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ABBREVIATIONS  

AHR Aryl hydrocarbon receptor 

AHRE (XRE, DRE) Aromatic hydrocarbon response element 

AHRR  Aryl hydrocarbon receptor repressor 

ALDH3A1 Aldehyde dehydrogenase 3 family member a1 

ANOVA Analysis of variance 

ARNT  Aryl hydrocarbon receptor nuclear translocator 

BL Bright Light 

bHLH  Basic helix-loop-helix 

BrdU Bromdeoxyuridine 

Cdc37 Cell division cycle 37 control protein 

CDKN1B (Kip1) Cyclin-dependent kinase inhibitor 1B 

CICZ  Indolo[3,2-b]carbazole-6-carboxylic acid 

CLS Cell Line Service 

CYP Cytochrome P450 

FACS Fluorescence activated cell sorting 

dFICZ  6,12-diformylindolo[3,2- b]carbazole 

DMEM Dulbecco's Modified Eagle Medium 

DMSO Dimethylsulfoxid 

E Efficiency  

EDTA Ethylenediaminetetraacetic acid 

EGFR (ERBB) Epidermal growth factor receptor 

ELISA Enzyme-linked Immunosorbent Assay 

EPRE (ARE) Electrophile response element 

ER Endoplasmatic Reticulum 

FACS Fluorescent-Activated Cell Sorting 

FAD Flavin Adenine Dinucleotide 

FBS Fetal Bovine Serum 

FDR False Discovery Rate 

FICZ  6-formylindolo[3,2-b]carbazole 

GOBP Gene Ontology Biological Processes 

GSEA Gene Set Enrichment Analysis 
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GSTA1 Glutathione S-transferase 1 

HAAs  Heterocyclic aromatic amines/amides 

HaCaT Immortalized Human Keratinocytes 

IKKβ  Inhibitor of kappa light polypeptide gene enhancer in  

 B-cells kinase beta 

IR Infrared 

Keap1 Kelch-like ECH-associated protein 1 

KEGG Kyoto Encyclopedia of Genes and Genomes 

LLLT Low Level Laser (Light) Therapy 

NER Named entity recognition 

NES Normalized Enrichment Score 

NF-κB  Nuclear factor of kappa light polypeptide gene  

 enhancer in B-cells 1 

NQO1 NAD(P)H quinone oxidoreductase 1 

Nrf2 (NFE2L2) Nuclear factor erythroid 2 like 2 

PAHs  Polycyclic aromatic hydrocarbons 

PBM Photobiomodulation 

PBS Phosphate Buffered Saline 

PCR Polymerase Chain Reaction 

q Real time 

R² Goodness-of-fit of linear regression 

RB1 Retinoblastoma 1 

ROM  Reactive oxygenated metabolite 

ROS Reactive Oxygen Species 

RT Reverse Transcriptase 

TCDD  2,3,7,8-Tetrachlordibenzodioxin 

TM Textmining 

TNF-ɑ Tumor necrosis factor alpha  

TRADD  (TNF-ɑ receptor-associated protein 

UGT1A  UDP glucuronosyltransferase 1 family, polypeptide A 

UV Ultraviolet 

VL Visible Light 

XMEs  Xenobiotic-metabolizing enzymes 
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XTT Sodium 3´-[1-(phenylaminocarbonyl)-3,4-tetrazolium]

 bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate 

7-AAD 7-aminoactinomycinD 
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1 INTRODUCTION 

1.1 Text mining 

Scientific publications are the main media through which researchers gain knowledge 

and report their new findings. One of the most important systems that provides 

access to the biomedical literature is PubMed, which gives access to more than 26 

million scientific literature citations from MEDLINE, life science journals and online 

books 1, 2. Nowadays, the large and growing number of published studies in 

biomedicine, and their increasing rate of publication, provides an immense volume of 

information. However, it makes the task of identifying relevant studies in an unbiased 

way both time consuming and complex 1, 3, 4. Consequently, researchers turn more 

and more to the use of text mining (TM), which comes with solutions for this problem 

offering automated methods to screen and extract compressed information 

concealed within vast numbers of publications and thereby increasing speed, quality 

and reproducibility of text processing 3, 5. Marti Hearst provided a widely accepted 

definition of TM, which is ‘‘the discovery by computer of new, previously unknown 

information, by automatically extracting and relating information from different written 

resources, to reveal otherwise ‘hidden’ meanings’’ 6. TM analysis typically involves a 

number of distinct steps combining techniques from information retrieval, artificial 

intelligence, natural language processing (NLP) and data mining to apprehend the 

complex analytical processing system of written language 7, 8.  

 

Fleuren and Alkema provided a comprehensive summary of the different steps for 

TM analysis (Figure 1) 8.  

 

The first step is called information retrieval (IR) where relevant textual resources like 

literature or text segments are retrieved in response to query terms 4, 8, 9. This first 

step serves to preprocess the narrative text in order to classify the publications and 

consequently reduce the search time 4.  
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Figure 1: Overview of a typical TM workflow from Fleuren and Alkema: “A typical TM workflow starts with 
information retrieval (IR) to get relevant documents for a given subject of interest.  Using named entity recognition 

(NER) these documents will be analyzed for the occurrence of specific keywords. Information extraction (IE) is 
about detecting links between the found keywords and can be done in a number of ways. During knowledge 

discovery (KD) links between keywords can be used to infer new relations, so called hidden relations that can be 
seen as ‘true’ new knowledge.” 8 

As a second step, the selected publications can be examined using search 

algorithms where the results of the query are analyzed to enhance the process of IR 

and the recovered publications are classified according to their content and/or key-

word matching 4. Key-word matching is the analysis of occurrence of specific key-

words in the publications and identification of relations between those keywords. To 

ease the identification of important parts of a publication sentence extraction can be 

performed, which depicts only those parts of the publication in which specific 

keywords occur 8. Named entity recognition (NER) plays an essential part herein, 

with the keyword or a set of keywords being the named entity. These entities have to 

be linked to the specific concept of the publication, which can be defined as biological 

entity and can be referred to by multiple keywords 8.  

As a next step, after performing IR and NER, the links between concepts in the text 

can be detected by using specialized algorithms. Additional context is given to the 

concepts by linking concepts together resulting in valuable knowledge which can be 
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used for further analysis. As scholarly publications are primarily written in text, natural 

language processing (NLP) is one of the most used approaches to extract this 

knowledge and can facilitate research productivity. It is able to extract key information 

from free text and converts it into structured knowledge 7-9. 

The important last step in TM is the representation and visualization of results to 

simplify and clarify the complex network interaction of the selected publications and 

comprises many different possibilities like for example galaxy plots, landscapes and 

heat-maps. Graphs should demonstrate the correlations between different articles as 

well as cluster them to similar keywords.  

 

In summary TM is a profitable method to select scientific articles according to related 

keywords thereby enabling a kind of pre-reading and simplifying the formulation of 

new hypothesis and initiating follow-up experiments 8, 10.  

 

1.2 The human skin 

The human skin is the largest organ of the body and serves as a protective barrier 

between the internal milieu and the environment thereby functioning as the body’s 

first line of defense against infection and regulating temperature and fluid balance 11. 

Furthermore, its complex cellular network constitutes an immunological barrier 12, 13. 

The skin is organized in three primary layers, the epidermis, the dermis and the 

hypodermis (Figure 2).  

The dermis comprises the fibroblasts and nerve endings, hair follicles, sweat glands, 

and blood vessels among other structures 11. A basement membrane separates and 

connects epidermis and dermis with anchoring mature, epidermal melanocytes 11. 

The epidermis, which is the outermost skin layer, is made up of a network of 

keratinocytes with interconnected melanocytes and scattered inflammatory cells 11. It 

functions as the physiological barrier and can be divided into five layers: stratum 

corneum, stratum lucidum, stratum granulosum, stratum spinosum and stratum 

germinativum, which is also called stratum basale. The self-renewing property of the 

epidermis is maintained by the accurate regulation of keratinocyte proliferation, 

migration, differentiation, and apoptosis 14, 15. The most essential structural 

constituents of keratinocytes are the intermediate filaments called cytokeratins; they 

play a crucial role in development and barrier function of the skin 16. Proliferation of 
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keratinocytes takes place in the basal layer and is stimulated by various growth 

factors 14, 16.  

 

Figure 2: Physiology of the human skin 17. 

Members of the epidermal growth factor (EGF), fibroblast growth factor (FGF), nerve 

growth factor (NGF), and insulin-like growth factor (IGF) families, as well as 

hepatocyte growth factor (HGF), granulocyte-macrophage colony stimulating factor 

(GM-CSF), and endothelin-1 stimulate keratinocyte growth while transforming growth 

factor-b, vitamin D3, and interferon-ɣ suppress their growth. Next to being regulated 

by growth factors, keratinocytes themselves are a source of various growth factors, 

chemokines and cytokines and play an important role in the skin’s cytokine network 
14.  

Differentiation of keratinocytes occurs during migration from the basal layer towards 

the skin surface. In the following phase called cornification or keratinization, the cells 

progress from rounded cells to a flat form thereby building up the cornified outer layer 

of the skin 16. It comprises cross-linked proteins (cornified cell envelope) and lipids 

(cornified lipid envelope) and is most affected by external stimuli 18.  

Besides structural scaffolding, keratinocytes actively produce substances like 

cytokines, neurotransmitters and hormones 16 when exposed to external stimuli like 

temperature, pressure, pain, and light 19. These are mediators of inflammation and 
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immune responses and are essentially connected to the pathophysiology of skin 

diseases such as psoriasis and atopic dermatitis, and play a crucial role in skin 

wound healing.14, 20 

 

In summary, keratinocytes are not only present in all layers of the epidermis but are 

also the first cells to be in contact when exposed with external stimuli and are 

consequently more amenable to non-invasive treatments such as topical agents and 

photobiomodulation using blue light 21. 

1.2.1 The human skin and light penetration 

The behavior of light irradiation in the human skin respectively its penetration depth is 

an important issue that should be considered when using light as a therapeutic tool. 

Two factors influence the penetration depth of light through or into the skin which are 

optical light scattering and absorption of irradiation. Both vary according to 

wavelength respectively to frequency or energy of light (Figure 3) 22, 23.  

 

Figure 3: Light distribution in the human skin 22. 

Furthermore, the penetration depth is reliant on the thickness of the skin, which is 

based on the number of the different cell layers and can vary depending on the 

location 23. 

 

Blue light, which will be used in this study, is closest to UV in the visible spectrum. It 

penetrates about 0.7mm into the human skin, therefore does not directly affect 

deeper skin layers but mainly effects keratinocytes in the upper skin 23. 
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1.3 Photobiomodulation (PBM) 

Light is connected to various functions of the human body like vitamin-D metabolism, 

circadian rhythm and the psychosocial state and consequently it is important for 

human health. Phototherapy (UV), photodynamic therapy (PDT) and skin 

rejuvenation as well as high power surgical lasers in ophthalmology, dermatology and 

oncology are treatment paradigms which are already used in medicine 24, 25. Low 

level light/laser therapy (LLLT) with non-thermal, low power visible and near-infrared 

light is a less prominent therapeutic application which is used to stimulate wound 

healing, tissue regeneration and hair growth 26-28 or to reduce inflammation and 

alleviate pain 27, 29-32. Blue light in particular is used for different medical treatments 

like psoriasis 33, neonatal jaundice 34 and back pain 35 and it is known to have anti-

microbial 36, anti-inflammatory 37 and anti-proliferative effects 38, 39. Thus, light therapy 

is a convenient, painless and inexpensive therapeutic intervention for different 

treatment paradigms gaining more and more attention 40. However, the protocols for 

light therapy enclose a variety of different parameters which are not comparable 

easily. To introduce a more defined application a new term was introduced called 

photobiomodulation (PBM), which is a form of light therapy using the visible and 

infrared spectrum. It utilizes non-ionizing forms of light, comprising LEDs, lasers and 

broadband light and is non-thermal. The process involves endogenous 

chromophores, which elicit photophysical and photochemical events at various 

biological scales. Beneficial therapeutic outcomes are inter alia alleviation of pain or 

inflammation, immunomodulation, and promotion of wound healing as well as tissue 

regeneration 24. What differs here from the previously used terms is that the 

biomodulation is only induced by the photons, heat stress induced by the light source 

as well as adding substances extracellular, like for PDT, has to be excluded. 

1.3.1 Mechanisms of PBM 

PBM has only an effect in living systems if the photons are absorbed by electronic 

absorption bands belonging to some molecular photoacceptors, or chromophores, 

which is stated by the first law of photobiology 41. These chromophores almost 

always occur in one of two forms: metal complexes and conjugated π-electron 

systems 42 and are comprised in the human skin in a wide variety. They absorb light 

in at least one spectral range of the optical spectrum, like endogenous nucleic acids, 

aromatic amino acids, urocainic acid, tryptophan, tyrosine, NADPH, NADH cofactors, 
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cytochromes, flavins, flavoproteins, porphyrins, melanin and melanin precursors, 

protoporphyrin IX, bilirubin, haemoglobin, myoglobin, β-carotene or water molecules 
23, 42. 

Four possible mechanisms of light action on chromophores were described by Karu 
43. First, photoexcitation which can influence redox properties of carriers in the 

respiratory chain and thereby enhance electron transfer. Second, the partial 

conversion of the energy of excitation into heat, which can thereby lead to a localized 

temporary heating of absorbing chromophores. As a consequence, conformational 

changes may occur and thus biochemical activities may be triggered. Third, H2O2 or 

reactive oxygen species (ROS), which are metabolites of oxygen in the respiratory 

chain, might function as secondary messengers, leading to variation of redox activity 

of mitochondria and/or redox state of the cell, and furthermore to accelerated electron 

transfer. And fourth, photoabsorbing chromophores can directly be converted into 

photosensitizers which can transmit energy to adjacent molecules. Through that 

molecules can be activated and can induce chemical reactions. Moreover, this 

process is oxygen dependent and creates ROS, more precisely singlet oxygen. 

Photoabsorbing chromophores of the respiratory chain include porphyrins and 

flavoproteins, hemes, Fe-S centers, as well as terminal respiratory chain oxidase 

cytochrome C oxidase. Secondary reactions after light absorption are cellular 

signaling pathways, which also include the mitochondrial retrograde signaling 43, 44.  

1.3.2 PBM dosages 

One of the most important parameters to describe PBM is the energy (J) or energy 

density (J/cm2). However, energy is based on the power and on the irradiation time 

(Energy (J) = Power (W) × Time (s)) and these two components have to be 

considered when talking about the dose in PBM as there is not necessarily reciprocity 

between them. Consequently, if the energy is constant but the two parameters are 

changed the biological outcome may be different. Important parameters and their 

correlations are listed in Table 1 and Table 2 from Huang et al. 2009 42. 

Defining an effective dose for a clinical use of PBM is still a critical point as the 

parameters of wavelength, irradiance, fluence and delivery protocol have to be 

clearly defined to achieve a specific biological scenario 45. An important point to 

consider when creating a PBM protocol is its possible biphasic dose response 
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(Arndt-Schulz curve ) 32, which is also called "hormesis" 46, first used by Stebbing in 

1982 47 and comprehensively reviewed by Calabrese 46, 48.  

Many different studies in low-level light therapy (LLLT) presented this biphasic dose 

response 49, 50 and those dose dependent effects are frequently connected to the 

model of the "Arndt-Schulz Law" 51-54. It states, that a weak stimulus can accelerate 

the vital activity, which can be even increased with higher stimuli. However, at some 

point a peak will be reached after which an increase of stimulus will first lead to 

suppressing the effect and finally inducing a negative response in vital activity 44, 55. 

That means that beneficial therapeutic effects can be induced with low doses of light, 

whereas higher doses are harmful and therefore phototoxic leading to a need of 

defining a threshold for clinical use of PBM 32. 
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Table 1: Parameters involved in determining the LLLT “medicine” 42. 

IRRADIATION PARAMETERS (The Medicine) 

Irradiation 

parameter 

Unit of measurement  Comment  

Wavelength  nm Light is electromagnetic energy which travels in discrete packets that also have a wave-like 

property. Wavelength is measure in nanometers (nm) and is visible in the 400-700 nm range. 

Irradiance / 

Power density 

W/cm2 Often called Intensity, or Power Density and is calculated as  

Irradiance = Power (W)/Area (cm2) 

Pulse structure  Peak power (W) 

Pulse frequency (Hz) 

Pulse width (s) 

Duty cycle (%) 

If the beam is pulsed then the Power should be the Average Power and calculated as follows: 

Average Power (W) = Peak Power (W) × pulse width (s) × pulse frequency (Hz) 

Coherence  Coherence length 

depends on spectral 

bandwidth 

Coherent light produces laser speckle, which has been postulated to play a role in the 

photobiomodulation interaction with cells and subcellular organelles. 

Polarization  Linear polarized or 

circular polarized 

Polarized light may have different effects than otherwise identical non-polarized light (or even 90-

degree rotated polarized light). However, it is known that polarized light is rapidly scrambled in 

highly scattering media such as tissue (probably in the first few hundred µm). 
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Table 2: Parameters involved in determining the LLLT “dose” 42. 

IRRADIATION TIME OR ENERGY DELIVERED (The Dose) 

Irradiation 

parameter 

Unit of 

measurement 

Comment  

Energy 

(Joules) 

J Calculated as J = W x s 

This mixes medicine and dose into a single expression and ignores irradiance. Using Joules as an 

expression of dose is potentially unreliable as it assumes reciprocity (the inverse relationship between 

power and time). 

Energy 

density 

J/cm2 Common expression of LLLT “dose” is energy density. This expression of dose again mixes medicine and 

dose into a single expression and is potentially unreliable as it assumes reciprocity relationship between 

power and time. 

Irradiation 

time 

s In our view the safest way to record and prescribe LLLT is to define the four parameters of the medicine 

(See Table 1) and then define the irradiation time as “dose”.  

Treatment 

interval 

Hours, days or 

weeks 

The effects of different treatment intervals are underexplored at this time though there is sufficient evidence 

to suggest that this is an important parameter. 
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1.4 Aim of the project 

During the last years PBM represented one of the main upcoming treatment 

approaches. 

 

PBM has many advantages, it is noninvasive, cost-effective and easy to handle. 

Many promising effects of blue light are known comprising its anti-microbial 36, anti-

inflammatory 37 and anti-proliferative effects 38, 39. It is already used in different 

medical treatments for inter alia psoriasis 33, neonatal jaundice 34 and back pain 35 

and could possibly be applied for a variety of other treatment paradigms if the effects 

would be more defined and estimable.  

 

Although many reports describe the effectiveness of blue light, little is known about 

the mechanisms transducing the light induced signals from target molecules over 

downstream processes and/or gene expression to the biological effects 56 with 

additional difficulty of being hardly able to differentiate between primary and 

secondary effects.  

 

Therefore, the aim of this project was to test the dosage dependent blue light effects 

on the immortalized human keratinocyte cell line HaCaT with following set up: 

 

• Cell viability tests analyzing metabolism and proliferation, thereby selecting 

certain dosages for further experiments 

 

• H2O2 concentration measurement to confirm a light induced ROS production 

 

• FACS analysis for cell apoptosis as safety measurement to demonstrate that 

ROS production does not induce apoptosis, hence, does not harm the cells 

 

• Comprehensive gene expression analysis using Affymetrix GeneChips to 

assess the safety and identify possible target genes for PBM using blue light  
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2 MATERIAL AND METHODS 

2.1 Material 

2.1.1 Equipment 

BD FACSCalibur  BD Biosciences 

Corning® 96 well plates, clear bottom Sigma Aldrich 

DMM230 Industrial Multimeter Multimetrix 

GeneChip Scanner 3000 Affymetrix 

Human Gene 2.0 st arrays (Hugene-2_0-st) Affymetrix 

Incubator Heraeus Thermo Scientific 

Fluidics station 450 Affymetrix 

Laminar Flow Kendro Laboratory Products 

LightCycler® 480 Multiwell Plate 96 Roche  

Luna cell counter Biozym 

Lumileds LUXEON Rebel LXML-PR01-0275 Philips  

Microplate Reader Infinite® 200 PRO Tecan 

Microscope Leica 

Dyad, Peltier Thermo Cycler Bio-Rad 

Pipettes Gilson/Eppendorf 

RNA Clean-Up and Concentration Micro Kit Norgen 

Vortexer Reax top Heidolph 

Water bath Memmert 

2.1.2 Software for statistical analysis 

JMP Genomics 10 SAS 

2.1.3 Chemicals and Kits 

Amplex® UltraRed Reagent  Invitrogen 

Cell Proliferation ELISA, BrdU (colorimetric) Roche 

cDNA Synthese Kit Thermo Scientific 

Chlorophorm J.T. Baker 

Colorimetric Cell Viability Kit III (XTT)  PromoKine (PromoCell GmbH) 
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Dulbecco's Modified Eagle Medium (DMEM) Gibco 

Dimethylsulfoxid (DMSO) Sigma Aldrich 

Ethanol Emsure Merck 

Fetal Bovine Serum (FBS) Gibco 

FITC Annexin V BioLegend 

FITC BrdU Flow Kit BD Pharmingen™ 

Isopropanol Sigma Aldrich 

Light Cycler 96 DNA Green Roche 

Penicillin/Streptomycin Gibco 

Phosphate buffered saline (PBS) Gibco 

Propidiumiodid Invitrogen 

RevertAid H Minus First Strand- 

SuperScript Choice System Invitrogen 

Sodium Pyruvat Gibco 

Staurosporine  Sigma Aldrich 

TRIzol Reagent Ambion 

Trypsin 0.25% EDTA Gibco 

Colorimetric Cell Viability Kit III (XTT) PromoKine 

2.1.4 Primer sequences 

Primer sequences for CYP1A1, CYP1B1, ALDH3A, NQO1 and UGT1A were adopted 

from Brauze et al. 2014 57. Primers for FOS, IL8, Krt5 and the reference gene MOK 

were designed (2.2.11) and are depicted in Table 3. 

Table 3: Primer specifications. 

Gene name and 

Accession number 
Sequence 

Annealing 

Temperature 

Tm(°C)/t(s) 

Efficiency  R2 

FOS 

NM_005252.3 

F: CACTCCAAGCGGAGACAGAC 

R: AGGTCATCAGGGATCTTGCAG 

63 

61 
1.92 0.96 

IL8 

NM_ 000584 

F: AGGAACCATCTCACTGTGTGT 

R: CACCCAGTTTTCCTTGGGGTC 

59 

63 
2.14 0.97 

Krt5  

NM_ 000424.3 

F: AACCTGGACCTGGATAGCATCA 

R: ACATTGTCAATCTCGGCTCTCAG 

62 

63 
1.80 0.78 

MOK 

NM_ 001272011.1 

F: AGAGATCCAAGCACTGAGGC 

R: TACCAGCGGGTGGAGATGTA 

60 

60 
2.12 0.98 
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2.2 Methods 

Methods were previously described 39, 58, 59 in short. 

2.2.1 Literature search and Tex Mining 

The systematic literature search to identify relevant references describing the effects 

of blue and red LED light on keratinocytes was performed (March 2015) in the 

electronic database MEDLINE using PubMed platform. The keywords included in the 

search were (blue light AND keratinocytes NOT photodynamic) or (red light AND 

keratinocytes NOT photodynamic). Therefore, publications dealing with therapies 

using not only photobiomodulation but heat, chemicals or other factors in addition 

were excluded. Additionally, papers were selected according to the following criteria: 

irradiation with visible blue and red light, stimulation of keratinocytes, performance of 

in vitro studies and the use of statistical methods. Papers were reviewed and 

summarized in tabular form. Due to heterogeneity between studies a meta-analysis 

was not performed. For further analysis and classification parameters were chosen 

connected to light irradiation, which are wavelength, energy density, power density, 

irradiation time and distance from the light source. Furthermore, the biological 

outcome was used to cluster the articles into three groups: cell proliferation, 

apoptosis and migration of keratinocytes. A three-dimensional scatterplot and a 

principal component analysis (PCA) were performed to summarize those results.  

Finally, Text Mining was applied using statistical and learning methods. In this case 

abstracts, titles and Medical Subject Headings (MeSH) terms from different research 

publications were taken into account by copying them into the software R, version 

3.2.0. For further analysis, the R-package tm was used and all text was saved in 

“corpus”, which is a collection format for documents in R 60. 

2.2.2 Cell culture 

HaCaT cells (immortal human keratinocytes) from Cell Line Service (CLS) GmbH 

(Heidelberg/Germany) were cultured under standard conditions at 37°C with 5% CO2. 

They were cultured in Dulbecco´s modified Eagle´s medium (DMEM) high glucose 

containing 10% fetal bovine serum (FBS), 1mM sodium pyruvate and 100U/mL 

penicillin/streptomycin (Gibco® by life technologies TM AG (Carlsbad/USA)) whereas 



Material and Methods 

18 

0.1% Trypsin-EDTA (1x) phenol red from Gibco® was used to detach the cells with a 

10min incubation time. Sub-culturing ratios have been 2/10 to 3/10. 

2.2.3 Irradiation with blue light 

HaCaT cells were plated in black 96 well plates, with sterile clear flat bottom wells 

(Sigma Aldrich Co. LLC (St. Louis/USA)). These plates allow a direct microscopic cell 

viewing as well as a reduction of the background signal. Cell numbers were 

depending on the duration of experiment and are described in Table 4. No cells were 

seeded in the last column H, which served as chemical blank and only contained the 

cell culture medium. After seeding, cells were incubated 24h at 37°C with 5% CO2. 

Medium was renewed and cells were illuminated with blue light for different irradiation 

times/energy densities (Table 5). The right half of the plate was taped with black foil 

for the no light negative control; consequently non-irradiated cells were kept under 

the same environmental conditions apart from light exposure. After a defined time 

experiments were conducted or cells were harvested with TRIzol Reagent (Ambion® 

by life technologies TM AG (Carlsbad/USA)) and stored at -80°C for further use in 

RNA isolation and following gene expression analysis with microarrays.  

Lumileds LUXEON Rebel LXML-PR01-0275 were used (Koninklijke Philips N.V. 

(Eindhoven/Netherlands)) with an intensity of 23mW/cm2 at an irradiation distance of 

55mm, beam divergence of ±15° and a peak wavelength at 453 nm (blue light). 

 

As trypsinization of 96 well plates turned out to inefficient using this cell line, cells 

were seeded in 6 well plates for cell counting with Luna Cell Counter and BrdU 

FACS. The no light control was not on the same plate. However, to eradicate the 

plate effect, cells were seeded well per well (well1 plate1, well1 plate2, well2 plate1, 

well2 plate2,…). 

Table 4: Cell numbers for seeding into microwell plates depending on experiment duration. 

Harvesting time  [h]  Cell number per 96 well  Cell number per 6 well  

0-24 10,000 160,000 

48 5,000 80,000 

72 2,500 40,000 
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Table 5: Irradiation parameters.  

Irradiation  time  [min]  Power density [mW/cm²]  Energy density [J/cm²]  

0 23 0 

2.5 23 3.45 

5.0 23 6.90 

7.5 23 10.35 

10.0 23 13.80 

12.5 23 17.25 

15.0 23 20.70 

17.5 23 24.15 

20.0 23 27.60 

22.5 23 31.05 

30.0 23 41.40 

45.0 23 62.10 

60.0 23 82.80 

90.0 23 124.20 

120.0 23 165.60 

2.2.4 Cell proliferation tests 

For analyzing proliferation of irradiated cells different approaches were tested 

including XTT test, a simple cell count using the LUNA Cell Counter from Biozym and 

colorimetric BrdU Cell Proliferation ELISA. Additionally, BrdU in combination with a 

nucleic dye was tested with FACS to classify a change in cell cycle phase proportion. 

2.2.4.1 Cell metabolism (XTT) test 

The Colorimetric Cell Viability Kit III (XTT) from PromoKine (PromoCell GmbH 

(Heidelberg/Germany)) was used as a first test to examine the effect of blue light 

irradiation. The assay is based on the formation of an orange formazan dye only by 

metabolic active and therefore viable cells. Consequently, an increasing absorbance 

directly correlates with the metabolism of living cells. The experiment was performed 

according to protocol with a 1h incubation time. For quantification spectrophotometric 

absorption measurements at 450nm and 640nm reference wavelength were used 

with Infinite® 200 PRO microplate reader (Tecan Group AG 

(Männedorf/Switzerland)). Experiments were done in three replicates and three 

repetitions. The raw absorbance values were normalized with the no light control. 

Based on OneWay-ANOVA, differential absorbance intensities were analyzed using 
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a commercial software package: JMP Genomics 10 from SAS. A false positive rate of 

a=0.05 was taken as the level of significance. 

2.2.4.2 Cell counting with LUNA Cell Counter 

In addition to XTT tests, a simple cell count using the LUNA Cell Counter from 

Biozym was used to confirm the impact of blue light induced metabolic changes on 

proliferation. After certain irradiation and harvesting times, cells were trypsinized with 

1mL Trypsin per well (6 well plate), stopped with the same amount of cell culture 

medium and counted according to the recommendations of the manufacturer with the 

Luna Cell Counter (Biozym (Hessisch Oldendorf/Germany) using 1:2 Trypan blue. 

Experiments were done in three replicates and two repetitions. The cell count values 

were normalized with the starting cell number and no light control (Table 4). Based 

on OneWay-ANOVA, differential cell numbers were analyzed using a commercial 

software package: JMP Genomics 10 from SAS. A false positive rate of a=0.05 was 

taken as the level of significance. 

2.2.4.3 Measuring newly synthesized cells with bromodeoxyuridine (BrdU) using 

Enzyme-linked immunosorbent assay (ELISA) 

Furthermore, Colorimetric BrdU Cell Proliferation ELISA from Roche Diagnostics 

GmbH (Mannheim/Germany) was used for quantification of newly synthesized cells, 

respectively cell proliferation. BrdU labeling was done 1h after each irradiation with 

subsequent ELISA read out 24h after last labeling according to protocol. For 

quantification spectrophotometric absorption measurement was done at 450nm (with 

640nm reference wavelength) with Infinite® 200 PRO microplate reader (Tecan 

Group AG (Männedorf/Switzerland)). Experiments were done in three replicates and 

two repetitions. The raw absorbance values were normalized with the no light control. 

Based on OneWay-ANOVA, differential absorption intensities were analyzed using a 

commercial software package: JMP Genomics 10 from SAS. A false positive rate of 

a=0.05 was taken as the level of significance. 

2.2.4.4 Evaluating cell cycle phase with BrdU using Fluorescence-activated cell 

sorting (FACS) 

For evaluating cell cycle phase proportion the FITC BrdU Flow Kit from BD 

Pharmingen™ (BD Biosciences (Heidelberg/Germany)) was used. After different 

irradiation and harvesting times, cells were trypsinized with 1mL Trypsin per well (6 

well plate), stopped with the same amount of cell culture medium and prepared 
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according to the manufacturer´s protocol. 7-aminoactinomycin D (7-AAD) labeling 

was used to stain total DNA and consequently be able to categorize the different cell 

cycle phases with two-color flow cytometric analysis. Experiments were done in three 

replicates and two repetitions. The subsequent measurement was performed on a 

BD FACSCalibur (BD Biosciences (Heidelberg/Germany) while Flowing Software 

version 2.5.1 was used to perform a distribution analysis for statistical evaluation. 

Based on OneWay-ANOVA, differential distribution of cells in cell cycle phases were 

analyzed using a commercial software package: JMP Genomics 10 from SAS. A 

false positive rate of a=0.05 was taken as the level of significance. 

2.2.5 Reactive oxygen species (ROS) measurement 

Amplex UltraRed (Moelcular Probes, Invitrogen (Carlsbad/CA)) was used for 

measuring H2O2 concentrations in HaCaT cells modified from Chen et al. 2011 56. At 

defined time points after blue light irradiation 50µl 0,1M Potassium phosphate buffer 

pH 6,0 containing 100mM Amplex Ultrared and 0.2U/ml Horse radish peroxidase 

(Molecular Probes, Invtirogen (Carlsbad/CA)) was added to each well of the black 96 

well plates and incubated for 30min at 37°C with 5% CO2. Fluorescence was 

measured with the Infinite® 200 PRO microplate reader from underneath at 

λex490nm/λem581nm (Tecan Group AG (Männedorf/Switzerland)). Experiments were 

done in three replicates and two repetitions. The raw fluorescence values were 

normalized with the no light control. Based on OneWay-ANOVA, differential 

fluorescence intensities were analyzed using a commercial software package: JMP 

Genomics 10 from SAS. A false positive rate of a=0.05 was taken as the level of 

significance. 

2.2.6 Examining apoptosis using FACS 

For marking of apoptotic cells with FITC labeled Annexin V (BioLegend (San 

Diego/USA)) and Propidiumiodide (PI) (InvitrogenTM by life technologies TM AG 

(Carlsbad/USA)) supernatant was harvested to collect possible apoptotic cells. After 

that, cells were washed with PBS, trypsinized and dissolved with the collected 

supernatant; 2x105 cells were used. The cells were transferred to a 15ml Falcon tube 

and centrifuged 3min at RT and 2000x g. The supernatant was removed and the 

pellet was washed twice, first with PBS, secondly with Annexin-Binding Buffer 

(BioLegend (San Diego/USA)). Subsequently, the pellet was resuspended in 100µl 
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Annexin-Binding Buffer and cells were incubated with 5µl of Annexin V, and 2µl of PI 

1mg/ml for 15min at RT in the dark. Finally, 100µl Annexin-Binding Buffer was added. 

For positive control 1µM Staurosporine (Sigma Aldrich Co. LLC (St. Louis/USA)) was 

added for 4h to HaCaT cells to induce apoptosis prior trypsinization. The subsequent 

measurement was performed on a BD FACSCalibur (BD Biosciences 

(Heidelberg/Germany) while Flowing Software version 2.5.1 was used to perform a 

distribution analysis for statistical evaluation. Based on OneWay-ANOVA, differential 

distribution of cells was analyzed using a commercial software package: JMP 

Genomics 10 from SAS. A false positive rate of a=0.05 was taken as the level of 

significance. Experiments were done in three replicates and two repetitions. 

2.2.7 RNA Isolation for microarray analysis and quantitative real time PCR 

For RNA isolation, modified from the TRIzol Reagent protocol, 200µl of chloroform 

was added for 1ml TRIzol. They were incubated for 2-3min at RT. Then the mixture 

was vortexed and centrifuged at 12000x g for 15min at 4° C to separate the organic 

from the aqueous phase. The aqueous upper phase was transferred into a new tube 

and precipitated with 500µl isopropanol. After incubation for 10min at RT, the mixture 

was centrifuged at 12000x g for 10min at 4° C. The supernatant was discarded. The 

pellet was washed twice with 1ml of ethanol and centrifuged at 12000x g for 5min at 

4° C. After discarding the supernatant, the pellet was dried. Subsequently, the pellet 

was re-suspended in 20µl RNase-free water. 

2.2.8 Gene expression analysis with Affymetrix GeneChips 

After RNA isolation RNA was purified using the RNA Clean-Up and Concentration 

Micro Kit. cDNA synthesis was performed using the SuperScript Choice System 

according to the recommendations of the manufacturer. Using ENZO BioArray 

HighYield RNA Transcript Labeling Kit biotin-labeled cRNA was produced. A 

standard protocol from Affymetrix was used for the in vitro transcription (IVT). 

Quantification of cRNA was performed by spectrophotometric analysis with an  

A260/A280 ratio of 1.9 to 2.1. Fragmentation of the cRNA was achieved using 

Affymetrix defined protocol. For gene expression profiling, labeled and fragmented 

cRNA was hybridized to Affymetrix Hugene-2_0-st microarrays with an incubation of 

16h at 45° C. The Affymetrix fluidics station 450 was used to wash the microarrays, 

scanning was performed with Affymetrix Genechip scanner 3000. 
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2.2.9 Bioinformatical evaluation of gene expression analysis 

The  Custom CDF Version 18 with Entrez based gene definitions was used for 

annotation 61. Applying quantile normalization, the raw fluorescence intensity values 

were normalized. Based on OneWay-ANOVA, differential gene expression was 

analyzed using a commercial software package: JMP Genomics 10 from SAS. A 

false positive rate of a=0.05 with FDR correction was taken as the level of 

significance. 

Gene Set Enrichment Analysis (GSEA) was used to determine whether defined lists 

(or sets) of genes exhibit a statistically significant bias in their distribution within a 

ranked gene list (see http://www.broadinstitute.org/gsea/ for details) 62. Pathways 

belonging to various cell functions such as cell cycle or apoptosis were obtained from 

the public external database KEGG. 

2.2.10 Reverse Transcription (RT) PCR 

1µg of previously isolated RNA was used for the preparation of cDNA. RNA was filled 

up with distilled water to a total volume of 11µl. A master mix was prepared according 

to RevertAid H Minus First Strand cDNA Synthese Kit from Thermo Fisher Scientific 

Inc. (Waltham/USA). The 20µl reaction mixture was then used with the following 

program for the production of cDNA: 5min at 25°C, 60min at 42°C and 5min at 70°C. 

The cDNA was 1:10 diluted for further use in Real Time-PCR. 

2.2.11 Primer design 

Primer sequences for CYP1A1, CYP1B1, ALDH3A, NQO1 and UGT1A were adopted 

from Brauze et al. 2014 57.  Primers for FOS, IL8, Krt5 and MOK (used as reference 

gene) were designed according to published genes sequences (NCBI-Gene) with 

PrimerBlast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and span exon/exon 

boundaries. BLAST alignment search (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was 

used to verify specificity. All Primers were purchased as DNA Oligo-Primer from 

Metabion International AG (Planegg, Steinkirchen/Germany). 

2.2.12 Real Time-PCR (qPCR) 

To verify expression of various genes in the microarray analysis, a Real Time-PCR 

(qPCR) was carried out with SYBR Green. The reaction mixture consisted of 5µl 1:10 
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diluted cDNA, 4.8µl water, 10µl SYBR Green master mix and 0.1µl each primer 

(LightCycler 96 DNA Green, Roche Diagnostics GmbH (Mannheim/Germany)). DNA 

Oligo-Primer from Metabion International AG (Planegg, Steinkirchen/Germany) were 

used with a concentration of 100µM, therefore end concentration in the reaction mix 

was 0.5µM. The qPCR was programmed as follows: 10 min  95°C, 45x(10 sec 95°C, 

10 sec at Primer specific Tm, 10 sec 72°C), 10 sec 95°C, 1 min 65°C, 1 sec 97°C. 

Experiments were done in three replicates and two repetitions. For evaluation Roche 

LightCycler® 96 Application Software and JMP Genomics 10 from SAS were used.  
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3 RESULTS 

3.1 Literature overview 

To get an overview on literature for the effects of blue and red visible light on human 

keratinocytes PubMed was used to perform a search with the key words (blue light 

AND keratinocytes NOT photodynamic) and (red light AND keratinocytes NOT 

photodynamic), which resulted in 148 hits. To exclude non relevant studies a 

selection was taken by reading all the abstracts and dismissing papers not directly 

linked to blue and red light stimulation of cells. Finally, 8 articles were selected for 

blue light along with 4 publications for red light stimulation of keratinocytes. An 

evaluation was performed by extracting the different irradiation parameters for all 

articles, assigning them to resulting light effects and clustering the analysis into the 

three groups of proliferative effect (red), anti-proliferative effect (blue) and apoptotic 

effect (green). Articles, which were selected due to their connection to light effects 

but did not contain any information on proliferation or apoptosis of irradiated cells 

were represented with the color code black. To analyze the multivariate data, a 

principal component analysis (PCA) was executed. The 2 dimensional plots depict 

which components have the highest influence on the outcome (proliferation, anti-

proliferation or apoptosis) and show the variances in the data set. The PCA 

demonstrates a clustering of the single effects and reveal the components 

wavelength, irradiation time, energy density and the proliferation as the most 

important ones (Figure 4).  

Furthermore, a three-dimensional scatterplot was created to plot the three main 

characterized parameters containing wavelength, power density and the resulting 

energy density (Figure 5).  

The 8 selected articles for blue light comprised the spectral region from 412 to 470nm 

with a wide range of tested power and energy densities. The described effects on 

cells include all three groups of proliferation, anti-proliferation and apoptosis. The 

effects cannot be assigned to a certain wavelength, power density or energy density. 

The search for the effect of red light on human keratinocytes was inconclusive. 
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Figure 4: Principal component analysis: analysis of the literature search for visible light effects of blue and red 
light on keratinocytes with (A) showing the clustering of the predefined effects and (B) identifying the parameters 

with the highest impact on the clustering process depicted in (A). Red: pro-proliferative effect, blue: anti-
proliferative effect, green: apoptotic effect, black: did not contain any information on proliferation or apoptosis. 

 

Figure 5: Scatterplot to analyze the literature search for visible light effects of blue and red light on keratinocytes 
depicting the correlation of wavelength, power density and energy density. Red: proliferative effect, blue: anti-

proliferative effect, green: apoptosis, black: did not contain any information on proliferation or apoptosis. 
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3.1.1 Text Mining 

To get a better overview of the relation between scientific articles and blue and red 

light effect on keratinocytes text mining was applied in a next step. In this process, 

the same or similar keywords served to cluster the corresponding publications into 

groups to simplify the selection procedure. Different kinds of data illustrations are 

available when using this method like density plot (Figure 6), galaxy plot (Figure 7) or 

2D landscape (Figure 8).  

Text Mining clustered the relevant articles into 5 groups depicted in different colors in 

all three figures (Figure 6, Figure 7 Figure 8). For instance, cluster 1 includes all 

articles containing keywords like microscope, stain and skin, whereas papers 

assigned to cluster 4 show keywords like light, blue and cell. Due to the given 

keywords the latter one is considered to be the most appropriate cluster for this study 

(Figure 6, Figure 7 Figure 8). 

The density plot in Figure 6 depicts the occurrence of relevant papers per year over a 

time period from 1977 to 2015 (Figure 6). Furthermore, it demonstrates the 

development of increasing interest and attention to light therapy and its treatment 

possibilities over the last decade.  

The galaxy plot (Figure 7) is based on a PCA with every data point corresponding to 

one article. The proximity of the data points resembles the relationship between the 

related articles and, similar to the density plot, the publications are clustered into the 

5 groups according to keywords and color-coded respectively. 

An additional indication about the emerging and high impact topics of the literature 

search for the effect of blue and red light on human keratinocytes is depicted with the 

2D landscape in Figure 8, which visualizes the clustering process of the documents 

in the form of maps. 

 



Results 

28 

 

Figure 6: Density plot describing the literature search regarding red and blue light as well as keratinocytes per 
year by cluster from 1977 to 2015. 
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Figure 7: Galaxy plot for text mining defining the thematic distance of several publications describing the literature 
search regarding red and blue light as well as keratinocytes. 

 

Figure 8: 2D landscape of text mining plotting the literature clusters with differences in height describing the 
literature search regarding red and blue light as well as keratinocytes. 
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3.2 Blue light irradiation leads to a PBM characteristic biphasic dose response 

curve in human keratinocytes 

As changes in cell metabolism are faster and more pronounced compared to 

changes in cell proliferation the Colorimetric Cell Viability Kit III (XTT) from 

PromoKine (PromoCell GmbH (Heidelberg/Germany)) was used as a first test to 

examine the effect of blue light irradiation.   

XTT tests of HaCaT cells were performed with different irradiation times and 

measured at the harvesting time point (harvesting time) 24h after irradiation to study 

the dose effect of PBM with blue light on cell metabolism (Figure 9).  

 

Figure 9: XTT test results of different irradiation times: 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 30, 45, 60, 90 and 
120min with cell harvesting 24h after irradiation. The box-and-whisker plots represent the distribution of XTT data 
values. These are ranked into quartiles, which divide the data set into a box of four equal groups; the band inside 
the box reflects the median. The whiskers extend from the ends of the box to the outermost data point that falls 

within the distances calculated as follows: 3rd quartile+1.5*(interquartile range) and 1st quartile-1.5*(interquartile 
range). 

With short exposure times of 5min (6.9J/cm²), 7.5min (10.35J/cm²), 10min 

(13.5J/cm²) and 12.5min (17.25J/cm²) cell metabolism was significantly increased 

with a maximal effect of 12% (p<0.0001*) with 7.5min (10.35J/cm²) blue light. 

After 15min cell metabolism was significantly decreased (p<0.0001) by 12%, with 

even more pronounced effect of 29% for 30min (41.4J/cm²) of blue light irradiation 

(p<0.0001). The effect seems to be constant after 30min; there was no further 

decrease in cell metabolism with longer irradiation times up to 120min irradiation. 
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7.5min (10.35J/cm²) respectively 30min (41.4J/cm²) were chosen in subsequent 

experiments to test the blue light effect after different harvesting times in the 

proliferative phase respectively the anti-proliferative phase of PBM. 

3.3 Anti-proliferative phase of blue light irradiation - 30min (41.4J/cm²) blue light 

irradiation             

3.3.1 The decrease in cell metabolism after 30min (41.4J/cm²) blue light irradiation 

in HaCaT cells, which lasts until at least 24h, is gone 48h after irradiation 

XTT tests of HaCaT cells were conducted at different harvesting times after 30min 

(41.4J/cm²) of blue light irradiation to examine the time course of the anti-proliferative 

effect of this dose. Already 1h after irradiation the metabolism of the cells was 

decreased by 6% (p<0.0001) with even more pronounced effect of 9% (p<0.0001) 

after 3h, 16% (p<0.0001) after 6h to 18% (p<0.0001) after 12h, and finally reaching 

its maximum with 29% decrease (p<0.0001) 24h after irradiation. 48h after irradiation 

metabolism of irradiated cells was again on the same level as the no-light control 

cells (Figure 10). 

 

Figure 10: XTT test results at the different time points of cell harvesting: 1h, 3h, 6h, 12, 24h, 48h and 72h after 
30min (41.4J/cm²) of blue light irradiation. (For legend see Figure 9). 
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3.3.2 Consecutive irradiations with 30min (41.4J/cm²) of blue light each 24h can 

prolong the inhibition of cell metabolism in HaCaT cells 

As the effect of decreased metabolism disappeared 48h after blue light irradiation, 

consecutive irradiations with 30min (41.4J/cm²) of blue light were performed each 

24h. When irradiated more than once the effect could be prolonged, metabolism of 

HaCaT cells was even more decreased compared to a single irradiation from 32% 

decrease to 34% decrease (p<0.0001), however, the effect between two and three 

irradiations did not change significantly (p=0.518) and depicts a decrease in 

metabolism of 35% (p<0.0001) for irradiated cells compared to the no-light control 

cells (Figure 11). 

 

Figure 11: XTT test results of the different numbers of 30min (41.4J/cm²) blue light irradiations harvested 24h 
after the respective last irradiation. (For legend see Figure 9). 

3.3.3 30min (41.4J/cm²) blue light irradiation of HaCaT cells leads to a decrease in 

cell proliferation 24h after irradiation and can be increased by consecutive 

irradiations each 24h 

Cell counting and BrdU ELISA of HaCaT cells were conducted at different harvesting 

times after 30min (41.4J/cm²) of blue light irradiation to examine the time course of 

2x 30min 3x 30min 1x 30min 
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the anti-proliferative effect of this dose.  As the doubling time of HaCaT cells is 24h, 

an effect on cell proliferation was not expected before 24h after irradiation and 

therefore fits to cell counting results. A lower cell count of 20% (p=0.0159) was noted 

24h after irradiation, which could be intensified with consecutive irradiations each 24h 

with 37% (p=0.0130) 48h after irradiation and 37% (p=0.0034) 72h after irradiation. 

BrdU, which is a pyrimidine analogue being incorporated instead of thymidine into the 

DNA of proliferating cells, was tested for 24h, 48h and 72h harvesting. The extend of 

BrdU ELISA was less  than for cell counting results, however depicted a 

corresponding anti-proliferative result with no effect on cell proliferation 24h after 

irradiation, but decreasing effect with consecutive irradiations each 24h with 6% 

(p=0.0315) 48h after irradiation and 14% (p<0.0001) 72h after irradiation (Figure 12). 
 

 

Figure 12: Cell count and BrdU ELISA at the different time points of cell harvesting: 1h, 3h, 6h, 12, 24h, 48h and 
72h after different numbers of 30min (41.4J/cm²) of blue light irradiation. Dots display mean values with SD. 

2x 30min 3x 30min 1x 30min 
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3.3.4 Consecutive irradiations with 30min (41.4J/cm²) of blue light each 24h induce 

a change in cell cycle phase proportion of HaCaT cells leading to an increase 

in S-phase cells and decrease in G0/G1-phase cells 

To test the cell cycle phase proportion of HaCaT cells after 30min (41.4J/cm²) of blue 

light irradiation immunofluorescent BrdU staining was used in combination with 7-

AAD, which binds to total DNA. Already 24h after irradiation cell proportion was 

slightly shifted from G0/G1 to S-phase (1% (p=0.7102)). This shift was increased by 

consecutive irradiations each 24h to 1.3% (p=0.5201) 48h after irradiation and a 

significant increase of 5.8% (p=0.0368) 72h after irradiation (Figure 13). 

  

Figure 13: BrdU FACS results of the different numbers of 30min (41.4J/cm²) blue light irradiations harvested 24h 
after the respective last irradiation. Bars display mean values with SD. 

3.3.5 30min (41.4J/cm2) of blue light irradiation increases H2O2 concentration in 

HaCaT cells immediately after irradiation 

As light is known to induce production of ROS, respectively H2O2, we measured H2O2 

concentrations in HaCaT cells at different harvesting times after 30min (41.4J/cm²) of 

(2x 30min) 

(3x 30min) 

(1x 30min) 
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blue light irradiation, with a first time point at 30min according to incubation time. 

H2O2 concentration was increased 1.26 fold (to 126%) 30min after blue light 

irradiation (p<0.0001). Followed by a decrease to 93% 1h after irradiation 

(p<0.0001), H2O2 concentration alternated between 99% after 3h (p=0.7585) to 96% 

after 6h (p<0.0001) and finally 105% after 24h (p<0.0001) (Figure 14). 

 

Figure 14: ROS measurement of 30min (41.4J/cm²) blue light irradiation for different harvesting times. Dots 
display mean values with SD. 

3.3.6 30min (41.4J/cm2) of blue light irradiation does not induce apoptosis in HaCaT 

cells 

Fluorescence-activated cell sorting (FACS) was applied to test a possible apoptotic 

effect of blue light on HaCaT cells 24h after 30min (41.4J/cm²) irradiation. Cells were 

labeled with Annexin V, which binds to the phospholipid membrane component 

phosphatidylserine on the cell surface during early apoptosis and propidiumiodide 

which intercalates with DNA and therefore shows late apoptosis and cell necrosis. 

Staurosporine treated cells served as a positive control for induced apoptosis 

resulting in 40% living cells and 60% dead cells. Both untreated and light-treated 

cells exhibited a significant difference to the positive control (p<0.0001). Untreated as 
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well as blue light treated cells contained ~85% living cells and ~15% dead cells. 

Thus, that dose of blue light did not induce apoptosis in HaCaT cells (Figure 15, 

Figure 16). 
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Figure 15: FACS analysis 24h after 30min (41.4J/cm²) of blue light irradiation. The four quadrants can be distinguished as follows: lower left quadrant=intact cells, lower right 
quadrant=early apoptosis, upper right quadrant=late apoptotic or secondary necrotic apoptotic cells and upper left quadrant=primary necrotic cells. 30min (41.4J/cm²) of blue light 

did not induce apoptosis in HaCaT cells. 
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Figure 16: FACS analysis 24h after 30min (41.4J/cm²) of blue light irradiation. For comparison between live and 
dead cells from Figure 15 the lower left quadrant was used for the numbers of intact cells and the other three 
quadrants were taken together to show the amount of dead cells. There is no distinction between early or late 

apoptosis or necrosis. 30min (41.4J/cm²) of blue light did not induce apoptosis in HaCaT cells. Bars display mean 
values with SD. 

3.3.7 Gene expression analysis of HaCaT cells at different time points after 30min 

(41.4J/cm2) of blue light irradiation reveals a time course in 

photobiomodulatory blue light effects 

After examining the distribution and performing batch normalization to exclude a plate 

effect a cluster analysis and PCA were performed. As a next step an ANOVA was 
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performed and already 1h after irradiation a change in gene expression could be 

observed. However, differentially regulated genes increased in number with 

increasing harvesting time after blue light irradiation from 1358 genes after 1h, to 

1686 genes after 3h, to 2192 genes after 24h (Table 6 and link: uploaded data: Gene 

list microarrays). 

Genes that stand out were cytochrome P450 family 1 subfamily A member 1 

(CYP1A1) and CYP1B1, which were both highly upregulated for all three harvesting 

time points, with significant p-values for 3h and 24h (Figure 17). 

Table 6: Significantly deregulated genes and GSEA of 30min (41.4J/cm²) blue light irradiation (Irradiation time in 
minutes, harvesting time in h). 

Irradiation time  

Harvesting time 

30min 

1h 

30min 

3h 

30min 

24h 

Significant differentially expressed genes  1318 1624 2323 

Significant upregulated genes  641 834 1158 

Pathways containing upregulated genes  144 128 132 

Significant pathways containing upregulated genes w ith FDR 

<25% 

3 15 15 

Significant pathways containing upregulated genes w ith 

nominal p-value <5% 

7 20 18 

Significant downregulated genes  677 790 1165 

Pathways containing downregulated genes  136 152 148 

Significant pathways containing downregulated genes  with 

FDR <25% 

0 2 0 

Significant pathways containing downregulated genes  with 

nominal p-value <5% 

5 16 3 
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In Figure 17, the volcano plots depict the regulation of single genes after 30min 

(41.4J/cm²) of blue light irradiation, with values higher than 0 being up-regulated and 

lower values being down-regulated. The red line represents the threshold of 

significance showing that for example the gene encoding (CYP1A1) is regulated by 

blue light with significant values at 3h and 24h after irradiation. 

 

Figure 17: Gene expression analysis - volcano plot 1h, 3h and 24h after 30min (41.4J/cm²) blue light irradiation. 
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In a next step, gene set enrichment analysis (GSEA) was performed using Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database (Table 7 and link: uploaded 

data: GSEA). Pathways containing the highest number of deregulated genes are 

depicted in Figure 18. Already 1h after blue light irradiation genes connected to 

steroid hormone biosynthesis, metabolism of xenobiotics by cytochrome P450, 

chemical carcinogenesis and tryptophan metabolism were upregulated. The number 

of genes and intensity of upregulation increased for all these pathways with time from 

1h to 3h and 24h after irradiation. On the other hand, pathways containing 

downregulated genes that were reduced already 1h after irradiation are processes 

like NF-κB signaling pathway, TNF signaling pathway, T cell receptor signaling 

pathway and TGF-β signaling pathway. These pathways are mainly linked to 

inflammation and infection. For NF-κB signaling pathway and TNF signaling pathway, 

downregulation increased from 1h to 3h, whereas it slightly decreased for T cell 

receptor signaling pathway and TGF-β signaling pathway. Nevertheless, 24h after 

irradiation downregulation was higher for all these pathways when compared to 1h 

after irradiation. Although rheumatoid arthritis was slightly upregulated 1h after 

irradiation, the pathway was significantly downregulated 3h and 24h after irradiation. 

DNA replication was downregulated for 1h and 3h after blue light irradiation. 

Interestingly, 24h after irradiation DNA replication was slightly upregualted. 

Table 7: Gene expression analysis of 30min (41.4J/cm²) blue light irradiation- time course of Normalized 
Enrichment Score (NES) for selected pathways for further evaluation of gene expression results. 

No. NAME Main Category Sub Category 30 1h 
NES 

30 3h 
NES 

30 
24h 
NES 

1 Arylhydrocarbon 
receptor (AhR) 
signaling pathway  

1. Metabolism 1.11 Xenobiotics 
biodegradation and 
metabolism 

1.09 1.95 2.24 

2 Tryptophan metabolism  1. Metabolism 1.5 Amino acid 
metabolism 

0.92 2.00 2.06 

3 Steroid hormone 
biosynthesis  

1. Metabolism 1.3 Lipid metabolism 1.31 1.85 1.97 

4 Ovarian 
steroidogenesis  

5. Organismal 
Systems 

5.2 Endocrine system 1.25 1.70 1.92 

5 Metabolism of 
xenobiotics by 
cytochrome P450  

1. Metabolism 1.11 Xenobiotics 
biodegradation and 
metabolism 

1.13 1.83 1.87 

6 Chemical 
carcinogenesis  

6. Human Diseases 6.1 Cancers: Overview 1.16 2.03 1.85 

7 Drug metabolism - other 
enzymes  

1. Metabolism 1.11 Xenobiotics 
biodegradation and 
metabolism 

0.68 1.16 1.52 

8 Glycolysis / 
Gluconeogenesis  

1. Metabolism 1.1 Carbohydrate 
metabolism 

0.90 0.84 1.33 

9 Drug metabolism - 
cytochrome P450  

1. Metabolism 1.11 Xenobiotics 
biodegradation and 
metabolism 

1.03 1.25 1.26 
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10 mTOR signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.71 -0.86 1.06 

11 Inflammatory mediator 
regulation of TRP 
channels  

5. Organismal 
Systems 

5.7 Sensory system -0.80 -1.01 1.01 

12 Circadian rhythm  5. Organismal 
Systems 

5.9 Environmental 
adaptation 

-0.62 0.81 0.91 

13 Terpenoid backbone 
biosynthesis  

1. Metabolism 1.9 Metabolism of 
terpenoids and 
polyketides 

0.78 -0.89 0.91 

14 ErbB signaling pathway  3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.82 -0.87 0.85 

15 Wnt signaling pathway  3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.99 1.17 0.85 

16 Notch signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.52 -0.84 0.84 

17 Mismatch repair  2. Genetic 
Information 
Processing 

2.4 Replication and repair -0.50 -0.87 0.77 

18 VEGF signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction 1.11 -0.74 0.74 

19 Citrate cycle (TCA 
cycle)  

1. Metabolism 1.1 Carbohydrate 
metabolism 

0.72 -0.76 0.70 

20 DNA replication  2. Genetic 
Information 
Processing 

2.4 Replication and repair 0.39 -1.16 0.68 

21 Cell cycle  4. Cellular Processes 4.3 Cell growth and death -0.30 0.53 -0.52 

22 Oxidative 
phosphorylation  

1. Metabolism 1.2 Energy metabolism 0.93 -0.97 -0.55 

23 p53 signaling pathway  4. Cellular Processes 4.3 Cell growth and death 0.65 0.83 -0.58 

24 RNA transport  2. Genetic 
Information 
Processing 

2.2 Translation -0.79 -0.91 -0.59 

25 Steroid biosynthesis  1. Metabolism 1.3 Lipid metabolism -1.07 -1.19 -0.64 

26 AMPK signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.86 -0.88 -0.68 

27 RNA degradation  2. Genetic 
Information 
Processing 

2.3 Folding, sorting and 
degradation 

-0.76 -1.16 -0.73 

28 Estrogen signaling 
pathway  

5. Organismal 
Systems 

5.2 Endocrine system -0.92 -0.83 -0.79 

29 Longevity regulating 
pathway  

5. Organismal 
Systems 

5.9 Aging -0.72 -0.82 -0.79 

30 Protein processing in 
endoplasmic reticulum  

2. Genetic 
Information 
Processing 

2.3 Folding, sorting and 
degradation 

-0.47 0.52 -0.80 

31 cAMP signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.72 1.06 -0.82 

32 Longevity regulating 
pathway  

5. Organismal 
Systems 

5.9 Aging -0.90 -1.12 -0.84 

33 NOD-like receptor 
signaling pathway  

5. Organismal 
Systems 

5.1 Immune system 0.94 -1.71 -0.90 

34 Regulation of lipolysis 
in adipocytes  

5. Organismal 
Systems 

5.2 Endocrine system -0.82 -0.74 -0.90 

35 Ras signaling pathway  3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.71 -0.85 -0.91 

36 Phototransduction  5. Organismal 
Systems 

5.7 Sensory system -0.81 1.24 -0.92 

37 Apoptosis - multiple 4. Cellular Processes 4.3 Cell growth and death 0.97 -1.35 -0.95 
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species  

38 Toll -like receptor 
signaling pathway  

5. Organismal 
Systems 

5.1 Immune system -0.81 -1.25 -0.96 

39 Cell adhesion 
molecules (CAMs)  

3. Environmental 
Information 
Processing 

3.3 Signaling molecules 
and interaction 

-0.93 0.84 -0.98 

40 PI3K-Akt signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.75 0.82 -0.99 

41 TNF signaling pathway  3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.86 -1.32 -0.99 

42 Rheumatoid arthritis  6. Human Diseases 6.3 Immune diseases 0.84 -1.17 -1.00 

43 Pertussis  6. Human Diseases 6.8 Infectious diseases: 
Bacterial 

0.81 -1.15 -1.01 

44 Apoptosis  4. Cellular Processes 4.3 Cell growth and death -0.59 -1.03 -1.02 

45 Chemokine signaling 
pathway  

5. Organismal 
Systems 

5.1 Immune system -1.28 -1.07 -1.03 

46 Jak-STAT signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.82 1.13 -1.03 

47 Calcium signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.85 1.32 -1.04 

48 T cell receptor signaling 
pathway  

5. Organismal 
Systems 

5.1 Immune system -1.07 -0.70 -1.07 

49 NF-kappa B signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.71 -1.38 -1.08 

50 Circadian entrainment  5. Organismal 
Systems 

5.9 Environmental 
adaptation 

-0.91 -0.92 -1.11 

51 B cell receptor signaling 
pathway  

5. Organismal 
Systems 

5.1 Immune system -0.85 0.90 -1.12 

52 FoxO signaling pathway  3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.88 -0.91 -1.12 

53 MAPK signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.87 0.87 -1.16 

54 Rap1 signaling pathway  3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.91 -1.10 -1.20 

55 Primary 
immunodeficiency  

6. Human Diseases 6.3 Immune diseases 0.74 -0.64 -1.27 

56 TGF-beta signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.81 -0.98 -1.33 

57 Melanoma  6. Human Diseases 6.2 Cancers: Specific 
types 

-0.76 -0.68 -1.38 
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Figure 18: Gene expression analysis of 30min (41.4J/cm²) blue light irradiation - time course of NES for selected 
pathways for further evaluation of gene expression results. 

3.3.8 Gene expression analysis reveals upregulation of aryl hydrocarbon receptor 

target genes 

CYP1A1 and CYP1B1 were both highly upregulated for all three harvesting time 

points leading to the identification of a possible functionality of their transcription 

factor aryl hydrocarbon receptor (AHR) after blue light irradiation. Tryptophan 

metabolism and chemical carcinogenesis are both pathways containing significantly 

upregulated genes and are connected to AHR. As KEGG does not provide such a 

pathway, an AHR pathway was designed (Figure 19) using a literature search 

containing inter alia the “AHR battery genes” CYP1A1, CYP1A2, CYP1B1, aldehyde 

dehydrogenase 3 family member a1 (ALDH3A1), NAD(P)H quinone oxidoreductase 1 

(NQO1), UDP glucuronosyltransferase 1 family, polypeptide A (UGT1A), glutathione 

S-transferase 1 (GSTA1) and genes encoding AHR and its contributors aryl 

hydrocarbon receptor nuclear translocator (ARNT) and aryl hydrocarbon receptor 

repressor (AHRR). Additionally, genes deregulated downstream after AHR activation 

like cyclin-dependent kinase inhibitor 1B (CDKN1B, also KIP1), nuclear factor 

erythroid 2 like 2 (Nrf2, also NFE2L2) and tumor necrosis factor (TNF-a) receptor-

associated protein (TRADD) are depicted. The AHR signaling pathway (Figure 20) 
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was upregulated for all three time points with p=0.242 after 1h, p=0.004 after 3h and 

p<0.0001 24h after blue light irradiation. The time course of the gene expression 

analysis for these mentioned genes is illustrated in Figure 21 and Table 8 to help 

describing that AHR is a possible target for blue light irradiation as explained in the 

discussion. 

CYP1A1, CYP1B1, ALDH3A1, NQO1 and UGT1A5 were upregulated already 1h 

after blue light irradiation, which was stable up to 3h. CYP1A1, CYP1B1 ALDH3A1 

and NQO1 showed an even higher upregulation in gene expression 24h after 

irradiation, whereas UGT1A kept the same level (Figure 21). AHRR was considerably 

upregulated 3h after blue light irradiation, while CDKN1B was upregulated after 1h 

and 3h, but downregulated 24h after irradiation. CYP1A2 was alternating from 

downregulation after 1h to upregulation after 3h and not regulated after 24h. GSTA1 

was not considerably regulated, whereas NFE2L2 (Nrf2) was upregualted after 3h 

and 24h. TRADD was downregulated for all three time points with a maximum after 

3h. 
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Figure 19: Aryl Hydrocarbon Receptor (AHR) signaling pathway for 30min (41.4J/cm²) blue light irradiation and 24h harvesting time. Red: upregulated gene expression after AHR 
activation, green: downregulated gene expression after AHR activation 
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Figure 20: Gene expression analysis of 30min (41.4J/cm²) blue light irradiation - time course of the Aryl Hydrocarbon Receptor (AHR) signaling pathway. 
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Table 8: Gene expression analysis of 30min (41.4J/cm²) blue light irradiation - time course of selected AHR inducible genes for further evaluation of gene expression results. 

Gene 

name 

30min 1h 

log2(fold 

change)  

30min 1h  

-log10(p-

value)  

30min 1h  

Adjusted p-

value  

30min 3h  

log2 (fold 

change)  

30min 3h  

-log10(p-value)  

30min 3h  

Adjusted p-

value  

30min 24h  

log2(fold 

change)  

30min 24h  

-log10(p-value)  

30min 24h  

Adjusted p-

value  

AHR -0.01 0.092 0.904 -0.01 0.129 0.875 0.06 1.918 0.086 

AHRR -0.05 0.206 0.796 0.24 1.788 0.118 -0.08 0.588 0.489 

ALDH3A1 0.26 1.797 0.128 0.20 1.122 0.264 0.85 5.006 0.002 

CDKN1B 0.28 1.724 0.139 0.09 0.687 0.453 -0.19 2.411 0.045 

CYP1A1 1.49 1.962 0.105 1.47 8.539 0.000 2.67 5.654 0.001 

CYP1A2 -0.25 1.812 0.126 0.12 0.984 0.315 -0.07 0.600 0.480 

CYP1B1 0.83 2.403 0.062 0.77 4.890 0.004 1.25 6.312 0.001 

GSTA1 -0.03 0.098 0.900 -0.06 2.270 0.065 0.04 0.576 0.495 

NFE2L2 0.04 0.884 0.357 0.15 1.298 0.212 0.07 1.529 0.142 

NQO1 0.25 1.208 0.247 0.27 3.982 0.010 0.56 4.687 0.003 

TRADD -0.13 2.873 0.036 -0.20 0.995 0.310 -0.15 0.955 0.299 

UGT1A5 0.64 3.784 0.0153 0.44 3.207 0.021 0.49 1.541 0.140 

ERK1 0.08 1.105 0.277 0.010 0.106 0.899 0.07 1.394 0.168 
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Figure 21: Gene expression analysis of 30min (41.4J/cm²) blue light irradiation - time course of selected AHR inducible genes for further evaluation of gene expression results.
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3.3.9 Verification of genes from chips with qPCR 

To confirm microarray results, genes were selected for real time PCR (qPCR). 

Criteria for selection were pathways with high normalized enrichment scores (NES) 

and/or fold changes of specific genes and connection to AHR signaling pathway. 

qPCRs were performed with RNA samples from harvesting time 24h after 30min of 

blue light irradiation, which were beforehand used for gene expression analysis. 

qPCR results match with the previously obtained gene expression results with 

CYP1A1, CYP1B1, ALDH3A1, NQO1 and UGT1A being significantly upregulated 

and FBJ murine osteosarcoma viral oncogene homolog (FOS), interleukin 8 (IL8) and 

keratin 5 (Krt5) being significantly downregulated (Figure 22).  

 

Figure 22: qPCR of selected genes verifies gene expression analysis results. 
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3.4 Proliferative phase of blue light irradiation - 7.5min (10.35J/cm²) blue light 

irradiation 

3.4.1 Irradiation with 7.5min (10.35J/cm²) of blue light does significantly increase the 

metabolism of HaCaT cells 

Cell metabolism of HaCaT cells was investigated at different harvesting times after 

blue light irradiation with 7.5min (10.35J/cm²). A fast increase of metabolism by 19% 

was achieved 1h after irradiation (p<0.0001). Compared to the no light control, 3h 

after irradiation cell metabolism was increased by 4% (p<0.0001), 2% (p<0.0001) 

after 6h and 1% (p<0.0001) after 12h. The irradiation resulted in an increase of 

metabolism by 12% (p<0.0001) 24h after blue light irradiation and attenuated to an 

increase of 2% (p<0.0001) after 48h and 4% (p<0.0001) after 72h (Figure 23). 

 

Figure 23: XTT results of different time points of harvesting after 7.5min (10.35J/cm²) blue light irradiation. (For 
legend see Figure 9). 
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3.4.2 Consecutive irradiations with 7.5min (10.35J/cm²) of blue light each 24h lead 

to an increase in metabolism for one and two consecutive irradiations, 

followed by a decrease for the third irradiation in HaCaT cells 

As the proliferative effect decreased 48h after blue light irradiation (Figure 23) 

consecutive irradiations with 7.5min (10.35J/cm²) of blue light were performed each 

24h. When irradiated twice, metabolism of HaCaT cells was not significantly different 

from the single irradiation of 12% (p=0.058) with a 10% increase of metabolism 

(significant when compared to the no light control (p<0.0001)); however, after three 

consecutive irradiations metabolism of irradiated cells was decreasing by 7% 

(p<0.0001) compared to the no-light control cells (Figure 24). 

 

 

Figure 24: XTT test results of the different numbers of 7.5min (10.35J/cm²) blue light irradiations 24h after the last 
irradiation. (For legend see Figure 9). 

  

2x 7.5min 3x 7.5min 1x 7.5min 
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3.4.3 Consecutive irradiations with 7.5min (10.35J/cm²) of blue light each 24h lead 

to an increase in proliferation for one and two consecutive irradiations, 

followed by a decrease for the third irradiation in HaCaT cells  

Cell counting and BrdU ELISA of HaCaT cells were conducted at different harvesting 

times after 7.5min (10.35J/cm²) of blue light irradiation to examine the time course of 

the anti-proliferative effect of this dose. As the doubling time of HaCaT cells is 24h, 

an effect on cell proliferation was not expected before 24h after irradiation and 

therefore fits to cell counting results. An increase in cell number of 8% (p=0.2265) 

was induced 24h after irradiation. The effect was decreasing with two consecutive 

irradiations each 24h with 15% (p=0.1169) 48h after irradiation, to 25% (p=0.0562) 

72h after irradiation. 

BrdU was tested for 24h, 48h and 72h harvesting. The extend of BrdU ELISA was 

less  than for cell counting results, however depicted a corresponding proliferative 

result with increase in cell proliferation of 7% (p<0.001) 24h after irradiation and no 

effect with two and three consecutive irradiations (Figure 25). 
 

 

Figure 25: Cell count and BrdU ELISA at the different time points of cell harvesting: 1h, 3h, 6h, 12, 24h, 48h and 
72h after different numbers of 7.5min (10.35J/cm²) of blue light irradiation. Dots display mean values with SD. 

2x 7.5min 3x 7.5min 1x 7.5min 
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3.4.4 Consecutive irradiations with 7.5min (10.35J/cm²) of blue light each 24h 

induce a change in cell cycle phase proportion of HaCaT cells leading to an 

increase in S-phase cells for one and two consecutive irradiations, followed by 

a decrease for the third irradiation 

To test the cell cycle phase proportion of HaCaT cells after 7.5min (10.35J/cm²) of 

blue light irradiation immunofluorescent BrdU staining was used in combination with 

7-AAD, which binds to total DNA. The shift in cell cycles phases was not significant, 

however, already 24h after irradiation a slight shift of cell proportion from G0/G1 to S-

phase (1% (p=0.8211)) was observed, which increased after two consecutive 

irradiations each 24h to 2% (p=0.4033) 48h after irradiation. However, it shifted back 

from S-phase to G0/G1 to -2% (p=0.5152) S-phase cells 72h after irradiation (Figure 

26). 

 

Figure 26: BrdU FACS results of the different numbers of 7.5min (10.35J/cm²) blue light irradiations harvested 
24h after the respective last irradiation. Bars display mean values with SD. 

(1x 7.5min) 

(2x 7.5min) 

(3x 7.5min) 
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3.4.5 7.5min (10.35J/cm2) of blue light irradiation increases H2O2 concentration in 

HaCaT cells immediately after irradiation 

H2O2 concentrations were measured in HaCaT cells at different time points after 

7.5min (10.35J/cm2) blue light irradiation, with a first time point at 30min according to 

incubation time of the reagent AmplexUltraRed. A high increase of H2O2 was noted 

30min after blue light irradiation with 184% more H2O2 compared to the no light 

control cells (p<0.0001) followed by 59% (p<0.0001) 52.5min after irradiation. 

However, the effect could be balanced by the cells to a normal level already 1h after 

irradiation (0.9% after 1h (p=0.7622), -3% after 3h (p=0.5511), -11% after 6h 

(p=0.0157), 2% after 24h (p=0.6351)) (Figure 27). 

 

Figure 27: ROS measurement of 7.5min (10.35J/cm²) blue light irradiation for different harvesting times. Dots 
display mean values with SD. 
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3.4.6 7.5min (10.35J/cm2) of blue light irradiation does not induce apoptosis in 

HaCaT cells 

Fluorescence-activated cell sorting (FACS) was applied to test a possible apoptotic 

effect of blue light on HaCaT cells 24h after 7.5min (10.35J/cm²) irradiation. 

Staurosporine treated cells served as a positive control for induced apoptosis 

resulting in 40% living cells and 60% dead cells. Both untreated and light-treated 

cells exhibited a significant difference to the positive control (p=0.0165 for treated, 

p=0.0104 for untreated). Untreated as well as blue light treated cells contained ~75% 

living cells and ~25% dead cells. Thus, that dose of blue light did not induce 

apoptosis in HaCaT cells (Figure 28, Figure 29). 
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Figure 28: FACS analysis 24h after 7.5min (10.35J/cm²) of blue light irradiation. The four quadrants can be distinguished as follows: lower left quadrant=intact cells, lower right 
quadrant=early apoptosis, upper right quadrant=late apoptotic or secondary necrotic apoptotic cells and upper left quadrant=primary necrotic cells. 7.5min (10.35J/cm²) of blue light 

did not induce apoptosis in HaCaT cells. 
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Figure 29: FACS analysis 24h after 7.5min (10.35J/cm²) of blue light irradiation. For comparison between live and 
dead cells from Figure 28 the lower left quadrant was used for the numbers of intact cells and the other three 
quadrants were taken together to show the amount of dead cells. There is no distinction between early or late 
apoptosis or necrosis. 7.5min (10.35J/cm²) of blue light did not induce apoptosis in HaCaT cells. Bars display 

mean values with SD. 

3.4.7 Gene expression analysis of HaCaT cells at different time points after 7.5min 

(10.35J/cm2) reveals the time course of photobiomodulatory blue light effect 

and upregulation of aryl hydrocarbon receptor target genes 

After examining the distribution and performing batch normalization to exclude a plate 

effect a cluster analysis and PCA were performed. As a next step an ANOVA was 
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performed. Already 1h after irradiation a change in gene expression can be observed 

with 1137 genes significantly differentially expressed. 3h after irradiation the number 

of significantly differentially expressed genes decreased to 888. However, the 

number increased again and reached its maximum 24h after irradiation with 1292 

significantly differentially expressed genes (Table 9). 

Table 9: Significantly deregulated genes and GSEA of 7.5min (10.35J/cm²) blue light irradiation (Irradiation time in 
minutes, harvesting time in h). 

Irradiation time  

Harvesting time 

7.5min 

1h 

7.5min 

3h 

7.5min 

24h 

Significant differentially expressed genes  1137 888 1292 

Significant upregulated genes  477 430 668 

Pathways containing upregulated genes  110 144 168 

Significant pathways containing upregulated genes w ith FDR 

<25% 

0 0 4 

Significant pathways containing upregulated genes w ith 

nominal p-value <5% 

3 10 16 

Significant downregulated genes  660 485 624 

Pathways containing downregulated genes  170 136 112 

Significant pathways containing downregulated genes  with 

FDR <25% 

1 0 0 

Significant pathways containing downregulated genes  with 

nominal p-value <5% 

19 3 5 

 

In Figure 30 the volcano plots depict the regulation of single genes after 7.5min 

(10.35J/cm²) of blue light irradiation, with values higher than 0 being up-regulated 

and lower values being down-regulated. The red line represents the threshold of 

significance showing that for example the gene encoding (CYP1A1) is significantly 

upregulated by blue light 24h after irradiation.  

 



Results 

60 

 

Figure 30: Gene expression analysis of 7.5min (10.35J/cm²) blue light irradiation - volcano plot 1h, 3h and 24h 
after blue light irradiation. 
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Using KEGG database a GSEA was performed (Table 9 and Table 10). To compare 

the proliferative phase of the dose response curve induced by PBM with blue light 

with the anti-proliferative phase, pathways, which were previously described in 

Becker et al. 2016 59 and additionally are highly deregulated after 7.5min 

(10.35J/cm²) blue light irradiation and/or connected to the AHR signaling pathway, 

are depicted in Figure 31. 

Table 10: Gene expression analysis of 7.5min (10.35J/cm²) blue light irradiation - time course of NES for selected 
pathways for further evaluation of gene expression results. 

No. NAME Main Category Sub Category 7.5 
1h 
NES 

7.5 
3h 
NES 

7.5 
24h 
NES 

1 Ovarian 
steroidogenesis  

5. Organismal 
Systems 

5.2 Endocrine system 1.04 0.95 1.92 

2 Steroid hormone 
biosynthesis  

1. Metabolism 1.3 Lipid metabolism 1.27 -1.13 1.79 

3 Arylhydrocarbon 
receptor (AhR) 
signaling pathway  

1. Metabolism 1.11 Xenobiotics 
biodegradation and 
metabolism 

0.95 0.51 1.78 

4 Metabolism of 
xenobiotics by 
cytochrome P450  

1. Metabolism 1.11 Xenobiotics 
biodegradation and 
metabolism 

1.44 -1.19 1.65 

5 VEGF signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.94 -0.81 1.59 

6 Chemical 
carcinogenesis  

6. Human Diseases 6.1 Cancers: Overview 1.26 0.95 1.53 

7 NF-kappa B signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.84 -0.77 1.43 

8 Circadian rhythm  5. Organismal 
Systems 

5.9 Environmental 
adaptation 

-1.33 -0.87 1.38 

9 ErbB signaling pathway  3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.80 0.74 1.36 

10 Tryptophan metabolism  1. Metabolism 1.5 Amino acid 
metabolism 

-0.58 1.23 1.24 

11 Drug metabolism - 
cytochrome P450  

1. Metabolism 1.11 Xenobiotics 
biodegradation and 
metabolism 

1.12 -0.94 1.13 

12 Regulation of lipolysis 
in adipocytes  

5. Organismal 
Systems 

5.2 Endocrine system 0.96 1.16 1.12 

13 Calcium signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.78 -0.94 1.11 

14 Longevity regulating 
pathway  

5. Organismal 
Systems 

5.9 Aging 0.99 -0.50 1.11 

15 mTOR signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction -1.27 0.84 1.09 

16 Inflammatory mediator 
regulation of TRP 
channels  

5. Organismal 
Systems 

5.7 Sensory system 0.91 -0.88 1.08 

17 DNA replication  2. Genetic 
Information 
Processing 

2.4 Replication and 
repair 

0.50 1.09 0.99 

18 Drug metabolism - 
other enzymes  

1. Metabolism 1.11 Xenobiotics 
biodegradation and 
metabolism 

0.98 0.91 0.97 

19 MAPK signaling 
pathway  

3. Environmental 
Information 

3.2 Signal transduction 0.81 -0.77 0.96 
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20 B cell receptor 
signaling pathway  

5. Organismal 
Systems 

5.1 Immune system -0.92 -1.16 0.94 

21 Melanoma  6. Human Diseases 6.2 Cancers: Specific 
types 

-0.88 1.11 0.93 

22 Longevity regulating 
pathway  

5. Organismal 
Systems 

5.9 Aging 0.92 -0.68 0.92 

23 Ras signaling pathway  3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.95 0.72 0.92 

24 Protein processing in 
endoplasmic reticulum  

2. Genetic 
Information 
Processing 

2.3 Folding, sorting and 
degradation 

0.72 0.57 0.88 

25 AMPK signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.92 -0.57 0.87 

26 Terpenoid backbone 
biosynthesis  

1. Metabolism 1.9 Metabolism of 
terpenoids and 
polyketides 

-1.37 1.45 0.84 

27 Circadian entrainment  5. Organismal 
Systems 

5.9 Environmental 
adaptation 

-1.00 -1.12 0.84 

28 Chemokine signaling 
pathway  

5. Organismal 
Systems 

5.1 Immune system -0.85 -1.20 0.81 

29 Estrogen signaling 
pathway  

5. Organismal 
Systems 

5.2 Endocrine system -0.75 -0.97 0.81 

30 Pertussis  6. Human Diseases 6.8 Infectious diseases: 
Bacterial 

-1.75 -0.69 0.80 

31 Wnt signaling pathway  3. Environmental 
Information 
Processing 

3.2 Signal transduction -1.07 -1.07 0.79 

32 Jak-STAT signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction -1.07 -0.83 0.74 

33 PI3K-Akt signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction -1.12 0.83 0.73 

34 RNA transport  2. Genetic 
Information 
Processing 

2.2 Translation -0.77 0.62 0.69 

35 Mismatch repair  2. Genetic 
Information 
Processing 

2.4 Replication and 
repair 

0.68 1.04 0.62 

36 Notch signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.95 0.64 0.62 

37 p53 signaling pathway  4. Cellular 
Processes 

4.3 Cell growth and 
death 

-1.25 0.71 -0.58 

38 Glycolysis / 
Gluconeogenesis  

1. Metabolism 1.1 Carbohydrate 
metabolism 

-1.21 -0.87 -0.65 

39 Cell cycle  4. Cellular 
Processes 

4.3 Cell growth and 
death 

-0.78 0.65 -0.68 

40 Apoptosis  4. Cellular 
Processes 

4.3 Cell growth and 
death 

-1.12 0.81 -0.74 

41 Rap1 signaling pathway  3. Environmental 
Information 
Processing 

3.2 Signal transduction -0.83 0.94 -0.75 

42 Steroid biosynthesis  1. Metabolism 1.3 Lipid metabolism -1.09 -1.07 -0.79 

43 T cell receptor signaling 
pathway  

5. Organismal 
Systems 

5.1 Immune system 1.01 -1.04 -0.79 

44 Apoptosis - multiple 
species  

4. Cellular 
Processes 

4.3 Cell growth and 
death 

-1.05 0.46 -0.82 

45 Toll -like receptor 
signaling pathway  

5. Organismal 
Systems 

5.1 Immune system -1.43 0.91 -0.87 

46 Cell adhesion 
molecules (CAMs)  

3. Environmental 
Information 
Processing 

3.3 Signaling molecules 
and interaction 

-0.85 0.90 -0.89 

47 FoxO signaling pathway  3. Environmental 
Information 

3.2 Signal transduction -0.94 0.56 -0.89 
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48 Citrate cycle (TCA 
cycle)  

1. Metabolism 1.1 Carbohydrate 
metabolism 

-0.78 1.09 -0.89 

49 cAMP signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction 0.74 -0.98 -0.96 

50 NOD-like receptor 
signaling pathway  

5. Organismal 
Systems 

5.1 Immune system -1.36 -0.78 -1.03 

51 TNF signaling pathway  3. Environmental 
Information 
Processing 

3.2 Signal transduction -1.22 -0.75 -1.03 

52 RNA degradation  2. Genetic 
Information 
Processing 

2.3 Folding, sorting and 
degradation 

-1.03 1.03 -1.16 

53 Primary 
immunodeficiency  

6. Human Diseases 6.3 Immune diseases -0.95 -1.07 -1.19 

54 Rheumatoid arthritis  6. Human Diseases 6.3 Immune diseases -1.36 -1.04 -1.21 

55 TGF-beta signaling 
pathway  

3. Environmental 
Information 
Processing 

3.2 Signal transduction -1.20 -0.67 -1.34 

56 Phototransduction  5. Organismal 
Systems 

5.7 Sensory system 0.69 0.66 -1.41 

57 Oxidative 
phosphorylation  

1. Metabolism 1.2 Energy metabolism -0.98 1.25 -1.46 

 

 

Figure 31: Gene expression analysis of 7.5min (10.35J/cm²) blue light irradiation - time course of NES for 
selected pathways for further evaluation of gene expression results. 

Already 1h after 7.5min (10.35J/cm²) blue light irradiation genes connected to AHR 

signaling pathway, chemical carcinogenesis, DNA replication, ErbB signaling 

pathway, metabolism of xenobiotics by cytochrome P450, NF-κB signaling pathway, 
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steroid hormone biosynthesis and T cell receptor signaling pathway were 

upregulated. AHR signaling pathway, chemical carcinogenesis, DNA replication and 

ErbB signaling pathway were upregulated for all three harvesting times whereas 

metabolism of xenobiotics by cytochrome P450, NF-κB signaling pathway, steroid 

hormone biosynthesis and T cell receptor signaling pathway alternated between 

downregulation 3h after irradiation to upregulation 24h after irradiation. Consistently 

downregulated pathways were Rheumatoid arthritis, TGF-β signaling pathway and 

TNF signaling pathway. Additionally, Tryptophan metabolism was downregulated 1h 

after irradiation, however, upregulated 3h and 24h after irradiation. The time course 

of gene expression analysis at different time points after 7.5min (10.35J/cm²) blue 

light irradiation of highly deregulated genes and genes connected to the AHR 

signaling pathway are illustrated in Figure 32, Figure 33 and Table 11. CYP1A1, 

ALDH3A1 and NQO1 were slightly downregulated at 1h after irradiation, however, 3h 

and 24h after irradiation they were upregulated. GSTA1 was considerably 

upregulated only 3h after irradiation and CYP1B1 only 24h after irradiation. UGT1A 

was upregulation 1h after irradiation but downregulated after 3h and 24h after 

irradiation, while CDKN1B and TRADD were upregulated after 1h and 3h, but 

downregulated 24h after irradiation. AHRR, CYP1A2 and NFE2L2 (Nrf2) are not 

considerably regulated. 
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Table 11: Gene expression analysis of 7.5min (10.35J/cm²) blue light irradiation - time course of selected AHR inducible genes for further evaluation of gene expression results. 

Gene 

name 

7.5min 1h 

log2(fold 

change)  

7.5min 1h  

-log10(p-value)  

7.5min 1h  

Adjusted p-

value  

7.5min 3h  

log2 (fold 

change)  

7.5min 3h  

-log10(p-value)  

7.5min 3h  

Adjusted p-

value  

7.5min 24h  

log2(fold 

change)  

7.5min 24h  

-log10(p-value)  

7.5min 24h  

Adjusted p-

value  

AHR -0.07 1.357 0.223 -0.07 1.553 0.186 -0.04 0.321 0.714 

AHRR -0.09 1.359 0.222 0.06 0.252 0.746 0.07 0.106 0.900 

ALDH3A1 -0.12 0.919 0.363 0.12 1.231 0.262 0.26 0.778 0.423 

CDKN1B 0.22 0.986 0.337 0.21 2.488 0.066 -0.05 0.231 0.788 

CYP1A1 -0.04 0.286 0.737 0.13 1.737 0.152 1.48 4.043 0.011 

CYP1A2 -0.07 0.442 0.619 0.02 0.103 0.890 -0.07 0.556 0.550 

CYP1B1 0.00 0.040 0.962 0.01 0.447 0.594 0.71 2.259 0.072 

GSTA1 0.05 0.284 0.739 0.26 0.804 0.412 0.03 0.065 0.938 

NFE2L2 0.02 0.121 0.886 0.04 0.203 0.791 -0.07 0.546 0.556 

NQO1 -0.08 0.396 0.653 0.26 2.084 0.104 0.40 3.376 0.021 

TRADD 0.05 0.464 0.605 0.23 1.645 0.168 -0.30 1.354 0.210 

UGT1A5 0.48 3.601 0.0176 -0.160 0.715 0.451 -0.02 0.048 0.955 

ERK1 0.10 2.239 0.080 0.126 0.442 0.597 0.025 0.225 0.794 

 



Results 

66 

 

Figure 32: Gene expression analysis of 7.5min (10.35J/cm²) blue light irradiation - time course of selected AHR inducible genes for further evaluation of gene expression results. 
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Figure 33: Aryl Hydrocarbon Receptor (AHR) signaling pathway for 7.5min (10.35J/cm²) blue light irradiation and 24h harvesting time. Red: upregulated gene expression after AHR 
activation, green: downregulated gene expression after AHR activation. 
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3.4.8 Verification of genes from chips with qPCR 

Also for 7.5min (10.35J/cm²) blue light irradiation real time PCR (qPCR) was 

conducted to confirm selected genes of microarray results. qPCRs were performed 

with RNA samples from harvesting time 24h after 7.5min of blue light irradiation, 

which were beforehand used for gene expression analysis. qPCR results match with 

the previously obtained gene expression results with CYP1A1, CYP1B1, ALDH3A1 

and NQO1 being significantly upregulated and FBJ murine osteosarcoma viral 

oncogene homolog (FOS), interleukin 8 (IL8) and keratin 5 (Krt5). UGT1A was not 

significantly regulated, however, showed a shift to downregulation in both 

experiments (Figure 34).  

 

Figure 34: qPCR of selected genes verifies gene expression analysis results. 
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4 DISCUSSION 

The literature search for the effect of blue visible light on keratinocytes showed as 

main light effects the induction of proliferation, reduction of proliferation and even 

induction of apoptosis (Figure 5). Results seemed to be cell type specific and not 

clearly assignable to a certain dose. Therefore, as a first experiment different 

irradiation times respectively energy densities were tested on HaCaT cells to obtain 

an overview for dose effects. 

PBM using blue light irradiation induces a biphasic dose response curve in human 

immortalized keratinocytes with an increase in metabolism for low doses and a 

decrease in metabolism for higher doses in vitro (Figure 9) 58. Two irradiation times 

were chosen to test the difference between proliferative and anti-proliferative phase 

of this biphasic curve. 7.5min (10.35J/cm²) blue light irradiation showed the highest 

increase in metabolism (Figure 9) and was consequently chosen for the proliferative 

phase. For the anti-proliferative phase 30min (41.4J/cm²) blue light irradiation was 

selected as this was the lowest dose where the highest decrease in metabolism was 

found (Figure 9). To explain the photobiomodulatory effect of blue light irradiation 

with the selected doses functional experiments were performed. Therefore, cell 

metabolism and proliferation were tested using XTT, cell counting, BrdU ELISA and 

BrdU FACS, ROS concentrations were measured and, for safety, apoptosis was 

analyzed using FACS. Furthermore, a comprehensive evaluation of gene expression 

analysis for the time points 1h, 3h and 24h after blue light irradiation was conducted.  

4.1 Anti-proliferative phase 

Viability tests demonstrated the inhibitory effect of 30min (41.4J/cm²) blue light on cell 

metabolism and proliferation, with BrdU FACS pointing out a shift of irradiated cells to 

the S-phase of cell cycle. Those effects could be prolonged with consecutive 

irradiations each 24h. ROS measurement confirmed a high increase of ROS directly 

after irradiation, which is expected after light treatment. However, ROS could be 

balanced to normal level quite fast and apoptosis test using FACS excluded any 

apoptotic induction of the used light dosage. Gene expression results were fitting to 

preceding experiments and revealed AHR as possible target for blue light irradiation. 

XTT, cell counting and BrdU labeling were performed to investigate the metabolism 

and cell proliferation of HaCaT cells at different time points after a 30min (40.4J/cm²) 
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irradiation with blue light (Figure 10 - Figure 13). Already 1h after irradiation the 

metabolism of the cells was decreased and reached its maximum decrease 24h after 

irradiation. 48h after irradiation the effect was gone. However, it could be prolonged 

with consecutive irradiations every 24h. As changes in cell metabolism are faster and 

more pronounced compared to changes in cell proliferation, proliferation tests are 

expected to show smaller results which occur later then metabolic changes. 

Therefore, proliferation with cell counting and BrdU ELISA showed matching results 

compared with XTT test. Cell proliferation was decreased 24h after irradiation and 

the effect was more pronounced with consecutive irradiations every 24h. Hence it 

would be suggested to irradiate at least once per day if an anti-proliferative effect is 

desired.  

H2O2 concentrations were tested in cells to confirm a light induced ROS production. 

ROS levels were increased 1.26 fold 30min after irradiation (Figure 14). Interestingly, 

the cells could balance that rise already after 1h and concentrations alternated 

between slightly increased and decreased until 24h after irradiation. These results fit 

to the phenomenon called mitohormesis, which is the adaptive response of 

mitochondria to varying ROS levels. In general, ROS, which are produced mainly in 

mitochondria, are signaling molecules induced by stress and an increased demand 

for readily available energy, which triggers the retrograde response; a process 

resulting in transcriptional changes in the nucleus 63, 64. In more detail, ROS oxidize 

e.g. thiol groups on cysteine residues thereby activating downstream processes by 

changing functions of the enzymes in a signaling pathway 65 leading to a reversible 

signal transduction mechanism 66. They are able to precondition the organism 

thereby inducing cellular defense mechanisms that finally serve as a long-term 

protective shield 67 and even prevent cellular damage 63, 64. Furthermore, this process 

activates detoxification routes which finally result in a reduction of the initial signaling 

molecules and explain how the HaCaT cells could reduce H2O2 concentrations 

already 1h after blue light irradiation (Figure 14).  

While low concentrations of ROS act in a protective way 68 high concentrations of 

ROS are well known to be able to irreversibly destroy cellular structures 68. Although, 

gene expression analysis did not show any cell repair mechanisms, FACS analysis 

was used to test for apoptosis of the cells 24h after 30min (41.4J/cm²) of blue light 

irradiation. The cells did not show any signs of apoptosis (Figure 15 and Figure 16), 



Discussion 

71 

which fits to the hypothesis that light-induced ROS concentrations are not too high 

and do not damage the cells. 

Gene expression analysis revealed a high number of deregulated genes already one 

1h after irradiation, with even increasing numbers for 3h and highest numbers 24h 

after irradiation (Table 6). Subsequent GSEA depicted that blue light deregulates a 

variety of pathways in a time dependent manner (Table 7 and Figure 18), with some 

pathways already deregulated 1h after irradiation, which consequently induce the 

early response of blue light irradiation.  

One of those early pathways is the pathway of metabolism of xenobiotics by CYPs 

(Table 7 and Figure 18) with CYP1A1, which is also known as aryl hydrocarbon 

hydroxylase 69, and CYP1B1 as highly upregulated genes (Figure 21). They are best 

known for their metabolic activation of polycyclic aromatic hydrocarbons (PAHs) and 

heterocyclic aromatic amines/amides (HAAs) to electrophilic reactive intermediates 
69-71. Their gene expression is regulated by a heterodimeric transcription factor 

consisting of the aryl hydrocarbon receptor nuclear translocator (ARNT) and the aryl 

hydrocarbon receptor (AHR) 70, 71. The latter belongs to the group of basic helix-loop-

helix (bHLH) PAS (homologous to Per/ARNT/Sim) proteins 72 and is a ligand 

activated transcription factor usually defined as transcriptional regulator connected to 

adaptive xenobiotic response 73. The ligand binding pocket of the AHR is able to fit a 

large number of planar, hydrophobic compounds 74 with PAHs and HAAs as well-

known exogenous ligands 75. However, rising evidence led to the discovery of the 

existence of endogenous AHR ligands 75 indicating that physiological functions of 

AHR are important for normal cell development and immune responses 73, 76. 

AHR serves not only as an internal oxygen and redox status sensor, but also 

recognizes low molecular-weight compounds and light 77, 78 with endogenous ligands 

derived from tryptophan due to UV or visible light exposure induced photolytic 

destruction/photo-oxidation 12, 72, 75. As the epidermis, consisting mainly of 

keratinocytes, has a high tryptophan content, the irradiation of keratinocytes with 

453nm blue light for 30min respectively 41.4J/cm² may be able to induce the 

production of high affinity AHR ligands like 2,3,7,8-Tetrachlordibenzodioxin (TCDD), 

6-formylindolo[3,2-b]carbazole (FICZ), 6,12-diformylindolo[3,2- b]carbazole (dFICZ) 

and oxi FICZ carboxylic acid type originating from indolo[3,2-b]carbazole-6-carboxylic 

acid (CICZ) which are natural substrates for CYPs present in skin cells 72. After 

ligand binding AHR, which is located in the cytoplasm in its inactive state, forms a 
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heterodimer with ARNT and translocates to the nucleus. Subsequently, it binds to the 

AHR-mediated aromatic hydrocarbon response element (AHRE, also XRE or DRE) 

DNA motif 69, which leads to an upregulated transcription of a battery of xenobiotic-

metabolizing enzymes (XMEs) 57, which are collectively referred to as “AHR gene 

battery” 73 (Figure 21). These target genes are encoding phase I and phase II 

xenobiotic-metabolizing enzymes, which are vital for detoxification of xenobiotics 69, 

73. The main enzymes encoded by AHR affected genes that are involved in phase I of 

xenobiotic metabolism are CYP1A1, CYP1A2, CYP1B1, NQO1 and ALDH3A1, 

whereas UGT1A and GSTA1 are connected to phase II 57, 69, 73.  

Gene expression analysis revealed an upregulation of CYP1A1, CYP1B1, ALDH3A1, 

NQO1 and UGT1A5 already 1h after blue light irradiation, which is stable up to 3h 

(Figure 21). CYP1A1, CYP1B1, ALDH3A1 and NQO1 show an even higher 

upregulation in gene expression 24h after irradiation, whereas UGT1A remains at the 

same level. This gene-regulation downstream of AHR activation strengthens the 

hypothesis that AHR is activated due to photo-oxidation of tryptophan after blue light 

irradiation. Moreover, activation of metabolism of xenobiotics by CYPs can lead to an 

activation of steroid hormone biosynthesis with NQO1 and ALDH3A1 likewise 

involved 58, 79, 80 fitting to the findings of upregulated genes in the pathway of steroid 

hormone biosynthesis in gene expression analysis for all tested time points after blue 

light irradiation (Table 7 and Figure 18). 

Another overall consequence of AHR activated gene expression is generation of 

electrophilic reactive intermediates which induce reactive oxygenated metabolite 

(ROM)-mediated oxidative stress 69. This triggers, besides the AHR dependent gene 

activation via AHRE, the additional Nrf2 dependent gene activation via the 

electrophile response element (EPRE, (also ARE) DNA motif 69 resulting in 

expression of phase II detoxification enzymes 81, 82, thereby reducing oxidative stress 
82.  

In its inactive state the transcription factor Nrf2 is bound to the substrate adaptor 

protein Kelch-like ECH-associated protein 1 (Keap1), which mediates the 

ubiquitination and subsequent proteasomal degradation of Nrf2 by a Cullin3-

dependent E3 ubiquitin ligase complex 83, 84. After AHR induces ROM-mediated 

oxidative stress Keap1 is not able to bind to Nrf2 anymore as critical cysteine 

residues of the protein are oxidized thereby changing its conformation. Subsequently, 

the unbound Nrf2 is translocated to the nucleus activating gene expression via EPRE 
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84. Target genes are partially consistent with AHR activated AHRE transcribed genes 

comprising inter alia ALDH3A1, NQO1 and UGT1A 85. This is in agreement with the 

gene expression results (Figure 21). Additionally, gene expression of Nrf2 itself is 

upregulated after blue light irradiation (Figure 21) causing a higher level of Nrf2 

transcription factor and more effective activation of the downstream process for 

reducing oxidative stress, which was shown before by Miao and colleagues in 2005 
86. Furthermore, Keap1 can degrade the inhibitor of kappa light polypeptide gene 

enhancer in B-cells kinase beta (IKKβ), which leads to an inhibition of activation of 

nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB) 84, 87 and 

thereby to an anti-inflammatory response 88. Moreover, AHR can directly interact with 

the transcription factor JunB to modulate skin immune responses, which was shown 

to play an important role in suppression of psoriatic lesions in keratinocytes 76. This 

can be observed in gene expression analysis where, besides the NF-κB signaling 

pathway, above all inflammatory pathways are downregulated (Table 7 and Figure 

18).  

Cell cycle arrest pathway can be directly activated through ROS production 58, 89, 

however, AHR activation can influence the cell cycle, too 71. After binding 

retinoblastoma 1 (RB1) 90, the AHR-RBI complex can block E2F-mediated 

transcription of S-phase genes like e.g. CDKN1B 71, 91, 92, resulting in an inhibition of 

normal progression of G1- to S-phase in cell cycle 71. CDKN1B is downregulated 1h 

and 3h after blue light irradiation (Figure 21), additionally to ROS induced cell cycle 

arrest (Table 7 and Figure 18). This explains the decrease of cell metabolism and 

proliferation with blue light. Moreover, cell cycle arrest was verified with BrdU FACS, 

where even though cell number was lower after irradiation, irradiated cells shifted to 

S-phase. This effect was more pronounced after consecutive irradiations (Figure 13) 

and lead to the conclusion, that the S-phase is slowed down after 30min (41.4J/cm²) 

blue light irradiation. Interestingly, at the time point 24h after one blue light irradiation, 

CDKN1B is slightly downregulated (Figure 21). These findings fit to the gene 

expression results of the pathway of DNA replication, which was downregulated for 

1h and 3h after irradiation but slightly upregulated 24h after irradiation (Table 7 and 

Figure 18) and would explain why the metabolism is again at the normal level 48h 

after one irradiation (Figure 9). 

Next to its function as transcription factor the AHR-ligand complex can associate with 

cell division cycle 37 control protein (Cdc37) and the non-receptor tyrosine kinase Src 



Discussion 

74 

causing the dissociation of the latter. Consequently, Src translocation into the cell 

membrane is promoted where it phosphorylates the epidermal growth factor receptor 

(EGFR, also ERBB), which activates ERK1/2 (also MAPK3/1) target gene expression 

leading to cell survival 73, 93. The crucial time point for the cell to decide between cell 

survival and apoptosis after blue light irradiation seems to be during the first hour 

after irradiation. Here, oxidative stress is induced, which was described with an 

increase of H2O2 production 30min after blue light irradiation followed by a decrease 

already 1h after irradiation. An early upregulation of ERK1/2 occurs 1h after 

irradiation (Table 8) on gene expression level triggering cell survival pathways. This 

cell survival effect is emphasized by the additional downregulation of TFN signaling 

pathway (Table 7 and Figure 18) containing TRADD, which can signal apoptosis 69, 

73. TRADD is downregulated for all tested time points after blue light irradiation with a 

maximum after 3h (Figure 21). 

Finally, AHR activation triggers the induction of AHRR gene expression 3h after blue 

light irradiation (Figure 21) which is known to lead to a dimerization of AHRR with 

ANRT and results in an inhibition of AHR function. Therefore, AHRR activation by 

AHR represents a regulatory biofeedback loop in the xenobiotic signal transduction 

pathway 57, 94, 95. 

4.2 Proliferative phase 

Viability tests demonstrated the activation of cell metabolism and proliferation after 

one 7.5min (10.35J/cm²) blue light irradiation, with BrdU FACS pointing to a shift of 

irradiated cells to the S-phase of cell cycle. However, consecutive irradiations lead to 

a decrease in metabolism and proliferation and a shift of irradiated cells to G0/G1-

phase. ROS measurement confirmed a high increase of ROS directly after irradiation 

but could be balanced to normal level quite fast. Additionally, apoptosis test using 

FACS excluded any apoptotic induction of the used light dosage. Gene expression 

results were less pronounced than for 30min (41.4J/cm²) blue light irradiation. 

Nevertheless, they were fitting to preceding experiments and supported the 

hypothesis of AHR being a possible target for blue light irradiation and pointed out 

the importance of dosage when using PBM.  

 

AHR activation via photo-oxidation of tryptophan was the main hypothesis for the 

photobiomodulatory effect of 30min (41.4J/cm2) blue light irradiation connected to cell 
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protection with decreased proliferation, increased production of steroid hormones and 

prevention of inflammatory responses. Likewise for 7.5min (10.35J/cm²) of blue light 

irradiation AHR induced gene transcription was deregulated with CYP1A1, ALDH3A1 

and NQO1 upregulated 3h and 24h after irradiation. GSTA1 was considerably 

upregulated 3h after irradiation and CYP1B1 24h after irradiation. Furthermore, 

UGT1A was upregulated 1h after irradiation (Figure 32). Corresponding to that the 

pathway analysis revealed an upregulation of AHR signaling pathway, as well as 

metabolism of xenobiotics by CYPs and steroid hormone biosynthesis (Figure 31), 

which involves inter alia NQO1 and ALDH3A1 58, 79, 80. However, deregulation for 

these genes as well as activation of the named pathways was significantly less 

compared to 30min (41.4J/cm2) of blue light irradiation fitting to the dose dependency 

of PBM.  

XTT, cell counting and BrdU labeling were performed to investigate the metabolism 

and cell proliferation of HaCaT cells at different time points after a 7.5min 

(10.35J/cm²) irradiation with blue light (Figure 23 - Figure 26). The metabolism was 

increased for all time points after irradiation up to at least 72h (Figure 23). Also 

proliferation was increased 24h after irradiation (Figure 25). However, consecutive 

irradiations did not lead to a prolongation of this effect and even lead to a shift of 

irradiated cells to G0/G1-phase in BrdU FACS with 3 consecutive irradiations each 

24h (Figure 26). Consequently it is not suggested to irradiate every 24h, if a 

proliferative effect is desired. 

AHR can directly influence the cell cycle by binding to retinoblastoma 1 (RB1) 71, 90 . 

Consequently, the progression of G1- to S-phase in cell cycle can be inhibited by 

blocking the E2F-mediated transcription of S phase genes like e.g. CDKN1B 71, 91, 92. 

After an irradiation with 7.5min (10.35J/cm²) blue light, RB1 was downregulated for 

1h and 3h and consequently the hypothesis emerged that the translated protein was 

less available for complexing with AHR. Matching to this hypothesis, CDKN1B was 

slightly upregulated after 1h and 3h after irradiation (Figure 32). Furthermore, the 

pathway of DNA replication was upregulated for all three time points (Figure 31) 

explaining the XTT results described before and the slight shift of irradiated cells to 

S-phase in BrdU FACS (Figure 26). These findings fit to Yin et. al. 2016 who 

described that in addition to negatively regulating cell proliferation and survival, AHR 

may also positively regulate these pathways. Differences in the time frame, dosage of 
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the ligand, category of ligand, cell type or whether the experiment was performed in 

vivo or in vitro may be the reason for these dual functions 96.  

As a next step H2O2 concentrations were measured to examine oxidative stress, 

which revealed an even higher rise in H2O2 30min after irradiation when compared to 

30min (41.4J/cm2) blue light irradiation. This result was unexpected as higher H2O2 

levels could be connected to higher oxidative stress. Further tests have to be 

performed to explain these results. It might be connected to the increased 

metabolism of the cells after 7.5min (10.35J/cm²) blue light irradiation, as higher 

metabolic activity correlates with ROS production in mitochondria. Furthermore, they 

might fit to the “triphasic” response of ROS production after PBM described by Huang 

et al. 2011 97. ROS measurements were performed after PBM using an 810nm laser 

resulting in two distinct peaks for mitochondrial ROS in cultured cortical neurons. 

Their hypothesis was that two kinds of ROS exist leading to the triphasic course; with 

firstly beneficial ROS produced by low fluences of LLLT leading to the first peak, 

followed by decreasing of beneficial ROS with increasing fluences and finally harmful 

ROS produced with high fluences leading to the second peak. “Good” ROS, which 

are produced through stimulation of mitochondrial electron transport by lower 

fluences, are able to act as mediators of cell signaling processes. Thereby, beneficial 

cell signaling pathways can be activated like for example NF-κB 98, 99, which is a 

redox sensitive transcription factor and is able to induce expression of a large 

number of gene products connected to cell survival, proliferation 100, 101 and 

regulation of inflammation 88, 97. This would match with gene expression analysis 

where the NF-κB signaling pathway is upregulated 1h and 24h after blue light 

irradiation (Figure 31) leading to the hypothesis, that although H2O2 concentrations 

were higher after a 7.5min (10.35J/cm²) blue light irradiation compared to 30min 

(41.4J/cm2) the actual oxidative stress was lesser. 

Alongside with AHR, Nrf2 dependent gene activation via the electrophile response 

element (EPRE, also ARE) DNA motif 69 can be activated by reactive oxygenated 

metabolite (ROM)-mediated oxidative stress. ROM-mediated oxidative stress is either 

induced directly by light or as an AHR downstream process. Resulting in expression 

of phase I and phase II detoxification enzymes 81, 82, which are partially consistent 

with AHR activated AHRE transcribed genes comprising inter alia ALDH3A1, NQO1, 

GSTA1 and UGT1A   85,  this pathway reduces oxidative stress 82. Consequently, 

activation of this Nrf2 dependent gene transcription can be used to evaluate the 
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latter. Gene expression results fit with the hypothesis that even though H2O2 

concentrations were higher after a 7.5min (10.35J/cm²) blue light irradiation 

compared to 30min (41.4J/cm2) the induced oxidative stress was lower, with UGT1A 

and GSTA1 not considerably deregulated, as well as Nrf2 itself not regulated (Figure 

32). 

Furthermore, cell survival can be induced by AHR-ligand complex association with 

cell division cycle 37 control protein (Cdc37) and the non-receptor tyrosine kinase Src 

causing the dissociation of the latter. ERK1/2 (also MAPK3/1) target gene expression 

can be activated subsequently through phosphorylation of the epidermal growth 

factor receptor (EGFR, also ERBB) by translocated Src 73, 93. An early upregulation of 

ERK1 occurs 1h and 3h after irradiation on gene expression level triggering cell 

survival pathways (Table 11). Underlining this cell survival effect is the 

downregulation of TRADD 24h after blue light irradiation (Figure 32), which is 

connected to apoptosis signaling, as well as the downregulated TNF signaling 

pathway, which was downregulated for all three timepoints after irradiation (Figure 

31) 69, 73.  

4.3 Conclusion 

The effect of PBM using blue light is dose dependent. The biphasic dose response 

curve of proliferation in HaCaT cells is reflected in the gene expression results. The 

two used dosages of 7.5min (10.35J/cm²) and 30min (41.4J/cm²) of blue light show 

some similarities, like production of steroid hormones and induction of cell survival 

pathways. However, there are some significant differences as for example the level 

of oxidative stress. Gene expression results show that the oxidative stress dependent 

Nrf2 transcribed genes were not deregulated for 7.5min (10.35J/cm²) blue light 

irradiation. However, when increasing the dose to 30min (41.4J/cm²) blue light, Nrf2 

transcribed genes were highly upregulated. After activation of AHR with blue light, the 

dose seems to determine the extent of the downstream effect and therefore the dose 

dependency seems to be induced by the secondary steps after blue light irradiation, 

with oxidative stress being one of the most influencing factors.  As a summary it can 

be said that blue light provides us with a promising treatment method for different 

paradigms with the dose as an important parameter to be selected according to the 

needs of the patient. 
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5 SUMMARY 

The skin, which is the largest organ of the human body, serves as a protective barrier 

between the internal milieu and the environment. It functions as the body’s first line of 

defense against infection and regulates its temperature and fluid balance 11.  

Keratinocytes are present in all the layers of the epidermis 21, the outermost layer of 

the skin, and are essentially connected to the pathophysiology of skin diseases such 

as psoriasis and atopic dermatitis, and play a crucial role in skin wound healing 14, 20. 

Keratinocytes are the first cells to be in contact when exposed with external stimuli 

and are consequently more amenable to non-invasive treatments such as PBM using 

blue light 21. The anti-microbial 36, anti-inflammatory 37 and anti-proliferative effects 38, 

39 of blue light are already used for different medical treatments like psoriasis 33, 

neonatal jaundice 34 and back pain 35. However, little is known about the mechanisms 

transducing the light induced signals from target molecules over downstream 

processes and/or gene expression to the biological effects 56 and therefore the aim of 

this project was to examine the photobiomodulary effect of blue light on the 

immortalized human keratinocyte cell line HaCaT in detail. 

 

Photobiomodulation using blue light irradiation induces a biphasic dose response 

curve of metabolism in HaCaT cells with an increase in metabolism and proliferation 

for low doses and a decrease in metabolism and proliferation for higher doses in vitro 

(Figure 9) 58. For further tests, 7.5min (10.35J/cm²) respectively 30min (41.4J/cm²) 

were chosen for subsequent experiments to test the blue light effect after different 

harvesting times in the proliferative phase respectively the anti-proliferative phase of 

PBM. 

 

Gene expression evaluation of HaCaT cells after 30min (41.4J/cm²) of blue light 

irradiation revealed an upregulation of “AHR battery genes” leading to production of 

phase I and phase II enzymes of xenobiotic metabolism 69, 73. One important action of 

this downstream process is to provide a delicate hormesis between promoting and 

preventing ROM-mediated oxidative stress, which is in agreement with our ROS 

measurements. H2O2 concentrations are increased 30min after blue light irradiation; 

however, already 1h after irradiation H2O2 is metabolized by the cells leading to an 
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even lower ROS concentration. Furthermore, steroid hormone biosynthesis is 

activated as a downstream process of “AHR battery gene” expression 39, 79, 80, 89 

already 1h after irradiation triggering anti-inflammatory responses 79, 102, 103. 

Additionally, inflammation is also decreased due to oxidative stress inhibited NF-κB 

signaling pathway 84, 87, 88 and interaction with JunB 76. DNA replication pathway is 

downregulated resulting in a decrease in cell proliferation due to primary production 

of ROS 89, AHR-induced downregulation of CDKN1B 71 and prolongation of S-phase. 

However, ROS concentrations are not reaching a damaging level as cell survival 

pathways are enhanced by crosstalk of AHR-ligand complex with EGFR. Moreover, 

reduction of TNF-signaling pathway and downregulation of TRADD gene expression, 

which are relevant for apoptotic signaling, are consistent with FACS analysis as 24h 

after blue light irradiation cells are not showing any sign of apoptosis. Finally, it can 

be concluded that gene expression after 30min (41.4J/cm²) of blue light irradiation 

shows a time course after blue light irradiation, with early response genes and 

pathways leading to the identification of AHR as a possible target for PBM with blue 

light via photo-oxidation of tryptophan resulting, when using this described dose, in a 

cell protective effect with decreased proliferation, production of steroid hormones and 

prevention of inflammatory responses. Moreover, the anti- proliferative effect can be 

prolonged by consecutive irradiations each 24h. 

 

Photobiomodulation with 7.5min (10.35J/cm²) blue light induced a proliferation 

increase in HaCaT cells until at least up to 24h after irradiation, which was 

documented in gene expression analysis with upregulation of DNA replication 

pathway and genes connected to cell cycle. H2O2 concentrations were increased 

30min after blue light irradiation to an even higher level than after a 30min 

(41.4J/cm2) blue light irradiation; however, already 1h after irradiation H2O2 was 

metabolized by the cells. The hypothesis was set that even though H2O2 

concentrations were higher after a 7.5min (10.35J/cm²) blue light irradiation 

compared to 30min (41.4J/cm2) the actual oxidative stress was lower. This was 

explained with the triphasic ROS production-curve induced by PBM described by 

Huang et al. 2011 97 and could be linked to gene expression analysis results, where 

for example oxidative stress dependent Nrf2 transcribed genes were not deregulated. 

It was not only shown that ROS production was not damaging the cells but even that 

cell survival pathways were enhanced by crosstalk of EGFR with the AHR-ligand 
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complex. Furthermore, apoptotic signaling was downregulated as TRADD gene 

expression and TNF-signaling pathway were reduced. Comparable with 30min 

(41.4J/cm²) blue light irradiation, gene expression analysis revealed an upregulation 

of “AHR battery genes” after 7.5min (10.35J/cm²) blue light leading to production of 

phase I and phase II enzymes of xenobiotic metabolism 69, 73 and steroid hormone 

biosynthesis as a downstream process of “AHR battery gene” expression 39, 79, 80, 89. 

However, deregulation of genes and pathways occurred to a smaller extent. Finally, it 

can be concluded that PBM with blue light, when using 7.5min (10.35J/cm²), 

activates AHR and results in a cell protective effect with increased proliferation, 

production of steroid hormones and induction of cell survival pathways. Furthermore, 

it is suggested not to use consecutive irradiations each 24h if a proliferative effect is 

desired. 
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