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SUMMARY (ENGLISH) 

Systems to regulate gene expression from an Adeno-associated viral (AAV) vector are widely 

used. In most cases, the transgene expression has to be switched on by applying a drug. In 

terms of safety of gene therapy, a shut-off system for AAV vectors would be beneficial to 

silence gene expression in case of side-effects, ideally by destruction of the vector genome. 

Therefore, the aim of the present study was to develop a system for elimination of gene 

expression from an AAV vector after systemic injection using an inducible Cre recombinase. 

In presence of tamoxifen, the inducible Cre recombinase is activated which should result in 

excision of DNA fragments flanked by loxP sites within the vector.  

 

Before evaluating the final shut-off system, several experiments were performed to analyze 

the background activity of the induced CreERT2 recombinase, the best suited positions of the 

loxP sites within the AAV genome and the influence of the loxP sites on the transgene 

expression. Moreover, a co-transduction of an AAV vector encoding the CreERT2 and a 

second AAV vector expressing the reporter gene flanked by loxP sites was tested.  

AAV vectors of serotype 9 were used for packaging the final shut-off system consisting of the 

inducible CreERT2 recombinase, a luciferase reporter gene, and different positions of loxP 

sites to investigate the effect of loxP localization within the vector genome. To drive reporter 

gene and CreERT2 expression, the CMV promoter was used. All vectors were first tested in 

vitro. Afterwards, the vectors which showed a significant down-regulation of transgene 

expression after tamoxifen administration were also analyzed in vivo. Here, a significant 

reduction in reporter gene activity could be detected in animals receiving AAV vectors 

containing loxP sites one week upon tamoxifen administration. Another finding was that the 

insertion of loxP sites has a negative influence on the expression levels of the transgene. 

Thereby, the vector expressing the reporter gene flanked by loxP sites showed the lowest 

expression but also the highest extent of down-regulation after tamoxifen treatment. Finally, 

the shut-off system used was improved in terms of coding capacity of the AAV genome used. 

Therefore, the “self-cleaving” peptide P2A of the Porcine Teschovirus-1 was used to replace 

the promoter driving CreERT2 expression to increase the limiting coding capacity for the gene 

of interest. Again, these AAV9 vectors were tested in vitro and in vivo, also showing a 

significant reduction in reporter gene expression after tamoxifen administration. 

 

Taken together, expression of an inducible Cre recombinase allows efficient inactivation of 

AAV-mediated gene expression on the expense of reduced overall expression efficiency due 

to insertion of loxP sites. These results contribute to the generation of a novel shut-off 

system for AAV-mediated gene transfer applicable for the use in combination with various 

promoters and AAV serotypes to target cell types or tissues of choice. 
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ZUSAMMENFASSUNG (DEUTSCH) 

Regulationssysteme für die Genexpression von einem Adeno-assoziierten viralen (AAV) Vektor sind 

weit verbreitet. In den meisten Fällen wird die Transgen-Expression durch die Zugabe eines 

Medikamentes angeschaltet. Hinsichtlich der Sicherheit von gentherapeutischen Produkten wäre ein 

System, bei dem die Genexpression ausgeschaltet werden kann, von Vorteil, beispielweise wenn 

Nebenwirkungen auftreten. Idealerweise sollte das Vektorgenom durch ein solches System 

inaktiviert werden. Daher war das Ziel dieser Arbeit, ein System zur Abschaltung der Genexpression 

von einem AAV-Vektor zu entwickeln, welches nach der systemischen Gabe des Vektors angewendet 

werden kann. Dazu soll eine induzierbare Cre-Rekombinase verwendet werden. In Anwesenheit von 

Tamoxifen wird diese Cre-Rekombinase aktiviert, sodass ein DNA-Fragment, welches von loxP-

Erkennungssequenzen flankiert ist, aus dem Vektor herausgeschnitten wird.   

 

Bevor das finale System zum Ausschalten des AAV-Vektors evaluiert wurde, wurden einige 

Vorversuche durchgeführt, um die Hintergrund-Aktivität der induzierten Cre-Rekombinase, die am 

besten geeigneten Positionen für die loxP-Sequenzen innerhalb des AAV-Genoms und der Einfluss 

dieser loxP-Sequenzen auf die Expression des Transgens zu analysieren. Außerdem wurde eine Co-

Transduktion getestet, bei der ein AAV-Vektor für die induzierbare CreERT2-Rekombinase und ein 

zweiter Vektor für ein Reportergen flankiert von loxP-Sequenzen kodiert. Es wurden AAV-Vektoren 

des Serotyps 9 zur Verpackung des finalen Abschaltsystems eingesetzt, bestehend aus der 

induzierbaren CreERT2-Rekombinase, einem Luciferase-Reportergen und den loxP-Sequenzen an 

unterschiedlichen Positionen, um den Effekt der loxP-Lokalisation innerhalb des AAV-Genoms zu 

untersuchen. Die Expression des Reportergens sowie der CreERT2-Rekombinase wurde durch einen 

CMV-Promotor kontrolliert. Zunächst wurden alle Vektoren in vitro getestet. Die AAV-Vektoren, die 

zu einer signifikanten Herunterregulation des Reportergens nach Tamoxifen-Gabe geführt haben, 

wurden anschließend auch in vivo analysiert. Auch hier zeigte sich nach Behandlung mit Tamoxifen 

eine signifikante Reduktion der Reportergen-Aktivität. Außerdem konnte festgestellt werden, dass 

die Insertion der loxP-Sequenzen einen negativen Einfluss auf die Expression des Transgens hat. 

Dabei zeigte der Vektor, der für das Reportergen flankiert von loxP-Sequenzen kodiert, die geringste 

Expression, jedoch gleichzeitig die stärkste Herunterregulation nach Tamoxifen-Gabe. Schließlich 

wurde das Abschaltsystem in Bezug auf die verfügbare Kodierungskapazität des AAV-Genoms 

verbessert, indem das sogenannte „selbst-spaltende“ Peptid P2A aus dem Porcine Teschovirus-1 

verwendet wurde. Dieses P2A-Peptid ersetzt den Promotor, der die Expression der CreERT2-

Rekombinase antreibt, wodurch die Kodierungskapazität für das Transgen erhöht wird. Auch diese 

AAV-Vektoren wurden sowohl in vitro als auch in vivo getestet. Hierbei zeigte sich, dass auch mit 

diesen Vektoren eine signifikante Reduktion der Reportergen-Expression nach Tamoxifen-Gabe 

erreicht werden kann.  

 

Zusammengefasst erlaubt die Expression einer induzierbaren Cre-Rekombinase eine effiziente 

Inaktivierung der AAV-vermittelten Genexpression, jedoch auf Kosten einer reduzierten 

Expressionseffizienz durch die Insertion von loxP-Sequenzen. Diese Ergebnisse tragen zur 

Generierung eines neuartigen Abschaltsystems für den AAV-vermittelten Gentransfer bei, welches in 

Kombination mit verschiedenen Promotoren und AAV-Serotypen anwendbar ist, um die 

gewünschten Zelltypen oder Organe zu erreichen.  
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1. INTRODUCTION 

1.1. GENE THERAPY 

In general, gene therapy is defined as the transfer of nucleic acids (DNA or RNA) into a cell or 

tissue for the prevention or the treatment of a disease. According to the European 

Medicines Agency (EMA) the aims of gene therapy products using recombinant nucleic acids 

are the regulation, the repair, the replacement, the addition or the deletion of a genetic 

sequence. At the end, gene therapy should lead to the correction, the restoration or the 

modification of physiological functions in humans.  

Due to ethical considerations, only somatic gene therapy is allowed to be applied in humans. 

There are two options for somatic gene transfer which include ex vivo and in vivo 

approaches. Ex vivo means that tissues or cells are explanted, treated with gene transfer 

vectors and re-implanted into the organism.  

 

1.1.1. History and aims of gene therapy 

The development of gene therapy for the application in humans has been reviewed by Wirth 

et al. in 2013 [1]. Briefly, the history of gene therapy started in 1961 when the inheritance of 

genetic mutations due to a viral infection was discovered. But at that time, strategies for the 

usage of recombinant DNA had not been established yet. The first human gene transfer was 

performed in 1968 by using the wild-type Shope papilloma virus to introduce the gene for 

arginase into two female patients suffering from arginase deficiency [2]. The outcome was 

negative which was not due to the gene transfer itself but because the desired gene was 

actually not encoded by the virus [3]. In 1988, the first approved trial was performed. Here, 

no therapeutic gene was used but a marker gene was introduced by viral gene transfer [4]. 

In 1995, a therapeutic gene transfer was used to treat patients suffering from ADA-SCID [5]. 

In the following years, further attempts to treat several diseases were performed but in 

most cases the treatment did not lead to the results expected. In 1999, gene therapy 

encountered a heavy setback when Jesse Gelsinger died of strong immune response due to a 

high dose adenoviral treatment [6]. At the moment, gene therapy experiences increasing 

interest again. Most trials conducted aim to treat cancer as well as monogenetic and 

cardiovascular diseases. The first gene therapy products were approved in China: 
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GendicineTM (2003) for the treatment of head-and-neck squamous cell carcinoma [7] and 

OncorineTM (2005) for the therapy of late-stage refractory nasopharyngeal cancer. As the 

first adenoviral vector that completed the clinical phase III, Cerepro® got the permission to 

be manufactured in the EU. Cerepro® is used for the treatment of malignant brain tumors. In 

2012, the first gene therapy product was approved for the European market: Glybera® 

(Alipogene tiparvovec). Glybera® consists of an adeno-associated viral vector (AAV) encoding 

the lipoprotein lipase for the treatment of the rare disease lipoprotein lipase deficiency.  

 

1.1.2. Vector systems used in gene therapy 

For gene therapy purposes, several delivery systems for nucleic acids have been validated. 

Robbins and Ghivizzani summarized the most important vector systems in their review [8]. 

The main differentiation is made between non-viral and viral vectors. In case of non-viral 

delivery systems, naked plasmid DNA, liposomes, and DNA conjugates are the best-known.  

Viral vectors are increasingly used due to their ability to enter cells more efficiently 

compared to non-viral vectors. The most prominent viral vector systems are based on 

Retroviruses, Lentiviruses, Adenoviruses, and Adeno-associated viruses (AAV). These various 

viral vector systems differ in terms of nucleic acid encoded (DNA, RNA), coding capacity, and 

tissue specificity. Moreover, retroviral and lentiviral vectors belong to the family of 

integrating vectors whereas adenoviral and AAV-based vectors integrate at much lower 

frequency. Another differentiation can be made by the cells that are transduced by theses 

vectors. Retroviral vectors require cell division for efficient integration whereas the other 

viral vectors are also capable of transducing non-dividing cells [9].  

 

1.1.3. General problems of gene therapy using viral vectors 

Depending on the viral vectors system which is applied, different safety aspects have to be 

taken into account [1, 9]. Regarding retroviral and lentiviral vectors, the biggest concern is 

the risk of insertional mutagenesis. In some clinical trials, patients developed leukemia after 

treatment due to uncontrolled integration upstream of tumor genes. Improved vectors are 

under investigation where an insertion at preferred locations is enabled. Another problem of 

viral vectors is the occurrence of immune responses against the vector. In particular, 

adenoviral vectors are able to cause adverse immunogenic events as seen in the case of 
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Jesse Gelsinger in 1999. Neutralizing antibodies against the viral vector are another 

challenging issue. In case of adenoviral vectors, this response is very fast which leads to a 

rapid clearance of the vector from the organism. Also, the efficacy of AAV-based vectors is 

limited by pre-existing antibodies.  Off-target effects due to unspecific tissue tropism of viral 

vectors are another problem to address. If unwanted cells or tissues are transduced by the 

viral vector adverse events may occur. There are several strategies to circumvent some of 

these problems which will be discussed below.  

Taken together, viral vector systems have to be improved in terms of immunogenicity, tissue 

specificity, and the ability to control expression [10]. By doing so, the risks of genotoxicity, 

immunogenicity and cytotoxicity can be reduced and the safety profiles of viral vectors can 

be improved.   

 

1.2. AAV VECTORS FOR GENE THERAPY 

The gene therapy vector system used in this study is based on Adeno-associated viruses 

(AAV) which will be described in more detail in the following sections. 

 

1.2.1. Biology of AAV 

Adeno-associated viruses were initially described in 1965 as a contamination in adenoviral 

productions [11, 12]. These viruses were assigned to the genus Dependoparvovirus within 

the family of Parvoviridae and the subfamily of Parvovirinae. The name of the genus already 

indicates that AAVs require a co-infection with a helper virus for a productive replication 

cycle. Besides Adenoviruses [11], also other DNA viruses as Herpes Simplex virus [13], human 

Cytomegalovirus [14], Vaccinia virus [15], and Papilloma virus [16] can serve as helper 

viruses.  Each of these helper viruses is able to provide essential genes necessary for AAV 

replication upon co-infection. AAV can also undergo a latent infection cycle if the cell is not 

co-infected with a helper virus. In this case, the AAV genome gets integrated at a specific site 

(AAVS1) which is located on chromosome 19 of the host [17-20]. Besides integration, the 

AAV genome is also able to persist in an episomal form [21]. Upon super-infection with a 

helper virus, the AAV provirus is rescued from the host genome so that the productive 

infection can take place [22].   
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1.2.1.1. Serotypes and receptors 

So far, 12 different serotypes of AAV were isolated from humans and primates (see table 1). 

All serotypes known are able to transduce different human cell lines, independent on their 

natural host. The best characterized serotype is AAV2, but other serotypes were shown to be 

even more beneficial in terms of gene therapy approaches. Due to its efficient transduction 

of lung, liver and muscle of rodents, AAV9 gained much interest in the field. Moreover, AAV9 

is capable to cross the blood-brain-barrier and therefore plays a central role in gene therapy 

studies of the brain [23]. Another aspect is the strong transduction of cardiac tissue at least 

in rodents which makes AAV9 the serotype of choice for gene therapy of cardiovascular 

diseases [24-26].  

The receptors and co-receptors used by different serotypes are indicated in table 1. For 

efficient cellular uptake, the AAV capsid has to bind to the primary receptor. The entry of the 

viral particles is facilitated by binding of a second receptor. Capsid binding to the receptor 

also defines the viral tropism as not all receptors are present on every cell.   
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Table 1: AAV serotypes and receptors 

serotype isolated from primary receptor co-receptor references 

AAV1 primate N-linked sialic acid unknown [27, 28] 

AAV2 human heparan sulfate 

proteoglycan 

fibroblast growth factor 

receptor, hepatocyte growth 

factor receptor, laminin 

receptor, CD9 

[29-34] 

AAV3 human heparan sulfate 

proteoglycan 

fibroblast growth factor 

receptor, hepatocyte growth 

factor receptor, laminin 

receptor 

[33, 35-37] 

AAV4 primate O-linked sialic acid unknown [38] 

AAV5 human N-linked sialic acid platelet-derived growth factor 

receptor 

[39-41] 

AAV6 human N-linked sialic acid, 

heparan sulfate 

proteoglycan 

epidermal growth factor 

receptor 

[28, 40, 42] 

AAV7 primate unknown unknown [43] 

AAV8 primate unknown laminin receptor [33, 43] 

AAV9 human O-linked galactose laminin receptor [33, 44, 45] 

AAV10 primate unknown unknown [46] 

AAV11 primate unknown unknown [46] 

AAV12 primate unknown unknown [47] 

 

 

1.2.1.2. Genomic organization 

The AAV genome consists of a single-stranded DNA comprising both polarities to the same 

extend [29, 48]. With a genome size of about 4.7 kb, the viral genome only codes for three 

mRNAs from three open reading frames (ORFs).  

The first ORF encodes four non-structural proteins called Rep (regulatory proteins) [49]. The 

transcription of Rep78 (78 kDa) and its splice variant Rep68 (68 kDa) are driven by the p5 

promoter. Another promoter, p19, controls the expression of Rep52 (52 kDa) and its splice 

variant Rep40 (40 kDa). All Rep proteins contain a nuclear localization signal (NLS) as well as 

a Helicase/ATPase activity [50, 51]. The unspliced variants are also able to bind to the 

inverted terminal repeats (ITRs) flanking the AAV genome. The Rep proteins are involved in 

replication, packaging of the viral genome and integration into the host genome in the 

absence of a helper virus [22].  
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The structural or capsid proteins (VP) are encoded by the second ORF which is controlled by 

the p40 promoter [52, 53]. VP1 (87 kDa), VP2 (73 kDa) and VP3 (62 kDa) are generated from 

a single mRNA by usage of different start codons and alternative splicing [54-56]. All VP 

proteins share the same C-terminal domain responsible for primary and secondary receptor 

binding [30, 57, 58]. The N-terminal domain of VP1 contains a phospholipase A2 activity 

(PLA2) required for the release from endosomes and entry into the nucleus [59-61]. The AAV 

genome also harbors an alternative ORF driven by the p40 promoter which encodes the 

assembly-activating protein (AAP) important for assembly of the capsid proteins [62].  

The only cis-acting elements within the AAV genome are the inverted terminal repeats (ITRs) 

flanking the ORFs. Each ITR has a size of 145 nt and forms a t-shaped hairpin by self-

annealing of palindromic sequences [63]. These palindromic sequences also comprise Rep 

binding elements (RBE) and a terminal resolution site (trs) [64-66]. The so-called D sequence 

which is single-stranded and of about 20 nt length is required for viral replication and 

packaging [67-69]. The ITRs function as primers for the viral replication but also fulfill tasks in 

genome packaging, integration [70, 71] and rescue of the integrated provirus from the host 

genome [72, 73]. 

 

1.2.1.3. Structure of capsids 

The AAV capsid is built up by 60 subunits of the capsid proteins VP1, VP2 and VP3 [53] that 

form an icosahedral viral particle with a size of about 25 nm [74]. The ratio between the 

single capsid proteins is 1:1:10 (VP1:VP2:VP3) with 5 copies of VP1 and VP2 and 50 copies of 

VP3 per particle [22]. Trimers of all three capsid proteins are arranged in 20 triangular faces 

in a T=1 symmetry defining the complexity of the capsid [75]. As a result, 2-fold, 3-fold and 

5-fold symmetry axes are formed [76]. Electron microscopy and X-ray crystallography 

revealed that there is a conserved 8-stranded anti-parallel β-barrel motif within the 

assembled particle. There are also defined structures on the surface of the capsid which can 

be describes as depressions (at the 2-fold axes), spikes (at the 3-fold axes) and pores (at the 

5-fold axes).  
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1.2.1.4. Infection and replicative cycle 

After binding of AAV particles to the respective receptors (see table 1), the capsids are 

internalized by endocytosis. AAVs are able to use several pathways for cellular uptake like 

clatherin-mediated [77], RacI-mediated [78] or CLIC/GEEC-mediated (clatherin-independent 

carriers/GPI enriched endocytic compartment) endocytosis [79].  

Upon cellular uptake, AAV virions are trafficked in vesicles along the cellular cytoskeleton 

(microtubule network) [78]. This step is rate-limiting for AAV infection due to the slow speed 

of vesicular transport within many cell types [80, 81]. A conformational change within the 

capsid is required for the release of AAV particles from the endosomes. Therefore, N-

terminal domain of VP1 containing the PLA2 domain is externalized [60]. The low pH inside 

the vesicle triggers this conformational change but also cathepsins seem to play a role [82]. 

The PLA2 activity facilitates the release from the endosomes into the perinuclear 

compartment [60].  

As intact capsids, AAVs enter the nucleus through the nuclear pore complex [78, 80] or 

alternative pathways [83]. First, the viral particles are transported to the nucleolus. For 

uncoating, the virions have to be relocated to the nucleoplasm where the second-strand 

synthesis can take place [84]. The conversion of the viral genome into a double-stranded 

DNA is required for viral replication and stability of the genome [85, 86]. For the replication 

mediated by the helper virus, the ITRs serve as primers [70]. As described in part 1.2.1.2., the 

viral Rep proteins play a crucial role by unwind double-stranded viral genomes during 

replication to generate the single-stranded DNA genomes. In the absence of a helper virus, 

the Rep proteins are required for integration into the chromosome 19 of the host genome. 

Also, the viral genomes are able to persist extrachromosomally as episomes [87].  

The assembly of viral particles also takes place in the nucleolus where host proteins 

(nucleophosmin, nucleolin) as well as the viral AAP protein promote the capsid formation 

[88]. The viral genomes are encapsidated through the pores at the 5-fold axes which is 

facilitated by Rep78/68 proteins [89, 90]. The final release of the AAV virions from the cells is 

enabled by cell lysis which is mainly caused by the helper virus.  
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1.2.1.5. Immunology 

The major limitation in using AAVs as a gene therapy vector is the existence of neutralizing 

antibodies (nAb) against the AAV capsid. Within the human population, 50-80% of adult 

individuals have pre-existing antibodies against AAV [91].  

In general, AAVs show a low immunogenicity, but mild host immune responses to AAV 

infections can be detected [92, 93]. The response of the innate immune system is 

represented by production of pro-inflammatory cytokines/chemokines in combination with 

infiltration of leukocytes into the liver [94, 95]. This immune reaction is transient and very 

mild. Moreover, a humoral immune response is activated by Toll-like receptor (TLR) signaling 

and uptake of AAV particles into macrophages [96, 97]. It could be shown that memory B-

cells play a crucial role in immune reactions against AAV [98]. Besides the B cells, also CD8+ 

memory T cells specific for the capsid are activated upon infection, at least in humans [99].  

To circumvent these immune responses, the engineering of AAV capsids for escaping the 

binding of neutralizing antibodies, is under investigation [100, 101].   

 

1.2.2. AAV as a gene therapy vector 

1.2.2.1. Advantages and limitations 

Currently, adeno-associated viruses (AAV) are among the safest viral vectors for application 

in gene therapy. Compared to other viral vectors used for this purpose, AAV vectors show 

several advantages. First of all, AAV itself is not known to cause disease or symptoms in 

humans [102] and the induced immune response is usually very mild. Moreover, AAV vectors 

are able to integrate into the host genome at a specific location on chromosome 19 whereas 

random insertions are very rare. Because of the removal of rep and cap genes from the AAV 

genome, AAV vectors usually exists in episomal form within the nucleus. The episomal 

format of vector DNA as well as the rare random integration events leads to a very low risk 

for insertion mutagenesis [103], which can be a problem with retroviral vectors. In non-

dividing cells, AAV vectors exhibit stable transgene expression for long time periods. 

The usage of AAV as a vector system for gene therapy approaches also shows some 

drawbacks. The AAV genome has a size of about 4.7 kilobases which also determines the 

cloning capacity for therapeutic genes. Another disadvantage is the existence of neutralizing 

antibodies against AAV, especially against serotype 2, which limits the efficiency of viral gene 
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transfer. Also, the broad tropism of AAV can result in off-target effects. To circumvent these 

problems, the usage of other serotypes and tissue-specific promoters or engineering of viral 

capsids enable more specific and efficient AAV-mediated gene transfer [104].  

 

1.2.2.2. Transductional and transcriptional targeting of AAV vectors 

As described above, gene therapy approaches should be efficient and specific in terms of 

targeting the tissue of choice and minimizing off-target effects by transduction of unwanted 

tissues or cell types. A first step regarding the specificity is the selection of the best AAV 

serotype for gene transfer. For example, AAV2 shows high expression in the liver but has 

overall a more unspecific tropism [57, 105]. For transduction of heart and muscle, the 

serotypes 1, 6, 8, and 9 are best suited although also the liver is transduced by these 

serotypes [105-107]. Engineering of AAV capsids serves as an alternative option to improve 

specificity of the gene transfer to a tissue of choice. Therefore, short peptide motifs can be 

inserted into defined positions within the capsid and these modified AAV vectors are then 

selected on the desired tissues [108-110]. Moreover, changes in the amino acid sequence of 

the capsid can result in a modified tropism, as it was shown with AAV2 resulting in reduction 

of liver transduction and simultaneous increase in cardiac transduction efficacy [106].  

Besides the choice of serotypes and capsid modifications, the selection of a tissue-specific 

promoter enhances the efficacy and specificity of gene transfer. The use of more unspecific 

promoters like the CMV promoter results in ubiquitous expression of the transgene which 

again could lead to unwanted off-target effects [111]. By now, there are several specific 

promoters for various tissues and cell types available. For example, the use of the myosine 

light chain promoter (MLC) coupled to the CMV enhancer leads to a highly specific 

expression in the heart [106]. Another cardio-specific promoter is the troponin T promoter 

(TnT) which results in a reduced liver expression of the transgene [112]. 

To further improve specificity, AAV vectors can be detargeted from distinct tissues using 

microRNA (miRNA) target sites. These target sites are inserted into the vector so that the 

corresponding miRNA can bind and enable degradation. One of the first miRNA target site 

used was the miRNA-122 (miR122) target site. MiR122 is expressed predominantly in the 

liver [113], resulting in degradation of viral transcripts from the AAV vector in the liver, 

whereas cardiac expression remains unaffected.  
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1.3. REGULATORY SYSTEMS FOR AAV GENE THERAPY VECTORS 

An early aim of gene therapy was the regulation of gene expression in a spatio- and 

temporal-controlled manner. Therefore, various regulatory systems have been developed 

which are summarized in the following section. 

Regulatory systems have to fulfill several characteristics to be applicable in a clinical setting 

[114, 115]. Most important is a low background activity in the absence of an inducer drug to 

avoid side effects from the regulatory system itself. The system should be switched on or off 

by a drug within a wide dose range to titrate gene expression towards defined levels. It 

would be beneficial if the system consists of mainly human components to prevent 

immunogenic reactions. Moreover, the system should be specific to cells or tissues of 

interest and should not interfere with endogenous gene expression. An ideal regulation 

system should be reversible and the inducing drug should be safe, orally bioavailable and 

penetrate all tissues. As a last criterion, the expression of the therapeutic gene needs to be 

up- or down-regulated by the drug in a fast and dose-dependent manner to avoid toxicities 

due to overexpression of the transgene.  

 

1.3.1. Tet-ON/Tet-OFF systems 

Regulatory systems which are inducible by tetracycline or doxycycline administration were 

developed in 1992 by Gossen and Bujard [116]. The system comprises transactivators (tTAs) 

which are formed by the fusion of the tet repressor protein to the viral transactivation 

domain (VP16). The expression of the tTAs is driven by a human cytomegalovirus promoter. 

Moreover, the tet operator sequence (TRE, tet responsive element) is required to control 

the expression of the transgene of interest. In case of the Tet-OFF system, doxycycline (Dox) 

prevents binding of the tTAs to the TRE which results in a lack of expression of the 

transgene. In the absence of Dox, the tTAs bind to the TRE so that the gene expression can 

take place. The Tet-ON system uses mutated tTAs (rtTAs, reverse tTAs) which can be 

activated by Dox so that the transgene is only expressed in the presence of Dox [114]. In 

general, Tet-ON systems need higher doses of Dox for activation since the mutation of tTAs 

also affects the Dox binding ability [117]. The main concerns about the Tet systems are the 

background activity in the absence of Dox (Tet-ON) and the potential of development of 

resistances against tetracycline or doxycycline. Moreover, Dox treatment can lead to 



 
Introduction 29 

photosensitivity in a dose-dependent manner and humoral and cellular immune responses 

against the Tet system were found in non-human primates [115]. 

The tet system was early adapted to the usage in AAV gene therapy vectors. Thereby, the 

system can be placed into one AAV vector [118] or can be split to two AAV vectors which 

have to be co-transduced [119]. The advantage of a single AAV vector containing the whole 

system is that the every component is delivered into each cell. Unfortunately, this also limits 

the coding capacity for the transgene of interest to 2-2.5 kb. If two AAV vectors are used, 

almost 4 kb can be used for the transgene and/or cell-specific promoters. But both vectors 

have to target the same cell to deliver all components which reduces the efficacy of this 

approach [120]. It was also described that the promoter activity in the viral ITRs can lead to 

higher background expression of the transgene in the absence of the transactivator.  

 

1.3.2. Rapamycin-inducible systems 

Another regulatory system was developed by Rivera et al. in 1996. This rapamycin-inducible 

system has an advantage over the Tet systems because it consists only of human 

components [114]. Rapamycin facilitates dimerization of cellular proteins and can be used 

for the development of a regulation system [115] by fusing a DNA-binding domain to the 

immunophilin FKBP12. As a second fusion protein, an activation domain (p65) is coupled to 

FRAP (FKBP rapamycin-associated protein). In the presence of rapamycin, the dimerization 

of these two fusion proteins can take place and a transcription activator is formed which can 

bind to a promoter containing synthetic DNA-binding sequences and thereby drive 

transgene expression [8]. The advantage of this system is a low background activity and a 

high inducibility. The main drawbacks are that the system cannot be shut-off immediately 

after rapamycin withdrawal and that rapamycin itself has an immunosuppressant potential 

[115]. In case of an use in humans, the dose of rapamycin would be too high for clinical 

applications. To solve this problem, rapamycin analogs are under investigation [114].  

In terms of the applicability in AAV vectors, two vectors are necessary to package all 

components required [120]. This, again, leads to a reduction of efficacy due to the lower 

probability of two vectors entering the same cell.  
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1.3.3. Mifepristone (RU486)-inducible systems 

Analogous to the rapamycin-inducible system, another regulatory approach using RU486 

(mifepristone) was developed. It is composed of a mutant progesterone receptor able to 

bind RU486 and thereby gets activated [8]. The receptor was mutated by fusing the RU486-

binding domain to the DNA-binding domain of a yeast transcription factor (GAL4) and the 

viral transactivator VP16 (from Herpes Simplex virus). Binding of RU486 leads to a 

conformational change so that promoters containing GAL4-binding sites are activated and 

enable subsequent transgene expression [114]. Improvements of the system in terms of 

leakiness and efficacy were made by usage of the p65 activation domain and other 

modifications [115]. A variant of this approach called “Gene Switch” is commercially 

available which can be strongly induced by low RU486 doses. As a drawback, the background 

activity in the off-state may be quite high. RU486 is in clinical use to terminate pregnancy for 

a long time. To fully induce the system, lower doses of RU486 are required than to terminate 

pregnancy. But also this low concentrations may cause side effects [115].  

The RU486-inducible system can be placed onto a single AAV vector. The coding capacity for 

the transgene of interest is limited to 2-2.5 kb [120]. If two AAV vectors are used, cell-

specific promoters can be used to drive the expression of the mutated progesterone 

receptor [121]. 

 

1.3.4. Other regulatory systems 

Further regulation systems for gene therapy vectors include physiologically regulatable 

systems and the ecdysone receptor-based system. Gene expression can be regulated in a 

more physiological way by using hypoxia responsive elements (HRE) and antioxidant 

responsive elements (ARE) [117]. These systems react to reduced oxygen levels or oxidative 

stress.  

The ecdysone receptor (EcR) is derived from insects and plays a role in molting and 

metamorphosis [115]. If the natural ligand (ultraspiracle, USP) binds to the receptor, a 

conformational change and dissociation of a repressor lead to expression of genes controlled 

by the EcR. Some systems also use the mammalian analog of USP, the retinoid-X-receptor 

(RXR). By fusing the GAL4 DNA-binding domain to EcR and the VP16 activator to RXR, the so-

called “RheoSwitch” system can be improved in terms of basal activity and inducibility. A 

major concern is the overexpression of RXR in mammalian cells as RXR plays a role in several 
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pathways and resulted in cardiomyopathy in mice if overexpressed. Moreover, ecdysteroids 

itself are considered to be safe but humans ingest variable amounts of these compounds by 

eating vegetables which can lead to undesired activation of the regulatory system. To solve 

this problem, many non-steroidal drugs for induction were developed [122]. 

 

1.4. CRE RECOMBINASE 

Besides the components of the regulatory systems mentioned, a regulation of gene 

expression mediated by a recombinase is possible. The recombination system will be 

described in detail in the next section.  

 

1.4.1. Structure of Cre/loxP recombination 

The best known recombination system is derived from bacteriophage P1 and consists of the 

gene for the recombinase of the λ integrase family (cre) and two recognition sites (loxP) 

where recombination occurs. It was discovered in 1981 by Nat Sternberg and Daniel 

Hamilton [123]. The Cre recombinase (38 kDa, “causes recombination”) is the only enzyme 

required for recombination – no additional co-factors or host proteins are needed [124]. 

Each loxP (“locus of x-over of P1”) sequence comprises in total 34 bp with two inverted 

repeats (each 13 bp) and a spacer (8 bp) required as the recognition site for the Cre [125]. 

The form of the DNA substrate containing the loxP sites is not important for recombination 

so that supercoiled, linear or nicked-circle DNA can serve as the template. The 

recombination products of a DNA molecule containing two loxP sites are a linear and a 

closed circular DNA molecule [126]. To achieve an intra-molecular recombination, the loxP 

sequences have to be separated by at least 82 bp [127]. Even with a distance of 400 kb 

between both loxP sites, excision of the intervening DNA fragment can be performed with 

about 50% efficacy [128]. The orientation of the loxP sequences plays a crucial role for the 

outcome of recombination. If they are oriented in parallel on the same DNA molecule, the 

flanked DNA sequences will be excised. Intra-molecular recombination in case of anti-

parallel oriented loxP sites results in inversion of the intervening DNA fragment. Moreover, 

inter-molecular recombination (translocation) between two DNA molecules is possible if one 

loxP site is located on each DNA molecule [129]. The recombination reactions are reversible 
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as long as two homotypic lox sites are used. The efficacy of intra-molecular recombination 

(excision, inversion) is higher than of inter-molecular reactions (translocation, integration) 

with excisions as the most stable recombination events [130]. The cleavage and the strand-

exchange of the DNA molecule take place within the 8 bp spacer region of the loxP [131]. 

The crystal structure of Cre bound to loxP sites revealed that 4 monomers of the Cre 

recombinase and both loxP sequences form the recombination complex with each Cre 

monomer bound to one inverted repeat of the loxP [132, 133]. Therefore, the Cre tetramer 

brings together both loxP sites for cleavage and strand exchange [128, 134]. After 

recombination, the loxP sites are built up by two complementary halves of the pre-existing 

loxP sequences.  

In the infectious cycle of bacteriophage P1, Cre-mediated recombination is crucial for 

circularization of the viral DNA after infection of the host and the separation of dimers 

emerging during replication. This step is very important during cell division of the host so 

that each daughter cell receives a P1 DNA copy [135].  

 

1.4.2. Improved and inducible Cre recombinases 

Since the discovery of the Cre/loxP systems, several improvements of the system have been 

made. On one hand, researchers wanted to enhance Cre expression and activity in 

mammalian cells. Therefore, the Cre gene itself was modified by usage of an eukaryotic 

initiation sequence for translation, insertion of amino acids and mutations of splice sites 

[136]. Another alteration to the Cre sequence was made by implementing the mammalian 

codon usage. This codon-improved Cre (iCre) sequence shows reduced epigenetic silencing 

in mammalian cells which leads to higher expression levels [137]. 

For the application of the Cre/loxP system (see next chapter), inducible Cre recombinases 

were developed. Therefore, fusion proteins of the Cre and the ligand-binding domain (LBD) 

of estrogen receptors were made. The aim was the retention of the Cre fusion protein in the 

cytoplasm in the absence of the respective ligand. Upon ligand binding, a conformational 

change leads to translocation of the Cre into the nucleus where recombination between two 

loxP sites can occur.  

One of the first developments was the CreER which uses the LBD of the human estrogen 

receptor [138]. The binding of estradiol or 4-hydroxytamoxifen (4-OHT) results in the 

activation of the CreER whereas the absence of the stimulus did not lead to any activation. 
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As a next step of developing an inducible Cre recombinase, the binding of endogenous 

estradiol should be prevented. Therefore, the LDB of the human estrogen receptor was 

mutated (G521R mutation) resulting in the binding of tamoxifen but not estradiol [139]. This 

Cre version called CreERT (T for tamoxifen) showed only low background activity in the 

absence of tamoxifen [140]. Feil et al. further improved the inducible Cre by inserting more 

mutations [141]. The resulting CreERT1 (G400V/L539A/L540A) shows improved binding to the 

antiestrogen ICI whereas the CreERT2 (G400V/M543A/L540A) exhibits higher affinity to 4-

OHT. Both version are still insensitive to endogenous estradiol and show 3- to 4-fold more 

efficient binding to their ligands compared to CreERT. If two ERT2 domains were fused to both 

ends of the Cre recombinase (ERT2iCreERT2), the basal activity in absence of the ligand could 

be reduced further [142, 143].   

Besides the LDB of the human estrogen receptor, also mutated versions of the murine 

estrogen receptor (Mer) were used [144]. The fusion of the Mer domain to the Cre results in 

the same inducibility by tamoxifen as seen with the human estrogen receptor. Again, this 

CreMer recombinase is insensitive to activation upon estradiol binding. By fusing another 

Mer domain to the other end of the Cre recombinase (MerCreMer), the activity of the fusion 

protein can be controlled even more tightly [145]. Moreover, the background levels can be 

reduced further.  

Other induction systems for the Cre include the usage of an interferon-responsive promoter 

to control Cre expression [146] and the fusion of Cre recombinase to the hormone binding 

domain of a mutated human progesterone receptor which can be induced by the synthetic 

steroid RU486 [147]. 

 

1.4.3. Application of the Cre/loxP system 

The first approach using the Cre/loxP system in a mammalian setting was made by Sauer et 

al. in 1989 [148]. They placed DNA sequences containing loxP sites into the yeast genome to 

disrupt the expression of neomycin driven by a SV40 promoter. Upon Cre expression in this 

cell line, the DNA segment flanked by loxP sites was excised and neomycin expression could 

be detected.  

The most common usage of Cre/loxP is the generation of transgenic mouse models, e.g. to 

develop knock-out lines [149]. Therefore, Cre expressing mice are mated with mice 

containing the gene of interest flanked by loxP sites (“floxed”). By using an inducible Cre 
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recombinase and tissue-specific promoters, excision of the floxed sequence can be 

controlled in a spatial and temporal manner [150].  

Mouse models expressing the inducible CreERT2 recombinase are widely used. Depending on 

the expression pattern required, the expression of the CreERT2 can be controlled by 

ubiquitous or cell-specific promoters. The most prominent mouse model is the ROSA26-

CreERT2 which allows the constitutive expression in all cell types [151, 152]. In vivo, the 

CreERT2 is highly sensitive to induction with tamoxifen and do not cause any toxicities. 

Moreover, the basal activity in the absence of tamoxifen is very low [153]. If a more specific 

CreERT2 expression is required the use of cell- or tissue-specific promoters to drive Cre 

expression is beneficial. For example, the endothelial cell-specific promoter Tie2 [154] or the 

smooth muscle-specific SM22 promoter [155] can be used. 

In cardiac research, a transgenic mouse line expressing the tamoxifen-inducible MerCreMer 

under the control of the cardiac-specific α-myosin heavy chain (αMHC) promoter is 

frequently used [156]. However, in case of studying cardiac diseases or alteration, this 

mouse model should be used with caution. Many studies revealed that the induction of the 

MerCreMer by tamoxifen resulted in transient cardiomyopathy in mice, independently 

whether the mouse genome contains loxP sites or not [157, 158]. It could be shown that 

tamoxifen itself plays a role for the adverse events and the higher the tamoxifen dosing, the 

more severe were the side effects in the MerCreMer expressing mouse model [159]. The 

induction of the MerCreMer in cardiomyocytes by tamoxifen administration seems to lead to 

an activation of the DNA damage response which can result in apoptosis, fibrosis and 

dysfunction [160] in a dose-dependent manner.  

To avoid the use of Cre-expressing mouse models, the Cre recombinase can also be 

overexpressed in tissues of interest by viral vectors. Therefore, an adenoviral gene transfer 

of the Cre into a mouse model containing loxP sites was investigated to achieve 

recombination in many cell types [161]. In this case, Cre expression could be detected for 3 

to 4 weeks until the cells were eliminated by the immune system. For long-term Cre 

expression, an AAV-mediated gene transfer is more advantageous [112]. This approach can 

be used to generate knock-out mouse models without the need for long breeding schedules. 
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1.4.4. Cre recombinase-based regulatory systems 

The Cre recombinase has been used for the establishment of a regulatory system for gene 

therapy vectors in many approaches. Studies were published where Cre-dependent viral 

vectors were used [162, 163]. These vectors contain the so-called “Flex switch” which is 

composed of two pairs of lox sites (loxP and lox2272) which are antiparallel and heterotypic. 

As a first step during recombination, the sequence flanked by one pair of lox sites is inverted. 

During a second reaction, two of the lox sites are excised which avoids further 

recombination [164]. By inversion, the expression of the transgene can be switched on or 

off. The inversion of a transgene is also used in Cre-ON and Cre-OFF vectors developed by 

Saunders et al. [165, 166]. In case of Cre-ON vectors, recombination mediated by Cre results 

in the expression of the transgene. Before recombination, the floxed transgene is in 

antisense orientation. In contrast, the floxed transgene in Cre-OFF vectors is encoded in 

sense orientation to the promoter. After recombination, the transgene is inverted so that 

expression is eliminated. Another approach used a stop cassette flanked by loxP sites which 

is place between the promoter and the transgene [167]. In the absence of the Cre 

recombinase, expression from the vector should not take place. After Cre-mediated 

recombination, the stop cassette is excised and transgene expression can occur. One 

disadvantage of this system is the size of the floxed stop cassette (2.8 kb) which also limits 

the available cloning capacity for the promoter and the transgene. Moreover, some read-

through is detectable which may result in higher background activity of the system [163]. All 

the described systems have in common that they require the expression of the Cre 

recombinase in each cell or tissue which is targeted by the gene therapy vector.  

Li et al. published in 2006 the development of a Cre-based regulatory system which utilizes 

the co-transduction of two AAV vectors [168]. One of the vectors expresses the inducible 

CreERT2 recombinase whereas the second vector encodes the transgene (tyrosine 

hydroxylase) flanked by loxP sites. Co-transduction of these AAV vectors and application of 

4-hydroxytamoxifen (4-OHT) activating the Cre recombinase lead to the excision of the 

transgene. By administration of 4-OHT, the expression of the gene can be regulated in a 

temporal and spatial manner. The authors claim that this approach may increase safety of 

viral vectors due to the potential to shut-off of the transgene expression in case of adverse 

events seen, e.g. because of long-term overexpression of the gene. Moreover, the 

expression from the vector can be switched off if the treatment is terminated. As seen with 
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other regulatory systems placed on two AAV vectors, the efficacy of this system is limited by 

the requirement of two AAV vectors entering into the same cell.  
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1.5. AIM OF THE PRESENT STUDY 

Currently, Adeno-associated viruses (AAV) serve as one of the safest viral vector systems for 

application in gene therapy. AAV vectors exhibit a long-term and stable transgene expression 

in non-dividing cells which could lead – in some cases – to undesired effects. Therefore, a 

shut-off system to eliminate expression from the vector in case of side effects would be 

beneficial. 

Within this thesis, such regulatory system should be established for AAV vectors targeting 

the heart via regulation of gene expression by an inducible Cre recombinase. The Cre 

recombinase used is codon-optimized (iCre) for expression in mammalian cells and fused to 

a mutant estrogen receptor (ERT2). After expression, the CreERT2 remains in the cytoplasm of 

the cell preventing recombination events. Administration of tamoxifen results in activation 

of the CreERT2 and translocates it to the nucleus where recombination between two identical 

loxP sites can take place. To generate a shut-off system, recombination results in excision of 

a defined DNA fragment flanked by loxP sites which in turn leads to the destruction of the 

AAV vector. 

This thesis addressed the questions of background activity of the inducible Cre recombinase, 

the most efficient positions of the loxP sites, and the optimization of a single vector genome 

harboring both the target gene to be controlled as well as the CreERT2.  

  



 
Material and Methods 38 

2. MATERIAL AND METHODS 

2.1. MATERIAL 

2.1.1. Animal models 

denotation nomenclature description source 

C57Bl/6 C57BL/6NRj mouse model used for general 

animal experiments 

Janvier  Labs, Saint-

Berthevin (France) 

MerCreMer B6.Cg-Tg(Myh6-

cre/Esr1)1Jmk/J 

C57Bl/6 background, expression 

cassette for inducible MerCreMer 

recombinase controlled by αMHC 

promoter 

Johannes Backs 

(University Hospital 

Heidelberg) 

Tomato B6.129(Cg)-

Gt(ROSA)26Sortm4(ACTB-

tdTomato,-EGFP)Luo/J 

C57Bl/6 background, expression 

cassette for fluorescent Tomato 

dye which is flanked by loxP sites 

and followed by eGFP transgene 

Hermann-Josef Gröne 

(German Cancer 

Research Center, 

Heidelberg) 

 

2.1.2. Eukaryotic and prokaryotic cells 

2.1.2.1. Eukaryotic cells 

denotation description source 

CV-1 5B Monkey kidney cell line, stably transfected with 

lacZ gene which is separated from promoter by a 

neomycin resistance gene (Neo) flanked by loxP 

sites 

Rolf Sprengel (Max Planck 

Institute for Medical Research, 

Heidelberg) 

HEK293T human kidney cell line, expressing the SV40 large T 

antigen 

ATCC, Wesel 

 

2.1.2.2. Prokaryotic cells 

denotation description source 

DH5α chemically competent cells that can be 

transformed with high efficiency 

Invitrogen, Karlsruhe 
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2.1.3. Cell culture media and supplements 

2.1.3.1. Media and supplements for eukaryotic cell cultures 

denotation description source 

DMEM Dulbecco’s Modified Eagle Medium Gibco®, Thermo Fisher 

Scientific, Schwerte 

FBS Fetal bovine serum Biochrom, Berlin 

L-glutamine 200 mM Gibco®, Thermo Fisher 

Scientific, Schwerte 

PBS 137 mM NaCl, 2.7 mM KCl, 4.3 mM 

Na2HPO4, 1.47 mM KH2PO4 , pH 7.4 

 

Penicillin/streptomycin 10,000 U/ml penicillin, 10,000 µg/ml 

streptomycin  

Gibco®, Thermo Fisher 

Scientific, Schwerte 

Trypsin 2.5% trypsin solution Thermo Fisher Scientific, 

Schwerte 

   

2.1.3.2. Media and supplements for prokaryotic cell cultures 

denotation description 

LB agar 10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl, 15 g/l agar 

LB medium 10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl 

SOC medium 2% tryptone, 0.5% yeast extract, 0.05% NaCl, 2.5 mM KCl, 10 mM MgCl2, 

20 mM glucose 

 

2.1.4. Plasmids 

denotation description source reference 

pSSV9 coding for single-stranded AAV2 ITRs 

flanking AAV2 rep gene 

Dirk Grimm 

(Bioquant, 

Heidelberg) 

Samulski et al. 

(1987) 

pCreERT2 coding for inducible CreERT2 

recombinase 

Pierre Chambon 

(University of 

Strasbourg, France) 

Feil et al. (1997) 
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pDP2rs/pDP9rs coding for AAV2 rep, AAV2/9 wild type 

cap and red fluorescent protein (for 

transfection control); used for 

production of wtAAV2/9 vectors 

Dirk Grimm 

(Bioquant, 

Heidelberg) 

Grimm et al. 

(2003) 

2.1.5. Primer and oligonucleotides 

All primers and oligonucleotides were provided by Eurofins MWG Operon (Ebersberg, 

Germany) and are listed in 5’-to-3’ orientation. 

2.1.5.1. Primers for genotyping of αMHC-MerCreMer mice 

denotation sequence (5’-3’) 

control fwd 2  CAACGCTCTACTGTTGCCTCC 

control rev 2 CTGCCCTAGCCAGCCTATTTGC 

αMHC-MerCreMer 4F CGGCACTCTTAGCAAACCTC 

αMHC-MerCreMer 4R AGGCAAATTTTGGTGTACGG 

 

2.1.5.2. General PCR primers 

denotation sequence (5’-3’) description 

AflII-TnT-BsiW F 

AflII-TnT-BsiW R 

CGCGCTTAAGGTCTCAGTCCATTAG 

CATGCGTACGTTCTGCCGACAGATC 

amplification of human troponin 

T promoter flanked by restriction 

sites (Afl II, BsiW I) 

Age-PolyA-Kas F 

Age-PolyA-Kas R 

ATGCTACCGGTCAGACATGATAAGA 

GATTAAGGCGCCCTTTAAAAAACCTCC 

amplification of SV40 Poly(A) 

flanked by restriction sites (Age I, 

Kas I) 

Age-Rluc-Nsi F 

Age-Rluc-Nsi R 

CTAAATGCATGCCACCATGGCTTC 

GTTAACCGGTTTACTGCTCGTTCT 

amplification of Renilla Luciferase 

flanked by restriction sites (Age I, 

Nsi I) 

Asc-CMV-AflII F 

Asc-CMV-AflII R 

ATGGCGCGCCTTAATAGTAATC 

GGCTAGCTTAAGTGACTGCGTT 

amplification of CMV promoter 

flanked by restrictions sites 

(Asc I, Afl II) 

Bam-PolyA-Cla-Sph F 

Bam-PolyA-Cla-Sph R 

ATGCTGGATCCCAGACATGATAAGA 

GATAGCATGCATCGATGCTTTAAAAAACC 

amplification of SV40 Poly(A) 

flanked by restriction sites 

(BamH I, Cla I, Sph I) 

Kas-CMV-Sbf F 

Kas-CMV-Sbf R 

CGTCCAGGCGCCTTAATAGTAATC 

ATATCCTGCAGGTGACTGCGTTAGC 

amplification of CMV promoter 

flanked by restrictions sites 

(Kas I, Sbf I) 
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2.1.5.3. Cloning oligonucleotides (with 5’-PHO modification) 

denotation sequence (5’-3’) description 

MCS 1 F 

MCS 1 R 
 

CTTAAGGGGCCCCCTAGGGTC 

CCTAGGGGGCCCCTTAAGGTC 
 

generation of a multiple cloning 

site (Avr II, Apa I, Afl II) for 

cloning into Kpn I restriction 

site 

MCS 2 F 

MCS 2 R 
 

AGCTCGTACGGATATCTCGCA 

AGCTTCGCGAGATATCCGTAG 
 

generation of a multiple cloning 

site (BsiW I, EcoR V, Nru I) for 

cloning into Hind III restriction 

site 

MCS 3 F 

MCS 3 R 
 

CGTTAATTAAGGCCTACATGGCCATTTAAT 

CGATTTAAATGGCCATCTAGGCCTTAATTA 
 

generation of a multiple cloning 

site (Swa I, Sfi I, Pac I) for 

cloning into Cla I restriction site 

MCS 8 F 

 

MCS 8 R 

  

GAATTCTTCGAAGGCGCGCCCTTAAGACC 

GGTGGCGCCCCTGCAGGCCGCGGGTAC 

CCGCGGCCTGCAGGGGCGCCACCGGTCTT 

AAGGGCGCGCCTTCGAAGAATTCAGCT 
 

generation of a multiple cloning 

site (EcoR I, BstB I, Asc I, Afl II, 

Age I, Kas I, Sbf I, Sac II) for 

cloning into Sac I and Kpn I 

restriction sites 

SacII-lox-Kpn F 

 

SacII-lox-Kpn R 
 

GGATAACTTCGTATAGCATACATTATACGA 

AGTTATGGTAC 

CATAACTTCGTATAATGTATGCTATACGAA 

GTTATCCGC 
 

generation of a loxP site for 

cloning into Sac II and Kpn I 

restriction sites 

lox-Asc F 

 

lox-Asc R 
 

CGCGATAACTTCGTATAGCATACATTATAC 

GAAGTTATGG 

CGCGCCATAACTTCGTATAATGTATGCTAT 

ACGAAGTTAT 
 

generation of a loxP site with 

Asc I site for cloning into Asc I 

restriction site 

BamH-lox-BsiW F 

 

BamH-lox-BsiW R 
 

GATCCATAACTTCGTATAGCATACATTATAC 

GAAGTTATCGTACGA 

GATCTCGTACGATAACTTCGTATAATGTATG 

CTATACGAAGTTATG 
 

generation of a loxP site and 

BamH I and BsiW I sites for 

cloning into BamH I restriction 

site 

lox-Nhe-Cla F 

 

lox-Nhe-Cla R 
 

CGTTATAACTTCGTATAGCATACATTATACG 

AAGTTATGCTAGCATCGATT 

CGAATCGATGCTAGCATAACTTCGTATAATG 

TATGCTATACGAAGTTATAA 
 

generation of a loxP site and 

Nhe I and Cla I sites for cloning 

into Cla I restriction site 

AflII-lox-Nsi F 

 

AflII-lox-Nsi R 
 

TTAAGATAACTTCGTATAGCATACATTATACG 

AAGTTATATGCAT 

TTAAATGCATATAACTTCGTATAATGTATGCT 

ATACGAAGTTATC 
 

generation of a loxP site and 

Afl II and Nsi I sites for cloning 

into Afl II restriction site 
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Age-lox-Pme F 

 

Age-lox-Pme R 
 

CCGGTATAACTTCGTATAGCATACATTATACG 

AAGTTATGTTTAAAC 

CCGGGTTTAAACATAACTTCGTATAATGTATG 

CTATACGAAGTTATA 
 

generation of a loxP site and 

Age I and Pme I sites for cloning 

into Age I restriction site 

BstB-lox-Asc F 

 

BstB-lox-Asc R 
 

CGAAATAACTTCGTATAGCATACATTATACGA 

AGTTATGG 

CGCGCCATAACTTCGTATAATGTATGCTATAC 

GAAGTTATTT 
 

generation of a loxP site for 

cloning into BstB I and Asc I 

restriction sites 

BsiW-lox-BsiW F 

 

BsiW-lox-BsiW R 
 

GTACGATAACTTCGTATAGCATACATTATACG 

AAGTTAT 

CATGTATTGAAGCATATTACATACGATATGCT 

TCAATAG 
 

generation of a loxP site with 

flanking BsiW I sites for cloning 

into BsiW I restriction site 

AvrII-lox-Apa F 

 

AvrII-lox-Apa R 
 

CTAGATAACTTCGTATAGCATACATTATACGA 

AGTTATGGCC 

ATAACTTCGTATAATGTATGCTATACGAAGTT 

AT 
 

generation of a loxP site for 

cloning into Avr II and Apa I 

restriction sites 

Pac-lox-Sfi F 

 

Pac-lox-Sfi R 
 

ATAACTTCGTATAGCATACATTATACGAAGTT 

ATAT 

ATAACTTCGTATAATGTATGCTATACGAAGTT 

ATAGA 
 

generation of a loxP site for 

cloning into Pac I and Sfi I 

restriction sites 

 

2.1.5.4. Sequencing primers 

denotation sequence (5’-3’) 

CMV_seq F CGCTATTACCATGGTGATG 

CMV_seq R GATGTACTGCCAAGTAGG 

CreERT2_seq F GGAGTGTACACATTTCTG 

CreERT2_seq R CACAGCATTGGAGTCAG 

Rluc_seq F CCTACCTGGAGCCATTC 

Rluc_seq R GATGATGCATCTAGCCAC 

 

2.1.5.5. Primer for qRT-PCR 

name sequence (5’-3’) 

CreERT2_qPCR F 
CreERT2_qPCR R 

GATCTTCGACATGCTGCTGG 
TCAGGGTGCTGGACAGAAAT 

hGAPDH F 
hGAPDH R 

CACAGCATTGGAGTCAG 
CACAGCATTGGAGTCAG 

mGAPDH F ATGTTCCAGTATGACTCCACTCACG 
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mGAPDH R GAAGACACCAGTAGACTCCACGACA 
mIL-10 F 
mIL-10 R 

CAAAGGACCAGCTGGACAAC 
TCATTTCCGATAAGGCTTGG 

Rluc_qPCR F 
Rluc_qPCR R 

CGAAGAGGGCGAGAAAATGG 
TCTCCTTGAATGGCTCCAGG 

  

2.1.5.6. Primer for AAV quantification 

name sequence (5’-3’) 

CMV F TGCCCAGTACATGACCTTATTG 

CMV R GAAATCCCCGTGAGTCAAACC 

SV40 PolyA F GCGACTCTAGATCATAATCAGCCATA 

SV40 PolyA R GCTGCAATAAACAAGTTAACAACAACA 

 

2.1.6. Enzymes 

denotation source 

Antarctic Phosphatase New England Biolabs, Frankfurt (Main) 

Benzonase nuclease Sigma-Aldrich, Taufkirchen 

iTaq Universal SYBR Green Supermix Bio-Rad, Munich 

Large Klenow fragment New England Biolabs, Frankfurt (Main) 

Q5 DNA polymerase New England Biolabs, Frankfurt (Main) 

Quick Ligase New England Biolabs, Frankfurt (Main) 

restriction enzymes New England Biolabs, Frankfurt (Main) 

T4 DNA Ligase New England Biolabs, Frankfurt (Main) 

Taq DNA polymerase Qiagen, Hilden 

 

2.1.7. Antibodies 

denotation species 1./2. antibody source dilution 

anti-Cre rabbit first Rolf Sprengel (Max Planck 

Institute for Medical 

Research, Heidelberg) 

1:3000 

anti-GAPDH rabbit first Sigma Aldrich (G9454) 1:10000 

anti-rabbit-HRP goat second Santa Cruz (sc-2004) 1:5000 

anti-Renilla 

luciferase 

rabbit first Thermo Fisher Scientific 

(PA5-32210) 

1:2000 
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2.1.8. Ready-to-use kits 

denotation source 

DNeasy Blood and Tissue Kit Qiagen, Hilden 

Gel Extraction Kit Qiagen, Hilden 

Luciferase Assay System (Firefly Luciferase) Promega, Mannheim 

Mouse IL-10 Quantikine ELISA Kit (M1000B) R&D Systems, Wiesbaden 

PCR Purification Kit Qiagen, Hilden 

Plasmid Midi/Maxi/Giga Kit Qiagen, Hilden 

QIAprep Spin MiniPrep Kit Qiagen, Hilden 

REDExtract-N-Amp Tissue PCR Kit Sigma-Aldrich, Taufkirchen 

Renilla Luciferase Assay System Promega, Mannheim 

RNeasy Mini Kit Qiagen, Hilden 

SuperScript III First-Strand Synthesis System for RT-PCR Invitrogen, Karlsruhe 

 

2.1.9. Buffer and solutions 

denotation composition 

4x loading buffer (protein) 0.25 M Tris-HCl (pH 6.8), 10% SDS, 50% glycerol, 0.5% 

bromphenol blue, 0.8 M 2-mercaptoethanol 

5x loading buffer (DNA) 25 mM Tris-HCl (pH 8.0), 150 mM EDTA, 0.25% bromphenol 

blue, 25% glycerol 

annealing buffer (oligo) 10 mM Tris, 150 mM NaCl in ddH2O  

anode buffer 12 g Tris, ad 1 l H2O 

benzonase buffer 50% glycerol, 20 mM Tris (pH 8.0), 2 mM MgCl2, 20 mM NaCl 

cathode buffer 12 g Tris, 1 g SDS, 12.5 g taurine, ad 1 l H2O 

cryo-protection solution 20% sucrose, 0.1% glutaraldehyde, 2% PFA, in PBS  

fixing solution for X-Gal staining 2% formaldehyde, 0.2% glutaraldehyde, in PBS 

lysis buffer for AAV productions 50 mM Tris-HCl, 150 mM NaCl, 5 mM MgCl2, pH 8.5, in H2O 

PBS 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM 

KH2PO4 , pH 7.4 

RIPA buffer 10 mM Tris-HCl (pH 7.5), 15 mM EDTA, 1% NP40, 0.5% 

sodium deoxycholate, 0.1% SDS, protease inhibitor (1 tablet 

for 10 ml), 1 M DTT 

TBE buffer 2 M Tris, 1.6% boric acid, 10 mM EDTA 

TBS-T buffer 500 mM Tris-HCl (pH 7.4), 1.5 M NaCl, 0.2% TWEEN 20 

TE buffer 10 mM Tris-HCl (pH 7.5), 1 mM EDTA 

transfer buffer 1.8 g Tris, 1.9 g taurine, ad 800 ml H2O 

X-Gal solution (100x) 100 mg X-Gal in DMSO 

X-gal staining solution 5 mM K4Fe(CN)6 x 3H2O, 5 mM K3Fe(CN)6, 2 mM MgCl2, 10% 

DMSO, 1x X-Gal solution,  in PBS 
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2.1.10. Chemicals and reagents 

denotation source 

(Z)-4-hydroxytamoxifen Sigma-Aldrich, Taufkirchen 

2-log DNA ladder New England Biolabs, Frankfurt (Main) 

2-mercaptoethanol Sigma-Aldrich, Taufkirchen 

5-bromo-4-chloro-3-indoyl-β-D-galactopyranoside (X-

Gal) 

Thermo Fisher Scientific, Schwerte 

Agarose Sigma-Aldrich, Taufkirchen 

Ammonium persulfate (APS) usb corporation, Cleveland (OH, USA) 

Ammonium sulfate Carl Roth, Karlsruhe 

Ampicillin sodium salt Carl Roth, Karlsruhe 

Aqua ad injectionem Braun, Melsungen 

Bacto Agar BD Biosciences, Heidelberg 

Bacto tryptone BD Biosciences, Heidelberg 

Boric acid Sigma-Aldrich, Taufkirchen 

Bromphenol blue sodium salt Sigma-Aldrich, Taufkirchen 

Desoxynucleoside triphosphate (dNTP) mix New England Biolabs, Frankfurt (Main) 

Dimethyl sulfoxid (DMSO) Merck, Darmstadt 

Disodium hydrogen phosphate (Na2HPO4) Sigma-Aldrich, Taufkirchen 

Dithiothreitol (DTT) Sigma-Aldrich, Taufkirchen 

ECL detection solution (Pierce) Thermo Fisher Scientific, Schwerte 

Ethanol (EtOH) Sigma-Aldrich, Taufkirchen 

Ethidium bromide Carl Roth, Karlsruhe 

Ethylenediamine tetraacetic acid (EDTA) AppliChem, Darmstadt 

Formaldehyde Merck, Darmstadt 

Gel loading dye (DNA), 6x New England Biolabs, Frankfurt (Main) 

GeneJuice Merck, Darmstadt 

Glucose Merck, Darmstadt 

Glutaraldehyde Serva, Heidelberg 

Glycerol Sigma-Aldrich, Taufkirchen 

Glycine Sigma-Aldrich, Taufkirchen 

Hydrochloride acid (HCl) Merck, Darmstadt 

Iodixanol solution, OptiPrep Fresenius Kabi Norge AS, Bad Homburg 

Isoflurane CP cp-pharma, Burgdorf 

Isopropanol Sigma-Aldrich, Taufkirchen 

Magnesium chloride (MgCl2) Sigma-Aldrich, Taufkirchen 

Methanol Sigma-Aldrich, Taufkirchen 

Milk powder Carl Roth, Karlsruhe 

Nonidet P-40 (NP40) Sigma-Aldrich, Taufkirchen 

OptiMEM Gibco®, Thermo Fisher Scientific, Schwerte 
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PageRuler Plus, prestained Thermo Fisher Scientific, Schwerte 

Polyacrylamide (Rotiphorese Gel 30) Carl Roth, Karlsruhe 

Polyethylenimine (PEI) Polysciences, Heidelberg 

Potassium chloride (KCl) AppliChem, Darmstadt 

Potassium dihydrogen phosphate (KH2PO4) AppliChem, Darmstadt 

Potassium ferricyanide Sigma-Aldrich, Taufkirchen 

Potassium ferrocyanide Sigma-Aldrich, Taufkirchen 

Protease inhibitor mix G Serva, Heidelberg 

Roti Histokitt mounting medium Carl Roth, Karlsruhe 

Sodium chloride (NaCl) Sigma-Aldrich, Taufkirchen 

Sodium deoxycholate Sigma-Aldrich, Taufkirchen 

Sodium dodecyl sulphate  (SDS) Serva, Heidelberg 

Sodium hydroxide (NaOH) Sigma-Aldrich, Taufkirchen 

Sucrose Sigma-Aldrich, Taufkirchen 

Tamoxifen Sigma-Aldrich, Taufkirchen 

Taurine Carl Roth, Karlsruhe 

Tetramethylethylenediamine (TEMED) Sigma-Aldrich, Taufkirchen 

Tissue-Tek O.C.T. compound Sakura Finetek, Staufen (im Breisgau) 

Tris-(hydroxymethyl)-aminomethane (Tris) Carl Roth, Karlsruhe 

Tween 20 Sigma-Aldrich, Taufkirchen 

VivoGlo Luciferin Promega, Mannheim 

Yeast extract Carl Roth, Karlsruhe 

 

2.1.11. Disposables 

denotation source 

Cell culture flasks (T 75 cm2, T 175 cm2) Sarstedt, Nürnbrecht 

Cell culture plates (6-well, 12-well, 24-well) Greiner Bio-One, Essen 

Cell stack (10 layers) Corning, Munich 

Centrifuge tubes (500 ml) Corning, Munich 

Combitips advanced (for dispenser) Eppendorf, Hamburg 

Cover glass Knittel Gläser, Braunschweig 

Cryo-preservation tubes Greiner Bio-One, Essen 

Falcon tubes (15, 50 ml) Greiner Bio-One, Essen 

Filter tips (10, 200, 1000 µl) Sarstedt, Nürnbrecht 

Hard-Shell PCR plates (96-well) Bio-Rad, Munich 

Homogenization tubes (1.5 ml) NeoLab, Heidelberg 

Immobilon transfer membrane Merck, Darmstadt 

Microseal B film Bio-Rad, Munich 

Microtome blade, MX35 Premier Disposable Thermo Fisher Scientific, Schwerte 

https://en.wikipedia.org/wiki/Tetramethylethylenediamine
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Needles (Microlance: 20G, 23G, 27G) BD Biosciences, Heidelberg 

Peel-A-Way tissue embedding molds Polysciences, Heidelberg 

Pipette tips (10, 200, 1000 µl) Greiner Bio-One, Essen 

Quick-Seal centrifuge tubes Beckman Coulter, Krefeld 

Reaction tubes (0.5, 1.5, 2 ml) Sarstedt, Nürnbrecht 

Serologic pipets (5, 10, 25, 50 ml) Greiner Bio-One, Essen 

Superfrost Plus coverslips Thermo Fisher Scientific, Schwerte 

Surgical disposable scalpels Braun, Melsungen 

Syringes (1, 2, 5, 10 ml) BD Biosciences, Heidelberg 

VivaSpin columns Sartorius, Göttingen 

Whatman cellulose filter paper Sigma-Aldrich, Taufkirchen 

Zeba Spin Desalting Columns Thermo Fisher Scientific, Schwerte 

Zirconium oxide beads (2.8 mm) Precellys, Montigny le Bretonneux (France) 

 

2.1.12. Laboratory equipment 

denotation type source 

agarose gel electrophoresis 

chambers 

MINI/MIDI electrophoresis 

unit 

Carl Roth, Karlsruhe 

agarose gel imaging system GelDoc™ XR+ Bio-Rad, Munich 

autoclave VX-150 Systec, Linden 

biological safety cabinet HERAsafe™ KS Thermo Fisher Scientific, Schwerte 

blotting chamber (Western 

blot) 

Mini PROTEAN® 3 cell Bio-Rad, Munich 

cell counter Neubauer improved Marienfeld, Lauda-Königshofen 

centrifuge Heraeus™ Multifuge 4 KR Thermo Fisher Scientific, Schwerte 

chemiluminescence imaging 

system 

ChemiDoc™ MP Bio-Rad, Munich 

fluorescence microscope IX81 Olympus, Hamburg 

freezer (-20°C) various models Liebherr, Kirchdorf an der Iller 

freezer (-80°C) MDF-U73V™ Sanyo, Moriguchi (Japan) 

heating block AccuBlock™ Digital Dry Bath Labnet International, Edison (NJ, 

USA) 

in vivo bioluminescence 

imaging system 

IVIS® Lumina III PerkinElmer, Rodgan 

incubation shaker (bacteria) Certomat® BS-1 

Multitron 

Sartorius Stedim Biotech, Göttingen 

INFORS HAT, Einsbach 

incubator HERAcell™ 240i CO2 

incubator 

Thermo Fisher Scientific, Schwerte 

incubator (bacteria) Heraeus™ Function Line Thermo Fisher Scientific, Schwerte 

light microscope AXIO Vert.A1 Carl Zeiss, Jena 

luminometer GloMax® 20/20 Promega, Mannheim 

magnetic mixer RCT basis IKA®, Staufen 
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microtome CM3050S Leica Microsystems, Wetzlar 

multi pipet (dispenser) Multipette® Plus Eppendorf, Hamburg 

PCR cycler Mastercycler® EP S Eppendorf, Hamburg 

pH meter pH530 WTW, Weilheim 

pipet boy Pipetboy acu Integra Biosciences, Zurich 

(Switzerland) 

pipets Eppendorf Research® Eppendorf, Hamburg 

power supply PowerPac™ HC Bio-Rad, Munich 

real-time qRT-PCR cycler CFX96 Real-Time System, 

C1000 Touch™ Thermal 

Cycler 

Bio-Rad, Munich 

refrigerator  various models Liebherr, Kirchdorf an der Iller 

scales EW 4200-2NM 

ABJ 220-4NM 

Kern & Sohn, Balingen 

SDS-PAGE system XCell SureLock™ Mini-Cell 

Electrophoresis System 

Thermo Fisher Scientific, Schwerte 

shaker Duomax 1030 

Shaker DRS-12 

Heidolph, Schwabach 

NeoLab, Heidelberg 

shaking water bath GFL-1083 GFL, Burgwedel 

table top centrifuges Heraeus™ Biofuge pico™ 

Heraeus™ Fresco™ 17 

Thermo Fisher Scientific, Schwerte 

thermo shaker/mixer TSC ThermoShaker  

Thermomixer® Comfort 

Analytik Jena, Jena 

Eppendorf, Hamburg 

ultra centrifuge Sorvall™ WX Ultra Series Thermo Fisher Scientific, Schwerte 

ultrasonic water bath Sonorex TK 30 Bandelin, Berlin 

UV-Vis spectral photometer NanoDrop™ 2000 Thermo Fisher Scientific, Schwerte 

vortex Vortex-Genie 2 Scientific Industries Inc., Bohemia 

(NJ, USA) 

water purification system TKA-GenPure Thermo Fisher Scientific, Schwerte 

 

2.1.13. Software 

application denotation source 

administration of mice breedings T.Base 14.4 4D client 

analysis of agarose gels and Western blots Image Lab™ Bio-Rad 

analysis of fluorescence images Fiji/ImageJ open source, NCBI 

analysis of in vivo imaging data Living Image® 4.5 PerkinElmer 

analysis of plasmid DNA sequences ApE – A plasmid editor M. Wayne Davis 

analysis of qRT-PCR data CFX Manager™ Bio-Rad 

illustration of data with statistical analysis Prism 5 GraphPad 

reference management EndNote X7.3 Thomson Reuters 

Word, Excel, Outlook, Powerpoint Office 2010 Microsoft 
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2.2. METHODS 

2.2.1. Cloning and plasmid preparation 

2.2.1.1. Restriction endonucleases and DNA digestion 

Restriction endonucleases (type II) are enzymes found in bacteria that cut within DNA 

molecules at specific locations, known as restriction sites. They are used as a tool for 

manipulating DNA molecules by introducing double-strand breaks at specific sites within the 

DNA, generating blunt ends or overhangs of the remaining DNA strands.  

For general digestions of DNA by restriction enzymes, 1 µg of the respective DNA was set up 

with 5 units of the desired restriction enzyme, 1x reaction buffer and water at a total volume 

of 20 µl. The incubation took place at the optimal temperature for the respective enzyme 

(mainly at 37°C) for about 1 h.  

 

2.2.1.2. General cloning techniques 

The cloning of plasmids was performed using different cloning approaches. The first method 

was the digestion of the vector plasmid as well as the insert fragment with the same 

restriction endonucleases. In this thesis, mainly restriction endonucleases generating “sticky 

ends” (overhangs) were used. The overhangs produced by the one restriction enzyme are 

complementary to each other so that DNA fragments from vector and insert can be ligated 

to produce one circular plasmid.  

Another approach is the annealing of oligonucleotides (oligos) to generate a double-

stranded DNA fragment serving as an insert. In this case, two single-stranded oligos were 

annealed by mixing 2 µg of each nucleotide and add annealing buffer to a total volume of 

40 µl. The annealing took place by incubating at 95°C for 5 min, followed by 20 min at 76°C 

and 20 min at 37°C. The annealed oligos were then diluted with 360 µl water to achieve a 

concentration of 10 ng/µl. The oligos were designed with overhangs of one desired 

restriction site at each end of the DNA to allow ligation with the vector fragment.   

Also, the amplification of inserts by PCR was used to clone specific DNA fragments. 

Therefore, the desired sequence was amplified using the Q5 High-Fidelity DNA polymerase 

(NEB) and specific primers which also contain overhangs generating desired restriction sites 

at each end of the PCR product. As seen with the DNA oligos, this allowed the digestion with 
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the restriction enzymes and the subsequent ligation with the vector fragment. The PCR 

reaction was performed using 1x Q5-reaction buffer, 0.5 µM of each primer, 200 µM dNTPs, 

0.02 U/µl Q5 polymerase, 1 to 10 ng template DNA and nuclease-free water added to a total 

volume of 20 µl. PCR products were purified using the PCR Purification Kit (Qiagen) and 

digested with the favored restriction enzymes.  

As a last cloning technique, the removal of DNA sequences from a plasmid was performed. 

Here, the respective DNA plasmid was digested with restriction enzymes so that the 

unwanted DNA fragment was excised. To fill up the remaining overhangs and generate blunt 

ends, the large Klenow fragment (DNA polymerase I, NEB) was used. Therefore, 1 unit of 

Klenow fragment was incubated with 1 µg of the respective DNA, 1x T4 Ligase reaction 

buffer and 33 µM of each dNTP. Water was added to a total volume of 20 µl. After an 

incubation time of 15 min at 25°C, EDTA was added to a final concentration of 10 mM and 

the mixture was heated to 75°C for 20 min.  

In case of the vector fragments generated by digestion with restriction enzymes, these 

fragments were dephosphorylated after digestion to avoid re-ligation of the vector. For this 

purpose, the Antarctic Phosphatase was used to remove 5’-PHO groups from the vector 

DNA. The digested vector fragment was mixed with 1x reaction buffer and 1 µl of Antarctic 

Phosphatase (NEB) and incubated for 15 min at 37°C. To inactivate the Antarctic 

Phosphatase, the sample was incubated at 70°C for 5 min. 

 

2.2.1.3. Agarose gel electrophoresis and isolation of DNA 

With the help of agarose gel electrophoresis, DNA fragments can be separated according to 

their size. By applying a voltage of about 100 V, the negative charged DNA migrates towards 

the anode, with smaller fragments moving faster than bigger DNA molecules. Agarose gel 

electrophoresis is an important method to verify PCR products and digestions of DNA 

plasmids with restriction enzymes.  

The agarose gel was made using a 1% agarose solution (in TBE buffer) which was boiled up in 

a microwave, before adding 400 ng/l ethidium bromide (EtBr) and pouring the solution into 

the respective equipment. After polymerization, the gel was transferred into the 

electrophoresis chamber filled with TBE buffer. The DNA samples were mixed with DNA 

loading dye in a ratio of 1:5 and applied into the pockets of the agarose gel. As a size marker 

for DNA fragments, the 2-log DNA ladder (NEB) was also loaded onto the gel. The gel was 
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allowed to run for 30 to 60 min at a voltage of 100 V. Afterwards, the gel was analyzed using 

UV light at a wavelength of 254 nm which excites the intercalating EtBr, resulting in a 

detectable fluorescence signal.  

For isolation of DNA fragments from the agarose gel, UV light of a longer wavelength 

(312 nm) was used to avoid double-strand breaks of the DNA molecules. The desired DNA 

was isolated by excising the respective gel fragment with a scalpel and extracting the DNA 

with the Gel Extraction Kit (Qiagen) according to manufacturer’s protocol. The eluate 

containing the DNA was then used for further cloning. 

 

2.2.1.4. Ligation and transformation 

The ligation of vector and insert fragments (from gel extractions, PCR, annealed oligos 

and/or digestions) was performed using the Quick Ligation Kit (NEB) containing a highly 

concentrated T4 DNA Ligase.  In general, vector and insert DNA fragments were ligated in a 

ratio of 1:3 by adding 1x reaction buffer, 1 µl of Quick T4 DNA Ligase and water to a volume 

of 20 µl. Ligation took place at room temperature (RT, 25°C) for 5-15 min. As a specificity 

control, also the vector fragment without the insert was ligated (re-ligation). 

The ligated DNA was then transformed into the E.coli derivate DH5α which were made 

chemically competent for efficient uptake of plasmid DNA. For each transformation, 50 µl of 

competent bacteria were thaw on ice before 10 µl of the ligation products were added. This 

mixture was incubated for 20 min on ice. The heat shock was performed at 42°C for 45 s to 

achieve an uptake of the plasmid DNA into the bacteria. Afterwards the bacteria were chilled 

on ice for 2 min before 350 µl SOC medium (without antibiotics) were added. This 

suspension was shaken (800 rpm) at 37°C for 45 min. A volume of 100 µl of each 

transformation was plated onto an agar plate containing ampicillin (100 mg/ml) and 

incubated over night at 37°C.  

 

2.2.1.5. Mini preparations of plasmid DNA 

To check whether the cloning/ligations are correct, mini preparations of plasmid DNA were 

made. Therefore, bacteria colonies were picked from the agar plates and inoculated in 6 ml 

LB medium containing ampicillin (100 mg/ml). These cultures were allowed to grow over 

night at 37°C.  
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Next day, plasmid DNA was isolated using the QIAprep Spin MiniPrep Kit (Qiagen) according 

to manufacturer’s instructions. Briefly, 2 ml of the culture were transferred to a 2 ml 

reaction tube and centrifuged at 13000 rpm for 2 min. The supernatant was discarded and 

the pellet was resuspended in 250 µl P1 buffer containing RNase A. The suspension was 

mixed well with 250 µl P2 buffer and incubated for 5 min at RT. After adding 350 µl N3 buffer 

and mixing, the mixture was centrifuged at full speed (13000 rpm) for 10 min. The 

supernatant containing the plasmid DNA was transferred to the column und centrifuged at 

10.000 rpm for 1 min. The flow-through was discarded and 750 µl washing buffer PE was 

pipetted onto the column. After another centrifugation step (10.000 rpm, 1 min), the column 

was transferred to a new 1.5 ml reaction tube and 50 µl of water were added. To elute the 

plasmid DNA from the column, a last centrifugation at 10.000 rpm for 1 min was performed.  

As a first validation of the plasmid DNA, the DNA concentration and purity was measured 

using the NanoDrop photometer. Afterwards, the plasmid DNA was checked by digestion 

with specific restriction enzymes and analyzed by agarose gel electrophoresis. If required, 

the DNA and defined primers were sent for sequencing to GATC Biotech AG (Konstanz, 

Germany).  

 

2.2.1.6. Midi/Maxi/Giga preparations of plasmid DNA 

To get higher amounts of plasmid DNA, e.g. for in vitro experiments or AAV productions, 

Plasmid Midi/Maxi/Giga Kits (Qiagen) were used according to manufacturer’s protocol. The 

following table shows buffers, volumes and incubation times used for each Plasmid Kit. 

 

Table 2: Buffers, volumes and incubation times for Plasmid Kits from Qiagen 

 Midi Maxi Giga 

culture volumes [ml] 100 500 5000 

P1 buffer [ml] 4 10 125 

P2 buffer [ml] 4 10 125 

P3 buffer [ml] 4 10 125 

incubation on ice [min] 15 20 30 

QBT buffer [ml] 4 10 75 

QC buffer [ml] 20 60 600 

QF buffer [ml] 5 15 100 

Isopropanol [ml] 3.5 10.5 70 

70% EtOH [ml] 2 5 10 

H2O [µl] 200 500 3000 
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Before isolating plasmid DNA, the culture had to be inoculated and shaken over night at 37°C 

and 180 rpm. For this, an existing Mini culture or a glycerol stock was used. The culture 

volumes complemented with ampicillin (100 mg/ml) used are shown in the table above.  

Next day, the culture was centrifuged at 4.400 rpm and 4°C for 20 min. The supernatant was 

discarded and the bacteria pellet was resuspended in P1 buffer. P2 buffer was added, mixed 

well and incubated for 5 min at RT. After adding pre-chilled P3 buffer, the lysate was 

incubated on ice and then centrifuged at 4.400 rpm for 30 min. After equilibrate the column 

with QBT buffer, the supernatant was administered onto the column through a filter. 

Subsequently, the column was washed with QC buffer. To elute the plasmid DNA from the 

column, the column was put onto a new 50 ml Falcon® tube and QF buffer was added. 

Plasmid DNA was precipitated using 0.7 volumes of isopropyl alcohol and centrifuging at 

4.400 rpm for 30 min. The pelleted DNA was washed with 70% EtOH and centrifuged again 

at 4.400 rpm for 10 min. After removing as much EtOH as possible, the DNA pellet was dried 

and solved in water. DNA concentration was measured and plasmid DNA was checked via 

digestion with restriction enzymes or sequencing.  

 

2.2.2. Cell culture techniques 

2.2.2.1. General cell culture techniques 

In this thesis, the cell lines HEK293T and CV-1 5B (CV-1 lacZ) were used which both were 

grown in DMEM medium (Gibco™, Thermo Fisher Scientific), complemented with 1% L-

Glutamine, 1% penicillin/streptomycin and 10% FBS. HEK293T cells are a human kidney cell 

line, expressing the SV40 large T antigen, and were obtained from ATCC (clone HEK293T/17). 

The CV-1 5B cell line is derived from monkey kidney (Cercopithecus aethiops) and stably 

transfected with an expression cassette for the E.coli ß-galactosidase gene (lacZ). This lacZ 

gene is separated from the promoter by a neomycin resistance gene (Neo) flanked by loxP 

sites (“floxed”). Cre-mediated recombination leads to excision of the Neo cassette, resulting 

in lacZ expression. This cell line was obtained from Rolf Sprengel (Max Planck Institute for 

Medical Research, Heidelberg). 

Both cell lines were cultivated in sterile 75 cm2 or 175 cm2 cell culture flasks which are lying 

horizontally in a humidified incubator with 37°C and 5% CO2 fumigation. As soon as the 

monolayer of cells was confluent the cells were split into new culture flasks. Therefore, the 
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medium was discarded and the cell layer was washed with about 10 ml PBS. After removal of 

PBS, 5 ml 0.05% trypsin solution was added so that the monolayer was covered completely. 

The enzyme trypsin acts by cleaving the adhesion molecules of the cell which leads to loss of 

cellular adhesion. After a short incubation time, the cells detached from the flask bottom 

and this cell suspension was taken up with 10 ml of fresh medium. Components in the FBS 

inactivate remaining trypsin to prevent toxic effects of the trypsin on the cells. The cells 

were split in a 1:15 ratio, with 1 ml of cell suspension (15 ml in total) was added to 29 ml 

fresh medium in a new culture flask. Both cell lines were passaged every 3 to 4 days as 

described. 

 

2.2.2.2. Cryopreservation of cells 

For freezing of cells, the cells were resuspended in 8 ml fresh medium after the exposure to 

trypsin. This suspension was centrifuged for 10 min at 1500 rpm. The supernatant was 

discarded and the cell pellet was resuspended in 1 ml of freezing medium which consists of 

90% FBS and 10% DMSO. This cell suspension was transferred into cryo-tubes, and these 

tubes were put into a freezing box which allows slow freezing of cells to prevent fast growing 

ice crystals damaging the cells. First, these tubes were frozen at -80°C for about 1-2 days. 

After that, the cell suspensions were stored in liquid nitrogen. 

 

2.2.2.3. Seeding of cells 

For in vitro experiments with either CV-1 5B or HEK293T, the cells had to be seeded into 

multi-well plates or cell culture flasks. The cell numbers and volumes used per well/flask are 

stated in the following table.  

 

Table 3: Cell numbers and volumes for different cell culture vessels 

 area per well [cm2] seeding cell number 

per well 

volume of medium per 

flask/well [ml] 

T175 cm2 flask 175 5.2∙106 30 

6-well plate 10 1∙105 3 

12-well plate 4 5∙104 1 

24-well plate 2 1∙104 0.5 
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To determine the cell number from a suspension, the Neubauer improved cell counter was 

used. The cells in all four major squares which consist of 16 smaller squares were counted 

and the average value was calculated. The cell count per ml could then be calculated with 

the following formula.  

                                                                  

 

The respective cell numbers were then seeded into the wells or flasks and incubated for 24 h 

at 37°C in an atmosphere containing with 5% CO2. The treatment of the cells (transfection or 

transduction) was performed the day after seeding.  

 

2.2.2.4. Transfection 

One day after seeding of cells, plasmid DNA was introduced into the cells using the 

GeneJuice® transfection reagent (Novagen®, Merck Millipore). Therefore, GeneJuice® was 

added drop-wise to serum-free medium (OptiMEM™, Gibco™, Thermo Fisher Scientific). The 

mixture was vortexed and incubated at RT for 5 min. DNA was added, mixed by pipetting 

and incubated at RT for 15 min. The DNA/GeneJuice® mixture was added drop-wise to cells 

in complete growth medium. To achieve an overall distribution of the transfection mix in the 

wells, the plate was gently rocked. The cells were then incubated for at least 24 h at 37°C 

(5% CO2). The following table shows volumes and DNA amounts used for transfection.  

 

Table 4: Transfection reagents and volumes used for different cell culture vessels 

 6-well  12-well 24-well 

volume of serum-free medium (µl) 100 50 25 

volume of GeneJuice® transfection reagent (µl) 3 1.5 0.75 

amount of plasmid DNA (µg) 1 0.5 0.25 

 

 

2.2.2.5. Transduction 

As seen with transfection, the cells were transduced by AAV vectors one day after seeding. 

In general, AAV (serotype 2) small-scale productions (see below) and 104-105 vg/cell were 

used in transduction experiments. The respective AAV vector amount was added to serum-

free medium (e.g. 3 ml medium per well of a 6-well plate) and mixed gently. The complete 

growth medium was aspirated and replaced by the serum-free, AAV containing medium. The 
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AAV vectors were allowed to transduce the cells for 1 h at 37°C (5% CO2), before adding 10% 

FBS per well and continuing incubation at 37°C (5% CO2) for at least 24 h.  

 

2.2.2.6. Induction of CreERT2 by 4-hydroxytamoxifen 

To achieve recombination, the CreERT2 recombinase has to be induced and thereby activated 

by tamoxifen. In cell culture, the active metabolite of tamoxifen, 4-hydroxytamoxifen (4-

OHT, H7904, Sigma Aldrich), was used. A stock solution of 5 mM 4-OHT was generated by 

dissolving 5 mg in 2.5 ml 100% ethanol. The stock solution can be stored at -20°C.  

The induction of the CreERT2 in cell culture was performed 2 days after 

transfection/transduction by adding 1 µM 4-OHT to each well of the cell culture plates. The 

growth medium of control cells which were not treated by 4-OHT was complemented with 

the same volume of 100% ethanol. The cells were incubated for 24 h at 37°C (5% CO2). If the 

treated cells were cultivated for a longer time period than 24 h, induction with 4-OHT was 

performed every day using fresh medium and 1 µM 4-OHT per well.  

 

2.2.2.7. Small-scale AAV vector productions for in vitro purposes 

For in vitro experiments, small-scale productions of AAV serotype 2 were used. One 

T175 cm2 cell culture flask with 5.2∙106 cells and 30 ml medium served for one AAV small-

scale production. The day after seeding, the cells were transfected using polyethylenimine 

(PEI), AAV helper plasmid DNA and the respective AAV genome plasmid DNA. Therefore, a 

mixture was applied containing 1.57 ml 300 mM NaCl, 1.21 ml H2O, 34.7 µg helper plasmid 

(pDP2rs, coding for the AAV serotype 2 capsid and adenoviral genes), 8.9 µg AAV genome 

plasmid and 350 µl PEI. This transfection mix was vortexed and incubated for 10 min at RT. 

After this, the solution was applied to the cells growing in complete medium. The cells were 

incubated for 3 days at 37°C (5% CO2). After this time period, the medium was aspirated and 

cells were washed once with PBS. Cells were then detached using 5 ml 0.05% trypsin solution 

and a cell suspension was generated by adding 10 ml complete medium. This cell suspension 

was transferred to a 50 ml Falcon® tube and centrifuged for 5 min at 2000 rpm. The 

supernatant was discarded and the cell pellet was washed with 5 ml PBS. After another 

centrifugation for 5 min at 2000 rpm, the PBS was discarded and the pellet was resuspended 

in 1 ml lysis buffer complemented with 1x protease inhibitor. To disrupt the cell membranes, 
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freeze/thaw-cycles were performed. Cell pellets were frozen in liquid nitrogen und thawed 

at 37°C. This cycle was repeated 3 times. To digest DNA which is not incorporated in AAV 

particles, a digestion with Benzonase® nuclease (50 U per ml lysis buffer) was done for 

30 min at 37°C. After incubation, the AAV-containing solution was centrifuged for 5 min at 

4000 rpm to pellet remaining cell debris. The supernatant was transferred to a new tube and 

stored at 4°C. The amount of AAV vector genomes was determined by titration (see below). 

 

2.2.2.8. Large-scale AAV vector productions for in vivo applications 

The large-scale AAV vector production was performed by the vector production unit (K. 

Mühlburger, A. Jungmann, F. Jung, and K. Schmidt) of the Müller group according to the 

following protocol. In this thesis, only AAV serotype 9 vectors were produced for in vivo 

applications. 

For large-scale AAV production, cell stacks with 10 layers (6360 cm2 growth area) were used. 

A total cell number of 2.3∙108 cells were added to 1.052 l of complete growth medium. As a 

positive and a negative control, each 26 ml of this cell suspension were given into two 

T175 cm2 flasks. The remaining liter of cell suspension was filled into the cell stack. The cells 

were incubated at 37°C (5% CO2) for 18 h at longest.  

The day after seeding, the transfection was performed in a similar way as seen with the 

small-scale productions. The AAV genome DNA (392 µg) was pre-mixed with 1525 µg helper 

plasmid (pDP9rs, coding for the AAV serotype 9 capsid and adenoviral genes), 69 ml 300 mM 

NaCl and 53 ml water. The transfection reagent PEI was added in a volume of 15.5 ml and 

mixed well. After incubation at RT for 10 min, 4 ml of the mixture was added to the cells of 

one T175 cm2 flask (positive control). The remaining transfection mix was filled into the cell 

stack.  The cells were incubated at 37°C (5% CO2) for 2-3 days.  

After 2-3 days of incubation, the negative and the positive controls were checked under the 

microscope. The cells of the negative control should be almost confluent whereas the cells of 

the positive control should be less and morphologically altered. If the controls were looking 

fine, the cells were harvested. Therefore, the medium from the positive control and the cell 

stack was transferred to 500 ml centrifugation tubes. The cells were washed with PBS 

whereby the PBS was also transferred to the centrifugation tubes. Cells were detached by 

addition of PBS/EDTA and incubation at 37°C. To stop the reaction, old medium from the 
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centrifugation tubes was used. The cells were harvested and also transferred to the 

centrifugation tubes. After a centrifugation at 4400 rpm for 5 min (4°C), the supernatant was 

collected in a glass bottle. The cells were washed two times with PBS, centrifuged as 

described above and the supernatant again was collected in the glass bottle. The cell pellet 

was resuspended by vortexing in 3 ml lysis buffer complemented with 1x protease inhibitor 

and stored at -20°C. For AAV vector purification from the supernatant collected in the glass 

bottle, 331 g/l ammonium sulfate was added. The mixture was incubated for at least 2 h at 

4°C where it was stirred at about 1200 rpm. The supernatant was then transferred to 500 ml 

centrifugation tubes and centrifuged for 30 min at 4400 rpm (4°C). After discarding the 

supernatant, the centrifugation step was repeated. The remaining pellet was resuspended in 

20 ml lysis buffer complemented with 1x protease inhibitor und stored at -20°C. 

To disrupt the cell membranes, freeze/thaw-cycles were performed. Cell pellets were frozen 

in liquid nitrogen und thawed at 37°C. This cycle was repeated 4 times. To digest DNA which 

is not incorporated in AAV particles, a digestion with Benzonase® nuclease (50 U per ml lysis 

buffer) was done for 30 min at 37°C. After incubation, the AAV-containing solution was 

centrifuged for 5 min at 4000 rpm to pellet remaining cell debris. The supernatant was 

transferred to a new tube. This centrifugation was repeated until no pellet was left. The 

AAV-containing supernatant was stored at 4°C.  

The next step in AAV production was the purification of vectors by applying an iodixanol 

gradient. First, the AAV-containing sample was filled into an ultra-centrifugation tube. With 

the help of a Pasteur pipette, 7 ml of the first iodixanol solution (15%) were loaded below 

the AAV sample. The other iodixanol solutions were applied in the following order, always 

below the layer before: 5 ml 25%, 4 ml 40% and 4 ml 60%. The ultra-centrifugation tubes 

were balanced and sealed. Centrifugation was performed for 135 min at 50000 rpm (4°C). 

For collection of the AAV-containing layer, the 40% iodixanol phase was removed with a 

syringe/needle and transferred to a new tube. The AAV vectors were stored at 4°C (for max. 

2 months) or at -20°C (for longer time periods).  

For quantification of AAV vector genomes, the AAV-iodixanol solutions were titrated using 

qRT-PCR. Therefore, 10 µl of the AAV sample were mixed with 10 µl TE buffer and 20 µl 2 M 

NaOH solution. The sample was then incubated at 56°C for 30 min. For neutralization, 960 µl 

40 mM HCl solution was added (dilution factor = 1:35000). To be able to quantify the AAV 

samples, an AAV plasmid standard was used, ranging from 103 to 1010 gc/well. The qRT-PCR 
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was performed using the iTaq Universal SYBR Green Supermix (Bio-Rad). For the plasmid 

standards, a master mix for 3 replicates was pipetted as follows: 30 µl iTaq Universal SYBR 

Green Supermix, 1.5 µl forward primer (10 pmol/µl), 1.5 µl reverse primer (10 pmol/µl), 

27 µl ddH2O and 10 µl of the plasmid standard. The AAV samples were pipetted in 2 

replicates as follows: 20 µl iTaq Universal SYBR Green Supermix, 1 µl forward primer 

(10 pmol/µl), 1 µl reverse primer (10 pmol/µl), 18 µl ddH2O and 6.7 µl of the sample. The 

primers used for titration of AAV vectors can be found in the material’s part. A volume of 

20 µl of the respective master mix was pipetted into each well of a 96-well plate. Also a 

negative control containing ddH2O instead of a sample or standard was applied to the plate. 

The qRT-PCR was performed using the following cycler program: initial denaturation for 

1 min at 95°C, denaturation for 5 s at 95°C, annealing and plate reading for 30 s at 60°C. The 

cycle of denaturation, annealing and plate reading was repeated 40 times in total. After 

these cycles, a melting curve analysis was performed, ranging from 65°C to 95°C with a 

temperature increase of 0.5°C every 5 s. The qRT-PCR data were analyzed with the CFX 

manager software (Bio-Rad).   

For in vivo applications, the iodixanol in the AAV vector samples had to be exchanged by 

PBS. To achieve this, Zeba Spin Desalting Columns (Thermo Fisher Scientific) were used 

according to manufacturer’s protocol. Briefly, the bottom closure of the columns was 

opened, the cap was unloosened and the column was place in a 50 ml collection tube. The 

column was centrifuged for 2 min at 2000 rpm to remove the storage solution. The flow-

through was discarded and 5 ml PBS were applied onto the column. The centrifugation and 

washing steps with PBS were repeated for 3 times. The column was placed on a new 

collection tube and the AAV sample was loaded onto the column (maximum 4 ml). After 

another centrifugation step, the AAV vector solution is located in the flow-through and can 

be used for concentration. 

To achieve higher AAV vector titers, AAV samples can be concentrated by VivaSpin columns 

(Sartorius). Therefore, the AAV sample obtained from the Zeba Spin Desalting Columns was 

loaded onto the concentrator column (maximum 20 ml). A centrifugation step at 4400 rpm 

was performed until the desired volume of AAV vector solution was reached (AAV vectors 

are located in the supernatant). The sample was transferred into a new tube after 

centrifugation. After the concentrating, the AAV samples were titrated and quantified again 

by qRT-PCR. 
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2.2.3. Molecular biological and biochemical methods 

2.2.3.1. Firefly and Renilla luciferase assays from cells or homogenized organs 

To quantify expression from AAV vectors, the reporter genes of Firefly (from the firefly 

Photinus pyralis) and Renilla (from the sea pansy Renilla reniformis) luciferases were used. 

These luciferases generate light if their specific substrate and oxygen are available. This 

process is called bioluminescence. The substrate for the Firefly luciferase is beetle luciferin, 

the substrate for the Renilla luciferase is called coelenterazine. The substrates for each 

luciferase were obtained from Promega (Luciferase Assay System and Renilla Luciferase 

System). These luciferase assays also contain specific lysis buffers. 

In case of cells, these assays were performed as follows. The growth medium was removed 

from the cells (e.g. from a 6-well plate) and 1 ml PBS was added. By rinsing, the cells were 

detached from the plate and transferred to a 1.5 ml tube placed on ice. After centrifugation 

at 5000 rpm for 3 min, the supernatant was discarded and 100 µl of 1x lysis buffer (Cell 

Culture Lysis Reagent for Firefly, Renilla Luciferase Assay Lysis Buffer for Renilla) were added. 

To mix cells with lysis buffer, the tubes were vortexed for 30 s. Cell debris were collected by 

centrifugation at 13000 rpm for 1 min. The supernatant was transferred to a new tube and 

placed on ice. Before measurements can be performed, 1x of the respective substrate was 

prepared. As a blank value, 100 µl of the substrate were measured in the luminometer 

(integration time of 10 s). For determine luciferase activity, 20 µl of the sample were added, 

mixed well and measured in the luminometer. The measurement was repeated for each 

sample. All values were noted and analyzed with Microsoft Excel and GraphPad Prism 5.  

For measuring the luciferase activity from homogenized organs, frozen organs were stored 

on dry ice until their weight was determined. The organs were transferred to a 1.5 ml 

homogenization tube containing ceramic beads. Tubes were always placed on ice. To 100 mg 

of organ, 300 µl of pre-chilled 1x lysis buffer (Reporter Lysis Buffer for Firefly, Renilla 

Luciferase Assay Lysis Buffer for Renilla) were added. The tubes were put into the 

homogenizer and homogenization was performed at 5500 rpm and 4°C for 30 s. This process 

was repeated 3 times. To pellet cell debris and connective tissue, the samples were 

centrifuged at 13000 rpm and 4°C for 1 min. The supernatant was transferred to a new tube 

placed on ice. The measurement at the luminometer was performed at described above. 

Remaining samples were stored at -80°C.  
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2.2.3.2. β-Galactosidase staining of cells 

The CV-1 5B cells can be used as a tool to determine the activity of the inducible CreERT2 

recombinase in cell culture. As describe above, the stably transfected lacZ gene gets 

expressed if Cre-mediated recombination is successful. The β-Galactosidase catalyzes the 

hydrolysis of the X-Gal (5-Bromo-4-chloro-3-indoyl-ß-D-galactopyranoside) present in the 

staining buffer which generates a blue staining of the positive cells. To test whether the 

CreERT2 can be induced by applying 4-hydroxytamoxifen, the β-Galactosidase staining was 

performed.  

The earliest time point to stain the cells for β-Galactosidase expression was 24 h after 

induction with 4-OHT. The growth medium was aspirated and the cells were washed once 

with PBS. To fixate the cells, 2 ml 1x fixing solution were added per 6-well of the plate and 

incubated for 10 min at RT. After that time period, the fixing solution was removed and the 

cells were washed with PBS twice. Then, 1 ml staining buffer was added per well and the 

plate was incubated over night at 4°C. Next day, the staining solution was aspirated and the 

cells were washed with PBS. Before determine β-Galactosidase activity under a light 

microscope, 1 ml PBS was added per well. After microscoping, the plates can be stored at 

4°C for about 1-2 weeks.  

 

2.2.3.3. Isolation of genomic DNA from cells 

To analyze genomic DNA (gDNA) by PCR, the gDNA had first to be isolated from the cells. 

Therefore, the growth medium was aspirated and 1 ml PBS was added per well (e.g. of a 6-

well plate). The cells were detached by rinsing and transferred to a 1.5 ml tube. For pelleting 

the cells, they were centrifuged at 5000 rpm for 3 min. The PBS was removed afterwards. 

The next steps were performed according to the manufacturer’s protocol from the DNeasy 

Blood & Tissue Kit (Qiagen). The cell pellet was resuspended in 200 µl PBS and 20 µl 

proteinase K was added. To lyse the cells, 200 µl of buffer AL were added and mixed by 

vortexing. Ethanol (100%) was applied in a volume of 200 µl and the sample was again 

vortexed. The mixture was loaded onto the provided column placed in a 2 ml collection tube 

and centrifuged at 8000 rpm for 1 min. The column was put onto a new collection tube and 

500 µl buffer AW1 were added. The centrifugation step was repeated and afterwards the 

collection tube was discarded. A volume of 500 µl buffer AW2 were applied onto the column 

placed on a new collection tube. The column was centrifuged at 13000 rpm for 3 min. After 
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discarding the collection tube, the column was placed in a new 1.5 ml tube. The gDNA was 

eluted by applying 200 µl buffer AE, incubating for 1 min at RT and centrifugation at 

8000 rpm for 1 min. The amount of isolated gDNA was determined using the NanoDrop 

spectrometer. The gDNA was stored at -20°C until the PCR was performed.  

 

2.2.3.4. Detection of “Mini Circles” by PCR 

If recombination between two loxP sites is successful the excised DNA fragment forms a 

circle (also called “Mini Circle”). To detect these excised DNA circles, a PCR was performed 

using outwardly directed primers (see figure below). 

 

Figure 1: Detection of “Mini Circles” by PCR after Cre-mediated recombination 

 

The PCR was performed using the Taq DNA Polymerase (Qiagen). The PCR mix consisted of 

2 µl CoralLoad Buffer, 0.4 µl dNTP mix (10 µM of each), 1 µl forward primer (10 µM), 1 µl of 

reverse primer (10 µM), 0.1 µl Taq polymerase, 100-200 ng template DNA and water added 

to a total volume of 20 µl. The PCR cycler was programmed as follows: initial denaturation at 

94°C for 3 min, denaturation at 94°C for 1 min, annealing at 50°C for 1 min, extension at 72°C 

for 4 min and final extension at 72°C for 10 min. The cycle of denaturation, annealing and 

extension was repeated for 35 times in total. After performing the PCR, the samples were 

analyzed by agarose gel electrophoresis.  
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2.2.3.5. Isolation of RNA, cDNA synthesis and qRT-PCR 

For the analysis of vector transcripts on mRNA level, total RNA was isolated from cells and 

converted into cDNA. The quantification of these transcripts was performed by quantitative 

real-time PCR (qRT-PCR).  

The RNA isolation was made with the RNeasy Mini Kit (Qiagen) according to the provided 

manual. The cells (e.g. from a 6-well plate) were harvested in PBS and pelleted by 

centrifugation at 5000 rpm for 3 min. The supernatant was discarded and 350 µl of buffer 

RLT complemented with 2-mercaptoethanol were added. Subsequently, 350 µl of 70% 

ethanol were applied to the lysate and mixed well by pipetting. A maximum volume of 

700 µl of the sample was transferred to the provided column placed on a 2 ml collection 

tube. After centrifugation at 10000 rpm for 15 s, the flow-though was discarded and 700 µl 

of the buffer RW1 were applied onto the column. Again, the column was centrifuged as 

described above and the flow-through was removed. After adding 500 µl of buffer RPE, 

another centrifugation step was performed. The flow-through was discarded before 500 µl 

of buffer RPE were applied. This time, the centrifugation was performed for 2 min. The 

column was transferred to a new 1.5 ml tube and 50 µl RNase-free water were added. To 

elute the RNA, the column was centrifuged at 10000 rpm for 1 min. The RNA amounts were 

determined with the NanoDrop spectrometer. RNA was stored at -80°C until cDNA synthesis.  

The first-strand cDNA synthesis was performed using the SuperScript III First-Strand 

Synthesis System for RT-PCR (Invitrogen). In this thesis, 500 ng of RNA were converted into 

cDNA. Therefore, the RNA was mixed with 1 µl of the provided oligo(dT)20 primer, 1 µl dNTP 

mix (10 mM) and water to get a total volume of 10 µl. This mixture was incubated for 5 min 

at 65°C and then placed on ice. The cDNA synthesis mix (10 µl in total) was added which 

consisted of the following reagents: 2 µl 10x RT buffer, 4 µl 25 mM MgCl2, 0.1 M DTT, 1 µl 

RNase OUT (40 U/µl) and 1 µl SuperScript III RT (200 U/µl). After incubation for 50 min at 

50°C, the reaction was terminated by applying 85°C for 5 min. The samples were chilled on 

ice before 1 µl of RNase H was added and incubated for 20 min at 37°C. The cDNA was then 

stored at -20°C until qRT-PCR was performed. 

As seen with the titration of AAV vectors, the qRT-PCR was executed with the iTaq Universal 

SYBR Green Supermix (Bio-Rad). The master mix was mixed according to the manufacturer’s 

protocol as follows: 10 µl iTaq Universal SYBR Green Supermix, 1 µl forward primer (10 µM), 

1 µl reverse primer (10 µM) and 7 µl ddH2O. A volume of 19 µl of this master mix was 
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pipetted into each well of the 96-well plate. A cDNA amount of 25 ng (or water as a negative 

control) was added; the plate was sealed and briefly centrifuged. The qRT-PCR was 

performed using the following cycler program: initial denaturation for 30 s at 95°C, 

denaturation for 5 s at 95°C, annealing and extension for 30 s at 60°C. The cycle of 

denaturation, annealing and plate reading was repeated 35 times in total. After these cycles, 

a melting curve analysis was performed, ranging from 65°C to 95°C with a temperature 

increase of 0.5°C every 5 s. The qRT-PCR data were analyzed with the CFX manager software 

(Bio-Rad).   

 

2.2.3.6. SDS-PAGE and Western blot analysis 

The Western blot analysis was performed to detect transgenes on a protein level which are 

expressed by AAV vectors.  

Therefore, cells (e.g. from a 6-well plate) were harvested in PBS and pelleted by 

centrifugation at 5000 rpm for 3 min. The supernatant was discarded and the cell pellets 

were stored at -20°C until the Western blot was executed. The cells were resuspended in 50-

100 µl RIPA buffer complemented with protease inhibitor. To disrupt cell membranes 

efficiently, the lysate was frozen, thawed once and treated by ultrasound for 5 min. Then, 

13-25 µl 4x loading buffer complemented with 2-mercaptoethanol were added and 

incubated at 95°C for 5 min.  

The next step was the preparation of the polyacrylamide gels. The upper part of the gel 

consists of a stacking gel which concentrates the proteins. The lower part of the gel is used 

to separate the proteins according to their molecular weight. The composition of these gels 

is summarized in the following table.  

 

Table 5: Composition of polyacrylamide gels (solutions suitable for two gels) 

 10% separating gel solution 5% stacking gel solution 

ddH2O 7.9 ml 5.6 ml 

polyacrylamide 6.7 ml 1.7 ml 

Tris 5 ml of 1.5 M, pH 8.8 2.5 ml of 0.5 M, pH 6.8 

20% SDS 100 µl 50 µl 

10% APS 200 µl 100 µl 

TEMED 20 µl 10 µl 
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First, the separating gel was made, filled into the chamber and overlaid with isopropyl 

alcohol. The gel was allowed to polymerize for about 30 min before the isopropyl alcohol 

was removed and the stacking gel solution was added. To form lanes for the samples, a 

comb was carefully inserted. The stacking gel also polymerized for 30 min before the comb 

could be removed. The prepared gels were put into the electrophoresis chamber which was 

then filled up with running buffers (anode and cathode buffers). The samples were pipetted 

in a volume of 20 µl into the lanes. Also, a marker to assess the molecular mass of the 

protein was added (PageRuler Plus, prestained). The electrophoresis was performed by 

applying 100 V for about 2 h. After electrophoresis, the proteins were transferred onto a 

nitrocellulose membrane which was first activated with methanol for 30 s. The blotting was 

done in a cassette containing Whatman paper, the gel and the membrane. This cassette was 

put into a reservoir which was filled with transfer buffer. A voltage of 70 V was applied for 

1 h to transfer the proteins from the gel onto the membrane. After the transfer, the 

membrane was washed twice with TBS-T washing buffer and then blocked with 5% milk 

powder in TBS-T for 1 h at RT. By blocking unspecific binding sites for antibodies, the 

specificity is increased. The primary antibodies were dissolved in 10 ml 1% milk powder in 

TBS-T. The antibody concentration applied is given in the material’s part. The membrane was 

incubated with the antibody solution over night at 4°C on a shaker. At the following day, the 

primary antibody was removed, the membrane was washed 3 times with TBS-T and the 

secondary antibody was added. The secondary antibody was also dissolved in 10 ml 1% milk 

powder in TBS-T according to the dilutions mentioned in the material’s part. The membrane 

was incubated at RT for 1 h before the membrane was washed 3 times with TBS-T.  

For detection of the proteins, the membrane was soaked with an ECL detection reagent for 

1 min. ECL contains luminol which reacts with the horseradish peroxidase (HRP) coupled to 

the secondary antibody. Thereby, photons are emitted (chemiluminescence) which can be 

detected by an appropriate imaging system (Bio-Rad). The exposure time was dependent on 

the intensity of the chemiluminescence. After imaging, the membrane was kept in TBS-T 

until further use.  
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2.2.4. In vivo approaches 

2.2.4.1. Breeding, husbandry and genotyping of animal models 

All animal models used in this study (see material’s part) were bred under standard 

conditions in the animal facility of the University of Heidelberg. The mice were kept in a 

temperature and humidity controlled room which was specified pathogen-free. A day/night 

cycle of 12:12 hours was applied and the animals were fed ad libitum with a complete diet of 

Rod 16-A (LASvendi). All animal experiments were performed according to the proposal for 

animal experiments, approved by the Regierungspräsidium Karlsruhe, Germany.  

In case of the αMHC-MerCreMer mice, the genotype of the mice had to be verified. 

Therefore, a tail biopsy was taken; DNA was isolated and analyzed by PCR. DNA isolation and 

PCR were performed with the REDExtract-N-Amp Tissue PCR Kit (Sigma-Aldrich). Briefly, 

100 µl of Extraction Solution and 25 µl of Tissue Preparation Solution were added to the 

mouse tail. The sample was incubated for 10 min at RT and then for 3 min at 95°C. 

Afterwards, 100 µl of Neutralization Solution were added and the tissue extract was 

transferred to a new tube and stored at 4°C. For PCR, 2 µl tissue extract were mixed with 5 µl 

REDExtract-N-Amp PCR Reaction Mix, 2.2 µl ddH2O and 0.8 µl primer mix. The primer mix 

was generated by mixing the following primers: 10 µl αMHC-MerCreMer 4F, 10 µl αMHC-

MerCreMer 4R, 2 µl control fwd 2 and 2 µl control rev 2 with 176 µl ddH2O. The PCR was 

performed with the following conditions: activation of Taq polymerase at 94°C for 2 min, 

denaturation at 96°C for 10 s, annealing at 60°C for 15 s, extension at 72°C for 45 s and final 

extension 72°C for 10 min. The cycle of denaturation, annealing and extension was repeated 

for 35 times in total. Finally, PCR products were analyzed by agarose gel electrophoresis. If 

the animal contained the MerCreMer transgene, a DNA with 1200 bp should be detectable. 

As an internal control, also a DNA band at 297 bp should be visible.  

 

2.2.4.2. Administration of AAV vectors by tail vein injection 

For administration of AAV vectors, an amount of 1012 vg per mouse of the respective AAV 

vector was injected intravenously (i.v.) in a volume of about 100 µl. Therefore, the mouse 

was put into a restrainer. After warming the tail in water to 37°C, the tail vein was localized 

and the AAV vector (in PBS) was injected. Injections were performed by employees of the 

animal facility at the University of Heidelberg.  
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2.2.4.3. Induction of CreERT2 by tamoxifen 

To activate the CreERT2 recombinase, tamoxifen dissolved in peanut oil had to be 

administered by intraperitoneal (i.p.) injection. In total, 1 mg tamoxifen in a volume of 100 µl 

was applied to each mouse daily. This process was repeated on 5 consecutive days.  

The tamoxifen solution was prepared according to the protocol published by Feil et al. in 

1997. Briefly, 100 mg tamoxifen (T5648, Sigma Aldrich) were dissolved in 0.5 ml EtOH before 

9.5 ml peanut oil was added. The solution was mixed well by vortexing. To solve remaining 

tamoxifen, ultrasound was applied for 5 min at 37°C. The resulting tamoxifen stock solution 

had a concentration of 10 mg/ml and was stored at -20°C. Of this stock, 100 µl were injected 

per mouse per day (1 mg tamoxifen per day). For the control group, a vehicle solution 

consisting of 0.5 ml EtOH and 9.5 ml peanut oil was made of which also 100 µl were injected 

intraperitoneally per mouse and day.  

 

2.2.4.4. In vivo imaging of Firefly luciferase 

To image the expression of the Firefly luciferase from AAV vectors in the living animal, in vivo 

imaging with the IVIS Lumina III system (PerkinElmer) was performed.  

As a luciferase substrate which is suitable for in vivo applications, the VivoGlo Luciferin 

(Promega) was used. According to the manufacturer’s instructions, 2 mg luciferin solved in 

150 µl 0.9% NaCl should be administered intraperitoneally. Therefore, 250 mg luciferin was 

dissolved in 18.75 ml 0.9% NaCl to achieve a concentration of 2 mg in 150 µl. This solution 

was stored at -20°C until further use.  

Because the animals used had black fur which blocks bioluminescence measurement, they 

first had to be depilated with depilation cream (Veet). Afterwards, the animals were 

narcotized by isoflurane inhalation (2.1% flow rate) in the induction chamber. While 

transferring the mouse to the imaging chamber, 150 µl of the luciferin solution was 

administered intraperitoneally. The mouse was positioned in the inhalation mask (1.5% 

isoflurane flow rate) before closing the door. To check for the position of the mouse, a 

photograph was taken. If necessary, the mouse was re-positioned. After an incubation time 

of 5 min, the first image of the bioluminescence was taken. The exposure time was set to 5 s 

with medium binning and F/Stop = 1 (open lens). A second image was taken 7 min after 

luciferin administration. Usually, 3 mice were imaged at once. After termination, animals 
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were transferred to their cages and awakening was supervised. The bioluminescence images 

were analyzed using the Living Image Software from PerkinElmer.  

 

2.2.4.5. Dissection, sample preparation and histological analyses 

To terminate in vivo experiments, the mice had to be euthanized by CO2 inhalation or 

cervical dislocation. The chest was opened; the heart was removed and washed in PBS to 

remove blood. For protein samples, the cardiac apex was cut and transferred to a 1.5 ml 

tube which was directly frozen in liquid nitrogen. The rest of the heart was put into a tube 

filled with cryo-protection solution to preserve fluorescent dyes (e.g. eGFP) from diffusion 

and bleaching. The samples were kept overnight at 4°C protected from light. Next day, the 

tissue samples were embedded in cryo-molds using Tissue-Tek embedding compound and 

frozen on dry ice until transferring the samples to -80°C. Samples from other organs (liver, 

skeletal muscle, kidney, spleen and brain) also were processed in similar way.  

If blood sampling was required blood was taken by puncture of the heart of sedated mice. 

The blood was left at RT for 30 min and then centrifuged for 20 min at 2000 rpm. The plasma 

was transferred to a new tube and frozen at -20°C until further analysis.  

The protein samples were analyzed by luciferase assays from homogenized organs (see 

above). The embedded organs were used for cryo-sections which were prepared using a 

cryostat. These cross-sections were made at 8 µm thickness and transferred onto coverslips. 

The sections were covered with mounting medium and a cover glass and stored at -20°C 

until fluorescence microscopy.  

 

2.2.4.6. Mouse IL-10 ELISA from plasma samples 

For detection of murine IL-10 levels in plasma, the ready-to-use Mouse IL-10 Quantikine 

ELISA Kit from R&D Systems was used. Therefore, the blood samples were prepared as 

described above and diluted 1:2 by mixing 70 µl of plasma with 70 µl of Calibrator Diluent 

RD5T. The Kit Control (positive control) and the standard were each dissolved in 1 ml H2O. 

The standard (1000 pg/ml) was further diluted with Calibrator Diluent RD5T to get the 

following concentrations: 500, 250, 125, 62.5, 31.3, and 15.6 pg/ml. The Calibrator Diluent 

RD5T served as the negative control (0 pg/ml). The Kit Control was used undiluted. 
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First, 50 µl Assay Diluent RD1W was pipetted into each well of the 96-well plate supplied by 

the manufacturer. The standard, Kit Control and plasma samples were added in a volume of 

50 µl per well in duplicates. The plate was sealed and incubated at RT for 2 h on an orbital 

shaker. Next, the liquid was removed from the plate and the wells were washed 4 times with 

400 µl 1x wash buffer per well. The wash buffer was completely removed and 100 µl mIL10 

Conjugate per well were added. Again, the plated was sealed and incubated at RT for 2 h on 

an orbital shaker. As described above, the liquid was removed and the plate was washed 4 

times. After removing the wash buffer completely, 100 µl Substrate Solution (50 µl Color 

Reagent A + 50 µl Color Reagent B) was pipetted into each well. The plate was incubated at 

RT for 30 min under light protection before 100 µl Stop Solution per well were added. The 

measurement was performed within 30 min in a spectral photometer at wavelength of 

450 nm and 570 nm (for correction). After all values were corrected for the measurement at 

570 nm, the amount of IL-10 in plasma samples (in pg/ml) was calculated by generating a 

standard curve normalized to the negative control.  
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3. RESULTS 

To generate a shut-off system encoded by one AAV vector, several pre-experiments were 

necessary. Part 1 comprised the cloning and testing of the inducible Cre recombinase 

(CreERT2) in an AAV context. In part 2, the functionality and localization of loxP sites within 

an AAV vector were tested. The next step was the combination of the former parts where 

both AAV vector were co-transduced (part 3). In the last part, the CreERT2 and the loxP sites 

were put onto one AAV vector so that the final shut-off system was generated.  

 

 

Figure 2: Experimental set-up to generate a shut-off system for AAV vectors 

The crucial parts that have to be encoded by the AAV vector and/or the animal model are 

indicated. AAV vectors are shown as icosahedral capsids containing the AAV genome.  
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3.1. Part 1 – Induction of the inducible Cre recombinase from an AAV vector 

3.1.1. Generation of an AAV vector encoding the CreERT2 

The CMV promoter and the SV40 polyA signal were subcloned with Kas I/Sbf I and 

BamH I/Cla I, respectively, into the CreERT2-containing plasmid. The whole expression 

cassette was then cloned with EcoR I/Cla I into the single-stranded AAV2 genome plasmid 

(pSSV9). Primers used can be found in the material’s part.  

 

 

Figure 3: Scheme of AAV vector genomes generated for the first part of experiments 

Promoters and transgenes were cloned into a single-stranded AAV background (pSSV9).  

 

 

3.1.2. In vitro induction of the CreERT2 in cell culture 

First, the induction of the inducible Cre recombinase was tested in vitro. Therefore, CV-1 5B 

cells were transduced by AAV2 vectors containing the CreERT2 gene (figure 3). The 

recombination events could be visualized by X-gal staining performed at different time 

points after the initial induction (figure 4). After the CreERT2 is expressed and activated by 4-

OHT, the repressor flanked by loxP sites is removed so that expression of the β-galactosidase 

can take place. Cells positive for β-galactosidase turn blue after X-Gal staining. Therefore, it 

could be shown that the CreERT2 encoded on an AAV vector can be successfully induced by 

4-OHT in vitro. In case of non-transduced cells, no β-galactosidase positive cells were 

detectable.  
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Figure 4: X-Gal staining of CV-1 5B cells transduced with AAV2-ss-CMV-CreERT2 

Cells were transduced with 104 vg/cell. Induction with 1 µM 4-OHT was performed 2 days 

after transduction. Time points of X-Gal staining are indicated by hours after induction. 

Images were taken with 10-fold magnification.  

 

3.1.3. In vivo induction of the CreERT2 in Tomato mice 

After successful in vitro experiments, the AAV vector containing the CreERT2 should be tested 

in vivo. Therefore, AAV serotype 9 vectors were used to achieve a high expression of the 

transgene in the heart. Mice which were not treated with AAV vectors served as negative 

control. The positive controls were mice treated with AAV9-ds-CMV-Cre where an induction 

with tamoxifen was not required. In animals treated with AAV9-ss-CMV-CreERT2, the 

recombinase was induced by tamoxifen 4 weeks after AAV administration. Animals receiving 

vehicle solution instead of tamoxifen were used as further controls.  

Successful recombination events in Tomato mice are displayed by a conversion of the red 

fluorescent signal to a green fluorescent signal (figure 5). The active Cre recombinase excises 

the red Tomato gene from the mouse genome so that the eGFP reporter gene gets under 

the control of the promoter and can be expressed. In control animals which not received any 

AAV vector, this conversion was not observed. The switch from red to green fluorescence 

could be seen in animals which were treated with AAV9-ds-CMV-Cre. Most of the 

cardiomyocytes from these mice were transduced by the AAV vector indicated by the green 

fluorescent signal. In animals receiving the CreERT2-expressing vector and the vehicle 

solution (negative control), almost no transition from red to green fluorescence was 

detectable. In contrast, cross-sections of mice treated with the same vector and tamoxifen 

showed a strong green fluorescent signal.  
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Figure 5: Cryo-sections of heart samples from Tomato mice treated with different AAV9 

vectors 

Mice were treated with 1012 vg/mouse via tail vein injection. Induction with 

vehicle/tamoxifen took place 4 weeks after AAV administration (1 mg/mouse/day, 5 

consecutive days). The animals were sacrificed 1 week after the last vehicle/tamoxifen 

administration. Images of cross-sections from heart of Tomato mice taken in red fluorescent 

channel (for Tomato dye) and green fluorescent channel (for eGFP dye) are shown. The third 

column shows the images of merged channels. Images were taken with 10-fold 

magnification. 
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3.2. Part 2 - Localization and functionality of loxP sites within an AAV vector 

3.2.1. Generation of an AAV vector containing loxP sequences 

In this part, a cardiac-specific promoter – the human troponin T promoter (TnT) - was used. 

To analyze the functionality of the loxP sequences, the Firefly luciferase reporter gene (Fluc) 

or the promoter was flanked by loxP sites. The whole expression cassette was cloned into 

the single-stranded AAV2 genome plasmid (pSSV9). The vector genome without loxP 

sequences served as a control. Primers used can be found in the material’s part.  

 

 

Figure 6: Scheme of AAV vector genomes generated for the second part of experiments 

Promoters, transgenes and loxP sequences (in parallel orientation) were cloned into a single-

stranded AAV background (pSSV9). The vector without loxP sites served as a control.  

 

 

3.2.2. In vitro analysis of the loxP sequence functionality 

To test the loxP sequences in cell culture, the AAV genomes (figure 6) were packaged into 

capsids from AAV serotype 2. These vectors were co-transduced with an AAV2-ss-CMV-

CreERT2 vector. The Firefly luciferase expression was analyzed after induction of the CreERT2 

by 4-OHT. If loxP sequences are functional the luciferase expression should be reduced after 

4-OHT administration.  

In figure 7, a generic Firefly luciferase assay is shown. In this experiment, cells treated with 

the control vector (without loxP sites) and 4-OHT showed significantly higher luciferase 

expression levels than vehicle-treated cells. If the TnT promoter (floxed TnT) or the Firefly 

luciferase (floxed Fluc) were flanked by loxP sequences the Fluc expression could be reduced 

significantly by applying 4-OHT to the cells. In general, the Fluc expression level was higher in 

the control vector without loxP sequences compared to the floxed vectors. 
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Figure 7: Generic Firefly luciferase assay for testing the functionality of loxP sites in cell 

culture 

AAV vectors without and with loxP sequences at different positions were co-transduced with 

a CreERT2-bearing vector (104 vg/cell/vector). Induction with 4-OHT (black bars) was 

performed 2 days after transduction. The luciferase assay was carried out 3 days after initial 

induction. Mean values of relative light units (RLU) with 4 replicates per group are shown. 

The standard deviation is indicated with error bars. Statistical analysis was made with 

Student’s t-test (*p<0.05; ***p<0.001). 

 

 

The experiment displayed in figure 7 was performed at different time points after initial 

induction for at least 3 times. To summarize the data from these independent experiments, 

the fold changes between the relative light units of vehicle and 4-OHT treated cells were 

calculated for all applied AAV vectors at the time points analyzed (figure 8). Compared to the 

control vector without loxP sites, the Firefly luciferase expression is significantly down-

regulated in both vectors containing loxP sequences after 4-OHT administration at all time 

points analyzed.   
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Figure 8: Analysis of fold changes between relative light units of vehicle and 4-OHT treated 

cells transduced with floxed AAV2-ss-TnT-Fluc vectors 

The summary of 3 independent experiments which were performed as seen in figure 7 is 

shown. Fold changes between the RLUs of vehicle and tamoxifen treated cells at different 

time points after initial induction were calculated. The standard deviation is indicated with 

error bars. Statistical analysis was made with One-way ANOVA and Tukey post-test 

(***p<0.001; ns = not significant). 

 

 

3.2.3. In vivo analysis of the loxP sequence functionality in MerCreMer mice 

To verify the data from the in vitro experiments, the generated AAV genomes packaged in 

capsids from serotype 9 were analyzed in the MerCreMer mouse model. These animals 

express an inducible Cre recombinase (MerCreMer) under the control of a cardio-specific 

promoter (αMHC).  The AAV vector without loxP sites served as the control. The induction 

with tamoxifen was performed 4 weeks after AAV administration. 

 

First, the AAV vector containing the floxed Firefly luciferase gene was analyzed by in vivo 

Imaging (figure 9). Therefore, sedated mice were imaged 4 weeks after AAV administration 

and before tamoxifen application. In all animals analyzed, Firefly luciferase expression could 

be detected in the thorax area without any difference between the treatment groups. The 

next imaging analyses were performed 1 week and 3 weeks after vehicle/tamoxifen 

administration. In the tamoxifen-treated animals, no luciferase expression could be detected 

whereas the vehicle-treated mice showed a clear signal.  
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Figure 9: In vivo Imaging of Firefly luciferase expression in MerCreMer mice treated with 

AAV9-ss-TnT-lox-Fluc-lox 

Exemplary animals of vehicle- and tamoxifen-treated mice are shown. The imaging was 

carried out at 3 different time points. The signal ranged from high luciferase expression 

levels (red) to low expression (dark blue).  

 

 

With the help of a software from PerkinElmer, the signal could be analyzed by counting the 

photons per second (figure 10). This so-called total flux revealed that there was no 

difference in luciferase expression between the groups before tamoxifen was applied. In 

case of the vehicle-treated animals, the signal intensity increased from the first 

measurement to the second whereas it dropped at the third imaging to the level of the 

initial measurement. In the tamoxifen-treated group, a significant reduction of the total flux 

could be detected after tamoxifen was administered. This reduction stayed stable until the 

third measurement.  
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Figure 10: Total flux measured by in vivo Imaging of animals treated with AAV9-ss-TnT-lox-

Fluc-lox 

The photons that are emitted per second in vehicle- and tamoxifen-treated animals at 3 

different time points (10 animals per group) are shown. The standard deviation is indicated 

with error bars. Statistical analysis was made with One-way ANOVA and Tukey post-test 

(**p<0.01; ***p<0.001; ns = not significant). 

 

 

After dissection, organs from animals analyzed by in vivo imaging as well as animals treated 

with control vector or floxed TnT vector were homogenized and luciferase expression was 

measured. As displayed in figures 11 and 12, there was no difference in Firefly luciferase 

expression between vehicle and tamoxifen treated animals which received the non-floxed 

control vector. In case of the AAV vector with floxed TnT promoter, there was a significant 

reduction in luciferase expression after tamoxifen administration which was only seen in the 

heart samples. The heart and muscle samples of animals receiving the vector with floxed 

Firefly luciferase also showed a significant down-regulation of luciferase expression levels if 

tamoxifen was applied. In the liver, tamoxifen administration did not alter expression levels 

between vehicle and tamoxifen treated mice regardless of which vector was applied.  
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Figure 11: Firefly luciferase assays from homogenized heart samples of mice treated with 

floxed AAV9-ss-TnT-Fluc vectors 

The rate of relative light units (RLU) to protein amount (in mg) measured is shown. White 

bars show animals treated with vehicle solution, black bars are tamoxifen-treated mice (5 

animals per group).  The standard deviation is indicated with error bars. Statistical analysis 

was made with Student’s t-test (*p<0.05; ***p<0.001; ns = not significant). 

 

 

   

Figure 12: Firefly luciferase assays from homogenized liver and muscle samples of mice 

treated with floxed AAV9-ss-TnT-Fluc vectors 

The rate of relative light units (RLU) to protein amount (in mg) measured is shown. White 

bars show animals treated with vehicle solution, black bars are tamoxifen-treated mice (5 

animals per group).  The standard deviation is indicated with error bars. Statistical analysis 

was made with Student’s t-test (**p<0.01; ns = not significant). 
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To determine the extent of down-regulation after tamoxifen administration, the ratio 

between vehicle- and tamoxifen-treated animals was calculated (figure 13). In case of the 

AAV vector containing the floxed TnT promoter, luciferase expression could be down-

regulated about 16-fold after tamoxifen administration. The vector expressing the floxed 

Fluc showed a 43-fold reduction in luciferase activity in the presence of tamoxifen. Due to 

high variations within the groups, only the fold change of the control vector compared with 

the floxed Fluc vector was significantly different.  

 

 

Figure 13: Extent of Firefly luciferase down-regulation after tamoxifen administration in 

heart samples from mice treated with AAV9 vectors containing a floxed Fluc reporter gene 

The fold changes between the RLU/mg protein of vehicle- and tamoxifen-treated animals 

receiving different AAV9 vectors are shown. The standard deviation is indicated with error 

bars. Statistical analysis was made with One-way ANOVA and Tukey post-test (**p<0.01; ns = 

not significant). 
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3.3. Part 3 – Co-transduction of CreERT2- and loxP-bearing AAV vectors 

3.3.1. Generation of AAV vectors containing loxP sites at different positions 

Similar to the cloning steps described for part 2, another AAV vector set containing loxP 

sequences at different positions was generated. For these experiments, the Renilla luciferase 

reporter gene (Rluc) under the control of the CMV promoter was used in order to allow a 

detailed analysis of also non-cardiac tissues. The whole expression cassette was cloned into 

the single-stranded AAV2 genome plasmid (pSSV9). The vector genome without loxP 

sequences served as a control. Primers used can be found in the material’s part.  

 

 

 

Figure 14: Scheme of AAV vector genomes generated for the third part of experiments 

Promoters, transgenes and loxP sequences (in parallel orientation) were cloned into a single-

stranded AAV background (pSSV9). The vector without loxP sites served as a control.  

 

 

3.3.2. Co-transduction of CreERT2- and loxP-bearing AAV vectors in vitro 

To test the AAV vectors in cell culture, the AAV genomes (figure 14) were packaged into 

capsids from AAV serotype 2. These vectors were co-transduced with an AAV2-ss-CMV-

CreERT2 vector. The Renilla luciferase expression was analyzed after induction of the CreERT2 

by 4-OHT. If the co-transduction of two AAV vectors and the induction by 4-OHT were 

successful the luciferase expression should be reduced after 4-OHT administration.  

In figure 15, a generic Renilla luciferase assay is shown. Here, even the control vector 

(without loxP sites) showed a significantly lower luciferase expression if 4-OHT was applied 

to the cells. In case of the AAV vectors with loxP sites at different position, there was also a 

reduction in luciferase expression after 4-OHT administration.  
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Figure 15: Generic Renilla luciferase assay for testing the co-transduction of CreERT2- and 

loxP-bearing AAV vectors in vitro 

AAV2 vectors without and with loxP sequences at different positions were co-transduced 

with a CreERT2-bearing vector (104 vg/cell/vector). Induction with 4-OHT (black bars) was 

performed 2 days after transduction. The luciferase assay was carried out 3 days after initial 

induction. Mean values of relative light units (RLU) with 4 replicates per group are shown. 

The standard deviation is indicated with error bars. Statistical analysis was made with 

Student’s t-test (*p<0.05; ***p<0.001). 

 

 

The luciferase activities shown in figure 15 were measured at different time points after 

initial induction. To summarize the data, the fold changes between the relative light units 

measured of vehicle- and 4-OHT-treated cells were calculated for all applied AAV vectors 

(figure 16). Statistical analysis was performed with the One-way ANOVA and the Tukey post-

test. To summarize the statistical data, it could be shown that the fold changes of the single 

AAV vectors within each time point were significantly different compared to other AAV 

vectors at the same time point. The only exception from this observation was the fold 

change between the floxed CMV and the floxed Rluc vectors at the time points of 24 h and 

48 h after induction. The highest down-regulation of luciferase expression was achieved by 

the floxed Rluc vector at the time point of 72 h after initial induction, reaching a 9-fold 

reduction in luciferase activity.  
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Figure 16: Analysis of fold changes between relative light units of vehicle and 4-OHT 

treated cells transduced with floxed AAV2-ss-CMV-Rluc and AAV2-CMV-CreERT2 vectors 

Data from 3 independent experiments which were performed as seen in figure 15 are 

shown. Fold changes between RLUs of vehicle- and tamoxifen-treated cells at different time 

points after initial induction were calculated. The standard deviation is indicated with error 

bars. Statistical analysis was made with One-way ANOVA and Tukey post-test (**p<0.01; 

***p<0.001; ns = not significant). 

  

3.3.3. In vivo co-transduction of CreERT2- and loxP-bearing AAV vectors 

After identifying the AAV vector with the floxed Rluc reporter gene as most appropriate in 

vitro, this vector was tested in 8-weeks old male C57Bl/6 wild-type mice. For this purpose, 

the AAV vector genomes (with and without loxP sites) packaged into serotype 9 were 

administered via tail vein injection (1012 vg/vector/mouse) and induced with tamoxifen 4 

weeks after AAV injection.  

After another two weeks, samples from different organs (heart, liver, muscle, kidney, spleen) 

were homogenized and the Renilla luciferase assays were performed (figures 17 and 18). In 

the heart, there was no significant difference in Renilla luciferase expression between 

vehicle- and tamoxifen-treated animals which received the non-floxed control vector. Also, 

the expression levels were similar in the vehicle-treated groups, independent of which 

vector the animals received. In case of the AAV vector with floxed Rluc, there was a 

significant reduction in luciferase expression in the heart after tamoxifen administration 

which was also detectable in the liver samples. In all other organ samples, no significant 

down-regulation of luciferase expression after tamoxifen administration could be shown 

although there was a trend towards decreased luciferase activities in animals treated with 

the floxed AAV vector.  
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Figure 17: Renilla luciferase assay from homogenized heart samples of mice co-transduced 

with CreERT2- and loxP-bearing AAV vectors 

The rate of relative light units (RLU) to protein amount (in mg) was measured. White bars 

show animals treated with vehicle solution, black bars represent tamoxifen-treated mice (4 

animals per group).  The standard deviation is indicated with error bars. Statistical analysis 

was made with Student’s t-test (***p<0.001; ns = not significant). 

 

   

   

Figure 18: Renilla luciferase assay from homogenized organ samples of mice co-transduced 

with CreERT2- and loxP-bearing AAV vectors 

The rate of relative light units (RLU) to protein amount (in mg) was measured. White bars 

show animals treated with vehicle solution, black bars represent tamoxifen-treated mice (4 

animals per group).  The standard deviation is indicated with error bars. Statistical analysis 

was made with Student’s t-test (**p<0.01; ns = not significant). 
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3.4. Part 4 – Generation of the shut-off system encoded on a single AAV vector 

3.4.1. Generation of AAV vectors containing the shut-off system  

To establish the shut-off system for AAV vectors, the inducible CreERT2 recombinase as well 

as the loxP sequences had to be encoded by a single vector. Therefore, the AAV genomes 

seen in figure 19 were cloned and packaged in AAV serotype 2 for in vitro analysis. 

Due to the limited coding capacity of AAV genomes, the Renilla luciferase was used as 

reporter gene. The luciferase gene as well as the gene for the CreERT2 each had their own 

CMV promoter and polyA signal. As seen in the former part of experiments, the loxP sites 

were positioned at different locations within the vector. The overall genome size of these 

AAV vectors was about 5.2 kb which is slightly exceeding the packaging limit of AAV (4.8-

5.0 kb). 

 

 

Figure 19: Scheme of AAV vector genomes generated for the fourth part of experiments 

Promoters, transgenes and loxP sequences (in parallel orientation) were cloned into a single-

stranded AAV background (pSSV9). The vector without loxP sites served as a control.  

 

 

3.4.2. In vitro analysis of the AAV vectors containing the shut-off system 

All AAV vectors generated (figure 19) were packaged into AAV serotype 2 for in vitro 

analysis. Therefore, HEK293T cells were transduced by these vectors and Renilla luciferase 

assays were performed at different time points after induction with 4-OHT. An exemplary 

experiment is shown in figure 20 which displays the luciferase expression 72 h after 

induction. In general, the treatment of cells with the control vector (without loxP sites) 

resulted in a higher luciferase expression than seen in cells which received any floxed AAV 
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vector. If the control vector-treated cells were induced with 4-OHT the luciferase level 

increased significantly. Except for the AAV vector with floxed Rluc-…CreERT2, the 

administration of 4-OHT led to a significant reduction in Rluc expression in the floxed AAV 

vectors.  

 

 

Figure 20: Generic Renilla luciferase assay for testing the shut-off system for AAV vectors 

in vitro 

HEK293T cells were transduced with AAV vectors without and with loxP sequences at 

different positions (105 vg/cell). Induction with 4-OHT (black bars) was performed 2 days 

after transduction. The luciferase assay was carried out 3 days after initial induction. Mean 

values of relative light units (RLU) with 4 replicates per group are shown. The standard 

deviation is indicated with error bars. Statistical analysis was made with Student’s t-test 

(**p<0.01; ***p<0.001; ns = not significant). 

 

 

The results from three independent experiments are shown in figure 20, by calculating the 

extent of reduction (in fold changes) between vehicle- and tamoxifen-treated cells (figure 

21). The only AAV vector which was significantly more down-regulated than all other vectors 

at all time points was the one containing the floxed Rluc (3- to 4-fold reduction). Compared 

to the control vector without loxP sites, the fold change of the vector with floxed Rluc-…-

CreERT2 was not significantly reduced after tamoxifen administration at any time point 

analyzed.  
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Figure 21: Analysis of fold changes between relative light units of vehicle and 4-OHT 

treated cells transduced with floxed AAV2-ss-CMV-Rluc-CMV-CreERT2 vectors 

The summary of 3 independent experiments which were performed as seen in figure 20 is 

shown. Fold changes between RLUs of vehicle and tamoxifen treated cells at different time 

points after initial induction were calculated. The standard deviation is indicated with error 

bars. Statistical analysis was made with One-way ANOVA and Tukey post-test (*p<0.05; 

**p<0.01; ***p<0.001; ns = not significant). 

 

 

To visualize the activity of the inducible CreERT2, X-gal stainings were performed after 

transduction with the respective AAV vectors and induction with 4-OHT of CV-1 5B cells 

(figure 22). If the CreERT2 was active and recombination was successful, the cells are stained 

blue. As expected, the CreERT2 could be induced from any of the AAV vectors used.  
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Figure 22: X-Gal staining of CV-1 5B cells transduced with floxed AAV2-ss-CMV-Rluc-CMV-

CreERT2 

Cells were transduced with 105 vg/cell. Induction with 1 µM 4-OHT was performed 2 days 

after transduction. Cells were stained for β-galactosidase expression 72 hours after 

induction. Images were taken with 10-fold magnification.  

 

 

Another analysis for recombination events was the amplification of DNA fragments which 

were excised from the vector. This was done on the level of genomic DNA by the so-called 

“mini circle” PCR (see method’s part). In case of mock-transduced cells, there were no 

distinct bands detectable (figure 23, A). If the cells were transduced by a non-floxed AAV 

vector only unspecific band were amplified (figure 23, B). A PCR fragment with a size of 

about 3500 bp but also unspecific bands could be detected in case of the floxed Rluc-…-

CreERT2 vector (figure 23, C). Cells treated with the floxed CMV-Rluc vector showed a clear 

band at 1200 bp (figure 23, D) whereas the excised DNA fragment of the floxed Rluc vector 

displayed a band with 600 bp in size (figure 23, E). Besides some unspecific bands, the vector 

with the floxed CMV promoter revealed a DNA fragment of 650 bp (figure 23, F).   
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Figure 23: “Mini circle” PCR for detection of excised DNA fragments after recombination 

Cells were transduced with 105 vg/cell and induced with 1 µM 4-OHT 2 days after 

transduction. Harvesting and genomic DNA isolation was performed 24 hours after 

induction. DNA fragments generated by “mini circle” PCR. A) mock-transduced cells are 

shown. B) AAV vector without loxP sites. C) floxed Rluc-…-CreERT2 vector. D) floxed CMV-Rluc 

vector. E) floxed Rluc vector. F) floxed CMV vector. Bands of excised DNA fragments are 

indicated with arrows.  

 

 

3.4.3. Analysis of the AAV vectors containing the shut-off system in vivo 

To analyze the expression of the inducible CreERT2 in vivo, the control vector without loxP 

sites was injected into 8-weeks old male Tomato mice. Mice were treated with vehicle 

solution or tamoxifen 4 weeks after AAV administration. Successful recombination events by 

the tamoxifen-induced CreERT2 were visualized by the conversion of red to green 

fluorescence signals (figure 24). In vehicle-treated animals, only few eGFP-positive cells were 

detectable. Cryo-sections from mice receiving tamoxifen showed a conversion of red to 

green fluorescence in nearly half of the cells. Compared to the AAV9-ss-CMV-CreERT2 vector 

(part 1), the transition from red to green fluorescence took part to a lower extend if the 

AAV9-ss-CMV-Rluc-CMV-CreERT2 vector was applied.  
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Figure 24: Cryo-sections of heart samples from Tomato mice treated with AAV9-ss-CMV-

Rluc-CMV-CreERT2 

Mice were treated with 1012 vg/mouse by tail vein injection. Induction with 

vehicle/tamoxifen took place 4 weeks after AAV administration (1 mg/mouse/day, 5 

consecutive days). The animals were sacrificed 1 week after the last vehicle/tamoxifen 

administration. Images of cross-sections of hearts of Tomato mice taken in red fluorescent 

channel (for Tomato dye) and green fluorescent channel (for eGFP dye) are shown. The third 

column shows the images of merged channels. Images were taken with 10-fold 

magnification. 

 

 

Renilla Luciferase expression from the control as well as floxed AAV vectors was analyzed in 

homogenized organ samples from C57Bl/6 mice treated with vehicle or tamoxifen. In heart 

samples, there was no difference in luciferase expression in mice treated with the control 

vector, independently of the treatment (vehicle/tamoxifen). If tamoxifen was applied, the 

luciferase levels in heart samples from the floxed CMV-Rluc vector could be reduced 

significantly. The same was observed for the AAV vector containing the floxed Renilla 

luciferase. In general, heart samples from animals treated with the control vector yielded 

higher luciferase expression levels than the floxed AAV vector. The vector containing the 

floxed Renilla luciferase showed the lowest luciferase expression.  
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Figure 25: Renilla luciferase assay from homogenized heart samples of mice treated with 

AAV9 vectors containing the shut-off system 

The rate of relative light units (RLU) to protein amount (in mg) was measured. White bars 

show animals treated with vehicle solution, black bars are tamoxifen-treated mice (4 animals 

per group).  The standard deviation is indicated with error bars. Statistical analysis was made 

with Student’s t-test (**p<0.01; ***p<0.001; ns = not significant). 

 

  

  

Figure 26: Renilla luciferase assay from homogenized organ samples of mice treated with 

AAV9 vectors containing the shut-off system 

The rate of relative light units (RLU) to protein amount (in mg) was measured. White bars 

show animals treated with vehicle solution, black bars are tamoxifen-treated mice (4 animals 

per group).  The standard deviation is indicated with error bars. Statistical analysis was made 

with Student’s t-test (**p<0.01; ***p<0.001; ns = not significant). 
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In other organs than heart, luciferase expression was also higher in mice treated with the 

control vector compared to the floxed AAV vectors. In case of the control vector, luciferase 

activities in the liver were surprisingly decreased significantly after tamoxifen administration 

but not in the other organs (muscle, kidney, spleen). Regarding the floxed CMV-Rluc vector, 

a significant down-regulation of luciferase expression in tamoxifen-treated mice was only 

detectable in the kidney although there was a tendency towards reduction of expression 

levels in other organs. The decrease of Renilla expression in samples receiving the floxed 

Rluc vector and tamoxifen was significant in liver and muscle samples but not in kidney and 

spleen.  

 

 

3.4.4. Repeated tamoxifen dosing to enhance efficacy of the shut-off system 

To enhance the down-regulation in luciferase expression, a repeated tamoxifen 

administration was tested. Therefore, three groups of 8-weeks old male mice (C57Bl/6) were 

treated with AAV9-ss-CMV-lox-Rluc-lox-CMV-CreERT2. After 4 weeks, vehicle solution was 

applied to the first group whereas the other groups received tamoxifen. One of the 

tamoxifen-treated groups got another tamoxifen treatment two weeks after the first 

treatment whereas the other groups received vehicle solution.  

 

 

Figure 27: Effects of repeated tamoxifen dosing in heart samples from mice treated with 

AAV9 vectors containing a floxed Rluc reporter gene 

Renilla luciferase assay was performed from homogenized heart samples. The rate of 

relative light units (RLU) to protein amount (in mg) was measured. White bars represent 

animals treated with vehicle solution, black bars indicate tamoxifen-treated mice (4 animals 

per group).  The standard deviation is displayed with error bars. Statistical analysis was made 

with One-way ANOVA and Tukey post-test (***p<0.001; ns = not significant). 



 
Results 93 

Again, luciferase expression was determined in homogenized organs. In heart samples, the 

expression could be significantly reduced after the first tamoxifen administration. If a second 

tamoxifen dosing was applied the luciferase expression could be further decreased which 

was not statistically significant. In the other organs analyzed, the repeated tamoxifen 

administration also did not yield in a further significant reduction of luciferase expression.  

 

 

  

  

Figure 28: Effects of repeated tamoxifen dosing in organ samples from mice treated with 

AAV9 vectors containing a floxed Rluc reporter gene 

Renilla luciferase assay was performed from homogenized organ samples. The rate of 

relative light units (RLU) to protein amount (in mg) was measured. White bars indicate 

animals treated with vehicle solution, grey and black bars represent tamoxifen-treated mice 

(4 animals per group).  The standard deviation is shown with error bars. Statistical analysis 

was made with One-way ANOVA and Tukey post-test (*p<0.05; **p<0.01; ns = not 

significant). 
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To determine the extent of down-regulation after tamoxifen administration, the ratio 

between vehicle- and tamoxifen-treated animals was calculated (figure 29). Compared to the 

control vector without loxP sites, the floxed CMV-Rluc AAV vector did not show a 

significantly higher extent of down-regulation if tamoxifen was applied. However, the floxed 

Rluc vector yielded in a significantly reduction in luciferase activity compared to both the 

control vector and the floxed CMV-Rluc vector. To put these findings into numbers, the 

control vector achieved a fold change of about 0.85 whereas the floxed CMV-Rluc vector was 

down-regulated about 2.5-fold. The AAV containing the floxed Rluc showed a reduction of 

luciferase activities of about 9.1-fold if a single tamoxifen dosing was administered. If a 

second tamoxifen dosing was applied a significantly higher decrease of Rluc was detectable, 

achieving a fold change of about 26-fold.   

 

 

Figure 29: Extent of Renilla luciferase down-regulation after tamoxifen administration in 

heart samples from mice treated with AAV9 vectors containing a floxed Rluc reporter gene 

The fold changes between RLU/mg protein of vehicle- and tamoxifen-treated animals 

receiving different AAV9 vectors and/or repeated tamoxifen dosing are shown. The standard 

deviation is indicated with error bars. Statistical analysis was made with One-way ANOVA 

and Tukey post-test (**p<0.01; ***p<0.001; ns = not significant). 
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3.5. Part 5 – Efficacy of the shut-off system in a vector potentially causing side 

effects 

3.5.1. Generation of a floxed AAV vector coding for murine interleukin-10 

To evaluate the efficacy of the shut-off system with a therapeutic gene, the reporter gene 

(Renilla luciferase, part 4) was substituted by the murine interleukin-10 cDNA (mIL-10). The 

whole expression cassette was cloned into the single-stranded AAV2 genome plasmid 

(pSSV9).  

 

 

Figure 30: Scheme of AAV vector genome coding for the murine interleukin 10 gene 

Promoters, transgenes and loxP sequences (in parallel orientation) were cloned into a single-

stranded AAV background (pSSV9).  

 

 

3.5.2. Shut-off of a side effect-causing AAV vector in vivo 

The AAV vector containing the floxed mIL-10 gene was injected into 8-weeks old male 

C57Bl/6 mice. Therefore, one group received a low vector dose of 1∙1011 vg/mouse whereas 

the animals in the high dose group received 1∙1012 vg/mouse. Mice which did not receive any 

vector served as the control. The body weight was monitored 3 times per week.  

After 5 weeks (day 37), some of the animals were dissected to evaluate the expression levels 

of the vector. To that date, the body weights of the different groups were quite similar with 

the high dose group showing the lowest body weight.  
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Figure 31: Body weight monitoring from day 0 to 37 of mice injected with floxed mIL-10-

containing AAV vector 

On day 0, the mice were injected with the AAV vector in different dosages. Body weight was 

noted 3 times per week. The control group (n=6) which did not receive any AAV vector is 

depicted with a black line, the low dose group (n=9) in blue and the high dose group (n=9) in 

red.  

 

 

Out of each group, 3 mice were dissected and the body weight, the heart weight, the spleen 

weight and the tibia length were measured. The following ratios were calculated and 

analyzed (figure 32): heart weight vs body weight, heart weight vs tibia length, spleen weight 

vs body weight, and spleen weight vs tibia length. There were no significant differences 

between the groups detectable. 
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Figure 32: Morphometrical data of mice dissected on day 37 after floxed AAV-mIL-10 

injection 

The ratios between heart weight/body weight, heart weight/tibia length, spleen 

weight/body weight, and spleen weight/tibia length are shown. The standard deviation (n=3 

per group) is indicated with error bars. Statistical analysis was made with One-way ANOVA 

and Tukey post-test (ns = not significant). 

 

 

Furthermore, the expression of mIL-10 was analyzed in the heart and in the liver by qRT-PCR 

(figure 33). In the heart, there was no significant difference between the mIL-10 expression 

levels of the groups but there was a slightly higher expression seen in the high dose group. 

This higher expression of mIL-10 in animals treated with the high dose AAV vector was also 

seen in the liver. Here, a 77-fold overexpression of mIL-10 could be detected in the high dose 

group whereas the low dose group showed a 15-fold overexpression.  
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Figure 33: Expression levels of mIL-10 in heart and liver samples 37 days after AAV 

injection analyzed by qRT-PCR 

Expression levels are shown as fold changes normalized to the untreated control group. The 

standard deviation (n=3 per group) is indicated with error bars. Statistical analysis was made 

with One-way ANOVA and Tukey post-test (**p<0.01; ns = not significant). 

 

 

Also, an ELISA detecting mIL-10 in the plasma was performed (figure 34). Here, only the high 

dose group showed significant higher mIL-10 levels in the plasma compared to the control 

and the low dose groups. In the untreated control and the low dose groups, almost no mIL-

10 could be detected (about 1 pg/ml) whereas the high dose group showed mIL-10 levels of 

about 8.5 pg/ml.  

 

 

Figure 34: mIL-10 levels in the plasma 37 days after AAV injection analyzed by ELISA 

The mIL-10 levels detected in plasma samples are shown in pg/ml. The standard deviation 

(n=3 per group) is indicated with error bars. Statistical analysis was made with One-way 

ANOVA and Tukey post-test (**p<0.01; ns = not significant). 
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Until day 91 after AAV injection, the body weight of the remaining animals was monitored 3 

times per weeks (figure 35). It could be detected that the animals receiving the highest 

vector dose showed the lowest body weight at day 91 whereas the untreated control group 

gained the most body weight. Therefore, it was decided to apply vehicle or tamoxifen to the 

AAV-treated animals after day 91 for 5 consecutive days.  

 

 

Figure 35: Body weight monitoring from day 39 to 91 of mice injected with floxed mIL-10-

containing AAV vector 

Body weight was measured 3 times per week. The control group (n=3) which did not receive 

any AAV vector is depicted with a black line, the low dose group (n=6) in blue and the high 

dose group (n=6) in red.  

 

 

The administration of vehicle or tamoxifen was started on day 92 after AAV injection. 

Already on day 93, the groups receiving tamoxifen showed a gain in body weight. Except for 

the high dose group receiving vehicle solution, all groups displayed a similar body weight at 

the end of the experiment on day 102 (figure 36).  
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Figure 36: Body weight monitoring from day 93 to 102 of mice injected with floxed mIL-10-

containing AAV vector 

Body weight was measured 3 times per week. The control group (n=3) which did not receive 

any AAV vector is depicted with a black line. The low dose group treated with vehicle 

solution (n=3) is indicated with a dark blue line, the tamoxifen-treated low dose group (n=3) 

in light blue. The vehicle-treated high dose group (n=3) is displayed in dark red whereas the 

tamoxifen-treated high dose group (n=3) in indicated with a light red line. 

 

 

After dissection of the animals, body weight, heart weight, spleen weight and tibia length 

were analyzed. The same ratios as seen in figure 37 were calculated. In case of heart 

weight/body weight and heart weight/tibia length, there were no significant differences 

detectable. Animals treated with tamoxifen showed a significant increase in spleen weight 

compared to the vehicle-treated mice.  
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Figure 37: Morphometrical data of mice dissected on day 102 after floxed AAV-mIL-10 

injection 

The ratios between heart weight/body weight, heart weight/tibia length, spleen 

weight/body weight, and spleen weight/tibia length are shown. The standard deviation (n=3 

per group) is indicated with error bars. Statistical analysis was made with One-way ANOVA 

and Tukey post-test (*p<0.05; ***p<0.001; ns = not significant). 

 

Again, the expression of mIL-10 was analyzed in heart and liver samples by qRT-PCR (figure 

38). As seen on day 37 after AAV injection, the mIL-10 expression in the heart did not yield 

significant differences between the groups. If tamoxifen was applied, there was a slight 

decrease in mIL-10 levels which also was not significant. In the liver, there were no 

significant differences in mIL-10 expression levels between the control group and the low 

dose groups detectable. The high dose group treated with vehicle solution showed a 15-fold 

overexpression of mIL-10 whereas this overexpression was reduced to about 4-fold upon 

tamoxifen administration. 
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Figure 38: Expression levels of mIL-10 in heart and liver samples 102 days after AAV 

injection analyzed by qRT-PCR 

The expression levels are shown as fold changes normalized to the untreated control group. 

The standard deviation (n=3 per group) is indicated with error bars. Statistical analysis was 

made with One-way ANOVA and Tukey post-test (***p<0.001; ns = not significant). 

 

 

Furthermore, an ELISA measuring mIL-10 in plasma samples was performed as displayed in 

figure 39. Here, the animals treated with tamoxifen surprisingly showed significant higher 

mIL-10 levels compared to the untreated control and vehicle-treated animals. In case of the 

control group, a mIL-10 plasma level of about 9 pg/ml could be detected. This was 

comparable to the vehicle-treated animals. Animals from the low dose group treated with 

tamoxifen had mIL-10 plasma levels of about 18 pg/ml whereas the high dose group reached 

levels of about 21 pg/ml.  
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Figure 39: mIL-10 levels in the plasma 102 days after AAV injection analyzed by ELISA 

The mIL-10 levels detected in plasma samples are shown in pg/ml. The standard deviation 

(n=3 per group) is indicated with error bars. Statistical analysis was made with One-way 

ANOVA and Tukey post-test (**p<0.01; ***p<0.001 ns = not significant). 



 
Results 104 

3.6. Part 6 – Increase in coding capacity of vectors containing the shut-off 

system 

3.6.1. Generation of AAV vectors with increased coding capacity  

As the last step, the shut-off system encoded by a single AAV vector should be improved by 

increasing the coding capacity available. Therefore, the polyA signal (for Rluc) and the 

second CMV promoter (for CreERT2) of the vectors from part 4 were replaced by the P2A 

element from Porcine Teschovirus-1. The whole expression cassette (Rluc-P2A-CreERT2) is 

transcribed as a single mRNA. The small P2A peptide (22 amino acids) is so-called “self-

cleaving” which means that the formation of a peptide bond between two distinct amino 

acids during translation is prevented. The missing bond results in ribosome skipping so that 

the subsequent protein (CreERT2) gets translated.  

 

 

Figure 40: Scheme of AAV vector genomes generated with increased coding capacity 

Promoters, transgenes and loxP sequences (in parallel orientation) were cloned into a single-

stranded AAV background (pSSV9). The vector without loxP sites served as a control.  

 

 

3.6.2. In vitro analysis of vectors containing the P2A element 

The “self-cleaving” activity of the P2A peptide was first validated by Western blot analysis. 

Therefore, HEK293T cells were transduced by the control AAV2 vector (without loxP sites) or 

the vector containing the floxed Renilla luciferase gene. Cells not transduced with any vector 

served as controls. Cells were harvested 72 h after induction with 4-OHT and cell lysates 

were used for Western blot analysis.  
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To analyze the cleavage efficacy of the P2A peptide, antibodies against the Renilla luciferase 

and the CreERT2 were used simultaneously. The luciferase thereby appeared at a molecular 

weight of about 36 kDa whereas the CreERT2 showed a band at about 74 kDa. If the cleavage 

of P2A during translation was not complete a protein band at about 110 kDa should be 

detectable. In case of non-transduced cell lysates, there were no bands at neither of these 

protein weights visible, independently of the treatment of cells (vehicle vs. 4-OHT). The 

control vector without loxP sites showed clear bands for the luciferase and the CreERT2 as 

well as a faint band at 110 kDa for the uncleaved polyprotein in both vehicle- and tamoxifen-

treated cell lysates. In contrast, the floxed Rluc vector only generated a band at the 

molecular weight of the CreERT2 but not for the luciferase, again independently of the 

treatment. As an internal loading control, the anti-GAPDH antibody was used which 

appeared at a protein weight of about 37 kDa.  

 

  

Figure 41: Western blot analysis of P2A-containing AAV2 vectors 

HEK293T cells were transduced by AAV2-ss-CMV-Rluc-P2A-CreERT2 (control) or AAV2-ss-

CMV-lox-Rluc-lox-P2A-CreERT2 (floxed Rluc) vectors. Non-transduced cells served as the 

“mock” control. Western Blot analysis was performed with cell lysates 72 h after induction 

with 4-OHT. The protein weight marker is indicated by protein weight in kDa. Anti-rabbit-

HRP served as the secondary antibody for all primary antibodies used. Dilutions can be found 

in the material’s part. A) Western blot membranes were incubated simultaneously with anti-

Rluc and anti-Cre antibodies. B) Anti-GAPDH antibody was used as an internal control. 
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The next step was to show that the CreERT2 can still be activated by tamoxifen 

administration in the context of P2A-bearing AAV vectors. Therefore, X-Gal stainings with 

AAV transduced CV-1 NB cells were performed (figure 42). In cells which were not 

transduced by any AAV vector, no cells were stained positive for β-galactosidase. The same 

was true for cells transduced by the floxed Rluc-…-CreERT2 vector. Only single positive cells 

could be detected in cells treated with floxed CMV and floxed CMV-Rluc vectors. The control 

vector without loxP sites generated some cells which were stained blue but the most 

positive cells were achieved by applying the floxed Rluc vector onto the cells.  

 

 

Figure 42: X-Gal staining of CV-1 NB cells transduced with floxed AAV2-ss-CMV-Rluc-P2A-

CreERT2 

Cells were transduced with 104 vg/cell. Induction with 1 µM 4-OHT was performed 2 days 

after transduction. Cells were stained for β-galactosidase expression 72 hours after 

induction. Images were taken with 10-fold magnification.   

 

 

To evaluate the efficacy of the shut-off system in context of a P2A-bearing AAV vector, 

Renilla luciferase assays of cell lysates were performed. Therefore, AAV genomes were 

packaged into AAV capsids of serotype 2 to transduce HEK293T cells. Luciferase assays were 

carried out at different time points after induction with 4-OHT. A generic experiment is 

shown in figure 43 which was performed 72 h after induction. As seen with the shut-off 

systems consisting of two expression cassettes, the control vector without loxP sites yielded 

the highest luciferase expression of all AAV vectors tested. Also, a significant increase in Rluc 

expression could be detected by applying 4-OHT onto the cells transduced by the control 
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vector. In case of all floxed AAV vectors used, administration of 4-OHT always led to a 

significant decrease in luciferase expression.  

 

 

 

Figure 43: Generic Renilla luciferase assay for testing the P2A-bearing AAV vectors in vitro 

HEK293T cells were transduced with AAV vectors without and with loxP sequences at 

different positions (104 vg/cell). Induction with 4-OHT (black bars) was performed 2 days 

after transduction. The luciferase assay was carried out 3 days after initial induction. Mean 

values of relative light units (RLU) with 4 replicates per group are shown. The standard 

deviation is indicated with error bars. Statistical analysis was made with Student’s t-test 

(*p<0.05; **p<0.01; ***p<0.001). 

 

 

Three independently performed experiments are summarized in figure 44 by calculating the 

fold changes between vehicle- and tamoxifen-treated HEK293T cells. Except for the time 

point 24 h after induction, luciferase expression of all floxed vectors used could be down-

regulated significantly after administration of 4-OHT. The highest extend of reduction in 

Renilla luciferase expression was thereby achieved by the floxed Rluc vector at almost all 

time points (about 3-fold reduction).  
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Figure 44: Analysis of fold changes between relative light units of vehicle and 4-OHT 

treated cells transduced with floxed AAV2-ss-CMV-Rluc-P2A-CreERT2 vectors 

The summary of 3 independent experiments which were performed as displayed in figure 43 

is shown. Fold changes between RLUs of vehicle and tamoxifen treated cells at different time 

points after initial induction were calculated. The standard deviation is indicated with error 

bars. Statistical analysis was made with One-way ANOVA and Tukey post-test (*p<0.05; 

**p<0.01; ***p<0.001; ns = not significant). 

 

 

The time point of 72 h after induction with 4-OHT was also chosen for the quantification of 

mRNA levels. Cells were therefore transduced by floxed CMV-Rluc and floxed Rluc vectors 

and harvested 72 h after the first 4-OHT administration. Quantitative PCR was performed 

with specific primers for different parts of the AAV vectors (Renilla luciferase, CreERT2) and 

cDNA made from isolated RNA.  

Figure 45 shows the results achieved by qPCR where the fold change normalized to non-

transduced cells was calculated. In case of the floxed CMV-Rluc vector, mRNA levels coding 

for the Renilla luciferase and the CreERT2 were down-regulated if the cells were treated with 

4-OHT. In cells transduced by the floxed Rluc vector, the mRNA levels encoding for the 

luciferase were reduced significantly whereas the CreERT2-bearing mRNAs were increased 

after 4-OHT administration. In general, transduction by the floxed CMV-Rluc vector resulted 

in higher luciferase mRNA levels compared to cells transduced by the floxed Rluc vector.   
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Figure 45: Analysis of mRNA levels in cells transduced with floxed AAV2-ss-CMV-Rluc-P2A-

CreERT2 vectors 

The fold changes of mRNA levels normalized to untreated cells are shown. Primer sets were 

used to detect mRNAs coding for Renilla luciferase or CreERT2. Tamoxifen-treated cells are 

visualized by black bars. Fold changes to non-transduced cells were calculated by the ∆∆Cq 

method. The standard deviation is indicated with error bars. Statistical analysis was made 

with Student’s t-test (*p<0.05; **p<0.01; ns=not significant). 

 

 

3.6.3. Assessment of P2A-bearing AAV vectors in vivo 

To assess the performance of the P2A-bearing vectors in vivo, 8 week old male C57Bl/6 mice 

were injected with either control, floxed CMV-Rluc, or floxed Rluc vectors. After 4 weeks, the 

first tamoxifen dosing was applied. The second tamoxifen administration round was done 2 

weeks after the first application and mice were dissected one week after the last tamoxifen 

administration. 

The Renilla luciferase expression from the control and floxed AAV vectors was analyzed in 

homogenized organ samples from C57Bl/6 mice treated with vehicle or tamoxifen. In the 

control animals, the first tamoxifen administration led to a significant reduction in luciferase 

levels. After the second tamoxifen dosing, the luciferase activity was significantly higher 

compared to one tamoxifen application round. In case of the floxed CMV-Rluc vector, only 

the second tamoxifen administration led to a significant decrease in luciferase expression. In 

contrast, the floxed Rluc vector showed a significant shut-off of Rluc levels after tamoxifen 

application which could not be enhanced by the second tamoxifen dosing.  
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Figure 46: Renilla luciferase assay from homogenized heart samples of mice treated with 

AAV9 vectors containing the P2A element 

The rate of relative light units (RLU) to protein amount (in mg) was measured. White bars 

indicate animals treated with vehicle solution, grey and black bars represent tamoxifen-

treated mice (3 animals per group).  The standard deviation is shown with error bars. 

Statistical analysis was made with One-way ANOVA and Tukey post-test (*p<0.05; 

***p<0.001; ns = not significant). 

 

In other organs than the heart, there were no significant differences in luciferase expression 

in the control group, independent on the treatment. The only exception was detectable in 

the spleen, were the first tamoxifen administration led to a significant reduction in Rluc 

activity. The floxed CMV-Rluc vector showed the same results as the control vector but the 

overall luciferase expression levels were lower. In case of the floxed Rluc vector, a significant 

decrease in luciferase expression could be shown in every organ but there was no further 

reduction if a second tamoxifen dosing was applied.  

 

 



 
Results 111 

  

  

Figure 47: Renilla luciferase assay from homogenized organ samples of mice treated with 

AAV9 vectors containing the P2A element 

The rate of relative light units (RLU) to protein amount (in mg) was measured. White bars 

indicate animals treated with vehicle solution, grey and black bars represent tamoxifen-

treated mice (4 animals per group).  The standard deviation is shown with error bars. 

Statistical analysis was made with One-way ANOVA and Tukey post-test (*p<0.05; **p<0.01; 

***p<0.001; ns = not significant). 

 

To determine the extent of down-regulation after tamoxifen administration, the ratio 

between vehicle- and tamoxifen-treated animals was calculated (figure 48). Compared to the 

control vector without loxP sites, the floxed CMV-Rluc AAV vector did not show a 

significantly higher extent of down-regulation if tamoxifen was applied. However, the floxed 

Rluc vector yielded in a significantly reduction in luciferase activity compared to both the 

control vector and the floxed CMV-Rluc vector. To put these findings into numbers, the 

control vector achieved a fold change of about 1.19 whereas the floxed CMV-Rluc vector was 

down-regulated about 1.13 to 1.70-fold (first and second tamoxifen administration). The 

AAV containing the floxed Rluc showed a reduction of luciferase levels of about 2.41-fold if a 
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single tamoxifen dosing was administered. If a second tamoxifen dosing was applied a 

slightly higher decrease of Rluc was detectable, achieving a fold change of about 3.04-fold.   

 

 

Figure 48: Extent of Renilla luciferase down-regulation after tamoxifen administration in 

heart samples from mice treated with AAV9 vectors containing the P2A element 

The fold changes between vehicle- and tamoxifen-treated animals receiving different AAV9 

vectors and/or repeated tamoxifen dosing are shown. The standard deviation is indicated 

with error bars. Statistical analysis was made with One-way ANOVA and Tukey post-test 

(***p<0.001; ns = not significant). 
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4. DISCUSSION 

Although Adeno-associated viral vectors are one of the safest viral gene therapy systems 

available, many modifications towards increasing the safety are under investigation. On one 

hand, improvements in terms of efficacy and specificity have to be made, e.g. by designing 

AAV vectors targeting specifically distinct cell types or tissues. On the other hand, AAV 

vectors have to be modified to avoid binding to pre-existing neutralizing antibodies which 

limits the transduction efficacy of the gene transfer and allows only the treatment of 

patients that are pre-screened for low titer anti-AAV antibodies.   

Moreover, a system to eliminate the AAV vectors after administration would be beneficial, 

e.g. if adverse events arise or if the treatment should be limited to a distinct time period. 

Possible side-effects may not occur due to the presence of the AAV vector itself but due to 

the overexpression of the gene of interest. It could be easily conceivable that the expression 

of the transgene has beneficial therapeutic effects until a distinct threshold is reached and 

additional expression leads to an imbalance in cellular functions. Therefore, a shut-off 

system for AAV vectors applicable after administration which can be activated in case of 

side-effects would be highly desirable. Ideally, the system should work independently on the 

AAV serotype, promoters and transgenes used. The generation of such system was thus the 

main focus of the present study.  

 

4.1. Part 1 – Induction of the inducible Cre recombinase from an AAV vector 

Before establishing the final shut-off system which is encoded on a single AAV vector, 

several pre-experiments were performed. First, the expression and background activity of 

the inducible CreERT2 recombinase were investigated. In vitro, the induction of the CreERT2 

was already detectable 24 h after the first 4-OHT administration. Further 4-OHT applications 

did not lead to an increase of cells positively stained for β-galactosidase. Moreover, 

recombination did not occur in cells which were not treated with 4-OHT whereas the 

addition of 4-OHT resulted in cells positively stained for β-galactosidase. However, some 

background activity of the CreERT2 could be detected in vehicle-treated animals in vivo. This 

basal activity in the absence of tamoxifen was indeed as low as described by other groups 

[153-155]. To further reduce the activity of the CreERT2 in the absence of tamoxifen, a 
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second ERT2 domain could be fused to the recombinase [142, 143]. In case of the final shut-

off system encoded by a single AAV vector, this ERT2CreERT2 recombinase would be too large 

in size so that no coding capacity for the transgene would be left. Therefore, this low 

background activity is acceptable and does not lead to any undesired effects.  

 

4.2. Part 2 – Localization and functionality of loxP sites within an AAV vector 

Besides the functionality of the inducible CreERT2 recombinase, also the localization of the 

loxP sequences within the AAV vectors as well as the impact on expression levels was 

analyzed. In this case, the human cardiac-specific promoter TnT (troponin T) driving the 

expression of the Firefly luciferase reporter gene was used. The TnT promoter reduces 

expression of the transgene in the liver whereas the expression in heart and muscle remains 

high [112]. The Firefly luciferase gene was used to study the recombination events with the 

help of in vivo imaging which is better established than using the Renilla luciferase as 

reporter gene [169]. Moreover, the vector sets used in this part did not possess a limited 

coding capacity so that the use of the Firefly luciferase was possible. In case of the final shut-

off system (part 4), the gene for the Firefly luciferase was too large for insertion into the 

single AAV vector. 

The AAV vectors with and without loxP sites were first tested in cell culture by co-

transduction with an AAV vector expressing the inducible CreERT2 recombinase. The 

expression of the luciferase reporter gene could be down-regulated significantly in case of 

the floxed AAV vectors after 4-OHT was applied to the cells. However, the extent of down-

regulation was not very high (about 1.6-fold in case of the floxed Fluc vector). One 

explanation for this faint effect is the co-transduction itself since both AAV vectors have to 

enter the same cell which then also has to be penetrated by 4-OHT for successful induction. 

To evaluate the influence of the loxP sites on the expression levels of the reporter gene, a 

comparison between the control vector and the floxed vectors in vehicle-treated cells can be 

made. The luciferase encoded by the control vector without loxP sites was expressed to a 

3.1- to 5.8-fold higher extent than seen with the floxed AAV vectors. Therefore, the loxP 

sequences seem to reduce the expression of the reporter gene which has also been 

described by Sauer in 1998 [170]. Due to the complementary sequences within the loxP 

sites, hairpins are formed which are also present in transcripts. If these hairpins are located 
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upstream of the transgene the expression can be impaired. This is the case of both floxed 

vectors used in this experimental part. A greater distance to the start codon of the gene or 

the placement of the loxP sites within introns could improve this negative effect on 

expression levels.  

For in vivo analysis of the respective AAV vectors, a mouse model expressing the inducible 

MerCreMer recombinase under the control of the cardio-specific αMHC (myosin heavy 

chain) promoter was used. Because of time constraints, these mice were used instead of 

models expressing the CreERT2 which were not available on the campus. Already one week 

after the first tamoxifen administration, almost no light emission catalyzed by Firefly 

luciferase activity could be detected in mice treated with AAV9-ss-TnT-loxP-Fluc-loxP 

vectors. This indicates that recombination and therefore the excision of the reporter gene is 

a fast process which may not require daily tamoxifen administrations on 5 consecutive days. 

In some studies, two tamoxifen administrations were sufficient to achieve the maximal 

recombination 4 days after induction [158]. By analyzing the Firefly activity in homogenized 

heart samples, a significant reduction in tamoxifen-treated mice could be shown for both 

floxed AAV vectors (floxed TnT and floxed Fluc) but not for the control vector without loxP 

sites. For liver samples, a down-regulation of luciferase expression was not seen upon 

tamoxifen administration since the inducible MerCreMer recombinase is only expressed in 

heart and to a lower extent also in skeletal muscle. The extent of down-regulation (16- to 43-

fold compared to vehicle-treated animals) in the heart was much higher as seen in cell 

culture which can be explained by the endogenous expression of the inducible Cre that had 

to be co-transduced in the cell culture experiments. Theoretically, every cardiomyocyte 

transduced by the floxed AAV vector and treated with tamoxifen should show this reduction 

in luciferase activity. But a complete shut-off of the floxed AAV vectors by tamoxifen 

administration is hardly achievable due to the efficacy of the MerCreMer-mediated 

recombination which is about 80% [160]. Moreover, every cell transduced by an AAV vector 

also has to be targeted by tamoxifen to reach a recombination efficacy of 100%.  

Another aspect already described for the in vitro experiments was the impact of the loxP 

sites on the transgene expression levels. In vivo, this effect was not as pronounced as in cell 

culture. Here, the luciferase expression level was at maximum 3-fold higher in the control 

vector compared to the floxed TnT vector. In case of the floxed Fluc vector, no differences in 

expression levels compared to the control vector could be detected.  
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4.3. Part 3 – Co-transduction of CreERT2- and loxP-bearing AAV vectors 

Both experimental parts described before were combined for the next step toward the 

establishment of the final shut-off system encoded by a single AAV vector. Here, one AAV 

vector expressing the inducible CreERT2 recombinase was co-transduced with a second 

vector containing the Renilla luciferase reporter gene and loxP sequences at different 

positions within the AAV genome.  

Again, first analyses were made in cell culture to evaluate the most suitable vectors for in 

vivo approaches. Here, co-transduction combined with the 4-OHT administration resulted in 

a significant down-regulation of reporter gene expression in case of all floxed vectors used. 

The extent of reduction varied between 4- and 9-fold compared to vehicle-treated cells. The 

vector achieving the highest down-regulation was the one containing the Rluc gene flanked 

by loxP sites. Moreover, the control vector achieved about 1.4- to 1.9-fold higher expression 

levels than the floxed vectors in vehicle-treated cells. Compared to the AAV vectors 

containing the Firefly luciferase gene under the control of the TnT promoter (part 2), the 

vectors used in this experimental part showed higher reductions in reporter gene expression 

upon 4-OHT addition. In general, the CMV promoter is active in almost all cell types whereas 

the TnT promoter is specific for cardiac and muscle cells. In the cell culture experiments 

shown, kidney cells were used so that the TnT promoter only results in low reporter gene 

expression (105 relative light units) whereas the CMV promoter leads to higher expression 

levels (107 relative light units).  These differences in the promoters used may explain the 

differences in the down-regulation in vitro.  

For in vivo experiments, the AAV vector expressing the luciferase flanked by loxP sites was 

used. Upon tamoxifen administration, the significant down-regulation in Renilla luciferase 

expression seen in vitro could be reproduced in the heart and the liver whereas in other 

organs (muscle, kidney, and spleen) a tendency towards a reduction was detectable. The 

extent of down-regulation was about 2.8-fold and therefore lower than seen in cell culture. 

Again, the shut-off of the reporter gene requires a transduction of a single cell by two AAV 

vectors which can be achieved more easily in cell culture than in vivo. In vitro, 104 vg per cell 

were used per AAV vector whereas in vivo in total 1012 vg per vector were injected 

systemically.  
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4.4. Part 4 – Generation of the shut-off system encoded within a single AAV 

vector 

The final shut-off system is encoded by a single AAV containing both loxP sites and the 

CreERT2. The coding capacity of a single-stranded AAV vector is about 4.8 kb including the 

ITRs. Because of the two expression cassettes used, the AAV genome consisting of the shut-

off system reached a size of about 5.2 kb. Although this might exceed the packaging limit of 

an AAV vector, the production of these vectors was unproblematic resulting in reasonable 

AAV titers. Therefore, the use of smaller transgenes than the Renilla luciferase gene (about 

940 bp) should be possible with this vector system. Larger genes could result in a drop of 

AAV vector titers and a higher probability that not the whole AAV genome gets packaged 

into an AAV particle.  

The AAV vectors shown in figure 19 were first tested in vitro. In HEK293T cells, the 

expression of the luciferase could be down-regulated significantly in almost all floxed vectors 

after 4-OHT administration. The only exception was the vector containing loxP sites before 

the luciferase gene and after the CreERT2 recombinase. This vector did not show any 

reduction in luciferase activity, independently of the time points analyzed. After 

recombination in case of this vector, a complete mRNA consisting of the CreERT2, one loxP 

site, the Renilla reporter gene, and the SV40 polyA signal can be transcribed under the 

control of the CMV promoter left. Therefore, the translation of the CreERT2 should still be 

possible whereas the luciferase should not be translated due to the stop codon of the 

CreERT2 terminating the translation. Conceivable read-through of this stop codon, e.g. by 

ribosome skipping, could lead to production of luciferase. Moreover, nucleotide motifs in 

close proximity to the stop codon may facilitate the translational read-through. Such a motif 

could be displayed by the loxP site between the CreERT2 and Renilla luciferase genes. 

In case of the floxed AAV vectors leading to a reduction of luciferase activity upon 4-OHT 

addition, the extent of down-regulation varied between the vectors. The most efficient was 

the one containing the floxed Rluc gene, resulting in a 3-fold reduction in luciferase 

expression 72 h after induction. The AAV vectors with floxed CMV and floxed CMV-Rluc only 

reached a 1.4-fold down-regulation in cell culture. As seen in the pre-experiments, the 

overall expression levels of luciferase in vehicle-treated cells were reduced in the AAV 

vectors containing loxP sites. In comparison to the control vector without loxP sites, the 

expression of the floxed Rluc vector was about 68-fold reduced whereas the floxed CMV-Rluc 
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vector showed only a 16-fold reduction. Again, the secondary structure of the loxP 

sequences seems to affect the expression of the transgene if they are placed in close 

proximity to the 5’-end of the gene as seen with the floxed Rluc vector. In case of the floxed 

CMV-Rluc, there is no loxP site located between the promoter and the luciferase gene so 

that the influence of the loxP sequences within the AAV genome seems to be decreased.  

In CV-1 cells, the expression and induction of the CreERT2 recombinase was analyzed. Cells 

positive for β-galactosidase expression could be detected with all AAV vectors applied. This 

experiment should verify that the CreERT2 expression is sufficient for successful down-

regulation of luciferase activity upon 4-OHT administration. Therefore, a deficient CreERT2 

expression in case of the floxed Rluc-…-CreERT2 vector which did not show any reduction in 

luciferase expression after 4-OHT addition could be excluded.  

Another in vitro experiment was made by detecting the recombination products generated 

upon 4-OHT administration. This so-called “mini circles” which consist of the excised DNA 

fragments were amplified by PCR. In general, this PCR leaded to some unspecific DNA bands 

but the recombination products could be clearly verified. In case of the floxed Rluc-…-

CreERT2 vector, the respective “mini circle” was not very prominent which confirms the 

results seen in the luciferase assays performed. Another reason could be the efficacy of the 

PCR itself since the DNA fragment amplified was the largest (3500 bp).  

The expression and induction of the CreERT2 was also monitored in vivo, at least for the 

control vector without loxP sites. Here, successful recombination could be detected in 

animals treated with tamoxifen whereas there were almost no eGFP-positive cells in vehicle-

treated Tomato reporter mice. In comparison to the AAV9-CMV-CreERT2 vector used in part 

1, the extent of positive cells showing successful recombination was much lower. Therefore, 

the vectors containing the shut-off system seem to be less efficient in terms of transduction 

and CreERT2 expression.  The size above the packaging limit of these vectors could be one of 

the reasons for this effect but also the bicistronic expression cassettes could lead to reduced 

expression levels of the genes encoded.  

The expression of the Renilla luciferase was also analyzed in vivo with the floxed AAV vectors 

which performed best in vitro. In the heart, both floxed vectors showed a significant down-

regulation of luciferase activity upon tamoxifen administration whereas at least a tendency 

towards a reduction could be detected in the other organs analyzed. Thereby, a 2.5-fold 
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down-regulation of luciferase levels could be achieved by the floxed CMV-Rluc vector 

whereas the floxed Rluc vector resulted in a 9-fold reduction. This extent of down-regulation 

was higher than observed in cell culture. In cells, the half-time and stability of the luciferase 

protein could lead to remaining Renilla activity although the recombination was successful. 

To avoid this effect, the time between induction and harvesting of the cells could be 

prolonged. As seen in cell culture, the expression levels of the luciferase in vehicle-treated 

animals were different between the control vector and the floxed AAV vectors. Here, the 

expression of the control vector was 1.5-fold and 2.4-fold higher than the luciferase levels of 

the floxed Rluc vector and floxed CMV-Rluc vector, respectively. As described for all other 

experiments before, this observation of reduced expression levels due to the presence of 

loxP sites was not as prominent as observed in cell culture.  

Another step in analyzing the shut-off system was the validation of the assumption that 

further tamoxifen administrations would lead to a higher degree in reporter gene down-

regulation. Therefore, the most efficient vector containing the floxed Rluc gene was used. 

Indeed, a second round of tamoxifen addition yielded in a further reduction of the luciferase 

levels which was not significant due to relative high variations between single animals. 

However, calculation of the extent of down-regulation resulted in significant differences 

between one tamoxifen dosing (5 days, 1 mg each day) and two administrations (10 days, 

1 mg each day). The 9-fold reduction seen with a single tamoxifen dosing could be enhanced 

to a 26-fold down-regulation in luciferase expression. An explanation for this effect could be 

that the cells transduced by the corresponding AAV vector also have to be penetrated by 

tamoxifen to make the shut-off system functional. The more tamoxifen is applied, the higher 

the probability of targeting the cells transduced by the vector. Therefore, it could be 

conceivable that further tamoxifen administrations lead to higher shut-off levels. It may not 

be required that one tamoxifen administration round consists of 5 consecutive days. Also, 

the concentration of tamoxifen applied could be increased to avoid repeated 

administrations.  

In comparison to the co-transduction of two AAV vectors (see part 3) the shut-off system 

encoded on a single AAV vector is more efficient in terms of down-regulation of the reporter 

gene encoded. For example, the floxed Rluc vector with the complete shut-off system 

achieved a 9-fold reduction in luciferase expression whereas the down-regulation in the co-

transduction setting was only 2.8-fold. As described before, a co-transduction requires the 
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delivery of all components into the same cell which is not as efficient as the delivery of all 

necessary compounds by a single AAV vector. Another aspect that got obvious by 

comparison of part 3 and part 4 of this thesis was the difference in expression levels of the 

luciferase encoded by the AAV vectors. In the co-transduction experiment, the measurement 

of luciferase levels resulted in about 108 relative light units whereas the shut-off system on a 

single AAV vector led to a maximum of 107 relative light units. Again, this discrepancy could 

be explained by the size of AAV genomes used which is slightly too large in case of the AAV 

vectors encoding the complete shut-off system. The use of a minimal CMV promoter could 

enable a reduction of the vector genome size below 5.0 kb.  

 

4.5. Part 5 - Efficacy of the shut-off system in case of a side effect-causing gene 

In a next step, the shut-off system should be evaluated with a side effect-causing gene 

replacing the reporter gene used in part 4. Therefore, the murine interleukin-10 (mIL-10) 

cDNA was used. In humans, IL-10 is an anti-inflammatory cytokine and plays a role in 

protection of the organism by blocking exaggerating immune reactions [171, 172]. In a study 

for the treatment of cystic fibrosis using an AAV vector expressing IL-10 (AAV1-IL-10), 

beneficial effects could be seen in the treatment of allergic reactions [173]. However, in the 

same study, side effects caused from prolonged overexpression of IL-10 were observed, 

including thrombocytopenia and splenomegaly. The authors claim that the treatment with 

IL-10 is effective but caution has to be taken in settings where a long-term secretion of IL-10 

is involved. Experiments in our laboratory with systemically applied, cardio-specific AAV9 

vectors coding for murine IL-10 (AAV9-mIL-10) confirmed the adverse events seen in the 

study described above. Animals (C57Bl/6) treated with AAV9-mIL-10 showed a consistent 

weight loss from day 35 on after AAV injection. After dissection, a severe splenomegaly and 

inflammations in several organs including liver and pancreas could be detected (unpublished 

data).  

Therefore, the gene coding for murine IL-10 was cloned into the AAV genome consisting of 

the shut-off system. The AAV vector generated expressing the mIL-10 flanked by loxP sites 

was then administered to C57Bl/6 mice in two different doses and the body weight was 

monitored 3 times per week. Since the animals gained body weight until day 37 after AAV 

injection, three mice per group were sacrificed to validate the mIL-10 expression. In terms of 
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body weight, heart weight and spleen weight, these animals did not show any significant 

differences between the groups. Analysis of the mIL-10 expression levels in the heart 

revealed a slight 2-fold increase in the high dose group which was not significant. In contrast, 

in the previous study using a cardio-specific promoter driving the mIL-10 expression, a 2000-

fold and a 20000-fold overexpression of mIL-10 in the low and high dose groups could be 

achieved in heart samples. Also the expression levels yielded in liver samples were higher in 

the previous study (2000-fold in the low dose group, 4000-fold in the high dose group). In 

this experiment, the low dose group showed a 15-fold overexpression of mIL-10 compared 

to untreated mice in the liver whereas the high dose group displayed a 77-fold increase in 

mIL-10 mRNA levels. Due to these differences, an analysis of the mIL-10 mRNA levels 

generated by transfection of these AAV genomes into HEK293 cells was performed. This 

showed that the vector used in the previous study achieved about 25-fold higher mIL-10 

levels than the vector containing the shut-off system (data not shown). In vivo, these 

variations seemed to be even more prominent than in cell culture. Again, the size of the AAV 

vector containing the shut-off system and the negative influence of the loxP sites on the 

transgene expression may explain the effects seen. The expression data analyzed by qRT-PCR 

were confirmed by the ELISA for the detection of mIL-10 in the plasma. Here, only the high 

dose group showed significantly higher mIL-10 levels compared to the untreated controls. In 

the previous study, mIL-10 plasma levels of about 120000 pg/ml were achieved whereas the 

high dose group in this experiment only reached about 8 pg/ml.  

Because of these data, it was decided to leave the remaining animals for a longer time 

period. The body weight was still monitored 3 times per weeks until day 91. The animals 

treated with mIL-10 expressing AAV vectors showed a stable body weight since day 65 

without gaining as much weight as seen in the control group. Therefore, some animals were 

treated with tamoxifen for 5 consecutive days from day 92 on. After tamoxifen treatment, 

these mice gained body weight very quickly whereas the body weight of the vehicle-treated 

and control animals remained stable. Surprisingly, the spleen weight of mice having received 

tamoxifen was significantly higher than of vehicle-treated and control animals. Moreover, 

the plasma ELISA for mIL-10 showed higher mIL-10 levels in animals treated with tamoxifen. 

Here, plasma levels of about 20 pg/ml were achieved in tamoxifen-treated animals whereas 

the control groups only reached levels of about 9 pg/ml. On one hand, the detection range 

of the plasma ELISA is stated from the manufacturer as 15.6 to 1000 pg/ml. Therefore, the 
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mIL-10 levels measured are beyond the detection level of the ELISA. On the other hand, 

tamoxifen itself could have an effect on mIL-10 levels in the plasma. To verify this, another 

experiment to answer this question should be performed where an untreated control group 

receiving the same amount of tamoxifen is included. The mIL-10 expression levels measured 

by qRT-PCR in the heart revealed that there were no significant differences between the 

groups. A slight reduction in the mIL-10 mRNA could be seen in mice to which tamoxifen was 

applied. Again, these findings were not significant. In contrast, the high dose group showed a 

significant up-regulation of mIL-10 expression in the liver (15-fold compared to the 

untreated control animals) which could be reduced to a 4-fold overexpression of mIL-10 

upon tamoxifen administration. Therefore, the aim of the shut-off system to reduce the 

expression from the vector after tamoxifen administration could be verified.  

Another finding was that the transcript levels of mIL-10 in the liver decreased over time. On 

day 37, a 77-fold overexpression could be detected whereas only a 15-fold up-regulation 

was shown on day 102 after AAV injection. One explanation could be that the background 

activity of the CreERT2 recombinase results in the reduction of mRNA levels. Moreover, the 

turn-over of cells in the liver is much higher as for example in the heart. If liver cells are 

renewed the AAV genome gets lost and overall expression levels decrease.  

Taken together, the main drawback of the shut-off system containing a side effect-causing 

gene seems to be the expression levels achieved from the AAV vector. In case of vector 

coding for the Renilla luciferase reporter gene, this was not a severe problem due to the 

sensitivity of the luciferase quantification assays. But using other genes like mIL-10, the low 

expression levels achieved may lie beyond the therapeutic levels necessary to induce side 

effects. Higher doses of these AAV vectors would be necessary to yield comparable levels of 

the transgene as seen with AAV vectors only encoding the transgene.  
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4.6. Part 6 – Increase in coding capacity of AAVs containing the shut-off system 

Finally, the shut-off system encoded by a single AAV vector should be improved in terms of 

coding capacity available. Therefore, the polyA signal of the Renilla luciferase reporter gene 

and the CMV promoter driving the CreERT2 expression were replaced by the “self-cleaving” 

P2A peptide from Porcine Teschovirus-1. The size of the AAV genome could be reduced from 

5.2 kb to 4.4 kb which is below the limiting capacity for AAV genomes of 4.8 kb. The 

packaging of these vectors containing the P2A element should be facilitated in comparison 

to the vectors containing two expression cassettes. The CMV promoter driving the luciferase 

expression now also controls the expression of the P2A element and the CreERT2. A single 

mRNA is transcribed and finally a polyprotein is translated. During translation, the P2A 

element results in a cleavage between the Renilla luciferase and the CreERT2 recombinase so 

that two distinct proteins are generated [174]. Besides the P2A peptide from Teschovirus-1, 

other 2A oligopeptides are available, e.g. from Foot-and-Mouth Disease virus (F2A) or Equine 

Rhinitis A virus (E2A). All of these 2A peptides were shown to work in eukaryotic systems 

with P2A achieving the highest cleavage efficacy [175]. The advantage of these 2A peptides 

over the use of an internal ribosome entry site (IRES) is the small size of these elements 

(about 66 nt versus about 600 nt of the IRES). Moreover, the expression of the genes up- and 

downstream of the 2A element is quite similar whereas the gene downstream of the IRES 

shows decreased expression efficacies.  

To verify the cleavage efficacy of the P2A in cell culture, Western blot analysis of HEK293T 

cells transfected with the corresponding AAV genomes was performed. The control vector 

without loxP sites showed defined bands at the molecular weights for both the Renilla 

luciferase (36 kDa) and the CreERT2 (74 kDa), independently of the treatment applied 

(vehicle/4-OHT). The cleavage efficacy of the P2A element was indeed high because there 

was only a very faint band at 110 kDa visible, indicating the uncleaved polyprotein. In case of 

the AAV genome containing the Renilla luciferase flanked by loxP sites, there was only a 

band for the CreERT2 detectable but not for the luciferase. Further experiments were 

performed to clarify if the expression of the luciferase is reduced due to the presence of loxP 

sequences (see below).  

For all vectors containing the P2A element, independently on the locations of the loxP 

sequences within the AAV genome, the expression and inducibility of the CreERT2 was tested 
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by X-Gal stainings. Because the P2A elements get cleaved co-translationally, some amino 

acids from this peptide remain at the C-terminus of the luciferase and the N-terminus of the 

CreERT2. The X-Gal stainings should exclude that these N-terminal added amino acids have 

an influence on the CreERT2 expression and activation upon tamoxifen administration. 

Surprisingly, the amount of positively stained cell varied strongly between the different AAV 

vectors applied. Only few positive cells were detectable in case of the control vector, the 

floxed CMV vector and the floxed CMV-Rluc vector. The vector containing the floxed Rluc-…-

CreERT2 cassette did not show any positive cell whereas the floxed Rluc vector yielded in by 

far the most positive cells compared to all other vectors. As an explanation, the CMV 

promoter gets excised upon 4-OHT addition in case of the floxed CMV and CMV-Rluc vectors. 

Therefore, expression of further CreERT2 transcripts and subsequent translation is not 

possible anymore. The same is true for the floxed Rluc-…-CreERT2 vector where 

recombination leads to the excision of the CreERT2 itself. In contrast, only the luciferase gene 

is removed in the floxed Rluc vector during recombination. As a result, the CreERT2 gets 

directly under the control of the CMV promoter which leads to increased CreERT2 levels. 

However, the CreERT2 expression in case of the control vector was assumed to be higher 

than detected by X-Gal stainings. Therefore, it cannot be ruled out that the remaining amino 

acids from the P2A element have an impact on the expression and/or induction of the 

recombinase.  

Next, the Renilla luciferase activity of all vectors was analyzed in cell culture. Here, a 

significant down-regulation of luciferase expression could be shown for all vectors 

containing loxP sites. The extent of the reduction varied between 2-fold and 3.3-fold with 

the floxed Rluc vector showing the highest down-regulation. These results were comparable 

to the data achieved with the AAV vectors of part 4 containing two expression cassettes. In 

general, the AAV vectors containing the P2A element yielded in at least 10-fold higher 

luciferase levels compared to the vectors from part 4. Another aspect to analyze was the 

influence of the loxP sites on luciferase expression in the P2A-containing vector set. Here, 

the luciferase levels were about 50- to 140-fold reduced compared to the control vector. 

These differences were much higher than seen with the vectors containing two expression 

cassettes. The reason seems not to be the presence of the P2A element itself since the 

control vector performed much better than the control vector from part 4.  
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To correlate the Renilla luciferase and the CreERT2 expression levels, qRT-PCRs were 

performed with cells treated with the floxed CMV-Rluc and the floxed Rluc vectors. In case of 

both vectors, the Renilla luciferase mRNA levels were significantly reduced upon 4-OHT 

administration due to the excision of the luciferase gene. In vehicle-treated cells, the floxed 

CMV-Rluc vector yielded in about 6.7-fold more luciferase-containing transcripts than the 

floxed Rluc vector. Considering the CreERT2 mRNA levels of the floxed CMV-Rluc vector, the 

amount of transcripts was comparable to the luciferase mRNA levels. By addition of 4-OHT, 

the CreERT2 expression was reduced significantly in the floxed CMV-Rluc vector due to the 

loss of the promoter driving the recombinase expression. In contrast, the transcripts of the 

CreERT2 were significantly increased if the floxed Rluc vector and 4-OHT were applied. As 

stated before, the excision of the luciferase upon 4-OHT addition lead to the generation of a 

remaining AAV vector, comprising the CMV promoter, the P2A element and the CreERT2. 

Therefore, the recombinase gets directly under the control of the promoter which in turn 

results in an increase of transcript amounts. As already seen with the luciferase-containing 

mRNAs in vehicle-treated cells, the CreERT2 transcript levels were lower with the floxed Rluc 

vector compared to the floxed CMV-Rluc vector. Thus, the position of the loxP sequences 

within the AAV genome seems to have a greater impact on expression if the loxP sites flank 

the luciferase gene.  

The vectors analyzed via qRT-PCR in cell culture were also chosen for in vivo experiments in 

C57Bl/6 mice. As already seen in vitro, the overall luciferase activity reached was about 10-

fold higher than achieved by the AAV vectors containing two expression cassettes. However, 

the extent of down-regulation was much lower compared to the vectors tested in part 4, 

even if a second tamoxifen dosing was applied. In heart samples, a maximal reduction of 3-

fold could be achieved in case of the floxed Rluc vector whereas the same vector containing 

two expression cassettes yielded a 26-fold down-regulation in vivo. The reduction in 

luciferase activity was only significant in case of the floxed Rluc vector, with a second 

tamoxifen administration not leading to a further down-regulation. The difference in 

luciferase expression between one and two tamoxifen dosing rounds was significant if the 

floxed CMV-Rluc vector was applied. Here, the extent of down-regulation was only 1.8-fold 

(two tamoxifen administrations). Even the control vector without loxP sites showed 

differences between the treatment groups which can be explained by the small groups (3 

animals per group) and the high variation between single animals. The data from heart 
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samples were also transferable to the results achieved in other organs (liver, muscle, kidney, 

and spleen). Taken together, the outcome of the in vivo experiments with P2A-containing 

AAV vectors was not as expected. On one hand, one could assume that the recombination 

and excision of floxed DNA fragments within P2A-bearing AAV vectors is not as effective as 

seen with the AAV vectors comprising two expression cassettes. The additional amino acids 

on the N-terminal domain of the CreERT2 may impair the activity and efficacy of the 

recombinase which has also been shown for the Cre recombinase comprising an ERT2 domain 

on each end of the protein [137, 142]. In one of these studies, the Cre activity dropped to 

35% of the original Cre recombinase if two ERT2 domains were fused to the recombinase. On 

the other hand, the outcome of the in vitro experiments with P2A-bearing vectors was 

comparable to the AAV vectors containing two expression cassettes. Therefore, the reason 

for the poor down-regulation upon tamoxifen administration in vivo may lie in the tamoxifen 

batch used for the P2A experiments. A repetition of the experiments, at least with one of the 

floxed AAV vectors, would be helpful to rule out problems with the tamoxifen applied.  

 

4.7. Final remarks 

As already described in the introduction, the regulatory systems having been used in the 

context of AAV vectors so far allow the induction of gene expression from the vector by 

administration of an inducer drug. The main drawbacks of these systems are size of the 

components encoded, the origin of single regulatory elements (e.g. of viral origin) and the 

adverse effects induced by the drug itself. In case of the coding capacity required by the 

regulation system, it is beneficial if all elements can be expressed from a single AAV vector 

to increase efficacy of the system applied. This avoids the requirement of two AAV vectors 

targeting the same cell to deliver all components necessary for regulation. Therefore, the 

aim of this thesis was the development of a regulatory system fitting into one AAV genome 

and using the Cre/loxP technology. Another safety aspect of regulation system is the origin 

of single regulatory elements encoded by the vector. For example, the Tet- and RU486-

inducible systems use the viral transactivator domain (VP16) from Herpes Simplex virus 

which may induce immune responses. Thus, systems delivering only mammalian 

components for efficient regulation would be highly beneficial. By applying the regulatory 

system using the inducible Cre recombinase, elements from bacteriophage P1 (loxP sites, Cre 
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recombinase) are also not of mammalian origin. It was shown, that the expression of the 

CreERT2 did not lead to any toxicities, independently of the induction status (active/inactive) 

[153]. Besides the components of the regulatory system, the inducer drug itself has to be 

evaluated for the clinical use, e.g. in humans [115]. Tetracycline and doxycycline were shown 

to induce photosensitivity and immune responses if applied for long time periods. 

Rapamycin acts as an immunosuppressant agent and too high doses would be required in 

humans to fully induce the regulation system. RU486 has been used in the clinical setting for 

terminating pregnancy but even if the doses needed for induction are lower than to 

terminate pregnancy, side effects may arise. All of these regulatory systems require the 

application of the drug to induce expression from the gene therapy vector. If the effects of 

the transgene overexpression should be achieved over a longer period the inducer agents 

need to be applied for the same interval to maintain expression. Thus, this long-term 

administration of drugs may lead to adverse effects, impairment of health or even changes 

in phenotypes [176]. The transgene expression of the regulation system described in this 

thesis is constantly switched on until tamoxifen is administered. Therefore, the application 

of the inducer drug is only required if side effects occur or if the treatment should be 

terminated. This avoids long-term administration of tamoxifen which in turn could result in 

adverse effects. In several studies it was shown that tamoxifen only has to be applied for 2-5 

days to achieve high induction rates for the Cre recombinase, at least in mouse models. 

Other studies reported that also lower tamoxifen doses applied are sufficient for effective 

recombination. Tamoxifen itself has been in clinical use for a long time to treat breast cancer 

patients. The treatment is limited to 5 years to avoid side effects which include hot flashes, 

weight gain, joint aches, mood disturbances, thromboembolic disease or endometrial cancer 

[177, 178]. These adverse events may result only after long-term administration of 

tamoxifen on a daily basis which would not be required to switch-off the regulatory system 

described in this thesis. Moreover, the use of the active metabolite of tamoxifen, 4-

hydroxytamoxifen (4-OHT), would prevent the application of high tamoxifen doses due to its 

30- to 100-fold more potent activity compared to the prodrug tamoxifen [179]. As a 

drawback, the commercially available 4-OHT is more expensive than tamoxifen.  

Taken together, the shut-off system developed in this thesis can be applied if transgene 

expression should be switched off due to side effects arising or if the treatment should be 

limited to a certain time period. The system can be adapted to individual requirements, e.g. 
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by using cell- or tissue-specific promoters instead of the CMV promoter. Moreover, all AAV 

serotypes can be applied so that targeting of various tissues and cell types is possible. The 

only limitation of the system is the coding capacity for the transgene which is limited to 1 kb 

in case of the vectors containing two expression cassettes and the CMV promoter. If other 

promoters should be used the cloning capacity has to be evaluated again.  

As seen in several experiments, the loxP sequences decrease the expression level of the 

transgene encoded, dependent on the position of the sites within the AAV genome. For 

functional studies using therapeutic genes, this drawback has to be taken into account. 

Therefore, dose finding studies should be performed to evaluate the therapeutic range of 

the AAV vector applied. Improvements of the AAV vector itself could also lead to higher 

expression levels, e.g. by inserting spacer regions between the loxP sites and the transgene. 

Furthermore, the extent of down-regulation achievable by tamoxifen administration has to 

be considered for therapeutic studies. If a complete shut-off of the transgene expression is 

required the tamoxifen doses and treatment intervals have to be adapted. It is assumed that 

not the Cre expression levels are the limiting factor for efficient recombination but the 

intracellular amount of tamoxifen [140]. Thus, doses of the AAV vector and tamoxifen have 

to be validated before the functional study.  

Besides the optimization of the expression levels of the transgene in context of loxP-bearing 

AAV vectors, another improvement could be implemented to the shut-off system. Instead of 

using two homotypic loxP sites, heterotypic sequences could be applied to avoid the 

reversible recombination reaction. In case of the excision of the DNA fragment, this 

reversible reaction is not a major problem since intramolecular excisions are the most 

efficient and stable recombination reactions and therefore favored over integrations or 

inversions [130]. Moreover, the excised DNA from the shut-off system is relatively small and 

elements required for productive DNA replication are lacking. Thus, these small circular DNA 

molecules get rapidly lost in vivo [129].   

In conclusion, the delivery of an inducible CreERT2 recombinase in combination with AAV 

genomes flanked by loxP sites allows efficient (self)-inactivation of AAV-mediated gene 

expression upon tamoxifen administration. These findings contribute to the generation of a 

novel shut-off system for AAV-based gene transfer vectors applicable for the use of various 

promoters, transgenes and AAV serotypes.  
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