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III. Zusammenfassung 

Das maligne Melanom der Haut gehört zu den bösartigsten Tumoren des Menschen, die sich 

immer noch sehr schwer behandeln lassen. Trotz der intrinsischen Immunogenität, kann das 

maligne Melanom sehr immunsuppressiv wirken und sich dadurch dem Immunsystem 

entziehen. Darüber hinaus kann die Entwicklung von Melanom-spezifischen Effektor-T-

Zellen durch unzureichende Tumorantigen-Aufnahme, Verarbeitung und Präsentation von 

Dendritischen Zellen behindert werden. Eine effiziente MHC-Peptid-Komplex Expression auf 

der DC-Zelloberfläche bestimmt das Ausmaß und die Qualität der T-Zell-Antwort und die 

maximale Menge an präsentierten Antigenen ist somit ein wichtiger Parameter bei der 

Konstruktion von DC-basierten Krebsimpfstoffen. Wir haben vor kurzem die Herstellung von 

Konstrukten, die für die Haupthistokompatibilitätskomplex (MHC), Klasse I-Moleküle kodieren 

und die Peptidpräsentation mit der Aktivierung von DC koppeln, hergestellt. Diese Modalität 

war sehr effizient bei der Hemmung des Tumorwachstums und der Verbesserung des 

Überlebens sowohl bei transplantierbaren als auch bei spontanen präklinischen Melanom 

Modellen. 

Das Ziel dieser Studie war es, einen neuartigen und stärkeren DC-Impfstoff für die Melanom-

Immuntherapie auf der Grundlage der kürzlich entwickelten bi-funktionellen Klasse von 

genetischen mRNA-Krebs-Impfstoffen zu erzeugen. Um die Antitumor-Immunantwort zu 

erhöhen, weisen diese modifizierten DCs unterschiedliche chimäre MHC-Klasse-I- und MHC-

Klasse-II-Rezeptoren auf, um ein multivalenter DC-Impfstoff zu werden, der bei einer 

gleichzeitigen Präsentation verschiedener Melanom-assoziierter Antigene eine Induktion von 

CD8+ zytotoxischen- und CD4+ T-Helfer Zellen ermöglicht. Ausgewählte Klasse I und Klasse 

II Antigene, die von TRP-1 und Tyr abgeleitet wurden, konnten eine starke Immunantwort 

von CD8+ zytotoxische T-zellen- und CD4+ T-Helfer Zellen hervorrufen. Darüber hinaus 

haben wir ausgewählte TRP-1 / Tyr-Klasse I und Klasse-II-Rezeptoren auf ihre Fähigkeit hin 

untersucht, eine in vivo Antitumor-Immunantwort in zwei verschiedenen Melanom-

Mausmodellen (ret transgen und BRAF) zu induzieren. Überraschenderweise führte eine Co-

Elektroporation von MHC-I- und MHC-II-chimären Konstrukten zu keiner Verbesserung des 

Überlebens bei Melanomen in ret-tg-Mäusen. Zusätzlich wurde eine erhöhte Aktivität 

antigenspezifischer Tregs gemessen, deren Einfluss auf die Immunantwort in weiteren 

Studien untersucht werden soll. 

Im Gegensatz zu diesen Ergebnissen haben wir auch gezeigt, dass bei der Behandlung mit 

einem mehrwertigen β2m-basierten-DC-Impfstoff, Melanom tragende Mäuse (Ret-tg und 

BRAF) eine Tumorregression erfahren und das Überleben signifikant verbessert haben. Die 

Impfung mit chimärem TRP-1 und Tyr-Klasse-I-DC-Impfstoff und insbesondere der Mix 
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(TRP-1/Tyr)-Impfstoff, hauptsächlich aufgrund seiner multivalenten Eigenschaften, zeigte 

eine erhöhte Häufigkeit von IFNg+ CD8+ T-zellen, ergänzt durch eine erhöhte, systemische 

Aktivität von CD8+ T-zellen, sowie eine Erhöhung der CD8+ -Effektor-Gedächtnis-T-Zellen. 

Wichtig ist, dass diese immunstimulatorischen Effekte keinen stimulierenden Reaktionen auf 

immunsuppressive Tregs und MDSC gezeigt haben. Schließlich konnten wir Anzeichen von 

Autoimmunität (Vitiligo) in 3 ret-tg-Mäusen, die mit dem TRP-1 / Tyr-Klasse-I-Mix-DC-

Impfstoff behandelt wurden, nachweisen, was einen weiteren Beweis für eine hoch aktivierte 

Immunantwort darstellt. Unsere Daten deuten darauf hin, dass die Immuntherapie mit einem 

multivalenten, β2m-basierten-DC-Impfstoff das Überleben von Tumor-tragenden Mäusen 

signifikant verbessern kann, insbesondere durch die Erhöhung des MAA-Repertoires der 

DCs. Besonders bei der Kombination mit sehr niedrigen, nicht zytotoxischen Dosen von 

Paclitaxel wurde die T-Zell-Immunantwort erhöht und durch eine gleichzeitige systemische 

Reduktion der immunsuppressiven Aktivität von MDSC und Treg noch weiter gesteigert. 

Diese Ergebnisse deuten auf weitere Vorteile für die kombinierte Immuntherapie, die sich mit 

unserem verbesserten DC-Impfstoff bietet und in weiteren Studien eingehender untersucht 

werden soll. 
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IV. Abstract 

Malignant melanoma is known for its fast progression and poor response to current 

treatments. Despite melanoma immunogenicity, tumor escape could be due to a profound 

immunosuppression in the melanoma microenvironment. Moreover, the development of 

melanoma-specific effector T cells may be hampered by insufficient tumor antigen delivery, 

processing and presentation of dendritic cells (DCs). Efficient MHC-peptide complex 

expression on the DC cell surface determines the degree and quality of the T cell response 

and the maximal amount of presented antigenic peptides is thus a key parameter in the 

design of DC-based cancer vaccines. We have recently established the production of 

constructs encoding the major histocompatibility complex (MHC) class I molecules that 

couples the peptide presentation and activation of DC. This modality was highly efficient in 

inhibiting tumor growth and improving survival, both in transplantable and spontaneous 

preclinical melanoma models.  

The goal of this study was to generate a novel and more potent DC vaccine for melanoma 

immunotherapy based on the recently developed bi-functional class of genetic mRNA cancer 

vaccines. To enhance the anti-tumor response, these modified DC present different chimeric 

MHC class I and MHC class II receptors, in order to become a multivalent DC vaccine 

allowing a simultaneous presentation of different melanoma associated antigens (MAA) of 

choice for induction of CD8+ CTL and CD4+ Th, respectively. Selected class I and class II 

restricted antigens derived from TRP-1 and Tyr were able to elicit a potent CD8+ CTL and 

CD4+ Th response. Furthermore, we studied selected TRP-1/Tyr- class I and class II 

receptors for their in vivo capacity to induce antitumor immune response in two different 

melanoma mouse models (ret transgenic and BRAF). Unexpectedly, co- electroporation of 

MHC-I and MHC-II chimeric constructs did not improve survival in melanoma bearing ret tg 

mice, probably due to increased activity of antigen-specific Tregs,  which will be investigated 

in further studies. 

In contrast to these results, we also demonstrated that melanoma-bearing mice (ret-tg and 

BRAF) experienced tumor regression and significantly improved survival upon treatment with 

multivalent β2m-based-DC vaccine. Vaccination with chimeric TRP-1 and Tyr class I- β 2m 

DC vaccine and in particular the Mix-(TRP-1/Tyr)- β2m DC vaccine, mainly due to its 

multivalent properties, demonstrated increased frequency of IFNγ producing CD8+ T cells, 

complemented by increased, systemic CD 8+ T cell activity as well as an increase of CD8+ 

effector memory T cells. Importantly, these immune-stimulatory effects were found without 

any stimulatory effects on immunosuppressive Tregs and MDSC. Finally, we could detect 

signs of autoimmunity (vitiligo) in 3 ret-tg mice treated with TRP-1/Tyr class I-Mix DC 
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vaccine, providing further evidence of increased immune stimulation. Our data suggest that 

immunotherapy with multivalent β2m-based-DC vaccine can significantly improve the 

survival of tumor bearing mice, especially by increasing the MAA-repertoire presented by the 

DCs. Notably, upon combination with ultra-low dose of paclitaxel T cell dependent immunity 

was even further enhanced by concomitant systemically reduction of immunosuppressive 

activity of MDSC and Treg, further providing rational for advantages in combined 

immunotherapy with our improved DC vaccine which will be investigated in more detail in 

future studies. 
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1 Introduction 

1.1 The immune system 

The immune system consists of cells, tissues and organs and is responsible for the detection 

and protection of various foreign pathogens like viruses, bacteria, fungi, parasites and 

tumors. It distinguishes between own healthy tissue and non-self or altered self-structures. 

The defense mechanism of the immune system is based on detecting structural features of 

the invading pathogens. It recognizes attacks and kills pathogen, which can adapt in order to 

escape the immune system. Parts of the immune system also play a role in case of auto-

immune and cancer diseases and allergy1. In vertebrates, there are two arms of the immune 

system: the innate immune system, which is responsible for a broad spectrum of unspecific, 

pathogen structures, and the adaptive immune system, which is specific for particular non-

self-antigens2.  

1.1.1 The innate immune system 

The innate immune system is naturally hereditary and serves as the first defense against 

pathogens with the epithelial barrier. This part of the system does not need a sensitization to 

antigens. The innate immune system consists of the following cells: granulocytes, 

macrophages, dendritic cells, natural killer cells and plasma proteins called the complement 

system.  

The recognition of an infectious agent is based on germline-encoded receptors. These 

receptors are called pattern recognition receptors (PRR) and recognize pathogen-associated 

molecular patterns (PAMPS). These PAMPS are conserved repeating patterns from 

microorganisms, e.g. lipopolysaccharide (LPS) of gram-negative bacteria, lipoteichoic acid 

(LTA) of gram-positive bacteria, mannose and glycan of fungi, bacterial CpG DNA or double-

stranded viral RNA. The best characterized PRRs are toll-like receptors (TLR)3–5. Their 

activation leads to pathogen uptake by phagocytic cells. As a result of the uptake, the 

phagocytic cells secret pro-inflammatory cytokines and chemokines which are important for 

the recruitment of other immune cells5. The most efficient phagocytic cells are dendritic cells 

(DCs). After pathogen uptake they mature, migrate to the local lymph nodes where they 

secret factors that are important for the innate immune response and induce the adaptive 

immune response. So they connect the innate with the adaptive immune system6,7.  
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1.1.2 The adaptive immune system 

The adaptive immune system needs to be activated by the innate immune system. It is 

categorized in the cellular and humoral immunity. Cellular immunity consists of T cells with 

antigen-specific TCR that recognize short antigen fragments bound to MHC molecules. The 

humoral immunity consists of B cells that express antigen-specific receptors that recognize 

antigenic determinants. The receptors of T cells and B cells are random products of somatic 

gene rearrangement during maturation8.Extracellular pathogens are recognized by B cells 

that originate from the bone marrow (BM). During the maturation they express membrane 

bound immunoglobulins (B cell receptor, BCR). After activation they differentiate into either 

memory or antibody-secreting plasma cells. Intracellular pathogens are detected by T cells 

via cell-mediated immune response. T cells are generated in the BM and migrate to the 

thymus for their maturation. T cell receptors recognize peptides only when they are 

presented by MHC molecules. CD8+ T cells can bind to MHC class I, whereas CD4+ T cells 

bind to MHC class II. For the complete activation, T cells need costimulatory signals from 

antigen presenting cells (APC). The effectors cells then undergo either apoptosis or built the 

immunological memory that is responsible for a rapid reinduction of the memory cells after 

the reentering of the same pathogen9. This immunological memory is often a long lasting or 

lifelong protection against diseases9.  
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1.2 Dendritic cell biology 

As previously mentioned, DCs are antigen-presenting cells of the mammalian immune 

system and act as messengers between the innate and the adaptive immune systems10. DCs 

are present in those tissues that are in contact with the external environment, such as the 

skin and the inner lining of the nose, lungs, stomach and intestines7. They can also be found 

in an immature state in the blood. Once activated, they migrate to the lymph nodes where 

they interact with T cells and B cells to initiate and shape the adaptive immune response
6
. 

DCs arise from hematopoietic progenitors of the BM and circulate through the blood, 

peripheral tissues and lymphoid tissues The majority of DCs are derived from CD34+ myeloid 

progenitors which differentiate into myeloid DC (mDCs) (also referred to as conventional 

DCs), while the rest of them from lymphoid progenitors, which differentiate into plasmacytoid 

DC (pDCs)11–13. DCs express several PRR (e.g. TLR), which endow them with the capacity to 

recognize PAMPs of microbial products. pDCs are mainly responsible for the recognition of 

viruses or host-derived nucleic acid-containing complexes via TLR7 and TLR9, producing 

large amounts of type I Interferons (IFN). On the other hand, mDCs express TLR2 and TLR4 

on their surface, which bind several bacteria-derived products, producing high amounts of IL-

126. 

Circulating immature DCs are characterized by high endocytic and phagocytic capacity, 

which is needed for efficient capture of invading pathogens or their constituents (Fig.1)14. 

Upon antigen recognition, DCs maturate and release a variety of pro-inflammatory and anti-

viral cytokines, leading to migration and activation of several cell subsets of the innate 

immunity at the site of infection15. Additionally, mature DCs overexpress MHC class I and II, 

costimulatory molecules like CD80, CD86, and CD40, as well as adhesion molecules (e.g. 

CD54 and CD58) on their surface, which are crucial for efficient priming of antigen-specific T 

cells and their differentiation into effector cells at the local draining lymph nodes (LNs)7. 

Matured DCs also start expressing the chemokine receptor CCR7, which drives their 

migration towards regional LNs in response to chemotactic gradients of its ligands CCL19 

and CCL21 that are expressed by lymphatic vessels and lymph node (LN)-residing cells7,13. 

Of note, the particular TLRs that are engaged at the DC surface polarize the ensuing 

adaptive response toward the Th1, Th2, Th17 or the regulatory T cell subsets. For instance, 

ligation of TLR4 leads to secretion of IFN-γ, TNF, and IL-12, inducing strong Th1 

responses164. In addition to their role in polarizing T helper cell immune responses, they are 

also crucial in regulating NK and B cell functions, but also in controlling the balance between 

immunity and tolerance, as shown in Fig.210. DCs are therefore considered to be the most 

important and potent APCs, representing a bridge between the innate and adaptive immunity 

and orchestrating the immune responses 6,17,18.  
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Fig. 1:  Main characteristics of immature and mature dendritic cells
14

 

 

 

Fig. 2: Integrated view of DC immunobiology. DCs are derived from either myeloid or lymphoid 
bone marrow progenitors through intermediate DC precursors and they differentiate into immature 

DCs. After antigen uptake in the presence of maturation signals associated with inflammation or 
infection, immature DCs are activated by TLRs, IFNs, or members of TNF-R family and undergo a 
complex maturation process, accompanied by their CCR7-driven migration towards lymphoid organs, 

where they present antigen-derived peptides to antigen-specific T cells and direct their differentiation 
into T effector or memory cells. Furthermore, mature DCs can induce NK cell activation, as well as B 
cell differentiation into antibody-producing cells. On the other hand, antigen capture in the absence of 

activation stimuli may lead to the induction of T cell tolerance, due to antigen presentation by immature 
DCs in the absence of costimulation.

10
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Antigens presented by DCs can be either endogenous or exogenous, depending on how 

they enter into the cells (Fig.3). Exogenous antigens are taken up and processed in 

endosomes followed by presentation of generated peptides on the cell surface bound to 

MHC II molecules, activating antigen-specific CD4+ T cells. Intracellular endogenous 

antigens are produced in the cytoplasm of DCs and degraded into peptides in the cytosol 

followed by presentation of the peptides on DC surface bound to MHC I molecules, activating 

antigen-specific CD8+ T cells. However, DCs have also the ability to present exogenous 

antigens (such as from apoptotic or necrotic tumor cells) on MHC I molecules via cross-

presentation to activate antigen-specific CD8+ T cells, which is important for the induction of 

anti-tumor cytotoxic T cell immune responses 18–20  

 

Fig. 3: Mechanisms of antigen processing by the DC. Exogenous antigens are internalized by DCs 
and enter the endocytic pathway in which they are targeted to lysosome-related MHC class II-rich 
compartments. In these compartments the antigens are degraded and loaded onto MHC class II 

molecules. During maturation of the DC the MHC-peptide complexes are released to the surface, thus 
making the cell ready for antigen presentation to CD4

+
 T helper cells (route 1 in the figure). 

Intracellular endogenous antigens, such as unstable self-proteins or viral proteins, are cleaved into 

peptides in the proteasome and subsequently translocated into the lumen of the endoplasmatic 
reticulum (ER) by transporters associated with antigen processing (TAP), where stable MHC class I-
peptide complexes are assembled. Upon binding of the peptide, the complex is released from the 

endoplasmatic reticulum and transferred to the cell surface (route 2 in the figure), where it is presented 
to CD8

+
 cytotoxic T cells. Lastly, DC have the unique capacity to present exogenous antigens, such as 

necrotic or apoptotic tumor cells, in MHC class I to cytotoxic T cells, a process referred to as cross 

presentation (route 3 in the figure)
19

.  
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1.3 Malignant Melanoma 

Malignant melanoma is an aggressive malignancy of transformed melanocytes that is 

resistant to standard therapy, e.g. chemo- or radiotherapy. In the United States, melanoma is 

the fifth and sixth most common type of cancer in males and females expected to be 

diagnosed in 201621. Only 5 % of all skin cancers account for melanoma, but it is responsible 

for 90 % of skin cancer deaths. In terms of incident, malignant melanoma is the most rapidly 

increasing malignancy in Western population
22

 due to improved life standard, e.g. travelling 

to sunny resorts and get tanned and due to the higher life average of the people. Mostly 

effected are young and middle-aged Caucasians triggered by solar UV radiation, fair skin, 

red or blond hairs, blue eyes or family history of melanoma
23

. Melanoma arises from the 

transformation of melanin-producing melanocytes in the skin and rarely in non-cutaneous 

melanocytes like retina or mucosal surfaces. Patients suffering from melanoma can be 

divided into different groups according to the TNM classification. This classification considers 

the size of the tumor, the affection of LN and metastasis22. Stage I is an invasive melanoma 

and tumor cells spread in situ. In stage II, when the tumor size is 1.5 mm or bigger, patients 

have a 5-year survival rate of 45-79%. When the tumor starts to metastasize into regional LN 

and the skin, patients are in stage III. Stage IV is classified when the tumor cells from distant 

metastases spread through the peripheral blood, and lymphatic system into the brain, lung, 

liver, skin and BM
22,24

.If melanoma is diagnosed early (stages I or II), most patients have a 

good prognosis, albeit with a significant risk of relapse. On the other hand, treatment options 

for metastatic disease are still limited and the prognosis of advanced melanoma remains 

very poor with a median survival of less than one year. After the standard therapy of stage III 

and IV melanoma, there is a 50–90% risk of recurrence in clinically disease-free patient25. 

There are some gene mutations involved in melanoma development. Mutations in BRAF or 

NRAS genes promote the proliferation of melanoma cells since these genes are important for 

the MAP-kinase signaling pathway. Approximately 40-60% of melanomas contain a mutation 

in the gene that encodes BRAF that leads to constitutive activation of downstream signaling 

in the MAP kinase pathway. In 80-90% of these cases, the activating mutation consists of the 

substitution of glutamic acid for valine at amino acid 600 (V600E)
24,26

 

  



Introduction  7 
__________________________________________________________________________ 
 
 

1.4 Immunogenicity versus immunosuppression in melanoma 

Melanoma is one of the most immunogenic solid malignancies, inducing both innate and 

adaptive immune responses since it is often found to be heavily infiltrated by immune 

cells
27,28

 One offered explanation of the immunogenicity of melanoma is due to the 

overexpression of several melanocyte differentiation antigens such as melanoma-

associated antigen 1 (MAGE-1), gp100, tyrosinase (Tyr), tyrosinase related protein-1 (TRP-

1), TRP-2, and MART-1/MelanA, which are the main target of spontaneous anti-melanoma 

immune responses (Fig.4).2930 Therefore, melanoma has been considered as a prime target 

for immunotherapeutic approaches. However, despite the exceptionally high immunogenicity 

of melanoma leading to an early enrichment and activation of melanoma-specific CD8
+
 and 

CD4+ T cells, it displays a remarkable ability to evade immune responses through a variety of 

mechanisms, resulting in a rapid progression of the disease and limiting the efficacy of 

immunotherapy31–33.  

 

Fig. 4: The melanogenesis pathway. Enzymes involved in the pathway that act as differentiation 
antigens and consist of melanoma-associated antigens are indicated with italics

29
  

Several tumor escape mechanisms are nowadays under investigation
34–36

. These “hallmarks 

of cancer” were first described by Hanahan and Weinberg in 2002, including two new 

hallmarks of cancer in 2011, such as “Avoiding of immune destruction”37. The process of 

tumot immunoediting is composed of three phases: elimination, equilibrium and escape. In 

the first phase, immune cells fight against arising tumors37. The tumor is either eradicated or 

persists and enters equilibrium. The second phase is the stage of immune mediated latency. 

The cancer and immune cells stay in balance. Incomplete tumor destruction and escape 
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result in an immune resistant tumor growth. When the tumor increases and metastasis 

develop, the escape phase is reached. 38 

One reason why tumor cells can escape T cell recognition is the modulation of the 

presentation or processing of antigens. 39 Downregulation of MHC class I and class II 

molecules in melanoma cells has been shown. Several mechanisms that alter the MHC 

molecules in human (called human leukocyte antigen (HLA)) are described such as a defect 

of beta (2)-microglobulin synthesis, loss of genes encoding or downregulation of HLA heavy 

chain, defect of regulatory mechanism that control HLA expression and an alteration of 

antigen processing machinery40. In some tumor cases, expressions of tumor antigens (e.g., 

MART-1, Melan-A) are downregulated. Furthermore, mutations can result in the escape from 

tumor recognition by T cells34. 

Another reason why immunotherapeutic clinical studies often fail is the development of 

immunosuppressive tumor microenvironment35,41–44. T cells, for example, are able to infiltrate 

the tumor but they are often inhibited by immunosuppressive network and are unable to 

attack cancer cells, leading finally to the tumor progression. There are several negative 

regulation mechanisms that are suggested in cancer patients: (1) expansion of immune 

suppressor cells, (2) expression of co-inhibitory molecules and (3) production of 

immunosuppressive cytokines or other suppressive factors45,46. 

1.4.1 Regulatory T cells 

CD4+CD25+Foxp3+ regulatory T cells (Treg) play a crucial role in self-tolerance and 

homeostasis of the immune system by suppressing many physiological and pathological 

immune responses. They represent one important immunosuppressive cell population that is 

highly enriched in melanoma microenvironment as well as several other tumor entities . They 

are considered to be important for suppressing anti-tumor T cell-mediated immune 

responses and hurdling tumor immunotherapy31,37,43,47–50. During cancer disease as they are 

able to inhibit the activity of CD4+ and CD8+ T cells, B cells, DCs and NK cells51. There are 

various mechanisms of Treg-mediated suppression. Treg produce inhibitory cytokines such 

as TGF-β and IL-10. They can directly induce cytolysis in a granzyme A/B or perforin-

dependent manner. Furthermore, Treg express CD25 and thus compete with effector T cells 

(Teff) for IL-2. The deprivation of IL-2 hampers Teff in their proliferation. The expression of 

the inhibitory co-receptor CTLA-4 on Treg and the binding of this molecule with the co-

stimulatory molecules B7-1 and B7-2 on DC results in an upregulation of IDO which inhibits T 

cell activation and function52. Additionally, they express inhibitory molecules such as CTLA-4 

that inhibit the interaction of APCs with cytotoxic T lymphocytes (Fig. 5).53. Recently, the role 
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of CD73 and CD39 ectonucleotidases in T cell differentiation were described since they are 

involved in generation of extracellular adenosine through ATP hydrolysis, thus tilting the 

balance towards immunosuppressive microenvironments (ref.). Interestingly, CD39 and 

CD73 ectonucleotidases are highly expressed on murine CD4+Foxp3+ Treg and have been 

extensively used as activity markers of this T-cell subpopulation54. An increased ratio of CD8+ 

T cells to Tregs in the tumor microenvironment correlates with favorable clinical outcome and 

survival in melanoma patients, rendering them a useful prognostic marker55–57. 

 

Fig. 5: Mechanisms of local accumulation of regulatory T cells and the main mechanisms Tregs 
apply to induce immunosuppression. Mechanisms contributing to the aggregation of Tregs in tumor 

microenvironment include the following: (1) secretion of CCL2/CCL22 and other chemokines by 
melanoma cells induces Treg migration; (2) Secretion of IDO and IL-10 promotes conversion of Teffs 
into Tregs; (3) Local anti-inflammatory cytokines such as TGF-β selectively induce Teff apoptosis 

while having little impact on Tregs. Mechanisms Tregs used to induce immune es cape include the 
following: (1) secretion of immunosuppressive cytokines (TGF-β and IL-10) blunts the anti-tumor 
response of cytotoxic T cells and other immune cells; (2) Overexpression of CD25 sinks anti -tumor 

cytokines such like IL-2 and IL-7; (3) Expression of inhibitory molecules including CTLA-4 and PD-1 
inhibits the interaction of APCs with Teffs

53
. 

1.4.2 Tumor associated macrophages (TAMs) 

Accumulating evidence suggests TAMs actively promote tumor growth and development58–66. 

Several experiments on animal tumor models suggest that TAMs stimulate tumor 

progression and angiogenesis by producing pro-angiogenic cytokines (e.g., TNF alpha, IL-1). 

TAMs isolated from tumors are generally less efficient in presenting antigens as there are 

unable to produce IL-12 needed for anti-tumor responses mediated by NK cells and T cells. 
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In addition, TAMs are shown to produce immunosuppressive cytokine IL-10 and TGF and 

to express programmed death ligand (PD-L)-162,67. 

1.4.3 MDSC 

MDSC represent a heterogeneous population of immature myeloid cells (IMC)33,39,46,68–70. 

Only several years ago, MDSC contribution to the negative regulation of immune responses 

during pathological conditions was demonstrated
71

. All MDSC have in common their myeloid 

origin, the immature state and their ability to suppress T cell responses. Under pathological 

conditions, e.g chronic inflammation, traumata or tumor development, myeloid precursor cells 

are converted into MDSC in the tumor microenvironment
33,39,46,68–71

. 

Mouse MDSC are characterized by the coexpression of CD11b and the lineage 

differentiation antigen Gr-172. Gr-1 contains the Ly6C and Ly6G epitopes, which enable 

discrimination between two morphological and functional distinct MDSC subpopulations: 

monocytic MDSC (Mo-MDSC) (CD11b+Ly6ChighLy6G-) with monocytic phenotype and 

polymorhonuclear MDSC (PMN-MDSC) (CD11b+Ly6ClowLy6G+) that morphologically 

resemble polymorphonuclear granulocytes45,73–75. CD11b+Gr-1+ Mo-MDSC and PMN-MDSC 

subsets have been found in tumor-bearing mice47,70,73,76,77. Both subsets are able to inhibit T 

cells; however, MDSC have more potent suppressive activity in tumor than in peripheral 

lymphoid organs78. Studies in tumor-bearing mice have shown that MDSC inhibit T cell 

function and stimulate the development of Treg in and IFN-γ and IL-10 dependent way78. 

1.4.4 MDSC expansion and suppressive functions under chronic 

inflammation 

MDSC are produced in response to the tumor inflammatory microenvironment and to various 

tumor-derived cytokines. They were found to be enriched and activated in the melanoma 

microenvironment, inhibiting anti-tumor immune responses via several mechanisms, leading 

to the tumor progression (Fig.6) 70. 

There are several factors that influence the expansion, activation and accumulation of MDSC 

in tumors43.  Soluble factors, which are responsible for the expansion of MDSC, are mostly 

secreted by tumor cells and inhibit the maturation of IMC like prostaglandins, stem-cell factor 

(SCF), macrophage-stimulating factor (M-CSF), IL-6, granulocyte/macrophage colony-

stimulating factor (GM-CSF) and vascular endothelial growth factor (VEGF) 45. Most of these 

factors are inducers for the Janus kinase (JAK) and signal transducer and activator of 

transcription (STAT) 3 signaling pathways involved in the survival, proliferation and 

differentiation of myeloid progenitor cells. A permanent activation of the STAT3 pathway in 
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myeloid progenitor cells leads to higher production of S100 calcium-binding protein A8 

(S100A8) and S100 calcium binding protein A9 (S100A9), resulting in the inhibition of the 

MDSC differentiation and promoting their expansion in the spleen of tumor bearing mice 69,79. 

Since S100A8 and S100A9 play a critical role in the induction of inflammation and could 

induce MDSC expansion, these molecules connect the inflammation with immune 

suppression in cancer. 

 

Fig. 6: Induction of MDSC recruitment and activation in the melanoma microenvironment under 
chronic inflammatory conditions. Soluble mediators of chronic inflammation (such as IL-1β, IL-6, 
TNF-α, CCL2, TGF-β, VEGF, GM-CSF etc.) secreted by melanoma and stroma cells can induce the 

migration and stimulation of MDSCs. Activated MDSCs, producing NO, ROS, TGF-ß and expressing 
increased amounts of arginase (ARG)-1, inhibit anti-tumor immune responses mediated by effector T 
and NK cells

70
  

The second group of factors stimulating MDSC is mainly produced by immune cells and 

fibroblasts such as IFN-γ, TLRs, IL-13, IL-4, TGF-β and IL-1β. Without these factors, MDSC 

would not be able to exert their immunosuppressive function70. They induce STAT6, STAT1 

and nuclear factor kappa B (NF-ĸB). STAT1 is activated by IFN-γ and IL-1β and leads to the 

upregulation of arginase-1 (ARG-1) and inducible nitric oxide synthase (iNOS) expression 

69,80. Therefore, STAT1 deficient mice fail to suppress T cell proliferation81. In addition, 

signaling via CD124 has been reported to induce STAT6, as well as ARG-1 and iNOS 

expression80. Moreover, both IL-4 and IL-13 can upregulate ARG-1 activity in MDSC and 

enhance their immunosuppressive function68. 
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Several studies indicate that tumor-infiltrating MDSC can convert into tumor-associated 

macrophages (TAM) under hypoxia in the tumor microenvironment 82,83. MDSC can also 

skew macrophages towards an M2 phenotype 63,84. High levels of TAM correlate with a bad 

prognosis in different cancer types64,85. It has been shown that MDSC stimulate the 

expansion and activation of Treg 43,69. Treg induction is based on IL-10 and TGF-β 

production by MDSC84.  

In addition to the morphological and phenotypical distinctions, MDSC subsets use different 

approaches to suppress anti-tumor immunity (Fig7) 46,86. It was found that MDSC suppress T 

cell proliferation and T cell cytokine production through enhanced expression of ARG-1, 

iNOS and the elevated production of reactive oxygen species (ROS)78 .This is associated 

with the loss or reduced expression of the TCR ζ-chain87, inhibition of T cell activation, 

inhibition of IFN-γ production by CD8+ T cells, blocking the development of CTL78,88. The 

suppressive activity of MDSC was associated with the degradation of L-arginine. L-arginine 

is metabolized by iNOS leading to nitric oxide (NO) production and by ARG-1 converting L-

arginine into urea and L-ornithine35,43,46,68,69. Both enzymes are highly activated in MDSC and 

lead to the suppression of T cell proliferation68. When MDSC deplete L-arginine from the T 

cell microenvironment, ζ-chain expression is reduced and T cells are not able to transmit the 

required signals for their activation34,88. NO induces T cell apoptosis and is responsible for 

the inhibition of MHC class II gene expression 89. 

ROS production can be detected in MDSC from tumor bearing mice and in cancer 

patients45,86. Increased ROS production by MDSC is associated with an enhanced NADPH 

oxidase NOX2 activity 90. Peroxynitrite leads to the nitrosylation of the TCR of CD8+ T cells 

and prevents interactions with peptide-MHC complex 43. This leads to the inhibition of 

antigen-specific T cell responses through the downregulation of ζ-chain expression in tumor-

bearing mice. 88. The tumor-induced ROS production by MDSC can stimulate MDSC 

proliferation and block differentiation into APC 81. In vitro studies showed that the inhibition of 

ROS in MDSC isolated from mice or patients inhibit the suppressive function of MDSC. Treg 

in melanoma bearing mice were described to stimulate MDSC to express PD-L1 and to 

produce IL-10. Hypoxic conditions inside the tumor upregulate PD-L1 expression on tumor-

infiltrating MDSC resulting in more potent suppressive activity as compared to splenic 

MDSC91. 

Moreover, MDSC have been reported to deplete cysteine from the T cell environment83. 

Cysteine is essential for the activation, differentiation and proliferation of T cells68,80. Under 

normal conditions, APC provide T cells with cysteine by importing cysteine, converting it into 

cysteine and then exporting it with ASC transporters92. MDSC compete with T cells for 
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cysteine thus preventing the generation of cysteine on their own. This leads to the depletion 

of cysteine from the tumor microenvironment and the inhibition of T cell activation and 

function92,93. 

 

Fig. 7: Mechanisms of MDSC-dependent inhibition of T cell activation and proliferation . MDSCs 
can inhibit efficient anti-tumor T cell responses through a number of mechanisms. (a) Tumor-

associated MDSCs induce the development of Tregs or expand existing Tregs. (b) Tumor-associated 
myeloid cells deprive T cells of amino acids that are essential for their growth and differentiation, such 
as cyteine. (c) Tumor-associated myeloid cells release oxidizing molecules, such as hydrogen 

peroxide (H2O2) and peroxynitrite (ONOO
–
). Peroxynitrite causes nitration and nitrosylation of 

components of the TCR signaling complex, and H2O2 causes the loss of the TCR ζ-chain, thereby 
inhibiting T cell activation through the TCR. (d) Tumor-associated myeloid cells can also interfere with 

T cell migration and viability. The metalloproteinase ADAM17 cleaves CD62L, which is necessary for T 
cell migration to draining lymph nodes, and galectin 9 (GAL9) can engage T cell immunoglobulin and 
mucin domain-containing protein 3 (TIM3) on T cells to induce apoptosis. As the induction of the 

immunosuppressive pathways that are depicted in the figure is regulated by common transcription 
factors, these pathways can operate in more than one myeloid cell type

45
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1.5 Melanoma therapy 

1.5.1 Conventional therapies 

The standard procedure for localized melanoma with adequate margins is surgical excision 

and the assessment of metastasis with short-term and long-term follow-ups94 Patients with 

non-resectable metastasis or advanced melanoma are treated with radiotherapy95. This 

method is still in use after tumor dissection to treat left tumor tissue. Conventional 

chemotherapeutics such as Dacarbazin and Temozolomid were shown to not have a 

significant increase in the overall survival of patients and the number of responding patients 

is very low 96. Therefore, novel treatment strategies are urgently needed.  

1.5.2 Targeted therapies 

40 – 60 % of cutaneous melanoma patients have a mutation in BRAF that constitutively 

activate the MAP kinase pathway
24,97,98

. Thereby, the most frequent mutation is V600E. In 

2011, Vemurafinib, a BRAFV600 kinase inhibitor was approved for patients carrying the 

V600E mutation with unresectable or metastatic melanoma. The disadvantage of this therapy 

is the short-term duration of clinical response and drug resistance 99,100. Since the approval of 

a Vemurafinib, this treatment is the standard therapy except patients without the BRAF 

mutation.26 

Other therapeutics approved for the treatment of late stage melanoma BRAF mutated 

patients are Trametinib and Cobimetinib, two inhibitors of MEK, a kinase downstream to 

BRAF in the MAPK pathway. Combination of BRAF and MEK inhibitors showed a delayed 

resistance development101. 

1.5.3 Negative checkpoint inhibitors 

Since standard therapies are not efficient and a lot of tumor-associated antigens for the 

immunogenic melanoma are already known, new therapies that target immune regulatory 

pathways had been developed. Antibodies against so called immune checkpoint molecules 

help to keep tolerance to self-molecules and stimulate or block an immune response. 

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is expressed on T cells and competes 

with CD28 for the ligands CD80 and CD86 on APC thereby leading to an inhibition of T cell 

activation. Ipilimumab is a human monoclonal antibody that binds and blocks the 

extracellular domain of CTLA-4, which enhances T cell activation and function and thus 

promote anti-tumor immunity102. CTLA-4 blockage leads to a downregulation of pathways 
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involved in T cell activation and the therapy with Ipilimumab results in an enhanced antitumor 

immune response in melanoma patients103 104 and an increased overall survival in melanoma 

patients105. Ipilimumab was approved in 2011 by FDA.  

PD-1 is another immune checkpoint molecule that is upregulated upon T cell activation. 

Once PD-1 binds to PD-L1 (B7-H1) and PD-L2 (B7-H2), which are mainly expressed by 

tumor cells, T cell activity is blocked106,107. Pembrolizumab, PD-1 inhibitor, was approved for 

the treatment of melanoma patients after Ipilimumab treatment. The blockade of the 

interaction between PD-1 and PD-L1 potentiates the immune response and mediates anti-

tumor activity106,107. 

1.5.4 Cancer vaccines 

Another approach to elicit potent anti-tumor immune responses without side effects is the 

immunization with whole tumor cells, tumor specific peptides, recombinant viruses, DC, and 

naked DNA combined with different adjuvants 
59,61,108–111

. The aim is to stimulate innate and 

adaptive immunity to recognize and eliminate tumor cells. Although therapeutic cancer 

vaccines showed an impressive anti-tumor activity in numerous animal models, their clinical 

benefit in cancer patients leaves much to be desired. Multiple clinical trials have achieved 

only low overall survival with rare complete responders30,112,113, which could be due to the 

immunosuppressive tumor microenvironment and other tumor escape mechanisms 

previously described in Chapter 1.4. 

1.5.5 Combined treatment strategies 

Although there have been significant advances in melanoma treatment over the past several 

years, monotherapies have significant limitations, e.g. partial responses with subsequent 

tumor relapses or development of resistance to current (mono-) therapies, such as 

chemotherapy, BRAF inhibitors or anti-PD-1 treatment11499. Thus, there is an increasing 

interest to using these strategies in combination18,115,116. However, it is not yet completely 

clear how to best incorporate targeted, immune-targeted therapies or chemotherapy into 

combination regimens for melanoma patients. The influences of each of these 

monotherapies and potential synergistic effects of designed immunotherapy-based 

combination regiments on the host anti-tumor immune response and host anti-response (e.g. 

autoimmune and toxicity) must be taken into consideration102. Therefore, there is a 

increasing need for preclinical studies further illuminating pro and contra indications upon 

combinatorial treatments, before starting phase I clinical trials in humans. 
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Several preclinical studies are already underway. For instance, combination of targeted 

therapy with immune therapy, such as a triple combination therapy of BRAF and MEK 

inhibitors and adoptive therapy in melanoma mouse models was described. This strategy 

resulted in an increased MHC I molecule expression and T cell infiltration into the tumor, 

leading to complete tumor regression117. 

Furthermore, there are several ongoing clinical trials based on the combination of immune 

checkpoint inhibitors with immunotherapies and combination of radiotherapy or 

chemotherapy with immunotherapy 102,118,119. 

With regards to combination of immunotherapy with chemotherapy, modulation of the 

immune cell activities by ultra-low doses of agents, designed as chemo-immunomodulation 

has been recently described 120. The approach involves an application of chemotherapeutics 

in ultra-low doses without any cytotoxic effects on tumor or host cells. Application of ultra-low 

doses of paclitaxel, gemcitabine and 5-fluorouracil was able to stimulate maturation and 

function of human and murine dendritic cells121. Furthermore, it was shown that paclitaxel 

promotes differentiation of MDCS into DCs in vitro in a TLR-4-independent manner122. In 

addition, ultra-low dose of paclitaxel improved the efficiency of therapeutic TRP2-peptide 

vaccination in healthy mice123 as wells as therapeutic efficacy of a recombinant adenovirus 

against several murine cancers124. Overall, these promising preclinical studies suggest 

further investigation of potential combinatorial approaches in a preclinical setting in order to 

overcome current melanoma treatment limitations, such as partial responses and 

development of resistance. 
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1.6 Dendritic cell-based immunotherapy 

1.6.1 Dendritic cells in tumor-specific T cell responses  

DCs can process and present tumor-derived peptides to CD4+ and CD8+ T cells and are 

pivotal for priming, proliferation, activation and differentiation of specific T-cell subsets as 

(see Chapter 1.2). These features are making autologous DC-based vaccines an attractive 

and promising tool to elicit anti-tumor T cell immune responses, resulting in tumor cell 

eradication (Fig. 8)125.The realization of the dominant role of DCs in the initiation of immune 

response and specifically in T cell priming has pushed numerous efforts to harness DCs for 

the immunotherapy of cancer1710842. Fig. 9 summarizes the DC-based vaccination 

approaches used for cancer immunotherapy14. The primary goal of using DCs as tumor 

vaccine is to elicit a strong and long lasting CD8+ T cell-specific antitumor immune response. 

Such tumor specific CD8+ T cells should be able to: i. Become tumor specific with high 

avidity; ii. Penetrate the tumor microenvironment, and iii. Overcome the tumor 

immunosuppressive surrounding126. In order to achieve these goals, DC vaccination must be 

accompanied by the induction of CD4+ T helper (Th) cells, elimination of Treg and the 

reversal of the tumor immunosuppressive environment127.The first clinical study of DC-based 

vaccine immunotherapy was published in 1996, in which autologous antigen-pulsed DCs 

were vaccinated in patients with follicular B cell lymphoma128 Until today, more than 150 

clinical trials have been conducted for a variety of cancer types, including phase III clinical 

trials in melanoma, prostate cancer, glioblastoma, and renal cell carcinoma20,42,108,109,129,130 

Even though tumor-specific cytotoxic T lymphocyte (CTL) and Th1 responses and occasional 

tumor regressions have been reported in many patients, the clinical impact of DC vaccines 

has been scarce so far. Sipuleucel-T (Provenge; Dendreon Corporation, Seattle, WA) is the 

first and so far the only DC-based vaccine approved for the treatment of metastatic, 

hormone-refractory prostate cancer. A small number of individuals who respond favorably to 

DC vaccinations indicates the need for developing more immunogenic DC vaccines and 

understanding the reasons for highly variable clinical responses19,131,132. Previous findings 

have highlighted several mechanisms that contributed to DC vaccine efficiency including 

higher IL-12 production, efficient co-stimulatory signals, and stronger induction of antigen-

specific Th1 responses or lower Treg numbers in the tumor tissue19,131,132. Other parameters, 

such as the site of injection, the number of injected DCs or the number of DCs reaching the T 

cell zone of lymph nodes are also critical for DC vaccine efficiency19,131,132. It has been shown 

that only a small fraction of the injected DCs reached the draining lymph node and increasing 

DC mobility improved survival in gliobastoma patients.133 
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One of the main reasons why DC vaccines have not been so successful for melanoma 

immunotherapy is the poor presentation of tumor-derived peptides, resulting in limited 

antitumor CD8+ T cell immune responses15. In addition, the elevated levels of Tregs found in 

melanoma microenvironment impair DC functions15. Moreover, it has been shown that 

melanoma cells secret factors such as IL-10, which directly inhibit DC functions and convert 

them into tolerogenic DCs, promoting anergy of melanoma-specific T cells19,30. Given the role 

of impaired DC function in melanoma pathogenesis, several improvements need to be 

considered regarding the preparation and administration of the DC vaccines, such as the 

source and ex vivo manipulation of DCs, the type and form of the antigen to be loaded, the 

antigen-loading strategy, the origin, subset and number of DCs to inject as well as the 

amount, frequency, route and the site of administration so that tumor-specific cytotoxic T cell 

and Th1 immune responses could be enhanced30,42. 

 

Fig. 8: Role of dendritic cells in tumor-specific T cell responses. APCs such as DCs capture 
antigens from tumor cells. Antigen-loaded APCs then prime naïve T cells to become anti-tumor CTLs 
through soluble mediators such as IL-12 and/or co-signaling molecules such as CD80 or CD86. 

Failure to elicit protective immunity is seen as a lack of sufficient quantity or quality of one of these 
events (indicated in red text). This model predicts that augmenting numbers or quality of a specific 
component will suffice as a clinical strategy.

125
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Fig. 9: DC-based immunotherapy in cancer patients. DCs are generated from DCs are generated 

from precursors and differentiated by various stimuli, followed by antigen loading and/or maturation. 
Mature DCs are re-administered into the patient

14
 

 

1.6.2 Peptide-loaded dendritic cell vaccines 

Matured DCs ex vivo pulsed with synthetic antigenic peptides are among the most widely 

used in DC-based vaccination clinical studies20,134. Antigen processing represents a 

bottleneck in antigen presentation, whereas synthetic peptides exogenously loaded can 

simply bind the groove of the MHC molecules liberally displayed on the surface of matured 

DCs for presentation to T cells. Additionally, in contrast to full-length antigens, this approach 

has an advantage of monitoring peptide-specific T-cell responses in patients using a variety 

of methods such as CTL assays, tetramer staining, ELISpot and intracellular cytokine 

staining135. 

However, in this approach synthetic peptides exogenously loaded have to compete with 

peptides that are already bound to MHC molecules on the cell surface. Additionally, this 

approach has the prerequisite of preselected and well-defined tumor-specific peptides, 

however immunogenic cytotoxic as well as helper peptides from tumor-associated proteins 

have not been defined for all tumor entities13. Moreover, this approach is MHC-restricted; 

hence the patient’s MHC haplotype should be identified. Furthermore, one peptide can bind 
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either MHC I or MHC II, thus in contrast to whole tumor antigens where multiple epitopes are 

presented in both MHC class I and II, peptide-pulsed DC vaccines cannot activate both CD4+ 

and CD8+ T cell immune responses, limiting their clinical efficacy20. Finally, the half-life of 

peptide-MHC complexes (pMHC) is usually short15134. This is an important disadvantage of 

peptide-loaded DC vaccines since prolonged presentation of MHC-peptide complexes results 

in enhanced immunogenicity136.  

1.6.3 mRNA-based dendritic cell vaccines 

Induction of tumor-associated antigen (TAA) expression in DCs via RNA transfection has 

arisen as a novel antigen-loading technique. TAAs can be delivered in DCs in the form of 

tumor-derived RNA or synthetic in vitro transcribed RNA encoding for specific TAA19. mRNA-

based DC vaccines overcome many limitations of the peptide-loaded DC vaccines 

summarized in Table 1. mRNA encoding tumor antigens and immune modulating proteins 

can be efficiently delivered to DCs, offering more prolonged presentation of the antigen 

compared to peptide-loading which appears to be short-lived19. mRNA is a chemically well-

defined, polyvalent and safe molecule that can be easily and inexpensively generated at high 

purity, ensuring reproducible manufacturing and activity14. Additionally, RNA is advantageous 

and safer than naked DNA or viral transfection due to the fact that RNA induces transient but 

sufficiently long and high protein expression without the risk of integrating into the host 

genome136.  

RNA can be delivered alone or coated with liposomes (lipofection), through electroporation, 

gene guns, nucleofection, sonoporation recombinant viral vectors or recombinant bacterial 

vectors137–139
. RNA encoding for tumor antigens is much easier to isolate or synthesize than 

tumor peptides or proteins14,140. The last few years increasing interest has been observed in 

delivering the mRNA to DCs through electroporation. mRNA-electroporation has turned to be 

a very efficient way for delivering TAA to DCs,  and it is superior to other RNA methods in 

generating immunostimulatory DCs for DC-based immunotherapies, resulting in stronger 

anti-tumor T cell responses141–144. 

Table 1: Main advantages of mRNA-based over peptide-loaded dendritic cell vaccines 

mRNA  Peptide-loaded 

Undefined neo epitopes can be presented Prior identification of antigenic peptides 

MHC restriction of the patients No MHC restriction of the patients 

Prolonged antigen presentation  Short half-life of peptide/MHC complex 

Mechanisms of intrinsic antigen processing 
by the DC is partly bypassed 

Peptide loading onto MHC class I or II 
molecules are depending on affinity 
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1.6.4 Novel DC vaccines based on membrane attached β2-microglobulin 

Efficient MHC-peptide complex expression on the cell surface determines the degree of T 

cell responsiveness. The maximal yield of presented peptides derived from encoded proteins 

is thus a key parameter in the design of cancer vaccines129,145. This rationale has prompted 

attempts to enhance the level of peptide presentation by APCs through genetic 

manipulations aimed at elevating the actual number of pre-selected MHC-I-peptide and 

MHC-II-peptide complexes on the cell surface146. Moreover, in the last few years, increasing 

interest has been observed in using mRNA-electroporated DCs for immunotherapy147. Cafri 

et al.147 have developed a genetic platform based on membrane-anchored β2-microglobulin 

(β2m) linked to the antigenic peptide of interest at its N-terminus and to the transmembrane 

and intracellular signaling domain of toll-like receptor (TLR)-4 C-terminally. Human (h)β2m 

was employed to enable the detection of the protein product on the surface of transfected 

mouse BM-derived DCs (BMDCs) with flow cytometry. Their aim was to ameliorate the 

priming of peptide-specific CD8+ T cell responses by APCs, which requires both effective 

antigen presentation on MHC class I products and co-stimulatory signaling. Electroporation 

of DCs with in vitro transcribed mRNA encoding for such genetic platforms resulted in an 

exceptionally efficient peptide-specific T cell recognition and conferred a constitutively 

activated phenotype on the transfected cells. Their findings provided evidence that these 

encoded peptide-β2m-TLR polypeptides could link peptide presentation to cellular activation 

and DC maturation through constitutive TLR signaling, resulting in a cytokine and chemokine 

secretion as well as costimulatory molecule upregulation. DC maturation strongly supports 

the initiation of immune response and pro-inflammatory conditioning, being prerequisites for 

efficient vaccination. In that way, the use of adjuvants is precluded, avoiding any adverse 

effects114,118,119. 

Using this allele-independent platform, presentation does not depend on proteasomal 

degradation, is transporter for antigen presentation (TAP)-independent, and no additional 

peptide trimming is required, making antigen presentation very efficient145. Importantly, these 

recombinant bi-functional peptide-hβ2m-TLR4 polypeptides were found to be superior to 

peptide-loaded mature BM-derived DCs in presenting antigenic peptides, in accordance with 

previous findings showing that membrane-anchored β2m stabilizes the MHC-I molecules and 

prolongs the peptide presentation144,146,148. They could also show that BMDCs were able to 

induce efficient peptide-specific T cell activation indicated by an elevated cytokine production 

by effector CD8+ T cells144,149. Moreover, these DCs prompted efficient peptide-specific target 

cell killing in vivo, demonstrating that they are potent inducers of CTLs. In addition, mRNA-

electroporated BMDCs vaccination induced antigen-specific effector memory CD8+ T cells, 

protected mice from tumor progression following the administration of B16F10.9 melanoma 
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cells and suppressed the tumor growth of pre-established B16F10.9 tumors144, prolonging 

the survival of mice144,149. 

Recently, BMDCs electroporated with the chimeric peptide-hβ2m-TLR4 platform were also 

injected into ret transgenic mice, which spontaneously develop malignant skin melanoma 

that closely resembles human melanoma regarding histopathology, clinical development and 

MAAs expression150,151. It was shown that this vaccination resulted in the prolonged survival 

of tumor-bearing mice, increased frequency of CD62L+CD44hi central and CD62L-CD44hi 

effector memory CD8+ T cells without any stimulatory effect on immunosuppressive Tregs 

and MDSCs, suggesting that this DC immunization could be efficiently employed for 

melanoma immunotherapy149,152. 

1.6.5 Chimeric peptide-hβ2m receptor platform for CTL induction 

According to the method developed in the Weizmann Institute of Science (WIS, Rehovot, 

Israel), genetic constructs were designed to induce specific CTL response. This was 

achieved by converting invariant chain of human ß2-microglobulin (hß2m) into an integral 

membrane protein and the genetic linking of an antigenic peptide to its N terminus 

(Fig.10)147. This modality prompts exceptionally efficient peptide presentation on MHC-I 

molecules144,147,153 by: 

1. Directly targeting ß2m/peptide to the ER through the leader peptide, uncoupling 

presentation from proteasomal degradation and TAP-mediated translocation. 

2. Obviating the need for N-terminal peptide trimming at the ER Facilitating full MHC-I 

complex assembly. 

3. Yielding abundance of peptide available for de-novo complex formation at the cell 

membrane. 

4. Representing the most stable expression of the MHC-class I- hß2m-peptide on DCs. 

5. Replacing the transmembranal and cytosolic domains of H-2Kb with the intact 

transmembranal and cytosolic domains of native TLR4 (as TLR4 anchor). 
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Fig. 10: Scheme of the h2m-based bi-functional constructs. (a) Genetic design. Major restriction 

sites are shown. Abbreviations: pr, promoter; lead, leader peptide; p, antigenic peptide; li, linker 
peptide; br, bridge; (b) Anticipated configuration of the polypeptide products with a linked antigenic 
peptide in the context of an MHC-I heavy chain 

144
. 

 

1.6.6 Chimeric MHC-class II as a platform for CD4 T cells induction 

To address the challenge of inducing a significant immune response to specific antigens by 

CD4+ T cells, the group of Prof. Lea Eisenbach (Department of Immunology, WIS) designed 

a single chain chimeric MHC-II molecule (Fig.11). The molecule comprises three main 

components: 

1. An MHC class II restricted antigenic peptide. 

2. MHC-II I-Ab alpha and beta chains. 

3. Anchor sequence, stabilizing peptide presentation on dendritic cell surface. 

The CD40 anchor was selected, according to earlier results of best MHC class II stabilization 

and kinetic membrane expression (unpublished data, Prof. Lea Eisenbach). 
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Fig. 11: Scheme of the MHC-II-H2-IAb restricted genetic constructs. (a) Genetic design. Major 
restriction sites are shown. Abbreviations: pr, promoter; lead, leader peptide; p, antigenic peptide; li, 

linker peptide; br, bridge; (b) Anticipated configuration of the polypeptide products with a linked 
antigenic peptide linked to the MHC-II ß chain. The cytosolic part was modified by CD40 domain for 
stabilization (unpublished data, department of immunology, WIS, Rehovot, Israel).  

1.6.7 Class II-Associated Invariant Chain Peptide (CLIP)-construct 

MHC class II molecules present endogenous or exogenous peptides on the surface of APC 

to select or activate CD4+ T cells in the thymus or periphery6. MHC Class II restricted antigen 

presentation is dependent on the release of CLIP and exchange with antigenic peptides 

usually sampled in endosomal compartments. Murine leukocyte antigen H-2M (murine 

analog to the human HLA-DM) in the endosomes promotes the dissociation of the CLIP 

peptide as a place holder from MHC class II, which then catalyzes peptide exchange of CLIP 

with endosomal peptides, favoring more stable peptide–MHC class II complexes, presented 

on the APC surface6,154. 

Therefore, the experimental idea of the ‘CLIP construct’ presented in this study was to use 

CD74, also known as invariant chain, as a platform for direct class II antigenic peptide 

delivery into APC by electroporation. Invariant chain is a universal, allele-independent 

platform for CD4 T cell induction, whereas the previously described I-Ab construct is 

restricted to the use in C57BL/6 mice155,156. An expression vector (plasmid) containing the 

human Ii cDNA, in which the CLIP-coding sequence can be easily replaced by other 

sequences was kindly provided by Prof. Lea Eisenbach, Weizmann institute of Science, 

Israel. CLIP coding sequence (22aa): PKSAKPVSQMRMATPLLMRPMS was replaced by 

either mTRP1111-128 peptide sequence (18aa): GTCRPGWRGAACNQKILT or mTYR99-117 
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peptide sequence (19aa): NCGNCKFGFGGPNCTEKRV, repsectively. The respective CLIP 

mRNA construct represents a universal, alleel independant platform for MHC class II 

restricted antigenic peptide delivery in APC (e.g. autologous DC) and subsequent CD4 T cell 

induction. 

 

Fig. 12: Scheme of the experimental MHC-II restricted genetic invariant chain construct 
platform. Anticipated configuration of the polypeptide products, in which the CLIP coding sequence is 

exchanged by an MHC class II restricted antigenic peptide of choice (unpublished data, department of 
immunology, WIS, Rehovot, Israel). Upon electroporation of respective mRNA, further H-2M 
processing in the endosomes of DC occur and the antigenic peptide of choice is released and loaded 

onto the MHC class II molecule under physiological conditions and presented (via MHC class II) on the 
DC cell surface. 
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1.7 Preclinical mouse melanoma models 

Murine cancer models designed to capture the complexities of human cancers currently offer 

the most advanced preclinical opportunity for navigating diverse mechanisms that provide 

rationale for therapeutic development
157

.  

1.7.1 BRAF mouse model 

This genetic model recapitulates key pathophysiological aspects of the human melanoma, in 

which 40 – 60 % of cutaneous melanoma patients have a BRAF V600E mutation that 

constitutively activate the MAP kinase pathway97. This mouse model is based on the Cre/lox 

recombination system to generate inducible, tissue-specific genetic modifications. The 

BrafCA, Tyr::CreER and Ptenlox4-5 mouse developed by McMahon and Bosenberg158 is a tri-

allelic mouse model, which develops induced malignant melanomas following intradermal 

application of Tamoxifen/4-hydroxytamoxifen (4-OHT). It has CreERT2 fusion protein 

directed by mouse tyrosinase promoter/enhancer specifically in melanocytes and also 

contains loxP-flanked sequences for Pten exons 4 and 5. Tamoxifen induces a Cre-mediated 

recombination, resulting in deletion of the floxed sequences (Pten exon 4 and 5) and 

expression of the BRAF proto oncogene and leading to an accumulation of BRAF V600E 

mutation in melanocytes. Finally, the development of melanoma similar to patients carrying 

the BRAFV600E mutation will be observed158. 

The prevention and therapy of BRafV600E-induced melanomas by pharmacological 

inhibition of MEK1/2 and mTorc1 was investigated with this mouse model by using specific 

and selective inhibitors of MEK1/2 (PD325901) or mTorc1 (rapamycin), which are 

downstream of BRafV600E or PI3-kinase, respectively159. In addition, it was shown that 

induced melanomas highly overexpressed several TAAs such as tyrosinase (Tyr), tyrosinase 

related protein 1 (Trp1), Trp2, gp100, which makes it applicable for novel immunotherapies 

targeting these melanoma anigens158,159. 

1.7.2 Spontaneous ret transgenic mouse melanoma model 

In transplantable models, like B16 melanoma model, tumor cells are transplanted intradermal 

for 5-10 days so that the interaction of the tumor cells with the immune system is not 

comparable to the clinical situation. To get more insights in the tumor microenvironment and 

study melanoma immunotherapies in more detail, Kato et al.125 engineered a transgenic 

mouse model, in which melanoma lesions develop spontaneously. The lesions in mice 

resemble human melanoma with regards to tumor genetics, histopathology and clinical 

development. In this model, the human ret recombinant oncogene was fused with a 
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methallothioneine-I promotor125. This leads to an overexpression in melanocytes under the 

control of methallothionein promotor-enhancer. An activation of the kinase also leads to the 

activation of downstream signaling molecules like mitogen-activated protein kinase (MAPK), 

Erk2 and c-Jun. The activation of ret promotes malignant transformation of melanocytes and 

tumor development125. Melanoma emerges at head, neck, back, and tail and metastasizes in 

LN, BM, liver, brain and lungs150,151. Melanoma lesions show characteristic melanoma 

morphology and express melanoma-associated antigens like S100, tyrosinase, tyrosinase 

related protein (TRP)-1, TRP-2 and gp100152. The metastatic profile is similar to the 

metastatic pattern in patients with malignant melanoma24,160. Although the mutation of ret has 

not been detected yet in melanoma patients the activation of the MAP-kinase signaling 

pathway is routinely seen in human melanoma123. It was previously shown that 

immunosuppressive cells like MDSCs and Tregs accumulate during tumor progression in 

skin tumor and metastatic lymph nodes 77,161,162. Furthermore, MDSC were shown to inhibit T 

cell response that allows a rapid tumor progression and metastasis32,77. The administration of 

the phosphodiesterase-5 inhibitor sildenafil neutralized the MDSC immunosuppressive 

activity, which leads to an increased survival of melanoma-bearing mice67. Furthermore, 

various inflammatory factors driving  MDSC activation, expansion and migration were found 

at the site of tumor 32,87. This complex immunosuppressive network in the tumor 

microenvironment could be one reason that conventional melanoma therapies are not 

successful. 
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2 Aim of the project 

The goal of this study was to generate a novel and more potent DC vaccine for melanoma 

immunotherapy based on the recently developed bi-functional class of genetic mRNA cancer 

vaccines. These modified DC present different chimeric MHC class I and MHC class II 

receptors, in order to become a multivalent DC vaccine allowing a simultaneous presentation 

of different melanoma associated antigens (MAA) of choice for induction of CD8+ CTL and 

CD4
+ 

Th, respectively. We tested several class I and class II restricted MAA derived from 

TRP-1 and Tyr for their capability to elicit a potent CD8+ CTL and CD4+ Th responses. 

Afterwards, we investigated selected TRP-1/Tyr-β2m-TLR4/Kb and TRP-1/Tyr-β2m-class II 

receptors (H2-IAb and CLIP) for their in vivo capacity to induce antitumor immune response 

in two different melanoma mouse models (ret transgenic and BRAF). To this end, we studied 

melanoma-bearing mice for tumor regression and survival and performed analyses of 

immune cell subsets in skin tumor and lymphoid organs (LN, spleen and BM) upon the 

treatment with multivalent DC vaccine. Finally, the most potent DC vaccine was applied in 

combination with ultra-low dose of paclitaxel to further promote T cell dependent immunity 

and to overcome immunosuppression. 
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3 Materials and Methods 

3.1 Materials 

3.1.1 Mice 

6 to 12 weeks-old C57BL/6 (H-2b) as well as B6.SJL (CD45.1 /H-2b) mice were purchased 

from Charles River laboratories (Sulzfeld, Germany). 

Braf mice. The BrafCA, Tyr::CreERT2 and Ptenlox4-5 were kindly provided by Dr. Rienk 

Offringa, DKFZ Heidelberg with previous consent by Martin McMahon, University of 

California, San Francisco,USA and Marcus Bosenberg, Yale University, USA. This tri-allelic 

mouse model with a melanocyte-specific Cre-Lox recombination develops induced malignant 

melanomas with Bra V600E mutation following intradermal application of tamoxifen. Small, 

local palpable tumor usually appear 25-30 day after induction. The mice were monitored 

every second day. 

Ret transgenic mice. These mice have C57BL/6 background expressing the human ret 

transgene in melanocytes under the control of mouse metallothionein-I promotor-enhancer 

were provided by Dr. I. Nakashima (Chubu University, Aichi, Japan) (Kato et al., 1998). 

These mice overexpress the human Ret proto-oncogene in melanocytes under the control of 

mouse metallothionein-I promoter-enhancer. The tumor develops spontaneously 

approximately 30-35 day after birth. The mice were monitored every second day. 

Mice were crossed and kept under pathogen-free conditions in the animal facility of the 

German Cancer Research Center (Heidelberg, Germany). Experiments were performed in 

accordance with government and institutional guidelines and regulations. 

3.1.2 Cell lines 

DC2.4. A murine dendritic cell line, were kindly provided by Dr. Kenneth Rock (University of 

Massachusetts Medical Center, Worcester, MA). Cells were grown in complete media 

comprised of RPMI (GibcoBRL, Grand Island, NY), supplemented with 10% FBS (Hyclone, 

Logan, UT), 10 mM HEPES, 2mM L- -mercaptoethanol. DC2.4 cells 

were maintained at 37 0C in a humidified incubator with 5% CO2. B3Z. An OVA257–264-

specific, H-2Kb-restricted CTL hybridoma, which expresses the NFAT-LacZ reporter gene, 

was a kind gift from Dr. N. Shastri (University of California, Berkeley, CA). Cells were grown 

in complete media comprised of RPMI (GibcoBRL, Grand Island, NY), supplemented with 

10% FBS (Gibco®), 10mM HEPES, 2mM L-glutamine and 50 uM 2-mercaptoethanol. 
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B16-MO5 (MO5). B16 melanoma cells stably transfected with OVA were cultured in DMEM 

with 10% FBS, 2 mM glutamine, 1 mM pyruvate, 50 μM 2-ME, combined antibiotics and 800 

μg/ml G418. Cells were kindly provided by Prof Lea Eisenbach (WIS, Israel). 

B16-F10.9. A highly metastatic clone of the B16-F10 melanoma line that expresses low 

levels of MHC class-I antigens was  cultured in DMEM with 10% FBS, 2 mM glutamine, 1 

mM pyruvate, 50 μM 2-ME and combined antibiotics. Cells were kindly provided by Prof Lea 

Eisenbach, Weizmann institute of science, Rehovot, Israel. 

D122. High-metastatic, low-immunogenic D122 clone of the 3LL carcinoma Reference and 

the carcinogen-induced T cell lymphoma. Cells were kindly provided by Prof Lea Eisenbach, 

Weizmann institute of science, Rehovot, Israel. 

EL4 cells (H-2b) were grown in DMEM (Invitrogen) containing 10% FCS, 2mM L-glutamine, 

1mM sodium pyruvate, 1% nonessential amino acids, 1% Penicillin-Streptomycin combined 

antibiotics. Cells were kindly provided by Prof Lea Eisenbach, Weizmann institute of science, 

Rehovot, Israel. 

RET-cells were isolated from skin melanoma developed in ret transgenic mice (Zhao F. et 

al., 2009, Clin Cancer Res.) and cultured in RPMI (Invitrogen) containing 10% FCS, 2mM L-

glutamine, 1% nonessential amino acids and 1% Penicillin-Streptomycin.  

YAC cells. Orginally induced by inoculation of Moloney leukaemia virus into a new-born 

A/Sn mouse. Sensitive to the cytoxic activity of naturally occurring killer cells in mice (NK 

cells). Often used as target cells in NK assays. Cells were kindly provided by Prof Lea 

Eisenbach, Weizmann institute of science, Rehovot, Israel. 

RMA-S cells. Rauscher virus-transformed lymphoma cell line of C57BL/6 (H-2b) origin, and 

RMA-S is a RMA TAP-deficient mutant cell line.re grown in RPMI 1640 medium, 

supplemented with 10% heat-inactivated FCS, 2 mM L-glutamine, and 50 uM β2-

mercaptoethanol. 

3.1.3 Cell culture products 

Product Company Catalog No. 

96-well flat bottom with lid TPP® 92096 
96-well U-bottom with lid Sigma Aldrich M9436-100EA 
24-well flat bottom with lid Greiner bio-one 622160 
12-well flat bottom with lid BD 353043 
6-well flat bottom with lid Thermo Scientific 140675 
50 ml conical tubes Falcon 352070 
15 ml conical tubes Falcon 352096 
5 ml round-bottom polypropylene test tubes BD 352008 
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5 ml round-bottom polypropylene test tubes 
w. cell strainer BD 352235 
serological pipettes: 5, 10 and 25 ml, sterile Greiner bio-one 606180 

607180 
760180 

40 µm cell strainer BD 
 Cryovial, 2 ml sterile Sigma Aldrich V5760-500EA 

Freezing Container, "Mr. Frosty" 
  Safe lock tubes: 0.5, 1.5 and 2 ml Eppendorf 

 
Filter tips: 20, 200, 1000 µl Steinbrenner 

SL-GPS-L10, 
L250, L1000 

Neubaur Zählkammer 
  Cell culture flasks T75 Sigma Aldrich C7231-120EA 

Syringe 1 ml BD 
 LeucoSep tubes Greiner Bio-one   

 

3.1.4 Cell culture media 

Product Company Catalog No. 

HEPES Buffer (1M) Sigma Aldrich H0887 

MEM NEAA (100x) Gibco 11140-035 

UltraPure™ EDTA (0.5M, pH 8.0) Gibco 15575 

sodium pyruvate (100 mM) Gibco 11360-039 

2-βMercaptoethanol (50 mM) Gibco 31350 

RPMI Medium 1640 (1x) + GlutaMAX™ Gibco 61870-010 

DPBS (1x), without  Mg2+/Ca2+ Gibco 14190-094 

MEM-α Medium (1x) Gibco 22561-021 

X-Vivo 20 Lonza BE04-448Q 

Ficoll Sigma Aldrich 

 Fetal Bovine Serum PAN Biotech GmbH 3702-P260718 

Bovin serum albumin Sigma 7030-50G 

Penicillin/ Streptomycin PAA P11-010 

Dimethylsulfoxid (DMSO) Merck 109678 

0.4 % Trypan blue solution Sigma Aldrich T8154 

Dimethylsulphoxide Hybrid Max (DMSO) Sigma Aldrich 472301-100ML 
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3.1.5 Kits 

Product Company Catalog No. 

BCA™ Protein Assay Kit Thermo Scientific  23225 

Bioplex cytokinbe reagent kit 

  Bioplex®Cell lysis kit Bio-Rad 171-304011 

Bioplex® TGF-β1 Set Bio-Rad 171-V4001M 

Bioplex® TGF-β Standard Bio-Rad 171-X40001 

Bioplex , mouse 23-Plex Panel Bio-Rad M60-009RDPD 

FoxP3/ Transcription Factor Fixation/ 

Permeabilisation Concentrate and Diluent 
eBioscience 00-5521-00 

Perm/Wash Buffer (10x) eBioscience 00-8333-56 

Cellscript T7 mScript™ Standard mRNA 

Production System Cellscript  C-MSC100625 

 

3.1.6 Antibodies 

Primary antibodies Fluorochrom Clone Company Catalog. NO 

CD11b APC Cy7 M1/70 BD 557657 

CD11b APC M1/70 BD 553312 

Gr-1 PE Cy7 RB6-8C5 BD 552985 

Ly6C FITC AL-21 BD 553104 

Ly6C APC AL-21 BD 560595 

PD-L1 APC MIH5 BD 564715 

PD-L1 BV421 MIH5 BD 564716 

CD45.2 PerCp Cy5.5 1O4 BD 552950 

CD3 PerCp Cy5.5 145-2C11 BD 551163 

CD4 PE cCy7 RM4-5 BD 552775 

CD8 APC Cy7 53-6.7 BD 557654 

CD8 APC Cy7 YTS156.7.7 Biolegend 126620 

CD25 APC Cy7 PC61 Biolegend 102026 

CD25 APC PC61 BD 557192 

FoxP3 FITC FJK-16s eBioscience 11-5773-82 

TCR/ CD247 PE K25-407.69 BD 558448 

PD-1/ CD279 BV421 J43 BD 562584 

CD69 APC H1.2F3 BD 560689 
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3.1.7 Human/mouse reagents 

Primary antibodies Fluorochrom Clone Company Catalog No. 

NOS Detection Kit FITC-channel (488 

nm) 

production of 
chemical 

reaction 

cell technologies NOS200-2 

anti-h/m Arginase 1 APC MAB58681 R&D IC5868A 

FcR Blocking Reagent     Miltenyi 130-059-901 

 

3.1.8 Chemicals and biological reagents 

Product Company Catalog No. 

7-AAD  BD 51-68981E 

recombinant murine GM-CSF Prospec Cyt-222 
Carboxyfluorescein succinimidyl ester 
(CFSE) 

Biolegend 423801 

Heparin-Natrium-25000 Units Ratiopharm PZN-3029843 

Isofluran 
  RBC Lysis Buffer (10x) Biolegend 420301 

Fetal bovine serum (FBS),  Gibco 10082147 

Freund’s Adjuvant, Complete Sigma F5881 

 

3.1.9 Solutions 

Solution Ingredients 
Freezing medium 1 60 % FBS 

40 % X-VIVO 20 

Freezing medium 2 75 % FBS 
25 % DMSO 

MACS buffer 1x PBS 
1% FCS 
0.5 mM EDTA 

Primary cell culture medium 1x RPMI 
10 % FCS  
100 U/ml Penicillin, 100 µg/ml Streptamycin 
1mM Sodium pyruvate 
1x Non-essential amino acids 
0.5 mM ß-Mercaptoethanol 

FACS buffer 1x PBS 
2% FBS 
0,2 % NaN3  
2mM EDTA 
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3.1.10 Routine laboratory material 

Product Company Catalog No. 

Needle (27G) neolab 194210020 

Needle (23G) BD 300800 

Needle (25G) BD 300400 
6.5 mm Transwell® with 3.0 µm Pore 
Polycarbonate Membrane Insert 

Corning 3415 

Pipets: 2-20 µl, 20-200 µl, 200-1000 µl Rainin L-20XLS+,  
L-200XLS+,  
L-1000XLS+ 

Object carrier Superfrost plus R. Langenbrinck 03-0060 

 

3.1.11 Laboratory equipment 

Equipment Name Company 

Cell culture incubator Hera Cell Heraeus 
Centriguges 

Laborfuge 400R 
Laborfuge 40R 
Biofuge primo R 
Varifuge K 

Heraeus 

Microplate Reader Tecan infinite M200 Tecan 
Flow cytometer FACS Canto II, 8 

colours BD 

Laminar flow hood Hera safe 
Thermo Electron 
Cooperation 

Refrigerator (-20 °C) Premium Liebherr 

Refrigerator (-80 °C) HeraFreeze Heraeus 

Fridge 
 

Liebherr 

Ice machine 
  Magnetic stirrer RCT basic IKA Werke 

Microscope DMIL Leica 

N2 tank 
  pH meter 766 Calimatic 

Vortexer REAX top Heidolph 

Vortexer Vortex Genie 2 Scientific Industries 

Balance BP 3100P Sartorius 

Water bath DC3 HAAKE, GFL 

 

3.1.12 Software for data analysis 

Product Company 

Flow Jo (Version 7.6.1) Tree Star, Inc., Ashland, USA 

GraphPad PRISM (Version 5) GraphPad Software, Inc., San Diego, USA 

 



Materials and Methods  35 
__________________________________________________________________________ 
 
 

3.2 Methods 

3.2.1 Determination of cell numbers 

To distinguish dead from live cells, an aliquot of cell suspension was diluted 1:10 with trypan 

blue. Cell numbers were determined by using a Neubauer counting chamber and the total 

number of cells per mL was calculated by the formula: 

(Counted cell number / number of counted chambers) x 104 x dilution factor. 

3.2.2 Organ preparation and single cell suspension  

Mice were sacrificed by cervical dislocation for organ preparation. Cell suspensions from 

spleens, BM, LNs and skin tumor were prepared and adjusted to 1x106cells/100L in cell 

culture medium or respective buffer according to the assay. 

Spleen (SP) 

Mouse spleens were collected in a 15 mL falcon tube with 5 mL PBS. Single cell suspension 

was prepared by smashing the spleen with a plunger through a 40 µm cell strainer. Single 

cell suspension was washed with PBS at 1400 rpm for 7 min. Erythrocytes were depleted 

with 2 mL lysis buffer followed by 3 min of incubation at RT. To stop the reaction cells were 

washed with 10 ml PBS before cells were counted and resuspended in cell culture medium 

or 1x PBS dependent on the following assay. 

Bone marrow (BM) 

Femur and tibiae from the same mouse were cut at both ends. BM was flushed out with PBS 

using a syringe with a 23G needle. Cells were filtered through a 40 µm cell strainer and 

washed with PBS at 1400 rpm, for 7 min. Red blood cells were lysed with 2 mL lysis buffer 

for 3 min at room temperature (RT). PBS was used to stop the reaction and cells were 

washed at 1400 rpm for 7 min. Pellet was resuspended in appropriate buffer for further 

analysis.  

Lymph nodes (LN) 

Lymph nodes from the inguinal, axillary and head region were extracted. LN were smashed 

between two object slides and filtered through a 40 µm cell strainer. The strainer was then 

washed with PBS to collect all cells. The cells were washed with PBS at 1400 rpm, 7 min and 

resuspended in PBS for flow cytometry. 
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Skin tumor (Tu) 

The isolated skin tumors from melanoma-bearing mice were weight and then smashed 

through a 40 µm cell strainer by a plunger into a 50 mL falcon tube. After the depletion of the 

erythrocytes, cells were washed with PBS at 1400 rpm for 7 min and resuspended in an 

appropriated buffer for further analysis.  

3.2.3 Flow cytometry analysis 

Mice were sacrificed 10 days after the last vaccination. Cell suspensions from SP, BM, LN 

and skin tumor were prepared and adjusted to 1x106cells/100ul in staining buffer (PBS with 

0.5% BSA and 0.1% sodium azide). Fluorochrome-conjugated antibodies were added for 30 

minutes at 4C in the dark. Acquisition was performed by eigh-color flow cytometry using 

FACS Canto II with FACSDiva software (both from BD Biosciences). The compensation 

control was performed with BD CompBeads set (BD Biosciences) using the manufacturer’s 

instruction. FlowJo software (Tree Star, Ashland, OR) was used to analyze at least 200,000 

events. Data were expressed as dot plots. 

3.2.4 Surface staining 

1x106 cells were transferred into a 96 flat-bottom plate and centrifuges at 1000 rpm for 7 min. 

The supernatant was discarded and the pellet was resuspended in FACS buffer with 

Fc-blocking reagent for 10 min at 4 °C. Cells were washed with 100 µl FACS buffer and 

centrifuged (1000 rpm, 7 min). The pellet was stained with fluorochrom-conjugated 

monoclonal antibodies against surface antigens. After incubation of 30 min at 4 °C cells were 

centrifuged (1000 rpm, 7 min), washed twice with 200 µL FACS buffer and measured with 

FACSCanto II (BD) using the BD Diva Software V.6.1.1. At least 200,000 events for CD3+ in 

Sp, LN, BM were acquired and at least 200,000 for CD45+ leukocytes in tumor cell 

suspensions, respectively. FlowJo software 7.6.1 (Tree Star) was used for dot plots or 

histograms. 

3.2.5 Intracellular staining 

For intracellular staining cells were incubated in 100 µl of Fixation/ Permeabilization solution 

(1:4 dilution) (eBioscience) for 45 min at 4 °C and subsequently washed twice with 200 µl 1x 

Perm/ Wash buffer (ebioscience) before fluorescently labeled antibodies against intracellular 

antigens were added. After 30 min incubation at 4 °C, cells were washed with 1x Perm/ 

Wash buffer resuspended in 100 µl of FACS buffer and measured by flow cytometry 

(FACSCanto II from BD Biosciences). FlowJo software 7.6.1 (Tree Star) was used for data 

analysis and shown as dot plots and histograms. 
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3.2.6 Tetramer staining 

The class II and Class I MHC tetramers listed below were kindly provided by NIH tetramer 

core facility, NIH Tetramer Core Facility; Emory University; 954 Gatewood Road; Atlanta, GA, 

USA. 

Class II MHC biotinylated monomers were delivered by NIH and further treated with 

streptavidin-APC (PJ27S; from Prozyme) for tetramerization, directly prior to use. According 

to NIH protocols, 17.4 µL Streptavidin-APC (1 mg/mL) was added to 100ug of monomer 

solution every 10 min for a total of 10 times. In addition, a human CLIP peptide as negative 

control reagent was provided. Tetramer staining was performed by incubating collected and 

washed in vitro restimulated cells with 1:200 dilution of assembled tetramer, and incubated 

either at 37°C or RT for 2 hours. Afterwards, cells were washed once with PBS and then 

surface markers CD4- PE-Cy and CD8-APC Cy7 were stained for 30 min on ice. 7-Amino-

Actinomycin D (7-AAD) was added for 10 more minutes for exclusion of nonviable cells in 

flow cytometric analysis. 

 

Class II MHC biotinylated monomers: 

1. TRP-1(111-128): H2-I-Ab: CRPGWRGAACNQKI 

2. Tyr(99-117) H2-I-Ab: NCGNCKFGFGGPNCTEKRV 

MHC Class I –PE labelled tetramers:  

1. H-2D(b) KVPRNQDWL –PE labelled 

2. H-2D(b) AAPDNLGYM- PE labelled PE 

3. H-2D(b) SSMHNALHI- PE labelled PE  

4. H-2K(b) SVYDFFVWL – PE labelled PE  

3.2.7 Bioplex protein array Luminex 

For the detection of multiple cytokines and chemokines in the lysates of skin tumor and 

Luminex assay (23-Plex Panel, Cat # M60-009RDPD, Bio-Rad) was performed. Bio-Plex 

Multiplex immunoassays use Luminex magnetic beads for the quantification of biologically 

relevant target. Luminex assay is based on capture antibodies that are directed against the 

antigen and conjugated with beads. The reaction is detected by antibodies coupled to 

horseradish peroxidase. The advantage of this method is that several factors can be 

measured simultaneously in the same sample. 

Skin tumors and metastatic LN were isolated and one small piece (3 mm²) of the tumor was 

snap frozen in liquid nitrogen. To prepare lysates of the tissue, 250 µL lysis buffer for tumor 

was added to the frozen samples. The tissue was mechanically smashed in an Eppendorf 
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tube then frozen at -80 °C for 10 min. Lysates were thawed on ice and the rest of the tissue 

was broken down in the ultrasonic bath for 20 min at 4 °C. Lysates were again frozen at -80 

°C for 20 min and thawed on ice before they were centrifuged at 1300 rpm for 20 min at 4 °C. 

Supernatant was transferred into a new Eppendorf tube and protein concentration was 

determined by BCA assay. Samples were diluted with Bioplex Sample Diluent to a 

concentration of 1 mg/ml total protein. 23 different cytokine and chemokine concentration 

were finally determined with a Bioplex Protein Array according to the manufacturer´s 

instructions. Bio-Plex Manager™ software (Version 6.0) was used for the acquisition and 

data analysis. 

3.2.8 Statistical analysis 

Statistical analyses were performed using GraphPad Prism software Statistical analysis was 

conducted with 1-way ANOVA or an unpaired two-tailed Student’s t test. Significance of the 

differences was assessed by Bonferroni multiple comparison posttest. Survival curves were 

generated using the product limit (Kaplan-Meier) method and comparisons were conducted 

using the log-rank (Mantel-Cox) test. A value of P < 0.05 was considered statistically 

significant. (*, p< 0.05; **, p< 0.01; ***, p<0.001). 

3.2.9 Ultra-low dose treatment of paclitaxel 

Taxol stock-infusion solution (6mg/ml) was diluted 1:60, in sterile 1XDPBS. A dose of 1mg/kg 

per mouse was injected i.p. three times with 7 days interval. 

3.2.10 In-vivo killing assay 

BMDCs were washed twice with PBS. Cells were re-suspended at 2.5x106/100 L in BIO-

RAD electroporation (EP) buffer. Cells were mixed with mRNA (5 ug/2.5x106) and EP at 

400V, 0.9 ms using BTX ECM 830 instrument. Following EP, cells were transferred to 10ml 

DCs medium containing 20 ng/mL GM-CSF. Control groups were washed once with Opti-

MEM, resuspended in 2 mL of Opti-MEM and incubated for 2 hours with 30 μg/ml peptide. 

For vaccination, cells were washed 3 times with PBS, resuspended at 0.5x106/200 L in 

PBS and injected I.P. (0.5x106 per mice) 3 times in 7 days intervals. Ten days following last 

vaccination, target cells consisting of splenocytes from B6.SJL (CD45.1+) mice, labeled with 

CFSE at various concentrations give concentrations, loaded with specific peptides and 

injected intravenously (I.V.) 20x106/mice at 1:1:1 ratio. 14-18 hours later, spleens were 

excised, washed twice with PBS and suspended in 2ml FACS buffer (PBS-/-, 0.1% sodium 

azide, 0.5% BSA). Cells (4x106) were transferred into FACS tubes, labeled with anti CD45.1 
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Ab and analyzed by flow cytometry for specific killing. The specific killing in % was calculated 

as: 1-[(CFSEHigh/low/CFSEint)] x100. 

3.2.11 In vitro killing assay 

35S labeled methionine is incorporated into melanoma tumor /target cells and released into 

the supernatant by lysis of tumor-specific T killer cells upon co-culture. The amount of 35S 

labeled methionine release into the supernatant by lysed tumor cells (measured in CPM by 

Beta-counter) correlates with the specific killing capacity of the CTLs. The specific killing in % 

was calculated as: [(CPM of sample- CPM spontaneous release/CPM total release – 

spontaneous release)] x100. 

3.2.12 MHC binding assay 

Culture of the murine lymphoma mutant cell line RMA-S at reduced temperature (19-33 

degrees C) promotes assembly of MHC class I , and results in a high level of cell surface 

expression of H-2/beta 2-microglobulin complexes that do not present endogenous antigens, 

and are labile at 37C. They can be stabilized at 37C by exposure to specific peptides known 

to interact with H-2Kb or Db. Candidate MHC class I restricted peptides were tested for H-2Kb 

or Db binding and subsequent MHC stabilization on RMA-S cells as previously described with 

minor changes. Briefly, RM-s cells were suspended in ~20ml RPMI medium (Gibco 

+garamycin (no serum)) in a 50ml tube, incubate at 26C for 1.5hr in incubator (on shaker, 

loose 50ml lid). Candidate peptides (H-2 Db- and Kb-restricted peptides) were diluted at 

different concentrations in OptiMEM medium in 96 well plates. Afterwards, 100ul of pre-

incubated RMA-s cells were seeded (2x10 5̂ cells/well) into 96 well plate with prediluted 

peptides. After 16-20 of incubation at 37°C, 5% CO2 cell incubator, cells were stained with 

Anti mouse MHC Class I (H-2Kb)-APC (eBioscience 17-5958, 0.06ug/sample, 0.3ul), and 

Anti Anti mouse MHC Class I (H-2Db)-FITC (eBioscience 11-5999, 0.25ug/sample, 0.5ul) 

and analyzed by flow cytometry. 

3.2.13 Proliferation assay 

MHC class II–restricted MAAs were tested in vitro proliferation assay for antigen specific 

CD4+ T cell induction. Therefore, C57/BL/6 mice were vaccinated with respective peptide 

emulsified in complete Freund’s adjuvant (CFA, Sigma-Aldrich). Briefly, emulsion was 

prepared by mixing respective peptide diluted to 1 mg/ml in PBS -/- (without Ca and Mg) and 

mixed with CFA at ratio of 1:1. Each emulsion was stored at 4°C until further use. 
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3 mice per peptide/CFA emulsion were immunized intra footpad (in both hind legs) with 50ul 

of emulsion (25ug peptide) in each footpad. 11 days later draining lymph nodes (popliteal 

lymph nodes) were excised and re-stimulated in vitro with 30ug/ml of peptide or irrelevant 

class-II peptide OVA(323-339), respectively. Following incubation for 72 hours, cells were pulsed 

with 3H-thymidine for 18 hours. Specific peptide proliferation was detected by the thymidine 

uptake. 

3.2.14 Restriction-free (RF) cloning 

It is a simple, universal method to precisely insert a DNA fragment into any location within a 

circular plasmid, independent of restriction sites, ligation, or alterations in either the vector or 

the gene of interest. The technique uses a PCR fragment encoding a gene of interest as a 

pair of primers in a linear amplification reaction around a circular plasmid. In contrast to 

QuickChange™ site-directed mutagenesis, which introduces single mutations or small 

insertions/deletions, RF cloning inserts complete genes without the introduction of unwanted 

extra residues. The absence of any alterations to the protein as well as the simplicity of both 

the primer design and the procedure itself makes it suitable for high-throughput expression 

and ideal for structural genomics163–165 

Detailed information of gene assembly and cloning of the template MHC class I-hß2m 

chimeric construct (with H2kb and TLR4 anchor, respectively) and MHC class II chimeric IAb 

construct assembling were described in detail elsewhere144,146–148. Shortly, constructs were 

embedded in pGEM-4Z vector backbone. An XbaI-BamHI fragment encoding the full leader 

peptide of human-ß2m, the human-gp100 (25-33) peptide and the 5' part of the flexible linker 

Gly4Ser(Gly3Ser)2 was cloned essentially as described145 For creating the intact constructs 

encoding peptide-hb2m-anchor, all corresponding fragments were modularly cloned in a 

single step. 

Template constructs such as the hgp100-Kb anchor- and hgp100-TLR4 anchor construct and 

class II–OVA-IAb constructs were kindly provided by Prof. Lea Eisenbach. For this study, the 

OVA peptide DNA-sequences of the template constructs were exchanged with MAA-

candidate DNA-sequences by the restriction free (RF) cloning. Megaprimers, encoding for 

whole length of respective MAA sequence and additional 25bp of plasmid vector sequence 

were designed and ordered from Sigma Aldrich. Restriction free cloning method was 

performed according to already established and previously published method163–165. Obtained 

DNA-construct sequences were verified by sequencing. 
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3.2.15 Chimeric MHC class I- β2m-bi-functional constructs 

pGEM-T easy polymerase chain reaction (PCR) cloning vector was purchased from 

PROMEGA. pGEM-4Z 5'UT-eGFP-3'UT-A64 (pGEM-4Z) vector was kindly provided by Dr Eli 

Gilboa. This plasmid contains a 741-bp eGFP fragment from peGFP-N1 (Clontech, 

Westburg, Leusden, the Netherlands ) flanked by the 5' and 3' UTRs of Xenopus laevis -

globin and 64 A–T bp. mRNA Transcription is controlled by a bacteriophage T7 promoter. 

The β2m-TLR4 and β2m-Kb backbones were covalently linked to the tumor-associated 

peptides as previously described146–148. Briefly, the mouse TLR4 (mTLR4) sequence 

(GenBank accession number AF 110133) was aligned with the human TLR4 (hTLR4) 

transmembranal and cytoplasmic domains (GenBank NM 138554) to identify, by similarity, 

the mTLR4 TC domains. The TC portions of mTLR4 were cloned by RT-PCR from mRNA of 

RAW cells with the forward primer-5’ CCG TCG ACC ACC TGT TAT ATG TAC AAG ACA 

ATC 3’ and the reverse primer- 5’ CGC GCG GCC GCA CTG GGT TTA GGC CCC AG 3’. 

The full length human β2m (hβ2m) was previously cloned in our lab from Jurkat cells by RT-

PCR. All products, together with the peptide sequence were cloned in a single step into 

pGEM-4Z plasmid. 

3.2.16 In-vitro mRNA transcription 

Appropriate plasmids were linearized using SpeI restriction enzyme. One μg of linear plasmid 

was used to transcript in-vitro mRNA using AmpliCap-MaxTM T7 High Yield Message Maker 

Kit (EPICENTRE Biotechnologies, Madison, U.S.A.). The concentration and quality of the 

mRNA were assessed by spectrophotometry and agarose gel electrophoresis 

3.2.17 Generation of DC from murine BM cells 

Generation of murine bone marrow derived DC was described by Lutz et al.166,167 and used 

with minor modifications. Briefly, bone marrow cells from femurs and tibiae of 4-6 weeks old 

C57Bl/6, female mice were cultured in RPMI medium supplemented with 10% heat-

inactivated FCS, 50 uM 2-mercaptoethanol, 2 mM L-glutamine, combined antibiotics and 200 

U/ml rmGM-CSF (Prospec, Israel). On day 8 non - adherent cells were harvested and further 

cultured in fresh medium containing 100 U/ml rmGM-CSF for 24 hours. DCs were matured 

by addition of 1ug/ml of lipopolysaccharide (LPS, Sigma, Saint Louis, MI) for another period 

of 24 hours. Non-adherent cells were analyzed by FACS and found to express typical 

characteristics of immature and mature DCs (CD11c+, CD80+, CD86+, MHC class II+). 
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3.2.18 mRNA electroporation of DC 

Cells (DC2.4 or BMDCs) were harvested, centrifuged at 1000 rpm and 18C for 10 minutes, 

washed twice with Opti-MEM medium Reduced Serum Medium (Cat. No.: 31985070, Gibco - 

Life Technologies) and counted. Cell titer was adjusted to 16.67X10
6
 cells/ml in Opti-MEM. 

150 μl of cell suspension (2,5X106 cells) were transferred into 0.2 cm–gap Gene 

Pulser/MicroPulser Electroporation Cuvettes (Cat. No.: 1652086, Bio-Rad) and 

electroporated with 5 μg of mRNA per construct, with one pulse of 400 mV and 1 msec, 

using the Gene Pulser Xcell Eukaryotic System electroporator (Cat. No.: 1652661, Bio-Rad). 

Immediately after electroporation, cells were transferred into 50 ml CELLSTAR 

polypropylene tubes containing 5 ml warm complete growth medium composed of RPMI-

1640 (Cat. No.: 11875093, Gibco - Life Technologies) supplemented with 10% heat 

inactivated FBS (Cat. No.: 10082147, Gibco - Life Technologies) and incubated at 37°C for 6 

hours under shaking. After incubation, cells were washed with 1X DPBS and centrifuged at 

1000 rpm and 18°C for 10 minutes. Cells were then resuspended in 1 ml 1X DPBS (final cell 

concentration 2,5X106 cells/ml) and used for mouse vaccination. 

In order to assess the constructs expression and the quality of the generated DC vaccines, 

100 μl of each vaccine were stained at 4°C for 30 minutes with 1 μg/ml PE-anti-human β2-

microglobulin (clone 2M2, Cat. No.: 316306, BioLegend, San Diego, CA, USA), 2 μg/ml APC-

anti-mouse MHC class II (I-A/I-E) (clone M5/114.15.2, Cat. No.: 17-5321-82, eBioscience, 

San Diego, CA, USA), 2 μg/ml PE-Cy7-anti-mouse CD86 (clone GL1, Cat. No.: 560582, BD 

Pharmingen), 5 μg/ml FITC-anti-mouse CD80 (clone 16-10A1, Cat. No.: 11-0801-82, 

eBioscience, San Diego, CA, USA), and 2 μg/ml APC/Cy7-anti-mouse CD11c (clone N418, 

Cat. No.: 117324, Biolegend, San Diego, CA, USA). After incubation, 500 μl of 1X DPBS 

were added and cells were centrifuged at 1000 rpm and 4°C for 10 minutes. Cell pellets were 

resuspended in 200 μl of 1X DPBS and samples were analyzed using the BD FACSCantoTM 

II and FACSDiva software (both from BD Biosciences). Flow cytometry results were analyzed 

using FlowJo v8.7 (Tree Star, Ashland, OR). Data were expressed as histograms. 
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3.2.19 Peptides 

Synthesized and HPLC purificated peptides were kindly provided by Prof. Stefan Eichmüller, 

GMP & T cell Therapy Unit, DKFZ, Heidelberg, Germany.

 

3.2.20 Peptide loading of DC 

LPS-maturated BMDCs were harvested, centrifuged at 1000 rpm and 18C for 10 minutes, 

washed twice with Opti-MEM Reduced Serum Medium and counted. Cell titer was adjusted 

to 25X106 cells/ml in Opti-MEM medium. 100 μl of cell suspension (2,5X106 cells) were 

transferred into 50 ml CELLSTAR polypropylene tubes containing 5 ml of Opti-MEM medium, 

and were pulsed with 30 μg/ml of peptides Trp-1455-463 (AAPDNLGYM), Tyr360-368 

(SSMHNALHI), the combination of Trp-1 and Tyr (Mix), and OVA257-264 (SIINFEKL), at 37°C 

for 2-3 hours under shaking. After incubation, cells were washed with 1X DPBS and 

centrifuged at 1000 rpm and 18°C for 10 minutes. Cells were then counted (final cell 

concentration 2.5X106 cells/ml), resuspended in 1 ml 1X DPBS and used for the mice 

vaccinations. 

3.2.21 Immunization of mice (DC vaccination) 

BMDCs were either electroporated with 5ug mRNA (per respective construct) or loaded with 

30g/mL of respective peptides for 2 h at 37°C. Cells were washed three times with PBS and 

resuspended at 2.5x106/ml in PBS. In all experiments, mice were vaccinated intraperitoneal 

(I.P.) using 200 l cell suspension containing either 1 x106 DC or 0.5 x106 DC; three times 

with 7 days intervals.  
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4 Results 

4.1 Selection process of potential MHC class I and class II restricted 

melanoma associated antigens (MAAs) 

Tyrosinase (Tyr), tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2 (TRP-

2) overexpressed in malignant melanoma were chosen as candidate proteins for this study. 

Eight MHC class I restricted peptides were selected for further testing after literature 

research and SYFPEITHI database H2-Kb/H2-Db binding prediction. Similarly, five class II 

candidates were selected after literature research and IEDB database MHC class II-IAb 

binding prediction (Table 3). 

Table 2: Summary of candidate peptides: Eight MHC class I restricted MAA candidate peptide sequences 

and 5 MHC class II restricted candidate peptides 

 

4.1.1 Testing of MHC Class I restricted candidate peptides 

CTL in vivo assay 

First, MHC class I candidate MAA-peptides were tested for their capacity to elicit a specific 

CTL response in vivo and in vitro. Therefore, mice were vaccinated 3 times (in weekly 

intervals) with respective MAA-peptide loaded onto bone marrow-derived DCs. 10-11 days 

later CTL in vivo killing assay and CTL in vitro killing assay were performed. Figure 13 

shows results of CTL in vivo killing assay. Vaccination of peptide loaded BMDCs resulted 

high specific killing for TRP1 variant 1,  TRP1 variant 2 and Tyr #6, indicating that these 
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candidate MHC class I restricted peptides are able to elicit a specific CTL response in 

vaccinated C57BL/6 mice. TRP1.3 native and Tyr #9 showed moderate in vivo killing. 

 

Fig. 13: CTL in vivo assay. Mice were injected i.p. with peptide loaded BMDCs (2 mice per group, 
30µg/ml peptide, 1x10

6
 cells in 0.2 mL, 3 times, weekly intervals). 11 days after last vaccination, 

30µg/ml of respective peptide was loaded onto splenocytes of B6/SJL mice, cells were CFSE labeled, 
and i.v. injected into vaccinated mice. 18 h later, splenocytes from vaccinated mice were isolated and 
checked for in vivo killing by FACS analysis (CD45.1 positive cells). Bar chart shows specific in vivo 

killing of respective peptide loaded CFSE-labeled splenocytes. 

 

CTL in vitro killing assay  

To ensure that induced CTLs in vaccinated mice are also able to specifically target and kill 

tumor cells, which overexpress MAAs such as TRP-1 and Tyr, CTL in vitro assay was 

performed. As specific target cells, the melanoma cell line B16F10.9, B16 melanoma cell line 

stably transfected with OVA (B16MO5) and the melanoma cell line established from skin 

tumors of ret transgenic mice (Ret) were used. Lewis lung carcinoma cells (D122), which do 

not express MAAs, were used as a negative control. For CTL in vitro assay, mice were 

vaccinated i.p. with peptide loaded bone marrow-derived DCs. 11 days later; CTL in vitro 

assay was performed. Afterwards supernatant was removed and specific target cell lysis by 

35S methionine release (with ß-counter) was calculated. Results of CTL in vitro assay (Fig. 

14) revealed that respective CTLs (produced by vaccinated mice) of all three TRP-1 

candidate peptides showed high specific killing of target tumor cells when compared with 

D122-negative control. Both Tyr peptides showed lower but still detectable specific lysis of 
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tumor cell line compared to D122 negative control. However, specific lysis after the 

stimulation with Tyr #9 peptide was slightly lower than that of Tyr #6 one. Therefore, the Tyr 

#9 peptide was excluded from further studies. 

 

Fig. 14: CTL in vitro assay. Mice were vaccinated i.p. with peptide loaded BMDCs (3 mice per group, 
30µg/ml peptide, 1x10

6
 cells in 0.2 mL) 3 times in weekly intervals. 10 days later, splenocytes from 

vaccinated mice were isolated and in vitro sensitized by peptide for 4 days at 37°C. Target tumor cell 
lines (B16MO5, B16F10.9, Ret and D122), were labeled for 10-12 hours with 

35
S methionine. 

Afterwards supernatant was removed and specific target cell lysis by 
35

S methionine release (with ß-

counter) was calculated. Assay was repeated 2 times giving similar results.  

 

 



Results  47 
__________________________________________________________________________ 
 
 

4.1.2 MCH class II candidate peptide testing 

 Proliferation assay  

Five MHC class II restricted peptides were tested for their ability to elicit a specific CD4+ T 

cell response (Table 3) by in vitro proliferation assay. Therefore, wild type C57/BL6 mice 

were injected intro food pad (i.f.p) with complete Freund’s adjuvant (CFA) /peptide emulsion 

and after 10 days, draining lymph nodes (popliteal LN) were excised and lymphocytes were 

tested for specific CD4+ T cell proliferation after 72 h in vitro re-stimulation with specific (or 

irrelevant) peptide. As shown in Fig.15, class II restricted peptides TRP1 (122), TRP1 (123) 

and Tyr (130) and TRP2 (175) peptide were able to induce a specific T cell proliferation in 

vitro. Specific proliferation was detected by 3H-labelled thymidine uptake, resulting in strong 

elevation of CPMs compared to control. These candidate peptides were then further 

subjected to the restriction free (RF) cloning to produce the respective IAb and CLIP 

constructs. Peptide Tyr (129) did not induce antigen specific proliferation and subsequent 

elevated CPM levels and was therefore excluded from further studies. 

 
Fig. 15: MHC class II–restricted melanoma associated antigens were tested by in-vitro 
proliferation assay. C57BL/6 mice were vaccinated with peptide emulsified in complete Freund’s 

ConA-positive control
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adjuvant. Ten days later, the draining lymph nodes were excised and lymphocytes were re-stimulated 
in-vitro with 30ug/ml of peptide Tyr(99-117) or irrelevant class-II peptide OVA(323-339) , respectively. 
Following incubation of 72 hours, cells were pulsed with 

3
H-labeled thymidine for 18 hours. Specific 

proliferation was detected by thymidine uptake, resulting in strong elevation of CPMs (blue curve) 
compared to irrelevant OVA(323-339) (red). Assay was repeated 3 times with similar results.  

 

.  
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4.2 MHC class I and II chimeric construct expression kinetics 

Cytoplasmic expression system based on mRNA electroporation (EP) was used to efficiently 

insert the class I (hß2m-peptide-Kb-anchor and hß2m-peptide-TLR4 anchor) and class II (IA-

b-peptide-CD40 anchor) encoding polypeptide into DC2.4 (dendritic cell line). In vitro 

transcription was performed with T7 mScript Standard mRNA Production System (CellScript, 

Madison, WI 53713 USA). DC2.4 cells were washed twice with PBS and then adjusted to a 

cell concentration of 16.67 x 10
6
 cells/mL. 150 µL cell suspension was mixed with 10 µg of in 

vitro transcribed mRNA and transferred into 2 mm gap electroporation cuvette and pulsed 

once for 0.9 ms. Afterwards, cells were immediately transferred into 5 ml culture medium and 

further cultured in cell incubator. Beta-2m-expression (Fig. 16) and I-Ab expression kinetics 

(Fig.17) were assessed after several time points by flow cytometry. 

All selected class I constructs showed elevated surface expression levels for at least 48 h for 

Kb-anchor constructs and for at least 36 h for TLR4-anchor sequences, indicating slightly 

more stable expression kinetics of native Kb anchor. 

 

Fig. 16: Class I construct expression kinetics on DC2.4 cells. DC2.4 cells were washed twice with 

PBS and adjusted to a cell concentration of 16.67 x 10
6
 cells/ml. 150 µL cell suspension was mixed 

with 10 µg of in vitro transcribed mRNA and transferred into 2 mm gap electroporation cuvette and 
pulsed once for 0.9 ms. Afterwards, cells were immediately transferred into 5 ml culture medium and 
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further cultured in cell incubator. Hb2m-expression were assessed after 6, 12, 24, 36 and 48 h by flow 
cytometry. All Kb anchor constructs showed elevated expression levels for at least 48 h. All TLR4 
anchor constructs showed elevated cell surface expression for at least 36h 

 

Class II constructs showed stable surface expression levels for TPP1 (122) IAb-construct 

and Tyr (130)–IAb-construct (Fig.17). TRP-2–IAb (175) and TRP1 (123)-IAb constructs did 

not show an elevation in IAb expression after the electroporation of DC2.4 cells even after 

several repeats of sequence verification, mRNA transcription and subsequent 

electroporation. These peptides were therefore excluded from further studies. 

 

Fig. 17: Class II construct expression kinetics on DC2.4 cells. DC2.4 cells were washed twice with 
PBS and then adjusted to a cell concentration of 16.67 x 10

6
 cells/mL. 150 µL cell suspension was 

mixed with 10 µg of in vitro transcribed mRNA and transferred into 2 mm gap electroporation cuvette 

and pulsed once for 0,9 ms. Then cells were immediately placed into 5 ml culture medium and further 
cultured in cell incubator. IAb-expression was assessed by flow cytometry after 6, 24 and 36 h. 

  

(#122) (#123) 

(#130) 
(#175) 
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4.3 In vivo and in vitro testing of selected constructs as mRNA-based-

DC vaccines 

4.3.1 Class I mRNA –based DC cell vaccine 

Selected hb2m-Kb and -TLR constructs were tested for their capacity to elicit a specific CTL 

response in vivo and in vitro. Mice were vaccinated 3 times weekly with 1:1 mixture of hß2m-

Kb and –TLR constructs (5 µg each) electroporated into BMDCs. CTL in-vivo killing assay 

and CTL in-vitro killing assay were performed 10 days later. Fig. 18 shows results of CTL in 

vivo killing assay (3 mice per group). Vaccination with mRNA electroporated DCs resulted in 

high specific killing of CFSE-labelled and i.v. injected SJL- splenocytes for TRP-1 variant 2-

vaccine (44/86/88% killing), for TRP-1 variant 2 vaccine (60/51/49% killing). A moderate 

killing was demonstrated for Tyr #6 vaccine (28/18/0% killing). These results indicate that 

tested MHC class I hß2m mRNA construct expression is long-lasting and able to elicit a 

specific CTL response in vaccinated C57BL/6 mice 
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Fig. 18: CTL in vivo assay with mRNA electroporated BMDCs. Mice were i.p. injected with mRNA 

electroporated DCs (3 mice per group, 0,5 x10
6
 cells in 0.2ml, 3 times, weekly intervals). 11 days after 

last vaccination, splenocytes of B6 /SJL mice were loaded with 30 µg/mL of respective peptide,   
labeled with CFSE and injected i.v. into vaccinated mice. 18 hours later, splenocytes from vaccinated 
mice were isolated   and checked for in vivo killing by FACS analysis. Bar chart shows specific in vivo 

killing of respective peptide loaded CFSE-labeled splenocytes. 

 

Previous results of CTL in vitro assay revealed that respective CTLs stimulated by both TRP-

1 vaccines (Fig. 19 (a,b)  and Tyr vaccine (Fig. 19 c) showed highly increased specific killing 
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of target tumor cells when compared to D122-negative control. Interestingly, the TRP-1 

mRNA construct presenting the native TRP-1 MHC class I restricted sequence induced even 

higher CTL tumor cell killing capacity (B16-F10 (32%), MO5 (37%) and Ret (29%)) than 

TRP-1 variant 2 vaccine (B16-F10 (18%), MO5 (22%) and Ret (20%)). Tyr class I vaccine 

induced similar CTL tumor cell killing capacity (B16-F10 (18%), MO5 (26%) and Ret (20%)). 

Additionally, a possible killing induced by natural killer (NK) cells in the splenocyte cell 

population of vaccinated mice was analyzed by NK cell-dependent YAC-1 cell lysis. As 

shown in Fig. 19 d the lysis of YAC-1 cells was similar to irrelevant control cell line (D122), 

indicating that there are almost no lysis mediated by NK cells. 

 

Fig. 19: CTL in vitro assay. Mice were vaccinated i.p. with mRNA electroporated DCs (3 mice per 

group, 0.5x106 cells in 0.2 mL) 3 times weekly. 10 days later, splenocytes of vaccinated mice were 
isolated and in vitro sensitized by peptide for 4 days at 37°. Target tumor cell lines (B16MO5, 
B16F10.9, Ret and D122), were labeled for 10-12 hours 35S methionine. Afterwards, target tumor 

cells and sensitized splenocytes were co-incubated at different ratios for 5 h at 37°C.  Then 
supernatant was removed and specific target cell lysis by 35S methionine release was calculated. 
Graphs represent the mean percentage of specific killing of tumor cells by CTL induced after 
vaccination with respective class I-DC vaccine, namely (a) vaccination with Class I -Trp1 (variant) 

construct, (b) vaccination with Class I -Trp1 (native) construct and (c) vaccination with Class I -Tyr 
(variant) construct, respectively. (d) Graph shows a percentage of unspecific killing induced by either 
spontaneous lysis of irrelevant control cell line (D122) or by naturally occurring killer cells (NK cells) in 

vaccinated mice, indicated by NK cell sensitive YAC-1 cell lysis. Assay was repeated once with similar 
results. 
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4.4 Tetramer staining of CD4
+
 T cells after proliferation assay 

Class II IAb-constructs were tested for their ability to elicit a specific CD4+ T cell response. 

C57BL/6 mice were injected intra footpad (i.f.p) with CFA/peptide emulsion. 11 days later, 

lymphocytes from draining popliteal lymph nodes were tested for specific CD4
+
 T cell 

proliferation after 72h in vitro restimulation with the construct containing specific or irrelevant 

peptide- sequence at different DC: T cell ratios. As shown in Figure 20, a specific CD4+ T 

cell proliferation to Tyr and TRP-1 peptides was significantly increased as compared to 

irrelevant OVA(323-339). Importantly, no specific CD8+ T cell response was detected.  

 

Fig. 20: In vitro proliferation assay for Class II IAb-constructs. C57/BL6 mice were vaccinated with 
peptide in complete Freund’s adjuvant. Eleven days  later,  CD4+ and CD8+ T lymphocytes from 
draining lymph nodes were separated by IMag

TM
 particles and re-stimulated in vitro with DCs 

electroporated with 10 ug IAb consruct (IAb-Tyr99-117 or irrelevant class-II construct IAb-OVA323-339). 
DCs loaded with the Tyr99-117 peptide were used as a control. Following incubation for 72 hours, cells 
were pulsed with 

3
H thymidine for 18 h. Specific CD4

+
 cell proliferation was assessed by the thymidine 

uptake. Results are presented as mean +/- SD. The assay was repeated 2 times. 

 

In two additional in vitro proliferation assay experiments, cells were harvested 80 h after in 

vitro restimulation with respective class II peptide and subjected to tetramer staining in order 

to confirm presence of antigen specific CD4+ T cells. Tyr and TRP1 Class II-I-Ab biotinylated 

monomers, as well as respective negative control monomers were kindly provided by NIH 

tetramer core facility (Emory University, Atlanta, GA, USA) and are listed in Table 4.. As 

shown in Figure 21 , TRP1-I-Ab tetramer staining of cells upon in- vitro restimulation at room 
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temperature (RT) and 37°C with relevant peptide revealed elevated levels of CD4+ T cell that 

were also tetramer positive (4.5 % and 1.4%), providing evidence of antigen-specific 

CD4+tetramer+ cells. Importantly, TRP1-I-Ab tetramer staining of CD8+ T cell did not show 

elevated tetramer levels, indicating TRP1(111-128) specific CD4+ T cell proliferation after 

immunization and in-vitro restimuation with TRP1(111-128) peptide. Similarly, Tyr-I-Ab Tetramer 

staining of cells upon in- vitro restimulation at RT and 37°C with Tyr-IAb peptide revealed 

elevated levels of CD4+ and Tyr-IAb-tetramer+ (2.7 % and 1.6%), also providing evidence of 

Tyr(99-117) specific CD4+ tetramer+ T cells.  

To summarize, tetramer staining provided further evidence that selected MHC class II 

restricted candidate peptides TRP1(111-128) and Tyr(99-117)  are able to induce an antigen 

specific CD4+ T helper cell response. Experiment was repeated one more time showing 

similar results for both peptides (data not shown). 

Table 3: MHC class II restricted monomers used for tetramer staining following in vitro 
proliferation assay 

# Name Peptide sequence Concentration 

1 Trp-1455-463 – I-Ab CRPGWRGAACNQKI 2mg/ml 

2 TYR99-117 – I-Ab NCGNCKFGFGGPNCTEKRV 2mg/ml 

3 Clip-negative control PVSKMRMATPLLMQA 2mg/ml 

 

 

Fig. 21: I-Ab tetramer staining after in-vitro proliferation assay. 11 days after CFA/class II-peptide 
i.f.p. injection with TRP1(111-128) (a) and Tyr(99-117) (b) , in-vitro restimulation with specific peptide or 
irrelevant control (OVA323-339) was performed. 80 hours later cells were collected and analyzed by flow 

cytometry for tetramer+ cells among CD4
+
 cell (blue) and CD8

+
 cell subsets (red). Tetramer staining 

was performed with 1:200 tetramer dilution at RT and 37°C, respectively .  



Results  55 
__________________________________________________________________________ 
 
 

4.5 Analysis of peptide-loaded versus class I mRNA-electroporated DC 

immunization 

4.5.1 Immunization with mRNA-electroporated DCs is superior in inducing 

antigen-specific CD8+ T cell immune responses 

In this set of experiments, the potential of mRNA-electroporated DCs and peptide-loaded 

DCs to elicit antigen-specific immune responses was compared. We utilized a mixture of 

mRNA encoding for the MHC Class I constructs (Trp-1455-463 Tyr360-368) linked to β2m-TLR4 

and β2m-Kb backbones). BMDCs were electroporated with Trp1-Kb/TLR4, Tyr- Kb/TLR4 

transcribed mRNAs followed by 6 h of incubations at 37°C. In addition, LPS-maturated 

BMDCs were loaded with 30 μg/mL synthetic peptides of peptides Trp-1455-463, Tyr360-368, or 

the combination of Trp-1 and Tyr (Mix) for 2-3 hours at 37°C. C57BL/6 mice were immunized 

i.p. with the generated DC vaccines three times in 7 days intervals (0.5X106 cells per 

mouse), and 10 days after the last vaccination, LNs were harvested and analyzed for the 

induction of peptide-specific CD8+ by intracellular staining (ICS) for IFN-γ and TNF-α. Cells 

were in in vitro re-stimulated using Trp-1455-463 and Tyr360-368 peptides or their combination 

(1:1), and their intracellular levels of IFN-γ and TNF-α were measured.  

Our results indicated that all three mRNA-electroporated DC vaccines were more potent in 

inducing peptide-specific CTL immune responses than the corresponding peptide-loaded DC 

vaccines (Fig.22). This is evident from the fact that in both lymph nodes and spleens the 

frequency of IFN-γ and TNF-α secreting CD8
+
 T-cells was found to be significantly higher in 

mice vaccinated with mRNA-electroporated vaccines. In LNs of mice immunized with mRNA-

electroporated DC vaccines, the frequency of CD8+ T cells secreting both IFN-γ and TNF-α 

was significantly higher than in mice received the corresponding peptide-loaded DC 

vaccines. 
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Fig. 22: Analysis of CD8+ T-cell antigen-specific immune responses in the lymph nodes 
following vaccination with mRNA-electroporated and peptide-loaded DCs. C57BL/6 mice (n=3) 

were vaccinated intraperitoneally 3 times using BMDCs electroporated with Trp1-Kb/TLR4, Tyr- 
Kb/TLR4, or the combination (Mix) mRNAs, as well as BMDCs peptide-loaded with Trp-1455-463, Tyr360-

368, or the combination of the two peptides. Ten days after the last vaccination lymph nodes were 

harvested and analyzed for the induction of peptide-specific CD8+ T cells by ICS for IFN-γ and TNF-α, 
following 6 h re-stimulation with the relevant peptide according to the group (Trp-1455-463, Tyr360-368 or 
their combination) in the presence of 3ug/ml Golgi-plug. As assay controls, unspecific stimulation with 

2ug/ml PMA/ 20ug/ml ionomycine was performed as positive control and as negative control in vitro 
restimulation with irrelevant peptide (SIINFEKL) was performed. Bar graphs represent the percentages 
of CD8+ INFγ+ (a), CD8+ TNF-α+ (b), CD8+ INFγ+ TNFα+ (c) and respective assay controls (d) for 

lymph nodes.  Results are presented as mean ± standard deviation (SD), (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 
0.001; mRNA-electroporated versus peptide-loaded DCs; unpaired student’s t-test). 

  

(a) 
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4.6 Vaccination with mRNA-electoporated DC induces memory T cells 

Splenocytes and LN cells isolated from C57BL/6 mice immunized with mRNA-electroporated 

or peptide-loaded DCs were also used to assess the activation status of T lymphocytes, by 

cell-surface expression of CD44 and CD62L. Vaccination with mRNA-electroporated DC 

vaccines induced a significant reduction in the frequency of naïve CD8+ T-cells in LN and in 

spleen (Fig.23). mRNA-electroporated DC vaccines induced elevation in the central memory 

(CM) CD8
+
 T cell population in both spleens and lymph nodes. Statistically significant 

changes were observed in the effector-memory (EM) CD8+ T cell population in spleens and 

lymph nodes upon vaccination with Mix-EP vaccine and Tyr-EP vaccine, which resulted in a 

higher frequency of EM CD8
+
 T cell population in LNs compared to the respective peptide-

loaded DC vaccine (Fig.23).  

 

Fig. 23: Frequency of naïve, central memory and effector-memory peptide specific CD8
+
 T cells 

in mice vaccinated with mRNA-electroporated and peptide-loaded DCs. C57BL/6 mice (n=3) 
were vaccinated intraperitoneally 3 times using BMDCs electroporated with Trp1-K

b
/TLR4, Tyr- 

K
b
/TLR4, or the combination (Mix) mRNAs, as well as BMDCs peptide-loaded with Trp-1455-463, Tyr360-

368, or the combination of the two peptides. Ten days after the last vaccination spleens and LNs were 
harvested and the activation status of T lymphocytes was assessed by expression of CD44 and 

CD62L analysis. Bar graphs representing the percentage of naïve (CD62L
+
 CD44

-
) (a, d), central 

memory (CM; CD62L
+
 CD44

+
) (b, e), and effector-memory (EM; CD62L

-
 CD44

+
) (c, f) CD8

+
 T-cells, for 

both lymph nodes (a-c) and spleen (d-f) are shown. Results are presented as mean ± standard 

deviation (SD) (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; mRNA-electroporated versus peptide-loaded DCs; 
student’s t-test) 
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4.7 In vivo target cell killing upon immunization 

CTL in vivo killing assay was performed in order to test if mRNA electroporated BMDCs are 

superior to peptide-loaded, LPS-matured BMDCs in inducing specific CTL killing in vivo. 3 

C57BL/6 mice were vaccinated intraperitoneally (i.p.) three times at 7 day intervals using 

BMDCs were electroporated with either Trp1-Kb/TLR4 or Tyr-Kb/TLR4 mRNA as well as 

their combination (Mix). Mice were also immunized with BMDCs peptide-loaded with Trp-1455-

463, Tyr360-368, or the combination of the two peptides. Mice vaccinated with SIINFEKL-loaded 

DCs served as positive control for assay performance. Ten days later mice were injected 

with CFSE-labeled, C57/BL6-Ly5.1 (CD45.1+) derived splenocytes loaded with Trp-1455-463, 

Tyr360-368, Trp-1455-463/Tyr360-368, or OVA257-264 (SIINFEKL) peptides as target cells and 

sacrificed 14-18 hours later. As seen in Fig. 24, all three mRNA-electroporated DCs were 

able to elicit very effective CTL responses in vivo. Additionally, they were significantly more 

efficient in inducing peptide-specific cytolysis in vivo as compared to the respective peptide-

loaded ones.  

 

Fig. 24: In-vivo target cell killing in mice vaccinated with mRNA-electroporated and peptide-

loaded DCs. C57BL/6 mice (n=3) were vaccinated intraperitoneally three times using BMDCs 
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electroporated with Trp1-K

b
/TLR4, Tyr- K

b
/TLR4, or the combination (Mix) mRNAs, as well as BMDCs 

peptide-loaded with Trp-1455-463, Tyr360-368, or the combination of the two peptides. Mice vaccinated with 
SIINFEKL-loaded DCs were used as control. Ten days after the last vaccination splenocytes from 

C57/BL6-Ly5.1 (CD45.1
+
) mice donors were pulsed with Trp-1455-463, Tyr360-368, Trp-1455-463/Tyr360-368, 

and OVA257-264 (SIINFEKL) peptides. (a) Splenocytes loaded with specific peptides (target cells) were 
labeled with 1.5 μM CFSE (CFSE

Hi
), while SIINFEKL-loaded splenocytes with 0.15 μM CFSE 

(CFSE
Lo

). (b) Target and control cells are injected intravenously into vaccinated C57BL/6 mice at 1:1 
ratio. Fourteen to eighteen hours later, splenocytes from the vaccinated mice were stained with 
CD45.1 antibody and analyzed by flow cytometry for presence of the differentially labeled peptide-

loaded C57/BL6-Ly5.1 splenocytes and are presented at individual histograms (c) Bar graph 
represents the percentage of specific killing in the different groups. Results are presented as mean ± 
standard deviation (SD) (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; mRNA-electroporated versus peptide-

loaded DCs; unpaired student’s t-test) 

 

To summarize, tested class I -mRNA electroporated BMDCs stimulated specific CD8+ T cell 

response. Induced CTLs were also able to mediate a specific cytolysis of relevant tumor cells 

in vitro. Importantly, mRNA-electroporated DCs could elicit the effective CTL responses in 

vivo. These DCs were significantly more efficient in inducing specific cytolysis in vivo as 

compared to the respective peptide-loaded ones.  
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4.8 Effect of DC vaccination on melanoma development in mice 

4.8.1 Immunotherapy of melanoma bearing ret transgenic mice 

5-week old melanoma-bearing ret transgenic (ret-tg) mice were immunized intraperitoneally 

i.p. with mRNA-electroporated BMDCs three times every week. In an additional experiment, 

melanoma-bearing mice were vaccinated in parallel with peptide loaded, LPS maturated 

BMDCs. Mice treated with electroporated, but empty BMDC were used as a control group. 

Mice were closely monitored in regular intervals for at least 80 days to assess survival 

benefits upon respective treatment. In some experiments 4 mice of respective treatment 

groups were sacrificed 10 days after last vaccination, and flow cytometry analyses of 

different immune cell subsets in BM, SP, LN and tumor were performed. 

The scheme of DC vaccination is shown in Figure 25. MHC class I and MHC class II vaccine 

composition and treatment groups are shown in Table 5. 

 

Fig. 25: Dendritic cell vaccination scheme for melanoma immunotherapy. 5 week old melanoma 
bearing ret mice, 6-12 mice per group, were immunized i.p. three times in 7 days intervals with DC 

vaccine (0.5x10
6
 cells per mouse). Ten days after last vaccination, 4 mice of respective treatment 

groups were sacrificed and flow cytometry analyses were performed. Remaining mice of respective 
groups were kept and closely monitored for survival analysis for at least 80 days.  

 

 

 

Table 4: Designations of the MHC restricted constructs and peptides used for immunizations 

# MHC class I –Vaccine Construct’s Composition Designation 

1 Variant – Trp1-hβ2m-K
b  

/ Variant Trp-1-hβ2m-TLR4 Class I –Trp1 (variant) 

2 Trp-1455-463-hβ2m-K
b  

/ Trp-1-hβ2m-TLR4 Class I –Trp1 (native) 

3 Tyr-hβ2m-K
b 

/ Tyr-hβ2m-TLR4 Class I –Tyr 

4 Trp-1 (#1)  /  Tyr (#3) Class I –Mix 

5 Trp-1455-463 
 
/  Tyr360-368  peptide mix Class I –Mix–PL 
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# MHC class II -Vaccine Construct’s Composition Designation 

6 Trp-1455-463 - H2-I-A
b
 Class II –Trp1-I–A

b
 

7 TYR99-117 - H2-I-A
b
 Class II –Tyr-I–A

b
 

8 TRP1- H2-I-A
b  

/ Tyr- H2-IA
b  

(#6 and #7)
 
 Class II –Mix- I–A

b
 

9 Trp-1455-463 - CLIP Class II –Trp1–CLIP 

10 TYR99-117 - CLIP Class II –Tyr–CLIP 

11 TRP1- CLIP
  
/ Tyr- CLIP (#9 and #10)

 
 Class II –Mix–CLIP 

12 Trp-1455-463 
 
/ TYR99-117 peptide mix

 
 Class II –Mix–PL 

 
 

 
 

4.8.2 Survival analysis 

Fig. 26 shows survival curve of ret-transgenic mice treated with BMDCs electroporated with 

Trp1-Kb/TLR4, Tyr- Kb/TLR4, or the combination (Class I-Mix) mRNAs. We found a 

significantly improved survival rate of melanoma bearing mice after treatment with DCs 

electroporated with Class I–Mix mRNA and Trp1-mRNA (variant) as compared to control 

group. Importantly, vaccination with Class I–Mix mRNA electroporated DC was superior over 

vaccination with DCs loaded with Class I peptide mix. To confirm results, most beneficial 

treatments were repeated in a second immunotherapy experiment with similar results.  

In addition, both class II-IAb  and CLIP vaccines were tested as a single treatment and in 

combination, analogous to the class I–DC vaccination and was compared to control group. 

In contrast to DCs electroporated with Class I –mRNA, none of the groups treated with DCs 

electroporated Class II-IAb –mRNA or CLIP–mRNA showed any significant survival benefit 

upon vaccination Figure 27 shows survival curve of ret-transgenic mice treated with BMDCs 

electroporated with Class II -Trp1-I-Ab; Class II Tyr-I-Ab; or the combination (Class II-Mix I-Ab) 

Figure 28 Class II-Tyr-CLIP, Class II-Trp1-CLIP, or the combination (Class II-Mix-CLIP). 

Median survival (in days) for each treatment group are summarized in Table 6. Results were 

confirmed in a second immunotherapy experiment with the same treatment groups, except 

for treatment #2 (data not shown). 

 

Table 5: Summary of median survival of each therapy after 80 days (n=6-12) 

# MHC class I –Vaccine  Median survival (days) 

1 Class I –Trp1 (variant) 43.5 

2 Class I –Trp1 (native) 33.0 

3 Class I –Tyr 36.0 

4 Class I –Mix 51.0 
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# MHC class II -Vaccine Construct’s Composition Median survival (days) 

6 Class II –Trp1-I–A
b
 40.5 

7 Class II –Tyr-I–A
b
 36.5 

8 Class II –Mix- I–A
b
 42.5 

9 Class II –Trp1–CLIP 42.0 

10 Class II –Tyr–CLIP 41.0 

11 Class II –Mix–CLIP 39.5 

13 Control (DC only) 35.5 

 

 

 

Fig. 26: Survival proportions of melanoma bearing ret tg mice following vaccination with class I 

mRNA-electroporated DCs. Melanoma bearing ret transgenic mice were vaccinated i.p. three times 
using BMDCs electroporated with Trp1-K

b
/TLR4, Tyr- K

b
/TLR4, or the combination (Mix) mRNAs. Mice 

vaccinated with electroporated but unloaded DCs were used as control (DC only). Mice (n=6-12/ 

group) were closely monitored for at least 80 days after the first vaccination. Survival curves of each 
treatment group are shown. Results are presented as percent of surviving mice (*P ≤ 0.05; **P ≤ 0.01; 
***P ≤ 0.001; generated using, product limit (Kaplan-Meier) method, comparison of survival curves; 

Log-rank (Mantel-Cox) test) 
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Fig. 27: Survival proportions of melanoma bearing ret tg mice following vaccination with class 
II-IAb mRNA-electroporated DCs. Melanoma bearing ret transgenic mice were vaccinated i.p. three 

times using BMDCs electroporated with Class II -Trp1-I-Ab, Class II -Trp1-I-Ab, or the combination 
(Mix) mRNAs. Mice vaccinated with electroporated but unloaded DCs were used as control. Mice 
(n=6/group) were closely monitored for 80 days after the first vaccination. Survival curves of each 

treatment group are shown. Results are presented as percent of surviving mice (*P ≤ 0.05; **P ≤ 0.01; 
***P ≤ 0.001; generated using, product limit (Kaplan-Meier) method, comparison of survival curves; 
Log-rank (Mantel-Cox) test). Experiment was repeated with similar results.  

 

Fig. 28: Survival proportions of melanoma bearing ret tg mice following vaccination with class 
II -CLIP mRNA-electroporated DCs. Melanoma bearing ret transgenic mice were vaccinated i.p.  

three times using BMDCs electroporated with Class II -Trp1-CLIP, Class II -Trp1-CLIP, or the 
combination (Mix) mRNAs. Mice vaccinated with electroporated but unloaded DCs were used as 
control. Mice (n=6/group) were closely monitored for 80 days after the first vaccination. Survival curves 

of each treatment group are shown. Results are presented as percent of surviving mice (*P ≤ 0.05; **P 
≤ 0.01; ***P ≤ 0.001; generated using, product limit (Kaplan-Meier) method, comparison of survival 
curves; Log-rank (Mantel-Cox) test). Experiment was repeated with similar results 
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4.8.3 mRNA-electroporated DC versus peptide loaded DC vaccination 

In an additional experiment, comparative survival analysis of melanoma bearing ret-tg mice 

following vaccination with class I mRNA-electroporated DCs Trp1/-Kb/TLR4 + Tyr- Kb/TLR4 

(Class I Mix-EP) mRNAs and DCs peptide-loaded with Trp-1455-463/Tyr360-368 (Class I Mix-PL), 

was performed. Melanoma bearing mice vaccinated with electroporated but unloaded DCs 

were used as control. As described before, melanoma bearing ret-tg mice were vaccinated 

i.p. three times in seven day intervals and monitored for at least 80 days after first 

vaccination. Survival curves of each treatment group are shown in Fig. 29. and demonstrate 

significantly higher survival rates in group vaccinated with Mix of class I mRNA-

electroporated DCs (Class I Mix-EP) than in group vaccinated with Mix of class I peptides 

loaded onto DC (Class I Mix-PL). 

Furthermore, we performed a survival analysis of melanoma bearing mice following 

vaccination with class II mRNA-electroporated DCs, Trp1/TYR-IAb-Mix (Class II-Mix-IAb), 

Trp1/TYR-CLIP-Mix (Class II Mix-CLIP) mRNAs and DCs peptide-loaded with Trp-1455-

463/Tyr360-368 (Class I Mix-PL). Melanoma-bearing mice vaccinated with electroporated but 

unloaded BMDCs were used as a control. Interestingly, none of the class II vaccinated 

groups significantly increased survival of melanoma bearing ret-tg mice compared to control 

group (Fig. 30). 

 

Fig. 29: Survival of melanoma-bearing mice following vaccination with class I Mix mRNA-
electroporated DCs or vaccinated with DCs loaded with mix of class I peptides.  Melanoma 

bearing ret transgenic mice were vaccinated i.p. three times using BMDCs electroporated with Trp1-
K

b
/TLR4, Tyr- K

b
/TLR4, or the combination (Mix) mRNAs. Mice vaccinated with electroporated but 

unloaded DCs were used as a control (DC only). Mice (n=6/group) were monitored for 80 days after 

the first vaccination. Survival curves of each treatment group are shown Results are presented as a 
percentage of surviving mice (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; generated using, product limit 
(Kaplan-Meier) method, comparison of survival curves; Log-rank (Mantel-Cox) test) 
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Fig. 30: Survival of melanoma bearing mice following vaccination with class I Mix mRNA-

electroporated DC or vaccinated with DC loaded with mix of class I peptides. Melanoma bearing 
ret transgenic mice were vaccinated i.p. three times using BMDCs electroporated with Trp1-K

b
/TLR4, 

Tyr- K
b
/TLR4, or the combination (Mix) mRNAs. Mice vaccinated with electroporated but unloaded 

DCs were used as control (DC only). Mice (n=8-12) were closely monitored for 80 days after the first 
vaccination. Survival curves of each treatment group are shown Results are presented as a 
percentage of surviving mice (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; generated using, product limit 

(Kaplan-Meier) method, comparison of survival curves; Log-rank (Mantel-Cox) test). 

To summarize, bivalent Trp1/Tyr–class I–mRNA-based DC-vaccine (Class I-Mix) showed 

superior anti-tumor properties upon vaccination of melanoma bearing ret trasngenic mice as 

compared to groups vaccinated with respective monovalent mRNA-based-DC vaccine or 

with peptide loaded DCs respectively. Moreover, monovalent as well as bivalent mRNA-

based-DC class II IAb–DC vaccines, Class II-IAb and Class II-CLIP did not improve survival 

rates of treated melanoma bearing mice. 

  



Results  66 
__________________________________________________________________________ 
 
 

4.8.4 Immune cell analyses after DC vaccination 

To further analyze the underlying mechanism of action in ret-tg mice, which were treated with 

mRNA-based DC vaccine, 4 mice of each treatment group were used for mechanistic 

analyses of immune cells subsets 10 days after last vaccination. Although Class II-mRNA-

based DC vaccination did not improve survival of melanoma bearing ret-tg mice, 4 mice of 

each Class II-IAb–group was included into analyses. Results of two experiments were 

combined to increase number of mice per group. Mice were sacrificed and flow cytometry 

analyses of immune cell subsets from bone marrow (BM), spleen (SP), lymph nodes (LN) 

and skin tumor were performed. Respective phenotypic and activity markers analyzed by 

flow cytometry are summarized in the following: 

MDSC: CD11b+, Gr1+ 

• activity markers: PD-L1, arginase-1, NO production 

 

T cells: CD3+, CD4+, FoxP3-   or   CD3+, CD8+, FoxP3- 

• Activity: TCR-zeta chain expression, PD-1, CD69 

• Memory phenotype: CD44, CD62L 

• Intra cellular staining (ICS): TNF-α and IFN-γ production of antigen-specific CD4+ 
and CD8+ T cells after in-vitro restimulation. 

 

T regs: CD3+, CD4+, CD25+ FoxP3+ 

• Activity: Ki-67, CD39 

 

Treatment of melanoma bearing mice with DC vaccines did not significantly alter frequency 

of MDSC within LN, skin tumors (Fig. 31), BM and spleen (Appendix 1). However, the 

expression of activity markers in MDSCs from LNs and skin tumors was strongly diminished 

upon Class I–DC vaccination (solid symbols), indicated by significantly reduced arginase-1 

(Fig.31 b) and PD-L1 expression (Fig. 31 d) and decreased NO production (Fig. 31 c). 

Similar changes but not as prominent as in LN and skin tumor were also observed in SP and 

BM (Appendix 1). No statistically significant changes in MDSC frequency and activity were 

observed in the groups of mice treated with either Class II–DC vaccine (empty symbols) as 

compared to control group. Interestingly, vaccination with Class I–DC vaccines resulted in 

significantly lower expression levels of PD-L1 on MDSC and lower production levels of 

arginase-1 and NO in MDSCs compared to the groups of mice treated with Class II-IAb 

vaccine. 
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Fig. 31: Class I –Mix DC-vaccine but not Class II DC vaccines diminished MDSC activity within 
LN and skin tumors of ret tg mice. 4-5 week old melanoma bearing mice were vaccinated with class 
I -Trp1 (variant), class I –Tyr, class I –Mix (solid symbols) and with class II -Trp1-I-Ab and class II-Tyr-

I-Ab and  class II –Mix (empty symbols), respectively (empty symbols). (a) MDSC frequency was 
phenotypically analyzed by flow cytometry 10 days after last vaccination. MDSC activity was assessed 
by their Arginase-1 production (b), NO-production (c) and PD-L1 surface expression (d) upon 

vaccination with respective DC vaccine. Results are presented as individual values on scatter plot, 
mean value of each group is also presented. (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; one-way analysis of 
variance, the differences were assessed by Bonferroni multiple comparison post -test). 

 

In addition, memory T lymphocytes in BM, SP, LN and skin tumors of ret tg mice were 

measured by the expression of CD44 and CD62L. Upon vaccination with class I- Mix mRNA-

electroporated DC vaccine, we observed a strong reduction in the frequency of naive CD62L+ 

CD44- CD8+ T-cells in LN and skin tumors of tumor bearing mice (Fig 32,) as wells as in SP 

and BM (Appendix 2). Furthermore, we found a significant elevation of CD62L- CD44+ CD8+ 

EM T cells population in the LN and skin tumor as compared to the control group or to class 

II vaccinated groups. Interestingly, no statistically significant changes were observed in CD8+ 

EM cells after vaccination with either Class II –DC vaccine. With regards to CD4+ T memory 

cell analysis in LN and skin tumor, a significant reduction in the frequency of naive CD4+ T-

cells and an increase in CD4+ EM cells was observed after class II mRNA electroporated DC 

vaccination but not after class I mRNA electroporated DC vaccination. Similar changes were 

found in SP and BM upon respective vaccination (Appendix 3) but to a much lesser extent 

than in LNs and skin tumors. 
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Fig. 32: mRNA-based- DC-vaccine elicits CD8+ T memory response in LN and skin tumors of 

ret tg mice. 4-5 week old melanoma bearing mice were vaccinated with class I -Trp1 (variant), class I 
–Tyr, class I –Mix (solid symbols) and with class II -Trp1-I-Ab and class II-Tyr-I-Ab and  class II –Mix 
(empty symbols), respectively (empty symbols). 10 days after last vaccination frequency of naïve, 

central memory and effector-memory was phenotypically determined by CD62L and CD44 expression 
T lymphocytes. Graphs represent the percentage of naïve (CD62L

+
 CD44

-
) (a, d), central memory 

(CM; CD62L
+
 CD44

+
) (b, e), and effector-memory (EM; CD62L

-
 CD44

+
) (c, f) for CD8

+
 T. Results are 

presented as individual values on scatter plot, mean value of each group is also presented (*P ≤ 0.05; 
**P ≤ 0.01; ***P ≤ 0.001;  one-way analysis of variance, the differences were assessed by Bonferroni 
multiple comparison post-test). 
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Fig. 33: mRNA-based- DC-vaccine elicits CD4

+
 T memory response in LN and skin tumors of ret 

tg mice. 4-5 week old melanoma bearing mice were vaccinated with class I -Trp1 (variant), class I –

Tyr, class I –Mix (solid symbols) and with class II -Trp1-I-Ab and class II-Tyr-I-Ab and  class II –Mix 
(empty symbols), respectively (empty symbols). 10 days after last vaccination frequency of naïve, 
central memory and effector-memory was phenotypically determined by CD62L and CD44 expression 

T lymphocytes. Graphs represent the percentage of naïve (CD62L
+
 CD44

-
) (a, d), central memory 

(CM; CD62L
+
 CD44

+
) (b, e), and effector-memory (EM; CD62L

-
 CD44

+
) (c, f) CD4

+
 T cells. Results are 

presented as individual values on scatter plot, mean value of each group is also presented (*P ≤ 0.05; 

**P ≤ 0.01; ***P ≤ 0.001; one-way analysis of variance, the differences were assessed by Bonferroni 
multiple comparison post-test). 

 

Furthermore, we measured frequencies and activity of T cells upon vaccination. CD8 and 

CD4 T cell frequency in metastatic LNs, tumors, BM and SP was phenotypically analyzed by 

flow cytometry. T cell activity was assessed by CD69 expression, PD-1 expression and 

intensity of TCR ζ -chain expression on respective subsets. 
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Vaccination with either mRNA-based DC vaccines did not significantly alter the frequency of 

CD8+ T cells in LNs, SP, tumors (Fig. 34) and in BM (Appendix 4). However, upon 

vaccination with Class I –Mix vaccine and we observed significantly elevated frequencies of 

CD69+ CD8+ T cells in LN, SP and skin tumors, in which the elevation was even more 

profound. Furthermore, upon Class I-Mix vaccination, but not after Class II– DC vaccination, 

we observed an increase in TCR ζ -chain expression in these organs (Fig. 34). In contrast, 

vaccination with Class I DC vaccine did not alter CD4+ Tell frequency and activity markers, in 

all studied organs of tumor-bearing mice. However, significant differences in CD4+ T cell 

activity were observed in vaccinated groups with either class II DC vaccine compared to 

control or class I vaccinated groups. We demonstrated also elevated frequencies of CD69+, 

PD-1+ cells and increased TCR ζ -chain expression levels, in CD4+ T cells from LNs and skin 

tumors. No significant changes were observed in SP and BM of treated mice (Appendix 5). 
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Fig. 34: mRNA-based- DC vaccination improves CD8+ T cell activity in ret tg mice. According to 
respective treatment group 4-5 week old melanoma bearing mice were vaccinated with class I -Trp1 

(variant), class I –Tyr, class I –Mix (solid symbols) and with class II -Trp1-I-Ab and class II-Tyr-I-Ab 
and  class II –Mix (empty symbols), respectively (empty symbols). 10 days after last vaccination CD8+ 
T cell frequency within the tumor was phenotypically analyzed by flow cytometry (a, d). CD8+ T cell 

activity was assessed by CD69, PD-1 and TCR -chain expression (b, e). Results are presented as 
individual values on scatter plot, mean value of each group is also presented (*P ≤ 0.05; **P ≤ 0.01; 
***P ≤0.001; one-way analysis of variance, the differences were assessed by Bonferroni multiple 

comparison post-test). 
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Fig. 35: mRNA-based- DC-vaccine improves CD4
+
 T cell activity in ret tg mice. According to 

respective treatment group 4-5 week old melanoma bearing mice were vaccinated with class I -Trp1 
(variant), class I –Tyr, class I –Mix (solid symbols) and with class II -Trp1-I-Ab and class II-Tyr-I-Ab 
and  class II –Mix (empty symbols), respectively (empty symbols). 10 days after last vaccination CD4+ 

and CD8+ T cell frequency within the tumor was phenotypically analyzed by flow cytometry (a, d). T 
cell activity was assessed by intensity of TCRzeta-chain expression (b, e), and % of Ki67+ T cells (c, f) 
upon respective treatment. Results are presented as individual values on scatter plot, mean value of 

each group is also presented (*P ≤ 0.05; **P ≤ 0.01; ***P ≤0.001; one-way analysis of variance, the 
differences were assessed by Bonferroni multiple comparison post-test). 

 

To further characterize the T cell populations following vaccination, we tested the frequency 

of Treg measured by the expression of CD4, CD25 and FoxP3. In addition, their activity was 

assessed by the CD39 and Ki-67 expression. Furthermore, the frequency of CD4+ CD25+ 

FoxP3- activated conventional T cells (Tcons) was measured. Statistically significant 

differences in the frequency of Tregs were seen exclusively in BM and LN upon treatment 

with class I mix DC vaccine (Fig. 36). We found significantly reduced frequencies of CD39+ 

and Ki67+ Tregs from SP, LNs and tumors as compared to control group and vaccinated 

groups with class II-DC vaccine. These results indicated lower immunosuppressive function 

and lower proliferation capacity of Tregs after Class I -Mix vaccination. Moreover, vaccination 

with TRP1 (variant) and Class I -Mix resulted in elevated levels of activated T cons in LNs 

and tumors of ret transgenic mice. Interestingly, vaccination with either class II-DC vaccine 

did not lead to statistically significant reduction of Treg activity upon vaccination. However, 
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we detected significantly elevated levels of CD39 and Ki 67 expressing Tregs in skin tumors 

and SP upon class II Mix vaccination. No significant changes in Treg activity in the BM was 

measured upon the treatment (Appendix 6). 
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Fig. 36: mRNA-based- DC-vaccine alters T reg and T con frequencies and Treg activity in SP, 
LN and skin tumors of ret tg mice . 4-5 week old melanoma bearing mice were vaccinated with class 

I -Trp1 (variant), class I –Tyr, class I –Mix (solid symbols) and with class II -Trp1-I-Ab and class II-Tyr-
I-Ab and class II –Mix (empty symbols), respectively (empty symbols 10 days after last vaccination 
frequency of Treg as well as Treg activity was determined by flow cytometry. Graphs represent the 

percentage of T reg (a), CD39
+
 (b) and Ki67

+
 (c) expression on Treg surface. In addition, a percentage 
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of activated Tcons (CD4

+
CD25

+
FoxP3

-
) was assessed. Results are presented as individual values on 

scatter plot, mean value of each group is also presented (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001;  one-way 
analysis of variance, the differences were assessed by Bonferroni multiple comparison post -test) 

 

Furthermore, the potential of the different DC vaccines to elicit antigen-specific immune 

responses was evaluated. After the treatment, tumors and LNs were analyzed for the 

induction of peptide-specific CD4+ and CD8+ T cells by ICS for IFN-γ and TNF-α following the 

re-stimulation with the relevant peptide. Our results indicated an elevated frequency of IFN-γ 

and TNF-α producing CD8+ T cells. Such elevated levels were not detected in CD4+ T cells, 

indicating the specificity of Class I vaccination. (Fig. 37). In contrast, increased frequency of 

IFN-γ and TNF-α producing CD4+ T cells were exclusively detected in skin tumor and LN 

upon vaccination with class II Mix (Fig. 37 and Appendix 7). 
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Fig. 37: Analysis of T-cell antigen-specific immune responses in skin tumors of ret tg mice 
following vaccination with class I or class II mRNA-electroporated DCs. Tumor bearing ret mice 
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were vaccinated intraperitoneally 3 times using BMDCs electroporated with class I constructs Trp1-
Kb/TLR4, Tyr- Kb/TLR4, the combination (Mix) mRNA, or class II constructs Trp1-I-Ab, Tyr-I-Ab 
respectively. Ten days after the last vaccination spleens and lymph nodes were harvested and 

analyzed for the induction of peptide-specific CD4
+
 and CD8

+
 T cells by ICS for IFN-γ and TNF-α, 

following re-stimulation with the relevant peptide according to the group (Trp-1455-463, Tyr360-368  or their 
combination or Trp-1455-463 I-Ab, Tyr99-117 I-Ab). Restimulation with irrelevant peptide (SIINFEKL) was 

used for as negative control and 50ng/mlPMA-2g/mL Ionomycine restimulation as positive control. 
Graphs represent the percentages of CD4

+
 INFγ

+
 and TNF-α

+
 (upper row), and CD8

+
 IFNγ

+
, and TNF-

α
+
 cells (lowe row). Results are presented as individual values on scatter plot, mean value of each 

group is also presented (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; one-way analysis of variance, the 
differences was assessed by Bonferroni multiple comparison post-test) 

To summarize, we showed that vaccination with mRNA based Class I DC vaccines 

stimulated a strong, systemic CD8 T cell response indicated by induction of antigen specific 

IFN-γ producing and memory CD8
+
 T cells in skin tumors, LNs and SP. In addition, these 

cells showed increased levels of activity markers (CD69, PD-1 and TCR ζ-expression). 

Moreover, effects of vaccination with bivalent DCs, simultaneously expressing the Class I 

Mix (Tyr and TRP1) revealed a more profound effect on the CD8 T cell response as 

compared to monovalent class I DC vaccines. This was correlating with significant improved 

survival rates or melanoma bearing mice that were vaccinated with Class I Mix. Importantly, 

suchsystemic CD8 T cell response was not induced upon vaccination with any Class II DC 

vaccine. In contrast, a specific CD4+ T cells response (measured by increased PD-1, CD69 

and TCR  expression) was elicited in LNs and skin tumors exclusively upon vaccination with 

class II vaccines. However, a significant induction of several Treg activity markers (Ki67, 

CD39) was also observed. Finally, the vaccination with class II constructs alone did not 

significantly improve survival rate of tumor bearing mice. 
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4.9 Combined melanoma treatment with low-dose paclitaxel and 

dendritic cell vaccination 

According to previous studies in our lab, application of paclitaxel in low, non-cytotoxic doses 

supported vaccination with melanoma-specific peptides in normal mice
168

. This effect was 

strongly associated with a significant reduction in frequencies of IMC (as a counterpart of 

MDSC in healthy mice) and Treg. Thus, in the following experiments the impact of mRNA-

based DC vaccination on melanoma bearing ret transgenic mice were assessed by treating 

the mice with low-dose paclitaxel in combination with bivalent Class I –Mix-DC vaccine and 

Class I & Class II (IAb)-Mix as a multivalent DC vaccine (Table 7). The reason for 

combination of class I and class II mRNA constructs for DC vaccination was to stimulate both 

systemic CD8 and CD4 T cell responses since exclusive class II vaccination did not lead to 

improved overall survival of treated mice (Chapter 6.1). 

 

Fig. 38: Combined melanoma treatment strategy for paclitaxel and dendritic cell vaccination. In 

order to compare the effects of combined melanoma immunotherapy, 4-5 weeks old melanoma 
bearing ret tg mice were treated i.p. with ultra-low dose of Paclitaxel (1mg/kg) three times in 7 days 
intervals. 3-4 days later respective mice were vaccinated i.p. with mRNA-electroporated DCs (0.5X10

6
 

cells per mouse) three times in 7 days intervals. Ten days after last vaccination, 4 mice of each 
treatment group were sacrificed and flow cytometry analyses, was performed. Remaining mice of each 
group were kept for survival analysis and monitored for at least 80 days in regular intervals  

 

Table 6: Treatment groups for melanoma immunotherapy experiment combined with paclitaxel  

# Treatment  

1 Class I –Mix    (mTrp-1455-463/ mTyr360-368-hβ2m-K
b  

/ TLR-4) 

2 Class I –Mix + Paclitaxel (1mg/kg) 

3 Class I –Mix + Class II Mix (Trp-1455-463 
 
/ TYR99-117-I-Ab) 

4 Class I –Mix + Class II Mix  + Paclitaxel (1mg/kg) 

6 Paclitaxel (1mg/kg) 

7 Control (DC only) 
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4.9.1 Survival analysis 

Fig. 38 shows survival curves of treated tumor bearing mice 80 days after the start of the 

treatment with paclitaxel and Class I–Mix DC vaccine. In line with previous results, we found 

a significantly improved survival of mice treated with DCs electroporated with Class I–Mix DC 

vaccine compared to control group (P <0.01). Importantly, an addition of paclitaxel further 

improved the survival of mice (P <0.001). Fig. 39 presents survival of tumor bearing mice 80 

days upon the treatment with paclitaxel and Class I Mix + Class II-IAb-Mix. The treatment 

with Class I–Mix + Class II–Mix showed improved survival rate of melanoma bearing mice 

compared to control group (P < 0.05), whereas paclitaxel treatment did not further improved 

mouse survival (P < 0.05) (Fig. 40).  

 

 

Fig. 39: Survival proportions of melanoma bearing ret mice following vaccination with class I 
mRNA-electroporated DCs in combination with low dose of paclitaxel. Melanoma bearing ret tg 
mice were treated i.p. with ultra-low dose (ld) of Paclitaxel (1mg/kg) three times in 7 days intervals. 3-4 

days later respective mice were vaccinated i.p. , three times in 7 days intervals with mRNA-
electroporated DCs (0.5X10

6
 cells per mouse; according to groups). Mice vaccinated with 

electroporated but unloaded DCs were used as control. Mice (n=6-12) were monitored for 80 days 

after the first vaccination. Survival curves of each treatment group are shown results are presented as 
percent of surviving mice (*P ≤ 0.05; **P ≤ 0.01; ***P ≤0.001; generated using, product limit (Kaplan-
Meier) method, comparison of survival curves; Log-rank (Mantel-Cox) test). 
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Fig. 40: Survival proportions of melanoma bearing ret mice following vaccination with class 
Mix of class I and II mRNAelectroporated DCs in combination with low dose  of paclitaxel. 
Melanoma bearing ret tg mice were treated i.p. with ultra-low dose (ld) of Paclitaxel (1mg/kg) three 

times in 7 days intervals. 3-4 days later respective mice were vaccinated i.p. ,three times in 7 days 
intervals with mRNA-electroporated DCs (0.5X10

6
 cells per mouse; according to groups). Mice 

vaccinated with electroporated but unloaded DCs were used as control. Mice (n=6-12) were monitored 

for 80 days after the first vaccination. Survival curves of each treatment group are shown Results are 
presented as percent of surviving mice (*P ≤ 0.05; **P ≤ 0.01; ***P ≤0.001;  generated using, product 
limit (Kaplan-Meier) method, comparison of survival curves; Log-rank (Mantel-Cox) test). 

 

4.9.2 Immune cell analyses after DC vaccination combined with paclitaxel 

treatment 

We found that the combination of Paclitaxel and Class I-Mix DC vaccine decreased the 

frequency of tumor-infiltrating MDSCs (Fig. 41). In addition, MDSC activity in LNs, SP and 

the skin tumor was diminished upon Class I–Mix DC vaccination. This effect was even more 

profound after the combination with paclitaxel treatment indicated by a significant decrease 

of arginase-1 and PD-L1 expression as well as NO production. 
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Fig. 41: In combined therapy, paclitaxel increases class I –Mix DC-vaccine effect in diminishing 
MDSC activity in combined therapy within LN, SP and skin tumors of ret tg mice. According to 
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respective treatment group, 4-5 week old melanoma bearing mice were injected with low-dose of 
paclitaxel (1mg/kg) and/or vaccinated with class I –Mix or class I –Mix + class II -Mix, respectively. 
MDSC frequency within the tumor was phenotypically analyzed by flow cytometry 10 days after last 

vaccination. MDSC activity was assessed by their Arginase-1 production, NO-production and PD-L1 
surface expression upon vaccination with respective DC vaccine. Results are presented as individual 
values on scatter plot, mean value of each group is also presented (n= 8; *P ≤ 0.05; **P ≤ 0.01; ***P 

≤0.001; one-way analysis of variance, the differences were assessed by Bonferroni multiple 
comparison post-test). 

 

Furthermore, we measured frequencies and activity of T cells. Vaccination with DCs did not 

significantly alter frequency of CD4+ T cells within LN, SP and skin tumors (Fig. 42). as the 

frequency of CD8+ T cells in skin tumors was found to be significantly increased as 

compared to control upon Class I DC vaccination combined with paclitaxel. Moreover, we 

observed elevated intensities of TCR ζ chain expression and increased frequencies PD-1+ 

cells within CD4+ T cells, in LNs and skin tumors after Class I–Mix + Class II–Mix vaccination 

or combinatorial treatment with Paclitaxel as compared to the control group. In contrast, upon 

class I DC vaccination, we observed no significant changes on CD4+ T cells frequencies or 

activity markers. However, Class I DC vaccination significantly affected CD8+ T cells activity 

after Class I–Mix vaccination (Fig. 43). We detected a strong increase of TCR ζ chain 

expression as well as PD-1 expression in CD8+ T cells in LN, SP and skin tumors of treated 

mice as compared to control group or class I Mix + class II mix vaccinated group. Moreover, 

these tendencies were even more profound when class I DC vaccination was combined with 

low dose of Paclitaxel. These results clearly revealed that Paclitaxel increased DC 

vaccination effect by restoring the activity of tumor-infiltrating CD8+ and CD4+ T cells. 
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Fig. 42: In combined therapy, paclitaxel increases class I –Mix DC-vaccine effect by restoring T 
cell activity within skin tumors of ret tg mice. According to respective treatment group, 4-5 week 
old melanoma bearing mice were injected with paclitaxel (1mg/kg) and/or vaccinated with class I –Mix 

or class I –Mix + class II -Mix, respectively. 10 days after last vaccination CD4+ and CD8+ T cell 
frequency within the tumor was phenotypically analyzed by flow cytometry (a, d). T cell activity was 
assessed by intensity of TCRζ-chain expression (b, e), and % of Ki67+ T cells (c, f) upon respective 

treatment. Results are presented as individual values on scatter plot, mean value of each group is also 
presented (n= 8; P ≤ 0.05; **P ≤ 0.01; ***P ≤0.001; one-way analysis of variance, the differences were 
assessed by Bonferroni multiple comparison post-test) 
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Fig. 43: In combined therapy, paclitaxel increases class I –Mix DC-vaccine effect by restoring T 

cell activity within skin tumors of ret tg mice. According to respective treatment group, 4-5 week 
old melanoma bearing mice were injected with paclitaxel (1mg/kg) and/or vaccinated with class I –Mix 
or class I –Mix + class II -Mix, respectively. 10 days after last vaccination CD4+ and CD8+ T cell 

frequency within the tumor was phenotypically analyzed by flow cytometry (a, d). T cell activity was 
assessed by intensity of TCR ζ-chain expression (b, e), and % of Ki67+ T cells (c, f) upon respective 
treatment Results are presented as individual values on scatter plot, mean value of each group is also 

presented (n= 8; *P ≤ 0.05; **P ≤ 0.01; ***P ≤0.001; one-way analysis of variance, the differences 
were assessed by Bonferroni multiple comparison post-test) 
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In addition, we measured systemic memory T lymphocyte induction upon treatment of ret tg 

mice d by expression of CD44 and CD62L. upon vaccination with Class I–Mix + Class II–Mix 

DC vaccine, a significant reduction in the frequency of naive and CM CD4+ T cells, along with 

a significant elevation of EM CD4+ T cell were observed in LNs, SP and skin tumors of ret tg 

mice compared to the control, paclitaxel only or to class I vaccinated groups, respectively 

(Fig. 44). Combination with Paclitaxel augmented this effect. Vaccination with Class I–Mix 

DC vaccine significantly reduced the frequency of naive CD8+ T cells and elevated the 

frequency of EM (p<0.05) and CM CD8+ T cells (P<0.05) in LN and skin tumors of ret tg mice 

compared to control or Paclitaxel only treated group (Fig. 45). Importantly, combination with 

Paclitaxel further augmented this effect indicated by an increased frequency of EM CD8+ T 

cells as compared to Class I–Mix DC vaccination alone (P<0.01). These results showed that 

combinatorial treatment with low dose paclitaxel could enhance systemic memory T cell 

induction. 
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Fig. 44: In combined therapy, paclitaxel increases class I –Mix DC-vaccine effect in diminishing 
MDSC activity in combined therapy within skin tumors of ret tg mice. According to respective 
treatment group, Melanoma bearing mice were injected with paclitaxel (1mg/kg) and/or vaccinated 

with class I –Mix or class I –Mix + class II -Mix, respectively. 10 days after last vaccination frequency 
of naïve, central memory and effector-memory was phenotypically determined on CD4+ and CD8+ T 
lymphocytes. Graphs represent the percentage of naïve (CD62L

+
 CD44

-
) (a, d), central memory (CM; 

CD62L
+
 CD44

+
) (b, e), and effector-memory (EM; CD62L

-
 CD44

+
) (c, f) for both CD8

+
 T cells (a-c) and 

CD4
+
 T cells (d-f Results are presented as individual values on scatter plot, mean value of each group 

is also presented (n= 8; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; one-way analysis of variance, the 

differences were assessed by Bonferroni multiple comparison post-test). 
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Fig. 45: In combined therapy, paclitaxel increases class I –Mix DC-vaccine effect in diminishing 
MDSC activity in combined therapy within skin tumors of ret tg mice. According to respective 
treatment group, Melanoma bearing mice were injected with paclitaxel (1mg/kg) and/or vaccinated 

with class I –Mix or class I –Mix + class II -Mix, respectively. 10 days after last vaccination frequency 
of naïve, central memory and effector-memory was phenotypically determined on CD4+ and CD8+ T 
lymphocytes. Graphs represent the percentage of naïve (CD62L

+
 CD44

-
) (a, d), central memory (CM; 

CD62L
+
 CD44

+
) (b, e), and effector-memory (EM; CD62L

-
 CD44

+
) (c, f) for both CD8

+
 T cells (a-c) and 
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CD4

+
 T cells (d-f). Results are presented as individual values on scatter plot, mean value of each 

group is also presented (n= 8; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; one-way analysis of variance, the 
differences were assessed by Bonferroni multiple comparison post-test). 

 

 

Furthermore, the potential of the different DC vaccines to elicit antigen-specific immune 

responses was assessed. After the treatment, tumors (Fig. 46) and metastatic LNs 

(Appendix 8) were analyzed for the induction of peptide-specific CD4
+
 and CD8

+
 T cells by 

ICS for IFN-γ and TNF-α. Our results indicated that vaccination with Class I–Mix s increased 

the frequency of IFN-γ and TNF-α producing CD8+ T cells (Fig.46). These effects were not 

significantly augmented by Paclitaxel. Furthermore, upon class I mix + Class II mix DC 

vaccination, increased frequency of IFN-γ and TNF-α producing CD4+ T cells and tendency 

of increased frequency of CD8+ IFN-γ producing T cells in LNs and skin tumors was 

detected, indicating an induction of antigen specific CD4+ and CD8+ T cells.  
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Fig. 46: Analysis of T-cell antigen-specific immune responses in skin tumors of ret tg mice 
following vaccination with class I or class II mRNA-electroporated DCs in combined therapy.  
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According to respective treatment group, Melanoma bearing mice were injected with ld of paclitaxel 
(1mg/kg) and/or vaccinated with class I –Mix or class I –Mix + class II -Mix, respectively. 10 days after 
last vaccination. spleens and lymph nodes were harvested and analyzed for the induction of peptide-

specific CD4
+
 andCD8

+
 T cells by ICS for IFN-γ and TNF-α, following re-stimulation with the relevant 

peptide according to the group (ClassI mix: Trp-1455-463 and Tyr360-368  or their combination with class II 
peptides: Trp-1455-463 I-Ab, Tyr99-117 I-Ab). Restimulation with irrelevant peptide (SIINFEKL) was used 

for as negative control and 50ng/mlPMA-2ug/ml Ionomycine restimulation as positive control. Bar 
graphs representing the percentages of CD4

+
 INFγ

+
, CD4

+
 TNF-α

+
 and CD8

+
 INFγ

+
, CD8

+
 TNF-α

+
 

cells. Results are presented as individual values on scatter plot, mean value of each group is also 

presented, (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; one-way analysis of variance, the differences was 
assessed by Bonferroni multiple comparison post-test). 

 

Next we observed a significant reduction in the frequency of Tregs in tumors SP and LNs 

upon class I Mix DC vaccination as compared to control (p<0.05) or class I mix + class II mix 

vaccinated group (p<0.05) (Fig. 47). Treg frequency was even more reduced when class I 

Mix DC vaccination was combined with paclitaxel treatment (p<0.01). When evaluating 

activation status of Treg, significantly reduced frequencies of CD39+ Tregs and Ki67+ Tregs 

as compared to control or class I-Mix + Class II-Mix vaccinated groups were detected (Fig. 

47). These results indicated lower immunosuppressive function and proliferation capacity of 

Tregs after Class I-Mix vaccination. Interestingly, this inhibitory effect was even more 

profound after the combination with paclitaxel. Importantly, vaccination with Class I–Mix + 

Class II–Mix showed increased Treg activity indicated by higher frequencies of CD39+ and 

Ki67+ Tregs as compared to the control and Class I–Mix vaccinated groups. In addition, 

Class I–Mix + Class II–Mix vaccination, but not Class I-Mix vaccination, led to a significant 

reduction of tumor-infiltrating activated Tcons. These results indicated that Class I–Mix + 

Class II–Mix DC vaccination enhanced functions of tumor-infiltrating Tregs. In agreement 

with these data, mouse survival could be further improved upon the combination Class I-Mix 

DC vaccination with low-dose paclitaxel but not upon Class I–Mix + Class II–Mix DC 

vaccination. 
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Fig. 47: In combined therapy, paclitaxel significantly influences of activity of Treg and 
conventional T cells. According to respective treatment group, Melanoma bearing mice were injected 

with ld of paclitaxel (1mg/kg) and/or vaccinated with class I –Mix or class I –Mix + class II -Mix, 
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respectively. 10 days after last vaccination.Treg as well as Treg activity was  determined by flow 
cytometry. Graphs represent the percentage of T reg (a) , CD39

+
 (b), Ki67

+
 (c) expression on Treg 

surface. In addition frequency of (CD4
+
CD25

+
FoxP3

-
) activated Tcon was assessed. Results are 

presented as individual values on scatter plot, mean value of each group is also presented (*P ≤ 0.05; 
**P ≤ 0.01; ***P ≤ 0.001; one-way analysis of variance, the differences were assessed by Bonferroni 
multiple comparison post-test). 

 

Several mice, which were vaccinated with Class I–Mix DC vaccination, as well as Class I–

Mix vaccination in combination with paclitaxel developed treatment-related vitiligo (Fig.48).  

 

Fig. 48: Treatment-dependent vitiligo after DC vaccination. Class I–Mix DC vaccination, as well as Class I–
Mix vaccination in combination with paclitaxel developed treatment related vitiligo. Mice shown were 3 -4 months 

old, approximately 60-80 days after treatment start 

 

4.9.3 Antigen specific CD4+ T cell and Treg induction analyzed by and class II 

tetramer staining after DC vaccination 

Next, we investigated antigen-specific Treg induction upon vaccination with class II mRNA 

DC vaccine or in combined with class I mRNA DC vaccine, which could partly be responsible 

for the lack of survival benefits in these groups. 

Immature autologous BMDC were harvested and electroporated with respective mRNA 

construct summarized in Table 8. Melanoma bearing mice were vaccinated i.p. with mRNA-

electroporated DCs (0.5x106 cells per mouse) three times in 7 days intervals. Ten days after 

last vaccination, 3 mice of each treatment group were sacrificed and cell suspensions of LN, 

SP and skin tumors were restimulated in vitro with specific peptide TRP1(111-128) and Tyr(99-117) 

, or irrelevant control OVA(323-339) for  65-70h. Afterwards, cells were subjected to MHC class 

II tetramer staining in order to confirm presence of antigen specific CD4 T cells and Treg, 

respectively. 
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Table 7: MHC restricted constructs used for immunizations 

# MHC class I -Vaccine Construct’s Composition Designation 

1 Variant-Trp-1455-463-hβ2m-K
b 

/TLR4 and Tyr360-368-hβ2m-K
b/ 

TLR4 -Mix Class I –Mix 

2 Trp-1455-463 - H2-I-A
b   

and TYR99-117 - H2-IA
b  

- Mix Class II –Mix- I-A
b
 

3 Class II –Mix- I-A
b
 + Paclitaxel (1mg/kg) 

Class II –Mix- I-A
b 

+ 
Paclitaxel 

4 Trp-1455-463 - CLIP   and    TYR99-117 - CLIP - Mix  Class II –Mix- CLIP 

5 Class I–Mix (#1) + Class II -I-A
b
–Mix (#2)  

Class I –Mix + Class 
II –I-A

b
 –Mix 

 

As shown in Fig. 49, TRP1455-463 -I-A
b and Tyr99-117 -I-A

b tetramer staining of splenocytes after 

in- vitro restimulation with relevant peptide showed elevated levels of CD4+ tetramer+ T cells , 

upon class II vaccination or combination of class II + class I. Importantly, tetramer staining 

showed elevated levels of antigen specific T reg population upon vaccination in spleen of 

these groups (Fig.50). Remarkably, antigen specific CD4+ T cell and Treg inductionwas not 

detectable in mice vaccinated with class I vaccine, indicating class II antigen specific CD4 T 

cell induction (Fig. 49 and Fig. 50). No CD4+ tetramer+ T cells and Treg were detectable in 

LNs and skin tumors.  
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Fig. 49: Detection of Trp-1455-463 and TYR99-117 specific CD4 T cells by MHC class II tetramer 
staining. (a) Gating strategy to detect Trp-1455-463 and TYR99-117 -specific CD4 Tcells in splenocytes 
upon DC vaccination. Tetramer staining was analyzed in viable CD4+ lymphocytes. (b) Examples of 

detection of Trp-1455-463 and TYR99-117 CD4 T cells -specific cells with combined staining with 2 
tetramers for each treatment groups. (c) Scatter plot summarizes results of CD4+ tetramer+ T cells of 
each treatment group (n=3) in percent. 
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Fig. 50: Detection of Trp-1455-463 and TYR99-117 specific Treg by MHC class II tetramer staining.   
(a) Gating strategy to detect Trp-1455-463 and TYR99-117 -specific Treg in splenocytes upon DC 

vaccination. Tetramer staining was analyzed in viable CD4+ lymphocytes. (b) Examples of detection of 
Trp-1455-463 and TYR99-117 CD4 T cells -specific cells with combined staining with 2 tetramers for each 
treatment groups. (c) Scatter plot summarizes results of CD4+ tetramer+ T cells of each treatment 

group in percent (n=3). 
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4.10 Therapy experiment of class I Mix DC vaccine in BRAF mouse model 

As mutational activation of BRAF is the earliest and most common genetic alteration in 

human melanoma, Class I-Mix DC vaccine in combination with low-dose paclitaxel was 

tested in the genetically engineered BRAF
CA

,Tyr:CreER Pten
lox4-5

 mice (BRAF mice). In 

addition to the BRAF-V600-mutation, all relevant MAAs (e.g. Trp1, Trp2, gp100 and Tyr are 

overexpressed) in this mouse model. As we could conclude from previous experiments with 

the ret-tg mice, class II vaccination or combination of class II with class I would not lead to 

significant improved survival rates of melanoma bearing BRAF mice. Thus, we were focusing 

on testing the class I mRNA based DC vaccines, expressing simultaneously 4 different 

constructs on theDC surface, encoded for 4 different MHC class I MAA in combination with 

paclitaxel. Treatment groups are summarized in Table 9 and tumor inoculation and treatment 

strategy are shown in Figure 51. 25 days following intracutaneous application of 12.5 mg/mL 

(32mM) 4-hydroxytamoxifen (4-OHT), 5-8 weeks old BRAF mice developed small palpable 

BRAF-V600-mutated tumors in the flank. Tumor-bearing mice were then treated i.p. with 

1mg/kg paclitaxel 3 times in weekly intervals. In addition, 3-4 days after each paclitaxel 

treatment, mice were vaccinated i.p. with mRNA-electroporated DCs (0.5x106 cells per 

mouse) three times in 7 days intervals. Ten days after last vaccination, 3 mice of each 

treatment group were sacrificed and flow cytometry analyses were performed. Remaining 

mice of each group were retained for survival analysis and tumor growth was monitored in 

regular intervals for at 80 days. 

 

Fig. 51: Combined melanoma treatment strategy for Paclitaxel and dendritic cell vaccination in 
Braf melanoma mouse mode l. 5-8 weeks old BRAF

CA
,Tyr:CreER Pten

lox4-5 
mice were subjected to 

intracuteneous injection with 4-OHT and palpable tumor was developed after 25 days. In order to 

compare the effects of combined melanoma immunotherapy, melanoma bearing BRAF mice were 
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treated i.p. with ultra-low dose of Paclitaxel (1mg/kg) three times in 7 days intervals. 3-4 days later 
respective mice were vaccinated i.p. with mRNA-electroporated DCs (0.5X10

6
 cells per mouse) three 

times in 7 days intervals. Ten days after last vaccination, 3 mice of each treatment group were 

sacrificed and flow cytometry analyses, was performed. Remaining mice of each group were kept for 
survival analysis and monitored for at least 80 days in regular intervals  

 

 

Table 8: Treatment groups for immunotherapy experiment combined w ith paclitaxel of braf-mutated melanoma 

bearing mice  

# Treatment  

1 Class I –Mix    (Trp-1455-463/ mTRP2180-188/ hgp10025-33/mTyr360-368-hβ2m-K
b  

/ TLR4 (1:1) 

2 Class I –Mix + Paclitaxel (1mg/kg) 

6 Paclitaxel (1mg/kg) 

7 Control (DC only) 

 

  



Results  96 
__________________________________________________________________________ 
 
 

4.10.1 Tumor growth and survival analyses of BRAF mice following DC 

vaccination 

Quadruple class I mRNA –DC vaccination resulted in a potent anti-tumor response indicated 

by the reduced tumor growth (Fig 52a) and significantly prolonged survival (Fig 52b) as 

compared to untreated or treated with paclitaxel only mice. This effect was even more 

profound when class I mRNA –DC vaccination was combined with low dose paclitaxel 

treatment. 

 

Fig. 52: Effect of vaccination with class I mRNA-electroporated DCs in combination with low 
dose of Paclitaxel on survival of BRAF mutated melanoma bearing mice. Mean values of tumor 
growth (a) and survival curves (b) in Braf mice bearing BRAF-V600-mutated melanomas established 

for 25 days in different treatment groups. Tumor growth and survival of Braf melanoma bearing mice 
upon treatment were monitored for 80 days post treatment start (b) Survival proportions of BRAF 
melanoma bearing mice following vaccination with class Mix of class I mRNA electroporated DCs in 

combination with Paclitaxel, monitored for 80 days post treatment start (n = 9; *P < 0.05; **P < 0.01). 
Results are presented as percent of surviving mice (*P ≤ 0.05; **P ≤ 0.01; ***P ≤0.001;  generated 
using product limit (Kaplan-Meier) method, comparison of survival curves; Log-rank (Mantel-Cox) test) 
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4.10.2 Mechanistic analysis of immune cell subsets in BRAF mice  

In combined therapy, paclitaxel with Class I-DC vaccine decreased the frequency of MDSC 

in LNs, SP and tumors as compared to untreated control group (Fig. 53). In addition, the 

activity of MDSC from LNs, SP and tumors was significantly diminished upon Class I–Mix DC 

vaccination as compared to control. This effect was even more profound after the 

combination with paclitaxel indicated by a significant decrease of arginase-1 and PD-L1 

expression, as well as NO production. 
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Fig. 53: In combined therapy, paclitaxel increases class I –Mix DC-vaccine effect in diminishing 

MDSC activity in combined therapy of melanoma bearing BRAF mice . Braf mice bearing BRAF-
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V600-mutated melanomas, tumours were induced intracutaneously by 4-OHT and established for at 
least 25 days prior to treatment start. 10 days following last DC vaccination MDSC frequency within 
LN, Sp and tumor was phenotypically analyzed by flow cytometry (a). MDSC activity was assessed by 

their Arginase-1 production (b), NO-production (c) and PD-L1 surface expression (d) upon vaccination 
with respective DC vaccine. Results are presented as individual values on scatter plot, mean value of 
each group is also presented (*P ≤ 0.05; **P ≤ 0.01; ***P ≤0.001; one-way analysis of variance, the 

differences were assessed by Bonferroni multiple comparison post-test). 

In addition, the vaccination with Class I–Mix DC vaccine significantly reduced the frequency 

of naive CD8+ T cells and elevated the frequency of EM and CM CD8+ T cells in all tested 

organs (Fig.55). Importantly, combination with paclitaxel further augmented this effect 

indicated by an increased frequency of EM CD8+ T cells as compared to Class I–Mix DC 

vaccination alone or untreated or paclitaxel only treated mice. These results showed that 

combinatorial treatment could enhance memory T cell induction in the BRAF mouse model. 
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Fig. 54: Influences of class I–Mix DC-vaccine in combination with paclitaxel on memory T cells 
in melanoma bearing BRAF mice . Braf mice bearing BRAF-V600-mutated melanomas, tumours 
were induced intracutaneously by 4-OHT and established for at least 25 days prior to treatment start. 

Mmice were injected with paclitaxel (1mg/kg) and/or vaccinated with class I –Mix. 10 days after last 
vaccination frequency of naive, CM and EM CD4+ T lymphocytes were measured. Graphs represent 
the percentage of naive (CD62L

+
 CD44

-
) (a, d), central memory (CM; CD62L

+
 CD44

+
) (b, e), and 

effector-memory (EM; CD62L
-
 CD44

+
) (c, f) for both CD8

+
 T cells (a-c) and CD4

+
 T cells (d-f). Results 

are presented as individual values on scatter plot, mean value of each group is also presented (*P ≤ 
0.05; **P ≤ 0.01; ***P ≤ 0.001; one-way analysis of variance, the differences were assessed by 

Bonferroni multiple comparison post-test). 
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Fig. 55: Influences of class I–Mix DC-vaccine in combination with paclitaxel on memory T cells 
in melanoma bearing BRAF mice . Braf mice bearing BRAF-V600-mutated melanomas, tumours 

were induced intracutaneously by 4-OHT and established for at least 25 days prior to treatment start. 
According to respective treatment group, mice were injected with ld of paclitaxel (1mg/kg) and/or 
vaccinated with class I –Mix, respectively. 10 days after last vaccination frequency of naive, central 

memory and effector-memory was phenotypically determined on CD8+ T lymphocytes. Graphs 
represent the percentage of naive (CD62L

+
 CD44

-
) (a, d), central memory (CM; CD62L

+
 CD44

+
) (b, e), 

and effector-memory (EM; CD62L
-
 CD44

+
) (c, f) for both CD8

+
 T cells (a-c) and CD4

+
 T cells (d-f). 

Results are presented as individual values on scatter plot, mean value of each group is also presented 
(*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; one-way analysis of variance, the differences were assessed by 
Bonferroni multiple comparison post-test). 
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Furthermore, vaccination with DC vaccines only did not significantly alter frequency CD4+ T 

cells in LN, SP and skin tumors (Appendix 9). In addition, we did not observe altered 

intensities of TCR ζ-chain  and PD-1 expression on CD4+ T cells after Class I–Mix DC 

vaccination (Appendix 9). Class I-Mix vaccination resulted in significantly increased TCR ζ-

chain expression in CD8+ T cells as well as frequency of PD-1+ CD8+ T cells in LNs, SP and 

skin tumors (Fig. 56) as compared to control or paclitaxel only treated group. Moreover, TCR 

ζ-chain expression and frequency of PD-1+ CD8+ T cells were even more elevated after 

combination with paclitaxel particularly in CD8+ T cells infiltrating metastatic LNs and tumors. 

These results showed that paclitaxel increased DC vaccine effect by restoring the activity of 

CD8+ T cells in tumors, LN and SP of melanoma bearing BRAF mice. 
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Fig. 56: Restored CD8
+
 T cells activity upon class I–Mix DC-vaccine in combination with 

paclitaxel. Braf mice bearing BRAF-V600-mutated melanomas, tumours were induced 

intracutaneously by 4-OHT and established for at least 25 days prior to treatment start. According to 
respective treatment group, mice were injected with ld of paclitaxel (1mg/kg) and/or vaccinated with 
class I –Mix, respectively. 10 days after last vaccination, CD4+ and CD8+ T cell frequency within the 

tumor was phenotypically analyzed by flow cytometry (a, d). T cell activity was assessed by intensity of 
TCRζ-chain expression (b, e), and the percentage of PD-1

+
 T cells (c, f) upon respective treatment. 

Results are presented as individual values on scatter plot, mean value of each group is also presented 

(*P ≤ 0.05; **P ≤ 0.01; ***P ≤0.001; one-way analysis of variance, the differences were assessed by 
Bonferroni multiple comparison post-test). 
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To further characterize the T cell populations following DC vaccination combined with 

paclitaxel, we tested the frequency and activity of Tregs in treated melanoma bearing BRAF 

mice. Furthermore, the frequency of activated Tcons was measured. No statistically 

significant differences in the frequency of Tregs within LN, SP or skin tumor were detected 

(Fig. 57). However, when evaluating their activation status, significantly reduced frequencies 

of CD39+ Tregs and Ki67+ Tregs were detected in all three analyzed organs. These results 

indicated lower immunosuppressive function and proliferation capacity of Tregs after Class I-

Mix vaccination. Interestingly, this inhibitory effect was even more profound after the 

combination with paclitaxel compared to control or paclitaxel only treated group. In addition, 

Class I–Mix vaccination, and combinatorial treatment with paclitaxel resulted in a significant 

reduction of activated Tconsin tumors LNs and SP. In summary, the results clearly indicated 

that Class I–Mix DC vaccination hampered activity of tumor-infiltrating Tregs and further 

increased activated Tcons upon vaccination. Combinatorial treatment with paclitaxel further 

augmented these effects.  
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Fig. 57: In combined therapy, Class I –mix DC vaccination and paclitaxel significantly 
influenced activity of Treg and conventional T cells. Braf mice bearing BRAF-V600-mutated 
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melanomas, tumours were induced intracutaneously by 4-OHT and established for at least 25 days 
prior to treatment start. According to respective treatment group, mice were injected with ld of 
paclitaxel (1mg/kg) and/or vaccinated with class I –Mix, respectively. 10 days after last vaccination, 

Treg frequencies as well as Treg activity was determined by flow cytometry. Graphs represent the 
percentage of T reg (a) , CD39

+
 (b), Ki67

+
 (c) expression on Treg surface. In addition frequency of 

(CD4
+
CD25

+
FoxP3

-
) activated Tcon was assessed. Results are presented as individual values on 

scatter plot, mean value of each group is also presented (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; one-way 
analysis of variance, the differences were assessed by Bonferroni multiple comparison post-test). 

 

Furthermore, the potential of the Class I-Mix vaccine to elicit antigen-specific immune 

responses in melanoma bearing BRAF mice was assessed. We found an elevated tendency 

of IFN-γ and TNF-α producing CD8+ T cells in LNs and SP upon vaccination with Class I–

Mix. (Fig. 58).  
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Fig. 58: Antigen-specific CD8+ T cells responses in LN and SP following vaccination with class 
I Mix DC vaccination in melanoma bearing BRAF mice . Braf mice bearing BRAF-V600-mutated 
melanomas, tumours were induced intracutaneously by 4-OHT and established for at least 25 days 

prior to treatment start. According to respective treatment group, mice were injected with ld of 
paclitaxel (1mg/kg) and/or vaccinated with class I –Mix, respectively. 10 days after last vaccination 
spleens and lymph nodes were harvested and analyzed for the induction of antigen-specific CD8

+
 T 

cells by ICS for IFN-γ and TNF-α, following re-stimulation with the relevant peptide according to the 
group (ClassI mix: Trp-1455-463/ mTRP2180-188/ hgp10025-33/mTyr360-368 or their combination as class I –
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Mix). Restimulation with irrelevant peptide (SIINFEKL) was used for as negative control and 
50ng/mlPMA-2ug/ml Ionomycine restimulation as positive control for unspecific T cell proliferation. 
Scatter plot represents the percentages CD8

+
 INFγ

+
 (c), CD8

+
 TNF-α

+
 (d) and INFγ

+
/TNF-α

+
 double 

positive cells. Results are presented as individual values on scatter plot, mean value of each group is 
also presented (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; one-way analysis of variance, the differences was 
assessed by Bonferroni multiple comparison post-test). 

 

To summarize, similarly to therapy experiments conducted in ret tg mice, the treatment of 

melanoma bearing BRAF mice with multivalent DC expressing chimeric class I receptors with 

four different MAAs inhibited tumor growth, leading to a  significantly improved survival. 

Moreover, DC vaccination combined with paclitaxel treatment showed the tendency to be 

beneficial for anti-tumor immune responses. 
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5 Discussion 

The clinical impact of DC immunotherapy in melanoma and other cancer entities has been 

limited so far despite the induction of tumor-specific T cell responses in many patients and 

occasional tumor regressions. Many reasons may explain this lack of success with DC 

vaccines and requires optimization at several levels. Firstly, the DC maturation stimuli in use; 

secondly, the type and form of antigen to be loaded on DCs; thirdly, the origin, subset and 

the number of DCs to inject; and finally the amount, frequency, route and the site of 

injection129,134,169,170. Until today, a large number of methods have been developed to deliver 

TAAs or their peptide fragments to DCs. Tumor-associated peptides either in cell lysates or 

as recombinant full proteins  have been used to load MHC-I molecules at the surface of DCs. 

Other methods use gene delivery of target peptides into DCs to maximize their presentation 

to CTLs. Transfection of DCs with RNA derived from tumors or transcribed in vitro to encode 

TAAs emerges as an effective and safe genetic resource to elicit MHC-I restricted 

responses12,14,122,171–173. 

5.1 MHC class I and class II restricted MAA-sequences for designing 

chimeric DC receptors with improved MHC presentation on BMDC 

5.1.1 Chimeric beta-2 microglobulin-TLR4/-Kb platform for CTL induction 

Efficient MHC-peptide complex expression on the cell surface determines the degree of T 

cell responsiveness
14,171,174

. The maximal yield of presented antigenic peptides derived from 

encoded proteins is thus a key parameter in the design of cancer vaccines. This rationale 

has prompted attempts to enhance the level of antigenic peptide presentation by APCs 

through genetic manipulations aimed at elevating the actual number of pre-selected MHC-I-

peptide and MHC-II-peptide complexes on the cell surface14,171,174. According to the novel 

method developed by Cafri et al.145,147, genetic constructs were designed to generate 

chimeric MCH class I, as well as MHC class II receptors as a platform for CD8+ CTL and 

CD4+Thelper cell induction, respectively.  

We demonstrated that these chimeric receptors enable stable, affinity and TAP-independent 

MHC-presentation of any antigen of choice on APC, eliciting a much faster and more efficient 

CD8+ CTL and CD4+Thelper cell induction than other conventional peptide loaded or DNA-

transfected DC vaccines. 

In this study, we tested several class I and class II restricted MAA candidate peptide-

sequences, derived from TRP-1 and Tyr for their capability to elicit a potent CD8+ CTL and 
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CD4+ Th cell response, respectively (Table.3). Successful candidates were then used for 

generation of chimeric MHC class I, well as MHC class II receptor constructs. Afterwards, we 

tested their membrane expression kinetics and ability to stimulate DC maturation ex vivo. 

Then we further examined their ability to induce specific killing and anti-tumor activity, similar 

to the chimeric antigen-hβ2m constructs derived from MAA, hgp100 and TRP-2, Cafri and 

colleagues described in 2013 and 2016.145,153 

As we aimed to increase the repertoire of chimeric antigen-hβ2m constructs for multivalent 

melanoma immunotherapy, we tested class I MAA candidate peptides for antigen specific 

CTL induction in CTL in vivo and CTL in vitro killing assay. Sequence variant-2 of mTRP-1455-

463 (AAPDNLGYM) showed the best CTL induction (Fig.13) and best, specific tumor cell lysis 

(Fig.14), followed by moderate effects induced by the native sequence mTRP-1455-463 

(TAPDNLGYA). This is in line with other study 175, which first described the modifications of 

the native mTRP-1455-463 sequence and to induce stronger CTL responses. Strikingly, class I 

candidate peptide Tyr
 360-368 (SSMHNALHI) showed also the CTL induction in vivo (Fig.13; 

Tyr #6) and in vitro killing assay (Fig 14; Tyr #6). This antigenic peptide was predicted to bind 

to H2-Kb by SYFPEITHI prediction tool and hasn’t yet been described in literature to be a 

potent antigenic peptide for CTL induction. 

We further subjected these 3 most promising class I peptides to RF cloning to generate 

respective TRP1 and Tyr-peptide-ß2m-TLR4 and peptide-hß2m-Kb constructs, according to 

the method described by Cafri et al.144.We performed class I construct expression kinetics by 

flow cytometry and showed elevated expression levels for at least 48h for the hß2m-Kb 

constructs and 36h for hß2m-TRL4 constructs, respectively (Fig.16), indicating a less stable 

surface expression of the hß2m-TRL4 constructs. Cafri and colleagues, were describing 

similar expression surface expressions (unpublished data), however co-transfection of hß2m-

Kb + hß2m-TLR4 still lead to sufficient BMDC maturation and durable peptide presentation to 

elicit a strong antigen-specific CTL as well as effector memory T cell response, superior to 

peptide-loaded counterparts144,145,147. We also observed similar results after comparative 

analyses of Trp1/Tyr-hß2m-Kb /TLR4 mRNA transfected BMDC versus Trp1/Tyr peptide-

loaded, LPS maturated BMDC. Co-transfected Trp1/Tyr-hß2m-Kb /TLR4 mRNA-DC vaccine 

(class I-Mix-EP) resulted in profound, antigen–specific CD8+ T cell responses indicated by a 

significantly increased IFN-γ production by CD8+ T cells (Fig.22) and elevated frequency of 

EM CD8+ T cells in LN and SP of vaccinated mice (Fig.23). Importantly, these elevations 

were significantly higher than in mice vaccinated with corresponding Trp1/Tyr-peptide-Mix 

(class I-Mix-PL) loaded BMDC. Comparative survival analyses of melanoma bearing ret-tg 

mice further confirmed superior anti-tumor effects in mice that were vaccinated with mRNA-

transfected BMDC (Fig. 29; class I-Mix-EP) .Our date are consistent with survival rates 
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obtained previously in B16F10.6 transplantable melanoma model144 and in ret-tg mouse 

model153, in which gp100/Trp2-mRNA-transfected BMDC showed superior tumor protection, 

survival benefits and delayed tumor growth compared to respective hpg100/Trp2-peptide 

loaded BMDC. 

5.1.2 Chimeric MHC-II platform for CD4 T cells induction  

To address the challenge of inducing a significant immune response to specific antigens by 

CD4+ T cells, the group of Prof. Lea Eisenbach designed a single chain chimeric MHC-II-IAb 

receptor. It comprises a class II-H2-IAb restricted antigenic peptide of choice, covalently 

attached through a linker sequence to the complete MHC-II-I-Ab alpha, beta chain and 

additional CD40-anchor sequence, stabilizing class II-peptide presentation on the DC 

surface. Profound OVA323-339
+ CD4+ T cells responses were observed upon vaccination of 

OT-II mice with BMDC presenting chimeric OVA323-339 H2-IAb receptors (personal 

communication and unpunished data by Gal Cafri and colleagues of Prof. Lea Eisenbach’s 

lab in February 2015). As this platform does not have universal application perspectives, the 

group of Prof. Lea Eisenbach developed a class-II associated invariant chain-peptide (CLIP) 

construct, in which the CLIP coding sequence was exchanged for a class II restricted 

antigenic-peptide sequence of choice presented on the native MHC class II receptor through 

the intrinsic class II loading and presenting pathway. Thus, the chimeric CLIP-construct 

represents the preferable universal class II counterpart to the universal chimeric class I-

hß2m constructs. 

In this study we examined five MHC class II –H2-IAb restricted peptides for their ability to 

elicit a specific CD4+ T cell response (Table 3). We found 2 peptides, mTRP1111-128  

(GTCRPGWRGAACNQKILT) and mTYR99-117  (NCGNCKFGFGGPNCTEKRV) that were able 

to induce a specific T cell proliferation in vitro. Specific proliferation was detected by 3H-

labelled thymidine uptake, resulting in strong elevation of CPMs compared to control (Fig.15 

#122 and #130). These two peptides were then further subjected to the RF cloning to 

produce the respective I-Ab and CLIP constructs. Respective class II construct expression 

kinetics upon electroporation into DC2.4 cells revealed that both constructs showed elevated 

I-Ab expression for at least 36h (Fig.17). Moreover, following electroporation of BMDC and 

vaccination of BL/6 mice, an increased proliferation rate in CD4+ T cells subsets, but not in 

CD8+ T cell subsets were detected by in vitro proliferation assay (Fig. 20). Furthermore, 

presence of antigen specific CD4+ T cells was confirmed by class II-tetramer staining for 

mTRP1111-128 construct, as well as for mTYR99-117 constructs (Fig.21). 
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With regards to the mTRP1111-128   class II-constructs, our results are partly in line with data of 

Muranski et al.176, who first identified the mTRP1111-128 peptide sequence as a minimal 

epitope for of TRP-1-specific CD4+ T cell in a TRP-1 transgenic mice. Although they could 

show, that these TRP-1–specific CD4+T cells fail to protect transgenic mice against 

B16melanoma cell challenge, they showed the development of autoimmunity after adoptive 

transfer. Further functional characterization of Th0-, Th1-, or Th17-polarized cells from TRP-

1 TCR transgenic mice, could show that only Th17-polarized TRP-1–specific T cells mediate 

highly efficient treatment of large established tumor, leading to a complete cure and the long-

term survival176. 

The murine TYR99-117 sequence was selected and further investigated by us after IEDB 

database MHC Class II-IAb binding prediction and was not yet described in the literature to 

be a potent MHC class II restricted peptide for CD4+ T cell induction in BL/6 mice. We could 

here describe and characterize murine TYR99-117 peptide sequence to be a potent candidate 

for CD4+ T cell induction upon in vitro re-challenge in in vitro proliferation assay. Although we 

did not further characterize the induced CD4+ immune response upon DC vaccination for 

Th0-, Th1-, or Th17-polarization as Muranski et al.176, we were encouraged by our results to 

further examine, if our Trp1/Tyr class II-chimeric constructs mediate efficient treatment of 

established melanoma tumors in ret-tg mice in comparison to untreated or class II–peptide 

loaded, LPS maturated DC vaccine. 

To summarize, we were able to successfully design and characterize in total five class I and 

class II chimeric receptors, respectively, which upon mRNA transfection enable autologous 

BMDC to become a potent, multivalent DC vaccine by elongated, and simultaneous 

presentation of Trp1 and Tyr class I, as well as class II epitopes on BMDC surface. The 

duration of MAA presentation by DC vaccine is highly important for efficient antigen-specific 

CD8+ and CD4+ T cell responses and thus for its clinical success. By allowing DC-

presentation up to 2 days the chimeric-MHC receptor platform improves the prospects of 

peptide-presenting DC to enter the lymph nodes and to encounter antigen specific naïve T 

cells. We could characterize and design two chimeric mTRP-1455-463 antigen-hß2m constructs 

and one Tyr
 360-368 chimeric antigen-hß2m constructs, which has not yet been described in 

the literature. Trp1/Tyr-hß2m-Kb /TLR4 mRNA transfected BMDC showed superior antigen-

specific CTL induction, as wells as anti-tumorigenic properties in vivo upon vaccination of 

melanoma bearing ret-tg mice, versus Trp1 mTRP-1455-463 /Tyr
 360-368 peptide-loaded, LPS 

maturated BMDC. In order to complement our construct repertoire with CD4+ T cell inducing 

chimeric receptors we identified and characterized mTRP1111-128  to class II constructs, as 

well as mTYR99-117 constructs and their capacity to induce a strong CD4+ T cell response in 

vivo upon vaccination and subsequent analysis of tetramer+ antigen specific CD4+T cell in LN 



Discussion  112 
__________________________________________________________________________ 
 
 

of vaccinated of BL/6 mice and detected by in vitro CD4+ T cell proliferation assay. In 

contrast to class I chimeric ß2m-receptors, exclusive class II chimeric receptor mRNA DC 

vaccination did not lead to improved survival of melanoma bearing ret-tg mice. 
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5.2 Immunotherapy of melanoma bearing ret-transgenic mice 

In this study, we applied our chimeric mRNA constructs in ret transgenic (ret-tg) mice that 

develop spontaneously skin tumors and metastases in the BM, lungs, liver and brain, 

resembling the human situation better than conventional B16-transplantable tumor 

models150,152. Moreover, melanoma lesions express several MAAs such as tyrosinase, 

gp100, TRP-1 and TRP-2152. It has been also reported that ret transgenic mice could develop 

specific T-cell responses against TRP-2 upon vaccination
151,152

 Here, melanoma bearing ret 

tg mice were vaccinated with DCs electroporated with class I mRNAs constructs for TRP1 

and Tyr, as well as with class I mRNA constructs. We used chimeric vaccines in single 

treatment and in combination for comparative analyses.  

With regards to chimeric class I-β2m-receptors, we appreciated a significant improved 

survival rate in mice treated with either chimeric class I-β2m-DC vaccine. However the most 

efficient treatment was the class-I-Mix (Fig.26). We observed 25% increased survival in this 

group compared to control. This can be partly explained due to the dual functionality of the 

Class I Mix DC vaccine, which was also reflected in exclusively increased CD8+ T cell 

dependent immune responses but almost no CD4+ T cells response, indicating CD8+ specific 

T cell induction (Fig. 32 and Fig 33). We observed significant elevated frequency in LN and 

skin tumor of CD8+ effector memory T cells in the Mix group as compared to the control 

group or class II vaccinated group. CD8+ effector memory T cells were also accumulated in 

mice vaccinated with Tyr construct as compared to the control. Moreover, these results were 

correlating with reduced levels of naïve CD8+ T cells in respective groups, suggesting a 

conversion of naive T cells to central memory and further to effector memory state upon 

repeated boost of DC vaccination. These data are consistent with our previous results, 

showing that the Mix treatment, expressing gp100 and Trp-2 antigens, induced the most 

effective CD8+ response in ret-tg mouse model 153, and with previous study in a B16 

transplantable melanoma model owing to its dual functionality, which allowed long-lasting 

peptide presentation through Kb in conjunction with DCs maturation driven by TLR4144.  

Studying activity of CD8 T cells upon chimeric class I-ß2m-DC vaccine, we detected, 

elevated levels of IFN-γ producing CD8 T cells upon in vitro restimuation, indicating antigen 

specific CTL induction upon vaccination. Furthermore, an increased TCR ζ-chain expression, 

as well increased frequencies of CD69+ T cells in LN, skin tumor as well as in SP were 

detected (Fig. 34), suggesting a profound and systemic CD8+ T cell activation upon class I 

Mix vaccination. Interestingly, these results were accompanied with significantly increased 

PD-1 levels in LN, SP and skin tumors, suggesting T cell exhausting due to persistent 

antigen stimulation, described in chronic infections and cancer177. However, since elevated 
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PD-1 expression was simultaneously detected with elevated CD69 early marker for T cell 

activation, we assume that there might be a steady state of activation not yet reached 

exhaustion state at the time point of our T cell assessment. Interestingly, Restoring of 

effector functions of exhausted CD8 T cells, expressing high levels of PD-1 during chronic 

infections was described already several times 178–180. and PD-1 high expressing CD8 Tcells 

were proposed to be a prospective marker for treatment response to anti-PD-1 treatment in 

cancer patients179,181. We did not measure CD69, Ki 67, or PD-1 in treated mice at later time 

points in this study. So the PD-1 contributions to abrogate immune responses after stopping 

vaccination and thus leading to incomplete tumor rejection and reduced overall survival of 

ret-tg mice, needs to be further investigated. 

Regarding CD4+ memory T cells, as well as CD4+ T cell activity we observed significant 

elevated levels exclusively upon chimeric class II-IAb DC vaccination compared to control 

(Fig.33 and Fig.35). We detected reduced naïve CD4+ T cells and elevated CD4+ T effector 

cells in SP, LN and tumor. Furthermore, we measured elevated TCRζ- chain expression, 

CD69 as well as PD-1 expression; similar to the CD8+ T cells responses induced upon the 

class I restricted DC-counterpart, suggesting a profound and systemic CD4+ T cell response. 

However, to our surprise, exclusive class II DC vaccination did not lead to an improved 

survival in any treated group compared to control group. This might be explained by the fact 

that the contribution of CD4+ T cells to antitumor immunity is contradictory due to their 

heterogeneity182. For instance, it was described that IL-4 cytokine, secreted by CD4+ T cells, 

may exert antitumor effect183 However, the frequency of antigen-specific CD4+ cells that 

produce IL-5 has been correlated with progressive growth of melanoma183  

Further investigations of different CD4+ T-cell subsets are required to determine their function 

and contribution to the tumor progression. In addition Treg induction was described leading 

in overall immune tolerance184, associated with tumor progression as they hamper effective 

antitumor immune response in cancer patients and tumor-bearing mice185,186. Moreover, 

several studies described MDSC as another crucial immunosuppressive cell population that 

hamper T cell immunity in lymphoid organs and at the tumor site. In addition some evidence 

suggests that MDSC can induce an expansion of Tregs68. Moreover, a transient elevation of 

MDSCs in mice following immunization was demonstrated187,188. In our previous studies with 

chimeric class I gp100 and TRP-2 vaccination in ret-tg mice we did not find statistically 

significant changes in MDSC 153, however the immunosuppressive activity of these cells was 

not investigated. 

In this study we monitored Treg activity and MDSC activity upon Trp1/Tyr class I as well as 

class II vaccination in ret-tg mice. Similar to our previous studies we did not observe 
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significant changes of MDSC, as well as Tregs in LN and skin tumors after vaccination but 

significant differences in their activity. We detected a tremendous decrease in Arg-1 and NO 

expression levels in MDSC of SP and LN, as well as skin tumor; particularly upon class I-Mix 

vaccination, compared to control or class II vaccinated groups. In addition PD-L1 expression 

on MDSC in LN, SP and particularly in skin cancer of ret-tg mice were significantly reduced. 

Interestingly, in contrast to these results, upon class II vaccination we could only observe a 

reduced tenancy of respective MDSC activity markers, which was significantly less profound 

than class I-Mix DC vaccination. These results suggest a persistent, immunosuppressive 

MDSC activity in class II-Mix vaccinated ret-tg mice that may partly explain the less profound 

anti-tumorigenic immune response, which resulted in constant tumor growth. More evidence 

for this hypothesis was found upon monitoring of Treg activity upon class I and class II DC 

vaccination. We detected a great reduction of CD39+ Treg as well as decreased expression 

levels of Ki 67-proliferation marker in these cells, clearly indicating reduced activity of Tregs 

upon class-I-Mix DC vaccination. Interestingly, we saw increased Treg activity solely upon 

class II DC vaccination, by increased CD39 expression on Tregs in metastatic LN and skin 

lesions and increased Ki67 proliferation marker in LN and SP of vaccinated ret-tg mice. Our 

observations are in line with previous studies describing CD73 and CD39 ectonucleotidases 

in controlling naive T-cell homeostasis and memory cell survival through adenosine 

production through ATP hydrolysis and accumulated adenosin was found to tilt the balance 

towards immunosuppressive microenvironments54,189. 

To summarize we have demonstrated that DC vaccination with chimeric TRP-1 and Tyr class 

I-ß2m DC vaccine and in particular the TRP-1/Tyr-Mix-ß2m DC vaccine, mainly due to its 

multivalent properties, can significantly improve survival of melanoma bearing ret-tg mice. 

These findings are consistent with our previous results obtained by gp100/TRP-Mix-ß2m DC 

vaccination153. In this recent study, we demonstrated increased frequency of IFNγ producing 

CD8+ T cells, complemented by increased, systemic CD 8+ T cell activity as well as an 

increase of CD8+ effector memory T cells. Importantly, these immune-stimulatory effects 

were found without any stimulatory effects on immunosuppressive Tregs and MDSC. Finally, 

we could detect signs of autoimmunity (vitiligo) in two ret-tg mice treated with TRP-1/Tyr 

class I-Mix DC vaccine, providing further evidence of increased immune stimulation (Fig. 48). 

Furthermore, we could demonstrated that DC vaccination with chimeric TRP-1 and Tyr class 

II DC vaccine induced a profound CD4+ specific immune response in healthy mice, as well as 

in ret-tg mice. Unexpectedly, exclusive class II vaccination did not improve survival rate of 

melanoma bearing ret-tg mice. Skin lesions continued to grow and mice had to be sacrificed 

upon massive tumor growth, similarly to the control group. This might be explained due to the 

lack of concomitant antigen-specific CD8+ CTL induction on the one hand, and furthermore 
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by the heterogeneity of CD4+ cell subsets, which would need to be characterized in more 

detail in future experiments. Indeed, some evidence in our results showed significant 

induction of Treg activity upon class II vaccination, which could abrogate effective antitumor 

immunity.   
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5.3 Combined melanoma treatment with dendritic cell vaccination and 

low-dose paclitaxel 

Recent studies suggest combining immunotherapy with chemotherapeutic agents, which for 

instance can abrogate the suppressive influence of Tregs and allow effective antitumor 

immunity to emerge124. For instance, immunoregulatory properties were discovered in 

melanoma, as well as in other cancer entities upon low-dose application of paclitaxel, to 

promote T helper 1 and type 17 immunity, enhance DC function, as well as decreasing Treg 

and MDSC function number and function 124102. Indeed, newer combined regiments, including 

paclitaxel, cisplatin, temozolomide combined with IL-2 and IFN-α are currently studied in 

patients with metastatic melanoma
190

. 

We further hypothesize that combining of all our chimeric class I-β2m constructs enable 

simultaneous presentation of quadrupled MAA-Mix (TRP1, Tyr, gp100, TRP2) on the DC 

surface. This modality would provide a potent multivalent DC vaccine, which can further 

increase anti-tumor immunity and survival rate of melanoma bearing ret-tg mice. In addition, 

as exclusive class II vaccination did not improve survival of melanoma bearing ret-tg mice, 

we would like to test our theory that simultaneous CD8 and CD4 T cell stimulation in cancer 

immunotherapy can markedly improve the anti-tumor response. In that way we can 

overcome current limitations of class II vaccination to elicit a durable antitumor response with 

significant improved survival. Furthermore, we combined our DC vaccine with chemo-

modulating non-cytotoxic doses of paclitaxel in order to further promote CD8+ T cell function 

and decrease MDSC activity as well as decreasing levels of pro-inflammatory chemo- and 

cytokines as previously shown in our group by Sevko and colleagues in 2012123.  

In combined therapy, class I-Mix-β2m- and class I-Mix-IAb-DC vaccination did significantly 

increase survival rates of melanoma bearing ret-tg mice compared to control. Surprisingly, 

survival was not improved compared to paclitaxel only treated group. And further 

combination of paclitaxel with class I-Mix- β2m-DC and class I-Mix-IAb-DC vaccine also did 

not further improve the survival. These results were quite surprising to because on cellular 

level, combined class I-Mix- β2m- and class I-Mix-IAb-DC vaccination induced a mixed CD8 

and CD4 dependent immune response in LN, SP and skin lesions of vaccinated ret-tg mice. 

Firstly, we detected a mixed antigen-specific IFNγ induction in CD8+ as well as CD4+ T cells 

in LN and skin tumors. Secondly, a profound reduction of naïve CD4+ and CD8+ T cells, 

associated with CD4+ and CD8+ effector memory induction was detected in SP, LN and skin 

tumor. Furthermore, induced CD8 and CD4+ T cell activity was shown, by increase TCRζ-

chain and PD-1 expression in tumor infiltrating T cells, clearly indicating efficient Ag-

presentation of our multivalent DC vaccine to CD8+ and CD4+ T cells and subsequent 
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antigen specific activation of T cells, especially in the tumor of vaccinated mice. However, we 

could also appreciate, that class I-Mix- β2m- and class I-Mix-IAb-DC vaccination did not 

influence MDSC activity markers as strong as class I-Mix- β2m –DC vaccination alone. For 

instance, we saw only a tendency of reduced Arg-1, NO as well as PD-L1 expression 

compared to control. In contrast, class I-Mix- β2m-DC vaccination tremendously reduced all 

respective MDSC markers more profound than class I and II Mix vaccine. These results 

suggest that, although a solid CD8+ and CD4+ T cell response was induced, an additional 

stimulation of MDSC occurred. Interestingly, combined treatment with low-doses of paclitaxel 

seemed not to abrogate these immunosuppressive effects. This would be partly in line with 

previous studies suggesting a transient MDSC elevation and thus increased 

immunosuppression upon immunization187,188. Furthermore, some studies showed than 

MDSC can expand Tregs68. Indeed, we measured systemically increased Treg frequencies in 

LN, SP and skin tumor, which was associated with increased Treg activity, by increased 

levels of CD39 and Ki 67 proliferation. Further evidence was provided by significant reduced 

levels of tumor-infiltrating active T cons as well as in LN and SP, which was in contrast highly 

increased in class I-Mix-ß2m-DC vaccinated group in respective organs. In fact, upon further 

investigations with class II tetramer staining, we could detect elevated levels of tetramer+ 

Tregs amongst CD4+ T cell fraction (Fig. 50), proposing antigen-specific Treg induction 

exclusively in class-II DC vaccination and class-I and class-II vaccinated groups, which can 

be responsible for abrogation of antitumor immunity and progressive tumor growth in 

melanoma bearing ret-tg mice. Further experiments need to be performed to carefully explain 

additional modes of action. 

In contrast, class I-Mix- β2m-DC vaccination showed superior CD8+ T cells dependent anti-

tumorigenic effects. Combinatorial treatment with low-doses of paclitaxel promoted survival 

rates of melanoma bearing mice up to 40% compared to only DC vaccinated group (35%). 

Improved survival was associated with two mice developing vitiligo, due to autoimmune 

reactive T cells attacking MAAs overexpressed in melanocytes of ret-tg mice (Fig. 48). 

Improved survival was associated with increased PD-1 and TCRζ-chain expression on CD8+ 

T cell subsets and increased frequency of IFNγ-producing CD8+ T cells, clearly indicating 

antigen specific CTL activation compared to control or paclitaxel only treated group to control 

subsets compared to paclitaxel only. In addition, profound, systemic effector memory T cells 

induction was measured. Furthermore, significantly reduced MDSC activity as well as Treg 

activity was detected, which was more profound upon combined treatment with paclitaxel. 

Finally we tested our class I-Mix- β2m-DC vaccination in the BRAF-mouse model to further 

proof anti-tumor immunity in an additional melanoma bearing mouse model. This would show 

potential treatment benefits in BRAF-mutated tumors which are additionally are 
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overexpressing MAAs. We applied the same class I-Mix- β2m-DC vaccination regime with 

and without combinatorial paclitaxel treatment once palpable tumors of at least 0.1 mm 3 were 

established. Strikingly, class I-Mix- β2m-DC vaccination inhibited tumor growth which 

resulted in slower growing tumor burden and significantly improved survival compared to 

control or paclitaxel only treated group. As class I-Mix- β2m-DC vaccination combined with 

paclitaxel did not lead to a complete tumor regression, but to a much lower tumor growth rate 

in BRAF mice, we investigated immune cell subsets in LN, SP and skin tumor upon 

respective treatment, similarly to the experiments we performed in the melanoma bearing ret-

tg mice. 

We observed significant changes of MDSC frequencies, in combined treatment of paclitaxel 

with chimeric class I-Mix- β2m-DC vaccine in LN,SP and skin lesions, associated with a great 

decrease in Arg-1 and NO and PD-L1 expression levels, particularly upon class I-Mix 

vaccination combined with paclitaxel (Fig.53), indicating reduced immunosuppression. These 

results are in line with reduced Treg activity, detected by decreased CD39 and Ki 67 

expression (Fig.57). Studying activity of CD8 T cells upon chimeric class I-Mix- β2m-DC 

vaccination in BRAF mice, we detected elevated levels of IFNγ producing CD8 T cells upon 

in vitro restimuation, indicating antigen specific CTL induction upon vaccination (Fig.58). 

Furthermore an intense reduction of naïve CD8+ T cells, associated with CD8+ effector 

memory induction was detected in SP, LN and skin tumor (Fig.55). Finally, increased 

frequency of tumor infiltrating CD8+ T cells upon combined treatment of paclitaxel with 

chimeric class I-Mix-ß2m-DC vaccine was observed which was associated with an increased 

TCRζ- chain expression (Fig. 56), suggesting a profound and systemic CD8+ T cell activation 

upon class I Mix vaccination. Interestingly, these results were accompanied with significantly 

increased PD-1 levels in LN, SP and skin tumors, similar to observed levels in ret-tg mice 

upon vaccination, suggesting T cell exhausting state. Overall, results observed in BRAF mice 

are in line with previous studies performed by us in the ret-tg mice, further providing rational 

for advantages in combined immunotherapy with our improved DC vaccine. Novel treatment 

regimens of BRAF-mutated tumors which occur in about 40 -60% of melanoma lesions are 

urgently needed due to frequently occurring BRAFi or MEKi resistance102,191. Indeed, there 

are currently several clinical trials ongoing in patients with metastatic melanoma, beneficial 

combined treatment regimes, such as targeted therapies with check-point inhibitors and 

chemotherapeutics to overcome current resistance-limitations of BRAF mutated melanoma 

treatment114.  
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6 Abbreviations 

A 

 APC allophycocyanin 

APC antigen-presenting cell 

ARG-1 arginase-1 

Ab antibody 

 
  

B   

BM bone marrow 

BSA bovine serum albumine 

BL/6 mice on C57BL/6 background 

BMDC bone marrow derived dendritic cell 

 
  

C   

CCL C-C chemokine ligand 

CCR C-C chemokine receptor 

CD cluster of differentiation 
Cy5 or 
Cy7 cyanine-5 or -7 

CFSE carboxyfluorescein succinimidyl ester  

CTL cytotoxic lymphocytes 

CTLA-4 cytotoxic T lymphocyte antigen 4 

Class I major histocompatibility complex class I  

Class II major histocompatibility complex class II 

 
  

D   

DC2.4 immortalized dendritic cell line 

DC dendritic cell 

DNA desoxyribonucleic acid 

dH2O distilled water 

DMSO dimethylsulfoxide 

  

E   

EDTA ethylenediamine-tetra-acetic acid 

Et al. et alteri 

  

F   

FACS fluorescence activated cell sorting 

FBS fetal bovine serum 

FITC fluorescein-isothiocyanat 

FMO fluorescence minus one 

FoxP3 forkhead box P3 

FSC forward scatter 

 
  

G   

GM-CSF granulocyte-macrophage colony-stimulating factor 
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H   

HLA-DR human leucocyte antigen-DR 

Hß2-m human-beta2 microglibulin 

  

I   

IFN interferon 

iNOS inducible nitric oxide synthase 

IL interleukine 

i.p. intraperitoneal injection 

i.v. Intravenous injection 

i.d. intradermal 

i.f.p Intra foodpad 

  

L   

LN lymph nodes 

 
  

M   

MACS magnetic-activated cell sorting 

MDSC myeloid-derived suppressor cells 

MHC major histocompartibility complex 

Mo-MDSC Monocytic MDSC 

mM Micromolar  

  

 
  

N   

NO nitric oxide 

Nf-κB nuclear factor-kappa B 

  

P   

PBMC peripheral blood mononuclear cells 

PBS phosphate buffered saline 

PD-1 programmed death 1 

PD-L1 programmed death ligand 1 

PE phycoerythrin 

PerCp peridinin-chlorophyll-protein complex 

PAMPS Pathogen-associated molecular patterns 

PRR Pattern recognition receptors 
PMN-
MDSC Polymorphonuclear MDSC 

 
  

R   

RBC red blood cell 

ret human ret proto-oncogene 

ret tg ret transgenic mice 

ret tu ret transgenic tumor-bearing mice 
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ROS reactive oxygen species 

RPMI Roswell Park Memorial Institute medium 

RT room temperature 

rpm rounds per minute 

RF- restriction free - 

mRNA messenger ribonucleic acid 

  S 

 SSC side scatter 

SP6 SP6 promotor  

s.c. Subcutaneous injection  

  

T   

T cell T lymphocyte 

Tcon conventional CD4+ T cells (FoxP3-) 

Teff effector T cells 

TEM effector memory Tcells 

TCM central memory T cells 

Tnaiv e Naive T cells 

TCR T cell receptor 

TGF-β transforming growth factor beta 

Treg regulator CD4+ T cells (CD25+FoxP3+ ) 

TRP tyrosinase related protein 

TAM Tumor associated macrophages 

Th T helper lymphocyte  

Tyr Tyrosinase 

TIL Tumor-infiltrating lymphocytes 

TLR Toll-like receptor 

T7  T7 promotor of bacteriophage  

  

V 

 VEGF vascular endothelial growth factor 
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10 Appendix 

Appendix 1: 

MDSC analysis in BM and SP 10 days after last vaccination with class I DC vaccine (solid 

symbols) and class II DC vaccine (empty symbols)
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Appendix 2:  

CD8+ T memory analysis in BM and SP 10 days after last vaccination with class I DC 

vaccine (solid symbols) and class II DC vaccine (empty symbols) 
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Appendix 3:  

CD4+ T memory analysis in BM and SP 10 days after last vaccination with class I DC 

vaccine (solid symbols) and class II DC vaccine (empty symbols) 
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Appendix 7: 
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Appendix 8: 
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