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Topic in German: 
 
Lyman-α-Absorptionsmerkmale, die in Quasarspektren im Rotverschiebungsbereich 
0<z<6 nachgewiesen werden, ermöglichen es, die intergalaktischen und 
zirkumgalaktischen [circumgalactic] Medien (IGM und CGM) wirksam zu 
untersuchen, und folglich Modelle der Kosmologie sowie Galaxienentstehung zu 
bestimmen. Im ersten Teil dieser Doktorarbeit, löse ich einige numerische 
Herausforderungen, die sich durch kosmologische hydrodynamische Simulationen 
stellen, indem ich eine neuartige halb-analytische Method entwickle, um verschiedene 
statistische Eigenschaften der Lyman-α (Lyα) Absorption im IGM mit großen N-
Körper Simulationen vorherzusagen. Die in dieser Doktorarbeit entwickelte Method 
ist genauer als bisherige Versuche in der wissenschaftlichen Literatur. Noch wichtiger 
ist, dass sie auf Gpc-Skala N-Körper Simulationen angewendet werden kann, was 
eine detaillierte Erforschung der Lyα-Absorption auf beispiellos großen Skalen 
ermöglicht. Im zweiten Teil der Doktorarbeit betrachte ich Beobachtungen der Lyα-
Absorption in Spektren von Hintergrundquasaren bei verschiedenen transversalen 
Abstände von Vordergrundgalaxien (zwischen 25 kpc und 17 Mpc) und vergleiche sie 
mit den Vorhersagen verschiedener hochmoderner hydrodynamischer kosmologischer 
Simulationen. Ich zeige zum ersten Mal, dass die Kombination von Beobachtungen 
der Lyα-Absorption im IGM und CGM die in den Simulationen implementierte, aber 
nicht aufgelöste, Physik (z. B. Feedback) sehr gut eingrenzen kann. Aufgrund der in 
naher Zukunft geplannten Lyα-Absorptionsbeobachtungen, werden die in dieser 
Doktorarbeit entwickelten Methode die Voraussetzungen für eine noch präzisere 
Bestimmung der Modelle der Kosmologie und Galaxienentstehung schaffen. 
 
Topic in English: 
 
Lyman-α (Lyα) absorption features detected in quasar spectra in the redshift range 
0<z<6 are a powerful tool to probe the intergalactic and circumgalactic media (IGM 
and CGM) and, consequently, to constrain models of galaxy formation and 
cosmology. In the first part of this thesis, I overcome certain numerical challenges 
posed by cosmological hydrodynamic simulations by developing a novel semi-
analytic technique to predict various statistics of the Lyα absorption in the IGM with 
large N-body cosmological simulations. The technique developed in this work is more 
accurate than previous attempts in the literature. More importantly, it can be applied 
on Gpc-scale N-body simulations, allowing an accurate investigation of the Lyα 
absorption at unprecedentedly large scales. In the second part of the thesis, I consider 
observations of Lyα absorption in spectra of background quasars at different 
transverse separations (between 25 kpc and 17 Mpc) from foreground galaxies, and 
compare them with the predictions of different state-of-the-art hydrodynamic 
cosmological simulations. For the first time, I show that combining observations of 
Lyα absorption in the IGM and the CGM can tightly constrain the models of sub-
resolution physical processes implemented in simulations (e.g., feedback). With near-
future high-precision observations of Lyα absorption, the tools developed in this work 
will set the stage for even stronger constraints on models of galaxy formation and 
cosmology.  
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Abstract
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Constraining the Physics of the Intergalactic and Circumgalactic Media

with Lyman-↵ Absorption

by Daniele Sorini

Lyman-↵ (Ly↵) absorption features detected in quasar spectra in the redshift range

0 < z < 6 are a powerful tool to probe the intergalactic and circumgalactic media (IGM

and CGM) and, consequently, to constrain models of galaxy formation and cosmology.

In the first part of this thesis, I overcome certain numerical challenges posed by cos-

mological hydrodynamic simulations by developing a novel semi-analytic technique to

predict various statistics of the Ly↵ absorption in the IGM with large N-body cosmolog-

ical simulations. The technique developed in this work is more accurate than previous

attempts in the literature. More importantly, it can be applied on Gpc-scale N-body

simulations, allowing an accurate investigation of the Ly↵ absorption at unprecedentedly

large scales. In the second part of the thesis, I consider observations of Ly↵ absorption

in spectra of background quasars at di↵erent transverse separations (between 25 kpc

and 17Mpc) from foreground galaxies, and compare them with the predictions of di↵er-

ent state-of-the-art hydrodynamic cosmological simulations. For the first time, I show

that combining observations of Ly↵ absorption in the IGM and the CGM can tightly

constrain the models of sub-resolution physical processes implemented in simulations

(e.g., feedback). With near-future high-precision observations of Ly↵ absorption, the

tools developed in this work will set the stage for even stronger constraints on models

of galaxy formation and cosmology.





RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG
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Bestimmung der Physik der intergalaktischen und zirkumgalaktischen

Medien mit Hilfe von Lyman-↵ Absorption

von Daniele Sorini

Lyman-↵-Absorptionsmerkmale, die in Quasarspektren im Rotverschiebungsbereich 0 <

z < 6 nachgewiesen werden, ermöglichen es, die intergalaktischen und zirkumgalaktis-

chen [circumgalactic] Medien (IGM und CGM) wirksam zu untersuchen, und folglich

Modelle der Kosmologie sowie Galaxienentstehung zu bestimmen. Im ersten Teil dieser

Doktorarbeit, löse ich einige numerische Herausforderungen, die sich durch kosmologis-

che hydrodynamische Simulationen stellen, indem ich eine neuartige halb-analytische

Method entwickle, um verschiedene statistische Eigenschaften der Lyman-↵ (Ly↵) Ab-

sorption im IGM mit großen N-Körper Simulationen vorherzusagen. Die in dieser Dok-

torarbeit entwickelte Method ist genauer als bisherige Versuche in der wissenschaftlichen

Literatur. Noch wichtiger ist, dass sie auf Gpc-Skala N-Körper Simulationen angewen-

det werden kann, was eine detaillierte Erforschung der Ly↵ Absorption auf beispiellos

großen Skalen ermöglicht. Im zweiten Teil der Doktorarbeit betrachte ich Beobachtungen

der Ly↵-Absorption in Spektren von Hintergrundquasaren bei verschiedenen transver-

salen Abstände von Vordergrundgalaxien (zwischen 25 kpc und 17Mpc) und vergleiche

sie mit den Vorhersagen verschiedener hochmoderner hydrodynamischer kosmologischer

Simulationen. Ich zeige zum ersten Mal, dass die Kombination von Beobachtungen der

Ly↵-Absorption im IGM und CGM die in den Simulationen implementierte, aber nicht

aufgelöste, Physik (z. B. Feedback) sehr gut eingrenzen kann. Aufgrund der in naher

Zukunft geplannten Ly↵-Absorptionsbeobachtungen, werden die in dieser Doktorarbeit

entwickelten Methode die Voraussetzungen für eine noch präzisere Bestimmung der Mod-

elle der Kosmologie und Galaxienentstehung scha↵en.
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Chapter 1

Introduction

With the discovery of the first extragalactic nebulae (Hubble, 1925), it became clear

that the Universe is not limited to our Galaxy. Since then, more than nine decades of

observational evidence and theoretical e↵orts led to the establishment of the ⇤-Cold Dark

Matter (⇤CDM) model as the standard paradigm for structure formation and evolution

in a cosmological context (Dodelson, 2003, Fukugita et al., 1998, Padmanabhan, 2006,

and references therein). Within this framework, the content of the Universe can be

divided into three main components: baryons, dark matter (DM) and dark energy.

The most recent estimates of their relative contributions to the total energy density of

the Universe are 0.05, 0.26 and 0.69, respectively (Planck Collaboration et al., 2016).

In the astrophysical lexicon, the term baryons refers to all matter made of particles

described by the Standard Model of particle physics. Dark matter is a type of matter

that neither emits nor absorbs light, and interacts mainly or solely through gravitation.

While indirect evidence for DM is provided by the mismatch between luminosity and

mass distribution in the Milky Way (Oort, 1932), other galaxies (Rubin et al., 1980),

and galaxy clusters (Zwicky, 1933), there is no direct detection of DM at present. The

nature of DM is highly debated, and represents one of the fundamental questions in

both astrophysics and particle physics1. The nature of dark energy is even less clear,

despite being the dominant energy component of the Universe. In the ⇤CDM model, it

1Within the ⇤CDM model, DM is described as cold dark matter (CDM), i.e. non-relativistic self-
gravitating particles (Blumenthal et al., 1984, Occhionero et al., 1984, Primack, 1984). Possible can-
didates for CDM are axions, massive compact halo objects (MACHOs) and weak interacting massive
particles (WIMPs) (Arun et al., 2017, Peter, 2012, for recent reviews). Unless otherwise indicated, in this
thesis I shall consider CDM when referring to DM. Some alternative models of DM are hot dark matter
(HDM), describing DM as ultra-relativistic particles (e.g., neutrinos), or warm dark matter (WDM),
within which DM presents intermediate characteristics between CDM and HDM (Arun et al., 2017,
for a recent review). Sterile neutrinos are possible candidates for WDM (Dodelson & Widrow, 1993,
Widrow, 1993). Other examples of alternative models of DM are self-interacting dark matter (SIDM),
meta-cold dark matter (mCDM) and fuzzy cold dark matter (Arun et al., 2017, for a recent review).

1



Chapter 1 2

is described as a cosmological constant, and is responsible for the accelerated expansion

of the Universe (Perlmutter et al., 1999, Riess & et al., 1998, Schmidt et al., 1998). 2

According to the ⇤CDM paradigm, the Universe began with the Big Bang singular-

ity, which was followed by an era of accelerated expansion, called Inflation (Barrow &

Turner, 1981, Guth, 1981). During Inflation, tiny density perturbations were seeded in

the matter density of the Universe, which was otherwise homogeneous. Approximately

three minutes after the Big Bang, the baryonic component of the Universe was in the

state of a hot ionized plasma, composed mainly of electrons, neutrinos and light nuclei

(⇠ 75% hydrogen, ⇠ 25% helium, and traces of their isotopes and other heavier ele-

ments), that was tightly coupled to photons. As the Universe kept expanding, it cooled

down, allowing photons to decouple from baryons and form the cosmic microwave back-

ground (CMB). In the same epoch (redshift3 z ⇡ 1100), electrons and primordial nuclei

recombined, forming the first atoms. The detection of CMB photons allowed mapping

the temperature fluctuations of the Universe at the epoch of recombination (Planck

Collaboration et al., 2016); since one cannot detect photons carrying information from

earlier epochs, the CMB is essentially the earliest currently available image of the Uni-

verse. After recombination, the Universe became neutral and transparent to radiation,

entering the so-called “Cosmic Dark Ages”.

Throughout the Cosmic Dark Ages, the matter density perturbations kept growing due

to gravitational instability, giving rise to the first structures. Dark matter was the

main actor in setting the gravitational potential wells, within which it could cluster

together with baryons. Hence, collapsing matter started forming halos in the densest

regions, connected through a network of filaments. This characteristic configuration of

the matter distribution in the Universe is called “cosmic web” (see the upper left and

right panels of Figure 1.1).

Within halos, the emergence of the accretion shock split the gas into two components:

a low-density supersonic flow, and a high-density subsonic flow (White & Rees, 1978).

The latter got shock heated to the virial temperature4, beginning the accretion of gas

2The cosmological constant (⇤) is a form of energy with negative pressure and constant density
throughout the history of the Universe (Einstein, 1917). Some models outside the ⇤CDM paradigm
consider a time-varying dark energy (e.g., Khurshudyan & Khurshudyan, 2017, and references therein).
Other theories describe dark energy as a scalar field, representing the fifth fundamental force of nature
(“quintessence”, see, e.g., Caldwell et al., 1998, Steinhardt & Caldwell, 1998), or aim at treating DM and
dark energy as two aspects of the same phenomenon (interacting dark energy; see, e.g., Khurshudyan
& Khurshudyan, 2017, and references therein). An alternative approach consists in eliminating the
need for dark energy by describing the gravitational interaction with modified gravity theories (see, e.g.,
Amendola & Tsujikawa, 2010, for a review) rather than general relativity (Einstein, 1915a,b,c, 1916).

3Due to the expansion of the Universe, a photon emitted with wavelength �e at the time te is detected
at a larger wavelength �o by an observer at time to. This e↵ect is measured by the redshift z, defined
as 1 + z = �o/�e = ao/ae, where ao and ae are the scale factors at times to and te, respectively.

4The virial theorem states that, for a stable, self-gravitating ensemble of gas particles, the total
kinetic energy K and the potential energy of the system U are related by the equality 2K + U = 0. The
exact expression of the virial temperature of the ensemble depends on the degrees of freedom of the gas
particles (see, e.g., Binney & Tremaine, 2008).
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Figure 2. Qualitative inspection of the L25n512 volume run with the fiducial TNG model showing the large scale structure at z = 0. Top row: column density
of dark matter, gas and stellar mass. Bottom row: mass-weighted projected average of magnetic field strength, gas Mach number, and kinetic energy dissipation
rate via shocks, to highlight the new diagnostic capabilities.

2014b; Schaye et al. 2015): an average gas-cell and stellar par-
ticle mass of � 106 M�, DM particle mass of � 107 M�, and
stellar/DM softening lengths of ⇠ 500 � 1000 pc at z = 0. The
exact values are given in Appendix A, specifically Table A1, where
we also consider the effects of resolution and the convergence be-
havior of our model. The simulations are evolved to the present
epoch from z = 127 initial conditions. These have been obtained
with the code N-GENIC (Springel et al. 2005) by applying the
Zel’dovich approximation on a glass distribution of particles with
a linear matter transfer function computed using the CAMB code
(Lewis, Challinor & Lasenby 2000).

In order to simulate a representative volume and minimize
sample variance, we have selected the realization with care.
Namely, we have drawn 10 random realizations of the initial den-
sity field and evolved low-resolution gravity-only versions to the
current epoch. We have chosen the realization exhibiting a cumu-
lative dark matter halo mass function at z = 0 that is closest to
the average one across realizations, via a �

2-minimization across
the widest halo mass range allowed by resolution. In fact, we note
(but do not show here) that such choice does not guarantee that
the resulting galaxy population is unaffected by sample variance
nor, therefore, that it is a representative sample. However, it at least
minimizes usually large variations arising from the underlying DM
density field.

The simulation box we study in this paper (L25n512) contains

at the current epoch 9 haloes with total mass (M200c
3) exceeding

1013M�, about 40 Milky-Way like central haloes (6 � 1011M� �
M200c � 2�1012M�), and about 1500 luminous galaxies (among
centrals and satellites) resolved with at least 100 stellar particles.
While the most massive object does not reach ⇠ 5 � 1013M�, the
chosen volume size is still well suited to study the galaxy popula-
tion at the low-mass end of the galaxy mass function, which is the
main scope of this paper.

3.2 Fiducial Implementation

In this Section we show the outcome of our TNG model in its
fiducial implementation at our nominal resolution (L25n512). The
choices and parameter values which define the TNG fiducial im-
plementation are summarized in Table 1, where they are shown in
comparison to the Illustris fiducial setup. In the following sections
we explore the parameter choices and dependencies in depth. Com-
parisons to the outcome at lower resolution are given and discussed
in Appendix A. A visual presentation of the richness of the model
outcome is shown in Figures 2 and 3. In the first, projections of
various fields across the whole simulated box ⇠ 37 Mpc on a side
are given at z = 0. The top panels depict DM, gas, and stellar
mass density projections. As a demonstration of new information,

3
M�c denotes the mass enclosed in a sphere whose mean density is �

times the critical density of the universe at the time the halo is considered.

c� 0000 RAS, MNRAS 000, 000–000

Figure 1.1: Projections of DM
(upper left panel), baryon (upper
right panel), and stellar mass den-
sity (lower right panel), on a side of
the (37 cMpc)3 box simulated with the
fiducial IllustrisTNG run, at z = 0.
The cosmic web can be clearly seen
in the left and middle panels. At
low densities, baryon density repre-
sents a smoother version of the cor-
responding DM density, because, un-
like DM, the gravitational collapse of
baryons is counteracted by the pres-
sure of gas (see text for details). The
right panel shows that star forma-
tion occurs within DM halos. Figure
adapted from Pillepich et al. (2017).
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within halos. Subsequently, the accreting gas cooled down due to bremsstrahlung, ra-

diative recombination, collisional ionization and collisional excitation (Meiksin, 2009).

At the same time, photons kept heating the gas through photo-ionization and photo-

heating (Cantalupo, 2010, Gnedin & Hollon, 2012, Kannan et al., 2014). Depending on

the magnitude of the net cooling rate, set by the balance between the aforementioned

cooling and heating processes, the cooling time of the gas can be larger or smaller than

the free-fall time (Rees & Ostriker, 1977, White & Frenk, 1991, White & Rees, 1978).

In the former case, the gas would reach a pressure-supported hydrostatic equilibrium

configuration, contracting slowly. In the latter case, the gas would cool fast, being able

to form stars e�ciently (see the lower right panel of Figure 1.1).

It is not yet precisely clear when star formation commenced. It was a continuous process

that likely started at z ⇡ 50 (Abel et al. 2002, Gao et al. 2007, Yoshida et al. 2006; but

see also Naoz et al. 2006) and led to the formation of the first galaxies by z ⇡ 10 (Benson,
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2010, for a review). The star formation rate peaked in the redshift range 1 . z . 3, and

is still ongoing (Madau & Dickinson, 2014, for a review). Apart from stars, gas accretion

could also form super-massive black holes in the central region of massive galaxies. These

black holes could power active galactic nuclei (AGN), i.e. compact regions characterized

by a strong emission of non-stellar radiation that include quasars (QSOs). The AGN

represent an extra source of heating, which competes with star formation. In fact, various

models propose that star formation and/or black-hole accretion could be self-regulating

mechanisms (Fabian, 1999, King, 2003, Silk & Rees, 1998).

Parallel to star formation within halos, intergalactic gas (called intergalactic medium,

IGM) underwent some important phase transitions. Via the emission of ultraviolet (UV)

photons, newly formed structures began to reionize the IGM, and the Universe entered

the Epoch of Reionization. According to the standard picture, stellar radiation from

galaxies was the main driver of the reionization of the hydrogen atoms present in the

IGM (Becker & Bolton, 2013, Faucher-Giguère et al., 2008b, Madau et al., 1999, Shapiro

et al., 1994), although some recent findings suggest that QSOs may have contributed

to a larger extent than previously thought (Chardin et al., 2015, Giallongo et al., 2015,

Madau & Haardt, 2015). The background of UV photons (UVB) in the IGM reionized

neutral helium (HeI ! HeII) and singly-ionized helium (HeII ! HeIII), too. The gen-

eral wisdom is that QSOs dominated the latter transition, since they supplied enough

energetic photons by z ⇡ 3 (Furlanetto & Oh 2008, Wyithe & Loeb 2003; but see also

Worseck et al. 2016). On the contrary, it is unlikely that stars could produce enough

photons for the second reionization of helium (Bromm & Yoshida, 2011, Venkatesan

et al., 2003). Other models of reionization invoke more exotic sources of photons (X-

rays from X-rays binaries Furlanetto et al. 2006, Mirabel et al. 2011, supernovae shocks

Johnson & Khochfar 2011, supernovae-accelerated electronic cosmic rays Oh 2001, DM

annihilations Belikov & Hooper 2009; see also Dijkstra et al. 2004, McQuinn 2012). Ac-

cording to the current constraints, the reionization of hydrogen was completed by z ⇡ 6

(Fan et al., 2006, McGreer et al., 2015), while helium was fully reionized in the redshift

range 2 < z < 2.7 (e.g., Shull et al. 2010; see McQuinn 2016, for a review).

From the previous overview of the history of the Universe, it emerges that the ⇤CDM

model successfully explains how it transitioned from an initial quasi homogeneous state

to the large-scale structures that can be observed today. The various phase transitions of

the Universe and star formation history can be described within the ⇤CDM framework

as well (e.g., Springel & Hernquist, 2003). However, there are still several aspects to clar-

ify, especially as far as the Epoch of Reionization and galaxy formation are concerned.

For example, as briefly mentioned earlier, the beginning of reionization (which is tied to

primordial star formation), as well as the nature of the sources that powered it, is still

under debate (McQuinn, 2016). Moreover, the morphology of reionization depends on

the primary sources of photons: if dominated by rare and luminous objects like QSOs,

reionization would be more patchy than galaxy-driven reionization (Meiksin, 2009). Re-

garding galaxy formation, while state-of-the-art cosmological hydrodynamic simulations
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(e.g., Pillepich et al., 2017, Schaye et al., 2015, Vogelsberger et al., 2014b) successfully

reproduce a plethora of observables (e.g., the star formation e�ciency Behroozi et al.

2013, Guo et al. 2011, Moster et al. 2013, the evolution of the star formation rate density

Behroozi et al. 2013, Oesch et al. 2015, the black-hole-stellar-mass relationship within

galaxies Kormendy & Ho 2013, McConnell & Ma 2013, the gas fraction within halos

Giodini et al. 2009, Lovisari et al. 2015, the stellar mass function Baldry et al. 2012,

2008, Bernardi et al. 2013, D’Souza et al. 2015, and the stellar half-mass radii of galaxies

Baldry et al. 2012, Shen et al. 2003), it is still challenging to precisely model the physics

governing star formation, galactic winds, gas accretion, supernovae explosion and super-

massive black hole accretion and merging. Indeed, these processes are often not resolved

in simulations, consequently they need to be implemented through certain feedback pre-

scriptions (e.g., Springel 2000, Springel et al. 2005a; see Heckman & Thompson 2017,

for a review).

A greater insight both in the epoch of reionization and galaxy formation can be achieved

by exploiting some observational features of the residual neutral hydrogen in the cosmic

web. While mostly made of ionized gas, the IGM still retains a small fraction of HI

(⇠ 10�5 at z ⇡ 2, see, e.g., Meiksin 2009) that imprints a characteristic pattern, known

as “Lyman-↵ Forest”, in the absorption spectra of QSOs. Such absorption features can

be used to map the distribution of HI in the Universe at di↵erent redshifts, thus provid-

ing us with a better understanding of the reionization history. The IGM also represents

an extraordinary cosmological probe, which is able to trace density fluctuations in the

redshift range 0 . z . 6 (see Meiksin, 2009, for a review). As such, it allows testing cos-

mological models and reconstructing the large-scale distribution of matter. In addition,

the IGM contains 80% of baryons at redshift z & 1.5 (Prochaska & Hennawi 2009; see

also Meiksin 2009, Rauch 1998, and references therein), acting as a reservoir for forming

galaxies. Consequently, the IGM is connected with galaxy formation and evolution, too.

At the interface between the IGM and galaxies one can define another environment,

the circumgalactic medium (CGM). The CGM is generally considered to be the region

within 300 kpc from the center a galaxy. If a galaxy lies at a small transverse separation

from a background QSO, one can observe Lyman-↵ (Ly↵) absorption due to the neutral

hydrogen present in the CGM. Ly↵ absorption is then a useful tool to probe galactic

physics, too. Indeed, the absorption features can provide us with information about

the temperature, composition and clumpiness of the CGM (Barnes et al., 2014, for a

review). This helps shedding light on the physical processes fundamental to galaxy

formation that occur within such medium, e.g., gas accretion and outflows.

Clearly, the Ly↵ absorption line represents a powerful tool for astrophysics and cosmol-

ogy, as it allows probing a wide range of scales, from hundreds of Mpc down to galactic

scales. In § 1.1 I discuss the main observational features of the this line, as well as the

underlying physics. In § 1.2 I introduce the basic physical processes that need to be

included in simulations to model Ly↵ absorption in the IGM and the CGM, leaving a
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more detailed introduction to this subject to the relevant chapters. Finally, in § 1.3, I

illustrate the outline of this thesis.

1.1 Observational Features of the Ly↵ Absorption Line

Nearly coincident with the discovery of the CMB and shortly after the discovery of

the first QSO (Hazard et al., 1963, Schmidt, 1963), Gunn & Peterson (1965) detected

certain absorption features in its spectrum, proving that the cosmic mass density of

HI was much smaller than the spatially averaged hydrogen of all stars in the Universe.

Assuming that the Big Bang theory was correct, this meant that either galaxy formation

was an extremely e�cient process, exploiting almost all the available neutral hydrogen

in intergalactic space, or that a great fraction of the gas was ionized.

Since then, almost all of our knowledge about the IGM derives from observations in

the optical and UV bands (Meiksin, 2009). These observations have mainly concerned

absorption spectra of QSOs, but also IGM absorption features in the spectra of gamma

ray bursts (GRBs; Totani et al. 2006). Shortly after the discovery by Gunn & Peterson

(1965), it was clear that the absorption features could be exploited as a cosmological

probe. In fact, it was realized that such features should have appeared from neutral

hydrogen in cosmological structures (Bahcall & Salpeter, 1965, Wagoner, 1967). The

presence of the absorption lines turned out to be very common in several spectra, and

Lynds (1971) realized that they corresponded to Ly↵ transitions. Sargent et al. (1980)

showed that the widths of the lines suggested gas temperatures of around 104 K, cor-

responding to the order of magnitude required for photoionizing a gas of primordial

composition, i.e. with low metal5 contamination.

To understand the physics underlying the Ly↵ absorption features in QSO spectra, one

first of all needs to consider the radiation emitted by these objects, which spans di↵erent

regions of the electromagnetic spectrum, from gamma rays to the far infrared (see, e.g.,

Kembhavi & Narlikar, 1999). About 10% of QSOs emit radio frequencies and many of

them show extensive UV emission as well (see, e.g., Kembhavi & Narlikar, 1999), which

can include a prominent Ly↵ emission peak. The UV radiation can be absorbed by the

neutral hydrogen present in the IGM spread between the observer and the QSO. Indeed,

the Ly↵ line of HI, corresponding to the transition of the electron between the first

and second energy levels, is a resonant line with rest-frame wavelength �Ly↵

= 1216 Å.

Therefore, whenever a photon of this wavelength encounters an atom of HI in the ground

state, there is a high probability that it is absorbed, promoting the electron to the second

energy level. The electron will eventually go back to the fundamental level, re-emitting

a Ly↵ photon. However, in general the outgoing photon will be emitted in a direction

di↵erent from the one of the incoming photon. That is why the neutral hydrogen in

5In the astrophysical lexicon, metals comprehends all elements other than hydrogen and helium (and
their isotopes).
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the intervening IGM e↵ectively prevents part of the Ly↵ photons emitted by the QSO

from reaching the observer. As a result, an absorption line in the QSO spectrum will be

observed.

As a photon travels from the QSO to the observer through the IGM, it is continuously

redshifted due to the expansion of the Universe. Hence, atoms of neutral hydrogen at

di↵erent locations along the line of sight will “see” the incoming photon at di↵erent

wavelengths. If zQ is the redshift of the QSO and z an intermediate redshift between

the observer and the QSO itself, a photon with rest-frame wavelength � at zQ will have

a wavelength equal to �a(z)/a(zQ) at redshift z. Therefore, the photons emitted in the

range of wavelengths a(zQ)/a(z)�Ly↵

< � < �Ly↵

can be absorbed by the IGM between

redshift z and zQ. This e↵ect gives rise to an attenuation of the electromagnetic radiation

detected in the spectrum. Furthermore, when an atom at redshift z undergoes a Lyman-

↵ transition, one will not observe a dip in the spectrum at �Ly↵

, but at (1 + z)�Ly↵

.

Hence, when observing a QSO spectrum, one will not see one unique absorption line,

but many replicas of the same line in the range of wavelengths �Ly↵

< � < (1+zQ)�Ly↵

,

corresponding to the absorption by neutral hydrogen atoms at di↵erent redshifts. This

collection of spectral features is called “Ly↵ forest”. As an example, Figure 1.2 shows

the spectrum of the quasar HS0741+4741 at z = 3.22 (Songaila, 2006). The peak at

5130Å is the Ly↵ emission of the QSO. Blueward of the peak, one can clearly see the

Ly↵ forest.

The Ly↵ forest has been studied with growing interest since its discovery. Given that the

Ly↵ forest traces the underlying distribution of HI, which in turn relates to the density

fluctuations in the distribution of baryons, the statistical properties of the Ly↵ forest

could be modeled directly from first principles. With the development of cosmological

simulations, it became possible to compute the density fluctuations at a certain redshift

starting from initial conditions suggested by cosmological models and predict the statis-

tics of the absorption lines. In the past two decades, an ever-growing e↵ort has been

devoted to constraining cosmology from the observed statistics of the Ly↵ forest and,

conversely, predicting the properties of the Ly↵ forest from cosmological simulations

(McQuinn, 2016, for a review).

1.2 Ly↵ Absorption in the IGM and the CGM

In the previous section, it has been explained that the Ly↵ forest arises from the scat-

tering of photons along their path from the QSO to the observer. Solving the equations

of radiative transfer for photons traveling from the background QSO to the observer

through the IGM, one can obtain the expression of the Ly↵ opacity ⌧
⌫

of the IGM at

position s and time t, as a function of the frequency ⌫ of the emitted photons in the rest
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Lyα	Emission	

Lyα	Forest	

Figure 1.2: Spectrum of the quasar HS0741+4741 at z = 3.22. The peak at 5132
Åis the Ly↵ emission of the quasar. The Ly↵ forest is visible blueward of the peak.
Redward of the peak, metal absorption lines can be seen. Figure adapted from Meiksin
(2009), originally made by Songaila (2006).

frame of the QSO, located at position s0 (see, e.g., Meiksin, 2009):

⌧
⌫

=

Z
s

s0

ds0 nHI(s
0, t)�

⌫

, (1.1)

where nHI(s0, t) is the HI number density and �
⌫

is the cross section of the scattering of

Ly↵ photons o↵ the line of sight. The flux, normalized to the continuum of the QSO, is

then simply given by F = e�⌧ .

From (1.1), it is clear that the HI density plays a key role in determining the Ly↵

opacity. Therefore, when deriving the Ly↵ absorption in numerical simulations, it is

important to accurately compute this quantity, modeling all relevant ionization and re-

combination mechanisms of hydrogen. Below the so-called self-shielding density thresh-

old (. 6.0 ⇥ 10�3 cm�3 at 2 < z < 3, see Rahmati et al. 2013), the ionized fraction

of hydrogen is predominantly determined by the balance between photoionization due

to the UVB and recombination, the rate of which is inversely proportional to the tem-

perature of hydrogen (/ T�0.7; Meiksin 2009). Above the self-shielding threshold, the

photoionization rate drops down, because the hydrogen density is high enough so that

the electrons that are stripped away from a newly photoionized hydrogen atom quickly
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recombine with a neighboring HI nucleus. This is indeed the meaning of “self-shielding”,

i.e. hydrogen “shields itself” from photoionization. On the other hand, in this density

regime, collisions between hydrogen atoms are more frequent, and the electrons can be

stripped away through collisional ionization. At even higher densities (& 102 cm�3), the

photons emitted by newly recombined hydrogen atoms can, in turn, photoionize other

hydrogen atoms (Rahmati et al., 2013). This recombination radiation contributes to the

total photoionization rate, flattening its dependence on the hydrogen density in optically

thick regions.

The typical densities of the IGM are well below the self-shielding threshold (. 10�4 cm�3

at z ⇡ 2, see, e.g., Meiksin 2009), therefore the relevant physics of the Ly↵ forest is

described by photoionization and recombination only. These processes can be easily

implemented to compute the HI density from the baryon density distribution given by

hydrodynamic cosmological simulations. The simplicity of the modeling makes simula-

tions particularly e↵ective in describing the properties of the IGM.

Within the CGM, the hydrogen density is often above the self-shielding threshold; as

such, an accurate modeling has to take into account all the aforementioned ionization

mechanisms. The most rigorous way to model them would be running full radiative

transfer simulations (e.g., Faucher-Giguère et al., 2009a, Iliev et al., 2007, Petkova &

Springel, 2011, Zahn et al., 2011), but this approach is computationally very expensive.

For this reason, the various ionization mechanisms are usually implemented with analyt-

ical approximations, previously calibrated through radiative transfer codes, on top of the

outputs given by hydrodynamic simulations (e.g., Rahmati et al., 2013). Whereas the

physics governing Ly↵ absorption is straightforward and well understood, the density

and temperature of the CGM depend also on less clear processes, for instance outflows,

gas accretion and galactic winds. These processes are generally implemented through

active galactic nuclei (AGN) and stellar feedback prescriptions in cosmological simu-

lations. This means that the Ly↵ absorption in the CGM could potentially constrain

feedback and other sub-resolution physics in simulations.

A full account of all the literature about observations and simulations of Ly↵ absorption

in the IGM and the CGM is beyond the scope of this Chapter. The introductions of

Chapters 2 and 3 include a review of the numerical works studying Ly↵ absorption in

the IGM and the CGM that are relevant to the research projects described in those

chapters.

1.3 Thesis Outline

This thesis presents the results of my work undertaken mainly at the Max-Planck-

Institute for Astronomy (Max-Planck-Institut für Astronomie), under the supervision

of Prof. Dr. Joseph F. Hennawi. The main purpose of the thesis is to exploit the full



Chapter 1 10

potential of the Ly↵ absorption line to investigate the physics of the IGM and the CGM

through cosmological simulations.

The first part of the thesis focuses on the IGM. Chapter 2 presents the result of the

my first PhD project, published in Sorini et al. (2016). I develop a novel technique to

predict various statistics of the Ly↵ forest with large N-body cosmological simulations. I

demonstrate that the results given by this technique agree within 10%-13% (depending

on the specific statistic considered) with the predictions of a reference hydrodynamic

simulation. By comparing the results of the method with other attempts of modeling

the statistics of the Ly↵ forest in the literature, I display that the technique developed

represents the state-of-the art in this respect. I also show that, given current numerical

constraints, the method developed in my work could be applied on Gpc-scale N-body

simulations. Therefore, its possible applications include a more accurate estimation of

the scale of the Baryon Acoustic Oscillations (BAO) from their signature on the cross-

correlation function of the Ly↵ forest, or the study of large-scale fluctuations of the

UVB.

The second part of the thesis considers both the IGM and the CGM. In Chapter 3, I

present the second project undertaken during my PhD (Sorini et al., 2017, to be sub-

mitted). For the first time, I compare the predictions of state-of-the-art hydrodynamic

cosmological simulations with observations of Ly↵ absorption around foreground galax-

ies at di↵erent transverse separations from background quasars, ranging from ⇠ 25 kpc

to ⇠ 17 Mpc. The main result is that the observables that I considered are capable of

constraining the physics implemented in numerical simulations (such as feedback pre-

scriptions), even more so with the increasingly high precision expected from surveys

in the near future. Thus, the comparison presented in Chapter 3 represents a new

fundamental test for simulations that should be considered by future numerical works.

Chapter 4 contains the preliminary results that I obtained within a project under the

supervision of Prof. Dr. Matthias Bartelmann, at the Institute for Theoretical As-

trophysics (Institut für Theoretische Astrophysik). Although, as underlined in the first

chapters, cosmological simulations represent the most e�cient way to study Ly↵ absorp-

tion and in general the large-scale structure of the Universe, a major need still remains

for developing analytical methods capable of predicting statistics of the clustering of

matter. In this context, I present numerical tests that will be needed in the near future,

in order to compare the power spectrum of the momentum density fluctuations of DM,

computed through a novel analytic method based on Bartelmann et al. (2016), with the

predictions of N-body simulations (Littek, Sorini et al., in prep.). This represents an

intermediate step necessary to generalize Bartelmann et al. (2016) approach in order

to achieve the first accurate, fully analytical, prediction of the statistics of Ly↵ forest

statistics (Sorini et al., in prep.).

I summarize the main conclusions of this thesis in Chapter 5, where I also discuss the

perspectives opened by my research. I am the main contributor of the work presented
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in this thesis. At the beginning of every chapter, I will clearly state what my personal

contribution is.

During my PhD studies, I have also independently accomplished an extensive follow-up

work based on my Master thesis, which resulted in a publication (Sorini, 2017), of which

I am the sole author. This work is not included in this thesis, because it focuses on

slightly di↵erent topics and was partially already included in my Master thesis. My list

of publications can be found at the end of this thesis, before the bibliography.



	



Chapter 2

Modeling the Ly↵ Forest in

Collisionless Simulations

The large number of QSOs discovered to date enables statistical analyses of the ab-

sorption spectra by considering the Ly↵ transmitted flux along many di↵erent lines of

sight, called “skewers”. The measured statistical properties can be compared to theo-

retical models of the IGM, constraining cosmological parameters as well as the thermal

history of the IGM. In this work, we focus on three observationally most relevant statis-

tics of the transmitted flux: the probability density function (PDF; Rauch et al. 1997)

the line-of-sight power spectrum (1DPS; Croft et al. 1999, Palanque-Delabrouille et al.

2015), and the 3D power spectrum (3DPS; Slosar et al. 2011). The 3DPS can be used

for an independent measurement of the BAO characteristic scale (Delubac et al., 2015,

Font-Ribera et al., 2014a); future increase in the number of observed quasars at red-

shifts z > 2 promises tight constraints on the expansion history of the universe at high

redshifts and other cosmological parameters (Font-Ribera et al., 2014b).

This Chapter contains the material published in Sorini et al. (2016), slightly re-adapted for this
thesis. I am the main contributor of the work described here. I developed several ideas underlying the
methods presented in this Chapter and implemented most of the codes utilized for the analysis of the
simulations, which was conducted entirely by myself. Dr. José Oñorbe contributed with ideas and advice
on the development of the analysis and the codes. Dr. Zarija Lukić ran the simulations considered in
this work and provided suggestions for tests to be conducted. Prof. Dr. Joseph F. Hennawi is the author
of some of the codes used in the analysis of the simulations. He owns the conceptual foundation of the
work and contributed to the project with ideas and advice.

When this work was in its early stage, highly preliminary results were were presented in the disserta-
tion for the Galilean Diploma, submitted to the Galilean School of Higher Education (Scuola Galileiana
di Studi Superiori) of Padua (Italy) in November 2014. Those results concern numeric tests functional
to the later development of methods discussed in this Chapter. Such tests were based on simulations
at a lower resolution than the ones used in this thesis. Hence, despite the similar topic, the results and
simulations presented in this Chapter are clearly di↵erent from the ones presented in the earlier Galilean
dissertation (which is unpublished). As such, the results presented in the Galilean dissertation do not
constitute part of this thesis.

13
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Performing all the above mentioned studies requires not only precise observations, but

also accurate theoretical modeling that is far from being straightforward. As introduced

in Chapter 1, the Ly↵ forest is the observational signature of HI, and is set by the

interplay of gravitational collapse, expansion of the universe, and reionization processes

due to the buildup of a background of UV photons emitted by AGN and star-forming

galaxies (Cen et al., 1994, Croft et al., 2002, Hernquist et al., 1996, McDonald et al.,

2000, Meiksin & White, 2001, Zhang et al., 1997). There is no analytic solution for

the small-scale evolution of the (baryon) density fluctuations over time. In order to

precisely describe the behavior of the IGM, it is therefore necessary to treat the prob-

lem numerically. In this respect, hydrodynamic cosmological simulations have led to a

consistent description of the IGM in the framework of structure formation (Cen et al.,

1994). However, they are computationally expensive, making it challenging to reach

high resolutions. Furthermore, available memory limits how large volume can be run in

high-resolution simulations. For example, it would be necessary to run a simulation of

⇠ 1 cGpc on a side to probe the scales of BAO and study their signature in the Ly↵

forest (Norman et al., 2009, Slosar et al., 2009, White et al., 2010). The absorption

lines are set by physical processes occurring around the Jeans scale (see, e.g., Dodelson,

2003), whose order of magnitude is expected to be 100 ckpc (Gnedin & Hui, 1996, 1998,

Kulkarni et al., 2015, Rorai et al., 2013). Recent work indicates that a resolution of

20 ckpc is required to achieve ⇠1% precision in the description of the statistics of the

Ly↵ forest (Lukić et al., 2015). This implies that IGM-BAO simulations would require at

least 500003 resolution elements to span such a wide dynamic range, far beyond current

(and near future) computational resources.

Collisionless simulations neglect baryonic pressure, therefore they are not as accurate

as hydrodynamic simulations on small scales. However, on large scales baryonic forces

are negligible, thus collisionless simulations are as good as hydrodynamic ones in this

regime. For this reason, N-body collisionless simulations are often used in cosmology to

study the formation and evolution of structure in large volumes, but with poor mean

inter-particle spacing (often several hundreds ckpc). Clearly, it is desirable to find strate-

gies that combine the volume of collisionless but retain the accuracy of high-resolution

hydrodynamic simulations. This objective has been recognized in the past, resulting in

the development of various approximate methods to predict the Ly↵ forest from N-body

simulations.

The simplest approach is assuming that baryons perfectly trace DM (e.g. Croft et al.

1998, Petitjean et al. 1995). In this over-simplified picture, the baryon density field is the

scaled version of the matter density field. However, DM particles are collisionless, so the

pressure of baryons which competes with gravitational collapse is simply neglected. The

e↵ect of pressure was instead included by e.g. Gnedin & Hui (1998) as a modification

of the gravitational potential. Another approach consists in running three simulations,

all with insu�cient resolution or box size, and compensate for the resulting errors in

the estimation of the power spectrum applying splicing techniques (Borde et al., 2014,
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McDonald, 2003). It has been shown by Lukić et al. (2015) that the accuracy of this

method is around 10%. A di↵erent widely used strategy is mimicking baryon pressure by

smoothing the matter density field with a Gaussian kernel (Gnedin & Hui, 1996, Meiksin

& White, 2001, Rorai et al., 2013, Viel et al., 2006, 2002). The flux field produced by

the smoothed density field can then be computed imposing a polytropic temperature-

density relationship to the IGM (Hui & Gnedin, 1997). This method reproduces the

statistics of the flux field reasonably well. For example, Meiksin & White (2001) claim

10% agreement between Gaussian-smoothed collisionless simulations and hydrodynamic

simulations in the cumulative distribution of the flux.

A more refined way to reconstruct the baryon density is applying ad hoc transformations

to the matter density field, calibrated with a reference hydrodynamic simulation (Viel

et al., 2002). Mocks of Ly↵ forest spectra can be obtained generating a Gaussian random

field and then transforming it so that it matches a certain flux PDF and power spec-

trum (Bautista et al., 2015, Font-Ribera et al., 2012a, Font-Ribera & Miralda-Escudé,

2012). Recently, Peirani et al. (2014) exploited a hydrodynamic simulation to calibrate

a mapping from the density field of an N-body simulation to the Ly↵ forest flux, tuned

to reproduce the PDF of the flux. Then, artificial flux skewers are created in order to

reproduce the two-point function of the flux given by the calibrating simulation. This

is done first by computing the conditional PDF of the flux, given the DM density, from

the reference simulation. Subsequently, each pixel is assigned a value of such “condi-

tional flux”. This procedure seems to yield reasonable correlation functions, but noisy

skewers as well. This problem is remedied by drawing flux values from the Gaussianized

percentile distribution of the conditional flux, and then forcing it to match the PDF of

the conditional flux. Visually examining the plots of the resulting flux power spectrum,

it appears close to the one provided by the reference hydrodynamic simulation, but the

accuracy is not quantified by the authors.

The lack of quantitative assessments in the literature makes it harder to compare the

results obtained via di↵erent methods. Conducting a more quantitative study is im-

portant for establishing which problems can be addressed by what methods. Another

important point regards the value of the filtering scale generally adopted in the Gaussian

smoothing of matter. The value of the filtering scale has been measured from observa-

tional data only recently (70 � 120 kpc in the redshift range2 < z < 3.6, see Rorai et al.

2017)1. Hence, in previous numerical studies it has been set to “reasonable” values,

in any case not smaller than the mean interparticle spacing of the simulations involved

(otherwise the smoothing would have negligible e↵ect). For example, White et al. (2010)

used 139 ckpc as smoothing scale in a simulation with a box size of 1.02 cGpc and 40003

particles. Other authors have chosen larger values, for example Peirani et al. (2014)

compare their method with Gaussian-smoothed DM simulations with a filtering scale of

300 h�1ckpc and 1 h�1cMpc.

1This was not known at the time the work presented in this Chapter was carried out.



Chapter 2 16

In the work presented in this Chapter, we use the Gaussian smoothing technique as a

starting point upon which we add more refined transformations of the matter density

field. Following this line of reasoning, we develop two methods, named 1D-IMS and

3D-IMS, where IMS stands for “Iteratively Matched Statistics”, the technique on which

they are grounded. The purpose of our methods is to accurately obtain the flux statistics

from collisionless simulations. This is done through hydro-calibrated mappings, which

are conceptually simpler than those adopted by Peirani et al. (2014). We quantify how

accurately our methods reproduce the PDF, 1DPS and 3DPS of the flux given by a

reference hydrodynamic simulation.

The high accuracy of our methods and a weak dependence on the initial smoothing scale

represent a clear advantage over the Gaussian smoothing technique. Our methods thus

enable using large-box collisionless simulations which do not resolve the Jeans scale. One

important application we have in mind is modeling the BAO signature in the Ly↵ forest.

However, there are more topics which can benefit from it: studies of UVB fluctuations,

cross-correlations between galaxies and Ly↵ forest and others.

This Chapter is organized as follows. In § 2.1 we describe our simulations and calcu-

lation of Ly↵ flux. In § 2.2 we discuss the impact of the most important assumptions

underlying approximate techniques to predict the Ly↵ forest in collisionless simulations.

The Gaussian smoothing method is explored into great detail and we present the first

quantitative analysis of its accuracy in reproducing the 3DPS of flux, as a function of

the smoothing length. In § 2.3 we describe 3D-IMS and 1D-IMS, assessing their accu-

racy. We compare the performances of the various methods in § 2.4. In § 2.5, we apply

3D-IMS to a future relevant context: we compute the flux statistics through an N-body

simulation, calibrating the transformations involved in our technique with a smaller hy-

drodynamic simulation. We show that the method retains accuracy, while at the same

time we demonstrate that the Gaussian smoothing technique does not yield accurate

predictions when applied to simulations involving large boxes. We also compare the

techniques considered by us with previous work in § 2.6. Finally, in § 2.7 we present the

conclusions of this Chapter, discussing possible future applications of our work as well.

2.1 Simulations

The hydrodynamic simulations that we use in this Chapter are carried out with Nyx code

(Almgren et al., 2013, Lukić et al., 2015), while N-body runs are performed with Gadget

code (Springel, 2005). Both codes employ leapfrog — second order accurate method for

integrating the equations of motion of particles. Both codes also adopt the particle-mesh

(PM) method with cloud-in-cell (CIC) interpolation for calculating gravitational forces.

On top of the PM calculation, Gadget adds gravitational short-range force using Barnes-

Hut (Barnes & Hut, 1986) hierarchical tree algorithm, therefore going to the higher

resolution than our Nyx runs done on a uniform Cartesian grid. Nyx, in addition to
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gravity, solves equations of gas dynamics using second-order accurate piecewise parabolic

method. To better reproduce the 3D fluid flow, a dimensionally unsplit scheme with full

corner coupling is adopted (Colella, 1990). Heating and cooling are integrated using

VODE (Brown et al., 1989) and are coupled to hydrodynamics through Strang splitting

(Strang, 1968). All cells are assumed to be optically thin and radiative feedback is

considered only through the UVB model given by Haardt & Madau (2012). For cooling

rates and further details on the physics in Nyx simulations, we refer the reader to

Lukić et al. (2015) paper. The cosmological model assumed is the ⇤CDM model with

parameters consistent with the 7-year data release of WMAP2 (Komatsu et al., 2011):

⌦m = 0.275, ⌦⇤ = 1 � ⌦m = 0.725, ⌦b = 0.046, h = 0.702, �8 = 0.816, n
s

= 0.96. Six

baryonic species are implemented: e�, HI, HII, HeI, HeII, HeIII. The simulations are

initialized at z = 159 with a grid distribution of particles and Zel’dovich approximation

(Zel’dovich, 1970).

To recover the absorption spectra from our simulations, we choose the lines of sight,

which we refer to as “skewers”, drawn parallel to one of the sides of the simulation box.

The optical depth is computed according to equation (2.1). After extracting skewers,

we rescale the optical depth so that the mean flux is hF i = 0.68 at z = 3, a value

consistent with current observations (Becker & Bolton, 2013, Faucher-Giguère et al.,

2008a). Unless otherwise indicated, the results presented in this work refer to redshift

z = 3, but in order to confirm our conclusions are not dependent on redshift, we have

also analyzed redshifts z = 2 and z = 4.

In this work we use two hydrodynamic and two N-body simulations. The two Nyx hy-

drodynamic simulations have identical physics and the same spatial resolution, di↵ering

only in the choice of the box size: the smaller one has a box of 14.2 cMpc on a side,

while the larger one 114 cMpc. The two simulations have 5123 and 40963 resolution

elements respectively, and they were a part of the convergence study done in Lukić et al.

(2015). We will first use only one Nyx simulation to test how well we can reproduce

the forest statistics given only DM particles and no gas information. This simulation is

⇠1% converged resolution-wise, but the box size is too small for accurate reproduction

of flux statistics. However, the main point of our work is to test how well we can match

the given flux statistics, and it is irrelevant how accurately that statistics is describing

a particular cosmological model. In other words, it is important to have a resolution

good enough to correctly capture small-scale physics, but it does not matter that the

large-scale power is missing in the simulation.

We then want to test how accurately the forest statistics can be reproduced in large-

volume simulations, i.e. with box sizes of 1 cGpc and larger. Of course, we do not

have the “true” answer for such large boxes as it would be obtained with hydrodynamic

simulations. Instead, we will use the results of the large-box Nyx run, which is demon-

strated to be converged both in resolution and box size (Lukić et al., 2015), as the

2Wilkinson Microwave Anisotropy Probe
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Figure 2.1: Di↵erence in mass resolution between a state-of-the-art “Hubble-volume”
simulation and a hydrodynamic simulation targeting the Ly↵ forest. On the left (blue
points) we show all particles in 0.5 h�1 Mpc thick slice from the 2563 Gadget N-body
run. That corresponds to a trillion particles in a 4 cGpc box simulation. Right panel
(black points) shows only 1% of particles in the same region from the 40963 Nyx hydro-
dynamic run, visually demonstrating the level of detail needed to capture flux statistics
at percent-level accuracy.

“truth”, and we will reconstruct its flux statistics using an N-body Gadget run in same

box together through the small-box Nyx run. We ran two Gadget N-body simulations

with the same box size as the larger Nyx simulation, 114 cMpc, but with only 5123 and

2563 particles. The number of particles in Gadget runs is chosen to be representative of

the mean inter-particle spacing in the state-of-the-art N-body simulations of “Hubble”

volumes (e.g Habib et al. 2012, 2013, Skillman et al. 2014). As an example, we show in

the left panel of Figure 2.1 all particles in a 0.7 cMpc thick slice from the 2563 Gadget

run. This run in 114 cMpc box yields approximately the same mass resolution as one

trillion particles in a 4 cGpc simulation would. The right panel displays only 1% of the

particles in the same region, from the 40963 Nyx hydrodynamic run. The comparison of

the two panels makes it immediately apparent the high resolution which is needed for

modeling the Ly↵ forest statistics at ⇠ 1% accuracy.

Gadget simulations share the same phases in the initial conditions as the large Nyx

run (as clearly visible in Figure 2.1), enabling comparison of individual skewers. We

emphasize that although somewhat artificial, this test is actually more di�cult than the

real-world situation, and thus we expect that we can only overestimate the error of our

method. The reason is that in reality we would use a fully converged ⇠ 142 cMpc hy-

drodynamic simulation to model flux statistics in ⇠ 1 cGpc N-body simulations, making

box size errors negligible, whereas here we cannot avoid them.
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2.1.1 Ly↵ Skewers

The Ly↵ forest arises from the scattering of photons along their path from a background

quasar to the observer. The fraction of the transmitted flux is F = exp(�⌧), where ⌧

is the opacity of the intervening IGM. The opacity in redshift space at a given velocity

coordinate u along the line of sight is given by

⌧(u) =

Z
du0 �Ly↵

� nHI(u0)

H(z)b(u0)
exp


�

(u � u0(u0))2

b(u0)2

�
(2.1)

where u0 is the component of the Hubble flow velocity field u

0 along the line-of-sight,

over which the integral is calculated. In the above expression, nHI(u0) is the number

density of neutral hydrogen and � and �Ly↵

are the cross section3 and wavelength of the

Ly↵ transition in the rest frame, respectively. The line-of-sight velocity of gas particles

is then given by u0(u0) = u0 + upec(u0), the second term being the peculiar velocity of

the gas. In equation (2.1) thermal broadening is described by b(u0) =
p

2k
B

T (u0)/m
p

,

where T (u0) is the temperature of the gas and m
p

the proton mass. The convolution

with thermal broadening and peculiar velocities actually yields a Voigt profile in equation

(2.1) instead of a Gaussian. However, the latter is a good approximation for ⌧ < 100

(Lukić et al., 2015), regime relevant for the Ly↵ forest studies. Computation of ⌧

requires a determination of the neutral hydrogen density, which in turn depends on

baryon density and temperature, as well as the hydrogen ionization and recombination

rates. The challenge for approximate methods is to recover relevant Ly↵ forest statistics,

without the knowledge of baryon thermodynamical quantities.

2.2 Limitations of Approximate Methods

The very first task of approximate methods is to obtain an estimate for the baryon

density field. This is commonly done via manipulation of the density field in an N-

body run (Meiksin & White, 2001, Peirani et al., 2014, Viel et al., 2002), to account

for the baryonic pressure smoothing. The functional form for the smoothing is usually

a Gaussian and that is indeed the starting point for all methods considered in this

work. Secondly, approximate methods need other assumptions, concerning the estimate

of the temperature of the IGM and its velocity field. In this section, we review these

approximations and assess their impact on the accuracy of the Ly↵ flux, as a function

of the smoothing length. In order to better understand inherent limitations of the

approximate methods, we will also consider separately the accuracy of baryon density

reconstruction of other thermodynamic quantities.

3Actually, when one considers thermal motions of the gas particles, the cross section �Ly↵ of the Ly↵

transition is given by the product of � and a Voigt profile. Integrating �Ly↵ over all possible frequencies
of the intervening photon, one obtains �. Therefore, strictly speaking, � is the frequency-integrated
cross section and, as such, has the dimensions of area/time. For an extensive derivation of equation
(2.1), see e.g. Meiksin (2009).
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2.2.1 Gaussian Smoothing

A pseudo baryon density field can be generated from a collisionless simulation by smooth-

ing the matter density fluctuations � at a characteristic smoothing length �
G

given as

��G(k) = �(k) exp(��2
G

k2) . (2.2)

This length is expected to be of the order of the Jeans filtering scale, which is in comoving

units (Binney & Tremaine, 2008):

�2
J

(t) =
c2
s

(t)a(t)

4⇡G⇢0
, (2.3)

where c
s

is the speed of sound at time t, a(t) the scale factor and ⇢0 the mean matter

density and G is Newton’s gravitation constant. The same line of reasoning can be

applied to the line-of-sight velocities of particles as well. Once both matter density and

velocities are smoothed, flux skewers can be computed with some approximation for the

IGM temperature (discussed in § 2.2.2), replacing baryon density and velocity fields with

the corresponding smoothed matter quantities. For the sake of clarity, we summarize

the inputs required to apply the Gaussian smoothing technique (and our methods, which

will be discussed in § 2.3.1 and § 2.3.2) in Table 2.1.

There are quantitative studies in the literature aiming to understand how well the Gaus-

sian smoothing technique reproduces various flux statistics computed through hydrody-

namic simulations (see § 2.6 for details), but none of them considers the flux 3DPS. We

take �
G

as a free parameter and assess the accuracy with which the Gaussian smoothing

technique recovers the flux 1DPS, PDF and 3DPS, through the following steps:

1. We have particle positions and velocities from a simulation. We deposit them on

a grid using CIC deposition; we use the grid with as many cells as the number of

particles in the simulation.

2. We smooth this density field with a certain smoothing scale �
G

and the velocity

field at 228 ckpc (see appendix A).

3. We compute 1DPS, 3DPS and PDF of the flux field obtained using Fluctuating

Gunn-Peterson Approximation (see § 2.2.2).

2.2.2 Fluctuating Gunn-Peterson Approximation

Equation (2.1) can be simplified expressing the neutral hydrogen density nHI as a func-

tion of the baryon density fluctuations �b. Let us consider a gas composed by hydrogen

and helium. Let xHII, xHeII and xHeIII be the fractions of ionized hydrogen, singly and
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doubly ionized helium respectively. The total number densities of hydrogen nH and he-

lium nHe are related through nHe = �nH, where � = X/4Y . Assuming photoionization

equilibrium, the number density of neutral hydrogen is given by

nHI =
↵(T )

�HI
xHII[(1 + �)xHII + �xHeIII]n

2
H (2.4)

where ↵(T ) / T�0.7 is the Case A recombination coe�cient per proton and �HI the

photoionization rate of hydrogen. Commonly used Case A and B definitions di↵erentiate

media that allow the Lyman photons to escape or that are opaque to these lines (except

for Lyman-alpha), respectively. Case A is used in the optically-thin limit, which can

be applied in most of the Ly↵ forest, since it describes regions where the density is low

enough to let Lyman limit photons escape (Furlanetto et al. 2006, Kuhlen & Faucher-

Giguère 2012; see also the discussion in Miralda-Escudé 2003 and Kaurov & Gnedin

2014). If helium is only singly ionized, the factor between square brackets in equation

(2.4) becomes (1 + �)xHII, while for xHII = xHeIII it is (1 + 2�)xHII. Apart from the

detailed modeling of the ionized fractions, the important point of equation (2.4) in this

context is that nHI / T�0.7n2
H.

Simulations show that the temperature-density relationship of the IGM is a power law

over a wide range of density and temperature (Hui & Gnedin, 1997), so that

T (u) = T0(1 + �
b

(u))��1 (2.5)

where T0 and � are constants. From our simulation, at redshift z = 3, we obtained

T0 = 1.09⇥104 K and � = 1.56, following the fitting procedure described by Lukić et al.

(2015). Assuming (2.5), the relationship between nHI and �b can be expressed in terms

of the parameters of our simulation as follows:

nHI(u) = A
8.28 ⇥ 10�13 s�1

�HI

⌦bh
2

0.0227

✓
1 + z

4

◆3

✓
T0

1.09 ⇥ 104 K

◆�0.7

[1 + �b(u)]2�0.7(��1) (2.6)

where A is a proportionality constant. For our simulation, A = 3.09 ⇥ 10�12 cm�3.

Neglecting the scatter in the temperature-density relationship of the IGM, i.e. assuming

(2.5) and consequently nHI / (1 + �
b

)2�0.7(��1), is usually referred to as “Fluctuating

Gunn-Peterson Approximation” (FGPA; Croft et al. 1998, Weinberg et al. 1997). Since

the FGPA is useful when one cannot or does not wish to run a hydrodynamic simulation,

one also needs an approximation for �b in equation (2.6). For this reason, in any practical

situation �b is replaced by the DM density fluctuations �DM, with or even without

Gaussian smoothing. For the sake of clarity, in the remainder of our work we shall refer

solely to the operation described by equation (2.2) with “Gaussian smoothing”. On the

contrary, the Gaussian smoothing of the DM density field, combined with the FGPA
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to compute the Ly↵ flux field, shall be denoted as “Gaussian smoothing and FGPA”

(GS+FGPA).

We now define a new field, the “flux in real space” (or simply “real flux”) Freal as the

flux that would be obtained neglecting thermal broadening and peculiar velocities. This

is not a physical observable, but the shape of its power spectrum is sensitive to the Jeans

scale (Kulkarni et al., 2015) and it will be a useful quantity in our computations. As

such, we can define the opacity in real space

⌧real(u) =
�Ly↵

�

H(z)
nHI(u) (2.7)

Within the FGPA, ⌧real / nHI / (1 + �
b

)2�0.7(��1). Convolving (2.7) with the gas

velocities and thermal broadening, one obtains (2.1).

2.2.3 Accuracy of FGPA

We now assess the accuracy of the FGPA using the baryon density field from the hy-

drodynamic simulation as a reference. Indeed, we want to focus on how the accuracy of

the FGPA is influenced by approximating the baryon velocity field with the Gaussian-

smoothed DM velocity field and by the assumption that the temperature-density re-

lationship is a power-law. In this way, we investigate the “inherent” accuracy of the

FGPA.

In our hydro simulation, we also have the velocities of DM particles. Thus we construct

the velocity field by CIC-binning them on a grid with as many cells as the number of

particles and then smooth it with a Gaussian kernel. In principle, the smoothing length

of velocity could be di↵erent from the one of the DM density field. We keep it fixed to

228 ckpc throughout this work, since we verified that this value gives the best overall

accuracy in reproducing the statistics considered (see appendix A for further details).

However, we have also checked that modifying the smoothing length for the velocity

field does not significantly change our conclusions.

In Figure 2.2 we show di↵erent physical quantities along one skewer as an example, to

display the di↵erences between the hydrodynamic simulation (solid green lines) and the

FGPA (dashed blue lines). The top panel shows the density fluctuations along the skewer

considered. The second panel underscores the di↵erences between a temperature-density

relationship with no scatter and the temperature given by the hydrodynamic simulation.

We see that the biggest di↵erences arise around the highest density peaks, where shocks

could be present. In the third panel we plot the line-of-sight velocity of DM particles4

(black line) and baryons (green line). Here we also plot the smoothed DM velocity, which

4The CIC-binned velocity field of DM particles occasionally results in pixels with no particles in
them. To correct for this e↵ect, we assign to these grid cells the average velocity of their first neighbors
in the 3D space. Then, we proceed with the Gaussian smoothing.
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Figure 2.3: In the top panels, the solid green lines represent the dimensionless 1DPS
(left) and PDF (right) of the flux given by our reference hydrodynamic simulation.
The dashed blue lines are the 1DPS and PDF of the flux computed by imposing a 1-to-
1 temperature-density relationship on the baryon density given by the hydrodynamic
simulation, and using the Gaussian-smoothed line-of-sight velocities of dark matter
instead of baryons. The dashed vertical line delimits the dynamic range considered to
compute the accuracy (see text for details). The relative errors plotted in the lower
panels set the intrinsic limitations of approximate techniques predicting the Ly↵ forest
through the manipulation of the DM density field given by collisionless simulations.

is the one we actually adopt (dashed blue line). In the last panel, we show the di↵erence

between the flux computed as explained in this section and from the hydrodynamic

simulation. We notice that the FGPA recovers the flux skewer remarkably well.

We show the results about the statistics of flux skewers in Figures 2.3 and 2.4. In the

upper panels of Figure 2.3 we show the flux 1DPS and PDF given by the hydrodynamic

simulation and the FGPA applied as explained above. In the lower panels, we show the

relative di↵erence of the statistics obtained with respect to the results of the reference

simulation. Analogous plots for the flux 3DPS can be seen in Figure 2.4. The 3DPS can

be expressed as a function of the norm of the k-mode considered and of µ = n̂ · k/k,

where n̂ is the unit vector parallel to the line-of-sight. We shall denote the dimensionless

3DPS as �2(k, µ) = k3P
F

(k, µ)/2⇡2.

The accuracy of the FGPA of course depends on the Fourier modes considered for the

power spectra and on the specific binning adopted for the flux PDF. We now wish

to define a set of parameters describing the overall goodness of the method. For this

purpose, we first of all delimit a range of Fourier modes and flux in which it is sensible

to compare the statistics obtained via the simulation and the FGPA. In current state-

of-the-art high resolution spectra, metal absorption features can increase the 1DPS at

k & 0.1 s km�1 (Lidz et al., 2010, McDonald et al., 2000, 2005, Viel et al., 2013). For

this reason, this is typically the maximum k considered in high-resolution power spectra
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Figure 2.4: We show the dimensionless 3DPS �2(k, µ) of the flux given by our
reference hydrodynamic simulation (solid green lines) and of the flux computed by
imposing a 1-to-1 temperature-density relationship on the baryon density given by the
hydrodynamic simulation, and using the Gaussian-smoothed line-of-sight velocities of
dark matter instead of baryons (dashed blue lines). We consider 4 bins of µ, and show
�2(k, µ) as well as the relative di↵erence between the spectra. The dashed vertical line
marks the dynamic range considered to compute the accuracy of the FGPA (see text
for details). The relative errors plotted show the intrinsic limitations of approximate
techniques predicting the Ly↵ forest through the manipulation of the DM density field
given by collisionless simulations.
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studies. We shall therefore set our upper limit of the range of k considered to 0.1 s km�1.

This upper bound is indicated with the vertical dashed line in the left panels of Figure

2.3. The lower bound of the k-range considered by us is simply given by the scale of the

simulation box. The overall accuracy of the FGPA is assessed by the arithmetic mean

of the modulus of the relative error in the range of k considered:

m =
1

N

X

k<0.1 s km�1

���P hydro
F

(k) � PFGPA
F

(k)
���

P hydro
F

(k)
(2.8)

where N is the number of modes in such range. A small value of m implies a good

mean accuracy. Note however that it does not necessarily mean that the accuracy is

good everywhere. Indeed, a low value of m can be achieved by a set of points where

the relative error is extremely close to zero for many of them but large for just a couple

of modes. In other words, m tells us nothing about the dispersion of the relative error

around its mean value. To estimate such dispersion, we simply compute the root-mean-

square s of the relative error in the range considered:

s2 =
1

N

X

k<0.1 s km�1

0

@

���P hydro
F

(k) � PFGPA
F

(k)
���

P hydro
F

(k)
� m

1

A
2

(2.9)

The range within which we compute m and s is 0.1 < F < 0.9. The upper bound means

that we are excluding a range of flux often limited by continuum placement uncertainties

(Lee, 2012), whereas the lower bound translates into ignoring flux values susceptible to

inaccuracies in modeling optically thick absorbers (Lee et al., 2015). The same analysis

is applied to the 3DPS as well, by doing a separate calculation for each bin of µ (we

consider 4 µ-bins, evenly spaced between 0 and 1).

The mean accuracy of FGPA at a smoothing length of 228 ckpc in reproducing 1DPS

and PDF of the flux given by the hydrodynamic simulation is 2%. For the 3DPS, it is

between 3% and 5%, depending on the µ-bin considered. We stress that these levels of

accuracy are obtained employing in the computations the baryon density provided by

the hydrodynamic simulation. It means that, regardless how well we create the pseudo

density field, this sets our limiting accuracy. To improve it even more, one should

come up with more refined ways of reproducing the velocity field and the scatter in the

temperature-density relationship.

To sum up, one source of error is considering DM velocities instead of baryonic ones.

This is minimized because we looked for the optimal smoothing length for the velocity

field. The remaining uncertainty arises from the scatter in the temperature-density

relationship which is not captured by the FGPA.
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Method DM Particle (�
G

, T0, �) Freal: 3D Power F : 1D Power
Distribution Spectrum and PDF Spectrum and PDF

GS+FGPA X X
3D-IMS X X X
1D-IMS X X X X

Table 2.1: Inputs needed for the di↵erent methods considered.

2.3 Iteratively Matched Statistics

To better model Ly↵ forest in collisionless simulations, we developed two novel methods

which iteratively match certain Ly↵ forest flux statistics given as input. The most

accurate inputs today come from hydrodynamic simulations, and that is what we use

here. We name this technique “Iteratively Matched statistics” (IMS); the two methods

are called 3D-IMS and 1D-IMS.

2.3.1 3D Iteratively Matched Statistics

The basic idea of 3D-IMS is to compute the flux from a collisionless simulation and

match its one- and two-point statistics to a reference hydrodynamic simulation. Because

redshift space distortions and thermal broadening make the flux field anisotropic, we for

simplicity conduct this matching in real space, where the flux is an isotropic random

field. So, in general, one needs a collisionless simulation and a model for the 3D power

spectrum and probability distribution function of the flux in real space to apply 3D-IMS.

In our case, the model for these statistics is the result of our hydrodynamic simulation.

The tabulated 3D power spectrum and PDF of the flux in real space are the inputs of the

method, together with the DM particle distribution given by the collisionless simulation

and the thermal parameters of the IGM (see Table 2.1). Before going into the details of

the procedure, it is worth enumerating the main steps, to better understand the logical

flow.

1. As a starting point, the DM density is smoothed with a Gaussian kernel with a

smoothing length �
G

. In a situation where the DM was simulated on a coarse

grid (e.g. with a PM code), �
G

would be at least as large as the inter-particle

simulation. The smoothed field is used to compute the flux in real space within

the FGPA, following equations (2.6) and (2.7). We shall call this flux field FDM
real .

2. The input real flux dimensionless 3D power spectrum and PDF, taken from the

hydrodynamic simulation, are used to calibrate two transformations.

Such transformations are iteratively applied to FDM
real , forcing its dimensionless 3D

power spectrum and PDF to match the ones given as input. The iterations are

implemented until both statistics are matched with high precision.
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3. From the resulting pseudo real flux field, a pseudo baryon density field is obtained

inverting equations (2.7) and (2.6).

4. The pseudo baryon density is Gaussian-smoothed with a smoothing length equal

to the size of a grid cell. As we shall explain later, this step is necessary to remove

hot pixels that give rise to non physical density skewers. The smoothed baryon

density field is then used to compute flux skewers within the FGPA.

The points just enumerated, which can be visualized as a flow chart in Figure 2.5, give

our method its name: Iteratively Matched Statistics (IMS). The prefix 3D stresses that

we are matching the dimensionless 3D power spectrum of the flux in real space. Matching

this statistics is straightforward, as the Freal 3D power spectrum can be analytically fit

by a power law with a Gaussian cuto↵ (Kulkarni et al., 2015) and is isotropic in redshift

space.

On the contrary, reproducing the 3DPS of flux in redshift space would be more com-

plicated, because it is an anisotropic power spectrum. It would require performing

transformations in real space after deconvolving redshift space distortions and thermal

broadening. Matching the 3D power spectrum of the baryon density would not be op-

timal either, since it does not exhibit an obvious Jeans cuto↵ (Kulkarni et al., 2015),

being dominated by higher density structures in collapsed halos at small scales. Al-

though these rare dense regions dominate the baryon power spectrum, they contribute

negligibly to variations in the Ly↵ forest flux because the exponentiation of the opacity

field maps them to zero. As such, we choose to match the statistics of the real-space

flux field, since this is an isotropic field, which is directly related to the observable, that

is the flux in redshift space.

We shall now examine the details of each step of the method. We want to remap FDM
real

to a new field F 3D�IMS
real with the same dimensionless 3D power spectrum as FHYDRO

real . To

do this, let us consider the real flux fluctuations �
F

DM
real

and �
F

HYDRO
real

in Fourier space. We

define F 3D�IMS
real as �

F

3D�IMS
real

(k) = T (k)�
F

DM
real

(k), where T (k) is a function tuned to match

the dimensionless 3D power spectrum of FHYDRO
real . We shall call it “transfer function”

and its explicit expression is given by

T (k) =

vuut
�2

F

HYDRO
real

(k)

�2
F

DM
real

(k)
(2.10)

where �2
X

(k) = k3P
X

(k)/2⇡2 denotes the dimensionless 3D power spectrum of field X.

Let us point out that in our case it is straightforward to apply equation (2.10), because

both FHYDRO
real and FDM

real sample the same modes, having been built from the same

simulation. However, one can apply it also to the more interesting case where FHYDRO
real

is computed from a small-box hydrodynamic simulation and FDM
real from a large-box N-

body simulation. This will be discussed into more detail in § 2.5.
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Figure 2.5: Flow chart of the methods tested. Yellow boxes are the inputs needed.
Blue boxes illustrate the steps of the FGPA applied to the Gaussian-smoothed DM
density (GS+FGPA; see § 2.2.1 and § 2.2.2 for details). 3D Iteratively Matched Statis-
tics consists in appending two further steps at the end of GS+FGPA, before computing
the flux field. These steps are represented by the cyan boxes. 1D Iteratively Matched
Statistics requires to apply two further steps (red boxes) on top of 3D-IMS, just before
extracting flux skewers.

At this point, we compute the pseudo real flux field simply as F 3D�IMS
real (x) = F̄HYDRO

real (1+

�
F

3D�IMS
real

(x)), where F̄HYDRO
real is the mean value of the real flux field obtained from the

hydrodynamic simulation.

The field F 3D�IMS
real does not have the same PDF as FHYDRO

real . To match the PDF, we use

the argument explained by Peirani et al. (2014). We compute the cumulative distribution

of both fields and we construct a mapping between the two fluxes by assigning to each

value of F 3D�IMS
real the value of FHYDRO

real corresponding to the same percentile in their

respective cumulative distributions. We now have a new pseudo real flux field, whose

PDF matches by construction the one of FHYDRO
real . However, its dimensionless 3D power

spectrum is no longer the same as �2
F

HYDRO
real

(k).

To match both dimensionless 3D power spectrum and PDF of FHYDRO
real , we iterate the

two transformations. We verified that both 3D power spectrum and PDF converge to

their counterparts in the simulation. This is a non trivial result.5 Convergence occurs

between 10 and 20 iterations, after which the improvement in the transfer function at

5While seeking the optimal way to match the statistics of the flux fields given by the hydro simulation,
we have applied the IMS technique involving also other fields, like nHI. Convergence has not occurred
in all cases.
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every additional iteration is less than 0.3%. It is worth pointing out that every time we

match the 3D power spectrum there is no warranty that the new flux field has physically

meaningful values, i.e. between 0 and 1. This is indeed the case, so we cannot simply

compute �3D�IMS
b from the resulting flux field. This issue is fixed naturally when we

match the PDF. Since the distributions are mapped percentile to percentile and FHYDRO
real

contains obviously only physical values, pixels with negative flux are mapped to small

but positive values and pixels with flux larger than one are mapped to values close to

but less than 1. It is then fundamental to conclude the iteration process matching the

PDF.

At the end of the last iteration, we have the final pseudo real flux field, whose PDF

matches by construction the one of FHYDRO
real . Since in our model there is a 1-to-1 cor-

respondence between �
b

, nHI and Freal, the PDF of the pseudo baryon density and the

hydrogen number density have also converged to an asymptotic distribution. However,

in the hydrodynamic simulation there is not such a correspondence, since skewers are

not computed within the FGPA. As a result, the PDF of the final �3D�IMS
b does not

perfectly match the corresponding field �HYDRO
b from the reference hydrodynamic sim-

ulation. Furthermore, pseudo baryon density skewers present some non physical cuspy

overdensities. They arise because, whereas the transformation matching the dimension-

less 3D power spectrum of real flux maintains the overall shape of real flux skewers

intact, it generally changes the value of the real flux in single pixels. Even a fluctuation

as little as ⇠ 10�3 can increase the real flux at a local minimum above the values of the

neighboring pixels, e↵ectively changing their rank-ordering. Since the transformation

matching the real flux PDF preserves the rank-ordering of pixels, and because of the

exponentiation of equation (2.7), low-flux regions can give rise to large discontinuities

in density. These cusps can be eliminated with a Gaussian smoothing. In this way, the

density values in neighboring pixels are “blended” together and, as a result, very high

values are turned into physical ones. The drawback is that, if we compute the real flux

from the smoothed field, it will not have the same PDF as FHYDRO
real anymore. A good

compromise is adopting the shortest possible length scale for the smoothing, that is the

size of one cell of the grid on which we CIC-binned the DM particle distribution. In

our case, that corresponds to 28 ckpc. We emphasize here that this last smoothing must

always be below the smallest relevant physical scale in the hydrodynamic simulation,

which in our context is the Jeans scale, not to considerably a↵ect the resulting statistics.

Running the method for di↵erent values of �
G

, we investigate if there is a trend of the

accuracy of the various flux statistics. We remind the reader that the initial smoothing

serves only as a starting point for the method. In any realistic situation, the value of

�
G

is going to be related to the inter-particle separation of the underlying simulation.

Indeed, smoothing on a scale smaller than that would make the PDF of the baryon

density inaccurate, especially in voids (Rorai et al., 2013), which are the most relevant

regions as far as the Ly↵ forest signal is concerned. The results of our analysis are

discussed in § 2.4.
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2.3.2 1D Iteratively Matched Statistics

The method called 1D-IMS has 3D-IMS as a starting point, on top of which further

transformations are applied. Alongside the inputs required by 3D-IMS, one needs to

provide a model for the line-of-sight power spectrum and PDF of the flux in redshift

space as well (see Table 2.1). Once again, we computed these inputs from the hydro-

dynamic simulation. After running 3D-IMS, we are left with a real flux field whose

dimensionless 3D power spectrum and PDF match the ones of the real flux from the

reference hydrodynamic simulation. We then compute the flux in redshift space and ap-

ply again the Iteratively Matched Statistics procedure, this time aiming at matching the

dimensionless line-of-sight power spectrum and PDF of the flux in redshift space from

the hydrodynamic simulation. As in 3D-IMS, we apply two ad hoc transformations.

Analogously to equation (2.10), we define a transfer function as follows

T (k) =

s
P 1D

F

HYDRO(k)

P 1D
F

3D�IMS(k)
, (2.11)

where P 1D
F

HYDRO(k) and P 1D
F

3D�IMS(k) are the line-of-sight power spectra of the flux in

redshift space given by the hydrodynamic simulation and obtained after running 3D-

IMS respectively. After multiplying the Fourier modes of the fluctuations of F 3D�IMS

by T (k), we have a flux field whose dimensionless power spectrum matches �2
F

HYDRO(k)

by construction.

At this point, we match its PDF to the one given by the hydrodynamic simulation ex-

ploiting the cumulative distributions, just like in § 2.3.1. We then reiterate the two trans-

formations until we achieve convergence in both 1DPS and PDF. Since these statistics

are now matched by construction, it would be interesting to check if the 3D correlations

are preserved. We then investigate the trend of the accuracy of the 3DPS as a function

of �
G

.

We run 1D-IMS for di↵erent values of the initial smoothing length �
G

. The results are

discussed in the next section.

2.4 Validation of Iteratively Matched Statistics

After implementing the methods described in the previous sections, we assess the accu-

racy with which we can reproduce the results of the hydrodynamic simulation. In § 3.3.1

we compare the performance of the various techniques in reproducing the skewers of the

simulation. In § 2.4.2 and § 2.4.3 we investigate how accurately the statistics of flux are

recovered.
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2.4.1 Skewers

In Figure 2.6 we show di↵erent quantities along one skewer as an example. From top

to bottom, we plot the baryon density fluctuations, temperature, velocity field, flux in

real space and flux in redshift space. In all panels, solid green lines refer to the skew-

ers extracted from the hydrodynamic simulation, solid blue lines to the ones obtained

through GS+FGPA, and solid cyan and dashed red lines to 3D-IMS and 1D-IMS, re-

spectively. Each curve corresponds to the optimal smoothing length for the respective

method. The dashed blue line in the third panel from the top refers to the line-of-sight

velocities of DM, Gaussian-smoothed at �
G

= 228 ckpc. This is the velocity field used

in all approximate methods to compute all quantities above (see appendix A).

The 1D-IMS technique has 3D-IMS as its starting point, and di↵ers from it for two

additional transformations to match the dimensionless 1DPS and the PDF of the flux in

redshift space with the results from the hydrodynamic simulation. Therefore, the flux

in real space, and consequently baryon density fluctuations and temperature fields, are

the same as in 3D-IMS.

We can see that all methods result in skewers that trace those of the hydrodynamic

simulation very well, and are also consistent with one another. This means that not

only is IMS able to reproduce the statistics of the Ly↵ forest correctly, but it also

generates reasonable mock skewers. This did not obviously have to be the case. For

example, the method LyMAS (Peirani et al., 2014) is designed to match the 1DPS and

PDF of the flux from hydrodynamic simulations as well, but only the more complex

version of LyMAS, which involves two additional transformations, produces reasonable-

looking skewers. In our techniques, the mappings guarantee that both statistics and flux

skewers are reproduced accurately.

Furthermore, not only is the flux accurately reproduced, but also the other quantities

plotted in Figure 2.6. The biggest di↵erence between IMS methods and GS+FGPA is

that the former better reproduces high and narrow density peaks, like the ones around

3 cMpc and 4 cMpc in Figure 2.6.

Conversely, this is not always the case for smaller overdensities, such as the one around

0.7 cMpc in Figure 2.6, where IMS produces a lower density peak than in the hydro.

Note however that at this location the flux in real space is still much more accurate with

our methods, since they are designed to match its 3D power spectrum. Small di↵erences

in Freal can easily yield large di↵erences in density because of the exponential in equation

(2.7). Such di↵erences persist also in temperature, which in our context is connected to

the density through a pure power law. Flux skewers in redshift space appear to be more

similar among the various methods, since the convolution of real flux with the velocity

field and thermal broadening tends to smooth out the di↵erences.
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Figure 2.7: Top panels : Line-of-sight power spectrum (left) and PDF (right) of flux,
given by the reference hydrodynamic simulation (solid green line), GS+FGPA (solid
blue line), 3D-IMS (solid cyan line) and 1D-IMS (dashed red line). The results plotted
refer to runs with initial smoothing length 228 ckpc. Bottom panels : On the left, relative
di↵erence between the 1D power spectrum obtained through the di↵erent methods
tested and the one given by the hydrodynamic simulation. On the right, analogous
plot for the PDF. In both panels, the shaded area represents the region within which
the relative di↵erence is smaller than the one obtained applying a 1-to-1 temperature
density relationship to the baryon density given by the hydrodynamic simulation and
using the Gaussian-smoothed line-of-sight velocities of dark matter instead of baryons.
In all panels, the dashed vertical lines delimit the dynamic range considered to compute
the accuracy. Horizontal dashed black lines mark the zero di↵erence level and are meant
to guide the eye. Our methods reproduce the line-of-sight better than GS+FGPA. In
particular, 1D-IMS matches both power spectrum and PDF by construction.

2.4.2 Comparison of the Methods

All methods we considered have GS+FGPA as their starting point, with �
G

as a free

parameter. We now compare the flux statistics given by each method with the ones from

the hydrodynamic simulation, varying �
G

in the range 0 � 570 ckpc, in steps of 57 ckpc.

The dependence on this parameter of the accuracy in reproducing the various statistics

is di↵erent for each method. It is generally possible to identify an optimal value of �
G

for a given method at matching a certain statistic, but this may not be optimal for all

flux statistics.

In the top panels of Figure 2.7 we compare 1DPS and PDF of the flux in redshift space

given by the hydrodynamic simulation (solid green line) to the approximate methods

considered. Solid blue, solid cyan and dashed red lines refer to GS+FGPA, 3D-IMS

and 1D-IMS, respectively. We plotted the curves corresponding to �
G

= 228 ckpc for

each method. Since 1D-IMS is designed to match dimensionless 1DPS and PDF of the

flux, solid green and dashed red lines are indistinguishable. We can see that 3D-IMS

reproduces well both 1DPS and PDF, whereas GS+FGPA does not recover well the
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Figure 2.8: We show the dimensionless 3D power spectrum �2(k, µ) of the flux given
by our reference hydrodynamic simulation (solid green lines), by GS+FGPA (solid blue
lines), 3D-IMS (solid cyan lines) and 1D-IMS (dashed red lines). The results plotted
refer to runs with initial smoothing length �G = 228 ckpc. We considered 4 bins of µ.
For each one of them, there are two panels. The upper one shows �2(k, µ) versus k in
the µ-bin considered, the lower one the relative di↵erence between the spectra. In all
panels, the dashed vertical lines delimit the dynamic range considered to compute the
accuracy. Horizontal dashed black lines mark the zero di↵erence level and are meant to
guide the eye. Shaded areas represent the regions within which the relative di↵erence is
smaller than the one obtained applying a 1-to-1 temperature density relationship to the
baryon density given by the hydrodynamic simulation and using the Gaussian-smoothed
line-of-sight velocities of dark matter instead of baryons. Our methods perform better
than GS+FGPA in all µ-bins.
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Figure 2.9: Accuracy of the di↵erent methods tested in reproducing the flux dimen-
sionless line-of-sight power spectrum (left panel) and PDF (right panel) given by the
reference hydrodynamic simulation, as a function of the initial smoothing length �G.
Markers indicate the mean values of the accuracy, while error bars represent the root-
mean-square of the accuracy in the dynamic ranges considered. Blue squares refer to
GS+FGPA, cyan triangles to the 3D-IMS and red circles to the 1D-IMS. An o↵set of
±10 ckpc has been applied to 3D-IMS and 1D-IMS markers to make the plot more read-
able. The horizontal green line shows the mean accuracy obtained by applying a 1-to-1
temperature-density relationship to the baryon density field and using the Gaussian-
smoothed line-of-sight velocities of dark matter baryons. The green band represents the
root-mean-square of the accuracy in this case. Our methods are overall more accurate
and less dependent on the initial smoothing scale than GS+FGPA.

1DPS. The lower panels make the comparison quantitative, showing the relative error of

each method at recovering the results of the reference simulation. The gray shaded area

represents the region within which the relative di↵erence is smaller than the one obtained

applying the FGPA to the baryon density given by the hydrodynamic simulation and

using the smoothed DM velocity field, as explained in section 2.2.3. As previously said,

this sets the limits on the accuracy due to adopting the DM-smoothed velocity field and

neglecting the scatter in the temperature-density relationship of the IGM.

Figure 2.7 then tells us that 1D-IMS is able to recover the information lost with these

approximations by construction, since it was forced to match the redshift space 1DPS

and PDF of the hydrodynamic simulation. In contrast, the flux PDF given by 3D-IMS

does not appear very accurate, perhaps even erroneously suggesting a flaw in the method.

This is not the case, as 3D-IMS matches the PDF of the flux in real space, whereas in

the right panel we are considering the PDF of the flux in redshift space. Although the

relative error of the 3D-IMS PDF is as large as 30% at F = 0.2, the average accuracy is

15%. When the optimal value of �
G

is used for 3D-IMS (57 ckpc), the PDF is reproduced

with an average accuracy of 8%. The variability of the accuracy at di↵erent flux values

is not too surprising, because in the last step of 3D-IMS we smooth the pseudo baryon

density field to remove hot pixels and this impacts the accuracy of the corresponding

flux PDF.

Figure 2.8 shows the 3DPS given by the simulation and the various methods at �
G

=
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Figure 2.10: Accuracy of the di↵erent methods tested in reproducing the dimen-
sionless 3D power spectrum �2(k, µ) of the flux given by the reference hydrodynamic
simulation, as a function of the initial smoothing length �G. Each panel shows the
results obtained for a di↵erent bin of µ. In all panels, markers indicate the mean values
of the accuracy, while error bars represent the root-mean-square of the accuracy in the
dynamic ranges considered. Blue squares refer to GS+FGPA, cyan triangles to the
3D-IMS and red circles to the 1D-IMS. An o↵set of ±10 ckpc has been applied to 3D-
IMS and 1D-IMS markers to make the plot more readable. The horizontal green lines
show the mean accuracy obtained by applying a 1-to-1 temperature-density relationship
to the baryon density field and using the Gaussian-smoothed line-of-sight velocities of
dark matter instead of baryons. The green bands represent the root-mean-square of
the accuracy in this case. In all µ-bins, our methods are overall more accurate and less
dependent on the initial smoothing scale than GS+FGPA.

228 ckpc, as well as the relative error in matching this statistic. The color coding is the

same as in Figure 2.7. Each panel refers to a di↵erent µ-bin of the 3DPS. In all bins,

the accuracy of 3D-IMS and 1D-IMS looks on average comparable to the limit set by

the FGPA.

In Figure 2.8 one can clearly see that GS+FGPA in the top-left panel (0.0 < µ < 0.25,

farthest from the line-of-sight) does not match the hydrodynamic result as well as in

the other panels. This is due to the di↵erent e↵ects at work at di↵erent directions from

the line-of-sight. For very transverse modes (0.0 < µ < 0.25) the behavior of baryons

is mostly influenced by the filtering scale. Whereas for modes that are parallel to the

line-of-sight (0.75 < µ < 1.0) the e↵ect of the Jeans filtering is degenerate with thermal

broadening and redshift space distortions (Rorai et al., 2013). As a result, in the bin

closest to the line-of-sight (0.75 < µ < 1.0) one can compensate a bad choice of �
G

with
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an accurate description of the thermal state of the IGM, whose parameters (T0 and �)

are obtained by fitting outputs of the hydrodynamic simulation. But it is not possible to

apply this correction in the bin with modes most transverse to the line-of-sight, where

the e↵ect of the filtering scale dominates the shape of the 3D power. Furthermore, 3D-

IMS is superior to GS+FGPA to the extent that it also matches the dimensionless 3D

power spectrum of flux in real space by construction.

Regarding 1D-IMS, it might seem puzzling that it does not perfectly match the result

of the hydrodynamic simulation in the bin closest to the line-of-sight, since 1D-IMS

is forced to reproduce the dimensionless line-of-sight power spectrum by construction.

However, the 3DPS in the bin closest to the line-of-sight is not exactly the 1DPS. Indeed,

the power spectrum in that bin considers all flux fluctuations whose wavevector forms

an angle with the line-of-sight such that its cosine is between 0.75 and 1. This is a

3D region in redshift space. In the case of the 1DPS, the situation is much di↵erent,

since one considers flux fluctuations exclusively along the direction of the line-of-sight.

Therefore, the 1DPS and 3D power for the bin closest to the line-of-sight are not exactly

the same, and matching the 1DPS by construction does not guarantee a perfect match

in this bin of the 3DPS. It is true, however, that the agreement should be much better if

one considers µ values progressively closer to being parallel to the line-of-sight (µ = 1),

which we have verified directly.

2.4.3 Accuracy versus Smoothing Length

The best simulations reproducing BOSS6/DESI7-like surveys have a mean inter-particle

separation of ⇠ 400 ckpc. As we have already mentioned, Gaussian-smoothing below

the the inter-particle separation has a negligible e↵ect. Therefore, it is of great interest

to test the accuracy of GS+FGPA and our methods at di↵erent values of the smoothing

length, including �
G

> 300 ckpc. For this purpose, we compute the mean and root-

mean-square of the accuracy for each value of �
G

, as explained in section 2.2.3.

We show the results of our analysis for the 1DPS and PDF in Figure 2.9, in the left

and right panels, respectively. The information given by Figure 2.7 is here condensed

in three points, one for each method, at the corresponding value of �
G

. Blue squares

represent the mean accuracy m of GS+FGPA and the corresponding error bars the

root-mean-square s, as defined in equations (2.8) and (2.9), respectively. Likewise, cyan

triangles and red circles refer to 3D-IMS and 1D-IMS, respectively. The information

encoded by the gray shaded areas in Figure 2.7, which shows the limitations of the

FGPA, is represented by the green band in Figure 2.9. Hence, the green line shows

the mean accuracy given by the FGPA implemented as in section 2.2.3 and the shaded

green area delimits 1-� deviations from this mean. There is no dependence on �
G

in

6Baryon Oscillation Spectroscopic Survey (Dawson et al., 2013)
7Dark Energy Spectroscopic Instrument (DESI Collaboration et al., 2016)
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this case, because the flux within the FGPA is computed from the baryon density field

given by the hydrodynamic simulation and not from a Gaussian-smoothed DM density

field. Figure 2.10 shows the results for the 3DPS, with the same format as Figure 2.9.

Each panel of Figure 2.10 refers to a di↵erent µ-bin.

As expected, Figures 2.9 and 2.10 show that GS+FGPA is strongly dependent on �
G

.

The optimal value appears to be around 114 ckpc for the 1DPS and between 57 ckpc and

114 ckpc for the PDF. Around these values, m ⇡ 7% for the 1DPS and m ⇡ 4% for the

PDF, as can be seen from the blue points in Figure 2.9.8

The trend of the accuracy of GS+FGPA in reproducing the 3DPS is similar to the one

of the 1DPS (blue squares in Figure 2.10). The mean accuracy achieved in the di↵erent

µ bins at the optimal scale for the 3DPS (�
G

= 57ckpc) is around 4%. Remarkably, the

accuracy of GS+FGPA for all statistics approaches the limit set by the FGPA, as long

as the “correct” smoothing length is chosen. Since the optimal scales for the statistics

considered vary up to a factor of two, one should decide in advance whether to prioritize

1DPS, 3DPS or PDF. For �
G

& 171 ckpc, the accuracy of all statistics gets worse than

⇠ 20%. Moreover, the error bars are very large for smoothing scales & 200 ckpc. As

such, it can be much worse than the mean in certain ranges of k-modes and flux. We

also note that the performance of GS+FGPA degenerates as one moves farther from the

line-of-sight, as previously discussed in the context of Figure 2.8.

Even for initial smoothing lengths & 200 ckpc, 3D-IMS yields m < 20% for 1DPS and

PDF, as shown by the cyan triangles in Figure 2.9, performing significantly better than

the Gaussian method for these large smoothing lengths. At smaller smoothing lengths,

3D-IMS is basically as accurate as GS+FGPA. The accuracy in the 1DPS is better than

in the PDF. This is not so surprising since, as we already pointed out, we ended our

iterations matching the PDF of the flux in real space, and not redshift space, of the

hydrodynamic simulation. Figure 2.10 shows that 3D-IMS does a remarkable job of

reproducing the 3DPS, with an accuracy comparable to the FGPA at small �
G

, and

still around 7% even for initial smoothing lengths as large as 500 ckpc. Moreover, the

accuracy of 3D-IMS is only weakly dependent on �
G

, and it performs much better than

GS+FGPA for large smoothing lengths.

By construction 1D-IMS matches the 1DPS and PDF resulting in m ⇡ 0.03% inde-

pendent of �
G

(red circles in Figure 2.9). Figure 2.10 shows that 1D-IMS preserves

3D correlations, yielding m = 3.3% for the 3DPS in the best case (57 ckpc in the bin

0.25 < µ < 0.5) and m = 27% in the worst one (570 ckpc in the bin 0.25 < µ < 0.5). In

8The minimum in the accuracy of the 1DPS at �G = 0 ckpc would suggest that the best result is
obtained without smoothing the DM density at all. If we apply no smoothing, we are actually limited by
the resolution of the simulation. In our context, the DM was solved using a PM code on a grid with size
of 28 ckpc and that also corresponds to the inter-particle separation. The DM density was also implicitly
smoothed by the CIC kernel on that scale, which is thus the e↵ective smoothing length corresponding to
�G = 0. There is hence nothing peculiar about the point at �G = 0. Furthermore, the overall accuracy
corresponding to this value is actually similar to the value obtained at �G = 57 ckpc.
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all bins, 1D-IMS is as accurate as Gaussian smoothing at small smoothing lengths and

it performs better than this method for �
G

& 142 ckpc.

The accuracy of 1D-IMS improves as the µ-bin considered approaches the line-of-sight.

It performs worse than 3D-IMS in the bin closest to it (0.75 < µ < 1.0). This is counter-

intuitive, but we point out that the most parallel bin takes into account correlations

in a 3D region of space and is thus conceptually distinct from the 1DPS, which 1D-

IMS matches by construction. When recovering the 3DPS in the bin closest to the

line-of-sight (0.75 < µ < 1.0), it is still more important to correctly reproduce the 3D

correlations rather than the correlations along the line-of-sight. This is why 3D-IMS

looks better than 1D-IMS close to the line-of-sight. Similar to 3D-IMS, the accuracy

of 1D-IMS is only weakly dependent on the smoothing length, and much better than

GS+FGPA for large smoothing lengths.

Among the methods considered in this work, 1D-IMS seems to perform the best. Indeed,

it perfectly matches the 1DPS and PDF (by construction) and reproduces the 3DPS with

a good accuracy. If one is is primarily interested in the 3DPS, 3D-IMS may be more

suitable, since it yields the best accuracy in this statistic, although the di↵erences with

1D-IMS are small. The drawback of 3D-IMS is the relative inaccuracy in the 1DPS and

PDF compared to 1D-IMS, which matches these statistics by construction. The Gaussian

smoothing can recover all statistics as well as 3D-IMS, provided the appropriate �
G

is

adopted. In particular, the errors in estimating the 3DPS in the bin farthest from the

line-of-sight (0.0 < µ < 0.25, top-left panel in Figure 2.10) are larger than ⇠ 20%

for �
G

& 171 ckpc. For comparison, 3D-IMS and 1D-IMS achieve .10% accuracy for

�
G

. 228 ckpc in the aforementioned µ-bin. This means that our methods are able to

recover information that gets otherwise lost when performing a Gaussian smoothing.

They are accurate and computationally cheap ways to reproduce the statistics of the

Ly↵ forest, which have promise for future modeling and data analysis.

We have applied the same analysis described so far also to two snapshots at redshifts

z = 2 and z = 4, respectively. The accuracy of all methods are comparable with the

results obtained at z = 3, meaning that the techniques tested are robust in the range

2 < z < 4. We have also verified that, with 2563 resolution elements, the accuracy of

all methods di↵ers by ⇠ 1% from the values obtained with our reference simulations, in

most of the range of �
G

. This means that the accuracy of the methods has converged

in our study.

When applying our methods, the choice of the initial smoothing length for the DM

density is set by the inter-particle separation of the simulation adopted. If this is smaller

than the optimal smoothing length, then one should smooth the DM density at the

optimal �
G

. Otherwise, the best one can do is adopting a smoothing length of the order

of the inter-particle separation. In any case, the smoothing scale for the DM line-of-

sight velocities can be larger than the value adopted for the DM density. Indeed, the

velocity field itself is smooth in voids (Aragon-Calvo & Szalay, 2013, van de Weygaert
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Figure 2.11: Sample of five flux skewers obtained through different methods:
L80N4096 hydrodynamic simulation with box size 114 cMpc and 40963 resolution ele-
ments (solid green line), which we assume to be the “truth”, GS+FGPA with smoothing
length 228 cMpc (solid blue line) and 3D-IMS (dashed orange line). The skewers ob-
tained through all methods are consistent with one another.

& van Kampen, 1993) and these are the most relevant regions for our study, as the

exponentiation in equation (2.7) suppresses large overdensities. In our analysis, we kept

the smoothing length for the DM velocity field fixed to 228 ckpc, which is the value

that yields the best overall accuracy in reproducing the flux statistics considered (see

appendix A). In this way, we focused on the impact of the initial smoothing of the

DM density field on the accuracy of the methods. Due to our choice of optimizing the

smoothing length of the DM velocity field, the errors quoted for the different methods

are minimized. However, even if we did not use the optimal λG for the velocity, the

trend of the accuracy versus the smoothing length of the DM density field would be

unaffected, as well as the the rank ordering of the accuracy of the various techniques

investigated (see appendix A for a detailed discussion).
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Figure 2.12: Flux line-of-sight power spectrum (left) and PDF (right) given by
L80N4096 hydrodynamic simulation (solid green line), assumed to be the “truth”,
and obtained applying GS+FGPA (solid blue line) and 3D-IMS (solid cyan line) to
the DM-only simulation. In all panels, the dashed vertical lines delimit the dynamic
range considered to compute the accuracy. All results plotted refer to runs with initial
smoothing length 228 ckpc. This is the smallest smoothing allowed by the resolution
of the simulation, so the Gaussian smoothing is already optimized. Nevertheless, it is
very inaccurate in recovering the line-of-sight power spectrum, meaning that 3D-IMS
is certainly superior.

2.5 Large-Volume Collisionless Simulation

We want to check if our methods still perform well when applied to an actual N-body run,

with a larger box than our calibrating hydrodynamic simulation. In fact, in the previous

sections we have validated our methods extracting all relevant fields from the same

hydrodynamic simulation. However, the purpose of approximate methods is avoiding

expensive hydrodynamic simulations. In practice, one would assume a certain model for

the flux statistics and apply our techniques to a large-box low-resolution DM-only run.

In this way, one would be able to probe large scales and at the same time accurately

describe the small-scale physics thanks to our iterative procedure.

We consider the snapshot at redshift z = 3 of a Gadget DM-only run with a box size of

114 cMpc and 5123 particles. We CIC-bin the particle positions and velocities on a grid

with 5123 elements, to get the density and velocity fields. To mock baryonic pressure,

we smooth both fields with a length scale of �
G

= 228 ckpc, very close to the cell size

(223 ckpc). This is the smallest smoothing length one can choose to have a non-negligible

e↵ect on the density and velocity fields. 9 We then apply GS+FGPA in § 2.2.1.

9The smoothing scale adopted here is also very close to the optimal value for the velocity field
determined when validating our method with the smaller hydrodynamic simulation (see appendix A).
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Figure 2.13: Dimensionless 3D power spectrum �2(k, µ) of the flux given by
L80N4096 hydrodynamic simulation (solid green lines), assumed to be the “truth”,
and obtained applying GS+FGPA (solid blue lines) and 3D-IMS (solid cyan lines) to
the DM-only simulation. The results plotted refer to runs with initial smoothing length
�G = 228 ckpc. We considered 4 bins of µ. Each panel shows �2(k, µ) versus k in the
µ-bin considered. In all panels, the dashed vertical lines delimit the dynamic range con-
sidered to compute the accuracy. Whereas 3D-IMS is accurate and its performance does
not depend strongly on the µ-bin considered, GS+FGPA fails at reproducing the true
�2(k, µ) in the µ-bins closer to the line-of-sight (0.0 < µ < 0.25 and 0.25 < µ < 0.5).
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To apply 3D-IMS, we need an input model for the 3D power spectrum and PDF of

the flux in real space. These statistics are computed from the flux in real space given

by our hydrodynamic simulation. However, its box size is smaller than the one of the

N-body simulation. This does not a↵ect the computation of the PDF, but it poses some

problems with the 3D power spectrum, as the hydrodynamic simulation lacks the large

modes which are present in the DM-only simulation. To generalize the 3D-IMS method,

we construct the transfer function defined in equation (2.10) as follows. First of all, we

fit the 3D power spectrum of the flux in real space given by the hydrodynamic simulation

with the formula provided by Kulkarni et al. (2015). Then, at every iteration of 3D-

IMS, we define the transfer function applying equation (2.10) for k-modes larger than

the fundamental mode kHYDRO
f of the hydrodynamic simulation. For the modes smaller

than kHYDRO
f we set the transfer function to a constant, equal to the value assumed at

kHYDRO
f . In this way, we have a continuous transfer function, which simply rescales by a

constant the large-scale modes probed only by the DM-only simulation. This guarantees

that any peculiar large-scale feature in the DM-only simulation (e.g. BAO signal), will

not be a↵ected.

Modeling the 1DPS of the flux in redshift space presents similar issues. Once again, one

should come up with a method to estimate the large-scale Fourier modes without actually

running a calibrating large-box hydrodynamic simulation. It would then be desirable

to adopt an approach analogous to the one described for the 3D power spectrum of the

real flux field. Unfortunately, there is no simple fitting function available for the 1DPS

of the flux in redshift space which would grant the high level of accuracy we are aiming

for. Therefore, we are not applying 1D-IMS to the DM-only simulation. Nevertheless,

following Kulkarni et al. (2015), future work may provide a fitting function for the flux

1DPS as well.

To assess the accuracy of the various techniques in this test, we shall compare the

results of each method with the flux statistics obtained from a Nyx hydrodynamic run

with a box size of 114 cMpc and 40963 resolution elements, which we assume to be

the “truth”. This simulation, to which we shall refer as “L80N4096”, covers the largest

modes present in the DM-only simulation and, at the same time, has the same resolution

limit (⇠ 28 ckpc) as the small calibrating hydrodynamic simulation, thus resolving the

Jeans scale.

In Figure 2.11 we show a sample of five skewers extracted from the hydrodynamic sim-

ulation (solid green line) and obtained through GS+FGPA and 3D-IMS (solid blue and

dashed orange lines, respectively). By visual inspection, all skewers look consistent with

one another.

In the upper-left panel of Figure 2.12 we show the 1DPS of the flux given by the hydro-

dynamic simulation (solid green line) and obtained applying GS+FGPA and 3D-IMS to

the DM-only run (solid blue and cyan lines, respectively). In the lower-left panel, we

plot the relative di↵erence of the flux 1DPS obtained in each case, with respect to the
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results of L80N4096. In the right panels, we show analogous plots for the flux PDF, fol-

lowing the same color coding. Applying the same analysis outlined in previous sections,

we find out that GS+FGPA (3D-IMS) recovers the flux 1DPS with m = 41% (10%) and

s = 18% (4%) . Thus, GS+FGPA is not accurate at all in this context. This fact should

be born in mind when dealing with low-resolution DM-only simulation with ⇠ 100 cMpc

boxes. On the contrary, the accuracy is dramatically improved by 3D-IMS. For the PDF,

we have m = 18% (13%) and s = 10% (6%) for GS+FGPA (3D-IMS). Therefore, also

this statistics is better reproduced by 3D-IMS. We note that the precision achieved for

the flux 1DPS and PDF is of the same order of what we obtained when we extracted

the DM density field from the same hydrodynamic simulation used for the calibration.

In Figure 2.13 we plot the 3DPS of the flux given by the hydrodynamic simulation and

obtained with GS+FGPA and 3D-IMS, applied to the DM-only simulation. The color

coding is the same as in Figure 2.12. The di↵erent panels show the 3DPS in four evenly

spaced µ-bins. From our definition of µ, the bin 0.0 < µ < 0.25 corresponds to modes

farther from the line-of-sight, whereas the bin 0.75 < µ < 1.0 is the closest to it. Below

the plots obtained for each bin, we show the relative di↵erence of the results of each

method with respect to the ones given by L80N4096. Once again, we applied the same

analysis technique adopted throughout this work, obtaining that m ⇡ 10% for 3D-IMS

in all µ-bins. On the contrary, the accuracy of GS+FGPA is strongly dependent on the

µ-bin considered. We have m = 10% in the µ-bin farthest from the line-of-sight, whereas

m = 58% in the bin closest to it. These results are consistent to the findings presented

in the previous sections.

The accuracy of 3D-IMS in reproducing the 1DPS, 3DPS and PDF of the flux in redshift

space is higher than in the case of GS+FGPA. The accuracy is comparable to the results

obtained when applying 3D-IMS to the DM field extracted from our reference simula-

tion. To probe the limitations of our technique, we applied the analysis explained in the

present section also to the 2563 Gadget run, adopting the same calibrating simulation.

We verified that the ratio of the accuracy of the two methods does not change signif-

icantly. In conclusion, our method is solid when applied to a large-box low-resolution

DM-only simulation. This achievement makes our method attractive for studies requir-

ing both large volumes and high resolution simulations, for which running hydrodynamic

simulations is not a viable option. One example is modeling the signature of the BAO

on the Ly↵ forest flux power spectrum.

The results presented in this section clearly show that GS+FGPA can yield a very poor

accuracy with respect to what would be obtained through a hydrodynamic simulation.

Any result claimed after applying this technique should then be considered carefully.

Future works making use of GS+FGPA should refer to Figures 2.9 and 2.10 to assess

the error intrinsic in the method adopted.

1D-IMS has not been validated for a large-box DM-only run because of the lack of a

recipe to model the flux 1DPS (e.g. an analytic fitting formula), extending it to large
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scales. Though, we are confident that in future work such fitting procedure could be

provided. If such technique becomes available, we do not expect that 1D-IMS will fail

the test presented in this section. Indeed, 1D-IMS and 3D-IMS are both grounded on

the Iteratively Matched Statistics technique. We proved that 3D-IMS is accurate when

applied to a large-box DM-only run, so this is encouraging for 1D-IMS as well.

2.6 Comparison to Previous Works

With our analysis technique, we defined a criterion to assess the accuracy in reproducing

1DPS, PDF and 3DPS of flux skewers, which we wish will be used also by other authors

in the future. This would make the comparison with upcoming works more direct and

straightforward. It is of course interesting to compare our results with previous work.

We do that at the best of our possibilities, since the statistics discussed in the relevant

literature are not always the same as the ones considered by us. Furthermore, it is the

first time that the performances of approximate methods in reproducing the 3DPS of

flux are quantified.

Gnedin & Hui (1998) proposed hydro-particle mesh (HPM), a method to describe bary-

onic pressure as a modification of the gravitational potential in collisionless simulations.

They compare the results of their own technique with two reference hydrodynamic sim-

ulations. After computing 300 flux skewers at z = 3, they found out that the mean error

on the fractional flux decrement is smaller than 10% in the whole dynamic range. They

do not consider other statistics of the flux, but they show that the accuracy in repro-

ducing the column density distribution is around 13%. They claim that HPM would be

suitable when an accuracy of 10-15% is needed in the modeling. Both our methods and

GS+FGPA (with appropriate smoothing length) result in higher accuracy.

Meiksin & White (2001) also used the HPM technique to compute the flux field. In

addition, they considered an N-body particle mesh code, from which they computed

the flux using GS+FGPA. They show that the two methods yield the same cumulative

distribution of the flux within ⇠10% accuracy, for four di↵erent cosmological models.

The cumulative distributions of column density and Doppler parameter di↵er up to

⇠ 10% and ⇠ 20%, respectively. Although we consider the PDF and not the cumulative

PDF of the flux, their findings agree with our results for the PDF given by GS+FGPA.

Viel et al. (2002) tested GS+FGPA against a smoothed particle hydrodynamic simula-

tion. Furthermore, they developed a hydro-calibrated approximate method to predict

the Ly↵ forest, based on an adaptive filtering scale for the DM density. Although

the accuracy of these techniques in recovering the logarithm of the flux PDF given

by the hydrodynamic simulation is not quantified, it can be inferred from their plots

that GS+FGPA recovers such statistics on average better than 10%, even though the

agreement looks worse in certain regions of flux (e.g. around 0.2 or 0.8). The PDF is
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reproduced much better by the hydro-calibrated method. Its accuracy can be estimated

through eye-balling to be at percent level. It would then mean that 3D-IMS is compa-

rable to the method provided by Viel et al. (2002), as far as the flux PDF is concerned.

1D-IMS still performs much better, matching this statistics by construction.

Font-Ribera et al. (2012a) introduced a method to generate mock data sets for the

measurement of the Ly↵ forest flux correlations at large scales. As a first step, a Gaussian

random field is generated along a set of line of sights. Flux skewers are then generated

transforming such a field via an exponential function dependent on two parameters,

which are tuned to reproduce a certain flux PDF. The flux power spectrum can be

modeled to the desired shape by choosing the power spectrum of the initial Gaussian

random field accordingly. Bautista et al. (2015) compared the mock data obtained

through this technique with real high-redshift quasar spectra from BOSS. It can be

deduced from the plots presented that the agreement between the real and mock 1D

correlation functions is almost perfect for small wavelength separations, but it can get as

worse as ⇠ 30% for larger separations. The mock and measured 3D correlation functions

are compatible within ±1�. The advantage of the described method is that one needs

modeling neither a large-box density field nor a velocity field, but only generating the

required sample of mock skewers. On the other hand, IMS has proved to be accurate at

reproducing the flux PDF, 1DPS, and 3DPS even on scales much larger than the ones

probed by the calibrating hydrodynamic simulation.

LyMAS method (Peirani et al., 2014) also matches the flux PDF by construction. In

its simplest version, this method consists of two hydro-calibrated transformations of

the matter density field. Qualitatively, it can be seen that the method reproduces well

the 1DPS given by the reference hydrodynamic simulation, except for k & 1.5 /cMpc.

However, LyMAS can be extended with two further transformations of the flux field

(LyMAS full scheme). In this way, the accuracy of the 1DPS is dramatically improved,

although this was not quantified in Peirani et al. (2014). Flux skewers appear reasonable

only in the full scheme, while in the simplest incarnation they are quite noisy.

Comparing LyMAS to our methods, it certainly does better than 3D-IMS at reproducing

the PDF. In this respect, it is as good as 1D-IMS, since both match the flux PDF by

construction. It also looks like LyMAS recovers the 1DPS given by the hydrodynamic

simulation to a very high accuracy. Likewise, 1D-IMS reproduces the 1DPS almost

perfectly and accurately reproduces the 3DPS as well. Furthermore, both 3D-IMS and

1D-IMS provide good-looking skewers applying simple transformations. The LyMAS

methodology may be improved by also using the velocity field of the N-body run, which

is currently being neglected.

An important feature of 3D-IMS is that it matches the flux provided by the hydro-

dynamic simulation in real space. This sets the correct filtering scale, allowing us to

explore many values of T0 and � when computing the redshift-space flux. On the con-

trary, LyMAS connects the dark matter density directly with the redshift-space flux, so
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each choice of (T0, �, �
G

) requires an additional hydrodynamic simulation. Therefore,

in this regard, 3D-IMS appears to be more flexible than LyMAS.

Recently, Lochhaas et al. (2015) used LyMAS to predict the cross-correlation between

DM halos and Ly↵ forest flux, and compared it to quasars-damped Ly↵ systems cross-

correlation measurements from BOSS (Font-Ribera et al., 2013, 2012b). From the plots

presented, one can tell that the DM halos-Ly↵ forest cross-correlation given by LyMAS

reproduces very well the results of their calibrating hydrodynamic simulation (Horizon-

AGN; Dubois et al. 2014). However, other statistics relevant for our work, like the 1DPS,

are not computed.

2.7 Chapter Summary

In this Chapter, we investigated approximate methods to obtain statistical properties

of Ly↵ forest from N-body simulations. We focus our attention on the PDF, 1DPS

and 3DPS of the flux field, comparing results of approximate methods with a reference

hydrodynamic simulation.

We studied the limitations of the FGPA, which is the basis of many approximate meth-

ods. The primary sources of error are the di↵erences between DM and baryon velocity

fields and, to a smaller degree, the impact of scatter in the temperature-density relation-

ship of the IGM. The accuracy of the FGPA in reproducing the 1DPS and PDF is around

2%, and around 5% for the 3DPS. We also assessed the accuracy of the widely used Gaus-

sian smoothing technique, combined with the FGPA (GS+FGPA). This method consists

in mocking the baryon density by smoothing the matter density with a Gaussian kernel.

Such field is then used to compute the flux within the FGPA. The accuracy at which

the statistics of the flux given by the reference hydrodynamic simulation is reproduced

varies a lot with the choice of the smoothing scale �
G

. We explored a wide range of

smoothing lengths and found out that the best accuracy achieved for 1DPS and 3DPS

is ⇠ 7% and ⇠ 5%, respectively (at �
G

= 57 ckpc), and ⇠ 4% (�
G

= 114 ckpc) for the

PDF. For smoothing scales & 171 ckpc the mean accuracy is worse than 20%. This de-

pendence of GS+FGPA on the smoothing scale is rather unfortunate, as the “optimal”

smoothing scale is guaranteed to di↵er for models with di↵erent thermal IGM history.

As one does not know a priori this optimal value, in practice it means that works using

any particular smoothing scale will have errors varying in an uncontrolled manner.

To remedy these problems, we have developed two new methods, 3D-IMS and 1D-

IMS, based on the idea of Iteratively Matched Statistics (IMS). Their starting point is

also Gaussian-smoothing the matter density on a certain scale, which corresponds to

the mean interparticle spacing of the simulation considered. In 3D-IMS, smoothing is

followed by matching the 3D power spectrum and PDF of the flux in real space to the

reference hydrodynamic simulation. With 1D-IMS, we additionally match the 1DPS
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and PDF of the flux in redshift space. In contrast to GS+FGPA, 3D-IMS is much less

dependent on the initial smoothing length. It reproduces the 3D power spectrum of the

flux in redshift space as accurate as GS+FGPA when smoothing scales are small, but

performs significantly better for large smoothing scales, with an accuracy of ⇠ 7% even

for smoothing scales as large as ⇠ 500 ckpc. This is a very important property, as it

brings significantly more accurate models of the Ly↵ forest statistics in large-volume

simulations where the mean interparticle spacing has to be large due to computational

constrains. The 1D-IMS method matches flux 1DPS and PDF by construction. It still

performs equally well, or better than GS+FGPA in reproducing the 3DPS (⇠5%). It is

not necessary to use both methods; one can use 3D-IMS only, reproducing the flux 3D

power spectrum accurately, at the expense of a lower accuracy for 1DPS and PDF.

These assessments stand for modeling the Ly↵ forest even in high resolution N-body

simulations, but are especially prominent when large-volume (thus coarse resolution)

N-body simulations are used. We have showed that IMS approximate methods signif-

icantly outperform GS+FGPA in such case. Indeed, through the iterative procedure,

our method correctly recovers small-scale physics which is otherwise not present in low-

resolution simulations.

We applied 3D-IMS on an 114 cMpc N-body simulation, a 14 Mpc hydrodynamic simula-

tion as calibration. We then compared the results of 3D-IMS with the predictions of an

114 cMpc high-resolution hydrodynamic simulation, verifying that the PDF, 1DPS and

3DPS are matched within 10%, 10% and 13%, respectively. By contrast, GS+FGPA

reproduces the same statistics given by the reference 114Mpc hydrodynamic simula-

tion within 18%, 41% and 58%. Therefore, 3D-IMS improves the accuracy with which

GS+FGPA predicts the 1DPS and 3DPS by a factor of 4. In addition, 3D-IMS ap-

pears more robust and easy to implement, constituting an improvement over previous

techniques. We reiterate that the accuracy estimated for 3D-IMS should be consider

as a lower limit, because we calibrated the method with the 114 cMpc hydrodynamic

simulation, which is converged resolution-wise, but not in volume. Thus, repeating the

analysis in section § 2.5 with a fully converged calibrating hydrodynamic simulation

would probably yield an even higher accuracy for 3D-IMS.

With the fitting formula for the 3D real-flux power spectrum provided by Kulkarni et al.

(2015), it is particularly straightforward to “paint” such statistics on a larger box (see

discussion in § 2.3.1 and § 2.5). It will be useful to achieve an analogous formula for

the 1DPS of the redshift-space Ly↵ flux, as that would allow to straightforwardly apply

1D-IMS on larger boxes, in the same fashion adopted for 3D-IMS in § 2.5.

Our methods have applicability in any context where large-box simulations are needed.

The high accuracy of 3D-IMS and 1D-IMS at large smoothing lengths demonstrates that

the hydro-calibrated mappings are able to “paste” information about the small-scale

physics of the IGM not present in a large volume simulation, without compromising

large-scale statistics. To be quantitative, we showed that at �
G

= 228 ckpc 3D-IMS
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matches predicts several Ly↵ flux statistics within ⇠ 10%. Since in any realistic situation

�
G

has to be at least as large as the inter-particle separation, it means that one would

achieve the aforementioned accuracy applying 3D-IMS to a collisionless simulation with

a trillion particles in a ⇠ 2.5 cGpc box. This size is large enough to comfortably study the

signature of the BAO signal in the Ly↵ forest. As a reference, in context of BOSS survey

White et al. (2010) ran a suite of N-body simulations with a box size of 1.02 cGpc and

40003 particles (inter-particle separation 260 ckpc), applying the Gaussian-smoothing

technique. Currently, the state of the art for N-body simulations is represented by the

“Millennium XXL” (box size 4.11 cGpc, 67203 particles; Angulo et al. 2012), “Outer

Rim” (box size 4.3 cGpc, 102403 particles; Habib et al. 2012, 2013) and “Dark Sky”

(box size 11.5 cGpc, 102403 particles; Skillman et al. 2014) simulations.

The BAO signal can be modulated by UV background fluctuations, which are coupled

to fluctuations in the mean free path of ionizing photons on large scales (Gontcho A

Gontcho et al., 2014, Pontzen, 2014). For a proper modeling, one needs a simulation

with a box size much larger than the mean free path (Davies & Furlanetto, 2015), which

is of order the BAO scale at z ⇠ 2.5 (Worseck et al. 2014 and references therein). There-

fore, one would have to run radiative transfer simulations with box sizes of the order

of 1 cGpc — far beyond current computational capabilities. The high quasar density

in the BOSS survey allows measuring the 3D power spectrum, which can be exploited

to improve cosmological constrains and/or constrain IGM thermal properties (McQuinn

et al., 2011, McQuinn & White, 2011). Finally, our technique could help in modeling

the cross-correlation between Ly↵ forest and HI 21 cm signal (Guha Sarkar & Datta,

2015), as well as between CMB lensing and Ly↵ forest (Vallinotto et al., 2009, 2011).
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Constraining Simulations with

Ly↵ Absorption Profiles around

Galaxies

As anticipated in Chapter 1, the CGM of galaxies and QSOs can be probed via absorp-

tion line measurements in the spectra of background QSOs passing at small transverse

separations from the foreground object. For example, the spectra of 15 highly lumi-

nous QSOs in the Keck Baryonic Structure Survey (KBSS) revealed that the CGM of

foreground star-forming galaxies in the redshift range 2 . z . 3 presents an excess of

neutral hydrogen (HI) absorption with respect to the IGM (Rakic et al., 2012, Rudie

et al., 2013, 2012b). Turner et al. (2014) confirmed these results and also observed an

increased optical depth for some metal lines (CIII, CIV, NV, OVI, SiIV) in the vicinity

of the galaxies. Other observations probed the Ly↵ transmission up to galactocentric

distances of ⇠ 10 h�1 Mpc , thus providing insight into the physics of both the CGM

and IGM (Adelberger et al., 2005a, 2003, Crighton et al., 2011).

The Quasars-Probing-Quasars (QPQ) project uncovered a large sample of projected

QSO pairs with small impact parameters (Hennawi, 2004, Hennawi et al., 2010, 2006b),

which enabled the first studies of the CGM of QSOs (Hennawi & Prochaska, 2007,

Hennawi et al., 2006a). Using an enlarged statistical sample, Prochaska et al. (2013)

I am the main contributor of the work presented in this Chapter. I developed the semi-analytic
method presented in § 3.2.4 and conducted the analyses in § 3.3 and § 3.4 entirely by myself. I developed
several ideas and I conducted the analysis in § 3.2, writing several codes myself and modifying some
existing codes written by Prof. Dr. Joseph F. Hennawi. The conceptual foundation of the project is his
idea, and he provided guidance, suggestions and new ideas throughout the project. Dr. Jose Oñorbe

contributed with ideas and advice, and helped with the coding necessary for the analyses. Dr. Zarija
Lukić ran the Nyx simulation adopted in the project. This work is still unpublished (Sorini et al., 2017,
to be submitted). We are thankful to Prof. Dr. Volker Springel for sharing a piece of code, which we
modified, to bin the outputs of the Illustris simulation into a regular Cartesian grid. We thank Andreu
Font-Ribera for providing us with the table of the BOSS data used in this work.
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observed an excess of Ly↵ absorption within 1 Mpc from the foreground QSOs (see also

Hennawi et al. 2006a and Hennawi & Prochaska 2007). This enhanced absorption due

to HI , as well as metals (Lau et al., 2016, Prochaska et al., 2014), implies the presence

of a substantial reservoir of cool (T ⇠ 104 K) metal-enriched gas around quasars.

Background QSOs can be utilized to study Damped Ly↵ Absorbers (DLAs) as well.

Font-Ribera et al. (2012b) measured the large-scale Ly↵-DLA cross-correlation with

data from BOSS (Ahn et al., 2012). More recently, Rubin et al. (2015) exploited close

QSO pairs, in which the sightline of one of the two QSOs passed through an intervening

DLA, while the other QSO probed Ly↵ and metal line absorptions at a certain im-

pact parameter from the DLA. Also these measurements indicate an excess in the Ly↵

absorption within 200 kpc from the DLA.

There is thus now a large amount of data characterizing the strength of HI Ly↵ ab-

sorption in the CGM of galaxies, QSOs, and DLAs. The strength of HI absorption is

determined by the abundance of cool (T . 105) gas in the CGM, which is in turn de-

termined by the physical sate of CGM gas (density, temperature, cloud size). While the

inflow of cool material from the IGM to the CGM is predicted ab initio by cosmolog-

ical hydrodynamic simulations, it is ultimately the interplay between these inflow and

complex feedback processes that determine its physical state. Nonetheless, feedback pro-

cesses are still poorly understood, and their implementations in numerical simulations

vary from case to case (Somerville & Davé, 2015, for a review). The feedback prescrip-

tions can be constrained comparing the predictions of simulations with measurements

of absorption features in the CGM.

Most of numerical works in the literature have focused primarily on the covering factor

of optically thick absorbers. Several zoom-in simulations (Ceverino et al., 2010, 2012,

Dekel et al., 2013, Shen et al., 2013) reproduced Rudie et al. (2012a) observations of

this quantity within the virial radius of star-forming galaxies, but not the Prochaska

et al. (2013) measurements around QSOs (Faucher-Giguère et al., 2015, Fumagalli et al.,

2014). The latter observations were well reproduced by Faucher-Giguère et al. (2016),

improving the mass resolution of FIRE zoom-in simulations (Hopkins et al., 2014), and

by Rahmati et al. (2015) by means of the EAGLE suite of hydrodynamic cosmological

simulations (Crain et al., 2015, Schaye et al., 2015). With a set of simulations based

on the moving-mesh hydrodynamic code Arepo (Springel, 2010a), Suresh et al. (2015)

reproduced the measured covering fraction of DLAs around 1012 M� halos, within the

ample error bars of the observations.

Another well-studied statistics is the column density distribution function (CDDF) of

HI absorbers. A good agreement with observations (Kim et al., 2002, Péroux et al.,

2005, Prochaska & Wolfe, 2009, Zwaan et al., 2005) was found by Rahmati et al. (2013),

post-processing the OWLS suite of cosmological simulations (Schaye et al., 2010) with

radiative transfer. The NIHAO suite of zoom-in cosmological simulations (Wang et al.,
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2015) reproduces overall well Prochaska et al. (2011) and Tumlinson et al. (2013) mea-

surements of the HI CDDF as a function of the impact parameter from, and luminosity

of, the foreground galaxy (Gutcke et al., 2017), although some data points in the lowest

luminosity bin are underestimated. The Arepo code is able to recover kinematics and

CDDF of DLAs at z = 3, as well as the total DLA abundance and metallicity in the

range 2 < z < 4, with the exception of the DLA abundance at z < 3 (Bird et al. 2015,

2014; see also Bird et al. 2013).

There is another body of numerical works that are mainly concerned with Ly↵ absorption

around foreground LBGs, DLAs or QSOs (Kollmeier et al., 2006, 2003, Meiksin et al.,

2017, 2014, 2015, Turner et al., 2017). Such works compare full-box hydrodynamic

simulations, equipped with di↵erent feedback implementations, with observations of the

Ly↵ flux decrement around LBGs (Adelberger et al., 2005a), the equivalent width around

star-forming galaxies (Rakic et al., 2012, Steidel et al., 2010) and QSOs (Prochaska et al.,

2013), and the median Ly↵ optical depth around LBGs (Rakic et al., 2012, Turner et al.,

2014). In general, all these works exhibit good agreement with the observations, except

for the data points within the virial radius of the foreground objects.

In this work, we follow the line of research comparing simulations and observations of Ly↵

absorption around QSOs, DLAs and LBGs, with the aim of understanding the physics

of the CGM and constraining feedback prescriptions. On top of observations considered

in previous works (Adelberger et al., 2005a, 2003, Crighton et al., 2015, Prochaska et al.,

2013, Rubin et al., 2015, Turner et al., 2014), we also examine the measurements of the

Ly↵-DLA and Ly↵-QSO cross-correlation from BOSS (Font-Ribera et al., 2013, 2012b).

For the first time, we convert them into an estimate of the mean Ly↵ transmitted flux at

di↵erent impact parameters from the foreground object. This allows us to combine large-

scale observations with the aforementioned measurements of Ly↵ absorption at small

impact parameter. In this way, we can simultaneously constrain the physics of both

CGM and IGM, spanning impact parameters ranging from ⇠ 25 kpc up to ⇠ 20 Mpc.

We use two state-of-the-art hydrodynamic cosmological simulations to make our compar-

ison with observations: the publicly available runs of the “Illustris” simulation (Nelson

et al., 2015) and a large-box run of the hydrodynamic code “Nyx” (Almgren et al., 2013,

Lukić et al., 2015). The former is endowed with both stellar and AGN feedback, whereas

the latter has no prescription for star formation, no metals and no feedback. We find

out that two simulations match the data outside the virial radius, but underpredict the

Ly↵ absorption within the virial radius of QSOs and LBGs. Furthermore, the simula-

tions predict a di↵erent Ly↵ mean flux out to ⇠ 2 Mpc away from QSOs and DLAs,

well beyond the virial radius. We argue that, out to 3 virial radii from these objects,

the di↵erences can be caused by the AGN feedback prescription in Illustris. The mean

Ly↵ flux profile proves then to be an excellent probe of the physics implemented in

simulations. As such, matching this observable should become a new fundamental test

for feedback prescriptions, complementary to other already widely-used measurements



Chapter 3 54

(e.g. Behroozi et al., 2013, Guo et al., 2011, Moster et al., 2013). We also develop a

semi-analytic technique to alter the temperature of the CGM in post-processing, and

apply it on our Nyx run. Exploiting this technique, we show that the discrepancy with

the data within the virial radius could be mitigated if the simulations predicted a cooler

CGM.

This Chapter is organized as follows. In § 3.1, we describe the details of the simulations

adopted. In § 3.2, we explain how we constructed the sample of simulated spectra of

Ly↵ absorption. We compare the predictions of the simulations with observations in

§ 3.3. In § 3.4, we discuss the physical implications of our results, as well as the impact

of possible systematic errors in our analysis. We summarize our results and discuss the

perspectives of this work in § 3.5.

3.1 Simulations

To study the Ly↵ absorption in the CGM, we used a large-box run of the Nyx hydrody-

namic code, and the publicly available Illustris cosmological hydrodynamic simulation.

In this section, we briefly describe the main characteristics of the two simulations.

3.1.1 Nyx

In this work, we adopted a di↵erent run of the Nyx (Almgren et al., 2013, Lukić et al.,

2015) hydrodynamic code, already introduced in § 2.1. Nyx treats dark matter as self-

gravitating Lagrangian particles, and modeling baryons as an ideal gas on a uniform

Cartesian grid. Shock waves are accurately captured by solving the Eulerian equations

of gas dynamics through a second-order-accurate piecewise parabolic method. The adap-

tive mesh refinement (AMR) option provided by Nyx is switched o↵ in the present work,

since we are interested in simulating the Ly↵ absorption in the entire box, and not only

within the most overdense regions (i.e. halos). More details about the numerical meth-

ods implemented in Nyx and relevant scaling tests can be found in Almgren et al. (2013).

The physical processes necessary to model the Ly↵ forest are included in the code. The

gas is considered to have a primordial composition, with abundances Xp = 0.76 and

Yp = 0.24, respectively. Furthermore, the inverse-Compton cooling o↵ the microwave

background is included, and the net loss of the thermal energy resulting from atomic

collisional processes is accounted for. The values of the recombination, collisional ion-

ization, dielectric recombination rates, as well as cooling rates, which are used in this

work, are given in Lukić et al. (2015). The ionizing ultraviolet background (UVB) is

given by Haardt & Madau (2012). Self-shielding is modeled following Rahmati et al.

2013 (see § 3.2.3 for further discussion). Nyx does not incorporate any star formation or
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feedback prescription. Since there is no star particle, when we compute the Ly↵ optical

depth in a certain cell, we threshold the density in that cell to �th = 1000 1.

The initial conditions are generated through the Music code (Hahn & Abel, 2011) and

a CAMB (Howlett et al., 2012, Lewis et al., 2000) transfer function. All simulations are

initialized at redshift zini = 159, making sure that nonlinear evolution is not compro-

mised (for a detailed discussion on this issue see, e.g., Oñorbe et al., 2014). The cos-

mological model assumed is the ⇤CDM model with parameters consistent with Planck

data (Planck Collaboration et al., 2016): ⌦m = 0.3, ⌦⇤ = 1 � ⌦m = 0.7, ⌦b = 0.047,

h = 0.685, �8 = 0.8.

In this work, we consider the snapshots at redshift z = 2.4 and z = 3 of a run with

a volume of 146 cMpc, 40963 gas cells and as may DM particles. This run represents

a state-of-the-art hydrodynamic cosmological simulation. The box size is comparable

with the largest hydrodynamic cosmological simulations in the literature (e.g. Crain

et al., 2017, Vogelsberger et al., 2014b). The resolution of 35.6 ckpc for baryons grants

a precision at percent level in the PDF of the Ly↵ forest flux and within ⇠ 5% in the

1D Ly↵ flux power spectrum up to k ⇠ 0.1 s km�1 (Lukić et al., 2015).

3.1.2 Illustris

Illustris (Genel et al., 2014, Sijacki et al., 2015, Vogelsberger et al., 2014a,b) is a hydro-

dynamic simulation based on the Arepo code (Springel, 2010a). Dark matter is treated

with a Lagrangian approach, while baryons are described as an ideal gas on a moving

mesh constructed with a Voronoi tessellation (Springel, 2011). A Tree-PM scheme (Xu,

1995) is used to compute gravitational forces; a particle-mesh method calculates long-

range forces, while a hierarchical algorithm (Barnes & Hut, 1986) is used to determine

short-range forces. Gas dynamics is implemented by solving the viscosity-free Euler

equations.

Several fundamental astrophysical processes for galaxy formation are included: primor-

dial and metal-line cooling, a sub-resolution model of the interstellar medium, stochastic

star formation above a density threshold of 0.13 cm�3, gas recycling and chemical en-

richment. Kinetic stellar feedback is implemented through supernovae-driven winds,

determined by the velocity dispersion of the host halo (Vogelsberger et al., 2013). Illus-

tris includes also super-massive black hole seeding, accretion and merging. The relative

AGN feedback implementation follows Sijacki et al. (2007), presenting a dual model-

ing, which depends on the black hole accretion rate: a radiatively e�cient model and

1We also considered other values of �th, ranging from 200 to 3000. By visual inspection, we verified
that simulating the Ly↵ absorption spectra with �th = 1000 gives physically reasonable results.
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a “radio-mode”. The free parameters governing the feedback prescriptions were con-

strained matching the overall star formation e�ciency predicted by smaller scale simu-

lations (Vogelsberger et al., 2013) to observed data (Behroozi et al., 2013, Guo et al.,

2011, Moster et al., 2013).

Photo-ionization and heating are implemented with the UVB by Faucher-Giguère et al.

(2009b). Self-shielding and ionization from nearby AGN are taken into account. In

analogy to what we are doing with the Nyx simulation, when we compute the Ly↵ optical

depth from Illustris, we also include collisional ionization and self-shielding, following

Rahmati et al. 2013 (see § 3.2.3 for further discussion).

The simulation is initialized at zini = 127 (see Vogelsberger et al., 2014a, for details). The

cosmological model assumed is the ⇤CDM model with parameters consistent with the 9-

year data release of WMAP (Hinshaw et al., 2013): ⌦m = 0.2726, ⌦⇤ = 1�⌦m = 0.7274,

⌦b = 0.0456, h = 0.704, �8 = 0.809, n
s

= 0.963. In this work, we utilize the snapshots

at redshift z = 2.44 and z = 3.01. Unless otherwise stated, we refer to the “Illustris-1”

run, which is the highest-resolution one. The volume of the simulation is (106.5 cMpc)3;

with 18203 DM particles, and as many gas Voronoi cells, the DM mean interparticle

separation is 58.5 ckpc. The mass resolution is 6.3 ⇥ 106 M� and 1.3 ⇥ 106 M� for DM

and gas, respectively.

3.2 Modeling

In this section, we explain how we simulate mock absorption spectra (skewers) to repro-

duce the observations. Specifically, we consider measurements of the Ly↵ absorption in

the CGM of QSOs, DLAs and LBGs. These data are obtained observing the spectra of

background QSOs along lines of sight passing at di↵erent impact parameters from the

foreground objects.

Reproducing the observations from simulations requires three steps. First of all, we

need to select a sample of halos representing the foreground objects. Then, we extract

a sample of lines of sight at di↵erent impact parameters from each halo, and finally we

compute mock Ly↵ absorption spectra along such skewers.

3.2.1 Selection of Halos

To begin with, we need to identify DM halos in Nyx and Illustris, and determine their

mass; then, we will select samples of halos hosting the foreground QSOs, LBGs and

DLAs. For Illustris, we use the publicly available halo catalogs. Halos are identified

grouping at least 32 particles by means of a friends-of-friends (FOF) algorithm (Davis

et al., 1985), with a linking length equal to 0.2 times the mean particle separation. All

other particle types are then associated to these dark matter halos through a second
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Observations a z b log(Mmin/M�) c

Nyx Illustris Nyx Illustris
Font-Ribera et al. (2013)
Prochaska et al. (2013)

2.4 2.44 12.5 12.4

Font-Ribera et al. (2012b)
Turner et al. (2014)
Rubin et al. (2015)

2.4 2.44 11.7 11.6

Adelberger et al. (2005a, 2003)
Crighton et al. (2011)

3.0 3.01 11.5 11.5

a Observations considered in this work.
b Redshift of the snapshot considered to reproduce the observa-

tions in column 1.
c Mass threshold for the halos selected to reproduce the observa-

tions in column 1.

Table 3.1: Parameters used in simulations to reproduce observations.

linking stage (Dolag et al., 2009). We consider the mass of each halo to be the total

FOF mass assigned to that halo. In Nyx, halos are identified by finding the topological

connected components with density above 138 times the mean density.

In principle, the halo masses in the Nyx and Illustris catalogs may not be consistent,

being determined with di↵erent halo-finding algorithms and mass definitions. To ensure

a physically meaningful comparison, we calibrate the halo masses of the two simulations

with the same observations of QSO and LBG clustering. Specifically, for each simula-

tion, we determine the minimum halo mass Mmin above which the 3D auto-correlation

function of halos matches the same quantity observed for QSOs (White et al., 2012)

and LBGs (Bielby et al., 2011). For the QSO sample, we obtain Mmin = 1012.4 M� and

Mmin = 1012.5 M� at z ⇡ 2.4 in Illustris and Nyx, respectively. For the LBG sample, the

value of Mmin at z ⇡ 2.4 is 1011.6 M� and 1011.7 M� in Illustris and Nyx, respectively.

These values are consistent with the typical mass of LBG-hosting halos in the KBSS,

⇠ 1012 M� (Adelberger et al., 2005b, Conroy et al., 2008, Rakic et al., 2013, Trainor &

Steidel, 2012, Turner et al., 2014).

Regarding the measurements of the Ly↵ absorption around DLAs, we considered the

same sample of halos selected for the LBGs. This choice is justified by the fact that the

typical mass of DLAs estimated by Font-Ribera et al. (2012b) from a large sample of

BOSS quasar spectra (⇠ 1012 M�) is the same as the one measured for LBGs. Identifying

the LBG and DLA samples implies the additional assumption that the DLAs lie along

the line-of-sight passing through the center of the LBG-hosting halo.

We summarize all derived values of Mmin in Table 3.1. Further details on the procedure

to determine Mmin can be found in the Appendix B.
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3.2.2 Construction of Samples of Skewers

Once we set Mmin, we are left with a list of halos selected from the halo catalog, corre-

sponding to the selection criterion described in the previous subsection. We then need

to extract a sample of skewers around each halo, within a certain range of the impact

parameter b. We always adopt the same impact parameter bins as the observations that

we want to reproduce, and draw 104 skewers for each bin.

We randomly draw the position of the first skewer around the first halo in our list from a

uniform distribution in log b across the impact parameter bin, and a uniform distribution

in the phase angle around the halo. We translate the position of the skewer into a

regular Cartesian grid. In the case of Nyx, this is simply the grid used in the simulation

to describe the evolution of gas. In the case of Illustris, we treat each Voronoi cell as an

SPH (Smoothed Particle Hydrodynamics; see Springel 2010b for a review) particle, and

bin it into a regular grid (following Bird et al., 2014). The size of a grid cell corresponds

to the mean interparticle separation in Illustris. We verified that a finer grid would not

change the conclusions of this work appreciably (see the Appendix C for more details).

We extract the gas density, temperature and line-of-sight velocity along the selected

skewer, throughout the simulation box. To draw the second skewer of our sample, we

consider the second halo in the list and repeat the aforementioned procedure. We proceed

in this way until we reach the last halo of the list. Since the number of skewers is larger

than the number of halos, the following skewer is again extracted around the first halo

of the list. If the transverse distance between this skewer and the one previously drawn

in the same halo is less than 3 grid cells, the coordinates of the new skewer are re-drawn.

This check is made any time a new skewer has to be drawn around a halo which has

previously been considered to extract other skewers. With the procedure adopted, we

minimize the number of skewers per halo and set a minimum transverse distance among

skewers around the same halo. In this way, we avoid having two highly correlated, or

even identical, skewers.

3.2.3 Simulating HI Absorption

Once all density, temperature and velocity skewers are extracted, we can compute the

Ly↵ absorption spectra. To do this, we first of all need to determine the HI density nHI

in each pixel.

The total hydrogen density in each cell is simply obtained multiplying the gas over-

density by the cosmic fraction of hydrogen. The ionized fraction of hydrogen is then

set by the balance between recombination and all ionization processes, which depend

on the density and temperature of the gas. Performing radiative transfer on top of

the EAGLE cosmological hydrodynamic simulations, Rahmati et al. (2013) showed that

the dependence of the photoionization rate on the hydrogen density nHcan be divided
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into three regimes, corresponding to di↵erent dominant ionization mechanisms: pho-

toionization and collisional ionization below and above the the self-shielding density

threshold (⇠ 6.0 ⇥ 10�3 cm�3 at 2 < z < 3), respectively, and recombination radiation

for nH & 102 cm�3. Rahmati et al. (2013) provided an analytic fit to the photoioniza-

tion rate - hydrogen density relationship, and proved that it is insensitive to the box

size and resolution of the simulation, suggesting that it can be used to determine nHI

in simulations on top of which no radiative transfer has been performed. We then use

their parameterization of the photoionization rate - hydrogen density relationship to

determine nHI in Nyx and Illustris.

After computing nHI, we determine the Ly↵ optical depth ⌧ taking into account the

thermal broadening of the absorption lines and redshift space distortions (see e.g. Lukić

et al., 2015). The Ly↵ flux is then simply given by F = exp(�⌧). Following the standard

approach, we chose the value of the UVB such that the flux skewers are consistent with

the observed mean flux of the IGM at the redshift of the observations. This is ensured

by randomly drawing 105 skewers from Illustris and Nyx, and tuning the UVB in both

simulations such that the mean flux matches the observations by (Becker et al., 2013).

The obtained values of the UVB are then used to compute the transmitted flux along

the samples of skewers generated as explained in § 3.2.1 and § 3.2.2.

3.2.4 Altering the Temperature of the CGM

To get insight into the connection between HI absorption and temperature of CGM

gas, we developed a semi-analytic technique to “paint” di↵erent temperature-density

relationships in the CGM of Nyx halos. Our goal is to come up with a simple method to

alter the temperature of the CGM, depending on a small number of intuitive parameters,

and capable of producing physically reasonable skewers.

We begin by visually inspecting hydrogen density and temperature maps around halos.

In Figure 3.1 we show these quantities within a one-pixel-thick slice centered around a

sample of 4 halos in Nyx (first two columns from the left) and Illustris (last two columns

from the left). Every row displays one halo from each simulation, chosen such that their

masses agree within 0.2%. The mass of the halos increases from top to bottom. The

mass of the halos in the first two rows is typical of LBGs, whereas the remaining rows

contain halos with a mass characteristic of QSOs. The side of each slice shown is equal

to 5 times the virial radius of the halo at its center. The virial radius rvir, marked with a

black circle at the center of slice displayed in Figure 3.1, was computed using the Barak

Python package2.

Let us now focus on the panels of Figure 3.1 relative to Nyx. We notice that, for each

halo, the temperature of the CGM broadly traces the underlying hydrogen density in

2
http://nhmc.github.io/Barak/index.html

http://nhmc.github.io/Barak/index.html
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Figure 3.1: Top panels : Temperature and hydrogen density slices around a sample of
4 halos selected from Nyx and Illustris at z = 2.4 and z = 2.44, respectively. The first
and second columns from the left show the temperature and hydrogen density around
Nyx halos, respectively, while the third and fourth columns the same quantities for
Illustris halos. The slices are one pixel thick, are centered around the halos, and span
an area of 5⇥5 virial radii. The virial radius is marked with a black circle. The mass of
each halo is written in the hydrogen density panel. For the most massive halos, Illustris
generally presents more extended bubbles of hot gas with respect to Nyx.

low-density regions, as expected given that the IGM follows a tight temperature-density

relationship (Hui & Gnedin, 1997). On the other hand, gas cells closer to the center of

the halo seem to be generally hotter than those farther out3.

Following the hints given by the visual inspection of the hydrogen density and temper-

ature slices, we assume that the temperature of the CGM at a certain point in the halo

can, to a first approximation, be modeled as a function T (nH, r) of the local hydrogen

density nH and of the distance from the center of the halo r only. In general, we do not

3The only exception is the tiny central dense and overcool region. This is caused by the fact that
Nyx does not convert dense gas into stars, hence gas can evolve to very high density, and for the densest
cells cooling becomes more e�cient.
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Figure 3.2: Top panels: A sample of 4 temperature skewers given by Nyx (green lines)
and obtained through our semi-analytic technique (black dashed lines). All skewers are
taken at 50 kpc impact parameter from one of the halos shown in Figure 3.1, ordered
by increasing mass from the top to the bottom panel. All skewers are plotted such that
the position of the halo lies at the center of the panel. In all panels, the vertical dashed
black lines mark the boundaries of the virial radius. By construction, our semi-analytic
technique matches Nyx outside the virial radius. Outside the virial radius, it presents
an overall good agreement with Nyx (see the main text for details).

expect this function to have a trivial shape. In order to determine a physically sensible

shape for T (nH, r), we first of all select a sample of halos as explained in § 3.2.1 and

divide the gas cells into equally spaced logarithmic bins of nH. Within each density bin,

we compute the mean logarithmic temperature given by Nyx (hlog T [K]i) within dif-

ferent radial distance bins, and then fit the resulting mean temperature-radial distance

profile with the following function:

hlog(T [K])i = a(nH) + b(nH) log

✓
r

rvir

◆
, (3.1)

where a(nH) and b(nH) are the parameters of the fit, which are determined for each

nHbin.

We used Equation (3.1) to define the aforementioned function T (nH, r), and used such

function to re-compute the temperature of the gas within the virial radius of halos in

Nyx, leaving the temperature given by Nyx outside the virial radius unmodified4.

4The transition between the temperature given by Nyx outside the virial radius and the temperature
computed through our semi-analytic technique within the virial radius is actually modulated with a
smooth approximation of the step function. Given the specific shape of this function, the temperature
of the skewers in the Nyx Hot and Nyx Cold models can slightly di↵er from the values of the pure Nyx
run as far as ⇠ 1.2 rvir.
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We test the validity of our approach comparing the resulting temperature skewers with

the ones given by the unmodified Nyx run. In Figure 3.2, we show the temperature

along 4 skewers extracted from Nyx. The skewer depicted in each panel passes at an

impact parameter of 50 kpc from one of the halos shown in Figure 3.1, in increasing

order of mass from top to bottom. The solid green lines refer to the temperature given

by Nyx, while the dashed black lines indicate the temperature re-computed though our

semi-analytic technique. We plot only the temperature within a velocity window of

±500 km s�1 around the position of the halo, which is aligned at the center of every

panel and marked with a vertical dashed black line. The other two vertical black dashed

lines indicate the boundaries of the virial radius around the position of the halo. The

discontinuities in the temperature skewers are due to the virial shocks. Outside the

virial radius, our method matches Nyx by construction. Within this range of distance,

the agreement is better for lower-mass halos. For the most massive halo (⇠ 1013 Modot,

bottom panel) our approach reproduces Nyx within a factor of ⇠ 2. The overall good

agreement between Nyx and our approach proves that our method is a reasonable and

simple technique to semi-analytically describe the temperature of the CGM.

Having verified the robustness of our semi-analytic approach, we now use it to construct

two di↵erent models for the CGM: one with an overall hotter CGM than predicted by

Nyx (“Nyx Hot”), and one with a colder CGM (“Nyx Cold”). We define these models

by simply adding a constant to a(nH) in Equation (3.1), while keeping b(nH) unchanged.

Specifically, in the Nyx Hot model, the additive constant is 1, so that the temperature of

the CGM within the virial radius is generally 1 dex higher than the predictions given by

Nyx. Di↵erences up to 1 dex in the temperature profiles around halos are also found in

other cosmological simulations when comparing runs including feedback with feedback-

free runs (e.g. Kollmeier et al., 2006, Nelson et al., 2016, Stinson et al., 2010, 2012,

Woods et al., 2014). Hence, although our hot painted model on top of the feedback-free

Nyx run is by no means equivalent to a simulation endowed with feedback prescriptions,

it mimics reasonably well the heating caused by AGN feedback.

The Nyx Cold model is defined by replacing a(nH) with a(nH) � 1, in analogy with

the Nyx Hot model. The temperature of the CGM within one virial radius is then

generally one order of magnitude lower than in Nyx. Physically, this model has a less

straightforward interpretation. It could simply represent a CGM which cools down

more e�ciently than expected from current simulations. There may also be further

interpretations linked to the physics which is unresolved in the simulations. We shall

discuss it in detail in § 3.4. At the current stage, the Nyx Cold model should be

considered simply as a means to explore what the Ly↵ absorption around galaxies would

look like if their CGM were colder than what predicted by Nyx.
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3.3 Results

3.3.1 Simulated Spectra

Before computing any statistics of the Ly↵ absorption lines, we visually inspect a sample

of skewers extracted from Illustris, pure Nyx, and Nyx with modified temperature. In

Figure 3.3, the top set of five panels shows di↵erent physical quantities along the same

skewer drawn from the Nyx run, at 50 kpc from the halo shown in the third row of Figure

3.1. From top to bottom, we plot the gas overdensity with the corresponding number

density of hydrogen, the gas temperature with the corresponding Doppler parameter,

the HI column density, the gas velocity field and the transmitted Ly↵ flux. The green,

blue and red solid lines refer to the pure Nyx run, and to the Cold and Hot Nyx models,

respectively. All quantities are centered at the position of the halo along the line of

sight, marked with a vertical black dashed line, and plotted within a velocity window of

±500km s�1.

The temperature seems to trace the gas overdensity along the skewer, except for the

region within ⇠ 240 kpc from the center of the halo. This region is delimited by a steep

increase of the temperature, which is due to the virial shock. By construction, the tem-

perature of the three models is the same far from the halo, and presents increasingly

larger di↵erences as the halo is approached. In turn, these di↵erences impact also the

HI column density. The gas velocity field is smooth in the IGM regime. The disconti-

nuity seen at the IGM/CGM interface is due to the virial shock. The flux is the most

interesting panel, since that is the actual observable that we are interested in. It is

remarkable that, even though we are changing the temperature in a small region along

the line of sight, we see huge di↵erences in the flux skewers predicted by the di↵erent

models. This happens because the peculiar velocities of the gas increase the impact of

Doppler broadening features farther from the virial radius. In this way, the Nyx Hot

model erases most of the absorption features. In contrast, the Nyx Cold model increases

the absorption, giving rise to a deeper extended trough.

In the lower set of five panels in Figure 3.3 we plot the same quantities as in the top

set of panels, but for a skewer drawn from the Illustris simulation, at 50 kpc from the

halo shown in the third row of Figure 3.1. Also in this case, we can distinguish between

IGM and CGM regimes thanks to the virial-shock features in the temperature and gas

velocity skewers, although the transition is smoother if compared with Nyx. The hot

region around the halo is much more extended in the case of Illustris. Its boundaries

span a length of ⇠ 870 kpc, whereas the corresponding region for the skewer drawn form

Nyx is ⇠ 470 kpc. Consequently, the absorption features are very mild in this example

skewer from Illustris.

In general, it seems that the hot component of the CGM spreads farther from the center

of the halo in Illustris and Nyx. We shall discuss it into detail in § 3.4.1.
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Figure 3.3: Di↵erent quantities along the same skewer, located at 50 kpc from the
Nyx and Illustris halos in the third row from the top of Figure 3.1. In the top set of five
panels, from top to bottom, we plot the gas overdensity with the corresponding number
density of hydrogen, the gas temperature with the corresponding Doppler parameter,
the HI column density, the gas velocity field and the transmitted Ly↵ flux in a velocity
window of ±500 km s�1 around the Nyx halo. The green solid lines refer to the pure
Nyx run. The blue dashed and red dot-dashed lines refer to our Cold Nyx and Hot
Nyx models altering the temperature of the CGM in Nyx (see text for details). In the
bottom set of five panels, we plot exactly the same quantities as in the top set, this
time for the Illustris halo.
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3.3.2 Comparison with Observations

In this section, we compute various statistics of our sample of flux skewers, and compare

them with observations of the Ly↵ absorption in the CGM of QSOs, DLAs and LBGs.

3.3.2.1 Quasar Hosts

We want to compare the mean flux versus the impact parameter predicted by the mod-

els considered, with the observations by Prochaska et al. (2013) and Font-Ribera et al.

(2013). The two measurements probe di↵erent ranges of impact parameter, comple-

menting each other.

Prochaska et al. (2013) considered a sample of 650 projected QSO pairs in the redshift

range 2 < z < 3 and with a transverse separation < 1 Mpc. They divided the spectra

into 5 bins of impact parameter and, for each of such bins, measured the mean flux within

a line-of-sight velocity window of ±1000 km s�1 around the position of the foreground

object. Thus, they determined the mean Ly↵ flux fluctuations

�
F

= 1 �

hF i

hF iIGM
, (3.2)

as a function of the impact parameter. In (3.2), hF i is the mean flux in each impact

parameter bin, averaged over all spectra, and hF iIGM is the mean flux of the IGM at the

median redshift of the observations (z ⇡ 2.4). We report these measurements in Figure

3.4 as black squares. The vertical error bars are the 1� errors of the measurements,

whereas the horizontal bars show the bin widths.

Font-Ribera et al. (2013) considered a sample of ⇠ 6⇥104 QSO spectra from BOSS. They

measured the QSO-Ly↵ cross-correlation function in di↵erent bins of transverse and line-

of-sight separation. This is actually equivalent to measuring the mean Ly↵ flux profile, as

in Prochaska et al. (2013). Indeed, averaging their estimate of the cross-correlation over

the the line-of-sight bins corresponding to a velocity window of ±1000 km s�1, we can

infer the corresponding mean flux fluctuations as a function of the transverse separation

between QSOs. We plot the resulting �
F

profile in Figure 3.4 with orange triangles,

and list them in Table D.2 in the Appendix D, where we also provide the details of

our conversion. The vertical bars are the 1� errors of the measurements, whereas the

horizontal bars show the bin widths. For the first time, we show that Font-Ribera et al.

(2013) measurements are consistent with Prochaska et al. (2013), extending the dynamic

range probed by the Ly↵ absorption lines from the CGM out to the IGM. As such, these

measurements have the potential to jointly constrain the physics of both CGM and IGM.

We plot the results of the simulations in Figure 3.4, with a point in the center of each

impact parameter bin. To guide the eye, we linearly interpolate between the points.

The magenta diamonds and the green circles, connected with solid lines of the same
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Figure 3.4: Mean Ly↵ flux fluctuations at di↵erent impact parameter bins (b) from
a foreground QSO ( halo mass M & 1012.5 M�), with respect to the mean flux in the
IGM. The black squares are the measurements by Prochaska et al. (2013), while the
orange triangles are obtained from the measurements of the QSO-Ly↵ cross-correlation
function by Font-Ribera et al. (2013). The magenta diamonds and green circles, linearly
interpolated with solid line with the same colors, are the results obtained with Illustris
and Nyx, respectively. The red triangles connected with the dot-dashed red line and the
blue reversed triangles linearly interpolated with the blue dashed line refer to the Nyx
Hot and Nyx Cold models, respectively (see text for details). The vertical black dotted
lines mark 1, 2, 3 and 5 times the virial radius corresponding to the minimum mass of the
sample of halos considered in Nyx (1012.5 M�), as well as the 1 Mpc boundary (see the
discussion in § 3.4.1.3). While being consistent with the observations outside the virial
radius, all simulations struggle at reproducing the data at small impact parameter,
indicating a lack of HI absorption in the CGM of quasar hosts in the simulations
considered. At 1 Mpc, Illustris matches the observations, while Nyx overshoots them.
Thus, BOSS data are already capable of tightly constraining simulations.
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colors, refer to Illustris and the pure Nyx run, respectively. The red triangles connected

with a dot-dashed red line and the blue reversed triangles interpolated with a dashed

blue line represent the Nyx Hot and Nyx Cold models, respectively. The simulations

do not extend to the outermost data points because the size of their boxes in not large

enough. The vertical dotted black lines correspond to 1, 2, 3 and 5 times the virial

radius corresponding to the minimum mass of the sample of halos considered in Nyx

(1012.5 M�), as well as the 1Mpc boundary (it will be useful in the discussion in § 3.4.1.3).

The mean flux fluctuations predicted by the simulations in each impact parameter bin

is obtained averaging the values of �
F

obtained from 5 di↵erent samples of 104 skewers,

selected as explained in § 3.2.2. We verified that the scatter in the predictions given by

the various samples of 104 skewers is < 7%.

All models considered are consistent with the observations outside the virial radius, ex-

cept that Nyx overshoots the data point at 1 Mpc, which is instead matched by Illustris.

Conversely, on scales > 2 Mpc, the data prefer the Nyx model. For b & 400 kpc, the

Nyx Hot and Nyx Cold models give exactly the same predictions as Nyx because, by

construction, the temperature-density relationship is modified only within the virial ra-

dius of the foreground object5. No Nyx-based model nor Illustris reproduce the mean

flux fluctuations within the virial radius. This result underlines that the simulations

considered do not produce enough HI absorption in this range of distance. One possible

reason is that the simulated gas in the CGM is too hot. Indeed, the Nyx Cold model is

much closer to the data than the Nyx and Nyx Hot ones. Nevertheless, this is only one

possibility to explain the discrepancy. In § 3.4 we shall discuss other possible reasons.

Nyx and Illustris give di↵erent predictions for the mean flux fluctuations between 200 kpc

and 2 Mpc from the foreground QSO, well beyond the median virial radius of the sample.

We think that they stem from the di↵erent temperature-density relationship of the gas

in the CGM of Illustris and Nyx halos. We shall discuss this point into detail in § 3.4.1.

The di↵erence between the two simulations is particularly pronounced in the range

200 kpc . b . 2 Mpc. Whereas for 200 kpc . b . 500 kpc the error bars in Prochaska

et al. (2013) measurements are too large to rule out either simulations, the data point

at 1 Mpc validates Illustris, while being discrepant with Nyx. This result shows that,

with the current exquisitely precise Ly↵ absorption BOSS data, it is already possible

to tightly constrain simulations. The precision of the observations at smaller impact

parameters (Prochaska et al., 2013) is instead limited by relatively poor statistics of

the QSO pairs. In fact, the QSO sample in Font-Ribera et al. (2013) is ⇠ 100 times

larger than the sample in Prochaska et al. (2013). Therefore, if future observations

(with e.g. JWST6, DESI, 4MOST7) increased the statistics of the QSO pairs with

5The minimum mass of the sample is 1012.5
M�, corresponding to 140 kpc. Since the sample contains

halos as massive as 1013.7
M�, the Nyx Hot and Nyx Cold can di↵er with respect to Nyx up to b ⇠

350 kpc. As we mentioned in Footnote 4, our semi-analytic technique can a↵ect the temperature in the
virial radius of the selected halos up to ⇠ 1.2, and this explains the di↵erences observed in Figure 3.4
up to b ⇠ 400 kpc.

6James Webb Space Telescope (Gardner et al., 2006)
74-metre Multi-Object Spectroscopic Telescope (de Jong et al., 2016)
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separations in the range 200 kpc . b . 1 Mpc, it would be possible to obtain more precise

measurements of �
F

, thus further constraining simulations. Since feedback prescriptions

are expected to have a greater impact at small impact parameter, increasing the precision

of observations in at < 1 Mpc would enable us to provide an additional test to validate

feedback implementations.

3.3.2.2 Damped Ly↵ Absorbers

We now compare the observations of Ly↵ absorption around DLAs by Rubin et al. (2015)

and Font-Ribera et al. (2012b) with the predictions given by the simulations considered

in this work.

Rubin et al. (2015) considered a sample of 40 DLAs in the redshift range 1.6 < z < 3.6,

intervening along the line of sight of a background QSO, and passing at di↵erent impact

parameters from another background QSO. They stacked the absorption spectra in four

impact parameter bins, and measured the equivalent width of the Ly↵ absorption feature

within a velocity window of ±500 km s�1 around the DLA. We converted the measured

equivalent width in each bin into the corresponding mean flux fluctuation. The results

are plotted in Figure 3.5 as black squares. The vertical bars indicate the 1� errors of the

measurements, while the horizontal bars are the bin widths. We reported the inferred

mean flux fluctuations in Table E.1 in the Appendix E, where we also explain the details

of our conversion of the Rubin et al. (2015) measurement.

Font-Ribera et al. (2012b) considered a sample of ⇠ 5 ⇥ 104 QSO spectra from the 9th

Data Release of BOSS, and a subsample of ⇠ 104 DLAs from the catalogue by Noter-

daeme et al. (2012). They measured the cross-correlation of Ly↵ forest absorption and

DLAs, in di↵erent bins of transverse and line-of-sight separation. As we did for the

QSO-Ly↵ cross-correlation in § 3.3.2.1, we convert the measurements by Font-Ribera

et al. (2012b) into a mean flux fluctuations profile (see Appendix D for details). The re-

sults, shown as orange triangles in Figure 3.5 and reported in Table D.1 in the Appendix

D, extend the observations by Rubin et al. (2015) to 16.8 Mpc. The vertical error bars

represent the 1� errors of the measurements, whereas the horizontal bars the widths of

the impact parameter bins. The BOSS measurements are much more precise than Rubin

et al. (2015) observations because of the much larger DLA and QSO samples. There

seems to be a statistical fluctuation in the Rubin et al. (2015) data point at ⇠ 350 kpc,

which appears to be inconsistent with the otherwise smooth trend that would be inferred

connecting all other data points in Figure 3.5.

We overplot the predictions given by our simulations with the same marker styles, line

styles and colors as in Figure 3.4. Following the same approach as in § 3.3.2.1, we

determined the statistical error in the predictions given by the simulations to be < 1.5%.

Illustris does not extend out to ⇠ 20 Mpc due to its box size. Nyx, Nyx Hot, and Nyx
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Figure 3.5: Mean Ly↵ flux fluctuations at di↵erent impact parameter bins (b) around
DLAs (halo mass M & 1011.7 M�). The black squares are the measurements by Rubin
et al. (2015), while the orange triangles are obtained from the measurements of the
DLA-Ly↵ correlation function by Font-Ribera et al. (2013). The magenta diamonds
and green circles, linearly interpolated with solid line with the same colors, are the
results obtained with Illustris and Nyx, respectively. The red triangles connected with
the dot-dashed red line and the blue reversed triangles linearly interpolated with the
blue dashed line refer to the Nyx Hot and Nyx Cold, respectively (see text for details).
The vertical black dotted lines mark 1, 2, 3 and 5 times the virial radius corresponding
to the minimum mass of the sample of halos considered in Nyx (1011.7 M�), as well as
the 1 Mpc boundary (see the discussion in § 3.4.1.3) . Except for the Nyx Hot model,
all simulations are consistent with the data. The mild tension with the data in the
outermost bin of Rubin et al. (2015) can be attributed to the low number of spectra in
that bin.
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Cold give the same predictions for b & 300 kpc, by construction8. Except for the Nyx

Hot model, all other simulations are generally consistent with the observations, both

within and outside the virial radius. Apart from the already discussed data point at

⇠ 350 kpc, there appears to be some tension with the Rubin et al. (2015) measurements

at ⇠ 75 kpc and with the Font-Ribera et al. (2012b) measurement ⇠ 1 Mpc. Illustris is

consistent with the latter within 1�, while Nyx within 2�.

Ww notice that the greatest di↵erences between the predictions of Nyx and Illustris

arise in the range 100 kpc . b . 1 Mpc. Improving the precision of the measurements of

the �
F

in this range with future observations would allow setting meaningful constraints

on the physics of the CGM and feedback prescriptions implemented in simulations.

3.3.2.3 Mean Ly↵ Transmission Profile around LBGs

We consider the measurements of the HI Ly↵ transmissivity profile in the CGM of LBGs

by Adelberger et al. 2003 (z ⇠ 3), Adelberger et al. 2005a (mean redshift z ⇡ 2.5) and

Crighton et al. 2011 (z ⇠ 3). Since these measurements are at di↵erent redshifts, we

need to put them on the same scale, for a fair comparison. Following Crighton et al.

(2011), we re-normalize the transmissivity profile to the same mean flux hF iIGM = 0.76

We convert the transmissivities into �
F

profiles, and report them in the left panel of

Figure 3.6. Grey circles, black circles and orange squares refer to the measurements by

Adelberger et al. (2003), Adelberger et al. (2005a) and Crighton et al. (2011), respec-

tively. Unlike Figures 3.4 and 3.5, the x-axis represents the 3D distance from the LBG,

and not the impact parameter. In the observations, the 3D distance between each LBG

and Ly↵ absorption feature is determined from their measured angular separation, and

their co-moving distances from the observer. The latter are inferred from the measure-

ment of the redshifts of the LBG and the absorption line, under the assumption of a

pure Hubble flow. Therefore, the 3D distance estimated in the measurements di↵ers

from the real distance, due to velocity flows and redshift space distortions.

To reproduce the observations, we considered the halos with mass M > 1011.5 M� in the

Nyx (Illustris) snapshot at z = 3 (z = 3.01). The mass threshold has been determined

as explained in § 3.2.1. Around the selected halos, we considered the same impact

parameter bins adopted to reproduce the measurements by Font-Ribera et al. (2012b)

and Rubin et al. (2015). We drew a sample of 104 skewers in each impact parameter bin

as explained in § 3.2.2, and re-normalized the mean flux of each sample to hF iIGM = 0.76

(following Crighton et al. 2011). We binned the pixels in all skewers according to the

their radial distance from the foreground object, using the same binning adopted in the

8The minimum mass of the sample is 1011.7
M�, corresponding to 75 kpc. Since the sample contains

halos as massive as 1013.7
M�, the Nyx Hot and Nyx Cold can actually di↵er with respect to Nyx up to

b ⇠ 350 kpc.
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Ly↵ absorption around LBGs

Figure 3.6: Left panel : Mean Ly↵ flux fluctuations at di↵erent 3D separations from
the foreground LBG (halo mass M & 1011.7 M�). The orange squares, grey and black
points are the measurements by Crighton et al. (2011), Adelberger et al. (2003) and
Adelberger et al. (2005a), respectively. The solid magenta, solid green, dot-dashed red
and the dashed blue lines Illustris, Nyx, Nyx Hot and Nyx Cold models, respectively
(see text for details). Right panel : Median Ly↵ optical depth of HI in the CGM of
foreground LBGs (halo mass M & 1011.7 M�) illuminated by a background quasar. The
black squares are the measurements by Turner et al. (2014). The magenta diamonds
and green circles, linearly interpolated with solid lines of the same colors, are the results
obtained with Illustris and Nyx, respectively. The red triangles connected with the dot-
dashed red line and the blue reversed triangles linearly interpolated with the blue dashed
line refer to the Nyx Hot and Nyx Cold models, respectively (see text for details).The
vertical black dotted lines mark 1, 2, 3 and 5 times the virial radius corresponding to
the minimum mass of the sample of halos considered in Nyx (1011.7 M�), as well as the
1 Mpc boundary (see the discussion in § 3.4.1.3).

observations that we want to reproduce. We then computed the mean flux fluctuations

in each radial bin.

We plot the predictions given by the simulations and models considered in this work

in the left panel of Figure 3.6. The results of Illustris, Nyx, Nyx Cold and Nyx Hot

are plotted with the solid magenta, solid green, dashed blue and dot-dashed red lines,

respectively. We verified that the scatter in �
F

arising from the choice of di↵erent samples

of skewers is negligible. The Nyx Cold and Nyx Hot models give di↵erent predictions

than Nyx at distances . h�1 4 Mpc. This may seem somewhat puzzling, since in the

Nyx-painted models the temperature of the CGM is altered only within the virial radius.

However, the extent of the region along the flux skewers which is a↵ected by the altered

Nyx models is of the order of Mpc (see Figure 3.3). This is then consistent with the

behavior of the Nyx Hot and Nyx Cold Models in the left panel of Figure 3.6.

All models are consistent with all observations at separations & 5h�1 cMpc, except for

the tension with Adelberger et al. (2005a) at & 7h�1 cMpc. Between 3h�1 cMpc and
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5h�1 cMpc the observations by Adelberger et al. (2003) are harder to reproduce, while

within 2h�1 cMpc, all models struggle reproducing Crighton et al. (2011). The innermost

bin of the observations by Adelberger et al. (2005a) is consistent with all simulations,

while the data between 700h�1 ckpc and 2h�1 cMpc are best reproduced by the Hot Nyx

model.

Overall, the results in the left panel of Figure 3.6 may seem somewhat in contradiction

with the findings discussed in § 3.3.2.1 and § 3.3.2.2, which were generally favoring a

cooler CGM. However, it is hard to compare the radial profile of the Ly↵ transmissivity

with the mean flux fluctuations as a function of the transverse separation. Indeed, at

a fixed 3D distance R, one probes the Ly↵ absorption of HI at all impact parameters

b < R. Therefore, radial profiles of �
F

do not separate the physical e↵ects occurring

transverse and parallel to the line of sight, as it is the case for �
F

profiles versus the

impact parameter. Furthermore, a well-posed comparison among the data in Figures 3.4,

3.5 and 3.6 is not really possible unless we know the distribution of impact parameters

in the observations.

A further reason why it is hard to interpret the results shown in this section is that

the measurements considered are not everywhere consistent with one another within the

error bars, and it is not obvious to understand which one is the most reliable. As pointed

out by Crighton et al. (2011), their measurements are more precise at large separations,

while the data by Adelberger et al. (2005a, 2003) should me more reliable at small

distance from the LBG. The high transmissivity in the innermost bin in Adelberger

et al. (2003) was interpreted as a bubble of ionized gas around the foreground LBG,

but that result was contradicted by Adelberger et al. (2005a). Furthermore, Crighton

et al. (2011) claimed that the error on their measurement in the innermost bin may

be underestimated. In conclusion, it seems that the �
F

profile as a function of the

3D separation from the LBG is not the optimal statistic to use in order to constrain

simulations.

3.3.2.4 Median Ly↵ Optical Depth around LBGs

Turner et al. (2014) considered a sample of 854 foreground LBGs at redshift z ⇡ 2.4, and

studied the Ly↵ and metal absorption in their CGM exploiting spectra of background

QSOs. They determined the median Ly↵ pixel optical depth within a velocity window

of ±170 km s�1 around the LBG, as a function of the impact parameter. We report

their measurements as black squares in the right panel of Figures 3.6. The vertical bars

indicate the 1� errors in the measurements, whereas the horizontal bars the bin width.

We overplot the results of the models considered in this work at the same redshift

of the observations, with the same colors, marker and line styles as in the left panel

of Figure 3.6. Nyx and Illustris are generally consistent with the observations. Both

simulations underpredict the optical depth in the innermost bin. The point at ⇠ 300 kpc
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falls 1.3� and 2� below Illustris and Nyx models, respectively, and there is some tension

between simulations and measurements in the range (800, 1000) kpc. Once again, the

observations within the virial radius favor a cooler CGM, even though our Cold Nyx

model still underpredicts the data. The Nyx Hot and Nyx Cold models give the same

predictions as Nyx at impact parameters b & 300 kpc, by construction.

At impact parameters larger than 2 Mpc, the simulations tend to an asymptotic value,

which is the median optical depth of the IGM. At first glance, it might seem puzzling

that the two simulations yield a di↵erent median optical depth for the IGM, but that

does not necessarily have to be the case. In fact, even though the samples of skewers

drawn from Nyx and Illustris are both tuned to yield the same mean flux, the PDF of

the flux can still be di↵erent in the two simulations. We verified that this is indeed the

case here.

3.3.3 Summary

In this section, we provided a comparison between several observations of Ly↵ absorption

around di↵erent kinds of objects (QSOs, DLAs, LBGs). We converted large-scale DLA-

Ly↵ and QSO-Ly↵ cross-correlation measurements (Font-Ribera et al., 2013, 2012b) into

�
F

profiles, highlighting that these data are consistent with measurements at smaller

impact parameters (Prochaska et al., 2013, Rubin et al., 2015). The cross-correlation

measurements have been so far fitted only with models based on linear theory (Font-

Ribera et al., 2012b), so it is the first time that these observations are compared with

full-box hydrodynamic cosmological simulations. Our comparison shows that the simu-

lations agree with the data, confirming that Nyx and Illustris correctly describe the Ly↵

absorption in the IGM.

In the impact parameter range (200, 2000) kpc, Nyx and Illustris predict di↵erent mean

Ly↵ flux profiles, yet they are both consistent with most of the data considered. If future

observations detect more background QSO – foreground QSO/DLA pairs, the error bars

of �
F

in the range (200, 2000) kpc would be reduced, allowing us to understand which

simulations provide a correct description of the Ly↵ absorption at the interface of IGM

and CGM. As such, matching �
F

data over a wide range of impact parameters has the

potential of becoming a powerful test for cosmological simulations.

The mean Ly↵ flux profiles show an excess of absorption in the CGM of QSOs and DLAs,

asymptotically reaching the value of mean Ly↵ flux in the IGM at b ⇡ 10 Mpc. All

simulations should reproduce such behavior, once normalized to the correct mean Ly↵

flux in the IGM. However, even if simulations are tuned to reproduce this quantity, there

is no warranty that they reproduce the asymptotic median Ly↵ optical depth, as the PDF

of the Ly↵ flux may be di↵erent. So, at the current stage, the median Ly↵ optical depth

profile seems to be less informative than �
F

, as far as testing cosmological simulations is

concerned. Interpreting comparisons between simulations and observations of the Ly↵



Chapter 3 74

transmissivity as a function of the 3D galactocentric distance is di�cult, too, because

such observable does not allow di↵erentiating between physical e↵ects occurring along

the line of sight, or transverse to it.

The comparison of Nyx and Illustris with Prochaska et al. (2013) and Turner et al.

(2014) shows that Nyx and Illustris do not produce enough Ly↵ absorption from HI

close to the halos. The data seem to prefer our Nyx Cold model, although a cooler

CGM may not be the only possible way to the improve the agreement with data. We

shall discuss this issue in the next section.

3.4 Discussion

In the previous section, we highlighted how the Ly↵ mean flux profile can potentially

constrain simulations at intermediate impact parameters (200 kpc . b . 2 Mpc). We

also pointed out that both Nyx and Illustris underpredict the Ly↵ absorption within

the virial radius of QSOs and LBGs. In this section, we connect these results with

the underlying physics of the CGM and IGM, and show that the impact of possible

systematic errors in our computations would not change the conclusions of this work.

In § 3.4.1 we discuss how the di↵erent predictions of the two simulations can be ex-

plained in terms of the temperature and density of the CGM. We will also show that

the comparison with Ly↵ absorption data can be exploited to constrain feedback pre-

scriptions, thus representing a fundamental test for cosmological simulations. In § 3.4.2

and § 3.4.3, we quantify the uncertainty on the predictions of �
F

deriving from possible

errors in the calibration of the halo masses in the two simulations and in the redshift of

the foreground objects, respectively. In § 3.4.4 we discuss the e↵ect of the sample size

of quasar-galaxy pairs on the estimate of �
F

. In § 3.4.5 we study the convergence of

the Illustris results. Finally, in § 3.4.6 we compare the main findings presented in this

Chapter with other relevant works in the literature.

3.4.1 Temperature and Density of the Gas

In § 3.3, we showed that painting a di↵erent temperature-density relationship on top

of Nyx can significantly change the prediction of the mean flux fluctuations within the

virial radius. Clearly, the temperature-density relationship in the CGM has a strong

impact on the resulting Ly↵ absorption, which is worth investigating. Indeed, in the

CGM the hydrogen density can overcome the self-shielding threshold (⇠ 6.0⇥10�3 cm�3;

see e.g. Figure 3.1), thus the corresponding Ly↵ optical depth is set not only by the

T�0.7 dependence of the Ly↵ cross-section, but also by collisional ionization equilibrium.

Since we model both mechanisms when we compute the Ly↵ absorption, investigating
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Figure 3.7: 2D histogram of hydrogen temperature and density for a sample of 104

skewers located at random positions in the Nyx (left panel) and Illustris (right panel)
runs at z = 2.4 and z = 2.44, respectively. The color bar shows the logarithm of
the resulting PDF. The x-axis reports the gas overdensity (top) and the corresponding
neutral hydrogen density (bottom). The black line is the best-fit power-law T = T0Δ

γ−1
b

across the region of the plot in the IGM regime (−1 < logΔb < 0). The temperature-
density relationships of the IGM in the two simulations are consistent with each other,
meaning that they give a similar description of the IGM.

the temperature-density relationship of the gas within and outside the virial radius will

provide us with good insight in the physics captured by the simulations.

3.4.1.1 Temperature-Density Relationship in the IGM

We want to check whether Nyx and Illustris give a consistent description of the temperature-

density relationship of the IGM. We start by extracting 105 skewers in each simulation,

at random positions and parallel to one side of the box. We then construct the volume-

weighted 2D-histogram of density and temperature of hydrogen. In the left and right

panels of Figure 3.7 we plot the results obtained for Nyx and Illustris, respectively.

Although the global shape of the temperature-density relationship is similar in both

simulations, Illustris presents a larger amount of hot (105.5K < T < 107K), rarefied

(10−6 cm−3 < nH < 10−5 cm−3) gas.

We divide the gas cells into two bins centered at the gas overdensities Δb 1 = 10−1

and Δb 2 = 1, with a bin width of 5% around the central value. We then compute the

median temperature Tmed
1 and Tmed

2 of the gas cells in the two overdensity bins centered

in Δb 1 and Δb 2, respectively. Finally, we determine the power law T = T0Δ
γ−1
b passing

through the points (Δb 1, T
med
1 ) and (Δb 2, T

med
2 ).

We obtain (T0, γ) = (104.01K, 1.57) and (T0, γ) = (104.12K, 1.60) for Nyx and Illus-

tris, respectively. The temperature-density relationship is then very similar in the two

simulations. Although Illustris and Nyx do not adopt the same model for the UVB,
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the values of the photoionization rate after matching the mean flux in the IGM are

very similar. At z = 2.4, it is 1.2 ⇥ 10�12 s�1 and 1.1 ⇥ 10�12 s�1 for Nyx and Illustris,

respectively. Thus, the small di↵erences in the temperature-density relationship arise

mainly from the di↵erent reionization histories.

The fact that the temperature-density relationships are very similar in Nyx and Illustris

means that the temperature-density structure of the IGM is well matched between the

two simulations. The di↵erent predictions of the mean Ly↵ flux for impact parameters

. 2 Mpc suggest that this is not the case for the temperature and density of the CGM,

instead.

3.4.1.2 Radial Temperature and Density Profiles

To begin with, we visually compare density and temperature slices around halos from

both simulations. In § 3.2.4, we have already pointed out that the temperature around

the Nyx halos in the first two columns from the left in Figure 3.1 broadly traces the

underlying hydrogen density, except for the gas at the center of the halo, which is

overcooled because of the lack of star formation.

In the third and fourth columns from the left in Figure 3.1, and in every row, we show

temperature and density slices around an Illustris halo with the same mass (within

0.2%) as the Nyx halo shown in that row. The masses listed in the first two rows

from the top are typical of LBG-hosting and DLA-hosting halos, whereas the halos in

the remaining rows have a mass characteristic of quasar hosts. Similar to what we

see in the Nyx simulation, we can clearly notice a hot region following the shape of the

hydrogen overdensity. However, unlike Nyx, the size of the hot bubble tends to overcome

the virial radius (indicated with a black circle around every halo) for halos with mass

& 1012.3 (third and fourth row of Figure 3.1. In particular, whereas whereas the hot gas

bubble in Nyx extends out to ⇠ 2 rvir from the center the halo shown in the fourth row

(⇠ 1013 M�), in Illustris it reaches ⇠ 3 rvir.

To have a deeper understanding on the extension of the hot gas phase of the CGM

in Nyx and Illustris, we investigate the temperature within halos taken from the two

simulations. We randomly choose 100 halos from the sample of QSO hosts given by the

two simulations, which we used to reproduce the observations discussed in § 3.3.2.1. We

then stack all gas cells within 1 Mpc from the centers of the halos in such subsample,

and compute the median temperature within 90 equally extended bins of radial distance,

normalized to the virial radius of each halo. The resulting median temperature profiles

for Nyx and Illustris is shown with the black solid line in the top-left and top-middle

panels of Figure 3.8, respectively. In both panels, the color bar indicates the PDF of the

temperature within each radial bin. The spread of the temperature around the median

is comparable in the two simulations, although it is slightly larger in Nyx (103 K .
T . 107.5 K) than in Illustris (103.4 K . T . 107.7 K). The median profile is quite
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di↵erent in the two simulations, instead. For an easier comparison, we plot it in the

top-right panel of Figure 3.8. The median temperature can be up to 0.3 dex higher in

Nyx (solid green line) than in Illustris (solid magenta line) within the virial radius, but

in the outer region Illustris generates systematically hotter gas. The di↵erence with

respect to Nyx reaches 1.5 dex in the range [2rvir, 3rvir], and is still as large as 0.3 dex

out to 7rvir. One possible way to explain such high temperatures is the strong radio-

mode AGN feedback prescription implemented in Illustris, which acts as an extra source

of heating well outside the virial radius. Alternatively, the higher temperature might

trace a larger underlying hydrogen density (provided it is in the regime described by the

IGM power-law temperature-density relationship). It is then important to look into the

density profiles of Nyx and Illustris halos, too.

The di↵erences between the hydrogen density profiles given by Nyx and Illustris are

not as pronounced as in the case of the temperature profiles. This is shown by the

lower left, middle, and right panels of Figure 3.8, which display the baryon overdensity

radial profiles in the two simulations, with the same structure and color coding as the

corresponding top panels. Within the virial radius, Nyx and Illustris exhibit similar

overdensity profiles, except for the peak within ⇠ 0.2 rvir, which is ⇠ 0.7 dex larger in

Nyx than in Illustris. This is caused by the absence of star formation in Nyx, that

allows gas density to increase without converting it into stars. Outside the virial radius,

Illustris is systematically denser than Nyx; the largest di↵erences (0.4 dex) occurs at

⇠ 2rvir, then the gap reduces down to 0.15 dex at 7rvir. In both simulations, the gas

at r > 2rvir exhibits a density typical of the IGM (nH . 10�5). According to the

IGM temperature-density relationship of the two simulations, a di↵erence of 0.15 dex in

�b should correspond to an increase of ⇠ 0.1 dex in temperature. At face value, this

could not explain the di↵erent temperature in Nyx and Illustris even as far as 7 rvir.

However, the lower left and middle panels show that there is significant scatter around

the median density profile, with the bulk of gas cells lying within ± ⇠ 1 dex from the

median value. Considering such scatter, di↵erences in the median temperature profile

of the two simulations as large as ⇠ 0.6 dex could be explained solely in terms of their

di↵erent underlying hydrogen density. On the contrary, the temperature di↵erences as

large as 1.5 dex within ⇠ 3rvir cannot be justified with this line of reasoning, implying

an extra source of heating. This strengthens our argument that the AGN feedback

can be the reason behind the hotter and more extended temperature profile. From the

temperature and density profiles that we obtained, we can conservatively argue that the

e↵ects of feedback in Illustris can extend out to 3 � 4 virial radii.

We repeat the same analysis shown in Figure 3.8 also for the LBG-hosting halos extracted

from Nyx and Illustris. We show the results with analogous plots in Figure 3.9, which has

the same structure and color coding as Figure 3.8. The behavior of the two simulations

is qualitatively the same as in the case of the QSO-hosting halos. Both Nyx and Illustris

exhibit colder and less dense radial profiles with respect to what we found for the QSOs,

but the trend of the profiles is qualitatively similar to the case of the QSO. The largest
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di↵erence in temperature (⇠ 0.8 dex) occurs again at ⇠ 2 rvir, where the hydrogen

density di↵ers by ⇠ 0.3 dex. Although such di↵erences are not as large as in the case of

QSOs, they still underline the e↵ect of the feedback mechanisms that are implemented

in Illustris, but not in Nyx.

We now compare the temperature profiles with the mean Ly↵ flux fluctuations profiles

shown in § 3.3.2.1 and § 3.3.2.2. Within the virial radius, Nyx is hotter and denser

than Illustris. A higher temperature would yield more transmission, whereas a higher

density would increase the optical depth. The fact that the two simulations give similar

predictions for �
F

implies that these two e↵ects average out. Outside the virial radius,

Nyx always predicts a larger Ly↵ absorption than Illustris. In this regime, most of

the gas falls below the self-shielding threshold, thus photoionization is the dominant

ionization mechanism, and consequently nHI / T�0.7nH. Since outside the virial radius

Illustris is denser than Nyx, the lower nHI necessary to predict a smaller Ly↵ optical

depth is set by the temperature, which is much higher than in Nyx.

From the discussion in the present subsection, we can conclude that the main driver of

the di↵erences between the �
F

predicted by Nyx and Illustris is the temperature of the

gas. In general, we can say that the mean Ly↵ flux fluctuations as a function of the

impact parameter represent an excellent probe of the physics of the CGM, being closely

related to the density and temperature profile of the foreground halos. As such, the �
F

profile can be used as a further test for feedback implementations in simulations.

3.4.1.3 Temperature-Density Relationship in the CGM

To interpret the di↵erences in the temperature and density profiles of halos in Nyx and

Illustris, shown in § 3.4.1.2, in terms of the physics implemented in the two simulations,

we repeatedly used arguments based on the temperature-density relationship of the IGM.

In this section, we want to complete our discussion by investigating such relationship

within di↵erent spherical shells around the center of the halos selected from the two

simulations. Specifically, we consider the intervals (0, rvir), (rvir, 2rvir), (2rvir, 3rvir),

(3rvir, 5rvir), and (5rvir, 1 Mpc), corresponding to the regions delimited with the vertical

dotted black lines in Figures 3.4, 3.5 and in the right panel of Figure 3.6. We shall then

compare the temperature-density relationships in such radial bins with the Ly↵ flux

fluctuations predicted in the same intervals.

The temperature-density relationship of the hydrogen within one virial radius from the

center of the QSO-hosting halos obtained in Nyx and Illustris (> 1012.5 M� and >

1012.4 M�, respectively) can be seen in the top-leftmost and bottom-leftmost panels of

Figure 3.10, respectively. We plot the volume-weighted 2D histograms resulting from

stacking 100 halos, randomly chosen from the halos used to reproduce the observations

of Ly↵ absorption around QSOs (Font-Ribera et al., 2013, Prochaska et al., 2013). For

both simulations, the temperature-density relationship is profoundly di↵erent from the
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one of the IGM (Figure 3.7), as expected. Collisional ionization, self-shielding, and

all physical processes occurring in the CGM dominate within the virial radius. Their

signature in the T � nH diagram is the cloud at high temperature spanning the density

range (10�5, 10�1) cm�3, appearing in both panels. Such densities are larger than the

ones present in the IGM (nH . 10�5 cm�3). Nyx exhibits a high-density (> 10�3 cm�3),

low-temperature (< 10�4.5) line, arising from the aforementioned overcooling due to

the absence of star formation. Such a feature is of course absent in Illustris, which

does include star formation. In addition, a minimal fraction of the gas within the

virial radius in Nyx follows a low-density (< 10�4 cm�3), low-temperature (< 10�4.5)

line, which cannot be found in Illustris. This gas has not been shock heated, thus it

lies along the temperature-density power law of the IGM. Nevertheless, the temperature-

density relationship within the virial radius is qualitatively similar in the two simulations.

Likewise, they predict a similar �
F

in the same region (see Figure 3.4).

In the second panels from the left in Figure 3.10, we show the temperature-density

relationship in the interval (rvir, 2rvir). The results from Nyx and Illustris are reported

in top and bottom panels, respectively. There is a huge di↵erence between the two

simulations. Many Nyx pixels fall on the best-fit power law of the IGM (see also the

left panel of Figure 3.7), but there is still a considerable fraction of gas cells in the

hot phase. Illustris does not present any power-law feature and its temperature-density

relationship is still dominated by the cloud of hot gas observed within one virial radius.

As previously argued, the AGN feedback prescription in Illustris is probably responsible

for heating the gas as far as two virial radii, erasing the IGM power-law feature in the

temperature-density relationship in the range (rvir, 2rvir). We notice that, in the same

range, the predictions of �
F

given by Nyx and Illustris di↵er by ⇠ 30% (see Figure 3.4).

Illustris predicts less absorption, due to the larger amount of hot gas.

We plot the temperature-density relationship in the range (2 rvir, 3 rvir) in the third

panels from the left in Figure 3.10. Nyx (top panel) shows the typical power-law feature

of the IGM. Such feature begins to appear also in lllustris (bottom panel), but the

majority of the pixels still lie in the hot phase. This indicates that the AGN feedback

prescription in Illustris dominates the temperature-density relationship even in the range

(2 rvir, 3 rvir). The large amount of gas leads to predicting a lower absorption if compared

with Nyx (see Figure 3.4).

The fourth and fifth panels from the left in Figure 3.10 show the temperature-density

relationship in the radial bins (3 rvir, 5 rvir) and (5 rvir, 1 Mpc), respectively. In the

former, Illustris still exhibits a larger amount of hotter gas than Nyx. In the latter,

the diagrams of the two simulations look similar. As a reference, in the rightmost

panels of Figure 3.10 we plot the temperature-density relationship of the IGM, already

shown in Figure 3.7. While Nyx starts qualitatively resembling the shape of the IGM

temperature-density relationship for r > 2rvir, Illustris does so for r > 3rvir. This is

consistent with our estimate of the distance from the center of the halos up to which the
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AGN feedback prescription in Illustris seems to dominate the thermal state of the CGM

(see § 3.4.1.2). Therefore, also the temperature-density diagrams within di↵erent radial

shells, presented in the current section, are a potentially excellent method to visualize

the impact of feedback implementations on the physics of the CGM.

We repeat the same analysis discussed above for the halos hosting LBGs (and DLAs) in

both simulations. The corresponding temperature-density relationships are reported in

Figure 3.11. The panels report the volume-weighted 2D histograms resulting from stack-

ing 100 halos, randomly drawn from the LGB-hosting (> 1011.7 M� and > 1011.6 M� for

Nyx and Illustris, respectively) used to reproduce the observations of Ly↵ absorption

around DLAs and LBGs (Adelberger et al., 2005a, 2003, Crighton et al., 2011, Font-

Ribera et al., 2012b, Rubin et al., 2015, Turner et al., 2014). Qualitatively, the diagrams

present the same di↵erences observed for the QSO-hosting halos (Figure 3.10). Likewise,

the predictions of �
F

in the innermost bins around DLAs di↵er by . 10% (see Figure

3.5). The di↵erence increases up to ⇠ 30% in the intervals (rvir, 2 rvir) and (2 rvir, 3 rvir),

decreasing at farther distances.

In this subsection, we showed that, both for QSOs and DLAs, the discrepancies between

the predictions of the two simulations visible in Figure 3.5 reflect the di↵erences be-

tween the corresponding temperature-density relationships. Moreover, the temperature-

density relationship within di↵erent radial shells around both kinds of objects provides

valuable information about the physics of the CGM implemented in simulations.

3.4.1.4 Summary

To summarize the main points of the discussion in the present section, the �
F

pro-

files predicted by the simulations can be easily interpreted in terms of their underlying

temperature-density relationships in the CGM. Therefore, plotting such relationship in

di↵erent shells around halos is a good diagnostic of the e↵ect of feedback prescriptions.

The radial temperature and density profiles around halos in di↵erent mass ranges is an

equally powerful tool to understand the physics of the CGM and relate it to the Ly↵

absorption profile, as well as to assess the impact of feedback prescriptions in simula-

tions. The success of this approach in getting insight into the physics of the CGM and

IGM stems from the simplicity of the physics behind Ly↵ absorption. Unlike the optical

depth profiles of metals (e.g. CIV, OVI etc.), the Ly↵ optical depth only depends on

the cosmological model, the abundance of hydrogen, and ionization equilibrium. The

dependence of the recombination and ionization rates on hydrogen density and temper-

ature are well understood, so that the �
F

profile can be used as an additional powerful

constraint for simulations. Whereas feedback implementations are generally tuned to

reproduce observations directly linked with the star formation history (e.g., the observed

star formation e�ciency, Behroozi et al. 2013, Guo et al. 2011, Moster et al. 2013), at

the same time they should be able to match Ly↵ absorption in the CGM, too.
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The exquisite precision of BOSS data favors Illustris over Nyx at 1Mpc, highlighting

the constraining power of the Ly↵ absorption around QSOs and DLAs. In the range

(200 kpc, 500 kpc), both simulations are consistent with the observations within the error

bars. It would be important to increase the precision of the measurements in this range

with future observations, since that would allow constraining feedback prescriptions and

getting more insight into the physics of the CGM.

Based on our findings, we argue that an AGN feedback implementation weaker than the

one implemented in Illustris should generate fewer hot gas, making the CGM overall

cooler within 3 rvir. Since the observations seem to favor our Nyx Cold model, a cooler

CGM is a possible solution to mitigate the discrepancy between simulations and obser-

vations. On the contrary, the predicted �
F

profiles around LBGs is consistent with data.

Nonetheless, we still observe a discrepancy between simulations and Turner et al. 2014

(Figure 3.6).

In the current section, we have only considered the temperature-density relationship

of the CGM and IGM. However, the Ly↵ optical depth depends also on the peculiar

velocity of the gas. In principle, Nyx and Illustris may exhibit di↵erent gas velocity

fields, and that may also have an impact on the Ly↵ absorption profile. We verified that

the radial velocity-density and radial velocity-temperature relationships are very similar

in the two simulations, confirming that the di↵erences in the �
F

profiles are driven by

the temperature-density relationship. A more detailed discussion can be found in the

Appendix F.

3.4.2 Halo Mass

We want to investigate how the mass of a halo impacts the Ly↵ absorption in the CGM.

More massive halos reside in denser regions, which would yield more absorption. On the

other hand, more massive halos contain hotter gas, and a higher temperature causes a

larger transmissivity. It is not obvious which e↵ect should prevail.

We reproduced once again the measurements of �
F

around QSOs by Prochaska et al.

(2013) and Font-Ribera et al. (2013), selecting a sample of halos within a di↵erent mass

range. Instead of setting a minimum halo mass as explained in § 3.2.1, we considered

three mass bins with an extension of 0.2 dex, centered in 1012.2 M�, 1012.4 M� and

1012.6 M�, respectively. Likewise, to mock the observations of Ly↵ absorption around

DLAs (Font-Ribera et al., 2012b, Rubin et al., 2015), we chose three mass bins centered

in 1011.4 M�, 1011.6 M� and 1011.8 M�, respectively, all with a width of 0.2 dex.

Both for the QSO and DLA measurements, we found out that �
F

slightly increases at

larger halo masses. This trend is in agreement with the results obtained by Meiksin et al.

(2017) with the Sherwood suite of hydrodynamic simulations. At impact parameters

. 1 Mpc, the values of �
F

predicted by Nyx or Illustris in two adjacent mass bins di↵er
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by . 0.03. At larger impact parameters, the e↵ect of the halo mass is negligible. The

di↵erences in the predictions of Nyx and Illustris for di↵erent halo masses at small

impact parameters cannot explain the discrepancies between the simulations and the

data. Therefore, a possible systematic error of 0.2 dex in our procedure to calibrate the

halo masses (see § 3.2.1) would not a↵ect the main conclusions of this work.

Font-Ribera et al. (2012b) estimated the typical mass of DLAs to be 1012 M� fitting the

DLA-Ly↵ cross-correlation measurements with a model based on linear theory. This

result was somewhat controversial, as DLA-hosting halos were thought to be less massive.

For the first time, we compared Font-Ribera et al. (2012b) measurements with a fully

non-linear model, using cosmological hydrodynamic simulations, and found that data

at b > 2.5 Mpc prefer larger masses, while the data points at 1 Mpc and 2.2 Mpc favor

smaller masses. In any case, all mass bins considered in this section are consistent with

Font-Ribera et al. (2012b) data.

3.4.3 Redshift of Foreground Objects

All observations mentioned in this work have been reproduced with Nyx and Illustris

taking all foreground objects at the median redshift of the corresponding data sets,

e↵ectively neglecting their spread in redshift. Although the mean flux of the IGM

evolves across the redshift range, this should not represent a big issue, since the quantity

provided by the observations is not the mean flux profile, but the �
F

profile. Despite

the definition of �
F

normalizes out the mean flux of the IGM, there may still be some

residual redshift-dependence in the �
F

profile predicted by the simulations, which needs

to be evaluated. For this purpose, we reproduced Prochaska et al. (2013) taking all

foreground QSOs at redshifts z = 2 and z = 3, which bracket the redshift range of

the observations. As expected, at z = 3 we have more absorption, because the neutral

fraction of hydrogen is higher at earlier redshifts. Nevertheless, in the innermost bin,

�
F

increases only by ⇠ 0.1 for Nyx and ⇠ 0.05 for Illustris, which is still not enough to

reproduce Prochaska et al. (2013) data. Therefore, even if we unrealistically modeled

all foreground QSOs at the upper bound of the redshift range of the observations, we

could not explain the underprediction of Ly↵ absorption by the simulations.

We ran an analogous test for the measurements by Rubin et al. (2015), and our conclu-

sions did not change with respect to what stated in § 3.3.2.3. The redshift distribution of

foreground LBGs in Adelberger et al. (2003), Adelberger et al. (2005a), Crighton et al.

(2011) and Turner et al. (2014) is so narrow with respect to the snapshots available for

the simulations, that the test discussed in this section becomes superfluous.

There is another e↵ect connected to the redshift of the foreground objects. The velocity

windows considered to reproduce the observations are centered around the systemic

velocity of the foreground galaxies or quasars. Following Meiksin et al. (2017), we

modeled the typical observational errors in the redshifts of the foreground halos by
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Figure 3.12: Left panel : Mean Lyα flux fluctuations around QSOs, at different trans-
verse separations. The black squares represent the observations by Prochaska et al.
(2013); the vertical bars are the 1− σ errors of the measurements, while the horizontal
bars show the extension of the impact parameter bins. The results of the simulations
are represented with the same color coding, markers and line styles as in Figures 3.4
and 3.5. The shaded areas delimit the 1 − σ scatter around the estimate of δF due to
the limited size of the observed spectra (see text for details). Right panel : Same as the
left panel, but for the mean Lyα flux fluctuations around DLAs. The black squares
represent the observations by Rubin et al. (2015); the vertical bars are the 1 − σ er-
rors of the measurements, while the horizontal bars show the extension of the impact
parameter bins.

adding a Gaussian-distributed random component to their velocities, with a variance of

130 km s−1 and 520 km s−1 for LBG/DLA and quasar hosts, respectively. We found that

introducing such scatter has a marginal (< 1.2%) effect on the prediction of the Lyα

absorption profiles. This is not surprising, because the data are already averaged over

a large velocity window along the line of sight, exactly for the purpose of dealing with

the errors on the redshifts of the foreground objects.

3.4.4 Sample Size of Observed Spectra

Whereas the Lyα absorption at large separation from foreground galaxies or quasars can

be measured from tens of thousands of QSO spectra thanks to large-scale surveys like

BOSS (Font-Ribera et al., 2013, 2012b), the number of the background quasar - fore-

ground galaxy pairs with small transverse separations is about two orders of magnitude

smaller (Prochaska et al., 2013, Rubin et al., 2015, Turner et al., 2014). We want to

understand to what extent the poor statistics of spectra in observations can affect the

error on the estimation of the mean Lyα flux fluctuations. This uncertainty is already

accounted for by the error bars in the data, but we can use simulations to estimate its

contribution to the total error in the measurements.
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Figure 3.13: Logarithm of the me-
dian Lyα pixel optical depth around
LBGs, at different transverse separa-
tions. The black squares represent the
observations by Turner et al. (2014);
the vertical bars are the 1 − σ errors
of the measurements, while the hori-
zontal bars show the extension of the
impact parameter bins. The results of
the simulations are represented with
the same color coding, markers and
line styles as in the right panel of Fig-
ure 3.6. The shaded areas delimit the
1 − σ scatter around the estimate of
the median optical depth due to the
limited size of the observed spectra
(see text for details). The sample size
contributes significantly to the errors
of the measurements.

From our sample of simulated spectra in each impact parameter bin of the observations

by Prochaska et al. (2013), Turner et al. (2014) and Rubin et al. (2015), we draw 50

subsamples with as many skewers as the observed spectra in the bin considered. We

plot our results for the observations by Prochaska et al. (2013) and Rubin et al. (2015)

in the left and right panels of Figure 3.12, respectively. The black squares represent

the observations; the vertical bars are the 1σ errors in the measurements, while the

horizontal bars mark the bin widths. The results of the simulations follow the same

color coding, marker and line styles as in Figure 3.4. The shaded magenta, green, blue

and red regions delimit the 16th and 84th percentiles of the distribution of the estimate

of δF given by the 50 subsamples around the value obtained from the entire sample. As

such, the bands represent the contribution to the error of the measured δF due to the

number of observed spectra.

The left panel of Figure 3.12 shows that the limited size of the sample of observed spectra

contributes up to ∼ 60−70% to the total error of Prochaska et al. (2013) measurements

in the range (200, 500) kpc, and appears to be the dominant source of error in the bin

(200, 300) kpc. The contribution is even bigger in the observations by Rubin et al. 2015

(right panel of Figure 3.12) in the range (50, 300) kpc, and dominates the error bar in

the innermost bin.

Figure 3.13 shows that the scatter in the median Lyα optical depth due to the sample

size of the observations by Turner et al. (2014). The black squares represent the data,

whereas the simulations follow the color-coding, lines and marker style of the lines as

in Figure 3.12. Also the shaded areas have the same meaning as in Figure 3.12. The

contribution to the error in the measurements due to the size of the sample of spectra

is significant also in this case, accounting for ∼ 50− 70% of the error bar.
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We could not compute the scatter in �
F

due to the sample size of spectra in BOSS (Font-

Ribera et al., 2013, 2012b). We verified that, assuming that the spectra they uniformly

populate the transverse separation bins, the scatter in �
F

due to the sample size is

negligible. From the size of the LBG sample in (Adelberger et al., 2003), Adelberger

et al. (2005a) and Crighton et al. (2011), we expect the scatter in �
F

to be of the same

order of magnitude as in Rubin et al. (2015) (right panel of Figure 3.12).

To summarize, the simulations considered in this work predict that the relatively poor

statistics of observed QSO spectra at small separation (. 1 Mpc) from foreground objects

should contribute up to ⇠ 50%�70% to the errors on the measurements. Given that the

error bars are dominated by the statistical error, and not by systematics (Font-Ribera

et al., 2013, 2012b, Prochaska et al., 2013, Rubin et al., 2015, Turner et al., 2014), this

means that the simulations considered in this work underestimate the variance of the

observations.

3.4.5 Sub-resolution Physics

The limited resolution of simulations can be one of the reasons for the discrepancies

between the simulations and observations shown in this work. Observations of Ly↵ ab-

sorption around foreground z ⇡ 2.5 galaxies imply the presence of large-column density,

metal-enriched, < 500 pc clouds within an otherwise di↵use CGM (Crighton et al. 2015;

see also Crighton et al. 2013, 2015, Simcoe et al. 2006). These clouds can be resolved nei-

ther by state-of-the art cosmological hydrodynamic simulations nor zoom-in numerical

simulations. In fact, Crighton et al. (2015) showed that, to resolve the clumps inferred

from their observations, AMR (Adaptive Mesh Refinement) simulations should reach a

cell size of . 140 pc in the CGM, and SPH simulations should have a mass resolution

better than 4 M� (see also Agertz et al., 2007, McCourt et al., 2016, Stern et al., 2016).

These requirements are several orders of magnitude beyond the achievements of any

cosmological numerical simulation at present.

We compared the �
F

profiles predicted by the high-resolution Illustris run adopted in

this work with the profiles given by the two publicly available runs at lower resolutions.

Specifically, their mass resolutions are a factor 8 and 64 worse than in the high-resolution

run, respectively. We verified that the predictions of the �
F

profile given by Illustris at

the three available resolutions are well converged for b > 500 kpc. The intermediate

and high resolution runs agree within 5% for 50 kpc < b < 100 kpc, and within 19% for

b < 50 kpc. Conservatively assuming that, if we could improve by another factor of 8 the

resolution of the high-resolution Illustris run, the �
F

estimate in the range b < 50 kpc

would increase by another 19%, that would still not be enough to match the data.

Although zoom-in simulations seem to capture the small-scale physics of the CGM, the

resolution necessary to resolve the clumpy structure of the CGM is beyond current and

near-future cosmological simulations. For such simulations, as suggested by Crighton
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et al. (2015), it may be wiser to simulate the CGM implementing sub-resolution pre-

scriptions, as it is already the case for the modeling of star formation and galactic-scale

outflows.

3.4.6 Comparison with Previous Work

There is a large body of work considering the covering factor of optically thick absorbers,

absorption profiles of metal lines, or the Ly↵ column density distribution (e.g. Bolton

et al., 2017, Rahmati et al., 2015, 2016, Turner et al., 2016, on top of the relevant works

already cited in the introduction of this Chapter). Nevertheless, as we primarily focus

on the Ly↵ mean flux in this study, we restrict our discussion to works that considered

a similar statistic.

Meiksin et al. (2017) compared the Ly↵ absorption profile around QSOs measured by

Prochaska et al. (2013) with two runs of the Sherwood suite of hydrodynamic simula-

tions. Galactic winds were implemented in only one of the two runs. The predictions of

�
F

around QSOs given by the runs with and without feedback di↵er up to ⇠ 170 kpc.

In our work, we find discrepancies between Nyx and Illustris out to larger impact pa-

rameters, i.e. ⇠ 2 Mpc. The larger radius to which we see di↵erences between the

simulations considered with respect to Meiksin et al. (2017) can be due to the strong

AGN feedback prescription in Illustris up to ⇠ 3 rvir (as discussed in § 3.4.1). On top

of that, we use a di↵erent criterion to select the QSO-hosting halos in the simulations.

We set a select halos above a certain mass threshold (1012.5 M� for Nyx and 1012.4 M�

for Illustris) because, from their observations, Prochaska et al. (2013) could not set an

upper limit to the mass of the halos hosting the QSOs of their sample, but only a lower

limit. Consequently, whereas most of the halos have a mass around ⇠ 1012.5 M�, our

sample includes also halos as massive as 1013.7 M�. Instead, Meiksin et al. (2017) con-

sider halos with mass between 1012.2 M� and 1012.8 M�. The median virial radius of

Meiksin et al. (2017) sample of halos is then smaller than ours, therefore the signature

of their feedback prescription extends out to smaller impact parameters.

The no-wind run underpredicts �
F

for transverse separations . 170 kpc. Including winds

increases �
F

by an amount which varies from ⇠ 0.01 at ⇠ 300 ckpc up to ⇠ 0.15 at

⇠ 50 ckpc. Nevertheless, the increased absorption cannot resolve the discrepancy with

the data. On the contrary, the run with galactic winds matches the observation of the

Ly↵ equivalent width around LBGs by Steidel et al. (2010) and Rakic et al. (2012).

Turner et al. (2017) compared the observations of the median Ly↵ optical depth due to

HI around LBGs by Turner et al. (2014) with the predictions of a run of the EAGLE

suite of hydrodynamic simulations. The run considered included both stochastic thermal

stellar feedback and AGN feedback. To reproduce the observations, they considered

samples of halos in di↵erent mass bins. The best match with the data occurs for the bin

(1011.5, 1012.0) M�, which is consistent with the halo mass threshold for Nyx and Illustris
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derived in this work (1011.7 M� and 1011.6 M�, respectively). Whereas the simulation

yields good agreement with the observations, there is some tension with the data points

at a transverse distance of ⇠ 70 kpc, ⇠ 300 kpc and ⇠ 800 kpc from the foreground LBG.

These data points are problematic to reproduce also for Nyx and Illustris (see Figure

3.6), so our findings are consistent with Turner et al. (2017). However, we notice that

the median logarithm of the Ly↵ optical depth at ⇠ 70 kpc obtained in Turner et al.

(2017) simulations underpredicts the measurements by ⇠ 0.3, whereas we find that the

discrepancy with Nyx and Illustris is ⇠ 0.7. Applying the analysis developed in this

work on the EAGLE simulation may then shed light on the reasons for the better match

with the data.

3.5 Conclusions and Perspectives

For the first time, we compared state-of-the-art hydrodynamic cosmological simulations

with observations of Ly↵ absorption both in the IGM and the CGM, with the aim of

investigating the physical properties of such media, as well as testing feedback models

implemented in the simulations. Specifically, we focused on observations of the Ly↵

mean flux profile, and Ly↵ optical depth profile, around foreground QSOs, LBGs and

DLAs passing at di↵erent impact parameters from background QSOs. The data consid-

ered span a wide range of impact parameters, from 25 kpc out to 17 Mpc, thus probing

both the CGM and IGM. We ran a hydrodynamic cosmological simulation utilizing

Nyx code, and used the publicly available run of the Illustris simulation, based on the

Arepo code. The former has neither metals nor prescriptions for star formation and

feedback, while the latter is endowed with metals, star formation, stellar and AGN feed-

back prescriptions. Hereafter, we list the main conclusions of our comparison between

observations and simulations.

1. We translated the Ly↵-QSO (DLA) cross-correlation measurements obtained from

BOSS data by Font-Ribera et al. 2013 (Font-Ribera et al., 2012b) into a Ly↵ mean

flux profile, showing that they extend Prochaska et al. 2013 (Font-Ribera et al.,

2012b) observations at small impact parameter out to 17 Mpc – see Figure 3.4 (Fig-

ure 3.5). For the first time, we simultaneously compared all the aforementioned

data with hydrodynamic cosmological simulations. Both Nyx and Illustris repro-

duce well the data at impact parameters ⇠ 1 Mpc, meaning that they correctly

describe the Ly↵ absorption in the IGM. Although this result may not sound sur-

prising, it was not obvious that the simulations would have matched such exquisite

data.

2. At ⇠ 1 Mpc, Nyx overshoots the observations by Font-Ribera et al. (2013), which

are instead matched by Illustris. This means that the exquisite precision of the Ly↵

absorption in BOSS data can set meaningful constraints on simulations. Between
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⇠ 200 kpc and ⇠ 2 Mpc, well outside the virial radius of QSO- and DLA-hosting

halos, Nyx and Illustris predict a di↵erent mean Ly↵ flux profile, despite being

consistent with currently available data (Figures 3.4 and 3.5). The constraining

power of the mean Ly↵ flux profile would then benefit from increasing the precision

of data with future observations. Within the virial radius, it is challenging to

reproduce Ly↵ mean flux observations of QSOs with Nyx and Illustris.

3. Inspecting the temperature and density profiles around QSO- and LBG-hosting

halos in the simulations, we argue that the di↵erences between the predictions of

Nyx and Illustris out to 3 rvir can be ascribed to the AGN feedback prescription

of Illustris. Indeed, the hot component of the CGM in Illustris extends out to

several virial radii from the center of the halos (Figures 3.8 and 3.9). This is

the main reason why it tends to systematically predict less absorption than Nyx

out to 2Mpc. Furthermore, injecting less heat through a weaker AGN feedback

prescriptions within 3 rvir should mitigate the discrepancy between Illustris and

the Ly↵ absorption data (Prochaska et al., 2013, Rubin et al., 2015, Turner et al.,

2014) within the virial radius.

4. Beside the temperature and density profiles, the di↵erent predictions of the mean

Ly↵ flux profiles given by Nyx and Illustris can be easily interpreted in terms of

the temperature-density relationship of the gas within di↵erent radial bins from

the center of the halos (Figures 3.10 and 3.11). Also these diagrams support

the claim that the e↵ects of the Illustris feedback prescriptions extend out to

⇠ 3rvir. We point out that such temperature-density diagrams, as well as the

temperature and density profiles, are a valuable tool to get insight into the feedback

prescriptions implemented in simulations, which in turn impact the Ly↵ absorption

profiles. Therefore, the Ly↵ flux profile provides a new fundamental observable to

be matched when testing feedback prescriptions, complementary to other widely

used observables, such as the star formation e�ciency (Behroozi et al., 2013, Guo

et al., 2011, Moster et al., 2013, e.g.).

5. We also compare the simulations with several observations of the mean Ly↵ trans-

missivity at di↵erent 3D radial distances from foreground LBGs (Adelberger et al.,

2005a, 2003, Crighton et al., 2011). Whereas all simulations are consistent with all

observations at separations & 5 h�1 cMpc, there is no clear indication about which

model is the most favored by the data at smaller separations (left panel of Figure

3.6). Unlike the Ly↵ mean flux or the median optical depth as a function of the

impact parameter, the radial profile of the Ly↵ transmissivity does not seem to

be the optimal observable to constrain the properties of the CGM, because it does

not clearly separate the physics occurring along the transverse and line-of-sight

directions (see § 3.3.2.3).

To understand how the discrepancy between data and simulations could be solved, and

to get more insight into the role of the thermal state of the CGM on the observable HI
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absorption, we also developed a simple semi-analytic technique to alter the temperature

of the gas cells within the virial radius of simulated halos, which produces physically

sensible mock spectra. We used it to “paint” a hotter or colder temperature within the

virial radius of massive halos in Nyx. We found out that the predictions of the colder

model for the Ly↵ absorption within the virial radius of QSOs and LBGs is closer to the

observations (Figure 3.4 and right panel of Figure 3.6). At the same time, it does not

break down the agreement between Nyx and the observations of Ly↵ absorption around

DLAs (Figure 3.5).

A wrong temperature-density relationship in the CGM is not the only possible reason

for the discrepancy between observations and simulations, though. For example, the

presence micro-turbulence in the CGM would change the peculiar velocities of the gas

and thus a↵ect the absorption spectra, although we do not expect the velocity field to

have a major impact (see the discussion in the Appendix F). Moreover, the resolution

of cosmological simulations is still too low to accurately describe a multi-phase, clumpy

CGM (see § 3.4.5). This sub-resolution physics may increase the absorption within the

virial radius. In this work, we quantified the e↵ect of various systematics that could

a↵ect our predictions of the Ly↵ absorption profiles, and verified that they would not

change our conclusions.

We reiterate that, while current observations are matched by Illustris, but not Nyx, at

⇠ 1 Mpc, both simulations are consistent with data at < 500 kpc, while giving di↵er-

ent predictions in this range. Thus, increasing the precision of the measurements in

this range with future observations would allow setting meaningful constraints on the

physics of the CGM and on feedback prescriptions of di↵erent simulations. The high-

precision data of Ly↵ absorption around LBGs that will soon be provided by the ongoing

COSMOS Lyman Alpha Mapping And Tomography Observations (CLAMATO) survey

(Lee et al., 2014) will be useful for this purpose. In this respect, it would be interesting

to repeat the analysis presented in this Chapter on the recent IllustrisTNG simulation

as well (Pillepich et al., 2017). For this simulation, the AGN feedback prescription is

weaker than for its predecessor Illustris, hence we would expect a better match with

Prochaska et al. (2013), Rubin et al. (2015) and Turner et al. (2014) within the virial

radius.

This work opens several exciting perspectives. Apart from testing di↵erent feedback

prescriptions against the observations of �
F

within ⇠ 500 kpc, we will also run a suite

of simulations with di↵erent cosmological models, while leaving the remaining physics

unchanged. Indeed, the exquisite precision of BOSS at ⇠ 1 Mpc may be able to dis-

criminate between small variations of �
F

given by di↵erent cosmologies. We will also

investigate whether such high precision can be used to set constraints on di↵erent DM

models, primordial magnetic fields, and in general any physics that is expected to have

an impact on large-scale structure. We will also compute Ly↵ absorption statistics other

than the mean flux, as a function of the impact parameter. For example, the PDF (see
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also Kollmeier et al., 2003) or even the line-of-sight power spectrum may retain impor-

tant information. At present, there are no measurements of this kind, but instruments

like the Cosmic Origin Spectrograph (COS) and surveys such as KBSS provided us with

many spectra of background QSO – foreground galaxy, which can be used to compute

such statistics. We would then be able to compare them with the predictions given by

simulations, and refine even further our understanding of the physics of the CGM and

the IGM.



Chapter 4

Testing Cosmological Predictions

of Kinetic Field Theory

Di↵erent cosmological models yield di↵erent predictions for the statistical properties

of the distribution of matter in the Universe (e.g. Dodelson, 2003, Peebles, 1980, and

references therein). Since galaxies are a tracer of this distribution, large-scale surveys

of galaxy clustering provide us with a mine of data for constraining cosmology. Indeed,

several galaxy surveys have been performed in the past (e.g., SuperCOSMOS surveys1,

2MASS2 and 6dFGS 3), some are still ongoing (e.g., SDSS4), and others are programmed

in the near future (e.g., eBOSS5, DESI DESI Collaboration et al. 2016 and the Euclid

mission Amendola et al. 2013, Laureijs et al. 2011). An accurate theoretical modeling

of clustering is necessary to interpret the increasing amount of available data.

A systematic study of clustering was initiated by Peebles (1973), Yu & Peebles (1969)

and Peebles & Hauser (1974). These pioneering works informed an entire research

This Chapter presents my personal contribution to an ongoing project led by Carsten Littek and
supervised by Prof. Dr. Matthias Bartelmann. I am the second leading author of the project. I
conducted the analysis on the Millennium Run presented in this Chapter. Carsten Littek generalized
the theory by Bartelmann et al. (2016) to compute the statistics of the momentum field described in
§ 4.3. Prof. Dr. Matthias Bartelmann developed the theory summarized in § 4.1, which represents the
conceptual foundation of this work. He also provided guidance and advice. The work presented in this
Chapter is an intermediate step within the longer-term generalization of Bartelmann et al. (2016) theory
to predict the statistics of the Ly↵ forest, of which I am the leading author (Sorini et al., in prep.).

Part of the text in the introduction of this Chapter contains material from my single-author publica-
tion Sorini (2017), slightly re-adapted for this thesis. To conduct the analysis presented in this Chapter,
I wrote the majority of the codes by myself and I re-adapted pieces of codes originally written by Prof.
Dr. Joseph F. Hennawi.

1See Hambly et al. (2004, 2001a,b,c), Parker et al. (2005)
22 Micron All Sky Survey (Skrutskie et al., 2006)
36dF Galaxy survey (Campbell et al., 2014, Jones et al., 2009, 2004, Springob et al., 2014)
4Sloan Digital Sky Survey (Lundgren et al. 2015; see also Eisenstein et al. 2011, Frieman et al. 2008,

York et al. 2000)
5Extended Baryon Acoustic Oscillation Spectroscopic Survey (Raichoor et al., 2017)
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field, focusing on understanding the two-point correlation function of matter density

fluctuations (e.g. Bagla, 1998, Clerkin et al., 2015, Cole et al., 1994, Couch et al., 1993,

Efstathiou et al., 1991, Fedeli et al., 2009, Hamana et al., 2001, Matarrese et al., 1997,

Moscardini et al., 2002, Neuschaefer et al., 1991, Nishioka & Yamamoto, 1999, Raccanelli

et al., 2014, and references therein). The two-point correlation function contains full

information if the distribution of the amplitudes of density perturbations is Gaussian.

This is indeed the case for the primordial density fluctuations, but galaxy clustering

probes the evolved density field, which is not Gaussian. Even in this case, the two-

point correlation function represents a good starting point to investigate the statistical

properties of clustering.

Formally, studying the power spectrum instead of the two-point correlation function

is absolutely equivalent, the former being the Fourier transform of the latter. How-

ever, this is not necessarily true when considering the estimates of these two quantities

that are obtained from finite and noisy observational data. The statistical analysis of

galaxy surveys through the power spectrum represents a flourishing area of research (e.g.

Baumgart & Fry, 1991, da Costa et al., 1994, Einasto, 1993, Fisher, 1993, Hamilton &

Tegmark, 2000, Kaiser & Peacock, 1991, Meiksin & White, 1999, Muñoz & Loeb, 2008,

Nishioka & Yamamoto, 2000, Park et al., 1992, Peacock & Nicholson, 1991, Peacock

& West, 1992, Strauss et al., 1990, Vogeley et al., 1992, Webster, 1977, and references

therein).

The correlations in the matter density field are only part of the information that can

be extracted from large-scale surveys. For example, statistical properties like the power

spectrum of the peculiar velocity field (or momentum field) of galaxies and of its diver-

gence are key quantities for the modeling of redshift space distortions (e.g. Howlett et al.,

2017, Jennings et al., 2011, and references therein). Moreover, such information can be

used to constrain the growth rate of density perturbations, testing General Relativity

and modified gravity theories (e.g. Hwang et al., 2016, Jennings et al., 2012, Johnson

et al., 2014, Li et al., 2013, and references therein). Furthermore, the primordial stream-

ing velocities of baryons may have an impact on the BAO signature on the statistics of

the Ly↵ forest and other tracers of large-scale structure; this e↵ect could be detected in

upcoming observations, for instance thanks to DESI (e.g Hirata, 2017).

The high precision of current galaxy surveys, increasing with future missions such as Eu-

clid (Amendola et al., 2013, Laureijs et al., 2011), demands a detailed theoretical model-

ing of the relevant physics. Cosmological numerical simulations represent the most accu-

rate tool to date to predict the statistics of matter clustering (e.g., Springel et al. 2017;

see Springel 2012, for a review). The main reason is that, at scales k & 0.2 h cMpc�1,

non-linear physics plays a major role in shaping the power spectrum of density fluctua-

tions. Therefore, in that regime, analytical predictions based on the linearization of the

Einstein-Boltmzann equations (governing the time evolution of photons, baryons and

DM) do not represent a good approximation (Dodelson, 2003). Nevertheless, a major
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interest still remains for developing analytic or semi-analytic approaches to predict sta-

tistical properties of dark matter or baryons from first principles, also in the non-linear

regime. Indeed, analytic methods are generally more flexible and numerically cheaper

than numerical simulations, thus exploring a wide parameter space while saving a con-

siderable amount of computing time. Moreover, and perhaps more importantly, analytic

methods contribute to improve our understanding on the role played by every relevant

physical process in the transition of the Universe from its initial quasi-homogeneous

phase to the highly structured configuration at present time.

There have been various attempts to derive an approximate analytic expression for the

non-linear power spectrum of density fluctuations. The most straightforward way to

accomplish that is perhaps perturbation theory, where the equations for the evolution

of the matter density field are perturbed beyond first order (e.g., Anselmi et al. 2011,

Anselmi & Pietroni 2012, Bouchet et al. 1995, Ehlers & Buchert 1997, Ma & Bertschinger

1995, Peebles 1980, Seljak 2000, Valageas 2001, Valageas et al. 2013; see Bernardeau et al.

2002 for a complete review). A di↵erent idea to address the issue is expressing the non-

linear power spectrum (or correlation function) as a function of its linear counterpart,

evaluated at a di↵erent scale (Hamilton et al., 1991, Jain, 1997, Padmanabhan et al.,

1996, Peacock & Dodds, 1994, 1996). Another approach is assuming a power law for

the shape of the primordial power spectrum and the time evolution of the scale factor,

and then determine the time evolution of the scale at which perturbations become non

linear. It can be shown that, as long as the density fluctuations remain linear, the power

spectrum evolves in time according to a self-similar solution (Colombi et al., 1996, Davis

& Peebles, 1977, Efstathiou et al., 1988, Jain & Bertschinger, 1998). A widely used

semi-analytic method to describe non-linear clustering is the “Halo model” (Ma & Fry

2000, Neyman & Scott 1952, Peacock & Smith 2000, Scherrer & Bertschinger 1991,

Scoccimarro et al. 2001, Seljak 2000; see Cooray & Sheth 2002 for a review). In this

model, the power spectrum is split into two terms, of which one encodes the correlations

of matter residing in di↵erent halos, and the other one the correlations within the same

halo. The exact functional forms of such terms are tuned with fits to results of N-body

cosmological simulations (Smith et al., 2003).

Recently, a novel technique, based on non-equilibrium statistical field theory, has been

developed, in order to obtain a fully analytic prediction of the non-linear power spectrum

(Bartelmann et al. 2016; see also Bartelmann 2015, Bartelmann et al. 2017, Dombrowski

et al. 2017, Fabis et al. 2014, Kozlikin et al. 2014). The basic idea is to use the formalism

of statistical physics to describe an ensemble of classical particles in the phase space.

These particles would represent DM, in analogy with N-body cosmological simulations.

The time evolution of the ensemble can be described analytically, as the particles are

subject to Hamiltonian dynamics. The density field can then be obtained from the final

configuration of the ensemble, and this allows computing the power spectrum (as well

as higher-order spectra). Bartelmann et al. (2016) showed that their theory reproduces

the power spectrum given by the Coyote cosmic emulator (Heitmann et al., 2009, 2014,
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2010, Lawrence et al., 2010) within 10% in the range 1 h cMpc�1 . k . 3 h cMpc�1.

This level of agreement is better than any previous analytical technique based on per-

turbation theory, which breaks down at k ⇠ 0.2 h cMpc (Taruya et al., 2012). As such,

Bartelmann et al. (2016) theory represents the first, fully analytical, accurate prediction

of the power spectrum of density fluctuations into the non-linear regime (but see also

the discussion in § 4.1). Moreover, considering that Bartelmann et al. (2016) approx-

imate the gravitational interaction between particles to be small (see § 4.1 for more

details), the agreement with simulations will likely be improved once this approximation

is weakened (Bartelmann et al., in prep.).

Considering the promising results of Bartelmann et al. (2016) approach for the prediction

of the power spectrum of density fluctuations, the time has come to extend the formalism

in order to predict also other statistics capable of constraining cosmological models. One

specific aim is to predict the statistics of the Ly↵ forest already encountered in Chapter

2 (Sorini et al., in prep.). Though, modeling the Ly↵ absorption in Bartelmann et al.

(2016) theory requires including baryons in the formalism (Lilow et al., in prep.), as well

as understanding how to properly describe the velocity (or momentum) field. In fact,

as I discussed in Chapter 2, the smoothness of the velocity field can have a significant

impact on the statistics of the Ly↵ forest (see also the Appendix A).

In this Chapter, I focus on the understanding of the statistical properties of the mo-

mentum field that can be obtained generalizing Bartelmann et al. (2016) theory; this is

a necessary intermediate step towards the ultimate goal of predicting the statistics of

the Ly↵ forest within Bartelmann et al. (2016) approach. In particular, I present my

contribution to the extension of Bartelmann et al. (2016) to predict the power spectra

of momentum density, of its divergence and of its and curl (Littek, Sorini et al., in

prep.). I focus on computing such statistics from the Millennium Run N-body simula-

tion (Springel et al., 2005b), which will be needed to assess the accuracy of the analytic

predictions. Since the implementation of the theory into a symbolic code is still under

construction, in this Chapter I will mainly test the robustness of the predictions that I

obtained using the Millennium Run. All results presented hereafter should be considered

as preliminary.

In § 4.1 I provide an overview of the theory by Bartelmann et al. (2016), while in § 4.2

I describe the Millennium Run. In § 4.3 I define the statistics considered in this work,

and present the predictions obtained for the power spectra in § 4.4. The discussion of

the preliminary results is done in § 4.5, where I also outline the next steps of this work.
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4.1 An Overview of Kinetic Field Theory

Following Martin et al. (1973) and Forster et al. (1977), it has recently been shown

that the non-equilibrium kinetic field theory (KFT) of classical particles can be re-

formulated resembling the path-integral approach of statistical quantum field theory

(Das & Mazenko, 2012, 2013, Mazenko, 2010, 2011). Bartelmann et al. (2016) applied

such formalism in the context of cosmic structure formation, giving the first fully an-

alytic prediction of the power spectrum of matter density fluctuations, incorporating

non-linear physics, down to k = 10 h cMpc�1 (see also Bartelmann, 2015, Bartelmann

et al., 2017, Dombrowski et al., 2017, Fabis et al., 2014, Kozlikin et al., 2014). Un-

like previous analytic and semi-analytic techniques, guided by Eulerian or Lagrangian

perturbation theory, Bartelmann et al. (2016) approach is not based on perturbing the

Friedmann equations around a known background solution. Instead, it builds upon

KFT, considering the evolution of an ensemble of particles in phase space, from which

macroscopic fields (e.g., the density or velocity fields) can be derived in second instance.

As such, KFT can be seen as the analytic analog of N-body numerical simulations. In

this section, we give an overview of KFT, in which we describe the main concepts and

logical steps, refraining from detailing the quite hefty formalism, which goes beyond the

scope of this thesis (see Bartelmann et al., 2016, for details).

The starting point is the generation of a phase-space distribution of classical particles, in

analogy with the initial conditions of N-body simulations. The phase-space coordinates

of each particle are drawn from a probability distribution, which encodes the correlations

among the positions and momenta of the particles6. Under the assumption that the

initial velocity field is a gradient field and of the continuity equation, the probability

distribution is fully determined by the initial power spectrum given by the cosmological

model considered.

The statistical properties of the initial ensemble of particles are described by the free gen-

erating functional (or partition function) Z0. The particles evolve following Hamiltonian

dynamics, and the statistical properties of the ensemble at a certain time are encoded

by the generating functional Z, which is obtained applying a multiplicative interaction

operator to Z0. Such operator is determined by the action describing the dynamics of

the ensemble. Although one could in principle derive the phase-space trajectories of the

individual particles from Z, the relevant quantities in the context of cosmic structure

formation are macroscopic fields. In the simplest incarnation of the theory, one needs

to define at least two macroscopic fields: the density and response fields. The latter

is naturally defined in the formalism of the theory, and it encapsulates the e↵ect of

6The expression of the probability distribution contains an exponential of the auto-correlation of
particle positions and momenta, and of the cross correlation among them. To maintain the remainder
of the method fully analytical, it is necessary to expand this exponential up to the second order in the
momentum auto-correlations. The amplitude of these correlations is indeed ⌧ 1 (Bartelmann et al.,
2016, 2017).
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the inter-particle interactions on the evolution of the ensemble. For the aforementioned

fields, a corresponding operator can be defined such that, once applied to Z, it yields

the desired field.

Once the macroscopic fields are obtained, one can compute the power spectrum of the

density field. The power spectrum depends also on the interaction operator associ-

ated with the response field. Familiar with quantum field theory, this operator can be

Taylor-expanded, giving rise to the Feynman graphs of the theory (Feynman, 1950).

Bartelmann et al. (2016) computed the power spectrum expanding the interaction op-

erator to first order, finding an agreement better than 10% with the predictions of

the Coyote emulator for k > 1 h cMpc�1. The most critical regime appears to be

(0.1, 1) h cMpc�1, where the di↵erence with the emulator can be as large as ⇠ 30%

(at k ⇡ 0.5 h cMpc�1). Nevertheless, the performance of KFT is much better than pre-

vious methods, based on perturbation theory, which break down around 0.2 h cMpc�1

(Taruya et al., 2012). The agreement between KFT and the Coyote emulator is expected

to improve substantially including higher-order interactions, alleviating the current dis-

crepancy at k ⇡ 0.5 h cMpc�1 (Bartelmann et al., 2016, Bartelmann et al., in prep.).

While the method discussed in this section and presented in Bartelmann et al. (2016,

2017) focuses on the power spectrum of the density field, it can be in principle extended

to compute also other quantities. For example, the formalism can be generalized to

obtain the momentum densty field, on top of the other macroscopic fields mentioned

earlier in this section. While this extension has been accomplished from the theoretical

point of view, its implementation into a symbolic code is currently being carried out

(Littek, Sorini et al., in prep.). Once that is finalized, KFT will be able to predict the

power spectra of the momentum density fluctuations, as well as its divergence and curl.

The predictions will have to be compared against numerical simulations. In the next

sections, we show the power spectra computed from the Millennium Run, which we will

need for this purpose.

4.2 Millennium Run

We briefly describe the characteristics of the Millennium Run, referring the reader to

the original paper for further details (Springel et al., 2005b). The Millennium Run is

an N-body cosmological simulation based on the Gadget-2 code (Springel, 2005). Dark

matter (DM) is modeled with collisionless self-gravitating particles. The point masses

representing DM particles are softened with a spline kernel with a softening length of

5 h�1 kpc, i.e. 46.3 times smaller than the mean interparticle separation. Although the

simulation follows the evolution of DM particles only, their mass is corrected to take

into account the contribution of baryons to the total matter density.
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The gravitational force is computed through a variation of the TreePM method (Bagla,

2002, Bode et al., 2000, Xu, 1995), where short-range and long-range gravitational forces

are determined through a hierarchical multipole expansion (Barnes & Hut, 1986) and

with a particle-mesh (PM) method (Hockney & Eastwood, 1981), respectively. An

explicit force-split in Fourier space is adopted, giving a highly isotropic force law and

minimizing force errors at the force matching scale. The timestep is set with a symplectic

leap-frog scheme, di↵erentiating the potential energy into a two components, determined

by the particles at small and large distances, respectively.

The initial conditions are generated by randomly sampling DM particles from a Gaus-

sian random field, where the amplitude of the Fourier-space modes follow a Rayleigh

distribution, and the phases are drawn from a uniform distribution. The underlying

linear-theory power spectrum is generated with the Boltzmann code CMBFAST (Seljak

& Zaldarriaga, 1996), and corresponds to a ⇤CDM model with cosmological parame-

ters consistent with the constraints from WMAP and SDSS (Seljak et al., 2005, Spergel

et al., 2003) : ⌦m = ⌦DM + ⌦b = 0.25, ⌦b = 0.045, ⌦⇤ = 0.75, h = 0.73, �8 = 0.9

and ns = 1, with standard definitions for all quantities. Thus, the power spectrum used

to generate the initial conditions incorporates also baryon features, like the BAO. The

initial particle distribution is generated at zini = 127, and the particles are given an

initial displacement following the Zel’dovich (1970) approximation. The volume of the

simulation is (500h�1 cMpc)3, and follows the evolution of 21603 particles, with a mass

resolution of 8.6⇥ 108 h�1 M�. In this work, we use only the snapshot at redshift z = 0.

4.3 Statistics Considered

In this section, we define the statistics that we compute in this Chapter. The matter

density fluctuations are defined as �(x) = ⇢(x)/⇢̄(x)�1, where ⇢(x) is the matter density

field and ⇢̄ its average density. The power spectrum of matter density fluctuations P
�

(k)

is given by

h�(k)�(k0)i = (2⇡3)�D(k � k0)P
�

(k) , (4.1)

where �D denotes the Dirac delta. The quantities considered are taken at fixed redshift,

and the power spectrum depends only on the norm of the wavevector k because large-

scale isotropy is assumed.

We now define the momentum density fluctuation field as

⇧(x) = �(x)u(x) =
⇢(x)

⇢̄
u(x) , (4.2)

where u(x) is the field of the peculiar velocities of matter. In analogy with (4.1), the

power spectrum of momentum density fluctuations P⇧(k) is given by

h⇧(k) ⌦ ⇧(k0)i = (2⇡3)�D(k � k0)P⇧(k) . (4.3)
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The power spectrum of momentum density fluctuations is, by definition, a tensor of rank

3, where each component P⇧ij represents the cross-power spectrum of the i-th and j-th

components of the momentum density fluctuations. Dimensionally, the power spectrum

of momentum density fluctuations is a volume times a velocity squared or, equivalently,

an energy per unit density. A more direct physical meaning is encoded by the trace of

⇧, that is7

Trh b⇧(k) ⌦

b⇧(k0)i =
X

i

h

d�u
i

(k)d�u
i

(k0)i . (4.4)

The right hand side of the equation above is the ensemble average of the correlations of

the kinetic energy density fluctuations in Fourier space. We can then define the power

spectrum of kinetic energy density fluctuations PKE(k) as

X

i

h

d�u
i

(k)d�u
i

(k0)i = (2⇡3)�D(k � k0)PKE(k) . (4.5)

Apart from the kinetic energy density fluctuations, one may also consider the power

spectrum of the divergence and the curl of the momentum density fluctuations, which

are both scalar quantities. They are defined, respectively, by the following equations:

hk · ⇧(k) k0
· ⇧(k0)i = (2⇡3)�D(k � k0)Pr·⇧(k) (4.6)

hk ⇥ ⇧(k) · k0
⇥ ⇧(k0)i = (2⇡3)�D(k � k0)Pr⇥⇧(k)

which can be deduced applying the properties of the Fourier transform on the divergence

and the curl of ⇧(x).

The power spectra of kinetic energy density fluctuations, divergence and curl of the

momentum density fluctuations are not independent quantities. Expressing them in

their components, and exploiting the properties of the Levi-Civita tensor, it can be

easily proved that

Pr⇥⇧(k) = k2PKE(k) � Pr·⇧(k) . (4.8)

Despite not being independent, it is still meaningful to investigate the shape of all power

spectra defined, since each one of them can be most easily compared with di↵erent

measurements from large-scale surveys (e.g. Howlett et al., 2017, Jennings et al., 2011).

4.4 Computing Power Spectra From Simulations

We begin with computing the power spectrum of density fluctuations from the Millen-

nium Run, to check whether we reproduce the KFT predictions with the same precision

as in Bartelmann et al. (2016).

7Unlike the rest of the thesis, in (4.4) and (4.5) I explicitly indicated the fields in Fourier space with
an overhat, for the sake of clarity.
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Figure 4.1: Dimensionless power spectrum of matter density fluctuations at redshift
z = 0, obtained from the Millennium Run in this work (orange solid line) and in
Springel et al. 2005b (magenta dashed line). The shaded areas around the solid orange
and dashed magenta lines represent the respective scatter due to cosmic variance. Our
code reproduces Springel (2005) for k < 2h cMpc. The differences at larger k are due
to the different algorithms implemented (see text for details).

First of all, we build the density fluctuation field from the Millennium Run by binning

the dark matter particles into a regular Cartesian grid, through a CIC scheme. For each

simulation, we set the size of the grid cell equal to the mean interparticle separation,

i.e. 231h−1 kpc. This ensures converge of the power spectra up to k ∼ 3h cMpc−1. The

detailed convergence tests are presented in the Appendix G.

To compute the power spectrum, we start by fast-Fourier transforming the density fluc-

tuation field. We then consider a set of spherical surfaces in Fourier space, the radii of

which are multiples of 2π/L, where L is the box size.8 The radii are the values of the

wavenumbers ks at which the power spectrum will be computed. The amplitude of each

Fourier mode δ(k) is split between the two closest Fourier-space spheres, weighted by

the Fourier-space distance from such spheres. The power spectrum P (ks) corresponding

to the Fourier mode ks is then given by the average of the square modulus of all weighted

amplitudes assigned to the sphere with radius ks.

We show the dimensionless power spectrum of density fluctuations k3P (k)/(2π2) at

z = 0 that we obtain from the Millennium Run in Figure 4.1 (orange solid line). The

shot noise Psn = (L/N)3, where N is the number of grid points along each side of the

box, is subtracted from the power spectrum P (k). The orange shaded area indicates the

scatter due to cosmic variance. The scatter ΔP (k) of the power spectrum at each mode

8The radius of the largest sphere in Fourier space is set to be equal to the Nyquist frequency of the
grid into which the density fluctuations field is binned.
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Figure 4.2: Left panel : Power spectrum of matter density fluctuations at redshift
z = 0, predicted by KFT (dashed blue line) and by the Millennium Run (solid orange
line). The orange shaded areas represents the error due to cosmic variance in the
Millennium Run. The vertical dotted orange line is the Nyquist mode in the grid used
to compute the power spectrum (see text for details). Right panel : relative difference
between the power spectrum of matter density fluctuations predicted by KFT and by
the Millennium Run. The differences are consistent with the findings in Bartelmann
et al. 2016 (see text for details).

k is computed as (Schneider et al., 2016)

ΔP (k) =

(
2

ΔNm

) 1
2

[P (k) + Psn(k)] , (4.9)

where ΔNm = L3k2Δk/(2π2) is the number of modes within the bin centered in k,

with width Δk. To check whether our code is reliable, we overplot in Fig. 4.1 the

power spectrum of the Millennium Run at z = 0 as published in Springel (2005), which

is shown with a magenta dashed line. The magenta shaded area indicates the cosmic

variance as estimated in Springel (2005).

Our code perfectly resembles Springel (2005) results for 0.06h−1 cMpc < k < 2h−1 cMpc,

and is consistent with them for k < 0.06h−1 cMpc. The differences at k > 2h−1 cMpc

arise from the different algorithms used to compute the power spectrum. In our case

we computed it on a regular Cartesian grid, treating all Fourier modes in the same

way. Instead, Springel (2005) measured the power spectrum in the Millennium Run on

the fly, distinguishing between “large-scale modes” and “small-scale modes”. For the

large-scale modes, the power spectrum was computed through a Fourier transform of

the entire box. The small-scale modes were obtained by self-folding the density field,

and assuming periodicity in a fraction of the box, following Jenkins et al. (1998). The

algorithm implemented in Springel (2005) is equivalent to computing the power spectrum

on a regular 819203 mesh. In conclusion, our code accurately resembles the power

spectrum of matter density fluctuations in the Millennium Run up to k ∼ 2h−1 cMpc.

The differences at larger k are due to the different algorithms implemented.
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Having verified that our code for computing the power spectrum is reliable, we now

compare it with the power spectrum of density fluctuations predicted by KFT, choosing

the same cosmological model as the Millennium Run. In the left panel of Figure 4.2

we plot the power spectrum predicted by the Millennium Run and KFT with the solid

orange and dashed blue lines, respectively. The shaded orange area indicates the scatter

due to cosmic variance in the Millennium Run, estimated with (4.9). In the right panel

of Figure 4.2 we show the relative di↵erence between the power spectra predicted by

KFT and the Millennium Run (solid red line). The red shaded area is the scatter in

the relative di↵erence resulting from propagating the error due to cosmic variance of the

Millennium Run. We investigate only modes up to 3 h cMpc�1, because at larger k the

convergence of our computation of the power spectrum of the Millennium Run is worse

than 5%. This is due to the resolution of the grid onto which we CIC-binned the dark

matter density upon computing the power spectrum (see also the Appendix G).

The predictions of KFT are overall in good agreement with the Millennium Run, in

fact even better than what found by Bartelmann et al. (2016) in comparison with the

Coyote emulator (Heitmann et al., 2009, 2014, 2010, Lawrence et al., 2010). In the

range 0.1 h cMpc�1 < k < 3 h cMpc�1, the relative di↵erence remains below 10%. In

particular, for 0.2 h cMpc�1 < k < 0.5 h cMpc�1, well beyond the breaking point of

perturbation theory (Taruya et al., 2012), the accuracy is ⇠ 3%. On the other hand,

for k < 0.1 h cMpc�1 the di↵erence can be as high as 30%. However, in this regime,

the scatter due to cosmic variance is too large to draw robust conclusions. Indeed, the

lower bound of the red shaded area in the right panel of Figure 4.2 suggests that the

di↵erence may be as small as 10%. To get more insight in this regime, it would be

necessary to consider a larger simulation (e.g., the Millennium XXL Run Angulo et al.,

2012), in order to reduce the uncertainty due to cosmic variance on the scales probed

by the Millennium Run. This would also enable us to probe modes at larger scales

(3 h�1 cGpc).

At this point, we compute the power spectrum of the momentum density fluctuations

in the Millennium Run, using the same codes adopted for the power spectrum of matter

density fluctuations. Specifically, in Figure 4.3 we show, from top to bottom, the power

spectra of the kinetic energy density fluctuations, and of the divergence and curl of

momentum density fluctuations, respectively, obtained from the Millennium Run. All

power spectra are computed at redshift z = 0. In all panels, the shaded orange area

is again the cosmic variance computed as in (4.9). Unfortunately, the corresponding

predictions of KFT are not available yet, as the implementation of the theory into a

symbolic code to generate the relevant power spectra is still in progress.
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Figure 4.3: Power spectrum of kinetic energy density fluctuations, divergence and
curl of momentum density fluctuations (top, middle, and bottom panels, respectively),
predicted by the Millennium Run (solid orange line). All power spectra at computed
at redshift z = 0. In all panels, the orange shaded area represents the error due to
cosmic variance in the Millennium Run, while the vertical dotted orange line marks the
Nyquist mode in the grid used to compute the power spectra (see text for details).
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4.5 Discussion and Outlook

In this Chapter, we computed the power spectrum of di↵erent quantities of cosmological

interest from the Millennium Run simulation, and compared it with the predictions of

the KFT-based analytic approach developed by Bartelmann et al. (2016). We assessed

the reliability of our code to compute the power spectrum by verifying that our results

for the power spectrum of density fluctuations in the Millennium Run matches the same

quantity published in Springel (2005). We also compared our estimate of the power

spectrum of density fluctuations in the Millennium Run with the predictions given by

KFT, with the same cosmological parameters. We showed that the agreement is better

than 10% in the range 0.1 h cMpc�1 < k < 3 h cMpc�1, and better than 30% in the

range 0.01 h cMpc�1 < k < 0.1 h cMpc�1, consistent with the results in Bartelmann

et al. (2016).

We computed the power spectra of kinetic energy density fluctuations, as well as of

the divergence and of the curl of momentum density fluctuations, in the Millennium

Run. The immediate perspective of this work is finalising the implementation of a

symbolic code to predict such power spectra with KFT. This will allow us to assess

the performance of this theory, by comparing it with the results of the Millennium

Run. The comparison would be limited to the Fourier modes sampled by the simulation

(k > 0.0126 h cMpc). We will then consider a larger simulation, like the Millennium

XXL run (Angulo et al., 2012). The box size is 3 h�1 cGpc, meaning that the simulation

can sample the power spectrum down to k = 1.86⇥10�3h cMpc�1. Since the cosmology

of the Millennium XXL is the same as the one of the Millennium Run, we will be able

to use both simulations to compute the power spectra within di↵erent ranges of k, thus

extending the dynamic range over which we can test KFT.

Once we verify that the predictions of the aforementioned momentum density statistics

given by KFT accurately reproduce the results from N-body simulations, we can consider

the treatment of the velocity field within Bartelmann et al. (2016) formalism to be

reliable. Including the modeling of baryons in the theory (Lilow et al., in prep.), KFT

will be ready to be generalized in order to predict the statistics of the Ly↵ forest (Sorini et

al., in prep.). The predictions of the Ly↵ forest statistics will need to be compared with

the results of simulations, too. For this purpose, large hydrodynamic simulations such

as Nyx and Illustris (described in the previous chapters) will be considered. In order to

compare the KFT predictions that we will obtain at the largest scales (⇠ 10�3 h Mpc�1)

we would need Gpc-scale hydrodynamic simulations. As stressed in Chapter 2, there is

currently no hydrodynamic simulation with such large volumes and at the same time

enough high resolution to properly capture the physics of the Ly↵ forest (⇠ 20 ckpc,

Lukić et al. 2015). Thus, we will apply the IMS technique developed in this thesis

on top of large N-body runs, such as Millennium and Millennium XXL. Thus, this

constitutes an additional perspective of the work described in Chapter 2.
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We also point out that developing an analytic accurate method to predict the 1DPS of

the Ly↵ forest will allow painting the 1D-IMS method described in Chapter 2 on large

collisionless simulations, following the same logic adopted for 3D-IMS in § 2.5. This

could make it possible to model the BAO signature on the Ly↵ forest in Gpc-scale N-

body simulations with an even higher accuracy than the one already achieved by 3D-IMS

(see § 2.7).
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Conclusions and Perspectives

The main focus of this thesis is the Ly↵ absorption line as a cosmological and astrophys-

ical probe. At large scales, the Ly↵ forest is an exceptional observational feature that

allows tracing the underlying distribution of neutral hydrogen in the IGM. As such, it

can be exploited to investigate the physics of the IGM, the epoch of reionization and,

more generally, constrain cosmological models (for a recent review, see McQuinn, 2016).

At smaller scales, the Ly↵ absorption around galaxies at di↵erent transverse separations

from background quasars allows probing the physics of the CGM and getting insight

into galaxy formation (for a recent review, see Barnes et al., 2014). In this thesis, I

investigated the Ly↵ absorption line both at galactic and extragalactic scales, pursuing

a dual aim. In the first part of my work, I improved the modeling of the Ly↵ forest

in the IGM; in the second part, I showed that, taking full advantage of observations of

Ly↵ absorption both in the IGM and the CGM, it is possible to set tight constraints on

state-of-the-art cosmological hydrodynamic simulations.

In chapter 2, I focused on the Ly↵ forest as a tool to probe the large-scale structure of the

Universe, discussing success and limitations of cosmological hydrodynamic simulations in

modeling the Ly↵ forest. Whereas such simulations led to a consistent description of the

IGM in the framework of structure formation (Cen et al., 1994), they are computationally

expensive, making it hard to reach both large volumes and high resolutions. On the

other hand, these requirements are needed to undertake ambitious research projects,

like determining the scale of the BAO from the cross-correlation of the Ly↵ forest in

QSO spectra (Delubac et al. 2015, Font-Ribera et al. 2014b; see also Lukić et al. 2015).

For this reason, it is of great interest to develop semi-analytic methods to predict the

Ly↵ forest statistics from collisionless N-body simulations, which do not present the

same computational constraints as hydrodynamic ones.

A minor part of the text in this Chapter is re-adapted from Sorini et al. (2016).
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One of the most widely used techniques to predict the Ly↵ forest with N-body simu-

lations consists in mocking the baryon density and velocity fields through a Gaussian

smoothing of their DM analogs. The smoothing length of the Gaussian kernel �
G

is a

free parameter, which is generally assumed to be of the same order of the Jeans scale

(Gnedin & Hui 1996, Meiksin & White 2001, Rorai et al. 2013, Viel et al. 2006, 2002

but see also Peirani et al. 2014). The smoothed fields are then used to compute the

Ly↵ transmitted flux within the FGPA. Before my work, there was no detailed study

of the accuracy with which such method predicts the statistical properties of the Ly↵

flux, as a function of �
G

. This is done in Chapter 2, where we1 compared the predic-

tions of di↵erent statistics given by the Gaussian smoothing technique to the results of

a reference hydrodynamic simulation. In the past literature, DM density and velocity

fields were generally smoothed with the same scale �
G

. For the first time, we considered

the possibility of having two di↵erent smoothing lengths, quantifying the impact of the

smoothing scale of the velocity field on the accuracy of the method.

We showed that the accuracy of the Gaussian smoothing technique is strongly dependent

on the smoothing length (see Figures 2.7 and 2.8). Since the “optimal” value of �
G

is guaranteed to di↵er for models with di↵erent IGM histories, and thus cannot be

known a priori, this implies that works using any particular smoothing will have errors

varying in an uncontrolled manner. Therefore, this thesis clarified the accuracy and the

shortcomings of Gaussian smoothing, and these should be taken into account in future

works making use of such technique to predict the Ly↵ forest.

To go beyond the limitations of Gaussian smoothing, we presented two new methods,

3D-IMS and 1D-IMS, based on the idea of Iteratively Matched Statistics (IMS; see § 2.3).

In the former method, a mock-baryon density field is obtained from the DM density and

velocity fields, such that the 3D power spectrum and PDF of the corresponding Ly↵

flux in real space, obtained within the FGPA, match by construction the same quantities

given by a reference hydrodynamic simulation. The 1D-IMS method builds upon 3D-

IMS, additionally matching the 1DPS and PDF of the Ly↵ flux in redshift space, given

by the same reference hydrodynamic simulation. Unlike the Gaussian smoothing tech-

nique, both methods are weakly dependent on �
G

, meaning that they yield more robust

predictions and that they can be applied to large, low-resolution N-body simulations

(see Figures 2.7 and 2.8).

The 3D-IMS method is particularly suited to be applied to large N-body simulations (see

§ 2.5). We applied it to an (80 h�1 cMpc)3 N-body simulation, using a (10 h�1 cMpc)3

hydrodynamic simulation as calibration, and compared the results with the predictions

of another hydrodynamic simulation, as large as the N-body and as resolved as the

calibrating one. We showed that the average accuracy with which 3D-IMS recovers the

PDF, 1DPS and 3DPS of the Ly↵ flux is better than 13%, 10% and 10%, respectively.

1I am referring to the first project that I undertook during my PhD, led by myself, and done together
with Dr. José Oñorbe, Dr. Zarija Lukić and Prof. Dr. Joseph F. Hennawi (Sorini et al., 2016).
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By comparison, the average accuracy of the Gaussian smoothing technique is 18%, 41%

and 58%, respectively (see Figures 2.12 and 2.13). Therefore, in this realistic example,

this thesis exposed the shortcomings of the widely used Gaussian smoothing technique,

and at the same time underscored the high accuracy of the novel IMS approach presented

in Chapter 2. Notably, IMS guarantees an accuracy comparable with, or better than

other recent semi-analytic techniques (e.g. Peirani et al., 2014), while being simpler to

implement. As such, IMS represents the state-of-the-art regarding the modeling of the

Ly↵ forest in large N-body simulations.

The obvious regime of applicability of our methods stands in any project requiring

large-box simulations. One example is the aforementioned modeling of the BAO signal

in the Ly↵ forest. In fact, this requires simulations on a Gpc-scale boxe, still retaining

the resolution needed to properly capture the physics of the Ly↵ forest (20 ckpc; see

Lukić et al. 2015). This is well beyond the numerical capabilities of even state-of-the-

art hydrodynamic simulations (e.g., Lukić et al., 2015, Pillepich et al., 2017, Schaye

et al., 2015, Vogelsberger et al., 2014b). Using 3D-IMS to re-analyze the BOSS data by

Delubac et al. (2015), Font-Ribera et al. (2014b) of the Ly↵ flux cross-correlation would

then allow improving the current estimate of the BAO scale. Other possible applications

of our semi-analytic methods are the investigation of the UV background fluctuations,

which are coupled to fluctuations in the mean free path of ionizing photons on large

scales (Gontcho A Gontcho et al., 2014, Pontzen, 2014), the measurement of the 3DPS

of the Ly↵ forest flux, which can be exploited to improve cosmological constrains and/or

constrain IGM thermal properties (McQuinn et al., 2011, McQuinn & White, 2011), and

modeling the cross-correlation between Ly↵ forest and HI 21 cm signal (Guha Sarkar &

Datta, 2015), as well as between CMB lensing and Ly↵ forest (Vallinotto et al., 2009,

2011).

In Chapter 3, I compared state-of-the-art hydrodynamic cosmological simulations with

measurements of Ly↵ absorption both in the IGM and in the CGM, with the aim of

investigating the physical properties of such media, as well as testing the predictions of

simulations on a wide range of scales. More precisely, we2 considered observations of the

mean Ly↵ flux profile, and Ly↵ optical depth profile, around foreground QSOs, LBGs

and DLAs at very di↵erent impact parameters (transverse separations) from background

QSOs, ranging from 25 kpc out to 17 Mpc.

For the first time, we computed the mean Ly↵ flux profile from BOSS measurements

of Ly↵-QSO and Ly↵-DLA cross-correlation (Font-Ribera et al. 2013 and Font-Ribera

et al. 2012b, respectively), covering impact parameters in the range (1, 17) Mpc from

the foreground object. We showed that these measurements extend to larger impact

parameters the observations of the mean Ly↵ flux at transverse separations < 1 Mpc

by Prochaska et al. (2013) and Rubin et al. (2015), respectively. We compared all

2I am referring to the second project that I undertook during my PhD, led by myself, and done
together with Dr. José Oñorbe, Prof. Dr. Joseph F. Hennawi and Dr. Zarija Lukić (Sorini et al., 2017,
to be submitted).
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these datasets with the predictions of Nyx (Almgren et al., 2013, Lukić et al., 2015)

and Illustris (Vogelsberger et al., 2014b) hydrodynamic cosmological simulations. The

former is a reference, no-feedback simulation, whereas the latter is endowed with stellar

and AGN feedback prescriptions. Hereafter, I discuss the results and main conclusions

distinguishing three di↵erent ranges of impact parameters.

Large separations (2 Mpc < b < 17 Mpc) Illustris and Nyx generally reproduce

well BOSS data, meaning that they both give an accurate description of the IGM

(see Figures 3.4 and 3.5). Although this could be expected, it needed to be properly

checked, especially considering the exquisite precision of BOSS data. For this

reason, and because of the large dynamic range spanned by the observations,

reproducing the mean Ly↵ flux profile at the impact parameters probed by BOSS

can be used as a new fundamental test to validate cosmological simulations.

Intermediate separations (b < 2 Mpc, but larger than the virial radius)

Illustris and Nyx give di↵erent predictions of the mean Ly↵ flux. Such di↵erences

are mainly driven by the diverse temperature-density relationships in the CGM,

stemming from the di↵erent physics implemented in the two simulations. Thus,

the mean Ly↵ flux profile proves to be an excellent probe of the physics of the

CGM. Thanks to their high precision, BOSS data can already constrain simula-

tions, being able to discriminate between Nyx and Illustris at b ⇠ 1 Mpc (with

Illustris matching the measurement). Between the virial radius and ⇠ 400 kpc,

both simulations are consistent with Prochaska et al. (2013) and Rubin et al.

(2015) within the error bars. We thus call for future observations focusing on in-

creasing the statistics of background QSO - foreground QSO/DLA pairs, in order

to reduce the error bars. That would would enable setting tight constraints on

feedback prescriptions in simulations.

Small separations (within the virial radius) Both Illustris and Nyx under-

predict the observations, meaning that these simulations do not produce enough

Ly↵ absorption in this range of impact parameters (see Figures 3.8 and 3.9). To

investigate how the discrepancies could be mitigated, we developed a novel semi-

analytic technique to alter the temperature-density relationship within the CGM,

and applied it to the halos that we took from Nyx to reproduce the observations

considered. As a result, we showed that the discrepancy between simulations and

observations within the virial radius would be mitigated if simulations produced

a colder CGM. However, this is not the only possibility. We argue that sub-

resolution physics or, to a lesser extent, the e↵ect of velocity fields, may partially

be responsible for the discrepancy.

We showed that the di↵erent temperature and density profiles around Nyx and Illustris

QSO-hosting and DLA-hosting halos are a major driver for the di↵erent predictions
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of the mean Ly↵ flux at small and intermediate separations. In particular, we argue

that the di↵erences between the predictions of Nyx and Illustris out to ⇠ 3 rvir can be

ascribed to the AGN feedback prescription of Illustris (see the discussion in § 3.4.1.2).

Indeed, the hot component of the CGM in Illustris extends out to several virial radii

from the center of the halos (Figures 3.8 and 3.9). This is the main reason why Illustris

tends to systematically predict less absorption than Nyx at intermediate separations.

Furthermore, injecting less heat through a weaker AGN feedback prescription should

mitigate the discrepancy between Illustris and the Ly↵ absorption data within the virial

radius.

Beside the temperature and density profiles, we showed that the di↵erent predictions of

the mean Ly↵ flux profiles given by Nyx and Illustris can be easily interpreted in terms

of the temperature-density relationship of the gas within di↵erent radial bins from the

center of the halos (Figures 3.10 and 3.11). Also these plots support the claim that the

e↵ects of the Illustris feedback prescriptions extend out to ⇠ 3rvir. We point out that

such temperature-density diagrams, as well as the temperature and density profiles, are a

valuable tool to get insight into the feedback prescriptions implemented in simulations,

which in turn impact the Ly↵ absorption profiles. Thus, we reiterate that the Ly↵

flux profile provides a new fundamental observable to be matched when testing feedback

prescriptions, complementary to other widely used quantities, such as the star formation

e�ciency (e.g. Behroozi et al., 2013, Guo et al., 2011, Moster et al., 2013).

As previously mentioned, the constraining power of the test presented in this thesis

would benefit from the detection of a larger number of background QSO - foreground

galaxy pairs. The reason is that an increase of the precision of the measurements at

intermediate separations from background QSOs would allow us to put even tighter

constraints on simulations. The high-precision data of Ly↵ absorption around LBGs

that will be soon provided by the ongoing CLAMATO survey (Lee et al., 2014) will

be useful for this purpose. From the numerical point of view, it would be interesting

to repeat the comparison done in Chapter 3 with the IllustrisTNG (Pillepich et al.,

2017) simulation. One of the di↵erences with its predecessor Illustris is a weaker AGN

feedback; injecting less heat, that should produce a colder CGM, thus getting closer to

the observations within the virial radius.

As a perspective of this work, we will run a suite of hydrodynamic simulations, with

di↵erent cosmological parameters, while keeping all other physical aspects unchanged.

In fact, the incredibly high precision of BOSS data at intermediate and large scales

might allow setting constraints also in this respect. We will also consider exploiting

such data to discriminate among di↵erent DM models, to assess the e↵ect of primordial

magnetic fields and in general to test testing any physical e↵ect expected to impact

large scales that could be somehow traced with Ly↵ absorption. Furthermore, in this

work we considered mainly the Ly↵ mean flux as a function of the impact parameter,

but we plan to compute also higher-order statistics, like the PDF (see also Kollmeier
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et al., 2003) and the 1DPS. These statistics may indeed provide us with further valuable

information to constrain the CGM and the IGM.

In the last part of the thesis, I considered an analytic technique that will be extended

to model the statistical properties of the Ly↵ forest. While numerical simulations give

currently the most accurate predictions of the forest and of clustering in general, analytic

methods tend to be more versatile and less computationally expensive, as they allow

exploring a larger parameter space. In this respect, a recent novel approach (Bartelmann

et al., 2016, 2017) based on the formalism of KFT (Das & Mazenko, 2012, 2013, Mazenko,

2010, 2011) provided the first, fully analytic prediction of the dark matter density power

spectrum up to k ⇠ 10 s cMpc�1, matching within ⇠ 10% the results of the Coyote

Universe cosmological emulator (Heitmann et al. 2009, 2014, 2010, Lawrence et al. 2010;

but see also the discussion in § 4.1). Given the promising results, this method is being

generalized in order to predict other important quantities that can be obtained from

galaxy surveys, specifically the power spectra of the kinetic energy density fluctuations

of DM, as well as of the divergence and of the curl of the DM momentum density

flucutations (Littek, Sorini et al., in prep.). This study, together with the inclusion of

baryons in the model (Lilow et al., in prep.), is a necessary intermediate step towards

the extension of the theory to predict the statistics of the Ly↵ forest (Sorini et al., in

prep.), which is the ultimate goal of my work.

In Chapter 4, we3 computed the aforementioned power spectra from the Millennium

Run simulation (Springel et al., 2005b, see Figure 4.3). These results will be needed to

test the performance of KFT, once that is fully implemented. Meanwhile, to test the

robustness of our codes, we verified that the power spectrum of density fluctuations that

we computed from the Millennium Run matches the one published by Springel et al.

2005b (see Figure 4.1). We also compared it to the predictions given by KFT, showing

that the agreement is generally within ⇠ 10% (see also the discussion in § 4.4). The

overall agreement reproduces the results found by Bartelmann et al. (2016) (see Figure

4.2).

An immediate perspective of this work is comparing the power spectra of the kinetic

energy density fluctuations of DM, and of the divergence and curl of DM momentum den-

sity fluctuations, obtained from the Millennium Run, with the same quantities predicted

by KFT. The size of the Millennium Run limits our comparison to k & 0.0126 h cMpc�1.

We plan to compute the aforementioned power spectra also from the Millennium XXL

simulation (Angulo et al., 2012), which will allow us to probe k & 0.0015 h cMpc�1, thus

expanding the dynamic range within which we can test the predictions of KFT. Once

3In the last part of my PhD, I started a project, supervised by Prof. Dr. Matthias Bartelmann,
aimed at predicting the statistics of the Ly↵ forest from a generalization of the KFT-based approach by
Bartelmann et al. (2016, 2017). As an intermediate step towards this goal, I took part in the project led
by Carsten Littek and supervised by Prof. Dr. Matthias Bartelmann, finalized at better understanding
the modeling of the velocity field within KFT. The project is still ongoing, and I will be the second
author on publication that will result from it (Littek, Sorini et al., in prep.). In Chapter 4 I presented
my personal contribution to this particular project.
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the agreement with simulations is verified, we can consider the treatment of the velocity

field within the KFT approach to be accurate. Hence, at that point we will extend it to

model the statistical properties of the Ly↵ forest as well.

To summarize, the general conclusion of my thesis is that the Ly↵ absorption line is

destined to become a major tool to constrain both the large-scale structure of the Uni-

verse and galaxy formation. The reason is the exquisite precision of data given by

recent surveys like BOSS, together with the quality of current state-of-the-art cosmo-

logical simulations, such as Illustris. Thanks to the work presented in this thesis, it is

now possible to obtain accurate predictions of the statistics of the Ly↵ forest at large

scales with N-body simulations, with simpler semi-analytic techniques than in the past.

Furthermore, I provided a new fundamental test to validate hydrodynamic cosmological

simulations, comparing them with Ly↵ absorption data in the IGM and the CGM. Such

test should become standard practice for future numerical works, making it possible to

provide valuable constraints for cosmology, large-scale structure and galaxy formation.

The increasingly high precision of current and upcoming observations demands a contin-

uous improvement of theoretical modeling, in terms of accuracy, e�ciency and versatility.

This thesis represents an e↵ort in this respect, and sets the stage for a more compre-

hensive and accurate comparison of theoretical models with observations of large-scale

structure and Ly↵ absorption in the near future.



	



Appendix A

Optimal Smoothing Length for Velocity

The baryon density field can be mocked through a Gaussian smoothing of the DM density

field. Also the velocity field of DM should be smoothed accordingly to reproduce the

velocity field of baryons. In principle, there might be two di↵erent optimal values of �
G

for density and velocity, so one should vary �
G

for both quantities and explore all possible

combinations within the dynamic range considered. However, this extensive study can

be quite time consuming and is probably not the most e�cient way to proceed. In all

techniques tested, we shall vary �
G

for the density, keeping it fixed for the velocity. We

determine the optimal fixed smoothing length for the velocity field as follows. We apply

the FGPA (equations (2.6) and(2.1)) using the baryon density fluctuations given by our

reference hydrodynamic simulation, but smoothing the DM velocity field from the same

simulation at di↵erent values of �
G

. We then choose the smoothing length best matching

the flux 1DPS, PDF and 3DPS given by the hydrodynamic simulation.

The outcome of our analysis can be seen in Figure A.1. In the left panel, we plot the

accuracy in reproducing the 1DPS of the hydrodynamic simulation, versus the smooth-

ing length. The right panel displays the analogous plot for the PDF. We notice that

the smoothing of the velocities has a strong impact on the 1DPS, the optimal value

being 171 ckpc, for which the mean accuracy is ⇠1%. The PDF is less sensitive to the

smoothing length for �
G

& 285 ckpc.

In Figure A.2 we show the results for the 3DPS. We see that the impact of the smoothing

length is more important for larger µ, whereas �
G

. 228 ckpc yield a better accuracy

with respect to �
G

& 228ckpc. Given the di↵erent trends of the 1DPS, 3DPS and

PDF accuracy, there is no unique optimal value of �
G

to maximize the accuracy in all

statistics, so we have to make a compromise. We chose �
G

= 228 ckpc/h, for which the

accuracy of both PS and PDF is ⇠2% and the accuracy of the 3DPS is between 3% and

5%, depending on the µ-bin considered. We kept this value fixed in all our work.

Our choice of optimizing the smoothing length of the velocity allows us to focus our

analysis on the impact of the smoothing length of the density field on the accuracy of

our methods (see section 2.4.2 for details). As a consequence, the errors quoted for the

techniques considered are minimized. Indeed, when we show the error for �
G

< 228 ckpc
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Figure A.1: Left panel shows the relative error between the dimensionless line-of-sight
power spectrum of the flux given by the reference hydrodynamic simulation and of the
flux computed by applying a 1-to-1 temperature-density relationship to the baryon
density field and using the Gaussian-smoothed line-of-sight velocities of dark matter
instead of baryons, as a function of di↵erent smoothing lengths of the DM velocity
field. Squares mark the mean values of the accuracy, while error bars represent the
root-mean-square of the accuracy in the dynamic ranges considered. The plot in the
right panel is analogous, but it refers to the accuracy in reproducing the PDF of the
flux in redshift space.

in the density field we are still smoothing the velocity at 228 ckpc. We recall that

the smoothing length has to be at least as large as the inter-particle separation of the

simulation adopted. If such separation is 228 ckpc, one can smooth the velocity field at

this value and still adopted a larger �
G

for the DM density. Conversely, if the inter-

particle separation is smaller than 228 ckpc, one can smooth the DM density choosing

�
G

to be equal to such separation. One can still smooth the velocity field at 228 ckpc,

without losing much information. Indeed, the velocity field in voids (which are the most

important regions in terms of the flux statistics due to the exponentiation of equation

(2.7)) is very smooth for very di↵erent cosmological models (Aragon-Calvo & Szalay,

2013, van de Weygaert & van Kampen, 1993). As such, there is no conspicuous small-

scale structure in the velocity field (see also Figure 2.2), which is thus less a↵ected by

the smoothing than the DM density field. So, it is sensible to consider a fixed smoothing

length for the velocity field but varying it for the DM density.

To get a sense of the accuracy obtained with a certain method adopting a di↵erent

smoothing length for the velocity field, one can sum in quadrature of the errors reported

in Figure 2.9 and 2.10 with the errors shown in the corresponding plots in this section,

i.e. Figure A.1 and A.2. Doing so, the mean accuracy of our methods would decrease,

but the trend of the accuracy versus the smoothing length would be una↵ected. In

particular, except for the bin along the line-of-sight of the 3DPS, GS+FGPA would still

look worse than our methods.
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Figure A.2: Relative error between the dimensionless 3D power spectrum �2(k, µ)
of the flux given by the reference hydrodynamic simulation and of the flux computed
by applying a 1-to-1 temperature-density relationship to the baryon density field and
using the Gaussian-smoothed line-of-sight velocities of dark matter instead of baryons,
as a function of di↵erent smoothing lengths of the DM velocity field. Squares mark
the mean values of the accuracy, while error bars represent the root-mean-square of the
accuracy in the dynamic ranges considered. Each panel refers to a di↵erent µ-bin.



Appendix B

Calibration of Halo Masses

In this work we are interested in studying the physics of the CGM around QSOs, LBGs

and DLAs. Such objects reside in halos with di↵erent mass. So, we can simply select

halos above a certain mass threshold Mmin, which depends on the nature of the fore-

ground object considered. In principle, the halo masses in Nyx and Illustris may not

be calibrated in the same way, so we cannot assume the same mass threshold for both

simulations.

When creating mock samples of foreground QSOs, we determine Mmin for Illustris and

Nyx such that the resulting sample of halos reproduces the 3D two-point correlation

function of quasar-hosting halos measured by White et al. (2012).

For each simulation, we select all halos such that Mhalo > Mth, where Mhalo is the halo

mass as reported in the halo catalog of that simulation and Mth is an arbitrary threshold,

which is fixed in the first place. We then compute the 3D two-point correlation function

of the halos into 20 equally extended logarithmic bins of distance. We compare the

correlation function with the measurements by White et al. (2012) and calculate the �2.

We repeat the steps just described increasing Mth by 0.1 dex, until there is no halo with

mass larger than Mth. At this point, we are left with a family of correlation functions

depending on Mth, and look for the value of the Mth minimizing the �2. This value is

the minimum mass Mmin that we need to set when we select halos from that simulation,

such that their 3D correlation function will be as close as possible to the one observed

by White et al. (2012). In other words, we assume a step function halo occupation

distribution, i.e. the number of QSOs per halo is zero below Mmin and unity above such

threshold.

The top panels of Figure B.1 illustrate the procedure for the calibration of Mmin for

quasar hosts. In the top-left panel, the correlation function given by all Nyx halos with

M > Mth from the snapshot at redshift z = 2.4 is represented by circles, color-coded

according to the corresponding value of Mth. The black dotted line is the analytic fit

to the measurements by White et al. (2012), and the black solid line the correlation

function computed from the Nyx halos, corresponding to the value of Mth minimizing

the �2. The top-right panel shows exactly the same quantities for the snapshot at
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z = 2.44 of the Illustris simulation. We obtained Mmin = 1012.5 M� for Nyx and

Mmin = 1012.4 M� for Illustris, in agreement with the observations by Prochaska et al.

(2013). The samples of halos selected according to these thresholds have been utilized to

reproduce the measurements by Font-Ribera et al. (2013) and Prochaska et al. (2013).

To simulate a sample of foreground LBGs, we apply the same procedure described for

the QSOs. Instead of using observations of QSO clustering, we determine the Mmin that

gives the best match with the observations of the 3D two-point correlation function of

LBGs in the redshift range 2 < z < 4, by Bielby et al. (2011).

The middle panels of Figure B.1 are analogous to the top panels, except that the black

dotted lines now represent the analytic fit to the measurements by Bielby et al. (2011).

We obtained Mmin = 1011.6 M� for the z = 2.44 Illustris snapshot and Mmin = 1011.7 M�

for the z = 2.4 Nyx snapshot. These values of Mmin will be used to select the halos for

the comparison of the simulations with the observations by Turner et al. (2014), who

considered a sample of LBGs with z = 2.4 as median redshift.

We shall also compare the simulations with the data by Adelberger et al. (2003), Adel-

berger et al. (2005a) and Crighton et al. (2011), who measured the radial mean flux

profile around LBGs at redshifts z ⇡ 3, z ⇡ 2.5 and z ⇡ 3, respectively. Despite not be-

ing centered at the same redshift, the mean flux profiles measured by such observations

are all normalized to z = 3. Therefore, to compare them with the simulations, we con-

sider the Nyx snapshot at z = 3 and the Illustris snapshot z = 3.01. We determined the

value of Mmin for such snapshots, obtaining 1011.5 M� in both cases. The corresponding

best fits to the correlation function measured by Bielby et al. (2011) are reported in the

bottom panels of Figure B.1.

We notice that the values of Mmin inferred for our simulated LBG samples are consistent

with the typical mass of LBG-hosting halos, ⇠ 1012 M�, deduced by various authors

(Adelberger et al., 2005b, Conroy et al., 2008, Rakic et al., 2013, Trainor & Steidel,

2012, Turner et al., 2014) for the KBSS survey. As discussed in § 3.2.2, we used the same

halos selected for the foreground LBGs, and assumed that the DLAs lie at the center

of the halos. The values of Mmin obtained for the LBGs are also of the same order of

the characteristic mass of DLAs estimated by Font-Ribera et al. 2012b (1012 M�) from

BOSS quasar spectra.
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Figure B.1: Top panels: Correlation function of halos in Nyx (left panel) and Illustris
(right panel), at redshift z = 2.4 and z = 2.44, respectively. Dots of the same color
represent the correlation function of halos with mass larger than the one corresponding
to that color. The black dotted line is the analytic fit to the correlation function of
quasars measured by White et al. (2012). The black solid line is the correlation function
of halos above the mass threshold that best fits those observations (see text for details).
Middle panels: As top panels, except that the black dotted line is the analytic fit to the
correlation function of galaxies measured by Bielby et al. (2011), and the black solid
line is the correlation function of halos above the mass threshold that best fits these
observations (see text for details). Bottom panels: As middle panels, except that the
correlation function of halos refers to the Nyx and Illustris snapshots at redshift z = 3
and z = 3.01, respectively (see text for details).
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Generating Mock Spectra from a Moving-Mesh Code

We simulate the absorption spectra extracting skewers on a regular grid. Since in Nyx a

gas element is a cell of a Cartesian grid, the cell size of the skewers is simply given by the

cell size of the simulation. Instead, Illustris treats gas on a moving mesh, constructed

with a Voronoi tessellation. When we draw skewers form Illustris, we bin the gas cells

into a regular grid. For this purpose, we treated each gas element as an SPH particle

(following Bird et al., 2014). The smoothing length of the SPH kernel for a certain gas

cell is chosen to be the maximum radius of all Delaunay tetrahedra with that cell at a

vertex (see Springel, 2010a, for more details). We construct in this way the gas density,

temperature and 3D velocity fields.

We need to choose the cell size of our grid so that we can have reliable predictions of

the mean Ly↵ absorption around galaxies, which is the main goal of the paper. If the

grid is too coarse, we may not be able to resolve the small-scale density and temperature

fluctuations of the CGM. For example, if the cell size is as big as the typical virial radius,

the CGM would be represented as a uniform gas cell with the average temperature and

density of the CGM.

We choose a cell size equal to the mean separation of the gas cells in Illustris (58.5 ckpc),

corresponding to a 18203 grid. We verified that, with a 35503 grid, corresponding to a

cell size of 30 ckpc, the predicted mean Ly↵ flux fluctuations within the virial radius of

QSOs and DLAs (see § 3.3) change only by 1.5%. Outside the virial radius, the di↵erence

with respect to the predictions obtained on a 18203 grid is even smaller. Since using

the finest grid does not change the main results of our work, we show all predictions

given by Illustris utilizing the 18203 grid. Regarding Nyx, the run that we are using has

already the finest currently available grid.
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From Cross-Correlation to Mean Flux Profile

The cross cross-correlation of the Ly↵ forest with DLAs (QSOs), measured by Font-

Ribera et al. 2012b (Font-Ribera et al., 2013), is equivalent to the stacked mean Ly↵

flux profile around DLAs (QSOs), measured by Rubin et al. 2015 (Prochaska et al.,

2013). As such, we can simply integrate the cross-correlation measurements within

appropriate velocity windows along the line-of-sight, to translate such measurements

into �
F

profiles. In this section, we explain the details of the conversion done for Font-

Ribera et al. (2012b) DLA-Ly↵ cross-correlation measurements. Anyway, the formalism

is exactly the same also as far as the Font-Ribera et al. (2013) QSO-Ly↵ cross-correlation

observations are concerned.

Font-Ribera et al. (2012b) selected a sample of 52449 QSO spectra in the redshift range

2.1 < z < 3.5, from the BOSS Data Release 9. In addition, they considered a sample

of 10512 foreground DLAs along the line of sights of the QSO sample, taken from the

catalogue by Noterdaeme et al. (2012). Hereafter, we summarize how they estimated

the cross-correlation between the DLAs and the Ly↵ absorption in the observed QSO

spectra.

Font-Ribera et al. (2012b) measured the Ly↵ flux fluctuation at every pixel in each QSO

spectrum. For the pixel i, it is defined as

�̃
Fi =

f
i

C
i

F̄ (z
i

)
� 1 , (D.1)

where f
i

is the measured flux, C
i

is the QSO continuum, and F (z
i

) is the mean trans-

mitted flux obtained in the redshift bin containing the pixel redshift z
i

. For each DLA,

the pixels of all spectra are divided into bins of transverse and line-of-sight separation

from the DLA (b and x, respectively). The estimator of the cross-correlation in the bin

(b, x) is defined as

⇠̂
b, x

=

P
N

n=1

P
k2(bn, xn) w

nk

�̃
FnkP

N

n=1

P
k2(bn, xn) w

nk

. (D.2)

The index n identifies the DLA, and N is the total number of DLAs. The index k

identifies the pixels within the distance bin (b
n

, x
n

) from the DLA n. The weights w
nk
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are defined as

w
nk

=


�2

F

(z
nk

) +
hN2

nk

i

C2
nk

F̄ 2
e

(z
nk

)

��1

. (D.3)

In the equation above, �2
F

(z
nk

) and F̄ 2
e

(z
nk

) are the intrinsic variance of the Ly↵ forest

flux fluctuations and the mean flux in the Ly↵ forest at the pixel redshift z
nk

, respec-

tively. For the former, Font-Ribera et al. (2012b) adopt an analytic expression based

on the redshift evolution of the power spectrum measured in McDonald et al. (2006),

while for the latter the observations by Faucher-Giguère et al. (2008b). Finally, the term

hN2
nk

i is the noise at pixel nk, approximated as a Gaussian variance.

In Font-Ribera et al. (2012b), the b-bins are delimited by (1, 4, 7, 10, 15, 20, 30, 40, 60)

h�1 cMpc, while the x-bins are bounded by (60, 40, 30, 20, 15, 10, 6, 3, 0) h�1 cMpc

and the same positive values. We are interested in writing the expression of the cross-

correlation ⇠̂
b, �v

for a transverse distance bin b and a velocity window �v, centered

around the DLAs. If the velocity window contains M line-of-sight distance bins as

chosen by Font-Ribera et al. (2012b), equation (D.2) can be re-written as

⇠̂
b, �v

=

P
N

n=1

P
M

m=1

P
k2(bn, xmn) w

nk

�̃
FnkP

N

n=1

P
M

m=1

P
k2(bn, xmn) w

nk

=

P
M

m=1 ⇠̂
b, xm

P
N

n=1

P
k2(bn, xmn) w

nk

P
N

n=1

P
M

m=1

P
k2(bn, xmn) w

nk

.

(D.4)

To compute ⇠̂
b, �v

, one would need to have access to all spectra, in order to properly

compute the weight function at each pixel. Since we do not have access to such data, we

assume that the weight function is a constant. Physically, this is equivalent to assuming

that the noise term in (D.3) is the same for all pixels and that the intrinsic variance of

the Ly↵ forest is approximately constant in the redshift range considered. Within such

approximation, we can write

⇠̂
b, �v

⇡

1

M

MX

m=1

K
m

⇠̂
b, xm , (D.5)

where K
m

is the number of pixels in each bin (b
n

, x
mn

). On the other hand, within the

same approximation that led to (D.4), (D.2) becomes:

⇠̂
b, �v

⇡ ��
F

(b, �v) , (D.6)

where �
F

(b, �v) is the mean Ly↵ flux fluctuation at impact parameter b within a velocity

window �v around a foreground DLA - see the definition in (3.2). Therefore, comparing

(D.5) with (D.6), we obtain

�
F

(b, �v) ⇡ �⇠̂
b, �v

⇡ �

1

M

MX

m=1

K
m

⇠̂
b, xm , (D.7)

within the aforementioned assumption that the weights in (D.2) are constant.
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We used (D.7) to convert Font-Ribera et al. (2012b) observations into Rubin et al.

(2015) measurements. The velocity window is �v = 1000 km s�1 (i.e. ±500 km s�1

around the foreground object), which corresponds to ⇠ 10 h�1 cMpc assuming the same

cosmology as Font-Ribera et al. (2012b). The results of our analysis are listed in Table

D.1, where we determined the errors propagating the errors in Font-Ribera et al. (2012b)

measurements. As a caveat, we point out that our estimate (D.7) would be exact if Font-

Ribera et al. (2012b) data were re-analyzed computing the weights defined in (D.3) pixel

by pixel.

The comparison between Prochaska et al. (2013) and Font-Ribera et al. (2013) can be

done following the same argument explained in this appendix, using a velocity window

of 2000 km s�1. In this case, the line-of-sight bins chosen by Font-Ribera et al. (2013) do

not cover exactly the desired velocity window, so we linearly interpolate between their

data points in order to integrate them within Prochaska et al. (2013) velocity window.

The results are tabulated in table D.2. It is the first time that large-scale measurements

of the Ly↵ cross-correlation function (Font-Ribera et al., 2013, 2012b) are used together

with observations of Ly↵ absorption in the CGM (Prochaska et al., 2013, Rubin et al.,

2015) to jointly constrain the physics of the IGM and the CGM.
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bmin
a bmax

b �
F

c

(h�1 cMpc) (h�1 cMpc)
1 4 0.082 ± 0.012
4 7 0.0509 ± 0.0080
7 10 0.0521 ± 0.0070

10 15 0.0271 ± 0.0045
15 20 0.0183 ± 0.0038
20 30 0.0104 ± 0.0023
30 40 0.0056 ± 0.0019
40 60 0.0027 ± 0.0012

a Inner edge of the impact parameter bin.
b Outer edge of the impact parameter bin.
c Mean Ly↵ flux fluctuation.

Table D.1: Ly↵ absorption at large impact parameter from DLAs, inferred from
Font-Ribera et al. (2012b)

bmin
a bmax

b �
F

c

(h�1 cMpc) (h�1 cMpc)
1 4 0.0669 ± 0.0030
4 7 0.0509 ± 0.0020
7 10 0.0378 ± 0.0017

10 15 0.0259 ± 0.0011
15 10 0.01945 ± 0.00091
20 30 0.01051 ± 0.00055
30 40 0.00406 ± 0.00047
40 60 0.00269 ± 0.00030

a Inner edge of the impact parameter bin.
b Outer edge of the impact parameter bin.
c Mean Ly↵ flux fluctuation.

Table D.2: Ly↵ absorption at large impact parameter from QSOs, inferred from
Font-Ribera et al. (2013)
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Mean Flux Fluctuations at Small Separations from DLAs

Rubin et al. (2015) stacked the absorption spectra of background QSOs passing at di↵er-

ent transverse separation from foreground DLAs in four bins of impact parameter. After

re-normalizing the spectra to the pseudo-continuum measured in the velocity intervals

(�4000, �3500) km s�1 and (3500, 4000), km s�1, they determined the equivalent width

of the Ly↵ absorption WLy↵

in the velocity window �v = 1000 km s�1 around the DLAs.

From the definition of equivalent width (Draine, 2011), the mean Ly↵ flux hF i centered

on the DLA can be inferred as

hF i = F0

✓
1 �

c WLy↵

�v �Ly↵

◆
, (E.1)

where c is the speed of light in vacuum, �Ly↵

the rest-frame wavelength of the Ly↵

transition, and F0 the pseudo-continuum. Since the pseudo-continuum measured by

Rubin et al. (2015) is meant to represent the mean flux of the IGM at the redshift of

their observations, we can infer the mean Ly↵ flux fluctuations simply as

�
F

=
c WLy↵

�v �Ly↵

. (E.2)

The results are listed in Table E.1.

bmin
a bmax

b �
F

c

(kpc) (kpc)
0 50 0.436 ± 0.092

50 100 0.345 ± 0.082
100 200 0.269 ± 0.010
200 300 0.037 ± 0.057

a Inner edge of the impact
parameter bin.

b Outer edge of the impact
parameter bin.

c Mean Ly↵ flux fluctuation.

Table E.1: Ly↵ absorption around DLAs obtained from Rubin et al. (2015)
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Outflows in the CGM

In § 3.4.1 we focused on the impact of density and temperature of the gas on Ly↵

absorption. Nonetheless, the Ly↵ optical depth depends also on the peculiar velocity

of the gas. In fact, the smoothness of the velocity field can have a significant impact

on the statistics of the Ly↵ absorption lines (Sorini et al., 2016). Moreover, various

hydrodynamic simulations (including Illustris) underpredict the line width distribution

of the Ly↵ forest (Viel et al., 2017) or the line width - HI column density relationship

(Gaikwad et al., 2017) obtained from HST-COS QSO absorption spectra. The agree-

ment with data of the latter statistics can be improved adding a turbulent broadening

contribution to the line width in the simulations (Gaikwad et al. 2017; see also Oppen-

heimer & Davé 2009 and Viel et al. 2017). This term is not a thermal broadening, but

velocity broadening coming from motions not captured by the simulations.

In this section, we focus on the connection between the radial component of the velocity

of the gas around galaxies and Ly↵ absorption in the CGM. Following what we did in

§ 3.4.1, we investigate the radial velocity - hydrogen density relationship of the gas in the

CGM in Nyx and Illustris. In Figure F.1 we plot this relationship around M & 1012.5 M�

(M & 1012.4 M�) halos from Nyx (Illustris), within the same radial bins as in § 3.4.1.

In Figure F.2 we show an analogous plot for the M & 1011.7 M� (M & 1011.6 M�) halos

from Nyx (Illustris).

Figure F.1 shows that, at any given radial bin, the shape of the radial velocity - hydrogen

density relationship is qualitatively similar in Nyx and Illustris. However, the gas in

Illustris presents an overall o↵set of ⇠ +50 km s�1 in the radial velocity with respect to

Nyx. Furthermore, in the innermost bin, Nyx presents a larger spread in radial velocity:

the radial velocity of the most rapidly inflowing gas in Nyx is ⇠ �200 km s�1, while in

Illustris we do not find gas inflowing faster than 150 km s�1. In the interval (rvir, 2rvir),

the majority of the gas in Nyx lies in the radial velocity range (�200, �100). On the

contrary, there is a larger amount of gas with positive radial velocity (i.e. outflowing) in

Illustris. Finally, in the bin (2rvir, 3rvir), Illustris presents a plume toward more positive

velocities, corresponding to gas with radial velocity & �50 km s�1 and density in the
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range (10�5.5, 10�4.5) cm�3. Such feature is absent in Nyx, instead. For r > 3rvir, Nyx

and Illustris present very similar radial velocity - density diagrams.

In Figure F.2, the radial velocity - hydrogen density relationships in Nyx and Illustris

look qualitatively even more similar than in Figure F.1. The most di↵erent bin is the

innermost one, where Nyx presents a larger spread in the diagram. In all radial bins,

the gas in Illustris appears to have an overall o↵set of ⇠ +20 km s�1 with respect to the

gas in Nyx. In the bin (2rvir, 3rvir), Illustris presents an excess of ouflowing gas in the

density range (10�5.5, 10�4.5) cm�3 with respect to Nyx.

Analyzing the radial velocity - density relationships of hydrogen in the CGM in the two

simulations, we can conclude that, in general, Illustris presents more outflowing gas than

Nyx. However, the velocity o↵sets are small compared to the velocity window within

which �
F

is computed (1000 km s�1 and 2000 km s�1 for DLAs and LBGs, respectively;

340 km s�1 for Turner et al. 2014 measurements). For this reason, and considering that

the radial velocity - density relationships in the two simulations look much more alike

than the respective temperature - density relationships, we think that the higher CGM

temperature in Illustris has a greater impact on the Ly↵ absorption profiles than the

larger amount of outflowing gas.
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Convergence of Power Spectra

As explained in § 4.4, we computed all power spectra after binning the density and

momenta of the particles in the Millennium Run onto a regular Cartesian grid. In

this section, we evaluate the impact of the cell size of such grid on the resulting power

spectrum.

In the left panel of Figure G.1 we show the power spectrum of density fluctuations

computed from a regular Cartesian grid with 30003, 21603, 10803, 5403 and 2703 cells

(solid black, red, green, blue and purple lines, respectively). The shaded areas represent

the scatter due to cosmic variance. The power spectra agree at small k, but present

different cutoff scales at large k. This is because finer grids present a larger Nyquist

mode. In the right panel of Figure G.1, with the same color coding as the left panel, we

show the relative difference of each power spectrum with respect to the one computed

from the finest grid. The shaded areas represent the uncertainty on the relative difference

obtained propagating the errors due to cosmic variance. We notice that, for the grid

with 21603 cells, the results are converged up to k ∼ 3h cMpc−1 within ∼ 5%. Such

Figure G.1: Power spectrum of the curl of momentum overdensity at redshift z = 0,
predicted by KFT (solid black line) and by the Millennium Run (solid orange line). The
orange shaded area represents the error due to cosmic variance in the Millennium Run.
The vertical dotted orange line marks the Nyquist mode in the grid used to compute
the power spectra in the Millennium Run (see text for details).
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agreement is consistent with the one obtained by Schneider et al. (2016) in an analogous

test with the Pkdgrav3 N-body code (Stadel, 2001).

In Figure G.2, from top to bottom, we show analogous plots for the power spectra of

the kinetic energy density fluctuations, and of the divergence and curl of the momentum

density fluctuations, respectively. We use the same color coding as in Figure G.1. We

find out that the results from the grid with 21603 converge to the predictions of the grid

with 30003 cells within 5% up to 3 h cMpc�1 for all power spectra. Thus, the tests done

in this section ensure that our preliminary results, obtained from the grid with 21603

cells and presented in chapter 4, are robust.
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Figure G.2: From top to bottom, power spectra of the kinetic energy density fluctua-
tions, of the divergence and of the curl of momentum density fluctuations, respectively,
obtained from the snapshot at redshift z = 0 of the Millennium Run, after CIC-binning
the dark matter particles onto a regular Cartesian grid with 30003, 21603, 10803, 5403

and 2703 cells (solid black, red, green, blue and purple lines, respectively). The power
spectra computed from 21603, used to obtain the results presented in Chapter 4, are
converged within 5% up to k ∼ 3h cMpc−1.
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Malanushenko, V., Miralda-Escudé, J., Myers, A. D., Oravetz, D., Pan, K., Pieri,
M. M., Ross, N. P., Schneider, D. P., Simmons, A., & York, D. G. 2012, A&A, 547,
L1



Bibliography 150

Oñorbe, J., Garrison-Kimmel, S., Maller, A. H., Bullock, J. S., Rocha, M., & Hahn, O.
2014, MNRAS, 437, 1894

Occhionero, F., Achilli, S., Scaramella, R., & Vittorio, N. 1984, in BAAS, Vol. 16,
Bulletin of the American Astronomical Society, 487

Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Franx, M., Ammons, S. M., van
Dokkum, P. G., Trenti, M., & Labbé, I. 2015, ApJ, 808, 104
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R. H., Munn, J. A., Nichol, R. C., Ostriker, J. P., Schlegel, D. J., Schneider, D. P.,
Tegmark, M., Berk, D. E., Weinberg, D. H., & York, D. G. 2005, Phys. Rev. D, 71,
103515



Bibliography 153

Seljak, U., & Zaldarriaga, M. 1996, ApJ, 469, 437

Shapiro, P. R., Giroux, M. L., & Babul, A. 1994, ApJ, 427, 25

Shen, S., Madau, P., Guedes, J., Mayer, L., Prochaska, J. X., & Wadsley, J. 2013, ApJ,
765, 89

Shen, S., Mo, H. J., White, S. D. M., Blanton, M. R., Kau↵mann, G., Voges, W.,
Brinkmann, J., & Csabai, I. 2003, MNRAS, 343, 978

Shull, J. M., France, K., Danforth, C. W., Smith, B., & Tumlinson, J. 2010, ApJ, 722,
1312

Sijacki, D., Springel, V., Di Matteo, T., & Hernquist, L. 2007, MNRAS, 380, 877

Sijacki, D., Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Snyder, G. F., Nelson,
D., & Hernquist, L. 2015, MNRAS, 452, 575

Silk, J., & Rees, M. J. 1998, A&A, 331, L1

Simcoe, R. A., Sargent, W. L. W., Rauch, M., & Becker, G. 2006, ApJ, 637, 648

Skillman, S. W., Warren, M. S., Turk, M. J., Wechsler, R. H., Holz, D. E., & Sutter,
P. M. 2014, ArXiv e-prints

Skrutskie, M. F., Cutri, R. M., Stiening, R., Weinberg, M. D., Schneider, S., Carpenter,
J. M., Beichman, C., Capps, R., Chester, T., Elias, J., Huchra, J., Liebert, J., Lons-
dale, C., Monet, D. G., Price, S., Seitzer, P., Jarrett, T., Kirkpatrick, J. D., Gizis,
J. E., Howard, E., Evans, T., Fowler, J., Fullmer, L., Hurt, R., Light, R., Kopan,
E. L., Marsh, K. A., McCallon, H. L., Tam, R., Van Dyk, S., & Wheelock, S. 2006,
AJ, 131, 1163

Slosar, A., Font-Ribera, A., Pieri, M. M., Rich, J., Le Go↵, J.-M., Aubourg, É.,
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Delabrouille, N., Pâris, I., Petitjean, P., Pǐskur, Y., Rollinde, E., Ross, N. P., Schlegel,
D. J., Schneider, D. P., Sheldon, E., Weaver, B. A., Weinberg, D. H., Yeche, C., &
York, D. G. 2011, JCAP, 9, 001

Slosar, A., Ho, S., White, M., & Louis, T. 2009, JCAP, 10, 19

Smith, R. E., Peacock, J. A., Jenkins, A., White, S. D. M., Frenk, C. S., Pearce, F. R.,
Thomas, P. A., Efstathiou, G., & Couchman, H. M. P. 2003, MNRAS, 341, 1311

Somerville, R. S., & Davé, R. 2015, ARA&A, 53, 51
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