
 
 
 
 
 
 
 
 

Dissertation 

submitted to the 

Combined Faculties for the Natural Sciences and for Mathematics 

of the Ruperto-Carola University of Heidelberg, Germany 

for the degree of 

Doctor of Natural Sciences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

presented by 

 

Diplom-Biologist Anna-Lena Scherr 

born in: Bad Dürkheim 

Oral-examination: .......................... 

 

 
 



 
 
 
 
 
 
 

The Role of anti-apoptotic Bcl-2 Proteins for colorectal Cancer  

Development and Progression 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Referees: Prof. Dr. Michael Boutros 
                   
                  Prof. Dr. med. Henning Schulze-Bergkamen  
 
 
 
 
 
 



 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
„Because the world exists, the limits of probability have already been exceeded. “ 
 
                                                                                                                                      -J. Gaarder-  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

For my parents, with gratitude 
 

 

 

 

 

 

 

 



TABLE OF CONTENTS 

SUMMARY ................................................................................................................................. 7 

ZUSAMMENFASSUNG .................................................................................................................... 9 

INTRODUCTION ......................................................................................................................... 11 

1.1 The Intestine ....................................................................................................................................... 11 

1.2 Colorectal Cancer ................................................................................................................................ 13 

1.2.1 Epidemiology, Classification and Treatment ...................................................................................... 13 

1.2.2 Molecular Pathogenesis ..................................................................................................................... 15 

1.3 Programmed Cell Death ...................................................................................................................... 17 

1.3.1 Apoptosis ........................................................................................................................................... 18 

1.3.1.1 Intrinsic Apoptosis ...................................................................................................................... 20 

1.3.1.2 Extrinsic Apoptosis ...................................................................................................................... 22 

1.3.2 Autophagy .......................................................................................................................................... 24 

1.3.3 Necroptosis ........................................................................................................................................ 26 

1.4 Knockout Mouse Models .................................................................................................................... 28 

1.4.1 Knockout Mice of Bcl-2 Family Members .......................................................................................... 28 

1.4.2 Intestine-specific Knockout of Cell Death- and Inflammation-related Proteins ................................ 30 

1.5 Aim of this Work ................................................................................................................................. 31 

MATERIAL AND METHODS ........................................................................................................... 33 

2.1 Cell Culture Methods .......................................................................................................................... 33 

2.1.1 Cultivation, Thawing and Freezing of eukaryotic Cells ....................................................................... 33 

2.1.2 Transfection of Cells with siRNA and Plasmid-DNA ........................................................................... 34 

2.1.2.1 siRNA Transfection ...................................................................................................................... 34 

2.1.2.2 Plasmid-DNA Transfection .......................................................................................................... 35 

2.1.3 Cell Death Assays ............................................................................................................................... 35 

2.1.3.1 MTT-Assay................................................................................................................................... 35 

2.1.3.2 LDH-Assay ................................................................................................................................... 36 

2.1.4 FACS Analysis of Cell Death and Proliferation .................................................................................... 36 

2.1.5 Migration Assays ................................................................................................................................ 37 

2.1.5.1 Scratch Assay .............................................................................................................................. 37 

2.1.5.2 3D Cell Culture ............................................................................................................................ 38 

2.1.6 Invasion Assay .................................................................................................................................... 39 

2.1.7 Tissue Culture ..................................................................................................................................... 39 

2.2 Protein Analyses ................................................................................................................................. 40 

2.2.1 Protein Isolation ................................................................................................................................. 40 

2.2.1.1 Protein Isolation from cultured Cells .......................................................................................... 40 

2.2.1.2 Protein Isolation from Tissues .................................................................................................... 41 

2.2.2 Bradford Assay ................................................................................................................................... 42 



2.2.3 SDS-PAGE ........................................................................................................................................... 43 

2.2.4 Western Blot ...................................................................................................................................... 45 

2.3 DNA and RNA Analyses ....................................................................................................................... 47 

2.3.1 RNA Isolation ...................................................................................................................................... 47 

2.3.1.1 RNA Isolation from cultured Cells ............................................................................................... 47 

2.3.1.2 RNA Isolation from Tissues ......................................................................................................... 47 

2.3.2 Reverse Transcription and qRT-PCR ................................................................................................... 48 

2.3.3 Mouse Genotyping ............................................................................................................................. 50 

2.3.4 Agarose Gel Electrophoresis .............................................................................................................. 52 

2.3.5 Sanger Sequencing ............................................................................................................................. 53 

2.4 Histological Analyses ........................................................................................................................... 54 

2.4.1 Hematoxylin and Eosin Staining ......................................................................................................... 54 

2.4.2 Immunohistochemistry ...................................................................................................................... 55 

2.4.3 TUNEL Assay ....................................................................................................................................... 57 

2.5 Mouse Models .................................................................................................................................... 58 

2.5.1 Breeding and Organ Removal ............................................................................................................ 58 

2.5.2 AOM/DSS Model and Mouse Endoscopy ........................................................................................... 59 

2.6 Statistical Analysis .............................................................................................................................. 60 

RESULTS .................................................................................................................................. 61 

3.1 Expression Levels of anti-apoptotic Bcl-2 Proteins in human colorectal Cancer................................... 61 

3.2 The Role of anti-apoptotic Bcl-2 Proteins for human colorectal Cancer Cells in vitro .......................... 62 

3.2.1 Knockdown of anti-apoptotic Bcl-2 Proteins does not lead to spontaneous Cell Death Induction ... 63 

3.2.2 Knockdown of anti-apoptotic Bcl-2 Proteins does not exert anti-proliferative Effects on CRC Cells 64 

3.2.3 Anti-apoptotic Bcl-2 Proteins influence the migratory Ability of CRC Cells ....................................... 65 

3.2.4 Knockdown of anti-apoptotic Bcl-2 Proteins inhibits the Invasiveness of CRC Cells ......................... 71 

3.2.5 The pan-Bcl-2 Inhibitor Obatoclax delays Cell Cycle Progression and inhibits Migration of CRC Cells

 .................................................................................................................................................................... 72 

3.2.6 Expression of Migration Markers after Downregulation or Inhibition of anti-apoptotic Bcl-2 Proteins

 .................................................................................................................................................................... 76 

3.2.7 Downregulation or Inhibition of anti-apoptotic Bcl-2 Proteins sensitizes CRC cells towards 

Oxaliplatin ................................................................................................................................................... 77 

3.3 The Role of anti-apoptotic Bcl-2 Proteins for Physiology and Carcinogenesis in the murine Intestine in 

vivo ........................................................................................................................................................... 78 

3.3.1 The intestine-specific Bcl-xL knockout Mouse .................................................................................... 79 

3.3.1.1 The Knockout of Bcl-xL in intestinal epithelial Cells causes no spontaneous Phenotype ............ 80 

3.3.1.2 Loss of Bcl-xL inhibits Carcinogenesis in an inflammation-driven Tumor Model ........................ 82 

3.3.1.3 Tumors of Bcl-xL
ΔIEC Mice show increased Cell Death without compensatory Proliferation ....... 83 

3.3.2 The intestine-specific Mcl-1 knockout Mouse.................................................................................... 86 

3.3.2.1 The Knockout of Mcl-1 in intestinal epithelial Cells induces Cell Death ..................................... 89 

3.3.2.2 The Death of intestinal epithelial Cells in Mcl-1ΔIEC mice is accompanied by increased 

Proliferation ............................................................................................................................................ 93 

3.3.2.3 Mcl-1ΔIEC mice display severe Inflammation in the entire Intestine ............................................ 94 

3.3.2.4 Mcl-1ΔIEC mice show spontaneous Tumor Development in the Intestine ................................... 97 



3.4 Inhibition of anti-apoptotic Bcl-2 Proteins in a 3D Cell Culture Approach ............................................ 99 

3.5 Inhibition of anti-apoptotic Bcl-2 Proteins in an ex vivo Tissue Culture System ................................. 101 

DISCUSSION ............................................................................................................................ 103 

4.1 Expression Levels of anti-apoptotic Bcl-2 Proteins in human colorectal Cancer Cells and their Impact 

on Proliferation ...................................................................................................................................... 104 

4.2 The Role of anti-apoptotic Bcl-2 Proteins for colorectal Cancer Cell Migration and Invasiveness ...... 105 

4.3 The Role of anti-apoptotic Bcl-2 Proteins for intestinal Tissue Homeostasis and colorectal Cancer 

Onset and Progression in Mice ............................................................................................................... 110 

4.3.1 The intestine-specific Bcl-xL knockout Mouse .................................................................................. 111 

4.3.2 The intestine-specific Mcl-1 knockout Mouse ................................................................................. 114 

4.4 Clinical Relevance of the chemical Inhibition of anti-apoptotic Bcl-2 Proteins .................................. 118 

4.5 Conclusion ........................................................................................................................................ 120 

4.6 Outlook ............................................................................................................................................. 120 

REFERENCES ............................................................................................................................ 122 

LIST OF FIGURES ....................................................................................................................... 143 

LIST OF TABLES ......................................................................................................................... 144 

LIST OF ABBREVIATIONS ............................................................................................................. 145 

CONTRIBUTIONS ....................................................................................................................... 151 

ACKNOWLEDGEMENTS ............................................................................................................... 152 

 

 

 

 

 

 

 



 

 

 7 

SUMMARY 

Anti-apoptotic Bcl-2 (B-cell lymphoma 2) proteins such as Bcl-2 itself, Bcl-xL and Mcl-1, prevent 

mitochondrial activation and thereby the induction of the intrinsic apoptotic signaling pathway. 

Since the avoidance of cell death is a prerequisite for malignant transformation, anti-apoptotic 

proteins are frequently overexpressed in tumor cells. Additionally, there is growing evidence that 

Bcl-2, Bcl-xL and Mcl-1 also play a role in other cellular processes, such as cell cycle regulation, DNA 

repair and autophagy induction, which can also be important for the onset and progression of 

cancer.  

One of the most frequently diagnosed malignancies worldwide is colorectal cancer. Even though 

improvements in treatment and population screenings have led to a decreased mortality in many 

countries, especially patients with metastasized colorectal cancer still face a poor prognosis. Until 

now, it has been an open question whether and to which extend anti-apoptotic Bcl-2 proteins 

influence colorectal cancer initiation, progression and metastasation, with a few studies showing 

contradictory results. Hence, the purpose of this work was to shed more light on the role Bcl-2, Bcl-

xL and Mcl-1 play for the maintenance of intestinal tissue homeostasis and for colorectal cancer 

development and outgrowth.  

First, their expression levels in the human intestinal mucosa as well as in adenoma and 

adenocarcinoma tissue were determined. This revealed a significant increase of Bcl-xL in the 

malignant state and an unaltered expression of Bcl-2. By contrast, Mcl-1 has been found to be 

significantly downregulated in colorectal cancer specimens. Results obtained in subsequent in vitro 

experiments clearly showed that Mcl-1 has an anti-proliferative effect which cancer cells preclude 

by downregulation of the protein. Neither in intestinal epithelial cells nor in colorectal cancer cells 

has a cell cycle inhibiting mode of action been described so far for Mcl-1. Additionally, further in 

vitro experiments have shown for the first time that the siRNA mediated silencing of anti-apoptotic 

Bcl-2 proteins significantly decreased the migratory capacity and invasiveness of human colorectal 

cancer cells.  

In a second step, protein functions were studied in further detail in vivo. Since previous publications 

showed that the constitutive deletion of both Bcl-xL and Mcl-1 induces embryonic lethality, two 

intestine-specific knockout mouse models were generated during this work. For the first time, they 

allowed to study functioning of Bcl-xL and Mcl-1 in the murine intestine. The mouse models 

revealed a strong discrepancy between Bcl-xL and Mcl-1, regarding their influence on tissue 

maintenance and tumorigenesis. While Bcl-xL turned out to be dispensable for normal tissue 

homeostasis, it has been found to be a crucial factor for colorectal cancer cell survival in a 

chemically induced tumor model. This confers Bcl-xL tumor-promoting properties and explains its 
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overexpression in human adenomas and adenocarcinomas. The loss of Mcl-1, by contrast, caused 

a severe intestinal phenotype, comprising high levels of cell death, an accompanying increase of 

proliferation and chronic inflammation. From an age of about six months, spontaneous 

tumorigenesis was observed in intestine-specific Mcl-1 knockout mice which was promoted by the 

loss of the anti-proliferative effect Mcl-1 exerts on intestinal epithelial cells and the inflammatory 

environment. Therefore, it has been proven that Mcl-1 possesses tumor-suppressing properties in 

the intestine, what explains its downregulation in human colorectal cancer specimens.  

The presented results highly recommend the utilization of Mcl-1 sparing inhibitors in the context 

of colorectal cancer treatment. A first step towards clinical application was done in this work by 

treating viable human colorectal cancer tissue ex vivo with the Bcl-xL/Bcl-2-specific inhibitor ABT-

737. Subsequent analyses revealed a significantly decreased viability of human colorectal cells in 

presence of the inhibitor. Since proliferation turned out to be unaltered under ABT-737 treatment, 

inhibition of Bcl-xL in combination with classical chemotherapy could be an interesting approach for 

further studies with a focus on clinical applicability. 
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ZUSAMMENFASSUNG 

Anti-apoptotische Bcl-2 (B-cell lymphoma 2) Proteine wie Bcl-2 selbst, Bcl-xL und Mcl-1 verhindern 

die Aktivierung von Mitochondrien und damit die Induktion des intrinsischen Apoptose-

Signalweges. Da die Zelltodvermeidung eine zentrale Voraussetzung für die maligne 

Transformation von Zellen ist, sind anti-apoptotische Proteine in Krebszellen häufig überexprimiert. 

Zudem gibt es vermehrt Hinweise darauf, dass Bcl-2, Bcl-xL und Mcl-1 auch in anderen zellulären 

Prozessen wie der Zellzyklusregulation, der DNA-Reparatur und der Autophagie-Induktion eine 

Rolle spielen, welche die Entstehung und Progression von Tumoren ebenfalls entscheidend 

beeinflussen können.     

Eine der weltweit am häufigsten diagnostizierten Krebserkrankungen ist das kolorektale Karzinom. 

Obwohl die Mortalitätsrate durch gezielte Vorsorgeuntersuchungen und verbesserte 

Therapiemöglichkeiten in vielen Ländern sinkt, haben vor allem Patienten mit metastasiertem 

kolorektalem Karzinom weiterhin eine schlechte Prognose. Bisher konnte die Frage, ob und in 

welchem Maße anti-apoptotische Bcl-2 Proteine die Entstehung, Progression und Metastasierung 

von Darmkrebs beeinflussen, nicht abschließend geklärt werden. Daher war es Ziel dieser Arbeit 

die Funktion von Bcl-2, Bcl-xL und Mcl-1 für die Aufrechterhaltung der intestinalen 

Gewebehomöostase sowie für die Entstehung und das Fortschreiten des kolorektalen Karzinoms zu 

untersuchen.  

Im ersten Schritt wurde die Expression der entsprechenden Proteine sowohl in humaner 

Darmschleimhaut als auch in Adenom- und Adenokarzinomgewebe festgestellt. In der Auswertung 

zeigte sich in Tumorzellen eine signifikant erhöhte Bcl-xL Expression und ein unverändertes Level an 

Bcl-2. Im Gegensatz dazu war die Expression von Mcl-1 im humanen kolorektalen Karzinom 

signifikant verringert. Anschließend durchgeführte in vitro Experimente konnten eindeutig belegen, 

dass Mcl-1 eine anti-proliferative Wirkung besitzt, welche Krebszellen durch Herunterregulierung 

des Proteins umgehen. Diese Zellzyklus-regulierende Funktion von Mcl-1 wurde bisher weder in 

intestinalen Epithelzellen noch in kolorektalen Karzinomzellen beschrieben. Durch die Arbeit mit 

humanen Darmkrebszelllinien konnte des Weiteren erstmals gezeigt werden, dass die siRNA-

vermittelte Abnahme anti-apoptotischer Bcl-2 Proteine die Migration und Invasivität von 

kolorektalen Karzinomzellen signifikant verringert.  

Für eine tiefergehende Analyse der Proteinfunktionen wurden diese in einem zweiten Schritt in vivo 

untersucht. Da sich in früheren Studien herausgestellt hat, dass die konstitutive Deletion von 

sowohl Bcl-xL als auch Mcl-1 im Mausmodell pränatal letal ist, wurden zwei darm-spezifische 

Knockout-Mausmodelle für diese Arbeit generiert. Diese Modelle ermöglichten zum ersten Mal 

eine detaillierte Analyse der Funktion von Bcl-xL und Mcl-1 im murinen Darm in vivo. In den 
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generierten Knockout-Mäusen zeigte sich eine erhebliche Diskrepanz zwischen Bcl-xL und Mcl-1 

hinsichtlich ihrer Rolle für die Aufrechterhaltung der intestinalen Gewebehomöostase und die 

Entstehung und Progression von Darmkrebs. Während Bcl-xL für die Gewebehomöostase 

verzichtbar erscheint, hat es sich in einem chemisch induzierten Karzinogenesemodell als 

entscheidender Faktor für das Überleben von kolorektalen Karzinomzellen herausgestellt. Diese 

Funktion, welche Bcl-xL tumorförderndernde Eigenschaften verleiht, erklärt seine Überexpression 

in humanen Adenomen und Adenokarzinomen. Im Gegensatz dazu führte der Verlust von Mcl-1 in 

intestinalen Epithelzellen zur Ausbildung eines starken Phänotyps, welcher hohe Zelltodraten mit 

einhergehender Erhöhung der Proliferation und chronischer Inflammation umfasste. Ab einem 

Alter von etwa sechs Monaten kam es zudem zu spontaner Karzinogenese in darm-spezifischen 

Mcl-1 Knockout-Mäusen, welche durch das Wegfallen der anti-proliferativen Wirkung von Mcl-1 

und durch das inflammatorische Milieu begünstigt wurde. Damit konnte gezeigt werden, dass Mcl-

1 im Darm eine tumorsupprimierende Funktion innehat, was seine signifikant verringerte 

Expression in humanen kolorektalen Karzinomen erklärt.   

Im Hinblick auf mögliche Therapiestrategien für Patienten mit kolorektalem Karzinom, sprechen die 

vorgelegten Daten daher für die Verwendung von Bcl-xL/Bcl-2-spezifischen Inhibitoren. Ein erster 

Schritt in Richtung klinischer Anwendung wurde in dieser Arbeit durch die ex vivo Behandlung von 

vitalem, humanem Darmkrebsgewebe mit dem Bcl-xL/Bcl-2-spezifischen Inhibitor ABT-737 

gemacht. Nachfolgende Analysen zeigten, dass der Inhibitor in der Lage war die Viabilität von 

kolorektalen Karzinomzellen signifikant zu verringern. Da zudem gezeigt werden konnte, dass sich 

die Proliferation in Anwesenheit des Inhibitors nicht verändert, könnte sich die Inhibition von Bcl-

xL auch in Kombination mit klassischer Chemotherapie als interessanter Ansatz für weitere Studien 

mit der Ausrichtung auf klinischer Anwendbarkeit erweisen.  
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 INTRODUCTION 

1.1 The Intestine 

Anatomically, the mammalian intestine can be divided into the small intestine and the colon. 

Starting with its proximal end, the small intestine is further subdivided into duodenum, jejunum 

and ileum, whereas to colon comprises caecum, colon, rectum and anal canal. Over its entire length, 

the gut is lined with a single-layer epithelium, accomplishing the primary intestinal tasks of 

digestion and resorption of nutrients and water. In order to promote nutrient uptake in the small 

intestine, its surface area is dramatically enlarged by the formation of epithelial protrusions, termed 

villi. Each villus is surrounded by several tubular invaginations, the so called crypts of Lieberkühn. 

The colon, that is responsible for stool condensation, displays a flat luminal surface possessing only 

crypts. In addition to digestion and nutrient uptake, the epithelial cells consolidate to an effective 

barrier against pathobionts. With approximately four days in the small intestine and six days in the 

colon, the intestinal epithelium displays an extremely high turnover rate and shows thereby the 

highest self-renewing capacity among mature mammalian tissues1,2. This vigorous tissue renewal 

might be partly due to persistent assaults from microorganisms and the luminal content, leading to 

high rates of cell death3.  The loss of up to 1011 epithelial cells per day in humans is compensated 

by a small population of adult stem cells, which are located at the base of all crypts of Lieberkühn. 

The progeny of dividing stem cells are transit-amplifying cells, which divide 3-5 times until they 

finally differentiate into specialized epithelial cell types while migrating upwards along the crypt 

axis. If the cells reach the tip of the villus, they get detached from the extracellular matrix (ECM) 

and are shed into the gut lumen, where they die via anoikis4. The four major cell types originating 

by differentiation are absorptive enterocytes, which secrete hydrolytic enzymes in order to 

promote digestion and which are responsible for the absorption of nutrients, mucous-secreting 

goblet cells, hormone-producing enteroendocrine cells and Paneth cells, which secrete bactericidal 

substances like lysozyme and defensins. In addition, the intestinal epithelium contains a few other 

cell types, such as tuft cells, cup cells and M cells, but their precise functions are not very well 

understood until now5. Depending on their primary function, the different intestinal segments 

display varying cellular composition. Accordingly, the epithelium in the duodenum, where 

nutriments are decomposed, contains predominantly enterocytes, whereas goblet cells have a 

higher density in the ileum. Paneth cells are located in the entire small intestine but not in the colon. 

They are the only subset of differentiated cells which do not migrate upwards, but instead settle 

down to be closely associated with stem cells at the crypt base. Another difference between Paneth 

cells and other differentiated intestinal cells is their relative longevity with a turnover rate of 3-6 

weeks (Figure 1)6.
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Besides their function in innate 

immunity and antibacterial defense, 

Paneth cells are important for 

maintaining the stem cell niche. They 

express various niche factors, 

including EGF (epidermal growth 

factor), Wnt-3a and Notch ligands Dll1 

and Dll47. The balance of stemness 

and cellular differentiation is tightly 

regulated and gets controlled by four 

signaling pathways. 

The most important one in this 

context is the Wnt signaling pathway. 

In the absence of Wnt-protein ligands, 

the amount of β-catenin in the cells is 

low because it gets constitutively 

degraded. This process is mediated by 

a multiprotein destruction complex, 

comprising CK1α (serine/threonine 

kinases casein kinase 1 alpha) and 

GSK3 (glycogen synthase kinase 3) as 

well as the scaffold proteins APC 

(adenomatous polyposis) and axin. 

Subsequent to the complex-mediated 

phosphorylation of β-catenin, it is 

targeted for polyubiquitination and 

proteosomal destruction. In the canonical pathway, continuous phosphorylation of ß-catenin is 

terminated by binding of Wnt-protein ligands to their receptor complex, which is composed of a 

member of the Frizzled receptor family and co-receptors LRP5 or LRP6 (low density lipoprotein 

receptor-related protein)8. Hence, β-catenin accumulates in the cytoplasm and translocates into 

the nucleus, where it activates members of the DNA-binding protein family TCF/LEF (lymphoid 

enhancer-binding factor/T-cell factor) by displacing the co-repressor Groucho. The activated 

transcription factor enhances the expression of various target genes important for proliferation and 

the maintenance of stemness. Canonical Wnt signaling is amplified by Lgr5 (Leucine-rich repeat-

containing G-protein coupled receptor 5) and its close homologue Lgr4, which are a facultative part 

Figure 1: Structure and cellular composition of the intestinal epithelium. 
In the small intestine (upper panel), the surface area is enlarged by the 
formation of villi and crypts. At the crypt base, Lgr5+ stem cells are 
located, which are interspersed with Paneth cells. The 4+ stem cells can 
restore the stem cell compartment, subsequent to injury. The progeny 
of dividing stem cells are transit-amplifying (TA) cells, which differentiate 
into the various epithelial cell types (enterocytes, enteroendocrine cells, 
Tuft cells, Goblet cells and Paneth cells). If the cells reach the tip of the 
villus, they get detached from the extracellular matrix (ECM) and are 
shed into the gut lumen, where they die via anoikis. The colon (lower 
panel) displays a flat luminal surface, possessing only crypts. Here, TA 
cells differentiate into enterocytes, enteroendocrine cells, Tuft cells, and 
Goblet cells, whereas Paneth cells are absent in the colon. Image was 
taken with permission from Barker, Nat Rev, 2014.  
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of the receptor complex. The structure of Lgr5 with its seven transmembrane domains resembles 

the one of Frizzled receptors. Lgr5 binds the Wnt agonists R-spondin 1–4 (roof plate-specific 

spondin), resulting in full Wnt activation in intestinal stem cells9,10. The exclusive expression of Lgr5 

enables its application as marker for intestinal stem cells11. The second pathway being active in the 

stem cell niche is the Notch signaling pathway. The Notch receptor displays an extracellular ligand 

binding-, a transmembrane- and an intracellular domain. Binding of the ligands Dll1 and DII4, which 

are expressed on neighboring Paneth cells, induces proteolytic cleavage and release of the 

intracellular domain, which translocates into the nucleus where it modifies gene expression. If 

Notch signaling is interrupted, stem cells and TA cells preferentially differentiate into secretory cells 

at the expense of the absorptive cell population12. In order to keep the different cellular subsets 

balanced, some secretory precursor cells up-regulate DII1 on their own surface. In this way, 

surrounding TA cells experience active Notch signaling during differentiation, what finally leads to 

enterocyte development13. Stem cell proliferation is promoted by the mitogenic effect of EGF 

signaling. Upon ligand binding, the EGF receptor transmits the signal via the Mek/Erk (mitogen-

activated protein kinase kinase /extracellular signal-regulated kinases) signaling axis. Activated Erk 

subsequently phosphorylates transcription factors like c-myc and c-Fos, leading to the activation of 

a genetic program that supports proliferation14. Unlike the mentioned pathways, BMP (bone 

morphogenetic protein) signaling is active in the villus compartment. Binding of BMP to its receptor, 

induces mobilization and complex formation of members of the SMAD (mothers against 

decapentaplegic) protein family. Subsequent to their translocation into the nucleus, they repress 

stemness genes. The aberrant expression of the BMP inhibitor Noggin in villi, results in ectopic crypt 

formation, underlining the importance BMP signaling has for intestinal epithelial cell (IEC) 

differentiation15. 

Since the ablation of Paneth cells is not sufficient to terminate stem cell-driven tissue homeostasis 

in the intestine, there seem redundant sources for the production of niche factors. In the colon, 

where Paneth cells are generally absent, stem cell associated goblet cells might be the crucial niche 

components16. 

 

1.2 Colorectal Cancer 

1.2.1 Epidemiology, Classification and Treatment 

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers throughout the world, with 

an estimated incidence of 1.4 million cases per year. In addition, it is a main cause for cancer related 

death in humans17. Due to a higher prevalence of risk factors like obesity and smoking in developed 

countries, incidences are especially high in Australia/New Zeeland, Europe and Northern America 

https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Extracellular_signal-regulated_kinases
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and lowest in countries of South-Central Asia and Western Africa17. The noted increase in previously 

low-risk countries like Japan or Slovakia is most likely correlated with the adoption of western 

dietary and lifestyle18. Another reason for higher incidences in developed countries is the higher 

average age of western societies. 70 % of patients with CRC are diagnosed in an age of 50-80 years19. 

Besides sociodemographic and lifestyle factors, also disease-related factors like diabetes20 and 

inflammatory bowel disease21 increase the risk of intestinal tumor formation. Inherited forms of 

CRC, with known mutational patterns, such as Lynch syndrome (non-polyposis colon cancer) and 

FAP (familial adenomatous polyposis), account for only 3-5 % of all cases. The contribution of other 

genetic factors like single nucleotide polymorphisms (SNPs) and their interaction with 

environmental modalities is still not very well understood22. Despite high incidence rates, estimated 

mortality is decreasing in a large number of countries. This is most probably due to improvements 

in population screening and treatment23,24. Patient prognosis mainly depends on the tumor stage 

at the time of diagnosis. Compared to patients diagnosed with CRC in a localized stage, the presence 

of distant metastasis declines five-year survival rates from over 90 % to 12 %25. Due to the venous 

drainage, colon cancer metastasizes most often into the liver, whereas deep rectal cancer most 

commonly spreads into the lung. In rare cases, distant metastases can also affect bones and brain26. 

The general classification is done according to invasion depth at the primary tumor side (T stage), 

lymph node involvement (N stage) and the appearance of distant metastasis (M stage). In order to 

include not only the spreading of tumor cells, but also their malignancy, the UICC (Union 

Internationale contre le Cancer) society defined disease stages, which are all based on the TNM 

staging but slightly differ between tumor entities. For CRC, the UICC defined the following stages: 

UICC stage 0: Tumor in situ, which has no contact to vasculature or the lymphatic system. UICC 

stage 1: Tumor entered the connective tissue (T1) or even the musculature (T2), but lymph node 

and distant metastases are absent (N0, M0). UICC stage 2: Tumor reached the outer intestinal wall 

(T3) or already entered neighboring tissue (T4), whereas lymph node and distant metastases are 

still absent (N0, M0). UICC stage 3:  Lymph nodes, but not distant organs are affected (N1, M0). 

UICC stage 4: Occurrence of distant metastasis (M1)27.   

Dependent on the staging, therapeutic approaches are determined and range from surgical 

resection of tumors in early stages to chemotherapeutical treatment as (neo)adjuvant therapy of 

late stage tumors. Chemotherapeutic regimens often contain a combination of the pyrimidine 

analog 5-fluorouracil (5-FU)28 and the platinum-based agent oxaliplatin29, or a combination of 5-FU 

and the Topoisomerase-inhibitor Irinotecan30. Furthermore, classical chemotherapy can be 

accompanied by the administration of antibodies against EGFR (epidermal growth factor receptor) 

or against VEGF (vascular endothelial growth factor). Antibody-mediated blockage of EGFR leads to 

an inhibition of its downstream signaling, which normally induces cellular survival and 
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proliferation31. Capturing of VEGF prevents neo-angiogenesis, that is crucial for the survival of 

growing tumors. Patients with deep rectal carcinomas sometimes benefit from a neoadjuvant 

radiotherapy, that increases the chance of preserving the anal sphincter.   

 

1.2.2 Molecular Pathogenesis 

Most colorectal tumors occur in a sporadic manner and develop from premalignant lesions in the 

“adenoma-carcinoma sequence” (Figure 2). This model, first postulated by Vogelstein and co-

workers, describes the multistep process of malignant transformation and its characteristic driver-

mutations.  

An early event in CRC development is a mutation of the APC gene, occurring in more than 70 % of 

colorectal adenomas32.  Via destabilization of ß-catenin, APC acts as a negative regulator of the 

Wnt-signaling pathway33. Wnt target genes allow cell cycle progression and are normally activated 

in replicating stem cells and progenitor cells located at the crypt base. Their constitutive activation 

leads to continuous proliferation with subsequent cellular outgrowth.  

Other factors relevant for cellular growth and differentiation are the monomeric GTPase KRAS 

(Kirsten rat sarcoma viral oncogene homolog) and its downstream effector BRAF (v-Raf murine 

sarcoma viral oncogene homolog B).  

 

 

 

Figure 2: The adenoma-carcinoma sequence. During the course of malignant transformation, intestinal epithelial cells 
accumulate characteristic driver-mutations like the initial loss of APC (adenomatous polyposis coli) and gain-of-function 
mutations in KRAS or BRAF, leading to a continuous conveyance of pro-survival and proliferation signals. Later on, loss-
of-function mutations occur in the TP53 gene and chromosome 18q is frequently lost due to chromosomal instability 
(CIN). Microsatellite instable (MSI) CRCs are characterized by a deficient DNA mismatch repair (MMR) system. They often 
carry a slightly different set of mutations than CIN CRCs, with first alterations in the Wnt-signaling and a higher frequency 
of BRAF instead of KRAS mutations. Subsequently, altered microsatellites often occur in the genes coding for the TGFß 
receptor 2 (TGFBR2), the insulin-like growth factor 2 receptor (IGF2R) and Bax. Image was taken with permission from 
Walther et al., Nat Rev, 2009.    
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Approximately 30-40 % of colorectal tumors show mutated KRAS, leading to a permanent activation 

of the Mek/Erk signaling pathway34. 

The accumulation of driver mutations is often accompanied by chromosomal instability (CIN), 

depicted by aberrant chromosome numbers or structural changes. This process can lead to the loss 

of alleles (loss of heterozygosity), with the remaining ones often being hit by a mutation. 

Frequently, genes on the long arm of chromosome 18 (18q21) are affected. In this region the gene 

encoding for the transmembrane protein DCC (deleted in colorectal cancer) is located. Since it 

inhibits proliferation in the absence of its ligand Netrin-1, it has a conditional tumor suppressor 

function35. Another gene located on 18q encodes for SMAD4, which is a downstream target of the 

Mek/Erk pathway36. As described for KRAS mutations, activation of this signaling pathway promotes 

survival and proliferation. When it finally comes to the transition from the adenoma to the 

carcinoma stage, loss-of-function mutations in the TP53 (tumor protein p53) gene are common37. 

In case of DNA damage, the p53 protein induces cell cycle arrest in order to facilitate DNA repair or 

initiates cell death if the correction is not successful. Besides the adenoma-carcinoma sequence, 

two other pathways of genomic instability, namely microsatellite and epigenetic instability, have 

been reported in CRC.  

Microsatellite instability (MSI) is frequently caused by a deficient DNA mismatch repair (MMR)38. 

This mechanism senses and repairs errors in the nucleotide assembling, which can occur during 

DNA replication. Especially repetitive DNA segments, also known as microsatellites, are error prone 

due to slippage of the DNA polymerase. The frequency of instable microsatellites is therefore used 

as an indicator for defects in the MMR system and for further classification into microsatellite high 

(MSI-H: ≥ 30% of markers instable) and microsatellite low (MSI-L: < 30% of markers instable) 

tumors. Tumors with a proficient MMR are defined as being microsatellite stable (MSS). MMR 

deficiencies can occur sporadic or as a result of germline mutations in MMR genes like MLH1 (mutL 

homolog 1) or MSH2 (mutS homolog 2) 39. The latter one leads to Lynch syndrome development, as 

an inherited form of CRC40. Patients with MSI-H (MSI high) colorectal cancer have a better prognosis 

than patients with microsatellite stable tumors. This correlation is partly attributed to a higher 

immunogenicity of MSI tumors, resulting from a MMR-deficiency induced generation of frameshift 

antigens41. Therefore, MSI-H tumors often display a high density of tumor-infiltrating 

lymphocytes42. Currently a scoring system, taking type, distribution and density of tumor-infiltrating 

lymphocytes in account, is developed as refinement of the conventional TNM classification43. In a 

recent approach, T-cell function in MSI-H tumors is boosted by the application of immune 

checkpoint inhibitors. Especially the utilization of an inhibitor targeting the PD-1 (programmed 

death) pathway in Th1 cells, which normally decreases T-cell mediated cytotoxicity, seems 

promising44.  
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Epigenetic instability can cause changes in protein expression without altering the nucleotide 

sequence. Therefore, it has been proposed as an alternative mechanism of gene silencing in the 

course of malignant transformation. Promotor regions commonly contain repetitive CpG islands 

(Cytosine-Guanosin dinucleotide), to which methyl groups can be attached. Methylation of the 

promotor region typically represses gene transcription. Thus, tumor suppressor genes can be 

transcriptionally inactivated by promotor hypermethylation, defining the CpG island methylator 

phenotype (CIMP)45. CIMP in addition to an activating BRAF mutation characterizes a subclass of 

colorectal tumors typically found in the proximal colon46 and evolved from sessile serrated 

adenomas. These tumors frequently display high levels of microsatellite instability, provoked by 

exceeding MLH1 gene promotor methylation47.  

 

1.3 Programmed Cell Death 

First descriptions of the concept of naturally occurring cell death date back to the nineteenth 

century. In a monograph, published in 1842, Carl Vogt described cell death occurring in the 

notochord of metamorphic midwife toads48. Emanating from this observation it took more than a 

hundred years to perceive cell death as genetically determined and actively controlled cellular 

decay, termed programmed cell death (PCD) 49. In the 1970s the newly developed electron 

microscopy allowed Kerr, Wyllie and Currie to distinguish different cell death forms for the first 

time by means of their ultrastructural hallmarks50. They coined the word “apoptosis” to describe 

morphological changes displayed by cells which undergo programmed cell death. These cells 

display characteristics like cytoplasmic shrinkage, nuclear condensation (karyopyknosis) and 

membrane blebbing. “Necrosis”, by contrast, describes a mode of uncontrolled cell death, induced 

by acute cellular injury that leads to cellular swelling and rupture50.  

Closer investigation of signaling pathways contributing to PCD, revealed autophagy and necroptosis 

as additional modes of controlled cell death, apart from apoptosis. The remarkable complexity and 

fine control of cellular death, points to the importance PCD has for maintaining tissue homeostasis. 

Therefore, unbalanced cell death is a key factor in the development of divers pathologies. In 

addition, altruistic cell death is important during development of all multicellular organisms. In the 

course of vertebrate embryogenesis, for example, interdigital cells are removed by programmed 

cell death51. In the mature stage, exceeding cell death can cause neurodegenerative disorders like 

Parkinson´s or Alzheimer´s disease52. Insufficient cell death, on the other hand, can be responsible 

for autoimmune diseases or cancer development53. A better dissection and understanding of the 

molecular pathways responsible for cell death prevention in malignant tissues is hence a 

prerequisite for therapy improvement.  
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1.3.1 Apoptosis 

Among all modes of PCD, apoptosis is the most prominent and best studied one. It is a highly 

conserved process which can be triggered by a plenty of stimuli. These stimuli can be subdivided 

into external ones like binding of death ligands, such as TNFα (tumor necrosis factor alpha), and 

internal ones like exceeding DNA damage or protein aggregation in the cytoplasm. Depending on 

the kind of initiating trigger, apoptosis can therefore be executed via the extrinsic or the intrinsic 

signaling pathway. Both pathways depend on the activation of caspases which are the main players, 

responsible for amplifying the apoptotic signal and executing cellular destruction. The release of 

granzyme B-containing granules by cytotoxic T-lymphocytes (CTLs) or natural killer (NK) cells, 

represents a third mode of caspase activation. In humans, the caspase family contains 13 members 

which are expressed as inactive zymogens in almost all cells54,55. They belong to the class of cysteine 

proteases and cleave their substrate after aspartic acid residues, to what the name “c-aspase” 

refers to.  With regard to their function, caspases are broadly divided into apoptotic initiator 

(caspase 2, -8, -9, -10), apoptotic effector (caspase 3, -6, -7) and inflammatory caspases (caspase 1, 

-4, -5, -11, -12S/L). Caspase 14 expression is mainly confined to epithelial cells and seems important 

for keratinocyte terminal differentiation56. By contrast to inflammatory caspases, initiator and 

effector caspases induce and execute apoptosis as an immunologically silent mode of cell death. All 

caspases have a similar structure, comprising a pro-peptide followed by a C-terminal protease 

effector domain, containing a large and a small subunit. The pro-domain of the inflammatory 

caspases and of caspase 9 as initiator of the intrinsic apoptotic pathway, is known as “caspase 

activation and recruitment domain” (CARD)57. The pro-domain of caspase 8 and 10, as initiators of 

the extrinsic apoptotic pathway, contains “death effector domains” (DEDs)58. The zymogens get 

activated by proteolytic separation and subsequent close reassembly of the large and small subunit. 

In case of effector caspases, this cleavage is carried out by initiator caspases, whereas initiator 

caspases get auto-activated. Activated effector caspases orchestrate the demolition of the cell and 

thereby induce its characteristic phenotypical changes. Cleavage of actin microfilaments and 

microtubular proteins as major components of the cytoskeleton, contributes to membrane 

blebbing and retraction of the cell. Especially proteolytic activation of the Roh effector ROCK1 (Rho 

associated coiled-coil containing protein kinase 1), a regulator of actin cytoskeleton dynamics, 

seems important for this process59. Since the actin cytoskeleton has an additional role in 

maintaining the nuclear envelope, ROCK1 activation also initiates nuclear fragmentation60. This gets 

supported by the caspase-mediated disintegration of the nuclear lamina61. Cellular rounding and 

retraction is further promoted by the proteolytic degradation of adhesion molecules including β 

and γ-catenin as well as cadherins62,63. In addition, caspase activity leads to the loss of cytoplasmic 

membrane symmetry with subsequent exposure of phosphatidylserine (PS) on the membrane 
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surface. The newly exposed 

phospholipid serves as an uptake 

signal, facilitating the removal of 

apoptotic corpses by phagocytes64. 

Besides the induction of all these 

structural changes, activated 

caspases also shut-off essential 

housekeeping mechanisms and life-

supporting systems in the cell. In 

this context, one of the main 

processes is DNA condensation and 

fragmentation. It facilitates 

clearance and prevents the release 

of DNA into the extracellular space, 

what could provoke autoimmune 

responses65. Initial chromatin 

condensation is preluded by 

histone 2B (H2B) phosphory-

lation66. Since the responsible 

kinase MST1 (mammalian sterile20) 

needs proteolytic activation, this 

event is also caspase-dependent67. 

The final DNA disintegration is 

executed by the endonuclease CAD (caspase-activated DNase). Caspase -mediated cleavage of ICAD 

(inhibitor of caspase activated DNase) liberates CAD, which subsequently catalyzes the inter-

nucleosomal DNA fragmentation68. Other levels of cellular closedown are caspase-mediated 

degradation of factors important for transcription and translation69, as well as the fragmentation 

of cellular organelles, such as the Golgi apparatus and the endoplasmatic reticulum (ER). 

Destabilization of the Golgi seems to involve proteolysis of the stacking protein GRASP65 (Golgi 

reassembling and stacking protein)70. In late apoptotic stages, redistribution of the ER supports 

apoptotic bleb formation, which is important for chromatin enclosure71. Even though the 

mitochondrial network gets also dismantled during apoptosis, caspases seem to play a minor role 

in this process. Instead, conformational changes of two pro-apoptotic members of the Bcl-2 (B-cell 

lymphoma 2) protein family and their assembly into mitochondrial pores, appear to be responsible 

for mitochondrial fragmentation72. The formation of pores in the outer mitochondrial membrane 

Figure 3: Caspase-mediated cellular decomposition. During apoptosis, 
effector Caspases get activated, which then mediate the proteolytic 
shutdown of the cell. Nuclear fragmentation gets executed by cleavage of 
the nuclear lamina and the inactivation of ICAD (inhibitor of caspase 
activated DNase), which in turn releases the DNase CAD (caspase-activated 
DNase). Furthermore, active Caspases are required for the exposure of 
phosphatidylserine (PS) on the membrane surface and the proteolysis of 
adhesion proteins, both facilitating the removal of apoptotic corpses by 
phagocytes. Organelles like Golgi and ER get fragmented by cleavage of 
stacking proteins and by proteolysis of factors important for transcription 
and translation, protein synthesis gets terminated. Cleavage of cytoskeletal 
components and the Rho effector ROCK1 leads to membrane blebbing and 
the formation of apoptotic bodies. Together, the Caspase-mediated 
proteolytic events cause morphological changes which are characteristic 
for apoptotic cells. Image was taken with permission from Taylor et al., Nat 
Rev, 2008. 
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(OMM) and the following release of soluble proteins from the mitochondrial intermembrane space 

is called mitochondrial outer membrane permeabilization (MOMP) and it is the central step in the 

initiation of the intrinsic apoptotic signaling pathway.  

 

1.3.1.1 Intrinsic Apoptosis 

This mode of apoptotic cell death can be induced by a plethora of intracellular stressors, such as 

high amounts of reactive oxygen species (ROS), DNA damage, cytosolic Ca2+ overload or 

accumulation of misfolded proteins. Despite the heterogeneity of initiating stimuli, they all 

converge at the outer mitochondria membrane. There, all further events are orchestrated by 

members of the Bcl-2 protein family. The Bcl-2 gene was first discovered at the breakpoint region 

of a frequent chromosomal translocation in human B-cell follicular lymphomas, where its 

transcription becomes enhanced73,74.  In comparison to other oncogenes, Bcl-2 does not increase 

cellular proliferation but inhibit apoptotic cell death75. Later on, other family members sharing 

homologous domains with Bcl-2 (BH domains) have been discovered. With regard to their structure 

and function, three distinct subgroups can be defined.  

Members of the first subgroup, such as Mcl-1 (myeloid cell leukemia sequence 1), Bcl-xL (B-cell 

lymphoma extra-large) and Bcl-2 itself, display anti-apoptotic function. They share four homology 

domains (BH1-4) and are mainly integrated into the outer mitochondrial membrane where they 

maintain membrane integrity by directly inhibiting their pro-apoptotic relatives from the second 

subgroup. Pro-apoptotic proteins were originally 

described to contain three BH (BH1-3) domains but 

structure-based alignment with other Bcl-2 family 

members redefined the BH4 domain as a structural 

motif present in both pro- and anti-apoptotic 

members76.  The group of anti-apoptotic effectors 

comprises the pore-forming factors Bax (Bcl-2-

associated X protein) and Bak (Bcl-2 antagonist/ 

killer) as well as Bok (Bcl-2-related ovarian killer 

protein). Even though, the latter one displays 

similar domain architecture to Bax and Bak, there 

is only little evidence that it is also an effector 

showing resembling function. Under physiological 

conditions, Bax and Bak are sequestered and 

thereby inhibited by their anti-apoptotic kin. BH3-

Figure 4: Subgroups of the Bcl-2 protein family. With 
regard to their structure and function, three subgroups 
have been defined. The pro- and anti-apoptotic groups 
share four Bcl-2 homology (BH) domains, whereas the 
BH3-only proteins only possess the third out of four 
homology domains. Most family members additionally 
contain a transmembrane (TM) domain, which allows 
their attachment to mitochondria. Image was taken 
with permission from Czabotar et al., Nat Rev, 2014. 
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only proteins, such as BID (Bcl-2-interacting domain death agonist), BIM (Bcl-2-interacting mediator 

of cell death) and BAD (Bcl-2 antagonist of cell death), build the third subgroup. They only possess 

the third out of four homology domains, as their name indicates. Since BH3-only proteins are 

transcriptionally or posttranscriptionally induced by cytotoxic signals, they work like a molecular 

switch, sensing and integrating the cellular stress level. If a critical threshold is reached, BH3-only 

proteins induce mitochondrial activation by two mechanisms77. They either can bind to and thereby 

neutralize anti-apoptotic proteins78 or directly activate the pro-apoptotic ones79. For neutralization, 

BH3-only proteins bind with an amphipathic helix, located in their BH3 domain, to the hydrophobic 

groove of anti-apoptotic proteins80. Due to slight differences in their BH3 domains and in the 

binding grooves of their anti-apoptotic partners, some BH3-only proteins like BAD and NOXA are 

selective for specific anti-apoptotic proteins, whereas others like BIM, PUMA and tBid exhibit a 

broader range of action81. Besides the indirect activation of Bax and Bak via inhibition of anti-

apoptotic proteins, some BH3-only proteins (e.g. BIM and BID) are capable to directly induce Bax 

and Bak oligomerization and thereby mitochondrial activation82. Generally, Bak is located at the 

outer mitochondrial membrane, positioned by its transmembrane domain83, whereas Bax shows a 

primarily cytosolic distribution with a smaller subset being also associated with mitochondria. 

Apoptotic stimuli shift the ratio of soluble and membrane bound Bax, leading to its accumulation 

at the outer mitochondrial membrane84. Here, the formerly inert monomers Bax and Bak exhibit 

conformational changes and build membrane perforating homo-oligomers. Despite 

crystallographic studies, the exact molecular structure of the emerging pores is unknown so far85. 

Since the loss of one pro-apoptotic effector induces no phenotype, the roles of Bax and Bak for 

MOMP induction seem largely redundant. By contrast, a combined loss of Bax and Bak leads to 

apoptosis inhibition in many cell types and impairs proper tissue development86,87.  

In most cases, permeabilization of the outer mitochondrial membrane is a point of no return, since 

it has multiple lethal consequences. Because the membrane potential (Δψm) cannot longer be 

maintained, the depending process of mitochondrial ATP synthesis gets aborted. In addition, 

apoptosis-promoting factors, such as cytochrome c, AIF (apoptosis-inducing factor), endonuclease 

G, SMAC (second mitochondria-derived activator of caspases)88 and HtrA2 (high temperature 

requirement protein A2), get released from the intra-membrane space (IMS). Both dissipation of 

Δψm and loss of cytochrome c, leads to the inhibition of the respiratory chain and subsequently to 

overproduction of ROS. In the cytosol, cytochrome c fosters conformational changes of the soluble 

factor APAF1 (Apoptotic protease activating factor 1), leading to its assembly and the formation of 

a heptameric structure, called apoptosome. The apoptosome recruits pro-caspase 9 and induces its 

activation through conformational changes or autocatalytic cleavage89,90 and thereby initiates the 

proteolytic cascade that ends in cellular decomposition91. But even in the absence of caspase 
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activity, MOMP induces cell death, albeit with slower kinetics than in the caspase-driven mode. In 

this context, AIF and endonuclease G play an important role, since they are capable to translocate 

into the nucleus and mediate DNA fragmentation in a caspase-independent manner92,93. SMAC and 

HtrA2 promote apoptosis via inhibiting the anti-apoptotic function of members of the IAP 

(inhibitors of apoptosis) protein family, such as XIAP (X-linked IAP), which normally bind and 

thereby neutralize certain caspases94,95. The pro-apoptotic mechanisms induced by MOMP display 

a notable redundancy and their necessity and relative contribution in the execution of intrinsic 

apoptosis seem to vary in different organismal and cellular scenarios.  

 

1.3.1.2 Extrinsic Apoptosis 

This apoptotic modality can be provoked by the binding of lethal ligands, such as FAS ligand (FASL 

also known as CD95L), TNFα and TRAIL (TNF-related apoptosis inducing ligand also known as 

TNFSF10) to their respective death receptors. The six death receptors described until now are FAS 

(APO-1/CD95)96, TNF-R1 (CD120a)97, TRAIL-R1 (DR4)98, TRAIL-R2 (APO-2/DR5/KILLER/TRICK2)99, DR3 

(APO-3/LARD/TRAMP/WSL1)100 and DR6101. Together they build a subclass of the tumor necrosis 

factor receptor superfamily, whose members mediate diverse processes like proliferation, 

differentiation and cell death102. Characteristically, death receptors display an extracellular ligand-

binding domain, a transmembrane domain and an intracellular protein-protein interaction domain, 

called death domain (DD).  The DD comprises a conserved sequence of 80-100 residues which form 

a bundle of six α-helices103,104. In comparison to death receptors, dependence receptors dispatch 

pro-apoptotic signals in the absence of their ligand. An example for this class is the netrin-1 receptor 

DCC, which is frequently lost during malignant transformation of intestinal cells, as the name 

indicates105,106.  

The probably best characterized death receptor-mediated signaling cascade is the prototypic 

pathway elicited by FASL binding. With the discovery of FAS (TNF receptor superfamily member 6) 

in 1989, the first surface receptor, capable of inducing cell death, was found107,108. In the absence 

of its ligand, FAS assembles to generate loose trimeric complexes which get stabilized upon ligand 

binding. FASL gets primarily expressed as a surface protein on cytotoxic T-cells and NK-cells, but a 

soluble version can be produced by its MMP7 (matrix metalloproteinase 7) -mediated truncation109. 

Subsequently to ligand binding, a conformational change of the receptor subunits gets initiated, 

allowing the assembly of a multiprotein complex called DISC (death inducing signaling complex) at 

the cytosolic tail of the receptor. Via its own DD, the adaptor molecule FADD (FAS-associated 

protein with a DD) gets recruited and bound to the activated receptor110. In addition to its DD, FADD 

contains a death effector domain (DED) which in turn is important for the recruitment and 

sequestering of pro-caspase 8 or -10 to the resulting supramolecular complex where they get 
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autoproteolytically activated111,112. The following cascade exhibit varieties in different cell types. In 

“type I cells”, such as lymphocytes, the activated initiator caspases directly mediate the proteolytic 

maturation of effector caspase 3 and -7 without mitochondrial commitment. In “type II cells” like 

hepatocytes and pancreatic β cells, activated caspase 8 cleaves and thereby activates the BH3-only 

protein BID 113. tBID (truncated BID), as the emerging cleavage product, bridges the extrinsic and 

the intrinsic apoptotic pathway by fostering mitochondrial membrane permeabilization114. In 

contrast to type II cells, which depend on mitochondrial activation, type I cells can also show MOMP 

but they do not rely on it for proper cell death execution.  

c-FLIP (cellular FLICE/caspase-8-inhibitory protein) can inhibit death receptor stimulated apoptosis 

by binding to the DISC via its own DED whereby pro-caspase 8 binding is competitively inhibited. c-

FLIP is expressed as long (c-FLIPL), short (c-FLIPS), and c-FLIPR splice variants, which have been shown 

to even upregulate cytoprotective and pro-survival signaling proteins including Akt (also known as 

protein kinase B), Erk and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells)115. 

Subsequent to strong receptor stimulation or in presence of high c-FLIPS and c-FLIPR levels, c-FLIPL 

can also act in a pro-apoptotic manner by promoting pro-caspase 8 activation116. Previous to auto-

proteolytic activation, pro-caspase 8 shows a very restricted substrate range, including only itself 

and c-FLIP. Two pro-caspase 8-mediated cleavage products of c-FLIP, namely p43-FLIP and p22-FLIP, 

have been reported. They both induce NF-κB signaling by activating the enzyme IKK (IκB kinase)117. 

IKK-mediated phosphorylation of IκB (inhibitor of NF-κB) leads to its degradation and the release of 

NF-κB, which subsequently translocates to the nucleus. In its role as transcription factor, NF-κB 

upregulates the expression of anti-apoptotic proteins, such as Bcl-2118, c-FLIP119 and IAPs120.    

Whereas ligand binding to TRAIL-R1 and TRAIL-R2 induces events similar to those following FAS 

activation, stimulation of TNF-R1 (TNF receptor 1) leads to the recruitment of a slightly different set 

of proteins. First of all, the adaptor molecule TRADD (TNF-R associated death domain) and the 

kinase RIP1 (receptor interacting serine/threonine kinase 1) get recruited to the DD of the receptor. 

TRADD then binds TRAF2 (TNF-R associated factor 2), which in turn recruits cIAP1 and cIAP2 (cellular 

inhibitor of apoptosis). In the emerging supramolecular complex, called “complex I” (or TNF-R1 

signaling complex), RIP1 gets polyubiquitinated by these two. Subsequently, IKK and its activator 

TAK1 (TGF-beta activated kinase 1) get recruited to the newly synthesized, Lys63‑linked 

polyubiquitin chain, what finally leads to the induction of the NF-κB signaling pathway121. In a 

process, which is not yet fully understood, a second complex assembles in the cytoplasm, 

temporally following complex I formation. This so called “complex II” contains TRADD and TRAF2 

but not the receptor itself anymore. Via the DD of TRADD, FADD gets recruited, what is followed by 

binding of other DISC components, such as pro-caspase 8 and -10 as well as c-FLIP122. Since the 

signaling transmitted by complex I increases the expression of pro-survival factors like c-FLIP via 
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NF-κB activation, complex II-induced cell death is normally prevented. Only if complex I is 

prematurely decomposed, TNF-R1 signaling culminates in apoptosis execution123.  

 

1.3.2 Autophagy 

Macroautophagy (hereafter referred to as autophagy) is an evolutionary highly conserved catabolic 

process, which allows cells to recycle excess or dysfunctional content and refuel energy reservoirs. 

The concept relies on the sequestration and engulfment of cellular content by double-membrane 

vesicles, called autophagosomes. In a second step, autophagosomes fuse with lysosomes and in the 

acidic milieu the emerging autolysosomes provide, their cargo gets degraded by hydrolases. 

Autophagy gets classically induced by starvation or nutrient deprivation and plays thereby a 

cytoprotective role under unfavorable conditions. On the other hand, dysregulated or excessive 

induction of autophagy may lead to cell death. Due to the high relevance autophagy genes have for 

cell death and other fundamental processes, such as proliferation and immune response, it has 

been associated with various pathologies, including cancer, neurodegenerative disorders and 

autoimmune conditions124.  

Even though the term “autophagy”, what literally means self-eating, was coined already in the 

sixties by the Nobel Prize-winner de Duve, understanding of the exact molecular processes has 

begun only a decade ago. Since then, more than 30 autophagy-related genes (Atg) have been 

discovered in yeast (mainly Saccharomyces cerevisiae), followed by the identification of respective 

homologues in higher eukaryotes125. A subset of these Atg proteins, called core molecular 

machinery, is essential for autophagosome formation and comprises distinct groups: The ULK 

complex (unc51-like kinase), which is responsible for autophagy induction, the PI3KC3 complex 

(class III phosphatidylinositol 3-kinase), which is important for membrane nucleation, Atg9 and 

VMP1 (vacuole membrane protein 1), which probably recruit lipids to the isolation membrane and 

two ubiquitin-like conjugation systems, which are necessary for autophagosomal membrane 

expansion and vesicle closure126. All these different complexes get recruited to the side of 

autophagosome formation, termed phagophore assembly side (PAS), where pro-autophagic signals 

converge at the level of mTORC1 (mammalien target of Rapamycin complex 1). If amino acids and 

growth factors are available, the PI3KC1 complex (class I phosphatidylinositol 3-kinase) activates 

mTORC1, which then represses the ULK complex by direct interaction127. In the opposite scenario, 

declining ATP/AMP ratios get sensed by AMPK (AMP-activated protein kinase) which then activates 

the ULK complex directly by phosphorylation and indirectly by suppressing mTORC1 activity. The 

ULK complex consists of Ulk1/2, Atg101, FIP200 (focal adhesion kinase family interacting protein of 

200 kD) and Atg13, with the latter ones being required for Ulk1 localization to the emerging 

phagophore128. Phagophores develop most frequently at the contact sites between the 
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endoplasmatic reticulum and mitochondria129. But other membranes and organelles like the 

nuclear and the cytoplasmic membrane as well as the Golgi apparatus may also be a source of lipids 

for autophagosome formation130. If the ULK complex is active under nutrient-deficient conditions, 

it recruits the PI3KC3 complex to the isolation membrane131. This complex consists of Beclin-1, 

Vps34 (vacuolar protein sorting 34) and Vps15. Upon stimulation, Vps34 produces phosphatidyl 

inositol 3-phosphate, which is necessary for the nucleation of the phagophore131. Via binding to the 

BH3-domain of Beclin1, the anti-apoptotic proteins Bcl-2, Bcl-xL and Mcl-1 are capable of inhibiting 

autophagy induction, while their anti-apoptotic function stays unaffected132. Thus, BH3-only 

proteins not only induce apoptosis, but also enhance the autophagic flux by disrupting the binding 

between Beclin-1 and their anti-apoptotic relatives (Figure 5). Two factors also important for 

autophagosome formation are the transmembrane proteins Atg9 and VMP1. Atg9 is normally 

located in the Golgi network and late endosomes and VMP1 in the plasma membrane but upon 

autophagy induction, both factors colocalize with the autophagosomal marker proteins Beclin-1 

and LC3 (microtubule-associated protein light chain 3). VMP1 most likely supports the recruitment 

of Beclin-1 and other components of the PI3KC3 complex to the phagophore. Its overexpression is 

sufficient to induce autophagy even under nutrient-rich conditions133. Atg9 cycles between the 

Golgi, endosomes and autophagosomes, potentially contributing to the delivery of lipids for 

autophagosomal membrane formation134. 

For the subsequent step of membrane 

elongation, two ubiquitin-like conjugation 

systems, both of which contain Atg7, are 

required. In the first conjugation system, 

sequential reactions by the E1-like enzyme 

Atg7 and the E2-like enzyme Atg10 lead to 

the conjugation of Atg12 and Atg5, which 

subsequently form a complex with Atg16L1 

by non-covalent binding135. In the second 

complex, the conjugation partner LC3 needs 

first to be cleaved at its C terminus by Atg4. 

Cleavage leads to the exposure of a glycine 

residue, which is conjugated to 

phosphatidylethanolamine (PE) in a 

successive reaction, mediated by Atg7 and 

the E2-like enzyme Atg3136. The lipidated form 

of LC3, termed LC3 II, stably associates with 

Figure 5: Anti-apoptotic Bcl-2 proteins inhibit autophagy. Via 
binding to the BH3-domain of Beclin-1, Bcl-2, Bcl-xL and, to a 
lower extend, Mcl-1 inhibit autophagy induction. Thus, BH3-
only proteins as well as BH3 mimetics are able to enhance the 
autophagic flux by disrupting the binding between Beclin-1 and 
their anti-apoptotic relatives. The BH3-only protein BIM seems 
an exception, because it sequesters and thereby mislocalizes 
Beclin-1. Image was taken with permission from Marino et al. 
Nat Rev, 2014. 



INTRODUCTION 

 

 

 26 

the autophagosomal membrane. Since LC3 lipidation is considered to be a hallmark of 

autophagosome formation, the ratio of cytosolic LC3 (LC3 I) and membrane bound LC3 II provides 

information about autophagic flux intensity137. In mammals, the LC3 orthologs GATE-16 (Golgi-

associated ATPase enhancer of 16 kDa) and GABARAP (gamma-aminobutyric-acid-type-A-receptor-

associated protein), are also conjugated to PE and localize on the expanding phagophore138. The 

Atg12-Atg5 conjugate acts as an E3-like enzyme in the LC3 conjugation system, promoting Atg3 

substrate specificity139. Consequently, defects in the first conjugation system simultaneously lead 

to insufficient LC3 lipidation140. The molecular function of the LC3–PE conjugate seems associated 

with hemifusion of autophagosomal membranes. Since LC3-deficient cells exhibit smaller 

autophagosomes than wild-type cells, this process seems to be required for determining 

autophagosomal size141.  

Autophagic cargo is often labeled by Lys63‑linked polyubiquitin chains, which can be bound by a 

variety of adaptors, such as sequestosome 1 (SQSTM1 also known as p62). These adaptor molecules 

contain a LC3-interacting region (LIR), which specifically interacts with LC3 and its orthologs. Thus, 

organelles and proteins destined for degradation, get directed to nascent autophagosomes.  Since 

p62 and other adaptors are decomposed together with the normal cargo, their abundance enables 

an indirect measurement of the autophagic flux137. In the final stage, the autophagosomal 

maturation, autophagosomes fuse with lysosomes to form autolysosomes where the cargo gets 

degraded in order to regenerate nutrients. If subsequently the ATP/AMP ratio increases, mTOR 

(mechanistic target of rapamycin) gets reactivated and start to attenuate autophagy. In addition, 

mTOR activity generates proto-lysosomal vesicles that seclude from autolysosomes to restore 

lysosomal homeostasis in the cell142.  

The autophagic process gets induced by stimuli, such as misfolded proteins, exceeding intracellular 

Ca2+ concentrations and hypoxia, which would also be capable of initiating apoptosis. Hence, 

autophagy is often the last attempt to rescue a cell, but cell death is induced if the level of stress 

exceeds a critical duration or reaches a certain intensity threshold. Due to this, the mere occurrence 

of autophagosomes in dying cells is not conclusive for an autophagic cell death (ACD). Real ACD can 

be prevented by autophagy inhibition and final cell death events are mediated by an increased 

autophagic flux instead of the apoptotic or necroptotic machinery143. Studies in mice suggest, that 

ACD has no essential role in mammalian development and tissue homeostasis but it seems to 

contribute to pathological or drug‑induced cell loss144–146. 

 

1.3.3 Necroptosis 

Originally, necrosis was regarded as an uncontrolled mode of cell death, accidentally induced by 

physiochemical disruptions and mechanical traumata. However, recent studies identified several 
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genetically controlled and tightly orchestrated modes of regulated necrosis147,148, from which 

necroptosis is the best studied one. Necroptosis can be induced by several triggers, including 

genotoxic stress like alkylating DNA damage149 and cytotoxic agents. The ligation of death 

receptors, such as FAS and TNF-R1, is also capable of inducing necroptosis, if caspase 8 activity is 

inhibited at the same time150. Ligation of the TNF-R1 elicits prototypic necroptotic signaling, which 

depends on the two key factors RIP1 and RIP3.  

Upon ligand binding, complex I assembles at the cytosolic receptor tail and the present cIAPs 

mediate Lys63‑linked polyubiquitination of RIP1. The subsequent activation of NF-κB, upregulates 

the transcription of anti­apoptotic genes such as TNFAIP3 (TNFα-induced protein 3, also A20) and 

c-FLIPL. In a negative feedback loop, TNFAIP3 mediates polyubiquitination of RIP1 with Lys48‑linked 

chains, what assigns it for proteasomal degradation. By contrast, CYLD (cylindromatosis) removes 

the Lys63‑linked polyubiquitin chains from RIP1, leading to the dissociation of RIP1 from the 

receptor and the formation of a cytosolic DISC (complex II), comprising RIP1, RIP3, TRADD, FADD, 

pro-caspase 8 and c-FLIP151. Since the deubiqitination of RIP1 changes its signaling function from 

pro-survival to pro-death, CYLD acts as a molecular switch, determining cells fate upon TNF-R1 

stimulation. If pro-caspase 8 is present in complex II, it gets autoproteolytically activated and this 

finally leads to cell death execution via the extrinsic apoptotic signaling pathway.  

In the absence of pro-caspase 8 or when it is inactivated, RIP1 associates with RIP3, resulting in 

their auto- and transphosphorylation and formation of a microfilament­like complex, termed 

necrosome152. Accordingly, necroptosis implementation can be abrogated by targeting the kinase 

domain of RIP1 with the inhibitor necrostatin 1. This compound selectively prevents the interaction 

between RIP1 and RIP3, but spares the pro‑survival role of RIP1 in the NF‑κB signaling pathway153. 

Phosphorylation of human RIP3 on Ser227 (or Ser232 in mice) leads to the recruitment of MLKL 

(mixed‑lineage kinase domain-like protein) and its RIPK3-mediated phosphorylation (pMLKL). 

pMLKL assembles to oligomers, which subsequently translocate to the plasma membrane in order 

to form membrane disrupting pores by binding to PIP (phosphatidylinositol phosphates). The 

following influx of Na+ and Ca2+ leads to an osmose-based increase of intracellular pressure, that 

finally culminates in membrane rupture154,155.  

Since neither RIP3-/- nor MLKL-/-  mice display developmental or homeostatic defects, necroptosis 

seems to play only a minor role in this context, probably as a back-up system if caspases are 

inhibited. By contrast, the response to various virus infections relies on proper necroptotic 

signaling. Compared to apoptosis, necroptosis is an immunologically conspicuous process, which 

mobilizes the immune system. Hence, vaccinia virus infected mice succumb to infection more 

rapidly if they lack RIP3152. 
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1.4 Knockout Mouse Models 

The generation of knockout mice by either transgenic or gene-targeted approaches allows detailed 

analyses of protein functions in vivo. Since the constitutive deletion of a gene can cause prenatal 

lethality or induce various phenotypes in multiple tissues, spatial or temporal control of gene 

deletion is useful under some circumstances. For this purpose, the Cre/loxP system is applied, 

allowing conditional deletion of the target gene156. A loxP (locus of crossover in P1) site is a 

nucleotide sequence that comprises a core sequence of 8 base pairs, which determines the 

orientation, and two flanking palindromic repeats of 13 base pairs each. The Cre (creates 

recombination) recombinase is an enzyme that belongs to the protein family of integrases and is 

derived from the bacteriophage P1. It recognizes the specific sequence of loxP sites and is able to 

catalyze DNA recombination between two loxP sites157. Depending on their directionality, the 

intermediate DNA segment gets either excised or inverted. The Cre recombinase is naturally not 

existent in mammals and needs transgenic expression in mice. Via choosing a tissue-specific 

promotor for the respective gene, expression of the Cre recombinase can be spatially restricted. If 

such a Cre expressing mouse line, is crossbread with a strain harboring the gene of interest flanked 

by two loxP sites with equal orientation (floxed gene), some of the resulting offspring will carry both 

the floxed gene and the Cre-expressing transgene. Further crossbreeding of this progeny finally 

leads to the generation of mice with a tissue-specific knockout, in case the gene of interest was 

homozygously floxed158. Via fusing the Cre recombinase with a mutated ligand-binding domain of 

the estrogen receptor (CreER), Cre activity can be temporally controlled. In the absence of its ligand 

tamoxifen, CreER is trapped in the cytosol and thus inactive. The treatment of mice with tamoxifen 

induces translocation of CreER into the nucleus and the subsequent excision of floxed genes159. 

Intestine specificity of a knockout can be reached by choosing the regulatory region of the murine 

Villin gene as promotor in charge, being responsible for expression of the Cre recombinase (VilCre). 

Studies with a VilCre reporter mouse strain revealed that genetic recombination of target genes, 

and thus Cre expression, gets initiated at day 12.5 of embryogenesis and that it is maintained during 

entire adulthood. Moreover, the application of a tamoxifen-dependent VilCre reporter mouse line 

(VilCreER) showed a high persistence of the recombined locus, subsequent to tamoxifen treatment 

of the mice. Since intestinal epithelial cells have particular high turnover rates, this indicates that 

intestinal stem cells get targeted as well160.  

 

1.4.1 Knockout Mice of Bcl-2 Family Members 

Genetically engineered mouse models have been a key biological tool for the definition and 

understanding of different cell death subroutines, going far beyond the morphology-based 
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differentiation of cell death modalities, used in the beginning. Furthermore, the possibility of 

spatiotemporally controlled gene deletion enabled researchers to accurately dissect the role of 

specific cell death-related proteins for development, tissue homeostasis and pathologic processes. 

Anti-apoptotic Bcl-2 proteins: The constitutive deletion of both Mcl-1 and Bcl-xL results in embryonic 

lethality. Mcl1–/– embryos die at a very early time point because they fail to implant in utero. 

Interestingly, this is not due to an increased apoptosis rate, but rather to a delayed maturation of 

the blastocyst, indicating additional roles of Mcl-1 beyond cell death regulation161. By contrast, Bcl-

xL
–/– embryos survive until day 13.5 of embryogenesis and die from cell death-related defects in 

hematopoiesis and neuronal development162. Although Bcl-2–/– mice are viable, they display growth 

retardation and a short overall survival of only 1-2 month163. They show immune deficiencies due 

to apoptotic involution of thymus and spleen and get gray fur because of an inefficient melanin 

synthesis. Finally, Bcl-2–/– mice succumb to polycystic kidney disease, caused by defective renal 

epithelial cells164. Even though there is remarkable endogenous expression of Bcl-2 in the colonic 

stem cell region, its loss seems to have only limited effects on intestinal tissue homeostasis. One 

study showed an increased amount of cell death events at the base of colonic crypts, whereas cell 

death levels in the small intestine were unaffected165. The remaining two anti-apoptotic proteins 

A1 and Bcl-w, seem to play only subsidiary roles for development and tissue homeostasis. In 

contrast to humans, mice carry four genes encoding A1. A1A–/– mice are essentially normal, except 

of increased apoptosis rates of their granulocytes and mast cells cultured ex vivo166. Bcl-w-deficient 

males display insufficient spermatogenesis and are therefore sterile, but apart from this Bcl-w –/– 

mice are developmentally normal167. 

Pro-apoptotic Bcl-2 proteins:  Neither Bax–/–  nor Bak–/– mice display severe developmental or 

homeostatic deficiencies. Bax-deficient male mice are sterile due to a defect in sperm cell 

differentiation and both gender show a slight increase in the number of neurons and a mild 

lymphoid hyperplasia, but otherwise they are normally developed and viable168. The only 

phenotype shown by Bak–/– mice, is a mild platelet hypertrophy169. By contrast, the combined loss 

of Bax and Bak causes aberrant survival of cells which are normally eliminated during 

embryogenesis and thereby defects like interdigital webs, an imperforate vaginal canal and 

exceeding numbers of lymphoid and myeloid cells. A remarkable subset of Bax/ Bak double 

knockout mice die prenatally or directly after birth, indicating a high redundancy in the activity 

profile of Bax and Bak87,170.  

BH3-only proteins: BH3-only proteins can induce apoptosis by either neutralizing anti-apoptotic 

proteins78 or by activating pro-apoptotic ones. The knockout of BIM, PUMA or BID, which are 

important for the neutralization of anti-apoptotic proteins, results in the development of stronger 

phenotypes than the loss of BAD, BIK, HrK (activator of apoptosis harakiri), BMF or NOXA, which 
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promote the activity of pro-apoptotic proteins. Mice displaying a deficiency of one of the activating 

BH3-only proteins are essentially normal with regard to development, survival and fertility. By 

contrast, PUMA is crucial for cell death induction subsequent to a variety of apoptotic stimuli, 

including p53-dependent and -independent ones171,172. Furthermore, the loss of PUMA renders 

mice more resistant to DSS (dextran sodium sulfate)-induced colitis and reduced apoptosis of 

intestinal epithelial cells173. BIM–/– mice display a hyperplasia of lymphoid and myeloid cells, what 

normally results in the development of a severe autoimmune disease, to which the mice finally 

succumb174. Bid seems most important for the extrinsic apoptosis in “type II cells” like hepatocytes, 

in which proper cell death execution requires mitochondrial activation.  Consistently, Bid–/– mice 

are resistant to Fas-induced hepatocellular death and fatal hepatitis175. 

 

1.4.2 Intestine-specific Knockout of Cell Death- and Inflammation-related Proteins 

Apoptosis: Intestine-specific deletion of caspase-3 as the most important effector caspase, has no 

effect with regard to development, cell death rates or morphology of the intestine. This might be 

due to non-apoptotic cell death pathways, which get activated when caspase-dependent pathways 

fail176. In addition, the relative irrelevance of caspase-3 for intestinal tissue homeostasis could be 

also explained by the hypothesis that shedding of intestinal epithelial cells is a rather passive 

process induced by spatial density. By contrast, mice deficient for caspase-8 or FADD, as two central 

factors in the extrinsic apoptotic signaling pathway, display spontaneous development of terminal 

ileitis and colitis, accompanied by loss of Paneth cells, reduction of goblet cells, lymphocyte 

infiltration and enhanced cytokine levels177,178. The fact that the loss of an apoptosis-initiating 

caspase leads to increased epithelial cell death, can be explained by the necroptosis inhibiting 

function of caspase-8. It has been demonstrated that partial caspase-8 activity, which is too weak 

for apoptosis induction, is sufficient for necroptosis prevention, mediated by RIP1 cleavage179,180. 

Concordantly, dying cells in intestine-specific caspase-8-/-or FADD-/- mice display morphological 

characteristic, such as organelle swelling and absent chromatin condensation, being typical for a 

necrotic cell death. This shows that caspase-8 activity needs to be tightly controlled in both 

directions, in order to maintain intestinal tissue homeostasis. The intestine-specific deletion of c-

FLIP, as key regulator of caspase-8 activity, results in cell death induction, lymphocyte infiltration 

and severe weight loss181. The initial cellular response to TNF-R1 stimulation is survival-promoting 

NF-κB signaling. The disturbance of this signaling pathway by deletion of components of the IKK 

complex (IKK1, IKK2, NEMO/NF-κB essential modulator) or the IKK complex activating kinase TAK 1 

(TGF-β-activated kinase 1) in intestinal epithelial cells, results in cell death induction as default 

cellular response to TNF and the development of spontaneous colitis182,183. Intestinal TAK 1 deletion 

even leads to direct postnatal lethality, caused by intestinal bleeding184. The intestine-specific loss 
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of Stat3, as a possible target of NF-κB, renders mice more susceptible towards chemically induced 

colitis and the respective animals show due to increased apoptosis rates, defects in epithelial 

restitution185,186. 

Necroptosis: A recent study reported elevated levels of RIP3 and MLKL in children with 

inflammatory bowel disease (IBD)187. Until today, no intestine-specific RIP3 or MLKL knockout 

mouse lines have been generated. However, mice with a constitutive deletion of RIP3 or MLKL are 

essentially normal with regard to development, survival and fertility188,189. Only if challenged by 

vaccinia virus infection, RIP3-/- mice display an insufficient inflammatory response152. By contrast, 

deletion of RIP1 in intestinal epithelial cells, leads to caspase-8 mediated apoptosis and 

spontaneous development of severe intestinal inflammation, resulting in a short overall survival190. 

Since RIP1 and caspase-8 negatively regulate each other, the phenotype can be rescued by 

additional knockout of caspase-8 in IECs.  

1.5 Aim of this Work 

Colorectal cancer is one of the most frequently diagnosed cancers throughout the world, with 

especially high incidences in developed countries17. In addition, it is a main cause for cancer related 

death in humans. Despite substantial progress in the development of targeted therapies, patients 

with metastasized CRC still face a poor prognosis191. Since cell death avoidance is a classical hallmark 

of cancer, the frequently shown overexpression of anti-apoptotic Bcl-2 proteins in diverse tumor 

entities is comprehensible192,193. In CRC, high Bcl-xL expression has been shown to correlate with 

lower tumor differentiation and poorer overall patient survival194. In contrast, high Bcl-2 levels seem 

to correlate with a favorable clinical outcome195. Since anti-apoptotic proteins have always been 

described as being redundant, with regard to mitochondria activation, the mentioned findings are 

contradicting and underline the necessity of a better understanding of their relevance and 

commitment in CRC. There is growing evidence that anti-apoptotic proteins play also a role in other 

cellular processes important for cancer initiation and progression, which might provoke the 

reported differences. For instance, Mcl-1 has been shown to inhibit cell cycle progression via 

binding of PCNA (proliferating cell nuclear antigen)196 and CDK1 (Cyclin depending kinase 1)197. In 

addition, it has been implicated in DNA damage repair198, what further enhances the probability of 

Mcl-1 having a tumor suppressor role besides its cell death-preventing function.  

In a first step, this study aimed at evaluating the expression of anti-apoptotic proteins in human 

intestinal mucosa, in primary colorectal tumors and in corresponding liver metastases. 

Furthermore, the influence of Bcl-2, Bcl-xL and Mcl-1 on malignancy-relevant processes like 

proliferation, migration and invasiveness should be analyzed in vitro. Since the constitutive deletion 

of both Mcl-1 and Bcl-xL results in embryonic lethality, the generation of intestine-specific knockout 
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mice was intended, in order to study protein function in further detail in vivo.  In a last step it was 

planned to transfer gained information into a translational approach, testing the clinical value of 

Bcl-2 inhibitors in a tissue culture system.  

Taken together, the objective of this work was to evaluate the role of anti-apoptotic Bcl-2 proteins 

for intestinal tissue homeostasis and for colorectal tumor initiation and progression in mice and 

men.  
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  MATERIAL AND METHODS 

2.1 Cell Culture Methods 

All cell culture work was done under laminar flow. The consumables and work materials were 

autoclaved or disinfected with 70% ethanol (v/v) before use. In the cell culture room gloves and a 

lab coat were worn routinely. 

 

2.1.1 Cultivation, Thawing and Freezing of eukaryotic Cells  

  

RPMI Medium (Gibco) # 61870-010, Thermo Fisher, Schwerte, Germany 

Fetal Calf Serum (FCS) # 16000044, Thermo Fisher, Schwerte, Germany 

Penicillin/Streptomycin (10 000 U/ml) # P4333, Sigma-Aldrich, Munich, Germany  

Trypsin-EDTA Solution # T3924, Sigma-Aldrich, Munich, Germany 

Dimethyl sulfoxid (DMSO) # 20385.01, Serva, Heidelberg, Germany 

Phosphate Buffered Saline (PBS) (Gibco) # 14190-094, Thermo Fisher, Schwerte, Germany 

 

Human CRC cell lines HT29 and SW480 were purchased from ATCC (Manassas Virginia, USA). Cells 

were grown in cell culture flasks as an adherent layer and were maintained in a humidified 

atmosphere (37°C, 5% CO2) in RPMI cell culture medium supplemented with 10% FCS and 1% 

Penicillin/Streptomycin. 

Prior to use, all components as well as PBS and trypsin were preheated to 37°C in a water bath to 

prevent temperature stress. In order to split the cells, culture medium was aspirated and the cells 

were washed once with PBS and subsequently detached by trypsinization (1 ml trypsin per 75 cm2) 

for 5 minutes at 37°C. Afterwards, the trypsin-mediated digestion of cells was terminated by the 

addition of 9 ml fresh medium and cells were resuspended by gently pipetting up and down with a 

serological pipet. Cell suspension was transferred into a 15 ml Falcon and centrifuged for 3 min at 

200 x g. The trypsin-containing supernatant was discarded and the pellet was again resuspended in 

10 ml of fresh culture medium. 1 ml of cell suspension was transferred into a new 75 cm2 cell culture 

flask and the total volume was adjusted with fresh and preheated medium to 22 ml. The cells were 

routinely tested for contaminations and subcultured twice a week.  

To prevent high passage numbers (> 20), new vials from the stock were regularly thawed. 

Therefore, vials were taken out of the liquid nitrogen and kept on dry ice until further processing. 

Since the high amount of DMSO (dimethyl sulfoxide) in the freezing medium gets cytotoxic at room
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temperature, cells were resuspended in 14 ml of cold cell culture medium (4°C). Subsequently cell 

suspension was transferred into a 15 ml Falcon and centrifuged for 3 min at 200 x g. Supernatant 

was aspirated and cells were resuspended in 8 ml of fresh and preheated cell culture medium, 

transferred into a cell culture flask (25 cm2) and incubated at 37°C.  

For the purpose of freezing, cells were grown in a 150 cm2 cell culture flask until they reached 

confluency. Afterwards they were detached, centrifuged and resuspended as described already. 

Total cell number was determined by using a cell counter (BioRad, Munich, Germany). Cells were 

pelleted again by centrifugation, supernatant was discarded and FCS was added according to the 

cell number (900 µl FCS per 1×106 cells). 900 µl of cell suspension were transferred to each cryovial 

and supplemented with 100 µl DMSO. Subsequently vials were placed in a cryobox at -80◦C 

overnight before being transferred to liquid nitrogen for long-term storage. The cryobox contains 

isopropanol and causes in this way a slow (-1°C/min) freezing of cells in order to prevent cell 

damage. 

 

2.1.2 Transfection of Cells with siRNA and Plasmid-DNA  

 

Lipofectamine RNAiMAX # 13778150, Thermo Fisher, Schwerte, Germany 

Lipofectamine LTX with PLUS Reagent #15338100, Thermo Fisher, Schwerte, Germany 

OptiMEM (Gibco) # 31985070, Thermo Fisher, Schwerte, Germany 

Phosphate Buffered Saline (PBS) (Gibco) # 14190-094, Thermo Fisher, Schwerte, Germany 

 

One day before transfection 2,5×106 (HT29 and SW480) or 0,75×106 (MEFs) cells were seeded onto 

a 12-well plate in order to reach a confluency of 70-80 % at the time of transfection.  

 

2.1.2.1 siRNA Transfection 

For each well, two reaction tubes containing 125 µl of OptiMEM were prepared. To the first one, 

160 nM siRNA were added, whereas the other one was supplemented with 2 µl of Lipofectamin 

RNAi Max. All applied siRNAs were purchased by MWG Biotech (Ebersberg, Germany), with 

sequences as indicated in Table 1. After gently inverting the tubes, reaction mixtures were 

incubated for 5 min at room temperature (RT). Subsequently, both mixtures were combined, gently 

mixed and incubated for another 20 min at RT in order to allow complex formation. In the 

meantime, cells were washed once with PBS and afterwards the well was filled up with 750 µl of 

OptiMEM. The reaction mixture was added dropwise to the well while the plate was gently rocked 

back and forth. In this way, a final volume of 1 ml and a final siRNA concentration of 40 nM per well 

https://www.thermofisher.com/order/catalog/product/31985070
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were reached. After 6 h of incubation (37°C, 5% CO2), transfection medium was aspirated and 

replaced by fully supplemented cell culture medium.  

Target  
 

siRNA Sequence 

Bcl-2 5′-uaauaacgugccucaugaaTT-3′ (sense)  
5′-uucaugaggcacguuauuaTT-3′ (antisense) 

Bcl-xL 5′-gcuuggauaaagaugcaaTT-3′ (sense) 
5′-uugcaucuuaucccaagcAG-3′ (antisense) 

Mcl-1 5′-aaguaucacagacguucucTT-3′ (sense) 
5′-gagaacgucugugauacuuTT-3′ (antisense) 

Scrambled 5′-ggcuscguccaggagcgcaccTT-3′ (sense)  
5′-ggugcgcuccuggacgguagccTT-3′ (antisense) 

Table 1: siRNAs used for the transfection of eukaryotic cells. 

 

2.1.2.2 Plasmid-DNA Transfection 

For each well, one reaction tube containing 250 µl of OptiMEM was prepared. After adding 1,25 µl 

of PLUS Reagent and 0,5 µg of plasmid-DNA, components were mixed by gently inverting the tube 

and incubated for 5 min at RT. Afterwards, the reaction mixture was supplemented with 3,125 µl 

of Lipofectamine LTX, gently mixed and incubated for another 20 min at RT. In the meantime, cells 

were washed once with PBS and afterwards the well was filled up with 750 µl of OptiMEM. The 

reaction mixture was added dropwise to the well while the plate was gently rocked back and forth. 

In this way, a final volume of 1 ml and a final plasmid-DNA concentration of 0,5 µg per well were 

reached. After 6 h of incubation (37°C, 5% CO2), transfection medium was aspirated and replaced 

by fully supplemented cell culture medium.  

Mcl-1 was cloned in a pEF4 vector, whereas Bcl-2 (kind gift of W. Roth, Institute of Pathology, Mainz) 

and Bcl-xL (kindly provided by M. Li-Weber and P.H. Krammer, German Cancer Research Center, 

Heidelberg, Germany) were cloned in a pcDNA3 vector. Corresponding empty vectors were used as 

controls and transfection efficiency was validated by GFP transfection and subsequent FACS 

(fluorescence-activated cell sorting) analysis. 

 

2.1.3 Cell Death Assays  

2.1.3.1 MTT-Assay 

 

3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT)  

# M5655, Sigma-Aldrich, Munich, Germany 

2-propanol # I9516, Sigma-Aldrich, Munich, Germany 

Phosphate Buffered Saline (PBS) (Gibco) # 14190-094, Thermo Fisher, Schwerte, Germany 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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In this colorimetric assay, MTT serves as an indicator for the metabolic activity of cells. Since this 

often correlates with cellular viability, the MTT-assay is frequently used to assess cell death. By 

reduction, the yellowish tetrazolium dye MTT gets converted into the purple and insoluble 

Formazan. 

The MTT-assay was used in order to determine the effects of different inhibitors and 

chemotherapeutics on cellular viability. Therefore, 1x106 cells were seeded onto a 12-well plate, 

grown to a confluency of 70-80 % and treated as required. 5 mg of MTT powder were dissolved in 

1ml PBS and kept in the dark until further use (light sensitive). 100 µl of MTT solution (per 1 ml cell 

culture medium) were directly added into the well without aspirating the cell culture medium in 

advance, resulting in a 1:10 dilution. After gently rocking the plate back and forth, it was incubated 

for 3 h at 37°C (5% CO2). Subsequently, the MTT-containing medium was aspirated and accrued 

Formazan in viable cells was solubilized by the addition of 500 µl 2-propanol per well. After an 

incubation time of 15 min at RT on a rocker plate, absorbance was quantified by spectrometric 

measurement at 550nm. 

 

2.1.3.2 LDH-Assay 

 

Cytotoxicity Detection Kit (LDH)  

 

# 11644793001, Roche, Mannheim, Germany 

In this assay, the enzyme lactate dehydrogenase (LDH) reduces NAD to NADH, which then converts 

a tetrazolium salt into a colored Formazan product (λmax = 450 nm). Since LDH is a soluble 

cytoplasmatic enzyme, its presence in the supernatant of cell or tissue cultures is indicative for 

damaged plasma membranes. Due to the linearity of the assay, measured color intensity allows the 

relative quantification of cytolysis199.   

The LDH assay was used to determine the effect of the BH3 mimetic ABT-737 on the viability of 

cultured colorectal cancer tissue. Therefor, 100 µl supernatant were transferred into a 96-well plate 

and mixed with 100 µl freshly prepared reagent solution as indicated in the manufacturer´s 

protocol. Subsequently, the plate was incubated for 15 min at RT under light exclusion and 

absorbance was quantified by spectrometric measurement at 490nm. 

 

2.1.4 FACS Analysis of Cell Death and Proliferation 

 

Apoptosis, DNA Damage, Cell Proliferation Kit #562253, BD Biosciences, Heidelberg, Germany 
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For the analyses the “Apoptosis, DNA Damage and Cell Proliferation Kit” from BD Biosciences was 

used. For the determination of the proliferative capacity it contains the synthetic nucleoside 

bromodeoxyuridine (BrdU), which gets incorporated into the DNA of replicating cells. By using a 

BrdU-specific antibody, proliferating cells can thus be identified. For the analysis of DNA damage, 

the kit comprises an antibody against gH2AX. If DNA damage occurs, histone H2AX gets 

phosphorylated at serine 139 (gH2AX) what recruits DNA damage repair proteins. For the 

measurement of apoptosis, the kit provides an antibody against cleaved PARP.     

2,5×106 HT29 or SW480 cells were seeded onto a 12-well plate, grown to a confluency of 70–80% 

and transfected or treated as indicated. Prior to harvest, cells were incubated with 20 µM BrdU for 

1 h. Hereafter, the culture medium was transferred into FACS tubes and living cells were detached 

by using Accutase as described under 2.1.5.2 and pooled with the former cell culture medium. After 

centrifugation at 300 x g for 5 min, the supernatant was discarded and the cell pellets were 

resuspended in 100 µl of Perm Solution per tube and incubated on ice for ~20 min. After that, tubes 

were filled up with 1 ml Wash Buffer and cells were pelleted by another centrifugation at 300 x g 

for 5 min. Supernatant was discarded and cells were resuspended in 100 µl of Plus Perm Buffer, 

incubated on ice for 10 min, diluted with 1ml Wash Buffer and centrifuged at 300 x g for 5 min. The 

same procedure was repeated once again with 100 µl Perm Solution and an incubation time of 5 

min. Meanwhile, 30 µl DNase working solution per FACS tube were prepared by diluting the DNase 

stock solution with PBS in a 3:10 ratio. Cells were resuspended in 100 µl DNase working solution, 

incubated at 37°C for 1 h and centrifuged at 300 x g for 5 min. The DNase solution, which helps to 

expose the BrdU epitopes, was discarded and cells were incubated with the antibodies under light 

exclusion for 20 min at RT. The solution contained 5 µl of each antibody, diluted in 30 µl Wash 

Buffer per tube. After a final centrifugation at 300 x g for 5 min, cells were resuspended in 400 µl 

Wash Buffer and analyzed by FACS analysis.   

 

2.1.5 Migration Assays 

2.1.5.1 Scratch Assay 

The scratch assay was used to compare the migratory ability of colorectal cancer cells after siRNA- 

or inhibitor-mediated manipulation. 

2,5×106 HT29 cells were seeded onto a 12-well plate, grown to a confluency of 70–80% and 

transfected or treated as indicated. On the following day, the cell monolayer was scratched by using 

a sterile pipette tip. Wells were washed with medium to remove detached cells and images were 

immediately captured using an inverted microscope (CKX41, Olympus Inc., Hamburg, Germany) 

equipped with a digital color camera (XC30, Olympus Inc.). The exact image position within the well 
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was marked to allow surveillance of gap closure in the very same sector. The gap closure was 

measured over 72 h, in which a picture was taken every 24 h, using CellSense® imaging software 

(Olympus Inc.). Thereby, gap sizes were determined by multiple measurements (every 200 µm) of 

the distance between the edges of the monolayer and mean values were calculated. 

 

2.1.5.2 3D Cell Culture 

 

Accutase # A6964, Sigma-Aldrich, Munich, Germany 

Dimethyl sulfoxide (DMSO) # 85190, Thermo Fisher, Schwerte, Germany 

OCT mounting medium # SA62550, Science Services, Munich, Germany 

37 % Formaldehyde Solution # F1635, Sigma-Aldrich, Munich, Germany 

Phosphate Buffered Saline (PBS) (Gibco) # 14190-094, Thermo Fisher, Schwerte, Germany 

 

A three-dimensional cell culture fosters cell-cell interactions and allows long-term treatment. 

Compared to the conventional flat cell culture, this resembles much better the conditions found in 

a normal tissue. In this assay, cells are grown in Alvetex inserts (Reinnervate, Sedgefield, UK), 

holding a 200 µm thick polystyrene scaffold with a defined pore size of about 40 µm.  

For the comparison of the migratory ability after manipulation of anti-apoptotic proteins, cells were 

either transfected or treated with inhibitors. For transfection, 2,5×106 HT29 cells were seeded onto 

a 12-well plate, grown to a confluency of 70–80% and transfected as indicated. On the following 

day, scaffolds were rendered hydrophilic by flooding them with 80% sterile filtered ethanol 

followed by two washing steps with cell culture medium. Transfected cells were washed once with 

PBS and detached by incubating them for 5 min at 37°C in a humidified atmosphere and with 250 

µl of Accutase per well. Compared with trypsin, detachment with Accutase is more gentle and 

therefore appropriate for the transfer of transfected cells. In 200 µl of cell culture medium, 1x106 

cells were carefully seeded drop by drop onto the scaffold. 3 hours after seeding, wells were gently 

flooded from below with fully supplemented RPMI until scaffolds were fully covered. The medium 

was aspirated and renewed every second day. In case of inhibitor treatment, cells were seeded 

onto the scaffold without previous transfection. 24 h after seeding, medium was changed and 

additionally supplemented with the respective inhibitor or DMSO as control. Each time the medium 

was renewed, it got supplemented with the respective compounds. After 5 days, in which the 

transfected or inhibitor treated cells had time to migrate into the scaffold, inserts were washed 

twice in PBS. Scaffolds were detached from the inserts, transferred into vinyl specimen molds 

(Sakura Finetek, Torrance, USA) covered with OCT mounting medium and gradually frozen in the 
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gas phase of liquid nitrogen. Deeply frozen scaffolds were cryosectioned (Cryostat, Thermo), fixed 

in 4% PFA (paraformaldehyde) and immunohistochemically stained as indicated.  

 

2.1.6 Invasion Assay 

 

Accutase # A6964, Sigma-Aldrich, Munich, Germany 

Hoechst 33342  # 62249, Thermo Fisher, Schwerte, Germany 

Phosphate Buffered Saline (PBS) (Gibco) # 14190-094, Thermo Fisher, Schwerte, Germany 

 

Matrigel invasion chambers (BD) with a pore size of 8 µm were used to study the invasive capacity 

of SW480 cells. Matrigel consists of proteins, such as collagen and laminin, which are secreted by 

mouse sarcoma cells (Engelbreth-Holm-Swarm cells)200. The gelatinous secret resembles the 

extracellular matrix which cannot be overcome by non-invasive cells.  

2,5×106 SW480 cells were seeded onto a 12-well plate, grown to a confluency of 70–80% and 

transfected as indicated. On the following day, invasion chambers were hydrated in supplement-

free RPMI cell culture medium in a humidified atmosphere for 2 h. Subsequently, invasion chambers 

were transferred as inserts into a 12-well cell culture plate, containing 750 µl RPMI supplemented 

with 10% FCS in each well. Transfected cells were washed once with PBS and detached by using 

Accutase as described. After harvesting, 3×105 cells were resuspended in 500 µl FCS-free RPMI and 

seeded on top of the Matrigel. Since only the cell culture medium beneath the invasion chamber 

contained FCS and because FCS serves as a chemoattractant, cells started to invade the Matrigel. 

After 48 h, non-invasive cells on the upper surface of the invasion chamber were removed by 

scrubbing with a cotton tipped swab. Cells that overcame the Matrigel were fixed on the lower 

surface of the insert with 80% EtOH for 30 min. Subsequently, nuclei were stained by using Hoechst 

33342 for 15 min and washed in PBS. In order to quantify the amount of invaded cells, five pictures 

of every insert were taken using a fluorescence microscope (Keyence, Neu-Isenburg, Germany) and 

the number of Hoechst-positive nuclei was determined by counting. 

 

2.1.7 Tissue Culture 

 

ABT-737 # S1002, Selleckchem, Munich, Germany 

Dimethylsulfoxid (DMSO) # 20385.01, Serva, Heidelberg, Germany 

10 % Formalin # HT501128, Sigma-Aldrich, Munich, Germany  

Paraffin wax # 327204, Sigma-Aldrich, Munich, Germany 
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Tumor tissue from 9 patients with CRC was collected upon surgical resection of the primary tumor.  

Written informed consent from all donors was obtained and analyses were done anonymously. The 

usage of patient tissue for research purposes was approved by the local ethics committee of the 

University Hospital of Heidelberg (S-649/2012). Tumor tissue was cut into 300 µm thick slices by a 

Leica VT1200 S vibrating blade microtome (Leica, Wetzlar, Germany), transferred onto porous filter 

membrane inserts and placed in culture medium (DMEM supplemented with penicillin: 100U/ml 

and streptomycin: 100mg/ml) containing six-well plates. Tissue specimens were kept in a 

humidified atmosphere (37°C, 5% CO2) at the air-liquid interface for up to 94 hours. After 24 hours 

of incubation in medium, cancer specimens were treated with the small molecule inhibitor ABT-

737 (10µM) or the respective vector substance (DMSO) for 72 hours, by supplementing the culture 

medium with the mentioned compounds. Finally, tissue slices were fixed in 10 % formalin and 

paraffin-embedded. 4 µm sections were stained with Hematoxylin and Eosin (H&E) as described 

under 2.4.1 and tissue viability was determined by a trained pathologist.  

 

2.2 Protein Analyses 

2.2.1 Protein Isolation 

2.2.1.1 Protein Isolation from cultured Cells 

 

Sodium Chloride (NaCl) # 9265.1, Roth, Karlsruhe, Germany 

Trizma Base/Hydrochloric acid (Tris/HCl) # 9090.1, Roth, Karlsruhe, Germany 

Nonylphenylpolyethylenglycol (NP-40) # 28324, Thermo Fisher, Schwerte, Germany 

Sodium Dodecyl Sulfate (SDS) # CN30.3, Roth, Karlsruhe, Germany 

Protease Inhibitor Cocktail (PI) # 04693116001, Roche, Mannheim, Germany 

1,4 Dithiothreitol (DTT) # 6908.2, Roth, Karlsruhe, Germany 

Phenylmethyl sulphonyl fluoride  (PMSF) # 6367.2, Roth, Karlsruhe, Germany 

Sodium fluoride (NaF) # 2618.1, Roth, Karlsruhe, Germany 

Sodium orthovanadate # 450243, Sigma-Aldrich, Munich, Germany 

Phosphate Buffered Saline (PBS) (Gibco) # 14190-094, Thermo Fisher, Schwerte, Germany 

 

Cells were grown in 12-well plates and transfected or treated as indicated. Prior to the experiment, 

2 x RIPA buffer (Radioimmunoprecipitation Assay buffer) without supplements was generated and 

kept at 4°C until further use. 

 

https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/p7626pis.pdf
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2 x RIPA buffer: Example for a final volume of 50ml: 

240 mM NaCl 2,4ml 5M NaCl stock solution 

100 mM Tris/HCl (pH 8.0) 10ml 0,5M Tris/HCl (pH 8,0) stock solution 

2% (v/v) NP-40 1ml  

0,2% (w/v) SDS 100mg  

- Fill up to 50ml with MilliQ H2O 

Table 2: Components for the preparation of 2 x RIPA lysis buffer. 

 

For protein isolation, cells were washed twice with precooled PBS (4°C) and harvested by addition 

of 60 µl fully supplemented 1x RIPA lysis buffer per well.  

 

 1ml 1,5ml 2ml 5ml 

RIPA (2x) [µl] 500 750 1000 2500 

PI [µl] 20 30 40 100 

DTT [µl] 1 1,5 2 5 

PMSF [µl] 10 15 20 50 

NaF [µl] 40 60 80 200 

Vanadate [µl] 1 1,5 2 5 

MilliQ H2O [µl] 428 642 856 2140 

Table 3: Components for the preparation of supplemented 1 x RIPA lysis buffer. 

 

The 12-well plates were incubated on ice for 20 min and subsequently cells were detached and 

mechanically destroyed with a cell scraper. The suspension was transferred into a 1,5 ml tube and 

centrifuged for 20 min at 13.000 x g and 4°C to get rid of cellular debris. The supernatant was 

transferred into a new reaction tube and samples were stored at -80°C. 

 

2.2.1.2 Protein Isolation from Tissues 

 

AllPrep DNA/RNA/Protein Mini Kit # 80004, Qiagen, Hilden, Germany 

ß-Mercaptoethanol # 444203, Merck, Darmstadt, Germany 

Urea # U4883-6X, Sigma-Aldrich, Munich, Germany 

Ethanol absolute # 32205, Sigma-Aldrich, Munich, Germany 
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Tissue specimens were weighted and pieces of 20-30 mg were transferred into Precellys tubes, 

prefilled with beads (Bertin Technologies, Montigny-le-Bretonneux, France), snap frozen in liquid 

nitrogen and kept on dry ice until 600µl of lysis buffer (RLT buffer, AllPrep kit) were added. Prior to 

use, the RLT buffer was supplemented with 14,3 M β-mercaptoethanol (10µl ß-MeEtOH per 1 ml 

RLT buffer). Subsequent to this, tissue lysis was fostered by using the Precellys Homogenizer 24. 

Grinded specimens were centrifuged (16.000 x g, 4°C, 3 min) in order to get rid of the beads and 

remaining cell debris. For all further steps the AllPrep kit has been used. In order to remove the 

DNA, the supernatant was transferred onto a AllPrep DNA spin column, placed in a 2 ml collection 

tube. The column was centrifuged at 8000 x g for 30 sec and to the flow-through 350 µl of 100% 

ethanol were added. The mixture was homogenized by pipetting up and down and in order to 

remove the RNA, 700 µl were transferred onto a RNeasy spin column, placed in a 2 ml collection 

tube. The column was centrifuged at 8000 x g for 15 sec and the flow-through was collected for 

further processing. If the total volume of the ethanol mixture exceeded 700 µl, this last step was 

repeated and the second flow-through was pooled with the first one in a 2 ml reaction tube. 

Subsequent to the addition of 1 ml APP buffer to the flow-through, samples were mixed by 

vortexing and incubated for 10 min at RT. Afterwards, proteins were pelleted by centrifugation at 

15.000 x g for 10 min at RT. The supernatant was discarded and the pellet was washed with 500 µl 

of 70 % ethanol. Subsequently, the protein pellet was dried at RT until it became matt white. 

Depending on the pellet size, 50-500 µl of 8M urea were added in order to resolve the proteins. For 

long-time storage, samples were kept at -80°C.     

 

2.2.2 Bradford Assay 

 

Bradford reagent # 5000205, BioRad, Munich, Germany 

Bovine Serum Albumine (BSA)-Standard # 23209, Thermo Fisher, Schwerte, Germany 

 

The Bradford assay is a colorimetric analysis, used for the determination of protein concentrations. 

It relies on the dye Coomassie Brilliant Blue G-250, which shifts its absorbance spectrum maximum 

after protein binding from the red (470 nm) to the blue (595 nm) wavelength range.  

Depending on the expected protein concentrations, the samples were prediluted 1:2 to 1:10 with 

MilliQ water. 5 µl of each sample were transferred into a 96-well plate, filled up with 250 µl Bradford 

reagent and incubated for 5 min in the dark at RT. Afterwards, absorbance was quantified by 

spectrometric measurement at 595 nm. For better results, all measurements were done in 

duplicates. The simultaneous utilization of a BSA protein standard (0; 0,25; 0,5; 0,75; 1; 1,25; 1,5 

µg/µl) allowed an absolute quantification of proteins in the sample via linear regression.   

https://en.wikipedia.org/wiki/Coomassie_Brilliant_Blue
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2.2.3 SDS-PAGE 

 

30% acrylamide # A124.1, Roth, Karlsruhe, Germany 

Trizma Base (Tris)  # A1086, AppliChem, Darmstadt, Germany 

Sodium Dodecyl Sulfate (SDS) # CN30.3, Roth, Karlsruhe, Germany 

Ammonium persulfate (APS) # 9592.5, Roth, Karlsruhe, Germany 

Tetra-methylethylenediamine (TEMED) # 2367.1, Roth, Karlsruhe, Germany 

Glycerol # 6962.1, Roth, Karlsruhe, Germany 

ß-Mercaptoethanol # 444203, Merck, Darmstadt, Germany 

Bromphenol blue # B0126, Sigma-Aldrich, Munich, Germany 

Glycine # A1067, AppliChem, Darmstadt, Germany 

 

The method of sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) is used to 

separate proteins by size. The anionic detergent SDS is used to mask the initial protein charge. By 

binding proportional to the protein mass, complexes with a constant charge to mass ratio are 

formed. Moreover, SDS leads to a denaturation of the present proteins. Together with β-

mercaptoethanol, which reduces sulfhydryl-groups, this ensures a linear shape of all proteins, with 

the result that mainly protein mass influences the distance covered in the gel. The fractionation of 

proteins takes place in a polyacrylamide gel, which is, depending on the size of the protein of 

interest, prepared with different acrylamide concentrations. For most protein sizes, gels containing 

12% acrylamide were used. Addition of the radical initiator APS (ammonium persulfate) starts the 

polymerization reaction, which is then catalyzed by TEMED (tetramethylethylenediamine).  

Before use, the gel chamber was cleaned with 80% ethanol (v/v) and put together as described in 

the manufacturer´s manual (BioRad). Afterwards, the separating gel solution was prepared and 

gently poured between the glass plates. To remove eventually occurred bubbles, isopropanol was 

immediately added on top. After polymerization, the isopropanol was removed and replaced by the 

stacking gel. Comb-insertion allowed slot formation. 

 

 Separating Gel Stacking Gel 

acrylamide concentration 7% 10% 12% 15% 4% 

H2O [ml] 5,0 4,0 3,3 2,3 2,7 

30% acrylamide [ml] 2,3 3,3 4,0 5,0 0,67 

1,5M Tris [ml] 2,5 2,5 2,5 2,5 - 

1M Tris [ml] - - - - 0,5 
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10% SDS [µl] 100 100 100 100 40 

10% APS [µl]  100 100 100 100 40 

TEMED [µl] 4 4 4 4 4 

Table 4: Components for the preparation of two acrylamid-gels. 

 

Protein samples were mixed with 5x sample buffer in a 1:5 ratio and heated up for 5 min at 95°C. 

The 5x protein sample buffer was prepared in advance and kept at -20°C for long-time storage. 

Currently used aliquots were stored at RT.  

 

5 x sample buffer: Example for a final volume of 100ml: 

50% (v/v) Glycerol 50ml 

10% (w/v) SDS 10g 

50mM Tris 6,056g 

25% (v/v) β-Mercaptoethanol 25ml 

0,25mg/ml Bromphenol blue 25mg 

- Fill up to 100ml with MilliQ H2O 

Table 5: Components for the preparation of 5 x protein sample buffer. 

 

After transferring the gel into an electrophoresis chamber (BioRad system) filled with 1x running 

buffer, the comb was removed and slots were rinsed with buffer before samples and marker were 

loaded. Prior to each run, the running buffer was freshly prepared by diluting 100 ml of 10 x running 

buffer with 900 ml MilliQ H2O. First, an electric tension of 80 V was applied. After the dye front 

reached the separating gel, the tension was increased to 120 V and kept constant till the end of the 

electrophoresis run. 

 

10 x running buffer: Example for a final volume of 1l: 

1% (w/v) SDS 10g 

25mM Tris-Base 30,28g 

190mM Glycine 142,63g 

- Fill up to 1l with MilliQ H2O 

Table 6: Components for the preparation of 10 x running buffer. 
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2.2.4 Western Blot 

 

Methanol # 32213, Sigma-Aldrich, Munich, Germany 

Trizma Base (Tris)  # A1086, AppliChem, Darmstadt, Germany 

Glycine # A1067, AppliChem, Darmstadt, Germany 

skim milk powder # T145.2, Roth, Karlsruhe, Germany 

Bovine Serum Albumine (BSA) # T844.4, Roth, Karlsruhe, Germany 

Tween 20 # P2287, Sigma-Aldrich, Munich, Germany 

Sodium azide # 08591, Sigma-Aldrich, Munich, Germany 

Enhanced Chemiluminescence Substrate(ECL) # NEL103001EA, PerkinElmer, Rodgau, Germany 

 

In order to enable immuno-detection of specific proteins, a wet blot was performed. Subsequent 

to the size-dependent protein separation via SDS-PAGE, the gel was taken out of the cassette and 

the stacking gel was removed. The gel, a nitrocellulose membrane, six sheets of Whatman paper 

and two sponges were assembled as described in the manufacturer’s protocol (BioRad). Air bubbles 

were removed by carefully rolling a glass rod over the sandwich. Afterwards the blot sandwich was 

inserted into the wet blot chamber, which was filled up with 1 x transfer buffer. Prior to blotting, 

the transfer buffer was freshly prepared by diluting 100 ml of 10 x transefer buffer with 700 ml 

MilliQ H2O and 200 ml methanol. The buffer was reused 3-4 times until it was discarded and freshly 

prepared for the next blotting procedures. For the protein transfer, the chamber was kept at 4°C 

and a constant tension of 90 V for 2 h was applied. 

 

10 x transfer buffer: Example for a final volume of 1l: 

25 mM Tris-Base 30,28g 

190 mM Glycine 142,63g 

- Fill up to 1l with MilliQ H2O 

Table 7: Components for the preparation of 10 x transfer buffer. 

 

Subsequently, the gel was discarded and unspecific binding sites on the membrane were blocked 

with 5% skim milk powder or 5% BSA (both w/v) in PBS-T (0,1% Tween 20 in PBS) for 1h at RT on a 

shaking device or at 4°C over night. Afterwards, the membrane was incubated with the primary 

antibody, diluted in skim milk or BSA containing PBS-T and supplemented with 1% sodium azide as 

indicated.  Dependent on the antibody affinity, the incubation was done for 1 h at RT or alternatively 

over night at 4°C. After washing the membrane three times for 5 min in PBS-T, it was incubated 

with an appropriate, horseradish peroxidase-coupled secondary antibody. The secondary antibody 
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was diluted 1:10000 in PBS-T containing 0,5% of skim milk (w/v). Again the membrane was 

incubated for 1h on a slow shaking device at RT. Once again the membrane was washed thrice for 

5 min in PBS-T and another time in PBS (Phosphat-Buffered Saline) to diminish foam formation. 

Proteins of interest were now detected by enhanced chemiluminescence reaction. Therefor, ECL 

reaction agents were mixed in a 1:1 ratio and immediately poured onto the membrane. An 

incubation time of approximately 5 min in the dark allowed the HRP-mediated (horseradish 

peroxidase) oxidation of luminol with hydrogen peroxide as the oxidizing agent. The resulting 

chemiluminescence was detected with a radiographic film, developed with the CP1000 developing 

machine from AGFA (Mortsel, Belgien). 

 

Antibody  Species Order number, Company Dilution 

Primary Antibodies 

Bcl-2 mouse # ab692, abcam 1:500 in 0,5% Milk 

Bcl-xL rabbit # 2764, Cell Signaling 1:1000 in 5% BSA 

Caspase 8 rabbit # 4927, Cell Signalng 1:1000 in 5% Milk 

clCaspase 3  rabbit # 9664, Cell Signaling 1:1000 in 5% Milk 

clCaspase 8 rabbit # 9429, Cell Signaling 1:1000 in 5% BSA 

(cl)Caspase 9 rabbit # 9504, Cell Signaling 1:1000 in 5% Milk 

clPARP rabbit # 5625, Cell Signaling 1:1000 in 5% BSA 

E-Cadherin rabbit # 4065, Cell Signaling 1:1000 in 5% BSA 

Lgr5 rabbit # ab75850, abcam 1:1000 in 5% BSA 

Mcl-1 (for mouse) rabbit # 600-401-394, Rockland 1:2000 in 5% Milk 

Mcl-1 (for human) rabbit # sc-819, Santa Cruz 1:200 in 0,5% Milk 

MLKL goat # sc-165025, Santa Cruz 1:200 in 5% Milk 

N-Cadherin rabbit # 4061, Cell Signaling 1:1000 in 5% BSA 

p-MLKL rabbit # ab196436, abcam 1:1000 in 5% BSA 

tBid rabbit # PC645-10T, Merck Millipore 1:1000 in 5% BSA 

Tubulin mouse # T8203-25UL, Sigma 1:5000 in PBS-T 

Secondary Antibodies 

Anti-goat donkey  1:10000 in 0,5% Milk 

Anti-mouse goat #sc-2031, Santa Cruz  1:10000 in 0,5% Milk 

Anti-mouse (for Tubulin) goat #1070-05, SouthernBiotech 1:10000 in 0,5% Milk 

Anti-rabbit goat #sc-2030, Santa Cruz  1:10000 in 0,5% Milk 

Table 8: Antibodies used for Western blot analyses. 
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2.3 DNA and RNA Analyses 

2.3.1 RNA Isolation 

2.3.1.1 RNA Isolation from cultured Cells 

 

TRI reagent # T9424, Sigma-Aldrich, Munich, Germany 

Chloroform # C2432, Sigma-Aldrich, Munich, Germany 

2-propanol # I9516, Sigma-Aldrich, Munich, Germany 

Ethanol absolute # 32205, Sigma-Aldrich, Munich, Germany 

Phosphate Buffered Saline (PBS) (Gibco) # 14190-094, Thermo Fisher, Schwerte, Germany 

 

Cells were grown in 12-well plates and transfected or treated as indicated. For RNA isolation, cells 

were washed twice with precooled PBS (4°C), before the wells were filled with 250 µl of chilled PBS 

in which cells were detached and mechanically destroyed with a cell scraper. The suspension was 

transferred into a 1,5 ml tube and centrifuged for 5 min at 200 x g and 4°C. The supernatant was 

discarded and the pellet was resolved in 500 µl of TRI reagent. Since the contained phenol and 

chloroform can be hazardous to health, this step and all following ones were performed under a 

hood. The suspension was incubated for 5 min at RT and occasionally vortexed in the meantime. 

100 µl of chloroform were added and the mixture was vortexed until it became milky, before it was 

incubated for 10 min at RT. Hereafter, the solution was centrifuged for 15 min at 19.000 x g and 

4°C, resulting in phase separation. The upper, aqueous phase was transferred into a new reaction 

tube and supplemented with 500 µl 2-propanol. After inverting the tube for several times, the 

mixture was incubated for 10 min at RT and subsequently centrifuged for 40 min at 14.000 x g and 

4°C to pellet the RNA. The supernatant was discarded and the pellet was washed twice with 75% 

ethanol. Hereafter, the pellet was air-dried until it became transparent and finally it was solved in 

30-50µl of RNase-free water. Isolated RNA was quantified by using an Epoch Microplate 

Spectrophotometer (BioTek, Winooski, VT, USA) and kept at -80°C for long-time storage.  

 

2.3.1.2 RNA Isolation from Tissues 

 

AllPrep DNA/RNA/Protein Mini Kit # 80004, Qiagen, Hilden, Germany 

ß-Mercaptoethanol # 444203, Merck, Darmstadt, Germany 

Ethanol absolute # 32205, Sigma-Aldrich, Munich, Germany 
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For RNA isolation from tissues, again the “AllPrep DNA/RNA/Protein Mini Kit” was used. Tissue 

specimens were homogenized and lysates were further processed as described under 2.2.1.2. To 

the flow-through from the AllPrep DNA spin column, 350 µl of 100% ethanol were added. The 

mixture was homogenized by pipetting up and down and subsequently 700 µl were transferred 

onto a RNeasy spin column, placed in a 2 ml collection tube. The column was centrifuged at 8000 x 

g for 15 sec, allowing the RNA to bind to the solid phase. If the total volume of the ethanol mixture 

exceeded 700 µl, this last step was repeated in order to increase RNA yield. The RNeasy spin column 

was washed with 700 µl of RW1 buffer, followed by centrifugation at 8000 x g for 15 sec. The flow-

through was discarded and the column was washed with 500 µl of RPE buffer, followed by another 

centrifugation at 8000 x g for 15 sec. The washing step with 500 µl of RPE buffer was repeated, but 

this time the column was centrifuged at 8000 x g for 2 min. The flow-through was discarded and an 

additional centrifugation for 1 min at full speed was done to get rid of remaining buffer. Hereafter, 

the RNeasy spin column was placed into a new 1,5 ml reaction tube and 30-50µl of RNase-free 

water were poured directly on top of the column membrane. By a final centrifugation for 1 min at 

8000 x g, the RNA was eluted. If high RNA yields were expected, the elution step was repeated. 

Isolated RNA was quantified by using using an Epoch Microplate Spectrophotometer (BioTek, 

Winooski, VT, USA) and kept at -80°C for long-time storage. 

 

2.3.2 Reverse Transcription and qRT-PCR 

 

Omniscript Reverse Transcription Kit # 205111, Qiagen, Hilden, Germany 

QuantiTect SYBR-Green PCR Kit # 204143, Qiagen, Hilden, Germany 

Deoxynucleotide Set (dNTPs) #DNTP100, Sigma-Aldrich, Munich, Germany 

 

In order to study gene expression, the abundance of a particular mRNA can be relatively quantified 

by performing a quantitative real-time polymerase chain reaction (qRT-PCR). Therefor, isolated 

RNA needs to be transcribed into complementary DNA (cDNA) by a RNA-dependent DNA 

polymerase. This so called reverse transcriptase is normally found in retroviruses which convert 

their genomic RNA into cDNA in order to integrate into the host genome. 

For reverse transcription the “Omniscript Reverse Transcription Kit” was used. 1 µg of total RNA 

was filled up with RNase-free water to a final volume of 14,5 µl. In order to denature the secondary 

RNA structure, the samples were incubated for 5 min at 65°C and subsequently chilled on ice. 

Finally, 5,5 µl of the reverse transcription master mix, containing the enzyme, oligo-dT primer and 

deoxynucleotide triphosphates (dNTPs), were added and the mixture was incubated for 1 h at 37°C 

to allow reverse transcription.       
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Reverse Transcription Master Mix 1 x 

10 x Reverse Transcription Buffer   2 µl 

dNTPs (5mM) 2 µl 

Reverse Transcriptase 1 µl 

oligo-dT primer (10 µM) 0,5 µl 

Table 9: Components for the preparation of the reverse transcription master mix. 

 

Afterwards, the samples were filled up with 20 µl H2OPCR-Grade and stored at 4°C for up to one week, 

or at -80°C for long-time storage. 

Like in the conventional PCR, the qRT-PCR leads to the amplification of specific DNA segments 

across several orders of magnitude. Which segment gets amplified is thereby defined by the 

primers which bind to the 3´ends of the DNA target region and serve as starting point for the DNA 

polymerase. The peculiarity of the qRT-PCR is the presence of a DNA-intercalating dye, which is only 

after DNA-binding able to emit a fluorescence signal if it gets excited. In which PCR cycle the 

fluorescence signal exceeds the background signal for the first time, depends on the initial amount 

of target DNA and thereby on the level of gene expression. This cycle is called “crossing point” from 

which the Cp-value can be calculated. Since the qRT-PCR allows only relative quantification, the 

expression of each target gene is normalized to the expression of a so called “house-keeping gene”, 

which shows stable expression under various conditions.  

In our experiments, SYBR-Green was applied as DNA-intercalating dye and the expression of GAPDH 

(Glycerinaldehyde-3-Phosphate-Dehydrogenase) was determined and used for normalization. 

Furthermore, “QuantiTect Primer Assays” and the “QuantiTect SYBR-Green PCR Kit” by Qiagen have 

been used. Prior to the run, a separate master mix for each target was prepared, containing the 

fluorescent dye and the specific primers.   

 

Quantitative Real-Time PCR Master Mix 1 x 

SYBR-Green  5 µl 

H2OPCR-Grade 3 µl 

Primer 1 µl 

Table 10: Components for the preparation of the quantitative real-time PCR master mix. 

 

9 µl of master mix were transferred into a 96-well plate and supplemented with 1,5 µl of cDNA. For 

better results, all measurements were done in duplicates and one negative control per subset was 

generated by replacing the cDNA with H2O. After sealing the plate, measurements were done with 
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the LightCycler 480 from Roche (Risch, Switzerland). The qRT-PCR program contained an initial 15 

min denaturation step at 95°C, followed by 35 PCR cycles. Each cycle comprised a 15 sec 

denaturation step at 95°C, followed by a 30 sec annealing step at 55°C and a final 30 sec elongation 

step at 72°C. Data analysis was done by using the Light Cycler 480 SW 1.5 software.  

 

2.3.3 Mouse Genotyping 

 

Proteinase K # EO0491, Thermo Fisher, Schwerte, Germany 

Trizma Base/Hydrochloric acid (Tris/HCl) # 9090.1, Roth, Karlsruhe, Germany 

Ethylene Diamine Tetra Acetate (EDTA) # 8040.3, Roth, Karlsruhe, Germany 

Sodium Dodecyl Sulfate (SDS) # CN30.3, Roth, Karlsruhe, Germany 

RedTaq Ready PCR Reaction Mix # R2523, Sigma-Aldrich, Munich, Germany  

Magnesium chloride (MgCl2) # M8266, Sigma-Aldrich, Munich, Germany 

 

In order to determine the genotype of our mice, biopsies were taken by trimming the tail tip three 

weeks after birth. For digesting the tissue, each biopsy was transferred into a reaction tube filled 

with 50 µl of proteinase K solution and was incubated over night at 56°C. The proteinase K solution 

was freshly prepared prior to each genotyping experiment by mixing proteinase K and the 

respective buffer in a 1:10 ratio.  

 

Proteinase K Buffer: Example for a final volume of 500 ml: 

100 mM Tris-HCl (pH 7,6) 7,9 g 

20 mM EDTA (pH 8,0) 2,9 g 

0,5 % (w/v) SDS 0,25 g 

- Fill up to 500 ml with MilliQ H2O 

Table 11: Components for the preparation of the proteinase K buffer. 

 

On the following day, 1 ml MilliQ H2O was added to each sample and samples were stored at 4°C 

until further use. Prior to the polymerase chain reaction (PCR), 10 µl of each sample were further 

diluted in 90 µl MilliQ H2O. For each target gene, a master mix was prepared using the “RedTaq 

Ready PCR Reaction Mix”, which contains the thermostable DNA polymerase Taq and dNTPs. Since 

an organ-specific deletion of a target gene requires both the presence of the gene encoding for the 

Cre recombinase and in addition the floxed target gene, two distinct master mixes with the 

respective primers were prepared for each sample.  
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Target Gene 
 

Primer Sequence 

Bcl-xL for. 5´- CCG ATT GTT CAG GAG ACC TTC CTG GCT TC -3´ 
rev. 5´- GAA CTT GCT GCT CTC ATA GGT TTT AAG CCA AG -3´ 

Cre recombinase for. 5´- GCA CTG ATT TCG ACC AGG TT -3´ 
rev. 5´- CCC GGC AAA ACA GGT AGT TA -3´ 

Mcl-1  for. 5´- GCA GTA CAG GTT CAA GCC ATG -3´ 
rev. 5´- CTG AGA GTT GTA CCG GAC AA -3´ 

Δ Mcl-1 for. 5´- ACG CTC TTT AAG TGT TTG GCC -3´ 
rev. 5´- CTG AGA GTT GTA CCG GAC AA -3´ 

Table 12: Primers used for mouse genotyping. 

 

For determination of the flox status, no internal control was needed because the amplification of 

the DNA segment is independent from the existence of a loxP side. If the loxP side is present, the 

amplified fragment gets merely enlarged and is thereby distinguishable from the wild-type allele. 

The master mix for the Cre PCR was supplemented with an additional primer pair for the Actin 

encoding gene. This internal control helped to differentiate between Cre negative samples and 

failures in the PCR procedure. The annealing temperature in the PCR program was adjusted to the 

GC content (guanine-cytosine content) of the primers as indicated in Table 13. 

 

Cre 1 x [µl]  Mcl-1 (flox) 1 x [µl]  Bcl-xL (flox) 1 x [µl] 

Cre: 310 bp; Actin: 510 bp  wt: 360 bp; flox: 400 bp  wt: 205 bp, flox: ~ 400bp 

RedTaq 7,5  RedTaq 13,5  RedTaq 13,5 

MgCl2 0,6  MgCl2 1,0  MgCl2 1,0 

Primer Cre for.  0,25  Primer Mcl-1 for.  0,5  Primer Bcl-xL for.  0,5 

Primer Cre rev. 0,25  Primer Mcl-1 rev. 0,5  Primer Bcl-xL rev. 0,5 

Primer Actin for. 0,5  H2O 8,5  H2O 8,5 

Primer Actin rev. 0,5  -   -  

H2O 4,65  -   -  

14,25 µl per tube + 
0,75 µl DNA 

 24 µl per tube + 
1 µl DNA 

 24 µl per tube + 
1 µl DNA 

1x:    95°C for 5 min;  1x:    95°C for 5 min;  1x:    95°C for 5 min; 

40x: 

95°C for 30sec; 

59°C for 30sec; 

72°C for 30sec; 

 

40x: 

95°C for 30sec; 

59°C for 30sec; 

72°C for 30sec; 

 

35x: 

95°C for 30sec; 

63°C for 30sec; 

72°C for 30sec; 

1x:    72°C for 7min  1x:    72°C for 7min  1x:    72°C for 7min 

Table 13: Components for the preparation of the indicated PCR master mixes and the corresponding PCR programs. 
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2.3.4 Agarose Gel Electrophoresis 

  

Agarose # 2267.4, Roth, Karlsruhe, Germany 

DNA ladder (GeneRuler® 100 BP Plus) # SM0321, Fermentas, St. Leon Rot, Germany 

Ethidium Bromide 1% # A1152, AppliChem, Darmstadt, Germany 

Trizma Base (Tris)  # A1086, AppliChem, Darmstadt, Germany 

Boric Acid # B7901, Sigma-Aldrich, Munich, Germany 

Ethylene Diamine Tetra Acetate (EDTA) # 8040.3, Roth, Karlsruhe, Germany 

 

DNA amplificates, produced in the PCR process, can be separated by agarose gel electrophoresis in 

a size-dependent manner.  Therefor, a gel was prepared by diluting 2 % (w/v) of agarose in 1 x TAE 

(Tris-acetate-EDTA) buffer. The mixture was heated up in the microwave until it became completely 

transparent.  

 

50 x TAE Buffer: Example for a final volume of 1 l: 

 600 ml of MilliQ H2O 

2 M Tris-Base (pH 7,6) 242 g  

1 M acetic acid 57,1 ml 

50 mM EDTA 100 ml 0,5 M EDTA (pH 8.0) 

- Fill up to 1 l with MilliQ H2O 

Table 14: Components for the preparation of 50 x TAE buffer. 

 

Afterwards, the agarose solution was cooled down to approximately 60°C and subsequently it was 

supplemented with 0,00005 % of the DNA-intercalating substance ethidium bromide (EtBr). Since 

EtBr is mutagenic and teratogenic, this step and all further ones were done under a hood. After the 

agarose solution was poured into the intended chamber, a comb was inserted to allow slot 

formation before the gel became firm by reaching RT. The electrophoresis chamber was filled with 

1 x TBE and the comb was removed before samples and marker were loaded and an electric tension 

of 120 V was applied. Dependent on their size, DNA fragments move to the anode with a different 

velocity, leading to their separation. After the run, the bands were made visible by illuminating the 

gel with UV-light (= 254nm). This leads to an excitation of intercalated EtBr, which in turn emits 

detectable fluorescence (= 605nm).    

 



MATERIAL AND METHODS 

 

 

 53 

2.3.5 Sanger Sequencing 

 

10 x PCR reaction buffer # 18067017, Thermo Fisher, Schwerte, Germany 

Magnesium chloride (MgCl2) # M8266, Sigma-Aldrich, Munich, Germany 

Deoxynucleotide Set (dNTPs) #DNTP100, Sigma-Aldrich, Munich, Germany 

Taq DNA Polymerase # 12346086, Thermo Fisher, Schwerte, Germany,  

 

In order to examine the presence of microsatellite instability in tumor regions, DNA from tumor 

and normal, Mcl-1 containing tissue was isolated following manual microdissection. Subsequently, 

a set of non-coding long mononucleotide markers were analyzed as indicators for microsatellite 

instability (Table 15).  

 

Marker 
 

Repeat Gene CHR Prod. 
Size 
[bp] 

Primer Sequence 

AA003063 A23  
 
uPAR 
Plasminogen 
Activ. 
Scgb1a1 
Secretoglobin 

16 87 for. 5´- ACGTCAAAAATCAATGTTAGG -3´ 
rev. 5´- CAGCAAGGGTCCCTGTCTTA -3´ 

U12235 A24 7 86 for. 5´- GCTCATCTTCGTTCCCTGTC -3´ 
rev. 5´- CATTCGGTGGAAAGCTCTGA -3´ 

L24372 A27 19 90 for. 5´- GGG AAG ACT GCT TAG GGA AGA-3´ 
rev. 5´- ATTTGGCTTTCAAGCATCCATA -3´ 

AC096777 T27 17 138 for. 5´- TCCCTGTATAACCCTGGCTGACT -3´ 
rev. 5´- GCAACCAGTTGTCCTGGCGTGGA -3´ 

AC096777  
 

A33 17 153 for. 5´- TACAGAGGATTGTCCTCTTGGAG-3´ 
rev. 5´- GCTGCTTCACTTGGACATTGGCT-3´ 

Table 15: Mononucleotide markers and primers used for MSI analyses of murine intestinal tumors. 

 

In addition, coding mononucleotide markers located in the genes Sdccag1, Elavl3, Glis2, and 

Tmem107 were evaluated for the presence of length alterations between Mcl-1-negative tumor 

regions and normal tissue.  

All amplifications were performed using fluorescently labeled (FITC) oligonucleotide primers, which 

were designed with the software primer3. The PCR reaction mix had a total volume of 5 µl and 

contained the ingredients listed in Table 16. 

Obtained PCR products were separated on an ABI3130xl genetic analyzer (Applied Biosystems, 

Darmstadt, Germany) and raw data were further analyzed with the Genescan analysis software 

(Applied Biosystems). A sample was defined as microsatellite instable, if novel peaks occurred in 

tumor compared to normal tissue, or if the ratio of peak areas of corresponding peaks in tumor and 

normal tissue revealed values ≤ 0.5 or ≥ 2201. 

 

https://www.thermofisher.com/order/catalog/product/12346086
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PCR reaction mix 1 x  

10 x reaction buffer 0,5 µl 

MgCl2 1,5 mM 

dNTPs 200 mM 

Primer for. 0,3 mM  

Primer rev. 0,3 mM 

Taq DNA polymerase 0,1 U 

H2O respectively 

Final volume: 5 ml 

1x:    94°C for 4 min; 

35x: 

94°C for 30sec; 

58°C for 45sec; 

72°C for 30sec; 

1x:    72°C for 6min 

Table 16: Components for the preparation of the indicated PCR master mixes and the corresponding PCR programs. 

 

2.4 Histological Analyses 

2.4.1 Hematoxylin and Eosin Staining 

 

37 % Formaldehyde Solution # F1635, Sigma-Aldrich, Munich, Germany 

Phosphate Buffered Saline (PBS) (Gibco) # 14190-094, Thermo Fisher, Schwerte, Germany 

Hematoxylin # GHS380, Sigma-Aldrich, Munich, Germany 

Eosin # HT110380, Sigma-Aldrich, Munich, Germany 

Xylene # 247642, Sigma-Aldrich, Munich, Germany 

Roti Histokitt II mounting medium # T160.1, Roth, Karlsruhe, Germany 

 

A hematoxylin and eosin (H&E) staining is frequently done for morphological tissue evaluation since 

it allows the discrimination of different cellular structures. Hematoxylin is basic and binds therefore 

acidic cellular components like DNA and RNA, which get stained in violet or dark blue. By contrast, 

eosin is an acidic dye that binds to the majority of proteins, which are due to the positively charged 

amino acid side chains of arginine and lysine acidophilic in most cases. Eosin colors bound structures 

in bright pink. 
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After isolating murine tissues as described under 2.5.1, 8 µm cryosections were cut (Cryostat, 

Thermo) and kept at -80°C for long-time storage. Prior to the staining, sections were defrosted at 

RT until they were completely dry. Thereafter, tissue sections were fixed in 4% PFA for 15 min under 

light exclusion and washed three times for 10 min in PBS. After rinsing object slides with ddH2O for 

1 min, specimens were incubated in hematoxylin for 5 min at RT and subsequently blued for 5 min 

in tap water. Hereafter, object slides were again rinsed with ddH2O for 1 min and stained with eosin 

for 1 min at RT. Tissue specimens were dehydrated by rinsing in a series of graded alcohols (70 %, 

96 %, 99%), followed by an additional incubation step in 99 % ethanol for 1 min. Finally, sections 

were incubated in xylene for 5 min, covered with anhydrous Roti Histokitt II mounting medium and 

covered with cover slips.   

   

2.4.2 Immunohistochemistry 

 

NovoLink Polymer Detection System # RE7290-CE, Leica Biosys., Wetzlar, Germany 

Xylene # 247642, Sigma-Aldrich, Munich, Germany 

Phosphate Buffered Saline (PBS) (Gibco) # 14190-094, Thermo Fisher, Schwerte, Germany 

Ethanol absolute # 32205, Sigma-Aldrich, Munich, Germany 

OCT mounting medium # SA62550, Science Services, Munich, Germany 

37 % Formaldehyde Solution # F1635, Sigma-Aldrich, Munich, Germany 

 

Immunohistochemical analyses allow a direct evaluation of protein expression levels and protein 

expression patterns within single cells and whole tissue specimens. Staining on cryosections as well 

as paraffin-embedded ones was performed by using the “NovoLink Polymer Detection System”. 

This kit contains a peroxidase-blocking reagent, a protein-blocking reagent, a polymer solution, a 

diaminobenzidine (DAB) solution and hematoxylin.   

All human tissues were paraffin-embedded and were therefor dewaxed and rehydrated by 

incubating tissue specimens twice in xylene for 10 min, followed by a serial incubation in graded 

alcohols (99%, 96%, 70%) for 5 min each. Finally, tissue slides were rinsed in ddH2O for 5 min.  

All murine tissues were isolated as described under 2.5.1, transferred into vinyl specimen molds 

(Sakura Finetek, Torrance, USA), covered with OCT mounting medium (Science Services, Munich, 

Germany) and gradually frozen in the gas phase of liquid nitrogen. Subsequently, 8 µm cryosections 

were cut (Cryostat, Thermo) and kept at -80°C for long-time storage. Prior to the staining, sections 

were defrosted at RT until they were completely dry. Thereafter, tissue sections were fixed in 4% 

PFA for 15 min under light exclusion, washed five times for 10 min in PBS, one time for 5 min in 

TBS-TTX to allow membrane permeabilization and one last time for 5 min in ddH2O. All washing 
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steps were performed on a shaking device. At this point, the protocols for paraffin-embedded and 

cryosections converge and all following steps were done uniformly. In order to unmask the 

antibody-binding sites, object slides were transferred into cuvettes filled with citrate buffer (pH6) 

and cooked five times for 3 min in the microwave. Subsequent to the antigen-retrieval, object slides 

were kept in the citrate buffer until they cooled down to RT. After washing again for 5 min in ddH2O, 

tissue sections were circuited with a DAKO-Pen which is water repelling and allows in this way to 

reduce the amount of all following reagents, such as antibody solutions. In order to reduce the 

background staining, endogenous peroxidase in the tissue was inhibited by incubating the 

specimens for 15 min with the peroxidase-blocking reagent (~ 50µl per object slide, depending on 

the tissue size) in a wet chamber. Blocking reagent was removed by constantly flushing the 

specimens with ddH2O for 1 min, followed by two washing steps in TBS-TTX for 5 min each. 

Unspecific binding sites were blocked by incubating the tissue sections for 10 min with 50µl of the 

protein-blocking reagent in a wet chamber, whereupon the specimens were again washed twice in 

TBS-TTX for 5 min. The applied primary antibody was diluted in PBT as indicated (Table 17) and 

poured onto the tissue specimen, which were then incubated in a wet chamber at RT or, if 

necessary, at 4°C over night. After washing the specimens thrice for 5 min in TBS-TTX, tissue 

sections were incubated with the polymer solution for 30 min in a wet chamber at RT. The polymer 

solution contains HRP-coupled anti-mouse and anti-rabbit secondary antibodies. During the 

following three washing steps for 5 min in TBS-TTX, the DAB working solution was prepared by 

diluting the DAB solution with the DAB-substrate buffer in a 1:20 ratio. Under light exclusion, the 

DAB working solution was poured onto the tissues and incubated in a wet chamber as indicated. 

During the incubation time, the horse radish peroxidase converts the hydrogen peroxide, leading 

to an oxidation-induced color change of the DAB-chromogen. This reaction was terminated by 

washing the specimens three times for 5 min with ddH2O. Subsequently, nuclei were 

counterstained for 3-5 min with hematoxylin, which needs to be blued by an incubation in tap water 

for 5 min.  After washing the specimens one last time for 5 min in ddH2O, tissues were coated with 

aqueous Aquatex mounting medium and covered with cover slips.  

 

Primary Antibody  Order number, Company Incubation Dilution 

Reactivity: mouse 

Bcl-xL  # 2764, Cell Signaling 30min, RT 1:350 in PBT 

CD3 # ab16669, abcam 30min, RT 1:100 in PBT 

CD20  # PA5-16701, Thermo Scientific 20 h, 4°C 1:150 in PBT 

CD68 # ab125212, abcam 20 h, 4°C 1:3000 in PBT 

clPARP  # ab32064, abcam 15 h, 4°C 1:500 in PBT 
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Ki67  # ab16667, abcam 30 min, RT 1:500 in PBT 

LC3  # 3868, Cell Signaling 15 h, 4°C 1:1000 in PBT 

Lysozyme  # ab108508, abcam 15 h, 4°C 1:2000 in PBT 

Mcl-1  # 600-401-394, Rockland 20 h, 4°C 1:1000 in PBT  

RIPK1  # AP00087PU-N 15 h, 4°C 1:500 in PBT 

Reactivity: human 

Bcl-2 # LS-B6772, LSBio 20 h, 4°C 1:50 in PBT 

Bcl-xL  # 2764, Cell Signaling 1 h, RT 1:200 in PBT 

clPARP  # 5625, Cell Signaling 20 h, RT 1:50 in PBT 

Ki67  # ab16667, abcam 30 min, RT 1:200 in PBT 

Mcl-1 (h) # HPA031125, Sigma-Aldrich 20 h, 4°C 1:150 in PBT 

Table 17: Antibodies used for immunohistochemical staining. 

 

2.4.3 TUNEL Assay 

 

RNase-Free DNase Set # 79254, Qiagen 

37 % Formaldehyde Solution # F1635, Sigma-Aldrich, Munich, Germany 

In Situ Cell Death Detection Kit, Fluorescein # 11684795910, Roche, Risch, Switzerland 

DAPI-containing mounting medium # AKS-38448, Dianova, Hamburg, Germany 

Phosphate Buffered Saline (PBS) (Gibco) # 14190-094, Thermo Fisher, Schwerte, Germany 

 

During apoptosis the DNA gets fragmented and displays single- and double-strand breaks 

afterwards. This can be used for the identification of apoptotic cells by labeling the emerging free 

3´-OH ends with modified nucleotides in an enzymatic reaction. The polymerization is catalyzed by 

the terminal-deoxynucleotidyl-transferase (TdT), with fluorescein-labeled dUTP as substrate. In this 

way, labeled cells in a tissue section can be identified under a fluorescence microscope (Keyence, 

Neu-Isenburg, Germany) as being apoptotic. Terminal deoxynucleotidyl transferase dUTP nick end 

labeling (TUNEL) staining was performed by using the “In Situ Cell Death Detection Kit, Fluorescein”.  

In order to detect apoptotic enterocytes in the murine gut mucosa, the intestinal tissue was 

isolated, covered with OCT mounting medium and gradually frozen in the gas phase of liquid 

nitrogen as described in 2.5.1. 8 µm cryosections were cut (Cryostat, Thermo) and kept at -80°C for 

long-time storage. Prior to the staining, sections were defrosted at RT until they were completely 

dry. Thereafter, tissue sections were fixed in 4% PFA for 20 min under light exclusion and washed 

three times for 10 min in PBS. Cell membranes were permeabilized by incubating tissue specimens 

https://en.wikipedia.org/wiki/Terminal_deoxynucleotidyl_transferase
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with chilled (4°C) permeabilization buffer for 2 min on ice. This process was terminated by washing 

the sections twice for 5 min in PBS. In order to generate a positive control, one specimen was 

incubated for 10 min at RT with 50 µl DNase I solution (~ 1500 U/ml in 50 mM Tris-HCl, pH 7.5, 

1mg/ml BSA) and washed twice for 5 min in PBS, afterwards. Meanwhile, the TUNEL reaction mix 

was freshly prepared by mixing Enzyme Solution (vial 1) and Label Solution (vial 2) in a 1:10 ratio. 

All components of the TUNEL reaction mix were permanently kept on ice and since some 

ingredients are potentially carcinogenic, the work was done under a hood. 50-100µl of the reaction 

mixture were poured onto each tissue section and specimens were incubated for 1h at RT in a wet 

chamber. To generate a negative control, one tissue specimen was incubated with Label Solution 

only. Finally, sections were washed twice for 5 min in PBS, coated with DAPI-containing mounting 

medium and covered with cover slips. TUNEL-stained specimens were imaged with a fluorescence 

microscope (Keyence, Neu-Isenburg, Germany), using a 488 nm excitation laser with emission at 

530 nm. 

 

2.5 Mouse Models 

2.5.1 Breeding and Organ Removal 

 

Phosphate Buffered Saline (PBS) (Gibco) # 14190-094, Thermo Fisher, Schwerte, Germany 

OCT mounting medium # SA62550, Science Services, Munich, Germany 

 

Mice expressing the Cre-recombinase under control of the Villin-promoter (Villin-Cre) were kindly 

provided by Dr. W. Chamulitrat (University Hospital Heidelberg, Germany). Mice carrying loxP-

flanked alleles of Bcl-xL (Bcl-xL
FLOX) were obtained from Prof. Y.-W. He (Duke University School of 

Medicin, Durham, NC, USA) and Mcl-1FLOX mice from Dr. WG Kaelin (Dana-Farber Cancer Institute, 

Boston, USA). All these mouse strains have a C57BL/6-background. In order to generate mice with 

a conditional loss of Mcl-1 (Mcl-1ΔIEC) or Bcl-xL (Bcl-xL
ΔIEC) in intestinal epithelial cells, Villin-Cre mice 

were crossbred with the respective flox-strain. Later on, Bcl-xL
ΔIEC mice were bred in a homozygous 

manner, whereas males showing a homozygous loss of Mcl-1 are infertile. For this reason, only 

males with a heterozygous flox-status were used for further breeding in the Mcl-1ΔIEC strain. Since 

the expression of the Cre-recombinase have been shown to induce gastric inflammation202, Villin-

Cre mice were chosen as control group for all experiments performed. Mice were housed in 

individually ventilated cages at the SPF animal facility of the University Hospital in Heidelberg, 

Germany and kept under a 12 h light cycle with ad libitum feeding. All experiments on mice were 
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conducted according to institutional, national and European animal regulations and protocols were 

approved by local government authorities.  

In order to isolate the intestine, mice were sacrificed by cervical dislocation and the bowel cavity 

was opened. The colon was removed, rinsed with PBS and it´s length was measured. If the tissue 

was subsequently analyzed by immunohistochemistry, the colon was transferred covered with OCT 

mounting medium and gradually frozen in the gas phase of liquid nitrogen. By contrast, later protein 

or RNA analyses required isolation of the mucosal layer. After longitudinal opening of the colon, 

the mucosa was separated from the subjacent layers by wiping it off with the edge of an object 

slide. The isolated tissue was transferred into a 1,5 ml reaction tube and snap frozen in liquid 

nitrogen.  

 

2.5.2 AOM/DSS Model and Mouse Endoscopy 

 

Azoxymethane (AOM) # A5486, Sigma-Aldrich, Munich, Germany 

Dextran Sodium Sulfate (DSS) # 0216011025, MP Biomedicals, Santa Ana, CA, USA 

 

Ten-week old Bcl-xL
ΔIEC and Villin-Cre mice (n=10 per group) with a body weight > 20 g were injected 

intraperitoneally with AOM (10 mg per kg body weight). Experimental groups were similar with 

regard to age and sex ratio. 

The mutagenic agent AOM initiates intestinal tumor formation, which is promoted by three cycles 

of the pro-inflammatory reagent DSS in the drinking water (2% w/v). Each cycle lasted 7 days with 

14 days of recovery in between. During DSS treatment, the health status was determined each day 

by using body weight and diarrhea severity as main parameters. For evaluation of diarrhea severity, 

the following score was used:  

0. No diarrhea: solid stool with no sign of soiling around the anus.  

1. Mild diarrhea: formed stool that appears moist on the outside. Some signs of soiling around 

the anus.  

2. Diarrhea: unformed stool with a mucous-like appearance. Considerable soiling around the 

anus.  

3. Severe diarrhea: mostly clear or mucous-like liquid stool with very minimal solid present 

and considerable soiling around anus.  

4. Bloody diarrhea: severe diarrhea with bloody contingent and considerable soiling around 

anus.  

High-resolution mouse endoscopy was performed203 with a Mainz COLOVIEW endoscopic system 

(Karl Storz, Tuttlingen, Germany). Prior to endoscopy, mice were anesthetized with 5% isoflurane 
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in oxygen. For anesthesia maintenance, the concentration of the anesthetic was reduced to 2% 

isoflurane in oxygen. Mice were taped onto a warming plate (37°C) in order to preserve body 

temperature and the endoscope was carefully introduced via the anus. The endoscopic camera 

allowed capturing of high quality pictures, which were suitable for tumor monitoring. Eighty days 

after AOM injection, mice were sacrificed by cervical dislocation and bowel cavity was opened. The 

colon was removed, rinsed with PBS and opened longitudinally. Colorectal tumors were counted 

and tumor diameters were measured with a sliding caliper. Some tumors were taken for 

immunohistochemical analyses, whereas others were used for protein isolation as described.  

 

2.6 Statistical Analysis 

Collected data were descriptively shown and mean values were taken as measures of location, 

depicted as means + SD (standard deviation). In case of a gaussian data distribution and 

independent groups, an unpaired, two-sided Student´s T-test was applied for statistical analysis. If 

groups were dependent, as it was the case in the tissue culture experiments, for instance, a paired, 

two-sided Student´s T-test was performed. Non-parametric data, like the grading of an 

immunohistochemical staining, were statistically evaluated by using the Mann-Whitney U test. The 

coefficient of determination (R2) was calculated with Excel to analyze how close the depicted data 

fit to the linear regression line. R2 lies always between 0 and 1 and the higher the value for R2, the 

better the linear regression fits the obtained data. R 3.1.3 statistic software was used for all other 

statistical analyses (www.R-project.org). p-values < 0,05 were considered significant and are 

indicated as following: *p < 0,05, **p < 0,01, ***p < 0,001.  
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  RESULTS 

3.1 Expression Levels of anti-apoptotic Bcl-2 Proteins in human colorectal Cancer  

Avoidance of cell death is a prerequisite for cancer development and chemotherapy resistance. One 

possible mechanism for the longevity of malignant cells is the overexpression of cell death 

preventing proteins, such as anti-apoptotic Bcl-2 proteins.  

In order to evaluate whether the expression of Bcl-2, Bcl-xL and Mcl-1 is also altered in human CRC, 

intestinal mucosa and colorectal tumor specimens were immunohistochemically analyzed. 

Therefor, a tissue microarray (TMA), containing spots of healthy colon mucosa, adenoma tissue and 

adenocarcinoma tissue, was obtained from the Tissue Bank of the National Center for Tumor 

Diseases (NCT, Heidelberg, Germany). 

 

 

 

Figure 6: Expression levels of anti-apoptotic Bcl-2 proteins in human CRC. a) IHC staining against Bcl-xL, Mcl-1 and Bcl-2 on 

a TMA, containing normal mucosa (n=13), adenoma (n=22) and adenocarcinoma tissue (n=61). Exemplary spots of 

mucosal and adenocarcinomal tissue are shown. b) Evaluation of staining intensities by multiplying values for staining 

quantity and quality. All p-values are calculated using mucosa as control group. Bcl-xL is significantly overexpressed in 

adenomas and adenocarcinomas and Mcl-1 shows a decreased expression whereas Bcl-2 shows no deregulated 

expression. Values are expressed as means + SD. *p < 0,05; **p < 0,01; ***p < 0,001.



 
RESULTS 

 

 62 

In adenomas, Bcl-xL was found to be significantly overexpressed (p<0,01), if compared to normal 

mucosa, with a further increase in adenocarcinomal tissue (p<0,001). For Bcl-2, no significant 

differences in the expression levels were found. Mcl-1 was found to be significantly downregulated 

in adenomas (p<0,001) with a slight rebound in the malignant stage (p<0,05). 

Furthermore, the expression levels of Bcl-xL and Mcl-1 were compared between primary colorectal 

tumors and corresponding liver metastases, derived from 10 patients. The respective tissue 

specimens were taken upon surgical resection in the department of general and transplantation 

surgery of the Heidelberg University Hospital. Analysis of the immunohistochemical staining 

revealed neither for Bcl-xL, nor for Mcl-1 significantly altered expression levels in primary tumors 

and metastases.  

 

Figure 7: Expression levels of Bcl-xL and Mcl-1 in primary tumors and liver metastases. a) IHC staining against Bcl-xL on 

normal mucosa, primary colorectal tumors and corresponding liver metastases (n=10 patients). Pictures of 2 exemplary 

patients are shown. b) Evaluation of staining intensities by multiplying values for staining quantity and quality, showing 

neither for Bcl-xL nor for Mcl-1 significantly altered expression levels in primary tumor and metastases. Values are 

expressed as means + SD.  

 

3.2 The Role of anti-apoptotic Bcl-2 Proteins for human colorectal Cancer Cells in vitro  

For all experiments assessing the function of Bcl-2 proteins in vitro, human colorectal cancer cell 

lines HT29 and SW480 were chosen.  In these cells, the expression levels of our proteins of interest 

were downregulated to evaluate their function for viability and proliferation as well as for migration 

and invasiveness of CRC cells.  

For downregulation of gene expression, small interfering RNAs (siRNA) were used. siRNA 

sequences, complementary to the respective target mRNA, were calculated by means of the 

Eurofins blasting program.  
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Figure 8: siRNA mediated knockdown of anti-apoptotic Bcl-2 proteins in human CRC cells. Western blot analyses of HT29 

(left) and SW480 (right) cells after siRNA mediated knockdown of Mcl-1, Bcl-2 or Bcl-xL 24, 48 and 72 h post transfection. 

Tubulin served as loading control. The Western blots presented are representative of three independent experiments. 

 

Post transfection, the expression of Mcl-1, Bcl-2 and Bcl-xL was determined on the protein level by 

Western blot analysis. This showed, that all utilized siRNAs could efficiently downregulate the 

respective protein expression in both cell lines. As a control, cells were transfected with an 

unspecific siRNA (scrambled siRNA/siSc), which is not complementary to any mRNA in the cell. Since 

some of the planned experiments required incubation times of more than 24 h, knockdown stability 

was additionally tested for up to three days. This revealed that the achieved knockdowns are stable 

for at least 72 h.  

 

3.2.1 Knockdown of anti-apoptotic Bcl-2 Proteins does not lead to spontaneous Cell Death Induction 

In a first approach, the siRNA mediated knockdown of anti-apoptotic Bcl-2 proteins was used to 

examine their importance for the viability of colorectal cancer cells. Therefore, cells were 

transfected with the respective siRNAs before viability was determined by a MTT assay. The results 

show that the knockdown of none of the anti-apoptotic Bcl-2 proteins lead to spontaneous cell 

death induction in HT29 or SW480 cells. Since a MTT assay always displays combined information 

about cell death and proliferation, this finding was further validated by FACS analysis of cleaved 

PARP (Poly(ADP-ribose)-Polymerase)-positive cells. In this case, staurosporine (STS) treated cells 

were used as a positive control. Neither in HT29 nor in SW480 cells, the silencing of anti-apoptotic 

Bcl-2 proteins lead to a significant increase of cleaved PARP-positive cells if compared to siSc 

transfected controls. Western blot analysis revealed no counter-regulatory upregulation of kin 

proteins if one anti-apoptotic Bcl-2 protein was silenced (data not shown).   
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Figure 9: Viability of human CRC cells after siRNA mediated knockdown of anti-apoptotic Bcl-2 proteins. a) MTT-Assay of 

SW480 and HT29 cells after knockdown of Mcl-1, Bcl-2 and Bcl-xL. b) Flow cytometric analyses of cleaved PARP-positive 

HT29 (left) and SW480 (right) cells, 48 h after knockdown of Mcl-1, Bcl-2 and Bcl-xL. 24 h Staurosporine treatment (1 µM) 

served as a positive control for cell death induction. Flow cytometry analysis was performed in triplicates. All values are 

expressed as means + SD. Assays are representative of at least three independent experiments. 

 

3.2.2 Knockdown of anti-apoptotic Bcl-2 Proteins does not exert anti-proliferative Effects on CRC 

Cells 

Next, the role of anti-apoptotic Bcl-2 proteins for the proliferative capacity of CRC cells was 

evaluated by BrdU FACS analysis. Therefor, HT29 and SW480 cells were transfected with siRNA and 

incubated with the thymidine analogon bromodeoxyuridine (BrdU), which gets incorporated into 

the DNA of replicating cells. Subsequent FACS analysis of BrdU-positive cells revealed a higher basal 

proliferation level in HT29 (38,6% BrdU-positive) than in SW480 (21,1% BrdU-positive) cells.  

The knockdown of Bcl-2 or Bcl-xL lead neither in HT29 (siBcl-2∶ 37,3%; siBcl-xL: 37,4%) nor in SW480 

cells to a significant alteration of proliferation rates. By contrast, the diminution of Mcl-1 increased 

the amount of BrdU-positive HT29 cells significantly from 38,6% to 47,5% (p<0,05). In SW480 cells, 

a comparable pro-proliferative effect was detected after Mcl-1 knockdown. Here the percentage of 

BrdU-positive cells increased from 21,1% to 25,6% (p<0,05). This means that the knockdown of Mcl-

1 increases the amount of proliferating cells, compared to the respective initial values, by 

approximately one fifth in both cell lines (Figure 10 a and b). To validate these findings, a 

proliferation kinetic for SW480 cells was compiled by cell counting at different time points after 

transfection. In line with the results obtained from the BrdU FACS analysis, solely the knockdown 

of Mcl-1 significantly changed proliferation rates over time (Figure 10 c). 
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Figure 10: Proliferation of human CRC cells after siRNA mediated knockdown of anti-apoptotic Bcl-2 proteins. SW480 and 

HT29 cells were transfected with siRNA against Mcl-1, Bcl-2 and Bcl-xL. 24 h post transfection, cells were pulsed with 20 

µM BrdU and prepared for flow cytometry. a) Representative original flow cytometry data with HT29 cells, stained with 

an anti-BrdU antibody coupled to PerCP-CY5.5 fluorophore. b) Flow cytometric analyses for BrdU incorporation in HT29 

(left) and SW480 (right) cells. c) Total cell count of SW480 cells after knockdown of Mcl-1, Bcl-2 and Bcl-xL. Cells were 

seeded on 6 well plates, harvested and counted 24, 48 and 72 h post transfection. Values are expressed as means + SD. 

Assays were run in triplicates (flow cytometry) and sextuplicates (cell counting). Assays are representative of three 

independent experiments. *p < 0,05. 

 

3.2.3 Anti-apoptotic Bcl-2 Proteins influence the migratory Ability of CRC Cells 

The experiments regarding viability and proliferation showed, that siRNA mediated knockdown of 

anti-apoptotic Bcl-2 proteins does not negatively influence the number of CRC cells. This is an 

important prerequisite to study the role, anti-apoptotic Bcl-2 proteins play for the migratory 

capacity of CRC cells. For visualization of cellular migration, scratch assays on monolayers of 

transfected HT29 and SW480 cells were performed.  
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Figure 11: Migratory capacity of human CRC cells after siRNA mediated knockdown of anti-apoptotic Bcl-2 proteins. 

SW480 and HT29 cells were transfected with siRNA against Mcl-1, Bcl-2 and Bcl-xL. Subsequently, the cell monolayer was 

scratched by using a sterile pipette tip and gap closure was measured 24, 48 and 72 h afterwards. Finally, cells were lysed 

and proteins were harvested in order to proof knockdown stability. a) Representative pictures of a scratch assay, showing 

gap closure capacity of HT29 cells after knockdown of Bcl-2. Scale bar indicates magnification for all panels. b) Gap closure 

kinetics of HT29 cells (left) and SW480 cells (right) after knockdown of Mcl-1, Bcl-2 and Bcl-xL and corresponding Western 

blots. Values are expressed as means ± SD. Assays are representative of at least three independent experiments. *p < 

0,05; **p < 0,01; ***p < 0,001. 
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Gap distances were measured every day over a time period of 72 h in total. Therefor, the exact 

image position within the well was marked to allow surveillance of gap closure and calculation of 

average migration distances in the very same sector. After 72 h, clear differences in transfected and 

mock transfected control cells were apparent. The knockdown of all three anti-apoptotic Bcl-2 

proteins significantly slowed down gap closure in both HT29 (siMcl-1: p<0,01; siBcl-2: p<0,001; 

siBcl-xL: p =<0,01) and SW480 cells (siMcl-1:  p< 0,01; siBcl-2: p < 0,001; siBcl-xL: p < 0,01). In both cell 

lines, the most conspicuous effect was observed after knockdown of Bcl-2, which decreased the 

migration distance to 56% of the siSc transfected control in SW480 and to 36% in HT29 cells (Figure 

11 b). 

Even though, scratch assays are most commonly used for evaluating the migratory ability of cells, 

an additional 3D cell culture model was applied to validate the obtained findings. This model is 

based on a polystyrene scaffold, which facilitates cellular interactions and movement of cells. 

Compared to conventional 2D cell culture models, it resembles a more physiological environment 

(Figure 12 a). Since the altered culture conditions might influence cell growth, proliferation was 

analyzed prior to the migration experiment. Due to their morphology, it is difficult to quantify 

SW480 by counting if they are grown in 3D cell culture. Therefore, the following experiments were 

primarily done with HT29 cells.  

After transfection, HT29 cells were transferred onto the scaffolds and grown for 72 h. Subsequently, 

scaffolds were sectioned and cells were stained with Hematoxylin and Eosin to allow determination 

of cell numbers by counting. In addition, immunohistochemical staining of Ki67, as an additional 

approach to assess proliferation, was performed. The results obtained with both approaches 

underlined the previous findings on proliferation, showing no significant changes in total cell counts 

after knockdown of Bcl-xL and Bcl-2 and a significant increase in total cell count after knockdown of 

Mcl-1 (p<0,05). This observation was also mirrored by a significant increase from 53% to 61% of 

Ki67-positive cells after siRNA mediated knockdown of Mcl-1 (p<0,05). By contrast, no significant 

changes in Ki67 positivity were observed after knockdown of either Bcl-2 or Bcl-xL (Figure 12 b).  

Regarding cellular motility, the knockdown of all anti-apoptotic Bcl-2 proteins significantly 

decreased covered distances. Since cells maintained their morphology and size after knockdown of 

Mcl-1, Bcl-2 and Bcl-xL, the reduction of invaded areas is likely caused by impaired migration. 

Comparable to the findings obtained in the scratch assay, the most striking effect was observed 

after knockdown of Bcl-2 with a decrease to 54% of the invasion depth of siSc transfected controls 

(Figure 12 c).  
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Figure 12: Proliferation and migration of HT29 cells in 3D scaffolds after siRNA mediated knockdown of Mcl-1, Bcl-2 and 
Bcl-xL. a) Schematic description of the applied three-dimensional cell culture approach. HT29 cells were transfected with 
specific siRNA against Mcl-1, Bcl-2 or Bcl-xL. 24 h post transfection, cells were harvested and 1×106 cells were seeded onto 
each scaffold. After 72 h, scaffolds were harvested for further processing. b) Representative pictures of HT29 cells in 
scaffolds after siRNA mediated knockdown of Mcl-1 and immunohistochemical staining of Ki67. Ki67 positive cells were 
counted for determining proliferation rates (right graph; n = 5 scaffolds per group and 10 visual fields per scaffold). 
Additionally, total cell numbers in scaffolds were determined by counting (right graph; n = 5 scaffolds per group and 10 
visual fields per scaffold). Scale bar indicates magnification for both pictures. c) Representative pictures of Hematoxylin 
and Eosin stained HT29 cells in scaffolds after transfection with scrambled RNA (siSc) or siRNA against Bcl-2 (siBcl-2). Scale 
bar indicates magnification for both pictures. Invasion depth was measured every 20 µm (n = 5 scaffolds per group and 
10 visual fields per scaffold). Values are expressed as mean + SD. Assays are representative of at least three independent 
experiments. *p < 0,05. 

 

With the overexpression of Mcl-1, Bcl-2 and Bcl-xL in HT29 and SW480 cells, the influence, anti-

apoptotic Bcl-2 proteins have for cell migration, was further validated. Again, a scratch assay as well 

as a 3D cell culture assay were performed to evaluated whether overexpression potentially reverts 

the phenotype observed in the knockdown experiments.  
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For overexpression, cells were transfected with plasmid DNA. Controls were generated by 

transfecting the cells with the respective empty vectors. Overexpression of anti-apoptotic Bcl-2 

proteins did neither alter viability nor proliferation of HT29 or SW480 cells, but the transfection 

with plasmid DNA per se exerted a non-negligible toxicity, especially on HT29 cells. 

 

 

 

Figure 13: Overexpression of anti-apoptotic Bcl-2 proteins in human CRC cells. a) Western blot analyses of HT29 (left) and 

SW480 (right) overexpressing Mcl-1, Bcl-2 or Bcl-xL 24, 48 and 72 h post transfection. Tubulin served as loading control. 

The Western blots presented are representative of three independent experiments. b) Representative pictures of 

Hematoxylin and Eosin stained HT29 cells in scaffolds after transfection with an empty vector or an Mcl-1 expression 

vector. Scale bar indicates magnification for both pictures. c) Total cell numbers in scaffolds were determined by counting 

(upper graph). Invasion depth was measured every 20 µm (lower graph). n = 5 scaffolds per group and 10 visual fields per 

scaffold. Values are expressed as mean + SD. Assays are representative of at least three independent experiments. *p < 

0,05. 
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In addition, Western blot analysis showed differences in transfection efficiencies, with the weakest 

results for overexpression of Bcl-xL in HT29 cells (Figure 13 a). 

Nevertheless, HT29 cells, overexpressing Mcl-1, Bcl-2 or Bcl-xL, showed a significantly increased 

motility in polystyrene scaffolds compared to vector transfected controls (Mcl-1: 190%; Bcl-2: 280% 

and Bcl-xL: 260%; p<0,05; Figure 13 b and c lower graph). Since total cell numbers were not altered 

after the transfection (Figure 13 c upper graph), the observed increase of invaded areas is likely 

caused by an enhanced migratory capacity, which seems independent of differences in proliferation 

or viability. Additionally, a scratch assay was performed with both HT29 and SW480 cells (Figure 

14). In SW480 cells, the overexpression of Bcl-2 induced the strongest phenotype, with the covered 

distance being almost doubled after 72 h (190%; p<0,001). Overexpression of Bcl-xL also lead to a 

significantly increased motility of SW480 cells (158%, p<0,001). Overexpression of Mcl-1 lead only 

after 48 h to significant differences in covered distances (168%, p<0,01). Similar results were 

obtained after overexpression of Mcl-1, Bcl-2 or Bcl-xL in HT29 cells. In all cases, significant 

differences in gap sizes were detected after 48 h (Mcl-1: 288%, p<0,001; Bcl-2: 160%, p<0,001; Bcl-

xL: 162%, p<0,001). After 72 h, by contrast, only HT29 cells overexpressing Mcl-1 showed a 

significantly increased motility compared with vector transfected control cells (Mcl-1: 248%, 

p<0,001). 

In summary, the results conclusively show a correlation between the expression of anti-apoptotic 

Bcl-2 proteins and the motility of human CRC cells. The knockdown of Mcl-1, Bcl-2 or Bcl-xL 

significantly impairs their migratory capacity, whereas overexpression induces a reversed 

phenotype. In both scenarios, the observed phenotypes seem independent of proliferation and 

viability. 
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Figure 14: Migratory capacity of human CRC cells after overexpression of anti-apoptotic Bcl-2 proteins. SW480 and HT29 

cells were transfected with plasmids expressing human Mcl-1, Bcl-2 or Bcl-xL. Subsequently, the cell monolayer was 

scratched by using a sterile pipette tip and gap closure was measured 24, 48 and 72 h afterwards. a) Representative 

pictures of a scratch assay, showing gap closure capacity of SW480 cells overexpressing Bcl-2. Scale bar indicates 

magnification for all panels. b) Gap closure kinetics of HT29 cells (left) and SW480 cells (right) overexpressing Mcl-1, Bcl-

2 or Bcl-xL. Values are expressed as means ± SD. Assays are representative of at least three independent experiments. *p 

< 0,05; **p < 0,01; ***p < 0,001. 

 

3.2.4 Knockdown of anti-apoptotic Bcl-2 Proteins inhibits the Invasiveness of CRC Cells 

For metastasis formation, cancer cells do not only need to migrate but also to actively overcome 

the extracellular matrix during the invasion process. In order to study the role of anti-apoptotic Bcl-

2 proteins in this context, Matrigel-coated Boyden chambers were used. Pre-experiments showed, 

that only SW480 were capable of getting over this barrier. Hence, the following experiment was 

performed with this cell line. Subsequent to the siRNA mediated knockdown of Mcl-1, Bcl-2 or Bcl-

xL, cells were transferred onto the Matrigel-coated insert. 48 h after seeding, invaded cells on the 

lower surface were fixed and nuclei were stained with Hoechst. Counting revealed, that the 

downregulation of each anti-apoptotic Bcl-2 protein, lead to a significantly decreased invasiveness 

of SW480 cells. Compared to siSc transfected controls, only 70% Bcl-xL-deficient cells reached the 

lower surface (p < 0,01). The invasive properties of cells with downregulated Bcl-2 or Mcl-1 were 
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even more inhibited. Compared to the control, only 38% of Bcl-2-deficient (p < 0,001) and 37% of 

Mcl-1-deficient (p < 0,001) SW480 cells could overcome the Matrigel.  

Together with the findings on cellular motility, these observations point to a potential role of anti-

apoptotic Bcl-2 proteins for metastasis formation. 

 

 

Figure 15: Invasiveness of SW480 cells after siRNA mediated knockdown of anti-apoptotic Bcl-2 proteins. SW480 cells were 

transfected with siRNA against Mcl-1, Bcl-2 or Bcl-xL and 3×105 cells were transferred onto Matrigel-coated Boyden 

chambers. 48 h after seeding, nuclei on the lower surface were visualized by Hoechst staining. a) Representative pictures 

of lower insert surface after Hoechst staining (scale bar indicates magnification for all panels). b) Five pictures of every 

insert were taken and the number of Hoechst-positive nuclei was determined by counting. n = 5 inserts per group. Values 

are expressed as means + SD. Assays are representative of at least three independent experiments. **p < 0,01; ***p < 

0,001. 

 

3.2.5 The pan-Bcl-2 Inhibitor Obatoclax delays Cell Cycle Progression and inhibits Migration of CRC 

Cells 

Obatoclax is a small molecule inhibitor, mimicking the function of BH3-only proteins. Via binding to 

their cleft, Obatoclax inhibits Mcl-1, Bcl-2 and Bcl-xL as well. The findings on migration and 

invasiveness of CRC cells after siRNA-mediated knockdown of Mcl-1, Bcl-2 and Bcl-xL drew a clear 

picture about the importance of anti-apoptotic Bcl-2 proteins for malignant features of intestinal 

tumor cells. Hence, the value of Obatoclax as a chemical inhibitor was tested in this context.  

First, dose titration was performed in HT29 and SW480 cells, whereupon 0,25 µM and 0,5 µM were 

chosen for further migration and invasion experiments. These doses are in the sublethal range in 

both cell lines (Figure 16 a). Because it has been reported that Obatoclax treatment leads to a 

degradation of anti-apoptotic proteins in cancer cells204, expression levels of Mcl-1, Bcl-2 and Bcl-xL 

were determined under different inhibitor concentrations. Western blot analysis revealed no 

significant differences in the level of anti-apoptotic Bcl-2 proteins under 0,25 µM, 0,5 µM and 1 µM 

Obatoclax (Figure 16 b). In order to analyze the effect of Obatoclax treatment on migration, HT29 

cells were seeded onto polystyrene scaffolds and subsequently treated with Obatoclax for seven 
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days. After slicing of the scaffolds, cells were first immunohistochemically stained for cleaved PARP 

to validate the non-lethality of the chosen doses. Compared to control, no differences in the 

amount of cleaved PARP-positive cells were found (Figure 16 c, right column). In addition, cells were 

stained for Ki67 to evaluate the effect of Obatoclax on proliferation. This revealed a negative 

correlation between Ki67 positivity and Obatoclax concentration (Figure 16 c, left column).  

 

 

Figure 16: Cell death and proliferation of human CRC cells under treatment with the pan-Bcl-2 inhibitor Obatoclax. a) 

Representative Western blots detecting cleaved PARP in HT29 cells (upper panel) and SW480 cells (lower panel) after 24 

h of Obatoclax treatment. Tubulin served as loading control. The positive control was generated by treating cells with 2 

µM Staurosporine for 24 h. b) Representative Western blots showing expression levels of Mcl-1, Bcl-2 and Bcl-xL in HT29 

cells (left) and SW480 cells (right) after 24 h of Obatoclax treatment. Tubulin served as a loading control. Presented 

Western blots are representative for at least three blots from independent experiments. c) Representative pictures of 

HT29 cells in scaffolds after 7 days of treatment with Obatoclax. Proliferation and cell death were determined by 

immunohistochemical staining of Ki67 (left) and cleaved PARP (right). Scale bar indicates magnification for all panels. d) 

Flow cytometric analysis for DNA content in HT29 cells treated with 0,25 µM Obatoclax. 2N = diploid cells in G1-phase, 

4N = tetraploid cells in G2-Phase. e) Corresponding analysis of cell cycle phase distribution. Values are expressed as means 

+ SD. Assays are representative of at least three independent experiments. ***p < 0,001. Oba = Obatoclax. 

 



 
RESULTS 

 

 74 

For a better quantification of proliferating cells, the DNA content of Obatoclax-treated HT29 cells 

was determined by FACS analysis. This approach allows to distinguish between diploid (2N) cells in 

the G1- and tetraploid (4N) cells in the G2-phase. Under 0,25 µM Obatoclax, the percentage of 

proliferating cells in the G2-phase decreased from 37% to 13% (p<0,001; Figure 16 e). Interestingly, 

overexpression of anti-apoptotic Bcl-2 proteins did not antagonize this phenotype. Even though the 

observed differences in proliferation potentially influence migration, the invasion depth of HT29 

cells in scaffolds was determined.  

 

 

 

Figure 17: Migratory capacity of human CRC cells under treatment with the pan-Bcl-2 inhibitor Obatoclax. a) 

Representative pictures of Hematoxylin and Eosin stained HT29 cells in scaffolds after 7 days of treatment with Obatoclax. 

Scale bar indicates magnification for both pictures. b) Corresponding analysis of invasion depth in scaffolds. Assays were 

performed in triplicates and values are expressed as means + SD. c) Representative pictures of a scratch assay, showing 

gap closure capacity of HT29 cells under treatment with Obatoclax. Scale bar indicates magnification for all panels. d) 

Corresponding analysis of covered distances at indicated time points for HT29 (upper graph) and SW480 (lower graph) 

cells. Bars represent mean ± SD. Assays are representative of at least three independent experiments. ***p < 0,001. Oba 

= Obatoclax. 
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0,25 µM Obatoclax induced a striking blockade of migration in 3D long term cell culture. Compared 

to DMSO-treated controls, the covered distance of Obatoclax-treated cells decreased to 52% (p < 

0,001; Figure 17 b). To verify the observed migration phenotype, an additional scratch assay was 

performed. Therefor, again 0,25 µM and 0,5 µM as sublethal doses of Obatoclax were applied and 

gap closure was measured over a time period of 48 h (Figure 17 c). The results clearly show that 

Obatoclax massively impairs the migratory capacity of HT29 and SW480 cells in a dose-dependent 

manner. After 48 h, mean covered distances of HT29 cells were 563 µm in DMSO treated controls, 

322 µm in 0,25 µM Obatoclax treated cells and 226 µm in 0,5 µM Obatoclax treated cells (p < 0,001 

each). SW480 cells overcame in the same time 696 µm under DMSO, 232 µm under 0,25 µM 

Obatoclax and 204 µm under 0,5 µM Obatoclax treatment (p < 0,001 each; Figure 17 d).  

 

 

Figure 18: Invasiveness of SW480 cells under treatment with the pan-Bcl-2 inhibitor Obatoclax. SW480 cells were 

transferred onto Matrigel-coated Boyden chambers and cell culture medium was supplemented with Obatoclax as 

indicated. 48 h after seeding, nuclei on the lower surface were visualized by Hoechst staining. a) Representative pictures 

of lower insert surface after Hoechst staining. Scale bar indicates magnification for all panels. b) Prior to the invasion 

experiment, proper attachment of SW480 under Obatoclax treatment was tested. Therefor cells were seeded onto cell 

culture dishes in the presence of the inhibitor. After 24 h a MTT assay was performed, which revealed no impaired 

attachment under Obatoclax treatment. c) In order to quantify invaded cells in the Boyden chamber assay, five pictures 

of every insert were taken and the number of Hoechst-positive nuclei was determined by counting. n = 5 inserts per group. 

Values are expressed as means + SD. Assays are representative of at least three independent experiments. ***p < 0,001. 

 

Next, the invasiveness of Obatoclax treated SW480 cells was evaluated by a Boyden chamber assay. 

By contrast to the scratch assay, in which cells are first grown to a confluency of 70-80% before 

they are treated, the Boyden chamber assay required seeding of cells in Obatoclax containing 

medium. In order to prove appropriate attachment under these conditions, cells were previously 
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seeded onto cell culture dishes followed by an MTT assay after 24 h. Since there was no impaired 

attachment observed in the presence of the inhibitor (Figure 18 b), the invasion assay was 

performed with the respective concentrations of Obatoclax.  

Similar to the result obtained in the migration assay, invasion was strikingly inhibited by Obatoclax, 

again displaying dose-dependency (Figure 18 c). Compared with the DMSO treated control, the 

number of invaded cells decreased to 30,3% under 0,25 µM Obatoclax treatment (p<0,001) and to 

20,2% under 0,5 µM Obatoclax treatment (p<0,001). 

Taken together the results show, that chemical inhibition of anti-apoptotic Bcl-2 proteins could be 

a feasible approach to inhibit CRC cell spreading.  

 

3.2.6 Expression of Migration Markers after Downregulation or Inhibition of anti-apoptotic Bcl-2 

Proteins  

In order to further investigate the molecular mechanisms, being responsible for the observed 

migration and invasion phenotypes, E-Cadherin expression was determined. E-Cadherin is a 

transmembrane protein with a key function for the formation of adherents junctions and thus for 

cellular adhesion.  

 

Figure 19: Expression of E- and N-Cadherin in CRC cells before and after downregulation or inhibition of anti-apoptotic Bcl-

2 proteins. a) Representative Western blots, showing E-Cadherin (upper panel) and N-Cadherin (lower panel) expression 

in four different human CRC cell lines. Cell lines were ordered according to their tumorigenicity and reveal a negative 

correlation between tumorigenicity and E-Cadherin expression. b) Representative Western blot, detecting E-Cadherin 

expression in SW480 cells, 72 h after siRNA-mediated downregulation of Mcl-1, Bcl-2 or Bcl-xL. Analysis revealed an 

increased expression of E-Cadherin, subsequent to knockdown of Bcl-2. c) Representative Western blots, showing E-

Cadherin expression in four CRC cell lines after 24 h of Obatoclax treatment. In all cell lines, except of SW480 cells, analysis 

revealed an increased E-Cadherin expression under 0,25 µM and 0,5 µM Obatoclax. Presented Western blots are 

representative for at least three blots from independent experiments and Tubulin always served as loading control.  
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It has been shown that E-Cadherin expression gets decreased during the course of malignant 

transformation, allowing the cancer cells to leave the primary tumor side205. By contrast, the related 

protein N-Cadherin was found to rather promote cellular migration and invasiveness206. In a first 

approach, the basal expression levels of E- and N-Cadherin in SW480 and HT29 cells were 

determined by Western blot analysis. SW480 cells are tumorigenic but non-invasive, whereas HT29 

cells are tumorigenic, invasive and metastatic. In addition, CaCo2 and Colo205, two other human 

colorectal cancer cell lines, were used as a comparison. By contrast to SW480 and HT29 cells, these 

cell lines are non-tumorigenic207,208. Impressively, Western blot analysis revealed a negative 

correlation between E-Cadherin expression and the tumorigenicity of cell lines. As opposed to that, 

N-Cadherin expression was only detectable in HT29 cells, where it still was very weak compared to 

the positive control (Figure 19 a). To investigate, whether siRNA mediated knockdown of anti-

apoptotic Bcl-2 proteins might recover E-Cadherin expression in SW480 and HT29 cells, transfection 

and subsequent Western blot analysis were performed. In HT29 cells, the knockdown of Mcl-1, Bcl-

2 or Bcl-xL did not lead to an increase of expression levels above the detection threshold (data not 

shown). In SW480 cells, E-Cadherin expression was clearly increased after siRNA-mediated 

knockdown of Bcl-2 (Figure 19 b). Interestingly, in the previous migration and invasion experiments, 

strongest phenotypes were always observed after knockdown of Bcl-2 (Figure 11).  Since chemical 

inhibition of anti-apoptotic Bcl-2 proteins also reduced the migratory and invasive capacity of CRC 

cells, E-Cadherin expression levels were additionally measured after Obatoclax treatment. Except 

of SW480, all cell lines sowed a remarkable recovery of E-Cadherin under 0,25 µM and 0,5 µM 

Obatoclax (Figure 19 c). 

 

3.2.7 Downregulation or Inhibition of anti-apoptotic Bcl-2 Proteins sensitizes CRC cells towards 

Oxaliplatin  

Even though the siRNA mediated knockdown or chemical inhibition of anti-apoptotic Bcl-2 proteins 

does not lead to spontaneous cell death induction, a sensitization of CRC cells towards 

chemotherapeutic agents would be possible. Therefore, HT29 cells were treated with the clinically 

relevant and commonly used chemotherapeutics Oxaliplatin, 5-Fluorouracil (5-FU) and Irinotecan, 

subsequently to the downregulation of Bcl-2, Bcl-xL or Mcl-1. Prior to this, dose-finding was done 

by titration in order to stay in the sub-lethal range with all substances applied (data not shown). 

Evaluation of cellular viability by a MTT assay revealed no significant sensitization towards 5-FU or 

Irinotecan. By contrast, synergistic effects of siRNA mediated silencing in combination with 

Oxaliplatin treatment were observed, leading to a decrease in viability of about 20%. Similar results 

were obtained after 3D cultivation of HT29 cells in presence of Obatoclax and Oxaliplatin. 
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Figure 20: Evaluation of the chemosensitivity of HT29 cells after knockdown or inhibition of anti-apoptotic Bcl-2 proteins. 

a) Viability of HT29 cells, determined by a MTT assay after knockdown of Mcl-1, Bcl-2 or Bcl-xL, followed by 48h treatment 

with 20 µM Oxaliplatin (Oxa), 5 µM Irinotecan (Irino) or 38 µM 5-Fluorouracil (5-FU). b) Representative pictures of HT29 

cells in scaffolds after 5 days of treatment with 0,25 µM Obatoclax (Oba) and 20 µM Oxaliplatin (Oxa). Cell death was 

determined by immunohistochemical staining of cleaved PARP. Scale bar indicates magnification for all panels. c) 

Corresponding analysis of cell death induction. The number of apoptotic cells was determined by counting. Bars represent 

mean ± SD. Assays are representative of at least three independent experiments. *p < 0,05; **p < 0,01; ***p < 0,001. 

 

Here, immunohistochemical staining of cleaved PARP and subsequent counting of positive cells 

revealed an increase of apoptotic cells to 22,8% of the total cell number. This is far above the 

amount of apoptotic cells in either Obatoclax (1,7%) or Oxaliplatin (1,6%) treated samples and thus 

the combination of these agents can be considered synergistic.   

 

3.3 The Role of anti-apoptotic Bcl-2 Proteins for Physiology and Carcinogenesis in the murine 

Intestine in vivo 

In order to get more insight into the function of anti-apoptotic Bcl-2 proteins for the maintenance 

of intestinal tissue homeostasis as well as for colorectal cancer development and progression, two 

different knockout mouse models were generated. As already mentioned, Bcl-2–/–, A1A–/– and Bcl-

w –/– mice are viable and have already been described163–167. By contrast, the constitutive deletion 

of both Mcl-1 and Bcl-xL results in embryonic lethality161,162. Hence, the respective genes were 

deleted in a spatially controlled manner, by utilizing the Cre/loxP system. In this approach, mice 



 
RESULTS 

 

 79 

carrying loxP-flanked alleles of Bcl-xL (Bcl-xL
FLOX) or Mcl-1 (Mcl-1FLOX) were crossbred with mice 

expressing the Cre-recombinase under control of the Villin-promoter (Villin-Cre). Since Villin is 

mainly expressed in epithelial cell lineages of the intestinal tract, the progeny displays an intestine-

specific deletion of Bcl-xL or Mcl-1. Because the expression of Cre in the gastrointestinal tract of 

mice has been shown to induce gastric epithelial atrophy and metaplasia in the absence of floxed 

alleles202, Villin-Cre mice were chosen as control group for all experiments. Basal analyses were 

done with 8 weeks old mice because in this age they reach maturity. In the following, mice were 

monitored for up to one year. 

 

3.3.1 The intestine-specific Bcl-xL knockout Mouse 

In the genome of the parental Bcl-xL
FLOX strain, exon 1 and exon 2 of the Bcl-xL gene were flanked 

by two loxP sites (Figure 21 a). After crossbreeding with Villin-Cre mice, descendants were further 

bred until littermates displayed homozygosity with regard to their flox status.  

 

 

Figure 21: Bcl-xL expression patterns in Bcl-xL
ΔIEC and control mice. a) Scheme illustrating the targeting strategy for the 

spatially controlled deletion of Bcl-xL. Exon 1 and exon 2 of the Bcl-xL gene were flanked with loxP sites, what leads to 
their excision, in case the Cre recombinase is expressed. Primer sites were chosen upstream and downstream of a loxP 
site, allowing determination of the flox status by PCR analysis. Scheme adapted from (Opferman et al., Nature, 2003). b) 
Western blot analysis of proteins extracted from different tissues of Bcl-xL

ΔIEC and control mice, proving an organ specific 
deletion. Tubulin served as loading control. c) Representative pictures of colonic tissue derived from Bcl-xL

ΔIEC and control 
mice. Immunohistochemical staining with an antibody against Bcl-xL validated the loss of Bcl-xL in the intestinal epithelial 
cells of knockout animals. Scale bar indicates magnification for both pictures. 

 

Efficiency and specificity of the deletion were evaluated by Western blot analysis. Since the Villin-

promotor has been described to be slightly active also in renal epithelial cells, kidneys from a Bcl-

xL
ΔIEC and a control mouse were harvested and used for protein isolation. In addition, colon and liver 

http://www.ncbi.nlm.nih.gov/pubmed/14668867
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samples were taken and Bcl-xL expression levels were determined. The blot revealed a complete 

and organ specific abrogation of Bcl-xL expression in the intestine of Bcl-xL
ΔIEC mice (Figure 21 b). 

The complete loss of Bcl-xL in intestinal epithelial cells was furthermore validated by 

immunohistochemical staining (Figure 21 c).  

Three weeks after birth, tail biopsies of all littermates were taken in order to determine their 

genotype by polymerase chain reaction (PCR) and subsequent agarose gel electrophoresis. Since an 

integrated loxP side only changes the size of the PCR product, no internal control was needed for 

determining the flox status. By contrast, Actin was detected as an internal positive control in the 

Cre PCR because samples derived from Cre-negative animals would otherwise show no signal.  

 

 

Figure 22: Genotyping of Bcl-xL
ΔIEC mice. DNA was isolated from tail biopsies of mice with no (wt/wt), one (fl/wt) or two 

(fl/fl) floxed alleles (left panel) and analyzed by PCR analysis. If loxP sites are included, the PCR product gets larger and 

thereby distinguishable from the wild type allele. The Cre status was evaluated in a separate PCR (right panel) with 

primers for Cre and primers for Actin as internal positive control. wt = wild type; fl = floxed.   

 

 

3.3.1.1 The Knockout of Bcl-xL in intestinal epithelial Cells causes no spontaneous Phenotype 

Bcl-xL
ΔIEC mice were born healthy and at expected mendelian ratios. Compared to control 

littermates, they show no phenotype in terms of overall survival and body mass index (BMI) (Figure 

23 a). For morphometric analysis, crypt diameter and number in Hematoxylin and Eosin stained 

colonic crypt sections were determined and revealed a normal crypt architecture and morphology 

(Figure 23 b). Since the loss of an anti-apoptotic protein might lead to spontaneous cell death 

induction, a TUNEL assay was performed. Compared to the DNAse treated positive control, neither 

Cre control nor Bcl-xL
ΔIEC animals showed a noteworthy amount of TUNEL positive cells in their colon 

mucosa (Figure 23 c). For quantification of basal cell death, TUNEL-positive cells were counted in 

five visual fields. With 6,39 TUNEL-positive cells per mm2 in control mice and 6,18 positive cells per 

mm2 in knockout animals, Bcl-xL
ΔIEC mice showed a perfectly equal amount of dead cells in the 

colonic epithelium.  

Besides its anti-apoptotic function, Bcl-xL has been shown to inhibit cell cycle progression. 

Therefore, proliferation levels in the intestinal mucosa of control and Bcl-xL
ΔIEC mice were evaluated 

by immunohistochemical staining of Ki67.   
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Figure 23: Basal characterization of Bcl-xL
ΔIEC mice. a) Bcl-xL

ΔIEC mice are born healthy, showing no phenotype in terms of 

body mass index (BMI) or overall survival (n = 25 per group). The BMI was calculated by division of the body weight (BW; 

in g) by the squared body length (BL; in cm). b) Hematoxylin and Eosin (HE) staining of colonic specimens, revealing the 

same crypt morphology in Bcl-xL
ΔIEC and control mice. Scale bar indicates magnification for both pictures. c) Evaluation of 

cell death rates by TdT-mediated dUTP nick end labeling (TUNEL assay) of fragmented DNA. Except the DNAse treated 

positive control, very few TUNEL positive cells are detectable in colon sections of Bcl-xL
ΔIEC and control mice. Five pictures 

of every specimen were taken and the number of TUNEL-positive cells was determined by counting. n = 3 animals per 

group. Scale bar indicates magnification for all panels. d) IHC staining of colonic (for Ki67 staining) and small intestinal 

(for Lysozyme staining) tissue, showing no differences in proliferation or Paneth cell frequency between Bcl-xL
ΔIEC and 

control mice. Scale bar indicates magnification for all panels. Values are expressed as means + SD. 

 

The staining revealed equal amounts of proliferating cells which are located at the crypt base 

(Figure 23 d, upper panel). Since Paneth cells have been shown to depend on proper 

accomplishment of autophagy and because Bcl-xL was found to be an autophagy regulator, 

Lysozyme as marker protein for Paneth cells, has also been detected. Subsequent analysis disclosed 

no differences between control and Bcl-xL
ΔIEC mice in terms of Lysozyme-positive Paneth cell 

abundance (Figure 23 d, lower panel).  

Taken together, these finding indicate that the loss of Bcl-xL in intestinal epithelial cells does neither 

influence development or viability of Bcl-xL
ΔIEC mice, nor the morphology and homeostasis of their 

intestinal mucosa.  
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3.3.1.2 Loss of Bcl-xL inhibits Carcinogenesis in an inflammation-driven Tumor Model 

Since the analysis of human CRC specimens showed that Bcl-xL is significantly upregulated in the 

malignant state (Figure 6), it was reasonable to conclude that Bcl-xL has a function for tumor 

induction or progression and that Bcl-xL
ΔIEC mice might be more resistant to experimentally induced 

tumorigenesis.  

In order to induce intestinal tumor formation, eight weeks old mice were injected intraperitoneally 

with the mutagenic agent azoxymethan (AOM). Subsequently, carcinogenesis was promoted by 

three cycles of the pro-inflammatory reagent dextran sodium sulfate (DSS) in the drinking water 

(Figure 24 a).  

 

 

Figure 24: Bcl-xL
ΔIEC and control mice in an inflammation-driven model for intestinal carcinogenesis. a) Schematic 

treatment course with intraperitoneal injection of azoxymethan (AOM) at the start day and three cycles of dextran 

sodium sulfate (DSS) in the drinking water (2% w/v). b) Diarrhea severity (upper graph) and weight loss (lower graph) 

after DSS administration (red arrow) and during recovery time (blue arrow). Exemplarily shown for the third DSS cycle. c) 

Endoscopic images of Bcl-xL
ΔIEC and control mice. The dashed line shows a neoplastic lesion. d) The determination of 

average tumor number (p < 0,05) and size (p < 0,01) at the end of treatment shows a significantly lower tumor burden in 

Bcl-xL
ΔIEC compared to control mice. Furthermore, the body mass index (BMI) is higher in Bcl-xL

ΔIEC mice (p < 0,001). The 

BMI was calculated by division of the body weight (BW; in g) by the squared body length (BL; in cm). Values are expressed 

as means + SD. Control mice: n = 8; Bcl-xL
ΔIEC mice: n = 9. *p < 0,05; **p < 0,01; ***p < 0,001. 
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Initially, the experiment started with 10 sex (5 males and 5 females per group) and age matched 

animals per group, but during treatment, two males in the control group as well as one male in the 

Bcl-xL knockout group died. During the course of treatment, Bcl-xL
ΔIEC mice showed a better health 

status mirrored by less severe diarrhea and less pronounced weight loss during DSS cycles (Figure 

24 b). For determining the severity of diarrhea, a scoring system was developed, taking stool 

liquidity, soiling around the anus and bloody contingents into account. Rigid colonoscopy of mice, 

80 days after AOM injection, revealed a higher tumor burden in control animals (Figure 24 c). 

Finally, mice were sacrificed and intestines were isolated, washed and opened longitudinally. 

Evaluation of emerged tumors revealed, that both average tumor numbers (p < 0,05) as well as 

mean tumor sizes (p < 0,01) were significantly lower in Bcl-xL
ΔIEC mice compared to controls (Figure 

24 d). Furthermore, the BMI was higher in Bcl-xL
ΔIEC mice at the end of treatment (p < 0,001).  

To evaluate the inflammatory events occurring during a DSS cycle, 5 additional animals per group 

were treated with DSS only and sacrificed after the first cycle. Immunohistochemical staining 

revealed higher amounts of infiltrating CD3+ cells in colon tissue derived from Bcl-xL
ΔIEC mice (Figure 

25). 

In summary, the made observations argue for a reduced susceptibility of Bcl-xL
ΔIEC mice towards 

chemically induced and inflammation augmented carcinogenesis. 

 

 

Figure 25: Analysis of immune cell infiltration in the colon of DSS treated Bcl-xL
ΔIEC and control mice. Immunohistochemical 

staining with an antibody against CD3, showing an increase of infiltrating T-cells in colon tissue derived from DSS treated 

(2% w/v; 7 days) Bcl-xL
ΔIEC mice, compared to DSS treated controls. Scale bar indicates magnification for both pictures. 

The graph depicts the correlating quantification. 

 

3.3.1.3 Tumors of Bcl-xL
ΔIEC Mice show increased Cell Death without compensatory 

Proliferation 

After AOM/DSS treatment, Hematoxylin and Eosin staining of tumor-containing colonic sections 

was done in order to allow morphologic analysis. This identified the gathered neoplastic lesions as 

being well differentiated adenocarcinomas with similar morphology in Bcl-xL
ΔIEC and control animals 

(Figure 26 a, left column).  
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The lower tumor numbers and decreased tumor sizes in AOM/DSS treated Bcl-xL
ΔIEC mice could trace 

back to several causes. I) If the loss of Bcl-xL is not compensated by other anti-apoptotic Bcl-2 

proteins, assaulted intestinal epithelial cells might have a higher tendency to undergo apoptosis. II) 

Differences in the immunogenicity might attract more immune cells to infiltrate and attack Bcl-xL 

negative tumor cells. III) Since Bcl-xL has been described to play a role in cell cycle control, an altered 

proliferative capacity of IECs could be responsible for differences in tumor progression. 

 

 

Figure 26: Analysis of cell death events in AOM/DSS induced tumors. a) Hematoxylin and Eosin staining (left column), 

identifying gathered neoplastic lesions as well differentiated adenocarcinomas. Immunohistochemical staining against 

Bcl-xL and cleaved PARP (cl.PARP), revealing remarkable amounts of apoptotic cells in tumors derived from Bcl-xL
ΔIEC mice 

but not in tumors from  control animals. Scale bar indicates magnification for all panels except the enlarged sections. b) 

Representative Western blots, showing no counter-regulatory changes in the expression of Bcl-2 or Mcl-1 but an increase 

in activated Caspase 8 and 9. Tubulin served as loading control. c) Subsequent densitometric analysis, showing a 3,2-fold 

upregulation of cleaved Caspase 8 (cl.Casp8; p < 0,05) and a 2,3-fold upregulation of cleaved Caspase 9 (cl.Casp8; p < 

0,05) in tumors derived from Bcl-xL
ΔIEC mice. *p < 0,05. 
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First, expression levels of Bcl-2 and Mcl-1 were determined to investigate, whether the loss of Bcl-

xL induces a compensatory upregulation of its kin proteins. Western blot analysis revealed equal 

expression of Bcl-2 and Mcl-1 in the mucosa of untreated Bcl-xL
ΔIEC and control mice as well as in 

AOM/DSS induced tumors (Figure 26 b). With regard to cell death, tumors derived from Bcl-xL
ΔIEC 

mice showed a higher positivity for cleaved PARP after immunohistochemical staining, arguing for 

an increased rate of apoptosis in Bcl-xL negative tumors (Figure 26 a). Further immunoblotting was 

done to characterize the subtype of cell death in tumors of Bcl-xL
ΔIEC mice. Initiator Caspases 8 and 

9 were both found to be activated (Figure 26 b). Subsequent densitometric analysis revealed that 

the amount of cleaved Caspase 8 was three-fold higher in Bcl-xL negative tumors than in comparable 

controls (p < 0,05) and the one of cleaved Caspase 9 was more than doubled (p < 0,05) (Figure 26 

c). 

To investigate whether increased lymphocyte infiltration rates might be responsible for the 

detected cleavage of Caspase 8, immunohistochemical staining was done with antibodies against 

CD20 to detect B-cells and CD3 to detect T-cells (Figure 27 a, left and middle column). 

 

Figure 27: Analysis of proliferation and lymphocyte infiltration in AOM/DSS induced tumors. a) Immunohistochemical 

staining with antibodies against CD20 (B-cells, left column) and CD3 (T-cells, middle column), showing no differences in 

B-cell (black arrows) or T-cell frequencies in tumors derived from Bcl-xL
ΔIEC or control mice. Staining against Ki67 (right 

column), revealing equal proliferation rates in Bcl-xL negative and control tumors. Left scale bar indicates magnification 

for the CD20 stained pictures and the right scale bar indicates magnification for the remaining panels. b) Determination 

of Bcl-xL, PCNA (proliferation, p = 0,45) and CD45 (all leukocytes, p = 0,6) mRNA levels by qRT-PCR, showing no significant 

differences in the proliferation rate or leukocyte infiltration in Bcl-xL negative and control tumors. n=3 per group, 

measurement done in technical duplicates. **p < 0,01. 
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Staining revealed equal frequencies of T- as well as B-cells in tumors derived from Bcl-xL
ΔIEC and 

control mice. Furthermore, RNA was isolated from Bcl-xL negative and control tumors. The 

subsequent qRT-PCR analysis displayed unaltered mRNA levels of the pan-leukocyte marker CD45, 

what further underlines the findings obtained by immunohistochemical analysis (Figure 27 b).  

In order to address the last point, tumor tissues were immunohistochemically stained with an 

antibody against Ki67.  Subsequent evaluation showed that the increase in cell death was not 

accompanied by altered proliferation rates in Bcl-xL
ΔIEC mice (Figure 27 a, right column). This 

observation was further validated by qRT-PCR analysis of RNA extracted from tumor tissue. Here 

the relative mRNA levels of PCNA, as an alternative indicator for proliferating cells, was also not 

significantly changed (Figure 27 b).  

In summary, the obtained data conclusively show that the lower tumor burden found in AOM/DSS 

treated Bcl-xL
ΔIEC mice is not due to differences in the immune response or in proliferation, but solely 

relays on an increased cell death rate.  

 

3.3.2 The intestine-specific Mcl-1 knockout Mouse 

In the genome of the parental Mcl-1FLOX strain, exon 1 of the Mcl-1 gene was flanked by two loxP 

sites (Figure 28 a). After crossbreeding with Villin-Cre mice, descendants were further bred until 

littermates displayed homozygosity with regard to their flox status. First immunohistochemical 

analyses showed, that the majority of Mcl-1ΔIEC mice display a patchy expression pattern (Figure 28 

b). By contrast to Bcl-xL
ΔIEC mice, only about 15% show a complete loss of the targeted protein in 

the entire intestine. Thus, efficiency and specificity of the deletion were not evaluated by Western 

blot analysis. Instead, the presence of the recombined gene-product (ΔMcl-1) was detected by PCR 

analysis. Therefor, primer sites with a high interspace were chosen, making the excision of exon 1 

to a prerequisite for proper amplification. In order to proof organ specificity of the recombination 

event, kidneys and spleens from two Mcl-1ΔIEC and two control mice were harvested and used for 

DNA isolation. In both cases, DNA isolated from the colon mucosa of a Mcl-1ΔIEC mouse, served as 

positive control. After separation of the PCR product by agarose gel electrophoresis, ΔMcl-1 was 

solely found in the positive control, indicating an intestine-specific expression of the Cre 

recombinase (Figure 28 c).  

If crossbred in a heterozygous manner, Mcl-1ΔIEC mice are born in a normal mendelian ratio (Figure 

29 a). The minor discrepancy between estimated (18,75%) and effectively born (15,8%) mice that 

show homozygosity with regard to their flox status in addition to Cre positivity (flox/flox Cre+), 

suggests an unaltered prenatal lethality. However, soon after birth, a noteworthy percentage of 

Mcl-1ΔIEC pups show a decreased body weight and size, compared to their control littermates. 
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Figure 28: Mcl-1 expression patterns in Mcl-1ΔIEC and control mice. a) Scheme illustrating the targeting strategy for the 

spatially controlled deletion of Mcl-1. Exon 1 of the Mcl-1 gene was flanked with loxP sites, what leads to its excision, in 

case the Cre recombinase is expressed. Primer sites were chosen upstream and downstream of a loxP site, allowing 

determination of the flox status by PCR analysis. Cre expression lead to the occurrence of a recombined Mcl-1 allele, 

missing exon 1 (ΔMcl-1), which was detected by a different reverse primer. Scheme adapted from (Opferman et al., 

Nature, 2003). b) Representative pictures of colonic tissue derived from Mcl-1ΔIEC and control mice. Immunohistochemical 

staining with an antibody against Mcl-1 revealed a patchy expression of the targeted protein in the majority of Mcl-1ΔIEC 

mice. Scale bar indicates magnification for all panels. c) PCR analysis of DNA extracted from different tissues of Mcl-1ΔIEC 

and control mice. The selective occurrence of the recombined gene product in the colon mucosa of Mcl-1ΔIEC mice, proves 

an intestine-specific Cre expression in knockout animals. 

Immunohistological analyses of their intestines revealed a correlation between these parameters 

and the abundancy of Mcl-1. The 15% showing a complete loss of Mcl-1 in the entire intestine, are 

exceptionally small and lightweight (Figure 29 b and c) and normally die within the first six months 

(Figure 29 d). If Mcl-1ΔIEC mice display a patchy expression pattern, the overall survival is comparable 

to the one of their control littermates. 

http://www.ncbi.nlm.nih.gov/pubmed/14668867
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Figure 29: Basal characterization of Mcl-1ΔIEC mice. a) Table recording estimated and effectively occurring genotypes, if 

mice are crossbred in a heterozygous manner. n=38 animals. b) Macroscopic features of an 8-weeks old Mcl-1ΔIEC and a 

sex- and age-matched control mouse. c) Body weight distribution of 8-weeks old Mcl-1ΔIEC and control mice (n=5 per 

group). d) Survival rates of Mcl-1ΔIEC mice compared to control mice (n=25 per group), showing a decreased overall 

survival for about 15-20% of Mcl-1ΔIEC mice, what correlates with the percentage of mice displaying a complete loss of 

Mcl-1. wt = wild type. 

 

Since male mice with two floxed Mcl-1 alleles are unfertile, they were always crossbred in a 

heterozygous manner what caused the necessity of genotyping all offspring. Three weeks after 

birth, tail biopsies of all littermates were for genotyping, as it was described for Bcl-xL
ΔIEC mice. Again 

no internal control was needed for the Mcl-1 PCR, whereas Actin was detected as positive control 

in the Cre PCR (Figure 30).  

 

Figure 30: Genotyping of Mcl-1ΔIEC mice. DNA was isolated from tail biopsies of mice with no (wt/wt), one (fl/wt) or two 

(fl/fl) floxed alleles (left panel) and analyzed by PCR analysis. If loxP sites are included, the PCR product gets larger and 

thereby distinguishable from the wild type allele. The Cre status was evaluated in a separate PCR (right panel) with 

primers for Cre and primers for Actin as internal positive control. wt = wild type; fl = floxed. 
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3.3.2.1 The Knockout of Mcl-1 in intestinal epithelial Cells induces Cell Death  

Morphometric analyses of Hematoxylin and Eosin stained colonic crypt sections, revealed a 

markedly altered crypt architecture and morphology in Mcl-1 negative areas (Figure 31 a). Both 

crypt diameter and crypt number per mm2 were significantly altered (p < 0,001) (Figure 31 b). 

Furthermore, H&E staining showed intestinal epithelial cells undergoing cell death (white arrows) 

and a remarkable number of infiltrating cells among the crypts. To further investigate the cell death 

phenotype, a TUNEL assay was performed. For quantification of basal cell death, TUNEL-positive 

cells were counted in five visual fields. This revealed a 20-fold increase of dying intestinal epithelial 

cells in Mcl-1ΔIEC mice (p < 0,05) (Figure 31 c).  

 

 

Figure 31: Morphometric analysis of colon specimens derived from Mcl-1ΔIEC mice. a) Hematoxylin and Eosin (H&E) staining 

of colonic specimens, revealing a markedly altered crypt architecture and morphology in Mcl-1 negative areas, as well as 

cells undergoing cell death (white arrows) in the colon of Mcl-1ΔIEC mice. Scale bar indicates magnification for both 

pictures. b) Corresponding quantification of crypt diameter and crypt number per mm2, showing significant differences 

in Mcl-1ΔIEC and control mice (p < 0,001). c) Evaluation of cell death rates by TdT-mediated dUTP nick end labeling (TUNEL 

assay) of fragmented DNA, revealing a 20-fold increase of dying cells in the colon of Mcl-1ΔIEC mice. In order to generate 

a positive control one specimen was treated with DNAse. Five pictures of every specimen were taken and the number of 

TUNEL-positive cells was determined by counting. n = 5 animals per group. Scale bar indicates magnification for all panels. 

d) Correlation between TUNEL positive cells and the level of remaining Mcl-1 in the colon, determined by qRT-PCR (left, 

R2 = 0,6) and between TUNEL positive cells and the body weight (right, R2 = 0,9). Values are expressed as means + SD. *p 

< 0,05; ***p < 0,001. 
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The relatively high standard deviation in the Mcl-1 knockout group is most likely due to the patchy 

expression of Mcl-1, causing different levels of remaining Mcl-1 in the colon. In order to verify this 

assumption, RNA was isolated from the sectioned colon and relative Mcl-1 mRNA levels were 

determined by reverse transcription and subsequent quantitative real-time PCR (qRT-PCR). 

If plotted against the number of TUNEL positive cells per mm2, a negative correlation with a 

coefficient of determination of R2 = 0,58 appears. Since the amount of remaining Mcl-1 always 

correlated with the body weight, this parameter was also plotted against the amount of TUNEL 

positive cells. In this case the negative correlation was even more explicit with a coefficient of 

determination of R2=0,93 (Figure 31 d).  

 

Figure 32: Analysis of apoptosis subroutines in Mcl-1ΔIEC mice. a) IHC staining of colonic specimens, revealing a markedly 

increase of cleaved PARP positive cells in Mcl-1 negative areas. Scale bar indicates magnification for both pictures. b) 

Representative Western blots, detecting Mcl-1 (upper panel) and cleaved PARP (central panel) in the colon of Mcl-1ΔIEC 

and control mice. Tubulin served as loading control. c) Correlation between the relative cleaved PARP abundance and the 

level of remaining Mcl-1 in the colon, determined by Western blot analysis (R2 = 0,73). n = 12 animals. d) Representative 

Western blots, revealing an increase in activated Caspase 8 and 3 as well as an activation of Bid in the colon of Mcl-1ΔIEC 

mice. Tubulin served as loading control. e) Subsequent densitometric analysis, showing a 9,9-fold upregulation of cleaved 

Caspase 8 (cl.Casp8; p < 0,001), a 4,7-fold upregulation of cleaved Caspase 3 (cl.Casp3; p < 0,01), a 11,5-fold upregulation 

of truncated Bid (tBid; p < 0,001) and an unaltered abundance of cleaved Caspase 9 (cl.Casp9) in the colon of Mcl-1ΔIEC 

mice. Values are expressed as means + SD. **p < 0,01; ***p < 0,001. 
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In order to further investigate the molecular subtype of cell death occurring in the intestine of Mcl-

1ΔIEC mice, immunohistochemical staining against cleaved PARP, as a marker for apoptosis, was done 

(Figure 32 a).  

It revealed a clear increase of cleaved PARP positive cells in Mcl-1 negative areas. In addition, 

proteins were isolated from the intestines of Mcl-1ΔIEC and control mice and expression levels of 

Mcl-1 and cleaved PARP were determined by Western blot analysis (Figure 32 b). This Western blot 

further underlined the previously observed negative correlation between the amount of Mcl-1 and 

the abundance of dying cells. In total, 12 animals were analyzed with regard to their intestinal Mcl-

1 and cleaved PARP levels and the plotting yielded a coefficient of determination of R2 = 0,73 (Figure 

32 c). 

To determine, whether apoptosis execution is mainly conveyed by the intrinsic or by the extrinsic 

apoptotic pathway, further Western blot analyses were done. Thereby, levels of activated Caspase 

9, as initiator Caspase of the intrinsic pathway, and activated Caspase 8, as initiator Caspase of the 

extrinsic pathway were detected (Figure 32 d). Western blot analysis revealed a 10-fold increase of 

cleaved Caspase 8 (p < 0,001) but unaltered levels of cleaved Caspase 9, arguing for an involvement 

of the extrinsic pathway. Levels of truncated Bid (tBid), as an interconnecting element between the 

extrinsic and the intrinsic pathway, were also notably increased in Mcl-1ΔIEC mice (p < 0,001; Figure 

32 e). 

 

Figure 33: Expression levels of other Bcl-2 proteins in the colon of Mcl-1ΔIEC mice. Correlation between the level of 

remaining Mcl-1 and the relative amount of Bcl-2 (upper left, R2 = 0,71), Bcl-xL (upper right, R2 = 0,52), Bax (lower left, R2 

= 0,27) or Bak (lower right, R2 = 0,14), determined by qRT-PCR. n = 9 animals.  
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For the purpose of determining the expression of kin pro- and anti-apoptotic proteins, RNA was 

isolated from 9 animals and analyzed by qRT-PCR. The abundance of Bcl-2 and Bcl-xL, as related anti-

apoptotic proteins, showed a positive correlation with the Mcl-1 expression levels (Bcl-2: R2 = 0,71; 

Bcl-xL: R2 = 0,52). By contrast, no correlation was found between the expression of the pro-

apoptotic family members Bax and Bak and the abundance of Mcl-1 (Bax: R2 = 0,27; Bak: R2 = 0,14; 

Figure 33). 

Besides its anti-apoptotic function, Mcl-1 also influences autophagy and mitochondrial respiration. 

Hence, other cell death forms, such as necroptosis, could additionally contribute to the phenotype 

observed in Mcl-1ΔIEC mice.  

 

 

 

Figure 34: Analysis of necroptosis in Mcl-1ΔIEC mice. a) Representative Western blots, detecting MLKL (upper panel) and 

phosphorylated MLKL (pMLKL; central panel) in the colon of Mcl-1ΔIEC and control mice. Tubulin served as loading control. 

b) Correlation between the relative pMLKL abundance and the level of remaining Mcl-1 in the colon (left, R2 = 0,04) and 

between the relative pMLKL abundance and the body weight (right, R2 = 0,005), determined by Western blot analysis. n 

= 6 animals. c) IHC staining of colonic specimens with an antibody against RIP1, revealing a markedly decline of RIP1 in 

Mcl-1 negative areas. Scale bar indicates magnification for both pictures. d) Schematic illustration of RIP1 with its Caspase 

8 cleavage site at Asp 324 (modified from Ofengeim et al., Nat Rev, 2013).  

 

Therefore, phosphorylation of MLKL, as a necroptosis-specific event, and total MLKL levels were 

determined by Western blot analysis (Figure 34 a). Thereby, a markedly increase of pMLKL was 

found in one Mcl-1ΔIEC animal. But if compared with the Mcl-1 expression levels (Figure 34 b; control 

group: animal 1,3,4; Mcl-1ΔIEC group: animal 2,4,5), no correlation between pMLKL and the 

remaining Mcl-1 was detectable (Figure 34 b; R2 = 0,04). As an alternative parameter, the amount 

of pMLKL was plotted against the body weight, leading to a coefficient of determination of R2 = 

0,005. In addition, expression levels of RIP1, as a central molecular switch between extrinsic 

http://www.ncbi.nlm.nih.gov/pubmed/24129419
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apoptosis and necroptosis, have been determined by immunohistochemical staining. The results 

clearly show that RIP1 is almost absent in Mcl-1 negative tissue sections (Figure 34 c). Since 

activated Caspase 8 negatively regulates necroptosis by cleaving RIP1 (Figure 34 d)179, the observed 

phenotype points to apoptosis as responsible mechanism for cell death execution. 

 

3.3.2.2 The Death of intestinal epithelial Cells in Mcl-1ΔIEC mice is accompanied by increased 

Proliferation 

In order to address the question, whether high cell death levels are accompanied by a counter-

regulatory increase of proliferation, an immunohistochemical staining against Ki67 was done. While 

in control mice, Ki67 positive cells were exclusively located at the crypt base, higher amounts of 

proliferating intestinal epithelial cells were found in Mcl-1ΔIEC mice (Figure 35 a). Here, Ki67 positive 

cells not only covered the crypt base but also 30-50% of the total crypt height. In Mcl-1ΔIEC mice with 

a patchy expression patter, clear differences, regarding Ki67 positivity, occurred between Mcl-1 

positive and negative areas (Figure 35 b). 

To validate the observations made after immunohistochemical staining of Ki67, RNA was isolated 

from the colon of 10 animals. Subsequent to reverse transcription, relative expression levels of 

PCNA, as an alternative marker for proliferating cells, were determined by qRT-PCR. If plotted 

against Mcl-1, the negative correlation between Mcl-1 expression and the amount of proliferating 

cells was confirmed (R2 = 0,58). The mRNA abundance of Cyclin D1, which is an important driver of 

the G1/S-phase transition, shows the same trend (R2 = 0,34). As a further proof, mRNA abundance 

of the cell cycle inhibitor p21 was measured and plotted against Mcl-1. By contrast to the 

proliferation markers PCNA and Cyclin D1, p21 levels show a positive correlation with the Mcl-1 

expression (R2 = 0,71) (Figure 35 c).  

At this point the question rose, whether the observed increase of proliferation is a mere counter-

regulatory event, caused by high cell death rates, or if the loss of Mcl-1 independently influences 

cell cycle progression or cellular differentiation.  

For investigating whether the stem cell compartment is expanded in the crypts of Mcl-1ΔIEC mice, an 

immunohistochemical double-staining of Ki67 and Lgr5, as a marker for intestinal stem cells, could 

be done. Unfortunately, there is no Lgr5 antibody available which would be suitable for the IHC 

staining of murine tissue. Hence, Lgr5 protein levels were determined by Western blot analysis 

(Figure 35 d). Thereby, no differences were found between control and Mcl-1ΔIEC mice, arguing for 

an unaltered amount of stem cells. 
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Figure 35: Analysis of proliferation in Mcl-1ΔIEC mice. a) IHC staining of colonic specimens with an antibody against Ki67, 

revealing a markedly increase of proliferating IECs in Mcl-1ΔIEC mice. Scale bar indicates magnification for both pictures. 

b) Ki67 staining on a colonic specimen which displays a patchy Mcl-1 expression. The Mcl-1 negative area is surrounded 

by the brown dashed line and the Mcl-1 positive area by the blue dashed line. c) Correlation between the level of 

remaining Mcl-1 and the relative amount of PCNA (left, R2 = 0,58), Cyclin D1 (central, R2 = 0,34) or p21 (right, R2 = 0,71), 

determined by qRT-PCR. n = 10 animals.  

 

3.3.2.3 Mcl-1ΔIEC mice display severe Inflammation in the entire Intestine 

If HE stained colon section are appraised, the number of infiltrating cells is clearly increased in tissue 

samples derived from Mcl-1ΔIEC mice (Figure 36 a). They accumulate in the inter-crypt space, 

leading to irregularly spaced crypts which lose their typical packed structure. Additionally, the 

absence of secretory Goblet cells gets visible in HE stained sections and was verified by a trained 

pathologist (Prof. Dr. Wilfried Roth, University Hospital Mainz). In a H&E staining, the mucins 
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containing Goblet cells appear normally as unstained spots within the crypt, as depicted in the 

control section (black arrow). Compared to this, no such spots were detectable in Mcl-1 negative 

areas. In order to investigate whether Paneth cells, as another important secretory cell line in the 

intestine, are also affected, an immunohistochemical staining with an antibody against Lysozyme 

was done. In control specimens, Paneth cells were localized in the small intestine in between the 

stem cells. By contrast, no Lysozyme positive cells were found in Mcl-1 negative areas, indicating a 

loss of this secretory cell type in the small intestine of Mcl-1ΔIEC mice (Figure 36 a). The loss of 

Goblet and Paneth cells, as important effectors of the intestinal innate immunity, facilitates the 

intrusion of pathobionts and undigested food particles, causing an inflammation. If the innate 

immune system gets overactivated, a previously local inflammation can get systemic. In line with 

this, splenomegaly, as an indicator for systemic inflammation, was observed in some Mcl-1ΔIEC 

mice (Figure 36 b).  

 

 

Figure 36: Analysis of inflammation in Mcl-1ΔIEC mice. a) Hematoxylin and Eosin (H&E) staining of colonic specimens (upper 

panel), revealing a noteworthy number of infiltrating cells in Mcl-1 negative areas, as well as the loss of Goblet cells (black 

arrow) in the colon of Mcl-1ΔIEC mice. Scale bar indicates magnification for both pictures. IHC staining of small intestinal 

specimens with an antibody against Lysozyme (lower panel), unveiling the absence of Paneth cells in Mcl-1 negative areas. 

Scale bar indicates magnification for both pictures. b) Exemplary picture of an enlarged spleen, how it was found in some 

Mcl-1ΔIEC animals. c) Correlation between the level of remaining Mcl-1 and the relative amount of tumor necrosis factor 

(TNF; left, R2 = 0,49) and interleukin 6 (IL6; right, R2 = 0,68), determined by qRT-PCR. n = 12 animals. 
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That the level of the innate immune response and the level of remaining Mcl-1 correlate, was 

proven by qRT-PCR. Therefor, RNA was isolated from the colons of 12 animals and subsequent to 

reverse transcription, levels of TNF, IL6 (interleukin 6) and Mcl-1 were determined. TNF is mainly 

secreted by macrophages, whereas IL6 gets primarily produced by neutrophils. The respective plots 

show a negative correlation between the abundance of TNF (R2 = 0,49) and IL6 (R2 = 0,68) and the 

levels of remaining Mcl-1 (Figure 36 c).  

In order to identify the infiltrating cells, immunohistochemical staining with antibodies against CD3, 

CD20 and CD68 were done. Quantification of CD3 positive cells showed a decrease of T-cells in the 

mucosa of Mcl-1ΔIEC mice if compared to controls. However, the decline was not statistically 

significant. For CD20 positive B-cells, a slight but not significant increase was detected. But still, B-

cells have been found to be rather rare in the intestinal mucosa. The by far highest number of 

infiltrating cells were identified as CD68 positive macrophages (p < 0,05), what explains high TNF 

levels in the intestine of Mcl-1ΔIEC mice (Figure 37 a and b). 

 

 
 

Figure 37: Analysis of immune cell infiltration in Mcl-1ΔIEC mice. a) IHC staining of colonic specimens with antibodies against 

CD3 (T-cells), CD20 (B-cells) and CD68 (macrophages (MΦ)), identifying MΦ as the mainly invading cell type. Scale bar 

indicates magnification for all pictures. b) For quantification of positive cells per mm2, 5 pictures per sample were 

captured and cell numbers were determined by counting. n = 3 animals per group. Values are expressed as means + SD. 

*p < 0,05.  
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3.3.2.4 Mcl-1ΔIEC mice show spontaneous Tumor Development in the Intestine 

Even though the overall survival of Mcl-1ΔIEC mice with a complete loss of Mcl-1 in the intestine is 

limited, the one of mice expressing Mcl-1 in a patchy manor is comparable with control mice, if 

followed up to one year. 

 

 

Figure 38: Analysis of proliferation, apoptosis and lymphocyte infiltration in tumors derived from Mcl-1ΔIEC mice. a) 

Macroscopic picture of a tumor located in the small intestine of a Mcl-1ΔIEC mouse. b) Percentage of tumor developing 

Mcl-1ΔIEC animals with an age of > 6 month (black bar; n = 18) and tumor localization (grey bars). SI = small intestine; Co = 

colon. c) Hematoxylin and Eosin (HE) staining of a small intestinal tumor section, derived from a Mcl-1ΔIEC mouse. d) IHC 

staining with antibodies against Mcl-1, Ki67 and cl.PARP, revealing relatively high cellular turnover rates in Mcl-1 negative 

tumors. Staining against CD3 (T-cells), CD20 (B-cells) and CD68 (macrophages (MΦ)), identifying MΦ as the mainly 

invading cell type. Scale bar indicates magnification for all panels except the enlarged sections. n = tumors derived from 

6 Mcl-1ΔIEC animals. 
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From an age of six months, about half of these mice (55,6%) spontaneously start to develop tumors, 

which are primarily located in the small intestine (Figure 38 a). Only a sixth of all animals develop 

colorectal tumors in addition (Figure 38 b). Hematoxylin and Eosin stained tumors were assessed 

by a trained pathologist (Prof. Dr. Wilfried Roth, University Hospital Mainz) and identified as well 

differentiated adenocarcinomas (Figure 38 c). Immunohistochemical staining of tumors derived 

from 12 animals revealed that the tumor tissue is always Mcl-1 negative, even though tumor 

carrying animals showed a patchy expression (Figure 38 d, upper left panel). 

This argues for Mcl-1 having a decisive tumor suppressing function, that goes beyond its role in the 

prevention of inflammatory processes in the gut. This would be in line with the observed 

downregulation of Mcl-1 in human adenomas and adenocarcinomas.   

Immunohistochemical staining with an antibody against Ki67 showed that the emerged neoplasias 

are highly proliferative. At the same time, there is a noteworthy level of apoptotic cells in the 

tumors, as determined by staining against cleaved PARP. Staining against CD3, CD20 and CD68 again 

identified macrophages as the mainly invading cell type, what is in line with the observations made 

in Mcl-1 negative mucosa. Similar thereto, only very few B-cells (CD20) and a moderate number of 

T-cells (CD3) were detectable in the tumor tissue (Figure 38 d, right column).  

In order to further dissect whether tumor formation is a secondary, inflammation-based event or 

whether the loss of Mcl-1 directly promotes malignant transformation, Mcl-1ΔIEC mice were housed 

in a germ-free surrounding. This was done by our cooperation partners, the group of Prof. Dr. med. 

Achim Weber in Zurich. The germ-free housing led to an impressive decrease of inflammation but 

had almost no effect on tumor incidences (manuscript in preparation). This further supports the 

hypothesis that Mcl-1 directly suppresses tumor formation in the intestine.  

Based on this assumption, the microsatellite stability in Mcl-1 negative tumors was assessed by 

Sanger sequencing. Therefor, DNA from tumor tissue was isolated subsequent to manual 

microdissection. Due to the patchy expression pattern, control DNA could be isolated from Mcl-1 

positive, small intestinal mucosa of the same animals. Subsequently, a set of non-coding long 

mononucleotide markers was analyzed to detect potential signs of mismatch repair deficiency. In 

addition, coding mononucleotide markers located in the genes Sdccag1, Elavl3, Glis2, and Tmem107 

were evaluated for the presence of length alterations between Mcl-1-negative tumor regions and 

Mcl-1-positive mucosa201.  

Analyses showed, that all tested markers presented with identical profiles in all samples, suggesting 

that microsatellite instability, which is commonly observed in DNA mismatch repair-deficient tumor 

cells, is absent or at least a rare event in Mcl-1-negative tumors.  
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Figure 39: Test for microsatellite instability in tumors derived from Mcl-1ΔIEC mice. Subsequently to the isolation of DNA 
from tumor tissue and Mcl-1 positive mucosa, a set of murine microsatellite instability markers were analyzed by Sanger 
sequencing to detect potential signs of mismatch repair deficiency. Some resulting profiles are exemplarily shown for one 
pair of tumor (Tu) and mucosa (Muc), indicating that tumors derived from Mcl-1ΔIEC mice are not microsatellite instable. 

 

In summary, the results obtained from Mcl-1ΔIEC mice suggest that Mcl-1 is inalienable for the 

maintenance of the murine intestinal mucosa and that its loss cannot be compensated by kin anti-

apoptotic proteins. The spontaneous tumorigenesis in Mcl-1ΔIEC mice seems promoted but not 

caused by the inflammatory milieu, pointing to a cell death-independent tumor suppressor role of 

Mcl-1.  

 

3.4 Inhibition of anti-apoptotic Bcl-2 Proteins in a 3D Cell Culture Approach 

The following experiments aimed at evaluating whether the inhibition of anti-apoptotic Bcl-2 

proteins might be beneficial for the treatment of colorectal cancer patients. The insights gathered 

by the performed in vitro and in vivo experiments, point to a unique role of Mcl-1 for the 
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maintenance of intestinal tissue homeostasis. If taken into account that it is downregulated in 

human adenomas and adenocarcinomas and that its loss causes a massive inflammatory phenotype 

in the intestine of Mcl-1ΔIEC mice, Mcl-1 seems an uneligible target for chemical inhibition in the 

context of CRC treatment. Bcl-xL, by contrast, gets significantly upregulated in human 

adenocarcinomas and its loss renders Bcl-xL
ΔIEC mice less vulnerable towards chemically induced 

carcinogenesis. Hence, the Mcl-1 sparing inhibitor ABT-737 was chosen for evaluating the value of 

anti-apoptotic protein inhibition in a translational approach. The BH3 mimetic ABT-737 shows an 

affinity to the BH3 groove of Bcl-xL and Bcl-2.  

As a pre-experiment, a 3D cell culture system was used for long-term cell culture of human HT29 

cells in a tissue mimicking environment. Cells were seeded onto the scaffolds and kept for 48 h in 

cell culture medium, what allowed the cells to migrate in.  

 

Figure 40: Evaluation of the Bcl-xL/Bcl-2 inhibitor ABT-737 in a 3D cell culture approach. a Hematoxylin and Eosin (HE) 

staining (upper panel) and IHC against Bcl-xL, Ki67 and cleaved PARP on scaffold sections, revealing a noteworthy increase 

of apoptotic HT29 cells in ABT-737 (1 µM for 4 days) treated samples (n=5 scaffolds per group). DMSO treated samples 

served as control. Scale bar indicates magnification for all panels. b) Correlating quantification of Ki67 and cleaved PARP 

positive cells, determined by counting, showing a significant increase (p < 0,001) of dead cells (cleaved PARP) but no 

significant changes in the proliferative capacity (Ki67) under ABT-737 treatment (n=5 scaffolds per group). c) 

Measurement of lactate dehydrogenase (LDH) in the supernatant of scaffolds after 4 days of treatment with the inhibitor 

(1 µM), showing a 1,9-fold higher concentration under treatment (p < 0,001). Values are expressed as means + SD. ***p 

< 0,001. 
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Subsequently, medium was supplemented with ABT-737 (1 μM) or DMSO as control for another 96 

h, whereupon scaffolds were sectioned and stained for cleaved PARP. The immunohistochemical 

staining revealed a remarkable increase in the amount of apoptotic cells (36%) in ABT-737 treated 

samples. By contrast, almost no cell death was detectable in DMSO treated controls (0,5%, p < 

0,001; Figure 40 a and b). An increased cell death in presence of the inhibitor was further validated 

by measuring the level of lactate dehydrogenase (LDH) in the supernatant. In line with the cleaved 

PARP staining, LDH activity was found to be almost doubled (1,9-fold; p < 0,001) in supernatants of 

ABT-737 treated scaffolds, further substantiating the potency of Bcl-xL inhibition in long-term 3D 

cell culture (Figure 40 c). The expression of Bcl-xL itself was not altered in presence of the inhibitor 

(Figure 40 a). In order to investigate whether the increased cell death induces alterations in the 

proliferation rate, scaffold sections were stained for Ki67. In line with the data obtained after siRNA 

mediated knockdown of Bcl-xL in CRC cells and with the observations made in Bcl-xL
ΔIEC mice, no 

changes in the proliferative capacity of HT29 cells were detected under ABT-737 treatment (Figure 

40 a and b). 

 

3.5 Inhibition of anti-apoptotic Bcl-2 Proteins in an ex vivo Tissue Culture System 

To evaluate the potential of ABT-737 in a human ex vivo system, vital CRC specimens of 10 patients 

were treated with ABT-737 (5 µM) or DMSO for 72 h. Therefor, tumor tissues were sectioned, 

placed onto a filter membrane and kept at the air-liquid interface, directly upon surgical resection. 

For treatment, culture medium was supplemented with the inhibitor or DMSO in a respective 

concentration. Subsequently, tissue slices were paraffin-embedded, sectioned and H&E stained, to 

allow assessment of vital tumor cell content and tissue quality by a pathologist. Thereupon, 

specimens derived from 5 patients were further analyzed with regard to cell death and 

proliferation. Immunohistochemical staining for cleaved PARP revealed a significant increase in the 

number of dead cells from 8,9% to 31,5% under ABT-737 treatment (p < 0,05). Results from a Ki67 

staining were in line with the findings obtained in our mouse model and the in vitro experiments, 

showing no significant changes in the proliferative capacity of CRC tissue in the presence of the 

inhibitor (Figure 41 a, b and c). In order to prove the cell death phenotype, an additional ATP assay 

was performed. In this assay, the measured luminescence directly correlates with the amount of 

ATP within the tissue and thus with its viability. ABT-737 treatment induced a significant (p < 0,05) 

decreased of luminescence to 44% of the basic value. This further argues for a subsidence of tissue 

viability in presence of the inhibitor (Figure 41 d). 

Together, the findings from the 3D cell culture and the tissue culture assay suggest that inhibition 

of Bcl-xL /Bcl-2 could be an interesting approach in the context of CRC treatment.  
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Figure 41: Evaluation of the Bxl-xL/Bcl-2 inhibitor ABT737 in an ex vivo tissue culture approach. Human CRC specimens 

were sliced and kept in culture for 94 h. After 24 h, the medium was supplemented with 5 µM ABT737 or DMSO as control. 

a) IHC against cleaved PARP (left) and Ki67 (right) on tissue culture sections from three patients. Scale bar indicates 

magnification for all panels. b and c) Table and graphs summarizing changes of cleaved PARP and Ki67 positive cells which 

were determined by counting of control (DMSO) and ABT737 treated specimens. Quantification revealed a significant 

increase (p < 0,05) of dead cells (cleaved PARP) but an unaltered proliferative capacity (Ki67) of ABT737 treated tumor 

tissue. d) ATP assay, showing a decreased ATP content in ABT737 treated tissue specimens (p < 0,05; n=5 scaffolds per 

group). Values are expressed as means + SD. *p < 0,0. 
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 DISCUSSION 

Colorectal cancer (CRC) is the third most common tumor entity worldwide and additionally a main 

cause for cancer related death in humans. In developed countries, more than 4 % of the population 

will develop CRC during the course of lifetime17. Even though, there is good progress in the 

development of surgical techniques and targeted therapies, especially patients in a metastasized 

state still face a poor prognosis. Compared to patients diagnosed with CRC in a localized stage, the 

presence of distant metastasis declines five-year survival rates from over 90 % to 12 %25. In order 

to form metastasis, transformed cells need to avoid cell death via anoikis after detaching from 

neighboring cells. Furthermore, they need to acquire a more mesenchymal phenotype, what 

enables them to migrate and invade distant tissues209. 

In the past, the Bcl-2 protein family has been extensively studied with regard to their cell death 

regulating function. Structural and functional analyses lead to their division into three subgroups. 

Pro-apoptotic proteins like Bax and Bak are able to form pores in the outer mitochondrial 

membrane, thereby initiating mitochondrial activation as “point of no return” within the intrinsic 

apoptotic cascade. Proteins of the anti-apoptotic subgroup, comprising Bcl-2, Bcl-xL and Mcl-1, 

maintain the integrity of the outer mitochondrial membrane by sequestering their pro-apoptotic 

relatives. BH3-only proteins, which share only the third out of four Bcl-2 homology domains (BH), 

represent the third subgroup. Since their expression gets induced by apoptotic stimuli, they work 

as a molecular switch, sensing and transmitting cytotoxic events by either neutralizing anti-

apoptotic proteins78 or directly activating the pro-apoptotic ones79. 

Since avoidance of apoptosis is a classical hallmark of cancer, the fact that anti-apoptotic Bcl-2 

proteins are frequently overexpressed in diverse tumor entities is comprehensible192,193. Thus, 

members of this subgroup are predestined targets for clinical application, what lead to the 

development of small molecule inhibitors, called BH3-mimetics210. Similar to their endogen 

templates, BH-3 mimetics work by interfering with anti-apoptotic proteins, what thence facilitates 

mitochondrial activation and cell death211. Despite the fact, that BH3-mimetics already entered 

clinical trials212,213, there is only limited knowledge regarding alternative functions of anti-apoptotic 

Bcl-2 proteins apart from their role in cell death regulation. Indeed, there is growing evidence, that 

these proteins are important for other cellular processes, such as autophagy132, proliferation196,214 

and DNA damage response198. Since anti-apoptotic Bcl-2 proteins are a promising target in the 

context of CRC treatment, a better understanding of their influence on intestinal tissue homeostasis 

and colorectal carcinogenesis is crucial.  

This thesis aimed at investigating the role of Bcl-2, Bcl-xL and Mcl-1 for physiology and 

pathophysiology of the intestine by pursuing approaches in vitro, in vivo and ex vivo.
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4.1 Expression Levels of anti-apoptotic Bcl-2 Proteins in human colorectal Cancer Cells and their 

Impact on Proliferation 

In a first step, this study aimed at evaluating the expression of anti-apoptotic proteins in human 

intestinal mucosa, in primary colorectal tumors and in corresponding liver metastases. Therefore, 

immunohistochemical staining was done on a tissue microarray containing spots of normal mucosa, 

adenomas and adenocarcinomas. It revealed an upregulation of Bcl-xL in adenomal tissue with a 

further increase in the malignant state. This is in line with previous reports by Zhang et al.215 and 

Jin-Song et al.194, which found Bcl-xL expression to be positively correlated with the malignancy of 

CRC and poorer overall survival. Since the avoidance of apoptosis is a key feature of malignant cells, 

the upregulation of Bcl-xL as an anti-apoptotic protein is comprehensible. Surprisingly, Mcl-1 has 

been found to be significantly downregulated in adenomas, with a slight rebound in 

adenocarcinomas. Even though, a similar pattern showing a decrease of Mcl-1 during malignant 

transformation has been described by Henderson-Jackson et al.216, the downregulation of Mcl-1 in 

CRC is contradicting to its classical apoptosis-preventing function. In case of Bcl-2, no significant 

alterations in the expression levels have been observed. By contrast, Krajewska et al.217 found Bcl-

2 to be rather decreased in adenocarcinomas, what would support the finding, that high Bcl-2 

expression seems correlated with a better clinical outcome195,218. The discrepancy between the 

presented results and the study by Krajewska et al. might be due to a, per se, inhomogeneous 

expression of Bcl-2, what impedes the detection of weak phenotypes in a relatively small collective.  

Since until today, very little is known about the expression profiles of anti-apoptotic Bcl-2 proteins 

in CRC derived metastases, immunohistochemical staining on primary colorectal tumors and 

corresponding liver metastases has been done. Even though, subsequent analysis revealed a trend 

which pursued the observed alterations in mucosa and primary tumors, neither Bcl-xL nor Mcl-1 

showed significantly different expression levels. This might be primarily caused by their extremely 

heterogeneous expression in metastases and again by a relatively small collective of only ten 

patients.  

With regard to their classical, apoptosis-preventing function, anti-apoptotic Bcl-2 proteins have 

always been described as being redundant. But their different expression profiles in normal 

intestinal mucosa and in colorectal carcinomas indicate additional functions, going beyond cell 

death regulation. In order to get more insight how anti-apoptotic Bcl-2 proteins might influence 

other properties important for malignant cells, such as proliferation and invasiveness, Bcl-2, Bcl-xL 

and Mcl-1 were downregulated in two different human CRC cell lines by RNA interference. If 

migration and invasiveness of cells are of interest, it is mandatory to analyze viability and 

proliferation first, because cells affected by an impaired metabolism are considered as a priori less 

prone to migrate and invade219. Results obtained in a MTT assay showed, that the knockdown of 
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none of the anti-apoptotic Bcl-2 proteins lead to a decrease in the viability of HT29 or SW480 cells. 

Since MTT assays always display combined information about cell death and proliferation, this 

finding was further validated by FACS analysis of cleaved PARP-positive cells, showing that the 

number of apoptotic cells does not increase after silencing of anti-apoptotic Bcl-2 proteins. In the 

context of cell cycle regulation, the exact function of Bcl-2 and Bcl-xL remains controversial. On the 

one hand they have been shown to coordinately delay G0–G1 transition, arresting cells in the G-

phase214. Furthermore, overexpression of Bcl-xL seems to stabilize a G2-M-phase arrest in cells 

affected by DNA damage220. On the other hand, it has been shown that cell cycle delay, induced by 

the Bcl-2 targeting microRNA miR-206, can be overcome by overexpression of Bcl-2 in glioblastoma 

cells, what indicates a pro-proliferative function221. Mcl-1 has been shown to inhibit cell cycle 

progression through the S- and G2-phase via binding of proliferating cell nuclear antigen (PCNA)196 

and Cyclin depending kinase 1 (CDK1)197. However, no detailed information about the role of anti-

apoptotic Bcl-2 proteins for cell cycle control in CRC cells was available. Therefore, the proliferative 

capacity of HT29 and SW480 has been evaluated subsequent to siRNA mediated knockdown of Bcl-

2, Bcl-xL or Mcl-1. Data obtained by the following BrdU FACS analysis clearly showed that Bcl-2 and 

Bcl-xL have no significant effects on proliferation and cell cycle progression in CRC cells. By contrast, 

knockdown of Mcl-1 led to higher total cell counts, enhanced BrdU incorporation (Figure 10) and 

increased levels of Ki67 (Figure 12), indicating an anti-proliferative function of Mcl-1 in CRC cells. 

This finding could be a potential explanation for the decreased Mcl-1 expression in intestinal 

adenomas and adenocarcinomas, where an increased proliferation through lowered levels of Mcl-

1 might be very beneficial for tumor cells (Figure 6). This would also implicate, that the increase in 

proliferation is at least partially purchased at the expense of cell death prevention, if not 

compensated by other anti-apoptotic Bcl-2 proteins. In the presented work, it has been shown for 

the first time that Mcl-1 exerts an anti-proliferative effect on intestinal epithelial cells235.   

 

4.2 The Role of anti-apoptotic Bcl-2 Proteins for colorectal Cancer Cell Migration and 

Invasiveness 

Since the obtained results indicate that a single knockdown of either Bcl-2, Bcl-xL or Mcl-1 is well 

compensated in CRC cells with regard to viability and proliferation, the set up could be used to 

further study the influence of anti-apoptotic Bcl-2 proteins on CRC cell migration. The capacity of a 

cancer cell to migrate and invade foreign tissue is a prerequisite for distant metastasis formation222. 

Interestingly, there is growing evidence that apoptosis propensity and metastatic potential of 

cancer cells are inversely correlated223. Del Bufalo et al. demonstrated that the overexpression of 

Bcl-2 in breast cancer cells not only enhances their tumorigenicity but also their metastatic 
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potential if transferred into nude mice224. In line with this, other studies showed that endogenous 

overexpression of Bcl-2 promotes the progression of prostate carcinoma cells towards an enhanced 

metastatic phenotype225,226. There are several steps in the complex course of metastasation which 

presumably rely on apoptosis resistance. In order to spread, cancer cells need to detach from the 

extracellular matrix (ECM) and remodel their cytoskeleton. Normally both processes are sufficient 

to induce cell death via anoikis or amorphosis respectively227. Martin et al. could show in several 

studies that overexpression of Bcl-2 or Bcl-xL is capable of preventing cytoskeleton-based death, 

what promotes detachment and intravasation as initial steps of metastatic dissemination228,229. 

Solitary cancer cells which entered the vasculature get moreover affected by patrolling immune 

cells and mechanical stresses like haemodynamic sheering230. Subsequent to extravasation, 

spreading tumor cells need to survive and regain their proliferative capacity, even though they are 

exposed to a foreign ECM. In this context, Wong et al. could show that overexpression of Bcl-2 

significantly decreased apoptosis of disseminated cancer cells in the lungs of nude mice231. In 

addition to their cytoprotective properties, Bcl-2 and Mcl-1 have been identified as direct 

modulators of migration and invasion in various cancer cell lines232–234. However, their influence on 

the migratory capacity and invasiveness of colorectal cancer cells had not been investigated so far. 

Therefore, gap closure was measured in a wound healing assay, subsequent to siRNA mediated 

downregulation of Bcl-2, Bcl-xL or Mcl-1. Both cell lines are well characterized and it is known that 

SW480 cells are tumorigenic but non-invasive in an orthotopic tumor model, whereas HT29 cells 

are tumorigenic, invasive and metastatic in xenografts207. In both HT29 and SW480 cells, a 

significant inhibition of gap closure was observed subsequent to protein silencing, with the most 

striking phenotype after downregulation of Bcl-2219. As a proof of principle, anti-apoptotic Bcl-2 

proteins were overexpressed thereafter, what indeed led to a completely reversed phenotype, with 

the strongest effect again observed for Bcl-2. To further validate the made observations, a three-

dimensional cell culture system was used. Compared with two-dimensional cell culture approaches, 

the employed scaffolds better reflect the physiological situation by allowing cells to migrate, 

proliferate and interact more freely235–237. Even though morphology of both cell lines changed if 

grown in scaffolds, the results, regarding migration, closely resembled the ones obtained in 2D. 

Again, silencing of Bcl-2 caused the most remarkable inhibition of migration. The migratory capacity 

is only one property of disseminating cancer cells which is a prerequisite for distant metastasis 

formation. Another one is the ability to actively penetrate the ECM in order to leave the primary 

tumor238,239. To mimic the in vivo-situation, a Boyden chamber invasion assay was carried out, in 

which cells had to overcome a Matrigel layer, mimicking the ECM. Since pre-experiments revealed 

the very limited invasive potential of HT29 cells, invasion assays were performed by using the 

SW480 cell line. The obtained results show that the knockdown of all three anti-apoptotic Bcl-2 
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proteins causes a remarkable drop in the invasiveness of CRC cells, with especially strong 

phenotypes after silencing of Bcl-2 or Mcl-1. These findings are in line with studies published by 

Wick et al., showing that overexpression of Bcl-2 or Bcl-xL enhances Matrigel invasion of glioma 

cells234,240. Furthermore, a study on CRC revealed a reduced invasiveness after adenovirus-mediated 

siRNA targeting of Bcl-xL
241. But since the employed LoVo cells in this study additionally showed 

decreased proliferation and spontaneous cell death induction after downregulation of Bcl-xL, the 

observed reduction of cells which overcame the Matrigel barrier cannot be clearly assigned to a 

lowered invasiveness. By contrast, the here presented migratory and invasive phenotypes are 

clearly independent from cell cycle regulation and cell death induction in HT29 and SW480 cells219. 

Because the silencing experiments drew a clear picture about the importance of anti-apoptotic Bcl-

2 proteins for the migratory capacity of CRC cells, it was evaluated whether similar effects can be 

achieved by chemical inhibition. This approach would provide the opportunity of a transfer into the 

clinic. Therefor, HT29 and SW480 cells were treated with the BH3-mimetic Obatoclax, which 

simultaneously inhibits Bcl-2, Bcl-xL and Mcl-1. Upon titration, clinically relevant doses were 

determined which did not reach the compound IC50 reported for Obatoclax in phase I clinical 

trials242,243. Because it has been reported that Obatoclax treatment leads to a degradation of anti-

apoptotic proteins in lymphoma cells204, expression levels of Mcl-1, Bcl-2 and Bcl-xL were 

determined under different inhibitor concentrations. Western blot analysis revealed no significant 

differences in the level of anti-apoptotic Bcl-2 proteins under Obatoclax treatment. Since the above 

mentioned study demonstrates apoptosis of lymphoma cells under Obatoclax treatment, the 

downregulation of anti-apoptotic Bcl-2 proteins might be a secondary event, occurring in the course 

of cell death. In order to analyze the effect of the inhibitor on migration, HT29 cells were kept in 3D 

cell culture, allowing a long-time treatment for seven days, what better resembles the patient 

situation. In a first step the non-lethality of applied doses was proved by immunohistochemical 

staining for cleaved PARP. In addition, cells were stained for Ki67 to evaluate the effect of Obatoclax 

on proliferation. Staining revealed an unaltered viability what is in line with the results obtained 

after siRNA mediated knockdown of anti-apoptotic Bcl-2 proteins. The proliferative capacity, by 

contrast, significantly decreased in presence of the inhibitor. An additionally performed FACS 

analysis discovered a G1-phase arrest in Obatoclax treated HT29 cells, which was interestingly not 

antagonized by overexpression of anti-apoptotic Bcl-2 proteins. This observation speaks for a Bcl-2 

protein independent effect of Obatoclax on cell cycle control. The underlying mechanism might 

comprise the binding of Obatoclax to mTOR, which has recently been reported244.  

Even though the observed differences in proliferation potentially influence the migratory capacity, 

the invasion depth of HT29 cells in scaffolds was determined. Strikingly, sublethal doses of 

Obatoclax significantly inhibited covered distances of HT29 cells. To verify the observed migration 
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phenotype, an additional scratch assay with HT29 and SW480 cells was performed. The results 

clearly show that Obatoclax massively impairs the migratory capacity of CRC cells in a dose-

dependent manner. As described for the siRNA mediated knockdown of anti-apoptotic Bcl-2 

proteins, invasiveness was separately evaluated by utilization of a Boyden chamber invasion assay. 

Similar to the result obtained in the migration assay, invasion was remarkably inhibited by 

Obatoclax, again displaying dose-dependency. These findings are in line with a study published by 

Vogt et al.245, delineating an inhibitory effect of Obatoclax on migration and adhesiveness of 

hepatoblastoma cells. In this context they show a lowered efficiency in the formation of 

lamellipodia, caused by a Caspase 3-mediated degradation of the Rho GTPase Cdc42 (cell division 

control protein 42 homolog), which is involved in the formation of focal adhesion complexes246 and 

in actin polymerization247. Even though, they also use sub-lethal inhibitor doses, Caspase 3 seems 

slightly activated after Obatoclax-mediated inhibition of anti-apoptotic Bcl-2 proteins. Cdc42 has 

been reported to be overexpressed in a variety of human cancers, including CRC248–250 and in the 

course of malignant transformation, high Cdc42 levels seem to correlate with a rather mesenchymal 

phenotype251. The process in which cells lose their apical-basal polarity and acquire a spindle-like 

morphology that increases motility, is termed epithelial-to-mesenchymal transition (EMT). This 

process plays not only a role for malignant tumor progression but also for physiological processes 

like organ formation during embryogenesis or tissue regeneration252,253. EMT can be induced by 

various stimuli, such as hypoxia, metabolic or mechanical stress and growth factor signal 

transduction, like TGF-ß (transforming growth factor beta) signaling254. Subsequently, 

transcriptional repressors like SNAIL and SLUG get upregulated, what leads to an inhibited 

expression of epithelial genes, including E-Cadherin. On the other hand, mesenchymal genes like 

N-Cadherin and the intermediate filament Vimentin get transcriptionally induced. Cadherins are 

key molecules in adherens junctions, mediating cellular adhesion via their extracellular domain255. 

The downregulation of E-Cadherin and the increased expression of N-Cadherin during EMT is 

termed as Cadherin-switch and is commonly seen as a central step in cancer cell dissemination. 

Besides an increased motility, EMT renders tumor cells less sensitive to senescence and cell death 

and increases chemoresistance, what further promotes metastasis formation256. Later on, 

circulating cancer cells seem to undergo a reverse process, called mesenchymal-to-epithelial 

transition (MET), what facilitates colonization and metastatic outgrowth in distant organs257,258.  

In order to investigate whether the impaired migration of HT29 and SW480 cells, observed after 

knockdown or inhibition of anti-apoptotic Bcl-2 proteins, is accompanied by MET, expression levels 

of E- and N-Cadherin have been determined. In a first approach, the basal expression levels of E- 

and N-Cadherin in SW480 and HT29 cells were evaluated by Western blot analysis. Even though 

HT29 cells do not overcome the Matrigel-coated Boyden chambers in the experimental set up, they 



 
DISCUSSION 

 

 

 109 

have been described as being tumorigenic, invasive and metastatic in vivo, whereas SW480 cells 

are tumorigenic but non-invasive207. In addition, CaCo2 and Colo205, two other human colorectal 

cancer cell lines, were used as a comparison. By contrast to SW480 and HT29 cells, these cell lines 

are non-tumorigenic208. Impressively, Western blot analysis revealed an inverse correlation 

between E-Cadherin expression and the tumorigenicity of the utilized cell lines. By contrast, N-

Cadherin expression was only detectable in HT29 cells and lay below the detection threshold in 

Western blot as well as qRT-PCR analyses in all other cell lines used. To investigate, whether siRNA 

mediated knockdown of anti-apoptotic Bcl-2 proteins might recover E-Cadherin expression in 

SW480 and HT29 cells, transfection and subsequent Western blot analysis were performed. In HT29 

cells, the knockdown of Mcl-1, Bcl-2 or Bcl-xL did not lead to an increased expression above the 

detection threshold, whereas in SW480 cells, E-Cadherin expression was clearly increased after 

siRNA-mediated knockdown of Bcl-2. This is in line with the observations made in previous 

migration and invasion experiments, where strongest phenotypes were always observed after 

knockdown of Bcl-2. The findings get moreover supported by a study published by An et al.259, 

showing that overexpression of Bcl-2 in human mammary epithelial cells induces decreased E-

Cadherin expression. A very recent study by Choi et al.260 showed that a certain fraction of Bcl-xL, 

located in the nucleus, directly promotes EMT and cell migration of pancreatic neuroendocrine 

tumor cells by enhancing TGF-ß transcription. By using two Bcl-xL mutants, displaying defective anti-

apoptotic function, they elegantly show that the migratory phenotype is independent of cellular 

viability.   

Since chemical inhibition of anti-apoptotic Bcl-2 proteins also reduced the migratory and invasive 

capacity of CRC cells, E-Cadherin expression levels were additionally measured under Obatoclax 

treatment. Except of SW480, all cell lines sowed a remarkable recovery of E-Cadherin in presence 

of the inhibitor. Expression levels of other markers, like the transcription factors SNAIL and SLUG or 

Vimentin, were inconsistent and seemed rather correlated with confluency and passage number. 

The high plasticity of cancer cells makes it anyway difficult to clearly assign them to a specific state. 

Recent studies support the existence of a hybrid phenotype, which is characterized by the 

concomitant expression of epithelial as well as mesenchymal markers261,262. Furthermore, for CRC 

the transient character of EMT has explicitly been shown by Brabletz et al.263.  

Since the decreased cancer cell motility and the recovery of E-Cadherin expression point to the 

induction of MET, chemosensitivity of CRC cells was investigated after siRNA mediated 

downregulation of Mcl-1, Bcl-2 or Bcl-xL. The applied chemotherapeutic agents, Oxaliplatin, 5-

Fluorouracil (5-FU) and Irinotecan, are clinically relevant and commonly used in the treatment 

course of colorectal cancer. Evaluation of cellular viability by a MTT assay revealed that a 

knockdown of Mcl-1, Bcl-2 or Bcl-xL noticeably sensitized HT29 cells to Oxaliplatin-induced cell 
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death, whereas the effects of 5-FU and Irinotecan were not significantly enhanced. This discrepancy 

might be caused by the different mechanisms of action the applied agents show. By contrast to 5-

FU and Irinotecan, Oxaliplatin causes DNA double strand breaks and since at least Mcl-1 has been 

shown to actively promote DNA damage repair198, its knockdown might enhance the efficiency of 

Oxaliplatin. 

 

4.3 The Role of anti-apoptotic Bcl-2 Proteins for intestinal Tissue Homeostasis and colorectal 

Cancer Onset and Progression in Mice  

In order to get more insight into the function of anti-apoptotic Bcl-2 proteins for the maintenance 

of intestinal tissue homeostasis as well as for colorectal cancer development and progression, they 

were further studied in vivo.  

Constitutive deletion of the anti-apoptotic proteins Bcl-2, A1 or Bcl-w leads to viable progeny. Bcl-

2–/– mice display growth retardation and a short overall survival of only 1-2 month163. They show 

immune deficiencies because of an apoptotic involution of thymus and spleen and due to a 

defective melanin synthesis, they get gray fur. Finally, Bcl-2–/– mice succumb to polycystic kidney 

disease, caused by defective renal epithelial cells164. Previous studies on constitutive Bcl-2 knockout 

mouse models came to differing results regarding intestinal tissue homeostasis. Kamada et al. 

observed impaired proliferation, resulting in distorted villi in the small intestine264. Another study 

showed an increased amount of cell death events at the base of colonic crypts, whereas the small 

intestine was unaffected165. By contrast, two other studies did not detect any abnormalities in the 

intestine of Bcl-2–/– mice163,164. Very recently, van der Heijden and colleagues closely analyzed the 

effects of Bcl-2 deficiency on the gut and they could show that Bcl-2 is dispensable for the 

maintenance of intestinal tissue homeostasis and regeneration265. However, its loss impairs 

intestinal tumorigenesis, suggesting that Bcl-2 plays a role in CRC onset.     

 A1 and Bcl-w seem to play only subsidiary roles for development and tissue homeostasis in the 

intestine and in sharp contrast to Mcl-1 and Bcl-xL, the constitutive deletion of Bcl-2, A1 and Bcl-w 

does not result in embryonic lethality. Mcl1–/– embryos die at a very early time point because they 

fail to implant in utero. Interestingly, this is not due to an increased apoptosis rate, but rather to a 

delayed maturation of the blastocyst, indicating additional roles of Mcl-1 beyond cell death 

regulation161. Studies on conditional Mcl-1 knockout mouse models revealed its importance for the 

survival of B-cells, T-cells, neutrophils and hematopoietic stem cells266–268. Furthermore, it has been 

shown to be a key regulator of apoptosis during cortical neurogenesis and that it protects neurons 

against DNA-damage induced cell death269. In the murine liver, loss of Mcl-1 renders hepatocytes 

more susceptible towards spontaneous as well as death-receptor triggered apoptosis270. 
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Interestingly, this study showed that the decreased hepatocytic viability is accompanied by an 

increased proliferation rate, what nicely resembles the in vitro findings on human CRC cells, 

presented in this work. Even though no inflammatory response was detected, the increased 

proliferation of Mcl-1 negative hepatocytes finally culminated in hepatocarcinogenesis271. If the 

enhanced death of Mcl-1 deficient hepatocytes would trigger an immune response, tumor 

development as a secondary event of an inflammatory environment would be reasonable. But since 

this is not the case, occurring hepatocarcinogenesis suggests a cell death-independent tumor 

suppressor role of Mcl-1. 

Constitutive deletion of Bcl-xL also leads to fetal death in utero. Bcl-xL
–/– embryos survive until day 

13.5 of embryogenesis and die from cell death-related defects in hematopoiesis and neuronal 

development162. In adult mice, transduction of a Bcl-xL fusion protein into neurons significantly 

decreased cerebral infarction upon focal ischemia272. In contrast to Mcl-1, studies on conditional 

Bcl-xL knockout mouse models revealed a rather classic function of this protein, preventing cell 

death induction in various tissues273,274. 

However, no intestine-specific knockout mouse models were available for Mcl-1 and Bcl-xL until 

now. In order to shed light on their role in physiology and pathophysiology of the murine intestine, 

Mcl-1 and Bcl-xL were deleted in a spatially controlled manner, by utilizing the Cre/loxP system. To 

reach intestine-specificity, the Cre recombinase was expressed under control of the Villin promotor 

in these mice. Because the expression of Cre in the gastrointestinal tract of mice has been shown 

to induce gastric epithelial atrophy and metaplasia in the absence of floxed alleles202, Villin-Cre mice 

were chosen as control group for all experiments. 

 

4.3.1 The intestine-specific Bcl-xL knockout Mouse 

As described for Bcl-2, Bcl-xL seems dispensable for intestinal development and homeostasis. 

Furthermore, crossbreeding of heterozygously floxed mice led to offspring with an expected 

distribution of genotypes. The fact that Bcl-xL
ΔIEC mice were born in the expected mendelian ratio 

suggests that the intestine-specific knockout had no impact on embryogenesis. With regard to body 

size, weight and overall survival, Bcl-xL
ΔIEC mice are indistinguishable from their control littermates, 

indicating a normal functioning of the intestine in terms of food digestion and nutritional uptake. 

Morphometric analysis of small intestinal and colonic tissue showed no alterations in crypt 

architecture or composition. Since the loss of an anti-apoptotic protein might lead to spontaneous 

cell death induction, a TUNEL assay was performed. Compared to the DNAse treated positive 

control, neither Cre control nor Bcl-xL
ΔIEC animals showed a noteworthy amount of TUNEL positive 

cells in their colon mucosa. Besides its anti-apoptotic function, Bcl-xL has been shown to inhibit cell 
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cycle progression by delaying G0-G1 transition214. Furthermore, overexpression of Bcl-xL seems to 

stabilize a G2-M-phase arrest in cells affected by DNA damage220. Therefore, proliferation levels in 

the intestinal mucosa of control and Bcl-xL
ΔIEC mice were evaluated by immunohistochemical 

staining of Ki67.  The staining revealed equal amounts of proliferating cells which are located at the 

crypt base. This nicely resembles the presented in vitro data, where the knockdown of Bcl-xL in 

human CRC cell lines did not alter their proliferative capacity. The discrepancy between the 

presented data and the mentioned studies might be caused by differences in the experimental set 

up. While the cited studies evaluated the influence Bcl-xL has on cell cycle control after either DNA 

damage or serum deprivation, the presented work focusses on its basal influence on the 

proliferative capacity of unchallenged cells.  

Autophagy as another cellular mechanism in which Bcl-xL is involved, gains more and more 

attention in the context of inflammatory bowel disease. For instance, a genome-wide association 

study, reported a correlation between Crohn´s Disease and a single nucleotide polymorphism in the 

Atg16L1 gene as a key player in the autophagic machinery275. Due to their secretory function, 

Paneth cells are especially dependent on autophagy as mechanism for vesicle formation. But 

Hematoxylin and Eosin staining and immunohistochemical staining against Lysozyme revealed 

normal abundance of Goblet as well as Paneth cells as the main secretory cells lines in the intestine.  

Since the analysis of the tissue microarray showed that Bcl-xL is significantly upregulated in human 

colorectal adenocarcinomas, it was reasonable to conclude that Bcl-xL could have a function for 

intestinal tumor development or progression and that Bcl-xL
ΔIEC mice might be more resistant to 

experimentally induced tumorigenesis. In order to trigger intestinal tumor formation, the AOM/DSS 

model was applied276. The mutagenic agent azoxymethan (AOM) initiates cancer development by 

alkylation of DNA, what promotes base mispairing277. After intraperitoneal injection, AOM first 

needs to get activated in the liver. The complete activation mechanism remains elusive, but 

Cytochrome P450 2E1-mediated hydroxylation seems to be a crucial step278. Subsequently, the 

derivate methylazoxymethanol reaches the intestine via the bile, where it gets further transformed 

to methyldiazonium by the colonic flora. A study on germ-free rats suggests that this secondary 

metabolization step significantly enhances the colonotropic mutagenicity of AOM279. Since Bcl-xL
ΔIEC 

mice have a C57BL/6 genetic background, they were expected to show only moderate susceptibility 

towards AOM induced carcinogenesis280. Hence, carcinogenesis was promoted by three cycles of 

the pro-inflammatory reagent dextran sodium sulfate (DSS) in the drinking water281. Thus, the 

AOM/DSS model resembles inflammation-driven tumorigenesis as seen in patients suffering from 

inflammatory bowel disease. Molecular analysis furthermore revealed that AOM-induced tumors 

display mutational patterns, such as alterations in the Wnt-signaling pathway or mutation of K-ras, 

which are also frequently observed in human CRC282–284. In the study of Suzuki and co-workers280, 
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the combination of AOM and DSS resulted in an adenocarcinoma incidence of 50% in C57BL/6 mice. 

Therefore, it is a feasible model because it provides the opportunity to study the effect of a genetic 

knockout on tumor formation in both directions.  

Results obtained in the AOM/DSS experiment clearly showed that the lack of Bcl-xL in intestinal 

epithelial cells renders mice less susceptible towards chemically induced carcinogenesis. The fact 

that Bcl-xL
ΔIEC mice carried less tumors which additionally exhibited smaller diameters suggests that 

Bcl-xL plays a role in CRC onset and progression276. For the analysis, several possibilities how Bcl-xL 

potentially influences tumorigenesis have been considered. First, cell death levels in tumors derived 

from control and Bcl-xL
ΔIEC animals were evaluated. The discovery of significantly increased 

apoptosis levels in tumors derived from Bcl-xL
ΔIEC mice, identified Bcl-xL as a key player for cell death 

prevention in CRC cells, whose loss cannot be compensated by kin anti-apoptotic proteins. This is 

in line with a publication showing that in large B-cell lymphoma, low levels of Bcl-xL are also 

associated with enhanced apoptosis285. Further immunoblotting was done in order to characterize 

the subtype of cell death in tumors of Bcl-xL
ΔIEC mice. Since Bcl-xL prevents permeabilization of the 

outer mitochondrial membrane, Caspase 9 cleavage is in line with the reported function of the 

protein77. Activation of Caspase 8, as initiator Caspase of the extrinsic apoptotic pathway, could be 

caused by an additional extracellular stimulus, such as lymphocytes, triggering cell death. But 

immunohistochemical staining of B- and T-cells showed no differences in lymphocyte infiltration. 

An additionally performed qRT-PCR analysis furthermore detected unaltered mRNA levels of the 

pan-leukocyte marker CD45. Since Bcl-xL has been described to play a role in cell cycle control after 

DNA damage, an altered proliferative capacity of intestinal epithelial cells could also be responsible 

for differences in tumor progression220. Hence, proliferation was investigated by 

immunohistochemical staining against Ki67 and by qRT-PCR analysis of PCNA expression levels. 

Obtained results concordantly showed unaltered proliferation rates in tumors derived from control 

and Bcl-xL
ΔIEC mice. Taken together, the data conclusively show that the lower tumor burden found 

in AOM/DSS treated Bcl-xL
ΔIEC mice is not caused by differences in the immune response or in 

proliferation, but solely relays on an enhancement of canonical intrinsic apoptosis as responsible 

mechanism.  

During the course of treatment, Bcl-xL
ΔIEC mice showed a better health status mirrored by less severe 

diarrhea and less pronounced weight loss during DSS cycles. In order to evaluate the inflammatory 

events occurring during a DSS cycle, T-cell infiltration was additionally evaluated in mice treated 

with DSS only. Immunohistochemical staining against CD3 revealed higher amounts T-cells in colon 

tissue derived from Bcl-xL
ΔIEC mice. This finding may point to an accelerated apoptosis initiation 

under unfavorable conditions in Bcl-xL
ΔIEC mice. A fast but controlled immune response could 

thereby prevent chaotic cellular destruction. Following this hypothesis, the better health status of 
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Bcl-xL
ΔIEC mice in terms of diarrhea severity, weight loss and recovery time during the treatment 

course, would be due to a swift and immediately executed apoptosis of Bcl-xL negative IECs, caused 

by a lowered cell death threshold that prevents greater tissue damage and subsequent mucosal 

inflammation. Since lately, there is growing evidence that apoptotic cells can have a beneficial 

effect on tissue recovery286,287.  

 

4.3.2 The intestine-specific Mcl-1 knockout Mouse 

By contrast to Bcl-2 and Bcl-xL, Mcl-1 plays a crucial role for the maintenance of intestinal tissue 

homeostasis but not for development. If crossbred in a heterozygous manner, Mcl-1ΔIEC mice are 

born in the expected mendelian ratio. The minor discrepancy between estimated (18,75%) and 

effectively born (15,8%) mice that show homozygosity with regard to their flox status in addition to 

Cre positivity (flox/flox Cre+), suggests an unaltered prenatal lethality. Interestingly, male mice 

carrying two floxed Mcl-1 alleles are infertile already in absence of the Cre-recombinase. The reason 

therefor was found by Okamoto and colleagues who showed that Mcl-1FLOX mice are essentially 

normal with regard to organ development, composition of the hematopoietic compartment and 

tissue homeostasis288. Spermatogenesis, by contrast, is abrogated due to a severe atrophy of testis. 

Closer analysis revealed that the integrated loxP sites in these mice slightly altered transcription, 

what leads to the expression of a Mcl-1 protein which displays 13 additional amino acids at the N-

terminus. The emerging protein fully retains its anti-apoptotic function but it shows delayed 

turnover. After the first wave of spermatogenesis, apoptosis is required for the clearance of excess 

germ cells. Hence, Okamoto et al. hypothesize that the delayed degradation of Mcl-1 renders germ 

cells less susceptible towards cell death induction, what leads to a damage of the supporting Sertoli 

cells and finally abrogates adult spermatogenesis.     

Another phenomenon became manifested after crossbreeding of the Mcl-1FLOX and the Villin-Cre 

parental strains. First immunohistochemical analysis revealed that most Mcl-1ΔIEC mice displayed a 

patchy Mcl-1 expression pattern in their intestines. Unexpectedly, only 15% of Mcl-1ΔIEC animals 

showed a complete loss of the protein in the entire intestine. Since none of the parental strains led 

to an incomplete knockout if crossbred with other mouse lines, the underlying mechanism remains 

elusive. In Bcl-xL
ΔIEC mice, which also express the Cre-recombinase under control of the Villin 

promotor, no Bcl-xL positive IEC has ever been detected289. On the other hand, crossbreeding of 

Mcl-1FLOX mice with a strain that expresses the Cre-recombinase under control of the Albumin 

promoter (Alb-Cre) leads to offspring with a complete loss of the protein in all hepatocytes271. One 

fairly reasonable explanation is offered by a study by Voojis et al., showing that differences in the 

chromatin state can influence the accessibility of loxP sites what in turn affects recombination 
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efficiency290. Since there is a high plasticity among cell types regarding the chromatin state291, this 

could cause differences in the recombination efficiency of Mcl-1 in liver and intestine.  

Further analysis showed that Mcl-1ΔIEC mice with a complete loss of Mcl-1 in the intestine are 

exceptionally small and lightweight and normally die within the first six months. By contrast, if Mcl-

1ΔIEC mice display a patchy expression of Mcl-1, the overall survival is comparable to the one of their 

control littermates. This means that the incomplete knockout provides the opportunity to study 

protein function also in late adulthood. Morphometric analyses of Hematoxylin and Eosin stained 

colonic crypt sections revealed a markedly altered crypt architecture, with regard to crypt diameter 

and number, in Mcl-1 negative areas. Furthermore, the staining showed intestinal epithelial cells 

undergoing cell death, what was additionally verified by a TUNEL assay. Notably, an inverse 

correlation between the number of TUNEL-positive cells and the remaining level of Mcl-1 was 

found. Hence, Mcl-1 seems crucial for the survival of IECs, what is in sharp contrast to Bcl-2 and Bcl-

xL which are dispensable for intestinal tissue homeostasis. Since Mcl-1 has classically been 

described to maintain the integrity of the outer mitochondrial membrane, elevated levels of 

cleaved PARP, found in the intestinal mucosa of Mcl-1ΔIEC mice, are plausible. Instead, the 

observation of a strong activation of Caspase 8, as initiator Caspase of the extrinsic pathway, and a 

relatively low amount of cleaved Caspase 9, as initiator Caspase of the intrinsic pathway, was rather 

unexpected. It is known that Caspase 9 can also get activated by a conformational change, but 

normally apoptosis is accompanied by autocatalytic cleavage of Caspase 9 and also by its effector 

Caspase-mediated proteolysis90. Levels of truncated Bid (tBid), as an interconnecting element 

between the extrinsic and the intrinsic pathway, were also notably increased in Mcl-1ΔIEC mice. The 

fact that Bcl-2 and Bcl-xL were found to be downregulated in Mcl-1 negative areas is most likely 

caused by the Caspase-dependent cleavage of anti-apoptotic proteins, which has been shown to 

enhance the apoptotic signaling in dying cells292,293. By contrast to Bcl-2 and Bcl-xL, the pro-apoptotic 

family members Bax and Bak are not known as a substrate for activated Caspases. Accordingly, no 

correlation was found between their expression and the abundance of Mcl-1.  

Since Mcl-1 does not only play a role for maintaining the integrity of the outer mitochondrial 

membrane, but also influences autophagy and mitochondrial respiration294, other cell death forms 

besides apoptosis could additionally contribute to the phenotype observed in Mcl-1ΔIEC mice. Mcl-1 

deficient cardiomyocytes, for instance, exhibit mitochondrial dysfunction, culminating in a rather 

necrotic cell death295,296. Moreover, it has been shown, that the pan-Bcl-2 inhibitor Obatoclax 

induces autophagy, whereby the assembly of the necrosome gets promoted on autophagosomal 

membranes, leading to enhanced necroptosis rates297. Since the phosphorylation of MLKL is a 

necroptosis specific event, total MLKL and phospho-MLKL (pMLKL) levels were determined. 

Thereby, no correlation between the pMLKL level and the remaining Mcl-1 or the body weight was 
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detectable. These findings argue for necroptosis being a secondary event, which might be induced 

by concomitant inflammatory processes. The tight correlation between Mcl-1 levels and the 

abundance of indicators for apoptosis, such as cleaved PARP and cleaved Caspase levels, rather 

point to apoptosis as key mechanism being responsible for increased cell death rates in Mcl-1ΔIEC 

mice. In addition, expression levels of RIP1, as a central molecular switch between extrinsic 

apoptosis and necroptosis, have been determined by immunohistochemical staining. The results 

clearly show that RIP1 is almost absent in Mcl-1 negative tissue sections. Since activated Caspase 8 

negatively regulates necroptosis by cleaving RIP1298, the observed phenotype also points to 

apoptosis as responsible mechanism for cell death execution. 

Several studies accordingly show that mice with increased levels of apoptosis in the intestinal 

epithelium more likely develop an enteritis or colitis299,300. Due to a loosening of tight junctions, the 

epithelial barrier is not proficient anymore to prevent invasion of luminal microbes. In Mcl-1ΔIEC 

mice, the intrusion of pathobionts gets even more facilitated by the loss of Goblet and Paneth cells. 

Goblet cells secret large glycoproteins, named mucins, which together build a mucus layer that 

protects the epithelium from mechanical or chemical harm caused by undigested food particles or 

microbes. Furthermore, it impedes the attachment of pathobionds to the enterocytes and their 

invasion through the epithelial layer301. Paneth cells secrete large amounts of antimicrobial 

peptides, such as α-defensins and Lysozyme in response to certain bacteria302. Since the bactericidal 

activity of α-defensins predominantly affects non-commensal bacteria, they have been shown to 

balance the composition of the intestinal microbiota303,304. As a result of the enhanced apoptosis of 

IECs and the loss of secretory cell lines, Mcl-1ΔIEC mice develop a severe intestinal inflammation. 

Immunohistochemical staining identified the majority of infiltrating cells as being CD68 positive 

macrophages, what fits to the high levels of TNF, found in Mcl-1 negative areas. If the innate 

immune system gets overactivated, a previously local inflammation can get a systemic immune 

reaction. In line with this, splenomegaly, as an indicator for systemic inflammation, was observed 

in some Mcl-1ΔIEC mice305.  

The fact that the fraction of Mcl-1ΔIEC mice which shows a complete loss of the protein in the entire 

intestine survives at all under these circumstances, points to an increased renewal of the epithelial 

lining, what could at least partly compensate high cell death rates. Indeed, an inverse correlation 

between the abundance of Mcl-1 and the amount of proliferating cells was found. Both 

immunohistochemical staining of Ki67 as well as determination of PCNA expression levels by qRT-

PCR analysis concordantly showed enhanced proliferation in Mcl-1 negative areas. Furthermore, 

the mRNA abundance of Cyclin D1, which is an important driver of the G1/S-phase transition, shows 

the same trend, whereas mRNA abundance of the cell cycle inhibitor p21 showed a positive 

correlation with the Mcl-1 expression. The increased proliferation is in line with the observations 
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made in vitro after siRNA mediated silencing of Mcl-1. Furthermore, it resembles the phenotype 

found by Vick and colleagues in the liver-specific Mcl-1 knockout mouse where increased levels of 

apoptotic hepatocytes were also accompanied by compensatory proliferation270. At this point the 

question rose, whether the observed increase of proliferation is a mere counter-regulatory event, 

caused by high cell death rates, or if the loss of Mcl-1 independently influences cell cycle 

progression. On the one hand, apoptotic cells have been shown to promote tissue regeneration by 

triggering proliferation of neighboring cells286. In this context, a study by Li et al. found that 

unstressed stem cells are stimulated to divide in presence of mouse embryonic fibroblast (MEFs) 

that have been exposed to high levels of irradiation306. On the other hand, the presented in vitro 

results show that human CRC cells displayed increased proliferation after silencing of Mcl-1 but no 

decline of viability, what argues for an, at least partially, cell death-independent role of Mcl-1 for 

proliferation. This hypothesis gets further supported by studies revealing an inhibitory effect of 

Mcl-1 on cell cycle progression via binding of PCNA196 and CDK1197. Another option would be an 

influence of Mcl-1 on cellular differentiation as it has already been shown for keratinocytes307. If 

Mcl-1 negative intestinal epithelial stem cells would show delayed differentiation this could also 

cause an expanded stem cell compartment with an increased number of proliferating cells.  In order 

to solve this question, an immunohistochemical double-staining of Ki67 and Lgr5, as a marker for 

intestinal stem cells, would be the best approach. Unfortunately, there is no Lgr5 antibody available 

which would be suitable for the IHC staining of murine tissue. Hence, Lgr5 protein levels were 

determined by Western blot analysis. Thereby, no differences were found between control and 

Mcl-1ΔIEC mice, arguing for an unaltered amount of stem cells. As an alternative to an 

immunohistochemical staining, a fluorescent in situ hybridization (FISH) could be done to exactly 

identify and localize Lgr5 positive cells within the crypt. This is prospectively planned in order to 

validate the finding gained by Western blot analysis.   

However, from an age of six months about half of the Mcl-1ΔIEC animals spontaneously start do 

develop intestinal adenocarcinomas which are primarily located in the small intestine. This is most 

probably the result of the enhanced proliferation in addition to the inflammatory environment, 

what further promotes tumorigenesis. The reason why the tumors more frequently occur in the 

small intestine could not be finally clarified. Mcl-1 is expressed in the small intestine and the colon 

as well and both sections are demonstrably affected by enhanced proliferation and inflammation.    

What differs is that Paneth cells, which are lost in Mcl-1 negative areas, are important for the 

homeostasis of the small intestine but not for the colon. This might not be the decisive mechanism 

but it could further promote tumor formation and it would fit to the observation that neoplastic 

lesions are more frequently but not exclusively found in the small intestine. Interestingly, 

immunohistochemical staining revealed that the tumor tissue is always Mcl-1 negative, even 
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though tumor carrying animals showed a patchy expression. This argues for Mcl-1 having a decisive 

tumor suppressing function, that goes beyond its role in the prevention of inflammatory processes 

in the gut. This hypothesis gets further supported by the observed downregulation of Mcl-1 in 

human adenomas and adenocarcinomas.  A Ki67 staining showed that the emerged neoplasias are 

highly proliferative. At the same time, there is a noteworthy level of apoptotic cells in the tumors, 

as determined by staining against cleaved PARP. Furthermore, tumor tissue displayed high levels of 

infiltrating macrophages as it was already detected in Mcl-1 negative mucosa. In order to dissect, 

whether tumor formation is a secondary, inflammation-based event or whether the loss of Mcl-1 

directly promotes malignant transformation, Mcl-1ΔIEC mice were housed in a germ-free 

surrounding. This was done by our cooperation partners, the group of Prof. Dr. med. Achim Weber 

in Zurich. The germ-free housing led to an impressive decrease of inflammation but lowered tumor 

incidence only marginally (manuscript in preparation). This finding further supports the hypothesis 

that Mcl-1 directly suppresses tumor formation in the intestine. One possible mechanism how Mcl-

1 could exert a tumor suppressing function is its role in DNA repair. In response to DNA damage, it 

translocates into the nucleus and associates with the chromatin in order to maintain cell cycle arrest 

in the G2-phase, giving the cell time to repair damaged DNA198,308. Thus, the loss of Mcl-1 causes a 

premature cell cycle reentry and accordingly genomic instability. Based on this assumption, the 

microsatellite stability in Mcl-1 negative tumors was assessed by Sanger sequencing. Analyses 

showed, that all tested markers presented with identical profiles in all samples, suggesting that 

microsatellite instability, which is commonly observed in DNA mismatch repair-deficient tumor 

cells, is absent or at least a rare event in Mcl-1-negative tumors. Nevertheless, an impaired DNA 

damage repair still seems plausible as responsible mechanism for the tumor formation in Mcl-1ΔIEC 

mice. Since Mcl-1 has been found to associate with gamma-H2AX and NBS1 (Nijmegen breakage 

syndrome)198, it plays most probably a role in homologous recombination309.    

 

4.4 Clinical Relevance of the chemical Inhibition of anti-apoptotic Bcl-2 Proteins  

The overexpression of anti-apoptotic Bcl-2 proteins in a variety of tumor entities and the thereby 

increased chemo-resistance has manifoldly been described310–313. Hence, great effort has already 

been done to develop specific inhibitors targeting this protein family. A very promising approach is 

the utilization of BH3 mimetics, which bind to the hydrophobic groove of anti-apoptotic Bcl-2 

proteins to inhibit their cell death-preventing function. A variety of BH3 mimetics, such as the pan-

Bcl-2 inhibitor Obatoclax, already entered clinical trials242. Unfortunately, Obatoclax shows off-

target effects like the induction of an endoplasmic reticulum stress response and dose escalation is 

limited by neurologic toxicity314,315. For the Bcl-2/Bcl-xL/Bcl-w specific compound ABT-737 and its 
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orally available derivate ABT-263 (Navitoclax), promising data for different entities were reported 

in phase I/II clinical trials316–318. Because Bcl-2 has been shown to be exceptionally important for 

cancer cell survival in CLL (chronic lymphocytic leukemia), the Bcl-2 specific inhibitor ABT-199 

(Venetoclax) has been developed and recently approved by the FDA (Food and Drug 

Administration) for treatment of a CLL subtype319. This shows, that development and testing of 

inhibitors against anti-apoptotic Bcl-2 proteins are clinically relevant. Whether and to which extend 

ABT-199 could be beneficial for the treatment of colorectal cancer is not known so far.   

In order to evaluate the effect of anti-apoptotic Bcl-2 protein inhibition in human CRC, fresh tumor 

tissue was cultured in presence of a BH3 mimetic. The fact that the pan-Bcl-2 inhibitor Obatoclax 

was capable of sensitizing HT29 cells to platin-based chemotherapy already suggests a possibly 

beneficial effect for colorectal cancer patients. If considered that Mcl-1 is downregulated in human 

adenomas and adenocarcinomas and that its loss causes a massive inflammatory phenotype in the 

intestine of Mcl-1ΔIEC mice, Mcl-1 seems an uneligible target for chemical inhibition in the context 

of CRC treatment. Bcl-xL, by contrast, gets significantly upregulated in human adenocarcinomas and 

its loss renders Bcl-xL
ΔIEC mice less vulnerable towards chemically induced carcinogenesis. Hence, 

the Mcl-1 sparing inhibitor ABT-737 was chosen for evaluating the value of anti-apoptotic protein 

inhibition in a translational approach. In a pre-experiment with HT29 cells the compound already 

induced a remarkable decrease of cell viability. In order to investigate whether the increased cell 

death induces alterations in the proliferation rate, scaffold sections were stained for Ki67. In line 

with the data obtained after siRNA mediated knockdown of Bcl-xL in CRC cells and with the 

observations made in Bcl-xL
ΔIEC mice, no changes in the proliferative capacity of HT29 cells were 

detected under ABT-737 treatment. Since these preliminary data seemed very promising, ABT-737 

was subsequently tested in an ex vivo system, in which vital human CRC specimens were treated 

with the compound. Immunohistochemical staining for cleaved PARP as well as analysis of ATP 

levels concordantly revealed a significant decrease of viability in ABT-737 treated samples. Results 

from a Ki67 staining were in line with the findings obtained in Bcl-xL
ΔIEC mice and the in vitro 

experiments, showing no significant changes in the proliferative capacity of CRC tissue in presence 

of the inhibitor.  

Taken together, the presented data show that human CRC cells are highly dependent on the 

expression of Bcl-xL for their survival and that the selective inhibition of Bcl-xL/Bcl-2 seems already 

sufficient to decrease cellular viability even in absence of an additional chemotherapeutic agent.  
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4.5 Conclusion 

Taken together, the performed in vitro experiments show that anti-apoptotic Bcl-2 proteins are 

dysregulated in human CRC and that they influence tumor-relevant processes beyond cell death 

regulation. Mcl-1, which gets downregulated in the course of malignant transformation, seems the 

only one among the group of anti-apoptotic Bcl-2 proteins that plays an anti-proliferative role in 

CRC cells. Its loss might be beneficial for transforming cells even if this happens on the expense of 

cell death prevention. Furthermore, all anti-apoptotic Bcl-2 proteins have been shown to promote 

the migratory ability and invasiveness of CRC cells with the strongest phenotypes observed for Bcl-

2. Their siRNA mediated silencing or chemical inhibition not only reduced cancer cell motility but 

also enhanced the sensitivity towards chemotherapeutic treatment with Oxaliplatin.  

The generated intestine-specific knockout mouse models revealed a strong discrepancy between 

Bcl-xL and Mcl-1 with regard to their role for the maintenance of intestinal tissue homeostasis and 

for colorectal cancer development and progression. Bcl-xL, which seems dispensable for normal 

tissue homeostasis, was found to be a crucial factor for colorectal cancer cell survival, what confers 

a tumor-promoting property and explains the overexpression of Bcl-xL in human adenomas and 

adenocarcinomas. The loss of Mcl-1, by contrast, causes a severe intestinal phenotype, including 

high levels of apoptotic IECs and massive inflammation. The spontaneous tumorigenesis in Mcl-1ΔIEC 

mice is promoted by the loss of the anti-proliferative effect Mcl-1 exerts on IECs and by the 

inflammatory environment, what confers Mcl-1 tumor-suppressing properties and explains its 

downregulation in human adenomas and adenocarcinomas. For clinical application, it is thus highly 

recommended to utilize Mcl-1 sparing inhibitors. In the presented work, a first step in this direction 

was done by treating human CRC tissue ex vivo with the Bcl-xL/Bcl-2 specific BH3 mimetic ABT-737. 

The results are promising and show a markedly decreased viability of tumor cells even in absence 

of an additional chemotherapeutic agent.   

 

4.6 Outlook 

The results presented in this work clearly show, that Mcl-1, but not Bcl-xL, plays a crucial role for 

intestinal tissue homeostasis. The high levels of apoptotic cells, found in Mcl-1 negative areas, and 

the absence of a cell death phenotype in Bcl-xL
ΔIEC mice indicate that Mcl-1 is the central anti-

apoptotic protein in intestinal epithelial cells. Surprisingly, a strong activation of Caspase 8, as 

initiator caspase of the extrinsic apoptotic pathway, was determined in the mucosa of Mcl-1ΔIEC 

mice. Since Mcl-1 has classically been described to maintain the integrity of the outer mitochondrial 

membrane and thereby the initiation of the intrinsic pathway, this finding, together with the low 



 
DISCUSSION 

 

 

 121 

levels of cleaved Caspase 9, were counterintuitive. In order to validate the mentioned observations, 

an additional caspase activity assay should be performed. Furthermore, the biological relevance of 

Caspase 8 activation will be evaluated in an intestine-specific Mcl-1/Caspase 8 double-knockout 

mouse model. The respective Caspase 8FLOX strain was already obtained and the breeding has been 

started. 

Besides increased cell death levels, high proliferation rates have been observed in the intestinal 

mucosa of Mcl-1ΔIEC mice. This was in line with the results obtained in vitro after siRNA mediated 

downregulation of Mcl-1 in human colorectal cancer cells. However, it remains elusive whether the 

loss of Mcl-1 exerts a pro-proliferative effect on differentiated IECs or if its knockout impairs proper 

stem cells differentiation, what would lead to an enlarged stem cell compartment. To answer this 

question, a co-staining of Ki67 and Lgr5, as marker for intestinal stem cells, would be a good 

approach. But since unfortunately no suitable antibody against Lgr5 is available for 

immunohistochemical staining of murine tissue, an in situ hybridization should be done. If the loss 

of Mcl-1 indeed impedes differentiation, as it has been shown for keratinocytes307, this would also 

be a possible reason for the spontaneous and inflammation-independent tumor formation in Mcl-

1ΔIEC mice. Certainly, the exact mechanism of malignant transformation of Mcl-1 negative IECs needs 

further attention.  

In the context of CRC treatment, it would be worth to follow the approach of chemical Bcl-xL 

inhibition in vivo. Therefor, tumor formation in control and inhibitor treated wild type mice could 

be induced by using the AOM/DSS model. Subsequently, tumor number and sizes would be 

compared to identify the influence the inhibitor has on CRC onset and progression.
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LIST OF ABBREVIATIONS 

 

2D two dimensional 

2N diploid 

3D three dimensional 

4N tetraploid 

5-FU 5-fluorouracil  

ACD autophagic cell death  

AIF apoptosis-inducing factor 

AMP  adenosine monophosphate 

AMPK AMP-activated protein kinase 

AOM azoxymethane  

APAF1 apoptotic protease activating factor 1 

APC adenomatous polyposis coli 

APS ammonium persulfate  

Atg autophagy-related gene  

ATP adenosine triphosphate 

BAD Bcl-2 antagonist of cell death 

Bak Bcl-2 antagonist/ killer 

Bax Bcl-2 associated X protein 

Bcl-2 B-cell lymphoma 2 

Bcl-w B-cell lymphoma w 

Bcl-xL B-cell lymphoma extra-large 

BH domain B-cell lymphoma 2 homolgy domain 

BID Bcl-2-interacting domain death agonist 

BIM Bcl-2-interacting mediator of cell death 

BL body length 

BMI body mass index 

BMP bone morphogenetic protein 

Bok Bcl-2-related ovarian killer protein 

BRAF v-Raf murine sarcoma viral oncogene homolog B 

BrdU bromodeoxyuridine 

BSA bovine serum albumine  

BW body weight 

CAD caspase-activated DNase 

CARD caspase activation and recruitment domain 

CD cluster of differentiation 

Cdc42 cell division control protein 42 homolog 

CDK1 cyclin depending kinase 1 

cDNA complementary DNA  

c-FLIP  cellular FLICE/caspase-8-inhibitory protein 



 
 

 

 146 

cIAP cellular inhibitor of apoptosis 

CIMP CpG island methylator phenotype 

CIN chromosomal instability  

CK1α serine/threonine kinases casein kinase 1 alpha 

cl.PARP cleaved PARP 

CLL chronic lymphocytic leukemia 

CO2 carbon dioxide 

CpG Cytosine-Guanosin dinucleotide 

CRC colorectal cancer 

Cre creates recombination 

CreER Cre-coupled estrogen receptor 

CTLs cytotoxic T-lymphocytes  

CYLD cylindromatosis 

DAB diaminobenzidine 

DAPI 4′,6-Diamidin-2-phenylindol 

DCC deleted in colorectal cancer 

DD death domain  

ddH2O double distilled water 

DED death effector domain  

DEDs death effector domains 

DISC death inducing signaling complex 

DMSO dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

dNTPs deoxynucleotides 

DSS dextran sodium sulfate  

DTT 1,4 dithiothreitol  

ECL enhanced chemiluminescence  

ECM extracellular matrix 

ECM extracellular matrix  

EDTA ethylenediaminetetraacetic acid 

EGF epidermal growth factor 

EGFR epidermal growth factor receptor 

EMT epithelial-to-mesenchymal transition  

ER endoplasmatic reticulum  

Erk extracellular signal-regulated kinases 

EtBr ethidium bromide  

EtOH ethanol 

FACS fluorescence-activated cell sorting 

FADD FAS-associated protein with a DD 

FAP familial adenomatous polyposis 

FASL  TNF receptor superfamily member 6 ligand 

FCS fetal calf serum  
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FDA Food and Drug Administration 

FIP200 focal adhesion kinase family interacting protein of 200 kD 

FITC fluorescein isothiocyanate 

floxed flanked by two loxP sites 

for forward 

GABARAP gamma-aminobutyric-acid-type-A-receptor-associated protein 

GAPDH glycerinaldehyde-3-phosphate-dehydrogenase 

GATE-16  Golgi-associated ATPase enhancer of 16 kDa 

GFP green fluorescing protein 

GRASP65 Golgi reassembling and stacking protein 

GSK3 glycogen synthase kinase 3 

GTP Guanosine-5'-triphosphate 

h hour 

H2AX histone 2A, member X 

H2B histone 2B  

H2O water 

HCl hydrochloric acid  

HE hematoxylin and eosin 

HrK activator of apoptosis harakiri 

HRP horseradish peroxidase 

HtrA2  high temperature requirement protein A2 

IAP inhibitors of apoptosis 

IBD inflammatory bowel disease  

IC50 half maximal inhibitory concentration 

ICAD inhibitor of caspase activated DNase 

IEC intestinal epithelial cell  

IHC immunohistochemical staining 

IKK IκB kinase 

IL interleukin 

IMS intra-membrane space  

IκB inhibitor of NF-κB 

KRAS Kirsten rat sarcoma viral oncogene homolog 

LC3 microtubule-associated protein light chain 3 

LC3 I cytosolic LC3 

LC3 II membrane bound LC3 

LDH lactate dehydrogenase  

LEF lymphoid enhancer-binding factor 

Lgr5 leucine-rich repeat-containing G-protein coupled receptor 5 

LIR LC3-interacting region  

loxP locus of crossover in P1 

LRP low density lipoprotein receptor-related protein 

Mcl-1 myeloid cell leukemia sequence 1 
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MEFs mouse embryonic fibroblasts 

Mek mitogen-activated protein kinase kinase  

MET mesenchymal-to-epithelial transition  

MgCl2 magnesium chloride  

MLH1 mutL homolog 1 

MLKL mixed linage kinase domain-like protein 

MMP7 matrix metalloproteinase 7 

MMR mismatch repair  

MOMP mitochondrial outer membrane permeabilization  

mRNA massenger RNA 

MSH2 mutS homolog 2 

MSI microsatellite instability  

MSI-H  MSI high 

MSS microsatellite stability 

MST1 mammalian sterile20 

mTOR mechanistic target of rapamycin 

mTORC1 mammalien target of Rapamycin complex 1 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide  

Muc mucosa 

MΦ macrophage 

NaCl sodium chloride  

NAD nicotinamide adenine dinucleotide 

NaF sodium fluoride  

NBS1 Nijmegen breakage syndrome 

NCT National Center for Tumor Diseases 

NF-κB  nuclear factor kappa-light-chain-enhancer of activated B cells 

NK natural killer  

Oba Obatoclax 

OMM outer mitochondrial membrane  

Oxa oxaliplatin 

PAGE polyacrylamide gel electrophoresis  

PARP Poly(ADP-ribose)-Polymerase 

PAS phagophore assembly side  

PBS phosphate buffered saline 

PBS-T  PBS-Tween 

PCD programmed cell death  

PCNA proliferating cell nuclear antigen 

PCR polymerase chain reaction  

PD-1  programmed death 

PE phosphatidylethanolamine 

PFA paraformaldehyde 

PI protease inhibitor  
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PI3KC1 class I phosphatidylinositol 3-kinase 

PI3KC3 class III phosphatidylinositol 3-kinase 

PIP phosphatidylinositol phosphates 

pMLKL phospho-MLKL  

PMSF phenylmethyl sulphonyl fluoride 

PS phosphatidylserine 

qRT-PCR quantitative real-time polymerase chain reaction  

rev reverse 

RIP1 receptor interacting serine/threonine kinase 1 

RNA ribonucleic acid 

ROCK1 Rho associated coiled-coil containing protein kinase 1 

ROS reactive oxygen species  

R-spondin roof plate-specific spondin 

RT room temperature  

SD standard deviation 

SDS sodium dodecyl sulfate 

siRNA small interfering RNA 

siSc scrambled siRNA 

SMAC second mitochondria-derived activator of caspases 

SMAD mothers against decapentaplegic 

SNPs single nucleotide polymorphisms  

SQSTM1/p62 sequestosome 1 

ß-MeEtOH β-mercaptoethanol  

STS staurosporine 

TA transit-amplifying  

TAE tris-acetate-EDTA 

TAK 1 TGF-β-activated kinase 1 

TAK1 TGF-beta activated kinase 1 

Taq Thermus aquaticus (bacterium) 

tBID truncated BID 

TBS tris-buffered saline 

TCF T-cell factor 

TdT terminal-deoxynucleotidyl-transferase  

TEMED tetra-methylethylenediamine  

TGF-ß  transforming growth factor beta 

TMA tissue microarray  

TNFAIP3 TNFα-induced protein 3 

TNF-R1  TNF receptor 1 

TNFα tumor necrosis factor alpha 

TNM tumor node metastasis 

TP53 tumor protein p53 

TRADD TNF-R associated death domain 
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TRAF2 TNF-R associated factor 2 

TRAIL TNF-related apoptosis inducing ligand 

TTX Triton X 100 

Tu tumor 

TUNEL terminal deoxynucleotidyl transferase dUTP nick end labeling  

UICC Union Internationale contre le Cancer 

ULK  unc51-like kinase 

UV ultra-violet 

v/v volume per volume 

VEGF vascular endothelial growth factor 

VilCre Cre expressed under control of the Villin promotor 

VMP1 vacuole membrane protein 1 

Vps vacuolar protein sorting  

w/v weight per volume 

wt wild type 

XIAP X-linked IAP 
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