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ABSTRACT

Consider the absolute Galois group GK of an extension K of Qp finite degree d, and a finite
field F of prime characteristic p. Following Mazur [Maz89], we define the versal deformation

ring Rψρ̄ with fixed determinant of a Galois representation ρ̄ : GK → GLn(F). Then for n = 2

and p > 3 our first main result states that Rψρ̄ is an integral domain so that the associated versal

deformation space X(ρ) is irreducible. For this, we use the explicit relations of Rψρ̄ computed in
[Böc00] and a commutative algebra criterion. We deduce from [Nak13] that for n = 2 and any K
the benign crystalline points are Zariski dense in X(ρ). This is expected to be useful for the
surjectivity of the p-adic local Langlands correspondence. Furthermore, for arbitrary n and p
we show that the refined quadratic parts of the relations of Rψρ̄ can be obtained cohomologically
from a cup product and a Bockstein homomorphism if a certain lift of ρ exists. Following
Chenevier [Che14], we construct the universal pseudodeformation ring Runiv

D
of an n-dimensional

pseudorepresentation D : F[GK ]→ F. Motivated by the result [Che11] on the equidimensionality
of the generic fiber of the universal pseudorepresentation ring in characteristic 0, our second main

result says that the special fiber R
univ
D of Runiv

D
is equidimensional of dimension dn2 +1 if p > n

or if K does not contain a primitive pth root of unity ζp. In the latter case, if either n > 2 or

n = 2 and d > 1 we prove that the regular locus of SpecR
univ
D consists of certain irreducible

pseudodeformations and that R
univ
D satisfies Serre’s condition (R2).

ZUSAMMENFASSUNG

Betrachte die absolute Galoisgrouppe GK einer Erweiterung K von Qp von endlichem Grad d
und einen endlichen Körper F von Primzahlcharacteristik p. Mazur [Maz89] folgend, definie-

ren wir den versellen Deformationsring Rψρ̄ mit fester Determinante einer Galoisdarstellung

ρ̄ : GK → GLn(F). Dann sagt unser erstes Hauptresultat für n = 2 und p > 3 aus, dass Rψρ̄
ein Integritätsring ist, sodass der dazugehörige verselle Deformationsraum X(ρ) unzerlegbar ist.

Dafür benutzen wir die expliziten Relationen von Rψρ̄ , die in [Böc00] berechnet wurden, und
ein Kriterium aus der Kommutativen Algebra. Wir folgern aus [Nak13] für n = 2 und beliebi-
ges K, dass die benignen krystallinen Punkte Zariski-dicht in X(ρ) sind. Dies ist voraussichtlich
nützlich für die Surjektivität der p-adischen lokalen Langlands-Korrespondenz. Des Weiteren
zeigen wir für beliebiges n und p, dass die verfeinerten quadratischen Anteile der Relationen
von Rψρ̄ kohomologisch durch ein Cup-Produkt und einen Bockstein-Homomorphismus erhalten
werden können – falls ein geeigneter Lift von ρ existiert. Chenevier [Che14] folgend, konstruie-
ren wir den universellen Pseudodeformationsring Runiv

D
einer n-dimensionellen Pseudodarstellung

D : F[GK ] → F. Motiviert durch das Resultat [Che11] über die Äquidimensionalität der gene-
rischen Faser des universellen Pseudodarstellungsrings in Characteristic 0, zeigt unser zweites

Hauptresultat, dass die spezielle Faser R
univ
D von Runiv

D
äquidimensional von Dimension dn2 + 1

ist, falls p > n oder falls K keine pte primitive Einheitswurzel ζp enthält. In letzterem Fall bewei-

sen wir, falls entweder n > 2 oder n = 2 und d > 1, dass der reguläre Lokus von SpecR
univ
D aus

bestimmten unzerlegbaren Pseudodeformationen besteht und dass R
univ
D Serre’s Bedingung (R2)

erfüllt.
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1. INTRODUCTION

In this thesis, we prove in Chapter4 the irreducibility of a (uni)versal deformation ring with fixed
determinant, and in Chapter3 the equidimensionality of a universal pseudodeformation ring. In
the introduction we explain the meaning of these results and give some hints on their proof. We
also give some motivation of our results that stems from the conjectured p-adic local Langlands
correspondence. Our results may have applications to the surjectivity of this correspondence,
at present for GL2, but with more work perhaps also for GLn. We end the introduction with an
outline of the thesis.

1.1 Irreducibility of Mazur’s (uni)versal deformation rings

Throughout the thesis we fix an algebraic closure Kalg of a finite extension K of the p-adic
numbers Qp of degree d = [K : Qp] with absolute Galois group GK := Gal(Kalg/K), a primitive
pth root of unity ζp and a finite field F of prime characteristic p. Consider a continuous residual
Galois representation

ρ : GK −→ GLn(F).

Such Galois representations arise naturally in arithmetic geometry, for instance attached to
an elliptic curve defined over Q or associated with a modular form. Originally motivated by
”big” Galois representations associated with ordinary p-adic modular forms, B. Mazur invented
the study of deformations of ρ in [Maz89]. Such a ”big” Galois representation parametrizes
all liftings of a residual Galois representation that are of a certain type. To provide a general
framework for such a family of Galois representations with the same mod p reduction, Mazur
applied formal deformation theory [Sch68] as follows.

Consider the ring of Witt vectors W (F), the ring O of integers of a finite totally ramified

extension of W (F)[1/p] and the category ÂrO of complete Noetherian local O-algebras R with
maximal ideal mR and residue field F. A deformation of ρ to R is a continuous lifting ρ : GK →
GLn(R) with ρ⊗RF = ρ up to strict equivalency, where liftings ρ1, ρ2 of ρ̄ to R are called strictly
equivalent if there is A ∈ ker (GLn(R)→ GLn(F)) such that ρ2(g) = Aρ1(g)A

−1 for all g ∈ GK .
Then the deformation functor

Dρ : ÂrO −→ Sets, R ↦−→ {ρ : GK → GLn(R) : ρ is a deformation of ρ},

satisfies the criteria (H1)–(H3) from [Sch68, Thm. 2.11] so that it has a versal hull Rρ ∈ Ob(ÂrO)
together with a versal deformation ρverρ : G→ GLn(Rρ) that parametrizes all deformations of ρ.
If ρ is absolutely irreducible, then the functor Dρ is representable by a universal deformation

ring Runiv
ρ ∈ Ob(ÂrO) together with a universal deformation ρunivρ : G → GLn(R

univ
ρ ) [Maz89,

Prop. 1].
Mazur also realized that, at least in some specific cases, universal deformation rings should

be given by Hecke rings. This inspired A. Wiles for his famous proof of Fermat’s last theorem
[Wil95, TW95] to put his observations on Galois representations and modular forms into a ring-
theoretic language. Roughly speaking, if ρ is modular and further deformation conditions of
modular Galois representations are imposed on the p-adic liftings of ρ, then Wiles’ modularity
theorem states that the natural homomorphism from Runiv

ρ to a certain Hecke algebra T is an
isomorphism. Such R = T theorems have later been widely used in e.g. the proof of the general
modularity theorem [BCDT01, Thm.A] and the Serre conjecture [KW09a, KW09b].
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1.1. Irreducibility of Mazur’s (uni)versal deformation rings

For these proofs ring-theoretic properties of certain universal deformation rings are estab-
lished. For instance being a complete intersection, flat over O, an integral domain or of a
specific dimension. We explain in Section 1.3 which application the following ring-theoretic re-
sults on (uni)versal deformation rings from [BJ15] by G. Böckle and the author have on the
p-adic local Langlands correspondence. To state the results, consider a character ψ : GK → O×
that lifts det ρ and the following subfunctor

Dψρ : ÂrO → Sets, R ↦→ {ρ : GK → GLn(R) : ρ is a deformation of ρ and det ρ = ψ ⊗O R}.

Then Dψρ ⊂ Dρ is relatively representable and has a versal hull Rψρ with maximal ideal mψ
ρ

[Maz97, § 24 Prop.]. The following is our first main result.

Theorem A (Theorem 4.1.5). Suppose n = 2 and p > 2. Then the following hold:

(i) The ring R
ψ
ρ := Rψρ /mOR

ψ
ρ is a complete intersection;

(ii) the ring Rψρ is a complete intersection and flat over O;

(iii) the ring Rψρ is an integral domain and in particular irreducible.

The first two assertions are proven already in [Böc00] and the proof of Theorem A uses the

explicit relations of Rψρ computed in Section 4.3 following [Böc00] where n = 2 and p > 2. As
explained in Section4.1, by Theorem 4.1.4 the refined quadratic parts of the explicit relations of
Rψρ in a certain associated graded ring form part of a regular sequence in an integral domain and
by applying tools from commutative algebra shown in Proposition 4.2.2 we deduce Theorem A.

We remark that for n ∈ N≥1 arbitrary we also prove in Theorem 4.1.14 from [BJ15] that the

refined quadratic parts of the relations of Rψρ can be obtained from the bracket cup product and
the Bockstein homomorphism from Section 4.5 and Section 4.6, respectively. We refer to the
introduction of [BJ15] in Section 4.1 for more details.

We point out here that the idea to use the bracket cup product to determine the quadratic
parts of the relations goes back to Mazur [Maz89, § 1.6 Rem.], and it is standard in deformation
theory. The computation of the refined quadratic parts of the explicit relations makes use of the
fact that the (uni)versal deformation ρψρ : G→ GLn(R

ψ
ρ ) factors via either a free pro-p group or

a Demushkin group, whose classification in Example 2.4.5 for p > 2 describes the Demushkin
group as the quotient of a free pro-p group with generators x1, . . . , xd+2 by a relation

r = xq1(x1, x2)(x3, x4) . . . (xd+1, xd+2) with (xi, xj) = x−1i x−1j xixj for all i, j.

Then the similarity with classical deformation theory of representations of fundamental groups
of compact Kähler manifolds [GM88a, GM88b] becomes apparent by the fact that such a fun-
damental group of a compact Riemann surface of genus g is the quotient of the free group with
basis x1, . . . , x2g by a relation

r = (x1, x2)(x3, x4) . . . (x2g−1, x2g).

In [GM88a, GM88b] it is shown that the related universal deformation rings have quadratic
relations.

Remark 1.1.1. (i) The author mentored R. Eberhardt in the writing of his Bachelor thesis
[Ebe14] supervised by Böckle, which investigated the assertion of Theorem A in the case

that ρ : GQ2 → GL2(F) is trivial. Then ρψρ factors via a Demushkin group, which by

2



1. Introduction

Example 2.4.5 is the quotient of a free pro-2 group with generators x1, x2, x3 by the relation
r = x21x

4
2(x2, x3). One checks that the refined quadratic parts of the explicit relations of

the versal deformation ring Rψρ = O[[x1,1, x1,2,x1,3, x2,1, x2,2, x2,3, x3,1, x3,2, x3,3]]/Iψ, where

Iψ =
(
X2

1X
4
2 (X2, X3)− 1

)
with Xi =

(
1 + xi,1 xi,2
xi,3 (1 + xi,2xi,3)/(1 + xi,1)

)
for all i,

form a regular sequence but the associated graded ring is not an integral domain so that we
cannot apply Proposition 4.2.2 as done when proving Theorem A. Based on ideas of Böckle,
[Ebe14] uses SageMath [Sag14] to apply Serre’s criterion for normality and the Jacobian
criterion for regularity [Eis95, Exc. 11.10, Thm. 16.19 and 18.15] to a related polynomial

ring R′ := F[x1, . . . , x8]/I. From [Mat89, Thm. 32.2(i)] follows that the completion R̂′ of R′

is also normal and this is used to show that R
ψ
ρ
∼= R̂′[[x]]/(f), where f is an irreducible

polynomial of degree 2, is an integral domain and thus irreducible.

(ii) If d > 1, p = 2 and ρ : GK → GL2(F) is trivial, the Master thesis [Kre13] of M. Kre-

mer supervised by Böckle determines the explicit relations defining Rψρ using Demushkin’s
Example 2.4.5. Using Singular [DGPS18], [Kre13] checks that the quadratic parts of the
explicit relations form a regular sequence and that the associated graded ring is an integral
domain so that Proposition 4.2.2 shows that Rψρ is an integral domain and thus irreducible.

1.2 Equidimensionality of Chenevier’s universal pseudodeformation rings

As the proof of the irreducibility of the versal deformation ring Rψρ in Theorem A is based on

the knowledge of the explicit relations of Rψρ from [Böc00] where n = 2 and p > 2, we seek to
investigate the (uni)versal deformation ring for arbitrary n ∈ N≥1 and prime number p through
G. Chenevier’s universal pseudodeformation ring of the residual pseudorepresentation attached
to ρ : GK → GLn(F).

More precisely, by Definition 3.1.13 a pseudorepresentation of GK of dimension n with values
in a commutative ring A is an A-polynomial law D : A[GK ]→ A that is multiplicative and ho-
mogeneous of degree n. Then by Example 3.1.8 the determinant det ρ of a Galois representation
ρ : GK → GLn(R) defines a pseudorepresentation D : R[GK ] → R that by Amitsur’s formular
[Che14, (1.5)] encodes the data of the characteristic polynomial of ρ. Using the well-known
Brauer-Nesbitt theorem [CR62, (30.16) Thm.], Chenevier proves in Theorem 3.1.26 that for any
pseudorepresentation D : k[GK ] → k over an algebraically closed field k there exists a unique
semisimple Galois representation ρ : GK → GLn(k) such that D = det ρ.

Similarly to the deformation theory of Galois representations, Chenevier then studies in
[Che14, § 3.1] the pseudodeformation functor

PsDD : ÂrO → Sets, R ↦−→ {D : R[GK ] −→ R is a pseudodeformation of D},

of the residual pseudorepresentation D := det ρ, where a continuous pseudorepresentation
D : R[GK ]→ R satisfying D⊗̂RF ∼= D is called a pseudodeformation of D; see Definition 3.1.53.
As stated in Proposition 3.1.57 (and Proposition 3.1.60) by Wang Erickson, Chenevier ([Che14,
Prop. 3.3 and 3.7] when O = W (F)) proves that PsDD is always representable by a universal
pseudodeformation ring Runiv

O,D together with a universal pseudodeformation Duniv
D

: Runiv
O,D[GK ]→

Runiv
O,D of D. Then by universality of Runiv

O,D there is a homomorphism

Runiv
O,D → Rρ

3



1.2. Equidimensionality of Chenevier’s universal pseudodeformation rings

corresponding to the pseudodeformation det ρverρ of D, which by Chenevier’s Proposition 3.2.14
is an isomorphism if ρ is absolutely irreducible. Our second main result is the following.

Theorem B (Theorem 3.3.12). Suppose that p > n or ζp ̸∈ K. Then we have for any n-
dimensional pseudorepresentation D : F[GK ]→ F:

(i) the special fiber X
univ
D of Xuniv

D
:= SpecRuniv

O,D is equidimensional of dimension dn2 + 1;

(ii) if ζp /∈ K and χ is the Teichmüller lift of the mod p cyclotomic character of GK , then the
locus

(X
univ
D )irr,D(1)̸=D := {D ∈ Xuniv

D : D is irreducible and D ̸= D ⊗ χ}

of nonspecial irreducible points is open, regular and Zariski dense in the universal mod p

pseudodeformation space X
univ
D ;

(iii) if ζp ∈ K, then the regular locus of X
univ
D is empty and

(X
univ
D,red)

irr := {D ∈ Xuniv
D,red : D is irreducible}

is open, regular and Zariski dense in the nilreduction X
univ
D,red of X

univ
D .

This result is motivated by Chenevier’s result [Che11, Thm. 2.1] that the character variety Xn
of continuous pseudocharacters of GK of dimension n and with values in Qalg

p is equidimensional
of dimension dn2+1 and that the locus Xirr

n of irreducible pseudocharacters is regular and Zariski
dense in Xn. The definition of an n-dimensional pseudocharacter τ : A[GK ]→ A with n! ∈ A×,
which is obtained as the trace of a representation by Example 3.1.39, is given in Definition 3.1.38.
Chenevier introduced pseudorepresentations in [Che14] to overcome the restriction n! ∈ A×,
and in order to show Theorem B in characteristic p we mimic Chenevier’s inductive approach to
[Che11, Thm. 2.1] with pseudorepresentations. For the induction step, we prove the following:

Theorem C (Theorem 3.3.1). Suppose that n ≥ 2, and that for every pseudorepresentations

D
′
: F[GK ]→ F of dimension n′ < n the following hold:

(i) X
univ
D

′ is equidimensional of dimension d(n′)2 + 1;

(ii) If ζp ∈ K, then the regular locus of (X
univ
D

′
,red)

irr is Zariski dense in X
univ
D

′
,red;

(iii) If ζp ̸∈ K, then the locus (X
univ
D

′ )irr,D(1)̸=D is Zariski dense.

Then for all n-dimensional D : F[GK ] → F the irreducible locus (X
univ
D )irr is Zariski dense

in X
univ
D , unless n = 2 and K = Q2 and D is reducible.

As explained in Remark 3.3.2 if n = 2, K = Q2 and D is reducible, by computations of

V. Paškūnas in [Paš17, Prop. 3.6] the irreducible locus (X
univ
D )irr is also Zariski dense in X

univ
D

in this case.
Next Chenevier shows that the reducible locus Xred

n is the singular locus of Xn if n > 2 or
d > 1 [Che11, Thm. 2.3]. Here lies a difference to our setting since we have:

Theorem D (Theorem 3.3.13). Suppose ζp /∈ K. Then the following hold:

(i) The locus (X
univ
D )irr,D(1)=D := (X

univ
D )irr ∖ (X

univ
D

′ )irr,D(1)̸=D of special irreducible points

lies in the singular locus of X
univ
D .

4



1. Introduction

(ii) If n > 2 or d > 1, then the reducible locus of X
univ
D lies in the singular locus of X

univ
D .

For the missing case n = 2 and d = 1, we refer once again to the computations of Paškūnas

[Paš17, Prop. 3.6] summarized in Remark 3.3.2: If in addition p > 2, then we have X
univ
D =

SpecF[[x1, . . . , x5]] so that the reducible locus lies in the regular locus.

Theorem E (Corollary 3.3.15). Suppose that ζp /∈ K and that either n > 2, or that n = 2 and

d > 1. Then (X
univ
D )irr,D(1)̸=D constitutes the regular locus of X

univ
D and R

univ
D satisfies Serre’s

condition (R2).

To prove Theorem B(ii) and Serre’s condition (R2) in Theorem E when ζp /∈ K, we determine

an upper bound for the dimension of the locus (X
univ
D )irr,D(1)=D in Theorem 3.3.6 as follows.

Corollary 2.3.6 from Clifford theory says that a semisimple representation ρ : GK → GLn(k)
with values in an algebraically closed field k satisfies

ρ ∼= ρ⊗ χ ⇐⇒ ρ ∼= IndGKGK(1)
ρ′ for some ρ′ : GK(1) := kerχ→ GLn/ ordχ(k).

Based on ideas of Böckle, Theorem 3.2.23 constructs a suitable induction IndGKGK(1)
D′ : B[GK ]→

B of a pseudorepresentation D′ : B[GK(1)] → B under Assumption 3.2.21 on B an D′, and
Theorem 3.3.6 then gives as desired

dim(X
univ
D )irr,D(1)=D ≤ max

D
′
: F[GK(1)]→F

{dimY
D

′ | IndGKGK(1)
D
′
= D} ≤ dn2

ordχ
+ 2, 1 (1)

where Y
D

′ is the closure in X
univ
D

′ of the set of irreducible points.

Remark 1.2.1. (i) Contrarily to versal deformation rings, we do not know which number of
variables and relations define a universal pseudodeformation ring so that we cannot show
that the latter is a complete intersection and thus satisfies Serre’s condition (S2).

(ii) In [Sim94] C. Simpson succesfully applies Serre’s criterion for normality to the representa-
tion space Hom(Γ,GLn(C)) of the fundamental group Γ of a smooth connected projective
curve of genus g ≥ 2. He similarly proceeds by showing inductively that the irreducible
locus is Zariski dense and regular of dimension (2g − 1)n2 + 1. For Serre’s condition (R1)
he inductively proves that the reducible locus Hom(Γ,GLn(C))red has codimension at least
two unless g = 2 and n = 2. He uses the fact that

Hom(Γ,GLn(C))red ∼=
n−1⋃
k=1

σ
(
GLn(C)/Pk ×Hom(Γ, Pk)

)
, (2)

where σ : GLn(C)/Pk×Hom(Γ, Pk), (y, ρ) ↦→ φ(y)ρφ(y)−1, with φ : GLn(C)/Pk → GLn(C)
a constructible section and Pk ⊂ GLn(C) the parabolic subgroup consisting of 2 blocks of
respective size k and n− k.

(iii) [Ger10, § 3.2] studies the universal deformation ring parametrizing deformations into the
Borel subgroup of upper triangular matrices in GLn. To obtain that a universal deformation
ring satisfies Serre’s condition (R1) or is a complete intersection, it might be interesting to
study with Geraghty’s methods the universal deformation ring parametrizing deformations
into parabolic subgroups analog to (2).
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1.3. Application: The local Langlands correspondence and Zariski density of crystalline points

(iv) Following [WE17, § 2] consider the affine scheme Rep□,nGK
parametrizing n-dimensional rep-

resentations of GK and the GIT quotient Rep□,nGK
//GLn := O(Rep□,nGK

)GLn of the adjoint

action of GLn on Rep□,nGK
. Then by [WE17, Thm. 2.20] there is a canonical adequate home-

omorphism ν from Rep□,nGK
//GLn to the universal pseudorepresentation space Xuniv

GK ,n
from

Definition 3.1.24; i.e., ν is an integral universal homeomorphism that by [Che13a, Prop. 2.3]
is an isomorphism in characteristic zero. It may be possible to translate properties between
the universal objects via the adequate homeomorphism ν.

1.3 Application: The p-adic local Langlands correspondence and Zariski density of
benign crystalline points

Consider a finite extension L of Qp. The p-adic local Langlands correspondence is provided by
Colmez’ exact functor V from admissible unitary L-Banach representations of GL2(Qp), resid-
ually of finite length, to continuous 2-dimensional L-representations of GQp [Col10]. This corre-
spondence has also important applications in arithmetic geometry such as the Fontaine-Mazur
conjecture [Kis09, Eme06]. Furthermore, it encodes the classical local Langlands correspondence
[CDP14, Thm. 1.3] and is compatible with class field theory [CDP14, Cor. 1.2].

The surjectivity of the p-adic local Langlands correspondence was proven following a strategy
of Kisin in [Col10, Kis10a, CDP15]: First, benign crystalline representations of GQp

2 lie in the
image of V [Col10, Prop. II.3.8]. Second, if the benign crystalline points are Zariski dense in
the (uni)versal deformation space XV of an arbitrary finite-dimensional L-representation V of
GQp then one deduces that each point of XV is in the image of V and thus in particular V ; see
[CDP15, § 10].

As explained in the introduction of [BJ15], we show using Theorem A and [Nak13, Thm. 1.4]
the following:

Theorem F (Theorem 4.1.11). Let X(ρ̄) be the rigid analytic space associated to the formal

scheme Spf Rψρ . If n = 2 and p > 2, then the benign crystalline points are Zariski dense in X(ρ̄).

In order to be able to apply [Nak13, Thm. 1.4], we check in Lemma 4.4.2 that each component
of X(ρ̄) contains a regular crystalline point with the help of following theorem.

Theorem G (Theorem 4.1.9). Suppose p > 2 and n = 2. Consider the canonical map
D : X(ρ̄) → X(det ρ̄) given by sending a deformation of ρ̄ to its determinant. Then D induces
a bijection between the irreducible components of X(ρ̄) and those of X(det ρ̄). Moreover, for
both spaces, irreducible and connected components coincide. Lastly, the connected components
of X(det ρ̄) form a principal homogeneous space over the set µp∞(K) of p-power roots contained
in K.

We refer to Remark 4.1.13 for other cases where the assertions of Theorem F and G are
shown. For the rigid analytic space Xps(D) associated with Spf Runiv

D
we show the following

corresponding result.

Theorem H (Corollary 4.4.3). Suppose that n = 2, p > 2 and ρ̄ is semisimple. Consider the
natural functors

X(ρ̄)
π1−→ Xps(D)

π2−→ X(det ρ̄), (3)

where π1 is defined by sending a deformation to the associated pseudodeformation, and π2 by
sending a pseudodeformation to its determinant from Example 3.1.9.

2 See Definition 4.1.8.
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1. Introduction

(a) The morphisms of connected components

π0(X(ρ̄))
π0(π1)−→ π0(X

ps(D))
π0(π2)−→ π0(X(det ρ̄)),

induced from (3) are bijective.

(b) The benign crystalline points are Zariski dense in Xps(ρ̄).

1.4 Outline

In Chapter 2 we fix notation and implement tools that are used later in this thesis. These tools
steam mainly from commutative algebra and algebraic geometry, Mazur’s deformation theory of
Galois representations, Clifford’s theory on inductions of representations and the classification
of Demushkin groups. We will use these tools to study ring-theoretic and geometric properties
of (uni)versal (pseudo)deformation rings in Chapter 3 and Chapter 4.

The goal of Chapter 3 is Theorem B (Theorem 3.3.12) on the equidimensionality of universal
mod p pseudodeformation rings. Section 3.1 contains an exposition to Chenevier’s pseudorep-
resentations and their universal pseudorepresentation and pseudodeformation rings following
[Che14] and [WE13]. In Section 3.2 we investigate properties of certain loci of pseudodefor-
mations. Section 3.3 contains the inductive proof of Theorem B. At first, Theorem C (Theo-
rem 3.3.1) shows Zariski density of the irreducible locus under an induction hypothesis. Using
this and the upper bound (1) from Theorem 3.3.6, the main theorem is proven in Subsection3.3.3.
We finish Chapter 3 with Theorem D (Theorem 3.3.13) and Theorem E (Corollary 3.3.15).

Finally, Chapter 4 consists of the published article ”Irreducibility of versal deformation rings
in the (p, p)-case for 2-dimensional representations”, written jointly by Böckle and the author
[BJ15]. In particular, Theorem A (Theorem 4.1.5) on the irreducibility of a versal deformation
ring is proved for n = 2 and p > 2 by applying Proposition 4.2.2 from commutative algebra. For
further details on the structure and results of Chapter 4, we refer to the article’s introduction
and outline in Section 4.1.
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2. PRELIMINARIES

In this chapter we collect various notions and results in order to study ring-theoretic and geo-
metric properties of (uni)versal (pseudo)deformation rings in Chapter 3 and Chapter 4.

Suited for this purpose, this chapter begins in Section2.1 with tools from commutative algebra
and algebraic geometry like Serre’s criterion for normality from Proposition 2.1.6.

Next Section 2.2 investigates properties of Mazur’s (uni)versal deformation rings.

Section 2.3 discusses results from Clifford theory on induced representations that will be a
crucial ingredient for finding an upper bound for the dimension of the locus of special pseudo-
deformations in Subsection 3.3.2.

The chapter ends in Section 2.4 with a short summary on the classification of Demushkin
groups, whose classification in Example 2.4.5 leads to the explicit description of (uni)versal
deformation ring of a residual 2-dimensional Galois representation in Section 4.3.

We assume that the reader is familiar with standard topics from algebraic number theory,
commutative algebra and algebraic geometry (see e.g. [Neu99, Eis95, Har77], respectively).

2.1 Commutative algebra and algebraic geometry

This section introduces important basics from commutative algebra and algebraic geometry.
Many of the (uni)versal (pseudo)deformation rings that we will consider are complete Noetherian
local rings. Such rings are given by the Cohen structure theorem as a quotient of a power
series ring. After stating this theorem in Subsection 2.1.1, we concentrate on ring-theoretic
assertions on complete Noetherian local rings such as Serre’s criterion for normality in from
Proposition 2.1.6. In Subsection 2.1.2 we discuss regularity and formal smoothness, and in
Subsection 2.1.3 étale morphisms and étale neighbourhoods. Finally, we consider the density of
1-dimensional points.

2.1.1 Basic results on complete Noetherian local rings

We begin by introducing two categories occuring in Schlessinger’s formal deformation theory
set-up.

Definition 2.1.1. Let Λ be a complete Noetherian local ring and let k be its residue field.

(i) By ÂrΛ we denote the subcategory of the category of commutative rings with:

• Objects: complete Noetherian local Λ-algebra R together with a fixed Λ-algebra iso-
morphism R/mR

∼→ k, where mR denotes the maximal ideal of R.

• Morphisms: local Λ-algebra homomorphisms f : R1 → R2 such that the following
diagram commutes:

R1

∼
↘↘

f mod mR1

→→ R2

∼
↙↙

k.

(ii) By ArΛ we denote the strictly full subcategory of ÂrΛ on the Artinian rings in ÂrΛ.
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2.1. Commutative algebra and algebraic geometry

Note that every object of ÂrΛ is a limit of objects of ArΛ. For further basic properties of these
categories we refer to [Sta18, § 06GB] and [Sta18, § 06GV].

Recall that a topological ring R is called linearly topologized if 0 has a fundamental system of
open neighbourhoods consisting of ideals of R, and an R-module M is called linearly topologized
if 0 has a fundamental system of open neighbourhoods consisting of R-submodules of M .

Definition 2.1.2. Let R be a topological ring andM and N be linearly topologized R-modules.
Then the tensor product ofM and N is the R-moduleM⊗RN equipped with the linear topology
given by declaring

im (Mµ ⊗R N +M ⊗R Nν −→M ⊗R N)

to be a fundamental system of open submodules, where Mµ ⊂ M and Nν ⊂ N run through
fundamental systems of open submodules in M and N . The completed tensor product

M⊗̂RN = limM ⊗R N/(Mµ ⊗R N +M ⊗R Nν) = limM/Mµ ⊗R N/Nν

is the completion of the tensor product with respect to this topology.

Lemma 2.1.3 (Cf. [EGA IV1, Lem. 0IV.(19.7.1.2)]). Suppose that R,R
′ are complete Noetherian

local Λ-algebras, and R/mR is a finite extension of k. Then R⊗̂ΛR
′ is a semilocal Noetherian

ring, whose maximal ideals correspond to the maximal ideals of R/mR ⊗k R′/mR′.

In particular, if R,R′ are in ÂrΛ, then R⊗̂ΛR
′ lies also in ÂrΛ.

Theorem 2.1.4 (Cohen structure theorem [Sta18, § 0323]). Let R be a complete Noetherian
local ring whose residue field κ = R/mR is of characteristic p. There exists a complete discrete
valuation ring W with uniformizer π and W/πW ∼= κ such that R is isomorphic to a quotient
of W [[x1, . . . , xn]].

If κ is a perfect field, by [EGA IV1, Rem. 0IV.(19.8.7)] the complete discrete valuation ring
W in the above theorem can be taken as the ring of Witt vectors W (κ).

For a prime p of a commutative ring R, the height of p is defined as ht p = dimRp.

Definition 2.1.5 (Serre’s conditions). Let R be a ring and i ∈ N0.

(i) R satisfies Serre’s condition (Si) if depth(Rp) ≥ min{i,ht p} for all p ∈ SpecR.

(ii) R satisfies Serre’s condition (Ri) if for every prime p of height ≤ i the local ring Rp is
regular. We also say that R is regular in codimension ≤ i.

In Theorem E (Corollary 3.3.15) we show under a certain hypothesis that the special fiber
of a universal pseudodeformation ring satisfies Serre’s condition (R2). Unfortunately, we do not
know if (S2) also holds in order to apply the following:

Proposition 2.1.6 (Serre’s criterion for normality [Sta18, Lem. 031S]). A Noetherian ring R
is normal if and only if R satisfies Serre’s conditions (R1) and (S2).

Example 2.1.7 (Cf. [Sta18, Lem. 0567]). Serre’s criterion for normality from Proposition 2.1.6
shows that any regular ring is normal: It satisfies Serre’s condition (R1) trivially, and also Serre’s
condition (S2) because it is Cohen-Macaulay.

The following proposition shows why we would like to show that the special fiber of a universal
pseudodeformation ring is an integrally closed domain.
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2. Preliminaries

Proposition 2.1.8 (Cf. [EGA IV2, Cor. (5.12.7)]). Let R be a complete Noetherian local ring,
and t ∈ mR be a regular element of R. If R/tR is an integrally closed domain, then the same
holds for R.

The following result shows why we would like to show integrality of the nilreduction of the
special fiber of a universal pseudodeformation ring.

Proposition 2.1.9. A scheme X is irreducible if and only if the reduced scheme Xred underlying
X is an integral scheme.

Proof. Since the natural morphism Xred → X is a homeomorphism of topological spaces, Xred

and X have the same irreducible components. Thus X is irreducible if and only if Xred is
integral.

2.1.2 Regularity and formal smoothness

In Corollary 2.2.18 we state that the natural map from the universal deformation space of a
certain Galois representation ρ to the universal deformation space of det ρ is formally smooth
under certain hypothesis on ρ. This subsection introduces formal smoothness and its relation
to regularity.

Definition 2.1.10 (Cf. [Sta18, Def. 07EB] and [Sch68, Def. 2.2]). (i) Let R1 → R2 be a ho-
momorphism of topological rings with R1 and R2 linearly topologized. We say R2 is
formally smooth over R1 if for every commutative solid diagram

R2
→→

↘↘

R/I

R1
→→

↑↑

R

↑↑

of homomorphisms of topological rings, where R is a discrete ring and I ⊂ R is an ideal of
square zero, a dotted arrow exists which makes the diagram commute.

(ii) A morphism SpecR→ SpecS of affine schemes is called formally smooth if the correspond-
ing homomorphism S → R is formally smooth.

(iii) A natural transformation F1 → F2 of functors C → Sets, for C ∈ {ÂrΛ,ArΛ}, is called
smooth if for any surjection R2 ↠ R1 in C, the morphism F1(R2)→ F1(R1)×F2(R1)F2(R2)
is surjective.

We make use of the following equivalence between a regular and formally smooth homomorph-
ism in Corollary 3.2.15.

Proposition 2.1.11 ([Sta18, Prop. 07PM]). Let f : R1 → R2 be a local homomorphism of
complete Noetherian local rings, let k be the residue field of R1 and let R2 = R2 ⊗R1 k. The
following are equivalent:

(i) f is regular,

(ii) f is flat and R2 is geometrically regular over k,

(iii) f is flat and k → R2 is formally smooth in the mR2
-adic topology, and

(iv) f is formally smooth in the mR2-adic topology.
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2.1. Commutative algebra and algebraic geometry

We shall also make use of the following result:

Proposition 2.1.12 ([Sch68, Prop. 2.5(i)]). If R1 → R2 ∈ Mor(ÂrΛ), then

hR2 → hR1 , where hR : ÂrΛ → Sets, R′ ↦→ HomÂrΛ
(R,R′) for R ∈ Ob(ÂrΛ),

is smooth if and only if R2 is a power series ring over R1.

The above justifies the following definition.

Definition 2.1.13. We call a morphism R → S in ÂrΛ formally smooth of relative dimension
h if S is a power series ring over R in h formal variables.

Note that h = dimS − dimR = dimFmS/(mS ,mΛ)− dimFmR/(mR,mΛ).

2.1.3 Étale morphisms and étale neighbourhoods

For proving the Zariski density of the irreducible locus in Theorem C (Theorem 3.3.1), we
show in Lemma 3.3.3 the existence of a suitable étale neighbourhood of a reducible point. This
subsection deals with the related notions and states a result needed for the proof of Theorem C
(Theorem 3.3.1).

Definition 2.1.14 ([Sta18, § 00U0 and Def. 02GI]). (i) Let f : R → S be a ring map. We
call f étale if f is a smooth ring map of relative dimension zero.

(ii) A morphism f : X → S of schemes is étale at x ∈ X if there is an affine open neighbourhood
Spec(A) = U ⊂ X of x and an affine open Spec(R) = V ⊂ S with f(U) ⊂ V so that the
induced ring map R→ A is étale. We say that f is étale if it is étale at each point of X.

We now define étale neighbourhoods.

Definition 2.1.15 ([Sta18, Def. 03PO]). Let X be a scheme.

(i) A geometric point of X is a morphism x : Spec k → X for k an algebraically closed field.

(ii) We call x is lying over x to indicate that x ∈ X is the image of x.

(iii) An étale neighbourhood (U, u) of a geometric point x ∈ X is a commutative diagram

U

φ

↓↓
Spec k

x →→

ū

↗↗

X,

where φ is an étale morphism of schemes.

As mentioned earlier, in the proof of Theorem C (Theorem 3.3.1) we shall need the following
result.

Lemma 2.1.16. Let φ : U → X be an étale morphism between schemes U and X. Let u be a
point of U and denote by x its image φ(u). Consider the local homomorphism φu : OX,x → OU,u
induced from φ. Then

(i) The completion φ̂u : ÔX,x → ÔU,u of φu is finite étale; its degree is equal to [κ(u) : κ(x)].
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(ii) The ring ÔX,x is regular if and only if ÔU,u is regular, and in this case both have the same
dimension.

Proof. Part (i) is [Sta18, Lem. 039M] and the remark following it. For part (ii) note that by
étaleness the tangent spaces at the closed point have the same dimension, and by finite étaleness
the ring ÔU,u is free of finite rank over ÔX,x and hence they have the same dimension. From
this (ii) follows easily.

2.1.4 Density of 1-dimensional points

In Chapter 3 we study equidimensionality of the special fiber of a universal pseudodeformation
space, which contains only one closed point. We will make use of Lemma 2.1.20, by which then
1-dimensional points are very dense in the special fiber.

Definition 2.1.17 ([Mat80, p. 38f.], [EGA IV3, Def. 10.1.3], [Sta18, Def. 0055]). Let X be a
topological space.

(i) A subset Z of X is called locally closed in X if for any point z ∈ Z there exists an open
neighbourhood U ⊂ Z of z such that U∩Z is closed in U . Equivalently, Z is an intersection
of an open and a closed set in X.

(ii) A subset X0 of X is called very dense in X if every nonempty locally closed subset Z ⊂ X
satisfies Z ∩X0 ̸= ∅.

(iii) X is called Noetherian if the descending chain condition holds for the closed subsets of X.

(iv) A subset Z of a Noetherian space X is called constructible if it is a finite union of locally
closed sets in X.

Proposition 2.1.18 ([EGA IV3, Prop. 10.1.2]). Let X be a topological space, and let X0 be a
subset of X. The following conditions are equivalent:

(i) X0 is very dense in X;

(ii) The map X ′ ↦→ X0∩X ′ defines a bijection between the open sets in X and the ones in X0;

(iii) The map X ′ ↦→ X0∩X ′ defines a bijection between the closed sets in X and the ones in X0;

In particular, a very dense subset X0 ⊂ X is dense in X. If moreover X is Noetherian, then
for every constructible subset Z of X the set X0 ∩ Z is dense in Z.

One easily deduces the following consequence.

Corollary 2.1.19 ([EGA IV3, Cor. (10.1.4)]). If X0 is very dense in X and U ⊂ X is an open
subset, then U ∩X0 is very dense in U .

Lemma 2.1.20 ([Mat80, (33.F) Lem. 5]). Let X = SpecA for a Noetherian ring A. Then the
set X0 := {p ∈ X : dimA/p ≤ 1} is very dense in X.

Corollary 2.1.21. Suppose X = SpecA with A Noetherian. Let Z ⊂ X be closed and irre-
ducible. Then for every open subset U of X with Z ∩ U ̸= ∅, the set

ZU,≤1 := {x ∈ X : dimx ≤ 1, x ∈ Z ∩ U}

is dense in Z ∩ U and hence also in Z.
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2.2. Galois representations and their (uni)versal deformation rings

Proof. The density of ZU,≤1 in Z∩U follows from Lemma 2.1.20 combined with the last assertion
of Proposition 2.1.18. Since Z is closed irreducible, any open nonempty subset of Z is dense
in Z, and this shows the last assertion.

Definition 2.1.22 ([EGA IV3, § 10]). Let X be a topological space.

(i) The space X is called Jacobson if its subset of closed points is very dense in X.

(ii) A scheme is called Jacobson if the underlying topological space is Jacobson.

(iii) A ring R is called Jacobson if the scheme SpecR is Jacobson.

Recall that a subspace of a topological space is a subset together with the induced topology.
The following proposition applies in particular to the generic fiber of a versal deformation

ring.

Proposition 2.1.23 (Cf. [EGA IV3, Cor. (10.5.8)]). Let R be a Noetherian ring with Jacobson
radical J(R). For any f ∈ J(R), the localization Rf is Jacobson and the open subscheme
SpecR∖ V

(
J(R)

)
of SpecR is a Jacobson scheme.

Proposition 2.1.24 (Cf. [EGA IV3, Cor. (10.5.9)]). Let R be a Noetherian local ring with
maximal ideal mR. Then the open subscheme SpecR ∖ {mR} of SpecR is a Jacobson scheme,
and the closed points in SpecR∖ {mR} are the one-dimensional points in SpecR.

Proposition 2.1.25. Let R be a Noetherian local ring with maximal ideal mR. Suppose all
irreducible components of SpecR have dimension at least 2. Let U ⊂ SpecR ∖ {mR} be open
nonempty. Then no finite subset S of dimension 1 points of U is dense in U .

Proof. Let S ⊂ U be a finite subset of dimension 1 points. The latter implies that for any s ∈ S
the subset {s,mR} is closed in SpecR. Hence S, as a finite union of closed subsets {s} of U is
closed in U , and it follows that U ∖ S is open in U . Assume now that S is dense in U . Then
necessarily we would have U = S. But U has to contain a generic point of SpecR and all such
have dimension at least 2. We reach a contradiction.

2.2 Galois representations and their (uni)versal deformation rings

Throughout Section 2.2 we let Λ be a complete Noetherian local ring with maximal ideal mΛ

and residue field k := Λ/mΛ. Recall the categories ÂrΛ and ArΛ from Definition 2.1.1. The
residue field k will either be discrete or a local field, i.e., a finite extension of Qp or of Fp((t)) for
some prime p. If k is discrete, all rings in ArΛ will be equipped with the discrete topology and
those in ÂrΛ with the inverse limit topology.

If k is a local field, we only consider Λ = k and Ark. Recall that in this case any finite-
dimensional k-vector space V carries a unique topology so that it is a locally compact vector
space (over k). If V is identified with kn, it is the product topology on kn and one shows that
the topology is independent of the chosen isomorphism. Hence any A in Ark carries a unique
topology for which it is a locally compact topological vector space, and one easily verifies that
then A is also a continuous topological k-algebra. Thus in the sequel, whenever k is a local field,
we regard any A ∈ Ark as a topological ring via this topology.

Following a convention of Kisin, see [Kis03, p. 433], for a representation ρ into GLn(A1) and
a ring homomorphism A1 → A2 we write ρ ⊗A1 A2 for the composition of ρ with GLn(A1) →
GLn(A2).
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2. Preliminaries

2.2.1 Schlessinger’s and Mazur’s deformation theory

We start with giving a short overview of Schlessinger’s formal deformation theory [Sch68]; see
also [Sta18, Chapter 06G7]. Next we will define Mazur’s (uni)versal deformation rings of Galois
representations, whose existence follows from Schlessinger’s representability criteria. Through-
out Subsection 2.2.1 we fix a profinite group G.

In this subsection we consider functors F : ArΛ → Sets such that F (k) contains just one
element, and their extensions

F̂ : ÂrΛ −→ Sets, R ↦−→ lim←−
i

F (R/mi
R).

Definition 2.2.1 ([Sch68, Def. 2.2 – 2.7]). (i) Denote by k[ε] := k[X]/(X2) the ring of dual
numbers over k. Then tF := F (k[ε]) is called the tangent space of F .

(ii) A pair (R, ξ) consisting of R ∈ Ob(ÂrΛ) and ξ ∈ F̂ (R) is called a hull if the map

hR −→ F

corresponding to ξ ∈ F̂ (R) ∼= Hom(hR, F ) is smooth and the induced map tR → tF of
tangent spaces is bijective.

(iii) A pair (R, ξ) consisting of R ∈ Ob(ÂrΛ) and ξ ∈ F̂ (R) (pro-)represents the functor F if
the morphism hR → F corresponding to ξ ∈ F̂ (R) ∼= Hom(hR, F ) is an isomorphism.

Proposition 2.2.2 ([Sch68, § 2.8 –Prop. 2.9]). (a) If (R, ξ) is a hull for a functor F , then
(R, ξ) is unique up to isomorphisms.

(b) If (R, ξ) pro-represents a functor F , then (R, ξ) is unique up to canonical isomorphism.

Recall that a small extension in ArΛ is a surjection f : R′ → R in ArΛ whose kernel ker f is
isomorphic to k as an R′-module, and in particular ker f is annihilated by mR′ and (ker f)2 = 0.

Theorem 2.2.3 (Schlessinger’s criteria [Sch68, Thm. 2.11]). Let F : ArΛ → Sets be a functor
such that F (k) consists of one element. For the canonical map

ψ : F (R′ ×R R′′) −→ F (R′)×F (R) F (R
′′)

for morphisms f : R′ → R and f ′′ : R′′ → R in ArΛ consider the following conditions on:

(H1) The map ψ is surjective whenever the morphism f ′′ is a small extension.

(H2) The map ψ is bijective if R = k and R′′ = k[ϵ].

(H3) The tangent space tF is finite-dimensional as a k-vector space.1

(H4) The map ψ is an isomorphism whenever f ′ is a small extension.

Then the following hold:

(i) The functor F has a hull if and only if conditions (H1) – (H3) are satisfied;

(ii) The functor F is representable if and only if conditions (H1) – (H4) are satisfied.

1 It is shown in [Sch68, Lem. 2.10] that under hypothesis H2 the set tF carries a natural k-vector space structure.
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Mazur used Schlessinger’s criteria to show the existence of (uni)versal deformation rings of
representations of certain profinite groups such as the local Galois groups, which we are interested
in.

Definition 2.2.4 ([Gou01, Defs. 2.1 and 2.2]). Let ρ : G → GLn(k) be a continuous represen-
tation and R ∈ Ob(ArΛ).

(i) A lifting of ρ̄ to R is a continuous representation ρ : G→ GLn(R) with ρ⊗R k = ρ.

(ii) If Γn(R) ⊂ GLn(R) denotes the kernel of the canonical homomorphism GLn(R)→ GLn(k),
then two liftings ρ1, ρ2 of ρ̄ to R are called strictly equivalent if there exists A ∈ Γn(R)
such that ρ2(g) = Aρ1(g)A

−1 for all g ∈ G.

(iii) A deformation of ρ to R is a strict equivalence class of liftings of ρ̄ to R.

(iv) The functor

Dρ : ArΛ −→ Sets, R ↦−→ {ρ : G −→ GLn(R) : ρ is a deformation of ρ},

is called the deformation functor of ρ.

(v) If k is discrete, we extend (i)–(iv) also to R ∈ Ob(ÂrΛ), cf. the beginning of Section 2.2.

(vi) The representation adρ̄ is defined as Matn(k) with the adjoint action of G via ρ̄. Its
subrepresentation on trace zero matrices is denoted by ad0ρ̄, its quotient representation

modulo the center k by adρ̄.

Definition 2.2.5 ([Maz89, § 1.1]). A profinite group G satisfies the finiteness condition Φp if for
every open subgroup G0 ⊂ G there are only finitely many continuous homomorphisms G0 → Fp.

Example 2.2.6. The finiteness condition Φp is satisfied both by the absolute Galois group of a
local field of characteristic 0, and by the Galois group Gal(FS/F ) for F a number field, and FS
a maximal algebraic extension of F that is unramified outside a finite set S of places of F .

Mazur [Maz89, Prop. 1, p. 389] proved the following theorem in case that the residual repre-
sentation is absolutely irreducible and k is finite. We state the slightly generalized version by
Ramakrishna following from Schur’s lemma and as extended in [Gou01, § 9].

Theorem 2.2.7 ([Gou01, Thm. 3.3, Lem. 9.5, Prop. 9.6]). Let Λ be a complete Noetherian

local ring and consider any R ∈ Ob(ÂrΛ) as a topological ring via the mR-adic topology, so that
all R ∈ Ob(ArΛ) are discrete. Let G be a profinite group and ρ : G → GLn(k) a continuous
representation. Suppose in (i) and (ii) that Dρ̄ has a finite-dimensional tangent space. Then the
following hold:

(i) The functor Dρ : ÂrΛ → Sets has a hull Rver
Λ,ρ ∈ Ob(ÂrΛ) together with a versal deformation

ρverρ : G −→ GLn(R
ver
Λ,ρ).

(ii) If Cent(ρ) = k, then the functor Dρ : ArΛ → Sets is representable by Runiv
Λ,ρ ∈ Ob(ÂrΛ)

together with a universal deformation

ρunivρ : G −→ GLn(R
univ
Λ,ρ ).

The ring Runiv
Λ,ρ is a quotient of Λ[[x1, . . . , xh]] for h = dimk tDρ̄, and tDρ̄

∼= H1(G, adρ̄).
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(iii) If k is finite and if G satisfies the finiteness condition Φp, then tDρ̄ is finite-dimensional.

We call Rver
Λ,ρ a versal deformation ring of ρ and Runiv

Λ,ρ a universal deformation ring of ρ.

The following result describes the effect of the change of the coefficient algebra.

Lemma 2.2.8 (Cf. [Wil95, p. 457]). Let Λ→ Λ′ be a finite injective homomorphism of complete
Noetherian local rings with finite residue fields F and F′, respectively. Let RΛ represent the
deformation functor DΛ,ρ : ÂrΛ → Sets of ρ. Then RΛ′ := RΛ⊗Λ Λ′ represents the deformation

functor DΛ′,ρ : ÂrΛ′ → Sets of ρ⊗F F′. The assertion also holds if RΛ and RΛ′ are versal rings.

We shall need Theorem 2.2.7 only in the case where k is finite. However we shall need a
variant of it where k is a local non-archimedian field with its natural topology. For this, let us
first make some remarks on continuous cohomology. Write G as a limit G = lim

←−j
G/Hj where

the Hj range over open normal subgroups of G that form a neighbourhood basis of the identity.
Suppose first that M is a G-module (i.e., a Z[G]-module) which is fixed by an open subgroup
H of G. Then one defines

H i(G,M) := lim
−→

Hj⊂H
H i(G/Hj ,M).

Such M arise for instance if M is a finite type R-module for a ring R carrying the discrete
topology and where M is equipped with a continuous R-linear action of G. A special case being
R = k with the discrete topology.

Suppose now k is a local field with its natural topology and that M is a finite dimensional
k-vector space carrying the natural topology induced from k and a continuous k-linear G-action.
Let O be the valuation ring of k with maximal ideal mO. Because G is compact a standard
argument shows that M contains a G-stable O-lattice L. In this case one defines

H i
cont(G,M) := lim

←−
n

H i(G,L/mn
OL)⊗L k,

and one shows that this definition is independent of any choices. Note that even ifM is discrete,
we occasionally write H i

cont(G,M) for H i(G,M) to have a unified notation.

Theorem 2.2.9 (Kisin). Let k be a local field and let ρ : G → GLn(k) be a continuous repre-
sentation. Assume in (ii) – (v) that tDρ̄ is finite-dimensional. Then the following hold:

(i) One has tDρ̄
∼= H1

cont(G, adρ̄).

(ii) The functor Dρ : Ark → Sets has a hull Rver
k,ρ ∈ Ob(Ârk) together with a versal deformation

ρverρ : G −→ GLn(R
ver
k,ρ).

(iii) If Cent(ρ) = k, then the functor Dρ : Ark → Sets is pro-representable by Runiv
k,ρ ∈ Ob(Ârk)

together with a universal deformation

ρunivρ : G −→ GLn(R
univ
k,ρ ).

(iv) The rings Rver
k,ρ and Runiv

k,ρ , respectively, are quotients of k[[x1, . . . , xh]] for h = dimk tDρ̄.

(v) If H2
cont(G, adρ̄) = 0, then Rver

k,ρ and Runiv
k,ρ are formally smooth over k of dimension

dimk tDρ̄.
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2.2. Galois representations and their (uni)versal deformation rings

Proof. For k of characteristic zero, the proof is given in [Kis03, Lem. 9.3]. The proof for local
fields of positive characteristic is analogous.

Remark 2.2.10. Independently of whether k is a field carrying the discrete topology or whether k
is a local field, we shall use the notation Rver

Λ,ρ and R
univ
Λ,ρ for a versal and the universal deformation

ring, since the distinction is determined by the topology on Λ. In the former case Λ carries the
mΛ-adic topology, in the latter case Λ = k and k carries the topology of the local field.

To explain the usefulness of the theorem just stated, we state the following theorem that
asserts that for a point x : Spec k → Xuniv

Λ,ρ := SpecRver
Λ,ρ of Xuniv

Λ,ρ , where k is some local field,
the completion of (a modification of) OXuniv

Λ,ρ ,x
at x has itself an interpretation as a (uni)versal

deformation ring. We will need an analog statemnt for universal pseudodeformation spaces that
we prove in Corollary 3.2.13. Let F be a finite field of characteristic p and let ρ̄ : G→ GLn(F) be
a continuous representation. Let Λ be the ring of integers of a finite totally ramified extension
E of W (F)[1/p]. Consider a continuous homomorphism f : Rver

Λ,ρ → k for some local field k, and
suppose that the kernel of f is a prime ideal p such that k is a finite extension of the fraction
field of Rver

Λ,ρ/p. Let ρk : G→ GLn(k) be the representation induced from ρverρ via f .
Suppose first that k is of characteristic 0, in which case we follow [Kis03, § 9]. Then f

factors via a map f [1/p] : Rver
Λ,ρ[1/p]→ k which is an E-algebra homomorphism, and k is a finite

extension field of E. We denote by R̂ the completion of Rver
Λ,ρ[1/p] at the kernel of f [1/p]. Then

k is the residue field of R̂. From the finiteness of E → k one easily deduces that in fact R̂ is
naturally a k-algebra. Moreover we have a continuous homomorphism ρ̂ : G→ GLn(R̂) induced
from ρverρ . Clearly ρ̂ is a deformation of ρk. This provides one with a homomorphism

φ : Rver
k,ρk
−→ R̂.

Suppose now that k is of characteristic p. The field k is then isomorphic to a Laurent series
field F′((x)) over a finite extension F′ of the finite field F. By passing to a suitable representative
in its strict equivalence class, we may assume that ρk takes its image in GLn(F′[[x]]), and we
denote this representation by ρF′[[x]]. It is a deformation of ρ̄ ⊗F F′. Let ρ̄′ = ρ̄ ⊗F F′ and
Λ′ = Λ⊗W (F) W (F′) and consider now the map

fk : R
ver
Λ′,ρ′ ⊗F′ k

Lem. 2.2.8∼= Rver
Λ,ρ ⊗F k

f⊗Fidk−→ k.

In the present case we define R̂ as the completion of Rver
Λ′,ρ′ ⊗F′ k at ker fk. Clearly, R̂ is a

k-algebra with residue field k. Note that now ρverρ ⊗Rver
Λ,ρ

R̂ defines a continuous representation

ρ̂ : G −→ GLn(R̂)

which is a deformation of ρk. Again this yields a homomorphism

φ : Rver
k,ρk
−→ R̂.

Theorem 2.2.11. The map φ is formally smooth. If Rver
Λ,ρ is universal, it is an isomorphism.

Proof. If Char k = 0, then this is [Kis03, Prop. 9.5]. In the case Char k > 0 our proof closely
follows loc.cit. Let O be the valuation ring of k. We consider a commutative diagram

Rver
k,ρk

↓↓

→→ A

↓↓
R̂ →→

g

↗↗

A/I

(1)
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with A ∈ Ob(Ark) and I ⊂ A is a square zero ideal, with the solid arrows given, and we
seek to construct a dashed arrow g so that the two triangular subdiagrams commute. If Rver

k,ρk
is universal, we also have to show that the dashed arrow is unique. Note that A and I are
finite-dimensional k-vector spaces. Also, the bottom arrow induces a pair of homomorphism
Rver

Λ′,ρ′ → A/I and k → A/I, where the second one is simply the k-algebra structure map.

By possibly conjugating ρ̂ by some matrix in Γn(R̂) we can assume that ρverρk
⊗Rver

k,ρk
R̂ = ρ̂.

Following the proof in loc.cit., one shows that there exists an O-subalgebra A◦ of A such that

(a) A◦ is free over O of rank equal to dimk A and A◦ ⊗O k = A,

(b) the image of A◦ under A→ k is O, and so A◦ ∈ Ob(ÂrF′),

(c) the image of ρverρk
⊗Rver

k,ρk
A lies in GLn(A

◦),

(d) the homomorphism Rver
Λ′,ρ′ → A/I factors via A◦/I◦ where I◦ = I ∩A◦.

Write ρA◦ for ρverρk
⊗Rver

k,ρk
A considered with its image in GLn(A

◦). Then ρA◦ reduces to ρverρ′ ⊗Rver
Λ′,ρ′

A◦/I◦ modulo I◦, and thus by the versality of Rver
Λ′,ρ′ there is a homomorphism g◦ : Rver

Λ′,ρ′ → A◦

such that ρverρ′ ⊗Rver
Λ′,ρ′

A◦ is strictly equivalent to ρA◦ . Let g : R̂→ A be the the homomorphism

obtained from g◦ ⊗ id under completion. It is now not difficult to see that both triangles in (1)
commute with this choice of g.

It remains to show the uniqueness of g if Rver
Λ′,ρ′ is universal. The argument in [Kis03, Prop. 9.5]

shows that there is in fact a directed system A◦n, n ∈ N≥1, satisfying (a) – (d) such that⋃
nA
◦
n = A. Now if one has g1, g2 completing the diagram (1) to two commutative diagrams,

there have to be homomorphisms g◦1, g
◦
2 : R

ver
Λ′,ρ′ → A◦n for n sufficiently large that give rise to g1

and g2, respectively. The corresponding deformations G→ GLn(A
◦
n) of ρ̄

′ do agree over A and
then they will agree for n sufficiently large. Hence they represent the same strict equivalence
class. Because Rver

Λ′,ρ′ is universal, they define the same ring maps g◦1 = g◦2 and hence g1 = g2.

By carefully choosing ρk it is often possible to control Rver
k,ρk

and hence R̂.
The following result helps to derive consequences on SpecRver

Λ,ρ̄. For later applications we will
focus on special fibers.

Lemma 2.2.12. Let R be in ÂrF, let p ∈ SpecR be a 1-dimensional point, i.e., dimR/p = 1.
Let κ(p) = Quot(R/p), consider the homomorphism

φ : R⊗F κ(p)→ κ(p), r ⊗ α ↦→ (r mod p) · α,

set q := kerφ and denote by R̂ the completion of R ⊗F κ(p) at the maximal ideal q and by R̂p

the completion of Rp at Rpp. Then the following hold:

(a) One has an isomorphism R̂p[[T ]] ∼= R̂.

(b) If R̂ is formally smooth over κ(p) of dimension d, then Rp is regular of dimension d− 1.

Proof. Consider R→ Rp → R̂p. Tensoring with κ(p) over F, it yields a diagram

R⊗F κ(p) →→

ι
↓↓

Rp ⊗F κ(p) →→

ι′

←←

R̂p ⊗F κ(p) =
(
lim
←−

Rp/Rpp
n
)
⊗F κ(p)

ι′′

←←
R̂ = lim

←−
(R⊗F κ(p))/q

n,
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2.2. Galois representations and their (uni)versal deformation rings

where ι is completion and where initially the dashed arrows ι′ and ι′′ do not exist. For the
existence of ι′, we use the universal property of localization. Thus we need to show that R∖p⊗1
is mapped under ι to the units in R̂. The ring R̂ is local with residue map induced from φ, and
therefore we need to show that φ◦ ι(R∖p⊗1) lies in κ(p)×, but this is clear from the definitions
and the inclusion R/p ↪→ κ(p). Regarding ι′′, we first note that p⊗F κ(p) maps to q under ι and
hence pn ⊗F κ(p) to qn. Hence the existence of ι′ gives a compatible system of homomorphisms
Rp/Rpp

n → (R⊗F κ(p))/q
n und this provides the construction of ι′′.

Let π denote the reduction map π : R̂ → κ(p), set φ′ = π ◦ ι′ and φ′′ = π ◦ ι′′, and define
q′ = kerφ′ and q′′ = kerφ′′. Then the arguments just given provide a commutative diagram
with canonical isomorphisms in the bottom row

R⊗F κ(p) →→

ι
↓↓

Rp ⊗F κ(p) →→

ι′

↓↓

R̂p ⊗F κ(p) =
(
lim
←−

Rp/Rpp
n
)
⊗F κ(p)

ι′′

↓↓

R̂ = lim
←−

(R⊗F κ(p))/q
n ≃ →→ R̂′ := lim

←−
(Rp ⊗F κ(p))/q

′n ≃ →→ R̂′′ = lim
←−

(R̂p ⊗F κ(p))/q
′′n,

where by slight abuse of notation we denote the middle and right vertical maps again ι′ and ι′′.
Note that by the Cohen structure theorem in equal characteristic the ring R̂p contains κ(p) as

a subfield. Focussing on the right must arrow and using that Rp is regular if and only if R̂p is
so, it will suffice to prove the following assertion:

Let R be a complete Noetherian local κ(p)-algebra with residue field κ(p) and residue homo-
morphism π : R → κ(p), let ψ : R ⊗F κ(p) → κ(p) be the homomorphism r ⊗ x ↦→ π(r) · x, let
Q = kerψ and let R̂ be the completion of R⊗F κ(p) at Q. Then R̂ ∼= R[[t]].

To prove the assertion, note first that if S1 and S2 are κ(p)-algebras with maximal ideals P1

and P2 such that κ(p) is in both cases the residue field, then the completion of S := S1⊗κ (p)S2
at the maximal ideal m := P1 ⊗κ (p)S2 + S1 ⊗κ (p)P2 is isomorphic to

lim
←−
S1/Pn

1 ⊗̂κ(p) lim←− S2/P
n
2 .

If furthermore S1 is complete with respect toP1 and if lim
←−
S2/Pn

2
∼= κ(p)[[T ]], then the completion

of S at m is S1[[T ]]. We apply this to S1 = R, S2 = κ(p) ⊗F κ(p), P2 = ker (κ(p) ⊗F κ(p) →
κ(p), x⊗ y ↦→ xy). Then by the following lemma we have lim

←−
S2/Pn

2
∼= κ(p)[[T ]], and we deduce

R̂ ∼= R[[T ]].

Lemma 2.2.13. Let F′ be a finite extension of F and let L be the Laurent series field over F′.
Let q be the kernel of the multiplication map L⊗F L→ L. Then there is an isomorphism

L⊗̂L := lim
←−
n

(L⊗F L)/q
n ≃−→ L[[T ]].

Proof. We think this result ought to be known. But in lack of a reference, we give a proof. We
first explain why one can assume F = F′.

For this observe that L ∼= F′((s)) ∼= F((s)) ⊗F F′. Hence, L ⊗F L → L can be written as the
map

F((s))⊗F F((s))⊗F (F′ ⊗F F′)→ F′((s)), f ⊗ g ⊗ α⊗ β ↦→ fgαβ.

Since F′ is a finite field, the ring T = F′⊗F F′ is a finite product of fields isomorphic to F′, i.e., T
contains [F′ : F] elementary idempotents, and one easily checks that all but one of them map to
zero under the multiplication map T → F′. Hence all but one of these idempotents lie in q and

20



2. Preliminaries

therefore they also lie in all powers of q. Thus under completion these components will vanish.
Hence from now on, we shall assume F′ = F.

The first observation we make is that q/q2 is isomorphic to the module of differentials ΩL/F,
by one of the definitions of the latter. Now the single element s is a p-basis of L over F, i.e., L is
a vector space over LpF = Lp in the basis 1, s, . . . , sp. It follows from [Eis95, Thm. 16.14.b] that
ΩL/F is a vector space of dimension 1 over L. Consequently, we have dimL q

n/qn+1 ≤ 1 for all

n ≥ 0, and by smoothness of L[[T ′]] there is a surjective ring homomorphism ψ : L[[T ′]]→ L⊗̂L.
We will now construct explicit surjective homomorphisms

φn : F((s))⊗F F((s))→ F((s))[T ]/(Tn),

and verify that q lies in the kernel of φn. The idea will be that T should be the image of
s⊗ 1− 1⊗ s and that morally qn is generated by (s⊗ 1− 1⊗ s)n. However we think that in fact
the qn are infinitely generated. So we provide an explicit construction. For a formal Laurent
series f =

∑
i≫−∞ ais

i and j ∈ N0 we define the hyperderivatives

Djf :=
∑
i≫−∞

ai

(
i

j

)
si−j .

The operators Dj are continuous in the s-adic topology. We observe that

Dj(fg) =

j∑
k=0

DkfDj−kg. (2)

By continuity it reduces to verifying this for f and g being powers of s, and this comes down
to the Vandermonde convolution for binomials

∑j
k=0

(
i1
k

)(
i2
k

)
=
(
i1+i2
k

)
. We now define the map

φn : L⊗̂L→ L[[T ]]/(Tn) by

f ⊗ g ↦−→
n−1∑
j=0

(−1)jT j · f ·Djg.

The map is well-defined, and hence additive, since the Dj are F-linear. It is also clear that
it is L-linear with L acting from the left. Using (2) and T l = 0 for l ≥ n, one verifies that
the map is a ring homomorphism. To see that φn is surjective, one computes the images of
elements of the form f ⊗ si for i = 0, . . . , n − 1. This results in an L-linear homomorphism
⊕n−1i=0 L ⊗ si → ⊕

n−1
i=0 L · T i of which the obvious matrix representative is upper triangular with

±1 on the diagonal.

It is also rather straightforward to see that qn lies in the kernel of φn: the ideal q is generated
as an L−vector space by the expressions g⊗ 1− 1⊗ g, g ∈ L. Therefore qn is the L-linear span
of expressions

∏n
k=1(gk ⊗ 1− 1⊗ gk). Their image under φn is

n∏
k=1

(
gk −

n−1∑
j=0

(−1)jT jDjgk

)
=

n∏
k=1

(
− T

n−1∑
j=1

(−1)jT j−1Djgk

)
,

and the right hand side is a multiple of Tn and hence 0 in L[[T ]]/(Tn).

Now the composition φn ◦ ψ : L[[T ′]] → L⊗̂L → L[[T ]]/(Tn) is a surjective L-algebra homo-
morphism for all n ≥ 0 with the first and second arrows being surjective. In the limit we
therefore obtain an isomorphism L[[T ′]]→ L⊗̂L→ L[[T ]], as asserted.
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2.2.2 Smoothness of (uni)versal deformation rings

In this subsection, we show under certain hypotheses on the residual Galois representation ρ
that the natural transformation Dρ → Ddet ρ is smooth.

Theorem 2.2.14 ([Gou01, Thm. 4.2]). Assume that ρ : G→ GLn(k) is a residual representation
such that Cent(ρ) = k. Consider the universal deformation ring Runiv

ρ . Then

dimRuniv
ρ /mΛR

univ
ρ ≥ h1 − h2, where hi := dimkH

i(GK , adρ) for i = 1, 2,

and if h2 = 0, then Runiv
ρ
∼= Λ[[x1, . . . , xh1 ]].

Remark 2.2.15. One can get a strengthening of the above using Krull’s principal ideal theorem,
[Eis95, Thm. 10.2]. It says that if R be a Noetherian ring and if I = (f1, . . . , fd), then any
P ∈ SpecR minimal above I satisfies codimP ≤ d, i.e., dimRP ≤ d. So if R is local, catenary
and equidimensional (for instance a power series ring over F or W (F)) of dimension e ≥ d, then
it follows that every component of SpecR/I has dimension at least e− d.

For the next result we require an extension of local Tate duality from Nekovář:

Theorem 2.2.16 (Tate and Nekovář). Recall that K is an extension of Qp of finite degree d.
Let k be a finite field or a local field of residue characteristic p with its natural topology. Let
V be a finite-dimensional k-vector space with the topology induced from k, and suppose that V
carries a continuous k-linear action by the absolute Galois group GK of K. Write V ∨(1) for the
twist of Homk(V, k) by the cyclotomic character. Then

(a) For all j ∈ Z the k-vector space Hj
cont(GK , V ) is finite-dimensional. It vanishes for j /∈

{0, 1, 2};

(b) For j ∈ {0, 1, 2} one has natural isomorphisms

H2−j
cont(GK , V

∨(1))
≃−→ Hj

cont(GK , V )∨;

(c) One has the Euler characteristic formula∑
j≥0

(−1)j dimkH
j
cont(GK , V ) = d · dimk V.

Proof. If k is finite, the above statement is just the usual Tate local duality. If k is local, let O
be its valuation ring. Because GK is compact one can find an O-lattice T in V that is stable
under GK . Let j ≥ 0. Then [Nek06, Thm. 5.2.6] asserts that each Hj

cont(GK , V ) is a finitely
generated O-module and moreover it gives a spectral sequence

ExtiO(H
2−j
cont(GK , T

∨(1)),O) =⇒ H i+j
cont(GK , T ).

Because O is regular and of dimension 1, the groups Ext1O(·,O) are finitely generated O-torsion
modules. After tensoring the results just quoted with k over O part (b) and (a) are clear.
Part (c) follows from [Nek06, Thm. 4.6.9 and 5.2.11] applied to T , again after tensoring with k
over O.
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Let k be either finite or a local field and let ρ : GK → GLn(k) be a continuous absolutely
irreducible representation. Consider the short exact sequence

0 −→ ad0ρ −→ adρ
tr−→ addet ρ ∼= k −→ 0. (3)

Using that adρ is self-dual it is easy to see that the sequence dual to (3) is

0 −→ k
diag−→ adρ −→ adρ −→ 0 (4)

with adρ = adρ /k. Let δp|n be 0 if p ̸ |n and 1 if p divides n. We have the following result.

Lemma 2.2.17. Suppose in the above situation that H0(GK , adρ(1)) = 0. Then the natural
transformation Dρ → Ddet ρ is smooth of relative dimension dimkH

1(GK , ad
0
ρ) − δp|n. The

hypothesis holds in particular if p ̸ |n.

Proof. Let A → B be a small extension in ArΛ. Let I be its kernel so that I2 = 0. For the
relative smoothness, we need to show the surjectivity of

Dρ(A) −→ Dρ(B)×Ddet ρ(B) Ddet ρ(A).

So suppose we are given deformations ρB ∈ Dρ(B) and τA ∈ Ddet ρ(A) with det ρB = τA⊗AB ∈
Ddet ρ(B). We need to find a deformation ρA ∈ Dρ(A) such that ρA⊗AB = ρB and det ρA = τA.

Recall that there is a canonical obstruction class O(ρB) ∈ H2(GK , adρ)⊗k I, which vanishes
if and only if there exists a deformation of ρ to A that lifts ρB. Because of the existence of
the deformation τA that maps to det ρB, the obstruction class O(det ρB) ∈ H2(GK , addet ρ)⊗k I
vanishes. By Theorem 2.2.16 the long exact sequence of Galois cohomology arising from (3)
gives the left exact sequence

H2(GK , ad
0
ρ) →→ H2(GK , adρ)

H2(tr) →→ H2(GK , k) →→ 0

By Theorem 2.2.16 the sequence is dual to the right exact sequence

0 →→ H0(GK , k(1))
H0(diag(1))→→ H0(GK , adρ(1)) →→ H0(GK , adρ(1)),

that arises from (4). By our hypothesis the mapH0(diag(1)) is an isomorphism, and so by duality
the same holds for H2(tr). We claim that O(ρB) maps to O(det ρB) = 0 under H2(tr) ⊗k idI ,
which will then imply the vanishing of O(ρB).

To see the claim, choose a set-theoretic lift ρ̃ : GK → GLn(A) of ρB. Consider

cρ(g1, g2) = ρ̃(g1g2)ρ̃(g2)
−1ρ̃(g1)

−1 − 1n ∈ Matn(I) ∼= adρ⊗kI,

and

cdet ρ(g1, g2) = det ρ̃(g1g2) det ρ̃(g2)
−1 det ρ̃(g1)

−1 − 1

= det
(
ρ̃(g1g2)ρ̃(g2)

−1ρ̃(g1)
−1)− 1

= det(cρ(g1, g2) + 1n)− 1

The claim now follows from

det(cρ(g1, g2) + 1n)− 1 = tr
(
cρ(g1, g2)

)
,
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which is obtained by setting t = 1 and c = −cρ(g1, g2) in the equation

det(t · 1n − c) =
n∑
k=0

(−1)k tr
(⋀kc

)
tn−k = 1− tr(c)t for any c ∈ Matn(I)

that follows from the vanishing of the kth-exterior power
⋀
kc ∈ Matn(I

k) if k ≥ 2.
We have now proved that there exists ρ′A ∈ Dρ(A) mapping to ρB ∈ Dρ(B). However, this

lift need not satisfy det ρ′A = τA. At this point we note that our hypothesis in fact implies that
H2(GK , ad

0
ρ) = 0, so that

H1(GK , adρ) −→ H1(GK , addet ρ) = H1(GK , k) (5)

is surjective. Now det ρ′A and τA are deformations of τB and the space of all such deformations is a
principal homogeneous space underH1(GK , k), i.e., the tangent space of the deformatin problem,
by [Sch68, Rem. 2.15], and likewise the deformations of ρB form a principal homogeneous space
under H1(GK , adρ). Since (5) is surjective we can thus alter ρ′A by a class in H1(GK , adρ) into
some other deformation ρA of ρB that also satisfies det ρA = τA. This completes the proof of
the formal smoothness.

From what we just proved it follows that Runiv
ρ
∼= Runiv

det ρ[[X1, . . . , Xh]] for some h ∈ N0 that
is the relative dimension between the two rings; see Proposition 2.1.12. It follows that h is the
difference of tangent space dimensions, i.e.,

h = dimk Dρ(k[ε])− dimk Ddet ρ(k[ε]) = dimkH
1(GK , adρ)− dimkH

1(GK , addet ρ),

where k[ε] is the ring of dual numbers of k. Since (5) is surjective, the right hand side is equal
to

dimkH
1(GK , ad

0
ρ)− dimkH

0(GK , addet ρ) + dimkH
0(GK , adρ)− dimkH

0(GK , ad
0
ρ), (6)

and the latter expression is easily identified with the expression given in the lemma; if p ̸ |n, then
(3) is split, the right most term of (6) vanishes and the two middle terms evaluate to 1 and thus
cancel. If p|n, then the two terms on the right of (6) evaluate to 1 and cancel, and we clearly
have dimH0(GK , addet ρ) = 1.

Corollary 2.2.18. Let k be a finite or local field and let ρ : GK → GLn(k) be a representation
with p ̸ |n. Suppose q := ordµp∞(K) and H0(GK , adρ) ∼= k. Let µq,Λ ∼= SpecΛ[x]/(xq−1). Then
the composition Xuniv

ρ → Xuniv
det ρ → µq,Λ for the natural maps is formally smooth and

Runiv
ρ
∼= Λ[[x1, . . . , xh+[K:Qp]+1]][x]/

(
(1 + x)q − 1

)
for h = dimkH

1(GK , ad
0
ρ̄). In particular, the nilreduction (R

univ
ρ )red ∼= k[[x1, . . . , xh+[K:Qp]+1]] of

the special fiber R
univ
ρ := Runiv

ρ /mΛ is regular.

Proof. By Lemma 2.2.17 the natural maps

Xuniv
ρ −→ Xuniv

det ρ and Runiv
det ρ −→ Runiv

ρ

are formally smooth of relative dimension h = dimkH
1(GK , ad

0
ρ̄). Further, let Π be the abelian-

ization of the pro-p completion ofGK . We know from e.g. [Gou01, Prop. 3.13] that Runiv
det ρ
∼= Λ[[Π]]

and from local class field theory that Π ∼= (Zp,+)× (1 +mK , ·). Thus

Runiv
det ρ
∼= Λ[[Π]] ∼= Λ[[x1, . . . , x[K:Qp]+1]][x]/

(
(1 + x)q − 1

)
.

24



2. Preliminaries

From the formal smoothness property proved in Lemma 2.2.17 and from Proposition 2.1.12,
we deduce the isomorphism Runiv

ρ
∼= Runiv

det ρ[[y1, . . . , yh]]. This shows that Runiv
ρ has the shape

claimed. The assertion on (R
univ
ρ )red is now immediate.

The following lemma enables us to also apply Lemma 2.2.17 to certain non-split extensions
in Section 3.3.

Lemma 2.2.19. Let k be a field, ρi : GK → GLni(k) be a Galois representations for i = 1, 2

and ρ =

(
ρ1 c
0 ρ2

)
be an extension of ρ1 by ρ2. Suppose that

(a) The class c ∈ Ext1GK (ρ2, ρ1) is nontrivial,

(b) H0(GK , adρi)
∼= k for i = 1, 2,

(c) HomGK (ρ1, ρ2) = 0 and HomGK (ρ2, ρ1) = 0.

Then H0(GK , adρ) ∼= k.

Proof. Consider Aij ∈ Matni,nj (k) for 1 ≤ i, j ≤ 2 and the equalities

0 =

(
A11 A12

A21 A22

)(
ρ1 c
0 ρ2

)
−
(
ρ1 c
0 ρ2

)(
A11 A12

A21 A22

)
=

(
A11ρ1 A11c+A12ρ2
A21ρ1 A21c+A22ρ2

)
−
(
ρ1A11 + cA21 ρ1A12 + cA22

ρ2A21 ρ2A22

)
=

(
[A11, ρ1]− cA21 (A11c− cA22) +A12ρ2 − ρ1A12

A21ρ1 − ρ2A21 [A22, ρ2]−A21c

)
.

From hypothesis (c) and the vanishing of the (2,1)-entry we deduce A21 = 0. From hypothesis
(b) and the vanishing of the (1,1)- and (2,2)-entries it follows that Aii are scalar for i = 1, 2,
say equal to λi1ni for some λi ∈ k, respectively. Finally, the vanishing of the (1,2)-entry gives
(λ1 − λ2)c = ρ1A12 − A12ρ2. Now g ↦→ ρ1(g)A12 − A12ρ2(g) is a 1-coboundary with values
in HomGK (ρ2, ρ1), and so if λ1 ̸= λ2, the last condition implies that c is the trivial class in
Ext1GK (ρ2, ρ1) which is excluded by ((a)). This shows λ1 = λ2, and A12 ∈ HomGK (ρ2, ρ1), and
hence A12 = 0, again by ((c)). This completes the proof.

Lemma 2.2.20. Let k be a field, ρi : GK → GLni(k) be a Galois representations for i = 1, 2,

let χ : GK → k× be a character, and ρ =

(
ρ1 c
0 ρ2

)
be an extension of ρ1 by ρ2. Suppose that

(a) The class c ∈ Ext1GK (ρ2, ρ1) is nontrivial,

(b) ρ1 and ρ2 are absolutely irreducible.

(c) HomGK (ρ1, ρ2 ⊗ χ) = 0 and HomGK (ρ2, ρ1 ⊗ χ) = 0.

Then HomGK (ρ, ρ⊗χ) ∼= k, if ρi ∼= ρi⊗χ for i = 1, 2 and c and c⊗χ are linearly dependent in
Ext1GK (ρ2, ρ1). In all other cases HomGK (ρ, ρ⊗ χ) = 0.
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2.2.3 Classification of absolutely irreducible mod p Galois representations

The goal of this subsection is Lemma 2.2.23, where we show that there are only finitely many
isomorphism classes of absolutely irreducible mod p Galois representatio

We recall the classification of the characters of the tame inertia group It of GK from [Ser72],
where K is the fixed finite extension of Qp with residue field Fpf . Let Ksep be a fixed separable
closure of K with residue field ksep and Knr be the maximal unramified extension of K. If ϖ is a
fixed choice of uniformizer of Knr and Knr

n = Knr( p
n−1
√
ϖ) for n ∈ N≥1, then Kt = lim

−→n∈N≥1
Knr
n

is the tamely ramified extension of K. For n ∈ N≥1 the character

ωn : It := Gal(Kt/Knr) −→ Gal(Knr
n /K

nr)
∼−→ µpn−1(K

nr) = µpn−1(k
sep) = F×pn ,

σ ↦−→ σ( p
n−1
√
ϖ)

pn−1
√
ϖ

,

gives rise to an inverse system {ωn}n∈N≥1
so that It = Gal(Kt/Knr) ∼= lim←−n∈N≥1

F×pn [Ser72,

Prop. 1 – 2].

Definition 2.2.21 ([Ser72]). Let n ∈ N≥1 and PFpn be the set of Fp-embeddings Fpn ↪→ Falg
p .

(i) A continuous character ω : It → (Falg
p )× is called of level n if n is the smallest integer such

that ω factors as ω : It → F×pn → (Fpalg)×.

(ii) The composite of ωn : It → F×pn with an Fp-embedding τ : Fpn → Fpalg is called a funda-

mental character of level n and denoted by ωn,τ : It → (Falg
p )× .

The n fundamental characters ω : It → (Falg
p )× of level n are ωp

i

n for i ∈ {0, . . . , n− 1}, and their
name is justified by the following proposition.

Proposition 2.2.22 ([Ser72, Prop. 5]). Let F be a finite field of characteristic p. There is an
isomorphism between the set (Q/Z)′ = { ij ∈ Q/Z : i, j ∈ Z, p ∤ j} and the group of continuous

characters It → (Falg)× given by i
j ↦→ ωin, where n ∈ N≥1 is the unique minimal integer satisfying

pn ≡ 1 mod j.

Hence, there are only finitely many isomorphism classes of continuous characters It → (Falg)×

factoring via ωn and this is used to show that there are also only finitely many isomorphism
classes of absolutely irreducible representations GK → GLn(F). To see this, consider the unram-
ified extension Kn of K of degree n with residue field Fqn . We extend the fundamental character

ωn,τ to GKn using the local Artin map recKn : Ẑ × O×Kn
∼−→ Gab

Kn
and the induced projection

pr2 : G
ab
Kn
→ O×Kn . Then for any τ ∈ PFqn the composite IKn

∼= IK ↠ It
ωfn,τ−→ (Falg

p )× extends as
follows to GKn :

ωfn,τ : GKn −→ Gab
Kn

pr2−→ O×Kn −→ F×qn
τ−→ (Falg

p )×.

We introduce the following useful notation: If n > 1 and if 1 ≤ h ≤ qn − 2, we say that h is
primitive if there is no strict divisor j of n such that h is a multiple of (qn − 1)/(qj − 1). This
condition is equivalent to requiring that if we write h = en−1en−2 . . . e1e0 in base q (with digits
ej ∈ {0, . . . , q−1}), then the only cyclic permutation of the digits that gives again h in base p is

the identity. Also, for λ ∈ Falg
p , we write µλ : GK → F′ for the unramified character that sends

the Frobenius automorphism in Gal(Knr/K) to λ−1 ∈ Falg
p .
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Lemma 2.2.23 (Cf. [Ber10, Cor. 2.1.5], [Con99, Thm. 2.2.2]). If F is a finite field of charac-
teristic p and ρ : GK → GLn(F) is an n-dimensional absolutely irreducible representation, then

there exists τ ∈ PFqn , some primitive number 1 ≤ i ≤ qn − 2, and some λ ∈ Falg
q with λn ∈ F,

such that
ρ⊗F F′ ∼=

(
IndGKGKn

ωifn,τ ⊗Fqn F′
)
⊗ µλ,

where F′ is the smallest extension of Fp containing F and λ. In particular, there are only finitely
many isomorphism classes of absolutely irreducible representations GK → GLn(F).

Proof. We know from [Mul13, Prop. 2.1.1] that there exists such τ ∈ PFqn , λ ∈ (Falg)× and
i ∈ N≥1 so that

ρ⊗F Falg
p
∼=
(
IndGKGKn

ωifn,τ ⊗Fqn Falg
p

)
⊗ µ (7)

for some unramified character µ : GK → (Falg
p )×. Then µ factors via Gal(Knr/K) so that µ is

uniquely determined by the image λ−1 ∈ (Falg)× of the Frobenius automorphism in Gal(Knr/K)
under µ. Moreover, µλ = µ is defined over the finite field extension F(λ) of F. Since the Frobenius
homomorphism φq generates Gal(Kn/K), we have by Mackey’s formula [Ser95, Prop. 22]) for
any k ∈ N≥1 that

ResGKGKn
IndGKGKn

ωkn,τ
∼= ⊕g∈Gal(Kn/K)(ω

k
fn,τ )

g∼=⊕n−1j=0 ω
qjk
fn,τ

is semisimple. Its characteristic polynomial is the cyclotomic polynomial g ↦→
∏n−1
j=0

(
t−ωq

jk
fn,τ (g)

)
which as minimal polynomial of the qn-th root of unity ωkfn,τ (g) takes values in Fq[t]. By the the-
orem of Brauer-Nesbitt [CR62, (30.16) Thm.] its characteristic polynomial uniquely determines
IndGKGKn

ωkfn,τ and the triviality of the Brauer group of a finite field implies by [DS74, Lem. 6.13]

that ResGKGKn
IndGKGKn

ωkn,τ is defined over Fq. This shows that also IndGKGKn
ωkn,τ is defined over Fq,

and the existence of the finite extension F′ of F follows from taking the determinant in (7).

2.3 Clifford theory of induced representations and twist-invariance

Throughout Section2.3, G denotes a (possibly infinite) group and H a normal subgroup of finite
index.

Using Clifford theory, we show in Corollary 2.3.6 that a semisimple representation ρ : G →
GLn(k) with values in an algebraically closed field k is invariant under twisting by a character
χ : G→ k× of finite order if and only if ρ is induced from a representation of kerχ. We use this
to investigate the locus of special pseudodeformations in e.g. Subsection 3.3.2.

Definition 2.3.1. For a representation ρ : H → GLm(R) over a ring R and g ∈ G, we define
the twist of ρ by g as

ρg : H −→ GLm(R), h ↦−→ ρ(ghg−1).

Remark 2.3.2. Denote by : G → G/H, g ↦→ g, the canonical projection, and suppose that
g, g′ ∈ G satisfy g = g′, so that g′g−1 ∈ H. Then ρg ∼= ρg

′
because

ρg
′
(h) = ρ(g′hg′

−1
) = ρ(g′g−1ghg−1(g′g)−1) = ρ(g′g−1)ρg(h)ρ(g′g−1)−1 ∀h ∈ H.

In particular, the number of isomorphism classes in {ρg : g ∈ G} is finite.

Lemma 2.3.3. Suppose that the index [G : H] is invertible in a field k, and that ρ1, ρ2 : H →
GLm(k) are semisimple representations. Then the following hold
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(a) The representations IndGH ρi, i = 1, 2, are semisimple.

(b) IndGH ρ1
∼= IndGH ρ2 if and only if ⨁

g∈G/H

ρg1
∼=

⨁
g∈G/H

ρg2. (8)

(c) If ρ1 is irreducible, then (8) is equivalent to ρ2 ∼= ρg1 for some g ∈ G.

Proof. Part (a) is immediate from [Web16, Ch. 5, Exerc. 8]. Part (c) follows from the uniqueness
of composition factors and the irreducibility of ρ1 (and hence all ρg1). We now prove Part (b).

First, IndGH ρ1
∼= IndGH ρ2 implies by Mackey’s formula [Ser95, Prop. 22] that⨁

g∈G/H

ρg1
∼= ResGH IndGH ρ1

∼= ResGH IndGH ρ2
∼=

⨁
g∈G/H

ρg2

For the other direction, note first that by [CR81, Lem. 10.12] we have IndGH ρi
∼= IndGH ρ

g
i for

all g ∈ G. Thus using Mackey’s tensor product theorem for induced representations [CR81,
(10.20) Cor.], we obtain

IndGH
( ⨁
g∈G/H

ρgi
)
=

⨁
g∈G/H

(
IndGH ρ

g
i

)
=
(
IndGH ρi

)⊕[G:H]
.

By hypothesis, the left hand side is, up to isomorphism, independent of i ∈ {1, 2}. We deduce
the isomorphism (IndGH ρ1)

⊕m ∼= (IndGH ρ2)
⊕m. By Part (a) the representations IndGH ρi, i = 1, 2,

are semisimple. It follows from the theorem of Brauer-Nesbitt [CR62, (30.16) Thm.] that
IndGH ρ1

∼= IndGH ρ2.

From now on, in this section we also fix some field k (that is often algebraically closed), a
character χ : G → k× of finite order m ≥ 1 and we assume that H = kerχ. In particular, m is
invertible in k. Using Clifford theory we show in Corollary 2.3.6 that a semisimple representation
ρ : G→ GLn(k) is invariant under twisting by χ if and only if ρ is induced from a representation
of H.

The following is a standard result of Clifford Theory, e.g. [CR62, Thm. 49.2, Cor. 50.6].

Theorem 2.3.4. Let k be algebraically closed and let ρ : G → GLn(k) be an irreducible rep-
resentation such that ρ ∼= ρ ⊗ χ. Then m divides n and there is an irreducible representation
ρ′ : H → GLn/m(k), such that

ρ ∼= IndGH ρ
′

Moreover, ρ′ satisfies

ResGH ρ
∼=

⨁
g∈G/H

(ρ′)g,

and the representations (ρ′)g, g ∈ G/H, are irreducible and pairwise non-isomorphic.

Proof. Let A be an invertible n× n-matrix over k such that

Aρ(g)A−1 = χ(g)ρ(g) for all g ∈ G. (9)

From Equation (9) one deduces Amρ(g)A−m = χm(g)ρ(g) = ρ(g) for all g ∈ G. Since ρ is
irreducible, [CR81, (3.17) Schur’s lemma] implies that Am = λ · 1n for some λ ∈ k. Since k is
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algebraically closed, we may replace A by m
√
λ
−1
A so that Am = 1n and find P ∈ GLn(k) such

that J := P−1AP is a Jordan matrix. Then 1n = Am = (PJP−1)m implies 1n = Jm. Because
m = ordχ is a unit in k, the matrix A must be semisimple by [CR81, Maschke’s theorem (3.14)]
and its eigenvalues must be mth-roots of unity.

Let ζ be a primitive mth-root of unity. Then after a change of basis we may write A as a block
diagonal matrix with diagonal blocks A1, . . . , Am′ for some m′ ∈ N≥1 such that for i = 1, . . . ,m′

Ai is a scalar matrix ζki1ni with 1 ≤ k1 < k2 < . . . < km′ ≤ m. For all g ∈ G and i, j = 1, . . . ,m′

we decompose ρ(g) correspondingly into blocks ρi,j(g) so that equation (9) provides

ζki−kjρi,j(g) = χ(g)ρi,j(g). (10)

Choose g ∈ H such that χ(g) = 1. Then ρi,j(g) is zero unless ki − kj ≡ 1 (mod m). Since ρ(g)
is invertible for each j there must be an i such that ρi,j(g) is nonzero, and hence, since the ki
are strictly increasing we must have ki+1 = ki + 1 for i = 1, . . . ,m′ − 1, and km′ + 1−m = k1,
so that m′ = m and ki = i for i = 1, . . . ,m. Moreover for ρ(g) to be invertible it is necessary
that the nonzero blocks ρi+1,i(g), i = 1, . . . ,m − 1, together with ρ1,m(g) are square matrices,
and thus of the same size. Hence m divides n and ni = n/m for all i.

For all i, j = 1, . . . ,m and h ∈ H Equation (10) becomes ζi−jρi,j(h) = ρi,j(h) so that
ρ(h) =

⨁m
i=1 ρi,i(h) is a block diagonal matrix and ρi,i : H → GLn/m(k), h ↦→ ρi,i(h), is a

representation of dimension n/m. In particular, the restriction satisfies

ResGH ρ =
m⨁
i=1

ρi,i.

We choose ρ′ = ρ1,1 and consider IndGH ρ
′. By [CR62, (10.8) Frobenius Reciprocity Theorem] we

have
HomG(Ind

G
H ρ
′, ρ) = HomH(ρ

′,ResGH ρ) ̸= 0.

Let f : IndGH ρ
′ → ρ be a nonzero G-homomorphism. Since ρ is irreducible, it must be surjective,

and because dim ρ = n = m · n/m = dim IndGH ρ
′, its kernel must be zero, so that f is an

isomorphism. Next note that IndGH is an exact functor, see [CR81, § 10, Exerc. 20]. Hence ρ′ is
irreducible, because ρ is so. Note also that ρ′ is irreducible if and only if (ρ′)g is so. Moreover
since H is a normal subgroup, we have by Mackey’s formula [Ser77, Prop. 22] that

ResGH ρ
∼= ResGH IndGH ρ

′ =
⨁

g∈G/H

(ρ′)g.

Since ρ is irreducible, Mackey’s irreducibility criterion [Ser77, Prop. 23] states that for all g ∈
G/H the irreducible representations (ρ′)g need to be pairwise non-isomorphic.

Remark 2.3.5. The above proof uses that k is algebraically closed in two instances: First, to
deduce from Schur’s lemma that Am ∈ End(ρ) ∼= k is equal to λ · 1n for some λ ∈ k. Second, we
use it to replace A by m

√
λ ·A so that Am = 1n and the eigenvalues of A are mth-roots of unity.

The fact that Am is scalar would also follow if one requires that ρ be absolutely irreducible.
The second use of algebraic closedness of k cannot be avoided. There are simple examples

where IndGH ρ
′ can be defined over a smaller field than ρ′: For instance take G the dihedral group

Dn of order 2n with n > 1 odd and H its cyclic subgroup Cn of order n, and let χ : Cn → Q(ζn)
×

be a character of order n. Then Q(ζn) is the minimal field over which χ is defined. However
IndGH χ can be defined over Q(ζn)

+, the maximal totally real subfield of Q(ζn).
Finally observe that the above proof shows that for k not algebraically closed, Theorem 2.3.4

applies after passing to a suitable finite extension k′ of k, provided that ρ is absolutely irreducible.
It suffices that over k′ all irreducible factors of ρ and of ResGH ρ are absolutely irreducible.
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Corollary 2.3.6. Suppose that k is algebraically closed and that ρ : G→ GLn(k) is semisimple.
Then ρ ∼= ρ ⊗ χ holds if and only if there is a representation ρ′ : H → GLm(k) such that
ρ ∼= IndGH ρ

′. Moreover, any such ρ′ is semisimple, and one also has ResGH ρ =
⨁

g∈G/H(ρ
′)g.

Proof. If ρ ∼= IndGH ρ
′, then Mackey’s tensor product theorem for induced representations implies

ρ⊗ χ ∼= (IndGH ρ
′)⊗ χ ∼= IndGH(ρ

′ ⊗ ResGH χ)
∼= IndGH ρ

′ ∼= ρ [CR81, Cor. (10.20)].

Conversely, suppose that ρ ∼= ρ ⊗ χ and write ρ = ⊕j∈Jρ′j with irreducible representations
ρ′j for j ∈ J . We regroup this decomposition according to orbits under iterated twisting by χ.
This gives rise to a decomposition

ρ ∼=
⨁
i∈I

(mi−1⨁
j=0

ρi ⊗ χj
)⊕ri (11)

for irreducible representations ρi : G→ GLni(k), i ∈ I, and divisors mi of m so that

ρi ⊗ χmi ∼= ρi for i ∈ I,

and no ρi is isomorphic to ρi′ ⊗ χj for some j ∈ {0, . . . ,mi′ − 1} and i′ ∈ I.
Under the isomorphism G/H ∼= Z/(m) we have for Hi = kerχmi ⊃ H that Hi/H ∼=

(m/mi)Z/mZ ∼= Z/miZ, which shows that ResGHi χ is a character of order mi. By Theorem 2.3.4

we find representations ρ′′i : Hi → GLni/mi(k) such that IndGHi ρ
′′
i
∼= ρi. Let kH be the trivial

representation of H on k. Then

mi−1⨁
j=0

ρi ⊗ χj ∼= IndGHi ρ
′′
i ⊗

(mi−1⨁
j=0

χj
) ∼= IndGHi

(
ρ′′i ⊗

mi−1⨁
j=0

ResGHi χ
j
)

∼= IndGHi
(
ρ′′i ⊗ IndHiH kH

) ∼= IndGHi Ind
Hi
H

(
ResHiH ρ′′i ⊗ kH

)
∼= IndGH

(
ResHiH ρ′′i

)
,

where the second and fourth isomorphism follows from Mackey’s tensor product theorem for
induced representations [CR81, (10.20) Cor.]. Together with the canonical decomposition (11)
this proves

ρ ∼=
⨁
i∈I

(mi−1⨁
j=0

ρi ⊗ χj
)⊕ri ∼= IndGH

(⨁
i∈I

(ResHiH ρ′′i )
⊕ri
)
.

The two assertions at the end are immediate from Mackey’s formula [Ser95, Prop. 22]; see also
the proof of Lemma 2.3.3(b).

We have the following integral refinement of Theorem 2.3.4:

Theorem 2.3.7. Let R be a complete discrete valuation ring with (not necessarily algebraically
closed) residue field and fraction field L. Suppose ρ : G→ GLn(R) is a continuous representation
of a compact group G such that ρ⊗RL is absolutely irreducible and ρ ∼= ρ⊗χ for some character
χ : G→ L× of finite order m.

Then there is a finite Galois extension L′ of L with ring of integers R′ and a continuous
representation ρ′ : H → GLn/m(R

′) such that ρ⊗R L′ ∼= IndGH ρ
′ ⊗R′ L′.
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Proof. We follow the argument of the proof of Theorem 2.3.4. We define L′ as L( m
√
λ). Because

mth roots of unity lie in χ(G) ⊂ L×, this is a finite Galois extension. Then over L′ one can
define ρ′ : H → GLn/m(L

′) such that IndGH ρ
′ ∼= ρ ⊗R L′. Observe that by its construction ρ′

is continuous, as it is a direct factor of the continuous representation ResGH ρ. Now use the
compactness of G and the continuity of ρ′ to find a change of basis of (L′)n/m such that the
image of ρ′ after this base change lies in (R′)n/m.

Remark 2.3.8. (a) It would be interesting to prove more general integral versions of Theo-
rem 2.3.4 than Theorem 2.3.7.

(b) Another integrality type question in the spirit of Theorem 2.3.7 is the following: Suppose
the pseudorepresentation of ρ is definable over a ring R. Can one describe a finite extension
of R over which the pseudorepresentation of ρ′ is definable?

2.4 Cohomology of profinite groups and Demushkin groups

This section gives a short introduction to Demushkin groups. Using their classification in Ex-
ample 2.4.5 we give an explicit description of (uni)versal deformation rings of 2-dimensional
Galois representations in Section 4.3. The references best suited for our purposes are [Koc00,
Chapter 3], [NSW00, Chapter III] and [Lab67].

We fix a pro-p-group G; i.e., an inverse limit limGi of finite p-groups Gi; i.e., ordGi = pri for
some integer ri.

Definition 2.4.1. (i) A generator system of G is a subset S ⊆ G such that S generates G as
topological group and every open subgroup of G contains almost all elements of S. The
generator system S is minimal if no proper subset of S is a generator system of G.

(ii) A presentation of G by a free pro-p group F with generator system {si : i ∈ I} of F is an
exact sequence

1 −→ R −→ F
φ−→ G −→ 1.

The presentation is minimal if {φ(si) : i ∈ I} is a minimal generator system of G.

(iii) A relation system of G with respect to a presentation {1} → R
ψ→ F → G → {1} is a

subset R ⊆ R so that ψ(R) is the smallest closed normal subgroup of F containing ψ(R).
The relation system is called minimal if no proper subset of R is a relation system of G.

(iv) For q a power of p the descending q-series {G(i,q)}i≥1 of G is defined by

G(1,q) := G and G(i+1,q) := (G(i,q))q(G(i,q), G) for i ≥ 1,

where (G(i,q))q(G(i,q), G) is the closed subgroup of G generated by the elements gq and the
commutators (g, h) = g−1h−1gh with g ∈ G(i,q), h ∈ G.

By [NSW00, Prop. (3.8.2)], the descending q-power series form a fundamental system of open
neighbourhoods of 1. Using Pontryagin duality, one shows the following.

Proposition 2.4.2 ([NSW00, Prop. (3.9.1) and (3.9.5)]). For i ∈ N0 consider the Fp-vector
space H i(G) := H i(G,Z/pZ) and its dimension hi := dimFp H

i(G). Then the following hold.

(i) (Burnside basis theorem) Let S be a minimal generator system of G. Then the generator
rank d(G) := card(S) is equal to Hom(G/G(2,p),Q/Z) = h1 and thus independent of the
choice of S. In particular, G is finitely generated if and only if h1 is finite.
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(ii) Let R be a minimal relation system with respect to some presentation of G. Then the re-
lation rank r(G) := card(R) is equal to dimFp Hom(R/Rp(R,F ),Q/Z) = dimFp H

1(R)F =
h2 and thus independent of the choice of R.

Demushkin studied the following pro-p groups with a finite number of topological generators
and only one relation between them.

Definition 2.4.3. The pro-p-group G is a one relator pro-p group if h1 is finite and h2 = 1. If
in addition the cup product H1(G) ×H1(G) → H2(G) is a non-degenerate bilinear form, then
G is called a Demushkin group.

In order to classify Demushkin groups, one determines invariants of a Demushkin group.

Theorem 2.4.4 ([Lab67]). Consider Uf := 1 + pfZp and the group U = Z×p ∼= µp−1 × U1 of
p-adic units equipped with the p-adic topology. There exists a unique continuous homomorphism
χ : G→ U such that the canoncical homomorphism

H1(G, I(χ)/piI(χ))→ H1(G, I(χ)/pI(χ))

is surjective for i ≥ 1, where I(χ) := Zp is the topological G-module with G-action given by χ.
Moreover, imχ is an invariant of G and χ defines further invariants as follows:

(i) the highest power q(G) of p such that imχ ⊂ 1 + qZp (with equality if q(G) ̸= 2);

(ii) a(G) := [imχ : (imχ)2] ∈ {2, 4};

(iii) f(G) ∈ {2, . . . ,∞} is determined by imχ = {±1} × Uf if q(G) ̸= 2, h1 is odd; imχ =
(−1+2f ) if q(G) = 2, h1 even, a(G) = 2;imχ = {±1}×Uf if q(G) = 2, h1 even, a(G) = 4;
and else one sets f(G) =∞.

The invariant q(G) can be alternatively described as the unique power q of p such that
Gab = G/(G,G) ∼= Zh1−1p × (Zp/qZp). Together with the invariant h1, this classifies Demushkin
groups completely. We first give Demushkin’s classical example that we are interested in.

Example 2.4.5 (The group of the maximal p-extension of a local field [Lab67, § 5]). Recall
that K is a finite extension of Qp with d = [K : Qp]. Consider the maximal p-extension K(p)
of K; i.e., the largest Galois extension of K whose Galois group G is a pro-p-group. If K does
not contain a pth root of unity, then G is a free pro-p-group of rank d + 1. If K does contain
a pth root of unity, then G is a Demushkin group with generator rank d + 2. If q ̸= 2, then its
relation reads

r = xq1(x1, x2)(x3, x4) . . . (xd+1, xd+2) = 1.

If q = 2 and d odd, then its relation reads

r = x21x
4
2(x2, x3)(x4, x5) . . . (xd+1, xd+2) = 1.

If q = 2 and d even, then its relation reads

r = x2+2f
1 (x1, x2)(x3, x4)(x5, x6) . . . (xd+1, xd+2) = 1,

or, depending on the invariant imχ,

r = x21(x1, x2)x
2f

3 (x3, x4)(x5, x6) . . . (xd+1, xd+2) = 1

for some f ≥ 2.
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In general, Demushkin groups are classified as follows.

Theorem 2.4.6. Let G be a Demushkin group with a presentation 1→ (r)→ F → G→ 1 and
invariants h1, q, imχ and

(i) [Dem61, Dem63] If q ̸= 2, then h1 is even, then there is a basis x1, . . . , xh1 of F such that

r = xq1(x1, x2)(x3, x4) . . . (xh1−1, xh1).

(ii) [Ser95] If q = 2 and h1 odd, then there is a basis x1, . . . , xh1 of F such that

r = x21x
2f

2 (x2, x3)(x4, x5) . . . (xh1−1, xh1)

for some f = 2, 3, . . . ,∞ (with f =∞ meaning 2f = 0).

(iii) [Lab67, Thm. 1] If q = 2 and h1 even, then there is a basis x1, . . . , xh1 of F such that

r = x2+α1 (x1, x2)x
2f

3 (x3, x4)(x5, x6) . . . (xh1−1, xh1)

for some f = 2, 3, . . . ,∞ and α ∈ 4Z2.
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3. EQUIDIMENSIONALITY OF UNIVERSAL PSEUDODEFORMATION RINGS

Recall that throughout the thesis we fix an algebraic closure Kalg of a finite extension K of Qp

of degree d = [K : Qp] with absolute Galois group GK := Gal(Kalg/K), and a finite field F of
prime characteristic p. We write ζp ∈ Kalg for a primitive pth root of unity.

The aim of this chapter is Theorem B (Theorem 3.3.12) on the equidimensionality of universal
mod p pseudodeformation rings.

To define these universal objects, the chapter starts in Section 3.1 with an introduction to
Chenevier’s pseudorepresentations and their universal pseudorepresentation and pseudodefor-
mation rings following the original source [Che14] and Wang Erickson’s PhD thesis [WE13].

In Section 3.2 we investigate properties of certain loci of pseudodeformations in universal
mod p pseudodeformation spaces. In particular, by Proposition 3.2.41 certain irreducible points
are regular and form open loci if ζp ̸∈ K, and the regular locus is empty if ζp ∈ K.

Section 3.3 contains the inductive proof of Theorem B. For the induction step, the Zariski
density of the irreducible locus in is proven in Theorem C (Theorem 3.3.1) under a certain
induction hypothesis. When ζp ̸∈ K Theorem D (Theorem 3.3.13) says that the reducible locus
is contained in the singular locus. We finish by describing the regular locus of a universal mod p
deformation ring and showing that it satisfies Serre’s condition (R2) if ζp ̸∈ K, and either n > 2,
or n = 2 and d > 1, as stated in Theorem E (Corollary 3.3.15).

3.1 Pseudorepresentations and their universal pseudodeformation rings

This section introduces the theory of pseudorepresentations and their (pseudo)deformations
that was developed by Chenevier in [Che14]. Pseudorepresentations naturally arise from the
characteristic polynomial of a representation by Example 3.1.8. Conversely, if the representation
takes values in a field the well-known Brauer-Nesbitt Theorem [CR62, (30.16) Thm.] states that
the zeroes of the characteristic polynomial determine a semisimple finite group representation.
Using this, Chenevier proves that any pseudorepresentation over an algebraically closed field
corresponds to a semisimple representation and that their universal (pseudo)deformation rings
coincide if they are irreducible; see Theorem 3.1.26 and Proposition 3.2.14 respectively.

Pseudorepresentations are by definition multiplicative homogeneous polynomial laws that
were studied first by Roby in [Rob63, Rob80] and later also by e.g. Ziplies [Zip86, Zip87] and,
as so-called determinants, by Vaccarino [Vac09]. For more details on pseudorepresentations we
refer the reader to the original source [Che14] and the PhD thesis of Wang Erickson [WE13].
The latter source contains in particular a detailed exposition of Chenevier’s theory with some
generalizations and further references.

Throughout this section, A will be a commutative ring and S an A-algebra that is not
necessarily commutative. We assume that A is a unital ring such that 0 ̸= 1, i.e., A ̸= 0.
If A is local, we write κ(A) for its residue field. The category of commutative A-algebras will
be denoted by CAlgA. If X is a scheme and x ∈ X, we write κ(x) for κ(OX,x).

3.1.1 Pseudorepresentations

In this subsection, we introduce pseudoreopresentations, Azumaya algebras and Cayley-Hamilton
A-algebras. Of importance is Proposition 3.1.14, which says that the characteristic polynomial
cofficients of a pseudorepresentation determine the pseudorepresentation.
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For an A-module M consider the functor M : CAlgA → Sets, B ↦→M ⊗A B.

Definition 3.1.1 ([Che14, § 1.1]). Let M and N be A-modules and n ∈ N0.

(i) An A-polynomial law P : M → N is a natural transformation M → N ; i.e., for all B,B′ ∈
Ob(CAlgA) and f : B → B′ ∈ Mor(CAlgA) the A-polynomial law P is a collection of maps
PB : M ⊗A B → N ⊗A B such that the following diagram is commutative:

M ⊗A B
PB →→

idM ⊗f
↓↓

N ⊗A B

idN ⊗f
↓↓

M ⊗A B′
P ′
B →→ N ⊗A B′.

By abuse of notation, we often write P instead of PB for all B ∈ Ob(CAlgA).

(ii) An A-polynomial law P : M → N is called homogeneous of degree n if

PB(bx) = bnPB(x) for all B ∈ Ob(CAlgA), b ∈ B and x ∈M ⊗A B.

(iii) By PolnA(M,N) we denote the set of homogeneous polynomial laws of degree n.

Remark 3.1.2 ([Che14, after Exmp. 1.2]). A homogeneous polynomial law P of degree n need
not be determined by PA, as shown in [Che14, Exmp. 1.2]. It is however uniquely determined
by PA[T1,...,Tn] : M [T1, . . . , Tn]→ N [T1, . . . , Tn]: Suppose X generates M as an A-module. Then

such a P is uniquely determined by the (finite) set of functions P [α] : Xn → N , with α ∈ In =
{(α1, . . . , αn) ∈ Nn : α1 + . . .+ αn = n}, defined by the relation

P
( n∑
i=1

xiTi

)
=
∑
α∈In

P [α](x1, . . . , xn)T
α, where x1, . . . , xn ∈ X and Tα =

n∏
i=1

Tαii .

Example 3.1.3. (i) If φ : M → N is an A-module homomorphism, then the natural maps
φ⊗AB : M⊗AB → N⊗AB define a homogeneous polynomial law of degree 1. Conversely,
any homogeneous polynomial law P : M → N of degree 1 arises in this way from the A-
module homomorphism φ = PA : M → N .

(ii) Homogeneous polynomial laws of degree 0 are constant maps; see [Rob63, Prop. I.5].

(iii) If P1 : L → M and P2 : M → N are polynomial laws, then so is P2 ◦ P1 : L → N . If both
are homogeneous of degrees m and n, then the composition is homogeneous of degree mn.

Definition 3.1.4 ([Che14, § 1.1]). Let R and S be A-algebras and n ∈ N0.

(i) An A-polynomial law P : S → R is called multiplicative if

PB(1) = 1 and PB(xy) = PB(x)PB(y) for all B ∈ Ob(CAlgA) and x, y ∈ S ⊗A B.

(ii) An n-dimensional A-valued pseudorepresentation on S is an A-polynomial law D : S → A
that is multiplicative and homogeneous of degree n.

(iii) ByMn
A(S,R) we denote the set of homogeneous multiplicative A polynomial laws S → R

of degree n, and we write PsRnS(A) for the set of n-dimensional A-valued pseudorepresen-
tations inMn

A(S,A).
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3. Equidimensionality of universal pseudodeformation rings

Similarly as the polynomial laws given by Example 3.1.3, we have the following examples of
multiplicative polynomial laws.

Example 3.1.5. (i) If φ : R→ S is an A-algebra homomorphism, then the natural homomor-
phisms φ⊗AB : R⊗AB → S ⊗AB define a multiplicative polynomial law of dimension 1.
Conversely, any multiplicative polynomial law of dimension 1 arises in this way from the
A-algebra homomorphism φA : R→ S.

(ii) The only multiplicative polynomial law of dimension zero is the constant map with value 1.

(iii) Suppose that S, S′, S′′ are A-algebras, and that P : S → S′ and P ′ : S′ → S′′ are multi-
plicative polynomial laws of dimensions n and n′, respectively. Then P ′ ◦ P : S → S′′ is a
multiplicative polynomial law of dimension nn′.

Before giving the example of a pseudorepresentation attached to a representation, we intro-
duce the following generalization of a central simple algebra and its reduced norm.

Definition 3.1.6 ([Mil80, § IV.1 – IV.2]). Suppose that A is a local commutative ring.

(i) An Azumaya algebra over A is a ring R free of finite rank as an A-module such that the
map

R⊗A R◦ −→ EndA(R), r ⊗ r′ ↦−→ (x ↦→ rxr′),

is an isomorphism, where R◦ denotes the algebra with the multiplication of R reversed.

(ii) An extension A ⊂ B is called a neutralizing A-algebra for an Azumaya algebra C over A if
there exists a faithful projective B-module P and an isomorphism σ : C ⊗AB

∼→ EndB(P )
of B-algebras; cf. [KO74, § III.6]. Since A is local, such B always exist; cf. Remark 3.1.7.

(iii) The reduced norm of an Azumaya algebra C over A is det : C → A, c ↦→ det
(
σ(c⊗ 1B)

)
,

where B is a neutralizing A-algebra for C with corresponding isomorphism σ; the reduced
norm is independent of the choice of B and σ by [KO74, § IV.2].

(iv) Let X be a scheme and C an OX -algebra. The OX -algebra C is called an Azumaya algebra
over X if C is a coherent OX -module, and for all closed points x ∈ X Cx is an Azumaya
algebra over OX,x.

Remark 3.1.7. Let C be an OX -algebra. By [Mil80, beginning of § IV.2] we have the following
equivalences:

(a) C is an Azumaya algebra over X;

(b) C is locally free of finite rank as an OX -module and Cx ⊗ κ(x) is a central simple algebra
over κ(x) for all points x ∈ X;

(c) there is a Zariski cover {Ui} of X and for each i a finite étale surjective cover U ′i → Ui
such that one has an isomorphism C ⊗OX OU ′

i

≃→ Matni(OU ′
i
) for suitable ni ∈ N≥1.

By (b) there is a locally constant function n : X → N≥1 such that rankOX C = n2. Moreover,
for the cover in (c) the function n is constant on Ui and takes the value ni.

Example 3.1.8. Let C be an Azumaya algebra over A of rank n2 and denote by detC the
reduced norm for C over A.
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(i) By [Che14, § 1.5], the family of maps

(detC⊗AB : C ⊗A B → B)B∈Ob(CAlgA)

defines a pseudorepresentation det of dimension n. Hence for any A-algebra homomorphism
r : S −→ C, the map det ◦r defines an A-valued pseudorepresentation of dimension n;
cf. Example 3.1.5(iii).

(ii) Let D : C → A be a pseudorepresentation of dimension n′. Then by [Che14, Lem. 2.15]1,

we have n|n′ and D = det
n′/n
C , or, in the notation introduced in Definition 3.1.29, D =

det
⊕n′/n
C .

Example 3.1.9 (Determinant of a pseudorepresentation). Let G be a group and D : A[G]→ A
be an n-dimensional A-valued pseudorepresentation on A[G]. Then the restriction DA|G : G→
A× is a group homomorphism. Define

detDB : B[G]→ B,
∑
i

big ↦→
∑
i

biDA(g),

for any B ∈ Ob(CAlgA). Then this defines a 1-dimensional pseudorepresentation detD : A[G]→
A that we call the determinant of D.

Lemma 3.1.10 ([Che14, § 1.10]). Let D : S → A be an n-dimensional pseudorepresentation.
Consider for each B ∈ Ob(CAlgA) the map

χD,B(·, t) : S ⊗A B −→ B[t], s ↦−→ χD,B(s, t) :=
n∑
i=0

(−1)iΛD,i,B(s)tn−i := DB[t](t− s).

(i) For i = 0, . . . , n the maps ΛD,i,B : S ⊗A B → B define a homogeneous A-polynomial law
ΛD,i : S → A of degree i.

(ii) ΛD,0,B(s) = 1B and ΛD,n = D.

(iii) The maps χD,B(·, t) : S ⊗A B → B[t] form an A-polynomial law χD = χD(·, t) : S → A[t].

(iv) The maps χD,B(s, s) : S ⊗A B −→ B define an A-polynomial law

χD : S → S, s ↦−→
n∑
i=0

(−1)iΛD,i(s)sn−i,

that is homogeneous of degree n.

Definition 3.1.11. [Che14, § 1.10] Let S be an A-algebra, and D : S → A be an n-dimensional
pseudorepresentation.

(i) The polynomial law χD is called the characteristic polynomial associated with D, and the
polynomial law ΛD,i is called the ith characteristic polynomial coefficient for i = 0, . . . , n.

(ii) The A-linear map τD := ΛD,1 is called the trace associated with D.

Lemma 3.1.12 ([Che14, Lem. 1.12(i)]). For all s, s′ ∈ S, D(1 + ss′) = D(1 + s′s).

1 Alternatively, one can solve Exercise 2.5 in [Che14], where it should read n divides d in line 4.
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Definition 3.1.13 ([Che14, p. 3]). Let G be a group. An A-valued pseudorepresentation of G
of dimension n is an A-valued n-dimensional pseudorepresentation D : A[G]→ A.

Proposition 3.1.14 ([Che14, Lem. 1.12, Cor. 1.14]). Consider a pseudorepresentation D : G→
A of dimension n on a group G.

(i) D satisfies Amitsur’s formula [Che14, (1.4)]. In particular, the characteristic polynomial
coefficients determine D.

(ii) If C ⊂ A is the subring generated by the coefficients ΛD,i(g) of χD(g, t) for all g ∈ G and
i ∈ N≥1, then D factors through a unique n-dimensional pseudorepresentation G→ C.

Next we define some important properties of pseudorepresentations, which hold for the pseu-
dorepresentation attached to a representation.

Definition 3.1.15 ([Che14, § 1.17]). Let M and N be A-modules.

(i) For a polynomial law P : M → N let ker (P ) ⊂M be the A-submodule

{x ∈M : P (x⊗ b+m) = P (m) for all B ∈ Ob(CAlgA), b ∈ B and m ∈M ⊗A B}

(ii) A polynomial law P : M → N is called faithful if ker (P ) = 0.

(iii) For a pseudorepresentation D : S −→ A let CH(D) be the two-sided ideal of S that is
generated by the coefficients of

χD,S[t1,...,tm](t1s1 + . . .+ tmsm) ∈ S[t1, . . . , tm],

for all s1, . . . , sm ∈ S and m ∈ N≥1.

(iv) An n-dimensional pseudorepresentation D : S → A is called Cayley-Hamilton and (S,D)
a Cayley-Hamilton A-algebra of degree n if CH(D) = 0.

Proposition 3.1.16 ([Che14, Lem. 1.19, Exmp. 1.20, Lem. 1.21]). Let D : S → A be an n-di-
mensional pseudorepresentation. Then the following hold.

(a) kerD is a two-sided ideal of S. It is proper if n > 0. It is the biggest two-sided ideal K ⊂ S
such that D admits a factorization D = D̃ ◦ π with π the canonical surjection S → S/K
and D̃ ∈ PsRnS/K(A).

(b) ker (D) ⊃ CH(D).

(c) If D is Cayley-Hamilton and S′ ⊂ S is any A-subalgebra, then the restriction of D to S′

is (obviously) Cayley-Hamilton.

(d) If S is an Azumaya algebra of rank n2 over A and D is the reduced norm, then D is
Cayley-Hamilton and faithful.

The Cayley-Hamilton property behaves rather well under several operations, which is in
general not the case of the faithful property. For instance, Proposition 3.1.16(c) does not hold
for faithful instead of Cayley-Hamilton; see [Che14, Exmp. 1.20(b)].

Corollary 3.1.17. Any D ∈ PsRnS(A) factors as D̃ ◦ π, where π is the canonical surjection

S → S/CH(D) for some unique D̃ ∈ PsRnS/CH(D)(A), which is Cayley-Hamilton.
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3.1.2 The divided power algebra and universal pseudorepresentation rings

We start with the definition of the divided power A-algebra whose abelianization will represent
the pseudorepresentation functor by Proposition 3.1.23. Next we reall [Che14, Thm. A] by
which for any pseudorepresentation over an algebraically closed field there is a corresponding
semisimple representation.

Definition 3.1.18. Let M be an A-module. Consider the polynomial A-algebra GA(M) =
A[xm,n : m ∈M, n ∈ N0] and the ideal IA(M) ⊂ GA(M) generated by the following relations:

(a) xm,0 − 1 for all m ∈M ,

(b) x(am),n − anxm,n for all a ∈ A, m ∈M and n ∈ N0,

(c) xm,n1xm,n2 −
(n1+n2)!
n1!n2!

xm,n1+n2 for all m ∈M and n1, n2 ∈ N0,

(d) xm1m2,n −
∑n

i=0 xm1,ixm2,n−i for all m1,m2 ∈M and n ∈ N0.

Then the divided power A-algebra ΓA(M) of M is the quotient GA(M)/IA(M). For m ∈M and
n ∈ N0 denote by m[n] the image of the indeterminant xm,n in ΓA(M).

There exists a unique grading onGA(M) = ⊕n∈N0G
n
A(M) that respects its A-algebra structure

and that assigns the degree n to the indeterminant xm,n for m ∈ M and n ∈ N0. With respect
to this grading, the ideal IA(M) is homogeneous so that

ΓA(M) = ⊕n∈N0Γ
n
A(M)

inherits the grading from GA(M) and m[n] is of degree n for m ∈M and n ∈ N0.
We introduce a specific polynomial law to ΓnA(M) that Roby showed to be universal.

Proposition 3.1.19 ([Rob63, Thm. III.3 and Prop. IV.1]). Let M be an A-module, B a com-
mutative A-algebra and n ∈ N0.

(i) There is a well-defined B-algebra homomorphism ωB : ΓA(M ⊗AB)→ ΓA(M)⊗AB, given
on generators by (m⊗ 1)[n] ↦→ m[n] ⊗ 1, and ωB is an isomorphism.

(ii) Consider for all B ∈ Ob(CAlgA) the maps γnM,B : M ⊗B → ΓnA(M ⊗A B), z ↦→ z[n], and

(LnM )B := ωB ◦ γnM,B : M ⊗A B −→ ΓA(M ⊗A B) −→ ΓA(M)⊗A B.

Then this defines a polynomial law LnM : M → ΓnA(M) that is homogeneous of degree n.

Next, we study universal objects of the following covariant functors.

Definition 3.1.20. Let M ∈ Ob(ModA) and S ∈ Ob(AlgA). Define the following functors:

(a) PolnA(M, · ) :ModA → Sets, N ↦→ PolnA(M,N);

(b) Mn
A(S, · ) : AlgA → Sets, R ↦→ Mn

A(S,R);

(c) PsRnS( · ) : CAlgA → Sets, B ↦→ PsRnS⊗AB(B).

Theorem 3.1.21 ([Rob63, Thm. IV.1]). The functor PolnA(M, · ) is represented by the pair
(ΓnA(M), LnM ). In particular, for all N ∈ Ob(ModA) there is a canonical isomorphism

HomModA(Γ
n
A(M), N)

∼−→ PolnA(M,N), f ↦−→ f ◦ LnM .
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3. Equidimensionality of universal pseudodeformation rings

Let n ∈ N0 and S ∈ Ob(AlgA). In [Rob80], Roby defines an A-algebra structure on ΓnA(S)
as follows: There exists a linear map α̃S : Γ

n
A(S)⊗A ΓnA(S)→ ΓnA(S ⊗A S), given on generators

by s[n] ⊗ (s′)[n] ↦→ (s ⊗ s′)[n]. Let θ : S ⊗A S → S be the A-linear map defined by the bilinear
multiplication on S, and Γn(θ) the restriction of the induced map Γ(θ) : Γ(S ⊗A S) → Γ(S) to
Γn(S ⊗A S). Then the composition

θn : Γ
n
A(S)⊗A ΓnA(S)

α̃S−→ ΓnA(S ⊗A S)
Γn(θ)−→ ΓnA(S)

defines an A-algebra structure on ΓnA(S). Further, θ1 recovers the A-algebra structure on S, and
ΓnA(S) is unital, associative or commutative if S has the corresponding property.

The polynomial law LnS : S → ΓnA(S) is multiplicative with respect to θn.

Theorem 3.1.22 ([Rob80]). Let n ∈ N0 and S ∈ Ob(AlgA). The functor Mn
A(S, · ) is repre-

sented by (ΓnA(S), L
n
S).

Recall that the abelianization of a ring R′ is the quotient of R′ by the two-sided ideal generated
by r1r2 − r2r1 for all r1, r2 ∈ R′.

Proposition 3.1.23 ([Che14, Prop. 1.6]). The functor PsRnS( · ) is represented by the abelian-
ization Runiv

S,n := ΓnA(S)
ab of ΓnA(S) together with the natural pseudorepresentation

Duniv
S : S ⊗A Runiv

S,n −→ Runiv
S,n = ΓnA(S)

ab

that is constructed using the universal property of the tensor product from the composition of
LnS : S → ΓnA(S) with the A-algebra homomorphism ΓnA(S)→ ΓnA(S)

ab.

Definition 3.1.24. We call Runiv
S,n = ΓnA(S)

ab the n-dimensional universal pseudorepresentation

ring of S and Duniv
S,n : S → Runiv

S,n the n-dimensional universal pseudorepresentation.

If G is a group and S = Z[G], then we abbreviate Runiv
G,n := Runiv

Z[G],n and Duniv
G,n := Duniv

Z[G],n.

If X is an A-scheme, we can extend the notion of a pseudorepresentation and define an O(X)-
valued pseudorepresentation S → O(X) of dimension n ∈ N0. Then the n-dimensional universal
pseudorepresentation space

Xuniv
S,n := SpecRuniv

S,n = Spec ΓnA(S)
ab

of S represents the obvious pseudodeformation functor on the category of A-schemes. If G is a
group and S = Z[G], then we write Xuniv

G,n := Xuniv
Z[G],n.

Example 3.1.25 (Determinant of a pseudorepresentation). Let G be a group. By Proposi-
tion 3.1.23 we have universal pseudorepresentations

Duniv
A[G],n : A[G]⊗A R

univ
A[G],n −→ Runiv

A[G],n and Duniv
A[G],1 : A[G]⊗A R

univ
A[G],1 −→ Runiv

A[G],1.

Now detDuniv
A[G],n

: A[G] ⊗A Runiv
A[G],n −→ Runiv

A[G],n defined as in Example 3.1.9 is a 1-dimensional

pseudorepresentation. By universality of Runiv
A[G],1 we obtain a ring homomorphism

det : Runiv
A[G],1 → Runiv

A[G],n.

and an induced morphism of schemes det : Xuniv
A[G],n → Xuniv

A[G],1 (which we both denote by det).
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3.1. Pseudorepresentations and their universal pseudodeformation rings

Theorem 3.1.26 ([Che14, Thm. A]). Suppose that k is an algebraically closed field and S is
a k-algebra. If D : S → k is an n-dimensional pseudorepresentation, then there is a semisimple
representation ρD : S → Matn(k) with associated pseudorepresentation D.

Furthermore, ρD is unique up to isomorphism and ker ρD = kerD.

We use Theorem 3.1.26 to define the following notions for pseudorepresentations.

Definition 3.1.27. Let k be a field, S a k-algebra and D : S → k a pseudorepresentation of di-
mension n. Fix an algebraic closure kalg of k, and consider the unique semisimple representation
ρD⊗kkalg : S ⊗k k

alg → Matn(k
alg) satisfying D ⊗k kalg = det ◦ρD⊗kkalg from Theorem 3.1.26.

(i) D is irreducible if ρD⊗kkalg is irreducible.

(ii) D is reducible if ρD⊗kkalg is reducible.

(iii) D is multiplicity free if ρD⊗kkalg is a direct sum of pairwise non-isomorphic irreducible

kalg-linear representations of S ⊗k kalg.

(iv) D is split if D is the determinant of a representation S → Matn(k).

For later use we shall also need the following refinement of Theorem 3.1.26. It is a fundamental
result of Chenevier for pseudorepresentations over a field. We need to recall the exponent, defined
for certain field extensions: Let k′ ⊃ k be a field extension and denote by ksep ⊂ k′ the maximal
separable extension of k in k′. Assume that ksep is finite over k and that there exists a power
q of p := Char k > 0 such that (k′)q ⊂ ksep. The exponent (f, q) of k′ ⊃ k is defined be setting
f := [ksep : k] and taking for q the minimal p-power such that (k′)q ⊂ ksep.

Theorem 3.1.28 ([Che14, Thm. 2.16]). Let k be a field, let D : S → k be a pseudorepresentation
of dimension n. Then as a k-algebra

S/ kerD
≃−→

s∏
i=1

Si,

where Si is a simple k-algebra which is of finite dimension n2i over its center ki, and where ki/k
has a finite exponent (fi, qi).

Moreover, under such an isomorphism, D coincides with the product determinant

D =
s∏
i=1

detmiSi ,

n =
∑

iminiqifi, where mi are some uniquely determined integers.

In particular, S/ kerD is semisimple. It is finite dimensional over k if and only if each ki
is. This always occurs in each of the following three cases : k is perfect, or k has characteristic
p > 0 and [k : kp] <∞, or n < p.

We define a direct sum of two pseudorepresentations, which in particular is useful when
studying reducible pseudorepresentations later.

Definition 3.1.29 ([WE13, § 1.1.11]). Let S1, S2 and S be A-algebras and B a commuta-
tive A-algebra. For i = 1, 2 consider a multiplicative A-polynomial law Pi : Si −→ B that is
homogeneous of degree ni ∈ N0.
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3. Equidimensionality of universal pseudodeformation rings

(i) The multiplicative homogeneous A-polynomial law

P1 ⊕ P2 : S1 × S2 → B, (x1, x2) ↦→ P1(x1)P2(x2),

of degree n1 + n2 is called the direct sum of P1 and P2.

(ii) If Di := Pi : S → A is a pseudorepresentation for i = 1, 2, then the pseudorepresentation

D1 ⊕D2 : S × S −→ A, (x1, x2) ↦→ D1(x1)D2(x2),

of dimension n1 + n2 is called the direct sum of D1 and D2.

We remark that this direct sum operation is called a product in [Che14].

Theorem 3.1.30 ([Che14, Lem. 2.2]; cf. [Rob63, Thm. III.4]). (i) The canonical map

ΓnA(S1 × S2)ab −→
n⨁
i=0

ΓiA(S1)
ab ⊗A Γn−iA (S2)

ab, (s1, s2)
[n] ↦→

n∑
i=0

s
[i]
1 ⊗ s

[n−i]
2 , (1)

is an A-algebra isomorphism.

(ii) Let P : S1 × S2 −→ B be a multiplicative A-polynomial law that is homogeneous of degree
n. Suppose that SpecB is connected and B ̸= 0. Then there exists for i = 1, 2 a unique
multiplicative homogeneous A-polynomial law Pi : Si → B of degree ni such that n1+n2 = n
and P = P1 ⊕ P2. In other words, the A-algebra homomorphism

ΓA(S1 × S2)ab → B

corresponding to P factors through Γn1
A (S1)

ab ⊗A Γn2
A (S2)

ab in (1).

In the case S1 = S2, Theorem 3.1.30 implies the following:

Corollary 3.1.31 ([WE13, Lem. 1.1.11.7]). (i) The map

ιn1,n2
: Xuniv

S,n1
×A Xuniv

S,n2
−→ Xuniv

S,n1+n2

defined by (D1, D2) ↦→ D1⊕D2 is a morphism of affine A-schemes that corresponds to the
homomorphism

ι∗n1,n2
: Γn1+n2

A (S)ab
Γ
n1+n2
A (diag)
−→ Γn1+n2

A (S × S)ab ↠ Γn1
A (S)ab ⊗A Γn2

A (S)ab,

where Γn1+n2
A (diag) is induced by the diagonal map diag : S → S × S.

(ii) For i = 1, 2 let ρi : S → GLni(A) be a representation and Dρi be the associated pseudorep-
resentation. If Dρ1⊕ρ2 is the pseudorepresentation defined by det(ρ1 ⊕ ρ2), then

Dρ1⊕ρ2 = Dρ1 ⊕Dρ2 .

We need the following pseudorepresentations when studying the ideal of total reducibility
in A in Proposition 3.1.48.

Lemma 3.1.32 ([Che14, Lem. 2.4]). Let S be an A-algebra, e ∈ S be an idempotent, and
D : S → A be a pseudorepresentation of dimension n. Suppose that Spec(A) is connected.
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3.1. Pseudorepresentations and their universal pseudodeformation rings

(i) The polynomial law De : eSe→ A, s ↦→ D(s+1−e), is a pseudorepresentation of dimension
r(e) ≤ n. One has r(1− e) + r(e) = n.

(ii) The restriction of D to the A-subalgebra eSe ⊕ (1 − e)S(1 − e) is the sum De ⊕D1−e. It
is a pseudorepresentation of dimension n.

(iii) If D is faithful or Cayley-Hamilton, then De is faithful or Cayley-Hamilton, respectively.

(iv) Suppose that D is Cayley-Hamilton. Then e = 1 if and only if D(e) = 1, and e = 0 if
and only if r(e) = 0. If e1, . . . , es is a family of nonzero orthogonal idempotents of S, then
s ≤ n and

∑s
i=1 r(ei) ≤ n. Further,

∑s
i=1 r(ei) = n if and only if e1 + e2 + · · ·+ es = 1.

3.1.3 Generalized matrix algebras (GMAs) and pseudocharacters

Generalized matrix algebras are a generalization of matrix algebras and are also equipped with
a trace map. Such generalized matrix algebras were introduced as trace algebras by Procesi in
[Pro87]. Next we define pseudocharacters that were studied by various authors and arise from
the trace of a representation: At first attached to 2-dimensional Galois representations by Wiles
[Wil88], and then in a more general notion by e.g. Taylor [Tay91] and Rouquier [Rou96]. We
mostly follow the exposition in [BC09] for pseudocharacters. In [BC09, § 1.3] pseudocharacters
are further studied as the trace of a generalized matrix algebra. In Proposition 3.1.40 we also
mention the relation to the previously defined pseudorepresentations following [Che14, WE13].
Finally, we associate a pseudorepresentation with a generalized matrix algebra via the Leibniz
formula in Definition 3.1.47 and study the ideal of total reducibility of A in Proposition 3.1.48.

Definition 3.1.33 (Cf. [BC09, Def. 1.3.1], [WE13, Rem. 2.3.0.4 and 2.3.3.6]). Suppose that
n1, . . . , nr are positive integers and n :=

∑r
i=1 ni. We call S a generalized matrix algebra (GMA)

of type (n1, . . . , nr) if there exist

(a) a family of orthogonal idempotents e1, . . . , er ∈ S with
∑r

i=1 ei = 1S , and

(b) a family of A-algebra isomorphisms ψi : eiSei
∼→ Matni(A) for i = 1, . . . , r

such that the associated trace map τ : S → A, x ↦→
∑

i=1 tr(ψi(eixei)) satisfies τ(xy) = τ(yx)
for all x, y ∈ S. We call E := {ei, ψi}i=1,...,r the data of idempotents of S.

Example 3.1.34 (The standard GMA of type (n1, . . . , nr) [BC09, Exmp. 1.3.4]). We suppose
that B is a commutative A-algebra and (Ai,j)1≤i,j≤r is a family of A-submodules of B such that

Ai,i = A and Ai,jAj,k ⊂ Ai,k for all 1 ≤ i, j, k ≤ r.

Let S be the A-submodule⎛⎜⎝ Matn1(A1,1) · · · Matn1,nr(A1,r)
...

. . .
...

Matnr,n1(Ar,1) · · · Matnr(Ar,r)

⎞⎟⎠
of Matn(B). Then S is an A-subalgebra of Matn(B). Further, let ei ∈ Matn(B) with diagonal
entries 1 on the ith diagonal block and everywhere else 0. Then ei ∈ S and

∑r
i=1 ei = 1S . To-

gether with the canonical isomorphisms ψi : eiSei
∼→ Matni(A), S is a GMA of type (n1, . . . , nr)

that we call the standard GMA of type (n1, . . . , nr) associated with (Ai,j)1≤i,j≤r.
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3. Equidimensionality of universal pseudodeformation rings

We need the following notation to describe the structure of a GMA and to define its deter-
minant.

Definition 3.1.35. Let S be a GMA of type (n1, . . . , nr). For 1 ≤ i ≤ r and 1 ≤ k, l ≤ ni we

denote by Ek,li the unique element in eiSei that maps under ψi to the matrix in Matni(A) that
has 1 in the (k, l)-entry and everywhere else 0.

Lemma 3.1.36 (Structure of a GMA [BC09, p. 21ff.]). (i) Let (S, E) be a generalized matrix
algebra of type (n1, . . . , nr). Consider the canonical family (Ai,j)1≤i,j≤r of A-modules with

Ai,j := E1,1
i SE1,1

j . Then for 1 ≤ i, j, k ≤ r the associated trace τ defines canonical
isomorphisms Ai,i ∼= A and since Ai,jAj,k ⊂ Ai,k the product in S induces A-linear maps
φi,j,k : Ai,j ⊗A Aj,k → Ai,k that satisfy the following conditions:

(UNIT) For 1 ≤ i, j ≤ r we have Ai,i = A and both φi,i,j and φi,j,j agree with the A-module
structure on Ai,j .

(ASSO) For 1 ≤ i, j, k, l ≤ r and x⊗ y ⊗ z ∈ Ai,j ⊗A Aj,k ⊗A Ak,l we have

φi,k,l
(
φi,j,k(x⊗ y)⊗ z

)
= φi,j,l

(
x⊗ φj,k,l(y ⊗ z)

)
in Ai,l.

(COMM) For 1 ≤ i, j ≤ r, x ∈ Ai,j and y ∈ Aj,i we have φi,j,i(x⊗ y) = φj,i,j(y ⊗ x).

Thus the A-module
⨁r

i,j=1Matni,nj (Ai,j) is an A-algebra via

x · y =
r∑

i,j=1

r∑
k=1

xi,k · yk,j with (xi,k · yk,j)l,n :=

nk∑
m=1

φl,m,n
(
(xi,k)l,m ⊗ (yk,j)m,n

)
for 1 ≤ l ≤ ni, 1 ≤ n ≤ nj and x =

∑r
i,j=1 xi,j , y =

∑r
i,j=1 yi,j ∈

⨁r
i,j=1Matni,nj (Ai,j),

and there is a canonical isomorphism of A-algebras

S ∼=

⎛⎜⎝ Matn1(A1,1) · · · Matn1,nr(A1,r)
...

. . .
...

Matnr,n1(Ar,1) · · · Matnr(Ar,r)

⎞⎟⎠ :=
r⨁

i,j=1

Matni,nj (Ai,j). (2)

(ii) Conversely, suppose we are given a family (Ai,j)1≤i,j≤r of A-modules together with A-linear
maps φi,j,k : Ai,j⊗AAj,k → Ai,k for 1 ≤ i, j, k ≤ r satisfying the above conditions (UNIT),
(ASSO) and (COMM). Then there is a unique structure of a GMA of type (n1, . . . , nr) on
the A-module S := ⊕ri,j=1Matni,nj (Ai,j).

Lemma 3.1.37. Let (S, E) be a GMA and let D : S → A a pseudorepresentation. Then for any
x ∈ Matni×nj (Ai,j) for some 1 ≤ i, j ≤ r with i ̸= j, we have D(1 + eixej) = 1.

Proof. By Lemma 3.1.12 we have D(1 + eixej) = D(1 + ejeix) = D(1) = 1.

Definition 3.1.38. A pseudocharacter on S is an A-linear map τ : S → A satisfying

(i) τ is central; i.e., τ(s1s2) = τ(s2s1) for all s1, s2 ∈ S

(ii) there exists an integer n ∈ N≥1 such that n! ∈ A× and the map

Sn+1(τ) : S
n+1 −→ A,

x ↦−→
∑

σ∈Sn+1

ϵ(σ) τσ(x), (3)
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3.1. Pseudorepresentations and their universal pseudodeformation rings

vanishes, where for all σ ∈ Sn+1 we set

τσ : Sn+1 −→ A, x = (x1, . . . , xn+1) ↦−→
r∏
i=1

τσi(x),

with σ =
∏r
i=1 σi is the cycle decomposition and τσi(x) := τ(xi1 · · ·xik) for σi = (i1 · · · ik).

The smallest integer n such that Sn+1(τ) = 0 is called the dimension of τ .

Example 3.1.39 ([BC09, § 1.2.3, Main Example 1.2.2, Cor. 1.3.16]). ,

(i) The trace of a representation r : S → Matn(A) is an A-valued n-dimensional pseudochar-
acter.

(ii) If (S, E) is a GMA of type (n1, ..., nr), n :=
∑r

i=1 ni and n! ∈ A× holds, then the trace τ
of S is a pseudocharacter of dimension n.

We remark that these pseudocharacters satisfy a Cayley-Hamilton identity, of which the map (3)
is a polarization. As for pseudorepresentations, the Cayley-Hamilton identity implies that the
kernel of the pseudocharacters vanish so that they are called faithful.

It is the restriction on the characteristic by the condition n! ∈ A×, which motivated Chenevier
to introduce the more general notion of a pseudorepresentation. As mentioned earlier, a pseu-
dorepresentation encodes not only the data given by the trace of a representation but instead
the data given by all characteristic polynomial coefficients.

Proposition 3.1.40 ([Che14, Prop. 1.27 – 1.29]). The map

{n-dimensional pseudorepresentations S → A} −→ {n-dimensional pseudocharacters S → A},
D ↦−→ τD,

is an injection. If either n = 2 and 2 ∈ A×, or if n > 2 and (2n)! ∈ A×, then it is a bijection.

For the remainder of this subsection, we fix a generalized matrix algebra (S, E) of type
(n1, . . . , nr). In order to define a determinant of the GMA (S, E) using the Leibniz formula
and to associate a pseudorepresentation with (S, E), we need to embed the A-modules Ai,j in a
commutative A-algebra B. More precisely, we define a universal object among such A-algebras.

Definition 3.1.41 ([BC09, § 1.3.3]). Let B be a commutative A-algebra.

(i) A representation ρ : S → Matn(B) is called adapted to E if its restriction to the A-
subalgebra

⨁r
i=1 eiSei is the representation ⊕ri=1ψi composed with the natural diagonal

map Matn1(A)⊕ . . .⊕Matnr(A)→ Matn(B).

(ii) We call G the functor that sends a commutative A-algebra B to the set of representations
ρ : S → Matn(B) adapted to E .

(iii) We call F the functor that sends a commutative A-algebra B to the set
{
(fi,j)1≤i,j≤r :

fi,j : Ai,j → B is an A-linear map
}
such that

(i) fi,i coincides with the A-algebra structure on B,

(ii) fi,k
(
φi,j,k(x⊗ z)

)
= fi,j(x) · fj,k(y) for all x ∈ Ai,j , y ∈ Aj,k and i, j, k = 1, . . . , r.

46



3. Equidimensionality of universal pseudodeformation rings

Both F and G are covariant functors CAlgA → Sets.

Proposition 3.1.42 ([BC09, Prop. 1.3.9]). (i) The functor F is representable by a commu-
tative A-algebra Buniv together with universal maps(

funivi,j : Ai,j → Buniv
)
1≤i,j≤r ∈ F (B

univ).

(ii) There is a natural isomorphism of functors G→ F , and so G is represented by Buniv.

Proof. Let B := Sym(
⨁

i ̸=j Ai,j) be the symmetric algebra over A of the A-module
⨁

i ̸=j Ai,j .
Finally, let Buniv be its quotient by the ideal generated by all differences of the form x ⊗ y −
φi,j,k(x⊗ y) for x ∈ Ai,j , y ∈ Aj,k and all i, j, k ∈ {1, . . . , r}. It is obvious that Buniv, equipped
with the canonical element (fi,j : Ai,j → Buniv)i,j ∈ F (Buniv) is the universal object for F . This
proves (i). For (ii) see [BC09, Prop. 1.3.9].

Definition 3.1.43 ([BC09, § 1.3.6]). Let Ω = {(i, j) ∈ {1, . . . , r}2 : i ̸= j}, and write i, j : Ω→
{1, . . . , r} for the projections on the first and second component, respectively.

(i) We identify any tuple τ = (τi,j)(i,j)∈Ω ∈ NΩ
0 with the directed graph on the vertex set

{1, . . . , r} where the edge from i to j has multiplicity τi,j and where there are no edges from
i to itself. The degree of this graph, i.e., of (τi,j), is the tuple deg τ =

(
(deg τ)i

)
1≤i≤r ∈ Zr,

where (deg τ)i is the number of edges arriving at i minus the number of the edges leaving i.

(ii) For any (i, j) ∈ Ω, let τ(i, j) be the graph with a single edge from i to j. For i ∈ {1, . . . , r},
let τ(i, i) be the edgeless graph (0, . . . , 0) ∈ NΩ

0 .

(iii) Suppose that x1, . . . , xs ∈ Ω satisfy j(xk) = i(xk+1) for k = 1, . . . , s − 1. Then γ =
(x1, . . . , xs) is called a path from i(x1) to j(xs). If further j(xs) = i(x1), then γ is called a
cycle.

(iv) If c1, . . . , cm is a (possibly empty) sequence of cycles, and γ is a path from i to j, then
Γ = (c1, . . . , cm, γ) is called an extended path from i to j. If γ is a cycle, then Γ is called
an extended cycle.

(v) To an extended path Γ as in (iv) one attaches a graph τ(Γ) ∈ NΩ
0 by setting τ(Γ)i,j to be

the number of times that the sequence (i, j) occurs in γ or any of the ck.

Lemma 3.1.44. Let Γ be an extended path. Then deg τ(Γ) = (0, . . . , 0) ∈ Zr if and only if γ is
an extended cycle.

Proof. This follows from [BC09, Lem. 1.3.14 (i)].

Proposition 3.1.45 (Cf. proof of [BC09, Prop. 1.3.13]). (i) For n ∈ Zr set

Bn :=
⨁
τ∈NΩ

0
deg τ=n

⨂
(i,j)∈Ω

Symτi,j Ai,j ,

Then the Zr-grading on B =
⨁

n∈Zr Bn induces a Zr-grading on Buniv =
⨁

n∈Zr B
univ
n such

that for any i, j ∈ {1, . . . , r} the image of funivi,j lies in Buniv
deg τ(i,j).

(ii) For any i, j ∈ {1, . . . , r} and n = det τ(i, j), there exists an A-linear map ψn : Buniv
n → Ai,j

such that ψn ◦ funivi,j is the identity map on Ai,j.

47



3.1. Pseudorepresentations and their universal pseudodeformation rings

Note that Lemma 3.1.44 implies that Buniv
(0,...,0) = A.

Recall that n =
∑r

i=1 ni. Let 1 ≤ i ≤ r and 1 ≤ j ≤ ni and write Ei,j for the elements

Ejji from Definition 3.1.35. Let J := {(i, j) : i ∈ {1, . . . , r}, j ∈ {1, . . . , ni}}. Then we have a
bijection {1, . . . , n} → J defined by associating tom ∈ {1, . . . , n} the unique pair (i, j) satisfying
m =

∑i−1
k=1 nk + j. Through this identification the symmetric group Sn acts on elements (i, j)

in J . For σ ∈ Sn we denote the tuple σ(i, j) by
(
i(σ(i, j)), j(σ(i, j))

)
.

Proposition 3.1.46 (Cf. [WE17, Prop. 2.23]). Let funiv : S → Matn(B
univ) be the map defined

by funivi,j : Ai,j → Buniv for 1 ≤ i, j ≤ r. Then the composition of funiv with the usual determinant

det : Matn(B
univ)→ Buniv is explicitely given by

det ◦funiv : S −→ Buniv, x ↦−→
∑
σ∈Sn

sgn(σ)⊗ri=1 ⊗
ni
j=1f

univ
i,i(σ(i,j))(Ei,jxEσ(i,j)), (4)

and takes values in A.

Proof. The explicit formula follows from the Leibniz formula of the determinant det. Write
σ ∈ Sn as a product c1 ◦ . . . ◦ cs of unique disjoint cycles with ck =

(
(ik,1, jk,1) · · · (ik,tk , jk,tk)

)
for k = 1, . . . , s. For ease of notation we set (ik,tk+1, jk,tk+1) := (ik,1, jk,1). By commutativity of
Buniv, we can sort the factors in (4) according to the cycle decomposition so that for x ∈ S we
have

⊗ri=1 ⊗
ni
j=1 f

univ
i,i(σ(i,j))(Ei,jxEσ(i,j)) = ⊗

s
k=1 ⊗

tk
m=1 f

univ
ik,m,ik,m+1

(Eik,m,jk,mxEik,m+1,jk,m+1
).

Using the condition (ASSO) and the relations defining Buniv, we find that the latter term lies
in A.

We use the previous proposition to associate a pseudorepresentation with the GMA (S, E).

Definition 3.1.47. (i) The determinant map det(S,E) attached to the fixed GMA (S, E) is

det ◦funiv : S −→ A, x ↦−→
∑
σ∈Sn

sgn(σ)⊗ri=1 ⊗
ni
j=1f

univ
i,i(σ(i,j))(Ei,jxEσ(i,j)).

(ii) The ideal of total reducibility in A is I =
∑

i ̸=j Ai,jAj,i ⊂ A, and the locus of total re-
ducibility is Spec(A/I).

For the following result recall the notation De from Lemma 3.1.32.

Proposition 3.1.48 (Cf. [BC09, Prop. 1.5.1]). Let I =
∑

i ̸=j Ai,jAj,i be the ideal of total
reducibility in A.

(i) (1) If I = 0, then the map π : S →
∑

i eiSei ⊂ S, x ↦→
∑

i eixei is a ring homomorphism.

(2) Denoting by Di the map eiSei
ψi→ Matni(A)

det→ A for i = 1, . . . , r, one has

det(S,E) = ⊕ri=1Di ◦ π mod I.

(ii) Suppose that there exist mi-dimensional pseudorepresentations D′i : S → A with mi > 0
for i ∈ {1, . . . , r} such that one has det(S,E) = ⊕ri=1D

′
i. Then I = 0 and for a unique

permutation σ ∈ Sr we have D′σ(i) = Di ◦ π with Di and π from (i).
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3. Equidimensionality of universal pseudodeformation rings

Proof. Part (1) of (i) is a straightforward matrix calculation using Ai,jAj,i = 0 for all i ̸= j from
{1, . . . , r}. To see part (2) of (i) note that by our definitions we have the explicit formula

Di mod I : eiSei −→ A/I, x ↦−→
∑

σi∈Sni

sgn(σi)

ni∏
j=1

Ei,jxEi,σi(j) mod I,

and using distributivity for x ∈ S
r∏
i=1

(Di ◦ π)(x) mod I =
r∏
i=1

∑
σi∈Sni

sgn(σi)

ni∏
j=1

Ei,jxEi,σi(j) mod I

=
∑

σ1∈Sn1

. . .
∑

σr∈Snr

r∏
i=1

sgn(σi)

ni∏
j=1

Ei,jxEi,σi(j) mod I.

Now in the sum sgn(σ)
∏r
i=1

∏ni
j=1 f

univ
i,i(σ(i,j))(Ei,jxEσ(i,j)), modulo I only those summands are

nonzero for which σ ∈ Sn satisfies i(σ(i, j)) = i. Therefore, in a nonzero summand we can write
σ = (σ1, . . . , σr) ∈ Sn1 × . . .×Snr and

det(S,E)(x) =
∑

(σ1,...,σr)∈Sn1×...×Snr

r∏
i=1

sgn(σi)

ni∏
j=1

fi,i(Ei,jxEi,σi(j)) mod I

=
∑

σ1∈Sn1

. . .
∑

σr∈Snr

r∏
i=1

sgn(σi)

ni∏
j=1

fi,i(Ei,jxEi,σi(j)) mod I.

This completes the proof of (i).
We now prove (ii). In a first step, we show the claim that there is a unique permutation

σ ∈ Sr such that Di = (D′σ(i))ei and (D′i′)ei = 1 for i′ ̸= σ(i). For this, we restrict ⊕ri′=1D
′
i′ to

eiSei, so that
Di = (det(S,E))ei = ⊕i′(D′i′)ei .

By Lemma 3.1.32 the (D′i′)ei are pseudorepresentations, and one has mi′ ≥ mi′,i := dim(D′i′)ei .
Now under the direct sum in the sense of Corollary 3.1.31 dimensions are added, and it follows
that

ni =
∑r

i′=1
mi′,i.

Since eiSei = Matni(A) it follows from Example 3.1.8(ii) that each mi′,i is divisible by ni. Hence
there is a map σ : {1, . . . , r} → {1, . . . , r} such that mσ(i),i = ni and mi′,i = 0 for i′ ̸= σ(i), and
moreover Di = (D′σ(i))ei . The uniqueness of σ is clear from the construction. It remains to show
that σ is bijective. It will suffice to show that σ is surjective.

For this, let S′i′ := ⊕i∈σ−1(i′)eiSei, so that S = ⊕i′S′i′ . The restriction of D′i′′ to S
′
i′ is zero if

i′′ ̸= i′, and the restriction of D′i′ to S
′
i′ is a pseudorepresentation with

mi′
3.1.32
≥ dimD′i′ |S′

i′
= dim⊕ri′′=1D

′
i′′ |S′

i′
= dimdet(S,E) |S′

i′
=

∑
i∈σ−1(i′)

ni.

Summing over all i′ in the image of σ implies
∑

i′∈σ({1,...,r})mi′ ≥ n. However, all mi′ are strictly

positive and
∑r

i′=1mi′ = n, and this implies that σ is surjective, and hence the claim is proved.
For simplicity of notation we assume from here on, without loss of generality, that σ = id.

We now show that I = 0. For this, it suffices to show that Ai,jAj,i = 0 for all i ̸= j. By
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3.1. Pseudorepresentations and their universal pseudodeformation rings

restricting to the subalgebra S′ = eiSei + ejSej + eiSej + ejSei with E ′ = (ei, ψi, ej , ψj , ), i.e.,
by considering Dei+ej , and using det(S,E) |S′ = det(S′,E ′), we may assume r = 2 for the proof of
I = 0.

Let b be in A1,2 and c in A2,1, and write x for e1E
1,1
1 bE1,1

2 e2 and y for e2E
1,1
2 cE1,1

1 e1 with Ek,li
from Definition 3.1.35. Using the description of GMA’s from Lemma 3.1.36 one easily verifies
that

1 + xy = 1 + E1,1
1 bc ∈ e1Se1 + (1− e1), 1 + yx = 1 + E1,1

2 bc ∈ (1− e2) + e2Se2.

Note moreover that by Lemma 3.1.12 we have D(1 + xy) = D(1 + yx) for every pseudorepre-
sentation D : S → A. If we apply this to D′i and our earlier observations on (D′i)ei′ , we find
that

D′i(1 + xy) = D′i(1 + yx) = 1

for i = 1, 2 and hence from hypothesis (2) that det(S,E)(1 + E1,1
1 bc) = 1. From the formula for

det(S,E) on e1Se1 + e2Se2 ∼= Matn1(A)×Matn2(A), we deduce that

det(S,E)(1 + E1,1
1 bc) = 1 + bc,

and hence that bc = 0, as was to be shown.
For the second assertion, observe that by Lemma 3.1.37 we have D′i(1 + eixej) = 1 for any

i ̸= j and x ∈ Matni,nj (Ai,j). It follows that D′i(1 + u) = 1 for any u in the kernel of π. And
now the second assertion follows from knowing the restriction of D′i to

∑
i eiSei given in the

first claim of the proof of (ii).

Lemma 3.1.49. Let S be a generalized matrix algebra of type (n1, . . . , nr), and B ∈ Ob(CAlgA).
Then S ⊗A B is a generalized matrix algebra of type (n1, . . . , nr).

Proof. Choose a family of orthogonal idempotents e1, . . . , er ∈ S with
∑r

i=1 ei = 1S , and a
family of A-algebra isomorphisms

ψi : eiSei
∼→ Matni(A), i = 1, . . . , r,

such that the associated trace map τ : S → A, s ↦→
∑r

i=1 tr
(
ψi(eisei)

)
satisfies τ(s1s2) = τ(s2s1)

for all s1, s2 ∈ S. Then eB,i := ei ⊗ 1B ∈ S ⊗A B, i = 1, . . . , r, form a family of orthogonal
idempotents in S ⊗A B such that

∑r
i=1 eB,i =

∑r
i=1 ei ⊗ 1B = 1S⊗AB. Then there is a family of

A-algebra isomorphisms

ψB,i : eB,i(S ⊗A B)eB,i ∼= eiSei ⊗A B
ψi⊗idB−→ Matni(A)⊗A B ∼= Matni(B), i = 1, . . . , r,

such that the associated trace map

τB : S ⊗A B → A, s⊗ b ↦→
r∑
i=1

tr
(
ψB,i

(
eB,i(s⊗ b)eB,i

))
=

r∑
i=1

tr
(
ψi(eisei)

)
⊗ b = τ(s)⊗ b

satisfies τB(s1⊗b1·s2⊗b2) = τB(s1s2⊗b1b2) = τ(s1s2)⊗b1b2 = τ(s2s1)⊗b2b1 = τB(s2⊗b2·s1⊗b1)
for all s1 ⊗ b1, s2 ⊗ b2 ∈ S ⊗A B.

Chenevier uses the pseudorepresentations De from Lemma 3.1.32 to show the following.

Theorem 3.1.50 ([Che14, Thm. 2.22]). Assume that A is a henselian local ring with maximal
ideal mA and residue field k := A/mA, that S is an A-algebra and that D : S → A is an
n-dimensional Cayley-Hamilton pseudorepresentation.
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3. Equidimensionality of universal pseudodeformation rings

(i) If the residual pseudorepresentation D = D ⊗A k : S/mAS −→ k is split and irreducible,
then there is an A-algebra isomorphism ρ : S

∼→ Matn(A) such that D = det ◦ρ.

(ii) If D is split and multiplicity free, then S is a generalized matrix algebra with determi-
nant D.

3.1.4 Universal pseudodeformation rings

This subsection constructs in Proposition 3.1.57 the object of our interest, the universal pseu-
dodeformation ring of a residual pseudorepresentation D, as the completion of the universal
pseudorepresentation ring with respect to its D-open ideals defined in Definition 3.1.55. Then
this universal pseudodeformation rings parametrizes continuous liftings of D.

Definition 3.1.51 (Cf. [Che14, § 2.30], [WE13, Def. 3.1.0.10]). Let A be a commutative topo-
logical ring and S be a topological continuous A-algebra. Then an n-dimensional pseudorepre-
sentation D : S → A is called continuous if and only if either of the two following equivalent
conditions is satisfied:

(a) the characteristic polynomial functions ΛD,i, i = 1, . . . , n, are continuous;

(b) for every commutative continuous A-algebra B, the function DB : S ⊗A B → B is contin-
uous;

(c) the functions P [α] : Rn → A from Remark 3.1.2 are continuous for all α ∈ In.

We now consider the case of continuous pseudorepresentations of the group algebra of a
profinite group.

Example 3.1.52. Let A be a topological ring that contains an open subring A0 that is linearly
topologized, and let G be a profinite group. Then A[G] is a topological ring with a basis of open
neighbourhoods of 0 given by the sets

I[H] :=
{∑
h∈H

ahh : ah ∈ I, almost all ah = 0
}
,

where I ⊂ A0 is an open ideal and H ⊂ G is an open normal subgroup of G. Then the
P [α] : A[G]n → A are continuous if and only if their restriction to Gn is continuous. Hence, cf.
[Che14, § 2.30], an n-dimensional pseudorepresentation D : A[G]→ A is continuous if and only
if ΛD,i : G→ A is continuous for all i ≤ n.

A particular case of the above is that when A is profinite so that one can take A0 = A.
Then the rings A[G]/I[H] ∼= A/I[G/H] are finite, and their inverse limit (simultaneously over I
and N) is the profinite completion A[[G]] of A[G]. Then an n-dimensional pseudorepresentation
D : A[G] → A is continuous if and only if there exists an induced n-dimensional pseudorepre-
sentation D : A[[G]]→ A that is furthermore continuous.

Another case relevant to us is that when A lies in Ark and k is a local field.

We let Λ be a Noetherian local commutativeW (F)-algebra with finite residue field F. Consider
the category ĈΛ of profinite local Λ-algebras with residue field F. The category ArΛ from
Subsection 2.1.1 is a full subcategory of ĈΛ, and objects in ĈΛ are projective limits of objects
in ArΛ. We remark that profinite Λ-modules are linearly topologized [Coh73, Prop. 2.7] and the
completed tensor product A⊗̂ΛB of A,B ∈ Ob(ĈΛ) from Definition 2.1.2 also lies in ĈΛ.

Definition 3.1.53 ([WE13, § 3.1.4.3]). (i) A continuous pseudorepresentation D : S⊗̂ΛR →
R satisfying D⊗̂RF ∼= D is called a pseudodeformation of D.
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3.1. Pseudorepresentations and their universal pseudodeformation rings

(ii) The functor

PsDD : ĈΛ → Sets, R ↦−→ {D : S⊗̂ΛR −→ R is a pseudodeformation of D},

is called the pseudodeformation functor of the residual pseudorepresentation D.

Wang Erickson also uses the term pseudorepresentation for D which are not continuous. The
meaning depends on the part of [WE13] where the term is used.

For later use, we also note the following result:

Proposition 3.1.54 ([WE13, Lem. 3.1.2.2, Rem. 3.1.4.1]). Suppose that D : G → F is n-
dimensional and continuous. Then the associated representation ρD : GK → GLn(k

alg) is defined
over a finite extension of F and continuous.

Proof. By [Che14, Observation after Lem. 1.19], for S = Λ[G] one has

kerD = {r ∈ R : ∀B ∈ Ob(CAlgΛ), ∀r′ ∈ S ⊗A B, ∀i ≥ 1 : ΛD,i(rr
′) = 0.}

This shows that kerD is closed in S, and this implies that {g ∈ G : g ∈ kerD} is closed in G.
By Theorem 3.1.26 we have kerD = ker ρD (viewed as ideals in S), and hence the kernel of the
representation ρD is closed. Now from Theorem 3.1.28, one deduces that ρD is in fact defined
over a finite extension of F and so ker ρD has finite index in G. It follows that ker ρD is open
in G and this completes the proof.

For the construction of the universal pseudodeformation rings we make a definition.

Definition 3.1.55. Let Λ be either in ÂrW (F) or a local field that is a W (F)-algebra; in the
former case set k = F in the latter k = Λ. Let S be a topological Λ-algebra, let π : A→ k be a
surjection in CAlgΛ.

Let D : S ⊗Λ A → A be a pseudorepresentation, which is not necessarily continuous, such
that D := D ⊗A k : S⊗̂Λk → k is continuous.

An ideal I of A is called D-open if the following conditions hold:

(a) I ⊂ kerπ and A/I is Artinian local;

(b) the representation DI := D⊗AA/I is continuous – recall that A/I is discrete if k = F and
that it carries the canonical k-vector space topology if k is a local field;

Lemma 3.1.56. Let the notation be as in Definition 3.1.55. Then the D-open ideals of A form
a basis of a topology on A.

Proof. (Cf. [WE13, Thm. 3.1.4.6]) One has to show that if I, I ′ are D-open ideals, then so is
I ∩ I ′. For this, one considers the injection

ι : A/(I ∩ I ′) −→ A/I ×A/I ′.

It is straightforward (for the two cases of Λ we consider) to verify that ι is an isomorphism onto
its image. Now a pseudorepresentation is continuous if and only if this holds for its characteristic
polynomial functions; cf. Definition 3.1.51. It now follows easily that I ∩ I ′ is D-open if both I
and I ′ are D-open.

Let Λ be in ÂrW (F) and let S be a topological continuous Λ-algebra. The following is due to
Chenevier in [Che14, Prop. 3.3] for Λ =W (F). We quote the general result.
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3. Equidimensionality of universal pseudodeformation rings

Proposition 3.1.57 (Cf. [WE13, Thm. 3.1.4.6]). Let D : S⊗̂ΛF → F be a continuous residual
pseudorepresentation. The pseudodeformation functor PsDD is representable by a profinite local

Λ-algebra Runiv
Λ,D
∈ Ob(ĈΛ) together with a universal pseudodeformation

Duniv
D

: S⊗̂ΛR
univ
Λ,D
−→ Runiv

Λ,D
.

Proof. We give an indication of the proof since we want to later use similar arguments. Consider
the universal ring Runiv

S,n = ΓnA(S)
ab from Proposition 3.1.23 with its universal pseudorepresen-

tation

Duniv
S : S ⊗Λ R

univ
S,n −→ Runiv

S,n

By definition Runiv
S,n is a Λ-algebra. The map D induces a homomorphism π : Runiv

S,n → F of

Λ-algebras. By Lemma 3.1.56, the D-open ideals of A := Runiv
S,n form the basis of a topology

on A, and one defines Runiv
Λ,D

as the completion of Runiv
S,n with respect to its D-open ideals. It

is then straightforward to prove the wanted universal property for Runiv
Λ,D

together with the

pseudorepresentation Duniv
S ⊗Runiv

S,n
Runiv

Λ,D
, by verifying it for the restriction of PsDD to ArΛ.

Definition 3.1.58. We call Runiv
D

:= Runiv
Λ,D

the universal (Λ-)pseudodeformation ring of D,

Xuniv
D

:= Xuniv
Λ,D

:= SpecRuniv
Λ,D

the universal (Λ-)pseudodeformation space of D and

Duniv
D

: S⊗̂ΛR
univ
Λ,D
−→ Runiv

Λ,D

the universal (Λ-)pseudodeformation of D.
If S = Z[G] for a group G, we often set Runiv

D
:= Runiv

G,D
:= Runiv

Λ,D
and Duniv

D
:= Duniv

G,D
:= Duniv

Λ,D
.

The argument indicated in the proof of Proposition 3.1.57 also shows in the case that Λ is a
local field and a W (F)-algebra the following:

Proposition 3.1.59. Let k be a local field, let S be a topological continuous k-algebra and let
D : S → k be a continuous pseudorepresentation. Then the pseudodeformation functor

PsDD : Ark → Sets

is pro-representable by a profinite local k-algebra Runiv
k,D
∈ Ob(Ĉk) together with a universal pseu-

dodeformation

Duniv
D

: S⊗̂ΛR
univ
k,D
−→ Runiv

k,D
.

The following assertion summarizes conditions when the tangent space of the pseudodefor-
mation functor PsDD is finite-dimensional, thereby implying Noetherianness of the universal
pseudodeformation ring.

Proposition 3.1.60 (Cf. [Che14, Prop. 3.7], [WE13, Thm. 3.1.5.3]). Suppose that Λ is a
complete Noetherian local W (F)-algebra and S a profinite continuous Λ-algebra. If D : S⊗̂ΛF→
F is a continuous residual pseudorepresentation of dimension n, then the complete local profinite
Λ-algebra Runiv

Λ,D
is Noetherian if and only if one of the following hold:

(i) S is a topologically finitely generated Λ-algebra;

(ii) dimF Ext
1
S(S/ ker (D), S/ ker (D)) <∞;
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(iii) S = Λ[[G]] for G a profinite group, and dimFalg H1
cont(G, adρD) < ∞, where ρD is the

representation associated with D ⊗F Falg from Theorem 3.1.26;

(iv) S = Λ[[G]] for G a profinite group that satisfies the Φp-condition from Definition 2.2.5.

Proposition 3.1.61 (Cf. [CDT99, § A.1]). Let Λ → Λ′ be a local homomorphisms of local
Noetherian rings with respective finite residue fields k and k′. Then

Runiv
Λ,D
⊗̂ΛΛ

′

is the universal Λ′-pseudodeformation ring of D
′
:= D ⊗k k′ : S⊗̂ΛΛ

′ ⊗Λ′ k′ → S ⊗Λ k
′ → k′.

Proof. Our proof mimics that given in [Wil95, p. 457].2 By tensoring Duniv
D

with Λ′ over Λ we
obtain a pseudorepresentation

Duniv
D
⊗̂ΛΛ

′ : S′⊗̂Λ′(Runiv
Λ,D
⊗̂ΛΛ

′) −→ (Runiv
Λ,D
⊗̂ΛΛ

′),

which is a deformation of D⊗Λ Λ′ and hence of D⊗Λ k
′. The universality of Runiv

Λ′,D
′ then yields

a unique homomorphism
Runiv

Λ′,D
′ → Runiv

Λ,D
⊗̂ΛΛ

′

in ĈΛ′ that maps Duniv
D⊗kk′

to Duniv
D
⊗Λ Λ′. Next consider the subring R′ of Runiv

Λ′,D
′ of elements

that map to k ⊂ k′ under the reduction modulo the maximal ideal of Runiv
Λ′,D

′ . Then R′ lies in ĈΛ
and the pseudodeformation Duniv

D⊗kk′
is defined over R′ using Proposition 3.1.14. By the universal

property of Runiv
Λ,D

we obtain a unique map

Runiv
Λ,D
→ R′

in ĈΛ mapping Duniv
D
⊗Λ Λ′ to Duniv

D⊗kk′
. Embedding R′ into Runiv

Λ′,D
′ and using the Λ′-algebra

structure of the latter, we obtain homomorphisms

Runiv
Λ,D
⊗̂ΛΛ

′ → Runiv
Λ′,D

′ → Runiv
Λ,D
⊗̂ΛΛ

′

in ĈΛ′ . From the construction it is not hard to check that the composition of the two maps is
the identity. We wish to show that the left map is surjective, from which then our assertion is
straight forward.

To see surjectivity, it suffices to show surjectivity on tangent spaces modulo mΛ. We write R′0
for the left and right ring and R′1 for the middle ring and m′i, i = 0, 1 for the respective maximal
ideals. Then we have an induced map

k′ = R′0/m0 → R′1/m0R
′
1,

and we need to show that it is surjective. Now observe that the pseudorepresentation on
R′1/m0R

′
1 induced from this map is the trivial deformation of Duniv

D⊗kk′
. From the universality of

R′1 = Runiv
Λ′,D

′ it follows that R′1/m0R
′
1 has to be k′, as was to be shown.

Hence, it makes sense to define the following.

Definition 3.1.62. We call R
univ
D := Runiv

F,D
∼= Runiv

Λ,D
⊗ΛF the universal mod p pseudodeformation

ring of D and the special fiber X
univ
D := Xuniv

F,D
∼= Xuniv

Λ,D
×Λ F the universal mod p pseudodefor-

mation space of D.

If S = Z[G] for a group G, we also write R
univ
G,D := R

univ
D and X

univ
G,D := X

univ
D .

2 One can also apply arguments as in [CDT99, Appendix A] to Proposition 3.1.68 to obtain a proof.
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3.1.5 Group pseudorepresentations

We show in Corollary 3.1.71 that there are only finitely many n-dimensional continuous pseu-
dorepresentations D : GK → F. We also introduce slightly more general pseudodeformation
functors.

Consider a profinite group G, the finite field F of characteristic p and further the fixed
commutative ring A and each B ∈ Ob(CAlgA), where we equip all with the discrete topology.

Lemma 3.1.63 ([Che14, Lem. 2.33]). An n-dimensional pseudorepresentation D : G −→ B,
considered as a polynomial law P ∈ Mn

A(A[G], B), is continuous if and only if ker (P ) ⊂ A[G]
is open. In this case, the natural representation

G −→ (B[G]/ ker (D))×

factors through a finite quotient G/H of G for some open subgroup H.

For later purposes, we enlarge the base category of the pseudodeformation functor. Chenevier
[Che14, § 3.9] refers to [EGA I, Ch. 0 § 7, Ch. 1 § 10] for an introduction to topological rings
and formal schemes.

Definition 3.1.64 ([Che14, § 3.9]). Consider the ring W (F) of Witt vectors over F as a topo-
logical ring.

(i) A topological ring A is admissible if there is a topological isomorphism

A
∼→ lim←−Aλ,

where the limit is taken over a directed ordered set S with minimal element 0, each Aλ is
a discrete ring, and each Aλ → A0 is surjective with nilpotent kernel.

(ii) Let Adm be the category consisting of:

• Objects: admissible topological rings A together with a continuous homomorphism
W (F)→ A;

• Morphisms: continuous ring homomorphisms.

(iii) A ring A ∈ Ob(Adm) is topologically of finite type over W (F) if there are i, j ∈ N≥1 such
that A is a quotient of W (F)[[t1, . . . , ti]]⟨x1, . . . , xj⟩ together with its I-adic topology given
by I = (t1, . . . , ti, p).

3

Lemma 3.1.65 ([Che14, Lem. 3.10], [WE13, Lem. 3.1.6.7]). Consider A ∈ Ob(Adm), a contin-
uous pseudorepresentation D : A[G]→ A, and the closure C ⊂ A of the W (F)-algebra generated
by the characteristic polynomial coefficients ΛD,i(g) for g ∈ G and i ∈ N≥1.

(i) The ring C is an admissible profinite subring of A. In particular, C = lim←−iCi is a finite
product of local W (F)-algebras with finite residue fields.

(ii) If further ι : A −→ A′ is a continuous W (F)-algebra homomorphism, D′ : A′[G] → A′ is
the induced determinant and C ′ ⊂ A′ is the closure C ′ ⊂ A′ of the W (F)-algebra generated
by the characteristic polynomial coefficients ΛD′,i(g) for g ∈ G and i ∈ N≥1, then ι induces
a continuous surjection C → C ′.

3 Recall that for an admissible ring A the ring A⟨t⟩ is the A-subalgebra of A[[t]] of formal power series
∑

ant
n

such that an → 0 for n → ∞.
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3.1. Pseudorepresentations and their universal pseudodeformation rings

We use the above lemma to make the following definition.

Definition 3.1.66. (i) Let |G(n)| ⊂ Spec(ΓnW (F)(W (F)[G])ab) be the subset of closed points

z ∈ Spec(ΓnW (F)(W (F)[G])ab) with finite residue field κ(z), and Dz : G → κ(z) be the

corresponding pseudorepesentation of dimension n. We also write κ(Dz) for κ(z).
4

(ii) Let A, D : A[G] → A and C ⊂ A be as in Lemma 3.1.65. If C is local, then D is called
residually constant.

(iii) In case (ii), the field κ(C) is finite by Lemma 3.1.65(i), and by definition of C there exists
z ∈ |G(n)| such that κ(C) = κ(z) and D ⊗C κ(C) ∼= Dz. If C0 = κ(C) (which can always
be assumed by altering A = lim

←−λ
Aλ), then D ⊗A A0 = Dz ⊗C0 A0. One says that D is

residually equal to Dz.

Definition 3.1.67 ([Che14, § 3.9]). (i) Consider for n ∈ N0 the covariant pseudorepresenta-
tion functor on the category Adm

PsRAdm,n : Adm −→ Sets,

A ↦−→ {continuous n-dimensional pseudorepresentations A[G]→ A},

and for each z ∈ |G(n)| its subfunctor PsRAdmz : Adm −→ Sets,

A ↦−→ {D : A[G]→ A ∈ PsRAdm,n(A) : D is residually equal to Dz}.

(ii) Consider for n ∈ N0 the contravariant pseudorepresentation functor PsRFS/W (F),n on the
category FS/W (F) of formal schemes over SpfW (F) that is given by

X ↦−→ {continuous n-dimensional pseudorepresentations O(X )[G]→ O(X )},

and for each z ∈ |G(n)| its subfunctor PsRFS/W (F)
z : FS/W (F) −→ Sets,

X ↦−→{D : O(X )[G]→ O(X ) ∈ PsRFS/W (F),n(A) : for all open affine U ⊂ X
D ⊗O(X ) O(U) ∈ PsRFS/W (F),n(U) = PsRAdm,n(O(U)) lies in PsRAdmz (O(U)}.

Chenevier notes that the restriction of PsDFS/W (F)
z to the full subcategory of affine formal

schemes coincides with the opposite functor of PsDAdmz .

Proposition 3.1.68 ([Che14, Prop. 3.13],[WE13, Cor. 3.1.6.11]). For z ∈ |G(n)| the following
hold:

(i) PsRAdmz is representable by a local ring Runiv
z in Adm.

(ii) The ring Runiv
z is canonically isomorphic to Runiv

W (F),Dz from Proposition 3.1.57.

(iii) If Dz satisfies one of the conditions in Proposition 3.1.60, then Runiv
z lies in ÂrW (κ(z)).

Corollary 3.1.69 ([Che14, Cor. 3.14]). Let G be a profinite group that satisfies Mazur’s finite-

ness condition Φp from Definition 2.2.5. Then PsRFS/W (F)
z is representable by Spf(Runiv

z ) and
PsRFS/W (F),n is representable by the formal scheme

X univ
n :=

∐
z∈|G(d)|

Spf(Runiv
z ).

4 Note that since unlike Chenevier our base ring is W (F) and not Zp, the residue fields κ(z) are all (finite)
extensions of F.
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3. Equidimensionality of universal pseudodeformation rings

Lemma 3.1.70. Let D : G → F be an n-dimensional pseudorepresentation. Then there are
natural numbers r, mi and ni for i = 1, . . . , r, field extensions Fi of F and irreducible pseudorep-
resentations Di : G→ Fi of dimension ni over Fi for i = 1, . . . , r, such that n =

∑
i[Fi : F]mini

and for F′ the composition of the Fi in an algebraic closure Falg of F one has

D ⊗F F′ = (D
m1

1 ⊗F1 F
′)⊕ . . .⊕ (D

mr
r ⊗Fr F′). (5)

In particular, [F′ : F] divides n! and each Di can be defined over F′.

Proof. By Theorem 3.1.28 there is an integer r ∈ N≥1, simple F-algebras Si of finite dimension
n2i over its center Fi for i = 1, . . . , r and an F-algebra isomorphism

F[G]/ kerD ∼−→
r∏
i=1

Si

such that the following holds because F is finite and hence perfect: the algebra Si is finite-
dimensional over F, and hence finite, and hence isomorphic to Matni(Fi); the fields Fi are
finite and hence finite separable over F; the qi of loc.cit. are therefore all equal to 1; one has
D =

⨁r
i=1 det

mi
Si

for unique mi ∈ N; finally with fi = [Fi : F] one has n =
∑

i finimi.

Let F′ be the compositum of the Fi in an algebraic closure Falg of F. By the above formula,
fi ≤ n for all i and hence [F′ : F] divides n!. Let Di := detSi . Then Di is an nifi dimensional
pseudorepresentation over F that is split over Fi and hence over F′. We obtain

D ⊗F F′ : F′[G] −→
(
F[G]/ kerD

)
⊗F F′

∼−→
r∏
i=1

Matni(F
′)

⨁
iD

mi
i−→ F′,

and this yields (5). The other claims are clear by construction.

Corollary 3.1.71. There exist only finitely many continuous pseudorepresentations D : GK → F
of dimension n.

If moreover F′ ⊃ F denotes the unique field extension of degree n!, then D ⊗F F′ for any D
as above is a direct sum of irreducible pseudorepresentations Di : GK → F′.

Proof. The second part is immediate from Lemma 3.1.70. Hence it suffices to prove the first part
for irreducible D. Let Falg be an algebraic closure of F and denote by ρD : GK → GLn(Falg) the
absolutely irreducible representation attached to D⊗F Falg by Theorem 3.1.26. Since the traces
of ρD lie in F, the field F is its field of definition, and so we may assume that ρD takes values in
GLn(F). By Lemma 2.2.23 there are only finitely many absolutely irreducible representations
GK → GLn(F), and this completes the proof of the first part.

Recall from Corollary 3.1.31 for n1, n2 ∈ N0 the morphism

ιn1,n2
: Xuniv

F[G],n1
×SpecF X

univ
F[G],n2

−→ Xuniv
F[G],n1+n2

of affine F-schemes defined by (D1, D2) ↦→ D1 ⊕ D2 that corresponds to the F-algebra homo-
morphism

Γn1+n2
F (F[G])ab

Γ
n1+n2
F (diag)
−→ Γn1+n2

F (F[G]× F[G])ab ↠ Γn1
F (F[G])ab ⊗F Γ

n2
F (F[G])ab.

When we prove in Section3.3 the equidimensionality of the universal mod p pseudodeformation
ring of a residual pseudorepresentation of dimension n = n1+n2 inductively, we make use of the
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3.1. Pseudorepresentations and their universal pseudodeformation rings

homomorphism induced by ιn1,n2 on the complete and local universal pseudodeformation rings:

For this, we consider for all n ∈ N0 the special fiber X univ
n := X univ

n ×SpfW (F) Spf F of the formal
scheme X univ

n from Corollary 3.1.69, and the induced morphism

ιn1,n2
: X univ

n1
×Spf F X

univ
n2
−→ X univ

n1+n2

of formal F-schemes defined by (D1, D2) ↦→ D1 ⊕D2. Recall from [EGA I, § 10.7] that the fiber
product of two affine formal schemes Spf A and Spf B over F is Spf(A⊗̂FB).

Now Corollary 3.1.69 and Corollary 3.1.71 yield the following.

Corollary 3.1.72 (Cf. [Che14, Cor. 3.14]). Let D : G→ F be a pseudorepresentation of dimen-

sion n = n1 + n2 valued in a finite field F, X univ
D := Spf R

univ
D and

X univ
D,n1,n2

:= X univ
D ×Xuniv

n
(X univ

n1
×Spf F X

univ
n2

) = ι−1n1,n2
(X univ

D )

Then there is a finite extension F′ of F such that

X univ
D,n1,n2

×Spf F Spf F′ ∼=
⨆

D1,D2 :Di∈X
univ
ni

(Spf F′) for i = 1, 2 and D1⊕D2=D

Spf(R
univ
D1
⊗̂F′R

univ
D2

).

The disjoint union is over a finite index set. The morphism X univ
D,n1,n2

→ X univ
D induced from

in1,n2 is a closed immersion if D is split and multiplicity free.

Proof. By what was said above, it remains to prove that the morphism X univ
D,n1,n2

→ X univ
D is

closed. For this, we may pass from F to F′, and hence without loss of generality we assume
F′ = F. Now since the union is finite, it suffices to show that for each pair D1, D2 with
D1 ⊕D2 = D the induced map of rings

R
univ
D −→ R

univ
D1
⊗̂F′R

univ
D2

is surjective. Since both are complete Noetherian local and have isomorphic residue field, it
suffices to show the surjectivity for the induced map of the duals of their tangent spaces; i.e.,
the injectivity of

PsDD1
(F[ε])× PsDD2

(F[ε]) −→ PsDD(F[ε]), (D1, D2) ↦−→ D1 ⊕D2. (6)

Consider ni-dimensional pseudodeformations Di, D
′
i ∈ PsDDi

(F[ε]) for i = 1, 2 such that D1 ⊕
D2 = D′1⊕D′2. By hypothesis, D1⊕D2 is split and multiplicity free so that we have isomorphisms

F[ε][G]/ ker (Di) ∼=
si∏
j=1

Matni,j (F) with

si∑
j=1

ni,j = ni for i = 1, 2.

As discussed in the proof of [Che14, Thm. 2.22], we can lift the canonical family of central
orthogonal idempotents of F[ε][G]/ ker (Di) to a family of orthogonal idempotents ei,1 + . . . +
ei,si = 1 in F[ε][G], and we further have a family of A-algebra isomorphisms ψi,j : ei,jF[ε][G]ei,j

∼→
Matni,j (F[ε]) for j = 1, . . . , si and i = 1, 2. Putting this together, we obtain by Theorem 3.1.50
applied to Di and D

′
i that (F[ε][G], Ei) is a generalized matrix algebra with data of idempotents

Ei := {ei,j , ψi,j}j=1,...,r and determinant Di = det(F[ε][G],Ei) = D′i for i = 1, 2, which implies the
assertion on the map (6).
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3. Equidimensionality of universal pseudodeformation rings

3.2 Geometric loci of universal pseudodeformation spaces

Recall that throughout the thesis we fix an algebraic closure Kalg of a finite extension K of Qp

of degree d = [K : Qp] with absolute Galois group GK , a primitive pth root of unity ζp and a
finite field F of characteristic p.

In this section, we start by showing openness of the irreducible locus of the special fiber of a
universal pseudodeformation space following [Che14, Exmp. 2.20]. Chenevier’s Corollary 3.2.13
says that the universal Cayley-Hamilton sheaf is an Azumaya algebra over the irreducible locus.

In Subsection 3.2.2 we define an induction for certain pseudorepresentations following ideas
of Böckle: At first, the characteristic polynomial of an induced representation with values in an
Azumaya algebra is described in Lemma 3.2.20. As the characteristic polynomial coefficients
determine a pseudorepresentation by Proposition 3.1.14, Lemma 3.2.20 allows us to define an
induced pseudorepresentation in Theorem 3.2.23 under Assumption 3.2.21.

In Subsection 3.2.3 we define the twist of a pseudorepresentation with a character and show
that if ζp /∈ K nonspecial irreducible points are regular and form open loci. If ζp ∈ K, then the
regular locus is empty and we instead consider regular points in the nilreduction if n ∤ p.

3.2.1 The locus of irreducibility and the universal Cayley-Hamilton algebra

In this subsection, we summarize properties of the locus of irreducible pseudodeformations in a
universal deformation space. In particular, Chenevier shows that over this locus the universal
Cayley-Hamilton algebra is an Azumaya algebra. We later investigate pseudodeformations with
values in local fields corresponding to 1-dimensional points x in universal pseudodeformation
spaces. We show in Corollary 3.2.13 that the (slightly modified) local rings at such points x are
universal pseudodeformation spaces. Let now G denote a group.

Definition 3.2.1. Let Duniv : Runiv
G,n [G] → Runiv

G,n be the universal n-dimensional pseudorepre-

sentation and Xuniv
G,D

:= SpecRuniv
G,D

the universal n-dimensional pseudorepresentation space. Let

x ∈ Xuniv
G,n be a point and fx : R

univ
G,n → κ(x) be the morphism corresponding to x, where κ(x) is

the residue field of x with algebraic closure κ(x)alg.

(i) Dx := fx ◦Duniv : G
Duniv

→ Runiv
G,n

fx→ κ(x) is called the pseudorepresentation of Duniv at x;

(ii) the representation ρx := ρDx : G → GLn(κ(x)
alg) corresponding to Dx ⊗κ(x) κ(x)alg from

Theorem 3.1.26 is called the (semisimple) representation attached to Dx;

(iii) We say that x and Dx have a property if this property holds for ρx.

(iv) The irreducible locus (Xuniv
G,n )irr and the reducible locus (Xuniv

G,n )red in Xuniv
G,n consists of the

points with the respective property in Xuniv
G,n ; cf. Definition 3.1.27. The same notation is

used for other spaces parameterizing pseudorepresentations, such as the universal pseudo-
deformation space Xuniv

D
of a residual psudorepresentation D.

Lemma 3.2.2 (Cf. [Che14, Example 2.20.]). Consider an n-dimensional residual pseudorepre-
sentation D : G→ F with its universal pseudodeformation Duniv

D
.

Then the subsets (Xuniv
D

)irr ⊂ Xuniv
D

and (X
univ
D )irr ⊂ Xuniv

D are Zariski open.

Proof. The first assertion is proved in [Che14, Example 2.20.], the second follows from the first
since

(X
univ
D )irr = X

univ
D ∩ (Xuniv

D
)irr ⊂ Xuniv

D
.
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3.2. Geometric loci of universal pseudodeformation spaces

Since the proof in [Che14, Example 2.20.] is somewhat sketchy, we give a complete direct proof
of the second result, following loc.cit., which is the assertion of main interest to us: For any
sequence of elements (g1, . . . , gn2) ∈ G, one considers its discriminant

∆(g1, . . . , gn2) := det

⎛⎜⎝ τuniv
D

(g1g1) · · · τuniv
D

(g1gn2)
...

. . .
...

τuniv
D

(gn2g1) · · · τuniv
D

(gn2gn2)

⎞⎟⎠ ∈ Runiv
D ,

where τuniv
D

denotes the trace of the universal pseudodeformation Duniv
D

(see e.g. [Nak00,
Rem. 3.2] why this is the (square of the) discriminant up to sign).

Let x ∈ Xuniv
D be a point corresponding to a prime px ⊂ R

univ
D and κ(x) be its residue field

O
X

univ
D ,x

/pxOXuniv
D ,x

. Consider the pseudorepresentation Dx := Duniv
D
⊗
R

univ
D

κ(x). Let ρx : G→

GLn(κ(x)
alg) be the representation attached to Duniv

D
at x. Let rx : κ(x)

alg[G]→ Matn(κ(x)
alg)

be the induced representation of the group algebra κ(x)alg[G]. If ρx is absolutely irreducible, then
rx is surjective [CR62, Burnside’s theorem (27.4)]. Conversely, if ρx is reducible, then im (ρx) lies
in a parabolic subgroup of GLn(κ(x)

alg) and so im (rx) is properly contained in Matn(κ(x)
alg). If

(g1, . . . , gn2) ∈ G is an arbitrary sequence of elements, then rx(g1), . . . , rx(gn2) generate im (rx) =
Matn(κ(x)

alg) if and only if ∆(g1, . . . , gn2) ̸= 0 since the trace tr : Matn(κ(x)
alg) → κ(x)alg is

nondegenerate.

Define I ⊂ R
univ
D as the ideal generated by ∆(g1, . . . , gn2) for all (g1, . . . , gn2) ∈ G. Then

(X
univ
D )irr = X

univ
D ∖ V (I) is a Zariski open.

Definition 3.2.3. Let Duniv : Runiv
G,n [G]→ Runiv

G,n be the universal n-dimensional pseudorepresen-
tation from Definition 3.1.24. (Note that here G is considered as a discrete group.)

(i) The n-dimensional Cayley-Hamilton Runiv
G,n -algebra SCH-univ

G,n := Runiv
G,n [G]/CH(D

univ
n ) is

called the universal Cayley-Hamilton algebra and the natural representation

ρCH-univ : G −→ (SCH-univ
G,n )×

the universal Cayley-Hamilton representation.

(ii) The quasi-coherent sheaf SCH-univ
G,n of Cayley-Hamilton algebras on Xuniv

G,n defined by the

universal Cayley-Hamilton algebra SCH-univ
G,n is called the universal Cayley-Hamilton sheaf.

Remark 3.2.4 ([Che14, § 1.22]). (i) Chenevier also introduces the notion of a Cayley-Hamilton
representation and shows in [Che14, Prop. 1.23] that the initial object of the category of
Cayley-Hamilton representations is given by the triple

(
Runiv
G,n , (S

CH-univ
G,n , Duniv), ρCH-univ

)
.

(ii) If D : A[G]→ A is a pseudorepresentation defined by a morphism Spec(A)→ Xuniv
G,n , then

there need not be a representation ρ : A[G]→ Matn(A) with attached pseudorepresentation
D since e.g. in the settings of pseudocharacters this implies that A is factorial [BC09,
Thm. 1.6.3]). The universal Cayley-Hamilton representation is a natural candidate for a
substitute.

(iii) The formation of the universal Cayley-Hamilton algebra commutes with arbitrary base
change; i.e., for any morphism f : Spec(A) → Xuniv

G,n with corresponding pseudorepresen-

tation Df : A[G] → A the natural surjective map A[G] → SCH-univ
G,n ⊗Runiv

G,n ,f
A provides an

isomorphism

A[G]/CH(Df )
∼→ SCH-univ

G,n ⊗Runiv
G,n ,f

A.
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3. Equidimensionality of universal pseudodeformation rings

One has the following important result on SCH-univ
G,n over the irreducible locus of Xuniv

G,n which
is derived from Theorem 3.1.50.

Lemma 3.2.5 (Cf. [Che14, Cor. 2.23]). The O(Xuniv
G,n )irr-algebra SCH-univ

G,n ⊗O
Xuniv
G,n

O(Xuniv
G,n )irr is

an Azumaya algebra of rank n2 equipped with its reduced norm.

Remark 3.2.6. We are not clear whether [Che14, Cor. 2.23(ii)] is correct as stated there. We
think that this is only the case if κ(x) is finite or finite over Qp. We give a formulation in our
context below in Corollary 3.2.13. We think that [Che14, Cor. 2.23(ii)] has to be modified in a
similar way.

Remark 3.2.7. The proof of Corollary 3.2.13(i) in fact shows the following. Let S be an A-algebra
and let D : S → A be an n-dimensional Cayley-Hamilton representation. If Dx is irreducible for
all x ∈ SpecA, then S is an Azumaya algebra over A of rank n2 and D is equal to the reduced
norm detS of S recalled in Example 3.1.8.

In our applications, we will need SCH-univ
G,n in a profinite context. We follow [WE17].

Definition 3.2.8. Let G be a profinite group. Let Duniv
D

: G→ Runiv
G,D

be the universal pseudode-

formation of a residual pseudorepresentation D : G→ F. Recall Runiv
G,D

[[G]] from Example 3.1.52.

(i) The n-dimensional Cayley-Hamilton Runiv
G,D

-algebra

SCH-univ
G,D

:= Runiv
G,D

[[G]]/CH(Duniv
D

)

is called the universal Cayley-Hamilton algebra of D, and we write DCH-univ
G,D

for the pseu-

dorepresentation of SCH-univ
G,D

induced from Duniv
D

.

(ii) The quasi-coherent sheaf SCH-univ
G,D

of Cayley-Hamilton algebras onXuniv
G,D

defined by SCH-univ
G,D

is called the universal Cayley-Hamilton sheaf of D.

Note that because of Remark 3.2.4(iii) the algebra SCH-univ
G,D

is isomorphic to the profinite

completion of SCH-univ
G,n ⊗Runiv

G,n
Runiv
G,D

. The following result summarizes the basic properties of

SCH-univ
G,D

:

Proposition 3.2.9 ([WE17, Prop. 3.6]). Let D : G → F be a residual pseudorepresentation
of a profinite group G and suppose that dimκ(D)H

1
cont(G, adρD) < ∞, where the associated

semisimple representation ρD is defined over a finite extension κ(D) of F by Theorem 3.1.28.
Then the following hold:

(a) The natural quotient map π : Runiv
G,D

[[G]] −→ SCH-univ
G,D

is continuous.

(b) SCH-univ
G,D

is module-finite as an Runiv
G,D

-algebra, and therefore Noetherian.

(c) On SCH-univ
G,D

the profinite topology, the mD-adic topology, and the quotient topology from

the surjection π are equivalent.

(d) When D is multiplicity-free, SCH-univ
G,D

is a generalized matrix algebra with canonical pseu-

dorepresentation equivalent to its determinant (cf. Definition 3.1.47).

(e) When D is irreducible, SCH-univ
G,D

= Matn(R
univ
G,D

).
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3.2. Geometric loci of universal pseudodeformation spaces

The following result is a generalization of Proposition 3.1.54.

Corollary 3.2.10. Let D : G→ F be a residual pseudorepresentation of a profinite group G and
suppose that dimκ(D)H

1
cont(G, adρD) <∞. Let x ∈ Xuniv

G,D
be a point of dimension 1 so that κ(x)

is a local field. Then ρDx is continuous.

Proof. Let px ⊂ Runiv
G,D

be the prime ideal corresponding to x and denote by Rx and Sx the

respective reductions mod px of Runiv
G,D

and SCH-univ
G,D

, and set S(x) := Sx ⊗Rx κ(x). By Propo-

sition 3.1.16 the pseudorepresentation Dx factors via G → S(x) → κ(x), via a pseudorepresen-
tation D̃x : S(x) → κ(x). Because of our assumption, the ring S(x) is finite-dimensional as a
κ(x)-vector space by Proposition 3.2.9. It is a topological vector space for the natural topology
of κ(x), since its topology is induced from the mD-adic topology on Runiv

G,D
; the homomorphism

ψx : G→ S(x)× and the pseudorepresentations D̃x are continuous. As recalled at the beginning
of Section 2.2, this topology is unique and every sub κ(x)-vector space of S(x) is closed; this
still holds after base change to κ(x)alg. Set S(x)ss := S(x)⊗κ(x) κ(x)alg/ ker (D̃x ⊗κ(x) κ(x)alg).
It follows that the induced homomorphism

ρ : G→ (S(x)ss)×

and the pseudorepresentation
S(x)ss → κ(x)alg,

which we also denote by D̃x, are continuous. It follows from Theorem 3.1.28 that S(x)ss ∼=∏s
i=1Matni(κ(x)

alg) and that D̃x is of the form
∏
i det

mi
Matni (κ(x)

alg)
for suitable integers ni,mi >

0. It follows that D̃x ◦ρ is attached to a continuous semisimple finite-dimensional representation
of G defined over κ(x). By uniqueness of semisimple representations over fields having both the
same pseudorepresentation, it follows that ρDx and D̃x ◦ ρ are isomorphic over κ(x)alg, and this
proves the continuity of ρDx .

For later use, we deduce the following result:

Lemma 3.2.11. Let G be a profinite group, let L be a local field with valuation ring OL, and
let D : G → L be a continuous n-dimensional pseudorepresentation. Then the following hold,
where in (ii) and (iii) we assume that G satisfies Condition Φp from Definition 2.2.5.:

(i) D takes values in OL, and D : G→ OL is residually equal to D := D ⊗OL κ(OL).

(ii) The representation ρD : G→ GLn(L
alg) from Theorem 3.1.26 is continuous.

(iii) If D is reducible, then there exists a finite extension L′/L and irreducible pseudorepresen-
tations D1, . . . , Dr : GK → OL′ such that

D ⊗OL OL′ = D1 ⊕ . . .⊕Dr (7)

Hence D ⊗OL κ(OL′) = D1 ⊕ . . .⊕Drand Di := Di ⊗OL′ κ(OL′) for 1 ≤ i ≤ r.

Proof. Let ρD be the representation from Theorem 3.1.26 attached to D⊗LLalg. For (i) observe
first that the characteristic polynomial coefficients ΛD,i of χD(g, · ) are continuous for 1 ≤ i ≤ n,
and hence the sets ΛD,i(G) are compact in L. Assume that for some g ∈ G, ΛD,i(g) does not lie
in OL. Then at least one eigenvalue of ρD(g) in L

alg has valuation different from 0, and, since
we can pass to g−1, we may assume that this valuation is negative. Let λ1, . . . , λn ∈ Lalg denote
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3. Equidimensionality of universal pseudodeformation rings

the eigenvalues of ρD(g) and index them so that λ1, . . . , λj are precisely those with negative
valuation. Then for n > 0, the valuation of ΛD,j(g

n) is the valuation of (λ1 · . . . ·λj)n. The latter
valuations are unbounded. This contradicts the compactness of ΛD,j(G), proving the first part
of (i).

To see the second part of (i), let C ⊂ OL be the smallest closed W (κ(OL))-subalgebra
generated by the characteristic polynomial coefficients of D. Its residue field must contain
κ(OL). Hence if we write C = limnCn with Cn the finite image of C in OL/(zn+1), we have
C0 = κ(OL) and so D is residually constant and residually equal to D ⊗OL κ(OL) = D ⊗C C0.

We now prove (ii). By (i) there is a continuous homomorphism Runiv
G,D
→ OL, that induces D.

Hence ρD ∼= ρx for the corresponding point x of Xuniv
G,D

. Since L is a local field containing κ(x),

the dimension of x is at most 1. If dimx = 1, we deduce (ii) from Corollary 3.2.10, because
dimκ(D)H

1
cont(G, adρD) <∞ is implied by the Condition Φp. If dimx = 0, then (ii) follows from

Proposition 3.1.54.
For (iii) write ρD =

⨁r
i=1 ρi for irreducible representations ρi of GK . Because ρD is contin-

uous, so are the ρi. Let D1, . . . , Dr be the continuous pseudorepresentations associated with
ρ1, . . . , ρr, and now (iii) is straightforward from (i).

Remark 3.2.12. It would be nice to have a more direct and possibly simpler proof of the continuity
assertion in part (ii) of the previous lemma.

We now give an analog of Lemma 3.2.5 in a topological context, and a local consequence. The
local consequence asserts that for an equi-characteristic dimension 1 point x the completion of (a
modification of) OXuniv

G,D
,x at x has itself an interpretation as a universal pseudodeformation ring.

Corollary 3.2.13 (Cf. [Che14, Cor. 2.23]). Let D : G → F be an n-dimensional pseudorepre-
sentation of a profinite group G.

(i) Over the locus (Xuniv
G,D

)irr, the OXuniv
G,D

-algebra SCH-univ
G,n ⊗ OXuniv

G,D
is an Azumaya OXuniv

G,D
-

algebra of rank n2 equipped with its reduced norm.

(ii) Let x ∈ Xuniv
G,n be such that κ(x) is a local field. Denote by π′x : R

univ
Z[G],n → κ(x) the corre-

sponding residue map, and by

π′ := idκ(x)⊗π′x : R′ := κ(x)⊗Z R
univ
Z[G],n −→ κ(x)

the induced surjection. Let D′x be the pseudorepresentation G→ κ(x), g ↦→ 1⊗W (F)Dx(g).
By Proposition 3.1.59, the completion of R′ at the D′x-open ideals represents the universal
pseudodeformation ring Runiv

D′
x

for pseudodeformations of D′x. There also is a residue map

πx : OXuniv
G,D

,x → κ(x) and a second canonical surjection

π := idκ(x)⊗πx : R := κ(x)⊗W (F) OXuniv
G,D

,x −→ κ(x).

Write R̂p for the completion of R at p := kerπ. Then for any p-primary ideal I ⊂ R̂p

the induced pseudorepresentation G → R̂p/I is continuous, so that one has a natural
homomorphism Runiv

D′
x
→ R̂p. The latter map is an isomorphism.

(iii) Suppose that x in (ii) is split and irreducible, and that dimκ(D)H
1
cont(G, adρD) <∞. Denote

by ρx : G → GLn(κ(x)) the representation attached to Dx, and by Runiv
ρx the universal

deformation ring for deformations to Arκ(x) of ρx. Then the natural map Runiv
D′
x
→ Runiv

ρx
induced from ρ ↦→ detρ is an isomorphism.
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Proof. The proof of (i) is exactly as that of [Che14, Cor. 2.23(i)]: Let x be in (Xuniv
G,D

)irr, and

let A be the strict Henselianization of the local ring Ox at x. Recall that the formation of the
Cayley-Hamilton quotient commutes with arbitrary base change. In particular,

SCH-univ
G,D

⊗Runiv
G,D

A ∼= A[[G]]/CH(DCH-univ
G,D

⊗A)

Theorem 3.1.50(3.1.50) shows that the A-algebra on the right side is isomorphic to Matn(A)
for some n ∈ N≥1, thus SCH-univ

G,D
⊗Runiv

G,D
Ox is an Azumaya algebra of rank n2, as Ox → A is

faithfully flat. Part (i) follows then from the following abstract result: Let C be a commutative
ring, n ≥ 1 an integer, and R a C-algebra. Assume that for all x ∈ SpecC, the localization Rx
is an Azumaya algebra of rank n2 over Cx. Then R is an Azumaya C-algebra (locally free) of
rank n2.

For (ii) we shall use the diagram below for which we need to introduce some notation. We
write W for W (F) and k for κ(x). For any commutative ring A, we set Runiv

A,n := Runiv
A[G],n, which

is naturally isomorphic to A ⊗Z R
univ
G,n . The symbol ˆD denotes the completion of a ring at its

D-open ideals, cf. Definition 3.1.55, and similarly ˆD′
x for the completion at the D′x-open ideals

– when this makes sense. Then Runiv
G,D

= Runiv
W,nˆD, and the universal pseudodeformation ring

for continuous pseudodeformations of D′x is Runiv
D′
x

= Runiv
k,n ˆD′

x . Let px denote the kernel of the

homomorphism Runiv
G,D
→ k corresponding to D′x, and p the kernel of π : R→ k or of π restricted

to k ⊗W Runiv
G,D

, and write ˆp for the completion at p and similarly ˆpx for that at px. Then we

have the following diagram:

k ⊗W Runiv
W,n

ip

↘↘

ix

→→

iD
↓↓

≃ →→ Runiv
k,n

→→ Runiv
D′
x

= Runiv
k,n ˆD′

x

↓↓

k ⊗W Runiv
W,nˆD

( · )px
↓↓

k ⊗W (Runiv
W,nˆD)px

( · )ˆp
↓↓

π →→ k

R̂p =
(
k ⊗W (Runiv

W,nˆD)px)ˆp →→ k.

Let φk : k ⊗W Runiv
W,n → k be the diagonal homomorphism from the top left to the bottom right.

To show the assertion of (ii), let A be in Ark with residue homomorphism ψ : A → k, and let
φA : k⊗W Runiv

W,n → A be a surjective homomorphism with ψ ◦φA = φk. Let DA : G→ A be the
induced pseudorepresentation. We need to show that φA factors via ix if and only if it factors
via ip.

Note first that from the definition of ˆp it is clear that φA factors via ip if and only if it factors
via ( · )px ◦ iD. Since φk maps the elements of Runiv

W,n ∖ px to units in k, so does φA since A is
local with residue field k. Hence we need to show that φA factors via ip if and only if it factors
via iD. Let I be the kernel of the compositum of φA with Runiv

W,n → k ⊗W Runiv
W,n , r ↦→ 1⊗ r, and

let DI : G → Runiv
W,n /I be the induced pseudorepresentation. Because of ψ ◦ φA = φk we have
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3. Equidimensionality of universal pseudodeformation rings

I ⊂ px, and because A is Artinian it follows that px is the radical of I. Let mD be the kernel of
Runiv
W,n → FD given by D. That φA factors via iD means that the ideals In = I +mn

D
are D-open

for n ∈ N≥1 and that I =
⋂
n In. For each In (and for I) let DIn : G→ Runiv

W,n /In (and DI , resp.,)
be the induced pseudorepresentation. That all DIn are continuous is therefore equivalent to DI

being continuous. On the other hand, that φA factors via ix means that kerφA is D′x-open.
Define R̂univ

W,n /I as the completion of Runiv
W,n /I with respect to the In (i.e., with respect to mn

D
).

Hence we need to show that the following two conditions are equivalent:

(a) DA : G→ A is continuous, i.e., all of its characteristic polynomial coefficients are;

(b) DI : G→ R̂univ
W,n /I is continuous with respect to the profinite topology on R̂univ

W,n /I.

By definition of D′x, as a pseudodeformation of D, it is continuous as a pseudorepresentation
G → k with respect to the natural topology on k, and continuous as a pseudorepresentation
G → R̂univ

W,n /px with the profinite topology on the latter. We also note that by construction,
we start from the map φA, the pseudorepresentation DA factors as DI composed with the
homomorphism R̂univ

W,n /I → A. So we need to show that R̂univ
W,n /I → A, which by construction is

injective, identifies R̂univ
W,n /I with a compact open subring of A (in the topology of A).

We shall induct over the length of A to show that R̂univ
W,n /I ⊂ A is a compact open subring.

As observed in the previous paragraph, by hypothesis we know that R/px ⊂ k is a compact
open subring that is contained in the valuation ring of k. This completes the case where A
has length 1. In the induction step, let J ⊂ A be an ideal with quotient A′ = A/J such that
dimk J = 1. Let I ′ be the corresponding ideal of Runiv

W,n , and consider the diagram

0 →→ J →→ A →→ A′ →→ 0

0 →→ I/I ′
↗↘

↑↑

→→ R̂univ
W,n /I

→→
↗↘

↑↑

R̂univ
W,n /I

′ →→
↗↘

↑↑

0.

By the surjectivity of φA, it is clear that A is the k-span of it subring R̂univ
W,n /I. By induction

hypothesis, the right hand inclusion identifies R̂univ
W,n /I

′ with a compact open subring of A′ that

spans A′ over k. Denoting by O the ring of integers of k, this is equivalent to O ·R̂univ
W,n /I

′ being

an O-lattice in A′ and to (O · R̂univ
W,n /I

′)/(R̂univ
W,n /I

′) being finite. We need to show the analog for
A and I.

We know that J ∼= k as a k-module and that I/I ′ is a finitely generated R̂univ
W,n /px-submodule.

Since R/px ⊂ k is compact open, we find that O·I/I ′ is a lattice in J and that O·(I/I ′)/(I/I ′) is
finite. Let b0 ∈ I/I ′ be an O-basis of O · I/I ′. Choose an O-basis of O ·R̂univ

W,n /I
′ in R̂univ

W,n /I
′ (this

is possible by Nakayama’s Lemma by first working in the reduction modulo mO) and lift these
basis elements to elements b1, . . . , bt in R̂

univ
W,n /I. Then one verifies that the O-span of {b0, . . . , bt}

contains R̂univ
W,n /I, and that (O · R̂univ

W,n /I)/(R̂
univ
W,n /I) is finite. This completes the induction step

and the proof of (ii).
To prove (iii), we need to show that natural transformation of functors Ark → Sets defined

by
{continuous deformations ρA of ρx to A}

ρA ↦→detρA

↓↓

A
#

→→

�

→→
{continuous pseudodeformations DA of D′x to A}
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is an isomorphism. Well-definedness is clear. Injectivity follows from Theorem 3.1.50(3.1.50)
(due to Chenevier) since ρx is absolutely irreducible. To prove surjectivity, consider a pseudode-
formationDA : G→ A ofD′x and note that by the just quoted theorem there exists a deformation
ρA of ρx to A with DA = det ρA. However, it remains to show that ρA is continuous. For this,
one proceeds as in the proof of Corollary 3.2.10 using Proposition 3.2.9 by Wang Erickson. The
situation is simplified by the fact that ρx is absolutely irreducible. We omit details.

Proposition 3.2.14 (Cf. [Che14, Exmp. 3.4]). Suppose that k is either a finite field or a
local field of equi-characteristic p. Let ρ : G → GLn(k) be an absolutely irreducible residual
representation with associated pseudorepresentation D. Then the deformation functor Dρ of ρ
is canonically isomorphic to PsDD.

Proof. The assertion for k finite is [Che14, Exmp. 3.4]. For k a local field, this follows from
Corollary 3.2.13(iii).

Corollary 3.2.15. Let D : GK → F be an n-dimensional pseudorepresentation and x ∈ Xuniv
D

be of dimension 1 so that κ(x) is a local field. Let Dx : GK → κ(x) be the pseudorepresentation
from Definition 3.2.1 and assume that Dx is irreducible. Let Cx be the Azumaya-κ(x)-algebra
κ(x)[G]/CH(Dx) of rank n2 over κ(x) and ψx : G → C×x the natural homomorphism, so that
Dx = det ◦ρx.

Then we have:

(a) There is a finite extension L/κ(x) and a representation ρx : GK → GLn(L) such that
ρx = ψx ⊗κ(x) L.

(b) The representations ρx and ψx are continuous.

(c) Let R̂p be as in Corollary 3.2.13(ii). If H2(GK , adρx) = 0 for ρx from ((b)), then R̂p⊗κ(x)L
is formally smooth over L of dimension dimH1(GK , adρx).

Proof. Part ((a)) is clear by taking for L any splitting field of Cx that is finite over κ(x).
Part ((b)) follows from Lemma 3.2.11. Regarding ((c)) note first that by Proposition 3.1.61 and
Corollary 3.2.13 the ring R̂p ⊗κ(x) L is the universal deformation ring of ρx. By the analog of
Theorem 2.2.14 for representations to local fields, the condition H2(GK , adρx) = 0 implies that

R̂p⊗κ(x)L is regular and that it is a power series ring over L of Krull dimension dimH1(GK , adρx).

This is equivalent to R̂p ⊗κ(x) L being formally smooth over L by Proposition 2.1.11.

3.2.2 Induction for pseudorepresentations

In this subsection we fix a profinite group G and a normal open subgroup H of index m. Under
suitable irreducibility hypothesis on a given pseudorepresentation of H over a profinite ring we
shall define its induction to G. A main tool is the universal Cayley-Hamilton sheaf introduced
in the previous subsection, which is an Azumaya algebra over the irreducible locus.

Lemma 3.2.16. Let A be a commutative ring and C an Azumaya A-algebra. Consider a
representation ρ : H −→ C×. There exists a representation ρ∗ : G → Matm(C)

× such that for
any étale extension A→ A′ that splits C, there is an isomorphism ρ∗⊗AA′ ∼= IndGH(ρ⊗AA′) of
G-representations over A.

Its induced algebra representation A[G]→ Matm(C) takes values in an Azumaya algebra, and
by Example 3.1.8 therefore Dρ∗ is a pseudorepresentation with values in A.
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3. Equidimensionality of universal pseudodeformation rings

Proof. To prove the lemma, we adapt the description of the induced matrix representation from
[CR81, pp. 227-230] to the setting of Azumaya-algebras. Let g1, . . . , gm be a set of representatives
of left cosets of G/H such that G =

⨆m
i=1 giH. For g ∈ G we define for each j ∈ {1, . . . ,m} an

i = ij in {1, . . . ,m} by the condition

ggj ∈ giH.

The assignment j → ij is a permutation of {1, . . . ,m}. We extend ρ from H to G by defining

ρ̃ : G −→ C, g ↦−→
{
ρ(g) if g ∈ H,

0 if g ∈ G∖H.

Consider the map

ρ∗ : G −→ Matm(C), g ↦−→

⎛⎜⎝ ρ̃(g−11 gg1) · · · ρ̃(g−11 ggm)
...

. . .
...

ρ̃(g−1m gg1) · · · ρ̃(g−1m ggm)

⎞⎟⎠ .

Then for all g ∈ G the image ρ∗(g) is a monomial matrix over the skewfield C since for 1 ≤
i, j ≤ m the only nonzero entry in the ith row and jth column of ρ∗(g) is ρ(g−1ij ggj) ∈ C

×. In

particular, this shows that ρ∗(g) lies in GLm(C).

We claim that ρ∗ has the properties asserted in the lemma. Let A → A′ be finite étale so
that C ⊗A A′ = Matr(A

′) for a suitable r ∈ N≥1. Then ρ∗ ⊗A A′ is the matrix representation of
the induced representation of

ρ⊗A A′ : H −→ GLr(A
′)

simply by our construction following [CR81]. This implies the multiplicativity of the map ρ∗, i.e.,
that it is a homomorphism. Moreover, it shows that ρ∗⊗AA′ is the usual induced representation
of ρ⊗A A′.

Remark 3.2.17. It can be shown that ρ ↦→ ρ∗ in Lemma 3.2.16 is uniquely characterized as the
right adjoint of the restriction homomorphism from G-representations to H-representations on
Azumaya algebras.

Definition 3.2.18. We call ρ∗ in Lemma 3.2.16 the representation induced from ρ under H ⊂ G
and denote it by IndGH ρ.

Below we want to have a rather explicit description of the characteristic polynomial of IndGH ρ.
This is prepared in the following lemmas. We could not locate these presumably well-known
results in the literature, so we indicate some proofs.

Let A be a commutative ring, let C be an Azumaya A-algebra. Recall that for elements
c ∈ C one has a notion of characteristic polynomial χc. It is a monic polynomial in A[t] of
degree n where n2 is the rank of C over A; it is defined by first passing from A to an étale
splitting extension A′ and then taking the usual characteristic polynomial over A′. We also
write χc(t) =

∑n
i=0(−1)iΛc,i(c)tn−i, similarly to Definition 3.1.11. Recall also that if C is an

Azumaya A-algebra, then so is Matm(C). We write χmc for the characteristic polynomial (of
degree nm) of c ∈ Matm(C).

Lemma 3.2.19. Let c = (ci,j) be in Matm(C). Suppose that there is a permutation σ ∈ Sm

such that ci,j = 0 for i ̸= σ(j) and such that cσ(j),j lies in C× for all j. Then χmc has the
following description:
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Write σ in its cycle decomposition σ = σ1 · . . . ·σv, where the σl are disjoint cycles of length ml

such that
∑v

l=1ml = m and let jl be in the support of σl such that σl = (jl, σ(jl), . . . , σ
ml−1(jl)).

Then

χmc (t) =

v∏
l=1

χc(l)(t
ml) with c(l) := cjl,σml−1(jl)

cσml−1(jl),σ
ml−2(jl)

· . . . · cσ(jl),jl .

Proof. Let si = m1+. . .+ml−1 for l = 1, . . . , v, withm0 = 0, and let τ ∈ Sm be the permutation
whose inverse is given by(

s1 + 1 s1 + 2 · · · s1 +m1

j1 σ(j1) . . . σm1−1(ji)

)
· . . . ·

(
sv + 1 sv + 2 · · · sv +mv

jv σ(jv) . . . σmv−1(jv)

)
,

and let p = pτ in Matm(C) be the permutation matrix attached to τ , i.e., with pi,j = 0 for
i ̸= τ(j) and pτ(j),j = 1C for all j. Then one verifies that pτ cp

−1
τ is a block diagonal matrix in

Matm(C) with v blocks on the diagonal, the lth block lies in Matml(C) and is of the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . cjl,σml−1(jl)

cσ(jl),jl 0
. . . 0

0 cσ2(jl),σ(jl)
. . .

. . .
...

. . .

0 . . . 0 cσml−1(jl),σ
ml−2(jl)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We leave it as a simple exercise in matrix manipulations to complete the result in this case.

Lemma 3.2.20. Let the hypotheses be as in Lemma 3.2.16. Fix g′ ∈ G and denote by m′ its
order in the group G/H. Then for h ∈ H one has

χIndGH ρ(g′h)(t) =
∏

g∈G/H⟨g′⟩

χ
ρ(g

−1)((g′h)m′ )
(tm

′
).

If G/H⟨g′⟩ is a group (and not only a coset), then the inversion in ρ(g
−1) can be omitted.

Recall that the twist ρ(g
−1) as defined in Definition 2.3.1 also applies to the present situation.

Note also that (g′h)m
′
lies in H so that the above formula is well-defined, since H ⊂ G is a

normal subgroup and m′ = ordG/H(g
′).

Proof. Let the notation be as in the proof of Lemma 3.2.16, and set v = m/m′. Define σl ∈ Sm

as the (unique) permutation such that glgj ∈ gσl(j)H for all l ∈ {1, . . . ,m}. Let c ∈ Matm(C)

be the matrix with ci,j = 0 for i ̸= σl(j) and cσl(j),j = ρ(g−1σl(j)glhgj), so that c = ρ∗(glh).

Choose j1, . . . , jv such that the elements gji are representatives of the cosets of G/H⟨gj⟩, or,
equivalently, such that the orbits of the ji under σl are in bijection with the orbits in {1, . . . ,m}
under σl. Now c is monomial, and by Lemma 3.2.19 its characteristic polynomial is given by

χρ∗(glh)(t) =

v∏
s=1

χρ(g−1
js
glhg

σm
′−1

l
(js)

)ρ(g−1

σm
′−1

l
(js)

glhg
σm

′−2
l

(js)
)·...·ρ(g−1

σl(js)
glhgjs )

(tm
′
),

where we use our explicit shape of c, so that in particular j ↦→ mj is constant with value m′.
Next one one uses the multiplicativity of ρ as a representation to combine its arguments as
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a product in which cancellations occur. Using also the twist of ρ by some g ∈ G defined in
Definition 2.3.1, we obtain

χρ∗(glh)(t) =
v∏
s=1

χ
ρ
(g−1
js

)
((glh)m

′ )
(tm

′
),

Now up to isomorphy we can replace gjs in ρ(g
−1
js

) by any other representative of the class
gjsH⟨gl⟩. To conclude the proof of the formula in the lemma note that we may from that start
assume that the gi are chosen in such a way that g′ is among them.

In the remainder of this subsection, let G be a profinite group, H ⊂ G be a normal subgroup
of finite index m, and

DH : H −→ B

be a pseudorepresentation of dimension n with values in a commutative ring B. Denote by
Min(B) the set of minimal primes of B. For a local ring A denote by Ash its strict henselization.

In order to define an induction of DH , we additionally assume that the following hold.

Assumption 3.2.21 (Basic assumptions on B and DH). The ring B is a complete Noetherian
semilocal equidimensional ring of characteristic p satisfying the following:

(i) The homomorphism B →
∏

p∈Min(B)Bp is injective.

(ii) For each p ∈ Min(B) there is an n-dimensional representation ρp of H over Bsh
p such that

DH ⊗B Bsh
p is the determinant attached to ρp.

Remark 3.2.22. (a) Assumption 3.2.21(i) is equivalent to B satisfying Serre’s condition (S1),
which in turn is equivalent to all associated primes of B being minimal; cf. [Mat89,
Thm. 6.1, Rks. above Thm. 23.8]. This uses that Z =

⋃
{p : p is an associated prime} is

the set of zero divisors of B and that, as is elementary to see, S = B ∖ Z is the largest
multiplicatively closed subset of B such that B → BS is injective.

(b) A simple, in our applications sufficient, condition for B to satisfy (S1) is that B is reduced.

(c) If DH,p := DH ⊗B Bp is irreducible for all p ∈ Min(B), then Assumption 3.2.21(ii) holds.
This follows from [Che14, Thm. 2.22] recalled in Theorem 3.1.50(3.1.50), since in this case
DH⊗BBsh

p factors via the Cayley-Hamilton quotient of Bsh
p [H] which by the results quoted

is a rank n matrix algebra over Bsh
p .

(d) Due to our treatment below and the explicit formulas we have for characteristic polynomial
coefficients, we expect that eventually Assumption 3.2.21 might be superfluous in what
follows.

In the following we shall write Dx for D⊗B κ(x) for any pseudorepresentation D defined over
B and any geometric point x : Specκ(x)→ SpecB.

Theorem 3.2.23. Suppose Assumption 3.2.21 holds. Then there exists a unique pseudorepre-
sentation DG : G→ B whose characteristic polynomial on a coset g′H is given by

χDG,B(g
′h, t) =

∏
g∈G/H⟨g′⟩

χ
D

(g−1)
H ,B

((g′h)m
′
, tm

′
). (8)

It has the following properties.
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3.2. Geometric loci of universal pseudodeformation spaces

(a) Let x : Specκ(x)→ SpecB be any geometric point and denote by ρx the representation of
H corresponding to DH,x. Then DG,x is the pseudorepresentation attached to IndGH ρx.

(b) If DH is continuous, then so is DG.

(c) One has

ResGH DG
∼=

⨁
g∈G/H

Dg
H .

(d) Suppose that over an affine open subset U = SpecB′ ⊂ SpecB the pseudorepresentation is
irreducible, so that C := B[G]/CH(DH) ⊗B B′ is an Azumaya B′-algebra and DH is the
determinant attached to the reduced norm of C composed with the natural homomorphism
ψ : G→ C×. Then DG ⊗B B′ = det ◦ IndGH ψ.

(e) Let i ∈ {0, . . . , nm} and let g′ ∈ G have order m′ in G/H. Then ΛDG,i(g
′) = 0 if m′ ∤ i.

(f) Let B → B′ be any surjective homomorphism onto a domain B′ (so that B′ satisfies As-
sumption 3.2.21 automatically). Denote by D′H the reduction DH ⊗B B′ and by D′G : G→
B′ the unique pseudorepresentation whose characteristic polynomial is given by (8) modi-
fied so that DH and DG are replaced by D′H and D′G, respectively. Then DG⊗B B′ = D′G.

Proof. By the Cohen structure theorem we have Bp
∼= κ(p)[x1, . . . , xh]/I for some h ∈ N≥1 and

some ideal I such that a power of (x1, . . . , xh) is a subset of I. Then Bsh
p = κ(p)sep[X1, . . . , xn]/I,

where the canonical inclusion Bp → Bsh
p is the strict henselization of Bp. It follows from As-

sumption 3.2.21(i) that the ring homomorphism ι : B → Bsh
η :=

∏
p∈Min(B)B

sh
p is injective.

Hence we shall regard B as a subring of Bsh
η via ι, and by Assumption 3.2.21(ii) there ex-

ists a representation ρη : H → GLn(B
sh
η ) such that det ◦ρη = DH ⊗B Bsh

η . Define DG as

det ◦ IndGH ρη : G → GLnm(B
sh
η ). Then (8) holds for DG by Lemma 3.2.20. Obviously the right

hand side of (8) has coefficients in B. Thus by Proposition 3.1.14 the pseudorepresentation DG

is already defined over B, and by the same result DG is uniquely determined by the coefficients
of χDG . It remains to prove the properties listed in (a)–(e).

To see (a) note first that formula (8) is preserved under base change to κ(x), i.e., the formula
still holds if we replace simultaneously DG by DG,x and DH by DH,x. By the construction of
ρx one has χρx = χDH,x , and by Lemma 3.2.20, the right hand side of (8) over κ(x) is equal to
χIndGH ρx

. This proves (a).

Part (b) follows immediately from (8): it suffices to verify the continuity of the characteristic
polynomial coefficients, and this may be done on the open cover gH, g ∈ G. On each open of

this cover, (8) describes these coefficients. Since DH and hence the D
(g′)
H are continuous and

since gh ↦→ (gh)m
′
is continuous, the result follows.

Next, the formula in (c) clearly holds over Bsh
η since there ResGH IndGH ρη = ⊕g∈G/Hρ

g
η. Because

ι is injective, taking characteristic polynomials, formula (c) holds.
The first half of (d) is proved by an argument analogous to the proof of Corollary 3.2.13(i).

To see the further assertion, one proceeds similar to the proof of (c), using however the injec-
tion ι ⊗B B′ : B′ → Bsh

η ⊗B B′. Part (e) is immediate from (8), since the right hand side is a

polynomial in tm
′
. Part (f) is clear, since we may tensor (8) over B with B′ and since a pseu-

dorepresentation is uniquely determined by its characteristic polynomial by Amitsur’s formula;
see Proposition 3.1.14(i).

Definition 3.2.24. We call the pseudorepresentation DG from Theorem 3.2.23 the induced
pseudorepresentation of DH under H ⊂ G and write IndGH DH for it.
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3. Equidimensionality of universal pseudodeformation rings

Lemma 3.2.25. Suppose that Assumption 3.2.21 holds, that U ⊂ SpecB and ψ are as in
Theorem 3.2.23(d), and that x is a point of U of dimension 1 with corresponding prime p ∈
SpecB. Then the following holds:

(i) DH ⊗B κ(x) is equal to det ◦ψx for ψx = ψ ⊗B κ(x);

(ii) we have IndGH(DH ⊗B B/p) =
(
IndGH DH

)
⊗B B/p;

(iii) if DH is continuous, then so is IndGH(DH ⊗B B/p).

Proof. Assertion (i) follows immediately from x ∈ U . Part (ii) is a special case of Theo-
rem 3.2.23(f). Finally, assertion (iii) follows from Theorem 3.2.23(b) applied to B/p since the
continuity of DH implies the continuity of DH ⊗B B/p.

The hypotheses in Assumption 3.2.21 clearly hold for B = Falg, for instance by Remark 3.2.22.
In this case for later use we record the following result.

Lemma 3.2.26. Let D : GK → Falg be a continuous pseudorepresentation and SD be the set of

pseudorepresentations D
′
: GK(1) → Falg satisfying IndGKGK(1)

D
′
= D.

(i) SD is finite.

(ii) If D = D(1), then SD is nonempty.

In particular, there is a finite extension F′ of F such that D and any D
′ ∈ SD are defined over F′.

Proof. The first assertion follows from Corollary 3.1.71. If D is irreducible, then this follows
from Theorem 2.3.4. In general one uses the ideas from the proof of Corollary 2.3.6. This is
quite straightforward.

3.2.3 Loci of regular and singular pseudodeformations in special fibers

We first define the twist of a pseudorepresentation with a character. Next we consider the
closed locus of pseudodeformations that are invariant under certain twists. Finally, we show
that certain irreducible points are regular if ζp /∈ K and form open loci. If ζp ∈ K, then
the regular locus is empty and if in addition n ∤ p we instead consider regular points in the
nilreduction.

Throughout this subsection, we fix an n-dimensional residual pseudorepresentation D : GK →
F.

Definition 3.2.27. Let S, S′ be A-algebras, let D : S → S′ be a multiplicative A-polynomial
law and let r : S → A be an A-algebra homomorphism.

(a) The twist D ⊗ r of D by r is defined by

(D ⊗ r)B := DB ⊗ rB : S ⊗A B −→ S′ ⊗A B, s ↦−→ r(s) ·DB(s), ∀B ∈ Ob(CAlgA);

it is indeed a multiplicative polynomial law S → S′; we omit the elementary details.

(b) Suppose S = A[G] and χ : G → A× is a group homomorphism. Denote by rχ : S →
S′,
∑
agg ↦→

∑
agχ(g) the induced A-algebra homomorphism. Then the twist D⊗χ of D

by χ is the multiplicative polynomial law D ⊗ rχ.

Remark 3.2.28. Let the notation be as in the above definition.
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3.2. Geometric loci of universal pseudodeformation spaces

(a) If D is homogeneous of degree n, then so is D ⊗ r. Moreover, if D is an n-dimensional
pseudorepresentation, then this is also true for D ⊗ r.

(b) If D and r are continuous, then so is D ⊗ r.

(c) For the characteristic polynomial coefficients one has the identities

ΛD⊗r,i(s) = ΛD,i(s) · (r(s))i for all i and all s ∈ S.

Lemma 3.2.29. Let D,D′ : S → A be pseudorepresentations and let r : S → A be an A-algebra
homomorphism. Then D′ = D ⊗ r if and only if ΛD′,i(s) = ΛD,i(s) · (r(s))i for all i and all
s ∈ S.

Proof. By the previous remark it suffices to prove the if-direction. However, this follows from
Proposition 3.1.14(i), which says that a pseudorepresentation is determined by its characteristic
polynomial coefficients.

Corollary 3.2.30. Let D : G→ A be an n-dimensional pseudorepresentation of a group G and
χ : G→ A× a character of finite order prime to p. Then D = D ⊗ χ if and only if

ΛD,i(g) = 0 if ordχ(g) ∤ i for all i = 0, . . . , n and g ∈ G.

Proof. By Lemma 3.2.29 we have D = D ⊗ χ if and only if

ΛD,i(g) = ΛD,i(g) · χi(g) for all i and all g ∈ G.

Since 1− χi(g) is a unit in Falg whenever ordχ(g) ∤ i, and is zero otherwise, the latter is clearly
equivalent to the condition given in the corollary.

Corollary 3.2.31. Let D := IndGH DH : G→ B be the pseudorepresentation that was constructed
in Theorem 3.2.23 under Assumption 3.2.21 on B and DH : H → B. Then D = D ⊗ χ for any
1-dimensional character χ : G/H → A×.

Proof. This follows from Lemma 3.2.20 and Corollary 3.2.30.

Corollary 3.2.32. Let R ∈ Ob(ÂrW (F)), let D : G → R be an n-dimensional pseudorepresen-
tation and let χ : G → R× be a character of finite order prime to p. Let I be the ideal of R
generated by the set

{ΛD,i(g) : g ∈ G, i ∈ {1, . . . , n} such that ordχ(g) ̸ | i}.

Then the locus of SpecR on which D = D ⊗ χ is the closed subscheme SpecR/I.

Proof. This follows as one has for any ideal J of R:

(D ⊗R R/J)⊗ χ = D ⊗R R/J ⇐⇒ I ⊂ J.

Definition 3.2.33. Let R be in ÂrW (F) and let D : GK → R be any pseudorepresentation.

(a) For i ∈ Z we write D(i) for the twist of D by the i-fold tensor power of the Teichmüller
lift of the mod p cyclotomic character of GK (which has order dividing p− 1).

(b) If ζp /∈ K, we call D special if D = D(1) and nonspecial otherwise.
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3. Equidimensionality of universal pseudodeformation rings

Definition 3.2.34. Suppose ζp /∈ K.

(i) (X
univ
D )D(1)=D ⊂ X

univ
D denotes the locus of special points and (X

univ
D )D(1)̸=D its comple-

ment (X
univ
D )∖ (X

univ
D )D(1)=D.

(ii) The intersections (X
univ
D )irr,D(1)̸=D := (X

univ
D )irr ∩ (X

univ
D )D(1)̸=D and (X

univ
D )irr,D(1)=D :=

(X
univ
D )irr ∩ (X

univ
D )D(1)=D, where (X

univ
D )irr as in Definition 3.2.1, denote the loci of non-

special irreducible and special irreducible points of X
univ
D , respectively.

Note that if D ̸= D(1), then (X
univ
D )irr,D(1)̸=D = (X

univ
D )irr.

Lemma 3.2.35. If ζp /∈ K, then we have the following:

(i) (X
univ
D )D(1)̸=D ⊂ Xuniv

D is Zariski open.

(ii) (X
univ
D )irr,D(1)̸=D ⊂ Xuniv

D is Zariski open.

Proof. By Corollary 3.2.32 the locus (X
univ
D )D(1)=D ⊂ Xuniv

D is Zariski closed, and this implies (i).
Part (ii) follows from (i) together with Lemma 3.2.2.

Proposition 3.2.36. Suppose dimX
univ
D ≥ 1. Then in each of the nonempty components of the

following spaces, points of dimension 0 and 1 are very dense. Moreover the first 3 are Zariski

open, the middle one is locally closed and the last 3 are Zariski closed in X
univ
D :

(X
univ
D )reg, (X

univ
D )irr, (X

univ
D )irr,D(1)̸=D, (X

univ
D )irr,D(1)=D, (X

univ
D )D(1)=D, (X

univ
D )sing, (X

univ
D )red.

Proof. The assertions on openness, closedness and local closedness follow from Lemma 3.2.35
and Lemma 3.2.2, and for (·)reg and (·)sing from [EGA IV2, Thm. 6.12.7]. The density assertion
follows from Lemma 2.1.20.

Remark 3.2.37. Note that X
univ
D contains precisely one closed point, namely D. So typically

dimension 1 points are very dense. Moreover, dimX
univ
D ∖ {D} = dimX

univ
D − 1.

The following shows that (X
univ
D )irr,D(1)̸=D is contained in the regular locus.

Lemma 3.2.38. Suppose that U := (X
univ
D )irr,D(1)̸=D ∖ {m

R
univ
D
} is nonempty. Let x be a

dimension 1 point of U . Denote by R̂p the universal pseudodeformation ring of the associated
pseudorepresentation D′x : G → κ(x), g ↦→ 1 ⊗W (F) Dx(g), from Corollary 3.2.13. Then R̂p is

regular and dim R̂p = dn2 + 1. Moreover, U is regular and equidimensional of dimension dn2.

Proof. Consider the Galois representation ρx : GK → GLn(L) with det ρx = D′x ⊗κ(x) L from
Theorem 3.1.50 that is defined over a finite extension L of κ(x). By assumption, ρx satisfies
ρx ̸∼= ρx(1) so that the regularity of R̂p follows from

H2(GK , adρx)
∨ = H0(GK , adρx(1)) = HomGK (ρx, ρx(1)) = 0,

using Theorem 2.2.16. By the Euler characteristic formula of the same theorem we also find

dim R̂p = dimLH
1(GK , adρx) = dn2 + dimLH

0(GK , adρx) = dn2 + 1.

It follows from Lemma 2.2.12 that x is a regular point of X
univ
D of dimension dn2 +1− 1 = dn2.

Since x lies on U , it is also a regular point of U . To see that U is regular, let Y ⊂ U be the closed
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subscheme of singular points. We know that points of dimension at most 1 will be dense in the

constructible set Y . Since the unique closed point of X
univ
D is not in U , points of dimension 1 are

dense in Y ⊂ U . However as we just saw, such points are regular and cannot lie in Y . Therefore
Y must be empty. And again by the density of dimension 1 points in U , it follows that U is
regular and equidimensional of dimension dn2.

It will also be useful to have a weaker result on (X
univ
D )irr.

Lemma 3.2.39. Let x be a dimension 1 point of U := (X
univ
D )irr ∖ {m

R
univ
D
}. Denote by R̂p the

universal pseudodeformation ring of the associated pseudorepresentation D′x : G → κ(x), g ↦→
1 ⊗W (F) Dx(g), from Corollary 3.2.13. Then R̂p is a complete intersection ring with dim R̂p ∈
{dn2 + 1, dn2 + 2}. Moreover, U is of dimension at most dn2 + 1.

Proof. By exactly the same computations as in the previous result, we obtain a presentation
0→ I → κ(x)[[X1, . . . , Xdn2+2]]→ R̂p → 0, where the ideal I is generated by at most one element

over κ(x)[[X1, . . . , Xdn2+2]]. This proves the claims on R̂p. The remaining assertion follows from
the density of dimension 1 points in U and Lemma 2.2.12.

Let us give one further variant of the previous two results.

Lemma 3.2.40. Let x be a dimension 1 point of U := (X
univ
D )irr ∖ {m

R
univ
D
}. Denote by R̂p the

universal pseudodeformation ring of the associated pseudorepresentation D′x : G → κ(x), g ↦→
1 ⊗W (F) Dx(g), from Corollary 3.2.13. Let ρx be an absolutely irreducible representation over
a finite extension L of κ(x) such that det ◦ρx = Dx ⊗κ(x) L. Suppose that ζp ∈ K and

H0(GK , adρx) = 0. Then R̂p
red is complete regular local of dimension dn2 + 1. In particular, if

p ̸ |n, then Ured is regular and equidimensional of dimension dn2.

Proof. It follows from Corollary 2.2.18 that (R
univ
ρx )red is complete regular local of dimension

dn2 + 1. From Proposition 3.1.61 and Proposition 3.2.14 we deduce R
univ
Dx ⊗κ(x) L ∼= R

univ
ρx , and

the assertion on R̂p
red follows. Since p ̸ |n implies that H0(GK , adρx) vanishes, the remaining

assertion follows from the density of dimension 1 points in U and Lemma 2.2.12.

The following proposition summarizes some of the results we have obtained so far:

Proposition 3.2.41. (i) Let detD be the determinant of D as defined in Example 3.1.9.
Then the canonical morphism

det : Xuniv
D
→ Xuniv

detD

from Example 3.1.25 is smooth at a point x ∈ (X
univ
D )irr with dimx = 1 (and with ρx an ab-

solutely irreducible representation defined over a finite extension of κ(x) whose determinant
is equal to Dx) if one of the following conditions holds:

(1) ρx(1) ̸∼= ρx;

(2) ζp ∈ K and H0(GK , adρx) = 0; note that the second condition is implied by p̸ |n;

(ii) For x ∈ (X
univ
D )irr one has ρx(1) ∼= ρx if and only if ρx is induced from GK(ζp) ⊂ GK , by

Theorem 2.3.4. Moreover, if ζp ̸∈ K the locus

(X
univ
D )irr,D(1)̸=D := {x ∈ (X

univ
D )irr : ρx(1) ̸∼= ρx}

of nonspecial irreducible pseudorepresentations in X
univ
D is Zariski open in (X

univ
D )irr.
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(iii) One has

(1) (X
univ
D )irr,D(1)̸=D ⊂ (X

univ
D )reg if ζp /∈ K, and (X

univ
D )reg = ∅ if ζp ∈ K.

(2) (X
univ
D,red)

irr ⊂ (X
univ
D,red)

reg if n ̸ | p, where Xuniv
D,red denotes the nilreduction of X

univ
D .

Proof. Part (i) follows from Lemma 2.2.17, Proposition 3.2.14 and Proposition 3.1.61. Part (ii)
and Part (iii)(1) follow from Lemma 3.2.38, Corollary 2.3.6 and again Proposition 3.2.14.
Part (iii)(2) follows from Lemma 3.2.40 and the last part also uses Corollary 2.2.18.

3.3 Equidimensionality of special fibers and Zariski density of the regular locus

Recall that we fix an algebraic closure Kalg of an extension K of Qp of finite degree d = [K :

Qp] with absolute Galois group GK , a primitive pth root of unity ζp, and a finite field F of
characteristic p.

This section inductively proves Theorem B (Theorem 3.3.12) on the equidimensionality of the
special fiber of a universal pseudodeformations space. Our proof proceeds with the same steps
as Chenevier’s proof of the equidimensionality of the generic fiber of the universal pseudorepre-
sentation space.

In Subsection3.3.1, Theorem C (Theorem 3.3.1) on the Zariski density of the irreducible locus
is established with the help of two technical lemmas.

In Subsection 3.3.2, Theorem 3.3.6 gives an upper bound for the dimension of the locus of
special (irreducible) pseudodeformations.

This enables us to prove the equidimensionality in Subsection 3.3.3: The base case is Propo-
sition 3.3.11, and the induction step is shown with the help of the proven Theorem C (Theo-
rem 3.3.1).

If ζp ̸∈ K, Theorem D (Theorem 3.3.13) says that the reducible locus and the locus of special
irreducible pseudodeformations are contained in the singular locus. We finish Subsection 3.3.4
by describing the regular locus of a universal deformation ring and showing that it satisfies
Serre’s condition (R2) if ζp ̸∈ K, and either n > 2, or n = 2 and d > 1, as stated in Theorem E
(Corollary 3.3.15).

3.3.1 Zariski density of the irreducible locus

The aim of this subsection is an analog of the Zariski density of the irreducible locus in the
generic fiber [Che11, Thme. 2.1] that we formulate as a result suitable for an induction.

Theorem 3.3.1 (Theorem C). Given n ≥ 2. Suppose that for all D
′
: GK → F of dimension

n′ < n the following hold:

(i) X
univ
D

′ is equidimensional of dimension d(n′)2 + 1,

(ii) if ζp /∈ K, then (X
univ
D

′ )irr,D(1)̸=D ⊂ Xuniv
D

′ is Zariski dense,

(iii) if ζp ∈ K, then the regular locus ((X
univ
D

′ )irrred)
reg of (X

univ
D

′ )irrred is Zariski dense in X
univ
D

′
red.

Then for all n-dimensional D : GK → F the subspace (X
univ
D )irr ⊂ Xuniv

D is Zariski dense, unless
n = 2 and K = Q2 and D is reducible.

In the missing case n = 2, K = Q2 and D reducible, we have the following:
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Remark 3.3.2. Let D : GQp → F be a split 2-dimensional pseudorepresentation, so that D =
D1⊕D2 for 1-dimensional pseudorepresentations Di – we call them sometimes ρi to stress that
they are also representations. Suppose that ρ1 is not isomorphic to ρ2(l) for l ∈ {0,±1}. Then
H1(GQp , ρiρ

−1
j ) ∼= F for i ̸= j in {0, 1}, and so up to isomorphism there are unique 2-dimensional

representations ρi,j that are a non-trivial extension of ρi by ρj . In this situation it is proved in
[Paš17, Prop. 3.6] that one has isomorphisms

Runiv
Qp,D

∼= Runiv
Qp,ρi,j

for both choices of i, j. Moreover, as Paškūnas explains, it follows from [Che11, Sec. 4] that for
p = 2 one has

Runiv
Q2,D

∼=W (F)[X0]/(X
2
0 − 2X0)[[X1, . . . , X5]],

and for p > 2 there is an isomorphism Runiv
Qp,ρi,j

∼= W (F)[[X1, . . . , X5]], as follows from an easy
computation using Galois cohomology. This has two consequences, we would like to mention:

(a) If p = 2, then the ring (R
univ
Q2,D)red

∼= F[[X1, . . . , X5]] is regular. Since (R
univ
Q2,D)

red has

dimension 4,5 it follows that (X
univ
Q2D)

irr is Zariski dense in X
univ
Q2,D. We cannot deduce this

from Theorem C (Theorem 3.3.1). We expect that similar explicit computations in the
only remaining case (for p = 2) when D1 = D2 also yield the same density result. We
have no proof though.

(b) If p > 2 then R
univ
Qp,D

∼= F[[X1, . . . , X5]] is regular. In particular, the presence of a reducible
locus in a pseudodeformation space need not cause singularities if K = Qp; cf. Theorem D
(Theorem 3.3.13).

For the proof of Theorem C (Theorem 3.3.1) we follow closely the argument of Chenevier;
with some adjustments.

We first recall some constructions from Corollary 3.1.72: For n ∈ N0 we set X
univ
n = Xuniv

F[GK ],n.

For n1, n2 ∈ N0 with n = n1 + n2, the addition (D1, D2) ↦→ D1 ⊕D2 of pseudorepresentations

yields a morphism ιn1,n2
: X

univ
n1
×F X

univ
n2
−→ X

univ
n . Passing to the formal completion at Falg

p -

points, defines a morphism X univ
n1
×Spf F X

univ
n2
−→ X univ

n of formal F-schemes, which we again
denote by ιn1,n2 . Fix a residual pseudorepresentation

D : GK −→ F

of dimension n. Then the pullback of the latter morphism under X univ
D := Spf R

univ
D ↪→ X univ

n

gives a morphism

ιD,n1,n2
: X univ

D,n1,n2
−→ X univ

D ,

which is a closed immersion by Corollary 3.1.72 if D is split and multiplicity free. By possibly
enlarging F, using Corollary 3.1.72 we will assume that we have an isomorphism

X univ
D,n1,n2

= ι−1n1,n2
(X univ

D ) ∼=
⨆

Di∈X
univ
ni

(Spf F) for i = 1, 2 and D1⊕D2=D

Spf(R
univ
D1
⊗̂F′R

univ
D2

)

5 Arguing as in Lemma 3.3.14 one can show that the dimension is at most 4; by considering semisimple diagonal
representations and invoking Proposition 3.3.11 it is at least 4.
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where the union on the right is finite. For the following lemma we consider the corresponding
affine scheme

X
univ
D,n1,n2

:= ι−1n1,n2
(X

univ
D ) ∼=

⨆
Di∈X

univ
ni

(F) for i = 1, 2 and D1⊕D2=D

Spec(R
univ
D1
⊗̂F′R

univ
D2

) (9)

together with the induced morphism

ιD,n1,n2
: X

univ
D,n1,n2

−→ X
univ
D (10)

that is a closed immersion if D is split and multiplicity free.

Lemma 3.3.3 ([Che11, Lem. 1.1.]). Let (x, x1, x2) ∈ X
univ
D,n1,n2

be such that the pseudorepre-
sentations D1 and D2 corresponding to x1 and x2, respectively, are irreducible. Consider a

geometric point x lying over x ∈ X
univ
D . Then there is an étale neighbourhood (U, u) of x in

X
univ
D with an étale morphism φU : U → X

univ
D such that the base change of ιD,n1,n2

along φU ,
i.e., the morphism

U ×
φU ,X

univ
D

X
univ
D,n1,n2

ιD,n1,n2−→ U ×
φU ,X

univ
D

X
univ
D = U,

is a closed immersion with image U red = U ×
φU ,X

univ
D

(X
univ
D )red.

Proof. By Proposition 3.1.16, the universal pseudodeformation Duniv
D

: R
univ
D [GK ] → R

univ
D fac-

tors via the universal Cayley-Hamilton pseudodeformation

DCH-univ
D

: S
CH-univ
D := R

univ
D [GK ]/CH(Duniv

D
) ∼= SCH-univ

n ⊗
R

univ
n

R
univ
D −→ R

univ
D .

Consider the strictly local ring at x,

Osh

X
univ
D ,x

∼= O
X

univ
D ,x

= colim(V,v)O(V ),

where (V, v) runs over all connected étale neighbourhoods of x in X
univ
D [Sta18, Lem. 04HX].

Since the formation of the Cayley-Hamilton quotient S
CH-univ
D commutes with arbitrary base

change [Che14, § 1.22], for any étale neighbourhood (V, v) of x there is an isomorphism

O(V )[GK ]/CH(Duniv
D
⊗
R

univ
D
O(V ))

∼−→ S
CH-univ
D ⊗

R
univ
D
O(V ) =: SV .

Similarly,

Osh

X
univ
D ,x

[GK ]/CH(Duniv
D
⊗
R

univ
D
Osh

X
univ
D ,x

)
∼−→ S

CH-univ
D ⊗

R
univ
D
Osh

X
univ
D ,x

=: Sx.

From Theorem 3.1.50 it follows that Sx is a generalized matrix algebra of type (n1, n2) with
determinant Dx := Duniv

D
⊗
R

univ
D
Osh

X
univ
D ,x

. In particular, there exists idempotents e1, e2 ∈ Sx

with e1 + e2 = 1 and for i = 1, 2 an isomorphism ψx,i : eiSxei → Matni(Osh

X
univ
D ,x

), whose inverse

defines an injective homomorphism

ψ′x,i : Matni(Osh

X
univ
D ,x

)→ Sx
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of Osh

X
univ
D ,x

-algebras. Since Matni(Osh

X
univ
D ,x

) = colim(V,v)Matni(O(V )) and Sx = colim(V,v) SV ,

we deduce from [EGA IV3, Thm. 8.5.2] that there exists an étale neighbourhood U and for
i = 1, 2 a homomorphism

ψ′U,i : Matni(O(U))→ SU satisfying ψ′U,i ⊗O(U) Osh

X
univ
D ,x

= ψ′x,i

such that also ψ′U,i is injective, since kerψ′x,i is finitely generated [EGA IV3, Cor. 8.5.8(ii)].

By abuse of notation, for i = 1, 2 we let ei ∈ SU be the idempotent that is the image under

ψ′U,i of the identity matrix in Matni(O(U)). Since S
CH-univ
D is finitely presented as an R

univ
D -

module [WE13, Prop. 3.2.2.1] and eiSUei ⊗O(U) Osh

X
univ
D ,x

= eiSxei, by [EGA IV3, Thm. 8.5.2

and Cor. 8.5.2.4] we know that for i = 1, 2 the isomorphism ψx,i : eiSxei → Matni(Osh

X
univ
D ,x

)

spreads out to an isomorphism ψU,i : eiSUei → Matni(O(U)). Consider the n-dimensional pseu-

dorepresentation DU := Duniv
D
⊗
R

univ
D
O(U) that satisfies DU ⊗O(U) Osh

X
univ
D ,x

= Dx. Since R
univ
D

is Noetherian, the kernel KU of the homomorphism tr−τDU ◦ ψ′U

tr−τDU ◦ (ψ
′
U,1, ψ

′
U,2) : Matn1

(
O(U)

)
×Matn2

(
O(U)

)
−→ O(U)

is finitely generated and thusKU must vanish after possibly shrinking the étale neighbourhood U
[EGA IV3, Cor. 8.5.8(ii)].

Therefore, we may assume that SU is a generalized matrix algebra of type (n1, n2). In
particular, there exist O(U)-modules A12 and A21 such that

SU ∼=
(

Matn1(O(U)) Matn1,n2(A12)
Matn2,n1(A21) Matn2(O(U))

)
.

Let I = A12A21+A21A12 = A12A21 be the ideal of total reducibility. From Proposition 3.1.48(i)
we deduce that there exist unique pseudorepresentations Di : eiSUei → O(U)/I for i = 1, 2 such
that

(DU mod I) = D1 ⊕D2.

Consider the locus of total reducibility F := Spec(O(U)/I), the natural closed immersion

f : F → U , and the morphism φU : U → X
univ
D corresponding to the pseudorepresentation

DU mod I. Let g : F → X
univ
D,n1,n2

be the morphism corresponding to the O(F )-valued pseu-
dorepresentations (DU mod I,D1, D2). Then the morphism φU ◦f corresponds to the O(U)/I-
valued pseudorepresentation DU mod I and there is a commutative diagram

F

f

↓↓

g
→→ X

univ
D,n1,n2

ιD,n1,n2
↓↓

U
φU →→ X

univ
D

since φU ◦ f and ιD,n1,n2
◦ g both correspond to DU mod I = D1⊕D2. To deduce the assertion

of the lemma, we want to show that F = Spec(O(U)/I) is isomorphic to U ×
φU ,X

univ
D

X
univ
D,n1,n2

so that

U ×
φU ,X

univ
D

X
univ
D,n1,n2

ιD,n1,n2−→ U
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is a closed immersion of affine schemes. That is, by [Sta18, Def. 01JP] given any connected

affine scheme V together with morphisms f ′ : V → U and g′ : V → X
univ
D,n1,n2

such that the solid
diagram

V
g′

→→h
↘↘

f ′

↘↘

F

f

↓↓

g
→→ X

univ
D,n1,n2

ιD,n1,n2
↓↓

U
φU →→ X

univ
D

commutes, we need to check that there exists a unique dashed arrow h making the diagram
commute.

The morphism φU ◦ f ′ = ιD,n1,n2
◦ g′ defines an O(V )-valued pseudorepresentation DV , and

the morphism g′ a pair (D′1, D
′
2) of O(V )-valued pseudorepresentations D′j of dimension nj for

j = 1, 2. The connectedness of V together with (9) implies that there are unique D
′
i ∈ X

univ
ni (F)

for i = 1, 2 and D′i ∈ Xuniv
Di

(O(V )), such that DV = D′1⊕D′2. By Lemma 3.1.49 the base change

SV = SU ⊗O(U),(f ′)∗ O(V ) is a generalized matrix algebra of type (n1, n2). Therefore, we can
apply Proposition 3.1.48(ii) and conclude that the ideal

I ′ := I ⊗O(U),(f ′)∗ O(V ) = A12A21 ⊗O(U),(f ′)∗ O(V )

of total reducibility of SV vanishes. In particular, there exists a morphism h : V → F such that

(f ′)∗ factors as O(U)
f∗→ O(F ) h

∗
→ O(V ), as desired.

It remains to understand the image of the closed immersion g. Since the image of

U ×
φU ,X

univ
D

X
univ
D,n1,n2

ιD,n1,n2−→ U

is clearly contained in U red, it remains to show that any point y ∈ U red lies in this image.
Suppose that Dy is the reducible pseudorepresentation corresponding to the homomorphism

R
univ
D → O(U)→ κ(y). By Lemma 3.1.49 the base change Sy := SU ⊗O(U) k(y)

alg of SU is also a
generalized matrix algebra of type (n1, n2). Since Dy is reducible, there exists pseudorepresenta-

tions D1, D2 : GK → k(y)alg such that Dy = D1 ⊕D2. By again applying Proposition 3.1.48 we
find that the ideal of total reducibility of the generalized matrix algebra Sy vanishes, that the two
pseudorepresentations D1 and D2 are the unique pseudorepresentations satisfying Dy = D1⊕D2

and that, after possibly reindexing them, we have dimDi = ni. This shows the assertion.

In order to prove Zariski density of the irreducible locus, we need another technical result.

Lemma 3.3.4 (Cf. [Che11, Lem. 2.2]). Consider (x1, x2) ∈ (X
univ
n1

)irr ×F (X
univ
n2

)irr such that

x := ιn1,n2(x1, x2) ∈ X
univ
n is defined over a local field κ(x). Let D1, D2 and D denote the

pseudorepresentations defined by x1, x2 and x. Consider the corresponding representations ρx1
and ρx2 that are defined over a finite extension L of κ(x). Suppose that ρx1 ≇ ρx2(m) for all
m ∈ Z.

(i) There exists a nontrivial extension ρ : GK → GLn(L) of ρx2 by ρx1, and H
0(GK , adρ) ∼= L.

The pseudorepresentation Dρ associated with ρ coincides with D ⊗κ(x) L. The functor Dρ
of continuous deformations of ρ on ArL is pro-representable; we shall write Rρ for the
representing universal ring and ρunivρ : GK → GLn(Rρ) for a universal deformation.
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(ii) If (x1, x2) ∈ (X
univ
n1

)irr,D(1)̸=D ×F (X
univ
n2

)irr,D(1)̸=D, then Rρ is smooth over L of dimension

dimL tXuniv
ρ ,ρ = dn2 + 1 with Xuniv

ρ = SpecRρ.

(iii) If ζp ∈ K, then h := dimL tXuniv
ρ ,ρ = dn2 + 2, and Rρ has a presentation

0 −→ fR −→ R := L[[x1, . . . , xh]] −→ Rρ −→ 0

for some f ∈ R (that at this point might be 0).

(iv) Denote by R̂p the universal pseudodeformation ring for Dρ, by φ : X
univ
ρ → X̂ := Spec R̂p

the map of L-schemes induced by sending ρunivρ to its associated pseudorepresentation

Dρunivρ
= det ◦ρunivρ , and by dφ : tXuniv

ρ ,ρ → t
X̂,x

the induced L-linear map on tangent

spaces. Suppose that ρ′ ∈ ker dφ, i.e., that

ρ′ ∈ tXuniv
ρ ,ρ

∼= Dρ(L[ε])) satisfies det ◦ρ′ = det ◦ρ.

Then with respect to a suitable basis ρ′ has constant diagonal blocks and is upper triangular.

(v) For (x1, x2) as in (ii), we have

dimL ker dφ = dn1n2 − 1 and dimL im dφ = dn2 − dn1n2 + 2.

(vi) Suppose ζp ∈ K. Denote by φred : (X
univ
ρ )red → (X̂)red the morphism on reduced L-schemes

associated to φ and by dφred : t(Xuniv
ρ )red,ρ → t

(X̂)red,x
the induced map on tangent spaces.

Then

dimL ker dφred = dn1n2 − 1− δ and dimL im dφred = dn2 − dn1n2 + 2− δ′

for suitable δ, δ′ ∈ {0, 1} such that δ + δ′ ≤ 1.

Proof. By Theorem 2.2.16, the assumptions imply that

dimLH
2(GK , ρx1 ⊗ ρ∨x2) = dimLH

0(GK , ρx1 ⊗ ρx2(1)∨) = dimLHomGK (ρx1 , ρx2(1)) = 0.

The Euler characteristic formula in Theorem 2.2.16 now gives

dimL Ext
1
GK

(ρx2 , ρx1) = dimLH
1(GK , ρx1 ⊗ ρ∨x2)

= dn1n2 + dimLH
0(GK , ρx1 ⊗ ρ∨x2) + dimLH

2(GK , ρx1 ⊗ ρ∨x2)
= dn1n2.

Thus there exists an nonzero element c ∈ Ext1GK (ρx2 , ρx1). Setting ρ =

(
ρx1 c
0 ρx2

)
and

applying Lemma 2.2.19 and Theorem 2.2.9 shows (i).
To show (ii), by Theorem 2.2.9 we need to show H2(GK , adρ) = 0 and dimLH

1(GK , adρ) =
dn2 + 1. By the duality in Theorem 2.2.16, the first part is equivalent to HomGK (ρ, ρ(1)) = 0,
and this follows from Lemma 2.2.20 with χ = F(1) and the hypotheses on (x1, x2) in (ii). The
other part follows from the Euler characteristic formula in Theorem 2.2.16:

dimLH
1(GK , adρ) = dn2 + dimLH

0(GK , adρ) + dimLH
2(GK , adρ) = dn2 + 1 + 0.
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The proof of (iii) is identical to (ii) with the same references and analogous computations. The
point is that here we deduce HomGK (ρ, ρ(1))

∼= L from Lemma 2.2.20. We omit further details.

For assertion (iv), let us first explain how φ is constructed. The representation ρunivρ is the

inverse limit over n of the representations ρunivρ,n := ρunivρ (mod mn
Rρ

) : GK → GLn(Rρ/m
n
Rρ

) to

local Artin algebras. This yields an inverse system det ◦ρunivρ,n of pseudodeformations of Dρ. By

the universal property of R̂p we obtain an inverse system of homomorphisms R̂p → Rρ/m
n
Rρ

in

ÂrL, and in the limit a homomorphism R̂p → Rρ. The morphism φ is its induced morphism on

spectra Xuniv
ρ → X̂.

For the proof of (iv), we use the canonical identifications (see [Maz97, Prop., p. 271])

Dρ(L[ε]) ∼= tXuniv
ρ

and PsDDρ(L[ε])
∼= t

X̂
(11)

to identify ker dφ with the L-subspace of Dρ(L[ε]), which consists of the deformations of ρ to L[ε]
that map under dφ to the trivial pseudodeformation to L[ε] of the residual pseudorepresentation
Dρ associated with ρ. By definition, the residual pseudorepresentation Dρ is multiplicity free
and split. Hence we can apply Theorem 3.1.50 to the trivial pseudodeformation Dρ′ : GK → L[ε]
associated with ρ′. It provides L[ε]-submodules A12 and A21 so that

im (ρ′) ∼= L[ε][GK ]/ ker (Dρ′) ∼=
(

Matn1(L[ε]) Matn1n2(A12)
Matn2n1(A21) Matn2(L[ε])

)
is a generalized matrix algebra of type (n1, n2) with determinant Dρ′ . Since ρ is a nonsplit
extension, A12 mod ε = L or A21 mod ε = L. Since furthermore A12 and A21 are ideals in L[ε]
and thus equal to 0, εL or L[ε], we deduce A12 = L[ε] or A21 = L[ε].We assume that A12 = L[ε].
By assumption Dρ′ is a trivial deformation of Dρ′ = Dρx1

⊕Dρx2
so that by Proposition 3.1.48(ii)

the ideal of total reducibility A12A21 vanishes. Therefore, A21 = 0 and im ρ′ is upper triangular.
By hypothesis, ρx1 and ρx2 and their respective associated pseudorepresentations Dρx1

and Dρx2
are irreducible. By Theorem 3.1.26 constancy of Dρx1

and Dρx2
implies constancy of ρx1 and ρx2 .

Since Dρ is a trivial deformation of Dρ′ = Dρx1
⊕Dρx2

we deduce that the non-split extension
ρ is constant on its diagonal blocks ρx1 and ρx2 .

To show in (v) that dimL ker dφ = dn1n2 − 1, we consider lifts ρ1, ρ2 of ρ to L[ε] whose
associated deformation classes satisfy [ρ1] = [ρ2] ∈ ker dφ ⊂ tXuniv

ρ

∼= Dρ(L[ε]). By assertion

(iv) we have ρi = ρ + ε

(
0 ci
0 0

)
for some cocycle ci ∈ Z1(GK , ρx1 ⊗ ρ∨x2). In order to obtain

dimL ker dφ, we determine when ρ1 is equivalent to ρ2. In this case there exists a matrix
U ∈ Matn(L) such that

ρ+ ε

(
0 c2
0 0

)
= ρ2

= (1 + εU)ρ1(1− εU)

= (1 + εU)(ρ+ ε

(
0 c1
0 0

)
)(1− εU)

= ρ+ ε(Uρ− ρU +

(
0 c1
0 0

)
).

If we write U =

(
U11 U12

U21 U22

)
with matrices Uij ∈ Matni×nj (L) for 1 ≤ i, j ≤ 2, then the above
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equality is equivalent to(
0 c2 − c1
0 0

)
=

(
U11ρx1 U11c+ U12ρx2
U21ρx1 U21c+ U22ρx2

)
−
(
ρx1U11 + cU21 ρx1U12 + cU22

ρx2U21 ρx2U22

)
Because dimLH

0(GK , ρxi ⊗ ρ∨xj ) = 0 and dimLH
0(GK , ρxi ⊗ ρ∨xi) = 1 for 1 ≤ i, j ≤ 2 and i ̸= j,

we deduce that U21 = 0 and that U11 and U22 are scalar matrices. Finally, the map

−ρx1U12 + U12ρx2 ∈ B1(GK , ρx1 ⊗ ρ∨x2)

is a coboundary. Therefore, c2 = (U11 + U22)c+ c1 ∈ H1(GK , ρx1 ⊗ ρ∨x2) and

dimL ker dφ = dimL Ext
1
GK

(ρx2 , ρx1)− 1 = dimLH
1(GK , ρx1 ⊗ ρ∨x2)− 1 = dn1n2 − 1. (12)

Now (v) is immediate from (ii) and dimV = dimkerψ + dim imψ for a vector space V and a
linear map ψ with domain V .

For (vi) consider the following diagram with left exact rows and where the middle and right
vertical arrows are injective (by definition of t):

0 →→ kerφ →→ tXuniv
ρ ,ρ

dφ →→ t
X̂,Dρ

0 →→ kerφred
→→

↑↑

t(Xuniv
ρ )red,ρ

dφred →→
↗↘

↑↑

t
(X̂)red,Dρ

.
↗↘

↑↑

By a simple diagram chase one deduces kerφred = kerφ ∩ t(Xuniv
ρ )red,ρ ⊂ tXuniv

ρ ,ρ. Next consider
the diagram

0 →→ ker dφ →→ tXuniv
ρ ,ρ

→→ im dφ →→ 0

0 →→ ker dφred
→→

↗↘

α

↑↑

t(Xuniv
ρ )red,ρ

→→
↗↘

β

↑↑

im dφred
→→

γ

↑↑

0

with exact rows and where the left and middle vertical arrows are injective. Because of kerφred =
kerφ ∩ t(Xuniv

ρ )red,ρ the map γ is injective, and we deduce from the 9-Lemma that dim cokerα+

dim coker γ = dim cokerβ. Now from (iii) we have dimRρ = dim(Rρ)red ∈ {1+dn2, 2+dn2} and
dim tXuniv

ρ ,ρ = dn2+2. One deduces that dim cokerβ ∈ {0, 1}, and the assertions on dim cokerα

and dim coker γ needed to complete (vi) are immediate.

Proof of Theorem C (Theorem 3.3.1). We suppose to the contrary that there exists a nonempty

open affine V ⊂ Xuniv
D such that (X

univ
D )irr ∩ V = ∅. Since V ̸= SpecF and the one-dimensional

points are very dense in X
univ
D , by Lemma 2.1.20 there exists a 1-dimensional point x ∈ V that

defines a reducible pseudodeformation

Dx : GK −→ κ(x)

of D such that κ(x) is a local field. By Lemma 3.2.11(iii) there exist a finite extension L′/κ(x)
with finite residue field F′ ⊃ F, residual pseudorepresentation Di : GK → F′ of dimension ni for
some ni ∈ N0 with n1 + n2 = n, and pseudorepresentations D1, D2 : GK → OL′ corresponding

to points (x1, x2) ∈ X
univ
D1
×Xuniv

D2
such that Dx ⊗κ(x) L′ = (D1 ⊕D2)⊗OL′ L

′.
Now the inverse image of V under ιD,n1,n2

from (10) is an open neighbourhood of (x1, x2). It
now follows from hypotheses (ii) and (iii) that we may assume the following
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(a) if ζp /∈ K, then xi ∈ Ui := (X
univ
Di )irr,D(1)̸=D for i = 1, 2;

(b) if ζp ∈ K, then xi ∈ Ui := ((X
univ
Di )irrred)

reg for i = 1, 2.

If n1 = n2, we may further assume D1 ̸= D2(m) for all m ∈ {0, 1, . . . , p− 2}, because the X
univ
Di

have dimension at least 2 and they contain exactly one closed point, and so the open Ui have
to contain infinitely many dimension 1 points by Proposition 2.1.25. We also observe that by
Lemma 3.2.38 the schemes Ui are regular in case (a).

Let x be a geometric point above x. By Lemma 3.3.3 there exists an étale neighbourhood

(U, u) of x in X
univ
D together with an étale morphism φU : U → X

univ
D such that the induced

morphism

W := U ×
φU ,X

univ
D ,ιD,n1,n2

X
univ
D,n1,n2

ιD,n1,n2−→ U = U ×
φU ,X

univ
D

X
univ
D

is a closed immersion with image U ×
φU ,X

univ
D

(X
univ
D )red. We may replace U by φ−1U (V ), which

is nonempty since x ∈ V , and étale over V , and we may shrink W accordingly. By further
replacing U by an open subset (and accordingly W ), we can assume that U is connected and
affine. Since W → U is a closed immersion, the scheme W is affine. But we also have that
W → U is surjective as a map of topological spaces, since all points of V are reducible. Hence
the nilreduction of W → U is an isomorphism of schemes Wred → Ured, and as a map of
topological spaces W → U is a homeomorphism. Since the base change of étale morphisms is

étale, so is the map W → X
univ
D1
×F X

univ
D2

that is the base change of φU under ιD,n1,n2
. We

shrink W (and hence U) to an affine open so that the image of W in X
univ
D1
×F X

univ
D2

lies in the
image of U1 × U2 in that scheme, and we write W0 → U1 × U2 for the base change of φU along

U1 × U2 → X
univ
D . We display the situation in the following diagram:

U1 × U2
↘ ↙ →→ X

univ
D1
×F X

univ
D2

ιD,n1,n2 →→ X
univ
D V↗ ↖←←

W0
→→

↑↑

W →→

↑↑

U

φU

↗↗

Since U1 × U2 → X
univ
D1
×F X

univ
D2

is a homeomorphism onto its image and an immersion, it
follows that W0 → W is a closed immersion and a homeomorphism. Since U1 × U2 is regular,
so is its étale cover W0. We deduce that W0 → W is the nilreduction morphism, and in
particular W0 →Wred → Ured are isomorphisms of (regular) schemes. Let w0 ∈W0 be the point
corresponding to u ∈ U under the homeomorphism W0 → U .

By Lemma 3.3.4 (i), there exists a nontrivial extension ρ : GK → GLn(L) such that

H2(GK , adρ)
∨ ∼= H0(GK , adρ) ∼= L. (13)

Denote by R̂p the universal pseudodeformation ring for Dρ = det ◦ρ. Consider its universal

pseudodeformation space X̂ := Spec R̂p and the universal deformation space Xuniv
ρ := SpecRρ

of ρ. Then by Lemma 3.3.4 (iv) we have a canonical homomorphism

φ : Xuniv
ρ −→ X̂

By Lemma 3.3.4 (ii) and (iii) we have a good control of the dimensions Rρ and by Lemma 3.3.4 (v)
and (vi) the induced map of tangent spaces

dφ : tXuniv
ρ ,ρ → t

X̂,x
.
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3.3. Equidimensionality of special fibers and Zariski density of the regular locus

Note also the important isomorphism R̂p = ÔV,x[[T ]] obtained by combining Corollary 3.2.13
and Lemma 2.2.12

We now display this data together with some completed local rings from the previous diagram
in preparation for the completion of the present proof:

ÔU1×U2,(x1,x2)

α
↓↓

ÔV,x←←

β
↓↓

→→ ÔV,x,red

βred
↓↓

R̂p

↓↓

φ#
→→ Rρ

↓↓
ÔW0,w0 ÔU,u

γ←← →→ ÔU,u,red,

γred

≃
←←

R̂p
red

φ#
red →→ Rρ,red.

Note that ÔV,x → ÔU1×U2,(x1,x2) exists since the inverse image of the open V of X
univ
D under

ιD,n1,n2
and the nilreduction morphism is an open neighbourhood of (x1, x2) in U1 × U2. By

Lemma 2.1.16, the maps α and β are finite étale. By what was observed above for W0 → U ,
the kernel of γ is nilpotent. Moreover the ring ÔU1×U2,(x1,x2) is regular by hypothesis and hence

so is ÔW0,w0 again by Lemma 2.1.16, and both have the same dimension. From β being étale

it follows that the induced map βred is finite étale. Also the map γred : ÔU,u,red → ÔW0,w0 is

an isomorphism. Hence ÔU,u,red is regular and ÔV,x,red is regular and of the same dimension

as ÔU1×U2,(x1,x2), again by Lemma 2.1.16. It follows that R̂p
red is regular and that its Krull

dimension is one more than that of ÔU1×U2,(x1,x2).

Suppose first that we are in case (a). Then from Lemma 3.3.4 (ii) we deduce that Rρ is
regular and hence isomorphic to Rρ,red. Moreover from Lemma 3.3.4 (v) we have dimL im dφ =

dn2 − dn1n2 + 2. Now φ# factors via R̂p
red which is regular and we deduce

dn2 − dn1n2 + 2 ≤ dim R̂p
red = dim ÔU1×U2,(x1,x2) + 1 = dimX

univ
D1
×F X

univ
D2

= d(n21 + n22) + 2,

by the hypotheses (i) and (ii) – note that (x1, x2) is a regular point of dimension 1 on the

equidimensional scheme X
univ
D1
×F X

univ
D2

. This implies that dn1n2 ≤ 0, which is absurd. We
reach a contradiction.

Suppose now that we are in case (b). Then from loc.cit. we have dimL im dφred = dn2 −
dn1n2 + 2− δ′ for some δ′ ∈ {0, 1}. Again using that R̂p

red is regular, we deduce

dn2 − dn1n2 + 2− δ′ ≤ dim R̂p
red = dim ÔU1×U2,(x1,x2) + 1 = d(n21 + n22) + 2,

by the hypotheses (i) and (iii). It now follows that dn1n2 ≤ δ′. The only case possible is thus
δ′ = d = n1 = n2 = 1, and from ζp ∈ K = Qp it also follows that p = 2. Hence the proof of the
theorem is complete.

3.3.2 An upper bound for the dimension of special points

In order to prove Theorem B (Theorem 3.3.12) and later Theorem E (Corollary 3.3.15), we now
determine an upper bound for the dimension of the locus of special (irreducible) pseudodefor-
mations. This makes use of the fact that for semisimple representations over algebraically closed
fields being special is equivalent to being induced from H to G by Corollary 2.3.6.

Recall that K is a p-adic field with d = [K : Qp]. By χ : GK → F× we denote the mod p cyclo-
tomic character. We write K(1) := K(ζp) so that GK(1) = kerχ and we set m = [GK : GK(1)].
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3. Equidimensionality of universal pseudodeformation rings

We often abbreviate G = GK and H = GK(1). We fix an n-dimensional continuous pseudorep-

resentation D : G → F, and we assume that F is sufficiently large so that D and its restriction
ResGH D are both split. Then both of them are the determinant of suitable representations defined
over F, cf. Theorem 3.1.26 and Definition 3.1.27. If D = D ⊗ χ, then it follows from the exis-
tence of these representations and from Remark 2.3.5 that for a suitable pseudorepresentation
D
′
: H → F one has

D = IndGH D
′
. (14)

In general, D
′
is not unique. In this subsectionD

′
will always denote such a pseudorepresentation

H → F, provided that it exists.

Definition 3.3.5. By R
D=D(1)

K,D
we denote the quotient of R

univ
K,D by the ideal defining the locus

of points D such that D = D(1) holds; cf. Corollary 3.2.32.

In this subsection we prove the following result:

Theorem 3.3.6. One has

dimR
D=D(1)

K,D
≤ max

D
′

{
dimR

univ
K(1),D

′ | IndGKGK(1)
D
′
= D

}
Denote further by Y the closure in SpecR

D=D(1)

K,D
of the set of irreducible points and, analogously,

for each D
′
such that (14) holds, by Y

D
′ the closure in X

univ
K(1),D

′ of the set of irreducible points
– as topological spaces. Then one has

dimY ≤ max
D

′
{dimY

D
′ | IndGKGK(1)

D
′
= D},

and moreover, the quantity on the right is bounded above by dn2

m + 2.6

Lemma 3.3.7 ([Hoc07, Prop. (d),(g)]). If R is a complete Noetherian local domain with perfect
residue field F and fraction field K, then [K : Kp] <∞.

Lemma 3.3.8. Let R be a complete Noetherian local domain with finite residue field F and
fraction field K. Suppose that D : GK → R is a pseudodeformation of D to R such that D =
D(1). Then the following hold:

(i) There exists a finite extension K′ of K so that D⊗KK′ is the pseudorepresentation attached
to a representation ρ : GK → GLn(K′).

(ii) The field K′ of (i) may be chosen so that furthermore ResGKGK(1)
ρ =

⨁
i∈Z/(m) ρi for pairwise

non-isomorphic semisimple representations ρi : GK(1) → GLn/m(K′) satisfying ρi+1 = ρgi
and ρ = IndGKGK(1)

ρi for all i ∈ Z/(m); and so that all simple summands of the ρi are

absolutely irreducible. Up to isomorphism, the number of possible ρi is finite.

(iii) If D ⊗R K is irreducible, then ρ in (i) and the ρi in (ii) are absolutely irreducible.

(iv) Denote by R′ the integral closure of R in K′. Then R′ is finite over R, a complete Noethe-
rian local domain with finite residue field F′ ⊇ F, and the pseudorepresentation Di attached
to ρi takes values in R′.

6 We expect the last bound to be equal to dn2

m
+ 1. By Lemma 3.2.40, this bound holds if p ̸ |n.
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3.3. Equidimensionality of special fibers and Zariski density of the regular locus

(v) For i ∈ Z/(m) the pseudorepresentation Di := Di⊗R′F′ satisfies Di+1 = D
g
i and if ρi is any

semisimple representation over F′ with pseudorepresentation Di, then IndGKGK(1)
ρi = ρ⊗FF′.

Proof. The argument for (i) is contained in [Che14, Thm. 2.12ff.]. By Theorem 3.1.28 due to
Chenevier, there is an integer r ∈ N≥1, a simple K-algebra Si of finite dimension n2i over its
center ki for i = 1, . . . , r and an isomorphism

K[GK ]/ kerD
≃−→

r∏
i=1

Si,

where each ki is a finite field extension of K of degree at most n since [K : Kp] < ∞ by
Lemma 3.3.7; moreover D =

⨁r
i=1 det

mi
Si

for mi > 0 such that n =
∑

iminifiqi as in Theo-
rem 3.1.28. By [Gro68, Cor. 3.8] there is a finite separable extension of ki of degree at most
ni that splits Si. We let K′ be a finite extension of K the contains splitting fields for all Si.
Then (i) follows.

Part (ii) follows from Corollary 2.3.6, after possibly enlarging K′ according to the last para-
graph of Remark 2.3.5. The finiteness assertion follows from the finiteness (up to isomorphism)
of simple factors of ResKK(1) ρ ⊗K′ Kalg. Part (iii) follows from (ii), the definition of irreducible
for pseudorepresentations and from Theorem 2.3.4.

For (iv), by Proposition 3.1.14 it suffices so show that the characteristic polynomial coefficients
of Di lie in R′ for all i ∈ Z/(m). For all g ∈ GK(1) we have χD(g, t) =

∏
i∈Z/(m) χDi(g, t), where

χD(g, t) is a monic polynomial in R[t] and for all i ∈ Z/(m) χDi(g, t) is a monic polynomial in
K′[t]. Then all roots of χDi(g, t) for any i ∈ Z/(m) are integral over R and thus the characteristic
polynomial coefficients are also integral over R. By normality of R′ in K′ the characteristic
polynomial coefficients lie in R′; cf. [Mat89, Thm. 9.2]. Finally, (v) follows from (ii) and (iv).

Proof of Theorem 3.3.6. Let Duniv
K,D

: GK → R
univ
K,D be the universal mod p pseudodeformation of

the pseudorepresentation D : GK → F, and define

Dtw
D

:= D
univ,D=D(1)

K,D
: GK −→ R

univ,D=D(1)

K,D
=: R

tw
D

as the composition of Duniv
K,D

with R
univ
K,D → R

tw
D , where R

tw
D is the quotient of R

univ
K,D parametrizing

mod p pseudodeformations with D = D(1). We denote by Duniv
K(1),D

′ : GK(1) → R
univ
K(1),D

′ the

universal mod p pseudodeformation for some D
′
: GK(1) → F such that IndGKGK(1)

D
′
= D. We

add the subscript red to a ring to denote its reduced quotient. Then by Theorem 3.2.23 we have
an induced pseudorepresentation

Dind
D

′ := IndGH D
univ
K(1),D

′ : GK → R
univ
K(1),D

′
,red =: R

D
′
,red

.

By Corollary 3.2.31 we have Dind
D

′ = Dind
D

′ (1), and so by the universal property of Dtw
D

there

exists a unique homomorphism R
tw
D → R

D
′
,red

which when precomposed with Dtw
D

gives Dind
D

′ .

Let now p be a minimal prime of R
tw
D , denote by Bp the quotient R

tw
D /p and by κ(p) the

quotient field of the latter. We consider the induced pseudorepresentation Dp : G→ Bp → κ(p).
We choose a finite extension κ(p)′ of κ(p) according to Lemma 3.3.8 and denote by B′p the
normalization of Bp in κ(p)′ such that

Dp ⊗κ(p) κ(p)′ ∼=
⨁

g∈G/H

(D′p)
g ⊗B′

p
κ(p)′ (15)

86



3. Equidimensionality of universal pseudodeformation rings

for a suitable pseudorepresentation D′p : H → B′p. Let F′ be the residue field of B′p; it is a finite
extension of F. Note that (15) also holds without tensoring with κ(p)′ if we regard Dp as a
pseudorepresentation into B′p. The latter formula we may reduce from B′p to F′. It follows,

cf. Theorem 3.2.23, that the reduction D′p ⊗B′
p
F′ is isomorphic to D

′ ⊗F F′ for some pseudorep-

resentation D
′
: G→ F such that D = IndGH D

′
.

Let B′′p be the subring of B′p of elements that reduce to F. Then B′′p lies in ÂrF andD′p takes its

values in B′′p . By the universality of Duniv
K(1),D

′ there is a unique homomorphism R
D

′
,red
→ B′′p , by

which D′p is induced from Duniv
K(1),D

′ . Denote by B′′′p the image of R
D

′
,red

in B′′p . The ring B
′′′
p is a

domain and so applying again induction for pseudorepresentations, Theorem 3.2.23 gives a pseu-
dorepresentation IndGH D

′
p : G→ B′′′p that deforms D by Theorem 3.2.23(f). By the universality

of Dtw
D

and our construction of B′p we obtain necessarily injective ringhomomorphisms

Bp ↪→ B′′′p ↪→ B′′p ↪→ B′p,

such that IndGH D
′
p is the composition of Dp with Bp → B′′′p . Since Bp → B′p is finite by

Lemma 3.3.8, the same holds for Bp → B′′′p , so that dimBp ≤ dimB′′′p . The ring B′′′p is a quotient

of Runiv
K(1),D

′ and Bp = R
tw
D /p. Since p ∈ Min(R

tw
D ) is arbitrary, this proves the first inequality.

The second inequality follows by the same argument as the first inequality: We note that
the irreducible locus is open by Lemma 3.2.2, and hence it is dense open in Y and in the Y

D
′

by their very definition. This implies that the pseudorepresentations Dp that we consider will
be irreducible and by Lemma 3.3.8 that also the pseudorepresentations D′p will be irreducible.
Hence to obtain the upper bound for dimY it suffices to minimize over a possibly smaller set of
D
′
and for each D

′
it suffices to only consider the space Y

D
′ . Finally, the bound at the very end

follows by applying Lemma 3.2.39 to each of the Y
D

′ .

By Theorem C (Theorem 3.3.1) the locus of irreducible points is Zariski dense under a certain
induction hypothesis. If ζp ̸∈ K we now prove that also the locus of nonspecial irreducible points
defined in Definition 3.2.34 is dense:

Corollary 3.3.9. Suppose that (X
univ
D )irr is dense in X

univ
D . Then (X

univ
D )irr,D(1)̸=D is dense

open in X
univ
D .

Proof. Recall from Lemma 3.2.2, that the subset U := (X
univ
D )irr of X

univ
D is open. By our

hypothesis U is also dense. We assume that D(1) = D since otherwise there is nothing to show
– as D ̸= D(1) implies the same for all pseudodeformations. In particular this implies 2 ≤ m.

We also recall that the locus X := (X
univ
D )D(1)=D is closed in X

univ
D by Proposition 3.2.36.

We need to show that X ∩ U contains no open subset V of U . We argue by contradiction

and assume that V exists. As a subset of X
univ
D the set V is locally closed and hence points of

dimension 1 will be dense in it, since only the single closed point of X
univ
D has dimension zero.

Let x ∈ V be a point of dimension 1. Denote by R̂x the completion of the local ring OV,x.
Because V ⊂ X and dimx = 1, the last bound in Theorem 3.3.6 implies

dim R̂x ≤ dimX − 1 ≤ dn2

m
+ 1.

On the other hand, V is open in U , and it follows from Lemma 3.2.39 and Lemma 2.2.12 that
dim R̂x ≥ dn2. We deduce dn2 ≤ dn2

m + 1, which is absurd since 2 ≤ m and m|n.
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3.3. Equidimensionality of special fibers and Zariski density of the regular locus

3.3.3 Equidimensionality of universal mod p pseudodeformation rings

Under certain hypotheses on the n and on [K(ζp) : K], we now inductively prove the equidi-

mensionality of the universal mod p pseudodeformation ring X
univ
D := SpecR

univ
D of a fixed

n-dimensional residual pseudorepresentation D : GK → F. Also we identify a dense open regu-

lar subspace of X
univ
D,red.

Assumption 3.3.10. By replacing F with a finite extension that depends only on the dimension
of D, we shall assume that D as well as D|GK(1)

are split over F; cf. Corollary 3.1.71.

We will proceed by induction on the dimension of the residual pseudorepresentation.

Proposition 3.3.11 (Base case). Suppose D has dimension 1, so that D is a 1-dimensional
character and pseudodeformations are deformations and vice versa. Let e ∈ N0 be maximal such
that ζpn ∈ K. Then the following hold:

(i) Runiv
D
∼=W (F)[ζpe ][[X1, . . . , Xd+1]].

(ii) R
univ
D
∼= F[[X1, . . . , Xd+1]] if ζp /∈ K.

(iii) R
univ
D,red

∼= F[[X1, . . . , Xd+1]] for any finite extension K of Qp.

Proof. We regard D as a 1-dimensional Galois representation. Then the shape of the universal
deformation ring ofD is well-known; see Corollary 2.2.18 and its proof. This proves (i). Parts (ii)
and (iii) are straightforward consequences.

We now prove the main result of this work:

Theorem 3.3.12 (Theorem B). Suppose that p > n or that [K(ζp) : K] > 1. Then for any
n-dimensional pseudorepresentation D : GK → F the following holds:

(i) X
univ
D is equidimensional of dimension dn2 + 1,

(ii) if ζp /∈ K, then (X
univ
D )irr,D(1)̸=D is open, regular and Zariski dense in X

univ
D ,

(iii) if ζp ∈ K, then (X
univ
D )reg = ∅ and (X

univ
D,red)

irr is open, regular and Zariski dense in X
univ
D,red.

Let us note that for p = 2 the above theorem only carries the case n = 1.

Proof. Recall that we (X
univ
D )reg = ∅ if ζp ∈ K by Proposition 3.2.41. For the other assertions

we proceed by induction. The base case n = 1 is covered by Proposition 3.3.11. Suppose now
that n < p or 1 < [K(ζp) : K] and that (i) – (iii) hold for all pseudorepresentations D

′
: GK′ → F′

of dimension n′ ∈ {1, . . . , n− 1} and such that n′ < p or 1 < [K ′(ζp) : K
′]. It then follows from

Theorem C (Theorem 3.3.1) that (X
univ
D )irr ⊂ Xuniv

D is Zariski dense (in the case p = 2 we must
have n = 1, and so there is nothing to prove).

Suppose first that ζp /∈ K. Then it follows from Corollary 3.3.9 that (X
univ
D )irr,D(1)̸=D is open

and Zariski dense in X
univ
D . In this situation assertions (i) and (ii) follow from Lemma 3.2.38;

note that the open U from Lemma 3.2.38 has dimension 1 less than X
univ
D since it does not

contain the unique closed point m
R

univ
D

of X
univ
D .

Suppose now that ζp ∈ K. Then n < p, and it follows from Lemma 3.2.40 that (X
univ
D,red)

irr

lies in (X
univ
D,red)

reg and that U := (X
univ
D,red)

irr∖ {m
R

univ
D,red
} is equidimensional of dimension dn2. It

follows that X
univ
D,red is equidimensional and of dimension dn2 + 1.
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3. Equidimensionality of universal pseudodeformation rings

3.3.4 Zariski density of the regular locus and Serre’s condition (R2)

Throughout this subsection we consider the universal mod p pseudodeformation space X
univ
D :=

SpecR
univ
D of a fixed residual pseudodeformation D : GK → F of dimension n.

If ζp ∈ K, then by Proposition 3.2.41 the regular locus of X
univ
D is empty. If ζp ̸∈ K, then we

will now describe its regular locus and show that R
univ
D satisfies Serre’s condition (R2).

Theorem 3.3.13 (Theorem D; cf. [Che11, Thm. 2.3]). If ζp /∈ K, then the following hold:

(i) The closure of X1 := (X
univ
D )irr,D(1)=D lies in (X

univ
D )sing.

(ii) If n > 2 or [K : Qp] > 1, then X2 := (X
univ
D )red ⊂ (X

univ
D )sing.7

Proof. We know from Proposition 3.1.60 that X
univ
D is a complete Noetherian local ring so that

by a theorem of Nagata [EGA IV2, Thm. (6.12.7)] its singular locus (X
univ
D )sing is closed in X

univ
D .

By Proposition 3.2.36 and Corollary 2.1.21, the points of Xi of dimension at most one are dense
in Xi, and since dimXi > 0, in fact the points of dimension equal to one will be dense. Note also

that case (ii) is concerned with the image of the spaces X
univ
D1
×FX

univ
D2

under the maps ιD,n1,n2

for all pairs (n1, n2) with ni ≥ 1 and n1 + n2 = n and (D1, D2) with D1 ⊕D2 = D as in (10)
and (9). As in the proof of Theorem C (Theorem 3.3.1), to prove (ii) it will suffice to consider
points x = ιD,n1,n2

(x1, x2) of dimension 1 such that the xi represent ni-dimensional irreducible

pseudorepresentations Di that lie in (X
univ
Di )irr,D(1)̸=D and such that D1 is not isomorphic to

D2(l) for any l ∈ {0, 1, . . . , p− 2}.
For points x of the shape identified above and a corresponding absolutely irreducible rep-

resentation ρx for Dx in case (i) and a pair of absolutely irreducible representations ρxi for
Dxi , i = 1, 2, of dimension ni in case (ii), defined over a finite extension L of κ(x) so that
det ◦ρx = Dx, we now show that the local rings ÔXi,x are not regular. To do so we shall show

that their tangent space dimension exceeds dimX
univ
D − dimx = dn2. For this we shall prove

that the tangent space dimension of the universal deformation ring R
univ
ρx in case (i) and the

universal pseudodeformation ring R
univ
Dx in case (ii) are larger than dimX

univ
D = dn2+1, which is

equal to dimR
univ
ρx and dimR

univ
Dx , respectively. To see that it is sufficient to show the singularity

of the latter universal rings, we make use of Lemma 2.2.12 and Corollary 3.2.13, as well as of
Theorem B (Theorem 3.3.12) and Proposition 3.2.14.

Let us first consider case (i). The required tangent space computation is standard and pro-
ceeds as in the proof of Lemma 3.3.4(ii): Using that

dimLH
2(GK , adρx) = dimLH

0(GK , adρx(1)) = 1

since Dx = Dx(1) one deduces dimH1(GK , adρx) = dn2 + 2, and thus R
univ
ρx cannot be regular.

Let us now consider case (ii). To compute the tangent space dimension of R
univ
Dx , we make

use of [Bel12, Thm. A]. It provides an exact sequence

0 −→ H1(GK , adρx1 )⊕H
1(GK , adρx2 ) −→ dim t

SpecR
univ
Dx

,x
⊗κ(x) L

−→ Ext1GK (ρx1 , ρx2)⊗ Ext1GK (ρx2 , ρx1)
h−→ Ext2GK (ρx1 , ρx2)⊕ Ext2GK (ρx1 , ρx2),

7 See Remark 3.3.2 for the case n = 2 and K = Qp.
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3.3. Equidimensionality of special fibers and Zariski density of the regular locus

where the map h is given by the Yoneda product. We conclude as in the proof of [Che11,
Lem. 2.4]: dimLH

1(GK , adρxi ) ≥ 1 + dn2i , dimL Ext
1
GK

(ρxi , ρx3−i) = dn1n2, and the second
extension groups vanish. Hence

t
SpecR

univ
Dx

= d(n21 + n22) + 2 + d2n21n
2
2 ≥ dn2 + 1 + (dn1n2 − 1)2.

This dimension is strictly larger than dn2 + 1, unless dn1n2 = 1, i.e., n1 = n2 = 1 and K = Qp.
This proves the claim in case (ii).

The following result will give a lower bound for the codimension of the singular locus Xsing.

Lemma 3.3.14. If either n > 2, or n = 2 and d > 1, then one has

max{dim(X
univ
D )red, dim(X

univ
D )D=D(1)} ≤ dimX

univ
D − 3.

Proof. We have (X
univ
D )red ⊂

⋃
n1+n2=n

ιn1,n2(Xn1 ×F Xn2). Therefore,

dim(X
univ
D )red ≤ max

n1+n2=n
dimXn1 + dimXn2 = max

n1+n2=n
d(n21 + n22) + 2 = d((n− 1)2 + 1) + 2,

and therefore

dimX
univ
D − dim(X

univ
D )red ≥ dn2 + 1− d(n2 − 2n+ 2)− 2 = 2d(n− 1)− 1,

which is at least 3 unless n = 2 and d = 1, in which case the bound is only 1. To complete
the proof we appeal to Theorem 3.3.6. It gives dn2

m + 2 for an upper bound of the closure X of

(X
univ
D )D=D(1) ∖ (X

univ
D )red where m = [K(1) : K] ≥ 2 and m divides n. Hence now

dimX
univ
D − dimX ≥ dn2 + 1−

(dn2
m

+ 2
)
≥ dn2

2
− 1,

and again this quantity is at least 3 if either n > 2, or if d > 1 and n = 2.

Corollary 3.3.15 (Theorem E). Suppose that ζp /∈ K and that either n > 2, or that n = 2 and

d > 1. Then (X
univ
D )irr,D(1)̸=D constitutes the regular locus of X

univ
D and it follows that R

univ
D

satisfies Serre’s condition (R2).

Proof. This follows from Lemma 3.3.14, Theorem 3.3.13 (Theorem D) and Theorem B (Theo-
rem 3.3.12).
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Gebhard Böckle1 , Ann-Kristin Juschka
University of Heidelberg, IWR, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany

ARTICLE INFO

Article history:
Received 15 April 2014
Available online 10 August 2015
Communicated by Eva
Bayer-Fluckiger

Keywords:
Galois representations
Local fields
Deformation theory
Crystalline representations

ABSTRACT

Let GK be the absolute Galois group of a finite extension
K of Qp and ρ̄ : GK → GLn(F) a continuous residual
representation for F a finite field of characteristic p. We
investigate whether the versal deformation space X(ρ̄) of
ρ̄ is irreducible. For n = 2 and p > 2 we obtain a complete
answer in the affirmative based on the results of [Böc00,
Böc10]. As a consequence we deduce from recent results
of Colmez, Kisin and Nakamura [Col08, Kis10b, Nak13]
that for n = 2 and p > 2 crystalline points are Zariski
dense in the versal deformation space X(ρ̄).

c⃝ 2015 Elsevier Inc. All rights reserved.

4.1 Introduction and statement of main results

Deformation rings of Galois representations

Let GK be the absolute Galois group of a finite extension K of Qp and let ρ̄ : GK → GLn(F)
be a continuous residual representation for F a finite field of characteristic p. Let W (F) be the
ring of Witt vectors of F. We shall always write O for the ring of integers of a finite totally
ramified extension of W (F)[1/p] and denote by mO its maximal ideal and by ϖO a uniformizer.
To simplify notation, we shall write Oi for the quotient O/ϖi

OO for any integer i ≥ 1. Denote
by ad the adjoint representation of ρ̄, i.e., the representation on Mn(F) induced from ρ̄ by
conjugation and by ad0 the subrepresentation on trace zero matrices.

For ρ̄ as above, we consider the deformation functor from the category ÂrO of complete
Noetherian local O-algebras (R,mR) to the category of sets defined by

Dρ̄(R) := {ρ : GK → GLn(R) | ρ mod mR = ρ̄ and ρ is a cont. repr.}/ ∼

where ρ ∼ ρ′ if there exists A ∈ ker
(
GLn(R)

mod mR−→ GLn(F)
)
such that ρ′ = AρA−1. An

equivalence class [ρ] of ρ under ∼ is called a deformation of ρ̄. Since GK satisfies the finiteness
condition Φp from [Maz89, § 1.1], by [Maz89, Prop. 1] with a slight strengthening by [Ram93]
one deduces:

1 Corresponding author.
E-mail addresses: gebhard.boeckle@iwr.uni-heidelberg.de (G. Böckle),

ann-kristin.juschka@iwr.uni-heidelberg.de (A.-K. Juschka).
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4.1. Introduction and statement of main results

Theorem 4.1.1. The functor Dρ̄ always possesses a versal hull (Rρ̄,mρ̄) which is unique up to
isomorphism. If in addition EndGK (ρ̄) = F, then Dρ̄ is representable and in particular (Rρ̄,mρ̄)
is unique up to unique isomorphism.

We denote by ρρ̄ : GK → GLn(Rρ̄) a representative of the versal class.
For later use, we recall parts of the obstruction theory related to Dρ̄. Suppose we are given

a short exact sequence
0 −→ J −→ R1 −→ R0 −→ 0,

where the morphism R1 → R0 is in ÂrO, and m1 · J = 0 for m1 the maximal ideal of R1; such a
diagram is called a small extension of R0. Suppose further that we are given a deformation of
ρ̄ to R0 represented by ρ0 : GK → GLn(R0). Then Mazur defines a canonical obstruction class

O(ρ0) ∈ H2(GK , ad)⊗ J

that vanishes if and only if ρ0 can be lifted to a deformation ρ1 : GK → GLn(R1) of ρ̄, see
[Maz89, p. 398]. By elementary linear algebra, the obstruction class O(ρ0) defines an obstruction
homomorphism obs: HomF (J,F)→ H2(GK , ad), and conversely from the latter one can recover
O(ρ0).

The following result describes the mod mO tangent space of Rρ̄ and a bound on the number
of generators of an ideal in a minimal presentation of Rρ̄ by a power series ring over O.

Proposition 4.1.2 ([Maz89]). (a) If F[ε] denotes the ring of dual numbers of F and mρ̄ :=
mρ̄/mORρ̄, then one has canonical isomorphisms between the two tangent spaces

tDρ̄ := Dρ̄(F[ε]) ∼= H1(GK , ad) ∼= HomF
(
mρ̄/m

2
ρ̄,F
)
=: tRρ̄ .

(b) Let h1 := dimFH
1(GK , ad), let m be the maximal ideal of O[[x1, . . . , xh1 ]] and let

0 −→ I −→ O[[x1, . . . , xh1 ]]
π−→ Rρ̄ −→ 0

be a presentation of Rρ̄. Then the obstruction homomorphism

obs : HomF (I/mI,F) −→ H2(GK , ad), f ↦−→ (1⊗ f)(O(ρρ̄)),

is injective, and thus dimFH
2(GK , ad) bounds the minimal number dimF I/mI of genera-

tors of I.

If in a presentation as in (b) the number of variables is minimal, i.e., if the mod mO tangent
space of O[[x1, . . . , xh1 ]] is isomorphic to that of Rρ̄, then we call the presentation minimal. Now

fix a character ψ : GK → O∗ which reduces to det ρ̄ and denote by Dψ
ρ̄ the subfunctor of Dρ̄ of

deformations whose determinant is equal to ψ (under the canonical homomorphism O → R).

Proposition 4.1.3. If p̸ |n, then the results of Theorem 4.1.1 and Proposition 4.1.2 hold for

Dψ
ρ̄ as well, if one replaces ad by the adjoint representation ad0 on trace zero matrices, the pair

(Rρ̄,mρ̄) by the versal deformation ring (Rψρ̄ ,m
ψ
ρ̄ ) and the ideal I by a relation ideal Iψ in a

minimal presentation

0 −→ Iψ −→ R := O[[x1, . . . , xh]]2 −→ Rψρ̄ −→ 0 with h = dimFH
1(GK , ad

0). (1)

2 To avoid notation such as mRψ , mRψ , we use the simpler notation R instead of Rψ for the frequently used
ring R
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

This article presents three results on the deformation rings Rρ̄ and Rψρ̄ introduced
above:

For n = 2, we improve the ring theoretic results from [Böc00] by showing that the rings Rψρ̄
are integral domains. On the technical side, we clarify that for this result and the main results
in [Böc00] the knowledge of a suitably defined (refined) quadratic part, see Definition 4.2.4, of

the relation in a minimal presentation of Rψρ̄ suffices.

Using the irreducibility of Rψρ̄ , we deduce the Zariski density of crystalline points in SpecRρ̄
for n = 2, p > 2 and any p-adic local field K.

For many n and K we give a cohomological description of the quadratic parts of the relations
in a minimal presentation of Rψρ̄ via a cup product and a Bockstein formalism in the context of
Galois cohomology of p-adic fields.

We now explain these results in greater detail. From now on we assume that p > 2.

Ring-theoretic results on local versal deformation rings

To describe some auxiliary ring-theoretic results and some ring-theoretic properties of the versal
deformation ring Rψρ̄ for a fixed 2-dimensional residual representation ρ̄ : GK → GL2(F), we fix
some further notation.

For a ring R in ÂrO and a proper ideal n of R, we denote by grn(R) the associated graded
ring

⨁
i≥0 gr

i
n(R) with grin(R) = ni/ni+1. By inn : R → grn(R), we denote the map that sends

r ∈ R ∖ {0} to its initial term in grn(R), i.e., if ir is the largest integer i ≥ 0 such that r ∈ ni,
then inn(r) is the image of r in nir/nir+1. Further, we set inn(0) = 0 and note that

⋂
i n
i = {0}

for R in ÂrO. If we wish to indicate ir in the notation, we write inirn (r). For an ideal I ⊂ R one
denotes by inn(I) the ideal of grn(R) generated by {inn(r) | r ∈ I}. To describe the mod mO
reduction of pairs (R,mR) in ÂrO, we define R := R/mOR and mR := mR/mOR. Similarly, we
write r̄ for the image of r ∈ R in R.

The following is the key technical result to deduce ring theoretic properties of Rψρ̄ :

Theorem 4.1.4. Suppose ρ̄ is of degree 2 and p > 2. Fix a minimal presentation of Rψρ̄ as in
Proposition 4.1.3. Then there exist an mR-primary ideal ms of R ∼= O[[x1, . . . , xh]] of the form
(ϖs
O, x1, . . . , xh) with m2

s ⊃ Iψ and generators f1, . . . , fr of Iψ such that the following hold:

(a) Let gj = in2ms(fj) ∈ m2
s/m

3
s for j = 1, . . . , r. Then the elements t̄0, ḡ1, . . . , ḡr form a regular

sequence in grms(R) ∼= F[t̄0, t̄1, . . . , t̄h], where t0 = inms(ϖ
s
O) and ti = inms(xi) for i =

1, . . . , h.

(b) The quotient ring grms(R)/(ḡ1, . . . , ḡr) is an integral domain and one has (ḡ1, . . . , ḡr) =

inms(I
ψ).

Theorem 4.1.4 will be proven after Corollary 4.3.6. A cohomological interpretation of the ḡj
is given in Theorem 4.1.14.

As a consequence of Theorem 4.1.4 and some purely ring-theoretic results summarized in
Proposition 4.2.2, we shall obtain the following main theorem in Section 4.2:

Theorem 4.1.5. Let the residual representation ρ̄ be of degree 2 and let p > 2. Then the
following hold:

(a) The ring R
ψ
ρ̄ is a complete intersection.

(b) The ring Rψρ̄ is a complete intersection and it is flat over O.
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4.1. Introduction and statement of main results

(c) The ring Rψρ̄ is an integral domain and in particular irreducible.

In Lemma 4.4.1 we show that is suffices to prove Theorem 4.1.5 for any fixed choice of lift ψ,
for instance for the Teichmüller lift of det ρ.

Remark 4.1.6. Parts (a) and (b) of Theorem 4.1.5 were obtained already in [Böc00]. In fact,
our present proof heavily relies on the results of [Böc00] because we shall simply quote the

relations of Rψρ̄ in a minimal presentation from there. However, the present article allows one

to redo much of [Böc00] by working with the simpler ring Rψρ̄ /m
3
s, and this would avoid most

of the technical difficulties occurring in [Böc00]. An example of this is given by the proof of
Lemma 4.3.7.

Remark 4.1.7. It does not seem possible to show irreducibility when n = 2, p = 2 and K = Q2

with ideas of the present article, i.e., by using suitable initial terms in an associated graded
ring of Rψρ̄ . For instance, if ρ̄ is the trivial representation, then it is simple to check that the
natural degrees of such initial terms are 2 and 3 and that they form a regular sequence. But
the resulting associated graded ring is not an integral domain! However, when K is a proper
extension of Q2, as shown in the Master thesis of M. Kremer, the methods of this article suffice
to show that Rψρ̄ is an integral domain for the trivial representation ρ̄. For n = 2, p = 2 and
K = Q2, see however Remark 4.1.13.

Irreducible components of versal deformation spaces and Zariski density of crystalline points

Denote by X(ρ̄) the versal deformation space of a fixed residual representation ρ̄ : GK → GLn(F)
that is the generic fiber over O[1/p] of its versal deformation ring Rρ̄ in the sense of Berthelot,
see [dJ95, § 7]. The points of X(ρ̄) are in bijection with those p-adic representations of GK that
have a mod p reduction isomorphic to ρ̄. To explain the consequences of the the ring-theoretic
results in Theorem 4.1.5 to p-adic Galois representations, we introduce the following notions due
to Colmez, Kisin and Nakamura:

Definition 4.1.8. Let V be a potentially crystalline p-adic representation of GK of degree n.

(i) V is called regular if for each embedding σ : K ↪→ Qp the Hodge-Tate weights of V ⊗K,σQp

are pairwise distinct.

(ii) V is called benign if V is regular and the Frobenius eigenvalues α1, . . . , αn of (the filtered
φ-module corresponding to) V are pairwise distinct and satisfy αi/αj ̸= pf , for any i, j,
with f = [K0 : Qp].

Using the following important structure result on the irreducible components of X(ρ̄), we
show in Lemma 4.4.2 that every component of X(ρ̄) contains a regular crystalline point.

Theorem 4.1.9. Suppose p > 2 and let ρ̄ be a residual representation of GK of degree 2.
Consider the canonical map D : X(ρ̄) → X(det ρ̄) induced from mapping a deformation of ρ̄ to
its determinant. Then D induces a bijection between the irreducible components of X(ρ̄) and
those of X(det ρ̄). Moreover, for both spaces, irreducible and connected components coincide.
Lastly, the connected components of X(det ρ̄) form a principal homogeneous space over the set
µp∞(K) of p-power roots contained in K.

The proof follows from Theorem 4.1.5 and Lemma 4.4.1, and is thus postponed to Section 4.4.

Question 4.1.10. We wonder whether the assertions of Theorem 4.1.9 hold for all representations
ρ̄ : GK → GLn(F) of any degree n, and any p and any finite extension K/Qp? We also wonder
if Theorem 4.1.5 holds in this generality.
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

The following theorem is shown by methods similar to [Kis10b]. It generalizes a result of
Colmez and Kisin for K = Qp, cf. [Col08, Kis10b], and makes crucial use of an idea of Ch-
enevier [Nak14, Thm. 2.9].

Theorem 4.1.11 ([Nak13, Theorem 1.4]). Suppose n = 2 and that every component of X(ρ̄)
contains a regular crystalline point. Then the Zariski closure of the benign crystalline points in
X(ρ̄) is non-empty and a union of irreducible components of X(ρ̄).

We remark that the above result is also proven for arbitrary n. This is due to Chenevier
[Che13b] for K = Qp and to Nakamura [Nak14] for arbitrary finite extensions K/Qp.

Using Theorems 4.1.5 and 4.1.9, we show in Section 4.4 that Theorem 4.1.11 implies:

Theorem 4.1.12. Suppose n = 2, p > 2, K is a finite extension of Qp and ρ̄ : GK → GL2(F)
is any residual representation. Then the benign crystalline points are Zariski dense in X(ρ̄).

In Corollary 4.4.3, we prove analogs of Theorems 4.1.9 and 4.1.12 for pseudo-representations,
in the sense of Chenevier [Che14].

In the case K = Qp and n = 2, Theorem 4.1.12 is an important ingredient in Colmez’
proof of the p-adic local Langlands correspondence. In that case it is essentially due to Kisin,
cf. [Böc10], and it is used to establish the surjectivity of Colmez’ functor V , which relies on an
analytic continuation argument and the knowledge of the correspondence in the crystalline case;
see [Col10, proof of Thm. II.3.3] or alternatively [Kis10b].

Remark 4.1.13. Suppose p = 2 and K = Q2. The assertions of Theorems 4.1.9 and 4.1.12
for the universal framed deformation space of the trivial representation 1 ⊕ 1 were proved by
Colmez, Dospinescu and Paskunas [CDP15, Thms. 1.1 and 1.2]. The assertion of Theorem 4.1.9
was proved by Chenevier in the case n = 2 if the residual representation is an extension of two
distinct characters, and for arbitrary n if the residual representation is absolutely irreducible
[Che11, Cor. 4.2]. In these two cases the assertion of Theorem 4.1.12 is deduced in [CDP15,
Rem. 9.8].

Generation of quadratic parts of relation ideals through cohomological operations

One possible source of obstruction classes in H2(GK , ad
0) stems from the cup product in coho-

mology: Namely, if one composes the Lie bracket [·, ·] : ad0×ad0 → ad0, (A,B) ↦→ AB−BA, with
the cup product H1(GK , ad

0)×H1(GK , ad
0)→ H2(GK , ad

0⊗ad0), which are both alternating,
one obtains a symmetric F-bilinear pairing

b : H1(GK , ad
0)×H1(GK , ad

0) −→ H2(GK , ad
0),

often called the bracket cup product. As remarked in [Maz89, §1.6], if p ̸= 2 the pairing b gives
the quadratic relations (up to higher terms) satisfied by a minimal set of formal parameters for

R
ψ
ρ̄ . We shall prove this and give a precise interpretation in Lemma 4.5.2.

In Section 4.6, we shall explain how further information on the relation ideal Iψ may arise from
cohomology, namely from a Bockstein homomorphism β̃s+1 : H

1(GK , ad
0)→ H2(GK , ad

0). The
Bockstein homomorphism can be defined whenever ρ̄ admits a lift to Os = O/ϖs

OO for some s.
It measures to what extent lifts from the dual number F[ε] can be lifted to Os[ε]. In Section 4.6
we then combine the bracket cup product with the Bockstein homomorphism, to show that these
two cohomological operations (essentially) suffice to describe the refined quadratic relations in

a minimal presentation of Rψρ̄ .
The results of Sections 4.5 and 4.6 have the following consequences. First, we comple-

ment Theorem 4.1.4:
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4.1. Introduction and statement of main results

Theorem 4.1.14. Let the notation be as in Theorem 4.1.4. Then in addition to the assertions
of Theorem 4.1.4, the following hold:

(a) The elements ḡj are the images of an F-basis of H2(GK , ad
0)∨ under the composite of

the dual obstruction homomorphism obs∨ : H2(GK , ad)
∨ → Iψ/mRI

ψ with the canonical
homomorphism Iψ/mRI

ψ → m2
s/m

3
s.

(b) The dual of the map H2(GK , ad
0)∨ −→ m2

s/m
3
s from (a) factors via −1

2b⊕−β̃s+1.

We prove Theorem 4.1.14 at the end of Section 4.6 by verifying the hypotheses needed to
apply Theorem 4.6.8. In particular, this shows that cohomological information alone suffices to
deduce all parts of Theorem 4.1.5.

Second, we observe in Example 4.2.3 that the bracket cup product alone need not suffice to
show that Rψρ̄ is an integral domain. Thus important ring-theoretic information is not visible
by the bracket cup product but requires in addition the Bockstein homomorphism.

Third, our results show that for 2-dimensional residual representations of GK for p > 2 the
refined quadratic part of Iψ in a minimal presentation of Rψρ̄ suffices to prove Theorem 4.1.5.
Theorem 4.6.8 then explains that essentially the cohomological operations suffice to deduce all
ring-theoretic properties we are interested in.

The third point above is particular to the set-up we work in. For general fields K little
is known about the pairing b and whether it generates a significant portion of the elements
in the relation ideal Iψ of Proposition 4.1.3. However for K a finite extension of Qp and
p > 2, the universal deformation ρρ̄ : GK → GL2(Rρ̄) factors via a profinite group that is an

extension of a finite group by the pro-p-completion ĜL of the absolute Galois group of a finite
extension L of K. The group ĜL is either a free pro-p group or a Demushkin group, and
topologically finitely generated. In the former case, Rρ̄ will be unobstructed. In the latter case

ĜL is isomorphic to the pro-p completion of a group on generators a1, b1, . . . , ag, bg with a single
relation aq1 · (a1, b1) · . . . · (ag, bg) = 1, where g = [L : Qp] and (x, y) denotes the commutator
bracket x−1y−1xy; cf. [Lab67] for the classification of Demushkin groups. The Demushkin case
should be compared with the deformation results [GM88a, GM88b] by Goldman and Millson, as
already suggested in [Maz89]. Goldman-Millson study the deformation theory of representations
of fundamental groups of compact Kähler manifolds, and show in this context that all relations
in a minimal presentation of their deformation rings are purely quadratic. A typical example
is the fundamental group of a compact Riemann surface, which is a group on 2g generators
a1, b1, . . . , ag, bg subject to a single relation (a1, b1) · . . . ·(ag, bg) = 1. The formal similarity of the
relation except for the term aq1 suggests that the deformation rings might be very similar. The
term aq1 might explain the importance of the Bockstein homomorphism when trying to detect
the refined quadratic relations from cohomology.

Outline of the article

We briefly explain the organization of the article. In Section 4.2, we adapt some results from
commutative algebra in the way we later wish to apply them. In particular, these results
give a sufficient criterion for certain rings R in ÂrO to be complete intersections and to be
integral domains in terms of homogeneous initial terms of a presentation of R. The main
results of Section 4.2 together with Theorem 4.1.4 imply the ring-theoretic properties stated
in Theorem 4.1.5. In Section 4.3, we recall the explicit presentations of the versal deformation
rings for 2-dimensional representations ρ̄ from [Böc00]. In Lemma 4.3.7, we also give a detailed
treatment of some results from [Böc00, §8], whose proofs are somewhat sketchy. At the end of
Section 4.3, we give the proof of Theorem 4.1.4.
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

The short proof of the Zariski-density of crystalline points in local deformation spaces is the
content of Section 4.4. We end this article with Sections 4.5 and 4.6 with (presumably well-
known) results regarding the bracket cup product and the Bockstein homomorphism. These
results might be relevant for tackling higher dimensional cases in future work. The proof of
Theorem 4.1.14 ends Section 4.6.
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4.2 Results from commutative algebra

The aim of this section is to prove some results in commutative algebra in order to deduce
from Theorem 4.1.4 the ring-theoretic results stated in Theorem 4.1.5. In particular, we wish
to transfer ring-theoretic properties from a certain associated graded ring to the ring itself.
Recall that above Theorem 4.1.4 we define an initial term map inn from a ring R in ÂrO to the
associated graded ring grnR with respect to a proper ideal n ⊂ R, and that we write Oi for
O/ϖi

OO, R for R/mOR, mR for mR/mOR and x̄ for the image of x ∈ R in R.

Lemma 4.2.1. For a ring R in ÂrO and proper ideals I = (f1, . . . , fr), n ⊂ R, the following
hold:

(a) If grnR is an integral domain, then so is R.

(b) If f1, . . . , fr is a regular sequence in R so that R/I is an integral domain, then R is an
integral domain.

(c) The natural homomorphism grnR→ gr(n+I)/I(R/I) induces an isomorphism

(grnR)/ inn(I)
∼= gr(n+I)/I(R/I).

(d) If inn(f1), . . . , inn(fr) is a regular sequence in grnR, then inn(I) = (inn(f1), . . . , inn(fr)).

(e) If inn(f1), . . . , inn(fr) is a regular sequence in grnR, then f1, . . . , fr is a regular sequence
in R.

Proof. Part (a) is [Eis95, Cor. 5.5], and (b) follows by induction on r: For r = 1 we have a short

exact sequence 0 → R
·f1→ R → R/(f1) → 0 so that gr(f1)R

∼= R/(f1)[t], and R is an integral
domain by (a). Parts (c), (d) and (e) are [VV78, middle p. 94], [VV78, Prop. 2.1] and [VV78,
Cor. 2.7], respectively.

The next result is a refinement of Lemma 4.2.1 suited for our purposes. As a preparation we in-
troduce the following graded ring. Denote byms the ideal (ϖ

s
O, x1, . . . , xh) ofR = O[[x1, . . . , xh]]3

for some integer s ≥ 1. Setting t0 := inms(ϖ
s
O) and ti := inms(xi) for i = 1, . . . , h, we have

grms R = Os[ t0, . . . , th], grms R = F[t̄0, t̄1, . . . , t̄h] and grmR R ∼= F[t̄1, . . . , t̄h], where t̄i is identi-
fied with inmR(x̄i) for i = 1, . . . , h.

3 In this section, and here only, by (R,mR) we denote a formally smooth ring over O in ÂrO and not necessarily
a ring in a presentation as in Proposition 4.1.3.
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Proposition 4.2.2. Let R,ms and s be as above, and let I ⊂ R be an ideal generated by
elements f1, . . . , fr ∈ R. Then the following hold:

(a) If inmR(f̄1), . . . , inmR(f̄r) is a regular sequence in grmR R, then so is ϖO, f1, . . . , fr in R.
In this case, inmR(I) = (inmR(f̄1), . . . , inmR(f̄1)) in grmR R and R/I is flat over O.

(b) If inmR(f̄1), . . . , inmR(f̄r) is a regular sequence in grmR R and grmR R/ inmR(I) is an inte-
gral domain, then also R/I is an integral domain.

(c) If inms(f1), . . . , inms(fr) is a regular sequence in grms R, then so is f1, . . . , fr in R. In this

case, inms(I) = (inms(f1), . . . , inms(fr)) and inms(I) = (inms(f1), . . . , inms(fr)).

(d) If inms(f1), . . . , inms(fr), t̄0 is a regular sequence in grms R and grms R/inms(I) is an integral
domain, then also R/I is an integral domain.

We postpone the proof of Proposition 4.2.2, and first explain some of its content.

Proof of Theorem 4.1.5. Theorem 4.1.4 together with Proposition 4.2.2 applied to the relation
ideal Iψ imply the assertions of Theorem 4.1.5 on Rψρ̄

∼= R/Iψ.

The following instructive example shows the benefits of using the graded ring associated with
the ideal ms in (c) and (d) instead of the one associated with mR in (a) and (b).

Example 4.2.3. Define R := R/I for R = W (F)[[x1, x2, x3]], I = (f) with f = qx1 − x2x3,
q = ps and s ≥ 1 an integer.4 Then by Proposition 4.2.2(a) inmR(Ī) =

(
inmR(f̄)

)
= (t̄2t̄3) in

grmR R = F[t̄1, t̄2, t̄3], and criterion (b) fails to show that R is an integral domain since t̄2 and t̄3
are nonzero zero divisors in grmR R/ inmR(Ī). However, if we consider the graded ring of R with

respect to ms = (q, x1, x2, x3), then inms(f) = t0t1− t2t3 lies in gr2ms R ⊂ grms R = F[t̄0, t̄1, t̄2, t̄3]
and R is an integral domain by Proposition 4.2.2(d).

In Sections 4.5 and 4.6, we show that one can use cohomological methods to compute the
quadratic relations in gr2mR

R resp. gr2ms R from the above example. To distinguish there between
these two quadratic relations, we introduce the following notions:

Definition 4.2.4. Let R, n, ms and s be as above, and let f ∈ R.

(a) If f̄ ∈ m2
R, then the quadratic part of f is inmR(f̄

(2)) ∈ gr2mR
R, where f̄ (2) is the homoge-

neous part of f̄ of degree 2 with respect to the grading of R defined by mR.

(b) If f ∈ m2
s, then the refined quadratic part of f is inms(f

(2)) ∈ gr2ms R, where f
(2) is the

homogeneous part of f of degree 2 with respect to the grading of R defined by ms.

The (refined) quadratic part of an ideal I ⊂ R consists of the (refined) quadratic parts of all
elements in I.

Proof of Proposition 4.2.2. It follows from the hypothesis of (a) and Lemma 4.2.1(e) that (fj)j=1,...,r

is a regular sequence in R. Since clearly ϖO is a non-zero divisor of R, the first assertion of (a)
is proved. From Lemma 4.2.1(d) it follows that inmR(Ī) =

(
inmR(f̄1), . . . , inmR(f̄r)

)
. Finally,

since R is local, the order of the elements in the regular sequence ϖO, f1, . . . , fr is arbitrary.

4 The relation ideal of the ring R̃ from [Böc10, Thm. 5] has the shape 6d− bc modulo m3
1, where p = 3. So in a

qualitative sense R occurs as a versal deformation ring. At the expense of heavy notation, one could also use R̃
in the example.
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

Hence from the definition of a regular sequence it follows that ϖO is a non-zero divisor of the
O-algebra R/(f1, . . . , fr), which means precisely that the latter algebra is flat over O.

To prove (b), we deduce by Lemma 4.2.1(c) and (a) that R/I is an integral domain. By the
last assertion of (a) and Lemma 4.2.1(b) we also have that R/I is an integral domain.

For the proof of (c), we define Ri := grms R/(inms(f1), . . . , inms(fi)) for i = 0, . . . , r and gi as
the image of inms(fi) in Ri. By the remarks preceding the proposition, grms R ∼= Os [t0, . . . , th]
and clearly this ring is flat over Os. By our hypothesis, ḡi is a non-zero divisor of Ri−1 for
i = 1, . . . , r. We claim, and prove this by induction on i, that Ri is flat over Os and that gi
is a non-zero divisor of Ri−1 for each i = 1, . . . , r. If this is proved, then we have shown that
inms(f1), . . . , inms(fr) is a regular sequence in grms R. Then the first assertion of (c) follows
from Lemma 4.2.1(e). The first equality of ideals in (c) follows from Lemma 4.2.1(d) and the
assertion just proved, the second is immediate by reduction modulo ϖO.

To prove the claim, we consider for some j = 2, . . . , s the following diagram obtained by
tensoring the short exact sequence 0→ Oj−1 → Oj → F→ 0 of O-modules with the right exact
sequence Ri−1 → Ri−1 → Ri → 0 where the map on the left is multiplication by gi:

0

↓↓
0 →→ Oj−1 ⊗Ri−1

id⊗gi
↓↓

→→ Oj ⊗Ri−1
id⊗gi
↓↓

→→ F⊗Ri−1
id⊗gi
↓↓

→→ 0

0 →→ Oj−1 ⊗Ri−1

↓↓

→→ Oj ⊗Ri−1

↓↓

→→ F⊗Ri−1

↓↓

→→ 0

Oj−1 ⊗Ri →→

↓↓

Oj ⊗Ri →→

↓↓

F⊗Ri →→

↓↓

0

0 0 0

We assume that the claim is proved for i− 1. Then the two top horizontal sequences are exact
since by induction hypothesis the ring Ri−1 is flat overOs. The left and middle vertical sequences
are exact because the tensor product is right exact. The right vertical sequence is exact, because
ḡi is a non-zero divisor of Ri−1 by hypothesis.

While i is fixed, we proceed by induction on j = 2, . . . , s to show that all rows and columns
in the above diagram are in fact left exact as well: In each induction step, the left-most column
is a short exact sequence by induction hypothesis. This implies the same for the middle column
and it follows that all columns are short exact sequences. In this situation, the 9-lemma implies
that the lower row is also a short exact sequence, and the induction step is complete. If we
consider the central column for j = s, then this shows that gi is a non-zero divisor of Ri−1. If
we consider the lower row for j = s, we see that TorOs1 (F, Ri) = 0 and hence that Ri is flat over
Os. This proves the claim.

Finally, we prove (d). By the proof of (c), we know that the ring grms R/ inms(I) is flat over
Os and its reduction modulo ϖO is grms R/inms(I). Consider elements f, g in R∖ I. We claim
that there exist integers a, b ∈ {0, 1, . . . , s− 1} such that f ′ = ϖa

Of and g′ = ϖb
Og have non-zero

image in

grms R/inms(I) ∼= gr(ms+I)/I(R/I) ∼=
⨁
i≥0

(mi
s + I)/(mi+1

s +ϖOm
i
s + I),
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where the first isomorphism follows from Lemma 4.2.1(c). If the claim is shown, then this
means that there exist i, j ≥ −1 such that f ′ ∈ (mi+1

s + I) ∖ (mi+2
s + ϖOm

i+1
s + I) and g′ ∈

(mj+1
s + I)∖ (mj+2

s +ϖOm
j+1
s + I). Since by hypothesis grms R/inms(I) is an integral domain,

it follows that f ′g′ ∈ (mi+j+2
s + I)∖ (mi+j+3

s +ϖOm
i+j+2
s + I) and hence that the class of f ′g′

is non-zero in R/I. But f ′g′ = ϖa+b
O fg, and we deduce that the class of fg is non-zero in R/I

and thus assertion (d) follows.
To prepare the proof of the claim, we make some technical remarks:

(i) We have I ⊂ ms since the hypothesis of (d) implies that inms(fi) ̸∈ R/ms for all 1 ≤ i ≤ r.
In particular, (ms + I)/I = ms/I.

(ii) If f ∈ mj
s ∖ mj+1

s + I for j ≥ 0, then inms(f) = inms/I(f + I). In particular, t0 =

inms/I(ϖ
s
O + I) since by hypothesis t̄0 is a non-zero divisor in grms R/inms(I) so that

ϖs
O ∈ ms ∖m2

s + I.

(iii) If ϖb
O inms/I(h) ̸= 0 for h ∈ R and 0 < b < s, then ϖb

O inms/I(h) = inms/I(ϖ
b
Oh) as follows

from the definition of multiplication on grms/I R/I.

(iv) The graded components M j = grjms/I(R/I)
∼= grjms R/ inms(I) are finite over the ring

Os =M0. At the beginning of (d) we observed that theM j are flat overOs, and hence they
are finite and free over Os. In particular one has Ker(ϖb

O : M
j →M j) = Im(ϖs−b

O : M j →
M j).

We now verify the claim for f ; the proof for g is analogous. Choose i ≥ 0 such that f ∈
(mi

s + I) ∖ (mi+1
s + I). This is equivalent to inms/I(f + I) lying in the i-th graded piece of

grms/I(R/I). If the image of inms/I(f + I) in grms/I(R/I) is non-zero, we choose a = 0 and are

done. Else we have f ∈ ϖOmi
s + mi+1

s + I, and since grms R/ inms(I) is annihilated by ϖs
O, we

can find a ∈ {1, . . . , s− 1} such that ϖa−1
O f /∈ (mi+1

s + I) but ϖa
Of ∈ (mi+1

s + I). To prove the
claim, it remains to show that ϖa

Of does not lie in mi+2
s +ϖOm

i+1
s + I.

By (iv), there exists f0 ∈ mi
s ∖ mi+1

s + I such that ϖs−a
O inms/I(f0 + I) = inms/I(f + I)

in grms/I(R/I). In terms of ideals this means ϖs−a
O f0 − f ∈ mi+1

s + I, using (iii), and f0 /∈
ϖOm

i
s + mi+1

s + I. By (ii) and the hypothesis in (d), the element t̄0 is a non-zero divisor of
grms /I(R/I), and so we haveϖs

Of0 /∈ ϖOmi+1
s +mi+2

s +I. This impliesϖa
Of /∈ mi+2

s +ϖOm
i+1
s +I,

because we have

ϖs
Of0 −ϖa

Of = ϖa
O · (ϖs−a

O f0 − f) ∈ ϖa
Om

i+1
s +ϖa

OI ⊂ ϖOmi+1
s +mi+2

s + I.

We end this section with a simple result on regular sequences, flatness and integral domains:

Lemma 4.2.5. Suppose I is an ideal of R ∼= O[[x1, . . . , xh]] such that I is minimally generated by
m := dimF I/mRI elements. Suppose g1, . . . , gl are elements of R and let J = I+Rg1+. . .+Rgl.

(a) If R/J is a complete intersection ring of Krull dimension h + 1 − l −m, then R/I is a
complete intersection ring and I is generated by a regular R-sequence.

(b) If (a) holds and if R/J is flat over O, then R/I is flat over O.

(c) If (a) holds and if R/J is an integral domain, then R/I is an integral domain.

Proof. By induction, it suffices to prove the lemma for l = 1. Let f1, . . . , fm denote a minimal
set of generators of I. The hypothesis of (a) implies that R/(f1, . . . , fm, g1) is a complete
intersection ring of dimension h + 1 −m − 1 = h −m. It follows that f1, . . . , fm, g1 must be a
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

regular sequence, and now (a) is immediate. To see (b), observe that its hypothesis implies that
R/(J + ϖO) is a complete intersection ring of Krull dimension h − l −m. It follows from (a)
that f1, . . . , fm, g1, ϖO is a regular sequence. Part (b) is now clear. For (c) note that since g1
(mod I) is a non-zero divisor in R/I by the proof of (a), we may now apply Lemma 4.2.1(b) to
complete (c).

4.3 Explicit presentations of the versal deformation rings

In order to prove Theorem 4.1.4 using the explicit minimal presentations of versal deformation
rings computed in [Böc00], we note that we can work over the ring of Witt vectors W (F) by
[CDT99, A.1]. First we need to introduce some notation: Denote by H the image of a fixed
residual representation ρ̄ : GK → GL2(F) of degree two, and by U a p-Sylow subgroup of H.
Since GK is prosolvable, the group H is solvable. Either #H is of order prime to p, or U
is a normal subgroup of H. By the lemma of Schur-Zassenhaus, we can find a subgroup G
of H of order prime to p such that U ⋊ G = H. By H,G we denote the images of H,G in
PGL2(F). Note that U is isomorphic to its image in PGL2(F) because its order is prime to the
order of F∗ and hence we may identify U with its image. The following can now be deduced
from Dickson’s classification of finite subgroups of PGL2(F), see [Hup67, II.7]. The group G
is either cyclic or dihedral and if U is non-trivial, G must be cyclic (we assume p > 2). We
also introduce finite extensions L ⊃ F ⊃ K in a fixed algebraic closure of K by the conditions
GL = ker(ρ̄) ⊂ GF = ρ̄−1(U) ⊂ GK .

For a character ξ : GK → F∗ we denote by Fξ the one-dimensional vector space F together
with the action via ξ. We let triv : GK → F∗ be the trivial character and ε : GK → F∗ be the mod
p cyclotomic character. Observe that ad = End(ρ̄) ∼= ρ̄⊗F ρ̄

∨ ∼= Ftriv⊕ ad0 since p > 2 and thus

ad0 ∼= HomF
(
ad0,F

)
. Using local Tate duality, one obtains that H2(GK , ad

0) ∼=
(
(ad0)U⊗Fε

)G
.

In the remainder of this section, we distinguish the following five cases.

(A) G ̸= {1} is cyclic and U is trivial. Then ρ̄ ∼
(

1 0
0 ξ

)
⊗η for some characters ξ, η : GK →

F∗. Moreover,

ad ∼= (Ftriv)2 ⊕ Fξ ⊕ Fξ−1 and (ad0)U ⊗ Fε ∼= Fε ⊕ Fξε ⊕ Fξ
−1ε.

(B) G ̸= {1} is cyclic and U is nontrivial. Then ρ̄ ∼
(

1 ⋆
0 ξ

)
⊗ η for some characters ξ, η :

GK → F∗; here ⋆ denotes a non-trivial extension, i.e., a non-trivial class in H1(GK ,Fξ).
Moreover,

(ad)U ∼= Ftriv ⊕ Fξ
−1

and (ad0)U ⊗ Fε ∼= Fξ
−1ε.

(C) G is dihedral. Then H = G, and U is trivial. By [Mul13, Prop. 2.1.1], there exists a

character ξ′ of a normal cyclic subgroup Cn of G of index 2 such that ρ̄ ∼ IndGCn(ξ
′). Then

we have

ad ∼= Ftriv ⊕ Fφ ⊕ IndGCn F
ξ and ad0 ⊗ Fε ∼= Fφε ⊕ IndGCn F

ξ ⊗ Fε,

where φ : G/Cn → F∗ is the unique non-trivial character of order two and ξ : Cn → F∗ is
the character g ↦→ ξ′(g)1−#kK for kK the residue field of K.

(D) G and U are trivial. Then H is trivial, and H is in the scalars of GL2(F). Moreover,

ad ∼= (Ftriv)4 and ad0 ⊗ Fε ∼= (Fε)3.

101



4.3. Explicit presentations of the versal deformation rings

(E) G is trivial and U is nontrivial. Then ρ̄ ∼
(

1 ⋆
0 1

)
⊗ η for some character η : GK → F∗,

where ⋆ denotes a non-trivial extension. Moreover,

(ad)U ∼= (Ftriv)2 and (ad0)U ⊗ Fε ∼= Fε.

Remark 4.3.1. We would like to correct a mistake in [Böc00, Lem. 6.1] when U is nontrivial.
As the character ψ defined at the beginning of [Böc00, §5] corresponds to the character ξ−1 in
the notation used here, in [Böc00, Lem. 6.1] the line ((adρ̄)

U ⊗µp(L))G ∼= (kχ⊕ kψ−1χ)G should
be replaced by ((adρ̄)

U ⊗µp(L))G ∼= (kχ⊕kψχ)G. Further, the condition in case (ix) should read
χ = ψ−1 and not χ = ψ as written.

We know from [Böc00, Theorem 2.6] that the versal deformation ring is isomorphic to the
quotient W (F)[[x1, . . . , xh]]/Iψ, where Iψ is generated by exactly h2 := dimFH

2(GK , ad
0) rela-

tions.

Lemma 4.3.2 (Cf. [Böc00, Lem. 6.1]). If µp∞(F ) = {1}, then h2 = 0. Else, the dimensions h2
and h take the following values in the cases (A)-(E) introduced above.

(A) (i) If ε = triv, then h2 = 1 and h = 3[K : Qp] + 2;

(ii) If ε = ξ and the order of ξ is two, then h2 = 2 and h = 3[K : Qp] + 3;

(iii) If ε = ξ or ε = ξ−1 and ξ ̸= ξ−1, then h2 = 1 and h = 3[K : Qp] + 2;

(iv) In all other cases h2 = 0 and h = 3[K : Qp] + 1.

(B) (i) If ε = ξ−1 and the order of ξ is two, then h2 = 1 and h = 3[K : Qp] + 1;

(ii) If ε = ξ−1 and ξ ̸= ξ−1, then h2 = 1 and h = 3[K : Qp] + 1;5

(iii) In all other cases h2 = 0 and h = 3[K : Qp].

(C) (i) If ε = φ, then h2 = 1 and h = 3[K : Qp] + 1;

(ii) In all other cases h2 = 0 and h = 3[K : Qp].

(D) (i) If ε = triv, then h2 = 3 and h = 3[K : Qp] + 6;

(ii) In all other cases h2 = 0 and h = 3[K : Qp] + 3.

(E) (i) If ε = triv, then h2 = 1 and h = 3[K : Qp] + 2;

(ii) In all other cases h2 = 0 and h = 3[K : Qp] + 1.

Proof. If F contains no p-power roots of unity, then the maximal pro-p quotient GF (p) of GF
is a free pro-p group and h2 = 0 by [Lab67, §1.4]. Otherwise we use the above decompositions
of ad ∼= Ftriv ⊕ ad0 and (ad0)U ⊗ Fε in the cases (A)–(E), and obtain the values of h2 and
h0 := dimFH

0(GK , ad
0). Recall next that the Euler-Poincaré characteristic of ad0 is 3[K :

Qp] = −h0 + h− h2 from which one computes h.

For the following explicit descriptions of minimal presentations of Rψρ̄ , we recall the functor
EΠ from [Böc00, Proposition 2.3]. It is always representable and its universal ring is a versal hull

for Dψ
ρ̄ . To describe EΠ we need to fix some notation. Since U is a p-group in GL2(F) we shall

assume that U lies in the set of unipotent upper triangular matrices U2(F). If U is non-trivial,

5 The reason for not combining (i) and (ii) in case (B) into a single case is that the cases of Lemma 4.3.2 are
used throughout this section, and in later parts the distinction is necessary.

102



4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

let {gn}n be a minimal set of topological generators of the maximal pro-p quotient GF (p) of GF
so that the ρ̄(gn) = Mat 1ūn01 for ūn ∈ F generate U as a G-module. If U is non-trivial, there
is a smallest index i0 for which ūi0 is a unit. Then by conjugation by an element of the form
Matλ001, λ ∈ F∗, which clearly lifts to GL2(W (F)), we will assume from now on that ūi0 = 1.

For any ring R in ÂrW (F) we denote by Γ̃2(R) the inverse image of U2(F) under the reduction
homomorphism SL2(R)→ SL2(F). We set ᾱ := ρ̄|GF (p). If Ḡ = {1}, then we define the functor

EΠ : ÂrW (F)→ Sets by sending (R,mR) to the set{
α ∈ HomG(GF (p), Γ̃2(R))

⏐⏐⏐α(gi0) = ( 1 1
∗ ∗

)
and α ≡ ᾱ (mod mR)

}
if U is non-trivial, and else to HomG(GF (p), Γ̃2(R)). Observe that EΠ(F) = {ᾱ}. As noted

above, EΠ is representable and its universal ring, we write Rᾱ, is isomorphic to Rψρ̄ . The gain
is that it is rather elementary to write down explicitly Rᾱ.

Lastly, we define q as the number of p-power roots of unity contained in F and gq as the
polynomial

gq(x) :=

(q−1)/2∑
k=0

q

(2k + 1)!

k−1∏
j=0

(q2 − (2j + 1)2)xk.

Note that the polynomial gq lies in fact in Z[x].

Remark 4.3.3. We take this opportunity to correct another mistake from [Böc00, Rem. 5.5
(i)]: In the formulas for an,k and bn,k, the expressions (2k)! and (2k + 1)!, respectively, should
be in the denominator.

Theorem 4.3.4 (Cf. [Böc00, Thm. 6.2 and Rem. 6.3 (iv)]). Suppose µp∞(F ) ̸= {1} and set

m := [K : Qp]. There exists a minimal presentation 0 → Iψ → R → Rψρ̄ → 0 of Rψρ̄ , where R
and Iψ are as follows in the respective cases of the previous lemma.

(A) (i) R = W (F)[[{bi, ci}mi=1, {dj}
m+1
j=0 ]] and Iψ =

(∑m
i=1 cibm−i+1 − ((1 + d0)

q − 1)

(1 + d0)
− q

2

)
;

(ii) R = W (F)[[{bi, ci, di}mi=0]] and Iψ =
(∑m

i=0 bidm−i − b0gq(b0c0),−
∑m

i=0 cidm−i −

c0gq(b0c0)
)
;

(iii) If ε = ψ, then R =W (F)[[{bi, di}mi=0, {cj}mj=1]] and I
ψ =

(∑m
i=0 dibm−i − qb0

)
;

If ε = ψ−1, then R =W (F)[[{bi}mi=1, {cj , dj}mj=0]] and I
ψ =

(∑m
i=0 dicm−i − qc0

)
;

(iv) R =W (F)[[{bi, ci}mi=1, {dj}mj=0]] and I
ψ = (0).

(B) (i) R =W (F)[[{bi, ci, di}mi=0]]/(bi0 , dm−i0) and I
ψ =

(
−
∑m

i=0,i ̸=i0 cidm−i−δi0(c0+2ci0b0)·

gq(b0(c0 + ci0b0))− 2(1− δi0)c0gq(c0)
)
, where δi0 ∈ {0, 1} is 0 if i0 = 0 and else 1;

(ii) R =W (F)[[{bi}mi=1, {cj , dj}mj=0]]/(bi0) and I
ψ =

(∑m
i=0 cidm−i − qc0

)
;

(iii) R =W (F)[[{bi, ci, di}mi=1]] and I
ψ = (0).

(C) (i) R =W (F)[[{bi}2mi=1, {dj}mj=0]] and I
ψ =

(∑m
i=1 bib2m−i+1 −

(
(1 + d0)

q
2 − (1 + d0)

− q
2

))
;
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(ii) R =W (F)[[{bi}2mi=1, {dj}mj=1]] and I
ψ = (0).

Remark 4.3.5. We point out that in front of the sum
∑
cidm−i in the second generator of

the relation ideals in [Böc00, Theorem 6.2(ii) and Prop. 7.3(ii)] a minus sign is missing. This

originates from a sign mistake in [Böc00, Lem. 5.6(B)]: There the matrix

(
0 bi
ci 0

)
should

read instead

(
0 bi
−ci 0

)
.

Proof. The relation ideal of the versal hull of the deformation functor without fixing the deter-
minant is listed in the respective cases in [Böc00, Theorem 6.2]. We remark that the relation
(1+a0)

q−1 from there is omitted due to our condition on the determinant, and we used a change
of variables according to [Böc00, Remark 6.3(iv)] to simplify the expressions for the relations
and variables. In order to obtain the right number of indeterminates of the power series ring R,
we follow the steps described in the proof of [Böc00, Theorem 2.6].

Since by assumption F contains a p-power root of unity, GF (p) is a Demuškin group, and its
Frattini quotient ḠF (p) is isomorphic to Ftriv⊕Fε⊕Fp[G]m as a G-module. By the Burnside basis
theorem, there are closed subgroups Pn of GF (p) such that the Frattini quotients P̄n of Pn are
irreducible and GF (p) = ⊕nP̄n. Since the tangent space tE := EΠ(F[t]/(t2)) of EΠ is isomorphic
to the tangent space tD and ad0 ∼= Γ̃2(F[t]/(t2)) as a G-module, we have h = dimF tD =
dimF tE ≤ dimFHomG(GF (p), ad

0). We can compute the right hand side in terms of those G-
submodules P̄n of GF (p) that occur in decompositions of both GF (p) and ad0 into irreducible
G-modules, because the G-submodules that do not occur in a decomposition of ad0 have trivial
image (prime-to-adjoint principle). As remarked in [Böc00, §6], the multiplicities of the G-

submodules occurring in a decomposition of ad0 are (GF (p), Ind
Ḡ
Cn F

ψ)G = 2m if Ḡ is dihedral,
(GF (p),Fτ )G = m for any non-trivial character τ ̸= ε, and (GF (p),Ftriv)G = (GF (p),Fε)G =
m+ 1 + δK , where (X,Y )G := dimF(HomG(X,Y )) for G-modules and δK is 1 if ε acts trivially
and 0 otherwise. By [Böc00, Lem. 5.3], we can choose xn ∈ Pn such that Gxn topologically
generates Pn, and whose image under a homomorphism α : Pn → Γn(R) is either the identity if
P̄n does not occur in a decompositions of ad0 or a matrix of the type

S(b, c) :=
( √

1 + bc b

c
√
1 + bc

)
or D(d) :=

( √
1 + d 0

0
√
1 + d

−1

)

for any ring R in ÂrW (F) and b, c, d ∈ mR. If U is non-trivial, we shall take for the gn in the
definition of EΠ the generators xn. If ρ̄(x0) ̸= id, then we take g1 := x0, else we shall assume
that g1 := x1 by a suitable permutation of the indices n. In cases (A)–(C), we will consider the
power series ring R over W (F) in the variables b, c, d occurring in the images S(b, c) and D(d)
of all generators. Then we will obtain the universal object (Rᾱ, αᾱ) representing EΠ, where Rᾱ
is the quotient ring of R modulo the respective relations in terms of the variables b, c, d from
[Böc00, Lemma 5.6 and Theorem 6.2] .

We begin with explicitly describing R and the relation ideal Iψ in case (A). Then we have
that ad0 ∼= Ftriv⊕Fξ⊕Fξ−1

and h = dimF tE = (GF (p),Ftriv)G+(GF (p),Fξ)G+(GF (p),Fξ
−1
)G.

The following table displays the respective multiplicities of the subrepresentations Ftriv, Fξ and
Fξ−1

in GF (p):
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

k1 = (GF (p),Ftriv)G k2 = (GF (p),Fξ)G k3 = (GF (p),Fξ
−1
)G

(i) ε = triv m+2 m m

(ii) ε = ξ, ε = ε−1 m+1 m+1 m+1

(iii) ε = ξ, ε ̸= ε−1 m+1 m+1 m
ε = ξ−1, ε ̸= ε−1 m+1 m m+1

(iv) ε /∈ {triv, ξ, ξ−1} m+1 m m

By [Böc00, Lem. 5.3(ii)-(iv)], there exist bn, cn′ , dn′′ ∈ mR (with n = (m + 1 − k2), . . . ,m,
n′ = (m+1− k3), . . . ,m and n′′ = 0, . . . , k1− 1) such that a generator xn of a subgroup Pn gets
mapped to either

S(bn, 0), S(0, cn′), S(bn, cn), D(dn′′) or D(0)

under a G-equivariant homomorphism Pn → GL2(R). Finally, in [Böc00, Lem. 5.6(A)-(D),(F)]
the image of the Demuškin relation involving these matrices is completely described. The thereby
obtained equations define the respective relation ideal Iψ (as in [Böc00, Theorem 6.2(i)-(iv)]).

In case (B), we have that ad0 ∼= Ftriv ⊕ Fξ ⊕ Fξ−1
and h = dimF tD = dimF tE < h′ :=

(GF (p),Ftriv)G+(GF (p),Fξ)G+(GF (p),Fξ
−1
)G due to the further conditions that α ∈ EΠ(F[t]/t2)

has to satisfy if U is non-trivial. As in case (A), there exist bn, cn′ , dn′′ ∈ mR (with n =
(m+ 1− k2), . . . ,m, n′ = (m+ 1− k3), . . . ,m and n′′ = 0, . . . , k1 − 1) such that a generator xn
of a subgroup Pn gets mapped to either

S(ūn + bn, 0), S(0, cn′), S(ūn + bn, cn), D(dn′′) or D(0)

under a G-equivariant homomorphism Pn → GL2(R). Due to the condition on the image of xi0 ,
the variable bi0 occurring in the image of xi0 must vanish. In [Böc00, Lem. 5.6(A)-(D),(F)] the
image of the Demuškin relation involving these matrices is completely described. By [Böc00,
Theorem 6.2(ii)-(iii)], this gives rise to the following generators of Iψ:

m∑
i=0

(ūi + bi)dm−i − (ū0 + b0)gq((ū0 + b0)c0) and −
m∑
i=0

cidm−i − c0gq((ū0 + b0)c0) in case (i)

and in case (ii) to
∑m

i=0,i ̸=i0 cidm−i−qc0. In (i), we use the first relation dm−i0 = (ū0+b0)gq((ū0+
b0)c0)−

∑m
i=0,i ̸=i0(ūi + bi)dm−i to also eliminate dm−i0 . Then the second equation reads

−
m∑
i=0

cidm−i−c0gq((ū0+b0)c0) = −
m∑

i=0,i ̸=i0

(
ci−ci0(ūi+bi)

)
dm−i−(c0+ci0(ū0+b0))gq((ū0+b0)c0).

We perform a linear change of coordinates by replacing ci + ci0(ūi + bi) by ci for i ̸= i0. Note
that ū0 = 0 if i0 > 0 so that we obtain the respective generators of Iψ displayed in case (B).

In case (C), we have that ad0 ∼= Fφ ⊕ IndGCn F
ξ and h = dimF tE = (GF (p),Fφ)G + 2(GF (p),

IndGCn F
ξ)G. This means that the multiplicities of the subrepresentations IndGCn F

ξ in GF (p) are
2m, and the ones of the subrepresentations Fφ are m + 1 if ε = φ and m if ε ̸= φ. By [Böc00,
Lem. 5.3(ii),(v)-(vii)], there exist bn, dn′ ∈ mR (with n = 1, . . . , 2m, n′ = 0, . . . ,m in (i) and
n′ = 1, . . . ,m in (ii)) such that a generator xn of a subgroup Pn gets mapped to either

S(bn, bn), S(bn,−bn), D(dn′) or D(0)

under a G-equivariant homomorphism Pn → GL2(R). Finally, in [Böc00, Lem. 5.6(E)-(F)] the
image of the Demuškin relation involving these matrices is completely described. The thereby
obtained equations define the respective relation ideal Iψ (as in [Böc00, Theorem 6.2(v)-(vii)]).
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4.3. Explicit presentations of the versal deformation rings

We define n to be the ideal in R generated by all the variables bi, ci′ , di′′ occurring in the
respective definitions of R in the previous theorem. Further, define the ideal ms ⊂ R as ms :=
qR + n. In cases (A)–(C) it is now a simple matter to read off from the previous theorem
the initial terms for the graded rings naturally associated to R. Checking that these initial
terms form a regular sequence will imply most parts of Theorem 4.1.4 and, when combined with
Proposition 4.2.2, the assertions of Theorem 4.1.5 in cases (A)–(C).

Corollary 4.3.6. In the cases (A)–(C) of the previous lemma, denote the two generators of Iψ

in case (A)(ii) by f1 and f2, and in the other cases the generator of Iψ by f1.

(a) Let in be the initial term map R → grnR. Then the following are the initial terms of the

generators of Iψ in in(Iψ) ⊂ grnR in the cases (A)–(C) of Lemma 4.3.2, where we only
list those cases in which h2 is non-zero.

(A) (i) in(f1) =
∑m

i=1 c̄ib̄m−i+1;

(ii) in(f1) = −
∑m

i=0 b̄id̄m−i and in(f2) =
∑m

i=0 c̄id̄m−i;

(iii) If ε = ψ, then in(f1) =
∑m

i=0 d̄ib̄m−i;
If ε = ψ−1, then in(f1) =

∑m
i=0 d̄ic̄m−i;

(B) (i) in(f1) = −
∑m

i=0,i ̸=i0 c̄id̄m−i − 1− δi0 ·
q
3 · c

2
0;

6

(ii) in(f1) =
∑m

i=0 c̄id̄m−i;

(C) (i) in(f1) =
∑m

i=1 b̄ib̄2m−i+1.

(b) Let in be the initial term map R → grms R and set t0 := in(q). Then the following

are the initial terms of the generators of Iψ in in(Iψ) ⊂ grms R in the cases (A)–(C) of
Lemma 4.3.2, where we only list those cases in which h2 is non-zero.

(A) (i) in(f1) =
∑m

i=1 c̄ib̄m−i+1 − t̄0d̄0;
(ii) in(f1) =

∑m
i=0 b̄id̄m−i − t̄0b̄0 and in(f2) = −

∑m
i=0 c̄id̄m−i − t̄0c̄0;

(iii) If ε = ψ, then in(f1) =
∑m

i=0 d̄ib̄m−i − t̄0b̄0;
If ε = ψ−1, then in(f1) =

∑m
i=0 d̄ic̄m−i − t̄0c̄0;

(B) (i) in(f1) = −
∑m

i=0,i ̸=i0 c̄id̄m−i − 2− δi0 · t̄0c̄0 − 1− δi0 ·
q
3 · c

2
0;

6

(ii) in(f1) =
∑m

i=0 cid̄m−i − t̄0c̄0;

(C) (i) in(f1) =
∑m

i=1 b̄ib̄2m−i+1 − t̄0d̄0.

Proof of Theorem 4.1.4. First note that we can reduce to the case O = W (F) as follows: by
[Maz97, § 12 Prop.] there is an isomorphism Rρ̄ ∼= Rρ̄,W (F) ⊗W (F) O, where Rρ̄ and Rρ̄,W (F) are
the universal deformation rings of ρ̄ that parametrize all deformations of ρ̄ to coefficient rings in
ÂrO and ÂrW (F), respectively. If the fixed character ψ : GK → O∗ takes values in W (F)∗, then
the same argument shows that Rψρ̄

∼= Rψρ̄,W (F)⊗W (F)O, where R
ψ
ρ̄,W (F) is the universal deformation

ring of ρ̄ that parametrizes all deformations of ρ̄ with fixed determinant ψ to coefficient rings in
ÂrW (F). If ψ : GK → O∗ is arbitrary, by Lemma 4.4.1 below it can be twisted so that its image
lies in W (F)∗.

We next give the proof in cases (A)–(C): In all cases of (A)–(C) with h2 ̸= 0, Theorem 4.1.4(a)
holds since the initial terms given in Corollary 4.3.6(b) together with t̄0 form regular sequences

6 Note that the term involving c̄20 vanishes unless q = 3.
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

in grms R with t0 := in(q). Moreover, by Proposition 4.2.2(c) the initial terms from Corol-

lary 4.3.6(b) generate in(Iψ) in the respective cases and one checks that grms R/in(Iψ) is an
integral domain. Thus Theorem 4.1.4(b) follows from Proposition 4.2.2(d) in cases (A)–(C).

Theorem 4.1.4 in the remaining cases (D) and (E) is a direct consequence of the following
lemma.

Lemma 4.3.7. In the cases (D) and (E) let q denote the minimum of p and the number of
p-power roots of unity in K. Then there exists a minimal presentation

0 −→ Iψ = (r1, . . . , rm) −→ R ∼=W (F)[[x1, . . . , xh]] −→ Rψρ̄ −→ 0

such that, letting ms = (q, x1, . . . , xh), the following hold:

(a) m2
s ⊃ Iψ and in(q), in(r1), . . . , in(rm) ∈ gr2ms R is a regular sequence in grms R;

(b) grms R/
(
in(r1), . . . , in(rm)

)
is an integral domain and in(Iψ) =

(
in(r1), . . . , in(rm)

)
;

(c) in(r̄1), . . . , in(r̄m) ∈ gr2mR
R form a regular sequence in grmR R;

(d) grmR R/
(
in(r̄1), . . . , in(r̄1)

)
is an integral domain and in(Iψ) =

(
in(r̄1), . . . , in(r̄1)

)
;

(e) m = dimFH
2(GK , ad

0) and dimKrullR
ψ
ρ̄ = h+ 1−m.

Proof. The proof proceeds along the lines of the proof of [Böc00, Theorem 2.6], but it is simpler
in our case as we shall only determine the initial parts of the gi and rj , and since there is no
action of a finite group of order prime to p. We recall that ρ̄ ∼ Mat 1⋆01⊗ η for some character
η : GK → F∗, where ⋆ denotes an extension. As a preliminary reduction, we may twist ρ̄ by
η−1 so that the image of ρ̄ is a p-group. Twisting all deformations by the Teichmüller lift of
η−1 provides an isomorphism to the deformation functor of the twist of ρ̄. In particular both
functors are represented by isomorphic versal rings. Since now det ρ̄ is trivial, we shall also
assume that its fixed lift ψ is the trivial character, since again, changing ψ has no effect on the
versal deformation ring up to isomorphism. After this reduction, the first case to consider is
that when K does not contain a non-trivial p-power root of unity. Then by Lemma 4.3.2 we
have h2 = 0. Hence Rψρ̄ is unobstructed and thus formally smooth, and assertions (a)–(e) are
obvious.

Suppose from now on that K contains a primitive p-th root of unity ζp. Then the maximal
pro-p-quotient GK(p) of GK is known to be a Demushkin group of rank 2g = [K : Qp] + 2,
cf. [Lab67, §5]. By the classification of Demushkin groups with q > 2 [Lab67, Theorem 7], the
pro-p group GK(p) is isomorphic to the pro-p completion Π of the discrete group

⟨x1, . . . , x2g | r⟩

for the Demushkin relation r = xq1(x1, x2)(x3, x4) . . . (x2g−1, x2g) – recall that (x, y) = x−1y−1xy.
In the following we fix an isomorphism GK(p) ∼= Π.7 Note also that 2g ≥ 4, because K
has to contain Qp(ζp) and [Qp(ζp) : Qp] = p − 1 ≥ 2. If im (ρ̄) is non-trivial, the functor

EΠ : ÂrW (F)→ Sets is given by

(R,mR) ↦→
{
α ∈ Hom(Π, Γ̃2(R))

⏐⏐⏐α(xi0) = ( 1 1
∗ ∗

)
, ᾱ(xi) ≡

(
1 ūi
0 1

)
mod mR for all i

}
,

7 By slight abuse of notation we shall therefore regard the topological generators xi of Π as elements of GK .
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4.3. Explicit presentations of the versal deformation rings

and else by (R,mR) ↦→ Hom(Π, Γ̃2(R)). As the elements {gn} from the bottom of page 102
we take x1, . . . , x2g. As noted there, EΠ is always representable and its universal ring Rᾱ is

isomorphic to Rψρ̄ .
In order to find an explicit presentation of Rᾱ, we define S :=W (F)[[bi, ci, di : i = 1, . . . , 2g]].

For each 1 ≤ i ≤ 2g let

Mi := 12 +

(
ai bi + ui
ci di

)
with 12 :=

(
1 0
0 1

)
,

where we choose a lift ui ∈W (F) of ūi ∈ F, subject to the requirement ui = 0 whenever ūi = 0,
and where ai ∈ S is chosen so that detMi = 1, i.e., ai = ((bi+ui)ci−di)

∑
n≥0(−1)ndni . Observe

that in case (D) all ui = 0. We define polynomials rk in S by

12 +

(
r1 r2
r3 r4

)
:=M q

1 [M1,M2] . . . [M2g−1,M2g],

where [Mi,Mi′ ] is the commutator bracketM−1i M−1i′ MiMi′ . Note that (1+r1)(1+r4)−r2r3 = 1
and that, as we shall explain in a moment, (r1, . . . , r4) ⊂ ms = (q, bi, ci, di : i = 1, . . . , 2g). It is
now straightforward to see that the ring

Rᾱ :=

{
W (F)[[bi, ci, di : i = 1, . . . , 2g]]/(r1, r2, r3) in case (D)
W (F)[[bi, ci, di : i = 1, . . . , 2g]]/(r1, r2, r3, bi0 , di0 − ci0) in case (E)

together with the homomorphism αᾱ : Π → SL2(Rᾱ) defined by mapping xi to Mi – the latter
regarded as a matrix over Rᾱ – is a universal object for EΠ. Note that αᾱ is well-defined precisely
because we imposed the condition that all rk vanish. In case (E) we may and shall assume that
i0 ≤ 4 by permuting the indices of the xi in pairs (2i′ − 1, 2i′) for i′ ∈ {2, . . . , g}.

For k = 2, 3 and j = 0, 1 we define

Gk,k−j(S) :=
{
12 +

(
a b
c d

)
∈ SL2(S) : c ∈ mk

s , a, b, d ∈ mk−j
s

}
.

We set δq=3 = 1 if q = 3 and δq=3 = 0 if q ̸= 3. One can easily check the following facts, where
starting from (2) we let j = 0 in case (D) and j = 1 in case (E):

(1) the sets Gk,k−j(S) defined above are subgroups of SL2(S), and moreover G3,3−j(S) is a
normal subgroup of G2,2−j(S) for j ∈ {0, 1};

(2) the matrices M q
1 and [M2i−1,M2i], for i = 1, . . . , g, lie in G2,2−j(S);

(3) in case (D), computing moduloG3,3(S), for i = 1, . . . , g one hasM1 ≡ 12+Mat−qd1qb1qc1qd1
and

[M2i−1,M2i] ≡ 12 +

(
b2i−1c2i − b2ic2i−1 2b2i−1d2i − 2b2id2i−1
−2c2i−1d2i + 2c2id2i−1 −b2i−1c2i + b2ic2i−1

)
;

(4) in case (E), computing modulo G3,2(S), for i = 1, . . . , g one has

M q
1 ≡

⎧⎪⎪⎨⎪⎪⎩
12 +

(
0 1
c1 0

)
· (q + δq=3c1), if i0 = 1,

12 +

(
0 0
qc1 0

)
, if i0 > 1,

[M2i−1,M2i] ≡

12 +
(

u2i−1c2i−u2ic2i−1 u22i−1c2i−u22ic2i−1+2u2i−1d2i−2u2id2i−1

u2ic
2
2i−1−2(u2i−1−u2i)c2i−1c2i−u2i−1c

2
2i−2c2i−1d2i+2c2id2i−1 −u2i−1c2i+u2ic2i−1

)
;
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

(5) for M,M ′ ∈ G2,2−j(S) one has MM ′ ≡M +M ′ − 12 (mod G3,3−j(S)).

Using these facts we can explicitly compute the initial terms of the relations ri since for
j = 0, 1:

12 +

(
r1 r2
r3 r4

)
=M q

1 ·
g∏
i=1

[M2i−1,M2i] ≡M q
1 +

g∑
i=1

(
[M2i−1,M2i]− 12

)
mod G3,3−j(S).

In case (D) we have r1, r2, r3 ∈ m2
s from (3) and (5), and in case (E) we deduce r1, r2 ∈ ms and

r3 ∈ m2
s from (4) and (5). Below we make the initial terms of the rk more explicit. To then

analyze properties of Rᾱ, we shall need the following results from commutative algebra, which
are simple exercises:

(α) if R is a ring and a1, a2, a3 ∈ R, then using total degrees w = xy − a1x − a2y + a3 is a
non-zero divisor in the polynomial ring R[x, y] over R; if moreover R is an integral domain
and a3 ̸= a1a2, then R[x, y]/(w) is an integral domain, as can be seen by performing a
linear coordinate change with x and y, and then passing to Frac(R)[x, y]/(w).

(β) if R is an N-graded Noetherian ring and if f1, . . . , fω ∈ R are homogeneous of positive de-
gree, then they form a regular sequence if they do so in any order (see [Mat89, Remark after
Thm. 16.3]);

(γ) if R and f1, . . . , fω are as in (β), if the fi form a regular sequence and if R[ 1
fω′+1·...·fω

]/(f1,

. . . , fω′) is an integral domain for any 1 ≤ ω′ ≤ ω, then R/(f1, . . . , fω′) is an integral
domain, as well.

We first show assertions (a)–(e) in case (D). Here we take R = S. Because m2
s contains

(r1, r2, r3), the presentation 0 → (r1, r2, r3) → R → Rψα → 0 is minimal. We shall consider the
canonical reduction map π : R → R′ = R/(bi, ci, di, i = 5, . . . , 2g), and we let m′s = π(ms) and
r′k = π(rk) for k = 1, 2, 3. The ring R′ is a power series ring over W (F) in 12 variables. Thus

grmR′ R
′
and grm′

s
R′/(t̄0), for t0 := in(q), are polynomials rings over F in 12 variables. The

elements in2(r̄′k) ≡ in2(r′k) (mod t̄0) are homogeneous elements of degree 2 for k = 1, 2, 3, which
by (3) are given by the expressions

b̄1c̄2 − b̄2c̄1 + b̄3c̄4 − b̄4c̄3, b̄1d̄2 − b̄2d̄1 + b̄3d̄4 − b̄4d̄3 and c̄1d̄2 − c̄2d̄1 + c̄3d̄4 − c̄4d̄3.

Using (α) and (β), one easily deduces that c̄1, d̄2, b̄3, b̄4 together with the three displayed relations
above form a regular sequence in any order in R = F[b̄k, c̄k, d̄k : k = 1, . . . , 4]. To complete the
argument, we wish to apply (γ). If we invert b̄4 in R, then forming the quotient of R by the first

two relations is equivalent to eliminating c̄3, d̄3 in R. This will change in2(r′3) (mod t̄0) to

w := c1d2−
b2
b4
d4c1−

b1
b4
c4d2−c2d1+

b2
b4
c4d1+

b1
b4
c2d4 ∈ R′ := F[b1, b2, b3, b4, c2, c4, d1, d4,

1

b4
][c1, d2].

Since (b2d4)(b1c4) ̸= b24(−c2d1+ b2
b4c4d1+

b1
b4
c2d4) in the polynomial ring F[b1, b2, b3, b4, c2, c4, d1, d4],

the ring R′/(w) is an integral domain by (α). Therefore by (γ) the ring grm′
s
R′/(t̄0, in(r′1), in(r′2),

in(r′3)) is an integral domain, as well. This implies that t̄0, in(r1), in(r2), in(r3), b̄5, c̄5, d̄5, . . . , b̄2g,
c̄2g, d̄2g is a regular sequence in grms R and that the corresponding quotient ring is an integral do-
main. Invoking Lemma 4.2.1(b) for the domain property, this completes the proof of (a) and (b)
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4.4. Crystalline points in components of versal deformation spaces

in case (D). The proof of (c) and (d) is analogous since the elements in(r̄′k) and in(r′k) (mod t̄0)
are formally given by the same expressions for k = 1, 2, 3. Part(e) follows from Lemma 4.3.2.

We now turn to case (E). Recall that here we have ui0 = 1 by definition of EΠ. Let i1 ̸= i0
denote the index in {1, 2, 3, 4} such that {i0, i1} is either {1, 2} or {3, 4}. Using (4) above, one
finds that the coefficients of ci1 in r1 and of di1 in r2 are in {±1,±2} ⊂ W (F)∗. In particular

in1(r̄k), k = 1, 2, and in1(r′k) (mod t̄0), k = 1, 2, are F-linearly independent elements in mR′/m2
R′

and m′s/(m
′
s)

2 (mod t̄0), respectively. We define R = S/(r1, r2, , bi0 , di0 − ci0). Using r1 and r2
as replacement rules to eliminate the variables ci1 and di1 , we find that the homomorphism

W (F)[[ci0 , bi1 , bk, ck, dk : k ∈ {1, . . . , 2g}∖ {i0, i1}]]→ R,

which sends each formal variable to the same named variable in R, is an isomorphism. By r̃3
we denote the image of r3 in R. It is clear from (2) that r̃3 lies in m2

s, where now ms is the

image of (q, bi, ci, di, i = 1, . . . , 2g) in R. In particular, 0 → (r̃3) → R → Rψα → 0 is a minimal
presentation.

As in the analysis of (D), we consider the reduction map π : R → R′ = R/(bi, ci, di, i =
5, . . . , 2g), we define m′s = π(ms) and r′3 = π(r̃3). The ring R′ is now a power series ring over
W (F) in 8 variables. A short computation shows

w := in2(r̄′3) ≡ in2(r′3) (mod t̄0) ≡
{

2d̄3c̄4 − 2d̄4c̄3 + other terms, if i0 ∈ {1, 2},
2d̄1c̄2 − 2d̄2c̄1, if i0 ∈ {3, 4}.

From w ̸= 0 we deduce (a) and (c). The proof of (e) follows from Lemma 4.3.2. Arguing as for
(D), to prove (b) and (d) it suffices to show that w is a non-zero divisor in

grmR′ R
′ ∼= grm′

s
R′/(t̄0) ∼= F[[ci0 , bi1 , bk, ck, dk : k ∈ {1, 2, 3, 4}∖ {i0, i1}]].

We need to show that w is irreducible, i.e., not a product of two linear terms. For this one may
consider w as a bilinear from. If w was reducible, the representing Gram matrix would have
rank at most 2. However, the displayed coefficients of w imply that this rank is at least 4.

Remark 4.3.8. (a) In Section 4.2, we showed Theorem 4.1.5 by combining Theorem 4.1.4
with Proposition 4.2.2. Alternatively, in cases (D) and (E) Theorem 4.1.5 follows easily
from Lemma 4.3.7(c),(d) combined with Proposition 4.2.2(a),(b).

(b) In cases (D) and (E), Theorem 4.1.4 can also be deduced from [Böc00, §8]. However, we
felt that the arguments there are somewhat sketchy. To make them more precise, we would
have needed to introduce much notation. Since the above proof follows nicely from the
ideas of Section 4.2, we chose this path.

4.4 Crystalline points in components of versal deformation spaces

Let X(ρ̄) be the versal deformation space of a fixed residual representation ρ̄ : GK → GLn(F).
The Zariski density of benign crystalline points in X(ρ̄) for n = 2 is an important consequence
of the integrality results of the previous sections. The purpose of this section is to prove The-
orem 4.1.9 on irreducible components of X(ρ̄), and Theorem 4.1.12 on the Zariski density of
crystalline points by showing that any component of X(ρ̄) contains a crystalline point.

We fix a character ψ : GK → O∗ that reduces to det ρ̄. As is well-known, e.g. [Böc08, Prop. 2.1]
for results of this type, one has the following result:

Lemma 4.4.1. Suppose p does not divide n and ψ′ : GK → O∗ is a second lift of det ρ̄. Then
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

(a) Dρ̄ → Dψ
ρ̄ × Ddet ρ̄, [ρ] ↦→ ([ρ ⊗ (ψ det ρ−1)1/n], det ρ) is an isomorphism of functors with

inverse ([ρ′], φ′) ↦→ [ρ′ ⊗ (φ′ψ−1)1/n]. In particular one has a natural isomorphism Rρ̄ ∼=
Rψρ̄ ⊗̂ORdet ρ̄.

(b) Dψ
ρ̄ → Dψ′

ρ̄ , [ρ] ↦→ [ρ ⊗
√
ψ−1ψ′] is an isomorphism of functors so that Rψρ̄ and Rψ

′

ρ̄ are
isomorphic.

Lemma 4.4.1 shows that it suffices to prove Theorem 4.1.5 for any fixed choice of lift ψ, for
instance for the Teichmüller lift of det ρ. Furthermore, together with Theorem 4.1.5, it implies
Theorem 4.1.9:

Proof of Theorem 4.1.9. By Theorem 4.1.5 and part (a) of the previous lemma, the mapD : X(ρ̄)
→ X(det ρ̄) of Theorem 4.1.9 induces a bijection of irreducible components. Moreover the
irreducible components of both spaces will be connected components if this holds for X(det ρ̄).
To prove this and the remaining assertion of Theorem 4.1.9, it will suffice to describe Rdet ρ̄

explicitly. This however has been carried out in [Maz89, § 1.4]: Denote by Π the abelianized
pro-p completion of GK , which by class field theory is isomorphic to (Zp,+) × (1 + mK , ·).
Then Rη̄ ∼= O[[Π]] ∼= O[[T0, . . . , T[K:Qp]]][X]/((1 +X)q − 1) for any character η̄ : GK → F∗, where
q = #µp∞(K). The remaining assertions are now immediate.

Proof of Theorem 4.1.12. By [Mul13, Thm. 0.0.4], we may choose a crystalline p-adic Galois
representation ρ0 : GK → GL2(Qp) which is a lift of ρ̄, i.e., so that [ρ0] ∈ X(ρ̄). By the construc-
tion in [Mul13], we can assume ρ0 to be regular. We want to show that any component of X(ρ̄)
contains a regular crystalline point so that the hypothesis of Theorem 4.1.11 holds. Denote by
ψ the determinant of ρ0, so that ψ is crystalline, and by X(ρ̄)ψ the rigid analytic space that is

the generic fiber of Rψρ̄ in the sense of Berthelot. By Lemma 4.4.1, we have the isomorphism

X(ρ̄)ψ × X(det ρ̄)
∼=−→ X(ρ̄), ([ρ′], φ′) ↦−→ [ρ′ ⊗ (φ′ψ−1)1/2].

By the following lemma, we have a crystalline point φ′i in any component i of X(det ρ̄). Now the
components form a torsor over µp∞(K), which is a finite cyclic group of p-power order. Because
2 is prime to p, the characters (φ′i)

2 still exhaust all components of X(det ρ̄), and the same holds
for the translates ψ(φ′i)

2. Now under the above map we have ([ρ0], ψ(φ
′
i)
2) ↦→ [ρ0 ⊗ φ′i], and

by Theorem 4.1.9 we see that the latter representations give a regular crystalline lift in any
component of X(ρ̄). Applying Theorem 4.1.11 completes the proof of Theorem 4.1.12.

Lemma 4.4.2. Any component of X(det ρ̄) contains a crystalline point.

Proof. By twisting by ψ−1 it will suffice to prove the lemma for the trivial character 1 in place of
det ρ̄. The crystalline points in X(1) correspond to characters GK → Qp

∗
with trivial reduction

1. We shall use the classification of one-dimensional crystalline representations to describe the
crystalline points. Let recK : Ẑ × O∗K

∼−→ Gab
K be the local Artin map. Consider the induced

projection pr2 : G
ab
K → O∗K , and let PK be the set of embeddings K ↪→ Qp. Then for any

τ0 ∈ PK one defines a character χτ0 as the composite

χτ0 : GK −→ Gab
K

pr2−→ O∗K
τ0−→ Qp

∗
.

One has the following assertions, cf. [Con11, App. B]:
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(a) The character χτ0 is crystalline with labeled Hodge-Tate weights (aτ )τ∈PK where aτ0 = 1
and aτ = 0 for τ ∈ PK ∖ {τ0}.8

(b) Any crystalline character of GK is of the form ν
∏
τ∈PK χ

ℓτ
τ for integers ℓτ and an unram-

ified character ν. The tuple (ℓτ )τ∈PK is its labeled Hodge-Tate weight.

As discussed in the proof of Theorem 4.1.9, R1
∼= O[[Π]] ∼= O[[T0, . . . , T[K:Qp]]][X]/((1+X)q−1)

so that X(1) has q = #µp∞(K) connected components. In order to find a crystalline point in
any component of X(1), we introduce a labeling of its connected components by µp∞(K): Any
point in X(1) corresponds to a character GK → Qp

∗
with trivial mod p reduction, which factors

via the abelianized pro-p completion Π of GK , i.e., it induces a character η : Π → Qp
∗
. Via

the isomorphism recK,p : Zp × (1 + mOK )
∼−→ Π induced from recK by pro-p completion, the

torsion subgroup µp∞(K) of (1 + mOK ) is isomorphic to the torsion subgroup of Π so that
we can define the label of η to be η ◦ recK,p |µp∞ (K)(ζ) ∈ µp∞(K) for a chosen generator ζ of
µp∞(K). Equivalently, one can say that the component of X(1) that contains η is determined
by the restriction η ◦ recK,p |µp∞ (K).

Now we use the above labeling of components to find a crystalline character in each com-
ponent. Recall that f = [K0 : Qp], and denote by τ0 ∈ PK our usually chosen embedding

K ↪→ Qp. By (b) above, for any ℓ ∈ Z the character χ
ℓ(qf−1)
τ0 : GK → Qp

∗
is crystalline. Because

of the factor qf − 1 in the exponent, its image is a pro-p group, and it is straightforward to see

that for the induced character η : Π → Qp we have η ◦ recK,p |1+mOK
= τ

ℓ(qf−1)
0 |1+mOK

. Hence
η ◦ recK,p |µp∞ (K) is equal to the homomorphism

µp∞(K) −→ µp∞(K), α ↦−→ αℓ(q
f−1) = α−ℓ.

By choosing ℓ suitably, it is clear that η can be made to lie in any connected component of
X(1).

For the following result, we assume that the reader is familiar with the theory of determinants
as introduced in [Che14]. Following [WE13] we shall call them pseudo-representations. Let R
be in ArO. To any representation ρ : GK −→ GLn(R) one can attach a pseudo-representation
of degree n, i.e., a multiplicative R-polynomial law τ = τρ : R[GK ]→ R homogeneous of degree
n. To describe the latter, denote for any R-module M by M the functor from R-algebras A
to sets that assigns to A the set M ⊗R A. Then τ is the natural transformation R[GK ] → R

that on any R-algebra A is given by τA : A[GK ]→ A,
∑
rigi ↦→ det

(∑
riρ(gi)

)
. In particular,

any residual representation ρ̄ : GK −→ GLn(F) has an associated pseudo-representation τ̄ . By
[Che14], if τ arises from a representation ρ over R, then the characteristic polynomial χρ(g) of
ρ is equal to χτ (g, T ) := τR[T ](T − g) ∈ R[T ] for any g ∈ GK . The determinant of τ is defined
as the representation det τ := τR = (−1)nχτ ( , 0) : GK → GL1(R).

In [Che14, § 3.1], Chenevier defines a deformation functorDτ for a residual pseudo-representa-
tions τ̄ : F[GK ] → F. By [Che14, Prop. 3.3 and Ex. 3.7], the functor Dτ̄ is representable by a
ring Rτ̄ in ArO. By Xps(τ̄) we denote the generic fiber of Spf Rτ̄ in the sense of Berthelot,
see [dJ95, § 7]. If τ̄ is associated to ρ̄ then there are natural functors

X(ρ̄)
π1−→ Xps(τ̄)

π2−→ X(det ρ̄), (2)

where π1 is defined by mapping a deformation to the associated pseudo-representation, and π2
by mapping a pseudo-representation to its determinant. Note that the composite is defined by
the usual determinant of representations.

8 For the definition of labeled Hodge-Tate weights, see [DS15, Def. 3.2].
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

Corollary 4.4.3. Suppose ρ̄ is a semisimple 2-dimensional residual representation of GK and
p > 2.

(a) The morphisms of connected components

π0(X(ρ̄))
π0(π1)−→ π0(X

ps(τ̄))
π0(π2)−→ π0(X(det ρ̄)),

induced from (2) are bijective.

(b) The benign crystalline points are Zariski dense in Xps(ρ̄).

Proof. To prove (a) observe that by Theorem 4.1.9, the composite π0(π2) ◦π0(π1) is a bijection.
Moreover the map π0(π1) is surjective: For this it suffices to show that any pseudo-representation
τ over Qp, i.e. any closed point in Xps(τ̄), arises from a representation ρ, i.e. a closed point in
X(ρ̄). By [Che14, Thm. 2.12], it is known that τ is the pseudo-representation for a semisimple
representation GK → GL2(Qp). The latter can be realized over a finite extension E of Qp and
then, in turn by a representation ρ′ : GK → GL2(OE) for OE the valuation ring of E. Moreover,
by possibly enlarging E and choosing a suitable lattice, one can also assume that the reduction
ρ̄′ of ρ′ modulo mOE is semisimple. Now on the one hand, we have χτ̄ = χρ̄. On the other
hand π1(ρ

′) = τ yields χτ = χρ′ , and reducing mod mOE we deduce χρ̄′ = χτ̄ = χρ̄. By the
semisimplicity of ρ̄ and ρ̄′, the theorem of Brauer-Nesbitt now implies ρ̄ ∼= ρ̄′. But then ρ′

represents an element of X(ρ̄) that maps to τ , completing the proof of (a).

To prove (b), observe that, by what we just proved, the map π1 is surjective on (closed)
points. Moreover for rigid spaces all Zariski closed subsets are the Zariski closures of their
closed points. But then the image under π1 of a Zariski dense subset is Zariski dense. It follows
from Theorem 4.1.12 that the set of benign crystalline points in Xps(τ̄), which is the image of
the set of benign crystalline points in X(ρ̄), is Zariski dense in Xps(τ̄).

4.5 The cup product and quadratic obstructions

In the remainder of the article, we consider a residual representation ρ̄ : GK −→ GLn(F) for

n ∈ N arbitrary. Let 0→ Iψ → R π→ Rψρ̄ → 0 be a minimal presentation of Rψρ̄ as in (1) of Propo-

sition 4.1.3. In this section, we show that the bracket cup product b : Sym2(H1(GK , ad
0)) →

H2(GK , ad
0) determines the quadratic part of the relation ideal Īψ in the sense of Defini-

tion 4.2.4.

As recalled in Proposition 4.1.2 and 4.1.3, Mazur attaches to any small extension 0 → J →
R1 → R0 → 0 in ÂrO and deformation ρ0 : GK → GLn(R0) with determinant ψ an obstruction
class O(ρ0) ∈ H2(GK , ad

0) ⊗ J for lifting ρ0 to a deformation to R1. First one chooses a
continuous set-theoretic lift ρ1 : GK → GLn(R1) of ρ0 which still satisfies det ◦ρ1 = ψ.9 Then
O(ρ0) ∈ H2(GK , ad

0 ⊗ J) is given by the 2-cocycle

(g, h) ↦−→ ρ1(gh)ρ1(h)
−1ρ1(g)

−1 − 1. (3)

Similarly, O(ρ0) can be described by the obstruction homomorphism obs: HomF (J,F) →
H2(GK , ad

0). The latter is defined as follows: For any f ∈ HomF (J,F), form the pushout on
the left of the given small extension and denote the result by 0 → F → Rf → R0 → 0. If

9 Such a map always exists: For instance choose a continuous set-theoretic splitting R0 → R1 of the given
homomorphism R1 → R0. Observe that since the Ri are local, it induces a continuous set-theoretic splitting of
GLn(R1) → GLn(R0). Finally, fix the determinant similar to Lemma 4.4.1.
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ρf : GK → GLn(Rf ) is a continuous set-theoretic lift of ρ0 satisfying det ◦ρf = ψ, then we set
obs(f) :=

(
O(ρ0), f

)
:= (id⊗f)

(
O(ρ0)

)
∈ H2(GK , ad

0), i.e., obs(f) is given by the 2-cocycle
(g, h) ↦−→ ρf (gh)ρf (h)

−1ρf (g)
−1 − 1.

The following lemma shows that the obstruction class is independent of a chosen small ex-
tension. Its simple proof is left as an exercise.

Lemma 4.5.1. Consider a morphism of small extensions

0 →→ J →→

π
↓↓

R1
→→

π
↓↓

R0
→→

π0
↓↓

0

0 →→ J ′ →→ R′1
→→ R′0

→→ 0,

i.e., a commuting diagram with both rows a small extension and the right hand square in ÂrO.
Let O(ρ0) ∈ H2(GK , ad

0⊗J) be the obstruction of a deformation ρ0 : GK → GL(R0) of ρ̄. Then

(id⊗π)
(
O(ρ0)

)
= O(π0 ◦ ρ0) ∈ H2(GK , ad

0 ⊗ J ′) ∼= H2(GK , ad
0)⊗ J ′.

Recall that means that we pass to rings mod mO, and minimality of the presentation of
Rψρ̄ implies that π induces an isomorphism mR/m

2
R
∼= mψ

ρ̄ /(m
ψ
ρ̄ )

2. In particular, Īψ ⊂ m2
R. In

this section, we consider the filtration {mi
R}i≥0 on R, and let in denote the initial term map

R → grmR R. The following basic result relates the bracket cup product and the quadratic part
of Iψ:

Lemma 4.5.2. We assume p > 2. Then the following diagram is commutative:

HomF
(
H2(GK , ad

0),F
)

− 1
2
b∨

↓↓

obs∨ →→ →→ Īψ/mRĪ
ψ →→ →→

(
Īψ +m3

R
)
/m3
R↙ ↖

↓↓
Sym2

(
HomF

(
H1(GK , ad

0),F
)) ∼ →→ Sym2

(
mR/m

2
R
) ∼ →→ m2

R/m
3
R,

where b∨ is induced by the dual of the bracket cup product, and obs∨ is dual to the obstruction
homomorphism. In particular, the quadratic part in2(Īψ) of Īψ in m2

R/m
3
R agrees with the image

of b∨.

Proof. Let J̄ := (Īψ +m3
R)/m

3
R. We prove that the following diagram is commutative:

Sym2
(
H1(GK , ad

0)
)

− 1
2
b
↓↓

∼ →→ Sym2
(
HomF

(
mR/m

2
R,F

) ) ∼ →→ HomF
(
m2
R/m

3
R,F

)
↓↓↓↓

H2(GK , ad
0) HomF

(
Īψ/mRĪ

ψ,F
)

↗ ↖

obs
←← HomF

(
J̄ ,F

)
.↗ ↖←←

The first isomorphism in the upper row is the canonical isomorphism from Proposition 4.1.2(a).
We shall show that the image of any c1 ∈ H1(GK , ad

0) inH2(GK , ad
0) is independent of whether

we apply −1
2b or the clockwise composite morphism that passes via obs. Since both maps are

F-linear and elements of the form c21 generate Sym
2
(
H1(GK , ad

0)
)
as an F-vector space, this will

prove commutativity. Before we embark on the lengthy computation of the composite morphism,
we observe that the bracket cup product of c1 with itself is represented by the explicit 2-cocycle
(g, h) ↦→ [c1(g),Ad ρ̄(g)c1(h)], see [Was97, §2] – we write Ad ρ̄ for the adjoint action of GK on
ad0 to have clear notation.
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We now compute the clockwise composite morphism that passes via obs. First we extend c1 to
a basis {c1, . . . , ch} of H1(GK , ad

0). Via the isomorphisms H1(GK , ad
0) ∼= HomF

(
mR/m

2
R,F

)
,

we obtain a basis of HomF
(
mR/m

2
R,F

)
, which by slight abuse of notation, we also denote

{c1, . . . , ch}. For the corresponding dual basis of mR/m
2
R we write {x̄1, . . . , x̄h} so that ci(x̄j)

is the Kronecker symbol δij . We lift the latter elements to a system of parameters {x1, . . . , xh}
of mR; this defines an isomorphism R ∼= F[[x1, . . . , xh]]. With this notation, the image of c21 in
HomF

(
m2
R/m

3
R,F

)
is characterized by c21(x̄ix̄j) = 0 if one of i, j is at least 2 and c21(x̄

2
1) = 1.

The image of c21 in HomF
(
J̄ ,F

)
is the restriction c21|J̄ to the subspace J̄ ⊂ m2

R/m
3
R. Finally, the

composition of the canonical homomorphism Īψ/mRĪ
ψ → J̄ and c21|J̄ defines an element f in

HomF
(
Īψ/mRĪ

ψ,F
)
. To evaluate obs(f) = (O(ρρ̄), f), we consider the following diagram which

displays three morphisms of small extensions:

0 →→ Īψ/mRĪ
ψ

↓↓

→→ R̄/mRĪψ

↓↓

→→ R̄/Īψ

↓↓

→→ 0

0 →→ J̄↙ ↖

↓↓

→→ R̄/m3
R

→→ R̄/(Īψ +m3
R)

↓↓↓↓

→→ 0

0 →→ m2
R/m

3
R

c21
↓↓

→→ R̄/m3
R

↓↓↓↓

→→ R̄/m2
R

→→ 0

0 →→ F →→ R̄/ ker(c21) →→ R̄/m2
R

→→ 0,

where the last row is obtained by pushout along c21 and where we denote by ker(c21) the ideal of
R that is the preimage under R → R/m3

R of the kernel of c21 : m
2
R/m

3
R → F. Note that since

R/m2
R
∼= R

ψ
ρ̄ /(m

ψ
ρ̄ )

2, the right column is the morphism defining the deformation ρψρ̄ (mod (mψ
ρ̄ )

2)

to R/m2
R.

By Lemma 4.5.1, we can use the last row to compute obs(f). For this, we need a suitable

set-theoretic lift of ρψρ̄ (mod (mψ
ρ̄ )

2) to R̄/ ker(c21). We begin with a cohomological descrip-

tion of ρψρ̄ (mod (mψ
ρ̄ )

2): using vector space duality, the canonical isomorphism H1(GK , ad
0) ∼=

HomF
(
mR/m

2
R,F

)
can be described equivalently by the 1-cocycle

∑h
i=1 ci⊗ x̄i in Z1(GK , ad

0⊗
mR/m

2
R). Therefore, ρ

ψ
ρ̄ (mod (mψ

ρ̄ )
2) is given by the formula

g ↦−→
(
1 +

h∑
i=1

ci(g)⊗ x̄i
)
ρ̄(g).

We want to obtain a formula for a set-theoretic lift to R̄/ ker(c21). It will be convenient to
use the exponential map exp2(x) = 1 + x + 1

2x
2 to level 2, which is well-defined as the rings

(R,mR) in ÂrO have characteristics different from 2. Moreover, exp2 can be applied to matrices
A ∈Mn(mR). If in addition m3

R = 0, then one can also verify that det(exp2(A)) = exp2(Tr(A)).
In particular, exp2(A) has determinant equal to 1 if A is of trace zero. Now we take as our
set-theoretic lift

ρ′0 : GK −→ GLn(R̄/ ker(c21)), g ↦−→ exp2

( h∑
i=1

ci(g)⊗ xi
)
ρ̄(g) (mod ker(c21)).

By the remark above on exp2, we have det(ρ′0(g)) = det(ρ̄(g)) = ψ(g) (mod mO) for all g ∈
GK . In R/ ker(c21), we have xixj = 0 whenever i > 1 or j > 1. Hence, the expressions
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exp2(ci(g) ⊗ xi) commute for all i and we have exp2
(∑h

i=1 ci(g) ⊗ xi
)
=
∏h
i=1 exp2(ci(g)xi).

Using these properties, the class obs(f) is represented by the 2-cocycle

(g, h) ↦−→ ρ′0(gh)ρ
′
0(h)

−1ρ′0(g)
−1 − 1 = ρ′1(gh)ρ

′
1(h)

−1ρ′1(g)
−1 − 1,

where ρ′1 is the lift GK → GLn(R̄/ ker(c21)), g ↦→ exp2
(
c1(g)⊗ x1

)
ρ̄(g) (mod ker(c21)), of ρ̄. At

this point, it is a simple if lengthy computation to verify that the right hand side of the previous
expression is the 2-cocycle (g, h) ↦→ −1

2 [c1(g),Ad ρ̄(g)c1(h)]⊗ x
2
1. Now x21 is our chosen F-basis

of the lower left term in the above diagram and via c21 it is mapped to 1. Hence, obs(f) agrees
with the expression for −1

2b(c1, c1) given above.

Remark 4.5.3. The use of the exponential map in the above proof seems standard, e.g. [Gol84,
1.3].

Corollary 4.5.4. Suppose ρ̄ is of degree 2 and p > 2. Then the homomorphism

b : Sym2H1(GK , ad
0) −→ H2(GK , ad

0)

induced from the bracket cup product is surjective.

Proof. Consider a minimal presentation 0 → Iψ → R → Rρ̄ → 0 of Rρ̄. By Lemma 4.5.2, it
suffices to show that the images of the quadratic parts of generators of Iψ span a subspace of
dimension equal to dimFH

2(GK , ad
0). This follows from Corollary 4.3.6(a) in cases (A)–(C),

Lemma 4.3.7(c)–(e) in cases (D)–(E) and Lemma 4.3.2 by direct inspection in the respective
cases of Section 4.3.

4.6 Further quadratic obstructions from the Bockstein homomorphism

Let ρ̄ : GK → GLn(F) be a residual representation and 0 → Iψ → R π→ Rψρ̄ → 0 be a fixed
minimal presentation as in Proposition 4.1.3. In the previous section we gave a description
of the contribution of the bracket cup product b : Sym2(H1(GK , ad

0)) → H2(GK , ad
0) to the

relation ideal Iψ. By Lemma 4.5.2, knowing b is equivalent to knowing the quadratic part of
Īψ. In Example 4.2.3 we saw that knowing the refined quadratic part may have stronger ring-
theoretic implications than knowing the quadratic part only. The theme of this section is the
Bockstein homomorphism and its additional contribution to the relation ideal Iψ. The upshot
is a cohomological description of the refined quadratic part of Iψ in cohomological terms in
Lemma 4.6.6 and Theorem 4.6.8.

We suppose that there is a representation ρs+1 : GK → GLn(Os+1) lifting ρ̄ for some integer

s.10 Observe that ρs+1 defines a homomorphism αs+1 : R
ψ
ρ̄ /(ϖ

s+1
O ) → Os+1. For the following

discussion it will be convenient to choose a regular sequence of parameters of R that is compat-
ible with αs+1 in the following sense: Since the morphism αs+1 ◦ (π (mod ϖs+1

O )) : R/(ϖs+1
O )→

Os+1 is a surjective homomorphism of formally smooth Os+1-algebras, it possesses an Os+1-
splitting. Thus we may choose x1, . . . , xh of R with h = dimFH

1(GK , ad
0) such that R/ϖs+1

O
∼=

Os+1[[x1, . . . , xh]] and such that under this identification the homomorphism αs+1◦(π (mod ϖs+1
O ))

sends all xi to zero. For 1 ≤ i ≤ s, let αi := αs+1 (mod ϖi
O) : R

ψ
ρ̄ /(ϖ

i
O) → Oi and ρi := ρs+1

(mod ϖi
O) : GK → GLn(Oi). Further, for 1 ≤ i ≤ s + 1, the adjoint representation Ad ρi :

GK → ad0i of GK on trace zero matrices ad0i := Mat0n(Oi) is given by conjugation with ρi so
that ad01 = ad0. Then for all 2 ≤ i ≤ s+ 1 there is a short exact sequence of GK-modules

0 −→ ad0i−1
·ϖO−→ ad0i

pri−→ ad0 −→ 0.
10 The delicate matter of the correct choice of q = ps is discussed in Lemma 4.6.9 and Remark 4.6.10.
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Definition 4.6.1. For 2 ≤ i ≤ s+1, the i-th Bockstein operator or the pi-Bockstein homomorphism
is the connecting homomorphism βi in the induced long exact cohomology sequence

. . . →→ H1(GK , ad
0
i−1)

·ϖO →→ H1(GK , ad
0
i )

pr∗i →→ H1(GK , ad
0)

βi

→→ H2(GK , ad
0
i−1)

·ϖO →→ H2(GK , ad
0
i )

pr∗i →→ H2(GK , ad
0) →→ . . .

(4)

Now we give an explicit description of βi that will be useful later.

Lemma 4.6.2. Let 2 ≤ i ≤ s+1, let c ∈ Z1(GK , ad
0), and let ˜ denote a set-theoretic splitting

of ad0i → ad0. The i-th Bockstein operator is given explicitly by

βi([c]) =
(
(g, h) ↦−→ ϖ−1O ·

(
Ad ρi(g)c̃(h)− c̃(gh) + c̃(g)

))
(mod B2(GK , ad

0
i−1)). (5)

Proof. The connecting homomorphism βi is defined by applying the snake lemma to the following
commutative diagram with exact rows:

C̄1(GK , ad
0
i−1)

·ϖO →→

∂i−1

↓↓

C̄1(GK , ad
0
i )

pr∗i →→

∂i
↓↓

C̄1(GK , ad
0) →→

∂1
↓↓

0

0 →→ Z2(GK , ad
0
i−1) ·ϖO

→→ Z2(GK , ad
0
i ) pr∗i

→→ Z2(GK , ad
0),

where we let C̄1(GK , ad
0
j ) := C1(GK , ad

0
j )/B

1(GK , ad
0
j ) and ∂j is induced by the coboundary

map

C1(GK , ad
0
j ) −→ C2(GK , ad

0
j ), b ↦−→

(
(g, h) ↦→

(
Ad ρj(g)b(h)− b(gh) + b(g)

))
.

for any 1 ≤ j ≤ s + 1. We lift the given 1-cocycle c ∈ Z1(GK , ad
0) to the 1-cochain b0 :=(

g ↦→ c̃(g)
)
: GK → ad0i , and denote the image of c and b0 in C̄1(GK , ad

0
i ) by c̄ and b̄0,

respectively. Since by assumption ∂1(c̄) vanishes and the right hands side of the diagram is
commutative, we conclude that ∂i(b̄0) ∈ ker(pr∗i ). Using the exactness of the lower row, we may
define βi([c]) := ϖ−1O · ∂i(b̄0) (mod B2(GK , ad

0
i−1)) so that the desired formula (5) follows from

the definition of ∂i.

The meaning of the Bockstein operator for obstructions is given by the following straightfor-
ward result.

Lemma 4.6.3. Let i ∈ {2, . . . , s + 1} and consider a deformation ρ̄c = (1 + cε) · ρ̄ : GK →
GLn(F[ε]) of ρ̄ for some c ∈ Z1(GK , ad

0). Then ρi has a deformation to Oi[ε] that lifts ρ̄c if
and only if βi([c]) = 0.

Proof. As in the mod ϖO case we can write any deformation to Oi[ε] of ρi as

ρi,ci = (1 + ciε) · ρi : GK → GLn(Oi[ε])

for some ci ∈ Z1(GK , ad
0
i ). Using the functorial homomorphism pr∗i : C

1(GK , ad
0
i )→ C1(GK , ad

0),
we find that the image of ρi,ci under reduction mod ϖO is given by

(1 + pr∗i (ci)ε) · ρ̄ : GK → GLn(F[ε]).

Hence, such a deformation ρi,ci : GK → GLn(Oi[ε]) of ρi that lifts ρ̄c exists if and only if
pr∗i (ci) = c. The long exact sequence of group cohomology (4) implies that the latter holds if
and only if [c] lies in the kernel of βi.
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Corollary 4.6.4. Let i be in {2, . . . , s+ 1} and consider the presentation

0 −→ Ii −→ Ri := Oi[x1, . . . , xh]/(x1, . . . , xh)2
πi−→ Ri := Rψρ̄ /π((x1, . . . , xh)

2 +ϖi
OR) −→ 0

(6)
induced from (1) in Proposition 4.1.3. Then βi = 0 if and only if Ii = 0, i.e., if and only if πi
is an isomorphism. In particular, if βs = 0, then βj = 0 for all j = 2, . . . , s.

Proof. Suppose that Ii is non-zero and let f ̸= 0 be an element of Ii. By multiplying f by
a suitable power of ϖO, we may assume that f lies in ϖi−1

O Ri, i.e., that f is of the form

ϖi−1
O (

∑h
j=1 λjxj) for suitable λj ∈ Oi such that at least one λj lies in O∗i . Let ᾱε : Ri → F[ε] be

an O-algebra homomorphism such that ᾱε
(∑h

j=1 λjxj
)
is non-zero. Since βi = 0, there exists

an O-algebra homomorphism

αi,ε : Ri → Oi[ε]

such that αi,ε ≡ ᾱε (mod ϖO) : Ri → F[ε]. We deduce

0
πi(Ii)=0

= (αi,ε ◦ πi)
(
ϖi−1
O
( h∑
j=1

λjxj
)) O-hom.

= ϖi−1
O (αi,ε ◦ πi)

( h∑
j=1

λjxj

)
∈ Oi[ε],

and it follows that (αi,ε◦πi)
(∑h

j=1 λjxj
)
lies in ϖOOi[ε], or, in other words, that ᾱε

(∑h
j=1 λjxj

)
= 0. This is a contradiction.

Lemma 4.6.5. Suppose that βs = 0, so that also β2 = . . . = βs−1 = 0. Then the following hold:

(a) For i = 2, . . . , s, the short exact sequence

0 −→ ad0
·ϖi−1

O−→ ad0i
γi−→ ad0i−1 −→ 0.

yields a short exact sequence 0 −→ H2(GK , ad
0)
·ϖi−1

O−→ H2(GK , ad
0
i )

γ∗i−→ H2(GK , ad
0
i−1) −→

0.

(b) The Bockstein homomorphism βs+1 : H
1(GK , ad

0)→ H2(GK , ad
0
s) induces a homomorph-

ism

β̃s+1 : H
1(GK , ad

0) −→ H2(GK , ad
0)

with βs+1 = ϖs−1
O β̃s+1 and the following property: A deformation ρc = (1 + cε)ρ̄ : GK →

GLn(F[ε]) of ρ̄ given by c ∈ Z1(GK , ad
0) lifts to a deformation of ρs+1 to Os+1[ε] if and

only if β̃s+1([c]) = 0.

(c) If c̃ ∈ Z1(GK , ad
0
s+1) denotes a set-theoretic lift of c ∈ Z1(GK , ad

0), then one has the
explicit formula

β̃s+1([c]) =
(
(g, h) ↦−→ ϖ−sO

(
Ad ρs+1(g)c̃(h)− c̃(gh) + c̃(g)

))
(mod B2(GK , ad

0)).

Proof. For (a), recall that one has scdGK = 2 for the strict cohomological dimension of K.
Thus from βs = 0 and from (4) we obtain the short exact sequence

0 −→ H2(GK , ad
0
s−1)

·ϖO−→ H2(GK , ad
0
s)

pr∗i−→ H2(GK , ad
0) −→ 0.
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

The groups H2(GK , ad
0
i ) are finite, and we deduce

#H2(GK , ad
0
s) = #H2(GK , ad

0
s−1) ·#H2(GK , ad

0). (7)

The sequence in (a) of second cohomology groups is part of a long exact cohomology sequence.
Its right exactness thus follows from scdGK = 2, and then its left exactness is immediate
from (7).

For (b) and (c) we consider the commutative diagram

H1(GK , ad
0)

β̃s+1

←←
βs+1

↓↓

βs

→→
0 →→ H2(GK , ad

0)
·ϖs−1

O →→ H2(GK , ad
0
s)

γ∗s →→ H2(GK , ad
0
s−1) →→ 0

with exact second row. Because βs = 0, the dashed arrow β̃s+1 exists, and this proves (b). Finally

the formula for β̃s+1 in (c) follows from multiplying the formula (5) for βs+1 by ϖ
−(s−1)
O .

The next result gives the meaning of the Bockstein operator for the relation ideal Iψ.

Lemma 4.6.6. For i = 1, . . . , s + 1, let mi be the kernel of the composition morphism R π→
Rψρ̄ ↠ Rψρ̄ /(ϖ

i
O)

αi→ Oi, i.e., mi = (ϖi
O, x1, . . . , xh). Let Is+1 be the relation ideal in (6) and

denote by Iψ → Is+1 the canonical homomorphism. Suppose βs = 0. Then one has the following
commutative diagram:

H2(GK , ad
0)∨

obs∨ →→

−β̃∨
s+1
↓↓

Iψ/mRI
ψ →→ Is+1↙ ↖

↓↓
H1(GK , ad

0)∨ →→∼ →→ mR/m
2
R

∼
ϖsO·

→→ V ,

where V :=
(
m2
s +ϖs+1

O R
)
/
(
m2
s+1 +ϖs+1

O R
)
is an F-vector space with basis {ϖs

Oxj}j=1,...,h.

Proof. As in the proof of Lemma 4.5.2, we prove commutativity of the dual diagram

H2(GK , ad
0) HomF

(
Iψ/mRI

ψ,F
)

↗ ↖obs←← HomF (Is+1,F)↗ ↖←←

H1(GK , ad
0)

−β̃s+1

↑↑

HomF
(
mR/m

2
R,F

)∼←← HomF (V,F) .
∼

ϖ−s
O ·

←←

↑↑↑↑

We start by computing obs(f̄) ∈ H2(GK , ad
0), where f̄ is the image in HomF

(
Iψ/mRI

ψ,F
)

of a homomorphism f ∈ HomF (V,F). For this, we use f to construct certain deformations of
ρ̄ and corresponding 1-cocycles that at the end of the proof also determine the image of f in
H2(GK , ad

0) under the other composite morphism passing through H1(GK , ad
0).

In order to compute obs(f̄) with the help of Lemma 4.5.1, let f̃s+1 : V = ⊕hj=1Fϖs
Oxj → Os+1

be a set-theoretic lift of f , and define fs+1 : Rs+1 → Os+1[ε] by mapping xi to f̃s+1(ϖ
s
Oxi) · ε.

Then we consider the quotient Rs+ := Rs+1/
(
m2
s +ϖs+1

O R
)
of Rs+1. Note that Rs+ is the ring

fiber product
Rs+

□

→→

↓↓

Rs

↓↓
Os+1

→→ Os.
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4.6. Further quadratic obstructions from the Bockstein homomorphism

The deformation ρs+1 defines a homomorphismRψρ̄ → Os+1, and since βs = 0 there is a surjection

Rψρ̄ ↠ Rs by the previous lemma. By universality of the fiber product Rs+, there exists a

homomorphism g : Rψρ̄ → Rs+ that corresponds to a deformation ρs+ : GK → GLn(Rs+) of ρ̄.

Moreover, the homomorphism
(
fs+1 (mod ϖs

OεOs+1)
)
◦ g : Rψρ̄ → Rs+ → Os+1[ε]/(ϖ

s
OεOs+1)

defines a deformation ρ̄s+ : GK −→ GLn(Os+1[ε]/(ϖ
s
OεOs+1)). Finally, we form the pushout Rf

of V ↪→ Rs+1 and f so that there is a commutative diagram

0 →→ Iψ/mRI
ψ

↓↓↓↓

→→ R/mRIψ

↓↓↓↓

→→ Rψρ̄

↓↓↓↓ g

↙↙

→→ 0

0 →→ Is+1↙ ↖

↓↓

→→ Rs+1
→→ Rs+1

→→

↓↓↓↓

0

0 →→ V

f
↓↓

→→ Rs+1
→→

↓↓ fs+1

↙↙

Rs+ →→ 0

0 →→ F →→

↓↓

Rf →→

↓↓

Rs+ →→

↓↓

0

0 →→ ϖs
OεOs+1

→→ Os+1[ε] →→ Os+1[ε]/ϖ
s
OεOs+1

→→ 0

whose rows are small extensions in ÂrO. Using Lemma 4.5.1, we obtain

obs(f̄)⊗ϖs
OεOs+1 =

(
O(ρs+), f

)
⊗ϖs

OεOs+1 = O(ρ̄s+) ∈ H2
(
GK , ad

0 ⊗F ϖ
s
OεOs+1

)
. (8)

Now we follow the steps explained above Lemma 4.5.1: Namely, we first define a suitable
set-theoretic lift GK −→ GLn(Os+1[ε]) of ρ̄s+ and then compute the obstruction class (8) by

applying formula (3). Composing the surjection Rψρ̄ → Rs and fs+1 (mod ϖs
O) : Rs → Os[ε]

determines a deformation ρs,ε = (1 + εcs)ρs : GK −→ GLn(Os[ε]) for some 1-cocylcle cs ∈
H1(GK , ads). Let c̃s ∈ Z1(GK , ad

0
s+1) be a set-theoretic lift of cs that by construction defines a

set-theoretic lift
ρ̃s,ε := (1 + εc̃s)ρs+1 : GK −→ GLn(Os+1[ε]) (9)

of ρ̄s+. Using formula (3), we calculate a representative in Z2
(
GK , ad

0 ⊗ (ϖs
Oε)
)
for (8) by

evaluating

(h, k) ↦−→ ρ̃s,ε(hk)ρ̃s,ε(k)
−1ρ̃s,ε(h)

−1 − 1

(9)
=

(
1 + εc̃s(hk)

)
ρs+1(hk)ρs+1(k)

−1(1− εc̃s(k))ρs+1(h)
−1(1− εc̃s(h))− 1

= ϖ−sO
(
c̃s(hk)−Adρs+1(h) c̃s(k)− c̃s(h)

)
·ϖs
Oε.

Hence, the class obs(f̄) ∈ H2(GK , ad
0) is obtained from dividing by εϖs

O.
It remains to compute the image of the homomorphism f ∈ HomF (V,F) under the composite

morphism passing through H1(GK , ad
0). First note that the map fs+1 (mod ϖO) : F[x1, . . . , xh]

/(x1, . . . , xh)
2 → F[ε] induces a homomorphism f1 ∈ HomF

(
mR/m

2
R,F

)
, which under multiplica-

tion byϖs
O is mapped to f ∈ HomF (V,F). We want to compute β̃s+1([c]), where c ∈ Z1(GK , ad

0)
is a representative of the image of f1 under the canonical isomorphism HomF

(
mR/m

2
R,F

) ∼→
H1(GK , ad

0). Since by construction ρs,ε = (1+ εcs)ρs : GK → GLn(Os[ε]) lifts (1+ εc)ρ̄ : GK →
GLn(F[ε]), it is clear that c̃s ∈ Z1(GK , ad

0
s+1) is a set-theoretic lift of c. By Lemma 4.6.5(c), it

thus provides us with the representative

(h, k) ↦−→ ϖ−sO
(
Adρs+1(h) c̃s(k)− c̃s(hk) + c̃s(h)

)
∈ Z2(GK , ad

0)

for β̃s+1([c]). This shows that β̃s+1([c]) = −obs(f̄), proving the lemma.
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If ρ̄ has a lift to O2s, then there is a natural refinement of the above with regards to the
filtration of R given by ms. Denoting by in the initial term map with respect to this filtration,
one has isomorphisms

m2
s/(m

3
s +m2

2s)
∼= F · in(ϖs

O)
2 ⊕

h⨁
i=1

F · in(ϖs
O) · in(xi) ∼= F · in(ϖs

O)
2 ⊕ V

and
ker
(
m2
s/m

3
s → m2

s/(m
3
s +m2

2s)
) ∼= ⨁

1≤i≤j≤n
F · in(xi) · in(xj) ∼= m2

R/m
3
R.

In other words, we have a natural 2-step filtration of gr2ms R whose first subquotient is isomorphic
to m2

R/m
3
R and whose second subquotient is isomorphic to F · in(ϖs

O)
2 ⊕ V with V as above. A

variant of the above lemma is the following whose proof we leave to the reader:

Lemma 4.6.7. Let Is+1 be the relation ideal in (6) and let Iψ → Is+1 be the canonical homo-
morphism. Suppose that ρs+1 possesses a lift to O2s and that βs = 0. Then one has the following
commutative diagram:

H2(GK , ad
0)∨ →→

−β̃∨
s+1
↓↓

Iψ/mRI
ψ →→ Is+1↙ ↖

↓↓
H1(GK , ad

0)∨ →→∼ →→ mR/m
2
R
↘ ↙

ϖsO·
→→ F · in(ϖs

O)
2 ⊕ V .

The use of the above 2-step filtration of gr2ms R allows one to apply our results on the Bockstein
operator on one piece and that of the bracket cup product on the other. This gives precise
information on the refined quadratic parts in gr2ms R which arise from H2(GK , ad

0) – with the
possible exception of the quotient in(ϖs

O)
2 · F. Namely, we have the following result:

Theorem 4.6.8. Suppose ρ̄ has a lift to Os+1 and that βs = 0. Then Iψ is contained in
m2
s+ϖ

s+1
O R and the following diagram is commutative, where all homomorphisms are the natural

ones, as given either in Lemma 4.5.2 or Lemma 4.6.6:

H2(GK , ad
0)∨ →→

−β̃∨
s+1⊕−

1
2
b∨

↓↓

Iψ/mRI
ψ →→ Iψ/

(
Iψ ∩ (m3

s +ϖs+1
O R)

)
↓↓

H1(GK , ad
0)∨⊕ Sym2H1(GK , ad

0)∨
∼ →→ mR/m

2
R ⊕m2

R/m
3
R
↘ ↙

(ϖsO· )⊕incl.
→→ gr2ms R/(F · in(ϖ

s
O)

2).

If in addition ρ̄ has a lift to O2s, then the above diagram still commutes if one removes the
symbols ‘+ϖs+1

O R’ in the top right and ‘F · in(ϖs
O)

2’ in the lower right corner.

We now discuss various issues about the Bockstein homomorphism that were left open so far,
for instance the existence of lifts ρs+1 and the choice of s.

Lemma 4.6.9. Let p > 2 and ρ̄ : GK → GLn(F) be a representation. Let s be an integer.11 We

fix a minimal presentation of Rψρ̄ as in Proposition 4.1.3 and an isomorphism R ∼= O[[x1, . . . , xh]],
and set ms := (ϖs

O, x1, . . . , xh). Then the following hold:

11 In different items, s may take different values.
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(a) If n = 2, then ρ̄ has a lift to O.

(b) For general n, if ρ̄(GK) is a p-group and if ps = #µp∞(K) > 1, then ρ̄ has a lift to the
ring O/ϖs+1

O O.

(c) If the relation ideal Iψ lies in m2
s, then ρ̄ has a lift to O2s.

(d) If ρ̄ has a lift to O2s and if βs = 0, then any choice yi ∈ xi +ϖs
OR, i = 1, . . . , h, induces

a change of coordinates isomorphism R ∼= O[[x1, . . . , xh]] ∼= O[[y1, . . . , yh]] such that ms is
independent of whether we use the xi or the yi to define it.

(e) If Rψρ̄ is flat over O, then there exists a finite totally ramified extension of O[1/p] with ring

of integers O′ and a homomorphism Rψρ̄ → O′ in ÂrO, i.e., ρ̄ has a lift to characteristic
zero, and in particular lifts to O′/(ϖ′O)s for every integer s.

Regarding (e) note that A. Muller [Mul13] has constructed crystalline lifts of a large class
of mod p Galois representations ρ̄ for any n. Whether such a lift always exists is still an open
question.

Proof. For O =W (F), part (a) can be obtained from a simple adaption of [Kha97, Theorem 2]
– Khare’s proof using Kummer theory works for all field of characteristic zero – and part (b)
is [Böc03, Prop. 2.1]. For general O, one can apply Lemma 4.4.1 to replace the fixed character
ψ : GK → O∗ by a twist of ψ whose image lies inW (F)∗. Part (c) is rather trivial: the hypothesis
implies that Rψρ̄

∼= R/Iψ surjects onto R/(p2s, x1, . . . , xh) ∼= O2s. Part (d) is also obvious. For

(e) observe that by flatness the ring Rψρ̄ [1/p] is non-zero. Hence, its generic fiber X(ρ)ψ is a
non-empty rigid analytic space over O[1/p]. Thus it has points over some finite extension of
O[1/p]. These points are the desired lifts.

Remark 4.6.10. The definition of the Bockstein operators βi depends on a choice of a base
point, i.e., a lift ρs+1 of ρ̄ to Os+1. We do not know in general in what sense the vanishing of
βs and the non-vanishing of βs+1 could be independent of such a lift. A change of base point
as described in Lemma 4.6.9(d), clearly does not change the integer s for which βs = 0 and
βs+1 ̸= 0, assuming the existence of ρs+1. We also do not know, what an optimal choice of s,
independently of a choice of the lift ρs+1 means, although Lemma 4.6.9 provides some reasonable
guesses. If one does have an explicit choice of ρs+1, and a situation where one can then determine
its infinitesimal deformations, then one can determine whether βs = 0 and βs+1 ̸= 0. Such an
approach is sketched in the proof of Proposition 4.6.11.

Before giving the proof of Theorem 4.1.14, we discuss the existence of such a base point in
cases (D) and (E) of Section 4.3. For the remainder, suppose that q = #µp∞(K) > 1 and set
s := logp q. Suppose also that the image of ρ̄ is a p-group and that the fixed lift ψ of det ρ̄ is
the trivial character – both can be assumed without loss of generality by twisting; cf. the proof
of Lemma 4.3.7.

Proposition 4.6.11. In cases (D) and (E) of Section 4.3 there exists a deformation ρ∞ in

Dψ
ρ̄ (W (F)) such that βs = 0 and βs+1 ̸= 0.

Proof. We ask the reader to have the notation and concepts used in the proof of Lemma 4.3.7
at hand. We define

Mi :=

(
1 ui
0 1

)
for i = 1, 3, . . . , 2g and M2 :=

( √
1− q−1 u2
0

√
1− q

)
,
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

where the ui are all zero in case (D). Then it is easy to verify that the Mi satisfy the Demushkin
relationM q

1 [M1,M2] . . . [M2g−1,M2g] = 1. Hence, the map Π→ GL2(W (F)) defined by mapping
xi to Mi yields the desired lift ρ∞.

We use this base point to determine the Bockstein relations, and thus to determine the correct
value of s such that βs = 0 and βs+1 ̸= 0, by computing explicitly infinitesimal deformations

of ρ∞. Namely, we define Ni := Mi(1 + εAi) ∈ GL2(W (F)[ε]) for matrices Ai =

(
ai bi
ci −ai

)
.

Computing the Demushkin relation N q
1 [N1, N2] . . . [N2g−1, N2g] = 1, we obtain a linear relation

whose coefficients lie in qW (F) but not in pqW (F). The assertion follows.

Remark 4.6.12. We note that the base point lift chosen in the proof of the previous proposition
is obtained as a specialization of the variables in the proof of Lemma 4.3.7 within qW (F).
Hence, by Lemma 4.6.9(d), the trivial specialization that sends all variables to zero gives a lift
to W (F)/q2W (F) (in fact to W (F)) so that βs = 0 and βs+1 ̸= 0.

Proof of Theorem 4.1.14. By the same reduction as in the proof of Theorem 4.1.4, given after
Corollary 4.3.6, it suffices to treat the case O =W (F). By Theorem 4.3.4, we have in cases (A)–
(C) of Section 4.3 that a lift ρ2s : GK → GL2(W (F)/p2sW (F)) exists for s = logp q if we specialize
all variables to zero. Then all the specialized relations will vanish modulo q2. Moreover for this
choice, we have βs = 0 and βs+1 ̸= 0 because the linear terms of the relations vanish modulo q
but not modulo pq. By Corollary 4.3.6(b), the images of the quadratic parts of generators of Iψ

span a subspace of dimension equal to h2 = dimFH
2(GK , ad

0). Thus Theorem 4.1.14 follows
from Theorem 4.6.8.

It remains to consider cases (D) and (E). We take the specialization from Remark 4.6.12 as
our lift to W (F)/q2W (F) so that βs = 0 and βs+1 ̸= 0. By Lemma 4.3.7(c),(e), there exists a
presentation

0 −→ (r1, . . . , rm) −→ R −→ Rψρ̄ −→ 0

such that in(r̄1), . . . , in(r̄m) ∈ gr2mR
R form a regular sequence in grmR R and m = dimFH

2(GK ,

ad0). We complete the proof of Theorem 4.1.14 by a further appeal to Theorem 4.6.8.
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[Böc00] Gebhard Böckle. Demuškin groups with group actions and applications to defor-
mations of Galois representations. Compositio Math., 121(2):109–154, 2000. URL:
http://dx.doi.org/10.1023/A:1001746207573, doi:10.1023/A:1001746207573.
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[CDP14] Pierre Colmez, Gabriel Dospinescu, and Vytautas Paškūnas. The p-adic local
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[Dem61] S. P. Demuškin. The group of a maximal p-extension of a local field. Izv. Akad. Nauk
SSSR Ser. Mat., 25:329–346, 1961.
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