
n . Design criterion (4.52) comprises (4.50) as special case,

if wµnn = wνn
n =  and all other weights are zero. Furthermore, it reduces to (4.51)

if wµn =  for all µ ∈ Mn , and the remaining weights are zero.

Schwaab et al. [225, Exs. 1–4] proposes such an approach to generalize the

bf-criterion to several models. �ey use weights derived from the χ-lack-of-�t
test statistic. We shall see in Chap. 5 that certain Bayesian design criteria for md

considered in Chap. 5 also fall into this class.

�e computational e�ort for evaluating (4.52) generally scales with nM.

4.5.3. Multi-Model Design Criteria Considered in this �esis

De�nition 4.16 (Multi-Model HR-Criterion)

Consider scenario 4.1 under the additional normality assumptions (ix) to (xi).

For all µ ∈ M, let θ̂µ ∈ argmin
θ µ∈Qµ sµ(θµ , d , ξ). Suppose that sµ(θ̂µ , d , ξ)

has a unique minimum µ̂ onM and a unique minimum ν̂ onM ∖ {µ̂}. Let
H be the (two-model) hr-criterion from Def. 4.11. �e hr-criterion for
discriminating among allmodels fromM is the function de�ned as H(x; µ̂, ν̂)
for all x ∈X.

�is design criterion is a straightforward generalization of the two-model hr-

criterion from Def. 4.11 to several models. Both design criteria are identical in

the case of two rival models.

Under the given assumptions, θ̂µ is parameter maximum-likelihood estimates
(mles) of model µ for each µ ∈ M. Furthermore µ̂ is a model maximum-
likelihood estimate (mmle) and ν̂ is a mmle on the set of rival models excluding

µ̂,�e parameter-minimal sum of squared residuals (ssr) sµ(θ̂µ , d , ξ) it the lack
of �t of model µ with respect to the data d obtained under design ξ. �erefore,
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µ̂ and ν̂ are the models which �t the data best and second-best, respectively.
De�nition 4.16 is thus an instance of (4.50), using the negative lack of �t to

measure the “goodness” of the rival models.

If the observation covariances are known and the model is normal, the design

resulting from a sequential application of the multi-model hr-criterion is under

certain regularity assumptions asymptotically T-optimal, as shown by Atkinson

and Fedorov [20, Sec. 3]. �is is in fact the only convergence result for multi-

model design criteria known to us.

Applying the same approach to the bf-criterion from Def. 4.12 or its misspeci-

�cation-robust counterpart from Def. 4.15 yields the following design criteria.

De�nition 4.17 (Multi-Model BF-Criterion)

Consider the same setting as in Def. 4.16 and let B be the (two-model) bf-
criterion from Def. 4.12. �e bf-criterion for discriminating among all
models fromM is the function de�ned as B(x; µ̂, ν̂) for all x ∈X.

De�nition 4.18 (Robust Multi-Model BF-Criterion)

Consider the same setting as in Def. 4.16 and let B′ be the robust (two-model)
bf-criterion from Def. 4.15. �e robust bf-criterion for discriminating

among allmodels fromM is the function de�ned as B′(x; µ̂, ν̂) for all x ∈X.

�ese multi-model design criteria are theoretically well justi�ed, computationally

tractable, and simple to implement. We shall hence use it for our computations

in Chap. 9.
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5. Bayesian Strategies of Optimal
Experimental Design for Model
Discrimination

In designing an experiment, decisions must be made before
data collection, and data collection is restricted by limited
resources. Because speci�c information is usually available
prior to experimentation and, indeed, o�en motivates the
experiment, Bayesian methods can play an important role.

Chaloner and Verdinelli [66, 1. Introduction]
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Having discussed frequentist strategies for optimal experimental design

(oed) for model discrimination (md) in the last chapter, the focus is now
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set on corresponding Bayesian strategies.

A�er some preparative steps in Sec. 5.1, we consider in Sec. 5.2 the de-facto

standard strategy of Box-Hill-Hunter (bhh), which is based on the information-

theoretic concept of entropy. �e bhh-criterion makes few assumptions and

can in principle be applied to a wide range md problems. Yet even under the

comfortable assumptions of known observation covariances and normal models,

it still leads to problems without that have no closed-form solution and may be

numerically di�cult to solve.

�e classic remedy is to switch to the closed-form approximation of bhh-

criterion described in Sec. 5.3. Albeit popular among practitioners, it has some

serious drawbacks that might signi�cantly reduce its practical e�ciency. �e

remaining sections are dedicated to the derivation of new design criteria for

md under normality assumptions. Section 5.4 presents information-theoretic

inequalities discovered in the only recent years. Based thereon,newdesign criteria

are derived and discussed in Sec. 5.5.

Even if they are derived as closed-form approximations of the bhh-criterion,

these new design criteria have intuitive interpretations for themselves. �ey

take into account parameter and model uncertainty, have intrinsic support for

more than two rival models, yet remain consistent with the Hunter-Reiner (hr)-

criterion. Albeit similar in structure to the classic approximation of the bhh-

criterion, they overcome several of its drawbacks.

5.1. Assumptions and Notation

�is chapter uses the optimal experimental design (oed)-related notation

introduced in Chap. 4. For clarity, it applies a simpli�ed notation for Bayesian

inference that slightly di�ers from that used in Sec. 2.5.

In particular, prior distributions and derived quantities are marked by the

subscript , and the arguments dn (data) and ξn (design) in posterior (predictive)
distributions are omitted. Accordingly, p(θµ) is the parameter prior of model
µ ∈ M, p(θµ) is the corresponding parameter posterior, and p(y ∣ x , µ) is its
posterior prediction for an observation under experimental condition x ∈ X.
Likewise, p(µ) is the model prior, p(µ) is the model posterior, and p(y ∣ x) is
the posterior prediction of the model family for the experimental outcome under

x.
Furthermore, Qµ is a continuous Qµ-valued random variable distributed

according to probability density function (pdf) p(θµ),M is a discreteM-valued
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random variable distributed with probability mass function (pmf) p(µ), and
Ỹx is a continuous Y-valued random variable distributed with pdf p(y ∣ x).
�en, p(y ∣ x , µ) is the pdf of Ỹx ∣M = µ and p(y ∣ x , µ, θµ) is the pdf of
Ỹx ∣M = µ,Qµ = θµ .
�e whole chapter makes the same assumptions as the previous one, summa-

rized in scenario 4.1. In addition, it is assumed that a model prior p(µ) and
parameter priors p(θµ) for all models µ ∈ M are given.

5.2. �e Box-Hill-Hunter (BHH) Strategy
Box and Hill [42] propose a sequential strategy for e�ciently solving model

discrimination (md) problems between several regression models with an

arbitrary distribution, and apply it to univariate normal models, assuming a

homoscedastic process with known observation variance. Hill and Hunter

[117, 118] generalize the strategy to the multivariate situation and to unknown

observation covariances, respectively. Box [46] extends the multivariate strategy

to heteroscedastic models. We refer to this body of work as the Box-Hill-

Hunter (bhh)-strategy.1

�e bhh-strategy is a sequential data-adaptive optimal experimental design

(oed) strategy for reducing the experimental e�ort required to solve md

problems in families of two or more multivariate and possibly non-normal

regression models. Its features a design criterion that is takes into account

experimental uncertainty, parameter uncertainty and model uncertainty.

�e bhh-strategy is an early and deeply in�uential approach for oed for

md. It gave rise to a huge body of follow-up works which both advanced the

underlying theory and applied the strategy in practice. At May 19, 2015, Web

of Science (http://www.webofscience.com) lists more than 260 citations of the

work of Box and Hill [42], with 38 publications being from the year 2010 or later.

Overviews of the related literature are given by Hill [116], Burke [59, Sec. “Model

Discrimination Methods”] and Franceschini and Macchietto [103, Sec. 3.2].

5.2.1. Setting and Procedure
For e�ciently solving the md problem from (Q4.1) in this setting, the bhh-

strategy follows the data-adaptive sequential procedure described by Alg. 5.1 on

1It seems that the contributions of Hill and Hunter [117, 118] are not well known, so that most
publications omit Hunter’s name and simply speak of the “Box-Hill-strategy.”
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Algorithm 5.1: Sequential data-adaptive design procedure of the bhh-strategy.
input :model family (p(y ∣ x , µ, θ µ) ∶ µ ∈ M, θ µ ∈ Qµ

)

parameter priors p(θ 
), . . . , p(θnM), model prior p(µ)

previous experiments: data ds , design ξs , with s ∈ N

output : model posterior p(µ)

1 for n = s to∞ do
2 foreach µ ∈ M do
3 p(θ µ) ← cµn p(θ µ)p(dn ∣ ξn , µ, θ µ); // update parameter posterior
4 end
5 p(µ) ← cn p(µ)p(dn ∣ ξn , µ); // update model posterior

6 if dostop(p(θ 
), . . . , p(θnM), p(µ)) then // check stopping criterion

7 return p(µ);
8 end
9 xn+ ← argmaxx∈X Λ(x; p(θ 

), . . . , p(θnM), p(µ)); // design exp.

10 ξn+ ← n

n+ ξn + 
n+ ξxn+ ; // update design

11 yn+ ← realization of Yxn+ ; // perform experiment

12 d⊺n+ ← [d⊺n y⊺n+]; // record observation

13 end

the next page. It consists of the following steps.

Using the available model and parameter priors and all n available previous
experiments, the procedure applies Bayes’ theorem (2.37) and (2.40) (with

suitable normalizing constants cµ and c) to determine parameter posteriors
p(θµ) for all models µ ∈ M and a model posterior p(µ), respectively.
�en, it checks the stopping criterion. If the boolean function “dostop(⋅)”

returns true, the problem is considered as solved su�ciently well and the proce-
dure stops, returning the current model posterior p(µ). For our considerations,
which focus on the e�ciency of the design criterion, that particular formulation

of the stopping criterion is irrelevant.

Otherwise, the procedure continues to gather more data. �e conditions xn+
for the next experiment are determined by solving a sequential oed problem

with design criterion Λ, which takes into account the current parameter and
model posteriors. �e conditions of all available experiments are then described

by the design ξn+, which is determined from the corresponding design ξn from
the previous iteration and the design ξxn+ which puts full weight at xn+. A�er
performing an experiment under this experimental condition and recording

the resulting data yn+ it continues with updating the parameter and model
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posteriors, hoping that whole data available now su�ces to meet the stopping

criterion.

�e behavior of this procedure is strongly dependent by the properties of the

design criterion Λ, which we discuss in the next section. We come back to the
overall behavior of Alg. 5.1 in Sec. 5.2.3.

5.2.2. �e BHH-Criterion

A closer look into the publications of Box, Hill and Hunter reveals that they

actually propose three design criteria: (a) the general one Λ used in Alg. 5.1,
(b) an upper-bound approximation of the latter, and (c) a special case of the

upper-bound approximation for normal and locally a�ne-linearizable models.

�is and the next section deal with the general design criterion Λ, the other two
are considered in Sec. 5.3.

De�nition 5.1 (BHH-Criterion [42, 118])

�e bhh-criterion is a function Λ∶X ↦ R, de�ned for all x ∈X as

Λ(x) ∶= ∑
µ∈M

p(µ) ∫
Y

p(y ∣ x , µ) ln p(y ∣ x , µ)
p(y ∣ x) dy, (5.1)

supposed the integrals exists.

�e bhh-criterion depends on the parameter posteriors of all models and on

the model posterior. We explicitly listed them as arguments in Alg. 5.1 to clarify

dependencies. We use the more compact notation from (5.1) in the following.

Derivation

�e posterior model entropy

H[M] (C.)= −∑
µ∈M

p(µ) ln p(µ) (5.2)

is a scalar non-negative measure for the amount of the uncertainty about the

unknown correct model µ̄ that remains a�er n experiments. Details about the
entropy are summarized in Appendix C.
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�e largerH[M], the larger themodel uncertainty. It attains itsmaximal value
of ln nM if andonly ifM if uniformly distributed, so that it assigns a probability of

/nM to each model and thus represents maximal model uncertainty. It achieves

its minimal value of  if and only ifM is subject to a degenerate distribution

which assigns a probability of  to a single model ν ∈ M and thus represents

minimal model uncertainty.

Due to its consistency (2.52), the model posterior follows asymptotically a

degenerate distribution assigning full weight to the sought-a�er correct model.

�erefore, the posterior model entropy attains is minimal value of  if the md

problem is solved. �e aim of solving an md problem can thus be formalized as

reducing the posterior model entropy. From this perspective, a sequential design

criterion can be derived as follows.

Suppose one additional experiment shall be designed. Let x ∈ X be the

condition underwhich it is performed, let y ∈ Y be its outcome, and let p(µ ∣ y, x)
denote the resulting model posterior. �e posterior model entropy based on the

previous experiments and the additional experiment is then

H[M ∣Yx = y]
(C.)= −∑

µ∈M

p(µ ∣ y, x) ln p(µ ∣ y, x). (5.3)

�erefore, taking into account the additional experiment reduces the posterior

model entropy by

H[M] −H[M ∣Yx = y]. (5.4)

�e larger this di�erence, the better is this particular experiment for solving the

md problem, which suggests to perform an experiment maximizing it.

Unfortunately, the observation y is unknown while designing the experiment,
before it is performed. As remedy one can consider the expected value approxi-

mation

H[M ∣Yx = y] ≈ ∫
Y

q(y ∣ x)H[M ∣Yx = y]dy

(C.)= H[M ∣Yx], (5.5)

whose right-hand side does not depend on unknown observations. It does,

however, involve their distribution q(y ∣ x), which is also unknown in practice.
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Replacing it through the posterior prediction p(y ∣ x) of the model family,

H[M ∣Yx] = ∫
Y

q(y ∣ x)H[M ∣Yx = y]dy (.)

(.)≈ ∫
Y

p(y ∣ x)H[M ∣Yx = y]dy
(C.)= H[M ∣ Ỹx]

removes this dependency and leads to the approximation

H[M] −H[M ∣ Ỹx]
Prop. C.= D[Ỹx ∣M∥Ỹx] (5.7)

for reduction of the posteriormodel entropy (5.4) due to an additional experiment

under x. �is expression involves only known quantities and can thus be
in principle evaluated in practice. Explicitly writing out the Kullback-Leibler

distance (kld) leads to the bhh-criterion (5.1).

Interpretation

�e integral in the bhh-criterion Λ(x) is the kld from p(y ∣ x , µ) to p(y ∣ x).
It measures the average discrepancy between the prediction of model µ for an
outcome of an experiment under x to the corresponding prediction of the whole
model family. Details about the kld are summarized in Appendix C. �e bhh-

criterion is an average of these discrepancies over all models, weighted with the

respective posterior model probabilities. �at is, the larger Λ(x), the larger the
average discrepancy between the predictions of the individual models for an

experiment under x to their average prediction.

Recall from (2.38) and (2.42) that p(y ∣ x , µ) is a parameter-robust prediction
ofmodel µ ∈ M for an observation under x, and that p(y ∣ x) is the corresponding
model-robust and parameter-robust prediction of the whole model family,

respectively. �e bhh-criterion takes into account the parameter uncertainty via

p(y ∣ x , µ) and p(y ∣ x), and the model uncertainty via the weighted sum in (5.1)
and via p(y ∣ x). By integrating over the (approximate) distribution of the as-yet-
unperformed observation, it also takes into account the experimental uncertainty.

In this sense it the bhh-criterion robustwith respect to the parameter uncertainty,

model uncertainty and experimental uncertainty.
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An Information-�eoretic Point of View

Information theory provides a consistent framework for quantifying the infor-

mation and uncertainties involved Bayesian probabilities, an idea going back to

Lindley [176] and Stone [241]. LetH[⋅],D[⋅∥⋅] and I[⋅∥⋅] denote the (conditional)
entropy, the (conditional) Kullback-Leibler distance and the (conditional) mutual

information from Defs. C.1, C.3 and C.5, respectively. �e information-theoretic

identities summarized in Prop. C.7 provide the representations

Λ(x) = D[Ỹx ∣M∥Ỹx] = H[Ỹx] −H[Ỹx ∣M] = I[Ỹx∥M] (5.8)

for the bhh-criterion (Def. 5.1). Since the entropy measures the uncertainty in a

random variable, and the mutual information the information that one random

variable carries about another (and vice versa), the last equality in (5.8) can be

interpreted as follows:

As a matter of fact, the amount of information which we get when

we observe the result of an experiment (depending on chance)

can be taken numerically equal to the amount of uncertainty

concerning the outcome of the experiment before carrying it out.

(Rényi [212, Sec. 3])

Information-theoretic concepts have been frequently applied to assess, compare

and design experiments, important contributions coming from Blackwell [32, 33],

Lindley [176], and Stone [241] and Rényi [212]. Many of these ideas have entered

the �eld of Bayesian experimental design, see the excellent reviews of Chaloner

and Verdinelli [66] and von Toussaint [259]. �e bhh-criterion is a particular

popular representative of this class of design strategies.

Behavior for Vanishing Uncertainties

If there is nomodel uncertainty in the sense that p(µ) =  for somemodel µ ∈ M,
then p(y ∣ x) = p(y ∣ x , µ) and thus

Λ(x) = ∫
Y

p(y ∣ x , µ) ln p(y ∣ x , µ)
p(y ∣ x , µ) dy ≡ . (5.9)

�at is, if the md problem is solved, the bhh-criterion correctly predicts that no

experiment can further reduce the model uncertainty.
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If there is no parameter uncertainty in the sense that all models µ ∈ M have a

degenerate parameter posterior putting full mass at some parameter θµ , then
p(y ∣ x , µ) = p(y ∣ x , µ, θµ), so that

Λ(x) = ∑
µ∈M

p(µ)p(y ∣ x , µ, θµ) ln p(y ∣ x , µ, θ
µ)

p(y ∣ x) , (5.10)

where p(y ∣ x) = ∑µ∈M p(y ∣ x , µ, θµ).

5.2.3. Behavior of the BHH-Procedure

We can now make some general observations about the overall behavior of the

bhh-procedure shown in Alg. 5.1.

Under suitable regularity conditions, the posterior probability p(µ̄) of the
sought-a�er correct model µ̄ approaches  as n increases, see (2.52). Supposed
these regularity conditions are met in its course, the bhh-procedure will thus

identify µ̄ in the large-sample limit and thus solve the md problem. By choosing

the experiments which maximize the bhh-criterion, the procedure aims to

reduce the uncertainty about µ̄ quickly, and thus improve the rate with which
p(µ̄) converges to .
�e reduction of posterior model entropy (5.4) measures the actual utility of

an observation y ∈ Y obtained from an experiment under x ∈X for reducing the

model uncertainty. �e bhh-criterion is a predictor for this entropy reduction,
which is based on the model family and the previous knowledge,

Λ(x) ≈ H[M] −H[M ∣Yx = y]. (5.11)

�e reliability of this prediction depends, among others, on the quality of the

underlying approximation

p(y ∣ x) (.)= ∑
µ∈M

p(µ) ∫
Qµ

p(θµ)p(y ∣ x , µ, θµ)dθµ
(.)≈ q(y ∣ x),

(5.12)

which enters via (5.6). Due to the consistency of parameter and model posteriors,

it tends to get better with the amount of available data, and is under regularity

conditions exact in the large sample limit according to (2.60).

In early stages of experimentation, when model and parameter posteriors
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are vague, (5.12) and thus (5.11) cannot be expected to be particularly good.

Accordingly, bhh-optimal experiments will thus not reliably lead to a large

reduction the posterior model entropy. As long as the conditions for posterior

consistency (2.44) and (2.52) are met, however, additional experiments tend to

sharpen the parameter and model posteriors, albeit possibly slowly.

In later stages of experimentation, the quality of approximations (5.12) and

(5.11) will thus increase so that bhh-optimal experiments will more reliably lead

to a signi�cant reduction of the posterior model entropy, which closes a positive

feedback loop for reducing the model uncertainty. Algorithm 5.1 is thus in a

sense “self-enhancing” with respect to the model uncertainty.

Such a self-enhancing behavior can be expected, however, only with respect to

the model uncertainty, since there bhh-optimal experiments do not necessarily

reduce the parameter uncertainty particularly well. In contrary, it is generally

believed that optimal designs for md are usually particularly ine�cient for
parameter estimation (pe), as noted, for example, by Atkinson, Bogacka, and

Bogacki [18] or Atkinson [13].

5.2.4. No Closed-Form Representation under Normality
Identity (5.8) can also be written as

Λ(x) = ∑
µ∈M

p(µ)D[Ỹx ∣M = µ∥Ỹx] (.)

= H[Ỹx] −∑
µ∈M

p(µ)H[Ỹx ∣M = µ]. (5.14)

Under certain assumptions on process, model and data, Ỹx ∣M = µ is approx-
imately normally distributed. Such approximations are discussed in Secs. 2.5

and 3.5. If such a normal approximation applies to all models µ ∈ M, then Ỹx is
approximately subject to a normal mixture distribution, that is, a distribution

described by a convex combination of normal probability density functions

(pdfs). �en, D[Ỹx ∣M = µ∥Ỹx] is the kld from a normal distribution to
a normal mixture distribution, H[Ỹx] is the entropy of a normal mixture
distribution, andH[Ỹx ∣M = µ] is the entropy of a normal distribution.
�e latter has a closed-form representation as stated in Prop. C.8. Unfortu-

nately, there seems to be no closed-form solution for the other expressions.�ere-

fore, the bhh-criterion has no closed-form representation even when the predictions
of all models have the comfortable property of being normally distributed. For
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evaluating it one needs to resort to approximations. Numerical approximations

for the integrals involved in the kld and the entropy are possible, but su�er

from the curse of dimensionality. Numerical methods maximizing a design

criterion typically evaluate it many times and thus multiply the computational

e�ort required for such numerical integrations. �e resulting problems might

thus quickly get computationally intractable as the problem dimensions increase.

Closed-form approximations are hence desirable.

�e remaining chapter considers sequential design criteria for md that can be

interpreted as closed-form approximations of the bhh-criterion under normality

assumptions.

5.3. �e Classic Approximation of the BHH-Criterion

�is section considers a classic approximation of the Box-Hill-Hunter (bhh)-

criterion proposed by Box and Hill [42] and Hill and Hunter [118] themselves. A

brief discussion of its underlying assumptions the resulting limitations motivates

novel approximations that we propose in Sec. 5.5. �e design criterion is based

on the following “classic” Bayesian approximations.

5.3.1. Classic Empirical Bayesian Formulas

Consider scenario 4.1 under the additional normality assumptions (ix) to (xi) on

p. 128. As discussed in Sec. 3.5, these assumptions justify for each model µ ∈ M
the approximation

p(θµ) (.)≈ ϕ(θµ ∣ θ̂µ , 
n
M̂µ−) (5.15)

for the parameter posterior and the approximation

p(y ∣ x , µ) (.)≈ ϕ(y ∣ η̂µ(x), T̂ µ(x)) (5.16)

for the posterior prediction of model µ for an observation under x ∈X, where

T̂ µ(x) ∶= Ω(x) + 
n
Ĵµ(x)M̂µ− Ĵµ

⊺(x), (5.17)
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see Tab. 3.1 on p. 113. Furthermore, they lead to the approximation

p(µ) (.)≈ πµ ∶= cn p(µ) exp(− n ŝ
µ
n)n−nθµ / (5.18)

for the model posterior. We summarize the posterior model probabilities in

the tuple π⊺ ∶= [π . . . πnM]. Combining (5.16) and (5.18) yields the
approximation

p(y ∣ x) ≈ cn∑
µ∈M

πµϕ(y ∣ η̂µ(x), T̂ µ(x)) (5.19)

for the posterior prediction of the model family for an observation under x.

5.3.2. Classic Upper Bound of the BHH-Criterion

�eorem 5.2 (Classic Upper Bound of the BHH-Criterion)

Assume that the matrix T̂ µ(x) exists and is invertible for all models µ ∈ M
under all experimental conditions x ∈X, and that the approximations (5.16)
and (5.18) are exact. For all x ∈X, de�ne

U(x) ∶= 
 π⊺U(x)π, (5.20a)

where U(x) is a nM × nM matrix which has for all µ, ν ∈ M the element

∥η̂µ(x) − η̂ν(x)∥T̂ν−(x)
+ tr(T̂ µ(x)T̂ν−(x)) − ny (5.20b)

in row µ and column ν. �en, U(x) ⩾ Λ(x) under all x ∈X.

Proof �e following proof summarizes the arguments given by Box and Hill [42] for the

univariate case ny =  and by Hill and Hunter [118] for the multivariate case ny > . For
clarity, it uses the notation based on random variables described in Sec. 5.1. �e convexity

of the Kullback-Leibler distance (kld) (Prop. C.4,property (vii)) implies that

∫
Y

p(y ∣ x , µ) ln
p(y ∣ x , µ)

∑ν∈M p(ν)p(y ∣ x , ν)
dy

⩽ ∑
ν∈M

p(ν) ∫
Y

p(y ∣ x , µ) ln
p(y ∣ x , µ)
p(y ∣ x , ν)

dy, (5.21)
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which is equivalent to

D[Ỹx ∣M = µ∥Ỹx] ⩽ ∑
ν∈M

p(ν)D[Ỹx ∣M = µ∥Ỹx ∣M = ν]. (5.22)

A�er multiplication with p(µ) and summation over all µ ∈ M the le�-hand side equals

the kld-based representation of the bhh-criterion (5.13), so that

Λ(x) ⩽ ∑
µ ,ν∈M

p(µ)p(ν)D[Ỹx ∣M = µ∥Ỹx ∣M = ν]. (5.23)

�e normal approximation (5.16) can be expressed in terms of the random variables as

Ỹx ∣M = µ ∼ ϕ(y ∣ η̂µ(x), T̂ µ(x)). (5.24)

Since it is assumed to be exact, the klds in the right-hand side of (5.23) have according to

�m. C.10 the closed-form representations

D[Ỹx ∣M = µ∥Ỹx ∣M = ν] = 
(∥η̂µ(x) − η̂ν

(x)∥
T̂ν−(x)

+ tr(T̂ µ(x)T̂ ν−
(x)) − ln det(T̂ µ(x)T̂ ν−

(x)) − ny). (5.25)

�e third summand vanishes when summed over all pairs of models,

∑
µ ,ν∈M

p(µ)p(ν) ln det(T̂ µ(x)T̂ ν−
(x))

= ∑
µ∈M

p(µ) ln det T̂ µ(x) −∑
ν∈M

p(ν) ln det T̂ ν
(x) ≡ . (5.26)

Since approximation (5.18) for the model posterior is assumed to exact, p(µ) = πµ . �e
claimed inequality follows from substituting the latter equality and (5.25) into (5.23) and

using (5.26). ◻

Box, Hill and Hunter propose to use this upper bound under the considered

assumptions as approximation of the bhh-criterion,

U(x) ≈ Λ(x) for all x ∈X. (5.27)

We refer to U as the classic upper-bound approximation of the bhh-

criterion. In practice, the Bayesian approximations (5.16) and (5.18) are typically

not exact, as assumed in the theorem, so that U is to be considered as a heuristic
design criterion. It can be interpreted as follows.
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�e�rst summand in (5.20)measures the di�erence between the predictions of

models µ and ν for the observationmean under x, relative to the total uncertainty
of this prediction under model ν. Under an experimental condition maximizing
it, the systematic discrepancy between the model predictions is maximal with

respect to the total uncertainty under model ν.
�e second summand measures total uncertainty about an experimental

outcome under x of model µ relative to that of model ν. Under an experimental
condition maximizing it, the uncertainties of both models about the outcome

of an observation are maximally di�erent. Such an experimental condition,

under which one prediction is more reliable than the other, is more helpful for

recognizing a di�erence between these models than an experimental condition

under which all model predictions are equally uncertain.

Since the design criterion comprises a sum over all model pairings, the

asymmetries in the discussed terms with respect to the models cancel out.

Maximizing this design criterion thus provides an experimental condition under

which both the responses as well as their uncertainty are maximally di�erent

among the models.

5.3.3. Behavior under Small Uncertainties

Proposition 5.3 (Classic Upper-Bound Approximation under Small Uncer-
tainties)

For all x ∈ X and all µ, ν ∈ M, let H(x; µ, ν) ∶= ∥η̂µ(x) − η̂ν(x)∥Ω−(x) be
the Hunter-Reiner (hr)-criterion from Def. 4.11 for discrimination between

models µ and ν, and let H(x) the nM × nM matrix with element H(x; µ, ν) in
row µ and column ν.
If the parameter-induced uncertainties in the responses vanish in the sense

that


n
Ĵµ(x)M̂µ− Ĵµ

⊺(x) =  (5.28)

for all models µ ∈ M under all experimental conditions x ∈X, then

U(x) = 
 π⊺H(x)π. (5.29)

If, in addition, the model posterior focuses only on two di�erent models µ ≠ ν
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such that πµ + πν = , then

U(x) = H(x; µ, ν). (5.30)

Proof Condition 5.28 implies T̂ µ(x) = Ω(x) for all x ∈X, so that

(.b) = ∥η̂µ(x) − η̂ν
(x)∥

Ω−(x)
+ tr(Ω(x)Ω−(x)) − ny (.)

= ∥η̂µ(x) − η̂ν
(x)∥

Ω−(x)
+ ny − ny (.)

= ∥η̂µ(x) − η̂ν
(x)∥

Ω−(x)
, (5.33)

which leads to (5.29). Since∑µ∈M πµ =  by de�nition, the condition πµ + πν
=  implies

that πλ
=  for all λ ∈ M ∖ {µ, ν}. Omitting the corresponding summands in (5.29) and

substituting the expression for the hr-criterion from (4.35) into the result yields (5.30).◻

�ematrix 
n
Ĵµ(x)M̂µ− Ĵµ

⊺(x) quanti�es, in a�ne-linear approximation, the
uncertainty in the response ofmodel µ under x due to parameter uncertainty a�er
n experiments in terms of 

n
M̂µ−.�e vector π of themodel posteriors quanti�es

the corresponding model uncertainty. �e hr-criterion H can therefore be
considered as a special case ofU for vanishing parameter uncertainty and almost
vanishingmodel uncertainty. Reversely,U can be viewed as amulti-model,model-
robust and parameter-robust generalization of the hr-criterion.

Based on Prop. 5.3 and some continuity arguments one can derive the following

approximate results. If the parameter-induceduncertainty in themodel responses

is signi�cantly smaller than the experimental uncertainty in the sense that

∥ 
n
Ĵµ(x)M̂µ− Ĵµ

⊺(x)∥ ≪ ∥Ω(x)∥ for all x ∈X, (5.34)

with some matrix norm ∥⋅∥, then U(x) has approximately the representation
given in (5.29). If, in addition, there is a pair of di�erent models µ ≠ ν with
dominant posterior probabilities in the sense that

πµ ≫ πλ
and πν ≫ πλ

, for all λ ∈ M ∖ {µ, ν}, (5.35)

which implies that πµπν ≫ π iπ j for all (i , j) ≠ (µ, ν), then it has approximately
the representation given in (5.30).
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Under certain regularity conditions discussed in Secs. 3.4.1 and 3.4.3, the

inverse of matrix nM̂µ converges to zero as the sample size n tends to in�nity,
so that 

n
Ĵµ(x)M̂µ− Ĵµ

⊺(x) vanishes asymptotically under all x ∈ X. �en,
(5.34) is satis�ed in large samples. If the family contains a unique model

that has a non-vanishing prior and is “second-best” in terms of the Kullback-

Leibler information criterion (klic) under ξ, it it likely that the model posterior
asymptotically concentrates at this second-best model and at the correct model.

Inequalities (5.35) are then satis�ed in large samples.

�erefore, the classic upper-bound approximation of the bhh-criterion

reduces in the large-sample limit under regularity conditions to the hr-criterion.

Under assumptions discussed in Sec. 4.3.4, the designs constructed by the latter

converge to a T-optimal design, the best design that is theoretically possible for

model discrimination (md).

5.3.4. Discussion
�e classic upper-bound approximation of the bhh-criterion has received

considerable attention in theoretical work and has been applied to various

problems in academia and industry. In fact, most literature dealing with the

bhh-strategy actually uses this design criterion. Further references can be found

in the overviews given by Hill [116], Burke [59, Sec. “Model Discrimination

Methods”] and Franceschini and Macchietto [103, Sec. 3.2].

�e original upper-bound approximation proposed by Box and Hill [42] and

Hill and Hunter [118] used an slightly di�erent expression than (5.18) for the

model posterior. �eir formula was criticized, for example by Atkinson and Cox

[19, Sec. 6] and Atkinson [16], for being valid only if all rival models have the

same number of parameters. Improved formulas not sharing this drawback were

quickly developed, as discussed in Sec. 3.5.2. �e formula (5.18) used here is one

of these improved formulas. Besides this solved objection, at least two additional

points of critique may be formulated.

First, it seems strange tomaximize an upper bound, as already noted byMeeter,
Pirie, and Blot [185, Sec. 1] and Fedorov and Malyutov [98, Sec. 6]. Such an

approach leads to overly optimistic predictions for the actual reduction of the
model uncertainty resulting from an additional experiment. As pointed out

by Fedorov [92], a maximizer of the upper-bound approximation U(x)might
not even be close to a maximizer of the actual bhh-criterion Λ(x) which it
approximates.

Second, the posterior approximations (5.15) and (5.16) are likely to be inad-
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equate for models that both nonlinear and incorrect, as discussed in Secs. 2.5
and 3.5. By assumption, however, all except one of the rival models are incorrect.

�e alternative improved approximations discussed in Sec. 3.5 have so far not

been used in design criteria for md.

In the remaining sections we shall derive new closed-form approximations of

the bhh-criterion that aim to overcome all these drawbacks.

5.4. Lower Bounds for Entropy and KLD of Normal
Mixtures

In our convention, design criteria for model discrimination (md) aremaximized.
Whenever it is necessary to approximate them, it is thus reasonable to choose an

approximation that underestimates their actual values.
Hershey and Olsen [115] discuss several possible approximations for the

Kullback-Leibler distance (kld) between Gaussian mixture models. From all

given approaches, the “variational lower bound” approximation seems most

suitable. It can be summarized as follows.

�eorem 5.4 (Lower Bound for the KLD between Normal Mixtures [115])
Let I andK be �nite sets, let π i ∈ [, ] for all i ∈ I with ∑i∈I π i = , and
ρk ∈ [, ] for all k ∈J with ∑k∈K ρk = . Let n ∈ N. For all i ∈ I ∪ K, let
µ i ∈ Rn and let C i be a real-valued symmetric positive de�nite (spd) n × n
matrix. Let U and V be random variables distributed according to the normal
mixture probability density functions (pdfs)

∑
i∈I

π iϕn(u ∣ µ i ,C i) and ∑
k∈K

ρkϕn(u ∣ µk ,Ck), (5.36)

respectively. �en, the kld D[U∥V] satis�es the inequality

D[U∥V] ⩾ ∑
i∈I

π i ln
∑ j∈I π j exp(− fij)
∑k∈K ρk exp(− fik)

, where

fij ∶= 
(∥µ i − µ j∥


C−j

+ tr(C iC−j ) − ln det(C iC−j ) − n)

is the kld from the normal distribution with mean µ i ∈ Rn and covariance C i
to the normal distributionwithmean µ j ∈ Rn and covarianceC j , see�m.C.10.
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Proof Given by Hershey and Olsen [115, Sec. 7]. ◻
We require the following special case of �m. 5.4.

Corollary 5.5 (Lower Bound for the KLD from a Normal Distribution to a
Normal Mixture Distribution)

Let V ,K, and all ρn , µk and Ck with k ∈ K be de�ned as in�m. 5.4, and let

U be a normally distributed random variable with mean µ and spd covariance
matrix C. �en,

D[U∥V] ⩾ − ln∑
k∈K

ρk exp(− 
 fk), where

fk ∶= ∥µ − µk∥C−k
+ tr(CC−k ) − ln det(CC−k ) − n. (5.37)

Huber et al. [125] provides di�erent approximations for the entropy of normal

mixtures. �e following lower bound is particularly useful for our purposes.

�eorem 5.6 (Lower Bound for the Entropy of a Normal Mixture [125])

Let I be a �nite index set, let π i ∈ [, ] for all i ∈ I with ∑i∈I π i = . Let
n ∈ N. For all i ∈ I, let µ i ∈ Rn and let C i be a spd real-valued n × n matrix.
Let U be a random variable distributed according to the normal mixture pdf
∑i∈I π iϕn(u ∣ µ i ,C i). �en, the entropyH[U] satis�es the inequality

H[U] ⩾ −∑
i∈I

π i ln∑
j∈I

π jϕn(µ i ∣ µ j ,C i + C j). (5.38)

Proof Given by Huber et al. [125, �m. 2]. ◻
By substituting the expression (B.12b) for a normal pdf, (5.38) can be rewritten

as

H[U] ⩾ −∑
i∈I

π i ln∑
j∈I

π j exp(− 
 fij), with (.a)

fij ∶= ∥µ i − µ j∥

(C i+C j)

− + ln det(C i + C j) + ny ln(π). (5.39b)

In the next sections we shall frequentlymeet expressions of the form appearing in

the right-hand side of (5.39a).�e next lemma summarizes some of its properties.
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Lemma 5.7 (Properties of the Function ρ)

Let π⊺ ∶= [π . . . πn] with π i ∈ [, ] for all i ∈ {, . . . , n} and with
∑i∈I π i = . Let C be a symmetric n × n matrix with elements cij ∈ R+

 . �en,

the function

ρ(C , π) ∶= −
n

∑
i=

π i ln
n

∑
j=

π j exp(−cij) (5.40)

has the following properties for all i , j ∈ I:

(i) ρ(C , π) ⩾ 

(ii) ρ(C , π) increases in each component cij of C

(iii) ρ(C , π) is a concave function of each component cij of C

(iv) ρ(C + c, π) = ρ(C , π) + c, for all c ∈ R

(v)
∂

∂ cij
ρ(C , π) increases in π i and π j

(vi) πk =  implies ρ(C , π) = ckk.

Proof We only sketch the proofs, which are based on basic algebra and simple di�erential
calculus, but are laborious in parts.

(i) Follows from the non-negativity of the components of π and C.

(ii) Obviously, −ρ(−C , π) is a concatenation of increasing functions of all cij , which
implies that ρ(C , π) is strictly increasing, too.

(iii) �e function ln∑
n
j= π j exp(−cij) = ln∑

n
j= exp(ln π j − cij) is convex in all cij,

since the corresponding Hessian is positive semide�nite. �e function (5.40) is

the negative of a convex combination of the latter function, and is thus concave.

(iv) Follows from writing out ρ(C + c, π) according to the de�nition and from
tedious but simple algebra.

(v) Can be seen by explicitly calculating the partial derivative.

(vi) If πk = , then π i =  for all i ≠ k. �en, the sums in (5.39a) both reduce to a single
term and the claim is obvious. ◻

�e function ρ(C , π) is best understood in comparison to the quadratic form
π⊺Cπ.
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Lemma 5.8

Under the assumptions of Lem. 5.7, the function π⊺Cπ shares properties (i), (ii)
and (iv) to (vi). In contrast to ρ(C , π), however, the function π⊺Cπ is convex
in cij for all i , j ∈ I. In addition, π⊺Cπ ⩾ ρ(C , π).

Proof �e proofs of properties (i), (ii) and (iv) to (vi) and the convexity is trivial. �e

claimed inequality follows from a variant Jensen’s inequality states that (∑i∈I π i c i) ⩽
∑i (c i) for all convex functions ∶R ↦ R. Since the exponential function is such a

convex function,

exp
⎛

⎝
∑
j

−π i cij
⎞

⎠
⩽ ∑

j

π i exp(−cij) ⇔∑
j

π i cij ⩾ − ln∑
j

π i exp(−cij)

for all j ∈ I. Multiplying the latter inequality with π j and summation over j leads to the
claimed inequality. ◻

5.5. New Sequential Design Criteria for Model
Discrimination

We are now prepared to derive new design criteria for model discrimination

(md). �ey are closed-form approximations of the Box-Hill-Hunter (bhh)-crite-

rion which are based on the misspeci�cation-robust Bayesian approximations

discussed in Sec. 3.5 and the information-theoretic inequalities introduced in

the previous section.

�roughout this section we consider scenario 4.1 under the additional

assumptions (ix) to (xi) and the assumption that for any given n ∈ N each

model µ ∈ M has the “little informative” normal parameter prior

p(θµ) ∶= ϕ(θµ ∣ θ̂µn , (M̂µ
n + N̂ µn )

−), for all θµ ∈ Qµ
, (5.41)

from (3.72) and (3.76).
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5.5.1. Advanced Empirical Bayesian Formulas

As discussed in Sec. 3.5, this considered setting justi�es for each model µ ∈ M
the approximation

p(θµ) (.)≈ ϕ(θµ ∣ θ̂µ , 
n+(M̂

µ + N̂ µ)−) (5.42)

for the parameter posterior, the approximation

p(y ∣ x , µ) (.)≈ ϕ(y ∣ η̂µ(x), Ŵ µ(x)) (5.43)

for the posterior prediction for observations under x ∈X, where

Ŵ µ(x) ∶= Ω(x) + 
n+ Ĵ

µ(x)(M̂µ + N̂ µ)− Ĵµ⊺(x), (5.44)

and the approximation

p(µ) (.)≈ πµ ∶= cp(µ) exp(− n ŝ
µ
n)n−nθµ / (5.45)

for the model posterior. As previously, we summarize the posterior model

probabilities in the tuple π⊺ ∶= [π . . . πnM]. Combining (5.43) and (5.45)
yields the approximation

p(y ∣ x) ≈ c∑
µ∈M

πµϕ(y ∣ η̂µ(x), Ŵ µ(x)) (5.46)

for the posterior prediction of the model family for an observation under x.
�ese approximations are all justi�ed in su�ciently “large” samples. Approxi-

mation (5.42) does neither assume that the model is correct nor that its responses

are locally linear with respect to the parameter. Approximation (5.43) relies on a

local linearization with respect to the parameter.

5.5.2. New Bounds for the BHH-Criterion

A new type of lower bound is obtained from the Kullback-Leibler distance (kld)-
based representation of the bhh-criterion (5.13) and from Cor. 5.5.
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�eorem 5.9 (KLD-Based Lower Bound for the BHH-Criterion)

Assume that approximations (5.43) and (5.45) are exact and that the matrix

Ŵ µ(x) exists and is invertible for all models µ ∈ M and under all experimental

conditions x ∈X. For all x ∈X, de�ne

Γ(x) ∶= ρ( 
Γ(x), π) (5.47a)

with the nM × nM matrix Γ(x) which has for all µ, ν ∈ M the element

∥η̂µ(x) − η̂ν(x)∥Ŵν(x)− + tr(Ŵ
µ(x)Ŵ ν(x)−)

− ln det(Ŵ µ(x)Ŵ ν(x)−) − ny . (5.47b)

in row µ and column ν. �en, Γ(x) ⩽ Λ(x) under all x ∈X.

Proof Consider the bhh-criterion in the kld-based form

Λ(x) = ∑
µ∈M

p(µ)D[Ỹx ∣M = µ∥Ỹx] (5.48)

from (5.13). Since approximation (5.43) is assumed to be exact, Ỹx ∣M = µ is subject to
a normal distribution, Ỹx is subject to normal mixture distribution. Corollary 5.5 then
provides for all µ ∈ M the inequality

D[Ỹ ∣M = µ∥Ỹ] ⩾ − ln∑
ν∈M

p(ν) exp(− 
 f
µν
), (5.49)

where f µν
stands for the expression (5.47b). Since approximation (5.18) for the model

posterior is assumed to exact, p(µ) = πµ for all µ ∈ M. �e claimed inequality follows

from applying this equality together with (5.48) and (5.49) and writing the result using

the function ρπ de�ned in Lem. 5.7. ◻
An alternative new lower bound results from entropy-based representation (5.14)

of the bhh-criterion and from�m. 5.6.

�eorem 5.10 (Entropy-Based Lower Bound of the BHH-Criterion)

Assume that approximations (5.43) and (5.45) are exact and that the matrix

Ŵ µ(x) exists for all models µ ∈ M and under all experimental conditions

178



5.5. New Sequential Design Criteria for Model Discrimination

x ∈X. For all x ∈X, de�ne Ŵ µν(x) ∶= Ŵ µ(x) + Ŵ ν(x) for all µ, ν ∈ M and

L(x) ∶= ρ( 
L(x), π) −


∑
µ∈M

πµ ln det Ŵ µ(x) (5.50a)

with the nM × nM matrix L(x) which has for all µ, ν ∈ M the element

∥η̂µ(x) − η̂ν(x)∥Ŵ µν(x)
− + ln det Ŵ µν(x) − ny (5.50b)

in row µ and column ν. �en, L(x) ⩽ Λ(x) under all x ∈X.

Proof Consider the bhh-criterion in the entropy-based form

Λ(x) = H[Ỹx] −∑
µ∈M

p(µ)H[Ỹx ∣M = µ] (5.51)

from (5.14). Since approximation (5.43) is assumed to be exact, Ỹx ∣M = µ is subject to a
normal distribution, Ỹx is subject to normal mixture distribution. �en, Prop. C.8 tells us
that

H[Ỹx ∣M = µ] = 
 ln det(Ŵ

µ
(x)) + 

 ny(ln(π) + ), (5.52)

for all x ∈X and all µ ∈ M, and Cor. 5.5 provides the inequality

H[Ỹx] ⩾ −∑
µ∈M

p(µ) ln∑
ν∈M

p(ν)ϕ(η̂µ(x) ∣ η̂ν
(x), Ŵ µν

(x)) (.)

= −∑
µ∈M

p(µ) ln∑
ν∈M

p(ν) exp ( − 
 (∥η̂µ(x) − η̂ν

(x)∥
Ŵ µν

(x)
−

+ ln det Ŵ µν
(x) + ny ln(π))), (5.54)

for all x ∈X and all µ ∈ M. �e equality in the second line results from substituting the

expression (B.12b) for a normal probability density function (pdf). Since approximation

(5.45) for the model posterior is assumed to exact, p(µ) = πµ for all µ ∈ M. Applying

these relations to (5.51), writing the result using the function ρπ de�ned in Lem. 5.7 and

summarizing all constants yields the claimed inequality. ◻
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5.5.3. Resulting New Design Criteria

Under the considered assumptions, we propose to use the bounds provided by

�ms. 5.9 and 5.10 as approximations for the bhh-criterion:

L(x) ≈ Λ(x) and Γ(x) ≈ Λ(x) (5.55)

under all experimental conditions x ∈X.We refer to L and Γ as entropy-based
lower-bound criterion and kld-based lower-bound criterion,

respectively.

In practice, the Bayesian approximations (5.43) and (5.45) are typically not
exact, as assumed in�ms. 5.9 and 5.10, so that the provided inequalities are also

only of approximate nature. �erefore, Γ and L are to be considered as heuristic
design criteria.

Interpretation of the KLD-Based Lower-Bound Criterion

�eorem 5.11 (Premetric for SPDMatrices [252])

Let n ∈ N andPn be the set of real-valued symmetric positive de�nite (spd)

n × n matrices. �e function d∶Pn ×Pn ↦ R de�ned as

d(A, B) ∶= tr(AB−) − ln det(AB−) − n (5.56)

has the following properties.

(i) d(A, B) ⩾  for all A, B ∈Pn ,

(ii) d(A, B) = ⇔ A = B, and

(iii) d(⋅, ⋅) is strictly convex onPn ×Pn .

According to this lemma, provided by Uciński and Bogacka [252], the function

d is a premetric for spd matrices. It gives rise to a topology and thus to a notion
of “closeness” on the set of spd matrices.

Expression (5.47b) can hence be written as

f µν(x) ∶= ∥η̂µ(x) − η̂ν(x)∥Ŵν(x)− + d(Ŵ
µ(x), Ŵ ν(x)). (5.57)
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�e �rst summand measures the systematic discrepancy between the predictions

of both models for the outcome of an experiment under x, relative to the
total uncertainty as predicted by model ν. �e second summand measures
the amount of uncertainty in the prediction of model µ for the outcome of
an experiment under x, relative to the corresponding uncertainty of model ν. It
rewards experimental conditions under which the prediction of one model is

more reliable than that of the other model. Such experimental conditions are

more likely to be helpful for recognizing a di�erence between these models than

conditions under which both predictions are equally uncertain.

�e kld-based lower-bound criterion Γ combines the nM functions f µν

with µ, ν ∈ M into a single one using the function ρ from Lem. 5.7. Under
experimental conditions maximizing Γ, both the predictions as well as the
prediction uncertainties of all model pairs are maximally di�erent.

�e partial derivative of Γ with respect to f µν is an increasing function

of the corresponding posterior probabilities πµ and πν . �erefore, the larger

the posterior probability of model µ, the larger the in�uence of the functions
( f µν ∶ ν ∈ M) onto the design criterion.
Furthermore, Γ itself is increasing function of f µν . Since ρ is concave, the

relative in�uence of f µν decreases with larger values, so that extreme values

receive relatively lesser attention than smaller ones.

�e function f µν is not symmetric with respect to exchange of the model

indices. �e design criterion Γ is nevertheless symmetric, since it comprises for
each term f µν also the term f νµ with interchanged model indices.

Interpretation of the Entropy-Based Lower-Bound Criterion

�e design criterion L is also composed of nM functions measuring the

dissimilarities between all model pairs using the function ρ , similar to Γ. In
contrast to the latter and toU ′, itmeasures the dissimilarity betweenmodels µ and
ν with expression (5.50b). Its �rst summandmeasures the systematic discrepancy
between the predictions of both models for the outcome of an experiment under

x, relative to the corresponding joined uncertainty of both predictions, measured
in terms of Ŵ µ(x)+Ŵ ν(x). �e second summand quanti�es the amount of this
uncertainty, rewarding experimental conditions with low prediction uncertainty.

From a computational point of view, one might prefer L to Γ, since the former
does neither involve inverses of Ŵ ν(x) nor the tr(⋅)-terms appearing in the
latter.
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5.5.4. Behavior under Small Uncertainties

�eorem 5.12 (New Design Criteria for MD under Small Uncertainties)

For all x ∈X and all µ, ν ∈ M, let H(x; µ, ν) ∶= ∥η̂µ(x) − η̂ν(x)∥Ω−(x) be the
Hunter-Reiner (hr)-criterion from Def. 4.11 for discrimination between two

models µ, ν ∈ M, and let H(x) the nM × nM matrix with element H(x; µ, ν)
in row µ and column ν.

(i) If the parameter-induced uncertainties in the responses of all models

vanish in the sense that


n+ Ĵ

µ(x)(M̂µ + N̂ µ)− Ĵµ⊺(x) =  (5.58)

for all µ ∈ M and under all experimental conditions x ∈X, then it holds
for all x ∈X that

Γ(x) = ρ( 
H(x), π), and (.)

L(x) = ρ(H(x), π) + const. (5.60)

(ii) If, in addition to (i), the model posterior focuses only on two di�erent

models µ ≠ ν such that πµ + πν = , then

Γ(x) = πν( − exp(− 
H(x; µ, ν)) + 

H(x; µ, ν)) +O((πν))
(.)

and also

L(x) = πν( − exp(−H(x; µ, ν)) +H(x; µ, ν)) +O((πν)),
(5.62)

for all x ∈X. �e last two equations remain true if µ is replaced by ν.

(iii) If there is no model uncertainty in the sense that πµ =  for some model
µ ∈ M, then

Γ(x) ≡  and L(x) ≡ const. (5.63)
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�e equations in the following proofs of (i) to (iii) hold for all x ∈X, so that we
omit the argument x for clarity.
Proof (of�m. 5.12(i)) �e assumption (5.58) implies the simpli�cations

Ŵ µ
= Ω and Ŵ µν

= Ω for all µ, ν ∈ M. (5.64)

Applying these simpli�cations to the kld-based lower bound (5.47) yields

(.b) = ∥η̂µ − η̂ν
∥

Ω−

+ tr(ΩΩ−) − ln det(ΩΩ−) − ny (.)

= ∥η̂µ − η̂ν
∥

Ω−

+ tr(I) − ln det(I) − ny (.)

= ∥η̂µ − η̂ν
∥

Ω−

+ ny − ny = H(⋅; µ, ν), (5.67)

which proves (5.59). Applying them to the entropy-based lower bound (5.50) leads to

(.b) = ∥η̂µ − η̂ν
∥

Ω−

+ ln det Ω − ny (.)

= ∥η̂µ − η̂ν
∥

Ω−

+ ln detΩ + ny ln() − ny (.)

= H(⋅; µ, ν) + ln detΩ + ny(ln() − ), (5.70)

so that

L(x) = ρ(H + 
 ln det(Ω)I + 

 ny(ln() − )I , π) −

∑
µ∈M

πµ ln detΩ,

Lem. .(iv)
= ρ(H , π) + 

 ln detΩ +

 ny(ln() − ) −


 ln detΩ,

= ρ(H , π) + 
 ny(ln() − ),

proving (5.60). ◻
Proof (of�m. 5.12(ii)) For proving (5.61) and (5.62), �rst note that assuming πµ+πν

= 

implies πλ
=  for all λ ∈ M ∖ {µ, ν}, since∑µ∈M πµ =  by de�nition. To prove (5.61),

we apply this relation to (5.59) with adequately relabeled indices,

Γ = −∑
i∈M

π i ln∑
j∈M

π j exp(− 
H(⋅; ν, ν)) (.)

= −∑
i∈M

π i ln(πµ exp(− 
H(⋅; i , µ)) + πν

exp(− 
H(⋅; i , µ))) (.)

= −πµ ln(πµ exp(− 
H(⋅; µ, µ)) + πν

exp(− 
H(⋅; µ, ν)))

− πν
ln(πµ exp(− 

H(⋅; ν, µ)) + πν
exp(− 

H(⋅; ν, ν))) (.)

= −πµ ln(πµ + πν
exp(− 

H(⋅; µ, ν)))

− πν
ln(πµ exp(− 

H(⋅; ν, µ)) + πν
). (5.74)
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To make the following calculations clearer, we use the abbreviations

f ∶= exp(− 
H(⋅; µ, ν)) = exp(− 

H(⋅; ν, µ)) and є ∶= πν
, (5.75)

and consider the design criterion Γ as function of є,

Γ(є) = (є − ) ln( − є + є f ) − є ln(( − є) f + є). (5.76)

We aim to expand the design criterion in a Taylor series around є = . To that end we
require the derivative of Γ(є) with respect to є. �e derivative of its �rst summand is

d

dє
(є − ) ln( − є + є f ) (.)

= ln( − є + є f ) + (є − )
d

dє
ln( − є + є f ) (.)

= ln( − є + є f ) + (є − )( − є + є f )−( f − ), (5.79)

and the derivative of its second summand is

d

dє
є ln(( − є) f + є) (.)

= ln(( − є) f + є) + є
d

dє
ln(( − є) f + є) (.)

= ln(( − є) f + є) + є(( − є) f + є)−( − f ). (5.82)

�erefore,

Γ() = − ln() −  ln( f ) =  and
d

dє
Γ(є)∣

є=
=  − f − ln( f ). (5.83)

�e Taylor series expansion of Γ(є) around є =  thus has the simple shape

Γ(є) = Γ() +
d

dє
Γ(є)∣

є=
є +O(є) (.)

= є( − f − ln( f )) +O(є). (5.85)

�is equation is identical to (5.61) when written in the original notation. �e proof of

(5.62) is analog. ◻

Proof (of�m. 5.12(iii)) If πµ =  for some model µ ∈ M, it follows from Lem. 5.7(vi)
that

Γ (.b)= 
(∥η̂µ − η̂µ∥

Ŵ µ− + tr(Ŵ
µŴ µ−

) − ln det(Ŵ µŴ µ−
) − ny)

= 
 ( + ny −  − ny) = , and
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L (.b)= 
(∥η̂µ − η̂µ∥

Ŵ µµ− + ln det Ŵ
µ
− ny − ln det Ŵ

µ
)

= 
 ( + ln det Ŵ

µ
− ln det Ŵ µ

− ny)

= 
 (ny ln() − ny) = const,

which proves (5.63). ◻

�e following approximate results follow from�m. 5.12 and some continuity

arguments. If the parameter-induced uncertainty in the model responses is

substantially smaller than the experimental uncertainty, that is, if

∥ 
n+ Ĵ

µ(x)(M̂µ + N̂ µ)− Ĵµ⊺(x)∥ ≪ ∥Ω(x)∥ for all x ∈X, (5.86)

with some matrix norm ∥⋅∥, then (5.59) and (5.60) hold approximately. If the
posterior focuses strongly on the one model µ and to a lesser degree on the other
model ν so that

πµ ≫ πν ≫ πλ
for all λ /∈ {µ, ν}, (5.87)

then the terms of O((πν)) in (5.61) and (5.62) can be neglected without
introducing too much error, so that approximately

Γ(x) ∝  − exp(− 
H(x; µ, ν)) + 

H(x; µ, ν), and (.)

L(x) ∝  − exp(−H(x; µ, ν)) +H(x; µ, ν). (5.89)

�e function  − exp(−cx) + cx is strictly convex in x for all c ∈ R+
 . �erefore,

Γ and L are strictly convex transformations of the hr-criterion and thus have
the same maximizers. If the parameter and model uncertainty is su�ciently

small in the sense of (5.86) and (5.87), the proposed new design criteria provide

approximately hr-optimal designs. �ey can hence be regarded as multi-model,

model-robust and parameter-robust generalizations of the hr-criterion.

If there the md problem is almost solved in the sense that

πµ ≫ πλ
for all λ ≠ µ, (5.90)

then (5.63) holds approximately, and the proposed design criteria are almost

independent of the experimental condition, as one would expect from a design

criterion for md.
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5.5.5. Discussion
�e proposed new design criteria for md overcome several drawbacks of the

classic upper-bound approximation of the bhh-criterion discussed in Sec. 5.3.4.

Both use a formula for the parameter posteriors which does not rely on

questionable assumptions of local linearity and a formula for the model posterior

that is valid even for models with parameter vectors of di�erent size. �ey are

also both approximately lower bounds of the bhh-criterion and thus avoid loss
of e�ciency in the designed experiments due to overestimation.

�ey eventually reduce to forms that provide hr-optimal designs if parameter

and model uncertainties are su�ciently small. Under certain regularity condi-

tions discussed in Sec. 3.5, these uncertainties can be reduced below any bound

by taking more data. If they are applied in a sequential design procedure, the

newly proposed design criteria will converge to forms providing hr-optimal

experiments, supposed the regularity conditions aremet. Under comparablymild

conditions, designs composed of hr-optimal experiments are asymptotically

T-optimal, see Sec. 4.3, and thus the best designs theoretically possible for model

discrimination. In contrast to the hr-criterion, the proposed design criteria

take into account the current parameter uncertainty and the model uncertainty.

�is additional information used for selecting experimental condition should

increase the rate with which the constructed sequential designs converge to a

T-optimal ones.

�e new design criteria are based on approximations that are exact only in the

large-sample limit. How they perform in practice for �nite and possibly small

samples can be determined through numerical simulations, which we describe

in Chap. 9.
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Part III.

Numerical Methods and Results

[. . . ] we cannot know that any statistical technique we develop is
useful unless we use it. Major advances in science and in the science
of statistics in particular, usually occur, therefore, as the result of the
theory-practice iteration. Ce researcher hoping to break new ground
in the theory of experimental design should involve himself in the
design of actual experiments.

Box [43, p. 792]





6. Numerical Methods
[. . . ] our central mission is to compute quantities that are
typically uncomputable, from an analytical point of view, and
to do it with lightning speed.

Trefethen,�e De�nition of Numerical Analysis [247]
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This chapter deals with numerical methods required in the context of

optimal experimental design for model discrimination. Section 6.1 discusses

methods for least-squares problems that result from maximum-likelihood

estimate problems in the context of model discrimination. Section 6.2 examines

optimization problems arising from optimal experimental design for model

discrimination, with a focus on their computational complexity and the conse-

quences for their numerical treatment. Section 6.3 introduces low-discrepancy

sequences, also known as pseudo-random numbers. In this thesis, they are to

generate start values for local optimization techniques, and to generate space-

�lling experimental designs.
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6. Numerical Methods

6.1. Parameter Estimation in Possibly Incorrect
Models

Several of the strategies for solving model discrimination (md) problems

discussed in Chaps. 4 and 5 involve parameter maximum-likelihood estimates

(pmles). �is section discusses numerical methods for �nding such estimates

under the usual normality assumptions. It focuses on the special demands that

arise in the context of md problems, where the models might be incorrect. A

major result is that the Gauss-Newton method is not appropriate in this scenario.
�e section omits algorithmic details.�ey can be found in relevant textbooks,

for example in that of Nocedal and Wright [194].

6.1.1. Problem Statement

�e following scenario is encountered, for example, when one of the sequential

strategies from Secs. 4.3, 4.4, 5.3 and 5.5 is applied to solve a md problem. All

these strategies involve pmles at some point, albeit parameter inference is not

their central aim.

Considered Scenario

Suppose the observations y , . . . , yn ∈ Rny are available, realizations of the

continuous Rny -valued independent random variables Y , . . . ,Yn , respectively.
For all i ∈ {, . . . , n}, the random variable Yi is normally distributed with
mean η̄ i ∈ Rny and a full-rank (and thus symmetric positive de�nite (spd)

and invertible) covariance matrix Ω i ∈ Rny×ny .

For all parameters θ ∈ Q ⊆ Rnθ , a model is available which speci�es for all

i ∈ {, . . . , n} a normal distribution mean η i(θ) ∈ Rny that is twice continuously

di�erentiable and covariance Ω i .
�e functions η̄ , . . . , η̄n are unknown, which implies that it is not known if

the model is correct, see Cor. 3.6.

Parameter Maximum-Likelihood Estimates

We de�ne y⊺ ∶= [y⊺ . . . y⊺n] and η⊺(θ) ∶= [η⊺ (θ) . . . η⊺n(θ)], and write
Ω for the spd block diagonal matrix composed of Ω , . . . ,Ωn . In the considered
scenario, a parameter is a pmle, i� it minimizes overQ the sum of squared
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residuals (ssr) s ∶Q↦ R+
 , de�ned as

s(θ) ∶= 


n

∑
i=

∥η i(θ) − y i∥Ω−i = 
∥Ω

−⁄(η(θ) − y)∥ for all θ ∈ Q. (6.1)

For details, see Cor. 3.10. For clarity, the given de�nition of the ssr use a

normalization factor of / instead of the factor /n used in previous chapters.
�e problem of minimizing the ssr is an instance of a least-squares (lsq)

problem.

6.1.2. Least-Squares (LSQ) Problems

Problem 6.1 (Least-Squares (LSQ))

Given the feasible set V ⊆ Rnv and the twice continuously di�erentiable

residual function r∶Rnv ↦ Rnr , �nd a point v⋆ that minimizes over V the
objective function f ∶Rnv ↦ R+

 de�ned by

f (v) ∶= 
 ∥r(v)∥


 = 



nr

∑
i=
ri (v) for all v ∈ V. (6.2)

�is problem is sometimes called nonlinear lsq problem to emphasize that it
allows r to be a nonlinear function of v. For all v ∈ Rnv , we write ∇f (v) ∈ Rnv

and ∇f (v) ∈ Rnv×nv for the gradient and the Hessian of f at v, respectively.
It is usually di�cult to �nd a global solution v⋆ of this problem at which

f (v⋆) ⩽ f (v) for all v ∈ V. It is signi�cantly easier, and o�en su�cient in practice,
to �nd a local solution v⋆, which satis�es this inequality for all v ∈ (B ∩ V),
whereB is a neighborhood of v⋆.
Several of the many numerical methods available for �nding local solutions

of this well-examined problem class are discussed by Nocedal and Wright [194,

Chap. 10]. In the following two sections we sketch and discuss some popular

methods.

6.1.3. Newton-Type Methods for Unconstrained LSQ Problems
We �rst consider Prob. 6.1 without constraints, V = Rnv . �en, a necessary

condition that v⋆ ∈ V is a local solution is that

∇f (v⋆) = . (6.3)
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6. Numerical Methods

�e numerical methods of choice for solving this equation are Newton-type

methods. Starting from a point v ∈ Rnv , such amethod determines a sequence

of iterates v , v , . . . in Rnv according to

vk+ ∶= vk + αk pk , and pk ∶= −(Bk)−∇f (vk), for all k ∈ N , (6.4)

with step lengths αk ∈ (, ] and nv × nv matrices Bk . It terminates the
sequence if the current iterate is supposed to be su�ciently close to a local

solution or if no further progress seems to be possible.

Di�erent Newton-type methods arise from di�erence choices for αk and Bk .
If αk =  for all k ∈ N, one speaks of full-step method. In the following we

consider three important Newton-type methods that arise from di�erent choices

for Bk . For a discussion of step length selection algorithms we refer to Nocedal
and Wright [194, Secs. 3.1 and 3.5].

Newton’s Method

�e eponymous Newton’s method (sometimes called Newton-Raphson method)

is not restricted to objective functions of the lsq type, but can be applied to all

objective functions that are su�ciently smooth. Newton’s method is de�ned

by (6.4) with

Bk = ∇f (vk) for all k ∈ N . (6.5)

If the Hessian ∇f (vk) is positive de�nite (and thus invertible), this choice
ensures that the search direction pk minimizes the second-order Taylor series
approximation of f (vk + p) among all p ∈ V.

If v is su�ciently close to a local solution v⋆ and if∇f (v) is positive de�nite
and Lipschitz continuous in a neighborhood of v⋆, then the iterates of Newton’s
method with unit step length converge towards v⋆ with a quadratic rate. A proof
is given by Nocedal and Wright [194, �m. 3.5].

Newton’s method has attractive convergence properties, but also su�ers from

two main drawbacks: First, computing su�ciently precise second derivatives for

the Hessian is o�en too costly or too error-prone. Second, the Hessian might not

be positive de�nite. �en, it is possibly not invertible and the search direction

pk is not de�ned. Yet even if it is invertible, the resulting search direction might
not lead to a decrease in the objective function.

�e two popular Quasi-Newton methods discussed in the following
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6.1. Parameter Estimation in Possibly Incorrect Models

avoid these problems by using suitable approximations of the exact Hessian.

Gauss-Newton Method

�e highly popular Gauss-Newton method gains its e�ciency by exploiting

the special structure of the lsq objective function (6.2). For all v ∈ V and all
i ∈ {, . . . , nr}, let J(v) ∈ Rnr×nv be the Jacobian of the residual function r at v
and let ∇r i(v) ∈ Rnv×nv be the Hessian of its i-th component at v. Using the
explicit quadratic form of the objective function (6.2) and applying Prop. A.5, its

Hessian can be written as

∇f (v) Prop. A.= J⊺(v)J(v) + N (v), where N (v) ∶=
nr

∑
i=
r i(v)∇r i(v).

(6.6)

�e Gauss-Newton method is de�ned by (6.4) with the Hessian approxima-

tion

Bk = J⊺(vk)J(vk) for all k ∈ N , (6.7)

which arises from (6.6) if N (v) is ignored.
If J⊺(v⋆)J(v⋆) is positive de�nite at a local solution v⋆ and dominates the

Hessian (6.6) in the sense that

∥(J⊺(v⋆)J(v⋆))−N (v⋆)∥

≪  (6.8)

and some regularity conditions are met, then the iterates of the Gauss-Newton

method with unit step length converge locally towards v⋆ with a superlinear rate.
If N (v⋆) = , the rate is even quadratic. A proof can be found in the book of
Nocedal and Wright [194, �m. 10.1�].

�e Hessian approximation (6.7) involves only �rst derivatives of the ob-

jective function, and is positive de�nite whenever rank J(vk) ⩾ nv . In lsq

problems where (6.8) is met, the Gauss-Newton method overcomes the two

main drawbacks of Newton’s method at the cost of a reduced, yet still high, rate

of convergence. If (6.8) is not satis�ed, an attractive alternative is the Quasi-

Newton method discussed next.

193



6. Numerical Methods

BFGS Method

�ere are numerousQuasi-Newtonmethods which sequentially update aHessian

approximation from the information gained in each iteration. Among them,

the Broyden-Fletcher-Goldfarb-Shanno (bfgs) method is particularly popular

because of its outstanding e�ciency and robustness. It can applied to any type of

su�ciently smooth objective function, not only to those of the lsq type (6.2).

�e bfgs method is de�ned by (6.4) and the Hessian update rule

Bk+ ∶= Bk − B
k sk sk

⊺
Bk

⊺

sk⊺Bk sk
+ k k

⊺

k⊺sk
, (.a)

with sk ∶= vk+ − vk and k ∶= ∇f (vk+) − ∇f (vk) (6.9b)

for all k ∈ N. �e bfgs method thus requires an initial nv × nv Hessian
approximation B. Di�erent derivations of this formula are given in the original

publications of Broyden [53], Fletcher [100], Goldfarb [107], and Shanno [228]

and in textbooks, for example in that of Nocedal and Wright [194, Sec. 6.1].

�e bfgs Hessian approximations (6.9) involve only �rst derivatives of the

objective function, and are positive de�nite if the initial matrix B is positive

de�nite. Locally superlinear convergence of the bfgs method can be proved

under di�erent sets of mild assumptions, and practical implementations of the

bfgs method in fact o�en converge at a superlinear rate. Details are given, for

example, by Nocedal and Wright [194, Sec. 6.4].

�e bfgs method thus avoids the two main drawbacks of Newton’s method,

at the cost of a reduced, yet still high, rate of convergence. In contrast to the

Gauss-Newton method, it is also applicable to lsq problems which fail to satisfy

(6.8).

6.1.4. SQP Methods for Constrained LSQ Problems

Suppose the feasible set is characterized through the constraint functions

∶Rnv ↦ Rn and h∶Rnv ↦ Rnh according to

V ∶= {v ∈ R
nv ∶ (v) =  ∧ h(v) ⩾ }, (6.10)

with component-wise inequalities. Necessary conditions for a local solution

in this case are the Karush-Kuhn-Tucker conditions. �ey are named a�er

their discoverers Karush [138] and Kuhn and Tucker [156] and can be found
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in textbooks on constrained optimization, for example in that of Nocedal and

Wright [194, Chap. 12]. �e Karush-Kuhn-Tucker conditions are the counterpart

of condition (6.3) for the constrained case. In the absence of inequality constraints,

they can also be written in the form F(v⋆) = .
A popular and powerful approach for such problems are sequential quadratic

programming (sqp) methods, �rst proposed by Wilson [268]. �ey quickly

became one of the favorite methods for nonlinear constrained optimization.

Overviews over the vast �eld of related publications are given by Boggs and Tolle

[37] and Gould, Orban, and Toint [108]. �e details mentioned in the following

can be found in the in-depth discussion of Nocedal and Wright [194, Chap. 18].

In the absence of inequality constraints, the sqp method with full steps

and exact Hessians is equivalent to Newton’s method for the Karush-Kuhn-

Tucker conditions. If equality constraints are present, it behaves at least locally

like Newton’s method under regularity conditions. As such, the full-step exact

Hessian sqp method shares several properties with Newton’s method for

unconstrained problems, in particular the previously discussed di�culties that

arise from using an exact Hessian. Sequential quadratic programming methods

that use the Gauss-Newton or the bfgs Hessian approximation can avoid some

of these problems, analogously to the unconstrained case. Details about the

constrained Gauss-Newton method as a special case of an sqp method

for solving constrained lsq problems are given by Bock [35].

6.1.5. Choosing a Method in the Context of MD Problems
To �nd a pmle in the scenario described in Sec. 6.1.1, we need to solve a lsq

problem in the variable θ with the feasible setQ ⊆ Rnθ and the residual function

r(θ ∣ y) ∶= Ω−⁄(η(θ) − y), for all θ ∈ Q, (6.11)

which depends parametrically on the data y. If the problem arises in the context
of md, the following points should be taken into account when choosing a

numerical method:

(a) No good starting point might be available for the pmle, since md problems

typically arise in early stages of model building when little is known about

the data-generating process.

(b) �e function η may be nonlinear. Albeit the considered scenario permits
a�ne-linear models, we do not restrict our considerations to this special

case.
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(c) It is unknown if the model is correct. If we knew that the model was correct,
we would not be dealing with an md problem in the �rst place.

In the remaining section we discuss the e�ects of these points onto the previously

discussed Newton-type methods.

To that end, realize that r(θ ∣ y)measures the mismatch between the model
prediction under parameter θ and the observations (in the form of the di�erence
η(θ) − y), relative to random variability of the observations (in the form of
the multivariate standard deviation Ω⁄ ). De�ne Y⊺ ∶= [Y⊺

 . . . Y⊺
n ] and

η̄⊺(θ) ∶= [η̄⊺ (θ) . . . η̄⊺n(θ)]. �e average value and standard deviation of
r(⋅) are

E [r(θ ∣Y)] = Ω−⁄(η(θ) − η̄) and C [r(θ ∣Y)]⁄ = I , (6.12)

respectively, for all θ ∈ Q.�edi�erence η(θ)−η̄ can be regarded as the systematic
mismatch between themodel prediction under θ and the data-generating process.

Newton’s Method and Exact-Hessian SQPMethods

Newton’s method (for an unconstrained problem) and an exact-Hessian sqp

method (for the constrained case) may fail if they encounter a non-positive

de�nite Hessian. �is drawback may be practically unproblematic if one can

choose a starting point close to a local solution,where theHessian is o�en positive

de�nite. Due to (a), this is usually not possible in the context of md problems, so

that one can expect that these methods will run into problems there.

Gauss-Newton Hessian Approximation

Let r i(⋅) be the i-th scalar component of r(⋅). �e Gauss-Newton Hessian
approximation is applicable if condition (6.8) is satis�ed at a local solution θ⋆.
�is is the case if the components of the matrix

N (θ⋆) (.)=
nr

∑
i=
r i(θ⋆ ∣ y)∇r i(θ⋆ ∣ y) (6.13)

are su�ciently small. �is is true if and only if for each i ∈ {, . . . , nr} it holds
that (i) the residual r i(θ⋆ ∣ y) is small, or (ii) the components of the Hessian
∇r i(θ⋆ ∣ d) are small.
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According to (6.12), the residuals remain small in average as long as the

systematic mismatch η(θ) − η̄ is small relative to the random variability in
terms of Ω⁄ . As discussed in Sec. 3.2, the di�erence η(θ) − η̄ is zero if and only
if the model is correct and θ is a correct parameter. In a md problem, we do not

know whether the considered model is correct, see (c). We also do not know the

function η̄, so that it remains hidden to us how incorrect the model is in terms
of η(θ) − η̄.
It is evident from (6.11) that the Hessians have small components if the model

response η is almost a�ne-linear close to θ⋆. In considered scenario, this is not
necessarily true, see (b).

Consequentially, in the context of an md problem, we do not know whether the
Gauss-Newton Hessian approximation is adequate for a given model. Actually, we
expect that it is typically inadequate for several of the rival models, unless we are

in the fortunate but unlikely situation, that all of them are “almost” correct.

Both theory and practical experience suggest that the bfgs method (in

unconstrained problems) or an sqp method with a bfgs Hessian approximation

(if the problem is constrained) can deal fairly well with (a) to (c).

6.2. Sequential OED Problems for Model
Discrimination

Main contributions of this thesis are the novel sequential design criteria for

model discrimination (md) proposed in Secs. 4.4 and 5.5, advanced versions of

established criteria treated in Secs. 4.3 and 5.3. Experiments performed under

conditions maximizing such a design criterion are supposed to be particularly

e�cient for md. �is section discusses methods for solving such maximization

problems,whichwe call sequential optimal experimental design (oed)

problems for md. We shall see that they are particularly di�cult to solve

numerically due to their intrinsic non-linearity and non-convexity.

6.2.1. Problem Statement

Considered Scenario

Suppose experiments can be performed under conditions from the compact

experimental domainX ⊆ Rnx and yield observations in the observation domain

Y ⊆ Rny . For all x ∈ X, an observation obtained from an experiment under
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condition x is a realization the continuous Rny -valued random variable Yx ,
whose distribution may depend on x and whose covariance matrix Ω(x) ∶=
C [Yx] has full rank and is thus symmetric positive de�nite (spd) and invertible.
For all x ∈ X, the distribution of Yx is unknown. To cope with this lack of

knowledge, several regression models are available. For all µ ∈ M ∶= {, . . . , nM}
and all θµ ∈ Qµ ⊆ Rnθµ , model µ with parameter θµ speci�es for all experimental
conditions x ∈X an ny-dimensional normal distribution with mean ηµ(θµ , x)
and covariance Ω(x).

A Simpli�ed Problem

General sequential oed problems are discussed in Sec. 4.1.3. We �rst consider

an instructive simpli�ed problem that arises in the considered scenario under

the following additional assumptions.

(a) �e experimental domain is solely characterized by box constraints,X =
{x ∈ Rnx ∶ l ⩽ x ⩽ u}, with l , u ∈ Rnv and l ⩽ u. �e inequalities are
meant component-wise.

(b) Under all experimental conditions x ∈ X, the observation covariance
Ω(x) has the same value, denoted by Ω.

(c) �e models are a�ne-linear in x. �at is, for all models µ ∈ M and all

parameters θµ ∈ Qµ there exists a matrix Jµ(θµ) ∈ Rny×nx and a vector

hµ(θµ) ∈ Rny such that ηµ(θµ , x) = Jµ(θµ)x + hµ(θµ) for all x ∈X.

(d) �e design criterion is the multi-model Hunter-Reiner (hr)-criterion

from Def. 4.11.

For all µ ∈ M, let θ̂µ ∈ Qµ be a parameter maximum-likelihood estimate (pmle)

of model µ. Suppose without loss of generality (wlog) that the models µ ∈ M
and ν ∈ M have the smallest and second-smallest lack-of-�t (in terms of the sum

of squared residuals (ssr)), respectively, based on available previous experiments.

Under assumptions (b)–(d) and with the abbreviations J ∶= Jµ(θ̂µ) − Jν(θ̂ν)
and h ∶= hµ(θ̂µ) − hν(θ̂ν), the design criterion is

Ψ(x) = ∥ηµ(θ̂µ , x) − ην(θ̂ν
, x)∥Ω− (.a)

= ∥Jx + h∥Ω− (.b)

= x⊺J⊺Ω−Jx + h⊺Ω−Jx + const (6.14c)

198



6.2. Sequential OED Problems for Model Discrimination

under all x ∈X. �e additive constant term is irrelevant for oed and is hence
omitted in the following. Assumptions (a)–(d) thus give rise to the following

sequential oed problem, a special case of Prob. 4.4 on p. 127.

Problem 6.2 (Simpli�ed Sequential OED for MD))

Given the bounds l and u and the design criterion Ψ ∶X ↦ R+
 from (6.14), �nd

a maximizer x⋆ of Ψ inX = {x ∈ Rnx ∶ l ⩽ x ⩽ u}. �e inequalities are meant
component-wise.

�is problem is an instance of the class of optimization problems considered

next.

6.2.2. Quadratic Programs

Problem 6.3 (Quadratic Program (QP))

Given (Q , c,A, b) ∈ Rnv×nv × Rnv × Rm×nv × Rm , with symmetric Q, �nd a
point v⋆ that minimizes the objective function f ∶Rnv ↦ R, de�ned as

f (v) ∶= v⊺Qv + c⊺v , for all v ∈ R
nv , (6.15)

over the feasible set V ∶= {v ∈ Rnv ∶ Av ⩾ b}, where the inequalities are
meant component-wise.

A quadratic program (qp) is box-constrained, i� its feasible set can be

written in the form V = {v ∈ Rnv ∶ l ⩽ v ⩽ u}, with l , u ∈ Rnv . �e inequalities

are meant component wise. It is convex, i� Q is positive semide�nite (all
eigenvalues non-negative), and non-convex otherwise. A non-convex qp is

concave, i� Q is negative semide�nite (all eigenvalues non-positive), and is
indefinite, if Q has at least one positive and one negative eigenvalue.
A global solution of this problem is a point v⋆ at which f (v⋆) ⩽ f (v)

for all v ∈ V. A local solution v⋆ satis�es this inequality in the intersection
of V and an open neighborhood of v⋆. A global or local solution is strict, i� it
strictly satis�es the de�ning inequality.

199



6. Numerical Methods

Computational Complexity

To discuss the di�culty of quadratic programs, we require some key ideas from

computational complexity theory. More details can be found in the classic work

of Garey and Johnson [105] and the more recent book of Arora and Bara [8].

�e level of di�culty of an optimization problem can bemeasured based on its

worst-case time complexity, that is, based on the number of elementary

computational operations required to solve it in the worst case. �is number

directly translates into actual running time when the operations are performed

on a particular computer, thus the term “time” complexity.

A problem can be solved in polynomial time (exponential time), i�

the time required to solve it is a polynomial (an exponential function) in the size

of the quantities required to specify an instance of the problem.

�e class of problems that can be solved in polynomial time is denoted P .
�e classNP comprises all problems that can be solved in polynomial time by a
“non-deterministic algorithm.” Simply speaking, P contains the problems that
are “easy” to solve, and NP the problems for which it is “easy” to verify the
correctness of a supposed solution (which itself was possibly hard to compute).

�e hardest problems inNP are called NP-complete. A problem that is as

hard as anNP-complete problem, but is not necessarily inNP , is NP-hard.
Obviously, P is a subset of NP . Up to now, it remains one of the great

unresolved mathematical problems if both classes are identical or not, that is,

if P = NP . Many interesting and challenging problems are NP-hard. Yet if
P ≠ NP , as believed by many researchers, then these problems cannot be
solved in polynomial time, which can mean in practice that large they are

computationally intractable.

In the following, results concerning the computational complexity of quadratic

programs are taken from Horst and Pardalos [123] or from Vavasis [255], if no

other reference is given.

Convex Quadratic Programs

Convex quadratic programs have certain properties that signi�cantly simplify

their numerical solution. In particular, any Karush-Kuhn-Tucker point (see

Sec. 6.1.4) is a local solution, which in turn is a global solution. Such problems

are in P , that is, they can be solved in polynomial time, as proved by Kozlov,
Tarasov, and Khachiyan [151]. For available solution methods we refer to the

book of Nocedal and Wright [194, Chap. 16] and the references given therein.
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Unfortunately, quadratic programs appearing in the context of oed for md are

typically non-convex.

Non-Convex Quadratic Programs

Solving quadratic programs that are non-convex and possibly inde�nite is

generally tough. Even checking if a given feasible point is a local solution, or if a
local solution is strict, areNP-complete problems, as shown by Murty [191] and
Pardalos and Schnitger [197].

Not surprisingly, the problem of �nding a global solution is alsoNP-complete:
Sahni [219] shows that it isNP-hard, and Vavasis [256] that it is inNP . Pardalos
and Vavasis [199] prove that it is NP-hard even in the simplest case that Q
has only one negative eigenvalue. Many special cases of non-convex quadratic

programs are alsoNP-hard, for example non-convex box-constrained quadratic
programs.

Pardalos [198] reviews algorithms for �nding global optima in non-convex

quadratic programs. A branch-and-bound algorithm was recently proposed

by Burer and Vandenbussche [56, 57]. More details can be found in the books

of Horst and Pardalos [123, Chap. 4] and Horst, Pardalos, and Van�oai [122,

Chap. 2].

Concave Quadratic Programs

We now turn to concave quadratic programs and assume that the feasible set is

closed. Solving such a qp means to search for a minimizer of a negative quadratic

function on a polytope. Any local or global solution, if it exists, is a vertex (the

equivalent of a corner in several dimensions) of that polytope. A proof of this well-

known property can be found, for example, in Horst and Pardalos [123, Sec. 3.4].

Since a polytope has a �nite number of vertices, this property introduces an

integer aspect into concave quadratic programs. �e number of vertices may

grow exponentially with the problem dimension. In the box-constrained case

with non-degenerate constraints, the feasible domain is a nv-dimensional cuboid,
which has nv vertices.

Exploiting that local solutions are located on vertices, Pardalos and Schnitger

[197, Rem. 3] show that local optimality in an concave qp can be veri�ed in

polynomial time, in contrast to inde�nite quadratic programs. Finding a global

solution, however, is NP-hard, like in the inde�nite case. Polynomial-time
algorithms are known for certain special cases, like minimizing the Euclidean

norm on a cuboid, as shown by Horst, Pardalos, and Van�oai [122, Secs. 2.4.2].
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Approximate Solutions of Quadratic Programs

In practice, it o�en su�ces to solve di�cult problems only approximately. Vavasis

[254] shows that the e�ort for approximating the global solution of Prob. 6.3 with
a compact feasible set and a matrix Q with t negative eigenvalues is

O(⌈nv(nv + )/
√
є⌉tℓ), (6.16)

where the approximation quality є ranges from є =  (exact global solution) to
є =  (arbitrary feasible point), and ℓ denotes the time required to solve a convex
qp with the same dimensions as Prob. 6.3.

In an inde�nite qp we have t < nv , so that the e�ort for obtaining an
approximate global solution grows polynomially in nv . It might thus be possible
to e�ciently approximate the global solution of such a problem as long as Q has
not too many negative eigenvalues.

In an concave quadratic programs we have t = nv , so that the e�ort for
approximating the global solution grows exponentially with nv . In practice,
this e�ort might be computationally intractable even for moderately large nv .

6.2.3. �e Challenges of Real-World OED Problems

Solving the Simpli�ed Sequential OED Problem

Consider the simpli�ed sequential oed Prob. 6.2. If we replace the maximization

withminimization, and switch the sign of the objective function as compensation,

we see that this problem is a qp in the variable x with objective function

x⊺(−J⊺Ω−J)x − h⊺Ω−Jx (6.17)

and the feasible setX = {x ∈ Rnx ∶ l ⩽ x ⩽ u}, where the inequalities are meant
component-wise. �e matrix −J⊺Ω−J is negative semide�nite by construction.
In the typical case that rank(J) ⩾ nx , it is even negative de�nite. It is hence a
box-constrained concave qp.
As argued in the previous section, such problems might be di�cult to solve.

In particular, �nding a global solution exactly is NP-hard, and the e�ort for
computing it only approximately increases exponentially in nx .
Finding a local solution seems to be easier: pick one of the nx vertices

and verify local optimality, which can be done in polynomial time. Yet if the

veri�cation fails, one has to start afresh at a di�erent vertex. �erefore, the
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required e�ort increases exponentially in nx in the worst-case.
If we accept to make such an e�ort, we might also directly go for the global

solution. Besides, it is unclear how useful we should consider a local solution

given that we known that there are nx −  other potential local solutions.

Solving Real-World OED Problems

We saw that even the simpli�ed (some might say simplistic) sequential oed

problem resulting from assumptions (a)–(d) is hard to solve. In practice, these

assumptions are rarely met, which further complicates the resulting sequential

oed problems.

If at least one of the assumptions (b)–(d) is violated, meaning that the

covarianceΩ depends on x, or the model responses ηµ(θµ , x) are nonlinear in x,
or the design criterion Ψ(⋅) is not a quadratic function of ηµ(⋅) − ην(⋅), then the
resulting sequential oed problem is not longer a qp, but a possibly non-convex

nonlinear program.

�e same is true if the admissible experimental conditions are characterized

by nonlinear equality and component-wise inequality constraints of the form

(x) =  and h(x) ⩾  instead of the box constraints from assumption (a). In
general, non-convex nonlinear programs are even harder to solve than concave

quadratic programs.

Local Methods for Real-World OED Problems

In lack of e�cient method to solve real-world sequential oed problems globally,

one might be tempted to apply a local method.

A popular approach is the sequential quadratic programming (sqp) approach,

brie�y considered in Sec. 6.1.4, which solves a sequence of “local” quadratic

programs obtained fromTaylor approximations of the nonlinear program around

the iterates. When applied to a sequential oed problem without the simplifying

assumptions assumptions (a)–(d), the local quadratic programs will typically

be inde�nite, even close to a local solution. �erefore, sqp variants that apply

positive-de�nite Hessian approximations, like the Gauss-Newton method or

the Broyden-Fletcher-Goldfarb-Shanno (bfgs) methods, are unsuited for these

problems. Besides being computationally expensive, little can be said about the

global convergence behavior exact-Hessian sqp methods, a notable exception

being the results of Bardow et al. [24].

If a local method converges, then usually to a point at which necessary (but

not su�cient) conditions for local optimality are met. As in the case of inde�nite
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quadratic programs, the problem of verifying if such a point is a local solution is

againNP-complete.

6.2.4. A Practical Approach for Low Dimensions: Grid Search

�e solution of a sequential oed problem describes the conditions under which

the next experiment is performed. To be useful in practice, it o�en su�ces if such

a condition is just somewhat better than the available alternatives, like points from

a factorial design or conditions selected based on expert knowledge. �erefore,

it o�en su�ces to use rough approximations to the actual global solution (like

one of the many local solutions), particularly if the data-generating process is

su�ciently complicated.

In Chap. 9, however, we aim to assess and compare the e�ciency of di�erent

sequential design criteria for solving md problems. To avoid arbitrariness,

these conclusions should be based on global solutions, or at least on good
approximations of it. In general, this requirement entails tremendous compu-

tational e�ort. �e particular oed problems considered in Chap. 9, however,

have low-dimensional experimental domains and can thus be addressed with

grid search, that is, with extensive sampling of the design criterion on the

experimental domain.

A grid search approximates a global minimizer of the design criterion Ψ ∶X ↦
R over the whole experimental domainX by a global minimizer over a grid

G ⊂X. �e grid is a �nite set of points that “cover” the experimental domainX
in some sense. To that end, the design criterion must be evaluated at all points in

G.

A grid G is equidistant rectangular with distance d ∈ R+, i�

G = {x ∈X ∶ ∥x − x∥ = nd , with n ∈ N and x ∈X}. (6.18)

Such a grid is �nite ifX is closed. In average, it contains (/d)nx points in the
nx-dimensional unit cube.
Grid search su�ers from the “curse of dimensionality”:�enumberof required

grid points for su�ciently good approximations typically increases exponentially

with nx . �e computational e�ort of evaluating the design criterion at these
points may thus be intractable even for moderate dimensions.

Nevertheless, grid search has the advantage of a “global view” on the

minimization problem. Under some regularity conditions, its approximations

converge to the actual global solution as the number of grid points goes to in�nity.
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In addition, it provides these approximations without the need of a starting

point, which is sometimes di�cult to choose. In small dimensions (and only

there), grid search has shown to be a simple and numerically robust approach

for approximating a global solution.

We use grid search for solving the sequential oed problems in the case study

considered in Chap. 9.

6.3. Low-Discrepancy Sequences
Low-discrepancy sequences are sequences whose members are placed highly

evenly in space. Members of such a sequence are also called quasi-random

numbers. Despite their name, there is nothing “random” about them. �ey are

completely deterministic and can be generated algorithmically in a reproducible

manner on a computer, like pseudo-random numbers. In contrast to the latter,

however, quasi-randomnumbers typically fail tests for randomness and statistical

independence. Inmany applications, however, being “random” is not the decisive

feature:

[. . . ] instead of trying to cope with the impalpable concept of

randomness, one should select points according to a deterministic

scheme that is well suited for the problem at hand. (Niederreiter

[192])

�e outstanding feature of low-discrepancy sequences is that they are spread out

highly uniformly in space, in fact, more uniformly than uniformly distributed

pseudo-random numbers. Examples of this behavior can be seen in Fig. 6.1 on

p. 207. �is property makes quasi-random numbers attractive for several tasks:

Based on low-discrepancy sequences one can construct experimental designs
that �ll the design space evenly and integrate easily in sequential procedures.�ey

are used to generate initial designs and model-independent reference designs in

Chaps. 7 and 9.

In numerical optimization, the quality of the solution provided by local opti-
mization strategies typically depends on some starting point. Low-discrepancy

sequences can be used to determine promising start values in the absence of

previous knowledge for choosing them. Low-discrepancy sequences are used in

this manner for �nding best parameters as described in Sec. 6.1 and applied in

Chaps. 7 and 9.

A�er introducing the concept of discrepancy, the relevant measure for the

even-distributiveness of a sequence, we describe some popular low-discrepancy
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sequences. We shall see that under certain circumstances, particularly in high

dimensions, they are not as evenly distributed as desired, and discuss techniques

that have been proposed to improve their performance.

We restrict our considerations to those aspects of low-discrepancy sequences

necessary to understand our numerical techniques. For more detailed informa-

tion, we refer to the review article of Niederreiter [193] and the references given

therein, and to the book of Niederreiter [192].

6.3.1. Discrepancy
�e following is based on the works Niederreiter [192, Sec. 2] and Moroko� and

Cat�isch [189, Sec. 2]. Let λ denote the Lebesgue measure and let χJ∶J↦ {, }
denote the indicator function onJ, de�ned as χ(x) ∶= , i� x ∈J and χ(x) ∶= 
otherwise. �e sequence (x i ∶ i ∈ N) taking values in the d-dimensional unit
hypercubeId is equidistributed, i�

lim
n→∞


n

n

∑
i=

χJ(x i) = λ(J) (6.19)

for all Lebesgue-measurable subsetsJ of Id . In other words, the sequence is
equidistributed if and only if the number of points falling into a measurable set is

asymptotically proportional to the volume of that set. Any sequence of random

numbers satisfying a strong law of large numbers is hence equidistributed with

probability .

According to this de�nition, being equidistant tells us little about the behavior

of �nite sequences, which we encounter in practice. �e counterpart of (6.19) for
a �nite subsequence x , . . . , xn is

Rn(J) ∶= 
n

n

∑
i=

χJ(x i) − λ(J), (6.20)

de�ned for any Lebesgue-measurable setJ. How uneven the points of such a
�nite sequence are spread out in space can be measured by the discrepancy

and the star discrepancy, de�ned as

Dn ∶= ∣sup
J∈A

Rn(J)∣ and D⋆n ∶= ∣ sup
J∈A⋆

Rn(J)∣, (6.21)

respectively, where A is the set of all sub-hypercubes of Id , and A⋆ the set
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Figure 6.1.: Comparison of pseudo-random numbers and quasi-random numbers. Le�
column, top to bottom: �rst 50, 250 and 1250 members of a sequence of uniformly

distributed two-dimensional pseudo-random numbers on the unit square, generated

by the Mersenne twister algorithm of MATLAB with seed 1. Middle column: analogous

members of a Halton sequence. Right column: analogous members of a Sobol sequence.

Members 1–50 are represented by circles (○, ●), members 51–250 by triangles (▵, ▴), and

members 251–1250 by diamonds (◇, ◆). Members that are already present in preceding

plot have “empty” markers (○, ▵, ◇).
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of all sub-hypercubes of Id having one corner at  ∈ Id . It is easy to show
that D⋆n ⩽ Dn ⩽ nD⋆n . Other types of discrepancies can be de�ned likewise by
restrictingJ to some class of subsets and taking a norm of Rn over this class. In
general, the lower the discrepancy of a �nite sequence, the more evenly are its

points spread out overId .

6.3.2. Low-Discrepancy Sequences

Here, we follow Niederreiter [192, Sec. 3] andMoroko� and Cat�isch [189, Sec. 4].

�e law of the iterated logarithms (�m. B.7) implies that for a sequence of

random numbers

Dn = O((ln ln n)⁄/n⁄) (6.22)

with probability . Halton [113] proved that for any dimension d there exist in�nite
sequences whose discrepancies satisfy

Dn = O((ln n)d/n), (6.23)

which is now regarded as the minimal asymptotic discrepancy possible for any

in�nite sequence. Halton’s result is important since it shows that there are in
fact sequences whose points are more evenly spread out than uniformly distributed
random numbers. Such sequences, with an asymptotic discrepancy as in (6.23) are
referred to as low-discrepancy sequences. Note that such sequences have

a low discrepancy only asymptotically – for any �nite n, their discrepancy might
well be above (6.23). We shall now describe some important representatives.

For all integers p ⩾ , any nonnegative integer n has a p-adic expansion
n = ∑ki= c i pi with  ⩽ c i ⩽ p for all  ⩽ i ⩽ k. �is expansion is unique except
for summands with higher powers of p and coe�cients of zero. �e radical
inverse function is

Sp(n) ∶=
k

∑
i=
c i p−i− =

c
p
+ c
p

+ . . . + ck
pk+

. (6.24)

�e de�nition implies that Sp(n) takes values in [, ) for all nonnegative n. It
represents essentially a re�ection at the decimal point: if the p-adic expansion of
n is written as the string of digits ckck− . . . c, then ϕp(n) is the p-adic fraction
.cc . . . ck . �e sequence Sp(), Sp(), . . . is equidistributed.
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Using the radical inverse function, the van der Corput sequence,

introduced by van der Corput [253], can be expressed as (S(i) ∶ i ∈ N). It can
be shown that both its discrepancy and its star discrepancy are of O((ln n)/n).
Halton [113] generalized it to d ⩾  dimensions. �e Halton sequence is

(Hd(i) ∶ i ∈ N), where Hd(i) ∶= (Sp(i), . . . , Spd (i)), for all i ∈ N,

(6.25)

where p , . . . , pn are relatively prime integers, typically the �rst n primes. Its
discrepancy satis�es

D⋆n ⩽ αd
(ln n)d

n
+O

⎛
⎝
(ln n)d−

n
⎞
⎠
, (6.26)

where αd is a dimension-dependent constant. A two-dimensional Halton
sequence is shown in Fig. 6.1.

Also the family of Sobol sequences, due to Sobol [235], is based, at least

indirectly, on p-adic expansions of the integers. Niederreiter [193] generalized
this idea to the theory of so-called (t, s)-sequences. For details, we refer to the
given original publications. Also Sobol sequences satisfy (6.26). An instance of a

two-dimensional Sobol sequence is shown in Fig. 6.1 on p. 207.

Implementing a generator for Halton sequences is conveniently simple. In fact,

the algorithm proposed by Halton [112] requires less than a dozen pseudo-code

statements. While the theory behind Sobol sequences is somewhat complex, the

algorithms for their construction, for example those of Bratley and Fox [51] and

Press et al. [205, Sec. 7.8], are surprisingly simple. Nowadays, implementations for

both sequences are widely available in various programming languages, including

Fortran 90, C, C++ and MATLAB.

6.3.3. Improving the Finite-Sample Discrepancy

�e discrepancy bound (6.23) is asymptotic and does not necessarily describe the

�nite-sample behavior of a low-discrepancy sequence. For practical applications,

however, the �nite-sample behavior is decisive.

Halton sequences are notorious for their poor �nite-sample performance,

particularly in large dimensions, as discussed, for example, by Braaten andWeller

[49] and Kocis and Whiten [146] and Moroko� and Cat�isch [189]. �e problem

is shown in Fig. 6.2. �e charts in the upper row show a 6-dimensional Halton
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Figure 6.2.: Comparison of the original Halton sequence and a variant with skip and leap.
Upper row, le� to right: �rst 10, 50 and 250 members of the 6-dimensional original Halton

sequence, orthogonal projection onto the 5th and 6th coordinate. Lower row: analogous

members of the Halton sequence with skip 100 and leap 409. �e markers have the same

meaning as in Fig. 6.1 on p. 207.
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sequence, orthogonally projected onto the 5th and 6th dimensions. Clearly, the

points are far from being evenly distributed and seem to be highly correlated.

Points are clustered in some areas, while others areas are. In general, the situation

gets worse with increasing dimension.

�is behavior of the Halton sequence is re�ected in the discrepancy: several

computations, for example those of Braaten and Weller [49], show that the

discrepancy of the Halton sequence can even exceed that of a random sequence

unless the number of points is su�ciently large. Based on their numerical results,

Moroko� andCat�isch [189] estimate an exponential increase (d ) in the number

of points that are necessary before the discrepancy of a d-dimensional Halton
sequence drops below the expected discrepancy of uniformly distributed random

numbers.

�e reason for the bad behavior of Halton sequences is well-understood.
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Numerous variants of Halton sequences have been proposed as remedy, for

example by Braaten and Weller [49], Chi and Jones [68], Kocis and Whiten

[146], Matoušek [182], Moroko� and Cat�isch [189], and Owen [196] and Faure

and Lemieux [90], to mention a few. �e performance of several of them for

quasi Monte Carlo integration is compared in the numerical studies of Faure

and Lemieux [90] and Schlier [222]. Without going into detail one can say that

improved Halton sequences exists which do not, or at least only to a much lesser

degree, exhibit the problems of the original Halton sequence.

Kocis and Whiten [146] propose a particularly simple and attractive variant:

as i-th member of the sequence, choose the iL-th member of the original Halton
sequence (6.25), where the leap L is a prime that is di�erent from all used bases
p , . . . , pd . �e numerical results of Kocis and Whiten [146] suggest that this
“Halton sequence leaped” performs signi�cantly better than the original Halton

sequence, at least for dimensions up to 400. It was was pointed out by Matoušek

[182, Sec. 4] and Moroko� and Cat�isch [189, Sec. 7] that the quality of a Halton

sequence can be strongly improved by skipping some of its initial members. �e

Halton sequence with leap L and skip K is hence

(H′
d(i) ∶ i ∈ N), where H′

d(i) ∶= Hd(K + iL), for all i ∈ N (6.27)

�e improvement of this sequence compared to the original Halton sequence

can be clearly seen in Fig. 6.2.
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This chapter derives statistical measures and e�cient algorithms for assessing

and comparing empirical approximations for the covariance of a parameter

maximum-likelihood estimators (pmles).

Section 7.1 formally states the problem, Sec. 7.4 derives statistical measures

for assessing and comparing empirical approximations for the covariance of a

pmles. Section 7.3 develops e�cient algorithms for computing these measures

and describes the implementation provided in the so�ware package DoeSim.

Section 7.4 describes a model family for the water-gas shi� reaction (wgsr)

reaction, which is used for a case study. Section 7.5 describes the numerical
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results from a case study that compares the classic empirical pmles covariance

approximation to its misspeci�cation-robust alternative proposed in Sec. 3.4.

7.1. Problem Statement
�e assumptions and concepts of this chapter are similar to those considered

in Secs. 3.1 to 3.3. We use the same notation and terminology, with some

simpli�cations to increase the readability.

7.1.1. Central Assumptions

�roughout the chapter we make the following assumptions.

(i) �e observations y , y , . . . from the compact observation domain

Y ⊆ Rny are available, resulting from experiments performed under the

known conditions x , x , . . ., respectively, from the experimental

domainX ⊆ Rnx .

For all n ∈ N, we summarize the observations of the �rst n experiments in the
data vector d⊺n ∶= [y⊺ . . . y⊺n] ∈ Yn .

(ii) �e observations y , y , . . . are realizations of the respective observ-
ables Y ,Y , . . ., continuous Y-valued random variables.

Accordingly, any vector of data dn with n ∈ N is a realization of the continuous

Yn-valued random variable D⊺
n ∶= [Y⊺

 . . . Y⊺
n ], the sample.

(iii) �e observables Y ,Y , . . . are statistically independent. For all n ∈ N,

observable Yn is normally distributed with mean η̄(xn) ∶= E [Yn] and
full-rank (and thus invertible) covariance matrix Ω(xn) ∶= C [Yn].

(iv) A regression model (Def. 1.3) with a compact parameter domain

Q ⊆ Rnθ is available. For all n ∈ N, the model with parameter θ ∈ Q
speci�es a normal distribution for observable Yn with mean η(xn , θ)
and covariance Ω(xn). �e response η(xn , θ) is twice continuously
di�erentiable with respect to θ for all n ∈ N.

Note that assumption (iv) implies the assumption that the observation covari-

ances from assumption (iii) are known to whoever speci�es the model.
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7.1.2. Notation and De�nitions

We use the following notation and de�nitions for all experiments n ∈ N and

all parameters θ ∈ Q. �e gradient and the Hessian di�erential operator with
respect to θ are denoted ∇θ and ∇

θ , respectively. We write

J(xn , θ) ∶= ∇θη(xn , θ) (7.1)

for the ny × nθ Jacobian matrix of the response and

H j(xn , θ) ∶= ∇
θ η j(xn , θ) (7.2)

for the nθ ×nθ Hessian of the j-th response component η j(xn , θ). Based thereon,
we de�ne the symmetric positive semi-de�nite (spsd) nθ × nθ matrix

Mn(θ) ∶= 
n

n

∑
i=
J⊺(x i , θ)Ω−(x i)J(x i , θ) (7.3)

and its inverse Cn(θ) ∶= M−
n (θ), supposed that it exists. Further, we de�ne the

symmetric nθ × nθ matrix

Nn(θ , dn) ∶= 
n

n

∑
i=

ny

∑
j=
r̃ j(x i , θ)H̃ j(x i , θ), (7.4)

where r̃ j(⋅) is the j-th component of the vector

r̃(x i , θ) ∶= Ω−⁄(x i)(η(x i , θ) − y i), (7.5)

and

H̃ j(x i , θ) ∶=
ny

∑
k=

ρjk(x i)Hk(x i , θ), (7.6)

where ρjk(x i) is the component of matrix Ω−⁄(x i) in row j and column k. �e
matrices de�ned in (7.3) and (7.4) are straightforward generalizations of their

counterparts fromChap. 3 to the case of non-unit observation covariancesΩ(x i),
see Tab. 3.1 on p. 113.
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7.1.3. Empirical Approximations for PMLE Covariance

Let us summarize some results from Secs. 3.1 to 3.4. Suppose assumptions (i)–(iv)

hold.�en,a parametermaximum-likelihood estimate (pmle) θ̂n ∶= θ̂n(dn) ∈ Q
based on the �rst n experiments minimizes the sum of squared residuals (ssr)

sn(θ , dn) ∶= 
n

n

∑
i=

∥η(x i , θ) − y i∥Ω−(x i) (7.7)

with respect to θ ∈ Q, see Def. 3.9, Cor. 3.10, and Tab. 3.1. �e corresponding

estimator θ̂n(Dn) is a continuousQ-valued random variable. We write

Qn ∶= C [θ̂n(Dn)] (7.8)

for its actual covariance. In practice, the distribution of the sampleDn and
thus also Qn are typically unknown. If data is available, empirical (=data-based)
approximations can be formulated for Qn . Under the given assumptions, the
classic (empirical) approximation for the actual covariance is

Qn ≈ 
n
Cn(θ̂n). (7.9)

It rests upon the assumption that the model is (a) correct or (b) locally a�ne-

linear around the pmle θ̂n . If it is satis�ed and certain regularity conditions are
met, the error of this approximation error gets arbitrarily small (in a probabilistic

sense) as the sample size n increases.
As alternative, we proposed the novel robust (empirical) approxima-

tion

Qn ≈ 
n
Rn(θ̂n , dn) (.)

∶= 
n
(Mn(θ̂n) + Nn(θ̂n , dn))

−
Mn(θ̂n)(Mn(θ̂n) + Nn(θ̂n , dn))

−

in Conj. 3.14. It is a consistent generalization of its classic counterpart. For correct

or a�ne-linear models, Rn(θ̂n , dn) = Cn(θ̂n), so that both approximations are
identical. Yet even for models that are both nonlinear and incorrect, the error

of the robust approximation gets arbitrarily small (in a probabilistic sense) with

increasing sample size n, supposed certain regularity conditions are met.
�e classic empirical approximation involves �rst derivatives of the model

responses, its robust counterpart requires also second derivatives. Evaluating the

former is therefore typically signi�cantly cheaper than evaluating the latter.
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7.1.4. Key Questions
Suppose the considered model is both nonlinear and incorrect. It is di�cult

to decide in practice whether the additional e�ort for evaluating the robust

approximation is justi�ed by its increased approximation quality, or if the cheaper,

yet less precise classic approximation su�ces. Furthermore, the error of both

approximations tends to decrease with the sample size n, yet it is di�cult to
predict how large it has to be to reduce it to a practically acceptable level. In the

remaining chapter we consider the following questions:

(Q7.1) How good are the classic approximation (7.9) and its robust counterpart

(7.10) depending on the amount n of available data?

(Q7.2) How good are they depending on the variability of the data in terms of
the covariance C [Yn]?

Section 7.2 introduces measures for the quality of covariance approximations in

general, and Sec. 7.3 deals with methods for their computation. Based thereon,

(Q7.1) and (Q7.2) are studied for several di�erent models in Sec. 7.4.

7.2. Quality of Empirical Approximations for PMLE
Covariances

To examine the key questions, measures for assessing and comparing the quality

of the relevant covariance approximations are required. Suchmeasure are derived

and discussed in the following.

7.2.1. Metrics for Covariance Matrices
�e dissimilarity of two real-valued m × n matrices A and B can be measured in
terms of any matrix metric d ∶Rm×n ×Rm×n ↦ R+

 , which by de�nition

(a) is positive de�nite, d(A, B) ⩾ , with equality i� A = B,

(b) is symmetric, d(B,A) = d(A, B), and

(c) satis�es the triangle inequality, d(A, B) ⩽ d(A,C) + d(C , B),

where C is also a real-valued m × n matrix. �e larger the value of d , the more
dissimilar the matrices. Any matrix norm ∥⋅∥ (for an overview, see, for example,
Horn and Johnson [121, Chap. 5]) induces such a metric by d(A, B) ∶= ∥A− B∥.
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Let aij and bij be the components in row i and column j of matrices A and B,
respectively. A straightforward choice is the metric

dF(A, B) ∶=
∥A− B∥F√
mn

= √
mn

(
m

∑
i=

n

∑
j=

(aij − bij)
)

⁄

, (7.11)

a scaled variant of the metric induced by the Frobenius norm. �e normalizing

factor /
√
mn ensures that dF(⋅, ⋅) is O() with respect to both m and n,

simplifying comparisons between matrices of di�erent dimensions. �is metric

and similar ones induced by matrix norms are applicable even to non-symmetric

positive de�nite (spd) and even to non-square matrices.

We are, however, interested in the special case that A and B are full-rank
covariance matrices of parameter estimators or approximations thereof. �e

following metric respects some of the particular properties of such matrices.

De�nition 7.1 (Riemannian Metric for SPDMatrices)

Let A and B be real-valued spd m ×m matrices and let λ i(A, B),  ⩽ i ⩽ m, be
the eigenvalues of A−B, or equivalently the inverse eigenvalues of B−A. �e
(normalized) Riemannian metric is

dR(A, B) ∶=
√
m

∥ln(A−B)∥F =
√
m

(
m

∑
i=

(ln λ i(A, B)))
⁄

, (7.12)

where ln(⋅) denotes the matrix logarithm in the middle term and the usual
logarithm in the last term.

�e Riemannian metric measures the relative dissimilarity of two matrices on a
logarithmic scale. In the univariate case m =  with A = a ∈ R and B = b ∈ R, it

simpli�es to dR(A, B) = ∥ln(b/a)∥ = ∥ln(b) − ln(a)∥.�e normalizing factor
m−⁄ in (7.12) ensures that dR(⋅, ⋅) is ofO()with respect to thematrix dimension
m, simplifying comparisons. Lang [161, Chap. XII, § 1], Förstner and Moonen
[102] and Moakher and Batchelor [187, Sec. 17.2.1] treat this metric (without the

factor m−⁄ ) in more detail.

�eorem 7.2 (Properties of the Riemannian Metric for SPDMatrices)

�e Riemannian metric dR from Def. 7.1
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(i) satis�es the characteristics (a) to (c) on p. 217 of a matrix metric,

(ii) is invariant with respect to a�ne transformations, meaning that

dR(XAX⊺ , XBX⊺) = dR(A, B) for all real-valued invertible m × m
matrices X, and

(iii) is invariant under inversion, d(A, B) = d(A− , B−).

Proof A proof is given by Förstner and Moonen [102, �m. 1]. ◻
Since C [XQ + a] = X C [Q]X⊺ for any Rm-valued random variableQ and any
vector a ∈ Rm , property (ii) ensures that dR is invariant under reparameteri-
zations of the type θ ↦ Xθ + a. Essentially, this property provides a certain
independence of dR from details of the model implementation.
A full-rank covariance matrix is spd by de�nition and thus has a unique

inverse. �is inverse, sometimes called “precision matrix,” carries exactly the

same information concerning the variability of the underlying distribution as the

covariance matrix itself. Property (iii) ensures that it does not matter whether

covariance matrices or precision matrices are regarded in dR .
In the general case, the metric dF has neither property (ii) nor property

(iii). �erefore, we use the Riemannian metric to measure the dissimilarity of

covariance matrices.

7.2.2. Quality Measures
Using the Riemannian metric, the quality of the classic approximation (7.9) for a

given model can be measured by dR(Qn , nCn(θ̂n(dn))), where smaller values
correspond to better approximations. From this quantity, however, little can be

inferred about the quality of the classic approximation in general, since the data
dn is subject to random �uctuations described by the distribution of Dn .
A measure for the general quality of the classic approximation should take

into account the distribution of the random variable

∆cl(n) ∶= dR(Qn , nCn(θ̂n(Dn))), (7.13)

and a corresponding measure for the robust approximation should take into

account the distribution of

∆rob(n) ∶= dR(Qn , nRn(θ̂n(Dn),Dn)). (7.14)
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We use the expected values E [∆cl(n)] and E [∆rob(n)] as measures for the
average approximation error, and analogously the corresponding standard

deviations C [∆cl(n)]
⁄
and C [∆rob(n)]

⁄
as measures for their variability. For

comparing the quality of both approximations we consider the random variable

∆(n) ∶= ∆rob(n) − ∆cl(n) (7.15)

which takes value on the whole real line.�e smaller (more negative) its expected

valueE [∆(n)], the better is the robust approximation in average compared to its
classic counterpart. �e standard deviation C [∆(n)]⁄ quanti�es the associated
variability.

We use these expected values and standard deviations to assess and compare

the quality of the considered covariance approximations. Monitoring these

quantities under increasing sample size n ∈ N allows to examine the in�uence

of the amount of available data on to approximation quality (Q7.1). Observing

them under data with di�erent covariances makes it possible to study the e�ect

of the variability of the data on the approximation quality (Q7.2).

7.3. Computational Methods

To examine (Q7.1) and (Q7.2) under controlled conditions, we de�ne the
distribution of the sample Dn . Via the functional dependencies (7.13) and (7.14),
this choice also determines the distributions of ∆cl(n) and ∆rob(n), respectively.
�eir expected values and standard deviations can typically not be represented

in a closed form, but can be approximated computationally of replications of the

data are available.

Suppose experiments  to n have been replicated r ∈ N times, and let

dn , . . . , dnr be the corresponding replicated data, independently and identically
distributed (iid) realizations of the sample Dn . �e corresponding parameter
maximum-likelihood estimates (pmles) θ̂n , . . . , θ̂nr are then iid realizations of
the estimator Q̂n ∶= θ̂n(Dn).

7.3.1. Replication-Based Approximations of PMLE Covariance

Let us �rst consider two classes of approximations for the actual covariance Qn
that are based on the replicated estimates θ̂n , . . . , θ̂nr .
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Sample Covariance Matrix

It is well known that the sample covariance

Q̃nr ∶= 
r−

r

∑
l=

(θ̂nl − θ̄nr)(θ̂nl − θ̄nr)
⊺
, with θ̄nr ∶= 

r

r

∑
l=

θ̂nl ,

consistently estimates Qn : the larger r, the better (in a probabilistic sense) is the
approximation Q̃nr ≈ Qn . �e quality of this approximation is, however, very
sensitive to the presence of outliers. �at is, it tends to su�er signi�cantly if some

of the realizations θ̂n , . . . , θ̂nr are “far-o�” from the bulk of the others.
�e probability of obtaining outliers in r realizations drops with increasing

r. For any given covariance Qn , the quality (in a probabilistic sense) of approx-
imation Q̃nr ≈ Qn can thus be improved by increasing r. Unfortunately, the
probability of obtaining outlier also increases sharply with the magnitude of

Qn . Even for covariances of moderate magnitude, the number of realizations r
required to ensure a given approximation quality might hence be very large, as

discussed by Gupta and Gupta [110] and others.

Preliminary computations revealed that using the sample covariance for

approximating Qn requires replication numbers r that are practically intractable.
We therefore use a “robust” alternative that is less susceptible to outliers.

MCD Covariance Estimator

A covariance estimate that ismore robust than the sample covariance with respect

to outliers can be obtained from the minimum covariance determinant

(mcd) method,whichwas introduced by Rousseeuw [215] and Rousseeuw [217]

and recently reviewed by Hubert and Debruyne [127] and Hubert, Rousseeuw,

and Van Aelst [128].

Given an integer number h ⩽ r, the mcd method determines h of the r real-
izations θ̂n , . . . , θ̂nr whose sample covariance matrix has minimal determinant.
�e mcd estimate Q̂nr forQn is then a multiple of the sample covariance of these
h realizations.
As shown by Butler, Davies, and Jhun [60], the mcd covariance estimator is

consistent and converges toQn with a rate ofO(r−⁄). It is robust in the sense that
up to r − h replicates may be arbitrarily “far-o�” from the bulk of the remaining
ones without a�ecting the value of the estimate.

Rousseeuw and Van Driessen [216] describe an e�cient algorithm (called

“FAST-MCD”) for the computation of the mcds covariance estimate. An
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implementation in MATLAB is available in the package LIBRA, described by

Verboven and Hubert [257, 258].

7.3.2. Replication-Based Quality Measures

Given a replication-based estimate Q̂nr ∶= Q̂nr(θ̂n , . . . , θ̂nr) for the actual
covariance Qn one can compute

δ lcl(n) ∶= dR(Q̂nr , nCn(θ̂nl)) for all l ∈ {, . . . , r}. (7.16)

If the covariance estimator is consistent, then Q̂nr ≈ Qn for large r, so that
δ
cl(n), . . . , δrcl(n) are approximately iid realizations of the random variable
∆cl(n). Under regularity conditions, the weak law of large numbers (see Def. B.5
and�m. B.6) then provides the approximations

E [∆cl(n)] ≈ δ̄cl(n) ∶= 
r

r

∑
l=

δ lcl(n) and (.)

C [∆cl(n)]
⁄ ≈ σcl(n) ∶= ( 

r−

r

∑
l=

(δ lcl(n) − δ̄cl(n))
)

⁄

(7.18)

for large r. Analogously, the sample mean δ̄rob(n) and the sample standard
deviation σrob(n) of

δ lrob(n) ∶= dR(Q̂nr , nRn(θ̂nl , dn)), with l ∈ {, . . . , r}, (7.19)

can approximate E [∆rob(n)] and C [∆rob(n)]
⁄
, respectively, and the sample

mean δ̄(n) and the sample standard deviation σ (n) of

δ l(n) ∶= δ lrob(n) − δ lcl(n) with l ∈ {, . . . , r}, (7.20)

can approximate E [∆(n)] and C [∆(n)]⁄ , respectively.
Approximations (7.17) and (7.18) rely on the weak law of large numbers, which

is classically proven assuming statistically independent random variables. �e

quantities δ
cl(n), . . . , δrcl(n), however, are correlated since any of them is a�ected

by all pmles θ̂n , . . . , θ̂nr via the covariance estimate Q̂nr. �e amount of this
correlation, however, is small for large r, because the in�uence of any particular
pmle θ̂nl on the covariance estimate Q̂nr quickly decreases with r. In fact,
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the (strong or weak) law of large numbers holds even for such dependent, but

weakly correlated random variables. �is case is comprised in the very general

su�cient conditions for the strong law of large numbers in dependent random

variables provided by Hu, Rosalsky, and Volodin [124] and Kuczmaszewska

[154]. �erefore, (7.17) and (7.18) can be expected to remain valid for large r
despite of the mentioned statistical dependencies. �e same holds likewise for

the corresponding quantities related to ∆rob(n) and ∆(n).

7.3.3. A Monte Carlo Method

Algorithm 7.1 on the next page computes δ̄cl(n), σcl(n), δ̄rob(n), σrob(n), δ̄(n),
and σ (n) for all experiments n ∈ {nθ , . . . , nmax}, where nθ ∈ N is the number

of parameters in the model and nmax ⩾ nθ is a prede�ned maximum number of

experiments. �e algorithm is essentially a Monte Carlo (mc) method for the

expectations and standarddeviations of∆cl(n),∆rob(n), and∆(n).We comment
on some of its characteristics.

For computing a pmle θ̂nl, one needs to solve a least-squares (lsq) problem.
Since the considered model may both nonlinear and incorrect, the lsq problem

may also be nonlinear and may exhibit large residuals even in the solution.

Suitable numerical methods are discussed in Sec. 6.1. �e evaluation of Ĉn and
R̂nl requires �rst and second derivatives, respectively, of the model response.
�e algorithm may be computationally demanding. To give some typical

numbers, applying the algorithm nmax =  experiments and r =  mc

runs involves the solution of approximately 1 million lsq problems. Solving

such a number of problems may take a considerable amount of time. Fortunately,

the algorithm can be parallelized in large parts, which allows to reduce compu-

tation times on todays multi-processor multi-core hardware. In particular, the

individual runs of all foreach-loops can be run concurrently, which includes the
potentially expensive solutions of the lsq problems.

Implementation in DoeSim

We implemented a variant of Alg. 7.1 in our so�ware package DoeSim.

For generating observations, the implementation uses MATLAB’s mrg32k3a
pseudo-randomnumber generator,which combines the 32-bit combinedmultiple

recursive generator of L’Ecuyer [167] and the Ziggurat algorithm of Marsaglia

and Tsang [180].

For solving lsq problems, it applies the Broyden-Fletcher-Goldfarb-Shanno
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Algorithm 7.1:Monte Carlo method for comparing classic and robust pmle covari-

ance approximations.

input : a model with nθ parameters satisfying assumption (iv) on p. 214

experimental conditions x , . . . , xnmax ∈X, with nmax ⩾ nθ

observables Y , . . . ,Ynmax satisfying assumption (iii) on p. 214

number r ⩾ nθ of Monte Carlo simulations

output :mean errors and variabilities δ̄cl(n), δ̄rob(n), σcl(n), σrob(n) δ̄(n), and
σ (n), with n ∈ {nθ , . . . , nmax}

1 foreach n ∈ {, . . . , nmax} do
2 generate observations yn , . . . , ynr , independent realizations of Yn ;
3 end
4 foreach n ∈ {nθ , . . . , nmax} do
5 foreach l ∈ {, . . . , r} do
6 d⊺nl ← [y⊺l . . . y⊺nl];
7 θ̂nl ← argminθ∈Q sn(θ , dnl) ; // see (7.7)

8 Ĉnl ← Cn(θ̂nl) ; // see (7.9)

9 R̂nl ← Rn(θ̂nl , dnl) ; // see (7.10)

10 end
11 compute covariance estimate Q̂nr from θ̂n , . . . , θ̂nr ;
12 foreach l ∈ {, . . . , r} do
13 δ lcl(n) ← dR(Q̂nr ,


n
Ĉnl) ; // see (7.16)

14 δ lrob(n) ← dR(Q̂nr ,

n
R̂nl) ; // see (7.19)

15 δ l(n) ← δ lrob(n) − δ lcl(n) ; // see (7.20)

16 end
17 determine mean δ̄cl(n) and std. dev. σcl(n) of δ

cl(n), . . . , δ
r
cl(n) ; // see

(7.17),(7.18)

18 determine mean δ̄rob(n) and std. dev. σrob(n) of δ
rob(n), . . . , δ

r
rob(n);

19 determine mean δ̄(n) and std. dev. σ (n) of δ
(n), . . . , δr(n);

20 end
21 return δ̄cl(n), σcl(n), δ̄rob(n), σrob(n), δ̄(n), and σ (n), with n ∈ {nθ , . . . , nmax}
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(bfgs) [53, 100, 107, 228] quasi-Newton method provided by the MATLAB

function fminunc.

First derivatives of the model response – required by the bfgs method and

for evaluating Ĉnl – are computed in machine precision using the complex
step di�erentiation introduced by Lyness and Moler [178], reviewed by Martins,

Sturdza, and Alonso [181]. For computing the second derivatives required for

evaluating R̂nl, this technique is combined with �nite central di�erences.
As replication-based estimate Q̂nl for the actual covariance (line 11), the

implementation adopts the mcd method of Rousseeuw [215] and Rousseeuw

[217], available in MATLAB through the function mcdcov provided by the
package LIBRA [257, 258].

�e implementation is parallelized with respect to solving the lsq problems

and evaluating the covariance approximations (lines 5–10 in Alg. 7.1). Also the

matrix metrics (lines 12–16) are be evaluated concurrently.

7.4. Water-Gas Shi� Reaction (WGSR)

For our case studies in this and the next chapter we consider the water-gas shi�

reaction (wgsr).

7.4.1. Data-Generating Process

�e wgsr is a chemical equilibrium reaction between water and carbon

monoxide on the one side and hydrogen and carbon dioxide on the other side,

CO +HO
r(x)ÐÐ⇀↽ÐÐ CO +H . (7.21)

�e rate r ∈ R of this reaction depends on various external factors x. We consider
it under the following assumptions.

All reactants of the wgsr are in the gas phase. �e experimental conditions

comprise the partial pressures of CO, H2O, CO2, and H2, and the temperature,

summarized (in that order) in the vector x ∈ R. �e partial pressures are limited

to the interval [., ] and the temperature is �xed at . Kelvin ( degrees
Celsius), so that the experimental domain is

X ∶= [., ] × [., ] × [., ] × [., ] × {.}. (7.22)
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Let x , x , . . . be a sequence of experimental conditions from that domain, and
let y , y , . . . ∈ R be the corresponding observed values of the reaction rate. In

each experiment n ∈ N, the observed value yn is composed of the actual reaction
rate r(xn) and an additive measurement error that is normally distributed with
mean zero and a constant non-zero variance of σ . In other words, each yn is a
realization of the observable

Yn ∼ N(r(xn), σ ). (7.23)

�is setting satis�es assumptions (i)–(iii) on p. 214.

It is known that the observables are normally distributed with variance σ ,

but their mean r(⋅) is unknown. It remains for a model to describe the reaction
rate r(x).

7.4.2. Model Family

�e following 13 models were collected by Schwaab et al. [225, Sec. 3.3] for testing

model discrimination (md) strategies. Each model µ ∈ M ∶= {, . . . , } involves
a parameter θµ that can take values in Qµ ∶= Rnθµ . For each µ ∈ M and all

θµ ∈ Qµ , model µ with parameter θµ speci�ed for all experimental conditions
x ∈ X a real-valued response ηµ(x , θµ) for predicting the reaction rate r(x).
Writing θµi and z i for the i-th component of θ

µ and x, respectively, the responses
of these models are for all x ∈X de�ned as

η(x , θ ) ∶= α(x) zz
(θ 

 + θ
z + θ 

z + θ 
z + θ 

z)
 , (.a)

η(x , θ) ∶= α(x) zz
θ
 + θ

z + θ
z + θ

z + θ
z
, (.b)

η(x , θ) ∶= α(x) z
√
z

θ
 + θ

z + θ
z + θ

z + θ
z
, (.c)

η(x , θ) ∶= α(x) zz
θ
 + θ

z + θ
z
, (.d)

η(x , θ) ∶= α(x) z
θ
 + θ

zz/z + θ
z + θ

z + θ
z
, (.e)

η(x , θ) ∶= α(x) z
θ
 + θ

z/z
, (.f)

η(x , θ) ∶= α(x) zz
θ
 z + θ

z + θ
z
, (.g)
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η(x , θ) ∶= α(x) zz
θ
 z + θ

z + θ
z + θ

z
, (.h)

η(x , θ) ∶= α(x) zz
θ
 z + θ

z
, (.i)

η(x , θ ) ∶= α(x) z
θ 
 z + θ 

 z
, (.j)

η(x , θ ) ∶= α(x)e−θ

 zθ




 z
θ



 z
θ



 z
θ



 , (.k)

η(x , θ ) ∶= α(x)e−θ

 zθ




 z
θ



 , and (.l)

η(x , θ ) ∶= α(x)zzθ 
 . (7.24m)

Assuming that the temperature z is measured in Kelvin,

α(x) ∶=  − zz
zz

exp(. − .
z

). (7.25)

�e responses are listed in the same order as by Schwaab et al. [225]. For

numerical reasons they have been reparameterized to reduce correlations

between parameter estimates. We refer to these models as the wgsr model

family. Each of its models satis�es assumption (iv) on p. 214.

Some of themodels in the family are special cases of others, as shown in Fig. 7.1

on the following page. Only models 3, 5, 6, and 10 are neither special cases nor

generalizations of any other model.

7.5. Numerical Results for theWGSRModel Family

�e computational results discussed in the following are obtained from the

following setting.

Experiments are performed under a repeated sequence of s ∶=  pairwise
distinct conditions such that xn+s = xn for all n ∈ N. �e conditions are listed in

columns 2 to 4 of Tab. 7.1 on the next page.

�e reaction rate is for all n ∈ N de�ned as

r(xn) ∶=
η(xn , θ̄)

c
for all , where

θ̄ ∶= [. . . . .]⊺
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7. Performance of PMLE Covariance Approximations

Figure ..: Hierarchy of the wgsr model family. �e notation µ C
Ð→ ν means that

model µ reduces to model ν under condition C.
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Table 7.1.: Experimental conditions used for comparing classic and robust pmle covari-

ance approximations in the wgsr model family and resulting reaction rates. Rounded to

�ve digits.

n xn r(xn)

1 0.19102 0.72634 0.0728 0.32697 1.3086

2 0.66602 0.40967 0.8328 0.86983 0.67049

3 0.42852 0.30412 0.4528 0.19125 0.89556

4 0.90352 0.93745 0.2628 0.73411 1.7635

5 0.13164 0.62078 0.6428 0.46268 0.60993

6 0.60664 0.19856 0.2248 0.13309 0.71491

7 0.36914 0.83189 0.9848 0.67595 1.0797

8 0.84414 0.51523 0.6048 0.40452 1.2057

9 0.25039 0.08128 0.4148 0.94738 0.093776

s = 10 0.72539 0.71461 0.7948 0.26880 1.658
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and c ∶= 
s

s

∑
n=

η(xn , θ̄).

�at is, a rescaled variant ofmodel 1 with parameter θ̄ is de�ned to be correct.�e
parameter value θ̄ is the same usedby Schwaab et al. [225].�e factor c normalizes
the reaction rate r to an average value of 1 under the given experimental
conditions. �e responses (7.24) of the water-gas shi� reaction (wgsr) model

family are normalized accordingly. �is normalization allows to interpret the

standard deviation σ directly as magnitude of the relativemeasurement error.

7.5.1. Dependency on the Amount of Data
In this section we discuss computational results dealing with (Q7.1) on p. 217.

�e upper chart in Fig. 7.2 on the next page shows the mean error δ̄cl(n) of the
classic approximation as function of the sample size n for models 1 to 12 of the
wgsr model family under a moderate relative measurement error σ = .%.
For clarity, the linear model 13 is omitted, and results are shown in steps of ten

experiments. �e results were computed with the DoeSim implementation of

Alg. 7.1 on p. 224 using r =   replications. �e lower chart of Fig. 7.2 shows
the analogous results for the average error δ̄rob(n) of the robust approximation.
Except for a few models, the average errors of both the classic and the robust

approximation behave qualitatively similarly. �ey decrease monotonically with

the sample size, yet a quickly declining rate. �e charts to not allow to judge

whether the average errors converge to positive constants or converge very slowly

to zero.

We use log-log plots in the following to reveal more details. In a log-log plot, a

power lawof the type f (n) = αnβ with α, β ∈ R appears as a straight linewith axis

intercept log(α) and slope β, since log( f (n)) = log(α) + β log(n). Data points
appearing on a line in a log-log plot may hence indicate an underlying power

law. Clauset, Rohilla Shalizi, and Newman [71] describe statistical techniques

for inferring whether error-corrupted data stems from a power law (and from

which one) or from a function with a similar appearance.

Mean Error of the Classic Approximation

Figure 7.3 on p. 231 shows the same results as the upper chart in Fig. 7.3 in log-log

scale. It permits to further di�erentiate the behavior of the classic approximation.

In models 1 and 2, its average error lies approximately on parallel lines with the

same negative slope, indicating a decrease according to power laws (with the same
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7. Performance of PMLE Covariance Approximations

Figure 7.2.: Top:mean error of the classic approximation as function of the sample size.
Models 1 to 12 of the wgsr model family, relative measurement error σ = .%, r =
  replications. Bottom: analog results for the robust approximation. Abscissa scale
applies to both charts, legend shown in Fig. 7.4 on p. 233.
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7.5. Numerical Results for the WGSR Model Family

Figure 7.3.: Mean error of the classic approximation as function of the sample size, log-log
counterpart of the upper chart in Fig. 7.2 on the preceding page. Models 1 to 12 of the

wgsr family, relative measurement error σ = .%, r =   replications. Legend
shown in Fig. 7.4 on p. 233.
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7. Performance of PMLE Covariance Approximations

negative exponent). �e average errors in models 3, 6, 8, 9 and 11 lie on graphs

that are “bent up” compared to models 1 and 2, indicating they they decrease

slower than a power law, possibly to constant positive limit values. In models

4, 5, 7, and 12, the average errors decrease slowly from the very start and seem

to converge to constant positive values. In model 10, �nally, the average error

remains for all sample sizes at a constant positive value. Besides these di�erences

in the rate of decrease, it is immediately visible that the absolute value of the

mean approximation error in models 4, 5, 7, 10 is signi�cantly larger than than of

the other models.

Mean Error of the Robust Approximation

�emean error of the robust approximation, in contrast, behaves much more

homogeneously among the models, as seen in the log-log plot in Fig. 7.4. First of

all, there is less variation among the mean errors of the robust approximation

between di�erentmodels compared to its classic counterpart, there are no obvious

“outliers.” Inmodels 1 to 5, 7, 8 and 11, themean errors drop in good approximation

according to power laws with the same exponent. �e mean errors of models

6, 9, and 10 initially follow a power law with the same exponent (smaller than

that of the previous group of models), but eventually �atten out and seem to

approach a positive constant. �e �nal average errors a�er n =  experiments
are either very close to the corresponding values of the classic approximation or

signi�cantly smaller.

Variability of Classic and Robust Approximation

So far we compared considered only the average errors. Figure 7.5 on p. 234 shows

the corresponding variabilities. �e upper chart shows the standard deviation

σcl(n) of the classic approximation as function of the sample size n for models 1
to 12 of the wgsr model family under a relative measurement error σ = .%.
�e lower chart shows the analogous standard deviation σrob(n) of the robust
approximation.We observe little di�erence between the variabilities of the classic

and the robust approximation. For both approximations, the variabilities decrease

according to power laws with exponents around −. in all models, and have
very similar absolute values for all models except for models 4 and 5.
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7.5. Numerical Results for the WGSR Model Family

Figure 7.4.: Mean error of the robust approximation as function of the sample size. Models
1 to 12 of the wgsr family, relative measurement error σ = .%, r =   replications.
Log-log counterpart of the lower chart in Fig. 7.2 on p. 230.
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7. Performance of PMLE Covariance Approximations

Figure 7.5.: Top: standard deviation of the error of the classic approximation as function
of the sample size. Models 1 to 12 of the wgsr model family, relative measurement error

σ = .%, r =   replications. Bottom: analog results for the robust approximation.
Abscissa scale applies to both charts, legend shown in Fig. 7.4 on the previous page.
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7.5. Numerical Results for the WGSR Model Family

Figure 7.6.: Di�erence between then mean errors of the robust and the classic approxima-
tion as function of the sample size. Models 1 to 12 of the wgsr family, relativemeasurement

error σ = .%, r =   replications. Legend shown in Fig. 7.4 on p. 233.
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7. Performance of PMLE Covariance Approximations

Comparison of Both Approximations

Since both approximations exhibit very similar variabilities, a coarse comparison

of can be based solely on their average errors. Figure 7.6 on the previous page

shows the di�erence δ̄(n) ∶= δ̄rob(n) − δ̄cl(n) between the mean errors using
a linear scale on both axes. �e smaller (more negative) δ̄(n), the better is the
robust approximation compared to its classic counterpart in the sense of a smaller

mean error. Initially, the classic approximation is slightly better than its robust

counterpart in most models except for the “outliers” models 5, 7, and 10. �is

advantage quickly gets smaller as the sample size increases. Once the sample size

reaches  experiments, the robust approximation is better for nine of the twelve

models. For the other three models, the classic approximation remains better up

to a sample size of n = , yet the advantage is small in absolute terms.

7.5.2. Dependency on Data Variability
Let us now discuss how the classic and the robust approximation are a�ected

by the variability of the underlying data, as stated in (Q7.2) on p. 217. To that

end, we repeated the computations discussed in the previous section for di�erent

standard deviation σ of the observables. �e computations were performed with
the DoeSim implementation of Alg. 7.1 on p. 224 using r =   replications.
�e results are summarized in Figs. 7.7 to 7.9 on pp. 237–239, using a separate

chart for each model of the wgsr model family. To improve readbility, model

with a similar magnitude of the mean error di�erence are grouped in one �gure.

Each chart shows the di�erence δ̄(n) ∶= δ̄rob(n) − δ̄cl(n) between the mean
error of the robust and the classic approximation as function of the sample size

n, obtained from data with a relative measurement error σ of 1.6, 3.2, 6.4,
12.8, 25.6, and 51.2. Note that the charts in Fig. 7.9 use a larger scale than

those in Figs. 7.7 and 7.8. As previously, the linear model 13 is omitted for clarity,

and results are shown in steps of ten experiments.

Recall that the more δ̄(n) is lower than zero, the better is the robust
approximation compared to its classic counterpart in the sense of a smaller mean

error, and vice versa for values greater zero. For most models and magnitudes of

σ , the mean error di�erence δ̄(n) shows qualitatively similar behavior to that
seen in Fig. 7.6. As the sample size n gets larger, the mean error di�erence δ̄(n)
decreases almost monotonically.

When the measurement error σ is “small” (1.6, 3.2, and 6.4) the robust
approximation is – already for small sample sizes – better than its classic

counterpart for most models (number 3 to 5 and 7 to 12), or is only slightly worse
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Figure 7.7.: Di�erence between then mean errors of the classic and the robust approxima-
tion as function of the sample size under measurement errors of 1.6 (blue), 3.2, 6.4,

12.8, 25.6, and 51.2 (green). Models 1, 2, 3, and 6 of the wgsr family, r =  
replications.
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7. Performance of PMLE Covariance Approximations

Figure 7.8.: Di�erence between then mean errors of the classic and the robust approxima-
tion as function of the sample size under measurement errors of 1.6 (blue), 3.2, 6.4,

12.8, 25.6, and 51.2 (green). Models 8, 9, 11, and 12 of the wgsr family, r =  
replications.
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Figure 7.9.: Di�erence between then mean errors of the classic and the robust approxima-
tion as function of the sample size under measurement errors of 1.6 (blue), 3.2, 6.4,

12.8, 25.6, and 51.2 (green). Models 4, 5, 7, and 10 of the wgsr family, r =  
replications.
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7. Performance of PMLE Covariance Approximations

(number 1, 2, and 6). For larger measurement errors σ of 12.8, 25.6, and 51.2,
the classic approximation is initially better for most models (all except 5 and 10),

yet this advantage drops with increasing n. Once the sample size is su�ciently
large, δ̄(n) switches to a negative sign in favor of the robust approximation. For
some models this root can be seen in the charts. For the very large measurement

error of .%, however, δ̄(n) drops so slowly that the classic approximation
remains the better one up to n =  for all models except number 5, 7, and 10.
For the latter models, the robust approximation has a very clear advantage.

�e overall results can be summarizes as follows. �e robust approximation

is in most models initially a little worse than its classic counterpart, but is

for a few models substantially better initially, and in large samples better for

almost all models. In the examined wgsr scenarios, choosing the robust

approximation instead of the classic one avoids gross missestimations of the

parameter maximum-likelihood estimate (pmle) covariance at the cost of a

small loss of approximation quality for a large fraction models. Whether this

observation can be generalized to other scenarios shall be the task of future work.
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This chapter develops a framework that allows to assess and compare the

practical performance of sequential design criteria for model discrimination

(md). �e framework comprises statistical measures of performance, algorithms

for their numerical computation, and an actual implementation.

In section Sec. 8.2 we derive two statistical measures for the performance

of a design criterion. One of them is based on the concept of T-optimality

introduced in Chap. 4, the other on Bayesian posterior probabilities discussed in

Chap. 3. In Sec. 8.3, we brie�y review various sequential design criteria for model

discrimination and provide a uni�ed representation for them. Based thereon, we

describe a Monte Carlo algorithm in Sec. 8.4 that allows to e�ciently compute

the introduced performance measures. We also describe its implementation

provided in the so�ware package DoeSim.

�e developed framework is used extensively in the case studies presented in
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8. Performance of Design Criteria for MD: Theory and Algorithms

Chap. 9.

8.1. Problem Statement

8.1.1. Considered Scenario
Experiments can be performed under conditions or settings from the com-

pact experimental domainX ⊆ Rnx and yield observations, results,

or outcomes in the observation domain Rny . For all x ∈X, an observation
obtained from an experiment under condition x is a realization (or “variate”)
of the continuous Rny -valued random variable Yx , called observable. �e
observables Yx and Yx′ of two experiments performed under – not necessarily
di�erent – conditions x , x′ ∈X are statistically independent.

�e following model family is available. For all µ ∈ M ∶= {, . . . , nM} and
all θµ ∈ Qµ ⊆ Rnθµ , model µ with parameter θµ speci�es for all experimental
conditions x ∈X an ny-dimensional normal distribution (Def. B.8) with mean
ηµ(x , θµ) and symmetric positive de�nite (spd) covariance matrix Ω. �e
response ηµ(x , θµ) of each model µ ∈ M is twice continuously di�erentiable

in θµ for all x ∈X.
�e model family contains a unique correct model µ̄ ∈ M, which has a unique

correct parameter θ̄ ∈ Qµ̄ , so that

Yx ∼ N (η̄(x),Ω), with η̄(x) ∶= η µ̄(x , θ̄), for all x ∈X. (8.1)

�e observation covariance Ω is known, but the correct model µ̄, its
correct parameter θ̄, and hence the function η̄ are unknown. Furthermore, the
prior knowledge is minimal: the model prior is uniform, p(µ) ∶= /nM for all

µ ∈ M, and the parameter prior of each model is vague in the sense that it can
be neglected compared to any empirical information.

8.1.2. Sequential Design Procedures for MD
In the considered scenario, we aim to identify the correct model µ̄ empirically
in a sequential design procedure, that is, by designing, performing, and

analyzing one experiment a�er the other.

We use the variable n to enumerate the iterations of such a procedure. For
all n ∈ N, the variable xn ∈ X denotes the condition of the n-th experiment,
yn ∈ Rny denotes the corresponding observation, ξn stands for the exact design
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8.1. Problem Statement

resulting constituted by the conditions x , . . . , xn , and d⊺n ∶= [y⊺ . . . y⊺n]
summarizes the corresponding data. �e tuple dn is thus a realization of the
sample D⊺

n ∶= [Y⊺
x
. . . Y⊺

xn
], a Rn⋅ny -valued random variable.

A sequential design procedure can be regarded as an algorithm that takes

as input a model family and determines a sequence of designs ξ , ξ , . . . and
corresponding data d , d , . . . until it terminates a�er iteration n, providing the
design ξn and the data dn as output, see Alg. 4.1 on p. 126.
If we apply such a procedure to identify the correct model, we are in each

iteration n ∈ N faced with the following model discrimination (md) problem:

“Given the design ξn and data dn , �nd the correct model µ̄.” Due to the random
nature of the data, this problem can typically be solved only approximately. We

discussed suitable methods of statistical inference in Chaps. 2 and 3. Optimal

experimental design (oed) for md, considered in Chaps. 4 and 5, aims to reduce

the number of experiments n required to achieve a satisfactory approximation
quality.

A sequential design criterion for md is a function of the type Ψn ∶X ↦ R,

de�ned for all n ∈ N, whose maximizers xn+ ∈ argmaxx∈X Ψn(x) are supposed
to be particularly “e�cient” experimental conditions for solving md problems.

To that end, such a design criterion typically takes into account the design and

data of the available experiments and/or the inferred quantities representing

empirical knowledge.

8.1.3. Key Questions

In Chaps. 4 and 5 we studied various sequential design criteria for md that are

all motivated asymptotically.�at is, if applied in each iteration n of a sequential
design procedure, they aim to provide designs and data that are particularly

e�cient for md in the limit n →∞.
In this chapter, we assess and compare some of these design criteria for the

practically relevant case of a �nite and possibly small number n of iterations. To
that end, we apply them in the sequential design procedure described by Alg. 8.1

on the next page. �e procedure is a special case of Alg. 4.1 on p. 126 for the

considered scenario which starts from s initial experiments under prede�ned
conditions and terminates once it reaches a prede�ned maximal number nmax ∈
N of experiments.�e symbol Un is a placeholder for any collection of quantities
used to express the state of knowledge in iteration n.
We examine the following key questions. Suppose Alg. 8.1 is applied using a

sequential design criterion Ψn .
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8. Performance of Design Criteria for MD: Theory and Algorithms

Algorithm 8.1: Sequential design procedure for assessing design criteria for md.

input : dimension ny ∈ N of observables, experimental domainX ⊆ R
nx

full-rank ny × ny observation covariance matrix Ω
model index setM, parameter domainsQµ

∈ R
nθµ for all µ ∈ M

response function ηµ ∶X ×Qµ
↦ R

ny for all µ ∈ M
initial experimental conditions x , . . . , xs ∈X
maximal number of experiments nmax > s
sequential design criterion Ψn ∶X ↦ R for all n ⩾ s
correct model µ̄ ∈ M, correct parameter θ̄ ∈ Qµ̄

output : designs ξ , . . . , ξnmax , data d , . . . , dnmax

1 let η̄(x) ∶= η µ̄(x , θ̄) for all x ∈X;

2 for n =  to s do
3 get random variate yn ofN (η̄(xn),Ω); // experiment, see (8.1)
4 end
5 for n = s to nmax do
6 let ξn be the design constituted by x , . . . , xn ;
7 let d⊺n ∶= [y⊺ . . . y⊺n];
8 determine knowledge Un from ξn , dn , (ηµ)

µ∈M, and Ω; // inference

9 �nd xn+ ∈ argmaxx∈X Ψn(x; Un , (ηµ)
µ∈M ,Ω); // sequential oed

10 get random variate yn+ ofN (η̄(xn+),Ω); // experiment, see (8.1)

11 end
12 return ξ , . . . , ξnmax , d , . . . , dnmax

(Q8.1) How e�cient are the provided designs and data for md, that is, for

empirically identifying the correct model, depending on the amount of
available experiments n?

(Q8.2) How is this e�ciency a�ected by the number nM of rival models?

(Q8.3) How does this e�ciency depend on the variability of the data in terms
of the observation covariance Ω?

8.1.4. Notation and De�nitions

Weuse the following notation andde�nitions for allmodels µ ∈ M, all parameters
θµ ∈ Qµ , all experimental conditions x ∈X, and all observations y ∈ Rny .
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8.2. Efficiency of Sequential Design Procedures for MD

�e noncentrality and the sum of squared residuals (ssr) are

λµn(θµ , ξn) ∶= 
n

n

∑
i=

∥ηµ(x i , θµ) − η̄(x i)∥Ω− , and (.)

sµn(θµ , dn , ξn) ∶= 
n

n

∑
i=

∥ηµ(x i , θµ) − y i∥Ω− , (8.3)

respectively, see Defs. 3.7 and 3.9 and Tab. 3.1. �e inverse Ω− exists since Ω is
spd by assumption.

We write Jµ(x , θµ) for the ny × nθ µ Jacobian of the response ηµ(x , θµ) with
respect to θµ , and Hµ

j
(x , θµ) for the nθ µ × nθ µ Hessian of its j-th component

ηµ
j
(x , θµ) with respect to θµ . For all j ∈ {, . . . , nθ µ}, we write r̃µ

j
(y, x , θµ) for

the j-th component of

r̃µ(y, x , θµ) ∶= Ω−⁄(ηµ(x , θµ) − y), (8.4)

and H̃µ
j
(x , θµ) for the nθ µ × nθ µ Hessian of this component with respect to θµ .

Since Ω is assumed to be spd, the matrix Ω−⁄ in (8.4) exists. We further de�ne

Mµ
n(θµ , ξn) ∶= 

n

n

∑
i=
Jµ⊺(x i , θµ)Ω−Jµ(x i , θµ) and (.)

N µn (θµ , dn , ξn) ∶= 
n

n

∑
i=

ny

∑
j=
r̃µ
j
(y i , x i , θµ)H̃µj (x i , θ

µ), (8.6)

both symmetric nθ µ × nθ µ matrices.

In this scenario, a parameter maximum-likelihood estimate (pmle) θ̂µn ∶=
θ̂µn(dn , ξn) ∈ Qµ based on the data dn obtained under design ξn minimizes the
ssr sµn(θµ , dn , ξn) with respect to θµ ∈ Qµ , see Def. 3.9, Cor. 3.10, and Tab. 3.1.

For clarity, we use the abbreviations ŝµn ∶= sµn(θ̂µn , dn , ξn), η̂µn(x) ∶= ηµ(x , θ̂µn),
Ĵµn(x) ∶= Jµ(x , θ̂µn), M̂µ

n ∶= Mµ
n(θ̂µn , ξn), and N̂ µn ∶= N µn (θ̂µn , dn , ξn).

8.2. E�ciency of Sequential Design Procedures for
MD

To examine the key questions, we require a measure that tells us how e�cient

a sequential design procedure is for the aim of identifying the correct model
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8. Performance of Design Criteria for MD: Theory and Algorithms

empirically.

8.2.1. T-E�ciency
Let us summarize some results from Secs. 3.2 and 4.2. In the considered scenario,

the noncentrality λµn(θµ , ξn)measures the average systematicmismatch between
the data-generating process under experimental conditions x , . . . , xn (which
constitute the design ξn) and model µ with parameter θµ . �e corresponding
total mismatch in experiments  to n is hence nλµn(θµ , ξn). It is non-
negative, and is zero if and only if model µ is correct under design ξn and
θµ is the corresponding correct parameter. Incorrect models have a non-zero
noncentrality, which can be detected with a certain probability by means of a

statistical analysis of the data. �e larger the total mismatch, the easier is the

detection.

�e considered model discrimination (md) problem is solved if it is known

which of the models in M is correct, or equivalently, if all incorrect models

– including that one closest to the correct model – from M are known. �e

e�ciency of experiments  to n for solving the md problem can hence be

measured by the corresponding lowest possible total mismatch among the

incorrect models, which can be written as

Tn(ξn) ∶= nmin
µ∈M
µ≠µ̄

min
θ µ∈Qµ

λµn(θµ , ξn). (8.7)

Besides the factor n, this expression is the T-criterion Def. 4.7 of design ξn . We
thus refer to Tn(ξn) as T-efficiency.

Application in Data-Adaptive Sequential Procedures

In a data-adaptive sequential procedure like Alg. 8.1 on p. 244, the condition

of the n-th experiment is chosen based on the observations of all preceding
experiments  to n − . Consequently, the design describing experiments  to
n may depend on the data dn−, and is thus written ξn(dn−). �e T-e�ciency
of these experiments for md is thus Tn(ξn(dn−)). �is particular value has
a limited meaning since it depends on the data, which is subject to random

�uctuations. More expressive measures can and should be derived from the

distribution of the corresponding random variable

Tn ∶= Tn(ξn(Dn−)). (8.8)
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8.2. Efficiency of Sequential Design Procedures for MD

Its expectation E [Tn] is a suggestive “the-large-the-better” measure of the
average e�ciency of experiments  to n for solving the md problem. Its standard

deviation C [Tn]⁄ measures the corresponding variability on a “the-smaller-the-
better” scale.

8.2.2. Posterior Model Probability

�emodel posterior p(µ ∣ ξn , dn) is the Bayesian belief that model µ ∈ M is the

correct one, a�er taking into account the data dn obtained under the design ξn ,
see Sec. 2.5. Under certain regularity conditions, it can in the considered scenario

be approximated by

π(µ ∣ ξn , dn) ∶= cn exp(− n ŝ
µ
n)n−nθµ / (8.9)

for all µ ∈ M, see (3.85). In this formula, the uniform model prior /nM is

absorbed in the normalization constant cn ∈ R+ which ensures that the posterior

probabilities sum up to . We de�ne π⊺n ∶= [π( ∣ ξn , dn) . . . π(nM ∣ ξn , dn)].

Application in Data-Adaptive Sequential Procedures

From a Bayesian point of view a sequential procedure that aims to solve an md

problem should be continued “until the posterior probabilities indicate that one

model is clearly superior to the others.” (Hill and Hunter [118], Box andHill [42])

�at model is then considered as the best guess for the solution, the sought-a�er

correct model.

A simple practical formalization of this rule is to stop the procedure a�er

iteration n, if there exists a model µ̂n ∈ M whose approximate posterior

π(µ̂n ∣ ξn , dn) reaches or exceeds a prede�ned threshold α ∈ (⁄ , ). Using this
rule, the problem is then actually solved in iteration n, if µ̂n = µ̄, or equivalently,
if

π(µ̄ ∣ ξn , dn) ⩾ α. (8.10)

�e probability that the md problem is solved in this sense in iteration n of a
data-adaptive sequential procedure is

P [Pn ⩾ α], where Pn ∶= π(µ̄ ∣ ξn(Dn−),Dn) (8.11)
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is a random variable that takes into account the random �uctuations of data and

designs. �e probability P [Pn ⩾ α]measures the e�ciency of experiments  to
n for solving the md problem in a Bayesian sense.

8.3. Considered Sequential Design Criteria

We discussed various design criteria for model discrimination (md) throughout

Chaps. 4 and 5. In the following, we list those examined in this chapter under

the assumptions of the considered scenario.

8.3.1. Covariances of Parameters and Responses

Let us summarize some key results of Chaps. 2 and 3. Under regularity conditions,

empirical knowledge (or uncertainty) about the Kullback-Leibler information

criterion (klic)-best parameter of a model µ ∈ M can approximately be

represented by a normal distribution around the parametermaximum-likelihood

estimate (pmle) θ̂µn and a model-dependent covariance matrix that can be
evaluated based on the current design ξn and possibly on the resulting data
dn . Under the classic assumption that the model is correct or a�ne-linear, the
covariance is


n
M̂µ
n

−
(8.12)

in both maximum-likelihood inference and Bayesian inference, see (3.41)

and (3.79). Without these assumptions, the covariance is


n
R̂µn ∶= 

n
(M̂µ

n + N̂ µn )
−
M̂µ
n(M̂µ

n + N̂ µn )
−

(8.13)

in maximum-likelihood inference, and is


n
B̂µn

− ∶= 
n
(M̂µ

n + N̂ µn )
−
, (8.14)

in Bayesian inference. In the last expression, the parameter prior is omitted

according to our assumption of minimal prior knowledge. We introduced

these misspecification-robust parameter covariance formulas in (3.64)

and (3.77).

In a locally linear approximation, the uncertainty associated with the predic-

tion of model µ for the outcome of an experiment under x ∈ X can then be
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8.3. Considered Sequential Design Criteria

described by a normal distribution around η̂µ(x). �e covariance is

T̂ µn (x) ∶= Ω + 
n
Ĵµn(x)M̂µ

n

−
Ĵµn

⊺(x) (.)

in both maximum-likelihood inference and Bayesian inference under classic

assumptions. �e corresponding misspeci�cation-robust covariances are

V̂ µn (x) ∶= Ω + 
n
Ĵµn(x)R̂µn Ĵµn

⊺(x) and (.)

Ŵ µ
n (x) ∶= Ω + 

n
Ĵµn(x)B̂µn

−
Ĵµn

⊺(x) (8.17)

in maximum-likelihood inference and Bayesian inference, respectively.

8.3.2. Design Criteria

We are now prepared to introduce the design criteria considered in this chapter.

�e following de�nitions apply for all n ∈ N and all x ∈X.

Suppose that sµn(θ̂µn , dn , ξn) has a unique minimum µ̂n onM and a unique

minimum ν̂n on M ∖ {µ̂}. �e multi-model Hunter-Reiner (hr)-

criterion from Def. 4.16 is

Hn(x) ∶= ∥η̂ µ̂nn (x) − η̂ν̂n
n (x)∥



Ω−
, (8.18)

and the multi-model Buzzi-Ferraris (bf)-criterion from Def. 4.17 is

Bn(x) ∶= ∥η̂ µ̂nn (x) − η̂ν̂n
n (x)∥



T̂−n (x)
, (8.19)

where T̂n(x) ∶= T̂ µ̂nn (x) + T̂ ν̂n
n (x). In Def. 4.18 we proposed the novel

misspecification-robust variant of the bf-criterion

B′n(x) ∶= ∥η̂ µ̂nn (x) − η̂ν̂n
n (x)∥



V̂−n (x)
, (8.20)

with V̂n(x) ∶= V̂ µ̂nn (x) + V̂ ν̂n
n (x). �e classic upper bound of the Box-Hill-

Hunter (bhh)-criterion from�m. 5.2 is

Un(x) ∶= 
 π⊺nUn(x)πn , (8.21a)
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where Un(x) is a nM × nM matrix that has for each µ, ν ∈ M the component

∥η̂µn(x) − η̂ν
n(x)∥


T̂ν
n
−
(x)

+ tr(T̂ µn (x)T̂ν
n

−(x)) − ny (8.21b)

in row µ and column ν. �e novel Kullback-Leibler distance (kld)-based lower-
bound criterion introduced in�m. 5.9 is

Γn(x) ∶= ρ( 
Γn(x), πn), (8.22a)

where Γn(x) is a nM × nM matrix which has for all µ, ν ∈ M the component

∥η̂µn(x) − η̂ν
n(x)∥


Ŵν

n (x)
− + tr(Ŵ µ

n (x)Ŵ ν
n (x)−)

− ln det(Ŵ µ
n (x)Ŵ ν

n (x)−) − ny (8.22b)

in row µ and column ν. Finally, the new entropy-based lower-bound criterion
proposed in�m. 5.10 is

Ln(x) ∶= ρ( 
Ln(x), πn) −


∑
µ∈M

πµn ln det Ŵ
µ
n (x), (8.23a)

where Ln(x) is a nM × nM matrix which has for all µ, ν ∈ M the component

∥η̂µn(x) − η̂ν
n(x)∥


Ŵ µν

n (x)
− + ln det Ŵ µν

n (x) − ny (8.23b)

in row µ and column ν, with Ŵ µν
n (x) ∶= Ŵ µ

n (x) + Ŵ ν
n (x).

Uni�ed Formulation

Tracing back the de�nitions reveals that these design criteria may depend on

the data dn and the design ξn through the following quantities: (i) the model
posterior approximations π(⋅) and the model indices µ̂ and ν̂, which are all based
on ŝµn , (ii) the pmles θ̂µn , and (iii) the parameter covariance approximations

n
M̂µ
n

−
, 
n
R̂µn , or 

n
B̂µn

−
. �ey can hence all be written in the uni�ed form

Ψn(x; (ŝµn , θ̂µn , X µn , )µ∈M), (8.24)

where X µn is a symmetric nθ µ × nθ µ matrix.
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8.3.3. Reference Design Strategy
As standard of comparison for the sequential design criteria, we consider an

design strategy that chooses experimental conditions independently frommodels
and from data.

�e strategy is realized using low-discrepancy sequences, discussed in Sec. 6.3.

For all n ∈ N, it chooses experimental condition xn to be the + n-th member
of the RR2-modi�ed Halton sequence of Kocis and Whiten [146, Sec. 2.3]. We

refer to it as low-discrepancy (ld) strategy.

It provides experimental conditions that are spread in a uniformmanner across

the experimental domain. Comparing it to one of the optimal experimental

design (oed) strategies from Sec. 8.3 reveals how much md e�ciency the

considered oed strategy gains by taking into account the models and the data

that are available.

8.4. Computational Methods
To examine (Q8.1)–(Q8.3) on p. 244 under controlled conditions, we de�ne and
thus know the correct model µ̄ and its correct parameter θ̄. According to (8.1),
we then also know for all n ∈ N the distribution of the observable Yxn , of the
sample Dn , and hence the distribution of the random variables Tn and Pn of
interest. In general, however, the distributions of the latter cannot be expressed

in a closed form.

8.4.1. A Monte-Carlo Method
We use the following Monte-Carlo method to approximate the quantities

of interest. Let tn , . . . , tnr be independently and identically distributed (iid)
replications of Tn . �eir sample mean and their sample standard deviation

tn ∶= 
r

r

∑
l=
tnl and σ tn ∶= ( 

r−

r

∑
l=

(tnl − tn))
⁄

(8.25)

are unbiased and consistent estimates of the expectationE [Tn] and the standard
deviation C [Tn]⁄ , respectively. �ese well known relations follow essentially
from the weak law of large numbers (Def. B.5 and�m. B.6) and the continuous

mapping theorem (�m. B.3). Supposed r is su�ciently large, the sample mean
tn therefore measures the average model discrimination (md) e�ciency of
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experiments  to n performed in a sequential design procedure, and the sample
standard deviation σ tn quanti�es the corresponding variability.
Let π̄n , . . . , π̄nr be iid replications of Pn . �e relative frequency

fn ∶= 
r
∣{π̄nl ∶ l ∈ {, . . . , r}, π̄nl ⩾ α}∣ (8.26)

of the replications exceeding the threshold α ∈ (⁄ , ) is a consistent estimate
of the probability P [Pn ⩾ α] that the md problem is considered as solved in

iteration n in the sense of (8.10). �is relation is an immediate corollary of
the property that de�nes “iid replications” in the �rst place. Accordingly, fn
measures the e�ciency of experiments  to n of a sequential design procedure
for solving the md problems, supposed that r is su�ciently large.
Algorithm 8.2 on the next page generates the required replications for n

between s ∈ N and nmax ∈ N. It uses the additional subscript l ∈ {, . . . , r} to
indicate that a quantity refers to the l-th replication. �e placeholder X µ

nl
stands

for one of the matrices 
n
M̂µ

nl

−
, 
n
R̂µ
nl
, or 

n
B̂µ
nl

−
. �e algorithm can be applied

to any design criterion that can be written in the form (8.24). Its output can be

used directly to examine (Q8.1) on p. 244 using the discussed measures. Running

it with di�erent observation covariances Ω and with model families of di�erent
size nM allows to study (Q8.3) and (Q8.2), respectively.

�e condition s ⩾ maxµ∈M{nθ µ}/ny for the number of initial experiments s
ensures that the sum of squared residuals (ssr) (8.3) and the noncentrality (8.2)

have at least as many summands as the number of parameters nθ µ in all models

µ ∈ M, a necessary condition for the uniqueness of their minimizers.

8.4.2. Implementation in DoeSim

An implementation of Alg. 8.2 is available in our so�ware package DoeSim.

For generating random variates, it usesMATLAB’s mrg32k3a pseudo-random
number generator, which combines the 32-bit combined multiple recursive

generator of L’Ecuyer [167] with the Ziggurat algorithm of Marsaglia and Tsang

[180].

To compute a parameter maximum-likelihood estimate (pmle) θ̂µn one needs
to solve a least-squares (lsq) problem whose objective function is the ssr (8.3).

Since the considered models may be both nonlinear and incorrect, the lsq

problem may also be nonlinear and may exhibit large residuals even in the

solution. �e problem of �nding a parameter-minimizer of the noncentrality

in the T-e�ciency (8.7) has similar properties. Suitable numerical methods
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Algorithm 8.2:Monte Carlo method for assessing md e�ciency of sequential design

criteria.

input : dimension ny ∈ N of observables, experimental domainX ⊆ R
nx

full-rank ny × ny observation covariance matrix Ω
model index setM, parameter domainsQµ

∈ R
nθµ for all µ ∈ M

response function ηµ ∶X ×Qµ
↦ R

ny for all µ ∈ M
initial experimental conditions x , . . . , xs ∈X, with s ⩾ maxµ∈M{nθ µ}/ny
maximal number of experiments nmax > s
sequential design criterion Ψn ∶X ↦ R for all n ⩾ s
correct model µ̄ ∈ M, correct parameter θ̄ ∈ Qµ̄

number r ∈ N of replications

output : md e�ciencies (tnl , π̄nl ∶ n ∈ {s, . . . , nmax}, l ∈ {, . . . , r})

1 let η̄(x) ∶= η µ̄(x , θ̄) for all x ∈X;

2 foreach l ∈ {, . . . , r} do
3 for n =  to s do
4 experiment: get random variate ynl ofN (η̄(xn),Ω); // see (8.1)
5 end
6 for n = s to nmax do
7 let ξnl be the design constituted by x , . . . , xn ;
8 let d⊺nl ∶= [y⊺l . . . y⊺nl];
9 foreach µ ∈ M do
10 compute pmle θ̂ µ

nl
and ŝµ

nl
from ξnl , dnl , ηµ , and Ω; // see (8.3)

11 compute X µ
nl
from ξnl , dnl , ηµ , and Ω; // see (8.12)--(8.14)

12 end
13 compute tnl ∶= Tn(ξnl) from (ηµ)

µ∈M, Ω, µ̄, and θ̄; // see (8.7)

14 compute (π(µ ∣ ξnl , dnl))µ∈M from (ŝµ
nl
)
µ∈M
; // see (8.9)

15 let π̄nl ∶= π(µ̄ ∣ ξnl , dnl);
16 compute xn+,l ∈ argmax

x∈X

Ψn(x; (ŝ
µ

nl
, θ̂ µ
nl
, X µ
nl
)
µ∈M

); // see (8.24)

17 experiment: get random variate yn+,l ofN (η̄(xn+,l),Ω); // see (8.1)

18 end
19 end
20 return (tnl , π̄nl ∶ n ∈ {s, . . . , nmax}, l ∈ {, . . . , r})
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for such problems are discussed in Sec. 6.1. Our implementation applies the

Broyden-Fletcher-Goldfarb-Shanno (bfgs) [53, 100, 107, 228] quasi-Newton

method provided by the MATLAB function fminunc.
�e bfgs method requires �rst derivatives of the model response with respect

to the parameter. For evaluating the matrix X µ
nl
, �rst and possibly also second

derivatives of the response with respect to the parameter are required. �e

implementation uses the complex step di�erentiation technique introduced

by Lyness and Moler [178], reviewed by Martins, Sturdza, and Alonso [181]

for computing �rst derivatives in machine precision. For computing second

derivatives, the implementation combines this technique with �nite central

di�erences.

�e considered design criteria listed in Sec. 8.3 are generally not convex

in x ∈ X. �e optimal experimental design (oed) problem is thus a non-
convex optimization problem, which is hard to solve numerically, as discussed

in Sec. 6.2. In our implementation, the oed problem is solved by a grid search

on an equidistant rectangular grid, as discussed in Sec. 6.2.4. �is approach is

computationally tractable for low-dimension experimental domains, like that of

the water-gas shi� reaction (wgsr) model family with nx = .
Algorithm 8.2 may be computationally demanding. To give some typical

numbers, applying the algorithm for nmax − s =  additional experiments and
r =   Monte Carlo (mc) runs involves the solution of approximately  

lsq problems of increasing size and   oed problems, which may take a

considerable amount of computing time.

Fortunately, the algorithm can parallelized to a large extent. In particular, the

individuals runs of foreach-loops can be run concurrently, which includes the
potentially expensive solutions of the lsq problems and the oed problems. �e

implementation is parallelized with respect to the outermost foreach-loop, such
that essentially all expensive computations arising from di�erent replications are

performed concurrently.
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This chapter examines the practical performance of established and newly

proposed sequential design criteria for model discrimination (md) from

Chaps. 4 and 5 in a numerical case study.�e study uses the numerical framework

developed in the previous Chap. 8. �e considered md problems are based on

the water-gas shi� reaction (wgsr) model family introduced in Sec. 7.4.

Section 9.1 describes the general setting of the study. Section 9.2 we discuss in

detail the observed behavior of the design criteria in discrimination problems

among two models. Sections 9.3 and 9.4 contain the results from md problems

among three or more models, respectively. �eir behavior under varying the

magnitude of the data variability is described in Sec. 9.5.
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9.1. Considered Scenario
Various model discrimination (md) problems can be derived from the water-gas

shi� reaction (wgsr) family described in Sec. 7.4. For each subsetN ⊆ M =
{, . . . , } of at least ∣N ∣ ⩾  models one can formulate a md problem. We select

some of them based on the following arguments.

For notational convenience, we identify and distinguish these problems by

explicitly stating the model index setN . For example, we write {, , } to refer
to the problem of discriminating between the wgsr models , , and .

9.1.1. Correct Model
We de�ne that a rescaled variant of model  is correct,

η̄(x) ∶= η(x , θ̄)/c for all x ∈X, (.a)

with the correct parameter

θ̄ ∶= [. . . . .]⊺ . (.b)

�e factor

c ∶=  ≈ ∫X η(x , θ̄)dx
∫X dx

(9.1c)

normalizes the observation mean η̄ approximately to an average value of  on
the experimental domain. �e responses (7.24) of the wgsr model family are

normalized accordingly. �is normalization allows to interpret the standard

deviation σ of the observation directly as magnitude of the relativemeasurement
error. Schwaab et al. [225] uses the same correct model and correct parameter

without the rescaling.

9.1.2. Well-Posed Discrimination Problems in the WGSR
Family

A md problem is well-posed only if (a) themodel family contains a correctmodel,

and (b) if the correct model is unique, see Sec. 4.1.1. Since we de�ne model  to

be correct, it must be one among of the rival models, leaving nM −  =  other
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models to choose from. Of the  −  =  md problems that are possible in

total, not all are reasonable due to the following constraints.

Model µ ∈ M is a special case of model ν ∈ M, and model ν is a
generalization of model µ, i� for each parameter θµ ∈ Qµ there exists

a parameter θν ∈ Qν such that ηµ(x , θµ) = ην(x , θν) for all x ∈ X. It follows
immediately from Cor. 3.6 that a generalization of a correct model is also correct,

and that a special case of an incorrect model is incorrect.

When faced with md problem in practice, it is unknown for each model

whether it is incorrect or correct. If it is incorrect, then all special cases of it (if

they exist) are also incorrect – and thus not of interest. If it is correct, however,

then its special cases might also be correct. If such a correct special case exists,

however, condition (b) is violated. To ensure that a md problem is well-posed

and to reduce its complexity, one would therefore consider only the most general

ones among the rival models.

We respect these constraints in our choice of wgsr-based md problems: �e

most general models in the wgsr family are models , , , , , , and , as

shown in Fig. 7.1 on p. 228. Each of the remaining models , , , ,  and  is a

special case of at least one other model.

9.1.3. Initial Experiments

Table 9.1.: Initial experimental conditions for the wgsr model family, rounded to �ve

digits.

n xn

1 0.19102 0.72634 0.0728 0.32697

2 0.66602 0.40967 0.8328 0.86983

3 0.42852 0.30412 0.4528 0.19125

4 0.90352 0.93745 0.2628 0.73411

5 0.13164 0.62078 0.6428 0.46268

6 0.60664 0.19856 0.2248 0.13309

7 0.36914 0.83189 0.9848 0.67595

8 0.84414 0.51523 0.6048 0.40452

9 0.25039 0.08128 0.4148 0.94738

s = 10 0.72539 0.71461 0.7948 0.26880

�e �rst s =  initial experiments are performed under the pairwise distinct
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conditions listed in columns 2 to 4 of Tab. 9.1. �ey are identical with the  �rst

experimental conditions provided by low-discrepancy (ld) strategy.

9.1.4. Numerical Settings

All computations are performed with our DoeSim implementation of Alg. 8.2.

�e optimal experimental design (oed) grid search uses an rectangular equidis-

tant grid (6.18) with a distance of d = ., corresponding to  =   grid
points in total. For computing the relative frequency (8.26) we used a threshold

of α = . for the posterior probability. All results are based on r =  
replications.

9.2. Two-Model Problems

Webeginwith two-model discrimination problems and amoderatemeasurement

error of σ = .%.

9.2.1. Overview

For the discussion, we de�ne nΨ. as the minimal n for which fn+s ⩾ . for
design criterionΨ .�at is, nΨ. is the smallest number of additional experiments
(to the s =  initial ones) for which the problem is solved in the sense of (8.10)
in % of the computed replications. We then say that the design criterion solves

the problem reliably with nΨ. experiments. None of our central conclusions
depends crucially on the arbitrarily chosen threshold value of .. �ey would

remain unchanged, if a di�erent su�ciently “high” value was used instead.

Table 9.2 on the next page lists the considered water-gas shi� reaction (wgsr)-

based two-model discrimination problems, approximately in order of decreasing

di�culty. �e last eight of the listed problems are particularly simple: already

one additional experiment, or even the set of initial experiments alone, su�ces

to solve the problem reliably with any of the considered design criteria Hn , Bn ,
B′n , Un , Ln , or Γn .
Figures 9.1 to 9.4 on p. 260 and on pp. 263–265 show the e�ciency of the

considered design criteria for solving the reasonably di�cult problems {, },
{, }, {, }, and {, }, respectively. �e upper and the lower charts plot the
percentage fn of solved problems from (8.26) and the average T-e�ciency tn
from (8.26), respectively, as functions of the number of available experiments n.
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Table 9.2.: Two-model discrimination problems with σ = ., approximately in order of

decreasing di�culty.

nΨ0.95 , for Ψ = . . .

md problem ld Hn Bn Un B′n Ln Γn shown in

{1, 2} – 6 4 6 4 4 6 Fig. 9.1

{1, 8} – 4 3 4 4 3 4 Fig. 9.2

{1, 3} – 4 4 3 4 3 3 Fig. 9.3

{1, 11} – 3 3 2 2 2 3 Fig. 9.4

{1, 7} 6 1 1 1 1 1 1

{1, 9} 3 1 1 1 1 1 1

{1, 12} 7 1 1 1 1 1 1

{1, 6} 0 0 0 0 0 0 0

{1, 4} 0 0 0 0 0 0 0

{1, 5} 0 0 0 0 0 0 0

{1, 10} 0 0 0 0 0 0 0

In both charts, the abscissa starts at a�er the n =  initial experiments have
been performed. Since simple guessing solves a two-model model discrimination

(md) problem in % of the cases, the charts for fn are limited to the interval
[⁄ , ]. �e ordinate axes for tn have a di�erent scale in each �gure to increase
readability. A dashed horizontal line in the lower chart indicates a solution

percentage of %. Two dashed vertical lines in both charts indicate the smallest

and the largest nΨ. among all considered design criteria.

9.2.2. Model 1 vs. Model 2

We�rst consider themost di�cult two-model problem {, }.�e computational
results are shown in Fig. 9.1 on the next page.

Observed Performance of Design Criteria

Qualitatively, all considered design criteria Hn , Bn , B′n , Un , Ln , and Γn behave
similarly: the fraction fn of solved problems increases monotonically towards 
with the number of available experiments n. �is is an essential behavior that
one expects from any reasonable md strategy. Also the average T-e�ciency tn
increases monotonically with n.
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9. Performance of Design Criteria for MD: Numerical Case Study

Figure 9.1.: E�ciency for discriminating between models 1 and 2, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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A�er an initial phase ending between n =  and n = , the T-e�ciency tn
growths almost linearly for all design criteria, yet with slightly di�erent slopes.

Recall from (8.7) that tn is the product of n and a design-dependent factor. �e
observed linear increases in n indicate that the underlying designs do not change
signi�cantly a�er the initial phase. Subsequent experiments can thus be seen as

samples from those “�xed” designs. �e di�erent slopes tell us, however, that

these �xed designs di�er between the design criteria.

�e results fromHn andUn are similar: their fn value di�er less than ., and
their T-e�ciencies di�er by not more than % of their common mean. Design

criterion Γn performs slightly better. All three of them solve the problem reliably
a�er nΨ. =  additional experiments.
�e results from Ln , Bn , and B′n are almost identical, and all are signi�cantly

better than Hn and Un : they require only nΨ. =  additional experiments to
solve the problem reliably, and show an accordingly larger T-e�ciency.

For the reference strategy low-discrepancy (ld), fn is less than % for n
up to , so that it is not visible the range of the upper chart. Its T-e�ciency

increases roughly linearly with the number of experiments, yet with a small slope.

For any of the design criteria, the T-e�ciency tn at nΨ. is approximately . A
rough linear extrapolation with an estimated slope of . tells us that ld strategy

would require nld. =  experiments to reach tn =  and solve the problem
reliably.

Interpretation

In the absence of parameter uncertainty, both the Buzzi-Ferraris (bf)-criterion

Bn and its misspeci�cation-robust counterpart B′n reduce to the Hunter-Reiner
(hr)-criterion Hn , see Prop. 4.13 and Sec. 4.4.3. �e observation that Bn and B′n
perform signi�cantly better than Hn thus tells us that parameter uncertainty is
actually relevant in the considered problem, and that taking it into account for

the design of experiments can actually pay o�.

�e misspeci�cation-robust parameter covariance formula (8.13) used by B′n
remains valid even if a model is nonlinear and incorrect, in contrast to the classic
formula (8.12) used by Bn . Since Bn and B′n perform almost equally, these factors
do not seem to play an important role in the considered problem.

�e classic upper-bound approximation Un of the Box-Hill-Hunter (bhh)-
criterion uses the same matrices (8.12) and (8.15) as Bn for quantifying parameter
uncertainty and its e�ect on the uncertainty of predictions. Furthermore, Un
uses the same model posteriors as Ln for quantifying parameter uncertainty.
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Nevertheless, Un performs considerably worse than these two alternatives. �at
is, Un does seem to be able to take advantage of the available uncertainty
quanti�cations. We guess that the reason for its bad performance is the fact

that it is actually a lower bound for a design criterion which ismaximized.

9.2.3. Model 1 vs. Model 8, Model 3, and Model 11

Let us now examine the remaining reasonably di�cult two-model problems

{, }, {, }, and {, }, shown in Figs. 9.2 to 9.4 on pp. 263–265, respectively.
Compared to problem {, }, their di�culty decreases in the given order: all

design criteria require fewer experiments to solve the problem reliably, and the

scale of the T-e�ciencies is increased accordingly. With a few exceptions, the

relative performance of the design criteria remains similar to the one observed

previously. In particular, design criteria Ln , Bn , and B′n perform almost equally
and better than all other design criteria. Design criterion Hn performs worst,
apart from the ld strategy, and the results from Γn lie somewhere between these
extremes.

As opposed to problem {, }, however, design criterion Un is slightly more
e�cient than Hn .
Furthermore, the average T-e�ciency of Γn and Ln grows noticeably sub-

linear beyond nΨ., almost coming to a stop in {, }. �is behavior can easily
be explained: For n ⩾ s + nΨ., the posterior probability of the correct model is
close to  inmost cases, see (8.26). In that case, both Γn and Ln are almost constant,
see �m. 5.12, and do not longer provide e�cient experimental conditions for

md. In practice, however, this behavior will never be encountered, since a large

posterior probability of the correct model means that the md problem is solved,

so that designing further experiments is not necessary.

Based on a linear extrapolation of the T-e�ciency, we estimate that the ld

strategy would solve problems {, }, {, }, and {, } reliably with ,  and
 experiments, respectively. By using any of the design criteria, the problem

can be solved reliably with % of the experimental e�ort or less.

9.3. �ree-Model Problems

More diverse results for the di�erent design criteria might be seen in more

di�cult model discrimination (md) problems.
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Figure 9.2.: E�ciency for discriminating between models 1 and 8, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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Figure 9.3.: E�ciency for discriminating between models 1 and 3, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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9.3. Three-Model Problems

Figure 9.4.: E�ciency for discriminating between models 1 and 11, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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9. Performance of Design Criteria for MD: Numerical Case Study

9.3.1. Overview

Table 9.3.: �ree-model discrimination problems with σ = ., approximately in order

of decreasing di�culty.

nΨ0.95
md problem ld Hn Bn Un B′n Ln Γn shown in

{1, 2, 3} – 7 6 – 6 6 6 Fig. 9.5

{1, 2, 11} – 6 5 10 6 5 6 Fig. 9.6

{1, 2, 5} – 6 4 – 4 4 6 Fig. 9.7

{1, 2, 6} – 6 4 – 4 4 6

{1, 2, 10} – 6 4 – 4 4 6

{1, 3, 11} – 4 4 4 4 3 4 Fig. 9.8

{1, 3, 5} – 4 4 14 4 3 3 Fig. 9.9

{1, 3, 6} – 4 4 – 4 3 3

{1, 3, 10} – 4 4 – 4 3 3

{1, 5, 11} – 3 3 13 2 2 3 Fig. 9.10

{1, 6, 11} – 3 3 – 2 2 3

{1, 10, 11} – 3 3 – 2 2 3

{1, 5, 6} 0 0 0 0 0 0 0

{1, 5, 10} 0 0 0 0 0 0 0

{1, 6, 10} 0 0 0 0 0 0 0

Table 9.3 lists the water-gas shi� reaction (wgsr)-based three-model discrim-

ination problems that meet the requirements from Sec. 9.1, roughly in order of

decreasing di�culty. �e last three of them are so simple that they are already

solved reliably based on the  initial experiments.

Figures 9.5 to 9.10 on pp. 267–272 give a representative overview of the md

performances encountered in three-model problems. �e results of problems

involving models  or  are not shown, since they are very similar to those from

the corresponding problems with model . �e �gures have the same layout as

the previous ones, described in Sec. 9.2.

�e considered design criteria behave qualitatively similar as in two-model

problems, with two notable exceptions discussed later. �eir md e�ciency has

the same ranking in all problems: design criteria Ln and Bn behave almost
indistinguishable and perform best, followed by Γn and by Hn ; all of them are
substantially better than the low-discrepancy (ld) strategy.
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9.3. Three-Model Problems

Figure 9.5.: E�ciency for discriminating between models 1, 2, and 3, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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9. Performance of Design Criteria for MD: Numerical Case Study

Figure 9.6.: E�ciency for discriminating between models 1, 2, and 11, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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9.3. Three-Model Problems

Figure 9.7.: E�ciency for discriminating between models 1, 2, and 5, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.

Γn

Ln

B′n

Un

Bn

Hn

LD

A
ve
ra
ge

T
-e
�
ci
en
cy

t n
F
ra
ct
io
n
f n
o
f
so
lv
ed

p
ro
b
le
m
s

Number of available experiments n

     













.

.

.

.

.



269



9. Performance of Design Criteria for MD: Numerical Case Study

Figure 9.8.: E�ciency for discriminating between models 1, 3, and 11, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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9.3. Three-Model Problems

Figure 9.9.: E�ciency for discriminating between models 1, 3, and 5, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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9. Performance of Design Criteria for MD: Numerical Case Study

Figure 9.10.: E�ciency for discriminating betweenmodels 1, 5, and 11,measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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9.3. Three-Model Problems

Di�erences can be observed in the behavior of the classic upper-bound

approximation Ln of the Box-Hill-Hunter (bhh)-criterion and the entropy-based
lower-bound approximation Ln .

9.3.2. Ine�ciency of Un

While it performed comparable toHn in the two-model case, design criterionUn
is in all three-model problems signi�cantly less e�cient in terms of both fn and tn .
It fails to solve eight problems reliably in the considered range of  experiments.

In problem {, , }, it is not even notably better than the model-independent
ld strategy.

It is instructive to compare the behavior of Un in problems {, } and {, }
with that in the combined problem {, , }. In the former, its md e�ciency is

very similar to that of Hn , while it is signi�cantly worse than in the latter. In the
other three-model problems, the relations are similar. Obviously, it is the number

of rival models, not the nature of the rival models themselves, which causes its

bad performance. As mentioned previously, we conjecture that its nature as lower
bound is the cause.

9.3.3. Improved E�ciency of Ln

In all considered two-model problems, the results from Ln are almost indistin-
guishable from those of Bn and B′n . �is is also the case for most three-model
problems, with the notable exceptions in problems {, , } and {, , }. �ere,
Ln is more e�cient than Bn and B′n , and thus the most e�cient of the considered
design criteria. While the advantage is not tremendous – a gain of  in terms

of T-e�ciency – it arises already a�er one or two additional experiment are

performed, and persists until the problem is solved reliably at n = s + nL..
Problem {, , } can be regarded as the result of extending problem {, }

by rival model . In the latter, all three design criteria perform comparably well.

In {, , }, the T-e�ciency of Bn and B′n is approximately  units lower than
in {, }, while it drops only by  units for Ln . Analogous observation is made
when comparing {, }. and {, , }.
It seems that Ln is equally or less a�ected by the increased problem complexity

due to an additional model than the other two design criteria.

273



9. Performance of Design Criteria for MD: Numerical Case Study

9.4. Multi-Model Problems

We further examine how the model discrimination (md) e�ciency of the design

criteria changes with the number of rival models. As examples, we consider the

md problems {, , , } and {, , , , , , }, the presumably most di�cult
well-posed four-model problem and the largest well-posed problem in the

water-gas shi� reaction (wgsr) family, respectively In addition, we examine the

problem {, . . . , } of discriminating between allmodels of the wgsr family.

Since it contains several nested models, see Fig. 7.1 on p. 228, this md problem is

notwell-posed, as discussed in Sec. 9.1.�e results for this casemight nevertheless

be valuable for a practitioner, who might �nd it hard to ensure the condition of

non-nested models.

Table 9.4 summarizes the key results, Figs. 9.11, 9.12 and 9.13 on the next page,

on p. 276 and on p. 277 show the md e�ciencies in detail.

Table 9.4.: Discrimination problems among more than three models with σ = ..

nΨ0.95 , for Ψ = . . .

md problem ld Hn Bn Un B′n Ln Γn shown in

{1, 2, 3, 11} – 7 7 – 7 6 6 Fig. 9.11

{1, 2, 3, 5, 6, 10, 11} – 7 7 – 7 6 6 Fig. 9.12

{1, . . . , 13} – 8 7 – 7 6 6 Fig. 9.13

We observe that the results from {, , , } and {, , , , , , } are almost
identical. In both problems, design criterion Ln shows the signi�cantly better
md e�ciency than all other design criteria �rst shown in problems {, , } and
{, , }. Problem {, , , } di�ers from the previously discussed problems
{, , }, {, , } and {, , } only by one additional rival model. Only the md

e�ciency of Un su�ers signi�cantly from extending the problem by the models
, , and .

Besides these di�erences, the design criteria show no previously unseen

behavior.

In all previous problems, the Kullback-Leibler distance (kld)-based lower-

bound criterion Γn is for all n less e�cient than Bn and B′n both in terms of fn
and tn . In problem {, . . . , }, however, Γn is more e�cient in terms of fn for
n ⩾ , yet remains worse as measured by tn .
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9.4. Multi-Model Problems

Figure 9.11.: E�ciency for discriminating between models 1, 2, 3, and 11, measurement
error σ = .%. Top: Fraction of problems solved based on experiments  to n, as function
of n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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9. Performance of Design Criteria for MD: Numerical Case Study

Figure 9.12.: E�ciency for discriminating between models 1, 2, 3, 5, 6, 10, and 11, mea-
surement error σ = .%. Top: Fraction of problems solved based on experiments  to n,
as function of n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as
in top chart. Legend applies to both charts.

Γn

Ln

B′n

Un

Bn

Hn

LD

A
ve
ra
ge

T
-e
�
ci
en
cy

t n
F
ra
ct
io
n
f n
o
f
so
lv
ed

p
ro
b
le
m
s

Number of available experiments n

     





















.

.

.

.

.



276



9.4. Multi-Model Problems

Figure 9.13.: E�ciency for discriminating between models 1 to 13, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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9. Performance of Design Criteria for MD: Numerical Case Study

9.5. Dependency on Data Variability

�is section examines how the model discrimination (md) e�ciency of the

design criteria depends on the variability of the data, as stated in (Q8.3). To that

end, a subset of the previously discussed md problems was considered under

measurement errors σ of di�erent magnitudes, as shown in Tab. 9.5.

Table 9.5.: Performance of design criteria under di�erent magnitudes of measurement
error.

nΨ0.95 , for Ψ = . . .

md problem ld Hn Bn Un B′n Ln Γn shown in

Measurement error σ = 6.4%

{1, 2} – 2 1 2 1 1 1

{1, 2, 3} – 3 2 3 2 2 2

{1, 2, 3, 11} – 3 3 4 2 2 2

{1, 2, 3, 5, 6, 10, 11} – 3 3 4 2 2 2

{1, . . . , 13} – 3 3 4 2 2 2

Measurement error σ = 12.8%

{1, 2} – 6 4 6 4 4 6 Fig. 9.1

{1, 2, 3} – 7 6 – 6 6 6 Fig. 9.5

{1, 2, 3, 11} – 7 7 – 7 6 6 Fig. 9.11

{1, 2, 3, 5, 6, 10, 11} – 7 7 – 7 6 6 Fig. 9.12

{1, . . . , 13} – 8 7 – 7 6 6 Fig. 9.13

Measurement error σ = 25.6%

{1, 2} – 22 22 24 22 22 24

{1, 2, 3} – 24 28 – – 26 26 Fig. 9.14

{1, 2, 3, 11} – 24 28 – 28 26 25

{1, 2, 3, 5, 6, 10, 11} – 24 29 – 28 27 25 Fig. 9.15

{1, . . . , 13} – – – – – 27 26 Fig. 9.16

Measurement error σ = 51.2%

{1, 2} – 93 111 109 114 109 105

{1, 2, 3} – 108 – – – 120 116

{1, 2, 3, 11} – 107 117 – – 112 110

{1, 2, 3, 5, 6, 10, 11} – 107 119 – – 113 111 Fig. 9.17

{1, . . . , 13} – – – – – 120 – Fig. 9.18

Under σ = .%, the considered problems were solved reliably with four or less
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9.5. Dependency on Data Variability

additional experiments by any design criterion. In these few steps, their behavior

shows no signi�cant di�erences to the case σ = .%, which was examined in
detail in Secs. 9.2 to 9.4.

In all considered problems with more than two rival models, the design

criterion Un lags far behind all of its competitors, regardless of the measurement
error. We thus do not consider it in the following discussion.

Under the large measurement errors of σ = .% and σ = .%, we observe
the following qualitatively new behavior.

In problems {, , }, {, , , }, and {, , , , , , }, the relative perfor-
mance of the design criteria substantially di�ers from that observed for .% and

, %. Design criterion Hn is most e�cient both in terms of fn and tn , followed
in short distance by Ln , Γn , Bn , and B′n .
In problem {, . . . , } however, the order again changes completely: there,

design criterion Ln is by far most e�cient, followed closely by Γn , as in the case
of small-error case. Design criterion Hn is signi�cantly less e�cient, and Bn and
Bn even more. Under σ = .%, the T-e�ciency of design criterion Ln is .%
larger than that of Hn at n = , under σ = .%, it is .% larger at n = .

9.5.1. Summary

Let us summarize our results for md problems between three or more models.

�e considered examples show that the newly developed design criteria Ln and
Γn can provide substantially more e�cient experiments for md than common

alternatives. In almost all of the considered cases, either Ln or Γn perform best in
terms of the T-e�ciency, in some cases together with Bn and B′n . �e advantage
of Ln or Γn is particular big in the largest md problem that involves allmodel
of the water-gas shi� reaction (wgsr) family, including the nested ones. Under

small and moderately large measurement errors, Ln was outperformed by Bn .
Design criteria Bn and B′n di�er only in their parameter maximum-likelihood

estimator (pmle) covariance formulas, whose di�erence increases with the

noncentrality. Both design criteria use a multi-model generalization which

reduces the multi-model optimal experimental design (oed) problem to that

of discriminating between the two best-�tting models. �erefore, both design

criteria involve the parameter covariances of two models only, and these

two models tend to have a small noncentrality. Consequentially, both design
criteria behave similarly, as observed here. One might see larger discrepancies

if one chooses a di�erent multi-model generalization which involves the pmle

covariances of more models and/or with larger noncentrality.
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9. Performance of Design Criteria for MD: Numerical Case Study

Figure 9.14.: E�ciency for discriminating between models 1, 2, and 3, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.

Γn

Ln

B′n

Un

Bn

Hn

LD

A
ve
ra
ge

T
-e
�
ci
en
cy

t n
F
ra
ct
io
n
f n
o
f
so
lv
ed

p
ro
b
le
m
s

Number of available experiments n

    















.

.

.

.

.



280



9.5. Dependency on Data Variability

Figure 9.15.: E�ciency for discriminating between models 1, 2, 3, 5, 6, 10, and 11, mea-
surement error σ = .%. Top: Fraction of problems solved based on experiments  to n,
as function of n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as
in top chart. Legend applies to both charts.
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9. Performance of Design Criteria for MD: Numerical Case Study

Figure 9.16.: E�ciency for discriminating between models 1 to 13, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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9.5. Dependency on Data Variability

Figure 9.17.: E�ciency for discriminating between models 1, 2, 3, 5, 6, 10, and 11, measure-
ment error σ = .%. Top: Fraction of problems solved based on experiments  to n, as
function of n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in
top chart. Legend applies to both charts.

Γn

Ln

B′n

Un

Bn

Hn

LD

A
ve
ra
ge

T
-e
�
ci
en
cy

t n
F
ra
ct
io
n
f n
o
f
so
lv
ed

p
ro
b
le
m
s

Number of available experiments n

        













.

.

.

.

.



283



9. Performance of Design Criteria for MD: Numerical Case Study

Figure 9.18.: E�ciency for discriminating between models 1 to 13, measurement error
σ = .%. Top: Fraction of problems solved based on experiments  to n, as function of
n. Bottom: Analogous results for the average T-e�ciency, abscissa scale as in top chart.
Legend applies to both charts.
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9.5. Dependency on Data Variability

�e classic upper-bound approximation Un of the Box-Hill-Hunter (bhh)-
criterion has shown to be substantially less e�cient than any other design

criterion, and even worse than the low-discrepancy (ld) reference strategy.

AlthoughUn is one of best-examined design criteria for md, a similar observation

has not been published before to the best of our knowledge.
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A. Supplements

In this appendix, we reprint some frequently used de�nitions and theoremsfrom other �elds than statistics and probability theory – the latter can be found
in the next appendix.

De�nition A.1 (Gradient, Hessian, and Jacobian)

Letm, n ∈ N and letX ⊆ Rm .�e gradient of a di�erentiable scalar function

f ∶X ↦ R is the function ∇f ∶X ↦ Rm de�ned as

∇f (x) ∶= [ ∂ f (x)

∂ x
. . .

∂ f (x)

∂ xm
] for all x ∈X. (A.1)

�e Hessian (matrix) of a twice di�erentiable scalar function f ∶X ↦ R is

the function ∇f ∶X ↦ Rm×m de�ned as

∇f (x) ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

∂

f (x)

∂ x ∂ x
. . .

∂

f (x)

∂ x ∂ xm

⋮ ⋮
∂

f (x)

∂ xm ∂ x
. . .

∂

f (x)

∂ xm ∂ xm

⎤⎥⎥⎥⎥⎥⎥⎦

for all x ∈X. (A.2)

Let f , . . . , fn be the scalar components of the di�erentiable vector-valued
function f ∶X ↦ Rn . �e Jacobian (matrix) of f is the function ∇f ∶X ↦
Rn×m de�ned as

∇f (x) ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

∂ f(x)

∂ x
. . .

∂

f(x)

xm

⋮ ⋮
∂ fn(x)

∂ x
. . .

∂ fn(x)

∂ xm

⎤⎥⎥⎥⎥⎥⎥⎦

for all x ∈X. (A.3)

Note that the gradient is a row vector in our convention. �e de�nition of the
Hessian matrix implies that it is symmetric.
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A. Supplements

�eorem A.2 (Matrix Square Root)

Let A be a real-valued symmetric positive semi-de�nite (spsd) m ×m matrix
with eigenvalues λ , . . . , λm . �en, there exists a unique symmetric positive
de�nite (spd) m ×m matrix A⁄ , the matrix square root of A, such that
A⁄A⁄ = A. It can be written as

A⁄ = ΛΓΛ⊺ , (A.4)

where Γ = diag(λ⁄
 , . . . , λ

⁄
m) and Λ is the matrix of eigenvectors of A.

Proof Proofs are given in most books on matrix algebra, for example in that of Horn
and Johnson [121, �m. 7.2.6]. ◻
It is easy to verify that (A⁄)− = (A−)⁄ =∶ A−⁄ and thus that A⁄A−⁄ = I.

De�nition A.3 (Weighted Frobenius Norm)

Let A be a real-valued m × n matrix, and letW be a real-valued spd m × m
matrix. �e (W -)weighted Frobenius norm of A is

∥A∥W ∶=
√
tr(A⊺WA). (A.5)

ForW = I, the norm reduces to the Frobenius norm and is written as ∥⋅∥F.

ForW = I, the weighted vector norm reduces to the Euclidean norm. It is easy
to show that ∥A∥W+W

= ∥A∥W
+ ∥A∥W

. If n = , the matrix A is a column
vector. If we denote this vector a, we have ∥a∥W = a⊺Wa. Any positive de�nite
quadratic form in a can thus be written using the weighted Frobenius norm.

Proposition A.4 (Combination of Quadratic Forms)

Let a, b, c ∈ Rm and let A, B be real-valued symmetric m × m matrices for
which the inverse of C ∶= A+ B exists, and de�ne c ∶= C−(Aa + Bb). �en,

∥x − a∥A + ∥x − b∥B = ∥x − c∥C + ∥a − b∥AC−B . (A.6)

Proof �e proof follows from Def. A.3 and some simple algebra of a function. ◻
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Proposition A.5 (Gradient and Hessian of a Weighted Vector Norm)

Let m, n ∈ N and letX ⊆ Rm . Suppose f ∶Rm ↦ Rn is twice di�erentiable and

let J be the Jacobian of f . For all i ∈ {, . . . , n}, let f i be the i-th component of
f and let H i be its Hessian. LetW be a real-valued spd n × n-matrix and let
wij be the components ofW ⁄ . �en it holds for all x ∈X that

∇∥ f (x)∥W = J⊺(x)W f (x), and (A.)

∇∥ f (x)∥W = J⊺(x)WJ(x) + 
m

∑
i=

(
m

∑
j=
wij f i)(

m

∑
k=
wikHk). (A.8)

Proof �e proof is essentially an application of the chain rule, combined with some basic

matrix algebra which can be found in Brookes [52] or Petersen and Pedersen [201]. For

W = I, the proof can be found in Nocedal and Wright [194, Chap. 10]. �e general case
forW ≠ I follows from replacing f (x) byW ⁄ f (x). ◻
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B. Selected Topics from Probability�eory
and Statistics

This chapter collects some results from probability theory and statistics for the

reader’s convenience. Unless said otherwise, they can be found in textbooks,

together with a rigorous discussion of elementary concepts like probability,

random variables and distributions. Standard references are the books of Gut

[111], Jaynes [134], Kallenberg [137], and Shao [232].

�e symbols P [⋅], E [⋅], and C [⋅] denote the probability, the expectation and
the covariance, respectively.

�eorem B.1 (Expectation of a Quadratic Form)

Let U be an s-dimensional continuous or discrete random variable, and let
A ∈ Rs×s . �en,

E [U⊺AU] = E [U]⊺AE [U] + tr(AC [U]). (B.1)

Proof A proof is given, for example, by Muirhead [190]. ◻
�is result holds regardless of the distribution of U . In particular, it does not
assume that U is normally distributed. If A is symmetric positive de�nite (spd),
(B.1) can be rewritten using the identities U⊺AU = ∥U∥A, E [U]⊺AE [U] =
∥E [U]∥A, and tr(AC [U]) = ∥C [U]⁄∥A (which requires that U has full rank)
that follow from Def. A.3 and�m. A.2.

De�nition B.2 (Convergence of Random Variables)

LetU and (Ui ∶ i ∈ N) be continuous (discrete) s-dimensional randomvariables
and ∥⋅∥ some norm on Rs .

(i) �e sequence U ,U , . . . converges in probability to U , written as
Un

pÐ→ U for n →∞, i� limn→∞ P [∥Un − U∥ < є] = , for all є > .
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B. Selected Topics from Probability Theory and Statistics

(ii) �e sequence U ,U , . . . converges almost surely to U , written as
Un

a.s.Ð→ U for n →∞, i� P [limn→∞ Un = U] = .

Almost sure convergence implies convergence in probability,

Un
a.s.Ð→ U ⇒ Un

pÐ→ U . (B.2)

If Un and U are discrete random variables, the reverse is also true. �at is, almost
sure convergence and convergence in probability are equivalent for discrete

random variables,

Un
a.s.Ð→ U ⇔ Un

pÐ→ U . (B.3)

�eorem B.3 (Continuous Mapping)

Let U and (Ui ∶ i ∈ N) be m-dimensional random variables. Suppose that
f ∶Rm ↦ Rn is measurable and continuous almost surely on Rn . �en,

(i) Un
pÐ→ U ⇒ f (Un)

pÐ→ f (U), and

(ii) Un
a.s.Ð→ U ⇒ f (Un)

a.s.Ð→ f (U).

�eorem B.4 (Generalized Slutsky’s �eorem)

Let (Vn ∶ n ∈ N) be s-dimensional random variables, let A be a closed and
bounded subset of Rs , let c ∈ A be some constant, and let f be a continuous
function de�ned on the domain A. Furthermore, let (Un ∶ n ∈ N) be r-
dimensional random variables and let ( fn ∶ n ∈ N) be functions de�ned on the
domain Rr ×Rs . Suppose that

Vn
a.s.Ð→ c and fn(Un , v)

pÐ→ f (v) uniformly in v ∈ A, (B.4)

for n →∞. �en,

fn(Un ,Vn)
a.s.Ð→ f (c), for n →∞. (B.5)
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If the Vn converge only in probability to c, then also fn(Un ,Vn) converges only
in probability.

Proof A proof is given, for example, by Bierens [30, �ms. 6.12 and 6.15]. ◻
An important special case is that Un are almost surely constant. �en, they
e�ectively behave like �xed numbers and can be absorbed in the functions fn .
�e theorem then essentially states that if

Vn
a.s.Ð→ c and fn

pÐ→ f uniformly, for n →∞, (B.6)

then

fn(Vn)
a.s.Ð→ f (c), for n →∞. (B.7)

De�nition B.5 (Laws Of Large Numbers)

Let (Ui ∶ i ∈ N) be s-dimensional random variables with �nite expectation.

(i) �e sequence U ,U , . . . obeys the weak law of large numbers, i�


n

n

∑
i=

(Ui −E [Ui])
pÐ→ , for n →∞. (B.8)

(ii) �e sequence U ,U , . . . obeys the strong law of large numbers,

i� the convergence in (B.8) is almost surely.

Note that it is neither assumed that the random variables are independent not

that they are identically distributed. �e strong law implies the weak law due to

(B.2). For discrete random variables, both laws are equivalent according to (B.3).

Bernoulli [29] was the �rst to proof what was later termed a “law of large

numbers” by Poisson [204]. �e possibly �rst complete proof of a law of large

number for arbitrary random variables was given by Khinchin [141]. Since then,

various proofs have been given under di�erent sets of assumptions. An short

and elementary proof of the strong law of large numbers for independently and

identically distributed (iid) random variables is given by Etemadi [89, �m. 1].

Hu, Rosalsky, and Volodin [124] and Kuczmaszewska [154] provide fairly general
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B. Selected Topics from Probability Theory and Statistics

su�cient conditions that allow the random variables to be statistically dependent.

�e following conditions su�ce for this thesis.

�eorem B.6 (Su�cient Conditions for Laws of Large Numbers)

Consider Def. B.5 and assume all random variables of the sequence (Ui ∶ i ∈ N)
have �nite expectations.

(i) �e sequence obeys the weak law of large numbers if there is a constant

p ∈ [, ] such that

lim
n→∞



np
n

∑
i=

E [∣Ui ∣p] = . (B.9)

(ii) �e sequence obeys the strong law of large numbers if there is a constant

p ∈ [, ] such that
∞

∑
i=



i p
E [∣Ui ∣p] < ∞. (B.10)

�eorem B.7 (Law of the Iterated Logarithm)

Let (Un ∶ n ∈ N) be iid R-valued random variables with zero mean and

variance one. For all n ∈ N, de�ne Vn ∶= ∑ni= Ui . �en, it holds almost surely
that

lim sup
n→∞

Vn√
n ln ln n

=
√
. (B.11)

Proof �e �rst proof was given by Khintchine [142]. ◻
Various generalizations of this theorem are available for random variables that

are not iid.

De�nition B.8 (PDF of a Normal Distribution)

�e probability density function (pdf) of a s-dimensional nor-

mal distribution with expectation µ ∈ Rs and symmetric positive semi-

de�nite (spsd) covariance matrix C ∈ Rs×s is the real-valued non-negative
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function ϕs(⋅ ∣ µ,C) de�ned for all u ∈ Rm as

ϕs(u ∣ µ,C) ∶= (π)−
s
 det(C)−⁄ exp(− 

 ∥u − µ∥

C−) (B.a)

= exp(− 
(∥u − µ∥


C− + ln detC + n ln(π))). (B.12b)

We write U ∼ Ns(µ,C) to express that the continuous random variable U
is subject to an s-dimensional normal distribution with expectation µ and
covarianceC. �e subscript s is omitted if the dimension is clear from the context.
We refer toN (, I) as standard normal distribution.

�e normal pdf is symmetric in the �rst two arguments,

ϕs(u ∣ µ,C) = ϕs(µ ∣u,C), (B.13)

for all u, µ ∈ Rs . Let U ∼ N (µ,C) and let V ∼ N (ν,D). �e set of normal
distributions is closed under a�ne-linear transformation,

AU + BV + c ∼ N(Aµ + Bν + c,ACA⊺ + BDB⊺) (B.14)

for all A, B ∈ Rr×s and all c ∈ Rr . Furthermore, the integral over a product of

two normal pdfs is again a normal pdf,

∫
Rs

ϕs(u ∣ µ,C)ϕs(u ∣ ν,D)du = ϕ(µ ∣ ν,C + D). (B.15)

Proofs for are given, for example, in the notes of Ahrendt [1], Larsen [164], and

Roweis [218]. More details about the normal distribution are assembled in the

books of Johnson, Kotz, and Balakrishnan [135, 136] and Kotz, Balakrishnan, and

Johnson [150].
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C. Essential Concepts of Information�eory

Information theory deals with the quanti�cation of information. It gives

a rigorous meaning to the notion of “information” and clari�es its relation to

“data” and “uncertainty”. It turns out that one requires (at least) three quantities

to capture the concept of information, namely entropy, Kullback-Leibler distance

(kld) and mutual information. We introduce and interpret these quantities here

and clarify their relations. We limit our considerations to those results required

in this thesis. For more details we refer to the standard works Cover and�omas

[73] and Gray [109].

Information theory originates from the communication-theoretic papers of

Shannon [229] and Shannon [230] dealing with transmission, compression and

storage of data and the information contained in it. Since then, information

theory has rapidly grown into an independent area of research with applications

in many �elds that have to process data. �e original publications have been

reprinted in the book of Shannon and Weaver [231], a brief summary of central

concepts is given by McMillan [184].

Introduction

Assume that U , U , . . . ,Un and V are continuous random variables with a joint
distribution. Let p(u, v) be the joint probability density function (pdf) of U and
V , p(u ∣ v) be the conditional pdf ofU for givenV , p(v ∣u) be the conditional pdf
of V for given U , p(u) be themarginal pdf ofU , and p(v) be themarginal pdf of
V . �e same notation is used likewise for the pdfs related to the pair (U ,V), for
all  ∈ {, . . . , n}. Note that in this conveniently “overloaded” notation, di�erent
pdfs are distinguished through their arguments.

For the sake of brevity the considerations in this chapter are restricted to

continuous random variables. �e counterparts of the following de�nitions for
discrete random variables can be obtained by replacing the pdfs by probability
mass functions (pmfs) and the integrals by sums. Unless said otherwise, the stated

theorems also hold for discrete random variables. In fact, the whole information

theory can be formulated in terms of probability measures, which may neither
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C. Essential Concepts of Information Theory

correspond to discrete nor to continuous distributions, see, for example, Gray

[109].

Unless said otherwise, all integrals in the following are understood over the

respective whole domains.

Entropy
Entropy measures the amount of uncertainty or the amount of unpredictability

associated with a random variable. �e information-theoretic entropy that we

deal with here was introduced by Shannon [229]. It is closely related in form

and properties to the thermodynamic entropy of Boltzmann and Gibbs from

statistical physics.

De�nition C.1 (Entropy)

Let U and V be jointly distributed random variables, either both discrete or
both continuous. �e entropy of U is the real-valued quantity

H[U] ∶= −E [ln pU(U)] (C.)

the (conditional) entropy of U for given V is

H[U ∣V] ∶= −E [ln pU ∣V (U ∣V)], (C.)

and the (joint) entropy of U and V is

H[U ,V] ∶= −E [ln pU ,V(U ,V)], (C.3)

supposed the expectations exist.

For discrete random variables,

H[U] = −∑
u

pU(u) ln pU(u), (C.)

H[U ∣V] = −∑
u ,v
pU ∣V (u, v) ln pU ∣V (u ∣ v) (C.)

= −∑
v

pV(v)∑
u

pU ∣V (u ∣ v) ln pU ∣V (u ∣ v), and (C.)
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H[U ,V] = −∑
u ,v
pU ,V(u, v) ln pU ,V(u, v), (C.7)

where (C.6) follows from substituting pU ,V(u, v) = pU ∣V (u ∣ v)pV(v). For
continuous random variables the expressions are analogous, with sums replaced

by the corresponding integrals.

�e entropy is solely determined by the distributions of the random variables.

To emphasize this, we writeH[pU],H[pU ∣V ], andH[pU ,V] instead ofH[U],
H[U ∣V], andH[U ,V], respectively.

Proposition C.2 (Fundamental Properties of the Entropy)

�e entropy has the following basic properties:

(i) H[U ∣V] ⩽ H[U]

(ii) H[U ,V] ⩽ H[U] +H[V], with equality i� U and V are independent

(iii) H[U ,V] = H[V] +H[U ∣V] (chain rule)

If U is a discrete random variable that takes values in a �nite set of q elements,
the entropy has the following additional properties:

(iv)  ⩽ H[U], with equality i� U is almost surely constant

(v) H[U] ⩽ ln q, with equality i� U is uniformly distributed

Proof Proofs can be found in most textbooks on information theory, for example in that
of Cover and�omas [73]. ◻

Interpretation
Let u′ be a realization of a discrete random variable U , and suppose the value u′
is unknown. �e entropyH[U] is the amount of information1 that is required
in average to identify (that is, to gain certainty about the value) u′ if only its
distribution (in the form of its probability mass function (pmf) or probability

density function (pdf) pU ) is known.
1Since we use the natural logarithm in the de�nition of the entropy, the information is measures
in nats. If we used the logarithm to the basis 2, the information would be measured in bits.
�ese relation between these units is  nat = / ln  bit.
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C. Essential Concepts of Information Theory

�erefore, the entropy quanti�es the amount of uncertainty of a random variable.
In our sign-convention, larger entropy means larger uncertainty. Accordingly,

H[U ∣V] is the uncertainty of U if V is known, andH[U ,V] is the combined
uncertainty of U and V .
Property (i) tells us that in average, additional information reduces uncertainty.

Property (ii) means that the common uncertainty of two random variables is

smaller than the sum of their individual uncertainties, unless they are dependent

and thus carry information about each other.2

�e Principle of Maximum Entropy
�e principle of maximum entropy is a method for choosing a probability

distribution under constraints due to prior knowledge:

[. . . ] in making inferences on the basis of partial information

we must use that probability distribution which has maximum

entropy subject to whatever is known. �is is the only unbiased

assignment we can make; to use any other would amount to

arbitrary assumption of information which by hypothesis we do

not have. (Jaynes [132, Sec. 2])

�e principle was originally proposed by Jaynes [131, 132, 133] as solution to the

problem of arbitrariness when choosing prior distributions in Bayesian inference

and has since then found wide acceptance for this purpose.

�e “partial information” used in the principle must be testable, that is, it must

be possible to determine whether it is consistent with a given distribution or not.

Typical testable information is the speci�cation of moments of a distribution, e.g.

its expectation or its covariance. A distribution that is chosen according to this

principle making no claims except those speci�ed by the testable information.

In this sense, it is “maximal ignorant” or has “minimal prejudice”.

Kullback-Leibler Distance
�eKullback-Leibler distance (kld)measures the dissimilarity of two probability

distributions. Alternatively, it can be viewed as the amount of additional

information required to identify an unknown realization of a random variable

(in the sense of the entropy) if one assumes a wrong distribution for this random

2�is notion is formalized by the mutual information de�ned below.
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variable. �e kld was introduced by Kullback and Leibler [157], its rich set of

properties and interpretations were thoroughly discussed by Kullback [158] or

its recent reprint Kullback [159]. �e kld plays a key role in statistical inference,

summarized, for example, by Eguchi and Copas [87] and by Cover and�omas

[73, Chap. 11].

De�nition C.3 (Kullback-Leibler Distance (KLD))

LetU ,U ′,V ,V ′ andW be jointly distributed random variables, either all discrete

or all continuous. Assume that U and V have the same dimension and U ′ and
V ′ have the same dimension.
�e Kullback-Leibler distance (kld) from U to V is the real-valued

quantity

D[U∥V] ∶= E [ln pU(U)
pV(U)], (C.)

the (conditional) kld from U to V for givenW is

D[U ∣W∥V ∣W] ∶= E [ln
pU ∣W (U ∣W)
pV ∣W (U ∣W)], (C.)

and the (joint) kld from U and U ′ to V and V ′ is

D[U ,U ′∥V ,V ′] ∶= E [ln pU ,U ′(U ,U ′)
pV ,V′(U ,U ′)

], (C.10)

supposed the expectations exists.

Kullback and Leibler [157] introduced the quantity D[⋅∥⋅] under the name
“discrimination information”. According to Kullback [160], not less than nine

names are used to refer to it – examples being relative entropy, information gain

or Kullback-Leibler divergence – while he still prefers his original term. We

nevertheless call it Kullback-Leibler distance, since it seems to be one of the most

frequently used terms.

For discrete random variables,

D[U∥V] = ∑
u

pU(u) ln
pU(u)
pV(u)

(C.)
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C. Essential Concepts of Information Theory

D[U ∣W∥V ∣W] = ∑
u ,v
pU(u, v) ln

pU(u ∣ v)
pV(u ∣ v)

, and (C.)

D[U ,U ′∥V ,V ′] = ∑
u ,u′
pU ,U ′(u, u′) ln

pU ,U ′(u, u′)
pV ,V′(u, u′)

. (C.13)

�e analogous expressions for continuous random variables are obtained by

replacing sums by the corresponding integrals.

Like the entropy, the kld depends only on the distributions of the considered

random variables. To emphasize this property, we sometimes writeD[pU∥pV]
D[pU ,U ′∥pV ,V′], and D[pU ∣W ∥pV ∣W ], instead of D[U∥V], D[U ,U ′∥V ,V ′],
andD[U ∣W∥V ∣W], respectively.

Proposition C.4 (Fundamental Properties of the KLD)

�e kld has the following basic properties:

(i) D[U∥V] ⩾ 

(ii) D[U∥V] =  i� U and V have the same distribution.

(iii) If U and U ′ have the same distribution and V and V ′ have the same
distribution, thenD[U∥V] = D[U ′∥V ′]

(iv) If U and V have di�erent distributions, thenD[U∥V] ≠ D[V∥U]

(v) If U and U ′ are independent, and V and V ′ are independent, then
D[U ,U ′∥V ,V ′] = D[U∥U ′] +D[V∥V ′]

(vi) D[U ,W∥V ,W] = D[U∥V] +D[U ∣W∥V ∣W] (chain rule)

(vii) D[λp + ( − λ)p̃∥λp + ( − λ)p̃] ⩽ λ D[p∥p]+( − λ)D[p̃∥p̃],
for all λ ∈ [, ] (convexity)

Proof For a proof of the convexity property (vii), seeKullback [159,Cor. 3.1 and subsequent
examples in Sec. 2.3]. Proofs of the other properties can be found in the book of Cover

and�omas [73]. ◻
Property (v) immediately generalizes to arbitrary numbers of independent

variables, and property (vii) generalizes to any convex function on the domain

of probability mass functions (pmfs)/probability density functions (pdfs).
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Interpretation

�e kld quanti�es the dissimilarity of two probability distributions: the larger its
value, the more dissimilar the distributions. We present three among the many

arguments for this claim.

First, the kld is a premetric or pseudosemimetric due to properties proper-

ties (i) and (ii). As such, it gives rise to a topology on the domain of pmfs/pdfs,

that it, it de�nes a notion of “closeness” between distributions. Note, however, the

kld is not a metric, as it is neither symmetric nor ful�lls the triangle inequality.
For details, see the book of Buldygin and Kozachenko [54].

Second, the kld quanti�es the increase in uncertainty if pV is used to
approximate pU . Let u′ be an unknown realization of the random variable U
with pdf pU . If pU is known, the information required to identify u′ is in average
H[pU]. Now suppose u′ is considered as a realization of V with pdf pV , for
example because pU is unknown and pV is used as approximation, or simply by
mistake. �en, the information required in average to identify u′ is

H[pU] +D[pU∥pV] = H[U] +D[U∥V], (C.14)

see Cover and�omas [73,�m. 5.4.3].�at is, the kld D[U∥V] is the additional
information3 that is in average required to identify u′. In this sense, the kld
measures the loss of information or the increase in uncertainty if V is used to
approximate U , from which the data actually originates. �e larger the increase
in uncertainty, the more dissimilar is pV to pU .
�ird, the largerD[pU∥pV], the easier to distinguish the distributions pU and

pV empirically, that is, based on data, with a likelihood ratio test, as described in
Sec. 4.2.2.

Mutual Information

�emutual information measures the information that two random variables

carry about each other. It is the reduction in uncertainty about one random

variable due to knowledge about another random variable. In this sense, the

mutual information quanti�es the amount of dependency between random

variables and can be considered as an extended concept of correlation.

3in nats
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De�nition C.5 (Mutual Information)

Let U and V be jointly distributed random variables, either both discrete or
both continuous. �e mutual information of U and V is

I[U∥V] ∶= D[pU ,V∥pU pV], (C.15)

supposed that the Kullback-Leibler distance (kld) exists.

�emutual information is the kld between the joint probability density function

(pdf) of U and V and the product of their respective marginal pdfs. Recall that
pU ∣V (u, v) = pU(u)pV(v) if and only if U and V are independent. �erefore,
already the de�nition of the mutual information suggests that it is a measure

for the dependency of random variables. �is interpretation is supported by the

following properties.

Proposition C.6 (Fundamental Properties of Mutual Information)

(i) I[U∥V] = I[V∥U]

(ii) I[U∥V] ⩾ 

(iii) I[U∥V] = ⇔ U and V are independent

Proof Proofs are available in most textbooks, for example in Cover and �omas [73,
Chaps. 2 and 8]. An early proof can be found in the article of Lindley [176, �m. 1]. ◻

Interpretation and Relation to Entropy and KLD
�e mutual information measures the average amount of information that a

random variable carries about another random variable and vice versa. �e

mutual information is best understood by its relation to entropy and kld,

summarized in the next theorem. Its relationship with entropy is also visualized

in the Venn diagram in Fig. C.1 on the next page.

Proposition C.7 (Relations between Entropy, KLD andMutual Information)

I[U∥V] = H[U] −H[U ∣V] = H[V] −H[V ∣U] (C.)
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I[U∥V] = H[U] +H[V] −H[U ,V] (C.)

I[U∥U] = H[U] (C.)

I[U∥V] = D[U ∣V∥U] = D[V ∣U∥V] (C.19)

Proof Follows directly from the de�nitions. See, for example, Cover and �omas [73,

Secs. 2.4 and 8.5]. �e �rst equality in (C.19) follows from I[U∥V]
(a)
= D[pU ,V∥pU pV]

(b)
=

D[pU∥pU] +D[p U ∣V ∥pU]
(c)
= D[U ∣V∥U], where the equalities are due to (a) (C.15),

(b) property (vi) of Prop. C.4, and (c) property (ii) of Prop. C.4. �e second equality in

(C.19) is a consequence of the symmetry of I[U∥V]. ◻

Figure C.1.: Relationships between entropy and mutual information.

H[U ∣V] H[V ∣U]

H[U] H[V]

I[U∥V]

H[U ,V]

Special Cases for Normal Distributions

We consider the introduced information-theoretic quantities for the frequently

required special case of continuous random variables with a normal distribution

(see Def. B.8).
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Proposition C.8 (Entropy of a Normal Distribution)

If U ∼ Nr(µ,C), thenH[U] = 
 ln det(C) +


 (ln(π) + )r.

Proof Proofs can be found in several textbooks, for example in that of Cover and�omas
[73, �m. 8.4.1]. ◻
It is important to realize that the entropy of a normal distribution is independent
of its mean.

Proposition C.9 (Maximum-Entropy Property of the Normal Distribution)

If U is a r-dimensional continuous random variable, then

H[U] ⩽ 
 ln det(C [U]) + 

 (ln(π) + )r, (C.20)

with equality i� U ∼ Nr(⋅,C [U]).

Proof See, for example, the book of Cover and�omas [73, �m. 8.4.1]. ◻
�e right-hand side of the inequality in (C.20) is the entropy of a normal

distribution with the same covariance as U . �erefore, the theorem tells us that
the normal distribution has the largest entropy among all distributions with the
same covariance.

�eorem C.10 (KLD between Normal Distributions)

If U ∼ Nr(µ ,C) and U ∼ Nr(µ ,C), and C and C have full rank, then

D[U∥U] = 
(∥µ − µ∥


C−

+ tr(CC− ) − ln det(CC− ) − r),
(C.21)

Proof By de�nition, D[U∥U] = E [ln
p(U)
p(U)

], where p and p are the probability
density functions (pdfs) of U and U , respectively. By substituting the pdfs of a normal

distribution (B.12) we get

ln
p(U)

p(U)
=



(∥U − µ∥


C−

− ∥U − µ∥

C−

− ln det(CC
−
 )). (C.22)
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We calculate the expectation of (C.22) term by term. �e expectation of the �rst term is

E [∥U − µ∥

C−

] = ∥E [U − µ]∥

C−

+ tr(C [U − µ]C
−
 ) (C.)

= ∥E [U] − µ∥

C−

+ tr(C [U]C
−
 ) (C.)

= ∥µ − µ∥

C−

+ tr(CC
−
 ), (C.25)

where we used�m. B.1 for the �rst equality. Analogously, the expectation of the second

term in (C.22) is

E [∥U − µ∥

C−

] = tr(C [U − µ]C
−
 ) + ∥E [U − µ]∥


C−

(C.)

= tr(C [U]C
−
 ) + ∥E [U] − µ∥


C−

(C.)

= tr(CC
−
 ) = r. (C.28)

Since the third term in (C.22) is independent of U , E [ln det(CC− )] = ln det(CC− ).

By taking together these results we obtain (C.21). ◻
For the special case C = C = C, the last three terms in (C.21) add up to zero so
thatD[U∥U] = 

 ∥µ − µ∥

C− .
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