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Abstract

In this thesis, we worked with the HICANN neuromorphic chip, which is part of
the BrainScaleS System. Its analog circuits underlie time-independent variations
that occur during the manufacturing process; this effect is known as mismatch. It
causes the analog neuron and its synapses to deviate from desired behavior. Each
neuron in HICANN has 23 individual parameters, that allow to compensate those
variations. We therefore can calibrate the neuron. The variation of the obtained
parameters from trial to trial are significant and set the limit for the reachable
precision. In this work we develop new calibration methods for the synaptic and
membrane time-constants of the neuron and analyze the behavior of the synapse
circuits using transistor-level simulations. We analyze the post-synaptic potential
(PSP) curves to extract the time-constants by fitting a parameterized model of the
PSP recorded from the neurons. The resulting time-constant calibration improves
the precision by which the model parameters can be set towards the mentioned
limit. Monte Carlo transistor-level simulations are used to show that the relative
deviation of the synaptic strength is below 10 % for most of its parameter range.
The presented calibration vastly improves the usage of the analog neuron as a leaky
integrate and fire model.

Zusammenfassung

In dieser Arbeit haben wir mit dem HICANN gearbeitet, einem neuromorphen
Chip, der Teil des BrainScaleS Systems ist. Seine analogen Schaltungen unterliegen
zeitunabhängigen Variationen, die während des Herstellungsprozesses auftreten.
Dadurch weicht das analoge Neuron und seine Synapsen vom gewünschten Ver-
halten ab. Jedes Neuron in HICANN hat 23 einzelne Parameter mit denen diese
Variationen kompensiert werden können. Dardurch lassen sich die Neuronen kali-
brieren. Allerdings unterliegen die Parameter von Versuch zu Versuch signifikanten
Abweichungen, die eine Grenze für die erreichbare Genauigkeit festlegen. In dieser
Arbeit entwickeln wir neue Verfahren, um die Zeitkonstanten der Synapsen und
der Membran des Neurons zu kalibrieren und untersuchen das Verhalten der
Synapsenschaltkreise mit Simulationen auf Transistorebenen. Wir analysieren die
Kurven der Postsynaptischen Spannungsverläufe (PSP) und extrahieren die Zeit-
konstanten, indem wir ein parametrisiertes Modell des PSP an Kurven anpassen,
die von den Neuronen aufgenommen wurden. Die resultierende Kalibrierung der
Zeitkonstanten verbessert die Genauigkeit, mit der die Parameter gewählt werden
können, so dass sie nun fast bis auf die zuvor erwähnte Grenze eingestellt werden
können. Wir verwenden außerdem Monte Carlo-Simulationen auf Transistorebene,
um zu zeigen, dass die Stärke der Synapsen in weiten Teilen ihres Parameterbe-
reiches eine Abweichung von unter 10 % aufweist. Die vorgestellte Kalibrierung
verbessert die Verwendung des analogen Neurons als integrierendes und feuerndes
Model mit Leck erheblich.
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1 Introduction

Artificial neural networks are computational models inspired by the nervous system.
Such models can help us to gain a better understanding of the function of the brain
and also open up new approaches to otherwise computationally complex tasks.
Nowadays, more and more tasks that were considered most challenging for classical
algorithms are solved by deep neural networks. They can successfully categorize
and describe images or beat even professionals in the game of Go [LeCun et al. 2015;
Silver et al. 2016].

In addition to such biologically inspired algorithms, there is a large interest
in understanding the brain function with the help of computer simulations. A
prominent example for this is the BlueBrain Project, which aims to simulate several
cortical columns of rats with an unprecedented level of detail [Markram et al. 2015]
on the Blue Brain IV supercomputer. However, the Blue Brain IV has a power
consumption of 328.70 kW [TOP 500 2015]. Extending these simulations to the
scale of the human brain, with its 86× 109 neurons [Azevedo et al. 2009], appears
beyond reach, because neither the computational nor the required electrical power
are available.

Thus both current deep neural network implementations as-well-as in-silico
neuron experiments are biologically inspired, but their power consumption is
orders of magnitude away from that of the human brain itself: only about 20 W.
And so is their performance: Even if the brain got beaten in certain tasks, it is still
much more versatile. This inspires us to leave classical computers with the von-
Neumann architecture behind and design new computational devices to transfer the
computational paradigms of neurons into silicon, so called neuromorphic systems.
First steps in this direction have been taken with a biologically inspired classifier
using spiking neurons [Diamond et al. 2016], for deep neural networks [Indiveri
et al. 2015] and with a hybrid architecture which combines the benefits of parallel
processing and a learning neural networks with those of shared memory access in
traditonal computers [Graves et al. 2016].

The temporal evolution of those artificial neural network models is usually com-
puted in numeric simulations. For networks using spiking point neurons, these
have three computational components: First the numerical integration of the neuron
model, second the integration of the synaptic events and third the distribution and
processing of the spike-based communication. The first and the second tasks may
be computationally costly, but can be scaled and distributed in large simulations
over many computational cores. However, the third has become the limiting factor
in growing network size [Kunkel et al. 2014; Zenke et al. 2014].

Neuromorphic solutions can provide an alternative approach to numerical com-
putations. They can decrease computation time and power consumption of neuronal
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1 Introduction

simulations and specialized systems can improve upon the spike-based communica-
tion. However, while numeric simulations allow us to implement any mathematical
model or communication scheme, neuromorphic systems usually have to pay for the
increased performance by a loss of generalization or they have to sacrifice precision
and deterministic behavior.

In this thesis, we work with such a neuromorphic system, that uses an analog
neuron model. In this system each neuron is subject to small variations in the
manufacturing process. The aim of this thesis is it to compensate for those variations
to regain an uniform neuron behavior. For this task, we first characterize the
deviations from the desired behavior and then provide a calibration method, that
restores the desired behavior.

Of particular interest are neuromorphic systems that use very-large-scale inte-
gration (VLSI) to combine the required features on single microchip because they
promise to give the largest improvement in efficiency [Hasler et al. 2013]. Those
systems come in a large variety [Furber 2016]. For instance, the SpiNNaker project
uses custom processing units, each consisting of 18 ARM cores and a special packet
routing unit [Furber et al. 2014]. The ARM cores only provide fixed-point arithmetic
and the routing system is designed to send many small packets to many targets.
Each unit can transport events to six neighboring cores, which allows the system to
scale arbitrarily. Since the routing is not synchronized with the processing units,
the system can no longer do deterministic simulations. This approach is still very
close to classical simulations. In fact, the SpiNNaker core still uses a von-Neumann
architecture and can compute arbitrary neuron models and synapse types, but they
drop the costly synchronization process between the singular nodes.

The TrueNorth system by the IBM Synapse project leaves the von-Neumann archi-
tecture behind. It has no longer a general purpose computing unit, but implements
a fully digital custom neuron and synapse model [Amir et al. 2013; Cassidy et al.
2013; Esser et al. 2013]. Even if the models depend on stochastic input, the system
still produces deterministic results. The digital neurons are organized in cores, of
which each contains 256 neurons with 256 input synapses each. 4096 cores are inte-
grated in one TrueNorth chip using a 22 nm technology leading to the impressive
number of one million neurons per chip. The high integration requires that some
parameters are shared between synapses or neurons.

Like SpiNNaker, TrueNorth also provides a custom routing system, that allows
the communication from every single neuron to every other neuron. As a perfor-
mance benchmark, TrueNorth allows real time image recognition on a 400-pixel-
by-240-pixel video input at 30 frames per second while the chip is consuming
63 mW [Merolla et al. 2014] and efficient image classification with deep learning
networks processing more than 6000 frames per watt [Esser et al. 2016]. These
fully digital solutions reduce the power consumption greatly, while remaining quite
flexible in the available neuron models.

As an alternative to digital neurons and synapses, there are analog physical neuron
models in silico. The neuron and synapse are emulated by analog electrical circuits.
These circuits can emulate neurons by transferring their electrical properties into
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analog VLSI circuits [Indiveri et al. 2011].
For example Neurogrid implements a custom analog neuron model with shared

analog dentrites [Benjamin et al. 2014]. Neurogrid consists of so called Neurocore
chips, each containing 65536 neurons. The neurons operate in real time. The com-
munication is digital and multiple Neurocores are using a tree-like routing structure
with address–event representation (AER) [Silver et al. 2007]. Each Neurocore con-
sumes 150 mW [Furber 2016]. To achieve such power efficiency , parameters and
synapses are shared between neurons, which reduces the freedom in network design.

A further example is Spikey, which has 384 analog circuits. Opposed to Neurogrid
these have partialy individual parameters [Schemmel et al. 2006; Brüderle et al.
2011] and operate above-threshold with an accelerated speed compared to biological
networks by a factor of 104. This compensates for the higher energy consumption.
Further its synapses model provides on-chip Short Term Plasticity (STP) and Spike
Timing Dependent Plasticity (STDP). While Spikey is a versatile computing sub-
strate [Pfeil, Grübl, et al. 2013; Pfeil, Scherzer, et al. 2013], the number of neurons
per chip is limited.

Our group developed the BrainScaleS System [Schemmel et al. 2010; Brüderle
et al. 2011] as a successor of Spikey. The core of the system is the High Input Count
Analog Neuronal Network (HICANN) chip, which is the base for this work. A
BrainScaleS System has 384 HICANNs. The wafer-scale integration interconnects
the HICANNs on the directly on the production wafer. This increases the neuron
density and creates a sophisticated bus network for interconnecting the neurons. As
outstanding feature, a single system provides 196608 individually paramamized
analog neuronal circuits emulating the Adaptive Exponential Integrate-and-Fire
(AdEx) neuron model [Brette et al. 2005]. Each neuron has at least 220 individual
analog synapses, which support STP and STDP.

In addition the temporal evolution of the neurons is faster than the one of their
biological counterparts. The speed up factor is about 104. Compared to systems
like Neurogrid, which operate in real-time, this increases the power efficiency of the
system in terms of energy per spike [Benjamin et al. 2014].

The VLSI implementation of analog neurons and synapses raises two challenges.
Firstly, the performance of an analog neural circuits suffers from mismatch: each
instance of any supposed-to-be-identical circuit slightly differs from its specification,
due to uncertainties in the manufacturing process [Pelgrom et al. 1989; Razavi 2001].
Secondly, each neuron circuit has 23 individual voltage and current parameters –
in total about 12000 per chip – which have to be generated on the chip and also
will underlie variations. The source of these voltages and currents are subject to
substantial variations between individual experiments.

Those challenges can be addressed by calibrating the neurons. A first calibration
method developed for HICANN has only been applied to neurons without synaptic
input [Schwartz 2013]. In this work, we extend the previous work of Schwartz [2013]
and present a calibration for the synaptic time-constant of the analog neuron circuits.
In addition we show how the trial-to-trial variation is related to the mismatch effect
and characterize the variations that arise in the synapses. After application of
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1 Introduction

the presented calibration routines, the analog neuron circuits are ready for neural
network emulations, using a Leaky Integrate-and-Fire (LIF) neuron model.

This thesis comprises two main parts. First we introduce the system and our
methods: In Chapter 2 we present the physical hardware of the BrainScaleS System
in further detail, while we follow in Chapter 3 with the commissioning of the
system. This includes the operational software of the system and tests to verify
its functionality. In Chapter 4 we define our calibration task and present our
measurement and simulation methods.

In the second half of this work we present our main results: We worked with two
revisions of HICANN: the earlier revision 2 and the most recent revision 4.1, which
had a major redesign in the synaptic circuits of the neuron. In Chapter 5 we work
towards the calibration of the synaptic and membrane time-constants. We show
how mismatch affects the programming of the analog parameter storage, repeat the
calibration for the basic neuron potentials for the newest HICANN revision and
provide a model to describe the strength of spike events in HICANN. In Chapter 6
we work with HICANN’s earlier revision 2. We characterize the integration of
synaptic events in the neurons. We show that the use of the neurons is limited by
mismatch in the neuron circuits, but we can still provide a preliminary calibration
for the neuron in this HICANN revision. Our findings lead to the new revision 4.1,
in which an additional compensation for those mismatch effects was integrated. In
Chapter 7 we present the changes in detail and show the improvements. We present
methods to calibrate the synaptic and membrane time-constants of the neurons.
With this result we have a fully calibrated conductance based LIF neuron model,
that is available for experiments. We then conclude this work and give an outlook
on potential continuing research in Chapter 8.
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2 BrainScaleS System

In this chapter we present the BrainScaleS System and give here an overview of
the system parts relevant for our work. We begin with a short introduction to the
neuron model, then describe the HICANN chip and then provide an overview of
the complete system. For further details we refer to the Neuromorphic Platform
Specification [SP9 Spec 2015] and to publications related to the components at the
relevant sections. Many people contributed to the development of the BrainScaleS
System in various ways; we list the involved persons in the Acknowledgments.

The underlying neuron model for the VLSI neuron circuits is the AdEx model [Brette
et al. 2005; Naud et al. 2008]. We describe this model and a set of solutions required
to analyze our results in Section 2.1. Afterwards we describe the HICANN chip
in Section 2.2. There we give a broad overview but focus on the neurons and the
synaptic input, which are the main subjects of our work. Finally, in Section 2.3
we describe how HICANN is integrated in the BrainScaleS System. This includes
the FPGA Communication PCB (FCP) and the Analog Readout Module (AnaRM),
which are required to configure the system and to read back analog signals from the
neuron circuits.

2.1 Adaptive Exponential Integrate-and-Fire Model

Biological neurons are the highly specialized cells of the nervous system, which can
be found in a large variety [Alberts et al. 2007]. In theoretical neurosciences those
cells are studie using different kinds of mathematical models [Gerstner et al. 2002].
The models have to find a balance between the level of abstraction and usability.
More complex models become harder to treat mathematically and more expensive
in simulations.

For the BrainScaleS System, the Adaptive Exponential Integrate-and-Fire (AdEx)
model [Brette et al. 2005; Naud et al. 2008] was chosen as archetype of the neu-
ron circuit [Millner 2012; Schemmel et al. 2008]. It is a point neuron model and
abstracts as such the complete spatial expansion of the neuron. It extends the
LIF model [Dayan et al. 2001], which was already used in HICANN’s predecessor
Spikey [Schemmel et al. 2007], by an exponential term that models the strong voltage
rise on the membrane occurring during action potentials. Further a second differ-
ential equation is added to model spike-based and sub-threshold adaptation. The
synapses are modeled using exponentially decaying conductance. For the hardware
implementation it is necessary to fix the number of synaptic conductances to two:
one for excitatory and one for inhibitory synapses. We take this into account in the
mathematical description of the model. In general this is a simplification, because
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2 BrainScaleS System

more conductances are possible if hardware neurons are directly interconnected.
But in this work we do not make use of that feature.

In total the model has then four state variables: The membrane voltage V , the
adaption current Iw, the excitatory conductance ge and the inhibitory conductance gi .
For a series of stimulating excitatory spikes at times te0 . . . t

e
k with individual weights

we
0 . . .w

e
k and inhibitory spikes at times ti0 . . . t

i
l with individual weights wi

0 . . .w
i
l , the

dynamics of this model are given by

C
dV
dt

= gl (El −V ) + gl∆T exp
(
V −Vthresh

∆T

)
+ ge

(
Esynx −V

)
+ gi

(
Esyni −V

)
+ Iext + Iw,

(2.1)

τw
dIw
dt

= a (V −El)− Iw, (2.2)

τsyne
dge
dt

= −ge +
∑
k

we
kδ

(
tek
)

and (2.3)

τsyni
dgi
dt

= −gi +
∑
l

wi
lδ

(
til
)
. (2.4)

The exponential term causes a fast blow-up of the solution as soon as V gets close
enough to Vthresh. In this case V reaches infinity in a finite time interval. For the
numerical solutions and also for the circuit emulation this is not feasible. Therefore,
a spike and reset condition like in the LIF model is added, so that if

V > Vt then V → Vreset and Iw→ Iw + b. (2.5)

This gives 15 parameters in total, which are listed in Table 2.1. In contrast to the
original model, Vreset and Vthresh are added as parameters, because the implementa-
tion on HICANN allows to choose them independently. For a = 0, b = 0 and lim∆T→0,
Equation (2.1) converges to a LIF model with conductance based synapses:

C
dV
dt

= gl (El −V ) + ge
(
Esynx −V

)
+ gi

(
Esyni −V

)
+ Iext. (2.6)

In this work we use the hardware neuron in this form, because it will simplify the
analysis of the synaptic and membrane time-constants.

In total, the AdEx model is well suited for analog emulation. It requires only four
dynamic variables and can reproduce a large number of activity patterns observed
in biological neurons [Naud et al. 2008]. Two examples recorded on HICANN are
shown in Figure 2.1.

2.1.1 Solution for the Steady State

In the hardware neuron in HICANN the membrane V is the only state variable, that
can be -measured. We therefore need to infer information about the other state
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2.1 Adaptive Exponential Integrate-and-Fire Model

C membrane capacity
El membrane leakage potential
gl leakage conductance
∆T slope factor of the exponential
Esynx excitatory reversal potential
Esyni inhibitory reversal potential
τw adaptation time-constant
a sub threshold adaptation
b spike-triggered adaptation
Vt spike threshold
Vreset reset potential
Vthresh threshold potential for the exponential term
τsyne excitatory synaptic time-constant
τsyni inhibitory synaptic time-constant and
Iext external current

Table 2.1 Parameters of the AdEx model, for Equations (2.1) to (2.5).

A

Time [µs]

V
m
em

[V
]

B

Time [µs]

V
m
em

[V
]

Figure 2.1 Reproduction of firing patterns on analog neurons on HICANN using
a current stimulus. The shown pattern were described as A Tonic spiking B
Spike frequency adaptation [Naud et al. 2008]. For tonic spiking the adaptation
is disabled and the neuron directly react to the increase current stimulus Iext
with regular spikes. The strong onset caused by the exponential term is well
visible. For the spike frequency adaptation b is set larger than 0. This causes the
adaptation current Iw to rise after each spike, which slows down the spike rate.
After the current pulse ends, the membrane is pulled below the resting potential
by the adaptation current Iw. Figures taken from Tran [2013].
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2 BrainScaleS System

variables from the membrane. For this we seek analytic solutions which help us to
overcome this deficit.

We often observe the neuron membrane in a steady state, which is the state of the
neuron where dV

dt = 0. In the steady state the neuron stays at an effective resting
potential Eeff

l , depending on the strength of the conductance,

Eeff
l =

gi ·Esyni + gx ·Esynx + gl ·El

gi + gx + gl
. (2.7)

2.1.2 Solution for a Single Input Spike

For our calibration task, we need to determine the synaptic time-constants τsyne and
τsyni of the neuron, where we are still limited to the membrane potential V as only
measurable state variable. We can do this by stimulating the neuron with a single
spike and analyze the course of the membrane, the so called Postsynaptic Potential
(PSP). Here we derive a mathematical form for a Postsynaptic Potential (PSP) that
we can fit to PSPs recorded on HICANN to determine τsyn.

We simplify the task by setting two preconditions: we operate the neuron only
as LIF neuron as described by Equation (2.6) and we require that the neuron is in
its steady state, when the spike event arrives. This implies that the resulting PSPs
do not overlap. Given this conditions a solution for Equations (2.6) to (2.4) can be
found [Rudolph et al. 2006]. However for our needs an approximation for single
spikes is more useful [Bytschok 2011; Petrovici 2016]. For a spike at t0 with weight
w occurring when the neuron is in the steady state, we then obtain the shape of a
single PSP

V (t) ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
El +θ(t0) ·A ·

(
exp

(
t0−t
τm

)
− exp

(
t0−t
τsyn

))
if τm , τsyn

El +θ(t0) · w
τsyn
· exp

(
− t−t0τsyn

)
· (t − t0) if τm = τsyn,

(2.8)

with A =
w ·

(
Esyn −El

)
· τg

gl · τm
, (2.9)

and τg =
(

1
τsyn
− 1
τm

)−1

. (2.10)

In this form Equation (2.8) is not yet well suited to be fitted to a recorded PSP. It
still contains to many free parameters, which causes problems in a fit because these
show a correlated response to changes. Further, we cannot determine good initial
parameters for the fit, which are important for a good convergence of the fit.

We can improve this by reformulating Equation (2.8) to use the amplitude of the
PSP as parameter. We define it as the maximum of the PSP occurring at dV

dt = 0 and
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2.2 HICANN

call it the height h of the PSP. We first need to obtain its position tmax and obtain

tmax =
log

τsyn
τm
· τsyn · τm

τm − τsyn
. (2.11)

We then insert the result into Equation (2.8) and get the height h of the PSP as

h = V (tmax) = A ·
(
τ

τ
1−τ − τ

1
1−τ

)
with τ =

τsyn

τm
. (2.12)

The same considerations hold for the case where τm = τsyn. We then replace A in
Equation (2.8) and obtain the final result for a single PSP as

V (t) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
El +θ(t0)

h

τ
1

1−τ − τ
τ

1−τ

(
exp

(
t0−t
τ1

)
− exp

(
t0−t
τ2

))
if τ1 , τ2

El + hθ(t0)exp
(
1− t−t0

τ1

)
t−t0
τ1

if τ1 = τ2,

(2.13)

with τ =
τ2

τ1
, (2.14)

where we replaced τsyn and τm by τ1 and τ2 because the equation is now invariant in
exchanging them. This form is better suited to be fitted, because we could eliminate
multiple parameters and we can determine good initial values for the remaining
free parameters.

For our measurements we need to reconstruct the information how to assign
τ1 and τ2 to τsyn and τm . We use multiple measurements, where one of the two
time-constants is fixed value and the other one varied, to do this.

2.1.3 Parameter Domain of the Model

The model itself does not imbue any restrictions on the parameters, but the physical
properties of the neuron circuits in HICANN do. As we see in the later chapters
these typically use voltages in the range from 0.3 to 1.3 V and membrane and synap-
tic time-constants occur in the range of 0.1 to 10 µs. We call these the hardware
parameter domain of the model. These are significant different from parameters
used in biologically oriented models, which we refer to as biological domain. How
these parameters biologically oriented models are converted to match the technical
domain is shown in Section 4.1.2. For avoiding confusion we consistently use in this
work the hardware domain for model parameters.

2.2 HICANN

The HICANN is the functional core of the BrainScaleS System. It implements a
neuron model with 512 individually configurable analog spiking AdEx neurons.
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2 BrainScaleS System

Each neuron has 220 (224 in revision 2) analog synapses. Over 12000 floating gate
cells provide individual configurable voltages and currents to the neurons and other
subsystems. Spikes are communicated over an on-chip network as 6 bit packets.
Each HICANN has two analog output channels for recording the membrane of the
neuron and other sources for debugging. A picture of HICANN with its components
highlighted is shown in Figure 2.2. The design gives the chip a horizontally mirrored
symmetry, to that we will refer to as top and bottom half of the chip.

The global clock of HICANN is generated by a Phase-Locked Loop (PLL) and can
be set to values up to 250 MHz. For regular usage a frequency of 100 and 125 MHz
has been proven to be stable [Kononov 2011].

The HICANN is either produced as single chip or as whole wafer with wafer-scale
integration. The wafer-scale integration is described in Section 2.3.

In total, five revisions of HICANN were developed and four of them produced. In
2009 revision 1 was produced as single chip only for the first HICANN tests and is
no longer in use. It was followed in 2011 by revision 2 which was first produced as
single chip for tests and then as whole wafer with wafer-scale integration. In 2011
the planning and design of revision 3 was started by Sebastian Millner, but dropped
in favor of the Multi-Compartment Chip (MCC) [Hartel 2016; Millner 2012]. In
2015 our results shown in Chapter 6 led to revision 4, which has an improved
synaptic input. As we show in Chapter 7, the improvements were substantial. For
the wafer-scale integration of revision 4 an additional change was applied and the
HICANN is therefore labeled with Revision 4.1. Most of the BrainScaleS Systems
use currently revision 2, but the systems will be updated to revision 4.1 step by step.

We now give an overview of the most important HICANN components, the analog
neuron, synapses, spike communication and floating-gate parameter storage. If
not noted otherwise the description is valid for all revisions. For the notations of
voltages and currents in the circuits we primarily follow the names given in the
specification or in previous publications. An overview of all used names is given in
Appendix C.

2.2.1 Neuron Circuits

The differential equations need to be transferred into analog circuits that emulate
them [Millner 2012; Millner et al. 2010]. Physically the neurons are placed in two
rows each containing 256 neurons on the HICANN. This is well visible in Figure 2.2.
Each neuron has two conductance-based synaptic input circuits, which integrate the
spikes coming from the 220 (224 in revision 2) synapses connected to them. Further
neurons can be short-circuited to enlarge the number of possible synapses at the
cost of reducing the total number of available neurons. The currents and voltages
for the neuron are provided by the analog parameter storage individually for each
neuron. The original description of the HICANN neuron can be found in [Millner
2012].

For this work only the components that form a LIF neuron are relevant. Its parts
are shown in Figure 2.3. The membrane capacity C is a capacitor with nominal
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2.2 HICANN

Figure 2.2 Photograph of the HICANN revision 2 without postprocessing for
wafer-scale integration. The chip is 5 × 10mm. Its vertical symmetry is well-
defined. On each half are 256 interconnectable neruon circuits with each 224
synapses. The outer parts of chip contain the on-chip routing network. Picture
taken by Dan Husmann, annotations by Elisa Ziegenbein.
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Figure 2.3 Reduced schematic of the HICANN neurons. All components are
interconnected by the membrane.

160 fF, where we denote the design goal for the given quantity as nominal values.
This value is subject to variation caused by production and especially for capacitors,
it is inevitably increased by the parasitic capacitance, caused by other circuit ele-
ments. In the neuron circuit the parasitic capacitance cannot be neglected, as it is
about 150 fF [Schmidt 2014]. Additionally, a second capacity with nominal 2000 fF
can be connected to emulate slower time-constants.

The reset mechanism pulls the neuron towards the reset potential Vreset as soon
as the membrane voltage Vmem crosses spike threshold Vt. It can be disabled by a
digital parameter, but this is only intended to be used when interconnecting neurons.
The current used for the reset is strong enough to overpower any other circuit in the
neuron. Further, a spike event can be emitted to the on-chip or on-wafer network.
This and the address of the event are controlled by further digital parameters. Then
the neuron membrane is hold at Vreset for the length of refractory period tref. Its
duration is controlled by the parameter Ipl.

The leakage term of Equation (2.1) is built by using an operational transconduc-
tance amplifier (OTA) in negative feedback. The OTA creates a current Igl pulling
back the membrane towards resting potential El. For an ideal OTA the current is

Igl = gl · (El −Vmem), (2.15)

which perfectly mimics the leakage term of Equation (2.1). The gain gl of the OTA
is also the leakage conductance of the neuron model. It is controlled by the current
parameter Igl. The actual characteristic of the OTA are shown in Figure 2.4. The
linear range of the OTA is limited to a small range of about 100 mV around El.

Input spikes are handled by the two synaptic inputs of the neurons. Which are
different in revision 2 and 4/4.1. A schematic of the input in revision 2 is shown
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2.2 HICANN

Figure 2.4 Circuit simulation of the conductance through the OTA (A) and
the resistive element (B) in dependence of the difference between reversal and
membrane potential for a fixed reversal potential of 0.9 V. The different lines
result from different bias currents for the circuit beginning from the bottom 0.1,
0.2, 0.5, 1.0 and 1.5 µA.

in Figure 2.5. These work in two stages: The first stage processes the current
pulses from the synapses, which are characterized by their length tsyn and strength
Isyn. An operational amplifier (OP) integrates the current pulses and increases the
voltage Vintegrator in an RC-circuit. The integrated pulses exponentially decay in
the RC-circuit towards the reference voltage Vsyn, as described by Equations (2.3)
and (2.4). In revision 2 the capacity is C = 249fF and was changed in revision 4/4.1
to C = 472fF. The synaptic time-constant is controlled by the voltage controlled
resistor in the RC-circuit via the voltage parameter Vsyntc, these are different in
revisions 2 and 4/4.1.

The second stage controls the synaptic conductance. In revision 2 the voltage
difference between Vintegrator and Vsyn is translated by OTA1 into a bias current for
OTA0, which then generates the synaptic current Isyne/i flowing onto the membrane.
For ideal OTAs it is

Isyne/i = ge/i · (Esyne/i −Vmem) and (2.16)

gi/x ∝ gconv · (Vsyn −Vintegrator), (2.17)

where gconv is controlled by the current parameter Iconv. For revision 2 both inputs
are identical.

In revision 4/4.1, OTA0 was replaced by a current controlled resistor, which has
a more stable conductance for larger voltage differences. The characteristics of
the OTA and the resistor are shown for comparison in Figure 2.4. The two inputs
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Figure 2.5 Schematic of the synaptic input of HICANN revision 2.

are no longer identical, because the resistor is placed with a different polarity in
both inputs. Further a bias generator was added to correct for mismatch in the OP
and OTA of the integrator. A schematic of the input for revision 4/4.1 is shown in
Figure 2.6. The functional implication of the changes between revision 2 and 4/4.1
are discussed in Section 7.1

To emulate the complete AdEx model, the neuron also has circuits for adaptation
and the exponential term. Because we want to use the neuron as LIF neuron, we do

Vsyn
Vconvoff

OTA1
Isyn
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Rsyntc

Iconv

IOTA1

OP

V
in

te
gr

at
or

Vmem

Vsyntc

Esyn

V1:3V1:1bias
generator

Figure 2.6 Schematic of the synaptic input of HICANN revision 4/4.1. Com-
pared to revision 2, the capacity is enlarged, the resistor in the RC-circuit was
exchanged, the reference voltage for OTA1 can now be shifted by the bias gener-
ator and OTA0 is replaced by an current controlled resistor.
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2.2 HICANN

not require these features and have to take care that these circuits do not influence
our measurements [Schmidt 2014; Friedrich 2015; Kiene 2014].

2.2.2 On-Chip Spike Communication

A further essential feature of HICANN is the on-chip spike routing, that allows
creating arbitrary connections between neurons [Schemmel et al. 2008; Schemmel
et al. 2010]. We give here a brief introduction of the on-chip spike communication, a
detailed description can be found in the PhD-thesis of Jeltsch [2014] and the project
specification [SP9 Spec 2015]. The backbone of the on-chip spike communication
are the 128 vertical and 64 horizontal buses on each HICANN. The horizontal and
vertical buses can be interconnected by sparse switch matrices. In the wafer-scale
integrated HICANN, as described in Section 2.3, repeater circuits extend the buses
over the borders between HICANNs. Repeater circuits amplify the signal crossing
the borders, so that they can be transferred wafer-wide.

Spike events are transmitted using asynchronous transmission. Each repeater
or synapse driver uses a Delay-Locked Loop (DLL) to recover the generating clock
of the signal for addresses decoding. This process is also referred to as repeater
locking. It requires some time, which is not yet measured [Ziegler 2013]. The spikes
are transmitted to the synapses via 224 synapse drivers. Each driver distributes
the spike events into two lines of 256 synapses each, which are connected to the
neurons on the top or on the bottom of the chip. Furthermore, each synapse driver
is sparsely connected to vertical buses on its own and the left or right neighboring
HICANN. Per HICANN 8 repeaters of horizontal buses can be used to receive either
external spike input, or the spikes of the neurons.

The on-chip network transmits 8 bit packets, which encode the sending neuron
in 6 bit and a start and stop bit. In total, every 16 bit one spike can be transmitted
because two packets cannot follow directly on each other, The transmission delay
depends on the number of repeaters to be passed and cannot be delayed on-chip by
other means. Each repeater in the connection will increase the delay further. The
repeaters can send a packet every two clock cycles of the PLL. For a PLL of 100 MHz
a single bus has a maximum spike rate of 50 MHz. The encoding allows merging
spikes of up to 64 neurons onto one bus. The identifier can be configured freely for
each neuron individually and is then used by the synapse drivers and synapses to
filter the events for the designated neurons.

An addition, to the neurons 8 background generators can merge events onto the
buses. They can produce either equidistant spikes or poisson-like distributed spike
trains, both with a selectable target rate. We will use these in experiments as a
source of reliable equidistant spikes.

2.2.3 Synapses

The synapses are organized in two arrays, one on the top half and one on the bottom
half of the chip [Schemmel et al. 2008]. This setup is well visible in Figure 2.2. Each
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2 BrainScaleS System

array can only give input to neurons on its side of the chip. Interconnecting neurons
from the top and the bottom can help to overcome this limitation.

Each array has 224 rows and 256 columns, one column per neuron. That gives
114688 synapses on each HICANN revision 2. On HICANN revision 4/4.1 four
synapse lines needed to be removed to increase the number of available synapses,
leaving still 220 rows and in total 112640 synapse.

The event from the on-chip network are received and decoded by the synapse
driver and then passed into the synapse array. Each driver controls two lines of
synapses. For each event with a matching address the synapse will fire with a pulse
length of tsyn. For a PLL of 100 MHz it is tsyn = 10ns. For each synapse row it can
be selected in the synapse driver, if the synapses are connected to the excitatory, the
inhibitory input, or both.

The strength of synaptic events can be regulated by three parameters. For different
reference currents the corresponding Vgmax are generated by the floating gates. For
each synapse row one of these is chosen and can be scaled by gdiv in the range from
1 to 30. The final current pulse Isyn toward the synaptic input is then generated
by the synapse. Each synapse has an individual 4 bit digital weight w acting as
multiplier.

This gives the input current to the synaptic input

Isyn = Vgmax · gscale ·
w
gdiv

, (2.18)

where gscale = 4 for revisions 2 and 4, and gscale = 0.4 for revision 4.1 of HICANN. A
more technical descriptions and a refined model follows in Section 5.3.

Further, the synapses support STP and STDP. Both allow changes of the synaptic
weight based on simple rules. A STP mechanism is implemented in each synapse
driver and modulates the length of the synaptic pulses. STDP even allows for up-
dating the digital synaptic weights w for each synapse individually. For this, two
eligibility traces – one for correlated and one for anti-correlated spikes – are stored
in each synapse. These are periodically evaluated and allow changes in the synaptic
weight. These features have been evaluated by Billaudelle and Nonnenmacher [Bil-
laudelle 2014; Nonnenmacher 2015].

2.2.4 Analog Parameter Storage

On HICANN each neuron has 21, or 23 in revision 4, individually configurable
voltages and currents which control its behavior. In addition, there are 24 voltages
and currents that are shared between neurons and are required for other components.
These parameters are stored in an analog parameter storage. Its memory cells
are implemented using single-poly floating-gate technology and therefore called
floating gate cells [Srowig et al. 2007; Millner 2012; Loock 2006], which provide
either voltages from 0 to 1.8 V or currents from 0 to 2.5 nA. The technology of the
floating gate cells is similar to FLASH memory [Hasler et al. 1999].
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Figure 2.7 Schematic of the floating gate cells as they are implemented in all
revisions of HICANN. The charge on the insulated floating gate controls the
output Vout of the voltage cell and the output Iout of the current cell. The floating
gate is charged by a tunnelling current, if Vcgs = VDD12 on the control gate small
(CGS) and Vcgl = 0V on the control gate large (CGL). Swapping the potentials
causes a decharging current. Figure taken with modifications from [Millner
2012].

Each floating-gate cell has one floating-gate transistor with a fully isolated
transistor gate. Its gate can be charged or discharged using Fowler-Nordheim-
Tunneling [Lenzlinger et al. 1969]. This requires a sufficiently strong potential,
which is provided by the floating gate programming voltage VDD12. To enable
sufficient tunneling currents, VDD12 must be at least 10 V. The usual operating
range in HICANN is from 10.5 to 11.5 V. Special adaptations were necessary to con-
trol VDD12 on the chip in the 180 nm Complementary Metal-Oxide-Semiconductor
(CMOS) process used for HICANN. A more detailed description can be found in
previous publications [Srowig et al. 2007; Hock 2009].

Figure 2.7 shows the schematic of both cell types. The output of the cell Vout
or Iout is controlled by the charge on the floating gate. Because the floating gate
transistor is an NMOS transistor, an uncharged gate has no output and the output
increases as electrons are drained from the gate.

To control the charge on the floating gate and to create the necessary electrical
field that allows tunneling, two additional transistors are connected to the floating
gate: The control gate small (CGS) and control gate large (CGL), which is ten times
larger for voltage cells and twenty times larger for current cells then CGS. CGL
couples much stronger to the floating gate and pulls it to the desired potential, while
the tunneling current flows through CGL. To increase the charge on the floating
gate CGS is connected to VDD12 and CGL to ground. To discharge the floating gate
the voltages are switched. The current flowing on or off the gate depends strongly
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on VDD12 [Loock 2006]. Without active programming voltages the cells are stable
over several hours [Millner 2012].

In voltage cells the final voltage is created by a source follower. It transforms the
current generated by the floating gate transistor into the output voltage Vout. The
output range of the voltage cell can be controlled by the bias voltage Vbiasn, which
can have 16 fixed values.

In current cells, a current mirror, built by M0 and M2, provides the output current
Iout of the cell. The reference current for programming is generated by a second
current mirror formed by the transistors M0 and M1. It generates a four times larger
current. For various currents additional scaling factors are implemented [Millner
2012]. We use only the scaling of control parameter of the leakage OTA Igl, which
can be sets to be 1 : 1, 1 : 3, 1 : 27.

The design allows to create a voltage cell with just 5 transistors and a current cell
with six transistors. This makes them sufficiently small to provide the large number
of parameters required on HICANN.

The analog parameter storage is organized in four blocks. Each block has 24 rows
of 129 floating gate cells, where the even rows provide voltages and the uneven rows
provide currents. In total 12384 parameters can be stored. Each row provides one
globally used parameter and 128 neuron parameters, but some rows are unused.
The assignment of the parameters to the neurons is documented in [SP9 Spec 2015].

The programming of the floating gates is done via an on-chip controller. Thereby,
the cells are programmed row-wise and can either be charged or discharged in one
programming pass:

First, a 10 bit target value is loaded into the controller for each cell. Then the
controller compares the value of each cell against a reference value generated by
a Digital-to-Analog Converter (DAC) based on the target value. If the value is too
low (or too high in the case of discharging) the programming voltage is activated
for a short period. The controller stops either after each cell is above (or below) its
target value or after a maximum number of cycles. It has a set of digital parameters
controlling the programming process. The maxcycle parameter limits the maximum
number of programming cycles per pass, while the readtime parameter controls
how long the controller waits before the output of the floating gate is compared to
the reference value. If the wait is too short, it distorts the comparison because the
readout line needs to charge to the correct value. Based on the comparison result
the controller decides for each cell if an additional charge or discharge is needed.
The duration of the charging pulse is controlled by the writetime parameter. The
accelerator step parameter doubles the writetime parameter, after each number of
accelerator step programming cycles.

The fixed (dis-)charge times can cause an overshooting over (under) the desired
value. In order to minimize deviations from the target set values, we use multiple
passes of alternating charging and discharging cycles. We evaluated the precision of
the floating gates in Section 5.1.
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2.2.5 Readouts

The HICANN has two 50Ω-terminated outputs for analog voltages. In the Brain-
ScaleS System each of the outputs shares the connection with the outputs from 8
HICANNs. This limits the number of voltages that can be read simultaneously to
384 · 2/8 = 96. Both have an additional amplifier, which will add a systematic error
to the returned voltages. This implies, that voltage read from the two analog outputs
are not comparable to each other. We therefore use only a single output per HICANN
for calibration tasks. Even, if the offset is only estimated to be 4.5± 0.8 mV [Millner
2012].

The DC-termination of the HICANN is actually around 42Ω instead of the
nominal 50Ω [Millner 2012]. We conducted measurements on each of the 16
HICANNs on the two prototype wafer systems and on 8 HICANNs on wafer 20
and found the DC-termination values to be equally distributed in the range of
41.0 to 44.0Ω. The resistance varies only slightly for HICANNs on a single reticle.
The variation between the different reticles can be caused by two effects, the varying
resistances of the whole connection between HICANN and AnaRM and probably
less strongly by process variations in the resistor on HICANN. A decision cannot
been made yet because the number of samples has been too small so far.

The outputs can read voltages from various sources on HICANN. Primarily they
are intended to read out the neuron membranes. Each neuron has an individual
amplifier for this signal, which also needs calibration [Schmidt 2014]. But it is also
possible to read the following analog signals: The neuron membrane of each neuron
can be read with either output and it is possible to read from two neurons in parallel.
However, not all combinations of neurons can be read simultaneously. Further, the
output of any single floating gate cell can be read. For the current cells this is the
output signal for the comparator, which is a voltage. Lastly, the fire signal and the
voltage of the DLL lock in the synapse driver can be read for one synapse driver on
each half of HICANN. For the details of possible combinations of analog readout
and targets we refer to [SP9 Spec 2015].

2.3 System Setup

Each BrainScaleS Systems consists of 384 HICANNs equipped with over 100000
neurons. It includes supporting electronics, which provide power, channels for
communication and configuration, and AnaRM to record analog signals [Müller
2014]. An assembled system is shown in Section 2.3.

We here give a short introduction into the wafer-scale integration, followed by
a short description of the FCP and AnaRM. Lastly, we present the Demonstrator
Setups, a portable version of the BrainScaleS System, that can also be used to test
single-chip HICANNs.

The BrainScaleS System was developed during the BrainScaleS project. At the
end of the project, in March 2015, the first 8 systems had been deployed, of which 2
were prototype systems. These systems are now part of the Neuromorphic Physical
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Figure 2.8 Top: A
completely assem-
bled BrainScaleS
module without cool-
ers installed. The
background has been
removed. Bottom:
Rendered graphic
of the BrainScaleS
module.
Courtesy of Dan
Husmann.
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Model version 1 (NM-PM1) in the current Human Brain Project (HBP). By the end
of the ramp-up phase of HBP in March 2016, 20 systems have been deployed.

2.3.1 Wafer-Scale Integration

After production, the wafers are kept intact instead of cutting them into single
chips [Schemmel et al. 2010; Jeltsch 2014]. Small areas, called reticle, are separately
processed during manufacturing, so not all HICANNs on the wafer are yet intercon-
nected. A post-processing step, that deposes additional metal-layers on top of the
wafer, creates the full connectivity as described in Section 2.2.2.

This technique, called wafer-scale integration, allows higher integration densities
of HICANNs in the system than regular chip bonding techniques, because the on-
chip buses can be more densely routed across chip boarders as with using classical
bonds. The horizontal and vertical buses of the on-chip network can now reach over
the whole wafer. Furthermore, the wafer-scale integration is more energy efficient
compared to externally wired connections.

A possible drawback of this method is that malfunctioning chips - an inevitable
site effect of chip production - can not be replaced on the wafer. However, it
is possible to route around erroneous HICANNs or to use them partially. Tests
over ten wafers have shown that 86.6 % of the HICANNs are digitally functional.
But since the rate varies strongly between the systems, further improvements are
likely [Mauch 2016].

2.3.2 Configuration and Spike Data

The HICANNs of a BrainScaleS System are controlled via host computers. The
communication between them is managed by the pulse communication subgroup
(PCS) [Scholze et al. 2011; Thanasoulis et al. 2014]. Compared to the previous
publications about the BrainScaleS System, the PCS was updated to use now 48
Xilinx Kintex-7 Field-Programmable Gate Arrays (FPGAs) [Müller 2014]. Of which
each FPGA is connected to 8 HICANNs.

The PCS handles the input and output spikes of experiments as well as the
configuration of the system. The spikes for an experiment are buffered in the
playback-memory. During the experiment it send the spikes with a precise timing
to the HICANNs and records the returning spikes. The maximal available rate for
sending and recording is 25 MHz per FPGA. Spikes sent by the HICANNs above
this rate will be dropped and spikes that are too densely packed can also be shifted.

Currently configuration data is send data directly to the HICANN chips. The
transmission is done via the FPGAs, using Host ARQ protocol (HostARQ) and
HICANN ARQ protocol (HICANN-ARQ) as transport layer protocols [Müller 2014].
But recently the first implementation of an configuration buffered in the playback-
memory was done [Pilz 2016]. In this mode, first the complete configuration is
generated and buffered in the FPGA and then written onto HICANN. It actually
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allows a faster configuration, because the configuration data can be send with precise
timings making many busy waits in the configuration software obsolete.

2.3.3 Analog Readout Module

The BrainScaleS System is equipped with a custom Analog Readout Module (An-
aRM). Each AnaRM consists of two modules: the Flyspi board and an expansion
board. The Flyspi board is controlled via USB and has an FPGA, which controls
communication and measurements. The extension board provides an Analog-to-
Digital Converter (ADC) with 8 input channels with 50Ω DC-termination, 12 bit
resolution and a sample rate of up to 125 MHz. To speed up the data transfer only
96 MHz are used.

The analog readout on the BrainScaleS System is limited by the number of read-
out lines available. 64 HICANNs have to share two AnaRMs, because the analog
readouts of 8 HICANNs are merged on the wafer. Special care has to be take in
configuration here, because these lines can be driven from all 8 HICANNs simulta-
neously. Optionally a multiplexer allows replacing 6 AnaRMs with a single AnaRM,
so that two AnaRM are sufficient per system.

2.3.4 Demonstrator Setups

Aside from the BrainScaleS System HICANN can be used with the Demonstrator
setups [Schemmel et al. 2012; Millner 2012]. These are portable versions of the
BrainScaleS System designed to hold up to 8 HICANNs, of which are not intercon-
nected. But it would be possible to interconnect each two of the HICANNs. Aside
for demonstration are also be used to test single chip HICANNs and the FPGA
firmware.

The first Demonstrator setup, as described by Schemmel et al. [2012] and Millner
[2012], reassembled the BrainScaleS prototype. It uses the Virtex-5 FPGA for
communication, which was used in the BrainScaleS prototype systems [Müller
2014]. The data for the previous publications about calibration was taken on those
systems [Schmidt 2014; Schwartz 2013]. Due to the alignment of the boards, these
are also referred to as Vertical setups.

These old Demonstrator Setups were superseded by newer versions using four
Kintex-7 FPGAs, like they are used in the BrainScaleS System. These are internally
referred to as Cube Setups. Only on two of the four FPGAs HICANNs can be
connected, so the Cube Setups can be used with up to 16 HICANNs. Together with
Mitja Kleider we installed three of these setups in 2015 in our laboratory to test the
new HICANN revision 4 chips. However, for the results we present later on, we
repeated these experiments on the actual BrainScales System. These results were
not fundamentally different to the earlier experiments.
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3 Commissioning of the BrainScaleS System

The BrainScaleS System is a unity of the physical components described in Chapter 2
and software. For the commission of the BrainScaleS System the components need
to be assembled together and software needs to be written. While a good part of
this has been done, it is a still on going process to improve the system.

The main purpose of the system is emulating neural network models. These are,
like in the predecessor Spikey [Brüderle et al. 2011], described in PyNN, which is
a common interface for neuronal network simulators [Davison et al. 2009]. This
is also used by other neuromophic platforms, like SpiNNaker [Furber et al. 2014;
Furber 2016]. We give in Section 3.1 a short overview how the model description is
processed and expanded onto the hardware. Hereby, we will focus mainly on aspects
towards a calibration framework, as the experimental perspective is well covered by
privious work [Jeltsch 2014]. We show, that the operating software allows full and
comfortable access to the BrainScaleS System in varying levels of abstractions and
we present the Python bindings, which are the base for the calibration framework.

Aside from the software architecture we integrated the AnaRMs into the system.
We present in Section 3.2 short characterization of the module and a calibration
tool. We show, that AnaRM is a well suited to measure signals from the BrainScaleS
System. Lastly the BrainScaleS System has – like any complex System – many
possible points of failure. While some have obvious effect others have only subtle
ones. These can be found by integration tests of the system, of which we present
some examples in Section 3.3. We then close the chapter with a short summary in
Section 3.3.4

3.1 Operating Software

The operating software must give control over every aspect of the BrainScaleS
System. This holds for the emulation of neuronal networks as well as for more direct
access for system tests or the calibration framework. Therefore, it is built up in
several layers, each adding additional levels of automation and abstraction of the
HICANN configuration. These core components are written in C++ and for many of
them Python bindings are created. Python bindings bridge the barrier between the
two programming languages and allow the direct usage of the C++ libraries from
Python. Potentially destructive settings, like the control of the power supplies, are
excluded from this and handled in a separate control software.

Detailed descriptions on the software were already given by Jeltsch [2014] and
Müller [2014] and can be found in the specification [SP9 Spec 2015], so we cannot
avoid some overlap. We give here first a short general overview of the complete
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Figure 3.1 Interaction between the various software layers.

operating software. We then focus on the parts relevant for our work: the two
hardware abstraction layers, their Python bindings and the calibration framework.
We then list our contributions to the software and close with a short summary.

We provide a list of the third party software packages mentioned in this thesis in
Appendix E.

3.1.1 Overview

We begin the overview with the main purpose of the system: emulation of neural
networks, while the interaction of the components of operating software is shown
in Figure 3.1. The BrainScaleS System uses a PyNN compliant interface, which
generates a hierarchical model description of a neural network. The mapping
software works on this description and transforms the model into a topological
equivalent representation of the network for the BrainScaleS System, which takes
the physical constrains of the system into account. This step includes also the
transformation of the model parameters into the physical parameters required by
the emulating circuits.

The results of the mapping are passed to the two hardware abstraction layers.
The Stateful Hardware Abstraction Layer (StHAL) provides a complete represen-
tation of the available configuration space of the BrainScaleS System. From here
the connection to the hardware systems are managed and the actual experiment
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Figure 3.2 Overview of the Hardware Abstraction Layers. The HALbe layer
allows fine granular access to the hardware and two different simulation back
ends. The StHAL layer combines all the features of the HALbe layer and provides
a higher level abstraction. Python bindings are provided for all components.
Figure taken from Jeltsch [2014] (modified).

execution controlled. For this the abstract description needs to be converted into the
actual bit-configuration of the hardware registers, which is done by the Hardware
Abstraction Layer Backend (HALbe). The bit-configuration then are passed to the
HostARQ layer and send to the HICANNs.

There are additional helping tools, like the calibration framework, calibration
storage and defect management. Further tools for the power management and
monitoring of the system are required. Some of these are written in pure Python.

In this work we used the BrainScaleS System either by using Stateful Hardware
Abstraction Layer (StHAL) directly or via the calibration framework. For both we of-
ten use the python bindings, especially to create simple tools or to do measurements.
We now will describe these in further detail.

3.1.2 The Hardware Abstraction Layers

The hardware abstraction layers provide homogeneous access to the hardware
system and encapsulate the communication layer. They allow a full control over
the system configuration, while increasing the comfort working with the system
and adding safeties to avoid common errors. We distinguish the two layers StHAL
and Hardware Abstraction Layer Backend (HALbe). The hardware abstraction also
allows to transparently substitute the hardware with other back ends. These are
the Executable System Specification (ESS) for the BrainScaleS System [Vogginger
2010; Brüderle et al. 2011] and a database back end to record configuration calls.
The structure of the Hardware Abstraction Layers is shown in Figure 3.2.
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Stateless HAL

The concept of the lower layer HALbe is to provide access to every single compo-
nent of the chip in the smallest possible granularity, that allows a safe access. Its
interfaces can control AnaRM, HICANN and the FPGA. This is achieved by creat-
ing an abstract coordinate system and separate container data structures for each
component of the chips. We want to illustrate this for a single synapse driver. The
possible configuration of the driver is stored in the structure SynapseDriver and
the specific driver is addressed using the coordinate type SynapseDriverOnHICANN.
The used back end is represented by the handle type Handle:HICANNHw, which
represents in this case access to the hardware. Reading and writing the synapse
driver configuration HICANN is done by using back end functions:

void set_synapse_driver(

Handle::HICANN & h,

SynapseDriverOnHICANN const& s,

SynapseDriver const& drv_row);

SynapseDriver get_synapse_driver(

Handle::HICANN & h,

SynapseDriverOnHICANN const& s);

This interface approach makes use of the feature, that C++ is a strictly-typed
programming language. We do not pass builtin types as function arguments, but en-
capsulate every information into a separate type. This way we avoid, that arguments
can be accidentally switched by the user. Further, this concept allows to enforces
range checks directly in the data types. This ensures for example that a coordinate
can only point to valid components on the chip. Also the container types implement
checks on the possible configuration states and come with sensible default settings
for each component. This way back end functions can focus on transforming data to
the bit-pattern required for the hardware.

With this approach the attempt to create an invalid configuration directly causes
an error and not later when the bit-configuration has been generated and is written
to the system. Further details of the implementation can be found in Jeltsch [2014].

Handles

Each back end is represented by different handle types. We provide base types
for FPGA, HICANN and AnaRM, which must be inherited by the back end handle
types. The handle manages resources used by HALbe. In case of hardware this is the
connection to the system. This is created as soon as the handle is constructed and
will be closed when the handle is destructed, this is a common C++ ideom know as
resource allocation is initialization [Sutter et al. 2004]. If the connection cannot be
created the handle creation will also fail. Therefore, the HICANN handle cannot
be used independently from the FPGA handle because the communication to the
HICANNs is managed by the FPGAs. All required information must be explicitly
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passed to the handle on its construction. For example the IP-address is required to
request an FPGA hardware handle.

Each possible back end of HALbe is represented by an own handle type, which is
inherited from the base type of one of the three base types. The configuration calls
are then dispatched by the back end functions to the correct target. We supervised
the Bachelorthesis of Pape [2013], who implemented the ESS back end for HALbe.
For this back end an ESS instance is created and passed to the handle on construction.
It proved to be a valueable tool to test the results of the mapping independtly from
the BrainScaleS System [Jeltsch 2014].

Stateful Hardware Abstraction Layer

StHAL organizes the structures given by HALbe hierarchically and can hold – as the
name indicates – the complete configuration state of a BrainScaleS System. Based
on this data StHAL can provide routines for more complex configuration tasks. An
example is to set the analog output for a neuron and ensuring that it is only set
for this neuron. This simplifies complex tasks for users and upper software layers
significantly.

Additionally, StHAL manages the used hardware resources. An integrated hard-
ware database keeps track of the available BrainScaleS System,Internet Protocol (IP)
addresses and the availabilty of AnaRMs for each HICANN. The user can automati-
cally connect and disconnect to an entire BrainScaleS System by a single function
call and only the actually used FPGAs and HICANNs are allocated. Further StHAL
provides an interface to the AnaRMs. It loads and applies the calibration data for
the read voltages and manages the trigger of the AnaRMs during the experiment.

The execution of an experiment managed by StHAL has three steps. First, the
desired configuration is created, then the configuration is written onto the hardware
and last the spikes are transferred to the FPGA and the experiment is executed.
The correct order of configuration is hereby guaranteed. But it is also possible to
customize the configuration process to update only a subset of the configuration.
Also we can easily rerun experiments using the same configuration with different
spikes, as the experiment execution is independent from configuration.

3.1.3 Python Bindings

Python Bindings are already successfully used for Spikey, the predecessor of the
BrainScaleS System [Müller 2014; Brüderle et al. 2011]. While for Spikey these
were still written manually, we now use fully automated binding generation. It was
originally developed for the hardware abstraction layers StHAL and HALbe, but the
tools we developed allowe to create bindings for further components, for example for
the calibration data, the defect management and the PyNN implementaion [Jeltsch
2014; Klähn 2013].

Python is a versatile script language, which became increasingly popular over
the last years in the scientific community. The entry level for data evaluation and
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visualization is much lower in Python than in C++. Packages like NumPY, SciPy
and pandas allow the efficient handling of numeric tasks and large amounts of
data [Pérez et al. 2007; Jones et al. 2001–; McKinney 2013]. Further tools like the
Jupyter Notebook and matplotlib can be used to efficiently work on remote machines
and to visualize data [Jupyter 2015–; Hunter 2007]. All this allows an easier access
to the system for beginners and improves the usability of the system. Further the
python bindings are used for rapid development of simple tools and tests, as for
example shown in Sections 3.1.4 and 3.3.

For successful usage of Python it is essential, that the bindings cover the complete
software functionality. Therefore, we went with an automated wrapping process
using the Py++ software package. It can parse the C++ sources and generate code
that uses the Boost.Python library, which is then compiled to the python module.
We integrated the process into the build chain of the software, so that the bindings
are generated after each software change. As Py++ is currently not maintained, we
had made some adaption to improve the compatibility to the C++11 standard.

We took special care to keep a common semantic between the C++ interface. This
requires considerations on both software sides. For example we need to add hashes
and C++ like comparison operators to the wrapped classes, so that they can be used
as expected in python containers. We also need to work around the fundamental
difference of the assignment in Python and C++. We do this by exposing members
using the array operator. By taking some simple considerations into account, it is
often possible to write code, that can almost be used identically in C++ and Python.
For example, we can set the weight of a single synapse in a StHAL container in both
with the following line:

h . synapses [SynapseOnHICANN(Enum( 3 2 4 ) ) ] . weight = SynapseWeight ( 1 0 ) ;

Further we provide special conversion functions to maximize the performance
of crossing the language barrier. This is important for large amounts of numeric
data and we support NumPY here in both directions. We can pass NumPY directly
into C++ using the PyUblas library. In the other direction we created an efficient
automatic conversion of C++ standard vectors into NumPY arrays, without the need
to copy the data.

Also the PyNN implementation for the BrainScaleS is based on efficient reuse of
the Python bindings. For these we implement the PyNN interfaces directly in C++
and generate bindings for Python. We map the reference semantic of Python here by
using smart pointers in the interfaces. The complete network structure is efficiently
stored in C++ data structures.

3.1.4 The Calibration Framework

The calibration has its own special requirements on the hardware control, that are
fundamentally different from the mapping. It works only on single HICANNs and
only a very rudimentary routing of spike events is required. On the other hand
a very fine granular control over the neuron parameters is required, so that for
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example the calibrations of the previous calibrations steps can already be applied.
Further the calibration task needs to repeat measurements, sweep parameters and
analyze the results. Therefore, a calibration framework was created specifically for
those tasks. It is written in Python because it also requires many numerical tasks,
for example fitting the parameters of a transformation function to the recorded data.
It is build on top of StHAL.

The calibration frame work defines an experiment as a series of single measure-
ments. Usually the experiments do the calibration of a neuron parameter, but they
are also used otherwise, for example to characterize the synaptic weights, as for
example done in Section 5.3. The parameters for each step are defined by a config-
uration file. These are mainly the neuron parameters, but also other parameters
or spike inputs can be set individually. These measurements are then executed
sequentially. For each step the membrane of all neurons is read or the spike output
of all neurons is recorded, as required by the current experiment. This is directly
analyzed in parallel to the ongoing measurements.

After all measurements steps are completed, the results are evaluated and the
calibration is created and stored in the calibration back end. Neurons where this
failed are marked as defect.

3.1.5 Contributors and the Author’s Contributions

The software described in this section is the work of many minds, which contributed
to the BrainScaleS System with code, ideas and tests. We list all contributors in the
Acknowledgments.

The authors contribution to the BrainScaleS System were mostly in the software
noted above: HALbe, StHAL, the generation of the Python bindings, the PyNN
implementation, the calibration framework. Additionally we worked on the build
tools and the integration automated unit tests .

3.1.6 Summary

The clear hierarchical structure of the software simplifies testing and debugging.
Access to the hardware is possible from every layer in different levels of abstraction
and granularity.

The hardware abstraction layers presented in this section provide an easy usable
interface for low level experiments and tests on the BrainScaleS System. The type-
rich interfaces and consequent range checks allows to catch errors early. Mix-up in
addressing components are nearly impossible. In the same time it provides the base
for mapping, calibration and tests.

The various back ends allow a versatile usage of the upper configuration layers.
Experiments can not only run on the hardware but also in ESS simulations. This
enables off-line tests of the complete software stack.

The created Python bindings allow for an easy and intuitive access to the system.
It is even possible to work interactively [Tran 2013]. They also allow easy usage of
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highly productive tools for numeric task and visualization. Based on these features
we created an versatile and efficient tool for the calibration of neurons.

3.2 Integrating the Analog Readout Module

The Analog Readout Module (AnaRM) is specifically designed to record analog
signals from the BrainScaleS System. The integration of the boards into the system
has been a divided task. The software integration of the board were mainly done
by Gorel [2013], while we created – in collaboration with Mitja Kleider – a semi
automatic calibration and testing tool for the modules and installed the first AnaRM
in the Demonstrator setups. This is necessary because currently about 70 AnaRMs
are used. The AnaRM is independently calibrated from the BrainScales System,
which allows to easily interchange the boards.

As the voltage source for the calibration, we use a Keithley 2635B sourcemeter
connected to AnaRM over a regular 50Ω resistor to emulate the HICANN 50Ω DC-
termination. We hereby use for all 8 channels the same potential, so we do not have
to switch connectors for the calibration of each channel. For the typical calibration
run we use 20 steps from 0 to 1.8 V. The whole measurement process is then fully
automated1. On the returned data a polynomial of 2nd order is fitted and the
resulting calibration curves are manually controlled because some boards had defect
channels caused by soldering problems. If the result is accepted, the calibration
and a protocol of the measurement is saved and can then be used by the regular
software. The total process takes less than 5 min and includes the programming of
the firmware.

We found that all boards show a homogeneous behavior. We tested the calibration
of 8 AnaRMs on all channels. It showed that for an input range from 0 to 1.8 V
over a 50Ω resistor between 2790 and 2807 of 4096 digital values are used. This is
about 68 % of the available range and leads to a precision per bit of about 0.6 mV.
Figure 3.3 shows the resulting fit parameters and the residuals. All fits have very
similar parameters with an offset in the range of 0 to 70 mV and a slope from
2010 to 2050 mV. The residuals of the linear fit are identical for all measured
channels. The worst residual value is about −10 mV, which is less than 1 % of
the input range. We correct this for the calibration by using a polynomial of 2nd
order. The Bachelorthesis of Epp investigated the signal quality of AnaRM in more
detail [Epp 2016].

We measured the maximum transfer speed using the HALbe interface of AnaRM
with 300 Mbits−1, as shown in Figure 3.4. This is a bit lower than the theoretical
maximum of 480 Mbits−1 provided by USB 2.0, but this depended on the used ma-
chine. Of our interest is the communication overhead, that dominates for recordings
with less than 1× 105 samples. We therefore do not use less samples for calibration
tasks.

1available in the adc-calib repository
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Figure 3.3 A Parameters of linear fits for a sweep on 20 steps with input voltages
from 0 to 1.8 V. The parameters were taken from fits on the respond of all 8
channels for 8 different AnaRMs. The groups correspond to the different boards,
the variations of the channels on a single board is minimal. B The Residuals of
all fits shown in (a). The response of the AnaRMs is not perfectly linear, but the
behaviour of all channels is uniform.

Figure 3.4 Measurement of the maximal transfer rates of AnaRM on a NM-
PM1 [Müller 2014] host computer using the HALbe Python bindings. For
each number of data points the fastest out of 20 measurements is shown. The
transfer saturates at about 300 Mbits−1, for less than 1× 105 data points the
communication overhead dominates the required time.
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The method of calibration introduces a systematic error of several percent, de-
pended on the combination of AnaRM and HICANN. These are caused by the
offset of the output amplifier and variation of the DC-termination in HICANN, as
described in Section 2.2.5. It could be corrected by an separate high-impedance
measurement, which requires an additional high-impedance meter as reference. As
there are 768 analog channels on a system, this is not feasible. Therefore, the next
generation of AnaRM will have the options to use high-impedance DC-termination
to allow measurements of high absolute precision.

For our work the relative relation of the voltages to each other are generally more
important. Also the developed calibration methods are not sensitive to systematic
errors. We therefore conclude that AnaRM is fast enough as well as precise enough
to readout voltages from the HICANN.

3.3 Testing the BrainScaleS System

The commission of the BrainScaleS System involves not only creating software and
assembling components, but also the testing of their integration. In the search of
specific errors we wrote several tools to isolate the problems. Such tests can usually
with only a little more effort directly be extended to fully automatic tests and give
the benefit that errors can be detected easier in the future.

Additionally, we have driven forward the creation of unit tests for the software by
providing an integration of those into the build flow. Unit tests are now executed
directly after the build process and the developer is presented with a summary of
all tests after the build is finished. Those tests prove valuable to avoid regressions
in the software and make contributions by less experienced contributors more save.
Lastly, a continues integration server automatically verifies each change, so that all
test still pass. This integration was done by Eric Müller. We will further encourage
software tests, but this topic is widely covered in the literature, for example in
Passig et al. [2013].

While the importance of regular software tests is without question, we here want
to focus on integration tests for the BrainScaleS System. Almost everywhere, where
different components and the software interact errors may occur, because the system
is quite complex. Potential errors cannot always be foreseen and the technological
possibilities for direct tests are limited. In the following we give three examples
how we work around those limitations to still obtain reliable test results. These tests
are designed to prove the correct functionality of the tested components. Locating
the source of the error may require further tests on lower levels.

3.3.1 Testing the Pulse Memory

At first, we present a set of tests for the correct functionality of the playback memory,
which is described in Section 2.3.2. In this HICANN, FPGA firmware and software
interact. While the transmission of configuration data between FPGA an dHICANN
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is secured by the HICANN-ARQ and throughly tested [Müller 2014; Karasenko
2014], the transmission of spikes has no such features. It is tolerated by design, that
spikes get distorted by transmission errors, because detecting and correcting these
events would reduce the possible transfer rate. In any case errors should be very
rare and usually not critical for the function [Thanasoulis et al. 2014].

However, we therefore do not have a mechanism during normal operation to
verify that spikes are transmitted a the desired point in time and to the correct
HICANN. We therefore rely on additional test to verify its functionality.

For testing we rely firstly on the possibility to use a loop-back mode for spikes
in HICANN. The eight bus lanes for external spikes can be connected in pairs, so
that incoming spikes are directly send back to the FPGA on the neighboring line.
Hereby, the spikes are sent and received by the playback memory. In error cases, we
cannot distinguish, whether they were not sent, lost in transition or on HICANN or
not recorded. Therefore, we additionally rely on the on-chip background generators
and the analog debug output of the first two synapse drivers in the center of the
chip to pin the location of possible errors.

Receiving Spikes from the Background Generator

We begin with the first test case. Here we program the background generators
to emit regular spikes with a given frequency and record them via the playback
memory. The spikes pass hereby only through the merger tree of HICANN and are
then directly passed to the FPGA. In this setup we can test, if spikes are received
at the expected rate and equidistantly. Figure 3.5 shows that the rate of received
spikes matches the rate of the sent spikes until we reach the maximal link capacity.
The test would pass in this case.

The spikes of the background generators will not arrive with perfect equal dis-
tances. This is caused by an erroneous clock-domain crossing between PLL and
the highspeed interface in HICANN that operates at 250 MHz. As the time-stamps
are generated in the HICANN clock-domain, they can be distorted at this point.
Because the less significant bit toggles more often, this is more likely to change
causing the time-stamp to jitter around its designated value. We analysed the effect
for different PLL settings and the results are shown in Figure 3.6. These timestamps
are mostly only shifted a few ns, but we also observed shifts larger than 30 µs. For
a PLL 250 MHz about 3 % of the spikes are shifted, but mostly less than 8 ns and
for 100 MHz this are below 100 per million. Based on this result we check, that not
more than 1 % of the spikes are shifted, if we use a PLL of 100 MHz.

Therefore, we consider this effect in our test and add an error margin to the
tolerated number of spikes that deviate from their designated time-stamp. In the
test we use all eight background generators with random addresses and rates up to
200 kHz. Because multiple background generators are used, it is possible that two
or more generate a spikes at the same time. In such a case on of the spikes is also
shifted backwards. In this setup this is as likely as shifts caused by the clock-domain
bug.
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total rate ( ) rate on the single bus lanes ( )

Figure 3.5 Transfer rate of the FPGA for random events generated by all 8
on-chip spike sources. The events are passed from the corresponding 8 output
buffers on HICANN to the FPGA. The black line shows the total achieved transfer
rate the gray lines the transfer rate of the different output buffers. The link
saturates at 25 MHz, but at about 20 MHz spikes can get lost. For larger spike
rates single output buffers can be suppressed completely.

Sending Spikes and Compare to Analog Recording

The next test verifies that spikes are actually sent by the playback memory. For two
of the synapse drivers the enable signal for the synapses can be monitored using the
AnaRM. We can use this to verify the address and time of the sent pulses as well
as the functionality of the trigger. Hereby additional spikes from the background
generators are required to lock the synapse drivers ahead of the pulses. We limit
this test to 20000 pulses to keep the recording time short.

Looping Spikes

At the end we test the playback memory using the loop-back mode on HICANN.
Here we send 1, 2000, 100000 and about 33 million spikes, which is the maximal
capacity of the memory. This covers both extremes in the possible number of spikes.
For the lower spike numbers, we repeat the transfer of the spikes and execution
of the playback memory 200 times without reconfiguring the HICANN. Lastly we
execute an empty playback memory to ensure that no relics remain in the pulse
memory from the previous runs.
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PLL [MHz] 100 125 150 175 200 225 250

jittered [per million] 28.9 710.1 8.4 0.0 0.0 831.9 29757.9

Figure 3.6 The spikes from the regularly firing can be randomly shifted. This is
caused by a not synchronized register, when the spikes are passed from HICANN
to DNC. About 4 million spikes were transfered. This plot shows an quite old
exemplary measurement on a Demonstrator setup. The results may vary on the
BrainScaleS Systems.

3.3.2 Synapse Driver Tests

The next test verifies the synapse drivers of HICANN. We created this in cooperation
with Sebastian Schmidt and Sebastian Billaudele [Billaudelle 2014].

The synapse driver decodes the signals of the on-chip spike routing. Spikes are
transmitted using a low-voltage differential serial encoding. The lower and upper
signal level is given by Vol and Voh. Both are provided by the power supply of the
BrainScaleS System and equal for all HICANNs. They need to be set correctly to
ensure that spike transmission is reliable. For suboptimal settings a large number
of synapse drivers may not work correctly.

Signals can be passed by the on-chip communication arbitrarily on and between
HICANNs. Therefore, arbitrary phase shifts in the signal can occur, depending
on the actual source of the signal. They are compensated by a Delay-Locked Loop
(DLL), that locks on incoming pulses to detect the correct phase and clock-rate. The
DLL requires regular spike events at a low rate and with address zero to hold the
lock. These are normally provided by the background generators. The lock can
be reset to a default control voltage given by the analog parameter storage. The
required initial value depends on the used PLL setting.

The test needs to use the neurons to verify the correct address decoding of the
synapse driver. We program the synapse driver and the synapse to send spikes to
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one neuron per 64 addresses. The neurons are configured to directly fire if they
are stimulated by one or more spikes. However, especially on revision 2, this is not
possible for all neurons. We solve this by selecting neurons with a good response in
advance.

When the neurons are configured, we begin with the actual test. First, the on-chip
network is configured to send background spikes and external spikes to a single
driver. For this driver the DLL locking is reset. Afterwards we send 64 blocks
of 100 spikes with the same address and a distance of 2 ns covering all addresses.
The response of the neurons is then matched to the input spike pattern, a typical
evaluation result is shown in figure Figure 3.7. Because the neurons often fail to
react to spike input, we count only wrongly detected spikes as errors.

Figure 3.8 shows the number of working synapse driver dependent Vol and Voh
for both HICANN revision 2 and 4. In revision 2 the optimal working range of
the parameters is rather small and it is important to set them correctly. Even then
about 10 % of the drivers do not work. This was strongly improved in revision 4 of
HICANN, where usually all synapse drivers work for a wide range of Vol and Voh
settings.

3.3.3 Connectivity Test for the Analog Readout Module

As a last integration test we present the test of the correct integration of all 12
AnaRMs into the system. The test can detect faulty components, wrong entries in
the connection database and a too high noise level. Additionally, it can defect analog
outputs of HICANN, but this did not occur yet.

The test works on a single reticle using all eight HICANNs at once and both
AnaRMs connected to those. We can test the connections only against a voltage
source on HICANN and for detecting a wrong wiring we need to change the output
of this voltage source. We therefore use two floating gate cells as sources and connect
each to one of the two analog outputs for each HICANN. We have to take care that
for each output only one HICANN on a reticle can be active.

The test protocol is the following: At first, all floating gates on all eight HICANNs
are written to zero. We then measure for each HICANN voltages of the test cell for
both analog outputs. Then we update the voltages on the first HICANN for the cell
on the first analog output to 0.50 V and for the second output to 1.0 V. These are
then read back and the procedure is repeated for all eight HICANNs. Afterwards we
read back the complete HICANN configuration as far as this is possible. Based on
this data a report is generated listing all errors that occurred, generating a plot of all
recordings and an overview plot visualizing the state of the complete BrainScaleS
System. An exemplary overview plot is shown in Figure 3.9.

3.3.4 Summary

System and software tests are indispensable tools for a system of a size like the
BrainScaleS System. With the integration of automated test we encouraged and
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Figure 3.7 Examples for a good and a bad synapse driver. Spikes matching the
input pattern are green and not matching are red. In the bottom line the ouput
of the background generator can be seen. Courtesy by Sebastian Schmidt [SP9
Spec 2015].



HICANN revision 2

HICANN revision 4

Figure 3.8 Result of the synapse driver test on HICANN revision 2 and 4. The test
was conducted on a Demonstrator Setup. Courtesy by Sebastian Schmidt [SP9
Spec 2015].



Figure 3.9 Sreenshot of the AnarRM test result visualization. The test shown
was exectued on BrainScaleS System W_F01, which is a test system to optimize
the assembly of the module. Therefore we can see the various error the test can
detect. The status of the analog readouts is indicated by the color of the two
smaller squares containing the channel number 0 or 1.



3 Commissioning of the BrainScaleS System

simplified writing software tests. The three presented examples for integration
tests are quite complex. But the limited debug feature of HICANN do call for such
complexity, which itself increases the risk of introducing errors in the test itself. A
more debug friendly design of HICANN would have helped in the commissions of
the system, even though such features require area on the chip and development
time. This should to be considered for future generations of the system. Non the less
are the presented integration tests a valuable tool detecting errors and improving
the system over time.
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After we presented the BrainScaleS System and its commission we move forward
to our main task: the calibration of the synaptic inputs. We begin the chapter in
Section 4.1 with a definition of a calibration and the resulting parameter transforma-
tions. Afterwards we will follow up with the technical details about the HICANN
configuration and measurements in Section 4.2. In Section 4.3, we then present the
methods we developed to obtain the time-constants from PSPs. As the measure-
ments are not always sufficient to understand the circuit behavior, we also used
simulations of the circuits at transistor level to complement our measurements. The
simulation setup is presented the simulation setup in Section 4.4. We conclude with
a short summary.

4.1 Calibrating and Converting Parameters

There are two aspects to the calibration of the neuron parameters . Firstly, we
need to match the circuit behavior with the desired neuron behavior. Secondly, the
devices in each circuit are subject to variations. Especially in analog circuits, this
can cause substantial deviations from the desired behaviour [Razavi 2001]

Both aspects have been subject to previous work [Schwartz 2013], but without
taking the synaptic inputs into account. We now give a short introduction to
the effect of mismatch and related variations and then describe our method for
parameter translation.

4.1.1 Device Mismatch and Variability in Integrated Circuits

Mismatch is the time-independent random variation of the physical quantities in
identically designed circuits [Pelgrom et al. 1989; Lovett et al. 1998]. It is caused
by variations that occur in the fabrications phase of the devices. The properties of
many structures, especially transistors, are determined by their size. Here smaller
structures are stronger affected by mismatch than larger ones, because the variations
get larger relative to their total area. Additionally, various other variations can
occur between different production batches, these are summarized as process corner
variations [Weste et al. 2011]. Each integrated circuit is affect by these effects.

For transistor devices, these variations show in the current-voltage characteristics.
Digital circuits will exhibit different drive strength and thus timings. With analog
circuits, one often relies on their precise behaviour. Thus, special measures are
required to compensate for mismatch and other variations [Razavi 2001]. For
example operational amplifiers or comperators might require a compensation of
their input offset voltages or current mirrors of their scaling factor.
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In contrast to the mismatch and process corner variations, which are time-
independent, the performance of circuits is also dependent on the temperature
and the supply voltages. However the BrainScaleS System is designed to provide
a constant temperature and stable supply voltages. Therefore we can assume that
these are not an issue for the calibration task.

In HICANN, mismatch can be directly observed in the behavior of neuron model.
The ranges of the model parameters will vary for each neuron. However, the
electrical parameters of the neurons are designed to compensate these effects, so
that for each parameter a safe and sensible operating range can be reached.

4.1.2 Parameter Transformations and Ranges

For operate the neuron model in the desired range, we need to map the analog
parameters to the parameters of the model: We define a parameter transformation
T for HICANN as the mapping of value x for a neuron parameter p onto the digital
control bits NDAC of the floating gate controller. Formally we denote it as

Tp(x, a⃗n) : (pmin,n,pmax,n)→ (0,1023) ∈N, (4.1)

where the domain of the functions pmin,n are pmax,n the possible range of the param-
eter for neuron n and a⃗n are the parameters of the transformation for neuron n. We
require a monotonous relation to avoid ambiguities when applying the transforma-
tion. The implementations of transformation functions will have a floating point
value as output, which is rounded to obtain an integer value passed to the controller.

As described in Section 2.2.4, the digital controller of the parameter storage
tries to set the corresponding output current Ip or voltage Vp based on the digital
parameter NDAC. We separate the transformation of the digital parameter ranges
of the parameter storage in a ideal linear component and a correction function fc,
which describes the deviation of perfect linearity transformation. We obtain the
outputs

Ip(nDAC) = NDAC ·
2.5µA
1023

+ fc(NDAC) + ϵt; (0,1023)→ (0,2.5µA) and (4.2)

Vp(nDAC) = NDAC ·
1.8V
1023

+ fc(NDAC) + ϵt; (0,1023)→ (0,1.8V). (4.3)

Hereby is ϵt the error of an programming trial, which is due to the design of the
controller of significance [Kononov 2011].

In addition the systematic deviation from a perfectly linear transformation, the
design of the floating gate cells, shown in Figure 2.7, adds a per parameter variation
to the output value of cell. Especially the current mirror in the current cells is
susceptible for mismatch as well as the scaling factors for the various current
parameters [Millner 2012, Fig. 3.35]. Therefore we include fc implicit into the
transformation function Tp(x, a⃗n) for the given parameter.

Lastly, we take up again the transformation from biologically parameterized
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model onto the hardware, which we already brought up in Section 2.1.3. The con-
version is a simple linear transformation, dependent on the desired speed up factor
of the emulation and the voltage range, that shall be used [Schwartz 2013; Schmidt
2014] For two reasons, we consider this as additional step and do not include it into
the transformation Tp(x, a⃗n) . Firstly Tp(x, a⃗n) shall remain a direct relation between
the parameter and the in hardware measured quantity and secondly the conversion
from biologically conversion has several degrees of freedom, which we do not want
to restrain prematurely.

4.1.3 Calibrating a Parameter

A transformation function Tp for a parameter p can be obtained using different
methods. The simplest method is to scan the whole range of the parameter domain
and do step-wise approximations. This requires multiple measurements per step
to achieve a suitable calibration, because due to the trial-to-trial variations the
measured value need to be averaged over several trials.

As we want to reduce the number of measurements, we first use Tp as a param-
eterized model function, that can be fit to the measured data. We then measure
for different settings y⃗p of the input parameter p and obtain the corresponding
model parameters x⃗n for each neuron. For those, we calculate the transformation
parameters a⃗n that minimizing the residuals

∥tp(x⃗n, a⃗n)− y⃗p∥ (4.4)

for the neuron n using the Levenberg–Marquardt algorithm as provided by LMFIT.
Each measurement is hereby inflicted by the trial-to-trial variations of the chosen,

which are propagated to parameters a⃗n. This can be improved by either reduc-
ing the trial-to-trial variation or by repeating single measurement steps. In the
case of normally distributed errors and linear functions, its equivalent to increase
the number of measured points. For non-linear functions we still need to make
sure that the whole parameter range is well covered by the measurement. If the
distribution of the measured values is no longer normal, but skewed, systematic
deviations can occur. However, using a parameterized model function allows us to
reduce the number of required measurements significantly compared to a step-wise
approximation.

The total error of an validation measurement is given by three components: the
error of the measurement itself σm, the error caused by trial-to-trial variabilities
σtt and the error of the transformation function σtr. Hereby, σtt is not only caused
by the variation of a single parameter, but also through the interaction of different
parameters. As we actually cannot distinguish between the first two, we combine
them to the trial error

σ2
t = σ2

tt + σ2
m (4.5)

under the assumption that both are normally distributed. However, we can minimize
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σt by repeating the measurements for a given parameter multiple times.
The trial error sets an upper limit to the required precision of the transformation

function of

σtr < σt. (4.6)

This concludes the definition of the calibration task. We now follow up with the
technical implementation of the measurements on HICANN.

4.2 Measurements on HICANN

The HICANN measurements shown in this work were mostly taken using the
calibration framework described in Section 3.1.4. It implements a convenient
interface to sweep parameters and full low-level access to the hardware based on
StHAL. The only exception is the characterization of the floating gate parameter
storage, which is done directly using StHAL and shown in Section 5.1. Our work
leads to continuous improvements of the configuration process and we take care that
these are implemented into the used software for general usage by other. Therefore
all the methods presented are available StHAL or the calibration framework. The
BrainScaleS Systems used in this work are listed in Appendix B.

We first give a short introduction in the configuration order used for experi-
ments. This is followed by a description of the default configuration used for our
measurements. Afterwards, we specify the measurement protocols.

Here the same reasoning applies, as for the development of the software as
discussed in Section 3.1.5.

4.2.1 Order of Configuration Routines

All subsystems of HICANN have to be configured in a consistent order to allow
reliable and repeatable experiments. We here present the canonical configuration
order we developed for StHAL and the reasoning behind it.

The uppermost goal is that two configuration run lead to an identical config-
uration as far as this is possible given the variations of analog parameters. We
therefore configure the system in the beginning of a measurement form the ground
up. This is not feasible in the given that usage by multiple user can interleave and
the configuration might also decay. However, inside a single experiment differential
updates are safe and can easily be implemented.

The following configuration is done in a single pass using the unbuffered com-
munication mode via HostARQ and HICANN-ARQ, however some steps currently
still use the Joint Test Action Group (JTAG) interface. Very recently the playback
memory buffered configuration became available [Pilz 2016], which is not yet used
in the calibration framework. Further we worked only on single HICANNs, so no
parallel configuration was used either. The details of the configuration steps are
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implemented in the corresponding HALbe function, while the order of calling them
is part of StHAL.

Before we start the HICANN configuration itself, the used FPGAs and HICANNs
are reset, the PLL of HICANN and high-speed links are initialized [Scholze et al.
2012]. Afterwards the initialization of the HICANN is done, where the custom
Static Random Access Memorys (SRAMs) are set to zero. The correct details of this
procedure are rather complex and are documented in HALbe. After these steps the
configuration can be written, which is done in the following order:

1. Write floating gates and current stimuli.

2. Write synapse configuration.

3. Write the neuron configuration bits, but disable the spike output to avoid
spiking neurons from interfering with the configuration process.

4. Configure on-chip communication including merger and background genera-
tors.

5. Issue a read command to each tag to ensure that all packages are send
(HICANN::flush).

6. Lock repeaters and configure synapse drivers (includes locking).

7. Write the actual neuron configuration bits.

8. Configure analog readout.

9. Issue again a read command to each tag to ensure that all packages are send
(HICANN::flush).

This order ensures that all required analog parameters are available to other
components. This most relevant for the locking of the synapse drivers and re-
peater [Ziegler 2013]. When the current stimulus is enabled, we ensure that the
bias and biasn settings of the floating gate controller are preserved, in the case
that reset and initialization were omitted. Because the neurons can be set to spike
permanently with very high rate, we disable the spike output of the neurons for
the rest of the configuration phase to avoid interference. Afterwards we prepare
the locking process for repeaters and synapse drivers. These require a constant
spike input to adapt to the signals [Schemmel et al. 2008], which is provided by the
background generators. Therefore first the on-chip communication is set up and
afterwards we trigger the locking process.

Lastly we have to ensure, that the configuration process is actually completed.
This can be delayed, because the transport layer protocolls HostARQ and HICANN-
ARQ can buffer data [Müller 2014; Karasenko 2014]. However, a receiving the
answer to a read command sent to the HICANN ensures, that all previous config-
uration commands were processed by HICANN. This is especially important for
incremental changes in the configuration in combination with analog measurements,
because otherwise the wrong target may be measured.
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4.2.2 System Initialization

We conducted all measurements on a BrainScaleS System, where all HICANNs
were powered. After powering the systems the control voltages are changed to
the values denoted in Appendix A.1. Afterwards all HICANNs in the system are
fully configured to the default settings given by StHAL with all analog parameters
set to zero. For this we use the sthal_init_reticles.py tool. If the high-speed
link initialization fails, it uses a basic initialization using JTAG communication
protocol. This is also needed for the two reticles in the center of the wafer, that
operate without high-speed connections.

4.2.3 Default Settings

For the measurements shown in the work we used the calibration framework, which
we described in Section 3.1.4. We conduct our measurements with the PLL set to
100 MHz. We further only single neurons are used with deactivated inter-neuron
connections. All neurons have their firing mechanism enabled, but disabled spike
output. The firing mechanism is required because the neuron membrane has a stable
fix-point at about 1.2 to 1.3 V caused by the operating rage of leakage OTA [Millner
2012]. Without firing the membrane can get stuck at this point until the firing
mechanism is activated again. We use the large membrane capacity. Further, we
use for the current parameters the default scaling settings [Millner 2012, Table
3.6], but other setting can be selected in the calibration framework as well. The
default analog parameters and also the floating gate controller settings are given in
Appendix B. We also list the deviating settings for measurements there.

Spike stimuli are generated using the background generators in regular mode.
They have the advantage to provide absolutely precise inter-spike intervals. The
on-chip routing of spike events on HICANN requires us to use a separate generator
for each half. The neurons on each half of HICANN receive the same spike input in
parallel using the same synapse driver, so that all synapses in a row are active at
once. The usage of up to four spike generators per half is also possible, but their
activity cannot be synchronized using the unbuffered communication mode.

4.2.4 Measurement Protocol

The calibration framework can also be used for general experiments, that require
the modification of one or more parameters. For each measurement or calibration
firstly the basic configuration is defined and then the configurations fore each step
are created, which modify the basic configuration.

Here we distinguish between sequential and incremental measurements: the
sequential measurements execute each step completely independent from the previ-
ous one. For each step, the connection to the HICANN is renewed and the complete
configuration is done as described in Section 4.2.1. This method has the advantage,
that after each step the measurement can be resumed, if a communication error
occurs. Opposed to that the incremental measurement the basic configuration is
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done only once. Afterwards the connection is held for each step and only a differ-
ential update of the modified parameters is done. We developed this mode for the
calibrations and measurements shown in Chapters 6 and 7.

For each step the membranes of all neurons are recorded sequentially one after an
other. We hereby use for all neurons the same analog output, otherwise the different
offsets of the output amplifiers would make the results not comparable, as noted in
Section 2.2.5. Firstly the digital neuron configuration is updated for each neuron to
enable its analog output. Afterwards the membrane is recorded for the specified
time. As we only use the background generators no triggering is required. The
analysis of the recording is then done in parallel to extract the required features for
the given task, while further neurons are recorded. After completion of each step
the results are stored on disk.

The complete measurement can then be used to create a calibration for each
neuron. The changed parameters and the extracted features are used to fit the
transformation function to the data, as described in Section 4.1.3. The resulting
transformations are then saved for later usage. For the calibration and characteriza-
tion of the synaptic input we need a special method to analyze PSP.

4.3 Analyzis of Postsynaptic Potentials

PSPs are the only available source of information from the internals of the synaptic
input on HICANN, because we can only read out the membrane of the neuron and
not other internal voltages, like the integrator of the synaptic input. Fortunately
we can rely on an Equation (2.13) describing the PSP, as model for our analysis.
Singular PSPs are to much afflicted by noise to be analyzed directly, so that we need
to first average several PSPs and only then can fit the PSP to obtain the synaptic
time-constant.

4.3.1 Averaging of Postsynaptic Potential

The base noise level on the current BrainScaleS System is too large to work directly
with a single PSP. And aside from the Gaussian-noise on the read traces, also distinct
signals from other components of the BrainScaleS System can be observed, which
might also affect the analysis. Figure 4.1 shows a standard deviation of 2 to 4 mV
for most HICANNs on the BrainScaleS System, but with irregular peaks with an
amplitude of several ten mV, which is much larger than the smallest PSP we want to
detect. Compared to the Demonstrator Setups and the first prototypes BrainScaleS
Systems, the noise levels improved noticeably.

We improve the signal by averaging over multiple PSPs taken in a single recording.
However, the reduction in the noise level is not exactly by a factor of

√
N for N

averaged PSPs as we would expect from pure Gaussian noise. We assume that other
noise source couple into the wire from HICANN to AnaRM. This can be caused
by various sources in the HICANN itself as well as from interference from other
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Figure 4.1 A Exemplary membrane trace. B Standard deviation σ and the
differences of the highest to the lowest value (peak-to-peak) of traces from 240
HICANNs on Wafer 37 with module W_F01. Each trace has 960 samples. The
data was collected with the test present in Section 3.3.3.

components of the system. The total length of the signal pathway is about 2 m,
passing through the whole system. Lastly, AnaRM has no anti-aliasing low-pass
filter in the input stage, which removes frequency components that are too high to
be resolved by the ADC. A further improvement is expected by the next generation
of AnaRM which is currently being developed by Joscha Ilmberger. It will be
completely integrated into the BrainScaleS System and reduce the length of the
readout-line to about a third.

Averaging the recorded PSPs greatly helps to cope with the noise. We use regular
spikes from the background generators on HICANN as spike stimulus and record
the membrane with AnaRM. The frequency of the spike stimulus needs to be small
enough, so that the membrane can decay back to its steady state, so that the single
PSP do not interfere with each other. On the other hand it should not be too low
becaus measuring the membrane and transfering the data takes up the largest
fraction of the time required for calibrations using this method [Mauch 2016]. Then
we can cut the trace in equally sized slices each containing one PSP. We have to take
care to locate the slices correctly, because we record asynchronously and therefore
do have time-stamps that are synchronized with the HICANN clock which generates
the spike stimulus.

Both HICANN and AnaRM work with independent clocks. For calculating the
length of a recorded PSP we need the ratio of the PLL of fpll = 100 MHz on HICANN
and the sampling rate of AnaRM, which is fadc = 96 MHz. However, both rates have
slight variations from their nominal values, which we take into account by adding
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a correction to sampling rate f corr
adc . We can then calculate the start mi of the i-th

chunk by

mi = i · fstim ·
fpll(

fadc + f corr
adc

) , (4.7)

where fstim is the frequency of the stimulus.
The required correction f corr

adc depends on the used combination of HICANN
and AnaRM. We therefore developed a reliable method to measure f corr

adc using the
preout-debug signal available on the first two synapse drivers from the chip. The
debug signal allows to monitor the digital pulse from the synapse driver into the
synapse array, which activates the synapse. When stimulated with the background
generators, this is a very good source of a regular signal on HICANN, which we can
use as reference to determine f corr

adc .
The digital pulses have a height of 1.8 V and are one clock cycle long, but through

the readout line it becomes slightly distorted. Therefore, the recorded peaks spread
cover several samples, but the maximum is still over 1 V high. We obtain the location
of each pulse by taking the weighted mean of the time-stamps, where we use the
height of the pulse in a sample as weight.

We find usually values of f corr
adc of several hundred Hz, but we did not conduct

a systematic evaluation of this. This measurement takes only several seconds
including the configuration time. It can be neglected compared to the required
time for the calibration that require averaging. Therefore we simply execute it once
before each calibration. Investigating the stability of this value in time and under
changing conditions remains to be done.

We can further reduce the influence of interference by choosing a period lengths,
that are a number of prime number of PLL cycles. This avoids that regular events
on HICANN show up in the averaged PSP.

The importance of applying the correction is shown in Figure 4.2. It shows that
when averaging over 399 PSPs and ignoring the correction values, a shift of almost
1 µs occurs between the first and the last chunk. Even if the shape wrongly averaged
PSP is not visibly impaired, we can detect this with the methods shown in the next
section.

4.3.2 Fitting the Postsynaptic Potential

We now have a robust method to average over multiple PSPs in a single recording.
We then can fit Equation (2.13) onto the obtained averaged PSP. We use the Lev-
enberg–Marquardt algorithm as provided by the LMFIT software package. With
well-chosen starting parameters the fit always converges . We then normalize the
result, so that is τ1 < τ2. Examples of such fits are shown in Figure 4.3.

As we need an automatic evaluation of the fit quality, we conduct a χ2 test on
each fit. The quality of this test strongly relies on a good error estimate, which we
obtain from a reference measurement. We record the membrane for each neuron
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Figure 4.2 When averaging PSPs from regular spikes special care has to be taken
to use the exact ratio between fpll and the AnaRM sample rate fadc. In both plots
the first (dark dots) and the last (light dots) of 399 PSPs is shown. The averaged
PSP is drawn as black line.
In A the nominal clock ration of 100/96 was taken to determine the positions
chunks for averaging.
In B the measured corretion term of f corr

adc = 604Hz was used to calculate the start
of the chunks, which is a typical value we found for AnaRM in the BrainScaleS
Systems. The very small deviation has an significant influence as long traces are
required to average a sufficent amount of PSP.

without spike stimulus. We use the same recording length as for the PSP recordings
and apply the same averaging method. This avoids that non Gaussian noise effects
disturb the estimate. The standard deviation of the averaged recording σest is then
used as error estimate. We then can obtain reduced χ2 for a fit x′ on a trace x with n
elements using

χ2
red =

1
n−np

·

√
n∑
i=0

xi − x′i
σest

, (4.8)

where np is the number of free parameters of the fitted function.

The χ2 test allows us to reliably detect, when model and data no longer match.
This can happen for various reasons. In HICANN revision 2, saturation effects can
strongly impair the shape of the PSP. Also for to large PSP the model fails, because
we leave the linear range of the neuron components. Lastly, unforeseen effects, like
strong signals coupling into the readout line, did impair single measurements. This
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Figure 4.3 Exemplary fit of PSPs for three different settings of Vsyntc. On the
average of 399 PSP (gray) Equation (2.13) was fitted (black). The time-constants
and the reduced χ2

red is annotated in the plot. The first PSP shows a very good fit.
Then the shape of the PSP deteriorates for larger Vsyntc. For the highest Vsyntc
value we observe, that is τ1 =τ2. This happens for almost all badly deteriorated
PSPs.
The three PSP were taken from the calibration of Vsyntc on HICANN revision 2,
as shown in Section 6.2.3.

problem no longer occurs with the improvements of the system.
We evaluate the method using the data from the measurements of HICANN

revsion 2, which is shown in Section 6.2.3. For this we generated PSPs for 11
different settings of the control parameter of the synaptic time-constant Vsyntcx,
from which we obtained a total of 5632 fits on 512 neurons. As shown in Figure 4.4,
most of the fits indeed are distributed closely around χ2

red ≈ 1. The remaining fits
have a χ2

red > 10, but only for larger Vsyntcx values.
We further analyze how the χ2

red value correlates with the height of the recorded
PSPs. The result is shown in Figure 4.5. At low Vsyntcx values only PSPs with χ2

red ≈ 1
and heights up to 50 mV occur. This is not surprising because 50 mV still lie in the
linear range of OTA1, as seen in Figure 2.4. But there is also a significant proportion
with a very low amplitude. That these also have χ2

red ≈ 1, shows that the error
estimate works well, because the model is also valid for zero sized PSPs. For larger
Vsyntcx values the correlation between height and χ2

red increases. A closer inspection
shows that this is caused by deformed PSP as shown in Figure 4.3. The data shows
well that χ2

red is suitable to estimate the quality of the fit. The implications of the
effects shown here are discussed in Chapter 6.

We also observed that the used fit algorithm or the model itself have the tendency
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Figure 4.4 A Distributions of χ2
red for PSP-fits of 19 measurements with Vsyntc

from 1.15 to 1.60 mV. The dark bar includes all fits with χ2
red > 10. It shows,

that the model describes most PSPs well. B shows that most bad fits occur for
very large Vsyntcx values. This is caused by distorted PSP-shapes, as it can be
seen in Figure 4.3.

Figure 4.5 Correlations between χ2
red and the fitted PSP-height h for different

values of Vsyntcx. The gray dots are cropped to the range of the plot. For low
Vsyntc the PSP fit very well to the model, even for quite large heights. For larger
Vsyntc the shape of the PSP quickly deteriorates and the model doesn’t fit well.
This is reliably detected by the χ2

red test.
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to prefer the case τ1 = τ2, which is a special case in Equation (2.13). This effect will
be more immanent for the evaluation of the results of HICANN revision 4.1. We did
not find a suitable solution to avoid this effect so far, but tried several other fitting
algorithm without success.

The method also works for inhibitory PSPs, even if the shown examples so far
only were only excitatory PSPs. The presented method is well suited to analyze PSP
on HICANN. However, it requires quite long measurement times to obtain PSP with
sufficiently low noise. This concludes our measurement methods for HICANN.

4.4 Transitor-Level Simulations of Circuits

Aside from measurements we also conducted transistor level simulations of the
whole neurons circuits or its components. This way we can get insight into the
circuits, that are not directly accessible for measurements. As a simulator we used
the Spectre Circuit Simulator in combination with a Berkeley Short-channel IGFET
Model [Cheng et al. 1996] (BSIM), which are provided by UMC [UMC 2004], the
manufacture of HICANN, and described in the SPICE format [Quarles 1989]. The
BSIM models are accurate models for the used transistors, which can also include
data about mismatch effects and process variations. Therefore these models are
non-public and the author is required to sign an Non Disclosure Agreement (NDA)
to legitimately use them. We therefore cannot provide further details on the used
model.

In the following we will first describe how the simulator is used. Afterwards we
present the simulation setups we created. Each is optimized for the specific tasks to
reduce the simulation time and simplify the simulation setup. Lastly we created an
integration of a full neuron circuit simulation into the calibration tool.

4.4.1 Simulation Methods

We used the Spectre Circuit Simulator with a small Python wrapper, written by
Sebastian Billaudelle. This wrapper replaces the graphical circuit design tools by
issuing the netlist extraction and setting up the simulator parameters and analyses
to be performed by Spectre Circuit Simulator. Using Python has the advantage, that
we could reuse the analysis tools already created for measurements and integrate
the circuit simulations into the calibration frame work.

The Spectre Circuit Simulator supports a wide range of analyses. Here we used
DC-simulations, which determine the steady state of a circuit for a given set of
input parameters, and transient simulations, which simulate the temporal evolution
of voltages and current in a circuit for changing inputs. The former is usually
used to characterize the properties of single sub-circuits, while we use the latter
to investigate the dynamics of the synapses and synaptic inputs, which can not be
directly measured.

The average circuit behavior is described by the typical case parameters in the
BSIM provided by UMC. We use this to simulate the nominal behavior of the circuit
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Figure 4.6 Schematic of the Simplified Neuron Simulation. This simulation
contains only the most essential parts of the neuron to study the interaction
between the synaptic input and the leakage conductance.

in general matches with the neuron model. Additionally data about mismatch is
included in the BSIM provided by UMC . We use these in Monte Carlo simulations,
where the model parameters are randomized simulating mismatch effects, as they
occur in HICANN. Note that we do not have mismatch data for all used transistors
used in revision 4 and 4.1. We executed all simulations with the conservative error
preset of the simulator and a nominal temperature of 50 ◦C. The default parameters
for the presented Simulations are listed in Appendix A.5.8.

4.4.2 Simplified Neuron Simulation

We created a strongly reduced simulation of the neuron by removing all components
except the leakage term and the synaptic inputs. This simulation allows us to
focus on the essential interaction between the synaptic inputs and the leakage
conductance. It increases the simulation speed compared to a full neuron circuit
simulation, which allowed us to take a larger number of Monte Carlo samples. Also
the number of required parameters is largely reduced. A schematic of the simulated
circuit is shown in Figure 4.6, where also all input parameters are shown. We
use this simulations only for revision 2 of HICANN to obtain the results shown in
Chapter 6.

The simulation has the regular neuron parameters El, Esyni, Esynx, Vsyni, Vsynx and
Igl as parameters. These are realized as ideal voltage and current sources. Synaptic
events are simulated by sending a rectangular current pulses of height Isyn and
length of 10 ns matching the PLL of 100 MHz
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Figure 4.7 Schematic of the Simplified Neuron Simulation with Synapses. We
added the complete analog circuits involved in the generation of the synaptic
events to the simulation.

4.4.3 Simplified Neuron Simulation with Synapses

We also simulate the neuron in interaction with the synapse circuit and extend the
simplified neuron simulation for this. We add the complete analog circuits involved
in the generation of synaptic pulses, including those from the scaling of Vgmax in
the analog parameter storage, the synapse driver and two pairs of synapses. We also
simulate the quite large parasitic capacity from the line connecting the synaptic
input to all 220 synapses (or 224 in HICANN revision 2). For this a capacity of 1 pF
added to it, where value was extracted from the chip layout. A simplified schematic
of the simulation is shown in Figure 4.7.

We created a version of the simulation for revision 2 as well as 4.1. Additionally to
the parameters of the simplified neuron simulation, we added the synaptic reference
current Vgmax, the scaling factor gdiv and the synaptic weights w of the four synapses.
Additionally we added Vconvoffi andVconvoffi neuron parameters for revision 4.1. We
set the states of the SRAMs for gdiv and synaptic weights w via simulations initial
conditions. The synapses are triggered by pulling up the enable line of the synapse
for one PLL clock cycle (10 ns). We follow up with functional details of the circuits
in Section 5.3.

4.4.4 Complete Neuron Simulation for the Calibration Framework

Lastly we create a simulation of the complete neuron and integrated it into the
calibration framework1. This work was done in cooperation with Mitja Kleider and
Paul Müller. Licensing issues required us to split the simulation into two parts.

1It is not related to the HALbe backend for simulation of analog circuits [Müller 2014]
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The simulation core runs on dedicated machines for circuit simulations, while the
calibration tool can be executed on an arbitrary other machine.

The simulation itself is based of the one used by Millner [2012]. It consist of two
complete neuron circuits, that can also be interconnected. All voltage and current
parameters are provided by ideal current and voltage sources, so that floating gates
effects aren’t included. Spike input is given as a current pulse, like in the simplified
neuron simulation. The simulation included the small and large membrane capacity
and the scaling factors applied to various currents as described by Millner [2012].
Lastly we added a VerilogA module that can stop the simulation after a certain
number of spikes. This can reduce the simulation time drastically, because the
spiking process is computationally very costly.

The simulation needs an initialization phase. In this phase the SRAMs for the
digital neuron configurations are programmed by emulating the controller pulses.
Also membrane and adaption circuits are shorted to ensure that the calculation
of the initial state in the simulation converges. Afterwards we implemented a
configurable settling phase, so that the neuron can adjust to a new steady state
after these steps are done. The data recorded during the settling phase is discard.
This allows the returned data to be handled the same way as actual membrane
recordings.

In the calibration framework itself we only needed a few changes. The process
of creating measurement steps is normally done as resulting in a StHAL container
holding the complete configuration. Afterwards we don’t connect to the system and
skip the basic configuration and continue with the measurement that steps over all
neurons. Here we don’t readout the membrane, but instead extract the configuration
data from the given neuron and its possible spike input from the StHAL container
and send it to the simulation server. The recorded traces are then returned to the
calibration framework. These contain the membrane voltage, but can also contain
any voltage or current that can be recorded. The simulator uses for the integration
adaptive step sizes, but some calibrations rely on the regular spaced samples. We
therefore resample the simulation data is to match the sample rate of AnaRM, using
a linear interpolation. Optionally the framework will cache the results for now
simulation setting on disk. This way we don’t need to repeat simulations that were
already done, when we are working on the analysis of the data.

The full power of this integration shows when using it with Monte Carlo simula-
tions. In this setting a random seed is given and each neuron is mapped to a Monte
Carlo sample. This way we always obtain the same variations for a neuron in the
simulation. We calibrate and evaluate them, exactly like the neurons in the real
system. With this approach we could develop the prototypes of the calibrations for
revision 4 already during the design and production phase of the new chips.
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4.5 Summary

In this chapter we first define our requirement for calibrations. A clear definition of
the transformation function is developed and the process to obtain the parameters
formalized. We then describe the usage of the BrainScaleS System and the details
of the measurement process. As we cannot measure the time-constants in the
synaptic input directly, we developed an analysis depended on the PSP of a synaptic
input. This requires a precise averaging method which compensates the different
clock domains of HICANN and AnaRM. Lastly we created simulations for parts
of HICANN that can not be measured directly. This also includes a integration
of transistor-level neuron simulation into the calibration framework. With these
methods and tools we are able to conduct the characterization and calibration of the
synaptic input and the synapses.
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In this chapter we present three topics, that set the base for the calibration of the
synaptic inputs. In Section 5.1, we begin with a characterization of the analog
parameter storage. As discussed in Section 4.1, the precision, which is obtained for
the single parameters, directly affects the maximal possible calibration result. We
present here a new view on the cause of the trial-to-trial variability of the single
floating gate cell. While improving the precision was outside of the scope of this
thesis, the results show a new possible approach to reduce the variability.

In section Section 5.2 we repeat the known calibration for the resting, reset and
threshold potential for HICANN revision 4.1. The potentials are required for the
calibration of the synaptic input. As none of these circuits were changed, we only
needed minimal changes to the calibration routines. We find that previous results
can be well reproduced and that we reach a trial-to-trial variability that matches
well with the one we found for the floating gates.

At last in Section 5.3, we present a model to estimate the strength of synaptic
events and their effect on the neuron. We here use circuit simulation as base for
our results, because these circuits are not directly accessible for measurements. We
find that the strength of the synapses has an offset, that depends only on the chosen
synaptic weight. We can quantify this offset and provide a model to predict the
strength of synaptic events. Afterwards we can show that the observed effects can
be also observed on the neurons.

5.1 Precision of Analog Neuron Parameter

The analog neuron parameters lay the base for the maximal achievable precision
of the neuron calibration. We use for the measurements conducted for this thesis
the default parameters for the controller as they are provided by StHAL. However,
these are not specifically optimized for the wafer systems we are using. So we first
evaluate the precision we can achieve using these parameters. Afterwards, we show
examples how the different parameters of the floating gate controller affect the
programming and how differently the single floating gate cell react to the controller.
We argue, that combination of both makes it difficult to optimize the trial-to-trial
variations of the parameters in HICANN.

5.1.1 Currently Achieved Precision

We can evaluate the precision by directly reading the output from the floating
gate cells. For the programming, the output of each cell can be connected to the
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Figure 5.1 Precision of the floating gate cells. For this measurement all cells of
a HICANN were programmed to the same digital target value (DAC). For each
value N = 100 measurements were done. The result for current and voltage cells
are shown in different plots. In both plot, the upper half shows the reached
mean value and the lower half the standard deviation with higher resolution.
The readout buffer of HICANN saturates at voltages above 1.4 V, there not the
whole range of possible settings was measured.

comparator in each floating gate block. From there a readout line can be used to read
any cell in a floating gate block. The output of the current cells is also converted to
a voltage for comparison and therefore also read out as voltage. As stated in Hartel
[2016], we obtain the actual current of the parameter by

Iout =
1
4
· 1

150kΩ
·Vout. (5.1)

We further need to note two limitations of this measurement method: Firstly, as
described in Section 2.2.4, the current towards the comperator and the current to-
wards the neuron are generated by two different current mirrors. The ratio between
those two is subject to further mismatch. Therefore the actual value parameter
value, as seen by the neuron, deviates from the value we can measure. Secondly, the
readout buffer on HICANN limits the read voltages to about 1.4 to 1.6 V. This sets
an upper limit to the parameter values we can measure.

Figure 5.1 shows the precision we can reach with the current settings of the
controller. For the voltage cells the relation between digital control value and the
resulting current of voltage is linear. The current cells show a slight deviation from
a linear course. The maximal precision we can reach varies between cells types and
target values. For the current cells we reach a standard deviation σI = 5 to 80nA
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and for voltage cells σV = 4 to 8mV. For current cells the error rises with larger
values. For voltage cells it is best for digital values between 600 and 700, which
corresponds to voltages larger than 1.0 V. The currently known best results lead to
variation below 4 mV for all voltage cells [Kononov 2011].

To the authors knowledge, the currently used set of parameters was manually
tuned for a specific system. Due to the various parameters of the controller as well
as the requirement to provide a fast programming scheme, this is a time-consuming
process. For comparison the current scheme needs about 15 s to program all floating
gates on a single HICANN. While trying to improve these results, we noticed that this
was a more difficult task than expected and out of the scope for this thesis. However,
we will still present our intermediate results as they might show a new approach
towards improving the programming scheme of the floating gate controller.

5.1.2 Variation in the Programming of Cells

The problem in finding optimal parameters for the floating gates controller lies in
the inhomogenous response of the different cells to the programming pulses of the
controller. We measured for each cell on a single HICANN 100 trials at various
digital values and calculated the standard deviation of the measured currents and
voltages for each of those cells separately. We excluded the rows 1, 3 and 17 from
the measurement and keep them at zero, because these contain the Iconv parameters.
We use various settings of the digital control parameter of 200, 300, 400, 500,
600 and 700.

The results are shown in Figure 5.2. We notice that the reached precision varies
greatly between the different cells. For the current cells, we observe a quite broad
distribution. At a digital value of 200, it spreads from near zero to 30 nA, while at
700 this spread increases to 10 to 80 nA. For the voltage cells the opposite shows:
for a digital value of 200, the distributions spreads from 5 to 10 mV, while at 700 it
only spreads from 1 to 4 mV.

We can offer an explanation for the behavior, if we look at the charging process
of the cells. Similar measurements were priviously conducted only on for single
cells on test chips [Hock 2009] and on the MCC [Hartel 2016]. Using unbuffered
configuration, the charging cannot be observed directly. But we can run the con-
troller multiple times and record the cells after each run. For this, we need to set a
large target value and set the maxcycle parameter to a small number, while disabling
the acceleratorstep of the controller. We then can program and read out the cell
repeatedly until the cell reaches its maximum value. We effectively average over
multiple programming cycles by using a maxcycle > 1. A larger maxcycle setting
speeds up the measurement significantly, but reduces the resolution. We can also
measure the discharging process, using this method.

We recorded this process for two settings for VDD12 = 10.8 and 11.2 V and two
different writetime settings of 5 and 50 with maxcycle of 30 and 5 respectively. The
other parameters are set to pulselength = 1, acceleratorstep = 63 and readtime = 63.
The charging curves are shown in Figure 5.3. The strong effect of the programming
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Figure 5.2 Programming precision per cell dependent on the target value. All
floating gate cells of a single HICANN were programmed to the same target
value. Only the rows 1, 3 and 17 were kept at zero, because these contain the
Iconv parameters. For each cell the standard deviation of N = 100 trials is added
to the histogram. We observe that the reachable precision varies strongly between
the single cells and between the different target parameters.
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VDD12 10.8 V 11.2 V
writetime maxcycle

5 30
50 5

Figure 5.3 Required programming cycles to A charge a floating gate cell B dis-
charge it to a certain value. Here two exemplary cells for multiple parameters are
shown, as we see later the characteristics vary between the cells. The cells start
at their minimal value (or maximal value for discharging). Then the controller
is set to run a fixed number of programming cycles towards the maximal value
(minimal for discharging). Then the controller is started and afterwards the
values cells are read. This process is repeated until the floating gates reached at
least 1.2 V (0.2 V for discharging). Hereby the maxcycle parameter is set to 5 for
a writetime of 50 and to 30 for a writetime of 5.

voltage VDD12 is caused by the exponential dependency of tunneling current on
the potential [Loock 2006]. Further, a larger writetime causes a longer programming
pulse and the charging or discharging becomes more effective. Further the charging
and discharging effect of each programming cycle is strongly dependent on the
current output value of the floating gate. While the response of the current cells is
linear for most of the output value range, the charging of the voltage cells becomes
less effective the larger the output voltage already is. The difference between current
and voltage cells is caused by the different design of the cells. The source and drain
potentials of the floating gate transistor are both higher in the voltage cell. Further
the current charge of the cell has an influence to the potential difference created to
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induce the tunneling currents. Lastly, we notice that discharging the voltage cells is
substantially faster, than charging them.

This characteristics influence the possible precision the controller can achieve. As
the controller will always conduct a full programming cycle with the given writetime,
it can easily shoot over the target for to large writetime settings. On the other hand,
a short writetime requires a very large number of programming cycles: for the cell
shown in Figure 5.3 about 25000 cycles are needed to go from 0.0 to 1.2 V. Further
we notice that, at least for the voltage cells, too short programming pulses no longer
have measurable effect on the cells. The right trade-off is essential here. The strong
dependency on the current charge of the cell complicates the selection of the best
parameters further. While longer pulses are needed for lower voltages, these are bad
at high voltages. In contrast the controller stops at a given limit of pulses, so that
short pulses will not be able to reach the required precision for low target voltages.

This difference is already reflected in the two-pass programming scheme currently
used in StHAL. Here at first the parameters are written with few large pulses coarsely
over their target value and afterwards a second programming pass programs once
down and once upwards with shorter pulses.

The difference also affects the programming of different cells. We analyzed the
charging curves of 129 cells in each one row of current and voltage cell. We use
VDD12 = 10.8 V and a writetime of 5, because this is the default supply voltage and
the writetime parameter used for the second programming passes of the controller.
We use a linear approximation, where we fit a linear function to all values of curve
in a given range of the output parameter. For the current cells we fitted to the
range between 0.66 and 2.0 nA and for the voltage cells at two ranges between
0.45 and 0.55 V and between 0.75 and 0.85 V. Figure 5.4 shows for two curves how
the linear approximation is done and the distribution resulting slopes of the charging
curves at this points. The current cells show a response of 1.9± 0.8 nAcycle−1 and
the voltage cells at an output value of 0.5 V a of 0.05± 0.04 mVcycle−1 and at an
output value of 0.8 V a slope of 0.16± 0.13 nA.

We assume that this difference between cells are also caused by mismatch. A
compensation for this differences is difficult with the current controller, because
the cell of a row are always programmed at the same time. As most cells in a single
row are programmed to the same or at least similar values, a controller scheme
designed for a certain target value might greatly improve the overall performance
here in precision as well as in speed. However, further studies remain to be done
here. We hope, that the results presented here show new approaches to improving
the precision of the floating gates.

5.1.3 Summary

We have shown, that currently reached precision is below the so far best known [Kononov
2011]. This sets an upper limit to the possible precision the shown calibration
methods can reach. We can observe this directly for the calibration of the neuron
potentials, shown in Section 5.2.
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Figure 5.4 Response of the floating gate cell to the programming pulses. A
We fit a linear function to the data to estimate the slope of the curve. For the
current cell we fit to the data between 0.66 and 2.0 nA and for the voltage cells
we fit to two regions: firstly between 0.45 and 0.55 nA and secondly between
0.75 and 0.85 nA. B Charging rate obtained from the fit for all 129 cells of one
current and one voltage row. We see that the cells respond very differently. For
the current cells the range is from 0.9 to 6.0 nA. For the voltages cells in the
lower region in the range from 0.06 to 1.03 mV and in the upper region from
0.02 to 0.34 mV. The inhomogeneity of the cell response makes it difficult to
find ideal settings for the floating gate controller.

Further the trial-to-trial variability of the single floating gate cells varies itself be-
tween the different cells as well as for different target values. We propose, that this is
the reason for the difficulties to find a generally applicable programming parameter
scheme for the floating gate controller, because each cell responds differently to the
programming pulses of the controller. The method we shows could be extended
to create a general model of the response of the floating gate cell, dependent on
the controller parameters and the supply voltage VDD12. Such a model can be
used to optimize the parameters and the programming scheme offline avoiding the
lengthy programming times. Furthermore this model could be used in the design a
new controller for the analog parameter storage, that handles the variation of the
different cells better.
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5.2 Calibration of the Neuron Potentials

A perquisite for the calibration of the synaptic input is the calibration of the synaptic
potential. The base for these calibrations was already done by Schwartz [2013] and
the methods have been improved and integrated into the calibration framework by
Schmidt [2014], where results for HICANN revision 2 can be found. The transfer
of the method toward HICANN revision 4 and 4.1 was straight forward and the
calibration leads to good results. However minor changes were required, which we
will cover in the following. We now want to shortly summarize the methods and
present the results. Additionally to the potentials, the readout bias of the neurons is
calibrated as described by Schmidt [2014], but the results are not shown here.

The deviation for the potentials are mostly caused by DC-offsets of active com-
ponents like the threshold cooperator or the leakage OTA. These can be very good
corrected using a linear transformation function. Usually 3 to 5 measurements lead
already to sufficiently good results.

5.2.1 Resting Potential

The resting potential is calibrated by leaving the neuron in its resting state and
measure the mean membrane voltage. We hereby now disable the synaptic inputs
again, as originally done by [Schwartz 2013] by setting Iconv to zero. The result
is shown in Figure 5.5, the parameters can be found in Appendix A.5. For the
evaluation step, the inputs are enabled again and the complete calibration for
the bias generator is applied, which we present later in Section 7.2. As we see,
we can now be well calibrated towards a precision of about 8 mV, This is indeed
the maximal trial-to-trial variability the voltage parameters have for target values
around 0.8 V with the currently used settings of the floating gate controller.

5.2.2 Reset and Threshold Potential

The calibration methods for the reset Vreset and threshold potential Vt remain
unchanged. The resting potential is set above the spiking threshold to bring the
neuron in a state of permanent spiking. Details of the analysis of the traces for
both methods are documented in [Schmidt 2014]. The threshold is found taking the
average of the local maximal of the recorded trace ⟨Vpeak⟩. The obtained precision
is significantly trial to trial variation is significantly smaller than for the other two
parameters because the target values for this calibration lay in the sweet spot of the
trial-to-trial variability of the voltage parameter for the use floating gate controller
settings, as shown in Section 5.1.

The reset potential is measured using the base line Vbase during the refractory
periods between the spikes. It is maximized to increase the effect. The result is
shown in Figure 5.7 and we listed the used parameters in Appendix A.5. Also the
reset potential could be perfectly reproduced on HICANN revision 4. The error we
obtain is also dominated by the trial-to-trial variations.
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A before calibration B after calibration

target[V] µ± σ [V] target[V] µ± σ [V]
0.7 0.655± 0.018 0.7 0.700± 0.008
0.8 0.747± 0.018 0.8 0.801± 0.007
0.9 0.836± 0.018 0.9 0.899± 0.008

Figure 5.5 Distribution of the resting potential before and after calibration on
HICANN revision 4.1. Bin-size: 10 mV.

5.2.3 Summary

We here only presented the absolute minimum of the calibrations required for the
calibration of the synaptic inputs following now first for revision 2 and then for
revision 4.1 . The calibration of the AdEx parameters are subject to the ongoing
work of Mitja Kleider. The results obtained here perfectly reproduce the work of
Schwartz [2013] and Schmidt [2014] and show that the revision 4.1 shows the same
performance here as the previous revisions.

5.3 Simulation of Synaptic Weights

The characterization of the calibration of the synaptic input relies on synaptic events
as stimulus. While in the AdEx model, as described by Equations (2.3) and (2.4),
the weight directly corresponds to the rise in the synaptic conductance, this is a
more complex process in the hardware. As described in Sections 2.2.1 and 2.2.3,
first a current pulse Isyn is generated in the synapses, which is then integrated by
the synaptic input of the neuron. In this section we focus on the generation of the
current pulse. The integration and decay are described for HICANN revision 2 in
Section 6.1.2 and for HICANN revision 4.1 in Section 7.1.2.

We first show a detailed description of the circuits. We then simulated these
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A before calibration B after calibration

target[V] µ± σ [V] target[V] µ± σ [V]
0.9 0.855± 0.015 0.9 0.899± 0.004
1.0 0.947± 0.015 1.0 1.000± 0.003
1.1 1.040± 0.015 1.1 1.101± 0.004

Figure 5.6 Distribution of the threshold potentials before and after calibration
on HICANN revision 4.1. We reach the trial-to-trial error of the floating gate
cells in the voltage range as shown in Section 5.1.1. Bin-size: 10 mV.

A before calibration B after calibration

target[V] µ± σ [V] target[V] µ± σ [V]
0.6 0.570± 0.005 0.6 0.597± 0.008
0.8 0.758± 0.010 0.8 0.793± 0.008

Figure 5.7 Distribution of the reset potentials before and after calibration on
HICANN revision 4.1. Bin-size: 10 mV.



5.3 Simulation of Synaptic Weights

circuits for a wide range of parameters. Hereby an unexpected charging effect in
the synaptic circuit was observed. We incorporate this effect into a model for the
synaptic strength and successfully validate the model against the data. Lastly, we
show that the expected variations due to mismatch are around 10 % and close with
a short summary.

5.3.1 Synaptic Circuit

The amplitude current pulses Isyn of a synapse are controlled by three parameters:
the reference Vgmax current, the current divider gdiv in the synapse driver and the
weight w of the synapse itself. The length of the pulse is controlled by the PLL.
At 100 MHz, as we use it, each pulse has a width of tsyn = 10ns. The width can be
modified by the STP, to realize facilitation or depression of the weights, but we
consider here only the static use case. As described in Section 2.2.3, the nominal
synaptic current of a pulse is

Isyn = Vgmax · gscale ·
w
gdiv

. (2.18)

The scaling of Isyn is done by multiple current mirrors. These are – in their
simplest form – circuits of two transistors. The current flowing trough the reference
transistor Iref controls the current flowing to the output transistor Iout . This current
mirror will scale the current by the ratios of areas Aref and Aout of the transistor.
The mirrored current is

Iout = Iref
Aout

Aref
. (5.2)

Also multiple output transistors can be placed in parallel, each having an individual
Iout giving its size Aout. The design also has the advantage that no current flows
between the transistors. In a distributed current mirror, the transistors are placed
apart to bring a current on a different side on the chip.

Scaling from Vgmax to Isyn is done by a series of such current mirrors, as shown in
Figure 5.8. The first two mirrors scale the current from the floating gate cell by a
factor of gscale. These are located in the floating gate block and mirrored into the
synapse drivers. The last current mirror is distributed between synapse driver and
synapse. Both sides are built of multiple transistors of different sizes, where each of
the transistors can be disabled by an individual switch. Depending on the number
and size of the active transistors, this current mirror scales the current then by

w
gdiv

.

The sizes of the transistors are chosen such that gdiv can scale from 1 to 30 and such
that w can scale from 1 to 15. Placing the right side of the current mirror in the
synapse ensures that the final current Isyn is there directly drawn from the supply
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Figure 5.8 The scaling of the synaptic current Isyn involves three factors. The
first factor is gscale applied by the distributed current mirror between parameter
storage and synapse driver. The second and third factors are w/gdiv applied by
the current mirror distributed between synapse driver and synapse. It can be
scaled, as it is built from multiple transistors with different sizes in the ratio of:
1+1+2+2+4+4+8+8 : 1+2+4+8. The scaling factor gdiv is shared for the hole
synapse row and Vgmax can be selected from 4 global parameters per quadrant
of the chip.

voltage of the chip. It avoids that the synapses interfere with each other by depleting
the current source. The actual current pulse is then triggered by a switch between
synapse and neuron. If the synapse fires, this switch is active for the duration of
tsyn.

5.3.2 Circuit Behavior

The current pulse generated by a synapse is supposed to be of rectangular shape,
but the actual circuit shows a different behavior as an exemplary pulse shows in
Figure 5.9. For this pulse we first notice the very high ascent of the pulse raising up
to 60000 nA at the beginning of the pulse, that last about 2 ns. This is followed by a
plateau at about 250 nA for the remaining 8 ns. The pulse then closes with a very
short spike, that is about 2000 nA high but so short, that it can be neglected. This
current course is – with varying current values – similar for the whole parameter
range of the synaptic input.

As we could verify using our simulations, the reason for the strong peak lies in
the synapse. If the enable switch is off, the voltage in the synapse Vsynapse drops in
less than tsyn down to 0 V, as it gets disconnected from its current source. If now the
synapses fires, its parasitic capacity causes the strong current pulse as it charges up
to the synaptic reference voltage Vsyn again. This takes about 2 ns and afterwards
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I s
yn

Synapse
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Cparasitic

Synaptic
Input

A

B

Figure 5.9 A simulation of the current pulse Isynapse as generated by the synaptic
circuit (HICANN revision 4.1). Aside a simplified schematic of the synapse line,
which connects the synapses to the neuron, is shown. The simulation contains
a capacitor Cparasitic to take the parasitic capacitance of the synapse line into
account, that connect all synapse with the synaptic input. The current leaving
the synapse ( ) at A has a very large ascent (up to 60000 nA) at the begin of
the pulse, while the current flowing into the synapse ( ) at B is smoothed out.
Note that the course of the currents in this simulation likely differs from the real
currents in the chip, especially at the neuron side, because this is a transistor-
level simulation with only a single synapse. But as the charge is preserved in the
simulation, our final result is not impaired by this. Since the time scale of the
pulse is 2 to 3 magnitudes smaller than the synaptic time-constants, the actual
shape has no effect on the final PSP. We therefore use the average current Isyn to
characterize the strength of the synaptic pulses.
The sharp ascent occurs because the synapse circuits behind the enable switch
are drained to 0 V by leakage currents. When the synapses fires its circuits have
to been charged to the potential of the synapse line Vsyn. We take the current
at the mid of the pulse Imid

syn as reference for the pulse strength without this
charging effect.
The parameters were: Vgmax =1µA, w=8, gdiv =11 and Cparasitic =1pF.
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the intended current flows to the synapse. As we see later this is unfortunate because
this peak now dominates the total current flowing into the synaptic current. As the
length of this charging pulse does not depend on the PLL its effect becomes more
dominant for faster PLL settings.

Further, we can observe that the shape of the current pulse, as it arrives at the
synaptic input, becomes smoothed out into an about four times longer bulge. This is
caused by the parasitic capacity of the synapse lines, which is about 1 pF. However,
the total amount of charge doesn’t change. Further the simulation here is limited to
the transistor level, therefore the actual shape as it occurs in HICANN is different.
Lasty, the length of the pulse is about 2-3 magnitudes shorter than the synaptic
time-constant itself. Therefore the final shape of the PSP is not affected by actual
shape of the current pulse. We take advantage of this and characterize its strength
by its mean current Isyn, and discard the actual shape of pulses.

For a systematic comparison with the intended design we conducted simulations
for the whole parameter space. We simulated for Vgmax = 200 to 2000nA in steps
of 200 nA , gdiv = 2 to 30 in steps of 2 and all settings for the synaptic weight
w = 0 to 15. This simulation is done for the revision 4.1 of HICANN. As described
in Section 2.2.3, the gscale is ten times larger in HICANN revision 2. Therefore the
results presented here are also valid for revision 2, but only within a range for
Vgmax = 20 to 200nA.

Figure 5.10 shows the effect of the parameters for Vgmax = 600nA. The observed
Isyn shows a monotonic decay for larger gdiv. However, for the parameter w, Isyn
rises not monotonically and is not zero for weight w = 0. This is caused by the
charging of the synapse at the begin of the pulse.

We can also confirm the non monotonically growing weights with a measurement
on HICANN. As shown by Equation (2.8), the height h of the PSP is directly propor-
tional to the weight of the synaptic event. Figure 5.11 shows the average height over
all neurons on HICANN revision 4.1 stimulated with spikes of varying w and gdiv.
It qualitatively confirms the results obtained from the simulation and also shows
that the resulting PSPs are actually quite homogeneous.

5.3.3 Analysis of the Charging Effect

A direct look at the results shows us that the direct comparison with Equation (2.18)
is not a promising approach. We have to extend the model to take the initial
ascent into account. First we separate the data into to parts, which we can analyze
independently from each other. We assume that the plateau of the pulse has the
current which we expect from Equation (2.18). Therefore we define Imid

syn to be the
current at the middle of the pulse, as shown in Figure 5.9. Next we can define the
current in the peak of the ascent as

I
peak
syn = Isyn − Imid

syn . (5.3)
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Figure 5.10 Effective synaptic current Isyn for varios settings of Vgmax, w and gdiv.
The non-monotonous ascent of the weights observed in the measurements is
clearly visible as well as the offset. Otherwise we observe the expected behaviour,
given by Equation (2.18).

In Figure 5.12 Imid
syn is compared to Isyn for selected parameter settings. It shows that

the strength of Ipeak
syn mostly depends on w, which supports the assumption that the

peak is caused by the charging the parasitic capacity of the synapse circuit.

We created a model to verify this assumption: Each bit of the digital weight value
w adds a different transistor to the capacity. Therefore the total strength of the peak
should be dependent on the active bits in the weight value. The resulting current
should be linearly proportional to the total capacity. So we can assume that the peak
current Ipeak

syn is composed as

I
peak
syn = i0 + i1w1 + i2w2 + i4w4 + i8w8, (5.4)

where wn = 1, if n-th bit of w is set and otherwise wn = 0, and in is the recharging
current caused by the corresponding capacity, averaged over the length of the
complete pulse tsyn. We fitted this model to the data obtained in the simulations and
show the result for two different gdiv settings in Figure 5.13. The model describes
the data well because the standard deviation of residuals is only about 17 nA. This
shows that the peak is indeed caused by charging effect of the synapse.
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Vgmax w gdiv

A 0.06 µA 0 to 15 30
B 0.97 µA 3 2 to 30

Figure 5.11 Measurement of the effect of the synaptic weight w and the divisor
gdiv on 512 on High Input Count Analog Neuronal Network (HICANN). The plots
show the averaged PSP height over all neurons on a single HICANN, the gray
area marks the standard deviation. We observe unexpectedly, that the weights
have non-monotonic steps. To compensate variations between the synapses, each
neuron is stimulated using 3 synapses in parallel. Note that the offset for small
weights can be dampened by a conservative calibration of Vconvoff as discussed
in Section 7.2. The used parameters are listed in Appendix A.5.7.

5.3.4 Extended Model for the Synaptic Strength

With the description of the charging effect, we can now compare the data set to the
original model, if we add Equations (2.18) and (5.4). We obtain a synaptic current of

Isyn

(
Vgmax, gdiv,w

)
=Vgmax · gscale ·

w
gdiv

+ i0 + i1w1 + i2w2 + i4w4 + i8w8, (5.5)

where we determine the parameters in and gscale by fitting against the complete data
set. We define the relative error of the fit for each data point as

εrel +
Ifit
syn − Isyn

Isyn
, (5.6)

where Ifit
syn is the current given by the fitted model.
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Isyn for gdiv = 4 ( ) and 22 ( )

Imid
syn = Isyn − I

peak
syn for gdiv = 4 ( ) and 22 ( )

Figure 5.12 Simulation the total current Isyn ( ) and the current Imid
syn = Isyn −

I
peak
syn ( ). We can well observe that the remaining current Imid

syn rises almost

linearly with the weight and that Ipeak
syn acts as offset on that current.

In Figure 5.14 the obtained parameters are shown. We obtain a distribution of
the relative errors of εrel = 0.00± 0.25, but we find that the parameters in deviate
more than 10 % from the ones obtained by the analysis of the peak.

Therefore we decide to extend the model by correction terms. Analyzing the
residuals, we find an additional non linear dependency of the weight as major reason
for the deviation between Equation (5.5) and the data, which we compensate by
adding a linear and quadratic correction. Futher we find a deviation for gdiv, which
we can best compensate adding an exponent to gdiv. Adding those to Equation (5.5),
we obtain

Isyn

(
Vgmax, gdiv,w

)
=Vgmax · gscale ·

w
gdiv

γ +
β1w+ β2 ∗w2

gdiv

+ i0 + i1w1 + i2w2 + i4w4 + i8w8, (5.7)

where γ , β1 and β2 are further parameters to be determined by the fit.

Figure 5.14 shows also the result of the second fit. We could reduce the spread of
the distribution of the relative errors to εrel = 0.0± 0.1. This improvement justifies
the three additional parameters. Further we observe, that the parameters describing
the initial peak agree better with the ones shown in Figure 5.13. Lastly, we note that
the strongest variations occur for large weights and small Vgmax < 400nA.
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Figure 5.13 To obtain the parameters for Equation (5.4) we fit the equation
against all Ipeak

syn values we obtained from simulation presented in Section 5.3.2.
The plots each show a subset of the data, in A for gdiv = 4 and in B for gdiv = 30.
Both are nearly identical, because the charging effect is not affected by gdiv
setting. The multiple points for each weight w are from different Vgmax settings.
As the fit is done using the complete data set it is identical in both plots. The
obtained parameters are: i0 =527nA, i1 =203nA, i2 =266nA, i4 =394nA and
i8 =647nA. The residuals, which are not shown, have a standard deviation of
16.9 nA.

5.3.5 Variations of the Synaptic Strength

Because we use spike input for the calibration of the synaptic inputs, the variation
we can expect in the strength of Isyn caused by mismatch are of interest. To estimate
these, we repeat the simulation described in Section 5.3.2 as Monte Carlo simula-
tions using N = 500 samples for each parameter combination. However we restrict
the parameters to Vgmax = 600, 1000 and 1400 nA because of the much longer simu-
lation time needed. Further we exclude the scaling factor gscale from the variations
applied by the simulator because it is shared for all synapses stimulated by the
synapse drivers in a quadrant of HICANN. We further assume that synapse and
synapse driver variate independently, which is generally not the case on HICANN.
Each of the two individually controllable gdiv settings per synapse driver is used
for one synapse row with 256 synapses. However, if we use neurons that are not
interconnected, no synapses of these neurons share the gdiv parameter with each
other.

To evaluate the simulation we fit Equation (5.7) to each of the 500 Monte Carlo
samples. We here fix gscale = 0.42 as obtained by the typical simulations for two
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i0 i1 i2 i4 i8 gscale β1 β2 γ
[nA] [nA] [nA] [nA] [nA] [nA] [nA]

A (Eq. 5.5) 501 220 300 458 773 0.52
B (Eq. 5.7) 520 208 276 410 678 0.42 73 4.93 0.92

Figure 5.14 Comparison of the results of the simulation with the two proposed
models. A Data fitted to basic model given by Equation (5.5). 47 data points are
outside of the histogram. B Data fitted to the extendend model using corrections
for gdiv and w as given by Equation (5.7). 8 data points are outside of the
histogram. The table show the parameter obtained by the fit. The parameter are
described in Section 5.3.2 and we fit to 2640 data points in total.

reasons: Firstly, it is excluded from the variations in the simulation and therefore
should not vary between the samples. Secondly, strong correlation with the γ
parameter occurred in the fit occurred because we used too few distinctive Vgmax
values. The resulting distributions are shown in Figure 5.15. The obtained mean
values agree, with small deviation, with the results from the typical case. The spread
of most distributions is small, except for the correction factor β1.

For practical use we want to know how strong the resulting currents variate.
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Parameters of N=500 fits:
i0 i1 i2 i4

510.8± 5.6 nA 206± 14 nA 274± 22 nA 408± 30 nA

i8 β1 β2 γ

672± 41 nA 80± 76 nA 5.38± 0.83 nA 0.918± 0.059

Figure 5.15 Monte Carlo simulation for the parameters show in Section 5.3.5. N
= 500 samples were taken and to each of it Equation (5.7) was fitted. The scaling
factor gscale is excluded from the variations, because it is shared between multiple
synapse drivers. Therefor is gscale = 0.42. The histogram show the obtained
redistribution for each parameter. The mean and 3-sigma are annotated. The
table list the mean and the standard deviation for each parameter. The obtained
results agree well with the typical simulation.

Because we have a 3-dimensional parameter space, we define (σ/µ)I as the standard
deviation of all samples of Isyn

(
Vgmax, gdiv,w

)
normalized by its mean. The resulting

distribution is shown in Figure 5.16. For most parameters of the simulated parame-
ter sets, (σ/µ)I is well below 0.04, which means that for about 70 % of the simulated
parameter sets all values lay within 10 % of the target values. The largest (σ/µ)I is
0.10, which corresponds to a maximal deviation of about 30 %.

Further, we find a strong dependency of the spread on gdiv, which is also shown
in Figure 5.16. In contrast, the other parameters do not show correlations with (σ/µ)I .
This is possibly caused by the size dependency of the transistor mismatch. For a
divisor of gdiv = 2 only the two smallest transistors are active in the current mirror.
These are subject to larger variations than the transistors with larger area [Pelgrom
et al. 1989]. For large gdiv the total area of the involved transistors rises, reducing
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Figure 5.16 Relative deviation from the mean synaptic current Isyn obtained
from a Monte Carlo using 500 sampels. For each parameter set we normalized
standart deviation with the mean synatic current and obtain (σ/µ)I . A Cumulative
histogram of the resuting (σ/µ)I values. B Mean (σ/µ)I with standart deviation for
different gdiv settings. We note, that smaller gdiv lead to an larger deviation. For
other the other parameters Vgmax and w we don’t observe such a correlation.

the total susceptibility to mismatch.

5.3.6 Summary

We find that the synapse shows an offset caused by recharging the circuits in the
synapse at the begin of each pulse. These manifest in a sharp peak at the begin of
each current pulse. It is contributed to the small size of the synapses and the design
using in the following generation HICANN - Digital Learning System (HICANN-
DLS) does not show such a behaviour [Friedmann et al. 2016]. However the resulting
non-monotonic dependency on the synaptic weight must be taken into account for
learning rules, as those usually expect monotonic weights. An alternative approach
can be to forbid certain weights, so that the remaining bit form monotonic relation.

Including this effect, we could create a well suited model for the occurring effects.
An empirical correction factor allows us to predict the generated currents well.
Monte Carlo simulations allows us to estimate the expected variation of the synaptic
current Isyn, which is mostly below 10 % and gets smaller for large gdiv divisors
setting. So here the smallest possible settings should be chosen, whenever possible.
We therefore chose this value also for the calibration of the synaptic time-constants.
Further, the small variation of the synaptic strength is a good premise for this
calibration.
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With the synaptic input in revision 4 we can reach currents of over 12 µA. We
cannot give the absolute value, as we did not completely max out the reference
current Vgmax. The minimum current is given by the parameter i0 of Equation (5.7)
and is about 500 µA. Because Vgmax is an analog parameter, the target current can
be chosen arbitrarily in between these ranges.
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6 Synaptic Input on HICANN Revision 2

In this chapter we present our results of the characterization of the synaptic input
and the synapses of the second revision of HICANN. Our goal is to extend the
calibrations developed by Schwartz [2013] with calibration for the synaptic time-
constants. Schwartz disabled both synaptic inputs completely in his calibrations. By
enabling them we measured that they are not functioning correctly due to errors in
its function introduced by mismatch. In Section 6.1 we will characterize the effect
of mismatch on the synaptic input. Following in Section 6.2 we analyze the effects
of synaptic events on the neurons. We were able to measure the synaptic time-
constants, but conducted that the parameters cannot be calibrated independently
from other parameters. Therefore we created in close cooperation with Mitja Kleider,
Dominik Schmidt and Sebastian Schmitt a functional calibration, that tries to make
as many neurons functional as possible. These calibration efforts are presented in
Section 6.3. Finally, we discuss the limitations of the second revision of HICANN in
Section 6.3.6.

The used HICANN parameters and settings are described in Section 4.2 and Ap-
pendix A.1. In addition, we resort to simulations of the analog circuits as described
in Section 4.4.

6.1 Synaptic Input

The synaptic input circuit of HICANN was designed by [Millner 2012] to integrate
synaptic events and generate exponentially conductance based PSPs. A description
of the synaptic input circuit of HICANN is in Section 2.2.1 and its schematic can
be seen in Figure 2.6. In previous work the synaptic input was only analyzed using
transistor level circuit simulation [Millner 2012; Kiene 2014; Schwartz 2013]. We
were the first to conduct systematical measurements of the circuit in real hardware.

In general, the synaptic input can produce well defined PSPs as defined by Equa-
tion (2.13), but the performance of these is strongly limited by the following effects:
Firstly, the missing DC-offset correction of OTA1 can cause either a permanent
current to the membrane or weakens the PSP. Secondly, the synaptic input can
only integrate a very limited number of synaptic events. Lastly, the maximal time-
constant of the integrator circuit is limit, because its internal voltage will drastically
rise for larger Rsyntc. Therefore we will first present our result of measurements
and simulations and afterwards discuss these in the conclusion in Section 6.1.4.
A part of the simulations presented in the chapter were orignially developed by
Kiene [2014] in the course of his bachelor thesis, but for this work we repeated and
extended these simulations on our own.
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6 Synaptic Input on HICANN Revision 2

6.1.1 Missing Offset Compensation in the Operational

Transconductance Amplifier

One of our first observations while working on HICANN was that for about half of
the neurons the resting potential is pulled towards one of the tow reversal potentials
– even without any stimulus. This is caused by mismatch in the synaptic input
circuits affecting the comparison between the reference voltage Vsyn and integrator
voltage Vintegrator. One effect of mismatch is that the zero point of each OTA on VLSI
device varies [Razavi 2001]. Additionally, the OP in the synaptic input circuit also
introduces an offset between Vsyn and the terminal V+ of OTA1. We take both effects
into account by introducing in Equation (2.17) a for each instance of the synaptic
input specific offset αi . We obtain for the output current of OTA1

IOTA1
∝ gi/x ∝ Vsyn −Vintegrator +αi for IOTA1 > 0. (6.1)

The actual value of αi causes the functionality of the synaptic input to differ from
the desired behavior. For inputs where αi > 0 synaptic events have to push Vintegrator
over Vsyn +αi . This weakens all synaptic events and causes vanishing small events.
On the other hand for inputs where αi > 0 the bias current is always IOTA1 > 0.
As consequence the synaptic conductance gi/x of the synaptic input is not 0, but
has a minimum conductance gmin

i/x value, which is always gmin
i/x > 0. This causes

a permanent leakage current onto the membrane. It effectively behaves like the
neurons see a constant pseudo activity from this input and fully explains membrane
is pulled towards one of the reversal potentials.

Those effects can only be quantified using circuit simulations, as they were part
of bachelor thesis of Kiene [2014] and well agree with our own simulations. The
mismatch leads to a distribution of

αi = −14± 24mV,

which is shown in Figure 6.1.
Further of interest and also directly related to αi is the minimum value for IOTA1

.
For only about one third of the neurons this is zero, for the others it goes up to over
400nA. Because the OTA0 of the synaptic input is the same OTA as for the leakage
conductance, we can compare these: The medium range of possible reachable values
for τm are set using bias currents for the leakage conductance Igl from 100 to 400 nA.
The simulations show, that the offset of OTA can affect neurons with a similar
strength like the leakage conductance. Therefore a strong leakage conductance
settings are needed to compensate this.

We can also observe this indirectly on the neuron membrane. The effect is visible
in the following experiment, which also initially brought it to our attention. For
this we use the possibility to disable the synaptic input by turning the bias for
OTA1 Iconv to 0 A. This allows us to test the influence of both inputs on the neuron.
The measurement consists of four sweeps of the leakage conductance bias Igl from
0 to 2 µA, one with both synaptic inputs enabled, one with only the excitatory, one
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Figure 6.1 Monte Carlo simulation of the combined effect of the missing offset
correction for the OP and for OTA1 in the synaptic input. A Mismatch causes the
circuit to have an DC-offset, while comparing the integrator voltage Vintegrator
with the reference voltage Vsyn. The mean value and standard deviation of
the offset are −14± 23 mV. B For about 2/3 of the synaptic inputs, this leads
to a minimum bias current IOTA1

above zero for OTA0. The bias current is
proportional to the conductance of that input, as shown in Figure 2.4. Therefore,
causes a constant leak current onto the membrane. Both simulations were
conducted for Vsyn =1.0V.

with only the inhibitory and one with both disabled. The neurons have a resting
potential El = 0.8V and the reversal potentials Esyni = 0.6V and Esynx = 1.0V, all
with calibrations applied. The spiking threshold is set to Vt = 1.2V, higher than
Esynx to avoid spiking. All other parameters have default values as described in
Section 4.2.

Figure 6.2 shows the results of these measurements and compares them to a simu-
lation of a simplified neuron consistent only of the synaptic inputs and the leakage
OTA as presented by Kiene [2014]. The measurement shows, agreeing with the
given simulations, that the minimum conductances gmin

i and gmin
x of most synaptic

inputs are strong enough to disturb the resting potential. Equation (2.7) describes
the effective resting potential Eeff

l as average of the three potentials weighted by the
conductances. This shows that even large gl cannot completely negate the effect of
finite gmin

i and gmin
x , especially if we hold in mind that a part of the gmin reaches

intensities in the medium range of gl in the circuit.

Further it shows that, even if gmin
i ≈ gmin

x the effect on the membrane doesn’t
cancel out, both are in the denominator and have an impact on gl. This also effects
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Figure 6.2 Effect of sweeping Igl on the membrane potential for all four pos-
sible settings of enabled and disabled synaptic inputs: Igl is sweeped from
0.1 to 1.8 µA in steps of 0.1 µA. For each step only Igl was updated. Resting
and reversal potentials are set to El =0.8V, Esyni =0.6V and Esynx =1.0V with
applied calibration. A Effect of sweeping Igl on the effective resting potential of
the neuron. Although all 512 neurons on a HICANN where measured, for clarity
only every 23th neuron is show. For many neurons one of the reversal poten-
tial dominates over the leakage for smaller Igl values. Disabling the respective
synaptic inputs proves that they are the source of the distortion for the resting
potential. B The histogram over all neurons at Igl =0.1nA shows the quantity of
neurons affected. C For comparison we repeated the simplified neuron simu-
lation shown in [Kiene 2014] with the same parameters our measurement had.
The distributions show a good agreement.



6.1 Synaptic Input

the effective membrane time-constant τm of the neuron. For a LIF neuron without
external stimulus is

τm =
C

gmin
i + gmin

x + gl
. (6.2)

As the denominator grows with non zero synaptic conductances, the membrane
becomes faster than intended.

6.1.2 Integration of Synaptic Events

Next we want to analyze the handling and integration of the synaptic events by the
synaptic input. Here we have to rely on simulations as the circuit is not accessible
for direct measurements in HICANN. Previous work on this are the dissertation of
Millner [2012] who designed this part of HICANN and the bachelor thesis of Kiene
[2014]. Both only showed exemplary simulations, which also only partly match with
the predicted behavior. To close this gap we conducted systematic simulations.

We begin with the analysis of the effect of a single synaptic event. For each a
short current pulse Isyn of lengths of tsyn is generated in the synapse, details were
already presented in Section 5.3 and for this HICANN revision Isyn can be set as
large as 120 µA. The incoming current pulses Isyn are integrated by an operational
amplifier integrator, which is part of Section 5.3. Then the voltage in the integrator
Vintegrator is transformed by OTA1 and OTA0 to the synaptic current flowing onto
the membrane.

The integrator consists of an OP, a capacitor C and the resistance Rsyntc. The
voltage in the integrator Vintegrator represents the integrated events. Technically, it is
limited to 1.8 V. For an ideal circuit, where Rsyntc is independent of the potential,
this can be solved analytically: For a single pulse at time t = 0 the integrator voltage
is

Vintegrator =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Vsyn − Isyn ·Rsyntc ·

(
1− exp

(
t

CRsyntc

))
for t ≤ tsyn,

Vsyn − Isyn ·Rsyntc ·
(
1− exp

(
tsyn

CRsyntc

))
· exp

(
tsyn−t
CRsyntc

)
for t > tsyn,

(6.3)

where Vsyn is the reference voltage of the integrator [Millner 2012; Kiene 2014]. The
time-constant in this circuit is given by τsyn = CRsyntc. We can use Taylor expansion
to obtain the simplified equation

Vintegrator =

⎧⎪⎪⎪⎨⎪⎪⎪⎩Vsyn −
Isyn·tsyn

C for t ≤ tsyn,

Vsyn −
Isyn·tsyn

C · exp
(
−t

CRsyntc

)
for t > tsyn,

(6.4)

as long as tsyn << τsyn [Millner 2012; Kiene 2014].
The resistor Rsyntc is variable, which allows us to set the synaptic time-constant

tsyn. It is controlled by the voltage parameter Vsyntc. Its resistance grows exponen-
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Figure 6.3 Simulation of the resistive element in the synaptic input for six
different values of Vsyntc from 1.1 to 1.6 V. The terminal r+ is sweeped, while the
other terminal is held at r-=1.0V. Rvsyntc rises exponentially with the controlling
voltage Vsyntc. However, it is not stable against voltage changes in the integrator,
effectivly limiting the maximum voltage and reducing the time-constant of the
integrator.

tially from about 3× 104Ω at Vsyntc = 1.1V to about 2× 109Ω at Vsyntc = 1.6V. Its
characteristics are shown in Figure 6.3. The functional range is limited to a range
of about 1.2 to 1.5 V, that would correspond to τsyn from 0.02 to 18 µs. For lower
voltages Rsyntc is so small, that any current pulses decay almost instantaneously. The
effect of larger Rsyntc is shown in Section 6.1.3. The small range of 0.3 V is highly
problematic as Rsyntc varies four orders of magnitudes. For a try-to-try precision
of x in floating gate cell the time-constant will vary about y. Further we have to
reevaluate the validity of Equation (6.4). For τsyn >> 10ns this requires Rsyntc »
4× 105Ω, which is reached at Vsyntc ≈ 1.32V. As we see later, the approximation of
Millner [2012] won’t hold for Vsyntc < 1.45V.

Furthermore, we found out that Rsyntc also depends on voltage across the resistor.
As shown in Figure 6.3, it declines the larger the voltage becomes. For a difference
of 0.2 V, which is still a reasonable input for OTA1, it can fall over a magnitude
depended on Vsyntc. We expect that this effect is the most prominent reason for
deviations from the behavior predicted by Equation (6.3), especially for larger Isyn.

In Figure 6.4 we show exemplary traces of Vintegrator. The traces illustrate both
effects, we can well observe the strong variation in possible time-constants. For a
current pulse of Isyn = 4µA and Vsyntc > 1.5V the rise of Vintegrator is already strong
enough to lead to non-exponential decay due to the voltage dependency of Rsyntc.
Further we see a clear dependency on Vsyntc for the rise of Vintegrator. The same hold
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A Isyn = 4.05 µA Vsyntc = 1.3 ( ), 1.4 ( ), 1.5 ( ) and 1.6 V ( )
B Vsyntc = 1.4 V Isyn= 2.4 ( ), 3.5 ( ), 7.3 ( ) and 22 µA ( )

Figure 6.4 Simulations of response in the integrator for synaptic current pulses
of tsyn=10ns. The simulation takes the parasitic capacity between synapse and
synaptic input into account, which distorts the pulses, see Figure 5.9. A We show
the large possible variation in time-constants for a given pulse strength. B We
show the effect of pulses of of different strengths. Pulses with a large strength
can saturate the synaptic input immediately. Because Rvsyntc becomes much
smaller for such such large integrator voltages Vintegrator the pulse decays then
immediately.

for the two current pulses with Isyn = 3.5 and 7.3µA and Vsyntc > 1.4V. The stronger
one will cause a higher rise of Vintegrator, but will then fall fast to the same level as
the smaller one having the same long term behavior. We also observe, that we can
saturate the integrator easily with a single current pulse of Isyn = 22µA which is, as
shown in Section 5.3, well in the medium range of the Isyn. This pulse does not just
causes the integrator to saturate, but also it effectively decays faster than the smaller
pulses. This is caused by a voltage drop on the synapse site due to the large pulse,
which increases the voltage difference across the integrator even further.

We conducted further simulations to clarify the dependency of the rise of Vintegrator
on Vsyntc and Isyn. For the ideal circuit this is equivalent to Vintegrator(tsyn). But
because we have a finite integration time in the simulation, we define the rise of
Vintegrator as

∆Vintegrator = max(V )−Vsyn. (6.5)

In the actual circuit the maximum is reached a bit later, due to finite gain of the
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OP. As shown in Figure 6.4, for Vsyntc < 1.45V the strength of the synaptic pulse
∆Vintegrator decreases continuously and is at only about half as strong Vsyntc = 1.2V.
In this range the simulated ∆Vintegrator is smaller than the predicted values and the
reaches it for Vsyntc > 1.45V. The same holds for all tested value of Isyn.

An early saturation effect is noticeable too: For the smaller Vsyntc = 1.2 and 1.3V
the rise ∆Vintegrator saturates at 0.25 and 0.34 mV. This is again caused by the de-
pendency of Rvsyntc on the voltage difference across.

So far we considered only single spikes, but the synaptic input is actually intended
to be used with large quantities of spikes. The maximum integrator voltage V max

integrator
can be found to be

V max
integrator = fstim ·Rsyntc · Isyn · tsyn. (6.6)

It describes the balance between the decay of Vintegrator and the stimulus rate [Kiene
2014]. This holds for small excitation and is still approximately valid for larger
ones.

To study the effect we simulated with a very fast input, the maximal rate a single
synapse driver may achieve, fstim = 50MHz. The effect on the integrator is shown
in Figure 6.5 for two exemplary settings. In comparison, V max

integrator is about twice
as large as ∆Vintegrator for a single spike. We also observe for Vsyntc > 1.45V an
overshoot effect, which is likely caused by the frequency response of the OP. It
causes the equilibrium to occur only after up to 0.4 µs of spikes. We can also observe
this in simulations with much lower input rates. The effect is strong enough to be
visible on the membrane, but might be irrelevant for more realistic spike input.

We simulated this for a wide range of Igl and Vsyntc settings. To compensate
the charging effects, we let the integrator settle to equilibrium before determining
V max

integrator, as indicated in Figure 6.5. The results are shown in Figure 6.6.
For Isyn < 7µA we can observe an almost linear relation between V max

integrator and
Vsyntc, as we would expect from Equation (6.6). For Isyn > 7µA the integrator voltage
V max

integrator stagnates and then begins to fall again. The voltage dependency of Rsyntc
is the cause of this effect and it can partially compensated with larger Isyn. Further,
V max

integrator quickly saturates for Vsyntc settings larger than about 1.5 V. Conclusive
we can say, that V max

integrator follows the predictions given by Equation (6.6) as long as
Isyn < 7µA and Vsyntc < 1.5V.

6.1.3 Limit for the Synaptic Time-Constant

The strength of the resistor Rsyntc sets a limit to the maximum time-constant the
synaptic input can achieve. As shown in Figure 6.8, the internal integrator voltage
Vintegrator begins to rise for Vsyntc ≳ 1.5V. This increases the minimal conductance of
the synaptic input leading do similar effects like the DC-offset of OTA1. Therefore
the actual usable range of Vsyntc is limited. We indirectly observe this effect in
measurements, as the resting level of the membrane gets shifted upwards at larger
Vsyntc settings. This can be seen for example in Figures 4.3 and 6.12.
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A Isyn = 2.4 ( ), 4 ( ) and 7.3 µA ( )
B Vsyntc = 1.20 ( ), 1.30 ( ) and 1.40 V ( )

Figure 6.5 The plot shows strong synaptic pulses increase the integrator voltage
∆Vintegrator depended on the setting ofVsyntc and Isyn. Two exemplary traces of
the dataset are shown in Figure 6.4. The gray lines represent the values predicted
by Equation (6.3). For smaller resistances the pulse already decays significantly
during the integration phase. This effect already sets on for larger Vsyntc than
expected, because the integrator needs about 50 ns to integrate the pulse. Also
we observe that for pulse larger than about Isyn ⪆ 10us ∆Vintegrator no longer
increase. This is caused by the voltage dependency of Rsyntc.

The simulation indicates that permanently a very weak leakage current of several
pA flows from synapse into the integrator. If the resistance Rsyntc then becomes too
large, it begins to block the flow of the current. If the circuit would had the OP this
would simply cause a drop of the voltage in the synapse line. However the negative
feedback loop of the OP will compensate the voltage drop by increasing the inte-
grator voltage Vintegrator. The Monte Carlo simulation shown in Figure 6.8 indicates
that the threshold for a 2 mV rise of Vintegrator lays at Vsyntc = 1.489± 0.014 mV. This
matches well with the specified upper limit of Vsyntc < 1.45V [Millner 2012], even
if this is effect is not explicitly describe there. In direct observations we observe
many neurons that won’t show a voltage shift for Vsyntc > 1.5V, which is caused by a
negative offset αi of OTA1. This also forbids direct comparison between simulation
and measurements.

6.1.4 Summary

In summary we can say that the uncompensated DC-offset of OTA1 has severe effects
on the neuron dynamics. Firstly, for OTAs with a negative offset weak input will be
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Single Spike ( ) Spikes at 50 MHz ( )

Figure 6.6 Simulations of response in the integrator for synaptic current pulses
of tsyn=10ns with Isyn = 5.83µA. The synaptic input is stimulated with 50 MHz,
which is the maximum possible rate. For comparison a single spike kis shown.
The integrator needs to settle for higher settings of Vsyntc This effect increase
for Vsyntc > 1.45 continuously. Therefor we define the maximum voltage of the
integrator V max

integrator as the mean voltage after a short settling period of 0.5 µs.

discarded. For a positive offset the situation is worse, as a high leakage conductance
is required to compensate the permanent current from the input. However, we want
to emphasize that Monte Carlo simulations were not yet available during the design
phase of this HICANN. Therefore, the full impact of the DC-offset was unforeseeable
at that time.

Secondly, the integrator voltage Vintegrator is permanently elevated for larger values
of Vsyntc than 1.45 V, there is an upper limit to synaptic time-constants of about
τsyn ≈ 10µs for neurons with a positive DC-offset. As positive side effect it might
help to soften the effect of an negative DC-offset, but this can not be controlled well.

Thirdly, the characteristics of the restive element limits the number of spikes
that can be integrated, as for larger integrator voltages Vintegrator its strength drops
rapidly. The exponential relation between the control parameter Vsyntc and the
resistance Rsyntc amplifies the uncertainty induced by the floating gates.

Lastly, the integration of synaptic pulses is surprisingly prone to the chosen
synaptic time-constant. Only for longer time-constants it is possible to elevate
Vintegrator over 1.4 V and make use of the whole input range of OTA1. This leaves
a very narrow range before the effect the elevation of integrator voltage Vintegrator
kicks in. The unexpectedly strong dependency of synaptic weights and Vsyntc will
make a general calibration of the synaptic weights difficult.

In sum these effects will limit the maximal reachable strength of synaptic events
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A Isyn = 2.4 ( ), 4 ( ) and 7.3 µA ( )
B Vsyntc = 1.20 ( ), 1.30 ( ), 1.40 ( ) and 1.50 V ( )

Figure 6.7 The plot shows the maximum integrator voltage V max
integrator as defined

in Figure 6.6. A For synaptic pulses with a strength below 10 µA the maximal
integrator voltage first rises linearly with the control parameter Vsyntc. And
then rises quickly for Vsyntc > 1.5 V. This roughly reassembles the rise of the
resistance Rvsyntc. However this cannot be compared with Equation (6.6), because
we cannot define a time-constant for the irregular decay of Vintegrator. B For the
varying pulse strengths the maximal voltage first grows roughly linear as we
would expect from Equation (6.6). But for Isyn ≳ 7µA it begins to fall again.
This is caused by the fact, that to strong pulses decay even faster, as shown in
Figure 6.4.

and leave only a small range of synaptic time-constants available. This is contrary
to the original design goal to provide three orders of magnitude available for the
time-constants [Millner 2012]. The membrane time-constant is also affected, as
the compensation of DC-offset forces the neurons into an unwanted fast operation
mode. This weakens the effect of synaptic events and limits the dynamic range of
the neuron membrane as described by Equation (2.7).

6.2 Synaptic Events in the Neurons

We now move forward to the real neurons to evaluate the synaptic time-constants
and the actual effect of the DC-offset. We can only measure the membrane potential,
as direct measurements on other parts of the neuron are not possible. Therefore, we
systematically investigate the effect of synaptic events on the membrane and deduce
from these the properties of the synaptic input.
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Figure 6.8 A Typical circuit simulation of the synaptic input with a sweep of
Vsyntc without any synaptic input and Vsyn =1V. It can be observed that the
voltage of the integrator begins to rise at Vsyntc ≈ 1500mV. The vertical line
marks a rise of 2 mV of Vintegrator. B Monte Carlo simulation of the sweep
(N =500). The histogram shows the Vsyntc values at which a rise of 2 mV of
Vintegrator was reached. Both simulations were conducted for Vsyn =1.0V. For
are an offset of 2 mV the resulting current is about 1/10 of the one caused by the
missing offset correction, shown in Figure 6.1. For larger Vsyntc the resulting
current onto the membrane will rise.

We use PSPs caused by the synaptic events. However, the strength and shape of the
PSPs varies largely from not detectable over good to badly disturbed. Therefore, we
will first develop a set of criteria to evaluate their quality. Afterwards we characterize
the strength of the resulting PSPs and the time-constants we can achieve. Lastly, we
discuss the results.

The result shown in this section are from an incremental measurement, as de-
scribed in Section 4.2.4, with a sweep of the parameter Vsyntc in the range from
1.15 to 1.6 V in steps of 25 mV. We repeat this measurement for four values within
possible spectrum of leakage conductance of Igl = 0.1,0.5 and 2.5µA with a scaling
of 1 : 3 and Igl = 2.5 µA with a scaling of 1 : 1. We present only the results for the
smallest Igl value, because for these the PSP are most prominent, while for the other
results we didn’t find significant differences. To reduce the noise, we averaged over
about 200 PSPs, with the method described in Section 4.3.1. Afterwards we use the
fit described in Section 4.3 to determine time-constants and the height of the PSP.
Further parameters are listed in Appendix A.4.2.
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6.2.1 Evaluation of the Quality

For a robust calibration and measurement, we need to evaluate the quality of the
obtained data. The PSPs cannot only be afflicted by faulty circuits, but also by
unexpected external events like a bad power supply or interference for example
from switching regulators. As we work towards the calibration of millions of
neurons, these should be reliably detected to avoid bad calibrations interfering with
experiments. We therefore apply three criteria to reject bad measurements.

The first criterion checks if a PSP is presence of an at all. This is an important
check, as defect components or faulty configurations can occur at any time. We first
used an analysis of the power spectrum for this. But this method is computationally
quite costly, so we switch to an faster arbitrary defined metric with equivalent
results, but requiring less computational effort. We compare the standard deviation
of the averaged recording σrec, with the σest is the error estimate as defined in
Section 4.3. We define the signal criterion S as

S = σ2
rec/σ

2
est > 1.5 (6.7)

and require, that

S > 1.5. (6.8)

The standard deviation is a fast calculation, that easily detects the broaden distribu-
tion caused by the PSP. However as the membrane distribution is not Gaussian, no
further implications must be drawn from it.

The threshold for S is chosen low enough that even PSPs with an amplitude with
a height as small as 3 mV are accepted. As we see in Figure 6.9, more than half of
the recorded PSPs are rejected by the signal criterion. As we can expect from our
simulation results, this happens mostly for low Vsyntc smaller than 1.4 V. Increasing
the limit for S to 3.0 will only reject about 20 more neurons in each step. Here
the spike stimulus decays too fast to create a visible PSP. But also for larger Vsyntc
settings about a quarter of the neurons never show a PSP. This is mostly caused by
the DC-offset of OTA1, but also due to unusually weak OTAs.

The second criterion is the χ2
red of the applied fit. We select PSPs based on the

value obtained from the fit. The distribution for this measurement is shown in
Figure 4.4 and the results have been discussed in Section 4.3. As shown there,
most χ2

red values are either around 1 or have a value larger than 10. As we want to
determine the time-constants from the fit, we choose a limit of

χ2
red < 1.5. (6.9)

From Vsyntc = 1.4V on, more neurons are rejected by χ2
red than by the signal criteria.

As Figure 6.9 shows, the number of PSPs rejected by this criteria continuously
increases with larger Vsyntc.

Various reasons reduce the quality of the PSP for larger PSPs : Firstly, as we
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PSPs rejected by:
membrane shift ( ), S < 1.5 ( ) and χ2

red < 2.0 ( )

Figure 6.9 The strong variation on HICANN revision 2 forces us to discard PSPs
that match one or more of the three criteria defined in Section 6.2.1. Only the
measured PSPs in the white area are accepted. In the overlapping areas multiple
criteria apply. Note that the signal and the χ2

red criterion never overlap in this
data.

saw before, for the decay of the integrator voltage Vintegrator no longer follows an
exponential. This is a underlying assumption of Equation (2.13). Secondly, OTA0
saturates, resulting in a flat plateau on the PSP. And lastly, the leakage current from
the synaptic input increases, because Vintegrator rises at larger Vsyntc. This violates
the assumption, that the PSP originates around the resting potential. All three can
also occur at the same time.

We also note that the χ2
red and signal criteria reject PSPs strictly exclusive to each

other. The reason is, that the PSP model can perfectly fit a recording without a
visible PSP. It will usually find a high out liner in the noise, which may be about
1 mV above the mean, and choose it as maximum for the PSP. Because the recording
is almost only noise this will result in fit with χ2

red , but arbitrary time-constants.
This shows the importance of the signal criterion.

As the last criterion, we require that the resting potential El is not shifted due to
large Vsyntc, as discussed in Section 6.1.3. As threshold we require that the offsets
all lay within 15 mV of the lowest value for the excitatory and of the highest for the
inhibitory input. As Figure 6.9 shows, this mostly overlap with the χ2

red criteria.
However, as this comes along with a even stronger leak current we need to avoid all
such cases.

These criteria rule out almost half of the neurons for the best setting of Vsyntc =
1.375V. Especially for larger Vsyntc values, which are required for biological plau-
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Height of PSP: > 20 ( ),>10 ( ), > 5 ( ) and >0 mV ( )

Figure 6.10 Distribution of PSP heights for given Vsyntcx values. Only accepted
PSPs are shown.

sible time-constants as well as for a sufficient maximal voltage in the integrator
V max

integrator, the situation is actually worse: Even if we accept badly shaped PSPs with
unknown characteristics, only about half of the synaptic inputs remain. Moreover,
each neuron has two synaptic inputs, which are both needed to be successful for
being fully functional. This decreases the chances that the neuron can conduct as a
fully functional neuron even further.

6.2.2 Strength of Postsynaptic Potentials

The measurement also allows a quantitative analysis of the possible impact of an
PSP on the membrane. As measurement for the strength of the PSP we are using its
height h. Figure 6.10 shows the number of accepted PSPs, that are larger than 0, 5,
10 or 20 mV. The most PSPs are accepted for Vsyntc = 1.375V, and here we also get
the strongest PSPs. For larger Vsyntc the height and number decreases again. This
is caused by the effect, that the PSPs for larger Vsyntc decay in shape or that El is
shifted. Therefore, each synaptic input falls out of the distributions after the largest
Vsyntc, that still leads to an accepted PSP.

We therefore determine the maximal possible strength of each input by taking the
largest valid PSP produced by it. As shown in Figure 6.11 for the given HICANN
434 neurons can create acceptable PSPs, but half of these are weaker than 10 mV in
height. The strongest PSPs are generated for Vsyntc values around 1.375 V.

We repeated the simulations shown in Section 5.3 for the used set of synaptic
parameters and obtained a synaptic pulse of Isyn = 190nA, which lead to a rise in
the integrator voltage of ∆Vintegrator = 156mV. Since such a rise will already push
the output current IOTA1

of OTA1 to half of its maximum value, the PSPs are already
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Figure 6.11 The height and Vsyntcx setting of the strongest possible PSPs for each
neuron are shown. 434 neurons can create acceptable PSPs, but the median of
the distribution of heights is only 10 mV. Therefore, most of the synaptic inputs
are to weak to affect the membrane sufficiently.

at half of the maximal possible strength. For most neurons this means that their
maximal reachable deviation from the resting potential remains very small.

6.2.3 Synaptic Time-Constants

The general quality of the PSP is not sufficient to obtain many data points for
evaluation. For over 100 neurons on a single HICANN we have less than 4 data
points with valid results and only 30 neurons with more than 10 points. For
the other neurons most points are settled at Vsyntc < 1.4V resulting in very small
time-constants. We present an example of the obtained synaptic time-constants in
Figure 6.12 together with the corresponding averaged PSPs. We cherry-picke one
of the best neurons because for many neurons no PSP at all is visible, while others
have only very weak PSPs.

To distinguish the time-constants we use the small setting of Igl = 100µA, which
leads to long membrane time-constant. We therefore assume that the smaller
time-constant, obtained by the fit, is τsyn. However, the minimum value of τm is
also influenced by minimum synaptic conductance caused by the DC-offset in the
synaptic input. This and the large possible range of values, makes is generally
difficult to distinguish the time-constants. Further the fit often decays for larger
Vsyntc and both time-constants become equal. The values obtained by the fit often
indicate an exponential relation between Vsyntc and τsyn as intended, but with the
given number of data points per neuron and the variation in the data, a comparison
to the model did not seem feasible. The average values over all neurons also indicates
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Figure 6.12 A Results of the time-constant fit for an exemplary good neuron:
Both time-constants τ1 ( ) and τ2 ( ) are shown. The crossed values were
discarded, because of their bad quality. B The averaged traces to all measured
values of Vsyntcx, discarded traces are gray.
Because the membrane is set to a very slow value, we can identify the smaller
time-constant τ1 as τsyn. This plot also shows, that also the membrane time-
constants can vary. This is most likely cause by the variation of the fit. Note, that
the selected neuron is not representative, most show worse results.

an exponential relation for Vsyntc from 1.25 to 1.5 V, but with large errors.
Finally, we determine the time-constants that were reachable by the accepted

PSPs. As shown in Figure 6.13, we can obtain for Vsyntc = 1.4V time-constants of
τsyn ≈ 1µs and for Vsyntc = 1.6V of τsyn ≈ 10µs . However, there are only 268 or
rather 113 neurons, that have good PSPs for these settings.

Lastly, we want to remark that a long time-constant does not correlate with a
strong PSP. The correlation plot is also shown in Figure 6.13. In general a raising
time-constant should always cause a larger PSP, but the distortions form the DC-
offsets and the limited linear range of the OTA are too disturbing in this case.

6.2.4 Summary

To sum up, we can say that the DC-offset of OTA1 prevents half the synaptic inputs
from generating PSPs. As each neuron has two synaptic inputs which have to
generate PSPs successfully, this lowers the chance for getting working neurons
severely. But even for the generating synaptic inputs the effective membrane time-
constant is driven up by the minimal synaptic conductance. We see this in the low
number of neurons that are able to produce larger PSPs.
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B Vsyntc = 1.40 ( ), 1.50 ( ) and 1.60 V ( )

Figure 6.13 A Accepted time-constants τ1 of all neurons. We can identify τ1 as
τsyn, because leakage conductance is set very low, resulting in long membrane
time-constant τm. The outliers with h > 40mV or τsyn > 15µs are plotted at the
boarder. B Available time-constants for different settings of Vsyntc. The total
number of available neurons is 268, 177 and 113.

In addition, the restive element of the synaptic input has quite unfavorable
characteristics: The exponential dependency is concentrated in a far to small range
of its control parameter Vsyntc. Its instability against voltage differences worsens the
PSPs further.

The sum of all these effects cause each synaptic input to have a small range of
Vsyntc, which spans only over 0.1 to 0.2 V, where it might produce acceptable PSPs.
For about 70 % of the synaptic inputs the generated PSPs are weaker than 10 mV or
even not existing for the given parameters. The remaining PSP are not suitable to
develop a good calibration for the time-constant τsyn. Lastly most of the synaptic
inputs are too weak, compared to the leakage conductance, causing generally quite
weak PSPs.

6.3 A Functional Calibration

The given state of the synaptic input requires a pragmatic calibration approach.
We have to counter-balance the opposing effects acting on the neuron membrane.
The DC-mismatch calls for a strong membrane conductance gl to compensate the
leakage currents from the synaptic inputs. Otherwise, the calibration of the resting
potential deviates vastly from its target El value.

On the other hand a large gl reduces the maximum Vmin or maximal membrane
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potential Vmax of the neuron. We can modify Equation (2.7) to give us expressions
for both values:

Vmin =
gmax
i Esyni + glEl

gmax
i + gl

for gx = 0 and (6.10)

Vmax =
gmax
x Esynx + glEl

gmax
x + gl

for gi = 0, (6.11)

where gmax
i or gmax

x are maximal possible conductances of the given synaptic in-
put. For larger gl both values will be shifted towards El , reducing the maximum
dynamic range the membrane can cover. This makes it more difficult to place the
spike threshold reliably between resting and reversal potential, in a way that the
membrane is capable of triggering a spike. Especially under the circumstances, that
most inputs only produce very weak PSPs. This motivates us to select gl as small as
possible.

The following calibration method tries to balance these effects without introducing
an overly complex and time-consuming amount of measurements. We developed it
in close cooperation with Mitja Kleider, Dominik Schmidt and Sebastian Schmitt and
it was shown in similar form in the Masterthesis of [Schmidt 2014]. To handle the
complex interactions between the synaptic inputs and the neuron, we choose a fixed
set of target values for the calibrations. For the resting potential Vtarget = 0.8V, and
the reversal potential symmetrically around it at Esyni = 0.65 V and Esynx = 0.95 V.
First we do the regular calibration for the readout shift and all potentials [Schmidt
2014], except for the resting potential El. Afterwards we search a fixed membrane
leakage Igl, then optimize Vsyntc on both inputs to get acceptable PSPs and lastly
search an El value that gives the desired resting potential. However, it is easily
possible to adapt the parameters to your own specific needs.

6.3.1 Selecting Membrane Conductance

We start selecting of the membrane time-constant. Our goal is it to find the smallest
possible Igl value, that is strong enough to counteract the leaky synaptic inputs. For
this, we conduct for a series of measurements with increasing Igl values. For each Igl
value we determine the membrane potential for the settings of El.

Additionally we obtain the minimal reachable membrane voltage V −mem and the
maximal reachable V +

mem for these parameters. We then choose the lowest value of
Igl, where conditions

V −mem < Vtarget − 50mV and V +
mem < Vtarget + 50mV (6.12)

are fulfilled. This choice allows us to have a minimal Igl and sufficient room to work
around trial to trial variations.

We found, that Igl values of 0.1, 0.2, 0.3, 0.6, 1.2 and 2.3 µA give a good balance
between the number of steps and the reached precision. Note, that the relation
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between Igl and gl is not linear [Schmidt 2014]. For El we use the same values as for
the reversal potential 0.65 and 0.95 V. Choosing a smaller range will generally lead
to larger Igl values.

6.3.2 Selecting Strongest Possible PSP

The next calibration step we want to select PSP has the strongest possible effect.
This compensates the missing direct time-constant calibration and ensures that
the input has an maximal effect on the neuron. From our measurements shown
in Section 6.2, we know that the total height h of the PSP correlates well with the
standard deviation of the recorded membrane. On the other hand, as shown in
Figure 6.13, the time-constant τsyn does not correlate with the height h. Therefore
we can stimulate the neuron with regular spikes and then use the standard deviation
as fast and simple measure to choose an optimal Vsyntc, that leads to the strongest
possible PSP for a neuron. The only further condition is, that the input rate has to
be low enough that PSP will not overlap. Also we can omit the computationally
intensive step of averaging the PSPs.

Additionally, we found, that we do not need to check if the resting potential El is
shifted for larger Vsyntc values, as described in Section 6.2, . Our evaluation shows
only very little differences when such a check was included.

Figure 6.14 shows the finally chosen Vsyntc values. We use ten Vsyntc steps from
1.35 to 1.70 V and a spike stimulus with 25 kHz, gdiv = 2 and w = 15. For each
neuron we record the membrane for about 600 µs, which is sufficient to capture 15
spikes.

6.3.3 Selecting Resting Potential

The previous calibration of the reset potential gets invalidated by the previous two
steps, because both influence the conductance of the membrane and the synaptic
inputs in steady state. With the chosen values for Igl, Vsyntci and Vsyntcx, their
conductance now only differes due to trial-to-trial variability. Subsequently we can
now shift El to a value, where the membrane conductance compensates the minimal
conductance of the synaptic inputs to reach the desired resting potential Vtarget.

We recalibrate El by repeating the regular El calibration step with the fixed values
Igl, Vsyntci and Vsyntcx. Figure 6.15 shows the distribution of the resting membrane
potentials before and after the recalibration step. Before recalibrating, the mem-
brane is drawn to the reversal potentials. This is a good example, how the DC-offset
of OTA1, shown in Section 6.1, affects the calibrations: After recalibrating, the
membrane is distributed around Vmem = 799± 11mV using the standard deviation
as error. We reach the desired target value of Vtarget = 800mV, but the error is larger
than we can expect from the previous calibrations of the potentials. This is expected
because results of the previous steps also depend on the chosen value of El. This
could be improved by either a repeated calibrations cycle or by trying to optimize
all parameters in one step. However, both variants would increase the required time
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Figure 6.14 Result of the Vsyntc calibration. For each neuron the Vsyntc value
is chosen, that causes the strongest standard deviation of the trace, while not
yet causes yet a rise in the membrane voltage. The plot shows the number of
neurons for A inhibitory and B excitatory synaptic inputs.

drastically and also we cannot predict the best possible precision reachable. So our
method gives, so far, the best trade-off between precision and required time.

6.3.4 Evaluating the Calibrations with Spike Input

Lastly, we want to evaluate how good the synaptic input can react to spike input. To
estimate this effect we applied the best calibration parameters to the neurons, and
then recorded the membrane in the resting state Vrest, under inhibitory stimulus
Vmin and under excitatory stimulus Vmax. The difference Vmax − Vmin describes
the maximal dynamic range the membrane of a neuron can cover. The stimuli
are changed without reprogramming the floating gates. We use four background
generators with a rate of 5 MHz, a synaptic weight of w = 15 and a divisor of gdiv =
2.

The results are shown in Figure 6.16. The distribution of Vmin and Vmax are
mirrored symmetrically around the target potential of Vtarget = 0.8mV. Further
the Pearson pairwise correlation coefficient between Vmin and Vmax is −0.1. These
observations confirm our basic assumption that the inhibitory and excitatory inputs
have an equal behavior and influence the neurons independently from each other.

For an ideal synaptic input we would expect that both distributions are centered
in between the resting and reversal potential. The exact location is given by Equa-
tion (6.11) and depends on the maximal reachable conductances. However, the
measurement shows that the excitatory input cannot shift the membrane of half
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before recalibration ( / ) after recalibration ( / )

Figure 6.15 Measurement of the resting voltage before an after recalibration.
The recalibration can counteract the spread induced by the leakage from the
synaptic inputs. The recalibrated distribution is centered around 799± 11 mV
(standard deviation as error). This is about the double, as what we can obtain
for the other potentials. After recalibration more extreme El values are required.
This is required to compensate for the minimal conductances of the synaptic
input caused by the DC-offset of OTA1.

of the neurons over 0.82 V and for 75 % not over 0.84 V. For the inhibitory input
the situation is similar, it shifts the membrane of half of the neurons below 0.77 V
and for 75 % not below 0.75 V. We anticipated this in Section 6.2.2, but here we
actually max the synaptic input out. These values are quite sensitive to trial-to-trial
variations. Only about a quarter of the neurons can cover a dynamic range larger
than 0.1 mV. The mean of its distribution is at about 0.05 V.

We have to set these results in the context of the trial-to-trial variability for
each parameter. It is required to place inhibitory, resting, threshold and excitatory
potential in this order raising. Therefore, we tested the trial-to-trial variability for
resting potential by reconfiguring the HICANN 20 times with the given parameters
from the calibration and read out the resting potential. The results are shown in
Figure 6.17.

As we expect from the direct measurements of the floating gate cells, shown in
Section 5.1, the variability fluctuates strongly between the neurons. The average
variation per trial has a standard deviation of about 5 mV for each neurons. However,
the worst neuron has a variation of 18 mV. This makes is very difficult for most of
the neurons to find a threshold that will not cause permanent spiking, because on
one hand it might fall below the resting potential and on the other hand it might be
so high that the neurons can not reach its.
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A inhibitory input ( ) and excitatory input ( )

Figure 6.16 Measurements of the maximal response to spikes. The neuron is
stimulated using four background generators with a rate of 5 MHz, weight w
= 15 and gdiv = 2. A Distribution of the lowest reachable membrane voltage
Vmin for spike stimulus from the inhibitory input and of the highest reachable
membrane voltage Vmax for spike stimulus from the excitatory input over all
neurons. The symmetry of both distribution confirms that both synaptic inputs
have identical properties. We confirmed that there is no correlation between
Vmin and Vmax. The resting potential is distributed as shown in Figure 6.15. The
histogram uses 0.02 V bins. The 50 % and 50 % quantiles (from El) are:
V 50

max =0.816, V 75
max =0.841, V 50

min =0.777 and V 75
min =0.747V.

B Cumulative distribution for the maximal dynamic range Vmax −Vmin over all
neurons. The small number of neurons, that have a large range, combined with
the higher variation in setting El makes it problematic to find neurons, that have
a good response to spike input.

We further conducted some measurements to explore the possibility to increase
the distance between reversal potentials. Firstly, the effects shown before will scale,
due to the conductance based synaptic input. At some point we will then leave
the linear range of the OTAs, which makes it more difficult to compensate for
the minimal conductances of both synaptic inputs. Also the membrane dynamics
becomes impaired at this point. For measurements with Esyni = 0.5 V and Esynx
= 1.1 V, we found a membrane distribution after the El recalibration of Vmem =
802± 27mV. This is more than twice what we found before and even more extreme
El setting are required to compensate for the leakage of the synaptic inputs. The
distribution of the dynamic input range will get a factor of about two broader. So
lastly, the larger uncertainties negate the advantages of a higher dynamic range and

103



6 Synaptic Input on HICANN Revision 2

Figure 6.17 Measurement of the try-to-try variations for the resting voltage
with fixed calibration for Igl, Esyni, Esynx and Vsyntci and Vsyntcx as described
in Section 6.3 for El =0.8V. The histograms shows the distribution of the A
standard deviation and B difference between highest and lowest values for each
neuron. 20 measurements were done. 29 values larger than 30 mV were omitted.

one has to find a good trade-off depended on the actual use-case.
Even with the given quality of the neurons simpler network experiments are

possible. Figure 6.18 shows a simple feed forward neuron chain done by Schmidt
[2014]. However we observe than most of the neurons actually do not react to spikes.
This is compensated by using increased populations and larger redundancy.

6.3.5 Calibration Speed

The whole calibration shown here currently takes about 25 min. It consists of the
calibration of the readout shifts, Vreset, Vt, Esyni, Esynx, Igl, El, Vsyntci, Vsyntcx and a
second time El. The most time consuming steps are the calibration of Vsyntci and
Vsyntcx each taking about 5 min. These are just approximate numbers for giving
the reader a basic impression of the required time scale. We will follow up in this
matter in the results for revision 4 in Section 7.3.5.

6.3.6 Summary

The restriction of the synaptic input in HICANN revision 2 is now fully immanent.
The strong interaction of the control parameters and the DC-offset of the synaptic
make a calibration of the parameters independently from each other, as proposed by
Schwartz [2013], not feasible. Further obstacles are both the overly strong synaptic
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Figure 6.18 Rasterplot of a feed-forward neural network emulation with 200
neurons across two calibrated HICANN chips. Spikes are sent to population
0 (located on the lower end) in one second intervals and propagate upwards
through the chain. Figure and caption taken from [Schmidt 2014]

events, which easily saturate the synaptic input, as well as that the observable
synaptic conductances are too weak compared to the leakage conductance. This
limits the dynamic range the neurons can use.

Even with the best effort calibration we presented, most neurons will only have
limited capability to be used in neuronal network experiments. In combination with
the given precision of the floating gates the dynamic range of their membrane is not
high enough to be reliable usable. Examples of the effort required to get a functional
subset of the neurons can be found in the works of Alevi [2015], Nonnenmacher
[2015] and Schmidt [2014]. Based on the results presented in this chapter we
recommended a new revision of HICANN.
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7 Synaptic Input on HICANN Revision 4

In this chapter, we present the redesigned synaptic input of HICANN revision 4 and
4.1. While the original concept by Millner [2012] still remains in use, some of its
components needed to be improved. These were designed by Schemmel [2015]. In
Section 7.1 we present these changes in greater detail and show the characteristics
of the new circuit elements. Afterwards we repeat the simulations of the integration
of the synaptic events and find that the changes lead to the desired behavior, for
example a large number of spikes can now be integrated and the decay of the time-
constant is exponential. In Section 7.2 we show the calibration for the compensation
of the DC-offset of OTA1. We find, that the calibration leads to good results, and
present an outlook on how the number of needed calibration steps can be reduced.
Finally, we present in Section 7.3 the calibration of the synaptic time-constants.
We show that the method we propose can also be used to calibrate the membrane
time-constants. A final evaluation of both synaptic and membrane time-constants
shows that we can reduce the spread of the parameter distribution. We conclude
that the HICANN calibration is ready for experiments using the LIF neuron model.

7.1 Synaptic Input

While we already briefly discussed the changes of the synaptic input in Section 2.2.1,
we here describe the circuits in greater detail, show their relevant characteristics
and highlight the improvements towards HICANN revision 2. However, these
improvements come at the cost of larger neuron size and hence four synapses per
neurons needed to be removed to free the required area on the chip. Afterwards
we repeat the simulations evaluating the integration of spike events for the settings
shown in Section 6.1.2. We then reevaluate the technical limits for the control
parameter Vsyntc in Section 7.1.3. We close the section with a summary.

7.1.1 Changes in the Synaptic Input

We accompanied the design process – in close cooperation with Mitja Kleider and
Paul Müller – by testing the integration of the new circuits into the neuron. For this
task we created the integration of circuit simulations into the calibration software,
as described in Section 4.4.4, with both typical and with Monte Carlo simulations.
This led to various iterations of designs. The success of the early tests during the
design phase is reflected in the calibration results shown in Sections 7.2 and 7.3.
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Figure 7.1 The simulation shows the characteristics of the bias generator used to
compensate the mismatch of OTA1 in the synaptic input.
A Effect of the control parameter Vconvoff on the reference voltage for OTA1 for
Vsyn =0.8 ( ),0.9 ( ) and 1.0 V ( ). For Vsyn =0.9V the mean transfor-
mation factor from Vconvoff to the difference is 0.28. B The reference voltage Vsyn
gets also shifted by the voltage divider. The plots show the relation between the
control parameter Vsyn and the actual reference voltage of the integrator V1:1. To
reach the desired value of 1.0 V we need to set Vsyn = 0.87 V.

Offset Compensation

First, a compensation for the DC-offset of the OTA described in Section 6.1 was
added. For this, two so far unused voltage parameters were connected to the neurons,
one for each synaptic input. The new parameter is named Vconvoff.

The direct approach would have been to directly connect them as reference for
OTA1. But then only about 0.2 V of the parameter range would habe been used to
compensate the offset because this is the total spread of the DC-offset distribution as
shown in Figure 6.1. In consequence the offset compensation would be vulnerable
to try-to-try variations of the new parameter.

This can be circumvented by rescaling Vconvoff and then use it as reference for
the integrator. This is done by the new bias voltage generator element, that scales
Vconvoff relative to the reference voltage of the integrator Vsyn. The bias voltage
generator has two inputs Vsyn and Vconvoff and generates two output voltages: First,
V1:3, which is connected to OTA1, and second, V1:1, which is used as reference for
the integrator. This second conversion is intended to compensate possible process
corner variations, that could shift the reference and the compensated voltage too far
apart.

108
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The conversion characteristics for both are shown in Figure 7.1. For V1:3 we obtain

V1:3 = Vsyn ·α
(
Vconvoff −Vsyn

)
with α ≈ 0.28, (7.1)

where we determined α from the simulation. Whereas, the reference voltage is only
shifted by the bias generator and we obtain

V1:1 = Vsyn + β with β ≈ 0.13V, (7.2)

where we determined β from the simulation. Subsequently, we reduce the default
setting for Vsyn to 0.9 V, so that we still have about 1 V as reference for the integrator.

Integrator

The second change affects the integrator of the synaptic input itself. The original
resistor in the integrator was designed to support multiple magnitudes of time-
constants, but only for a very small input range of 0.2 V of the control parameter
Vsyntc [Millner 2012]. The redesign was used to improve the resistor to make it less
prone to try-to-try variations of Vsyntc. The characteristics of the changed resistor
are shown in Figure 7.2.

The resistance Rsyntc is now less sensitive to the voltage Vintegrator in the integrator.
We show in Section 7.1.2 that the decay of Vintegrator is now indeed almost exponen-
tial. Note that the polarity of the parameter is now reversed, therefore the resistance
falls for larger Vsyntc. At first, the relation between Vsyntc and Rsyntc is exponential
for Vsyntc < 0.4 V, and for larger Vsyntc the slope becomes smaller and it almost
converges to a constant value. Between 0.4 to 1.8 V of Vsyntc, it covers a resistance
Rsyntc from about 6 to 0.4 MΩ.

In view of the required calibration of the synaptic time-constant, we search a
model for the dependency of Rsyntc on the control parameter Vsyntc. The transition
from exponential rise to the constant value can be described by using a function
known as softplus [Dugas et al. 2001]. Because the slope of the relation does not
becomes zero for larger Vsyntc, we need to add a linear correction term. We use as
model for the logarithm of the resistance

logRsyntc =
a
c
· log

(
1 + exp

(
c ·

(
Vsyntc − b

)))
+ d ·Vsyntc +R0, (7.3)

where we determine a, b, c, d and R0 by using a fit against the simulation of Rsyntc,
shown in Figure 7.2. The obtained parameters a listed in Table 7.1

Both additions – the bias generator as well as changing the resistor – increased
the required area of the neuron. This allowed to increase the integrator capacitor as
well, because it is placed in a layer above those circuits. The capacity is now 471 pF.
This reduces the impact of each spike event on the integrator and hence more spikes
can now be accumulated.
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7 Synaptic Input on HICANN Revision 4

A Vsyntc = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7 and 1.5 V
B Vintegrator = 1.01 ( ) and 1.31 V ( )

Figure 7.2 A Simulation oft the resistive element in the synaptic input for seven
different values of Vsyntc. The integrator voltage Vintegrator is varied, while the
other terminal is held at V1:1 =1.0V. The stability against voltage changes in
the integrator, was improved compared to revision 2. This allows much larger
voltages in the integrator and makes the integration of pulses less dependent on
Vsyntc. B Resistance depends on the control parameter Vsyntc for two Vintegrator
levels. After a slow onset, Rvsyntc rises exponentially with lower controlling
voltage Vsyntc.

Scaling of the Synaptic Strength

The third change is strictly spoken not a change in the neuron, but in the analog
parameter storage. Only for revision 4.1, the scaling of the reference current Vgmax
for the synaptic pulses was reduced by a factor 10 to gscale = 0.4. We provided the
simulations shown in Section 5.3 to motivate this change. It compensates for the
offset in the synapses and allows us to use now a larger range of Vgmax.

a b c d R0

-25.6 0.364 -6.45 -0.313 13.5

Table 7.1 Parameters obtained by fitting Equation (7.3) to the resistance for an
integrator voltage of Vintegrator = 1.01 V.
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7.1 Synaptic Input

IOTA1
= 200 ( ), 400 ( ), 600 ( ), 800 ( ),

1000 ( ) and 1200 nA ( ) (all scaled 1 : 3)

Figure 7.3 Typical DC-Simulation of the synaptic input resistor R0 used HI-
CANN revision 4.1. The reversal potential is fixed at A Esyni = 0.4 V and B Esynx
= 1.6 V.
Compared to OTA1 used in the previous HICANN revision, the resulting con-
ductance is no longer symmetric. It gets smaller for smaller membrane voltages
Vmem. Also the excitatory input is now potentially stronger than the inhibitory
input depending on the chosen reversal potentials.

Resistor for the Reversal Potential

Lastly, OTA0 was replaced by a current controlled resistor. As shown in Figures 2.4
and 7.3, the conductance of this resistor is more stable over a large voltage range
than the previously used OTA. This allows to place the reversal potential in a
much larger distance to the resting potential than before and so so increases the
dynamic range the membrane can cover. This has two beneficial effects: the resting,
threshold and reversal potentials of the neuron can now be placed further apart
reducing the impact of try-to-try variations; further a more biological realistic
distance between those potentials can be used, especially for the excitatory reversal
potential. The conductance is now asymmetric for positive and negative voltages
differences. Therefore, both synaptic inputs behave now differently.

In contrast to the OTA used in revision 2, the new design pulls the current flowing
onto the membrane directly from the voltage floating gate cell. The cell can only
provide a sufficient power by setting the bias of the source follower in the cells to its
smallest value. Otherwise, the voltage difference over the resistor can drop when
the conductance of the synaptic input reaches strong values.

We need to take special care that this will not occur during programming the
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floating gate cell, because this would affect the feedback loop of the controller and
lead to unpredictable values of the reversal potentials Esyn. We can easily avoid this
by disabling the synaptic input during the programming of Esyn. Therefore, the
programming routine of the floating gate was updated: it first sets the bias current
Iconv of OTA1 to zero, then programs the reversal potential and afterwards restores
the Iconv value. Further we want to note, that the int_op bias, which effects multiple
other parameters [SP9 Spec 2015], is stored as shared parameter in the same row of
the parameter storage as Iconvi and therefore needs to be programmed at the same
time. This has also been taken into account to avoid a negative impact on other
parameters.

7.1.2 Integration of Synaptic Events

Most of the changes affect the integration of synaptic events in the synaptic in-
put. Therefore, we repeat the simulations developed for revision 2 and shown in
Section 6.1.2, for the updated integrator circuit. We use the simplified neuron simu-
lation with synapses, as described in Section 4.4.3 and simulate the effect of single
synaptic pulses. To cover a wide range of possible pulse strengths Isyn, we used 15
logarithmically distributed values Vgmax from 0.01 to 2.5 µA, using a weight w = 15
and a divider of gdiv = 2. This leads to a synaptic pulse strength of about 2 to 11 µA.
For each of the Vgmax values, we simulated 27 Vsyntc settings, from 0.15 to 0.5 V
in steps of 0.025 V and from 0.5 to 1.7 V in steps of 0.1 V, taking the exponential
relation to the resistance Rsyntc into account. The length of the synaptic pulse is tsyn
= 10 ns.

Single Spikes

Figure 7.4 shows the effect of single spikes and their decay in the integrator for
exemplary settings. Because of the finite gain of the OP, the integration of the spike
takes 50 to 70 ns, a bit longer for higher pulses. For comparison, this is about the
time that a spike emitted by the neurons needs to pass through the merger tree and
to reach the on-chip bus. Further, the integrator reacts with a short undershoot to
the onset of the spike and with an equally short overshoot to the end of the spike.
These can be observed as small peaks on the shown traces . They are caused by
the frequency response characteristics of the OP, which show a finite reaction time
on the voltage changes on its input. The peaks are much shorter than the synaptic
time-constants and will not affect the neuron.

We can now compare the behavior of the integrator to its ideal description, as we
did in Section 6.1.2. The ideal behavior of the circuit did not change compared to
revision 2. However, the small peak forbids that we simply take the maximum to
determine the rise in the integrator voltage ∆Vintegrator. But the improved resistor
allows us to determine ∆Vintegrator and also the time-constant τsyn by fitting an
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A Isyn = 10.96 µA Vsyntc = 0.2 ( ), 0.3 ( ), 0.4 ( ) and 1.7 V ( )
B Vsyntc = 0.4 V Isyn= 2.1 ( ), 2.8 ( ), 5.6 ( ) and 11 µA ( )

Figure 7.4 Exemplary simulations of the response in the integrator for synaptic
current pulses of tsyn = 10ns. The small peaks at the onset and on top of the
spike are caused by the frequency response of the OP. It lasts about 50 to 70 ns
depended on the strength. Fitting an exponential decay on the data after the
peak shows residuals of less than 1 mV, if we exclude the peaks. The rise in the
integrator is mostly dependent on the synaptic strength, but also shows a slight
dependency on Vsyntc.

exponential decay to the data. We modify Equation (6.4) and obtain

Vintegrator =

⎧⎪⎪⎪⎨⎪⎪⎪⎩Vsyn for t ≤ t0,

Vsyn +∆Vintegrator · exp
(
t−t0
τsyn

)
for t > tstart ,

(7.4)

where t0 is the time of the spike. We intentionally ignore the integration phase of
the pulse here because it is short compared to the expected time-constants. Then
∆Vintegrator can be extrapolated from the decay phase of the fit. This is useful,
because the small overshoots at the begin and end of the integration phase are
smoothed out be the model.

Fitting Equation (7.4) to the data shows that this simplified model matches well,
but the small remaining deviation shows a systematic error, which is caused by
the voltage dependency of the resistor. However, if we exclude the raising flank
including the short peaks, the maximal residual of all fits is well below 1 mV.
Plotting the fitted functions, would show no visible difference to the traces shown
in Figure 7.4, except for the small overshoots. Therefore, we can conclude that
this is no longer an issue to the functionality and call the decay as exponential.
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A Isyn = 2.4 ( ), 6.8 ( ) and 11 µA ( )
B Vsyntc = 0.27 ( ), 0.45 ( ), 0.45 ( ), 0.45 ( ) and 1.70 V ( )

Figure 7.5 The plot shows strong synaptic pulses increasing the integrator volt-
age ∆Vintegrator depended on the setting of Vsyntc and Isyn. ∆Vintegrator and τsyn
are obtained from fitting Equation (7.4). Two exemplary traces of the dataset
are shown in Figure 7.4. The gray lines represent the values predicted by Equa-
tion (6.3). For smaller time-constants the pulse already decays significantly
during the integration phase. Because of its finite gain, the integrator needs
about 50 ns to integrate the pulse. This is not taken into account in Figure 7.4.
This causes the effect to set in earlier than predicted by Equation (6.3). For larger
time-constants ∆Vintegrator converges to the predicted value. The dependency on
Isyn is perfectly linear as described by Equation (6.3).

However the strongest pulses in our data increased Vintegrator only to 1.3 V, so for
larger voltages in the integrator the deviation still might have a stronger effect. For
the given data, we can indeed determine ∆Vintegrator and τsyn using the model.

The results for the rise of the integrator voltage ∆Vintegrator are shown in Figure 7.5.
The relation between ∆Vintegrator and Isyn is linear as predicted by Equation (6.4).
However, for the smallest possible time-constants we observe that ∆Vintegrator be-
comes smaller than predicted. We compare this to the full model given by Equa-
tion (6.3), because the condition tsyn << τsyn may not longer hold. This can explain
the deviation only partly. We assume, that the finite integration time of 50 to 70 ns
is the reason for the deviations.

We also compare the obtained time-constants with the resistance shown in Fig-
ure 7.2. For the ideal circuit these are given by τsyn = R ·C. If we take the integrator
values obtained for Vintegrator = 1.01 V, we find that the effective time-constants
obtained by the fit are about 5 to 20 % smaller than we would expect from the
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Single Spike ( ) Spikes at 10 MHz ( )

Figure 7.6 Simulations of the response in the integrator for synaptic current
pulses of tsyn=10ns with Isyn = 3.53µA. The synaptic input is stimulated with a
rate of 10 MHz. For comparison, a single spike is shown. We define the maximum
voltage of the integrator V max

integrator as the averaged voltage after a settling period
of 3 µs as defined by Equation (7.5). After this time the input reached a steady
state for all tested parameters. The input can very well integrate a large number
of spike events. The charging effect, we observed in revision 2, does not longer
occur.

resistance value. This is also caused by the voltage dependency of the resistor. For
the neuron functionality the effective time-constant is more important.

Multiple Spikes

When emulating neural networks, seldom only single spikes occur. We therefore
repeat the simulation sending multiple spikes, but lower the input rate to 10 MHz,
compared to Equation (7.5). This is still a rather high rate, a fifth of the maximum a
single synapse can generate. The high rate helps to keep the simulation time short,
because the integrator reaches equilibrium faster. As shown in Figure 7.6, the input
integrates the spikes very well, until either a steady state or the maximum voltage
of 1.8 V is reached.

Specifically, for this measurement, we define the maximum integrator voltage as
V max

integrator as

V max
integrator =

1
1µs

∫ t0=4us

t0=3us
Vintegrator(t)dt, (7.5)

where the first spike arrives at t = 0µs. This definition leaves enough time for the
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A Vsyntc = 0.40 V
Isyn = 2.8 ( ), 5.6 ( ) and 11 µA ( )

B Isyn = 2.5 nA
Vsyntc = 0.40 ( ), 0.60 ( ), 0.90 ( ) and 1.70 V ( )

Figure 7.7 The plots show the maximum integrator voltage V max
integrator as defined

in Figure 7.6. The results show that V max
integrator grows linear with τsyn as well as

Isyn as predicted by Equation (7.6). However, a quantitative comparison fails.

integrator to reach the equilibrium if weak pulses are used. The expected V max
integrator

is given in Equation (6.6). But as we can now define a proper time-constant for the
synaptic input, it is more suitable for us to replace Rsyntc. We obtain

V max
integrator = Vsyn +

fstim · τsyn · Isyn · tsyn

C
. (7.6)

In Figure 7.7 the V max
integrator obtained from the simulation is shown, where we

obtained the synaptic time-constant, which label the axes, from the previous sim-
ulations of a single spikes. The data agrees with the behavior predicted by Equa-
tion (7.6). V max

integrator grows linear with both τsyn and Isyn. For most settings, the
integrator quickly reaches the supply voltage level of 1.8 V. For a quantitative
comparison, this simulation needs to be repeated using various and especially lower
stimulus rates.

As soon as the integrator voltage reaches 1.8 V, the input is completely saturated.
Additional synaptic pulses will discharge the synapse line instead of being added to
the integrator. Therefore, the synapse line needs to be recharged over Rsyntc before
the integrator can begin to decay. There are no indications of a negative effect on
the neuron.
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Figure 7.8 A Typical circuit simulation of the synaptic input with a sweep of
Vsyntc without any synaptic input. It can be observed that the voltage of the inte-
grator is elevated below Vsyntc = 0.21± 0.01V. The vertical line marks a rise of
5 mV of Vintegrator. B Monte Carlo simulation of the sweep (N =500). Histogram
of the Vsyntc values causing a rise 5 mV in the integrator. Both simulations were
conducted for Vsyn =0.9V.

7.1.3 Technical Limits for the Synaptic Time-Constants

The control parameter Vsyntc of the synaptic time-constant is still subject to the effect
that the integrator voltage rises, if the resistances become to large. We described
the cause for this in Section 6.1.3. This sets an lower limit for Vsyntc if the resting
potential of the neuron shall not be affected by this. To estimate the onset of this
effect, we conducted a Monte Carlo DC-simulation of the circuit and obtained a
lower limit of Vsyntc = 0.21± 0.01V. The simulation is shown in Figure 7.8.

We see in Section 7.3, that the lower limit is actually larger than 0.21 V. This
may have two reasons: Firstly, the neuron may already react to lower rises of the
integrator voltage. Secondly, the simulation is imperfect. It just contains four
synapses instead of all 220, which could influence the leakage current and the effect
could be caused by the negative feedback loop with the OP, which is very sensitive
to small deviations. We therefore expect this effect to vary stronger in the real
hardware.

Further, the bias generator may be used to compensate for this effect, but this
would require an individual setting for the bias generator dependent on the rise of
the integrator voltage. Therefore, we so far did not follow up on this idea.

117



7 Synaptic Input on HICANN Revision 4

7.1.4 Summary

We conclude from the shown simulations that the changes of the synaptic input
improve the functionality of the neuron. The new resistor provides a better con-
trollable range of time-constants and its resistance is more stable against voltage
differences compared to its counterpart in revision 2. The integration of spikes
benefits from this and also from the improved scaling of the reference current for
the synaptic event Vgmax and the larger capacity in the integrator. Replacing the
conductance generating OTA0 with a new resistor improves the dynamic range
of the membrane significantly. Lastly and most importantly, the bias generator
allows to compensate the DC-offset of OTA1 and therefore to calibrate the minimum
conductance for the synaptic input. This leads to a more stable neuron dynamic and
allows smaller effective membrane time-constants.

7.2 Calibration of the Bias Generator

The first calibration task for the synaptic input is now always the bias generator.
There is no reasonable default setting, because the DC-offset of OTA1 is randomly
distributed. To avoid problems with an uncalibrated input, we can disable the
synaptic input by setting Iconv to zero and Vconvoff to 1.8 V. The calibration of the
bias generator works better if the membrane and the reversal potentials are already
calibrated. Both synaptic inputs have to be calibrated independently. We therefore
disable the input that is currently not calibrated, while we calibrate the other one.

The work on this calibration began already during the design phase. Without a
calibration, the expected results are even in the best case as worse as for revision 2.
Therefore it was crucial to demonstrate that the bias generator can be calibrated,
before the new HICANN was produced. We could achieve this by integrating the
neuron circuit simulation into our regular calibration framework, as described
in Section 4.4.4. This had two advantages: Firstly, the bias generator was also
thoroughly simulated in interaction with the complete neuron circuit. And secondly,
the implementation of the calibration method in the calibration framework was
already done when the first test-chips of HICANN revision 4 arrived in the lab. Then
we completed the calibration routines using the Demonstrator Setups. Although
this process was very successful, we will show here our latest measurements done
on a HICANN revision 4.1 in a BrainScaleS System.

For the calibration we have to keep in mind that both the readout noise as well
as the try-to-try variations add uncertainties to each data point, even if we only
reconfigure Vconvoff. To compensate for this, we first created a model linking the
control parameter Vconvoff to the shift of the membrane voltage introduced by the
conductance and verified it by using simulations. This is shown in Section 7.2.1.
Then we present in Section 7.2.2, how we used the model to create a calibration
method and verified it on HICANN. Afterwards, we give a short outlook, how we
can reduce the required steps for the calibration, and a short conclusion.
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7.2 Calibration of the Bias Generator

7.2.1 A Model for the Membrane Shift

The calibration of the bias generator has to use the membrane voltage, because this
is the only voltage of the neuron we can readout on HICANN. Therefore, we will
here create a model for the relation between the control parameter Vconvoff and the
membrane potential. We do not use any spike stimulus for this calibration, so that
the neuron will be in the steady state for each measurement.

The basis for the calibration is that we can control the conductance of the synaptic
input with the bias generator. It can shift the voltage at the terminals of OTA1
arbitrarily to each other. This allows to freely control the output current IOTA1

,
which then is proportional to the conductance of the synaptic input. We have to
keep in mind that a negative conductance is technically not possible. The point of
interest here is the transition from a zero conductance to a non-zero conductance,
because at that point the bias generator perfectly compensates the mismatch of
OTA1. We will need less measurements if the model describes the transition well
enough, because then we can fit to the model and do not need to find the transition
point directly.

For each setting of Vconvoff, the membrane will settle in a steady state as described
by Equation (2.7). Because we disable one of the synaptic inputs, we can remove
one synaptic conductance term from Equation (2.7) and obtain

Vmem =
Esyn · g̃ +El

g̃ + 1
with g̃ =

gsyn

gl
, (7.7)

where Esyn is the inhibitory or excitatory reversal potential and gsyn the correspond-
ing conductance of the active synaptic input. We see that we can obtain a direct
relation between membrane voltage Vmem and synaptic conductance gsyn if we keep
the leakage conductance gl constant. Using Equation (7.7) we can relate Vconvoff to a
shift of the resting potential which we can measure.

To obtain a model for g̃, we simulate the synaptic input, using a typical DC-
simulation, and obtain the current from the synaptic input Isynx onto the membrane
and the resulting g̃ in dependency from Vconvoff. We do this for two settings of the
leakage conductance Igl = 150 and 1500 nA (scaling 1 : 3). As we see in Figure 7.9,
IOTA1

and g̃ strongly depend on the chosen leakage conductance gl. The relation
between Isynx is linear, as long as the membrane is in the linear range of the leakage
OTA. We can observe this well for the higher gl setting, while Isynx quickly saturates
for the lower gl setting, because the membrane is pulled towards the reversal poten-
tial. Most importantly, we observe that the transition to the non-zero conductance
is not very sharp. There is a Vconvoff range of about 20 mV,where Isynx from the
synaptic input slowly begins to rise before the relation between Vconvoff and Igl
becomes linear. The ratio g̃ follows the current flow, as excepted. We notice here,
that for high gl the transition to a non-zero conductance is harder to detect, because
here the ratio is still very close to zero in this range and will cause a non-measurable
membrane shift.
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Igl = 150 ( ) and 1500 nA ( )

Figure 7.9 Typical DC-simulation using the simplified neuron simulation with
synapses (see Section 4.4.3). Here the excitatory synaptic input is shown, but
inhibitory input behaves qualitatively the same. The nominal zero point of OTA1
is at 0.95 V taking its DC-offset into account (see Figure 6.1). A For each point
the neuron is in a steady state. A current flows from the synaptic input over
the membrane into the leak. It becomes larger as Vconvoffx is getting smaller,
because voltage difference at OTA1 is then larger (see Figure 7.1). The current
is proportional to gx and causes the membrane to shift towards the reversal
potential depended on Igl. The limited linear input range of the leak OTA causes
the current then to saturate, for low Igl very quickly, for large Igl more slowly. B
The ratio of the resulting conductances g̃ is shown. For low Igl it rises very fast,
whereas for a high Igl it rises quite slowly, so that the transition region becomes
difficult to detect.

As long as the membrane potential is in the linear range of the leakage OTA we
can use a linear function to describe g̃. Additionally, we need to take the smooth
transition to the zero conductance value into account. We can here use the same
softplus function as in Equation (7.3). However, this limits our method to membrane
shifts not larger than 100mV. We define our model for the ratio g̃ as

g̃ =
a
γ

ln
(
1 + exp

(
γ (b −Vconvoff)

))
. (7.8)

The parameter γ controls the curvature between the linear and the constant part of
the transition, a the slope of the linear part and b the transition point. For large γ
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the transition becomes more sharp, so that in the limit it becomes

lim
γ→inf

g̃ =

⎧⎪⎪⎨⎪⎪⎩a (b −Vconvoff) for Vconvoff < b and

0 for Vconvoff ≥ b.
(7.9)

By comparison with the simulations shown in Figure 7.9 we found that a value of
γ = 0.2 describes the transition quite well for both Igl settings.

We can improve the comparison between model and data by simplifying Equa-
tion (7.7). Because it is limited to membrane shifts smaller than 100mV, g̃ is small.
Therefore we can use a Taylor expansions around g̃ = 0 and we obtain

Vmem ≈ El +
(
Esyn −El

)
· g̃ +O

(
g̃2

)
for g̃ ≪ 1. (7.10)

By replacing g̃ with Equation (7.8) we can develop the final relation between Vconvoff
and the membrane potential. We obtain

Vmem = El +
(
Esyn −El

) a
γ

ln(1 + exp(γ (b −Vconvoff))) (7.11)

= El +
α
γ

ln(1 + exp(γ (b −Vconvoff))) . (7.12)

Because the parameters Esyn and a are not longer independent from each other, we
combine them into the single parameter α.

To verify our model, we use the simplified neuron simulation as described in
Section 4.4.3. We used a reversal potential of El = 0.8 V, a excitatory potential of
Esynx = 1.6 V and two settings of Igl = 0.15 and 1.5 µA. Vconvoff was changed in steps
of 10 mV from 0.0 to 1.8 V. Figure 7.10 shows two exemplary fits of Equation (7.12)
to the typical simulations. We use a fixed γ = 0.2, as we do not have many data
points in the transition region to obtain the parameter from a fit, especially for the
higher Igl value. The plot shows that Equation (7.12) approximates the data very
well, independent from the chosen leakage conductance. This is of great advantage,
because we can now use this approach without worrying about the need for a
calibration for the leakage conductance. However, we need to exclude data points
where the resting potential is more than 100 mV shifted from its set value.

We determine the transition point to a non-zero conductance by choosing the
final Vconvoff value from the fit, where

Vmem (Vconvoff) = El +Vshift (7.13)

is fulfilled. However, the chosen value for Vshift further influences the neuron
behavior. For very low values, the conductance g̃ is still in the transition phase. This
may cause weak spikes to be dampened. For larger Vshift the minimal conductance
becomes larger, which leads to a faster membrane time-constant and requires a
stronger leakage conductance Igl.

Lastly, we compared the shift Vshift obtained from this fit to the actual shift
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included ( ) and excluded ( ) data points

Figure 7.10 Typical DC-simulation using the simplified neuron simulation with
synapses (see Section 4.4.3). Vconvoff was changed in steps of 10 mV and Equa-
tion (7.12) is fitted to the data. Values that are more than 0.10 V over the resting
potential are removed (gray). The inhibitory input was deactivated by setting
Iconvi to 0 nA. The point where the fit indicates a 1 mV rise is marked. Even some
of the removed points are still in the linear range, we need to choose this range
conservative because it varies on the hardware.

obtained from the simulations in 500 Monte Carlo simulation runs. Figure 7.11
shows the results of a target shift of Vshift = 1mV. For a calibration using Igl =
150 nA, the actual shift is 4.2± 0.8 mV, and for a calibration using Igl = 1500 nA,
the actual shift is 1.5± 0.3 mV. But if we evaluate the second shift at Igl = 150 nA
we obtain an actual shift of 6.3± 1.6 mV, which is actually worse.

This deviation is caused by the imperfection of the transition phase and by
the fixed chosen γ = 0.2. With the given model, we could improve the result by
determining γ by the fit. However, we found that this made the fit unstable and
would require more data points to map the transition phase. As we show in the
evaluation of our model on HICANN, the decision for keeping γ as fixed parameter
promises a better cost-value-ratio and still leads to satisfactory results.

In summary, we found in Equation (7.12) a sufficient model to relate the parameter
Vconvoff to the change of the membrane potential. By incorporating the smooth onset
into the model, it can be reliably used for a large range of Igl settings. Hereby, we
found a good balance between robustness and precision, especially as the result
allows later corrections. Users can specify a membrane shift that would be tolerable,
while not impairing weaker spike input too much.
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Measured at Igl = 150 ( ) and 1500 nA ( )

Figure 7.11 Monte Carlo simulation (N = 500) of the results shown in Fig-
ure 7.10. The neurons were calibrated using a Vshift = 1mV at different Igl of
150 and 1500 nA. The histograms show the actual membrane shift induced by
the chosen Vconvoffx value. To make the results comparable, we obtained the shift
for the calibration using Igl = 1500 nA also at Igl = 150 nA.

7.2.2 Calibrating the Bias Generator on Hardware

With the theoretical background we can apply the calibration on HICANN. The data
shown here was for Vconvoff with 61 measurements from 0 to 1.8 V in step of 30 mV.
The complete parameters are listed in Appendix A.5.3. Because the simulation
showed similar results for different Igl settings, we repeated this measurement using
three different settings of Igl = 150, 300 and 1500 µA using 1:3 scaling to find the
most suitable setting.

Figure 7.12 shows the result of the measurement steps for an exemplary neuron
with Equation (7.12) fitted onto the data. Data points with a distance larger than
100 mV to the resting potential were discarded. We do not recommend a higher
limit, because the linear range of some OTAs is smaller than usual. For weak leakage
conductances, the relevant Vconvoff range covers only about 5 data-points or 150 mV.
For lower Vconvoff, the conductance of the synaptic input becomes too large and the
membrane is pulled outside the linear range of the leakage OTA. For the excitatory
input the neurons will begin to spike. We detect this by evaluation of the peak-
to-peak height of the trace, which then become larger because threshold and reset
potential are set far apart. For a stronger leakage, the conductance grows linear
over a range of at least 200 mV beginning at the onset. This matches the prediction
well which we gathered from the model. But we have to keep in mind that the
leakage conductance gl is rather strong. This makes the weak onset of the synaptic
conductance gx harder to detect, because the membrane shift is proportional to the
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ration g̃ of both. The medium leakage value shows that there is a smooth transition
between both extremes.

For testing the performance of the different steps we made a second measurement.
Therefore, we selected for each neuron 12 Vconvoff settings for each input using
a Vshift of 1, 2, 3 and 4 mV for each of the Igl settings. Afterwards, we measured
the distribution of the membrane potentials for various settings of the leakage
conductance using Igl = 0, 0.12, 0.24 and 0.49 µA (scaling 1:3). Figure 7.13 shows
an exemplary result and the standard deviations for all settings. The setting Igl =
0 µA is a test case. It shows that without the correcting leakage conductance even
the smallest conductance shifts the membrane. The wide distribution shows that
there are no unexpectedly dominating neuron terms. For the small leakage of Igl
= 0.12 µA, we observed significant differences between the calibrations. It clearly
convinced us, that a small leakage conductance is preferable for calibration.

Given this result, we decided to conduct the calibration using Igl = 150 µA and
recommend to select a Vshift of 1 mV. The selected offset correction Vconvoff is
shown in Figure 7.14. The selected values are located in the middle of the possible
parameter range.

We now want to estimate the error induced by the bias generator itself, because we
do not have full models supporting Monte Carlo simulations for the transistors used
in the generator. As reference we use the variation of the OTA offset σOTA1 = 23mV,
obtained in Section 6.1. Using the ideal scaling factor of 0.28, we obtain a scaled
σ̃OTA1 = 82mV. The standard deviation of the Vconvoff distribution is σconvoff =
111 and 118mV only a little larger. This gives us the deviation of the bias as

σbias =
√
σ2

convoff − σ̃
2
OTA1 = 76mV. (7.14)

Note that the comparison assumes that the distribution is normal and ignores
the error of the scaling factor. However, as estimated we see that offset and bias
generator contribute equally into the variation. Lastly, we can say that the scaling
factor is well chosen, because it provides a sufficient precision and makes good use
of the available parameter range.

7.2.3 Outlook on Optimizing the Required Steps

We so far require a fairly large number of steps to cover the complete parameter
range with sufficiently small steps. We can improve this by implementing a two step
calibration. A first coarser step is used to determine the approximate location of
the transition phase to a zero conductance and then the transition range is scanned
using finer steps. We can reduce the number of steps required in the coarse scan if
we use the model developed in Section 7.2.1. However, the approximation used for
the finer measurement is no longer suitable. We insert Equation (7.8) directly into
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A Igl 150 µA B Igl 300 µA C Igl 1500 µA (all scaled 1 : 3)

Figure 7.12 Measurement for Vconvoff with different leakage conductances . For
this measurement 61 steps of Vconvoff from 0.0 to 1.8 V were done, where only the
Vconvoff floating gate parameter is reconfigured. The input that is not calibrated
is deactivated. The plots show the mean membrane potentials recorded for
each step and the fit of transformation function Equation (7.12) for neuron 413.
The gray points are ignored for the fit because the membrane potential is more
than 0.1 V away from the resting potential or the neuron began to spike. For
the first criteria, we take for the excitatory inputs the lowest measured point
as reference and for inhibitory inputs the highest. The second criteria can be
detected, because we set spike threshold and reset potential far apart and use the
peak-to-peak height of the trace to filter spiking neuron. This causes the mean
to fall again for low Vconvoffx values. The bended region of the measured points
is not always perfectly matched by the recorded data points. But determining
the curvature with the fit is even more unreliable because of the few data points
available in this region.
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Standard deviations at Igl = 0.12µA
for different calibration parameters.

cal. Igl [µA] 0.15 0.30 1.50
offset [mV] σ [mV] σ [mV] σ [mV]

1 12 17 26
2 15 21 32
3 14 22 32
4 16 25 35

Figure 7.13 Measurement to validate the Vconvoff calibrations. The shown cali-
bration was done at Igl = 0.3 µA with a target offset of 3 mV. To test the quality
of the calibration, we determined the membrane potential for each neuron at
different settings of the leakage bias current Igl. The resulting distributions
over all neurons are plotted. The resulting standard deviation of the distribu-
tion is annotated. The table presents the standard deviations obtained for Igl =
0.12 µA for various other calibrations settings. The result shows that for higher
Igl settings during calibration the distribution of membrane potentials widens
indicating a less precise calibration.

Equation (7.7) and obtain

Vmem =
Esyn · g̃ +El

g̃ + 1
with g̃ =

a
γ

ln
(
1 + exp

(
γ (b −Vconvoff)

))
, (7.15)

where we now use a fixed γ = 0.5 for the fit. This model still requires that the
membrane is in the linear range of the leakage OTA. Therefore, we adapt the
parameters to Esyni = 0.5 V, Esynx = 1.1 V and Igl = 2.5 µA (scaling 1:3).

Figure 7.15 shows the result on an exemplary neuron using 10 steps from 0.0 to 1.8 V
for Vconvoff. The plot shows that the model still agrees well with the data. In particu-
lar if we keep in mind that we do not need a very high precision because the goal of
the measurement is it to obtain an approximation for a finer measurement.

We compare the approximation with the final calibration results obtained in the
previous section using 61 steps. As shown in Figure 7.16, all found target values
lie within 0.3 V below the value found in the measurements. Because the value we
found lies for sure below the reference from the full measurement, we could now
conduct a second measurement consistent of 11 steps from b to b+0.3V, using steps
of 30 mV like in the previous section. We were not able to integrate this into the
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Figure 7.14 Result of the Vconvoff calibration. The calibration was done at
Igl =0.150µA with a target offset of 1 mV. The width distribution is σx =111mV
and σi =118mV. Because we do not know the effect of mismatch on the level
shifter we cannot directly compare this to the known offset distribution of the
OTA. The chosen Vconvoffi and Vconvoffx values have a Pearson correlation coeffi-
cient of 0.02.

calibration software yet but we expect that this would lead to results with the same
precision as the full measurement by using only a third of the steps.

7.2.4 Summary

The bias generator can be successfully used to compensate the DC-offset of OTA1.
The calibration requires us to scan almost the complete parameter range in fine
steps, because the parameter is randomly distributed. A two phase scheme has been
proposed to reduce the number of steps significantly. We found that the calibration
leads to the best results if small Igl values are used, because then the onset of the
conductance is detected best. The final deviation from the target resting potentials
is not much larger as directly after the calibration of the resting potentials shown in
Section 5.2.

7.3 Calibration of the Synaptic Input

Based on the calibration of the bias offset we can continue with calibration of the
parameters of the neuron. We first calibrate the reversal potentials and afterwards
the synaptic time-constants. We then show that the calibration method for the
synaptic time-constant can also be applied to the membrane time-constant. We
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A Igl = 2.5 uA and Esynx = 1.1 V B Igl = 2.5 uA and Esynx = 0.5 V

Figure 7.15 To reduce the number of steps required we propose running first a
coarse calibration with less steps, and then only scan the relevant range with finer
steps. Here a measurement with a coarse stepping of Vconvoff in 10 equal distant
steps from 0 to 1.8 V is shown. We reduced the distance to the reversal potential
to keep the membrane in the linear range of the leakage OTA. This allows to fit
Equation (7.7) to the data to take advantage of the whole measurement range.
We show the fit parameter b obtained in this measurement and the one obtained
in reference measurement b′ using the full 61 steps measurement presented in
Section 7.2.2.

shortly discuss the current speed of the calibration and then evaluate the calibration.
We close with a short summary.

7.3.1 Calibration of the Reversal Potentials

The calibration of the inhibitory reversal potential remained almost unchanged
compared to revision 2. However, we can now use the bias generator to create the
required synaptic conductance to pull the neuron towards the reversal potentials
instead of using spike input for this. The result of the calibration is shown in
Figure 7.17, the parameters are listed in Appendix A.5.2. The calibration does not
improve the spread of the distribution, because the resistor does not change the
voltage provided by the floating gate cell. The spread is therefore in both cases
caused by the trial-to-trial and the mismatch variations of the floating gate cell.
The offset between calibrated and uncalibrated is in this case mainly caused by the
deviation fc from the perfect linear translation of the digital parameter value, as
defined in Section 4.1.2

Unfortunately, a direct calibration of the excitatory reversal potential for values
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Figure 7.16 Comparison of a reduced Vconvoff calibration measurement with the
full 61 steps sweep and Igl = 150 nA presented in Section 7.2.2. The reduced
calibration uses 10 equidistant steps from 0 to 1.8 V and fitted against Equa-
tion (7.7). We compare the fit parameter b from the reduced calibration with
the one from the reference measurement b′. The histogram shows that we could
reduce the calibration range for each neuron to a range of 0.3 V including a safety
margin.

larger than 1.2 V is not possible, because the membrane voltage is limited to values
below that point, as discussed in Section 4.2.3. An extrapolation from the lower
range would induce a large error, caused by the non-linear course of the conductance.
However, we can still test the reversal potential for values below 1.2 V in this case we
find the same distribution as for the inhibitory input of about 8 mV for all measured
points. This means that the spread for an uncalibrated reversal potential is not
larger than for a calibrated, like we would expect it.

We further intend to set the excitatory reversal potential quite high to about
1.4 to 1.6 V, maximizing the obtained conductance. In this range, the non-linearity
of the conductance will dominate over the deviation of the reversal potential and
would render a regular calibration useless. For the practical use, the uncalibrated
excitatory potential shows so far only little downsides.

7.3.2 Calibration of the Synaptic Time-Constants

The basic principle for the calibration of the synaptic time-constant remains un-
changed compared to Section 6.2.3. However, we need to adapt the process to the
changes in the synaptic input and develop a model for the dependency of the synap-
tic time-constant τsyn on the control parameter Vsyntc. We evaluate the calibration
for both synaptic inputs. The parameters of the measurement shown are noted
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A before calibration B after calibration

target[V] µ± σ [V] target[V] µ± σ [V]
0.6 0.561± 0.008 0.7 0.701± 0.007
0.8 0.746± 0.007 0.8 0.801± 0.008

Figure 7.17 Distribution of the inhibitory reversal potentials before and after
calibration on HICANN revision 4.1. Because the resistor is only a passive
element, the deviation of the evaluation measurement does not change. It
directly reflects the trial-to-trial variation of the floating gate parameter. Bin-
size: 10 mV.

in Appendix A.5.4. The result of the calibration for a single neuron is shown in
Figure 7.18.

Selecting Post-Synaptic-Potentials

As discussed before, not every measured PSP is suitable to determine the synaptic
time-constant. We therefore reuse the methods shown in Section 6.2.1 to evaluate
each one. We keep the thresholds for the signal criterion and for the tolerance for a
shift of the resting potential El as before. Nevertheless, we need to adjust the limit
for the reduced χ2

red criteria slightly to accept a higher limit of χ2
red < 5, because the

position of the highest peak of the χ2
red distribution varies between 0.7 and 2.0 over

various measurements. However, the distribution obtained is still similar to the one
shown in Figure 4.5, especially the fact that most of the fits either lead to an χ2

red
near the highest mode or show a very large deviation instead. Therefore, this change
has little effect on the final results. We reject all data-points that do not fulfill all
three criteria. If less than six of data points remain, we mark the input as defect.

Figure 7.19 shows the number of data points discarded by each of the criteria.
Also almost all synaptic inputs show a good response to the stimulus. We find in
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Time-Constants: τsyn ( ), τm ( ) and rejected ( )

Figure 7.18 Exemplary traces of an A excitatory and B inhibitory Vsyntc calibra-
tion. The traces are aligned at their extrema and rejected traces are gray. The
resulting time-constants and the fit of the transformation function are shown
on the right side. We can see that the time-constants are mostly clearly distin-
guishable. However, at the point where both are almost equal, the fit does not
converge very well and the result becomes slightly distorted. The time-constants
follow the expected behavior and we can fit Equation (7.16).

the excitatory input only 11 neurons that have a weak response. This was observed
before [Kungle 2016], but is not yet understood. Most of the PSPs have a good shape,
so that the fit has a χ2

red < 5. However, this only holds true for Vsyntc below about
0.4 V on the excitatory and below about 0.35 V in the inhibitory input. For lower
settings, the rejected PSPs show either large PSPs with heights larger than 150 mV
or the resting potential is shifted indicating a rise in the integrator voltage Vintegrator
as described in Section 7.1.3. The difference between excitatory and inhibitory
input is caused by the differently chosen reversal potentials and their different
characteristics.

Opposed to revision 2, many of the PSPs rejected by the χ2
red criteria still would
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PSPs rejected by:
S < 1.5 ( ), shifted membrane ( ) and χ2

red < 5.0 ( )

Figure 7.19 Selection of valid data points for the synaptic time-constant calibra-
tion. We restricted the plot to the lower Vsyntc settings. For the values above
0.66 V, for the exitatory input the number of PSPs rejected by the signal-to-noise
criteria increase to 11 at 1.8 V. The inhibitory inputs show no additional defects.

hold an inspection by eye. While saturation effects causing plateaus do no longer
occur, like in revision 2, the time-constants obtained by the fit are no longer reliable.
We notice that most of this PSPs would also been discarded because the resting
potential of the neuron was already shifted. For the given data-set only five inputs
had not enough valid data points.

Fitting the Time-Constant

Before we can fit the model for the time-constants we need to sort them. As dis-
cussed in Section 2.1.2, τ1 and τ2 obtained from the fit need to be matched to
the membrane time-constant τm and the synaptic time-constant τsyn. However, as
shown in Figure 7.2, the synaptic time-constant becomes at some point larger than
the membrane time-constant, so that simple sorting is no longer sufficient. But we
still can well distinguish the time-constants for higher Vsyntc settings. Here we can
safely assign the larger one to τm. Therefore, we take the average of τm for Vsyntc >
0.7 V and assign for the remaining data-points τ1 and τ2 based on the distance to
this reference value. We classify the closer value as τm and the other as τsyn.

Lastly, we can match Vsyntc with the obtained time-constants. We fit the relation

logτsyn =
a
c
· log

(
1 + exp

(
c · (Vsyntc − b

))
+ d ·Vsyntc + τ0

syn, (7.16)
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τmin
syn [µs] τmax

syn [µs]

Synaptic Input mean 99.7 % within mean 99.7 % within

Excitatory ( ) 0.14± 0.13 0.07 to 0.18 2.28± 1.05 1.14 to 6.00
inhibitor ( ) 0.11± 0.02 0.04 to 0.15 4.30± 1.70 1.99 to 7.99

Figure 7.20 Minimal and maximal time-constants for each neuron. For the
maximal time-constant the highest measured values, that was accepted by the
criteria shown in Section 7.3, is shown. The table denotes the mean time-constant
and the standard deviation as well as the range covered by 99.7 % of the neurons.
If a certain membrane shift and uncertainties in the time-constant are accepted
most neurons can reach time-constants above 4 µs. The difference between
inhibitory and excitatory input is caused by the asymmetric conductances of
the inputs. Because the excitatory conductance is stronger, the neuron is more
susceptible to a rise of the integrator voltage or badly shaped PSP.

on the logarithm of the data, which we obtained by using the relation τsyn = Rsyntc ·C
on Equation (7.3). The fit is robust, if the initial parameters are well chosen.

Reachable Time-Constants

The resulting minimal and maximal time-constants are shown in Figure 7.20. It is
partly possible to use a larger time-constant as long as the resting potential of the
neuron does not get shifted. However as for these time-constants the χ2

red criteria
failed, they may lead to unreliable results and unexpected behavior.

133



7 Synaptic Input on HICANN Revision 4

7.3.3 Calibration of the Membrane Time-Constants

We can also use the PSP based measurement to calibrate the membrane time-
constant. This is a straight forward modification of the calibration for the synaptic
time-constant. We will shortly present the results here, because this is an verification
of the method we shown. However other methods for this already exist [Schwartz
2013; Schmidt 2014]. We use for the calibration 10 steps for Igl. The parameters of
the measurement shown are noted in Appendix A.5.4.

In contrast to the synaptic time-constant calibration the amplitude of PSPs is more
homogeneous across the whole parameter range. This agrees with Equation (2.8),
where τm occurs in the nominator as well as in the denominator. Therefore, all data-
points show very good PSPs, and none is rejected by the criteria shown before. The
leakage conductance gl is proportional to the square root of the bias current [Millner
2012]. In addition we need a linear correction to take the linear error of the floating
gate into account. Therefore, we can describe the membrane time-constant τm by

τm =
a√

Igl − c
+

b
Igl

, (7.17)

where we fit the parameter a, b and c. We show some exemplary traces and the fit in
Figure 7.21.

The reachable membrane time-constants are shown in Figure 7.21. For a an
Igl scaling of 1 : 3 we have a lower limit of 0.47± 0.09 µs and an upper limit of
3.3± 1.8 µs. The results of Schmidt [2014] show larger values for both the minimal
as well as the maximal values. This is caused by the difference in the calibration
method: in his work the current stimulus of the neuron is used, which adds an
additional capacity to the membrane. So far the results agree with each other, but a
thorough comparison of the methods remains to be done. Lastly, the calibration of
the membrane time-constant using PSPs confirms that the method works reliable.

7.3.4 Evaluation of the Calibration

We evaluate the calibrations for membrane and synaptic time-constants by measur-
ing three time-constant values for each of the parameter. To estimate the trial-to-trial
error we repeated those N = 30 times. The parameters of the measurement are listed
in Appendix A.5.6.

First, we notice that the result shows a systematic error: the obtained time-
constants are generally larger than expected. But this occurs only in the exponen-
tially growing regions of the transformation functions. This gives us an explanation
for this behavior: The normally distributed trial-to-trial gets skewed due to the
transformation in the circuits. Therefore, the measured time-constant are no longer
normal distributed, but skewed, in the exponentially growing region. It is more
likely to obtain a overly large time-constant in a single measurement than a smaller
one. This affects the fit and the obtained transformation functions show the observed
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Time-Constants: τm ( ) and τsyn ( )

Figure 7.21 Exemplary traces of a membrane time-constant calibration. The
traces are aligned at their onset. The resulting time-constants and the fit is shown
on the right side. We can see that the time-constants are clearly distinguishable.
They follow the expected behavior and we can fit Equation (7.17). The data-
points match the model very well, all residuals are within a 0.01 µs range around
the model.

systematic deviation.
For the synaptic time-constant, the systematic error is about 20 % for a target

value of τsyn = 1 µs. For the membrane time-constant, we find a systematic error
of 40 % for a target value of τm = 2 µs. The difference between both is caused by
the different slopes of the transformation functions at this points. In contrast to the
trial-to-trial variation, this effect can be compensated by the user, either manually
or by using learning algorithms in the network.

The comparison with the uncalibrated data shows that we can indeed reduce the
spread of the measured distributions. For synaptic time-constants of τsyn ≤ 0.5µs we
reach the same level as given by the trial-to-trial error σt, that we obtained from the
repeated measurement. For the larger time-constants, which lie in the exponentially
growing region of the transformation function, we still reduce the spread of the
measured distribution, but no longer reach the precision of the trial-to-trial error σt.
The final results for synaptic time-constant are presented in Figures 7.23 and 7.24

For the membrane time-constants τm, we get for all tested time-constants the
spread of the distribution of the measured time-constant for all three measurements
equally close to the trial-to-trial error. While the total final precision is not as good
as for the synaptic time-constants, the gain in precision is much larger, in total a
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τmin
m [µs] τmax

m [µs]

mean 99.7 % within mean 99.7 % within

0.47± 0.09 0.34 to 0.65 3.30± 1.88 1.14 to 8.95

Figure 7.22 Minimal membrane time-constant τmin
m and the maximal τmax

m . The
table denotes the mean time-constant and the standard deviation as well as
the range covered by 99.7 % of the neurons. The minmal and maximal time-
constants have a Pearson correlation coefficent of 0.50.

factor of 4 to 6. The final results are shown in Figure 7.25.

7.3.5 Agenda to Speed up the Calibration

So far we focused on the development and evaluation of the presented calibration
methods. Therefore, the speed of the conducted measurements is not yet perfectly
optimized. We currently need about 28 min to measure 11 parameter steps for 512
neurons. In the following we show approaches to improve this time.

Firstly, we choose the number of steps and the number of averaged PSPs in a
conservative way. For example, we use an inter-spike interval of 60 µs, but even for
the largest PSPs the membrane is settled after 25 µs in the steady state, and much
faster for smaller time-constants. This needs to be optimized and the inter-spike
interval could be adapted to the steps. Also we average over a fairly large number
of PSPs, which possibly could also be reduced. However, before we can take those
measures, studies involving more HICANNs on different wafers are necessary to
find a safe margin.

Secondly, the performance of the measurement process is not yet optimal. We
want to estimate how long the measurement should take under ideal conditions.
For this we need to take into account the data acquisition, the data transfer, the
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A during calibration B after calibration (N = 30)

Vsyntcx [V] µ± σ [µs] target [µs] µ± σm [µs] ⟨σt⟩ [µs]

0.41 1.39± 0.34 1.00 1.20± 0.16 0.08
0.56 0.44± 0.11 0.50 0.55± 0.04 0.03
0.90 0.18± 0.04 0.20 0.21± 0.01 0.01

Figure 7.23 Evaluation of the excitatory synaptic input. A Shows the raw data
obtained during the calibration. The resulting mean time-constant µ and the
standard deviation are noted in the table. B Shows the evaluation measurement
using N = 30 repetitions. For each neuron its mean value is plotted. We compare
the width σm of the resulting distribution, with the mean trial-to-trial variability
⟨σt⟩ over all neurons. For both lower values, σm is dominated by the trial-to-trial
variations. For τsyne = 2µs, σm is twice as large as ⟨σt⟩. This are caused by
trial-to-trial variations occurring during the calibration, that are not perfectly
averaged out.
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A during calibration B after calibration (N = 30)

Vsyntci [V] µ± σ [µs] target [µs] µ± σm [µs] ⟨σt⟩ [µs]

0.41 1.33± 0.19 1.00 1.17± 0.16 0.07
0.56 0.46± 0.07 0.50 0.53± 0.04 0.03
0.90 0.17± 0.02 0.20 0.21± 0.01 0.01

Figure 7.24 Evaluation of the inhibitory synaptic input. It confirms that the
behaviour of both inputs is indeed identical. A Shows the raw data obtained
during the calibration. The resulting mean time-constant µ and the standard
deviation are noted in the table. B Shows the evaluation measurement using N
= 30 repetitions. For each neuron its mean value is plotted. We compare the
width σm of the resulting distribution, with the mean trial-to-trial variability
⟨σt⟩ over all neurons. For both lower values σm is dominated by the trial-to-trial
variations. For τsyni = 2µs σm is twice as large as ⟨σt⟩. This is caused by trial-to-
trial variations occurring during the calibration, that are not perfectly averaged
out.
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A during calibration B after calibration (N = 30)

Vm [V] µ± σ [µs] target [µs] µ± σm [µs] ⟨σt⟩ [µs]

0.07 3.30± 1.88 2.00 2.87± 0.30 0.21
0.36 0.98± 0.28 1.00 1.23± 0.06 0.04
1.44 0.47± 0.07 0.50 0.57± 0.02 0.01

Figure 7.25 Evaluation of the membrane time-constant calibration. A Shows
the raw data obtained during the calibration. The shown steps were picked, so
that the mean time-constants match the target time-constants of the evaluation
measurement. The resulting mean time-constant µ and the standard deviation
are noted in the table. B Shows the evaluation measurement using N = 30
repetitions. For each neuron its mean value is plotted. We compare σm of
the resulting distribution, with the mean trial-to-trial variability ⟨σt⟩ over all
neurons. We notice a larger systematic error than it occurs for the synaptic time-
constants. In contrast, the final σm reaches almost limit given by the trial-to-trial
variations. For all shown values the improvement is very good.
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configuration and the data processing. We begin with the data acquisition: We
stimulate the neurons with 16.7 kHz and average over 200 PSPs. For the whole
measurement we get

recording of a single neuron 12 ms
× 11 steps
× 512 neurons

gives in total a recording time of 67.584 s.

Using the transfer-rate of 300 MiBs−1, which we obtained in Figure 3.4, the data
transfer should take

per measurement 1152000 samples
× 11 step
× 512 neuron

gives in total 6488064000 samples (≈ 12GiB)
a data transfer time of 346 s.

The configuration currently takes

per step about 15 s
× 11 step

gives in total 165 s.

The data processing consists mostly in averaging the PSP and fitting the PSP. This
is done in parallel while the next neuron is already measured. Because we can use
multiple cores, the fits can be done completely parallel to the data transfer. We
therefore do not need take the fit of the PSP into account for the estimate of the
total time. On the other hand, the final fit of the transformation functions is still
a relevant factor and takes currently 4 min. These fits are not yet done in parallel,
because this was not an issue for previous functions.

Putting all of the above estimates together, we expect a total duration for

recording 67.584 s
transfer 346 s

configuration 165 s
fit of transformation functions 240 s

gives in total 818 s or about 14 min.

This is an estimate for the fastest possible calibration speed using the same parame-
ters. Regarding this the actual time needed – 28 min or twice of the estimate – is
not particularly bad, especially as the calculated estimate here is quite optimistic. It
well agrees with previous studies, that there are no obvious performance bottlenecks
in our software [Mauch 2016].

However, the potential for various minor improvements exists. Parallelizing the
fit of the transfer functions will gain about 3.5 min, because the currently used
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machines have 8 cores, that can work in parallel. Optimizing the number of steps
and the parameters of the steps can gain about 6 to 7 min, because it is likely that
we can reduce the recording time for all steps to at least the half and that we can
reduce the number of averaged PSPs. That leaves us with a realistic estimate of the
final optimal duration of about 4 min. This would result in a real measurement time
of 8 min, if no other optimization is done.

Further potential lies in the redesign of AnaRM currently done by Joscha Ilm-
berger. Here, an anti-aliasing low-pass filter is planned and the maximal sample
rate is 33 MHz. Both will reduce the need for averaging and the transferred samples
greatly. In addition, the data transfer will be using Ethernet, which will increase
the transfer speed. We also could imagine, that the averaging is directly done in
the FPGA of AnaRM. If this is possible, it would make the data transfer negligi-
ble, but would require a large development effort. Lastly, the playback-memory
buffered configuration of the neurons will also reduce the calibration time further
by reducing the configuration time.

7.3.6 Summary

We have shown that a calibration of the synaptic input can be done and leads to
satisfying results. While we obtain some systematic deviation from the desired
results, the limit for the precision we can reach are indeed near the trial-to-trial
variations. Hereby, the later is more important, because the systematic variations
can be handled for example by learning algorithms or plasticity mechanisms.

We show in Figure 7.26 a comparison to a neuron simulation done with NEST.
It demonstrates well that the final variations inherent to analog neurons can be
handled in neural networks simulations and that HICANN can now be used for
experiment using the LIF model.
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BrainScaleS ( ) τm = 20 ms (2 µs) τsyne/i = 5 ms (0.5 µs)
NEST ( ) τm = 20 ms τsyne/i = 5 ms

Figure 7.26 Comparision between a calibrated BrainScaleS System and the NEST
simulator [Gewaltig et al. 2007]. The neurons are stimulated with possion dis-
tributed random spikes with a target rate of 2 kHz. The neuron parameters were
transformed using the calibration. The synaptic weights were manually adjusted.
All parameters are listed in ??. The BrainScaleS System can be identified by the
slightly noisy trace, but overall the traces match very well. Experiment and data
by Johann Klähn and Sebastian Schmitt.
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8 Conclusion and Outlook

In this thesis we characterized the variability in the synapses and analog neuron
circuits of HICANN. We have presented a calibration of the analog neuron model
of HICANN revision 4, which compensates these variations, so that the precision
by which the parameters can be set is vastly improved, if an LIF neuron model is
emulated. Further we characterized the strength of synapses using transistor-level
Monte Carlo simulations.

We verified the calibration of the neuron potentials which were developed for re-
vision 2. The achievable precision was limited by the current trial-to-trial variability
of the analog parameters.

For the usage of the neuron circuits as LIF model emulation, the synaptic and
membrane time-constants are characteristic parameters of the interaction between
neurons. For these, we present a new method for calibration based on voltage
recordings of PSP curves, which are caused by incoming spike events. We can
extract the time-constants from a recorded PSP by fitting a parameterized model of
its shape. Because recording of the neuron membrane in HICANN is afflicted by
noise, we average multiple PSPs to improve the precision and verify the quality of
fits using various tests. We presented the result of those measurements for a single
HICANN using all of its 512 neurons. Here, we find that the achieved range of time-
constants varies greatly between neurons. We find that the excitatory time-constant
of a single neuron can be between 0.14± 0.13 µs and 2.3± 1.1 µs, where the error
indicates the standard deviation of the neuron-to-neuron variability. The common
range, that can be covered by 99.7 % (corresponding to a 3σ interval of a normal
distribution) of the neurons can cover, extends from 0.18 to 1.1 µs. Respectively, we
find for the inhibitory time-constant that the time-constant for a single neuron lies
between 0.11± 0.12 µs and 4.3± 1.7 µs and that the common range extends from
0.14 to 2.0 µs. The differences between excitatory and inhibitory time-constants
are mainly caused by the asymmetry of the inhibitory and excitatory input on
hardware. The precision of the calibration achieves the limit given by the trial-to-
trial variability of the analog parameters. However, for time-constants above 0.5 µs
the obtained precision decreases and introduces a systematic error. When fitting
the model we assume that the the single data points have normally distributed
variation from trial to trial. This no longer holds when the relation to the analog
parameter becomes exponential, as it occurs in this range, but the distributions
become skewed.

For the membrane time-constant, we employ the same method. However, here
we considered only the case of a scaling of 1 : 3 of the control parameter of the
leakage conductance, so we analyzed only a subset of the available parameter space.
We find the possible range for the individual neuron reaching from 0.47± 0.09 µs
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to 3.3± 1.9 µs and the common range extends from 0.65 to 1.14 µs. Here we can
also reach a precision close to the trial-to-trial variability for the whole parameter
range, but observe the same systematic error as for the synaptic time-constants, for
time-constants larger than 1 µs. However, the spread of the calibrated distributions
compared to the uncalibrated ones was reduced by a factor of 4 to 6.

In addition we provide a model for the strength of the synapse circuits on HI-
CANN dependent on its digital weight w and divisor gdiv as well as the analog
reference current Vgmax. Since those are not accessible to direct measurements, it
is based on transistor-level simulations. We find that the synapses have a weight-
dependent offset, which we incorporated into the model. Monte Carlo simulations
were used to estimate the expected variation in strength. We find that the variations
mostly depend on the chosen divisor gdiv and that for gdiv < 10 a relative error below
10 % can be expected.

In conclusion, we expect from these calibrations to improve the ability to run
neural network experiments on the BrainScaleS System by increasing precision of
the LIF neuron model in the hardware.

Currently the major limiting factor for the achievable precision remains the
analog parameter storage. We worked with programming parameters, that were not
optimized for the used systems and showed that the obtained precision is worse
than the best results known by at least a factor of two. Reducing the trial-to-trial
variability of the parameters further will directly improve the calibration results as
well because the trial-to-trial errors of the parameters occurring during calibration
affect the obtained transformations functions. We further presented the charging
curves of the parameters, that identify the inhomogeneous response of the parameter
during the programming process as a potential limit for the maximal achievable
precision. This should be addressed by optimizing the programming of the analog
parameters for each system. In case a further revision of HICANN is made, a
redesign of the controller of the analog parameter storage could be considered as
well, so that it can better cope with the different responses of the cells. Here the
charging curves could be extended for modeling the cells responses to simulate the
controller in advance.

The commission of the system and the methods for calibration we presented
are restricted by the fact that only the neuron membranes can be read out from
the neuron and that digital debugging features of HICANN are limited. This
required us to involve methods which are costly in development time as well as
in measurement time: The possibility to directly read out the integrator of the
synaptic input would avoid the cumbersome deviation of the time-constants via the
PSPs. Further the complexity of the integration tests reflects the difficulty to obtain
debugging information from HICANN. For example, a simple spike counter would
have simplified the playback memory tests. However, for these kind of features the
required development time and on-chip resources have to be weighted against a
possible speedup in commissioning and an increased usability of the system.

Given that the development of the BrainScaleS System is ongoing, many of our
mentioned recommendations are already realized in the first prototypes of HI-
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CANN’s successor HICANN - Digital Learning System (HICANN-DLS). It is a
entirely new implementation using a new process technology. As reaction to the
difficulties in testing and commissioning of the BrainScaleS System, HICANN-DLS
provides more testing features [Hartel 2016]. Thus the synaptic integrators can now
be read out directly [Aamir et al. 2016]. Further, the offset and the non-linearity to
the weights we describe in our model have been resolved in the redesigned synaptic
circuits [Friedmann et al. 2016]. In addition, the analog parameters in HICANN-
DLS have a insignificant trial-to-trial variablity [Hock 2014]. Lastly, it contains an
on chip membrane ADC, which promises less noise in the readout of voltages. It is a
tempting idea to explore the potential of the Plasticity Processing Unit (PPU), which
is originally designed for learning tasks, for simple calibration tasks done on the
chip directly. However the development of HICANN-DLS is still in the prototype
phase and it will require more time and further development until it can replace
the current HICANN.

Therefore the calibration tasks on HICANN should be subject to further improve-
ments. While we could reduce trial-to-trial variability, a systematic error for larger
time-constants remains. Further, our model of the synaptic strength should be
extended to reflect the influence of the synapses on the conductance of the neurons.
For this it only needs to be extended to incorporate the conversion stage in the
synaptic input. In addition, a remaining important task is to scale the calibration
routines towards a full wafer calibration. This requires two main parts: Firstly, the
robustness of the methods needs to be evaluated using multiple systems to ensure
that these are applicable on all HICANNs with equal results. And secondly, the
performance of the calibration tools needs to be improved as well: Using buffered
configuration will increase the configuration speed during calibration. Also the
throughput of the measurements can be increased by recording multiple neurons in
a single experiment run and switching the neuron while recording.

Lastly, we identified the transfer of the recorded data as dominant factor of the
time-constant calibration. Optimizing the used parameters and steps for calibration
can reduce the amount of data by at least a factor two. We also expect an improve-
ment by the currently ongoing redesign of the AnaRMs. It will increase the number
of HICANNs that can be calibrated in parallel and improve the bandwidth for the
data transfer. The amount of data, which needs to be transferred, could be reduced
by transferring the averaging task directly into the FPGA. This can be used not only
for the PSP based calibration but also for the calibration of the membrane potentials.
An ideal scenario minimizing the data transfer would be to switch through all
neurons using a single playback memory configuration and then receive only the
average values directly from the AnaRM.

We are looking forward to use the presented neuron calibration for neural network
experiments. Those will also benefit from the suggested improvements. A deep
neural network that classifies handwritten numbers of the MNIST dataset [LeCun
et al. 1998], is currently developed for HICANN [Schmitt et al. 2017] and a gives
first example of the calibrated neuron’s potential.
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A Parameter Settings

This appendix list the used hardware settings for the measurements presented in this thesis. The
default setting for the neuron and the generation of spike input are described in Section 4.2.3. For all
measurements the analog output channel 0 of the HICANNs were used. The list here does not include
all experiments, for simpler ones the setting are noted in the main part of the thesis.

A.1 Operating Voltages

All voltage were left at their default settings after powering the system. We changed only VOH an
VOL for the system. Especially for HICANN revision 2 this is essential to operate the synapse drivers
correctly.

BrainScaleS System: W_G04 (HICANN revision 2):

DI_VBIAS_LVDS = 1.74 V, DI_VCC = 1.76 V, DI_VCC33ANA = 3.25 V, DI_VCCANA_PLL = 1.75 V,
VDD12 = 10.71 V, VDD25 = 2.53 V, VDD5 = 5.22 V, VDDA_VDDPLL = 1.89 V, VDDBUS = 1.00 V,
VDD_VDDOUT = 1.90 V, VOH = 1.00 V, VOL = 0.61 V

BrainScaleS System: W_G06 (HICANN revision 4.1):

DI_VBIAS_LVDS = 1.24 V, DI_VCC = 1.87 V, DI_VCC33ANA = 3.26 V, DI_VCCANA_PLL = 1.85 V,
VDD12 = 10.94 V, VDD25 = 2.54 V, VDD5 = 5.20 V, VDDA_VDDPLL = 1.97 V, VDDBUS = 1.00 V,
VDD_VDDOUT = 1.99 V, VOH = 1.65 V, VOL = 1.42 V

We could not obtain these currently due to a machine failure. These will be included in the finally printed
version.

A.2 Floating Gate Controller

Programming scheme of the floating gate controller:

revision 2 revision 4 and 4.1
direction down up down up downa upbc downc upc upd

maxcycle 255 10 127 255 10 127
readtime 40 63 63 40 63 63
pulselength 9 1 63 9 1 63
voltagewritetime 15 5 63 15 5 63
currentwritetime 1 20 63 1 20 63
accelartorstep 9 63 2 9 63 2
fg_bias 8 0
fg_biasn 5 0

aWrite all floating gate values to zero
bBefore writing any other cells this step is done once only to write the global int_op_bias parameter
to its value
cNormal programming
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dFast upwards programming applied to current parameter, where all values in the line are above
800.

We want to especially thank Paul Müller for intensively testing and improving the configuration for
revison 4 and 4.1 by adding the special handling for the int_op_bias.

A.3 Operational software

The used software is state is archived with the raw data of our measurements. We document: For all
used repositories the currently checked out commit, untracked files and changes on tracked files. The
set environment variables. The loaded modules. The use waf version. The hostname. The used python
packages (via the anconda packet manger). Installed system package.

A.4 HICANN Revision 2 Measurements

A.4.1 Default Values

Neuron parameters:

Ibreset = 1023 DAC Ibstim = 1023 DAC Vbexp = 2.500µA Vbout = 0.750µA

Vbr = 0 DAC Vbstdf = 0 DAC Vccas = 800 DAC Vclra = 0 DAC

Vclrc = 0 DAC Vdep = 0 DAC Vdllres = 200 DAC Vdtc = 0 DAC

Vfac = 0 DAC Vgmax0 = 0.080V Vgmax1 = 0.080V Vgmax2 = 0.080V

Vgmax3 = 0.080V Vm = 0 DAC Vreset = 0.500V Vstdf = 0 DAC

Vthigh = 0 DAC Vtlow = 0 DAC int_op_bias = 1023 DAC

Shared parameters:

El = 0.800V Esyni = 0.600V Esynx = 1.300V Ibexp = 2.500µA

Iconvi = 0.625µA Iconvx = 0.625µA Ifire = 0.000µA Igl = 1.000µA

Igladapt = 0.000µA Iintbbi = 2.000µA Iintbbx = 2.000µA Ipl = 2.000µA

Iradapt = 2.500µA Irexp = 2.500µA Ispikeamp = 2.000µA Vconvoffi = 1.800V

Vconvoffx = 1.800V Vexp = 1.800V Vsyni = 0.900V Vsyntci = 1.420V

Vsyntcx = 1.420V Vsynx = 0.900V Vt = 1.000V

A.4.2 Synaptic Time-Constant Characterization

Step parameters: Vsyntcx = 1.150, 1.175, 1.200, 1.225, 1.250, 1.275, 1.300, 1.325, 1.350, 1.375, 1.400,
1.425, 1.450, 1.475, 1.500, 1.525, 1.550, 1.575 and 1.600 V

Non-default parameters: El = 0.8 V (calibrated), Esyni = 0.65 V (calibrated), Esynx = 0.95 V
(calibrated), Vt = 1.2 V (calibrated), Vgmax = 0.14 µA (calibrated), Vreset = 0.3 V (calibrated),
Igl = 0.5 µA (calibrated), fstim = 4.72656 kHz, gdiv = 4 and w = 15.
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A.5 HICANN Revision 4.1 Measurements

Default Values

Neuron parameters:

Ibreset = 1023 DAC Ibstim = 1023 DAC Vbexp = 2.500µA Vbout = 0.750µA

Vbr = 0 DAC Vbstdf = 0 DAC Vccas = 800 DAC Vclra = 0 DAC

Vclrc = 0 DAC Vdep = 0 DAC Vdllres = 200 DAC Vdtc = 0 DAC

Vfac = 0 DAC Vgmax0 = 0.080V Vgmax1 = 0.080V Vgmax2 = 0.080V

Vgmax3 = 0.080V Vm = 0 DAC Vreset = 0.500V Vstdf = 0 DAC

Vthigh = 0 DAC Vtlow = 0 DAC int_op_bias = 1023 DAC

In all cases a scaling of 1 : 3 is used for Igl.

Shared parameters:

El = 0.800V Esyni = 0.600V Esynx = 1.300V Ibexp = 2.500µA

Iconvi = 0.625µA Iconvx = 0.625µA Ifire = 0.000µA Igl = 1.000µA

Igladapt = 0.000µA Iintbbi = 2.000µA Iintbbx = 2.000µA Ipl = 2.000µA

Iradapt = 2.500µA Irexp = 2.500µA Ispikeamp = 2.000µA Vconvoffi = 1.800V

Vconvoffx = 1.800V Vexp = 1.800V Vsyni = 0.900V Vsyntci = 1.420V

Vsyntcx = 1.420V Vsynx = 0.900V Vt = 1.000V

Resting Potential Calibration

Step parameters: El = 0.7, 0.8 and 0.9 V

Non-default parameters: Vreset = 0.900 V (calibrated), Vt = 1.200 V (calibrated), Iconvi = 0.000 µA,
Iconvx = 0.000 µA

Reset Potential Calibration

Step parameters:

1 2 3 4

El [V] 0.9 1.0 1.1 1.2
Vreset [V] 0.5 0.6 0.7 0.8
Vt [V] 0.7 0.8 0.9 1.0

Non-default parameters: Ipl = 0.020 µA, Iconvi = 0.000 µA, Iconvx = 0.000 µA, Igl = 1.100 µA

A.5.1 Threshold Potential Calibration

Step parameters:
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1 2 3 4 5

El [V] 0.9 1.0 1.1 1.2 1.3
Vreset [V] 0.5 0.6 0.7 0.8 0.9
Vt [V] 0.7 0.8 0.9 1.0 1.1

Non-default parameters: Iconvi = 0.000 µA, Iconvx = 0.000 µA, Igl = 1.500 µA

A.5.2 Inhibitory Potential Calibration

Step parameters: El = 0.4, 0.6 and 0.8 V

Non-default parameters: El = 0.800 V (calibrated), Vsyntci = 1.800 V, Vsyntcx = 1.800 V,
Vt = 1.200 V (calibrated), Iconvx = 0.000 µA, Vreset = 0.900 V (calibrated), Igl = 0.000 µA,
Vconvoffi = 0.100 V

A.5.3 Bias Generator Calibration

Step parameters (only for the calibrated input):

Vconvoffi or Vconvoffx = 0 to 1.8 V in steps of 0.03 V

Non-default parameters: El = 0.8 V (calibrated), Esyni = 0.2 V (calibrated), Esynx = 1.4 V, Vt = 1.2 V
(calibrated), Vreset = 0.4 V (calibrated), Iconvi = 0 uA (only for Vconvoffx), Iconvx = 0 uA (only for
Vconvoffi)

A.5.4 Synaptic Time-Constant Calibration

Step parameters for inhibitory input:

Vsyntci = 0.30, 0.35, 0.41, 0.48, 0.56, 0.66, 0.77, 0.90, 1.20, 1.50 and 1.80 V

Step parameters for excitatory input:

Vsyntcx = 0.30, 0.35, 0.41, 0.48, 0.56, 0.66, 0.77, 0.90, 1.20, 1.50 and 1.80 V

Non-default parameters: El = 0.800 V (calibrated), Esyni = 0.600 V (calibrated), Esynx = 1.200 V,
Vt = 1.200 V (calibrated), Vconvoffi = 1.800 V (calibrated), Vconvoffx = 1.800 V (calibrated),
Igl = 0.400 µA, gdiv = 30, Vgmax0 = 0.050 V, Vreset = 0.300 V (calibrated), fstim = 16.6 kHz

A.5.5 Membrane Time-Constant Calibration

Step parameters: Igl = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 1.20 and 2.00 µA

Non-default parameters: El = 0.800 V (calibrated), Esyni = 0.600 V (calibrated), Esynx = 1.300 V,
Vreset = 0.300 V (calibrated), Vgmax0 = 1.000 V, Vsyntcx = 1.600 V, Vt = 1.200 V (calibrated),
Vconvoffi = 0.900 V (calibrated), Vconvoffx = 0.900 V (calibrated), gdiv = 16, w = 15

A.5.6 Evaluation of Vsyntcx, Vsyntc and Igl

Vsyntcx step parameters: Vsyntcx = 1.0, 0.5 and 0.2 µs (calibrated)

Non-default parameters: El = 0.800 V (calibrated), Esyni = 0.600 V (calibrated), Esynx = 1.200 V,
Vt = 1.200 V (calibrated), Vconvoffi = 1.800 V (calibrated), Vconvoffx = 1.800 V (calibrated),
Igl = 0.400 µA, Vgmax0 = 0.050 V, Vreset = 0.300 V (calibrated), gdiv = 30, w = 15, -fstim = 16.6 kHz

Vsyntci step parameters: Vsyntci = 1.0, 0.5 and 0.2 µs (calibrated)
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Non-default parameters: El = 0.800 V (calibrated), Esyni = 0.600 V (calibrated), Esynx = 1.200 V,
Vt = 1.200 V (calibrated), Vconvoffi = 1.800 V (calibrated), Vconvoffx = 1.800 V (calibrated),
Igl = 0.400 µA, Vgmax0 = 0.050 V, Vreset = 0.300 V (calibrated), gdiv = 30, w = 15, fstim = 16.6 kHz

Igl step parameters: Igl = 3.0, 2.0, 1.0 and 0.5 µA (calibrated)

Non-default parameters: El = 0.800 V (calibrated), Esyni = 0.600 V (calibrated), Esynx = 1.300 V,
Vreset = 0.300 V (calibrated), Vgmax0 = 1.000 V, Vsyntcx = 1.600 V, Vt = 1.200 V (calibrated),
Vconvoffi = 0.900 V (calibrated), Vconvoffx = 0.900 V (calibrated), gdiv = 16, w = 15, fstim = 16.6 kHz

A.5.7 Synaptic Weight and Divisor Example

For this measurements 3 synapses driver were directly connected (mirrored) to use 3 synapse per
neuron in parallel.

Common non-default parameters:

El = 0.800 V (calibrated), Esyni = 0.600 V (calibrated), Esynx = 1.200 V, Igl = 2.0 µs (calibrated),
Vreset = 0.300 V (calibrated), Vsyntcx = 0.5 µs (calibrated), Vconvoffi = 0.001 mV (calibrated),
Vconvoffx = 0.001 mV (calibrated), Vt = 1.200 V (calibrated), fstim = 24.32498 kHz

Weight w measurement step parameters: w = 0.15 to in steps of 1

Weight measurement non-default parameters: Vgmax0 = 0.2 V and gdiv = 30

Divisor measurement step parameters: w = 2.30 to in steps of 2

Divisor measurement non-default parameters: Vgmax0 = 0.7 V and w = 3

A.5.8 Default Parameters of the Simulations

Monte Carlo simulations were conducted by setting sigma = 3 in the model.

Simplified Neuron Simulation:

El = 0.8 V, Esyni = 0.6 V, Esynx = 1.0 V, Iconvi = 2.5 nA, Iconvx = 2.5 nA, Igl = 0.1 nA, Iintbbi = 2.0 nA,
and Iintbbx = 2.0 nA.

Simplified Neuron Simulation with Synapses:

El = 0.9 V, Esyni = 0.8 V, Esynx = 1.0 V, Iconvi = 2.0 nA, Iconvx = 2.0 nA, Igl = 2.0 nA, Iintbbi = 2.0 nA,
Iintbbx = 2.0 nA, Vconvoffi = 1.0 V, Vconvoffx = 1.0 V, Vgmax = 2 µA, Vsyni = 1.0 V, Vsynx = 1.0 V,
Vsyntci = 1.1 V, Vsyntcx = 1.10 V, w = 15, gdiv = 2 and PLL = 100 MHz

Complete Neuron Simulation for the Calibration Framework:

As given in Appendices A.4.1 and A.5.
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B Used Hardware

We conducted all measurements presented in this work on BrainScaleS Systems.
For both the results presented for HICANN revision 2 as well as for HICANN
revision 4 we selected a HICANN that showed good results in the calibration of its
neuron potentials. However, we did not found any significant difference to other
HICANNs with similar premises. Description of the abbreviations can found in the
Neuromorphic Platform Specification [SP9 Spec 2015]. We here list the used hardware
components:

revision Component Description

2 MainPCB and Wafer W_G04
HICANN 257
FCP 451

AnaRM Analog 0: B2916812

Analog 1: B2012803

AnaB B31/B594

AuxPwr
PowerIt
Cure 0x19fe7b, 0x1a64c8, 0x19fe9c, 0x19b753,

0x19d087, 0x1a0ec3, 0x19ad67, 0x1a5cbc

4.1 MainPCB and Wafer W_G06
HICANN 95
FCP 205

AnaRM Analog 0: B2916933

Analog 1: B2012513

AnaB B28/B584

AuxPwr B25/B26
Cure 0x19fe7b, 0x1a64c8, 0x19fe9c, 0x19b753,

0x19d087, 0x1a0ec3, 0x19ad67, 0x1a5cbc
PowerIt B19

1bitfile: hmf-fpga-top_master_2016-08-02_aca3684.bin serialnumber: 0x12280c7a8e51982e12
2bitfile: rev. 10d79fae
3bitfile: rev. 1bbb73a
4Shielded switching Regulators for 5V
5bitfile: hmf-fpga-top_master_2016-08-02_aca3684.bin serialnumber: 0x12280c7a8e51983416
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C HICANN Parameters and Circuit Components

We here list the meaning of all currents, voltages, digital parameters and components
of HICANN that we name in this work. The names try to follow the notation given
in previous works.

El Resting potential of the neuron

Esyni Inhibitory reversal potential of the neuron

Esynx Excitatory reversal potential of the neuron

Esyn Esyni or Esynx

IOTA1
Output current of OTA1

Iconvi Bias current for OTA1 in the inhibitory input

Iconvx Bias current for OTA1 in the excitatory input

Iconv Iconvi or Iconvx

Igl Bias current controlling the leakage conductance of the membrane

Ipl Bias current controlling the refractory period neuron

Isyn Input current from the synapses to the integrator of the synaptic input

Rsyntc Resistor in the synaptic integrator, controlled by Vsyntc

Vconvoffi Bias voltage controlling the offset compensation for OTA1 in the inhibitory
synaptic input

Vconvoffx Bias voltage controlling the offset compensation for OTA1 in the excitatory
synaptic input

Vconvoff Vconvoffi or Vconvoffx

Vgmax Reference current(!) for synapses modified by the synaptic weight and the
divisor in the synapse driver

Vintegrator Internal voltage of the integrator in the synaptic input

Vmem Membrane voltage of the neuron

Vreset Control voltage for the reset potential of the neuron
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Vsyni Reference voltage for the inhibitory synaptic input

Vsyntci Control voltage for the inhibitory synaptic time-constant

Vsyntcx Control voltage for the excitatory synaptic time-constant

Vsyntc Vsyntci or Vsyntcx

Vsynx Reference voltage for the excitatory synaptic input

Vsyn Vsyni or Vsynx

Vt Spike threshold of the neuron

τsyn Time-constant of the synaptic integrator.

OTA0 OTA of the synaptic input implementing the reversal potential [Millner 2012]

OTA1 OTA of the synaptic input translating the integrated synapse pulse into a bias
current for OTA0

R0 Resistor between membrane and reverale potential potential. Replaced OTA0 in
revision 4.

VDD12 floating-gate programming supply

VDD25 floating-gate supply

gdiv Divisior applied on Vgmax in the synapse driver. Valid values range from 1 to 30.

gscale Fixed scaling factor for the reference current Vgmax.

tsyn Duration of an synaptic event.

w Digital synaptic weight. Valid values range from 0 to 15.
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D Acronyms

ADC Analog-to-Digital Converter

AdEx Adaptive Exponential Integrate-and-Fire

AER address–event representation

AnaRM Analog Readout Module

BSIM Berkeley Short-channel IGFET Model [Cheng et al. 1996]

CGL control gate large

CGS control gate small

CMOS Complementary Metal-Oxide-Semiconductor

DAC Digital-to-Analog Converter .

DLL Delay-Locked Loop

DNC Digital Network Chip

ESS Executable System Specification

FCP FPGA Communication PCB

FPGA Field-Programmable Gate Array

HALbe Hardware Abstraction Layer Backend

HBP Human Brain Project

HICANN High Input Count Analog Neuronal Network

HICANN-ARQ HICANN ARQ protocol

HICANN-DLS HICANN - Digital Learning System

HostARQ Host ARQ protocol

IP Internet Protocol
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Acronyms

JTAG Joint Test Action Group

LIF Leaky Integrate-and-Fire

MCC Multi-Compartment Chip

NDA Non Disclosure Agreement

NM-PM1 Neuromorphic Physical Model version 1

OP operational amplifier

OTA operational transconductance amplifier

PCS pulse communication subgroup

PLL Phase-Locked Loop

PPU Plasticity Processing Unit

PSP Postsynaptic Potential

SRAM Static Random Access Memory

STDP Spike Timing Dependent Plasticity

StHAL Stateful Hardware Abstraction Layer

STP Short Term Plasticity

VLSI very-large-scale integration
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E Third Party Software

Boost.Python A C++ library which enables seamless interoperability between C++
and the Python programming language version 1.49.0 by Dave Abrahams under
Boost Software License - Version 1.0 [http://www.boost.org/doc/libs/1_49_
0/libs/python/doc/index.html][Abrahams et al. 2003]

C++ C++ Programming Language, using the C++11 standard [Stroustrup 2013]

Jupyter Notebook version 5.0.0 by Project Jupyter under BSD license [http://
jupyter.org]

LMFIT Non-Linear Least-Square Minimization and Curve-Fitting for Python, ver-
sion 0.9.3, by Matthew Newville, Till Stensitzki under MIT license [http://
lmfit.github.io/lmfit-py/]

matplotlib version 1.5.4 by The matplotlib development team under custom license
[Hunter 2007]

NumPY Version 1.11.1 by Numpy Developers under BSD license [http://www.numpy.
org/]

pandas version 0.18.1 by PyData Development Team under BSD license [http://
pandas.pydata.org]

Py++ Py++ - Boost.Python code generator, by Roman Yakovenko under Boost Software
License - Version 1.0 [https://sourceforge.net/projects/pygccxml/]

Python The python programming language, version 2.7.12 by Python Software
Foundation under Python Software Foundation License[http://www.python.
org]

PyUblas version 2013.1 by Andreas Klöckner under BSD License [https://mathema.
tician.de/software/pyublas/]

SciPy Version 0.17.1 by SciPy Developers under BSD license [http://www.scipy.
org/]

Spectre Circuit Simulator version 10.1.1.047.isr4 32bit – 19 Jan 2011 by Cadence
under closed license[https://www.cadence.com/content/cadence-www/global/
en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation/spectre-circuit-simulator.

html]
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