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Zusammenfassung 
 

1 
 

Zusammenfassung 
Perizyten sind murale Zellen des mikrovaskulären Systems. Sie entstehen aus dem Mesenchym 

und ummanteln kapilläre Endothelzellen auf der abluminalen Seite. Sie spielen eine zentrale Rolle 

in der Ausreifung von neu gebildeten Gefäßen und stellen ein Charakteristikum des ruhenden 

Endothels in den meisten mikrovaskulären Systemen dar. Die Perizytenforschung ist durch die 

begrenzte Verfügbarkeit an stabilen Perizyten-spezifischen Markern aufgrund von überlappender 

Markerexpression in unterschiedlichen mesenchymalen Zellen eingeschränkt. Um neue und 

funktionell relevante Perizytenmarker zu identifizieren, wurde eine Expressionsanalyse von fünf 

unterschiedlichen humanen primären Perizyten und anderen mesenchymalen Zellen (Endothel-

zellen, Adipozyten, Fibroblasten, mesenchymale Stammzellen) durchgeführt. Diese Transkriptom-

analyse identifizierte unter anderem die zwei G-Protein gekoppelten Rezeptoren, Prostaglandin-E 

Rezeptor 2 (PTGER2) und Sphingosin-1 Phosphat Rezeptor 3 (S1PR3), als neue Perizyten-

angereicherte Transkripte. Nur vaskuläre glatte Muskelzellen wiesen vergleichbare 

Expressionslevel an S1PR3 auf. 

Anschließende zelluläre Studien zeigten erstmalig, dass S1PR3 in Perizyten Gαi und Gαq aktiviert 

und die Phosphorylierung der leichten Myosin-Kette reguliert. Um die Rolle von S1PR3 in 

Perizyten in physiologischem Kontext zu untersuchen, wurden Co-Kultur Experimente mit 

Endothelzellen und Perizyten mit S1PR3 Herunterregulierung durchgeführt und transkriptomische 

Veränderungen beider Zelltypen verfolgt. Die Expression von S1PR3 in Perizyten ergab subtile 

aber klare Veränderungen in der Expression von Zell-Zell und Zell-Extrazellulärer Matrix 

Molekülen. MPRIP, ein Regulator von RhoA und der leichten Myosin-Kette, wurde als eines der 

physiologisch vielversprechendsten regulierten Gene identifiziert. Funktionelle in vitro Analysen 

von Perizyten mit einer S1PR3 Herunterregulierung resultierten ebenso in einer verringerten 

Transmigration und zunehmender Zellgröße. 

Bemerkenswerterweise war PTGER2 ausschließlich in Perizyten exprimiert. Eine transkriptomische 

Analyse von co-kultivierten Perizyten mit PTGER2 Herunterregulierung und Endothelzellen zeigte 

Veränderungen in der Expression von zellteilungsassoziierten Genen (Herunterregulierung von 

Proliferationsinhibitoren). Funktionelle in vitro Analysen von Perizyten mit einer PTGER2 

Herunterregulierung hatten dementsprechend eine gesteigerte Zellteilung zur Folge. 

Um die Validierung der Expression von S1PR3 und PTGER2 in Perizyten und funktionelle Studien in 

vivo zu ermöglichen, sind Mausmodelle mit konditionaler Deletion dieser Gene erforderlich. Auf 

Grundlage der Expressionsdaten und der zellulären Studien, und dem Fehlen von S1pr3 floxed 

Mauslinien wurden Experimente für die Generierung von konditionalen S1pr3 Mäusen 

vorgenommen. Hierzu wurde die aufeinanderfolgende Integration von zwei LoxP Sequenzen 

mittels CRISPR/Cas Technologie (Cas9 Wildtyp) durchgeführt. 

Zusammenfassend hat diese Studie PTGER2 als neuen Perizytenmarker und S1PR3 als neuen 

muralen Zellmarker in der mesenchymalen Zelllinie identifiziert. Beide Rezeptoren kontrollieren 

wichtige Funktionen der Perizyten. Darüber hinaus erwies sich CRISPR/Cas als eine geeignete 

Methode, um konditionale S1pr3 knockout Mäuse zu generieren. 
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Summary 

Pericytes are mural cells of the microvascular system of mesenchymal origin, which abluminally 

ensheath capillary endothelial cells (EC). Pericytes play a pivotal role in the maturation of newly 

formed vessels and are a hallmark of the quiescent endothelium in most microvascular beds. 

Pericyte-based research is hampered by the limited availability of robust pan-pericyte markers 

due to their overlapping marker expression with various cells of mesenchymal origin. In order to 

identify novel functionally relevant pericyte markers, an expression profiling of five different 

human primary pericyte populations and other mesenchymal cell populations (EC, adipocytes, 

fibroblasts, mesenchymal stem cells [MSC]) was performed. Among others, this screen identified 

Prostaglandin E receptor 2 (PTGER2) and Sphingosine-1-phosphate receptor 3 (S1PR3), two G-

protein-coupled receptors (GPCRs), as novel, highly pericyte-enriched transcripts. Only S1PR3 

showed comparable expression levels also in smooth muscle cells (SMC).  

Subsequent cellular studies demonstrated for the first time that S1PR3 signals via Gαi and Gαq in 

pericytes and regulates myosin light chain (MLC) phosphorylation. To study the role of pericyte-

expressed S1PR3 in a physiological setting, comparative co-culture experiments of EC with S1PR3-

silenced pericytes were performed and transcriptomic profiles were traced. The expression of 

S1PR3 by pericytes resulted in subtle, but distinct transcriptomic changes, including changes in 

cell-cell as well as cell-extracellular matrix interaction molecules. MPRIP, a regulator of RhoA and 

MLC phosphorylation, was identified as one of the most promising candidate genes. Functional in 

vitro assays of S1PR3 silenced pericytes resulted in reduced transmigration capacity and increased 

cell size.  

Notably, PTGER2 was exclusively expressed by pericytes. Transcriptomic analyses of co-cultured 

pericytes silenced for PTGER2 revealed expression changes of proliferation-associated genes 

(downregulation of negative regulators).  Correspondingly, functional in vitro assays of PTGER2 

silenced pericytes resulted in enhanced proliferation. 

To enable the validation of pericyte-expressed S1pr3 and Ptger2 and further functional studies in 

vivo, mouse models for the conditional deletion of these genes are required. Based on the 

expression profiling and cellular screening experiments and the fact that conditional mice for 

S1pr3 are not available, experiments were set out with the aim to generate S1pr3 floxed mice by 

CRISPR/Cas technology. Sequential integration of two LoxP sites using Cas9 wildtype was 

successfully used to generate conditional S1pr3 mice. 

Taken together, the experiments identified PTGER2 as novel pericyte marker and S1PR3 as novel 

mural cell marker within the mesenchymal cell lineage that both control important pericyte 

functions. Furthermore, CRISPR/Cas technology proved as a suitable approach to generate 

conditional S1pr3 knockout mice. 
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1. Introduction  
1.1 The vascular system 

The vascular system of vertebrates consists of two highly branched tubular networks: the blood 

and the lymphatic vascular system. The heart and the following network of hierarchically 

structured tissue including afferent arteries and arterioles, capillaries (exchange vessels) and 

heart afferent venules and veins, are building the blood vascular system (Adams and Alitalo, 

2007). For it is by the heart's vigorous beat that the blood is moved, perfected, activated, and 

protected from injury and coagulation. The heart is the tutelary deity of the body, the basis of life, 

the source of all things, carrying out its function of nourishing, warming, and activating body as a 

whole (William Harvey, De Motu Cordis, 1628). Indeed, the heart pumps O2- and nutrient-rich 

blood to the tissues and deoxygenated CO2-rich blood back to the lung circulation. Thereby gases, 

liquids, nutrients, warmth and signaling molecules are transported through the organized and 

specialized blood vessels between different organs and tissues, regulating tissue fluid homeostasis 

(Herbert and Stainier, 2011). The lymphatic vascular system is an unidirectional blind-ended 

network. It drains interstitial fluid through a conduit system of collecting vessels, lymph nodes, 

lymphatic trunks and ducts and returns the fluid back into the venous system. Lymphatic vessels 

thereby control macromolecule and protein drainage, as well as immune cell trafficking (Adams 

and Alitalo, 2007; Alitalo, 2011). About 75 % of all deaths are correlated with structural changes 

and dysfunctions (atherosclerosis, diabetes, stroke, aneurysms, myocardial infarction, 

neurodegenerative disorders and cancer) of the vascular system emphasizing its importance 

(Carmeliet, 2003; Folkman, 2007).  

 

1.1.1 Vessel architecture and function 

The inner layer of a vessel wall, termed tunica intima, consists of a single cobble-stone-like layer 

of endothelial cells (EC) covered by a basement membrane (BM) (Neufeld et al., 2014).  EC are 

very heterogenous depending on the specific needs of certain organs (Potente and Mäkinen, 

2017). Three EC vessel phenotypes are classified: continuous, fenestrated and discontinuous 

endothelium. Continuous endothelium can be predominantly found in the brain, where it 

maintains the blood brain barrier (BBB) through specialized tight junctions and a continuous BM. 

Fenestrated endothelium is characterized by intercellular gaps and continuous BM to ensure 

required fluid exchange in organs like intestine and kidney. Organs like liver, spleen and bone 

marrow require unrestricted cell trafficking and fluid exchange. In these organs the endothelium 

is discontinuous with even larger gaps and a discontinuous BM (Cleaver and Melton, 2003).  

EC of the microvasculature (capillaries, small arterioles and venules) are more or less covered with 

pericytes. Pericytes are mural cells that are embedded in the BM to directly interact with EC. The 

tunica intima in large caliber vessels is enveloped by two additional layers, named tunica media 

and tunica externa/adventitia. The tunica media consists of a smooth muscle cell (SMC) layer, 

proteoglycans, elastin and collagen, whereas the tunica adventitia is composed of elastic and 

collagenous fibers (Cleaver and Melton, 2003; Neufeld et al., 2014). 
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1.1.2 Developmental blood vessel formation 

The first functional organ in the vertebrate embryo is the cardiovascular system and it is essential 

for O2 and nutrient supply of the embryo (Jin and Patterson, 2009). During development, blood 

vessels develop by de novo formation of a primitive vascular plexus from angioblasts, called 

vasculogenesis. Early in embryonic development mesodermal stem cells differentiate into 

hemangioblasts, which can give rise to the hematopoietic lineage and the endothelial cell lineage. 

On embryonic day 7.0, hemangioblast-derived cells called angioblasts (endothelial precursor cells) 

and hematopoietic precursor cells migrate out of the mesoderm and form blood islands, in which 

the angioblasts surround hematopoietic precursors. The blood islands fuse to a cord-like structure 

and give rise to a primitive luminized vascular plexus (Risau, 1997; 1995). The first major 

embryonic vessels formed by this process are the dorsal aorta and the cardinal vein. Arterial and 

venous specification follows EC differentiation (Swift and Weinstein, 2009). The remodeling of the 

primitive vascular plexus to a mature vascular network involves a second process termed 

angiogenesis. 

 

1.1.3 Physiological angiogenesis 

Angiogenesis is defined as the growth of blood vessels from pre-existing vessels (Carmeliet, 2005; 

Risau, 1997) and can be divided into sprouting angiogenesis and intussusception (non-sprouting 

angiogenesis) (Djonov et al., 2000; Potente et al., 2011; Risau, 1997). After birth, angiogenesis 

contributes to the growth of organs, however, in adulthood the vasculature is quiescent except 

during the progress of the cycling ovary, pregnancy and wound healing (Carmeliet, 2005; Risau, 

1997). Inadequate or excessive vessel growth contribute to diseases such as myocardial 

infarction, stroke, obesity-associated disorders, cancer and eye disease (Folkman, 2006; Potente 

et al., 2011). Therefore, the formation of new blood vessels needs to be tightly regulated (Potente 

et al., 2011). 

 

1.1.3.1 Phases of angiogenesis  

Nutrient and O2 deprivation initiate proangiogenic stimuli leading to the recruitment of new blood 

vessels (angiogenic switch). Initially, hypoxia inducible-factor α (HIF1α) is stabilized and activates 

the transcription of vascular endothelial growth factor A (VEGFA) (Fraisl et al., 2009). Upon VEGF 

stimulation, EC get activated and particular EC are selected to become a tip cell. VEGF further 

loosens EC junctions and matrix metalloproteases (MMPs) degrade the BM, shared by EC and 

pericytes. Tip cells develop filopodia leading to a coordinated tissue invasion towards the 

angiogenic stimulus and vessel sprouting into avascular areas (Adams and Alitalo, 2007; Distler et 

al., 2003; Gerhardt et al., 2003; Potente et al., 2011). Following stalk cells are less motile, produce 

BM and associate with mural cells. Stalk cells form EC junctions and the vessel lumen. After lumen 

formation, the new vessel is perfused, which is a key inducer of vascular quiescence (vessel 

maturation) (Potente et al., 2011). Junctions of the quiescent EC (phalanx cells) are further 

strengthened and mural cells (pericytes, SMC) are recruited (Dejana, 2004; Potente et al., 2011). 

Pericytes, integrated into the BM, wrap around the EC and stabilize the new blood vessel. This 
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mature primitive plexus undergoes vascular remodeling upon changes in metabolic demands such 

as the lactating breast and tumor growth. Finally, a hierarchically structured vascular network is 

formed by regulating vessel density, either through new vessel sprouts or selective regression of 

redundant branches (Baffert et al., 2006; Wacker and Gerhardt, 2011).    

 

1.1.3.2 Signaling pathways in EC  

VEGF is the most intensely investigated regulator of angiogenesis. The VEGF family consists of the 

vertebrate VEGF-A to VEGF-D, placenta growth factor (PIGF), parapoxvirus VEGF-E and snake 

venom VEGF-F. Deletion of just one copy of Vegfa results in embryonic lethality demonstrating 

the importance of VEGF-A in vascular development (Carmeliet et al., 1996; Ferrara et al., 1996). 

VEGF-A was first described as vascular permeability factor due to its permeability-inducing 

property (Keck et al., 1989; Senger et al., 1983; Sun et al., 2012b). Furthermore, VEGF-A promotes 

survival, proliferation and migration (Bernatchez et al., 1999; dela Paz et al., 2012; Simons et al., 

2016). However, alternative splicing variants of VEGF-A trigger different effects. VEGF165 binds to 

heparin-sulfate proteoglycans (HSPG) resulting in a gradient of VEGF signaling, which is important 

for vessel outgrowth. VEGF121 instead, is freely diffusible and does not bind HSPG (Cohen et al., 

1995; Koch et al., 2011). All VEGF bind with high affinity to the three receptor tyrosine kinases 

VEGFR1-3, of which VEGFR2 is the main signaling receptor in EC (Simons et al., 2016). Upon VEGF-

A binding, VEGFR2 dimerizes, autophosphorylates and activates downstream signaling pathways 

like phospholipase Cy (PLCy), focal adhesion kinase (FAK), Src, mitogen-activated kinase (MAPK) 

and phosphatidylinositol 3-kinase (PI3K) signaling (Koch and Claesson-Welsh, 2012). Neuropilin-1 

(NRP1) and Neuropilin-2 (NRP2) are known co-receptors for VEGFR2 enhancing its signaling 

(Ferrara et al., 2003; Neufeld et al., 2002). However, NRP1 can also signal independently of 

VEGFR2 (Roth et al., 2016). VEGF-A binds with higher affinity to VEGFR1 than to VEGFR2. VEGFR1 

is described to have a weak kinase activity. Therefore, VEGFR1 as well as its alternative splicing 

variant VEGFR1 (soluble) act as VEGF-A trap antagonizing VEGFR2 signaling (Chappell et al., 2009; 

Hiratsuka et al., 1998). Whereas VEGFR1 and VEGFR2 are predominantly expressed in vascular 

endothelial cells, lymphangiogenesis is primarily regulated by VEGF-C binding to VEGFR3, mainly 

expressed by lymphatic EC (Kaipainen et al., 1995, 1995).  

Together with VEGFR2/VEGF-A signaling, the Notch pathway plays a major role in controlling 

angiogenesis. As mentioned above, VEGF/VEGFR2 stimulates tip cell and filopodia formation 

(Gerhardt et al., 2003). Notch signaling in contrast inhibits tip cell formation in neighboring stalk 

cells (Phng and Gerhardt, 2009; Roca and Adams, 2007). Endothelial cells express Notch receptors 

NOTCH1/NOTCH4 (Roca and Adams, 2007; Wu et al., 2005) and corresponding Notch ligands 

Jagged1, Jagged2, Dll1 and Dll4 (Beckers et al., 1999; Villa et al., 2001). During sprouting 

angiogenesis, tip cells express high levels of Dll4, which in turn activates Notch signaling in 

NOTCH1 expressing stalk cells (Hellström et al., 2007; Leslie et al., 2007; Lobov et al., 2007). 

VEGFR2/VEGF-A signaling induces Dll4 expression in tip cells and conversely activation of Notch 

signaling in the stalk cells downregulates VEGFR2 and upregulates VEGFR1 (Funahashi et al., 2010; 

Suchting et al., 2007). This feedback mechanism (lateral inhibition) of VEGF and Notch signaling 
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selects the tip cell and is substantial for controlled branching of blood vessels into a hierarchically 

ordered vascular network. 

 

1.2 Pericytes 

Endothelial cells are the active center in the formation of new blood vessels and angiogenesis 

research in the 1990´s mainly focused on EC. However, this research ignored that maturation of 

the newly formed vascular network is dependent on mural cells (pericytes and SMC). This 

changed upon gain of interest in the maturation processes of angiogenesis. 

Already in 1871, Eberth described the presence of pericytes (Stricker et al., 1872). Yet, the 

discovery of pericytes is assigned to the French scientist Charles-Marie Benjamin Rouget 

describing contractile cells surrounding small blood vessels (Rouget, 1873). Since its discovery, the 

definitions of a pericyte, found in the literature, are still conflicting and confusing. Pericytes are 

described as: i) contractile and motile cells as described by Rouget (Rouget, 1873), ii) contractile 

cells, covering capillaries outside of the BM (Blood, 1988), iii) undifferentiated adventitial cells 

(Stedman, 1995), iv) SMC/pericytes of the capillaries (Fabry et al., 1993), v) stem or mesenchymal 

cells that can differentiate into fibroblasts or SMC (Ding et al., 2004; Dore-Duffy et al., 2006). The 

currently accepted definition of a mature pericyte is a cell that is associated to microvessels 

within the BM. However, more practical criteria like location, gene expression pattern and 

morphology are nowadays used to identify pericytes (Armulik et al., 2011). Still, the 

differentiation between pericytes and SMC, surrounding larger vessels, is challenging. 

 

1.2.1 Morphology 

Pericytes are located on the abluminal side of blood microvessels, but not on lymphatic capillaries 

(Armulik et al., 2011; Marchetti and Piacentini, 1990). Predominantly, pericytes wrap the 

endothelial layer in capillaries, whereas in terminal precapillary arterioles and venules a transition 

to SMC occurs (Díaz-Flores et al., 1991). The morphology of pericytes is heterogeneous and 

depends on the location and type of vessel (Joyce et al., 1984). Mostly, pericytes appear as 

stellate-shaped cells with a sophisticated network of branches surrounding EC (Weibel, 1974). The 

cell body is round and primary processes running parallel to the length of the capillary. Primary 

processes give rise to secondary perpendicular processes that attach to EC (Armulik et al., 2011). 

Covering of EC by pericyte cytoplasmic processes is incomplete, but the processes can span more 

than one EC suggesting a role of pericytes in integrating EC functions (Gerhardt and Betsholtz, 

2003). In contrast, pericytes in the kidney glomerulus, named mesangial cells, are round, compact 

and show less contact to the vessel surface (Armulik et al., 2005). 

Pericyte density and the proportion of the covered EC surface vary depending on organ, species 

and physiological/pathological conditions. The covered vessel area ranges from 10-50%, whereas 

the ratio pericytes to EC varies from 1:100 (skeletal muscle) to 1:1 (retina, brain). These 

differences are organ- and function-dependent, since pericyte density and coverage positively 

correlate with permeability of certain vessel beds. The high pericyte coverage in the central 
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nervous system indicates their important role in contributing to the blood-brain barrier (Shepro 

and Morel, 1993).  

 

1.2.2 Origin 

Vessel development in the embryo occurs via de novo formation of a primitive vascular plexus 

(vasculogenesis). Mesodermal stem cells give rise to so called angioblasts, which further 

differentiate into EC. EC and pericytes probably share a common progenitor cell. Depending on 

their location, pericytes originate from mesenchymal stem cells (mesodermal origin) or the neural 

crest during vasculogenesis. The majority of the pericytes in the head and neck region, as well as 

the thymus, arise from the neural crest (Bergwerff et al., 1998; Etchevers et al., 2001; Müller et 

al., 2008). Pericytes from gut (Wilm et al., 2005), liver (Asahina et al., 2011) and lung (Que et al., 

2008) instead derive from the pleural and peritoneal mesothelium (mesodermal origin). Here, 

mesothelial cells undergo endothelial to mesenchymal transition (EndMT), migrate into the organ 

and transdifferentiate into pericytes, but also SMC or fibroblasts (Hall, 2006). This indicates a 

close ontogenic relationship between EC, mural cells (pericytes and SMC) and fibroblasts. 

Yamashita et al. showed that VEGFR2 expressing mesoderm cells differentiate upon VEGF 

stimulation into endothelial cells, whereas PDGF-B stimulation gives rise to mural cells (Yamashita 

et al., 2000). Moreover, transdifferentiation of embryonic EC into mesenchymal cells, expressing 

smooth muscle actins, should be taken into consideration (DeRuiter et al., 1997).  

The origin of pericytes during developmental and adult angiogenesis is not fully explored. Mainly 

three different scenarios are discussed in the literature: i) Pericytes proliferate and develop out of 

pre-extisting ones (primarily in the CNS) (Armulik et al., 2011; Rajantie et al., 2004), ii) pericytes 

derive from blood pluripotent stem cells (described also in tumors) (Yamashita et al., 2000 

Bababeygy et al., 2008), and iii) pericytes derive from tissue progenitor stem cells (pericytes 

themselves, myofibroblasts, EC) (Birbrair et al., 2014; Diaz-Flores et al., 1992; Hall, 2006). EC can 

give rise to perivascular cells via EndMT (Zeisberg et al., 2007, 2008). During EndMT, EC lose their 

adhesion properties and cell polarity and transform to motile mesenchymal cells. Concurrently, 

these cells were shown to express mesenchymal markers like PDGFRβ, migrate perivascular and 

differentiate (Chen et al., 2016). Pericytes themselves are described to represent a perivascular 

stem cell niche providing a source of mesenchymal stem cells (MSC) (da Silva Meirelles et al., 

2008). They can transdifferentiate into osteocytes, chondrocytes and adipocytes (Crisan et al., 

2008a). 

 

1.2.3 Molecular signature of pericytes 

The morphological diversity and the close ontogenic relationship to other cell types mirrors the 

diversity on the molecular level of pericytes. In addition to morphological and structural criteria, 

the expression of well-established markers is used to identify pericytes. Well-established markers 

are Desmin, Neural/glial antigen 2 (NG2/CSPG4), platelet-derived growth factor receptor beta 

(PDGFRβ), alpha smooth muscle actin (αSMA), Endosialin (CD248) and regulator of G-protein 

signaling 5 (RGS5) (Díaz-Flores et al., 2009). These markers are described in section 1.2.3.1 to 
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1.2.3.4.  Other markers, described in the literature (Table 1) include CD13 (alanyl 

aminopeptidase), SUR2 (ATP-binding cassette), Kir6.1 (potassium inwardly rectifying channel), 

DLK1 (delta-like 1 homolog) (Armulik et al., 2011). Common transgenic markers for murine studies 

are XlacZ4 (Tidhar et al., 2001), Ng2-dsRED (He et al., 2016; Zhu et al., 2008), Pdgfrβ-eGFP (He et 

al., 2016). However, none of the markers is a pan-pericyte marker (Díaz-Flores et al., 2009). 

Pericyte marker expression is strongly dependent on species, vessel type, organ, pathological 

condition and activation state of the vessel. Whereas progenitor cells are positive for Pdgfrβ, but 

negative for Ng2, αSMA and Desmin, intermediate pericytes express all four makers. Mature 

pericytes instead lose the expression of Pdgfrβ (Song et al., 2005). Consequently, next to 

morphology, a combination of several pericyte markers is state-of-the-art to identify pericytes 

(Díaz-Flores et al., 2009; Gerhardt and Betsholtz, 2003). 

 

1.2.3.1 PDGFRβ 

The tyrosine kinase receptor PDGFRβ is one of the most important molecules expressed by 

pericytes. The PDGF-B/PDGFRβ signaling axis between EC and pericytes is substantial for the 

recruitment of mural cells during angiogenesis (chapter 1.2.4). PDGFB- and PDGFRβ-deficient mice 

die around birth with severe vascular defects (Levéen et al., 1994; Lindahl et al., 1997; Soriano, 

1994). PDGFRβ is expressed by mesenchymal cells, myofibroblasts, smooth muscle cells and 

neuronal progenitor cells (Lindahl et al., 1997; Winkler et al., 2010). Despite the fact that PDGFRβ 

is expressed by other cells, it is considered as the most reliable pericyte marker. Therefore, 

Pdgfrβ-Cre driver mice (Chen et al., 2016; You et al., 2014) as well as Pdgfrβ-eGFP reporter mice 

(He et al., 2016) are widely used in the literature. 

 

1.2.3.2 NG2 

NG2 (CSPG4) is a chondroitin sulfate transmembrane proteoglycan. NG2 is expressed on the 

membrane of several cells including oligodendrocyte progenitors, chondroblasts, smooth muscle 

cells and pericytes (Goretzki et al., 1999; Murfee et al., 2005). Mainly perivascular cells of the 

arterioles and capillaries, but not venules, express NG2 (Murfee et al., 2005). Furthermore, tumor 

pericytes are positive for NG2 (Schlingemann et al., 1991). There has been considerable 

controversy in NG2 as a marker of mature pericytes (Song et al., 2005) or activated pericytes 

(Ozerdem et al., 2001, 2002; Schlingemann et al., 1991) in literature. Yet, the majority of 

published papers suggest that NG2 is a marker of activated pericytes since it is consistently 

expressed by mural cells in developing vascular structures (angiogenesis or vasculogenesis). 

However, while NG2 indicates to be a suitable marker for developing pericytes in the 

microvasculature, smooth muscle cells are positive for NG2 (Ozerdem et al., 2001). Global NG2 

knockout mice are viable and without obvious phenotype (Grako et al., 1999). However, upon 

induction of pathological angiogenesis in the adult mouse retina, neovascularization is 

significantly reduced (Ozerdem and Stallcup, 2004).  Concerning the functional role of NG2, it 

participates as a co-receptor in angiogenic growth factor signaling and binds basic fibroblast 

growth factor (bFGF) and PDGF-AA, which might induce proliferation and migration of pericytes 
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(Goretzki et al., 1999; Ozerdem et al., 2001). It functions as cell surface receptor for extracellular 

matrix components like Collagen IV, which is a basic component of the BM surrounding EC and 

pericytes. Binding of Collagen IV induces cytoskeletal reorganization and enhances motility 

(Ozerdem et al., 2001). NG2-positive pericytes play also a role in the crosstalk of pericytes with EC 

by binding integrin α3β1 and induction of EC motility and morphogenesis during 

neovascularization (Fukushi et al., 2004). Pericyte-specific knockout of NG2 in intracranial 

melanomas results in structural deficits of the vasculature and decreased pericyte coverage, 

supporting a NG2-dependent mechanism in the crosstalk of pericytes and EC (You et al., 2014). 

Even though NG2 is not exclusively expressed by pericytes, pericyte-specific deletion of NG2 (Ng2-

Cre mouse) (Cooke et al., 2012) or transgenic constructs (Ng2-dsRED) (He et al., 2016) for 

isolation of NG2-positive pericytes are well established in literature. 

 

1.2.3.3 αSMA and Desmin 

αSMA and Desmin are both contractile proteins of the cell cytoskeleton. αSMA is one member of 

six different mammalian isoforms of the cytoskeletal protein actin. Whereas β- and γ-actin are 

ubiquitously expressed, αSMA is mainly expressed in smooth muscle cell lineages and 

myofibroblasts (Bergers and Song, 2005). Its main function is the regulation of vascular 

contractility and blood pressure (Schildmeyer et al., 2000). αSMA is a widely used marker to 

identify pericytes (Herman and D’Amore, 1985; Schlingemann et al., 1990; Verbeek et al., 1994). 

Albeit, the expression of αSMA is heterogenous and dependent on several conditions. Pericytes 

from different organs and species show differences in αSMA expression. Brain and retina (rat and 

bovine) pericytes lack αSMA expression, while pericytes from other organs express αSMA (Nehls 

and Drenckhahn, 1991; Skalli et al., 1989; Verbeek et al., 1994). In turn, brain pericytes from the 

chicken do show αSMA expression (Gerhardt et al., 2000). Next, αSMA abundance is related to 

the localization in the microvasculature. Pre- and post-capillary vessels are positive for αSMA in 

their microfilament bundles suggesting a role of these cells in the regulation of capillary blood 

flow. Mid-capillaries instead are negative for αSMA (Nehls and Drenckhahn, 1991). Last, αSMA 

expression levels differ upon the activation state of pericytes. In vitro studies indicate that αSMA 

may be a marker of dedifferentiation (to a smooth muscle like cell). Cultured pericytes show an 

upregulation of αSMA upon TGFβ stimulation and downregulation of αSMA after bFGF treatment 

(Verbeek et al., 1994). Together with in vivo studies, the upregulation of αSMA is believed to 

indicate the transition phase from a quiescent to an activated phenotype, as seen in tumors 

(Morikawa et al., 2002).  

Desmin is a muscle-specific class III intermediate filament and is expressed in mature skeletal, 

cardiac, smooth muscle cells and pericytes (Herrmann et al., 1989). It is expressed by mature as 

well as immature pericytes (Nehls et al., 1992; Verhoeven and Buyssens, 1988). Mice deficient for 

Desmin are viable, but show defects in all muscle tissues due to myocyte cell death and 

mitochondria defects (Milner et al., 2000). Desmin builds a three dimensional scaffold that 

connects nucleus, mitochondria, desmosomes and myofibrils to keep cell integrity (Capetanaki et 
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al., 1997) and is also associated with vessel stability. Coverage with Desmin-positive pericytes is 

positively correlated with vessel development (Chan-Ling et al., 2004). 

 

1.2.3.4 RGS5 and Endosialin 

Regulator of G-protein signaling 5 (RGS5) belongs to a family of about 25 proteins. RGS are 

described to negatively regulate G-protein coupled receptor (GPCR) signaling (Hollinger and 

Hepler, 2002). RGS5 is a GTPase activating protein for Gαi and Gαq and diminishes sphingosine-1-

phosphate (S1P), PDGFB, angiotensin II and endothelin-1 signaling (Cho et al., 2003). It was 

discovered as pericyte- and SMC-specific transcript in PDGFB-deficient mouse embryos, in which 

developing vessels are almost absent of pericytes. Here, the RGS5 positive signal overlapped with 

PDGFRβ and NG2 expression (Bondjers et al., 2003). RGS5-deficient mice are viable and have no 

obvious vascular phenotype (Nisancioglu et al., 2008). However, Berger et al. identified RGS5 as 

the first marker that is specific for activated pericytes as its expression is induced in the 

vasculature upon physiological (ovulation and wound healing) and pathological (astrocytoma and 

pancreatic islet carcinoma) angiogenesis (Berger et al., 2005). Furthermore, RGS5 deficiency leads 

to vascular normalization in pancreatic carcinomas (Hamzah et al., 2008). Yet, RGS5 is not 

expressed in every tissue and tumor (Bergers and Song, 2005) and under certain pathological 

conditions (subcutaneous tumor formation/ growth  and oxygen-induced retinopathy) no 

differences in the vasculature were observed in the RGS5-deficient mice (Nisancioglu et al., 2008). 

Endosialin (Cd248 or tumor endothelial marker 1 [TEM1]) is one of the four surface C-type lectin 

domain proteins of the Endosialin family. It was originally discovered as tumor endothelial marker 

(Christian et al., 2001; Rettig et al., 1992; St Croix et al., 2000). However, subsequent studies 

identified Endosialin expression restricted to activated stromal pericytes and myofibroblasts 

(Christian et al., 2008; MacFadyen et al., 2007; Rybinski et al., 2015). Endosialin is an onco-fetal 

protein, which shows high expression during embryonic development but no or little expression in 

healthy adult tissues (Lax et al., 2007; MacFadyen et al., 2007; Rupp et al., 2006). In pathological 

conditions, Endosialin expression is highly associated with multiple cancers and inflammation 

(Hasanov et al., 2017; Mogler et al., 2015; Viski et al., 2016). Despite several studies of Endosialin 

expression in physiological and pathological conditions, the mechanism of its action needs further 

investigation. What ligand binds Endosialin and how it signals, are still not explored. First 

mechanistic investigations have shown that Endosialin mediates pericyte proliferation by 

modulating PDGFRβ signaling (Tomkowicz et al., 2010).    
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Table 1 Pericyte markers 

 

Pericyte Marker Gene  Expression by other cell types References 

PDGFRβ (Platelet-
derived growth factor) 

Pdgfrb 
SMC, neuronal progenitors, 

myofibroblasts, MSC 

(Chen et al., 2011; Farahani and 
Xaymardan, 2015; Funa and 

Sasahara, 2014; Lindahl et al., 
1997) 

NG2 (chondroitin 
sulfate proteoglycan) 

Cspg4 
Adipocytes, SMC, neuronal 

progenitors, microglial cells, 
developing cartilage, bone, muscle 

(Chang et al., 2012; Fukushi et al., 
2003; Ozerdem et al., 2001; Zhu 

et al., 2016) 

αSMA (alpha-smooth 
muscle actin) 

Acta2 
SMC, myofibroblasts, 

myoepithelium, hepatic 
perisinusoidal cells 

(Bergers and Song, 2005; 
Gugliotta et al., 1988; Rønnov-

Jessen and Petersen, 1996; 
Schmitt-Gräff et al., 1991) 

Desmin Des SMC, MSC 
(Liu et al., 2013; Nehls et al., 

1992) 

RGS5 (regulator of G 
protein signaling 5) 

Rgs5 SMC (Bondjers et al., 2003) 

Endosialin Cd248 
SMC, myofibroblasts, mesenchymal 

cells during development 

(Christian et al., 2008; MacFadyen 
et al., 2007; Virgintino et al., 

2007) 

Angiopoietin 1 (Ang1) Angpt1 SMC (Wakui et al., 2006) 

Sur2 (ATP-binding 
cassette, subfamily C 

(CFTR/MRP)) 
Abcc9 SMC, renal tubular epithelium 

(Bondjers et al., 2006; Zhou et al., 
2008) 

Kir6.1 (potassium 
inwardly rectifying 

channel, subfamily J) 
Kcnj8 SMC (Bondjers et al., 2006) 

DLK1 (delta-like 1 
homolog) 

Dlk1 
SMC, adipocyte progenitors, 

hepatoblasts 

(Bondjers et al., 2006; 
Mitterberger et al., 2012; Tanaka 

et al., 2009) 

CD13 (Amino-peptidase 
N) 

Anpep 
SMC, activated endothelium, renal 

epithelial cells 

(Dermietzel and Krause, 1991; 
Hauwaert et al., 2013; Mina-

Osorio et al., 2008) 

Zink finger protein 201 Zic1 Neuronal cells 
(Daneman et al., 2010; 

DiPietrantonio and Dymecki, 
2009; He et al., 2016) 

Vitronectin Vtn Respiratory epithelial cells, SMC 
(Dufourcq et al., 1998; He et al., 
2016; Salazar-Peláez et al., 2015) 

Interferon induced 
transmembrane protein 

1 
Ifitm1 Primordial germ cells 

(He et al., 2016; Tanaka et al., 
2005) 
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1.2.4 EC-pericyte interactions 

Pericytes and EC are anatomically in close contact and both contribute to the BM by which they 

are separated and embedded (Mandarino et al., 1993). At certain points, pericytes and EC contact 

each other directly due to fenestrations in the BM. Different types of direct contacts are 

described: i) Inserted cytoplasmic fingers of pericytes in endothelial invaginations with tight-, gap- 

and adherence-junctions (peg socket contacts), ii) close contacts of both membranes (occluding 

contacts), iii) adherens junctions with microfilament bundles of pericytes and fibronectin 

(adhesion plaques). These junctions are said to be the sites of N-cadherin mediated cell-cell 

contacts (Armulik et al., 2011; Gerhardt and Betsholtz, 2003). Next to the close anatomical 

relationship of pericytes and EC, paracrine and juxtacrine communication via diverse signaling 

pathways, including PDGF-B/PDGFRβ, angiopoietins, sphingosine-1-phosphate and transforming 

growth factor β (TGFβ) signaling, occurs (Armulik et al., 2011).   

PDGF was originally discovered in platelets and serum, in vitro acting as mitogen for fibroblasts, 

glial cells and SMC. The PDGF family consists of four ligands, in which PDGF-A to PDGF-D can form 

homodimers, and PDGF-A and PDGF-B build heterodimers. The PDGFs bind to two cell-surface 

receptor tyrosine kinases, PDGFRα and PDGFRβ, where PDGFRβ binds PDGF-B/PDGF-D and 

PDGFRα binds PDGF-A/PDGF-B/PDGF-C (Betsholtz et al., 2001). Binding of the ligand leads to 

autophosphorylation and subsequent signal propagation including Ras-MAPK, PI3K, FAK and PLCγ 

signaling pathways. PDGF-B induces cellular responses like cell growth, motility and 

differentiation (Heldin et al., 1998) and is a critical factor in the maturation of newly formed blood 

vessels, since it initiates the recruitment of pericytes. Its expression is mainly induced by hypoxia, 

thrombin and various growth factors (Heldin and Westermark, 1999). PDGF-B, predominantly 

expressed by tip cells, binds to HSPG via its C-terminal retention motifs, composed of a stretch of 

positively charged amino acid residues (Gerhardt and Betsholtz, 2003; Ostman et al., 1991). 

Consequently, PDGFRβ-positive mural cells (pericytes and SMC) are co-recruited with the 

angiogenic sprout via a temporal and spatial PDGF-B gradient (Hellström et al., 1999). Deletion of 

either PDGF-B or PDGFRβ resulted in perinatal lethality with leakage and hemorrhage in the 

microvasculature (Levéen et al., 1994; Soriano, 1994). Similarly, deletion of the retention motif 

lead to partial detachment of pericytes (Lindblom et al., 2003). Furthermore, the EC-specific 

expression of PDGF-B is critical for pericyte coverage of the vasculature, since EC-specific deletion 

of PDGF-B results in pericyte deficiency (Enge et al., 2002). VEGF signaling interacts with PDGF-

B/PDGFRβ signaling via regulation of PDGF-B expression and suppression of PDGFRβ signaling. 

Interestingly, a positive feedback loop between VEGF-C/VEGFR3 and PDGF-B/PDGFRβ regulates 

vessel maturation via inducton of PDGF-B (Onimaru et al., 2009). However, VEGF-A is described to 

be a negative regulator of vessel maturation. VEGFR2 and PDGFRβ assemble a receptor complex 

in perivascular cells upon VEGF-A stimulation, thereby suppressing PDGFRβ signaling (Greenberg 

et al., 2008). Additionally, publications show that specific blocking of VEGF-A and PDGF-B in age-

regulated macular degeneration suppresses subretinal neovascularization and might be a 

potential therapeutic approach (Dong et al., 2014). 
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The Angiopoietin-Tie (Ang-Tie) system is a major signaling pathway of vessel maturation and 

stability. The Ang-Tie family consists of four Angiopoietins (Ang-1 to Ang-4). While Ang-1 and Ang-

2 are the best characterized Angiopoietins. Ang-3 and Ang-4 are orthologues found in mouse and 

human. All the Angiopoietins are ligands for the receptor Tie-2 (Thomas and Augustin, 2009), 

whereas the receptor Tie1, exclusively expressed by EC, is an orphan receptor. Tie-1 controls Tie-2 

signaling in a context-dependent manner (tip or stalk cell) and is important for controlling 

angiogenesis and vascular remodeling (Savant et al., 2015). Whereas the PDGF-B/PDGFRβ axis 

reflects an endothelial-to-pericyte signaling loop, the Ang-Tie axis has reverse orientation since 

Ang-1 is constitutively expressed by perivascular cells and its main receptor Tie-2 is predominantly 

expressed by endothelial cells. However, there is evidence that Tie-2 is also expressed by 

pericytes/SMC (Teichert et al., 2017) and subtypes of monocytes and macrophages (De Palma et 

al., 2005). Ang-1 is the agonistic ligand of Tie-2. Ang1-deficient mice phenocopy the embryonically 

lethal vascular defects in Tek (Tie-2)-deficient mice (Suri et al., 1996; Dumont et al., 1994). Ang-2, 

only expressed by EC and released upon EC activation from Weibel-Palade bodies (Fiedler et al., 

2004), was described as antagonist of Tie-2 (Sato et al., 1995), however, Ang-2 acts as partial 

agonist in a context-dependent manner (Kim et al., 2016; Korhonen et al., 2016). Taken together, 

Ang-1 induces vessel quiescence and maturation in a paracrine manner, Ang-2 as autocrine ligand 

mediates mainly vessel destabilization (Augustin et al., 2009). Interestingly, morphological 

analysis of Ang-1 or Tek null mice demonstrated a lack of mural cells (Suri et al., 1996). A role of 

Tie-2 in pericyte recruitment was suggested, since various in vivo and in vitro studies prove that 

overexpression of Ang-2 results in pericyte loss (Hammes et al., 2004; Stratmann et al., 1998; 

Zhang et al., 2003). However, mice with signaling-deficient Tie-2 receptors as well as Tek null mice 

showed normal pericyte recruitment to Tie-2-negative vessels (Jones et al., 2001; Tachibana et al., 

2005). Recently, Tie2 expression on pericytes was identified. Pericyte-expressed Tie2 mediates 

vessel maturation by controlling pericyte migration in tumors (Teichert et al., 2017). 

In addition to Ang/Tie signaling, sphingosine-1-phosphate (S1P) signaling is indispensable for 

vascular maturation. This signaling pathway will be discussed in more detail in chapter 1.3. 

TGFβ signaling plays a major role in pericyte differentiation. It is involved in the induction of mural 

cell formation from undifferentiated mesenchymal cells and in the proliferation and 

differentiation of mural cells and EC. Two distinct type I TGFβ receptors, activin receptor-like 

kinase (Alk)-1 and -5, and endoglin (Li et al., 1999), a transmembrane accessory receptor for TGFβ, 

are expressed in pericytes and EC (Armulik et al., 2011). Concurrently, both cell types express the 

latent pro-form of the ligand TGFβ, which is activated by the cooperation of both cells (Sato and 

Rifkin, 1989). The active TGFβ is described to inhibit proliferation and migration of EC (Sato and 

Rifkin, 1989), downregulate VEGFR2 expression in EC (Patterson et al., 1996) and induce 

differentiation of mural cell precursors to SMC/pericyte fate (Hirschi et al., 1998). In general, the 

role of TGFβ signaling in vascular development and maintenance is complex. Since both, receptors 

and ligand, are expressed by pericytes and EC, it is difficult to investigate the primary roles of 

TGFβ signaling in each cell compartment. For example, TGFβ is described to be pro- and anti-
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angiogenic. Indeed, cellular responses differ depending on the TGFβ concentration and the 

composition of the receptors (Goumans et al., 2003).     

 

1.2.5 Functions of pericytes 

Pericytes have multiple functions that depend on developmental stage and organ. However, 

pericytes do not only play important roles in physiological processes, but are also described in 

various pathological conditions as fibrosis, cancer and diabetic retinopathy, which will be 

discussed in the following two chapters. 

 

1.2.5.1 Pericytes in health 

Vessel stabilization and regulation of blood flow are the most often associated functions of 

pericytes. A quiescent, mature vasculature is characterized by an inactive, resting EC layer 

enveloped by pericytes (Armulik et al., 2005; Hirschi and D’Amore, 1997). Pericytes induce 

quiescence in a paracrine manner by secreting Ang-1 (Thomas and Augustin, 2009). Further, 

pericytes mechanically stabilize the vessel wall with their processes incorporated in the BM. The 

number of pericytes is correlated with the resistance of microvessels to high blood pressure, since 

pericytes hinder vessels to dilate immoderately (Gerhardt and Betsholtz, 2003; Hellström et al., 

2001; Laties et al., 1979). Vasoconstriction and vasodilation for the regulation of capillary blood 

flow is induced by local compression of EC by pericytes (Nakano et al., 2000). From their discovery 

on, pericytes are described to be contractile cells (Rouget, 1873). They express contractile 

proteins (αSMA, tropomyosin and myosin) and cholinergic/adrenergic (α2, β2) receptors, which 

mediate the contraction or relaxation of pericytes (Ferrari-Dileo et al., 1992). Vasoactive 

molecules, such as nitric oxide, endothelin-1 and angiotensin II bind to pericytes (Ferrari-Dileo et 

al., 1996; Haefliger et al., 1994; Lee et al., 1989). Even though most of the studies were performed 

in vitro, pericyte contraction could be shown in vivo upon treatment with vasoactive substances 

(Hirschi and D’Amore, 1996; Tilton et al., 1979). Pericyte contractility and their presence 

(umbrella-like structure) at endothelial cell-cell junctions modify the intercellular transport. 

Therefore, vascular permeability positively correlates with pericyte coverage (Rodriguez-Baeza et 

al., 1998; Sims and Westfall, 1983). The highest pericyte coverage is seen in retina and brain, 

where the presence of a continuous endothelium is a specific tissue demand of these organs 

(Armulik et al., 2010). Pericyte contractility is also suggested to play a critical role in neutrophil 

transmigration. During inflammation, neutrophil activation, rolling and transmigration through 

the blood vessel wall is an important process, that is well understood. Recent evidence shows that 

pericytes also play a role in immune cell trafficking across vessel walls. Whereas increased 

cytoskeletal contractility of EC promotes neutrophil transmigration (Stroka and Aranda-Espinoza, 

2011), pericyte relaxation is needed to allow neutrophils to enter in the surrounding tissue (Wang 

et al., 2012). Furthermore, pericytes secret chemokines (MIF, Interleukin 8) and upregulate 

adhesion molecules (ICAM-1) to attract immune cells (Pieper et al., 2013; Proebstl et al., 2012; 

Stark et al., 2013). Pericytes can act as macrophage-like cells with the properties to incorporate 

macromolecules/soluble and small molecules (Kida et al., 1993; Kristensson and Olsson, 1973; 
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Mato et al., 1996) and to convert into macrophages (Barón and Gallego, 1972; Maxwell and 

Kruger, 1965). However, these studies were mainly done in the brain (Balabanov et al., 1996; 

Thomas, 1999). Pericytes are also involved in adaptive immune responses, since they can act as 

antigen-presenting cells via expression of major histocompatibility complex (MHC) II (Fujikawa et 

al., 1989; Hurtado-Alvarado et al., 2014).  In summary, pericytes contribute to the immunological 

defense of the vasculature during inflammation processes (Navarro et al., 2016), complementing 

with their ability to induce blood coagulation after microvascular injury or rupture (Bouchard et 

al., 1997; Thomas, 1999).  

Pericytes display tissue-specific functions, since they adjust to the special need of each organ. As 

described above, the ability of pericytes to modify immunological responses are mainly 

characterized in the brain. Brain pericytes are involved in the formation of the blood brain barrier 

(BBB) together with EC and astrocytes. The BBB is a continuous endothelium to protect the brain 

from the invasion of potential toxic factors coming from the blood. Deletion of pericytes leads to 

increased transcytosis and defects in the polarization of astrocyte endfeet in the brain (Armulik et 

al., 2010). Hepatic stellate cells (HSC) or Itoh cells are the pericytes of the liver (Sato et al., 2003). 

The liver endothelium is fenestrated and discontinuous, however HSC and EC have close contact 

through incomplete BM components and extracellular matrix. HSC represent around 10 to 15 % of 

the total number of resident cells in physiological condition. Their major roles include regulation 

of ECM, storage of Vitamin A and recruitment of inflammatory cells during liver diseases (Sato et 

al., 2003; Sims, 2000). Kidney pericytes are called mesangial cells and represent 30 % of the 

glomerular cells. Their main function is the contribution to the glomerular basement membrane 

and splitting of vascular loops, resulting in a large filtration surface. In Pdgfb and Pdgfrβ null mice, 

mesangial cells are almost completely deleted in severely destructed glomeruli (Betsholtz, 2004). 

 

1.2.5.2 Pericytes in disease 

The vasculature is quiescent under physiological conditions. Angiogenesis occurs in rare 

physiological processes, but is mainly induced under pathological conditions. Therefore, next to 

EC also pericytes moved into the focus of various pathologies. 

Diabetes causes pathological changes of the microvasculature especially in the retina and the 

kidney. Diabetic retinopathy is accompanied by an early loss of pericytes, named pericyte drop 

out, caused by chronic hyperglycemia. Acellular-occluded capillaries, microaneuryms and 

thickening of the vascular basement membrane are following. Further on, an increase of vascular 

permeability and resulting edema or the formation of new blood vessels via VEGF-A develop. This 

impaired vascularization leads to blindness in one third of all patients (Hammes et al., 2002). The 

mechanism of pericyte drop out in diabetic retinopathy is not fully explored. Publications show 

that a hyperglycemia-induced inhibition of PDGF signaling (Geraldes et al., 2009) or an 

upregulation of Ang-2 (Hammes et al., 2004) might be the underlying mechanisms. In diabetic 

nephropathy, massive ECM deposition and thickening of the glomerular basement membrane are 

hallmarks. Repetitive mechanical stretch of mesangial cells (pericytes of the kidney) induces their 
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proliferation, increases ECM synthesis and reduces ECM-degrading enzymes during early diabetic 

nephropathy (Gruden et al., 2000; Kanwar et al., 2008). 

Fibrosis is the process of massive ECM deposition and scar formation as a response to chronic 

injury of a tissue. Mainly inflammatory cells are recruited and myofibroblasts are activated. The 

origin of myofibroblasts is continuous to be a major challenge in fibrosis research. One hypothesis 

is that pericytes detach from the EC, migrate and transdifferentiate into collagen-producing 

myofibroblasts. This hypothesis was proven in lung (Hung et al., 2013), liver (Fabris and 

Strazzabosco, 2011) and kidney fibrosis (Schrimpf and Duffield, 2011). Even though accumulating 

evidence indicates that pericytes might be a source of myofibroblasts, the used genetic fate 

mapping strategies are still no final proof due to overlapping marker expressions of mesenchymal 

lineages. 

Pericytes, together with EC, fibroblasts, leukocytes and the ECM compartment, are part of the 

tumor stroma. Tumor vessels are highly disorganized, leaky and tortuous. The basement 

membrane is discontinuous or absent and pericytes are loosely attached to EC. The recruitment of 

pericytes occurs via PDGF-B/PDGFRβ as in physiological angiogenesis (Abramsson et al., 2002). 

Pericyte coverage is dependent on the tumor entity and can range from high to no coverage. High 

pericyte coverage has been associated with poor outcome and increased tumor growth (Gee et 

al., 2003). In contrast, tumors with low pericyte coverage and compromised vessel structure 

facilitate blood vessel invasion and metastasis (Cooke et al., 2012). Anti-angiogenic treatment 

targeting EC seems to eliminate immature, uncovered vessels, whereas mature covered vessels 

are protected (Ellis and Hicklin, 2008). There is evidence that after stopping anti-angiogenic 

treatment, pericytes are critical for fast neovascularization (Mancuso et al., 2006). These 

observations led to the idea to treat EC and pericytes simultaneously with anti-VEGF and anti-

PDGF strategies which revealed promising results (Bergers et al., 2003; Erber et al., 2004). 

However, other publications show no better outcome after depletion of pericytes or inhibition of 

PDGFRβ signaling (Nisancioglu et al., 2010; Sennino et al., 2007). As mentioned above, pericytes 

are suggested as negative regulator of metastasis. However, the underlying mechanisms are not 

fully understood. Pericytes may act as a barrier that hinders tumor cells to intravasate into the 

circulation. Moreover, it is hypothesized that pericyte-deficient vessels are leaky resulting in 

interstitial volume and local pressure. This pressure leads to compression of tumor vessels, 

induction of hypoxia pathways and tumor metastasis through epithelial-mesenchymal transition 

(EMT) (Cooke et al., 2012). Another study shows that a subset of pericytes (Endosialin-positive 

pericytes) promote cell-contact dependent tumor cell intravasation (Viski et al., 2016). Different 

publications also suggest a role of pericytes in the colonization and growth of tumors at distant 

sites (Kienast et al., 2010; Welti et al., 2012). It has been shown that pericytes modulate the 

immune response against tumor cells. Mature, RGS5-deficient pericytes and normalized vessels 

promote immune cell migration into the tumor and lead to prolonged survival (Hamzah et al., 

2008). In contrast, RGS5-expressing pericytes are able to inhibit the activity of CD4- and CD8-

positive T-cells (Bose et al., 2013; Merelli et al., 2014). In summary, pericytes as part of the tumor 

microenvironment are crucially involved in tumor development and metastasis. 
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1.3 Sphingosine-1-phosphate receptor family 

Sphingosine, the precursor of sphingosine-1-phosphate (S1P), has already been identified around 

1884 (Thudichum and Royal College of Physicians of London, 1884). S1P is a lipid mediator and 

acts via five isoforms of the S1P receptors (S1PR), a family of G-protein coupled receptors. The 

pleiotropic effects of S1P on diverse cell types are still not fully unraveled. Extensive research on 

S1P signaling has revealed its fundamental impact on angiogenesis, cardiogenesis, neurogenesis, 

limb development and immunity by influencing cell migration, differentiation and survival (Blaho 

and Hla, 2011; Mendelson et al., 2014). 

 

1.3.1 S1P 

S1P is a lysophospholipid, a minor lipid component of the cell membrane. S1P is derived by 

sequential degradation of sphingomyelin and glycosphingolipids in the cell membrane (Figure 1). 

The intermediate product ceramide is then further degraded into sphingosine. The majority of 

sphingosine is produced by degradation in lysosomes (Proia and Hla, 2015). The catabolically 

generated sphingosine is phosphorylated by one of the sphingosine kinases (SPHK), SPHK1 and 

SPHK2, to generate S1P. SPHK1 is generally localized in the cytoplasm, but can translocate to the 

cell membrane upon activation (Pitson et al., 2003). SPHK2 is primarily localized in the nucleus 

(Igarashi et al., 2003). After formation in the cytoplasm, S1P can follow three pathways: i) S1P is 

exported to the cell surface by a specific S1P transporter, SPNS2 (Fukuhara et al., 2012), and binds 

its receptors, ii) S1P is degraded by the S1P lyase (Zhou and Saba, 1998) or iii) S1P is recycled by 

dephosphorylation through S1P phosphatases, SGPP1 and SGPP2, to produce ceramide (Le Stunff 

et al., 2007; Proia and Hla, 2015).  

The levels of S1P in the cell are tightly regulated by a balance of synthesis and degradation. 

Sphingolipid metabolism occurs in almost every cell. However, some cell types are metabolically 

prone to synthesize S1P and whereas other cells are specialized to degrade S1P and keep levels 

low (Olivera et al., 2013). The association of different cell types with diverging S1P metabolism 

results in the generation of a S1P concentration gradient between blood (~1 µM S1P)/lymph 

(~100 nM S1P) and the surrounding tissue (0.5-75 pmol/mg S1P) (Xiong and Hla, 2014). During 

embryonic development, red blood cells are the main source of plasma S1P (Xiong et al., 2014), 

whereas postnatally, red blood cells and EC supply the plasma with S1P (Pappu et al., 2007; 

Venkataraman et al., 2008). EC play an important role in the maintenance of the S1P gradient due 

to their strategic position between the two compartments (blood and tissue) with very different 

S1P concentrations. EC express enzymes for the synthesis (SPHK1/2) as well as for the 

degradation (SGPP and S1P lyase) or export (SPNS2) of S1P, which allows a continuous filtration of 

S1P across the endothelial membrane (Venkataraman et al., 2008). Conditional deletion of the 

S1P transporter SPNS2 in EC reduces the level of circulating S1P in the blood by 50% (Fukuhara et 

al., 2012). However, reduced levels of S1P on the luminal side alone are not able to induce S1P-

driven lymphocyte trafficking. This suggests that EC might be able to regulate S1P levels on the 

abluminal side to induce lymphocyte trafficking by hitherto unknown mechanisms. 
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S1P is highly hydrophobic and is therefore mainly bound to carrier proteins, such as HDL (60%) 

and albumin (30 %) (Proia and Hla, 2015). HDL binds S1P via apolipoprotein M (ApoM) that 

controls S1P level in the blood and binding to its receptors (Christoffersen et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Synthesis, metabolism and export of S1P 
Sphingomyelin (SM) and glycosphingolipids (GSL) are localized in the cell membrane. The degradation of 
sphingolipids to ceramide (cer) and subsequently to sphingosine (sph) occurs in lysosomes and the cell 
membrane. Sph is phosphorylated by SPHK1/2 to produce S1P. Once produced, S1P can follow three 
pathways: a) S1P can be irreversibly degraded by S1P lyase, b) S1P can be dephosphorylated and recycled for 
ceramide (cer) synthesis in the golgi and c) S1P can be transported out of the cell by its transporter SPNS2. 
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1.3.2 S1P receptors  

S1P mainly exerts its effects by interacting with the five high-affinity S1P receptors (S1PR1-5), 

even though there is evidence that S1P acts as an intracellular (second) messenger (Maceyka et 

al., 2012; Spiegel and Milstien, 2003). The five G-protein coupled receptors are structurally very 

similar, but show different expression patterns and distinct coupled signaling pathways.   

In 1990, S1PR1 was discovered as endothelial differentiation gene (EDG-1) that is solely expressed 

in EC (Hla and Maciag, 1990). Further studies revealed that S1PR1 is the most highly expressed 

receptor of the S1PR family and is ubiquitously expressed in different organs and cell types 

(Regard et al., 2008). S1pr1 global knockout mice die around embryonic day (E) 12.5 to 14.5 due 

to massive hemorrhages with abnormal pericyte and SMC coverage of vessels (Liu et al., 2000). 

The EC-specific deletion of S1pr1 in mice mimicks the phenotype seen in the global knockout, 

indicating the important role of S1PR1 in vascular development (Allende et al., 2003). S1PR1 is 

exclusively coupled to Gαi mediating Rac activation (Lee et al., 1996) and binding of S1P to S1PR1 

has been described to induce vascular barrier integrity (Gaengel et al., 2012). Rac activity is 

required for S1P-induced endothelial cytoskeleton rearrangement and adherens junctions 

assembly (Singleton et al., 2005). In vitro, S1PR1 signaling induces the migration and proliferation 

of EC and SMC (Kluk and Hla, 2001; Paik et al., 2001). Furthermore, S1P can transactivate VEGF 

receptors in the context of migration and proliferation. In detail, S1PR1 induces Src activation 

resulting in VEGFR2 phoshorylation. This transactivation leads to the activation of signaling 

cascades that induce vascular remodeling and movement. At the same time the activated VEGFR2 

receptor stimulates SPHK1 and increases S1P levels. Subsequent ERK/MAPK signaling results in 

DNA synthesis (Spiegel and Milstien, 2003). 

S1PR2 was discovered as a receptor being predominantly expressed in lung and heart (Okazaki et 

al., 1993). Further studies identified S1PR2 as ubiquitously expressed in different organs and cells 

(Blaho and Hla, 2014). Global deletion of S1pr2 in mice did not cause any obvious phenotype 

except smaller litter sizes (Ishii et al., 2002). Double deletion of S1pr1 and S1pr2 resulted in a 

more severe phenotype than S1pr1 global knockout with embryos mostly dying before E12.5 

(Kono et al., 2004). S1PR2 signals via Gαi, Gαq and Gα12/13. Surprisingly, S1PR2 showed contrast 

effects on cell migration, proliferation and cytoskeleton reorganization compared to S1PR1 and 

S1PR3 (Okamoto et al., 2000). 

S1PR3 is highly homologous to S1PR1 and is described to be ubiquitously expressed (Yamaguchi et 

al., 1996). In the vascular system, expression of S1PR3 is mainly indicated in EC and SMC (Lee et 

al., 1999). Intriguingly, global knockout of S1pr3 shows no obvious phenotype (Kono et al., 2004), 

whereas an increased perinatal lethality was observed for the S1pr2/S1pr3 double knockout (Ishii 

et al., 2002). Double null mice for S1pr1 and S1pr3 were mimicking the S1pr1 knockout 

phenotype. S1pr1/S1pr2/S1pr3 triple null embryos display a substantially more severe phenotype 

with a less developed capillary network compared to S1pr1 null embryos (Kono et al., 2004). This 

implies that S1P receptors 1-3 have redundant or cooperative functions during embryonic 

development. In different cell types, including SMC (Fujii et al., 2014), S1P receptor 3 is described 

to signal via Gαi, Gαq and Gα12/13 (Figure 2) (An et al., 1998, 1999, 2000; Ancellin and Hla, 1999; 
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Windh et al., 1999) and it induces migration and adherens junctions formation in endothelial cells 

in vitro (Ancellin and Hla, 1999; Lee et al., 1999). Interestingly, crosstalk of S1PR3 and PDGFRβ 

signaling concerning cell migration was observed in SMC (Mousseau et al., 2012a). PDGFRβ 

signaling activates and translocates SPHK1 to the cell membrane, which leads to the formation of 

S1P that in turn activates S1P receptors after cellular export (Spiegel and Milstien, 2003). 

In contrast to the S1P receptors 1-3, the expression of S1PR4 is limited to lymphoid tissues (such 

as thymus, spleen and bone marrow) (Gräler et al., 1998) and S1PR5 is restricted to brain (Im et 

al., 2000). The functions of both receptors are still not fully explored.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Described downstream signaling pathways activated by S1PR3 
S1PR3 signals via Gαi, Ras, Raf and Mek to ERK activation. Phosphorylation (activation) of ERK results in 
proliferation and migration. S1PR3 activates RhoA resulting in migration and stress fiber formation (cell 
morphology changes). Calcium release is induced by PLC activation via Gαq leads to cell migration and 
contraction. 
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1.3.3 S1P in health and disease  

S1P signaling is an important regulator of vascular development via its S1P receptors 1-3. 

Especially S1PR1 on endothelial cells is important for embryonic cardiovascular development and 

the maintenance of vascular integrity. Phenotypic analysis of genetic mouse models deleted for 

S1PR2 and/or S1PR3 indicate accessory or partially redundant roles for these receptors during 

vascular development (as described in 1.3.2) (Proia and Hla, 2015). However, S1PR2 and S1PR3 

are described to be expressed by mural cells, thereby regulating vascular tone (Bischoff et al., 

2000; Murakami et al., 2010; Ohmori et al., 2003; Tosaka et al., 2001). Next to the importance of 

S1P in embryonic vascular development, it is critical in embryonic neurogenesis (Mizugishi et al., 

2005). In the adult nervous system, S1P regulates neurotransmission (Chan et al., 2012). Elevated 

level of S1P in the blood and lymph nodes, sensed by its receptors, are an important mechanism 

for trafficking of cells (immune cells, hematopoietic cells). Thereby, S1P regulates the egression of 

B- and T-cells from lymphoid tissues (Pappu et al., 2007) into the blood or hematopoietic stem cell 

mobilization from the bone marrow into the circulation (Juarez et al., 2012; Massberg et al., 

2007).  

S1P and its receptors are expressed in every organ of the body and are involved in many 

physiological processes as indicated above. Therefore, it is not surprising that the S1P/S1PR axis is 

implicated in various pathophysiological conditions in almost every organ (Maceyka et al., 2012). 

Multiple sclerosis (MS) is a chronic autoimmune disease of the brain characterized by immune cell 

infiltration, demyelination and neurodegeneration. S1P signaling is substantially involved in the 

trafficking of auto-reactive adaptive immune cells. Fingolimod (FTY720), a sphingosine analog, is 

an established treatment for MS. It was approved in 2010 by the US Food and Drug 

Administration as first-line treatment for relapsing forms of MS. FTY720 acts as a functional 

antagonist as it is phosphorylated by SPHK2 to produce the potent agonist FTY720-phosphate for 

S1PR1 and S1PR3-5. Its binding results in internalization and downregulation of the receptors 

(Brinkmann et al., 2010; Proia and Hla, 2015). Moreover, FTY720 modifies the retention of auto-

reactive T-cells in the lymph nodes that are known to damage the nervous system (Proia and Hla, 

2015). 

Substantial evidence indicates an involvement of S1P in cancer by regulating angiogenesis, tumor 

cell proliferation and survival, metastasis and immune cell infiltration. Thus, S1P signaling in 

cancer is complex but opens opportunities for potential therapeutics targeting the S1P/S1PR axis. 

Elevated mRNA and protein levels of SPHK1 are described in different types of cancer and is 

correlated with disease progression and reduced patient survival (Johnson et al., 2005; Kohno et 

al., 2006; Li et al., 2008, 2009). Confirming these observations, inhibition of SPHK1 in xenograft 

models results in reduced tumor growth, angiogenesis and chemo resistance (Guan et al., 2011; 

Pyne and Pyne, 2010). In general, S1PR1 and S1PR3 expression in tumors promotes migration, 

whereas S1PR2 expression inhibits migration (Pyne and Pyne, 2010). Inhibition of the crosstalk of 

S1PR1/S1PR3 and PDGFRβ signaling by FTY720 and sunitinib malate (VEGFR/PDGFRβ kinase 

inhibitor) of breast cancer in vivo results in reduced tumor angiogenesis and vessel normalization. 

FTY720 thereby potentiates the effects of sunitinib malate (Mousseau et al., 2012b). Potential 
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new therapeutics can target S1P signaling on multiple levels including sphingosine kinases, 

sphingosine lyases, sphingosine phosphatases and S1P receptors. These inhibitors were shown to 

be effective in many animal models of human diseases (Maceyka et al., 2012). 

Atherosclerosis is an inflammatory disease of the wall of large vessels. Atherosclerotic vessels 

show increased expression of S1PR3. Consistently, S1pr3 null mice form significantly smaller 

lesions upon arterial injury response suggesting a role of S1PR3 in the migration of SMC in 

atherosclerotic conditions and immune cell recruitment (Keul et al., 2011; Shimizu et al., 2012). In 

addition, S1pr2 knockout mice exhibit reduced macrophage content and lesion size of 

atherosclerotic plaques indicating a role of S1PR2 in myeloid cell recruitment (Skoura et al., 2011). 

Endothelial barrier disruption and vascular permeability are the hallmarks of acute lung injury, 

caused by infections (bacterial, viral), sepsis or trauma (Ware and Matthay, 2000). Treatment with 

FTY720 or S1P reduce vascular permeability in LPS-induced lung injury models (McVerry et al., 

2004; Peng et al., 2004). Furthermore, S1PR3 is described to be a novel biomarker in acute lung 

injury (Sun et al., 2012a). In summary, S1P signaling is complex and plays important roles in 

physiology and pathology. Further understanding of S1P signaling pathways might improve 

therapeutic options in pathology. 

 

1.4 Prostaglandin signaling 

Prostaglandins are eicosanoid lipid mediators acting on at least nine known prostaglandin 

receptor variants. Prostaglandins have diverse physiological functions in the CNS, cardiovascular, 

gastrointestinal, genitourinary, endocrine and respiratory system. However, their function in 

modulating the immune system is most studied. Extensive research on prostaglandin signaling 

revealed its implication in many diseases like cancer, inflammation, cardiovascular diseases and 

hypertension (Hata and Breyer, 2004; Narumiya et al., 1999). 

 

1.4.1 Prostaglandins 

Eicosanoids (greek: eicos = twenty) consist of prostanoids (prostaglandins, prostacyclins and 

thromboxanes), epoxyeicosatrienoic acids and leukotrienes and are produced in every 

mammalian cell, except erythrocytes. The different eicosanoids are generated by sequential 

metabolism of arachidonic acid (C20) by individual synthase enzymes (Figure 3). Arachidonic acid 

is esterified to glycerophospholipids in the cell membrane. Upon release of arachidonic acid by 

phospholipase A2, it undergoes oxidation by different enzymes (Balsinde et al., 2002). The 

synthesis of prostanoids is initiated by the conversion of arachidonic acid via an unstable 

endoperoxide Prostaglandin G2 (PGG2) to Prostaglandin H2 (PGH2), which serves as a substrate for 

the prostaglandin synthase enzymes (Bonvalet et al., 1987; Smith, 1992). This conversion is 

mediated by two cyclooxygenases, COX-1 and COX-2. COX-1 is constitutively expressed in most 

tissues, whereas COX-2 is tightly regulated and not expressed under normal physiological 

conditions. But its expression is induced in various inflammatory settings. Both COX enzymes are 

located at the endoplasmatic reticulum (ER) and nuclear membrane to uptake released 

arachidonic acid (Smith et al., 2000).  
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Figure 3: Synthesis and export of prostanoids 
Phospholipase A2 (PLA2) initiates the release of arachidonic acid from glycerophospholipids in the cell 
membrane. Arachidonic acid is metabolized by COX-1 and COX-2 to the intermediate prostaglandin H2 
(PGH2). Cell-type specific expression of prostaglandin synthase enzymes (TxAS, thrombaxansynthase; PGDS, 
prostaglandin-D synthase; PGES, prostaglandin-E synthase; PGIS, prostaglandin-I synthase; PGFS, 
prostaglandin -F synthase) generate thromboxane A2 (TXA2), prostacyclin PGI2 and prostaglandins PGE2, 
PGD2 and PGF2α. These prostanoids are exported by prostanoid transporters to subsequently activate 
diverse G-protein coupled receptors (TP, thromboxane receptor; DP, prostaglandin D2 receptor, IP, 
prostaglandin I2 receptor; FP, prostaglandin F2 receptor; EP, prostaglandin E2 receptor). These prostanoids 
are also able to enter the nucleus and activate peroxisome proliferator-activated receptor γ (PPARγ). 
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In a cell-dependent mechanism, a heterogeneous family of PGH2 metabolizing enzymes forms five 

bioactive prostanoids: thromboxane A2 (TXA2), prostacyclin PGI2 and prostaglandins PGE2, PGD2 

and PGF2α (Breyer et al., 2001; Funk, 2001). These prostanoids are exported by prostaglandin 

transporters (PGT) or other transporters to activate cell surface G-protein coupled receptors (TP, 

DP, PTGER1-4, IP, FP) (Schuster, 1998). Prostanoids are not stored but are synthesized de novo. 

Due to their short half-lives (seconds to minutes), they are considered as local hormones. 

Therefore, they are not transported to distal sites of the body and have autocrine or paracrine 

effects on target cells in close proximity. Prostanoids are described to potentially enter the 

nucleus and activate nuclear hormone receptors as PPARγ (Funk, 2001).  

 

1.4.2 Prostaglandin E receptors and their functional role 

PGE2 is the major product in the arachidonic acid metabolism in many physiological settings. 

PGE2 exerts a variety of partly opposing functional effects on different tissues. These diverse 

effects of PGE2 are a result of the existence of four G-protein coupled receptors EP1-4 (gene 

symbol: PTGER1-4) and their differential expression in various tissues as well as their distinct 

coupling to intracellular signaling pathways (Bos et al., 2004). For example, PGE2 can induce 

smooth muscle relaxation or constriction (Davis et al., 2004; Walch et al., 2001). Thus, 

investigation of the four prostaglandin receptors is challenging due to their simultaneous 

expression in tissues/cells and the different binding affinities to PGE2 (EP3/EP4 > EP1/EP2) 

(Abramovitz et al., 2000). The prostaglandin receptors can be divided in three groups according to 

the activation of a certain type of heterotrimeric G-protein by each of the receptors: i) relaxant 

receptors EP2 and EP4 (via Gs), ii) contractile receptor EP1 (via Gq) and iii) inhibitory receptor EP3 

(via Gi) (Bos et al., 2004). 

In human, EP1 was described to be expressed in the myometrium (Senior et al., 1991), pulmonary 

veins (Norel et al., 2004), mast cells (Wang and Lau, 2006), colon (Smid and Svensson, 2009) and 

keratinocytes (Konger et al., 2009). Whereas in mice, EP1 transcription is detectable in lung, 

stomach and kidney (Watabe et al., 1993). EP1 null mice appeared without any obvious 

phenotype. However, studies in EP1-deficient mice revealed functions in the context of stress 

responses, chemical carcinogenesis and inflammatory thermal hyperalgesia (Moriyama et al., 

2005; Mutoh et al., 2002; Tanaka et al., 2012). Originally, EP1 as well as EP3 were described to 

induce smooth muscle constriction (Bos et al., 2004; Coleman et al., 1994). EP3 is widely 

expressed and is the only receptor in the prostanoid receptor family that has three splice variants 

arising from alternative splicing of the C-terminal tail. Major research was performed on the 

receptor splice variants and their signal transduction. However, the physiological relevance of EP3 

is still poorly understood. First studies in EP3 null mice suggest a role in fever generation, type I 

allergy, tumor angiogenesis and pain perception (Amano et al., 2009; Kunikata et al., 2005; Ueno 

et al., 2001; Ushikubi et al., 1998). 

The receptors EP2 and EP4 were first thought to be the same receptor. However, next to the fact 

that they are both coupled to adenylate cyclase, their pharmacological binding and structure are 

different (Bos et al., 2004). EP2 is expressed in almost every organ but at much lower levels than 
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EP4 (Katsuyama et al., 1995). Overall, EP2 is the least abundant prostaglandin receptor (Ricciotti 

and FitzGerald, 2011). It was originally described to induce smooth muscle relaxation in the cat 

trachea (Gardiner, 1986) and recent studies further confirmed a role on proliferation of SMC (Yau 

and Zahradka, 2003). EP2 null mice show impaired ovulation/fertilization and salt-sensitive 

hypertension (Hizaki et al., 1999; Kennedy et al., 1999). Furthermore, EP2 regulates angiogenesis, 

gastrointestinal secretion and motility, cellular immune responses and spatial learning (Dey et al., 

2006; Kamiyama et al., 2006; Nataraj et al., 2001; Yang et al., 2009). EP4 is the most widely 

distributed prostaglandin receptor. Even though, EP4 and EP2 signal via Gs, both receptors induce 

different functional actions. This might arise from the structural differences of the C-terminal tail 

length which is important for agonist-induced desensitization and internalization (Bastepe and 

Ashby, 1999; Desai et al., 2000). EP4 null mice on a C57BL/6 background die within three days 

after birth due to a patent ductus arteriosus (Segi et al., 1998). Breeding of EP4 null mice in a 

mixed background can improve the survival and allowed the investigation of the functional role of 

EP4. Physiological functions of EP4 include the closure of the ductus arteriosus, induction of bone 

formation and Langerhans cell migration/maturation (Kabashima et al., 2003; Segi et al., 1998; 

Yoshida et al., 2002).  

 

1.4.3 Prostaglandin signaling in health and disease 

Prostaglandins are generally considered as pro-inflammatory mediators. During inflammation, 

induction of COX-2 through inflammatory stimuli and growth factors results in production of 

prostaglandins. Pharmacological agents, known as nonsteroidal anti-inflammatory drugs (NSAIDs), 

block prostaglandin synthesis by inhibiting COX-1/-2 and are commonly used as therapeutic for 

pain, fever and inflammation (Hata and Breyer, 2004). However, inhibition of both COX enzymes 

leads to gastrointestinal adverse effects based on the blockage of COX-1 derived prostanoids in 

the gastric epithelium. Therefore, NSAIDs with selective blockage of COX-2 (COXIB) are used for 

the treatment of arthritis or chronic inflammatory diseases (Ricciotti and FitzGerald, 2011). PGE2 

is of particular interest in inflammatory reactions, since it leads to the typical signs of 

inflammation: redness, swelling and pain. This symptoms are based on increased blood flow, 

arterial dilatation and increased vascular permeability (Funk, 2001). The membrane associated 

PGES (mPGES) is described to play an important role in the synthesis of PGE2 in the context of 

inflammation (Trebino et al., 2003). Dependent on the receptor expression, PGE2 can exert pro- 

or anti-inflammatory responses. For example, prostaglandin signaling via EP2 and EP4 induces 

swelling in collagen-induced arthritis and hyperalgesia via EP1 (Honda et al., 2006; Moriyama et 

al., 2005). In contrary, anti-inflammatory effects are mostly seen in allergy and inflammatory 

processes (Kunikata et al., 2005; Matsuoka et al., 2000). Additionally, PGE2 binding of different 

prostaglandin receptors on immune cells (B- and T-cells, dendritic cells and macrophages) 

regulates cytokine expression profiles and differentiation of these cells (Egan et al., 2004; 

Johansson et al., 2013; Yao et al., 2009). This leads to the induction of pro- or anti-inflammatory 

effects (Ricciotti and FitzGerald, 2011). 



Introduction 

28 
 

Many human cancers are described to have elevated levels of COX and PGE2. PGE2 is considered 

as a tumor-promoting factor. Clinical studies and epidemiological studies indicate that long term 

(10-15 years) use of NSAIDs reduces the risk of colon and rectal cancers of about 50% (Rosenberg 

et al., 1991). Furthermore, strong evidence for the effects of NSAIDs on cancer risk is given by 

several rodent and clinical studies, in which different kind of cancers were treated with NSAIDs 

(Fischer et al., 2011b). These effects of NSAIDs on cancer risk might be explained by the regulation 

of COX-dependent (anti-inflammatory effects) and COX-independent (anti-tumor effects) targets 

(Wang and DuBois, 2006). Chronic inflammation is associated with an increased cancer risk, for 

example in hepatocellular carcinoma or gastric cancer (Alison et al., 2011; Uemura et al., 2001). 

Here, NSAIDs reduce the risk of cancer by their anti-inflammatory and analgesic effects via the 

inhibition of COX. At the same time, high doses of NSAIDs inhibit tumor cell growth and induce 

apoptosis by the regulation of different targets (NFκB, Par-4, Bcl-XL) in a COX-independent manner 

(Kashfi and Rigas, 2005; Zhang and DuBois, 2000; Zhang et al., 2000). PGE2 and its receptors are 

the major prostaglandin players in cancer. Elevated levels of COX-2 and higher catalytic activity of 

mPGES are the main drivers of increased PGE2 levels in cancer (Nakanishi and Rosenberg, 2013). 

Next to its pro-inflammatory and pro-tumorigenic effects, PGE2 signaling influences the tumor 

microenvironment by the induction of tumor angiogenesis through the expression of pro-

angiogenic factors (VEGF and bFGF) and by shifting the cytokine expression to a more 

immunosuppressive pro-tumorigenic environment (Hernández et al., 2001; Huang et al., 1998; 

Tsujii et al., 1998; Yang et al., 2003). Complementary, deletion of prostaglandin receptors (EP1-4) 

confirmed the tumorigenic role of PGE2. Here, specific EP receptor profiles in different cancers 

affected cancer incidence. Deletion of EP1 and EP4 lead to a decrease of preneoplastic lesions in 

the intestine (Mutoh et al., 2002; Watanabe et al., 1999), whereas EP3 deletion contributes to 

squamous cell carcinoma in the skin (Shoji et al., 2005). EP2 accelerates the number and size of 

intestinal polyps in a mouse model of human familial adenomatous polyposis (Sonoshita et al., 

2001). Blockage of EP1 with a receptor antagonist reduced tumor burden in a carcinogen-induced 

breast cancer model (Kawamori et al., 2001). COX inhibitors, targeting the PGE2/EP axis, are 

promising drugs for the prevention or treatment of cancer. However, mPGES- or EP-inhibitors 

may offer an alternative to NSAIDs (Wang and DuBois, 2006).  
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1.5 Aim of the study 

So far, pericytes, the mural cells of the microvasculature, have been identified by using a mixture 

of different criteria including morphology, location and gene/protein expression pattern. Until 

now, the recognition by using pericyte markers is the most convenient method from a practical 

perspective (Armulik et al., 2011). However, the definition of pericytes by this approach faces 

some challenges: i) Pericytes are a heterogenous cell population within the mural cells and none 

of the established markers recognizes all pericyte phenotypes since their expression is highly 

dynamic and dependent on the tissue and activation state (Bergers and Song, 2005; Díaz-Flores et 

al., 2009). ii) Pericytes are cells of mesenchymal origin and the expression of the established 

pericyte markers are overlapping with various mesenchymal cells (SMC, adipocytes, fibroblasts, 

MSC) (Armulik et al., 2011; Díaz-Flores et al., 2009).  

Therefore, the aim of the present study was the identification of unique pericyte-specific markers 

in the vascular niche and their potential functional role in pericytes in vitro and in vivo. Expression 

profiling by microarray analysis of different pericyte populations and various mesenchymal cell 

populations was performed to discover novel pericyte markers. The role of the detected pericyte-

specific transcripts in a physiological setting was investigated by comparative co-culture 

experiments of EC with pericytes silenced for the novel markers and subsequent transcriptomic 

profiling. These transcriptomic analyses were combined with functional in vitro studies to relate 

gene expression changes with functional phenotypes. In addition, mouse models with targeting 

the identified genes should be generated to extend the understanding of the role of the novel 

pericyte markers in vivo. 
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2 Results 

2.1 Pericyte-specific expression of S1PR3 and PTGER2  

Distinct molecular markers are currently used for pericyte detection. However, their expression is 

dynamic due to the diverse characteristics, functions and locations of pericytes. Moreover, among 

these markers is no single entirely pericyte-specific marker (Armulik et al., 2011; Bergers and 

Song, 2005). Therefore, a microarray-based expression screening of primary human muscle 

pericytes (MP), lung pericytes (LP), pancreas pericytes (PancP), brain pericytes (BP) and placenta 

pericytes (PlaP) compared to other cells of mesenchymal origin (human umbilical arterial 

endothelial cells [HUAEC], human umbilical venous endothelial cells [HUVEC], human saphenous 

vein endothelial cells [HSAVEC], adipocytes [Adi], mesenchymal stem cells [MSC], fibroblasts [Fib]) 

was performed in biological replicates (n>3) to identify pericyte-specific transcripts. Pericytes, 

adipocytes, fibroblasts and MSC used for microarray analysis showed typical morphological 

features (elongated cell shape and long cell processes) of mesenchymal cells compared to EC 

(Figure 4). Additionally, pericytes displayed tissue-specific cell morphology. 

 

 

 

 

 

 

 

 

Figure 4: Cell morphologies of human pericytes and other mesenchymal cells 
(A-C) Phalloidin stained human primary pericytes, (D-G) other mesenchymal cells and (H-I) EC. (A-C) Primary 
human pericytes are shown: (A) Brain pericytes, BP; (B) Lung pericytes, LP; (C) Placenta pericytes (PlaP). (D-
G) Other primary human mesenchymal cells are shown: (D) adipocytes, Adi; (E) fibroblasts, Fib; (F) 
mesenchymal stem cells, MSC; (G) umbilical artery smooth muscle cells, HUASMC; (H, I) Human primary 
endothelial cells are shown: (H) umbilical vein endothelial cells, HUVEC; (I) saphenous vein endothelial cells, 
HSAVEC. Scale bars: 100 µm.  
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To analyze different gene expression profiles, a clustering of the microarray data was created 

(Figure 5A). The gene expression profiles of the different endothelial cells (EC) clustered and 

showed the most different gene expression compared to the other mesenchymal cells. Pericytes 

revealed organ-specific gene expression profiles, except for PancP. All mesenchymal lineages, 

except for EC, expressed the well-established pericyte markers described in literature (Figure 5B, 

left) (Armulik et al., 2005). Whereas all EC lack pericyte marker expression, CSPG4 (NG2) seemed 

to be the most abundantly expressed gene in pericytes compared to Adi, MSC and Fib. In contrast, 

endothelial-specific (CDH5, KDR, PECAM1) and fibroblast-specific (S100A4) genes were almost 

exclusively expressed in the corresponding cells (Figure 5B, right). Altogether, this quality control 

analysis verified the microarray data to use it for novel pericyte marker identification. 

 

 

Figure 5: Human primary cells show lineage-specific expression pattern 
(A) Clustering tree of the microarray analysis performed with primary human pericytes, endothelial cells 
and different mesenchymal cells  (B) Heatmap depicting the expression pattern of pericyte-specific, 
fibroblast- and EC-specific genes (n=3-6). High expression is marked in red and low expression in blue. MP – 
muscle pericytes, LP – lung pericytes, PancP – pancreas pericytes, BP – brain pericytes, PlaP – placenta 
pericytes, HUAEC – human umbilical arterial endothelial cells, HUVEC – human umbilical venous endothelial 
cells, HSAVEC – human saphenous vein endothelial cells, Adi - adipocytes, MSC – mesenchymal stem cells, 
Fib – fibroblasts, EC – endothelial cells. n= number of independent experiments. 
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In total, 13 genes were identified to be differentially expressed in pericytes compared to the other 

mesenchymal lineages (Figure 6A, B). Among them, five transcripts are only marginally described 

(C20orf127, LOC441019, LOC100130835, LOC100131866, C14orf149, CCDC34). Other transcripts 

were described to be involved in translation (ELOF1, MRPL55), cell division (PIGU), post-

translational modification (DPH3) and extracellular matrix (Col7A1). Pathway analysis using 

Ingenuity Software and Gene Set Enrichment Analysis did not unveil any pathways, which could 

have gained further knowledge. However, S1PR3 and PTGER2, coding for two G-protein coupled 

receptors, were identified as the most promising genes for further analysis. 

For validation, microarray samples (Figure 7A) and biological replicates (Figure 7B) were 

investigated for S1PR3 and PTGER2 expression. The expression of both genes was not only 

significantly higher in all pericyte populations compared to the other mesenchymal cells but also 

almost exclusively restricted to pericytes. Since pericytes are mural cells of the microvasculature 

and pericytes are discussed as phenotypic variants of vascular SMC, human dermal blood 

endothelial cells (HDBEC), human brain microvascular endothelial cells (HBMEC) and smooth 

muscle cells (SMC) were included in the validation (Figure 7B). Whereas PTGER2 expression was 

absent in these cells, S1PR3 expression was detected in SMC. 

 

 

 

 

 

 

 

 

 

Figure 6: Primary human pericytes show distinct gene expression compared to other mesenchymal cells  
(A) Heatmap and (B) list showing the expression changes of the differentially expressed genes in pericytes 
compared to other mesenchymal lineages (n=3-6). High expression is marked in red and low expression in 
blue.    MP – muscle pericytes, LP – lung pericytes, PancP – pancreas pericytes, BP – brain pericytes, PlaP – 
placenta pericytes, HUAEC – human umbilical arterial endothelial cells, HUVEC – human umbilical venous 
endothelial cells, HSAVEC – human saphenous vein endothelial cells, Adi – adipocytes, MSC – mesenchymal 
stem cells, Fib – fibroblasts. n= number of independent experiments. 
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To confirm the expression of S1PR3 and PTGER2 in mouse pericytes, a protocol for the isolation of 

a mural cell-enriched population via FACS was established (Figure 8). The lung was chosen as a 

model organ, since it is highly vascularized and will as such provide sufficient cells for gene 

expression analysis. Therefore, lungs from adult mice (8-12 weeks) were resected and digested for 

preparation of single cell suspensions. Collagenase IV turned out to be the most efficient digestion 

enzyme. For subsequent FACS, cells were gated according to SSC-A and FSC-A to exclude cell 

debris. Doublets were removed by FSC-H and FSC-A gating. Leukocytes (CD45 positive), 

erythrocytes (TER119 positive), lymphatic endothelial cells (LYVE1 positive), alveolar epithelial 

cells (Podoplanin, PDPN positive) and FxCycle positive cells (dead cells) were excluded. FxCycle-

CD45−TER119−LYVE1−PDPN−CD31- and FxCycle-CD45−TER119−LYVE1−PDPN−CD31+ were sorted for 

subsequent gene expression analysis.  

Figure 7: S1PR3 and PTGER2 are specifically expressed by pericytes 
(A) Quantification of S1PR3 and PTGER2 gene expression in microarray samples and (B) biological replicates 
of pericytes, endothelial cells and other mesenchymal cells (n=3) by qPCR. Expression was normalized to the 
housekeeping gene B2M.  MP – muscle pericytes, LP – lung pericytes, PlaP – placenta pericytes, PancP – 
pancreas pericytes, BP – brain pericytes, HUAEC – human umbilical arterial endothelial cells, HUVEC – 
human umbilical venous endothelial cells, HSAVEC – human saphenous vein endothelial cells, HDBEC – 
human dermal blood endothelial cells, HBMEC – human brain microvascular endothelial cells, Adi – 
adipocytes, MSC – mesenchymal stem cells, Fib – fibroblasts, SMC – smooth muscle cells. Values are 
mean±SD, *p<0.05, **p<0.01, ***p<0.001, n= number of independent experiments. 
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The purity of the sorted cells was confirmed by qPCR (Figure 9) detecting the expression of EC 

markers (Cd31, Vegfr2, Cdh5), pericyte markers (Ng2, Desmin, Pdgfrb), a fibroblast marker 

(Pdgfrα) and the novel pericyte markers (S1pr3, Ptger2). Pericyte markers, except for Desmin, and 

the fibroblast marker Pdgfrα were higher expressed in the mural cell enriched population 

(FxCycle-CD45−TER119−LYVE1−PDPN−CD31-) compared to the EC population (Figure 9C), whereas 

endothelial makers were primarily expressed in the EC compartment (FxCycle-

CD45−TER119−LYVE1−PDPN−CD31+) (Figure 9B). S1pr3 and Ptger2 were exclusively expressed in the 

mural cell enriched population (Figure 9A). 

Together, these experiments validated S1PR3 and PTGER2 as pericyte-specific transcripts in vitro 

and in vivo both in human and mouse.  

Figure 8: Isolation of a mural cell-enriched population from the murine lung 
Representative FACS schemes for the isolation of a mural cell-enriched population. FxCycle

-

CD45
−
TER119

−
LYVE1

−
PDPN

−
CD31

-
 and FxCycle

-
CD45

−
TER119

−
LYVE1

−
PDPN

−
CD31

+
 cells were sorted for 

gene expression analysis. 
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Figure 9: Mural cell enriched population express S1pr3 and Ptger2 
(A) Quantification of S1pr3 and Ptger2, (B) EC- and (C) pericyte-/fibroblast-specific marker gene expression 
in the isolated mural cell enriched population (FxCycle

-
CD45

−
TER119

−
LYVE1

−
PDPN

−
CD31

-
) and isolated EC 

(FxCycle
-
 CD45

−
TER119

−
LYVE1

−
PDPN

−
CD31

+
) by qPCR (n=2). Hprt was used as housekeeping gene. n= 

number of independent experiments.  
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2.2 S1PR3 signals via Gαi and Gαq 

S1PR3 has been described to signal via the three Gα proteins: Gαi, Gα12/13 and Gαq (An et al., 1998; 

Ancellin and Hla, 1999). In order to investigate which S1PR3 pathways are active in pericytes, 

downstream signaling molecules were analysed upon S1P stimulation in S1PR3 silenced vs. 

control-silenced pericytes. Extracellular signal-regulated kinase 1/2 (ERK 1/2) is known to be 

phosphorylated upon S1P activation of Gαi (Tao et al., 2009). S1P stimulation only of siControl 

transfected pericytes showed phosphorylation of ERK 1/2 in a time-dependent manner (Figure 

10A) but no significant increase in phosphorylation of ERK 1/2 if S1PR3 was silenced with two 

different siRNAs (Figure 10A) or TY52156, a selective S1PR3 receptor antagonist (Figure 10B) 

(Murakami et al., 2010). S1PR3 was down-regulated by approximately 90% after 48 h and 70-80% 

after 72 h using two different siRNAs (Figure 11). Gαi can be inhibited by the ADP-ribosylating 

activity of pertussis toxin (PTX) (Gunther et al., 2000). Gαi inhibition prevented the 

phosphorylation of ERK 1/2 after S1P stimulation in pericytes (Figure 10C). In summary, these 

data demonstrate that S1PR3 signals via Gαi in pericytes.    

For analysis of the Gα12/13 pathway, downstream signaling molecules of RhoA were investigated. 

RhoA is described to be an effector of the myosin light chain phosphatase (MLCP), which regulates 

myosin light chain (MLC) phosphorylation of myosin II (Amano et al., 2010). S1P stimulation of 

pericytes resulted in a time-dependent increase of MLC phosphorylation (Figure 12). Selective 

inhibition of S1PR3 by TY52156 prevented the phosphorylation of pMLC2 after S1P stimulation. In 

conclusion, these data indicate that S1PR3 regulates MLC phosphorylation potentially via Gα12/13 

signaling in pericytes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: S1PR3 signals via Gαi in human pericytes 
(A) Representative immunoblotting images and corresponding quantifications for pERK/ERK1/2 in 1 µM S1P 

treated (0, 1, 5, 10 min) BP upon silencing of S1PR3 (n=5), (B) treatment with S1PR3 inhibitor TY52156 (1 

µM, 4h, n=4) or with (C) the Gαi inhibitor pertussis toxin (PTX, 200 ng, 4h, n=3). *p<0.05, **p<0.01, 

***p<0.001, n= number of independent experiments.  
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S1PR3 signaling to Gαq was examined by calcium release assay as activation of Gαq is described to  

result in increased intracellular calcium levels (Hirota et al., 2007). Pericytes, silenced for S1PR3 by 

siRNAS or S1PR3 inhibitor TY52156, were preincubated with the fluorescent dye Rhod4. The 

intensity of Rhod4 increases upon binding to Ca2+. 10 sec upon stimulation with S1P, the rapid 

release of Ca2+ from the endoplasmatic reticulum into the cytosol was measured as increase of 

fluorescence intensity over time (Figure 13A). After 3 min, cytosolic Ca2+ levels were back to basal 

levels. siRNA- or TY52156-mediated silencing of S1PR3 in pericytes significantly reduced Ca2+ from 

the endoplasmatic reticulum. The area under the curve of the fluorescent signals was calculated 

for all conditions (Figure 13B). Thus, S1PR3 signals via Gαq in pericytes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: S1PR3 knockdown upon siRNA transfection 
Quantification of S1PR3 gene expression in BP upon siRNA mediated silencing of S1PR3 after 48 h (n=3) and 

72 h (n=3). Hprt was used as housekeeping gene. *p<0.05, **p<0.01, ***p<0.001, n= number of 

independent experiments.  

 

*** 

*** 

Figure 12: S1PR3 inhibition results in reduced MLC phosphorylation 
(A) Representative immunoblotting images for pMLC2/tubulin in 1 µM S1P treated (0, 1, 5, 10 min) BP upon 

treatment with 1 µM S1PR3 inhibitor TY52156 for 4 h (n=3). (B) Corresponding quantifications for 

immunoblot experiments (in A) of pMLC/tubulin. *p<0.05, **p<0.01, ***p<0.001, n= number of 

independent experiments.  
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To exclude that S1PR1 may be responsible for the remaining effects upon S1PR3 silencing, S1PR1 

mRNA and protein expression was investigated in pericytes. Comparing S1PR1 and S1PR3 

expression in the microarray data (described above) of pericytes from different organs with 

different endothelial cells, showed an inverse expression of both receptors (Figure 14A). S1PR3 

was exclusively expressed in pericytes, whereas S1PR1 was strongly expressed in EC, but absent in 

pericytes. This result was confirmed in biological replicates with BP and HUVEC. Again, S1PR1 

showed very low mRNA and protein expression in pericytes (Figure 14B, C), suggesting that S1PR1 

does not play a role in pericytes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: S1PR1 is not expressed by pericytes 
(A) Heatmap of S1PR1 and S1PR3 in primary human pericytes, endothelial cells and different mesenchymal 

cells. (B) Quantification by qPCR of S1PR1 and S1PR3 in BP. B2M was used as housekeeping gene (n=2). (C) 

Immunoblotting of S1PR1 in BP and HUVEC. βActin was used as loading control (n=1). MP – muscle 

pericytes, LP – lung pericytes, PancP – pancreas pericytes, BP – brain pericytes, PlaP – placenta pericytes, 

HUAEC – human umbilical arterial endothelial cells, HUVEC – human umbilical venous endothelial cells, 

HSAVEC – human saphenous vein endothelial cells. n= number of independent experiments. 

 

Figure 13: S1PR3 signals via Gαq in human pericytes 
(A) Calcium release analysis of stimulated (S1P, 1 µM) BP after S1PR3 silencing or treatment with the S1PR3 

inhibitor Ty52156 (1 µM). (B) Quantification of the area under the curve of the relative fluorescent 

intensities shown in A (n=3). *p<0.05, **p<0.01, ***p<0.001, n= number of independent experiments.  
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2.3  Establishment of a co-culture system of pericytes and EC 

EC and pericytes are in close contact. Both interact closely via paracrine and juxtacrine signaling 

based on their anatomical relationship. In a biological setting, pericytes are always associated 

with EC, whereas EC exist without pericyte contacts (see chapter 1.2.4). To gain functional insights 

of S1PR3 and PTGER2 in pericytes and contacting EC, a co-culture system of S1PR3 or PTGER2 

silenced pericytes and EC was established. Shortly, S1PR3 or PTGER2 were silenced in pericytes 

before culturing on a monolayer of EC (Figure 15A). After 24 hours of co-culturing, pericytes and 

EC were separated via FACS.  For subsequent FACS, cells were gated according to SSC-A and FSC-A 

to exclude cell debris. Doublets were removed by SSC-H and SSC-A gating. CD31+ endothelial cells 

and pericytes marked with an integrated membrane label were collected (Figure 15B). RNA of 

both populations was sent for gene expression profiling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4  Functional analysis of S1PR3 and PTGER2  

 

To verify the robustness of the generated expression profiles, the expression of cell-specific genes 

was examined. Pericytes showed a significant knockdown of S1PR3 and PTGER2 in the 

corresponding datasets (Figure 16A). EC had a low expression intensity of S1PR3 and PTGER2 and 

no expression change upon S1PR3 or PTGER2 knockdown in the respective co-cultured pericytes 

(Figure 16B). Both populations expressed cell-specific genes (Figure 16C). Pericytes were 

NG2/CSPG4- and ACTA2 (αSMA)-positive, while EC were CD31-positive. The data confirms the 

purity of both populations after separation via FACS. 

 

 

Figure 15: BP and EC gene expression profiling upon co-culture 
(A) Scheme depicting the workflow for gene expression profiling of BP and EC upon co-culturing. S1PR3 or 

PTGER2 silenced BP and primary EC were co-cultured for 24 h and separated by FACS followed by gene 

expression profiling. (B) Representative FACS sorting schemes for the separation of BP and EC after co-

culturing. CD31
+
 cells and pericyte label

+
 (PKH) cells were sorted for microarray analysis. 
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The expression data of non-silenced vs. S1PR3 or PTGER2 silenced pericytes as well as the 

corresponding EC were evaluated by separate analysis (Figure 17). Both, S1PR3 and PTGER2 

silenced pericytes, showed differentially expressed genes (log2FC threshold 0.4/-0.4, 143 [S1PR3]/ 

262 [PTGER2] genes). However, gene expression changes in EC were not as pronounced as in the 

respective pericytes (log2FC threshold 0.2/-0.2, 13 [S1PR3]/ 10 [PTGER2] genes). This small 

number of differentially expressed genes in EC could not be validated by qPCR (data not shown). 

Therefore, the following chapters will be confined to the analysis of S1PR3 and PTGER2 in 

pericytes.  

In pericytes, genes with a significant fold change of 30% in the silenced vs non silenced pericyte 

population were evaluated by Molecular Signature Database Analysis (MSigDB). MSigDB allows to 

generate an overlap of differentially expressed genes in pericytes with the existing collection of 

annotated gene sets (Subramanian et al., 2005). Hallmark gene sets, representing genes that are 

involved in biological processes, and Reactome gene sets, deriving from the Reactome pathway 

database, were used for analysis. 

Figure 16: Pericytes and endothelial cells express cell-specific genes after co-culture 
(A) Quantification of the S1PR3 and PTGER2 expression (mean intensity, microarray) in pericytes- and (B) 

endothelial cells (n=3-6). (C) Pericyte marker (NG2, ACTA2) and endothelial cell marker (CD31) expression in 

EC and BP. *p<0.05, **p<0.01, ***p<0.001, n= number of independent experiments.  
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2.4.1 Microarray analysis prompts towards S1PR3 interference with the 

actin/myosin skeleton in pericytes 

To gain insights into the functional role of S1PR3 in pericytes, gene expression data was analysed. 

Among the top genesets, overlapping with significantly regulated genes, MTORC1 signaling 

(FDR=1.88x10-03) and cell junction organization, cell-ECM interaction and cell-cell communications 

(FDR=2.59/2.68x10-03; Figure 18A, B, C) were identified . To complement these findings, co-culture 

experiments with S1PR3 silenced pericytes were performed and gene expression of particular 

genes was validated by real time (RT) quantitative PCR (qPCR). Asparagine synthetase (ASNS), 

included in the MTORC1 signaling gene set, was upregulated upon S1PR3 knockdown (Figure 

18D). ASNS is involved in amino acid metabolism and regulates mTORC1 activity (Krall et al., 

2016). Differentially regulated genes (MPRIP, MYH10, SDC1) of the cell-cell and cell-ECM genesets 

were successfully validated (Figure 18E). Myosin phosphatase rho interacting protein (MPRIP) 

targets the myosin phosphatase and therefore regulates myosin light chain phosphorylation. 

MPRIP binds the myosin phosphatase but also directly RhoA resulting in myosin phosphatase 

regulation by RhoA (Surks et al., 2003). MPRIP is known to influence pericyte cytoskeletal 

remodeling (Durham et al., 2014). Myosin heavy chain 10 (MYH10) is a non-muscle myosin and 

described to be involved in cell polarity, adhesion and migration (Bresnick, 1999). Syndecan 1 

(SDC1) is a transmembrane (type I) heparan sulfate proteoglycan and mediates cell binding, 

signaling and cytoskeletal organization (Beauvais et al., 2009). These results suggest a role of 

S1PR3 in cell morphology in respect of actin-myosin skeleton, migration and adhesion. 

Figure 17: Separate gene expression analysis of pericytes and EC after co-culture 
(A) Separate gene expression analysis of pericytes silenced for S1PR3 or PTGER2 and corresponding (B) EC 

after 24h of co-culture. Depicted is the differential expression profile according to the log2 Fold Change 

(FC). Red line indicates the log2FC threshold (pericytes: log2FC 0.4/-0.4; EC: log2FC 0.2/-0.2) used for 

analysis.  
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To verify the biological relevance, functional in vitro assays of S1PR3 silenced pericytes were 

performed. Cell migration towards a gradient (FCS, conditioned media of HUVEC) of S1PR3 

silenced pericytes was significantly decreased, as seen by xCELLigence real time cell analysis 

(RTCA) or Boyden chamber assay (Figure 19A and B). The xCELLigence system is an electronical 

Boyden chamber assay that allows quantitative kinetic measurements in real-time without the 

use of labeling. These results go in line with the diminished phosphorylation of MLC2 upon S1PR3 

silencing (Figure 12A and B). Since S1PR3 silenced pericytes are less migratory and expression of 

genes (MYH10, SDC1), responsible for cell adhesion and cell-ECM interaction were downregulated 

upon S1PR3 knockdown, adhesion assays were performed. However, adhesion of S1PR3 silenced 

pericytes on a monolayer of EC (Figure 19C) as well as mono-cultured pericytes using xCELLigence 

system (data not shown) was not changed. 

 

 

 

 

Figure 18: Molecular Signature Database analysis of BP silenced for S1PR3 co-cultured with EC 
(A) Molecular Signature database (Hallmark, Reactome) analysis of S1PR3 silenced BP vs. control-silenced 
(siCo) BP after co-culture with EC. (B, C) Heatmap of differently regulated genes (Genesets ´mTORC1 
Signaling´ and ´Cell junction organization/cell-ECM interactions/cell-cell communication´) in pericytes 
silenced for S1PR3. (D, E) Validation of corresponding genes of mTORC1 signaling (D) and cell 
junction/ECM/cell-cell communication (E) by qPCR in microarray samples and biological replicates (n=5). 
*p<0.05, **p<0.01, ***p<0.001, ns=non significant, n= number of independent experiments. 
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Even though cell adhesion was not changed in S1PR3 silenced pericytes, the morphology of the 

cells appeared different compared to control cells. Knockdown cells showed increased cell size, 

validated by image analysis of Phalloidin-positive area per cell (DAPI positive nucleus, Figure 20A 

and B). To gain further insight, live cell imaging was performed using Holomonitor microscope 

(Alm et al., 2013). The Holomonitor allows real-time imaging while the cells are cultured under 

standard conditions. Images of the cells are calculated based on the phase-shift of light through 

the cells compared to bypassed light. Thus, several cellular parameters can be measured at the 

same time. The analysis of S1PR3 silenced pericytes confirmed the change of morphology 

concerning cell volume and cell thickness compared to the corresponding control (Figure 20C). In 

summary, S1PR3 in pericytes interferes with the actin-myosin cytoskeleton of the cells resulting in 

increased migration and reduced cell size.  

 

 

 

 

 

 

 

 

 

 

Figure 19: Reduced migration of S1PR3 silenced pericytes 
(A, B) Migration analysis of mono-cultured S1PR3 silenced pericytes using (A) xCELLigence system (n=4) and 
(B) Boyden chamber assay (B, n=5). The migration was iniitated by using a FCS (xCELLigence) or conditioned 
HUVEC media (Boyden chamber assay) gradient. (C) Adhesion analysis of S1PR3 silenced pericytes (n=3) on 
EC. *p<0.05, **p<0.01, ***p<0.001, ns=non significant, n= number of independent experiments. 
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2.4.2 PTGER2 regulates pericyte proliferation 

Gene expression profiling data of PTGER2 silenced pericytes was analysed according to the S1PR3 

analysis (see chapter 2.4). MSigDB analysis revealed Il2-STAT5 signaling (FDR=5.82x10-05), 

apoptosis (FDR=7.96x10-05) and mitotic spindle (FDR=1.62x10-03) of the Hallmark genesets having 

the most significant overlap with the differentially expressed genes upon PTGER2 silencing (Figure 

21A). Six proliferation regulating genes were identified in the mitotic spindle geneset (Figure 21B), 

most notably the significantly downregulated genes Kinesin-associated protein 3 (KIFAP3) and 

tuberous sclerosis protein 1 (TSC1), two negative regulators of cell division (Figure 21C). 

Conversely, the apoptosis geneset included pro- (SMAD7, CASP3, GSN) and anti-apoptotic 

(BCL2L1, IGFR2) genes (Figure 21D), mostly being downregulated (Figure 21E).  

 

Figure 20: Increased cell size of S1PR3 silenced pericytes 

(A) Cell size analysis of S1PR3 silenced BP upon stimulation with 1 µM S1P for 6 h (n=6). (B) 
Representative images of phalloidin staining (20x, left; 63x, right) of S1PR3 silenced BP upon S1P 
(1 µM) stimulation for 6 h. (C) Representative analysis of average cell volume and cell thickness 
using Holomonitor software upon S1PR3 knockdown (24 h pst siRNA) compared to control cells 
for 18 hours (n=2). *p<0.05, **p<0.01, ***p<0.001, n= number of independent experiments. 
 

 



Results 

46 
 

 

 

 

Corresponding to the downregulation of negative regulators of proliferation (Figure 21B and C), 

proliferation analysis of mono-cultured PTGER2 silenced pericytes using the xCELLigence system 

revealed a significant increase of proliferation compared to control silenced cells (Figure 22A). 

However, silencing of PTGER2 in pericytes did not change the level of apoptosis (Annexin V FACS) 

upon co-culture with EC (Figure 22B). Thus, PTGER2 signaling in pericytes influences the 

proliferation of pericytes in vitro. 

In summay, successfully identified novel pericyte markers S1PR3 and PTGER2 have functional 

relevance in pericyte biology which was verified in vitro.  

 

 

 

Figure 21: Molecular Signature Database analysis of BP silenced for PTGER2 co-cultured with EC 
(A) Molecular Signature database (Hallmark) analysis of PTGER2 silenced BP after co-culture with EC. Gene 

sets with an FDR<10
-3 

are indicated. (B) Heatmap of differently regulated genes (Geneset ´mitotic spindle´) 

in pericytes silenced for PTGER2 vs. control (siCo). (C) Quantification and validation of a corresponding gene 

(KIFAP) in biological replicates (n=3). (D) Heatmap of differently regulated genes (Geneset ´Apoptosis´) in 

pericytes silenced for PTGER2 vs. control. (E) Quantification of corresponding genes (GSN, SMAD7) in 

biological replicates (n =3). *p<0.05, **p<0.01, ***p<0.001, n= number of independent experiments. 
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Figure 22: Increased proliferation in PTGER2 silenced pericytes 
(A) Proliferation analysis of mono-cultured PTGER2 silenced pericytes using xCELLigence system (n=3). (B) 

Cell death (n=3) analysis of co-cultured PTGER2 silenced pericytes with EC using Annexin V staining. 

*p<0.05, **p<0.01, ***p<0.001, n= number of independent experiments. 

 

 



Results 

48 
 

2.5 Generation of conditional S1pr3 mice using CRISPR/Cas 

To enable the analysis of S1pr3 and Ptger2 in pericytes in vivo, mouse models for the conditional 

deletion of these genes are required. The conditional knockout mouse for Ptger2 was kindly 

provided by the lab of Prof. Katrin Andreasson. However, S1pr3 conditional mice are not available. 

Therefore, CRISPR/Cas technology was used to generate a conditional mouse line. The strategy 

was to flank major parts of the coding sequence (exon 2) with LoxP sites (Figure 23). CRISPR/Cas is 

a new approach in the field of genome engineering for in vivo verification of target genes by using 

clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated 

protein-9 nuclease (Cas9) (Jinek et al., 2012; Mali et al., 2013). Originally, CRISPR systems are 

bacterial immune mechanisms that adapt and protect them from viral or plasmid nucleic acids 

(Barrangou et al., 2007; Fineran and Charpentier, 2012; Horvath and Barrangou, 2010; 

Wiedenheft et al., 2012). The CRISPR II system of S. pyogenes was adapted for targeted genome 

editing (Jinek et al., 2012). It is based on the initiation of a nuclease (Cas9) induced double strand 

break (DSB) at the gene locus of interest, which can then either be repaired by insertions and 

deletions (indels) via non-homologous end joining (NHEJ) or lead to specific nucleotide changes by 

homologous directed repair (HR). Here, the loxP sites should be introduced via HR. To induce site-

specific DSBs, two major components have to be introduced into cells: a Cas9 nuclease and a 

guide RNA (gRNA) that directs the nuclease to the specific DNA sequence by RNA-DNA 

complementary base pairing. The specific DNA target site has to be directly 5´ next to a 

protospacer adjacent motif (PAM, 5´-NGG) that is absolutely necessary for target binding (Mali et 

al., 2013). CRISPR/Cas is described to be more simple and precise than other methods used for 

DNA editing so far (Cong et al., 2013).  

 

 

 

 

Figure 23: S1pr3 gene locus with integrated loxP sites 
Schematic of the S1pr3 gene locus before and after loxP site integration. The loxP sites, flanking exon 2, are 
integrated via homologous recombination using CRISPR/Cas technology. CDS - coding sequence. 
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2.5.1 Double Nicking enables efficient genome editing in vitro and in vivo 

RNA-guided nucleases are known to induce site specific DSB. However gRNAs can bind DNA loci 

that show few mismatches, leading to off-target cleavage events (Hsu et al., 2013). Therefore, the 

double nickase system, favored to reduce off-target effects due to its higher specificity, was used. 

The nickase (Cas9n) has an aspartate-to-alanine substitution (D10A) and lost the ability to induce 

DSBs, but instead cuts only one strand of DNA. The concept of the double nickase system is that 

two specific gRNAs induce two single strand breaks in close proximity resulting in a cleavage of 

the target site with efficiencies similar to Cas9 wildtype (WT) system (Figure 24A). Simultaneously, 

off-target effects are reduced (Cong et al., 2013).  

To establish the CRISPR/Cas based integration of two LoxP sites in vitro and in vivo, the bicistronic 

vector px335 (nickase) and px330 (wildtype) expressing gRNA and Cas9 were amplified. An EGFP 

locus expressed under a CMV promotor was cloned into px330 and px335 to be able to proof 

transfection efficiency. To proof the target-specific cleavage and the homologous directed repair 

in vitro, a primary mouse embryonic fibroblast cell line (NIH3T3) was used. For the validation of 

the cleavage site, the following site-specific mutation was confirmed using the surveyor mutation 

assay (Figure 24B). First, NIH3T3 cells were transfected with the plasmids, expressing the eGFP 

reporter, the nuclease Cas9n and gRNAs, designed by the online tool of the Zhang laboratory. The 

efficiency of transfection was on average 50% (Figure 24C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Principle of surveyor mutation assay 
(A) Schematic of the CRISPR/Cas mechanism using Cas9n nickase that generates single-stranded cleavage. 
(B) Schematic protocol for the surveyor mutation assay. NIH3T3 cells were transfected with the CRISPR/Cas 
plasmid. PCR amplification of the DNA was performed following heating/cooling cycles to generate 
heteroduplexes (basepair mismatches). The Surveyor Nuclease cuts specifically at basepair mismatches. The 
fragments were analysed with size-based agarose gels. (C) Representative images of NIH3T3 cells 
(brightfield, 20x, top; GFP fluorescence, 20x, bottom) transfected with CRISPR/Cas plasmids. 
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Upon DNA isolation, PCR amplification of the DNA locus of interest was performed following 

heating and cooling cycles to melt and reassemble the DNA strands. Since not all cells were 

transfected and the cleavage process did not occur in all transfected cells, hetero-duplexes were 

build. The specialized nuclease (surveyor nuclease) digests the DNA only on 3´-side of 

mismatches, revealing different sized DNA fragments, that can be analysed by agarose gel 

electrophoresis (Figure 22B). Transfection of NIH3T3 cells with the corresponding CRISPR/Cas 

plasmids for LoxP site 1 (LoxP1) or 2 (LoxP2) resulted in specific digestion fragments (450bp for 

LoxP1; 645bp for LoxP2) after treatment with surveyor nuclease (Figure 25A, bottom). Agarose gel 

analysis of untreated DNA showed only one specific PCR amplicon in both cases (Figure 25A, top). 

This suggests that the chosen gRNAs directed the nuclease to the target sequence. 

Homologous recombination of DNA templates (containing the 34 bp LoxP sequence) was 

validated by transfection of NIH3T3 cells with the CRISPR/Cas plasmids including the 

corresponding pairs of gRNA and the single stranded DNA template. After DNA isolation of the 

cells, PCR amplification of the DNA loci LoxP 1 and LoxP 2 were performed using a primer 

specifically binding to the LoxP sequence. In case of LoxP integration, a PCR amplicon will be 

detectable. Here, homologous recombination was confirmed with both LoxP sites in NIH3T3 cells 

(Figure 25B). 

After verifying efficient LoxP integration in vitro, the efficiency of the double nickase system to 

target the S1pr3 locus was analysed in vivo. To assess toxicity of the constructs and the efficiency 

of integration in vivo a pilot test was performed (Figure 26A). Accordingly, the DNA template as 

well as the mRNA of Cas9n and the corresponding gRNAs were injected into the cytosol of 

zygotes. Within three days, the targeted zygotes developed to morulae under cell culture 

conditions and PCR analysis of single morula was performed. 75% of zygotes survived the 

injection and 66% of these zygotes developed to morulae (Figure 26B). In total, one morula was 

positive for both LoxP sites. Moreover, LoxP 2 integration showed significantly higher efficiency 

(68%) compared to LoxP 1 integration (4%). This result confirms that double nicking using the 

designed gRNAs and DNA fragments allows specific genome editing of the S1pr3 locus in vivo. To 

improve the recombination efficiency of LoxP 1, a higher concentration of the LoxP 1 constructs 

was injected in the new experiment (Figure 26C). Following injection, zygotes were developed to 

Figure 25: Site-specific cleavage and LoxP site integration in vitro 
(A) Representative agarose gel images of PCR amplified DNA fragments from NIH3T3 cells treated with 
CRISPR/Cas plasmids specifically targeting LoxP integration site of LoxP 1 and LoxP 2. DNA products were 

treated with or without surveyor nuclease. Specific digestion fragments are indicated with a red 
arrow. (B) Representative agarose gel images of integrated LoxP sites 1 and 2 using a primer binding 

specifically to the LoxP sequence. 
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two cell stage embryos under culture conditions before surgical transfer into pseudo-pregnant 

recipient mice. The higher concentration (total 350 ng/µl) did not increase the toxicity as seen in 

the percentage of transferred embryos. Twenty-one F0 pups were born (Figure 26C). As seen 

before, differences in the efficiencies of LoxP 1 (9.5%) and LoxP 2 (81%) integration were 

observed. Two pups carried both LoxP sites. However, the F1 generation (F0 crossed with WT 

mice) were either positive for one or the other LoxP site indicating that the LoxP sites were 

integrated on different alleles in both mice. Furthermore, sequencing of the S1pr3 locus often 

revealed indels and deletions instead of homologous directed integration (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Determination of the success rate using Cas9n nickase to target the S1pr3 locus in vivo 
(A) Schematic protocol for a pilot test of the Cas9n efficiency targeting the S1pr3 locus in vivo. CRISPR/Cas 
constructs were injected in the cytosol of zygotes. Upon 3 days of culturing morulae developed which were 
genotyped using sequential single cell PCR analysis. (B) Results of the pilot test using Cas9n to target the 
S1pr3 locus. (C) Results of the Cas9n constructs in zygotes that were implanted into foster mothers. 
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2.5.2 SCR7 reduces efficiency in combination with double nickase 

To reduce the probability of indels and promote HR, a new strategy using SCR7 was pursued. DSBs 

induce DNA repair through NHEJ or HR (Figure 27A). In a normal setting, NHEJ induced indels 

occur more frequently than HR mediated genome editing, since NHEJ takes place throughout the 

whole cell cycle, whereas HR is restricted to S- and G2-phase (Deriano and Roth, 2013). SCR7, a 

DNA ligase IV, was first described as an anti-cancer drug (Ma et al., 2016). Yet, by inhibiting NHEJ 

SCR7 is described to shift the balance and increase the efficiency of HR (Lin et al., 2016; Ma et al., 

2016). Therefore, zygotes were treated with SCR7 after injection of double nickase constructs. 

Additionally, the concentrations of the constructs were more shifted towards the LoxP 1 site and 

reduced for the LoxP 2 site. After transfer into mice, eight-teen pups were born (Figure 27B). The 

discrepancy between LoxP 1 and LoxP 2 efficiency was reduced. Nevertheless, the integration of 

both LoxP sites in one mouse or on one allele was not successful using the combination of the 

double nickase and SCR7. Besides, indels were even more detectable compared to the approach 

using double nickase alone (data not shown). 

 

 

 

 

 

 

 

Figure 27: Determination of the success rate using Cas9n nickase in combination with SCR7 to target the 
S1pr3 locus in vivo 
(A) Schematic for the principle of SCR7 (Ligase IV inhibitor) on DNA repair. Upon double strand breaks two 
different DNA repair mechanism (Non-homologous end-joining, NHEJ; Homologous recombination, HR) can 
occur. In normal conditions (without SCR7) NHEJ prevails, however with the use of SCR7 the balance shifts 
to homologous recombination due to the blockage of Ligase IV. (B) Results of the Cas9n constructs with 
SCR7 in zygotes that were implanted into foster mothers. 
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2.5.3 Wildtype nuclease mediates genome editing with increased efficiency 

To increase the efficiency of homologous recombination, the wildtype Cas9 nuclease was used for 

further in vivo studies. The Cas9 nuclease induces a DSB with the help of one single specific gRNA 

(Figure 26A). Initially, the target-specific cleavage and homologous directed repair of the new 

constructs (Cas9 and gRNA) were proven in vitro (data not shown). In vivo, the survival (97%) and 

the integration efficiency (LoxP 1 and LoxP 2: 26%) were increased compared to the double 

nickase (Figure 28B). Additionally, the integration of both LoxP sites was similarly effective. In 

total, 3 morulae showed positive recombination of LoxP 1 and LoxP 2. 

To further increase the probability of integrating both LoxP sites on one allele, the integration was 

performed sequentially (Figure 29A). Briefly, zygotes were injected with Cas9 WT constructs for 

LoxP 1 insertion. Afterwards male mice, homozygous or heterozygous for LoxP 1, were bred with 

C57BL/6N female mice to generate zygotes. Subsequently, these LoxP 1 positive zygotes were 

injected with LoxP 2 constructs. In total, 34% of the born pups were positive for LoxP 1 (Figure 

29B), of which four homozygous and two heterozgyous male mice were used for the generation 

of LoxP 1 positive zygotes (data not shown). The integration efficiency of LoxP 2 was less 

compared to the pilot test (Figure 29B). Albeit, seven mice were identified with both LoxP sites.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Determination of the success rate using Cas9 WT to target the S1pr3 locus in vivo 
(A) Schematic of the CRISPR/Cas mechanism using Cas9 WT. The Cas9 WT enzyme generates double strand 
breaks upon specific binding of one gRNA to the DNA region of interest. (B) Results of the pilot test using 
Cas9 WT to target the S1pr3 locus. 
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To confirm the presence of both LoxP sites on the same allele and the germline transmission of 

the floxed allele, breedings with the corresponding floxed mice and WT mice was initiated. 

Genotyping of the F1 generation (LoxP 1: 185 bp [wt]/219 bp [floxed], LoxP 2: 186 bp [wt]/ 220 bp 

[floxed]) revealed litters of two floxed mice carrying the floxed allele (Figure 27B and 28B). Sanger 

sequencing of the floxed allele verified the integration of intact LoxP sites (Figure 30A). In 

summary, conditional mice for S1pr3 were successfully generated by applying the CRISPR/Cas 

technology.  

 

 

 

 

Figure 29: Sequential integration workflow of LoxP sites into the S1pr3 gene locus 
(A) Schematic protocol of sequential integration of the 2 LoxP sites in the S1pr3 gene locus. LoxP 1 was 
solely integrated with the first CRISPR/Cas construct injection. LoxP 1 positive male F0 mice were used to 
breed LoxP 1 positive zygotes. These zygotes were injected with CRISPR/Cas constructs for LoxP 2. (B) 
Results of the sequential injection of LoxP 1 and 2 using Cas9 WT enzyme targeting the S1pr3 locus. 
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Figure 30: Germline transmission of the S1pr3 conditional allele 
(A) Schematic of the S1pr3 gene locus with two integrated LoxP sites. Relative positions of the genotyping 
primers for LoxP 1 (green triangles) and LoxP 2 (blue triangles) are indicated. Representative DNA 
sequences of the 2 PCR amplicons spanning the targeted locus confirmed the presence of two intact LoxP 
sites. (B) PCR products amplified from the two genotyping primer sets for LoxP 1 and LoxP 2. The smallest 
band represents the wildtype allele (+/+) and the middle band represents the floxed allele (fl/+). The third 
band is unspecific. CDS, coding sequence.  
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3 Discussion 

Many different markers have been described to identify and characterize pericytes. However, 

none of these markers is exclusively pericyte-specific (Armulik et al., 2011). Based on the results of 

a systematic expression profiling screen of cultured pericytes isolated from different organs and 

other mesenchymal cells (Figure 6), the present study was aimed at identifying pericyte-specific 

transcripts in the mesenchymal lineage and their contribution to vascular function in general and 

in pericytes specifically. Employing a combination of cellular and biochemical experiments, the 

study demonstrates that i) S1PR3 and PTGER2 are pericyte-specific transcripts in the 

mesenchymal lineage in mouse and human in the vascular niche; ii) S1PR3 signals via divers 

signaling pathways (Gαi, Gαq and presumably Gα12/13) in pericytes; iii) pericyte-specific deletion of 

S1PR3 in pericytes co-cultured with EC results in transcriptional regulation of cell junction and cell-

ECM interaction genes; iv) pericyte migration and cell size as well as signaling pathways of the 

actin-myosin skeleton are regulated by S1PR3 signaling in pericytes (Figure 31); v) pericyte-specific 

deletion of PTGER2 in vitro increases proliferation by transcriptional down-regulation of 

proliferation inhibitors; vi) CRISPR/Cas technology can be applied to generate S1pr3 conditional 

knockout mice by using Cas9 WT in a sequential approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: S1PR3 signaling in pericytes 
Schematic illustration of the proposed S1P/S1PR3 signaling in pericytes. EC predominantly express S1PR1, 
whereas pericytes express S1PR3. Under physiological conditions the maintenance of a S1P gradient from 
blood to tissue is important for vascular function (blood>tissue). S1PR1 signaling in EC sustains vessel 
integrity. In contrast, S1PR3 signaling is low under physiological conditions due to low S1P concentration in 
the tissue. However, if S1P is binding to S1PR3 it can signal via different pathways: 1) S1PR3 can signal via 
Gαi leading to phosphorylation of ERK1/2 via Ras/Raf/MEK pathway. ERK1/2 is known to positively regulate 
myosin light chain kinase (MLCK) resulting in phosphorylation of myosin light chain (MLC). 2) S1PR3 signals 
via Gα12/13 through RhoA and ROCK resulting in the inhibiton of myosin light chain phosphatase (MLCP). 
Furthermore, upon expression of S1PR3, myosin phosphatase Rho-interacting protein (MPRIP) is 
downregulated. This results in more RhoA activity, less MLCP activity and increased MLC phosphorylation. 
3) S1PR3 signals via Gαq by the induction of calcium release from the endoplasmatic reticulum (ER). All 
three pathways result in migration/contraction of pericytes. Genes marked in grey indicate literature 
evidence, whereas genes marked in black were investigated in this study. Basement membrane, BM. 
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3.1 Challenges of the identification of pericytes 

Pericytes have gained increasing attention as functionally significant contributors in physiological 

and pathological angiogenesis (Bergers and Song, 2005). Although the current definition of a 

mature pericyte as an embedded cell in the BM is accepted, the identification of pericytes and the 

phenotypic discrimination from other mural and/or mesenchymal cells are still challenging 

(Armulik et al., 2011; Bergers and Song, 2005). Mural cells are described to be a continuum of 

phenotypes reaching from SMC on large caliber vessels to pericytes ensheathing capillaries 

(Armulik et al., 2011). The term continuum stresses the complexity in discriminating ontogenetic 

related SMC and pericytes, but also the difficulties in distinguishing pericytes with a great 

mesenchymal potential from other cells of mesenchymal origin (Bergers and Song, 2005; Crisan et 

al., 2008a). This is highly dependent on the unavailability of an uniquely expressed marker for 

pericytes (Armulik et al., 2011). This study identified pericyte-specific transcripts in mesenchymal 

lineages. Human primary pericytes from different organs were used for a microarray expression 

analysis. The different pericytes were purchased from companies (BP and PlaP) or obtained from 

the laboratory of Dr. Bruno Peault (MP, PancP, LP). Even though the isolation protocols of the 

pericytes vary, the purity of cells was checked by pericyte marker expression (Crisan et al., 2008b, 

2008c). Additionally, pericytes show typical morphological features (elongated cell shape and long 

cell processes) of mesenchymal cells. However, each cell type used for the microarray differed in 

morphology. Interestingly, pericytes possess tissue-specific cell morphology (Figure 4). This might 

reflect the organ-/tissue-dependent diversity in pericyte functions (Bergers and Song, 2005). 

Indeed, clustering of the microarray data revealed organ-specific expression profiles in pericytes, 

except for PancP (Figure 5). The expression of established pericyte markers is strongly dependent 

on several criteria including species, vessel type, organ, pathological or activation state of the 

vessel (Armulik et al., 2011; Bergers and Song, 2005). This is in line with the observed divers 

pericyte marker expressions in the microarray analysis. Whereas LP, PancP and BP predominantly 

expressed NG2 (CSPG4), MP and PlaP primarily expressed Endosialin (Figure 5).  

Even though, pericytes and EC may originate of a common progenitor cell (Yamashita et al., 2000), 

EC do not express typical pericyte markers (Figure 5). Given the fact that established pericyte 

markers are known to be expressed in other cells of mesenchymal origin, it was not suprising that 

also fibroblasts, adipocytes and MSC expressed these markers (Figure 5). In fact, pericytes act as 

perivascular stem cell niche and can transdifferentiate into osteocytes, chondrocytes and 

adipocytes (Crisan et al., 2008a; da Silva Meirelles et al., 2008). Close ontogenic relationship is 

also given between pericytes and SMC/fibroblast, since their progenitor cells (mesothelial cells) 

undergo EndMT and can transdifferentiate into these three cell entities (Hall, 2006). Although the 

fibroblasts of two different companies express some pericyte markers (PDGFRβ, ACTA2, CD248), 

they are also positive for the fibroblast-specific transcript S100A4 in contrast to pericytes (Figure 

4). As the microarray-based expression analysis was performed with strict parameters to identify 

only transcripts expressed by pericytes, established pericyte markers (Table 1) did not appear in 

the pericyte-specific transcript list (Figure 6). 
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As SMC have not been included in the expression analysis, expression levels of S1PR3 and PTGER2 

were validated in biological replicates of SMC (Figure 7B). PTGER2 expression was not detectable 

in SMC. However, SMC expressed S1PR3 at comparable expression levels as pericytes, which was 

consistent with published studies describing S1PR3 in SMC (Mousseau et al., 2012a, 2012b; Ryu et 

al., 2002; Wamhoff et al., 2008). The classical concept of mural cells differentiates SMC and 

pericytes. Instead, emerging evidence indicates a range of intermediate mural cell phenotypes 

between the prototypical SMC and pericytes (Armulik et al., 2011; Díaz-Flores et al., 2009). Based 

on their close relationship, the proper phenotype of the cells used for the microarray can not be 

stated. Marker expression (S1PR3 and PTGER2) along the vascular bed needs to be analysed in 

vivo. However, this is limited by the unavailability of S1PR3- and PTGER2-specific antibodies. 

In vivo, the expression of S1pr3 and Ptger2 was high in an isolated mural cell enriched population 

compared to the endothelial compartment (Figure 9). The mural cell-enriched population was 

isolated by a negative selection approach due to the unavailability of working FACS antibodies 

against established pericyte markers (NG2, PDGFRβ). Leukocytes, erythrocytes, lymphatic 

endothelial cells alveolar epithelial cells and FxCycle positive cells (dead cells) were excluded from 

the mouse lung cell suspension. The remaining cell population was sorted according to CD31 

expression in CD31 positive (EC) and CD31 negative cells (mural cell enriched) (Figure 8). Pericyte- 

and EC-specific gene expression analysis confirmed adequate purity of the populations. Pdgfrα, 

known as pan-fibroblast marker (Driskell et al., 2013), was higher expressed in the mural cell 

enriched population, indicating the presence of fibroblasts in this population. However, Pdgfrα is 

known to be expressed in a subpopulation of pericytes in the lung (Hung et al., 2013). 

Furthermore, this study demonstrated that fibroblasts do not express S1PR3 and PTGER2 (Figure 6 

and 7). Nevertheless, expression analysis in this population for pericyte markers showed strong 

enrichment compared to the EC compartment (Figure 9).  

Hence, this study identified S1PR3 as mural cell-specific and PTGER2 as pericyte-specific transcript 

in human and mouse within the mesenchymal lineage. 

  

3.2 Human and mouse pericytes express functional S1PR3 

In this study, the significantly higher expression of S1PR3 in human pericytes of different tissues in 

comparison to other mesenchymal cells was discovered by microarray-based gene expression 

profiling and was confirmed on RNA level. This is in line with recently published publications, 

showing that S1PR3 is enriched in Pdgfrβ-/Ng2-positive brain pericytes (He et al., 2016) and that 

hepatic stellate cells, the pericytes of the liver, express S1PR3 (Liu et al., 2011). However, S1PR3 

expression was also detectable in SMC (Figure 7B). In accordance with that, few publications 

described the expression of a functional S1PR3 in SMC (Mousseau et al., 2012a, 2012b; Ryu et al., 

2002; Wamhoff et al., 2008). These data reflect the heterogeneity of mural cells and the 

difficulties to distinguish pericytes from SMC depending on the markers used in each study (as 

discussed above). Some studies suggest S1PR3 expression in endothelial cells (van Hooren et al., 

2014; Nussbaum et al., 2015; Waeber et al., 2004). In this and another recent study by He et al. 

(He et al., 2016), S1PR3 expression in EC was barely detectable compared to pericytes and the 



Discussion 

60 
 

expression seemed to be dependent on culture conditions (HUVEC, see Figure 7A and B). 

Furthermore, S1PR3 expression is known to be upregulated under pro-inflammatory conditions 

(Fischer et al., 2011a), which could explain the S1PR3 expression in endothelial cells in vivo in 

inflammation models (Nussbaum et al., 2015). The availability of exclusively global S1PR3 

knockout mice stresses the difficulty to state which S1PR3 expressing cells are causing angiogenic 

phenotypes (Kono et al., 2004). Our understanding of S1PR3 protein expression levels, though, is 

challenged by the fact that S1PR3 and S1PR1 are highly homolog and there is no commercially 

available antibody detecting specifically S1PR3. Therefore, investigators have to rely heavily on 

mRNA expression profiles, even though expression studies were done on protein levels showing 

S1PR3 expression on benign and malignant human tissues (Wang et al., 2014).  

The results of the present study show for the first time that indeed S1PR3 signals via Gαi and Gαq 

(Figure 10 and 13) in pericytes (An et al., 1998, 1999; Ancellin and Hla, 1999). Analysis of 

downstream signaling of RhoA (Gα12/13) revealed reduced phosphorylation of MLC2 upon S1PR3 

inhibition (Figure 12). However, MLC phosphorylation is not only described to be regulated by 

RhoA, but also by ERK and calcium (Amano et al., 2010; CHENG et al., 2015; Hong and Grabel, 

2006; Turner et al., 1999), illustrating the complexity of MLC phosphorylation regulation (Figure 

31). Accordingly, further investigations of the regulation of MLC phosphorylation and the 

involvement of RhoA (Gα12/13) are required by using MEK, ROCK and/or PLC inhibitors. 

Nevertheless, literature suggests that there is a complex and dynamic interplay of signaling 

pathways in the regulation of myosin phosphorylation (Cheng et al., 2015; Kaneko-Kawano et al., 

2012). In summary, S1PR3 interferes with the signaling that regulates the actin-myosin skeleton. 

In accordance with this, S1PR3 has a functional role in pericytes. Pericytes, silenced for S1PR3, 

show less migratory capacity and increased cell size (Figure 19 and 20). These results are in line 

with the pro-migratory effect seen in S1PR3 expressing hepatic stellate cells (Liu et al., 2011) and 

SMC (Mousseau et al., 2012a, 2012b; Ryu et al., 2002; Shimizu et al., 2012) via ERK1/2 and MAPK 

activation upon S1P stimulation. Furthermore, PDGFB/PDGFRβ and S1P/S1PR3 signaling act 

synergistically on SMC migration (Mousseau et al., 2012b). Apart from that, microarray-based 

gene expression profiling of S1PR3 silenced pericytes, co-cultured with EC, revealed differentially 

regulated genes overlapping with gene sets involved in cell junction organization, cell-ECM 

interaction, cell-cell communications and mTORC1 signaling. Similarly, S1P induced migration 

involves mTOR and ERK signaling in SMC (Tanski et al., 2005). Additionally, S1PR3 dependent 

regulation of MPRIP and subsequent dephosporylation of MLC (Durham et al., 2014) identified in 

pericytes (Figure 12, 18 and 31) point to the molecular mechanism by which S1PR3 regulates 

migration. SDC1 is a heparin sulfate proteoglycan and is part of the glycocalyx. It binds various 

components of the ECM and is an important regulator of cell-cell and cell-ECM interactions (Zeng, 

2017). A relation between EC-expressed S1PR1 and syndecan 1 on protecting the glycocalyx was 

described (Zeng, 2017; Zeng et al., 2014). However, the relationship between pericyte-expressed 

SDC1 and S1PR signaling is not explored. Still, the downregulation of SDC1 upon S1PR3 silencing in 

pericytes suggests an impairment of growth factor binding or ECM binding that is necessary for 

pericyte migration.      
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S1PR1 is the major S1P receptor in EC and signals upon S1P binding that is delivered by the blood 

in micromolar concentrations (Gaengel et al., 2012). The activation of S1PR1 leads to the 

inhibition of angiogenic sprouting and stabilization of endothelial VE-cadherin at the endothelial 

junctions. In short, S1PR1 signaling on EC maintains blood vessel integrity by protecting blood 

vessels against abnormal angiogenic signals (Gaengel et al., 2012; Xiong and Hla, 2014). EC serve 

as the gatekeeper between the circulation and the tissue by maintaining the S1P gradient. 

Through synthesis and export of S1P into the blood, EC control high S1P concentrations in 

circulating fluids. Whereas by controlling the intracellular crossing of S1P, EC sustain the low 

concentration on the abluminal side (Olivera et al., 2013). In a physiological scenario, pericytes 

that are located on the abluminal side, are exposed to a low S1P concentration suggesting minor 

S1PR3 signaling in pericytes. This is in line with the less migratory phenotype in pericytes upon 

S1PR3 silencing described in this study (Figure 19). Concurrently, S1PR1 signaling on EC maintains 

vessel integrity (Gaengel et al., 2012). Under certain pathophysiological conditions (inflammation 

and cancer), an increase of the S1P concentration in the tissue may occur (Olivera et al., 2013). In 

context of cancer and allergic inflammation, mast cells are considered to be stimulated and alter 

S1P homeostasis (Olivera, 2008; Olivera and Rivera, 2011). Furthermore, cancer and stromal cells 

can turn on S1P production while diminishing the degradation of S1P (Bandhuvula and Saba, 2007; 

Colié et al., 2009; Takabe et al., 2010). This alteration in the S1P concentration in the tissue may 

activate S1PR3 signaling on pericytes and lead to a pro-migratory phenotype and partial 

disruption of vessel integrity. However, this hypothesis needs to be proven in vivo experiments in 

S1PR3 conditional knockout mice using inflammatory or cancer models. 

In summary, this study identifies S1PR3 as novel mural cell marker and shows for the first time the 

functional role of S1PR3 in pericytes influencing the actin-myosin skeleton. Yet, the interplay of 

S1P signaling in EC and pericytes needs further investigation by the use of pericyte-specific 

deletion of S1pr3 in mice. 

 

3.3 Pericyte-specific expression of PTGER2 

Specific PTGER2 expression in human pericytes from different organs was for the first time 

discovered in this study (Figure 6). The expression of PTGER2 was exclusively observed in 

pericytes and almost absent in other mesenchymal cells in the vascular niche, analysed by a 

microarray based transcriptomic profiling and validated on RNA level (Figure 7). Only few 

publications indicate the expression of PTGER2 in mesangial cells, the specialized pericytes in the 

kidneys (Jaffer et al., 1995; Kennedy-Lydon et al., 2013). Jaffer et al. suggest an effect of PGE2 on 

mesangial migration, most probably via EP2 (PTGER2) (Jaffer et al., 1995). In contrast, PTGER2 

silenced BP did not show any difference in migration in this study (data not shown). This suggests 

an organ-specific influence of PGE2/EP2 signaling on the migration of pericytes. Interestingly, 

PTGER2 was not expressed in SMC (Figure 7). Yet, Yau et al. describe EP2 (PTGER2) expression 

(protein) and functional contribution in SMC (Yau and Zahradka, 2003). In contrast, EP2 is absent 

on SMC of the small intestine (Dey et al., 2006). Even though EP2 protein expression has been 

published (Aoki et al., 2011; Yau and Zahradka, 2003), not a single commercially available 
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antibody has been validated to specifically bind EP2. The functional role of EP2 on SMC 

proliferation is in line with the proliferation phenotype seen in pericytes (Figure 22) (Yau and 

Zahradka, 2003). However, the effects in SMC seem to be dependent on the status (quiescent or 

proliferative) of the cells (Yau and Zahradka, 2003).  

PGE2 is a factor with a short half-time and therefore typically functions in an autocrine way or on 

cells in close proximity (paracrine) (Funk, 2001). Few publications indicate that pericyte express 

PGE2 suggesting an autocrine signaling of PGE2 and EP2 on pericytes (Giurdanella et al., 2015; 

Jaffer et al., 1995). In addition, EC express PGE2 (Hsu et al., 1993; Milne et al., 2001). Their close 

anatomical relationship may suggest that EC are a source of PGE2 that can act in a paracrine 

manner on pericytes via the EP2 receptor.  

The PGE2/EP2 axis regulates angiogenesis. However, which mechanism or cells are the major 

contributor is still not fully explored. Some studies claim that EP2 expression on EC effects EC 

motility and survival (Kamiyama et al., 2006; Sakurai et al., 2011). This is contrast to this study, 

showing exclusive expression of PTGER2 in pericytes, whereas EC are devoid of PTGER2 (Figure 7). 

The majority of publications discussing EP2 and angiogenesis are in the context of tumor 

angiogenesis. It is known that the tumor microenvironment including tumor endothelial cells 

show morphological, epigenetic and gene expression changes compared to their healthy 

counterparts (Dudley, 2012). However, this study exclusively investigated the role of EP2 in the 

physiological setting. Global deletion of EP2 decreases the number of intestinal polyps in Apc∆716 

mice with reduced tumor vascular density (Seno et al., 2002; Sonoshita et al., 2001). Mostly, 

PGE2/EP2 is said to act on tumor cells resulting in release of VEGF and induction of angiogenesis 

(Eibl et al., 2003; Jain et al., 2008; Seno et al., 2002; Wang and Klein, 2007; Xiong et al., 2005). 

Albeit, these studies are all performed in global EP2 knockout mice or by using EP2 inhibitors. To 

investigate the role of different EP2 expressing cells on (tumor) angiogenesis, cell-specific EP2 

deletion needs to be performed in vivo. 

PGE2 is a main mediator in inflammation and regulates cytokine expression of immune cells  via 

EP2 (Jing et al., 2003; Johansson et al., 2013; Ricciotti and FitzGerald, 2011). Pericytes are 

described to contribute to the immunological defense of the vaculature by secreting chemokines, 

expressing adhesion molecules and attracting immune cells (Navarro et al., 2016; Pieper et al., 

2013; Stark et al., 2013). Whether PGE2/EP2 signaling in pericyte plays a role in inflammatory 

processes needs to be further elucidated. 

Overall, this study identifies PTGER2 as a specifically expressed transcript of pericytes in the 

mesenchymal niche with a contribution to pericyte function. However, further investigations 

concerning potential influence of pericyte-expressed PTGER2 on angiogenesis and inflammation 

needs to be performed in vivo. 
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3.4 Challenges of CRISPR/Cas technology   

In this study, the generation of S1pr3 floxed mice was performed using the newly emerging 

technique CRISPR/Cas. Different approaches were used to establish an efficient system to 

specifically introduce two LoxP sites into the DNA. Genome engineering refers to techniques that 

introduce targeted and permanent modifications into the genome. Until recently, gene targeting 

in mouse embryonic stem (ES) cells by plasmid-based homologous recombination was the gold 

standard for investigating gene functions and was 2007 awarded by the Nobel Prize in Physiology 

and Medicine (Capecchi, 1989). This method was a breakthrough since former techniques created 

transgenic mice based on the random incorporation of DNA via DNA injection into fertilized eggs. 

However, targeted gene editing by ES cells is impeded by several factors including low efficacy 

targeting rate, effortful screening and culturing of ES cells, chimeric mouse production and 

subsequent breeding to acquire germline transmission of the genetic modification (Capecchi, 

2001, 2005; Sato et al., 2016).  

In the past decade, genome editing using programmable sequence-specific DNA binding nucleases 

emerged. The nucleases induce DSBs and stimulate DNA repair mechanism (NHEJ and HR) by 

which the gene is disrupted or gene modifications can be introduced. These site-specific nucleases 

comprising of zink-finger nucleases (ZFNs), transcriptions activator-like effector nucleases 

(TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 

protein-9 nuclease (CRISPR/Cas), are powerful tools to induce site-specific modifications (Gaj et 

al., 2013). CRISPR/Cas is the most recently established technique and was used in this study, since 

it demonstrates advantages in comparison to ZFNs and TALENs (Falahi et al., 2015; Jinek et al., 

2012). ZFNs exert more off-target effects (non-specific DNA modifications) and TALENs are highly 

sensitive to methylation of the targeted DNA and their design is complex and time consuming 

(Falahi et al., 2015; Valton et al., 2012). Based on publications, describing off-target effects by the 

Cas9 nuclease, the first approach was performed with the Cas9n nickase (Figure 24 and 26). The 

specificity of CRISPR/Cas is determined by the sequence of the gRNA (guide RNA). However, 

mismatches (up to 5) in the gRNA can retain the cleavage activity dependent on the mismatch 

positions in the gRNA, and result in off-target effects in the genome (Cho et al., 2014; Cong et al., 

2013; Fu et al., 2013; Hsu et al., 2013). Intriguingly, the usage of Cas9n and corresponding gRNAs 

avoids off-target mutations through the higher specificity (Cho et al., 2014; Shen et al., 2014) and 

sustains efficiency (Cho et al., 2014; Shen et al., 2014). This study shows that Cas9n was able to 

introduce two LoxP sites flanking exon 2 of S1pr3. However, the recombination efficacy strongly 

depends on the gene locus (Figure 26B and C), as published before (Miyaoka et al., 2016). An 

increase of the concentration (25 to 50 ng/µl) of the LoxP 1 constructs did not substantially 

improve the recombination efficiency of the LoxP 1 site. The low recombination efficiency of the 

LoxP 1 may explain that only few mice with both LoxP sites, but not located on the same allele, 

were generated. However, changes in the concentrations of injected CRISPR/Cas constructs (see 

Table 44) balanced the recombination efficiency of LoxP 1 and LoxP 2. In publications, the 

concentrations of injected CRISPR/Cas constructs vary from 50 ng/µl to 250 ng/µl in total (Lee and 

Lloyd, 2014; Wang et al., 2013). However, in general even the highest concentrations are 
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suggested to be low toxic when injected into the cytoplasm of the zygote (Wang et al., 2013). In 

this study, the maximal total injected concentration of 350 ng/µl into the cytoplasm of the zygote 

did not show higher toxicity but did also not result in increased efficacy (Figure 26C). 

Recombination efficiency can be improved up to 19-fold by the Ligase IV inhibitor SCR7 via 

blockage of the NHEJ pathway (Figure 27A) (Lin et al., 2016). In this study, SCR7 treatment did not 

increase recombination efficiency (Figure 27B). In the majority of publications, SCR7 was co-

injected with the CRISPR/Cas constructs into the zygotes. In this study, zygotes were incubated 

with SCR7, before and after injection. This procedure was described in the context of NHEJ 

inhibitor treatment of cells (Maruyama et al., 2015) and was well established in the transgenic 

service (DKFZ) for genome editing experiments with the Cas9 WT. Moreover, publications stating 

the increase of genome editing upon SCR7 treatment, are all performed with Cas9 WT (Chu et al., 

2015; Maruyama et al., 2015; Singh et al., 2015). This suggests that the combination of SCR7 and 

Cas9n are not as efficient as with Cas9 WT.  

Insertion of two LoxP sites flanking S1pr3 using Cas9 WT (Figure 26A) with published 

concentrations (Wang et al., 2013) revealed a high survival rate of the injected zygotes and high 

and equal efficiencies of both LoxP sites (Figure 26B). This implies that the region of the LoxP 1 

was not as accessible as the LoxP 2, since in case of Cas9n transfection the recombination of LoxP 

1 was less efficient. Here, two nucleases have to bind in close proximity and in a narrow time 

frame to induce the DSB. As discussed above, the Cas9 WT harbors the risk of off-target effects. 

To minimize this risk, designed gRNAs with the highest quality scores were chosen. The quality 

score considers target specificity and possible off-target matches, meaning the higher the quality 

score, the fewer off-target matches in the genome. Additionally, intergenic off-targets may be 

considered as acceptable, since off-targets on different chromosomes will not necessarily be co-

segregated with the floxed allele, when transgenic mice are back-crossed. However, whole 

genome sequencing will be necessary to fully exclude unspecific alterations in the genome. 

In both Cas9n approaches (Figure 26 and 27) the insertion of both LoxP sites on the same allele 

was not successful due to low efficiency of one LoxP site. In addition to the usage of Cas9 WT, a 

sequential approach (Figure 29A) was established to increase the probability of the insertion of 

both LoxP sites on one allele. This approach also prevented the origin of deletions arising from the 

simultaneous cleavage up- and downstream of exon 2. Whereas LoxP 1 was integrated with a 

similar efficiency (Figure 29B) as in the pilot experiment (Figure 28B), recombination of LoxP 2 was 

less efficient (Figure 29B). Subsequent analysis of the genome of the born mice revealed 

integration of both LoxP sites on one allele and germline transmission was confirmed in the F1 

generation (Figure 30).  

 

CRISPR/Cas is currently described to be the simplest, most precise and versatile method of 

genome editing. However, the homologous recombination of LoxP sites is highly gene locus and 

nuclease (Cas9 or Cas9n) dependent and can therefore lead to a time-consuming establishment of 

the best and efficient conditions. Yet, the sequential LoxP integration strategy turned out to be a 

suitable approach for the generation of a conditional S1pr3 knockout mouse. The availability of 
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this new mouse line will help to answer pivotal questions about the role of S1PR3 in pericyte 

biology. For instance, crossing to Ng2-Cre reporter mouse line will enable the cell-specific 

manipulation of S1pr3 in vivo. 
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4 Materials and Methods 

 

4.1  Materials 

 

4.1.1  Chemicals 

Chemicals were purchased from the following companies: 

Table 2 Chemicals 

Company 

AppliChem (www.applichem.com) 

Carl Roth (www.carl-roth.de) 

Gerbu (www.gerbu.de) 

Merck (www.merk.de) 

Roche (www.roche-applied-science.com) 

Sigma-Aldrich (www.sigmaaldrich.com) 

 

4.1.2  Vectors 

The vectors px330 and px335 were purchased from Addgene (Figure 31). The EGFP vector 

CVU55762 that was used for cloning of px335+EGFP (Figure 32) was kindly provided by Dr. Soniya 

Savant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Vectormaps of the gRNA and Cas9 WT (px330) or Cas9n (px335) expressing plasmids 
Vector maps were generated with the software Benchling (www.benchling.com).  

 

 

http://www.applichem.com/
http://www.carl-roth.de/
http://www.gerbu.de/
http://www.merk.de/
http://www.roche-applied-science.com/
http://www.sigmaaldrich.com/
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4.1.3  Primers and Oligonucleotides 

All primers were purchased from MWG Biotech and Sigma Aldrich. 

 

Table 3 Cloning Primers 

Target Primer name Sequence (5'-3') 

CVU55762 Px335_EGFP_for GGGCTATTCTTTTGATTTAATGGAGTTCCGCGTTACATAA

C CVU55762 Px335_EGFP_rev ATCGGCAAAATCCCTTAGTCGCGGCCGCTTTACTT 

 

 

Table 4 Surveyor mutation assay Primers 

Target Primer name Sequence (5'-3') 

S1pr3 Intron 1 S1pr3_I1_Sur_for GCCACACTCAAAGTTCACGT 

S1pr3 Intron 1 S1pr3_I1_Sur_rev TCCCGGAGAGTGTCATTTCC 

S1pr3 Intron 2 S1pr3_I2_Sur_for TCATTTGCCAGTGTCTGCAG 

S1pr3 Intron 2 S1pr3_I2_Sur_rev CCCTCTGCCCTCTGACTTAG 

LoxP LoxP_for CTTCGTATAATGTATGCTATACGAAG 

 

 

 

 

 

Figure 33: Vector maps of the EGFP vextor CVU55762 and px335+EGFP 
Vector maps were generated with the software Benchling (www.benchling.com).  
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Table 5 Oligonucleotides used in combination with the Cas9 Nickase 

Description Oligo name Sequence (5'-3') 

gRNA 1 Intron 1 S1PR3_Intron1_Nicko_Seq1 
 

AAACGCTCCCACGTGGTGGGTGAGC 

gRNA 2 Intron 1 S1PR3_Intron1_Nicku_Seq1

S1PR3_Intron1_Nicku_Seq1 

AAACGGCACCAGGAAATACTGCGTC 

gRNA 1 Intron 2 S1PR3_Intron2_Nicko_Seq4 AAACTCTATCACCTCTGACCTGCC 

gRNA 2 Intron 2 S1PR3_Intron2_Nicku_Seq4 AAACATTTTGCGATCTGGAGCATAC 

DNA template Intron 1 S_I1_Nickou_Seq1_HDR_for 

TACAGCTGGGAATACTGGCTTATCAGCTCCCAC 

GTGGTGGGTGAGAAGTAACGCAGTATATAACTT

CGTATAATGTATGCTATACGAAGTTATTGCCTGG

AGATTTCCAAGTGGAAGCTTGCTCGTTTCTGCTG

CAGTTACAGGATTCACAGA 

DNA template Intron 2 S_I2_Nickou_Seq4_HDR_for 

CCACCCCCAGTTCCACCTTCCCGCCGTCTATCACC

TCTGACCTGCCCAAGGCAGTCTATGATAACTTCG

TATAATGTATGCTATACGAAGTTATAAATTGGCA

TGAATCTTTTCAAGTGTTTCTGACAAGTTATCCCT

TTTCCCACCCCTGAGG 

 

Table 6 Oligoucleotides used in combination with the Cas9 WT 

Description Oligo name Sequence (5'-3') 

gRNA Intron 1 S1PR3_Intron1_Nicko_Seq1 
 

AAACGCTCCCACGTGGTGGGTGAGC 

gRNA Intron 2 S1PR3_Intron2_Nicku_Seq4 AAACATTTTGCGATCTGGAGCATAC 

DNA template Intron 1 S_I1_Nickou_Seq3_HDR_for 

CCCTCACTTTTCCTCATCCTGAGAAAAATCTGATT

CCCTCTACAGCTGGGAATACTGGCTTACATAACT

TCGTATAATGTATGCTATACGAAGTTATGGTGA

GAAGTAACGCAGTATTTCCTGGTGCCTGGAGAT

TTCCAAGTGGAAGCTTGCTCGTTTC 

DNA template Intron 2 S_I2_Nickou_Seq4_HDR_for 

CCACCCCCAGTTCCACCTTCCCGCCGTCTATCACC

TCTGACCTGCCCAAGGCAGTCTATGATAACTTCG

TATAATGTATGCTATACGAAGTTATAAATTGGCA

TGAATCTTTTCAAGTGTTTCTGACAAGTTATCCCT

TTTCCCACCCCTGAGG 
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Table 7 In vitro transcription Primers 

Target Primer name Sequence (5'-3') 

gRNA 1 Intron 1 (Nickase) S1_T7_gRNA_for TTAATACGACTCACTATAGGCTCACCCACCACGTGGGA 

gRNA 2 Intron 1 (Nickase) S2_T7_gRNA_for TTAATACGACTCACTATAGGACGCAGTATTTCCTGGTGCC 

gRNA 1 Intron 2 (Nickase) S11_T7_gRNA_for TTAATACGACTCACTATAGGCAGGTCAGAGGTGATAGA 

gRNA 2 Intron 2 (Nickase) S12_T7_gRNA_for 
TTAATACGACTCACTATAGGTATGCTCCAGATCG 

CAAAATC 

gRNA Intron 1 (Cas9 WT) S1_T7_gRNA_for TTAATACGACTCACTATAGGCTCACCCACCACGTGGGA 

gRNA Intron 2 (Cas9 WT) S12_T7_gRNA_for 
TTAATACGACTCACTATAGGTATGCTCCAGATCG 

CAAAATC 

each gRNA uni_T7_gRNA_rev AAAAGCACCGACTCGGTGCC 

Cas9 WT/ Cas9n Cas9_T7_for TAATACGACTCACTATAGGGAGAATGTACCCATACGATG
TTCCAGATTAC 

Cas9 WT/ Cas9n Cas9_rev TCAGCGAGCTCTAGGAATTCTTAGCT 

  

 

Table 8 Genotyping Primers 

Genotype Primer name Sequence (5'-3') 

S1pr3
fl/fl

 

S1pr3
fl/fl

 Intron 1 for  TCCCTCACTTTTCCTCATCCTG 

S1pr3
fl/fl

 Intron 2 for  CGACAGATGTTATAACTTGTAGTG 

S1pr3
fl/fl

 Intron 1 rev GAAACCTCAGAGTGCGAATCTG 

S1pr3
fl/fl

 Intron 2 rev TCTTCTGTTTTTCCCTCAGGGG 

 

 

Table 9 Sequencing Primers 

Target Primer name Sequence (5'-3') 

LoxP 1 S1pr3
fl/fl

 Intron 1 for TCCCTCACTTTTCCTCATCCTG 

LoxP 2 S1pr3
fl/fl

 Intron 2 for CGACAGATGTTATAACTTGTAGTG 

px335_1  SeqPx335_rev CGCTAAAAACGGACTAGCCTT 

px335_2 SeqPx335U6prom_for GGACTATCATATGCTTACCGTAAC 
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4.1.4  TaqMan assays 

All TaqMan assays were purchased from Applied Biosystems. 

Table 10 TaqMan assays 

4.1.5  Restriction enzymes 

All FastDigest Restriction Enzymes were purchased from Thermo Fisher Scientific.  

Table 11 Restriction enzymes 

Enzyme Ordering number 

AgeI (BshTI) FD1464 

BbsI (BpiI) FD1014 

NcoI FD0573 

PsiI (AanI) FD2064 

 

4.1.6  siRNA 

All Silencer® Select siRNAs were purchased from Life technologies.  

Table 12 siRNA 

siRNA ID 

siControl 4390847 

siS1pr3_1 s4454 

siS1pr3_2 s4455 

siPtger2_1 s11448 

siPtger2_2 s11450 

 

Mouse probes Ordering number Human probes Ordering number 

Mm Cd31 Mm01242584_m1 Hs ASNS Hs04186194_m1 

Mm Cdh5 Mm03053719_s1 Hs B2M Hs00984230_m1 

Mm Desmin Mm00802455_m1 Hs GSN Hs00609272_m1 

Mm Hprt Mm00446968_m1 Hs HPRT Hs02800695_m1 

Mm Ng2 Mm00507257_m1 Hs KIFAP3 Hs00183973_m1 

Mm Pdgfra Mm00440701_m1 Hs MPRIP Hs00819388_m1 

Mm Pdgfrb Mm00435546_m1 Hs MYH10 Hs00992055_m1 

Mm Ptger2 Mm00436051_m1 Hs PTGER2 Hs04183523_m1 

Mm S1pr3 Mm02620181_s1 Hs S1PR1 Hs01922614_s1 

Mm Vegfr2 Mm01222421_m1 Hs S1PR3 Hs00245464_s1 

  Hs SDC1 Hs00896423_m1 

  Hs SMAD7 Hs00998193_m1 
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4.1.7  CRISPR/Cas and PCR/RT-qPCR reagents, nucleotides and buffers 

Table 13 CRISPR/Cas, PCR and RT-qPCR reagents, nucleotides and buffers 

Reagent Company 

10 x Coral Load PCR buffer Qiagen 

Ampicillin Sigma-Aldrich 

Cas9 mRNA Tebu-bio 

Cas9 Nickase mRNA Tebu-bio 

Direct PCR Lysis Reagent PeqLab 

DNase/RNase free H2O Gibco 

dNTP mix (10mM each) Fermentas 

Ethidium bromide Roth 

O'Generuler 100bp Plus DNA ladder Thermo Scientific 

RedTaq® ReadyMix PCR Reaction Mix Sigmal-Aldrich 

TaqMan® Fast Advanced PCR Master Mix Applied Biosystems 

TOP10F competent cells Invitrogen 

 

4.1.8  Cells 

Table 14 Human cells 

Cells Description Company Medium Company 

Adi Adipocytes PromoCell 
Adipocyte 

medium 
PromoCell 

BP Brain vascular pericytes ScienceCell 
Pericyte 

medium+suppl 
Sciencell 

Fib 1 Fibroblasts Provitro 
DMEM/10%FCS 

P/S 
Gibco 

Fib 2 Fibroblasts PromoCell 
DMEM/10%FCS 

P/S  
Gibco 

HaoSMC Human aortic smooth muscle cells PromoCell 
DMEM/5%FCS 

P/S 
Gibco 

HBMEC 
Human brain microvascular endothelial 

cells 
Neuromics 

ECGM MV2/ 

+suppl 
PromoCell 

HDBEC Human dermal blood endothelial cells PromoCell 
ECGM MV/ 

+suppl 
PromoCell 

HSAVEC Human saphenous vein endothelial cells Promocell 
ECGM MV/ 

10%FCS+suppl 
PromoCell 

HUAEC Human umbilical aortic endothelial cells PromoCell 
ECGM MV/ 

10%FCS+suppl 
PromoCell 
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Table 14 Human cells – continued 

Cells Description Company Medium Company 

HUVEC 
Mixed primary isolated EC of several 
isolations from the human umbilical 
chord 

PromoCell Endopan 
PAN-

Biotech 

LP Lung pericytes 
Kindly provided 

by Bruno Peault 

Pericyte 

medium+suppl 
ScienCell 

MP Muscle pericytes 
Kindly provided 

by Bruno Peault 

Pericyte 

medium+suppl 
ScienCell 

MSC 1 
Mesenchymal stem cells  

(with collagen cell carrier) 
Bioengineering 

McCoys 5A 

Medium+suppl 
Gibco 

MSC 2 
Mesenchymal stem cells 

(without collagen cell carrier) 
Bioengineering 

McCoys 5A 

Medium+suppl 
Gibco 

PancP Pancreas pericytes 
Kindly provided 

by Bruno Peault 

Pericyte 

medium+suppl 
ScienCell 

PlaP Placenta pericytes PromoCell 
Pericyte 

medium+suppl 
ScienCell 

 

 Table 15: Mouse cells 

Cells Description Company Medium Company 

NIH3T3 Mouse embryo fibroblast cell line 

Kindly provided 

by Dr. Courtney 

König 

DMEM+Glutamax

10%FCS 

P/S 

Gibco 

 

4.1.9 Growth factors, proteins and enzymes 

Table 16 Growth factors, proteins and enzymes 

Growth factor Company 

Collagenase IV Sigma Aldrich 

DNase I Roche 

FastAP Thermosensitive Alkaline Phosphatase Thermo Fisher Scientific 

Proteinase K Gerbu 

Q5® High-Fidelity DNA Polymerase New England Biolabs 

RNase free DNAse Qiagen 

S1P Sigma-Aldrich 

S1PR3 Inhibitor TY52156 Tocris 

SCR7 Xcessbio Biosciences Inc 

T4 Ligase New England Biolabs 
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4.1.10 Cell culture reagents 

Table 17 Cell culture reagents 

Reagent Company 

Accutase PAA 

Collagen I Isolated from rat tails 

Dimethylsulfoxide (DMSO) AppliChem 

Dulbecco´s modified eagle medium (DMEM) Gibco 

Dulbecco´s phosphate buffered saline (PBS) PAA 

Endopan 3 + FCS + supplements PAN-Biotech 

Fatty acid free BSA Sigma-Aldrich 

Fetal Calf Serum (FCS, heat inactivated) PAA 

Gelatine Sigma-Aldrich 

Isopropanol Sigma-Aldrich 

Lipofectamine 2000 Thermo Fisher Scientific 

Lipofectamine 3000 Thermo Fisher Scientific 

Oligofectamine Reagent Life Technologies 

Opti-MEM I (1x) + GlutaMAX-I Gibco 

Penicillin/Strepomycin (100x 10
4
U/10mg/ml) PAA 

Pertussis toxin List Biological Laboratories 

PKH 26 Red Fluorescent Linker Kit Sigma-Aldrich 

Trypan blue Gibo 

Trypsin-EDTA solution (10x) PAA 

 

4.1.11  Western blot reagents 

Table 18 Western Blot reagents 

Reagent Company 

Bovine Serum Albumine (BSA) PAA laboratories 

Nitrocellulose membrane 

 

GE Healthcare 

 Orthovanadate Sigma-Aldrich 

PageRuler
TM

 Prestained Protein Ladder 

 

Thermo Scientific 

 Pierce ECL Western blotting substrate 

 

Thermo Scientific 

 Immobilon-P PVDF membrane Millipore 

ReBlot Plus Strong Solution Merck 

Rotiphorese Gel 30 Carl-Roth 

Super RX X-ray films 

 

 

 

Fuji 

 SuperSignal™ West Dura Extended Duration Substrate Thermo Fisher Scientific 
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4.1.12  Antibodies 

Table 19 Primary antibodies 

 

Table 20 Secondary antibodies 

Reactivity Species Dilution Conjugate Company Ordering number 

mouse IgG rabbit 1:10000 HRP DAKO P0260 

rabbit IgG goat 1:5000 HRP DAKO P0448 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antigen Reactivity Species Dilution Conjugate Company 
Ordering 

number 

Actin human rabbit 1:5000 - Santa Cruz Sc-1616_r 

CD31 human mouse 1:200 Apc-Cy7 BD Bioscience 563653 

CD31 mouse rat 1:200 Pe-Cy7 BD Pharmingen 561410 

CD45 mouse rat 1:400 FITC BD Pharmingen 553080  

ERK1/2 human rabbit 1:1000 - Santa Cruz Sc-94 

LYVE1 mouse rat 1:250 FITC eBioscience 53-0443 

PDPN mouse hamster 1:100 AF488 eBioscience       53-5381 

pERK1/2 human mouse 1:1000 - Cell Signaling 9106 S 

S1PR1 human rabbit 1:1000 - Santa Cruz Sc-25489 

TER119 mouse rat 1:200 FITC BD Pharmingen 561032 

tubulin human mouse 1:1000 - Sigma-Aldrich T8203 
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4.1.13  Kits 

Table 21 Kits 

Agilent RNA 6000 Nano Kit Agilent technologies 

Arcturus PicoPure RNA Isolation Kit Life Technologies 

DNeasy Blood & Tissue Kit Qiagen 

GenElute Mammalian Total RNA Purification Kit Sigma-Aldrich 

Gibson® Assembly Cloning Kit New England Biolabs 

MEGAclear Kit Life Technologies 

MEGAshortscript T7 Kit Life Technologies 

mMESSAGE mMACHINE T7 ULTRA Kit Life Technologies 

NucleoBond-Xtra Maxi Kit Macherey-Nagel 

PCR qiaquick purification kit Qiagen 

Pierce Bicinchoninic acid (BCA) Protein Assay Kit Thermo Scientific 

PureLink
TM

 Quick Plasmid Miniprep Kit Invitrogen 

Qiaquick gel extraction kit Qiagen 

Quantitect Reverse Transcription Kit for cDNA Synthesis Qiagen 

QuantiTect Whole Transcriptome Kit Qiagen 

Reagent Company 

Surveyor mutation assay Transgenomic 

 

4.1.14 Staining reagents  

Table 22 Staining reagents 

Reagent Company 

Annexin V eBioscience 

Annexin V Binding buffer eBioscience 

Fluorescent mounting medium DAKO 

FxCycle Invitrogen 

Hanks buffer 20mM Hepes Biomol 

Hoechst Dye 33258, 1mg/ml Sigma-Aldrich 

Phalloidin AF488 Invitrogen 

Pluronic® F-127 Biomol 

Rhod4 Biomol 

Roti-Histofix 4% (pH 7) Carl Roth 
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4.1.15  Consumables 

Table 23 Consumables 

Consumable Company 

384 well plates Roche 

Boyden chambers 8.0 µm Corning 

Cannula (18G, 19G, 27G) BD 

Cell culture dishes (6cm,10cm) TPP 

Cell scraper Corning 

Cell strainer BD Falcon 

Cover slips 12mm VWR 

Cryotubes Carl-Roth 

FACS tubes BD Falcon 

Filter containing pipette  tips Biozym 

Ibidi µ-slide Ibidi 

Microscope cover glasses VWR international 

Microscope glass slides Menzel-Gläser 

E-Plate 16 (Proliferation xCELLigence) Omni Life Science 

Cim Plate (Migration xCELLigence) Omni Life Science 

Mini PP tubes Greiner 

Pipette tips  Nerbe 

Reaction tubes (0.5ml, 1.5ml, 2ml) Eppendorf 

Reaction tubes (15ml, 50 ml) Greiner 

Sealing foil Applied Biosystems 

Sterile pipette Corning 

Syringes Dispomed 

Tissue culture 6 well/24 well plates  Greiner 

 

 

 

 

 

 

 

 

 

 

 

 



Material and Methods 

78 
 

 

4.1.16 Equipment 

Table 24 Equipment 

Equipment Company 

Agarose gel documentation system Peqlab 

Agilent 2001 Bioanalyzer Agilent technologies 

Amersham Imager 600 GE Healthcare 

Aria FACS Sorter BD 

Bacterial incubator Heraeus 

Bacterial incubator/shaker Edmund Bühler GmbH 

BioRad gel casting system BioRad 

BioRad gel running system BioRad 

BioRad Western Blotting equipment BioRad 

Canto II BD 

Cell culture hood Thermo Fisher Scientific 

 Cell culture incubator Thermo Fisher Scientific  

 Cell Observer Zeiss 

Cell^R microscope Olympus 

Centrifuge Beckman Coulter 

Classic E.O.S film developer 

 

Agfa 

Countess automated cell counter 

 

Invitrogen 

Developing cassette Western Blot Amersham Bioscience 

Freezing box Thermo Fisher Scientific 

 Heating block Eppendorf 

Holomonitor microscope Phiab 

iMark
TM

 Microplate Reader BioRad 

 Light cycler 480 Roche 

 Multistep pipette Eppendorf 

Nanophotometer® N60 INTAS 

Pipettes ErgoOne 

Power supply BioRad 

QIAxcel Advanced System Qiagen 

StepOnePlus Real-Time PCR System Thermo Fisher Scientific 

Table centrifuge (5417R) Eppendorf 

Thermocycler Applied Biosystems 

Tubes and adapters for flow incubation Carl Roth 

UV transluminator Intas 

Vortex Neolab 

Water bath 

 

Julabo 

xCELLigence ACEA Biosciences 
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4.1.17 Softwares 

Table 25 Softwares 

Software Company 

Chromas Lite http://chromas-lite.software.informer.com/2.1/ 

CRISPRdesign http://crispr.mit.edu/ 

FACSDiva
TM

 BD 

Fiji ImageJ 

FlowJo Miltenyi Biotec 

Genepattern http://software.broadinstitute.org/cancer/software/genepattern/ 

Graph Pad Prism Graph Pad 

Holostudio Software Phiab 

ImageQuant TL GE Healthcare 

Light Cycler 480 software Roche 

Molecular Signature Database http://software.broadinstitute.org/gsea/index.jsp 

 

 

4.1.18  Solutions and buffers 

Solutions and buffers were prepared as follows: 

Table 26 Solutions and buffers 

Buffer Composition 

5x Protein sample buffer  

250 mM   

10%  

0.5%  

50%   

                  

Tris-HCl (pH 6.8) 

SDS 

Bromophenol blue solution 

Glycerol 

add 10% β-mercaptoethanol prior to use 

Blotting buffer (1x) 
192mM 

25mM 

 

Glycine 

Trizma Base 

 

LB Agar 

12.0 g 

5.0 g 

5.0 g 

1.0 g 

 

Tryptone 

Yeast extract 

NaCl 

Glucose 

Add 1l H2O 

LB medium 

12.0 g 

5.0 g 

5.0 g 

1.0 g 

12 g/l  

 

 

Tryptone 

Yeast extract 

NaCl 

Glucose 

Agar 

Add 1l H2O 
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Table 26 Solutions and buffers – continued 

Buffer Composition 

Morulae lysis buffer 

18.75 µl 

333 µl 

300 µl 

300 µl 

13.5 µl 

18 µl 

2017 µl 

125µg/ml Proteinase K  

100mM Tris-HCL (ph8.3) 

100mM KCl 

0.02% gelatin 

0.45% Tween 20 

60µg/ml yeast tRNA 

H2O 

Phosphate buffered saline (PBS) 

1.34M 

27mM 

200mM 

4.7mM 

 

NaCl 

KCl 

Na2HPO4 

KH2HPO4 

adjust pH 7.4 

RIPA lysis buffer 

 
 
 
 

50mM 

150mM 

1mM  

1%    

0.25%     

2mM      

1x                               

Tris-HCl pH 7.5 

NaCl 

EDTA 

NP-40 

Na-deoxycholate 

Na-orthovanadate 

Protease inhibitor Mix G 

Running buffer (1x) 

192mM 

25mM 

0.1% 

 

Glycine 

Trizma Base 

SDS 

 

Separating gel (15%) (1Gel) 

2.3ml 

2.5ml 

100µl 

5ml 

100µl 

4µl 

H2O 

1.5M Tris-HCl pH 8.8 

10% SDS 

30% Acrylamide 

APS 

TEMED 

Stacking gel (5%) 

2.7ml 

0.5ml 

40µl 

0.67ml 

40µl 

4µl 

H2O 

1M Tris-HCl pH 6.8 

10%SDS 

30% Acrylamide 

APS 

TEMED 

Tris-Borate-EDTA buffer (TBE) 

89 mM 

89mM 

1mM 

Tris-HCL pH 7.5 

NaCl 

Tween-20 

Tris-Buffered Saline Tween-20 (TBST) 

 

10mM 

100mM 

0.1% 

Tris/HCl, pH 7.5 

NaCl 

Tween-20 
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4.2  Methods 

 

4.2.1 Cell culture methods 

 

4.2.1.1 Cell maintenance  

All cell types used in the present study were maintained at 37°C under sterile conditions, high 

humidity and 5 % CO2 and were cultured in media as indicated (Table 14 and 15). Cells were 

checked for mycoplasma contamination on a regular basis.  All primary cells were used between 

passage one and six and discarded afterwards. When cells reached 80-90% confluency, they were 

passaged and diluted 1:3 (HUVEC, HUAEC, HSAVEC, HBMEC, HDBEC, SMC, Adi), 1:5 (BP, MP, LP, 

PancP, PlaP, Fib, MSC) or 1:10 (NIH3T3). The medium was discarded and cells were washed with 

PBS. All cells were detached by accutase incubation at 37°C for 2 min, diluted in culture medium 

and centrifuged for 5 min at 200 g. The supernatant was discarded, the pellet was resuspended in 

culture medium and the desired cell dilutions were prepared. For HUVEC, cell plates were pre-

incubated on 0.2 % gelatine at 37 °C for 30 min.  

 

4.2.1.2 Cryopreservation and thawing of cells 

Cryocultures were prepared for long-term storage of cells. For this purpose, cells were 

resuspended in cell-type specific media with 10 % DMSO and additional 10% of FCS than normal 

culture media. The cell suspension (1 ml) was transferred to a cryotube and the tubes were slowly 

frozen to -80 °C in an isopropanol containing freezing box overnight and were then transferred 

into liquid nitrogen for long-term storage. For thawing of cells, the cryotube was warmed at 37 °C 

for 2 min and the cells were resuspended in 10 ml pre-warmed culture medium and centrifuged 

for 3 min at 200 g. The supernatant was discarded and the pellet was resuspended in 10 ml 

culture medium and seeded into a 10cm cell culture dish. 

 

4.2.1.3 Seeding of cells 

For seeding specific number of cells for experiments, cells were detached as described in 4.2.1.1. 

Cells were counted by mixing 10 µl of cell suspension with 10 µl of trypan blue in an automated 

cell counting mashine according to manufacturer´s manual. Cell solutions with corresponding cell 

numbers were prepared and seeded accordingly in cell culture dishes or multiwall plates. 

 

4.2.1.4 Transfection of pericytes with siRNA 

Depending on the experiment, specific numbers of pericytes were seeded in different cell culture 

plates. Table 27 shows an overview of cell numbers and corresponding volumes of reagents 

needed for transfection. Briefly, cells were transfected 24 h after seeding with two independent 

silencer select S1PR3/PTGER2 siRNAs or control siRNA using oligofectamine transfection reagent. 

siRNA (20 µM) and Opti-MEM(1x)+GlutaMAX-I (solution A)  were mixed with equal amounts of 

oligofectamine and 100 µl Opti-MEM(1×)+GlutaMAX-I (solution B). Solution A and B were 
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incubated separately for 10 min at RT and then combined and incubated for another 30 min at RT. 

Pericytes were twice washed with Opti-MEM(1x)+GlutaMAX-I. The transfection mix was carefully 

dropped on the cells, covered with defined volume of media (see Table 27). After 4 hours of 

incubation, the medium was exchanged to pericyte medium (PM) with 2% FCS/ growth factors 

and penicillin/streptomycin. All assays were performed 48-72 hours post-transfection. 

 

Table 27 Cell densities and siRNA transfection volumes 

Cell densities and siRNA transfection volumes 

Plate Cell number siRNA Oligofectamine Opti-MEM Plate 

µ-slide 10 000 1 µl 0.5 µl 10 µl 80 µl 

24-well 18 000 2 µl 1 µl 20 µl 160 µl 

6-well 80 000 10 µl 5 µl 100 µl 800 µl 

6 cm 250 000 25 µl 12.5 µl 250 µl 2 ml 

10 cm 500 000 50 µl 25 µl 500 µl 4 ml 

 

4.2.1.5 PKH labelling of pericytes and co-culture of HUVEC and BP 

48 hours before co-culturing, pericytes were transfected with siRNA as described in 4.2.1.4. 

HUVEC were seeded one day before co-culturing to form a monolayer (1.1x106 HUVEC in 10 cm 

dish; 180 000 HUVEC in 6 well). Transfected pericytes (48 post transfection) were detached as 

described in 4.2.1.1. The cell pellet was resuspended in Diluent C and centrifuged at 300 g for 5 

min at room temperature. Cells were stained in PKH red/Diluent C solution (1:250) in the dark at 

room temperature for 10 min. The staining was stopped by adding 1 ml of FCS. 5 ml of Endopan 

containing 3% FCS and supplements was added and centrifuged at 200 g for 5 min. The cell pellet 

was resuspended in 1 ml of Endopan medium and cells were counted as described in 4.2.1.3. 

Stained pericytes were seeded in a 1:2 ratio on the HUVEC monolayer in Endopan full medium.   

 

4.2.1.6 Phalloidin staining of pericytes  

Coverslips were coated with 0.2 % gelatine for 30 min at 37 °C. Pericytes were seeded at a density 

of 18 000 cells per 24 well and were transfected with siRNA (4.2.1.4). 48 hours after transfection, 

cells were washed once with PBS and fixed in 4 % PFA/H2O for 10 min at RT. After three washing 

steps (3x5 min) with TBST for permeabilization, cells were incubated with directly labelled 

phalloidin (Phalloidin-FITC) and Hoechst for 1 h at RT. The antibody solution was aspirated and 

cells were washed three times with TBST. Lastly, coverslips were mounted with Fluoromount G. 

Images were acquired using Zeiss Cell Observer. Analysis was performed using Fiji/ImageJ 

software. Phalloidin-positive area was normalized to the amount of Hoechst stained nuclei. 
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4.2.2 Cellular assays 

4.2.2.1 PTX, TY52156 treatment of BP 

For treating BP with pertussis toxin (PTX) or S1PR3 inhibitor TY52156, pericytes were seeded in 6 

wells (100 000 pericytes) or 6 cm dishes (400 000 cells). Pericytes were treated with 1 µM 

inhibitor (dissolved in 100 % ethanol) or 200 ng of PTX (dissolved in PBS) with corresponding 

controls (100 % ethanol or PBS) for 4 hours in PM containing 0.5 % FCS without growth factors. 

Subsequently, cells were stimulated with S1P and harvested for further analysis.  

 

4.2.2.2 S1P stimulation of BP 

BP were transfected with siRNA (4.2.1.4) or treated with PTX or TY52156 (4.2.2.1) as described 

above. 48 hours after transfection or 4 hours after treatment, cells were starved in 0.5 % FCS in 

PM without growth factors for 2 hours. S1P powder was reconstituted in methanol (0.5 mg/ml) 

and aliquoted in 20 µl. The methanol was evaporated with nitrogen gas and the resulting S1P 

films were frozen at -20 °C. To prepare a working solution (200 µM) S1P films were dissolved in 

130 µl of 0.4 % BSA (fatty acid free) in PBS and incubated at 37 °C for 15 min. For stimulation, the 

S1P stock was diluted in 0.1 % BSA (fatty acid free) in PM without FCS and supplements to a final 

concentration of 1 µM. Starvation medium was discarded and the S1P containing medium was 

added for 1, 5 or 10 min before cells were harvested with a cell scraper in 1 ml PBS on ice. For the 

0 min stimulation control cells were directly scraped.   

 

4.2.2.3 Transmigration assay 

BP were transfected with siRNA targeting S1PR3 and non-targeting siRNA as control (as described 

in 4.2.1.4).  

Transmigration assay with xCELLigence system: 40 000 pericytes in PM containing 0.5 % FCS and 

no growth factors were seeded into the upper inserts containing electrodes in migration plates. 

PM containing 2 % FCS and growth factors was added in the lower chamber to create a gradient 

for the cells to migrate (72 hours). Cell migration was monitored with the xCELLigence system 

detecting changes in impedance every 30 min. Each condition (2 different targeting siRNAs, 1x 

siControl) was performed in triplicates.  

Transmigration assay with Boyden chambers: 60 000 HUVEC were seeded in the 24 wells in 

Endopan containing 0.5 % FCS and no growth factors and were cultured overnight. On the next 

day, 70 000 pericytes in Endopan containing 0.5 % FCS and no growth factors were seeded onto 

the upper well of the 8.0 µm pore transwells and let adhere for 2 hours. Boyden chambers with 

seeded pericytes were positioned on top of the HUVEC monolayer with the conditioned media to 

create a gradient for the pericytes to migrate. After 6 hours, transmigration was stopped by 

fixation of the cells with histofix (4 % PFA). Transwells were washed three times with PBS and 

incubated with DAPI (in PBS, 1:2 000 for 30 min RT) to stain the cell nuclei. Transwells were 

washed three times with PBS and cells on the upper side of the filters were removed with a cotton 
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swab. Images were taken on the fluorescent microscope Olympus IX 71 and transmigrated cells 

(DAPI positive) were counted using Fiji/ImageJ software. 

 

4.2.2.4 Calcium release assay 

BP were seeded in 24 wells (18 000) and were transfected with siRNA or siControl as described 

above. For S1PR3 blockage with the inhibitor TY52156, equal numbers of cells (as transfected 

cells) were seeded in triplicates, but were left untreated during transfection procedure. Cells were 

treated as described in 4.2.2.1. All conditions were washed twice with Hanks buffer before adding 

500 µl staining solution (0.02 % pluronic acid and 0.05% Rhod4 in Hanks buffer). The Inhibitor 

TY52156 and the corresponding control (100 % ethanol) were added in corresponding wells. Cells 

were incubated for 30 min at 37 °C and 5 % CO2, following 30 min at room temperature in the 

dark. The calcium release was measured for 180 seconds by live-cell imaging using Olympus Cell^R 

microscope (20x). Pictures were taken every second. Cells were stimulated after 10 sec with 1 µM 

S1P. The increase in fluorescent intensities upon calcium release was quantified using Fiji/ImageJ 

software.    

 

4.2.2.5 Holomonitor live cell imaging 

The Holomonitor M4 is a microscope that allows non-invasive and label-free real-time imaging to 

monitor cell parameters such as cell area, volume, migration and cell count. Holographic images, 

resulting of phase-shift measurements, are taken in the incubator while imaging the cells (Alm et 

al., 2013). 

Ibidi 8-well µ-slides were used for imaging. siRNA transfected pericytes (10 000, see Table 27) 

were seeded in 0.2% gelatine coated wells. 24 hours after transfection, live-cell imaging was 

started for 60 hours. Pictures were taken every 5 min. Analysis was performed using HoloStudio 

software. 

 

4.2.2.6 Co-culture FACS 

Transfected BP and HUVEC were co-cultured in 10 cm dishes as described in 4.2.1.5. After 24 

hours of co-culture, cells were detached and incubated with an antibody against CD31 (APC-Cy7 

labeled) for 30 min on ice. Cells were gated and sorted for two single positive populations: CD31-

positive (EC) or PKH-positive (pericytes) cells. Double positive cells were excluded. Directly after 

the sort, cells were pelleted and lysed in RNA extraction buffer and frozen at -80°C. 

 

4.2.2.7 Cell proliferation assay 

Real-time and dynamic monitoring of cell proliferation was performed using xCELLigence system. 

4000 pericytes in pericyte medium containing 2 % FCS and no growth factors were seeded into 

the inserts containing electrodes in proliferation plates. Cell proliferation was monitored with the 

xCELLigence system detecting changes in impedance every 30 min. Each condition (2 different 

targeting siRNAs, 1x siControl) was performed in triplicates.  
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4.2.2.8 Annexin V apoptosis assay 

Annexin V apoptosis assay was performed to investigate the effect of S1PR3 knockdown in 

pericytes cultured with HUVEC. Annexin V binds to phosphatidylserine, which is flipped to the cell 

surface upon cell apoptosis. S1PR3 silenced pericytes were co-cultured with HUVEC in 6 wells as 

described above (4.2.1.5). After 24 hours of co-culturing, cell culture supernatant and PBS wash 

were collected to also include dead cells. Cells were detached and washed once in binding buffer. 

Subsequently, cells were stained with Annexin V-FITC (1:20 in binding buffer) for 15 min at room 

temperature. Additionally, cells were stained with FxCycle violet (1:1 000) for 30 min on ice to 

allow the discrimination of early, late apoptotic or necrotic cells. To distinguish endothelial cells 

from PKH-positive pericytes, cells were stained with CD31-APC-Cy7 (1:200). Single stained controls 

and an unstained control were used for compensation. Cells were gated in PKH-positive 

(pericytes) or APC-Cy7-positive (EC) populations. Each population was gated for Annexin V-

positive, FxCycle-positive and Annexin-V/FxCycle-double-positive cells. Quantification of the 

analysis was performed using FlowJo software. 

 

4.2.2.9 Adhesion assay 

BP were transfected with siRNA targeting S1PR3 and siControl in 6 wells as described in 4.2.1.4. 

One day after transfection, HUVEC (36 000) were seeded in 0.2 % gelatine coated 24 wells and 

were cultured overnight. The next day, transfected pericytes were detached and stained with PKH 

(see 4.2.1.5). BP (18 000) were seeded on top of the monolayer in Endopan containing 3 % FCS 

and supplements and allowed to adhere for 15 or 30 min. Non-adherent cells were carefully 

removed by washing. Attached cells were fixed with Histofix (4 % PFA) and imaged using the 

fluorescent microscope Olympus IX 71. Attached cells (PKH-positive) were counted using 

Fiji/ImageJ software. Each condition was performed in triplicates. 

 

4.2.3 Biochemical methods 

4.2.3.1 Protein isolation and concentration determination for immunoblotting 

For protein extraction from stimulated pericytes, cells were washed once with ice-cold PBS and 

scraped in 1 ml PBS. After centrifugation, the pellet was dissolved in RIPA lysis buffer (6 well: 100 

µl, 10cm dish: 300 µl). Whole cell lysates were centrifuged for 10 min at full speed at 4°C and 

supernatants were separated from the cell debris. Protein concentration was measured using 

Pierce BCA Assay according to manufacturer´s instructions. Defined protein concentrations of the 

samples were generated by diluting them in RIPA buffer. Samples were boiled in 5x protein 

sample buffer at 95 °C for 5 min and used directly for immunoblotting or were stored at -20 °C. 

 

4.2.3.2 SDS-Polyacrylamide gel electrophoresis (PAGE) and Western blot 

Proteins were separated according to their molecular weight by 10% (ERK1/2) or 12% (MLC, RhoA) 

SDS-PAGE with the BioRad gel casting and running system in 1x running buffer. Gel 

electrophoresis was started at 80 V to allow the proteins to enter the gel. After 30 min the voltage 
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was increased to 120 V for 1 h. 7 µl of PageRulerTM Prestained Protein ladder was used to 

determine the size of the proteins. After electrophoresis, proteins were blotted on a nitrocellulose 

membrane (ERK1/2) or on a PVDF-membrane (MLC) at 0.4 A for 70 min in 1x blotting buffer. The 

PVDF membrane was equilibrated for 20 sec in 100 % methanol and afterwards in 1x blotting 

buffer.  

Unspecific binding of antibodies to the membrane was prevented by subsequent blocking with 

3 % BSA/TBST for 1h at RT. For immunodetection of the desired proteins, primary antibodies (see 

Table 19) were diluted in 3 % BSA/TBST and incubated overnight at 4 °C. Three times washing with 

TBST removed unbound and unspecific bound antibody. Afterwards, the membrane was 

incubated with the corresponding horse-radish-peroxidase (HRP)-coupled secondary antibodies 

diluted in TBST (see Table 20) for 1h at RT. After three washing steps with TBST membranes were 

developed using Pierce ECL Western Blotting Substrate or SuperSignal™ West Dura Extended 

Duration Substrate according to manufacturer´s instructions. The membranes were exposed to 

Super RX X-ray films (2 sec to 30 min) and developed in the Classic E.O.S. film developer or using 

Amersham Imager 600. Signal intensities were either set in relation to a housekeeping gene (α-

tubulin) or corresponding non-phosphorylated proteins served as control for their phosphor-

protein signal.  

 

4.2.4 Molecular biological methods 

4.2.4.1  RNA isolation 

RNA of FACS-sorted mouse pericytes was isolated with the Arcturus PicoPure RNA Isolation Kit. 

Cells were centrifuged at 500 g and 4°C for 5 min and the pellet was resuspended in 50 µl Arcturus 

PicoPure extraction buffer. RNA was isolated according to manufacturer´s instructions. RNA was 

eluted in 11 µl RNase free H2O and RNA concentrations were measured using NanoPhotometer® 

N60. RNA of cell culture cells was isolated using GenElute Mammalian Total RNA Purification Kit 

according to the manufacturer´s instructions. Cells were lysed with 100-300 µl lysis buffer and 

RNA was eluted in 30 µl RNase free H2O and stored at -80°C. 

 

4.2.4.2 Reverse transcription of RNA  

Reverse transcription was performed using the QuantiTect Reverse Transcription Kit according to 

the manufacturer's instructions. Briefly, 1 µg RNA was combined with 2 µl 7xDNA Wipeout buffer 

and the total volume was adjusted to 14 µl with RNase-free H2O. Genomic DNA digestion was 

performed for 2 min at 42°C. Afterwards, 1 µl reverse transcriptase, 4 µl 5xRT-buffer and 1 µl RT-

Primer mix were added. Reverse transcription was accomplished at 42°C for 30 min and then 

stopped by 3 min incubation at 95°C. The cDNA was diluted 1:20 in H2O for qPCR. cDNA was 

stored at -20°C. 

RNA of FACS-sorted mouse cells was transcribed with QuantiTect Whole Transcriptome Kit 

according to manufacturer´s instructions.cDNA was diluted 1:100 and stored at -20°C. 
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4.2.4.3 Real time (RT) - qPCR 

Relative gene expression was determined by RT-qPCR of synthesized cDNA. TaqMan-based RT-

qPCR was used to detect differences of mRNA transcription levels. The Taqman mono-color 

hydrolysis probe method is based on using fluorescently labeled oligonucleotide probes that bind 

the gene of interest flanked by the forward and reverse primer. Taqman probes are labeled with a 

fluorophore (FAM) at the 5' end and a quencher at the 3' end that blocks fluorescence emission. 

The exonuclease activity of the Taq-polymerase allows the cleavage of the Taqman probe during 

amplification. Thereby, FAM fluorescence is detectable that is proportional to the amount of the 

amplified product. Reactions were performed in 96 or 384 well plates. One reaction contained the 

following components:     

  

Table 28 TaqMan RT-qPCR reaction mix 

 

 

 

 

 

 

 

 

Each reaction was performed in triplicates. Lightcycler®480 System (348 well plate) or StepOnePus 

Real-Time PCR System (96 well plate) was used for RT-qPCR with the following protocol:  

 

 

Table 29 TaqMan RT-qPCR program 

TaqMan RT-qPCR program 

Step Temperature [°C] Time [sec] 

Pre-denaturation 95 30 

Denaturation 95 2 

Amplification 60 20 

 

 

 

 

 

 

 

 

TaqMan RT-qPCR reaction mix 

  1x 

cDNA 3 µL 

Taqman Fast Advanced Master Mix 5 µl 

TaqMan gene expression assay 0.5 µl 

ddH2O 1.5 µL 

45x 
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RT-qPCR data analysis was performed according to the ΔΔCT method (Livak and Schmittgen, 2001). 

Briefly, CT values of the genes of interest were normalized to the respective CT values of the 

indicated housekeeping genes for each sample (∆CT). Afterwards, normalized CT values of the 

samples of interest were compared to normalized CT values of control samples (∆∆CT). Respective 

fold changes (FC) were calculated from the ∆∆CT values.  

 

∆CT = CTgene of interest - CThousekeeping gene 

 

∆∆CT = ∆CTsample of interest - ∆CTcontrol sample 

 

fold change = 2-∆∆CT 

 

In case of data sets without internal control, relative expression was calculated by 2-∆CT. 

 

4.2.4.4 Microarray  

For gene expression analysis, microarrays were performed by the DKFZ Genomics and Proteomics 

core facility (Heidelberg). Briefly, RNA was isolated with the GenElute Mammalian Total RNA 

Purification Kit and RNA quantity and quality were checked using the Agilent RNA 6000 Pico Kit on 

an Agilent 2001 Bioanalyzer. Only RNA samples with a RIN value of > 6.0 were eligible for 

microarray analysis. RNA was reverse transcribed into cDNA. cDNA was hybridized on a HumanHT-

12 Expression BeadChip Array (Ilumina) according to manufacturer´s protocol.  

Cell and RNA preparation of the expression analysis of different primary human pericytes 

compared to other mesenchymal cells was performed by Dr. Zulfiyya Hasanov. For this microarray 

analysis, only significantly differentially expressed (p ≤ 0.05) with mean intensities >400 in 

pericytes and <400 in the other mesenchymal cells were considered.  

For the microarray analysis of co-cultured pericytes, expression levels measured in the S1PR3/ 

PTGER2 silenced cells were normalized to the non-silencing controls. Only genes with a 

significantly differential expression (p ≤ 0.05) and a log2FC of 0.4/-0.4 compared to control were 

considered for Molecular Signature Database analysis (Hallmark and Reactome gene sets). 

 

4.2.5 Mouse lung pericyte isolation by FACS 

For isolation of lung mouse pericytes, the tissue was digested by collagenase IV and pericytes 

were purified by FACS. Mice (8-12 weeks) were sacrificed and lungs of adult mice were surgically 

removed and cut into small pieces. Subsequently, lungs were digested with DMEM containing 1 

mM CaCl2, 80 U/ml collagenase IV and 0.2 % DNaseI at 37 °C for 30 min and additionally 15 min. 

Digested organs were passed through 18G and 19G cannula syringes to achieve single-cell 

suspensions. Afterwards, digestion was stopped with FCS and the single-cell suspension was 

passed through a 100 µm cell strainer.  To identify lymphatic, blood and alveolar epithelial cells, 

cells were stained for PDPN, LYVE1, CD45 and TER119 (antibodies listed in Table 19) and CD31 

(Table 19) for 30 min at 4 °C in PBS /5 % FCS. Dead cells were excluded by FxCycle staining 
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(1:1000) that was added shortly before FACS. Unstained and single stained control cells were used 

for compensation. Mural cell enriched cells (FxCycle−CD45−TER119−LYVE1−PDPN−CD31− cells) and 

EC (FxCycle−CD45−TER119−LYVE1−PDPN−CD31+ cells) were sorted with a BD Biosciences FACS Aria 

Cell Sorter. Cells were centrifuged (300 g, 5 min), 50 µl RNA lysis buffer (of the picopure RNA 

isolation kit) was added and cells were immediately frozen at -80°C. In total, 5 mouse lungs were 

pooled for one FACS sample. 

 

4.2.6 CRISPR/Cas establishment 

4.2.6.1 gRNA and template design 

gRNAs for the double Nickase and the WT Cas9 approach were designed by using the online tool 

CRISPRdesign (http://crispr.mit.edu/). Pairs of gRNAs (Table 5, 6) were chosen with the highest 

quality score. The quality score considers target specificity and possible off-target matches. The 

gRNAs were designed with overhang sequences 5´- CTTC- 3´ (sense) and 3´- CAAA- 5´ (antisense 

oligo) which are complementary to overhangs generated by BbsI digestion. The oligos were 

ordered as high purity salt-free purified single-stranded oligos from eurofins. 

For the DNA template design (Table 5, 6), the 34 bp LoxP sequence (ATAACTTCGTATAATGTATGC-

TATACGAAGTTAT) was flanked by 50-80 bp long homology arms of the gene region of interest. To 

avoid degradation of the template by Cas9, intact PAM sequences (5´ -NGG- 3´) within the DNA 

template were converted by inserting silent mutations. The DNA template was ordered as high-

performance liquid chromatography (HPLC) purified single-stranded DNA (ssDNA) from Sigma-

Aldrich. 

  

4.2.6.2 Cloning of CRISPR/Cas plasmids 
 

Amplification and purification of plasmids 

For recovering the bicistronic expression vector px335 (double nickase and gRNA), bacteria of the 

glycerol stock were streaked on agar plates containing the appropriate antibiotic (ampicillin) and 

were incubated at 37°C for 12-16 hours. For the amplification of single clones, 5 ml of LB medium 

(Mini) containing ampicillin were inoculated with single colonies and incubated at 37°C on a 

shaker (300 rpm) for 12-16 hours. Plasmid DNA purification was performed using PureLinkTM 

Quick Plasmid Miniprep Kit according to manufacturer´s instructions. To confirm the validity of 

the plasmid, an enzymatic digestion with NcoI was performed, containing the following 

components: 
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Table 30 NcoI digestion mix 

 

 

 

 

 

 

 

 

 

DNA fragment sizes were checked using agarose gel electrophoresis. After confirming the 

correctness of single clones, 1 ml of the Mini-prep was transferred into a bigger volume of 300 ml 

of LB medium and was incubated at 37°C and 300 rpm for 12-16 h. The bacterial cells were 

harvested by centrifugation at 4500-6000 g for 30 min at 4°C. Plasmid purification was performed 

using NucleoBond-Xtra Maxi kit according to manufacturer´s guidelines. DNA was eluted in 400 µl 

water and measured using NanoPhotometer® N60. Glycerol stock of the vectors was prepared by 

suspending bacterial cells of 1 ml of the Mini in 1 ml of 20% glycerol. Gylcerol stock was stored at  

-80 °C. 

 

Cloning of EGFP in px330 and px335 

From the plasmid CVU55762, the EGFP coding sequence and the corresponding CMV promotor 

were amplified using flanking primers with an overhang complementary to the insertion region of 

the px335 plasmid (Table 3). For the amplification, a high fidelity proofreading polymerase (Q5® 

High-Fidelity DNA Polymerase) was used with following reaction mix and PCR protocol:    

   

Table 31 EGFP amplification PCR mix  

 

 

 

 

 

 

 

 

 

 

 

NcoI digestion mix 

 1x 

DNA (400 ng) X µL 

NcoI FastDigest 1 µL 

10 x FastDigest Buffer 1 µL 

ddH2O X µL 

total 20 µL 

EGFP amplification PCR mix 

  1x 

px335_EGFP_for (Primer for) 1.25 µL 

px335_EGFP_rev (Primer rev) 1.25 µl 

dNTPs (10mM) 0.5 µl 

5 x Reaction Buffer 5 µL 

5x Q5 High GC Enhancer 5 µl 

Q5 Polymerase 0.25 µl 

DNA (100 ng) X µl 

ddH2O X µl 

total 25 µl 
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Table 32 EGFP PCR program 

 

 

 

 

 

 

 

 

 

 

PCR product was purified by using the PCR Qiaquick purification kit according to manufacturer´s 

instructions. The PCR product was eluted in 30 µl H2O. The plasmid px335 was digested with the 

restriction enzyme PsiI (Table 33). The reaction was stopped at 65°C for 15 min. The digested DNA 

was loaded on an agarose gel and bands were excised and purified using the Qiaquick gel 

extraction kit according to manufacturer´s instructions. 

 

Table 33 PsiI digestion mix 

 

 

 

 

 

 

 

 

The Gibson Assembly® Cloning Kit from New England BioLabs was used to assemble the EGFP 

fragment and the plasmid px335. The Gibson Assembly is based on the efficient joining of 

overlapping DNA fragments. The Assembly was performed with a molar vector : insert ratio of 1:3 

for 30 min. The assembly and the subsequent transformation of Top10F competent cells were 

performed according to manufacturer´s guidelines. The next day, single colonies were amplified 

(Mini) and a NcoI digestion was performed (see Table 30). Sequencing (see primers Table 9) 

confirmed the integration and correct orientation of EGFP.  

 

gRNA annealing and cloning in px335 vector 

The vector px335+EGFP was digested and dephosphorylated with BbsI and alkaline phosphatase 

for 30 min at 37°C (see Table 34) before ligating the respective gRNA into the vector. The digested 

vector was purified by gel electrophoresis using Qiaquick gel extraction kit according to 

manufacturer´s instructions. Before ligation, single-stranded gRNAs were phosphorylated and 

EGFP PCR program 

Step Temperature [°C] Time 

1 98 30 sec 

2 98 10 sec 

3 61 30 sec 

4 72 2 min 

5 72 10 min 

6 4 forever 

PsiI digestion mix 

 1x 

DNA (4000 ng) X µL 

PsiI FastDigest 4 µL 

10 x FastDigest Buffer 4 µL 

ddH2O X µL 

total 20 µL 

25 x 
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annealed (see Table 35, 36).  Ligation of the annealed gRNAs and the digested px335+EGFP was 

performed with a molar vector to insert ratio of 1:3 for 2 h at RT (see Table 37). Transformation of 

Top10F competent cells was performed according to manufacturer´s instructions. 

 

Table 34 BbsI digestion mix Table 35 Annealing program 

 

 

 

 

 

 

 

 

   

 

Table 36 Annealing of gRNAs Table 37 Ligation reaction mix 
 

 

 

 

 

 

 

 

The integration was confirmed by BbsI/AgeI digestion. In case of correct ligation of the gRNA into 

px335+EGFP, the BbsI enzyme is not able to bind and cut, whereas AgeI can digest the plasmid 

(plasmid fragment sizes: 5646 bp and 4145 bp). In case of incorrect integration of the gRNA, BbsI 

and AgeI are able to digest the plasmid (plasmid fragment sizes: 5646, 3151 and 972 bp). Plasmid 

fragment sizes were analysed by agarose gel electrophoresis. Additionally, plasmids were 

sequenced to validate gRNA integration (see primers Table 9). Confirmed plasmids were amplified 

(see 4.2.6.2). 

 

 

 

 

 

 

Annealing program 

Step Temperature [°C] Time 

1 37 30 min 

2 95 to 25 

5 min and then 

ramp down 

5°C/min 

BbsI digestion mix 

 1x 

DNA (1000 ng) X µL 

BbsI FastDigest 1 µL 

10 x FastDigest Buffer 2 µL 

Fast Alkaline Phosphatase 1 µl 

ddH2O X µL 

total 20 µL 

Annealing of gRNAs 

 1x 

gRNA for (100 µM) 1 µL 

gRNA rev (100 µM) 4 µL 

10 x T4 Ligation Buffer 1 µL 

ddH2O 6.5 µl 

T4 PNK 0.5 µl 

total 10 µL 

Ligation reaction mix 

 1x 

Digested px335+EGFP (50 ng) X µL 

Phosphorylated and annealed 
oligo  X µL 

10 x T4 Ligation Buffer 2 µL 

T4 Ligase 1 µl 

ddH2O X µL 

total 20 µL 
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4.2.6.3 In vitro verification of CRISPR/Cas-dependent genome modifications  

 

Transfection of NIH3T3 

Transfection of NIH3T3 cells with px335+EGFP containing the respective gRNA was performed 

using Lipofectamine 2000 reagent according to manufacturer´s guidelines. Briefly, 100.000 

NIH3T3 cells were seeded in 24 wells. The day after, cells were transfected with 500 ng DNA (250 

ng per gRNA) with the lowest concentration of Lipofectamine (2 µl) indicated in the manual. After 

48 hours, genomic DNA was isolated using the DNeasy Blood & Tissue Kit according to 

manufacturer´s guidelines.  

For transfection of NIH3T3 cells with the gRNA and the nuclease-containing plasmids and the DNA 

template, the reagent Lipofectamine 3 000 was used according to manufacturer´s instructions. 

Cells were seeded in 12 well plates and were transfected with 1 000 ng of DNA (330 ng per gRNA 

and 330 ng template) and 1.5 µl Lipofectamine 3 000. After 48 hours, genomic DNA was isolated 

using the DNeasy Blood & Tissue Kit according to manufacturer´s guidelines.  

 

Surveyor mutation assay 

The analysis of Cas9-induced repaired DSB and subsequent mismatches in the DNA was analysed 

using the Surveyor Mutation Detection Kit from Transgenic. This kit is based on the ability of an 

endonuclease only cleaving DNA at sites of mismatches resulting in distinct restriction fragments, 

which can be detected by agarose gel electrophoresis.  

The DNA region of the expected mismatches was amplified by primers resulting in a PCR product 

of about 1000 bp with the high fidelity proofreading polymerase Q5® to prevent DNA synthesis 

errors (see Table 38, 39). The PCR product was purified using PCR Qiaquick purification kit 

according to manufacturer´s instructions. The digestion of the PCR products with the surveyor 

nuclease and the analysis with agarose gel electrophoresis was performed according to the 

manufacturer´s guidelines.  

 

Table 38 Surveyor PCR program 

 

 

 

 

 

 

 

 

 

Surveyor PCR program 

Step Temperature [°C] Time 

1 98 30 sec 

2 98 10 sec 

3 58 30 sec 

4 72 1 min 

5 72 2 min 

6 4 forever 
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Table 39 Surveyor PCR mix 

 

 

 

 

 

 

 

 

 

PCR analysis for LoxP integration 

LoxP integration into the genome of transfected NIH3T3 cells with CRISPR/Cas plasmids and DNA 

template was confirmed by PCR analysis (see Table 40, 41). A primer binding directly to the LoxP 

site was used. In case of LoxP integration, a PCR product (PCR product size: LoxP 1 and 2 500 bp) 

could be detected with agarose gel electrophoresis.  

 

 

Table 40 LoxP PCR mix Table 41 LoxP PCR program 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surveyor PCR mix 

  1x 

Primer for 10 µM (see Table 4) 2.5 µL 

Primer rev 10 µM (see Table 4) 2.5 µl 

dNTPs (10mM) 1 µl 

5 x Reaction Buffer 10 µL 

5x Q5 High GC Enhancer 10 µl 

Q5 Polymerase 0.5 µl 

DNA (100 ng) X µl 

ddH2O X µl 

total 50 µl 

LoxP PCR mix 

  1x 

LoxP_for 10 µM 1 µL 

Primer rev 10 µM (see Table 7) 1 µl 

dNTPs (10 mM) 0.5 µl 

5 x Reaction Buffer 5 µL 

5x Q5 High GC Enhancer 5 µl 

Q5 Polymerase 0.25 µl 

DNA (100 ng) X µl 

ddH2O X µl 

total 25 µl 

LoxP PCR program 

Step Temperature [°C] Time 

1 98 30 sec 

2 98 10 sec 

3 58 30 sec 

4 72 1 min 

5 72 2 min 

6 4 forever 
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4.2.6.4 In vitro transcription and quality control for in vivo application of 

CRISPR/Cas 

 

In vitro transcription 

For transcription of Cas9n mRNA and gRNA from the plasmids, the T7 promoter was added to 

Cas9n coding region by PCR amplification (see Table 42, 43). T7-Cas9n product was gel purified 

using Qiaquick gel extraction kit and served as template for in vitro transcription (IVT) using 

mMESSAGE mMACHINE T7 ULTRA Kit (Life Technologies) according to manufacturer´s 

instructions. T7 promoter was added to gRNA by PCR amplifications using primer listed in Table 7. 

The T7-gRNA PCR product was gel purified by Qiaquick gel extraction kit. 350 ng of the PCR 

product were used as template for in vitro transcription (IVT) using MEGAshortscript T7 kit (Life 

Technologies) according to manufacturer´s instructions. Both, Cas9n mRNA and gRNA were 

purified by MEGAclear kit (Life Technologies) and eluted in RNase-free water according to 

manufacturer´s guidelines. 

For the double nickase/SCR7 experiment as well as for the following Cas9 WT experiments, 

commercially available Cas9n and Cas9 WT mRNA were used for the injection. 

 

Table 42 IVT PCR Mix Table 43 IVT PCR program 

 

 

 

 

 

 

 

 

 

 

 

 

Bioanalyzer  

For the analysis of quality and quantity of gRNA and Cas9n mRNA, the Agilent RNA 6000 Nano Kit 

was used on an Agilent 2001 Bioanalyzer according to manufacturer´s guidelines. Samples were 

immediately frozen at -80°C. In case of the necessity to thaw already used transcribed mRNA 

samples, Bioanalyzer analysis was repeated before injecting in vivo.  

 

 

 

IVT PCR mix 

  1x 

Primer for 10µM (see Table 7) 2 µL 

Primer rev 10 µM (see Table 7) 2 µl 

dNTPs (10 mM) 2 µl 

5 x Reaction Buffer 20 µL 

5x Q5 High GC Enhancer 20 µl 

Q5 Polymerase 1 µl 

DNA (2 ng) X µl 

ddH2O X µl 

Total 100 µl 

IVT PCR program 

Step Temperature [°C] Time 

1 98 30 sec 

2 98 10 sec 

3 58 1 min 

4 72 1 min 

5 72 2 min 

6 4 forever 
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4.2.6.5 One-cell embryo injection 

All in vivo experiments in the context of the CRISPR/Cas establishment were performed by Frank 

van der Hoeven and Ullrich Kloz (Transgenic Service, DKFZ). All animal experiments were approved 

by the local regulatory committee (Bezirksregierung Karlsruhe, Germany; permit: G-154-14). 

Briefly, C57BL/6N female mice (5-8 weeks old) were super ovulated and mated overnight with 

C57BL/6N male mice (older than 7 weeks). On the next day, zygotes were harvested from the 

ampullae of super ovulated females. The gRNAs, Cas9n or Cas9 mRNA and the DNA templates 

were injected into the cytoplasm of zygotes.  

For the pilot experiment, injected zygotes were incubated in 5.5 % CO2 at 37 °C for 2-3 days until 

they developed to morulae. For experiments, in which the 2-cell stage embryos should be 

transferred into the uterus of pseudo-pregnant mice, injected zygotes were cultured for 24 hours 

before oviduct transfer in mouse embryo culture medium KSOM. In the case of SCR7 treatment, 

zygotes were incubated for 1 h with 50 µM SCR7 before injection. Injected zygotes were 

incubated further 24 hours with 50 µM SCR7 previous to embryo transfer.  

Used concentrations of Cas9n/Cas9 WT, each gRNA and each DNA template is listed as follows: 

 

Table 44 Nucleotide concentrations for zygote injections 

 

 

4.2.6.6 Genotyping/ Sequencing PCR 

Genotyping of morulae was performed by PCR of genomic DNA. Morulea were lysed in 10 µl 

morulea lysis buffer for 10 min at 56°C and afterwards 10 min at 95°C. 2 µl of supernatant were 

directly used for the genotyping PCR (see Table 8). 2 µl of this PCR product were used for 

subsequent PCR2. Morula lysate was stored at -20°C for later re-genotyping.   

Genotyping of mice was performed by PCR of genomic DNA extracted from mouse tails. Tails were 

lysed in 100 µl DirectPCR Lysis Reagent with 10 µg proteinase K at 55 °C and 300 rpm overnight. 

The next day, proteinase K activity was stopped by incubating the tail lysate for 15 min at 95°C. 

The lysate was centrifuged at full speed for 5 min and 2 µl supernatant was directly used for the 

genotyping PCR. Lysates were stored at -20°C for later re-genotyping.   

The genotyping/sequencing PCRs for the different alleles were performed using RedTaqMix and 

primers as depicted in Table 8 and 45. S1pr3fl/fl genotyping generates a wild-type and a mutant 

Concentrations for zygote injections 

experiment Cas9n/Cas9 WT (ng/µl) gRNA (ng/µl) DNA template (ng/µl) 

Pilot test ´Cas9n´ 100 25 50 

Experiment ´Cas9n´ 100 50 75 

Experiment ´SCR7´ 80 
LoxP 1: 80 

LoxP 2: 15 

LoxP 1: 90 

LoxP 2: 80 

Pilot test ´Cas9 WT´ 100 75 75 

Experiment ´Cas9 WT sequential´ 100 75 75 
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band of 185 bp/219 bp (LoxP 1) and 186bp/220 (LoxP 2), respectively. The PCR was performed 

with an Applied Biosystems thermocycler according to the PCR programs shown in Table 46. The 

PCR reactions were analysed by 2% agarose gel electrophoresis or with QIAxcel Advanced system 

according to manufacturer´s instructions. 

 

Table 45 S1pr3fl/fl genotyping PCR mix Table 46 S1pr3fl/fl genotyping PCR program 

S1pr3
fl/fl

 genotyping PCR mix 

 1x 

dd H2O 9.5 µL 

RedTaq Mix 12.5 µL 

Primer S1pr3
fl/fl

 for (10µM) 1 µL 

Primer S1pr3
fl/fl

 rev (10µM) 1 µL 

DNA 2 µL 

 

 

4.2.6.7 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate DNA fragments obtained in the genotyping PCR 

reaction. Agarose was dissolved in 1x TBE buffer to generate 2% [w/v] agarose gels. 5 µl ethidium 

bromide was added to 100 ml gel. The entire PCR mix of the genotyping reaction and 7 µl of the 

O’Generuler 100 bp Plus DNA ladder were loaded onto the gel. Electrophoresis was performed at 

140 V for 45 min. Bands were detected with a UV transluminator and band size was determined 

relative to the DNA ladder. 

 

4.2.6.8 DNA extraction from agarose gels 

For sequencing PCR amplicons, DNA bands of desired size were cut out of the agarose gel. DNA 

extraction was performed with the QIAquick Gel Extracton Kit according to the manufacturer´s 

guidelines.   

 

4.2.6.9 Sequencing 

The sequencing of plasmids or genomic DNA was performed by GATC Biotech. Purified genomic or 

plasmid DNA was diluted to an end concentration of 10-20 ng/µl. Primers (see Table 9) were used 

at a concentration of 10 pmol/µl.  

 

 

 

 

 

 

 

S1pr3
fl/fl

 genotyping PCR program 

Step Temperature [°C] Time 

1 94 3 min 

2 94 1 min 

3 62 2 min 

4 72 1 min 

5 72 10 min 

6 4 forever 

35x 
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4.2.7 Statistical analysis 

Statistical analysis was performed using GraphPad Prism Software. Unless otherwise stated, data 

are expressed as mean±s.d. Statistical significance was determined by ANOVA followed by 

Dunnett´s Multiple Comparison Test. A p-value of less than 0.05 was considered statistically 

significant and marked by asterisks (*P<0.05, **P<0.01, ***P<0.001). n represents the number of 

independent mice or in vitro treated cell culture samples analysed per group. 
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Abbreviations 

  
A Ampere 
Abcc9 ATP-binding cassette, subfamily C (CFTR/MRP) 
Acta2 Smooth muscle actin gene 
ACTA2 Alpha actin 2  
Adi Adipocytes 
AF Alexa Fluor 
Angpt1 Angiopoietin 1 
Anpep Amino peptidase N 
APS Ammonium persulfate 
ASNS Asparagine synthetase 
B2M Β2- Microglobulin 
BBB Blood brain barrier 
BCA Bicinchoninic acid  
BCL2L1 B-cell lymphoma 2 like protein 1 
bFGF basic FGF  
BM Basement membrane 
bp Base pair  
BP Brain pericytes 
BSA Bovine serum albumin 
c Concentration; Centi 
Ca2+ Calcium 
Cas CRISPR-associated 
Cas9n Nickase 
CASP3 Caspase 3 
CCDC34 Coiled-coil domain containing 34 
CD Cluster of differentiation 
CDH5 Cadherin 5 
cDNA Complementary DNA 
Cer Ceramide 
CNS Central nervous system 
CO2 Carbon dioxide 
Col7A1 Collagen type 7 alpha 1 chain 
COX cyclooxygenase 
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats 
CT Threshold cycle 
Cu Copper 
DAPI 4´, 6-diamidino-2-phenylindole 
DLK1 delta-like 1 homolog 
DMEM Dulbecco’s modified Eagle's medium 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
DNase Deoxyribonuclease 
dNTP Deoxynucleoside triphosphate 
DP Prostaglandin D2 receptor 
DPH3 Diphthamide biosynthesis 3 
ds Double stranded 
DSB Double-strand break 
EC Endothelial cells 
ECL enhanced chemiluminescence 
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ECM Extracellular matrix 
EDG Endothelial differentiation gene 
EDTA Ethylenediaminetetraacetic acid 
eGFP Enhanced green fluorescent protein 
ELOF1 Elongation factor 1 homolog 
EndMT Endothelial mesenchymal transition 
EP2 Prostaglandin E2 receptor 
ER Endoplasmatic reticulum  
ERK Extracellular signal-regulated kinase 
ETOH ethanol 
FACS Fluorescence activated cell sorting 
FAK Focal adhesion kinase 
FC Fold change 
FCS Fetal calf serum 
FDR False discovery rate 
Fib Fibroblasts 
FITC Fluorescein isothiocyanate 
For Forward 
FP Prostaglandin F receptor 
FSC Forward scatter 
GSL Glycosphingolipid 
GSN Gelsolin 
GTP Guanosine-triphosphate 
h hours 
H2O Water 
HBMEC Human brain microvascular endothelial cells 
HCl Hydrochloric acid 
HDBEC Human dermal blood endothelial cells 
HPRT Hypoxanthin-guanin-phosphoribosyltransferase 
HR Homologous recombination 
HRP Horseradish peroxidase 
Hs Human 
HSAVEC Human saphenous vein endothelial cells 
HSC Hepatic stellate cells 
HSPG Heparan sulfate proteoglycans 
HUAEC Human umbilical artery endothelial cells 
HUVEC Human umbilical vein endothelial cells 
Ifitm1 Interferon induced transmembrane protein 1 
IGFR2 Insulin-like growth factor receptor 2 
Indels Insertions and deletions 
IP Prostacyclin receptor 
Kcnj8 potassium inwardly rectifying channel, subfamily J 
kD Kilo Dalton  
KDR Kinase insert domain receptor 
LoxP Locus of crossover in P1 
LP Lung pericytes 
LYVE1 lymphatic vessel endothelial hyaluronan receptor 1 
MAPK Mitogen-activated protein kinase 
Min Minutes 
MMP Metalloproteases 
MP Muscle pericytes 
MPRIP Myosin phosphatase Rho interacting protein 



Abbreviations 

 

101 
 

mRNA Messenger ribonucleic acid 
MRPL55 Mitochondrial ribosomal protein L5  
Ms Mouse 
MSC Mesenchymal stem cells 
MSigDB Moleculare Signature Database 
MTORC1 Mammalian target of rapamycin complex 1 
MYH10 Myosin heavy chain 10 
NG2 Neural/glial antigen 
NHEJ Non-homologous end joining 
NRP Neuropilin 
NSAID Nonsteroidal anti-inflammatory drug 
O2 oxygen 
Opti-MEM Optimized Minimal Essential Medium 
p pico 
PAM Protospacer adjacent motif 
PancP Pancreas pericytes 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
Pdgfb Platelet-derived growth factor beta 
PDGFRα Platelet derived growth factor receptor α 
PDGFRβ Platelet-derived growth factor receptor β  
PDPN Podoplanin 
PECAM1 Platelet endothelial cell adhesion molecule 1  
PFA Paraformaldehyde 
PGD2 Prostaglandin D2 
PGDS Prostaglandin D synthase 
PGE2 Prostaglandin E2 
PGES Prostaglandin E synthase 
PGF2α Prostaglandin F2α 
PGFS Prostaglandin F synthase 
PGG2 Prostaglandin G2 
PGH2 Prostaglandin H2 
PGI2 Prostaglandin I2/Prostacyclin 
PGIS Prostaglandin I synthase 
PGT Prostaglandin transporter 
pH power of hydrogen 
PI3K Phosphoinositide-3-kinase 
PIGF Placental growth factor 
PLA2 Phospholipase A2 
PlaP Placenta pericytes 
PLCy Phospholipase C 
PPAR Peroxisome proliferator-activated receptor 
PTGER1-4 Prostaglandin E Receptor 1-4 
PTX Pertussis toxin 
Rev Reverse 
RGS5 Regulator of G-protein signaling 5  
RNA Ribonucleic acid 
RNase Ribonuclease 
RT Room temperature 
RTCA Real time cell analyzer 
RT-qPCR Real time-quantitative polymerase chain reaction 
S100A4 S100 calcium-binding protein A4 
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S1P Sphingosine-1-phosphate  
S1PR1-5 Sphingosine-1-phosphate receptor 1-5 
SDC1 Syndecan 1 
SDS Sodium dodecyl sulfate 
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
Sec Seconds 
SGPP Sphingosine-1-phosphate phosphatases 
siRNA Small interfering RNA 
SM Sphingomyelin 
SMA Smooth muscle actin  
SMAD7 Mothers Against Decapentaplegic Homolog 7 
SMC Smooth muscle cells 
SPHK Sphingosine kinase 
SPNS Sphingosine-1-phosphate transporter 
SSC Side scatter 
Taq Thermus aquaticus 
Tek TEK tyrosine kinase, endothelial 
TGFβ Transforming growth factor β 
Tie Tyrosine kinase with immunoglobulin-like and EGF-like domains  
Tm Melting temperature 
TP Thromboxane receptor 
TSC1 Tuberous sclerosis protein 1 
TXA2 Thromboxane A2 
TxAS Thromboxane synthase 
U Unit 
UV Ultra violet 
V Volt 
v/v Volume/volume (volume concentration) 
VEGF Vascular endothelial growth factor 
VEGFR Vascular endothelial growth factor receptor 
Vtn Vitronectin 
WB Western Blot 
Zic1 Zink finger protein 201 
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