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Abstract

Theoretical chemistry has become an important branch of modern chemistry. The-

oretical investigations improve our understanding of chemical problems and can

predict properties or reaction pathways. Especially in photochemistry, quantum

chemical calculations are used along with spectroscopy to analyze the interactions

of molecules with light. In recent years, new methods like time-dependent density

functional theory (TD-DFT) and the algebraic diagrammatic construction scheme

for the polarization propagator (ADC) have been developed allowing calculations

of excited states of molecules of chemical relevant size with an accuracy directly

comparable with experimental results. These methods allow not only for the

calculation of excitation energies, but also of excited state properties, electron

densities, absorption strengths and even photoreaction pathways can be calculated.

This paves the way for the theoretical investigation of all photochemical processes.

Typically, however, chemical reactions and spectroscopic measurements are per-

formed in solution. Unlike in gas phase, molecules in solution are comparatively

close together, leading to an interaction between the solvent and solute molecules.

In biochemistry, reactions often take place in the active center of a protein and

in technical photochemical applications such as organic light emitting diodes

(OLEDs) the chromophore is packed in a matrix. Hence, for comparable quantum

mechanical calculations, the influence of the environment has to be considered as

well. Since a direct treatment of the full environment is generally not feasible due

to the computational demand of quantum chemical methods, an approximative

treatment of the interaction using specific environment models is made.

In my dissertation, I focused on two main topics involving both the application

of existing theoretical methods, and the development of new theoretical methods.

In the first part, I investigated the photochemical and electrochemical properties

of various phosphorus-tetrathia-[7]heterohelicenes. The ground and several excited

states of tetrathia-[7]heterohelicene-dialkylphosphane-borane (TTH-DAPB) and

tetrathia-[7]heterohelicene-diphenylphosphane-gold(I)-chloride (TTH-DPP-Au(I))

have been analyzed using DFT, TD-DFT and RI-CC2. These molecules belong

to the the class of helicenes, which are characterized by multiple annelated aro-

matic rings forming a helical structure which induces chirality. The optimized

ground state equilibrium structures were compared with experimental structures

determined by X-ray crystallography and showed generally good agreement. The

eight energetically lowest excited singlet states have been calculated. Employing

a constant shift accounting for environment effects and intrinsic errors of the
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applied method, the calculated spectra almost perfectly resemble the experimental

absorption and circular dichroism spectra. In both molecules, both the S1 and S2

state contribute to the first absorption band. Therefore, vibrationally resolved

absorption spectra have been calculated for these two states for both molecules. It

could be shown that only the first excited state determines the absorption band.

The second excited state exhibits a very broad band due to many normal modes

contributing to the vibronic excitation. In general, the TTH backbone dominates

the photochemical properties and the phosphorus and gold atoms exhibit only

minor influences.

In addition, electrochemical properties of the phosphine-oxide TTH derivatives

TTH-(PO(n−Bu)2)2, TTH-(PO(Ph)2)2 and TTH-PO(Ph)2 as well as of the two

phosphine-selenide TTH derivatives TTH-(PSe(Ph)2)2 and TTH-PSe(Ph)2 have

been calculated. Ionization energies and electron affinities have been computed

both in gas phase and solution. In solution, all first electron detachments and

attachments are localized on the TTH moiety with only minor influence of the

substituents. Each process is qualitatively determined in all molecules by a single

frontier orbital, which has been verified by difference density analysis. For the

phosphine-oxide TTH derivatives the gas phase results resemble the results in

solution. The phosphine-selenides, however, show a different picture. The lone-

pairs are shifted higher in energy without stabilization of the environment, leading

to an ionization localized at the selenium atom in the gas phase.

The second focus of my dissertation was the development, implementation,

and testing of a new method for including environment interaction in the excited

state of a central molecule. To this end, I combined frozen density embedding

thoery (FDET) with the ADC method to develop the new FDE-ADC method.

This method is implemented in the quantum chemical program package Q-Chem as

the module fdeman, which manages the FDE-ADC calculation. In FDET, the

supersystem is divided in two subsystems: the embedded system (A) and the

environment (B). The name “embedded system” comes from the fact that it

is embedded in the electron density of the environment. The influence of the

environment is expressed in an embedding potential, which depends on both

electron densities of A and B. In fdeman, the whole FDE-ADC calculation is

performed in a four step process: a) generation of the electron density of the

embedded system ρA(~r), b) generation of the electron density of the environment

ρB(~r), c) calculation of the embedding potential vlinemb(~r) and finally d) applying

vlinemb(~r) in an FDE-ADC calculation by adding it to the Fock matrix during the SCF
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followed by an ADC calculation using the orbitals influenced by the environment.

While the straight-forward implementation of FDE-ADC uses a supermolecular

basis to express both density matrices and the embedding potential, an approximate

variant named re-assembling of density matrix (RADM) has been introduced in

which the density matrix of A is built together from MP(2) and HF based density

matrices like a patchwork. The created embedding potential is subsequently cut to

the monomer basis which features an FDE-ADC calculation using only the basis

functions of the embedded system. This can be done since in the contraction of

the density of A with the embedding potential, only the values of the block in the

density matrix representing the embedded system contribute.

FDE-ADC has been benchmarked up to third order perturbation theory employ-

ing three test systems, designed to exhibit an increasing strength of environment

interaction. The test systems are 1) benzene with a hydrogen fluoride molecule

in plane with the benzene ring, 2) benzaldehyde with a hydrogen-bonded water

dimer and 3) uracil surrounded by five hydrogen-bonded water molecules. In

the benchmark, the FDE-ADC results have been compared with supermolecular

ADC calculations. The deviation from the reference calculation in excitation

energies and oscillator strengths determines the accuracy of FDE-ADC. For SE-

FDE-ADC(2) and RADM-FDE-ADC(2), mean absolute errors (MAEs) of 0.025

eV and 0.040 eV in excitation energies have been determined, respectively. For

RADM-FDE-ADC(3), an MAE of 0.029 eV has been calculated. These errors are

well below the intrinsic error of the underlying ADC methods, thus demonstrating

the performance of FDE-ADC. This is furthermore demonstrated in three repre-

sentative applications. First, the excited states of benzoquinone in 42 methanol

molecules has been investigated. Next, the vertical photochemical properties of

the photoswitch spiropyran in 100 water molecules have been investigated. In

the last application, the core-valence excited states of carbon monoxide inside a

C60-cage have been calculated.

Using a frozen environment neglects the influence of the embedded system on the

environment. This is called environment polarization and can be added following

two different approaches. In the first variant referred to as pre-polarization, the

ground state influence of the embedded system on the environment is treated by an

electrostatic potential which is applied during the calculation of the environment

density. This way, ρB(~r) is not calculated in the gas phase but instead in the

presence of A. In the second variant, referred to as excitation-induced environment

polarization, the influence of an electronic excitation of A on the environment
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is considered. Therefore, the subsystems are interchanged and alternatingly

embedded in each other until self-consistency (freeze and thaw). Here, two

approximate variants to include excitation-induced environment polarization are

introduced. In the first variant, named state-specific iteration (SSI), the alternate

embedding is performed once, which prevents changes in the order of the excited

states. In the second variant called difference density polarization potential

(DDPP), the environment is embedded consecutively in the ground and excited

state density of system A. The electron difference density describing the polarization

of the environment is used to create a potential which is employed to calculate an

energy correction for the excitation energy of the excited state of A. Both SSI and

DDPP as well as the pre-polarization are implemented in the module fdeman in

Q-Chem. In tests, both the pre-polarization and SSI could increase the accuracy of

FDE-ADC. In the case of SSI, up to 35 % increased accuracy is observed. DDPP

currently does not improve the results.

In total, the FDE-ADC method is a promising approach for considering en-

vironmental effects on electronically excited states. The error of this method is

lower than the intrinsic error of the employed ADC method. Using the RADM

approximation, explicit treatment of extended environments is directly feasible,

making FDE-ADC a “black box” method for the calculation of excited states in

complex environments.
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Zusammenfassung

Die theoretische Chemie stellt heute ein wichtiges Teilgebiet der Chemie dar.

Theoretische Untersuchungen helfen, chemische Fragestellungen zu beantworten

und können Eigenschaften oder Reaktionen vorhersagen. Besonders in der Photo-

chemie werden quantenchemische Berechnungen zusammen mit der Spektroskopie

verwendet, um die Wechselwirkungen von Molekülen mit Licht zu analysieren. In

den letzten Jahren wurden neue Methoden wie die zeitabhängige Dichtefunktio-

naltheorie (engl. time-dependent density functional theory, TD-DFT) oder das

algebraisch-diagrammatische Konstruktionsschema für den Polarisationspropaga-

tor (engl. algebraic diagrammatic construction scheme, ADC) entwickelt, die die

Berechnung von elektronisch angeregten Zuständen in Molekülen von chemisch

relevanter Größe mit einer Genauigkeit ermöglicht, die einen direkten Vergleich mit

experimentellen Ergebnissen zulässt. Mit diesen Methoden können nicht nur Anre-

gungsenergien, sondern auch weitere Eigenschaften angeregter Zustände, wie etwa

Elektronendichten, Absorptionsstärken und sogar Photoreaktionswege, berechnet

werden. Dies ermöglicht theoretische Untersuchungen aller photochemischen Pro-

zesse. In der Regel werden jedoch chemische Reaktionen und spektroskopische

Messungen in Lösung durchgeführt. Anders als in der Gasphase sind in Lösungen

Moleküle eng zusammen, was zu einer Wechselwirkung der Moleküle von Solvent

und Lösemittel führt. Auch in der Biochemie geschehen Reaktionen oft im aktiven

Zentrum innerhalb eines Proteins und in technischen photochemischen Anwendun-

gen wie organischen lichtemittierenden Dioden (OLEDs) wird der Chromophor in

eine Matrix eingebettet. Für vergleichbare quantenmechanische Berechnungen ist

daher auch der Einfluss der Umgebung zu berücksichtigen. Da eine direkte Behand-

lung der vollen Umgebung aufgrund der zeitlichen und technischen Anforderungen

quantenchemischer Methoden meist nicht möglich ist, wird eine approximative

Behandlung der Interaktion in sog. Umgebungsmodellen durchgeführt.

In meiner Dissertation habe ich vor allem auf zwei verschiedenen Themen

gearbeitet, die in die Anwendung bestehender theoretischer Methoden einerseits

und die Entwicklung neuer theoretischer Methoden andererseits kategorisiert

werden können.

Im ersten Teil habe ich die photochemischen und elektrochemischen Eigenschaf-

ten verschiedener Phosphor-Tetrathia-[7]heterohelicene untersucht. Der Grund- und

mehrere angeregte Zustände von Tetrathia-[7]heterohelicen-dialkylphosphan-boran

(TTH-DAPB) und Tetrathia-[7]heterohelicen-diphenylphosphan-gold(I)-chlorid

(TTH-DPP-Au(I)) wurden unter Verwendung von DFT, TD-DFT und RI-CC2
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berechnet. Diese Moleküle gehören zu den Helicenen, die durch mehrere anne-

lierte aromatische Ringe gekennzeichnet sind. Sie bilden eine helicale Struktur,

die eine Chiralität bewirkt. Die optimierten Gleichgewichtsstrukturen wurden

mit denen durch Röntgenkristallographie ermittelten experimentellen Strukturen

verglichen und zeigten eine gute Übereinstimmung. Die acht energetisch niedrigsten

angeregten Singulettzustände wurden berechnet. Nach Addition einer konstanten

Verschiebung, die Fehler aufgrund von Umgebungswechselwirkungen und intrin-

sischen Fehlern der angewandten Methode korrigiert, stimmen die berechneten

Spektren nahezu perfekt mit den experimentellen Absorptions- und Circulardichro-

ismusspektren überein. Da in beiden Molekülen die beiden energetisch niedrigsten

angeregten Zustnde zur ersten Absorptionsbande beitragen könnten, wurden für

diese in beiden Molekülen vibrationsaufgelöste Absorptionsspektren berechnet. Es

konnte gezeigt werden, dass nur der erste angeregte Zustand die Absorptionsbande

bestimmt. Der zweite angeregte Zustand weist eine sehr breite Bande aufgrund

vieler Normalmoden auf, die zur vibronischen Anregung beitragen. Im Allgemei-

nen dominiert das TTH-Rückgrat die photochemischen Eigenschaften und die

Phosphor- und Goldatome zeigen nur geringe Einflüsse.

Darüber hinaus sind die elektrochemischen Eigenschaften der Phosphinoxid-

TTH-Derivate TTH-(PO(n−Bu)2)2, TTH-(PO(Ph)2)2 und TTH-PO(Ph)2 sowie

der beiden Phosphin-Selenid-TTH-Derivate TTH-(PSe(Ph)2)2 und TTH-PSe(Ph)2

berechnet worden. Ionisierungsenergien und Elektronenaffinitäten wurden sowohl in

der Gasphase als auch in Lösung berechnet. In Lösung sind alle ersten Elektronen-

abgaben und -aufnahmen auf dem TTH-Ring lokalisiert, wobei die Substituenten

nur einen geringen Einfluss zeigen. Jeder dieser Prozesse wird qualitativ in allen

Molekülen durch ein einziges Grenzorbital bestimmt. Dies konnte durch Analyse der

Differenzdichten verifiziert wurde. Während für die Phosphinoxid-TTH-Derivate

die Gasphasen-Ergebnisse den Ergebnissen in Lösung ähneln, zeigen die Phosphin-

Selenide ein anderes Bild. Die ungebundenen Elektronenpaare werden ohne eine

Stabilisierung durch die Umgebung energetisch nach oben verschoben, was in der

Gasphase zu einer am Selenatom lokalisierten Ionisation führt.

Im zweiten Teil habe ich eine neue Methode entwickelt, um den Einfluss der

Wechselwirkung mit Molekülen der Umgebungen auf die angeregten Zustände eines

zentralen Moleküls zu berücksichtigen. Deshalb habe ich die Umgebungsmethode

Einbettung in eine gefrorene Dichte (engl. frozen density embedding theory, FDET)

mit der ADC-Methode kombiniert, um die neue FDE-ADC-Methode zu entwickeln.

Diese Methode wurde im quantenchemischen Programmpaket Q-Chem als Modul
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fdeman implementiert, das die FDE-ADC-Berechnung verwaltet. In FDET ist

das Supersystem in zwei Subsysteme, namentlich das eingebettete System (A)

und die Umgebung (B), aufgeteilt. Das eingebettete System wird, seinem Namen

entsprechend, in die Elektronendichte der Umgebung eingebettet. Der Einfluss der

Umgebung wird in einem Potential (engl. embedding potential) ausgedrückt, das

sowohl von der Elektronendichte von A als auch von B abhängt. In fdeman wird

die gesamte FDE-ADC-Berechnung in einem vierstufigen Prozess durchgeführt: a)

Erzeugung der Elektronendichte des eingebetteten Systems ρA(~r), b) Erzeugung

der Elektronendichte der Umgebung ρB(~r), c) Berechnung des Potentials vlinemb(~r)

und schließlich d) Anwendung von vlinemb(~r) in einer FDE-ADC-Berechnung durch

Hinzufügen zur Fock-Matrix während des SCF. Dies ist gefolgt von einer ADC-

Berechnung, die die von der Umgebung beeinflussten Orbitale nutzt.

Während die direkte Implementierung von FDE-ADC eine supermolekulare Ba-

sis verwendet, um sowohl die Dichtematrizen als auch das Potential auszudrücken,

wurde eine genäherte Variante namens Neu-Zusammensetzung der Dichtematrix

(engl. Re-assembling of density matrix, RADM) eingeführt, in der die Dichtema-

trix von A zusammengebaut wird aus MP(2)- und HF-basierten Dichtematrizen

ähnlich eines Flickwerks. Das erzeugte Potential wird anschließend auf die Größe

der Monomerbasis zugeschnitten, was eine FDE-ADC-Berechnung in lediglich den

Basisfunktionen des eingebetteten Systems ermöglicht. Dies ist erlaubt, da bei der

Kontraktion der Dichte von A mit dem Potential nur die Werte beitragen, die das

eingebettete System selbst repräsentieren.

FDE-ADC wurde bis zur dritten Ordnung Störungstheorie getested, wobei

drei Testsysteme eingesetzt wurden, die eine zunehmende Stärke der Umgebungs-

einflüsse aufweisen sollen. Die Testsysteme sind 1) Benzol mit einem Wasser-

stofffluoridmolekül in der Ebene des Benzolrings, 2) Benzaldehyd mit einem

wasserstoffbrückengebundenem Wasser-Dimer und 3) Uracil, umgeben von fünf

wasserstoffbrückengebundenen Wassermolekülen. In dem Test wurden die FDE-

ADC-Ergebnisse mit supermolekularen ADC-Berechnungen verglichen. Die Abwei-

chung von den Anregungsenergien der Referenzberechnung bestimmt die Genau-

igkeit von FDE-ADC. Für SE-FDE-ADC(2) und RADM-FDE-ADC(2) werden

mittlere absolute Fehler (engl. mean absolute error, MAEs) von 0,025 eV bzw. 0,040

eV bestimmt. Für RADM-FDE-ADC(3) wurde ein MAE von 0,029 eV berechnet.

Diese Fehler liegen weit unter dem intrinsischen Fehler der zugrunde liegenden

ADC-Methoden und zeigen somit die Leistung von FDE-ADC. Dies wurde auch in

drei repräsentativen Anwendungen gezeigt. Zuerst sind die angeregten Zustände
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von Benzochinon in 42 Methanolmolekülen untersucht worden. Als nächstes sind

die vertikalen photochemischen Eigenschaften des Photoschalters Spiropyran in 100

Wassermolekülen untersucht worden. Zuletzt wurden die Kern-Valenz-angeregten

Zustände von Kohlenmonoxid innerhalb eines C60-Käfigs berechnet.

Die Verwendung einer gefrorenen Umgebung vernachlässigt den Einfluss des

eingebetteten Systems auf die Umgebung. Dies wird als Umgebungspolarisation

bezeichnet und kann durch zwei verschiedene Ansätze miteinbezogen werden. In

der ersten Variante, die als Vorpolarisation bezeichnet wird, wird der Einfluss des

Grundzustands des eingebetteten Systems auf die Umgebung durch ein elektro-

statisches Potential berücksichtigt, das bei der Berechnung der Umgebungsdichte

angewendet wird. Auf diese Weise wird ρB(~r) nicht in der Gasphase berechnet,

sondern in Gegenwart von A. In der zweiten Variante, die als anregungsinduzierte

Umgebungspolarisation bezeichnet wird, wird der Einfluss einer elektronischen

Anregung von A auf die Umgebung berücksichtigt. Daher werden die Subsys-

teme vertauscht und abwechselnd ineinander eingebettet bis Selbstkonsistenz

erreicht is (Einfrieren und Auftauen). Hier werden zwei Näherungsverfahren zur

Berechnung der anregungsinduzierte Umgebungspolarisation eingeführt. In der

ersten Variante namens zustandsspezifischer Iteration (engl. state-specific iteration,

SSI) wird die gegenseitige Einbettung einmal durchgeführt, was Änderungen in

der Reihenfolge der angeregten Zustände verhindert. In der zweiten Variante,

die Differenzdichten-Polarisationspotential (engl. difference density polarization

potential, DDPP) genannt wird, wird die Umgebung nacheinander in die Elektro-

nendichte des Grund- und angeregten Zustands von System A eingebettet. Die

Differenzdichte, die die Polarisation der Umgebung beschreibt, wird verwendet,

um ein Potential zu erzeugen, das zur Berechnung einer Energiekorrektur für die

Anregungsenergie von A verwendet wird. Sowohl SSI als auch DDPP sowie Vorpo-

larisation sind im Modul fdeman in Q-Chem implementiert. Bei Tests konnten

sowohl die Vorpolarisation als auch SSI die Genauigkeit von FDE-ADC um bis zu

35% im letzteren Fall erhöhen. DDPP verbessert derzeit nicht die Ergebnisse.

Insgesamt ist die FDE-ADC-Methode ein vielversprechender Ansatz für die

Berücksichtigung des Einflusses von Umgebungswechselwirkungen auf elektronisch

angeregte Zustände. Der Fehler dieser Methode ist niedriger als der intrinsi-

sche Fehler der verwendeten ADC-Methode und unter Verwendung der RADM-

Approximation ist eine explizite Behandlung von größeren Umgebungen direkt

möglich. Dies macht FDE-ADC zu einer
”

Black Box“ Methode für die Berechnung

von elektronisch angeregten Zuständen in komplexen Umgebungen.
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Chapter 1

Introduction

“Science is not only a disciple of reason

but, also, one of romance and passion.”

Stephen Hawking

Photochemistry, I would call it “the bright side of chemistry”, is a special part of

chemistry dealing with the interaction of molecules with light. [1,2] Photochemical

processes are involved in important biological processes like photosynthesis and

vision. [3] But photochemical processes are also important for technical aspects

or development of new materials. This ranges from the stability of colors upon

irradiation from the sun [4] to the reduction of photolability in drugs. [5,6] In additoin,

photochemistry in the field of organic electronics is essential to design new organic

solar cells or organic light-emitting diods (OLEDs). [7–10] Because of this diversity

of photochemical applications, quantum chemical methods became more and more

important since they provide an important tool to investigate and understand

chemical and photochemical aspects.

Typically and without any external influence, a molecule occupies its energeti-

cally lowest state, the electronic ground state. Absorption of a photon can lead

to an excitation to an energetically higher state, an excited state. This excitation

is accomplished by an electron, which is transferred from an occupied molecular

orbital to an energetically higher-lying unoccupied (or virtual) molecular orbital.

Photoexcitations are very fast processes leading to a vertical excitation and thus

also to an excitation of the vibrational states in the excited state according to the

overlap of the vibrational wavefunction. This is referred to as the Franck-Condon

Principle. [11,12] It is followed by relaxation to the vibrational ground state of the

excited state from which flourescence can occur. As an alternative to fluorescence,

the molecule can undergo a chemical reaction in the excited state referred to as
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Chapter 1. Introduction

a photochemical reaction. In many cases, these photochemical reactions proceed

barrierless and can can lead to different products than ground state reactions can

achieve. Mostly, this is accompanied by a conical intersection (CI), a crossing of

two electronic states. Hence, the previously excited state can become the electronic

ground state in the photoproduct. It is also possible for the system to undergo

an inter-system crossing (ISC) from the singlet excited state to an triplet state

from which phosphorescence can occur (Fig. 1.1). If the energy of the absorbed

photon is very high (like in X-rays), an electron is not excited to an excited state

but instead completely removed and the system becomes ionized. The energy

difference between absorption and flourescence is called the Stokes shift and is a

result of the geometrical relaxation in the excited state. [11]

Figure 1.1: Jablonski-diagram illustrating various possible electronic transitions.
The vertical arrows in green, red, purple and pink indicate absorption, fluorescence,
phosphorescence and ionization, respectively. The horizontal arrows indicate
absorbed and emitted photons. A photoreaction can occur from the S1 state
through a conical intersection to a new photoproduct. Relaxatation through an
inter-system crossing populates the triplet state T1.

In larger molecules, the excited state processes are more complex and in addition

to the common (π 7→ π∗) and (n 7→ π∗) states, new kinds of excited states might

arise. One example is the charge-transfer state, in which an electron is moved

in space due to the excitation. This leads to a charge separation in the excited

2



state. [13] In order to analyze excited states properly, reliable quantum chemical

methods have to be employed. Since various approximations are included in the

methods, it is important to know which method in suited for the investigation of a

certain problem. In Chapter 2 I will give an introduction into quantum chemistry

and review several methods I have used in my dissertation.

In many chemical researches, different investigative techniques are combined.

The three “cornerstones” of chemistry, preparative chemistry, which covers the

synthesis of new compounds, analytical or spectroscopical chemistry, measuring

and analyzing chemical and physical properties, and the theoretical chemistry,

which simulates chemical reactions and properties, all work together to obtain a

complete picture. Observed data can be compared with theoretical results and

simulations on reaction pathways suggesting new ways of synthesis.

In the first part of my dissertation, I have performed various excited state

analyses of larger molecules belonging to the class of tetrathiaheterohelicenes. In

Chapter 3 I will show an detailed study on these molecules with close comparison

to experimental results.

In recent years, the development of highly accurate quantum chemical methods

has become ever more important to improve understanding of complicated chemical

problems. These methods reach accuracies for either geometry, energies or other

properties that allow direct comparison with experimental results. However, due

to the computational demand, these accuracies are only achievable for small

molecules in the gas phase. One of these highly accurate methods is the Algebaic-

diagrammatic construction scheme for the polarization propagator (ADC), [14] which

I will explain in Sec. 2.3.4.

As stated by the famous ancient Greek philosopher Aristotle (384-322 B.C.):

“Compounds do not react unless fluid or if dissolved” [15,16] since the solvent increases

the mobility of the solute and provides in most cases a stabilizing effect on

the reactants. This quote demonstrates how important solvents or in general

environments are for chemical reactions and properties. [17,18] But not only chemical

reactions depend on the solvent, also excited states are mainly influenced by

environment interaction. A well-known phenomenon is the shift of excitation

energies due to various solvents. This is referred to as solvatochromism. [18–21]

In most cases, the absorption bands of a chromophor and its environment are

clearly separated. As a consequence, photons of a wavelength absorbable by the

chromophore will not interact with the environment molecules. This can be used

to introduce the approximation of a separable system into photoactive compound,
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e.g. the chromophore, and the environment. In this approximation, only the

chromophore is electronically excited by absorption of light while the environment

remains in the electronic ground state. After the instantaneous absorption of

light, the following photochemical processes can be divided into three steps due to

their intrinsic timescale. Within femtoseconds after the absorption, the electron

density of the chromophore gets polarized. However, the electron densities of

the environment molecules, which are arranged around the chromophore, were

adapted to its ground state electron density. Since this electron density now

changes, it induces a change in the environment electron densities as well. This

is a mutual interaction which equilibrates. The excited state electron density

of the chromophore is self-consistent with the ground state electron densities of

the environment molecules. This mutual interaction between chromophore and

environment influences the excitation properties like excitation energy or oscillator

strength. Thus is is important to include these interactions in the calculation of

absorption spectra.

In a second process on a picosecond timescale, the chromophore adapts geomet-

rically to the new electronic structure of the excited state. Also the environment

molecules rearrange which can again be described as a mutual interaction. This

geometric relaxation and the interaction with the environment is important for

the calculation of emission processes like fluorescence which an occur from the

equilibrated structure of the system. This also lays the path to photochemical

reactions in the excited state like photodissociation. These processes are illustrated

in Fig. 1.2.

Hence it is obvious that interaction with the chemical environment should also

be included in the theoretical investigations of molecules. However, a detailed

description of large environments is not feasible due to computational demands.

Therefore, new models have to be introduced to include the interaction with the

chemical environment without including the environment itself. This kind of

modeling was also awarded 2013 with the Nobel prize for chemistry to M. Karplus,

M. Levitt and A. Warshel for “the development of multiscale models for complex

chemical systems”. [22]

One of these models is the Frozen density embedding theory (FDET), which

is reviewed in detail in Sec. 2.4.5. In the second part of my dissertation, I

developed a new method for including environment interactions and their effects

on electronically excited states by combining the FDET with the ADC-method

resulting in the FDE-ADC method. This is implemented in the the quantum

4



Figure 1.2: Illustration of the interaction of a chromophore (red) with its
environment molecules (blue) after excitation by light. The electron density of the
chromophore gets polarized (top right) in the excited state (indicated by the yellow
beams) which iduces a polarization in the environment electron densities as well.
This leads to a mutual interaction. In a slower timescale both the chromophore
and the environment relaxes geometrically (bottom) which can lead to fluorescence
or photochemical reactions.

chemical program package Q-Chem [23] in the new module called fdeman. It

is closely linked with the implementation of ADC in Q-Chem in the module

adcman. [24] The implementation is described in Chapter 4. The FDE-ADC

method is thoroughly benchmarked in Chapter 5 and representative applications

of FDE-ADC demonstrating its features and capabilities are shown in Chapter

6. Standard FDE-ADC includes only the influence of the environment onto the

central system i.e. the chromophore but not the influence of the excitation of the

central system onto the environment which might change the interaction between

both subsystems. This influence of the chromophore onto the environment is

referred to as environment polarization. In Chapter 7, I introduce two variants of

environment polarization, describe their implementation in fdeman and present

some test results of the effect of environment polarization on the excited states

of the chromophore. Finally, I provide a summary and conclusion with a brief
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outlook in Chapter 8.

All pictures of molecules, orbitals or electron densities in this thesis have been

created using the programs Avogadro 1.1.0. [25], POV-Ray 3.7.0.RC6, [26] Jmol

13.0.14 [27] or GaussView 5.0.8 [28]

It should be noted that most of the results and developments described in

this dissertation have already been published by myself and by my coauthors in

peer-review journals. [29–34] These publications are listed below in chronological

order:

• Gold(I) Complexes of Tetrathiaheterohelicene Phosphanes

Silvia Cauteruccio, Annette Loos, Alberto Bossi, Maria C. Blanco Jaimes,

Davide Dova, Frank Rominger, Stefan Prager, Andreas Dreuw, Emanuela

Licandro and A. Stephen K. Hashmi

Inorganic Chemistry, 52 (2013), pages 7995-8004

• Ultrafast CSpiro-O Dissociation via a Conical Intersection Drives

Spiropyran to Merocyanine Photoswitching

Stefan Prager, Irene Burghardt and Andreas Dreuw

The Journal of Physical Chemistry A, 118 (2014), pages 1339-1349

• Chiral Thiahelicene-Based Alkyl Phosphine-Borane Complexes:

Synthesis, X-ray Characterization, and Theoretical and Experi-

mental Investigations of Optical Properties

Davide Dova, Silvia Cauteruccio, Stefan Prager, Andreas Dreuw, Claudia

Graiff and Emanuela Licandro

The Journal of Organic Chemistry, 80 (2015), pages 3921-3928.

• Tetrathia[7]helicene Phosphorus Derivatives: Experimental and

Theoretical Investigations of Electronic Properties, and Prelimi-

nary Applications as Organocatalysts

Davide Dova, Lucia Viglianti, Patrizia R. Mussini, Stefan Prager, Andreas

Dreuw, Arnaud Voituriez, Emanuela Licandro and Silvia Cauteruccio

Asian Journal of Organic Chemistry, 5 (2016), pages 537-549
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• First time combination of frozen density embedding theory with

the algebraic diagrammatic construction scheme for the polariza-

tion propagator of second order

Stefan Prager, Alexander Zech, Francesco Aquilante, Andreas Dreuw and

Tomasz A. Wesolowski

The Journal of Chemical Physics, 144 (2016,) page 204103

• Implementation and application of the frozen density embedding

theory with the algebraic diagrammatic construction scheme for

the polarization propagator up to third order

Stefan Prager, Alexander Zech, Tomasz A. Wesolowski and Andreas Dreuw

submitted for publication, (2017)
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Chapter 2

Theoretical Methods

“If quantum mechanics hasn’t profoundly shocked

you, you haven’t understood it yet.”

Niels Bohr

In this chapter, I would like to introduce the basic concepts of quantum chemistry

and review the various methods I used for my research projects. In the first part, I

will discuss some of the fundamental theories like the Schrödinger equation, which

are prerequisites for all further theories.

The starting point for quantum chemical investigations is typically the electronic

ground state. It represents the energetically lowest electronic state and is generally

the populated electronic state in most chemical systems. It determines most of

the chemical and physical properties of a substance and most chemical reactions

occur in it. From electronic ground state calculations, equilibrium geometries,

reaction pathways and barriers, dipole moments, vibrational modes and many

more properties and observables can be obtained. [11] In the second section, I will

elaborate on some important quantum chemical ground state methods.

However, the investigation of photochemical processes or spectroscopic analysis

on a quantum chemical level requires the calculation of the electronically excited

state. These states are energetically higher than the ground state and can become

occupied by electrons if an appropriate amount of energy, typically in form of

a photon, is absorbed. [11,35,36] Excited state methods are based on ground state

methods. Hence, a proper description of the electronic ground state is essential

for reliable excited state calculations. In the third section, I will discuss some

methods to calculate electronically excited states.

In the last section of this chapter, I would like to introduce methods and

approximations to include environment effects on the chemical and physical prop-

9
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erties of molecules. Since molecules generally interact with other neighboring

molecules, this has to be considered in quantum chemical investigations as well.

Also, a major part of this thesis deals with the development of a new method to

include environment effects in the calculation of electronically excited states.

However, as will be shown in Sec. 2.1.1, the electronic structure of many-

electron systems cannot be solved analytically. Therefore, various approximations

have to be introduced ranging from very accurate to unpredictable with respect

to the obtained results. Unfortunately, good approximations demand significant

computational resources, thereby limiting the size of the systems able to be

investigated. If a larger system is to be investigated, larger errors have to be

accepted. A sketch in Fig. 2.1 illustrates the relation between employed level of

approximation, feasible system size and error in describing electronic states.

In this chapter, I will focus on single reference ab initio and density based

Figure 2.1: Schematic Sketch of the approximations introduced in quantum
chemistry to calculate molecules of increasing size. The horizontal lines indicate
the electronic states and the dotted lines indicate the error incorporated when
more approximations are included. For each level of approximation, an example
molecule is given to illustrate what system size can be treated on a reasonable
timescale.
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methods. Therefore, I will exclude multireference methods like complete active

space self-consistent field (CASSCF) as well as semi-empirical approaches. For

these methods, I would like to refer to Ref 37 and Ref 38, respectively.

In this work, atomic units are used for all equations. In atomic units, the

Planck constant ~, the elementary charge ε, the electron mass me and the speed of

light c is set to 1. If not otherwise stated, the orbital indices p, q, r, s corresponds

to general orbitals, while the indices i, j, k, l and a, b, c, d correspond to occupied

and virtual orbitals, respectively. Matrices are typically written using bold letters

while vectors are indicated by an arrow above the symbol.

11
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2.1 Basic concepts of quantum chemistry

I would like to begin with the basic concepts of quantum chemistry since all

the following theories are based on these. The content of this section is, unless

otherwise stated, taken from the books: “Modern Quantum Chemistry” by A.

Szabo and N. S. Ostlund, [39] “Introduction to Computational Chemistry” by F.

Jensen [40] and “Molecular Electronic-Structure Theory” by T. Helgaker, J. Olsen

and P. Jørgensen, [41] to which I would like to refer for further reading.

2.1.1 Schrödinger equation

The basic equation for all quantum chemical theories is the Schrödinger equa-

tion. [42–45] The non-relativistic time-independent Schrödinger equation (SE) is

given as

ĤΨ = EΨ (2.1)

for an N-electron system. Ĥ is the Hamilton operator and depends both on the

coordinates of electrons, indicated by position vectors ~r = ~r1, ~r2... ~rN and nuclei,

indicated by position vectors ~R = ~R1, ~R2... ~RM . The SE is a partial differential

eigenvalue equation and its eigenvalue E represents the energy of a given system.

The Hamilton operator comprises all possible interactions contributing to the total

energy E and reads

Ĥ = −
N∑
i=1

1

2
∇2
i︸ ︷︷ ︸

kinetic energy of electrons

−
M∑
A=1

1

2MA
∇2
A︸ ︷︷ ︸

kinetic energy of nuclei

−
N∑
i=1

M∑
A=1

ZA∣∣∣~ri − ~RA

∣∣∣︸ ︷︷ ︸
Coulomb attraction electron - nuclei

+
N∑
i=1

N∑
j>i

1

|~ri − ~rj |︸ ︷︷ ︸
Coulomb repulsion electron - electron

+
M∑
A=1

M∑
B>A

ZAZB∣∣∣~RA − ~RB

∣∣∣︸ ︷︷ ︸
Coulomb repulsion nuclei - nuclei.

(2.2)

In Eq. 2.2 MA is the ratio of the mass of nucleus A to the mass of an electron

and ZA is the atomic number of nucleus A. The Laplacian operators ∇2
i and ∇2

A

indicate the second derivative with respect to the spatial coordinates of the ith

electron and Ath nucleus. The five individual terms of the Hamilton operator

correspond to the kinetic energy of the electrons, the kinetic energy of the nuclei,

the Coulomb attraction between electrons and nuclei, the Coulomb repulsion

between electrons and the Coulomb repulsion between nuclei, respectively.

12
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The wavefunction Ψ is the exact eigenstate of the Hamilton operator and

depends both on the spatial coordinates of electrons and nuclei. Hence, the

probability of finding an electron in a given position in space is∣∣∣Ψ(~r, ~R)
∣∣∣2. (2.3)

For any kind of property, the SE (Eq. 2.1) has to be solved. However, analytic

solutions for the SE are only possible for a few simple one-electron systems, since

the wavefunction describes the correlated motion of N+M interacting particles.

For any many-electron system, approximations have to be included.

2.1.2 Born-Oppenheimer approximation

The first approximation made to solve the SE is called the Born-Oppenheimer

approximation. Generally, the Hamilton operator can be split in two parts: An

nuclear Hamiltonian Ĥnuc, containing all the parts depending on the nuclei, and an

electronic part Ĥel, containing the remaining terms including the electron-nuclei

interaction:

Ĥnuc =
M∑
A=1

1

2MA
∇2
A +

M∑
A=1

M∑
B>A

ZAZB∣∣∣~RA − ~RB

∣∣∣ (2.4)

and

Ĥelec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA∣∣∣~ri − ~RA

∣∣∣ +
N∑
i=1

N∑
j>i

1

|~ri − ~rj |
+ Vnuc(R). (2.5)

As can be seen from Eq. 2.4, the kinetic energy T is inversely proportional to the

mass of the nuclei. This also explains why quantum effects are less important for

particles with larger mass. Since the nuclei are about 2000 times heavier than

electrons, their movement is also much slower. As a result, the kinetic energy of

the nuclei can be neglected, or, in other words, the position of the nuclei is fixed.

Additionally, the Coulomb repulsion between the nuclei becomes a constant. As a

consequence, the total wavefunction Ψ of a system can be separated into two parts:

the electronic part, depending only parametrically on the spatial position of the

nuclei, and the nuclear wavefunction. Eventually, this leads to the electronic SE

Ĥelec(~r, {~R})Ψelec(~r, {~R} = Eelec({~R})Ψelec(~r, {~R}). (2.6)

13
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The only remaining many-body term is the electron-electron Coulomb repulsion.

Thus, even the electronic SE in the Born-Oppenheimer approximation is not

analytically solvable for many-electron systems. Finding appropriate approxima-

tions for this term is subject to contemporary quantum chemical development.

From the parametric dependence of an electronic state on the positions of the

nuclei,the concept of a potential energy surface (PES) emerges. The PES is a

multi-dimensional hypersurface with 3M dimensions where M is the number of

nuclei in the system. The PES can be plotted as energies at certain molecular

geometries along a certain intermolecular axes. A well-known example is the so

called Morse potential. It represents a model of the potential energy depending on

an intermolecular coordinate, i.e. the distance between two atoms. An example of

the Morse potential for the dissociation of H2 is shown in Fig. 2.2

Figure 2.2: The Dissociation of H2 resembles the Morse potential (calculated at
Full-CI/cc-pVQZ level of theory).

The Born-Oppenheimer approximation is valid for systems in which the motion

of the electrons and nuclei is separable. In well separated electronic states, this is

mostly the case. But in cases with small energetic differences between the electronic

states, like in conical intersections and avoided crossings, the electron and nuclei

motion couple. Hence, in these cases the Born-Oppenheimer approximation is not

valid any more.
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2.1.3 Geometry optimization

Building the first derivative of the energy with respect to the nuclear coordinates

yields the gradient ~g, the second derivatives result in the Hesse matrix H

g =


∂E
∂R1
∂E
∂R2

...
∂E

∂R3M

 (2.7)

H =


∂2E
∂R2

1

∂2E
∂R2∂R1

. . . ∂2E
∂R3M∂R1

∂2E
∂R1∂R2

∂2E
∂R2

2
. . . ∂2E

∂R3M∂R2

...
...

. . .
...

∂2E
∂R1∂R3M

∂2E
∂R2∂R3M

. . . ∂2E
∂R2

3M

 (2.8)

with M as the number of nuclei with 3 spatial coordinates each. At a stationary

point the gradient g equals zero. If ~g 6= 0 the current geometry is not a stationary

point on the PES. The gradient g points in this case in the direction of the steepest

increase in energy. If the geometry with a minimal energy should be found, the

atomic displacement vector ~d is defined as

~d = −~g. (2.9)

At the new geometry, a new gradient is calculated until the convergence criteria

i.e. ~g ≈ 0 is reached. This method is called steepest descent. However, although

convergence is guaranteed, the method tends to oscillate around the minimum

structure and thus taking many steps to converge. A better way to choose the

step ~d improves this issue. It is called the Newton-Raphson technique. The energy

at a certain point on the PES is given as E(~x0). The energy of an nearby point

~x = ~x0 + ~d can be expanded in a Taylor series

E(~x0 + ~d) = E(~x0) + ~dt
dE(~x0)

d~x
+

1

2
~dt
d2E(~x0

d~x1~x2

~d+ . . . . (2.10)

Since only the lowest few derivations of E are known, step ~d is estimated by

differentiating the Taylor series with respect to ~d and only the first two terms are

kept.

E(~x0 + ~d)

d~d
≈ dE(~x0)

d~x
+
d2E(~x0)

d~x1~x2

~d. (2.11)
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Setting the left hand side of Eq. 2.11 to zero as it is in a stationary point yields

~d = −H−1~g. (2.12)

This is referred to as the Newton-Raphson step. Eq. 2.12 can be rewritten in a

diagonal Hessian representation as

~d =
∑
i

−Fi
bi

~ui (2.13)

with ~ui and bi as the eigenvectors and eigenvalues of the Hesse matrix H and Fi =

~utig as the component of ~g along the eigenmode ~ui. The Newton-Raphson step can

be considered as minimizing along all directions of ~ui exhibiting positive eigenvalues

while maximizing along the directions with negative eigenvalues. Since in most

cases the Hesse matrix is too expensive to calculate in terms of computational

cost, an approximate Hessian is used instead. This is referred to as quasi Newton-

Raphson step.

2.1.4 The electronic wavefunction

In this section, I would like to elaborate how the electronic wavefunction in the

electronic SE is defined. In the first part, I illustrate how the wavefunction obeys

the Pauli exclusion principle. In the second part, I introduce the representation of

the wavefunction in a basis set.

2.1.4.1 Slater determinants

Until now, the electronic Hamiltonian and the wavefunction were considered to only

depend on spatial coordinates. But electrons hold a further quantum mechanic

quantity: the spin (s). The spin can occupy one of two spin states denoted as up

(α(s)) and down (β(s)). The spin functions are orthogonal:

〈α(s)|α(s)〉 = 〈β(s)|β(s)〉 = 1 (2.14)

〈α(s)|β(s)〉 = 〈β(s)|α(s)〉 = 0. (2.15)

Since the Hamiltonian is a sum of one-particle Hamiltonians, the most simple

way to construct a many-body wavefunction for N particles from N one-particle
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2.1. Basic concepts of quantum chemistry

wavefunctions is the Hartree product.

ΨHP (r1, r2, . . . , rN ) = χ1(r1)χ2(r2) . . . χN (rN ). (2.16)

However, the Hartree product does not obey the Pauli exclusion principle for

fermions which says

“a many-electron wave function must be antisymmetric with respect to the inter-

change of the coordinate r of any two electrons,

Ψn(r1, r2, ..., ri, rj , ..., rN ) = −Ψn(r1, r2, ..., rj , ri, ..., rN )”. [39] (2.17)

As a consequence, the Hartree product must be antisymmetrized. Including the

spin using

ψ(r) =

χ(r)α(s)

χ(r)β(s)
(2.18)

where ψ correspond to singe-electron wavefunctions with separated spin (spin

orbitals). As a result, one yields the so called Slater determinant which is defined

as

Ψn(r1, r2, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψi(r1) ψj(r1) . . . ψk(r1)

ψi(r2) ψj(r2) . . . ψk(r2)
...

...
. . .

...

ψi(rN ) ψj(rN ) . . . ψk(rN )

∣∣∣∣∣∣∣∣∣∣
(2.19)

with 1√
N !

as the normalization factor. In the Slater determinant, the rows are

labeled by the electrons (x1, x2, etc.) while the columns are labeled by the spin

orbitals (ψi, ψj , etc.). If two electrons in two orbitals are interchanged, the two

corresponding columns in the Slater determinant are interchanged which leads to

an change of the sign. The same holds for interchanging the coordinates of two

electrons since the corresponding rows in the Slater determinant are interchanged.

In summary, the Slater determinant is an appropriate way to construct the many-

body wavefunction.

2.1.4.2 Gaussian basis sets

As mentioned before, the SE is only solvable for one-electron systems like the

hydrogen atom. In these cases no Coulombic electron repulsion occurs. In this case,
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I will stick to the hydrogen atom example. The electronic Hamiltonian reduces to

Ĥelec = T̂ (~r) + V̂ (~r, ~R)

=
1

2
∇2
~r −

Z

|ri −RA|
(2.20)

with T̂ (~r) as the kinetic energy operator of the electron and V̂ (~r, ~R) as the Coulomb

attraction potential between electron and nucleus. Solving the electronic SE for

this Hamiltonian yields the so called Slater-type orbitals (STO) as eigenfunctions

of the Hamiltonian. The STOs are generally defined as

φSTO
nlm (d,Λ,Θ) = Rn(d, ζ)Ylm(Λ,Θ) (2.21)

with d as the distance between electron and nucleus defined as d = |ri −RA|,
an radial part Rn(d, ζ) and the angular part Ylm(Λ,Θ). The letters n, l, and m

correspond to the principal quantum number (n), the orbital angular momentum

quantum number (l) and the magnetic quantum number (m), respectively. The

radial part Rn(d, ζ) is defined as

Rn(d, ζ) =
(2ζ)

3
2√

(2n)!
(2ζd)n−1e−ζd (2.22)

with ζ corresponding to the compactness of the orbital. The angular part of Eq.

2.21 is based on spherical harmonics (see Fig. 2.3) and is defined as

Ylm(Λ,Θ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos(Λ)e(imΘ) (2.23)

with Pml as the so called Legendre polynomials.

Although the STOs provide a good basis describing molecular wavefunctions the

integration of these functions, which is needed for typical types of quantum chemical

approaches is computationally very demanding. Hence, a further approximation is

made. The STOs are resembled by Gaussian-type functions (GTOs). GTOs can

be integrated much easier than STOs and can therefore reduce the computational

cost. The general form of the GTO is

φGTO
nlm (d,Λ,Θ) = Rnl(d, α)Ylm(Λ,Θ) (2.24)

and is therefore very similar to the form of the STO as defined in Eq. 2.21. The
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2.1. Basic concepts of quantum chemistry

Figure 2.3: Visual representations of the first few real spherical harmonics. Blue
portions represent regions where the function is positive, and yellow portions
represent where it is negative. The distance of the surface from the origin indicates
the value of Ylm(Λ,Θ) in angular direction (Λ,Θ). Picture generously provided by
Inigo Quilez [46]

same separation of the radial and angular part is noticeable. However, the radial

part itself differs compared to the STO definition. The radial part for the GTO is

given as

Rnl(d, α)GTO =
4

√
2(2α)3

π

√
22n−l−2

(4n− 2l − 3)!!

(√
2αd

)2n−l−2
e−αd

2
. (2.25)

It depends on the principle quantum number n, the angular momentum quantum

number l in spherical harmonics and the orbital exponent α. Using variable

exponents and rewriting the sperical harmonics in term of real solid harmonics

yields the final equations for real-valued spherical-harmonic GTOs:

φGTO
lmα (d, x, y, z) = NGTO

lmα Slm(x, y, z)e−αd
2

(2.26)

which is independent of n. In Eq. 2.26, NGTO
lmα is the normalization constant and

Slm(x, y, z) corresponds to the real solid harmonics. A linear combination of GTOs

is fitted to a STO according to

φSTO-kG =
k∑
i=1

Ciφ
GTO(αi). (2.27)

In Eq. 2.27, k indicates the number of used GTOs to fit a STO. Since a GTO

differs mainly in the nucleus-near and outer sphere region from a STO, many GTO
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are used to fit one STO. Although a multiple of STOs is used in total in GTOs, it

is still beneficial in computation time since a typical integration procedure on an

STO is four orders of magnitude more demanding. The resemblance of GTOs to

an STO is illustrated in Fig 2.4.

Figure 2.4: Schematic illustration of the fit of up to three GTOs to one STO.

Typically, the coefficients of the linear combination of GTOs is fixed in a basis

set. The individual GTOs are called primitive Gaussian functions (primitive GFs),

the resulting fitted STO is called contracted Gaussian function (contracted GF).

If each STO is represented by only one contracted GF, the basis set is labeled

as minimal. However, the minimal basis set resembles the STOs of the hydrogen

atom quite well. For other elements, however, the description is getting poorer.

The basis functions lack flexibility to adapt to the different electronic structure of

heavier elements. Introducing more contracted GFs to resemble the same STO

increases the accuracy since the various functions can adapt better to the exact

form of the STO. This redundancy is referred to as the ζ- (zeta) level. In a double-ζ

basis set, the STO is represented by two individual and independent contracted

GFs. Since especially the valence region in an atom profits from more contracted

GFs because of the interaction with other atoms, the basis set is split. A single-ζ

basis is used to describe the core region and an n-ζ basis is used for the valence

region. These types of basis sets are called split valence or split valence n-ζ basis

sets with n as double, triple, etc.. A famous family of basis sets, introduced by
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2.1. Basic concepts of quantum chemistry

John A. Pople [47–53] is introduced here to analyze the contents of a typical basis

set. These basis sets share the same syntax in the description. It is always x− yG
with x as the amount of primitive GFs used to form a contracted GF for the core

region. The hyphen indicates the splitting of core- and valence region and the y

indicate the amount of primitive GFs used for each contracted GF while the digits

indicate the ζ level. I would like to illustrate the example of 6-311++G** in more

detail.

• 6: The number 6 indicates that six primitive GFs are used to construct one

contracted GF for the core region.

• -: The hyphen separates the core and valence region.

• 311: The three digits indicate a triple-ζ basis. Each contracted GF is

constructed from n primitive GFs while n is indicated by the number at the

specific digit. In this case, the first contracted GF is formed using three

primitive GFs. The second and third contracted GF are identical to the

primitive GF, since only one primitive GF is used.

• ++: The plus sign requests additional diffuse functions. A diffuse func-

tion is defined as function with the same spatial orientation but a larger

distribution. In that way, long range effects or electronic excitations with

high excitation energies can be treated better. The resulting MOs might be

spatially delocalized or occupy outer regions of the molecular system. In

this case diffuse functions are requested for both hydrogen and heavy atoms

(double plus sign).

• G: The letter G indicates the use of GTOs to resemble a STO.

• **: The asterisk request additional polarization functions. A polarization

function is an additional function of higher order to polarize the electron

distribution. For example, the p-orbital is polarized using a d-function. In

this case, the double asterisk indicates polarization for both the hydrogen

atoms as well as the second row elements Li to F using p- and d functions,

respectively.

Other families of basis sets were introduced by e.g. Dunning et. al. [54–56] or

Ahlrichs et. al. [57,58] Although they use different schemes for naming the basis

sets, the mathematical construction using GTOs is comparable. The Dunning

basis sets comprise the form cc-pVXZ with X=D, T, Q, etc. for the ζ level. The
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letters are the abbreviation for correlation-consistent polarized X-zeta. These basis

sets are constructed in a way that allows extrapolation to the complete basis set

limit. The third family from Ahlrichs et. al. share names like TZVP for triple-zeta

valence polarized and are similar to the aforementioned basis sets.

The atomic basis functions φµ(~r) are finally used to construct single-electron

wavefunctions (i.e. molecular orbitals MOs)ψn(~r). This is done by a linear

combination of atomic orbitals (LCAO).

ψn(~r) =
∑
µ

Cµnφµ(~r) (2.28)

The coefficients of this linear combination are optimized in a special procedure.

This is described in Section 2.2.1.

2.1.5 Second quantization

Up to now, I used the standard notation of quantum mechanics which represents

observables as operators and states as functions. Here, I would like to introduce a

further way of notation referred to as second quantization in which the wavefunction

is also expressed in terms of operators. At first let me introduce the Dirac notation

for vectors, matrices and two-electron integrals which will be used from now on.

• A state is represented as a ket vector |α〉.

• The complex conjugate is represented by the bra vector 〈α|.

• The inner (scalar) product is defined as 〈α|β〉

• State vectors and operators: [59]

|a〉 =
∑
i

|αi〉〈αi|α〉 =
∑
i

ai|αi〉 → (α1, α2, ...)
T (2.29)

Â =
∑
ij

Aij |αi〉〈αj | (2.30)

〈a|a〉 =
∑
i

a?i ai =
∑
i

|ai|2 (2.31)
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• One- and two-electron integrals: [59]

〈p|ô|q〉 = 〈ψp|ô|ψq〉 =

∫
dr1ψ

?
p(r1)o(x1)ψq(r1) (2.32)

〈pq|rs〉 = 〈ψpψq|ψrψs〉 =

∫
dr1dr2

ψ?p(r1)ψ?q (r2)ψr(r1)ψs(r2)

|x1 − x2|
(2.33)

〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉 (2.34)

〈pq||rs〉 = 〈rq||ps〉 (2.35)

For the second quantization, an abstract linear vector space is constructed, the

Fock space. In this Fock space, each determinant of a Slater determinant (Eq. 2.19)

can be represented by an occupation number (ON) vector, |n〉, which is defined as

|n〉 = |n1, n2, ..., nM 〉 with ni =

1 if one-particle state ψi is occupied

0 if one-particle state ψi is not occupied
.

(2.36)

Thus, the occupation number ni indicates whether ψi is present ( = 1) or absent

( = 0) in the determinant. The inner product of two ON vectors 〈n| and 〈m| is

defined as

〈n|m〉 = δn,m =

M∏
p=1

δnpmp (2.37)

with M as the size of the basis. The vacuum state is defined as a state without

any electrons:

|vac〉 = |01, 02, . . . , 0M 〉. (2.38)

In contrast to the standard formulation of quantum mechanics, in the second

quantization the number of particles is not conserved. Special operators are

introduced to modifiy the number of particles in a system: the creation (c†P ) and

annihilation (cp) operators which create or destruct a particle in the state they

are working on. The creation operator is defined by the relations

ĉ†p|n1, n2, . . . , 0p, . . . , nM 〉 =

p−1∏
q=1

(−1)kq |n1, n2, . . . , 1p, . . . , nM 〉 (2.39)

ĉ†p|n1, n2, . . . , 1p, . . . , nM 〉 = 0. (2.40)
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with p and q as general spin-orbitals. The annihilation operator is defined as:

ĉp|n〉 = δnp1

p−1∏
q=1

(−1)kq |n1, n2, . . . , 0p, . . . , nM 〉. (2.41)

This means, that the creation operator can only create a particle in ψp if it is

unoccupied and the annihilation operator can only destruct a particle in ψp if it is

occupied. Otherwise, the operation yields zero. The creation operator increases

the ON by one while the annihilation operator decreases the ON by one. Creation

and annihilation operators can be combined as in the ON operator

N̂p = ĉ†pĉp (2.42)

which simply counts the number of electrons in the spin-orbital p:

N̂p|n〉 = ĉ†pĉp|n〉 = δnp1|n〉 = np|n〉. (2.43)

A second important example for combinations of creation and annihilation operators

is the excitation operator

Ĉai = ĉ†aĉi (2.44)

This operator moves an electron from the orbital i to orbital a. When combining

creation and annihilation operators, the anti-commutation relations have to be

considered since the order of the operators is important. These are:

[ĉ†p, ĉ
†
q]+ = 0 (2.45)

[ĉp, ĉq]+ = 0 (2.46)

[ĉp, ĉ
†
q]+ = δpq (2.47)

with

[X̂, Ŷ ]+ = X̂Ŷ + Ŷ X̂. (2.48)

Using the creation and annihilation operators it is possible to represent any physical

operator in the framework of second quantization. A general one-particle operator

in first-quantization form is given as

Ô =

N∑
i=1

ô(i) (2.49)
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with ô(i) acting only on particle i. The same operator in the language of second

quantization is

Ô =
∑
p,q

〈ψp|ô|ψq〉ĉ†pĉq. (2.50)

For two- or more-particle operators, a similar representation can be found. A

general two-particle operator

Ĝ =
1

2

N∑
i6=j=1

ĝ(i, j) (2.51)

is given in second quantized form as

Ĝ =
1

2

∑
p,q,r,s

〈ψpψq|ĝ|ψrψs〉ĉ†pĉ†q ĉsĉr. (2.52)

In combination, the molecular electronic Hamiltonian can be written in second

quantization:

Ĥ =
∑
pq

hpq ĉ
†
pĉq +

1

2

∑
pqrs

Vpqrsĉ
†
pĉ
†
q ĉsĉr + Ĥnuc (2.53)

with

hpq = 〈ψp| −
1

2
∇2 −

∑
A

ZA
xA
|ψq〉 (2.54)

=

∫
ψ∗p(~x

(
−1

2
∇2 −

∑
A

ZA
~xA

)
ψq(~x)

Vpqrs = 〈ψpψq|
1

x12
|ψrψs〉 (2.55)

=

∫ ∫
ψ∗p( ~x1)ψ∗q ( ~x2)ψr( ~x1)ψs( ~x2)

x12
d ~x1d ~x2

Ĥnuc =
1

2

∑
A6=B

ZAZB
xAB

(2.56)

where xA as the electron-nuclear distance, x12 as the electron-electron distance

and xAB as the nuclear-nuclear distance.

2.1.6 Slater-Condon rules

In this section I would like to briefly summarize the Slater-Condon rules for

integrals of one- and two-body operators and wavefunctions constructed as Slater

determinants. The Slater Condon rules are given here without derivation. For
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further explanation I would like to refer the book “Modern Quantum Chemistry”

by A. Szabo and N. S. Ostlund. [39]

As already shown in Eq. 2.49 a one-body operator in an N-particle system is

defined as

Ô =
N∑
i=1

ô(i). (2.57)

The integrals for a generic one-body operator are given as:

〈Ψ|Ô|Ψ〉 =
N∑
i=1

〈ψi|f̂ |ψi〉 (2.58)

〈Ψ|Ô|Ψa
i 〉 = 〈ψi|f̂ |ψa〉 (2.59)

〈Ψ|Ô|Ψab
ij 〉 = 0 (2.60)

with Ψa
i as a wavefunction with an electron from orbital i excited to a and Ψab

ij as

a wavefunction with two electrons from orbitals i and j excited to orbitals a and b.

In other words: If the bra- and ket wavefunction differ by more than one

electron, the expectation value vanishes. For a generic two-body operator, which

is as shown in Eq. 2.51 composed as:

Ĝ =
1

2

N∑
i=1

N∑
j≤i

ĝ(i, j) (2.61)

the Slater-Condon rules are given as:

〈Ψ|Ĝ|Ψ〉 =

N∑
i=1

N∑
j≤i

(〈ψiψj |ĝ|ψiψj〉 − 〈ψiψj |ĝ|ψjψi〉) (2.62)

〈Ψ|Ĝ|Ψa
i 〉 =

N∑
j=1

(〈ψiψj |ĝ|ψaψj〉 − 〈ψiψj |ĝ|ψjψa〉) (2.63)

〈Ψ|Ĝ|Ψab
ij 〉 = 〈ψiψj |ĝ|ψaψb〉 − 〈ψiψj |ĝ|ψbψa〉. (2.64)

Any integral of a two-body operator with wavefunctions differing in three or more

orbitals results in zero.
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2.2 Electronic ground state methods

In this Section I would like to elaborate some important methods used to describe

the electronic ground state of a molecular system. As said before, the electronic

SE is not solvable analytically due to the many-body electron-electron repulsion.

Various methods were introduced approximating this term. I will start with

the Hartree-Fock (HF) theory, the most common ab initio method. “Ab initio”,

meaning “from the beginning”, refers to the fact that nothing other than physical

constraints are needed for the formulation of the theory. It serves also as the

fundamental theory for a family of method denoted as post-Hartree-Fock theories

since the are based on the HF solution. Out of these post-HF methods I would

like to review the configuration interaction (CI) method, which is the most simple

extension to HF, the Møller-Plesset (MP) perturbation theory as a second post-HF

variant and coupled cluster as an alternative to CI. In the last part of this section

I would like to introduce the density functional theory as an alternative to the HF

and post-HF theories using a different ansatz.

The reviewed theories and methods in this section are again, if not otherwise

stated, taken from the books: “Modern Quantum Chemistry” by A. Szabo and

N. S. Ostlund, [39] “Introduction to Computational Chemistry” by F. Jensen [40],

“Essentials of Computational Chemistry: Theories and Models” by C. Cramer [60]

and “Molecular Electronic-Structure Theory” by T. Helgaker, J. Olsen and P.

Jørgensen [41] to which I would like to refer for further reading.

2.2.1 Hartree-Fock theory

In Hartree-Fock (HF) the only further approximation made is that the total

wavefunction Ψ consists of only one Slater determinant. Therefore, HF belongs to

the singe-determinant methods in contrast to multi-determinant methods which

will not be covered in this thesis. The neglect of electron correlation is a direct

consequence from this approximation. The HF theory is derived via the variation

principle. This principle states that if a normalized wave function Ψ with the

boundary condition to vanish at infinity is given, the expectation value of the

Hamiltonian is an upper bound to the exact ground state energy.

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≥ E0 (2.65)
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In other words: Using an approximate wavefunction, the energy is always lower

than the exact energy of the Hamiltonian. A better wavefunction results in a lower

energy while the exact wavefunction yields the minimal energy. Therefore, the

trail wavefunction is varied to minimize the expectation value. This is done by

varying the coefficients of the LCAO ansatz (Eq. 2.28) The minimization is under

the side condition that the orbitals be orthogonal∫
ψ∗i (~x)ψj(~x)d~x = δij (2.66)

and results in the Hartree-Fock equation:

f̂i|ψ(~xi)〉 = εi|ψ(~xi)〉 (2.67)

with the Lagrange multiplier εi corresponding to the orbital energies as eigenvalues

and the MOs ψi(~xi) as the eigenfunctions of the Fock operator f̂i which is defines

as:
f̂i = ĥi + v̂HFi

= −1

2
∇2
i −

∑
A=1

ZA
~xiA

+
∑
j

(Ĵj(i)− K̂j(i)).
(2.68)

In Eq. 2.68, the operator ĥi represents the one-electron interactions while v̂HFi
describes the electron-electron interaction in terms of Coulomb Ĵj(i) and exchange

K̂j(i). The latter two operators are defined as

Ĵj(1)ψi(1) =

(∫
d~x2

ψ?j (2)ψj(2)

~x12

)
ψi(1) (2.69)

K̂j(1)ψi(1) =

(∫
d~x2

ψ?j (2)ψi(2)

~x12

)
ψj(1). (2.70)

In second quantization, the Fock operator can be written as

f̂ = ĥ+ V̂ HF

=
∑
pq

〈ψp| −
1

2
∇2 −

∑
A

ZA
~xiA
|ψq〉ĉ†pĉq +

∑
pqi

(vpqii − vpiiq)
(2.71)

with

vpqrs = 〈pq| 1

~x12
|rs〉. (2.72)

As can be seen in Eqs 2.68 - 2.70 the electron i is treated in the mean field
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of all other electrons. Therefore, HF is referred to as a mean-field theory. The

direct electron-electron interaction, the electron correlation is neglected in Hartree

Fock. The HF equation 2.67 is a non-linear differential eigenvalue equation. This

means that for the calculation of the mean field of all other electrons, the solution

of the equation itself is needed, since the orbitals are part of the operator itself.

Therefore, the HF equation needs to be solved iteratively using an initial guess

for the MOs in the first cycle. This iterative procedure is called self-consistent

cield (SCF) and converges when the difference in orbital energies and wavefunction

between two cycles is smaller than a given threshold. Eq. 2.67 results in the HF

ground state energy which is defined as:

EHF =〈ΨHF
0 |Ĥ|ΨHF

0 〉

=
∑
i

∫
ψ∗i ( ~x1)ĥiψi( ~x1)d~x1

+
1

2

(∑
ij

∫
ψ∗i ( ~x1)ψ∗j ( ~x2)ψi( ~x1)ψj( ~x2)

|x1 − x2|
d( ~x1)d( ~x2)

−
∑
ij

∫
ψ∗i ( ~x1)ψ∗j ( ~x2)ψj( ~x1)ψi( ~x2)

|x1 − x2|
d( ~x1)d( ~x2)

)
(2.73)

which can be written as

EHF =
∑
i

〈i|ĥi|i〉+
1

2

∑
ij

(〈ij|ij〉 − 〈ij|ji〉)

=
∑
i

〈i|ĥi|i〉+
1

2

∑
ij

〈ij||ij〉.
(2.74)

We introduce an atomic basis and expand the MOs in the basis functions of

atomic orbitals (AOs)

ψn(~x) =
∑
µ

Cµnφµ(~x) (2.75)

which is known as the LCAO anstz and already shown in Eq 2.28. Inserting Eq.

2.75 into the HF equation 2.67 yields

f̂i
∑
µ

Cµiφµi = εi
∑
µ

Cµiφµi. (2.76)

Multiplying from the left by a basis function φ∗λi and integrating yields the Roothan-
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Hall equations, which are simply the HF equations in the atomic orbital basis.∑
µ

FµλCµi = εi
∑
µ

SµλCµi (2.77)

with
Fµλ = 〈φµ|F|φλ〉

Sµλ = 〈φµ|φλ〉.
(2.78)

Closely connected to the Roothan-Hall equation is the density matrix. [39] When

a spatial wavefunction Ψn(~r) is given, the probability of finding an electron in the

volume element d(~r) is defined by

ρ(~r) = 2

N/2∑
n

|Ψn(~x)|2

= 2

N/2∑
a

Ψ∗n(~x)Ψn(~x).

(2.79)

Inserting the LCAO ansatz from Eq. 2.75 into Eq. 2.79 yields the electron density

in the AO basis:

ρ(~r) = 2

N/2∑
n

∑
ν

C∗νnφ
∗
ν(~r)

∑
µ

Cµnφµ(~x)

=
∑
µν

Pµνφµ(~x)φ∗ν(~x)

(2.80)

with

Pµν = 2

N/2∑
n

CµnC
∗
νn

(2.81)

as the density matrix. Multiplying this density matrix with a set of known basis

functions φµ yields the electron density ρ(~r).

According to Eq. 2.68, the orbital energy εi of a occupied orbital i is defined as

εi = 〈ψi|f |ψi〉 = 〈ψi|ĥi +
∑
j

Ĵj(i)− K̂j(i)|ψi〉

= 〈ψi|ĥi|ψi〉+
∑
j

〈ψi|Ĵj(i)|ψi〉 − 〈ψi|K̂j(i)|ψi〉

= 〈i|ĥi|i〉+
∑
j

〈ij||ij〉

(2.82)
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while for a virtual orbital a the orbital energy εa is defined as

εa = 〈a|ĥa|a〉+
∑
j

〈aj||aj〉. (2.83)

Since 〈ii||ii〉 = 0 Eq. 2.82 can be rewritten as

εi = 〈i|ĥi|i〉+
∑
j 6=i
〈ij||ij〉. (2.84)

Comparison of Eqs. 2.83 and 2.84 shows that the occupied orbital i is exposed to

the field created by all other orbitals since its artificial interaction with itself cancels

out. In contrast, the virtual orbital a is calculated in the field of all occupied

orbitals. Thus, the occupied orbitals represent the N-particle system while the

virtual orbitals are calculated for the (N+1) particle system, i.e. an additional

electron. This property of HF is utilized in an approximation estimating the

electron affinity (EA) and the ionization potential (IP) referred to as Koopmans’

theorem. It states, that the EA is the negative energy of the lowest unoccupied

molecular orbital (LUMO) while the IP corresponds to the negaive energy of the

highest occupied molecular orbital (HOMO).

The consequences from the approximation made in the HF theory is that it

neglects completely the specific interactions between individual electrons, referred

to as electron correlation. The correlation energy is defined as the difference of the

HF energy from the exact energy E0:

Ecorr = E0 − EHF . (2.85)

Although the contribution of the correlation energy to the total energy of a

state is rather small (< 5%) it is essential for chemical properties and especially

electronic excitations. The post-HF methods were developed to calculate the

electron correlation based on the HF results.

HF typically scales cubically (N3) for the diagonalization of the Fock-matrix

F with N as the number of basis functions.

2.2.2 Configuration interaction

The Configuration Interaction (CI) is based on the HF solution. Its main idea is to

build a wavefunction not from only one Slater determinant (SD) but from a linear

combination of multiple different Slater determinants. Therefore, based on the

31



Chapter 2. Theoretical Methods

HF solution, further SDs were created with electrons excited to virtual orbitals.

These excited SDs however use the converged single-particle wavefunction (MOs)

of HF without any modification. The excited determinants are constructed by

excitation operators acting on the ground state SD. Using this ansatz, it is possible

to calculate both ground and excited states. For now, I will concentrate on the

ground state; for calculation of excited states please see section 2.3.1

|ΦCI〉 =

N∑
ω=0

kωĈN |Ψ0〉 (2.86)

with

ĈN =
{

1; ĉ†aĉi; ĉ
†
aĉ
†
bĉiĉj , a < b, i < j; ĉ†aĉ

†
bĉ
†
cĉiĉj ĉk, a < b < c, i < j < k; ...

}
.

(2.87)

The SDs are sorted by their level of excitation. SDs containing only one excited

electron are called singles (S), two excited electrons are doubles(D) then triples(T)

and so on.

|ΦCI〉 = k0|Ψ0〉+

(
1

1!

)2∑
ai

kai Ĉ
a
i |Ψ0〉

+

(
1

2!

)2∑
abij

kabij Ĉ
ab
ij |Ψ0〉+

(
1

3!

)2 ∑
abcijk

kabcijk Ĉ
abc
ijk |Ψ0〉+ ...

= k0|Ψ0〉+ kS |ΨS〉+ kD|ΨD〉+ kT |ΨT 〉+ ...

(2.88)

The CI coefficients kω are then optimized using the variation principle (see Eq.

2.65) as

0 =
∂

∂kω

〈Φ0|Ĥ|Φ0〉
〈Φ0|Φ0〉

. (2.89)

Sorting the multi-determinant wavefunction into its components of only singles

(ΨS), doubles (ΨD), etc. results in the CI matrix. To obtain the exact ground

state energy and wavefunction, this matrix has to be diagonalized. The resulting

lowest eigenvalue represents the ground state energy while the corresponding

eigenfunction represents the ground state wavefunktion. As stated by the Brillouin’s

theorem [39,60] the matrix elements for 〈ΨS |Ĥ|Ψ0〉 and 〈Ψ0|Ĥ|ΨS〉 vanish since

they give no correction to the HF energy. Also, as stated by the Slater-Condon

rules (see section 2.1.6), any expectation value calculated from wavefunctions that

differ in more than two orbitals yields zero.

If all possible combinations of excitations are considered it is called Full-CI.
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Table 2.1: Structure of the full CI matrix.

|Ψ0〉 |ΨS〉 |ΨD〉 |ΨT 〉 |ΨQ〉 . . .

〈Ψ0| 〈Ψ0|Ĥ|Ψ0〉 0 〈Ψ0|Ĥ|ΨD〉 0 0 . . .

〈ΨS | 0 〈ΨS |Ĥ|ΨS〉 〈ΨS |Ĥ|ΨD〉 〈ΨS |Ĥ|ΨT 〉 0 . . .

〈ΨD| 〈ΨD|Ĥ|Ψ0〉 〈ΨD|Ĥ|ΨS〉 〈ΨD|Ĥ|ΨD〉 〈ΨD|Ĥ|ΨT 〉 〈ΨD|Ĥ|ΨQ〉 . . .

〈ΨT | 0 〈ΨT |Ĥ|ΨS〉 〈ΨT |Ĥ|ΨD〉 〈ΨT |Ĥ|ΨT 〉 〈ΨT |Ĥ|ΨQ〉 . . .

〈ΨQ| 0 0 〈ΨQ|Ĥ|ΨD〉 〈ΨQ|Ĥ|ΨT 〉 〈ΨQ|Ĥ|ΨQ〉 . . .
...

...
...

...
...

...
. . .

Full-CI is the numerically exact solution of the SE in the given basis. However,

Full-CI, exhibiting an exponential scaling (eN ) with N as the number of basis

functions, is computationally so expensive that on current computer systems only

very small systems like H2O can be calculated. Hence, not all possible excited

determinants are considered. The CI expansion (Eq. 2.88) is truncated after a

specific level of excitation operator. If only singles are considered in addition to

the HF wavefunction, the method is referred to as CI-singles or CIS. If singles and

doubles are included, it is called CI-singles and doubles (CISD). Unfortunately,

except CIS, which is identical to HF for the electronic ground state and Full CI,

all truncated CI methods suffer from size-inconsistency. That means that the

result of a system of two non-interacting subsystems differs from the sum of the

individually calculated subsystems, which is non-physical. Therefore, besides for

benchmark calculations employing Full CI, the truncated CI methods are not used

in contemporary ground state calculations any more.

2.2.3 Coupled cluster approach

The Coupled Cluster (CC) approach is similar to CI. It was designed to overcome

the size-inconsistency of truncated CI methods. Similar to CI, the HF wavefunction

is taken as the zero order reference. The coupled cluster wavefunction is expanded

in a product form:

ΦCC =
∏
ω

(1 + tωĈω)|Ψ0〉 (2.90)

with the generalized excitation operator

Ĉω =
{
ĉ†aĉi; ĉ

†
aĉ
†
bĉiĉj , a < b, i < j; ĉ†aĉ

†
bĉ
†
cĉiĉj ĉk, a < b < c, i < j < k; ...

}
(2.91)
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and the excitation probabilities tω as coupled cluster amplitudes. In combination,

they form the cluster operator

T̂ =
M∑
ω

tωĈω (2.92)

which can be ordered depending on the excitation class:

T̂ = T̂S + T̂D + T̂T + . . .+ T̂M . (2.93)

M corresponds to the number of maximum possible excitations. CC can be

truncated like CI (see section 2.2.2. In this case, M defines the truncation.

The CCSD method is obtained if the cluster operator is truncated after double

excitations. For a better algebraic usability, the product ansatz (Eq. 2.90) is

reformulated in an exponential form using the relations (Ĉω)2 = 0 and [Ĉω, Ĉµ] = 0

(See Eqs 2.45 - 2.48)

1 + T̂ω = 1 + T̂ω +
1

2!
T̂ 2
ω +

1

3!
T̂ 3
ω + ... = eT̂ω

|ΦCC〉 =
∏
ω

(1 + tωĈω)|Ψ0〉 = eT̂ |Ψ0〉.
(2.94)

The CC wavefunction cannot be optimized using the variation principle since this

results in an intractable set of nonlinear equations. A different approach is used

instead which projects the HF state and those determinants that enter the CC

state with connected amplitudes

〈µ| = 〈Ψo|Ô†ω (2.95)

against the CC Schrödinger equaition

ĤeT̂ |Ψ0〉 = ECCe
T̂ |Ψ0〉 (2.96)

yielding the projected CC equations

〈µ|ĤeT̂ |Ψ0〉 = ECC0 〈µ|eT̂ |Ψ0〉 (2.97)

which can be written by left-multiplying with e−T̂ as

〈µ|e−T̂ ĤeT̂ |Ψ0〉 = 0 (2.98)
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and the projected CC energy equation

ECC0 = 〈Ψ0|e−T̂ ĤeT̂ |Ψ0〉. (2.99)

These projected CC equations are coupled and have to be solved iteratively.

Since the CC approach is not variational, the resulting energy can be lower

than the exact energy of the system. The only exception is Full-CC which yields

the same results as Full-CI. Another drawback is the the fact that CC is non-

hermitian, resulting in different left-hand and right-hand eigenvectors. To obtain

other properties than energies, the CC equations have to be solved twice. Although

CC is very demanding in terms of computational cost, the results are very accurate.

The truncated method CCSD(T), which treats the triples perturbatively, has

become the “gold standard” of quantum chemistry. [61,62]

In addition to the normal truncated CC methods, further approximate CC

methods were developed. The CC2 method contains the doubles only on first

order, the CC3 method contains similar approximations for the triples. [63,64] The

order of energy correction and typical scaling factors of several truncated and

approximate CC methods are given in Table 2.2.

Table 2.2: Orders of energy correction and scaling factors for the coupled cluster
methods CCS, CC2, CCSD, CC3 and CCSDT. The scaling factor is given as a
function of N with N as the number of basis functions. Possible pre-factors are
omitted.

Method order of energy correction Scaling [Nx]

CCS 1 4
CC2 2 5

CCSD 3 6
CC3 4 7

CCSDT 4 8

2.2.4 Perturbation theory

In this section I want to elaborate the perturbative correction of the Hartree-Fock

solution to count for correlation energies. Therefore, in the first step the general

Rayleigh-Schrödinger terturbation theory (RSPT) is introduced. In the following

step this is applied to the HF solution, which is referred to as Møller-Plesset

perturbation theory (MPPT). [65] The information reviewed in this section is taken
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from Refs. 41 and 59.

2.2.4.1 Rayleigh-Schrödinger perturbation theory

Perturbative approaches are regularly used techniches in the sciences to approxi-

mate an exact solution of a quantity. In perturbation theory (PT), this quantity

is separated into a known part and an unknown rest, referring to the latter as a

perturbation. In RSPT, the Hamiltonian is split into two parts:

Ĥ = Ĥ0 + Û . (2.100)

with Ĥ0 as a zeroth-order Hamiltonian, which is known and the perturbation Û ,

which is defined as

Û = Ĥ − Ĥ0. (2.101)

To solve the exact SE

Ĥ|0〉 = E|0〉 (2.102)

the exact wavefunction and its energy is expanded in orders of perturbation

|0〉 =
∞∑
k=0

|0(k)〉 (2.103)

E =
∞∑
k=0

E(k). (2.104)

The zeroth-order term resembles the exact solution for Ĥ0

Ĥ0|0(0)〉 = E(0)|0(0)〉 (2.105)

with |0(0)〉 as a set of orthonormal eigenvectors and E
(0)
0 as the corresponding

eigenvalues. The higher order terms are resolved by inserting Eqs. 2.103 and

2.104 into Eq. 2.102. These higher-order terms represent the corrections to the

zeroth-order terms. It yields

(Ĥ0 + Û)
∞∑
k=0

|0(k)〉 =
∞∑
k=0

E(k)
∞∑
k=0

|0(k)〉. (2.106)
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Introducing a truncation n of this expansion for considering only corrections up to

a given level yields

(Ĥ0 − E(0))|0(n)〉 = −Û |0(n−1)〉+
n∑
i=0

E(i)|0(n−i)〉. (2.107)

As can be seen, Eq. 2.107 is a recursive equation i.e. the solution for all lower

order corrections is needed to calculate the correction of order n. The corrections

are set to be orthogonal to the zeroth-order wavefunction:

〈0(0)|0(k)〉 = 0, k > 1 (2.108)

which is equivalent to the requirement that |0〉 is intermediately normalized:

〈0(0)|0〉 =
∞∑
i=0

〈0(0)|0(i)〉 = 〈0(0)|0(0)〉 = 1. (2.109)

The expressions for the perturbative correction of the energy are yielded by

multiplying equation 2.107 from the left by the zeroth-order wavefunction 〈0(0)|,
resulting in

E(n) = 〈0(0)|Û |0(n−1)〉, n > 0 (2.110)

The zeroth-order energy is obtained analogously by multiplying equation 2.105

from the left by the zeroth-order wavefunction 〈0(0)|:

E(0) = 〈0(0)|Ĥ0|0(0)〉. (2.111)

In these energy correction terms in RSPT, the perturbation U itself remains

unspecified. As can be seen in Eq. 2.110 the energy correction of nth-order requires

the (n− 1)th-order corrected wavefunction |0(n−1)〉. The nth-order wavefunction is

obtained by multiplying equation 2.107 from the left by (Ĥ0 − E(0)
0 )−1:

|0(n)〉 = −
Û |0(n−1)〉 −

n∑
k=0

E(k)|0(n−k)〉

Ĥ0 − E(0)
.

(2.112)

Using the projection operator P̂

P̂ = 1− |0(0)〉〈0(0)| (2.113)
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equation 2.112 can be reformulated in the advantageous form:

|0(n)〉 = −
P̂

(
Û |0(n−1)〉 −

n−1∑
k=0

E(k)|0(n−k)〉
)

P̂

(
Ĥ0 − E(0)

) . (2.114)

This leads to the annihilation of the zeroth-order wavefunction from the last term

of Eq. 2.114. The nth-order wavefunction correction is now determined as a

function of all lower order corrections. This is shown in Eqs. 2.115-2.117:

|0(1)〉 = − P̂ Û |0(0)〉
P̂
(
Ĥ0 − E(0)

) (2.115)

|0(2)〉 = −
P̂
(
Û − E1

)
|0(1)〉

P̂
(
Ĥ0 − E(0)

) (2.116)

|0(3)〉 = −
P̂
[(
Û − E1

)
|0(2)〉 − E2|0(1)〉

]
P̂
(
Ĥ0 − E(0)

) . (2.117)

In the following part, the Hamiltonian and the perturbation will be specified which

leads to the Møller-Plesset perturbation theory

2.2.4.2 Møller-Plesset perturbation theory

In section 2.2.4.1, the Rayleigh-Schrödinger perturbation theory (RSPT) was

introduced. In this chapter, it is adapted to correct the HF energy and wavefunction

for the electron correlation. This is accomplished by taking the HF solution, which

can be solved exactly, as the zeroth-order reference. By doing so, the Fock operator

f̂ is taken as the unperturbed Hamiltonian Ĥ0 and the perturbation itself is defined

as the difference between the full Hamiltonian and the Fock operator:

Û = Ĥ − f̂ . (2.118)

The diagonal Fock operator is given as

f̂ =
∑
p

εpĉ
†
pĉp (2.119)

and the full Hamiltonian is, as defined in Eq. 2.53, given as:

Ĥ =
∑
pq

hpq ĉ
†
pĉq +

1

2

∑
pqrs

Vpqrsĉ
†
pĉ
†
q ĉsĉr. (2.120)
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Consequential, the perturbation is defined as:

Û = Ĥ − f̂ = V̂pqrs − V̂ HF =
1

2

∑
pqrs

〈pq|rs〉c†pc†qcscr −
∑
pq

∑
i

〈pi||qi〉c†pcq. (2.121)

Taking the HF wavefunction |ΨHF
0 〉 as the zeroth-order wavefunction |0(0)〉 and

inserting Eq. 2.121 in Eqs. 2.110 and 2.111 yields the expressions for the zeroth-

(MP(0)) and first-order (MP(1)) MP energy corrections

E(0) = 〈0(0)|Ĥ0|0(0)〉 = 〈0(0)|f̂ |0(0)〉 =
n∑
i

εi (2.122)

and

E(1) = 〈0(0)|Û |0(0)〉 = 〈0(0)|Ĥ − f̂ |0(0)〉 = 〈0(0)|Ĥ|0(0)〉 − 〈0(0)|f̂ |0(0)〉

= − 1

2

∑
ij

〈ij||ij〉. (2.123)

As can be seen in Eq. 2.122 the zeroth-order MP correction is simply the sum of

the occupied HF orbital energies. The first-order MP correction represents the

difference of the Fock- and Hamilton operator expectation values. In combination,

they resemble the HF energy. As a consequence, the first correction to the HF result

is obtained from the second-order MP correction. For the calculation of the second-

order energy correction, the first-order wavefunction has to be calculated according

to Eq. 2.115. In order to reformulate this expression, excited determinants have

to be introduced which are created analogously to the CI expansion as shown in

Sec. 2.2.2. A N-tuply excited determinant is defined as

|ΨN 〉 = ĈN |0(0)〉 (2.124)

with ĈN as the excitation operator as defined in Eq. 2.87. All excited determinants

and the HF ground state constitute an orthonormal set of states and the excited

determinants are eigenfunctions of the Fock operator:

f̂ |ΨN 〉 = E
(0)
N |Ψ

N 〉 = (E
(0)
MP + εN )|ΨN 〉 (2.125)
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with εN as the orbital energy differences of the N-tuply excited determinant. In

the case of a double excited determinant, εN is defined as

εD = εa + εb − εi − εj . (2.126)

Invoking the resolution of the identity |ΨN 〉〈ΨN | for the projection operator P̂

in Eq. 2.115 and using both the Brillouin’s theorem [39,60] and the Slater-Condon

rules (see Sec. 2.1.6) yields

|0(1)〉 = −
∑
D

|ΨD〉〈ΨD|Ĥ|0(0)〉
εD

. (2.127)

Alternatively, Eq. 2.127 can be expressed as an perturbation operator acting on

the HF state:

|0(1)〉 = T̂
(1)
2 |0

(0)〉 (2.128)

with

T̂
(1)
2 =

∑
D

t
(1)
D τ̂D =

∑
a<b,i<j

tabij
(1)
ĉ†aĉ
†
bĉiĉj (2.129)

with tabij
(1)

as the first-order amplitude defined as

tabij
(1)

= −
〈0(0)|[ĉ†aĉ†bĉiĉj , Ĥ]|0(0)〉

εa + εb − εi − εj

= − 〈ab||ij〉
εa + εb − εi − εj

.

(2.130)

Inserting the amplitude expression in Eq. 2.130 into the wavefunction expression

in Eq. 2.128 yields the final expression for the first-order wavefunction:

|0(1)〉 = −
∑

a<b,i<j

〈ab||ij〉
εa + εb − εi − εj

|ΨD〉

= −
∑

a<b,i<j

tabij |ΨD〉
(2.131)
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which is identical to inserting the explicit Hamiltonian into Eq. 2.127. The

second-order MP energy correction is then given as

E(2) = 〈0(0)|Û |0(1)〉 = −1

4

∑
abij

|〈ab||ij〉|2

εa + εb − εi − εj

= − 1

4

∑
abij

tabij 〈ab||ij〉.
(2.132)

The total MP(2) energy is defined as the sum of all contributing corrections.

EMP2 = E(0) + E(1) + E(2) = EHF + E(2) (2.133)

The third-order energy correction expressions are derived analogously and are

given as:

E(3) = 〈0(0)|Û |0(2)〉

=
1

8

∑
abijkl

〈ij||kl〉tabijtabkl +
1

8

∑
abcdij

tcdijtabij〈ab||cd〉 −
∑
abcijk

tabijtacik〈kb||jc〉.

(2.134)

However, it is noteworthy to emphasize that MPPT is not a variational theory

but a perturbative correction of the energy up to a certain order and thus the

total energy can be lower than the exact solution of the SE. Especially MP(2) is

an established method for correlated calculations since it provides a good accuracy

to computational cost ratio with a scaling factor of N5, where N as the number of

basis functions. Also, all orders of MPPT are size-consistent.

2.2.5 Density functional theory

The density functional theory (DFT) [40,66] is a different approach to solve the

electronic SE. Instead of a wavefunction, as it is in HF and post-HF theories,

the electron density is the main quantity describing the system. First attempts

were made by L. H. Thomas and E. Fermi in the Thomas-Fermi model treating

electons as a uniform electron gas. [67–69] In this model, electrons are placed inside

a positively charged volume. A further approximation was made stating that the

electrons are distributed uniformly in a given volume ∆V In the TF-model, the

kinetic energy of the electrons is defined as

T =
3

10

(
3π2
) 2

3

∫ (
ρ(~r)

) 5
3d3~r. (2.135)
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The nuclear-electron attraction and the electron-electron repulsion were expressed

classically. The resulting total energy of an atom is defined:

ETF =
3

10

(
3π2
) 2

3

∫ (
ρ(~r)

) 5
3d3~r − Z

∫
ρ(~r)

r
d~r +

1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12
d~r1d~r2.

(2.136)

The main problem was the expression of the kinetic energy of the electrons. Using

this approximation, no chemical bond could be modeled. Also, both the electron

correlation and exchange are missing.

The base for modern DFT is laid by Hohenberg and Kohn in their work on

inhomogeneous electron gas with the introduction of the two Hohenberg-Kohn

theorems. [70] The first theorem (HK I) sates that the ground state electronic energy

is determined by the electron density ρ which means an mutual one-to-one mapping

between both. It can be proven by reductio ad absurdum: An arbitrary ground

state wavefunction Ψ1, a Hamiltonian H1 and a potential V1(~r) given. E is defined

as

E1 = 〈Ψ1|Ĥ1|Ψ1〉 =

∫
V1(~r)ρ(~r)d3(~r). (2.137)

Is is to be disproved that there is a second potential V2 yielding the same electron

density. Thus, a second wavefunction Ψ2 with the corresponding Hamiltonian H2

are introduced.

V1 ⇒ Ĥ1 ⇒ Ψ1 ⇒ ρ(~r)⇐ Ψ2 ⇐ Ĥ2 ⇐ V2 (2.138)

Taking Ψ2 as a trail function for H and vice versa yields:

E1 < 〈Ψ2|Ĥ1|Ψ2〉

E1 < 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉

E1 < E2 + 〈Ψ2|V1 − V2|Ψ2〉

E1 <

∫
ρ(~r)

(
V1 − V2

)
d(~r) + E2

(2.139)

and

E2 <

∫
ρ(~r)

(
V1 − V2

)
d(~r) + E1. (2.140)

By adding Eqs 2.138 and 2.139 one yields

E2 + E1 > E2 + E1 (2.141)

which is obviously wrong. Hence, the statement is disproved and the HK I is
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confirmed.

The second Hohenberg-Kohn theorem (HK II) serves as the density-based

counterpart of the variational principle. At this point it shall be given without

further proof or derivation as

E0 ≤ E[ρ̃] = T [ρ̃] + ENe[ρ̃] + Eee[ρ̃] (2.142)

with E0 as the exact energy, ρ̃ as a trial density, T , ENe and Eee as the kinetic

energy, electron-nuclear attraction and electron-electron repulsion, respectively. It

states that the energy obtained from the functional using a trial density represents

an upper bound to the exact ground state energy E0.

Although the Hohenberg-Kohn theorems represent the basis of contemporary

DFT, no improvement for the problems encountered in the TF model were made.

This was done in the Kohn-Sham approach (KS). [71] In this approach, a fictitious

system of non-interacting particles is introduced. This system shall generate the

same density as the real, interacting system. The kinetic energy of a non-interacting

system can be solved exactly by introducing orbitals. The kinetic energy is then

given as

Ts = −1

2

N∑
i

〈ψi|∇2|ψi〉. (2.143)

Since the kinetic energy of the non-interacting system differs from the exact kinetic

energy, a effective potential is introduced to account for that difference. This

new potential is called the exchange-correlation functional (xc-functional), since it

depends on the electron density ρ(~r). This energy functional contains the electron

correlation, exchange interaction and the residual part of the true kinetic energy

and is defined as

Exc[ρ(~r)] =
(
T [ρ(~r)]− Ts[ρ(~r)]

)
+
(
Eee[ρ(~r)]− J [ρ(~r)]

)
(2.144)

with J [ρ(~r)] as the Coulomb potential and Eee[ρ(~r)] as the electron-electron

interaction. In other words: Everything, that is not known exactly is put into the

xc-functional. The total energy expression for Kohn-Sham DFT is then given as

EKS−DFT [ρ(~r)] =
∑
i

〈ψi| −
1

2
∇2
i |ψi〉 −

∑
i

∑
A

〈ψi|
ZA

|~ri − ~RA|
|ψi〉

+
∑
i

〈ψi|
1

2

∫
ρ(~r2)

|~ri − ~r2|
d~r2|ψi〉+ Exc[ρ(~r)].

(2.145)
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Minimizing EKS−DFT using the variational principle with respect to single-particle

orbitals yields the Kohn-Sham equation(
− 1

2
∇2 +

∑
A

ZA
~rA

+

∫
ρ(~r2)

~r12
d~r2 + vxc

)
ψi = εiψi (2.146)

with

vxc =
∂Exc[ρ(~r)]

∂[ρ(~r)]
. (2.147)

The Kohn-Sham equation 2.146 is very similar to the HF equation 2.67. Therefore,

like HF, it has to be solved iteratively in an SCF procedure. With N3 DFT

exhibits the same scaling as HF. However, Koopmans’s theorem is not valid for

DFT orbitals. Since DFT contains no exact exchange but instead approximates

it by a potential, the self-interaction is not canceled and both the occupied and

virtual orbitals are described for the same N-electron system. As a consequence,

the virtual orbitals do not correspond to an electron attachment but instead the

orbital energy difference (εa − εi) is more related to an optical excitation.

Since the exact xc-functinoal is not known, suitable approximations for Exc

have to be made. Finding better approximations for the xc-functional is still

one of the main research topics in contemporary DFT development. Typically,

the parameters defining the xc-functional are empirically fitted. The various

approximate functionals are categorized into five rungs denoted as “Jacob’s Ladder”

of functionals as proposed by John Perdew [72] referring to a staircase to heaven

from a dream of Jacob described in the Old Testament. In this case, the “heaven”

would be the exact xc-functional.

First rung

Functionals of the first rung depend only on the (spin-)density ρ(~r) and are

therefore denoted as local spin-density approximation (LSDA). These type

of functionals suffer from problems describing systems containing significant

inhomogeneity of the electron density.

An example LSDA xc-functional is the combination Slater [69] / VWN5 [73]

Second rung

In the second rung, the functionals depend not only on the local spin-density,

but also on its gradient ∇̂ρ(~r) to account for the inhomogeneities in the

electronic density. Functionals of this rung are denoted as generalized gradient

approximation (GGA)
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Examples for GGA functionals are BLYP, [74,75] PBE, [76] BP86, [74,77] PW91 [78]

or SOGGA11. [79]

Third rung

The third rung contains the so called meta-GGA functionals. These func-

tionals can either include further improvements of the density by including

the Laplacian ∇̂2ρ(~r) or account for the kinetic energy density, τ(~r) =
1
2

∑nocc
i |∇ψi|2. Meta-GGA functionals show improvement in areas such as

thermochemistry, kinetics or non-covalent interactions.

Two examples of meta-GGA functionals are M06-L [80] and TPSS [81]

Fourth rung

The fort rung are hybrid density functionals. In these functionals, the

exchange is (partly) calculated by means of exact Hartree-Fock exchange.

This can be combined with any of the above mentioned classes of functionals.

However, GGA and meta-GGA functionals are commonly used. Currently,

two types of hybrid functionals are established:

Global hybrid functinoals

Global hybrid (GH) functionals contain a constant factor of exact HF

exchange. Various functionals have been desinged with nearly any

possible amount of HF exchange. Generally, GH functionals are defined

as

EGHxc = cxE
HF
x + (1− cx)EDFTx + EDFTc (2.148)

with cx as the amount of exact HF exchange.

Some examples of GH functionals are B3LYP, [82] PBE0, [83] M06-2X [84]

and TPSSh. [85]

Range-separated hybrid functionals

The range-separated hybrid (RSH) functionals further improve the con-

cept of hybrid functionals by separating the amount of exact exchange

into a short-range component and a long-range component by means of

the error function (erf):

1

r12
=

(
1− erf(ωr12)

)
r12

+
erf(ωr12)

r12

(2.149)

The first term on the right hand side of Eq. 2.149 is singular but
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short-range, and decays to zero for r12 ≈ 1/ω, while the second term

constitutes a non-singular, long-range background. A general RSH

functional can be expressed as

ERSHxc = cx,SRE
HF
x,SR + cx,LRE

HF
x,LR

+ (1− cx,SR)EDFTx,SR + (1− cx,LR)EDFTx,LR + EDFTc

(2.150)

where the short-range and long-range parts of the Coulomb operator are

used to evaluate the exact HF exchange EHFx,SR and EHFx,LR, respectively.

The rate at which local DFT exchange is turned off and the exact

exchange is turned on is defined by the parameter ω.

Typical examples of RSH functionals are ωB97X-D3 [86] and M11 [87]

Hybrid functionals exhibit improvements over classical DFT functionals

since the DFT-inherent self-interaction error is at least partially corrected

in the hybrid functionals. As self-interaction error is defined the artificial

Coulomb repulsion of an electron with itself. In HF theory, this wrong

self-interaction is completely corrected by exchange interaction. But since

DFT approximates the exchange by a potential, the self-interaction is not

completely canceled. This leads to various problems e.g. calculating bond

lengths or ionization energies.

Fifth rung

Currently the last rung of Jacobs ladder of functionals before reaching the

“heaven” of the exact xc-functional are the double hybrid (DH) function-

als. [88–92] This class of functionals also contains correlation terms via MP(2)

to improve the description of the virtual orbitals. Similar to the fourth

rung functionals, the double hybrid functionals can be separated into global

double hybrid (GDH) and range-separate double hybrid (RSDH) functionals.

Examples for DGH and RSDH functionals are XYG3 [88] and ωB97X-2(LP), [93]

respectively.

Nowadays, DFT is a wildly used method in theoretical chemistry. It yields good

results in the electronic ground state at moderate cost. However, the results

strongly depend on the choice of the applied xc-functional.
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2.3 Calculating electronically excited states

In this section, I would like to introduce different methods to calculate electronically

excited states. These methods are based on the ground state methods elaborated

in Sec. 2.2. In this section, I will mainly refer to three review articles by A. Dreuw

et. al.. [13,14,94] Excited state methods are necessary for calculating spectroscopic

properties and investigating photochemical reactions. As for the ground state,

there is a large variety of methods to describe electronic excitations. At first I

would like to introduce the CIS method based on the configuration interaction

scheme. Next, I will introduce the linear response methods based on HF and DFT.

In the following subsection, I would like to give an introduction to the algebraic

diagrammaic construction scheme. Finally, I want to elaborate how to calculate

vibrationally resolved absorption spectra.

2.3.1 Configuration interaction singles for excited states

As shown in Sec. 2.2.2 the configuration interaction scheme is a possibility to

include electron correlation in the calculation of the ground state. Truncating the

CI expansion after the singles yields the configuration interaction singles (CIS)

method. As shown in Sec. 2.2.2 CIS contains no correction to the electronic

ground state due to Brillouin’s theorem. However, CIS can be used to calculate

electronically excited states. [94]

As shown in Tab. 2.1 the CIS matrix is defined as

MCIS = 〈ΨS |Ĥ|ΨS〉 (2.151)

with the matrix elements

MCIS
ia,jb = 〈Ψa

i |Ĥ|Ψa
i 〉. (2.152)

Using a Hamiltonian shifted by the HF ground state energy Ĥ − EHF0 yields

MCIS
ia,jb = 〈Ψa

i |Ĥ − EHF0 |Ψa
i 〉 =

(
εa − εi

)
δijδab + 〈ij||ab〉. (2.153)

The corresponding eigenvalue problem is given as

MCISX = ΩX (2.154)

with X as the matrix of CIS expansion coefficients and Ω as the matrix of

eigenvalues, i.e. the excitation energies. Diagonalization of the CIS matrix directly
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yields the excitation energies and expansion coefficients. Typically, diagonalization

of the full matrix is unnecessary since in most cases only the few energetically

lowest excited states are of interest. Therefore, iterative diagonalization schemes

like the Davidson algorithm [95] are employed yielding the N lowest eigenvalues and

eigenvectors. Although CIS is a computaionally rather cheap method to calculate

electronically excited states, its accuracy is with an intrinsinc error of 0.5 - 2 eV

too large for reliable results or comparison with experimental data. In general,

the excitation energies are overestimated since electron correlation is generally

neglected within CIS and the HF orbitals represent an not optimal basis for the

expansion of the correlated excited state wavefunction. The leading term of Eq.

2.153, i.e. the orbital energy difference, is a poor estimate for excitation energies,

since the virtual orbitals are calculated for the (N + 1) electron system (see Sec.

2.2.1).

2.3.2 Time-dependent density functional theory

Based on ground state DFT (Sec 2.2.5), there are two possible ways to calculate

excitation energies and oscillator strengths. The first one is to propagate the

time-dependent Kohn-Sham wavefunction in time (real-time TD-DFT). The other,

more convenient way is to obtain the excitation energies from the linear time-

dependent response of the time-independent ground-state electron density to a

time-dependent external electric field. This is denoted as linear response TD-DFT.

This is derived in this section. As reference, I would like to mention the review

articles by A. Dreuw et al. [94] and M. E. Casida et al. [96].

The linear response TD-DFT starts at the electronic ground state, determined

by the time-independent Kohn-Sham equation as defined in Eq. 2.146. The

time-dependent analogue is the time-dependent Kohn-Sham equation which is

derived from the time-dependent Schrödinger equation:

i
∂

∂t
ψi (r, t) =

(
−1

2
∇2
i + υ(r, t) +

∫
d3r′

ρ (r′, t)

|r − r′|
+
δAXC [ρ]

δρ (r, t)

)
ψi (r, t) (2.155)

Eq. 2.146 can be expressed in matrix notation in a basis of M single-particle

wavefunctions φi(~r) with

ψp(~r) =

M∑
j

cpjφj(~r) (2.156)
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resulting in ∑
q

{
F (0)
pq P

(0)
qr − P (0)

pq F
(0)
qr

}
= 0 (2.157)

with the idempotency condition∑
p

P (0)
pq P

(0)
qr = P (0)

pr . (2.158)

In Eq. 2.157 F
(0)
pq and P

(0)
pq refers to the Kohn-Sham Hamiltonian and the density

matrix of the unperturbed ground state, respectively. F
(0)
pq is defined as

F (0)
pq =

∫
d3rψ∗p (r)

{
−1

2
∇2 −

M∑
K=1

ZK
|r −RK |

+

∫
d3r′

ρ (r′)

|r − r′|
+
δEXC
δρ (r)

}
ψq (r)

(2.159)

and P
(0)
pq as

ρ (r) =
M∑
p,q

Ppqφp (r)φ∗q (r) (2.160)

In a basis of orthonormal unperturbed single-particle orbitals of the ground state,

they can be simply written as:

F (0)
pq = δpqεp (2.161)

P
(0)
ij = δij

P
(0)
ia = P

(0)
ai = P

(0)
ab = 0

(2.162)

the matrix notation for the time-dependent Kohn-Sham equation (Eq. 2.155) is

given as ∑
q

{
FpqPqr − PpqFqr

}
= i

∂

∂t
Ppr (2.163)

For the calculation of excited states, an oscillating time-dependent external field

is added and the first order response (=linear response) to this perturbation is

analyzed. In time-dependent perturbation theory, as in general perturbation theory,

the perturbed wavefunction is a combination of the unperturbed ground state and

the time-dependent change (i.e. the perturbation). In this case the wavefunction

is represented by the density matrix

Ppq = P (0)
pq + P (1)

pq . (2.164)

The same scheme is applied to the Kohn-Sham Hamiltonian. It is constructed as
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a combination of the ground state Kohn-Sham Hamiltonian and the first order

time-dependent change.

Fpq = F (0)
pq + F (1)

pq (2.165)

Inserting Eq. 2.164 and 2.165 in Eq. 2.163 and considering only first order terms

yields:

∑
q

{
F (0)
pq P

(1)
qr − P (1)

pq F
(0)
qr + F (1)

pq P
(0)
qr − P (0)

pq F
(1)
qr

}
= i

∂

∂t
P (1)
pr (2.166)

In this Eq. 2.166, F
(1)
pq corresponds to the first-order change of the Kohn-Sham

Hamiltonian which is defined as

F (1)
pq = gpq + ∆F (0)

pq (2.167)

and P
(1)
pq as the change of the density matrix. (see Eq. 2.170) As can be seen in

Eq. 2.167, the change of the Kohn-Sham Hamiltonian consists of two parts. gpq

is the applied time-dependent electric field itself and ∆F
(0)
pq corresponds to the

reaction of the Kohn-Sham Hamiltonian on the change of the density matrix due

to the perturbation. The time-dependent electric field is defined as

gpq =
1

2

(
fpqe

−iωt + f∗qpe
iωt
)

(2.168)

with fpq corresponding to a one-electron operator describing the amplitude of the

external field. The reaction of the Kohn-Sham Hamiltonian is given as

∆F (0)
pq =

∑
st

∂F
(0)
pq

∂Pst
P

(1)
st (2.169)

with P
(1)
pq as the change of the density matrix, which is defined as

P (1)
pq =

1

2

(
dpqe

−iωt + d∗pqe
iωt
)
. (2.170)

with dpq representing perturbation densities. Inserting again Eqs 2.167 - 2.170 in
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Eq. 2.166 and considering only terms multiplied by e−iωt yields

∑
q

[
F (0)
pq dqr − dpqF (0)

qr +

(
fpq +

∑
st

∂F
(0)
pq

∂Pst
dst

)
P (0)
qr

−P (0)
pq

(
fqr +

∑
st

∂F
(0)
qr

∂Pst
dst

)]
= ωdpr.

(2.171)

The terms multiplied by eiωt yield the complex conjugate of Eq. 2.171. Considering

the idempotency condition in Eq. 2.158, the first order change of the densitiy

matrix can be written as

P (1)
pr =

∑
q

{
P (0)
pq P

(1)
qr + P (1)

pq P
(0)
qr

}
(2.172)

This restricts the matrix dpq from Eq. 2.171 to only occupied-virtual (dia) and

virtual-occupied (dai) blocks, because all occupied-occupied (dii) and virtual-virtual

(daa) blocks equal 0. Considering that the unperturbed Kohn-Sham Hamiltonian

and density matrices are diagonal, these both equations are obtained:

F (0)
aa xai − xaiF

(0)
ii +

fai +
∑
bj

(
∂Fai
∂Pbj

xbj +
∂Fai
∂Pjb

ybj

)P
(0)
ii = ωxai (2.173)

F
(0)
ii yai − yaiF

(0)
aa − P

(0)
ii

fia +
∑
bj

(
∂Fia
∂Pbj

xbj +
∂Fia
∂Pjb

ybj

) = ωyai. (2.174)

In these Eqs. 2.173 and 2.174, the symbol of the matrix dai has been replaced

by the symbol xai and the matrix dia by yai. Assuming fai = fia = 0, because

the excitation energies do not depend on the amplitude of the external field and

considering Eqs. 2.161 and 2.162, one obtains the TD-DFT equation:(
A B

B? A?

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
(2.175)

with X and Y as the TD-DFT excitation and “de-excitation” amplitudes and ω
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as the excitation energy. The matrix elements of A and B are given as:

Aia,jb = δijδab(εa − εi) +

∫ ∫
ψ?i (1)ψa(1)

1

x12
ψ?j (2)ψb(2)d1d2

+

∫ ∫
ψ?i (1)ψa(1)fxcψ

?
j (2)ψb(2)d1d2

= δijδab(εa − εi) + 〈ij|ab〉+ 〈ij|fxc|ab〉

(2.176)

Bia,jb =

∫ ∫
d1d2 ψ?i (1)ψa(1)

1

x12
ψ?b (2)ψj(2)

+

∫ ∫
d1d2 ψ?i (1)ψa(1)fxcψ

?
b (2)ψj(2)

= 〈ib|aj〉+ 〈ib|fxc|aj〉.

(2.177)

The matrices A and B can be referred to as excitation and de-excitation terms

as well as the matrices X and Y refer to excitation and de-excitation amplitudes,

respectively

In the adiabatic local density approximation (ALDA) the non-local (in time)

time-dependent xc-kernel is replaced by a time-independent local functional. This

approximation can be made, because the electron density varies very slowly in

time. Using ALDA, normal ground state functionals can be used for TD-DFT.

Using ALDA, fxc of Eqs. 2.176 and 2.177 can be written as

fxc =
δ2Exc

δρ(1)δρ(2)
. (2.178)

which is the second functional derivative of the xc-kernel.

An further approximation can be made to Eq. 2.175 known as the Tamm-

Dancoff approximation. In this approximation the B-Matrix is considered zero

resulting in the neglect of the de-excitation amplitudes Y and yielding the following

equation for Eq. 2.175:

AX = ωX. (2.179)

Diagonalization of the matrices in Eqs. 2.175 or 2.179 yields the excitation energies

and excited states transition vectors.
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2.3.3 Comparison of TD-DFT and TD-HF

The linear response formalism can also applied to HF yielding the TD-HF equation,

which has an identical form as the TD-DFT equation 2.175. However, since HF

contains exact exchange instead of an exchange-correlation functional, the matrices

A and B are different:

Aij,ab = δijδab(εa − εi) + 〈ij||ab〉 (2.180)

Bij,ab = 〈ib||aj〉 (2.181)

It can be seen, that the only difference of the TD-HF and the TD-DFT equa-

tions arises from the xc-functional fxc. As for TD-DFT, the the Tamm-Dancoff

approximation can also be applied to TD-HF. Setting B = 0 yields the same

expression as the CIS equation 2.154 with A = MCIS from Eq. 2.153. In other

words: The CIS expression can be obtained either via the CI formalism or as an

approximation in the linear response theory. However, in DFT the TDA can not

be derived through the CI formalism. The reason is that in HF, the molecular

Hamiltonian contains the Coulomb operator
∑ 1

(~r1−~r2 ) and the projection of this

operator yields terms which are equivalent to the response of the HF-exchange

and Coulomb potential. In TD-DFT in contrast, the response of the xc-potential

contains the second derivative of the xc functional, as can be seen in Eq. 2.178.

The relations of the various methods is illustrated in a sketch in Fig. 2.5

Figure 2.5: Sketch of the relations between HF, DFT, TD-HF, TD-DFT, CIS
and TDA.

TD-DFT is a rather cheap method for calculation of electronically excited states

which make is applicable for systems of up to several hundred atoms. However, as
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DFT, TD-DFT suffers from the electron self-interaction error resulting in a wrong

description of charge-transfer, extended π systems and Rydberg states. [97–101]

Hence it is necessary to include exact HF exchange as well as to properly benchmark

the chosen functional against high-level wavefunction-based methods to obtain

reliable results.

2.3.4 Algebraic diagrammatic construction scheme

The algebraic diagrammatic construction scheme for the polarization propagator

(ADC) is a quantum chemical excited state method based on perturbation the-

ory. [102–106] It originates from the polarization propagator in many-body Green’s

function theory and uses the typical Møller-Plesset partitioning of the Hamiltonian

operator. This also explains the name, since diagrammatic schemes were used

to construct algebraic expressions of the polarization propagator. Hence, ADC

can be seen as “perturbation theory for excited states”. ADC is size-extensive,

Hermitian and well-known for its robust structure. In this section, I will refer to a

review article by A. Dreuw et al. [14] and the dissertations of J. Wenzel [59] and M.

Wormit. [107]

2.3.4.1 Derivation using the polarization propagator

The polarization propagator evolves the polarization of a many-electron system in

time. This can be considered as the time-dependent fluctuations of the ground

state wavefunction upon an external perturbation. The spectral representation of

the polarization propagator in matrix form is given as:

Πpq,rs(ω) =
∑
n6=0

(
〈Ψ0|ĉ†pĉq|Ψn〉〈Ψn|ĉ†r ĉs|Ψ0〉

ω − (En − E0)
− 〈Ψ0|ĉ†r ĉs|Ψn〉〈Ψn|ĉ†pĉq|Ψ0〉

ω + (En − E0)

)
(2.182)

with Ψ0 and Ψn as the ground and nth excited state wavefunction with the

corresponding energy E, respectively. The poles of the polarization propagator

are the vertical excitation energies since the denominator contains the energy

difference between ground and excited state. The transition amplitudes can be

obtained from the expression in the numerator. The transition moment Tm of an

mth excited state is defined as

Tm =
∑
pq

Opq〈Ψ0|ĉ†pĉq|Ψm〉 (2.183)
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with Ô as an arbitrary single-particle operator. Eq. 2.182 can be written in

diagonal form as

Πpq,rs(ω) = x†pq (1ω −Ω)−1 xrs. (2.184)

Since neither the exact ground state nor any excited state wavefunction are known,

approximations have to be included to the polarization propagator formalism. The

existence of a non-diagonal form is postulated in an perturbation series using

Feynman-Goldstone diagrams:

Π+(ω) = F† (1ω −M)−1 F (2.185)

with M as the ADC matrix and F as the matrix of transition moments. These

are expanded using diagrammatic perturbation theory:

M = M(0) + M(1) + M(2) + . . . (2.186)

F = F(0) + F(1) + F(2) + . . . . (2.187)

Truncation of these expansions at a specific order of perturbation theory (n) yields

the corresponding order in the ADC approximation scheme (ADC(n)). This results

in the Hermitian eigenvalue equation

MX = XΩ, X†X = 1. (2.188)

with X as the matrix of eigenvectors, corresponding to the excited states and Ω

as the matrix of eigenvalues, corresponding to the excitation energies, which both

are obtained by diagonalization of M.

2.3.4.2 Derivation using the intermediate state representation

Beside the aforementioned derivation, a alternative way to derive ADC has been

found. [102,105] The intermediate state representation (ISR) shows similarities to

CI and defines the previously only proposed non-diagonal representation of the

polarization propagator. In this formalism, a complete set of orthonormalized

intermediate states |Ψ̃J〉 is constructed by applying creation and annihilation

operators ĈJ =∈ {ĉ†aĉi; ĉ†aĉ†bĉiĉj ; ...} to the exact ground state wavefunction. The

excitation operators can be divided into excitation classes of single, double, etc.

excitations. The first class is referred to as particle-hole (p-h), the second class as
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two-particle-two-hole (2p-2h), etc. This yields the precursor states

|Ψ#
J 〉 = ĈJ |Ψ0〉 − |Ψ0〉〈Ψ0|ĈJ |Ψ0〉. (2.189)

which are then orthogonalized to the ground state and all other underlying excited

states using Gram-Schmidt orthogonalization technique

|Ψ̃J〉 =
∑
I

|Ψ#
I 〉
(
S−

1
2

)
I,J

. (2.190)

and

SI,J = 〈Ψ#
I |Ψ

#
J 〉

=
(
〈Ψ0|Ĉ†I − 〈Ψ0|Ĉ†I |Ψ0〉〈Ψ0|

)(
ĈJ |Ψ0〉 − |Ψ0〉〈Ψ0|ĈJ |Ψ0〉

)
= 〈Ψ0|Ĉ†I ĈJ |Ψ0〉 − 2〈Ψ0|Ĉ†I |Ψ0〉〈Ψ0|ĈJ |Ψ0〉

+ 〈Ψ0|Ĉ†I |Ψ0〉〈Ψ0|Ψ0〉〈Ψ0|ĈJ |Ψ0〉

= 〈Ψ0|Ĉ†I ĈJ |Ψ0〉 − 〈Ψ0|Ĉ†I |Ψ0〉〈Ψ0|ĈJ |Ψ0〉

(2.191)

as the overlap between two precursor states I and J. [102,105] The exact excited

states |Ψn〉 can now be expressed in these intermediate states according to

|Ψn〉 =
∑
J

XnJ |Ψ̃J〉. (2.192)

This basis is used to express the Hamilton-Operator shifted by the exact ground

state energy E0

MIJ = 〈Ψ̃I |Ĥ − E0|Ψ̃J〉, (2.193)

which can be formulated using Eq. 2.190 as

MIJ =
∑
K,L

(
S−

1
2

)
I,K

(
〈Ψ#

K |Ĥ − E0|Ψ#
L 〉
)(

S−
1
2

)
L,J

. (2.194)
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The expectation value of the shifted Hamilton matrix can be written analogously

to Eq. 2.191 as

〈Ψ#
I |Ĥ − E0|Ψ#

J 〉 = 〈Ψ0|Ĉ†I
(
Ĥ − E0

)
ĈJ |Ψ0〉

− 〈Ψ0|Ĉ†I
(
Ĥ − E0

)
|Ψ0〉〈Ψ0|ĈJ |Ψ0〉

− 〈Ψ0|Ĉ†I |Ψ0〉〈Ψ0|
(
Ĥ − E0

)
ĈJ |Ψ0〉

+ 〈Ψ0|Ĉ†I |Ψ0〉〈Ψ0|
(
Ĥ − E0

)
|Ψ0〉〈Ψ0|ĈJ |Ψ0〉.

(2.195)

This leads to the Hermitian eigenvalue problem

MX = XΩ, X†X = 1, (2.196)

with X as the matrix of eigenvectors, corresponding to the excited states and

Ω as the matrix of eigenvalues, corresponding to the excitation energies. Eq.

2.196 can be solved by diagonalizing M. Since typically only the energetically

lowest eigenvalues are desired, iterative diagonalization schemes like the Davidson

algorithm [95] are applied.

The transition moments Tn in the general form

Tn = 〈Ψn|D̂|Ψ0〉 (2.197)

can be derived analogously using the one-particle operator e.g. dipole operator

D̂ =
∑
r,s

drsĉ
†
r ĉs, (2.198)

with drs as the matrix elements associated with D̂. In the ISR formalism the

transition moments FJ and the corresponding transition amplitudes fJ,rs with

respect to D̂ can be constructed as

FJ = 〈Ψ̃J |D̂|Ψ0〉 =
∑
r,s

fJ,rsdrs =
∑
r,s

〈Ψ̃J |ĉ†r ĉs|Ψ0〉drs. (2.199)

Combining Eq. 2.199 with the eigenvector Xn,J in the intermediate state basis

yields the final transition moment of excited state n:

Tn =
∑
J

XnJFJ . (2.200)
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This can be done analogously for any one-particle operator to obtain excited state

properties e.g. dipole moments. The general one-particle operator D̂ and its

corresponding property Dn of the nth excited state are defined as

Dn = 〈Ψn|D̂|Ψn〉 with D̂ =
∑
r,s

drsĉ
†
r ĉs. (2.201)

This expression 2.201 can be formulated as

〈Ψn|D̂|Ψm〉 = 〈Ψn|
∑
r,s

drsĉ
†
r ĉs|Ψm〉 =

∑
r,s

drs〈Ψn|ĉ†r ĉs|Ψm〉 =
∑
r,s

drsρrs, (2.202)

demonstrating the calculation of both excited state densities for the case n = m

and transition densities between two states for the case n 6= m Using the ISR, the

properties related to the operator D̂ is defined as

Dn = 〈 ~X†n|D̃| ~Xn〉, (2.203)

with ~Xn as the nth eigenvector and D̃ the representation of D̂ in the ISR basis

according to

D̃IJ = 〈Ψ̃I |D̂|Ψ̃J〉. (2.204)

2.3.4.3 The ADC matrix

Unfortunately, ADC equations 2.194 cannot be solved directly, since neither the

exact ground state wavefunction nor the exact ground state energy are known.

Hence, the ADC matrix M, the transition amplitude matrix F and the general

one-particle property matrix D̃ are expanded using perturbation theory and typical

Møller-Plesset partitioning yields

M = M(0) + M(1) + M(2) + ...

F = F(0) + F(1) + F(2) + ...

D̃ = D̃(0) + D̃(1) + D̃(2) + ... .

(2.205)

Applying this expansion scheme to Eq. 2.194 yields

M
(k+l+m)
IJ λ(k+l+m) =

∑
K,L

(
S
− 1

2
I,K

)(k)

λk
(
〈Ψ#

K |Ĥ − E0|Ψ#
L 〉
)(l)

λl
(
S
− 1

2
L,J

)(m)

λm,

(2.206)
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with λ = 1 as an auxiliary index to sort the expressions depending on the order of

perturbation theory, indicated by the indices k, l and m. For a given maximal order

of perturbation defining the truncation of the MP expansion, and also defining the

order or ADC (ADC(n)), only m-fold excitation classes (mp-mh) are maximally

needed according to

m
1

2
n+ 1, n even (2.207)

m
1

2
(n− 1) + 1, n odd (2.208)

Hence, ADC(1) stays in the p-h picture. For ADC(2) and ADC(3), the ADC matrix

consist of four different blocks: [p-h,p-h]; [p-h,2p-2h]; [2p-2h,p-h] and [2p-2h,2p-

2h]. The first inclusion of triple excitation classes would occur in ADC(4). The

individual blocks of the ADC matrix are treated in different order of perturbation

theory. The ADC matrix and its subdivision in the individual blocks as well

as the applied order of perturbation theory on each block is illustrated in Fig.

2.6. It can be shown that ADC(1) is identical to CIS [59] and therefore does not

Figure 2.6: Structures of the ADC matrices for ADC(1), ADC(2)-s, ADC(2)-x
and ADC(3) (from left to right) as well as the individual order of perturbation for
each block of the matrix. (white: zeroth order, yellow: first order, orange: second
order and red: third order) The red line in zeroth order indicates diagonal form of
this block.

contain any electron correlation. It scales N4. The ADC(2)-s matrix contains only

orbital energy differences on the diagonal of the [2p-2h,2p-2h] block. It represents

the direct result of applying the ISR scheme to an MP(2) ground state. The ad

hoc extension of the [2p-2h,2p-2h] block to first order perturbation theory results

in the ADC(2)-x scheme. It has been designed to improve the description of

double-excited states. However, since the individual blocks are not treated on a
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balanced level any more leading to a lowering of the excitation energies. [14] This

is improved in the ADC(3) scheme which again contains a balanced treatment

of the individual blocks and enhances thereby the description of the coupling

between singles and doubles. It is yielded by applying the ISR scheme to an MP(3)

ground state. The formal scaling for ADC(2)-s is N5 and is increased to N6 for

ADC(2)-x since a diagonalization of the [2p-2h,2p-2h] block is needed. Fortunately,

the scaling does not further increase for ADC(3) which exhibits also N6 scaling.

ADC is a size-consistent method for any order of perturbation theory. As a

consequence, the ADC scheme is systematically improvable. Also, the ADC matrix

is Hermitian which provides direct access to excited state properties and densities

without solving the eigenvalue problem twice. It is also worth mentioning that

ADC is more compact than CI or CC. As indicated by Eqs. 2.207 and 2.208, the

maximal needed excitation class is, except for zeroth order, less or equal than the

desired order of perturbation. Hence, ADC(3) does not require triple excitations.

ADC is well known for its accuracy and reliability. For singlet valence-excited

states, ADC(2)-s exhibits an accuracy for excitation energies of 0.22± 0.38 eV. At

ADC(2)-x and ADC(3) level, the accuracy for excitation energies is −0.70± 0.37

eV and 0.12± 0.28 eV, respectively. [108]

2.3.5 Vibrationally resolved excited states

Typically, electronic transitions are instantaneous in comparison with the movement

of nuclei. Thus, in absorption processes, the nuclear can be considered fixed.

However, an electronic transition is most likely to happen, when also the vibrational

wavefunction of the initial state overlaps with the vibrational wavefunction of the

final state. This is, for absorption out of the electronic and vibrational ground state,

most likely the case for vibrational excited states of the electronically excited state.

This is known as the Franck-Condon principle [109–111] with the overlap integral

over the initial and final vibrational wavefunctions as the Franck-Condon factors.

The combination of vibrational and electronic transition is referred to as vibronic

transition. This is illustrated in Fig. 2.7. Calculation of the Franck-Condon factors

allows the generation of vibrationally resolved absorption and emission spectra.

For the following explanation, I would like to refer to an article by V. Barone et

al. [112]

In the Born-Oppenheimer approximation, the total wavefunction (Ψ) of each

state can be separated into a nuclear- (ψn) and electronic (ψe) wavefunction. The

same can be applied to the electric dipole moment operator yielding an electronic-
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Figure 2.7: Illustration of a vibronic excitation (blue arrow) and relaxation
(green arrow) in the Franck-Condon picture.

(µ̂e) and nuclear (µ̂n) part. Hence, the transition dipole moment from initial- (Ψi)

to final (Ψf ) state can be formulated as

〈Ψi|µ|Ψf 〉 = 〈ψnψe|µ̂e|ψ′eψ′n〉+ 〈ψnψe|µ̂n|ψ′eψ′n〉. (2.209)

Due to the orthogonality of the electronic wavefunction of different electronic

states the second term vanishes and Eq. 2.209 can be written as

〈Ψi|µ|Ψf 〉 = 〈ψn|µ̂if |ψ′n〉 (2.210)

with µ̂if = 〈ψe|µ̂e|ψ′e〉 as the electronic transition moment. Unfortunately, no

analytical expression for the electronic transition moment exists. Hence, it has

to be approximated in a Taylor series of the normal coordinates with the Franck-

Condon principle as the zeroth order assuming an unchanged transition dipole

moment upon excitation. Higher order terms are needed in case of weakly allowed

or dipole-forbidden states. The normal coordinates can either correspond to the
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initial state (Q) or the final state (Q′), The Taylor series is given as

µif (Q′) ≈ µif (Q′0) +
N∑
k=1

∂µif
∂Q′k

Q′k +
1

2

N∑
k1

N∑
l=1

(
∂2µif
∂Q′k∂Q

′
l

)
0

Q′kQ
′
l + . . . (2.211)

with Q′0 as the equilibrium geometry of the final state and N as the number

of normal modes. The first order term of the Taylor series corresponds to the

Herzberg-Teller approximation which also considers a small change in the structure

during the transition. Inserting Eq. 2.211 in Eq. 2.210 results

〈Ψi|µ|Ψf 〉 = µif (Q′0)〈ψn|ψ′n〉+
N∑
k=1

∂µif
∂Q′k

〈ψn|Q′k|ψ′n〉

+
1

2

N∑
k1

N∑
l=1

(
∂2µif
∂Q′k∂Q

′
l

)
0

〈ψn|Q′kQ′l|ψ′n〉

(2.212)

with 〈ψn|ψ′n〉 corresponding to the Franck-Condon factors and 〈ψn|Q′k|ψ′n〉 corre-

sponding to Herzberg-Teller factors. Typically, a harmonic approximation is used

for the vibrational wavefunction. However, the vibrational states of both initial

and final state have to be expressed in a common basis. This is accomplished by a

transformation proposed by Duschinsky. [113] In this transformation, the normal

modes of the final state are expressed as a linear combination of the modes of the

initial state according to

Q′ = JQ+K ′ (2.213)

with J as the Duschinsky matrix describing the projection of the normal coordinates

of the final state on those of the initial state and K ′ as the shift vector corresponding

to the displacements of the normal modes.

2.3.6 Excited states analysis

In investigations of the photochemical properties of any system, the excited states

have to be characterized. The character of an excited state is defined by its orbital

transition pattern. In that way, e.g. charge transfer states can be identified or

a (n 7→ π∗) state can be distinguished from a (π 7→ π∗) state. However, as

mentioned in Sec. 2.2.1, in some cases the MOs are an inappropriate basis to

express the correlated excited state. In HF the unoccupied orbitals are calculated

for the N+1 electron system and thus represent an additional electron rather

than an electronic excitation. This results in many different orbital transitions
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contributing to the total excitation. In these cases, a characterization of the

excitation based on the MO transitions can be different to impossible. One has to

employ different techniques to determine the character of an excited state which

are not based on the MO picture. The main two properties used for analysis is

the transition density and the difference density. [94,114,115]

2.3.6.1 Transition density analysis

The one-electron transition density couples the electronic ground state with the

excited state of interest and is in general given as [94]

T (~r) = N

∫
|ΨI(~r1, ~r2, . . . , ~rn)〉〈Ψ0(~r1, ~r2, . . . , ~rn)|d~r2, . . . , d~rn (2.214)

with ΨI and Ψ0 as the wavefunction of the electronic Ith excited state and electronic

ground state, respectively. In the quantum chemical picture, a excitation can

be described as a electron and a hole. Therefore, ~rH and ~rE are defined as the

coordinates to the center of the hole and electron, respectively. Their correlated

motion is described by the wavefunction χexc(~rH , ~rE). The hole and particle (or

excess electron) density can be formulated as [114]

ρH(~rH) =

∫
χexc(~rH , ~rE)2d~rE (2.215)

ρE(~rE) =

∫
χexc(~rH , ~rE)2d~rH (2.216)

which indicate the density of the electron, which is “removed” (hole density) and

again “added” (particle density) to create the excited state. Typically, these

densities have a form corresponding to the MOs contributing to the excitation.

Further, it is useful to analyze the transition density matrix, which is given in the

molecular orbital basis as [94]

Tia = 〈ψi|T̂ (~r)|ψa〉 (2.217)

The transition density matrix (TDM) can not directly be diagonalized, since it

is non-symmetric. Instead, a singular value decomposition is performed yielding

natural transition orbitals (NTOs) as the eigenfunctions of the TDM. [116–118]

D0I
|MO| = Udiag

(√
λ1,
√
λ2, . . .

)
VT (2.218)
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with U and V as unitary matrices. The matrix U is used to generate the hole

NTOs, while the matrix V yields the particle NTOs. [114] These NTOs are specific

for one excitation and describe the electron transition itself. They are always

pairs (particle and hole) sharing the same eigenvalue which corresponds to the

contribution of this pair to the total excitation. In most cases, an excitation can

be described by less than three NTO pairs. Using NTOs, the characterization of

an excited state is facilitated dramatically. Charge-transfer states exhibit clearly

localized orbitals on different moieties of a molecule. Also, artificial contributions

to the excitation of various MOs (e.g. Rydberg orbitals, d-orbitals of transition

metals, etc.) can clearly be identified and excluded.

2.3.6.2 Difference density analysis

In contrast to the transition density is the difference density defined as the difference

of the full relaxed excited state density minus the equilibrated ground state density.

The difference density differs from the transition density by including double-

excited configurations and orbital relaxation effects. [119] Beside visualizing the

difference density directly, it is possible to create attachment and detachment

densities from the difference density matrix by diagonalization. Considering only

the negative eigenvalues yields the detachment density by back-transformation to

the initial orbital basis. Analogously, the attachment density is created by the

positive eigenvalues. [114] The detachment density is that part of the total electron

density that is removed upon excitation and replaced by the attachment density.

Analogously to the NTOs, natural difference orbitals (NDOs) can be created

from the difference density matrix as its eigenfunctions. Like the difference density,

the NDOs include effects of orbital relaxation which can be identified by comparison

with the corresponding NTOs. [114,115]

2.3.6.3 Total density analysis

Finally, also the total density of an correlated (ground or excited) state can be

analyzed. While the direct visualization does not provide much information in

most cases, the eigenfunctions of the density matrix obtained by diagonalization

can provide additional information. These eigenfunctions are referred to as natural

orbitals. [114,115] A possible application is the identification of spin polarization in

radicals. [115]
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2.4 Environment methods

All of the here reviewed methods are used to calculate isolated molecules or small

groups of few molecules. This is referred to as gas phase calculations since the

molecules are simulated in the vacuum without any interaction beside interaction

among themselves. However, most chemical reactions are carried out and most

physical and chemical properties of molecules are observed in solution or solid

phase. These different conditions influence the reactions and properties since the

observed molecule interacts with its environment. An typical example of this

kind of influence is the shift of the excitation energies of chromophores due to

the solvent. This phenomenon is known as solvatochromism. [19] Including the

environment in the quantum chemical calculation is only feasible for only small

molecules with very few environment molecules due to the high scaling factors of

the employed methods. Larger system can not, if even possible at all, be treated

in a reasonable time scale.

To include the effects of the environments in the quantum chemical calculations,

various approximations based on the separation between investigated system (e.g.

the chromophore) and its environment have been introduced. The molecule of

interest or a small group of molecules, which can be treated on the desired level of

theory in reasonable time is selected as the core system, its surrounding molecules

are defined as the environment. This is illustrated in Fig. 2.8. This separation

Figure 2.8: Schematic illustration of the separation between a central region i.e.
the investigated molecule, defined as core-system, and its environment.

of the systems and the interaction between them can be accomplished in many

ways. Generally, environment models are categorized in two classes: the implicit

and explicit solvent models. In the implicit models, of which the polarizable
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continuum model (PCM) constitutes the most prominent one, the molecules of the

environment are not calculated explicitly, but rather are modeled by a electric field.

In contrast, environment molecules are treated explicitly in the class of explicit

models, as ther name suggests.

In this section I would like to introduce different implicit and explicit envi-

ronment methods. However, I would like to concentrate on the frozen density

embedding theory as the model I used for the development of FDE-ADC, which

will be introduced later in this thesis.

2.4.1 Polarizable continuum model

The polarizable continuum model belongs to the class of implicit environment

models and comprises actually a set of models which are closely related to another.

It was originally developed by S. Miertus et al.. [120] The basic idea is to approxiate

the core-environment interactions as electrostatic interactions of a molecule with an

isotropic environment. Therefore the molecule is embedded in an cavity within an

continuous solvent. The solvent itself is only described by macroscopic properties.

In this section I will mainly refer to the chapter “The polarizable continuum

model for (bio)molecular electrostatics: Basic theory and recent advances for

macromolecules and simulations” in the book “Many-Body Effects and Electrostat-

ics in Biomolecules” by J. M. Herbert and A. W. Lange [121] and review articles by

J. Tomasi, B. Mennucci and R. Cammi [122] and B. Mennucci [123]

The cavity around the molecule is formally created by combining the van-der-

Waals spheres of all atoms and moving a artificial sphere with the given radius ~r

over the van-der-Waals surface. The surface traced by the center of this artificial

sphere is referred to as the solvent accessible surface (SAS) and defines the cavity.

This creates the physical problem: A solvent continuum with dielectric permitivity

(ε) outside of a charge density in a cavity (ρM (~r)). This is formulated in the

Poisson equation which is given as

−~∇ ∗ [ε(~r)~∇V (~r)] = 4πρM (~r) (2.219)

with V (~r) defined as the potential created by an apparent charge distribution σ(~s)

on the surface of the cavity Γ plus the potential created by ρM (~r). The former

one is defined as

Vσ(~r) =

∫
Γ

σ(~s)

|~r − ~s|
d2s (2.220)
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and the apparent charge distribution is defined as

σ(~s) =
fε
2π

∂

∂n
(VM + Vσ)~s (2.221)

with

fε =
ε− 1

ε+ 1
. (2.222)

Eq. 2.221 can be rewritten as(
1− fε

2π

∂

∂n

)
σ(~s) =

fε
2π

∂

∂n
(VM ) (2.223)

In the PCM framework, the apparent charge is approximated by individual point

charges α(~s) on the cavity surface. The operator Ŝ is introduced acting on functions

f(~s) defined on Γ and is given as

Ŝf(~s) =

∫
Γ

f(~s′)

|~s− ~s′|
d~s′ (2.224)

Using this approximation, Eq. 2.223 can be written as:

Kσ̃(~s) = RVM (2.225)

with σ̃(~s) = σ(~s) + α(~s). As mentioned before, there are various types of PCM.

They all have Eq. 2.225 as a basis, but differ in the definition of K̂ and R̂. An

overview is given in Table 2.3.

Table 2.3: Definitions of various types of PCM. Definitions of S, A and D in the
text. Note that COSMO and C-PCM differ also by an additional outlying charge
correction, which is not included in Eq. 2.225

Model K R fε

COSMO [124] S −fε1 ε−1
ε+1/2

C-PCM [125,126] S −fε1 ε−1
ε

IEF-PCM [127,128] S− fε
2πDAS −fε

(
1− 1

2πDA
)

ε−1
ε+1

SS(V)PE [127,129] S− fε
4π

(
DAS + SAD†

)
−fε

(
1− 1

2πDA
)

ε−1
ε+1
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The matrices D and D† are defined as

Df(~s) =

∫
Γ
f(~s′)

∂

∂n

1

|~s− ~s′|
d~s′ (2.226)

D†f(~s) = −
∫

Γ
f(~s′)

∂

∂n′
1

|~s− ~s′|
d~s′. (2.227)

The matrix A is diagonal and contains the surface areas of the cavity discretization

elements, the matrix 1 is the identity matrix.

Because of its simple description of the solute-solvent interaction and the direct

applicability in quantum chemical calculations, PCMs are by far the most often

used variant to consider the environment. Also the computation time is only

negligibly increase by including PCM. However, PCM is only capable of describing

an uniform environment with unspecific interactions with the solute.

2.4.2 Combining quantum mechanics and molecular mechanics

In molecular mechanics (MM), the interactions of all electrons and nuclei are

treated using classical mechanics instead of quantum mechanics (QM). [40] The

potential energies are calculated using force fields. An classical harmonic oscillator

is used to describe the potential energy in atom-atom distances i.e. chemical bonds

or angles between atoms while periodic functions similar to a sinus function are used

to describe dihedral angles. Dispersion or van-der-Waals interactions are modeled

using the Lennard-Jones potential. [130] The parameters for these force fields are

either empirically fitted to experimental data or obtained from quantum-chemical

calculations. One of the main drawbacks of MM is the impossibility to describe

chemical reactions since chemical bonds are defined beforehand instead of being the

result of the calculation as it is in QM. Using the harmonic approximation for bond

lengths, neither bond breaking nor creation of new bonds is possible. However,

since the computational efford for MM is much lower than for QM calculations,

MM offers to possibility to model extremely large molecules like whole proteins. [40]

In the QM/MM approach, both QM and MM calculations were combined using

the aforementioned separation scheme. A small part, which is in the focus of the

investigation is treated on QM level of theory while the environment, e.g. a protein

is modeled using MM. This was firstly introduces by Arieh Warshel and Michael

Levitt. [131] In the QM/MM method, the total Hamiltonian is split in three parts.

Ĥtotal = ĤQM + ĤMM + ĤQM/MM (2.228)
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While ĤQM and ĤMM represent the typical Hamilton operators for the QM and

MM system, respectively, ĤQM/MM accounts for the interaction between core

system and environment. Hence, the most important part for a realistic embedding

of the QM region in the MM part is finding good approximations for the third

term of Eq. 2.228. [60]

The most basic variant to treat the interaction is referred to as mechanical

embedding. [40] It includes the steric and bonded interactions between the two

subsystems. The QM atoms can include additional forces generated by the MM

region and vice versa. However, no electrostatic interaction between the two

regions is included. The interaction between the QM and MM part can be modeled

as van-der-Waals interaction described by the Lennard-Jones potential and a

point-charge-like interactions originating from population analysis:

Ĥmechanical
QM/MM =

NMM−atoms∑
A

NQM−atoms∑
B

[
QAQB
RAB

+

((
CAB12

RAB

)12

−
(
CAB6

RAB

)6
)]

.

(2.229)

In Eq. 2.229, QA and QB correspond to the partial charge of atom A and B,

respectively. The constants CAB12 and CAB6 correspond to empirical repulsion and

attraction parameters depending on the type of atoms for A and B, respectively,

while RAB indicates the distance between atom A and B. As can readily seen from

Eq. 2.229, the orbitals of the QM part are not affected by the interaction.

This is included in the next level of QM/MM denoted as electronic embedding

or electrostatic embedding. [40,60] The interaction Hamiltonian is split between

electrons and nuclei of the core system and an additional term is added describing

the interaction between the electrons and the partial charge of an atom in the MM

region:

Ĥmechanical
QM/MM =

NQM−electrons∑
i

NMM−atoms∑
A

QA
riA

+

NMM−atoms∑
A

NQM−nuclei∑
B

[
QAZB
RAB

+

((
CAB12

RAB

)12

−
(
CAB6

RAB

)6
)]
(2.230)

with ZB as the nuclear charge and riA as the distance between electron i and

atom A. This additional first part of Eq. 2.230 can be added to the molecular

Hamiltonian of the QM region. The orbitals are then calculated including the

point-charge-like Coulomb interaction with the environment.
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The third and highest level of QM/MM includes the mutual polarization of QM

and MM region and is therefore called polarizable embedding. [40,60] An additional

polarizability tensor ᾱ is added to the force field on each atom or molecule of the

MM part. The induced dipole at each center is determined according to

µind = ᾱE (2.231)

with E as the total electric field arising from all atomic point charges and all

induced dipoles. Hence, an iterative procedure is required to determine µind. The

interaction of the induced dipoles with the partial charges of the atoms in the MM

part is determined by

V =
1

2

NMM−atoms∑
A

NMM−dipol∑
j

QAµ
ind
j rAj

r3
ij

. (2.232)

This and the mutual interaction of the induced dipoles is added to the Hamiltonian

of the MM part. Additionally, the interaction of the induced dipoles in the MM

part with both the nuclei in the QM part, which is defined equivalently to Eq. 2.232,

and the electronic wavefunction is added to the QM Hamiltonian. The latter is

defined analogously to Eq. 2.232 but the partial charge QA is replaced by the

wavefunction of electron i. The total interaction has to be solved iteratively using

macrocycles. Hence, the QM/MM calculation using polarizable embedding can be

quite demanding in computational resources and time. In addition, the use of a

polarizable force field is essential, which are not yet very common nowadays. [60]

QM/MM is an established and frequently applied method to include explicit

environment interaction. In most cases, the electronic embedding variant is

employed. Using appropiate force fields and methods, also photochemical processes

in large proteins can be investigated. [132]

2.4.3 Effective fragment potential

The effective fragment potential is quite related to the QM/MM approach. However,

instead of a force field, the environment molecules are treated in a distributed mul-

tipole expansion. [133,134] It was originally developed by Mark Gordon et al. [135,136]

The environment is further separated into fragments. Typcally, each environ-

ment molecule is considered an individual fragment. The core system is as in the

QM/MM approach treated on QM level of theory. The total energy of the system

consisting of the core system and all fragments is defined as the energy of the
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core system in the field of the fragments and the fragment-fragment interaction

(Eef−ef ). The latter is defines as:

Eef−ef = ECoul + Epol + Edisp + Eex−rep (2.233)

with ECoul, Epol, Edisp and Eex−rep as the Coulomb, polarization, dispersion

and exchange-repulsion energy contribution, respectively. The Coulomb and

polarization interaction of the fragments on the QM calculation is modeled by a

potential, which is added to the Hamiltonian

Ĥ ′pq = Ĥpq + 〈p|V̂ Coul + V̂ pol|q〉 (2.234)

while the dispersion and exchange-repulsion QM-EF interactions are applied as a

total energy correction.

The fragments itself are modeled by [133]

• a multipole expansion up to octupoles obtained from a Stone’s distributed

multipolar analysis [137] located at atomic centers and bond midpoints for

the Coulomb and polarization terms,

• static polarizability tensors centered at localized molecular orbital (LMO)

centroids for the polarization term,

• dynamic polarizability tensors, also centered on the LMOs, for the dispersion

calculation, and

• the Fock matrix, basis set, and localized orbitals needed for the exchange-

repulsion term.

These data can be calculated for various molecules in beforehand and provided in

a database. In an EFP calculation, the position of each environment molecule has

to be defined to project the fragment data on this position. In this perspective,

the EFP method can be considered as an QM/MM analog without empirical

parameters.

Since the data for the environment is mostly provided in a database and the

potential added to the Hamiltonian is only a one-particle operator, the demand

in computational resources for an EFP calculation is comparable to the demand

of the corresponding calculation of the isolated core system on the same level of

theory.
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2.4.4 Fragment molecular orbital

In the fragment molecular orbital theory (FMO), the system is not only divided

in the two parts core and environment, but rather into multiple fragments, ideally

one fragment per molecule. [138,139] The total energy of the complete system is

expressed in a many-body expansion. This means that, in addition to the monomer

fragments, dimers, trimers, ..., n-mers are created from the monomers to count for

the fragment interactions. This expansion converges to the exact energy of the

full system at the given level of theory since all lower interaction terms cancel.

However, the expansion is truncated after a certain level of expansion, typically

after dimers or trimers, determining the order of FMO. [140,141] If only monomer

and dimer fragments are considered, the method is referred to as FMO2. FMO3 is

employed, when also trimers are considered. The total energy for FMO2 is given

as

EFMO2 =
N∑
I

EI+
N∑
I>J

(EIJ − EI − EJ) (2.235)

and for FMO3 as

EFMO3 = EFMO2 +

N∑
I>J>K

[
(EIJK − EI − EJ − EK)− (EIJ − EI − EJ)

− (EJK − EJ − EK)− (EKI − EK − EI)
]

(2.236)

Each fragment is calculated in the electrostatic potential (ESP) of all other

fragments. This is achieved by adding two extra terms to the Hamilton operator

describing the Coulomb interaction with both the nuclei and electron density of

all other fragments. [140,141] In the case of Hartree-Fock, the interaction terms can

simply be added to the one-particle operator:

fXi (~ri) = h̃Xi (~ri) +

NX/2∑
i

(
2JXi (~ri)−KX

i (~ri)
)

(2.237)

with

h̃Xi (~ri) = hXi (~ri) +

N∗NZ∑
K 6=X

(
− ZK
|~ri −RK |

)
+

N∑
K 6=X

∑
i∈X

∫
ρK (~r′)

|~ri − ~r′|
d~r′ (2.238)

where X indicates the fragment. [141] The first term in Eq. 2.238 is the one-electron

operator as it is defined in Hartree-Fock theory. The second term corresponds to
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the electron-nuclear attraction and runs over all atoms not part of the fragment X.

The last term corresponds to the electrostatic repulsion of the electrons in fragment

X with the electron density of all other fragments. The monomer fragments are

calculated iteratively in the field of all other densities until self-consistency is

reached. This macrocycle is called self-consistent charge (SCC). [141] After the SCF

in each loop, a post-Hartree-Fock method and / or a excited state calculation

is applicable to include electron correlation or electronically excited states. In

principle, this can be chosen individually for each fragment. An illustration of the

procedure in the case of FMO2 is shown in Fig. 2.9. It can be shown [141] that no

Figure 2.9: Illustration of the FMO2 total energy calculation scheme. [141]

double counting of the Coulomb interactions occurs, since these terms cancel out.

The exchange and correlation interaction between the fragments is considered in

the dimer calculations.
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The main advantage of this method is, that the calculation of the individual

fragments can perfectly be parallelized on suited computational infrastructure.

However, the advantage gained from the parallelization vanishes if the fragments

are of different size or different levels of theory are applied on the the individual

fragment calculations.

2.4.5 Frozen density embedding theory

Frozen density embedding theory (FDET) belongs to the explicit environment

methods, in which the supersystem is divided into core fragment and environemnt.

The core fragment is embedded in the electron density of the environment, which is

kept unchanged (frozen). [142,143] FDET was originally developed for DFT-in-DFT

embedding by T. Wesolowski et al [144] since the electron density is divisible. Later

developments introduced the wavefunction-based density embedding. [142,145–147]

This was done first by Carter et al.. [148,149] Employing wavefunction based methods

for the calculation of the embedded system is especially useful for the calculation

of electronically excited states, since DFT methods have known limitations. [99–101]

Density embedding can be applied in various fashions like using for the in-

dependent variables the supersystem density and the core fragment density, as

done by Carter et al. [148,149] This type of methods are collectively called ONIOM

strategy. [150] Here, I would like to concentrate on the variant using the density of

the core system and the environment as the independent quantities following the

formal framework of FDET. [143,144,151]

FDET is designed for systems with non-covalently bound environments like

systems amenable for QM/MM type of embedding methods. Hence, if electron

transfer between core system and environment might occur, the system should not

be modeled using FDET. In FDET, the core (or embedded) fragment is considered

system A, while the environment is referred to as system B. The total energy of

the supersystem AB in FDET has the form of a functional EEWF
AB [ΨA, ρB ] since it

depends both on the embedded wavefunction (EWF) and the environment electron

density ρB(~r). Hence, the Euler-Lagrange equation

δEEWF
AB [ΨI

A, ρB]

δΨI
A

− λIΨI
A = 0 (2.239)

can be employed to find stationary many-electron wave functions with λI as the

Lagrange multiplier associated with the normalization. As indicated by the index

I not only the lowest-energy, but also higher-energy solutions corresponding to
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electronically excited states are concerned. The total energy of the supersystem is

defined as

EEWF
AB [ΨA, ρB] =〈ΨA|ĤA|ΨA〉+ V nuc

B [ρA] + Jint[ρA, ρB]

+ Enadxc,T [ρA, ρB] + EHKvB [ρB] + V nuc
A [ρB],

(2.240)

with

Jint[ρA, ρB] =

∫ ∫
ρA(~r)ρB(~r ′)∣∣~r − ~r ′∣∣ d~rd~r ′ (2.241)

V nuc
A [ρB] =

∫
ρB(~r)vA(~r)d~r (2.242)

V nuc
B [ρA] =

∫
ρA(~r)vB(~r)d~r (2.243)

Enadxc,T [ρA, ρB] = Enadxc [ρA, ρB] + Tnads [ρA, ρB] + ∆FMD[ρA]. (2.244)

These terms describe the interaction between the embedded species A and the

environment B. Jint[ρA, ρB], V nuc
A [ρB] and V nuc

B [ρA] correspond to Coulombic

electron-electron repulsion, attraction between electron density of B with nuclei

of A and attraction between electron density of A with nuclei of B, respectively.

Enadxc,T [ρA, ρB] describes a non-additive energy bifunctional and comprises terms

for exchange-, correlation- and kinetic density functionals. Typically, the ρA-

dependent functional ∆FMD[ρA] is neglected in practice since its contributions

are usually small. [152] The non-additive energy bifunctional is defined as:

Enad[ρA, ρB] = E[ρA + ρB]− (E[ρA] + E[ρB]) . (2.245)

It describes the interaction terms of the divided densities with respect to the

employed functional and is a result of the divisibility of the density, but not of the

functional. It is defined as the sum of the exchange-correlation and kinetic energy

functional:

Enadxc,T [ρA, ρB] = Enadxc [ρA, ρB] + EnadT [ρA, ρB]. (2.246)

The embedding is accomplished by creating an embedding potential vemb as the

functional derivative of the total energy functional (Eq. 2.240) with respect ρA(~r).

The embedding potential depends on the functions ρA(~r), ρB(~r)and vB and is
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defined as:

vemb[ρA, ρB, vB](~r) = vB(~r) +

∫
ρB(~r ′)∣∣~r − ~r ′∣∣d~r ′ + δEnadxc,T [ρA, ρB]

δρA(~r)
. (2.247)

It is added to the Hamiltonian of the embedded system yielding the following

Schrödinger-like equation as the neccesary condition for the stationary wavefunc-

tion: (
ĤA + v̂emb

)
ΨA = εAΨA (2.248)

Two variants were introduced to carry out a FDE calculation which are referred

to as conventional FDET and the approximated version linearized FDET. [153,154]

2.4.5.1 Conventional FDET

The embedding potential depends, beside the nuclear potential vB on both the

electron densities of system A and B. However, the electron density of system B is

kept frozen resulting ρB(~r) to be constant. The embedding potential still depends

on the electron density of system A, which is the solution of the eigenvalue problem

in Eq. 2.248. This leads to an non-linear problem which has to be solved iteratively

in macrocycles until convergence is achieved. The embedding potential has to be

reconstructed using the updated electron density ρA(~r) from the previous step

and solving the eigenvalue problem again using the newly generated embedding

potential. [146,147,155,156] This has to be done for each total density of state I of

system A. As a consequence, the embedding potential is state-specific for each

electronic state of A.

This is not only very unfavorable because the iterative procedure converging

the embedding potential in self-consistency with the embedded wavefunction has

to be applied N times where N is the number of calculated excited states. It also

results in non-orthogonal excited states. This prohibits the calculation of reliable

excited state properties like oscillator strengths. Further problems might occur by

interchanging excited states due to the embedding.

2.4.5.2 Linearized FDET

In contrast to the conventional FDET, an approximation is introduced by replacing

the state-specific density ρA(~r) with a fixed reference density ρrefA (~r). [146,156–159]

This approximation overcomes the state-dependency and the iterative scheme

to construct the embedding potential. However, this leads to an inconsistency
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between the energy and the embedded wavefunction. [154] The state ΨI
A is calculated

employing an embedding potential which is not evaluated at the corresponding

electron density ρIA(~r). Recently, a further approach was developed using the fixed

reference density ρrefA (~r) but maintains consistency between wavefunction and

energy. This is referred to as linearized FDET. [153,154]

The non-additive energy functional Enadxc,T [ρA, ρB] is approximated by a func-

tional linear in ρA(~r). The approximation is constructed as a Taylor-expansion of

the non-additive energy functional around the reference density ρrefA (~r) with the

series being truncated after the linear term: [154]

Enadxc,T [ρA, ρB] ≈Enadxc,T [ρrefA , ρB] +

∫ (
ρA(~r)− ρrefA (~r)

) δEnadxc,T [ρrefA , ρB]

δρrefA (~r)
d~r

= Enadxc,T [ρrefA , ρB] + ∆lin[ρA, ρ
ref
A , ρB].

(2.249)

The total energy expression in linearized FDET is now linear in ρA(~r) and

reads:

ELinFDETAB [ΨA, ρB, ρ
ref
A ] =

〈ΨA|ĤA|ΨA〉+

∫
ρA(~r)vB(~r)d~r +

∫
ρB(~r)vA(~r)d~r

+

∫ ∫
ρA(~r)ρB(~r ′)∣∣~r − ~r ′∣∣ d~rd~r ′ + EHKvB [ρB]

+ Enadxc [ρrefA , ρB] + Tnads [ρrefA , ρB] + ∆lin[ρA, ρ
ref
A , ρB]

(2.250)

with

∆lin[ρA, ρ
ref
A , ρB] =

∫ (
ρA(~r)− ρrefA (~r)

) δEnadxc,T [ρrefA , ρB]

δρrefA (~r)
. (2.251)

The linearized embedding potential vlinemb is obtained as the functional derivative

of Eq. 2.250:

vlinemb[ρ
ref
A , ρB, vB](~r) = vB(~r) +

∫
ρB(~r ′)∣∣~r − ~r ′∣∣d~r ′ + δEnadxc,T [ρrefA , ρB]

δρrefA (~r)
. (2.252)

This embedding potential is universal for each state of A since it contains no

state-specific parameters.

For the evaluation of the total energy it has to be considered that in the
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calculation of the expectation value of the Hamiltonian of A also the expectation

value of the embedding potential is included, which includes all electrostatic and

part of the non-electrostatic terms of Eq. 2.250. The expectation value of the

embedding potential is given as:

〈ΨA|v̂linemb|ΨA〉 = V nuc
B [ρA] + Jint[ρA, ρB] +

∫
ρA(~r)

δEnadxc,T [ρrefA , ρB]

δρrefA (~r)
d~r (2.253)

As a consequence, the total energy expression in Eq. 2.250 can be rewritten as: [154]

ELinFDETAB [ΨA, ρB, ρ
ref
A ] =

〈ΨA|ĤA + v̂linemb(~r)|ΨA〉+

∫
ρB(~r)vA(~r)d~r

+ EHKvB [ρB] + Enadxc,T [ρrefA , ρB]−
∫
ρrefA (~r)

δEnadxc,T [ρrefA , ρB]

δρrefA (~r)
d~r

(2.254)

As can readily be seen, after evaluation of the Hamiltonian including the embedding

potential, only constant, state-independent terms have to be added. Thus, the

excitation energy, which is defined as the energy difference between different states,

simplifies to:

∆EIJ = 〈ΨJ
A|ĤA + v̂linemb|ΨJ

A〉 − 〈ΨI
A|ĤA + v̂linemb|ΨI

A〉. (2.255)

because all other terms cancel exactly. [154] A comparison between conventional

FDET and linearized FDET is shown in Fig. 2.10
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Figure 2.10: Procedure of conventional and linearized FDET. Reprinted from
Zech et.al, [154] with the permission of AIP Publishing.
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Chapter 3

Photochemistry of

Tetrathia-[7]Heterohelicenes

“No amount of experimentation can ever prove me right;

a single experiment can prove me wrong.”

Albert Einstein

Tetrathia-heterohelicenes belong to the class of molecules known as helicenes.

Helicenes are generally characterized by several ortho annelated aromatic rings

forming an open macrocycle. [160–164] Since both ends of the macrocycle are not

connected the helicene forms a helical structure due to steric repulsion. The

first helicenes were synthesized by M. Newman et al. in the 1950s. [165–167] In

all-benzene-helicenes, the name of the compound is formed by an arabic number

in square brackets indicating the number of annelated rings followed by the name

“helicene”. [160] For example [6]helicene consists of six annelated benzene rings

and represents the most famous helicene. The helix introduces a chiral axis

inducing chirality in all helicenes even without containing an asymmetric carbon

atom or other chiral centers. Following the nomeclature of Cahn, Ingold and

Prelog [168] from 1966, the left-handed helix is referred to as “minus”, indicated by

the letter “M” while the right-handed helix is denoted “plus”, indicated by the

letter “P”. [164] Helicenes can generally be synthesized by photocyclization of the

corresponding subunits (e.g. stilbene) followed by oxidation. [169] Helicenes exhibit

a strong circular dichroism and high optical rotation values which were studied

both experimentally and theoretically. [170–172]

The first heterohelicenes were synthesized by Wynberg et al. [173] by replacing

some of the benzene rings with thiophene rings. If in [7]helicene four benzene
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rings are substituted by thiophene, one obtains tetrathia-[7]heterohelicene. It was

analyzed using X-ray crystallography by Nakagawa et al.. [174] It was found that the

racemate does not only form enantiopure crystals but also a crystal in which the

molecules are stacked in columns of alternating chirality. The synthesis of tetrathia-

[7]heterohelicene is similar to the synthesis of the all-carbon helicenes: The subunits

can be connected by a Wittig reaction [175,176] followed by a photocyclization and

oxidation to obtain the aromatic helical structure (Scheme 3.1). [177–179] Tetrathia-

S

S

S

S
S S

O/PPH3

Wittig-reaction
photocyclization / 
oxidation

S

S

S

S

Scheme 3.1: Synthesis of tetrathia-[7]heterohelicene via Wittig reaction and
photocyclization.

[7]heterohelicenes are known to be easily functionalizable [180–182] and are suited

for application in optoelectronics, [183–186] biomolecular recognition, [187,188] and

asymmetric catalysis. [189–192] A selective functionalization at the α-position of

the terminal thiophene ring allows the use of tetrathia-[7]heterohelicenes as chi-

ral ligands for transition metal complexes. Especially phosphorus derivatives of

tetrathia-[7]heterohelicenes are of particular interest since phosphines are known

for their ability to bind transition metals like gold(I). Hence, organophosphorus-

gold(1) complexes have received increasing attention in the last years as efficient

and selective homogeneous catalysts in organic transformations. [193–197] The func-

tionalization can be carried out according to Scheme 3.2. Instead of n-butyl groups

S

S

S

S

C3H7

C3H7

1) n-BuLi (eq.), THF, -78 °C
2) 2 (n-Bu)2PCl (eq.), -78 °C, 5h
3) BH3*THF (10 eq.), 0 °C to rt, 
     24-48 h

S

S

S

S

C3H7

C3H7

P

P

n-Bu
n-Bu
BH3

n-Bu
n-Bu
BH3

Scheme 3.2: Synthesis of tetrathia-[7]heterohelicene-dialkylphosphane-borane.

analogously cyclohexane, phenyl, t-butyl or ethyl groups can be used as substituens

at the phosphorus atom. [31] Synthesis of the gold(I)-complex can be achieved by

adding a weakly coordinated gold-tetrahydrothiophene-chlorine complex (Scheme

3.3). [29] These compounds can be used as catalysts for cycloisomerization reactions.
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Scheme 3.3: Synthesis of tetrathia-[7]heterohelicene-dialkylphosphane-gold(I).

In this scope, it is important to investigate the electronically excited states of

tetrathia-[7]heterohelicene derivatives and the influence of phosphorus substituents

on properties of both excited and ionized states. This is essential for the fur-

ther development of phosphorus derivatives of tetrathia-[7]heterohelicenes in the

aforementioned research fields.

In the first part of my dissertation I have investigated electronically excited

states and ionizations of various tetrathia-[7]heterohelicene derivatives using state-

of-the-art quantum chemical methods and compared the results to experimental

data. I will present and discuss the results in detail in this chapter. 1

1 Parts of Chapter 3 have already been published in
Gold(I) Complexes of Tetrathiaheterohelicene Phosphanes
Silvia Cauteruccio, Annette Loos, Alberto Bossi, Maria C. Blanco Jaimes, Davide Dova, Frank
Rominger, Stefan Prager, Andreas Dreuw, Emanuela Licandro and A. Stephen K. Hashmi
Inorganic Chemistry, 52 (2013), pages 7995-8004
and
Chiral Thiahelicene-Based Alkyl Phosphine-Borane Complexes: Synthesis, X-ray
Characterization, and Theoretical and Experimental Investigations of Optical Prop-
erties
Davide Dova, Silvia Cauteruccio, Stefan Prager, Andreas Dreuw, Claudia Graiff and Emanuela
Licandro
The Journal of Organic Chemistry, 80 (2015), pages 3921-3928.
and
Tetrathia[7]helicene Phosphorus Derivatives: Experimental and Theoretical Investi-
gations of Electronic Properties, and Preliminary Applications as Organocatalysts
Davide Dova, Lucia Viglianti, Patrizia R. Mussini, Stefan Prager, Andreas Dreuw, Arnaud Voi-
turiez, Emanuela Licandro and Silvia Cauteruccio
Asian Journal of Organic Chemistry, 5 (2016), pages 537-549
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with gold(I)-chloride yields the investigated system tetrathia-[7]heterohelicene-

diphenylphosphane-gold(I)-chloride (TTH-DPP-Au(I), Fig 3.2). In this case, each

borane (BH3) of TTH-DPPB is replaced by a gold(I) chloride (AuCl).

3.1.2 Computational methodology

From a quantum chemical point of view the investigated TTH derivatives are rather

large systems possessing more than 100 atoms. Hence, computationally demanding

methods can, if at all, only be used for specific calculations or as reference for

a benchmark of computationally cheaper density based methods. Especially

calculation of vibrationally resolved absorption spectra is computationally very

demanding since it involves computation of the second derivative of an excited

state i with respect to all nuclear coordinates i.e. the Hessian matrix of state i.

For the theoretical investigation of optical properties of the two enantiomers

of TTH-DAPB, time-dependent density functional theory (TD-DFT) and ap-

proximate coupled cluster theory of second-order (CC2) in combination with the

cc-pVDZ basis set have been employed. In addition, for CC2, the resolution of

the identity (RI) approximation [198,199] has been applied with the corresponding

auxiliary basis set aux-cc-pVDZ. For the investigation on TTH-DPP-Au(I), the

6-31G* basis set has been employed for the first, second and third-row elements

while the LANL2DZ effective core potential has been used for the gold atoms. For

the ground-state DFT and excited-state TD-DFT calculations of both molecules

TTH-DAPB and TTH-DPP-Au(I) the range-separated exchange-correlation (xc)-

functional ωB97XD [200] has been used.

An evaluation of xc-functionals with varying amounts of nonlocal Hartree-Fock

(HF) exchange has demonstrated that at least 50 % of HF exchange are required to

avoid occurrence of spurious low-lying charge-transfer excited states and to achieve

a reasonable agreement with experimental spectra. Here, ωB97X has turned out

to yield the most reliable results and can also be used for reliable excited state

geometry optimizations. [201]

For the RI-CC2 calculations, Turbomole 6.3.1 [202] has been employed, while for

DFT and TD-DFT calculations, the Gaussian 09 Rev. D.01 [203] program package

was used.
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3.1.3 Results for TTH-DAPB

3.1.3.1 Ground state properties

The ground-state structures of (P)-TTH-DAPB and (M)-TTH-DAPB have been

separately optimized at DFT/ωB97XD/cc-pVDZ level of theory. An overview of

calculated values for several important internal coordinates is given in Tab. 3.1 and

Fig. 3.3. Comparison with experimental data determined by X-ray crystallography

shows a very favorable agreement. Bond lengths differ by less than 0.03 Å. The

only discrepancy can be determined in the incline of the helix. Both layers of

the helix approach each other a bit closer in the calculated structures than in the

experimental ones. This can be seen in the smaller P-P distance or in the decreased

S23-S16-S7-S24 dihedral angle, which are 6.377 Å and 43.6◦ in the crystal structure,

respectively. As a result the pitch of the helix is slightly reduced in the calculated

geometry. This may originate from the applied DFT methodology, which tends to

planarize large delocalized π-systems. Also crystal-packing effects might play a

role in the X-ray structures, which are not included in the calculations.
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Figure 3.3: Atom numbering scheme for TTH-DAPB.
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Table 3.1: Most relevant calculated geometrical parameters (d: dihedral angle,
r: bond length, a: angle) of (P/M)-TTH-DAPB.

Geom. Parameter Value

d(C6-C1-C2-C3) ±9.6◦

d(C14-C5-C4-C9) ±22.9◦

d(C17-C14-C5-C4) ±19.3◦

d(C21-C17-C14-C5) ±5.4◦

d(C5-C4-C9-C3) ±18.0◦

d(C4-C9-C13-C26) ±5.5◦

d(C20-C1-C2-C10) ±25.0◦

d(C22-C6-C3-C25) ±42.2◦

d(S23-S16-S7-S24) ±38.6◦

r(C1-C2) 1.398 Å
r(C5-C4) 1.419 Å
r(C5-C14) 1.456 Å
r(C14-C17) 1.422 Å
r(C17-C21) 1.439 Å
r(C20-C19) 1.379 Å
r(C21-C26) 3.103 Å
r(P29-P31) 6.051 Å
r(B30-B32) 7.825 Å
a(C22-C4-C25) ±52.9◦

The six frontier orbitals HOMO−2 (HOMO = highest occupied molecular

orbital) to LUMO+2 (LUMO = lowest unoccupied molecular orbital) were plotted

and analyzed. They are delocalized over the TTH moiety but have no contributions

on the side chains, i.e. the n-butyl groups or the boranes. They exhibit typical

π character. The orbital energies [hartree] for HOMO−2 to LUMO+2 are: -

0.300, -0.272, -0.270, -0.012, 0.022, 0.032, respectively, indicating a slight bonding

character of the LUMO. It is especially remarkable that the LUMO has a bonding

character between the two layers of the helix. The frontier orbitals are shown in

Fig 3.4. The orbitals obtained at Hartree-Fock level of theory are qualitatively

identical. Hence, these orbitals serve for the subsequent characterization of both

RI-CC2 and TD-DFT results.
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can be characterized sufficiently in the molecular orbital basis. The higher lying

states exhibit more low-contributing orbital transitions indicating the insufficient

representation of the excitation in the molecular orbital picture. This exacerbates

the characterization of an excited state.

However, it can be seen, that the state characterized by a HOMO-to-LUMO

transition is the S1 state in the results obtained at TD-DFT level of theory

but occurs as the second excited state in the RI-CC2 results. The same can

be observed for the S1 state obtained at RI-CC2 level of theory and the S2

state obtained at TD-DFT. This means, that the energetic order of the first two

excited states is interchanged for TD-DFT as compared to RI-CC2. However,

their character, this means the orbital transitions, the transition dipole moment

Table 3.2: Excitation energies, oscillator strengths and orbital transitions (> 5 %)
for the energetically lowest eight excited states of TTH-DAPB calculated at RI-
CC2/cc-pVDZ level of theory.

State Exci. Energ. [eV] Osc. Str. Orb Trans.a Weight [%]

S1 3.41 0.16 -1 7→ 0 (π 7→ π∗) 80.3

S2 3.46 0.17 0 7→ 0 (π 7→ π∗) 89.6

S3 4.11 0.23 -2 7→ 0 (π 7→ π∗) 57.4
0 7→ 1 (π 7→ π∗) 12.3

-1 7→ 0 (π 7→ π∗) 6.0

S4 4.12 0.07 -3 7→ 0 (π 7→ π∗) 57.3
-1 7→ 1 (π 7→ π∗) 15.4
0 7→ 2 (π 7→ π∗) 8.3

S5 4.31 0.06 0 7→ 1 (π 7→ π∗) 60.9
-2 7→ 0 (π 7→ π∗) 20.9
-1 7→ 2 (π 7→ π∗) 7.4

S6 4.46 0.00 -1 7→ 1 (π 7→ π∗) 63.3
-1 7→ 1 (π 7→ π∗) 21.1

S7 4.54 0.11 0 7→ 2 (π 7→ π∗) 58.7
-1 7→ 2 (π 7→ π∗) 10.0
-1 7→ 1 (π 7→ π∗) 8.3

S8 4.55 0.02 -1 7→ 2 (π 7→ π∗) 54.1
0 7→ 3 (π 7→ π∗) 8.1
0 7→ 2 (π 7→ π∗) 6.5

a HOMO+x 7→ LUMO+y
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Table 3.3: Excitation energies, oscillator strengths and orbital transitions (> 5 %)
for the energetically lowest eight excited states of TTH-DAPB calculated at
DFT/ωB97XD/cc-pVDZ level of theory.

State Exci. Energ. [eV] Osc. Str. Orb Trans.a Weight [%]

S1 3.65 0.16 0 7→ 0 (π 7→ π∗) 89.9

S2 3.72 0.19 -1 7→ 0 (π 7→ π∗) 82.5

S3 4.30 0.08 -3 7→ 0 (π 7→ π∗) 52.8
-1 7→ 1 (π 7→ π∗) 20.6
0 7→ 2 (π 7→ π∗) 6.9

S4 4.35 0.38 -2 7→ 0 (π 7→ π∗) 51.3
0 7→ 1 (π 7→ π∗) 27.4

S5 4.76 0.06 -5 7→ 0 (π 7→ π∗) 22.3
-1 7→ 2 (π 7→ π∗) 19.6
0 7→ 3 (π 7→ π∗) 12.9

-3 7→ 1 (π 7→ π∗) 12.3
0 7→ 1 (π 7→ π∗) 6.7

S6 4.83 0.19 0 7→ 2 (π 7→ π∗) 43.6
-4 7→ 0 (π 7→ π∗) 15.3
-3 7→ 0 (π 7→ π∗) 15.2
-2 7→ 1 (π 7→ π∗) 5.4

S7 4.90 0.04 0 7→ 1 (π 7→ π∗) 40.9
-2 7→ 0 (π 7→ π∗) 31.8
-5 7→ 0 (π 7→ π∗) 10.5
-2 7→ 2 (π 7→ π∗) 5.2

S8 5.03 0.07 -1 7→ 1 (π 7→ π∗) 61.2
-3 7→ 0 (π 7→ π∗) 14.3
-4 7→ 0 (π 7→ π∗) 6.5

a HOMO+x 7→ LUMO+y

vectors and the oscillator strengths are retained. The same holds for the S3-

and S4 state, which also change their energetic order at TD-DFT level of theory

with respect to the RI-CC2 results. For comparison of the calculated excitation

energies with the experimentally determined absorption spectrum, the calculated

excitation energies obtained with RI-CC2 are shifted to lower energies by -0.325 eV,

accounting for systematic errors in the calculation stemming from the approximate

level of computation and the lack of solvation effects. The energy shift has

been chosen such that the first excitation energy matches the first absorption
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band at 400 nm wavelengths. Applying this shift yields a very good agreement

between calculated excited states obtained at the RI-CC2 level of theory and

the experimental absorption spectrum. An overlay of the experimental spectrum

with the calculated line spectrum is shown in Fig. 3.5. Both the S1 and S2 state

Figure 3.5: Overlay of experimental absorption spectrum and calculated excited
states for TTH-DAPB. Excitation energies (shifted by 0.325 eV, see text) and
oscillator strengths of the eight lowest electronically excited states calculated at
the RI-CC2/cc-pVDZ level of theory.

could contribute to the first experimental absorption band at 400 nm wavelengths.

The third excited state S3 most probably corresponds to the absorption band at

330 nm wavelengths. Even the beginning of the last absorption band at 300 nm

wavelengths is visible. It corresponds probably to the S8 state.

Additionally, rotatory strengths have been calculated at the RI-CC2/ccpVDZ

level of theory, which are required for the simulation of CD spectra. The rotatory

strengths of the eight energetically lowest excited singlet states are compared to the

oscillator strengths in Tab. 3.4. Comparison of the calculated rotatory strength

with the experimental CD spectrum of TTH-DAPB shows, like for the absorption

spectrum, very good agreement after applying the same energetic shift as done

for the absorption spectrum. An overlay of the calculated excitation energies and

rotatory strengths with the experimental CD spectrum is shown in Fig 3.6. As

can be readily seen from Tab 3.4, the rotatory strengths of the first and second
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Table 3.4: Comparison of rotatory strengths and oscillaotr strengths for TTH-
DAPB calculated at RI-CC2/cc-pVDZ level of theory

State Exci Energ. [eV] Osc. Str. Rot. Str. [10−40 ∗ erg ∗ cm3]

S1 3.41 0.16 -127.80
S2 3.46 0.17 113.06
S3 4.11 0.23 -18.10
S4 4.12 0.07 353.94
S5 4.31 0.06 -47.53
S6 4.46 0.00 1.86
S7 4.54 0.11 173.63
S8 4.55 0.02 47.52

Figure 3.6: Overlay of experimental CD spectrum (red line) and calculated
excitation energies (shifted by 0.325 eV, see text) and rotatory strengths (black
lines) of the eight lowest electronically excited states calculated at the RI-CC2/cc-
pVDZ level of theory for TTH-DAPB.

excited state exhibit different sign. This nicely explains the flat area from 250 to

420 nm wavelengths in the experimental spectrum. The first and second excited

state almost cancel each other. Only the small bump at 390 nm wavelengths

indicates the presence of a second excited state. It is also remarkable that the

state exhibiting the largest oscillator strength (S3) does not show a large rotatory

strength. The S4 state exhibits the largest rotatory strength. As expected, the

M-enantiomer shows the exact inverse rotatory strengths.
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Since the S1 and S2 state change their energetic order at the TD-DFT level

compared to the RI-CC2 level of theory but remain their their character and

the corresponding orbital contributions, a label referring to the character rather

than the energetic order will be used in the following. Therefore, the state mainly

characterized by a HOMO−1-to-LUMO transition (S1 at RI-CC2, S2 at TD-DFT

level of theory) will be named SA and the state mainly characterized by a HOMO

to LUMO transition (S2 at RI-CC2, S1 at TD-DFT level of theory) will be referred

to as SB state. Excited state geometry optimizations of these states have been

performed at the TD-DFT level of theory. They yield fluorescence wavelengths

of 406 nm (3.06 eV) for the SB state, and 365 nm (3.39 eV) for the SA state at

TDDFT/ωB97XD/SVP level. The corresponding equilibrium structures of SA

and SB are almost identical to the ground state equilibrium structure. The most

apparent change is that the pitch of the helix is slightly reduced in the excited

states due to an attractive orbital interaction of the LUMO in the overlapping

region of the 7-TH moiety. This will be discussed in more detail in the analysis of

the very similar TTH-DPP-Au(I) system in Sec. 3.1.4.

However, it remains unclear whether the second experimental band at 380 nm

wavelengths corresponds to the second excited state or to vibrational progression of

the S1 state. To elaborate this question, vibrationally resolved absorption spectra

of the (S0 7→ SA) and the (S0 7→ SB) transitions were calculated. Therefore,

analyses of the harmonic frequencies of the equilibrium structures of S0, SA and

SB have been performed using TD-DFT/ωB97XD/SVP level of theory due to

computational cost. The obtained vibrationally resolved absorption spectra have

been shifted to match the excitation energy difference of the states as calculated at

the RI-CC2/cc-pVDZ level of theory. Thereby, vibrationally resolved absorption

spectra are obtained, for which the electronic contributions are calculated at

RI-CC2 level of theory and the vibrational contributions stem from lowerlevel

TD-DFT calculations. For comparison with the experimental absorption spectrum,

the computed vibrationally resolved spectra of SA and SB have been added (Fig.

3.7).

As can be readily seen, the vibrationally resolved spectrum of state SB exhibits

a much weaker intensity than the spectrum of state SA, although both have similar

oscillator strengths. Analysis of their corresponding shift vectors and Duschinsky

matrices reveals that much more normal modes contribute to the excitation to

state SB than to SA leading to a much broader absorption spectrum of SB. As

a consequence a large number of very small contributions is neglected in the
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Figure 3.7: Calculated vibrationally resolved absorption spectrum for the states
SA and SB of TTH-DAPB as well as the sum of both spectra.

numerical computation of the spectrum of the (S0 7→ SB) transition resulting in a

seemingly too small peak. For the calculation of vibrationally resolved absorption

spectra, both the Herzberg-Teller and the Franck-Condon approximations have

been employed, showing that the latter is sufficient here. The normal modes were

individually calculated at the relaxed geometries of the ground state, first and

second excited state, respectively.

It is clear now that SA dominates the first band of the spectrum, while SB

contributes only marginally. The vibrational progression of the sum of the (S0

7→ SA) and (S0 7→ SB) transitions (Fig 3.7) corresponds to the observed peaks at

405 nm, 385 nm, and 365 nm absorption wavelength in the experimental spectrum

(for comparison see Fig. 3.5). A vibrational analysis of the peaks around 320 nm

has not been performed, since the main interest here lies on the investigation of

the states from which fluorescence can occur.
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Table 3.5: Selected computed bond lengths and angles for TTH-DPP-Au(I)
optimized in the electronic ground state S0, first and second excited state S1 and
S2 and in the lowest triplet state T1. The experimentally determined values of the
electronic ground state structure are given for comparison.

Distances [Å] S0 S1 S2 T1 Exp.

Au32-P31 2.305 2.308 2.307 2.306 2.244
Au30-P29 2.307 2.310 2.309 2.308 2.232
Au32-Cl33 2.389 2.393 2.392 2.391 2.308
Au30-Cl34 2.391 2.394 2.394 2.391 2.287
Au30-Au32 3.320 3.309 3.312 3.322 3.183
C21-C17 1.440 1.422 1.431 1.428 1.430
C17-C14 1.422 1.438 1.423 1.443 1.419
C19-C20 1.376 1.397 1.398 1.395 1.361
C14-C5 1.463 1.408 1.434 1.390 1.450
C1-C2 1.391 1.449 1.409 1.489 1.397
C9-C13 1.425 1.439 1.424 1.434 1.424
C10-C11 1.376 1.394 1.397 1.382 1.365
C13-C26 1.440 1.424 1.431 1.435 1.437
C5-C4 1.423 1.454 1.417 1.478 1.429

Angles [◦]

P31-Au32-Cl33 176.4 176.6 176.3 176.6 175.4
P29-Au30-Cl34 176.6 176.2 176.3 176.2 172.4
P29-Au30-Au32 98.1 96.8 97.9 97.8 93.8
Cl34-Au30-Au32 85.2 86.8 85.7 85.9 93.8
C25-P31-Au32 112.6 113.6 113.4 112.9 112.9
C22-P29-Au30 113.3 114.7 114.2 114 115.3

the P29-Au30-Au32 and Cl34-Au30-Au32 angles. Here, in addition to the limited

basis set size also crystal packing effects may play a role, which are not included

in the calculations.

The frontier orbitals HOMO−4 to LUMO+2 have been plotted. They are quite

similar to the ones for TTH-DAPB shown in Fig. 3.4 but some include spacial

contribution on the gold atoms or on the phenyl groups. The main parts of all

orbitals exhibit π symmetry localized on the TTH backbone. The orbital energies

in hartree for the HOMO−4 to LUMO+2 are: -0.334, -0.321, -0.318, -0.292, -

0.287, -0.012, 0.022, 0.027, 0.030, 0.033, respectively. Again, the LUMO is slightly

bonding. The HOMO−LUMO gap amounts to 0.27527 hartree (7,4905 eV). The

frontier orbitals are plotted in Fig 3.9.
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3.1.4.2 Excited state properties

The six energetically lowest electronically excited singlet states of TTH-DPP-Au(I)

have been calculated at TD-DFT/ωB97XD/6-31G* level of theory at the optimized

ground state equilibrium geometry using non-equilibrium solvation in the PCM

and an ECP for the gold atoms. A detailed overview of the states and their

corresponding orbital transitions is given in Tab. 3.6. The excited states were

also calculated without solvation but the influence of the solvent DCM modeled

using PCM remains negligible. The excited states are quite similar to the ones

Table 3.6: Excitation energies, oscillator strengths and orbital transitions (> 5 %)
for the energetically lowest six excited states of TTH-DPP-Au(I) calculated at
TD-DFT/ωB97XD/6-31G* level of theory.

State Exci. Energ. [eV] Osc. Str. Orb Trans.a Weight [%]

S1 3.81 0.22 0 7→ 0 (π 7→ π∗) 84.3

S2 3.94 0.38 -1 7→ 0 (π 7→ π∗) 75.3

S3 4.45 0.22 -2 7→ 0 (π 7→ π∗) 41.6
-1 7→ 1 (π 7→ π∗) 19.2
-4 7→ 0 (π 7→ π∗) 11.5

S4 4.50 0.68 -3 7→ 0 (π 7→ π∗) 43.9
0 7→ 1 (π 7→ π∗) 31.7

S5 4.83 0.15 -5 7→ 0 (π 7→ π∗) 19.1
-1 7→ 3 (π 7→ π∗) 10.8
-2 7→ 1 (π 7→ π∗) 8.8
0 7→ 3 (π 7→ π∗) 6.1

S6 4.85 0.25 0 7→ 3 (π 7→ π∗) 27.8
-2 7→ 0 (π 7→ π∗) 12.4
-6 7→ 0 (π 7→ π∗) 8.7
-4 7→ 0 (π 7→ π∗) 7.7

a HOMO+x 7→ LUMO+y

obtained for TTH-DAPB (Sec. 3.1.3.2). All of the calculated excited states are

mostly characterized by (π 7→ π∗) transitions localized in the TTH backbone.

Comparison with the experimental spectra (Fig. 3.10) shows a good agreement if

a constant shift of the excitation energies is applied accounting for solvation effects

beyond the polarizable continuum model and systematic errors in the calculation

caused by the applied level of theory and the choice of the used functional. As

can be seen in the experimental spectra, the excitation and emission spectra
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Figure 3.10: Experimental absorption, excitation and emission spectra (left)
and calculated absorption stick spectrum (right) of TTH-DPP-Au(I). In the
experimental spectra, TTH-DPP-Au(I) is indicated as 7.

are almost perfect mirror images while the excitation spectra also resembles the

first absorption band in the absorption spectrum quite well. This indicates that

this first absorption band corresponds to a single excited state with the second

peak as an vibrational overtone. The only possible second explanation for this

behavior would be a dual fluorescence from S1 and S2. However, the experimental

absorption spectrum is very similar to the one observed for TTH-DAPB which

further supports the explanation of vibrational broadening. This shall be verified

by calculation of vibrationally resolved absorption spectra for the first two excited

states as already performed for TTH-DAPB. In fact, the S1 and S2 state are

represented by the same dominating orbital transitions HOMO-to-LUMO and

HOMO−1-to-LUMO, respectively, as it was found for TTH-DAPB. Accordingly to

the previously introduces scheme, the S1 state will be referred to as SB while the S2

state will be referred to as SA. The vibrationally resolved absorption spectra have

been calculated using both Franck-Condon and Herzberg-Teller approximation

while the normal modes have been calculated individually at the relaxed geometries

of the of the ground state, first and second excited state, respectively. This ensures

a correct description of all normal modes although it is computationally very

demanding.

The vibrationally resolved absorption spectra for the (S0 7→ SA) and the

(S0 7→ SB) transitions are plotted in Fig. 3.11. They are in very good agreement

to the results obtained for TTH-DAPB showing the dominance of the SA state in

the first absorption band, thus explaining the mirror-like image of the excitation

and emission spectra. As before, the spectrum of the (S0 7→ SB) transition is
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very broad due to many low-contributing vibrational transitions. The artificially

low intensity is due to numerical restrictions in the calculation of the spectrum.

The higher lying excited states show contributions of orbitals localized on the
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Figure 3.11: Calculated vibrationally resolved absorption spectrum for the states
SA and SB of TTH-DPP-Au(I).

gold(I) atoms. However, these states are characterized by lots of orbital transitions

which prevents a sufficient characterization of the states. To verify contribution of

the gold atom to these states, different characterization techniques not based on

molecular orbitals have to be employed. A good alternative to characterize excited

states is the analysis of the transition density matrix and the calculation of natural

transition orbitals (NTOs). These are a state-specific set of orbitals describing the

electron transition itself (see Sec. 2.3.6). Although it is mathematically not fully

correct, for the sake of simplicity, the nomenclature used for molecular orbitals

is also applied here for NTOs. Therefore, the hole NTO exhibiting the highest

eigenvalue is labeled “highest occupied natural transition orbital” (HONTO) and

the corresponding particle NTO sharing the same eigenvalue is labeled “lowest

unoccupied natural transition orbital” (LUNTO). The NTO pairs exhibiting lower

eigenvalues follow the same scheme (HONTO−1, LUNTO+1,...). The NTOs

for the S3 and S4 state have been calculated at TD-DFT/ωB97XD/6-31G* level
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Analysis of these NTOs shows pure (π 7→ π∗) transition character for the states

S3 and S4. Neither do any d-orbitals localized on the gold(I) atoms nor n-orbitals

localized at the chlorine atoms contribute to the excitation of these states. The

contribution of these type of molecules indicated by the MOs cancel by other

complementary orbital transitions. Only the typical (π 7→ π∗) orbital transitions

remain.

The equilibrium structures of the excited states S1, S2 and T1 have been

optimized as well. A comparison of important distances and angles is given in Tab.

3.5. By analyzing the geometrical parameters, only marginal differences can be

identified between ground state, first and second excited state. Most strikingly, for

all considered states, the geometrical parameters in the vicinity of the gold atoms

do hardly change upon excitation. However, the analysis shows a slight decrease

of the incline of the helix in the excited state. This is more pronounced in the

first excited state than in the second. A superposition of the three equilibrium

structures is given in Fig. 3.14. Most likely, this decrease of the incline of the helix

Figure 3.14: Superposition of the equilibrium structures of S0 (blue), S1 (red)
and S2 (green) of TTH-DPP-Au(I). The gold and chlorine atoms are omitted.
Overview (left) and detail (right).

is caused by a bonding interaction of part of the LUMO between the two layers of

the helix in the terminal region. This leads to a slight contraction once this orbital

gets occupied.

The calculated fluorescence wavelength and oscillator strength corresponding

to the excitation energy of the first excited state in the S1 equilibrium geometry

(S1@S1) is 3.03 eV (409.2 nm) and 0.38, respectively. This is in good agreement

with the experimental result of the fluorescence wavelength of 430 nm. The

same holds for the phosphorescence wavelength which can be computed as energy
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difference between the total energies of the optimized S0 structure and optimized

T1 structure. Here an energy difference of 2.58 eV compared to the experimental

phosphorescence wavelength of 545 nm (2.27 eV) is found.

Finally, it is to conclude that a) in TTH-phosphane derivatives the TTH

backbone dominates the photochemical properties and b) gold(I) shows no influence

on the photochemical properties beyond a heavy-atom effect which slightly shifts

the excitation energies.
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3.2 Investigations on ionization of TTH derivatives

In this section the electrochemical properties of various TTH derivatives are

analyzed. This involves the calculation of ionization energies (IEs), corresponding

to oxidation and electron affinities (EAs), corresponding to a reduction process.

Ionization processes can either be caused by absorption of high-energy photons like

in X-ray radiation or electronically. Understanding these oxidation and reduction

processes is very important for application of TTH-derivatives in optoelectronics.

3.2.1 Investigated systems and computational methodology

The electrochemical properties of different TTH-phosphine-oxides and TTH-

phosphine-selenides have been investigated. For the phosphine-oxides, both n-butyl

(TTH-(PO(n−Bu)2)2)and phenyl (TTH-(PO(Ph)2)2) substituted phosphines were

considered. While the alkyl-substituted TTH-phosphine was investigated using

only the double-substituted derivative, the phenyl substituted TTH-phosphine was

investigated using both mono- and disubstituted derivatives, i.e. TTH-(PO(Ph)2)2

and TTH-PO(Ph)2. The Lewis structures of the three investigated TTH-phosphine-

oxides are given in Fig. 3.15. As phosphine-selenides, the mono- and disubstituted
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Figure 3.15: Lewis structures of the investigated TTH-PO derivatives: TTH-
(PO(n−Bu)2)2 (left), TTH-(PO(Ph)2)2 (middle) and TTH-PO(Ph)2 (right).

TTH-phosphine-diphenly-selenides TTH-(PSe(Ph)2)2 and TTH-PSe(Ph)2 have

been investigated (Fig. 3.16)
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Figure 3.16: Lewis structures of the investigated TTH-PSe derivatives: TTH-
(PSe(Ph)2)2 (left) and TTH-PSe(Ph)2 (right).
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Table 3.7: First ionization energies (IE) and first electron affinities (EA) in eV
for TTH-(PO(n−Bu)2)2, TTH-(PO(Ph)2)2 and TTH-PO(Ph)2 in the gas phase,
in aqueous solution and in DCM calculated at DFT/ωB97XD/cc-pVDZ level of
theory using a polarizable continuum model for the solvent.

TTH-(PO(n−Bu)2)2 TTH-(PO(Ph)2)2 TTH-PO(Ph)2

1st IE (vac.) 7.10 6.00 6.18
1st IE (DCM) 6.13 6.09 6.02
1st IE (H2O) 6.06 5.97 5.9
1st EA (vac.) 0.53 1.83 1.47
1st EA (DCM) 1.83 1.94 1.86
1st EA (H2O) 2.06 2.14 2.05

In the case of an oxidation, an electron is annihilated and a hole is created. In

these densities, positive (green) and negative (red) values indicate the position

of the hole and particle, respectively. The small areas with a negative difference

density in the cationic form or positive difference density in the anionic form

are due to orbital relaxation and electron reorientation effects in the oxidation

and reduction process, respectively. Mathematically, they can be described as

two-particle-one-hole or one-particle-two-hole terms (see also Sec. 2.3.6). The

cationic and anionic difference densities of TTH-(PO(Ph)2)2 and TTH-PO(Ph)2

are shown in Fig 3.19. Both the electron detachment (oxidation) as well as the

electron attachment (reduction) are localized on the TTH scaffold and do not

include the phenyl or alkyl moieties or the P−−O group. They corresponds to

the form of the frontier orbitals, which exhibit also almost no localization on

these parts. The pattern of the cationic and anionic difference density match the

HOMO and LUMO pattern, respectively, resulting from a strong dependence of

the electron attachment and detachment of these orbitals. In the monosubstituted

TTH derivate TTH-PO(Ph)2 the cationic difference density is slightly shifted to

the unsubstituted end of the TTH ring while the anionic difference density is

shifted towards the phosphine-oxide. However, this still matches the pattern of

the also slightly shifted frontier orbitals.

In contrast, TTH-(PO(n−Bu)2)2 has a different pattern in the difference density

of the cationic form compared to the two-phenyl-substituted molecules, although

the frontier orbitals remain unchanged. In this case, the electron detachment is

driven by the HOMO−1, which has a similar pattern as the difference density.

The anionic difference density is similar to the ones of TTH-(PO(Ph)2)2 and
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Figure 3.19: Difference density plots for cationic (left) and anionic (right) TTH-
(PO(Ph)2)2 (top) and TTH-PO(Ph)2 (bottom) in aqueous solution.

TTH-PO(Ph)2 (Fig. 3.20). In all three molecules, the solvent affects the difference

densities and the frontier orbitals only marginally.

Figure 3.20: Difference density plots for cationic (left) and anionic (right) TTH-
(PO(n−Bu)2)2 in aqueous solution.

The relaxed first IE and EA of TTH-(PO(n−Bu)2)2 were calculated by relaxing

the geometry of the anionic and cationic form in the gas phase, in aqueous solution

and in DCM. This is in particular important for comparison with experimental

results like those obtained by cyclovoltammetry. This is because there a voltage is

applied for a long time in terms of molecular timescale. Therefore, the molecule

has time to adapt geometrically to the new electronic configuration of the anionic

or cationic form. [204] The IEs and EAs are 6.46 eV, 5.90 eV, 5.98 eV, 0.73 eV,

2.22 eV and 2.05 eV, respectively. In both cases, the structure relaxes and adapts
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3.2. Investigations on ionization of TTH derivatives

to the new electronic configurations, which are still stable, by releasing thermal

energy of about 0.16 eV (15.44 kJ/mol)

For investigation of higher order oxidation and reduction processes the second

and third unrelaxed IEs and EAs of TTH-(PO(Ph)2)2 in DCM solution have

been calculated as well. The corresponding energies are given in Tab. 3.8. The

Table 3.8: First three unrelaxed ionization energies (IE) and first three unrelaxed
electron affinities (EA) in eV of TTH-(PO(Ph)2)2 in DCM solution calculated at
DFT/ωB97XD/cc-pVDZ level of theory using PCM.

TTH-(PO(Ph)2)2

1st IE (DCM) 6.09
2nd IE (DCM) 13.21
3rd IE (DCM) 21.57
1st EA (DCM) 1.94
2nd EA (DCM) 2.86
3rd EA (DCM) 2.88

difference density of the double-cationic form to the neutral form (2+ 7→ N) shows

a different pattern than that exhibited by the mono-cationic form. Visualizing the

difference density of the double-cationic form to the mono-cationic form (2+ 7→ 1+)

reveals that the second electron detachment has a pattern similar as the φ-orbital

(HOMO−1 in the neutral form). In combination, the difference density of the

mono-cationic form to the neutral form (1+ 7→ N) and the difference density of

the double-cationic form to the mono-cationic form (2+ 7→ 1+) build the pattern

observed in the double-cationic difference density (2+ 7→ N). This is in particular

interesting, since one would assume that both electron detachments of a double

ionization occur in the same orbital. To elaborate this, the orbital energies of

the alpha and beta frontier orbitals were calculated for the neutral and for all

ionized forms. In the neutral form, the HOMO and HOMO−1 are separated by

only 0.13 eV. In the first ionization process, the beta electron of the HOMO (χ) is

removed leading to a rise of the orbital energy from -7.49 eV in the neutral form

to -4.66 eV in the mono-cationic form. Accordingly, the energy of the alpha χ is

lowered from -7.49 eV in the neutral form to -8.61 eV in the mono-cationic form,

while the energy of the alpha φ changes from -7.62 eV to -8.51 eV. The alpha χ is

now energetically lower than the alpha φ. Both orbitals are still occupied. This is

due to a stronger Coulomb interaction between alpha χ and beta χ than between

alpha φ and beta χ. This interaction is missing in the case of the mono-cationic
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system since the beta χ is now unoccupied leading to a changed energetic order of

the alpha orbitals. The beta φ exhibits a similar energy as the alpha φ of -8.48 eV.

In the second ionization process, the electron of the alpha φ is removed, since

it is the highest occupied orbital. This would lead to a configuration with an

occupied alpha φ and alpha χ and unoccupied beta φ and beta χ, resulting in a

non-closed-shell electron distribution and a S2 6= 0. In singlet multiplicity, this is

avoided by building new orbitals. In this case, however, a triplet configuration is

also possible. Calculations on the double-cationic triplet state (T 2+
1 ) along with

the results of an unrestricted open shell wave function stability analysis reveal that

this triplet state is indeed the energetically most stable electron configuration with

a total energy of 0.1 eV below the singlet ground state (S2+
0 ). In contrast, the

double-anionic difference density to the neutral (2− 7→ N) form shows the same

pattern as the mono-anionic difference density to the neutral form (1− 7→ N) (Fig

3.19 top right), which is comparable to the LUMO of the neutral form (ψ) (Fig.

3.21). This leads to the same pattern in the difference density of the double-anionic

form to the mono-anionic form (2− 7→ 1−).

In summary, the difference density of the mono-anionic (=̂ ψ) (mono-cationic

(=̂ χ)) form to the neutral form (1− 7→ N) / (1+ 7→ N) (Fig 3.19 top) and the

difference density of the double-anionic (double-cationic) form to the mono-anionic

(=̂ ψ) (mono-cationic (=̂ φ)) form (2− 7→ 1−) / (2+ 7→ 1+) (Fig 3.21 right) build

the difference density of the double-anionic (double-cationic) form to the neutral

form (2− 7→ N) / (2+ 7→ N) (Fig. 3.21 left).

This is similar for the triple-anionic form. The difference densities of the

triple-anionic form to the neutral form (3− 7→ N) exhibits further contributions

compared to the difference densities of the double-anionic form to the neutral form

(2− 7→ N), which can be described by the difference density of the triple-anionic

form to the double-anionic form (3− 7→ 2−). This corresponds to the ω-orbital

(the LUMO+1 in the neutral form). In contrast, in the triple-cationic form, new

orbitals are formed due to the large contraction of the electron density caused

by the high charge. In this case, one cannot relate the difference density of the

triple-cationic form to the double-cationic form (3+ 7→ 2+) to an orbital of the

neutral form. However, these further contributions to the difference density of the

triple-cationic form to the neutral form (3+ 7→ N) are still located on the TTH-ring

and show no contributions of the phosphane-oxide groups to the ionization.
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3.2. Investigations on ionization of TTH derivatives

Figure 3.21: Difference densities of the double-cationic form of TTH-(PO(Ph)2)2

to the neutral form (2+ 7→ N) (top left) and to the mono-cationic form (2+ 7→ 1+)
(top right) as well as the difference densities of the double-anionic form to the
neutral form (2− 7→ N) (bottom left) and to the mono-anionic form (2− 7→ 1−)
(bottom right).

To conclude these results, both the oxidation and reduction process are localized

on the TTH backbone of the investigated TTH-phosphine-oxides. The results

differ only marginally between the phenly- or n-butyl substituted phoshpines and

between the mono- and disubstituted TTH, thus indicating only marginal influences

of the phosphine-groups on the electrochemical properties. The oxidations and

reductions, even of higher order, depend strongly on the form of the frontier

orbitals. However, it can be observed that the phenyl substituted phosphine-oxides

exhibit lower IEs and higher EAs than the alkyl-substituted ones. This result of

easier reduction and oxidation of aryl phosphorus derivatives is in agreement with

experimental results.
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The oxidation and reduction were analyzed using difference densities. The

difference in IEs and EAs in the gas phase compared to the results in solution can

be explained by the aforementioned stabilization of the n-orbitals localized at the

selenium atoms. The difference density of the cationic form of TTH-(PSe(Ph)2)2

in the gas phase exhibits the largest contribution localized at the selenium atoms

(Fig 3.24). The difference density of the anionic form is delocalized over the TTH

ring without any contributions of the phenylrings or the phosphine-selenides. The

calculated difference densities match perfectly the form of the LUMO for the gas

phase and in solution. As a result, different oxidations can be observed. However,

the solvated TTH-phosphine-selenides exhibit difference densities for the anionic

and cationic form which are qualitatively identical to the difference densities of

the solvated TTH phosphane oxides. Hence, the energy difference of the IE and

EA of TTH-(PSe(Ph)2)2 and TTH-(PO(Ph)2)2 in aqueous solution are only 0.03

eV and 0.04 eV, respectively. In general, the effect of the selenium on the first

ionizations is marginal.

Figure 3.24: Difference density plots for cationic (left) and anionic (right) TTH-
(PSe(Ph)2)2 in the gas phase.

In both TTH-phosphine-oxides and TTH-phosphine-selenides, it has been

found that the electrochemical properties are strongly determined by the TTH

backbone. The oxidation and reduction is closely related to the frontier orbitals

and the P−−Se group influences the these properties only marginally.
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3.3 Summary and conclusion

In this chapter, I investigated the photochemical and electrochemical properties of

various tetrathia-[7]heterohelicene (TTH) derivatives. The investigated systems

contain a phosphorus-based functionalization of TTH in the α-position of both

termnial thiophene rings.

The spectroscopic properties of tetrathia-[7]heterohelicene-dialkylphosphane-

borane and tetrathia-[7]heterohelicene-diphenylphospane-gold(I)-chloride have

been investigated using DFT and TD-DFT in combination with the functional

ωB97XD and the basis sets cc-pVDZ and 6-31G* as well as at RI-CC2/cc-pVDZ

level of theory. Solvation effects have been included via a polarizable continuum

model.

The eight energetically lowest excited singlet states of both molecules have

been calculated. They are all characterized by (π 7→ π∗) transitions localized on

the TTH-backbone. None of the analyzed states exhibits significant contributions

of orbitals localized on the phosphorus atom, the gold(I) atom or any side-group.

In both molecules, the first two excited states are close in energy and could

both contribute equally to the experimentally observed first absorption band.

Calculation of vibrationally resolved absorption spectra for the first two excited

states of both molecules shows a clear dominance of the S1 state, since lots of

low-contributing vibrational transitions contribute to the vibronic spectrum of

the S2 state resulting in a very broad band with low intensity. The calculation

of rotatory strengths explains the flat area observed in the experimental circular

dichroism spectrum around the wavelengths of the first absorption band. The

first and second excited state exhibit similar rotatory strengths with opposite sign

resulting in a mutual canceling. Besides small shifts of excitation energies, no

major influence of the phosphane-groups or the gold(I) atoms could be identified.

The spectroscopic properties are determined by the TTH moiety.

The electrochemical properties of tetrathia-[7]heterohelicene-phosphine-oxides

and TTH-phosphine-selenides have been investigated. Ionization energies, corre-

sponding to oxidation and electron affinities, corresponding to reduction, have

been calculated at DFT/ωB97XD/cc-pVDZ level of theory. These were analyzed

using difference densities. A close correlation between the form of an oxidation

and reduction and the form of the frontier orbitals has been found. This holds also

for higher ionized species. As for the photochemical properties, also the electro-

chemical properties are determined by the TTH-ring with only slight modulating

effects of the phosphine-oxide- or phosphine-selenide-groups.
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Chapter 4

Development and

Implementation of FDE-ADC

“The important thing in science is not so much

to obtain new facts as to discover new ways of

thinking about them.”

Sir William Bragg

In recent years, the inclusion of environment effects on excited state calculations

became more and more important to achieve chemical and physical properties that

can be compared with experimental data. These interactions can be modeled using

intrinsic solvation models like PCM if only dispersion and Coulombic interaction

play a role. However, if more specific interactions start to play a role, these

models exhibit known deficits. [205,206] In these cases, an explicit model for the

environment, such as frozen density embedding theory (FDET), is needed. In the

early formulation of FDET, the embedded system A is treated on the DFT level of

theory, [71,207,208] but can also, as shown recently, be calculated using wavefunction

based methods. [142,145–149] The density of the environment is usually obtained

from lower level quantum chemical calculations [142] but can also be obtained from

theories for ensembles, [209] or even from experiment. [143]

In this second part of my dissertation, I combined the wavefunction based

method ADC with linearized FDET. The development of this new method

FDE-ADC and its implementation into the quantum chemical program pack-

age Q-Chem in the module fdeman is described in this chapter. fdeman has

been developed in cooperation with the research group of Prof. Dr. Tomasz.

A. Wesolowski from the University of Geneva. So far, including environmental
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effects into an ADC calculation has been accomplished by means of a polarizable

continuum model (PCM) [210,211] and through QM/MM calculations. [212]

Generally, linearized FDET is employed to maintain the orthogonality of the

excited states. Therefore, an MP(2) density is used for the reference density

ρrefA (~r). A more detailed description will be given in Sec. 4.1.

The electron density ρ is represented by a density matrix. During a calculation,

density matrices instead of full electron densities are used. For the sake of simplicity,

the electron density and the density matrix are used analogously here.

The procedure of an FDE-ADC calculation comprises four steps: a) generation

of ρA(~r), b) generation of ρB(~r), c) calculation of vlinemb(~r) and finally d) applying

vlinemb(~r) in an FDE-ADC calculation. In the first step, fragment A is initialized and

an MP(2) density matrix in the basis of atomic orbitals is computed employing

the adcman [24] module in Q-Chem. This density matrix (ρrefA (~r)) is stored and in

the next step the environment fragment B is initialized, and either an HF or DFT

calculation can be performed to obtain the density matrix ρB(~r). In a third step,

the two density matrices of A and B are used to evaluate the four state-independent

parts of the embedding potential, which are the nuclear attraction potential, the

coulombic repulsion potential and the exchange-correlation and kinetic energy

non-additive bifunctional potentials. The sum of these individual parts resembles

vlinemb(~r). In the last step, an FDE-ADC calculation is performed. For this purpose,

system A is initialized again and the previously generated embedding potential

is added to the Fock-Matrix F in the SCF procedure of the ADC underlying HF

calculation. This way, an ADC calculation is performed with inclusion of the

environment interaction via the orbitals and integrals. This is described in detail

in Sec. 4.2. After this, the user control of fdeman is outlined in Sec. 4.3. In the

end of this chapter, a summary and overview of the features of FDE-ADC in the

module fdeman is given in Sec. 4.4. 1 2

1 Parts of Chapter 4 have already been published in
First time combination of frozen density embedding theory with the algebraic dia-
grammatic construction scheme for the polarization propagator of second order
Stefan Prager, Alexander Zech, Francesco Aquilante, Andreas Dreuw and Tomasz A. Wesolowski
The Journal of Chemical Physics, 144 (2016,) page 204103
and
Implementation and application of the frozen density embedding theory with the
algebraic diagrammatic construction scheme for the polarization propagator up to
third order
Stefan Prager, Alexander Zech, Tomasz A. Wesolowski and Andreas Dreuw
submitted for publication, (2017)

2 All C++ source code snippets are printed with the written permission of the Board of
Directors of Q-Chem, Inc.
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4.1 Expansions of the embedding potential

I would like to start with the representation of the embedding potential. Once

a basis is introduced, the embedding potential is represented as a matrix of

coefficients in the basis of atomic orbitals. Since the embedding potential acts on

system A, it has to be expressed in the basis of A as well. However, the embedding

potential depends both on the electron densities of the isolated systems A and B.

Thus, for creation of the embedding potential a different basis is needed than for

the application of the embedding potential. To overcome this issue, three different

techniques are possible. The most straightforward variant is the supermolecular

expansion. An approximation to this is the by myself newly developed re-assembling

of density matrix variant. An alternative approach is referred to as monomer

expansion. I will elaborate these variants in this section.

4.1.1 Supermolecular expansion

The first approach to overcome the inconsistency between bases required for

creation of the embedding potential and applying is the supermolecular expansion

(SE). In this approach, both individual densities of A and B required for the

embedding potential are expressed in a supermolecular basis of A and B. In the

calculation of A, part B is treated as ghost atoms and vice versa. Both the MP(2)

density matrix for ρA(~r) and the HF/DFT density matrix for ρB(~r) exhibit the

same size. Thus, the embedding potential is also created in the supermolecular

basis. Consequently, the final FDE-ADC calculation is also performed in the basis

of A and B. A scheme of the SE approach is shown in Fig. 4.1.

However, SE is not very efficient, since it provides no computational savings

compared to a supermolecular ADC calculation. Instead, it is intended as a

benchmark method for FDE-ADC and can be used for analyses of the embedding

theory itself, since SE contains by construction no basis-set superposition error

(BSSE).
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Figure 4.1: Schematic representation of the supermolecular expansion. The
MP(2) (red) density matrix of system a as well as the HF or DFT (grey) density
matrix of system B are both expressed in the supermolecular basis A + B. Hence,
the generation of the embedding potential as well as the FDE-ADC calculation
are carried out in the supermolecular basis.

4.1.2 Re-assembling of density matrix

To overcome the limitations of SE as not being applicable for modeling, I developed

the re-assembling of density matrix (RADM) approach as an approximation to SE.

In RADM, the calculation of A is split. A is calculated at first in the supermolecular

basis A + B on HF level of theory, obtaining the HF density matrix. This density

matrix contains 4 blocks: AA, AB, BA and BB. After this, it is calculated again,

now in the basis of A only on MP(2) level of theory and a separate HF-to-MP(2)

difference density matrix in the basis of A is generated. The HF-to-MP(2) difference

density matrix is in a following step added to the AA block of the HF density

matrix of the previous calculation, thus building a density matrix in the basis

of A+B on MP(2) level of theory in the AA block and on HF level of theory on

the remaining AB, BA and BB blocks. This mixed density matrix is called the

reassembled density matrix.

The environment system B is, as in SE, calculated in the supermolecular basis

A+B. The subsequent calculation of the embedding potential is performed in the

supermolecular basis as well. But after the embedding potential is complete, it
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is truncated to the AA block only. A schematic representation of the RADM

approach is shown in Fig. 4.2.

This approximation is valid, since, in the supermolecular basis, the values of

the embedding potential in the off-diagonal AB and BA blocks and the values

Figure 4.2: Schematic representation of the re-assembling of density matrix
approach. In the upper line, the isolated system A is calculated forming the
reassembled density matrix by combining the HF (grey) density matrix on the
basis functions of A and B with the HF/MP(2) (red) difference density matrix on
the basis functions of A. This is used with the isolated system B in a supermolecular
basis to create the embedding potential (yellow). After truncation to the elements
in the basis of A only, it is applied in the subsequent FDE-ADC calculation (blue)
in the basis of A only as well.
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most demanding step, can be performed in the basis of A only. In summary,

the RADM approximation consists of an assembling of a density matrix and the

truncation of the calculated embedding potential.

4.1.3 Monomer expansion

In the monomer expansion (ME) the embedding potential is calculated directly

in the basis of A from the MP(2) density matrix of A in the basis of A and the

HF / DFT density matrix of B in the basis of B. The subsequent FDE-ADC

calculation can be carried out without any truncation of the embedding potential.

This approach is illustrated in Fig. 4.4.

Figure 4.4: Schematic representation of the monomer expansion. The density
matrices of A and B are created in their respective monomer basis and the
embedding potential is directly calculated in the basis of A for the subsequent
FDE-ADC calculation.

To overcome the mixed basis sets, a basis set transformation is needed during

the calculation of the embedding potential. However, the development of the

monomer expansion for FDE-ADC is not part of my dissertation. Hence, I will

not go into more detail here.
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4.2 Implementation of fdeman

In this section, I would like to elaborate in detail on the implementation of the

FDE-ADC method in the program package Q-Chem. For the management of the

complete FDE-ADC calculation, a module was implemented called fdeman. This

module controls all related subtasks needed for the calculation. fdeman takes

advantage of available functions in Q-Chem to achieve various tasks. fdeman is

written in the object-oriented C++ programming language but also accesses

existing Fortran based code in Q-Chem. fdeman is fully parallelized using OpenMP

and will be publicly available in the next official release of Q-Chem.

At first, I would like to introduce the structure of fdeman. After this I will

describe the creation of the individual densities ρA(~r) and ρB(~r) and then discuss

the calculation of the embedding potential itself.

4.2.1 General structure of fdeman

fdeman is implemented in Q-Chem to manage, as its name already says, FDE-

ADC calculations. In Q-Chem, the several tasks like the SCF procedure or ADC

calculations are performed by specific managers. For example, the mentioned

SCF is performed by the module scfman and ADC by the module adcman. For

a typical ADC calculation, after the initialization at first to load the geometry,

generate the atomic basis, manage the memory, etc. the modules scfman and

adcman are called by the Q-Chem scheduler. After the ADC calculation is finished,

the program is closed properly, which includes for example releasing the allocated

memory or printing final statements in the output. For an FDE-ADC calculation,

fdeman is called from the Q-Chem scheduler directly after the initialization and

fdeman itself takes care of calling all necessary subtasks. After the FDE-ADC

calculation is finished, fdeman passes over to the final routine of Q-Chem to close

the program (Fig 4.5). In the flowcharts used within this chapter, the blue boxes

Figure 4.5: Flowchart of a ADC calculation vs. fdeman in Q-Chem.

indicate modules or functions from Q-Chem, while fdeman and its subroutines

are indicated by red boxes.
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fdeman is implemented mainly as one class. This facilitates the communica-

tion between all functions of fdeman by using class-global variables for specific

information like the amount of basis functions in one of the fragments. When

fdeman gets called from the Q-Chem scheduler Qinks the FDE class is initialized.

Source Code 4.1: Snippet of the initialization of the FDE class.

1 class FDE{

2 private:

3 int GlobalNAts;

4 int *jAtomIndex;

5 int NFrag;

6 int fde_basis; // internal expansion definition

7 double *jCartsGlobal;

8 double **jjCartsFrag;

9

...

10 void make_frag(int);

11 void make_basis(int);

12 void compute_density(int, int, int);

13 void compute_coulomb_potential(int);

14 void compute_nuclear_potential(int);

15 void compute_xct_potential(int);

16

...

17 public:

18 FDE();

19 ˜FDE();

20 void fde_control(int);

21 }

The constructor of the FDE class then sets up everything needed in fdeman. The

geometries of both fragments are loaded, the coordinates and the atomic indices

are stored in memory. This is done by the two member-functions make frag

and make basis. From there on, each fragment can be initialized, i.e. loading

the geometries and creating basis functions on this fragment at any point within

fdeman. This is important since the fragments have to be changed several times

during the whole process. During the construction, also the function to read in

user-specific information is called. This will be discussed in Sec. 4.3.1. After the

construction is completed fde control, the main routine in fdeman, is called.

A flowchart of the initialization of fdeman is shown in Fig. 4.6. Data like density

matrices or potentials are generally stored on disk so they can easily be accessed

by both functions of fdeman and other modules in Q-Chem if needed.
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Figure 4.6: Flowchart of the initialization of fdeman. The constructor
fde construct handles the fragments, the creation of basis functions and the
user input and calls the main routine fde control.

In the main function of fdeman, called fde control, the whole FDE-ADC

calculation is orchestrated. It mainly distinguishes the work-flow for the applied

expansion (SE or RADM). Based on this, one of the two instruction sets will be

called. As can be seen from the flowchart diagram of the function fde control

in Fig. 4.7, the same routines are called for specific tasks independent of the chosen

expansion. So, for example, the function compute density is called for both

the fragments A and B in both expansions. Three additional control variables

are introduced in fde control to pass on information to the subroutines and

to call specific variants of these subroutines. The variable level controls the level

of theory applied at that specific part. The second control variable is curr frag

which gives information whether fragment A or B should be loaded for calculation.

The variable fde basis controls the internally applied expansion i.e. applying the

supermolecular basis or not. I would like to illustrate and explain this in an example

which is also shown as a C++ code snippet in Code 4.2. The expansion RADM

has been chosen. At first, ρA(~r) in the basis of A and B on HF level of theory

should be calculated. Therefore, the variable fde basis is set to supermolecular

basis, curr frag is set to 0, which corresponds to fragment A, and level is HF.

Then, the routine compute density is called with the parameters for fragment,

expansion and level. This routine will be described in detail in Sec. 4.2.2. Once

the calculation is finished, the MP(2) density matrix of A in the basis of A only

will be calculated for the construction of the reassembled density matrix. Hence,

fde basis is set to monomer basis and level is set to ADC. Since later in the final

FDE-ADC calculation excited states shall be calculated using adcman but now

only a ground state MP(2) calculation using also adcman shall be performed, the
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user-specific settings for ADC like the amount of excited states, is backed up and

now adcman is called with different parameters requesting an MP(2) calculation

only. Again, the function compute density is responsible for the calculation of

the MP(2) density matrix. Now, both density matrices are available to build the

reassembled density matrix, which is done by the function build radm. Fragment

A has now been initialized in the supermolecular basis done by using the functions

make frag, make shells, make basis and make ghosts.

Now we turn to fragment B. The variables fde basis, level and curr frag are

set to supermolecular basis, HF and 1 for fragment B, respectively. The variable

expansion has to be set temporarily to SE, since no reassembled density matrix shall

be calculated for fragment B. Again, the function compute density handles

the calculation of ρB(~r). Now, everything is available for the calculation of the

embedding potential. This is done in three steps. The nuclear attraction potential

is calculated by the function compute nuclear potential, while the electronic

Coulomb repulsion is calculated by compute coulomb potential. The non-

Figure 4.7: Flowchart of the main control unit fde control of fdeman with
the most important functions.
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classical non-additive exchange-correlation energy and kinetic energy potential is

calculated by calling the function compute xct potential. These functions

will be explained in Sec. 4.2.3.

Source Code 4.2: Snippet of the function fde control for an RADM-FDE-
ADC calculation. For further details, see text.

1 void FDE::fde_control(int expansion){
2 int level;
3 int curr_frag;
4 switch (expansion){
5 case FDE_RADM:{
6 // Density for fragment A
7 fde_basis = SUPERMOL_BASIS;
8 level = LEVEL_HF;
9 curr_frag = 0;

10 compute_density(curr_frag, level, expansion);
11 fde_basis = MONOMER_BASIS;
12 curr_frag = 0;
13 level = LEVEL_ADC;
14 mod_adc_params();
15 compute_density(curr_frag, level, expansion);
16 build_radm(curr_frag);
17 //reset A to SE basis. Needed for calc of emb.
18 fde_basis = SUPERMOL_BASIS;
19 curr_frag = 0;
20 make_frag(curr_frag);
21 make_shells();
22 make_basis(curr_frag);
23 make_ghosts(curr_frag);
24 // Density for fragment B
25 fde_basis = SUPERMOL_BASIS;
26 level = rhoB_level; // read in level for B
27 curr_frag = 1;
28 expansion = FDE_SE;
29 compute_density(curr_frag, level, expansion);
30 //calculate the potentials
31 curr_frag = 1;
32 compute_nuclear_potential(curr_frag);
33 compute_coulomb_potential(curr_frag);
34 curr_frag = 0;
35 compute_xct_potential(curr_frag);
36 //Configure for main Task
37 expansion = FDE_RADM;
38 fde_basis = MONOMER_BASIS;
39 run_fde_calculation(expansion); // pass on to main

calculation
40 break;
41 }
42 }
43 }

128



4.2. Implementation of fdeman

After the embedding potential is calculated, fde control sets up the actual

FDE-ADC calculation. The variable expansion is set back to RADM and fde basis

is set to monomer basis as the FDE-ADC calculation in RADM is performed on

A in the basis of A only. Finally, the function run fde calculation performs

the FDE-ADC calculation, which includes adding the embedding potential to the

Fock matrix during the SCF. This is also explained in more detail in Sec. 4.2.3.

After fde control is finished, fdeman is closed, the class FDE is destructed

and Q-Chem is finished.

4.2.2 Obtaining the isolated densities

The function compute density is responsible for obtaining all one-particle

electron density matrices needed for the construction of the embedding potentials.

It takes the parameters expansion, level and curr frag to specifiy which density

is requested. Once specified, compute density calls the specific module in

Q-Chem with the respective parameters or presets to perform the calculation

of the requested density, e.g. scfman for an HF density matrix or scfman

followed by adcman for a MP(2) density matrix. This process is illustrated in the

flowchart in Fig. 4.8. Additionally, the function comp frag nuc rep calculates

Figure 4.8: Flowchart of the function compute density of fdeman. Functions
are indicated by rectangles, diamonds represent decisions.
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the constant nuclear repulsion before an electron density is calculated.

In SE, there are the three options HF, DFT and ADC based density. However,

since in RADM a DFT-based density is not needed, this option is omitted. Note

that, for the calculation of ρB(~r) in RADM, expansion is temporarily set to SE.

A snipped of the C++ source code of the function compute density is shown

in Code 4.3. In the beginning of compute density, the fragment is initialized

by the functions make frag, make shells, make basis and make ghosts.

After this, the nuclear repulsion is calculated as mentioned before. Then, the

Source Code 4.3: Snippet of the function compute density for the case
of supermolecular expansion. In the case of RADC, a similar block of code is
executed.

1 make_frag(curr_frag);
2 make_shells();
3 make_basis(curr_frag);
4 if (fde_basis == SUPERMOL_BASIS){
5 make_ghosts(curr_frag);
6 }
7 frag_nuc_rep(curr_frag);
8 if (expansion == FDE_SE){
9 switch (level){

10 case LEVEL_HF:{
11 gesman_main();
12 scfman_main();
13 save_dens_mat(curr_frag);
14 break;
15 }
16 case LEVEL_DFT:{
17 gesman_main();
18 XCFunctional xcFuncSCF_B(X_Func_B, C_Func_B);
19 SCFman(XCFunctional(xcFuncSCF_B), ...);
20 save_dens_mat(curr_frag);
21 break;
22 }
23 case LEVEL_ADC:{
24 gesman_main();
25 scfman_main();
26 adcman_main();
27 save_dens_mat(curr_frag);
28 break;
29 }
30 }
31 }
32 else if (expansion == FDE_RADM){

33

...
34 }
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initial guess for the SCF is generated by calling gesman. After this, scfman can

perform an HF or DFT calculation. After the SCF is converged, adcman is called

to calculate the MP(2) density if needed.

For a DFT calculation, the Q-Chem class XCFunctional is initialized with

the requested exchange- and correlation functionals X Func B and C Func B,

which can be defined by the user (see Sec. 4.3.1). This is subsequently used as a

parameter for scfman.

To obtain the MP(2) and ADC density matrices, new functions have been

added to adcman to export the total and difference MP(2) density matrix and

the total, difference, and transition ADC density matrix of excited states. While

the former is needed directly for the construction of the embedding potential, the

latter will be needed later after the FDE-ADC calculation. It is used to evaluate

the total state-specific energy according to Eq. 2.254. The export of the density

matrices out of adcman is realized with the class prop fde, which includes several

member functions. To obtain the references of the density matrices, the namespaces

adcman, libctx and libtensor have to be used. [24,213] The module libctx

is a context manager using keywords for data objects and libtensor is a tensor

contraction library. The class prop fde is called several times during a full MP

and ADC calculation. Since it is able to export difference, transition and total

density matrices, differentiation criteria are needed. Here, the presence of a density

itself is the criterion. If a ground state density (here called dm0...) is available,

the corresponding correlated density matrix corresponds to the difference density

matrix, whereas it corresponds to a transition density matrix if no dm0... is

present. This can be done since transition and difference density properties are

calculated separately in adcman. A C++ source code snippet of this is shown in

Code 4.4.
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Source Code 4.4: Snippet of the function in adcman to obtain MP(2) and ADC
density matrices. Part 1: requesting the data

1 void prop_fde::perform(libctx::context &octx)
2 {
3 bool has_dm0 = m_dmctx.key_exists("dm0_bb_a");
4 bool has_dm = m_dmctx.key_exists("dm_bb_a");
5 if (has_dm && has_dm0 == false) {
6 ctx_ref< btensor_i<2, double> > dm_bb_a(m_dmctx, "dm_bb_a");
7 ctx_ref< btensor_i<2, double> > dm_bb_b(m_dmctx, "dm_bb_b");
8 calc_transdensmat(dm_bb_a, dm_bb_b);
9 }

10 if (has_dm0 && has_dm) {
11 ctx_ref<double> ene(m_stctx, "energy");
12 ctx_ref< btensor_i<2, double> > dm_bb_a(m_dmctx, "dm_bb_a");

//alpha diff density
13 ctx_ref< btensor_i<2, double> > dm_bb_b(m_dmctx, "dm_bb_b");

//beta diff density
14 ctx_ref< btensor_i<2, double> > dm0_bb_a(m_dmctx, "dm0_bb_a");

//ground-state alpha density
15 ctx_ref< btensor_i<2, double> > dm0_bb_b(m_dmctx, "dm0_bb_b");

// ground-state beta density
16 calc_diffdensmat(dm_bb_a, dm_bb_b);
17 calc_densmat(dm_bb_a, dm_bb_b, dm0_bb_a, dm0_bb_b);
18 print_energy(m_name, ene);
19 }
20 }

The α and β density matrices are processed separately. The further conversion

of the data, the calculation of the total density matrix and the export to files on

disk for the usage in fdeman are done in the functions calc transdensmat,

calc diffdensmat and calc densmat. Since also the energies of all excited

states are needed, they are exported by the function print energy as well.

Fortunately, the further processing of the density matrices in libtensor is

very straightforward using block tensors and the libtensor interface. For the

calculation of the total density matrix, the ground state density matrix and the

difference density matrix have to be added. Using libtensor this can be done

in a single line of C++ code as shown in Code 4.5. As can be seen in line 9 of

Code 4.5, the individual values µ and ν of both density matrices are added to

build the total density matrix. The same holds for β in line 13.

Finally, the routine convert densmat converts the data into a format usable

for fdeman and exports it to disk.

Note that currently the algebraic expressions for the ISR in third order are not

implemented. Therefore, the density matrices are obtained using the ADC vectors
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Source Code 4.5: Snippet of the function in adcman to obtain MP(2) and ADC
density matrices. Part 2: calculation of the the total density matrix

1 void prop_fde::calc_densmat(btensor_i<2, double> &dm_bb_a,
btensor_i<2, double> &dm_bb_b, btensor_i<2, double> &dm0_bb_a,
btensor_i<2, double> &dm0_bb_b)

2 {
3 string type = "Total";
4 const size_t tens_dims = 2;
5 btensor<tens_dims, double> tot_dm_bb_a(dm_bb_a.get_bis());
6 btensor<tens_dims, double> tot_dm_bb_b(dm_bb_b.get_bis());
7 {
8 letter mu, nu;
9 tot_dm_bb_a(mu|nu) = dm_bb_a(mu|nu) + dm0_bb_a(mu|nu); //

total alpha density matrix
10 }
11 {
12 letter mu, nu;
13 tot_dm_bb_b(mu|nu) = dm_bb_b(mu|nu) + dm0_bb_b(mu|nu); //

total beta density matrix
14 }
15 convert_densmat(m_name, type, tot_dm_bb_a, tot_dm_bb_b);
16 }

at third order with the ISR at second order. Hence, the embedding potential for

FDE-ADC(3) is calculated using the MP(2) density for ρrefA (~r).

4.2.3 Calculating the embedding potential and running an FDE-

ADC calculation

From the previously calculated electron densities the embedding potential can be

calculated. The embedding potential contains four individually calculated poten-

tials: the nuclear attraction potential, the electron Coulomb repulsion potential,

the exchange-correlation energy potential and the kinetic energy potential. The

first two parts constitute the electrostatic part of the embedding potential while

the latter two comprise the non-electrostatic part.

4.2.3.1 Calculation of the electrostatic parts

The nuclear attraction can straightforwardly be calculated using the atomic nuclear

charge (i.e. the atomic number) and the corresponding Cartesian coordinates. The

potential is expressed as a matrix in the basis of the atomic orbitals.

The electron repulsion potential of fragment B is calculated from the electron

density matrix of B in atomic orbitals by integration using standard quantum
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chemical integration techniques as described in the literature. [214–216] For the

integration, the existing integral code AOInts of Q-Chem has been employed.

Here it is crucial to maintain the correct basis, since the integration is not performed

in function pairs, which is the standard for the elements of a density matrix or

a potential, but instead in shell-pair functions. A shell is defined as functions

sharing common exponents and centers. For example taking a Pople basis set (see

Sec. 2.1.4.2) the four basis functions on the same atomic center sharing the same

principle quantum number are considered a shell. In shell-pair functions, in contrast

to normal function pairs where all possible combinations of functions are considered

resulting in a dense matrix, only one of the two possible combinations of functions

is built (which would lead to a triangular matrix), except for combinations with

same principal and azimutal quantum numbers but different magnetic quantum

number. This results in a nearly triangular matrix but contains square blocks on

the diagonal. In the case of a single carbon atom calculated using the cc-pVDZ

basis set, the following numbers occur:

• 6 basis shells: 3*s, 2*p and 1*d, namely 1s, 2s, 3s, 2p, 3p, 3d.

• 14 basis functions: 3*1 (s) + 2*3 (p) + 1*5 (d).

• 196 basis function pairs: all combinations of the 14*14 basis functions. This

is the typical basis of a density matrix or a potential.

• 21 shell-pairs: 6 ss shell-pairs, 6 sp shell-pairs, 3 sd shell-pairs, 3 pp shell-pairs,

2 pd shell-pairs and 1 dd shell-pair.

• 121 shell-pair functions: 6*1 (ss) + 6*3 (sp) + 3*1*1*5 (sd) + 3*3*3 (pp) +

2*3*1*5 (pd) + 1*1*5*5 (dd).

The corresponding density matrix in shell-pair functions is shown in Fig. 4.9

Before creating the Coulomb embedding potential, the used density matrix has

to be converted to the shell-pair function format. Since the generated potential is

also in shell-pair functions, it has to be back-converted to the function pair format.

However, it should be noted that both formats contain the same information and

also the same numbers. Only some redundant combinations are omitted. Using

shell-pairs in the SCF routine exhibits the big advantage that combinations of

shells with very low overlap can be neglected. This can reduce the formal scaling

of the integral calculations in the SCF procedure.

134



4.2. Implementation of fdeman

Figure 4.9: Illustration of a density matrix for one carbon atom in the basis
cc-pVDZ in shell-pair functions. The numbers in the blocks indicate the amount
of matrix elements in each block.

4.2.3.2 Calculation of the non-electrostatic parts

The two parts of the non-classical embedding potential, i.e. the exchange-

correlation energy potential and the kinetic energy potential, are calculated sep-

arately. The function compute xct potential is responsible for the whole

process, collecting the data and exporting the potentials. For the actual cal-

culation, the sub-function make dft potential is employed, which is called

from within compute xct potential. The expectation value as well as the

derivative of the non-additive functionals are calculated using integration on a

standard quadrature grid SG-1. [217] The parameter of the derivation with respect

to which functional derivative is built is defined by the active fragment curr frag.

Whether the exchange-correlation or the kinetic energy potential is calculated is

determined by the employed functional. A C++ source code snipped of the func-

tion make dft potential is shown in Code 4.6, which will be used to describe

the calculation of the non-electrostatic embedding potential.
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Source Code 4.6: Snippet of the function make dft potential within

compute xct potential to calculate the non-classical parts of the embedding

potential (both exchange-correlation and kinetic).

1 void FDE::make_dft_potential(double *Exc, double *pFxc, double*
pDen_AB, double* pDen_A, double* pDen_B, XCFunctional& Func,

int grdTyp){

2

...

3 int jobID0 = 0; // request exchange-correlation energy and

matrix

4 XCAtoms xcatom; // get atomic coordinate information

5 XCJobPara xcpara(Func, xcatom, jobID0);

6 XCBasisSet basDen(IBCode, nAtoms, thresh);

7 xcatom.setSize(basDen);

8 MoleGrid mgrid(xcatom, grdTyp, xcpara.nDrvNuc, thresh); //

setting up integration grid

9 XCOrderedMat denMat_AB(basDen, pDen_AB, xcpara.nDen, useMatrix,

true);

10 denMat_AB.toXCMat();

11 XCOrderedMat denMat_A(basDen, pDen_A, xcpara.nDen, useMatrix,

true);

12 denMat_A.toXCMat();

13 XCOrderedMat denMat_B(basDen, pDen_B, xcpara.nDen, useMatrix,

true);

14 denMat_B.toXCMat();

15 XCOrderedMat fxcMat(basDen, pFxc, xcpara.nDen, useMatrix, true);

16 // finished set-up

17

18 #pragma omp parallel reduction(+:excTot,eleTot,totalgrid){

19 while ( true ) {

20 #pragma omp critical (XCCOUNTER){

21 ibat = GPI_DLB_next()-1;

22 }

23 if (ibat >= nBatch) break;

24

25 // initialize grid

26 BatchGrid grid(mgrid, ibat);

27 totalgrid+=grid.getNGrid();

28

29 // express significant shells and basis on the current grid

30 BatchShl sigs1(grid, xcatom, basDen);

31 grid.updateDrv(sigs1);

32 BatchBas bbas(basDen, xcpara, grid, xcatom, sigs1);

33
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34 // compute variables such as density and density gradients

35 BatchVar bvar_AB(xcpara, bbas, grid, sigs1, denMat_AB); //

A+B

36 BatchVar bvar_A(xcpara, bbas, grid, sigs1, denMat_A); // A

only

37 BatchVar bvar_B(xcpara, bbas, grid, sigs1, denMat_B); // B

only

38 eleTot += bvar_AB.eleSum;

39

40 // compute functional values and update energy

41 BatchFnlX bfnlX_AB(xcpara, grid, Func, bvar_AB); // A+B

42 BatchFnlX bfnlX_A(xcpara, grid, Func, bvar_A); // A only

43 BatchFnlX bfnlX_B(xcpara, grid, Func, bvar_B); // B only

44 excTot += bfnlX_AB.exSum + bfnlX_AB.ecSum;

45 excTot -= bfnlX_A.exSum + bfnlX_A.ecSum;

46 excTot -= bfnlX_B.exSum + bfnlX_B.ecSum;

47

48 //build difference of functional derivatives on the grid

49 VRsub(bfnlX_AB.pD1FX, bfnlX_AB.pD1FX, bfnlX_A.pD1FX, lenD1F)

;

50

51 // functional derivative: update xc matrix

52 BatchXCMat xcmatx(xcpara, grid, sigs1, bbas);

53 xcmatx.updateMat(fxcMat, bvar_AB, bfnlX_AB);

54 }

55 }

56 (*Exc)=excTot;

57 // convert back to normal format

58 fxcMat.toHFMat();

59 #ifdef PARALLEL

60 GlobalSum(Exc, 1, true);

61 GlobalSum(pFxc, nBas*nBas*xcpara.nDen, true);

62 GlobalSum(&eleTot, 1, true);

63 #endif

64

...

65 }

The function make dft potential takes the density matrices of fragment A,

fragment B and the sum of both density matrices representing the supersystem

AB, the requested functional and the grid type as input parameters.

At first, the grid itself has to be initialized (Line 4 - 8). This is done by loading

the atomic coordinates of both fragments (Line 4) and then specifying the type

of calculation to perform on the grid (Line 5). In this case, the energy of an
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exchange-correlation functional and the calculation of its derivative, represented

as a matrix, shall be calculated. After gathering information about the basis set

(Line 6) the integration grid can be built (Line 8). For the processing on the grid,

the input density matrices have to be in a special ordered from. This is done in

Lines 9 to 14 for the density matrices of fragment A, fragment B and the sum of

both density matrices, referred to as AB. The later created potential will also be

created using the special ordered format. Thus, its container, i.e. the data class is

also created here (Line 15) and will be filled with the actual potential later.

At this point, the initial setup is complete. All calculations on the grid (Lines

18 - 55) are performed in parallel with OpenMP using batch processing. This is

done until all integration points are finished. Therefore, the total grid is divided

into sub-grids (Line 26) on which the significant shells (Line 30) and basis functions

(Line 32) are initialized. Next, the important variables like densities and density-

gradients on that specific sub-grid are calculated on Lines 35 to 37. The number of

electrons of all sub-grids is added and has to resemble the total number of electrons

for both systems (Line 38). The energy of the functional can now be evaluated.

This is done for fragment A, fragment B and for the supersystem AB in Lines 41

to 43. The corresponding energy is calculated as the sum of all resulting energies

(Lines 44 - 46). Finally, the potential is calculated as the functional derivative.

Instead of subtracting the matrix elements of individually calculated potentials to

form the non-additive potential according to Eq. 2.245, it is possible to build the

difference of the functional derivative on the grid beforehand and calculate the

potential by integration of the latter. This exhibits the advantage that only one

integration has to be performed. It is referred to as integration after subtraction

and is done in Line 49. The actual derivative is calculated in Line 52. In the end,

all results of the parallel running sub-tasks have to be added to the final resuls

(Line 59 - 63).

4.2.3.3 Applying the embedding potential

In the last step of the total process, the embedding potential is applied and the

FDE-ADC calculation is performed. This is done by the function run fde cal-

culation, which is called from the main control function fde control. Based

on the chosen expansion, fragment A is initialized either in the supermolecular

basis for an SE-FDE-ADC calculation or in the monomer basis for an RADM-FDE-

ADC run. This is accomplished by the already introduced functions make frag,

make shells and make basis. If the RADM expansion is requested, the
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function cut potential cuts the embedding potential, which was generated in

SE, to the matrix elements of the AA block only. While in SE the ghost atoms are

again initialized using make ghosts, in RADM all remaining ghost definitions are

removed by the function make ghost buster. After initialization, the previously

backed up and then modified ADC parameters (see Sec. 4.2.1) are now restored

and the nuclear repulsion is calculated. After this, the Q-Chem functions gesman,

scfman, adcman and anlman are called to perform the FDE-ADC calculation.

A flowchart of the function run fde calculation is shown in Fig. 4.10. As

Figure 4.10: Flowchart of the function run fde calculation of fdeman.
Functions are indicated by rectangles, diamonds represent decisions.

indicated in the flowchart, a flag is set which activates the import of the embedding

potentials during the SCF cycle in scfman. Since the four parts of the embedding

potential are kept separate, they are individually read in and added to the Fock

matrix. This enables a direct evaluation of the interaction energies by contraction

of one part of the embedding potential with the electron density of A in the current

iteration of the SCF. This can be controlled by the print level (see Sec. 4.3). Also,

the total interaction energy obviously has to be added to the total energy. This
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process of contraction and addition of the embedding potential is shown in the

C++ source code snippet 4.7. The generated orbitals and integrals intrinsically

Source Code 4.7: Snippet of the addition of the embedding potential to the
Fock matrix and contraction with the electron density of fragment A.

1 if (ADC_FDE_finish) {

2

...
3 //read potentials from file

4

...
5 if (details >= 1){
6 if (details >= 2){
7 VRdot(&E_J,jPA,jJ,N2); //contraction of Coulomb part with

density matrix
8 cout << " Integrated Coulomb potential: " << E_J << endl;
9 VRdot(&E_V,jPA,jV,N2); //contraction of nuclear part with

density matrix
10 cout << " Integrated nuclear potential: " << E_V << endl;
11 }
12 VRadd(jv_elstat,jV,jJ,N2); //addition electrostatic parts
13 VRdot(&E_elstat,jPA,jv_elstat,N2);
14 cout << " Integrated electrostatic embedding potential: " <<

E_elstat << endl;
15 if (details >= 2){
16 VRdot(&E_xc,jPA,jFxc,N2);
17 cout << " Integrated non-add. XC potential: " << E_xc <<

endl;
18 VRdot(&E_ts,jPA,jFt,N2);
19 cout << " Integrated non-add. kinetic potential: " << E_ts

<< endl;
20 }
21 VRadd(jv_nonel,jFxc,jFt,N2); //addition non-electrostatic

parts
22 VRdot(&E_nonel,jPA,jv_nonel,N2);
23 cout << " Integrated non-electrostatic embedding potential: "

<< E_nonel << endl;
24 }
25 VRadd(jv_tot,jv_tot,jFt,N2);
26 VRadd(jv_tot,jv_tot,jFxc,N2);
27 VRadd(jv_tot,jv_tot,jJ,N2);
28 VRadd(jv_tot,jv_tot,jV,N2);
29 VRdot(&E_embed,jPA,jv_tot,N2); //contraction of total embedding

potential with density matrix
30 cout << " Integrated total embedding potential: " << E_embed <<

endl;
31 ETot += E_embed;
32

33 VRadd(jFA,jv_tot,N2); //adding embedding potential to Fock-
matrix

34 }
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include the effect of the environment. They are used by the following adcman

run, which thus leads to embedded excited states. After the ADC calculation,

the routine anlman is called, which typically closes a Q-Chem run by calculating

standard properties of the investigated system such as multipole moments or

charge distributions.
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4.3 Program control of FDE-ADC

Generally, Q-Chem is controlled using a so-called input file, which contains all

information necessary for the requested calculation like method, basis set or

additional requests like population analysis. It contains also the spatial coordinates

of the molecule that shall be calculated. For an FDE-ADC calculation, various

user-defined options are available. In this section, I will describe the user-defined

options and their implementation.

4.3.1 User-defined input

In the Q-Chem input file the so-called $rem section contains all the keywords to

control a quantum mechanical calculation. For example, the method and basis

set is defined here using specific keywords. To request an FDE-ADC calculation,

the new keyword “FDE” has been added. It is used as a Boolean data type,

which means taht it accepts only the values true or false. Hence, an FDE-ADC

calculation will be performed when FDE = true is set in the input file.

However, beyond this keyword for activation, fdeman needs further specifica-

tions. A separate input section in the input file named $fde has been introduced.

This way, all FDE-related keywords can be specified without interfering with other

keywords of the $rem section. Additionally, it is much more convenient for the

user to specify all parameters in one block. The parameters can be divided into

mandatory parameters and optional parameters. While the mandatory parameters

will be discussed here, most of the optional parameters will be introduced in

Chapter 7. The important parameters are:

• Specification of the expansion: Using the keyword expansion, one of the two

available expansions SE or RADM can be selected.

• Specification of the exchange-correlation functional for the calculation of the

corresponding part of the potential. Here, all available pure DFT functionals

of Q-Chem can be employed. Since in Q-Chem both so-called canned xc-

functionals, which consist of an inseparable combination of exchange and

correlation functionals, and individual exchange and correlation functionals

are included, the former one can be selected with the keyword XC Func while

the latter ones are specified with the two keywords X Func and C Func.

• Specification of the kinetic energy functional for the calculation of the second

non-electrostatic part of the embedding potential. This is selected with
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the keyword T Func. Although in principle all kinetic energy functionals

in Q-Chem can be employed, however, the only included kinetic energy

functional currently is the Thomas-Fermi functional.

• Specification of the method used to calculate ρB(~r). This is controlled

by the keyword rhoB method. It takes as arguments either HF or DFT.

If a DFT calculation for the environment is requested, additionally the

keywords XC Func B for canned xc-functionals or X Func B and C Func B

for individual functionals have to be specified. Note that the functional used

to calculate ρB(~r) does not need to correspond to the employed xc-functional

in the calculation of the embedding potential.

• Specification of the print level of fdeman. This is an optional parameter.

It controls the level of output in three stages. At level 0, only minimal

information is printed. Level 1 represents the standard output level with

the most usefull information. At the extended output level 2, all additional

information, which might be useful during an FDE-ADC run, are printed.

Level 3 is identical to level 2 but additionally prints text files of important

matrices like density matrices or the parts of the embedding potential. These

can be used for visualization after the calculation.

All these parameters are gathered by the fdeman function read fde input.

4.3.2 Verification of input parameters

The user-defined input is checked in fdeman directly after initialization to verify

that all parameters are set correctly. The first level of input check is to control if all

mandatory parameters for fdeman are set in the $fde input section. This is done

by a checklist. fdeman will only proceed if all points on this checklist are marked

positive. If anything is missing, the program will stop and tell the user which

parameter is missing. To avoid unintentional calculations using wrong methods,

no defaults are set. The user has to specify the aforementioned parameters.

The second check level is to verify that no contradicting parameters have been

set. For example, requesting an HF calculation for the generation of ρB(~r) and

specifying an xc-functional for the environment calculation will lead to an abort

of the program. Additionally, it will ask the user to choose either a functional or

the method HF. Since currently fdeman is implemented only to perform FDE-

ADC calculations, a similar check prevents activating FDE in combination with a

non-ADC method.
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The third check controls if the requested xc- and t-functionals are appropriate.

For the calculation of ρB(~r) both pure and hybrid xc-functionals can be employed,

while for the calculation of the embedding potential only pure xc-functionals are

allowed. However, no meta-GGA functionals can be used due to the included

kinetic energy correction (see Sec. 2.2.5).

After all checks are passed successfully, the user-defined input is printed in a

summary in the output file. This ensures the correct processing of the user input.
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4.4 Summary and overview of features of FDE-ADC

In this chapter, I describe the development of FDE-ADC and its implementation

in the module fdeman in the quantum chemical program package Q-Chem. In an

FDE-ADC calculation, the embedded system (A) is calculated on the ADC level of

theory while the environment (B) is calculated on the HF or DFT level of theory.

The two subsystems have to be clearly separated, i.e. may not be connected

by a covalent bond. An FDE-ADC calculation can be carried out in two ways,

referred to as expansions. In the supermolecular expansion, all density matrices

and the embedding potential are expressed in the basis of A and B together.

However, this variant is only useful for benchmark calculations, since it provides

no computational savings compared to a supermolecular ADC calculation. In the

second variant, re-assembling of density matrix, an approximation is introduced

reducing the embedding potential to the basis of A only. This allows productive

calculations, since the subsequent FDE-ADC calculation is performed in the basis

of the embedded system.

In the implementation of FDE-ADC, the module fdeman organizes all required

parts of the full run. It is called directly by the Q-Chem scheduler. It generates

the electron densities ρrefA (~r) and ρB(~r), calculates the embedding potential and

performs the FDE-ADC calculation by adding the potential to the Fock matrix

during the SCF, which also directly influences the ADC calculation.

fdeman can easily be controlled by the user via the separate $fde section in

the Q-Chem input file. For the calculation of the environment density, either HF

or DFT in combination with all available pure and global-hybrid xc-functionals of

Q-Chem can be used. Also all available pure xc-functionals can be employed to

calculate the non-electrostatic part of the embedding potential.

FDE-ADC is available for all variants of ADC [24,108] and core-valence separated

ADC (CVS-ADC) up to third order. [218–221] Using this approach, it is also possible

to employ other features of ADC, e.g. the wavefunction and density analysis

utility libwfa, [114,115,222] or the calculation of spin-orbit coupling elements, [223]

which are also implemented in Q-Chem. With these tools, the direct influence of

an environment on the excitations of the embedded system can be visualized via

difference and transition density analysis, attachment and detachment density plots

or generation of excited state natural orbitals. [115,221] This will be demonstrated

in Chapter 6.
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Chapter 5

Benchmarking FDE-ADC up

to Third Order

“What we observe is not nature itself, but nature

exposed to our method of questioning.”

Werner Heisenberg

In this chapter, I will present a thorough testing of the combination of frozen

density embedding (FDE) with the algebraic-diagrammatic construction scheme

for the polarization propagator (ADC) up to third order, yielding the method FDE-

ADC. For these tests, supermolecular calculations of test systems consisting of an

embedded species and an environment are calculated as reference. To determine

the influence of the environment, the core systems are calculated alone as well.

FDE-ADC calculations are then benchmarked against the supermolecular results.

In the benchmark, the excitation energies (Ω), oscillator strengths and excitation

characters determined by the orbital transitions are analyzed. The accuracy is

determined as the energy or oscillator strength difference between FDE-ADC and

supermolecular ADC results of states exhibiting the same character. If changes in

the energetic order occur, they are mentioned explicitly.

Note that in all benchmark calculations, the supersystem calculation is always

taken as reference for both isolated and FDE-ADC results. Hence, solvatochromic

shifts and deviations of FDE-ADC from the supersystem results are calculated as

Ωisol − Ωsup and ΩFDE−ADC − Ωsup, respectively. As a consequence, a negative

value indicates a larger excitation energy in the supersystem (blue shift). The

same holds for oscillator strengths.
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At first, FDE-ADC(2) using supermolecular expansion is tested followed by

FDE-ADC(2) employing the RADM approach. The basis set dependence is tested

next followed by an investigation of the influence of the method used to calculate

ρB(~r) and the influence of the employed xc-functional used in the calculation of

the embedding potential. Subsequently, a benchmark of RADM-FDE-ADC(3) is

performed. The chapter ends with a summary and conclusion of the benchmark

results.1

1 Parts of Chapter 5 have already been published in
First time combination of frozen density embedding theory with the algebraic dia-
grammatic construction scheme for the polarization propagator of second order
Stefan Prager, Alexander Zech, Francesco Aquilante, Andreas Dreuw and Tomasz A. Wesolowski
The Journal of Chemical Physics, 144 (2016,) page 204103
and
Implementation and application of the frozen density embedding theory with the
algebraic diagrammatic construction scheme for the polarization propagator up to
third order
Stefan Prager, Alexander Zech, Tomasz A. Wesolowski and Andreas Dreuw
submitted for publication, (2017)
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between embedded system and environment as well as different kinds of excited

states. While the first system (benzene and HF) shows only weak and polarization

based interactions, the benzaldehyde is more influenced by the environment due

to the hydrogen bond in addition to the polarization of the π-system. The uracil

system shows intense interactions between the core system and the environment

including various hydrogen bonds.

For all investigations, the three supersystem are optimized at the MP(2)/cc-

pVDZ level of theory. This ensures that no geometrical changes influence the

comparison between the FDE approach and the supersystem calculation.
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5.2 Benchmark of FDE-ADC(2) using supmermolecu-

lar expansion

In this section, the method FDE-ADC of second order, FDE-ADC(2), is bench-

marked. In the first test, FDE-ADC(2) employing the supermolecular expansion

was tested. This approach is the mathematically exact implementation of FDE-

ADC without any further approximation and without restrictions to the basis

set. Although no benefit in computational cost with respect to the supersystem

calculation can be achieved, this serves as a benchmark for further approximate

FDE-ADC approaches.

The five energetically lowest electronically excited singlet states of the super-

systems are calculated at ADC(2)/cc-pVDZ level of theory. Additionally, the

five energetically lowest excited singlet states of the isolated system A have been

calculated at ADC(2)/cc-pVDZ level of theory without re-optimizing the geometry.

In this way, the electronic interactions between core system and environment can

be analyzed directly without influences of geometry changes due to environment

interactions. The FDE-ADC(2) calculations were carried out using the same

optimized geometries for system A and B as in the supersystem calculation. For

all investigations, the singlet multiplicity and neutral charge was conserved. The

HF method was chosen for the calculation of the environment density ρB(~r) and

the PBE xc-functional for the non-electrostatic part of the embedding potential.

5.2.1 Benzene with one hydrogen fluoride molecule

At first, the system [BZ ·HF] was tested. The frontier orbitals of benzene, i.e. the

highest occupied molecular orbital (HOMO), HOMO−1, the lowest unoccupied

molecular orbital (LUMO) and LUMO+1 are the typical π orbitals. The lower

lying occupied orbitals (HOMO−2 and HOMO−3) show σ-character while the

higher unoccupied orbitals (LUMO+2 and LUMO+3) can be described as Rydberg-

orbitals. The analysis of the five lowest electronically excited states of isolated

benzene shows four locally excited states characterized by (π 7→ π∗) transitions

and an energetically higher lying Rydberg state. The five lowest excited states

and their character are given in Tab. 5.1.

Calculating the supersystem, the frontier orbitals of benzene are almost identical

to the frontier orbitals of the isolated benzene and only slightly distorted by the

hydrogen fluoride. Only the LUMO+2, which is a Rydberg orbital in the case of

the isolated benzene, is now localized on the hydrogen fluoride and the original
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Rydberg orbital located at the benzene is the LUMO+3. The S1 to S4 states are

characterized as local (π 7→ π∗) transitions on the benzene while the S5 state is a

mixed Rydberg state delocalized over benzene and hydrogen fluoride.

In the FDE-ADC calculation, a higher lying virtual Rydberg orbital is lowered

inenergy and becomes the LUMO, but this orbital does not contribute to any local

(π 7→ π∗) transition. Since the energy of the higher lying unoccupied orbitals

(LUMO+1 to LUMO+10) are practically identical to the supersystem calculation,

the character of the excited states remains the same even if the number of the

electron accepting orbital is increased by 1. The excited states S3 and S4 are, like

in the supersystem calculation, degenerate. The excited states of the supersystem

and the isolated benzene as well as the FDE-ADC calculations are characterized

in detail in Tab. 5.1.

The influence of the hydrogen fluoride molecule onto the benzene while it is

located in-plane with the benzene-ring is reproduced almost exactly by the FDE-

ADC(2) calculations. The largest deviation in the excitation energies is lower than

0.02 eV for the Rydberg state and lower than 0.005 eV for the (π 7→ π∗) transitions.

The mean absolute error (MAE) averaged over all calculated excited states is

0.004 eV for excitation energies and 0.0039 for oscillator strengths. The differences

in the excitation energies and oscillator strengths between isolated benzene and

the FDE-ADC(2) calculation to the supersystem calculation are shown in Fig. 5.2.

5.2.2 Benzaldehyde with two water molecules

The [BA · 2 H2O] system was tested next. The frontier orbitals of isolated ben-

zaldehyde optimized as supersystem are characterized as follows: HOMO−3: π,

HOMO−2: n, HOMO−1: π, HOMO: π, LUMO: π∗, LUMO+1: π∗, LUMO+2:

Rydberg, LUMO+3: Rydberg, LUMO+4: π∗. Analysis of the five energetically

lowest electronically excited states shows two states with (n 7→ π∗) character (S1

and S4) and three (π 7→ π∗) transitions. A detailed characterization is given in

Tab. 5.2.

Going to the supersystem, the frontier orbitals are hardly changed but the

HOMO and HOMO−1 change their energetic order. Since these two orbitals are

almost degenerate it can be neglected from an energetic point of view. However,

this change has to be considered in the characterization of the excited states. In

contrast, the excited states are influenced significantly by the water environment.

As expected, the hydrogen-bonded water molecule stabilizes the n-orbitals leading
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Figure 5.2: Excitation energy difference (left) and oscillator strength difference
(right) of the isolated benzene (blue) to the supersystem [BZ ·HF] and the FDE-
ADC(2) calculation (red) to the supersystem. The blue bars correspond to the
influence of the environment on the excitation energies and oscillator strengths
(solvatochromic shift) while the red bars indicate the accuracy of the FDE-ADC(2)
calculation in comparison with the ADC(2) calculation of the full system.

to a large increase of the excitation energies of the corresponding (n 7→ π∗) states.

Simultaneously, the excitation energies of the (π 7→ π∗) states are reduced.

However, the energetic order and the character of the states are not changed by

the environment (Tab. 5.2).

In the FDE-ADC(2) calculation, the interactions of the hydrogen bonds are

simulated almost quantitatively. The degeneracy of the HOMO and HOMO−1

is retained and also the n-orbitals are correctly described. The excited states

in the FDE-ADC(2) calculation show the same influence of the environment on

the (n 7→ π∗) as well as on the (π 7→ π∗) states as seen in the supersystem

calculation. The full characterization is given in Tab. 5.2.

In this example, the largest deviation in the excitation energies is lower than

0.01 eV for the (n 7→ π∗) states and lower than 0.05 eV for the (π 7→ π∗) tran-

sitions. The MAE is 0.022 eV for excitation energies and 0.0033 for oscillator

strengths. Especially the reproduction of the influence of the hydrogen bonds

on the excited states is remarkable, since hydrogen bonds have larger orbital

interactions compared to dispersion interaction or polarization. The difference

in excitation energies and oscillator strengths of the isolated benzaldehyde and
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the FDE-ADC(2) calculation to the supersystem calculation are summarized in

Fig. 5.3.
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Figure 5.3: Excitation energy difference (left) and oscillator strength difference
(right) of the isolated benzene (blue) to the supersystem [BA · 2 H2O] and the
FDE-ADC(2) calculation (red) to the supersystem. The blue bars correspond to
the influence of the environment on the excitation energies and oscillator strengths
(solvatochromic shift) while the red bars indicate the accuracy of the FDE-ADC(2)
calculation in comparison with the ADC(2) calculation of the full system.

5.2.3 Uracil with five water molecules

The frontier orbitals of uracil, optimized in the supersystem, show π character

for the HOMO−1 and HOMO, while the HOMO−2 and HOMO−3 are n-orbitals

localized mainly at the oxygen atom OA and OC, respectively. The LUMO and

LUMO+2 exhibit π∗ character, whereas the LUMO+1 is a Rydberg orbital. Ana-

lyzing the five lowest electronically excited states of the isolated uracil, optimized

in the supersystem structure, (n 7→ π∗) transitions are observed as the S1, S3

and S5 states. The S2 and S4 states are local (π 7→ π∗) transitions. The detailed

characterization of the five lowest excited states is given in Tab. 5.3.

In the supersystem structure, the water molecules interact strongly with the

uracil by forming hydrogen bonds. Two water molecules act as hydrogen bond

donors for the OA, one as an acceptor for NB, forming a hydrogen bond chain

over one of the previously mentioned water molecules to OA. Another hydrogen
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Chapter 5. Benchmarking FDE-ADC up to Third Order

bond chain is formed from ND over two water molecules to OC. These hydrogen

bonds will influence the n-orbitals and hence also the (n 7→ π∗) excitations but

will do so differently for each state since the interaction is more pronounced at

the OA than at the OC atom. The rest of the frontier orbitals are qualitatively

unchanged except for the LUMO+1 and LUMO+2, which change their energetic

order. Analyzing the five lowest electronically excited states of the supersystem,

the excitation energy of the S1 state is, as expected, largely increased due to the

stabilizing effects of the environment on the n-orbitals. Accordingly, the influence

on the two other (n 7→ π∗) transitions is weaker but still significant. However,

some orbitals delocalized over uracil and one or more water molecules contribute

only slightly to the excitation. A detailed description of the excited states is given

in Tab. 5.3.

In the FDE-ADC calculations, the uracil was considered as system A while all 5

water molecules are used as the environment B. As in the supersystem calculation,

the energetic order of the LUMO+1 and LUMO+2 is changed compared to the

isolated uracil calculation. The remaining frontier orbitals are essentially identical

to the orbitals of isolated uracil, but higher lying virtual orbitals are largely

distorted accounting for the effect of the environment. The results of the FDE-

ADC calculations are in very good agreement with the supersystem benchmark.

The largest shift in excitation energy (S1) and the largest shift in oscillator strength

(S4) are well reproduced. Also, the different influence of the hydrogen bonds on the

excited states is included in the FDE-ADC(2) calculation. The characterization of

the excited states is given in Tab. 5.3.

For this system, the largest error is 0.09 eV for the excitation energies and 0.02

for the oscillator strengths, which is slightly higher than in the previous systems.

The MAE is 0.048 eV for excitation energies and 0.0059 for oscillator strengths.

Still, considering the strong interaction between uracil and the water environment,

this error is acceptable for this approximate treatment of the environment. The

slightly larger error arises because some orbitals, localized on the water molecules

of the environment, contribute slightly to the excitations in the supersystem but

are not considered in the FDE-ADC calculation. Comparison of the FDE-ADC

calculation and the isolated uracil calculation to the supersystem is presented in

Fig. 5.4.
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Figure 5.4: Excitation energy difference (left) and oscillator strength difference
(right) of the isolated benzene (blue) to the supersystem [UC · 5 H2O] and the
FDE-ADC(2) calculation (red) to the supersystem. The blue bars correspond to
the influence of the environment on the excitation energies and oscillator strengths
(solvatochromic shift) while the red bars indicate the accuracy of the FDE-ADC(2)
calculation in comparison with the ADC(2) calculation of the full system.
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Chapter 5. Benchmarking FDE-ADC up to Third Order

5.3 Benchmark of FDE-ADC(2) using the

re-assembling of density matrix approach

In this chapter, the newly developed re-assembling of density matrix (RADM)

approach was used within the FDE-ADC calculations. Using RADM, the density

matrix for the FDE-ADC(2) calculation is conducted within the basis functions of

A only, leading to a substantial decrease of the computational costs. The neglect

of the embedding potential on the basis functions on B induces, however, an

additional error, which is also discussed in this section.

As in the previous chapters, the FDE-ADC calculation is tested against the

supersystem calculation and the isolated system A. All settings of the calculations

are identical to the ones employed in Sec. 5.2. Also, the supermolecular as well as

the isolated benzene, benzaldehyde and uracil calculation results of Sec. 5.2 are

taken as reference.

5.3.1 Benzene with one hydrogen fluoride molecule

The FDE-ADC calculations on [BZ ·HF] show almost identical orbitals compared

to the isolated benzene. Only the LUMO+2 Rydberg orbital shows a distorted

surface in the region pointing towards the hydogenfluoride molecule. In contrast to

using the supermolecular expansion for FDE-ADC (SE-FDE-ADC), no higher lying

virtual orbital is lowered in energy. HOMO−1, HOMO, LUMO and LUMO+1

exhibit π and π∗-character, respectively. The character of the five lowest elec-

tronically excited states is the same as in the supersystem calculation. The S1

to S4 are local (π 7→ π∗) transitions, and the S5 is a Rydberg state. Like in

the supersystem, the S3 and S4 states are almost degenerate. In this case, the

state corresponding to the S4 of the supersystem calculation shows a slightly lower

excitation energy and becomes the S3 state (Tab. 5.4).

Using RADM, the excited states are in very good agreement to the supersystem

calculation and almost identical to the SE-results. The differences of RADM-FDE-

ADC(2) to the supersystem are below 0.006 eV for the local (π 7→ π∗) transitions

and below 0.03 eV for the Rydberg state (MAE 0.006 eV (0.038)). In comparison

to the SE-FDE-ADC(2) results, the error of the RADM approximation alone is

smaller than 0.04 eV for the excitation energy of the Rydberg state and almost zero

(0.0001 eV) for the local (π 7→ π∗) excitation energies. In summary, the differences

of SE-FDE-ADC, RADM-FDE-ADC and the isolated benzene calculations to the

supersystem calculation are collected in Fig. 5.5.
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Figure 5.5: Excitation energy difference (left) and oscillator strength difference
(right) of the isolated benzene (blue) to the supersystem [BZ · HF], the SE-
FDE-ADC(2) calculation (red) to the supersystem and the RADM-FDE-ADC(2)
calculation (green) to the supersystem. The blue bars correspond to the influence of
the environment on the excitation energies and oscillator strengths (solvatochromic
shift) while the red and green bars indicate the accuracy of the SE-FDE-ADC(2)
and RADM-FDE-ADC(2) calculations in comparison with the supermolecular
ADC(2) calculation. The SE-FDE-ADC(2) results are taken from Sec. 5.2.1.

5.3.2 Benzaldehyde with two water molecules

Analogous to the SE calculations, benzaldehyde was used as system A. The orbitals

obtained in the RADM-FDE-ADC(2) calculation are very similar to the orbitals

of the isolated benzaldehyde and only slightly distorted. The frontier orbitals

HOMO−1 to LUMO+1 and LUMO+4 show π-and π∗-symmetry, respectively. The

HOMO−2 is a n-orbital localized at the oxygen and the LUMO+2 and LUMO+3

are Rydberg orbitals. The five lowest electronically excited states are closely related

to the excited states of the supersystem exhibiting a local (π 7→ π∗) transition in

the excited states S2, S3 and S5 and a (n 7→ π∗) transition in the excited states

S1 and S4 (Tab. 5.5)

Also for this test, the agreement of the RADM-FDE-ADC calculation with

the supersystem calculation is very good, but it shows, as expected, slightly
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Chapter 5. Benchmarking FDE-ADC up to Third Order

larger differences than the SE calculation. The difference in the excitation energies

compared to the supersystem calculation is below 0.08 eV for the calculated excited

states (MAE 0.040 eV (0.0029)). The error induced by the RADM approximation

alone compared to the SE-FDE-ADC(2) results is smaller than 0.04 eV in excitation

energies. A graphical comparison is presented in Fig. 5.6.
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Figure 5.6: Excitation energy difference (left) and oscillator strength difference
(right) of the isolated benzene (blue) to the supersystem [BA · 2 H2O], the SE-
FDE-ADC(2) calculation (red) to the supersystem and the RADM-FDE-ADC(2)
calculation (green) to the supersystem. The blue bars correspond to the influence of
the environment on the excitation energies and oscillator strengths (solvatochromic
shift) while the red and green bars indicate the accuracy of the SE-FDE-ADC(2)
and RADM-FDE-ADC(2) calculations in comparison with the supermolecular
ADC(2) calculation. The SE-FDE-ADC(2) results are taken from Sec. 5.2.2.

5.3.3 Uracil with five water molecules

In the strongly interacting system [UC · 5 H2O], the orbitals are again hardly

perturbed. HOMO−2 and HOMO−3 are of n-type symmetry while the frontier

orbitals from HOMO−1 to LUMO+1 are π-and π∗-type orbitals, respectively.

The character of the five lowest excited states is conserved with respect to the

supersystem calculation. Local (π 7→ π∗) transitions can be observed in the

S2 and S4 state while the remaining excited states show (n 7→ π∗) transition
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character (Tab. 5.6).

Like in the SE-FDE-ADC calculation, the difference to the supersystem cal-

culation is slightly larger than in the previous examples due to the neglected

contributions localized on the environment, i.e. the five water molecules. The

largest difference in excitation energies is about 0.1 eV (MAE 0.072 eV (0.0074)).

The error induced by the RADM approximation alone compared to the SE-FDE-

ADC(2) results is smaller than 0.07 eV in the excitation energies. Considering the

large shift of the excitation energies with up to 0.7 eV due to the environment,

this difference is in excellent agreement with the reference calculation (Fig. 5.7).
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RADM-FDE-ADC osc. str. diff.

Figure 5.7: Excitation energy difference (left) and oscillator strength difference
(right) of the isolated benzene (blue) to the supersystem [UC · 5 H2O], the SE-
FDE-ADC(2) calculation (red) to the supersystem and the RADM-FDE-ADC(2)
calculation (green) to the supersystem. The blue bars correspond to the influence of
the environment on the excitation energies and oscillator strengths (solvatochromic
shift) while the red and green bars indicate the accuracy of the SE-FDE-ADC(2)
and RADM-FDE-ADC(2) calculations in comparison with the supermolecular
ADC(2) calculation. The SE-FDE-ADC(2) results are taken from Sec. 5.2.3.
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5.4 Basis-set study

A study of the basis-set dependence of FDE-ADC has been performed using the

supermolecular expansion. For this test, the [BA · 2 H2O] system was employed.

The same calculations as described in Sec 5.2.2 have been carried out using the

cc-pVTZ basis set instead of the cc-pVDZ one. Generally, the excitation energies

are lowered due to the larger basis set. This is observed consistently in the

supersystem calculation as well as in the FDE-ADC calculation. Both in the

supersystem calculation and the FDE-ADC calculation, the S4 and S5 state change

their energetic order with respect to the isolated benzaldehyde. This change is

reproduced very nicely in the FDE approach (see Tab. 5.7).

Table 5.7: Excitation energies and oscillator strengths for the FDE-
ADC(2)/cc-pVTZ calculation in the SE approach for the [BA · 2 H2O] system.

Exc. Energies [eV] Osc. Strength

state isol. supersys. FDE-ADC isol. supersys. FDE-ADC

S1 3.623 3.827 3.820 0.0001 0.0002 0.0001

S2 4.810 4.685 4.715 0.0127 0.0220 0.0188

S3 5.549 5.350 5.399 0.3260 0.3378 0.3474

S4 6.129 6.530 6.565 0.0000 0.2975 0.2876

S5 6.645 6.599 6.587 0.3583 0.0001 0.0001

The basis set dependence is determined by calculating the difference of the

deviation in excitation energies obtained with FDE-ADC and the supersystem

calculation in the two basis sets according to

∆Ωbasis =
∣∣∣(Ωcc-pVDZ

FDE-ADC − Ωcc-pVDZ
supersystem

)
−
(

Ωcc-pVTZ
FDE-ADC − Ωcc-pVTZ

supersystem

)∣∣∣ (5.1)

with Ω as the excitation energy. ∆Ωbasis exhibits values smaller than 0.008 eV in

all investigated electronically excited states. Hence, the deviation of FDE-ADC(2)

from the supersystem calculation does not vary significantly with the larger basis

set. While the results of the ADC(2) and FDE-ADC(2) calculations are in general

affected by different basis sets, it appears that the error introduced by employing

the FDE approximation does not depend that much on the size of the basis set.

Additionally, the influence of diffuse basis functions on FDE-ADC(2) employing

the RADM approximation has been investigated. Again, the [BA · 2 H2O] system
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was chosen using the basis set aug-cc-pVDZ which contains diffuse basis functions

that can better describe the peripheral regions of the systems in which the densities

overlap. This results in a better description of the embedding potential and

therefore in even smaller errors in excitation energies. Since diffuse basis functions

are included, the orbitals as well as the orbital transitions of the excited states differ

both for the supersystem calculation and the RADM-FDE-ADC(2) calculation

compared to the results obtained with the cc-pVDZ basis set. Applying the

aug-cc-pVDZ basis set, the error of the RADM-FDE-ADC(2) calculation compared

to the supersystem calculation is smaller for all excitation energies in this system

compared to the results obtained with the cc-pVDZ basis set (see Tab. 5.8).

Table 5.8: Excitation energies and oscillator strengths for the FDE-ADC(2)/aug-
cc-pVDZ calculation in the RADM approach for the [BA · 2 H2O] system.

Exc. Energies [eV] Osc. Strength

state isol. supersys. FDE-ADC isol. supersys. FDE-ADC

S1 3.562 3.765 3.761 0.0001 0.0002 0.0002

S2 4.812 4.682 4.716 0.0132 0.0234 0.0194

S3 5.486 5.282 5.338 0.3308 0.3393 0.3534

S4 5.943 6.351 6.350 0.0001 0.0154 0.0019

S5 6.042 6.403 6.397 0.0115 0.0002 0.0001

Using the basis set aug-cc-pVDZ the mean absolute error (MAE) is reduced

from 0.041 eV to 0.016 eV. This clearly shows the advantage of basis sets containing

diffuse functions in combination with FDE-ADC.
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5.5 Influence of the method and functional on the em-

bedding potential

The dependence of the FDE-ADC results on the choice of the method to calculate

ρB(~r) and on the employed exchange-correlation functional used for the calculation

of the non-electrostatic part of the embedding potential has been investigated and

will be discussed in this section. A large variety of methods used to calculate the

environment was chosen including HF, generalized gradient approximation (GGA)-

DFT (BLYP, [74,75] PBE, [76] BP86 [74,77] and PW91 [78]) and hybrid-DFT functionals

(B3LYP, [82] BHLYP, [74,75] B5050LYP, [224] PBE0 [83] and SOGGA11-X [225]). For the

evaluation of the non-additive bifunctional in the embedding potential, only explicit

density functionals are considered. Hence, the following GGA-DFT functionals were

used for the calculation of the non-additive exchange-correlation contribution to

the embedding potential: PBE, [76] BLYP, [74,75] BP86, [74,77] G96corr
[226]-P86ex

[77],

GAM, [227] PW91 [78] and SOGGA11. [79] In all calculations, the Thomas-Fermi

kinetic energy functional [228] was used for the kinetic energy contribution to the

FDET energy and embedding potential. For all calculations, the cc-pVDZ [54] basis

set was used.

Again, the three test systems 1) [BZ ·HF], 2) [BA · 2 H2O] and 3) [UC · 5 H2O]

were employed. For all systems, the five energetically lowest electronically excited

states of the supersystem were calculated as reference at ADC(2)/cc-pVDZ level of

theory. The RADM-FDE-ADC(2)/cc-pVDZ calculations were performed employ-

ing all possible combinations of the aforementioned methods for the calculation of

the environment with xc-functionals for the calculation of the embedding potential.

5.5.1 Benzene with one hydrogen fluoride molecule

In the supersystem [BZ · HF], the four lowest excited states exhibit typical

(π 7→ π∗) character. The S5, however, shows a (π 7→ Rydberg) character

and is therefore characterized as a Rydberg state. An absorbance shift due to the

hydrogen fluoride is mainly observed in the (π 7→ π∗) excitations and varies for the

four states from -0.1 to -0.15 eV. Using the FDE approach, the benchmark results

of the supersystem calculation can be reproduced in almost perfect agreement.

The mean absolute errors (MAEs) for all five states compared to the supersystem

calculation have been calculated for all tested methods and functionals and are

summarized in Table 5.9.

All MAEs are below 0.01 eV. For this system with only weak interactions, the
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Table 5.9: Mean absolute errors for the comparison of RADM-FDE-ADC(2)
with the supersystem calculation of [BZ ·HF]. The columns represent the applied
exchange-correlation functional for the non-electrostatic part of the embedding
potential and the rows represent the method used for the calculation of the
environment electron density ρB(~r).

PBE BLYP BP86 G96-P86 GAM PW91 S11a

HF 0.0064 0.0069 0.0066 0.0074 0.0059 0.0064 0.0026
BLYP 0.0065 0.0070 0.0065 0.0070 0.0057 0.0066 0.0041
B3LYP 0.0064 0.0070 0.0065 0.0098 0.0058 0.0065 0.0034
BHLYP 0.0064 0.0069 0.0065 0.0072 0.0058 0.0065 0.0028
B5050LYP 0.0064 0.0069 0.0065 0.0072 0.0058 0.0064 0.0028
PBE 0.0066 0.0072 0.0066 0.0072 0.0059 0.0067 0.0036
PBE0 0.0066 0.0071 0.0067 0.0100 0.0060 0.0066 0.0029
BP86 0.0066 0.0072 0.0067 0.0099 0.0060 0.0067 0.0033
PW91 0.0065 0.0071 0.0066 0.0072 0.0058 0.0066 0.0037
SOGGA11-X 0.0066 0.0072 0.0067 0.0100 0.0060 0.0067 0.0037

a SOGGA11

choice of the xc-functional used to evaluate the non-additive exchange-correlation

part of the embedding potential does hardly influence the accuracy of the cal-

culation. Only the SOGGA11 functional performs slightly better and reduces

the MAE by half. Also the method used to generate ρB(~r) does hardly influence

the results. Even the largest deviation, which occurs between the combinations

PBEB - G96P86pot. and PBE0B - G96P86pot. are smaller than 0.003 eV, much

smaller than the inherent error of ADC(2).

5.5.2 Benzaldehyde with two water molecules

The second benchmark system [BA · 2 H2O] exhibits a more intense interaction

with the environment as the previous system. Hence, variations in the description

of the exchange and correlation interaction by the embedding potential might

lead to larger deviations between the used functionals. In benzaldehyde, the

five energetically lowest excited states characterize as follows: The S2, S3 and

S5 states are delocalized (π 7→ π∗) excitations. In contrast, the S1 and S4 are

(n 7→ π∗) excitations, localized at the oxygen atom. As described in Sec. 5.2.2, the

(n 7→ π∗) states are shifted towards higher excitation energies in the supersystem

(blue shifted) while the (π 7→ π∗) states are shifted towards lower energies (red

shifted) due to the environment. The energetically shift is about -0.2 eV and
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-0.48 eV for the S1 and S4 state and 0.12 eV, 0.22 eV and 0.13 eV for the S2, S3

and S5 states, respectively.

In all RADM-FDE-ADC(2) calculations, the excited states are reproduced in

very good agreement with the supersystem calculation regarding energy, character

and oscillator strength. In all tested combinations of method for B and functional

for the embedding potential, the MAE lies between 0.04 eV (e.g. for the combina-

tion HFB - PBEpot.) and 0.053 eV (e.g. for the combination GAMB - BLYPpot.).

The full list of all MAEs is given in Table. 5.10. However, varying the applied func-

tional in the computation of the embedding potential hardly influences the results.

The largest difference is in general about 0.002 eV. Instead, methods including

Hartree-Fock exchange for the calculation of ρB(~r) increase the accuracy of the

calculation. Comparing the functionals BLYP, B3LYP and BHLYP/B5050LYP,

the MAE is reduced by about 0.0035 eV from BLYP to B3LYP and additionally

reduced by about 0.004 eV from B3LYP to BHLYP. The difference between BHLYP

and B5050LYP is with 0.0005 eV not considerable. However, pure HF performs

best in this comparison. The MAEs using HF are additionally about 0.004 eV

lower compared to using the BHLYP functional (see Tab 5.10). In this case, using

Table 5.10: Mean absolute errors for the comparison of RADM-FDE-ADC(2)
with the supersystem calculation of [BA·2 H2O]. The columns represent the applied
exchange-correlation functional for the non-electrostatic part of the embedding
potential and the rows represent the method used for the calculation of the
environment electron density ρB(~r).

PBE BLYP BP86 G96-P86 GAM PW91 S11a

HF 0.0402 0.0410 0.0402 0.0399 0.0416 0.0398 0.0418
BLYP 0.0510 0.0520 0.0511 0.0509 0.0529 0.0506 0.0517
B3LYP 0.0476 0.0486 0.0477 0.0475 0.0495 0.0473 0.0486
BHLYP 0.0439 0.0448 0.0439 0.0437 0.0456 0.0435 0.0451
B5050LYP 0.0434 0.0443 0.0434 0.0432 0.0450 0.0430 0.0447
PBE 0.0492 0.0502 0.0494 0.0491 0.0511 0.0489 0.0501
PBE0 0.0459 0.0468 0.0460 0.0457 0.0476 0.0455 0.0470
BP86 0.0491 0.0501 0.0492 0.0490 0.0510 0.0488 0.0500
PW91 0.0494 0.0504 0.0496 0.0493 0.0513 0.0491 0.0503
SOGGA11-X 0.0458 0.0468 0.0459 0.0456 0.0475 0.0455 0.0503

a SOGGA11

HF for the calculation of ρB(~r) yields the best agreement with the supermolecular

calculation with any xc-functional used for vlinemb.
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5.5.3 Uracil with five water molecules

In this last test, the interaction between Uracil (A) and five water molecules as

environment (B) ([UC · 5 H2O]) is even more intense. The five energetically lowest

electronically excited state comprise two (π 7→ π∗) transitions (S2 and S4) and

three (n 7→ π∗) states (S1, S3 and S5) as described in detail in Sec. 5.2.3. Thus,

the excitation energies of the S1, S3 and S5 state are again blue shifted in the

supersystem calculation by about -0.7 eV, -0.34 eV and -0.19 eV, respectively.

Also the S4 state, although it exhibits a (π 7→ π∗) transition character, is blue

shifted by about -0.1 eV. The second (π 7→ π∗) state, the S2 state, is red shifted

by about 0.22 eV. The RADM-FDE-ADC(2) calculations, although exhibiting

a slightly larger error as in the examples before, again all reproduce the results

of the supersystem calculation in very good agreement. Applying the previous

combinations of methods and functionals, the mean absolute errors range from

0.071 eV to 0.084 eV. Again, the applied functional for the computation of the

embedding potential does not affect the results significantly. However, as observed

before, increasing the amount of HF exchange in the method used to calculate

ρB(~r) improves the accuracy of the FDE-ADC calculation. A reduction of the

MAE by up to 0.013 eV can be achieved when using HF for the calculation of

ρB(~r). All MAEs are shown in Table. 5.11.

Table 5.11: Mean absolute errors for the comparison of RADM-FDE-ADC(2)
with the supersystem calculation of [UC·5 H2O]. The columns represent the applied
exchange-correlation functional for the non-electrostatic part of the embedding
potential and the rows represent the method used for the calculation of the
environment electron density ρB(~r).

PBE BLYP BP86 G96-P86 GAM PW91 S11a

HF 0.0718 0.0735 0.0719 0.0719 0.0734 0.0715 0.0735
BLYP 0.0823 0.0843 0.0825 0.0823 0.0843 0.0821 0.0829
B3LYP 0.0793 0.0811 0.0794 0.0793 0.0811 0.0790 0.0802
BHLYP 0.0758 0.0775 0.0759 0.0758 0.0775 0.0754 0.0770
B5050LYP 0.0754 0.0772 0.0755 0.0754 0.0771 0.0751 0.0767
PBE 0.0816 0.0835 0.0817 0.0815 0.0835 0.0813 0.0824
PBE0 0.0782 0.0800 0.0783 0.0782 0.0800 0.0779 0.0793
BP86 0.0810 0.0829 0.0811 0.0810 0.0829 0.0807 0.0818
PW91 0.0818 0.0838 0.0820 0.0818 0.0837 0.0815 0.0826
SOGGA11-X 0.0769 0.0787 0.0770 0.0769 0.0786 0.0766 0.0783

a SOGGA11
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5.5.4 Summary of the results

To summarize the key results, the test of three different systems with environment

interactions ranging from weak polarization up to multiple hydrogen bonds shows

only marginal dependence of the accuracy on the choice of the functional used to

calculate vlinemb(~r). The MAEs for all investigated combinations of the method to

calculate ρB(~r) and xc-functional used in the embedding potential are summarized

in Fig. 5.8. Despite the very small differences in the MAEs, some functionals

can be identified to perform generally better than others in combination with

ADC. The most accurate functionals used for the embedding potentials are the

PBE and the PW91 functionals. The least accurate ones are the BLYP and GAM

functionals. However, overall the differences are negligible and presumably not

relevant in practical calculations.

Figure 5.8: Mean absolute errors (MAE) of the environment induced excitation
energy shifts of the computed states of all three investigated system ([BZ · HF],
[BA · 2 H2O] and [UC · 5 H2O]) for all investigated combinations of the method
to calculate the environment density and the functional to calculate the non-
electrostatic part of the embedding potential.

Regarding the theoretical method used to calculate the environment density

ρB(~r), the differences in accuracy are more significant. In general, hybrid func-

tionals and HF itself perform better than functionals without exact exchange.
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This tendency becomes particularly visible when strong interactions between the

embedded system and the environment play a role. In these cases, the accuracy

depends clearly on the amount of HF exchange, the more the better. Additionally,

it seems not advantageous to apply the same xc-functional for the calculation of

ρB(~r) and for the embedding potential. In fact, it turns out HF has the smallest

MAE when ADC is used for the embedded system. A possible explanation for

the observed trend is, that also the density of the embedded system, which is

calculated using MP(2) level of theory, is largely based on HF theory. This is also

the case in the supermolecular reference calculation. Hence, both densities “match”

best, when both are calculated using the same underlying theoretical model, i.e.

HF, as in the supermolecular approach.
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5.6 Benchmark of FDE-ADC(3) using the

re-assembling of density matrix approach

In this section, the combination of frozen density embedding (FDE) with the

algebraic-diagrammatic construction scheme of the polarization propagator of

third order FDE-ADC(3) is tested. Accordingly to the benchmark of FDE-ADC(2)

(see Sec. 5.2 and 5.3), the same test set of 1) [BZ · HF], 2) [BA · 2 H2O] and 3)

[UC · 5 H2O] will be employed (Fig. 5.1). The supersystems and the isolated core

systems (A) were investigated at ADC(3)/6-311++G** [47–49] level of theory. For

the FDE-ADC(3) calculations, the reassembling of density matrix approximation

(RADM) and the same basis set (6-311++G**) was used, since the basis set study

(Sec. 5.4) showed an improved accuracy for FDE-ADC when basis sets with diffuse

functions are employed. Only in [BA·2 H2O], the aug-cc-pVDZ basis set was chosen

due to convergence issues in the supersystem calculation using the 6-311++G**

basis set. The RADM approach was chosen, since this is the variant capable of

performing productive calculations of larger systems. The HF method was chosen

for the calculation of the environment density ρB(~r) and the PBE functional for

the non-electrostatic part of the embedding potential. As demonstrated in Sec. 5.5,

this combination exhibits the smallest error for FDE-ADC in the tested systems.

5.6.1 Benzene with one hydrogen fluoride molecule

Let me start again with the weakly interacting system [BZ ·HF]. At first, the su-

persystem and isolated benzene are calculated. Next, an FDE-ADC(3) calculation

is performed and the results are compared to the supermolecular calculation.

While the occupied frontier orbitals of [BZ ·HF], i.e. HOMO and HOMO−1 are

typical π orbitals, the corresponding unoccupied frontier orbitals, i.e. LUMO and

LUMO+1, are not necessarily the corresponding π∗ orbitals. Due to the diffuse

basis functions, Rydberg and various other types of virtual orbitals are present in

contrast to calculations using basis sets without diffuse basis functions. Therefore,

the corresponding π∗ to the HOMO and HOMO−1 are LUMO+7 and LUMO+8

in the supermolecular calculation. The LUMO+1 for example is a Rydberg orbital

(R) located in the benzene ring plane opposite to the hydrogen fluoride. The four

energetically lowest electronically excited states of [BZ ·HF] were calculated. Here,

the S1 and S4 states are (π 7→ π∗) transitions, while S2 and S3 are Rydberg

states. A detailed analysis of the excitations is given in Table 5.12.
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5.6. Benchmark of FDE-ADC(3) using the re-assembling of density
matrix approach

In isolated benzene, HOMO and HOMO−1 have π character, whereas LUMO

and LUMO+1 are Rydberg orbitals. The energetically lowest π∗ orbitals are the

LUMO+6 and LUMO+7. For isolated benzene, also the four energetically lowest

excitations were calculated. Again, the S1 and S4 states show (π 7→ π∗) character,

the S2 and S3 states are Rydberg states. A more detailed analysis is given in

Table 5.12. However, it is noticeable that in the calculations employing ADC(3)/6-

311++G** the solvatochromic shifts differ from the calculations at ADC(2)/cc-

pVDZ level. While using the latter a solvatrochromic blue shift due to hydrogen

fluoride could be observed for states S1 to S4 ((π 7→ π∗) transitions, see Sec.

5.2.1), two (π 7→ π∗) excited states show a small red shift at ADC(3)/6-311++G**

level of theory.

In the RADM-FDE-ADC(3) calculation, the hydrogen fluoride is modeled

by virtue of the embedding potential. The resulting orbitals look qualitatively

identical to the ones obtained in the isolated benzene calculation. However, since

in the supermolecular calculation the orbitals localized at the benzene did not show

any difference to the isolated benzene orbitals either, this result is not unexpected.

In the supermolecular calculation, additional orbitals located at hydrogen fluoride

are included, which are by set-up not included in the other calculations. For

ease of comparison, this is taken care of in the orbital numbering and the orbital

numbering of the supermolecular calculation is generally adapted.

Overall, the FDE-ADC(3) calculation shows almost quantitative agreement with

the supermolecular calculation. The S1 and S4 states exhibit (π 7→ π∗) transition

character, the S2 and S3 states are identified as Rydberg states (Tab. 5.12). A

diagrammatic representation of the absorbance shift induced by the environment,

i.e. the difference between supermolecular calculation and isolated benzene as well

as an illustration of the accuracy of the FDE-ADC(3) method in comparison with

the supermolecular calculation is given in Fig. 5.9.

The largest deviation in excitation energies is smaller than 0.002 eV and about

0.0001 for oscillator strengths when the FDE-ADC(3) calculation is compared to

the supermolecular ADC(3) calculation. The mean absolute error (MAE) of all

four states in excitation energies is 0.001 eV and 0.0001 for oscillator strengths.
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Figure 5.9: Analysis of the accuracy of RADM-FDE-ADC(3) for [BZ · HF].
Excitation energy difference (left) and oscillator strength difference (right) of the
isolated benzene to the supersystem (blue) and the FDE-ADC(3) calculation using
the RADM approximation to the supersystem (red). The blue bars correspond
to the solvatochromic shift while the red bars indicate the accuracy of the FDE-
ADC(3) calculation in comparison with the ADC(3) supersystem calculation.

5.6.2 Benzaldehyde with two water molecules

Analogously to the previous system, FDE-ADC(3) has been tested for [BA ·2 H2O].

In both the supermolecular and the isolated benzaldehyde calculation, the HOMO,

HOMO−1 and HOMO−2 exhibit π, π and n character, respectively. However, due

to the chosen diffuse basis set, corresponding π∗ orbitals can be found as LUMO+3

in [BA · 2 H2O] and LUMO+4 in the isolated benzaldehyde calculation. Obviously,

some orbitals changed their energetic order due to the effect of the two water

molecules. Further important π∗ orbitals arise as LUMO+7 and LUMO+8 in

isolated benzene and as LUMO+9 in [BA · 2 H2O]. The occupied orbitals HOMO

and HOMO−1 are reoriented when including the water molecules (see Fig. 5.10).

The five energetically lowest excited states have been calculated both for

[BA · 2 H2O] and isolated benzaldehyde. However, in none of these systems and

independent from the chosen basis set, the calculations of the fourth excited state

(S4) did converge. In both cases, the first excited state exhibits (n 7→ π∗) excitation

character while the states S2, S3 and S5 exhibit local (π 7→ π∗) transition character.

The solvatochromic shift for benzaldehyde is -0.24 eV for the (n 7→ π∗) excitation

and between 0.1 eV and 0.18 eV for the (π 7→ π∗) excitations. A detailed overview
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5.6. Benchmark of FDE-ADC(3) using the re-assembling of density
matrix approach

In the FDE-ADC(3) calculations, the influence of the environment is very well

reproduced. Also the reorientation of the HOMO and HOMO−1 is reproduced

in the FDE-ADC(3) calculation, (Fig. 5.10). The MAE in excitation energies is

0.031 eV and 0.0092 in oscillator strength. The character of the excited states,

compared to [BA · 2 H2O], is retained. While S1 has an (n 7→ π∗) character, the

S2, S3 and S5 states exhibit (π 7→ π∗) character. A diagrammatic representation

of the accuracy of the FDE-ADC(3) calculation for [BA · 2 H2O] is given in Fig

5.11
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Isolated exc. en. diff. [eV]

RADM-FDE-ADC(3) exc. en. diff. [eV]
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Figure 5.11: Analysis of the accuracy of RADM-FDE-ADC(3) for [BA · 2 H2O].
Excitation energy difference (left) and oscillator strength difference (right) of the
isolated benzaldehyde to the supersystem (blue) and the FDE-ADC(3) calculation
using the RADM approximation to the supersystem (red). The blue bars corre-
spond to the solvatochromic shift while the red bars indicate the accuracy of the
FDE-ADC(3) calculation in comparison with the ADC(3) supersystem calculation.
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5.6.3 Uracil with five water molecules

For the last benchmark system, [UC ·5 H2O], the same analysis has been performed

as well. HOMO and HOMO−1 in both the [UC · 5 H2O] and the isolated uracil

exhibit π character. HOMO−2 and HOMO−3 are n orbitals localized at the

oxygen atoms of uracil. Calculation of the five energetically lowest excited states

of [UC · 5 H2O] reveals four (π 7→ π∗) transitions namely the S1, S3, S4, and

S5 states. The S2 state exhibits (n 7→ π∗) transition character. In contrast, in

isolated uracil, the S1 state is an (n 7→ π∗) state and the states S2 to S4 are

(π 7→ π∗) states. For this system, the molecular orbital picture is insufficient to

analyze the character of the excited states properly, since many orbital transitions

contribute to the excitation and the orbitals themselves change both in form

and energetic order between isolated uracil and [UC · 5 H2O]. Therefore, natural

transition orbitals (NTOs, see Sec 2.3.6.1) have been calculated and analyzed to

characterize the excited states. These NTOs reveal the S1 state of isolated uracil

to correspond to the S2 state of [UC · 5 H2O] while the S1 state of the supersystem

corresponds to the S2 state of isolated uracil. The S3 state is identical in both cases,

while the S4 and S5 state in [UC · 5 H2O] exhibit a different character than any of

the calculated states of isolated uracil. These states are energetically lowered by

the environment. An electronic state of [UC · 5 H2O] corresponding to the S4 state

of isolated uracil could not be identified. To facilitate comparison of corresponding

states, each state is assigned to a Greek letter based on its character and not on

its energetic order (see Table 5.14).
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Chapter 5. Benchmarking FDE-ADC up to Third Order

In the FDE-ADC(3) calculation, the effect of the environment onto the em-

bedded system is generally well reproduced. HOMO and HOMO−1 exhibit π

character, the HOMO−2 and HOMO−3 show n character and each is localized on

one oxygen atom. The excited states have the same character and energetic order

as in the supermolecular calculation. With an MAE of 0.053 eV for excitation

energies and 0.0100 for oscillator strengths also the excited state properties are in

good agreement with the supermolecular calculation. This is shown in Fig. 5.12.

However, since the S5 state did not converge in the isolated uracil calculation and

the S4 state of isolated uracil differs from the S4 state in the supermolecular calcu-

lation, these values are excluded from the comparison (blue bars). Additionally,

since the energetic order of the states changes from isolated uracil to [UC · 5 H2O],

the comparison is based on the character of the states and the assignment has

been done according to the supermolecular results.
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Figure 5.12: Analysis of the accuracy of RADM-FDE-ADC(3) for [UC · 5 H2O].
Excitation energy difference (left) and oscillator strength difference (right) of the
isolated uracil to the supersystem (blue) and the FDE-ADC(3) calculation using the
RADM approximation to the supersystem (red). The blue bars correspond to the
solvatochromic shift while the red bars indicate the accuracy of the FDE-ADC(3)
calculation in comparison with the ADC(3) supersystem calculation.
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5.7 Summary and conclusion

In this chapter, I presented a benchmark of the new FDE-ADC method up to third

order in perturbation theory. For the benchmark, three test systems were created,

which were constructed such that an increasing amount of core-environment

interaction occurs. In the first system a benzene molecule represents the embedded

system (A) and as the environment (B) a hydrogen fluoride molecule placed in

plane with the benzene ring was chosen ([BZ ·HF]). Here, the interaction consists

only of polarization and dispersion effects. In the next system, benzaldehyde (A)

with a hydrogen-bonded water-dimer (B) ([BA · 2 H2O]), the interaction is more

intense due to the hydrogen bond between the two subsystems. The last system

consists of an Uracil molecule (A) surrounded by 5 water molecules ([UC · 5 H2O])

which all form a hydrogen bond with uracil. This set of systems was used for all

benchmarks. The benchmark was performed in comparison to supermolecular ADC

calculations of the three systems. For comparison, also isolated ADC calculations

of the embedded systems were performed.

At first FDE-ADC of second order perturbation theory (FDE-ADC(2)) has been

investigated employing both the supermolecular expansion and the re-assemilation

of density matrix approach. Thus, the accuracy of the FDE-ADC(2) method itself

as well as the error induced by the additional approximation of RADM could be

determined. After this, FDE-ADC(3) has been tested using the RADM approach.

Additionally, a study of the basis set dependence of FDE-ADC as well as a study

of the dependence of the choice of the method used to calculate ρB(~r) as well as

the choice of the xc-functional used for the calculation of the non-electrostatic

part of the embedding potential was performed.

In the benchmarks it could be shown that the FDE-ADC method reproduces

the results of the supermolecular calculations very well. For SE-FDE-ADC(2) a

mean absolute error (MAE) of 0.025 eV for excitation energies was determined.

Using the RADM approach, the MAE is slightly higher (0.040 eV). In the RADM-

FDE-ADC(3) benchmark, a MAE of 0.029 eV for excitation energies was calculated.

The basis set study showed an increasing accuracy when basis sets with diffuse basis

functions are used. However, the choice of the method to calculate ρB(~r) slightly

influences the accuracy while the choice of the employed xc-functional for the

embedding potential has practically no influence. It could be seen that HF performs

best and that the MAE is reduced with increasing amount of HF exchange. Possibly

this behavior is due to the better match of a HF based density for the environment

with the HF/MP(2) based density of the embedded system.
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Also, the saving of computational time by using FDE-ADC in comparison

with supermolecular calculations was considered. The computation time for

[UC ·5 H2O] was calculated for a supermolecular ADC(2) calculation and using the

RADM-FDE-ADC(2) method. The calculation of the supersystem takes about 73

hours CPU time on one core keeping all data for the ADC calculation in memory

(Intel Xeon E7-4870v2 2.3GHz, software compiled using Intel C++ and Fortran

compilers [229] v15.0 in combination with the MKL library [230]). In contrast, the

complete FDE-ADC calculations using the RADM aproach which consist of the

MP(2) calculation on system A in the basis functions of A, the HF calculation of

system A in the basis functions of A and B, the HF calculation of system B in

the basis functions of A and B, the creation of the embedding potential and the

final FDE-ADC(2) calculations in the basis function of A takes about 3 hours on

the same machine. This amounts to a saving of 70 hours or more than 95% of the

time needed for the supersystem calculation. For larger systems with even more

environment molecules, the percentage of time saved will be drastically larger due

to the formal O(N5)-scaling of the ADC(2) calculation for the supersystem (with

N being the number of basis functions). A comparison of the computational time

is shown in Fig. 5.13. The size of the environment is successively increased from

Figure 5.13: Comparison of the computational cost in CPU time of a super-
molecular ADC(2) calculation and the RADM-FDE-ADC(2) method.
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1 to 5 water molecules. The computational cost of the supersystem calculation

increases dramatically already for a small environment due to the O(N5) scaling

of ADC(2). Hence, the computational cost is dominated by the calculation of the

embedded species for a small environment. Of course, this trend holds only for

environments up to the same size as system A. The calculation of the environment

scales formally as O(N3), which will become the most time-consuming step for

large environments (e.g. more than 100 water molecules). But for such large

systems, a full ADC calculation is no longer feasible.

In total, the FDE-ADC method is a promising approach for considering en-

vironmental effects on electronically excited states. The error of this method is

lower than the intrinsic error of the used ADC method and using the RADM

approximation explicit treatment of extended environments is feasible. This makes

FDE-ADC to a reliable “black box” method for the calculation of electronically

excited states of embedded systems in extended environments.
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Chapter 6

Representative Applications of

FDE-ADC

“Erwin with his psi can do

Calculations quite a few.

But one thing has not been seen:

Just what does psi really mean?”

Erich Hückel

After benchmarking FDE-ADC(3) in the previous Chapter, I will demonstrate

the potential of the FDE-ADC method on three representative examples, which

comprise computations of larger systems. For these, supermolecular calculations

at ADC(2) or even ADC(3) level are no longer feasible. Therefore, the method

RADM-FDE-ADC is employed. In the first example, the photoswitch spiropyran

dissolved in water is analyzed and compared to previous QM- and QM/MM-based

investigations performed by myself during my master thesis. In the second example,

the excited states of benzoquinone solvated in methanol are investigated. In the

third example, the core-excited states of CO@C60, a CO molecule caught in a C60

fullerene, are calculated using the core-valence separated FDE-CVS-ADC method.

The different influence of a C60-cage on the core excitations in carbon monoxide

are investigated.1

1 Parts of Chapter 6 have already been published in
Implementation and application of the frozen density embedding theory with the
algebraic diagrammatic construction scheme for the polarization propagator up to
third order
Stefan Prager, Alexander Zech, Tomasz A. Wesolowski and Andreas Dreuw
submitted for publication, (2017)
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6.1 Excited state analysis of spiropyran in water

Spiropyran is a molecular photoswitch, which undergoes a ring-opening and isomer-

ization reaction upon irradiation with UV-light. [231–233] The photoisomerization

process has been investigated spectroscopically using femtosecond vis-pump/vis-

and IR-probe spectroscopy [234,235].

During my master thesis, I investigated the spiropyran-to-merocyanin photore-

action both in the gas phase and in aqueous solution using a QM/MM. The QM

calculations were performed on DFT and TD-DFT level of theory after a thorough

benchmark of the applied functional against RI-CC2 and complete active space self-

consistent field (CASSCF) [236] / CASSCF with second-order perturbation theory

(CASPT2) [237] results. The two energetically lowest excited states of spiropyran

have been characterized as “bright” and “dark” state indicating the difference in

oscillator strengths. Occupying the bright state leads to a ring-opening reaction

to merocyanine. These two important excited states could be identified in the

presence of the water environment as well. However, the water environment had

only minor influences on the vertical excitations and photochemistry of spiropyran.

These results have been published in Ref. 30. In this section, spiropyran in water

is investigated using FDE-ADC to verify the previous results.

A supersystem of spiroypran and 100 water molecules arranged in at least two

solvation shells around spiropyran was created and fully optimized at DFT/ωB97X-

D3/6-31G* level of theory. This structure is used for the calculation of vertical

excitation energies of isolated spiropyran as well as of the embedded system using

FDE-ADC.

The calculations of the excited states have been performed at ADC(2)/cc-pVDZ

and FDE-ADC(2)/cc-pVDZ level of theory. For the FDE-ADC(2) calculation,

the environment density ρB(~r) was calculated using HF and the non-electrostatic

part of the embedding potential was calculated using the PBE functional. The

geometry of the supersystem is shown in Fig. 6.1

The two energetically lowest excited states were calculated and analyzed using

natural transition orbitals (NTOs). NTOs are orbitals specific for one excitation

and describe the electronic transition itself (see Sec. 2.3.6.1). NTOs always come

in pairs, one representing the particle, the other representing the hole. Both share

the same eigenvalue which corresponds to the contribution of this pair to the

total excitation. Although it is mathematically not fully correct, for the sake

of simplicity the nomenclature used for molecular orbitals is also applied here.

Therefore, the hole NTO exhibiting the highest eigenvalue is labeled “highest
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Figure 6.1: Supersystem of spiropyran (balls and sticks, embedded system (A))
surrounded by 100 water molecules (environment (B)).

occupied natural transition orbital” (HONTO) and the corresponding particle

NTO sharing the same eigenvalue is labeled “lowest unoccupied natural transition

orbital” (LUNTO). The NTO pairs exhibiting lower eigenvalues follow the same

scheme (HONTO−1, LUNTO+1,...).

In isolated spiropyran, the S1 and S2 states exhibit excitation energies (oscillator

strengths) of 4.172 eV (0.0506) and 4.434 eV (0.0084), respectively. Here, the

first excited state clearly corresponds to the “bright” state, while the “dark” state

is represented by S2. Analyzing the corresponding NTOs, the S1 state can be

identified as a local (π 7→ π∗) transition on the benzopyran moiety and the S2

state as a charge-transfer state from the indoline moiety to the benzopyran side.

The leading NTO pairs for both the S1 and S2 states are shown Fig. 6.2. Their

contribution to the total excitations are 78.1 % and 79.7 % for the S1 and S2 state,

respectively.

In the FDE-ADC(2) calculation, the excitation energy of the S1 state is

increased while the excitation energy of the S2 state decreases. The excitation

energies (oscillator strengths) of S1 and S2 are now 4.222 eV (0.0438) and 4.265 eV

(0.0096), respectively. However, their transition character is not changed compared
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6.2 Splitting of excited stats of para-benzoquinone in

methanol

To simulate para-benzoquinone in methanol solution, a para-benzoquinone molecule

was surrounded by 42 methanol molecules. Benzoquinone was chosen as an example

because it is a symmetric molecule of moderate size, has a delocalized π-electron

system, can act as hydrogen bond acceptor and exhibits low-lying electronically

excited states with both single- and double-excitation character. Therefore, a

quantum chemical method including doubly excited configurations in more than

zeroth order of perturbation theory, like ADC(3), is needed to describe these

excitations properly. [108] Since benzoquinone is soluble in moderately polar solvents,

methanol was chosen as environment. The supersystem is shown in Fig. 6.4.

Isolated benzoquinone was optimized at MP(2)/cc-pVTZ level of theory. This

geometry serves as the reference for gas phase calculations. Additionally, the

supersystem of benzoquinone and 42 methanol molecules placed around the ben-

zoquinone was fully optimized at DFT/ωB97X-D3/6-31G* level of theory. This

Figure 6.4: Supersystem of para-benzoquinone (balls and sticks, embedded
system (A)) and 42 methanol molecules (environment (B)).

193



Chapter 6. Representative Applications of FDE-ADC

structure was used for the investigations of the effects of the environment. The

two energetically lowest excited states of p-benzoquinone are investigated at

ADC(3)/6-311G** level of theory for the two isolated benzoquinone structures i.e.

one optimized at MP(2) level in the gas phase and the other cut out of the methanol

environment, and at FDE-ADC(3)/6-311G** level of theory for including the effect

of the environment on p-benzoquinone. For the FDE-ADC(3) calculation, the

RADM approximation was used, the density of the environment was calculated at

HF level of theory and the non-electrostatic part of the embedding potential was

calculated employing the PBE functional.

In the gas phase, these states are with excitation energies of 2.840 eV and

2.999 eV close in energy. Both are (n 7→ π∗) states each containing transitions

from both n orbitals localized at the oxygen atoms. Therefore, both excited states

have practically no oscillator strength. The excitation character is visualized by

attachment and detachment densities (Fig. 6.5). The detachment density is that

part of the total electron density that is removed upon excitation and replaced

by the attachment density. In combination, they unambiguously characterize

the electronic transition. As can readily be seen, both attach- and detachment

densities of both states are delocalized over both oxygen atoms and the central

ring.

Figure 6.5: Detachment (left) and attachment (right) densities of the S1 (top)
and S2 state of isolated gas phase p-benzoquinone.

A very similar excitation pattern is obtained for the supersystem-optimized

isolated benzoquinone structure. Both S1 and S2 exhibit (n 7→ π∗) transition

character. Since the geometry is somewhat different, also the excitation energies

vary slightly and correspond to 2.893 eV and 3.077 eV for S1 and S2, respectively.

The oscillator strength of both states is still zero, and also the attachment and
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detachment densities are practically identical to the gas phase picture. However,

they are slightly distorted due to the solvation-induced changes in the geometry.

The attachment and detachment densities are shown in Fig. 6.6. Still, the

attachment and detachment densities are delocalized as observed in the isolated

gas phase results.

Figure 6.6: Detachment (left) and attachment (right) densities of the S1 (top)
and S2 state of supersystem-optimized isolated p-benzoquinone.

A different picture is obtained when the environment is included via FDE.

While the excitation energy of the first excited state is almost identical to the

isolated calculation in the supersystem-optimized geometry, the excitation energy

of the second excited state is increased by about 0.23 eV. Although both are still

(n 7→ π∗) states, they are now localized on one of the oxygen atoms each. Hence,

the environment induces a separation and localization of the two excited states.

This is nicely seen in the attachment and detachment densities (Fig. 6.7).
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Figure 6.7: Detachment (left) and attachment (right) densities of the S1 (top)
and S2 state (bottom) of p-benzoquinone embedded in 42 methanol molecules at
FDE-ADC(3) level of theory.
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6.3 Core excited states of carbon monoxide in fullerene

For the computation of core-excited states, the core-valence separation can be

employed within ADC schemes which has recently been implemented in Q-Chem as

the CVS-ADC method. [218–221] In CVS-ADC, the coupling terms between core-

and valence excitations are neglected. Since the energy difference between these

two kinds of excitations is very large, the coupling is very weak and hence this is a

good approximation. This facilitates the calculation of energetically high lying

core-excited states dramatically.

In this section the influence of a C60 cage on the core excitations of a carbon

monoxide incorporated in C60 are demonstrated. For that purpose, CO@C60 was

created and fully optimized at DFT/ωB97X-D3/6-31G* level of theory. The

system is shown in Fig. 6.8.

For comparison the five energetically lowest (C1s)-core excited states were

calculated at CVS-ADC(2)-x/6-311++G** level of theory for isolated CO. The

core-excited states Sc1 to Sc5 exhibit the following character: (C1s 7→ π∗), (C1s 7→ π∗),

Figure 6.8: CO@C60, drawn as balls and sticks (embedded system (A)) and C60

molecule (environment (B)).
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(C1s 7→ σ∗), (C1s 7→ π∗) and (C1s 7→ π∗) respectively. The corresponding excitation

energies are given in Tab. 6.1. Sc1 and Sc2 as well as Sc4 and Sc5 are degenerate.

Employing the FDE-ADC approach for including the effect of C60, the five

energetically lowest core excited states were recalculated including the embedding

potential obtained from a HF calculation for the electron density of C60 and

the PBE functional for the non-electrostatic part of vlinemb(~r) using the RADM

approximation.

Table 6.1: Excitation energies (in eV) and oscillator strengths (in parentheses) of
the five energetically lowest C1s-core excitations of isolated CO and CO@C60 using
the FDE-CVS-ADC(2)-x method.

Core excited states C1s

state Iso. CVS-ADC(2)-x FDE-CVS-ADC(2)-x

S1 287.730 (0.071) 287.656 (0.073)
S2 287.730 (0.071) 287.659 (0.073)
S3 293.299 (0.004) 293.493 (0.003)
S4 294.577 (0.010) 294.593 (0.006)
S5 294.577 (0.010) 294.628 (0.007)

Including the environment in the calculation of core excited states via FDE-

CVS-ADC shows only small influences. All calculated C1s-core excited states are

very similar to the results obtained for isolated CO regarding energies as well as

properties and characters. This is verified by difference density analyses. The

largest energetic shift is observed for the Sc3 state with about 0.2 eV to higher

energies in the endohedral case. The excitation character of all five calculated states

is retained. However, since C60 breaks the symmetry of CO, Sc1 and Sc2 as well as

Sc4 and Sc5 are not fully degenerate any more. In Table 6.1, the excitation energies

and oscillator strengths for the five energetically lowest C1s-core excitations are

given.

The difference density plots for the core excited states of CO@C60 obtained

using the FDE-CVS-ADC method are qualitatively identical to the ones obtained

for isolated CO. Note, that in the core excited difference density plots most of the

change in electron density is due to orbital relaxation effects. [221] The difference

densities for the five energetically lowest C1s-core excited states Sc1 to Sc5 obtained

using FDE-CVS-ADC(2)-x are shown in Fig. 6.9
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Figure 6.9: C1s-core excited difference density plots of Sc1 (top left), Sc2 (top right),
Sc3 (middle left), Sc4 (middle right) and Sc5 (bottom) of CO@C60 calculated using
FDE-CVS-ADC(2)-x. The difference density plots for isolated CO are practically
identical.
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Chapter 7

Polarization of the

Environment

“The scientist only imposes two things, namely truth and

sincerity, imposes them upon himself and upon other scientists.”

Erwin Schrödinger

Until now, in FDE-ADC the core system was embedded in the frozen density of

the isolated environment, which was accomplished by incorporating the embedding

potential in the ground state calculation of the embedded system. Although the

tests have shown that this works well also for excited states, it covers only a part

(albeit the biggest one) of the total interaction between central system and environ-

ment. A more specific and even mutual interaction between the two subsystems

is missing. Also, the changed electronic structure due to the excitation of the

embedded system is not considered. This mutual interaction, or back-interaction

of the embedded system influencing the environment is referred to as environment

polarization. Note that still only electronic interactions are considered. Neither a

geometric adaption of the embedded system nor the environment is included at

this point. These will become important when going beyond instantaneous effects

like for photoreactions or fluorescence calculations.

In this section, I will go beyond the approximation of a frozen environment

density and present mainly two different types of environment polarization as well

as their implementation in the module fdeman in Q-Chem and its application

in some test calculations. However, I would like to emphasize that this is still in

development and all presented results should be considered preliminary. Change

of the results due to improvements or bug fixes cannot be excluded.
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7.1 Variants of environment polarization

Environment polarization beyond the frozen density approximation can be divided

into two important subcategories. In FDET, the two individual systems are initially

treated in the gas phase. This means that the environment density ρB(~r), in which

the central system is embedded, is calculated for an isolated system B without the

presence of system A. But in reality, without perturbation, all molecules are fully

equilibrated with their environment. This includes a mutual interaction, which is

missing here. Thus, the first category of environment polarization is attributed to

the ground state interaction between embedded system and environment. This is

accomplished by not using a gas phase density of the environment in the calculation

of the embedding potential but rather a density which was calculated under the

electrostatic influence of the embedded system. Since this affects the environment

density directly before the calculation of the embedding potential, it is referred

to as pre-polarization. [238] As a method to better describe the fully equilibrated

condition, it is most beneficial in ground state calculations.

In an excitation process, the embedded system is not equilibrated with the

environment anymore due to the absorption of a photon (here we assume that only

the central system absorbs a photon and the environment stays in the electronic

ground state). The electronic structure changes, it differs from the electronic

ground state structure, but also from the structure of other excited states. This

change of the electronic structure depends partly on the electronic structure of

the environment. This is considered in classical FDET. However, the change of

the electronic structure of the embedded system also induces fluctuations in the

environment electron density. This leads to a mutual interaction of the embedded

system and the environment, which directly influences the absorption properties.

The excited state electron density of the embedded system equilibrates with the

electron density of the environment, which represents the final point in time in the

photon absorption process. This influence of the excited embedded system onto

the environment is referred to as excitation-induced environment polarization. [239]

Using FDET for describing environment influences, using either (or both)

of the mentioned approaches to relax the previously frozen environment and

letting it adapt to a given electron structure of the embedded system can improve

the description of the system. However, an overestimation of the environment

polarization might occur, since always a full self-consistent equilibration of the two

subsystems is assumed, which cannot be guaranteed in reality.
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7.2 Implementation of environment pre-polarization

As mentioned before, the electron density of the environment, ρB(~r), which is used

to calculate the embedding potential, is calculated in the gas phase. For inclusion

of pre-polarization, it is calculated under the influence of the embedded system A.

Therefore, the electron density of system A, ρrefA (~r), is typically calculated before

ρB(~r). This allows the calculation of a potential of A acting on B. This can be

accomplished by means of a potential obtained from a charge distribution, e.g.

Mulliken charges [240] of A or rather as an electrostatic potential created by the

nuclear charges and the electron density according to Eq. 7.1.

vprepolemb [ρA, vA](~r) = vA(~r′) +

∫
ρA(~r′)∣∣∣~r − ~r′∣∣∣d~r (7.1)

This potential is subsequently added to the Fock matrix of B during the SCF.

The pre-polarization of B is implemented into Q-Chem as part of the module

fdeman. If activated upon user request by the Boolean parameter prepol in

combination with the specification of the type via the parameter prepol type in

combination with the option “density” or “coulombic”, an FDE-ADC calculation

including pre-polarization of B is performed. As indicated by the parameter

prepol type, fdeman is prepared also for other types of expressing the influence of

A on B, e.g. using the aforementioned Mulliken charges.

In fdeman, the pre-polarization is performed by the function make prepol,

which is called from fde control between the calculation of ρrefA (~r) and ρB(~r).

In principle, it just contains calls of the functions compute nuclear potential

and compute coulomb potential, which were introduced in Sec. 4.2.3.1. But

this time, these functions are called with the parameter for fragment A instructing

the functions not to calculate the potential of fragment B but rather of fragment A.

This is always performed using supermolecular expansion, since B is always treated

in the supermolecular basis. Also, in make prepol, a flag is set instructing

scfman to read in the previously exported potentials and to add them to the

Fock matrix as described in Sec. 4.2.3.3.

If ρrefA (~r) is calculated first, the pre-polarization can be performed with only a

minor cost of computational time compared to a standard FDE-ADC calculation.
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7.3 Implementation of environment polarization due

to excitation of the embedded system

In the scope of FDET, excitation-induced environment polarization can be carried

out using a similar approach as applied for the pre-polarization. However, it

contains some important differences. Since the influence of an excitation of

the embedded system on the environment shall be considered, the excited states

including the effect of the environment have to be calculated at first. Therefore, the

environment polarization is considered after employing the embedding potential

instead of before as done in the pre-polarization approach. Additionally, the

mutual interaction between the excited state density of the embedded system

and the environment has to be calculated iteratively until self-consistency. This

is done by exchanging the two subsystems and embedding the environment in

the density of the embedded system. After this, the systems are switched again

until convergence is reached. This is known as freeze and thaw cycles, since both

subsystem densities are alternately kept frozen and relaxed. [239] Obviously, this

is a state-specific approach which has to be converged for each investigated state

separately. Here, an approximation to these freeze and thaw cycles is used. Instead

of performing macro-cycles until convergence, here only one cycle consisting of

switching twice (“there and back again”) without full convergence is applied. This

is denoted as state-specific iteration (SSI). This approximation is valid since freeze

and thaw cycles converge typically in less than 10 cycles [239] and the first cycle

is the dominant one. Fully converging using multiple cycles is not only very

demanding in terms of computational time considering the scaling of ADC, it

also includes the problematic of changing states. This can be described by two

states changing their energetic order due to the environment interaction. The

polarization is then calculated for the wrong state in the following cycle.

A completely new approach for including the excitation-induced environment

polarization is using a perturbative-like energy correction. In this new approach, a

polarization potential is created from the difference density of B embedded in the

ith excited state of A minus B embedded in the ground state of A. This potential

is subsequently contracted with the ith excited state difference density of A to

yield an energy correction for the ith excited state accounting for the environment

polarization. This approach is denoted difference density polarization potential

(DDPP).

Both variants are implemented as part of fdeman in the function fde pol-
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control. Depending on user request, either polarization via SSI or DDPP is

calculated. This can be controlled in the $fde input section with the Boolean

keyword polarization B. The type of environment polarization is specified with

the keyword polarization B type and the parameters SSI or DDPP to request the

corresponding variant.

7.3.1 Polarization via state-specific iteration

7.3.1.1 Supermolecular expansion

For the calculation of SSI environment polarization, at first a normal FDE-ADC

calculation has to be performed. Applying linearized FDET, the applied embedding

potential is defined as:

vAemb[ρ
ref
A , ρB, vB](~r) = vB(~r) +

∫
ρB(~r ′)∣∣~r − ~r ′∣∣d~r ′ + δEnadxc,T [ρrefA , ρB]

δρrefA (~r)
. (7.2)

After this initial calculation, the state-specific environment polarization is calcu-

lated. This can be understood as a macrocycle which has to be performed once for

each excited state of A. This is illustrated in Fig. 7.1. The embedding potential

in Eq. 7.2 is applied in step 1. After the initial calculation of the excited states

including ground state embedding in step 2, the two subsystems are interchanged

for the first time. B is now embedded in the total first excited state density of

A. This is done in step 3. As always, linearized FDET is applied, but now the

linearization is done in ρB(~r). The embedding potential for embedding B in the

ith excited state total electron density reads:

vBemb[ρ
i
A, ρ

ref
B , vA](~r ′) = vA(~r ′) +

∫
ρiAemb(~r)∣∣~r − ~r ′∣∣ d~r′ +

δEnadxc,T [ρiAemb , ρ
ref
B ]

δρrefB (~r)
. (7.3)

The embedding potential is created analogously to the embedding potential acting

on A by the functions compute nuclear potential, compute coulomb po-

tential and compute xct potential as described in Sec. 4.2.3.1. Then, a

ground state calculation of B is performed under the influence of the embedding

potential by adding the embedding potential to the Fock matrix of B during the

SCF. Therefore, in fde polcontrol a flag is set to enable the read-in of the

embedding potential in scfman. This new calculation of B represents step 4. Now,

a new embedding potential of the polarized ρB(~r) acting on A is created (step 5).

It depends on the polarized density of B and the already embedded density of A
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Figure 7.1: Flowchart of excitation-induced environment polarization via state-
specific iteration. Implemented in the function fde polcontrol within fdeman.

from the initial FDE-ADC calculation. This embedding potential is given as

vAemb[ρ
ref

Aiemb
, ρBpol , vB](~r) = vB(~r) +

∫ ρBpol(~r
′)∣∣~r − ~r ′∣∣ d~r ′ +

δEnadxc,T [ρref
Aiemb

, ρBpol ]

δρref
Aiemb

(~r)
. (7.4)

This potential acting on A is again added to the Fock matrix during the SCF. After

the ground state calculation, an excited state ADC calculation is performed simi-

larly to the initial FDE-ADC calculation. This yields state-specifically embedded

excited states for the ith excited state (step 6).

In summary, for the calculation of the excited states of A embedded in the

electron density of B including the excitation-induced environment polarization via

SSI, after the initial FDE-ADC calculation with ground-state embedding, for each

excited state of A the following tasks are performed: creation of an embedding

potential of A acting on B, performing an embedded ground state calculation of B,

creating a new embedding potential of B acting on A containing the now polarized

environment density and finally performing an excited state calculation of A on

ADC level of theory. As a consequence, in each cycle, all requested excited states
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are calculated. From these excited states, the state corresponding to each cycle

has to be extracted. Since excited states might swap due to the modified influence

of the environment interaction, this has to be done by hand. The corresponding

excited states have to be chosen based on excitation energy, excitation properties

and orbital transitions characterizing the state.

If the presented cycle is repeated from step 2 to 6 until the electron densities of

A and B are self-consistent instead of only once as done here, this would represent

the full freeze and thaw procedure.

7.3.1.2 Re-assembling of density matrix

In the supermolecular expansion, the implementation is directly realized as de-

scribed above. Using the RADM approximation, additional steps have to be

considered. Since the ADC calculation is performed in the monomer basis yielding

density matrices only in the basis functions of A, but an embedding potential

acting on B is required, again a re-assembled density matrix has to be created,

but this time using the ADC excited state density matrix in the AA block.

After the initial FDE-ADC calculation in step 1 and 2, the original uncut

embedding potential is retrieved and used to perform a embedded HF ground

state calculation of A embedded in B in the supermolecular basis. This yields

the embedded HF density matrix in the basis of A and B. In combination with

the previously calculated ADC density matrix of A in the basis of A, the new

excited state re-assembled density matrix is built. This can be used to construct

the embedding potential on B in step 3. Step 4 is performed as described for the

supermolecular expansion. For the state-specific embedding calculation of A in

B in steps 5 and 6, the embedding potential is constructed from the polarized

supermolecular ground state density matrix of B and the re-assembled excited

state density matrix of A and again cut to the basis functions of A only. Then,

the SSI FDE-ADC calculation of A can be performed in the monomer basis.

7.3.2 Polarization via difference density polarization potential

7.3.2.1 Supermolecular expansion

In the SSI approach for calculation of the excitation-induced environment po-

larization, the excited states of A have to be calculated several times. Since

ADC calculations are known to be very demanding in computational cost, this

might exceed the given timescale. The difference density polarization potential
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(DDPP) approach is designed to yield energy corrections for the polarization of

the environment without the need of recalculating the excited states of A.

The total process of DDPP is illustrated in Fig. 7.2. At first, a normal

FDE-ADC calculation has to be performed to calculate the excited states of A

embedded in the isolated density of B (step 1 and 2). The employed linearized

embedding potential is given as

vAemb[ρ
ref
A , ρB, vB](~r) = vB(~r) +

∫
ρB(~r ′)∣∣~r − ~r ′∣∣d~r ′ + δEnadxc,T [ρrefA , ρB]

δρrefA (~r)
. (7.5)

As a result of this FDE-ADC calculation, a total ground state electron density

and N total excited state electron densities are obtained with N being the amount

of calculated excited states. Now, the further procedure is split. On the one

side, the ground state electron density is used, on the other side the excited state

electron densities. Similar to the freeze and thaw approach, the subsystems are

interchanged. An embedding potential of the embedded ground state (GS) density

onto the environment is created (step 3a). This is done analogously as described

in Sec. 4.2.3.1. The calculated embedding potential is defined as:

vBGSemb [ρGSA , ρrefB , vA](~r ′) = vA(~r ′) +

∫
ρGSAemb(~r)∣∣~r − ~r ′∣∣ d~r′ +

δEnadxc,T [ρGSAemb , ρ
ref
B ]

δρrefB (~r)
. (7.6)

This embedding potential is applied in a ground state calculation of B in step

4a. As a result, an embedded ground state electron density of the environment

ρS0
Bemb−GS

is obtained. On the other side, a similar potential is created but this time

using the ith excited state electron density (step 3b). The embedding potential is

given as:

v
BESi
emb [ρESiA , ρrefB , vA](~r ′) = vA(~r ′) +

∫
ρESiAemb

(~r)∣∣~r − ~r ′∣∣ d~r′ +
δEnadxc,T [ρESiAemb

, ρrefB ]

δρrefB (~r)
. (7.7)

Again, applying the embedding potential in a ground state calculation of B yields

a second ground state electron density ρS0
Bemb−ESi

(step 4b). This includes the

influence of the ith excited state of A on B while the electron density ρS0
Bemb−GS

of

step 4a includes the influence of the ground state of A on B. Subtracting these

two densities yields a difference density

∆ρS0
BESi−GS

(~r) = ρS0
Bemb−ESi

(~r)− ρS0
Bemb−GS

(~r) (7.8)
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describing the effect of the excitation of A on the electron density of B (step 5).

Figure 7.2: Flowchart of excitation-induced environment polarization via
difference density polarization potential. Implemented in the function
fde polcontrol within fdeman.

This difference density is used to create another potential. Because of the used

difference density, it is named difference density polarization potential. Also, this

potential is linear in A. It is defined as

v
AESi−GS
DDPP [ρ

GSref
Aemb

,∆ρS0
BESi−GS

](~r ′)

=

∫ ∆ρS0
BESi−GS

(~r ′)∣∣~r − ~r ′∣∣ d~r′ +
δEnadxc,T [ρ

GSref
Aemb

,∆ρS0
BESi−GS

]

δρ
GSref
Aemb

(~r)
.

(7.9)

It is important to note that no nuclear potential is contained in the DDPP, since

this does not depend on the polarization induced in the environment and therefore

cancels out. For each ith excited state of A, a potential is obtained. In step 7 this

potential is contracted with the corresponding ground to ith excited state electron
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difference density of A.∫
∆ρESi−GSAemb

(~r) · vAESi−GSDDPP [ρ
GSref
Aemb

,∆ρS0
BESi−GS

](~r ′) = EESipol (7.10)

Addition of this energy correction to the excitation energy of state i yields the

final excitation energy including the effect of the excitation-induced environment

polarization (step 8).

It should be pointed out that here only a ground state calculation of B for

each excited state of A is needed while in SSI, both a ground state calculation of

B and an excited state calculation of A for each excited state of A is needed.

7.3.2.2 Re-assembling of density matrix

As in the SSI procedure, additional steps have to be included when the RADM

approximation is used. A ground state embedding calculation of A in B in the

supermolecular basis has to be performed after the FDE-ADC calculation in steps

1 and 2 using the uncut embedding potential of step 1. Then, as described above,

a re-assembled density matrix of A has to be created to build the embedding

potentials used in steps 3a and 3b. The AA block used for the construction is

either an MP(2) difference density for 3a or an ADC difference density for 3b.

The process proceeds similarly as in SE with the embedding of B in both the

ground state of A and separately in the ith excited state of A in steps 4a and 4b,

respectively. From these densities, the difference density is built and the difference

density polarization potential is calculated according to steps 5 and 6. The used

electron density of A is the embedded ground state reference density expressed

as the re-assembled density matrix created in the beginning after step 2. For the

contraction, the polarization potential is cut to the basis functions of A, since the

ADC difference density is also only given in the monomer basis.
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7.4 Results

In this section, the aforementioned variants of environment polarization are tested.

Although no full comprehensive benchmark is performed, the tests provide insights

into the capabilities of the various methods. All tests have been performed on

FDE-ADC(2)/cc-pVDZ level of theory and are compared with the supersystem

calculations and the FDE-ADC(2) calculations without environment polarization

according to the benchmark presented in Secs. 5.2 and 5.3. The tests are performed

using one or more of the benchmark molecules presented in Sec. 5.1.

7.4.1 Pre-polarization of the environment

At first, the pre-polarization of the environment has been tested using the system

[BA ·2 H2O]. Therefore, an electrostatic embedding potential of A is created before

calculation of the environment electron density. This potential is used to calculate

ρB(~r) under the influence of the nuclei and ground state electron density of A.

The five energetically lowest excited states have been calculated. In this

test, the RADM approximation was employed and analogously to the FDE-

ADC(2) benchmark, HF was used for the calculation of the environment and

the xc-functional PBE was employed for the calculation of the non-electrostatic

embedding potential. The excitation energies and oscillator strengths are listed

in Tab. 7.1. For comparison, also the unpolarized FDE-ADC(2) results and the

supermolecular ADC(2) results are given.

Table 7.1: Excitation energies and oscillator strengths for the pre-polarized FDE-
ADC(2)/cc-pVDZ calculation in the RADM approach for the [BA · 2 H2O] system.
For comparison, the results of the supermolecular ADC(2) and unpolarized FDE-
ADC(2) calculations are given as well.

Exc. Energies [eV] Osc. Strength

state supersys. unpol. pre-pol. supersys. unpol. pre-pol

S1 3.897 3.878 3.888 0.0001 0.0001 0.0001

S2 4.813 4.851 4.847 0.0197 0.0164 0.0167

S3 5.554 5.628 5.620 0.3444 0.3490 0.3502

S4 6.751 6.732 6.755 0.0059 0.0001 0.0001

S5 6.753 6.803 6.799 0.2942 0.2979 0.2943

The inclusion of the pre-polarization in the FDE-ADC(2) calculation slightly
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improves the accuracy. The MAE of all five excited states compared with the

supersystem calculation is reduced slightly from 0.040 eV for unpolarized FDE-

ADC(2) to 0.032 eV in the calculation including the pre-polarization of the

environment. A state-specific comparison is shown in Fig 7.3.

-0.03 0.02 0.07

S1

S2

S3

S4

S5

Difference in excita�on energies [eV]

FDE-ADC(2) no pol.

FDE-ADC(2) pre-pol.

Figure 7.3: Analysis of the accuracy of pre-polarization for RADM-FDE-ADC(2)
in [BA · 2 H2O]. The deviation of excitation energies to the supermolecular
ADC(2) calculation is given for unpolarized FDE-ADC(2) (blue) and including
pre-polarization (red).

In comparison with the unpolarized calculation, the pre-polarization shows

improvement for each state. However, since including the pre-polarization using

the coulombic interaction hardly increases the computational cost of an FDE-

ADC calculation, it is a promising and efficient improvement over unpolarized

FDE-ADC.

7.4.2 Excitation-induced environment polarization via SSI

The state-specific iteration procedure for including excitation-induced environment

polarization has been tested employing both the supermolecular expansion as well

as the RADM approximation. All other settings of the test are identical to the

settings described in the pre-polarization test in the previous section.

7.4.2.1 Supermolecular expansion

At first, the system [BA · 2 H2O] was used. An SSI cycle has been performed for

each of the calculated excited states. The excited states are given in Tab. 7.2.

Most of the excited states are clearly better described when the polarization of
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Table 7.2: Excitation energies and oscillator strengths for the SSI-polarized
FDE-ADC(2)/cc-pVDZ calculation in the supermolecular expansion for the [BA ·
2 H2O] system. For comparison, the results of the supermolecular ADC(2) and
unpolarized FDE-ADC(2) calculations are given as well.

Exc. Energies [eV] Osc. Strength

state supersys. unpol. SSI-pol. supersys. unpol. SSI-pol

S1 3.897 3.892 3.907 0.0001 0.0001 0.0001

S2 4.813 4.837 4.818 0.0197 0.0174 0.0184

S3 5.554 5.595 5.562 0.3444 0.3518 0.3566

S4 6.751 6.743 6.731 0.0059 0.0001 0.0001

S5 6.753 6.784 6.768 0.2942 0.2908 0.2780

the environment is included. Only the S1 and S4 states exhibit a slightly larger

deviation. This might be due to their (n 7→ π∗) excitation character. In contrast,

for the (π 7→ π∗) states, the deviation is more than halved. This is shown in Fig.

7.4 The MAE for excitation energies is reduced from 0.022 eV to 0.012 eV. The

-0.04 -0.02 0 0.02 0.04 0.06

S1

S2
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S4

S5

Difference in excita!on energies [eV]

FDE-ADC(2) no pol.

FDE-ADC(2) SSI pol.

Figure 7.4: Analysis of the accuracy of SSI-polarization for SE-FDE-ADC(2) in
[BA·2 H2O]. The deviation of excitation energies to the supermolecular ADC(2) cal-
culation is given for unpolarized FDE-ADC(2) (blue) and including SSI-polarization
(red).

MAE for the oscillator strength is slightly increased from 0.004 to 0.007. However,

since now a different potential is employed for each excited state, the excited states

are not orthogonal to each other anymore, which prevents a direct comparison of
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the properties. Therefore, the oscillator strengths have to be treated with caution.

Next, the [UC · 5 H2O] system was employed. Again, an SSI cycle has been

performed for each calculated excited state. The excitation energies and oscillator

strengths are given in Tab. 7.3. Most of the states are now better described.

Table 7.3: Excitation energies and oscillator strengths for the SSI-polarized
FDE-ADC(2)/cc-pVDZ calculation in the supermolecular expansion for the [UC ·
5 H2O] system. For comparison, the results of the supermolecular ADC(2) and
unpolarized FDE-ADC(2) calculations are given as well.

Exc. Energies [eV] Osc. Strength

state supersys. unpol. SSI-pol. supersys. unpol. SSI-pol

S1 5.143 5.111 5.175 0.0016 0.0007 0.0020

S2 5.215 5.291 5.244 0.2371 0.2162 0.2077

S3 6.211 6.223 6.244 0.0001 0.0003 0.0008

S4 6.292 6.321 6.327 0.0963 0.0851 0.0915

S5 6.657 6.751 6.715 0.0005 0.0023 0.0015

However, in this case, no correlation with the type of excitation is noticeable. A

comparison is shown in Fig. 7.5. For the S2 state, the deviation is more than halved,
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S1

S2

S3

S4

S5

Difference in excita!on energies [eV]

FDE-ADC(2) no pol.

FDE-ADC(2) SSI pol.

Figure 7.5: Analysis of the accuracy of SSI-polarization for SE-FDE-ADC(2) in
[UC·5 H2O]. The deviation of excitation energies to the supermolecular ADC(2) cal-
culation is given for unpolarized FDE-ADC(2) (blue) and including SSI-polarization
(red).

but not for the S4 state although both are characterized by (π 7→ π∗) transitions.
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The S5 state shows an improvement despite exhibiting an (n 7→ π∗) character.

Interestingly, the deviation of the S1 state changes the sign, while the absolute

value hardly varies. Now, the excitation energy is overestimated. The MAE

for excitation energies is reduced from 0.049 eV to 0.037 eV. The MAE for the

oscillator strengths is unchanged (0.007)

7.4.2.2 Re-assembling of density matrix

The SSI environment polarization scheme was also applied in combination with

the RADM approximation. Again, the [BA · 2 H2O] system was used first. The

excitation energies and oscillator strengths are listed in Tab. 7.4. The results are

Table 7.4: Excitation energies and oscillator strengths for the SSI-polarized
FDE-ADC(2)/cc-pVDZ calculation employing the RADM approach for the [BA ·
2 H2O] system. For comparison, the results of the supermolecular ADC(2) and
unpolarized FDE-ADC(2) calculations are given as well.

Exc. Energies [eV] Osc. Strength

state supersys. unpol. SSI-pol. supersys. unpol. SSI-pol

S1 3.897 3.878 3.892 0.0001 0.0001 0.0001

S2 4.813 4.851 4.835 0.0197 0.0164 0.0174

S3 5.554 5.628 5.599 0.3444 0.3490 0.3530

S4 6.751 6.732 6.721 0.0059 0.0001 0.0001

S5 6.753 6.803 6.788 0.2942 0.2979 0.2866

similar to the ones obtained using supermolecular expansion. The deviations for

all (π 7→ π∗) states are reduced and also the S1 state, which is characterized

by an (n 7→ π∗) transition, is now better described and exhibits a deviation of

only 0.005 eV. Still, the S4 state exhibits a slightly higher deviation. In total, the

MAE for excitation energies is reduced from 0.040 eV to 0.027 eV. The MAE for

oscillator strengths is only marginally changed from 0.003 to 0.005. A comparison

of the excitation energy deviations is given in Fig 7.6.
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Figure 7.6: Analysis of the accuracy of SSI-polarization for RADM-FDE-ADC(2)
in [BA · 2 H2O]. The deviation of excitation energies to the supermolecular
ADC(2) calculation is given for unpolarized FDE-ADC(2) (blue) and including
SSI-polarization (red).

Next, the [UC · 5 H2O] system was used for the test. The excited states are

compared to the results of the unpolarized FDE-ADC(2) and supermolecular

ADC(2) calculations in Tab. 7.5. The agreement to the supermolecular results

Table 7.5: Excitation energies and oscillator strengths for the SSI-polarized
FDE-ADC(2)/cc-pVDZ calculation employing the RADM approach for the [UC ·
5 H2O] system. For comparison, the results of the supermolecular ADC(2) and
unpolarized FDE-ADC(2) calculations are given as well.

Exc. Energies [eV] Osc. Strength

state supersys. unpol. SSI-pol. supersys. unpol. SSI-pol

S1 5.143 5.047 5.109 0.0016 0.0005 0.0008

S2 5.215 5.319 5.280 0.2371 0.2092 0.1866

S3 6.211 6.200 6.223 0.0001 0.0001 0.0002

S4 6.292 6.331 6.335 0.0963 0.0721 0.0809

S5 6.657 6.765 6.736 0.0005 0.0011 0.0011

are again clearly improved. The largest deviation in the S5 state is reduced from

about 0.108 eV to 0.079 eV. In the case of the first excited state, the improvement

is even more pronounced. The deviation is reduced from 0.096 eV to 0.034 eV.

In case of the S3 state, although the absolute value of the deviation stays with
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about 0.012 eV rather small, the sing changes. However, since the absolute value

of the deviation is so small, the change of the sing is negligible. The deviation

to the supermolecular ADC(2) calculation is shown in Fig. 7.7. The total MAE
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Figure 7.7: Analysis of the accuracy of SSI-polarization for RADM-FDE-ADC(2)
in [UC · 5 H2O]. The deviation of excitation energies to the supermolecular
ADC(2) calculation is given for unpolarized FDE-ADC(2) (blue) and including
SSI-polarization (red).

for excitation energies is reduced from 0.072 eV for unpolarized FDE-ADC(2) to

0.047 eV using the SSI approach. The MAE for oscillator strengths roughly stays

the same with 0.011 for unpolarized compared to 0.013 using SSI.

7.4.3 Excitation-induced environment polarization via DDPP

Next, the new difference density polarization potential approach has been tested

to estimate the influence of excitation induced environment polarization on the

excitation energies of the embedded system. Again, both the supermolecular

expansion as well as the re-assembling of density matrix approach was applied.

Like in the SSI test, all other settings were retained. Note that the DDPP

approach provides only an energy correction for the excitation energies. Therefore,

no oscillator strengths will be given in this section.

7.4.3.1 Supermolecular expansion

We start with the first test system [BA · 2 H2O]. The excitation energies are given

in Tab. 7.6. Again, the unpolarized and supermolecular results are given for

comparison as well. The energy correction is already added to the excitation
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energies for the polarized FDE-ADC(2) results. The performance of the DDPP

Table 7.6: Excitation energies for the DDPP-polarized FDE-ADC(2)/cc-pVDZ
calculation in the supermolecular expansion for the [BA · 2 H2O] system. For
comparison, the results of the supermolecular ADC(2) and unpolarized FDE-
ADC(2) calculations are given as well.

Exc. Energies [eV]

state supersys. unpol. DDPP-pol.

S1 3.897 3.892 3.876

S2 4.813 4.837 4.831

S3 5.554 5.595 5.599

S4 6.751 6.743 6.693

S5 6.753 6.784 6.781

approach is not as good as for SSI. In some cases like in the S4 state, the deviation

to the supermolecular calculation is much higher. This might correlate with the

(n 7→ π∗) character of this state, since also for S1 the deviation increases, which

is also characterized as an (n 7→ π∗) state. As a consequence, the MAE for

excitation energies is increased from 0.022 eV to 0.034 eV. A comparison is given

in Fig. 7.8.
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Figure 7.8: Analysis of the accuracy of DDPP-polarization for SE-FDE-ADC(2)
in [BA ·2 H2O]. The deviation of excitation energies to the supermolecular ADC(2)
calculation is given for unpolarized FDE-ADC(2) (blue) and including DDPP-
polarization (red).
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Next, the system [UC · 5 H2O]was tested. The excitation energies are given in

Tab. 7.7. In this system, the same problem arises. In the S1 state, the deviation to

Table 7.7: Excitation energies for the DDPP-polarized FDE-ADC(2)/cc-pVDZ
calculation in the supermolecular expansion for the [UC · 5 H2O] system. For
comparison, the results of the supermolecular ADC(2) and unpolarized FDE-
ADC(2) calculations are given as well.

Exc. Energies [eV]

state supersys. unpol. DDPP-pol.

S1 5.143 5.111 5.033

S2 5.215 5.291 5.271

S3 6.211 6.223 6.178

S4 6.292 6.321 6.300

S5 6.657 6.751 6.688

the supermolecular calculation triples from 0.032 eV to 0.110 eV. Also, in the case

of S3, the deviation increases. In contrast, the deviation is lowered for the states

S4 and S5. A comparison of the excitation energies is given in Fig. 7.9. Here,
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Figure 7.9: Analysis of the accuracy of DDPP-polarization for SE-FDE-ADC(2)
in [UC ·5 H2O]. The deviation of excitation energies to the supermolecular ADC(2)
calculation is given for unpolarized FDE-ADC(2) (blue) and including DDPP-
polarization (red).

only a partial correlation with the transition character of the state is given. Both

the S1 and S3 state are characterized as (n 7→ π∗) states, but also the S5 state
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exhibits (n 7→ π∗) character. The MAE in excitation energies is hardly changed.

Without environment polarization, the MAE is 0.049 eV. Including environment

polarization using DDPP the MAE is 0.048 eV.

7.4.3.2 Re-assembling of density matrix

The [BA · 2 H2O] system was tested again employing the RADM approximation in

combination with the DDPP approach to include environment polarization. The

excited states are listed in Tab. 7.8. Using the RADM approach, a similar result as

Table 7.8: Excitation energies for the DDPP-polarized FDE-ADC(2)/cc-pVDZ
calculation using the RADM approach for the [BA · 2 H2O] system. For compar-
ison, the results of the supermolecular ADC(2) and unpolarized FDE-ADC(2)
calculations are given as well.

Exc. Energies [eV]

state supersys. unpol. DDPP-pol.

S1 3.897 3.878 3.849

S2 4.813 4.851 4.841

S3 5.554 5.628 5.636

S4 6.751 6.732 6.638

S5 6.753 6.803 6.798

for SE can be seen. The two (n 7→ π∗) states S1 and S4 exhibit a large deviation

from the supermolecular results compared to unpolarized FDE-ADC(2). The

(π 7→ π∗) states are more or less described similarly to the FDE-ADC calculation

without environment polarization. A comparison is shown in Fig. 7.10. The MAE

in excitation energies is increased from 0.040 eV to 0.063 eV.
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Figure 7.10: Analysis of the accuracy of DDPP-polarization for RADM-FDE-
ADC(2) in [BA ·2 H2O]. The deviation of excitation energies to the supermolecular
ADC(2) calculation is given for unpolarized FDE-ADC(2) (blue) and including
DDPP-polarization (red).

In the last test, the [UC · 5 H2O] system was employed in combination with

the RADM approximation and the DDPP approach for environment polarization.

The excitation energies are given in Tab. 7.9. Again, a similar result as in the

Table 7.9: Excitation energies for the DDPP-polarized FDE-ADC(2)/cc-pVDZ
calculation using the RADM approach for the [UC · 5 H2O] system. For compar-
ison, the results of the supermolecular ADC(2) and unpolarized FDE-ADC(2)
calculations are given as well.

Exc. Energies [eV]

state supersys. unpol. DDPP-pol.

S1 5.143 5.047 4.902

S2 5.215 5.319 5.279

S3 6.211 6.200 6.121

S4 6.292 6.331 6.289

S5 6.657 6.765 6.640

SE case can be seen. The S1 state exhibits a largely increased deviation from the

supermolecular result of about 0.24 eV. Also the deviation in the case of S3 is

increased. In contrast, the deviations for the states S2, S4 and S5 are reduced. A

comparison is given in Fig. 7.11. The MAE for excitation energies increases from
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Figure 7.11: Analysis of the accuracy of DDPP-polarization for RADM-FDE-
ADC(2) in [UC ·5 H2O]. The deviation of excitation energies to the supermolecular
ADC(2) calculation is given for unpolarized FDE-ADC(2) (blue) and including
DDPP-polarization (red).

0.072 eV for unpolarized FDE-ADC(2) to 0.083 eV for FDE-ADC(2) including

environment polarization via DDPP.

7.4.4 Pre-polarization in combination with excitation-induced po-

larization via SSI

In Secs. 7.4.1 and 7.3.1 it has been shown that both the pre-polarization of

ρB(~r) as well as the SSI approach for including the effect of excitation-induced

environment polarization are capable of increasing the accuracy of the FDE-ADC

calculation. Since both approaches are based on different theoretical aspects and

are implemented independently, they can also be combined. This combination of

pre-polarization and SSI is named dual SSI. At first, an FDE-ADC(2) calculation

including the electrostatic polarization of B due to the nuclei and electron density

of A is performed. After this, the SSI cycles for each state are performed.

This has been tested employing the [BA ·2 H2O] system. The RADM approach

has been used. All other settings are identical to the tests performed in the

previous sections. The excitation energies are listed in Tab. 7.10. The results for

Dual-SSI are very similar to the normal SSI results. However, a slight improvement

is noticeable. This is most likely due to the minor influence of the ground state

polarized environment density when using state-specific polarized densities during

SSI. A comparison of unpolarized, pre-polarized, SSI-polarized and dual-SSI
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Table 7.10: Excitation energies for the Dual-SSI-polarized FDE-ADC(2)/cc-
pVDZ calculation using the RADM approach for the [BA · 2 H2O] system. For
comparison, the results of the supermolecular ADC(2), unpolarized FDE-ADC(2),
pre-polarized FDE-ADC(2) and SSI-polarized FDE-ADC(2) calculations are given
as well.

Exc. Energies [eV]

state supersys. unpol. pre-pol. SSI-pol. Dual-SSI-pol

S1 3.897 3.878 3.888 3.892 3.893

S2 4.813 4.851 4.847 4.835 4.835

S3 5.554 5.628 5.620 5.599 5.598

S4 6.751 6.732 6.755 6.721 6.723

S5 6.753 6.803 6.799 6.788 6.788

polarized FDE-ADC(2) is shown in Fig. 7.12. The MAE in excitation energies for

dual-SSI is with 0.027 eV approximately identical to the MAE of SSI-RADM-FDE-

ADC(2). However, employing the dual-SSI polarization leads to slightly improved

results at almost no additional computational cost.
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Figure 7.12: Analysis of the accuracy of Dual-SSI-polarization for RADM-
FDE-ADC(2) in [BA · 2 H2O]. The deviation of excitation energies to the su-
permolecular ADC(2) calculation is given for unpolarized FDE-ADC(2) (blue),
with pre-polarization (green), including SSI-polarization (red) and for dual-SSI
polarization FDE-ADC(2) (purple).
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7.5 Summary and conclusion

I presented in this chapter the extension of FDE-ADC from a frozen environment

electron density towards a polarizable density. To include the effect of environment

polarization in the calculation of the embedded system, two different theories have

to be distinguished. On the one hand, there is the polarization of the environment

from the beginning by a ground state electron density and nuclei of the embedded

system. In this approach, ρB(~r) is not calculated in the gas phase but rather

in the presence of system A using an electrostatic potential. This is referred to

as pre-polarization. A variant of pre-polarization has been implemented into the

program package Q-Chem in the module fdeman.

On the other hand, an excitation of the embedded system can polarize the

environment, which is considered after the initial embedding. This is referred to as

excitation-induced environment polarization. Typically, this can be included using

freeze and thaw cycles. In this approach, the two subsystems are interchanged and

are alternately embedded into each other until self convergence. Here, I introduced

an approximate version named state-specific iteration (SSI), which also switches

the subsystems twice to calculate a state-specific embedding. But in contrast to

full freeze and thaw, this is not performed until self-convergence but only done

once per state. This still includes most of the mutual interaction but prevents

calculations of wrong states due to switches in the order which may occur when

different embedding potentials for each state are employed.

An approximative approach as an alternative to SSI was also introduced and is

referred to as difference density polarization potential (DDPP). In this approach a

perturbative-like energy correction for the excitation-induced environment polariza-

tion is calculated by building the eponymous potential from an electron difference

density of the environment representing the change in the electron density induced

by the polarization. Contraction of this potential with the excited state difference

density of the corresponding state of the embedded system yields the energy correc-

tion for the environment polarization. Both variants to include excitation-induced

environment polarization have been implemented into Q-Chem as well using the

module fdeman.

In a first benchmark, the pre-polarization and both SSI and DDPP have been

tested. The pre-polarization approach shows small improvements over classical

FDE-ADC(2) in comparison to supermolecular ADC(2) calculations. Since pre-

polarization can be included with almost no additional computational cost, it

can be considered as a promising and efficient improvement with a very good
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benefit-cost ratio. In the test of SSI, using both SE and RADM, an improvement of

the accuracy could be seen. The MAE for excitation energies for the deviation to

supermolecular ADC(2) results is lowered by about 34 % compared to unpolarized

FDE-ADC(2). Unfortunately, DDPP does not yet perform as expected. The

deviation to the reference values is even increased on average. Especially single

states exhibiting (n 7→ π∗) character show large deviations. Therefore, the DDPP

approach has to be improved. Instead of a contraction with the excited state

difference density, a contraction with the excited state transition density could be

needed since the latter described the transition itself without inclusion of secondary

effects like orbital relaxation.

Since DDPP contains only the influence of the excitation of A on B, but not

the static influence (the presence) of A on B, this also might lead to the observed

problems. This can be improved in two different ways. Since the pre-polarization

includes most of the missing interaction, DDPP could be tested in combination

with pre-polarization. This way, the ground state influence of A on B is always

included. In the second variant, the difference density is calculated differently.

Instead of building the difference of B, embedded in the ground state of A, and B,

embedded in the excited state of A, the difference density has to be the difference

of isolated B and B, embedded in the excited state of A (see Eq. 7.11). This also

includes the ground state influence of A on B.

∆ρS0
BESi−vac

(~r) = ρS0
Bemb−ESi

(~r)− ρS0
Bvac

(~r) (7.11)

In summary, the SSI approach, although largely increasing the computational

cost of an FDE-ADC calculation, improves the accuracy notably. Especially in

systems with large shifts of the electron density due to an electronic excitation

like in charge-transfer states, which induce a large polarization of the environment,

excitation-induced environment polarization should be considered. A further

combination of SSI with pre-polarization shows only minor improvements.
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Chapter 8

Summary, Conclusion and

Outlook

“Because the theory of quantum mechanics could explain

all of chemistry and the various properties of substances,

it was a tremendous success. But still there was the

problem of the interaction of light and matter.”

Richard P. Feynman

In my thesis, I have presented various photochemical investigations on tetrathia-

[7]heterohelicene-derivatives in comparison with experimental results and the

development, implementation and benchmark of the combination of frozen density

embedding theory (FDET) with the algebraic diagrammatic construction scheme

of the polarization propagator (ADC), resulting in the new method frozen density

embedded algebraic diagrammatic construction scheme (FDE-ADC).

Tetrathia-[7]heterohelicenes (TTH) belong to the class of helicenes. TTH

molecules exhibit promising chemical properties for application in homogeneous

transition metal catalysis, optoelectronics or biochemistry. TTHs consist of 7

ortho-annelated rings (four thiophene rings separated by 3 benzene rings), forming

an open macrocycle with a fully delocalized aromatic π-system. Due to the steric

repulsion of both ends of the macrocycle, all helicenes form a helical structure.

This helical structure induces chirality without the presence of a stereocenter.

The first investigation dealt with the electronically excited states of phosphorus

derivatives of TTH with and without complexation with gold(I)-chloride. In

particular, the systems tetrathia-[7]heterohelicene-dialkylphosphane-borane (TTH-

DAPB) and tetrathia-[7]heterohelicene-diphenylphosphane-gold(I)-chloride (TTH-
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DPP-Au(I)) have been investigated theoretically.

The electronic ground state equilibrium structures of both enantiomers of

TTH-DAPB have been calculated at the DFT/ωB97XD/cc-pVDZ level of theory

and compared to experimental data obtained by X-ray crystallography, showing

a good agreement regarding bond lengths and angles. The calculated frontier

orbitals, i.e. the highest occupied molecular orbital (HOMO), lowest unoccupied

molecular orbital (LUMO), HOMO−1, HOMO−2, LUMO+1 and LUMO+2, are

delocalized over the TTH moiety but do not show any contribution on either the

phosphorus atoms or any side chains. The eight energetically lowest electronically

excited singlet states of TTH-DAPB were calculated both at the RI-CC2/cc-pVDZ

and the TD-DFT/ωB97XD/cc-pVDZ level of theory. All excited states exhibit a

(π 7→ π∗) transition character and are localized on the TTH ring. By applying a

constant shift of -0.325 eV to the calculated excitation energies obtained using RI-

CC2 to account for environment interactions and intrinsic errors of the employed

theoretical model, the calculated spectrum resembles the experimental absorption

spectrum very closely. Additionally, the rotatory strengths have been calculated

and compared to experimental circular dichroism (CD) spectra. Adding the same

constant shift to the calculated excitation energies yields an almost perfect match

with the experimental spectrum. To elaborate whether only the first excited state

or both S1 and S2 contribute to the first absorption band of the experimental

absorption spectrum, vibrationally resolved absorption spectra have been calculated

for the first and second excited state at the TD-DFT/ωB97XD/SVP level of theory.

The vibrationally resolved absorption spectrum of the first excited state resembles

the band structure in the experimental spectrum rather closely. However, the

second excited state, although exhibiting a similar oscillator strength, yields a

vibrationally resolved spectrum with much lower intensity since much more normal

modes contribute to the excitation, thus leading to a very broad spectrum. Hence,

the first excited state determines the structure of the absorption band.

For the TTH-DPP-Au(I) system, similar investigations have been performed.

Calculation of the ground state equilibrium structure both in the gas phase and

including the environment model C-PCM using dichloromethane (DCM) as a

solvent shows only marginal influence of the solvent on the geometry. Additionally,

comparison with experimental data from X-ray crystallography shows a good

agreement with deviations lower than 0.1 Å in general. The calculated frontier

orbitals are qualitatively identical to the ones obtained for TTH-DAPB. Except

for energetically higher lying virtual orbitals like the LUMO+2, which is localized
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on the phenyl-groups, the frontier orbitals are localized on the TTH ring system.

All of the four energetically lowest electronically excited states are characterized

by (π 7→ π∗) transitions, calculated at the TD-DFT/ωB97XD/6-31G* level

of theory, while applying an effective core potential for the gold atoms. These

excited states are localized on the TTH ring and share no contribution either from

orbitals localized at the phosphorus or at the gold atom. This has been verified

by calculation analysis of natural transition orbitals as well as molecular orbital

analysis for the states S1 to S4. Vibrationally resolved absorption spectra have

been calculated for both the S1 and S2 state, showing a similar result as obtained

for TTH-DAPB. The first excited state dominates the absorption band while the

S2 state shows a very broad absorption band. However, in comparison to RI-CC2

results, the excited states S1 and S2 are switched in energetic order but their

character is constrained. Therefore, the state numbering of the RI-CC2 results is

used.

Next, investigations of the ionizations of three different phosphine-oxide TTH

derivatives (TTH-(PO(n−Bu)2)2, TTH-(PO(Ph)2)2 and TTH-PO(Ph)2) and two

phosphine-selenide TTH derivatives (TTH-(PSe(Ph)2)2 and TTH-PSe(Ph)2) have

been performed. The localization of both the electron attachment and detachment

have been analyzed by electron difference densities. The influence of solvation

on the ionizations has been investigated as well, employing the solvation model

IEFPCM with water and DCM as solvents. Typical first ionization energies (IE)

are between 5.9 and 7.1 eV for all investigated systems with slightly lower energies

in solution. The first electron affinities (EA) are between 0.5 and 2.1 eV. In this

case, the energies are lower without solvation. All ionizations are localized on the

TTH ring with difference densities closely corresponding in form to the frontier

orbitals. The results are very similar for all three investigated phosphine-oxide

TTH derivatives. For TTH-(PO(Ph)2)2, also the higher order ionization energies

and electron affinities have been calculated. For the second and third IE, the

energy rises from 6.1 eV to 13.2 eV and 21.6 eV, respectively, while for the second

and third EA the energy rises only slightly from 1.9 eV to 2.86 eV and 2.9 eV,

respectively. In the case of higher order ionizations, the orbitals start to mix,

which exacerbates the mapping to frontier orbitals.

In the case of the phosphine-selenide TTH derivatives TTH-(PSe(Ph)2)2 and

TTH-PSe(Ph)2, the electron detachment is more prone to environment influences.

Without solvation, the lone-pair orbitals of selenium are higher in energy and

enter the energetic region of the frontier orbitals. Hence, an oxidation will be
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localized at the selenium atoms. This leads to a higher ionization energy in the

gas phase of about 7.0 eV for both systems. However, in solution, the results are

closely comparable to the results obtained for the phosphine-oxides. Both electron

attachment and detachment are localized on the TTH ring with energies for IE of

about 6.0 eV and EA of about 2.0 eV for both systems.

In general, the functional groups in the TTH derivatives show only small

influences on the photochemical and electrochemical properties, which are clearly

dominated by the electronic π-system of the TTH ring.

For the development of FDE-ADC, the environment model FDET has been

combined with the excited state method ADC. To maintain the orthogonality of

the calculated excited states and to reduce the computational effort, the linearized

variant of FDET is employed. In FDE-ADC, the embedded system (A) is calculated

in the electronic ground state using Møller-Plesset (MP) perturbation theory to

obtain a ground state electron density. The environment (B) is calculated either

at the HF or DFT level of theory and a second electron density is obtained.

The influence of the environment on the embedded system is expressed via an

embedding potential which is a functional of both previously calculated electron

densities. This embedding potential is applied during the ADC underlying HF

calculation.

FDE-ADC has been implemented in the quantum chemistry program package

Q-Chem as the new module fdeman. It is linked to the adcman module responsible

for ADC calculations. fdeman orchestrates the whole FDE-ADC calculation

in a four step process: a) generation of the electron density of the embedded

system ρA(~r), b) generation of the electron density of the environment ρB(~r), c)

calculation of the embedding potential vlinemb(~r) and finally d) applying vlinemb(~r)

in an FDE-ADC calculation by adding it to the Fock matrix during the SCF.

After calculation of the two individual electron densities expressed in density

matrices of system A and B, these are used to evaluate the four state-independent

parts of the embedding potential, which are the nuclear attraction potential, the

coulombic repulsion potential and the exchange-correlation and kinetic energy

non-additive bifunctional potentials. In the last step, the embedding potential is

added to the Fock matrix yielding orbitals and integrals that are “perturbed” by

the environment, which are subsequently used for the ADC calculation. Thereby,

FDE-ADC is directly available for all variants of ADC and core-valence separated

ADC (CVS-ADC) up to third order. It is also possible to employ other features of

ADC, like the wavefunction and density analysis utility libwfa, or the calculation
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of spin-orbit coupling elements, which are also implemented in Q-Chem.

Currently, two different approaches are implemented to perform an FDE-

ADC calculation: the supermolecular expansion (SE) and the re-assembling of

density matrix (RADM) approach. While the first variant is useful only for

benchmark calculations, since it provides no computational savings compared to a

supersystem calculation, the second variant can be used for production calculations.

In SE, all four steps are performed using the supermolecular basis. Thereby, the

electron density of A is expressed in basis functions of A and B. The same holds

for the electron density of B, the embedding potential and the final FDE-ADC

calculation. The RADM approach is an approximation to SE. Using RADM,

system A is calculated twice. At first, an HF calculation in the supermolecular

basis is performed, followed by a MP(2) calculation in the monomer basis of A.

These two density matrices are combined in a patchwork-like manner: The AA

block is at the MP(2) level of theory while the other blocks (AB, BA and BB)

are at the HF level of theory. This is referred to as re-assembled density matrix.

The calculation of ρB(~r) and the creation of the embedding potential is performed

using the supermolecular basis. The embedding potential is subsequently cut to

the basis functions of A only. This approximation is valid, since the values in

the off-diagonal blocks AB and BA of the embedding potential as well as the

values of the BB block of the density matrix of A are almost zero. The following

FDE-ADC calculation, which typically is the time-determining step, is performed

in the monomer basis.

FDE-ADC has been benchmarked up to third order perturbation theory em-

ploying both the SE and RADM variant. Therefore, three test systems with

increasing interaction with the environment have been constructed. The first

system consists of benzene (A) with a hydrogen fluoride molecule (B) in plane

with the benzene ring ([BZ ·HF]). The second system is a benzaldehyde molecule

(A) with a hydrogen-bonded water dimer (B) as environment ([BA · 2 H2O]). The

last system contains a uracil molecule (A) surrounded by five hydrogen-bonded

water molecules (B) ([UC · 5 H2O]). In the benchmark, the FDE-ADC calculation

is compared with supermolecular ADC calculations, which are used as reference.

In all cases, the five energetically lowest electronically excited singlet states have

been calculated.

The SE-FDE-ADC(2) method, although providing no computational advantage

over supermolecular ADC calculations, yields excitation energies very close to the

supermolecular results with an MAE averaged over all states and all three systems
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of 0.025 eV in excitation energies. The RADM-FDE-ADC(2) variant exhibits

slightly larger deviations with an MAE of 0.040 eV for excitation energies. However,

both variants exhibit errors still well below the intrinsic error of ADC(2). In the

benchmark of RADM-FDE-ADC(3), the overall deviation to the supersystem

calculations is only 0.029 eV for excitation energies, which again is smaller than

the intrinsic error of ADC(3). Also, the dependence of the accuracy on the choice

of method and xc-functional for the calculation of the environment and the non-

electrostatic part of the system-environment interaction has been evaluated. While

the choice of the xc-functional in the embedding potential practically does not

affect the accuracy at all, HF performs best in the choice of the method used

to calculate the environment. It could be seen that the MAE is reduced with

increasing amount of HF exchange. This is most likely due to the better match of

an HF based density for the environment with the HF/MP(2) based density of the

embedded system and the agreement with the method used in the supermolecular

reference calculations. In a basis set study, it has been shown that basis sets

including diffuse basis functions decrease the error of FDE-ADC due to the better

description of the overlapping region of the electron densities.

In three representative applications, the performance and capabilities of FDE-

ADC have been demonstrated. The splitting of two nearly degenerate (n 7→ π∗) ex-

cited states of benzoquinone due to a methanol environment has been analyzed.

The influence of a water environment onto the excited states of the photoswitch

spiropyran has been investigated, and the influence of the C60 cage onto the C1s-

core excited states of CO in CO@C60 has been computed using FDE-CVS-ADC.

In all three cases, the specific excitation properties are visualized by transition

and difference density analyses.

In FDE-ADC, a frozen environment is used which does not include polarization

due to the embedded system. This environment polarization can be divided into

two parts. The first part is the influence of the ground state of the embedded

system on the environment. This can be included by calculating B not in the gas

phase but in the presence of A expressed by an electrostatic potential. This is

referred to as pre-polarization. The second type of environment polarization is

due to the excitation of A, which changes the electron density. It can be treated

by switching the two subsystems and alternatingly embed one system in the other

until self-consistence. This is referred to as freeze and thaw cycles. Here, an

approximative variant of freeze and thaw has been introduced and implemented in

the module fdeman named state-specific iteration (SSI), which performs only one
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freeze and thaw cycle, thus switching the subsytems twice. As an alternative to SSI,

a perturbation-like treatment of the excitation-induced environment polarization

has been introduced, which is called difference density polarization potential

(DDPP). In this approach, the environment is embedded consecutively in the

ground and excited state density of system A. The electron difference density

describing the polarization of the environment is used to create a potential which is

used to calculate an energy correction for the excitation energy of the excited state

of A. All three polarization schemes have been tested. While the pre-polarization

shows small improvements in the accuracy of the excitation energies compared to

supermolecular calculations, the SSI approach can increase the accuracy by more

than 30 % compared to normal FDE-ADC. Unfortunately, the DDPP method

does not work as expected yet and shows no improvement. Here, the difference

density from ground to excited state of system A is used in combination with the

polarization potential to calculate the energy correction. In future developments,

the transition density could be used instead, since this density describes the

excitation process itself without second order effects like orbital relaxation.

At this point, in fdeman only the supermolecular expansion and the RADM

approach are implemented. However, the best way expressing the embedding

potential is clearly the monomer expansion. In this approach, all densities and

the embedding potential are calculated in their own monomer basis. However,

this incorporates integration of mixed basis functions (contraction of basis func-

tions of A with basis functions of B), which is not directly possible in Q-Chem.

Implementation of the monomer expansion would clearly be the next step in the

development of fdeman.

fdeman was designed from scratch and implemented in a way to make it

easy to combine FDET also with various other methods for the calculation of the

embedded system like coupled cluster, resulting in FDE-CC. Using post-HF ground

and excited state methods, this can be done analogously to FDE-ADC by extracting

the correlated density matrix and passing it to fdeman. The embedding potential

is then calculated using this density matrix for system A and can subsequently be

added to the Fock matrix. Like in FDE-ADC this generates embedded orbitals

and integrals which can be used in the following post-HF calculation.

In summary, the presented FDE-ADC implementation gives access to include

explicit environment influences on the excitation process. Exhibiting an error

lower than the intrinsic error of the used ADC method makes FDE-ADC a reliable

“black box” method for embedded systems in extended environments.
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and pigments. Verlag Helvetica Chimica Acta, Zürich, third, revised edition. edition (2003).

[5] H. Hjorth Tønnesen. Photostability of drugs and drug formulations. CRC Press, Boca
Raton and FL, second edition (2004).

[6] K. Thoma and J. T. Piechocki. Pharmaceutical photostability and stabilization technology.
Informa healthcare, New York (2007).
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keiner unzulässigen Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder
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