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Abstract 

TET enzymes are relatively novel players in the epigenetic regulation of mammalian DNA 

methylation. They participate in DNA demethylation, but their precise roles in different 

developmental and disease scenarios are not fully understood. The aim of this work was to 

investigate the biological roles of TET enzymes in lineage-committed normal and cancer 

cells. To this end, murine primary cells with genetic deletion of TET enzymes and human 

cancer cells with recurrent mutations in the cofactor providing isocitrate dehydrogenases 

(IDH), provoking competitive inhibition of TET enzymes, were analyzed.  

By characterizing mouse embryonic fibroblasts adipogenic differentiation defects, 

inefficient activation of genes relevant to adipogenesis and widespread gene deregulation 

upon TET1/2-deficiency were discovered. Examination of the genome-wide DNA methylation 

landscape demonstrated the hypermethylation of DNA methylation canyons as a main 

characteristic of the TET1/2-deficient methylome. Canyons were associated with 

developmentally important genes and canyon collapse due to hypermethylation coincided 

with developmental gene deregulation, defective induction of adipogenic markers and the 

hypermethylation of their promoters. Together, these findings uncovered a novel epigenetic 

regulatory role in the maintenance of DNA methylation canyons for TET1 and TET2 that is 

essential for epigenetic programming during differentiation.  

In the second part of this thesis, published array-based DNA methylation profiles of a 

large acute myeloid leukemia (AML) patient cohort were used to examine mutant IDH- 

(mIDH) and TET-dependent DNA methylation changes. This confirmed the known association 

between mIDH and genome-wide hypermethylation. However, similar global methylation 

changes were not present in TET2 mutant patients and mIDH carrying patients lacked 

specific canyon hypermethylation. Intriguingly, neither overexpression of mIDH, nor treatment 

of a leukemia cell line with D-2-hydroxyglutarate, which is a putative TET inhibitor produced 

by mIDH, recapitulated the mIDH-associated hypermethylation. Instead, comparison with 

hematopoietic reference methylomes revealed high similarity between mIDH-associated and 

myeloid progenitor methylation profiles, suggesting the involvement of differentiation state 

rather than TET inhibition in the hypermethylation phenotype. These findings implicate a 

previously unnoted factor in the epigenomic changes of AML cells with mIDH, which may be 

critical to understand and therapeutically target mIDH-dependent pathogenesis. 

 

  





Zusammenfassung 

TET Enzyme sind relativ neue Akteure in der epigenetischen Regulation von DNA-

Methylierung in Säugern. Sie wirken an DNA-Demethylierung mit, jedoch sind ihre konkreten 

Rollen in verschiedenen Differenzierungs- und Krankheitsszenarien nicht vollständig 

aufgeklärt. In der vorliegenden Arbeit sollten die biologischen Funktionen von TET-Enzymen 

in determinierten normalen sowie Krebszellen erforscht werden. Dazu wurden primäre 

Mauszellen mit genetischer TET-Deletion und humane Krebszellen mit wiederkehrenden 

Mutationen in den Cofaktor-bereitstellenden Isocitrat-Dehydrogenasen (IDH), welche zu einer 

kompetitiven Enzymhemmung der TET Proteine führen, untersucht. 

Mittels Charakterisierung von embryonalen Mausfibroblasten wurden Defekte in der 

adipogenen Differenzierung, der Aktivierung von Adipogenese-relevanten Genen und der 

Genexpression bei TET1/2-Defizienz entdeckt. Die Untersuchung der genomweiten DNA-

Methylierung identifizierte die Hypermethylierung von sogenannten DNA-Methylierungs-

Canyons als wesentliches Merkmal des TET1/2-defizienten Methyloms. Canyons waren mit 

entwicklungsbiologisch relevanten Genen assoziiert und ihr Zusammenbruch durch 

Hypermethylierung war begleitet von Regulationsdefekten in Entwicklungsgenen, fehlerhafter 

Induktion von adipogenen Markern und Promoter-Hypermethylierung. Diese Ergebnisse 

schreiben TET1 und TET2 eine neuartige regulatorische Rolle in der Erhaltung von Canyons 

zu, die essentiell für die epigenetische Programmierung während der Differenzierung ist. 

Im zweiten Teil dieser Arbeit wurden publizierte Array-basierte DNA Methylierungsprofile 

einer großen akuten myeloischen Leukämie (AML) Patienten-Kohorte verwendet, um 

Methylierungsveränderungen durch mutante IDH (mIDH) und TET Enzyme zu analysieren. 

Dies bestätigte die bekannte Assoziation zwischen mIDH und genomweiter DNA 

Hypermethylierung. Allerdings waren ähnliche Veränderungen nicht in TET2 mutanten 

Patienten vorhanden und Patienten mit mIDH wiesen keine spezifische Canyon 

Hypermethylierung auf. Interessanterweise wurde die mIDH-assoziierte Hypermethylierung 

auch weder durch die Überexpression von mIDH, noch die Behandlung von Leukämiezellen 

mit D-2-Hydroxyglutarat, welches ein durch mIDH produzierter, mutmaßlicher TET Inhibitor 

ist, exakt nachgebildet. Stattdessen offenbarte der Vergleich mit hämatopoetischen 

Referenzmethylomen eine hohe Ähnlichkeit zwischen mIDH-assoziierten und myeloischen 

Progenitorzell-Methylierungsprofilen, was auf eine Beteiligung des Differenzierungsgrades 

anstelle der TET Inhibition an der Hypermethylierung hinweist. Diese Ergebnisse involvieren 

einen bisher unbeachteten Faktor in die epigenomischen Veränderungen von AML-Zellen mit 

mIDH, welcher entscheidend für das weitere Verständnis und die gezielte Therapie von 

mIDH-abhängiger Pathogenese sein könnte. 
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1 Introduction 

The genomic sequence of a living creature contains the entire information needed to build the 

organism. But how can the static genome translate into a variety of specialized cell types and 

functions as observed in complex beings? In 1942 Waddington described that “between 

genotype and phenotype […] there lies a whole complex of developmental processes” and 

termed this phenomenon “epigenetics” (Waddington, 1942). Nowadays, epigenetic research 

investigates (mitotically and/or meiotically heritable) molecular changes, modulating gene 

function and eventually the phenotype, independently of alterations in the DNA sequence 

(Russo, Martienssen and Riggs, 1996). Epigenetic processes establish stable gene 

expression patterns defining cellular identity, but at the same time are reversible and 

dynamic, allowing cellular plasticity and differentiation. Several components orchestrate the 

complex epigenetic interplay, among them covalent modifications of nucleic acids and 

histones, chromatin remodelers and non-coding RNAs. 

1.1 The mammalian DNA methylation machinery 

Presently, known covalent modifications of DNA bases include N6-methyladenine (6mA), 

N7-methylguanine, C5-methylcytosine (5mC) and its oxidized derivatives 

5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5mC), 5-carboxylcytosine (5caC) as well 

as 5-hydroxymethyluracil (Achwal et al., 1983; Breiling and Lyko, 2015).  

DNA methylation at the carbon-5 position of cytosine was first described in 1948 

(Hotchkiss, 1948) and due to intensive studies is now the best characterized epigenetic 

modification. It is highly conserved and present in all three domains of life. In mammals, it is 

the most common modification termed the fifth base of the genome and has crucial roles in 

development, differentiation and disease (Li and Zhang, 2014; Smith and Meissner, 2013). 

The family of DNA methyltransferases (DNMTs) is responsible for the establishment and 

maintenance of this mark. 

1.1.1 DNA methyltransferases 

DNMTs catalyze the transfer of a methyl group from its donor S-adenosylmethionine (SAM) to 

position five of the cytosine carbon ring (Figure 1.3). While DNMT3A and B are de novo 

methyltransferases responsible for initial establishment of DNA methylation, DNMT1 is the 

maintenance transferase ensuring faithful propagation of the methylation mark during cell 

division (Figure 1.1A). Since replication is semi-conservative in mammals, palindromic 

hemimethylated CpG residues can be recognized by DNMT1 and copied to the daughter 
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DNA strand, resulting in symmetrically methylated CpGs (Figure 1.1C). This process has an 

error rate of ~1% per division and thus can ensure the gross maintenance of this mark (Reik, 

2007). DNMT1 is ubiquitously expressed in proliferating cells and most abundant during S 

phase (Kishikawa et al., 2003). Its targeting to DNA replication forks relies on the physical 

interaction with PCNA and UHRF1, which is capable of binding hemimethylated CpGs 

(Bostick et al., 2007; Chuang et al., 1997; Smith and Meissner, 2013). Homozygous deletion 

of DNMT1 in mESCs leads to a drastic reduction of global DNA methylation, disruption of 

imprinted gene regulation, complete X-inactivation and derepression of retrotransposons (Goll 

and Bestor, 2005). 

 

 

Figure 1.1: Mammalian DNA (de)methylation machinery.  
(A) Domain structure of DNA methyltransferases (adapted from Goll and Bestor, 2005). (B) Domain 

structure of the TET family (adapted from Rasmussen and Helin, 2016). Nuclear localization signal 

(yellow), replication foci (cyan), Cys-rich- (pink), BAH- (blue), PWWP- (red), CXXC- (orange) and 

DSBH domain (green), methyltransferase motifs (black), low complexity insert (gray), Fe(II)- (dark red) 

and D-2-HG-interacting motifs (dark green). (C) Schematic of DNMT and TET activity on DNA.  

 De novo methylation activity is recruited to repeat sequences by an unknown 

mechanism and unmethylated H3K4 harboring regions, such as inactive promoters and 

methylated sequences, by DNMT3L, which occurs in a complex with DNMT3 enzymes in 

germ cells (Edwards et al., 2017; Ooi et al., 2007). The disruption of the PIWI-interacting RNA 

pathway in male germ cells results in abrogation of de novo methylation, arguing for an 

involvement of piRNAs in DNA methylation, but the exact connection is unclear (Aravin and 

Bourc’his, 2008). Other reports suggest that DNMT3A and B are targeted to active genes by 

recognition of H3K36me3 through their PWWP domains (Baubec et al., 2015; Rondelet et al., 

2016). DNMT3A/B-deficient mESCs failed to methylate introduced retrovirus sequences and 

lost methylation from various repeat elements and genes (Chen et al., 2003; Okano et al., 

1999). Knockout of DNMT3A/B in human ESCs revealed redundant targeting of DNMT3A or 

B to intergenic regions, CpG island shores, promoters with intermediate or low CpG density 
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and introns, while selective targeting happens at CpG islands (Liao et al., 2015). Moreover, 

DNMT3A seems to play an essential role in the methylation of imprints (Kaneda et al., 2004), 

whereas DNMT3B is crucial for methylating centromeric minor satellite repeats. DNMT3A/B 

deficient mouse embryos display globally reduced methylation (Okano et al., 1999). These 

studies indicate that DNMT3A and B have overlapping as well as distinct functions during 

different developmental stages.  

1.1.2 The mammalian DNA methylation landscape 

DNA methylation predominantly occurs symmetrically in the sequence context of 5’-CpG-3’ 

(Ramsahoye et al., 2000) and 60 - 80% of these dinucleotides in adult mammalian genomes 

are usually methylated resulting in a total of ~1% methylated cytosines among all bases 

(Ehrlich et al., 1982). CpG residues are less frequent than statistically expected in 

mammalian genomes, presumably because 5mC is prone to spontaneous deamination to 

thymine, which is not recognized as an erroneous base due to its natural occurrence in DNA. 

In contrast, unmethylated cytosines are deaminated to uracil and hence would be recognized 

and repaired by uracil-DNA glycosylase (Coulondre et al., 1978).  

This phenomenon most likely resulted in the emergence of CpG islands (CGIs) – 

clustered regions of high CpG density – which are mostly devoid of methylation at any time 

point during development in many tissues and thus have been protected from C to T 

transition. Mammalian methylomes are therefore characterized by a bimodal distribution with 

the majority of CpGs being highly methylated and the remaining proportion largely 

unmethylated (Meissner et al., 2008). CGIs comprise regions of ~1000 bp average length 

with an elevated CG content (>50%) and reduced CpG depletion (observed/expected CpG 

ratio >60%; Deaton and Bird, 2011). About 72% of annotated promoters are associated with 

CGIs (Saxonov et al., 2006), suggesting functional relevance of these features. The related 

genes are often ubiquitously expressed and include nearly all housekeeping genes, many 

developmental regulators, but also tissue-specific genes with limited expression (Larsen et 

al., 1992).  

Refined analysis of CGIs and their methylation variation in cancer has led to the 

discovery of less CpG dense shores and shelves surrounding CGIs, which are interspersed 

into the open sea of single isolated CpGs (Figure 1.2A). These epigenomic elements are 

highly conserved between species and most tissue-specific and cancer-associated variation 

appears to occur in CGI shores (Doi et al., 2009; Irizarry et al., 2009). 

DNA methylation canyons (Figure 1.2B) have been recently identified as another 

poorly methylated feature of mammalian genomes (Jeong et al., 2013). In contrast to CGIs, 

these elements are considerably larger (>3.5 kb; some extending over 25 kb) and 90% of 



Introduction 

4 
 

them harbor at least one CGI. Identification requires at least five CpGs/kb and an average 

methylation of ≤10%. This identified 1,104 canyons in purified mouse hematopoietic stem 

cells (HSC). Canyon-associated genes are of particular developmental relevance as they are 

enriched for homeobox genes, transcriptional regulators and genes involved in embryonic 

morphogenesis. Furthermore, canyons are characterized by inter-species and cell-type 

conservation, depletion for transposable elements, 5hmC presence at their borders and 

dependency on DNMT3A (Jeong et al., 2013). 

 

 

Figure 1.2: Schematic presentation of key features of the mammalian methylome. 
(A) Conceptual scheme showing the relationship between CpG island, shore, shelf and open sea. 

Green color intensity indicates CpG density. (B) Schematic example of a DNA methylation canyon at 

the mouse PAX6 locus (adapted from Jeong et al., 2013). 

 Notably, a range of other hypomethylated elements has been identified to date. Some 

of them are probably identical to canyons such as DNA methylation valleys (Xie et al., 2013), 

but others are rather small and coincide with DNAse-hypersensitive and transcription factor 

binding sites such as low-methylated regions (LMRs; Stadler et al., 2011). Partially 

methylated domains (PMDs) are large regions with an average methylation level of <70% 

(Lister et al., 2009) and have been reported to coincide with nuclear lamina-associated 

domains (Berman et al., 2011). It was suggested that cancer cells or tissue cultures, i.e., 

systems that proliferate quickly, might progressively lose methylation from PMDs due to 

inefficient maintenance methylation in gene-poor regions (Gaidatzis et al., 2014; Hon et al., 

2012; Lister et al., 2011). 

1.1.3 Function of DNA methylation  

DNA methylation plays a major role in transcription and chromatin structure regulation, 

X-chromosome inactivation, silencing of repetitive DNA and transposable elements, and 

genomic imprinting (Bird, 2002). Since numerous studies showed the inhibition of expression 

upon methylation (Vardimon et al., 1982), it has been widely accepted that promoter DNA 

methylation is not compatible with gene expression. However, on a genome-wide level this 

correlation is not always true (e.g. Eckhardt et al., 2006), emphasizing that the mechanistic 

relationship between methylation and expression has to be further elucidated.  
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 Methylation of CGI promoters during development has been linked to permanent 

silencing and can be employed to stably repress germline, stem cell and specific genes of 

other lineages not required anymore in differentiating cells. Consistently, differentiation relies 

on the presence of DNMTs and genetically deficient ESCs fail to differentiate and regulate 

gene expression of germ layer und pluripotency markers accordingly (Jackson et al., 2004; 

Lei et al., 1996; Li et al., 1992; Okano et al., 1999). Typical pluripotency genes whose 

promoters are silenced by DNA methylation are OCT4 and NANOG. However, repression is a 

coordinated sequence of silencing events that also employ histone modification and 

nucleosome remodeling. In most cases, sequence-specific repressors initiate silencing and 

only later DNA methylation follows to inevitably lock in the repressive chromatin state. 

Nevertheless, an instructive role for DNA methylation in initiation of gene silencing is still 

conceivable (Smith and Meissner, 2013).  

 Mechanistically, DNA methylation can lead to silencing by inhibiting the recruitment of 

basal transcription machinery and methylation-sensitive transcription factors, as has been 

described for SP1, CREB, C-MYC or NRF1 (Clark et al., 1997; Domcke et al., 2015; Mancini 

et al., 1999; Prendergast et al., 1991). However, there are also a number of factors that are 

attracted by DNA methylation in their consensus sequence (Yin et al., 2017), potentially 

explaining positive correlations between methylation and transcription. The insulator protein 

CTCF can block enhancer promoter interactions, change chromatin architecture and 

attenuate POLII, which then includes exons during splicing (Ong and Corces, 2014) and thus 

translates its methylation sensitivity into transcriptional regulation (Bell and Felsenfeld, 2000; 

Narendra et al., 2015; Shukla et al., 2011). The general applicability of this principle is under 

debate, especially since CTCF also seems to create local regions of low methylation 

(Domcke et al., 2015; Feldmann et al., 2013; Stadler et al., 2011). 

 Furthermore, methylation could affect nucleosome positioning, eventually re-directing 

the transcriptional machinery and can induce the formation of heterochromatin by recruiting 

methyl-CpG-binding domain (MBD) proteins such as MeCP2. In turn, histone deacetylases or 

repressive complexes, such as the Sin3A, Mi2/NuRD or MeCP1 complex, are recruited, 

which condense the chromatin and facilitate the formation of a repressive chromatin state 

(Bird and Wolffe, 1999). 

 In contrast to promoter methylation, gene body methylation in mammals has been 

correlated with increased transcription of the corresponding genes (Baubec et al., 2015; 

Hellman and Chess, 2007; Lister et al., 2009). It has been suggested that it is essential to 

block transcription of active transposable elements while maintaining the elongation of the 

proper gene (Jones, 2012; Yoder et al., 1997), reduce transcriptional noise (Bird, 1995), 

regulate cell type specific alternative promoters (Maunakea et al., 2010) or prevent erroneous 

initiation of cryptic transcription (Neri et al., 2017). 
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While mammalian genomes are usually highly methylated, two striking waves of global 

DNA methylation reprogramming are observed during early development. The first takes 

place during germline development and the second in the early zygote. Primordial germ cell 

(PGC) demethylation is thought to enable the establishment of gender specific methylation 

patterns at imprinted genes, reset the cells to pluripotency and reduce mutational burden due 

to 5mC deamination (Reik et al., 2001). Zygotic demethylation is probably required to erase 

acquired epigenetic changes during gametogenesis due to environmental or individual 

genetic events and facilitate the expression of pluripotency-associated genes (Reik, 2007; 

Reik et al., 2001). The involvement of active and passive demethylation processes in these 

events will be introduced in chapter 1.2.3.1. 

1.1.4 DNA methylation changes in cancer 

Epigenetic dysregulation is an emerging hallmark of cancer and comprises alterations in DNA 

and histone modifications, histone modifiers and readers, chromatin remodelers, and 

microRNAs (Baylin and Jones, 2016). Together with genetic defects, it participates in tumor 

promotion and initiation and therefore genetic changes of epigenetic modifiers are now 

becoming increasingly investigated. The earliest studies on cancer epigenetics noted that 

5mC content in different cancers was globally reduced (Feinberg and Vogelstein, 1983a; 

Gama-Sosa et al., 1983). Later on, it was realized that cancer epigenomes redistribute their 

genomic methylation resulting in global hypomethylation and focused CGI hypermethylation. 

Deregulation of oncogenes, tumor suppressor, stem cell and differentiation genes, chromatin 

architecture, transposable elements, satellite DNA and genomic imprinting are the rational 

consequences, which could be observed in cancer to date (Dawson, 2017; Feinberg and 

Tycko, 2004). 

 Global hypomethylation can affect normally methylated CGIs and lead to derepression 

of associated genes (Feinberg and Tycko, 2004). These can be potential oncogenes, such as 

RAS or CCND2 (Feinberg and Vogelstein, 1983b; Oshimo et al., 2003), cancer/testis 

antigens such as MAGE-1 (De Smet et al., 1996) or even viral oncogenes among them 

HPV16 (Badal et al., 2003; de Capoa et al.). Another prominent example of promoter 

hypomethylation correlating with increased expression is the MDR1 gene, which is associated 

with increased drug resistance in AML (Nakayama et al., 1998). Hypomethylation can induce 

genomic instability, another hallmark of cancer (Hanahan and Weinberg, 2011). 

Mechanistically, affected satellites tend to break and recombine, resulting in chromosomal 

fusions of pericentromeric regions (Qu et al., 1999). Extensive transposition due to 

derepression of transposable elements might additionally facilitate DNA breaks.  
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 In contrast, hypermethylation of CGIs has been linked to the silencing of tumor 

suppressor genes. Classical examples that acquire promoter hypermethylation and decline in 

expression in cancers are RB, CDKN2A, VHL and E-Cadherin (Graff et al., 1995; Herman et 

al., 1994; Merlo et al., 1995; Sakai et al., 1991). This evolved into the concept of epigenetic 

caretakers – genes that usually prevent unlimited self-renewal and are induced upon 

differentiation but cannot be activated anymore in cancer cells and thus enable clonal 

expansion (Baylin and Jones, 2016; Feinberg and Tycko, 2004). Similarly, it has been 

observed that poised genes, which are bivalently marked (H3K4me3 and H3K27me3) in 

embryonic stem cells, have a ~12-fold increased propensity to undergo promoter 

hypermethylation in cancer (Dawson, 2017; Widschwendter et al., 2007). Moreover, silencing 

of genes involved in DNA mismatch repair, for example MLH1, has been correlated with the 

presence of mismatch repair defective cancers (Kane et al., 1997) and might facilitate mutator 

phenotypes and microsatellite instability.  

The hypermethylation of a distinctive set of CGIs in a subset of colorectal cancers was 

identified in 1999 and termed the CpG island hypermethylator phenotype (CIMP; Toyota et 

al., 1999). It was correlated with mismatch repair deficiency and BRAF mutations in colon 

cancer (Weisenberger et al., 2006) and many CIMP loci are targets of embryonic Polycomb 

group proteins (Widschwendter et al., 2007). However, the concept and underlying 

mechanisms of this coordinated acquisition of CGI hypermethylation are still controversial 

(Yamashita et al., 2003). Nevertheless, it has been extended to other cancer entities 

meanwhile, among them glioma and AML (Kelly et al., 2017; Noushmehr et al., 2010).  

Additionally, disturbed methylation in cancer hampers CTCF binding, which appears to 

result in defective insulator function and chromatin architecture (Flavahan et al., 2015). 

 These observations implicate DNA methylation as a contributing, if not causative 

factor in the deregulation of gene expression and genomic integrity in cancer. It is thus not 

surprising that the epigenetic modifiers DNMT3A and TET2 are among the most frequently 

mutated genes in clonally expanded stem cell populations of the hematopoietic system 

(Dawson, 2017). Even so, it is still an unresolved issue whether a driving role in pathogenesis 

is attributable to aberrant DNA methylation or it is merely a reflection of cellular history and 

differentiation state. 

1.2 The mammalian DNA demethylation machinery 

The unique maintenance activity of DNMT1 implies not only stable inheritance of 5mC, but 

also its theoretically indefinite propagation. Demethylation would thus have to rely on the tight 

regulation of DNMT1 or its targeting factors and dilution of 5mC during cell divisions, removal 

of methylated cytosines or deaminated products by repair mechanisms or direct enzymatic 

reversal. The discovery of 5hmC in mammalian DNA opened up a new avenue for passive 
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and active DNA demethylation since hydroxymethylated CpGs are poorly recognized by 

DNMT1 (Hashimoto et al., 2012).  

1.2.1 DNA hydroxymethylation 

DNA hydroxymethylation has first been described in bacteriophage nucleic acids (Wyatt and 

Cohen, 1952) and in the 1970s in vertebrate DNA (Penn et al., 1972). In 2009 it was 

demonstrated that 5hmC is present in mouse brain (Kriaucionis and Heintz, 2009) and ESCs 

and that the ten-eleven translocation 1 (TET1) enzyme is responsible for the conversion of 

5mC to 5hmC (Tahiliani et al., 2009). It was also speculated that this conversion might 

represent part of an active DNA demethylation pathway (Tahiliani et al., 2009). 

 The 5hmC mark is highly conserved among animals ranging from mammals to 

chicken and sea urchin and is also present in plants, albeit levels are quite variable between 

these species (Terragni et al., 2012). Overall levels of 5hmC are variable between tissues 

and cell types. In most mouse and human tissues, including mESCs and several human cell 

lines, the total 5hmC percentage in the genome ranges from roughly 0.1 to 0.3. The highest 

levels were observed in neuronal tissues, i.e., human and mouse adult brains, with 0.48% 

and 0.9%, respectively, resulting in 1 – 2% 5hmC among all cytosines (Terragni et al., 2012). 

It was claimed that in Purkinje cells, 5hmC reached almost 40% of 5mC levels (Kriaucionis 

and Heintz, 2009), suggesting that post-mitotic cells accumulate particularly high 5hmC 

levels. The content of 5hmC does not correlate with 5mC levels or TET expression and 

declines in cultured cells (Nestor et al., 2012). It was further noted that 5hmC levels were 

decreased in different cancer tissues and cell lines (Globisch et al., 2010; Kriaucionis and 

Heintz, 2009; Terragni et al., 2012).  

 Since its discovery, 5hmC has been implicated in DNA demethylation and epigenetic 

signaling. The evidence for active DNA demethylation originates from in vitro and cell culture 

studies describing TET-mediated 5mC oxidation followed by excision of 5fC and 5caC 

employing thymine DNA glycosylase (TDG) and base excision repair (He et al., 2011; Maiti 

and Drohat, 2011). Consistently, 5caC and 5fC accumulate to detectable levels in TDG-

deficient cells (He et al., 2011; Shen et al., 2013). Evidence for active DNA demethylation in 

vivo comes from reports showing the accumulation of oxidized mC forms, the activation of 

base excision repair and enrichment of single-strand breaks during zygotic and germ cell 

DNA methylation reprogramming (Hajkova et al., 2010; Ladstätter and Tachibana-Konwalski, 

2016; Wossidlo et al., 2010). Passive demethylation by dilution has been supported by 

strongly reduced DNMT1 activity on hemimodified 5hmC, 5fC and 5caC compared to 5mC 

(Hashimoto et al., 2012) and has for example been observed in zygotic methylation erasure 

(Inoue and Zhang, 2011). 
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 While in DNA demethylation 5hmC would be a short-lived intermediate, epigenetic 

signaling would require reasonable turn over times of 5hmC. Analysis of steady states of 

5hmC, 5fC and 5caC suggested that 5hmC is slowly established on the replicated strand and 

stably maintained over several days in cultured cells and in vivo (Bachman et al., 2014). 

Global 5fC and 5caC content was not detectable in mouse olfactory bulb DNA using HPLC-

MS (Globisch et al., 2010), indicating that the levels of conversion products of 5hmC are 

negligible (0.3 to 1.4% of 5hmC) and thus are either very short-lived or cannot be responsible 

for large-scale DNA demethylation. The kinetics of TET processivity also argue against a 

systematic, iterative and thus demethylating oxidation process (Tamanaha et al., 2016). Base 

resolution analysis of 5hmC, 5fC and 5caC using TDG-deficient mESCs suggested that 

distinct regions of the genome carry different oxidized 5mC forms and that TET processivity 

correlates with local chromatin accessibility, suggesting targeted conversion at functionally 

relevant regions (Shen et al., 2013; Wu and Zhang, 2017; Wu et al., 2014). Consistent with a 

signaling role of oxidized 5mC forms, specifically interacting reader proteins, such as MeCP2, 

MBD3, Uhrf2, CTCF, SALL4A and RNA polymerase II elongation complex, which are 

involved in transcriptional regulation, have been discovered (Iurlaro et al., 2013; Marina et al., 

2016; Mellén et al., 2012; Spruijt et al., 2013; Wang et al., 2015a; Xiong et al., 2016; Yildirim 

et al., 2011). It was also suggested that 5hmC could function in marking DNA damage sites 

(Kafer et al., 2016). 

 To elucidate the genomic location of 5hmC conversion and demethylation, numerous 

studies mapped the 5hmC distribution by various methods. Whole genome bisulfite 

sequencing, which is the gold standard for base resolution 5mC mapping, has been used to 

monitor regions of demethylation in TET-deficient models – assuming that 5mC accumulates 

in regions where it would usually be removed by TETs. However, it can neither distinguish 

5hmC from 5mC nor 5fC and 5caC from unmodified C (Booth et al., 2012; He et al., 2011; Yu 

et al., 2012). Advanced technologies have thus been developed to directly map 5hmC, such 

as 5hmC-DNA-IP, oxidative or TET-assisted bisulfite sequencing.  

Firstly, 5hmC is widespread in the mammalian genome occurring at inter- and 

intragenic, DNAse hypersensitive regions, TSS, CTCF and p300 sites. In ESCs, 5hmC 

deposition seems to correlate negatively with CpG density, so that promoters with low or 

intermediate CpG density are enriched, while unmethylated, H3K4me3-marked CGI 

promoters of highly expressed genes are depleted of 5hmC (Booth et al., 2012; Pastor et al., 

2011; Wu et al., 2011a; Xu et al., 2011b; Yu et al., 2012). Elevated levels of 5hmC were also 

found at bivalent promoters of poised genes, enhancers and gene bodies (Hon et al., 2014; 

Stroud et al., 2011; Sun et al., 2015; Williams et al., 2011). Immediate transcription factor 

binding sites are depleted of 5hmC, but flanking areas are enriched (Yu et al., 2012). TET1 

and TET2 activity have been assigned to TSS and gene bodies, respectively (Huang et al., 



Introduction 

10 
 

2014). Together, these correlations suggest relevance of 5mC oxidation at various genomic 

functional elements either by demethylation or conferring specific epigenetic signals. 

1.2.2 Ten-eleven translocation enzymes 

The mammalian TET enzyme family comprises three members – TET1, TET2 and TET3 – all 

of which can successively convert 5mC to 5hmC, 5fC and 5caC (Ito et al., 2010, 2011; 

Tahiliani et al., 2009). TET proteins require α-ketoglutarate, oxygen and iron (Fe(II)) as 

cofactors to exert their dioxygenase activity (Figure 1.3). According to biochemical studies, 

TET enzymes display the highest affinity for mCpG compared to other neighboring bases (Hu 

et al., 2013) and 5hmC consistently occurs almost exclusively in a CpG context in mammalian 

genomes (Yu et al., 2012). Moreover, TET proteins prefer binding to 5mC over 5hmC and 5fC 

(Hu et al., 2015; Ito et al., 2011) and display similar conversion rates independently of 

different modification combinations or hemimodification of a CpG dyad (Wu and Zhang, 

2017).  

 

Figure 1.3: Mechanisms of DNA methylation and active and passive demethylation.  

DNMTs establish 5mC from unmodified cytosines (C). All successive oxidation steps can be mediated 

by TET1, TET2 and TET3 and require the indicated cofactors (adapted from Wu and Zhang, 2017). 

The TET1 gene was initially identified in a translocation between chromosomes 10 

and 11 resulting in a fusion with the MLL gene in acute myeloid leukemia (AML; Ono et al., 

2002). All three TET enzymes have a C-terminal catalytic domain consisting of a double-

stranded β-helix (DSBH) domain, a cysteine-rich domain and an Fe(II)-interacting HxD motif. 

The N-terminal CXXC domain, which includes two zinc finger motifs, is present only in TET1 

and TET3 and allows DNA binding (Figure 1.1B). The C-terminus of TET2 most likely was 

separated from its putative CXXC domain by a chromosomal inversion during evolution 

yielding the gene IDAX. However, IDAX binds to unmethylated DNA and is able to recruit 
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TET2 (An et al., 2017; Ko et al., 2013). Both TET1 and TET3 also express truncated isoforms 

at certain developmental stages lacking the CXXC domain (Zhang et al., 2016a) and these 

forms have differential demethylation activity (Wu and Zhang, 2017), suggesting that their 

distinct expression during developmental stages might serve to adapt overall oxidative 

conversion activity. 

 TET enzymes are subject to many regulatory processes including substrate and 

cofactor availability, transcriptional, posttranscriptional and -translational regulation, cellular 

and genomic localization. TET activity is linked to cellular metabolism via α-ketoglutarate, 

which is provided by isocitrate dehydrogenase (IDH) enzymes. As evidenced by two studies, 

5hmC levels directly seem to correlate with IDH expression, suggesting that α-ketoglutarate is 

a limiting factor in 5hmC generation (Lian et al., 2012; Xu et al., 2011a). Consistent with this, 

enhanced glucose metabolism in mice was found to elevate α-ketoglutarate in conjunction 

with 5hmC (Yang et al., 2014). In contrast, accumulation of fumarate and succinate due to 

cancer-associated mutations in fumarase and succinate dehydrogenase negatively impact on 

TET-dependent oxidation due to competition with α-ketoglutarate (Xiao et al., 2012). TET 

activity furthermore depends on oxygen, as hypoxia was shown to induce DNA 

hypermethylation by reducing 5mC oxidation (Thienpont et al., 2016). Conversely, vitamin C 

stimulates TET catalytic activity (Blaschke et al., 2013). 

Another layer of regulation is provided by miRNA-dependent TET transcript 

degradation, various posttranslational modifications affecting DNA binding or enzymatic 

activity as well as caspase, calpain and proteasome-mediated TET protein degradation (Wu 

and Zhang, 2017). The TET1 gene is furthermore subject to regulation by a network of 

pluripotency factors and rapidly downregulated upon ESC differentiation (Ficz et al., 2011; Ito 

et al., 2010; Koh et al., 2011; Neri et al., 2015). 

Lastly, ChIP-seq studies have determined the genomic localization of TET1, 

identifying CGIs, active and bivalent promoters as preferentially bound (Williams et al., 2011; 

Wu et al., 2011b; Xu et al., 2011b). However, the assumption that the DNA binding domain of 

TET1 dictates its localization was disproven, since full-length and CXXC-deficient TET1 

displayed very similar binding patterns (Zhang et al., 2016a). Instead, certain chromatin 

states or other proteins could recruit TET proteins by physical interaction, as was shown for 

NANOG (Costa et al., 2013), PRDM14 (Okashita et al., 2014), PRC2 (Neri et al., 2013), WT1 

(Rampal et al., 2014; Wang et al., 2015b), REST (Perera et al., 2015), PPARγ (Fujiki et al., 

2013), CTCF (Dubois-Chevalier et al., 2014), TDG (Weber et al., 2016; Zhang et al., 2017) or 

the SIN3A complex (Williams et al., 2011). 



Introduction 

12 
 

1.2.3 Biological roles of TET enzymes 

1.2.3.1 Developmental role 

TET enzymes are involved in many developmental processes and stages. TET1 and TET2 

are highly expressed in mouse ESCs, but rapidly decline while TET3 is upregulated upon in 

vitro differentiation (Ito et al., 2010; Koh et al., 2011). High levels of TET1 and TET2 are also 

found in the inner cell mass of blastocysts and developing PGCs. In mouse oocytes and 

zygotes of the one cell stage TET3 is exclusively and highly expressed, but is downregulated 

with progressing cell cleavage (Iqbal et al., 2011). TET2 and TET3 are the major adult forms 

with wide-spread expression in many tissues (Wu and Zhang, 2014). 

Phenotypes of TET-deficient mice 

Phenotypic characterization of TET-deficient mice suggested a role for TET enzymes in 

differentiation and imprinting. TET1 KO mice appear viable, healthy and fertile, but display 

reduced body size, weight and litter (Dawlaty et al., 2011). However, when TET1-deficient 

males were mated with WT females in a different study, paternal imprinting erasure failed and 

various imprinting-related phenotypic defects were observed (Yamaguchi et al., 2013). These 

data suggest a requirement for TET1 in imprinting regulation, whereas it is not essential for 

pluripotency maintenance or development. Similarly, TET2-deficient mice developed overtly 

normal, but had an augmented stem cell pool in the bone marrow accompanied by increased 

proliferation and impaired differentiation leading to the frequent emergence of a range of 

myeloid malignancies (Li et al., 2011). TET1/2-deficient mice displayed stochastic 

developmental plasticity with frequent perinatal lethality due to malformations or growth 

retardation, but some individuals developed normally. These exhibited hypermethylation in 

various tissues, disturbed methylation at several imprinted loci and reduced fertility in 

females. As TET3 deletion in mice is neonatally lethal, a conditional germline-specific TET3 

KO mouse model was established (Gu et al., 2011). This revealed maternal contribution of 

TET3 to the zygote, which is then recruited to the paternal pronucleus. Female mice with 

germline TET3-deficiency were less fertile and descending embryos showed a pronounced 

increase of developmental failure. Recently however, TET3 haploinsufficiency rather than 

TET3-dependent 5mC conversion was determined to be causative for the observed 

phenotypes (Inoue et al., 2015). TET triple-deficient (TKO) ESCs are completely devoid of 

5hmC, display gastrulation defects and cannot contribute to embryonic development (Dai et 

al., 2016; Dawlaty et al., 2014). Together, these phenotypes suggest that TET enzymes have 

redundant, but also specific, context-dependent functions. Whether these solely depend on 

their dioxygenase activity or on potential non-catalytic functions remains to be studied. 
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Involvement in pluripotency and differentiation 

The embryonic stem cell state, self-renewal and pluripotency seem to be unaffected by TET-

deficiency. However, TET1 KO or KD in mESCs skews their differentiation (Dawlaty et al., 

2011; Ficz et al., 2011; Koh et al., 2011) and TET2-deficiency delays transcriptional 

adaptation during differentiation by enhancer suppression (Hon et al., 2014). DKO for TET1 

and TET2 in mESCs likewise retained pluripotency and three germ layer competence. 

However, differentiation was skewed similar to TET1-deficient cells (Dawlaty et al., 2013). 

TKO mESCs are characterized by normal morphology and pluripotency gene expression, 

however they cannot differentiate properly (Dawlaty et al., 2014). Furthermore, TDG-deficient 

mice are embryonic lethal, but their ESCs self-renew normally, suggesting that demethylation 

is not essential for ESC maintenance but differentiation (Cortázar et al., 2011; Cortellino et 

al., 2011; Shen et al., 2013). 

 DNA methylation seems to be an obstacle in somatic cell reprogramming. Indeed, it 

was found that during Yamanaka factor-mediated reprogramming, TET enzymes are 

essential to induce NANOG and ESRRB expression (Doege et al., 2012) and to activate 

some key miRNAs required for mesenchymal-to-epithelial transition (Hu et al., 2014). 

Interestingly, TET1 was also able to substitute OCT4 as one of the four reprogramming 

factors and additionally augment reprogramming efficiency (Costa et al., 2013; Gao et al., 

2013). 

 In the adult organism, constitutive differentiation processes take place for instance in 

the hematopoietic compartment. TET enzymes were found to be essential for normal myeloid 

and B-cell differentiation (Li et al., 2011; Orlanski et al., 2016) as well as proper NK cell 

differentiation (Tsagaratou et al., 2017). Furthermore, TET-dependent demethylation occurs 

in a variety of hematopoietic cell types and differentiation scenarios (Kallin et al., 2012; Klug 

et al., 2013; de la Rica et al., 2013; Yue et al., 2016). 

 In conclusion, TET enzymes seem to be dispensable for maintaining the pluripotent 

state, but crucial for proper differentiation due to their activities on genomic regulatory 

elements. 

Involvement in methylation reprogramming 

The two prominent DNA methylation reprogramming events in primordial germ cells and the 

zygote represent interesting settings to study demethylation and thus have been revised 

since the discovery of TET activity. While the maternal genome is successively demethylated 

during cell division suggestive of a dilution-dependent mechanism, the paternal genome 

displays immediate 5mC loss after fertilization but before replication (Mayer et al., 2000), 

indicating active removal. At this time TET3 specifically localizes to the paternal pronucleus 
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and large-scale generation of all oxidized mC forms takes place (Gu et al., 2011; Inoue and 

Zhang, 2011; Inoue et al., 2011; Iqbal et al., 2011; Wossidlo et al., 2011). However, the 

driving force of demethylation nevertheless was suggested to be replication-dependent 

dilution (Inoue and Zhang, 2011; Inoue et al., 2011), as inhibition of DNA synthesis resulted in 

a greater reduction of DNA demethylation than TET3 abrogation (Guo et al., 2014; Shen et 

al., 2014a). Interestingly, a recent study provided evidence that the paternal genome might 

undergo methylation loss even before 5mC oxidation, which argues for a completely TET-

independent demethylation mechanism (Amouroux et al., 2016). 

 Once zygotic genomes are demethylated, they completely remethylate and only then 

PGCs emerge, which demethylate their genomes again in two subsequent waves. While the 

first major wave employs mainly dilution of 5mC by downregulating UHRF1, DNMT3A and B 

(Kagiwada et al., 2013; Kurimoto et al., 2008), the second one makes use of TET1/2-

mediated 5hmC production followed by replication-dependent dilution. Consistently, TET1 

and TET2 are upregulated during this phase in PGCs (Hackett et al., 2013). Most global 

demethylation in PGCs is however TET-independent as TET1/2-deficiency has only locus-

specific effects on methylation. For instance, TET1 is important to demethylate specific 

imprinted genes (Yamaguchi et al., 2012, 2013). 

Involvement in DNA damage repair 

Recent studies indicate that TET activity might be required for DNA damage repair. Firstly, 

transcriptional regulation of DNA repair genes seems to rely on TET enzymes and thus TET 

deficiency results in impaired telomeres, increased chromosomal abnormalities and the 

accumulation of DNA breaks and γH2AX (An et al., 2015; Cimmino et al., 2015; Kafer et al., 

2016; Lu et al., 2014; Yamaguchi et al., 2012; Yang et al., 2016a). Secondly, a direct role for 

5hmC has been suggested as it was enriched at DNA damage sites and mitotic chromosome 

segregation defects were observed in replication-stressed TKO mESCs (Kafer et al., 2016).  

1.2.3.2 Role in disease 

Somatic mutations of TET enzymes have been detected in a variety of cancers, particularly in 

hematological malignancies. While TET1 and TET3 mutations are rare, TET2 mutations have 

been frequently identified in a spectrum of hematological diseases with both myeloid and 

lymphoid origin (Abdel-Wahab et al., 2009; Delhommeau et al., 2009; Gaidzik et al., 2012; 

Nibourel et al., 2010; Quivoron et al., 2011; Scopim-Ribeiro et al., 2015; Tefferi et al., 2009). 

CMML (20-58%), AML (2-32%), MDS (6-26%) and T-cell lymphoma (20-83%) are the 

diseases with the highest observed mutation frequency in TET2 (Scourzic et al., 2015). As 

the phenotype of TET2-deficient mice was dominated by the development of myeloid 

malignancies after long latency, a tumor suppressor role was attributed to TET2 (Ko et al., 
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2011; Li et al., 2011; Moran-Crusio et al., 2011; Quivoron et al., 2011). However, it was 

hypothesized that other oncogenic hits are required for malignant transformation. 

Consistently, TET2 mutations were also observed in healthy elderly individuals with clonal 

hematopoiesis (Busque et al., 2012; Genovese et al., 2014; Jaiswal et al., 2014). 

TET1 seems to have context-dependent functions in leukemogenesis. While its 

deficiency alone or in combination with TET2 has been associated with the development of B-

cell malignancies (Cimmino et al., 2015; Zhao et al., 2015), another study reported that it has 

a critical oncogenic role in MLL-rearranged leukemia (Huang et al., 2013a).  

Since TET2 and TET3 are the major expressed forms in the hematopoietic system, a 

mouse model with inducible DKO in hematopoietic precursor cells was established recently, 

resulting in the rapid emergence of aggressive myeloid leukemia. This was accompanied by 

skewed differentiation towards the myeloid lineage and accumulation of DNA damage (An et 

al., 2015), suggesting TET requirement for lineage priming and genomic integrity.  

In solid cancers, all three TET enzymes have been found mutated, but with low 

frequencies. The functional importance of these mutations remains to be clarified, especially 

since these tumors accumulate many somatic mutations. However, reduced TET enzyme and 

global 5hmC levels are a general hallmark of a wide range of cancers (Rasmussen and Helin, 

2016; Shen et al., 2014b), but it is currently unclear whether this is due to increased 

proliferation rates that have been shown to negatively correlate with 5hmC amounts 

(Bachman et al., 2014). 

1.3 The interaction between IDH und TET enzymes 

1.3.1 Molecular functions of IDH and mutated IDH (mIDH) 

Isocitrate dehydrogenases (IDH) are metabolic enzymes that decarboxylate isocitrate to α-

ketoglutarate. There are three members comprising IDH1, IDH2 and IDH3. While IDH1 is 

located in the cytosol, IDH2 and IDH3 localize to the mitochondria, where they participate in 

the tricarboxylic acid cycle. IDH1 and IDH2 form homodimers and use NADP+ as a cofactor, 

whereas IDH3 requires NAD+ (Figure 1.4). In addition to crucial metabolites for cellular 

anabolism, IDH synthesize NADH for respiration and NADPH for fatty acid metabolism and 

redox homeostasis (Dang et al., 2016). Over 80 dioxygenases rely on α-ketoglutarate to exert 

their catalytic functions, including TET enzymes, histone demethylases and a range of protein 

hydroxylases (Inoue et al., 2016a). 

 Recurrent cancer-associated mutations occur exclusively in IDH1 and IDH2 and 

invariably affect key arginines of the enzyme´s active site – R132 in IDH1 and R140 or R172 

in IDH2. These mutations occur early in clonal expansion, are heterozygous and mostly 

mutually exclusive, suggesting an oncogenic gain of function (Dang et al., 2016; Medeiros et 
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al., 2017). Indeed, it was shown that the observed mutations confer neomorphic activity, 

allowing the conversion of α-ketoglutarate into D-2-hydroxyglutarate (D-2-HG) using NADPH 

(Figure 1.4; Dang et al., 2009; Gross et al., 2010; Ward et al., 2010). Since all of the reported 

mutations converge to the accumulation of D-2-HG to millimolar concentrations in cancer 

cells, it has been recognized as an oncometabolite (Dang et al., 2016). 

 

 

Figure 1.4: Actions of WT IDH enzymes in homeostasis and mutant IDH1/2 in disease. 

αKG – α-ketoglutarate, 2-HG – D-2-hydroxyglutarate (adapted from Dang et al., 2016). 

 D-2-HG was subsequently shown to impair a variety of cellular processes. Firstly, it 

was reported to competitively inhibit histone demethylases (Chowdhury et al., 2011) and TET 

enzymes (Koivunen et al., 2012; Xu et al., 2011a), thereby affecting epigenetic regulation 

(Figure 1.4). Secondly, it seems to affect HIF prolyl-4-hydroxylases, which regulate the 

stability of hypoxia-inducible factor (HIF) and thereby might aberrantly influence hypoxia 

signaling (Koivunen et al., 2012; Xu et al., 2011a; Zhao et al., 2009). In addition, D-2-HG 

inhibited certain prolyl-hydroxylases involved in proper basement membrane function in the 

brain (Sasaki et al., 2012a), cytochrome c oxidase IV of the respiratory chain in AML cells 

(Chan et al., 2015) and fumarase as well as succinate dehydrogenase, resulting in 

hypersuccinylation of lysine residues, mitochondrial depolarization, impaired respiration and 

increased apoptosis resistance (Li et al., 2015). In another study D-2-HG was associated with 

paracrine stimulation of NFkB-signaling in bone marrow stromal cells, which supported AML 

cell proliferation and chemoresistance (Chen et al., 2016). Finally, mIDH produces NADP+ 

instead of NADPH, which potentially hampers the removal of reactive oxygen species and 

confounds the tricarboxylic acid cycle by reducing α-ketoglutarate levels. Eventually, this may  
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compromise the normal synthesis of several biomolecules (Inoue et al., 2016a). Together, 

these effects result in a pronounced disturbance of the cellular homeostasis.  

1.3.2 IDH mutations in cancer 

Neomorphic IDH mutations have been observed in glioma, AML, cholangiocarcinoma, 

chondrosarcoma and premalignant disorders like MDS and myeloproliferative neoplasms 

(Inoue et al., 2016a). In glioma, CIMP was associated with mIDH (Noushmehr et al., 2010) 

and it was claimed that mIDH1 is sufficient to establish this hypermethylation pattern (Turcan 

et al., 2012). Similar reports showed mIDH-associated genomic hypermethylation in AML 

(Akalin et al., 2012) that supposedly was caused by inhibition of the demethylating TET 

activity (Figueroa et al., 2010; Turcan et al., 2012). A number of studies since then have 

confirmed the association of mIDH with hypermethylation in AML and glioma patients, mouse 

and in vitro models (Chaturvedi et al., 2016; Duncan et al., 2012; Flavahan et al., 2015; 

Kernytsky et al., 2014; Sasaki et al., 2012b; Sturm et al., 2012; Voigt and Reinberg, 2013). 

 Additionally, mIDH has been connected to histone hypermethylation and a block in 

cellular differentiation using different in vitro and in vivo models (Figueroa et al., 2010; 

Kernytsky et al., 2014; Losman et al., 2013; Lu et al., 2012; Sasaki et al., 2012b). For 

example, a mouse model of conditional myeloid-specific mIDH1 knock-in showed an 

increased hematopoietic progenitor pool, splenomegaly and anemia resembling human MDS 

with concurrent histone and DNA hypermethylation (Sasaki et al., 2012b). Recently, long-term 

HSCs were shown to downregulate DNA damage repair and self-renewal using the same 

model. Interestingly, this was independent of TET2 (Inoue et al., 2016b). Other transgenic 

mice expressing mIDH2 developed AML or resembling malignancies upon cooperation with 

oncogenic FLT3/NRAS mutations or overexpression of HOXA9/MEIS1A. This suggests a 

proto-oncogenic role for mIDH that requires additional driving mutations or gene expression 

changes (Chen et al., 2013a; Kats et al., 2014). Additionally, D-2-HG itself was shown to 

promote proliferation, cytokine independence and differentiation inhibition in cultured cells 

(Losman et al., 2013) and this was supported by a recent study using a patient-derived AML 

xenotransplantation mouse model, in which administration of D-2-HG accelerated the onset of 

leukemia (Chaturvedi et al., 2016). Together, these data established the hypothesis that 

epigenetic deregulation is the driving factor in cancers with mIDH. 

The mIDH-associated differentiation block can be resolved by suppressing D-2-HG 

production using small molecule inhibitors against mIDH (Losman et al., 2013; Rohle et al., 

2013; Wang et al., 2013a). In two recent studies, the primary effect of mIDH inhibition was 

differentiation of AML cells ex vivo, in xenograft mouse models and in in vitro models (Shih et 

al., 2017; Yen et al., 2017). However, it is currently unclear how this is mediated: Several 
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studies claim that histone and DNA methylation patterns normalize under small molecule 

treatment (Kernytsky et al., 2014; Shih et al., 2017), whereas others find no reversal of DNA 

hypermethylation although efficiently depleting D-2-HG (Chaturvedi et al., 2017; Pusch et al., 

2017; Rohle et al., 2013).  

1.3.3 The hematopoietic system and acute myeloid leukemia (AML) 

Hematopoiesis provides the organism with all blood and immune cells and occurs throughout 

lifetime. Adult hematopoietic stem cells mainly reside in the bone marrow and constantly give 

rise to self-renewing and differentiating daughter cells through asymmetric cell divisions. In a 

stepwise differentiation hierarchy, cells successively restrict their lineage potential and 

commit to multipotent progenitors (MPPs) from which precursors of the myeloid (common 

myeloid progenitors - CMPs) and lymphoid (common lymphoid progenitors - CLPs) lineages 

arise. Through multiple intermediate states including granulocyte macrophage progenitors 

(GMPs) and promyelocytes (PMNs), the specialized cells of the myeloid compartment, such 

as macrophages or granulocytes (PMC – polymorphonuclear cell), are generated. CLPs in 

turn give rise to natural killer cells, B-, and T-lymphocytes (Figure 1.5).  

The different cell fates are accompanied by dynamic changes in the methylation 

landscape and it has been proposed that DNA methylation plays an important role in 

hematopoietic lineage choice (Bröske et al., 2009). Indeed, the methylomes of hematopoietic 

cells are distinct (Bock et al., 2012; Farlik et al., 2016). For example, HSCs change their 

methylation levels gradually during differentiation with a general loss of methylation upon 

myelopoiesis (Figure 1.5). In contrast, lymphoid cells become hypermethylated compared to 

HSCs and myeloid cells (Accomando et al., 2014; Bocker et al., 2011; Hodges et al., 2011; Ji 

et al., 2010; Rönnerblad et al., 2014). Using conditional DNMT1 hypomorphic or KO mice, it 

was shown that DNMT1-mediated DNA methylation is required to maintain the HSC pool and 

silence premature expression of myeloid-specific genes. Impairment of maintenance 

methylation consequently prevented the generation of lymphoid progeny (Bröske et al., 2009; 

Trowbridge et al., 2009). In contrast, DNMT3A and DNMT3B are required to methylate and 

silence HSC specific genes like RUNX1 or GATA3. Conditional ablation of DNMT3A alone or 

in combination with DNMT3B conferred enhanced self-renewal and repopulating capacity to 

HSCs and impaired their differentiation (Challen et al., 2014, 2011). Therefore, initial 

increases in methylation upon early progenitor commitment might be related to the silencing 

of stem cell genes and restriction of pluripotency (Álvarez-Errico et al., 2014).  

AML is a malignant disease of the myeloid compartment that is characterized by the 

abnormal expansion of immature myeloid progenitor cells due to an early differentiation block 

and increased proliferative capacity. These cells mostly originate from the highly proliferative 
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progenitor pool (CD34+/CD38+) or even the HSC pool (CD34+/CD38-). As a result, various 

tissues are infiltrated with aberrantly or poorly differentiated hematopoietic cells, while normal 

hematopoiesis is prevented. To diagnose AML the percentage of immature blasts in bone 

marrow or blood has to exceed ~25% (Passegué et al., 2003).  

 

 

Figure 1.5: Schematic of human hematopoiesis and accompanying DNA methylation changes. 
Major cell fates during adult hematopoiesis are shown (modified from Farlik et al., 2016). Alterations in 

global DNA methylation at certain transitions were adapted from Álvarez-Errico et al., 2014. 

AML is marked by inter-individual, cytogenetic, molecular, morphological and clonal 

heterogeneity (Döhner et al., 2015; Heuser et al., 2011). Frequently recurring mutations in 

AML affect FLT3, NPM1, N- or KRAS, RUNX1, TP53, WT1, PTPN11, KIT, CEBPA, TET2, 

DNMT3A and IDH1 or IDH2 (Voigt and Reinberg, 2013). Functionally, these genes relate to 

different categories among them tumor suppressor genes, receptor tyrosine kinase signaling 

proteins, transcriptional regulators and epigenetic modifiers (Döhner et al., 2015). The 

comparison of mutational status in different AML subtypes and healthy adult HSCs suggested 

that many of the mutations in epigenetic regulators including IDH1, IDH2, TET2 and DNMT3A 

are found in preleukemic cells and early stages of AML. Consequently, it was hypothesized 

that these mutations and epigenetic deregulation might be initiating events in leukemogenesis 

(Corces-Zimmerman et al., 2014; Shlush et al., 2014; Welch et al., 2012). DNMT3A mutations 

occur in roughly a quarter of newly diagnosed AML patients and of these more than half 
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display a mutation in arginine 882, most commonly R882H (Ley et al., 2010; Voigt and 

Reinberg, 2013). These heterozygous mutations hamper the homotetramerization of 

DNMT3A, inhibit remaining WT activity in a dominant-negative manner and lead to focal 

methylation loss (Holz-Schietinger et al., 2012; Russler-Germain et al., 2014). Recent studies 

have indicated that TET2 and DNMT3A mutations cooperate to induce leukemia (Scourzic et 

al., 2016; Zhang et al., 2016b), suggesting that antagonizing molecular functions might 

exacerbate epigenetic deregulation and accelerate the onset of transformation. In contrast, 

TET2 and IDH mutations have been described as mutually exclusive in AML (Figueroa et al., 

2010) and it was thus hypothesized that both contribute by similar mechanisms – aberrant 

DNA hypermethylation – to leukemogenesis. There is currently no consensus on the 

prognosis of IDH mutated AML patients as results are diverging across studies and seem to 

vary with the specific amino acid substitution and enzyme. However, a recent study did not 

find differences in overall survival between AML patients with mIDH or IDH WT status (Dang 

et al., 2016; DiNardo et al., 2015). 

1.4 Aims of the thesis 

TET enzymes provide a novel mechanism of epigenetic regulation antagonizing DNA 

methylation in mammals. While the majority of studies focused on early developmental stages 

to examine the functions of TET enzymes, their biological roles in differentiated cells are not 

well described. This is also valid in cancer cells, where their impairment through mutations in 

cofactor providing metabolic enzymes remains controversial. The aims of this thesis were to 

characterize the effects of TET-deficiency and inhibition in a selected developmental stage 

and relevant disease scenario, respectively, with special emphasis on DNA methylation 

changes as a result of defective DNA demethylation.  

1. The majority of TET1/2 deficient mice die perinatally due to developmental failures, 

suggesting a biological role of TET enzymes also in later developmental stages. The 

aim of this project was to characterize the phenotype and methylome of DKO mouse 

embryonic fibroblasts as a paradigm of a differentiated primary cell type with a 

disrupted DNA demethylation pathway. 

 

2. Neomorphic IDH mutations have been associated with DNA hypermethylation in 

cancer. The goal of this work was to examine IDH-dependent DNA methylation 

changes in AML and improve the understanding of their origin with special regard to 

TET impairment. 
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2 Results 

2.1 TET function in mouse development 

DNA methylation patterns are dynamically changing during mammalian development and are 

essential to regulate pluripotency and lineage-specific genes (Smith and Meissner, 2013). In 

Tet-deficient mice developmental defects mainly occur during embryogenesis (Dawlaty et al., 

2011, 2013, 2014). While Tet triple KO ESCs do not contribute to embryonic development 

(Dawlaty et al., 2014), Tet1/2 double deficient ESCs remain pluripotent, but embryos exhibit 

developmental plasticity with various defects and frequent perinatal lethality (Dawlaty et al., 

2013). This is accompanied by global DNA hypermethylation in all analyzed tissues. These 

phenotypes suggest a role for TET enzymes in early development. In order to analyze the 

role of TET enzymes in somatic cells, primary mouse embryonic fibroblasts (MEFs) 

representing a differentiated embryonic cell type, were isolated from Tet1/2 KO mice and 

characterized with regard to phenotype, gene expression and DNA methylation. The following 

data have partially been published in Wiehle et al., 2016. 

2.1.1 Phenotypic characterization of Tet1/2-deficient MEFs 

Tet1/2-deficient (DKO) mice were created previously by intercrossing Tet1- with Tet2-

deficient mice (Dawlaty et al., 2013). These mice had been generated before by gene 

targeting in mESCs. In the case of Tet1, exon 4 was deleted resulting in an out of frame 

fusion of exons 3 and 5, which truncated the TET1 protein and led to the loss of its catalytic 

domain (Dawlaty et al., 2011). The Tet2 gene was disrupted by insertion of a GFP-cassette 

into exon 3, which destroyed the endogenous start codon and resulted in the expression of a 

truncated, non-functional protein (Li et al., 2011). Primary MEFs were isolated from DKO 

animals at embryonic day 13.5 according to standard procedures by M. Dawlaty and 

transferred to Germany for further analysis. 

To confirm the disruption of Tet1 and Tet2 genes in the primary MEF model, qRT-PCR 

analysis of Tet transcripts was conducted using primers annealing to the corrupted regions. 

DKO MEFs were devoid of detectable Tet1 and Tet2 mRNA, whereas Tet3 transcript 

amounts were not significantly changed compared to WT MEFs (Figure 2.1A). This was 

confirmed by Tet3 transcript levels detected in RNA-seq analysis (Figure 2.1A, right panel). 

These data confirm Tet1/2 transcript disruption and the absence of compensatory Tet3 

upregulation in response to genetic Tet1- and Tet2-deficiency. 
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Figure 2.1: Validation of the Tet1/2-deficient MEF model. 
(A) Expression of the three Tet enzymes in WT and DKO MEFs was measured by qRT-PCR. The right 

panel shows FPKM values for Tet3 extracted from RNA-seq data. (B) Immunostaining of 

hydroxymethylation in genomic DNA of WT and DKO MEFs. Methylene blue staining was used as 

loading control. 

TET enzymes catalyze the oxidative conversion of 5mC to 5hmC. To confirm 

functional impairment of TET enzymes in the DKO model, global 5hmC levels were 

examined. To this end genomic DNA of WT and DKO MEFs was immobilized by dotblotting 

and stained with an antibody specific to 5hmC. This showed a moderate overall reduction of 

the 5hmC mark in the DNA of Tet1/2-deficient MEFs (Figure 2.1B). DNA hydroxymethylation 

was not completely abrogated though, indicating remaining TET3 activity. Together, these 

data demonstrate disruption of the Tet1 and Tet2 genes in DKO MEFs, which is accompanied 

by reduced DNA hydroxylating activity. Thus these cells are a valid model to investigate 

further Tet1/2-dependent changes.  

Phenotypic characterization of DKO MEFs revealed a flattened morphology with 

widespread protrusions (Figure 2.2A) and a reduced growth rate (Figure 2.2B), indicating that 

DKO MEFs have reduced proliferation capacity. 

Previous studies have reported that mESCs display skewed or defective differentiation 

upon Tet -deficiency (Dawlaty et al., 2013, 2014; Hon et al., 2014; Ito et al., 2010; Koh et al., 

2011; Li et al., 2014). MEFs isolated between embryonic day 12 and 14 are mesenchymal 

cells that generate normal tissue fibroblasts and fibrocytes. However, they are still multipotent 

and retain the capacity to differentiate into adipocytes, chondrocytes and osteoblasts 

(Rastegar et al., 2010; Rosen and MacDougald, 2006).  
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Figure 2.2: Phenotypic changes in Tet1/2-deficient MEFs. 
(A) Representative bright field microscopic image of WT and DKO MEFs. (B) Growth curve of WT and 

DKO MEFs based on metabolic activity. 

In order to test the differentiation potential of Tet1/2-/- MEFs, in vitro adipogenesis was 

performed by incubating the cells in adipogenic differentiation medium (ADM). While WT 

MEFs started to form microscopically visible lipid droplets around day 7 of treatment, the 

amount of droplets generated in DKO MEFs was significantly decreased (Figure 2.3), 

indicating inefficient adipogenesis in Tet1/2-/- MEFs. 

 

 

Figure 2.3: Incomplete adipogenesis in Tet1/2-deficient MEFs. 
(A) Bright field microscopic images of Oil Red O stained MEFs that were incubated in standard culture 

medium (untreated) or ADM for 21 days. (B) Quantification of lipid droplets at the indicated time points. 

Shown are the means of the numbers of lipid droplets counted in five view fields ± standard deviations. 

To test whether this was due to a failure in transcriptional adaptation, essential 

adipogenic transcription factors and effector genes were analyzed by qRT-PCR. 

Adipogenesis was accompanied by the ADM-dependent transcriptional induction of the 

established adipogenic markers genes Pparγ, C/Ebpα and Igf1 in WT MEFs (Rosen and 

MacDougald, 2006). However, induction of all three genes was strongly reduced in DKO 
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MEFs (Figure 2.4), suggesting that the cells fail to efficiently activate adipogenic 

differentiation genes.  

 

 

Figure 2.4: Inefficient transcription of adipogenic marker genes in Tet1/2-deficient MEFs. 
Expression of adipogenic markers Pparγ (A), C/Ebpα (B) and Igf1 (C) was analyzed by qRT-PCR in 

WT and DKO MEFs before (d0) and at day 7, 14 and 21 of ADM treatment. Actb and Gapdh were used 

as reference genes. Bars represent means and error bars standard deviations of three replicates. 

As TET1 and TET2 seemed to be required for adipogenesis their expression 

dynamics were analyzed during this process. All three Tet transcripts were upregulated 

during adipogenesis in WT MEFs (Figure 2.5). While Tet1 and Tet3 were only transiently 

induced (Figure 2.5A, C), Tet2 expression was continuously increasing over time (Figure 

2.5B). Overall transcript amounts of Tet2 and Tet3 were higher than Tet1, consistent with 

predominant Tet3 (and depending on the tissue Tet2) expression upon differentiation (Koh et 

al., 2011; Wu and Zhang, 2014). Interestingly, DKO MEFs expressed increased amounts of 

Tet3 upon adipogenesis, suggesting that in a setting where dynamic adaptation of TET levels 

is required, the cell might try to compensate for the loss of Tet1 and Tet2 by upregulating 

Tet3.  

Taken together, these data indicate an altered phenotype with a pronounced 

differentiation and gene expression defect in Tet1/2-deficient MEFs. Moreover, they point 

towards a functional requirement of TET enzymes in adipogenesis.  
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Figure 2.5: Tet expression is induced during adipogenesis. 
Tet1 (A), Tet2 (B) and Tet3 (C) expression dynamics during adipogenic differentiation were analyzed 

by qRT-PCR in WT and DKO MEFs. Actb and Gapdh were used as reference genes. Bars represent 

means and error bars standard deviations of three replicates. 

2.1.2 DNA methylation changes in Tet1/2-deficient MEFs 

The observed differentiation and gene regulation defects in DKO MEFs together with the 

reported demethylating activity of TET enzymes (He et al., 2011; Inoue and Zhang, 2011) 

suggested defects in epigenetic programming upon Tet1/2 KO. To investigate potential 

alterations due to reduced DNA demethylation in the methylomes of WT and Tet1/2-deficient 

MEFs, whole genome bisulfite sequencing was performed. This technique yields a genome-

wide base resolution map of methylated cytosines and, depending on the coverage, high 

confidence methylation ratios.  

Analysis of two independent biological replicates per genotype yielding a combined 

average coverage of 20x for each WT and DKO methylome showed that average methylation 

levels were comparable between replicates, but moderately increased in DKO MEFs (Figure 

2.6A). To conduct an unbiased analysis of the distribution of hypermethylation within the DKO 

genome, it was segmented into different subgenomic features based on the presence of 

certain histone modifications, PolII and CTCF. To this end, previously published genome-wide 

maps of these marks in WT MEFs were used (Mikkelsen et al., 2007; Shen et al., 2012). The 

combined patterns of modified histones, PolII and CTCF allowed assigning 15 functional 

classes and the average methylation level of each class was calculated. This revealed 

widespread hypermethylation in DKO MEFs, which affected almost all analyzed features 

(Figure 2.6B). Enhancers and promoters showed the most pronounced hypermethylation. 

These results demonstrate hypermethylation of functional regulatory elements upon Tet1/2-

deficiency, suggesting a demethylating activity for TET1 and TET2 at these regions.  
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Figure 2.6: Tet1/2-deficient MEFs show widespread DNA hypermethylation. 
(A) Average methylation ratios determined by whole genome bisulfite sequencing of two WT and DKO 

replicates. (B) Fold change of average methylation between DKO and WT MEFs of 15 subgenomic 

features identified by analysis of chromatin states. Error bars represent standard deviations of the two 

biological replicates. The right panel shows the 15 identified segments. The intensity of blue color 

reflects the appearance of histone modifications, PolII and CTCF in each segment. Functional 

elements were identified by the combined histone modification and protein patterns and are indicated 

on the right. These analyses were performed by Günter Raddatz. 

 As promoters were the most prominently hypermethylated elements in DKO MEFs, 

these features were analyzed in more detail. Previously described DNA methylation canyons 

are associated with the genes of developmentally important transcriptional regulators, mostly 

harbor at least one CGI and their borders are enriched for 5hmC (Jeong et al., 2013). As such 

they represented interesting promoter-associated features to be analyzed in a Tet-deficient 

context.  

Mapping of DNA methylation canyons in WT MEFs showed that 95% of canyons 

overlapped with a transcriptional start site (Figure 2.7A). The methylome of WT MEFs 

exhibited on average 1330 canyons. In DKO MEFs fewer canyons were detected, possibly 

due to the failure to meet the minimal size of 3.5 kb (Figure 2.7B). Next, the average 

methylation levels of WT and DKO canyons were analyzed. As expected, methylation ratios 

of canyons in general were very low. However, DKO MEFs showed a significantly increased 

median canyon methylation compared to WT MEFs (Figure 2.7C). Determination of canyon 

sizes in WT and DKO MEFs revealed that the majority of canyons in DKO cells were smaller 

than in WT MEFs (30%) or completely disappeared (38%) from the analysis as they did not 

meet the minimal size criterion (Figure 2.7D). A quarter of the canyons detected in WT MEFs 

were expanded in DKO MEFs and 7% did not display significant changes. These findings 

show that canyon hypermethylation leading to canyon shrinkage or collapse is a prominent 

feature of the methylome of Tet1/2-deficient MEFs. 
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Figure 2.7: Tet1/2-deficiency in MEFs results in canyon hypermethylation. 
(A) Association of canyons with transcriptional start sites (gene). Significance level was calculated 

using the chi-squared test (**: P<0.01). (B) Numbers of canyons in the two WT and DKO replicates. (C) 
Average methylation of canyons identified in the two WT and DKO replicates. The two-sided paired t-

test was used to calculate the significance level of the difference between the two groups (***: P=2.2 x 

10-16). (D) Piechart showing size changes of canyons in DKO MEFs compared to the corresponding 

canyons in WT MEFs. These analyses were performed by Günter Raddatz. 

The loss and size reductions of canyons in DKO cells suggested that they are 

collapsing due to invading hypermethylation at canyon borders. To confirm this, methylation 

profiles were visually examined at canyons. A prominent example of a large canyon with 

border hypermethylation was the one at the anterior Hoxa gene cluster (Figure 2.8A). This 

canyon did not only show increased methylation at the margins but also in the center. This is 

in accordance with Tet2 hydroxylating and potentially removing 5mC in the HOXA cluster 

during differentiation of NT2 cells (Bocker et al., 2012) and suggests that Tet enzymes have 

conserved functions at the Hoxa cluster in humans and mice.  

To examine canyon borders on a global scale, all canyons were size-normalized and 

the average methylation ratio at each relative position was displayed. This showed a general 

increase of average methylation in both DKO replicates, which was enhanced at the margins 

of the canyons (Figure 2.8B), indicating that hypermethylation from adjacent methylated 

regions invades the canyon due to the lack of TET1/2 activity.  

To validate canyon border hypermethylation, amplicon bisulfite sequencing was 

performed targeting selected canyon margins. Individual amplicons were covered by at least 

100 reads providing high confidence information on the methylation status of the examined 

CpGs. All selected loci displayed hypermethylation at all the interrogated CpG residues in 

DKO MEFs (Figure 2.9), confirming canyon border hypermethylation independently of whole 

genome bisulfite sequencing. 
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Figure 2.8: Canyon borders are maintained by TET1/2. 
(A) Example of a hypermethylated canyon at the Hoxa gene cluster. Methylation ratios of individual 

CpGs in WT-1 (top) and DKO-1 (bottom) MEFs are indicated by vertical blue lines. Red squares show 

the positions of the first two amplicons analyzed in Figure 2.9. (B) Superposition of the methylation 

profiles of all size-normalized canyons in WT and DKO MEFs. This analysis was performed by Günter 

Raddatz. 

Taken together, these results show that TET1 and TET2 prevent genomic 

hypermethylation of enhancers, promoters and specifically DNA methylation canyons. In 

particular, their demethylating activity is critical to protect canyon borders from aberrantly 

invading methylation.  

 

 

Figure 2.9: Validation of canyon border hypermethylation. 
Targeted amplicon bisulfite sequencing at borders of canyons associated with the genes Hoxa1, 

Hoxa3, Foxc1 and Foxc2. Data are displayed in heatmaps with each row representing a sequencing 

read and each column a CpG within this read. Individual CpGs are numbered and blue boxes indicate 

methylated and yellow boxes unmethylated cytosines. Positions of the analyzed regions are shown in 

Figure 2.8A and Figure S1. 
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2.1.3 Gene regulation defects in Tet1/2-deficient MEFs 

In order to investigate the functional consequences of Tet1/2-dependent hypermethylation 

comprehensively, transcriptomes of WT and DKO MEFs were analyzed using RNA-seq. This 

identified 301 differentially expressed genes (q-value<0.05) with both up- and downregulated 

transcripts being present in DKO MEFs (Figure 2.10A). Transcriptional silencing by promoter 

hypermethylation is thus not the sole mechanism of gene deregulation upon Tet1/2 KO. 

Pathway analysis of deregulated genes revealed strong enrichment for developmental 

categories (Figure 2.10B). This included “growth and proliferation” as well as “(connective) 

tissue development” among the top downregulated pathways, which is consistent with the 

observed reduction in growth rate and differentiation potential in DKO MEFs. These findings 

are also in accordance with a published study on the involvement of TET1 in cell cycle 

progression in somatic cells (Huang et al., 2013b).  

 

 

Figure 2.10: Tet1/2-deficiency disturbs gene expression in MEFs. 
(A) MA plot showing the fold change [log2(FC)] of each gene as a function of the averaged WT and 

DKO normalized read counts [log2(base mean)] per gene. Differentially expressed transcripts based on 

a q-value<0.05 are shown in red. This analysis was performed by Günter Raddatz. (B) Top ten 

biological pathways significantly enriched among downregulated (left panel) and upregulated (right 

panel) genes in DKO MEFs. 

To validate gene expression changes detected by RNA-seq, qRT-PCR for selected 

deregulated genes was performed. This confirmed the up- and downregulation of several 

genes in DKO MEFs observed by RNA-seq (Figure 2.11), of which many are involved in 

transcriptional regulation (e.g. the Hox and Fox transcription factors). In summary, these data 

indicate that Tet1/2-deficient MEFs exhibit disturbed gene expression patterns, which 

potentially alter their developmental state and differentiation capacity.  
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Figure 2.11: Validation of gene expression changes in Tet1/2-deficient MEFs. 
(A) FPKM values of selected genes extracted from RNA-seq analysis are shown. In the left panels 

upregulated and in the right panels downregulated genes in DKO MEFs are displayed. (B) QRT-PCR 

analysis of the corresponding genes from (A). Actb and Gapdh were used as reference genes. Bars 

represent means and error bars standard deviations of three replicates. All genes except of Foxc2 

were significantly changed in RNA-seq (***: Q<0.001, **: Q<0.01, *: Q<0.05), but the reduction in 

Foxc2 expression was found to be significant in qRT-PCR (+++: P<0.001). 

2.1.4 Dysregulation of canyons and associated genes during adipogenesis 

To examine the correlation between canyon hypermethylation and defective gene expression 

in MEFs, the overlap between gene deregulation and localization of the respective gene in a 

hypermethylated canyon was analyzed.  

 

 

Figure 2.12: Association of gene deregulation and localization in a hypermethylated canyon. 

The overlap between all differentially expressed genes (diff. exp. genes) with a |log2(FC)|≥0.5 and all 

genes associated with a hypermethylated canyon (hypermeth. genes) is shown. Statistical significance 

was determined using the hypergeometric test (P=7.55 x 10-7). Analysis and statistical testing were 

performed by Günter Raddatz. 
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To this end, all differentially expressed genes with a |log(FC)|≥0.5 were determined (6200). 

Furthermore all genes residing in a hypermethylated canyon were identified (84). More than 

half of these genes overlapped with the group of differentially expressed genes and this 

intersection was statistically significant (P=6.26 x 10-9; Figure 2.12), indicating that the 

presence of a gene promoter in a hypermethylated canyon likely leads to deregulation of the 

respective gene. However, the majority of deregulated genes was not associated with a 

hypermethylated canyon, indicating that additional mechanisms lead to gene deregulation 

upon Tet1/2-deficiency.  

 

 

Figure 2.13: Promoter hypermethylation correlates with defective gene induction during 
adipogenesis in Tet1/2-deficient MEFs. 
(A) Targeted amplicon bisulfite sequencing of promoters of four canyon-associated adipogenic marker 

genes during adipogenesis in WT and DKO MEFs. Untreated and cells treated with ADM for 14 days 

were analyzed. Localization of PCR amplicons in the canyon is shown in Figure S1. (B) QRT-PCR of 

the corresponding genes in untreated (u.t.) and cells treated with ADM for 14 days. Actb and Gapdh 
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were used as reference genes. Bars represent means and error bars standard deviations of three 

replicates. 

To investigate the contribution of hypermethylation to the observed differentiation 

defect, methylation dynamics at DNA methylation canyons during adipogenesis were 

analyzed. For this purpose, four adipogenic marker genes that were associated with a 

canyon – Pparγ, Igf1, Foxc1 and Foxc2 - were selected. Promoter methylation and 

expression dynamics of these genes were analyzed by targeted amplicon bisulfite 

sequencing and qRT-PCR, respectively, during the course of adipogenesis. After 14 days of 

ADM treatment the initial hypermethylation of these promoters present in undifferentiated 

DKO cells was greatly exacerbated (Figure 2.13A), leading for example to almost complete 

methylation of the Foxc1 promoter in contrast to WT MEFs. In conjunction with this, the 

expression of the corresponding genes was induced in WT cells, but impaired in DKO MEFs 

(Figure 2.13B). 

In summary, these data indicate that canyon gene dysregulation is significantly 

associated with hypermethylation of its respective canyon and correlated with promoter 

hypermethylation during adipogenesis. These observations suggest a protective role for TET1 

and TET2 in maintaining canyon-associated genes in a state, in which they can be activated 

upon differentiation cues.  

2.1.5 Cooperative role of TET1 and TET2 in canyon maintenance 

Previous studies have suggested distinct genomic target regions for TET1 and TET2 in 

mESCs based on depletion of hydroxymethylcytosine upon Tet1 or Tet2 knockdown (Huang 

et al., 2014). To dissect the individual contributions of TET1 and TET2 to canyon 

hypermethylation, single Tet1 and Tet2 KO MEFs were analyzed by targeted amplicon 

bisulfite sequencing of selected canyon borders as described above.  

 Comparison of single KO MEFs with WT MEFs showed that both, TET1 and TET2, 

contributed to canyon hypermethylation, as methylation ratios were higher in each single KO 

than in WT MEFs (Figure 2.14). However, TET2-dependent hypermethylation was always 

stronger than the TET1-mediated methylation increase, suggesting minor TET1 activity. 

There was no synergistic effect of Tet-double deficiency. These data indicate that TET1 and 

TET2 cooperate at canyon borders to maintain an adequate methylation state with a major 

role for TET2. In conclusion, the findings presented in this chapter attribute an essential and 

cooperative role to TET1 and TET2 in safeguarding DNA methylation canyons from 

erroneous methylation, thereby preventing the permanent silencing of important 

developmental genes. 
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Figure 2.14: TET1 and TET2 cooperate to maintain canyon borders.  
Targeted amplicon bisulfite sequencing of canyon borders as in Figure 2.9, comparing WT, Tet1-/- 

(T1KO), Tet2-/- (T2KO) and Tet1/2-/- MEFs. The small rectangular panels show color-coded average 

methylation ratio per individual CpG of the amplicon. The color scale is shown below the heatmaps. 
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2.2 TET function in human hematological disease with IDH mutation 

Tet2-deficient mice are characterized by impaired differentiation of the hematopoietic lineage, 

leading to an enlarged stem cell pool and induction of myeloid leukemogenesis over time or 

together with cooperating mutations (Ko et al., 2011; Li et al., 2011; Moran-Crusio et al., 

2011; Quivoron et al., 2011; Rasmussen et al., 2015). Consequently, TET2 mutation or 

downregulation has been recurrently observed in various types of human hematopoietic 

malignancies (Abdel-Wahab et al., 2009; Delhommeau et al., 2009; Gaidzik et al., 2012; 

Nibourel et al., 2010; Quivoron et al., 2011; Scopim-Ribeiro et al., 2015; Tefferi et al., 2009). 

As hypermethylation is a hallmark of many cancers (Jones and Baylin, 2007), it was 

speculated that TET impairment might be mechanistically related to cancer-specific 

methylation gain. 

 Recurrent mutations in IDH genes have been associated with genomic 

hypermethylation or CIMP in different cancer entities (Figueroa et al., 2010; Noushmehr et al., 

2010; Wang et al., 2013b). It was then shown that the oncometabolite 2-HG produced by 

mIDH can inhibit TET enzymes (Koivunen et al., 2012; Xu et al., 2011a). This prompted the 

hypothesis that mIDH causes pathogenic hypermethylation by inhibiting TET-dependent DNA 

demethylation (Figueroa et al., 2010; Turcan et al., 2012). However, TET activity is only 

weakly inhibited by 2-HG (Xu et al., 2011a). Moreover, prior analyses of mIDH-dependent 

DNA methylation changes in AML relied on comparisons between unsorted bone marrow 

aspirates and healthy donor tissues (Akalin et al., 2012; Figueroa et al., 2010). The possible 

contribution of cell type specific methylation patterns to AML methylomes was neglected, 

although an mIDH-dependent differentiation block had been repeatedly reported (Figueroa et 

al., 2010; Losman et al., 2013; Lu et al., 2012; Sasaki et al., 2012b). In order to dissect 

TET2-, mIDH- and differentiation-dependent methylation changes in AML methylation profiles 

of AML patients expressing mIDH or mutant TET2 were analyzed and compared to IDH/TET2 

WT AML methylomes. This was supported by methylation profiling of leukemia cell lines 

expressing mIDH and comparisons to various methylomes of normal hematopoietic cell 

types. The following data are part of a manuscript in preparation by Wiehle et al.. 

2.2.1 DNA methylation changes in IDH mutant AML patients 

To investigate the direct effect of IDH mutations on the methylome of AML patients, a 

previously collected patient cohort of adult de novo AML was analyzed (Voigt and Reinberg, 

2013). The data from this study are publically available and comprise clinical parameters, 

mutational status, gene expression and DNA methylation profiles of each patient. DNA 

methylation was assessed using the Illumina Infinium 450K array. This platform monitors the 

methylation status of 485,577 CpG sites in the human genome and thereby provides 
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coverage for 99% of annotated RefSeq genes and 96% of CpG islands. The 450K intensity 

data (IDAT) files containing raw beta values were extracted for 28 IDH mutant and 112 IDH 

WT AML patients and normalized, quality-filtered and statistically analyzed. This identified 

70,137 significantly (P<0.05) differentially methylated probes between IDH mutant and WT 

AML patients (Figure 2.15A). The vast majority (68,863 probes) of these probes was 

hypermethylated in mIDH carrying patients indicating a pronounced hypermethylation 

phenotype in AML patients with mIDH status. The significantly differentially methylated 

probes showed a distinct distribution in the two groups of AML patients (Figure 2.15B). While 

half of the average beta values in IDH WT patients ranged from 0.15 to 0.75 with a median of 

approximately 0.45, this range was increased by 10% in mIDH patients with a skewed 

distribution towards higher beta values (median approximately 0.65). To analyze the genomic 

distribution of hypermethylation in mIDH AML patients, average methylation ratios of 

significantly changed probes associated with CGI-related epigenomic features were assessed 

(Figure 2.15C). As expected, CGIs had low average beta values consistent with their largely 

unmethylated state in mammals. Shores had intermediate methylation levels, whereas 

shelves and open sea exhibited the highest methylation. IDH-mutated methylomes displayed 

increased average beta values in all the elements, indicating that hypermethylation was 

widespread and uniformly affecting different genomic regions. However, shores showed the 

greatest methylation increase compared to the other elements (Figure 2.15C). 

 

 

Figure 2.15: AML patients with mutations in IDH1/2 display genomic hypermethylation. 
(A) Scatterplot comparing 28 AML patients with IDH mutation to 112 AML patients with IDH WT status. 

Each dot shows the average beta value of an individual CpG probe of the 450K array retained after 

filtering in the two groups. Blue dots represent significantly (P<0.05) differentially methylated probes 

(DMPs). (B) Boxplot showing the average beta values of the identified significantly differentially 

methylated probes in the two groups. (C) Boxplot showing the average beta values of the significantly 

differentially methylated probes associated with different epigenomic features in the two patient groups. 
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 To compare methylation profiles of AML patients with mutant and WT IDH on a global 

scale, principal component and clustering analyses were conducted. Standard pre-processing 

of the array data removed all probes present on sex chromosomes, thereby avoiding the 

detection of sex-related methylation differences. Principal component analysis based on all 

450K probes remaining after pre-processing and quality-filtering revealed a separation of 

mIDH from IDH WT samples (Figure 2.16A), indicating the acquisition of characteristic 

methylation changes upon IDH mutation. Hierarchical clustering using the 5000 most 

significantly differentially methylated probes placed the AML patients into two major groups in 

a dendrogram (Figure 2.16B). One group comprised mostly mIDH patients (red, major left 

branch), while the other group mainly contained IDH WT patients (green, major right branch). 

The probes used for clustering showed a bimodal distribution. Roughly half of the probes 

were rather lowly methylated in IDH WT patients (reddish boxes; low beta values), whereas 

the other half displayed high methylation (blue boxes, high beta values), consistent with the 

typical binary state of methylation observed in mammalia (either methylated or unmethylated). 

Almost all of these probes gained methylation in the cluster of mIDH patients. In summary, 

these data demonstrate that mIDH-associated methylation patterns are sufficient to segregate 

most AML patients into two classes according to IDH mutational status.  

 

 

Figure 2.16. MIDH confers specific methylation patterns to AML cells. 
(A) Principal component analysis of mIDH (red) and IDH WT (green) AML patients with all 450K CpG 

probes retained after quality filtering. The first two components covering the dimensions with the 

highest variance are displayed. (B) Heatmap of the 5000 most significantly differentially methylated 

probes identified between mIDH and IDH WT AML patients. Dendrograms of patients and probes were 

obtained using hierarchical clustering by similarity with each column showing one patient and each row 

one probe. The color scale indicates beta values. 

 Inspection of the mutational status of mIDH patients that did not cluster into their 

correct group revealed that many of them carried co-occurring mutations in other epigenetic 



  Results 
 

37 
 

modifiers such as DNMT3A. Of a total of 28 mIDH patients 12 had co-occurring mutations in 

DNMT3A with five displaying the R882H substitution that disrupts catalytic methyltransferase 

activity (Holz-Schietinger et al., 2012). As the lack of the methyltransferase activity of 

DNMT3A might result in hypomethylation and thus antagonize mIDH-associated 

hypermethylation, the effect of DNMT3A mutation on the methylome of AML patients was 

analyzed. This revealed global hypomethylation in DNMT3A mutant AML patients with 23,795 

out of 26,334 significantly differentially methylated probes being hypomethylated (Figure 

S2A), which reduced the median methylation of these patients by about 5% (Figure S2B). 

The patients with co-occurring DNMT3A and IDH mutations comprised some of the outliers 

observed in the PCA in Figure 2.16A and patients with mutations in DNMT3A generally 

appeared to cluster to the right of the area although the group was not well separated (Figure 

S2C). These findings demonstrate that mutations in epigenetic modifiers do not generally 

yield genomic hypermethylation. Consequently, patients with mutations in DNMT3A were 

entirely removed from the IDH dataset and hierarchical clustering was repeated. This resulted 

in an improved clustering with most of the patients being assigned to their correct mutational 

groups (Figure S2D). In conclusion, co-occurring mutations in various epigenetic modifiers 

can have distinct effects on the AML methylome, which strongly increases the complexity of 

the observed methylation patterns in AML. In the case of DNMT3A and IDH, this can explain 

some of the imperfect clustering by mutational status. 

2.2.2 Generation of IDH mutant AML cell lines 

In order to exclude confounding factors on methylomes of AML patients, such as additional 

mutations, age-related effects or tumor heterogeneity, and to establish the causality between 

mIDH and hypermethylation, cell-based (m)IDH-expressing models were generated. To this 

end, two leukemia cell lines, NOMO-1 (an acute myeloid leukemia cell line) and HL-60 (an 

acute promyelocytic leukemia cell line), were lentivirally transduced to stably integrate the WT 

or mutant IDH gene into their genomes. The employed vectors co-expressed GFP or 

ZsGreen allowing FACS-sorting of successfully transduced and transgene-expressing cell 

populations. These populations were screened by qRT-PCR for overexpression of the (m)IDH 

genes and 2-HG measurement for production of the oncometabolite D-2-HG.  

Expression of IDH1 WT or IDH1 R132C controlled by the phosphoglycerate kinase 

(PGK) promoter (Figure 4.1 for vector details) in HL-60 cells resulted in a modest increase of 

IDH1 expression by roughly 2-fold compared to cells transduced with empty vector, while 

IDH2 expression levels remained unchanged. Concomitantly, extracellular D-2-HG levels 

were increased 25-fold to ~10 µM in mIDH1-expressing HL-60 cells (Figure 2.17A). Although 

overexpression of IDH1 could not be detected by qRT-PCR in NOMO-1 cells transduced with 
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(m)IDH1, extracellular D-2-HG levels were moderately increased in these cells compared to 

transduction with IDH1 WT or empty vector (Figure 2.17B). Conversely, IDH1 expression 

dropped upon transduction with WT or mIDH1 and also endogenous IDH2 expression levels 

were reduced. These data indicate that already minor expression of mIDH1 leads to 

substantial D-2-HG secretion mimicking the situation in IDH mutated AML patients. However, 

cell lines reacted differently to introduction of IDH1 enzymes, indicating that transgene 

expression might be detrimental to certain cell types and thus strategies to downregulate its 

expression might quickly evolve.  

 

 

Figure 2.17: Overexpression of mIDH1 but not WT IDH1 leads to D-2-HG secretion.  
Expression of IDH1 and IDH2 transcripts (left panels) and extracellular D-2-HG (right panels) were 

measured in HL-60 (A) and NOMO-1 cells (B) transduced with empty vector, IDH1 WT or mIDH1. 

QRT-PCR was conducted with primers amplifying endogenous as well as exogenous IDH transcripts 

and ACTB as reference gene. Bars represent means and error bars standard deviations of three 

replicates. 

The increase of D-2-HG in the medium of NOMO-1 cells transduced with mIDH1 

suggested that mIDH1 was present, although its overexpression was not detectable. In order 

to confirm this, the base composition at the specific mutated position of the IDH1 mRNA was 

examined by cDNA sequencing. The WT base C was detected in NOMO-1 cells transduced 

with empty vector or IDH1 WT and a mixture of C and T bases was present in mIDH1-

transduced cells with the T base comprising the minor fraction (Figure S3A). This 
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demonstrates the presence of mutated IDH1 R132C transcripts in NOMO-1 cells. The same 

was true for HL-60 cells, albeit with roughly equal representation of the WT and mutated base 

(Figure S3B). This is consistent with the 2-fold increased expression of IDH1 (Figure 2.17A) 

and indicates that WT and mutant IDH1 transcripts were present at similar amounts in HL-60 

cells. Since IDH mutations are usually heterozygous in AML (Figueroa et al., 2010; Ward et 

al., 2010), this ratio of expression is likely to be a good approximation of the situation in AML 

patients. 

 As primers initially used for qRT-PCR did not distinguish between endogenous and 

exogenous IDH transcripts, potential downregulation of endogenous IDH transcription upon 

introduction of exogenous IDH1 was neglected. To distinguish these transcripts, qRT-PCR 

was repeated with primers amplifying specifically the endogenous IDH1 or the introduced 

transgene. Endogenous IDH1 transcript was indeed downregulated upon introduction of 

(m)IDH1 compared to empty vector. Expression of exogenous IDH1 could not be detected in 

cells treated with empty vector, but was present in cells transduced with WT or mIDH1 

(Figure S3C). Furthermore, determination of intracellular D-2-HG levels in mIDH1-expressing 

NOMO-1 cells revealed a roughly 11-fold increase of 2-HG levels (Figure S3D) compared to 

empty vector, which strongly exceeded the 4-fold increase in extracellular 2-HG (Figure 

2.17B, right panel). These data indicate that NOMO-1 cells expressed introduced transgenes 

and produced D-2-HG upon expression of mIDH1, but responded with downregulation of 

endogenous IDH. Also, they exhibited relatively weak export capacities for 2-HG, leading to 

modest extracellular D-2-HG concentrations, although substantial 2-HG amounts were 

intracellularly produced.  

 

 

Figure 2.18: Overexpression of mIDH2 results in robust D-2-HG production.  
(A) QRT-PCR of total IDH1 and IDH2 in HL-60 cells transduced with empty vector or mIDH2 (R140Q). 

ACTB was used as reference gene. Error bars show standard deviations (n=3). (B) Analysis of D-2-HG 

concentrations in the medium of HL-60 cells transduced with empty vector or mIDH2. Error bars show 

standard deviations of three replicates.  
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To similarly express mIDH2 in leukemia cell lines, IDH2 R140Q was cloned into a 

lentiviral construct controlling IDH expression by the CMV promoter (Figure 4.1 for vector 

details). Introduction of mIDH2 into HL-60 cells increased total IDH2 levels roughly 5-fold 

compared to cells transduced with empty vector, while IDH1 expression remained almost 

stable (Figure 2.18A). This was accompanied by a more than 30-fold increase in D-2-HG 

concentrations to approximately 11 µM in the medium of mIDH2-expressing cells (Figure 

2.18B). This level (~2110 ng/ml) was comparable to the median serum 2-HG concentration 

found in AML patients with mutant IDH (1863 ng/ml; Fathi et al., 2012), indicating that patient-

relevant 2-HG concentrations can be obtained with this model. These results furthermore 

show that both mIDH1 and mIDH2 overexpression result in substantial production of D-2-HG 

in cell-based models.  

 

 

Figure 2.19: MIDH2-expressing HL-60 cells show no overt phenotypic alterations.  
Bright field microscopy (A) and proliferation analysis (B) of HL-60 cells transduced with empty vector or 

mIDH2.  

In AML IDH2 mutations are more frequent than IDH1 mutations and have been shown 

to produce higher levels of D-2-HG (Ward et al., 2010, 2013). Thus, further analysis focused 

on mIDH2-expressing HL-60 cells. To monitor how mIDH2 overexpression and 

accompanying D-2-HG levels would affect cells, phenotypic characterization was carried out. 

Morphologically, mIDH2-expressing cells were indistinguishable from cells transduced with 

empty vector (Figure 2.19A) and showed similar growth kinetics (Figure 2.19B). 

Since mutant IDH enzymes have been reported to inhibit differentiation (Figueroa et 

al., 2010; Losman et al., 2013; Lu et al., 2012), gene expression of hematopoietic stem cell 

and myeloid lineage-specific markers were compared between mIDH2-expressing cells and 

empty vector cells. This uncovered a gene expression pattern reminiscent of myeloid 

progenitor cells. For instance, transcripts specifically expressed in macrophages, monocytes 
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or granulocytes, such as CD14 or CD11B, were reduced (Figure 2.20A), whereas genes 

expressed mainly during early stages of hematopoiesis (i.e., in HSCs, MPPs, CMPs and 

GMPs), such as MEIS1 or C-KIT, were significantly increased in mIDH2-expressing cells 

(Figure 2.20B).  

Taken together, in a leukemia cell line model no major phenotypic but moderate gene 

expression changes are caused by overexpression of mIDH2, hinting at an altered 

differentiation state of the engineered cells.  

 

 

Figure 2.20: MIDH2-expressing HL-60 cells display gene expression changes.  
QRT-PCR analysis of (A) myeloid differentiation and (B) hematopoietic stem cell markers in HL-60 

cells transduced with empty vector (EV) or mIDH2. ACTB served as reference gene for qRT-PCR 

normalization and error bars show standard deviations of three replicates. 

2.2.3 DNA methylation changes in an IDH mutant AML cell line 

The presence of mIDH2 changed gene expression patterns, suggesting that it affects the 

underlying epigenetic regulatory landscape. To test whether overexpression of mIDH2 and 

associated D-2-HG production resulted in changes to the global DNA (hydroxy)methylation 

level, immunostainings were performed on genomic DNA of transduced HL-60 cells. IDH2 

R140Q-expressing HL-60 cells had increased global 5mC levels compared to cells 

transduced with empty vector (Figure 2.21A), however 5hmC levels were largely unchanged 

(Figure 2.21B), indicating that the presence of mIDH2 is associated with a global increase of 

DNA methylation marks. The stable 5hmC levels suggested that TET activity was not 

drastically reduced upon mIDH2 introduction.  
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To investigate mIDH2-associated methylation changes in detail, Infinium methylation 

analysis of HL-60 cells was conducted. In mIDH2-expressing HL-60 cells 59,612 significantly 

differentially methylated probes were identified compared to cells transduced with empty 

vector (Figure 2.22B). However, only 65% of these probes were hypermethylated in cells 

expressing mIDH2. Comparison of the two scatterplots from AML patients and HL-60 cells 

demonstrated that methylation changes in the cellular model were quite distinct from those in 

AML patients including a wider range of methylation changes and hyper- as well as 

substantial hypomethylation (compare Figure 2.15A and Figure 2.22A). Calculating the 

overlap between cells and patients revealed that only a small fraction of all differentially 

methylated probes was shared between HL-60 cells and AML patients with IDH mutations 

(Figure 2.22B).  

Together, these data show that introduction of mIDH2 into HL-60 cells does not 

phenocopy the methylation changes in AML patients with IDH mutations, indicating that 

additional mechanisms contribute to the hypermethylation phenotype observed in IDH-

mutated AML. 

 

 

Figure 2.21: MIDH2-expressing HL-60 cells display globally increased DNA methylation. 
Immunostaining of 5mC (A) and 5hmC (B) in genomic DNA of HL-60 cells transduced with empty 

vector or mIDH2. Methylene blue staining was used as loading control (loading ctrl). Negative control 

wells were loaded with buffer (neg ctrl). 

 PMDs have been reported as large regions of low methylation in human cancers and 

cell lines, possibly due to inefficient maintenance methylation in quickly proliferating systems 

(Berman et al., 2011; Gaidatzis et al., 2014; Hon et al., 2012; Lister et al., 2009, 2011). To 

exclude the possibility that hypomethylation upon introduction of mIDH2 into HL-60 cells 

could be caused by the slightly increased proliferation rate of these cells (Figure 2.19B), 

PMD-associated CpG probes were identified. An approximation of PMD coordinates was 



  Results 
 

43 
 

retrieved from publically available nuclear lamina-associated domain profiles (Guelen et al., 

2008), which have been shown to coincide with PMDs (Berman et al., 2011). Removal of the 

PMD-associated probes from the analysis did not affect mIDH2-associated methylation 

changes in HL-60 cells. Despite reducing the total number of significantly differentially 

methylated probes to 44,015, hypomethylation of a large proportion of probes was retained 

(Figure S4A). The distribution of average beta values was unchanged compared to the 

analysis including PMD probes (Figure S4B) and the amount of hypomethylated probes was 

even increased to 37% (Figure S4C; compared to 35% in the analysis including PMD 

probes). Hence, loss of methylation from PMDs cannot explain the hypomethylation observed 

in mIDH2-expressing HL-60 cells. This emphasizes the distinct effects of mIDH on the 

methylomes of AML patients in vivo and HL-60 cells in vitro.  

 

 

Figure 2.22: DNA methylation changes in AML patients and HL-60 cells with mIDH are distinct. 
(A) Comparison of average beta values between HL-60 cells expressing mIDH2 and empty vector. 

Each probe is represented in a dot with DMPs (P<0.05) colored in blue. (B) Overlap of the significantly 

differentially methylated probes identified in AML patients and HL-60 cells upon presence of mIDH. 

2.2.4 DNA methylation changes in AML patients with TET mutations 

Since neomorphic IDH mutations were suggested to inhibit the demethylating activity of TET 

proteins (Figueroa et al., 2010; Turcan et al., 2012), the loss of TET enzymes by inactivating 

mutations in AML should mimic the methylation changes observed in mIDH patients. To 

address this issue, all patients with mutations in TET2 were selected from the AML dataset. 

These 12 patients exhibited exclusively frameshift or nonsense mutations occurring before 

the catalytic domain, therefore abrogating the dioxygenase activity of TET2. It was previously 

reported that TET2 mutations (heterozygous, hemizygous or homozygous) in myeloid 

cancers correlated with reduced 5hmC levels, suggesting that its hydroxylating activity is 

impaired even upon heterozygous mutation (Ko et al., 2010). The mutant TET2 patients were 

compared to 100 AML patients with TET2 and IDH1/2 WT status.  
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Figure 2.23: Mutations in TET2 do not recapitulate mIDH-associated hypermethylation in AML.  
(A) Comparison of mutant and WT TET2 AML patients by scatterplot. Each dot shows the average 

beta value of one probe in the two groups with DMPs (P<0.05) depicted in blue. IDH mutant patients 

were removed from the analysis. (B) Average beta values of all probes in the two patient groups. (C) 
Principal component analysis of the methylomes of the two patient groups using all CpG probes left 

after quality filtering. 

 This comparison resulted in 573 significantly differentially methylated probes of which 

516 were hypermethylated (Figure 2.23A). Consistently, the median of the average beta 

values of all probes was slightly increased in patients with mutant TET2 (Figure 2.23B). 

Principal component analysis based on all CpG probes showed no clear separation of AML 

patients according to TET2 mutational status (Figure 2.23C). Taken together, these findings 

suggest limited hypermethylation upon mutation of TET2 that does not confer specific 

discriminatory methylation patterns. Since mIDH-associated hypermethylation was much 

more widespread in AML, mutations in IDH1/2 and TET2 do not phenocopy methylation 

patterns of each other. 

2.2.5 Canyon analysis in IDH mutant AML patients 

In the first part of this thesis, DNA methylation canyons were identified as key targets for 

demethylation by TET1 and TET2. Since neomorphic IDH mutations were reported to inhibit 

TET function (Figueroa et al., 2010; Turcan et al., 2012), canyon hypermethylation should be 

an inherent feature of the mIDH-associated methylome.  

To investigate canyon methylation, a publically available whole genome bisulfite 

sequencing dataset of an IDH WT AML patient was used to map canyons and the 

corresponding 450K probes. This identified 1711 canyons and 26,117 canyon-associated 

probes. Average beta values of these probes were only slightly increased in mIDH AML 

patients (Figure 2.24B). When all the canyons were size-normalized and superposed, very 
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modest hypermethylation was detected in mIDH samples. This was evenly distributed over 

the entire canyon and not enriched at canyon borders, as observed in Tet-deficient cells 

(Figure 2.24C, compare to Figure 2.8B). In conclusion, canyons are not specifically 

hypermethylated in mIDH AML, arguing against a strong inhibition of the demethylating TET 

activity in the presence of mIDH.  

 

 

Figure 2.24: TET-dependent DNA methylation canyons are not specifically hypermethylated in 
mIDH AML.  
(A) Average beta values of all canyon-associated probes in IDH WT and mIDH AML patients. (B) All 

canyons identified in whole genome bisulfite sequencing data of an IDH WT AML patient were size 

normalized, superposed and the average beta values of associated probes in mIDH and IDH WT AML 

patients were depicted. Canyon analysis was performed by Günter Raddatz.  

2.2.6 Effect of D-2-HG on the methylome of an AML cell line 

MIDH-dependent TET inhibition was suggested to function by competitive displacement of the 

essential cofactor α-ketoglutarate by D-2-hydroxyglutarate (Koivunen et al., 2012; Xu et al., 

2011a). To reliably inhibit all three TET enzymes and assess resulting DNA methylation 

changes, WT HL-60 cells were treated with high doses of synthetic D-2-HG. Intracellular D-2-

HG quantification confirmed incorporation of the compound into the cells in a concentration-

dependent manner, resulting in final concentrations of 10 to 114 pmol/µg protein (Figure 

2.25A). However, total intracellular D-2-HG concentrations upon addition of 30 mM dropped 

over time, possibly due to upregulation of the D-2-HG converting dehydrogenase (D-2HGDH) 

or cellular transporters that shuttle D-2-HG. Nevertheless, intracellular D-2-HG concentrations 

at any time point strongly exceeded those obtained by overexpression of mIDH2 in HL-60 

cells (Figure 2.25A, right panel), indicating that this is a valid experiment to model mIDH-

mediated scenarios in cells and patients. 
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Figure 2.25: D-2-HG does not provoke genomic hypermethylation in vitro.  
(A) Intracellular D-2-HG quantification in HL-60 cells cultured for 4, 11 and 18 days in medium 

supplemented with the indicated concentrations of D- or L-2-HG (left panel). On the right the 

intracellular quantification of D-2-HG in HL-60 cells transduced with empty vector (EV) or mIDH2 is 

shown. Error bars indicate standard deviations of three replicates. (B) Scatterplot comparing the 

average beta values of all CpG probes in two replicates of untreated (u.t.) and D-2-HG treated (2-HG) 

HL-60 cells (30 mM for 21 days). Each dot represents one probe. No significantly changed probes 

were identified (P<0.05). (C) Average beta values of all probes in untreated and D-2-HG treated HL-60 

cells.  

Analysis of cell proliferation showed that cells grew slower when cultured in D/L-2-HG 

supplied medium and D-2-HG conferred a bigger growth disadvantage than L-2-HG (Figure 

S5). However, cells remained viable. After 21 days of treatment with 30 mM D-2-HG genomic 

DNA was extracted and subjected to DNA methylation analysis by the Infinium chip. 

Comparison to untreated HL-60 cells demonstrated no significant change in DNA methylation 

with zero differentially methylated probes upon D-2-HG treatment (P<0.5; Figure 2.25B). 

Consistently, the distribution of the average beta values of all probes was largely unchanged 

(Figure 2.25C). Taken together, these data indicate the insufficiency of D-2-HG to induce 

global DNA methylation changes in cultured cells. 

2.2.7 Comparison of IDH mutant AML and normal hematopoietic methylomes 

Previous studies have shown that IDH mutations impair cellular differentiation in 

hematopoietic and other cell culture systems as well as in hematopoiesis in vivo (Figueroa et 

al., 2010; Losman et al., 2013; Lu et al., 2012; Sasaki et al., 2012b). DNA methylation 

patterns are dynamic during mammalian differentiation and define cellular identity (Smith and 

Meissner, 2013; Ziller et al., 2013). Analysis of FACS-purified hematopoietic cell populations 

with varying differentiation degree revealed that myeloid cells successively reduce their global 

methylation during commitment and differentiation (Bocker et al., 2011; Farlik et al., 2016; 

Hodges et al., 2011; Rönnerblad et al., 2014).  
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 To examine the differentiation state of AML cells in patients with and without IDH 

mutation, the distribution of French–American–British (FAB) classes, which were available for 

each patient and assign the maturation grade to the predominant blast type in AML based on 

morphological characteristics, were analyzed in the two patient groups. This showed a strong 

enrichment of FAB category M1 (acute myeloblastic leukemia with minimal maturation) in the 

group of patients with IDH mutations compared to IDH WT AML patients (Figure 2.26A). 

Additionally, undifferentiated acute myeloblastic leukemia (M0) was more frequently observed 

among mIDH AML patients, whereas all the remaining classes occurred more rarely. This 

indicates a skewed distribution of FAB classes among mIDH compared to IDH WT AML 

patients towards less mature cell types. When the assigned FAB category of each patient 

was marked in the previously conducted principal component analysis (Figure 2.16A), many 

mIDH patients that clustered with the IDH WT group were classified as M2 to M5. In contrast, 

mIDH patients clearly segregating from IDH WT patients were assigned with M0 or M1 

(Figure 2.26B), suggesting that poor maturation determines discriminatory methylation. 

Consistently, methylomes of blast cells that managed to mature despite carrying IDH 

mutations rather resembled IDH WT methylation profiles.  

To assess whether mIDH-associated hypermethylation in AML cells resembled 

methylation patterns of normal myeloid cells, comparison analyses between (m)IDH AML 

methylomes and 450K profiles of FACS-sorted human myeloid cell types were performed. 

Sorted common myeloid progenitors (CMP), granulocyte macrophage progenitors (GMP), 

promyelocytes (PMC) and polymorphonuclear/terminally differentiated bone marrow 

granulocytes (PMN) that were previously analyzed by 450K array (Rönnerblad et al., 2014) 

provided reference methylomes of the major myeloid differentiation stages. Principal 

component analysis segregated the CD34 positive progenitor cell types (CMP and GMP) from 

the CD34 negative differentiated cell types (PMC and PMN). When the AML profiles were 

projected on top of these, mIDH AML cases rather clustered with the progenitor cell types, 

whereas IDH WT patients resembled differentiated cell types (Figure 2.26C). Analysis of the 

10,000 most differentially methylated probes between CMP/GMP and PMC/PMN populations 

in hierarchical clustering clearly separated the two groups from each other and placed most of 

the mIDH samples in the same branch as the progenitor cells (Figure 2.26D). Next, the 

10,000 most differentially methylated probes between mIDH and IDH WT patients were 

extracted and used for hierarchical clustering of myeloid cell types. This ordered the 

reference cells according to their degree of differentiation with CD34 positive cells separated 

from CD34 negative cell types (Figure 2.26E). This indicates a pronounced overlap between 

the mIDH-associated methylation signature in AML and the myeloid differentiation-associated 

methylation program. 
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In summary, DNA methylation patterns of AML patients with mutations in IDH show 

high similarity to methylomes of myeloid progenitor cell types, identifying an early 

differentiation state as a source of mIDH-associated hypermethylation. 

 

 

Figure 2.26: MIDH-associated hypermethylation in AML resembles methylation patterns of 
myeloid progenitors.  
(A) Frequency distribution of French-American-British (FAB) AML categories in the TCGA cohort 

divided into mIDH and IDH WT patients. (B) Principal component analysis as in Figure 2.16A with 

different FAB categories of mIDH AML patients marked in orange and yellow hues. (C) Principal 

component analysis using published 450K profiles of four human myeloid cell types from Rönnerblad et 

al., 2014. AML patient profiles were projected on the cell type clusters. (D) Heatmap showing color-

coded beta values (color scale to the right) of the 10,000 most differentially methylated probes between 

the CMP/GMP and PMC/PMN population in AML patients. Each row represents one probe and each 

column one patient. IDH mutational status and reference cell types are indicated below the heatmap by 

colored boxes. Hierarchical clustering by similarity was used to obtain dendrograms. (E) Heatmap of 

the four hematopoietic reference cell types using the 10,000 most differentially methylated probes 

between mIDH and IDH WT AML patients. Each row represents one probe and each column one 

replicate of the indicated cell type. Analyses for (C) – (E) were performed by Günter Raddatz. 
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3 Discussion 

DNA methylation is dynamically changing during development and differentiation and its 

deregulation has been associated with cancer pathogenesis (Jones and Baylin, 2007). The 

interplay of DNMTs, recently identified TET enzymes and their cofactor-providing partners 

including IDH enzymes defines the cellular methylation landscape. However, the functional 

contribution of TET enzymes to the methylation profiles of differentiated normal and cancer 

cells is poorly understood. Here, these two aspects were addressed by characterizing the 

methylomes of genetically TET1/2-deficient primary mouse embryonic fibroblasts and of IDH 

mutated AML patients, in which TET enzymes are chemically inhibited. The findings 

presented in this thesis identify DNA methylation canyons as key target features of TET1/2-

demethylating activity in mouse embryonic fibroblasts and expand on the mechanistic 

understanding of IDH-associated global hypermethylation in AML. 

3.1 Role of TET enzymes in mouse development 

TET-mediated DNA demethylation has been implicated in a variety of mammalian 

developmental processes including the large-scale DNA demethylation waves during PGC 

and zygotic development and differentiation of ESCs (Wu and Zhang, 2017). A series of 

recent reports has shown functions of TET enzymes in differentiation and lineage choice of 

multipotent cells of the adult organism, for example in hematopoietic (Orlanski et al., 2016), 

neuronal (Perera et al., 2015), hepatic (Ancey et al., 2017) and myogenic (Zhong et al., 2017) 

cell types. To expand on this knowledge, the biological role of TET enzymes in an embryonic 

differentiated cell type was analyzed here. 

3.1.1 A differentiated model system with impaired DNA demethylation 

TET1/2-deficiency resulted in increased 5mC and decreased 5hmC levels in E13.5 mouse 

embryos, neonates and essentially all analyzed adult DKO tissues (Dawlaty et al., 2013). This 

indicates impaired DNA demethylation in DKO animals and thus qualifies DKO MEFs – 

typically isolated at day 13.5 from the embryonic torso – as a convenient differentiated cellular 

model to investigate epigenomic changes upon 5hmC loss.  

 TET1 and TET2 are highly expressed in mESCs, the preimplantation blastocyst and 

the early epiblast (Wu and Zhang, 2014), but they are rapidly downregulated upon in vitro 

differentiation of mESCs, while TET3 emerges (Koh et al., 2011). TET2 and TET3 are the 

major expressed TET enzymes in a variety of adult tissues (Rasmussen and Helin, 2016). 

The observed expression pattern of TET enzymes in WT MEFs is in line with these 
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observations and a previous report (Koh et al., 2011), suggesting that MEFs are in the 

transition from a stem-like state to an adult fibroblast, where TET1 is still detectable but TET2 

and TET3 are likewise expressed. Due to their redundant enzymatic activities TET enzymes 

in principle can compensate for each other, but TET3 expression was largely unchanged in 

DKO MEFs. Since global 5hmC in genomic DNA of DKO MEFs was reduced but not absent, 

TET3 activity most likely accounts for the remaining 5hmC.  

3.1.2 Hypermethylated canyons are a key feature of the DKO methylome 

To analyze the consequences of impaired DNA demethylation, whole genome bisulfite 

sequencing of DKO MEFs was performed in this study. Since this approach enables genome-

wide detection of methylated cytosines with single-base resolution and high individual CpG 

coverage, it is currently considered the gold standard of DNA methylation analysis. The 

resulting average methylation levels were moderately increased in the two DKO replicates, 

confirming the previously noted genomic hypermethylation upon loss of TET1 and TET2 that 

was detected by mass spectrometry (Dawlaty et al., 2013).  

 In order to identify functionally important genomic elements that may be TET-

dependently demethylated, it was reasoned that these would accumulate aberrant DNA 

methylation in TET1/2-deficient compared to WT MEFs. An unbiased analysis of the 

methylation of different genomic features identified enhancers, promoters, transcribed gene 

bodies, insulators and intragenic regions as most severely hypermethylated. Consistent with 

this, enhancer hypermethylation has been described in TET2-deficient (Hon et al., 2014) and 

TKO mESCs (Lu et al., 2014). Both studies also provided evidence that promoters, gene 

bodies and CTCF sites (insulators) are affected by TET-dependent hypermethylation. Another 

study mapped regions of 5hmC loss upon TET1 or TET2 depletion in mESCs and found 

5hmC reduction at TSS and exons of highly expressed genes, respectively (Huang et al., 

2014). These findings match the observations presented here and suggest that regions losing 

5hmC are overlapping with regions accumulating 5mC upon TET-deficiency, arguing for an 

active DNA demethylation process at these regions.  

 The identification of DNA methylation canyons as conserved, hypomethylated features 

of mammalian genomes whose borders are enriched with 5hmC (Jeong et al., 2013) 

prompted their analysis in this study. Here, DNA methylation canyons were found as a key 

feature of hypermethylation upon TET1/2-deficiency. While a subset of canyons was lost in 

DKO cells, remaining canyons displayed hypermethylation. Overall, two thirds of all identified 

canyons collapsed or diminished in size, strongly suggesting that TET1/2 activities are 

required to maintain canyons. In particular canyon borders were affected by hypermethylation 

as confirmed by targeted bisulfite sequencing. Data from (hydroxy)methylated DNA 
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immunoprecipitation experiments reported in Wiehle et al., 2016 corroborate these findings, 

as 5mC was increased at canyon borders, while 5hmC was reduced.  

 Conversely, a quarter of all identified canyons increased in size upon TET1/2-

deficiency. It has been reported that canyon borders also depend on the activity of DNMT3A 

and become eroded upon deletion in mouse HSCs (Jeong et al., 2013). Thus, defective 

targeting, reduced expression, activity or stability of DNMT3A upon TET1/2 loss may account 

for expanded canyons. More recently, it was also suggested that TET2 and DNMT3A, which 

are frequently co-mutated in leukemia, have context-dependent functions on DNA methylation 

in mouse HSCs, that could be synergistic or competitive (Zhang et al., 2016b). This analysis 

of TET2 and DNMT3A double deficient HSCs supports the model of opposing activities of 

DNMT3A and TET2 at the edges of canyons presented in Figure 3.1. Moreover, the authors 

identified redistribution of global DNA methylation upon double KO and TET2 KO specific 

hypermethylation in the center of canyons. Similar observations were made in the present 

study, for example in the anterior HOXA cluster (Figure 2.8A). Although no mechanistic 

explanation on how synergistic activities may be elicited is provided in that study, expanded 

canyons could represent such regions of TET and DNMT cooperation or methylation 

redistribution. Furthermore, ectopically targeted TET3 may exert compensatory demethylation 

at certain canyons. 

 The analysis of single KO MEFs indicated that combined cooperative activities of 

TET1 and TET2 protect the canyon borders from hypermethylation, but with a major 

contribution of TET2. This is in line with other reports showing that TET1 and TET2 appear 

together in different cell types and seem to have overlapping and non-redundant functions 

under certain conditions, for instance in HSCs (Zhao et al., 2015), regulatory T-cells (Yang et 

al., 2015) and during NANOG-assisted somatic cell reprogramming (Costa et al., 2013). 

Nevertheless, specific roles for TET1 and TET2 have been reported as well. For instance, in 

mESCs with TET2-deficiency a particular loss of 5hmC from gene bodies and other 

regulatory elements was reported, whereas TET1-deficiency resulted in a general 5hmC 

reduction with global 5hmC patterns reminiscent of WT ESCs (Hon et al., 2014). Another 

study showed TET1-dependent 5hmC depletion specifically from TSS (Huang et al., 2014). 

Similar to the presented findings, 5hmC loss and 5mC gain were generally greater upon 

TET2-deficiency compared to TET1 loss. Hence, TET enzymes may share their 

demethylation targets in certain cell types or developmental stages, while having specific 

roles in others. Moreover, overlapping functions might be a relict of an ancestral single TET 

gene, while individual TET enzymes may have acquired additional specific functions during 

evolution. Particularly in unstressed differentiated cells, where transcriptional and methylation 

patterns are largely established, TET enzymes might serve a broad role in the maintenance 

of normal methylation patterns rather than directed DNA demethylation of specific features.  
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The findings presented here further advance on previous publications implicating 

TET1 in fine-tuning of the physiological DNA methylation landscape. TET1 was found to bind 

specifically CpG-rich TSS, where 5hmC is also enriched in mESCs. It was thus speculated 

that TET1 might mediate DNA methylation fidelity by opposing stochastic hypermethylation at 

CpG-rich gene regulatory sequences (Williams et al., 2011). Similarly, a study that used 

HEK293T cells proposed that TET1-mediated oxidative 5mC conversion is essential at 

hypomethylated CGIs to prevent aberrant invasion of DNA methylation (Jin et al., 2014). The 

present study attributes a shared role for TET1 and TET2 in the maintenance of normal 

methylation patterns and identifies significantly larger DNA methylation canyons as TET-

dependent epigenomic features.  

3.1.3 A role for TET1/2-dependent canyon maintenance in differentiation 

Canyon hypermethylation upon TET1/2-deficiency was associated with severe differentiation 

and gene regulation defects, suggesting functional relevance for the maintenance of canyon 

integrity.  

 Firstly, in vitro adipogenesis of DKO MEFs was inhibited as evident by the failure to 

generate lipid droplets and upregulate key adipogenic transcription factors and effector 

genes. Secondly, the promoters of canyon-associated genes with reported functions in 

adipogenesis acquired even more pronounced hypermethylation during in vitro adipogenic 

differentiation of DKO MEFs compared to untreated cells. Finally, TET transcripts were 

induced during adipogenesis in WT MEFs. Together, these data suggest a functional 

requirement for TET enzymes in adipogenesis that may be related to the maintenance of 

canyons associated with adipogenic regulators and their promoters. Indeed, the newest 

literature confirms these observations showing that TET enzymes are required for 

adipogenesis (Yoo et al., 2017) and activation of essential genes, such as PPARγ (Dubois-

Chevalier et al., 2014; Yoo et al., 2017) or PRDM16 (Yang et al., 2016b). Mechanistically, 

several explanations have been reported, such as TET-mediated hydroxylation of enhancers 

directed by an interaction with CTCF (Dubois-Chevalier et al., 2014) or recruitment of TET1 to 

PPAR response elements by PARylated PPARγ (Fujiki et al., 2013). Although the findings 

presented herein cannot explain how TET enzymes may be attracted to their target regions, 

they strongly suggest that the lack of canyon demethylation by TET1 and TET2 is responsible 

for the adipogenic differentiation defects. The four canyon-associated genes, whose promoter 

methylation was assessed in this study, have reported roles in adipogenesis. PPARγ is an 

essential key adipogenic transcription factor (Rosen and MacDougald, 2006), IGF1 initiates 

IGF-signaling that is involved in staging of the differentiation process (Tang and Lane, 2012) 

and FOXC1 and 2 are transcription factors that have been associated with the maintenance 
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of the adipose tissue phenotype (Davis et al., 2004; Omatsu et al., 2014; Rosen and 

MacDougald, 2006). Especially in the absence of PPARγ adipogenesis cannot take place 

(Rosen et al., 1999), supporting the notion that defective transcriptional PPARγ activation in 

DKO MEFs may be causative for the differentiation block. 

 In this study, deficiency of TET1 and TET2 was further accompanied by broad gene 

deregulation. As 95% of canyons are associated with transcriptional start sites, canyon 

hypermethylation is likely to influence gene expression through aberrant promoter silencing. 

Hundreds of differentially expressed genes were present in DKO MEFs and there was a 

statistically significant overlap between canyon hypermethylation and deregulation of 

associated genes. This correlation suggests a requirement of canyon maintenance for proper 

gene expression. Nevertheless, only half of the genes associated with a hypermethylated 

canyon were deregulated and the majority of deregulated genes were not canyon-associated. 

These genes might either depend on smaller hypomethylated regions potentially protected by 

TET enzymes (e.g. reported insulator sites) or other described TET1/2 activities. For 

example, a study by Hon et al. showed that TET2 KO in mESCs leads to loss of 5hmC and 

concomitant gain of 5mC at enhancers. This results in decreased enhancer activity, which 

correlated with transcriptional delay of lineage-specific genes that are normally induced 

during neuronal in vitro differentiation (Hon et al., 2014). On the other hand, the canyon-

associated genes whose expression remained unchanged may be not severely affected by 

hypermethylation or protected from hypermethylation by active chromatin states. 

Developmental regulators residing in large hypomethylated domains are usually regulated by 

chromatin modifications (Jeong et al., 2013; Nakamura et al., 2014; Xie et al., 2013). Indeed, 

additional bioinformatical analyses documented in Wiehle et al., 2016 suggested that canyons 

marked by repressed or poised chromatin states are prone to become hypermethylated. In 

these canyons transcriptional regulation by chromatin states may be disrupted, whereas more 

active regions may be resistant to hypermethylation. Consistently, the genomic localizations 

of TET1 and 5hmC appear to significantly overlap with Polycomb-repressed genes (Williams 

et al., 2011; Wu et al., 2011a, 2011b).  

A substantial proportion of genes was also upregulated in DKO MEFs and thus TET-

deficiency seems to elicit context-dependent transcriptional changes. On the one hand, 

hypermethylation of transcribed gene bodies, intergenic regions and enhancers observed in 

DKO MEFs might be responsible for this effect. On the other hand, dual functions for TET1 in 

transcriptional regulation in mESCs have been reported previously and may also explain the 

opposing transcriptional effects observed in MEFs. Derepression upon TET1/2-deficiency 

could thus be due to the reported function of TET1 in facilitating PRC2 complex binding to 

DNA and repressing PRC2 target genes (Wu et al., 2011b). Moreover, TET1 is involved in the 
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recruitment of the SIN3A co-repressor complex and silencing of its target genes (Williams et 

al., 2011). 

Canyons appear to harbor TSS of many developmentally important regulators 

including genes involved in transcriptional regulation, embryonic morphogenesis and RNA 

metabolism (Jeong et al., 2013). In accordance with this, pathway analysis of deregulated 

genes in DKO MEFs revealed the enrichment of exclusively developmental categories. A 

prominent example of a hypermethylated canyon is the one at the HOXA cluster (Figure 2.8). 

Consequently, HOXA3 was significantly and strongly downregulated in DKO MEFs. HOX 

transcription factors have important roles during early embryonic development and hence 

their deregulation may account at least in part for the developmental defects observed upon 

TET DKO in vivo. Apart from that, genes with roles in mesenchymal-to-epithelial transition 

(MET) were deregulated, among them FOXC1 and FOXC2 (Bard et al., 2008; Hader et al., 

2010; Thiery et al., 2009). Since these genes are also canyon-associated, their defective 

regulation may contribute to the reported block in MET during somatic cell reprogramming of 

TET TKO MEFs (Hu et al., 2014). While the authors considered the defective demethylation 

and activation of key miRNAs of the miR-200 family responsible for this effect, a potential 

interplay of these miRNAs with canyon-associated genes that are involved in RNA 

metabolism is also conceivable.  

 In summary, the findings from this study strongly suggest that canyon-associated 

differentiation genes depend on the TET1/2-mediated protection of canyons from 

hypermethylation. The promoters of canyon-associated developmental genes rely on 

epigenetic regulation during differentiation. It is proposed that disruption of canyon integrity 

prevents proper regulation and activation of differentiation genes upon environmental cues. 

Together with the previously published data on DNMT3A activity at canyons, the balanced 

antagonizing functions of TET1/2 and DNMT3A may keep DNA methylation canyons in their 

physiological state (Figure 3.1).  

 

 

Figure 3.1: Model for the proposed actions of TET1, TET2 and DNMT3A on canyons. 
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3.1.4 A potential role of canyon hypermethylation in cancer 

TET2 and DNMT3A are among the most frequent, recurrently mutated genes in human clonal 

hematopoiesis and AML (Voigt and Reinberg, 2013; Welch et al., 2012). Canyon-associated 

genes have been observed to be significantly enriched for genes that are dysregulated in 

leukemia (Jeong et al., 2013). Hence, cancer cells with mutations in the genes responsible for 

canyon maintenance may acquire canyon hypermethylation. In turn, this could facilitate the 

induction of a cancerous gene expression signature because canyon genes appear to have 

crucial roles in transcriptional regulation. In this study, not only downregulation of HOXA3, but 

also increased expression of various genes of the HOXB and HOXC clusters was observed in 

DKO MEFs. HOX genes have an appreciated oncogenic role in leukemia (Alharbi et al., 

2013). Similarly, the TET-dependent block in MET (Hu et al., 2014) may sustain acquired 

migratory potential of cancer cells with canyon hypermethylation. In addition, differentiation as 

a rescue mechanism of aberrantly dividing pre-cancerous stem cells may be impaired by 

canyon hypermethylation. TET1 downregulation has been observed in aging (Bormann et al., 

2016) and replicative senescence (Sakaki et al., 2017). As such, canyon hypermethylation 

could contribute to the predisposition of aged cells to cancer development, whereas in 

senescent cells canyon maintenance may become dispensable. Lastly, it was shown recently 

that 5hmC marks promoters in matched normal tissue that are resistant to hypermethylation 

in colorectal cancer. These regions are also occupied by TET2 in colorectal cancer cell lines 

(Uribe-Lewis et al., 2015). Taken together, these findings suggest that TET1 and TET2 are 

important to prevent promoter hypermethylation in cancer and TET impairment may 

participate in the establishment of the cancer epigenome. Further studies will be required to 

analyze canyon deregulation in cancer.  

3.2 Role of IDH-TET axis in human disease 

The association between mutations in IDH and genomic hypermethylation has been noted 

first in glioma (Noushmehr et al., 2010) and the paradigm of the causal relationship between 

the two was established by the study of Turcan and colleagues (Turcan et al., 2012). 

Mechanistically, TET enzymes became implicated in this pathway soon after their discovery 

by the analysis of mutational and DNA methylation patterns in AML as well as biochemical 

studies (Figueroa et al., 2010; Koivunen et al., 2012; Xu et al., 2011a). However, these 

employed low coverage assays for DNA methylation analysis, indirect detection methods for 

5hmC and 5mC in complex overexpression models and partially questionable comparisons. 

Thus, the nature of mIDH-associated epigenome deregulation remains poorly understood. To 

advance its understanding, the influence of IDH mutations on TET enzymes and the 

methylome in AML was analyzed in the second part of this thesis. 
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3.2.1 Genomic hypermethylation is a key feature of AML with mutations in IDH 

Methylomes of AML patients with mIDH were characterized by a pronounced large-scale 

genomic hypermethylation. Approximately 70,000 CpG residues were significantly 

differentially methylated in mIDH carrying AML with >98% being hypermethylated. These 

findings are consistent with earlier reports that found hypermethylation in IDH-mutated AML 

(Figueroa et al., 2010), glioma (Noushmehr et al., 2010; Turcan et al., 2012), 

chondrosarcoma (Lu et al., 2013), enchondroma (Pansuriya et al., 2011) and 

cholangiocarcinoma (Wang et al., 2013b) and thus confirm the association between IDH 

mutation and hypermethylation. 

Of the differentially methylated probes, 50% had intermediate methylation ratios in 

IDH WT AML (beta values approximately 0.2 – 0.8), indicating that regions of variable 

methylation are affected by the mIDH-associated gain of methylation. This was corroborated 

by the fact that, although hypermethylation was widespread among all kinds of analyzed 

epigenomic features, the methylation gain was most pronounced in CGI shores. Consistently, 

it was reported previously that most cancer-associated methylation changes take place in 

CGI shores (Irizarry et al., 2009). 

CIMP has been defined in colorectal cancer as the coordinated cancer-specific 

acquisition of hypermethylation at specific gene-associated CGIs in a subset of cancers, 

instead of a stochastic gain in CGI methylation frequency (Toyota et al., 1999; Weisenberger 

et al., 2006). In glioblastoma, a distinct subset of the proneural tumors, which are identified by 

a specific gene expression pattern, exhibits coordinated CGI hypermethylation reminiscent of 

the changes found in colorectal cancer and thus has been associated with glioma-specific 

CIMP (G-CIMP; Noushmehr et al., 2010). The extremely high concordance between G-CIMP 

phenotype and IDH mutation has led to the assumption that mIDH is causally linked to CIMP 

establishment (Noushmehr et al., 2010; Turcan et al., 2012). However, it is not clear to which 

extent mIDH-associated hypermethylation targets exclusively CGIs, due to the use of non-

genome-wide methods to call methylation. Further, the influence of cancer type on the 

methylome upon IDH mutation remains elusive. Turcan and colleagues reported that G-

CIMP-defining CpGs were located in CGIs and shores, but on the Infinium 450K array the 

majority of CpG probes are devoted to assess CGI and shore methylation (Sandoval et al., 

2011). Other studies made use of (enhanced) reduced representation bisulfite sequencing 

and found mainly CGIs hypermethylated in the presence of mIDH (Akalin et al., 2012; Lu et 

al., 2013), however these techniques rely on restriction enzymes that cut more frequently in 

CpG-rich regions and are thus biased to CGIs as well (Meissner et al., 2005). The results 

presented here rather suggest no specific hypermethylation of CGIs even though the same 

experimental strategy (450K array) was used. Consistently, a recent report showed that 
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mIDH-associated hypermethylation favored non-CGI regions in AML using an alternative 

method. Interestingly, this study also identified an AML hypermethylation signature that was 

enriched at CGIs but independent of IDH mutations, which was termed A-CIMP (Kelly et al., 

2017). These results argue against sufficiency of mIDH to establish CIMP independently of 

tissue type. In summary, the term CIMP appears to represent a conglomerate of 

miscellaneous hypermethylation signatures. Thus, it remains to be clarified which are the 

main targets of IDH-dependent hypermethylation, preferably by using comprehensive 

genome-wide methods. Ultimately, this should allow discriminating and comparing mIDH-

dependent methylation signatures of distinct cancers.  

 To establish the causality between mIDH expression and hypermethylation, a 

leukemia cell line overexpressing mIDH2 was generated. Although these HL-60 cells 

acquired various methylation changes, the AML-specific hypermethylation pattern could not 

be faithfully recapitulated. Whereas the overall number of differentially methylated probes was 

comparable between mIDH AML patient samples and HL-60 cells, approximately one third of 

all significantly changed probes (20,905) displayed hypomethylation in the cellular model. 

Consistently, a very similar distribution of hyper- and hypomethylation was observed upon 

introduction of mIDH2 into TF-1 erythroleukemia cells and mIDH1 into primary astrocytes, 

respectively, in previous studies (Kernytsky et al., 2014; Turcan et al., 2012). 

Hypomethylation of lamina-associated domains reported to occur during repeated passaging 

of cells in vitro (Gaidatzis et al., 2014) could be excluded as a putative cause of methylation 

loss. Together, these data suggest dual effects of mIDH in cultured cells eliciting hyper- and 

hypomethylation. It is conceivable that the unique mIDH-associated hypermethylation in AML 

patients is caused by additional mechanisms such as increased activity of DNMT3A during 

AML progression, that has been recently reported to result in CGI hypermethylation (Spencer 

et al., 2017). The influence of the tumor microenvironment on cancer cells, specifically 

mesenchymal stromal cells in the case of hematological malignancy, can hardly be modeled 

in cell culture, but has been recognized in vivo (Geyh et al., 2013). Recently, D-2-HG was 

shown to affect surrounding cells in a paracrine fashion (Chaturvedi et al., 2016; Chen et al., 

2016) and may thus change the interplay between microenvironment and cancer cells 

eventually translating into epigenomic changes. 

3.2.2 MIDH-associated methylomes and their relation to TET inhibition 

The inhibition of TET activity by D-2-HG produced by the neomorphic mIDH enzymes has 

been suggested as the mechanistic basis for the observed hypermethylation. This was due to 

the observation that IDH and TET2 mutations are mutually exclusive in AML, but display 

overlapping hypermethylation signatures (Figueroa et al., 2010).  
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 In this study, large-scale mIDH-associated hypermethylation did not recapitulate DNA 

methylation changes associated with TET2 mutations in AML, nor did it affect specifically 

TET-dependent DNA methylation canyons. Furthermore, D-2-HG did not induce genome-

wide DNA methylation changes in a cell-based model. Together, these findings challenge the 

currently established paradigm of mIDH-dependent TET inhibition.  

 Several details from the literature support this notion. Firstly, clinical differences have 

been reported between TET2 and IDH mutant hematopoietic malignancy, indicating that the 

oncogenic mechanisms of each mutated enzyme may not be identical. For instance, TET2 

mutations are more frequent in premalignant MDS compared to AML, whereas this is 

reversed in the case of mIDH1 (Im et al., 2014), indicating that mIDH may be involved in the 

progression to more aggressive disease. Furthermore, the prognosis for TET2 and IDH 

mutated AML appears distinct with adverse outcomes of TET2 mutated, but favorable 

prognosis for IDH2 R140Q carrying AML patients (Patel et al., 2012). Secondly, the 

phenotypes of TET2-deficient and mIDH-expressing mice are distinct. TET2-deficiency 

resulted in pronounced expansion of the LSK cell pool, increased repopulation capacity, 

impaired or skewed differentiation and the development of myeloid malignancies (Li et al., 

2011; Moran-Crusio et al., 2011; Quivoron et al., 2011). In contrast, mIDH-expressing cells 

had an augmented pool of lineage-restricted progenitors, but reduced numbers of long-term 

HSCs (Inoue et al., 2016b) and normal repopulating activity (Sasaki et al., 2012b). Lastly, the 

consequences of TET2 mutation with regard to methylome changes in myeloid malignancies 

are controversial. Thus, it remains unclear whether reduction of TET activity (be it triggered 

genetically or chemically) indeed yields hypermethylation. While some studies identified a 

number of hypermethylated CpGs in TET2-mutated AML and CMML (Figueroa et al., 2010; 

Rasmussen et al., 2015; Yamazaki et al., 2012, 2015), others found hypomethylation upon 

TET2 mutation in CMML and a range of myeloid diseases (Ko et al., 2010; Pérez et al., 

2012). A recent study depleted erythroid cells of TET2 or TET3 but could not detect 

significant changes in global 5mC levels (Yan et al., 2017). None of these studies reported 

significant hypermethylation at tens of thousands of CpGs upon TET-deficiency in agreement 

with the presented findings, indicating that mIDH and mutated TET2 elicit distinct methylome 

changes. 

 In vitro enzymatic studies demonstrated that D-2-HG can inhibit TET enzymes 

(Koivunen et al., 2012; Xu et al., 2011a), albeit only achieving partial inhibition with a 500-fold 

excess of D-2-HG over α-ketoglutarate. Hence, D-2-HG is a weak TET inhibitor at the most. 

This would be consistent with the fact that the dotblot immunostaining in HL-60 cells 

expressing mIDH2 did not detect changes in 5hmC levels. Either this method is not sensitive 

enough to detect small changes in 5hmC or the TET inhibition under these conditions is too 

weak. Arguing for the latter, in the present study extracellularly supplied D-2-HG was not 
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sufficient to elicit DNA hypermethylation in HL-60 cells, although it penetrated the cell 

membrane and accumulated to intracellular concentrations exceeding the ones obtained with 

overexpression of mIDH2. Consistent with the observed uptake of D-2-HG into the cells, 

paracrine activity of D-2-HG was recently reported (Chaturvedi et al., 2016). Consequently, 

the incorporated D-2-HG should be able to inhibit TET enzymes. However, the absence of 

significant gains in DNA methylation upon D-2-HG-supplied cell culture contradicts D-2-HG-

mediated impairment of TET activity. Recent findings from IDH WT AML mouse models 

receiving D-2-HG are in support of this notion: Although the metabolite promoted leukemia 

onset, it was insufficient to induce myeloproliferation or leukemia on its own. Furthermore, 

mIDH exhibited stronger oncogenic potential and its overexpression changed DNA 

methylation patterns more drastically than D-2-HG administration, indicating additional D-2-

HG-independent roles of mIDH in leukemogenesis and epigenome deregulation (Chaturvedi 

et al., 2016). Interestingly, increased proliferation, cytokine independence and an in vitro 

differentiation block of TF-1 cells upon expression of mIDH1 could be mimicked by culturing 

the cells in D-2-HG, suggesting that 2-HG can confer cancer-promoting features. However, 

these effects were not elicited by L-2-HG, although it has been shown to inhibit TET enzymes 

more efficiently than D-2-HG (Koivunen et al., 2012; Losman et al., 2013; Xu et al., 2011a). 

This argues against a major contribution of TET enzymes and DNA methylation to the 

cancerous phenotype. Interestingly, recent preclinical tests evaluating small molecule 

inhibitors specific to mIDH also reported controversial results. Albeit blocking 2-HG 

production, reducing growth and promoting differentiation of cancer cells, in some studies 

these inhibitors were unable to restore normal DNA methylation levels of glioma xenografts 

and primary AML cells (Chaturvedi et al., 2017; Pusch et al., 2017; Rohle et al., 2013), 

suggesting 2-HG-independent deregulation of DNA methylation by mIDH or the irreversibility 

of the acquired changes. Nevertheless, another publication claimed the partial reversal of 

hypermethylation in mIDH-overexpressing cells that were treated with an mIDH inhibitor 

(Kernytsky et al., 2014). 

Ultimately, D-2-HG-mediated TET inhibition appears unlikely to be the sole cause of 

mIDH-associated genomic hypermethylation. Further clarification could be provided by the 

analysis of patients or models with mIDH expression but low D-2-HG secretion or different 

catalytic IDH mutations that can neither produce α-ketoglutarate nor D-2-HG. 

3.2.3 MIDH-associated methylomes in view of hematopoietic differentiation states  

Mutations in IDH have been associated with a differentiation block using in vitro and in vivo 

models. For example, expression of mIDH1 from its endogenous locus in the myeloid lineage 

of the mouse resulted in increased numbers of early hematopoietic progenitors (Sasaki et al., 
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2012b). Furthermore, in vitro differentiation of TF-1 erythroleukemia cells and 3T3-L1 cells 

was blocked by the expression of mIDH1 or mIDH2, respectively (Losman et al., 2013; Lu et 

al., 2012), and primary mouse bone marrow cells transduced with mIDH2 showed depletion 

of myeloid markers and elevation of LSK cell markers (Figueroa et al., 2010). In line with this, 

the mIDH2-expressing HL-60 cells generated here upregulated several hematopoietic stem 

cell markers and conversely reduced the expression of myeloid genes. Furthermore, the fact 

that mIDH was specifically enriched in the poorly differentiated M1 FAB category may reflect 

the inhibition of differentiation in vivo. Indeed, methylomes of mIDH carrying AML patients 

displayed high similarity to those of early myeloid progenitor cell types (CMPs and GMPs) in 

contrast to IDH WT AML. Together with the TET independency of mIDH-associated changes 

discussed in the previous chapter, this study identifies differentiation state rather than TET 

inhibition as a critical factor responsible for hypermethylation.  

 The differentiation cascade of myelopoiesis is characterized by an overall loss of 

methylation compared to hematopoietic stem cells (Figure 1.5; Bock et al., 2012; Farlik et al., 

2016; Hodges et al., 2011; Rönnerblad et al., 2014). The analysis of raw unsorted bone 

marrow aspirates of AML patients may underestimate considerable intra- and inter-individual 

heterogeneity of samples. Therefore, the comparison of mutational subgroups may in fact be 

a comparison of distinct differentiation stages. In the case of mIDH, this may result in the 

detection of hypermethylation as mIDH could arrest hematopoietic cells in an early progenitor 

state, whereas IDH WT AML cells could mature further. Indeed, the findings presented here 

suggest the undifferentiated state of the AML cells as a cause for the mIDH-associated 

hypermethylation (Figure 3.2). In agreement, normal methylation patterns of different B cell 

maturation states have been discovered in lymphoid malignancy and a vast majority of 

cancer-specific methylation events actually seem to be physiological (Kulis et al., 2012, 2015; 

Oakes et al., 2016). Interestingly, G-CIMP was found highly enriched among the so-called 

proneural subgroup of glioma (Noushmehr et al., 2010), which is characterized by a gene 

expression signature reminiscent of neural progenitors (Bertrand et al., 2002; Verhaak et al., 

2010). Thus, mIDH may likewise block differentiation in tumors of the central nervous system, 

arresting the cancer cells at the neural progenitor stage. Whether mIDH-associated G-CIMP 

indeed reflects methylation patterns corresponding to immature neural cells remains to be 

studied.  

Physiological methylation patterns associated with a certain degree of cellular 

differentiation might also explain some of the observed cancer-associated hypermethylation 

phenotypes or CIMP that cannot be related to IDH or other mutations currently (Kelly et al., 

2017; Mack et al., 2014; Toyota et al., 1999; Weisenberger et al., 2006). Likewise, 

overlapping methylation signatures in mIDH and mutant TET2 leukemia (Figueroa et al., 

2010) may be due to the differentiation block rather than similar hypermethylation targets. 
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Recently, diverging methylation patterns in DNMT3A WT and DNMT3A R882 AML have been 

reported, consistent with the data presented here. Hypermethylation was suggested to be a 

result of cancer progression, that is accompanied by increased DNMT3A activity, rather than 

a driver of aberrant gene silencing (Spencer et al., 2017). This supports the notion of 

methylomes reflecting the cellular history proposed here and challenges the concept of 

cancer-specific hypermethylation driving malignant transformation. Together with the fact that 

DNMT3A has been implicated in hematopoietic differentiation and silencing of HSC-specific 

stem cell genes (Challen et al., 2014, 2011), distinct differentiation states could also play a 

role in the observed methylation differences between mutant and WT DNMT3A AML.  

 

 

Figure 3.2: Schematic of the proposed action of mIDH in the myeloid lineage.  
Whenever IDH mutations occur, they arrest cells in their current differentiation state and “lock in” cell-

type specific methylation patterns. Since these events often take place early in the differentiation 

hierarchy, methylomes of myeloid progenitors are associated with mIDH. 

The genetic mutation model for the evolution of variable cancer phenotypes suggests 

that the mutational events taking place in any cell with proliferative potential govern its 

specific phenotype (Visvader, 2011). The hypermethylation phenotype observed in IDH 

mutated cancer could thus be considered a manifestation of this theory. However, due to the 

enhanced understanding of the distinct epigenomes of specialized cells in healthy tissues 

(Kundaje et al., 2015; Ziller et al., 2013), it becomes clearer now that many of the “cancer-

specific” epigenetic changes may instead reflect the epigenetic make-up of normal cell types. 

The cell-of-origin model proposes that phenotypically diverging tumor subtypes emerge 

depending on which cell type in a differentiation hierarchy of a tissue is afflicted by an 

oncogenic transforming event (Visvader, 2011). The findings presented here rather favor the 

second model, in which the mutation in IDH is one of the early oncogenic events arresting 

cells in an undifferentiated state and this is reflected in the associated methylation patterns. 

Remaining outliers in principal component and clustering analysis could thus reflect patients, 

in which transformation and IDH mutation happened later in the differentiation hierarchy. 

Thus, this study underlines the need to assess homogeneous, comparable cancer cell 
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populations or ideally cancers with identical cell of origin, to unequivocally detect mutation-

associated epigenetic changes.  

Although using 450K array data like others before, this study expands on previous 

analyses. Firstly, comparison between AML patients with mIDH and IDH WT status allowed 

the extraction of mIDH-dependent instead of general cancer-associated methylation changes. 

Secondly, unbiased analysis of mIDH carrying AML patients and HL-60 cells revealed distinct 

methylome changes, challenging the concordance of mIDH-associated methylation patterns 

between cancer patients and cell culture systems. Further, in an attempt to dissect mIDH- 

and TET-dependent methylation changes in AML, methylation profiles of patients with mutant 

TET2 and mIDH were compared and DNA methylation canyons as specific target features of 

TET activity were examined in patients with mIDH. This uncovered far fewer hypermethylation 

events in TET2 mutant compared to mIDH harboring patients and poor hypermethylation of 

canyons in IDH mutant samples. Together with the absence of methylation changes upon D-

2-HG treatment in HL-60 cells, these observations argue against D-2-HG-mediated TET 

inhibition as the sole cause for the mIDH-associated hypermethylation. To the best of my 

knowledge this study is the first to assess DNA methylation changes in 2-HG-treated human 

cells in order to investigate effects directly mediated by the metabolite. Finally, in contrast to 

previous reports, the various blood differentiation states potentially present in whole bone 

marrow aspirates of AML patients were taken into account here. By comparing certain 

purified hematopoietic cell types to mIDH carrying patient samples, a major contribution of 

methylation patterns characteristic of undifferentiated myeloid progenitors to the mIDH-

associated hypermethylation was identified.  

To finally understand mIDH-associated pathogenesis, it will be important to dissect its 

neomorphic and catalytic independent effects. It is currently elusive, how mIDH might exactly 

block differentiation, but one paper suggested that histone hypermethylation due to KDM4C 

inhibition may be responsible (Lu et al., 2012). In order to precisely determine TET- and 

mIDH-dependent methylation changes in the hematopoietic lineages a conditional TET triple 

KO mouse model could be compared to the established mIDH knock-in model. Furthermore, 

cancer-specific and differentiation-associated DNA methylation changes resulting from IDH 

mutation may be inferred by in-depth comparison with appropriate reference methylomes.  

3.3 Summary and Conclusions 

In this thesis a previously unknown, important epigenetic regulatory role of TET enzymes at 

DNA methylation canyons in differentiated murine cells was identified. Integrity of canyons 

was found to be essential for in vitro adipogenic differentiation and proper gene expression. It 

hence provides in vitro confirmation of the developmental requirement for TET enzymes. 

Moreover, it underscores the necessity of continuous TET activity beyond preimplantation 
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development. Future studies will be needed to understand whether and how TET enzymes 

are specifically recruited to their target features. This should also clarify whether continuous 

demethylation acts as a default process to antagonize stochastic DNA methylation in 

differentiated cells or whether TET enzymes act in a more directed way upon certain cues. 

Additionally, this study identified the differentiation state of myeloid leukemic cells as a 

major determinant of mIDH-associated hypermethylation in human AML. Conversely, 

alterations in DNA methylation upon abrogation of TET activity and expression of presumably 

TET-inhibiting mIDH were found to be poorly concordant. It thus challenges the claim of 

mIDH-mediated inhibition of TET-dependent DNA demethylation and provides an alternative 

explanation for the associated hypermethylation. More extensive studies will be required to 

understand how mIDH may disturb differentiation. Nevertheless, these findings reinforce the 

need to gain a comprehensive understanding of the oncogenic actions of mIDH, which will be 

vital to fully exploit mIDH as a therapeutic target. 
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4 Materials and Methods 

4.1 Materials 

Table 1: Chemicals, reagents and enzymes 

Name Company 
(D)-2-hydroxyglutarate dehydrogenase (HGDH) kind gift from S. Pusch, 

see Balss et al., 2012 
3-Isobutyl-1-methylxanthine Sigma-Aldrich 
Acetic acid (glacial), 100% Merck Millipore 
Agar  Fluka 
Agarose  Roth 
Ammonium acetate  Fluka 
Ammonium sulfate Roth 
Ampicillin sodium salt Sigma 
Antarctic phosphatase + buffer New England BioLabs 
Boric acid Sigma-Aldrich 
Bradford solution (Protein Assay)  Bio-Rad 
Chloroform VWR 
Complete protease inhibitor cocktail tablets Roche 
Deoxynucleotide mix (100 mM dNTPs) Agilent 
Dexamethasone Sigma-Aldrich 
Diaphorase MP Biomedicals 
Diethyl pyrocarbonate (DEPC) Roth 
Disodium hydrogen phosphate dihydrate (Na2HPO4 x 2H2O) neoLab 
Dithiothreitol (DTT)  Gerbu 
DNA ladder, O’RangeRuler 100bp+500bp Thermo Scientific 
DNA ladder HyperLadder™ 1kb Bioline 
DNA ladder HyperLadder™ 50bp  Bioline 
DNA loading dye Thermo Scientific 
DNAse-free, RNAse-free Water  Gibco 
D-α-hydroxyglutaric acid disodium salt Sigma-Aldrich 
ECL substrate PerkinElmer 
Ethanol  Sigma-Aldrich 
Ethidium bromide  Roth 
Ethylenediaminetetraacetate disodium salt, dihydrate (EDTA)  Gerbu 
Fast digest restriction enzyme buffer  Thermo Scientific 
Formaldehyde (37%) J.T.Baker 
Glycerol Sigma-Aldrich 
Glyco Blue  Ambion 
HEPES  Gerbu 
Hydrochloric acid (37% HCl) Sigma-Aldrich 
Indomethacin Sigma-Aldrich 
Insulin human recombinant zinc solution Invitrogen 
Isopropanol  Riedel-de Haën 
Kapa HiFi HotStart Uracil+ ReadyMix (2x) Kapa Biosystems 
L-α-hydroxyglutaric acid disodium salt  Sigma-Aldrich 
Methanol  Sigma-Aldrich 
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Methylene blue  New England BioLabs 
NAD+ AppliChem 
New England BioLabs restriction enzyme buffers New England BioLabs 
NP40/ Igepal CA-630  Sigma-Aldrich 
Oil Red O Sigma-Aldrich 
PBS tablets Merck Millipore 
PBS, RNAse/DNAse free , 1x/10x Gibco 
PBS-Tween tablets Merck Millipore 
Peptone from casein, tryptic digest Fluka 
PhiX Control v3 Illumina 
Phusion HF buffer (5x) New England BioLabs 
Phusion High-Fidelity DNA Polymerase New England BioLabs 
Potassium chloride (KCl)  Roth 
Potassium dihydrogen phosphate (KH2PO4)  Roth 
Powdered milk  Gerbu 
Proteinase K Ambion 
Resazurin AppliChem 
Restriction enzymes: ClaI New England BioLabs 
Restriction enzymes: EcoRI New England BioLabs 
Restriction enzymes: MscI New England BioLabs 
Restriction enzymes: NcoI Thermo Scientific 
Restriction enzymes: NotI New England BioLabs 
RNAse (DNAse free) Roche 
RNAse A Sigma-Aldrich 
RNAse H New England BioLabs 
Roti-Phenol  Roth 
Roti-Phenol/chloroform/isoamylalcohol Roth 
S.O.C. medium Invitrogen 
Sodium acetate (NaOAc)  Roth 
Sodium chloride (NaCl)  Sigma 
Sodium dodecyl sulfate (SDS)  Roth 
Sodium hydroxide (NaOH)  Riedel-de Haën 
T4 ligase + buffer New England BioLabs 
Taq polymerase FireTaq Blue + buffer Steinbrenner 
Trisodium citrate dihydrate Sigma-Aldrich 
Triton X-100  Gerbu 
Trizma® base Sigma-Aldrich 
TRIzol  Ambion 
Trypan blue dye Bio-Rad 
Tween 20  Sigma-Aldrich 
Yeast extract Gerbu/ Sigma-Aldrich 
β-Mercaptoethanol Sigma-Aldrich 

 

Table 2: Consumable material 

Name Company 
384-well plates Steinbrenner 
5 ml polystyrene round-bottom tubes filter top BD Falcon 
96-well plates black Brandtech 
Amicon filter tubes (Amicon Ultra-4, PLQK Ultracel-PL 
Membrane, 50 kDa) 

Millipore 
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Cell culture dishes (10 cm) Greiner 
Cell culture flasks (T25, T75, T150) Greiner 
Cell culture plates (12-, 24-well) Corning 
Cell culture plates (6-, 48-, 96-well) Greiner 
Cell strainer (40 µM) BD Falcon 
Centrifugal tubes (15, 50 ml)  Greiner 
Counting slides Bio-Rad 
Cryotubes Nalgene (2 ml) Thermo Scientific 
Filter tips (10, 20, 200, 1000 μl) Steinbrenner 
Filters for virus purification (Minisart® NML Syringe Filter 
16555, GUK, 0.45 µm Surfactant-free Cellulose Acetate 

Sartorius 

Filters for virus purification (Millex-HV Filter, 0,45 µm, PVDF) Millipore 
Filtropur S 0.2 sterile filters (0.2 µm) Sarstedt 
Nylon transfer membrane GE Healthcare 
Pasteur pipettes  WU Mainz 
PCR tube strips (0.2 ml) Steinbrenner 
PCR tubes (0.2 ml) Thermo Scientific 
Pipette tips (10, 20, 200, 1000 μl) Sarstedt 
Reaction safe-lock tubes (1.5 ml) Sarstedt 
Reaction safe-lock tubes (2 ml) Eppendorf 
Reaction tubes (1.5, 2 ml) Sarstedt 
Serological pipettes (5, 10, 20, 50 ml) BD Falcon/ Corning 
Syringes Braun 
X-ray film Fujifilm 

 

Table 3: Equipment and devices 

Name Company 
454 Genome Sequencer FLX Titanium Roche 
Agarose gel electrophoresis chamber  Bio-Rad  
Balance EK-200i A&D 
Bioanalyzer Instrument 2100 Agilent Technologies 
Bio-Dot® microfiltration apparatus, 96-well  Bio-Rad 
Bioruptor sonication system Diagenode 
CCD camera AxioCam ERc 5s Zeiss 
Cell culture hood HERA safe/ HERA safe KS Thermo Scientific 
Cell/Particle counter Beckman Coulter  
Cell Counter TC10 Bio-Rad 
Centrifuge 5804  Eppendorf 
Centrifuge 5804 R Eppendorf 
Centrifuge benchtop 5415 D Eppendorf 
CO2 incubator HERA cell 150 Thermo Scientific 
CO2 incubator Sanyo Sanyo 
Covaris S2 Ultrasonicator Covaris 
Cryo 1°C freezing container Nalgene/Nunc 
Developing cassette  Dr. Goos-Suprema  
Developing machine COMPACT™ 2 Protec 
Fine balance CP64 Sartorius 
FLUOstar OPTIMA plate reader BMG Labtech  
Hybridization oven PeqLab 
Illumina HiSeq 2000 system Illumina 
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Incubator & Shaker INNOVA 4200 New Brunswick Scientific 
Infinium HumanMethylation450 BeadChip Illumina 
Infinium MethylationEPIC BeadChip Illumina 
iScan array scanner Illumina 
LightCycler 480 instrument Roche 
Micropipettes Gilson 
Microscope Axiovert 25 Zeiss 
Microscope Axiovert 40 CFL Zeiss 
Microvolume spectrometer NanoDrop 2000  PeqLab  
Orbital shaker Unimax 1010 Heidolph  
pH meter  Hanna instruments 
Power supply  Consort 
Real Time PCR System, LightCycler 480  Roche 
Reflected-light microscope SZX10 Olympus 
Rocker Unimax1010 Heidolph 
Thermocycler DNA Engine Bio-Rad 
Thermomixer compact Eppendorf 
UV gel documentation, E.A.S.Y® Doc plus  Herolab  
Vortex REAX top Heidolph 
Water Bath TW12/ Julabo 12  Julabo  
Wheel REAX 2 Heidolph  

 

Table 4: Kits 

Name Company 
ABsolute qPCR SYBR green mix Thermo Scientific 
Agilent DNA 1000 Kit Agilent Technologies 
BCA Kit Pierce 
Cell Titer Glo® Promega 
Deproteinization Kit BioVision 
EpiTect Bisulfite Kit Qiagen 
EZ-96 DNA Methylation Kit Zymo Research 
GS FLX Titanium PicoTiterPlate Kit 70 x 75 Roche 
GS FLX Titanium Sequencing Kit XLR70 Roche 
GS Junior Maintenance Wash Kit V2 Roche 
GS Junior Titanium emPCR Kit (Lib-A) Roche 
HiSpeed Plasmid Midi Kit Qiagen 
Mesa green qPCR mastermix PLUS for SYBR assay (no ROX) Eurogentec 
PeqGold Extraction Kit PeqLab 
PyroMark PCR Kit Qiagen 
QIAprep Spin Miniprep Kit Qiagen 
QIAquick Gel Extraction Kit Qiagen 
QIAquick PCR purification Kit Qiagen 
QuantiTect cDNA synthesis Kit Qiagen 
Quant-iTTMPicoGreen ®dsDNA Kit Invitrogen 
Qubit Assay Kit Broad Range (BR) Invitrogen 
Qubit Assay Kit High Sensitivity (HS) Invitrogen 
SuperScript® III First-Strand Synthesis System for RT-PCR  Invitrogen 
TruSeq DNA Sample Prep v2 Kit Illumina 
TruSeq RNA Library Preparation Kit v2 Illumina 
Zymo RNA Clean & Concentrator Kit Zymo Research 
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Table 5: Buffers and solutions 

Name Composition 
Dotblot blocking solution 5% w/v milk in 1x PBS 
Dotblot denaturation solution 2 mM NaOH 

50 mM EDTA 
Dotblot neutralization solution (pH 7) 2 M ammonium sulfate 
LB agar 5 g yeast extract 

10 g NaCl 
10 g peptone 
15 g agar 
Ad 1 l with ddH2O 

LB medium 5 g yeast extract 
10 g NaCl 
10 g peptone 
Ad 1 l with ddH2O 

Methylene blue staining solution (pH 5.2) 
 

Methylene blue 0.04% w/v 
500 mM sodium acetate 

NP-40 lysis buffer 150 mM NaCl 
0.1% v/v NP40 
50 mM Tris-HCl (pH 8) 
+ freshly added 1x complete protease inhibitor 

Oil Red O stock solution  0.35% w/v Oil Red O in isopropanol 
Oil Red O working solution  60% v/v Oil Red O stock solution in ddH2O 
PBS-Tween 20 (PBST)  1x PBS  

0,1% v/v Tween20  
Phosphate buffered saline (PBS), 10x, 
(pH 7.5) 
 

1,37 M NaCl 
27 mM KCl 
100 mM Na2HPO4  
18 mM KH2PO4  

Pre-lysis buffer for gDNA isolation (pH 8) 10 mM Tris-HCl pH 8 
5 mM EDTA 
100 mM NaCl 
Freshly added: 
1.1% v/v SDS 
0.1 mg/ml Proteinase K 
0.04 mg/ml RNAse A 

SSC, 20x, (pH 7) 
 

3 M NaCl  
300 mM trisodium citrate  

Tris-acetate-EDTA buffer (TAE), 50x, 
(~pH 8) 

2 M Tris 
50 mM EDTA  
0.95 M acetic acid (to adjust pH) 

Tris-borat-EDTA buffer (TBE), 10x  
 

890 mM Trizma® base 
890 mM Boric acid  
20 mM EDTA  

Tris-EDTA buffer (TE) 10 mM Tris-HCl (pH 8) 
1 mM EDTA  

 

Table 6: Antibodies 

Name Species Dilution Company 
5-hydroxymethylcytosine, #39791  rabbit 1:1000 Active Motif  
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5-methylcytosine, #39649, clone 33D3  mouse 1:1000 Active Motif  

 
HRP-coupled anti mouse IgG (115-035-
003)  

goat 1:10000 Jackson 
ImmunoResearch  

HRP-coupled anti rabbit IgG (111-035-
003) 

goat 1:10000 Jackson 
ImmunoResearch 

 

Table 7: Biological material 

Name Company/Source 
HEK293T cell line Hofmann laboratory cell collection 
HL-60 cell line Lyko laboratory cell collection 
NOMO-1 cell line DSMZ (#ACC 542) 
Primary MEFs  
Tet1+/+; Tet1-/-; Tet1/2-/- (DKO)  

Rudolf Jaenisch, Whitehead Institute for 
Biomedical research, Cambridge, US 

Primary MEFs 
Tet2+/+; Tet2-/-  

Mingjiang Xu, Herman B Wells Center for 
Pediatric Research, Indiana University Melvin 
and Bren Simon Cancer Center, Indiana 
University School of Medicine, Indianapolis, US  

Stbl3™ One Shot™ Chemically 
Competent E. coli 

Invitrogen 

 

Table 8: Cell culture reagents 

Name Composition/ Company 
ADM  1 µM Dexamethasone  

1 µg/ml Insulin 
500 µM 3-Isobutyl-1-methylxanthine 
50 µM Indomethacin  
in DMEM supplemented with 10% FCS and 
Pen/Strep  

Dimethyl sulfoxide (DMSO) Sigma-Aldrich 
DMEM (1x), 4.5 g/l D-Glucose, (+) L-
Glutamine, (-) Pyruvate 

Gibco 

FBS Gibco 
Ficoll-Paque PLUS GE Healthcare 
HEPES buffer solution 1 M PAN Biotech 
L-Glutamine 200 mM (100x) Gibco 
Lipofectamine® 2000 Invitrogen 
OptiMEM (1x) + GlutaMAX Gibco 
Penicillin Streptomycin mix, 100x Gibco 
RPMI Medium 1640 (1x) + GlutaMAX Gibco 
Sodium pyruvate 100 mM (100x) Gibco 
Trypsin- EDTA 0.25% (1x) Gibco 
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Table 9: Vectors 

Name Company/Source 
pHAGE PGK-GFP-IRES-LUC-W Addgene plasmid # 46793 (gift from Darrell 

Kotton, see Wilson et al., 2010) 
pLVX-IRES-ZsGreen1 kind gift from M. Rodríguez (Division of 

Epigenetics, Prof. F. Lyko, DKFZ; Clontech 
plasmid #632187) 

pMD2.G  kind gift from M. Rodríguez (Division of 
Epigenetics, Prof. F. Lyko, DKFZ; Addgene 
plasmid #12259; gift from Didier Trono) 

pMXs-IDH1R132C kind gift from S. Pusch (Clinical Cooperation 
Unit Neuropathology, Prof. A. von Deimling, 
DKFZ) 

pMXs-IDH1WT kind gift from S. Pusch (Clinical Cooperation 
Unit Neuropathology, Prof. A. von Deimling, 
DKFZ) 

pMXs-IDH2R140Q kind gift from S. Pusch (Clinical Cooperation 
Unit Neuropathology, Prof. A. von Deimling, 
DKFZ) 

pMXs-IDH2WT kind gift from S. Pusch (Clinical Cooperation 
Unit Neuropathology, Prof. A. von Deimling, 
DKFZ) 

psPAX2 kind gift from M. Rodríguez (Division of 
Epigenetics, Prof. F. Lyko, DKFZ; Addgene 
plasmid #12260; gift from Didier Trono) 

 

Table 10: Primers 

Application Name Sequence 
454 m_Hoxa1_up TGGTTAGGGTTAGAGTTTGTTGTTT 
 m_Hoxa1_lo AAAACCTTAAAATTTCTTATTCCCACT 
 m_Hoxa3_up AATTTTTTGAATAATTAGGGTATAGAATTT 
 m_Hoxa3_lo AAATTTTAATTTTTAAAATTACACTTCTTA 
 m_Foxc1_up TTTGGGGAATTGTAATTTTTTTAG 
 m_Foxc1_lo TAAATACCCTCTTTCTATTATCCCC 
 m_Foxc1-prom_up TTTTTAGTTTTTTTAAGTTTTGGAA 
 m_Foxc1-prom_lo ATTTACTCTCCACAAACAAATTCTC 
 m_Foxc2_up TTTGTTTGATAATTAGGATTTAAGAAGT 
 m_Foxc2_lo CCTAAAATAACACAAAAAACTCTCC 
 m_Foxc2-prom_up GGGTTGGTTGTTTTGTTTTAATTT 
 m_Foxc2-prom_lo ACACCTAAAAAACCATTAATCCTTC 
 m_Igf1_up TTAGAATTGGGGGTTATTTATAAATTGT 
 m_Igf1_lo CATAAACACAAACACAAAAACATACTCTA 
 m_Pparγ_up ATTTAGGGATAGAGTGAGGGGTTT 
 m_Pparγ_lo TCTAAAACAAAAACAACCCTATTCC 
qRT-PCR m_β-actin_up TGAACCCTAAGGCCAACCGTGAAA 
 m_β-actin_lo CAGGATGGCGTGAGGGAGAGCATAG 
 m_C/ebpα_up TGGACAAGAACAGCAACGAG 
 m_C/ebpα_lo TCACTGGTCAACTCCAGCAC 
 m_Col2a1_up AACTGGCAAACAAGGAGACAGAG 
 m_Col2a1_lo TGCCAGAGGGACCAACAGG 
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 m_Ebf3_up CTCCTTCCTGCACCAGCG 
 m_Ebf3_lo GTCTTTTGTAGCATTCAACTGTGG 
 m_Foxc1_up CGAGTGCTTCGTCAAGGTGC 
 m_Foxc1_lo GGTTCTTGGAGGTGCAGCC 
 m_Foxc2_up GCCCAAGGACCTGGTGAAG 
 m_Foxc2_lo GTCGAGCGTCCAGTAGCTGC 
 m_Foxp1_up AACGAGAGTGACAGCAGTCCAG 
 m_Foxp1_lo GTTCGTCTTCGTAATCTCTGTCATG 
 m_Gapdh_up CATGGCCTTCCGTGTTCCTA 
 m_Gapdh_lo TGCTTCACCACCTTCTTGATGT 
 m_Hoxa3_up CAATGGGTTCGCTTACAATGC 
 m_Hoxa3_lo AGGCAGGTCGATGGTACTCAAC 
 m_Hoxb6_up TTCCTATTTCGTGAACTCCACCTT 
 m_Hoxb6_lo CCGCATAGCCAGACGAGTAGA 
 m_Hoxb9_up TGTCCATTTCTGGGACGCTTA 
 m_Hoxb9_lo GAACACCGGCGCTTTGG 
 m_Hoxc5_up ACCCGTGGATGACCAAACTG 
 m_Hoxc5_lo AGGGTCTGGTAGCGCGTGTA 
 m_Hoxc8_up TCTCCCAGCCTCATGTTTCC 
 m_Hoxc8_lo GTCTGATACCGGCTGTAAGTTTGTC 
 m_Jag1_up AGAAGTCAGAGTTCAGAGGCGTC 
 m_Jag1_lo GGAGTGAGTGTGGCTGCTGG 
 m_Loxl2_up CGCATCTGGATGTACAACTGTCA 
 m_Loxl2_lo TGTCCAGAGTGGAAATCTTGTGG 
 m_Pparγ_up CATAAAGTCCTTCCCGCTGA 
 m_Pparγ_lo GAAACTGGCACCCTTGAAAA 
 m_Tet1_3-4_up GCTGGATTGAAGGAACAGGA 
 m_Tet1_3-4_lo GTCTCCATGAGCTCCCTGAC 
 m_Tet1_4-5_up GTCAGGGAGCTCATGGAGAC  
 m_Tet1_4-5_lo CCTGAGAGCTCTTCCCTTCC  
 RT-Tet2-m-1_F GTCAACAGGACATGATCCAGGAG 
 RT-Tet2-m-1_R CCTGTTCCATCAGGCTTGCT 
 RT-Tet3-m_F GGAGTTGGCTGGAGTCACCAC 
 RT-Tet3-m_R CCACCGCATTGCCACTGTAC 
 m_Zeb2_up TACCCAACGGGAGCAGCTAC 
 m_Zeb2_lo CGCAGAAGGGAACTGCTTTTC 
 human_IDH1_1_for TTGTCCAGATGGCAAGACAG  
 human_IDH1_1_rev GCTTTGCTCTGTGGGCTAAC 
 human_IDH1_2_for AGTCTGCAAGACTGGGAGGA  
 human_IDH1_2_rev CCAATTCCACGTAGGGAAAA  
 hIDH1_exo_down_for GAGACAATTGAGGCTGGCTTC 
 hIDH1_exo_down_rev CCAGAGGTTGATTAGGATCTATCG 
 human_IDH2_1_for TGGCTCAGGTCCTCAAGTCT  
 human_IDH2_1_rev CTCAGCCTCAATCGTCTTCC  
 hACTB_up AGCACAGAGCCTCGCCTTT  
 hACTB_lo GAATCCTTCTGACCCATGC 
 hGAPDH_up CGACCACTTTGTCAAGCTCA 
 hGAPDH_lo GGTGGTCCAGGGGTCTTACT 
cloning  IDH1_cloning_3_for 

(to introduce MscI site) 
AATCTGTGGCCAACCATGTCCAAAAAAATC
AGT 

 IDH1_cloning_3_rev 
(to introduce ClaI site) 

AATCTATCGATACCCTAAAGTTTGGCCTGA
GC 

 IDH2_cloning_3_for AATCTGTGGCCAACCATGGCCGGCTACCT
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(to introduce MscI site) GCGG 
 IDH2_cloning_3_rev 

(to introduce ClaI site) 
AATCTATCGATACCCTACTGCCTGCCCAGG
GC 

other hIDH1_mut_for CGGTCTTCAGAGAAGCCATT 
 hIDH1_mut_rev TTGGAAGGAACTGTGTGCAA 

 

Table 11: Software 

Name Purpose 
BiSQuID 454 data analysis 
GIMP picture manipulation 
Image J particle/pixel quantifications 
Ingenuity® Pathway Analysis calculations of biological pathway enrichments 
Inkscape figure assembly, schemes 
Microsoft Office Suite data analysis, document generation 
OPTIMA analysis software analysis of absorbance or fluorescence 

measurements (from OPTIMA plate reader) 
pDRAW32 vector visualization 
R Infinium data analysis, graphs 
SigmaPlot graphs, statistical testing 

 

4.2 Eukaryotic cells and cell culture 

All cells were grown under sterile conditions in a humidified atmosphere with 5% CO2 and at 

37°C. Cells were handled under sterile culture hoods for splitting and manipulation. Standard 

culture media were supplemented with 10% (v/v) fetal bovine serum (FBS), 100 U/ml 

penicillin and 100 µg/ml streptomycin. Complement contained in the FBS was heat-

inactivated by incubation at 56°C for 30 min and FBS was sterile-filtrated prior to use.  

4.2.1 Cell lines and primary cells 

4.2.1.1 Culture of adherent cells 

Primary MEFs were isolated as described before (Wiehle et al., 2016) and maintained in 

standard T25 or T75 cell culture flasks in DMEM standard culture medium. Cells were 

passaged every three to four days at a ratio of 1:3. For subculture cells were washed twice in 

PBS, dissociated using trypsin, pelleted (130 x g, 5 min) and resuspended in fresh medium. 

For seeding defined cell numbers MEFs were counted using a particle counter from Beckman 

Coulter. 

4.2.1.2 Culture of suspension cells 

HL-60 and NOMO-1 cells were cultured in RPMI standard culture medium in cell culture 

plates or T25/T75 suspension culture flasks. Cells were maintained at a density of 1 to 
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10 x 105 viable cells/ml and split twice per week by addition or replacement with fresh 

medium. To seed a defined viable number of cells they were mixed with Trypan blue in a 1:1 

ratio to label dead cells and live cells were counted using the TC10 automated cell counter.  

4.2.1.3 Thawing and freezing of cells 

For long-term storage 1 to 2 x 106 cells were resuspended in 1 ml of standard culture medium 

supplemented with 10 % (v/v) DMSO. The cell suspension was stored in cryotubes and 

cooled down at a rate of -1°C per minute in freezing containers that were placed at -80°C. 

Few days later the tubes were transferred to liquid nitrogen (-196°C) for long-term 

preservation. For thawing cells were placed in a water bath of 37°C and resuspended in 5 ml 

of medium once the suspension was liquid. After centrifugation at maximally 300 x g for 5 min 

the freezing medium was quickly removed to prevent cell damage due to toxic DMSO, cells 

were taken up in pre-warmed standard culture medium and plated.  

4.2.2 Generation of stable cell lines 

Stable HL-60 and NOMO-1 cell lines expressing either wildtype or mutant IDH enzymes or 

none of them (empty vector control) were generated by lentiviral transduction. For lentivirus 

production HEK293T cells grown in RPMI standard culture medium were seeded into 6-well 

plates. When cells reached 70 – 90% confluency, medium was exchanged with 3 ml of fresh 

RPMI and cells were transfected with target vector, lentiviral packaging vector (psPAX2) and 

envelope plasmid (pMD2.G) in a ratio of 5:4:1. Total transfected DNA per well was 2.5 µg. 

For each well to be transfected, 140 µl of OptiMEM mixed with 7.5 µl Lipofectamine® 2000, 

and 140 µl of OptiMEM containing the 2.5 µg of vector DNA, were prepared. The two 

solutions were mixed, vortexed for 2 seconds, incubated for 5 min at room temperature and 

added to the HEK293T cells in small droplets. Cells were transferred to the S2 laboratory and 

48 h later viral particles were harvested. To this end cell culture supernatants were collected, 

centrifuged for 5 min at 130 x g and filtered using 0.45 µm filters (Sartorius) to remove 

remaining HEK293T cells. For infections 200,000 HL-60/NOMO-1 cells were pelleted and 

resuspended in the freshly harvested and filtered virus-containing cell culture supernatant. 

Two days later medium was exchanged with standard RPMI and after another three days 

cells were removed from the S2 laboratory and examined for green fluorescence under the 

microscope. 

In an alternative protocol for infections HEK293T cells were cultured and transfected in 

DMEM supplemented with 10% (v/v) fetal bovine serum (FBS), 100 U/ml penicillin and 100 

µg/ml streptomycin, 2 mM L-Glutamine, 1 mM sodium pyruvate and 10 mM commercial 

HEPES solution. Virus particles were 0.45 µm filtered (Millipore) and concentrated in Amicon 
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filter tubes by several 10 minute spins at 1000 x g. After volume reduction to roughly 250 µl 

the concentrated virus was directly added to the cells kept in 2.5 ml of their appropriate 

standard medium. Remaining procedures were as described above. Lentiviral transductions 

were performed in collaboration with Florian Köhler and Bojana Kriznik. 

Cells were expanded for a few days and FACS sorted by GFP/ZsGreen1 expression to 

generate successfully transduced cell pools co-expressing the transgene. The 10% and 30% 

with the strongest fluorescence signal of the positive population were sorted to a pool of at 

least 1000 cells. Cell sorting was conducted by Dr. Langlotz at the Flow Cytometry & FACS 

Core Facility of the ZMBH in Heidelberg. 

Sorted cells were pelleted, plated in standard RPMI and expanded for a few days. Ficoll 

purification was performed after reasonable expansion to remove dead cells. To this end cells 

were washed once in PBS, resuspended in 700 µl of standard culture medium and 700 µl of 

Ficoll were overlaid with the cell suspension in Eppendorf tubes. Tubes were subjected to a 

15 seconds spin at 16,100 x g, rotated by 180 degree and spun again for 1 minute at 12,000 

x g. The viable cells located at the interface between Ficoll and medium were recovered, 

resuspended in medium, pelleted and plated in fresh standard culture medium.  

4.3 Molecular cloning 

Two different backbones were used in this study to accommodate transgenes and eventually 

generate stable cell lines expressing wildtype or mutant IDH: pLVX-IRES-ZsGreen1 and 

pHAGE PGK-GFP-IRES-LUC-W. Empty vectors were transduced as controls. The following 

scheme depicts the cloning strategy. 

 

Figure 4.1: Cloning strategy to introduce IDH genes into different lentiviral backbones. 

PMXs vectors harboring the different wildtype and mutant IDH genes were a kind gift of S. Pusch. 

Using EcoRI and NotI transgenes were excised and integrated into the pLVX backbone. For cloning 

them into the pHAGE backbone transgenes were PCR amplified from the pLVX vector using primers 
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introducing MscI or ClaI restriction sites at the ends of the transgenes that were compatible with the 

pHAGE backbone. 

For all enzymatic digestions in this study the units of restriction enzyme were adapted 

according to the definition that one unit digests one µg of template in one hour under optimal 

reaction conditions. To ensure efficient restriction extended incubation times and a volume of 

at least 1 µl (usually comprising more than the required units) were used. Furthermore 

volumes of glycerol were kept below 10% in all enzymatic reactions. 

4.3.1 pLVX-IRES-ZsGreen1 constructs 

4.3.1.1 Preparation of fragments 

PMXs vectors harboring wildtype or mutant IDH1 (R132C) or IDH2 (R140Q) coding 

sequences were restriction digested in triplicates to excise the gene of interest as follows: 

reagent amount 
vector 1 µg 
NEB buffer 3.1 (10x) 3 µl 
EcoRI 1 µl 
NotI 1 µl 
ddH2O To 30 µl 

 

The pLVX-IRES-ZsGreen1 target vector was treated in the same way to linearize it and 

generate corresponding sticky ends ensuring correct orientation of the transgene. Restriction 

was performed overnight at 37°C. To prevent religation of linearized target vector without 

incorporation of insert its ends were dephosphorylated for 1 hour at 37°C without shaking: 

reagent amount 
Antarctic phosphatase buffer (10x) 4 µ 
Antarctic phosphatase 1 µl 
ddH2O 5 µl 
µl target vector reaction (see above) 30 µl 

 

The resulting vector fragments were subjected to gel electrophoresis in a preparative 0.8% 

TAE agarose gel containing 0.25 µg/ml ethidium bromide (Figure 4.2A, B). Fragments and 

linearized target vector of the expected molecular size were excised and gel-extracted using 

a commercial gel extraction kit. To control for the presence of a single pure DNA fragment a 

0.8% agarose control gel was run with 75 – 200 ng of DNA loaded per pocket (Figure 4.2C). 

In this way the measured concentration of the purified DNA was also confirmed or re-

estimated if it strongly deviated from Nanodrop quantifications.  
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Figure 4.2: Restriction digestion of pLVX-IRES-ZsGreen1. 
Target vector pLVX-IRES-ZsGreen1 and source vectors pMXs-IDH2 WT, pMXs-IDH2 MUT (A), pMXs-

IDH1 WT and pMXs-IDH1 MUT (B) were digested using EcoRI and NotI. The weak middle band in B 

either represents supercoiled uncut vector or a contamination of the original plasmid stock with 

religated vector without insert. (C) Examples of expected fragments after gel extraction. 

4.3.1.2 Ligation 

In order to ligate the pLVX backbone with the IDH inserts a ligation reaction with thrice the 

molarity of fragment DNA compared to target vector DNA was set up. For example, in the 

case of IDH2 the insert size was 1442 bp and the linearized target vector was 8179 bp, 

resulting in the amount X of insert to be used: 

        
             

                    
                  

       

    
                 

Routinely, 25 ng of target vector were ligated with the appropriate amount of insert, in this 

case 13.3 ng. Ligations were set up as follows and incubated for 3 hours to overnight at 4°C. 

reagent amount 
target vector 25 ng 
insert X ng 
ligation buffer (10x) 1 µl 
T4 ligase 1 µl 
ddH2O To 10 µl 

 

A control ligation using only linearized vector was set up in addition to monitor religation 

frequency and background colony growth on agar plates.  

4.3.1.3 Transformation 

The ligated plasmids were introduced into Stbl3 chemocompetent E. coli by heat-shock. 

Bacteria were thawed on ice and 50 – 100 µl bacterial suspension was mixed with the entire 

ligation reaction. The mix was incubated for 5 min on ice, 2 min at 42°C and again 5 min on 

ice. Next, 900 µl of S.O.C medium without antibiotics were added and the suspension was 

incubated for 45 min at 37°C in a thermomixer with shaking at 1000 rpm. Bacteria were 
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pelleted by high speed centrifugation for 1 minute, resuspended in 100 µl LB medium and 

seeded onto agar plates containing 100 µg/ml ampicillin which were incubated overnight at 

37°C.  

4.3.1.4 Plasmid isolation and screening 

The next day colonies of different sizes were picked, propagated on a replica plate for 

potential plasmid midi preparations and expanded for plasmid mini preparations by 

inoculating one colony in 2 ml of LB with 100 µg/ml ampicillin and shaking them overnight at 

37°C. The next day bacteria were harvested by centrifugation and plasmid DNA was 

prepared following the instructions of the user manual of the Qiagen Miniprep Kit. Control 

digestions with 1 µg of plasmid DNA using EcoRI and NotI for four hours were performed as 

described above. The resulting fragments were monitored on a 0.8% agarose gel. 

 

Figure 4.3: Control restriction of pMXs-IDH vectors. 
Plasmids isolated from six different bacterial clones per construct were digested with EcoRI and NotI 

and fragments were visualized on a 0.8% agarose gel. (A) For IDH2 constructs clone #6 (IDH2 WT) 

and clone #1 (IDH2 MUT) were sent to sequencing and found to have the correct sequence. (B) For 

IDH1 constructs clones #1 were sent for sequencing and found to have the expected sequence. 

Alternatively, bacterial colonies were picked, resuspended in 20 µl of ddH2O and monitored 

for the presence of transgene by colony-PCR (see below). Only positive clones were 

expanded and plasmids were purified by mini preparation.  

In both cases promising plasmids were sequenced to confirm the presence and integrity of 

the cloned transgene. Sequencing was performed by a commercial sequencing service 

provider using their universal primers pEGFP-FP and pIRES-RP, which amplified the 

transgene. Correct clones were propagated from replica plates or bacterial suspensions in 

200 ml LB-Ampicillin overnight at 37°C and plasmid DNA was extracted following the 

instructions of the HiSpeed Plasmid Midi Kit. 
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4.3.2 pHAGE PGK-GFP-IRES-LUC-W constructs 

4.3.2.1 Preparation of fragments 

For cloning IDH transgenes into pHAGE PGK-GFP-IRES-LUC-W they were PCR-amplified 

from the previously cloned pLVX constructs with specific primers introducing restriction sites 

for MscI and ClaI. These enzymes had restriction sites in the pHAGE target vector 

surrounding the LUC gene. Therefore these nucleases could be used to linearize the target 

vector, excise the unwanted LUC gene and generate unambiguous DNA ends ensuring 

correct orientation of the inserts. The target vector was linearized in triplicates as follows: 

reagent amount 
target vector ~ 800 ng 
cutsmart buffer (10x) 3 µl 
MscI 1 µl 
ClaI 1 µl 
ddH2O To 30 µl 

 

After overnight incubation at 37°C digestions were pooled and analyzed on a 0.8% agarose 

gel (Figure 4.4A). 

 

Figure 4.4: Restriction digestion of pHAGE PGK-GFP-IRES-LUC-W and PCR of IDH inserts.  
(A) Linearized target vector fragment (7609 bp) and excised LUC fragment (1663 bp). (B) PCR 

products of IDH inserts from previously cloned pLVX constructs. (C) MscI and ClaI digested PCR 

products. The IDH2 transgene harbors an internal MscI site, which results in fragmentation of the insert 

into two fragments (1059 and 313 bp). (D) Gel extracted and purified fragments and target vector. 

The vector backbone was excised, gel-extracted into 60 µl of ddH2O (c = 17.6 ng/µl) and 

dephosphorylated by addition of 3 µl Antarctic phosphatase and incubation for 1 hour at 

37°C. The dephosphorylated vector was then purified by a commercial PCR product 

purification kit and analyzed on a 0.8% agarose gel (Figure 4.4D, right lane). 

PCR amplification of IDH transgenes was performed with primers listed in Table 10 in 

duplicates as follows: 
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reagent amount 
Vector template 100 ng 
Phusion high fidelity buffer (5x) 10 µl 
Phusion high fidelity polymerase 0.5 µl 
primer mix (10 µM forwards/ reverse each) 2.5 µl 
10mM dNTPs 1 µl 
ddH2O To 50 µl  

 

PCR conditions: 

temperature [°C] time cycles 
98 30 sec 1 
98 10 sec  
55 15 sec 30 
72 30 sec  
72 7 min 1 
4 ∞  

 

PCR products were pooled and 10 µl were loaded to a 0.8% agarose gel (Figure 4.4B). The 

remaining PCR products were precipitated by addition of 1/10 (v/v) sodium acetate and 3x 

(v/v) ethanol (100%) and incubation at -80°C for 30 min. After a 10 min centrifugation the 

pellets were washed with 70% ethanol, air-dried and resuspended in 25 µl of ddH2O. MscI, 

ClaI and cutsmart buffer were added as described above and PCR products were digested 

for 4 hours at 37°C to generate DNA ends corresponding to the target vector. The resulting 

fragments were separated on a preparative 0.8% agarose gel (Figure 4.4C), excised and gel 

extracted. Purified fragments were examined for their proper appearance by gel 

electrophoresis (Figure 4.4D). Cutting of the IDH2 transgene with MscI generated two 

fragments because this gene possesses an internal recognition site for MscI. Therefore three 

fragments had to be religated later on and checked carefully to ensure correct orientation of 

the smallest fragment. 

4.3.2.2 Ligation 

Ligations were set up as described above with 25 to 75 ng of target vector and the 

corresponding amounts of inserts (the total amount of IDH2 fragment was distributed among 

the two IDH2 subfragments proportionally to their molecular weights). Ligations were 

incubated overnight in an ice-waterbath placed at room temperature resulting in an increasing 

temperature gradient starting from 4°C.  

4.3.2.3 Transformation 

Ligation reactions were transformed into Stbl3 bacteria as described before. Bacteria were 

seeded on LB ampicillin plates and incubated overnight at 37°C.  
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4.3.2.4 Plasmid isolation and screening 

To check the presence of insert several bacterial clones were picked and analyzed by colony-

PCR: 

reagent amount 
Bacterial suspension/control vectors 1.5 µl/100 ng 
FireTaq Blue reaction buffer (10x) 2 µl 
FireTaq Blue polymerase 2 µl 
primer mix (10 µM forwards/ reverse each) 1 µl 
10 mM dNTPs 0.5 µl 
ddH2O To 20 µl  

 

PCR conditions: 

temperature [°C] time cycles 
95 5 min 1 
95 25 sec  
60 25 sec 30 
72 30 sec  
72 5 min 1 
4 ∞  

 

PCR products were analyzed on a 2.5% agarose gel (Figure 4.5A).  

 

Figure 4.5: Colony-PCR and control restrictions of ligated plasmids.  
(A) Example of a colony PCR of IDH2 conducted on a selection of bacterial clones. The expected PCR 

product has a size of 155 bp. Weak bands in the negative control and lanes other than #8, #14 and 

#15 are contaminations. (B) Exemplary control digestions with pHAGE PGK-GFP-IRES-IDH1 WT or –

IDH1 MUT and (C) pHAGE PGK-GFP-IRES-IDH2 WT using MscI and ClaI. Expected fragments were 

7609 and 1274 bp for (B) and 7609, 1058 and 313 bp for (C). (D) Exemplary control digestion of clone 

#22 and #34 from (C) with NcoI. Expected fragments for the correctly oriented inserts were 7154, 1302 

and 523 bp and for the wrong orientation 7154, 1601 and 224 bp. The insert of clone #22 was 

sequenced and found to have the correct sequence. 

Promising clones were amplified and their DNA was isolated as described above using mini 

preparations. The resulting plasmids were control digested with MscI and ClaI to assess the 

presence of insert (Figure 4.5B, C). In the case of IDH2 parallel digestions of 2 x 500 ng with 

NcoI were performed to control for the correct orientation of small fragment (Figure 4.5D): 
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reagent amount 
vector 500 ng 
Fast digest buffer (10x) 2 µl 
NcoI, fast digest 1 µl 
ddH2O To 20 µl 

 

Promising plasmids were sequenced to confirm the presence and integrity of the cloned 

transgene with the commercial service provider and pIRES-RP or pEGFP_C2-FP and 

h_IDH1_1_for/rev or h_IDH2_1_for/rev primers (listed in Table 10), respectively. Bacterial 

clones corresponding to correct plasmids were propagated and DNA was isolated as 

described above. 

4.4 Nucleic acid analyses  

4.4.1 DNA extraction 

For genomic DNA isolation freshly prepared cell pellets were washed in PBS and lysed in 

small falcons by addition of 4.5 ml of pre-lysis buffer. SDS, proteinase K and RNAse A were 

freshly added as described in  

Table 5. The tubes were incubated overnight at 37°C without shaking. The next day 2.5 ml of 

a 5 M NaCl solution were added, the mixture was shaken vigorously and centrifuged for 

15 min at maximal speed. The precipitated proteins should localize to the bottom of the tube 

in a white pellet-like phase. If a correct separation of phases was not achieved the procedure 

was repeated in 2 ml Eppendorf tubes. The clear supernatants were then pooled, transferred 

to a new falcon tube and mixed with 5.6 ml of isopropanol by gentle inversion of the tubes to 

precipitate the DNA. It was then transferred to a fresh Eppendorf tube with a pipet tip if visible 

or tubes were centrifuged at maximal speed for 10 min and the supernatant was discarded. 

The DNA pellet was washed with 70% (v/v) ethanol, collected by centrifugation and the 

ethanol was removed as completely as possible. Pellets were air-dried for a few minutes and 

resuspended in 50 to 100 µl of ddH2O. DNA concentration was determined by absorbance 

measurement using the Nanodrop device. 

4.4.2 Dot blot analyses 

For quantification of DNA modifications by dot blot genomic DNA was sonified for 8 cycles at 

maximal output level with one cycle consisting of 30 sec on and 30 sec off using the Bioruptor 

device. The DNA concentration of the sheared DNA was measured in triplicates by Qubit 

broad range assay following the instructions in the user manual. Next, 4 µg of DNA were 

transferred to an Eppendorf tube and filled up to 80 µl with fresh TE-buffer. 20 µl of 

denaturation solution ( 
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Table 5) were added and samples were incubated for 10 min at 95°C to denature the DNA. 

After incubation 100 µl of neutralization solution were added, samples were put on ice 

immediately and incubated 10 min. 2-fold serial dilutions were prepared in TE ranging from 

1000 ng to 31.25 ng. A nylon membrane of 8 x 12 cm was pre-wet in 6 x SSC for 10 min. The 

dot blot apparatus was washed with a 0.5% SDS/ 0.5 M NaOH solution prior to use to destroy 

remaining nucleic acids. It then was assembled according to instructions in the user manual 

and the membrane was vacuum-dried and equilibrated with 100 µl of clean TE. Samples were 

loaded in duplicates to stain for 5mC and 5hmC in a volume of 48 µl per well. Remaining 

wells were filled with TE and samples were immobilized on the membrane by gentle 

application of vacuum. Care was taken to avoid air bubbles in the wells during loading. 

Afterwards wells were washed with 100 µl of 2 x SSC, the apparatus was disassembled and 

the membrane was rinsed in 2 x SSC. The membrane was then baked at 80°C for 2 hours. 

To monitor equal loading the membrane was stained for 5 min with methylene blue solution 

on a shaker. After documentation the membrane was destained in ddH2O and shaken in dot 

blot blocking solution for 1 hour at room temperature. The membranes were incubated 

likewise in primary antibody solution, washed 3 x 5 min in PBS and stained with secondary 

antibody for one hour at room temperature. After six more 5 min washes in PBS the 

membrane was immersed in freshly prepared enhanced chemiluminescence solution for 1 

min and the signal was detected by applying light-sensitive X-ray films in the dark. The films 

were developed according to instructions of the developing machine.  

4.4.3 RNA extraction 

For total RNA isolation cells were washed in PBS, pelleted, resuspended in 50 µl PBS and 

mixed with 950 µl of TRIzol. Cells were vortexed until the pellet had dissolved and left at room 

temperature for 5 min to lyse nuclei. After addition of 200 µl chloroform, tubes were shaken 

vigorously for 15 sec, incubated for further 3 min at room temperature and centrifuged at 

12,000 x g and 4°C for 15 min. The aqueous phase was transferred into a fresh tube and 

500 µl of isopropanol (and 1 µl GlycoBlue if small quantities were used) were added to 

precipitate RNA. Samples were incubated at room temperature for 15 min and spun at 12,000 

x g and 4°C for 10 min. The supernatant was discarded and the pellet was washed with 

500 µl of 75% ethanol prepared in DEPC water. After vortexing the RNA was pelleted by 

centrifugation at 7000 x g and 4°C for 5 min. The supernatant was removed as completely as 

possible, the pellet was air-dried for a few minutes and dissolved in 10 – 100 µl RNAse-free 

water. The RNA was stored at -80°C.  
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4.4.4 Reverse transcription 

Reverse transcription was performed using the QuantiTect® reverse transcription kit (Qiagen) 

or the SuperScript™ III kit (Invitrogen). 

4.4.4.1 cDNA synthesis by QuantiTect® reverse transcription kit 

reagent amount incubation 
RNA 1 µg  
gDNA Wipeout Buffer (7x) 2 µl 5 min at 42°C, then on ice 
RNAse free water To 14 µl  
Quantiscript RT Buffer (5x) 4 µl 30 min at 42°C 
Random hexamer primer mix 1 µl 15 min at 95°C  
Quantiscript reverse transcriptase 1 µl ∞ at 4°C 

 

The cDNA was stored at -20°C and for qRT-PCR analysis 1 µl was used.  

4.4.4.2 cDNA synthesis by SuperScript™ III kit 

reagent amount incubation 
RNA 2 µg 

5 min at 65°C, then on ice 
for at least 1 min 

Random hexamer primer mix (50 ng/µl) 1 µl 
dNTP mix (10 mM) 1 µl 
RNAse free water To 10 µl 

 

The following master mix was prepared and 10 µl were added to the RNA: 

reagent amount incubation 
RT Buffer (5x) 4 µl 10 min at 25°C 

50 min at 50°C 
5 min at 85°C 
∞ at 4°C 

MgCl2 (25 mM) 4 µl 
DTT (0.1 M) 2 µl 
RNAseOUT (40 U/µl) 1 µl 
SuperScript™ III RT (200 U/µl) 1 µl 

 

The cDNA was treated with 0.4 µl of RNAse H for 20 min at 37°C and stored at -20°C. For 

qRT-PCR analysis the cDNA was diluted 1:50 and 2 µl were used per reaction. 

4.4.5 Quantitative real time PCR (qRT-PCR) 

QRT-PCRs were performed in 384-well plates using the ABsolute qPCR SYBR green mix 

(Thermo Scientific) and the LightCycler 480 (Roche) to monitor fluorescence. Reactions were 

set up as follows with qRT-PCR primers listed in Table 10: 

reagent amount 
cDNA template 1 – 2 µl 
ABsolute qPCR SYBR green mix (2x) 5 µl 
primer mix (10 µM forwards/ reverse each) 0.5 µl 
ddH2O To 10 µl  
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PCR conditions: 

temperature [°C] time cycles 
95 15 min 1 
95 15 sec 50 60 40 sec 

Melting: 60 – 95 (0.11°C/sec) - 1 
40 10 min 1 

 

4.4.6 High throughput sequencing 

Whole genome bisulfite sequencing and total RNA sequencing was performed by the High 

Throughput Sequencing Unit of the Genomics and Proteomics Core Facility at the DKFZ.  

4.4.6.1 Whole Genome Bisulfite Sequencing (WGBS) 

Library preparations for whole genome bisulfite sequencing were conducted using the R&D 

protocol of the Core Facility and 0.3 to 1.2 µg of genomic DNA as starting material. DNA was 

fragmented to an average size of 400 bp using the Covaris S2 and quality was assessed 

using the Agilent DNA 1000 Assay on a Bioanalyzer Instrument 2100. The TruSeq DNA 

Sample Prep v2 Kit (version 2012) was used to perform end repair with bead clean-up and A-

tailing according to the manufacturer´s instructions as well as adapter ligation with double 

bead clean-up. Quality was again monitored on the Bioanalyzer. Bisulfite treatment was 

conducted using the EpiTect Kit (Qiagen) and the converted DNA was purified following the 

Illumina protocol for whole genome bisulfite sequencing for Methylation Analysis (Part 

#15021861, Rev. B). The libraries were amplified using Kapa HiFi HotStart Uracil+ ReadyMix, 

TruSeq PCR primer cocktail and 14 PCR cycles following the above mentioned Illumina 

protocol. Libraries were cleaned-up and quality checked using the Qubit dsDNA HS Assay 

and the Bioanalyzer DNA 1000 Assay. Average library fragment sizes were around 350 bp. 

Final library concentrations applied to the flow cell were 8 to 10 pM with 1% PhiX control v3 

according to the manufacturer´s instructions. DNA was sequenced in paired-end mode on an 

Illumina HiSeq 2000 V3 system. Read lengths were 101 base pairs and the average insert 

size was 230 bp. Two biological replicates per condition were sequenced yielding a combined 

average coverage of 20 x.  

4.4.6.2 Total RNA sequencing 

Library preparation for RNA sequencing was performed from total RNA using the TruSeq 

RNA Library Preparation Kit v2 (version 09-2012; Illumina) according to the manufacturer´s 

instructions. Briefly, 1 µg of total RNA was mRNA enriched using Oligo dT beads, fragmented 

and first strand synthesis was followed by second strand synthesis and bead clean-up. Ends 
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were repaired, bead clean-up was performed and dA-tailing took place followed by adapter 

ligation and double bead clean-up. Libraries were amplified, cleaned again and quality was 

monitored using the Qubit dsDNA HS Assay Kit and the Bioanalyzer with DNA 1000 Assay. 

Average library fragment size was around 290 bp. The libraries were sequenced on an 

Illumina HiSeq 2000 V3 system in 101 bp paired-end mode with 10 pM final library 

concentration on the flow cell and 1% PhiX control v3 following Illumina´s instructions. The 

average insert size was 170 bp. Two biological replicates per condition were sequenced. 

4.4.7 454 targeted amplicon bisulfite sequencing 

For targeted amplicon bisulfite sequencing 500 ng of genomic DNA were bisulfite treated 

according to instructions of the EpiTect Bisulfite Kit from Qiagen with the following changes: 

step temperature [°C] time [min] 
denaturation 95 5 
incubation 60 25 

denaturation 95 5 
incubation 60 85 

denaturation 95 5 
incubation 60 295 

hold 20 ∞ 
 

Regions of interest were PCR amplified using sequence specific primers amplifying the 

deaminated template and containing cell-type specific barcodes and standard 454 adapters. 

Ideal annealing temperatures for primers were tested by gradient PCR using the predicted 

annealing temperature of the primers and 2°C steps of decreasing temperature. PCRs were 

performed using the PyroMark PCR Kit with the following reaction set up: 

reagent amount 
PyroMark PCR Master Mix (2x) 12.5 μl 
CoralLoad Concentrate (10x) 2.5 μl 
MgCl2 (25 mM) 1 µl 
primer mix (10 µM forwards/ reverse each) 2.5 µl 
template 1.5 µl/ 10-20 ng bisulfite converted DNA 
ddH2O 5 µl 
total volume 25 µl 

 

PCR conditions: 

temperature [°C] time cycles 
95 15 min 1 
94 30 sec 

30 - 35 gradient/ best annealing 30 sec 
72 45 sec 
72 10 min 1 
4 ∞  
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To obtain maximal yields the parameters were adapted for each primer pair varying MgCl2 

concentration (1.5 - 4.0 mM), the amounts of template and Q-solution, the number of PCR 

cycles (maximal 35), primer annealing temperatures and hotstart PCR protocol (if not using 

the PyroMark polymerase, which requires heat activation). PCR products were analyzed on 

2 - 2.5 % agarose gels, excised and gel-extracted using the PeqGold Extraction Kit (PeqLab) 

or the QIAquick Gel Extraction Kit (Qiagen). Sample concentrations were determined using 

the Quant-iTTMPicoGreen ®dsDNA Kit according to instructions and the FLUOstar OPTIMA 

plate reader. For sequencing amplicons were pooled in an equimolar mix, processed and 

sequenced according to the manufacturer’s instructions on the GS Junior 454 Genome 

Sequencer (Roche). Sequencing reads were processed, filtered, aligned and displayed in 

color-coded heatmaps using the BiSQuID tool internally available in the Division of 

Epigenetics. Furthermore the methylation state of each CpG in each read was assessed and 

the average methylation per CpG site was computed and displayed in color-coded tables by 

BiSQuID. This tool was programmed by Cassandra Falckenhayn.  

4.4.8 EPIC Methylation Array 

For methylation profiling using the Infinium MethylationEPIC BeadChip 1 µg of purified 

genomic DNA was provided. The analysis of DNA on the array was performed by the 

microarray unit of the DKFZ Genomics and Proteomics Core Facility.  

This platform is an extended version of the Infinium 450K array interrogating 93% of the 

previous and many additional probes resulting in a total of 866,895 CpG sites. Briefly, per 

experiment and condition two biological replicates, but no technical replicates, were used. 

Matched untreated or empty vector transduced cells served as controls. DNA concentrations 

were measured using the Quant-iTTMPicoGreen ®dsDNA Kit and DNA quality was assessed 

by agarose gel electrophoresis. Samples had to have an average fragment size of at least 

3 kb to pass quality control. 500 ng of DNA were bisulfite converted using the EZ-96 DNA 

Methylation Kit (Zymo Research) according to the manufacturer´s instructions. After whole 

genome amplification the DNA was fragmented enzymatically and denatured following the 

recommendations of the Infinium HD Assay Methylation Protocol Guide (Illumina). The DNA 

was applied to the BeadChip and hybridization took place for 16 to 24 hours at 48°C. During 

this process DNA molecules anneal to locus-specific DNA oligomers linked to different bead 

types. In the next step primers are single-base extended using 2,4-dinitrophenol- (DNP) or 

Biotin-labelled ddNTPs and the array is fluorescently stained and scanned (iScan array 

scanner, Illumina) to measure red and green fluorescence intensities. DNA methylation 

values are recorded for each of the 866,895 probes on the array. Methylation level is 

expressed as beta value which is the ratio of methylated signal over the sum of the 
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methylated and unmethylated signals. Thus average beta values represent the percentage of 

methylation of any given cytosine and can attain any value between 0 and 1, with 0 

corresponding to no methylation and 1 to full methylation. 

Raw IDAT files containing average beta values for each probe were analyzed using an 

analysis pipeline available in the Division of Epigenetics. This tool was programmed by Julian 

Gutekunst. Details can be found in chapter 4.6.3. 

4.5 Cellular assays 

4.5.1 Adipogenic differentiation 

Adipogenic differentiation was performed as described in Wiehle et al., 2016. Briefly, 1 x 105
 

cells/well were seeded into 12-well plates and the next day treatment with adipogenic 

differentiation medium (ADM; Tuorto et al., 2012) was started. After 7, 14, and 21 days cells 

were harvested or fixated in order to stain lipid droplets. Fixation was performed for 1 hour in 

10% formalin. Wells were washed with 60% isopropanol and filtered (0.2 µm) Oil Red O 

working solution was added for 10 min. Next, the wells were washed in H2O to remove dye 

and air-dried. Five random images per well were acquired at 4 fold magnification using a 

reflected-light microscope (Olympus) and the particle number per image, representing the 

amount of lipid droplets, was quantified using ImageJ. 

4.5.2 2-HG treatment 

To supplement cell culture medium with 2-HG, 8.64 mg of D- or L-2-HG were freshly 

dissolved in 1.5 ml of RPMI standard culture medium yielding a 30 mM stock solution. 

Aliquots of powder were stored at 4°C (L-2-HG) or -20°C (D-2-HG) and protected from light 

until use. The solution was rotated for 30 min at room temperature and sterile-filtrated with 

0.2 µm filters prior to use. The solution was then further diluted in RPMI to obtain the required 

concentration of 5 mM. 600,000 cells/well were seeded into a 24-well plate in 1 ml of 2-HG 

supplemented medium. Every 3rd and 4th day the medium was exchanged with freshly 2-HG 

supplemented medium, the cell numbers were counted for proliferation analysis and reduced 

to 600,000 per well. Remaining cells were quickly washed in PBS for two times, pelleted, 

liquid was removed as completely as possible and pellets were immediately frozen at -20°C 

for storage.  

4.5.3 D-2-HG measurement 

To measure D-2-HG levels in cell culture supernatants (extracellular measurement) or cells 

(intracellular measurement) the same fluorimetric assay was used. For intracellular 
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measurements cell lysates were prepared and their protein content was assessed. To this 

end, a visible cell pellet was collected in safe-lock tubes and washed twice in PBS for less 

than 5 min. Cells were dissolved in NP-40 lysis buffer with freshly added protease inhibitors 

and freeze-thawed three times by immersing the tubes in liquid nitrogen and placing them at 

37°C until the suspension was liquid again. Vortexing was performed in between. After lysis 

tubes were spun for 5 min at 13,000 x g to pellet debris. The clear supernatant was 

transferred to fresh tubes and kept on ice until protein determination. For extracellular 

measurements 1 ml of cell culture supernatant per condition was collected and directly used 

for deproteinization or stored at -20°C until quantification. 

4.5.3.1 BCA protein assay 

In order to normalize measured intracellular D-2-HG levels to total cell numbers the protein 

concentration of the lysates was measured by BCA protein assay. To this end a 1:5 to 1:25 

dilution was prepared in H2O and several BSA standards were set up to create a standard 

curve. 25 µl of each sample or standard were mixed with 200 µl of a 1:50 dilution of BCA 

reagent B in reagent A in a 96-well plate. Pure NP-40 lysis buffer or H2O was used as blank 

and treated equally. The mixture was incubated for 30 min at 37°C and the OD at 562 nm 

was measured using the FLUOstar OPTIMA plate reader. Each sample, standard and blank 

was at least measured in duplicates. The preset 4-parameter fit function of the OPTIMA 

analysis software was used to establish a standard curve. Raw sample intensities were 

background subtracted and protein concentrations were automatically calculated by the 

analysis software. 

4.5.3.2 Deproteinization 

To remove proteins from cell lysates or cell culture medium a deproteinizing kit (BioVision) 

was used. In brief, 100 µl of sample were mixed with 25 µl of perchloric acid (PCA) in 8-strip 

PCR tubes and incubated on ice for 2 min. To prepare a standard curve 95 µl of 

corresponding cell culture medium (extracellular measurement) or NP-40 lysis buffer 

(intracellular measurement) were mixed with 5 µl of each standard and subjected to PCA 

treatment as described for samples. Standards were prepared in medium (extracellular 

measurement) or ddH2O (intracellular measurement). Tubes were centrifuged for 7 min at 

14,000 rpm and room temperature before transferring 100 µl of the supernatant to 5 µl chilled 

neutralization solution in new 8-strip tubes. The mixture was incubated for 2 min on ice and 

spun again as before to pellet precipitated proteins. 
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4.5.3.3 D-2-HG assay 

Of the supernatant 95 µl were transferred to fresh tubes and spun quickly. 25 µl were 

transferred into a black 96-well plate in triplicates and mixed with 75 µl of the following master 

mix: 

reagent µl/well µl/96-well plate 
HEPES pH 8 (1M) 10 1050 
NAD+ (10 mM) 1 105 
HGDH (0.1 µg/µl) 1 105 
Diaphorase (0.1 U/µl) 1 105 
Resazurin (125 µM) 4 420 
ddH2O 58 6090 

 

The mixture was incubated in the dark at room temperature for 15 to 60 min and fluorimetric 

detection was carried out using the FLUOstar OPTIMA plate reader with excitation of 540+/-

10 nm and emission of 610+/-10 nm. The standard values were curve fitted using the preset 

4-parameter or linear regression fit of the OPTIMA analysis software and D-2-HG values in 

pmol/25 µl sample were computed by the software. To normalize for protein content the 

obtained values [pmol/25 µl] were divided by the corresponding protein concentrations 

[µg/25 µl]. To obtain µM values the obtained concentrations were multiplied by 0.04. 

4.5.4 Proliferation assay by Cell Titer Glo 

At day 0 cells were seeded at 1000 cells/well into a 96-well plate in triplicates. At day 1, 3 and 

6 metabolic activity was assessed by the Cell Titer Glo assay: Cell culture plates were 

equilibrated to room temperature for 30 min and the Cell titer Glo solution was prepared 

following the manufacturer´s instructions. Per well 10 μl were added, the plate was shaken for 

two minutes to lyse cells and left for 10 min in the dark. Luminescence was recorded using 

the OPTIMA plate reader with a gain of 3000. Triplicates were background-corrected and 

averaged. 

4.5.5 Proliferation assay by assessment of cumulative population doubling 

Equal numbers of cells (e.g. 500,000) were seeded in triplicates at each new passage 

(number of inoculated cells = NI) and after 3 or 4 days cell numbers in each well were 

determined. The average was calculated (average number of cells harvested = NH) and used 

to compute the average population doubling level (PDL) based on the following formula: 
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To obtain the cumulative population doubling level the PDL obtained from each measurement 

was added to the previous one (or to 0 at the first measurement) and plotted against the time 

that passed between seeding and harvest. 

4.6 High throughput data analysis 

4.6.1 Whole genome bisulfite sequencing 

Quality control of sequencing reads was performed using FastQC. Reads were trimmed and 

mapped to the mouse reference genome (NCBI37/mm9) using BSMAP 2.5 (Xi and Li, 2009) 

and the Picard tool to remove duplicates (http://broadinstitute.github.io/picard). Methylation 

ratios were calculated with a Python script (methratio.py) from the BSMAP package. PMDs 

that were previously reported to harbor instable methylation in cell culture models (Gaidatzis 

et al., 2014), were removed using a sliding window of 100 kb as described before (Raddatz et 

al., 2012), the Mus musculus skin methylome as reference and a 2-state first-order hidden 

Markov model to identify regions with a strong reduction in methylation (PMDs). Publically 

available ChIP-seq datasets of different chromatin marks, CTCF and PolII in MEFs 

(Mikkelsen et al., 2007; Shen et al., 2012) were subjected to ChromHMM analysis (Ernst and 

Kellis, 2012; http://compbio.mit.edu/ChromHMM/) in order to segment the mouse genome into 

15 chromatin states, for which methylation ratios were calculated and compared. DNA 

methylation canyons were mapped as described in Jeong et al., 2013 and using MOABS 

(Sun et al., 2014). Canyon-associated genes were determined by the presence of their TSS 

within the canyon. More details are described in Wiehle et al., 2016. Günter Raddatz 

conducted the analyses. 

4.6.2 RNA sequencing 

Quality control of sequencing reads was performed using FastQC. Reads were adapter-

trimmed and terminal stretches of bases with a Phred quality score of <30 were removed 

resulting in a maximal read length of 80 bp. Reads were mapped to the NCBI37/mm9 

assembly of the mouse genome using TopHat 2.0.6 (Trapnell, Pachter, and Salzberg, 2009). 

To identify differentially expressed transcripts DESeq 1.10.1 (Anders and Huber, 2010) and 

Cuffdiff 2.0 (Trapnell et al., 2013) were applied. To avoid false positives p-values were 

subjected to multiple testing correction and transcripts with a corrected p-value (q-value) of 

<0.05 were considered to be differentially expressed. These analyses were performed by 

Günter Raddatz and are described in Wiehle et al., 2016. 

http://compbio.mit.edu/ChromHMM/
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4.6.3 Methylation array 

The raw intensity data files were normalized, quality-filtered and statistically analyzed as 

described before (Geyh et al., 2016). In brief, the minfi package (version 1.20.2; Aryee et al., 

2014) was used to load IDAT files into R (version 3.3.2). Data were normalized with the 

SWAN method (Maksimovic et al., 2012) without prior background correction. Cross-reactive 

and SNP containing probes (Chen et al., 2013b), probes on the sex chromosomes and 

probes with a low detection p-value (>0.01) were omitted. Differentially methylated probes 

were identified by a similar approach as implemented in minfi with the exception of adjusting 

p-values for false discovery rate using the Benjamini-Hochberg procedure. Probes with an 

adjusted p-value of <0.05 were considered as differentially methylated. PCA graphs were 

generated by the plotPCA() function provided by the R affycoretools package (version 1.46.5; 

MacDonald, 2008) with significantly differentially methylated probes used to compute principal 

components. Heatmaps were created by the heatmap.2() function of the R gplots package 

(version 3.0.1, Warnes et al., 2016). For clustering the euclidean distance function was used 

to compute the distance matrix and the complete linkage method to obtain hierarchical 

clustering. The RColorBrewer package (version 1.1-2) was used to create the assigned colors 

(Neuwirth, 2014). All above mentioned packages were obtained from Bioconductor. To be 

able to compare EPIC and 450K data the probes common to both chips were extracted and 

used for analysis. The bioinformatic pipeline containing all the described functions was 

programmed by Julian Gutekunst. 

4.7 Statistical analysis 

Numerical data, such as expression values or concentrations, are presented as arithmetic 

averages. Standard deviations were computed as a measure of statistical spread. The two-

tailed Student´s t-test was used to determine the significance of observed differences 

between means of gene expression of two groups. The required level of significance was 5% 

(p≤0.05). Enrichments of biological pathways among deregulated genes were calculated 

using the Ingenuity Pathway Analysis tool and figures showing the negative logarithm of the 

p-values were extracted from the software. 
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5 Appendix 

5.1 Supplemental Figures 

 

Figure S1: Whole genome bisulfite sequencing tracks of WT and DKO MEFs at selected 
hypermethylated canyons.  
Canyons associated with the genes Foxc1, Foxc2, Pparγ and Igf1 are shown. Each blue bar 

represents the detected methylation ratio at individual CpGs. Red boxes indicate the loci interrogated 

by targeted amplicon bisulfite sequencing in Figure 2.8 and Figure 2.14 and yellow boxes show the 

amplicon localization of Figure 2.13. 
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Figure S2: DNA methylation changes in DNMT3A mutated AML patients.  
(A) Scatterplot comparing 32 AML patients with mutations in DNMT3A (mDNMT3A) to 108 AML 

patients with DNMT3A WT status. Each dot indicates the beta values of one 450K probe retained after 

quality-filtering in the two groups and significantly differentially methylated probes (P<0.05) are 

depicted in blue. (B) Distribution of the average beta values of all 450K probes retained after filtering in 

the group of mDNMT3A and DNMT3A WT patients. (C) Principal component analysis as in Figure 

2.16A. Patients with a DNMT3A mutation are colored in blue. (D) Heatmap and hierarchical cluster 

dendrogram of mIDH and IDH WT patients as in Figure 2.16B. Patients with mutated DNMT3A were 

entirely removed from the dataset, resulting in comparison of 92 IDH WT to 16 mIDH patients. 
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Figure S3: Improved screening methods detect transgene expression and D-2-HG production in 
NOMO-1 cells.  
Electropherograms of the cDNA sequence harboring the IDH1 R132C mutation in NOMO-1 (A) and 

HL-60 (B) cells transduced with empty vector, IDH1 WT or IDH1 R132C. Grey boxes indicate the 

position of the base exchange in the mIDH gene. (C) QRT-PCR of total, endogenous and exogenous 

IDH1 transcripts in transduced NOMO-1 cells using discriminating primers. ACTB served as reference 

gene. Bars represent means and error bars standard deviations of three replicates. (D) Intracellular D-

2-HG measurement in transduced NOMO-1 cells. 
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Figure S4: Removal of probes located in PMDs retains mIDH2-associated hypomethylation in 
HL-60 cells. 
(A) Scatterplot comparing average beta values of non-PMD CpG probes between HL-60 cells 

transduced with mIDH2 and empty vector. Blue dots indicate significantly differentially methylated 

probes (P<0.05). (B) Boxplots showing average beta values for all significantly differentially methylated 

probes residing outside of PMDs in HL-60 cells transduced with mIDH2 and empty vector (EV; left 

panel). In the right panel all significantly differentially methylated probes are shown irrespective of their 

localization in PMDs. (C) Percentage of hyper- and hypomethylated non-PMD probes identified in 

mIDH2-expressing HL-60 cells. 
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Figure S5: Reduced proliferation of 2-HG treated HL-60 cells.  

Cumulative population doublings of HL-60 cells cultured in medium supplied with the indicated 

concentrations of D- or L-2-HG for 18 days. 

  



Appendix 

98 
 

5.2 References 

Abdel-Wahab, O., Mullally, A., Hedvat, C., Garcia-Manero, G., Patel, J., Wadleigh, M., 
Malinge, S., Yao, J., Kilpivaara, O., Bhat, R., et al. (2009). Genetic characterization of TET1, 
TET2, and TET3 alterations in myeloid malignancies. Blood 114, 144–147. 

Accomando, W.P., Wiencke, J.K., Houseman, E.A., Nelson, H.H., and Kelsey, K.T. (2014). 
Quantitative reconstruction of leukocyte subsets using DNA methylation. Genome Biol. 15, 
R50. 

Achwal, C.W., Iyer, C.A., and Chandra, H.S. (1983). Immunochemical evidence for the 
presence of 5mC, 6mA and 7mG in human, Drosophila and mealybug DNA. FEBS Lett. 158, 
353–358. 

Akalin, A., Garrett-Bakelman, F.E., Kormaksson, M., Busuttil, J., Zhang, L., Khrebtukova, I., 
Milne, T.A., Huang, Y., Biswas, D., Hess, J.L., et al. (2012). Base-pair resolution DNA 
methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid 
leukemia. PLoS Genet. 8. 

Alharbi, R.A., Pettengell, R., Pandha, H.S., and Morgan, R. (2013). The role of HOX genes in 
normal hematopoiesis and acute leukemia. Leukemia 27, 1000–1008. 

Álvarez-Errico, D., Vento-Tormo, R., Sieweke, M., and Ballestar, E. (2014). Epigenetic control 
of myeloid cell differentiation, identity and function. Nat. Rev. Immunol. 15, 7–17. 

Amouroux, R., Nashun, B., Shirane, K., Nakagawa, S., Hill, P.W.S., D’Souza, Z., Nakayama, 
M., Matsuda, M., Turp, A., Ndjetehe, E., et al. (2016). De novo DNA methylation drives 5hmC 
accumulation in mouse zygotes. Nat. Cell Biol. 18, 225–233. 

An, J., González-Avalos, E., Chawla, A., Jeong, M., López-Moyado, I.F., Li, W., Goodell, M. 
a., Chavez, L., Ko, M., and Rao, A. (2015). Acute loss of TET function results in aggressive 
myeloid cancer in mice. Nat. Commun. 6, 10071. 

An, J., Rao, A., and Ko, M. (2017). TET family dioxygenases and DNA demethylation in stem 
cells and cancers. Exp. Mol. Med. 49, e323. 

Ancey, P.-B., Ecsedi, S., Lambert, M.-P., Talukdar, F.R., Cros, M.-P., Glaise, D., Narvaez, 
D.M., Chauvet, V., Herceg, Z., Corlu, A., et al. (2017). TET-Catalyzed 5-Hydroxymethylation 
Precedes HNF4A Promoter Choice during Differentiation of Bipotent Liver Progenitors. Stem 
Cell Reports. 

Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. 
Genome Biol. 11, R106. 

Aravin, A.A., and Bourc’his, D. (2008). Small RNA guides for de novo DNA methylation in 
mammalian germ cells. Genes Dev. 22, 970–975. 

Aryee, M.J., Jaffe, A.E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A.P., Hansen, K.D., 
and Irizarry, R.A. (2014). Minfi: a flexible and comprehensive Bioconductor package for the 
analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369. 

Bachman, M., Uribe-Lewis, S., Yang, X., Williams, M., Murrell, A., and Balasubramanian, S. 
(2014). 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat. Chem. 6, 
1049–1055. 

Badal, V., Chuang, L.S.H., Tan, E.H.-H., Badal, S., Villa, L.L., Wheeler, C.M., Li, B.F.L., and 
Bernard, H.-U. (2003). CpG methylation of human papillomavirus type 16 DNA in cervical 



  Appendix 

99 
 

cancer cell lines and in clinical specimens: genomic hypomethylation correlates with 
carcinogenic progression. J. Virol. 77, 6227–6234. 

Balss, J., Pusch, S., Beck, A.C., Herold-Mende, C., Krämer, A., Thiede, C., Buckel, W., 
Langhans, C.D., Okun, J.G., and Von Deimling, A. (2012). Enzymatic assay for quantitative 
analysis of (d)-2-hydroxyglutarate. Acta Neuropathol. 124, 883–891. 

Bard, J.B.L., Lam, M.S., and Aitken, S. (2008). A bioinformatics approach for identifying 
candidate transcriptional regulators of mesenchyme-to-epithelium transitions in mouse 
embryos. Dev. Dyn. 237, 2748–2754. 

Baubec, T., Colombo, D.F., Wirbelauer, C., Schmidt, J., Burger, L., Krebs, A.R., Akalin, A., 
and Schübeler, D. (2015). Genomic profiling of DNA methyltransferases reveals a role for 
DNMT3B in genic methylation. Nature 520, 243–247. 

Baylin, S.B., and Jones, P.A. (2016). Epigenetic Determinants of Cancer. Cold Spring Harb. 
Perspect. Biol. 8, a019505. 

Bell, A.C., and Felsenfeld, G. (2000). Methylation of a CTCF-dependent boundary controls 
imprinted expression of the Igf2 gene. Nature 405, 482–485. 

Berman, B.P., Weisenberger, D.J., Aman, J.F., Hinoue, T., Ramjan, Z., Liu, Y., Noushmehr, 
H., Lange, C.P.E., van Dijk, C.M., Tollenaar, R.A.E.M., et al. (2011). Regions of focal DNA 
hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear 
lamina–associated domains. Nat. Genet. 44, 40–46. 

Bertrand, N., Castro, D.S., and Guillemot, F. (2002). Proneural genes and the specification of 
neural cell types. Nat. Rev. Neurosci. 3, 517–530. 

Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21. 

Bird, A.P. (1995). Gene number, noise reduction and biological complexity. Trends Genet. 11, 
94–100. 

Bird, A.P., and Wolffe, A.P. (1999). Methylation-Induced Repression— Belts, Braces, and 
Chromatin. Cell 99, 451–454. 

Blaschke, K., Ebata, K.T., Karimi, M.M., Zepeda-Martínez, J. a, Goyal, P., Mahapatra, S., 
Tam, A., Laird, D.J., Hirst, M., Rao, A., et al. (2013). Vitamin C induces Tet-dependent DNA 
demethylation and a blastocyst-like state in ES cells. Nature 500, 222–226. 

Bock, C., Beerman, I., Lien, W.H., Smith, Z.D., Gu, H., Boyle, P., Gnirke, A., Fuchs, E., Rossi, 
D.J., and Meissner, A. (2012). DNA Methylation Dynamics during In Vivo Differentiation of 
Blood and Skin Stem Cells. Mol. Cell 47, 633–647. 

Bocker, M.T., Hellwig, I., Breiling, A., Eckstein, V., Ho, A.D., and Lyko, F. (2011). Genome-
wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during 
differentiation and aging. 117, 182–189. 

Bocker, M.T., Tuorto, F., Raddatz, G., Musch, T., Yang, F.-C., Xu, M., Lyko, F., and Breiling, 
A. (2012). Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the 
mammalian HOXA cluster. Nat. Commun. 3, 818. 

Booth, M.J., Branco, M.R., Ficz, G., Oxley, D., Krueger, F., Reik, W., and Balasubramanian, 
S. (2012). Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at 
Single-Base Resolution. Science (80-. ). 336, 934–937. 

Bormann, F., Rodríguez-Paredes, M., Hagemann, S., Manchanda, H., Kristof, B., Gutekunst, 



Appendix 

100 
 

J., Raddatz, G., Haas, R., Terstegen, L., Wenck, H., et al. (2016). Reduced DNA methylation 
patterning and transcriptional connectivity define human skin aging. Aging Cell 15, 563–571. 

Bostick, M., Kim, J.K., Estève, P.-O., Clark, A., Pradhan, S., and Jacobsen, S.E. (2007). 
UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–
1764. 

Breiling, A., and Lyko, F. (2015). Epigenetic regulatory functions of DNA modifications: 5-
methylcytosine and beyond. Epigenetics Chromatin 8, 24. 

Bröske, A.-M., Vockentanz, L., Kharazi, S., Huska, M.R., Mancini, E., Scheller, M., Kuhl, C., 
Enns, A., Prinz, M., Jaenisch, R., et al. (2009). DNA methylation protects hematopoietic stem 
cell multipotency from myeloerythroid restriction. Nat. Genet. 41, 1207–1215. 

Busque, L., Patel, J.P., Figueroa, M.E., Vasanthakumar, A., Provost, S., Hamilou, Z., Mollica, 
L., Li, J., Viale, A., Heguy, A., et al. (2012). Recurrent somatic TET2 mutations in normal 
elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181. 

de Capoa, A., Musolino, A., Della Rosa, S., Caiafa, P., Mariani, L., Del Nonno, F., Vocaturo, 
A., Donnorso, R.P., Niveleau, A., and Grappelli, C. DNA demethylation is directly related to 
tumour progression: evidence in normal, pre-malignant and malignant cells from uterine 
cervix samples. Oncol. Rep. 10, 545–549. 

Challen, G.A., Sun, D., Mayle, A., Jeong, M., Luo, M., Rodriguez, B., Mallaney, C., Celik, H., 
Yang, L., Xia, Z., et al. (2014). Dnmt3a and Dnmt3b have overlapping and distinct functions in 
hematopoietic stem cells. Cell Stem Cell 15, 350–364. 

Challen, G. a, Sun, D., Jeong, M., Luo, M., Jelinek, J., Berg, J.S., Bock, C., Vasanthakumar, 
A., Gu, H., Xi, Y., et al. (2011). Dnmt3a is essential for hematopoietic stem cell differentiation. 
Nat. Genet. 44, 23–31. 

Chan, S.M., Thomas, D., Corces-Zimmerman, M.R., Xavy, S., Rastogi, S., Hong, W.-J., Zhao, 
F., Medeiros, B.C., Tyvoll, D.A., and Majeti, R. (2015). Isocitrate dehydrogenase 1 and 2 
mutations induce BCL-2 dependence in acute myeloid leukemia. Nat. Med. 21, 178–184. 

Chaturvedi, A., Araujo Cruz, M.M., Jyotsana, N., Sharma, A., Goparaju, R., Schwarzer, A., 
Görlich, K., Schottmann, R., Struys, E.A., Jansen, E.E., et al. (2016). Enantiomer-specific and 
paracrine leukemogenicity of mutant IDH metabolite 2-hydroxyglutarate. Leukemia 1–8. 

Chaturvedi, A., Herbst, L., Pusch, S., Klett, L., Goparaju, R., Stichel, D., Kaulfuss, S., 
Panknin, O., Zimmermann, K., Toschi, L., et al. (2017). Pan-mutant-IDH1 inhibitor 
BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo. 
Leukemia. 

Chen, C., Liu, Y., Lu, C., Cross, J.R., Morris, J.P., Shroff, A.S., Ward, P.S., Bradner, J.E., 
Thompson, C., and Lowe, S.W. (2013a). Cancer-associated IDH2 mutants drive an acute 
myeloid leukemia that is susceptible to Brd4 inhibition. Genes Dev. 27, 1974–1985. 

Chen, J.-Y., Lai, Y.-S., Tsai, H.-J., Kuo, C.-C., Yen, B.L., Yeh, S.-P., Sun, H.S., and Hung, 
W.-C. (2016). The oncometabolite R-2-hydroxyglutarate activates NF-κB-dependent tumor-
promoting stromal niche for acute myeloid leukemia cells. Sci. Rep. 6, 32428. 

Chen, T., Ueda, Y., Dodge, J.E., Wang, Z., and Li, E. (2003). Establishment and maintenance 
of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. 
Cell. Biol. 23, 5594–5605. 

Chen, Y., Lemire, M., Choufani, S., Butcher, D.T., Grafodatskaya, D., Zanke, B.W., Gallinger, 
S., Hudson, T.J., and Weksberg, R. (2013b). Discovery of cross-reactive probes and 



  Appendix 

101 
 

polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8, 
203–209. 

Chowdhury, R., Yeoh, K.K., Tian, Y.-M., Hillringhaus, L., Bagg, E.A., Rose, N.R., Leung, 
I.K.H., Li, X.S., Woon, E.C.Y., Yang, M., et al. (2011). The oncometabolite 2-hydroxyglutarate 
inhibits histone lysine demethylases. EMBO Rep. 12, 463–469. 

Chuang, L.S., Ian, H.I., Koh, T.W., Ng, H.H., Xu, G., and Li, B.F. (1997). Human DNA-
(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277, 1996–
2000. 

Cimmino, L., Dawlaty, M.M., Ndiaye-Lobry, D., Yap, Y.S., Bakogianni, S., Yu, Y., 
Bhattacharyya, S., Shaknovich, R., Geng, H., Lobry, C., et al. (2015). TET1 is a tumor 
suppressor of hematopoietic malignancy. Nat. Immunol. 16, 653–662. 

Clark, S.J., Harrison, J., and Molloy, P.L. (1997). Sp1 binding is inhibited by (m)Cp(m)CpG 
methylation. Gene 195, 67–71. 

Corces-Zimmerman, M.R., Hong, W.-J., Weissman, I.L., Medeiros, B.C., and Majeti, R. 
(2014). Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators 
and persist in remission. Proc. Natl. Acad. Sci. 111, 2548–2553. 

Cortázar, D., Kunz, C., Selfridge, J., Lettieri, T., Saito, Y., MacDougall, E., Wirz, A., 
Schuermann, D., Jacobs, A.L., Siegrist, F., et al. (2011). Embryonic lethal phenotype reveals 
a function of TDG in maintaining epigenetic stability. Nature 470, 419–423. 

Cortellino, S., Xu, J., Sannai, M., Moore, R., Caretti, E., Cigliano, A., Le Coz, M., Devarajan, 
K., Wessels, A., Soprano, D., et al. (2011). Thymine DNA glycosylase is essential for active 
DNA demethylation by linked deamination-base excision repair. Cell 146, 67–79. 

Costa, Y., Ding, J., Theunissen, T.W., Faiola, F., Hore, T. a, Shliaha, P. V, Fidalgo, M., 
Saunders, A., Lawrence, M., Dietmann, S., et al. (2013). NANOG-dependent function of TET1 
and TET2 in establishment of pluripotency. Nature. 

Coulondre, C., Miller, J.H., Farabaugh, P.J., and Gilbert, W. (1978). Molecular basis of base 
substitution hotspots in Escherichia coli. Nature 274, 775–780. 

Dai, H.-Q., Wang, B.-A., Yang, L., Chen, J.-J., Zhu, G.-C., Sun, M.-L., Ge, H., Wang, R., 
Chapman, D.L., Tang, F., et al. (2016). TET-mediated DNA demethylation controls 
gastrulation by regulating Lefty-Nodal signalling. Nature. 

Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., Fantin, V.R., 
Jang, H.G., Jin, S., Keenan, M.C., et al. (2009). Cancer-associated IDH1 mutations produce 
2-hydroxyglutarate. Nature 462, 739–744. 

Dang, L., Yen, K., and Attar, E.C. (2016). IDH mutations in cancer and progress toward 
development of targeted therapeutics. Ann. Oncol. 27, 599–608. 

Davis, K.E., Moldes, M., and Farmer, S.R. (2004). The forkhead transcription factor FoxC2 
inhibits white adipocyte differentiation. J. Biol. Chem. 279, 42453–42461. 

Dawlaty, M.M., Ganz, K., Powell, B.E., Hu, Y.-C., Markoulaki, S., Cheng, A.W., Gao, Q., Kim, 
J., Choi, S.-W., Page, D.C., et al. (2011). Tet1 is dispensable for maintaining pluripotency and 
its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9, 166–175. 

Dawlaty, M.M., Breiling, A., Le, T., Raddatz, G., Barrasa, M.I., Cheng, A.W., Gao, Q., Powell, 
B.E., Li, Z., Xu, M., et al. (2013). Combined deficiency of tet1 and tet2 causes epigenetic 
abnormalities but is compatible with postnatal development. Dev. Cell 24, 310–323. 



Appendix 

102 
 

Dawlaty, M.M., Breiling, A., Le, T., Barrasa, M.I., Raddatz, G., Gao, Q., Powell, B.E., Cheng, 
A.W., Faull, K.F., Lyko, F., et al. (2014). Loss of Tet enzymes compromises proper 
differentiation of embryonic stem cells. Dev. Cell 29, 102–111. 

Dawson, M.A. (2017). The cancer epigenome: Concepts, challenges, and therapeutic 
opportunities. Science (80-. ). 355, 1147–1152. 

Deaton, A.M., and Bird, A. (2011). CpG islands and the regulation of transcription. Genes 
Dev. 25, 1010–1022. 

Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Massé, A., Kosmider, 
O., Le Couedic, J.-P., Robert, F., Alberdi, A., et al. (2009). Mutation in TET2 in myeloid 
cancers. N. Engl. J. Med. 360, 2289–2301. 

DiNardo, C.D., Ravandi, F., Agresta, S., Konopleva, M., Takahashi, K., Kadia, T., Routbort, 
M., Patel, K.P., Mark Brandt, Pierce, S., et al. (2015). Characteristics, clinical outcome, and 
prognostic significance of IDH mutations in AML. Am. J. Hematol. 90, 732–736. 

Doege, C.A., Inoue, K., Yamashita, T., Rhee, D.B., Travis, S., Fujita, R., Guarnieri, P., 
Bhagat, G., Vanti, W.B., Shih, A., et al. (2012). Early-stage epigenetic modification during 
somatic cell reprogramming by Parp1 and Tet2. Nature 488, 652–655. 

Döhner, H., Weisdorf, D.J., and Bloomfield, C.D. (2015). Acute Myeloid Leukemia. N. Engl. J. 
Med. 373, 1136–1152. 

Doi, A., Park, I.-H., Wen, B., Murakami, P., Aryee, M.J., Irizarry, R., Herb, B., Ladd-Acosta, 
C., Rho, J., Loewer, S., et al. (2009). Differential methylation of tissue- and cancer-specific 
CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells 
and fibroblasts. Nat. Genet. 41, 1350–1353. 

Domcke, S., Bardet, A.F., Adrian Ginno, P., Hartl, D., Burger, L., and Schübeler, D. (2015). 
Competition between DNA methylation and transcription factors determines binding of NRF1. 
Nature 528, 575–579. 

Dubois-Chevalier, J., Oger, F., Dehondt, H., Firmin, F.F., Gheeraert, C., Staels, B., Lefebvre, 
P., and Eeckhoute, J. (2014). A dynamic CTCF chromatin binding landscape promotes DNA 
hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids 
Res. 42, 1–17. 

Duncan, C.G., Barwick, B.G., Jin, G., Rago, C., Kapoor-Vazirani, P., Powell, D.R., Chi, J.T., 
Bigner, D.D., Vertino, P.M., and Yan, H. (2012). A heterozygous IDH1R132H/WT mutation 
induces genome-wide alterations in DNA methylation. Genome Res. 22, 2339–2355. 

Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V.K., Attwood, J., Burger, M., Burton, J., Cox, T. 
V, Davies, R., Down, T.A., et al. (2006). DNA methylation profiling of human chromosomes 6, 
20 and 22. Nat. Genet. 38, 1378–1385. 

Edwards, J.R., Yarychkivska, O., Boulard, M., and Bestor, T.H. (2017). DNA methylation and 
DNA methyltransferases. Epigenetics Chromatin 10, 23. 

Ehrlich, M., Gama-Sosa, M.A., Huang, L.H., Midgett, R.M., Kuo, K.C., McCune, R.A., and 
Gehrke, C. (1982). Amount and distribution of 5-methylcytosine in human DNA from different 
types of tissues of cells. Nucleic Acids Res. 10, 2709–2721. 

Ernst, J., and Kellis, M. (2012). ChromHMM: automating chromatin-state discovery and 
characterization. Nat. Methods 9, 215–216. 

Farlik, M., Halbritter, F., M??ller, F., Choudry, F.A., Ebert, P., Klughammer, J., Farrow, S., 



  Appendix 

103 
 

Santoro, A., Ciaurro, V., Mathur, A., et al. (2016). DNA Methylation Dynamics of Human 
Hematopoietic Stem Cell Differentiation. Cell Stem Cell 19, 808–822. 

Fathi, A.T., Sadrzadeh, H., Borger, D.R., Ballen, K.K., Amrein, P.C., Attar, E.C., Foster, J., 
Burke, M., Lopez, H.U., Matulis, C.R., et al. (2012). Prospective serial evaluation of 2-
hydroxyglutarate, during treatment of newly diagnosed acute myeloid leukemia, to assess 
disease activity and therapeutic response. Blood 120, 4649–4652. 

Feinberg, A.P., and Tycko, B. (2004). The history of cancer epigenetics. Nat. Rev. Cancer 4, 
143–153. 

Feinberg, A.P., and Vogelstein, B. (1983a). Hypomethylation distinguishes genes of some 
human cancers from their normal counterparts. Nature 301, 89–92. 

Feinberg, A.P., and Vogelstein, B. (1983b). Hypomethylation of ras oncogenes in primary 
human cancers. Biochem. Biophys. Res. Commun. 111, 47–54. 

Feldmann, A., Ivanek, R., Murr, R., Gaidatzis, D., Burger, L., and Schübeler, D. (2013). 
Transcription Factor Occupancy Can Mediate Active Turnover of DNA Methylation at 
Regulatory Regions. PLoS Genet. 9, e1003994. 

Ficz, G., Branco, M.R., Seisenberger, S., Santos, F., Krueger, F., Hore, T. a, Marques, C.J., 
Andrews, S., and Reik, W. (2011). Dynamic regulation of 5-hydroxymethylcytosine in mouse 
ES cells and during differentiation. Nature 473, 398–402. 

Figueroa, M.E., Abdel-Wahab, O., Lu, C., Ward, P.S., Patel, J., Shih, A., Li, Y., Bhagwat, N., 
Vasanthakumar, A., Fernandez, H.F., et al. (2010). Leukemic IDH1 and IDH2 mutations result 
in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic 
differentiation. Cancer Cell 18, 553–567. 

Flavahan, W. a., Drier, Y., Liau, B.B., Gillespie, S.M., Venteicher, A.S., Stemmer-
Rachamimov, A.O., Suvà, M.L., and Bernstein, B.E. (2015). Insulator dysfunction and 
oncogene activation in IDH mutant gliomas. Nature 1–16. 

Fujiki, K., Shinoda, A., Kano, F., Sato, R., Shirahige, K., and Murata, M. (2013). PPARγ-
induced PARylation promotes local DNA demethylation by production of 5-
hydroxymethylcytosine. Nat. Commun. 4, 2262. 

Gaidatzis, D., Burger, L., Murr, R., Lerch, A., Dessus-Babus, S., Schübeler, D., and Stadler, 
M.B. (2014). DNA Sequence Explains Seemingly Disordered Methylation Levels in Partially 
Methylated Domains of Mammalian Genomes. PLoS Genet. 10, e1004143. 

Gaidzik, V.I., Paschka, P., Späth, D., Habdank, M., Köhne, C.-H., Germing, U., von Lilienfeld-
Toal, M., Held, G., Horst, H.-A., Haase, D., et al. (2012). TET2 mutations in acute myeloid 
leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study 
group. J. Clin. Oncol. 30, 1350–1357. 

Gama-Sosa, M.A., Slagel, V.A., Trewyn, R.W., Oxenhandler, R., Kuo, K.C., Gehrke, C.W., 
and Ehrlich, M. (1983). The 5-methylcytosine content of DNA from human tumors. Nucleic 
Acids Res. 11, 6883–6894. 

Gao, Y., Chen, J.J.J., Li, K., Wu, T., Huang, B., Liu, W., Kou, X., Zhang, Y., Huang, H., Jiang, 
Y., et al. (2013). Replacement of Oct4 by Tet1 during iPSC induction reveals an important 
role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12, 453–
469. 

Genovese, G., Kähler, A.K., Handsaker, R.E., Lindberg, J., Rose, S.A., Bakhoum, S.F., 
Chambert, K., Mick, E., Neale, B.M., Fromer, M., et al. (2014). Clonal hematopoiesis and 



Appendix 

104 
 

blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487. 

Geyh, S., Oz, S., Cadeddu, R.-P., Fröbel, J., Brückner, B., Kündgen, A., Fenk, R., Bruns, I., 
Zilkens, C., Hermsen, D., et al. (2013). Insufficient stromal support in MDS results from 
molecular and functional deficits of mesenchymal stromal cells. Leukemia 27, 1841–1851. 

Geyh, S., Rodríguez-Paredes, M., Jäger, P., Khandanpour, C., Cadeddu, R.-P., Gutekunst, 
J., Wilk, C.M., Fenk, R., Zilkens, C., Hermsen, D., et al. (2016). Functional inhibition of 
mesenchymal stromal cells in acute myeloid leukemia. Leukemia 30, 683–691. 

Globisch, D., Münzel, M., Müller, M., Michalakis, S., Wagner, M., Koch, S., Brückl, T., Biel, 
M., and Carell, T. (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active 
demethylation intermediates. PLoS One 5, e15367. 

Goll, M.G., and Bestor, T.H. (2005). Eukaryotic cytosine methyltransferases. Annu. Rev. 
Biochem. 74, 481–514. 

Graff, J.R., Herman, J.G., Lapidus, R.G., Chopra, H., Xu, R., Jarrard, D.F., Isaacs, W.B., 
Pitha, P.M., Davidson, N.E., and Baylin, S.B. (1995). E-cadherin expression is silenced by 
DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 55, 5195–
5199. 

Gross, S., Cairns, R.A., Minden, M.D., Driggers, E.M., Bittinger, M.A., Jang, H.G., Sasaki, M., 
Jin, S., Schenkein, D.P., Su, S.M., et al. (2010). Cancer-associated metabolite 2-
hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 
1 and 2 mutations. J. Exp. Med. 207, 339–344. 

Gu, T.-P., Guo, F., Yang, H., Wu, H.-P., Xu, G.-L.G.-F., Liu, W., Xie, Z.-G., Shi, L., He, X., Jin, 
S., et al. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. 
Nature 477, 606–610. 

Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M.B., Talhout, W., Eussen, B.H., de 
Klein, A., Wessels, L., de Laat, W., et al. (2008). Domain organization of human 
chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951. 

Guo, F., Li, X., Liang, D., Li, T., Zhu, P., Guo, H., Wu, X., Wen, L., Gu, T.-P., Hu, B., et al. 
(2014). Active and passive demethylation of male and female pronuclear DNA in the 
mammalian zygote. Cell Stem Cell 15, 447–458. 

Hackett, J. a, Sengupta, R., Zylicz, J.J., Murakami, K., Lee, C., Down, T. a, and Surani, M.A. 
(2013). Germline DNA demethylation dynamics and imprint erasure through 5-
hydroxymethylcytosine. Science 339, 448–452. 

Hader, C., Marlier, A., and Cantley, L. (2010). Mesenchymal?epithelial transition in epithelial 
response to injury: the role of Foxc2. Oncogene 29, 1031–1040. 

Hajkova, P., Jeffries, S.J., Lee, C., Miller, N., Jackson, S.P., and Surani, M.A. (2010). 
Genome-wide reprogramming in the mouse germ line entails the base excision repair 
pathway. Science 329, 78–82. 

Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 
646–674. 

Hashimoto, H., Liu, Y., Upadhyay, A.K., Chang, Y., Howerton, S.B., Vertino, P.M., Zhang, X., 
and Cheng, X. (2012). Recognition and potential mechanisms for replication and erasure of 
cytosine hydroxymethylation. Nucleic Acids Res. 40, 4841–4849. 

He, Y.-F., Li, B.-Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., et al. 



  Appendix 

105 
 

(2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian 
DNA. Science 333, 1303–1307. 

Hellman, A., and Chess, A. (2007). Gene Body-Specific Methylation on the Active X 
Chromosome. Science (80-. ). 315, 1141–1143. 

Herman, J.G., Latif, F., Weng, Y., Lerman, M.I., Zbar, B., Liu, S., Samid, D., Duan, D.S., 
Gnarra, J.R., and Linehan, W.M. (1994). Silencing of the VHL tumor-suppressor gene by 
DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. U. S. A. 91, 9700–9704. 

Heuser, M., Yun, H., Berg, T., Yung, E., Argiropoulos, B., Kuchenbauer, F., Park, G., Hamwi, 
I., Palmqvist, L., Lai, C.K., et al. (2011). Cell of origin in AML: susceptibility to MN1-induced 
transformation is regulated by the MEIS1/AbdB-like HOX protein complex. Cancer Cell 20, 
39–52. 

Hodges, E., Molaro, A., Dos Santos, C.O., Thekkat, P., Song, Q., Uren, P.J., Park, J., Butler, 
J., Rafii, S., McCombie, W.R., et al. (2011). Directional DNA methylation changes and 
complex intermediate states accompany lineage specificity in the adult hematopoietic 
compartment. Mol. Cell 44, 17–28. 

Holz-Schietinger, C., Matje, D.M., and Reich, N.O. (2012). Mutations in DNA 
methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive 
methylation. J. Biol. Chem. 287, 30941–30951. 

Hon, G.C., Hawkins, R.D., Caballero, O.L., Lo, C., Lister, R., Pelizzola, M., Valsesia, A., Ye, 
Z., Kuan, S., Edsall, L.E., et al. (2012). Global DNA hypomethylation coupled to repressive 
chromatin domain formation and gene silencing in breast cancer. Genome Res. 22, 246–258. 

Hon, G.C.C., Song, C.-X., Du, T., Jin, F., Selvaraj, S., Lee, A.Y.Y., Yen, C., Ye, Z., Mao, S., 
Wang, B., et al. (2014). 5mC Oxidation by Tet2 Modulates Enhancer Activity and Timing of 
Transcriptome Reprogramming during Differentiation. Mol. Cell 56, 1–12. 

Hotchkiss, R.D. (1948). The quantitative separation of purines, pyrimidines, and nucleosides 
by paper chromatography. J. Biol. Chem. 175, 315–332. 

Hu, L., Li, Z., Cheng, J., Rao, Q., Gong, W., Liu, M., Shi, Y.G., Zhu, J., Wang, P., and Xu, Y. 
(2013). Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. 
Cell 155, 1545–1555. 

Hu, L., Lu, J., Cheng, J., Rao, Q., Li, Z., Hou, H., Lou, Z., Zhang, L., Li, W., Gong, W., et al. 
(2015). Structural insight into substrate preference for TET-mediated oxidation. Nature 527, 
118–122. 

Hu, X., Zhang, L., Mao, S., Li, Z., Chen, J., Zhang, R.-R., Wu, H.-P., Gao, J., Guo, F., Liu, W., 
et al. (2014). Tet and TDG Mediate DNA Demethylation Essential for Mesenchymal-to-
Epithelial Transition in Somatic Cell Reprogramming. Cell Stem Cell 14, 1–11. 

Huang, H., Jiang, X., Li, Z., Li, Y., Song, C., He, C., Sun, M., and Chen, P. (2013a). TET1 
plays an essential oncogenic role in MLL -rearranged leukemia. 1–6. 

Huang, S., Zhu, Z., Wang, Y.Y., Xu, L., Chen, X., Xu, Q., Zhang, Q., Zhao, X., Yu, Y., and 
Wu, D. (2013b). Tet1 is required for Rb phosphorylation during G1/S phase transition. 
Biochem. Biophys. Res. Commun. 434, 241–244. 

Huang, Y., Chavez, L., Chang, X., Wang, X., Pastor, W. a, Kang, J., Zepeda-Martínez, J. a, 
Pape, U.J., Jacobsen, S.E., Peters, B., et al. (2014). Distinct roles of the methylcytosine 
oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 111, 
1361–1366. 



Appendix 

106 
 

Im, A.P., Sehgal, A.R., Carroll, M.P., Smith, B.D., Tefferi, A., Johnson, D.E., and Boyiadzis, 
M. (2014). DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid 
malignancies: associations with prognosis and potential treatment strategies. Leukemia 28, 
1774–1783. 

Inoue, A., and Zhang, Y. (2011). Replication-dependent loss of 5-hydroxymethylcytosine in 
mouse preimplantation embryos. Science 334, 194. 

Inoue, A., Shen, L., Dai, Q., He, C., and Zhang, Y. (2011). Generation and replication-
dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 21, 
1670–1676. 

Inoue, A., Shen, L., Matoba, S., and Zhang, Y. (2015). Haploinsufficiency, but Not Defective 
Paternal 5mC Oxidation, Accounts for the Developmental Defects of Maternal Tet3 
Knockouts. Cell Rep. 10, 463–470. 

Inoue, S., Lemonnier, F., and Mak, T.W. (2016a). Roles of IDH1/2 and TET2 mutations in 
myeloid disorders. Int. J. Hematol. 103, 627–633. 

Inoue, S., Li, W.Y., Tseng, A., Nolan, G.P., Cairns, R.A., and Mak, T.W. (2016b). Mutant 
IDH1 Downregulates ATM and Alters DNA Repair and Sensitivity to DNA Damage 
Independent Mutant IDH1 Downregulates ATM and Alters DNA Repair and Sensitivity to DNA 
Damage Independent of TET2. Cancer Cell 1–12. 

Iqbal, K., Jin, S.-G., Pfeifer, G.P., and Szabó, P.E. (2011). Reprogramming of the paternal 
genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. 
Acad. Sci. U. S. A. 108, 3642–3647. 

Irizarry, R.A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., 
Rongione, M., Webster, M., et al. (2009). The human colon cancer methylome shows similar 
hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41, 
178–186. 

Ito, S., Alessio, A.C.D., Taranova, O. V, Hong, K., and Lawrence, C. (2010). Role of Tet 
proteins in 5mC to 5hmC conversion , ES cell self- renewal , and ICM specification. Nature 
466, 1129–1133. 

Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Carolina, N., Hill, C., Swenberg, J.A., He, C., 
and Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-
carboxylcytosine. Science 333, 1300–1303. 

Iurlaro, M., Ficz, G., Oxley, D., Raiber, E.-A., Bachman, M., Booth, M.J., Andrews, S., 
Balasubramanian, S., and Reik, W. (2013). A screen for hydroxymethylcytosine and 
formylcytosine binding proteins suggests functions in transcription and chromatin regulation. 
Genome Biol. 14, R119. 

Jackson, M., Krassowska, A., Gilbert, N., Chevassut, T., Forrester, L., Ansell, J., and 
Ramsahoye, B. (2004). Severe global DNA hypomethylation blocks differentiation and 
induces histone hyperacetylation in embryonic stem cells. Mol. Cell. Biol. 24, 8862–8871. 

Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P. V., Mar, B.G., Lindsley, 
R.C., Mermel, C.H., Burtt, N., Chavez, A., et al. (2014). Age-Related Clonal Hematopoiesis 
Associated with Adverse Outcomes. N. Engl. J. Med. 371, 2488–2498. 

Jeong, M., Sun, D., Luo, M., Huang, Y., Challen, G. a, Rodriguez, B., Zhang, X., Chavez, L., 
Wang, H., Hannah, R., et al. (2013). Large conserved domains of low DNA methylation 
maintained by Dnmt3a. Nat. Genet. 46, 17–23. 



  Appendix 

107 
 

Ji, H., Ehrlich, L.I.R., Seita, J., Murakami, P., Doi, A., Lindau, P., Lee, H., Aryee, M.J., Irizarry, 
R.A., Kim, K., et al. (2010). Comprehensive methylome map of lineage commitment from 
haematopoietic progenitors. Nature 467, 338–342. 

Jin, C., Lu, Y., Jelinek, J., Liang, S., Estecio, M.R.H., Barton, M.C., and Issa, J.-P.J. (2014). 
TET1 is a maintenance DNA demethylase that prevents methylation spreading in 
differentiated cells. Nucleic Acids Res. 42, 6956–6971. 

Jones, P.A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and 
beyond. Nat. Rev. Genet. 13, 484–492. 

Jones, P.A., and Baylin, S.B. (2007). The epigenomics of cancer. Cell 128, 683–692. 

Kafer, G.R., Li, X., Horii, T., Suetake, I., Tajima, S., Hatada, I., Carlton, P.M., Kafer, G.R., Li, 
X., Horii, T., et al. (2016). 5-Hydroxymethylcytosine Marks Sites of DNA Damage and 
Promotes Genome Stability 5-Hydroxymethylcytosine Marks Sites of DNA Damage and 
Promotes Genome Stability. CellReports 1–10. 

Kagiwada, S., Kurimoto, K., Hirota, T., Yamaji, M., and Saitou, M. (2013). Replication-coupled 
passive DNA demethylation for the erasure of genome imprints in mice. EMBO J. 32, 340–
353. 

Kallin, E., Rodr?guez-Ubreva, J., Christensen, J., Cimmino, L., Aifantis, I., Helin, K., Ballestar, 
E., and Graf, T. (2012). Tet2 Facilitates the Derepression of Myeloid Target Genes during 
CEBP?-Induced Transdifferentiation of Pre-B Cells. Mol. Cell 48, 266–276. 

Kane, M.F., Loda, M., Gaida, G.M., Lipman, J., Mishra, R., Goldman, H., Jessup, J.M., and 
Kolodner, R. (1997). Methylation of the hMLH1 promoter correlates with lack of expression of 
hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. 
Cancer Res. 57, 808–811. 

Kaneda, M., Okano, M., Hata, K., Sado, T., Tsujimoto, N., Li, E., and Sasaki, H. (2004). 
Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal 
imprinting. Nature 429, 900–903. 

Kats, L.M., Reschke, M., Taulli, R., Pozdnyakova, O., Burgess, K., Bhargava, P., Straley, K., 
Karnik, R., Meissner, A., Small, D., et al. (2014). Proto-oncogenic role of mutant IDH2 in 
leukemia initiation and maintenance. Cell Stem Cell 14, 329–341. 

Kelly, A.D., Kroeger, H., Yamazaki, J., Taby, R., Neumann, F., Yu, S., Lee, J.T., Patel, B., Li, 
Y., He, R., et al. (2017). A CpG island methylator phenotype in acute myeloid leukemia 
independent of IDH mutations and associated with a favorable outcome. Leukemia. 

Kernytsky, A., Wang, F., Hansen, E., Schalm, S., Straley, K., Gliser, C., Yang, H., Travins, J., 
Murray, S., Dorsch, M., et al. (2014). IDH2 mutation induced histone and DNA 
hypermethylation is progressively reversed by small molecule inhibition. Blood 125, 296–304. 

Kishikawa, S., Murata, T., Ugai, H., Yamazaki, T., and Yokoyama, K.K. (2003). Control 
elements of Dnmt1 gene are regulated in cell-cycle dependent manner. Nucleic Acids Res. 
Suppl. 307–308. 

Klug, M., Schmidhofer, S., Gebhard, C., Andreesen, R., and Rehli, M. (2013). 5-
Hydroxymethylcytosine is an essential intermediate of active DNA demethylation processes in 
primary human monocytes. Genome Biol. 14, R46. 

Ko, M., Huang, Y., Jankowska, A.M., Pape, U.J., Tahiliani, M., Bandukwala, H.S., An, J., 
Lamperti, E.D., Koh, K.P., Ganetzky, R., et al. (2010). Impaired hydroxylation of 5-
methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843. 



Appendix 

108 
 

Ko, M., Bandukwala, H.S., An, J., Lamperti, E.D., Thompson, E.C., and Hastie, R. (2011). 
Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of 
hematopoietic stem cells in mice. 2. 

Ko, M., An, J., Bandukwala, H.S., Chavez, L., Aijö, T., Pastor, W.A., Segal, M.F., Li, H., Koh, 
K.P., Lähdesmäki, H., et al. (2013). Modulation of TET2 expression and 5-methylcytosine 
oxidation by the CXXC domain protein IDAX. Nature 497, 122–126. 

Koh, K.P., Yabuuchi, A., Rao, S., Huang, Y., Cunniff, K., Nardone, J., Laiho, A., Tahiliani, M., 
Sommer, C. a, Mostoslavsky, G., et al. (2011). Tet1 and Tet2 regulate 5-
hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem 
cells. Cell Stem Cell 8, 200–213. 

Koivunen, P., Lee, S., Duncan, C.G., Lopez, G., Lu, G., Ramkissoon, S., Losman, J.A., 
Joensuu, P., Bergmann, U., Gross, S., et al. (2012). Transformation by the (R)-enantiomer of 
2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488. 

Kriaucionis, S., and Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is 
present in Purkinje neurons and the brain. Science 324, 929–930. 

Kulis, M., Heath, S., Bibikova, M., Queirós, A.C., Navarro, A., Clot, G., Martínez-Trillos, A., 
Castellano, G., Brun-Heath, I., Pinyol, M., et al. (2012). Epigenomic analysis detects 
widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 
44, 1236–1242. 

Kulis, M., Merkel, A., Heath, S., Queirós, A.C., Schuyler, R.P., Castellano, G., Beekman, R., 
Raineri, E., Esteve, A., Clot, G., et al. (2015). Whole-genome fingerprint of the DNA 
methylome during human B cell differentiation. Nat. Genet. 47, 746–756. 

Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, 
P., Zhang, Z., Wang, J., Ziller, M.J., et al. (2015). Integrative analysis of 111 reference human 
epigenomes. Nature 518, 317–330. 

Kurimoto, K., Yabuta, Y., Ohinata, Y., Shigeta, M., Yamanaka, K., and Saitou, M. (2008). 
Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of 
the germ cell lineage in mice. Genes Dev. 22, 1617–1635. 

de la Rica, L., Rodr?guez-Ubreva, J., Garc?a, M., Islam, A.B., Urquiza, J.M., Hernando, H., 
Christensen, J., Helin, K., G?mez-Vaquero, C., and Ballestar, E. (2013). PU.1 target genes 
undergo Tet2-coupled demethylation and DNMT3b-mediated methylation in monocyte-to-
osteoclast differentiation. Genome Biol. 14, R99. 

Ladstätter, S., and Tachibana-Konwalski, K. (2016). A Surveillance Mechanism Ensures 
Repair of DNA Lesions during Zygotic Reprogramming. Cell 167, 1774–1787.e13. 

Larsen, F., Gundersen, G., Lopez, R., and Prydz, H. (1992). CpG islands as gene markers in 
the human genome. Genomics 13, 1095–1107. 

Lei, H., Oh, S.P.P., Okano, M., Juttermann, R., Goss, K.A.A., Jaenisch, R., Li, E., Jüttermann, 
R., Goss, K.A.A., Jaenisch, R., et al. (1996). De novo DNA cytosine methyltransferase 
activities in mouse embryonic stem cells. Development 122, 3195–3205. 

Ley, T., Ding, L., Walter, M.J., Mclellan, M.D., Lamprecht, T., Larson, D.E., Kandoth, C., 
Payton, J.E., Baty, J., Welch, J., et al. (2010). DNMT3A Mutations in Acute Myeloid 
Leukemia. N. Engl. J. Med. 363, 242–33. 

Li, E., and Zhang, Y.Y. (2014). DNA methylation in mammals. Cold Spring Harb Perspect Biol 
6. 



  Appendix 

109 
 

Li, E., Bestor, T.H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase 
gene results in embryonic lethality. Cell 69, 915–926. 

Li, F., He, X.X., Ye, D., Lin, Y., Yu, H., Yao, C., Huang, L., Zhang, J., Wang, F., Xu, S., et al. 
(2015). NADP+-IDH Mutations Promote Hypersuccinylation that Impairs Mitochondria 
Respiration and Induces Apoptosis Resistance. Mol. Cell 60, 661–675. 

Li, T., Yang, D., Li, J., Tang, Y., Yang, J., and Le, W. (2014). Critical Role of Tet3 in Neural 
Progenitor Cell Maintenance and Terminal Differentiation. Mol. Neurobiol. 

Li, Z., Cai, X., Cai, C.-L., Wang, J., Zhang, W., Petersen, B.E., Yang, F.-C., and Xu, M. 
(2011). Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and 
subsequent development of myeloid malignancies. Blood 118, 4509–4518. 

Lian, C.G., Xu, Y., Ceol, C., Wu, F., Larson, A., Dresser, K., Xu, W., Tan, L., Hu, Y., Zhan, Q., 
et al. (2012). Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 
150, 1135–1146. 

Liao, J., Karnik, R., Gu, H., Ziller, M.J., Clement, K., Tsankov, A.M., Akopian, V., Gifford, C. a, 
Donaghey, J., Galonska, C., et al. (2015). Targeted disruption of DNMT1, DNMT3A and 
DNMT3B in human embryonic stem cells. Nat. Genet. 47, 469–478. 

Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., Nery, J.R., 
Lee, L., Ye, Z., Ngo, Q.-M., et al. (2009). Human DNA methylomes at base resolution show 
widespread epigenomic differences. Nature 462, 315–322. 

Lister, R., Pelizzola, M., Kida, Y.S., Hawkins, R.D., Nery, J.R., Hon, G., Antosiewicz-Bourget, 
J., O’Malley, R., Castanon, R., Klugman, S., et al. (2011). Hotspots of aberrant epigenomic 
reprogramming in human induced pluripotent stem cells. Nature 471, 68–73. 

Losman, J.-A., Looper, R.E., Koivunen, P., Lee, S., Schneider, R.K., McMahon, C., Cowley, 
G.S., Root, D.E., Ebert, B.L., and Kaelin, W.G. (2013). (R)-2-hydroxyglutarate is sufficient to 
promote leukemogenesis and its effects are reversible. Science 339, 1621–1625. 

Lu, C., Ward, P.S.P., Kapoor, G.S.G., Rohle, D., Turcan, S., Abdel-Wahab, O., Edwards, 
C.R., Khanin, R., Figueroa, M.E., Melnick, A., et al. (2012). IDH mutation impairs histone 
demethylation and results in a block to cell differentiation. Nature 483, 474–478. 

Lu, C., Venneti, S., Akalin, A., Fang, F., Ward, P.S., Dematteo, R.G., Intlekofer, A.M., Chen, 
C., Ye, J., Hameed, M., et al. (2013). Induction of sarcomas by mutant IDH2. Genes Dev. 27, 
1986–1998. 

Lu, F., Liu, Y., Jiang, L., Yamaguchi, S., and Zhang, Y. (2014). Role of Tet proteins in 
enhancer activity and telomere elongation. Genes Dev. 

MacDonald, J.W. (2008). Affycoretools:  Functions  useful  for   those  doing  repetitive  
analyses  with  Affymetrix  GeneChips. 

Mack, S.C., Witt, H., Piro, R.M., Gu, L., Zuyderduyn, S., Stütz, A.M., Wang, X., Gallo, M., 
Garzia, L., Zayne, K., et al. (2014). Epigenomic alterations define lethal CIMP-positive 
ependymomas of infancy. Nature 506, 445–450. 

Maiti, A., and Drohat, A.C. (2011). Thymine DNA glycosylase can rapidly excise 5-
formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG 
sites. J. Biol. Chem. 286, 35334–35338. 

Maksimovic, J., Gordon, L., and Oshlack, A. (2012). SWAN: Subset-quantile within array 
normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 13, R44. 



Appendix 

110 
 

Mancini, D.N., Singh, S.M., Archer, T.K., and Rodenhiser, D.I. (1999). Site-specific DNA 
methylation in the neurofibromatosis (NF1) promoter interferes with binding of CREB and SP1 
transcription factors. Oncogene 18, 4108–4119. 

Marina, R.J., Sturgill, D., Bailly, M.A., Thenoz, M., Varma, G., Prigge, M.F., Nanan, K.K., 
Shukla, S., Haque –, N., Oberdoerffer, S., et al. (2016). TET-catalyzed oxidation of intragenic 
5-methylcytosine regulates CTCF-dependent alternative splicing. EMBO J. 35, 335–355. 

Maunakea, A.K., Nagarajan, R.P., Bilenky, M., Ballinger, T.J., D’Souza, C., Fouse, S.D., 
Johnson, B.E., Hong, C., Nielsen, C., Zhao, Y., et al. (2010). Conserved role of intragenic 
DNA methylation in regulating alternative promoters. Nature 466, 253–257. 

Mayer, W., Niveleau, A., Walter, J., Fundele, R., and Haaf, T. (2000). Demethylation of the 
zygotic paternal genome. Nature 403, 501–502. 

Medeiros, B.C., Fathi, A.T., DiNardo, C.D., Pollyea, D.A., Chan, S.M., and Swords, R. (2017). 
Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia 31, 272–281. 

Meissner, A., Gnirke, A., Bell, G.W., Ramsahoye, B., Lander, E.S., and Jaenisch, R. (2005). 
Reduced representation bisulfite sequencing for comparative high-resolution DNA 
methylation analysis. Nucleic Acids Res. 33, 5868–5877. 

Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., 
Bernstein, B.E., Nusbaum, C., Jaffe, D.B., et al. (2008). Genome-scale DNA methylation 
maps of pluripotent and differentiated cells. Nature 454, 766–770. 

Mellén, M., Ayata, P., Dewell, S., Kriaucionis, S., and Heintz, N. (2012). MeCP2 binds to 
5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 
151, 1417–1430. 

Merlo, A., Herman, J.G., Mao, L., Lee, D.J., Gabrielson, E., Burger, P.C., Baylin, S.B., and 
Sidransky, D. (1995). 5′ CpG island methylation is associated with transcriptional silencing of 
the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med. 1, 686–692. 

Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., 
Brockman, W., Kim, T.-K., Koche, R.P., et al. (2007). Genome-wide maps of chromatin state 
in pluripotent and lineage-committed cells. Nature 448, 553–560. 

Moran-Crusio, K., Reavie, L., Shih, A., Abdel-Wahab, O., Ndiaye-Lobry, D., Lobry, C., 
Figueroa, M.E., Vasanthakumar, A., Patel, J., Zhao, X., et al. (2011). Tet2 Loss Leads to 
Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation. Cancer Cell 
20, 11–24. 

Nakamura, R., Tsukahara, T., Qu, W., Ichikawa, K., Otsuka, T., Ogoshi, K., Saito, T.L., 
Matsushima, K., Sugano, S., Hashimoto, S., et al. (2014). Large hypomethylated domains 
serve as strong repressive machinery for key developmental genes in vertebrates. 
Development 141, 2568–2580. 

Nakayama, M., Wada, M., Harada, T., Nagayama, J., Kusaba, H., Ohshima, K., Kozuru, M., 
Komatsu, H., Ueda, R., and Kuwano, M. (1998). Hypomethylation status of CpG sites at the 
promoter region and overexpression of the human MDR1 gene in acute myeloid leukemias. 
Blood 92, 4296–4307. 

Narendra, V., Rocha, P.P., An, D., Raviram, R., Skok, J.A., Mazzoni, E.O., and Reinberg, D. 
(2015). CTCF establishes discrete functional chromatin domains at the Hox clusters during 
differentiation. 347, 1017–1022. 

Neri, F., Incarnato, D., Krepelova, A., Rapelli, S., Pagnani, A., Zecchina, R., Parlato, C., and 



  Appendix 

111 
 

Oliviero, S. (2013). Genome-wide analysis identifies a functional association of Tet1 and 
Polycomb repressive complex 2 in mouse embryonic stem cells. Genome Biol. 14, R91. 

Neri, F., Incarnato, D., Krepelova, A., Dettori, D., Rapelli, S., Maldotti, M., Parlato, C., 
Anselmi, F., Galvagni, F., and Oliviero, S. (2015). TET1 is controlled by pluripotency-
associated factors in ESCs and downmodulated by PRC2 in differentiated cells and tissues. 
Nucleic Acids Res. 43. 

Neri, F., Rapelli, S., Krepelova, A., Incarnato, D., Parlato, C., Basile, G., Maldotti, M., 
Anselmi, F., and Oliviero, S. (2017). Intragenic DNA methylation prevents spurious 
transcription initiation. Nature 543, 72–77. 

Nestor, C.E., Ottaviano, R., Reddington, J., Sproul, D., Reinhardt, D., Dunican, D., Katz, E., 
Dixon, J.M., Harrison, D.J., and Meehan, R.R. (2012). Tissue type is a major modifier of the 
5-hydroxymethylcytosine content of human genes. Genome Res. 22, 467–477. 

Neuwirth, E. (2014). ColorBrewer Palettes [R package RColorBrewer version 1.1-2]. 

Nibourel, O., Kosmider, O., Cheok, M., Boissel, N., Renneville, A., Philippe, N., Dombret, H., 
Dreyfus, F., Quesnel, B., Geffroy, S., et al. (2010). Incidence and prognostic value of TET2 
alterations in de novo acute myeloid leukemia achieving complete remission. Blood 116, 
1132–1135. 

Noushmehr, H., Weisenberger, D.J., Diefes, K., Phillips, H.S., Pujara, K., Berman, B.P., Pan, 
F., Pelloski, C.E., Sulman, E.P., Bhat, K.P., et al. (2010). Identification of a CpG Island 
Methylator Phenotype that Defines a Distinct Subgroup of Glioma. Cancer Cell 17, 510–522. 

Oakes, C.C., Seifert, M., Assenov, Y., Gu, L., Przekopowitz, M., Ruppert, A.S., Wang, Q., 
Imbusch, C.D., Serva, A., Brocks, D., et al. (2016). DNA methylation dynamics during B cell 
maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat. 
Genet. 48, 253–264. 

Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA methyltransferases Dnmt3a and 
Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–
257. 

Okashita, N., Kumaki, Y., Ebi, K., Nishi, M., Okamoto, Y., Nakayama, M., Hashimoto, S., 
Nakamura, T., Sugasawa, K., Kojima, N., et al. (2014). PRDM14 promotes active DNA 
demethylation through the ten-eleven translocation (TET)-mediated base excision repair 
pathway in embryonic stem cells. Development 141, 269–280. 

Omatsu, Y., Seike, M., Sugiyama, T., Kume, T., and Nagasawa, T. (2014). Foxc1 is a critical 
regulator of haematopoietic stem/progenitor cell niche formation. Nature 508, 536–540. 

Ong, C.-T., and Corces, V.G. (2014). CTCF: an architectural protein bridging genome 
topology and function. Nat. Rev. Genet. 15, 234–246. 

Ono, R., Taki, T., and Taketani, T. (2002). LCX , Leukemia-associated Protein with a CXXC 
Domain , Is Fused to MLL in Acute Myeloid Leukemia with Trilineage Dysplasia Having t ( 10 ; 
11 )( q22 ; q23 ) LCX , Leukemia-associated Protein with a CXXC Domain , Is Fused to MLL 
in Acute Myeloid Leukemia w. 4075–4080. 

Ooi, S.K.T., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., Erdjument-Bromage, H., Tempst, 
P., Lin, S.-P., Allis, C.D., et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 
to de novo methylation of DNA. Nature 448, 714–717. 

Orlanski, S., Labi, V., Reizel, Y., Spiro, A., Lichtenstein, M., Levin-Klein, R., Koralov, S.B., 
Skversky, Y., Rajewsky, K., Cedar, H., et al. (2016). Tissue-specific DNA demethylation is 



Appendix 

112 
 

required for proper B-cell differentiation and function. Proc. Natl. Acad. Sci. U. S. A. 113, 
5018–5023. 

Oshimo, Y., Nakayama, H., Ito, R., Kitadai, Y., Yoshida, K., Chayama, K., and Yasui, W. 
(2003). Promoter methylation of cyclin D2 gene in gastric carcinoma. Int. J. Oncol. 23, 1663–
1670. 

Pansuriya, T.C., van Eijk, R., d’Adamo, P., van Ruler, M.A.J.H., Kuijjer, M.L., Oosting, J., 
Cleton-Jansen, A.-M., van Oosterwijk, J.G., Verbeke, S.L.J., Meijer, D., et al. (2011). Somatic 
mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell 
hemangioma in Ollier disease and Maffucci syndrome. Nat. Genet. 43, 1256–1261. 

Passegué, E., Jamieson, C.H.M., Ailles, L.E., and Weissman, I.L. (2003). Normal and 
leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell 
characteristics? Proc. Natl. Acad. Sci. U. S. A. 100 Suppl 1, 11842–11849. 

Pastor, W. a, Pape, U.J., Huang, Y., Henderson, H.R., Lister, R., Ko, M., McLoughlin, E.M., 
Brudno, Y., Mahapatra, S., Kapranov, P., et al. (2011). Genome-wide mapping of 5-
hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397. 

Patel, J.P., G?nen, M., Figueroa, M.E., Fernandez, H., Sun, Z., Racevskis, J., Van 
Vlierberghe, P., Dolgalev, I., Thomas, S., Aminova, O., et al. (2012). Prognostic Relevance of 
Integrated Genetic Profiling in Acute Myeloid Leukemia. N. Engl. J. Med. 366, 1079–1089. 

Penn, N.W., Suwalski, R., O’Riley, C., Bojanowski, K., Yura, R., Penn, B.N.W., Suwalski, R., 
Riley, C.O., Bojanowski, K., Yurat, R., et al. (1972). The presence of 5-hydroxymethylcytosine 
in animal deoxyribonucleic acid. Biochem. J. 126, 781–790. 

Perera, A., Eisen, D., Wagner, M., Laube, S.K., Künzel, A.F., Koch, S., Steinbacher, J., 
Schulze, E., Splith, V., Mittermeier, N., et al. (2015). TET3 is recruited by REST for context-
specific hydroxymethylation and induction of gene expression. Cell Rep. 11, 283–294. 

Pérez, C., Martínez-Calle, N., Martín-Subero, J.I., Segura, V., Delabesse, E., Fernandez-
Mercado, M., Garate, L., Alvarez, S., Rifon, J., Varea, S., et al. (2012). TET2 Mutations Are 
Associated with Specific 5-Methylcytosine and 5-Hydroxymethylcytosine Profiles in Patients 
with Chronic Myelomonocytic Leukemia. PLoS One 7, e31605. 

Prendergast, G.C., and Ziff, E.B. (1991). Methylation-sensitive sequence-specific DNA 
binding by the c-Myc basic region. Science 251, 186–189. 

Pusch, S., Krausert, S., Fischer, V., Balss, J., Ott, M., Schrimpf, D., Capper, D., Sahm, F., 
Eisel, J., Beck, A.-C., et al. (2017). Pan-mutant IDH1 inhibitor BAY 1436032 for effective 
treatment of IDH1 mutant astrocytoma in vivo. Acta Neuropathol. 133, 629–644. 

Qu, G.Z., Grundy, P.E., Narayan, A., and Ehrlich, M. (1999). Frequent hypomethylation in 
Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet. Cytogenet. 
109, 34–39. 

Quivoron, C., Couronné, L., Della Valle, V., Lopez, C.K., Plo, I., Wagner-Ballon, O., Do 
Cruzeiro, M., Delhommeau, F., Arnulf, B., Stern, M.-H., et al. (2011). TET2 inactivation results 
in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human 
lymphomagenesis. Cancer Cell 20, 25–38. 

Raddatz, G., Gao, Q., Bender, S., Jaenisch, R., and Lyko, F. (2012). Dnmt3a Protects Active 
Chromosome Domains against Cancer-Associated Hypomethylation. PLoS Genet. 8, 
e1003146. 

Rampal, R., Alkalin, A., Madzo, J., Vasanthakumar, A., Pronier, E., Patel, J., Li, Y., Ahn, J., 



  Appendix 

113 
 

Abdel-Wahab, O., Shih, A., et al. (2014). DNA Hydroxymethylation Profiling Reveals that WT1 
Mutations Result in Loss of TET2 Function in Acute Myeloid Leukemia. Cell Rep. 9. 

Ramsahoye, B.H., Biniszkiewicz, D., Lyko, F., Clark, V., Bird, A.P., and Jaenisch, R. (2000). 
Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA 
methyltransferase 3a. Proc. Natl. Acad. Sci. U. S. A. 97, 5237–5242. 

Rasmussen, K.D., and Helin, K. (2016). Role of TET enzymes in DNA methylation, 
development, and cancer (Cold Spring Harbor Laboratory Press). 

Rasmussen, K.D., Jia, G., Johansen, J. V., Pedersen, M.T., Rapin, N., Bagger, F.O., Porse, 
B.T., Bernard, O.A., Christensen, J., and Helin, K. (2015). Loss of TET2 in hematopoietic 
cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. 
Genes Dev. 29, 910–922. 

Rastegar, F., Shenaq, D., Huang, J., Zhang, W., Zhang, B.-Q., He, B.-C., Chen, L., Zuo, G.-
W., Luo, Q., Shi, Q., et al. (2010). Mesenchymal stem cells: Molecular characteristics and 
clinical applications. World J. Stem Cells 2, 67–80. 

Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian 
development. Nature 447, 425–432. 

Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in mammalian 
development. Science 293, 1089–1093. 

Rohle, D., Popovici-Muller, J., Palaskas, N., Turcan, S., Grommes, C., Campos, C., Tsoi, J., 
Clark, O., Oldrini, B., Komisopoulou, E., et al. (2013). An inhibitor of mutant IDH1 delays 
growth and promotes differentiation of glioma cells. Science 340, 626–630. 

Rondelet, G., Dal Maso, T., Willems, L., and Wouters, J. (2016). Structural basis for 
recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 
3A and 3B. J. Struct. Biol. 194, 357–367. 

Rönnerblad, M., Andersson, R., Olofsson, T., Douagi, I., Karimi, M., Lehmann, S., Hoof, I., De 
Hoon, M., Itoh, M., Nagao-Sato, S., et al. (2014). Analysis of the DNA methylome and 
transcriptome in granulopoiesis reveals timed changes and dynamic enhancer methylation. 
Blood 123, 79–90. 

Rosen, E.D., and MacDougald, O. a (2006). Adipocyte differentiation from the inside out. Nat. 
Rev. Mol. Cell Biol. 7, 885–896. 

Rosen, E.D., Sarraf, P., Troy, A.E., Bradwin, G., Moore, K., Milstone, D.S., Spiegelman, B.M., 
and Mortensen, R.M. (1999). PPAR gamma is required for the differentiation of adipose 
tissue in vivo and in vitro. Mol. Cell 4, 611–617. 

Russler-Germain, D.A., Spencer, D.H., Young, M.A., Lamprecht, T.L., Miller, C.A., Fulton, R., 
Meyer, M.R., Erdmann-Gilmore, P., Townsend, R.R., Wilson, R.K., et al. (2014). The R882H 
DNMT3A Mutation Associated with AML Dominantly Inhibits Wild-Type DNMT3A by Blocking 
Its Ability to Form Active Tetramers. Cancer Cell 25, 442–454. 

Russo, V.E.A., Martienssen, R.A., and Riggs, A.D. (1996). Epigenetic Mechanisms of Gene 
Regulation (Woodbury: Cold Spring Harbor Laboratory Press). 

Sakai, T., Toguchida, J., Ohtani, N., Yandell, D.W., Rapaport, J.M., and Dryja, T.P. (1991). 
Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am. J. Hum. 
Genet. 48, 880–888. 

Sakaki, M., Ebihara, Y., Okamura, K., Nakabayashi, K., Igarashi, A., Matsumoto, K., Hata, K., 



Appendix 

114 
 

Kobayashi, Y., and Maehara, K. (2017). Potential roles of DNA methylation in the initiation 
and establishment of replicative senescence revealed by array-based methylome and 
transcriptome analyses. PLoS One 12, e0171431. 

Sandoval, J., Heyn, H., Moran, S., Serra-Musach, J., Pujana, M.A., Bibikova, M., and Esteller, 
M. (2011). Validation of a DNA methylation microarray for 450,000 CpG sites in the human 
genome. Epigenetics 6, 692–702. 

Sasaki, M., Knobbe, C.B., Itsumi, M., Elia, A.J., Harris, I.S., Chio, I.I.C., Cairns, R.A., 
McCracken, S., Wakeham, A., Haight, J., et al. (2012a). D-2-hydroxyglutarate produced by 
mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev. 
26, 2038–2049. 

Sasaki, M., Knobbe, C.B., Munger, J.C., Lind, E.F., Brenner, D., Brüstle, A., Harris, I.S., 
Holmes, R., Wakeham, A., Haight, J., et al. (2012b). IDH1(R132H) mutation increases murine 
haematopoietic progenitors and alters epigenetics. Nature 488, 656–659. 

Saxonov, S., Berg, P., and Brutlag, D.L. (2006). A genome-wide analysis of CpG 
dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. 
Natl. Acad. Sci. U. S. A. 103, 1412–1417. 

Scopim-Ribeiro, R., Machado-Neto, J.A., Campos, P. de M., Silva, C.A.M., Favaro, P., 
Lorand-Metze, I., Costa, F.F., Saad, S.T.O., and Traina, F. (2015). Ten-Eleven-Translocation 
2 (TET2) is downregulated in myelodysplastic syndromes. Eur. J. Haematol. 94, 413–418. 

Scourzic, L., Mouly, E., Bernard, O.A., Zhang, S., McPherson, J., and Tao, J. (2015). TET 
proteins and the control of cytosine demethylation in cancer. Genome Med. 7, 9. 

Scourzic, L., Couronné, L., Pedersen, M.T., Della Valle, V., Diop, M., Mylonas, E., Calvo, J., 
Mouly, E., Lopez, C.K., Martin, N., et al. (2016). DNMT3AR882H mutant and Tet2 inactivation 
cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in 
mice. Leukemia 30, 1388–1398. 

Shen, L., Wu, H., Diep, D., Yamaguchi, S., D’Alessio, A.C., Fung, H.-L., Zhang, K., and 
Zhang, Y. (2013). Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine 
oxidation dynamics. Cell 153, 692–706. 

Shen, L., Inoue, A., He, J., Liu, Y., Lu, F., and Zhang, Y. (2014a). Tet3 and DNA replication 
mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell 
Stem Cell 15, 459–470. 

Shen, L., Song, C.-X., He, C., and Zhang, Y. (2014b). Mechanism and Function of Oxidative 
Reversal of DNA and RNA Methylation. Annu. Rev. Biochem. 83, 585–614. 

Shen, Y., Yue, F., McCleary, D.F., Ye, Z., Edsall, L., Kuan, S., Wagner, U., Dixon, J., Lee, L., 
Lobanenkov, V. V., et al. (2012). A map of the cis-regulatory sequences in the mouse 
genome. Nature 488, 116–120. 

Shih, A.H., Meydan, C., Shank, K., Garrett-Bakelman, F.E., Ward, P.S., Intlekofer, A., Nazir, 
A., Stein, E., Knapp, K., Glass, J., et al. (2017). Combination Targeted Therapy to Disrupt 
Aberrant Oncogenic Signaling and Reverse Epigenetic Dysfunction in IDH2- and TET2-
Mutant Acute Myeloid Leukemia. Cancer Discov. CD-16-1049. 

Shlush, L.I., Zandi, S., Mitchell, A., Chen, W.C., Brandwein, J.M., Gupta, V., Kennedy, J.A., 
Schimmer, A.D., Schuh, A.C., Yee, K.W., et al. (2014). Identification of pre-leukaemic 
haematopoietic stem cells in acute leukaemia. Nature 506, 328–333. 

Shukla, S., Kavak, E., Gregory, M., Imashimizu, M., Shutinoski, B., Kashlev, M., Oberdoerffer, 



  Appendix 

115 
 

P., Sandberg, R., and Oberdoerffer, S. (2011). CTCF-promoted RNA polymerase II pausing 
links DNA methylation to splicing. Nature 479, 74–79. 

De Smet, C., De Backer, O., Faraoni, I., Lurquin, C., Brasseur, F., and Boon, T. (1996). The 
activation of human gene MAGE-1 in tumor cells is correlated with genome-wide 
demethylation. Proc. Natl. Acad. Sci. U. S. A. 93, 7149–7153. 

Smith, Z.D., and Meissner, A. (2013). DNA methylation: roles in mammalian development. 
Nat. Rev. Genet. 14. 

Spencer, D.H., Russler-Germain, D.A., Ketkar, S., Helton, N.M., Lamprecht, T.L., Fulton, 
R.S., Fronick, C.C., O’Laughlin, M., Heath, S.E., Shinawi, M., et al. (2017). CpG Island 
Hypermethylation Mediated by DNMT3A Is a Consequence of AML Progression. Cell 168, 
801–816.e13. 

Spruijt, C.G., Gnerlich, F., Smits, A.H., Pfaffeneder, T., Jansen, P.W.T.C., Bauer, C., Münzel, 
M., Wagner, M., Müller, M., Khan, F., et al. (2013). Dynamic Readers for 5-
(Hydroxy)Methylcytosine and Its Oxidized Derivatives. Cell 152, 1146–1159. 

Stadler, M.B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Schöler, A., van Nimwegen, E., 
Wirbelauer, C., Oakeley, E.J., Gaidatzis, D., et al. (2011). DNA-binding factors shape the 
mouse methylome at distal regulatory regions. Nature 480, 490–495. 

Stroud, H., Feng, S., Morey Kinney, S., Pradhan, S., and Jacobsen, S.E. (2011). 5-
Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic 
stem cells. Genome Biol. 12, R54. 

Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D.-A., Jones, D.T.W., Konermann, C., 
Pfaff, E., Tönjes, M., Sill, M., Bender, S., et al. (2012). Hotspot mutations in H3F3A and IDH1 
define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437. 

Sun, D., Xi, Y., Rodriguez, B., Park, H.J., Tong, P., Meong, M., Goodell, M.A., and Li, W. 
(2014). MOABS: model based analysis of bisulfite sequencing data. Genome Biol. 15, R38. 

Sun, Z., Dai, N., Borgaro, J.G., Quimby, A., Sun, D., Corrêa, I.R., Zheng, Y., Zhu, Z., and 
Guan, S. (2015). A sensitive approach to map genome-wide 5-hydroxymethylcytosine and 5-
formylcytosine at single-base resolution. Mol. Cell 57, 750–761. 

Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., 
Iyer, L.M., Liu, D.R., Aravind, L., et al. (2009). Conversion of 5-methylcytosine to 5-
hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935. 

Tamanaha, E., Guan, S., Marks, K., and Saleh, L. (2016). Distributive Processing by the 
Iron(II)/α-Ketoglutarate-Dependent Catalytic Domains of the TET Enzymes Is Consistent with 
Epigenetic Roles for Oxidized 5-Methylcytosine Bases. J. Am. Chem. Soc. 138, 9345–9348. 

Tang, Q.Q., and Lane, M.D. (2012). Adipogenesis: From Stem Cell to Adipocyte. Annu. Rev. 
Biochem. 81, 715–736. 

Tefferi, A., Lim, K.-H., Abdel-Wahab, O., Lasho, T.L., Patel, J., Patnaik, M.M., Hanson, C.A., 
Pardanani, A., Gilliland, D.G., and Levine, R.L. (2009). Detection of mutant TET2 in myeloid 
malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. 
Leukemia 23, 1343–1345. 

Terragni, J., Bitinaite, J., Zheng, Y., and Pradhan, S. (2012). Biochemical Characterization of 
Recombinant β-Glucosyltransferase and Analysis of Global 5-Hydroxymethylcytosine in 
Unique Genomes. Biochemistry 51, 1009–1019. 



Appendix 

116 
 

Thienpont, B., Steinbacher, J., Zhao, H., D’Anna, F., Kuchnio, A., Ploumakis, A., Ghesquière, 
B., Van Dyck, L., Boeckx, B., Schoonjans, L., et al. (2016). Tumour hypoxia causes DNA 
hypermethylation by reducing TET activity. Nature 537, 1–25. 

Thiery, J.P., Acloque, H., Huang, R.Y.J., Nieto, M.A., Han, J., Niswander, L., Teixeira, J., 
Donahoe, P.K., Pu, W.T., Roberts, A.B., et al. (2009). Epithelial-Mesenchymal Transitions in 
Development and Disease. Cell 139, 871–890. 

Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J.G., Baylin, S.B., and Issa, J.P. (1999). 
CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. U. S. A. 96, 
8681–8686. 

Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with 
RNA-Seq. Bioinformatics 25, 1105–1111. 

Trapnell, C., Hendrickson, D.G., Sauvageau, M., Goff, L., Rinn, J.L., and Pachter, L. (2012). 
Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 
31, 46–53. 

Trowbridge, J.J., Snow, J.W., Kim, J., and Orkin, S.H. (2009). DNA methyltransferase 1 is 
essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 
5, 442–449. 

Tsagaratou, A., González-Avalos, E., Rautio, S., Scott-Browne, J.P., Togher, S., Pastor, 
W.A., Rothenberg, E. V, Chavez, L., Lähdesmäki, H., and Rao, A. (2017). TET proteins 
regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat. Immunol. 
18, 45–53. 

Tuorto, F., Liebers, R., Musch, T., Schaefer, M., Hofmann, S., Kellner, S., Frye, M., Helm, M., 
Stoecklin, G., and Lyko, F. (2012). RNA cytosine methylation by Dnmt2 and NSun2 promotes 
tRNA stability and protein synthesis. Nat. Struct. Mol. Biol. 19, 900–905. 

Turcan, S., Rohle, D., Goenka, A., Walsh, L.A., Fang, F., Yilmaz, E., Campos, C., Fabius, 
A.W.M., Lu, C., Ward, P.S., et al. (2012). IDH1 mutation is sufficient to establish the glioma 
hypermethylator phenotype. Nature 483, 479–483. 

Uribe-Lewis, S., Stark, R., Carroll, T., Dunning, M.J., Bachman, M., Ito, Y., Stojic, L., Halim, 
S., Vowler, S.L., Lynch, A.G., et al. (2015). 5-hydroxymethylcytosine marks promoters in 
colon that resist DNA hypermethylation in cancer. Genome Biol. 16, 69. 

Vardimon, L., Kressmann, A., Cedar, H., Maechler, M., and Doerfler, W. (1982). Expression 
of a cloned adenovirus gene is inhibited by in vitro methylation. Proc. Natl. Acad. Sci. U. S. A. 
79, 1073–1077. 

Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., 
Ding, L., Golub, T., Mesirov, J.P., et al. (2010). Integrated Genomic Analysis Identifies 
Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, 
IDH1, EGFR, and NF1. Cancer Cell 17, 98–110. 

Visvader, J.E. (2011). Cells of origin in cancer. Nature 469, 314–322. 

Voigt, P., and Reinberg, D. (2013). Genomic and Epigenomic Landscapes of Adult De Novo 
Acute Myeloid Leukemia The Cancer Genome Atlas Research Network. N. Engl. J. Med. 368, 
2059–2074. 

Waddington, C.H. (1942). The epigenotype. Endeavor 1, 18–20. 

Wang, F., Travins, J., Delabarre, B., Penard-lacronique, V., Schalm, S., Hansen, E., Straley, 



  Appendix 

117 
 

K., Kernytsky, A., Liu, W., Gliser, C., et al. (2013a). Targeted inhibition of mutant IDH2 in 
leukemia cells induces cellular differentiation. 622–626. 

Wang, L., Zhou, Y., Xu, L., Xiao, R., Lu, X., Chen, L., Chong, J., Li, H., He, C., Fu, X.-D., et 
al. (2015a). Molecular basis for 5-carboxycytosine recognition by RNA polymerase II 
elongation complex. Nature 523, 621–625. 

Wang, P., Dong, Q., Zhang, C., Kuan, P.-F., Liu, Y., Jeck, W.R., Andersen, J.B., Jiang, W., 
Savich, G.L., Tan, T.-X., et al. (2013b). Mutations in isocitrate dehydrogenase 1 and 2 occur 
frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with 
glioblastomas. Oncogene 32, 3091–3100. 

Wang, Y., Xiao, M., Chen, X., Chen, L., Xu, Y., Lv, L., Wang, P., Yang, H., Ma, S., Lin, H., et 
al. (2015b). WT1 recruits TET2 to regulate its target gene expression and suppress leukemia 
cell proliferation. Mol. Cell 57, 662–673. 

Ward, P.S., Patel, J., Wise, D.R., Abdel-Wahab, O., Bennett, B.D., Coller, H.A., Cross, J.R., 
Fantin, V.R., Hedvat, C. V., Perl, A.E., et al. (2010). The Common Feature of Leukemia-
Associated IDH1 and IDH2 Mutations Is a Neomorphic Enzyme Activity Converting ??-
Ketoglutarate to 2-Hydroxyglutarate. Cancer Cell 17, 225–234. 

Ward, P.S., Lu, C., Cross, J.R., Abdel-Wahab, O., Levine, R.L., Schwartz, G.K., and 
Thompson, C.B. (2013). The potential for isocitrate dehydrogenase mutations to produce 2-
hydroxyglutarate depends on allele specificity and subcellular compartmentalization. J. Biol. 
Chem. 288, 3804–3815. 

Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley, T., 
Maechler, M., Magnusson, A., Moeller, S., et al. (2016). gplots: Various R Programming Tools 
for Plotting Data. R package version 3.0.1. 

Weber, A.R., Krawczyk, C., Robertson, A.B., Kuśnierczyk, A., Vågbø, C.B., Schuermann, D., 
Klungland, A., and Schär, P. (2016). Biochemical reconstitution of TET1-TDG-BER-
dependent active DNA demethylation reveals a highly coordinated mechanism. Nat. 
Commun. 7, 10806. 

Weisenberger, D.J., Siegmund, K.D., Campan, M., Young, J., Long, T.I., Faasse, M.A., Kang, 
G.H., Widschwendter, M., Weener, D., Buchanan, D., et al. (2006). CpG island methylator 
phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF 
mutation in colorectal cancer. Nat. Genet. 38, 787–793. 

Welch, J.S., Ley, T.J., Link, D.C., Miller, C.A., Larson, D.E., Koboldt, D.C., Wartman, L.D., 
Lamprecht, T.L., Liu, F., Xia, J., et al. (2012). The Origin and Evolution of Mutations in Acute 
Myeloid Leukemia. Cell 150, 264–278. 

Widschwendter, M., Fiegl, H., Egle, D., Mueller-Holzner, E., Spizzo, G., Marth, C., 
Weisenberger, D.J., Campan, M., Young, J., Jacobs, I., et al. (2007). Epigenetic stem cell 
signature in cancer. Nat. Genet. 39, 157–158. 

Wiehle, L., Raddatz, G., Musch, T., Dawlaty, M.M., Jaenisch, R., Lyko, F., and Breiling, A. 
(2015). Tet1 and Tet2 protect DNA methylation canyons against hypermethylation. Mol. Cell. 
Biol. 36, MCB.00587-15. 

Williams, K., Christensen, J., Pedersen, M.T., Johansen, J. V, Cloos, P. a C., Rappsilber, J., 
and Helin, K. (2011). TET1 and hydroxymethylcytosine in transcription and DNA methylation 
fidelity. Nature 473, 343–348. 

Wilson, A.A., Murphy, G.J., Hamakawa, H., Kwok, L.W., Srinivasan, S., Hovav, A.-H., 
Mulligan, R.C., Amar, S., Suki, B., and Kotton, D.N. (2010). Amelioration of emphysema in 



Appendix 

118 
 

mice through lentiviral transduction of long-lived pulmonary alveolar macrophages. J. Clin. 
Invest. 120, 379–389. 

Wossidlo, M., Arand, J., Sebastiano, V., Lepikhov, K., Boiani, M., Reinhardt, R., Schöler, H., 
and Walter, J. (2010). Dynamic link of DNA demethylation, DNA strand breaks and repair in 
mouse zygotes. EMBO J. 29, 1877–1888. 

Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C.J., Zakhartchenko, V., Boiani, M., 
Arand, J., Nakano, T., Reik, W., and Walter, J. (2011). 5-Hydroxymethylcytosine in the 
mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241. 

Wu, H., and Zhang, Y. (2014). Reversing DNA Methylation: Mechanisms, Genomics, and 
Biological Functions. Cell 156, 45–68. 

Wu, X., and Zhang, Y. (2017). TET-mediated active DNA demethylation: mechanism, function 
and beyond. Nat. Rev. Genet. 

Wu, H., D’Alessio, A.C., Ito, S., Wang, Z., Cui, K., Zhao, K., Sun, Y.E., Zhang, Y., and 
Alessio, A.C.D. (2011a). Genome-wide analysis of 5-hydroxymethylcytosine distribution 
reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes 
Dev. 25, 679–684. 

Wu, H., D’Alessio, A.C., Ito, S., Xia, K., Wang, Z., Cui, K., Zhao, K., Sun, Y.E., and Zhang, Y. 
(2011b). Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. 
Nature 473, 389–393. 

Wu, H., Wu, X., Shen, L., and Zhang, Y. (2014). Single-base resolution analysis of active 
DNA demethylation using methylase-assisted bisulfite sequencing. Nat. Biotechnol. 32, 
1231–1240. 

Wyatt, G.R., and Cohen, S.S. (1952). A new pyrimidine base from bacteriophage nucleic 
acids. Nature 170, 1072–1073. 

Xi, Y., and Li, W. (2009). BSMAP: whole genome bisulfite sequence MAPping program. BMC 
Bioinformatics 10, 232. 

Xiao, M., Yang, H., Xu, W., Ma, S., Lin, H., Zhu, H., Liu, L., Liu, Y., Yang, C., Xu, Y., et al. 
(2012). Inhibition of  -KG-dependent histone and DNA demethylases by fumarate and 
succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 
26, 1326–1338. 

Xie, W., Schultz, M.D., Lister, R., Hou, Z., Rajagopal, N., Ray, P., Whitaker, J.W., Tian, S., 
Hawkins, R.D., Leung, D., et al. (2013). Epigenomic analysis of multilineage differentiation of 
human embryonic stem cells. Cell 153, 1134–1148. 

Xiong, J., Zhang, Z., Chen, J., Huang, H., Xu, Y., Ding, X., Zheng, Y., Nishinakamura, R., Xu, 
G.-L., Wang, H., et al. (2016). Cooperative Action between SALL4A and TET Proteins in 
Stepwise Oxidation of 5-Methylcytosine. Mol. Cell 64, 913–925. 

Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S.-H., Ito, S., Yang, C., Wang, P., Xiao, 
M.-T., et al. (2011a). Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-
ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30. 

Xu, Y., Wu, F., Tan, L., Kong, L., Xiong, L., Deng, J., Barbera, A.J., Zheng, L., Zhang, H., 
Huang, S., et al. (2011b). Genome-wide regulation of 5hmC, 5mC, and gene expression by 
Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42, 451–464. 

Yamaguchi, S., Hong, K., Liu, R., Shen, L., Inoue, A., Diep, D., Zhang, K., and Zhang, Y. 



  Appendix 

119 
 

(2012). Tet1 controls meiosis by regulating meiotic gene expression. Nature 492, 443–447. 

Yamaguchi, S., Shen, L., Liu, Y., Sendler, D., and Zhang, Y. (2013). Role of Tet1 in erasure 
of genomic imprinting. Nature 504, 460–464. 

Yamashita, K., Dai, T., Dai, Y., Yamamoto, F., and Perucho, M. (2003). Genetics supersedes 
epigenetics in colon cancer phenotype. Cancer Cell 4, 121–131. 

Yamazaki, J., Taby, R., Vasanthakumar, A., Macrae, T., Ostler, K.R., Shen, L., Kantarjian, 
H.M., Estecio, M.R., Jelinek, J., Godley, L.A., et al. (2012). Effects of TET2 mutations on DNA 
methylation in chronic myelomonocytic leukemia. Epigenetics 7, 201–207. 

Yamazaki, J., Jelinek, J., Lu, Y., Cesaroni, M., Madzo, J., Neumann, F., He, R., Taby, R., 
Vasanthakumar, A., Macrae, T., et al. (2015). TET2 Mutations Affect Non-CpG Island DNA 
Methylation at Enhancers and Transcription Factor-Binding Sites in Chronic Myelomonocytic 
Leukemia. Cancer Res. 75, 2833–2843. 

Yan, H., Wang, Y., Qu, X., Li, J., Hale, J., Huang, Y., An, C., Papoin, J., Guo, X., Chen, L., et 
al. (2017). Distinct roles for TET family proteins in regulating human erythropoiesis. Blood 
129, 2002–2012. 

Yang, H., Lin, H., Xu, H., Zhang, L., Cheng, L., Wen, B., Shou, J., Guan, K., Xiong, Y., and 
Ye, D. (2014). TET-catalyzed 5-methylcytosine hydroxylation is dynamically regulated by 
metabolites. Cell Res. 24, 1017–1020. 

Yang, J., Guo, R., Wang, H., Ye, X., Zhou, Z., Dan, J., Wang, H., Gong, P., Deng, W., Yin, Y., 
et al. (2016a). Tet Enzymes Regulate Telomere Maintenance and Chromosomal Stability of 
Mouse ESCs. Cell Rep. 1–13. 

Yang, Q., Liang, X., Sun, X., Zhang, L., Fu, X., Rogers, C.J., Berim, A., Zhang, S., Wang, S., 
Wang, B., et al. (2016b). AMPK/α-Ketoglutarate Axis Dynamically Mediates DNA 
Demethylation in the Prdm16 Promoter and Brown Adipogenesis. Cell Metab. 24, 542–554. 

Yang, R., Qu, C., Zhou, Y., Konkel, J.E., Shi, S., Liu, Y., Chen, C., Liu, S., Liu, D., Chen, Y., 
et al. (2015). Hydrogen Sulfide Promotes Tet1- and Tet2-Mediated Foxp3 Demethylation to 
Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis. Immunity 43, 
251–263. 

Yen, K., Travins, J., Wang, F., David, M.D., Artin, E., Straley, K., Padyana, A., Gross, S., 
DeLaBarre, B., Tobin, E., et al. (2017). AG-221, a First-in-Class Therapy Targeting Acute 
Myeloid Leukemia Harboring Oncogenic IDH2 Mutations. Cancer Discov. 7, CD-16-1034. 

Yildirim, O., Li, R., Hung, J.-H., Chen, P.B., Dong, X., Ee, L.-S., Weng, Z., Rando, O.J., and 
Fazzio, T.G. (2011). Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine 
marked genes in embryonic stem cells. Cell 147, 1498–1510. 

Yin, Y., Morgunova, E., Jolma, A., Kaasinen, E., Sahu, B., Khund-Sayeed, S., Das, P.K., 
Kivioja, T., Dave, K., Zhong, F., et al. (2017). Impact of cytosine methylation on DNA binding 
specificities of human transcription factors. Science 356, eaaj2239. 

Yoder, J.A., Walsh, C.P., and Bestor, T.H. (1997). Cytosine methylation and the ecology of 
intragenomic parasites. Trends Genet. 13, 335–340. 

Yoo, Y., Park, J.H., Weigel, C., Liesenfeld, D.B., Weichenhan, D., Plass, C., Seo, D.-G., 
Lindroth, A.M., and Park, Y.J. (2017). TET-mediated hydroxymethylcytosine at the Pparγ 
locus is required for initiation of adipogenic differentiation. Int. J. Obes. 41, 652–659. 

Yu, M., Hon, G.C.C., Szulwach, K.E.E., Song, C.-X.X., Zhang, L., Kim, A., Li, X., Dai, Q., 



Appendix 

120 
 

Shen, Y., Park, B., et al. (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the 
mammalian genome. Cell 149, 1368–1380. 

Yue, X., Trifari, S., Äijö, T., Tsagaratou, A., Pastor, W.A., Zepeda-Martínez, J.A., Lio, C.-W.J., 
Li, X., Huang, Y., Vijayanand, P., et al. (2016). Control of Foxp3 stability through modulation 
of TET activity. J. Exp. Med. 213, 377–397. 

Zhang, W., Xia, W., Wang, Q., Towers, A.J., Chen, J., Gao, R., Zhang, Y., Yen, C.-A., Lee, 
A.Y., Li, Y., et al. (2016a). Isoform Switch of TET1 Regulates DNA Demethylation and Mouse 
Development. Mol. Cell 64, 1062–1073. 

Zhang, X., Su, J., Jeong, M., Ko, M., Huang, Y., Park, H.J., Guzman, A., Lei, Y., Huang, Y.-
H., Rao, A., et al. (2016b). DNMT3A and TET2 compete and cooperate to repress lineage-
specific transcription factors in hematopoietic stem cells. Nat. Genet. 48, 1014–1023. 

Zhang, Y.W., Wang, Z., Xie, W., Cai, Y., Xia, L., Easwaran, H., Luo, J., Yen, R.-W.C., Li, Y., 
and Baylin, S.B. (2017). Acetylation Enhances TET2 Function in Protecting against Abnormal 
DNA Methylation during Oxidative Stress. Mol. Cell 65, 323–335. 

Zhao, S., Lin, Y., Xu, W., Jiang, W., Zha, Z., Wang, P., Yu, W., Li, Z., Gong, L., Peng, Y., et 
al. (2009). Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and 
induce HIF-1alpha. Science 324, 261–265. 

Zhao, Z., Chen, L., Dawlaty, M.M., Pan, F., Weeks, O., Zhou, Y., Cao, Z., Shi, H., Wang, J., 
Lin, L., et al. (2015). Combined Loss of Tet1 and Tet2 Promotes B Cell, but Not Myeloid 
Malignancies, in Mice. Cell Rep. 13, 1692–1704. 

Zhong, X., Wang, Q.-Q., Li, J.-W., Zhang, Y.-M., An, X.-R., and Hou, J. (2017). Ten-Eleven 
Translocation-2 (Tet2) Is Involved in Myogenic Differentiation of Skeletal Myoblast Cells in 
Vitro. Sci. Rep. 7, 43539. 

Ziller, M.J., Gu, H., Müller, F., Donaghey, J., Tsai, L.T.-Y., Kohlbacher, O., De Jager, P.L., 
Rosen, E.D., Bennett, D.A., Bernstein, B.E., et al. (2013). Charting a dynamic DNA 
methylation landscape of the human genome. Nature 500. 



  Appendix 

121 
 

5.3 List of Publications 

 

Wiehle, L., Raddatz, G., Musch, T., Dawlaty, M.M., Jaenisch, R., Lyko, F., and Breiling, A. 

(2016). Tet1 and Tet2 protect DNA methylation canyons against hypermethylation. Mol. Cell. 

Biol. 36(3), 452-61, doi: 10.1128/MCB.00587-15 

Wiehle, L., Breiling, A. (2016). Chromatin Immunoprecipitation. Methods Mol. Biol. 1480, 7-

21, doi: 10.1007/978-1-4939-6380-5_2 

Wiehle, L., Raddatz, G., Pusch, S., Gutekunst, J., Rodríguez-Paredes, M., Lyko, F. (2017). 

MIDH-associated DNA methylation changes in AML reflect undifferentiated cell states rather 

than inhibition of TET-mediated demethylation. (manuscript in preparation) 

  



Appendix 

122 
 

 

 



  Danksagung 

123 
 

Danksagung 
 

Mein herzlicher Dank geht an Prof. Dr. Frank Lyko für die Ermöglichung und Betreuung meiner 

Doktorarbeit, die sehr guten Arbeitsbedingungen, die stets offene Tür und die Ratschläge zu 

wissenschaftlichen und anderen Fragen.  

Ich danke Prof. Dr. Jan Lohmann, Prof. Dr. Alwin Krämer und Prof. Dr. Gudrun Rappold: Für die 

Übernahme des Zweitgutachtens, die Begleitung meiner Projekte im Rahmen meines TAC Komitees 

sowie die Teilnahme in meinem Prüfungskomitee.  

Ein besonderer Dank gilt Achim Breiling für die Betreuung, Unterstützung und das Korrekturlesen, 

sowie Manuel Rodríguez-Paredes für seinen unerschütterlichen Enthusiasmus und Optimismus. 

Des Weiteren gebührt ein herzlicher Dank unseren Kollaboratoren Meelad Dawlaty und Rudolf 

Jaenisch für die Bereitstellung der MEFs und die Unterstützung des Canyon-Projektes.  

Stefan Pusch und Jessica Eisel danke ich für die hervorragende Zusammenarbeit im Rahmen des 

IDH-Projektes, insbesondere die 2-HG-Messungen, die Plasmide, die hilfreichen Ratschläge, 

Diskussionen und fachliches Know-how. 

Ich möchte der DKFZ Genomics Core Facility danken für die Unterstützung durch Illumina-

Sequenzierungen und Arrays, sowie die ständige Hilfsbereitschaft. 

Ein Riesen-Dankeschön geht an alle derzeitigen und ehemaligen „Epigeneticists“ des Lyko-Labors: 

Aracely, Bojana, Carine, Cassy, Dagmar, Fanny, Felix, Flo, Francesca, Günter, Imola, Jana, Jessica, 

Johanna, Julian, Kathi, Lena, Maria, Mark, Matthias M., Matthias S., Nader, Ranja, Reinhard, 

Sebastian, Sim, Sven, Tanja, Qianchao und Zeljko für tatkräftige Hilfe und Unterstützung im Labor, in 

der Bioinformatik und in organisatorischen Belangen, für wissenschaftlichen Input, Anregungen und 

Diskussionen, für das Korrekturlesen dieser Arbeit, für die kollegiale Atmosphäre, Freundschaft sowie 

für gute Gespräche, gemütliche Feierabend-Bierchen, Parties und amüsante Kaffeepausen!  

Bedanken möchte ich außerdem bei den vielen anderen Menschen, die meine PhD-Zeit begleitet 

haben: Lisa für ihr immer offenes Ohr, den Marburger und Heidelberger Kommilitonen für die herrliche 

Zeit, den Auftaktlern für gemeinsame Erlebnisse und tolle Musik, Phivos und den Wildtypes für 

spannende Konzerte und Improvisationen, den Biocontactlern für interessante Events, Erich und Arno 

für die grandiosen Doppelkopfabende, Elias, Sabrina, Linda, Steffen, Eva und Till für die Steigerung 

der Work-Life-Balance! 

 

Zu guter Letzt gilt mein aufrichtiger Dank meiner Familie, meinen Eltern und besonders Stephen für die 

Liebe, Wärme, geduldige Unterstützung und dafür, dass sie immer für mich da sind.  

 




