
INAUGURAL-DISSERTATION

zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich-Mathematischen Gesamtfakultät

der

Ruprecht-Karls-Universität Heidelberg

vorgelegt von

M. Sc. Conrad Leidereiter

aus Prenzlau

Tag der mündlichen Prüfung:

12. Februar 2018

Numerical Methods for

Scenario Tree Nonlinear Model Predictive Control

Gutachter:

Prof. Dr. Dr. h. c. mult. Hans Georg Bock
Prof. Dr. Ekaterina Kostina

Danksagung

Meine tiefe Dankbarkeit gilt an dieser Stelle allen, die mich bei dieser Arbeit inspiriert und

unterstützt haben. Ich danke meinen Lehrern und Mentoren der Fakultät für Mathematik

und Informatik, Hans Georg Bock, Christian Kirches, Ekaterina Kostina, Johannes Schlöder

und Andreas Potschka, für das Teilen ihres umfangreichen Wissens und für das Vertrauen

in meine Arbeit.

Für die anregende Umgebung danke ich dem Interdisziplinären Zentrum für Wissen-

schaftliches Rechnen der Ruprecht-Karls-Universität Heidelberg, deren Lehre, Forschung

und Entwicklung die Basis dieser Arbeit formen. Ich bedanke mich bei allen Kollegen der

Arbeitsgruppen Simulation und Optimierung, Numerische Optimierung, Model-Based Op-

timizing Control, Optimization of Uncertain Systems und Optimum Experimental Design

für die freundliche und kooperative Atmosphäre, für die fachlichen und die überfachlichen

Gespräche.

Der Graduiertenschule HGS MathComp als Struktur aus der Exzellenzinitiative danke

ich für ihre Angebote, die ich während der Promotion gern genutzt habe. Für die erfolgrei-

che Zusammenarbeit im Kreis der Officer des Heidelberg Chapter of SIAM danke ich Anja

Bettendorf, Dominik Cebulla, Diana-Patricia Danciu, Jürgen Gutekunst, Robert Kircheis,

Ole Klein, Felix Lenders, Robert Scholz, Ruobing Shen und Christoph Weiler.

Dem DFG-Cluster Optimizing Control for Uncertain Systems und dem ERC Grant Model-

Based Optimizing Control gebühren Dank für die finanzielle Unterstützung.

Meinen Dank für die Unterstützung in organisatorischen Angelegenheiten richte ich an

die Verwaltung der Arbeitsgruppe Simulation und Optimierung, Abir Al-Laham, Margret

Rothfuß, Anastasia Valter und Anja Vogel, sowie an die HGS Verwaltung, Ria Hillenbrand-

Lynott und Sarah Steinbach. Für die Rahmenbedingungen der Promotion danke ich der

Fakultät für Mathematik und Informatik der Ruprecht-Karls-Universität Heidelberg und für

die Unterstützung in formalen Promotionsangelegenheiten danke ich Dorothea Heukäufer

vom Dekanat.

Schließlich danke ich von Herzen meinen Eltern und meiner Schwester, dass sie immer

für mich da sind.

Abstract

In this thesis we propose new methods in the field of numerical mathematics and stochastics

for a model-based optimization method to control dynamical systems under uncertainty. In

model-based control the model-plant mismatch is often large and unforeseen external in-

fluences on the dynamics must be taken into account. Therefore we extend the dynamical

system by a stochastic component and approximate it by scenario trees. The combination

of Nonlinear Model Predictive Control (NMPC) and the scenario tree approach to robus-

tify with respect to the uncertainty is of growing interest. In engineering practice scenario

tree NMPC yields a beneficial balance of the conservatism introduced by the robustification

with respect to the uncertainty and the controller performance. However, there is a high

numerical effort to solve the occuring optimization problems, which heavily depends on the

design of the scenario tree used to approximate the uncertainty. A big challenge is then

to control the system in real-time. The contribution of this work to the field of numeri-

cal optimization is a structure exploiting method for the large-scale optimization problems

based on dual decomposition that yields smaller subproblems. They can be solved in a

massively parallel fashion and additionally their discretization structure can be exploited

numerically. Furthermore, this thesis presents novel methods to generate suitable scenario

trees to approximate the uncertainty. Our scenario tree generation based on quadrature rules

for sparse grids allows for scenario tree NMPC in high-dimensional uncertainty spaces with

approximation properties of the quadrature rules. A further novel approach of this thesis to

generate scenario trees is based on the interpretation of the underlying stochastic process as

a Markov chain. Under the Markovian assumption we provide guarantees for the scenario

tree approximation of the uncertainty. Finally, we present numerical results for scenario tree

NMPC. We consider dynamical systems from the chemical industry and demonstrate that

the methods developed in this thesis solve optimization problems with large scenario trees

in real-time.

Zusammenfassung

Diese Arbeit stellt neue Methoden aus dem Bereich der numerischen Mathematik und der

Stochastik für ein modellbasiertes Optimierungsverfahren zur Regelung unsicherheitsbe-

hafteter dynamischer Systeme vor. Bei der Anwendung modellbasierter Regelungsansätze

ist die Diskrepanz zwischen dem mathematischen Modell und der zu steuernden Anlage

oft groß. Auch unvorhersehbare externe Einflüsse müssen berücksichtigt werden. Daher

erweitern wir das dynamische System um eine stochastische Komponente und approximie-

ren diese durch einen Szenarienbaum. Nichtlineare modellprädiktive Regelung (NMPC) in

Kombination mit dem Szenarienbaumansatz als Robustifizierung gegen die Unsicherheit

stößt auf wachsendes Interesse in der Regelungstechnik, denn in der Praxis hat sich gezeigt,

dass Szenarienbaum-NMPC eine gute Balance zwischen dem Konservatismus von Robu-

stifizierungsmethoden und der Performanz des Reglers schafft. Der numerische Aufwand

für die Lösung der auftretenden Optimierungsprobleme hängt stark von der Struktur des

Szenarienbaumes ab. Dieser wiederum soll die Unsicherheit möglichst gut approximieren.

Eine große Herausforderung von Szenarienbaum-NMPC ist die Lösung der auftretenden

Optimierungsprobleme in Echtzeit. Der Beitrag dieser Arbeit im Forschungsfeld der nume-

rischen Optimierung ist ein strukturausnutzendes Verfahren, welches die auftretenden Op-

timierungsprobleme mit Hilfe von dualer Dekomposition in kleinere Teilprobleme zerlegt.

Die Teilprobleme können parallel gelöst werden unter zusätzlicher numerischer Ausnut-

zung ihrer Diskretisierungsstruktur. Desweiteren stellt diese Arbeit neuartige Verfahren vor,

die passende Szenarienbäume generieren. Unsere Szenarienbaumgenerierung basierend auf

Quadraturformeln mit dünnen Gittern ermöglicht Szenarienbaum-NMPC in mehrdimensio-

nalen Unsicherheitsräumen mit den Approximationseigenschaften der Quadraturformeln.

Ein weiterer neuartiger Ansatz der Arbeit zum Generieren von Szenarienbäumen basiert auf

der Interpretation des zugrundeliegenden stochastischen Prozesses als Markovkette. Unter

der Markov-Annahme geben wir Garantien, wie gut die Unsicherheit durch den Szenarien-

baum approximiert wird. Schließlich präsentieren wir in der Arbeit numerische Resultate

für Szenarienbaum-NMPC. Wir betrachten dynamische Systeme aus industriellen Anwen-

dungen der chemischen Verfahrenstechnik und belegen, dass mit den entwickelten Metho-

den dieser Arbeit Optimierungsprobleme mit großen Szenarienbäumen in Echtzeit gelöst

werden können.

Contents

1 Introduction 1

1.1 Aims and Contributions of this Thesis . 2

1.2 Organization of this Thesis . 6

2 Problem Classification 7

2.1 The Scenario Tree Optimization Problem 7

2.2 Dynamical System Perspective: Optimal Control 9

2.3 Optimization Perspective: Nonlinear Programming 11

2.4 Process Control Perspective: Fast Feedback in Real-Time 15

2.5 Stochastic Perspective: Discrete Tree Process 16

2.6 Summary . 21

3 Discretization Structure Exploitation 23

3.1 The Direct Multiple Shooting Method . 23

3.2 Structure Exploiting Sequential Quadratic Programming 27

3.3 Condensing . 28

3.4 Summary . 32

4 Optimization in Real-Time 33

4.1 Nonlinear Model Predictive Control . 33

4.2 The Real-Time Iteration Scheme . 35

4.3 Multi-Level Iteration Schemes . 38

4.4 Summary . 40

5 Scenario Tree Structure Exploitation 41

5.1 Tree Structure in Optimization Problems 41

5.2 Dual Decomposition . 45

5.3 Non-smooth Newton Method . 48

5.4 Summary . 52

xi

6 Quadrature-based Scenario Tree Generation 53
6.1 Expectation Value of the Objective and Quadrature 53

6.2 Sparse Grids . 55

6.2.1 Smolyak’s Algorithm . 55

6.2.2 Error Bounds . 58

6.3 Scenario Tree NMPC with Quadrature-based Scenario Tree Generation . . 58

6.4 Summary . 59

7 Markov Chain Scenario Tree Pruning 61
7.1 Markovian Scenario Tree Process . 61

7.2 Invariant Distribution as Initial Distribution 62

7.3 Tree Pruning Algorithm . 64

7.4 Constraint Satisfaction . 66

7.5 Constructing a Markov Chain from a Distribution 66

7.6 Scenario Tree Examples . 69

7.7 Approximation Error of the Examples . 70

7.8 Summary . 72

8 Implementation 73
8.1 Design Decisions . 73

8.2 Numerical Methods . 75

8.3 Setup of Problems . 75

8.4 Summary . 77

9 Numerical Results 79
9.1 Continuous Stirred Tank Reactor . 79

9.2 A Biochemical Batch Reactor . 88

9.3 Penicillin Production . 102

9.4 Summary . 108

10 Conclusion and Outlook 111

Bibliography 113

List of Acronyms 123

Chapter 1

Introduction

Mathematical optimization under uncertainty is a growing field of research as the aware-

ness of the uncertain influence has increased. Steering real-world systems into a desired

state by dynamical model-based optimization approaches requires to make decisions within

a specified time. Full information that can serve as basis for the decision is hardly ever avail-

able. Therefore uncertainty occurs in a natural way and has to be considered in dynamical

model-based optimization methods. Robert K. Greenleaf, a pioneer of modern manage-

ment, leadership, organizational development and education approaches wrote in his essay

[49]:

”On an important decision one rarely has 100 % of the information needed for

a good decision no matter how much one spends or how long one waits. And,

if one waits too long, he has a different problem and has to start all over.”

We emphasize three insights from the citation that originates from a management context

but fits perfectly in our framework. First, uncertainty is present in decision making. Second,

the uncertainty does not vanish completely over time. And third, the problem that requires

decisions, will change over time. Especially the third insight will lead us later to the fast

feedback principle.

Scenario tree Nonlinear Model Predictive Control accounts for the uncertain influence

and generates decisions to control a dynamical system in a robust sense - robust against

the uncertainty. Nonlinear Model Predictive Control (NMPC) is a model-based mathemati-

cal optimization framework to obtain feedback control inputs for a dynamical system. The

framework has been applied in various fields such as physics, chemistry, biology, engi-

neering, social sciences and psychology, overviews of NMPC applications can be found

for example in [85, 95]. Techniques to numerically address the mathematical optimization

problems in NMPC have been developed e.g. in [17, 109, 4, 11] and continuously enhanced

by real-time and multi-level components [27, 15, 114, 67, 44]. However, the mismatches

1

2 CHAPTER 1. INTRODUCTION

between the real-world system and the mathematical model as well as disturbances are often

large. Therefore NMPC can only be successful when the feedback controls are computed in

a robust sense as [10] pointed out. Otherwise, in the case of a chemical plant for example,

violations of system constraints can cause severe safety-critical situations.

Robust NMPC techniques treat model-plant mismatch and disturbances as probabilistic

perturbations to a nominal model. One technique is the game-theoretic worst case approach,

mathematically a bilevel optimization problem [26]. It suffers from high conservatism, be-

cause it safeguards against all possible realizations of the perturbation at the same time.

Lucia et al. [84] have shown that using scenario tree NMPC as proposed in [23] can effi-

ciently reduce this conservatism while remaining feasible with high probability.

The main assumption of the scenario tree approach is of stochastic nature. We assume

that the uncertainty can be approximated by a discrete and finite tree process. Usually

the scenario tree construction starts with choosing a finite number of realizations of the

uncertainty. Then a number of decision points in time are specified. At these points the

realizations are allowed to change. The sequences of those realizations are regarded as

scenarios that must be coupled according to the tree structure. Figure 1.1 illustrates the

classical tree construction. There are alternatives to generate the scenario trees. In this

thesis we develop tree generation algorithms based on the investigation of the underlying

stochastic process.

The major challenge of scenario tree NMPC is the exponential growth of the full tree

in the number of decision points. This yields a high demand for fast structure-exploiting

numerical methods. Especially in high dimensional uncertainty spaces the classical tree

construction itself must be questioned. How should the uncertainty space be discretized and

how should we choose a finite number of realizations? Are there alternative tree structures?

This thesis aims to provide answers to the questions based on a mathematical investigation

of the stochastic process behind the scenario tree and practical implementations of demand-

ing case studies. Contributions of the thesis to scenario tree NMPC are named in the next

section.

1.1 Aims and Contributions of this Thesis

The overarching goal is to control dynamic processes under uncertain influence in real-time

using scenario tree NMPC. This thesis contributes to the field of applied mathematics by

the following topics.

1.1. AIMS AND CONTRIBUTIONS OF THIS THESIS 3

t0 t1 t2

x1
0

x

x1
1

x

x2
1

x

x3
1

x

u1
0

u1
1

u2
1

u3
1

p
1

p
2

p
3

tpresent = t0 t1 t2

Figure 1.1: Single scenarios (left) and scenario tree (right) with three realizations of the

uncertainty and two decision points. The three realizations are represented by the dotted,

the dashed and the two-dot-one-dash line styles. We have two decision points t0 and t1 where

the realization can change. Between the time points t0 and t1 (stage 1) and between t1 and

t2 (stage 2) the parameter realizations stay constant respectively. The nine scenarios on the

left are all combinations of the parameter realizations for the first two stages. We couple the

scenarios due to a tree-specific stochastic principle and arrive at the scenario tree structure

on the right. The colors indicate the controls we have at hand for optimization according to

the stochastic tree process. For the continuation of the scenarios beyond t2 there are various

possibilities indicated by dots. Most commonly the realizations stay constant over the rest

of the considered time horizon.

4 CHAPTER 1. INTRODUCTION

Formulation of stochastic properties of the scenario tree process

Scenario tree NMPC is located at the intersection of the fields numerics, optimization, pro-

cess control and stochastics and has been investigated by researchers of all those fields.

However, the stochastic process behind scenario trees requires a rigorous formulation. This

work contributes a mathematical tree process formulation and rigorous investigation of a

special process property, the non-anticipativity.

Fast structure-exploiting numerical methods for scenario tree NMPC

For fast NMPC with scenario trees the exploitation of the discretization structure, tree struc-

ture and state-of-the art methods to deal with real-time requirements are inevitable. In this

thesis we contribute a fast numerical method for the solution of large-scale tree-structured

problems based on a dual decomposition approach that exploits the inherent tree structure.

In combination with discretization structure exploitation and the Real-Time Iteration or

Multi-Level Iteration scheme we can speed up the necessary computations of the process

feedback.

Quadrature-based scenario tree generation

In high-dimensional uncertainty spaces the major challenge of generating scenario trees is

the choice of finitely many realizations of the uncertainty. We present a contribution of

scenario tree generation based on sparse grid quadrature rules, a commonly used tool in

the field of uncertainty quantification. With the approach the number of realizations can

be significantly reduced and there is still a reasonable approximation quality determined by

error formulars of sparse grid quadrature.

Scenario tree generation based on Markov chains

In the classical tree construction the scenarios are determined by the finitely many real-

izations and the decision points where the tree can branch. As a consequence the number

of scenarios grows exponentially in the number of decision points. Hence, for practical

computations the number of decision points must be restricted to a robust horizon in the

beginning. This thesis contributes an alternative scenario tree generation approach that is

based on the stochastic properties of the tree process and does not require the choice of a ro-

bust horizon. We provide a fast implementation of the alternative tree generating algorithm

that builds on interpreting scenarios as realizations of Markov chains over time and pruning

the most unlikely scenarios.

1.1. AIMS AND CONTRIBUTIONS OF THIS THESIS 5

Implementation of scenario tree NMPC

We contribute a software implementation of the structure-exploiting numerical algorithms

of the thesis to demonstrate the effectiveness and efficiency of the methods. The STMLI

package (Scenario Tree Multi Level Iteration package) is the scenario tree extension of the

MLI software (Multi Level Iteration software) that implements the Multi Level Iteration

idea [16, 15].

Demanding case studies

One important contribution of this work is to apply the developed methods to challenging

problems. First, we study a basic chemical reactor, a continuous stirred tank reactor. Then

we continue with a demanding real-world industrial problem, a biochemical batch reactor.

The plant model is provided by BASF. As a third example we consider a pharmaceutical

problem on Penicillin production. All problems have in common that there is uncertainty

present in the dynamical system model. We showcase the performance and robustness of

scenario tree NMPC with respect to the uncertainty.

Published contributions

The scenario tree generating approach based on sparse grids has been published in

[74]: C. Leidereiter, A. Potschka, and H. G. Bock. Quadrature-based scenario

tree generation for Nonlinear Model Predictive Control. In Proceedings of the

19th IFAC World Congress, volume 47, pages 11087–11092, 2014.

To demonstrate performance and robustness of NMPC with scenario trees generated from

sparse grids we study the control of a simulated distillation column with three-dimensional

uncertainty space on a Monte-Carlo testbed and statistically evaluate the results.

The scenario tree structure exploiting numerical method based on dual decomposition

has been published in

[75]: C. Leidereiter, A. Potschka, and H. G. Bock. Dual decomposition for QPs

in scenario tree NMPC. In Proceedings of the European Control Conference

(ECC15), pages 1608–1613, 2015.

We present the structure-exploiting numerics and computational results for NMPC with

large scenario trees.

Scenario tree generation by the Markov chain approach will be published in

6 CHAPTER 1. INTRODUCTION

[73]: C. Leidereiter, D. Kouzoupis, M. Diehl, and A. Potschka. Pruning for

scenario tree NMPC with uncertainties described by Markov chains. In prepa-

ration.

In the above publication we will discuss numerical results for an uncertainty that has an

intrinsic Markovian property.

1.2 Organization of this Thesis

Chapter 1 is this introduction. In Chapter 2 of problem classification we put scenario tree

NMPC into context and view the main object of this thesis from a numerical, optimization,

process control and stochastic perspective. The latter focuses on properties of the stochas-

tic tree process, especially non-anticipativity. In the three subsequent chapters we present

numerical methods for scenario tree NMPC. We discuss the Direct Multiple Shooting dis-

cretization including the exploitation of discretization structure in Chapter 3. It serves as the

basis for fast feedback NMPC, that we survey in Chapter 4. We propose our tree structure

exploiting numerical method in Chapter 5. The dual decomposition approach with non-

smooth Newton method is the main contribution of numerical structure exploitation in this

thesis. The contributions based on the stochastic nature of the scenario tree process follow

in Chapter 6 with quadrature-based scenario tree generation and in Chapter 7 with Markov

chain scenario tree pruning. In Chapter 8 we describe the software implementation of the

numerical methods. With numerical results for demanding applications we demonstrate the

efficiency of our methods in Chapter 9. In the last Chapter 10 we draw conclusions and give

an outlook on topics that arise from the results of this thesis.

Chapter 2

Problem Classification

In this chapter we start with the mathematical formulation of the scenario tree optimization

problem, also known as multi-stage optimization problem. We approach the core object

from various perspectives. The first perspective is to consider the dynamical aspects and

focus on the optimal control formulation. We continue with the optimization perspective

and focus on the discretized finite nonlinear optimization problem in the second section.

The next perspective, the dynamical process control, underlines the requirement of fast

feedback methods. At the end of this chapter we present the stochastic properties of the

scenario tree process. Theorem, proof and examples in the last section are contributions of

this thesis.

2.1 The Scenario Tree Optimization Problem

Generally, optimization with scenario trees is a systematic and efficient approach to deal

with uncertainty in nonlinear model predictive control (NMPC) as we have pointed out in

the introductory chapter. At this point we already state the scenario tree optimal control

problem as one core optimization problem in scenario tree NMPC being aware that back-

ground from different perspectives in the next sections is required to fully explain it.

We set I := [t0, t f] ⊂ R as the underlying time domain, define the states x : I→ Rnx and

the controls u : I→ Rnu . In this section we denote the possibly uncertain parameters simply

as p ∈ Rnp . A further investigation and rigorous definition follows later on. We consider

a finite number S ∈ N of scenarios. From now on the elements of the set of scenarios

S = {1, . . . ,S} have index j. We assign a weight w j ∈ [0,1] to all scenarios j ∈ S. Further-

more, we define the set K = {0, . . . ,M−1}. The time interval I is partitioned by

t0 < t1 < · · ·< tM−1 < tM = t f

into intervals [tk, tk+1], k ∈ K, the so-called stages that are eponymous for the multi-stage

7

8 CHAPTER 2. PROBLEM CLASSIFICATION

approach.

The sufficiently smooth functions

f :Rnx×Rnu×Rnp → Rnx , Φ :R×Rnx×Rnu×Rnp → R

describe the system dynamics and the cost function. Furthermore we require sufficiently

smooth descriptions of the feasible regions X and U for the states and controls. At the

current system state x(t0) = x0 the optimal control problem reads

min
x(t),u(t)

∑
j∈S

w j

∫ t f

t0
Φ(t,x j(t),u j(t), p j(t))dt (2.1a)

s.t. ẋ j(t) = f (x j(t),u j(t), p j(t)), t ∈ [t0, t f], j ∈ S, (2.1b)

x j(t0) = x0, j ∈ S, (2.1c)

x j(t) ∈ X , t ∈ [t0, t f], j ∈ S, (2.1d)

u j(t) ∈ U , t ∈ [t0, t f], j ∈ S, (2.1e)

ui(t) = u j(t), t ∈ [tk, tk+1], (i, j) ∈ Ck, k ∈ K. (2.1f)

In the above formulation every scenario has its own controls. We define the set Ck for

constraint (2.1f) to encode the tree structure,

Ck :=
{
(i, j) ∈ S2 ∣∣ pi(t) = p j(t) for all t ∈ [t0, tk]

}
.

The set Ck is required for the scenario-wise view of the tree structure. For every stage k, the

set Ck contains tuples of scenarios with common history of parameter values on all previous

stages. The respective control variables of the scenario tuples in Ck are coupled on stage k

according to (2.1f). We emphasize that the constraints (2.1f) are the only coupling of the

scenarios. Problem (2.1) without the linear coupling constraints completely decouples into

S scenario optimal control problems. To sum up, we minimize a weighted sum of scenario

objectives with respect to dynamic constraints, an initial value, upper and lower variable

bounds and linear scenario coupling constraints.

2.2. DYNAMICAL SYSTEM PERSPECTIVE: OPTIMAL CONTROL 9

2.2 Dynamical System Perspective: Optimal Control

The evolution of processes that change in time can be modelled by dynamical systems.

Transferring the observations from a physical, biological or chemical process to a dynamical

model and applying mathematical tools helps to gain more insight into the process behavior.

This applies as well to processes from economical, social and life sciences. For abstract

dynamical systems we refer to [52]. The ordinary differential equation (ODE) of the form

ẋ = f (t,x)

corresponds in a natural way to a dynamical system. The function f : D→ Rd is a time-

dependent continuous vector field on D⊂R×Rd . In the autonomous case f does not depent

on time. But we can transform every ODE to an autonomous ODE by introducing an extra

state τ that represents the time. We then replace all t-dependencies of f by τ-dependencies

and add the equations τ̇ = 1 and τ(0) = t0 to the ODE.

For an ODE ẋ = f (t,x) and (t0,x0) ∈ D we can solve initial value problems (IVPs). In

the following we state the fundamental existence and uniqueness theorem of IVP solutions.

Theorem 2.1 (Existence and uniqueness of solutions). Let f : D→ Rd ,D ⊂ R×Rd be

a vector field that is continous and Lipschitz continuous in the second argument. Now

consider the ODE ẋ = f (t,x). Then for all initial values (t0,x0) ∈ D there exists a unique

solution x(t; t0,x0) to the ODE with initial condition x(t0) = x0 on a maximum existence

interval It0,x0 ⊂ R with t0 ∈ It0,x0 .

The existence and uniqueness theorem is usually proven by the Banach contraction map-

ping theorem. Often the theorem is referred to Picard and Lindelöf.

Ordinary differential equations implicitly define the dynamical evolution constraint of

optimal control problems. At this point we state an optimal control problem (OCP) in a

general form to optimize a process with underlying dynamical system. We transfer the

assumptions of Theorem 2.1 to all following OCPs with underlying ODE.

The general optimal control problem reads

min
x,u

∫ t f

t0
Φ(t,x(t),u(t), p(t))dt (2.2a)

s.t. ẋ(t) = f (x(t),u(t), p(t)), t ∈ [t0, t f] , (2.2b)

0 = x(t0)− x0, (2.2c)

0≤ r(t,x(t),u(t), p(t)), t ∈ [t0, t f] . (2.2d)

Our goal is to minimize the objective over the states x : [t0, t f]→ Rnx and the controls

u : [t0, t f]→ Rnu . We do not regard the possibly uncertain parameters p ∈ Rnp as optimiza-

tion variables as we later interpret them stochastically.

10 CHAPTER 2. PROBLEM CLASSIFICATION

The objective function (2.2a) is a Lagrange term∫ t f

t0
Φ(t,x(t),u(t), p(t))dt

with Φ : [t0, t f]×Rnx+nu+np → R. The function Φ is assumed to be twice continuously

differentiable.

The dynamical evolution of the system is implicitly given by the constraint (2.2b) and

the initial value of the dynamical evolution is set by (2.2c).

Additionally, we have path constraints (2.2d) described by a twice continuously differ-

entiable r : [t0, t f]×Rnx+nu+np → Rnr . The so-called box constraints of the form

x(t)≤ x(t)≤ x(t)

u(t)≤ u(t)≤ u(t)

are a special case of (2.2d).

Further possible components of optimal control problems such as interior point con-

straints are not considered in this thesis. Objective formulations that depend on (t f ,x(t f))

can be reformulated to fit (2.2a).

Now the question arises how to solve the OCP (2.2) as the optimization variables are

functions and we therefore have an infinite-dimensional problem. For an in-depth introduc-

tion to functional analysis and the relation to optimal control and calculus of variations we

refer to the textbook [21].

Since the middle of the 20th century indirect approaches to solve optimal control prob-

lems emerged from Pontryagin’s maximum principle [91]. The maximum principle states

necessary conditions of optimality which can be solved analytically for certain examples.

We first transform the optimal control problem to a boundary value problem (BVP) by the

maximum principle and then solve the BVP numerically by collocation or shooting meth-

ods.

In contrast to the indirect approach we choose direct methods - we first discretize the

infinite-dimensional optimization problem and then optimize. The direct multiple shooting

method [17] and the direct collocation method [109, 4, 11] yield finite dimensional opti-

mization problems from optimal control problems. For an efficient and fast solution the

resulting discretized problems must be treated with tailored numerical methods. The direct

multiple shooting discretization and a related discretization structure exploiting method is

explained in Chapter 3.

We conclude the section with the remark that the scenario tree problem (2.1) is a special

case of the OCP (2.2). It has to be emphasized that the methods developed for problems of

the form (2.2) are fully applicable to the scenario tree problem (2.1). Furthermore we can

2.3. OPTIMIZATION PERSPECTIVE: NONLINEAR PROGRAMMING 11

understand the OCP (2.2) as problem (2.1) with only one scenario and weight w1 = 1. The

so-called nominal problem corresponding to a scenario tree optimization problem is such a

one-scenario problem with the nominal parameter realization.

2.3 Optimization Perspective: Nonlinear Programming

In Section 2.2 we have stated that the OCP (2.2) or its special case with tree structure (2.1)

can be transferred to a finite dimensional optimization problem by direct methods. Those

finite dimensional optimization problems are the mathematical objects of interest in the field

of numerical optimization. The general constrained nonlinear optimization problem (NLP)

in Rn is defined as follows.

Definition 2.1 (Nonlinear optimization problem).

min
z∈Rn

F(z) (2.3a)

s.t. ci(z) = 0, i ∈ E (2.3b)

ci(z)≥ 0, i ∈ I. (2.3c)

The functions F and ci are assumed to be twice continuously differentiable functions

mapping a subset of Rn to R. We call F the objective function, ci, i ∈ E , |E| = ce equality

constraints and ci, i ∈ I, |I| = ci inequality constraints. In this formulation the sets E and

I are disjoint. If the objective function and all the constraint functions are linear, (2.3)

becomes a linear programming problem (LP). The quadratic programming problem (QP) is

(2.3) with linear constraint functions and an objective function of the form

F(z) =
1
2

zT Hz+gT z.

The symmetric matrix H ∈ Rn×n is addressed as the Hessian of the QP and the vector

g ∈ Rn as the QP gradient. In the following we state only the most important definitions

and theorems of NLP theory as this is not the main focus of thesis. A comprehensive

introduction to numerical optimization is for example the book [88].

Definition 2.2 (Feasible). A point z ∈ Rn is called feasible point of the problem (2.3) if it

satisfies

ci(z) = 0 for all i ∈ E ,

ci(z)≥ 0 for all i ∈ I.

12 CHAPTER 2. PROBLEM CLASSIFICATION

Definition 2.3 (Local optimum). A point z∗ ∈ Rn is called locally optimal point of the

problem (2.3) if for ε > 0 there exists an open ball Bε(z∗) with ε > 0 such that

F(z)≥ F(z∗)

for all feasible z ∈ Bε(z∗).

If additionally F(z)> F(z∗) holds for all feasible z 6= z∗, then z∗ is a strict local optimum.

Definition 2.4 (Active set). For a feasible point z we call an inequality constraint ci active

for some i ∈ I if ci(z) = 0. Equality constraints are always active in a feasible point. The

active set associated to a feasible point z is the set of indices of all active constraints

A(z) = {i|ci(z) = 0}.

Constraint qualifications (CQs) are important to ensure that the feasible set in a neigh-

borhood of a feasible point is well-behaved. There is a whole theory on how to derive CQs

for certain types of NLPs [55]. We often assume the set of active constraint gradients to be

linearly independent.

Definition 2.5 (Linear independence constraint qualification). Given the feasible point z and

its active set A(z) according to Definition 2.4. We say that the linear independence con-

straint qualification (LICQ) holds if the set of active constraint gradients {∇ci(z), i ∈ A(z)}
is linearly independent.

Definition 2.3 characterizes a locally optimal point. However, this characterization is

computationally expensive to check. Therefore we state optimality conditions that can be

handled more conveniently from a computational perspective. For this purpose we need the

Lagrangian function.

Definition 2.6 (Lagrangian function). The function L : Rnz×Rnce×Rnci → R,

L(z,µ,λ) := F(z)−∑
i∈E

λici(z)−∑
i∈I

µici(z)

with Lagrangian multipliers λ ∈ Rnce and µ ∈ Rnci is called the Lagrangian function of the

NLP (2.3).

Theorem 2.2 (1st order neccesary conditions of optimality). Let z∗ ∈Rn be a point satisfy-

ing LICQ and a local minimum of (2.3). Then there exist λ ∗ ∈ Rnce and µ∗ ∈ Rnci such that

(z∗,λ ∗,µ∗) satisfies the following:

Stationarity:

∇zL(z∗,λ ∗,µ∗) = ∇F(z∗)−∑
i∈E

λ
∗
i ∇ci(z∗)−∑

i∈I
µ
∗
i ∇ci(z∗) = 0 (2.4)

2.3. OPTIMIZATION PERSPECTIVE: NONLINEAR PROGRAMMING 13

Feasibility:

ci(z∗) = 0 for i ∈ E , (2.5)

ci(z∗)≥ 0 for i ∈ I, (2.6)

Dual feasibility:

µ
∗ ≥ 0 (2.7)

Complementarity:

µ
∗
i ci(z∗) = 0, for i ∈ I. (2.8)

Theorem 2.2 is often referred as Karush-Kuhn-Tucker theorem, named after [64] and

[71]. A point (z∗,λ ∗,µ∗) satisfying the conditions of Theorem 2.2 is called KKT-point. We

notice that Theorem 2.2 provides necessary conditions for optimality that can be checked

computationally. To distinguish between minimum, maximum and saddlepoints we state

2nd order conditions. Therefore we require the following two sets representing cones for a

feasible point z ∈ Rn satisfying LICQ:

T̂ (z) = {p ∈ Rn| ∇ci(z)p = 0 for i ∈ E(x),∇c j(z)>p = 0 for j ∈ I(x)},

T (z) = {p ∈ Rn| ∇ci(z)p = 0 for i ∈ E(x),∇c j(z)>p = 0 for j ∈ I(x) and µ j > 0}.

Furthermore,

∇zzL(z∗,λ ∗,µ∗) = ∇
2F(z∗)−∑

i∈E
λ
∗
i ∇

2ci(z∗)−∑
i∈I

µ
∗
i ∇

2ci(z∗)

is the Hessian matrix of the Lagrangian function with respect to z.

Theorem 2.3 (2nd order neccesary conditions of optimality). Let z∗ ∈ Rn be a local mini-

mum satisfying LICQ and let λ ∗,µ∗ be Lagrange multipliers such that (z∗,λ ∗,µ∗) is a KKT

point. Then

p>∇zzL(z∗,λ ∗,µ∗)p≥ 0 for all p ∈ T̂ (z∗).

Theorem 2.4 (2nd order sufficient conditions of optimality). Let z∗ ∈ Rn be a local mini-

mum satisfying LICQ and let λ ∗,µ∗ be Lagrange variables such that (z∗,λ ∗,µ∗) is a KKT

point. If

p>∇zzL(z∗,λ ∗,µ∗)p > 0 for all p ∈ T (z∗)

holds, then z∗ is a strict local minimum.

In the broad field of nonlinear optimization various concepts have been developed to

solve (2.3). We mention three algorithmic classes and refer the interested reader to [88].

14 CHAPTER 2. PROBLEM CLASSIFICATION

Interior-point methods

The interior-point or barrier methods are a class of efficient NLP algorithms. We treat the

combinatorial complexity introduced by inequality constraints (2.3c) through smoothing

and obtain iterates that are strictly in the interior of the set of feasible points. A compre-

hensive overview is in [112]. Interior-point method tailored to tree-structured NLPs can be

found in [60].

Augmented Lagrangian methods

In augmented Lagrangian methods we define a minimizer function combining the La-

grangian and a penalty term depending on the constraints. Some aspects of augmented

Lagrangian methods are present in the algorithms for dynamic optimization. Especially in

the dual-decomposition based algorithm in Chapter 5 a part of the augmented Lagrangian

term becomes relevant.

Sequential quadratic programming

In sequential quadratic programming (SQP) methods we pass the combinatorial complexity

of determining the correct active set to a simpler subproblem. This simpler problem is

often a convex quadratic programming problem (QP). QP subproblems have some favorable

properties and characteristics making SQP one of the most successful methods for nonlinear

programming. If we need to repeatedly solve similar NLPs for example in the context of

real-time optimization, these features have a strong effect, see Chapter 4.

The Tree QP

The tree QP is a special case of a QP, therefore a finite dimensional scenario tree optimiza-

tion problem. We want to state it here to finish the section on the optimization perspective.

min
z1,...,zS

∑
j∈S

w j

(
1
2

zT
j H jz j +gT

j z j

)
(2.9a)

s.t. x j,0 = x0, j ∈ S, (2.9b)

x j,k+1 = A j,kx j,k +B j,ku j,k, k ∈ K, j ∈ S, (2.9c)

x≤ x j,k ≤ x, k ∈ K∪{M}, j ∈ S, (2.9d)

u≤ u j,k ≤ u, k ∈ K, j ∈ S, (2.9e)

E j+1z j+1 =C jz j, j ∈ S\S. (2.9f)

2.4. PROCESS CONTROL PERSPECTIVE: FAST FEEDBACK IN REAL-TIME 15

The setK= {0, . . . ,M−1} contains the time indices, and the set S = {1, . . . ,S} the scenario

indices. Corresponding scenario weights are w j ≥ 0 for all j ∈S. State and control variables

are grouped in zᵀj = [xᵀj,0,u
ᵀ
j,0, . . . ,x

ᵀ
j,M−1,u

ᵀ
j,M−1,x

ᵀ
j,M]ᵀ ∈Rnz for all j ∈ S . At this point we

require box constraints for states and controls. We exploit the inherent tree structure of (2.9)

for fast numerical solution methods in Chapter 5.

2.4 Process Control Perspective: Fast Feedback in Real-Time

Up to now we have introduced the optimization problems in the context of scenario tree

NMPC. For the online control of an application such as a chemical plant we do not only

solve one optimization problem. It is required to solve a sequence of dynamical opti-

mization problems and with that, new challenges arise. In the moving horizon framework

[25, 98] we solve problem (2.2) or a scenario tree optimization problem (2.1) for every in-

stant t of a sampling time grid in order to drive a process according to the desired objective.

The problems (2.2) and (2.1) depend parametrically on the initial value x0 representing the

current state of the plant that further depends on the current sampling time t, so x0 = x0(t). In

ideal NMPC and the special case scenario tree NMPC the optimization problem is assumed

to be solved instantaneously. The resulting optimal control u∗(t) is immediately fed back

to the process. Therefore ideal NMPC can be regarded as a control feedback law u∗(t,x(t))

implicitly given by the solution of optimization problems (2.2) or (2.1). The dynamical

evolution of the process is then described by the ODE

ẋ(t) = f (t,x(t),u∗(t,x(t)), p(t)).

The practical implementation of NMPC differs from the idealized NMPC by the fol-

lowing main points. First, we do not solve the infinite-dimensional problem (2.2) or (2.1)

at every sampling time, but a finite dimensional approximation, and second, the solution

u∗(t) is not obtained and applied to the process immediately. There is a delay between

receiving the current process state x0(t) and feeding the control back to the process, deter-

mined mainly by the cost of solving the discretized optimization problem. In practice these

circumstances affect the performance and stability of the controller [38].

For fast feedback we need to minimize the delay by fast NMPC schemes. We empha-

size that fast NMPC is not just NMPC with a fast solver, it rather requires sophisticated

methods that we describe in Chapter 4. One algorithmic concept to reduce the time de-

lay between retrieving the process state and the control feedback is the Real-Time Iteration

scheme [28] that we focus on in Section 4.2. Major ingredients are the initial value embed-

ding idea and splitting the computation into phases. A further contribution to fast NMPC

is the Multi-Level-Iteration scheme [16]. We describe it in Section 4.3. The fast feedback

16 CHAPTER 2. PROBLEM CLASSIFICATION

NMPC methods tackle the model-plant mismatch and disturbances. Further robustification

against uncertainty in the process is achieved by stochastic approaches. We continue with

the stochastic nature of scenario tree NMPC in the next section.

2.5 Stochastic Perspective: Discrete Tree Process

At this point we focus on the stochastic nature of the uncertainty. In the field of optimization

under uncertainty, especially in stochastic finance applications and optimal portfolio selec-

tion problems [30, 51, 58], the evolution of a discrete stochastic process is often illustrated

as a scenario tree. We adapt this interpretation and regard the uncertain parameter process

as a finite stochastic process. In this section we consider two processes and define math-

ematically rigorously a central property of the tree process. Uncertainty is present in the

underlying parameter process. In traditional theory, which concentrates mainly on stability

and tractability assertions for robust optimal control, there are two basic approaches to in-

corporate parameter uncertainty into optimization problems. While in robust optimization

the uncertainty model is basically deterministic and set-based, the second perspective builds

upon a probabilistic description of the uncertainty. The thesis [61] extensively investigates

the effects from the robust and probabilistic optimization perspective. A main focus there

lies on optimal control problems driven by stochastic differential equations. The scenario

tree approach is located between the two basic approaches. In this section we aim to clarify

the stochastic properties of the scenario tree uncertainty model. For this purpose we require

basic stochastic definitions. In the following we give a condensed overview. For a detailed

introduction and further background in the field we refer to the textbooks [31, 68].

2.5. STOCHASTIC PERSPECTIVE: DISCRETE TREE PROCESS 17

Definition 2.7 (Sigma-Algebra). Let Ω be a non-empty set and P(Ω) its power set.

A subset F ⊂ P(Ω) is a sigma-algebra if it satisfies the following properties:

1. F contains the universal set: Ω ∈ F .

2. F is closed under complementation: If A ∈ F , then Ω\A ∈ F .

3. F is closed under countable unions: If (Ai)i∈N with Ai ∈F for all i, then
⋃

i∈N Ai ∈F .

We call the elements of F measurable sets and (Ω,F) a measurable space.

Definition 2.8 (Generated Sigma-Algebra). Let G be any subset of P(Ω). Then the smallest

sigma-algebra containing G, σ(G) =
⋂
{F|F is sigma-algebra on Ω,G ⊂ F}, is called the

sigma-algebra generated by G.

Definition 2.9 (Measurable Function). Let (Ω,F) and (Ω′,F ′) be measurable spaces. A

function f : Ω→Ω′ is a measurable function if for the preimages it holds that

f−1(A′) := {x ∈Ω| f (x) ∈ A′} ∈Ω, for all A′ ∈ F ′.

Definition 2.10 (Sigma-algebra generated by a function). Let Ω be a non-empty set, (Ω′,F ′)
a measurable space and f : Ω→ Ω′ a function. Then the sigma-algebra on Ω generated

by the function f , denoted as σ(f), is the collection of all preimages of the sets in F ′:
σ(f) := { f−1(A′)| A′ ∈ F ′}. It is the smallest sigma-algebra such that f is measurable.

Definition 2.11 (Measure). A measure µ on a measurable space is a non-negative function

µ : F → [0,∞[such that

1. µ(/0) = 0,

2. for (Ai)i∈N with Ai∩A j = /0 for all i 6= j ∈ N the equality

µ

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

µ(Ai)

holds.

The triple (Ω,F ,µ) is called measure space.

If additionally µ(Ω) = 1, we call (Ω,F ,µ) a probability space.

Definition 2.12 (Random Variable). Let (Ω,F ,P) be a probability space and (Ω′,F ′) a

measurable space. A random variable X is a measurable function X : (Ω,F ,P)→ (Ω′,F ′).
Every random variable X induces a probability measure µX on (Ω′,F ′) through

µX(A′) := P(X−1(A′)) for all A′ ∈ F ′.

18 CHAPTER 2. PROBLEM CLASSIFICATION

Definition 2.13 (Stochastic Process). Let I ⊂ R. A collection of random variables X =

(Xt , t ∈ I) on a probability space (Ω,F ,P) with values in a measurable space (Ω′,F ′) is a

stochastic process with time domain I and state space Ω′.

If I is discrete or even finite, the process X is named discrete or finite stochastic process. In

case of (Ω′,F ′) = (R,B(R)) (B(R) the Borel sigma-algebra), X is a real-valued stochastic

process.

Definition 2.14 (Filtration). A collection F= (Ft , t ∈ I) of sigma-algebras with Ft ⊂F for

all t ∈ I is a filtration, if Fs ⊂Ft for all s, t ∈ I with s≤ t.

Definition 2.15 (Adapted to a Filtration). A stochastic process X = (Xt , t ∈ I) is adapted to

the filtration F= (Ft , t ∈ I) if Xt is measurable with respect to Ft for all t ∈ I.

At this point we return to the scenario tree approach. We assume that the parameters

representing the uncertainty are constant on every stage. In the following we consider two

stochastic processes, the uncertain parameter process and the scenario tree process.

Definition 2.16 (Discrete uncertain parameter process). The underlying parameter pro-

cess is the collection of random variables X = (Xt , t ∈ {0, . . .M}),M ∈ N, Xt : (Ω,F ,P)→
(R,B(R)) for all t.

Then we define the discrete scenario tree process on the finite subset E ⊂Ω, as we have

to choose a finite number of parameter realizations.

Definition 2.17 (Scenario tree process). The scenario tree process is the collection of ran-

dom variables Y = (Yt , t ∈ {0, . . . ,M}),M ∈ N, Yt : (E,E ,P′)→ (R,B(R)) with E ⊂ Ω a

finite set, E = σ(E) and P′ a probability measure on E .

Remark 2.1. The measure P′ of the scenario process is chosen either as branch probabil-

ities P′(Yt = wi) = pi for all realizations wi ∈ E, or transition probabilities depending on

the previous realization P′(Yt+1 = w j|Yt = wi) = pi j for wi,w j ∈ E.

We now define the most prominent term used in the context of scenario tree NMPC. The

definition is mathematically rigorous in the sense that it relates a stochastic process to a

filtration containing the probabilistic information of another stochastic process.

Definition 2.18 (Non-anticipativity). A stochastic process Y = (Yt , t ∈ J) is called non-

anticipative with respect to the stochastic process X = (Xt , t ∈ I) if Y is adapted to the

filtration σ(Xt , t ∈ I).

Remark 2.2.
The definition of non-anticipativity is independent of the measures of the two stochastic

processes.

2.5. STOCHASTIC PERSPECTIVE: DISCRETE TREE PROCESS 19

Remark 2.3.
Non-anticipativity means that we can observe the realization of the stochastic process Y at

times until t if we can observe process X until time t. It does not mean that we can predict

the process Y . We want to clearly distiguish between the term non-anticipativity and the

term of a predictable stochastic process.

The process X = (Xn,n ∈ N0) is predictable with respect to the Filtration F= (Fn,n ∈ N0)

if X0 is constant and it holds for all n ∈ N that Xn is Fn−1 measurable.

We continue with the central theorem of this section.

Theorem 2.5. The scenario tree process Y is non-anticipative with respect to the underlying

process X.

Proof.
We recall from the definition of non-anticipativity that we have to show the following state-

ment: The process Y is is adapted to the filtration σ(Xt , t ∈ I) of the underlying parameter

process X.

By definition of the stochastic tree process Y , each Yt is E-measurable for all t ∈{0, . . . ,M}.
The sample space E of the tree process is a finite subset of Ω, therefore E ⊂ F . As both

processes X and Y are defined for t ∈ {0, . . .M}, we deduce the statement that Yt is F-

measurable for all t ∈ {0, . . . ,M}.
We now focus on the filtrations Et := σ(Ys,0 ≤ s ≤ t) for s, t ∈ {0 . . .M}. The random

variables Yt are measurable with respect to the filtration Et for all t ∈ {0, . . . ,M}. Because Yt

is F-measurable for all t ∈ {0, . . . ,M}, we conclude that Yt is also measurable with respect

to the filtration Ft := σ(Xs,0 ≤ s ≤ t) for all s, t ∈ {0, . . . ,M}. Then by the definition of

adaptivity, Def. 2.15, the scenario tree process Y is adapted to σ(Xt , t ∈ {0, . . . ,M}).

We close this section on the stochastic perspective with two examples illustrating the

concept on non-anticipativity.

Example 2.1 (Anticipativity). Consider Ω= {A,B} and a discrete constant process X, with

Xt(ω) = 10 for all t ∈ N, ω ∈Ω, and the process Y with

Yt(ω) =

0 for ω = A

1 for ω = B
for all t ∈ N.

Because X is constant, the generated sigma-algebra of all random variables Xt is trivial:

σ(Xt) = { /0,Ω} for all t ∈ N. Hence, the filtrations Et = E := σ(Xt) stay constant for

all t ∈ N. The generated sigma-algebra is σ(Y) = { /0,{A},{B},Ω}, and the filtration is

F1 = F = σ(Y).

20 CHAPTER 2. PROBLEM CLASSIFICATION

For completeness we specify the probability measures and refer to Remark 2.2 that non-

anticipativity is measure-independent. Process X is equipped with measure P1 on F such

that P1(Xt = 10) = 1. For process Y we can define a measure P2 on E such that

P2(ω) =

0.6 for ω = A

0.4 for ω = B.

The event (ω = B) is an element of the filtrationF1, because it is possible to observe Y1 = 1.

From the process X we can only observe that it has constant value 10. We do not know the

elementary random event that is happening at a time t. Regarding non-anticipativity we

state formally that the event (ω = B) is not contained in E , therefore Y1 is not measurable

with respect to E and Y is not adapted to σ(X1). Hence, the process Y on (Ω,E ,P2) is

anticipative (not non-anticipative) with respect to the process X on (Ω,F ,P1).

Example 2.2 (Events of the tree process). Let X be the uncertain parameter process from

Def. 2.16 and Y the tree process from Def. 2.17. We now consider a few events to explain

the non-anticipativity we have proven above.

In the following we need the filtrations of the underlying process X,

Ft = σ(Xs,0≤ s≤ t),s, t ∈ {0, . . . ,M}

and the filtrations of the tree process Y ,

Et = σ(Ys,0≤ s≤ t),s, t ∈ {0, . . . ,M}.

If we look at the first stage, then the event (Y1 = p1) is contained in E1 ⊂ F1. The events

(Y1 = p1,Y2 = p1) and (Y1 = p1,Y2 = p2), that represent scenarios of length two, are not in

F1. But the considered events (Y1 = p1,Y2 = p1) and (Y1 = p1,Y2 = p2) are elements of the

filtrations E2 ⊂F2. Therefore those two events cannot be distinguished until t = 2. Consid-

ering the two events as two possible scenarios, we have to ensure later that they coincide

until time t = 2. We shall reflect this property in the so-called non-anticipativity control

constraints for the branch-wise scenario tree formulation to get scenario tree formulation

that is consistent with the underlying stochastics.

Up to now, we have introduced non-anticipativity and illustrated the concept in our

framework. There are two chapters in this thesis that especially rely on the stochastic nature

of the scenario tree approach. In Chapter 6 we present an approach how to generate sce-

nario trees based on quadrature rules and in Chapter 7 we develop an efficient tree reduction

algorithm for a process with Markovian properties.

2.6. SUMMARY 21

2.6 Summary

The present chapter has introduced the mathematical formalism of the scenario tree ap-

proach and classified the arising problems in different fields of applied mathematics. From

a dynamical systems perspective we have formulated an optimal control problem with sce-

nario tree structure. In the direct optimization approach the optimal control problem is

discretized. We have seen from the optimization perspective that we arrive at a specific

structured finite-dimensional constrained scenario tree optimization problem. The process

control perspective section has emphasized that fast feedback NMPC methods like the Real-

Time Iteration scheme and the Multi-Level-Iteration scheme are required to minimize the

feedback delay. In the last section we have defined the scenario tree process from a stochas-

tics perspective and introduced the principle of non-anticipativity. This chapter has set the

perspectives and directions to approach scenario tree NMPC. In the following chapters we

always start discussing the problem from a specific viewpoint to derive the contributions of

this thesis.

22 CHAPTER 2. PROBLEM CLASSIFICATION

Chapter 3

Discretization Structure Exploitation

Numerical algorithms exploiting an inherent problem structure are indispensable for an ef-

ficient solution process. In case of optimal control, direct methods such as Direct Multiple

Shooting [17] or Direct Collocation [109, 4, 11] have proven to be versatile and efficient

whereas the initial value problems in Direct Single Shooting and the boundary value prob-

lems resulting from indirect methods suffer from the fact that the trajectories of nonlinear

ODE systems do not necessarily exist on a long time period. If they exist, the high non-

linearity can cause a blowup of the solution trajectories such that boundary conditions can-

not be satisfied. In this chapter we focus on the direct multiple shooting method, its structure

and tailored methods to solve the resulting finite-dimensional optimization problems.

3.1 The Direct Multiple Shooting Method

The foundations of multiple shooting are improved solution methods for boundary value

problems [89, 18, 12]. In the thesis [90] supervised by Hans Georg Bock and the contri-

bution [17] the multiple shooting idea has been extended to optimal control problems. The

Direct Multiple Shooting Method combines several advantages of other direct approaches.

For instance, the state discretization allows to incorporate a priori knowledge of the process

for initialization. The underlying dynamics can be computed by fast and also adaptive state-

of-the art integrators because we solve initial value problems (IVPs). Moreover, the Direct

Multiple Shooting method can cope with highly nonlinear dynamics because we solve IVPs

on subintervals of the solution horizon and do not require an all-at-once solution over the

whole horizon. For an explanation of the method let us state again the optimal control

23

24 CHAPTER 3. DISCRETIZATION STRUCTURE EXPLOITATION

problem (2.2) in the following. We assume that all functions are sufficiently smooth.

min
x,u

∫ t f

t0
Φ(t,x(t),u(t), p(t))dt (3.1a)

s.t. ẋ(t) = f (x(t),u(t), p(t)), t ∈ [t0, t f] , (3.1b)

0 = x(t0)− x0, (3.1c)

0≤ r(t,x(t),u(t), p(t)), t ∈ [t0, t f] . (3.1d)

The problem (3.1) is a constrained infinite-dimensional optimization problem on a time

horizon I := [t0, t f]⊂R with state variables x : I→Rnx and control variables u : I→Rnu . The

dynamical evolution of the states is described by a system of ordinary diffential equations

(ODEs) (3.1b) with right hand side f : Rnx ×Rnu ×Rnp → Rnx and initial value x0 ∈ Rnx .

For the ODE right hand side we assume continuity and Lipschitz continuity in x such that

local solutions to IVPs are guaranteed by Theorem 2.1. We aim to minimize a performance

criterion (3.1a) while satisfying the dynamical evolution constraints (3.1b) with initial value

(3.1c) and path constraints (3.1d) with r : R×Rnx×Rnu×Rnp →Rnr . The system behavior

is affected by uncertain parameters p∈Rnp . The solution trajectories x and u have infinitely

many degrees of freedom. Hence, for numerical computations we must discretize the opti-

mal control problem. After the discretization procedure we arrive at a structured NLP.

Discretization of the optimal control problem

First, the time horizon I is partitioned into a non-necessarily equidistant shooting grid {tk}
with

t0 < t1 < .. . < tM = t f .

On each interval Ik := [tk, tk+1], 0≤ k ≤M−1 we use a control discretization

uk(t) = ψk(t,qk)

with basis functions ψk : Ik×Rnqk → Rnu . The basis functions have local support such that

we get separability of the discretized problem. A common and easy variant is the piecewise

constant control parameterization. For every Ik we choose ψk = qk with qk ∈ Rnu . In other

control discretization cases we may require continuity of the control. It can be achieved by

adding the constraints

ψk(tk+1,qk)−ψk+1(tk+1,qk+1) = 0 for k = 0, . . . ,M−1.

These constraints are linear and affect only neighboring controls. Therefore the separability

of the discretized problem will not get lost by adding continuity constraints.

3.1. THE DIRECT MULTIPLE SHOOTING METHOD 25

We continue with the state discretization. The continuity assumptions on the ODE right

hand side of the dynamical evolution constraint (3.1b) ensure the existence of a unique

solution in the neighborhood of (t,x,u) ∈ I×Rnx ×Rnu by Theorem 2.1. Therefore we

can write the ODE solution as function of initial value x0 and control q, namely x(t;x0,q).

The fundamental idea of direct multiple shooting is the splitting of the ODE trajectory

computation. We do not integrate the ODE on the whole interval I at once. Instead we

divide the integration task into subproblems. We aim to compute IVPs on the intervals

Ik for k = 0, . . . ,M− 1. Therefore we introduce the variables sk ∈ Rnx , k = 0, . . . ,M and

solve local IVPs of the form

ẋ(t) = f (t,x(t),ψk(t,qk)) for t ∈ Ik (3.2a)

x(tk) = sk. (3.2b)

The solution of (3.2) is denoted by xk(t;sk,qk). Then we concatenate the IVP solutions on

the whole interval I to the function

x(t) =

xk(t;sk,qk) for t ∈ [tk, tk+1)

sM for t = tM.

We have to ensure continuity of the concatenated function on I, because this is a fundamen-

tal property of the ODE solution, which yields matching conditions of the form

xk(tk+1;sk,qk)− sk+1 = 0 for j = 0, . . . ,M−1

as additional constraints. Now the evaluation of x(t) does not require an integration over I

at once. Only integration over the subintervals Ik must be performed. The shorter integra-

tion intervals reduce the error propagation and yield a better convergence behavior of the

multiple shooting method, especially compared to single shooting. In addition to that, the

multiple shooting formulation allows a parallel integration of subintervals, yielding compu-

tation time reduction on multicore systems.

Finally we discretize the continuous path constraints (3.1d) and require

r(tk,x(tk;sk,q),ψk(tk,qk))≥ 0 for k = 0, . . . ,M−1.

We define the discretized constraint function rk : R×Rnx×Rnu → Rnr with

rk(tk,sk,qk) := r(tk,x(tk;sk,q),ψk(tk,qk))≥ 0 for k = 0, . . . ,M.

Alternatives to treat the path constraints are described in [93].

At this point we state the discretized optimal control problem that is a nonlinear opti-

mization problem as in Definition 2.3. The structured nonlinear direct multiple shooting

optimization problem then reads

26 CHAPTER 3. DISCRETIZATION STRUCTURE EXPLOITATION

min
s,q

φ(s,q) :=
M−1

∑
k=0

∫ tk+1

tk
Φ(t,xk(t;sk,qk),ψk(t,qk))dt (3.3a)

s.t. 0 = xk(tk+1;sk,qk)− sk+1 for k = 0, . . . ,M−1 (3.3b)

0 = x(t0)− x0 (3.3c)

0≤ rk(tk,sk,qk) for k = 0, . . . ,M. (3.3d)

The inherent multiple shooting structure of the problem (3.3) can be exploited efficiently

due to the separability of the objective function (3.3a) and the constraints with respect to the

optimization variables s and q. Only the matching conditions (3.3b) couple unknowns of

neighboring shooting nodes linearly. This is the reason why the Hessian of the Lagrangian

of the NLP (3.3) exhibits block-diagonal structure.

time

st
at

e
/c

on
tr

ol

t0 t1 t2 tM−1 tM

q0

q1 q2

s0 s1
s2

sM−1
sM

time

st
at

e
/c

on
tr

ol

t0 t1 t2 tM−1 tM

q0
q1

q2
s0

s1
s2

sM−1

sM

Figure 3.1: Illustration of state and control variables of the direct multiple shooting dis-

cretization applied to an optimal control problem. On the left the shooting nodes are initial-

ized linearly and the trajectory violates the matching conditions. On the right the solution

of the NLP has converged with feasible matching conditions. Inspired by [65, 41, 101].

We conclude with the remark that the multiple shooting method only solves the dis-

crete approximation (3.3) of the continuous problem (3.1). Investigations on approximation

properties and asymptotic behavior can be found in [45].

3.2. STRUCTURE EXPLOITING SEQUENTIAL QUADRATIC PROGRAMMING 27

Control Move Regularization

At this point we introduce the Control Move Regularization (CMR). We formulate the CMR

as an addition to the NLP (3.3). The NLP with CMR reads

min
s,q

φ(s,q) (3.4a)

s.t. 0 = xk(tk+1;sk,qk)− sk+1 for k = 0, . . . ,M−1 (3.4b)

0 = x(t0)− x0 (3.4c)

0≤ rk(tk,sk,qk) for k = 0, . . . ,M, (3.4d)

0≤ αCMR− (qk+1−qk) for k = 0, . . . ,M−1, (3.4e)

0≤ αCMR− (qk−qk+1) for k = 0, . . . ,M−1. (3.4f)

The constraints (3.4e) and (3.4f) state that the differences of subsequent control variables

are less than or equal to the CMR parameter αCMR ∈ Rnu . All components of αCMR are

strictly positive. It is also possible to add an objective term φCMR(q) to (3.4a) penalizing

the difference of control variables. For our numerical results in Chapter 9 it is sufficient

to use the CMR parameter αCMR. Engineers use CMR extensively as a means to tune

NMPC controllers. For instance, let the coolant temperature to control a reactor be 80◦C.

Assuming that there is a fine sampling grid, it is impossible to apply 60◦C at the next

sampling point to the plant. Therefore the constraint bounding the difference of subsequent

coolant temperature variables is added to the discretized prediction problem in NMPC. We

remark that the CMR couples neighboring stages only linearly and that the CMR parameter

depends on the discretization grid.

3.2 Structure Exploiting Sequential Quadratic Programming

We employ Sequential Quadratic Programming (SQP) techniques [88] and solve the con-

strained NLP (3.3) with multiple shooting structure as described in [77, 78]. For notational

convenience we write the NLP (3.3) in the more generic form

min
z

φ(z) (3.5a)

s.t. 0 = d(z)+Λx0 | λ (3.5b)

0≤ h(z)+h | µ (3.5c)

with z = (s0,q0, . . . ,sM−1,qM−1,sM) and Λ = (I,0,0, . . .) ∈ Rnx×(Mnx+(M−1)nq). The line

(3.5b) comprises the initial value and dynamical evolution constraints. The line (3.5c) com-

prises all further constraints. Furthermore, the symbols | λ and | µ on the right represent

28 CHAPTER 3. DISCRETIZATION STRUCTURE EXPLOITATION

the dual variables corresponding to the constraints. The concept is introduced in Definition

(2.6) of the Lagrangian function. We emphasize that (3.5) is parametric in x0.

The standard full-step SQP technique is a Newton-type iterative method. We start with

an initial guess of primal and dual NLP variables (z0,λ0,µ0). Within every SQP iteration

we compute the primal-dual solution of the structured QP

min
∆zi

1
2

∆z>i Bi∆zi +b>i ∆zi (3.6a)

s.t. 0 = Di∆zi +d(zi)+Λx0 | λQP (3.6b)

0≤ Hi∆zi +h(zi)+h | µQP (3.6c)

to obtain (∆zi,λQP,µQP). The QP (3.6) is a local quadratic model of the multiple shooting

NLP (3.5) at zi. The matrix Bi denotes an approximation of the Hessian of the Lagrangian

of the NLP (3.5), bi is the objective gradient, Di is the Jacobian of the function d and Hi is

the Jacobian of the function h.

A full step SQP iteration is performed by updating the variables in every iteration ac-

cording to

zi+1 = zi +∆zi, λi+1 = λQP, µi+1 = µQP.

We use the principle of Internal Numerical Differentiation (IND) to solve the IVPs and to

compute the sensitivities. Regarding the whole topic of numerical integration and sensitivity

calculation we refer to [13, 2, 1, 7]. For SQP variants, especially the choice of Bi, see

[62, 63]. For globalization strategies such as line search SQP or trust-region SQP methods

we refer to the textbook [88].

Various structural features as the separable Lagrangian, the block diagonal Hessian, and

the block structure of the Jacobians of the matching conditions can be extensively exploited

if the control functions, constraints, and multiple shooting variables are discretized on a

common grid.

3.3 Condensing

In this section we focus on the multiple shooting structure exploiting method called Con-

densing. It has been described already in [14, 17, 90, 76] and yields small dense QPs.

Solving the tree QP benefits from Condensing because our branchwise formulation pre-

serves the multiple shooting structure. The basic idea of Condensing is a splitting of the

optimization variables z ∈ Rnz into (z1,z2) ∈ Rn1+n2 and a structure exploiting elimination

of z2. After Condensing the resulting QP is of much smaller size if n2 dominates n1 and can

be solved with a state-of-the-art dense QP solver. At first we present the interpretation of

Condensing as a partial nullspace approach as described in [92].

3.3. CONDENSING 29

We consider a structured QP in the optimization variables z = (z1,z2) ∈ Rn1+n2 of the

form

min
(z1,z2)∈Rn1+n2

1
2

[
z1

z2

]>[
B11 B12

B21 B22

][
z1

z2

]
+

[
b1

b2

]>[
z1

z2

]
(3.7a)

s.t. G1z1 +G2z2 = g, (3.7b)

D1z1 +D2z2 = d, (3.7c)

H1z1 +H2z2 ≥ h, (3.7d)

with matrices G1 ∈Rn1×n1 , G2 ∈Rn1×n2 , matrices D1 ∈Rm2×n1 , D2 ∈Rm2×n2 and matrices

H1 ∈ Rm3×n1 , H2 ∈ Rm3×n2 .

QP (3.7) is formulated as in [92, 101]. The following theorem from [92, 101] describes

how to eliminate variables z1 that are coupled with variables z2 by the equality constraints

(3.7b). It is known as partial nullspace approach and has been discussed in similar form in

[8].

Theorem 3.1. Let G1 from QP (3.7) be invertible. We introduce the notation

B =

[
B11 B12

B21 B22

]
, b =

[
b1

b2

]
,

Z =

[
−G−1

1 G2

I

]
, B′ = Z>BZ,

g′ = G−1
1 g, b′ = B21g′+b2−G>2 G−>1 (B11g′+b1),

d′ = d−D1g′, D′ = D2−D1G−1
1 G2,

h′ = h−H1g′, H ′ = H2−H1G−1
1 G2.

Furthermore let (z∗2,λ
∗
2 ,µ

∗) ∈ Rn2+m2+m3 be a solution of the QP

min
z2∈Rn2

1
2

z>2 B′z2 +b′>z2 (3.8)

s.t. D′z2 = d′,

H ′z2 ≥ h′.

Then (z∗,λ ∗,µ∗) := (z∗1,z
∗
2,λ

∗
1 ,λ

∗
2 ,µ

∗) with

z∗1 = G−1
1 (g−G2z∗2) and (3.9a)

λ
∗
1 = G−>1 ((B12−B11G−1

1 G2)z∗2 +B11g′+b1−D>1 λ
∗
2 −H>1 µ

∗) (3.9b)

is a solution of the QP (3.7).

30 CHAPTER 3. DISCRETIZATION STRUCTURE EXPLOITATION

Theorem 3.1 does not specify how to split the optimization variables z = (z1,z2). This

allows for tailoring the approach to the specific QP structure. We only have to ensure that

G1 is well-conditioned.

In our case the QP originates from the direct multiple shooting discretization and a stan-

dard SQP method. We apply Theorem 3.1 to QP (3.6) and focus on the constraint (3.6b).

First, we drop ∆ and i from the SQP formulation. We call the matrix representing the Jaco-

bian of the matching conditions in this section G. It exhibits block-sparse structure,

G =


G0

s G0
q −I

G1
s G1

q −I
.

GM−1
s GM−1

q −I

 . (3.10)

The matrix blocks Gk
s,q represent the sensitivities of the IVP solutions on the kth shooting

interval for k = 0, . . . ,M−1,

Gk
s =

∂

∂ s
xk(tk+1;sk,qk), Gk

q =
∂

∂q
xk(tk+1;sk,qk). (3.11)

In the following we discuss two established Condensing variants.

Block Gauss Condensing

The first variant is named Block Gauss Condensing. We arrange the variables z = (z1,z2)

as follows

z1 = (s1, . . . ,sM) ,

z2 = (s0,q0,q1, . . . ,qM−1) .

For the critical constraint matrix G the first variant yields a permutation of its columns. We

arrive at the structure

G1 =


−I

G1
s

. . .

. . . −I
GM−1

s −I

 and G2 =


G0

s G0
q

G1
q

. . .

GM−1
q

 .
The matrix G1 is lower-triangular with negative identity matrices on the diagonal. There-

fore G1 is invertible and we can apply Theorem 3.1. As we know the structure of G1, we

can exploit it for the matrix-vector operations with G−1
1 . Of course we do not explicitly

invert G1 but perform Block Gauss eliminations that are eponymous for the Condensing

variant. This variant has good stability properties for stable systems yielding ‖Gi
s‖2 < 1

for all i ∈ {0, . . . ,M−1}. In some applications Block Gauss Condensing has shown poor

stability properties, an example can be found in [34].

3.3. CONDENSING 31

Stable QR Condensing

The origins of the second variant Stable QR Condensing can be found already in [14, 46].

This variant is tailored for QPs that originate from the Direct Multiple Shooting discretiza-

tion of optimal control problems with unstable ODEs. The QR decomposition is an algo-

rithm to express a matrix A∈Rm×n, m≥ n, as product A = QR with an upper triangular ma-

trix R ∈ Rm×n and an orthogonal matrix Q ∈ Rm×m. Variants of QR decompositions employ

Householder reflections or Givens rotations. We refer to numerical linear algebra textbooks

as [108, 24] and remark that for Ã ∈ Rm×n, m ≤ n, the so-called LQ-decomposition is a

QR-decomposition of Ã> with L := R>. The core of stable QR Condensing is Algorithm 1

for the subblocks of the critical constraint matrix G. After the decomposition according to

Algorithm 1 Decomposition of the constraint matrix

Input: G j
s , G j

q for j = 0, . . . ,M−1

Output: Q j, L j for j = 0, . . . ,M−1 and G̃ j
s , G̃ j

q for j = 0, . . . ,M−2

1: (L0,Q0) = LQ-decomposition of
[
G0

s G0
q −I

]
2: for j = 0, . . . ,M−2 do
3:

[
G̃ j

s G̃ j
q Ĝ j+1

s

]
=
[
0 0 G j+1

s

]
Q j

4: (L j+1,Q j+1) = LQ-decomposition of
[
Ĝ j+1

s G j+1
q −I

]
5: end for

Algorithm 1 we assemble the matrices G1 and G2 as

G1 =



L0

G̃0
s L1

G̃1
s

. . .

. . . LM−2

G̃M−2
s LM−1


, G2 =



0

G̃0
q

G̃1
q

. . .

G̃M−2
q


,

and apply Theorem 3.1. For a detailed description we refer to the thesis [101] and remark

that due to the stability properties of the QR decomposition the above Condensing variant

is suitable for QPs originating from optimization problems with highly unstable dynamical

systems or dynamical systems with stable and unstable components.

Further Condensing variants can be found for example in [3, 66, 105]. These algorithms

have quadratic or even linear runtime in the horizon length.

After Condensing the QP with multiple shooting structure we solve it with state-of-

the-art dense QP solvers. The size of the QP decreases significantly if the dimension n2

of z = (z1,z2) ∈ Rn1+n2 dominates n1. Condensing as structure-exploitating method is a

32 CHAPTER 3. DISCRETIZATION STRUCTURE EXPLOITATION

computational speedup if the sum of Condensing computation time, dense QP solution time

and the time to recover the variables is less than the direct multiple shooting QP solution

time.

3.4 Summary

In this chapter we have described the Direct Multiple Shooting discretization method for

infinite-dimensional optimal control problems. The discretization yields a finite-dimensional

structured NLP that we solve by SQP methods. We have put the focus on the QPs that ex-

hibit an inherent multiple shooting structure and have discussed Condensing variants as part

of the QP solution process exploiting the problem structure.

Chapter 4

Optimization in Real-Time

One overarching goal of the development of structure exploiting methods in this thesis is to

meet real-time requirements of model-based control of complex systems. In this chapter we

first explain the framework of Nonlinear Model Predictive Control, which is a concept to

control real world processes online. Then we describe algorithms that ensure fast feedback,

meaning that fast corrective actions counteract the observed deviations from the expected

process state. The algorithms are tailored to the online solution of optimization problems

with underlying dynamical system models for the real process. We describe the Real-Time

Iteration scheme and Multi-Level Iteration schemes as state-of-the art methods to deal with

real-time requirements.

4.1 Nonlinear Model Predictive Control

We solve the OCP (3.1) with underlying nonlinear dynamical system model to compute op-

timal controls for a real-world process. In the open-loop approach a precomputed sequence

of controls is applied to the system. However, unforeseen disturbances, systematic modeling

errors and unmodeled external influences can cause the open-loop system to underperform

or - even worse - to violate safety or product requirements. In Nonlinear Model Predictive

Control (NMPC) we focus on a closed-loop approach that involves feedback. We repeatedly

solve the OCP within a sampling time and feed the control back to the system. The correc-

tive actions counteract the deviations from the expected process state. Furthermore the OCP

takes current state and parameter estimations into account. Solving an optimization problem

for parameter and state estimation on a moving horizon in the past is called moving horizon

estimation. We use the nominal model and minimize the difference between measurements

of the current process and the model response. Another possibility for parameter and state

estimation is the extended Kalman filter [56, 97]. For the challenge of uncertainty handling

33

34 CHAPTER 4. OPTIMIZATION IN REAL-TIME

we can on the one hand add safety margins to the deterministic problem formulation or on

the other hand use a probabilistic description of the uncertainty. Our probabilistic descrip-

tion is the scenario tree. As NMPC incorporates economic objective functions, constraints,

current estimates and uncertainty handling to generate a feedback control online while the

real system is running, the principle is one of the most versatile feedback control concepts

[40]. The concept is visualized and described in Figure 4.1.

k +k +k +k

Figure 4.1: At the current time t = tk we estimate the system state x0. In NMPC we solve an

optimal control problem on the prediction horizon [tk, tk +T] yielding the updated predicted

state trajectory x(t) realized by optimal controls uk. We then apply the control u0 to the

system and shift the horizon for one sampling interval. The procedure is repeated on a

chosen sampling grid {tk}.

At this point we remark another interpretation of NMPC. Ideal NMPC can be regarded

as nonlinear control feedback law u for the closed-loop system

x(t) = f (x(t),u(t,x(t), p(t)), p(t)).

The law is implicitly given by the solution of optimization problems on the prediction hori-

zon assuming that the solution exists at least locally. Under certain conditions it is possible

to establish stability guarantees of NMPC. We refer to [53, 98] for detailed stability inves-

tigations, which exceed the scope of this work.

The scenario tree approach takes the uncertainty in a probabilistic sense into account.

We have discussed the stochastic properties of the tree process in Section 2.5 of this thesis.

In the NMPC framework the scenario tree approach is an extension because we repeatedly

solve scenario tree optimization problems on the prediction horizon as visualized in Figure

4.2. The structure exploiting methods for NMPC, especially those in the following sections

4.2. THE REAL-TIME ITERATION SCHEME 35

are for better readability described for standard NMPC but the methods are fully applicable

to scenario tree NMPC.

k +k +k +k

Figure 4.2: Scenario tree NMPC is a variant of NMPC solving scenario tree optimization

problems on the prediction horizon [tk, tk +T]. We depict a tree with one branching point at

tk and four realizations of an uncertain parameter.

4.2 The Real-Time Iteration Scheme

In NMPC the online solution of optimal control problems and the feedback at each sam-

pling time permits to react to unmodeled influences of the real world to the system. This is

a powerful concept, but to be successful the actuation delays introduced by the online com-

putations must be minimized. The Real-Time Iteration (RTI) scheme is one algorithmic

concept to reduce the required computation time delay between measurement and control

feedback. In [25, 28] the RTI scheme is introduced as adaptation of an SQP method to solve

NLPs originating from a Direct Multiple Shooting discretization.

An SQP method for the multiple shooting NLP as described in Section 3.2 iteratively

solves QPs until a stopping criterion is satisfied. The essential idea of RTI to reduce feed-

back delay is to perform only one QP solution during each sampling interval. A further

reduction of the feedback delay is possible by decoupling of the estimated x̂(tk) from the

QP data. The idea is called initial value embedding. As a result the QP solution can be split

into phases. All computations that do not require x̂(tk) can be performed before the current

estimate is available. To explain the RTI scheme let us consider a QP at sampling point tk
that results from an SQP approach to solve (3.3). We aggregate the discretized optimization

variables as z = (x0,u0,x1,u1, . . . ,xM−1,uM−1,xM). In this chapter we consider a QP of the

36 CHAPTER 4. OPTIMIZATION IN REAL-TIME

form

min
z

1
2

z>Bz+b>z (4.1a)

s.t. 0≤ Az+a, (4.1b)

0 = x0− x̂(tk), (4.1c)

with QP data consisting of the matrices B∈Rnz×nz , A∈Rnc×nz and vectors b∈Rnz , a∈Rnc .

The initial value embedding idea means that the estimated x̂(tk) in (4.1c) decouples from

the rest of the QP data. This idea is also possible in the case of Direct Collocation (see, e.g.,

[114]).

We split the RTI into three phases induced by the availability of the estimated x̂(tk).

1st phase: Preparation

In the first phase we prepare all the data of the QP (4.1) that does not depend on the current

observation. This is possible due to the initial value embedding in (4.1c). We initialize the

QP using data from the previous QP. Details about initialization strategies follow below.

After computing the sensitivities we can assemble B,b,A, and a.

2nd phase: Feedback

The second phase starts with an incoming estimate x̂(tk). We embed it into the QP (4.1) by

the constraint (4.1c) and then solve the QP. The u0 part of the QP solution is immediately

fed back to system. Therefore the feedback delay of RTI is reduced to the time between the

measurement of the system state at tk and the availability of u0.

3rd phase: Transition

In the last phase we complete the QP solution, go to the new sampling point tk+1 and then

repeat the phases of the RTI scheme.

QP initialization

Since the RTI basically depends on the solution of one QP, a good choice of the initial-

izer is crucial for the QP solver. For the first iteration we assume that an initial guess

(x0,u0, . . .xM−1,uM−1,xM) is available. For further real-time iterations there are different

strategies for obtaining an initializer from the previous QP solution. We are usually inter-

ested in moving prediction horizons meaning that all optimization problems have the same

horizon length T and therefore the same number of optimization variables.

4.2. THE REAL-TIME ITERATION SCHEME 37

For every sampling time we shift the problem instance by one sampling time step as

explained for NMPC. Let zk = (x0,u0, . . .xM−1,uM−1,xM) be the outcome of the real-time

iteration at sampling time tk. Then we choose the initializer at time tk+1 from the following

variants.

1. Shift

We shift the variables such that zk+1 = (x1,u1, . . .xM−1,uM−1,xM,unew
M−1,x

new
M).

Both terminal control and state are kept from the previous solution, i.e.

unew
M−1 := uM−1 and xnew

M := xM.

2. Extrapolation

We also shift the variables such that zk+1 = (x1,u1, . . .xM−1,uM−1,xM,unew
M−1,x

new
M).

At the cost of solving an initial value problem on the last discretization interval we

compute xnew
M . The required control action can be chosen either as unew

M−1 := uM−1 or

from a (not too expensive) control law unew
M−1 = ũ(zk).

3. Reuse

In case of small sampling intervals and short horizons the solutions of subsequent

QPs show similar characteristics. A direct initialization zk+1 := zk results in a further

speedup of the RTI scheme. The sampling grid decouples from the discretization grid

in this strategy. Therefore we can provide even faster feedback, that again yields QP

similarity.

Up to this point we have described initialization strategies for the primal variables. Typ-

ically, the dual variables are shifted along the primal variables and kept constant at the ter-

minal stage. For the reuse warm start strategy we initialize λ k+1 := λ k for all dual variables.

In the next section we want to explain why reuse is our preferred initialization approach for

the RTI scheme.

Parametric quadratic programming in the RTI scheme

In the reuse initialization strategy it is beneficial to compute the solution of the new QP using

the data from the previous solution process. This can be realized by parametric quadratic

programming methods. We consider a family of QPs with parameter τ of the form

min
z(τ)

1
2

z(τ)>Bz(τ)+b(τ)>z(τ) (4.2a)

s.t. 0≤ Az(τ)+a(τ), (4.2b)

0 = x0 + τ x̂(tk)− (1− τ)x̂(tk−1). (4.2c)

38 CHAPTER 4. OPTIMIZATION IN REAL-TIME

We assume that all parameterized functions are piecewise linear in τ . The QP (4.2) depends

on two subsequent state estimates x̂(tk−1) and x̂(tk). We aim to find the piecewise affine

linear feedback control path u0(τ) between tk−1 and tk, parameterized by τ ∈ [0,1], to feed

u0 back to the system whenever a new control action is required. Inferring the solution

of the QP at tk from the QP at tk−1 speeds up computations for the reuse strategy in order

to satisfy strict real-time constraints. We can interrupt the solution process, give feedback

immediately to the system and continue from there in the next available time slot. The

fast feedback on a fine sampling grid is independent of the discretization grid of the QP.

For technical insight into parametric quadratic programming we refer to [35]. The solver

qpOASES [36] is an implementation of parametric quadratic programming.

To conclude, the RTI scheme solves the resulting discrete multiple shooting NLPs only

approximately and reduces the feedback time further through a splitting of the iteration into

a preparation, a feedback and a transition phase. For results on the approximation quality

we refer to [25, 29, 27, 65]. RTI in combination with parametric quadratic programming

exploits similarities of subsequent QPs, one important aspect of discretization structure

exploitation.

4.3 Multi-Level Iteration Schemes

The Multi-Level Iteration (MLI) idea proposed in [16, 15] is an extension of the RTI

scheme. Replacing the full preparation phase of RTI by hierarchical updates of the QP data

yields even faster feedback. However, there is always a tradeoff between the contraction

provided by the QP solution and the computational cost per iteration. A complete update

usually provides best contraction but is expensive in time. In the MLI method there are four

levels with increasing update expense. The idea behind MLI is that two subsequent QPs of

the form (4.1) differ in matrices B, A and vectors b, a only if we choose to recompute them.

Otherwise we keep the QP data fixed to accelerate the QP solution.

Level A: Feedback iteration

In level A we assume that QP (4.1) is given with data B̃, Ã, b̃, ã and reference solution

(z̃, λ̃). We solve the QP

min
z

1
2

z>B̃z+ b̃>z (4.3a)

s.t. 0≤ Ãz+ ã, (4.3b)

0 = x0− x̂(tk) (4.3c)

4.3. MULTI-LEVEL ITERATION SCHEMES 39

for the current estimate x̂(tk) in order to return the control as fast as possible to the system.

The QP solver needs very few iterations only. Essentially, level A is linear model predictive

control that operates on the data provided by higher levels of MLI. We save all the ODE

integration and sensitivity generation effort.

Level B: Feasibility improvement iteration

For level B we keep the QP data B̃, Ã, a reference gradient b̃ and the reference solution

(z̃, λ̃). We evaluate the constraints yielding the current a and update the gradient

b = b̃+B(z− z̃).

With this gradient we solve the QP

min
z

1
2

z>B̃z+b>z (4.4a)

s.t. 0≤ Ãz+a, (4.4b)

0 = x0− x̂(tk). (4.4c)

The additional costs of level B compared to level A are due to constraint evaluation and the

extra matrix-vector multiplication to update the gradient. The matrix decompositions inside

the solver remain valid. It can be shown that Level B iterations with a fixed x̂(tk) converge

locally to a suboptimal but feasible point of the NLP. For a proof we refer to [15].

Level C: Optimality improvement iteration

In level C we keep the QP matrices B̃, Ã and the reference solution (z̃, λ̃). We evaluate the

constraints yielding the vector a and compute a modified gradient

b = bk + Ã>λ
k.

We then solve the QP

min
z

1
2

z>B̃z+b>z (4.5a)

s.t. 0≤ Ãz+a, (4.5b)

0 = x0− x̂(tk). (4.5c)

Additional computational costs compared to level B come from the evaluation of the adjoint

sensitivities to assemble b. But these costs are less expensive than computing all sensitivi-

ties. Again, matrix decompositions inside the solver remain valid. Level C iterations with a

fixed x̂(tk) converge locally to a KKT point of the NLP as proven in [15].

40 CHAPTER 4. OPTIMIZATION IN REAL-TIME

Level D: RTI

Level D is a standard real-time iteration as described in Section 4.2. We evaluate the con-

straints, gradient, sensitivities and a new Hessian approximation B. Therefore the QP solver

needs to refactorize the inherent matrices.

MLI schemes

An MLI scheme is assembled from the levels A-D by specifying how often each level is

executed. For instance, the D8C∞B4A1-scheme means that we solve a fast feedback linear

MPC at each sampling time (level A), improving feasibility at every fourth sampling time

(level B) and fully recompute the QP data and solve at every eighth sampling time (level

D). The ∞-symbol indicates that the level is not performed, therefore we do not use level C

in the example.

Modifications of the MLI approach such as mixed-level iterations and fractional-level

iterations have been investigated in [67, 44, 41].

4.4 Summary

This chapter has put the focus on one goal of structure exploitation, the real-time feasibility.

We have introduced the NMPC principle and iteration schemes to speed up NMPC by split-

ting the solution process of the optimization problem in different levels. The RTI scheme

and its extension MLI as described in this chapter are fully applicable to the scenario tree

optimization problems as they also exhibit the structure of the underlying dynamical evolu-

tion.

Chapter 5

Scenario Tree Structure Exploitation

In Chapter 3 we have reviewed approaches to exploit the discretization structure of op-

timization problems with underlying dynamical systems. The present chapter targets the

inherent structure of the scenario tree optimization problems. Tree structure can appear

on different levels in optimization with scenario trees. Therefore also structure-exploiting

methods can be investigated on the OCP, NLP and QP level. We start this chapter with an

overview of tree structures on the different levels and relate to existing work that focusses

on tree structure. As the main part of the chapter we present the dual decomposition ap-

proach for tree-structured QPs. For large scenario trees the QPs cannot be effiently solved

without problem tailored methods. On top of that a sequence of similar QPs must be solved

in our MLI framework for NMPC, therefore structure exploitation on the QP level yields a

high effort with regard to computation times of scenario tree NMPC. From the perspective

of numerical optimization methods for scenario tree NMPC the tree structure exploiting QP

solution method is the main contribution of this thesis. This main contribution has been pub-

lished in [75]. In contrast to the rather condensed paper we provide more background and

details, especially for the non-smooth Newton method that is required to solve the resulting

optimization problem in the dual decomposition approach.

5.1 Tree Structure in Optimization Problems

In the following we state scenario tree optimization problems on the different levels regard-

ing scenario tree NMPC and put a special focus on the QP subproblems because they must

be repeatedly solved when applying SQP methods or MLI schemes to the NLP originating

from the discretized scenario tree optimal control problem. On the optimal control level we

consider the problem (2.1) that we have formulated in Chapter 2. We have seen especially

in Chapter 4 on real-time feasibility in optimization that we must discretize it at one point.

41

42 CHAPTER 5. SCENARIO TREE STRUCTURE EXPLOITATION

Optimal control problem

The tree structure in optimal control problems can be encoded by the non-anticipativity

constraints. We have introduced the formulation as problem (2.1) and recall it here.

min
x(t),u(t)

∑
j∈S

w j

∫ t f

t0
Φ(x j(t),u j(t), p j(t))dt (5.1a)

s.t. ẋ j(t) = f (x j(t),u j(t), p j(t)), t ∈ [t0, t f], j ∈ S, (5.1b)

x j(t0) = x0, j ∈ S, (5.1c)

x j(t) ∈ X , t ∈ [t0, t f], j ∈ S, (5.1d)

u j(t) ∈ U , t ∈ [t0, t f], j ∈ S, (5.1e)

ui(t) = u j(t), t ∈ [tk, tk+1], (i, j) ∈ Ck, k ∈ K. (5.1f)

The variable j from the set S = {1, . . . ,S} corresponds to a scenario with weight w j ∈ [0,1].

Indices k in the set K= {0, . . . ,M−1} correspond to the time discretization from the parti-

tioned interval I into t0 < t1 < · · ·< tM−1 < tM = t f .

We emphasize that problem (5.1) is formulated branchwise as the variable index j cor-

responds to a whole scenario. We have a full set of control variables for every scenario that

is determined by the sequence of parameter realizations from the tree root to a tree leaf.

The tree structure is encoded by posing the conditions (5.1f) on the controls requiring the

technical definition

Ck :=
{
(i, j) ∈ S2 ∣∣ pi(t) = p j(t) for all t ∈ [t0, tk]

}
.

Discretizing the OCP (5.1) yields a branchwise oriented nonlinear programming problem,

that we focus on later. At this point we continue with a short excursus on the existing

tree-structure investigations of the nodewise problem formulation.

Node-oriented nonlinear problem

On the NLP level a node-oriented tree-structured problem is introduced in [59, 60] as non-

linear tree-sparse problem with explicit controls. The problem formulation serves as gen-

eralization of the tree sparse convex programs in [106, 107]. In the nodewise formulation

every node has its own set of optimization variables. If the scenario tree has many deci-

sion points, the advantage of the nodewise formulation is a smaller number of optimization

variables than in the branchwise formulation. However, the parallelization of the nodewise

formulation is a difficult task due to the coupling structure.

In [105, 59] node-oriented tree-structured NLPs are solved using a primal-dual interior-

point method employing filter line-search globalization. The algorithms presented in [59]

5.1. TREE STRUCTURE IN OPTIMIZATION PROBLEMS 43

exploit the underlying tree topology as inherent structure of the constraint matrices. As a

benefit of this node-wise representation, algorithms are designed as traversals of tree nodes

that perform the overall solution by a series of node operations. For distributing algorithms

of the node operations to parallel architectures as well as for numerical issues such as scal-

ing, problem convexification and matrix regularization we refer to [59].

Branch-oriented nonlinear problem

We return to our branchwise formulation of tree-structured optimization problems. A Direct

Multiple Shooting discretization of (5.1) yields discretized system states xT
j = [xT

j,0, . . . ,x
T
j,M]

and discretized controls uT
j = [uT

j,0, . . . ,u
T
j,M−1] for j ∈ S .

The tree-structured NLP (5.2) reads

min
x,u ∑

j∈S
w jφ(x j,u j) (5.2a)

s.t. x j,0 = x0, j ∈ S, (5.2b)

x j,k+1 = xk
j(tk+1;x j,k,u j,k), k ∈ K, j ∈ S, (5.2c)

x≤ x j,k ≤ x, k ∈ K∪{M}, j ∈ S, (5.2d)

u≤ u j,k ≤ u, k ∈ K, j ∈ S, (5.2e)

ui,k = u j,k, (i, j) ∈ Ck, k ∈ K. (5.2f)

In problem (5.2) we minimize the weighted sum of the scenario objective functions with re-

spect to the following constraints: one initial value for all scenarios (5.2b), system dynamics

(5.2c) with nonlinear function xk
j to evaluate the dynamical evolution at the kth interval of

the discretization, state bounds (5.2d), control bounds (5.2e) and non-anticipativity con-

straints (5.2f). We do not employ an interior point method for the NLP formulation as in

[105, 59] for the nodewise formulation. Instead, we employ the SQP-based real-time tai-

lored algorithms that we have discussed in Chapter 4. In the context of the MLI iteration

scheme it becomes crucial to investigate the structure on the QP level. Therefore we present

in this chapter a tree-structure exploiting algorithm on the QP level.

Branch-oriented quadratic problem

At first we introduce a notation for the branch-oriented tree QP. We denote the discretized

system states x j and discretized controls u j as variables z j ∈ Rnz ,

zT
j = [xT

j,0,u
T
j,0,x

T
j,1,u

T
j,1, . . . ,x

T
j,M−1,u

T
j,M−1,x

T
j,M]T . (5.3)

44 CHAPTER 5. SCENARIO TREE STRUCTURE EXPLOITATION

Then the branch-oriented tree QP reads

min
z ∑

j∈S
w j

(
1
2

zT
j H jz j +gT

j z j

)
(5.4a)

s.t. x j,0 = x0, j ∈ S, (5.4b)

x j,k+1 = A j,kx j,k +B j,ku j,k, k ∈ K, j ∈ S, (5.4c)

x≤ x j,k ≤ x, k ∈ K∪{M}, j ∈ S, (5.4d)

u≤ u j,k ≤ u, k ∈ K, j ∈ S, (5.4e)

E j+1z j+1 =C jz j, j ∈ S\{S}. (5.4f)

As in previous formulations, the index j addresses each of the S scenarios and k is the

index for the stages in time. We assume that all H j, j ∈S, in the quadratic objective function

(5.4a) are positive definite approximations of the Hessian blocks of the Lagrangian of (5.2).

In constraint (5.4b) the initial value is set to x0 for all scenarios. The dynamical evolution

is linearized at z and formulated in constraint (5.4c). The matrices A j,k and B j,k represent

the sensitivities of the dynamical evolution description in (5.2c) with respect to the states

and controls on stage k. We define the matrices E j,C j ∈ Rna×nz for j ∈ S such that (5.4f)

denotes the na non-anticipativity constraints for coupled scenarios. To compose C j, we fill

it step by step with blocks of the identity matrix Inu according to Algorithm 2.

Algorithm 2 Set scenario tree structure representing matrix
Input: Scenario index j ∈ S\{S}, Tree data: number of realizations m, decision points tk,

number of decision points nd

Output: C j

1: C j = 0 ∈ Rna×nz

2: for k = 1, . . . ,nd do
3: if (j, j+1) ∈ Ck then
4: i = nu ∑

k
r=0(m

r−mk)

5: row indices = i, . . . , i+nu−1

6: column indices = knx +(k−1)nu, . . . ,knx + knu

7: C j(rowindices,columnindices) = Inu

8: end if
9: end for

With the matrices C j, j ∈ S\{S}, assembled with Algorithm 2 we define

E j+1 :=C j, j ∈ S\{S}.

5.2. DUAL DECOMPOSITION 45

For notational convenience the matrices E1 and CS are set to 0 ∈ Rna×nz . We assume in the

following that a solution z∗ := (z∗1, . . . ,z
∗
S) of (5.4) exists and that LICQ is satisfied in this

solution.

From the perspective of numerical optimization methods for scenario tree NMPC the

structure-exploiting method to solve (5.4) is the main contribution of this thesis. The method

we describe in the next section has been presented by the author at the European Control

Conference 2015 and published in [75]. Therefore the description of the algorithm is largely

based on [75].

5.2 Dual Decomposition

The dual decomposition approach divides the QP solution into subproblems exploiting the

separability properties of the QP that are induced by its constraint structure. The approach

is most promising if we choose a subset of constraints that couple only a few variables,

because dual decomposition then allows to massively parallelize the solution process. Dual

decomposition has been used already in the solution for QP subproblems in NMPC by [41,

42, 43]. The authors consider QPs with variables representing stages in time and decouple

the variables originating from different stages. A distributed algorithm for more general

coupling topologies is proposed in [70]. We consider the branch-oriented QP (5.4) for dual

decomposition. In our case the non-anticipativity contraints containing the tree structure

couple only a few control variables of subsequent scenarios, so they can serve for the dual

decomposition approach. The non-anticipativity constraints on the one hand have more

complex tree structure than the non-branching linear structure in [43], on the other hand

the tree structure is a special case of the general separable QP structure introduced in [70].

In the following we present the details of the dual decomposition in the non-anticipativity

constraints. We start with problem (5.4) from Section 5.1,

min
z ∑

j∈S
w j

(
1
2

zT
j H jz j +gT

j z j

)
(5.5a)

s.t. x j,0 = x0, j ∈ S, (5.5b)

x j,k+1 = A j,kx j,k +B j,ku j,k, k ∈ K, j ∈ S, (5.5c)

x≤ x j,k ≤ x, k ∈ K∪{M}, j ∈ S, (5.5d)

u≤ u j,k ≤ u, k ∈ K, j ∈ S, (5.5e)

E j+1z j+1 =C jz j, j ∈ S\{S}. (5.5f)

QP (5.5) is separable except for the linear coupling terms of subsequent indices in (5.5f).

Our aim is to find a reformulation of QP (5.5) that separates into subproblems. We decom-

46 CHAPTER 5. SCENARIO TREE STRUCTURE EXPLOITATION

pose the QP (5.5) by dualizing the constraints (5.5f). We introduce λ ∈ Rna to express (5.5a)

and (5.5f) as partial Lagrangian function

L̃(z,λ) := ∑
j∈S

w j

(
1
2

zT
j H jz j +gT

j z j

)
+ ∑

j∈S\{S}
λ

T (C jz j−E j+1z j+1). (5.6a)

The separation of the terms depending on E j or C j and an index shift in the E j terms yield

L̃(z,λ) = ∑
j∈S

w j

(
1
2

zT
j H jz j +gT

j z j

)
+ ∑

j∈S\{S}
λ

TC jz j− ∑
j∈S\{1}

λ
T E jz j. (5.6b)

With the notation convention E1 =CS = 0 ∈ Rna×nz we arrive at

L̃(z,λ) = ∑
j∈S

w j

2
zT

j H jz j +
(
w jgT

j +λ
T (C j−E j)

)
z j. (5.6c)

By Lagrangian duality as described for example in [9, 88], we can compute the solution of

QP (5.5) from

max
λ

min
z ∑

j∈S

(w j

2
zT

j H jz j +
(
w jgT

j +λ
T (C j−E j)

)
z j

)
(5.7a)

s.t. x j,0 = x0, j ∈ S, (5.7b)

x j,k+1 = A j,kx j,k +B j,ku j,k, k ∈ K, j ∈ S, (5.7c)

x ≤ x j,k ≤ x, k ∈ K∪{k+1}, j ∈ S, (5.7d)

u ≤ u j,k ≤ u, k ∈ K, j ∈ S. (5.7e)

We introduce for j ∈ S the matrices and vectors

G j =



−Inx

A j,0 B j,0 −Inx

A j,1 B j,1 −Inx

. . .

A j,M−1 B j,M−1 −Inx


, D j =

(
Inz

−Inz

)
,

zT
0, j = [xT

j,0,0, . . . ,0]
T ∈ R2nz and zT

bnd, j = [x,u,x, . . . ,x,u,x,−x,−u, . . . ,−u,−x]T ∈ R2nz .

Then we formulate (5.7) as

max
λ

min
z ∑

j∈S

(w j

2
zT

j H jz j +
(
w jgT

j +λ
T (C j−E j)

)
z j

)
(5.8a)

s.t. G jz j = z0, j, j ∈ S, (5.8b)

D jz j ≤ zbnd, j, j ∈ S. (5.8c)

5.2. DUAL DECOMPOSITION 47

For j ∈ S, we denote the quadratic objective functions by Fj : Rnz×Rna → R,

Fj(z j,λ) :=
w j

2
zT

j H jz j +
(
w jgT

j +λ
T (C j−E j)

)
z j.

This yields the formulation of QP (5.8) as

max
λ

min
z ∑

j∈S
Fj(z j,λ) (5.9a)

s.t. G jz j = z0, j, j ∈ S, (5.9b)

D jz j ≤ zbnd, j, j ∈ S. (5.9c)

The optimization problem (5.9) is separable in the variables z j that refer to scenario j. Thus,

we can interchange summation and minimization and write

max
λ

∑
j∈S

min
z

Fj(z j,λ) (5.10a)

s.t. G jz j = z0, j, j ∈ S, (5.10b)

D jz j ≤ zbnd, j, j ∈ S. (5.10c)

For fixed λ we define local QPs for all j ∈ S corresponding to one scenario by

min
z

Fj(z j,λ) (5.11a)

s.t. G jz j = z0, j, j ∈ S, (5.11b)

D jz j ≤ zbnd, j, j ∈ S. (5.11c)

We denote the local QPs (5.11) as QPj(λ). The following assumption guarantees the exis-

tence of unique optima z∗j for all QPj(λ) with optimal objective values Fj(z∗j ,λ).

Assumption 5.1. All local QPj(λ) are feasible and strictly convex.

With Assumption 5.1 we can reformulate QP (5.10) as an unconstraint optimization

problem

max
λ

F(λ) := max
λ

∑
j∈S

Fj(z∗j ,λ). (5.12)

Fj(z∗j ,λ) denotes the optimal objective resulting from the solution of the local subproblems

QPj(λ) for fixed λ and all scenarios j ∈ S .

We are now at the point to state two Lemmata from [37]. Let F∗(λ) denote the optimal

objective function value with respect to λ .

Lemma 5.1. Under Assumption 5.1 the optimal solutions z∗j to the parametric local prob-

lems QPj(λ) depend piecewise-affinely and continuously on the parameter λ .

48 CHAPTER 5. SCENARIO TREE STRUCTURE EXPLOITATION

Lemma 5.2. If Assumption 5.1 holds, then the function F∗(λ) is continuously differentiable,

piecewise quadratic, concave in λ .

Summarizing the dual decomposition approach, we have reformulated the QP (5.5) to

(5.12) by exploiting the separable structure. The decoupled local QPj(λ) can be solved

in a massively parallel fashion. Furthermore, our local QPs are conventional single sce-

nario QPs. The branchwise problem formulation keeps the dynamical structure of the sub-

problems QPj(λ). Therefore methods exploiting the dynamical structure can be applied to

the subproblems. Especially in case of a direct multiple shooting discretization we can use

Condensing as described in Chapter 3.

5.3 Non-smooth Newton Method

The dual decomposition approach for the tree-structured QP (5.4) yields the unconstrained

optimization problem (5.12). The smoothness properties of the objective function are stated

in Lemma 5.2. According to [37, 70, 41] the consequence of Lemma 5.2 is that the second-

order derivatives of the objective function exist almost everywhere and a second-order sub-

derivative exists at active constraints changes of the local problems. We employ a non-

smooth Newton method as in [94] to solve (5.12). For every iteration i we require the

Newton gradient Gi :=
[dF∗

dλ
(λ i)

]T
and the Newton matrix Mi :=

[
d2F∗
dλ 2 (λ

i)
]

that exists

almost everywhere. We solve in every iteration i the linear system

Mi
∆λ

i =−Gi (5.13)

to obtain the step direction ∆λ i.

After choosing an initial guess λ 0 we iterate

λ
i+1 = λ

i +αi∆λ
i

with appropriately chosen stepsize αi until a stopping criterion is satisfied.

At this point we continue with the computation and properties of Gi andMi. For nota-

tional convenience we drop the iteration index i of λ i. We recall that the optimal objective

function is separable in j, because F∗(λ) = max
λ

∑ j∈S Fj(z∗j ,λ). Let us focus on the jth

component of F∗(λ),

F∗j (λ) := Fj(z∗j(λ),λ). (5.14)

It is important to notice in (5.14) that z∗j depends on λ . We differentiate (5.14) with respect

to λ yielding

dF∗j
dλ

(λ) =
∂Fj

∂ z j
(z∗j(λ),λ)

dz∗j(λ)

dλ
+

∂Fj

∂λ
(z∗j(λ),λ). (5.15)

5.3. NON-SMOOTH NEWTON METHOD 49

The first term in (5.15) vanishes,

∂Fj

∂ z j
(z∗j(λ),λ) = 0, (5.16)

due to [9, App. C]. For the last term in (5.15) we obtain

∂Fj

∂λ
(z∗j(λ),λ) = (z∗j(λ))

T (C j−E j)
T . (5.17)

Therefore we have

dF∗j
dλ

(λ) = (z∗j(λ))
T (C j−E j)

T . (5.18)

The Newton gradient is the sum of all j ∈ S derivative components (5.18),

Gi =

[
dF∗

dλ
(λ)

]T

= ∑
j∈S

[dF∗j
dλ

(λ)

]T

= ∑
j∈S

(C j−E j)z∗j(λ). (5.19)

For the Newton matrix we formally write

d2F∗j
dλ 2 (λ) =

d
dλ

(dF∗j
dλ

(λ)

)
=

d
dλ

(
(z∗j(λ))

T (C j−E j)
T) . (5.20)

For the existence of the right-hand side term in (5.3), the term z∗j(λ) must be differentiable

with respect to λ . Therefore we investigate the local QPs (5.11). We apply the concept

of optimality systems and their correspondence to KKT points (c.f. [39]) to the local QPs

(5.11).

We assume that a QP solver for the computation of F(z∗j ,λ) delivers a working set A∗j ,
which is a subset of the set of active constraints and depends on z∗j , such that the matrix

K j :=


H j GT

j (DA∗
j)

T

G j 0 0

DA∗
j 0 0


is invertible, where the superscriptA∗ selects the rows of D j that belong to the working set.

Introducing µ j ∈ Rng and νA∗
j ∈ RnA

∗
, the system of equations

K j


z∗j
µ∗j

νA∗
j

=


−g j− (C j−E j)

T λ

z0

zA
∗

bnd, j

 (5.21)

50 CHAPTER 5. SCENARIO TREE STRUCTURE EXPLOITATION

holds for optimal z∗j , µ∗j , and νA∗
j for j ∈ S. We derive from (5.21) that

z∗j(λ)

µ∗j (λ)

νA∗
j (λ)

= K−1
j


−g j

z0

νA∗
j

−K−1
j


(C j−E j)

T λ

0

0



=


z∗j(0)

µ∗j (0)

νA∗
j (0)

−K−1
j


Inz

0

0

(C j−E j)
T

λ .

Thus, we arrive at

z∗j(λ) = z∗j(0)−


Inz

0

0


T

K−1
j


Inz

0

0

(C j−E j)
T

λ .

For notational convenience we define

K̃ j :=
(
Inz 0 0

)
K−1

j


Inz

0

0


and obtain

z∗j(λ) = z∗j(0)− K̃ j(C j−E j)
T

λ ,

which can easily be differentiated with respect to λ yielding

d
dλ

z∗j(λ) =−K̃ j(C j−E j)
T .

Equation (5.3) finally delivers

d2F∗j
dλ 2 (λ) =

d
dλ

(z∗j(λ))
T (C j−E j)

T

=−
(
K̃ j(C j−E j)

T)T
(C j−E j)

T

=−(C j−E j)K̃ j(C j−E j)
T ,

and thus

Mi =
d2F∗

dλ 2 (λ) = ∑
j∈S
−(C j−E j)K̃ j(C j−E j)

T .

As pointed out in [37],M becomes singular in the case of jointly redundant active con-

straints in several inner problems QPj(λ) due to the coupling non-anticipativity constraints.

In the numerical case studies we indeed sometimes observe zero eigenvalues ofM. Note

5.3. NON-SMOOTH NEWTON METHOD 51

that the function F∗(λ) is piecewise quadratic, differentiable and twice differentiable ac-

cording to Lemma 5.2. In the computation of M the matrix K̃ j depends on the solution

z∗j(λ) of the local QPs. The local QPs exhibit active set changes depending on λ that yield

the characteristics of F∗(λ) [94, 37].

For the solution of the linear Newton system (5.13) in the case of general coupling

topologies the paper [70] proposes an iterative method without forming the large Newton

system. We employ regularization strategies as for example Levenberg-Marquardt and use a

Cholesky decomposition of the regularized−M to solve the linear system originating from

our tree-structured QP. An alternative method [69] solves the singularity problem resulting

from (5.13) based on reordering and substitution of constraints in the original QP (5.4). All

in all, the non-smooth Newton strategy is summarized in Algorithm 3.

Algorithm 3 Dual Newton strategy
Input: Initial value λ 0, tolerance ε

Output: Optimal solution λ ∗,z∗

1: for i = 0,1, . . . do
2: for j = 1, . . . ,S do
3: solve QP j(λ

i) to obtain z∗j(λ
i) (parallel)

4: end for
5: Compute Gi

6: if |Gi|< ε then
7: return Optimal solution λ ∗,z∗

8: end if
9: ComputeMi

10: Solve (regularized) linear systemMi∆λ i =−Gi

11: Compute stepsize αi

12: Update λ i+1 = λ i +αi∆λ i

13: end for

Globalization is required in Algorithm 3 to determine the stepsize αi as the objective

function is piecewise quadratic. We employ the accelerated bisection line search strategy

that is suggested in [43], see Algorithm 4. It is a combination of a fast backtracking line

search at the beginning (lines 2–5) and a bisection search for refinement (lines 7–21).

52 CHAPTER 5. SCENARIO TREE STRUCTURE EXPLOITATION

Algorithm 4 Accelerated bisection line search
Input: Current guess λ , current objective F∗c = F∗(λ), search direction ∆λ , scaling factor

s� 1, bounds αmin,αmax, termination criteria nmax,ε

Output: Stepsize α

1: Solve all scenario QPs for (λ +αmax∆λ) to obtain F∗cand (parallel)
2: while F∗cand < F∗c do (Backtracking)

3: αmax := s ·αmax

4: Solve all scenario QPs for (λ +αmax∆λ) to obtain F∗cand (parallel)
5: end while
6: αmax := min(αmax

s ,1)

7: for i = 1, . . . ,nmax do (Bisection)

8: α := αmax+αmin
2

9: Solve all scenario QPs for (λ +α∆λ) (parallel)
10: Set up the gradient d

dλ
F∗(λ +α∆λ)

11: Compute F ′(α) := ∆λ T d
dλ

F∗(λ +α∆λ)

12: if |F ′(α)| ≤ ε then
13: return α

14: else
15: if F ′(α)< 0 then αmax := α

16: else αmin := α

17: end if
18: end if
19: end for

5.4 Summary

The optimization problems in the context of scenario tree NMPC exhibit a particular struc-

ture originating from the considered tree. The tree-structured problems can be formulated

nodewise or branchwise. For the branchwise formulation we contribute to the numerical

side of the scenario tree approach a structure exploiting method based on dual decomposi-

tion in the non-anticipativity constraints. In this chapter we have presented the algorithmic

details. Each large-scale tree QP is solved iteratively by a non-smooth Newton method.

Within each iteration of the Newton method a multitude of smaller decoupled QPs is solved

in parallel. The numerical results in Chapter 9 are all computed using our tree structure

exploiting methods.

Chapter 6

Quadrature-based Scenario Tree
Generation

A main assumption of the scenario tree approach is that we can represent the uncertain pa-

rameter space by a finite number of scenarios. In the case of a high-dimensional uncertainty,

i.e. multi-dimensional parameters that enter into the problem, the scenario tree becomes

large, even for a two-stage problem. As there is an exponential growth of the number of

scenarios in the number of decision points S = mnd , the effort for optimizing the coupled

scenarios at the same time becomes prohibitive, even when applying the structure-exploiting

methods of the previous chapters. Therefore the question how to choose scenarios in the

uncertain parameter space is of major importance for real-time feasibility of scenario tree

NMPC. In this chapter we present a method of scenario generation inspired by sparse-grid

quadrature rules, which are a commonly used tool in the field of uncertainty quantification.

The quadrature-based scenario tree generation method is a contribution of this thesis. It re-

duces the base m of the exponential growth formula for scenario trees. The chapter is based

on the publication [74] presented at the 19th World Congress of the International Federation

of Automatic Control.

6.1 Expectation Value of the Objective and Quadrature

To motivate our approach we move back to the nominal optimal control problem

min
x,u

∫ t f

t0
Φ(t,x(t),u(t), p)dt (6.1a)

s.t. ẋ(t) = f (x(t),u(t), p), t ∈ [t0, t f] , (6.1b)

0 = x(t0)− x0, (6.1c)

0≤ r(t,x(t),u(t), p), t ∈ [t0, t f] . (6.1d)

53

54 CHAPTER 6. QUADRATURE-BASED SCENARIO TREE GENERATION

Instead of minimizing the objective function (6.1a) for only one realization of p, we regard

p as a random variable. We introduce the notation

Fobj(x,u, p) :=
∫ t f

t0
Φ(t,x(t),u(t), p)dt,

and take the expectation value with respect to p, Ep, of

F∗obj(p) := Fobj(x∗,u∗, p)

in the space of uncertain parameters as an objective function. This can be expressed as

an integral over a d-dimensional probability space Ω with measure µ and corresponding

probability density function fµ .

Ep(F∗obj(p)) =
∫

Ω

F∗obj(p)dµ(p)

=
∫

Ω

F∗obj(p) fµ(p)d p

When computing the integral value numerically, we require a reliable quadrature in high

dimensions. To this end, we approximate the expectation value with a sum over a finite set

Γ⊂Ω according to

Ep(F∗obj(p)) =
∫

Ω

F∗obj(p) fµ(p)d p

≈ ∑
p∈Γ

w(p)F∗obj(p) fµ(p).

We then interpret every p∈ Γ as one parameter realization. Thus, we have m = |Γ|. One can

argue that a robust scenario tree must contain the combined extreme values for all uncertain

parameters. In our setting the identification of extreme values plays a minor role. In the

following we consider F∗obj fµ with bounded mixed derivative, cf. (6.2). If we choose for

instance fµ such that the uncertain parameters are normally distributed and the objective

function such that the bounded mixed derivative condition holds, an extreme realization

of all uncertain parameters at the same time is highly unlikely on the basis of their joint

distribution.

Along this line of arguments, we employ quadrature formulas with grid points that re-

solve the underlying probability space accurately and have benign computation costs in

higher dimensions.

6.2. SPARSE GRIDS 55

6.2 Sparse Grids

In the area of uncertainty quantification sparse grids are the method of choice for the evalu-

ation of high-dimensional integrals. Function evaluations of F∗obj at the nodes are expensive

in our case, because we need to simulate a full scenario for each node. Therefore, we aim

at reducing the number of grid points compared to a full tensor grid with md points with-

out sacrificing accuracy with respect to the expected objective function value on the basis

of sparse grids. The accuracy with respect to constraint satisfaction is not covered in a

probabilistic sense by the quadrature-based scenario tree generation.

Following [48], we now explain how to approximate the integral of a function F : Ω→R
with sparse grid quadrature. We denote the exact value by

Id(F) =
∫

Ω

F(x)dx.

Moreover, we consider a sequence of quadrature formulas on level l ∈N with nd
l underlying

points, nd
l < nd

l+1. Then the exact integral can be approximated by

Qd
l (F) :=

nd
l

∑
i=1

wliF(xli)

with quadrature weights wli ∈ R and node points xli ∈Ω, i = 1, . . . ,nd
l . The underlying

quadrature grid on level l is denoted by

Γ
d
l := {xli : 1≤ i≤ nd

l } ⊂Ω.

6.2.1 Smolyak’s Algorithm

The construction of sparse grids was proposed in [102] for functions with bounded mixed

derivatives of order r, denoted byWr
d ,

Wr
d :=

{
F : Ω→ R,

∥∥∥∥ ∂ |s|F
∂xs1

1 · · ·x
sd
d

∥∥∥∥
∞

< ∞ for all s ∈ Nd ,si ≤ r

}
, (6.2)

with multi-index s ∈ Nd and |s|= ∑
d
i=1 si.

Let l ∈ N. For F ∈Wr
1, wli ∈ R, and xli ∈ Γd

l , we consider the one-dimensional quadra-

ture formula

Q1
l (F) =

n1
l

∑
i=1

wliF(xli).

We then define the difference formulas

∆
1
l (F) := (Q1

l −Q1
l−1)F with ∆

1
0(F) := 0.

56 CHAPTER 6. QUADRATURE-BASED SCENARIO TREE GENERATION

The difference formulas are quadrature formulas on the grid Γ1
l ∪Γ1

l−1. If the quadrature

formulas are nested, that is Γ1
l−1 ⊂ Γ1

l , then the underlying grid of the difference formula ∆1
l

is Γ1
l .

To lift one-dimensional formulas to d-dimensional formulas for F ∈Wr
d , we define the

tensor product of quadrature formulas (Q1
l1⊗ . . .⊗Q1

ld) as the sum over all possible combi-

nations.

(Q1
l1⊗·· ·⊗Q

1
ld)(F) :=

n1
l1

∑
i1=1

. . .

n1
ld

∑
id=1

wl1i1 · · ·wld id ·F(xl1i1 , · · · ,xld id).

Smolyak’s formula for F ∈Wr
d , l ∈N, and multi-index k ∈Nd can then be expressed as

Qd
l (F) := ∑

|k|≤l+d−1
(∆1

k1
⊗ . . .⊗∆

1
kd
)(F). (6.3)

The underlying grid for formula (6.3) is called sparse grid.

Interpretation

Compared to the sparse grid formula (6.3), the full tensor product formula

d

∑
j=1

∑
1≤k j≤l

(∆1
k1
⊗ . . .⊗∆

1
kd
)(F)

corresponds to summation over the whole cube of indices {k : k j ≤ l, j = 1, . . . ,d}.
The sparse grid formula (6.3) sums over a much smaller simplex of indices

{k : |k| ≤ l +d−1} instead.

Expanding the difference formulas ∆1
k j

, we can denote Smolyak’s formula in terms of

Q1
k j

by

Qd
l (F) =

l+d−1

∑
|k|=l

(−1)(l+d−|k|−1)
(

d−1
|k|− l

)
(Q1

k1
⊗·· ·⊗Q1

kd
)(F).

Sparse grids of levels 0, 1, 2, and 3 as well as a tensor grid in dimension d = 3 are

depicted in Fig. 6.1 to 6.4.

6.2. SPARSE GRIDS 57

Figure 6.1: The sparse grid of level l = 0

in dimension d = 3 is a single point.

Figure 6.2: The sparse grid of level l = 1

in dimension d = 3 consists of seven points

on the coordinate axes.

Figure 6.3: The sparse grid of level l = 2 in

dimension d = 3 has 25 points which clus-

ter at the coordinate axes. We remark that

the depicted grid is not a subgrid of the ten-

sor grid with m = 3.

Figure 6.4: The full tensor grid with m = 3

in dimension d = 3 already consists of 27

points.

58 CHAPTER 6. QUADRATURE-BASED SCENARIO TREE GENERATION

6.2.2 Error Bounds

Especially in higher dimensions, the number of underlying quadrature nodes for sparse grid

quadrature is much smaller compared to tensor grid quadrature. In the nested case, the

number of quadrature points of a sparse grid is

nd
l = ∑

|k|≤l+d−1
n1

k1
· . . . ·n1

kd
.

If we assume n1
l =O(2l), which is a justified assumption for one-dimensional quadrature

rules like the trapezoidal rule or the Clenshaw-Curtis rule, we arrive at nd
l =O(2l · l(d−1)).

In contrast, the number of grid points for full tensor product rules is O(2ld).

To formulate error bounds for sparse grid quadrature, we start with an error bound E1
l (F)

of the one-dimensional quadrature formulas with positive weights, as for example in the

case of the Clenshaw-Curtis rule. If we assume that f ∈Cr, the approximation

|E1
l (F)|=O((n1

l)
−r)

holds. We take such a quadrature formula as a basis for Smolyak’s algorithm and addition-

ally assume F ∈Wr
d and n1

l =O(2l). Then the error of sparse grid quadrature is according

to [48]

|Ed
l (F)|=O(2−lr · l(d−1)(r+1)).

As stated in [100], the approximation quality of sparse grids even outperforms tensor

grid approximation quality. The composition of sparse grid points, which cluster along the

axes (Fig. 6.3), is better than the composition of tensor grid points (Fig. 6.4).

6.3 Scenario Tree NMPC with Quadrature-based Scenario Tree
Generation

In Chapter 1 we have introduced the steps of scenario tree construction. First we choose

a finite number of realizations (m) of the uncertainty, second we define a number of deci-

sion points (nd) in time where the realizations are allowed to change and third, we couple

the scenarios as sequences of parameter realizations according to the tree structure. The

quadrature-based approach affects the first step. Especially in high-dimensional uncertainty

spaces we choose sparse grid nodes as realizations of the multi-dimensional parameter space

instead of tensor grid nodes. In consequence the basis m of the exponential growth formula

S = mnd for the number of scenarios can be significantly reduced. The scenario tree is used

in every NMPC iteration. Thus computation time is massively reduced by the sparse grid

approach as we shall see in the numerical result Chapter 9.

6.4. SUMMARY 59

6.4 Summary

We have proposed a method to generate scenario trees for robust NMPC of uncertain sys-

tems with randomly distributed parameters in this chapter. The approach is based on high-

dimensional quadrature rules that can be efficiently generated a-priori on the basis of sparse

grids. One main difference of the resulting trees compared to usually used trees is that the

extreme corner points of parameter realizations are not included. In the case of distributed

parameters, these corner cases are highly unlikely to realize. We demonstrate the efficiency

of our approach in the numerical results chapter considering sparse grid trees with signif-

icantly less amount of scenarios compared to a conventional full tensor grid. Quadrature-

based tree generation reduces the base of the exponential growth in the number of decision

points. Further scenario reduction based on dynamical evolution of the parameter process

is discussed in the next chapter.

60 CHAPTER 6. QUADRATURE-BASED SCENARIO TREE GENERATION

Chapter 7

Markov Chain Scenario Tree
Pruning

The design of a suitable scenario tree is always a trade-off between the coverage of the

uncertainty space and the computational cost of large trees. In Chapter 6 the basis of the

exponential growth when using the usual scenario tree construction procedure has been suc-

cessfully reduced. However, the usual approach still exhibits exponential dependence on

the robust horizon. In this chapter we demonstrate an alternative scenario tree construction

method that does not depend on a robust horizon as the usual scenario tree setup. The fol-

lowing method is based on one main assumption for the dynamical evolution of uncertainty:

We assume that the uncertain parameter process approximated by the scenario process in

time is a Markov chain. We emphasize that other properties of the stochastic tree process

as described in Chapter 2 are not affected by the additional property. The Markov chain

scenario tree pruning is a contribution of this thesis to the stochastic side of scenario tree

NMPC.

7.1 Markovian Scenario Tree Process

As mentioned above we interpret the uncertain parameter values as realizations of a Markov

chain with finite state space. The following definition recalls the main stochastic principle

of a Markov chain, namely the dependence of a state only on the previous state.

Definition 7.1 (Markov chain). Let E 6= /0 be a countable set and Π = (Π(x,y))x,y∈E a

stochastic matrix. A sequence of E-valued random variables X0,X1, . . .

on a probability space (Ω,F ,P) is a Markov chain with state space E and

61

62 CHAPTER 7. MARKOV CHAIN SCENARIO TREE PRUNING

transition matrix Π, if for all n≥ 0 and x0, . . . ,xn+1 the equation

P(Xn+1 = xn+1|X0 = x0, . . . ,Xn = xn)

= P(Xn+1 = xn+1|Xn = xn)

= Π(xn,xn+1)

holds with P(X0 = x0, . . . ,Xn = xn)> 0.

The full combinatorial scenario tree can be interpreted now in the sense that every sce-

nario represents a realization of the sequence of these random variables forming the Markov

chain. In Figure 7.1 we illustrate a Markov chain with transition probabilities and in Fig-

ure 7.2 its corresponding scenario tree starting from the state 2. We get the probability of

a scenario that is a path from the root to a leaf of the tree by multiplying the transition

probabilities along the path.

1

 �(1,1)

|E| = 3

 �(1,2)

 �(2,2)

 �(2,3) �(3,2)

 �(3,3)

2

3

 �(2,1)

 �(1,3)

 �(3,1)

Figure 7.1: Transition graph of a Markov chain with state space E = {1,2,3}. The three

states are represented by the vertices. Possible transitions are represented by the edges. The

transition probabilities from i to j are the matrix elements Π(i, j).

7.2 Invariant Distribution as Initial Distribution

We can already deduce from the tree depicted in Figure 7.2 that the initial distribution of

X0 influences the scenario probabilities. In our NMPC framework we compute the solution

of a mathematical optimization problem depending on the initial state for every NMPC

iteration. Translated to the Markov chain scenario tree approach this would mean, that we

have a tree for every initial state in the state space E. The resulting forest is undesirable

for fast numerical methods exploiting the structure of subsequent optimization problems.

7.2. INVARIANT DISTRIBUTION AS INITIAL DISTRIBUTION 63

tpresent = t0 t1 t2

x1
0

x

x1
1

x

x2
1

x

x3
1

x

 �(2,1)

 �(2,2)

 �(2,3)

|E| = 3

 �(2,1)

 �(2,2)

 �(2,3)

 �(1,1)

 �(1,2)

 �(1,3)

 �(3,1)

 �(3,2)

 �(3,3)

Figure 7.2: A scenario tree with 3 states and 2 decision points. Branch probabilities are the

transition probabilities of the Markov chain with transition matrix Π. The tree illustrates all

possible sequences of the Markov chain with length 3 and initial distribution P(X0 = 2) = 1.

On the one hand taking into account the whole forest would generate a large forest-size

optimization problem that takes longer to solve than a single tree-structured optimization

problem. On the other hand switching between trees depending on the current estimate

of the state would slow down NMPC schemes that exploit the structure of the optimization

problems of subsequent NMPC iterations. Therefore, if the initial distribution or initial state

is not determined, we have to make a choice for the initial distribution of the Markov chain

before constructing the tree.

A natural choice is the invariant measure of the Markov chain that describes the long-

term stochastic behavior and can easily be computed. The following theorem is known from

ergodic theory and formulated for example in the Markov chain chapters of [31, 68].

Theorem 7.1. Let µ be an invariant measure of the Markov chain Π on the finite set E, i.e.

for all x ∈ E

∑
y∈E

µ(y)Π(y,x) = µ(x). (7.1)

Furthermore, let there exist a k ≥ 1 with Πk(x,y)> 0 for all x,y ∈ E.

Then for all y ∈ E the limit

lim
n→∞

Π
n(x,y) = µ(y)> 0

exists independently of the choice of x ∈ E, and the limit µ is the unique invariant measure

of the Markov chain Π on E.

64 CHAPTER 7. MARKOV CHAIN SCENARIO TREE PRUNING

Thus, the invariant measure µ is a natural choice, because it is the limit distribution

of the Markov chain. From equation (7.1) we deduce that the invariant measure is easily

computed as the left eigenvector of Π to the eigenvalue 1.

7.3 Tree Pruning Algorithm

The full scenario tree, which branches at every stage, grows exponentially in the number of

decision points. Hence, we would like to choose a subtree for practical computations. It is

desirable to cut out the scenarios with lowest probability such that the scenario probabilities

of the remaining tree sum up to a coverage probability pcoverage or such that a maximum

number of scenarios kmax is reached. The naive approach to get the subtree would be to

construct the full combinatorial tree, compute all scenario probabilities and then prune the

tree. But due to the combinatorial complexity, this so-called full enumeration approach

might become very slow or even impossible for a large number of decision points. We note

here that there is a maximum of decision points, the prediction horizon length, because our

intention is to use the tree for the optimization problem in the prediction task.

We propose an efficient algorithm to generate a scenario tree from a Markov chain with

|E|=m<∞ states in the order of non-increasing scenario probabilities . We are interested in

a scenario tree of depth nlevels ∈N without full enumeration of all possible mnlevels scenarios.

To describe scenarios, we use a tuple notation for the vertices of the complete scenario tree.

For any k-tuple s = (e1, . . . ,ek), ei ∈ E, we denote its length by |s| = k. Two tuples over E

are concatenated with the ⊕-operation according to(
e1

1, . . . ,e
1
k1

)
⊕
(
e2

1, . . . ,e
2
k2

)
=
(
e1

1, . . . ,e
1
k1
,e2

1, . . . ,e
2
k2

)
.

The root of the tree is given by the 1-tuple (o) for some o ∈ E. The full scenario tree of

length nlevels is denoted by T (nlevels). We characterize T (nlevels) by (o) ∈ T (nlevels) and the

implication

∃s ∈ T (nlevels) with |s|< nlevels ⇒ s⊕ (e) ∈ T (nlevels) ∀e ∈ E.

Thus, T (nlevels) is a set of tuples of length less than or equal to nlevels, which are exactly

the vertices of the complete scenario tree. The labeling with tuples implicitly encodes the

connectivity of the vertices, e.g., the tuple (1,1,3,2) encodes that we arrive at the vertex by

starting from realization 1, staying in 1, then jumping to 3 and finally to 2. We can assign

to each vertex s =
(
e1, . . . ,e|s|

)
∈ T (nlevels) a probability

p(s) =
|s|

∏
i=2

Π(ei−1,ei) (7.2)

7.3. TREE PRUNING ALGORITHM 65

by multiplying the transition probabilities. At this point we formulate Algorithm 5 for the

scenario tree generation. It requires the Markov chain transition matrix Π, the scenario

length nlevels, the coverage probability pcoverage ∈ [0,1] and maximum number of scenar-

ios kmax ∈ N as inputs. The scenario length nlevels should be smaller than or equal to the

prediction horizon.

Algorithm 5 Scenario tree generation
Input: Π, nlevels, pcoverage, kmax

Output: Set of scenarios with length nlevels

1: R← {(o)}, k← 0

2: whileR 6=∅ do
3: Choose v = argmax

s∈R
p(s) (cf. (7.2) using Π)

4: R←R\{v}
5: if |v|< nlevels then
6: R←R∪{v⊕ (e) | e ∈ E}
7: else
8: k← k+1, sk← v

9: if ∑
k
i=1 p(si)≥ pcoverage or k ≥ kmax then

10: return Set of scenarios {si}i=1,...,k

11: end if
12: end if
13: end while

Algorithm 5 successively updates a subtree, given implicitly by its potential leaves

R ∈ T (nlevels) that are reachable after one step, in a greedy fashion. In the main loop

we choose always one additional leaf with highest probability at a time. Scenarios of length

nlevels will be enumerated as a finite sequence (sk) as soon as they are encountered . The

algorithm terminates after line 9 if the maximum number of scenarios k ≥ kmax or the cov-

erage probability

k

∑
i=1

p(si)≥ pcoverage ∈ [0,1]

is satisfied. Algorithm 5 can be implemented efficiently by representing the setR by a heap

data structure. This data structure can provide the maximum entry in constant time and

perform the removal and insertion of additional elements in logarithmic time complexity.

Further extensions of the algorithm are in preparation [73].

66 CHAPTER 7. MARKOV CHAIN SCENARIO TREE PRUNING

7.4 Constraint Satisfaction

In optimization under uncertainty one essential question is how well the proposed method

ensures feasibility of the constraints. We recall that that the underlying uncertain parame-

ter process is a discrete Markov process. Then, if we know the transition probabilities of

the uncertainty and assume that k < kmax, the proposed Algorithm 5 will ensure constraint

satisfaction with a probability of at least pcoverage for each NMPC subproblem.

Let us start from the full combinatorial tree representing all possible sequences of real-

izations of the Markov chain up to a certain time horizon. The algorithm yields a subset

of the full tree. This subtree consists of scenarios with cumulative probability of at least

pcoverage if the algorithm does not terminate due to k≥ kmax. If the transition matrix Π coin-

cides with the underlying Markov chain of the real uncertainty, Algorithm 5 covers at least

pcoverage of all possible realizations of the uncertainty up to the time horizon restricted by the

tree length. As our numerical methods provide a solution that is feasible for all considered

scenarios, the tree resulting from Algorithm 5 ensures a probability of pcoverage of constraint

satisfaction.

7.5 Constructing a Markov Chain from a Distribution

A discrete-time and finite state Markov process is characterized by the transition matrix and

an initial distribution. If both are explicitly indicated by the application, a scenario tree can

be immediately constructed according to Algorithm 5. However, often only the uncertain

parameter and its probability distribution are specified. In this case the distribution can serve

as an initial distribution for the Markov chain but still the transition matrix is required. As

there is no obvious principle on how to assemble the matrix, we describe in the following

two methods to compute the matrix elements assuming that |E|< ∞.

Transition Matrix from the Solution of an Optimization Problem

We regard the elements of the transition matrix Π for the finite number of states as variables

and formulate an optimization problem with constraints that model the desired properties

of the transition matrix.

First, Π must be a stochastic matrix, that is

∑
j

Πi j = 1 for all i, (7.3)

Πi j ≥ 0 for all i, j. (7.4)

7.5. CONSTRUCTING A MARKOV CHAIN FROM A DISTRIBUTION 67

Second, we want to ensure that the given distribution v is an invariant distribution of the

chain,

vΠ = v. (7.5)

Third, convergence of the Markov chain to the distribution v due to Theorem 7.1 is guar-

anteed if the Markov chain is aperiodic and irreducible. Formulating these properties as

constraints would introduce combinatorial complexity to the problem. Therefore we leave

them out and test the properties in the solution. Furthermore, we can formulate sparsity

constraints by setting entries of the matrix Π to zero. Finally, in some cases symmetry is

desirable,

Πi j = Π ji for all j > i. (7.6)

For the objective function of the optimization problem we suggest to minimize the linear

objective ∑i, j Πi j that yields an LP or a quadratic objective ∑i, j Π2
i j that yields a QP. Both

penalize all entries of the transition matrix. Also nonlinear functions can be considered as

objective. Minimizing for example the second eigenvalue of the transition matrix would

yield a faster convergence of the Markov chain to the invariant distribution. However, the

resulting NLPs are harder to solve than the QPs or LPs and we keep in mind that com-

putation of the transition matrix is just a subproblem before the actual tree creation and

application as a scenario tree controller. A cheaper method for transition matrix creation is

presented in the following section.

Metropolis Matrix as Transition Matrix

Originating from the field of statistics, Markov Chain Monte Carlo (MCMC) methods are

Markov chain based algorithms for sampling from a probability distribution. The consid-

ered Markov chain has the target distribution as invariant distribution. The idea behind the

statistical methods can be adapted to assemble our transition matrix. In MCMC the state of

the chain after a number of steps is used as a sample of the desired distribution. One of the

algorithms is Metropolis-Hastings MCMC [57]. The core object is the Metropolis matrix

that is constructed according to Algorithm 6.

68 CHAPTER 7. MARKOV CHAIN SCENARIO TREE PRUNING

Algorithm 6 Assembling the Metropolis matrix
Input: Probability density function f , state discretization x ∈ Rm, reference transition ma-

trix Q ∈ Rm×m

Output: Metropolis matrix M

1: M = 0 ∈ Rm×m

2: for i = 1, . . . ,m do
3: for j = 1, . . . ,m do
4: if j 6= i and Q(i, j)> 0 then

5: M(i, j) = Q(i, j)min
{

1,
f (x(j))Q(j, i)
f (x(i))Q(i, j)

}
6: end if
7: end for
8: M(i, i) = 1−∑

m
j=1 M(i, j)

9: end for
10: return M

The matrix M is a stochastic matrix with an invariant distribution that approximates f .

Aperiodicity and irreducibility are guaranteed if the reference Markov chain Q is aperiodic

and irreducible. Before assigning the matrix elements of Q, we first set the structure of

Q that ensures aperiodicity and irreducibility. For instance, a tridiagonal or pentadiagonal

structure can be chosen. Then we define Q row-wise. For every row we fill the non-zero

entries according to the uniform distribution on exactly these non-zero row entries. After

assembling Q we can compute the Metropolis matrix as transition matrix for the Markov

chain using Algorithm 6 and construct the scenario tree according to Algorithm 5.

7.6. SCENARIO TREE EXAMPLES 69

7.6 Scenario Tree Examples

In this section we assemble Markov transition matrices by the ideas presented in the pre-

vious sections and then construct scenario trees according to Algorithm 5. We consider

three realizations of an uncertain parameter with distribution v = (0.1,0.5,0.4). In Table

7.1 we list the resulting transition matrices from Algorithm 6 (Metropolis) with tridiagonal

reference matrix

Q =


0.6667 0.3333 0

0.3333 0.3333 0.3333

0 0.3333 0.6667

 .

and the matrices from the LP solution as well as from the QP solution.

Table 7.1: Transition matrices

Assembling type Transition matrix Stationary distribution

Metropolis (M)


0.6667 0.3333 0

0.0667 0.6667 0.2667

0 0.3333 0.6667

 (0.1,0.5,0.4)

LP


0.7264 0.2 0.0736

0.0264 0.8 0.1736

0.0354 0.2 0.7646

 (0.1,0.5,0.4)

QP


1 0 0

0 1 0

0 0 1

 initial distr. of Markov chain

The metropolis matrix M in the second column of Table 7.1 exhibits tridiagonal structure

as the reference matrix Q. The diagonal dominates, the chain stays at every state with

probability 0.6667. In the third row the solution of the LP also shows diagonal-dominance,

aperiodicity and irreducibility can be verified. Both examples underline that the solution to

the problem of assembling the transition matrix is not unique. The invariant distribution is

the target distribution v in both cases. The solution to the QP in the fourth table row yields

the identity matrix. We remark at this point that imposing sparsity constraints on the LP in

order to get a tridiagonal matrix also yields the identity matrix in this example. The Markov

chain with identity transition matrix is not irreducible, as it stays always in the current state.

Furthermore, the invariant distribution of such a chain depends of the initial distribution. In

fact it equals the initialization of the Markov chain. In the following we consider the first

and second transition matrix and construct the trees according to Algorithm 5.

70 CHAPTER 7. MARKOV CHAIN SCENARIO TREE PRUNING

Figure 7.3: The left scenario tree results

from 5 with pcoverage = 0.99, nlevels = 5 and

the Metropolis transition matrix as inputs.

The tree consists of 81 scenarios covering

99,0814 % of the uncertainty. We save

67 % of scenarios with respect to the full

combinatorial tree of 243 scenarios.

Figure 7.4: The right scenario tree results

from 5 with pcoverage = 0.99, nlevels = 5 and

the LP transition matrix as inputs. The tree

consists of 122 scenarios covering 99,0036

% of the uncertainty. We save almost 50 %

of scenarios with respect to the full combi-

natorial tree of 243 scenarios.

In Figure 7.3 and 7.4 we depict the scenario trees constructed with Algorithm 5 and

parameters pcoverage = 0.99, nlevels = 5, kmax = ∞. On the left the Metropolis transition

matrix is used and on the right the LP transition matrix is used. The resulting tree structure

depends on the sparsity structure of the transition matrices. In this example the Metropolis

approach with sparsity structure predefined by the reference chain saves more scenarios

than the LP approach.

7.7 Approximation Error of the Examples

In the last section we investigate the influence of the probability pcoverage on the number

of scenarios and the approximation error. Therefore we consider the two Markov chain

transition matrices from the previous section and construct trees according to Algorithm 5

depending on pcoverage. We define the approximation error as the cumulative probability of

all pruned scenarios.

Figure 7.5 shows the number of scenarios and the approximation error for nlevels = 10.

All scenarios of the various trees constructed with probability pcoverage have length 10,

which is already a large number of stages if we recall that the full combinatorial tree has

310 = 59049 scenarios. From the left figure we deduce that the number of scenarios de-

creases gradually with increasing pcoverage for both choices of transition matrices with better

performance for the Metropolis case in this example. The decrease is on a logarithmic scale

implying the large savings and high potential of the scenario tree constructing algorithm.

On the right the error decreases with higher probability pcoverage. For Figure 7.6 we have

7.7. APPROXIMATION ERROR OF THE EXAMPLES 71

10−3 10−2 10−1 100

100

101

102

103

104

105

pcoverage

N
um

be
r

of
 s

ce
na

rio
s

10−3 10−2 10−1 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pcoverage

A
pp

ro
xi

m
at

io
n

er
ro

r

Metropolis transition matrix
LP transition matrix

Figure 7.5: Tree pruning algorithm results: Number of scenarios (left) and approximation

error (right) for scenario length nlevels = 10 and three parameter realizations.

10−1 100
102

103

104

105

106

107

108

109

1010

pcoverage

N
um

be
r

of
 s

ce
na

rio
s

Metropolis transition matrix
LP transition matrix

10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pcoverage

A
pp

ro
xi

m
at

io
n

er
ro

r

Figure 7.6: Tree pruning algorithm results: Number of scenarios (left) and approximation

error (right) for scenario length nlevels = 20 and three parameter realizations.

72 CHAPTER 7. MARKOV CHAIN SCENARIO TREE PRUNING

increased the scenario length to nlevels = 20 and computed 9 trees for pcoverage = 0.1, . . . ,0.9.

Using trees of 20 stages corresponds to a state-of-the-art prediction horizon of 20 for sce-

nario tree NMPC. The full combinatorial tree would consist of 320 scenarios, equal to more

than 3 billion scenarios. Such a large number exceeds the power of numerical methods for

scenario tree NMPC. In the left figure again the number of scenarios decreases gradually

with increasing probability pcoverage on a logarithmic scale. A probability pcoverage = 0.5

for example yields trees with thousands of scenarios. This is a significant saving compared

to the full tree with billions of scenarios. Constructing such large trees can be done offline

before starting the actual scenario tree NMPC. The approximation error on the right again

decreases with higher probability pcoverage for both transition matrices.

7.8 Summary

In this chapter we have presented a scenario tree generation algorithm based on Markov

chains. The algorithm generates the tree without full enumeration of all possible scenarios.

Due to the Markov assumption the resulting tree depends on the initial distribution and

transition matrix of the Markov chain. If only a distribution of the uncertain parameter

is provided, we regard it as the invariant distribution of a Markov chain and compute the

transition matrix with a Metropolis approach or as a solution of an optimization problem.

We have illustrated the methods with example trees and discussed the high potential of

our contribution by staging the extraordinary savings in the number of scenarios and the

approximation error induced by the coverage.

Chapter 8

Implementation

In this chapter we present the software implementation of the numerical methods discussed

in this thesis. The STMLI package (Scenario Tree Multi Level Iteration package) is the

scenario tree extension of the MLI software (Multi Level Iteration software). The scenario

tree NMPC methods have been implemented by the author as part of the doctoral studies

to demonstrate the effectiveness and efficiency of the methods. This chapter shall serve

as an overview of STMLI. A discussion of numerical results using the software follows in

Chapter 9.

8.1 Design Decisions

We have implemented the structure exploiting methods for scenario tree NMPC in the nu-

merical computing environment MATLAB by Mathworks [86]. The software MLI provides

the NMPC part, especially the Multi-Level Iteration scheme [15], and STMLI extends it by

the scenario tree related features. A short overview of MLI follows in the next section.

MLI

In MLI there is on the one hand a simulator that acts as the real plant and propagates a

specified model of the reality. On the other hand, there is the optimizer that is based on

the Multi-Level Iteration scheme. Prediction as well as estimation tasks along the NMPC

paradigm can be performed with MLI. An overview of the architecture of MLI is depicted

in Figure 8.1.

We emphasize that the models of optimizer, estimator and simulator are independent and

the effects of model-plant mismatch can be investigated. The data of simulator, optimizer

and estimator are also stored separately, even each phase of the MLI scheme operates on

its own data. Communication between the phases and between optimizer, estimator and

73

74 CHAPTER 8. IMPLEMENTATION

Simulation Model

Levels
Optimization Model

Estimation Model

Evaluator
Integrator

Simulator

Optimizer

Estimator

Tree Structure

SOLVIND qpOASES

Figure 8.1: MLI has a modular architecture. The Tree Structure module is the essential

module required for the STMLI part of the optimizer that runs the non-smooth Newton

method from the dual decomposition approach.

simulator is implemented according to the NMPC and MLI scheme. In this section we

focus primarily on the optimizer as this is the module where the scenario tree approach acts

to robustify against the uncertainty. Depending on the current phase the optimizer assembles

and solves QPs and/or gives immediate feedback. The most time critical operations such as

sensitivity calculations and dense QP solutions are performed by the software SolvIND and

qpOASES written in C/C++.

SolvIND

SolvIND is a suite of ODE/DAE Solvers capable of generating arbitrary order forward and

adjoint derivatives of IVPs using the principle of internal numerical differentiation [5, 6, 1].

The SolvIND suite contains the integrator DAESOL-II based on BDF methods for stiff

ODEs and index 1 DAEs [22, 47]. Furthermore, the integrator family RKFSWT based on

Runge-Kutta-Fehlberg methods of different order [99, 72, 19, 32, 33] is part of SolvIND.

Model function derivatives are computed using the principle of Automatic Differentiation

via built-in ADOL-C (Automatic Differentiation by OverLoading in C) [50]. ADOL-C

uses operator overloading to differentiate C and C++ programs. SolvIND comes with a

MATLAB interface that we use to compute derivatives and sensitivities during the assembly

of the optimization problems in scenario tree NMPC.

qpOASES

The software qpOASES [36] is an open-source implementation of the online active set strat-

egy [35]. It is inspired by observations from the field of parametric quadratic programming.

In qpOASES the expectation that the optimal active set does not change much from one

8.2. NUMERICAL METHODS 75

sampling time to the next is exploited. Thus, the online active set strategy is particularly

suited for model predictive control applications. The developer of qpOASES provide a

MATLAB interface that we use to solve the local scenario QPs within the dual decomposi-

tion procedure.

STMLI

The extension module of MLI by the scenario tree robustification approach is called STMLI.

It implements the dual decomposition presented in Chapter 5. All design decisions of MLI

are passed to STMLI. The data of STMLI for scenario tree NMPC consists of the uncertain

parameter specification, the tree topology and algorithmic parameters of the dual decompo-

sition and non-smooth Newton method. Our implementation follows the branchwise view

on the scenario tree. We store the data for each scenario and the coupling structure that

forms the tree.

8.2 Numerical Methods

From the methodological perspective we perform in STMLI the dual decomposition ap-

proach with a non-smooth Newton method. For the decoupled inner QPs we employ the

online active set strategy. As they are representing one scenario in the branchwise view

we employ standard condensing. For integration and sensitivity computation we can switch

between methods based on backward difference formulas or Runge-Kutta-Fehlberg formu-

las. We point out that here the nodewise view of the tree is advantegous for all dynamical

evolution computations.

Furthermore it is possible to use positive definite approximations of the inner QP Hes-

sians by Limited Memory BFGS updates [87, 80]. The resulting strictly convex QPs are

required for the dual decomposition approach. Another feature is the Control Move Regu-

larization (CMR) to penalize the difference of subsequent controls.

8.3 Setup of Problems

The MLI software is available from the Model-Based Optimizing Control group at IWR,

Heidelberg University. It requires a MATLAB installation, the SolvIND package and the

software qpOASES.

For the setup of a NMPC problem we provide first a SolvIND model formulated in C++

that is used for integration and sensitivity calculation. Then the simulator, the controller and

the scenario tree are initialized as described in the following.

76 CHAPTER 8. IMPLEMENTATION

Initializing the simulation

In scenario_initialize we define the initial values for the simulation, the SolvIND

model for the simulator and an integrator supported by SolvIND. Furthermore, we set the

sampling grid of the NMPC scheme and set flags to turn on or off the controller and the

estimator.

Initializing the controller

For NMPC we need to set up the optimization environment in controller_initialize.

We specify the prediction horizon and the discretization grid, especially the number of

multiple shooting points. For the QP solution the initial values, bounds, scaling factors

and the condensing flag are required. The Hessians can be calculated using second-order

derivatives or L-BFGS updates. Algorithmic parameters for the control move regularization

are also specified in controller_initialize. Furthermore, we define the MLI scheme.

Initializing the scenario tree

The extension module STMLI requires a specification of the scenario tree structure in

tree_initialize. We define the finite set of uncertain parameters as basis of the tree,

the robust horizon and weights for all scenarios. Then we specify the parameters of the

non-smooth Newton method and specify how to manage the resulting data of the scenario

tree optimization problems.

Initializing further features

We set further the plant simulation behavior (user_scen_update) and the interaction be-

tween optimizer, estimator and simulator regarding states and parameters in

user_opt_x_from_scen, user_opt_p_from_scen, user_est_p_from_scen. In case

of state or parameter estimation the estimator settings are in estimator_initialize. For

visualization, the figures and plotting data is set via user_plot, user_plot_init with

the full flexibility of the MATLAB plotting tools.

Running MLI

Finally, running the problem requires only a function call runMLI() or runSTMLI() in

MATLAB with the specific problem name as argument.

8.4. SUMMARY 77

8.4 Summary

We have introduced STMLI as an extension of the MLI software that is executable in the

numerical computing environment MATLAB. The tree module is essentially based on the

dual decomposition strategy of Chapter 5. We emphasize that all features of MLI are passed

to STMLI, especially the data storage, discretization technique and interfacing to software

that performs time critical operations such as sensitivity computation and QP solution.

78 CHAPTER 8. IMPLEMENTATION

Chapter 9

Numerical Results

In this chapter we demonstrate effectiveness and efficiency of the numerical methods de-

veloped in the previous chapters. For this purpose we apply our theory and algorithms to

challenging problems. First, we consider a Continuous Stirred Tank Reactor. Our powerful

structure exploiting numeric methods yield successful performance of scenario tree NMPC

with up to 1001 scenarios. The second problem is an industrial optimization problem, a

Biochemical Batch Reactor model provided by BASF. Already for small trees the optimiza-

tion problems on the prediction horizon become large-scale and hard to solve due to the

highly nonlinear system model. We demonstrate how the sparse grid approach reduces the

scenario tree size without sacrificing controller performance. In the third section we con-

sider a pharmaceutical problem from Penicillin production, and point out how we cope with

special properties of the nonlinear dynamical system. All problems have in common that

there is an uncertainty present in the dynamical system model. Our results do not only il-

lustrate the performance and robustness of scenario tree NMPC against the uncertainty, but

also emphasize that numerical structure exploitation in the form of our dual decomposition

approach and the generation of suitable scenario trees like the quadrature-based sparse trees

are required for real-time feasible scenario tree NMPC.

9.1 Continuous Stirred Tank Reactor

We consider a nonlinear, continuous-time stirred tank reactor (CSTR) problem. Inside a

tank with cooling system the chemical A reacts to the chemical B. We control the reaction

by the cooling temperature and aim to track the setting point. The CSTR dynamics have

been studied already in [110], an extended version in [20] and the CSTR in context of

NMPC under uncertainty in [113].

79

80 CHAPTER 9. NUMERICAL RESULTS

Dynamical system model

In the following we describe the model representing a first-order, irreversible, exothermic

reaction A→ B of the CSTR. The mass and energy balances of the reaction are described

by two nonlinear differential equations.

dcA

dt
=

q
V
(cAf− cA)− k0 exp

(
− E

RT

)
cA (9.1a)

dθ

dt
=

q
V
(θ f −θ)− ∆Hk0

ρCp
exp
(
− E

Rθ

)
cA +

UA
VCp

(θ −θC)+ θ̃ (9.1b)

The two state variables are reactant concentration cA and reactor temperature θ . The

control variable is the cooling water temperature θC. All other symbols are listed in Table

9.1.

Table 9.1: CSTR model parameters, bounds, initial values

k0 7.2e10 1/min Reaction rate constant

E 72.752e3 J/mol Activation energy

R 8.314 J/mol/K Ideal gas constant

∆H -5e4 J/mol Heat of reaction

ρ 1000 g/l Mass density

Cp 0.239 J/g/K Heat capacity

U ·A 5e4 J/mol Overall heat transfer coefficient × Reaction area

q 100 l/min Feed stream flow rate

θ f 350 K Actual feed temperature

V 100 l Reactor volume

cAf 1.0 mol/l Feed concentration

θC 370 K Coolant upper bound

θC 280 K Coolant lower bound

c0
A 0.4 mol/l Initial concentration

θ 0 360 K Initial reactor temperature

Uncertainty model

The disturbance of the temperature by unmodeled influences is regarded as a probabilis-

tic uncertainty. We model the uncertainty by the term θ̃ in (9.1b). The unit of θ̃ is

9.1. CONTINUOUS STIRRED TANK REACTOR 81

Kelvin per minute, therefore it describes an uncertain temperature change. We assume that

θ̃ is normally distributed with zero mean and standard deviation of 0.1. The uncertain pa-

rameter θ̃ is approximated by a scenario tree. For our numerical experiments with scenario

tree NMPC we consider different robust horizons and numbers of scenarios. The main focus

of the CSTR example is to show that our numerical methods can cope with large scenario

trees. Therefore we consider scenario trees consisting of up to 1001 scenarios.

Simulation Setup

The simulation model is the dynamical system (9.1). We simulate 60 minutes of the re-

action. For the uncertain parameter θ̃ we draw samples from a normal distribution with

zero mean and standard deviation of 0.1 and concatenate them to a trajectory, see Table 9.2.

Every 10 minutes the parameter jumps. We remark that the controller does not have this

information about the uncertain parameter. Therefore we can test the robustness.

Table 9.2: Sampled parameter trajectory of the CSTR

Time [min] 0 10 20 30 40 50

Parameter value θ̃ [K/min] -0.0840 0.0319 0.0124 0.0056 0.0294 0.0293

The initial values for the simulation are a reactant concentration of c0
A = 0.4 mol/l and a

reactor temperature of θ 0 = 360 K.

Controller Setup

The performance criterion is of tracking type with setpoint cset
A = 0.5 mol/l, θ set = 350 K,

and θ set
C = 300 K. Note that the setpoint differs from the initial value of the simulation. The

objective function reads

∫ t f

t0
(cA− cset

A)2 +(θ −θ
set)2 +(θC−θ

set
C)2dt. (9.2)

We aim to minimize the term (9.2) with respect to the dynamics (9.1). For NMPC we solve

the optimization problem by a direct multiple shooting discretization with 10 nodes on a pre-

diction horizon of 2 minutes. We perform one RTI per NMPC sampling time of 6 seconds

and solve the tree QP with the dual decomposition approach. The QP is assembled using

second order derivative information for the Hessian and every branch QP is condensed.

82 CHAPTER 9. NUMERICAL RESULTS

Scenario Tree Setup

For the uncertain parameter θ̃ we consider first the realizations {−1.0,−0.5,0.0,0.5,1.0}.
The size of the scenario trees is then determined by the robust horizon nd . We start from

nd = 0, which means nominal NMPC with the nominal realization θ̃ = 0 and continue

until nd = 3. In the end we carry out scenario tree NMPC with 1001 equidistant realiza-

tions in the interval [−1,1] and robust horizon nd = 1. This is a very dense approximation

of the continuous uncertainty within the bounds µ − 10σ and µ + 10σ since we assume

θ̃ ∼ N (0,0.1). The probability of the tails of this distribution that lie outside the consid-

ered interval [−1,1] are much smaller than machine precision, because we already have

P(θ̃ /∈ [−0.8,0.8]) = 1.2 ·10−15. We summarize the scenario tree setup and the resulting

tree QP size in Table 9.3.

Table 9.3: CSTR: Scenario tree data

Scenario tree label 0 1 2 3 4

Robust horizon 0 1 2 3 1

Number of scenarios 1 5 25 125 1001

Non-anticipativity constraints 0 4 44 344 1000

Tree QP size:

Number of variables 43 215 1075 5375 43043

Number of equality constraints 33 169 869 4469 34033

Number of inequality constraints 80 400 2000 10000 80080

Tree Structure of the Prediction Problem

The size of the tree-structured QP that is solved in every NMPC iteration grows with the

number of scenarios as we can see in Table 9.3. When we look at the solution of one

tree-structured QP, the branching structure becomes visible, see Figure 9.1. Due to the

non-anticipativity constraints on the controls we can see for Tree 2 in the second column

of Figure 9.1 one control at the first, 5 controls on the second and 25 controls on the third

stage. In the last column of Figure 9.1 (Tree 4) the scenarios cannot be distinguished. It

underlines the very dense parameter realization approximation to the continuous parameter

distribution in case of Tree 4.

9.1. CONTINUOUS STIRRED TANK REACTOR 83

4 5 6 7

0.495

0.5

0.505

Tree 1

C
on

ce
nt

ra
tio

n
[m

ol
/l]

4 5 6 7

349.4

349.6

349.8

350

350.2

350.4

350.6

R
ea

ct
or

 T
em

p.
 [K

]

4 5 6 7

299

299.5

300

300.5

301

C
oo

la
nt

 T
em

p.
 [K

]

Time [min]

4 5 6 7

0.495

0.5

0.505

Tree 2

4 5 6 7

349.4

349.6

349.8

350

350.2

350.4

350.6

4 5 6 7

299

299.5

300

300.5

301

Time [min]

4 5 6 7

0.495

0.5

0.505

Tree 3

4 5 6 7

349.4

349.6

349.8

350

350.2

350.4

350.6

4 5 6 7

299

299.5

300

300.5

301

Time [min]

4 5 6 7

0.495

0.5

0.505

Tree 4

4 5 6 7

349.4

349.6

349.8

350

350.2

350.4

350.6

4 5 6 7

299

299.5

300

300.5

301

Time [min]

Figure 9.1: Solutions of the prediction problem: At time t = 4.9 min the solutions of

the prediction problem exhibit the typical branching structure of the trees due to the non-

anticipativity constraints.

84 CHAPTER 9. NUMERICAL RESULTS

Resulting Trajectories

The resulting trajectories of the scenario tree NMPC controllers for Tree 0 to Tree 4 are

depicted in Figure 9.2. The concentration of reactant A starts for all trees at the initial

value c0
A and is kept at the setpoint cset

A after 5 minutes. All the 5 different controllers drive

the reactor temperature from the initial θ 0 to the setpoint temperature θ set. The control

trajectory starts for all scenario trees at the lower bound 280 K and increases to the coolant

temperature setpoint 300 K. The trajectories are feasible at all times and the setpoint is well

tracked although the uncertain parameter jumps.

0 10 20 30 40 50 60
0.2

0.4

0.6

C
on

ce
nt

ra
tio

n
[m

ol
/l]

0 10 20 30 40 50 60
345

350

355

360

R
ea

ct
or

 T
em

p.
 [K

]

0 10 20 30 40 50 60
280

290

300

310

C
oo

la
nt

 T
em

p.
 [K

]

Time [min]

Tree 0
Tree 1
Tree 2
Tree 3
Tree 4

Figure 9.2: CSTR trajectories resulting from scenario tree NMPC: For all scenario trees the

concentrations and temperature of the controlled reactor start from their initial values and

arrive at the setpoint after 5 minutes. Although the uncertain parameter jumps, the setpoint

is tracked nicely by the different controllers.

Non-smooth Newton Iterations

We solve every tree QP with the dual decomposition approach and employ a non-smooth

Newton method with accelerated bisection line search. The number of iterations per NMPC

iteration is crucial for fast feedback as we solve one tree QP per NMPC iteration according

to the RTI scheme. We have chosen to perform one NMPC iteration every 6 seconds. Due

to this fast sampling time we subsequently solve similar QPs. Therefore almost always

one non-smooth Newton iteration suffices for all trees. The number of non-smooth Newton

9.1. CONTINUOUS STIRRED TANK REACTOR 85

iterations per NMPC iteration over the whole control horizon of one hour is depicted in

Figure 9.3. The number of non-smooth Newton iterations for the controllers with different

scenario trees are stacked along the y-axis for better visibility. Almost always we see one

iteration, sometimes even zero iterations for the smallers trees. This happens if the stopping

criterion for the Newton loop is already met at the beginning. The norm of the Newton

gradient is already below the given ε . We can clearly observe that the uncertain parameter

jump every 10 minutes, i.e. every 100 NMPC iterations, influences the number of iterations.

If we were at 0 iterations for the smaller trees, we again require one iteration to react to the

changed system. At the 400th iteration the largest tree requires 2 iterations. However, these

iteration numbers are in general very low due to the fast NMPC sampling time. Therefore

the fine sampling grid enables us to give fast feedback.

0 100 200 300 400 500 600 700
0

1

2

3

4

5

NMPC iteration

N

on
−

sm
oo

th
 N

ew
to

n
ite

ra
tio

ns

Tree 1
Tree 2
Tree 3
Tree 4

Figure 9.3: Number of non-smooth Newton iterations per NMPC iteration for the CSTR:

The number of non-smooth Newton iterations is almost always one or even zero for all

NMPC iterations, independent of the scenario tree.

Real-Time Feasibility

We require a real-time feasible controller to steer the chemical system, meaning that the

computational time of one NMPC iteration remains below the sampling time. In our case

the crucial time is 6 seconds. In Figure 9.4 the computation times per NMPC iteration are

shown. Clearly the largest tree with 1001 scenarios requires the highest computation time

and the single nominal scenario the lowest for all NMPC iterations. Along the x-axis we

see a similar behavior for all trees. At the beginning the computation time decreases with

increasing NMPC iteration. As the trajectories get closer to the setpoint, the computation

time decreases until a certain level. Temporary increases can be observed as small kinks in

86 CHAPTER 9. NUMERICAL RESULTS

the graphs. They occur at NMPC iterations directly after the uncertain parameter jumps.

0 100 200 300 400 500 600 700
10−2

10−1

100

101

102

NMPC iteration at sampling time [min]

C
om

pu
ta

tio
n

tim
e

[s
]

Tree 0
Tree 1
Tree 2
Tree 3
Tree 4

Figure 9.4: CSTR: For the example the computation time per NMPC iteration grows with

the number of scenarios. For all trees the computation time decreases at the beginning until

a certain level. Times increase temporarily after the uncertain parameter jumps.

Table 9.4 consists of two parts. The minimum, the median and the maximum compu-

tation times per NMPC iteration for all considered scenario trees are depicted in the upper

part. Most NMPC iteration times lie around the median time. The maximum times are in-

sofar important as they decide about the real-time feasibility of the controller. In the lower

part of the table we find the maximum CPU times of the most expensive numerical oper-

ations. The times are measured from a serial implementation, therefore they represent the

sum of the computation time for all scenarios.

From the upper part of the table we deduce that the choice Tree 0 - Tree 3 for NMPC

yields real-time feasible controller. The lower part of the table underlines that the evaluation

time consisting of integration and sensitivity computation dominates the computation time

of an NMPC loop. Due to the early branching, it is necessary to evaluate every scenario

separately. If we look at the evaluation times per scenario, all trees are at the same order

of magnitude of 10−2 seconds. Scaling this with the number of scenarios yields the table

row of evaluation times. When picking one of the trees, the maximum QP solution time and

condensing time are of the same order of magnitude. With growing tree size the dominance

of the evaluation time over the QP operation times becomes apparent.

9.1. CONTINUOUS STIRRED TANK REACTOR 87

Table 9.4: CSTR: Computational performance of scenario tree NMPC (serial implementa-

tion), times in seconds, sampling time is 6 seconds

Scenario tree label 0 1 2 3 4

NMPC loop: Minimum 0.023 0.134 0.704 3.408 24.736

NMPC loop: Median 0.025 0.144 0.734 3.578 25.988

NMPC loop: Maximum 0.194 0.406 1.381 5.751 48.698

Evaluation: Maximum 0.045 0.218 1.028 4.463 37.914

QP solution: Maximum 0.028 0.047 0.081 0.358 4.973

Condensing: Maximum 0.020 0.037 0.118 0.567 4.032

Evaluating whole scenarios in parallel is a possible computation time reduction strategy.

A discussion about parallelization strategies follows for the industrial batch reactor example

in Section 9.2. At this point we emphasize that our methods are capable to solve the large-

scale optimization problems for 1001 scenarios.

88 CHAPTER 9. NUMERICAL RESULTS

9.2 A Biochemical Batch Reactor

The optimization of batch processes has attracted attention mainly because in the face of

growing competition, methods for mathematical model-based optimizing control have been

shown to be a viable choice for reducing production costs, improving product quality, meet-

ing safety requirements and environmental regulations. We present in this section an in-

dustrial batch polymerization reactor that has been investigated in [82, 81]. The model is

provided by BASF SE, which shows that it is of significant relevance for industry. As il-

lustrated in Figure 9.5 the reactor is equipped with a jacket and an external heat exchanger

(EHE).

Educt: Monomer

Product: Polymer

EHEJacket
Heat/Cool

Reaction
Coolant

Figure 9.5: The scheme of the biochemical batch reactor shows the connections of the

components reactor, vessel, jacket and the two cooling systems.

Dynamical system model

The dynamical system model consists of three mass balance equations for the water (mW),

the educt (mA) ((9.3a) – (9.3c)) and the product (mP), and five energy balance equations

for the temperatures of the reactor (θR), the vessel (θS), the jacket (θM), the external heat

exchanger (θEK) and the coolant leaving the external heat exchanger (θAWT) ((9.3d)-(9.3h)).

In order to compute the ODE right hand side it is required to evaluate formulas (9.3i) –

(9.3n). They describe the polymer-monomer ratio U in the reactor, the total mass mges, the

reaction rate inside the reactor kR1 and the reaction rate in the external heat exchanger kR2.

Furthermore, the total heat transfer coefficient of the mixture inside the reactor is denoted

as kK and the current amount of monomer inside the reactor is mA,R. The control inputs of

the system (9.3) are the feed flow ṁF , the coolant temperature at the inlet of the jacket θ IN
M

and the coolant temperature at the inlet of the external heat exchanger θ IN
AWT. The dynamical

9.2. A BIOCHEMICAL BATCH REACTOR 89

system (9.3) requires the model parameters listed in Table 9.5. They are provided by the

BASF and published by [82].

Table 9.5: Biochemical batch reactor model parameters

R 8.314 kJ/kmol/K Ideal gas constant

cp,W 4.2 kJ/kg/K Specific heat capacity of the coolant

cp,S 0.47 kJ/kg/K Specific heat capacity of the steel

cp,F 3.0 kJ/kg/K Specific heat capacity of the feed

cp,R 5.0 kJ/kg/K Specific heat capacity of the reactor contents

kWS 4800 W/m2/K Heat transfer coefficient water-steel

θF 298.15 K Feed temperature

A 338.15 K Heat exchange surface of the jacket

mM,KW 5000 m2 Mass of coolant in the jacket

mS 3.9e4 kg Mass of reactor steel

mAWT 200 kg Mass of the product in the EHE

mAWT,KW 1000 kg Mass of the coolant in the EHE

ṁM,KW 3e5 kg/h Coolant flow of the jacket

ṁAWT,KW 1e5 kg/h Coolant flow of the EHE

ṁAWT 2e4 kg/h Product flow to the EHE

Ea 8500 kJ/kmol Activation energy

∆HR 950 kJ/kg Specific reaction enthalpy

k0 7 1 Specific reaction rate

kU1 32 1 Reaction parameter 1

kU2 4 1 Reaction parameter 2

wW,F 0.333 1 Mass fraction of water in the feed

wA,F 0.667 1 Mass fraction of monomer in the feed

kAS 1000 W/m2/K Heat transfer coefficient monomer-steel

kPS 100 W/m2/K Heat transfer coefficient product-steel

α 3.6e6 1/s Experimental coefficient

90 CHAPTER 9. NUMERICAL RESULTS

The dynamical reactor model is described by the ODE system

dmW

dt
= ṁFwW,F , (9.3a)

dmA

dt
= ṁFwA,F − kR1mA,R− kR2mAWT

mA

mges
, (9.3b)

dmP

dt
= kR1mA,R + kR2mAWT

mA

mges
, (9.3c)

dθR

dt
=

ṁFcp,F(θF −θR)+∆HRkR1mA,R− kKA(θR−θS)− ṁAWTcp,R(θR−θEK)

cp,Rmges
,

(9.3d)

dθS

dt
=

kKA(θR−θS)− kKA(θS−θM)

cp,SmS
, (9.3e)

dθM

dt
=

ṁM,KWcp,W (θ IN
M −θM)+ kKA(θS−θM)

cp,W mM,KW
, (9.3f)

dθEK

dt
=

ṁAWTcp,W (θR−θEK)−α(θEK−θAWT)+ kR2mAWT∆HR
mA

mges

cp,RmAWT
, (9.3g)

dθAWT

dt
=

ṁAWT,KWcp,W (θ IN
AWT−θAWT)−α(θAWT−θEK)

cp,W mAWT,KW
, (9.3h)

with

U =
mP

mA +mP
, (9.3i)

mges = mW +mA +mP, (9.3j)

kR1 = k0 exp
(
− Ea

R(θR +273.15)

)
(kU1(1−U)+ kU2U), (9.3k)

kR2 = k0 exp
(
− Ea

R(θEK +273.15)

)
(kU1(1−U)+ kU2U), (9.3l)

kK =
mW kWS +mAkAS +mPkPS

mges
, (9.3m)

mA,R = mA

(
1− mAWT

mges

)
. (9.3n)

The BASF adds to the model an important safety feature, which is incorporated to avoid

failures of the equipment. Here the maximum temperature the reactor could reach in case

of a cooling failure is added to the model and constrained to be below 382.15 K. The

differential equation for the additional state θadiab reads

dθadiab

dt
=

∆HRṁA

mgescp,R
− (ṁW + ṁA + ṁP)

mA∆HR

m2
gescp,R

+ θ̇R. (9.4)

At this point we motivate a further additional state macc. The maximum amount of

material that can be fed into the reactor is 30,000 kg. After all the material is fed, the

reactor feeding phase ends and the reaction continues with the holding phase. To avoid the

9.2. A BIOCHEMICAL BATCH REACTOR 91

switching between different models for the feeding and the holding phase, we introduce

the additional state for the accumulated material that has been fed. The state macc is then

constrained to the maximum amount of material. The differential equation for macc reads
dmacc

dt
= ṁF . (9.5)

The bounds on all states and controls, as well as the initial values are listed in Table 9.6.

Table 9.6: Biochemical batch reactor: Variable bounds and initial values

Variable Initial value Lower bnd. Upper bnd. Unit Description

mW 10000.0 0 - kg Mass of water

mA 853.0 0 - kg Mass of the educt

mP 26.5 0 - kg Mass of the product

macc 300.0 0 30000.0 kg Accumulated mass of feed

θR 363.15 361.65 364.65 K Reactor temperature

θS 363.15 273.15 373.15 K Vessel temperature

θM 363.15 273.15 373.15 K Jacket temperature

θEK 308.15 273.15 373.15 K Temperature of the EHE

θAWT 308.15 273.15 373.15 K Temp. of coolant leaving EHE

θadiab 378.05 288.15 382.15 K Adiabatic temperature

ṁF - 0 30000.0 kg/h Feed flow

θ IN
M - 333.15 373.15 K Coolant temp. at inlet of jacket

θ IN
AWT - 333.15 373.15 K Coolant temp. at inlet of EHE

Uncertainty model

We consider two of the most critical parameters of the model as uncertain but constant

during the reaction. In particular, the specific reaction rate k0 and the specific reaction

enthalpy ∆HR differ from their nominal values listed in Table (9.5). We assume a Gaussian

distribution of (k0,∆HR) with mean µ = (7,950) and variance/covariance matrix

Σ =

(
0.25 0

0 5

)
.

Simulation Setup

The simulation model consists of the ODE system (9.3), but with the paramount difference

that the uncertain parameters are realized at k0 = 6.9 and ∆HR = 955. The controller is not

92 CHAPTER 9. NUMERICAL RESULTS

aware of the model-plant mismatch, therefore we can study how robust the scenario tree

approach performs in the presence of uncertainty. For the initial values see Table 9.6.

Controller Setup

The goal of the controlled batch reactor is to synthesize a batch of polymer product while

satisfying safety constraints and constraints on the quality of the product. The objective

function reads ∫ t f

t0
−mP +104(θR−θset)

2dt. (9.6)

We control the reactor maximizing the mass of product that is synthesized within the predic-

tion horizon. There is also a strong influence of the reaction temperature on the properties

of the resulting product. Therefore the temperature of the reactor has to be maintained be-

tween 361.65 K and 364.65 K around the reaction temperature set point θset = 363.15 K.

Furthermore, we employ a control move regularization with αCMR = (104,5,5)T . We mini-

mize the term (9.6) with respect to the dynamical system (9.3), (9.4), (9.5), the bounds and

initial values specified in Table 9.6. We solve the prediction problem discretized by the di-

rect multiple shooting method with 21 nodes on a prediction horizon of 1000 seconds. The

NMPC sampling time is 50 seconds. Furthermore, we assemble the QP using limited mem-

ory BFGS updates for the Hessian approximation. We employ the RTI scheme and solve

the tree QP with the dual decomposition approach and Condensing of the local branch QPs.

Scenario Tree Setup

The main design decisions for the scenario tree are the realizations of the uncertain pa-

rameter and the robust horizon. In the present example of the industrial batch reactor the

uncertain parameter space is two-dimensional, thus suitable to compare the full tensor grid

approximation with the sparse grid approximation from Chapter 6. For the tensor grid we

consider the realizations µ +2dtensorΣ with all 9 directions in two dimensions

dtensor ∈ {(0,0),(0,1),(0,−1),(1,0),(1,1),(1,−1),(−1,0),(−1,1),(−1,−1)}.

The sparse grid approach only uses 5 directions within a diamond around the nominal pa-

rameter realization. Therefore the 5 realizations µ +2dsparseΣ for the sparse grid are

dsparse ∈ {(0,0),(0,1),(0,−1),(1,0),(−1,0)}.

The sizes of the scenario trees are dependent on the robust horizon nd . We start from nd = 0,

which is nominal NMPC with the nominal realization. As one focus of this work lies on tree

design, we evaluate the performance of scenario tree NMPC of the batch reactor example

9.2. A BIOCHEMICAL BATCH REACTOR 93

with four trees. Robust horizons up to nd = 2 for both sparse and tensor grid form the trees.

The scenario tree used in [82] corresponds to our tensor grid tree with robust horizon of

one. We summarize the scenario tree setup and the resulting tree QP size in Table 9.7.

Table 9.7: Industrial batch reactor: Scenario tree data

Scenario tree label 0 1 2 3 4

Robust horizon 0 1 1 2 2

Sparse or Tensor grid - S T S T

Number of scenarios 1 5 9 25 81

Non-anticipativity constraints 0 4 8 44 152

Tree QP size:

Number of variables 291 1455 2619 7275 23571

Number of equality constraints 231 1167 2103 5907 19167

Number of inequality constraints 60 300 540 1500 4860

Resulting Trajectories

The results of all five controllers are depicted in three figures. Figure 9.6 and Figure 9.7

show the ten system states and Figure 9.8 shows the three controls. All controllers have

successfully operated the plant in the presence of systematic model-plant mismatch. The

critical reactor temperature stays within its bounds and the mass of product increases during

the reaction. We observe that the performance depends on the scenario tree. Most interest-

ingly, the sparse grid controllers Tree 1 and Tree 3 yield the highest amount of product mP

at the end. Therefore robustness at the edges of the parameter realizations that are not taken

into acount by the sparse grid diamond comes at the cost of less product. We continue how

the dual decomposition performs and then discuss a major point, the real-time feasibility.

Non-smooth Newton Iterations

In the present reactor example we have solved every tree QP with the dual decomposition

approach and non-smooth Newton method. The number of iterations per NMPC iteration

has a large influence on the solution time of the tree QP we solve in every NMPC itera-

tion according to the RTI scheme. We depict the number of non-smooth Newton iterations

per NMPC iteration over the control horizon of two hours in Figure 9.9. As in the previ-

ous example the number of non-smooth Newton iterations for the controllers with different

94 CHAPTER 9. NUMERICAL RESULTS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.8

1

1.2

1.4
x 104

m
W

[k
g
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

m
A
[k
g
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

m
P
[k
g
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000

m
a
cc
[k
g
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
363

363.5

364

θ
R
[K

]

Time [h]

Tree 0
Tree 1
Tree 2
Tree 3
Tree 4

Figure 9.6: Resulting trajectories of the reactor system states (part 1): For all scenario

trees the mass of product and water increase whereas the mass of educt decreases. The

reactor temperature has a peak at the beginning. Due to the cooling systems it can track the

temperature set point of 363.15 K. The accumulated amount of feed material increases until

the educt is completely converted.

9.2. A BIOCHEMICAL BATCH REACTOR 95

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
350

360

370

θ
S
[K

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
340

350

360

370

θ
M
[K

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
300

350

400

θ
E
K
[K

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
300

350

400

θ
A
W

T
[K

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
360

370

380

390

θ
a
d
ia
b
[K

]

Time [h]

Tree 0
Tree 1
Tree 2
Tree 3
Tree 4

Figure 9.7: Resulting trajectories of the reactor system states (part 2): The four temperature

variables of the cooling system stay within their bounds. The adiabatic temperature, the

indicator for the cooling failure behavior, touches the upper bound only at the beginning of

the reaction.

96 CHAPTER 9. NUMERICAL RESULTS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

2
x 104

ṁ
F
[k
g
/
h
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
320

340

360

380

θ
IN M

[K
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
320

340

360

380

θ
IN A
W

T
[K

]

Time [h]

Tree 0
Tree 1
Tree 2
Tree 3
Tree 4

Figure 9.8: Resulting reactor control variables: The mass feed increases at the beginning up

to a peak of 20000 kg/h, then decreases to not overheat the reactor. Depending on the con-

troller a second increase follows until the mass of the educt approaches zero. Afterwards,

for all controllers the feed stays constant on a low level. Both inlet temperatures of the

cooling system act within their bounds and show at later times a different behavior for the

scenario trees, because the different scenario trees consider different sequences of uncertain

parameter realizations.

9.2. A BIOCHEMICAL BATCH REACTOR 97

scenario trees are stacked along the y-axis. Most of the time the number of non-smooth

Newton iterations lies in order of magnitude of ten. Shortly after the beginning the larger

trees require one order of magnitude more iterations due to many active set changes. Es-

pecially the values of variables originating from the discretized adiabatic temperature that

safeguards against cooling failure change from the upper bound to values close to the upper

bound depending on the scenario. Another crucial point when the cumulative number of

iterations reaches even over 1000 iterations is at the 15th NMPC iteration. At this point the

cooling system is at bound to react to the massive feed in the first reaction phase. Another

observation is that Tree 4, the largest tree, required most iterations and has even more criti-

cal NMPC iterations with more than 100 non-smooth Newton iterates. The more scenarios

we consider the more active set changes regarding subsequent iterations happen.

Real-Time Feasibility

The real-time feasibility of the controller heavily depends on the number of scenarios of

the tree. Here the computational time of one NMPC iteration must remain below the sam-

pling time of 50 seconds. From Figure 9.10 we deduce that nominal NMPC and Tree 1 as

well as Tree 2 with 9 scenarios fulfill the real-time requirement. With robust horizon of 2

the number of scenarios increases. The controller with Tree 3 (25 scenarios) is real-time

feasible except for some critical NMPC iterations. The computation time of the Tree 4 con-

troller with 81 scenarios is not real-time feasible. However, the depicted times result from

a serial implementation. We have pointed out in Chapter 5 that dual decomposition has a

large parallelization potential. In Figure 9.11 we depict the percentage of various opera-

tions that are performed in every NMPC iteration. A large percentage of computation time

is spend on evaluation.A virtual parallelization of evaluation and branch QP solution yields

the computation times in Figure 9.12. They are computed by the formula

tvirt.parallel
loop = tserial

loop −
S

∑
j=1

t j
Evaluation−

S

∑
j=1

t j
QP +

⌈
S

nCores

⌉(
max

j
t j
Evaluation +max

j
t j
QP

)

with S as number of scenarios, t j
Evaluation as the evaluation time of scenario j, the branch QP

time t j
QP within the dual decomposition and the number of parallel threads of a multi-core

system nCores. As a result most NMPC iterations of Tree 4 with 81 scenarios are real-time

feasible, underlining the high parallelization potential. Critical iterations with more than

50 seconds of NMPC loop time are those that required more than 100 non-smooth Newton

iterations.

98 CHAPTER 9. NUMERICAL RESULTS

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

1600

1800

NMPC iteration

N

on
−

sm
oo

th
 N

ew
to

n
ite

ra
tio

ns

Tree 1
Tree 2
Tree 3
Tree 4

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

NMPC iteration

N

on
−

sm
oo

th
 N

ew
to

n
ite

ra
tio

ns

Tree 1
Tree 2
Tree 3
Tree 4

Figure 9.9: Number of non-smooth Newton iterations for the industrial batch reactor. Top:

Full stacked bar graph. Bottom: Close-up of the graph up to 100 on the y-axis. The number

of non-smooth Newton iterations per NMPC iteration for the different trees is horizontally

stacked. The numbers are most of the time in the order of magnitude of ten, critical iterations

at the beginning and at the 15th iteration become well visible due to the stacking.

9.2. A BIOCHEMICAL BATCH REACTOR 99

0 20 40 60 80 100 120 140 160 180 200
10−1

100

101

102

103

104
Serial implementation

NMPC iteration

C
om

pu
ta

tio
n

tim
e

[s
]

Tree 0
Tree 1
Tree 2
Tree 3
Tree 4
Real−time

Figure 9.10: Computation times of the batch reactor for the serial implementation of dual

decomposition: The computation time per NMPC iteration in a serial implementation grows

with the number of scenarios. Tree 4 with 81 scenarios exceeds the real-time barrier.

70%
< 1%2%

28%

Tree 0

39%

23%
< 1%

37%

Tree 1

69%
3%2%

26%

Tree 2

38%

9%< 1%

53%

Tree 3

20%

18%

< 1%

61%

Tree 4

Evaluation
QP solution
Condensing and Blowup
Other

Figure 9.11: Percentage of time spent on operations during NMPC: The computation time

for every operation is cumulated over the whole control horizon for the specified scenario

tree controller and then divided by the total time of the controller. The evaluation time

and the part for other operations dominate the pie charts. Therefore a parallelization of the

evaluation part has high potential to save computation time.

100 CHAPTER 9. NUMERICAL RESULTS

0 20 40 60 80 100 120 140 160 180 200
10−1

100

101

102

103

104
Virtual parallelization

NMPC iteration

C
om

pu
ta

tio
n

tim
e

[s
]

Tree 0
Tree 1
Tree 2
Tree 3
Tree 4
Real−time

Figure 9.12: Computation times of the batch reactor for virtually parallelized NMPC loops:

The virtual parallelization with nCores = 8 yields real-time feasibility for all controllers for

almost all NMPC iterations, thus highlighting the parallelization potential.

Sparse Grid versus Tensor Grid

At this point we discuss the impact of scenario reduction by using a sparse grid approxima-

tion of the uncertain parameter space instead of the full tensor grid approach. To this end

we compare the scenario tree controllers Tree 1 with Tree 2 and Tree 3 with Tree 4. The

robust horizon and resulting number of scenarios are in the upper part of Table 9.8. In the

middle part of Table 9.8 we list the overall computation times. The bottom part of Table 9.8

evaluates the the median of computation times per NMPC loop for all controllers.

In the middle column of Table 9.8 we compare the sparse grid of robust horizon 1 and the

tensor grid of robust horizon 1. By using sparse grids we can consider 44.4 % less scenarios,

without sacrificing feasibility or performance as the trajectories in Figures 9.6, 9.7 and 9.8

show. Comparing the computation times we save all in all 16.2 % by the reduced grid. The

median computation time per NMPC loop of the sparse Tree 1 is even 34.7 % less than the

median computation time per NMPC loop of the tensor grid Tree 2. An even stronger effect

of scenario reduction by sparse grids can be observed for robust horizon 2. In the right

column we note that all operations for 69.1 % of the scenarios of the full tensor grid can

be saved. For the overall computation time the sparse grid yields a reduction of more than

75 %, the median time per NMPC loop can also be reduced by 69.9 %. We emphasize that

in case of Tree 3 and Tree 4 as in the previous case neither feasibility nor performance are

9.2. A BIOCHEMICAL BATCH REACTOR 101

Table 9.8: Industrial batch reactor: Savings by using a sparse grid instead of a tensor grid

Robust horizon 1 2

Scenario tree labels 1,2 3,4

Number of scenarios

Sparse grid 5 25

Tensor grid 9 81

Saving of sparse grid w.r.t tensor grid (%) 44.4 69.1

Overall computation time [s]

Sparse grid 1187.6 7602.9

Tensor grid 1416.5 33688.5

Saving of sparse grid w.r.t tensor grid (%) 16.2 77.5

NMPC loop: Median computation time [s]

Sparse grid 5.9 28.2

Tensor grid 8.9 93.7

Saving of sparse grid w.r.t tensor grid (%) 34.7 69.9

sacrificed, see Figures 9.6, 9.7 and 9.8. Another important point is that the data of Table 9.8

stems from the serial implementation. Therefore a combination of scenario reduction like

the sparse grid approach and parallelization would be most beneficial. All in all scenario

tree NMPC is a versatile method and capable to control the industrial batch reactor.

102 CHAPTER 9. NUMERICAL RESULTS

9.3 Penicillin Production

A variety of pharmaceutical substances are often produced in batch operations. In the fol-

lowing we study the biochemical synthesis of the antibiotic Penicillin with the molecular

structure depicted in Figure 9.13.

Figure 9.13: Chemical structure of the common part of the Penicillins. The part R deter-

mines the specific Penicillin molecule.

The reaction model is studied in [103], a more general version also in [104]. The poten-

tial of scenario tree NMPC has been pointed out by [83] with simulation studies.

Dynamical system model

The ODE model of the Penicillin synthesis describes the dynamical evolution of the con-

centrations during the reactions Substrate → Biomass and Biomass → Penicillin. Model

parameters are listed in Table 9.9.

Table 9.9: Penicillin production model parameters

µm 0.02 l/h Reaction rate constant

Km 0.05 g/l Activation energy

Ki 5 g/l Ideal gas temperature

Yx (nominal) 0.4 g/g Heat of reaction

Yp 1.2 g/g Mass density

ν 0.004 l/h Heat capacity

Sin (mean) 200 g/l Overall heat transfer coefficient × reaction area

9.3. PENICILLIN PRODUCTION 103

The dynamical system model reads

dX
dt

= µ(S)X− u
V

X , (9.7a)

dS
dt

=−µ(S)X
Yx

− νX
Yp

+
u
V
(Sin−S), (9.7b)

dP
dt

= νX− u
V

P, (9.7c)

dV
dt

= u, (9.7d)

with

µ(S) =
µmS

Km +S+ S2

Ki

. (9.7e)

In the model (9.7) X represents the concentration of biomass, S the concentration of

substrate, P the concentration of the product Penicillin and V the volume. The control input

u is the feed flow rate of the substrate. In addition to the ODEs for the four states we

compute the specific growth rate µ(S) according to (9.7e). Bounds and initial values can be

found in Table 9.10.

Table 9.10: Penicillin production bounds and initial values

X 3.7 g/l Upper bound of biomass concentration

u 1 l/h Upper bound of feed flow rate

u 0 l/h Lower bound of feed flow rate

X0 1 g/l Initial biomass concentration

S0 0.5 g/l Initial substrate concentration

P0 0 g/l Initial product concentration

V 0 150 l Initial volume

Uncertainty model

The inlet substrate concentration Sin and the specific growth rate Yx are regarded as un-

certain parameters. We assume for Sin a normal distribution with mean 200 and standard

deviation 25 as in [83]. The parameter Yx is assumed to be constant during the whole re-

action and within the interval [0.3,0.5] as in [83]. In consequence, the uncertainty space is

two dimensional.

104 CHAPTER 9. NUMERICAL RESULTS

Simulation Setup

For the simulation we run the model (9.7) until the final time of 150 hours is reached. The

control input is provided by the scenario tree NMPC controller. The simulator starts from

the initial values from Table 9.9 and keeps the uncertain parameters on their nominal values.

Controller Setup

The objective is of economic type, the goal is to maximize the amount of Penicillin at the

end. The objective function reads ∫ t f

t0
−P dt. (9.8)

The prediction horizon is 50 minutes. We perform phase D in every NMPC sampling time of

12.5 minutes and solve the tree QP with the dual decomposition approach. During assembly

of the QP we use L-BFGS updates on the Hessian matrix approximation and condense each

branch QP. We further make use of the control move regularization with αCMR = 0.05.

We remark for the controller setup that the dynamical system has special properties

requiring restarts of the homotopy-based controller.

Scenario Tree Setup

For the numerical experiments we first consider nominal NMPC with (Sin,Yx) = (200,0.4)

as Tree 0. Then we regard only Sin as uncertain and carry out scenario tree NMPC with

robust horizon 1. The 3 scenarios represent the nominal value and the 2σ variations for

Sin. Therefore Tree 1 consists of the scenarios (Sin,Yx)∈ {(150,0.4),(200,0.4),(250,0.4)}.
Finally we consider a scenario tree with 9 scenarios representing the two-dimensional un-

certainty space. The scenarios of Tree 3 are

(Sin,Yx) ∈ {(150,0.3),(200,0.3),(250,0.3),(150,0.4),(200,0.4),(250,0.4),

(150,0.5),(200,0.5),(250,0.5)}.

Results

In contrast to the previous numerical examples we first summarize the scenario tree NMPC

performance and then put our main focus on a special system property that we observed.

The resulting trajectories for the nominal NMPC controller (Tree 0) and the scenario

tree NMPC controller that take into account one uncertain parameter (Tree 1) and both

uncertain parameters (Tree 2) are depicted in Figure 9.14. We observe an increase of the

biomass concentration up to a certain level in the feeding phase. In the nominal case the

level is the upper bound 3.7 g/l. With increasing number of scenarios the feeding phase

9.3. PENICILLIN PRODUCTION 105

0 50 100 150
1

2

3

4

B
io

m
as

s
[g

/l]

0 50 100 150
−0.5

0

0.5

1

S
ub

st
ra

te
 [g

/l]

0 50 100 150
0

0.5

1

1.5

2

P
en

ic
ill

in
 [g

/l]

0 50 100 150
150

152

154

156

V
ol

um
e

[l]

0 50 100 150
0

0.05

0.1

0.15

0.2

F
ee

d
ra

te
 [l

/h
]

Time [h]

Tree 0
Tree 1
Tree 2

Figure 9.14: Scenario tree NMPC results for Penicillin production: The trajectories of the

Penicillin example illustrate for all trees two phases: A quick feeding phase and an equilib-

rium phase. The key performance index is the produced amount of Penicillin in the middle.

106 CHAPTER 9. NUMERICAL RESULTS

stops earlier because the scenario tree controller takes into account the uncertainty and

safeguards against it. The subproblems in all NMPC iterations must stay feasible for all

scenarios on the whole prediction horizon in order to return a valid solution. The substrate

concentration starts for all trees from 0.5 g/l, stays there and decreases to 0 g/l shortly after

the tree-dependent end of the feeding phase is reached. From the economic perspective the

amount of produced Penicillin is most important. For all trees the concentration increases

monotonically. After running the reactor for 150 hours, controller Tree 0 yields 1.83 g/l,

Tree 1 yields 1.61 g/l and Tree 2 yields 1.41 g/l Penicillin. Apparently more scenarios yield

a more conservative controller from performance point of view. But the higher performance

comes at the price of infeasibility. The nominal controller Tree 0 does not safeguard against

the uncertain parameter. This agrees with the simulation studies in [83]. We continue to

explain the depicted trajectories. The volume increases during the reaction and also shows

a dependence on the different trees to the feeding phase end. In the bottom subplot the

feed flow rate is depicted. The increase at the beginning is the feeding phase when the

biomass also increases. As the growth of biomass must be interrupted to not exceed the

upper biomass bound, the control decreases drastically. Then, until the end it stays constant

at an equilibrium level above 0 l/h.

Non-smooth Newton Iterations

In our NMPC framework we solve one tree-structured optimization problem per NMPC

iteration. We apply the dual decomposition approach and observe for the Penicillin example

a maximum number of non-smooth Newton iteration of 3 for Tree 1 and 9 for Tree 2. The

maximum iteration numbers are attained at NMPC iteration 2 for both trees. However, the

RTI scheme requires that the homotopy always continues with the evolution of the closed-

loop dynamical system. For nonlinear dynamics this cannot be guaranteed. The dynamical

model (9.7) is nonlinear and we observe terminating homotopy paths. Therefore we must

adjust the controller for the Penicillin example to cope with the terminating homotopy paths.

Homotopy Termination / Bifurcation in the Dynamical System

The issue we address in this section is an inherent property of the closed-loop dynamical

system. It is not caused by the scenario tree approach, the effects must be handled also in

the common nominal case. Due to nonlinearities there is a whole class of bifurcations that

can occur. We refer to standard literature such as [54]. For our NMPC framework we put

the focus on how to adjust the controller. As far as now we have presented scenario tree

NMPC with real-time iterations. In every NMPC iteration we solve one tree-structured QP

by the dual decomposition approach. An important role within the dual decomposition play

9.3. PENICILLIN PRODUCTION 107

the branch QPs. For every scenario we initialize the branch QP with the solution of the

respective branch QP of the previous iteration. This yields a fast homotopy-based method.

However, in nonlinear dynamical systems the homotopy path can terminate or split due to

bifurcations. Additionally, the termination or splitting depends on the uncertain parameter

realization. In the computations of the Penicillin example this dependence is reflected by

branch QPs that become infeasible due to homotopy termination, even if neighboring branch

QPs have a feasible and stationary point. Based on the observations we suggest an fallback

strategy. We adjust Algorithm 3 to cope with possibly infeasible local QPs.

Fallback strategy

In line 3 of Algorithm 3, the dual Newton strategy, we solve local QP j(λ) to obtain z∗j(λ). If

we observe that QP j(λ) is infeasible for at least one j ∈ S, we stop the dual decompostition

approach with non-smooth Newton strategy and solve the whole tree-structured NLP that

originates from a Direct Multiple Shooting discretization of the scenario tree optimization

problem (2.1). We have implemented the solution of the tree-structured NLP in the MLI

software using an interface to IPOPT [111]. The fallback strategy can also be applied to the

general nominal NMPC case.

Furthermore we can interprete the fallback strategy as hierarchical controller. Solving

the complete NLP can be regarded as a high-rank phase in the MLI framework. Our ap-

proach represents then a communication between the RTI phase and the phase solving the

complete NLP. Additionally, the complete NLP solution phase is a very good instrument to

compute an initial value for the system offline before the first NMPC iteration.

Real-Time Feasibility

At the end the paramount question remains if the controller with fallback strategy still yields

real-time feasibility for the Penicillin example. The upper part of Table 9.3 the maximum

and median computation times of the NMPC iterations with tree-QP solution are listed for

all considered trees. In the lower part we list the maximum and median computation times

of those NMPC iterations with solution of the full NLP. The sampling time is 12.5 minutes,

or equivalently 750 seconds. For all trees the maximum times lie below the sampling time,

therefore real-time feasibility is ensured. It is noticable that the full NLP solution takes

much more time than the QP solution because the structure-exploiting numerics and the

RTI pay off.

To summarize, our discussion underlines the result of [83] that scenario tree NMPC con-

trols the biochemical Penicillin reaction and robustifies against the uncertainty. Using RTI

and fast sampling times for NMPC reduces the feedback delay considerably. The nonlinear

108 CHAPTER 9. NUMERICAL RESULTS

Table 9.11: Computation times per NMPC iteration in seconds for the Penicillin example

Scenario tree label 0 1 2

NMPC iteration with solution of tree-QP:

Maximum 0.24 0.57 7.36

Median 0.20 0.41 1.52

NMPC iterations with solution of full NLP:

Maximum 56.84 293.09 462.36

Median 8.81 0.40 1.54

dynamical system of the Penicillin example yields terminating homotopy paths requiring a

fallback strategy. We point out that the issue of bifurcations is presumably not observed in

[83] because their sampling time is one hour and always the full NLP is solved. Therefore

the critical bifurcation points were not hit as in our case with sampling time of 12.5 minutes.

All in all the controller adjustment comes at the cost of computation time, in the Penicillin

case still below the real-time barrier. But most important, the fallback strategy safeguards

against the critical controller failure due to homotopy termination.

9.4 Summary

We have demonstrated that our contribution to the numerical computation side of scenario

tree NMPC, the dual decomposition approach, is an efficient method to solve large-scale

tree-structured QPs. Combining the RTI scheme and structure exploiting numerics yields

real-time feasibility of scenario tree NMPC. Furthermore, when uncertainty is present in

more than one parameter, the scenario trees generated by sparse grid quadrature nodes yield

a reduction of computational effort. The sparse grid trees have significantly less scenarios

than the full tensor grid trees. We have demonstrated the impact of this tree generation

method on controlling an industrial batch reactor. Moreover, our examples showcase the

relevance of scenario tree NMPC for chemical engineering. We summarize the remarkable

aspects from the three chemical reactor studies in the following.

• CSTR: We demonstrate the power of our structure exploitation methods as the dual

decomposition approach and solve optimization problems originating from large trees

with up to 1001 scenarios. A certain cost of computational and objective performance

lies in the nature of robustification against uncertainty. Scenario tree NMPC is a good

balance between performance and feasibility with high probability.

9.4. SUMMARY 109

• Industrial Batch Reactor: Scenario tree NMPC is capable of controlling real-world

applications and thus has a relevance for the process industry. Furthermore the sce-

nario reduction by sparse grids saves up to 70 % of computation time without sacri-

ficing feasibility or controller performance.

• Penicillin production: There are limitations of the RTI, in this case caused by the

dependence on continuous homotopy paths, which cannot be guaranteed for highly

nonlinear systems. We have described a fallback strategy for the online optimization

situation.

The results of this chapter constitute a major part of the general conclusions of this thesis

that follow in the next chapter.

110 CHAPTER 9. NUMERICAL RESULTS

Chapter 10

Conclusion and Outlook

Dynamical optimization under uncertainty is enriched by scenario tree NMPC as versatile

method to robustify against the uncertainty that is present in the underlying system. Novel

methods for scenario tree NMPC in this thesis make computations faster by exploiting the

problem structure. The dual decomposition approach contributes to the numerical side and

allows to perform scenario tree NMPC online with hundreds of scenarios. On the stochas-

tic side our development of scenario tree generation based on sparse grid quadrature rules

opens the doors to apply scenario tree NMPC in high-dimensional uncertainty spaces. As

a further contribution of this thesis, the tree generation method based on a Markov chain

interpretation of scenario trees yields alternative lean tree structures. The novel approach

guarantees a coverage of the uncertainty space with significantly less scenarios than the

usual tree generation procedure. Model-based optimizing control of demanding applica-

tions can be performed by scenario tree NMPC in real-time. Investigation of the topic has

lead to the following future research directions. We start with stochastic research directions,

which go deep into the fundamentals of the field. Then we pose optimization directions, nu-

merical questions and an outlook for process control.

Approximation of a continuous parameter distribution by a discrete parameter
distribution

The main assumption of the scenario tree approach is that we can approximate the un-

certainty by a finite number of realizations. Often the uncertainty space is continuos and

the uncertain parameter is assumed to be distributed according to a continous probability

density function. Approximation results beyond the quadrature approximation results for

discretization of the uncertainty space are a future research direction. The Markov chain in-

terpretation and existing results for approximation of a continuos state space Markov chain

by a discrete space Markov chain would be a possible starting point.

111

112 CHAPTER 10. CONCLUSION AND OUTLOOK

Approximation of a continuous time process by a discrete time process

Up to this point we have considered a discrete time stochastic process as underlying uncer-

tain parameter process. Approximation results with respect to a continuos time process go

in the direction of measure convergence in the sense of [96]. Investigations of the topic lead

to stochastic differential equations and their solution approximations.

Dual decomposition for the node-wise scenario tree formulation

At the heart of our numerical tree-structure exploitation is the dual decomposition approach

yielding subproblems that can be solved in a massively parallel fashion. The discretization

structure of the single scenario QP subproblems is exploited by condensing. A possible

future research direction is to consider the tree in the nodewise formulation and to decouple

also the stages. We can then compare the dual decomposition in the non-anticipativity

constraints and condensing with the dual decomposition in the tree nodes.

Analysis of highly nonlinear dynamical systems

We have observed bifurcations in the dynamical system of the Penicillin example. The

analysis of nonlinear dynamical systems, conclusions for the control of such systems and

the development of hierarchical controllers are worth investigating. The topic touches the

fields of nonlinear dynamics and chaos.

Online scenario tree adaptation based on state and parameter estimation

In this thesis we generate the scenario tree offline before running the NMPC scheme online.

By the estimation task during NMPC we can get more information about the uncertainty.

This could be reflected by an online adaptation of the scenario tree. In our Markov frame-

work we have seen that the tree depends on the initial state. We remark that an expansion

of scenario tree NMPC by online scenario tree adaptation must stay real-time feasible.

All in all we have shown that scenario tree NMPC is a real-time feasible model-based

control method. There is a high potential for future research directions for the scenario tree

approach in the field of optimization under uncertainty.

Bibliography

[1] J. Albersmeyer. Adjoint based algorithms and numerical methods for sensitivity gen-

eration and optimization of large scale dynamic systems. PhD thesis, Ruprecht-

Karls-Universität Heidelberg, 2010.

[2] J. Albersmeyer and H.G. Bock. Sensitivity Generation in an Adaptive BDF-Method.

In Hans Georg Bock, E. Kostina, X.H. Phu, and R. Rannacher, editors, Modeling,

Simulation and Optimization of Complex Processes: Proc. of the International Con-

ference on High Performance Scientific Computing, March 2006, Hanoi, pages 15–

24. Springer, 2008.

[3] J. Andersson, J. Frasch, M. Vukov, and M. Diehl. A condensing algorithm for non-

linear mpc with a quadratic runtime in horizon length. Optimization Online, (5837),

2017.

[4] V. Bär. Ein Kollokationsverfahren zur numerischen Lösung allgemeiner Mehrpunkt-

randwertaufgaben mit Schalt- und Sprungbedingungen mit Anwendungen in der op-

timalen Steuerung und der Parameteridentifizierung. Diploma thesis, Universität

Bonn, 1983.

[5] I. Bauer. Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur

Generierung von ersten und zweiten Ableitungen mit Anwendungen bei Opti-

mierungsaufgaben in Chemie und Verfahrenstechnik. PhD thesis, Ruprecht-Karls-

Universität Heidelberg, 1999.

[6] I. Bauer, H.G. Bock, S. Körkel, and J.P. Schlöder. Numerical Methods for Initial

Value Problems and Derivative Generation for DAE Models with Application to Op-

timum Experimental Design of Chemical Processes. In F. Keil, W. Mackens, H. Voß,

and J. Werther, editors, Scientific Computing in Chemical Engineering II, pages 282–

289. Springer, 1999.

[7] D. Beigel. Efficient goal-oriented global error estimation for BDF-type methods

using discrete adjoints. PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2012.

113

114 BIBLIOGRAPHY

[8] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle–point problems.

Acta Numerica, 14:1–137, 2005.

[9] D. Bertsekas and J.N. Tsitsiklis. Parallel and distributed computation: Numerical

methods. Prentice Hall, 1989.

[10] D. Bertsimas, D. Brown, and C. Caramanis. Theory and applications of robust opti-

mization. SIAM Review, 53:464–501, 2011.

[11] L.T. Biegler. Solution of dynamic optimization problems by successive quadratic

programming and orthogonal collocation. Computers & Chemical Engineering,

8:243–248, 1984.

[12] H.G. Bock. Numerische Optimierung zustandsbeschränkter parameterabhängiger

Prozesse mit linear auftretender Steuerung unter Anwendung der Mehrzielmethode.

Diploma thesis, Universität zu Köln, 1974.

[13] H.G. Bock. Recent advances in parameter identification techniques for ODE. In

P. Deuflhard and E. Hairer, editors, Numerical Treatment of Inverse Problems in

Differential and Integral Equations, pages 95–121. Birkhäuser, Boston, 1983.

[14] H.G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Syste-

men nichtlinearer Differentialgleichungen, volume 183 of Bonner Mathematische

Schriften. Universität Bonn, 1987.

[15] H.G. Bock, M. Diehl, E.A. Kostina, and J.P. Schlöder. Constrained Optimal Feedback

Control for DAE. In L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van

Bloemen Waanders, editors, Real-Time PDE-Constrained Optimization, chapter 1,

pages 3–24. SIAM, 2007.

[16] H.G. Bock, M. Diehl, P. Kühl, E. Kostina, J.P. Schlöder, and L. Wirsching. Numerical

Methods for Efficient and Fast Nonlinear Model Predictive Control. In R. Findeisen,

F. Allgöwer, and L. T. Biegler, editors, Assessment and future directions of Nonlinear

Model Predictive Control, volume 358 of Lecture Notes in Control and Information

Sciences, pages 163–179. Springer, 2005.

[17] H.G. Bock and K.J. Plitt. A Multiple Shooting algorithm for direct solution of opti-

mal control problems. In Proceedings of the 9th IFAC World Congress, pages 242–

247, Budapest, 1984. Pergamon Press.

BIBLIOGRAPHY 115

[18] R. Bulirsch. Die Mehrzielmethode zur numerischen Lösung von nichtlinearen

Randwertproblemen und Aufgaben der optimalen Steuerung. Technical report, Carl-

Cranz-Gesellschaft, Oberpfaffenhofen, 1971.

[19] J.C. Butcher. Coefficients for the study of Runge-Kutta integration processes. Jour-

nal of the Australian Mathematical Society, 3:185–201, 1963.

[20] H. Chen, A. Kremling, and F. Allgöwer. Nonlinear predictive control of a benchmark

CSTR. In Proceedings of the European Control Conference (ECC95), pages 3247–

3252, Rome, 1995.

[21] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control.

Springer, 2013.

[22] C.F. Curtiss and J.O. Hirschfelder. Integration of stiff equations. Proceedings of the

National Academy of Sciences of the USA, 38:235–243, 1952.

[23] K. Dadhe and S. Engell. Robust nonlinear model predictive control: A multi-model

nonconservative approach. In Book of Abstracts, International Workshop on NMPC,

Pavia, page 24, 2008.

[24] P. Deuflhard and A. Hohmann. Numerische Mathematik: Eine algorithmisch orien-

tierte Einführung. Edition de Gruyter, 4th edition, 2008.

[25] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes. PhD thesis,

Ruprecht-Karls-Universität Heidelberg, 2001.

[26] M. Diehl, H.G. Bock, and E. Kostina. An approximation technique for robust non-

linear optimization. Mathematical Programming, B 107:213–230, 2006.

[27] M. Diehl, H.G. Bock, and J.P. Schlöder. A real-time iteration scheme for nonlinear

optimization in optimal feedback control. SIAM Journal on Control and Optimiza-

tion, 43(5):1714–1736, 2005.

[28] M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. Real-

time optimization and Nonlinear Model Predictive Control of Processes governed by

differential-algebraic equations. Journal of Process Control, 12(4):577–585, 2002.

[29] M. Diehl, R. Findeisen, F. Allgöwer, J.P. Schlöder, and H.G. Bock. Stability of

nonlinear model predictive control in the presence of errors due to numerical online

optimization. In Proc. 43th IEEE Conf. Decision Contr., pages 1419–1424, Maui,

Hawaii, 2003.

116 BIBLIOGRAPHY

[30] J. Dupačová, G. Consigli, and S. W. Wallace. Scenarios for multistage stochastic

programs. Annals of Operations Research, 100:25–53, 2000.

[31] R. Durrett. Probability: Theory and Examples, volume 4. Cambridge University

Press, 2010.

[32] E. Fehlberg. Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit

Schrittweiten-Kontrolle. Computing, 4:93–106, 1969.

[33] E. Fehlberg. Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit

Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Comput-

ing, 6:61–71, 1970.

[34] M. Felis. Modeling Emotional Aspects in Human Locomotion. PhD thesis, Ruprecht-

Karls-Universität Heidelberg, 2015.

[35] H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strategy to overcome the

limitations of explicit MPC. International Journal of Robust and Nonlinear Control,

18(8):816–830, 2008.

[36] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl. qpOASES: A para-

metric active-set algorithm for quadratic programming. Mathematical Programming

Computation, 6(4):327–363, 2014.

[37] H.J. Ferreau, A. Kozma, and M. Diehl. A parallel active-set strategy to solve sparse

parametric quadratic programs arising in mpc. In Proceedings of the 4th IFAC NMPC

Conference, Noordwijkerhout, 2012.

[38] R. Findeisen, L. Imsland, F. Allgöwer, and B. A. Foss. Output feedback stabilization

of constrained systems with nonlinear predictive control. International Journal of

Robust and Nonlinear Control, 13(3-4):211–227, 2003.

[39] R. Fletcher. Practical Methods of Optimization. Wiley, Chichester, 2nd edition,

1987.

[40] G.F. Franklin, J.D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic

Systems. Prentice Hall, 7th edition, 2015.

[41] J. V. Frasch. Parallel Algorithms for Optimization of Dynamic Systems in Real-Time.

PhD thesis, Otto-von-Guericke Universität Magdeburg, 2014.

[42] J. V. Frasch, S. Sager, and M. Diehl. A parallel quadratic programming method for

dynamic optimization problems. Mathematical Programming Computation, 7:289–

329, 2015.

BIBLIOGRAPHY 117

[43] J. V. Frasch, M. Vukov, H.J. Ferreau, and M. Diehl. A dual Newton strategy for the

efficient solution of sparse quadratic programs arising in SQP-based nonlinear MPC.

Technical report, 2013. Optimization Online 3972.

[44] J. V. Frasch, L. Wirsching, S. Sager, and H.G. Bock. Mixed-level iteration schemes

for nonlinear model predictive control. In Proceedings of the IFAC Conference on

Nonlinear Model Predictive Control, 2012.

[45] J. Frehse. Existence of Optimal Controls I. Operations Research Verfahren, 31:213–

225, 1979.

[46] J.V. Gallitzendörfer. Parallel Algorithms for Optimization Boundary Value Problems

in DAE. PhD thesis, Ruprecht-Karls-Universität Heidelberg, 1994.

[47] C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations.

Prentice-Hall, 1971.

[48] T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numerical

Algorithms, 18:209–232, 1998.

[49] R. K. Greenleaf. The Servant as Leader. The Greenleaf Center for Servant Leader-

ship, Westfield, IN, 1991.

[50] A. Griewank, D. Juedes, and J. Utke. ADOL-C: A package for the automatic dif-

ferentiation of algorithms written in C/C++. ACM Transactions on Mathematical

Software, 22(2):131–167, 1996.

[51] N. Gröwe-Kuska, H. Heitsch, and W. Römisch. Scenario reduction and scenario tree

construction for power management problems. In Proceedings of the IEEE Power

Tech Conference Bologna, 2003.

[52] L. Grüne and O. Junge. Gewöhnliche Differentialgleichungen - Eine Einführung aus

der Perspektive der dynamischen Systeme. Springer, Berlin, Heidelberg, 2nd edition,

2016.

[53] L. Grüne and J. Pannek. Nonlinear Model Predictive Control. Springer, 2011.

[54] J. Guckenheimer and P. J. Holmes. Nonlinear Oscillations, Dynamical Systems, and

Bifurcations of Vector Fields. Springer, 1st edition, 1983.

[55] M. Guignard. Generalized Kuhn–Tucker conditions for mathematical programming

problems in a Banach space. SIAM Journal on Control, 7(2):232–241, 1969.

118 BIBLIOGRAPHY

[56] E.L. Haseltine and J.B. Rawlings. Critical Evaluation of Extended Kalman Filtering

and Moving-Horizon Estimation. Industrial and Engineering Chemistry Research,

44(8):2451–2460, 2005.

[57] W. K. Hastings. Monte carlo sampling methods using markov chains and their appli-

cations. Biometrika, 57(1):97–109, 1970.

[58] H. Heitsch and W. Römisch. Scenario tree modeling for multistage stochastic pro-

grams. Mathematical Programming Series A, 118:371–406, 2009.

[59] J. Hübner. Distributed Algorithms for Nonlinear Tree-Sparse Problems. PhD thesis,

Universität Hannover, 2016.

[60] J. Hübner, M. Schmidt, and M.C. Steinbach. Optimization techniques for tree-

structured nonlinear problems. Optimization Online, (5845), 2017.

[61] T. Huschto. Numerical Methods for Random Parameter Optimal Control and the

Optimal Control of Stochastic Differential Equations. PhD thesis, Ruprecht-Karls-

Universität Heidelberg, 2014.

[62] D. Janka. Sequential quadratic programming with indefinite Hessian approximations

for nonlinear optimum experimental design for parameter estimation in differential-

algebraic equations. PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2015.

[63] D. Janka, C. Kirches, S. Sager, and A. Wächter. An sr1/bfgs sqp algorithm for

nonconvex nonlinear programs with block-diagonal hessian matrix. Mathematical

Programming Computation, 2016.

[64] W. Karush. Minima of functions of several variables with inequalities as side condi-

tions. Master’s thesis, Department of Mathematics, University of Chicago, 1939.

[65] C. Kirches. Fast numerical methods for mixed-integer nonlinear model-predictive

control. PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2010.

[66] C. Kirches, H.G. Bock, J.P. Schlöder, and S. Sager. Complementary Condensing

for the Direct Multiple Shooting Method. In H.G. Bock, H.X. Phu, R. Rannacher,

and J.P. Schlöder, editors, Modeling, Simulation, and Optimization of Complex Pro-

cesses. Proceedings of the Fourth International Conference on High Performance

Scientific Computing, March 2-6, 2009, Hanoi, Vietnam, pages 195–206, Heidelberg

Dordrecht London New York, 2012. Springer Verlag.

BIBLIOGRAPHY 119

[67] C. Kirches, L. Wirsching, S. Sager, and H.G. Bock. Efficient numerics for nonlinear

model predictive control. In M. Diehl, F. Glineur, E. Jarlebring, and W. Michiels,

editors, Recent Advances in Optimization and its Applications in Engineering, pages

339–359. Springer, 2010.

[68] A. Klenke. Wahrscheinlichkeitstheorie. Springer, Berlin, Heidelberg, 3rd edition,

2013.

[69] D. Kouzoupis, E. Klintberg, M. Diehl, and S. Gros. A dual newton strategy for

scenario decomposition in robust multi-stage mpc. Optimization Online, (5858),

2017.

[70] A. Kozma, J.V. Frasch, and M. Diehl. A distributed method for convex quadratic

programming problems arising in optimal control of distributed systems. In IEEE

52nd Annual Conference on Decision and Control (CDC), 2013.

[71] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor, Pro-

ceedings of the Second Berkeley Symposium on Mathematical Statistics and Proba-

bility, pages 481–492, Berkeley, 1951. University of California Press.

[72] W. Kutta. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen.

Zeitschrift für Mathematik und Physik, 46:435–453, 1901.

[73] C. Leidereiter, D. Kouzoupis, M. Diehl, and A. Potschka. Pruning for scenario tree

NMPC with uncertainties described by Markov chains. In preparation.

[74] C. Leidereiter, A. Potschka, and H. G. Bock. Quadrature-based scenario tree genera-

tion for Nonlinear Model Predictive Control. In Proceedings of the 19th IFAC World

Congress, volume 47, pages 11087–11092, 2014.

[75] C. Leidereiter, A. Potschka, and H. G. Bock. Dual decomposition for QPs in scenario

tree NMPC. In Proceedings of the European Control Conference (ECC15), pages

1608–1613, 2015.

[76] D.B. Leineweber. Analyse und Restrukturierung eines Verfahrens zur direk-

ten Lösung von Optimal-Steuerungsproblemen. Diploma thesis, Ruprecht-Karls-

Universität Heidelberg, 1995.

[77] D.B. Leineweber. Efficient reduced SQP methods for the optimization of chemical

processes described by large sparse DAE models, volume 613 of Fortschritt-Berichte

VDI Reihe 3, Verfahrenstechnik. VDI Verlag, Düsseldorf, 1999.

120 BIBLIOGRAPHY

[78] D.B. Leineweber, I. Bauer, A.A.S. Schäfer, H.G. Bock, and J.P. Schlöder. An Ef-

ficient Multiple Shooting Based Reduced SQP Strategy for Large-Scale Dynamic

Process Optimization (Parts I and II). Computers & Chemical Engineering, 27:157–

174, 2003.

[79] W. Li and J. Swetits. A new algorithm for solving strictly convex quadratic programs.

SIAM Journal of Optimization, 7(3):595–619, 1997.

[80] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale opti-

mization. Mathematical Programming, 45(3):503–528, 1989.

[81] S. Lucia, J. Andersson, H. Brandt, A. Bouaswaig, M. Diehl, and S. Engell. Efficient

robust economic nonlinear model predictive control of an industrial batch reactor. In

Proceedings of the 19th IFAC World Congress, pages 11093–11098, 2014.

[82] S. Lucia, J. Andersson, H. Brandt, M. Diehl, and S. Engell. Handling uncertainty in

economic nonlinear model predictive control: A comparative case study. Journal of

Process Control, 24(8):1247–1259, 2014.

[83] S. Lucia and S. Engell. Robust nonlinear model predictive control of a batch biore-

actor using multi-stage stochastic programming. In Proceedings of the European

Control Conference (ECC13), pages 4124–4129, 2013.

[84] S. Lucia, T. Finkler, and S. Engell. Multi-stage nonlinear model predictive control

applied to a semi-batch polymerization reactor under uncertainty. Journal of Process

Control, 23(9):1306–1319, 2013.

[85] L. Magni, D.M. Raimondo, and F. Allgöwer, editors. Nonlinear Model Predictive

Control: Towards New Challenging Applications, volume 384 of Lecture Notes in

Control and Information Sciences. Springer, 2009.

[86] The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.2 (R2017a), 2017.

[87] J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of

Computation, 35:773–782, 1980.

[88] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Verlag, Berlin Hei-

delberg New York, 2nd edition, 2006.

[89] M.R. Osborne. On shooting methods for boundary value problems. Journal of Math-

ematical Analysis and Applications, 27:417–433, 1969.

BIBLIOGRAPHY 121

[90] K.J. Plitt. Ein superlinear konvergentes Mehrzielverfahren zur direkten Berech-

nung beschränkter optimaler Steuerungen. Diploma thesis, Rheinische Friedrich–

Wilhelms–Universität Bonn, 1981.

[91] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The

Mathematical Theory of Optimal Processes. Interscience, English Translation, 1962.

[92] A. Potschka. A direct method for the numerical solution of optimization problems

with time-periodic PDE constraints. PhD thesis, Ruprecht-Karls-Universität Heidel-

berg, 2011.

[93] A. Potschka, H.G. Bock, and J.P. Schlöder. A minima tracking variant of semi-infinite

programming for the treatment of path constraints within direct solution of optimal

control problems. Optimization Methods and Software, 24(2):237–252, 2009.

[94] L. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical Pro-

gramming, 58:353–367, 1993.

[95] S.J. Qin and T.A. Badgwell. Review of nonlinear model predictive control applica-

tions. In B. Kouvaritakis and M. Cannon, editors, Nonlinear model predictive con-

trol: theory and application, pages 3–32, London, 2001. The Institute of Electrical

Engineers.

[96] S. T. Rachev. Probability metrics and the stability of stochastic models. Wiley, 1991.

[97] C. V. Rao, J. B. Rawlings, and D. Q. Mayne. Constrained state estimation for non-

linear discrete-time systems: Stability and moving horizon approximations. IEEE

Transactions on Automatic Control, 48(2):246–258, 2003.

[98] J.B. Rawlings and D.Q. Mayne. Model Predictive Control: Theory and Design. Nob

Hill, 2012.

[99] C. Runge. über die numerische Auflösung von Differentialgleichungen. Math. Ann.,

46:167–178, 1895.

[100] C. Schillings. Optimal aerodynamic design under uncertainties. PhD thesis, Univer-

sität Trier, 2011.

[101] R. Scholz. Stabiles Condensing für Optimale Steuerung. Master thesis, Universität

Heidelberg, 2016.

[102] S.A. Smolyak. Quadrature and interpolation formulas for tensor products of certain

classes of functions. Doklady Akademii Nauk SSSR, 4:240–243, 1963.

122 BIBLIOGRAPHY

[103] B. Srinivasan, D. Bonvin, E Visser, and S. Palanki. Dynamic Optimization of Batch

Processes: II. Role of Measurements in Handling Uncertainty. Computers & Chemi-

cal Engineering, 27(1):27–44, 2002.

[104] B. Srinivasan, S. Palanki, and D. Bonvin. Dynamic Optimization of Batch Processes:

I. Characterization of the Nominal Solution. Computers & Chemical Engineering,

27:1–26, 2003.

[105] M.C. Steinbach. Fast recursive SQP methods for large-scale optimal control prob-

lems. PhD thesis, Ruprecht-Karls-Universität Heidelberg, 1995.

[106] M.C. Steinbach. Recursive direct algorithms for multistage stochastic programs in

financial engineering. Technical report, ZIB, 1998.

[107] M.C. Steinbach. Tree-Sparse Convex Programs. Math. Methods Oper. Res.,

56(3):347–376, 2002.

[108] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, 3rd edition,

2002.

[109] T.H. Tsang, D.M. Himmelblau, and T.F. Edgar. Optimal control via collocation and

non-linear programming. International Journal on Control, 21:763–768, 1975.

[110] A. Uppal, W.H. Ray, and A.B. Poore. On the dynamic behavior of continuous stirred

tank reactors. Chemical Engineering Science, 29(4):967 – 985, 1974.

[111] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point

filter line search algorithm for large-scale nonlinear programming. Mathematical

Programming, 106(1):25–57, 2006.

[112] S.J. Wright. Primal-Dual Interior-Point Methods. SIAM Publications, Philadelphia,

1997.

[113] F. Wu. LMI-based robust model predictive control and its application to an industrial

CSTR problem. Journal of Process Control, 11:649–659, 2001.

[114] V.M. Zavala and L.T. Biegler. The advanced–step NMPC controller: optimality,

stability and robustness. Automatica, 45(1):86–93, 2009.

List of Acronyms

BDF Backward Differentiation Formula

BFGS Broyden-Fletcher-Goldfarb-Shanno

BVP Boundary Value Problem

CMR Control Move Regularization

CQ Constraint Qualification

CSTR Continuous Stirred Tank Reactor

DAE Differential-Algebraic Equation

EHE External Heat Exchanger

IND Internal Numerical Differentiation

IVP Initial Value Problem

KKT Karush-Kuhn-Tucker

LICQ Linear Independence Constraint Qualification

LP Linear Programming Problem

MCMC Markov Chain Monte Carlo

MLI Multi-Level Iteration

NLP Nonlinear Programming Problem

NMPC Nonlinear Model Predictive Control

OCP Optimal Control Problem

ODE Ordinary Differential Equation

QP Quadratic Programming Problem

RTI Real-Time Iteration

SQP Sequential Quadratic Programming

123

	Introduction
	Aims and Contributions of this Thesis
	Organization of this Thesis

	Problem Classification
	The Scenario Tree Optimization Problem
	Dynamical System Perspective: Optimal Control
	Optimization Perspective: Nonlinear Programming
	Process Control Perspective: Fast Feedback in Real-Time
	Stochastic Perspective: Discrete Tree Process
	Summary

	Discretization Structure Exploitation
	The Direct Multiple Shooting Method
	Structure Exploiting Sequential Quadratic Programming
	Condensing
	Summary

	Optimization in Real-Time
	Nonlinear Model Predictive Control
	The Real-Time Iteration Scheme
	Multi-Level Iteration Schemes
	Summary

	Scenario Tree Structure Exploitation
	Tree Structure in Optimization Problems
	Dual Decomposition
	Non-smooth Newton Method
	Summary

	Quadrature-based Scenario Tree Generation
	Expectation Value of the Objective and Quadrature
	Sparse Grids
	Smolyak's Algorithm
	Error Bounds

	Scenario Tree NMPC with Quadrature-based Scenario Tree Generation
	Summary

	Markov Chain Scenario Tree Pruning
	Markovian Scenario Tree Process
	Invariant Distribution as Initial Distribution
	Tree Pruning Algorithm
	Constraint Satisfaction
	Constructing a Markov Chain from a Distribution
	Scenario Tree Examples
	Approximation Error of the Examples
	Summary

	Implementation
	Design Decisions
	Numerical Methods
	Setup of Problems
	Summary

	Numerical Results
	Continuous Stirred Tank Reactor
	A Biochemical Batch Reactor
	Penicillin Production
	Summary

	Conclusion and Outlook
	Bibliography
	List of Acronyms

