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1 Abstract 
The median age of our population causes osteoporosis, bone fractures and disorders, which 

are also caused by multiple myeloma. In the past 25 years, regenerative medicine had gained 

in importance, especially for regeneration and renewal of bone tissue, which consists of 

different cell types composed in a very complex architecture. The growth factor bone 

morphogenetic protein 6 (BMP-6) belongs to the transforming growth factor β (TGF- β) 

superfamily and it induces the differentiation of mesenchymal stem cells into mature 

osteoblasts in bone leading to new bone formation. Besides induction of osteogenic 

differentiation, BMP-6 is also known to induce cell death in multiple myeloma cells in high 

concentrations. However, a systemic application is not practicable, since uncontrolled 

diffusion causes a wide range of side-effects. Immobilization of growth factors allows local 

treatment of bone fractures and defects, while it prevents uncontrolled release of growth 

factors. Furthermore, the required amount of growth factors can be reduced tremendously. 

The objective of this work was the covalent immobilization of BMP-6 co-presented with 

clicked integrin ligands on a structured gold nanoparticle (AuNP) platform, using block-

copolymer micellar nanolithography (BCMN) developed by Prof. Spatz and co-workers, to 

study integrin signaling in connection with growth factor responses. BMP-6 was selectively 

bound to gold nanoparticles organized in a hexagonal structure on the surface allowing to 

control the amount and density on the surface. I showed that surface co-presentation of BMP-

6 and RGD or α5β1 integrin selective ligand promotes SMAD1/5 phosphorylation and 

osteogenic differentiation of the standard model system C2C12, even at amounts as low as 

1 ng, whereas soluble BMP-6 application is significantly less effective. Additionally, BMP-

6 was immobilized on gold nanostructured polyethylene glycol diacrylamide (PEG-DA) 

hydrogels containing different concentrations of cRGD in order to study the influence of the 

stiffness on the cell signaling. Furthermore, this approach was used to investigate the effect 

of immobilized BMP-6 in low doses on the multiple myeloma cell line OPM-2 to induce 

cell death.   

This approach provides for the first time the successful presentation of BMP-6 in small and 

defined amounts on surfaces in combination with adhesive ligands. Furthermore, covalent 

immobilization hinders protein release while maintaining the biological activity of the 

growth factor. 
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2 Zusammenfassung 
Das durchschnittliche Alter unsere Bevölkerung verursacht Osteoporose, Knochenfrakturen 

und -fehlbildungen, welche auch durch das Multiple Myelom verursacht werden. In den 

vergangenen 25 Jahren hat die regenerative Medizin an Bedeutung gewonnen, insbesondere 

für die Regeneration und die Erneuerung von Knochengewebe, welches sich aus 

verschiedenen Zelltypen in einer sehr komplexen Struktur zusammensetzt. Der 

Wachstumsfaktor Bone Morphogenetic Protein 6 (BMP-6, knochenmorphogenetisches 

Protein 6) gehört zu der transformierenden Wachstumsfaktoren β (Transforming Growth 

Factor β, TGF-β) Superfamilie, und es initiiert die Differenzierung von mesenchymalen 

Stammzellen in reife Osteoblasten, was zur Knochenneubildung führt. Neben der Initiierung 

der osteogenen Differenzierung ist BMP-6 auch bekannt dafür, dass es in hohen 

Konzentrationen den Zelltod in multiplen Myelomzellen herbeiführt. Eine systemische 

Behandlung ist jedoch nicht praktikabel, da eine unkontrollierte Diffusion eine Reihe von 

Nebenwirkungen verursacht. Die Immobilisierung von Wachstumsfaktoren erlaubt die 

lokale Behandlung von Knochenfrakturen und –defekten, während sie auch die 

unkontrollierte Freisetzung von Wachstumsfaktoren verhindert. Des Weiteren kann die 

benötigte Menge an Wachstumsfaktoren drastisch verringert werden. 

Das Ziel dieser Arbeit war die kovalente Immobilisierung von BMP-6 auf einer 

goldnanostrukturierten Plattform, unter Verwendung von block-copolymer micellar 

nanolithography (BCMN) entwickelt von Prof. Spatz und Mitarbeitern, zusammen mit 

integrinselektiven Liganden, was die Erforschung von Integrinsignalisierung in Verbindung 

mit Reaktionen auf Wachstumsfaktoren ermöglicht. BMP-6 wurde selektiv an 

Goldnanopartikel gebunden, welche auf der Oberfläche hexagonal organisiert sind. Dies 

ermöglicht es, die Menge und die Dichte auf der Oberfläche zu kontrollieren. Ich konnte 

zeigen, dass die Oberflächencopräsentation von BMP-6 und cRGD bzw. dem α5β1 Integrin 

selektiven Liganden in Mengen von weniger als 1 ng die SMAD 1/5 Phosphorylierung und 

die osteogenen Differenzierung in dem Standardmodellsystem C2C12 fördert, während das 

gelöste BMP-6 signifikant weniger effektiv war. Um den Einfluss der Steifigkeit auf die 

Zellsignalisierung zu untersuchen, wurde BMP-6 auf Polyethylenglykoldiacrylamid (PEG-

DA) Hydrogele mit einer goldnanostrukturierten Oberfläche und cRGD in verschiedenen 

Konzentrationen immobilisiert. Darüber hinaus wurde dieses Konzept für die Untersuchung 
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des Effekts von gering dosierten, immobilisierten BMP-6 auf die multiple Myelom Zelllinie 

OPM-2 eingesetzt mit der Absicht den Zelltod zu initiieren. 

Dieses System ermöglicht zum ersten Mal die erfolgreiche Präsentation von BMP-6 auf 

Oberflächen in kleinen und definierten Mengen in Kombination mit adhäsiven Liganden. 

Des Weiteren verhindert die kovalente Immobilisierung eine Proteinfreisetzung, während 

die biologische Aktivität des Wachstumsfaktors erhalten bleibt. 
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3 Introduction 

3.1 Bone and Growth factors 

Growth factors (GFs) are a large family of polypeptidic molecules, which stimulate and 

modulate cell responses such as proliferation, differentiation, migration, cell adhesion, cell 

survival and chemotaxis (see Figure 3.1). GFs can be found in all tissues1-3. Naturally 

secreted from cells, many GFs directly interact with the surrounding extra cellular matrix 

(ECM). Furthermore, they can also be sequestered by the ECM in order to interact with cell 

surface receptors in a specific binding4-5.  

 

  
 
Figure 3.1 The path of growth factors in cell signaling from the biosynthesis to the different interactions 
with the ECM. Growth factors are synthesized in the cell and released into the ECM, where they interact with 
different components followed by binding and activating cell receptors. Growth factors form complexes with 
their cognate receptors. Adapted and modified from Mitchell et al.6 

 

The native protein form of growth factors used in regenerative medicine causes limitations 

and properties such as low stability, short circulating half-time and rapid rate of cellular 

internalization. Moreover, their activity is locally restricted in tissue as a function control by 

spatial and temporal effects6-7. The fibroblast growth factor (FGF-1), for example, displays 

its low stability in an effective half-life of only 1 h in serum at 37 °C8. General problems in 
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handling and medical usage of growth factors in research are reflected by the poor 

recombinant expression yield, difficulty of purification, high production costs, high required 

concentration and lack of appropriate delivery methods9. By developing delivery systems 

many of the above-mentioned challenges can be circumvented. 

A plethora of cellular signaling events like organism development, angiogenesis, wound 

healing and regeneration as well as generation of new tissue are mediated by GFs3, 10-11.  

 

3.1.1 Bone morphogenetic proteins 

It’s well-known that different growth factors are involved in the process of bone formation 

by stimulating pre-osteoblasts’ proliferation12. Bone morphogenetic proteins (BMPs) 

comprise a family of growth factors, which possess chemotactic, mitogenic, osteogenic and 

differentiating properties thus playing an important role in bone formation13. In 1965, 

Marshal R. Urist showed that formation of new bone could be induced by implanting 

demineralized, lyophilized segments of bone into ectopic sites14. In 1971, Urist and Strates 

proposed the name “Bone Morphogenetic Protein”15. One year later, it could be shown that 

also demineralized bone matrix was able to induce bone formation in ectopic sites16. In the 

beginning, BMPs were isolated from bone, which was a cumbersome procedure and the 

yield was very low17. BMPs are glycosylated and extracellular matrix-associated molecules, 

that are members of the Transforming Growth Factor Beta (TGF-β) superfamily18-19. In 

general, this type of growth factors is a hetero- or homodimer consisting of about 120 amino 

acids per subunit. Seven of the 120 amino acids are conserved cysteine residues, six of these 

forming intramolecular disulfide bonds creating a knot motif. The other stabilizes the dimer 

through an intermolecular disulfide bridge20-21. By today, about 20 different human BMPs 

including the growth differentiation factors (GDF) have been found, which can be divided 

into subfamilies based on their sequence similarity and functions, whereby not all members 

are osteogenic13. Besides BMP-3 and BMP-13, which act either as a BMP negative regulator 

or as an inhibitor of bone formation, all BMPs are mainly involved in bone and cartilage 

formation22. In Table 3.1 the most investigated and known BMPs are listed. 
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Table 3.1 Overview of BMP family members23. BMP types are listed with their alternative names and their 
functions in human body. 

BMP type Alternative 

name 

Function 

BMP-1 - Metalloprotease acting on procollagen I, II and III, 

involved in cartilage development. 

BMP-2 BMP-2a Bone and cartilage formation, key role in osteoblast 

differentiation. 

BMP-4 BMP-2b Regulation of teeth, limbs and bone formation. 

BMP-5 - Cartilage development. 

BMP-6 Vgr-1; Dvr-6 Key role in joint integrity, bone morphogenesis, 

estrogen mediation. 

BMP-7 OP-1 key role in osteoblast differentiation and in renal 

development and repair. 

BMP-8 OP-2 Involved in bone and cartilage development. 

BMP-9 GDF-2 Promoting chondrogenic differentiation of human 

multipotent mesenchymal stem cells. 

BMP-10 - Role in the trabeculation of the embryonic heart. 

 

Interestingly, BMP-1 belongs neither to the BMP family nor to the TGF-β superfamily, 

although it is called a bone morphogenetic protein. It is a metalloprotease, which is able to 

induce cartilage formation in vivo and cleave the C-terminus of procollagen I, II and III24. In 

2005, Hari Reddi suggested to change BMPs’ name to body morphogenetic proteins, 

because of their effective range, which is not limited to the bone, but plays also an important 

role in the whole body25. 

 

3.1.2 Bone/body morphogenetic protein 6 (BMP-6) 

In 1989, BMP-6 was isolated from murine embryonic cDNA library. Because of its 

homology to Xenopus Vg-1, it received the name Vgr-126. Celeste et al.27 isolated Vgr-1 from 

human and bovine bone and named it BMP-6. The successful expression of the BMP-6 

mRNA in mammals could be shown in different cell types. BMP-6 is produced by bone 
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marrow-mesenchymal (BMSC) and hematopoietic stem cells28. Furthermore, BMP-6 is a 

homodimer with the 2 monomers connected through a disulfide bond. In Figure 3.2, the 

three-dimensional structure of the BMP-6 homodimer is presented. The fact, that the protein 

consists of two monomers can be used to develop heterodimers by co-expression of two 

different recombinant BMP subunits. Valera et al.29 engineered a heterodimer consisting of 

BMP-2 and BMP-6 and showed that it was more effective than BMP-2 or BMP-6 

homodimers as an inductor of differentiation in human embryonic stem cells (ES). 

 

 
 

Figure 3.2 The three-dimensional structure of BMP-6 homodimer. BMP-6 consists of two monomers A 
(green) and B (blue). The C- and N-terminus of each BMP-6 monomer are indicated with C and N, respectively. 
Adapted and modified from Saremba et al.30 

 

SMAD proteins are a group of intracellular proteins, which are involved in cell signaling 

processes induced by extracellular growth factors of the TGF-β superfamily. The name 

SMAD originates from the homological gene of the fruit fly Drosophila melanogaster MAD 

(mother against decapentaplegic) and from the protein gene Sma (small body size) of the 

nematode Caenorhabditis elegans31.  

Ebisawa et al.32 showed that BMP-6 strongly binds to activin receptor-like kinase (ALK)-2, 

which is also known as ActR-I, as well as to type II receptors, i.e. BMP type II receptor 

(BMPR-II) and activin type II receptor (ActR-II) C2C12 cells. Additionally, a similarity 

between BMP-6 and BMP-2 is the weak bond to BMPR-IA (ALK-3). Moreover, they 

detected the binding of BMP-6 to BMPR-IB (ALK-6) in ROB-C26 cells, mesenchymal 

progenitor cell line. BMP-6 binds extracellularly, but SMAD proteins are phosphorylated 

intracellularly. 

It is known that BMP-6 induces the phosphorylation of the receptor-regulated SMADs (R-

SMAD, SMAD1, SMAD5 and SMAD8)32 by binding to ActR-II and ActR-I (Figure 3.3). 
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After phosphorylation, R-SMADs are released from the BMP receptor and form a complex 

with the common mediator SMAD (Co-SMAD, SMAD4). Nucleocytoplasmic shuttling of 

the SMAD complex activates transcription of target 28. Sieber et al.33 showed that BMPs are 

also capable to induce gene transcription independent of SMAD molecules. However, there 

are only rudimental investigations about BMP-6 induced signaling pathways beside the 

SMAD dependent pathways. Furthermore, BMP signaling is rather complex with cross-talks 

between different signaling pathways and negative feedback mechanisms34-36. 

 

 
 

Figure 3.3 Induction SMAD 1,5,8 phosphorylation by BMP-6. BMP-6 shows a high affinity to ActR-I and 
ActR-II receptors, which activates SMAD phosphorylation. SMAD complex acts as transcription factor. 
Adapted and modified from Vukicevic et al.28 

 

Induction of osteogenic differentiation 

Osteogenic differentiation is the process of bone development, which is known to be induced 

by BMPs37-39. C2C12 is an immortalized mouse myoblastoma cell line and a standard model 

system used to study the differentiation of myoblasts, osteoblasts, and myogenesis.  
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Figure 3.4 BMP-2 SMAD and non-SMAD signaling pathway. A) Signaling via BMP-induced signaling 
complex (BISC). The non-SMAD pathway is activated by BPM-2 binding to its high affinity type I receptor 
(BRI). Then Type II receptor (BRII) is recruiting into the complex of BMP-2 and BRI. B) Signaling via 
preformed complex (PFC). The SMAD pathway is activated by binding of BMP-2 to a PFC of type I and type 
II receptor. Adapted and modified from Sieber et al.33  
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C2C12 cells are undifferentiated mesenchymal cells which differentiate into osteoblasts 

upon stimulation by BMPs. Ebisawa et al.32 published that recombinant human BMP-6 

induces alkaline phosphatase (ALP) activity in C2C12 cells, which is a typical osteoblastic 

marker. ALPs are enzymes which are able to hydrolyze phosphate ester of different 

molecules, such as proteins, nucleotides and alkaloids. BMP-2 is also known to induce ALP 

activity via the non-SMAD pathway by BMP-induced signaling complex (BISC) (see 

Figure 3.4)33. It is assumed that BMP-6 induces the ALP activity in a similar way, although 

it has not been investigated so far. Moreover, the ALP activity induced by BMP-6 was 10-

fold higher than of BMP-7. Similar to BMP-239 and BMP-740, BMP-6 inhibits the myoblastic 

differentiation of C2C12 cells and induces osteoblastic differentiation. BMP-2, BMP-6 and 

BMP-9 are known to be the most potent inducers of osteoblastic differentiation in 

mesenchymal stem cells (MSCs)41-43. However, Mizrahi et al.44 showed that BMP-6 seems 

to induce bone formation in genetically modified MSCs more efficiently than BMP-2. 

Furthermore, they proposed the preferred use of BMP-6 instead of BMP-2, since BMP-2 

had been shown to cause adverse side-effects. 

 

BMP-6 effect on multiple myeloma 

The multiple myeloma is a malignant disease of the hematopoietic system which causes the 

ongoing monoclonal production of antibody-producing cells, namely plasma cells45. B-

lymphocytes normally differentiate into plasma cells after antigen contact, but the 

degenerated plasma cells produce non-functional antibodies and part of antibodies, 

respectively, which are called paraproteins. The multiple myeloma is the most common 

malignant disease of the bone and the bone marrow, respectively. Every year, 4-5 of 100000 

people at an age of 60 to 70 are affected 46. The survival rate was significantly improved by 

introduction of new medicines like Bortezomib, Lenalidomid and Thalidomid within the last 

ten years47-49. However, there is still no treatment available, which can cure the patients 

completely. Moreover, the multiple myeloma influences the bone remodeling compartments 

(BRCs) and corrupts them. In succession, the bone resorption is increased, while the bone 

regeneration is reduced50-51 (see Figure 3.5). This causes osteolytic defects in the bone, 

thereby creating a survival space (“niche”), in which the multiple myeloma cells can 

withdraw during chemotherapy treatment52. 
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Figure 3.5 Osteolytic defects caused by multiple myeloma. a) Osteoblastic bone formation (green) and 
osteoclastic bone resorption (red) are balanced in a normal system. b) By interaction with multiple myeloma 
(brown) cells, the balance is disturbed and the bone resorption is enhanced, while bone formation is decreased. 
Adapted from Seckinger et al.52 
  

Recently, Seckinger et al.53 published the cell death inducing effect of BMP-6 on multiple 

myeloma cells. They showed that BMP-6 reduced the cell viability significantly in 

concentrations higher than 0.160 µg/ml. The highest efficiency could be detected in 

concentration of 4 µg/ml. Furthermore, they could show that BMP-6 could be qualified to 

heal the osteolytic defects due to its high capacity in induction of osteogenic differentiation.  

However, the high amount of BMP-6 which is required to obtain effects in multiple myeloma 

viability makes it unattractive since the systemic treatment in such high concentration would 

likely cause uncontrolled side-reactions in the body. Moreover, the costs for such a therapy 

would be too expensive for patients’ treatment. A delivery system is required, to reduce or 

avoid side-reactions with the locally applied treatment. Additionally, it can help to reduce 

the required amount of BMP-6 in the body. 

 

3.2 Growth factor immobilization  

Growth factors are potent and promising proteins for therapeutically applications in 

regenerative medicine. Especially in replacing or repairing damaged cells, tissues and organs 

transplantations can be avoided or postponed54. To accomplish these aims, different 

approaches to immobilize growth factors had been developed stimulating tissue 

regeneration. Challenges which arise in growth factor immobilization are the requirement to 
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maintain the growth factor’s biological activity and the generation of cell-friendly 

biomaterials.  

 

3.2.1 Immobilization strategies 

There are two main strategies for immobilization: non-covalent and covalent. The non-

covalent method can be further divided into physisorbed or electrostatic interactions, such 

as growth factor’s natural affinity for biomaterial matrices and the affinity for endogenous 

extracellular matrix (ECM). An overview of the different strategies is shown in Figure 3.6. 

 

Non-covalent immobilization by engineered biomatrices 
To face the challenges mentioned above, the focus has been on the use of natural ECM-

derived materials like hyaluronan or chitosan, which offer a physiologically relevant 

environment for cells55 (see Figure 3.6 a). The fibroblast growth factor 2 (FGF-2) and the 

vascular endothelial growth factor A (VEGF-A), for example, bind to fibrin56-57. By using 

fibrin sealants as binding platform, the effect on endothelial cell proliferation and blood 

reperfusion is enhanced58. Another strategy is the direct modification of the biomaterial in 

order to increase the affinity to the growth factors. By tuning gelatin-based hydrogels to be 

more acidic or more basic, the sustained delivery of FGF-2 from negatively charged and of 

BMP-2 from positively charged gels could be shown59-60. Some growth factors bear a 

heparin-binding site, which can be used to immobilize them by using the natural affinity for 

glycosaminoglycans (GAGs) and heparin-like molecules. In this way, strong heparin growth 

factors, such as FGF-2, can be coupled with a heparin-binding domain crosslinked into fibrin 

gels61. Migliorini et al.62 recently published surfaces presenting BMP-2 through heparan 

sulfate (HS), which is a ubiquitous component of the ECM. In this method, the reducing end 

of the HS is used to immobilize BMP-2. Furthermore, the natural arrangement of HS 

proteoglycans in the ECM is mimicked. 

 



3 Introduction 

14 

 
 
Figure 3.6 Overview about different strategies for growth factor immobilization. a) By using the natural 
affinity of growth factors to exogenous biomatrices, growth factors can be non-covalently immobilized. b) The 
extracellular matrix can be used as delivery matrix through binding of growth factors via ECM binding 
domains. c) Growth factors can be covalently immobilized to biomatrices by applying chemical or enzymatic 
techniques. Adapted and modified from Mitchell et al.6 

 

Non-covalent immobilization for GF delivery via endogenous ECM components 

ECM proteins and fibers, such as collagen or fibronectin, had become a good and promising 

target for the endogenous binding and presentation of growth factors. By fusion between 

collagen-binding domains (CBD) and growth factors, it could be shown that the delivery of 

a) b)

c)
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the nerve growth factor β (NGFβ) and brain-derived neurotrophic factor (BDNF), 

respectively, by collagen scaffolds improve peripheral nerve and spinal cord regeneration, 

respectively63-64. Similarly, Hauff et al.65 showed the immobilization of biotinylated BMP-2 

to biotinylated cellular fibronectin (cFN) crosslinked by NeutrAvidin. The modification of 

growth factors allows the mimicking of physiological growth factor delivery in order to 

optimize the therapeutic effects on morphogenetic processes. 

 

Covalent immobilization strategies 
Besides the above-mentioned methods, growth factors can be coupled enzymatically to 

biomatrices containing enzymatic sequences. This allows a site-specific control of growth 

factor immobilization, which can reduce the interference with bioactive sites of the growth 

factor to a minimum. Ehrbar et al.66-67 fused a transglutaminase substrate sequence at the 

growth factor terminus to arrange a new connection to fibrin and PEG matrices.  

Due to avoid any uncontrolled diffusion of growth factors, the covalent, chemical 

immobilization onto biomaterials is the method of choice. This method of immobilization 

prevents internalization of the growth factors by cells, which prolongs their lifetime 

compared to the duration of soluble growth factors. These facts might influence the effect of 

the growth factors on cells. In literature, there are many strategies for the covalent 

immobilization of growth factors published68, e.g. using His-Tag coupling. A common 

method is to address primary amines or carboxylate groups of the growth factors as reactive 

moieties by using carbodiimides. Chiu et al.69 crosslinked VEGF-A/angiopoietin-1 to 

collagen scaffolds thus creating a bioactive material, which supports vascularization. 

Another way of covalent immobilization was published by Pohl et al.70-71, who used an 

alkanethiol linker containing an NHS (N-hydroxysuccinimide) ester group to immobilize 

BMP-2 on a homogeneous gold surface by addressing the primary amine groups of the 

protein (see Figure 3.7). To have a better control about the amount of immobilized BMP-2 

on the surface, this method was further developed by Schwab et al.72. Instead of a 

homogeneous gold surface they employed gold nanostructured glass surfaces. To prevent 

unspecific binding of the BMP-2, the space between the gold particles was passivated with 

protein repellent polyethylene glycol (PEG). This approach allowed the determination of the 

amount of the immobilized BMP-2 by knowing the interparticle distance. 
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Figure 3.7 Preparation scheme of immobilized BMP-2 on homogeneous gold surfaces. a) Glass surfaces 
are coated with a gold layer and decorated with a SAM of the MU-NHS linker. Then BMP-2 is covalently 
immobilized with the NHS ester. b) Reaction scheme of the coupling process. Adapted from Pohl et al.70 

 

Since the passivating PEG does not allow cell adhesion on the surfaces, this approach cannot 

be used for studies longer than a few hours. With this approach cells need to be stimulated 

from the top. The space between the surface and the cells harbors only a few µl of culture 

medium. Under these conditions, cells cannot survive for a long time. Therefore, the PEG 

background needs to be modified, which at the same time facilitates cell adhesion. 

 

3.2.2 Adhesive ligands 

Cell migration and adhesion are very essential processes for cells. The heterodimeric 

integrins belong to the most important family of cell adhesion receptors, which serve as 

bidirectional signaling units transducing interaction between the cell and extracellular matrix 

proteins73. These interactions lead to activation of intracellular pathways of integrin 

signaling promoting cell adhesion and migration. Intensive studies since the late 1980s have 

provided structural data revealing ligand recognition sites and biological functions74. At least 

24 subtypes create the integrin family, which can consist of a different assemble of non-

covalent association of 18 α and 8 β subunits75. Integrins control the cell polarity, survival 

and adhesion, in which force transmission from focal adhesions to ECM proteins are 

mediated, known as mechanotransduction76. In 1985, Ruoslahti and co-workers identified 

the integrin dimers αvβ3 and α5β1, which recognize the RGD sequence, a tripeptide 
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consisting of arginine, glycine and aspartic acid77. In 1984, the RGD motif was described as 

the minimal adhesive binding motif78, which means that it is the most simple molecule 

providing cell adhesion. Kessler and co-workers developed cyclic RGD (cRGD) peptides by 

cyclization, introduction of D-amino acids and structural studies in the early 1990s 79-81. This 

peptide can be used to coat surfaces in order to promote cell adhesion. Furthermore, 

Rechenmacher et al.82 described more peptides mentioning integrin αvβ3 and α5β1 selective 

ligands which can be used to generate adhesive layers on surfaces. These ligands specifically 

address β3 and β1 integrin subunits, respectively. They allow the generation of an adhesive 

background in order to promote cell adhesion. Schenk et al.83 described the modification of 

polyethylene glycol containing trimethoxy silane group and alkyne as reactive moieties. By 

applying copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), also known as click 

reaction, ligands such as cRGD and α5β1 selective ligand containing an azide group can be 

coupled to the PEG which are immobilized via the trimethoxy silane to the surfaces (see 

Figure 3.8).  

 
 
Figure 3.8 Schematic illustration of glass surfaces functionalization with PEG containing alkyne. By 
using copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), the PEG layer is functionalized with 
molecules containing azide moieties. Adapted from Schenk et al.83  
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3.2.3 Immobilization of single molecules on gold nanostructured 
surfaces 

Nanotechnology is one of the most promising techniques in the 21st century. It allows for 

usage systems, which are more than three orders of magnitude smaller than the recent 

components of the microelectronics. As mentioned before, the focus of interest has been on 

the immobilization of active proteins like growth factors84, whereas physisorption release 

techniques do not allow to continuously stimulate and control the amount of immobilized 

protein, whereas block copolymer micellar nanolithography (BCMN) enables the control of 

the immobilized protein’s density. The BCMN was established by Prof. Spatz and co-

workers and offers an ideal platform for the investigations of interactions between cells and 

specific ligands or proteins in defined orders and spacings. This technique allows the 

production of nanostructured surfaces in a quasi-hexagonal array. The particle size can be 

varied between 1 - 15 nm and the inter particle spacing adjusted between 30 – 250 nm85-86. 

It is also possible to prepare a gradient spacing. Block copolymers, which consist of a 

hydrophobic polystyrene (PS) and a hydrophobic poly(2-vinylpyridine) (P2VP) unit (see 

Figure 3.9), are used for self-assembling micelles in an apolar solvent. At a concentration 

above the critical micelle concentration (CMC) micelle is reversed formed with the 

hydrophilic P2VP forming the core of the micelle. These micelles are loaded with a metal 

salt such as HAuCl4. 

 

 
 

Figure 3.9 Structure of diblock copolymer. It consists of a non-polar polystyrene block (PS) and a polar 
poly(2-vinyl pyridine) block (P2VP).  
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To coat the micelles on the surfaces, either dip coating or spin coating (see section 5.1.2.3) 

techniques can be applied. Dip coating allows a uniform coverage of various kinds of solid 

substrates over large areas with high accuracy87. Cleaned glass substrates are immersed into 

the micelle solution as described in the scheme (Figure 3.10) and retracted with constant 

velocity. During this step called dip-coating, polymer chains bind to the surface forming a 

micellar monolayer on the surface (see Figure 3.10 a) Another method to form a micellar 

monolayer on the surface is spin-coating. It is described in section 5.1.2.3. Subsequently, the 

substrates are treated with plasma in order to remove all polymers and reduce the gold salt 

to elementary gold forming a quasi-hexagonal array of gold nanoparticle (see Figure 3.10 

b). The resulting nanostructured surfaces can be visualized by using scanning electron 

microscopy (SEM, Figure 3.10 c). 

 

 
 
Figure 3.10 Preparation of nanostructured surfaces by BCMN. a) By immersing glass substrates into 
micellar solution, the block copolymers adsorb on the hydrophilic glass surface. Subsequently, the substrates 
are retracted at constant speed and the solvent evaporates leading to a quasi-hexagonal arrangement of the gold 
nanoparticles on the surface. b) By plasma treatment, the polymer matrix is removed and the gold ions are 
reduced to elementary gold. c) Gold nanostructured surface analyzed by SEM. The average interparticle 
distance is 100 nm (scale bar = 200 nm). Adapted from Baha-Schwab88. 

 

Several parameters influence the spacing of the gold particles. First, the spacing depends on 

the molecular weight of the diblock copolymers corresponding to their length, especially the 

size of the hydrophobic PS unit85, 89-90. Other parameters, which influence the spacing, are 

the concentration of the polymer solution as well as the dipping speed86-87, 91-92. Besides the 

spacing, the size of the gold nanoparticles can be varied from 1 – 15 nm by adjusting the 
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loading of the micellar core with metal salt93. This makes the BCMN favorable to prepare 

precisely tunable gold nanopatterns on surfaces. By controlling the distance between the 

nanoparticles, also the concentration of biomolecules or peptides, which can be immobilized 

using the particles as anchor points, can be varied94-95.  

In this work, BCMN was applied to generate controlled and covalent immobilization of 

growth factors to study their effect on intracellular signal transduction. 80 % of the gold 

nanoparticles carry exactly one protein, while 20 % carry none or two proteins. Based on 

that, the required amount was calculated and reduced to a minimum. Furthermore, it enables 

the long-term investigation of cell stimulation by growth factors. By covalent coating the 

area between the nanoparticles with protein-repellent PEG, unspecific protein adsorption is 

prevented, which facilitates the immobilization of molecules to the gold nanoparticles and 

avoids removing of the nanoparticles. Furthermore, the PEG background can be modified to 

serve as an additional anchor point for other molecules. This enables the co-immobilization 

of cell adhesive ligands between the gold nanoparticles carrying growth factors. This 

approach allows to mimic the natural cell micromillieu under controlled conditions.  
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4 Motivation 
In the last decades, growth factors have been promising candidates for therapeutical 

treatment in regenerative medicine. However, a systemic application is not practicable, since 

uncontrolled diffusion causes a wide range of side-effects. Therefore, the goal of this study 

is to engineer dual functionalized surfaces presenting both, covalently immobilized BMP-6 

and adhesive ligands using thiol-gold interaction and click chemistry for coupling to the 

PEG passivation layer, respectively. This approach was used to investigate the short- and 

long-term effect of the anchored growth factor and the adhesive ligands on C2C12 

differentiation. So far, the chemical covalent immobilization of BMP-6 has not been 

published. However, in line with the approach presented by Pohl et al.70 and Schwab et al.72 

who studied BMP-2 immobilization the amount and the surface density of the immobilized 

protein was controlled. BMP-6 seems to induce bone formation in genetically modified 

MSCs more efficiently than BMP-2. Furthermore, BMP-2 has been shown to cause adverse 

side-effects. This makes BMP-6 to the preferred choice above BMP-2. 

To prove the covalent immobilization of BMP-6, gold surfaces coated with a bifunctional 

thiol-NHS linker and subsequently coupled with BMP-6 by addressing their primary amine 

groups to the surface were used. Block copolymer micellar nanolithography (BCMN) allows 

to fabricate gold nanostructured surfaces hexagonally arranged. These gold particles can be 

utilized to serve as anchor-points for the MU-NHS linker, which allows to determine the 

density and amount of immobilized growth factor by measuring the interparticle distance. 

Furthermore, the passivation of the interparticle space with protein-repellent PEG prevents 

the unspecific binding of BMP-6 to the glass surface. By modification of the PEG layer with 

alkyne moieties, it can be functionalized with cell adhesive ligands bearing an azide group, 

such as RGD and α5β1 integrin selective ligands. This allows the long-term stimulation by 

immobilized BMP-6, since cells are able to adhere to the substrate’s surface. Otherwise cells 

would die. 

In this work, the approach explained above is developed to investigate and characterize the 

ability of immobilized BMP-6 to trigger short-term signaling and to induce osteogenic 

differentiation of C2C12 by long-term stimulation. Moreover, the minimal ligand density of 

iBMP-6 necessary to trigger cell signaling is determined. Finally, the developed set-up shall 

be tested in multiple myeloma cell lines by stimulating with immobilized BMP-6.     
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5 Material and Methods 

5.1 Surface preparation 

5.1.1 Preparation of homogenously coated gold surfaces 

Glass coverslips (H 875 (24 x 24) mm2, H 873 (20 x 20) mm2, Carl Roth & Co GmbH, 

Karlsruhe) were precleaned with precision wipes (Kimberly-Clark Professionals, Koblenz-

Rheinhafen), placed in custom-made Teflon racks and sonicated (Sonorex Super RK 102H, 

BANDELIN electronic GmbH & Co. KG, Berlin) for 15 min in a 1:1 mixture of ethylacetate 

(p.a., Carl Roth) and methanol (p.a. Carl Roth). After rinsing with methanol and drying in a 

nitrogen flow, the clean surfaces were successively coated with a 15 nm chromium layer 

(120 mA, 1.3 x 10-2 mbar, 40 s) and a 50 nm gold layer (60 mA, 5.0 x 10-2 mbar, 60 s) by 

using a MED 020 sputter coating system (BAL-TEC AG, Witten). 

 

5.1.2 Preparation of gold nanostructured surfaces 

5.1.2.1 Activation and cleaning of glass substrates 

Piranha solution, a 3:1 mixture of concentrated sulfuric acid (95 %, Sigma-Aldrich, St. 

Loius, USA) and hydrogen peroxide (30 %, p.a., AppliChem), was used to clean the 

coverslips. The peroxymonosulfuric acid (H2SO5, Caro’s acid) removes organic 

contaminations and activates the glass surface for the passivation with PEG2000 (see section 

5.1.4.2). The substrates were washed with MilliQ water (18.2 MΩ x cm) and dried under 

nitrogen flow. Surfaces were further processed immediately. 

 

5.1.2.2 Preparation of micellar gold solution 

The poly(styrene-b-2-vinylpyridine) diblock copolymer (PS-b-P2VP, Polymer Source Inc., 

Montreal, Canada) (Table 5.1) was dissolved in the appropriate volume of toluene (p.a., 

Merck, Darmstadt) in a glass flask, which was cleaned according to section 5.1.1. The 

solution was stirred at RT for 24 h. Depending on the desired loading rate (L) < 1, which 

describes the molar ratio of P2VP-units and the metal salt HAuCl4, a stoichiometric amount 
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of HAuCl4 trihydrate (Sigma-Aldrich, St. Louis, USA) was added to the prepared solution. 

The amount of HAuCl4 required is calculated by equation 5.1: 

 

𝑚𝑚(𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶𝐶𝐶�) =
𝑚𝑚 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑀𝑀 𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶𝐶𝐶� 	 ∙ 3	𝐻𝐻�𝑂𝑂 ∙ 𝑃𝑃2𝑉𝑉𝑃𝑃����� 	 ∙ 𝐿𝐿

𝑀𝑀(PS	 + 	P2VP)  
5.1 

 
Table 5.1 Overview of the characteristics of the polymers used in this work, specified by their chain 
length. PS: polystyrene; P2VP: poly-2-vinylpyridine 

Polymer MPS-block 

[g/mol-1] 

MP2VP-block 

[g/mol] 

PSunits P2VPunits 

PS(30000)-b-P2VP(12500) 30000 12500 288 119 

PS(110000)-b-P2VP(52000) 110000 52000 1056 495 

PS(190000)-b-P2VP(55000) 190000 55000 1824 523 

 

The molecular weight of HAuCl4 depends on the amount of crystal water. In this work 

HAuCl4 trihydrate (M(HAuCl4) = 393.83 g/mol) was utilized. The molecular weight 

M(Polymer) and the amount of P2VPunits of the used polymers are listed in Table 5.1. The 

mixture was stirred for 24 h until all HAuCl4 was dissolved. The micellar solution was 

purified through a polytetrafluoroethylene (PTFE) filter with a pore size of 0.22 µm 

(Millipore, Eschborn) to remove polymer aggregates and undissolved metal salt residues. 

The gold solution was stored under nitrogen atmosphere and light protected. A list of the 

used micellar polymer/gold solution is given in Table 5.2. 

 
Table 5.2 Polymers used for the production of nanopatterns. M: molecular weight of the diblock 
copolymer, c: concentration of the polymer, L: loading or molar ratio between HAuCl4 and PS-b-P2VP 

Polymer M [g/mol] c [mg/l] L 

PS(30000)-b-P2VP(12500) 42500 5 0.5 

PS(110000)-b-P2VP(52000) 162000 5 0.5 

PS(190000)-b-P2VP(55000) 245000 3 0.5 
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5.1.2.3 Spin coating 

The cleaned glass substrates were placed in a ws-650 mz-23 npp spin coater system (Laurell, 

North Wales, USA). Then a specific volume (substrate-size depended: (20 x 20) mm2: 20 µl; 

(24 x 24) mm2: 25 µl) of the gold polymer solution was applied in the center of the spinning 

substrate (9000 rpm). The fluid was spread by the centrifugal force. After evaporation of the 

solvent, substrates were exposed for 45 min to an isotropic microwave-induced hydrogen 

plasma (PVA TePla AG, Wettenberg) to reduce the gold ions to metallic gold and burn off 

the polymer. For this purpose, either a TePla PS 210 (𝑝𝑝𝐻𝐻2 = 0.3 mbar, 600 W) or a TePla100-

E (𝑝𝑝𝐻𝐻2 = 0.4 mbar, 150 W) was used. In the last step, the gold nanoparticle substrates were 

tempered at 300 °C for 72 h by using a drying oven (Binder GmbH, Tuttlingen). Two 

samples of each batch (n = 20) were analyzed by scanning electron microscope (SEM) at 

different positions on the samples. The obtained images were further analyzed by using a 

plug-in for ImageJ (Research Services Branch, Image Analysis Software, NIH, USA) written 

by Dr. Philippe Girard (Institute Jacques Monod, Paris), based on an algorithm developed 

by Kansal et al. In order to ensure a good quality, the order parameter f and the average 

distance between neighboring gold nanoparticles were determined.  

 

5.1.2.4 Dip coating 

Dip coating offers another possibility to decorate glass substrates with a hexagonally ordered 

micellar monolayer. Glass coverslips were retracted from gold polymer solutions (see Table 

5.2) with constant velocity by using a custom-made dip-coating device in order to form a 

micellar monolayer. After evaporation of toluene, substrates were plasma treated as 

described in section 5.1.2.3. Substrates prepared with this method consist of a dipping edge. 

 

5.1.3 Functionalization of homogeneous gold surfaces 

5.1.3.1 Immobilization of heterobifunctional linkers 

In order to immobilize BMP-6 to homogeneous gold surfaces, the heterobifunctional linker 

11-mercaptoundecanoyl-N-hydroxysuccinimide ester (MU-NHS, ProChimia Surfaces, 

Poland) was bound to the gold surface through its thiol group. The MU-NHS was dissolved 
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in DMSO (p.a., Carl Roth) to obtain a final concentration of 1 mM. Substrates with 

homogeneous gold surface were incubated in the solution at RT for 4 h. After removing 

unreacted linker from the surfaces by sonicating in DMSO for 2 min, the substrates were 

rinsed with DMSO and methanol (p.a., Carl Roth) and finally dried in nitrogen stream. 

 

5.1.3.2 Surface immobilization of BMP-6 

The N-hydroxysuccinimide ester group of the linker reacts with free primary amines (Lysine 

residues and N-terminus) of the BMP-6 protein under physiological to slightly alkaline 

conditions (pH 7.5 – 8.5) to obtain a stable amide bond. Lyophilized, glycosylated and 

carrier-free recombinant human BMP-6 expressed in mammalian cells (Genera Research 

d.o.o., Crotia) was dissolved in sterile 4 mM HCl to obtain a stock solution with a 

concentration of 100 µg/ml. Aliquots were stored at -20 °C. The stock solution was diluted 

in PBS (Gibco, Life Technologies GmbH, Darmstadt) containing 1 M NaCl (Sigma-Aldrich, 

St. Lois, USA) in order to obtain a solution with a final concentration of 1 µg/ml (approx. 

33 nM). The BMP-6 solution was adjusted to pH 8.5 immediately prior to use by adjusting 

with 10 mM KOH (Carl Roth).  

 

 

 
Figure 5.1 Immobilization of BMP-6 to homogenous gold surfaces. The heterobifunctional MU-NHS linker 
binds through its thiol group to gold surfaces. Afterwards BMP-6 is covalently coupled to the NHS ester by 
free primary amines.  
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In custom-made poly(dimethyl siloxane) (PDMS, Sylgard 184, silicone elastomer kit, Dow 

Corning, Midland, USA) chambers MU-NHS-functionalized surfaces were incubated with 

the BMP-6 working solution overnight at 4°C. After sonication in PBS containing 1 M NaCl 

for 1 min, the substrates were washed three times in PBS / 1 M NaCl to remove unbound 

protein. 

The surface concentration of the immobilized BMP-6 (Γ= amount of BMP-6 on the surface 

/ surface area) was calculated by the equation 5.2: 

 

𝛤𝛤(𝐵𝐵𝐵𝐵𝐵𝐵 − 6) = 	
𝑀𝑀	 𝐵𝐵𝑀𝑀𝑀𝑀6

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	 𝐵𝐵𝐵𝐵𝐵𝐵6 	×	𝑁𝑁�
= 	

30000 𝑔𝑔
𝑚𝑚𝑚𝑚𝑚𝑚

(8	𝑛𝑛𝑛𝑛)�	×	 34 	×	6.022	×	10
��	𝑚𝑚𝑚𝑚𝑚𝑚��

	≈ 80	𝑛𝑛𝑛𝑛/𝑐𝑐𝑐𝑐  

5.2 

 

The following parameters were assumed: 

I) The diameter of a BMP-6 dimer is approximately 8 nm.  

II) The molecular weight of a dimer is 30000 g/mol.  

III) The binding of BMP-6 by the MU-NHS linker to the surface follows a hexagonal 

distribution70. 

 

5.1.4 Functionalization of gold nanostructured glass surfaces 

5.1.4.1 Synthesis of PEG2000 and PEG3000-alkyne 

α-Methoxy-ω-amino poly(ethylene glycol) (Iris Biotech GmbH, Germany) (1 g, 0.5 mmol, 

MW 2160 g/mol) and α-amino-ω-propargylacetamido poly(ethylene glycol) (1.66 g, 

0.5 mmol, MW 3317 g/mol), respectively, were dissolved in dry DMF (4 ml, p. a., Carl 

Roth) under argon atmosphere and stirred for 10 min. 1.1 equivalents of 3-(triethoxysilyl) 

propylisocyanate (95 %, Sigma Aldrich) were added and the mixture was stirred at RT for 

16 h. The reaction was cooled down to 0 °C for 10 min and a 10-fold excess of ice-cold 

diethyl ether (Sigma-Aldrich) was added. After 1 h the suspension was filtrated and the 

precipitate was washed with cold ether. The purified product was dried under reduced 

pressure for 24 h to yield a white powder. Synthesis was performed in cooperation with F. 

Schenk (Physical Chemical Institute, Heidelberg University) and the characterization of the 

product is described in Schenk et al.83 in detail (Figure 5.2). 
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Figure 5.2 Synthesis of PEG2000 (A) and PEG3000-alkyne (B). Condensation of α-methoxy-ω-amino 
poly(ethylene glycol) (m = 47) and 3-(triethoxysilyl) propylisocyanate (A). Condensation of α-amino-ω-
propargylacetamido poly(ethylene glycol) (n = 72) and 3-(triethoxysilyl) propylisocyanate (B). 

 

5.1.4.2 Covalent immobilization of PEG2000 

The space between gold nanoparticles was passivated with a protein repellent PEG2000 

monolayer in order to avoid non-specific protein and cell interactions with glass. The 

triethoxysilane groups of PEG2000 react with the silicon dioxide covalently coupled to the 

surface (Figure 5.3).  

Nanopatterned substrates were activated in reactive oxyden plasma (𝑝𝑝𝑂𝑂2 = 0.4 mbar, 150 W) 

for 10 min. Afterwards the surfaces were immersed in a solution of 250 µM PEG2000 in dry 

toluene (p.a., Merck) and 0.01 equivalents of triethylamine (≥99.5 %, Sigma Aldrich) at 

80 °C for 14 h under argon atmosphere. The samples were sonicated in ethylacetate (p. a.) 

and methanol (p. a.) for 5 min each. The substrates were rinsed with methanol and dried in 

A 

B 
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a stream of nitrogen to be immediately processed. The covalent coupling of BMP-6 was 

performed as described in section 5.1.3. 

 

 
 

Figure 5.3 Passivation of gold nanostructered glass substrates. After activation of glass surfaces in 
hydrogen plasma, PEG2000 was covalently coupled to the substrate. 

 
Table 5.3 Surface density of immobilized BMP-6. Gold NP = gold nanoparticle 

Inter particle 

distance 

d [nm] 

No. of gold 

NP per µm2 

 

No. of gold NP 

with iBMP-6 per 

µm2 

Density of 

BMP-6 on the 

surface [ng/cm2] 

Amount of 

BMP-6 per 

sample [ng] 

32 ± 8 803 ± 54 723 3.3 19 

63 ± 11 281 ± 17 253 1.1 6 

107 ± 21 51 ± 12 46 0.2 1 

 

The inter particle distance between the Au nanoparticles was used to determine the average 

number of gold nanoparticles per µm2 to calculate the amount of immobilized BMP-6 (Table 

5.3). The analysis of the SEM images served as the basis of the calculation (see 
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section 6.2.2.1). These took into account the order parameter and not the theoretical values, 

because this would assume a perfectly hexagonal order, what is impossible. Assuming a 

coverage of 90 % of the gold nanoparticles harbor at least one BMP-6 dimer, it was 

determined that the number of gold nanoparticles per µm2 is equal to the number of iBMP-

6.  

These assumptions based on AFM measurements on passivated gold nanostructured 

substrates with covalently immobilized BMP-2 on the nanoparticles. Measurements and 

determination of the nanoparticle-BMP-2 binding ratio were performed by Dr. Theresa 

Pohl96. 

 

5.1.5 Dual functionalization of gold nanopatterned glass surfaces 

The dual functionalization is an improved development of the gold nanostructured 

surfaces83. This allows the independent immobilization of a second single molecule on the 

surface. The space between the gold nanoparticles was coated with a PEG2000 and 

PEG3000-alkyne mixture. This enables to immobilize the second molecule through the 

copper(I)-actalyzed azide alkyne cycloaddtion (CuAAC), also known as the click reaction. 

K. Barry Sharpless introduced this term in 200197, naming a decisive development of a set 

of highly reliable and selective reactions, which allow for the covalent bonds between 

molecules having different functional groups. 

 

5.1.5.1 Passivation with PEG2000 and PEG3000-alkyne 

Nanopatterned substrates were activated in reactive oxygen plasma (𝑝𝑝𝑂𝑂2 = 0.4 mbar, 150 W) 

for 10 min. Afterwards the surfaces were immersed in a mixture of 250 µM PEG2000 and 

2.50 µM PEG3000-alkyne in dry toluene (p.a., Merck) and 0.01 equivalents of triethylamine 

(≥99.5 %, Sigma Aldrich) at 80 °C for 14 h under argon atmosphere (Figure 5.4). The 

samples were sonicated in ethylacetate (p. a., Merck) and methanol (p. a., Sigma Aldrich) 

for 5 min each. The substrates were rinsed with methanol and dried in a stream of nitrogen 

to be processed immediately. 
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Figure 5.4 Passivation and functionalization of gold nanostructured glass substrates. After activation of 
glass surfaces in oxygen plasma, PEG2000 and PEG3000-alkyne were covalently bound to the substrate 
surface. Adapted and modified from Martin et al.98 

 

5.1.5.2 Coupling of peptides by CuAAC 

The copper(I)-catalyzed azide-alkyne cycloaddition can be performed at RT and in aqueous 

solvents. Furthermore, the wide pH range from 4 – 12, the enormous turnover rate (107 – 108) 

compared to the non-catalyzed click reaction and the tolerance of a wide spectra of 

functional groups make the CuAAc to one of the most favorable reactions. Sodium ascorbate 

reduces the Cu(II) species to the active Cu(I) catalyst. 

Click reaction was performed according to Schenk et al.83. Glass substrates passivated with 

PEG3000-alkyne (section 5.1.5.1) were incubated with 50 µl of a freshly prepared reaction 

solution containing 100 mM L-ascorbic acid, 100 mM Tris HCl (pH 8.5), 0.15 mM azide-
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containing molecule and 1 mM CuSO4 in a humidity chamber at RT for 2 h. Samples were 

washed three times with MilliQ water, dried in a stream of nitrogen and immediately 

processed (Figure 5.5).  

 

 
 
Figure 5.5 Functionalization of PEG passivated background by introduction of azide-containing 
peptides through azide-alkyne cycloaddition reaction. 

 

In this work, two different adhesion molecules were coupled to the PEG3000-alkynethe by 

their azide moieties. The α5β1-integrin-selective peptidomemetic (Figure 5.6 A) is an 

artificial ligand, which binds strongly to integrin α5β1 resulting in cell adhesion, that is 

selectively mediated by this specific integrin heterodimer82. The molecule was kindly 

provided by Prof. Dr. Horst Kessler (TU Munich). The tripeptide motif RGD, which is 

present in many ECM proteins, is known to induce cell adhesion99-102. The cyclic peptide 

c(RGDfE)K(N3) (cRGD-azide) (PSL Peptide Specialty Laboratories GmbH, Heidelberg) 

contains this motif and serves as a ligand for several integrins (Figure 5.6 B). 
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A           B 

    
 

Figure 5.6 Chemical structure of α5β1-integrin-selective peptidomimetic (A) and cyclic RGD (B). 
Functionalization of surfaces with the peptidomimetic (A) and cyclic RGD (B) results in cell adhesion, 
whereby cell adhesion, induced by A, is selectively mediated by integrin α5β1.  

 

5.1.6 Preparation and functionalization of gold nanostructured 
PEG-DA hydrogels 

5.1.6.1  Synthesis of polyethylene glycol diacrylate (PEG10000-DA) 

In this work polyethylene glycol-diacrylate with a molecular weight of 10000 g/mol was 

used and synthesized according to Elbert et al.103 with the technical support of Radka Koelz 

(Max-Planck Institute for Intelligent Systems, Stuttgart) (Figure 5.7). PEG10000 (50 g, 

5 mmol; Iris Biotech GmbH, Germany) was dissolved in dichloromethane (125 ml, Sigma 

Aldrich) and toluene (75 ml, Merck) under nitrogen atmosphere. Triethylamine (1.4 ml, 

10 mmol, Sigma Aldrich) and acryloyl chloride (1.25 ml, 15 mmol, Sigma Aldrich) were 

added and the reaction mixture was stirred at RT for 16 h. The raw product was filtered 
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through Al2O3 (Roth). K2CO3 (12.5 g, 90.5 mmol, Roth) was added and the solution was 

stirred at RT for 1.5 h. The mixture was filtered again through Al2O3 and the solvent was 

removed under reduced pressure. The residue was dissolved in diethyl ether (400 ml, Roth) 

while stirring. The suspension was filtered and washed with diethyl ether. The PEG10000-

DA was dried under vacuum. 

 

 
 

Figure 5.7 PEG-DA synthesis. Condensation of PEG10000 and acryloyl chlorid.  
 

5.1.6.2 Preparation of gold nanostructured PEG-DA hydrogels 

To optimize the handling during the experiments, the gold nanostructured hydrogels were 

prepared as glass-supported gels. For this, glass substrates were cleaned as described in 

section 5.1.2.1 and activated in reactive oxygen plasma (𝑝𝑝𝑂𝑂2 = 0.4 mbar, 150 W) for 10 min. 

Followings, the substrates were placed in a desiccator together with 1 ml (3-

aminopropyl)triethoxysilane (APTES, Alfa Aesar) under vacuum. At the following day, the 

functionalized surfaces were removed from of the silane atmosphere. After the unbound 

APTES volatilized the substrates were used for the copolymerization to bind the hydrogels. 

The gold nanostructured glass substrates (section 5.1.2) were incubated in 2 mM solution of 

N,N-bis(acryloyl)-cystamine (Alfa Aesar, Karlsruhe) in pure ethanol at RT for 1 h. 

Afterwards unbound linker was removed by washing with pure methanol and substrates were 

dried under nitrogen stream. Figure 5.8 shows the procedure of the hydrogel synthesis. 
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Figure 5.8 Preparation of gold nanostructured hydrogels bound to a glass surface. (A) The gold 
nanoparticles, which orientated in a quasi-hexagonal structure on the glass surface, were transferred to the 
hydrogel during the polymerization process by using (N,N-bis(acryloyl)cystamine) as crosslinker. (B) The 
glass substrate was functionalized with (3-aminopropyl)triethoxysilane after cleaning and activating. (C) The 
PEG-DA-solution, containing APS and TEMED, was pipetted onto the APTES functionalized glass substrate 
and covered by in (A) prepared surfaces. Since the polymerization started immediately after addition of APS 
and TEMED, the embedding needed to be done quickly. After 30 min in darkness, the substrate was placed in 
pure water. Here, the glass coverslip on top started detaching, induced by the swelling process of the hydrogel, 
while the gold nanoparticles remained attached to the hydrogel. Thus, the gold structure was transferred to the 
hydrogel surface, which was bound to the lower coverslip. 

 

The PEG-DA (MW : 10000 g/mol) was dissolved in degassed water to obtain a final 

concentration of 150 mg/ml and stirred at RT for 30 min. Afterwards, a 10 % (w/v) solution 

of the polymerization initiator ammonium persulfate (APS) in degassed water and the 

polymerization catalyst tetramethylethylenediamine (TEMED) were added to the PEG 

mixture. APS was used in a concentration of 0.35 µl/mg PEG-DA and TEMED was used in 

a concentration of 0.05 µl/mg PEG-DA. This PEG-initiator solution was embedded between 

the gold nanostructured surface, functionalized with N,N-bis(acryloyl)cystamine linker, and 

the activated glass substrates containing APTES. By adding APS and TEMED the cross-

polymerization between the unsaturated acrylate groups of each linker and the PEG solution 

was initiated. This results in chemical bonding of the hydrogel to the glass substrate and the 

transfer of the gold nanoparticle. The samples were covered with aluminum foil at RT for 

30 min. The preparation was done in a custom-made Teflon™ form of 25 mm x 25 mm. The 

size of the synthesized hydrogels is determined by the used coverslips (24 mm x 24 mm). 
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The substrates were placed in either pure water or sterile PBS for 48 h in order to allows 

swelling to equilibrium. They were stored in the dark at 4 °C. In Figure 5.9, the mechanism 

of chain propagation during the cross-polymerization is shown. In this way, the gold 

nanoparticles are coupled covalently to the hydrogel surface and the hydrogel is tethered on 

the glass coverslip.  

 

A             B 

 
 
Figure 5.9 Mechanism of the cross polymerization. (A) Transfer of the gold nanoparticles by crosslinking 
of PEG-DA and the N,N-bis(acryloyl)cystamine linker. (B) Binding of the hydrogels to the glass substrates. 
The (3-aminopropyl)triethoxysilane, bound to the glass surface, reacts in a radical reaction with the 
polymerized PEG-DA. 

 

The MU-NHS was dissolved in DMSO to obtain a final concentration of 100 mM. Then, 

this solution was diluted with water to a final concentration of 1 mM. The hydrogels with 

gold nanostructured surface were incubated in the diluted solution at RT for 4 h. After 

removing unreacted linker from the surfaces by sonicating in water for 2 min, the substrates 
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were rinsed with PBS. The covalent immobilization of BMP-6 was performed as described 

in section 5.1.3.2. 

 

5.1.6.3 Generating an adhesive background on PEG-DA hydrogels 

In order to induce cell adherence to hydrogels, different methods were used to generate an 

adhesive background on gold nanostructured PEG-DA hydrogels. 

 

5.1.6.3.1 PLL coating 

After BMP-6 immobilization, gels were incubated with a 0.1 mg/ml solution of Poly-L-

lysine–FITC labeled (MW ~ 15000 – 30000, Sigma Aldrich) in MilliQ water at RT for 1 h. 

Before usage, the substrates were washed with MilliQ water three times on a shaker for 

10 min. 

 

5.1.6.3.2 Incorporation of cyclic peptide c(RGDfE)K(N3) into hydrogels 

To incorporate cRGD-azide into the hydrogel, cRGD was added to the PEG-DA polymer 

solution (section 5.1.6.2) in three different concentrations (1.5 mM, 0.15 mM and 

0.015 mM). PEG-DA and cRGD were mixed before adding APS and TEMED. The 

polymerization was performed according to section 5.1.6.2. 

  

5.2 Surface characterization 

5.2.1 Characterization of functionalized substrates 

5.2.1.1 Quartz crystal microbalance with dissipation (QCM-D) 

Fundamentals: 

The principles of a QCM-D are based on the inverse piezoelectric effect. An electric 

potential is generated in dielectric crystals with permanent dipoles and symmetric 

distribution of charges, if the charges are moved by mechanical stress. This effect can be 

observed in the opposite direction as well. By applying an external voltage, a deformation 

of the crystal structure is induced. By using alternating current voltage, the crystal starts 

oscillating. If the excitation frequency matches with the resonance frequency f0, it results in 
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resonance. After turning off the alternating current voltage, the crystal continues to vibrate 

mechanically. This oscillation can be quantified by measuring the reducing electrical field. 

The decrease of the damped oscillation’s energy compared to the total energy is called 

dissipation (D). In equation 5.3, the resulting oscillation is described.  

 
𝐴𝐴 𝑡𝑡 = 	𝐴𝐴� exp −𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 sin	(2𝜋𝜋𝜋𝜋𝜋𝜋 + 𝜃𝜃) 

5.3 

Here, A0 is the start amplitude of vibration, f is the frequency and θ is the phase angle of f. 

Considering the dissipation conclusion about the properties of the adsorbed masses can be 

made. Soft and inert masses cause higher dissipation than rigid masses. In case of an elastic 

and soft adsorbate, the crystal slows down faster.  

 

A quartz crystal can be used as mass sensor, since the oscillation frequency is decreased by 

coating with either a rigid or a soft and elastic mass. Besides the basic oscillation, the odd 

overtones (n=1, 3, 5,…13) are able to induce resonance vibration. The relation between the 

frequency modulation and the adsorbed mass is given by the Sauerbrey equation 5.4104. 

 

                                                                ∆𝑚𝑚 = 	− ��	��
����

×	∆�
�
= 	−𝐶𝐶	 ∆�

�
 

5.4 

 

The mass sensitivity constant C summarizes ∆m = mass difference, ∆fn = frequency 

difference and the specific variables of the quartz, ∆	𝜌𝜌 = quartz density (2.65 ng × cm-2), υq = 

sound velocity in the crystal (3340 m × s-1). The sensor of the E4 sensor system has a value 

of 17.7 ng × cm-2Hz for the mass sensitivity constant C in liquid. To apply the Sauerbrey 

equation, the following conditions for the adsorbed masses need to be fulfilled: a) the mass 

must be rigid, b) the mass must not shift, c) the mass must be homogeneously distributed on 

the crystal and d) the mass must be small compared to the mass of the crystal. Therefore, 

deviations will appear in measurements of soft masses. To avoid these variations, there are 

different measuring methods like surface plasmon resonance (SPR)105, reflectometry106 and 

ellipsometry107. These methods can only be used for the analysis of dry masses, whereas in 

QCM-D measurements, only hydrated masses are measured. Since the experiments in this 

work were performed in liquid, the QCM-D was the method of choice. 
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The formation of a self-assembled monolayer (SAM) of MU-NHS linker on an Au surface 

and the subsequent immobilization of BMP-6 were observed by using a quartz crystal 

microbalance. The measurements were performed with the E4 sensor system from Q-Sense 

(Västra Frölunda, Sweden) in an open module at RT and the software QSoft401 (version 

1.4.2). The analysis was done with QTools (version 2) 

 

5.2.1.2 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy is a surface-sensitive, established method to analyze the 

chemical composition of solid substances and determine nondestructively their surfaces, 

respectively. Furthermore, it allows identification and quantification of chemical elements 

and their chemical environment (oxidation state) with a depth of max. 10 nm as well as 

information about the oxidation levels and binding states can be obtained. XPS belongs to 

the group of photoemission spectroscopy (PES) methods. PES in general and XPS in 

particular are based on the physical principle of Einstein’s photoelectric effect. By 

irradiation of a surface with electromagnetic radiation, which has an energy h𝜈𝜈 higher than 

the work of emission Φ of the sample, the difference between the vacuum energy Evac and 

the Fermi energy EF, electrons are excited from occupied ground states to unoccupied, 

unbound end states of the sample (Figure 5.10)108. This means, that electrons are released 

from the sample, where their speed can be measured. The kinetic energy Ekin of an irradiated 

electron can be described by equation 5.5: 

 

                                                                        𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 = ℎ𝜐𝜐 − 	𝐸𝐸𝐹𝐹 − 	Φ  
5.5 

 

XPS examines emissions of low-energy electrons in the range of 20 – 2000 eV. Aluminum 

(1486.7 eV) and magnesium (1253.6 eV) are typical X-ray sources. The binding energy EB 

of a core electron in a solid refers to the Fermi energy EF. Therefore, EB can be determined 

by measuring Ekin and using equation 5.5. This leads to peak position of the referring 

chemical element109. The peak position can be shifted up to 10 eV caused by the chemical 

environment and the oxidation state, respectively. Core electrons don’t have high possibility 

to scatter inelastically. For this reason, the kinetic energy of electrons, which scatter 
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inelastically, cannot be used for determination of binding energy and appear only in the 

background of the spectra108, 110. 

To determine the time, in which the NHS ester is stable in aqueous solvent, three conditions 

were chosen: 1st surfaces coated with homogenous gold were decorated with MU-NHS linker 

as described in section 5.1.3.1. 2nd Surfaces were incubated in PBS for 20 min at RT after 

decoration with MU-NHS. 3rd Surfaces were incubated with MU-NHS linker in DMF for 

only 20 min at RT. Substrates were shortly rinsed with MilliQ water, dried in nitrogen flow 

and analyzed by XPS MAX 200 photoelectron spectrometer (Leybold-Heraeus, Cologne) 

with Mg Kα radiation source (1253.6 eV) operated at 220 W and in ultra-high vacuum below 

10-8 mbar. For the acquisition of the spectra emitted electrons were collected perpendicularly 

to the sample surface with a hemispherical electron energy analyzer at constant pass energy 

of 96 eV and 48 eV for overview spectra and detailed spectra, respectively. 

 
 

Figure 5.10 Scheme of the XPS functioning process. An atom emits an electron from the 1s energy level 
after photoionization by X-ray irradiation108, 110. 

 

The recorded spectra were normalized by the spectrometer specific transmission function, 

which is specific for the spectrometer. The binding energy was calibrated to 84.0 eV for 

elemental gold in order to compensate electrostatically charging of the samples111. The 

spectra were analyzed with the software XPS Peak 4.1112. Spectra were background corrected 

for signal quantification by subtracting the background according to Shirley and fitted by a 
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symmetric Voigt function with a variable Gauß-Lorentz product function. The spectra were 

plotted in Origin 8.5.  

 

5.2.1.3 Infrared reflection absorption spectroscopy (IRRAS) 

The IR spectroscopy is a qualitative spectroscopy method and based on the stimulation of 

vibrational energy states in molecules. In this method, the substrate is irradiated by mid 

infrared radiation (100 to a few 1000 cm-1). Specific wavelengths are absorbed by the 

substance, because their energies stimulate the vibration of molecule groups. This results in 

absorption bands at the related wave numbers in the spectrum. The infrared spectrum is 

characteristic for every molecule and can be used to identify substrates. 

 

In this work, surfaces coated with a homogeneous gold layer (section 5.1.1) and decorated 

with self-assembled monolayer (SAM) of MU-NHS linker (section 5.1.3.1) were analyzed 

by using a IFS 66v/S Vacuum FT-IR system (Bruker Optics, Billerica, USA). The substrates 

were rinsed with MeOH and dried in nitrogen flow before placing in the analytical chamber. 

The measuring time for both the sample and the background was 180 s each (200 scans). 

The scans were performed in reflection mode in vacuum (10-3 mbar) with a resolution of 

4 cm-1. The detector was a DTGS and the thermal light source was globar. The spectra were 

recorded in a range from 400 – 4000 cm-1. The effective analyzed range was from 

1000 – 3000 cm-1.  

 

5.2.1.4 Scanning electron microscope (SEM) 

The scanning electron microscopy is a surface-sensitive, penetration depth imaging method, 

which uses electrons to analyze samples. During the process the sample is scanned line wise 

by a highly-focused electron beam and the intensity of the emitted secondary electrons is 

determined by a detector (Figure 5.11). For this reason, the SEM is also called secondary 

electron microscope.  
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Figure 5.11 Mechanism of emission of a secondary electron. By interaction with the primary electron (PE), 
a valence electron is knocked out of orbital and detected as a secondary electron (SE)113. 

 

Since a primary electron is able to generate several secondary electrons by interaction with 

the sample, the sample needs to be conductive. Non-conductive samples can be sputtered 

with gold or graphite in order to analyze them by SEM. The working electron energy of a 

SEM is about 20 keV. Normally, a few keV are used to limit the maximum depth of SE to 

10 µm. By using a primary energy < 1 keV, the maximum depth can be reduced to a few 

nanometers. Therefore, with SEM primarily the sample surface is visualized. Several 

detectors can be used during the scanning process.  

 

 
 

Figure 5.12 Scheme of a scanning electron microscope. The positions of the different detectors (SE1 and 
SE2 types) and the origin of the secondary electrons are shown. Modified and adapted from Kuo et al.114 
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Depending on the position of the detector, the images of the same sample can be visualized 

completely different, because the information is collected from different depths and angles 

of sample. The In-Lens-detector is perpendicular to the sample and it detects mainly 

electrons, which are refracted and reflected by elastic scattering with the atoms. Therefore, 

they are called backscattered electrons (BSE, type SE1) and origin from the upper layer of 

the sample. The SE2 detector is fixed in a 45 ° angle to the sample. The SE2 electrons are 

derived from deeper layers of the sample113. A scheme of an SEM is shown in Figure 5.12. 

 

In this work, the gold nanopatterned surfaces were analyzed by SEM after plasma treatment 

and tempering. Since the surfaces are not sufficiently conductive, they were coated with a 

thin conductive layer of graphite (~ 5 nm) by using EM ACE200 sputter coating system 

(Leica, Wetzlar). Imaging was performed using a LEO 1530 (Carl Zeiss, Jena). The spacing 

and the order of the gold nanoparticles were measured by using amagbificatio of 50000x and 

100000x and analyzed using the dot analyzer plug-in created by Dr. Phillipe Girard for 

ImageJ (Research Services Branch, Image Analysis Software Version 1.51h, NIH, USA). 

The average distance between neighboring gold nanoparticles was determined and averaged 

over N particles with this plug-in. The order parameter Φ ranges from 0 to 1, with 1 being a 

perfect hexagonal order. Only samples with an order parameter > 0.5, were used for 

experiments. 

 

5.2.1.5 Atomic force microscopy (AFM) 

To determine the elasticity of the hydrogels an atomic force microscope Nano Wizard I was 

used (JPK Instruments AG, Berlin). The device was installed on an inverted microscope 

(Axiovert 200, Carl Zeiss, Jena). The measurement of the hydrogels was performed by 

indentation of a CONT-Silicon-SPM-Sensor cantilever with colloidal particle (CP-CONT-

BSG-A, sQUBE, Bickenbach, Germany). The cantilever had a thickness of 2.0 ± 1 µm, a 

length of 450 ± 10 µm and a width of 50 ± 7.5 µm. The force constant was determined by 

calibration with the thermal noise and was in the range of 0.02 – 0.77 N/m. The colloid 

particle consisted of borosilicate glass and had a diameter of 5 µm. The obtained data were 

analyzed with AtomicJ (Version 1.7.2_OS Independent)115 and further edited with Microsoft 

Excel for Mac 2016. The AFM measurements of the PEG-DA hydrogels and the analysis 
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were done in cooperation with Dr. Carolina Diaz (Physical Chemical Institute, Heidelberg 

University). 

 

5.2.2 Detection of iBMP-6  

5.2.2.1 Chemiluminescence detection 

Surfaces, either homogeneous gold coated or gold nanostructured, functionalized with 

iBMP-6 were prepared as described above (section 5.1.3.2). Samples were blocked in a 

solution of 3 % (w/v) BSA (Carl Roth) in PBS at RT for 1 h followed by incubation with 

5 µg/ml anti rhBMP-6 mouse IgG (R&D Systems, Wiesbaden) in a solution of 1 % (w/v) 

BSA in PBS at RT for 1 h. After washing with PBS three times at RT for 10 min, the samples 

were incubated with 0.1 µg/ml secondary anti-mouse IgG conjugated with horseradish 

peroxidase (HRP) enzyme (Santa Cruz, Heidelberg) in a solution of 1 % (w/v) BSA in PBS 

at RT for 1 h. Finally, surfaces were washed with PBS three times at RT for 10 min. In order 

to reveal the specific signal, samples were incubated with ECL Plus Western Blotting 

Detection Kit (GE Healthcare, Little Chalfont, Great Britain) and imaged by using a 

luminescent imaging analyzer Amersham Imager 600 (GE Healthcare, Little Chalfont, Great 

Britain). 

 

5.2.2.2 Indirect immunofluorescence 

The preparation of the different surfaces was performed as described in section 5.2.2.1 until 

primary antibody incubation. After washing with PBS three times at RT for 10 min, the 

samples were incubated with secondary antibody Alexa Fluor 488 goat anti-mouse IgG 

(Invitrogen, Carlsbad, USA) in a final concentration of 1 µg/ml in a solution of 1 % (w/v) 

BSA in PBS at RT for 1 h. Then, samples were washed again three times in PBS at RT for 

10 min followed by immunofluorescence microscopy with an upright wide field microscope 

Leica DM 6000B (Leica Microsystems, Wetzlar). Cells were examined with a 10x air 

objective lens (Leica). The images were adjusted in brightness and color with ImageJ 

software (Research Services Branch, Image Analysis Software, NIH, USA).  
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5.3 Cell culture 

5.3.1 Cell lines and culture conditions 

Mouse C2C12 myoblasts (CRL-1772, ATCC, Wesel, Germany) are a standard model system 

employed for the investigation of bone morphogenetic proteins and known to respond to 

BMP-632. Cells were cultured as sub-confluent monolayers (~80 %) in growth medium 

(DMEM containing 4.5 g/l D-glucose, L-glutamine, pyruvate, phenol red; Thermo Fisher, 

Darmstadt) supplemented with 10 % (v/v) fetal bovine serum (FBS, Biochrom, Berlin) and 

1 % (v/v) penicillin/streptomycin (Gibco, Life Technologies) at 37 °C and 5 % CO2 in a 

water saturated atmosphere and the medium was renewed every 2 - 3 days. Upon reaching 

70 – 80 % confluence, cells were detached by accutase treatment (Life Technologies) and 

subcultured at a dilution of 1:10. To exclude false positive results induced by possible traces 

of BMP in the FBS, cells were incubated 6 days in the presence of FBS to observe myotube 

formation by phase contrast microscopy.  

The multiple myeloma cell line OPM-2, established from the peripheral blood of a woman 

aged 56 yearswith multiple myeloma (IgG lambda) in leukemic phase, are suspension cells 

and were purchased from DSMZ (German Collection of Microorganisms and Cell Cultures, 

Braunschweig). Cells were cultured in growth medium (RPMI 1640 containing 4.5 g/l D-

glucose, L-glutamine, pyruvate, 2 g/l NaHCO3; Biochrom, Berlin) supplemented with 10 % 

(v/v) FBS and 1 % (v/v) penicillin/streptomycin, 5 % CO2-atmosphere at 37 °C in a water 

saturated atmosphere and the medium was renewed every 2 - 3 days. 

 

5.3.2 Mycoplasma test 

To detect contamination of mycoplasma, cells were tested after thawing. 5 x 104 cells were 

incubated in DMEM containing 10 % (v/v) FBS in cell culture flask for 24 h. Then, 2 ml of 

culture supernatant was collected and tested by using the MycoAlert Mycoplasma Detection 

Kit (Lonza, Basel, Switzerland). The samples were prepared according to the manufacturer’s 

protocol and analyzed by a luminometer Infinite M200 (Tecan, Männedorf, Switzerland). 

Only cells which did not have any mycoplasma contamination were used in this study. 
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5.3.3 Cell experiments  

For experiments with substrates coated with homogeneous gold (section 5.1.3) and gold 

nanostructured surfaces (section 5.1.4), cells were seeded in custom-made poly(dimethyl 

siloxane) (PDMS) chambers (Sylgard 184, silicone elastomer kit, Dow corning) with  a 

density of 1x105 cells/chamber under standard culture conditions. After 24 h cells were 

starved in serum-free DMEM for 5 h. Then, the medium was replaced by 50 µl of serum-

free medium per chamber. Cells were stimulated either with substrates containing BMP-6 

(iBMP-6, section 5.1.3.2), with soluble BMP-6 in DMEM, whereby the concentration is 

related to the amount of iBMP-6, (sBMP-6, as positive control) or with only a substrate 

without iBMP-6 (Ctrl, as negative control) (Figure 5.13). Cells were covered with the 

different substrates from top. After gently removing the substrates, cells were checked for 

integrity by using phase contrast microscopy (Axiovert 40C, Carl Zeiss). 

 

 
 
Figure 5.13 Scheme of cell stimulation from top by iBMP-6 substrates. Adherent cells were short-term 
stimulated from top either by surfaces coated with homogeneous gold (left) or by gold nanostructured surfaces 
(right); with soluble BMP-6 in culture medium (sBMP-6) or with immobilized BMP-6 (iBMP-6). 

 

For experiments with dual functionalized substrates (section 5.1.5) and gold nanostructured 

PEG-DA hydrogel substrates (section 5.1.6), cells were starved in serum-free DMEM for 

5 h. Substrates were placed in custom-made poly(dimethyl siloxane) (PDMS) chambers. 

Cells were washed with PBS, detached by using accutase (Life Technologies) and seeded 

on the substrates in a density of 1 x 105 cells/substrates (24 x 24 mm2) in 2 ml of cell culture 

medium. As positive control, sBMP-6 was added in culture media right before seeding cells 

on substrates (Figure 5.14). Before lysing, cells were checked for integrity by using phase 

contrast microscope. 
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Figure 5.14 Scheme of cell stimulation from bottom by iBMP-6 substrates. Cells were seeded onto the 
substrates for long-term responses e.g. inhibition of myotube formation or alkaline phosphatase assay. 

 

5.4 Molecular biological methods 

5.4.1 Preparation of cell lysates 

After removal of culture medium, cells were washed three times with cold PBS. Then, 50 µl 

of RIPA lysis buffer (Sigma Aldrich) complemented with Halt Protease Inhibitor Single-

Use Cocktail (Thermo Fisher, Waltham, USA) and 5 mM EDTA (Thermo Fisher) was added 

per well. After incubation at 4 °C for 30 min, cells were detached from the culture well by 

using a cell scraper. Samples lysates were separated from cell debris by centrifugation in a 

precooled centrifuge at 14000 rpm (Centrifuge 5417R, Eppendorf, Hamburg) at 4 °C for 

30 min. The cell supernatant was collected and used for further experiments. Protein lysates 

were stored in aliquots at -20 °C. 

 

5.4.2 Protein quantification 

By using the BCA (bicinchoninic acid) Protein Analysis Kit (Pierce, Thermo Fisher), the 

protein concentration of each sample was determined, so equal loading was acquired. The 

analysis was performed in a 96-well plate according to the manufacturer’s protocol. BSA 

was dissolved in lysis buffer in 8 different concentrations (2 mg/ml, 1.5 mg/ml, 1 mg/ml, 

0.75 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml and 0.0625 mg/ml) in order to measure a 
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standard curve. A blank control consisted of lysis buffer only. Afterwards, 25 µl of standards 

and samples were transferred into the wells and 200 µl of the working reagent (50 : 1 mixture 

of solution A and B) were added and mixed thoroughly. Then, the samples were shaken for 

1 min and incubated at 37 °C for 30 min. The solutions’ absorption was measured at 562 nm 

by using a microplate reader (Infinite M200, Tecan) three times. The resulting absorption 

data were analyzed with Microsoft Excel for MAC 2016. Protein concentration of the 

samples was determined by the measured standard curve.  

 

5.4.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) and western blot (WB) analysis 

The nomalized lysate samples (section 5.4.2) were mixed with sample buffer and reducing 

agent (Life Technologies) and heated up to 95 °C for 10 min. After cooling down, samples 

were loaded onto a 4 – 12 % BIS-Tris pre-cast gel (NuPage,Life Technologies) together with 

a Novex Sharp Pre-stained Protein Standard (Life Technologies), as a molecular weight 

marker. The electrophoresis was performed in MOPS (3-(N-morpholino)propanesulfonic 

acid) running buffer (Life Technologies) in a SDS-PAGE Chamber ( Life Technologies) at 

200 V for ~50 min for one gel. 

 

 The proteins, separated by using SDS-PAGE were transferred from the gel to a 

nitrocellulose membrane by wet blotting (X Cell II Blot Module, Life Technologies). The 

transfer by wet blotting system was performed in transfer buffer (Life Technologies) using 

power supply at 30 V for 90 min. After blocking with 3 % (w/v) BSA (Carl Roth) in TBS-

T (50 mM Tris HCl (Carl Roth), 150 mM NaCl (Sigma), 1 % Tween-20 (Carl Roth), pH 

7.5) at RT for 1 h, the nitrocellulose membrane was incubated with primary antibody (Table 

5.4) in a corresponding dilution in TBS-T containing 1 % (w/v) BSA at 4 °C overnight. The 

membrane was washed three times with TBS-T at RT for 10 min and incubated with 

secondary antibody conjugated with HRP enzyme (Table 5.5), diluted in TBS-T containing 

1 % (w/v) BSA, at RT for 1 h. After washing three times with TBS-T for 10 min, the protein 

bands were detected by using luminescent imaging analyzer Amersham Imager 600 (GE 

Healthcare) and ECL Plus Western Blotting Detection Kit (GE Healthcare).  
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Table 5.4 List of primary antibodies. WB = Western blot, IF = Immunofluorescence, CL = Chemical 
luminescence  

Epitope Host Company Cat. No. Application µg/ml 

β-actin mouse Sigma Aldrich A1978 WB 2.5 

Phospho-

SMAD1/SMAD5 

(Ser463, Ser465) 

rabbit Thermo Fisher 700047 WB 5 

rhBMP-6 mouse R&D Systems MAB507 IF, CL 5 

Myosin heavy 

chain (MHC) 
mouse 

Developmental 

Studies 

Hybridoma 

Bank 

MF20 IF, WB 2 

 

 
Table 5.5 List of secondary antibodies. HRP = Horseradish peroxidase, AF 488 = Alexa Fluor 488, 
ms = mouse, rb = rabbit. 

Host & epitope Conjugation Company Cat. No. Application Dilution 

Goat anti-ms IgG HRP Santa Cruz sc-2005 
WB,         

CL 

1:5000, 

1:1000 

Goat anti-rb IgG HRP Santa Cruz Sc-2004 WB 1:1000 

Goat anti-ms IgG 
Alexa Fluor 

488 
Thermo Fisher A-110011 IF 1:500 

 

 

5.4.4 Alkaline phosphatase (ALP) colorimetric assay 

Before seeding onto substrates (section 5.3.3), C2C12 myoblasts were starved for 5 h. Cells 

were either stimulated by iBMP-6 or sBMP-6 (corresponding amount) and cultured for 

6 days in 2 % (w/v) FBS. The medium was refreshed after 3 days. After washing three times 

with PBS, cells were lysed with RIPA buffer (Sigma) without Halt Protease Inhibitor Single-

Use Cocktail and without 5 mM EDTA. After incubation at 4 °C for 30 min, cells were 

detached from the culture well by using a cell scraper. Lysates were separated from cell 

debris by centrifugation in a precooled centrifuge at 14000 rpm at 4 °C for 30 min. The ALP 
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substrate p-nitrophenyl phosphate (pNPP, Sigma) was added to the lysates in a ratio of 2:1. 

Dephosphorylation of pNPP was observed by measuring absorbance at 405 nm in 10 min 

intervals for 60 min using a microplate reader (Infinite M200, Tecan). Data were analyzed 

with Microsoft Excel for MAC 2016. 

 

5.5 Preparation of cells for imaging 

5.5.1 Myosin heavy chain (MHC) staining and imaging 

C2C12 cells were seeded on substrates as described in section 5.3.3. They were cultured on 

the surfaces for 6 days under low serum conditions (2 % FBS). The medium was refreshed 

after 3 days. After removing culture medium and washing three times with PBS, cells were 

fixed with 4 % (w/v) paraformaldehyde (PFA, Sigma) in PBS at RT for 15 min. Samples 

were washed three times with PBS and permeabilized with 0.1 % (v/v) Triton-X 100 (Sigma) 

in PBS at RT for 5 min. Then, cells were washed three times with PBS and blocked with 

1 % (w/v) BSA in PBS for 1 h followed by incubation with primary antibody anti-myosin 

heavy chain (MHC) (see Table 5.4) in PBS with 1 % (w/v) BSA at RT for 1 h. Following 

washing three times with PBS containing 1 % (w/v) BSA, samples were incubated with the 

secondary antibody Alexa Fluor 488 goat anti-mouse IgG (see Table 5.5) in PBS with 1 % 

(w/v) BSA for 1 h at RT. After washing three times with PBS containing 1 % (w/v) BSA, 

samples were mounted with Mowiol (Sigma) supplemented with 1,4-diazabicyclo-[2,2,2]-

octane (DABCO, Merck). The mounting reagent was mixed with DAPI (Sigma) at a final 

concentration 1 µg/ml in order to stain the cell nuclei. Fluorescence images were acquired 

with an upright widefield fluorescence microscope (Leica DM6000B; software LAS AF 

3.2.0.9652, Leica Microsystems CAS). The following air objectives were used: HCX PL 

Apo 10x/0.4, HCX PL Apo 20x/0.7 and HCX PL Apo 40x/0.85 (all Leica).  

 

5.5.2 Image processing, data and statistical analysis  

Data were analyzed and quantified with Microsoft Excel for MAC 2016 and graphics were 

plotted either with Origin 8.5 software (OriginLab Corporation, Northampton, USA) or with 

GraphPad Prism 7.0 for Mac OS (GraphPad Software, La Jolla, USA) and further edited 
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with Microsoft PowerPoint for MAC 2016 or Adobe Illustrator, if not stated otherwise. 

Statistical analysis was done with GraphPad Prism software. Groups were compared using 

t-test with p-values < 0.05 considered as statistically significant. ImageJ (Research Services 

Branch, Image Analysis Software Version 1.51h, NIH, USA) was used to process images. 

Brightness and contrast of microscopy images were adjusted for the presentation. Western 

blot bands and myotubes area were quantified by ImageJ as well116. All plotted data show 

mean values with standard deviations calculated from at least three independent experiments 

(samples in duplicates or triplicates), if not otherwise stated. 

 

5.6 Experiments with multiple myeloma cell line OPM-2 

5.6.1 Cell adhesion on dual functionalized surfaces 

OPM-2 cells were seeded onto dual functionalized surfaces at a density of 1 x 105 per 

surfaces (24 x 24 mm2) in 2 ml RPMI medium supplemented with 10 % (v/v) FBS and 1 % 

(v/v) penicillin/ streptomycin. Since OPM-2 are suspension cells, surfaces were washed with 

PBS in order to detect adherent cells. Before and after washing, images were taken by using 

phase contrast microscope (Axiovert 40C, Zeiss).   

5.6.2 Viability assays 

5.6.2.1 Trypan blue staining 

Multiple myeloma cells OPM-2 were seeded in a 12-well plate at a density of 2 x 105 

cells/well in 1 ml culture medium. The cells were stimulated with either 19 ng BMP-6, 

0.133 µM BMP-6 or 160 µM HCl. After 3 days under standard culture conditions, 1 ml fresh 

medium was added. After 1 day, 2 days, 3 days, 4 days and 7 days, live and dead cells were 

counted by staining with trypan blue (Carl Roth) (9 : 1) using a haemocytometer and phase 

contrast microscope (Axiovert 40C, Zeiss). 

 

5.6.2.2 Water soluble tetrazolium-1 (WST-1) assay 

As described in section 5.3.3, 5 x 104 cells were seeded onto substrates containing iBMP-6 

in 1 ml RPMI and stimulated with either iBMP-6 (19 ng) or sBMP-6 (19ng) and α5β1-
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integrin-selective ligand under standard culture conditions. 1 ml fresh culture medium was 

added after 3 days. After 1day, 3days and 7 days, WST-1 reagent (Roche Diagnostics, 

Mannheim) was added (1 : 10) to the cells, followed by incubation at 37 °C for 30 min. After 

1 min shaking, 100 µl of sample mixture was transferred into a 96-well plate in triplicates. 

The absorbance was measured at 450 nm with Tecan plate reader. By using samples with 

known cell number (8 x 105, 4 x 105, 2 x 105, 1 x 105, 5 x 104, 2.5 x 104, 1.25 x 104) a standard 

curve was prepared for every sampleand data were analyzed with Microsoft Excel for MAC 

2016. 

 

5.6.2.3 Fluorescence-activated cell sorting (FACS) measurement 

Cells were seeded at a density of 5 x 104 cells/surface in 1 ml medium, followed by 

stimulation with either sBMP-6 or sBMP-2. 1 ml fresh culture medium was added after 

3 days. After 5 days and 7 days, suspension cells were scrubbed from the surfaces, 

transferred in Eppendorf tubes (Eppendorf, Hamburg) and washed with PBS. Prior to FACS 

measurement, 1 µl of propidium iodide (Thermo Fisher) in a concentration of 1 mg/ml was 

added to a 300 µl cell suspension in PBS. The fluorescence-activated cell scanning (FACS) 

was performed in cooperation with Dr. Monika Langlotz (Flow Cytometry & FACS Core 

Facility, ZMBH Heidelberg University).  
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6 Results  
The goal of this project was to investigate the influence of the growth factor BMP-6, 

immobilized on different surfaces, on cell signaling and differentiation. A linker system, 

which was established by Dr. Theresa Pohl96 and further developed by Dr. Elisabeth Baha-

Schwab88, was used in this work for covalent immobilization of the growth factor on 

homogeneous gold, gold nanostructured glass and gold nanostructured PEG-DA hydrogel 

surfaces. First, the linker system was characterized by different surface analysis methods 

and biochemical techniques. The bioactivity of the immobilized BMP-6 was proven by 

examining short-term (< 4 h) signaling in BMP-responsive cells. Furthermore, the long-term 

stimulation effects were analyzed by determining cell differentiation. 

 

6.1 Characterization of the linker system for the covalent 
immobilization of BMP-6 

6.1.1 Infrared measurements prove NHS activity 

Glass coverslips were coated with homogeneous layer of gold with a thickness of 50 nm, 

supported by an adhesive chromium layer (thickness of 15 nm), generated by physical vapor 

deposition (section 5.1.1). Afterwards the substrates were functionalized with a self-

assembled monolayer (SAM) of the heterobifunctional linker 11-mercaptoundecanoyl-N-

hydroxysuccinimide ester (MU-NHS). Since the ester is instable against hydrolysis, forming 

the SAM is a critical step in the preparation. In order to prove the successful SAM formation 

on the one hand and the stability of the NHS ester on the other hand, infrared reflection 

absorption spectroscopy (IRAS) was utilized to detect the characteristic groups of the MU-

NHS linker. Figure 6.1 displays the IR spectrum of the reactive groups of interests. The 

methylene asymmetric and symmetric vibrations of the alkane chain can be assigned to the 

weak signals at 2930 cm-1 and at 2850 cm-1. The strong band at 1750 cm-1 can be attributed 

to the three carbonyl groups. The weak signal at 1590 cm-1 and the medium signal at 

1350 cm-1 belong to the N-O asymmetric and symmetric vibrations, respectively. The C-N 
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vibration corresponds to the strong peak at 1250 cm-1. Due to the detection limit of the used 

IR spectrometer, the intensity at wave numbers < 1000 cm-1 could not be determined.  

 

 
 

Figure 6.1 IRAS spectrum and chemical structure of the linker. a) The absorbance of the functional groups 
belonging to the heterobifunctional MU-NHS linker, bond to the gold surface. The absorbance intensity is 
plotted against the wave numbers. b) Chemical structure of MU-NHS. 

 

The results show that all relevant signals could be detected and assigned to the related groups 

of the molecule. Furthermore, it can be concluded that the NHS ester maintains intact. If it 

was deactivated by hydrolyzation, the three signals for nitrogen at 1250 cm-1, 1350 cm-1 and 

1590 cm-1 would not have been detected due to the release of the nitrogen as N-

hydroxysuccinimide (NHS). Moreover, additional signals of the free carboxylic acid were 

not detected, which would be indicated by the O-H (wide peak at 3000 cm-1) in case of ester 

hydrolysis. In summary, it can be stated that the binding of the MU-NHS linker onto the 
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gold surface was successful and the activity of the NHS ester could be preserved during the 

adsorption process.  

 

6.1.2 X-ray photoelectron spectroscopy measurement proves NHS 
stability in aqueous conditions  

Due to the need to perform the linker binding in aqueous conditions for usage on hydrogels 

(see section 6.2.2), the MU-NHS linker was decorated on gold surface, treated in different 

conditions and analyzed by using XPS (section 5.2.1.2). For the comparison of the film 

quality depending on the immersion time the film thickness and the packing density was 

calculated. In addition, the exposure of NHS ester in PBS was tested. 

 

 
Figure 6.2 XPS spectra of the MU-NHS linker on gold surfaces in different conditions. a) Au 4f signal, b) 
C 1s signal, c) N 1s signal, d) S 2p signal. Obtained spectra for distinct atoms are displayed as intensity values, 
plotted against binding energy (BE). Plots: measured signals (…), peak sum (brown), background (orange), 
fitted peaks (magenta, red, cyan). 

 

The XPS spectra of the pristine films exhibit the peaks and doublets characteristic of the 

well-defined SAMs with no traces of contamination or oxidative products. For a reasonable 

comparison between the films the surface, which was incubated for 4 h in DMF, was used 

as a standard. The C 1s, S 2p, and N 1s XPS spectra of the films are presented in Figure 6.2, 

which behave all similarly. 
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The C 1s spectrum of the standard Figure 6.2 exhibits three peaks, which can be tentatively 

assigned into a main component peak at 284.29 eV corresponding to the CH2 chain moiety 

as well as a weaker component peak at ∼285.09 eV associated with the CH2 moiety of the 

five-membered ring, as well as a peak at 288.89 eV which relates to carbonyl component.  

The S 2p XPS spectrum of all spectra exhibits a characteristic S 2p3/2,1/2 doublet at a BE 

position of ∼162.0 eV (S 2p3/2) corresponding to the thiolate species bound to noble metal 

surfaces with no traces of atomic sulfur, disulfide, unbound sulfur, or oxidized species. The 

gold signal was used as internal reference for each sample in order to normalize the area 

under the curve of each signal. The surfaces, which were prepared in 20 min, showed all 

carbon, nitrogen and sulfur signals, which were also detected on the control surface. The 

sample, which was incubated in PBS, displayed also all important signals including the 

nitrogen signal. The normalized intensities of the different conditions are listed in Table 6.1.  

 
Table 6.1 Table shows the intensities of carbon (b), nitrogen (c) and sulfur (d) of the different samples. 
In order to compare the two conditions with the standard sample, the intensities were normalized to the 
corresponding gold signal (a). 

 4 h DMF 4h DMF + 20 min PBS 20 min DMF 

C1 0.170 0.148 0.112 

S2p 0.016 0.013 0.011 

N1s 0.012 0.013 0.007 

 

 

The normalized results for the standard samples were (C1s), (S2p) and (N1s). The results of 

the standard sample and the PBS sample were comparable, especially the nitrogen signal 

was almost identical. This indicates that the ester was not hydrolyzed during 20 min PBS 

incubation. The 20 min sample’s results were lower than the standard with at least 60 % of 

the correlated standard’s signal intensity, which leads to the assumption that a minimum of 

60 % of the surface was covered by MU-NHS-linker within the first 20 min of incubation 

time. According to the spectroscopic data, the presented linker is stable in aqueous 

conditions for more than 20 min. Furthermore, the adsorption time of the linker is rather fast, 

with a more than 60 % coverage of the surface after incubation for 20 min. This means that 

the MU-NHS linker could be used for the fast and effective immobilization on gold 

nanostructured hydrogels in aqueous environment.  
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6.2 Characterization of covalent immobilization of BMP-6 
on surfaces 

In this chapter, the linker system was bound to the three different types of surfaces 

(homogeneously coated gold surface, gold nanostructured glass coverslips and gold 

nanostructured hydrogels) in order to verify the successful BMP-6 immobilization. 

Furthermore, it was investigated, whether BMP-6 remained immobilized on the surface after 

cell contact. 

 

6.2.1 Immobilization of BMP-6 on homogeneous gold 

6.2.1.1 BMP-6 was successfully immobilized to gold  

The following control experiments were carried out to exclude false positive results by 

proving the SAM formation and the non-specific binding affinity of the anti-BMP-6 IgG. 

Then, the successful immobilized BMP-6 was detected on the gold surface by QCM-D and 

by chemiluminescence experiments independently. 

 

Control experiments 
The first control experiment was performed to analyze the SAM formation of the linker in 

aqueous solution and to determine the required time by measuring the frequency change 

during incubation and washing. Comparing normalized frequencies allows a statement about 

SAM formation. The reaction was performed on a quartz crystal of an open module (QCM-

D). For the PEG-DA experiments (section 6.2.3) it is necessary to perform the reaction in 

aqueous solution because other solvents would interact with the hydrogel and damage it. The 

detailed protocol is described in section 5.1.6. Since the MU-NHS linker is poorly soluble 

in water, a 100 mM linker stock solution in DMSO was prepared and diluted with water in 

a ratio 1:100 prior to use. Figure 6.3 shows the frequency and dissipation change during the 

reaction. After calibration with the two buffers PBS (B1) and PBS with 1 M NaCl (B2), the 

MU-NHS linker (1) was added on the gold coated sensors. After approximately 30 min, the 

frequency (blue line) and the dissipation (red line) stopped changing, what indicates the full 
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coverage of the surface with linker molecules. While washing with buffer B2, neither the 

frequency nor the dissipation changed. This means that there is no release of linker molecules 

from the surface. To see the binding to the linker, the sensor was washed with buffer B1. 

Only a small amount of BSA was released from the surface, while the rest remained bond to 

the surface. However, it could not be distinguished whether BSA was bound to the linker or 

physisorbed onto the surface. To sum up, the QCM-D measurements show that the MU-

NHS linker also forms a self-assembled monolayer in aqueous conditions.  

 

 
 
Figure 6.3 The QCM-D diagram shows the successful binding of the linker to the surface and the binding 
of BSA. The frequency is displayed in blue and the dissipation in red. The vertical outliers are caused by the 
exchange of the solutions during the measurement. After addition of MU-NHS linker, the frequency decreased 
and stayed at the same level, while washing with PBS. Blocking with BSA induced a further frequency 
decrease.  

 

In the next control, the affinity of the anti-BMP-6 mouse IgG was investigated by using a 

QCM-D crystal, already decorated with a monolayer of MU-NHS linker in order to exclude 

non-specific binding to the MU-NHS linker. In Figure 6.4 the change of frequency and 

dissipation during the antibody incubation is shown. After calibrating with buffer B1, the 

crystal was incubated with anti-BMP-6 mouse IgG. During the 30 min incubation, both 

frequency and dissipation did not change at all. Afterwards the crystal was washed with PBS. 

There was no change in frequency and dissipation. 
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Figure 6.4 The QCM-D diagram shows no shift in frequency and dissipation indicating the non-
absorption of anti-BMP-6 mouse IgG antibody. The frequency is displayed in blue and the dissipation in 
red. The frequency did not change during the incubation with PBS nor with anti-BMP-6 mouse IgG antibody. 

 

In the second experiment, it could be shown that anti-BMP-6 mouse IgG did not 

unspecifically bind to the surface. It was important to investigate the binding behavior of the 

antibody to exclude false positive results. 

 

Validation of the BMP-6 immobilization on homogeneous gold 
After the control experiments were successfully completed, the immobilization of BMP-6 

was observed by QCM-D (Figure 6.5). The BMP-6 incubation induced a frequency 

decrease, which did not change back to the starting point after rinsing. This indicates that 

BMP-6 bound to the surfaces. In order to validate this result, the immobilized BMP-6 was 

detected via indirect immunochemiluminescence. During the incubation of the primary 

antibody, there was a change in the frequency, which was enhanced after secondary antibody 

incubation. Finally, the QCM-D crystals were revealed in order to detect the immobilized 

BMP-6 with indirect immunochemiluminescnece. As can be seen in Figure 6.5, the crystal 

treated with BMP-6 showed a high and almost homogeneous signal, indicating the presence 

of BMP-6. Moreover, the control surface showed no specific signal. 
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Figure 6.5 The successful immobilization process of BMP-6 is displayed by QCM-D and 
chemiluminescent detection with antibodies. The QCM-D showed the binding of BMP-6 to the linker 
followed by antibody binding (b), while there was no binding of antibodies to the control surface (a). The 
immobilized BMP-6 could be detected by a clear chemiluminescence signal (d). The control surface showed 
only background signal (c). Adapted and modified from Martin et al.98 

 

Summing up, the successful immobilization of BMP-6 could be shown and it was evidenced 

on the surface by direct and indirect detection. 

 

6.2.1.2 BMP-6 binds to the surface through primary amines  

After showing the successful immobilization of BMP-6 to the surfaces, it needed to be 

proven whether the protein binds to the MU-NHS ester through its primary amine group or 

was physisorbed non-specifically. In order to validate the immobilization, the primary amine 

groups were acetylated in order to block it for the NHS ester. Furthermore, the green 

fluorescence protein (GFP) was used as control, because it can be directly detected by 

fluorescence microscope. 
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Validation by QCM-D 
As it could be shown, the MU-NHS linker generated a monolayer. Therefore, the only 

interaction took place between BMP-6 and the linker. This means that the protein could bind 

to the linker in both manners, specifically and non-specifically. By acetylation of the BMP-

6’s primary amines (Ac-BMP-6), specific immobilization was excluded, because the NHS 

ester of the linker cannot react with the protein anylonger. If Ac-BMP-6 still binds to the 

surface, the interaction was unspecific. If Ac-BMP-6 does not bind, the immobilization is 

mediated by the primary amines. 

 

 
 
Figure 6.6 Scheme of the setup for the QCM-D experiment with four different conditions. Sensor 1 and 
Sensor 2 were used as control for the acetylation of the primary amine groups. Sensor 3 proved the 
immobilization through primary amine groups and Sensor 4 was used as control for the acetylation of BMP-6. 

 

In Figure 6.6, the experimental scheme is shown. After incubation with acetylated GFP, the 

BMP-6 could bind to the surface (Sensor 1), whereas it could not bind after incubation with 

normal GFP (Sensor 2). Sensor 1 served as positive and Sensor 2 served as negative control, 

since GFP also contains primary amine groups. In order to prove the specific immobilization, 

Sensor 3 was incubated with acetylated BMP-6, which could not bind, in contrast to the 

GFP, which was incubated afterwards. By incubation with untreated BMP-6, the wafers 
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were completely occupied, so that no GFP was able to bind to the surface (Sensor 4). Sensor 

4 served as control for the acetylation of BMP-6. 

 

 
 

Figure 6.7 The non-binding of Ac-BMP-6 and the successful immobilization of BMP-6 are shown in the 
QCM-D diagram. a) Ac-BMP-6 did not bind to the surfaces, indicated by the return of the frequency back to 
the starting point, in contrast to GFP, which could bind to the surfaces showed by frequency change and 
antibody binding. b) The frequency shift displayed the successful immobilization of BMP-6. Adapted and 
modified from Martin et al.98 

 

The experiment showed that acetylated BMP-6 was not able to bind to the MU-NHS linker 

(Figure 6.7 a), in contrast to the native BMP-6 (Figure 6.7 b). Moreover, GFP could bind 

to the surface after incubation with acetylated BMP-6, but not after incubation with native 

BMP-6.  
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Figure 6.8 QCM-D diagram shows the immobilization of GFP and acetylated GFP. a) The frequency 
decreased slightly during incubation with acetylated GFP and remained below its starting point level after 
washing. After incubation with BMP-6 and washing, the frequency did not change back, but remained at a 
lower point. Then, the frequency decreased further strongly during blocking with BSA. The incubation with 
first anti-BMP-6 antibody did not affect much the frequency, contrary to the incubation with secondary HRP-
conjugated antibody. It changed to a lower level. b) After incubation with GFP, the frequency decreased and 
did not return while washing. The incubation of BMP-6 and the following washing led to a shift of the 
frequency. After blocking, the frequency did not change while incubating with first anti-BMP-6 antibody. But 
while incubating with secondary HRP-conjugated antibody, the frequency reached a lower level than before. 

 

In the second experiment, in which GFP instead of BMP-6 was acetylated, the acetylated 

GFP (Figure 6.8 a) showed a lower binding affinity than the non-acetylated GFP (Figure 
6.8 b). Nevertheless, the affinity was higher than the affinity of acetylated BMP-6. This 

indicates, that the GFP was not completely acetylated, whereas BMP-6 was. 
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Conclusively, the QCM-D results showed that BMP-6 is immobilized to the surface by 

binding through its primary amine groups to the MU-NHS linker. Since the Ac-BMP-6 

showed a significant lower binding affinity to the linker coated surface than the untreated 

BMP-6, a non-specific binding interaction can be excluded as main type of binding. But the 

experiment also showed that GFP was not completely acetylated.  

 

Validation by fluorescence microscopy 
To further validate the results, two QCM-D crystals were treated like Sensor 3 and Sensor 4 

described in Figure 6.6. But instead of incubating with primary and secondary antibody, the 

substrates were removed from the QCM-D and GFP was imaged with fluorescence 

microscope.  

 

 
Figure 6.9 Fluorescence microscopy images of the QCM-D crystals. The fluorescence of GFP is shown in 
green. a) The crystal, decorated with MU-NHS linker, was first incubated with Ac-BMP-6 followed by GFP, 
which could be clearly detected. b) The sensor was incubated with BMP-6 followed by GFP incubation. The 
intensity of the GFP signal was significant lower. 

 

In Figure 6.9, the fluorescence images are shown. The substrate, incubated with acetylated 

BMP-6, showed a strong signal (Figure 6.9 a). This indicates that BMP-6 did not bind to 

the surface and neither reacted with the NHS ester, what allowed GFP to bind to the surface. 

The intensity of the crystal, which was incubated with BMP-6, was significantly lower 
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(Figure 6.9 b). This matches with the previous QCM-D results, in which it was shown that 

BMP-6 occupied the surface, when it could bind to the MU-NHS linker. 

The following experiment aims at investigating BMP-6’s binding ability to different 

surfaces. Therefore, a glass cover slip was treated to give four different areas, namely 

homogeneous gold surface, glass surface, PEG passivated surface and PEG2000 passivated 

nanopatterned surface. GFP served as control. After immobilization of BMP-6, it was 

labeled by using Alexa488 conjugated secondary antibody. In Figure 6.10, fluorescence 

images are shown. Both proteins did not bind to the passivated surface. While BMP-6 and 

GFP binding homogeneously distributed on the passivated nanopatterned surface coated 

with MU-NHS linker, they bound non-specifically to the glass surface. On the gold surface, 

decorated with MU-NHS linker, the fluorescence signal of BMP-6 and GFP were more 

homogeneously distributed, but not as even as on the passivated nanopatterned surface. 

 

 
 

Figure 6.10 Fluorescence images of immobilized BMP-6 and GFP on four different surfaces. The glass 
cover slips, containing four different areas on the surface, were first incubated with the MU-NHS linker 
followed by the immobilization of BMP-6 and GFP, respectively. BMP-6 was detected of Alexa488. The 
fluorescence signal of the proteins showed different distributions on the four areas. Image was adapted and 
modified from Martin et. al.98 
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In conclusion, it could be proven that BMP-6 binds specifically to the MU-NHS ester. 

Furthermore, it does not bind to the PEG2000 passivated surface in a non-specific 

interaction. 

 

6.2.2 Successful immobilization of BMP-6 on gold nanostructured 
surfaces 

This chapter deals with the immobilization of BMP-6 on gold nanostructured surfaces by 

using MU-NHS linked to the gold particles. The inter particle area was passivated with the 

protein repellent PEG2000. 

 

6.2.2.1 Surface characterization by SEM 

The particle distance (Figure 6.11) was varied by employing different block copolymer 

chain lengths resulting in the following particle spacings of (32 ± 8) nm, (63 ± 11) nm and 

(107 ± 21) nm. 

 

 
Figure 6.11 SEM images of gold nanostructured arrays prepared from different diblock copolymer 
solutions on glass. Substrates were imaged with a 50000x (A – C) magnification in order to analyze the inter 
particle distance and order parameter. The order parameter f was calculated to be 0.51 (A), 0.54 (B) and 0.59 
(C), respectively. The mean inter particle distances are indicated above each picture. 

 

6.2.2.2 Detection of immobilized BMP-6 by chemiluminecence immunoassay 

The gold nanostructured substrates with different inter particle distances were prepared as 

described in subsection 5.1.2. The inter particle space was passivated with a protein repellent 

PEG2000 monolayer (section 5.1.4.2). BMP-6 was immobilized on the gold particles 
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through the MU-NHS linker. Since only one BMP-6 homodimer was bound per gold 

nanoparticle, an increased spacing of the gold particles caused a decrease in the amount of 

surface-bound protein. 

Figure 6.12 shows surfaces with a spacing of 32 nm, 63 nm and 107 nm. The immobilized 

BMP-6 was detected with anti-BMP-6 antibody and HRP conjugated secondary antibodies. 

The binding of BMP-6 was visualized via chemiluminescence. 

 

 
 

Figure 6.12 Chemiluminescence detection of iBMP-6 on gold nanostructured surfaces with different 
inter particle spacing. The signal indicated the successful BMP-6 immobilization. The smaller the distance 
between the particles the stronger the signal on the surfaces treated with MU-NHS and BMP-6 (+ BMP-6) 
whereas there was almost no signal or only background detectable on control surfaces (- BMP-6). 

 

The substrates treated with MU-NHS and BMP-6 showed a clear chemiluminescent signal 

(+BMP-6) whereas the negative controls (-BMP-6) displayed almost no signal or 

background noise. Due to the different spacing, the signal intensity decreased (from left to 

right). The increased spacing caused a reduced signal. As the results in section 6.2.1.1 

showed, the BMP-6 did not bind to the PEG layer.  

 

To further investigate the stability of iBMP-6 (5.1.4), C2C12 cells were exposed to the 

surfaces from the top of the cells for 60 min and presence of iBMP-6 was assessed prior and 

after cell contact. The approach is shown in Figure 5.13. BMP-6 was detected using 

chemiluminescence on all surfaces (see Figure 6.13). 
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Figure 6.13 Chemiluminescence detection of iBMP-6 before and after cell stimulation. The surfaces, 
containing iBMP-6 showed a clear signal before and after cell stimulation. Note, the dipping edge (white 
arrow). The substrate with soluble BMP-6 (sBMP-6) and the control surface did not display any signal neither 
before nor after cell contact. Image was adapted and modified from Martin et al.98 

 

iBMP-6 could be detected before as well as after cell stimulation (Figure 6.13). Both 

surfaces showed a strong signal, while on the control surfaces and the surface with sBMP-6 

no BMP-6 was detectable. sBMP-6 was used to prove that BMP-6 bound specifically. The 

dipping edge (see arrow in Figure 6.13) marks the border between the area with and without 

nanoparticles and is due to the preparation.  

Additionally, the stability of the immobilization was verified for longer time periods of 

120 min and 240 min, respectively. The experimental setup was the same as described above. 

The sBMP-6 condition was left out, because it could be already proven that it did not bind 

unspecifically. The surfaces were not parted in order to detect iBMP-6 before cell contact. 

 

 
Figure 6.14 Chemiluminescence detection of iBMP-6 after 120 min and 240 min cell stimulation. The 
surfaces containing iBMP-6 showed high intensities after 120 min and 240 min, while the control surfaces 
without BMP-6 only displayed low background signal. 
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The comparable signal intensity after 120 min and 240 min of the iBMP-6 substrates verified 

the binding stability (Figure 6.14). The high stability of iBMP-6 allowed the usage for 

longer periods of cell stimulation. 

It can be summarized that the density of iBMP-6 on the surface could be controlled by 

varying the inter particle distance. Furthermore, the binding of BMP-6 to the nanopatterned 

via the MU-NHS linker surface was stable for more than 240 min. 

 

6.2.3 BMP-6 binds successfully to gold nanostructured hydrogel  
surfaces 

In this chapter, gold nanostructured hydrogels were prepared and characterized by using 

cryo-SEM and AFM. Afterwards, BMP-6 was immobilized to the gold particles through the 

MU-NHS linker as described earlier (section 5.1.4) and consequently detected by 

chemiluminescence. 

 

6.2.3.1 Nanoparticle transfer to PEG-DA hydrogels   

Gold nanostructured hydrogels were prepared as described in subsection 5.1.6. Prior to the 

analysis by cryo-SEM, the gels were removed from the glass coverslip, frozen in liquid 

nitrogen and coated with a carbon layer. Images were taken from at least three different 

positions. 

 

 
 
Figure 6.15 Cryo-SEM images of nanopatterned hydrogel surfaces after different preparation steps. A) 
The hydrogel surfaces were imaged directly after polymerization and transfer of the gold particles. B) After 
linking the MU-NHS to the gold particles and C) after coupling of BMP-6 to the linker images of the surfaces 
were taken. The differences in intensity were caused by the varying electrostatic charges. 
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The MU-NHS ester was coupled to the gold particles on the hydrogel surface and BMP-6 

was immobilized on the surface as described in subsection 5.1.6.2. Directly after the 

polymerization of the PEG-DA and gold particle transfer, the surfaces were imaged by cryo-

SEM (A). It can be clearly seen that the particle transfer from the glass coverslip to the 

hydrogel worked. Image B shows the surface after connecting the linker to the gold particles. 

The linker binding did not affect the order of the gold particles, since there was no big 

difference between the first images recognizable. However, after the coupling of BMP-6 to 

the NHS linker, the image of the surfaces changed. There were less particles on the surfaces 

with reduced order and increased inter particle distance.  

  

6.2.3.2 Verification of BMP-6 immobilization by chemiluminescence 
immunoassay 

In order the verify the successful immobilization of BMP-6 to the hydrogel surface, BMP-6 

was detected by indirect-chemiluminescence assay Four different conditions were used to 

perform the assay: a gel with nanoparticles, a gel with nanoparticles decorated with MU-

NHS linker, a gel with sBMP-6 and a gel consisting of iBMP-6. 

 

 
 
Figure 6.16 Chemiluminescence detection of BMP-6 on gold nanostructured hydrogels. The gel consisting 
of iBMP-6 showed a clear signal, while the MU-NHS decorated surface showed almost no signal. The surfaces 
with sBMP-6 and no BMP-6, respectively, showed a low background noise. 

 

Figure 6.16 showes that BMP-6 could be successfully immobilized to the hydrogel via the 

MU-NHS (Figure 6.16, right image). The very low signal of the MU-NHS decorated 

hydrogel displayed that the linker passivated the surfaces, so that there was no non-specific 
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binding of the antibodies. This was the case for the untreated surface and the surface 

containing sBMP-6. But even their signals were only a background signal, since they were 

weaker than the iBMP-6 signal. 

 

 
 

Figure 6.17 Chemiluminescence detection of BMP-6 on gold nanostructured hydrogels after 60 min of 
cell contact. The iBMP-6 hydrogel showed a significant higher signal than gels with sBMP-6 or no BMP-6. 

 

In order to test the binding stability, the hydrogels were exposed to C2C12 cells as described 

in subsection 5.3.3 and removed after 60 min. Afterwards, the same assay was used to 

visualize the iBMP-6. Figure 6.17 shows the chemiluminescence images of the hydrogels 

after 60 min cell stimulation. While the control gel and the gel with sBMP-6 showed almost 

no signal, the iBMP-6 surface displayed a significant higher signal. In conclusion, the 

immobilization method for glass coverslips could be successfully transferred to gold 

nanostructured hydrogels. The stability of the binding was also comparable to the substrates 

prepared on glass (see section 6.2.2). 

 

6.3 iBMP-6 maintains its biological activity upon 
immobilization to different surfaces 

In chapter 6.2, the successful immobilization of BMP-6 to different surfaces through its 

primary amine groups could be shown. In this chapter, I focused on validating the biological 

activity of iBMP-6 on the different surfaces. For this reason, short-term and long-term cell 

responses of C2C12 cells to iBMP-6 were investigated. Furthermore, the results were 

compared to sBMP-6 as positive control. 
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6.3.1 Activity of immobilized BMP-6 (iBMP-6) on homogeneous 
gold 

As calculated in section 5.1.3.2, the theoretical amount of BMP-6, which can be immobilized 

on a (24 x 24) mm surface is 460 ng. This amount of BMP-6 was used in soluble form as 

positive control (sBMP-6) in order to compare the results of the iBMP-6. 

 

6.3.1.1 Stimulation of SMAD phosphorylation by iBMP-6 

The phosphorylation of SMAD 1/5, downstream reporters of the BMP-6, signaling pathway 

stimulated by iBMP-6 was analyzed by western blot analysis. For this reason, C2C12 cells 

were incubated either with iBMP-6, sBMP-6 or negative control surface from the top as 

described in section 5.3.3. As shown in Figure 6.18 A, SMAD 1/5 phosphorylation was 

observed after 60 min stimulation with either iBMP-6 or sBMP-6, while SMAD 1/5 

activation is absent in C2C12 cells exposed to negative control samples.  

 

 
 
Figure 6.18 Immobilized BMP-6 maintains its biological activity and induces SMAD signaling. a) C2C12 
cells were stimulated from the top with gold surfaces (control), with gold surface in presence of sBMP-6 and 
iBMP-6 for 60 min. After cell lysis, samples were immunoblotted for phospho-SMAD 1/5 and β-actin. b) 
Phospho-SMAD 1/5 intensities were normalized to β-actin. Error bars represent standard deviation, n = 3, *p 
< 0.05, ***p < 0.0001. Images were adapted and modified from Martin et al.98 

 

The quantification of the Western Blot showed, that the immobilization of BMP-6 did not 

have any significant effect on BMP-6’s short-term activity. The iBMP-6 showed a slightly 
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reduced biological activity like sBMP-6 (Figure 6.18 b). These results validated that iBMP-

6 maintained its biological short-term activity and the ability to trigger early steps in SMAD 

signaling like SMAD 1/5 phosphorylation. 

 

6.3.1.2 Inhibition of myotube formation by BMP-6 

C2C12 cells are known to undergo myogenic differentiation to form myotubes and produce 

characteristic muscle proteins. However, treatment with BMP-6 causes a shift in the 

differentiation pathway from myoblastic to osteoblastic, therefore suppressing the formation 

of myotubes. To investigate the effect of iBMP-6 on myogenesis C2C12 cells were cultured 

for 6 days under differentiation (low serum) conditions. Microscopy studies were performed 

to show myotube formation and to detect myosin heavy chain (MHC).  

 

 
 
Figure 6.19 Fluorescence images show the inhibition of C2C12 myotube formation by iBMP-6 and 
sBMP-6. C2C12 cells were cultured for 6 days under low serum conditions to allow myogenesis. Images show 
myosin heavy chain (MHC IXB) staining of multinucleated myotubes (green) and DAPI nuclei staining (blue). 
The area covered by myosine IXB positive cells was plotted. Error bars indicate the standard deviation, n = 5. 
Images were adapted and modified from Martin et al.98 
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After six days in culture (see section 5.3.3), cells were fixed and stained. The negative 

control showed a high number of myosin IXB positive cells whereas on the surfaces with 

iBMP-6 and sBMP-6 almost no positive cells were found (Figure 6.19). The differences 

between the negative control surfaces and sBMP-6 and iBMP-6 in coverage of myosin IXB 

positive cells can be clearly seen. In summary, the iBMP-6 on homogeneous gold surfaces 

showed stable long-term activity which was comparable to the soluble form, by inhibition 

of myotube formation. 

 

6.3.2 Activity of iBMP-6 on gold nanostructured surfaces 

This chapter deals with nanopatterned surfaces with three different inter particle distances 

(32 nm, 63 nm and 107 nm), containing iBMP-6, which were prepared according to section 

5.1.4. Due to the fact that cells cannot adhere on the passivated nanostructured surfaces, only 

on top stimulation was possible, allowing investigation of the short-term signaling activity 

of iBMP-6, but not the long-term activity. 

 

6.3.2.1 Stimulation of SMAD phosphorylation by iBMP-6 

As calculated in section 5.1.4.2, the amount of BMP-6, which could be immobilized to the 

surfaces, was 19 ng on 32 nm surfaces, 6 ng on 63 nm surfaces and 1 ng on 107 nm surfaces. 

These amounts were used in soluble form as positive control in order to compare them with 

the iBMP-6 results. The experiments were performed as described in section 6.3.1.1. C2C12 

cells were on top stimulated by either iBMP-6, sBMP-6 or negative control surfaces. After 

30 min, 60 min, 120 min and 240 min cells were lysed and the samples were immunoblotted 

for pSMAD 1/5 and β-actin. Figure 6.20 shows the results for different BMP-6 

concentrations. 
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Figure 6.20 Western Blot analysis and quantification of C2C12 cell lysate stimulated by 19 ng (A), 6 ng 
(B) and 1 ng (C) BMP-6. Error bars represent standard error of the mean, n = 5, *p < 0.05. Adapted and 
modified from Martin et al.98 
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30 min 60 min 120 min 240 min

pSMAD 1/5

     β-actin

pSMAD 1/5

     β-actin

pSMAD 1/5

     β-actin

pSMAD 1/5

     β-actin

pSMAD 1/5

     β-actin

pSMAD 1/5

     β-actin

pSMAD 1/5

     β-actin

N
eg. ctrl

iBM
P-6

sBM
P-6

N
eg. ctrl

iBM
P-6

sBM
P-6

N
eg. ctrl

iBM
P-6

sBM
P-6

pSMAD 1/5

     β-actin

pSMAD 1/5

     β-actin

a) 19 ng

b) 6 ng

c) 1 ng

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

30 min 60 min 120 min 240 min

Neg. ctrl
sBMP-6
iBMP-6

0
0.2

0.4
0.6
0.8

1
1.2

1.4
1.6

30 min 60 min 120 min 240 min

0

0.2

0.4
0.6
0.8
1

1.2
1.4
1.6

30 min 60 min 120 min 240 min

pS
M

A
D

 /β
-ac

tin
pS

M
A

D
 /β

-ac
tin

pS
M

A
D

 /β
-ac

tin

*



6 Results 

76 

was similar to the 19 ng iBMP-6, but even more pronounced. The lowest concentration of 

BMP-6, 1 ng, showed a similar behavior for sBMP-6 as for 19 ng. For iBMP-6, the 

maximum was shifted to 120 min after increasing and then it started decreasing. 

The results displayed that BMP-6 maintained its biological activity also after immobilization 

on nanopatterned surfaces. Furthermore, it could be shown that BMP-6 is still active in very 

low concentration (1 ng) in immobilized and soluble form. Both iBMP-6 and sBMP-6 

showed a different activity. Moreover, the iBMP-6 showed always a higher activity after 

120 min for all concentrations, although it was not significant. 

 

6.4 Dual functionalized surfaces containing BMP-6 and 
adhesive ligand 

In this chapter, gold nanostructured surfaces were dual functionalized in order to immobilize 

adhesive ligands on the PEG layer by click chemistry. This allowed using the substrates for 

long-term stimulations of cells with iBMP-6. For this reason, the effect of iBMP-6 on 

myogenesis and on stimulation of alkaline phosphatase (ALP) activity in C2C12 cells were 

investigated. 

 

6.4.1 Dual functionalization of gold nanostructured glass surfaces 

The dual functionalized surfaces were prepared as described in section 5.1.5 using integrin 

α5β1 selective ligand and cRGD. The adhesive effect was investigated by seeding C2C12 on 

the surfaces. Furthermore, the short-term and long-term activity of iBMP-6 was determined. 

 

6.4.1.1 Validation of ligand’s adhesive effect 

Cells were seeded on surfaces containing integrin α5β1 selective ligand and cRGD ligand, 

respectively, and on non-functionalized surfaces, which were used as negtive control. After 

seeding the C2C12 cells on the surfaces, cell adhesion was observed at different time points 

by using phase contrast microscope. Cells seeded on substrates which were decorated with 

α5β1 specific ligand (+α5β1), started adhering to surface after 30 min (Figure 6.21). After 

90 min, most of the cells were adhered and started to spread, indicated by change of shape. 
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After 18 h, all cells adhered and spread on the surface, while most of the cells on control 

were still round shaped. 

 

 
 

Figure 6.21 C2C12 cells adhesion induced by α5β1 specific ligand. Cells were seeded on substrates and 
phase contrast images were taken after 30 min, 90 min and 18 h. Round cells presented non-adherent cells.  

 

The tri-peptide motif RGD, which is present in many ECM proteins, is established and 

known to induce cell adhesion. For this reason, it was used as comparison for cell adhesion. 

C2C12 cells were seeded on surfaces coated with cRGD ligand. In Figure 6.22, phase 

contrast images can be seen, which show cell adhesion on the substrates containing cRGD 

after 60 min and 240 min. 
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Figure 6.22 C2C12 cells adhered on the surfaces with and without cRGD ligand. Cells were seeded on 
substrates with and without cRGD and phase contarst images were taken after 60 min and 240 min. Adapted 
and modiefied from Martin et al.98  

 

After 60 min, many cells started adhering to the surfaces decorated with cRGD (+ cRGD), 

while cells on the negative control surface were still round (- cRGD). After 240 min almost 

all cells adhered to the cRGD surface in contrast to control. 

In conclusion, it could be shown that the α5β1 selective ligand as well as cRGD induced cell 

adhesion of C2C12 cells.  

 

6.4.1.2 iBMP-6 has a higher biological activity by bottom stimulation 

The biological activity of iBMP-6 on gold nanostructured surface was already proven in 

section 6.3.2. There the cells were stimulated from top by iBMP-6. In this chapter, the 

bottom stimulation was performed as described in section 5.3.3. 

 

Stimulation of SMAD phosphorylation by iBMP-6 
C2C12 cells were seeded on nanostructured surfaces (107 nm) containing cRGD and 1 ng 

iBMP-6. After 60 min and 240 min, cells were lysed to analyze the short-term stimulation 

of the SMAD 1/5 phosphorylation as described previously. After 60 min, iBMP-6 showed 
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the highest activity of on top stimulation (see section 6.3.2.1). Furthermore, it was 

investigated whether iBMP-6 and sBMP-6, respectively, still showed an activity after 

240 min.  

 

 
 

Figure 6.23 iBMP-6 showed a higher biological activity than sBMP-6 in bottom stimulation of SMAD 
1/5 phosphorylation in C2C12 cells. Cells were stimulated with 1 ng BMP-6 in immobilized and soluble 
form. Lysates were immunoblotted for pSMAD 1/5 and β-actin. The pSMAD signals were normalized to β-
actin signal. Error bars represent standard error of the mean, n = 5, *p < 0.05, **p < 0.001. Images were adapted 
and modified from Martin et al.98 

 

Previous experiments (see section 6.3.2.1) could show that already 1 ng BMP-6 was 

sufficient to stimulate C2C12 cells. Therefore, 1 ng BMP-6 was used for the bottom 

stimulation. As it can be seen in Figure 6.23, iBMP-6 showed a very high activity after 

60 min as well as after 240 min. It was significantly higher than the sBMP-6 and control 

samples, respectively.  
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Inhibition of myotube formation by iBMP-6 
In order to investigate the long-term activity in bottom stimulation by iBMP-6, cells were 

seeded on surfaces containing α5β1 selective ligand and cRGD, respectively. Three different 

concentrations of BMP-6 were used: 19 ng, 6 ng and 1 ng. Fluorescence images were taken 

to show myotube formation and to detect myosin heavy chain (MHC subunit IXB). The cells 

were cultured on the surfaces according to section 5.3.3.  

 

In Figure 6.24 A, the fluorescence images of cells seeded on surfaces containing α5β1 

selective ligand and different concentration of BMP-6 are shown. It can be clearly seen that 

iBMP-6 could inhibit myotube formation on all surfaces, while sBMP-6 could only inhibit 

myotube formation with high BMP-6 doses. The quantification of the myosin IXB positive 

cell supports the impression of the images (Figure 6.24 B). 

 

Figure 6.25 shows the same experimental setup but the α5β1 selective ligand was replaced 

by the cRGD ligand. Instead of three different concentrations only two concentrations were 

used to investigate, whether there were any differences in the effect of the highest amount 

(19 ng) and the lowest (1 ng). Besides, the experimental procedures were similar. The results 

were comparable to the α5β1 selective ligand samples. 19 ng of iBMP-6 and sBMP-6 were 

capable to inhibit myotube formation sufficiently. Furthermore, 1 ng of iBMP-6 could still 

trigger the inhibition, while the samples of 1 ng sBMP-6 looked comparable to the control 

surface. The quantification of the coverage matched with these results. 
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Figure 6.24 Fluorescence images show myosine IXB positive C2C12 cells upon iBMP-6 and sBMP-6. a) 
C2C12 cells were seeded on surfaces containing α5β1 selective ligand and stimulated from bottom by 19 ng, 
6 ng and 1 ng BMP-6 for 6 days under low serum conditions to trigger myogenesis. Images show myosin heavy 
chain (MHC subunit IXB) staining of myotubes (green) and DAPI nuclei staining (blue). b) By measuring the 
area, covered by myosine IXB positive cells, quantification was done and the results were plotted. Error bars 
indicate standard deviation, n = 5.  
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Figure 6.25 Fluorescence images show myosine IXB positive C2C12 cells upon iBMP-6 and sBMP-6 on 
cRGD decorated surfaces. a) C2C12 cells were stimulated from bottom by 19 ng and 1 ng BMP-6, 
respectively, under low serum conditions for 6 days to allow myogenesis. Images show myosin heavy chain 
(MHC) staining of multinucleated myotubes (green) and DAPI nuclei staining (blue). b) By measuring the area 
covered by positive cells, and relating to the total area, a quantification was done and the results were plotted 
in percentage. Error bars indicate standard deviation, n = 5. Images were adapted and modified from Martin et 
al.98 

 

Stimulation of alkaline phosphatase (ALP) activity 
The role of ALP as a marker for osteogenic activity has been consistently solidified. To 

determine whether iBMP-6 affects long-term osteogenic differentiation response, alkaline 

phosphatase (ALP) activity of C2C12 cells was measured after a 6-day incubation period. 
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Cells were seeded on surfaces functionalized with α5β1 selective ligand and cRGD ligand, 

respectively.  

ALP activity in lysates of cells cultured on surfaces with α5β1 selective ligand was measured 

as described in section 5.4.4 (Figure 6.26). Lysates of cells cultured on iBMP-6 and sBMP-

6 surfaces (19 ng) showed a higher enzymatic activity than negative control. While the 6 ng 

samples still induced a higher ALP activity than the control, the 1 ng iBMP-6 and sBMP-6 

showed no increase of absorption compared to control sample. 

 

 
 

Figure 6.26 Immobilized BMP-6 stimulated osteogenic differentiation of C2C12 cells on surfaces 
decorated with α5β1 selective ligand. The enzymatic activity of alkaline phosphatase (ALP) indicates 
osteogenic differentiation of C2C12 cells. ALP activity was measured as absorbance at 405 nm. The bar graph 
shows data normalized to corresponding control sample. The error bars indicate the standard deviation, n = 3.   
 

Figure 6.27 shows the results of the experiments, which were performed with cRGD 

functionalized surfaces. Here, BMP-6 was used in two concentrations of 19 ng and 1 ng. The 

absorption of the 19 ng samples were comparable to the corresponding α5β1 selective ligand 

samples. The difference appeared in the 1 ng iBMP-6 sample. It showed a higher ALP 

activity in comparison to the control and sBMP-6 sample with cRGD and was also higher 

than the 1 ng iBMP-6 samples with α5β1 selective ligand. 
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Figure 6.27 Immobilized BMP-6 stimulated also osteogenic differentiation of C2C12 cells on surfaces 
decorated with cRGD ligand even better. The enzymatic activity of alkaline phosphatase (ALP) indicates 
osteogenic differentiation of C2C12 cells. ALP activity was measured as absorbance at 405 nm. The bar graph 
shows data normalized to corresponding control sample. The error bars indicate the standard deviation, n = 3. 
Adapted and modified from Martin et al.98 

 

To summarize the chapter 6.4, it could be shown that iBMP-6 was able to stimulate cells 

more efficiently than sBMP-6 in both short- and long-term basal stimulation. In general, 

differences in the adhesion mediation between α5β1 ligand and cRGD ligand could not be 

noticed. Only in the ALP assay, the 1 ng iBMP-6 with cRGD induced higher ALP activity 

than the corresponding sample on α5β1 selective ligand functionalized surface. 

 

6.5 Applications 

This chapter outlines the medical application of the prepared surfaces. Dr. Anja Seckinger 

and Dr. Dirk Hose (Multiple myeloma division, National Centre for Tumor Diseases (NCT) 

Heidelberg), our cooperation partner, discovered that BMP-6 can be used to induce cell 

death in multiple myeloma cells53. Since BMP-6 had to be used in high concentration when 

applied in soluble form, the aim was to reduce the required amount by immobilizing BMP-

6. The ability for long-term stimulation should help to achieve the desired effect also with 

lower concentration of BMP-6. Therefore, the viability of multiple myeloma OPM-2 cells 

was determined before and after BMP-6 exposure using gold nanostructured glass surfaces 

containing iBMP-6 and α5β1 selective ligand. 
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6.5.1 Validation of ligand’s adhesive effect 

The multiple myeloma cell line OPM-2 are suspension cells, which normally do not adhere 

on surfaces. In order to expose these cells to the immobilized BMP-6, dual functionalized 

surfaces with adhesive ligands were employed to force the cells to adhere. The cells were 

seeded on surfaces decorated with α5β1 selective ligand. Figure 6.28 shows the phase 

contrast images displaying cells adhesion on different surfaces. 

 

 
Figure 6.28 OPM-2 cells adhering on surfaces decorated with α5β1 specific ligand. Cells were seeded on 
four different surfaces: passivated surface, passivated surface with iBMP-6, passivated surface decorated with 
α5β1 specific ligand in presence of sBMP-6 in culture medium and passivated surface with α5β1 specific ligand 
and iBMP-6. Phase contrast images were taken directly after seeding (0 h), after 5 h and after 24 h, respectively. 
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In order to visualize adhesion of the OPM-2 cells to α5β1 specific ligands, the surfaces were 

washed with PBS after 54 h. Before and after washing, images were taken from different 

areas of the surfaces. In Figure 6.29, the differences between surfaces with and without α5β1 

specific ligand can be clearly seen. On surfaces without the ligands the cells were almost 

completely removed by the washing, while on the other ones the cell number did not changed 

much. This indicated the successful adhesion of OPM-2 cells to the ligand. 

 

 
 

Figure 6.29 Washing did not remove OPM-2 cells from surfaces decorated with α5β1. Surfaces were 
washed with PBS in order to remove non-adherent cells. Images were taken before and after washing. 
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In conclusion, it could be shown that the α5β1 selective ligand induced cell adhesion of OPM-

2 cells. Moreover, the adhesion was independent from presence of iBMP-6 and sBMP-6. 

 

6.5.2 Initiation of cell death in myeloma cells 

To investigate the effect of BMP-6 on multiple myeloma cells, BMP-6 was compared to 

BMP-2, which also belongs to the TGF-β superfamily, in order to use it as a control. OPM-

2 cells were treated with BMP-6 or BMP-2, respectively, and cell viability was determined 

after 5 and 7 days by FACS measurement (see section 5.6.2.3). Furthermore, the negative 

control sample (indicated as Ctrl) was not treated. In Figure 6.30, it can be clearly seen that 

BMP-6 decreased the cell viability compared to the negative control sample, while there was 

no detectable effect upon BMP-2 stimulation.  

 

 
 

Figure 6.30 The effect of sBMP-2 and sBMP-6 on OPM-2 cell viability after five and seven days 
stimulation. OPM-2 cells were stimulated with either 1 µg/ml sBMP-2 or 1 µg/ml sBMP-6, which is equal to 
1 µg. After five and seven days, cell viability was determined by FACS. The error bars indicate standard 
deviation, n = 3. 
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After the successful prove of BMP-6 effect on myeloma cells, the maximum amount of 

BMP-6 (19 ng), which could be immobilized on gold nanostructured surfaces (inter particle 

distance of 32 nm), was compared to the concentration (4 µg/ml), which was used by the 

cooperation partner.  

 
Figure 6.31 Determination of the viability and the cell number of OPM-2 cells after stimulation with 
different concentrations of sBMP-6. 200000 OPM-2 cells were treated by sBMP-6 (4 µg and 19 ng) and 
40 µl of 4 mM HCl for seven days. Fresh medium was added after 3 days. A) The cell viability was determined 
by using trypan blue after 1, 2, 3, 4 and 7 days. B) The cell number was assessed by using a haemocytometer. 
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Cell viability was determined by using trypan blue staining and a haemocytometer. 

Furthermore, 40 µl of 4 mM HCl was included as control to avoid false positive results 

coming from the vehicle substance, since BMP-6 was dissolved in 4 mM HCl (section 

5.1.3.2). Fresh culture medium was added after 3 days. sBMP-6 (4 µg) clearly reduced the 

cell viability to 50 % after seven days (Figure 6.31 A), whereas 19 ng sBMP-6 reduced it 

until day 3 and then the viability increased again. The effect of HCl was not significantly 

different to the control, so that it could be neglected. Figure 6.31 B shows the total cell 

number after different days. The doubling time for OPM-2 cells is about 50 – 60 h. If the 

total cell number is 200000 in the beginning, it increases to 3.2 x 106. The cell number of the 

sBMP-6 (4 µg) sample increased more slowly than the other samples. After 7 days, the cell 

number was determined to be 925000. This was a clearly smaller number than the control 

sample (4.1 x 106) and the HCl sample (3.4 x 106). That means 4 µg sBMP-6 significantly 

receded the doubling time. Furthermore, the 19 ng BMP-6 sample showed a smaller cell 

growth than the control samples (3.0 x 106). 

 

Dual functionalized surfaces to induce myeloma cell death 
In the previous experiment, 4 µg of sBMP-6 reduced cell viability and receded the doubling 

time of OPM-2 cells. sBMP-6 in a smaller dose (19 ng) showed also an effect on OPM-2 

cells less than with 4 µg. Therefore, the gold nanostructured surfaces containing α5β1 specific 

ligand and an inter particle distance of 32 nm were used in order to stimulate multiple 

myeloma cells with either iBMP-6. Because of the immobilization, BMP-6 should be 

protected from internalization into the cell, so that the lower amount might be able to have 

an similar effect on OPM-2 cells like 4 µg BMP-6. As negative control, gold nanostructured 

surfaces containing α5β1 specific ligand were used. sBMP-6 was used in the same amount 

(19 ng) like iBMP-6. As it can be seen in Figure 6.32, the iBMP-6 did not show the desired 

effect on OPM-2 cells. Moreover, the results looked as if both BMP-6 substrates would 

stimulate the growth of the cells compared to the control surface.  
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Figure 6.32 The diagram shows the number of living cells after treatment with iBMP-6 and sBMP-6. 
OPM-2 cells were stimulated with 19 ng of iBMP-6 and sBMP-6. After Day 1, Day 3 and Day 7 the number 
of living cells was assessed by using the WST-1 assay. The error bars indicate standard deviation, n = 3. 

 

Conclusively, BMP-6 in high concentration showed a clear effect on multiple myeloma cells 

also compared to BMP-2. However, neither sBMP-6 nor iBMP-6 in low concentration 

showed an effect in reducing cell viability, moreover it seemed as if BMP-6 stimulated the 

cell growth. 
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7 Discussion and Outlook 
The objective of this work was to engineer dual functionalized glass surfaces and PEG-DA 

hydrogels exhibiting both covalently coupled BMP-6 and adhesive ligands in order to 

investigate the effects of immobilized BMP-6 on BMP-mediated signaling and osteogenic 

differentiation in C2C12 cells. Furthermore, this approach was adapted to determine the 

effects of these engineered substrates on the proliferation of multiple myeloma cells. 

For this purpose, a covalent immobilization strategy for BMP-6 was chosen in order to avoid 

uncontrolled release and diffusion of the growth factor. By using gold nanostructured 

surfaces, it was possible to control the amount and density of immobilized BMP-6. With this 

it was possible to reduce the amount of BMP-6 by a factor of 600. Recently, the successful 

immobilization of BMP-2 was shown using alkane thiols containing an NHS moiety as 

linker (Pohl et al.70 and Schwab et. al.72).  

 

7.1 Characterization of the linker system and adhesive 
ligands  

Anderson et al.117-119 proposed the N-hydroxysuccinimide (NHS) for the synthesis of active 

esters more than 50 years ago. In theory, NHS esters are relatively stable and can be stored 

for months under water-free conditions. However, the main reason for a suboptimal 

conjugation yield is the premature hydrolysis of the NHS ester120. The heterobifunctional 

linker 11-mercaptoundecanoyl-N-hydroxysuccinimide (MU-NHS), which was used to 

immobilize BMP-6 to the surface, maintained its activity after SAM formation on gold 

surfaces in dry DMF, as was proven by IR spectroscopy. The detected signals correlated 

with documented signals in literature121. The region in the spectra between 1200 cm-1 and 

400 cm-1, which is also called fingerprint region, was not further analyzed. In this range, 

many vibrations do not show an ideal behavior and display a shift by more than 100 wave 

numbers122. Due to electronic effects in the molecule, most of the structure and bend 

vibrancies are affected by this shift and the spectrum can have several hundred absorption 

bands. Therefore, the analysis of this region is challenging and not exact.  
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Due to the need of using aqueous solvents for the immobilization of BMP-6 on gold 

nanostructured PEG-DA hydrogels, the NHS ester’s stability in aqueous solvent could be 

determined by XPS (see section 6.1.2). In recent studies, it was shown that the stability 

against hydrolysis was reduced by increasing the pH 123. In pH conditions below 7.5, the 

ester showed its highest stability124. This is in agreement with the results, which were 

obtained in an almost neutral pH of 6.8. Furthermore, the required time for SAM formation 

of the MU-NHS linker was determined to be 20 min, what is even quicker than the results 

published in literature. The adsorption time of thiol alkane depends on its nature. Long chain 

alkanethiols (> C5) form well-ordered SAM during 2-24 h. In comparison, short chain 

alkanethiols (< C6) need to be incubated for at least 24 h125. The order of the SAM is 

increased by longer incubation time. In conclusion, the NHS linker can be immobilized in 

20 min through SAM formation in aqueous solvents without losing its activity.   

 

Cell adhesion promoted by adhesive ligands 

The most important receptors for cell adhesion and adhesion mediated cell signaling are 

represented by the integrin family75. These proteins play an important role in the interaction 

between cells and the extracellular matrix (ECM) proteins. Due to their function, they are 

bidirectional and heterodimeric cell surface receptors73. Although it was possible to perform 

long-term (up to seven days) studies with surfaces, bearing gold and SAM of MU-NHS 

linkers coupled with BMP-6, cell adhesion to the surfaces was rather unspecific and guided 

by deposition of cell own matrix. This can mediate further signaling modulation of SMAD 

pathway (see section 3.1.2), as also reported for other systems65, 126-127. In this work, the 

integrin selective ligand α5β1
82 and cyclic RGD were used to functionalize the PEG 

passivation layer between the gold nanoparticles by click-chemistry83 to create an adhesive 

background while preserving the setup for the covalent immobilization of BMP-6. 

Successful cell adhesion and spreading of C2C12 cells could be shown on surfaces coated 

with cyclic RGD and α5β1 selective ligands. Cell adhesion already started after 30 min and 

60 min, respectively. These results match with the times of cell adhesion promoted by 

adhesive ligands which are published in literature75, 128-129. This approach accelerates cell 

adhesion and allows bottom stimulation by immobilized BMP-6.  

Furthermore, the functionalization of the surfaces with α5β1 selective ligand successfully 

promoted the adhesion of the OPM-2 suspension cells. In multiple myeloma, the bone 



 7 Discussion and Outlook 

  93 

marrow is the preferred microenvironment for the proliferation and differentiation of the 

malignant plasma cells which rarely disseminate out of the bone marrow. ECM components 

within this microenvironment may play an important role in the specific adhesion and 

retention of the myeloma cells. Kibler et al.130 published the strong expression of β1 integrin 

subunit in OPM-2 cells. This explains the strong cell adhesion to the α5β1 selective ligand 

coated surface.   
 

7.2 Stiffness of artificial biomaterials 

One of the major challenges in engineering of synthetic tissues for implantation is the 

development of a soft transition between the artificial and native tissue, especially in 

musculoskeletal tissues, where the function of the tissue comprises the production or 

transmission of forces131. The most crucial point is the stiffness of the artificial material, 

which influences cell adhesion and cell signaling132.  

 

7.2.1 Incorporation of adhesive ligand influences the hydrogels’ 
stiffness 

PEG-DA hydrogels containing gold nanostructured surfaces were prepared as described in 

section 5.1.6.3 and the Young’s modulus was determined by AFM (Figure 7.1).  

 

 
Figure 7.1 Young’s modulus of the PEG-DA hydrogels with different cRGD concentration. The stiffness 
was measured by AFM on five different positions with ten repetitions each. The error bars show the standard 
deviation, n = 50. 
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The control sample, which did not contain any cRGD, had a stiffness of 70 kPa, while the 

stiffness of the PEG-DA hydrogels was reduced by increasing the concentration of 

incorporated cRGD, following a linear decrease except the highest concentration of cRGD. 

However, the stiffness dramatically decreased in gels containing 10 % (w/w) cRGD to 4 kPa, 

whereas gels with 1 % (w/w) cRGD had a stiffness of 54 kPa.  

 

 
 
Figure 7.2 C2C12 cell adhesion on PEG-DA hydrogels containing cRGD. Cells were seeded on substrates 
with cRGD with concentrations ranging from 0.0 % to 10 % (w/w) related to the PEG-DA concentration. 
Images were taken after 30 min, 90 min, 150 min, 240 min and 24 h. Round cells presented non-adherent cells. 

 

Paxton et al.133 showed the influence of incorporated hydroxyapatite and acrylated GRGDS 

on the stiffness of PEG-DA hydrogels. They observed that the stiffness was reduced from 
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15 kPa to 5 kPa by incorporation of acrylated GRGDS, while the stiffness was increased to 

32 kPa by incorporating hydroxyapatite. This is in accordance with the obtained results. 

Phase contrast images clearly show the effect of the cRGD concentration on cell adhesion 

(Figure 7.2). Most of the C2C12 cells started adhering already after 90 min and were 

completely adherent on 10 % (w/w) cRGD substrate after 240 min. In comparison, a few 

cells adhered on 1 % (w/w) cRGD after 90 min, while on 0.1 % and control substrate no 

adhesion could be observed at all. After 24 h on the cRGD functionalized hydrogels cells 

adhered and spread on the surface, while on control hydrogels no cell adhesion and cell 

spreading could be observed. 

 

Taken together, by incorporation of cRGD into the hydrogel, the stiffness of the hydrogels 

was decreased by increasing the cRGD concentration. Furthermore, it was possible to easily 

introduce a cell adhesion mediated background, which allowed to investigate long-term 

stimulation of cells. 

 

7.2.2 Influence of stiffness on cell signaling in C2C12 cells 

Many cells alter their proliferation and differentiation state depending on the mechanical 

stiffness of the substrate, e.g. the ECM134-135. In order to investigate the influence of the 

material’s stiffness on BMP-mediated cell signaling in long- and short-term BMP-6 

stimulation of C2C12 cells, gold nanostructured hydrogels with an interparticle distance of 

32 nm, containing iBMP-6, were prepared according to section 5.1.6. cRGDN3 was 

incorporated into PEG-DA hydrogels in concentrations of 10 %, 1 % and 0.1 % (w/w) (see 

section 7.2.1), respectively. After successful establishment of an adhesive background (see 

Figure 7.2), the capability of iBMP-6 to stimulate C2C12 cells from bottom in short- (up to 

4 h) and long-term (up to 7 days) was investigated.  

 

Inhibition of myotube formation and stimulation of ALP activity by iBMP-6 
Here, preliminary results of long-term stimulation of C2C12 cells by iBMP-6 are shown in 

(Figure 7.3). On the one hand, iBMP-6 (19 ng) was able to inhibit myotube formation as 

well as sBMP-6 (19 ng) compared to control (gold nanostructured hydrogel surface without 

BMP-6) on hydrogel (A and B), which contained 0.1 % (w/w) cRGD resulting in a stiffness 
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of 65 kPa (see Figure 7.1). These first results were comparable to the results obtained with 

glass surfaces (see section 6.3.1.2 and 6.4.1.2), which had a higher stiffness. This is in 

accordance with Engler et al.136, who prepared polyacrylamide hydrogels with a stiffness 

ranging from 2 kPa to 27 kPa and observed myotube formation using glass surfaces as 

control. They demonstrated that the optimal elastic modulus for myotube formation is 

12 kPa, what matches stiffness of muscle tissue. Moreover, their gels with the highest 

stiffness (27 kPa) showed comparable results like glass surfaces. Furthermore, they observed 

that the myotube’s morphology is affected by the stiffness. They were more round shaped 

than elongated compared to the myotube formed on glass surfaces. This observation matches 

with the results from Ren et al.137 who showed that stiffness modulates deeply adhesion, 

proliferation and differentiation. They concluded that each of these processes has its own 

stiffness requirement. 

 
Figure 7.3 Immobilized BMP-6 supressed myotube formation, but did not stimulate osteogenic 
differentiation of C2C12 cells. A) C2C12 cells were seeded on indicated surfaces and cultured for 6 days 
under low serum conditions to allow myotube formation. Images show myosin heavy chain (myosin IXB) 
staining of multinucleated myotubes (green) and DAPI nuclei staining (blue). Image magnification 20x. B) By 
measuring the area, covered by positive cells, and relating to the total area, a quantification was done and the 
results were plotted in percentage. Error bars indicate standard deviation, n = 5 repetitions of images. C) The 
enzymatic activity of alkaline phosphatase (ALP) indicates osteogenic differentiation of C2C12 cells. ALP 
activity was determined via absorbance at 405 nm. Bar graph shows data acquired after 60 min reaction. The 
error bars indicate standard deviation, n = 3. 
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On the other hand, there was no observable difference in ALP activity between iBMP-6 and 

sBMP-6 stimulation compared to control sample. C2C12 cells were cultured on PEG-DA 

hydrogels, which contained 1 % cRGD resulting in a stiffness of 54 kPa (see Figure 7.1). In 

comparison with results in section 6.4.1.2, it seemed as if iBMP-6 and sBMP-6 could not 

stimulate the ALP activity and that the osteogenic differentiation was influenced by the 

stiffness of the biomaterial. This is in contrast to Gilde et al.138, who showed that the ALP 

activity is dependent in a manner that the activity is increased by decreasing the substrate’s 

stiffness. They prepared different surfaces with a stiffness ranging from 100 kPa to 400 kPa. 

However, the here used range of stiffness was different than to Gilde et al. Therefore, the 

influence of the stiffness on ALP activity was different, what complicates a comparison. 

 

SMAD 1/5 phosphorylation by iBMP-6 
 

 
Figure 7.4 Western Blot analysis and quantification of C2C12 cells stimulated by 19 ng iBMP-6 and 
sBMP-6 on hydrogels with and without cRGD. After 90 min, cells were lysed and samples were 
immunoblotted for phospho-SMAD 1/5 and β-actin. iBMP-6 on gold nanostructured glass surfacse co-
functionalized with cRGD was used as positive control. 
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In this experiment, two different kinds of PEG-DA hydrogels were used. One contained 

cRGD in a concentration of 10 % resulting in a stiffness of 4 kPa and one was without cRGD 

resulting in a stiffness of 74 kPa. The preliminary results, shown in Figure 7.4, indicated 

that iBMP-6 on both hydrogels was not able to stimulate the SMAD1/5 phosphorylation 

successfully compared to control surface, while sBMP-6 on both hydrogels stimulated the 

phosphorylation of SMAD 1/5. iBMP-6 on glass surface showed a clear signal for pSMAD 

1/5. 

In summary, the presented preliminary results showed the cells’ differentiation dependence 

on the material’s stiffness. Results need to be further investigated to prove the reproducibility 

and to further study the relation between differentiation and surface stiffness. 

 

7.3 Immobilization of growth factors 

For the first time, it was shown in this work that BMP-6 was covalently immobilized via the 

heterobifunctional linker mercaptoundecanoyl-N-hydroxysuccinimide ester (MU-NHS) to 

gold nanostructured glass surfaces and hydrogel. Furthermore, the covalent immobilization 

of BMP-6 was combined with the integrin α5β1 selective ligand and cRGD which promoted 

cell adhesion resulting in the dual functionalization of surfaces. In this group, the covalent 

immobilization of BMP-2 a related growth factor via the MU-NHS linker as either self-

assembled monolayer or bound to the gold nanoparticles have been successfully 

established70-72. Tabisz et al. recently showed the site-directed immobilization of BMP-2139. 

The protein was immobilized to neutravidin-agarose beads by modifying recombinant 

human BMP-2 site-specifically and using copper-catalyzed azide-alkyne cycloaddition 

(CuAAC) to bind it directly or via a short biotin-PEG linker. This method allows the 

immobilization of BMP-2 in a specific orientation in order to produce fully defined 

osteogenic surfaces. Although the strategy used in this work does not allow a precise control 

over the orientation of the protein, it enables to specifically immobilize the growth factor to 

the surface without further modifications of the molecule and control the density. This 

simplifies the preparation and avoids side and cross reaction between the active sites of the 

protein.  

The currently available approaches of immobilization like encapsulation or adsorption to the 

scaffold require very high concentrations (100 µg/ml) of growth factors compared to the low 
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concentration in human blood140-141. This can cause an initial burst release phenomena142, 

leading to a release of BMP2 from such scaffolds into extracellular environment where it 

affects surrounding tissues causing bone overgrowth, osteolysis, and inflammation143. To 

avoid these problems, Meinel et al.144 presented a silk fibroin construct for controlled 

delivery of entrapped proteins or small molecule drugs. However, a controlled release into 

the human blood system only allows for growth factor stimulation for a specific time period. 

By using the covalent immobilization strategy, as presented in this work, undesired side 

reactions in the body can be circumvented. Additionally, the verified stability of the bond 

between the linker and the amine residues of the protein even after cell contact enables long-

term stimulation of cells possible by using this approach. The effective immobilization of 

BMP-6 on surfaces, showing that the growth factor is still active even after a longer period 

of time, has not been reported so far. 

Nevertheless, it should be noted that iBMP-6 was not homogeneously distributed on the 

surfaces, what can be clearly seen (refer to Figure 6.12 and Figure 6.13). As a consequence, 

the produced substrates could never be equal, but varied in a small range resulting in a 

fluctuation of the obtained results. A quantitative comparison between the iBMP-6 and 

sBMP-6 is not entirely correct, but it indicates a tendency in the short- and long-term 

stimulation ability.  

 

The phosphorylation kinetics and levels in cells, which were stimulated from top by iBMP-

6 did not differ much from the ones exposed to sBMP-6 (refer to Figure 6.20). In 

comparison, cells adhering to cRGD surfaces stimulated by iBMP-6 showed significant 

faster and higher phosphorylation kinetics (stimulation over 4 h) levels than the cells 

exposed to sBMP-6. This indicated that the combination of immobilized BMP-6 and the 

adhesive ligand cRGD increased in the SMAD1/5 phosphorylation levels. Another 

advantage in comparison to other systems is the strongly reduced amount of BMP-6, which 

was used to obtain cellular response. With the introduced platform for growth factor 

immobilization combined with adhesive ligands, the required amount for short-term 

stimulation was 1 ng, which is equal to 0.033 nM. This is approximately 600-fold smaller 

than the typical amount of 20 nM, which is used in standard in vitro assays.  

Furthermore, it could be shown that the BMP-6 capability of myotube suppression was not 

dependent in the mode of presentation without adhesive ligands, but dependent when it was 
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presented with the adhesive ligands cRGD and the α5β1 selective ligand. iBMP-6 showed a 

higher efficiency than sBMP-6 even in very low amounts (1 ng). While the adhesive ligands 

did not have an influence on myotube suppression, cRGD seemed to influence positively the 

stimulation of ALP by iBMP-6 (1 ng, see Figure 6.27). In literature, it was published that 

BMP-6 induces high ALP activity already at low concentration and after 5 days32, 41. Since 

the amount, which can be immobilized to the surfaces, is limited, BMP-6 combining with 

adhesive ligands is a potent candidate for immobilization approaches in order to induce 

ontogenetic differentiation. The low required amount of BMP-6 also reduces the costs what 

makes it even more attractive. 

 
On top stimulation vs. bottom stimulation 

Differences between the on top and from bottom stimulation of C2C12 could be shown. The 

bottom stimulation with iBMP-6 showed higher phosphorylation activity than the on top 

stimulation. This can be caused by the fact that the space between the cells and iBMP-6 is 

filled with a few µl of culture medium, when cells are stimulated from the top. Therefore, 

the distance between cells and iBMP-6 cannot be controlled and this can cause non-contact 

of cells and iBMP-6. However, when cells are bottom stimulated, they sit and grow directly 

in contact with iBMP-6. On the one hand, this leads to total stimulation and not only partly 

stimulation. On the other hand, it also accelerates the stimulation compared to the soluble 

delivery of BMP-6. Therefore, the bottom stimulation is the preferred way of stimulation 

which can be performed with the dual functionalized surfaces. 

 

The here presented approach allows the local and controlled delivery of BMP-6 in order to 

minimize adverse responses to make this technique applicable for therapeutic usage. 

Additionally, it reduces the required amount drastically, therefore optimizing costs and 

reducing side effects.  

 

7.4 Initiation of cell death in multiple myeloma cells 

One goal of this project was the medical application of the here presented approach. It is 

known that BMP-6 shows effects on multiple myeloma cells. Seckinger et al.53 published 

the inhibition of proliferation in multiple myeloma cell lines. Their experiments proved that 
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BMP-6 showed its positive effect on myeloma cell death initiation in rather high 

concentrations (> 5.3 nM), when applied in soluble form. Moreover, 133 nM BMP-6 

decreased cell viability to about 60 % and reduced the total cell number to 10 % compared 

to control after three days. However, it seemed that lower concentrations of BMP-6 on the 

contrary even stimulated the proliferation of multiple myeloma cells. This was also observed 

in experiments results shown in this work (compare Figure 6.31). The samples, treated with 

high concentrated BMP-6 (133 nM), showed 80 % less cells than the control after seven 

days. Furthermore, the cell viability was less than 60 %. During the first three days, there 

was no significant difference in cell viability detectable between 0.6 nM and 133 nM BMP-

6. On later time points, the low dose did not show a significant effect on cell viability 

anymore. One reason could be the internalization and degradation of BMP-6 by the myeloma 

cells, so that it was depleted from the medium. Nevertheless, the proliferation was 

successfully reduced by the high dose, while the low dose did not show a significant effect 

on cell proliferation compared to control sample. As mentioned previously, high doses of 

grow factors in general and BMP-6 in special in human body can cause lot of side effects, 

which are supported by the systemic treatment. The here presented approach was used to 

reduce the required amount for cell death induction and to replace the systemic treatment 

with a local one. The fact that multiple myeloma cells are suspension cells makes the dual 

functionalized surfaces presenting BMP-6 and adhesive ligands as the method of choice. 

Besides, Kim et al.145 published that BMP-6 is present in the kidney and potent to inhibit 

growth in human renal carcinoma cell lines. In other cancers such as prostate146-147 or breast 

cancer148 BMP-6 is supposed to promote tumor progression and development of metastasis. 

These results showed that BMP-6 should be applied in rather low doses to reduce and avoid 

side effects, respectively. In order to avoid BMP-6 internalization and to increase the effect 

on cell viability in multiple myeloma cells, iBMP-6 on the dual functionalized approach with 

α5β1 selective ligand. The expression of integrin β1 in multiple myeloma cells is known in 

literature149-151 and was employed in this work to successfully promote cell adhesion via the 

α5β1 selective ligand (compare Figure 6.28), whereas it was not possible to promote cell 

adhesion of multiple myeloma cells by using cRGD. The living cell number was determined 

after three and seven days, respectively (see Figure 6.32), whereby iBMP-6 and sBMP-6 

did not comprise different results. However, both samples showed a higher number of living 
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cells than the control sample. The approach did not show the desired effect, means the low 

dose of BMP-6 seemed to be not insufficient to affect in the immobilized form either. 

Until now, it is not known how BMP-6 induces cell death and inhibits proliferation in 

multiple myeloma. This needs to be further investigated in order to optimize the conditions 

of the BMP-6 application. Furthermore, the approach presented in this work can be further 

optimized in regards to the delivery form of BMP-6.  
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8 Summary and Conclusion 
In this work, a novel platform copresenting growth factors, namely BMP-6, with cell 

adhesion promoting cues such as the α5β1 integrin selective ligand or the integrin binding 

RGD peptide was presented. This setup was used to investigate the independence of growth 

factor cell signaling and integrin-mediated cell adhesion. BMP-6 was covalently 

immobilized to prevent internalization and therefore achieve their sustained presentation to 

cells. Moreover, on this approach, based on surface nanopatterning, BMP-6 and either of the 

two integrin selective ligands cRGD and α5β1 selective ligand were immobilized, while 

maintaining their biological activity. By addressing the lysine residues and the N-terminus 

of the growth factor, BMP-6 was covalently immobilized to gold nanoparticles using MU-

NHS linker. The adhesive ligands containing azide moisty were coupled to the PEG-alkyne 

by applying CuAAC click reaction. The presentation of factors using these platforms could 

be controlled independently by tuning the nanoparticle distances and the number of 

functional groups on the PEG to vary growth factor surface density and optimize cell 

attachment to the surface. This approach provides for the first time the presentation of active 

BMP-6 in small and defined amount on surfaces, while achieving controlled spatial 

resolution in combination with adhesive ligands. I showed that co-presentation of BMP-6 

and either of the two adhesive ligands promoted SMAD 1/5 phosphorylation and osteogenic 

differentiation of mouse myoblastoma cells, at amounts as low as 1 ng, whereas addition of 

soluble BMP-6 in equal amounts was significantly less effective. I proved that a local control 

of ligands’ density is crucial for modulating cell response. A potential medical application 

of the presented approach dealing with the initiation of cell death in multiple myeloma cells 

by iBMP-6 was also performed.  

In future studies, the underlying molecular mechanisms are addressed, in particular 

regarding the regulation of lineage commitment and differentiation of cells to be able to 

make our approach suitable for clinical applications, e.g. scaffold functionalization and more 

in general tissue engineering. Furthermore, the transfer of the here presented approach on 

PEG based hydrogels allows the preparation of a platform, which enables the investigation 

of long-term cell signaling studies with controlled and covalently immobilized growth 

factors in combination with adhesive ligands. This setup is not limited to BMP-6 in particular 

and BMPs in general, but is applicable for any growth factors containing primary amine 
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groups, which can be addressed by the MU-NHS linker. Furthermore, other groups of the 

protein can be utilized by exchanging the NHS ester with appropriate reactive groups, e.g. 

nickel-nitrilotriacetic acid (NTA) addressing a polyhistidine-tag (His-tag) or a maleimide 

targeting cysteine residue. This makes the presented technique a versatile tool, since the dual 

functionalized linker only needs to contain a thiol group to bind to the gold nanoparticles. 

This allows for the investigation of short- and long-term signaling pathways stimulated by 

growth factors. This work can help to study cell pathways and interactions in order to 

understand the underlying mechanisms of various diseases paving the way towards new 

drugs and therapeutical treatments.  

 

  

 

 



 9 Appendix 

  105 

9 Appendix 

9.1 Chemiluminescence detection of BMP-6 and GFP after 
QCM-D observation 

While the surface treated with MU-NHS and BMP-6 showed a strong and intensive signal, 

the control surface without BMP-6 treatment displayed almost no signal. This confirmed the 

QCM-D results in the previous section and proved the immobilization of BMP-6 to the 

homogeneous gold surface. 

 

 
 

Figure 9.1 Chemiluminescence detection and quantification of BMP-6 and GFP on QCM-D crystals. The 
QCM-D sensors, which were first treated witch acetylated protein (sensor 1 and sensor 3), showed a higher 
signal than the other two sensors (sensor 2 and sensor 4). These results were supported by the intensity 
quantification supports. 

 

The final chemiluminescence detection of BMP-6 and GFP on the QCM-D sensors (Figure 
9.1) proved the results from the QCM-D experiment. The acetylated proteins bound weaker 

to the surfaces coated with MU-NHS linker than the untreated proteins. 
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9.2 BMP-6 detection on homogeneous gold surface by 
chemiluminescence 

In order to validate the results and prove the reproducibility, glass coverslips were coated 

with homogeneous gold, supported by an adhesive chromium layer, generated by physical 

vapor deposition. Afterwards the substrates were functionalized with a SAM of MU-NHS 

ester, followed by immobilization of BMP-6 to the surface. Then, the surfaces were blocked 

with BSA and incubated with primary anti-BMP-6 mouse IgG antibody and secondary anti-

mouse IgG antibody conjugated with HRP. The detection of BMP-6 was performed with 

luminescent imaging analyzer using ECL detection kit as described in section 5.2.2.1. 

Figure 9.2 shows the successful immobilization of BMP-6 on gold substrates. 

 

 
 

Figure 9.2 Chemiluminescence detection of BMP-6 on gold substrates. Surface bound BMP-6 was detected 
with indirect immunochemiluminescence. As control, a surface, which was not incubated with BMP-6, was 
used. Image was adapted and modified from Martin et al.98 
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