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ABSTRACT

Consider the absolute Galois group G of an extension K of QQ, finite degree d, and a finite
field F of prime characteristic p. Following Mazur [Maz89], we define the versal deformation
ring R% with fixed determinant of a Galois representation p: Gx — GL,(F). Then for n = 2
and p > 3 our first main result states that R;,—b is an integral domain so that the associated versal

deformation space X(p) is irreducible. For this, we use the explicit relations of Rg computed in
[B6c00] and a commutative algebra criterion. We deduce from [Nak13] that for n = 2 and any K
the benign crystalline points are Zariski dense in X(p). This is expected to be useful for the
surjectivity of the p-adic local Langlands correspondence. Furthermore, for arbitrary n and p
we show that the refined quadratic parts of the relations of R? can be obtained cohomologically
from a cup product and a Bockstein homomorphism if a certain lift of p exists. Following
Chenevier [Chel4], we construct the universal pseudodeformation ring R%liv of an n-dimensional
pseudorepresentation D: F[Gk] — F. Motivated by the result [Chell] on the equidimensionality
of the generic fiber of the universal pseudorepresentation ring in characteristic 0, our second main

result says that the special fiber E%l Y oof R%‘i" is equidimensional of dimension dn®+1ifp > n

or if K does not contain a primitive p'* root of unity Cp- In the latter case, if either n > 2 or
n = 2 and d > 1 we prove that the regular locus of Specﬁ%ﬂv consists of certain irreducible
pseudodeformations and that Ry~ satisfies Serre’s condition (Ry).

ZUSAMMENFASSUNG

Betrachte die absolute Galoisgrouppe G einer Erweiterung K von Q, von endlichem Grad d
und einen endlichen Koérper F von Primzahlcharacteristik p. Mazur [Maz89] folgend, definie-
ren wir den versellen Deformationsring Rg’ mit fester Determinante einer Galoisdarstellung

p: Gk — GL,(F). Dann sagt unser erstes Hauptresultat fir n = 2 und p > 3 aus, dass R?
ein Integritéitsring ist, sodass der dazugehorige verselle Deformationsraum X(p) unzerlegbar ist.
Dafiir benutzen wir die expliziten Relationen von Rg, die in [Boc00] berechnet wurden, und
ein Kriterium aus der Kommutativen Algebra. Wir folgern aus [Nakl13] fiir n = 2 und beliebi-
ges K, dass die benignen krystallinen Punkte Zariski-dicht in X(p) sind. Dies ist voraussichtlich
niitzlich fiir die Surjektivitdt der p-adischen lokalen Langlands-Korrespondenz. Des Weiteren
zeigen wir fiir beliebiges n und p, dass die verfeinerten quadratischen Anteile der Relationen
von Rg’ kohomologisch durch ein Cup-Produkt und einen Bockstein-Homomorphismus erhalten
werden konnen — falls ein geeigneter Lift von p existiert. Chenevier [Chel4] folgend, konstruie-
ren wir den universellen Pseudodeformationsring R%li" einer n-dimensionellen Pseudodarstellung

D: F[Gk] — F. Motiviert durch das Resultat [Chell] iiber die Aquidimensionalitéit der gene-
rischen Faser des universellen Pseudodarstellungsrings in Characteristic 0, zeigt unser zweites

Hauptresultat, dass die spezielle Faser E%l " von RV fquidimensional von Dimension dn? + 1

D
ist, falls p > n oder falls K keine p* primitive Einheitswurzel ¢, enthilt. In letzterem Fall bewei-
sen wir, falls entweder n > 2 oder n = 2 und d > 1, dass der reguldre Lokus von Spec R%l " aus

bestimmten unzerlegbaren Pseudodeformationen besteht und dass R%l ¥ Serre’s Bedingung (Rs2)
erfiillt.






TABLE OF CONTENTS

1. Introduction . . . . . . . . . . e e e e
1.1 Irreducibility of Mazur’s (uni)versal deformation rings . . . . . . ... ... ...
1.2 Equidimensionality of Chenevier’s universal pseudodeformation rings . . . . . . .
1.3 Application: The local Langlands correspondence and Zariski density of crys-

talline points . . . . . . . . L L e
1.4 Outline . . . . . .
1.5 Acknowledgements . . . . . . . .. ..

2. Preliminaries . . . . . . . . o o i e e e e
2.1 Commutative algebra and algebraic geometry . . . . . . .. ... ... ...
2.1.1 Basic results on complete Noetherian local rings . . . . . ... ... ...
2.1.2 Regularity and formal smoothness . . . . . . .. .. .. ... ... . ...
2.1.3  Etale morphisms and étale neighbourhoods . . . . . .. .. ... ... ..
2.1.4 Density of 1-dimensional points . . . . . . . ... ... ... ... ... ..
2.2 Galois representations and their (uni)versal deformation rings . . . . . . . .. ..
2.2.1 Schlessinger’s and Mazur’s deformation theory . . . . ... .. ... ...
2.2.2  Smoothness of (uni)versal deformation rings . . . . . ... ... ... ...
2.2.3 Classification of absolutely irreducible mod p Galois representations
2.3 Clifford theory of induced representations and twist-invariance . . . . .. .. ..
2.4 Cohomology of profinite groups and Demushkin groups. . . . . . . ... ... ..

3. Equidimensionality of universal pseudodeformation rings . . . . . . . . . . . . .. ...
3.1 Pseudorepresentations and their universal pseudodeformation rings . . . . . . . .
3.1.1 Pseudorepresentations . . . . . . . . . ... ... o
3.1.2  The divided power algebra and universal pseudorepresentation rings . . .
3.1.3  Generalized matrix algebras (GMAs) and pseudocharacters . . . . .. ..
3.1.4  Universal pseudodeformation rings . . . . . .. ... ... ... ......
3.1.5 Group pseudorepresentations . . . . . . . . ... ... ..o
3.2 Geometric loci of universal pseudodeformation spaces . . . . .. ... ... ...
3.2.1 The locus of irreducibility and the universal Cayley-Hamilton algebra
3.2.2 Induction for pseudorepresentations . . . . . ... ...
3.2.3 Loci of regular and singular pseudodeformations in special fibers . . . . .
3.3 Equidimensionality of special fibers and Zariski density of the regular locus .
3.3.1 Zariski density of the irreducible locus . . . . . ... ..o
3.3.2  An upper bound for the dimension of special points . . . . .. ... ...
3.3.3 Equidimensionality of universal mod p pseudodeformation rings . . . . . .
3.3.4 Zariski density of the regular locus and Serre’s condition (Rg) . . . . . . .

4. Irreducibility of versal deformation rings in the (p,p)-case for 2-dimensional representa-
TIONS . . . v v e e e e e e e e e e e e e e e
4.1 Introduction and statement of main results . . . .. ... ... ... ... ....
4.2  Results from commutative algebra . . . . . ... o000
4.3 Explicit presentations of the versal deformation rings . . . . . .. ... ... ...

~

= O © ©

13
14
15
22
25
27
31



4.4  Crystalline points in components of versal deformation spaces . . . . . . .. . ..
4.5 The cup product and quadratic obstructions . . . . . . .. .. ... ... ... ..
4.6 Further quadratic obstructions from the Bockstein homomorphism . . . . . . ..

Bibliography



1. INTRODUCTION

In this thesis, we prove in Chapter4 the irreducibility of a (uni)versal deformation ring with fixed
determinant, and in Chapter 3 the equidimensionality of a universal pseudodeformation ring. In
the introduction we explain the meaning of these results and give some hints on their proof. We
also give some motivation of our results that stems from the conjectured p-adic local Langlands
correspondence. Our results may have applications to the surjectivity of this correspondence,
at present for GLo, but with more work perhaps also for GL,,. We end the introduction with an
outline of the thesis.

1.1 Irreducibility of Mazur’s (uni)versal deformation rings

Throughout the thesis we fix an algebraic closure K of a finite extension K of the p-adic
numbers Q,, of degree d = [K : Q,] with absolute Galois group G := Gal(K*#/K), a primitive
ptt root of unity ¢p and a finite field F of prime characteristic p. Consider a continuous residual
Galois representation

5: G — GLy(F).

Such Galois representations arise naturally in arithmetic geometry, for instance attached to
an elliptic curve defined over Q or associated with a modular form. Originally motivated by
"big” Galois representations associated with ordinary p-adic modular forms, B. Mazur invented
the study of deformations of 7 in [Maz89]. Such a ”big” Galois representation parametrizes
all liftings of a residual Galois representation that are of a certain type. To provide a general
framework for such a family of Galois representations with the same mod p reduction, Mazur
applied formal deformation theory [Sch68] as follows.

Consider the ring of Witt vectors W (IF), the ring O of integers of a finite totally ramified
extension of W (F)[1/p] and the category Aro of complete Noetherian local O-algebras R with
maximal ideal mp and residue field F. A deformation of p to R is a continuous lifting p: Gx —
GL,,(R) with p@rF = p up to strict equivalency, where liftings p1, p2 of p to R are called strictly
equivalent if there is A € ker (GL,,(R) — GL,(FF)) such that pa(g) = Ap1(g)A~"! for all g € Gk.

Then the deformation functor

Dy: Arp —» Sets, R+ {p: Gg — GL,(R) : p is a deformation of p},

satisfies the criteria (H1)—(H3) from [Sch68, Thm. 2.11] so that it has a versal hull R; € Ob(;l;o)
together with a versal deformation p5™: G — GL, (R5) that parametrizes all deformations of p.
If p is absolutely irreducible, then the functor Dy is representable by a universal deformation

ring R%mv € Ob(;l\ro) together with a universal deformation p%ni": G — GLn(R%niV) [Maz89,
Prop. 1].

Mazur also realized that, at least in some specific cases, universal deformation rings should
be given by Hecke rings. This inspired A. Wiles for his famous proof of Fermat’s last theorem
[Wil95, TW95] to put his observations on Galois representations and modular forms into a ring-
theoretic language. Roughly speaking, if p is modular and further deformation conditions of
modular Galois representations are imposed on the p-adic liftings of p, then Wiles’ modularity
theorem states that the natural homomorphism from R%ni" to a certain Hecke algebra T is an
isomorphism. Such R =T theorems have later been widely used in e.g. the proof of the general
modularity theorem [BCDTO01, Thm. A] and the Serre conjecture [KW09a, KW09b].
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1.1. Irreducibility of Mazur’s (uni)versal deformation rings

For these proofs ring-theoretic properties of certain universal deformation rings are estab-
lished. For instance being a complete intersection, flat over O, an integral domain or of a
specific dimension. We explain in Section 1.3 which application the following ring-theoretic re-
sults on (uni)versal deformation rings from [BJ15] by G. Bockle and the author have on the
p-adic local Langlands correspondence. To state the results, consider a character ¢¥: G — O*
that lifts det p and the following subfunctor

D%/’: Aro — Sets, R {p: Gxg = GL,(R) : pis a deformation of p and det p =19 ®p R}.

Then D%’ C Dj; is relatively representable and has a versal hull R%’ with maximal ideal m%
[Maz97, § 24 Prop.]. The following is our first main result.

Theorem A (Theorem 4.1.5). Suppose n =2 and p > 2. Then the following hold:
(i) The ring E% = R%/m@R% is a complete intersection;
(ii) the ring R;f} is a complete intersection and flat over O;

(iii) the ring R;f} is an integral domain and in particular irreducible.

The first two assertions are proven already in [B6c00] and the proof of Theorem A uses the
explicit relations of R%p computed in Section 4.3 following [B6c00] where n = 2 and p > 2. As
explained in Section4.1, by Theorem 4.1.4 the refined quadratic parts of the explicit relations of
Rg in a certain associated graded ring form part of a regular sequence in an integral domain and
by applying tools from commutative algebra shown in Proposition 4.2.2 we deduce Theorem A.

We remark that for n € N> arbitrary we also prove in Theorem 4.1.14 from [BJ15] that the
refined quadratic parts of the relations of R% can be obtained from the bracket cup product and
the Bockstein homomorphism from Section 4.5 and Section 4.6, respectively. We refer to the
introduction of [BJ15] in Section 4.1 for more details.

We point out here that the idea to use the bracket cup product to determine the quadratic
parts of the relations goes back to Mazur [Maz89, §1.6 Rem.], and it is standard in deformation
theory. The computation of the refined quadratic parts of the explicit relations makes use of the
fact that the (uni)versal deformation p% G — GLn(R%Z} ) factors via either a free pro-p group or
a Demushkin group, whose classification in Example 2.4.5 for p > 2 describes the Demushkin
group as the quotient of a free pro-p group with generators x1,...,zg4+2 by a relation
-1

Tl for all 4, j.

r = x%(ml, 1‘2)(373, IE4) e (Id_H, $d+2) with (xi, (Ej) = xi_la:

Then the similarity with classical deformation theory of representations of fundamental groups
of compact Kéhler manifolds [GM88a, GM88b] becomes apparent by the fact that such a fun-
damental group of a compact Riemann surface of genus ¢ is the quotient of the free group with
basis x1,..., 724 by a relation

r = (21,22) (23, 24) . .. (T2g-1,T2g).

In [GMS88a, GMS88b] it is shown that the related universal deformation rings have quadratic
relations.

Remark 1.1.1. (i) The author mentored R. Eberhardt in the writing of his Bachelor thesis
[Ebel4] supervised by Béckle, which investigated the assertion of Theorem A in the case
that p: Gg, — GLo(F) is trivial. Then p%p factors via a Demushkin group, which by

2



1. Introduction

Example 2.4.5 is the quotient of a free pro-2 group with generators x1, s, z3 by the relation
r = CL'%.’E%(.Z'Q,CU;;). One checks that the refined quadratic parts of the explicit relations of
the versal deformation ring R%) == O[[-Tl,lv 21,2,21,3,22,1,222,%23,L3,1,L372, l‘gyg]]/Iw, where

142 T2 ) for all 7
w3 (L+miowi3)/(1+xi1) ’

form a regular sequence but the associated graded ring is not an integral domain so that we
cannot apply Proposition 4.2.2 as done when proving Theorem A. Based on ideas of Bockle,
[Ebel4] uses SageMath [Sagl4] to apply Serre’s criterion for normality and the Jacobian
criterion for regularity [Fis95, Exc. 11.10, Thm. 16.19 and 18.15] to a related polynomial
ring R’ := F[z1,...,2s]/I. From [Mat89, Thm. 32.2(i)] follows that the completion R of R

is also normal and this is used to show that E% = j%\’[[x]] /(f), where f is an irreducible
polynomial of degree 2, is an integral domain and thus irreducible.

IY = (X{X3 (X, X3) — 1) with X; = (

(ii) If d > 1, p = 2 and p: Gg — GLo(F) is trivial, the Master thesis [Krel3] of M. Kre-
mer supervised by Bockle determines the explicit relations defining R%/’ using Demushkin’s
Example 2.4.5. Using Singular [DGPS18], [Krel3] checks that the quadratic parts of the
explicit relations form a regular sequence and that the associated graded ring is an integral
domain so that Proposition 4.2.2 shows that R%Z) is an integral domain and thus irreducible.

1.2 Equidimensionality of Chenevier’s universal pseudodeformation rings

As the proof of the irreducibility of the versal deformation ring R%’ in Theorem A is based on

the knowledge of the explicit relations of R%b from [B6c00] where n = 2 and p > 2, we seek to
investigate the (uni)versal deformation ring for arbitrary n € N>; and prime number p through
G. Chenevier’s universal pseudodeformation ring of the residual pseudorepresentation attached
to p: Gg — GL,(F).

More precisely, by Definition 3.1.13 a pseudorepresentation of G of dimension n with values
in a commutative ring A is an A-polynomial law D: A[Gg| — A that is multiplicative and ho-
mogeneous of degree n. Then by Example 3.1.8 the determinant det p of a Galois representation
p: Gk — GL,(R) defines a pseudorepresentation D: R[Gg| — R that by Amitsur’s formular
[Chel4, (1.5)] encodes the data of the characteristic polynomial of p. Using the well-known
Brauer-Nesbitt theorem [CR62, (30.16) Thm.], Chenevier proves in Theorem 3.1.26 that for any
pseudorepresentation D: k[Gx| — k over an algebraically closed field k there exists a unique
semisimple Galois representation p: Gxg — GL, (k) such that D = det p.

Similarly to the deformation theory of Galois representations, Chenevier then studies in
[Chel4, § 3.1] the pseudodeformation functor

PsDy: Aro — Sets, R {D: R[Gk] — R is a pseudodeformation of D},

of the residual pseudorepresentation D := detp, where a continuous pseudorepresentation
D: R[Gk] — R satisfying DQgF 22 D is called a pseudodeformation of D; see Definition 3.1.53.
As stated in Proposition 3.1.57 (and Proposition 3.1.60) by Wang Erickson, Chenevier ([Chel4,
Prop. 3.3 and 3.7] when O = W(F)) proves that PsDy is always representable by a universal
pseudodeformation ring Ruony%’ together with a universal pseudodeformation D%ﬁ": Rg%’[GK] —

Rén% of D. Then by universality of R“On%’ there is a homomorphism

univ

3



1.2. Equidimensionality of Chenevier’s universal pseudodeformation rings

corresponding to the pseudodeformation det Py of D, which by Chenevier’s Proposition 3.2.14
is an isomorphism if p is absolutely irreducible. Our second main result is the following.

Theorem B (Theorem 3.3.12). Suppose that p > n or ¢ ¢ K. Then we have for any n-
dimensional pseudorepresentation D: F[G] — F:

—univ

(i) the special fiber X5 =~ of Xunlv := Spec RunE is equidimensional of dimension dn® + 1;

(i1) if G ¢ K and x is the Teichmiiller lift of the mod p cyclotomic character of G, then the
locus o
(X2, D#D . 1D € X2V 1 D s irreducible and D # D ® x}

of nonspecial irreducible points is open, reqular and Zariski dense in the universal mod p
pseudodeformation space Y%l V.

1) if ¢, € K, then the reqular locus of XU s empty and
D D

—univ —univ

(X rEd)lrr ={DeXp red ¢ D is irreducible}

s open, reqular and Zariski dense in the nilreduction XD red of leljmv

This result is motivated by Chenevier’s result [Chell, Thm. 2.1] that the character variety X,

of continuous pseudocharacters of G of dimension n and with values in leg is equidimensional

of dimension dn?+1 and that the locus X" of irreducible pseudocharacters is regular and Zariski
dense in X,,. The definition of an n-dimensional pseudocharacter 7: A|Gk] — A with n! € A*,
which is obtained as the trace of a representation by Example 3.1.39, is given in Definition 3.1.38.
Chenevier introduced pseudorepresentations in [Chel4] to overcome the restriction n! € A*,

and in order to show Theorem B in characteristic p we mimic Chenevier’s inductive approach to
[Chell, Thm. 2.1] with pseudorepresentations. For the induction step, we prove the following:

Theorem C (Theorem 3.3.1). Suppose that n > 2, and that for every pseudorepresentations
D FIGk] — F of dimension n’ < n the following hold:

(1) Y%r}iv is equidimensional of dimension d(n')? +1;

Uan i —univ

(i) If Cp € K, then the regular locus of (X5 .q)"" is Zariski dense in X5/ .45

(1it) If ¢, & K, then the locus (X Emv)m DLW#ED s Zariski dense.

Then for all n-dimensional D: F[Gg] — F the irreducible locus (Y%Hv)i” is Zariski dense
mn Y%uv, unless n =2 and K = Qo and D is reducible.

As explained in Remark 3.3.2 if n = 2, K = Q9 and D is reducible, by computations of
V. Pasktnas in [Pas17, Prop. 3.6] the irreducible locus (X Emv)“r is also Zariski dense in X ;l)mv
in this case.

Next Chenevier shows that the reducible locus X4 is the singular locus of X,, if n > 2 or

d > 1 [Chell, Thm. 2.3]. Here lies a difference to our setting since we have:

Theorem D (Theorem 3.3.13). Suppose ¢, ¢ K. Then the following hold:

(i) The locus (X %Hv)m DM)=D . — (Ygﬁv)i” ~ (Y%}iv)i”’D(l)#D of special irreducible points
—univ
lies in the singular locus of Xp



1. Introduction

—~univ

(ii) If n > 2 ord > 1, then the reducible locus of YD lies in the singular locus of X1

For the missing case n = 2 and d = 1, we refer once again to the computations of Pasktunas
—univ

[Pasl7, Prop. 3.6] summarized in Remark 3.3.2: If in addition p > 2, then we have X57 = =
SpecF[x1,...,25] so that the reducible locus lies in the regular locus.

Theorem E (Corollary 3.3.15). Suppose that ¢, ¢ K and that either n > 2, or that n = 2 and
d>1. Then (Xp )rPW#ED constitutes the regular locus of X and Rp . satisfies Serre’s
condition (R3).

To prove Theorem B(ii) and Serre’s condition (Rz) in Theorem E when (, ¢ K, we determine
an upper bound for the dimension of the locus (X5 )™PM=D in Theorem 3.3.6 as follows.
Corollary 2.3.6 from Clifford theory says that a semisimple representation p: Gx — GL, (k)

with values in an algebraically closed field k satisfies

PEPRY <= pNIndgK()p' for some p’:GK(l) i=ker x — GL;,/ ora (K).

Based on ideas of Bockle, Theorem 3.2.23 constructs a suitable induction Indgi o D': B|[Gk| —

B of a pseudorepresentation D': B[G (1] — B under Assumption 3.2.21 on B an D', and
Theorem 3.3.6 then gives as desired

dim(yufniv)irr’D(l):D < max  {dim Yz | Ind< D' =D} < +2,1 (1)
v D': FlGk )| =F Cxw OrdX

where Y7 is the closure in Yg}iv of the set of irreducible points.

Remark 1.2.1. (i) Contrarily to versal deformation rings, we do not know which number of
variables and relations define a universal pseudodeformation ring so that we cannot show
that the latter is a complete intersection and thus satisfies Serre’s condition (S2).

(ii) In [Sim94] C. Simpson succesfully applies Serre’s criterion for normality to the representa-
tion space Hom(T', GL,,(C)) of the fundamental group I' of a smooth connected projective
curve of genus g > 2. He similarly proceeds by showing inductively that the irreducible
locus is Zariski dense and regular of dimension (2g — 1)n? + 1. For Serre’s condition (R;)
he inductively proves that the reducible locus Hom(T', GL,,(C))"? has codimension at least
two unless ¢ = 2 and n = 2. He uses the fact that

Hom(T', GL,,( d o~ L_J C)/P, x Hom(T', P)), (2)

where o: GL,,(C)/P, xHom(T', Py), (y, p) — @(y)pe(y)~t, with ¢: GL,(C)/Py — GL,(C)
a constructible section and P, C GL,(C) the parabolic subgroup consisting of 2 blocks of
respective size k and n — k.

(iii) [Gerl0, § 3.2] studies the universal deformation ring parametrizing deformations into the
Borel subgroup of upper triangular matrices in GL,,. To obtain that a universal deformation
ring satisfies Serre’s condition (R;) or is a complete intersection, it might be interesting to
study with Geraghty’s methods the universal deformation ring parametrizing deformations
into parabolic subgroups analog to (2).



1.3. Application: The local Langlands correspondence and Zariski density of crystalline points

(iv) Following [WE17, § 2] consider the affine scheme Repg’; parametrizing n-dimensional rep-
resentations of Gx and the GIT quotient Repg’;j /] GL,, == (’)(Repg’;)GL” of the adjoint
action of GL,, on Repg’g. Then by [WE17, Thm. 2.20] there is a canonical adequate home-

omorphism v from Repg’;{l // GL,, to the universal pseudorepresentation space X&I;"n from
Definition 3.1.24; i.e., v is an integral universal homeomorphism that by [Chel3a, Prop. 2.3]
is an isomorphism in characteristic zero. It may be possible to translate properties between

the universal objects via the adequate homeomorphism v.

1.3 Application: The p-adic local Langlands correspondence and Zariski density of
benign crystalline points

Consider a finite extension L of Q,. The p-adic local Langlands correspondence is provided by
Colmez’ exact functor V from admissible unitary L-Banach representations of GL2(Q)), resid-
ually of finite length, to continuous 2-dimensional L-representations of G, [Col10]. This corre-
spondence has also important applications in arithmetic geometry such as the Fontaine-Mazur
conjecture [Kis09, Eme06]. Furthermore, it encodes the classical local Langlands correspondence
[CDP14, Thm. 1.3] and is compatible with class field theory [CDP14, Cor. 1.2].

The surjectivity of the p-adic local Langlands correspondence was proven following a strategy
of Kisin in [Coll10, Kisl0a, CDP15]: First, benign crystalline representations of GQPZ lie in the
image of V [Col10, Prop. I11.3.8]. Second, if the benign crystalline points are Zariski dense in
the (uni)versal deformation space Xy of an arbitrary finite-dimensional L-representation V' of
Gq, then one deduces that each point of Xy is in the image of V and thus in particular V; see
[CDP15, § 10).

As explained in the introduction of [BJ15], we show using Theorem A and [Nak13, Thm. 1.4]
the following;:

Theorem F (Theorem 4.1.11). Let X(p) be the rigid analytic space associated to the formal
scheme Spf R%}. Ifn =2 and p > 2, then the benign crystalline points are Zariski dense in X(p).

In order to be able to apply [Nak13, Thm. 1.4], we check in Lemma 4.4.2 that each component
of X(p) contains a regular crystalline point with the help of following theorem.

Theorem G (Theorem 4.1.9). Suppose p > 2 and n = 2. Consider the canonical map
D: X(p) — X(detp) given by sending a deformation of p to its determinant. Then D induces
a bijection between the irreducible components of X(p) and those of X(detp). Moreover, for
both spaces, irreducible and connected components coincide. Lastly, the connected components
of X(det p) form a principal homogeneous space over the set e~ (K) of p-power roots contained
mn K.

We refer to Remark 4.1.13 for other cases where the assertions of Theorem F and G are
shown. For the rigid analytic space XP*(D) associated with Spf R%“" we show the following
corresponding result.

Theorem H (Corollary 4.4.3). Suppose that n = 2, p > 2 and p is semisimple. Consider the
natural functors

X(p) =5 xP(D) = x(det p), (3)

where m 1s defined by sending a deformation to the associated pseudodeformation, and mwo by
sending a pseudodeformation to its determinant from Example 3.1.9.

2 See Definition 4.1.8.
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(a) The morphisms of connected components

mo(%(7) 5w (2 (D)) " o (X(det ).
induced from (3) are bijective.

(b) The benign crystalline points are Zariski dense in XP5(p).

1.4 Outline

In Chapter 2 we fix notation and implement tools that are used later in this thesis. These tools
steam mainly from commutative algebra and algebraic geometry, Mazur’s deformation theory of
Galois representations, Clifford’s theory on inductions of representations and the classification
of Demushkin groups. We will use these tools to study ring-theoretic and geometric properties
of (uni)versal (pseudo)deformation rings in Chapter 3 and Chapter 4.

The goal of Chapter 3 is Theorem B (Theorem 3.3.12) on the equidimensionality of universal
mod p pseudodeformation rings. Section 3.1 contains an exposition to Chenevier’s pseudorep-
resentations and their universal pseudorepresentation and pseudodeformation rings following
[Cheld] and [WE13]. In Section 3.2 we investigate properties of certain loci of pseudodefor-
mations. Section 3.3 contains the inductive proof of Theorem B. At first, Theorem C (Theo-
rem 3.3.1) shows Zariski density of the irreducible locus under an induction hypothesis. Using
this and the upper bound (1) from Theorem 3.3.6, the main theorem is proven in Subsection3.3.3.
We finish Chapter 3 with Theorem D (Theorem 3.3.13) and Theorem E (Corollary 3.3.15).

Finally, Chapter 4 consists of the published article ”Irreducibility of versal deformation rings
in the (p,p)-case for 2-dimensional representations”, written jointly by Bockle and the author
[BJ15]. In particular, Theorem A (Theorem 4.1.5) on the irreducibility of a versal deformation
ring is proved for n = 2 and p > 2 by applying Proposition 4.2.2 from commutative algebra. For
further details on the structure and results of Chapter 4, we refer to the article’s introduction
and outline in Section4.1.
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2. PRELIMINARIES

In this chapter we collect various notions and results in order to study ring-theoretic and geo-
metric properties of (uni)versal (pseudo)deformation rings in Chapter 3 and Chapter 4.

Suited for this purpose, this chapter begins in Section2.1 with tools from commutative algebra
and algebraic geometry like Serre’s criterion for normality from Proposition 2.1.6.

Next Section 2.2 investigates properties of Mazur’s (uni)versal deformation rings.

Section 2.3 discusses results from Clifford theory on induced representations that will be a
crucial ingredient for finding an upper bound for the dimension of the locus of special pseudo-
deformations in Subsection 3.3.2.

The chapter ends in Section 2.4 with a short summary on the classification of Demushkin
groups, whose classification in Example 2.4.5 leads to the explicit description of (uni)versal
deformation ring of a residual 2-dimensional Galois representation in Section 4.3.

We assume that the reader is familiar with standard topics from algebraic number theory,
commutative algebra and algebraic geometry (see e.g. [Neu99, Eis95, Har77], respectively).

2.1 Commutative algebra and algebraic geometry

This section introduces important basics from commutative algebra and algebraic geometry.
Many of the (uni)versal (pseudo)deformation rings that we will consider are complete Noetherian
local rings. Such rings are given by the Cohen structure theorem as a quotient of a power
series ring. After stating this theorem in Subsection 2.1.1, we concentrate on ring-theoretic
assertions on complete Noetherian local rings such as Serre’s criterion for normality in from
Proposition 2.1.6. In Subsection 2.1.2 we discuss regularity and formal smoothness, and in
Subsection 2.1.3 étale morphisms and étale neighbourhoods. Finally, we consider the density of
1-dimensional points.

2.1.1 Basic results on complete Noetherian local rings

We begin by introducing two categories occuring in Schlessinger’s formal deformation theory
set-up.

Definition 2.1.1. Let A be a complete Noetherian local ring and let k£ be its residue field.
(i) By .Zl?A we denote the subcategory of the category of commutative rings with:

e Objects: complete Noetherian local A-algebra R together with a fixed A-algebra iso-
morphism R/mp = k, where mp denotes the maximal ideal of R.

e Morphisms: local A-algebra homomorphisms f: Ry — Ro such that the following

diagram commutes:
_—
R Q o im/RQ
k.

(ii) By Arp we denote the strictly full subcategory of Ar A on the Artinian rings in ;G“A.
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2.1. Commutative algebra and algebraic geometry

Note that every object of Ar A is a limit of objects of Ara. For further basic properties of these
categories we refer to [Stal8, § 06GB] and [Stal8, § 06GV].

Recall that a topological ring R is called linearly topologized if 0 has a fundamental system of
open neighbourhoods consisting of ideals of R, and an R-module M is called linearly topologized
if 0 has a fundamental system of open neighbourhoods consisting of R-submodules of M.

Definition 2.1.2. Let R be a topological ring and M and N be linearly topologized R-modules.
Then the tensor product of M and N is the R-module M ®r N equipped with the linear topology
given by declaring

im (M, ®R N + M ®gr N, — M ®gr N)

to be a fundamental system of open submodules, where M, C M and N, C N run through
fundamental systems of open submodules in M and N. The completed tensor product

M®rN =lim M ®p N/(M, ®r N+ M ®gr N,) =limM/M, ®r N/N,
is the completion of the tensor product with respect to this topology.

Lemma 2.1.3 (Cf. [EGA IV, Lem. Ory.(19.7.1.2)]). Suppose that R, R' are complete Noetherian
local A-algebras, and R/mp is a finite extension of k. Then RAR' is a semilocal Noetherian
ring, whose maximal ideals correspond to the mazimal ideals of R/mR Rk R /mp.

In particular, if R, R’ are in .A’I“A, then RQAR' lies also in .AT‘A

Theorem 2.1.4 (Cohen structure theorem [Stal8, § 0323]). Let R be a complete Noetherian
local ring whose residue field k = R/mp is of characteristic p. There exists a complete discrete
valuation ring W with uniformizer © and W/nW = k such that R is isomorphic to a quotient

of Wz, ..,zs].

If k is a perfect field, by [EGA TV, Rem. Ory.(19.8.7)] the complete discrete valuation ring
W in the above theorem can be taken as the ring of Witt vectors W (k).
For a prime p of a commutative ring R, the height of p is defined as htp = dim R,,.

Definition 2.1.5 (Serre’s conditions). Let R be a ring and ¢ € Ny.
(i) R satisfies Serre’s condition (S;) if depth(R,) > min{s, ht p} for all p € Spec R.

(ii) R satisfies Serre’s condition (R;) if for every prime p of height < i the local ring R, is
regular. We also say that R is reqular in codimension < i.

In Theorem E (Corollary 3.3.15) we show under a certain hypothesis that the special fiber
of a universal pseudodeformation ring satisfies Serre’s condition (Rz2). Unfortunately, we do not
know if (S2) also holds in order to apply the following:

Proposition 2.1.6 (Serre’s criterion for normality [Stal8, Lem. 031S]). A Noetherian ring R
is normal if and only if R satisfies Serre’s conditions (R1) and (S2).

Example 2.1.7 (Cf. [Stal8, Lem. 0567]). Serre’s criterion for normality from Proposition 2.1.6
shows that any regular ring is normal: It satisfies Serre’s condition (R;) trivially, and also Serre’s
condition (S2) because it is Cohen-Macaulay.

The following proposition shows why we would like to show that the special fiber of a universal
pseudodeformation ring is an integrally closed domain.
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2. Preliminaries

Proposition 2.1.8 (Cf. [EGAIV,, Cor. (5.12.7)]). Let R be a complete Noetherian local ring,
and t € mp be a regular element of R. If R/tR is an integrally closed domain, then the same
holds for R.

The following result shows why we would like to show integrality of the nilreduction of the
special fiber of a universal pseudodeformation ring.

Proposition 2.1.9. A scheme X is irreducible if and only if the reduced scheme X,oq underlying
X is an integral scheme.

Proof. Since the natural morphism X,.q — X is a homeomorphism of topological spaces, Xyeq
and X have the same irreducible components. Thus X is irreducible if and only if X,oq is
integral. O

2.1.2 Regularity and formal smoothness

In Corollary 2.2.18 we state that the natural map from the universal deformation space of a
certain Galois representation p to the universal deformation space of det p is formally smooth
under certain hypothesis on p. This subsection introduces formal smoothness and its relation
to regularity.

Definition 2.1.10 (Cf. [Stal8, Def. 07TEB] and [Sch68, Def. 2.2]). (i) Let Ry — R2 be a ho-
momorphism of topological rings with R; and Ry linearly topologized. We say R is
formally smooth over R if for every commutative solid diagram

Ry ——=R/I
| ]
Ry ——R

of homomorphisms of topological rings, where R is a discrete ring and I C R is an ideal of
square zero, a dotted arrow exists which makes the diagram commute.

(ii) A morphism Spec R — Spec S of affine schemes is called formally smooth if the correspond-
ing homomorphism S — R is formally smooth.

(ili) A natural transformation Fy — F5 of functors C — Sets, for C € {;G‘A,.ATA}, is called
smooth if for any surjection Ry — Ry in C, the morphism F1(R2) — Fi(R1) X gy (ry) F2(R2)
is surjective.

We make use of the following equivalence between a regular and formally smooth homomorph-
ism in Corollary 3.2.15.

Proposition 2.1.11 ([Stal8, Prop. 07PM]). Let f: Ri — Ra be a local homomorphism of
complete Noetherian local rings, let k be the residue field of Ry and let Ry = Ry ®@g, k. The
following are equivalent:

(i) f is regular,

(ii) f is flat and Ry is geometrically reqular over k,
(iii) f is flat and k — Ra is formally smooth in the my, -adic topology, and
(iv) f is formally smooth in the mp,-adic topology.
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We shall also make use of the following result:
Proposition 2.1.12 ([Sch68, Prop. 2.5(1)]). If Ry — Ry € Mor(Ary), then
hr, = hg,, where hg: :4\7"/\ — Sets, R — Hom;GA(R, R') for R € Ob(;l;A),
s smooth if and only if Rs is a power series ring over Ry.

The above justifies the following definition.

Definition 2.1.13. We call a morphism R — S in :4\7",\ formally smooth of relative dimension
h if S is a power series ring over R in h formal variables.

Note that A = dim S — dim R = dimp mg/(mg, my) — dimpmp/(mp, my).

2.1.3 Etale morphisms and étale neighbourhoods

For proving the Zariski density of the irreducible locus in Theorem C (Theorem 3.3.1), we
show in Lemma 3.3.3 the existence of a suitable étale neighbourhood of a reducible point. This
subsection deals with the related notions and states a result needed for the proof of Theorem C
(Theorem 3.3.1).

Definition 2.1.14 ([Stal8, § 00U0 and Def. 02GI]). (i) Let f: R — S be a ring map. We
call f étale if f is a smooth ring map of relative dimension zero.

(ii) A morphism f : X — S of schemes is étale at x € X if there is an affine open neighbourhood
Spec(A) = U C X of x and an affine open Spec(R) =V C § with f(U) C V so that the
induced ring map R — A is étale. We say that f is étale if it is étale at each point of X.

We now define étale neighbourhoods.
Definition 2.1.15 ([Stal8, Def. 03PO]). Let X be a scheme.
(i) A geometric point of X is a morphism Z: Speck — X for k an algebraically closed field.
(ii) We call T is lying over x to indicate that x € X is the image of .

(iii) An étale neighbourhood (U,u) of a geometric point T € X is a commutative diagram

U

@
/ 4
Speck X ,
where ¢ is an étale morphism of schemes.

As mentioned earlier, in the proof of Theorem C (Theorem 3.3.1) we shall need the following
result.

Lemma 2.1.16. Let ¢: U — X be an étale morphism between schemes U and X. Let u be a
point of U and denote by x its image p(u). Consider the local homomorphism ., : Ox 4 — Oy,
induced from . Then

(i) The completion @, : (7)\)(,90 — @U,u of @y 1 finite étale; its degree is equal to [k(u) : k(x)].
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(i) The ring @X@ is regular if and only if @U,u 1s reqular, and in this case both have the same
dimension.

Proof. Part (i) is [Stal8, Lem. 039M] and the remark following it. For part (ii) note that by
étaleness the tangent spaces at the closed point have the same dimension, and by finite étaleness
the ring (/’)\U,u is free of finite rank over (5X7x and hence they have the same dimension. From
this (ii) follows easily. O

2.1.4 Density of 1-dimensional points

In Chapter 3 we study equidimensionality of the special fiber of a universal pseudodeformation
space, which contains only one closed point. We will make use of Lemma 2.1.20, by which then
1-dimensional points are very dense in the special fiber.

Definition 2.1.17 ([Mat80, p. 38f.], [EGA IV3, Def. 10.1.3], [Stal8, Def. 0055]). Let X be a
topological space.

(i) A subset Z of X is called locally closed in X if for any point z € Z there exists an open
neighbourhood U C Z of z such that UNZ is closed in U. Equivalently, Z is an intersection
of an open and a closed set in X.

(ii) A subset X of X is called very dense in X if every nonempty locally closed subset Z C X
satisfies Z N Xy # @.

(iii) X is called Noetherian if the descending chain condition holds for the closed subsets of X.

(iv) A subset Z of a Noetherian space X is called constructible if it is a finite union of locally
closed sets in X.

Proposition 2.1.18 ([EGAIV3, Prop. 10.1.2]). Let X be a topological space, and let Xg be a
subset of X. The following conditions are equivalent:

(i) Xo is very dense in X;
(i1) The map X' — XoN X' defines a bijection between the open sets in X and the ones in Xo;
(11i) The map X' — XoNX' defines a bijection between the closed sets in X and the ones in Xo;

In particular, a very dense subset Xo C X is dense in X. If moreover X is Noetherian, then
for every constructible subset Z of X the set XoN Z is dense in Z.

One easily deduces the following consequence.

Corollary 2.1.19 ([EGAIV3, Cor. (10.1.4)]). If Xo is very dense in X and U C X is an open
subset, then U N Xq is very dense in U.

Lemma 2.1.20 ([Mat80, (33.F) Lem. 5]). Let X = Spec A for a Noetherian ring A. Then the
set Xo:={pe X : dimA/p <1} is very dense in X.

Corollary 2.1.21. Suppose X = Spec A with A Noetherian. Let Z C X be closed and irre-
ducible. Then for every open subset U of X with Z NU # &, the set

Zy<i={xeX :dimz<l,xeZNU}
1s dense in Z NU and hence also in Z.
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2.2. Galois representations and their (uni)versal deformation rings

Proof. The density of Zy7 <1 in ZNU follows from Lemma 2.1.20 combined with the last assertion
of Proposition 2.1.18. Since Z is closed irreducible, any open nonempty subset of Z is dense
in Z, and this shows the last assertion. ]

Definition 2.1.22 ([EGA V3, § 10]). Let X be a topological space.
(i) The space X is called Jacobson if its subset of closed points is very dense in X.
(ii) A scheme is called Jacobson if the underlying topological space is Jacobson.
(iii) A ring R is called Jacobson if the scheme Spec R is Jacobson.

Recall that a subspace of a topological space is a subset together with the induced topology.
The following proposition applies in particular to the generic fiber of a versal deformation
ring.

Proposition 2.1.23 (Cf. [EGAIV3, Cor. (10.5.8)]). Let R be a Noetherian ring with Jacobson
radical J(R). For any f € J(R), the localization Ry is Jacobson and the open subscheme
Spec R\ V(J(R)) of Spec R is a Jacobson scheme.

Proposition 2.1.24 (Cf. [EGAIV3, Cor. (10.5.9)]). Let R be a Noetherian local ring with
mazximal ideal mp. Then the open subscheme Spec R~ {mpr} of Spec R is a Jacobson scheme,
and the closed points in Spec R\ {mpg} are the one-dimensional points in Spec R.

Proposition 2.1.25. Let R be a Noetherian local ring with mazximal ideal mg. Suppose all
irreducible components of Spec R have dimension at least 2. Let U C Spec R~ {mp} be open
nonempty. Then no finite subset S of dimension 1 points of U is dense in U.

Proof. Let S C U be a finite subset of dimension 1 points. The latter implies that for any s € S
the subset {s,mp} is closed in Spec R. Hence S, as a finite union of closed subsets {s} of U is
closed in U, and it follows that U ~\. S is open in U. Assume now that S is dense in U. Then
necessarily we would have U = S. But U has to contain a generic point of Spec R and all such
have dimension at least 2. We reach a contradiction. ]

2.2 Galois representations and their (uni)versal deformation rings

Throughout Section 2.2 we let A be a complete Noetherian local ring with maximal ideal mp
and residue field k := A/my. Recall the categories Ary and Arp from Definition 2.1.1. The
residue field k will either be discrete or a local field, i.e., a finite extension of Q,, or of F,((¢)) for
some prime p. If k is discrete, all rings in Ary will be equipped with the discrete topology and
those in :4\7‘/\ with the inverse limit topology.

If k£ is a local field, we only consider A = k and Arg. Recall that in this case any finite-
dimensional k-vector space V' carries a unique topology so that it is a locally compact vector
space (over k). If V' is identified with k", it is the product topology on k™ and one shows that
the topology is independent of the chosen isomorphism. Hence any A in Ar, carries a unique
topology for which it is a locally compact topological vector space, and one easily verifies that
then A is also a continuous topological k-algebra. Thus in the sequel, whenever k is a local field,
we regard any A € Ar, as a topological ring via this topology.

Following a convention of Kisin, see [Kis03, p. 433], for a representation p into GL,, (A1) and
a ring homomorphism A; — Ay we write p ® 4, Az for the composition of p with GL,,(A4;) —
GL,(A42).
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2. Preliminaries

2.2.1 Schlessinger’s and Mazur’s deformation theory

We start with giving a short overview of Schlessinger’s formal deformation theory [Sch68]; see
also [Stal8, Chapter 06G7]. Next we will define Mazur’s (uni)versal deformation rings of Galois
representations, whose existence follows from Schlessinger’s representability criteria. Through-
out Subsection 2.2.1 we fix a profinite group G.

In this subsection we consider functors F': Ary — Sets such that F(k) contains just one
element, and their extensions

F: Ary —» Sets, R+ I&HF(R/m}%)
Definition 2.2.1 ([Sch68, Def. 2.2—2.7]). (i) Denote by k[e] := k[X]/(X?) the ring of dual
numbers over k. Then tp := F(k[e]) is called the tangent space of F'.
(ii) A pair (R,€) consisting of R € Ob(Ary) and & € F(R) is called a hull if the map
hR — F

corresponding to & € F(R) = Hom(hg, F) is smooth and the induced map tg — tp of
tangent spaces is bijective.

(iii) A pair (R,&) consisting of R € Ob(;l;/\) and & € F(R) (pro-)represents the functor F if
the morphism hgr — F' corresponding to £ € F(R) = Hom(hg, F') is an isomorphism.

Proposition 2.2.2 ([Sch68, § 2.8 -Prop. 2.9]). (a) If (R,&) is a hull for a functor F, then
(R, &) is unique up to isomorphisms.

(b) If (R, &) pro-represents a functor F, then (R,§) is unique up to canonical isomorphism.

Recall that a small extension in Ary is a surjection f: R' — R in Ara whose kernel ker f is
isomorphic to k as an R’-module, and in particular ker f is annihilated by mp and (ker f)% = 0.

Theorem 2.2.3 (Schlessinger’s criteria [Sch68, Thm. 2.11)). Let F': Arpn — Sets be a functor
such that F (k) consists of one element. For the canonical map

Y: F(R'xg R") — F(R') xp(gy F(R")

for morphisms f: R' — R and f": R” — R in Ary consider the following conditions on:
(Hy) The map v is surjective whenever the morphism f" is a small extension.
(H2) The map 1 is bijective if R =k and R" = kle].
(H3) The tangent space tr is finite-dimensional as a k-vector space.!
(Hy) The map v is an isomorphism whenever f' is a small extension.
Then the following hold:

(i) The functor F' has a hull if and only if conditions (H1) — (Hs) are satisfied;

(i) The functor F is representable if and only if conditions (Hy) — (Hy) are satisfied.

! Tt is shown in [Sch68, Lem. 2.10] that under hypothesis H2 the set ¢ carries a natural k-vector space structure.
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Mazur used Schlessinger’s criteria to show the existence of (uni)versal deformation rings of
representations of certain profinite groups such as the local Galois groups, which we are interested
in.

Definition 2.2.4 ([Gou0l1, Defs. 2.1 and 2.2]). Let p: G — GL, (k) be a continuous represen-
tation and R € Ob(Ary).

(i) A lifting of p to R is a continuous representation p: G — GL,(R) with p ®r k = p.

(ii) If ' (R) C GL,(R) denotes the kernel of the canonical homomorphism GL,,(R) — GL,,(k),
then two liftings p1, p2 of p to R are called strictly equivalent if there exists A € I'y,(R)
such that pa(g) = Ap1(g)A~" for all g € G.

(iii) A deformation of p to R is a strict equivalence class of liftings of p to R.
(iv) The functor
Dgs: Ary — Sets, R+— {p: G — GL,(R) : pis a deformation of 5},
is called the deformation functor of p.
(v) If k is discrete, we extend (i)—(iv) also to R € Ob(;l;A), cf. the beginning of Section 2.2.

(vi) The representation adj is defined as Mat, (k) with the adjoint action of G via p. Its
subrepresentation on trace zero matrices is denoted by adg, its quotient representation
modulo the center k by adj.

Definition 2.2.5 ([Maz89, § 1.1]). A profinite group G satisfies the finiteness condition ®,, if for
every open subgroup G C G there are only finitely many continuous homomorphisms Gy — IFp,.

Example 2.2.6. The finiteness condition ®,, is satisfied both by the absolute Galois group of a
local field of characteristic 0, and by the Galois group Gal(Fs/F') for F' a number field, and Fg
a maximal algebraic extension of F' that is unramified outside a finite set S of places of F'.

Mazur [Maz89, Prop. 1, p. 389] proved the following theorem in case that the residual repre-
sentation is absolutely irreducible and k is finite. We state the slightly generalized version by
Ramakrishna following from Schur’s lemma and as extended in [Gou01, § 9].

Theorem 2.2.7 ([Gou0Ol, Thm. 3.3, Lem. 9.5, Prop. 9.6]). Let A be a complete Noetherian
local ring and consider any R € Ob(;l;/\) as a topological ring via the mg-adic topology, so that
all R € Ob(Arp) are discrete. Let G be a profinite group and p: G — GLy (k) a continuous
representation. Suppose in (i) and (ii) that Dp has a finite-dimensional tangent space. Then the
following hold:

(i) The functor Dy: Arp — Sets has a hull RY% € Ob(;l;“A) together with a versal deformation

pEr: G — GLy(RY).

(it) If Cent(p) = k, then the functor Ds: Arn — Sets is representable by RXI’%V € Ob(;l\TA)
together with a universal deformation

pE G — GLy (RRY™).
The ring RX‘%" is a quotient of A[x1,...,xy] for h = dimy tp,, and tp, = HY(G,adp).
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(iii) If k is finite and if G satisfies the finiteness condition ®,, then tp, is finite-dimensional.
We call R a versal deformation ring of p and RX?%V a universal deformation ring of p.
The following result describes the effect of the change of the coefficient algebra.

Lemma 2.2.8 (Cf. [Wil95, p. 457]). Let A — A’ be a finite injective homomorphism of complete
Noetherian local rings with_finite residue fields F and ', respectively. Let Rp represent the
deformation functor Dp 5: Ara — Sets of p. Then Ry := Ry ®@p A represents the deformation
Junctor Dy 5: .Zl\rA/ — Sets of p@p F'. The assertion also holds if Ry and Ra: are versal rings.

We shall need Theorem 2.2.7 only in the case where k is finite. However we shall need a
variant of it where k is a local non-archimedian field with its natural topology. For this, let us
first make some remarks on continuous cohomology. Write G as a limit G = l{ln G/H; where
the H; range over open normal subgroups of G that form a neighbourhood basis of the identity.
Suppose first that M is a G-module (i.e., a Z[G]-module) which is fixed by an open subgroup
H of G. Then one defines

H'(G,M):= lim H'(G/H;, M).
(G, M) s (G/Hj, M)
Such M arise for instance if M is a finite type R-module for a ring R carrying the discrete
topology and where M is equipped with a continuous R-linear action of G. A special case being
R = k with the discrete topology.

Suppose now k is a local field with its natural topology and that M is a finite dimensional
k-vector space carrying the natural topology induced from k£ and a continuous k-linear G-action.
Let O be the valuation ring of £ with maximal ideal mp. Because G is compact a standard
argument shows that M contains a G-stable O-lattice L. In this case one defines

cont (

G, M) :=lim H'(G, L/mpL) ©r k,

n
and one shows that this definition is independent of any choices. Note that even if M is discrete,
we occasionally write H¢ (G, M) for H'(G, M) to have a unified notation.

Theorem 2.2.9 (Kisin). Let k be a local field and let p: G — GL,, (k) be a continuous repre-
sentation. Assume in (ii) —(v) that tp, is finite-dimensional. Then the following hold:

(i) One has tp, = HL (G, adp).
it) The functor Ds: Ary — Sets has a hull R}% € Ob ;l\rk together with a versal deformation
p k,p

Ver - G —s GL, ( ver)

(1it) If Cent(p) = k, then the functor Dy: Ary — Sets is pro-representable by Run“' € Ob(.ZG“k)
together with a universal deformatlon

unlv - G — GL, ( umV).

(iv) The rings RyZ and Rzng", respectively, are quotients of k[x1,...,xp] for h = dimy tp,.
(v) If H2 (G ,ad;) = 0, then RYZ and R};}%V are formally smooth over k of dimension
dimg tp,.
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Proof. For k of characteristic zero, the proof is given in [Kis03, Lem. 9.3]. The proof for local
fields of positive characteristic is analogous. O

Remark 2.2.10. Independently of whether k is a field carrying the discrete topology or whether k
is a local field, we shall use the notation R} and R‘m“’ for a versal and the universal deformation
ring, since the distinction is determined by the topology on A. In the former case A carries the
mp-adic topology, in the latter case A = k and k carries the topology of the local field.

To explain the usefulness of the theorem just stated, we state the following theorem that
asserts that for a point z: Speck — X ‘mp“’ := Spec RVer of X “mv, where k is some local field,
the completion of (a modification of) O X at x has 1tself an mterpretation as a (uni)versal
deformation ring. We will need an analog statemnt for universal pseudodeformation spaces that
we prove in Corollary 3.2.13. Let I be a finite field of characteristic p and let p: G — GL,(F) be
a continuous representation. Let A be the ring of integers of a finite totally ramified extension
E of W(F)[1/p]. Consider a continuous homomorphism f: R}, — k for some local field k, and
suppose that the kernel of f is a prime ideal p such that & is a finite extension of the fraction
field of Rxe%/ p. Let pi: G — GL,, (k) be the representation induced from p5" via f.

Suppose first that & is of characteristic 0, in which case we follow [Kis03, § 9]. Then f
factors via a map f[1/p]: Ry7[1/p|] — k which is an E-algebra homomorphism, and k is a finite

extension field of E. We denote by R the completion of R{Z[1/p] at the kernel of f[1/p]. Then

k is the residue field of R. From the finiteness of E — k one easily deduces that in fact R is
naturally a k-algebra. Moreover we have a continuous homomorphism p: G — GL,,(R) induced

from Py Clearly p is a deformation of pj. This provides one with a homomorphism
® Rz?;k — R

Suppose now that k is of characteristic p. The field & is then isomorphic to a Laurent series
field F'((x)) over a finite extension F’ of the finite field F. By passing to a suitable representative
in its strict equivalence class, we may assume that py takes its image in GL,(F'[z]), and we
denote this representation by pp[,). It is a deformation of p @p F'. Let p' = p ®p ' and
A" = A @y ) W(F') and consider now the map

Lem. 2.2.8
f RA/IL, Qpr k o~ Rver O k f®]F1dk 5
In the present case we define R as the completion of R}’SE/ ®p k at ker f. Clearly, Ris a

k-algebra with residue field k. Note that now p7™ @ R{Y R defines a continuous representation

p:G— GLn(R)
which is a deformation of pg. Again this yields a homomorphism

. pver D
QD. Rk,pk — R

Theorem 2.2.11. The map ¢ is formally smooth. If R}’f% s universal, it is an isomorphism.
Proof. If Char k = 0, then this is [Kis03, Prop. 9.5]. In the case Chark > 0 our proof closely
follows loc.cit. Let O be the valuation ring of k. We consider a commutative diagram

ke 54 (1)

o

~
RH—A/I
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2. Preliminaries

with A € Ob(Arg) and I C A is a square zero ideal, with the solid arrows given, and we
seek to construct a dashed arrow g so that the two triangular subdiagrams commute. If RZ‘?;}C
is universal, we also have to show that the dashed arrow is unique. Note that A and I are
finite-dimensional k-vector spaces. Also, the bottom arrow induces a pair of homomorphism
RX‘?fﬁ, — A/I and k — A/I, where the second one is simply the k-algebra structure map.

By possibly conjugating p by some matrix in I';(R) we can assume that pp" @ Ry R = 5.
Pk

Following the proof in loc.cit., one shows that there exists an O-subalgebra A° of A such that

(a) A° is free over O of rank equal to dimy A and A° ®p k = A,
(b) the image of A° under A — k is O, and so A° € Ob(;l;uw),

(c) the image of pp* QRyer A lies in GL,,(A4°),

(d) the homomorphism R}, — A/I factors via A°/I° where I° = 1N A°,
P

ver

Write p 40 for pp' @ Ry A considered with its image in GL,,(A°). Then p4. reduces to Py R,
) P
A°/I° modulo I°, and thus by the versality of R}’fifp, there is a homomorphism ¢°: R/V\?fp’ — A°
such that p%,er Ry AP° is strictly equivalent to pso. Let g: R — A be the the homomorphism
P
obtained from ¢° ® id under completion. It is now not difficult to see that both triangles in (1)
commute with this choice of g.

It remains to show the uniqueness of g if Rﬁrﬁ, is universal. The argument in [Kis03, Prop. 9.5]
shows that there is in fact a directed system Ay, n € N>p, satisfying (a) — (d) such that
U,, 4;, = A. Now if one has g1, g2 completing the diagram (1) to two commutative diagrams,
there have to be homomorphisms g7, g5 : Rxe,fﬁ, — A; for n sufficiently large that give rise to g;
and go, respectively. The corresponding deformations G — GL, (A2) of g’ do agree over A and
then they will agree for n sufficiently large. Hence they represent the same strict equivalence
class. Because Rﬁfp, is universal, they define the same ring maps g7 = g5 and hence g1 = go. [

By carefully choosing py it is often possible to control Ry, and hence R.
The following result helps to derive consequences on Spec R‘/’\‘frp. For later applications we will
focus on special fibers.

Lemma 2.2.12. Let R be in :4\7"]1:, let p € Spec R be a 1-dimensional point, i.e., dim R/p = 1.
Let k(p) = Quot(R/p), consider the homomorphism

¢: RRp k(p) — k(p), r"®@ar (r mod p)-«,

set q := ker ¢ and denote by R the completion of R ®p k(p) at the mazximal ideal q and by }Aip
the completion of Ry at Ryp. Then the following hold:

(a) One has an isomorphism ]pr [T] = R.

(b) If R is formally smooth over k(p) of dimension d, then R, is reqular of dimension d — 1.

Proof. Consider R — R, — ﬁp. Tensoring with x(p) over F, it yields a diagram

R @ K(p) Ry @p k(p) — By @ w(p) = (1lim Ry/Rpp") @5 £(p)

R =1im(R ®r £(p))/q",
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2.2. Galois representations and their (uni)versal deformation rings

where ¢ is completion and where initially the dashed arrows ¢/ and ” do not exist. For the
existence of ¢/, we use the universal _property of locahzatlon Thus we need to show that R\p®1
is mapped under L to the units in R. The ring R is local with residue map induced from ¢, and
therefore we need to show that pot(R~p®1) lies in k(p)*, but this is clear from the definitions
and the inclusion R/p — k(p). Regarding (", we first note that p ®p £(p) maps to q under ¢ and
hence p" Qp £(p) to q". Hence the existence of ¢/ gives a compatible system of homomorphisms
R, /Ryp™ — (R ®r k(p))/q" und this provides the construction of ¢”.

Let 7 denote the reduction map 7: R — k(p), set ¢’ = o and ¢’ = w o/, and define
q = kery’ and q” = ker ¢’. Then the arguments just given provide a commutative diagram
with canonical isomorphisms in the bottom row

R @ K(p) Ry @r K(p) Ry @5 £(p) = (1im Ry/Rpp™) @ A(p)

I I
Ll L/ I L” |
Y Y

R = lim(R @ w(p))/a" > R = lim(R, @5 x(p))/q" R = lim(R, @5 v(p))/q"",

where by slight abuse of notation we denote the middle and right vertical maps again / and ¢”.
Note that by the Cohen structure theorem in equal characteristic the ring ﬁp contains k(p) as
a subfield. Focussing on the right must arrow and using that R, is regular if and only if ﬁp is
so, it will suffice to prove the following assertion:

Let R be a complete Noetherian local x(p)-algebra with residue field x(p) and residue homo-
morphism 7: R — k(p), let ¢: R ®F k(p) — £(p) be the homomorphism r ® x — 7(r) - z, let
9 = ker ) and let R be the completion of R ®p £(p) at Q. Then R = R[{].

To prove the assertion, note first that if S; and Sz are x(p)-algebras with maximal ideals 31
and Py such that x(p) is in both cases the residue field, then the completion of S := &1 ®, (p)S2
at the maximal ideal m := P ®, (p)S2 + S1 @4 (p)P2 is isomorphic to

tim St /7B (p) i /95

If furthermore Sy is complete with respect to 331 and if lim Sy /B35 = r(p) [T], then the completion
of S at m is S1[T]. We apply this to S = R, S2 = k(p) ®r £(p), P2 = ker (k(p) ®r K(p) —
k(p),z ® y — xy). Then by the following lemma we have lim S /B3 = k(p)[T], and we deduce
R =~ R[T]. O

Lemma 2.2.13. Let F/ be a finite extension of F and let L be the Laurent series field over TF.
Let q be the kernel of the multiplication map L @r L — L. Then there is an isomorphism

L®L = lim(L ®p L)/q" — L[T].

Proof. We think this result ought to be known. But in lack of a reference, we give a proof. We
first explain why one can assume F = [F’.

For this observe that L = F'((s)) = F((s)) ®r F'. Hence, L ®p L — L can be written as the
map

F((s) ®r F((s) @r (F @r F') 2> F(s), fogea®fr fgab.

Since F’ is a finite field, the ring 7' = F’ @p [’ is a finite product of fields isomorphic to F’, i.e., T
contains [F" : F|] elementary idempotents, and one easily checks that all but one of them map to
zero under the multiplication map 7" — F’. Hence all but one of these idempotents lie in q and
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2. Preliminaries

therefore they also lie in all powers of q. Thus under completion these components will vanish.
Hence from now on, we shall assume F/ = F.

The first observation we make is that q/q? is isomorphic to the module of differentials €, /Fs
by one of the definitions of the latter. Now the single element s is a p-basis of L over I, i.e., L is
a vector space over LPF = LP in the basis 1, s, ..., sP. It follows from [Eis95, Thm. 16.14.b] that
Qp,r is a vector space of dimension 1 over L. Consequently, we have dimp, 4"/ q" Tt < 1 for all
n > 0, and by smoothness of L[T”] there is a surjective ring homomorphism : L[T'] — L®L.

We will now construct explicit surjective homomorphisms

ont F((s) @r F((s) = F(s)[T]/(T"),

and verify that q lies in the kernel of ¢,. The idea will be that T should be the image of
s®1—1® s and that morally q" is generated by (s®1—1® s)". However we think that in fact
the q" are infinitely generated. So we provide an explicit construction. For a formal Laurent
series f =) s o a;s' and j € Ny we define the hyperderivatives

The operators D’ are continuous in the s-adic topology. We observe that

J
=> DFfDIHy. (2)

By continuity it reduces to verifying this for f and g being powers of s, and this comes down
to the Vandermonde convolution for binomials >~ _, (Z,;) ( ,3) = (“J“”) We now define the map
On: LRL — L[T]/(T™) by

fog— > (=1)'T7- f-Dig.
=0

The map is well-defined, and hence additive, since the D’ are F-linear. It is also clear that
it is L-linear with L acting from the left. Using (2) and T = 0 for | > n, one verifies that
the map is a ring homomorphism. To see that ¢, is surjective, one computes the images of
elements of the form f ® s* for i = 0,...,n — 1. This results in an L-linear homomorphism
L ®s' = ® 1L T* of which the obvious matrix representative is upper triangular with
il on the dlagonal
It is also rather straightforward to see that " lies in the kernel of ¢,: the ideal q is generated
as an L—vector space by the expressions ¢g® 1 —1® g, g € L. Therefore q" is the L-linear span
of expressions [[;_;(gr ® 1 — 1 ® gi). Their image under ¢y, is

li[ <9k — 1)jTij9k> li[ <

and the right hand side is a multiple of 7™ and hence 0 in L[T]/(T").

Now the composition ¢, o ¢: L[T'] — L&L — L[T]/(T") is a surjective L-algebra homo-
morphism for all n > 0 with the first and second arrows being surjective. In the limit we
therefore obtain an isomorphism L[T"] — L®L — L[T], as asserted. O

n— l n—
~1)T7~ 1D]gk)

1
Jj=0 J=1
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2.2. Galois representations and their (uni)versal deformation rings

2.2.2 Smoothness of (uni)versal deformation rings

In this subsection, we show under certain hypotheses on the residual Galois representation p
that the natural transformation D, — Dget , is smooth.

Theorem 2.2.14 ([GouOl, Thm. 4.2]). Assume that p: G — GL,, (k) is a residual representation
such that Cent(p) = k. Consider the universal deformation ring R%“i". Then

dim R%niv/mAR%mV > hy — ho, where h; := dimy, Hi(GK, adp) fori=1,2,
and if hg =0, then R%ni" = Afzy, ... xp]-

Remark 2.2.15. One can get a strengthening of the above using Krull’s principal ideal theorem,
[Eis95, Thm. 10.2]. It says that if R be a Noetherian ring and if I = (fi,..., fs), then any
B € Spec R minimal above I satisfies codim®P < d, i.e., dimRyp < d. So if R is local, catenary
and equidimensional (for instance a power series ring over IF or W (F)) of dimension e > d, then
it follows that every component of Spec R/I has dimension at least e — d.

For the next result we require an extension of local Tate duality from Nekovai:

Theorem 2.2.16 (Tate and Nekovar). Recall that K is an extension of Q, of finite degree d.
Let k be a finite field or a local field of residue characteristic p with its natural topology. Let
V' be a finite-dimensional k-vector space with the topology induced from k, and suppose that V
carries a continuous k-linear action by the absolute Galois group Gk of K. Write VY (1) for the
twist of Homy(V, k) by the cyclotomic character. Then

(a) For all j € 7 the k-vector space H’

Jont (GK, V) is finite-dimensional. It vanishes for j ¢
{O) 1) 2}7

(b) For j € {0,1,2} one has natural isomorphisms
Heod (Gie, VY (1) = Hou(Gic, V)
(¢) One has the Euler characteristic formula

> (—1) dimy, HY,, (G, V) = d - dimy V.

Jj=0

Proof. If k is finite, the above statement is just the usual Tate local duality. If k is local, let O
be its valuation ring. Because Gk is compact one can find an O-lattice T in V' that is stable
under Gk. Let j > 0. Then [Nek06, Thm. 5.2.6] asserts that each H] ,(Gg,V) is a finitely
generated O-module and moreover it gives a spectral sequence

o o

Extio(Heort (Gi, TV (1)), 0) = Hegd (G, T).

Because O is regular and of dimension 1, the groups Ext%/)(-, O) are finitely generated O-torsion
modules. After tensoring the results just quoted with k over O part (b) and (a) are clear.

Part (c) follows from [Nek06, Thm. 4.6.9 and 5.2.11] applied to T, again after tensoring with k
over O. 0
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Let k be either finite or a local field and let p: Gx — GLy (k) be a continuous absolutely
irreducible representation. Consider the short exact sequence

0 — ad% — ad, = adger, =k — 0. (3)

Using that ad,, is self-dual it is easy to see that the sequence dual to (3) is

0— k 8 ad, — ad, — 0 (4)

with ad, = ad, /k. Let dpin be 0'if pfn and 1 if p divides n. We have the following result.

Lemma 2.2.17. Suppose in the above situation that H°(G,ad,(1)) = 0. Then the natural
transformation D, — Dgetp 15 smooth of relative dimension dimy Hl(GK,adop) — Opjn- The
hypothesis holds in particular if p [n.

Proof. Let A — B be a small extension in Ary. Let I be its kernel so that I? = 0. For the
relative smoothness, we need to show the surjectivity of

DP(A) — DP(B) XDdetp(B) Ddetp(A)-

So suppose we are given deformations pp € D,(B) and 74 € Dyet p(A) with det pp = T4 ®4 B €
Dgyet p(B). We need to find a deformation p4 € D,(A) such that py ®4 B = pp and det py = 74.

Recall that there is a canonical obstruction class O(pg) € H?(Gk,ad,) ®j I, which vanishes
if and only if there exists a deformation of p to A that lifts pp. Because of the existence of
the deformation 74 that maps to det pp, the obstruction class O(det pg) € H?(G, adqet p) @k 1
vanishes. By Theorem 2.2.16 the long exact sequence of Galois cohomology arising from (3)
gives the left exact sequence

2 T
H2(G,ad?) — = H (G, ad,) 0 H2(Ge, k) —— 0

By Theorem 2.2.16 the sequence is dual to the right exact sequence

HO(diag(1))

0—= HO(Gx. k(1) HO (G ady(1)) — HY(Ge, ad, (1)),

that arises from (4). By our hypothesis the map H°(diag(1)) is an isomorphism, and so by duality
the same holds for H2(tr). We claim that O(pp) maps to O(det pg) = 0 under H?(tr) ®y, idy,
which will then imply the vanishing of O(pg).

To see the claim, choose a set-theoretic lift p: Gx — GLy,(A) of pp. Consider

co(g91,92) = p(g192)8(92) ' p(g1) " — 1 € Maty,(I) = ad, @41,

and

Caet p(g1, 92) = det p(g1g2) det p(g2) " det p(gr) " — 1
= det (p(g192)p(g92) ' p(g1) ") — 1
= det(cp(g1,92) +1,) — 1

The claim now follows from

det(cy(g1,92) + 1n) — 1 =t (co(91, 92)),
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which is obtained by setting ¢t = 1 and ¢ = —¢,(g1, g2) in the equation

det(t-1, —c) = Z(—l)k tr (/\kc)t"*k =1—tr(c)t for any ¢ € Mat, (1)
k=0

that follows from the vanishing of the k*M-exterior power A¥c € Mat,, (I*) if k > 2.
We have now proved that there exists p'y € D,(A) mapping to pp € D,(B). However, this

lift need not satisfy det p’y = 74. At this point we note that our hypothesis in fact implies that
H?(G, adg) =0, so that

HY(Gr,ad,) — HY(Gk,adgetp) = H (Gk, k) (5)

is surjective. Now det py and 74 are deformations of 75 and the space of all such deformations is a
principal homogeneous space under H' (G, k), i.e., the tangent space of the deformatin problem,
by [Sch68, Rem. 2.15], and likewise the deformations of pp form a principal homogeneous space
under H'(Gg,ad,). Since (5) is surjective we can thus alter p/; by a class in H'(Gg,ad,) into
some other deformation p4 of pp that also satisfies det pa = 74. This completes the proof of
the formal smoothness.

From what we just proved it follows that R}‘o‘niv = Rggg‘/’)[[Xl, ..., Xp] for some h € Ny that
is the relative dimension between the two rings; see Proposition 2.1.12. It follows that h is the
difference of tangent space dimensions, i.e.,

h = dimy, D, (k[e]) — dimy, Daet o (k[e]) = dimy H'(Gx,ad,) — dimy, H' (G, adaet ),

where k[e] is the ring of dual numbers of k. Since (5) is surjective, the right hand side is equal
to

dimy H' (G, ad)) — dimy, H*(G, adqet p) + dimy, H*(Gk, ad,) — dimy H(Gg,ad)),  (6)

and the latter expression is easily identified with the expression given in the lemma; if p fn, then
(3) is split, the right most term of (6) vanishes and the two middle terms evaluate to 1 and thus
cancel. If p|n, then the two terms on the right of (6) evaluate to 1 and cancel, and we clearly
have dim H%(Gk, adqet ) = 1. O

Corollary 2.2.18. Let k be a finite or local field and let p: Gx — GLy, (k) be a representation
with p fn. Suppose q := ord pye (K) and H(Gr,ad,) = k. Let uga = Spec Alz]/(z9—1). Then

the composition X;ni" - X gé‘ti‘; — ptg,A for the natural maps is formally smooth and

Rgniv >~ Afxq, ... ,$h+[K:Qp]+1]][x]/((1 +x)! = 1)

for h = dimy, Hl(GK, adg). In particular, the nilreduction (Ezniv)red = klz1, .o Thg ke, 1] of
the special fiber Ezmv = Rgm" /my is reqular.

Proof. By Lemma 2.2.17 the natural maps
XM — Xyt and - R§SY, — RV

are formally smooth of relative dimension h = dim H'(G, adg). Further, let II be the abelian-
ization of the pro-p completion of Gx. We know from e.g. [Gou0O1, Prop. 3.13] that Rggti‘l’) =~ A[II]
and from local class field theory that II = (Z,,+) x (1 + mg,-). Thus

Rggﬁ‘; > A[M) = Al ..., x[K:Qp]H]][JU}/((l +x)9 — 1).
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From the formal smoothness property proved in Lemma 2.2.17 and from Proposition 2.1.12,
we deduce the isomorphism Rlpmi" = Rhlgtivp[[yl, ..., yn]. This shows that REniV has the shape

. . —=uni . . .
claimed. The assertion on (R V)red is now immediate. ]

P

The following lemma enables us to also apply Lemma 2.2.17 to certain non-split extensions
in Section 3.3.

Lemma 2.2.19. Let k be a field, p;: Gk — GLy, (k) be a Galois representations for i = 1,2

and p = < 001 pCQ > be an extension of p1 by pa. Suppose that

(a) The class ¢ € ExthK (p2, p1) is nontrivial,

(b) H(Gg,ad,,) =k fori=1,2,

(¢) Homg, (p1, p2) = 0 and Homg, (p2,p1) = 0.
Then H(Gk,ad,) = k.

Proof. Consider A;; € Maty, (k) for 1 <i,j <2 and the equalities

0:(‘411 A12></)1 C)_(Pl C><A11 A12>
Ag1 Ag 0 p2 0 p2 Ao A
_ ( Anpr Anc+ Aigpr > B < prAir + Ao p1Ais + cAx )

Asip1 Asic+ Agapo p2Aay p2Aao

_ ( [A11, p1] — cAa1 (A11c— cAgr) + Arap2 — p1Aie )
Ao1pr — p2Aan [Ag2, pa] — As1c '

From hypothesis (c) and the vanishing of the (2,1)-entry we deduce As; = 0. From hypothesis
(b) and the vanishing of the (1,1)- and (2,2)-entries it follows that A;; are scalar for i = 1,2,
say equal to \;1,, for some \; € k, respectively. Finally, the vanishing of the (1,2)-entry gives
(M — A2)c = p1Aia — Ajape. Now g — p1(g)A12 — Ajap2(g) is a 1-coboundary with values
in Homg, (p2,p1), and so if A\; # g, the last condition implies that ¢ is the trivial class in
ExtIGK (p2, p1) which is excluded by ((a)). This shows A; = A2, and A2 € Homg, (p2, p1), and
hence Ajg = 0, again by ((c)). This completes the proof. O

Lemma 2.2.20. Let k be a field, p;: Gk — GLy, (k) be a Galois representations for i = 1,2,

%1 pc > be an extension Of P1 by p2. Suppose that
2

let x: Gx — k™ be a character, and p = (
(a) The class c € ExtéK (p2, p1) is nontrivial,
(b) p1 and pa are absolutely irreducible.
(¢) Homgy (p1,p2 @ x) = 0 and Home, (p2, p1 @ x) = 0.

Then Homg, (p,p @ x) =k, if pi = pi @ x fori=1,2 and ¢ and ¢ ® x are linearly dependent in
ExtéK (p2, p1). In all other cases Homg, (p, p ® x) = 0.
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2.2.3 Classification of absolutely irreducible mod p Galois representations

The goal of this subsection is Lemma 2.2.23, where we show that there are only finitely many
isomorphism classes of absolutely irreducible mod p Galois representatio

We recall the classification of the characters of the tame inertia group I of G from [Ser72],
where K is the fixed finite extension of Q) with residue field F,;. Let K*P be a fixed separable
closure of K with residue field k%P and K™ be the maximal unramified extension of K. If w is a

fixed choice of uniformizer of K™ and K" = K™ (*" /@) for n € N>1, then K* =1lim _ K"
> -

is the tamely ramified extension of K. For n € N> the character

wyt Iy i= Gal(K'/K™) — Gal(K}"/K™) == pyn 1 (K™) = ppn 1 (K*P) = F)p,
o)

T

gives rise to an inverse system {wn}nen,, so that [; = Gal(K'/K"™) = T&lneN21 Fn [Ser72,
Prop. 1-2].

o+

Definition 2.2.21 ([Ser72]). Let n € N>1 and P, be the set of Fy-embeddings Fyn — Fae.

(i) A continuous character w: Iy — (F Zlg)x is called of level n if n is the smallest integer such
that w factors as w: Iy — F)f — (F,*%)*.

ii) The composite of wy: Iy — F%, with an F,-embedding 7: F,n — F,*# is called a funda-
P P P P

mental character of level n and denoted by wy, r: Iy — (Iﬁ‘f;lg)X )

The n fundamental characters w: I, — (F&€)* of level n are Wl fori e {0,...,n—1}, and their
name is justified by the following proposition.

Proposition 2.2.22 ([Ser72, Prop. 5]). Let F be a finite field of characteristic p. There is an
isomorphism between the set (Q/Z)" = {% €Q/Z : 1,5 €Z, ptj} and the group of continuous
characters I, — (F218)% given by % > wi where n € N>q is the unique minimal integer satisfying
p" =1 mod j.

Hence, there are only finitely many isomorphism classes of continuous characters I; — (F#18)*
factoring via w, and this is used to show that there are also only finitely many isomorphism
classes of absolutely irreducible representations G — GL,(IF). To see this, consider the unram-
ified extension K, of K of degree n with residue field Fy». We extend the fundamental character
wn,r to Gk, using the local Artin map recg,, : 7 x (’)IXQL - G?}‘Pn and the induced projection

pry: G%’n — (’)IX(H. Then for any 7 € Pr,, the composite I, = I — I Wing (IF‘Zlg)X extends as
follows to Gk,,:

pI‘
Winri Gr, — G2 —> Ox —Fr5 T (Fale).

We introduce the following useful notation: If n > 1 and if 1 < h < ¢ — 2, we say that h is
primitive if there is no strict divisor j of n such that h is a multiple of (¢® — 1)/(¢’ — 1). This
condition is equivalent to requiring that if we write h = e,_1€,-2...e1€p in base ¢ (with digits
ej € {0,...,q—1}), then the only cyclic permutation of the digits that gives again h in base p is
the identity. Also, for A € leg, we write iy : Gxg — F' for the unramified character that sends
the Frobenius automorphism in Gal(K™ /K) to A~ € F3'8,
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Lemma 2.2.23 (Cf. [Berl0, Cor. 2.1.5], [Con99, Thm. 2.2.2]). IfF is a finite field of charac-
teristic p and p: Gg — GL,(F) is an n-dimensional absolutely irreducible representation, then
there exists T € Py, some primitive number 1 < i < ¢" — 2, and some X € Fglg with A" € T,
such that

P ®p F/ = (Indggn chn,T QF 4n IF/) & My,

where F' is the smallest extension of Fp, containing F and X. In particular, there are only finitely
many isomorphism classes of absolutely irreducible representations G — GLy,(FF).

Proof. We know from [Mull3, Prop. 2.1.1] that there exists such 7 € Pg_., A € (Fl&)* and
© € N>1 so that '
ppFy® = (Indgk wh, - @, F3%) @ f (7)

for some unramified character 7i: Gx — (F4€)*. Then 7 factors via Gal(K™ /K) so that 71 is
uniquely determined by the image A~! € (F2!8)X of the Frobenius automorphism in Gal(K""/K)
under 7. Moreover, py = p is defined over the finite field extension F(A) of F. Since the Frobenius
homomorphism ¢, generates Gal(K,,/K), we have by Mackey’s formula [Ser95, Prop. 22]) for
any k € NZI that

Gk Gk  k o~ E \g~ on—1, 'k
Resge Indg wnr = Ogecal(k,/K) (Wi, )= S50 Win

is semisimple. Its characteristic polynomial is the cyclotomic polynomial g — H?:_ol (t—w%ﬂ (g))
which as minimal polynomial of the ¢"-th root of unity w’]fn +(g) takes values in F[t]. By the the-
orem of Brauer-Nesbitt [CR62, (30.16) Thm.] its characteristic polynomial uniquely determines

Indgﬁ wk _and the triviality of the Brauer group of a finite field implies by [DS74, Lem. 6.13]

fn7T
that Resg‘; Indgi wF _is defined over IF,. This shows that also Indgg wk _is defined over Fq,

n,t n,T

and the existence of the finite extension F’ of F follows from taking the determinant in (7). O

2.3 C(lifford theory of induced representations and twist-invariance

Throughout Section2.3, G denotes a (possibly infinite) group and H a normal subgroup of finite
index.

Using Clifford theory, we show in Corollary 2.3.6 that a semisimple representation p: G —
GL,, (k) with values in an algebraically closed field k is invariant under twisting by a character
x: G — k* of finite order if and only if p is induced from a representation of ker y. We use this
to investigate the locus of special pseudodeformations in e.g. Subsection 3.3.2.

Definition 2.3.1. For a representation p: H — GL,,(R) over a ring R and g € G, we define
the twist of p by ¢ as
p?: H— GL,(R),  h+— p(ghg™ ).

Remark 2.3.2. Denote by 7: G — G/H, g — g, the canonical projection, and suppose that
9,9 € G satisfy g =g, so that ¢’g~' € H. Then pJ = pgl because

/

-1 _ _ _ _ 11—
p? (h) = plg'hg ) = p(d'g " ghg " (d'9)"") = plg'g " )p?(W)p(g'g™ ")~ VheH.
In particular, the number of isomorphism classes in {pY : g € G} is finite.

Lemma 2.3.3. Suppose that the index [G : H] is invertible in a field k, and that p1,p2: H —
GL,, (k) are semisimple representations. Then the following hold
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2.3. Clifford theory of induced representations and twist-invariance

(a) The representations Ind% pi, t = 1,2, are semisimple.

(b) nd% py =2 Ind$ py if and only if

@ 7 = @ P2 (8)

9eG/H geG/H

(c) If p1 is irreducible, then (8) is equivalent to py = p{ for some g € G.

Proof. Part (a) is immediate from [Web16, Ch. 5, Exerc. 8]. Part (c) follows from the uniqueness
of composition factors and the irreducibility of p; (and hence all p{). We now prove Part (b).
First, Ind% p1= Indg p2 implies by Mackey’s formula [Ser95, Prop. 22] that

EB o1 >~ Res$ Ind% p1 = Res$ Ind$, py = @ 05
geG/H geG/H

For the other direction, note first that by [CR81, Lem. 10.12] we have Ind% p; = Ind p¢ for
all ¢ € G. Thus using Mackey’s tensor product theorem for induced representations [CRS81,
(10.20) Cor.], we obtain

Ind% ( @ pl) = @ (Ind$ p?) = (IndeZ)@[G:H].

geG/H geG/H

By hypothesis, the left hand side is, up to isomorphism, independent of i € {1,2}. We deduce
the isomorphism (Ind% p;)®™ = (Ind$ po)®™. By Part (a) the representations Ind¥ p;, i = 1,2,
are semlslmple. It follows from the theorem of Brauer-Nesbitt [CR62, (30.16) Thm.] that
nd% p; = Ind% po. O

From now on, in this section we also fix some field k£ (that is often algebraically closed), a
character x: G — k* of finite order m > 1 and we assume that H = ker x. In particular, m is
invertible in k. Using Clifford theory we show in Corollary 2.3.6 that a semisimple representation

p: G — GL, (k) is invariant under twisting by x if and only if p is induced from a representation
of H.

The following is a standard result of Clifford Theory, e.g. [CR62, Thm. 49.2, Cor. 50.6].

Theorem 2.3.4. Let k be algebraically closed and let p: G — GL, (k) be an irreducible rep-
resentation such that p = p @ x. Then m divides n and there is an irreducible representation
p'r H — GLy, (k) such that

p = Indf p'

Moreover, p' satisfies

Resfip= €P (07,

geG/H

and the representations (p')9, g € G/H, are irreducible and pairwise non-isomorphic.

Proof. Let A be an invertible n x n-matrix over k such that
Ap(9)A™" = x(g)p(g) for all g € G. 9)

From Equation (9) one deduces A™p(g)A™"™ = x™(g)p(g) = p(g) for all ¢ € G. Since p is
irreducible, [CR81, (3.17) Schur’s lemma| implies that A™ = X - 1,, for some X\ € k. Since k is
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algebraically closed, we may replace A by mﬁilA so that A™ = 1,, and find P € GL, (k) such
that J := P71AP is a Jordan matrix. Then 1,, = A™ = (PJP~1)™ implies 1,, = J™. Because
m = ord x is a unit in k, the matrix A must be semisimple by [CR81, Maschke’s theorem (3.14)]
and its eigenvalues must be m'-roots of unity.

Let ¢ be a primitive m™-root of unity. Then after a change of basis we may write A as a block
diagonal matrix with diagonal blocks Ay, ..., A, for some m’ € N>; such that fori =1,...,m/
A; is a scalar matrix (kilm withl <k <ky<...<kp <m.Forallge Gandi,j=1,...,m
we decompose p(g) correspondingly into blocks p; j(g) so that equation (9) provides

¢MRipii(9) = x(9)pi(9). (10)

Choose g € H such that x(g) = 1. Then p; ;j(g) is zero unless k; — k; =1 (mod m). Since p(g)
is invertible for each j there must be an i such that p; ;(g) is nonzero, and hence, since the k;

are strictly increasing we must have k; 1 = k; +1fori=1,...,m' — 1, and k,y +1 —m = kq,
so that m’ = m and k; =i for i = 1,...,m. Moreover for p(g) to be invertible it is necessary
that the nonzero blocks pi11:(g), i = 1,...,m — 1, together with p; ,,(g) are square matrices,

and thus of the same size. Hence m divides n and n; = n/m for all 7.

For all 4,5 = 1,...,m and h € H Equation (10) becomes ¢ 7p;;(h) = p;;(
p(h) = @, pii(h) is a block diagonal matrix and p;;: H — GLy (), h — p;
representation of dimension n/m. In particular, the restriction satisfies

h) so that
,’i(h’)v is a

m

Resf; p = @ Pii-
i=1
We choose p' = p1 1 and consider Ind% p/. By [CR62, (10.8) Frobenius Reciprocity Theorem] we
have
Homg(Ind$ o', p) = Hompy (o', Res p) # 0.

Let f: Indg p" — p be a nonzero G-homomorphism. Since p is irreducible, it must be surjective,
and because dimp = n = m - n/m = dimInd% o/, its kernel must be zero, so that f is an
isomorphism. Next note that Ind% is an exact functor, see [CR81, § 10, Exerc. 20]. Hence p’ is
irreducible, because p is so. Note also that p’ is irreducible if and only if (p’)¢ is so. Moreover
since H is a normal subgroup, we have by Mackey’s formula [Ser77, Prop. 22] that

Res$ p = Res$ Ind§, p/ = @ (0')9.
geG/H

Since p is irreducible, Mackey’s irreducibility criterion [Ser77, Prop. 23] states that for all g €
G/ H the irreducible representations (p’)Y need to be pairwise non-isomorphic. ]

Remark 2.3.5. The above proof uses that k is algebraically closed in two instances: First, to
deduce from Schur’s lemma that A™ € End(p) = k is equal to A - 1,, for some A\ € k. Second, we
use it to replace A by /A - A so that A”™ = 1,, and the eigenvalues of A are m™-roots of unity.
The fact that A™ is scalar would also follow if one requires that p be absolutely irreducible.

The second use of algebraic closedness of k cannot be avoided. There are simple examples
where Indg p' can be defined over a smaller field than p’: For instance take G the dihedral group
D,, of order 2n with n > 1 odd and H its cyclic subgroup C,, of order n, and let x: C),, — Q({,)*
be a character of order n. Then Q((,) is the minimal field over which y is defined. However
Ind% x can be defined over Q(¢,)*, the maximal totally real subfield of Q(¢,).

Finally observe that the above proof shows that for k£ not algebraically closed, Theorem 2.3.4
applies after passing to a suitable finite extension &’ of k, provided that p is absolutely irreducible.
It suffices that over k' all irreducible factors of p and of Resfl p are absolutely irreducible.
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Corollary 2.3.6. Suppose that k is algebraically closed and that p: G — GL,, (k) is semisimple.
Then p = p @ x holds if and only if there is a representation p': H — GL,, (k) such that
p=Ind$ p/. Moreover, any such p' is semisimple, and one also has Res§; p = Dyec/u(r).

Proof. If p = Indf] o', then Mackey’s tensor product theorem for induced representations implies
p®x = (Ind% p') ® x = IndG(p’ @ Res% x) =Ind% o' = p  [CR81, Cor. (10.20)].
Conversely, suppose that p = p ® x and write p = ©j¢ Jp; with irreducible representations

p; for j € J. We regroup this decomposition according to orbits under iterated twisting by x.
This gives rise to a decomposition

m;—1
2@ (P nox) )
el j=0

for irreducible representations p;: G — GL,,, (k), i € I, and divisors m; of m so that
pi @ X = p; foriel,

and no p; is isomorphic to py ® x? for some j € {0,...,my — 1} and i’ € I.

Under the isomorphism G/H = Z/(m) we have for H; = kerx™ O H that H;/H =
(m/m;)Z/mZ = Z/m;Z, which shows that ResH X is a character of order m;. By Theorem 2.3.4
we find representations pf: H; — GL,, /m, (k) such that IndH p! = pi. Let kg be the trivial
representation of H on k. Then

m;—1 m;—1 ' m;—1
@pz@)XJNIHdeZ (@X)NlndG ®@RGSHX
J=0 Jj=0

= Ind¥ (p! ® Indjy kgr) = Ind§), Indjy (ResHl pi @ k)
Ind% (Res ooy )

12

where the second and fourth isomorphism follows from Mackey’s tensor product theorem for
induced representations [CR81, (10.20) Cor.]. Together with the canonical decomposition (11)
this proves

m;—1
p=@P (P riox’)"" = mdf (PResiy o). O
i€l j=0 i€l

The two assertions at the end are immediate from Mackey’s formula [Ser95, Prop. 22]; see also
the proof of Lemma 2.3.3(b).

We have the following integral refinement of Theorem 2.3.4:

Theorem 2.3.7. Let R be a complete discrete valuation ring with (not necessarily algebraically
closed) residue field and fraction field L. Suppose p: G — GL,(R) is a continuous representation
of a compact group G such that p@pr L is absolutely irreducible and p = p® x for some character
x: G — L™ of finite order m.

Then there is a finite Galois extension L' of L with m’ng of integers R’ and a continuous
representation p': H — GLy,/,,,(R') such that p@pr L' = d% p' @p L.
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Proof. We follow the argument of the proof of Theorem 2.3.4. We define L' as L( ¥/)\). Because
m™ roots of unity lie in x(G) C L*, this is a finite Galois extension. Then over L’ one can
define p’: H — GL,,/,(L') such that Ind§ o/ = p ®p L'. Observe that by its construction p
is continuous, as it is a direct factor of the continuous representation Resg p. Now use the
compactness of G and the continuity of p’ to find a change of basis of (L' )”/ ™ such that the
image of p’ after this base change lies in (R')™/™. O

Remark 2.3.8. (a) It would be interesting to prove more general integral versions of Theo-
rem 2.3.4 than Theorem 2.3.7.

(b) Another integrality type question in the spirit of Theorem 2.3.7 is the following: Suppose
the pseudorepresentation of p is definable over a ring R. Can one describe a finite extension
of R over which the pseudorepresentation of p’ is definable?

2.4 Cohomology of profinite groups and Demushkin groups

This section gives a short introduction to Demushkin groups. Using their classification in Ex-
ample 2.4.5 we give an explicit description of (uni)versal deformation rings of 2-dimensional
Galois representations in Section 4.3. The references best suited for our purposes are [Koc00,
Chapter 3], [NSWO00, Chapter III] and [Lab67].

We fix a pro-p-group G i.e., an inverse limit lim G; of finite p-groups Gj; i.e., ord G; = p; for
some integer r;.

Definition 2.4.1. (i) A generator system of G is a subset S C G such that S generates G as
topological group and every open subgroup of G contains almost all elements of S. The
generator system S is minimal if no proper subset of S is a generator system of G.

(ii) A presentation of G by a free pro-p group F with generator system {s; : i € I} of F' is an
exact sequence
1—-R—F-5G—1.

The presentation is minimal if {¢(s;) : i € I} is a minimal generator system of G.
(iii) A relation system of G with respect to a presentation {1} — R AYF G {1} is a

subset R C R so that ¢(R) is the smallest closed normal subgroup of F' containing ¥ (R).
The relation system is called minimal if no proper subset of R is a relation system of G.

(iv) For ¢ a power of p the descending q-series {G(i,q)}@l of G is defined by
G =G  and  GUFLD = (GED)(GQED Q) fori>1,

where (GU:9)7(G0:9) | G) is the closed subgroup of G generated by the elements g7 and the
commutators (g,h) = g~ *h~lgh with g € G0:9 h € G.

By [NSWO00, Prop. (3.8.2)], the descending g-power series form a fundamental system of open
neighbourhoods of 1. Using Pontryagin duality, one shows the following.

Proposition 2.4.2 ([NSW00, Prop. (3.9.1) and (3.9.5)]). For i € Ny consider the Fy-vector
space H'(G) := H'(G,Z/pZ) and its dimension h; := dimg, H'(G). Then the following hold.

(i) (Burnside basis theorem) Let S be a minimal generator system of G. Then the generator
rank d(G) := card(S) is equal to Hom(G/G*P) Q/Z) = hy and thus independent of the
choice of S. In particular, G is finitely generated if and only if hy is finite.
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(ii) Let R be a minimal relation system with respect to some presentation of G. Then the re-
lation rank r(G) := card(R) is equal to dimg, Hom(R/RF(R, F),Q/Z) = dimg, H'(R)" =
ho and thus independent of the choice of R.

Demushkin studied the following pro-p groups with a finite number of topological generators
and only one relation between them.

Definition 2.4.3. The pro-p-group G is a one relator pro-p group if hy is finite and ho = 1. If
in addition the cup product H'(G) x H'(G) — H?*(G) is a non-degenerate bilinear form, then
G is called a Demushkin group.

In order to classify Demushkin groups, one determines invariants of a Demushkin group.

Theorem 2.4.4 ([Lab67]). Consider Uy := 1 + p/Z, and the group U = ZX = pp_1 x Uy of
p-adic units equipped with the p-adic topology. There exists a unique continuous homomorphism
X : G = U such that the canoncical homomorphism

HY (G, I(x)/p'1(x)) = H'(G,1(x)/pI(x))

is surjective for i > 1, where 1(x) := Zy is the topological G-module with G-action given by x.
Moreover, im x is an invariant of G and x defines further invariants as follows:

(1) the highest power q(G) of p such that imx C 1+ qZ, (with equality if ¢(G) # 2);
(i) a(G) = [imx : (imx)?] € {2,4};

(iii) f(G) € {2,...,00} is determined by imx = {£1} x Uy if ¢(G) # 2, h1 is odd; imx =
(=1427) if ¢(G) = 2, hy even, a(G) = 2;im x = {£1} xU; if ¢(G) = 2, hy even, a(G) = 4;
and else one sets f(G) = oo.

The invariant ¢(G) can be alternatively described as the unique power ¢ of p such that
G* =G/(G,G) 2 2~ x (Zyp/qZy). Together with the invariant hy, this classifies Demushkin
groups completely. We first give Demushkin’s classical example that we are interested in.

Example 2.4.5 (The group of the maximal p-extension of a local field [Lab67, § 5]). Recall
that K is a finite extension of Q, with d = [K : Q). Consider the maximal p-extension K (p)
of K; i.e., the largest Galois extension of K whose Galois group G is a pro-p-group. If K does
not contain a p™ root of unity, then G is a free pro-p-group of rank d + 1. If K does contain
a p'™ root of unity, then G is a Demushkin group with generator rank d + 2. If ¢ # 2, then its
relation reads

r = a{(x1,22)(23,24) . . . (Tat1, Tat2) = 1.
If ¢ = 2 and d odd, then its relation reads
r = 22x3(xe, 23) (24, 25) . . . (Tag1, Taga) = 1.
If ¢ = 2 and d even, then its relation reads
=277

r x1,x2) (23, 24) (25, T6) - . - (Tgs1, Tar2) = 1,

or, depending on the invariant im y,
_ .2 2f -1
r=z1(r1,x2)x3 (23, 24)(T5,26) - .. (Tdt1, Tas2) =
for some f > 2.
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In general, Demushkin groups are classified as follows.

Theorem 2.4.6. Let G be a Demushkin group with a presentation 1 — (r) - F — G — 1 and
mvariants hi, q, im xy and

(i) [Dem01, Dem63] If ¢ # 2, then hy is even, then there is a basis 1,...,xp, of F' such that
r=xl(x1,22)(x3,24) .. (Thy—1, Th, )
(i) [Ser95] If ¢ =2 and hy odd, then there is a basis x1,...,xp, of F' such that
r= x%m%f (x2,23)(z4,25) ... (Thy—1,Th,)
for some f =2,3,...,00 (with f = co meaning 2f =0).
(#ii) [Lab67, Thm. 1] If ¢ = 2 and hy even, then there is a basis x1,...,xp, of F' such that

f
r =27t (21,20)23 (v3,24) (25, 76) - - - (Thy—1,Thy)

for some f =2,3,...,00 and o € 4Z5.
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3. EQUIDIMENSIONALITY OF UNIVERSAL PSEUDODEFORMATION RINGS

Recall that throughout the thesis we fix an algebraic closure K& of a finite extension K of Qp
of degree d = [K : Q)] with absolute Galois group G = Gal(K?2/K), and a finite field F of
prime characteristic p. We write ¢, € K alg for a primitive p'™ root of unity.

The aim of this chapter is Theorem B (Theorem 3.3.12) on the equidimensionality of universal
mod p pseudodeformation rings.

To define these universal objects, the chapter starts in Section 3.1 with an introduction to
Chenevier’s pseudorepresentations and their universal pseudorepresentation and pseudodefor-
mation rings following the original source [Chel4] and Wang Erickson’s PhD thesis [WE13].

In Section 3.2 we investigate properties of certain loci of pseudodeformations in universal
mod p pseudodeformation spaces. In particular, by Proposition 3.2.41 certain irreducible points
are regular and form open loci if ¢, € K, and the regular locus is empty if (, € K.

Section 3.3 contains the inductive proof of Theorem B. For the induction step, the Zariski
density of the irreducible locus in is proven in Theorem C (Theorem 3.3.1) under a certain
induction hypothesis. When (, ¢ K Theorem D (Theorem 3.3.13) says that the reducible locus
is contained in the singular locus. We finish by describing the regular locus of a universal mod p
deformation ring and showing that it satisfies Serre’s condition (R») if ¢, ¢ K, and either n > 2,
or n =2 and d > 1, as stated in Theorem E (Corollary 3.3.15).

3.1 Pseudorepresentations and their universal pseudodeformation rings

This section introduces the theory of pseudorepresentations and their (pseudo)deformations
that was developed by Chenevier in [Chel4]. Pseudorepresentations naturally arise from the
characteristic polynomial of a representation by Example 3.1.8. Conversely, if the representation
takes values in a field the well-known Brauer-Nesbitt Theorem [CR62, (30.16) Thm.] states that
the zeroes of the characteristic polynomial determine a semisimple finite group representation.
Using this, Chenevier proves that any pseudorepresentation over an algebraically closed field
corresponds to a semisimple representation and that their universal (pseudo)deformation rings
coincide if they are irreducible; see Theorem 3.1.26 and Proposition 3.2.14 respectively.

Pseudorepresentations are by definition multiplicative homogeneous polynomial laws that
were studied first by Roby in [Rob63, Rob80] and later also by e.g. Ziplies [Zip86, Zip87] and,
as so-called determinants, by Vaccarino [Vac09]. For more details on pseudorepresentations we
refer the reader to the original source [Chel4] and the PhD thesis of Wang Erickson [WE13].
The latter source contains in particular a detailed exposition of Chenevier’s theory with some
generalizations and further references.

Throughout this section, A will be a commutative ring and S an A-algebra that is not
necessarily commutative. We assume that A is a unital ring such that 0 # 1, i.e., A # 0.
If A is local, we write k(A) for its residue field. The category of commutative A-algebras will
be denoted by CAlga. If X is a scheme and « € X, we write x(z) for k(Ox ).

3.1.1 Pseudorepresentations

In this subsection, we introduce pseudoreopresentations, Azumaya algebras and Cayley-Hamilton
A-algebras. Of importance is Proposition 3.1.14, which says that the characteristic polynomial
cofficients of a pseudorepresentation determine the pseudorepresentation.
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3.1. Pseudorepresentations and their universal pseudodeformation rings

For an A-module M consider the functor M : CAlga — Sets, B+ M ®4 B.
Definition 3.1.1 ([Chel4, § 1.1]). Let M and N be A-modules and n € Ny.

(i) An A-polynomial law P: M — N is a natural transformation M — N; i.e., for all B, B’ €
Ob(CAlga) and f: B — B’ € Mor(CAlg,) the A-polynomial law P is a collection of maps
Pp: M ®4 B — N ®4 B such that the following diagram is commutative:

M@sB—2>N®,B
idy ®fl lidN Qf
M@y B —"=N @4 B.
By abuse of notation, we often write P instead of Pp for all B € Ob(C.Alga).
(ii) An A-polynomial law P: M — N is called homogeneous of degree n if

Pp(bx) =0"Pp(x) for all B € Ob(CAlga), b€ B and xz € M ®4 B.

(iii) By Pol’i(M,N) we denote the set of homogeneous polynomial laws of degree n.

Remark 3.1.2 ([Chel4, after Exmp. 1.2]). A homogeneous polynomial law P of degree n need
not be determined by P4, as shown in [Chel4, Exmp. 1.2]. It is however uniquely determined
77777 7 M[Th, ..., T,] = N[T1,...,T,]: Suppose X generates M as an A-module. Then

such a P is uniquely determined by the (finite) set of functions plel: xn 5 N, witha € I,, =
{(a1,...,ap) €N" : a1 + ...+ a, = n}, defined by the relation

n

n
P(Zmﬂ}) = Z P[a}(xl,...,a:n)Ta, where z1,...,2, € X and T% = HTZO”
i=1

acly, i=1

Example 3.1.3. (i) If ¢: M — N is an A-module homomorphism, then the natural maps
YRaB: M®a4B — N®aB define a homogeneous polynomial law of degree 1. Conversely,
any homogeneous polynomial law P: M — N of degree 1 arises in this way from the A-
module homomorphism ¢ = P4: M — N.

(ii) Homogeneous polynomial laws of degree 0 are constant maps; see [Rob63, Prop. L.5].

(iii) If Pr: L - M and Py: M — N are polynomial laws, then so is Py o P;: L — N. If both
are homogeneous of degrees m and n, then the composition is homogeneous of degree mn.

Definition 3.1.4 ([Chel4, § 1.1]). Let R and S be A-algebras and n € Ny.

(i) An A-polynomial law P: S — R is called multiplicative if

Pp(l)=1 and Pp(axy)= Pp(z)Pp(y) for all B € Ob(CAlgs) and z,y € S ®4 B.

(ii) An n-dimensional A-valued pseudorepresentation on S is an A-polynomial law D : S — A
that is multiplicative and homogeneous of degree n.

(iii) By M"%(S, R) we denote the set of homogeneous multiplicative A polynomial laws S — R
of degree n, and we write PsR%(A) for the set of n-dimensional A-valued pseudorepresen-
tations in M (S, A).
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3. Equidimensionality of universal pseudodeformation rings

Similarly as the polynomial laws given by Example 3.1.3, we have the following examples of
multiplicative polynomial laws.

Example 3.1.5. (i) If p: R — S is an A-algebra homomorphism, then the natural homomor-
phisms o ®4 B: R®4 B — S ®4 B define a multiplicative polynomial law of dimension 1.
Conversely, any multiplicative polynomial law of dimension 1 arises in this way from the
A-algebra homomorphism ¢4: R — S.

(ii) The only multiplicative polynomial law of dimension zero is the constant map with value 1.

(iii) Suppose that S,S’, S” are A-algebras, and that P: S — S’ and P': S" — S” are multi-
plicative polynomial laws of dimensions n and n’, respectively. Then P’ o P: S — S” is a
multiplicative polynomial law of dimension nn/'.

Before giving the example of a pseudorepresentation attached to a representation, we intro-
duce the following generalization of a central simple algebra and its reduced norm.

Definition 3.1.6 ([Mil80, § IV.1-1IV.2]). Suppose that A is a local commutative ring.

(i) An Azumaya algebra over A is a ring R free of finite rank as an A-module such that the
map
R®4 R° — Enda(R), r®@7r — (v rar'),

is an isomorphism, where R° denotes the algebra with the multiplication of R reversed.
(ii) An extension A C B is called a neutralizing A-algebra for an Azumaya algebra C over A if

there exists a faithful projective B-module P and an isomorphism o: C ®4 B = Endg(P)
of B-algebras; cf. [KO74, § TI1.6]. Since A is local, such B always exist; cf. Remark 3.1.7.

(iii) The reduced norm of an Azumaya algebra C over A is det: C — A, ¢+ det (o(c® 1p)),
where B is a neutralizing A-algebra for C' with corresponding isomorphism o; the reduced
norm is independent of the choice of B and ¢ by [KO74, § IV.2].

(iv) Let X be a scheme and C' an Ox-algebra. The Ox-algebra C is called an Azumaya algebra
over X if C'is a coherent Ox-module, and for all closed points z € X C, is an Azumaya
algebra over Ox ;.

Remark 3.1.7. Let C be an Ox-algebra. By [Mil80, beginning of § IV.2] we have the following
equivalences:

(a) C is an Azumaya algebra over X;

(b) C is locally free of finite rank as an Ox-module and C, ® k(x) is a central simple algebra
over k(x) for all points z € X;

(c) there is a Zariski cover {U;} of X and for each ¢ a finite étale surjective cover U] — Uj;

such that one has an isomorphism C ®o OU{ = Matm(OU{) for suitable n; € N>j.

By (b) there is a locally constant function n: X — N>; such that rankp, C = n?. Moreover,
for the cover in (c) the function n is constant on U; and takes the value n;.

Example 3.1.8. Let C be an Azumaya algebra over A of rank n? and denote by detc the
reduced norm for C over A.
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3.1. Pseudorepresentations and their universal pseudodeformation rings

(i) By [Chel4, § 1.5], the family of maps
(detcg,p: C ®a B — B)peob(cAlga)

defines a pseudorepresentation det of dimension n. Hence for any A-algebra homomorphism

r: S — C, the map detor defines an A-valued pseudorepresentation of dimension n;
cf. Example 3.1.5(iii).

(ii) Let D: C — A be a pseudorepresentation of dimension n/. Then by [Chel4, Lem. 2.15]!,
we have n|n’ and D = detg/n7 or, in the notation introduced in Definition 3.1.29, D =
detgnl/ "

Example 3.1.9 (Determinant of a pseudorepresentation). Let G be a group and D : A[G] — A
be an n-dimensional A-valued pseudorepresentation on A[G]. Then the restriction Dy|g: G —
A* is a group homomorphism. Define

det Dp: B[G] = B, > big— > bDalg)
for any B € Ob(C.Alga). Then this defines a 1-dimensional pseudorepresentation det D: A[G] —
A that we call the determinant of D.

Lemma 3.1.10 ([Chel4, § 1.10]). Let D : S — A be an n-dimensional pseudorepresentation.
Consider for each B € Ob(CAlga) the map

XD,B('yt): S ®A B — B[ﬂ, S —— XD,B(S7t) = Z(—l)iADJ’B(S)tnii = DB[t} (t — S).
1=0

(i) Fori=0,...,n the maps Ap;p: S ®a B — B define a homogeneous A-polynomial law
Ap;: S — A of degree i.

(ii) A[)’()’B(S) = lB and AD,n =D.
(11t) The maps xp,g(-,t): S ®a B — Blt] form an A-polynomial law xp = xp(-,t): S — Alt].

(iv) The maps xp,B(s,s): S ®@a B — B define an A-polynomial law
xp: S — S, sr—>z YiAp.i(s)s" ",

that is homogeneous of degree n.

Definition 3.1.11. [Chel4, § 1.10] Let S be an A-algebra, and D: S — A be an n-dimensional
pseudorepresentation.

(i) The polynomial law yp is called the characteristic polynomial associated with D, and the
polynomial law Ap; is called the ith characteristic polynomial coefficient for i = 0,...,n.

(ii) The A-linear map 7p := Ap is called the trace associated with D.

Lemma 3.1.12 ([Chel4, Lem. 1.12(i)]). For all s,s' € S, D(1+ ss') = D(1+ §'s).

L Alternatively, one can solve Exercise 2.5 in [Chel4], where it should read n divides d in line 4.

38



3. Equidimensionality of universal pseudodeformation rings

Definition 3.1.13 ([Chel4, p. 3]). Let G be a group. An A-valued pseudorepresentation of G
of dimension n is an A-valued n-dimensional pseudorepresentation D: A[G] — A.

Proposition 3.1.14 ([Chel4, Lem. 1.12, Cor. 1.14]). Consider a pseudorepresentation D: G —
A of dimension n on a group G.

(i) D satisfies Amitsur’s formula [Chell, (1.4)]. In particular, the characteristic polynomial
coefficients determine D.

(1t) If C C A is the subring generated by the coefficients Ap;(g) of xp(g,t) for all g € G and
1 € N>1, then D factors through a unique n-dimensional pseudorepresentation G — C.

Next we define some important properties of pseudorepresentations, which hold for the pseu-
dorepresentation attached to a representation.

Definition 3.1.15 ([Chel4, § 1.17]). Let M and N be A-modules.

(i) For a polynomial law P: M — N let ker (P) C M be the A-submodule

{reM : Pe@b+m)=P(m) forall Be Ob(CAlgs), b€ Band me M ®4 B}

(ii) A polynomial law P: M — N is called faithful if ker (P) = 0.

(iii) For a pseudorepresentation D: S — A let CH(D) be the two-sided ideal of S that is
generated by the coefficients of

XD,S[t1,....tm] (t181 + ...+ tmSm) € S[t1, .-, tm],
for all s1,...,5, € S and m € N>;.

(iv) An n-dimensional pseudorepresentation D: S — A is called Cayley-Hamilton and (S, D)
a Cayley-Hamilton A-algebra of degree n if CH(D) = 0.

Proposition 3.1.16 ([Chel4, Lem. 1.19, Exmp. 1.20, Lem. 1.21]). Let D: S — A be an n-di-
mensional pseudorepresentation. Then the following hold.

(a) ker D is a two-sided ideal of S. It is proper if n > 0. It is the biggest two-sided ideal K C S
such that D admits a factorization D = D o w with 7 the canonical surjection S — S/K
and D € Png/K(A).

(b) ker (D) D CH(D).

(¢) If D is Cayley-Hamilton and S’ C S is any A-subalgebra, then the restriction of D to S’
is (obviously) Cayley-Hamilton.

(d) If S is an Azumaya algebra of rank n? over A and D is the reduced norm, then D is
Cayley-Hamilton and faithful.

The Cayley-Hamilton property behaves rather well under several operations, which is in
general not the case of the faithful property. For instance, Proposition 3.1.16(c) does not hold
for faithful instead of Cayley-Hamilton; see [Chel4, Exmp. 1.20(b)].

Corollary 3.1.17. Any D € PsR%(A) factors as Do m, where m is the canonical surjection
S — S/ CH(D) for some unique D € PsRg, CH(D)(A), which is Cayley-Hamilton.
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3.1.2 The divided power algebra and universal pseudorepresentation rings

We start with the definition of the divided power A-algebra whose abelianization will represent
the pseudorepresentation functor by Proposition 3.1.23. Next we reall [Chel4, Thm. A] by
which for any pseudorepresentation over an algebraically closed field there is a corresponding
semisimple representation.

Definition 3.1.18. Let M be an A-module. Consider the polynomial A-algebra G4(M) =
Alxpmy » m € M, n € Ng| and the ideal I4(M) C Ga(M) generated by the following relations:

(a) zmo— 1 for allm e M,
(b) T(am)n — A"y for all a € A, m € M and n € No,

ni+ns)!
(€) Tmny Tmony — (m!nz!) Tmony4ny for all m € M and ng,ng € Ny,

(d) Trmiman — Doreg Tm1,iTmen—i for all mi,ma € M and n € Np.

Then the divided power A-algebra T' 4(M) of M is the quotient G 4(M)/I14(M). For m € M and
n € Ny denote by m[™ the image of the indeterminant T in T4 (M).

There exists a unique grading on G 4 (M) = @pen, G4 (M) that respects its A-algebra structure
and that assigns the degree n to the indeterminant x,,, for m € M and n € Nyg. With respect
to this grading, the ideal I4(M) is homogeneous so that

LaA(M) = Spen A (M)

inherits the grading from G 4(M) and ml" is of degree n for m € M and n € N.
We introduce a specific polynomial law to I'"; (M) that Roby showed to be universal.

Proposition 3.1.19 ([Rob63, Thm. IT1.3 and Prop. IV.1]). Let M be an A-module, B a com-
mutative A-algebra and n € Ny.

(i) There is a well-defined B-algebra homomorphism wp: T'a(M ®4 B) — T'a(M)®4 B, given
on generators by (m ® 1)["] — m @ 1, and wp is an isomorphism.

(ii) Consider for all B € Ob(CAlga) the maps vy p: M ® B — I'y(M ®4 B), z — 2" and
(Ly)p :=wpovyp: M ®aB—TaA(M®asB) — T'sa(M)®a B.
Then this defines a polynomial law LY, : M — Iy (M) that is homogeneous of degree n.
Next, we study universal objects of the following covariant functors.
Definition 3.1.20. Let M € Ob(Mod,4) and S € Ob(Alga). Define the following functors:
(a) Poly(M, -): Mody — Sets, N+ Pol’y(M,N);
(b) M%(S, -): Alga — Sets, R+— M"(S, R);
(c) PsRG(-): CAlga — Sets, B — PsRig , p(B).

Theorem 3.1.21 ([Rob63, Thm. IV.1]). The functor Pol’y(M, - ) is represented by the pair
(I3 (M), LY,). In particular, for all N € Ob(Moda) there is a canonical isomorphism

Hompoq, (T4 (M), N) = Pol’y(M,N), fr— folLfR.
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3. Equidimensionality of universal pseudodeformation rings

Let n € Ny and S € Ob(Algs). In [Rob80], Roby defines an A-algebra structure on I’} (5)
as follows: There exists a linear map ag: I'}(S) @4 I} (S) = I} (S ®4 S), given on generators
by sl @ (s — (s ® ). Let 8: S ®4 S — S be the A-linear map defined by the bilinear
multiplication on S, and I'(6) the restriction of the induced map I'(8): I'(S ®4 S) — I'(S) to
I'"(S ®4 S). Then the composition

B, T (S) @4 T (S) 25 T (S @4 S) =& 17 ()

defines an A-algebra structure on I'’} (S). Further, ; recovers the A-algebra structure on S, and
I (S) is unital, associative or commutative if S has the corresponding property.
The polynomial law L¢: S — I'4(S) is multiplicative with respect to 6.

Theorem 3.1.22 ([Rob80]). Let n € Ng and S € Ob(Alga). The functor M'i(S, - ) is repre-
sented by (I'"y(S), L).

Recall that the abelianization of a ring R’ is the quotient of R’ by the two-sided ideal generated
by r1re — rory for all 71,70 € R/.

Proposition 3.1.23 ([Chel4, Prop. 1.6]). The functor PsRE( - ) is represented by the abelian-

univ

ization RN :=T"(9)2> of T (S) together with the natural pseudorepresentation

DY s 804 RYL — RY = T4 (5)™
that is constructed using the universal property of the tensor product from the composition of
L%: S — T (S) with the A-algebra homomorphism T (S) — I (9)2P.

Definition 3.1.24. We call RYY = I (S)2> the n-dimensional universal pseudorepresentation

ring of S and Dgﬁi": S — Rgﬁil" the n-dimensional universal pseudorepresentation.
If G is a group and S = Z|[G], then we abbreviate Ré‘};" = R%‘éﬁm and D‘C‘;‘j;" = D%r[‘é‘]’n

If X is an A-scheme, we can extend the notion of a pseudorepresentation and define an O(X)-
valued pseudorepresentation S — O(X) of dimension n € Ng. Then the n-dimensional universal
pseudorepresentation space

XY := Spec Rgﬁ" = Spec T (S)*P

of S represents the obvious pseudodeformation functor on the category of A-schemes. If G is a

group and S = Z[G], then we write X&?}l" = Xﬁféﬁn

Example 3.1.25 (Determinant of a pseudorepresentation). Let G be a group. By Proposi-
tion 3.1.23 we have universal pseudorepresentations

DY ¢ AIG) @A RY, — RS, and DY 1+ AIG) @4 RER, — RYE .

Now det Dj‘jf[lg’]m: AlG]l ®a RZIEiGV},n — RZTiGV],n defined as in Example 3.1.9 is a 1-dimensional
v

pseudorepresentation. By universality of RZIFGH we obtain a ring homomorphism
det: ‘X[‘iGV]J — Rjr[“c}’}n
and an induced morphism of schemes det: Xz?ll[lgi,n — XE?&Y]’I (which we both denote by det).
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3.1. Pseudorepresentations and their universal pseudodeformation rings

Theorem 3.1.26 ([Chel4, Thm. A]). Suppose that k is an algebraically closed field and S is
a k-algebra. If D: S — k is an n-dimensional pseudorepresentation, then there is a semisimple
representation pp: S — Mat, (k) with associated pseudorepresentation D.

Furthermore, pp is unique up to isomorphism and ker pp = ker D.

We use Theorem 3.1.26 to define the following notions for pseudorepresentations.

Definition 3.1.27. Let k be a field, S a k-algebra and D: S — k a pseudorepresentation of di-
mension n. Fix an algebraic closure k8 of k, and consider the unique semisimple representation
PD@ ke S @k k¥& — Mat, (k218) satisfying D ®j k& = det °ppg, ke from Theorem 3.1.26.

(i) D is drreducible if ppg, yae is irreducible.
(ii) D is reducible if ppg, g is reducible.

(iii) D is multiplicity free if ppg, ga1e is a direct sum of pairwise non-isomorphic irreducible
k¥8_linear representations of S ®j, k2.

(iv) D is split if D is the determinant of a representation S — Mat, (k).

For later use we shall also need the following refinement of Theorem 3.1.26. It is a fundamental
result of Chenevier for pseudorepresentations over a field. We need to recall the exponent, defined
for certain field extensions: Let k' D k be a field extension and denote by kP C k’ the maximal
separable extension of k in k. Assume that k5P is finite over k and that there exists a power
q of p := Char k > 0 such that (k)7 C k%P. The exponent (f,q) of k' D k is defined be setting
f = [k*P : k] and taking for ¢ the minimal p-power such that (k)7 C k5°P.

Theorem 3.1.28 ([Chel4, Thm. 2.16]). Let k be a field, let D: S — k be a pseudorepresentation
of dimension n. Then as a k-algebra

S/ker D =[] S,
=1

where S; is a simple k-algebra which is of finite dimension n? over its center k;, and where k;/k
has a finite exponent (f;, q;).

Moreover, under such an isomorphism, D coincides with the product determinant
S
m;
D =[] det¥",
i=1

n = .min;q;fi, where m; are some uniquely determined integers.

In particular, S/ ker D is semisimple. It is finite dimensional over k if and only if each k;
1s. This always occurs in each of the following three cases : k is perfect, or k has characteristic
p>0 and [k : kP] < 00, orn < p.

We define a direct sum of two pseudorepresentations, which in particular is useful when
studying reducible pseudorepresentations later.

Definition 3.1.29 ([WE13, § 1.1.11]). Let S;, Sz and S be A-algebras and B a commuta-
tive A-algebra. For i = 1,2 consider a multiplicative A-polynomial law P;: S; — B that is
homogeneous of degree n; € Ny.
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3. Equidimensionality of universal pseudodeformation rings

(i) The multiplicative homogeneous A-polynomial law
PL@Py: Sy xSy — B, (x1,22) — Pi(x1)Pa(x2),
of degree ny + no is called the direct sum of Py and Ps.
(ii) If D; := P;: S — A is a pseudorepresentation for i = 1,2, then the pseudorepresentation
Dy @®Dy: SxS— A, (x1,22) = Di(x1)D2(z2),
of dimension nji + no is called the direct sum of D1 and D-.
We remark that this direct sum operation is called a product in [Chel4].
Theorem 3.1.30 ([Chel4, Lem. 2.2]; cf. [Rob63, Thm. II1.4]). (i) The canonical map
n n
T5(S1 % 82) — @ T (S)™ @A T (5)™,  (s1,82) = Y sle@sl ™, (1)
i=0 i=0
is an A-algebra isomorphism.

(i) Let P: Sy x So — B be a multiplicative A-polynomial law that is homogeneous of degree
n. Suppose that Spec B is connected and B # 0. Then there exists for i = 1,2 a unique
multiplicative homogeneous A-polynomial law P;: S; — B of degree n; such that ni+ns =n
and P = P, & Py. In other words, the A-algebra homomorphism

La(S) x S3)* = B
corresponding to P factors through I} (S1)* @4 T2 (S2)2" in (1).
In the case S; = S2, Theorem 3.1.30 implies the following:
Corollary 3.1.31 ([WE13, Lem. 1.1.11.7]). (i) The map
it Xy X Xghy — X5,

defined by (D1, D2) — D1 ® Do is a morphism of affine A-schemes that corresponds to the

homomorphism
Fn1+n2 di
L:u,nz . Zl-l—ng (S)ab A _(> iag) Pzﬁ-nz (S % S)ab _» szl (S)ab ®4 FZZ(S)ab,

where T2 (diag) is induced by the diagonal map diag: S — S x S.

(1t) Fori=1,2 let p;: S — GLy,(A) be a representation and D,, be the associated pseudorep-
resentation. If D, @p, is the pseudorepresentation defined by det(p1 @ p2), then

Dpieps = Dp, ® Dp,.

We need the following pseudorepresentations when studying the ideal of total reducibility
in A in Proposition 3.1.48.

Lemma 3.1.32 ([Chel4, Lem. 2.4]). Let S be an A-algebra, e € S be an idempotent, and
D: S — A be a pseudorepresentation of dimension n. Suppose that Spec(A) is connected.
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3.1. Pseudorepresentations and their universal pseudodeformation rings

(i) The polynomial law D.: eSe — A, s — D(s+1—e), is a pseudorepresentation of dimension
r(e) <mn. One has r(1 —e)+r(e) =n.

(i) The restriction of D to the A-subalgebra eSe & (1 —e)S(1 —e) is the sum Do @ Dy_.. It
1 a pseudorepresentation of dimension n.

(iii) If D is faithful or Cayley-Hamilton, then D is faithful or Cayley-Hamilton, respectively.

(iv) Suppose that D is Cayley-Hamilton. Then e = 1 if and only if D(e) = 1, and e = 0 if
and only if r(e) = 0. Ife1,...,es is a family of nonzero orthogonal idempotents of S, then
s<mnand Y} r(e;) < n. Further, >.; | r(e;) =n if and only if e1 + ez + -+ €5 = 1.

3.1.3 Generalized matrix algebras (GMAs) and pseudocharacters

Generalized matrix algebras are a generalization of matrix algebras and are also equipped with
a trace map. Such generalized matrix algebras were introduced as trace algebras by Procesi in
[Pro87]. Next we define pseudocharacters that were studied by various authors and arise from
the trace of a representation: At first attached to 2-dimensional Galois representations by Wiles
[Wil88], and then in a more general notion by e.g. Taylor [Tay91] and Rouquier [Rou96]. We
mostly follow the exposition in [BC09] for pseudocharacters. In [BC09, § 1.3] pseudocharacters
are further studied as the trace of a generalized matrix algebra. In Proposition 3.1.40 we also
mention the relation to the previously defined pseudorepresentations following [Chel4, WE13].
Finally, we associate a pseudorepresentation with a generalized matrix algebra via the Leibniz
formula in Definition 3.1.47 and study the ideal of total reducibility of A in Proposition 3.1.48.

Definition 3.1.33 (Cf. [BC09, Def. 1.3.1], [WE13, Rem. 2.3.0.4 and 2.3.3.6]). Suppose that
ni,...,n, are positive integers and n := Y :_; n;. We call S a generalized matriz algebra (GMA)
of type (nq,...,n,) if there exist

(a) a family of orthogonal idempotents e1,...,e, € S with Y/, e; = 1g, and
(b) a family of A-algebra isomorphisms ; : e;Se; — Mat,, (A) for i =1,...,r

such that the associated trace map 7 : S — A,z — >, tr(¢;(ejze;)) satisfies 7(xy) = 7(yx)
for all x,y € S. We call € := {e;,v;}i=1,.» the data of idempotents of S.

Example 3.1.34 (The standard GMA of type (ni,...,n,) [BC09, Exmp. 1.3.4]). We suppose
that B is a commutative A-algebra and (A; ;)i<i j<r is a family of A-submodules of B such that

Ai,i =A and Ai,jAj,k C Ai,k for all 1 < i,j, k<r.

Let S be the A-submodule
Matm (Al,l) cee Matnl,nr (Al,r)

Matnr,nl (Ar,l) to Matnr (Ar,r)

of Mat,,(B). Then S is an A-subalgebra of Mat,,(B). Further, let e; € Mat,,(B) with diagonal
entries 1 on the i diagonal block and everywhere else 0. Then e; € S and Yoi_iei =1g. To-
gether with the canonical isomorphisms v; : €;Se; — Mat,,, (A4), S is a GMA of type (n,...,n;)
that we call the standard GMA of type (n1,...,n,) associated with (A; j)1<ij<r-
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3. Equidimensionality of universal pseudodeformation rings

We need the following notation to describe the structure of a GMA and to define its deter-
minant.

Definition 3.1.35. Let S be a GMA of type (n1,...,n,). For 1 <i<rand 1<k, <n; we

denote by Elk ! the unique element in e;Se; that maps under ; to the matrix in Mat,,, (A) that

has 1 in the (k,1)-entry and everywhere else 0.

Lemma 3.1.36 (Structure of a GMA [BC09, p. 21ff.]). (i) Let (S,€) be a generalized matrix
algebra of type (ni,...,n,). Consider the canonical family (A; j)1<ij<r of A-modules with
Aij o= Eil’lSE;’l. Then for 1 < 4,5,k < r the associated trace T defines canonical
isomorphisms A;; = A and since A; jA;jr C Ak the product in S induces A-linear maps
ik Aij ®aAjr — Ak that satisfy the following conditions:

(UNIT) For1 <i,j <r we have A;; = A and both @;; ; and p; ;; agree with the A-module
structure on A; ;.

(ASSO) For1 <i,j,k,l<randxz®@y®z¢e A;j ®aAjr®aAi; we have
ikt (Pijk(T@Y) ®2) = 0iju(T @ @iri(y®2))  in Ay
(COMM) For1<i,j<r,x€ Aj; andy € A;; we have @; j;(x ®y) = ¢ji;(y @ x).
Thus the A-module ] ;_; Maty, 5, (A; ;) is an A-algebra via
roor ny,
Ty = Z szk Yk With (Tig - Yk )in = Z Cromn (@ik)1m © (Ykj)mom)
ij=1k=1 m=1

forl<l<n 1<n<mnjandz=7370 1%ij y=73 Y € D] 1 Matn,n,;(Ai;),
and there is a canonical isomorphism of A-algebras
Maty, (A11) -+ Maty, p, (A1r)

= @ Mat, n; (Aij)- (2)

S = . . :
Matnr,nl ('AT’J) to Matnr (Ar,r) 6j=1

(i1) Conversely, suppose we are given a family (A; j)1<i j<r of A-modules together with A-linear
maps @i ik Aij @aAjr = Aig for 1 <1, j, k < r satisfying the above conditions (UNIT),
(ASSO) and (COMM). Then there is a unique structure of a GMA of type (n1,...,n,) on

the A-module S := @;«"’jzl Mat, n, (Aij)-

Lemma 3.1.37. Let (S,€) be a GMA and let D: S — A a pseudorepresentation. Then for any
x € Maty, xn; (Aiz) for some 1 <i,j <r with i # j, we have D(1 + e;ze;) = 1.

Proof. By Lemma 3.1.12 we have D(1 + e;xze;) = D(1 + eje;x) = D(1) = 1. O
Definition 3.1.38. A pseudocharacter on S is an A-linear map 7: S — A satisfying
(i) 7 is central; i.e., 7(s182) = 7(s2s1) for all 51,59 € S
(ii) there exists an integer n € N>q such that n! € A* and the map
Spa(r): S™— 4,

r— Y elo)7(), (3)

O’GGnJrl

45



3.1. Pseudorepresentations and their universal pseudodeformation rings

vanishes, where for all o € &, we set

T
7 SN+1 _>A7 x:(xlj...,xn-pl))—)HTUi(m)’
=1

with o = [];_, o0y is the cycle decomposition and 77 (z) := 7(x;, - - - x;,) for o5 = (i1 - - - ig).
The smallest integer n such that S,,11(7) = 0 is called the dimension of 7.

Example 3.1.39 ([BC09, § 1.2.3, Main Example 1.2.2, Cor. 1.3.16]). ,

(i) The trace of a representation r: S — Mat, (A) is an A-valued n-dimensional pseudochar-
acter.

(ii) If (S,€) is a GMA of type (n1,...,n,), n:= Y ;_,n; and n! € A holds, then the trace 7
of S is a pseudocharacter of dimension n.

We remark that these pseudocharacters satisfy a Cayley-Hamilton identity, of which the map (3)
is a polarization. As for pseudorepresentations, the Cayley-Hamilton identity implies that the
kernel of the pseudocharacters vanish so that they are called faithful.

It is the restriction on the characteristic by the condition n! € A*, which motivated Chenevier
to introduce the more general notion of a pseudorepresentation. As mentioned earlier, a pseu-
dorepresentation encodes not only the data given by the trace of a representation but instead
the data given by all characteristic polynomial coefficients.

Proposition 3.1.40 ([Chel4, Prop. 1.27— 1.29]). The map

{n-dimensional pseudorepresentations S — A} — {n-dimensional pseudocharacters S — A},

D v+— 7p,

is an injection. If either n =2 and 2 € A*, or if n > 2 and (2n)! € A*, then it is a bijection.

For the remainder of this subsection, we fix a generalized matrix algebra (5, &) of type
(n1,...,n,). In order to define a determinant of the GMA (S,&) using the Leibniz formula
and to associate a pseudorepresentation with (.5, &), we need to embed the A-modules A;; in a
commutative A-algebra B. More precisely, we define a universal object among such A-algebras.

Definition 3.1.41 ([BCO09, § 1.3.3]). Let B be a commutative A-algebra.

(i) A representation p : S — Mat,(B) is called adapted to £ if its restriction to the A-
subalgebra @;_, €;Se; is the representation ®]_,1; composed with the natural diagonal
map Mat,, (4) & ... ® Mat,, (A) — Mat,(B).

(ii) We call G the functor that sends a commutative A-algebra B to the set of representations
p:S — Mat,(B) adapted to &.

(ili) We call F' the functor that sends a commutative A-algebra B to the set {(fi,j)lgz‘,jgr :
fij v Aij — B is an A-linear map} such that

(i) fi,i coincides with the A-algebra structure on B,
(i) fik (goz-,j,k(x ® z)) = fij(x)- fir(y) forallz € A;j, y € Aj and i, j,k=1,...,7.
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3. Equidimensionality of universal pseudodeformation rings

Both F' and G are covariant functors CAlgs — Sets.
Proposition 3.1.42 ([BC09, Prop. 1.3.9]). (i) The functor F is representable by a commu-

tative A-algebra B™V together with universal maps

( univ . Ai,j N Buniv)

> F(Buniv) .

1<ij<r ©

(ii) There is a natural isomorphism of functors G — F, and so G is represented by B"™.

Proof. Let B := Sym(€D,; Ai ;) be the symmetric algebra over A of the A-module B, ; Ai ;-
Finally, let B"™Y be its quotient by the ideal generated by all differences of the form x ® y —
ik ®@y) for v € A;j;,y € Ajr and all 4,5,k € {1,...,r}. It is obvious that B"Y equipped
with the canonical element (f; ;: A;; — B"™);; € F(B"™YV) is the universal object for . This
proves (i). For (ii) see [BC09, Prop. 1.3.9]. O

Definition 3.1.43 ([BC09, § 1.3.6]). Let Q = {(3,7) € {1,...,7}? : i # j}, and write i,j: Q —
{1,...,r} for the projections on the first and second component, respectively.

(i) We identify any tuple 7 = (7i ;) j)en € N§ with the directed graph on the vertex set
{1,...,7} where the edge from ¢ to j has multiplicity 7; ; and where there are no edges from
i to itself. The degree of this graph, i.e., of (7; ), is the tuple deg T = ((deg T)i)1<l.<r ez,
where (deg 7); is the number of edges arriving at 4 minus the number of the edges leaving 1.

(ii) For any (i,7) € , let 7(7, j) be the graph with a single edge from i to j. Fori € {1,...,r},
let 7(i,1) be the edgeless graph (0, ...,0) € N§.

(iii) Suppose that xi,...,zs € Q satisfy j(zg) = i(xg41) for £ = 1,...,s — 1. Then v =

(1,...,xs) is called a path from i(z1) to j(xs). If further j(xs) = i(x1), then ~ is called a
cycle.

(iv) If ¢1,...,¢m is a (possibly empty) sequence of cycles, and 7 is a path from ¢ to j, then
I'=(c1,...,¢m,7) is called an extended path from i to j. If v is a cycle, then T' is called
an extended cycle.

(v) To an extended path I' as in (iv) one attaches a graph 7(T') € N} by setting 7(I'); ; to be
the number of times that the sequence (i, j) occurs in v or any of the cy.

Lemma 3.1.44. Let I" be an extended path. Then deg7(I') = (0,...,0) € Z" if and only if =y is
an extended cycle.

Proof. This follows from [BC09, Lem. 1.3.14 (i)]. O

Proposition 3.1.45 (Cf. proof of [BC09, Prop. 1.3.13]). (i) Forn € Z" set

B, = @ ® Sym™7 A, ;,

degT=n

Then the Z"-grading on B = @, .7 By induces a Z"-grading on BV — DB,.cz B sych
that for any i,j € {1,...,r} the image of fl‘j;“V lies in nggi‘;(ij).

(it) Foranyi,j € {1,...,r} andn = det 7(i,j), there exists an A-linear map by, : B 5 A,
such that iy o fi5* is the identity map on A j.
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3.1. Pseudorepresentations and their universal pseudodeformation rings

Note that Lemma 3.1.44 implies that B ; = A.

Recall that n = 22:1 n;. Let 1 <i < rand 1l < j < n; and write E;; for the elements
EZ” from Definition 3.1.35. Let J := {(¢,5) : ¢ € {1,...,7},j € {1,...,n;}}. Then we have a
bijection {1,...,n} — J defined by associating to m € {1,...,n} the unique pair (i, j) satisfying
m = Z;;ll ng + j. Through this identification the symmetric group &,, acts on elements (i, j)
in J. For 0 € &,, we denote the tuple o(i, ) by (i(c(i,5)),j(co(i,5))).

Proposition 3.1.46 (Cf. [WE17, Prop. 2.23]). Let f™ : S — Mat,,(B") be the map defined
by i‘fjr-li" t A — B"Y for1 <i,j <r. Then the composition of f™ with the usual determinant
det : Mat,,(B"™V) — BYWY s explicitely given by

det Ofuniv: S . BU.IliV, €T —> Z Sgn(a) ®;‘:1 ®?;1f;?irzg(l,])) (Ez’JxEO-(ZJ))’ (4)
O’GGn

and takes values in A.

Proof. The explicit formula follows from the Leibniz formula of the determinant det. Write
o € &, as a product c¢; o... o ¢, of unique disjoint cycles with ¢ = ((ik‘,lajk:,l) e (ik,tkajk,tk))
for k=1,...,s. For ease of notation we set (ix ¢, 4+1, jkt,+1) := (ik,1,Jk,1). By commutativity of
BV we can sort the factors in (4) according to the cycle decomposition so that for z € S we
have

r n; univ B 8 tr univ . . . .
®i=1 ®_]:1 7,,i(0(2,])) (Elv.]xEU(i,j)) - ®k:1 ®m:l ik,mzik,m+l (Elk,mvjk,meZk,m+17]k,m+1)'

Using the condition (ASSO) and the relations defining B™, we find that the latter term lies
in A. O

We use the previous proposition to associate a pseudorepresentation with the GMA (S, ).

Definition 3.1.47. (i) The determinant map det(s g attached to the fired GMA (S, &) is

detof™V: S — A, xr— > sgn(o) ®_; @5 fi5; i) (Bijt By j)-
oeS,

(ii) The ideal of total reducibility in A is I = Z#j A; jAj; C A, and the locus of total re-
ducibility is Spec(A/I).

For the following result recall the notation D, from Lemma 3.1.32.

Proposition 3.1.48 (Cf. [BC09, Prop. 1.5.1]). Let I = >, ., A; jA;; be the ideal of total
reducibility in A.

(i) (1) If I =0, then the map m: S — Y, e;S¢e; C S,x +— ) . e;xe; is a ring homomorphism.
(2) Denoting by D; the map e;Se; % Mat,,, (A) ot 4 fori=1,...,r, one has
det(sﬁ) =®;_1Djom mod I.
(1t) Suppose that there exist m;-dimensional pseudorepresentations D;: S — A with m; > 0

for i € {1,...,r} such that one has det(ge) = ®j_1D;. Then I = 0 and for a unique
permutation o € &, we have D’U(i) = D; om with D; and 7 from (i).
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3. Equidimensionality of universal pseudodeformation rings

Proof. Part (1) of (i) is a straightforward matrix calculation using A; jA;; = 0 for all i # j from
{1,...,r}. To see part (2) of (i) note that by our definitions we have the explicit formula

D; mod I:e¢;Se; — A/I, x+— Z sgn(o; HEJ$ (j) mod I,

0,EGn,

and using distributivity for z € S

T

D;om)(x) mod I = - sgn(o; ] E; jxE; . (;y mod [
H( )(z) H Z ( )H NESIRAC)

i=1 i=10,€6,, j=1

Z Z Hsgnaz HEJ:E j) mod I.

UlEGnl UTEGnT 1=1

Now in the sum sgn(o) [[;_; [TjZ fzulmv (.7 (EijTEq(;,5)), modulo I only those summands are
nonzero for which o € &,, satisfies i(c(7, j)) = 7. Therefore, in a nonzero summand we can write
o= (01,...,00) € Gp, X ...x 6, and

det(ge)(7) = Z Hbgn o Hf” 1T ; 5, (;)) mod I

(0150,07)EGpy X...X B, =1

Z Z HSgl’l 0; Hfll z]sza— )) mod 1.

UIEGTLl Op EGTLT i=1

This completes the proof of (i).

We now prove (ii). In a first step, we show the claim that there is a unique permutation
o € &, such that D; = (Dg(i))ei and (D), = 1 for i’ # o(i). For this, we restrict ®,_, D/, to
e;Se;, so that

D; = (det(s,6))e; = @ir(Djy)e;-
By Lemma 3.1.32 the (D),)., are pseudorepresentations, and one has m; > m; ; := dim(D), ),

Now under the direct sum in the sense of Corollary 3.1.31 dimensions are added, and it follows

that
T
ng = E g i

Since e;Se; = Maty,, (A) it follows from Example 3.1.8(ii) that each m; ; is divisible by n;. Hence
there is a map o: {1,...,7} — {1,...,7} such that m,q;; = n; and my; = 0 for i’ # o(i), and
moreover D; = (D!, (i))er The uniqueness of o is clear from the construction. It remains to show
that o is bijective. It will suffice to show that o is surjective.

For this, let S}, 1= @;c,—1()€iSe;, 50 that S = @y Sj,. The restriction of Dj, to S}, is zero if
i" # 1, and the restriction of D), to S}, is a pseudorepresentation with

3.1.32
my > dim D} |S’ =dim @)/ _ 1D"|S’ = dimdet (g ¢) ‘S/ = Z n;.

i€o—1(i)

Summing over all 7 in the image of o implies »_, L} Mt = However, all m; are strictly

i'€o {1
positive and Y ;,_, my = n, and this implies that o is surjective, and hence the claim is proved.
For simplicity of notation we assume from here on, without loss of generality, that ¢ = id.

We now show that I = 0. For this, it suffices to show that A;;A;; = 0 for all i # j. By
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3.1. Pseudorepresentations and their universal pseudodeformation rings

restricting to the subalgebra S" = €;Se; + €;Se; + e;Sej + e;Se; with &' = (e;, 15, €j,v;5, ), i.e
by considering De, te;, and using det(g¢) |sr = det(ss ¢y, we may assume 7 = 2 for the proof of
I1=0.

Let b be in Ay 2 and c in Ajp 1, and write  for elEll’leQI’leg and y for egE;’lcEll’lel with Ef’l
from Definition 3.1.35. Using the description of GMA’s from Lemma 3.1.36 one easily verifies
that

l4+zy=1+ Ell’lbc €e1Se;+(1—e1), 1+yr=1+ E;’lbc € (1 —eg) + eaSes.

Note moreover that by Lemma 3.1.12 we have D(1 + zy) = D(1 + yx) for every pseudorepre-
sentation D: S — A. If we apply this to D; and our earlier observations on (Dj)c,, we find
that

Di(1+zy)=Di(1+yz)=1
for i = 1,2 and hence from hypothesis (2) that det(g¢)(1 + Ell’lbc) = 1. From the formula for
det(g gy on e1Seq + eaSez = Maty, (A) x Mat,,(A), we deduce that

det(g,e)(1 + Ey'be) = 1+ be,

and hence that bc = 0, as was to be shown.

For the second assertion, observe that by Lemma 3.1.37 we have Dj(1 + e;ze;) = 1 for any
i #j and & € Maty, n;(A; ;). Tt follows that Dj(1 + u) = 1 for any u in the kernel of 7. And
now the second assertion follows from knowing the restriction of D} to >, e;Se; given in the
first claim of the proof of (ii). O

Lemma 3.1.49. Let S be a generalized matriz algebra of type (n1,...,n,), and B € Ob(CAlga).
Then S ®4 B is a generalized matriz algebra of type (n1,...,n,).

Proof. Choose a family of orthogonal idempotents eq,...,e, € S with Y ;_,e; = 1lg, and a
family of A-algebra isomorphisms

¢i : eiSei :> Matm(A), 1= 1, ey

such that the associated trace map 7: S — A, s+ >, tr (¢;(e;5€;)) satisfies 7(s152) = 7(s251)
for all 51,50 € . Then ep; :=e¢; ®1p € S®4 B, 1 =1,...,r, form a family of orthogonal
idempotents in S ®4 B such that > ! ep; =, ;€ ®1lp =1lgsg,p. Then there is a family of
A-algebra isomorphisms

wz ®1dB

VB 6371(8 XA B)GBJ' ~e;Se; @4 B Mat,, (A) ®4 B = Mat,, (B), i=1,...,7,

such that the associated trace map
TB:S®21B— A, sb— Ztr (@Z)Bz(egz(s@b €R.i ) Ztr Ui ezse@ =7(s)®b
=1

satisfies TB(Sl®b1-82®b2) = TB(8182®b1b2) = 7(5182)®b1b2 = 7'(8251>®b2b1 = 73(82®b2-51®b1)
for all s1 ® b1,80 by € S®4 B. O

Chenevier uses the pseudorepresentations D, from Lemma 3.1.32 to show the following.

Theorem 3.1.50 ([Chel4, Thm. 2.22]). Assume that A is a henselian local ring with maximal
ideal ma and residue field k := A/mya, that S is an A-algebra and that D: S — A is an
n-dimensional Cayley-Hamilton pseudorepresentation.
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3. Equidimensionality of universal pseudodeformation rings

(i) If the residual pseudorepresentation D = D @4 k: S/maS — k is split and irreducible,
then there is an A-algebra isomorphism p: S = Mat,(A) such that D = det op.

(ii) If D is split and multiplicity free, then S is a generalized matriz algebra with determi-
nant D.

3.1.4 Universal pseudodeformation rings

This subsection constructs in Proposition 3.1.57 the object of our interest, the universal pseu-
dodeformation ring of a residual pseudorepresentation D, as the completion of the universal
pseudorepresentation ring with respect to its D-open ideals defined in Definition 3.1.55. Then
this universal pseudodeformation rings parametrizes continuous liftings of D.

Definition 3.1.51 (Cf. [Chel4, § 2.30], [WE13, Def. 3.1.0.10]). Let A be a commutative topo-
logical ring and S be a topological continuous A-algebra. Then an n-dimensional pseudorepre-
sentation D: S — A is called continuous if and only if either of the two following equivalent
conditions is satisfied:

(a) the characteristic polynomial functions Ap;, i =1,...,n, are continuous;

(b) for every commutative continuous A-algebra B, the function Dp: S ®4 B — B is contin-
uous;

(c) the functions Pl): R* — A from Remark 3.1.2 are continuous for all a € I,,.

We now consider the case of continuous pseudorepresentations of the group algebra of a
profinite group.

Example 3.1.52. Let A be a topological ring that contains an open subring Ag that is linearly
topologized, and let G be a profinite group. Then A[G] is a topological ring with a basis of open
neighbourhoods of 0 given by the sets

I[H] = { Z aph : ap € I, almost all ay, :O},
heH

where I C Ap is an open ideal and H C G is an open normal subgroup of G. Then the
Plel: A[G]" — A are continuous if and only if their restriction to G™ is continuous. Hence, cf.
[Chel4, § 2.30], an n-dimensional pseudorepresentation D: A[G] — A is continuous if and only
if Ap;: G — A is continuous for all 7 < n.

A particular case of the above is that when A is profinite so that one can take Ay = A.
Then the rings A[G]/I[H] = A/I|G/H] are finite, and their inverse limit (simultaneously over I
and N) is the profinite completion A[G] of A[G]. Then an n-dimensional pseudorepresentation
D: A[G] — A is continuous if and only if there exists an induced n-dimensional pseudorepre-
sentation D: A[G] — A that is furthermore continuous.

Another case relevant to us is that when A lies in Ary, and k is a local field.

We let A be a Noetherian local commutative W (F)-algebra with finite residue field F. Consider
the category Ca of profinite local A-algebras with residue field F. The category Ary from
Subsection 2.1.1 is a full subcategory of Ca, and objects in Ca are projective limits of objects
in Arp. We remark that profinite A-modules are linearly topologized [Coh73, Prop. 2. 7] and the
completed tensor product A®B of A, B € Ob(Cy) from Definition 2.1.2 also lies in Cy.

Definition 3.1.53 ([WE13, § 3.1.4.3]). (i) A continuous pseudorepresentation D: S&R —
R satisfying D& gF = D is called a pseudodeformation of D.
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3.1. Pseudorepresentations and their universal pseudodeformation rings

(ii) The functor
PsDg: Cr — Sets, R+ {D: S®yR — R is a pseudodeformation of D},

is called the pseudodeformation functor of the residual pseudorepresentation D.

Wang Erickson also uses the term pseudorepresentation for D which are not continuous. The
meaning depends on the part of [WE13] where the term is used.
For later use, we also note the following result:

Proposition 3.1.54 ([WE13, Lem. 3.1.2.2, Rem. 3.1.4.1]). Suppose that D: G — F is n-
dimensional and continuous. Then the associated representation pr: G — GL,, (k™) is defined
over a finite extension of F and continuous.

Proof. By [Chel4, Observation after Lem. 1.19], for S = A[G] one has
ker D= {r € R : YB € Ob(CAlgy),Vr' € S®4 B,Vi >1: Aﬁi(rr') =0.}

This shows that ker D is closed in S, and this implies that {g € G : g € ker D} is closed in G.
By Theorem 3.1.26 we have ker D = ker pz (viewed as ideals in S), and hence the kernel of the
representation pg is closed. Now from Theorem 3.1.28, one deduces that pg is in fact defined
over a finite extension of I and so ker p5; has finite index in G. It follows that ker p5 is open
in G and this completes the proof. O

For the construction of the universal pseudodeformation rings we make a definition.

Definition 3.1.55. Let A be either in ;GW(F) or a local field that is a W ([F)-algebra; in the
former case set k = [F in the latter £k = A. Let S be a topological A-algebra, let m: A — k be a
surjection in CAlgy.

Let D: S ®y A — A be a pseudorepresentation, which is not necessarily continuous, such
that D := D ®4 k: S®&ak — k is continuous.

An ideal I of A is called D-open if the following conditions hold:

(a) I C kerm and A/I is Artinian local;

(b) the representation Dj := D®4 A/I is continuous — recall that A/ is discrete if k = F and
that it carries the canonical k-vector space topology if k is a local field;

Lemma 3.1.56. Let the notation be as in Definition 3.1.55. Then the D-open ideals of A form
a basis of a topology on A.

Proof. (Cf. [WE13, Thm. 3.1.4.6]) One has to show that if I, I’ are D-open ideals, then so is
INI'. For this, one considers the injection

v AJ(INT) — AT x A/T'.

It is straightforward (for the two cases of A we consider) to verify that ¢ is an isomorphism onto
its image. Now a pseudorepresentation is continuous if and only if this holds for its characteristic
polynomial functions; cf. Definition 3.1.51. It now follows easily that I N I’ is D-open if both I
and I’ are D-open. O

Let A be in .ZG’W(IF) and let .S be a topological continuous A-algebra. The following is due to
Chenevier in [Chel4, Prop. 3.3] for A = W(IFF). We quote the general result.
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3. Equidimensionality of universal pseudodeformation rings

Proposition 3.1.57 (Cf. [WE13, Thm. 3.1.4.6]). Let D: S@AF — F be a continuous residual
pseudorepresentation. The pseudodeformation functor PsDx is representable by a profinite local

A-algebra R/u\n%’ € Ob((?A) together with a universal pseudodeformation

univ . 5 univ univ
Dﬁ . S®ARA,E —>RA,§.

Proof. We give an indication of the proof since we want to later use similar arguments. Consider
the universal ring Rgﬁ" = I (9)2P from Proposition 3.1.23 with its universal pseudorepresen-
tation

DY S ey RY — R
By definition Rgnfl" is a A-algebra. The map D induces a homomorphism 7: Rgné" — F of
A-algebras. By Lemma 3.1..56, the D-open ideals of A = Rgﬁi" form the bfis of a topology
on A, and one defines R"™Y as the completion of Rg%" with respect to its D-open ideals. It

A,D .
is then straightforward to prove the wanted universal property for RX“% together with the
pseudorepresentation Dgni" ® Runiv RX“%’ , by verifying it for the restriction of PsD5 to Ary. O

Definition 3.1.58. We call R%liv = RK‘%’ the universal (A-)pseudodeformation ring of D,

X%ni" = XX%’ := Spec Rxl’%’ the universal (A-)pseudodeformation space of D and

univ , S univ univ
DE . S®ARA,5 — RA,E

the universal (A-)pseudodeformation of D.
If S = Z[G] for a group G, we often set R%ni" = Rg%’ = R/u\i‘%’ and D%ﬁv = Dgf"% = DX?%’ .

The argument indicated in the proof of Proposition 3.1.57 also shows in the case that A is a
local field and a W (F)-algebra the following:

Proposition 3.1.59. Let k be a local field, let S be a topological continuous k-algebra and let
D: S — k be a continuous pseudorepresentation. Then the pseudodeformation functor

PsDy: Ary, — Sets

is pro-representable by a profinite local k-algebra Rz%" € Ob(ék) together with a universal pseu-

dodeformation
univ , S univ univ

The following assertion summarizes conditions when the tangent space of the pseudodefor-
mation functor PsDg is finite-dimensional, thereby implying Noetherianness of the universal
pseudodeformation ring.

Proposition 3.1.60 (Cf. [Chel4, Prop. 3.7], [WE13, Thm. 3.1.5.3]). Suppose that A is a
complete Noetherian local W (F)-algebra and S a profinite continuous A-algebra. If D: S@\F —
F is a continuous residual pseudorepresentation of dimension n, then the complete local profinite
A-algebra RKI%V is Noetherian if and only if one of the following hold:

(i) S is a topologically finitely generated A-algebra;

(ii) dimp Ext}(S/ker (D), S/ ker (D)) < oo;
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3.1. Pseudorepresentations and their universal pseudodeformation rings

(iii) S = A[G] for G a profinite group, and dimgaz HL (G, ad,) < oo, where pp is the
representation associated with D @p F28 from Theorem 3.1.26;
(iv) S = A[G] for G a profinite group that satisfies the ®,-condition from Definition 2.2.5.

Proposition 3.1.61 (Cf. [CDT99, § A.1]). Let A — A’ be a local homomorphisms of local
Noetherian rings with respective finite residue fields k and k'. Then

niv & /
RY6A
is the universal N'-pseudodeformation ring of D' := D @i k': SOAN @0 K — S @a K — K.

Proof. Our proof mimics that given in [Wil95, p. 457].? By tensoring D%ﬁ" with A’ over A we
obtain a pseudorepresentation

DEYOAN: S'On (RYFEAN) — (RYF@AA),
which is a deformation of D ®4 A’ and hence of D @, k’. The universality of RXI}%, then yields

a unique homomorphism
univ univ & !
RA/,B’ — RA75 ®AA

in Cp/ that maps DMV o D%‘i" @A A’. Next consider the subring R’ of R;‘\r"il, of elements

Dk’ ,D
that map to & C k' under the reduction modulo the maximal ideal of X‘}%,. Then R’ lies in Cp
and the pseudodeformation D%né)‘; Y is defined over R’ using Proposition 3.1.14. By the universal

property of RR‘%’ we obtain a unique map
univ /
AD — R
in €, mapping D%‘iv @a A to D%g’ - Embedding R’ into RR{‘%, and using the A’-algebra
k )
structure of the latter, we obtain homomorphisms

RYMS@AN — RN, — RSN

in Cpr. From the construction it is not hard to check that the composition of the two maps is
the identity. We wish to show that the left map is surjective, from which then our assertion is
straight forward.

To see surjectivity, it suffices to show surjectivity on tangent spaces modulo my. We write Ry,
for the left and right ring and R} for the middle ring and m}, ¢ = 0, 1 for the respective maximal
ideals. Then we have an induced map

k' = Ry/mg — Ry /moRY,

and we need to show that it is surjective. Now observe that the pseudorepresentation on

| /mo R} induced from this map is the trivial deformation of D%né‘; .- From the universality of

R} = R™Y, it follows that R}/mgR] has to be k/, as was to be shown. O
A'D

Hence, it makes sense to define the following.

—univ

Definition 3.1.62. We call Ry := RE% = RR‘%’ QA the universal mod p pseudodeformation
ring of D and the special fiber Y%ﬁv = XI‘FI%" ~ XK%’ X A F the universal mod p pseudodefor-
mation space of D. . . . .

If S = Z|G] for a group G, we also write Egj% :=Rp = and an% =Xp

2 One can also apply arguments as in [CDT99, Appendix A] to Proposition 3.1.68 to obtain a proof.
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3. Equidimensionality of universal pseudodeformation rings

3.1.5 Group pseudorepresentations

We show in Corollary 3.1.71 that there are only finitely many n-dimensional continuous pseu-
dorepresentations D: Gx — F. We also introduce slightly more general pseudodeformation
functors.

Consider a profinite group G, the finite field F of characteristic p and further the fixed
commutative ring A and each B € Ob(C.Alg,), where we equip all with the discrete topology.

Lemma 3.1.63 ([Chel4, Lem. 2.33]). An n-dimensional pseudorepresentation D: G — B,
considered as a polynomial law P € M’ (A[G], B), is continuous if and only if ker (P) C A[G]
is open. In this case, the natural representation

G — (B[G]/ ker (D))*
factors through a finite quotient G/H of G for some open subgroup H.

For later purposes, we enlarge the base category of the pseudodeformation functor. Chenevier
[Chel4, § 3.9] refers to [EGAT, Ch. 0 § 7, Ch. 1 § 10] for an introduction to topological rings
and formal schemes.

Definition 3.1.64 ([Chel4, § 3.9]). Consider the ring W (IF) of Witt vectors over F as a topo-
logical ring.

(i) A topological ring A is admissible if there is a topological isomorphism
A :> @A}U

where the limit is taken over a directed ordered set S with minimal element 0, each A) is
a discrete ring, and each Ay — Ay is surjective with nilpotent kernel.

(ii) Let Adm be the category consisting of:

e Objects: admissible topological rings A together with a continuous homomorphism
W(F) — A;

e Morphisms: continuous ring homomorphisms.

(iii) A ring A € Ob(Adm) is topologically of finite type over W () if there are i,j € N>q such
that A is a quotient of W(IF)[t1,...,t;](z1,...,z;) together with its I-adic topology given
by I= (tla s atiap)' 3

Lemma 3.1.65 ([Chel4, Lem. 3.10], [WE13, Lem. 3.1.6.7]). Consider A € Ob(Adm), a contin-
uous pseudorepresentation D: A[G] — A, and the closure C C A of the W (F)-algebra generated
by the characteristic polynomial coefficients Ap ;(g) for g € G and i € N>q.

(i) The ring C is an admissible profinite subring of A. In particular, C = @l C; is a finite
product of local W (IF)-algebras with finite residue fields.

(i1) If further .: A — A’ is a continuous W (F)-algebra homomorphism, D': A'|G] — A’ is
the induced determinant and C" C A’ is the closure C' C A’ of the W (FF)-algebra generated
by the characteristic polynomial coefficients Aps ;(g) for g € G and i € N1, then ¢ induces
a continuous surjection C — C'.

3 Recall that for an admissible ring A the ring A(t) is the A-subalgebra of A[t] of formal power series Y ant”
such that a,, — 0 for n — oco.
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3.1. Pseudorepresentations and their universal pseudodeformation rings

We use the above lemma to make the following definition.

Definition 3.1.66. (i) Let |G(n)| C Spec(F’V‘V(F)(W(F) [G])?P) be the subset of closed points
z € SpeC(F%(F)(W(F)[G])ab) with finite residue field k(z), and D,: G — k(z) be the

corresponding pseudorepesentation of dimension n. We also write x(D,) for x(z).*

(ii) Let A, D: A[G] — A and C C A be as in Lemma 3.1.65. If C' is local, then D is called
residually constant.

(iii) In case (ii), the field £(C) is finite by Lemma 3.1.65(i), and by definition of C' there exists
z € |G(n)| such that k(C) = k(z) and D ®c k(C) = D,. If Cp = k(C) (which can always
be assumed by altering A = 1<iLn/\ Ay), then D ®4 Ay = D, ®¢, Ao. One says that D is
residually equal to D,.

Definition 3.1.67 ([Chel4, § 3.9]). (i) Consider for n € Ny the covariant pseudorepresenta-
tion functor on the category Adm

PsRAMM™ . Adm — Sets,

A — {continuous n-dimensional pseudorepresentations A[G] — A},
and for each z € |G(n)| its subfunctor PsRAM™ : Adm — Sets,

A {D: A[G] = A € PsRAM™™(A) : D is residually equal to D,}.

(ii) Consider for n € Ny the contravariant pseudorepresentation functor PsRZS/WEm on the
category FS/W () of formal schemes over Spf W (F) that is given by

X +—— {continuous n-dimensional pseudorepresentations O(X)[G] — O(X)},

and for each z € |G(n)| its subfunctor psRS/WE. FS/W(F) — Sets,

X —{D: O(X)[G] = O(X) € PsRTS/WEm(A) : for all open affine U C X
D ®ox) OU) € PsRTS/WEn (1) = PsRAI™™(O(U)) lies in PSR (OWU)}.

Chenevier notes that the restriction of PSDZIS/ WE {6 the full subcategory of affine formal

schemes coincides with the opposite functor of PsD;“dm.

Proposition 3.1.68 ([Chel4, Prop. 3.13],[WE13, Cor. 3.1.6.11]). For z € |G(n)| the following
hold:

(i) PsRAY™ is representable by a local ring RE™Y in Adm.
(ii) The ring RY™ is canonically isomorphic to R%%%)’DZ from Proposition 3.1.57.
(iii) If D, satisfies one of the conditions in Proposition 3.1.60, then RY™ lies in ;G“W(,{(Z)).

Corollary 3.1.69 ([Chel4, Cor. 3.14]). Let G be a profinite group that satisfies Mazur’s finite-
ness condition ®, from Definition 2.2.5. Then PSRZ:S/W(F) is representable by Spf(R™Y) and

PsRTS/WELR s representable by the formal scheme

X;Lmiv — H Spf(REniv).
z€|G(d)|

4 Note that since unlike Chenevier our base ring is W (F) and not Z,, the residue fields x(z) are all (finite)
extensions of F.
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3. Equidimensionality of universal pseudodeformation rings

Lemma 3.1.70. Let D: G — F be an n-dimensional pseudorepresentation. Then there are
natural numbers r, m; and n; fori=1,...,r, field extensions F; of F and irreducible pseudorep-
resentations D;: G — F; of dimension n; over F; fori=1,...,r, such that n = > i [ s Flmgng
and for T’ the composition of the F; in an algebraic closure F*'& of F one has

DorF = D" op, F)®...0® (D, oF, F). (5)
In particular, [F" : F] divides n! and each D; can be defined over F'.

Proof. By Theorem 3.1.28 there is an integer » € N>, simple F-algebras \S; of finite dimension
n? over its center IF; for i = 1,...,r and an F-algebra isomorphism
s T
F[G]/ker D — [] 5

i=1

such that the following holds because F is finite and hence perfect: the algebra .5; is finite-
dimensional over F, and hence finite, and hence isomorphic to Mat,, (IF;); the fields F; are
finite and hence finite separable over F; the ¢; of loc.cit. are therefore all equal to 1; one has
D= bD;_, detg;i for unique m; € N; finally with f; = [[F; : F] one has n =), finym,.

Let I be the compositum of the F; in an algebraic closure F&'2 of F. By the above formula,
fi < n for all i and hence [F’ : F] divides n!. Let D; := dets,. Then D; is an n;f; dimensional
pseudorepresentation over I that is split over F; and hence over F'. We obtain

D — ~ T DT
D ®]F F/I F,{G] — (F[G]/ker D) ®]F ]F/ — HMatm (]F/) @H F/,
i=1
and this yields (5). The other claims are clear by construction. ]

Corollary 3.1.71. There exist only finitely many continuous pseudorepresentations D: G — F
of dimension n.

If moreover F' O F denotes the unique field extension of degree n!, then D Qp F' for any D
as above is a direct sum of irreducible pseudorepresentations D;: G — F'.

Proof. The second part is immediate from Lemma 3.1.70. Hence it suffices to prove the first part
for irreducible D. Let F2!8 be an algebraic closure of F and denote by p5: G — GL,,(F8) the
absolutely irreducible representation attached to D @ F2'2 by Theorem 3.1.26. Since the traces
of pi lie in F, the field F is its field of definition, and so we may assume that pj takes values in
GL,,(F). By Lemma 2.2.23 there are only finitely many absolutely irreducible representations
Gxg — GL,(F), and this completes the proof of the first part. O

Recall from Corollary 3.1.31 for ni,ns € Ny the morphism

. univ univ univ
tnyngt XE[G) 0, XSpecF XF(G]ne — XF[G]n1+no

of affine F-schemes defined by (D1, D3) — D; @ Do that corresponds to the F-algebra homo-
morphism

Fnl +ng

F§1+n2 (F[G])ab F _(}diag) Fgl—f—ng (F[G] « F[G])ab _ Fﬁl (F[G])ab QF ng (F[G])ab.

When we prove in Section 3.3 the equidimensionality of the universal mod p pseudodeformation
ring of a residual pseudorepresentation of dimension n = n; +ny inductively, we make use of the
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3.1. Pseudorepresentations and their universal pseudodeformation rings

homomorphism induced by ¢y, », on the complete and local universal pseudodeformation rings:
—Suniv

For this, we consider for all n € Ny the special fiber X, := X"V X spf w (r) SPE F of the formal
scheme XV from Corollary 3.1.69, and the induced morphism

—5univ

. X —Suniv
Ln17n2 ‘ ni

yuniv

X Spf F X ni+ng

of formal F-schemes defined by (D1, D3) — D1 & Dy. Recall from [EGAT, § 10.7] that the fiber
product of two affine formal schemes Spf A and Spf B over F is Spf(A®rB).
Now Corollary 3.1.69 and Corollary 3.1.71 yield the following.

Corollary 3.1.72 (Cf. [Chel4, Cor. 3.14]). Let D: G — T be a pseudorepresentation of dimen-

—Suniv —suniv

sion n = ny + ng valued in a finite field ¥, X5 = Spf Rp  and
R = BB g (B st ™) = 2, (FB)
Then there is a finite extension F' of F such that
I“D“;jl ny XSptF SPEF’ 22 | ] Spt(RB epRE).
D1,Dy:D;eXx “mV@pHW)ﬁrz_q,zandD1®D2 D

L . . . . . —Suniv —Suniv .
The disjoint union is over a finite index set. The morphism X5, ,, — X induced from

inyny 18 @ closed immersion if D is split and multiplicity free.

Proof. By what was said above, it remains to prove that the morphism ?%1, 2,1,@ - X quV is

closed. For this, we may pass from F to F’, and hence without loss of generality we assume
F’ = F. Now since the union is finite, it suffices to show that for each pair D, Dy with
D1 ® Do = D the induced map of rings
—univ —Uuniv » —univ
Rp  — Rp, ®rRp,

is surjective. Since both are complete Noetherian local and have isomorphic residue field, it
suffices to show the surjectivity for the induced map of the duals of their tangent spaces; i.e.,
the injectivity of

,PSDﬁl (F[SD X PSD§2 (F[E]) — PSDﬁ(IF[&“]), (Dl, Dg) — D1 @® Ds. (6)

Consider n;-dimensional pseudodeformations D;, D; € PsDp (F[e]) for i = 1,2 such that Dy &
Dy = D) ®D}. By hypothesis, D@ Dy is split and multiplicity free so that we have isomorphisms

si
F[e][G]/ ker (D. HMatn” with Znu =n,; fori=1,2.
j=1

As discussed in the proof of [Chel4, Thm. 2.22], we can lift the canonical family of central
orthogonal idempotents of Fle][G]/ ker (D;) to a family of orthogonal idempotents e;1 + ... +
ei,s; = 1inF[e][G], and we further have a family of A-algebra isomorphisms v; ; : e; ;F[e][Gle; j =
Maty, ;(Fle]) for j =1,...,s; and i = 1,2. Putting this together, we obtain by Theorem 3.1.50
applied to D; and D] that (F[e][G],&;) is a generalized matrix algebra with data of idempotents
gi = {ei,jawi,j}j:L.“,'r and determinant DZ = det(F[a][G],Si) = D; for ¢ = 1,2, which implies the
assertion on the map (6). O
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3. Equidimensionality of universal pseudodeformation rings

3.2 Geometric loci of universal pseudodeformation spaces

Recall that throughout the thesis we fix an algebraic closure K2 of a finite extension K of Qp
of degree d = [K : Q,] with absolute Galois group G, a primitive p'® root of unity ¢, and a
finite field F of characteristic p.

In this section, we start by showing openness of the irreducible locus of the special fiber of a
universal pseudodeformation space following [Chel4, Exmp. 2.20]. Chenevier’s Corollary 3.2.13
says that the universal Cayley-Hamilton sheaf is an Azumaya algebra over the irreducible locus.

In Subsection 3.2.2 we define an induction for certain pseudorepresentations following ideas
of Bockle: At first, the characteristic polynomial of an induced representation with values in an
Azumaya algebra is described in Lemma 3.2.20. As the characteristic polynomial coefficients
determine a pseudorepresentation by Proposition 3.1.14, Lemma 3.2.20 allows us to define an
induced pseudorepresentation in Theorem 3.2.23 under Assumption 3.2.21.

In Subsection 3.2.3 we define the twist of a pseudorepresentation with a character and show
that if ¢, ¢ K nonspecial irreducible points are regular and form open loci. If {, € K, then the
regular locus is empty and we instead consider regular points in the nilreduction if n { p.

3.2.1 The locus of irreducibility and the universal Cayley-Hamilton algebra

In this subsection, we summarize properties of the locus of irreducible pseudodeformations in a
universal deformation space. In particular, Chenevier shows that over this locus the universal
Cayley-Hamilton algebra is an Azumaya algebra. We later investigate pseudodeformations with
values in local fields corresponding to 1-dimensional points x in universal pseudodeformation
spaces. We show in Corollary 3.2.13 that the (slightly modified) local rings at such points x are
universal pseudodeformation spaces. Let now G denote a group.

Definition 3.2.1. Let D"™V: RIWV[G] — Ru““’ be the universal n-dimensional pseudorepre-
sentation and X “niﬁ" := Spec R‘mil the umversal n-dimensional pseudorepresentation space. Let

x € X“n“’ be a point and f,: R“m" k() be the morphism corresponding to z, where k(z) is

the readue field of  with algebralc closure (z)™e.

puniv ' . . .
(i) Dy = fyo Dwiv: @ T Run“’ f = k(x) is called the pseudorepresentation of D™V at x;

(i) the representation p, := pp,: G — GLy(k(2)™8) corresponding to Dy D) r(z)™8 from
Theorem 3.1.26 is called the (semisimple) representation attached to Dy;

(iii) We say that « and D, have a property if this property holds for p,.

(iv) The irreducible locus (X“m")lrr and the reducible locus (Xg,‘?,il")md in X&r"i" consists of the
points with the respective property in ng‘;"; cf. Definition 3.1.27. The same notation is
used for other spaces parameterizing pseudorepresentations, such as the universal pseudo-

deformation space X%“i" of a residual psudorepresentation D.

Lemma 3.2.2 (Cf. [Chel4, Example 2.20.]). Consider an n-dimensional residual pseudorepre-
sentation D: G — F with its universal pseudodeformation D%‘i".

Then the subsets (Xum")‘” C Xunlv and (X umv)lrr C Y%ﬂv are Zariski open.

Proof. The first assertion is proved in [Chel4, Example 2.20.], the second follows from the first
since
(y%liv)irr XquV N (Xumv)lrr C Xumv
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3.2. Geometric loci of universal pseudodeformation spaces

Since the proof in [Chel4, Example 2.20.] is somewhat sketchy, we give a complete direct proof
of the second result, following loc.cit., which is the assertion of main interest to us: For any

sequence of elements (g1,. .., g,2) € G, one considers its discriminant
A(gl,...,gnz) = det Rquv,
T%llv(gn291) T T%lw (gannz)

where 79 denotes the trace of the universal pseudodeformation D%li" (see e.g. [Nak0o0,
Rem. 3.2] why this is the (square of the) discriminant up to sign).

Let z € X5 be a point corresponding to a prime p, C Ry and k(x) be its residue field
Oy%liv7x / p$(9y%,iv7x. Consider the pseudorepresentation D, := DE" ® guniv k(z). Let pp: G —

GLy(k(2)™) be the representation attached to D%li" at z. Let rp: r(z)8[G] — Mat,, (r(z)™8)

be the induced representation of the group algebra m(m)alg[G]. If p, is absolutely irreducible, then
1y is surjective [CR62, Burnside’s theorem (27.4)]. Conversely, if p, is reducible, then im (p,) lies
in a parabolic subgroup of GL,, (k(z)"#) and so im (r,) is properly contained in Mat,, (x(z)™#). If
(g1, ---,9n2) € G is an arbitrary sequence of elements, then r;(g1), . .., rz(g,2) generate im (r,) =
Mat,, ((x)™8) if and only if A(gy,...,gn2) # 0 since the trace tr : Mat, (rk(z)™8) — r(z)™® is
nondegenerate.

Define I C R%mv as the ideal generated by A(gi,...,g,2) for all (g1,...,9,2) € G. Then
(Xlzjmv)m XquV \ V(I) is a Zariski open. =

Definition 3.2.3. Let D"": R‘m‘" G] — Run“’ be the universal n-dimensional pseudorepresen-
tation from Definition 3.1.24. (Note that here G is considered as a discrete group.)

(i) The n-dimensional Cayley-Hamilton Rum" algebra SCH univ . — um"[ ]/ CH(Du™Y) is
called the universal Cayley-Hamilton algebm and the natural representation

pCH—ul’liV: G — (Sgg—uniV)x
the universal Cayley-Hamilton representation.

(ii) The quasi-coherent sheaf Sg%‘univ of Cayley-Hamilton algebras on XJ"V defined by the
universal Cayley-Hamilton algebra Sgljl univ js called the universal C’ayley-Hamilton sheaf.

Remark 3.2.4 ([Chel4, § 1.22]). (i) Chenevier also introduces the notion of a Cayley-Hamilton
representation and shows in [Chel4, Prop. 1.23] that the initial object of the category of
Cayley-Hamilton representations is given by the triple ( 5‘}}1", (SCH‘““iV, Dunivy, pCH'uniV).

(ii) If D: A[G] — A is a pseudorepresentation defined by a morphism Spec(A4) — X&'V, then
there need not be a representation p : A[G] — Mat,,(A) with attached pseudorepresentation
D since e.g. in the settings of pseudocharacters this implies that A is factorial [BC09,
Thm. 1.6.3]). The universal Cayley-Hamilton representation is a natural candidate for a
substitute.

(iii) The formation of the universal Cayley-Hamilton algebra commutes with arbitrary base
change; i.e., for any morphism f: Spec(4) — X&', with corresponding pseudorepresen-
tation Dy: A[G] — A the natural surjective map A[G] — Sgﬁ'univ ® guniv ¢ A provides an
isomorphism

A[G]/ CH(Dy) = SGH™v Raniv 5 A
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3. Equidimensionality of universal pseudodeformation rings

One has the following important result on Sg%‘““i" over the irreducible locus of X}l;“,if which
is derived from Theorem 3.1.50.

Lemma 3.2.5 (Cf. [Chel4, Cor. 2.23]). The O(Xé%v)irr—algebm Sg};ll‘“ni" ®0x5n;v O(X&ilv)irr is
an Azumaya algebra of rank n® equipped with its reduced norm.

Remark 3.2.6. We are not clear whether [Chel4, Cor. 2.23(ii)] is correct as stated there. We
think that this is only the case if x(z) is finite or finite over Q,. We give a formulation in our
context below in Corollary 3.2.13. We think that [Chel4, Cor. 2.23(ii)] has to be modified in a
similar way.

Remark 3.2.7. The proof of Corollary 3.2.13(i) in fact shows the following. Let S be an A-algebra
and let D: S — A be an n-dimensional Cayley-Hamilton representation. If D, is irreducible for
all € Spec A, then S is an Azumaya algebra over A of rank n? and D is equal to the reduced
norm detg of S recalled in Example 3.1.8.

In our applications, we will need Sg%uni" in a profinite context. We follow [WE17].

Definition 3.2.8. Let G be a profinite group. Let D%‘i": G — Rgn%’ be the universal pseudode-
formation of a residual pseudorepresentation D: G — F. Recall Rgn%’ [G] from Example 3.1.52.

(i) The n-dimensional Cayley-Hamilton Ré‘%’—algebra
Sep ™ = REFIG]/ CH(DE™)

is called the universal Cayley-Hamilton algebra of D, and we write Dg%‘u“iv for the pseu-

)

dorepresentation of Sg%uni" induced from D%li".

s : CH-univ : univ CH-univ
(ii) The quasi-coherent sheaf S CD of Cayley-Hamilton algebras on X ¢D defined by S ¢D

is called the universal Cayley-Hamilton sheaf of D.

Note that because of Remark 3.2.4(iii) the algebra Sg%“mi" is isomorphic to the profinite

completion of 88},1{““1" ® Rupiv Rgn%’. The following result summarizes the basic properties of

CH-univ.
S cp

Proposition 3.2.9 ([WE17, Prop. 3.6]). Let D: G — F be a residual pseudorepresentation
of a profinite group G and suppose that dim,{(ﬁ) Hgont(G,adpE) < 00, where the associated

semisimple representation pp is defined over a finite extension k(D) of F by Theorem 8.1.28.
Then the following hold:

(a) The natural quotient map : Ré‘%[[G]] — Sg%“niv is continuous.
CH-univ ; univ ;
(b) SGE is module-finite as an RGE—algebm, and therefore Noetherian.

c n H-uni e profinite topology, the m+-adic topology, an e quotient topology from
On SEIS™Y th te topology, the mp-adic topol d th tient topol
the surjection m are equivalent.

(d) When D is multiplicity-free, Sg%‘mi" s a generalized matriz algebra with canonical pseu-

dorepresentation equivalent to its determinant (cf. Definition 3.1.47).

(e) When D is irreducible, Sg%‘mi" = Matn(Ré‘%’).

61



3.2. Geometric loci of universal pseudodeformation spaces

The following result is a generalization of Proposition 3.1.54.

Corollary 3.2.10. Let D: G — F be a residual pseudorepresentation of a profinite group G and
suppose that dimli@) HL (G, ad, ) <oo. Letx € Xg‘%’ be a point of dimension 1 so that k(x)
s a local field. Then pp, is continuous.

Proof. Let p, C Rg‘% be the prime ideal corresponding to x and denote by R, and S, the
respective reductions mod p, of Rg%’ and Sg%‘miv, and set S(z) := S; ®g, k(z). By Propo-
sition 3.1.16 the pseudorepresentation D, factors via G — S(z) — k(x), via a pseudorepresen-
tation Dy: S(x) — k(z). Because of our assumption, the ring S(x) is finite-dimensional as a
k(z)-vector space by Proposition 3.2.9. It is a topological vector space for the natural topology
of k(x), since its topology is induced from the mp-adic topology on Rg%; the homomorphism

Yyt G — S(x)* and the pseudorepresentations D, are continuous. As recalled at the beginning
of Section 2.2, this topology is unique and every sub k(x)-vector space of S(z) is closed; this
still holds after base change to x(z)®. Set S(z)* := S(z) O(a) r(z)"8 / ker (D, D) k(z)8).
It follows that the induced homomorphism

p: G = (S(2)*)"

and the pseudorepresentation
S(x)* — ﬁ(m)alg,

which we also denote by D, are continuous. It follows from Theorem 3.1.28 that S ()% =

1 ~ . : .
[T;_; Mat,, (x(2)*®) and that D, is of the form [, detﬁatni(n(x)alg) for suitable integers n;, m; >

0. It follows that D, o p is attached to a continuous semisimple finite-dimensional representation
of G defined over k(z). By uniqueness of semisimple representations over fields having both the
same pseudorepresentation, it follows that pp, and Dyo p are isomorphic over /{(x)alg, and this
proves the continuity of pp,. d

For later use, we deduce the following result:

Lemma 3.2.11. Let G be a profinite group, let L be a local field with valuation ring O, and
let D: G — L be a continuous n-dimensional pseudorepresentation. Then the following hold,
where in (ii) and (iil) we assume that G satisfies Condition ®, from Definition 2.2.5.:

(i) D takes values in O, and D: G — O, is residually equal to D := D ®0, £(OL).
(i) The representation pp: G — GL,(L¥#) from Theorem 3.1.26 is continuous.

(111) If D is reducible, then there exists a finite extension L'/L and irreducible pseudorepresen-
tations D1, ..., Dy.: G — Oy, such that

D®op, O =D1®...® D, (7)
Hence D ®0, k(Or/) = D1 & ...% Dyand D; := D; ®0,, k(Orpr) for 1 <i <.

Proof. Let pp be the representation from Theorem 3.1.26 attached to D ®, L*#. For (i) observe
first that the characteristic polynomial coefficients Ap ; of xp(g, -) are continuous for 1 <7 <n,
and hence the sets Ap ;(G) are compact in L. Assume that for some g € G, Ap ;(g) does not lie
in Or. Then at least one eigenvalue of pp(g) in L*!# has valuation different from 0, and, since
we can pass to ¢~ !, we may assume that this valuation is negative. Let \i,...,\, € L*® denote
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3. Equidimensionality of universal pseudodeformation rings

the eigenvalues of pp(g) and index them so that Aj,...,\; are precisely those with negative
valuation. Then for n > 0, the valuation of Ap ;(g") is the valuation of (A1-...-A;)™. The latter
valuations are unbounded. This contradicts the compactness of Ap j(G), proving the first part
of (i).

To see the second part of (i), let C C O be the smallest closed W (k(Op))-subalgebra
generated by the characteristic polynomial coefficients of D. Its residue field must contain
k(Or). Hence if we write C = lim,, C,, with C), the finite image of C in Or/(x"!), we have
Co = k(Or) and so D is residually constant and residually equal to D ®o, k(Or) = D ®¢ Cp.

We now prove (ii). By (i) there is a continuous homomorphism Rg‘% — Op, that induces D.

Hence pp = p, for the corresponding point x of X‘é‘%’. Since L is a local field containing x(x),

the dimension of x is at most 1. If dimx = 1, we deduce (ii) from Corollary 3.2.10, because
dim, 5, H} L (G, ad,_) < oo is implied by the Condition ®,. If dimx = 0, then (ii) follows from
Proposition 3.1.54.

For (iil) write pp = @;_; p; for irreducible representations p; of Gk. Because pp is contin-
uous, so are the p;. Let Di,..., D, be the continuous pseudorepresentations associated with
P1,- -, pr, and now (iii) is straightforward from (i). O

Remark 3.2.12. It would be nice to have a more direct and possibly simpler proof of the continuity
assertion in part (ii) of the previous lemma.
We now give an analog of Lemma 3.2.5 in a topological context, and a local consequence. The

local consequence asserts that for an equi-characteristic dimension 1 point x the completion of (a
modification of) O yuniv , at x has itself an interpretation as a universal pseudodeformation ring.
G,D’

Corollary 3.2.13 (Cf. [Chel4, Cor. 2.23]). Let D: G — F be an n-dimensional pseudorepre-
sentation of a profinite group G.

G,D
algebra of rank n? equipped with its reduced norm.

(i) Owver the locus (X"Y)T the O yruniv-algebra Sgljl'uni" ® Oxuniv is an Azumaya O yuniv-
a,D ) a,D a.D

(ii) Let x € Xg‘%" be such that k(x) is a local field. Denote by 7,: %‘[l(i;v]m — k(z) the corre-
sponding residue map, and by

7= idy ) @, R = k(z) ®z R%r[lév]’n — k(x)

the induced surjection. Let D;. be the pseudorepresentation G — k(x),g = 1 Qww) Dz(g)-
By Proposition 3.1.59, the completion of R’ at the D! -open ideals represents the universal
pseudodeformation ring RS for pseudodeformations of D},. There also is a residue map

Tt OxgniiDv’z — k(x) and a second canonical surjection
7= id(p) @t R 1= K(7) Q) OXEH%’QE — k(z).

Write RP for the completion of R at p := kerw. Then for any p-primary ideal I C RP
the induced pseudorepresentation G — ﬁfp/I s continuous, so that one has a natural
homomorphism UDTV — RP. The latter map s an isomorphism.

(iii) Suppose that x in (ii) is split and irreducible, and that dim, 7 Hl,ni (G, ad, ) < 0o. Denote
by pz: G — GLy(k(x)) the representation attached to D, and by Rgfi" the universal
deformation ring for deformations to Ary ) of pz. Then the natural map RUDI}EV — Rgili"
induced from p — det, is an isomorphism.
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Proof. The proof of (i) is exactly as that of [Chel4, Cor. 2.23(i)]: Let z be in (X“ng)‘”, and

let A be the strict Henselianization of the local ring O, at z. Recall that the formation of the
Cayley-Hamilton quotient commutes with arbitrary base change. In particular,

Sg%univ D gone A = A[G]/ CH(Dg%‘U“iV ® A)

Theorem 3.1.50(3.1.50) shows that the A-algebra on the right side is isomorphic to Mat,,(A)
for some n € N1, thus SCH'umV ® Runiy O, is an Azumaya algebra of rank n?, as O, — A is

faithfully flat. Part (i) follows then from the following abstract result: Let C' be a commutative
ring, n > 1 an integer, and R a C-algebra. Assume that for all z € Spec C, the localization R,
is an Azumaya algebra of rank n? over C,. Then R is an Azumaya C-algebra (locally free) of
rank n?.

For (ii) we shall use the diagram below for which we need to introduce some notation. We

write W for W(F) and k for x(z). For any commutative ring A, we set ‘Anil" = ZIEIC‘;’] ,,» Which
is naturally isomorphic to A ®z “mv. The symbol denotes the completion of a ring at its

D-open ideals, cf. Definition 3.1.55, and similarly ~ D for the completion at the D! -open ideals
— when this makes sense. Then Runﬂ = RumVAD , and the universal pseudodeformation ring

for continuous pseudodeformations of D! is Rumv = R};%"AD =, Let p, denote the kernel of the
homomorphism Run“’ — k corresponding to D/, and p the kernel of m: R — k or of 7 restricted

to k Qw Rgn}:‘)’, and write " for the completion at p and similarly ~P* for that at p,. Then we

have the followmg diagram:

iz

/—\

k@w Ry —— = R —— REN = Ry

ip ( : )Pz

kew (R ). s k

()P

EP — (k. Qw (RumVAD)px)’\P k.

Let o : k Qw Run”’ — k be the diagonal homomorphism from the top left to the bottom right.
To show the assertion of (ii), let A be in Arj with residue homomorphism ¢: A — k, and let
wa: kw ‘m“’ — A be a surjective homomorphism with ¢ o p4 = pi. Let Dy: G — A be the
induced pseudorepresentatlon. We need to show that ¢4 factors via i, if and only if it factors
via ip.

Note first that from the definition of P it is clear that ¢4 factors via i, if and only if it factors
via (- )p, 0ip. Since ¢y maps the elements of Rumv . P, to units in k, so does w4 since A is
local with residue field k. Hence we need to show that @4 factors via iy if and only if it factors
via ip. Let I be the kernel of the compositum of ¢4 with R“n“’ — kQw R}i{}%’, r— 1®r, and

let Di: G — RumV /I be the induced pseudorepresentation. Because of ¥ o p4 = ¢ we have
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3. Equidimensionality of universal pseudodeformation rings

I C p,, and because A is Artinian it follows that p, is the radical of I. Let mz be the kernel of
umV — 5 given by D. That w4 factors via i 7 means that the ideals I,, = I + m— are D- open
for n € N>1 and that I =, I,. For each I, (and for I) let Dy, : G — R“n“’/I (and Dy, resp.,)
be the induced pseudorepresentation. That all Dy, are continuous is therefore equivalent to Dy
being continuous. On the other hand, that 4 factors via i, means that ker g is D! -open.
Define R“m" /I as the completion of R“m" /1 with respect to the I, (i.e., with respect to m%).
Hence we need to show that the followmg ‘two conditions are equivalent:

(a) Da: G — A is continuous, i.e., all of its characteristic polynomial coefficients are;
(b) D;: G — Rumv /I is continuous with respect to the profinite topology on Run“’ /1.

By definition of D, as a pseudodeformation of D, it is continuous as a pseudorepresentation
G — k with respect to the natural topology on k, and continuous as a pseudorepresentation
G — Rumv /P, with the profinite topology on the latter. We also note that by construction,
we start from the map ¢4, the pseudorepresentation DA factors as Dj composed with the
homomorphism Run“’ /I — A. So we need to show that Rumv /I — A, which by construction is

injective, identifies RumV /I with a compact open subring of A (in the topology of A).

We shall induct over the length of A to show that Rum" /I C A is a compact open subring.
As observed in the previous paragraph, by hypothesis we know that R/p, C k is a compact
open subring that is contained in the valuation ring of k. This completes the case where A
has length 1. In the induction step, let J C A be an ideal with quotient A’ = A/J such that
dimg J = 1. Let I’ be the corresponding ideal of R“}Q?L’, and consider the diagram

0 J A Al 0

IR

0—=I/I' —= Ry /T —— R /I' —— 0.

By the surjectivity of ¢4, it is clear that A is the k-span of it subring ﬁ}}{}‘r‘[ /I. By induction
hypothesis, the right hand inclusion identifies R\%’Hr‘{ /I' with a compact open subring of A’ that
spans A’ over k. Denoting by O the ring of integers of k, this is equivalent to O -R\““i" /I' being

an O-lattice in A" and to (O - R“m"/I’)/( unl"/I’) being finite. We need to show the analog for
A and I.

We know that J = k as a k-module and that /I’ is a finitely generated R“n“’ /pz-submodule.
Since R/p, C k is compact open, we find that O-I/I’ is a lattice in J and that (’) (L/1/1/1") is
finite. Let by € I/I' be an O-basis of O-1/I'. Choose an O-basis of O - R‘m“’/I’ in R“mv/I’ (this
is possible by Nakayama’s Lemma by first working in the reduction modulo mp) and lift these
basis elements to elements by, ..., b in Rumv / I. Then one verifies that the O-span of {by, ..., b}

contains R“m" /I, and that (O - Rum" /1)/ ( Rumiv /1) is finite. This completes the induction step
and the proof of (ii).
To prove (iii), we need to show that natural transformation of functors Ar, — Sets defined
by
{continuous deformations p4 of p, to A}

A pA»—>detpA

{continuous pseudodeformations Dy of D to A}
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is an isomorphism. Well-definedness is clear. Injectivity follows from Theorem 3.1.50(3.1.50)
(due to Chenevier) since p, is absolutely irreducible. To prove surjectivity, consider a pseudode-
formation D4: G — A of D! and note that by the just quoted theorem there exists a deformation
pa of p, to A with D4 = det ps. However, it remains to show that p4 is continuous. For this,
one proceeds as in the proof of Corollary 3.2.10 using Proposition 3.2.9 by Wang Erickson. The
situation is simplified by the fact that p, is absolutely irreducible. We omit details. O

Proposition 3.2.14 (Cf. [Chel4, Exmp. 3.4]). Suppose that k is either a finite field or a
local field of equi-characteristic p. Let p: G — GL,(k) be an absolutely irreducible residual
representation with associated pseudorepresentation D. Then the deformation functor D; of p
is canonically isomorphic to PsDz.

Proof. The assertion for k finite is [Chel4, Exmp. 3.4]. For k a local field, this follows from
Corollary 3.2.13(iii). O
Corollary 3.2.15. Let D: Gg — F be an n-dimensional pseudorepresentation and x € Y%nv
be of dimension 1 so that k(z) is a local field. Let D,: Gx — k(x) be the pseudorepresentation
from Definition 3.2.1 and assume that D, is irreducible. Let Cy be the Azumaya-k(x)-algebra
k(z)[G]/ CH(D,) of rank n? over r(x) and 1,: G — CX the natural homomorphism, so that
D, = detop,.
Then we have:

(a) There is a finite extension L/k(x) and a representation p,: Gx — GL,(L) such that
Pz = Yz ®/@(z) L.

(b) The representations p, and 1, are continuous.

(¢) Let R be as in Corollary 5.2.15(ii). If H*(Gk, ad,,) = 0 for p, from ((b)), then R* () L
is formally smooth over L of dimension dim H*(Gk,ad,,).

Proof. Part ((a)) is clear by taking for L any splitting field of C, that is finite over (z).
Part ((b)) follows from Lemma 3.2.11. Regarding ((c)) note first that by Proposition 3.1.61 and
Corollary 3.2.13 the ring RP ®p(z) L is the universal deformation ring of p,. By the analog of
Theorem 2.2.14 for representations to local fields, the condition H?(G,ad,,) = 0 implies that
RP @ ()L is regular and that it is a power series ring over L of Krull dimension dim H (ere ad,, ).

This is equivalent to RP ®p(z) L being formally smooth over L by Proposition 2.1.11. O

3.2.2 Induction for pseudorepresentations

In this subsection we fix a profinite group G and a normal open subgroup H of index m. Under
suitable irreducibility hypothesis on a given pseudorepresentation of H over a profinite ring we
shall define its induction to G. A main tool is the universal Cayley-Hamilton sheaf introduced
in the previous subsection, which is an Azumaya algebra over the irreducible locus.

Lemma 3.2.16. Let A be a commutative ring and C an Azumaya A-algebra. Consider a
representation p: H — C*. There exists a representation p*: G — Mat,,(C)* such that for
any étale extension A — A’ that splits C, there is an isomorphism p* @4 A’ = Ind% (p @4 A') of
G-representations over A.

Its induced algebra representation A[G] — Mat,,,(C) takes values in an Azumaya algebra, and
by Example 3.1.8 therefore D, is a pseudorepresentation with values in A.
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3. Equidimensionality of universal pseudodeformation rings

Proof. To prove the lemma, we adapt the description of the induced matrix representation from
[CR81, pp. 227-230] to the setting of Azumaya-algebras. Let g1, ..., gm be a set of representatives
of left cosets of G/H such that G = | [[", g;H. For g € G we define for each j € {1,...,m} an
i=1;in {1,...,m} by the condition

995 € giH.

The assignment j — i; is a permutation of {1,...,m}. We extend p from H to G by defining

~ plg) ifgeH,
pG—0C g%{ 0 ifge G~ H.
Consider the map
plortgg) - Plgr g9m)
p*: G — Mat,,(C), g+— : . :
Plom'991) -+ Plgm' 99m)

Then for all g € G the image p*(g) is a monomial matrix over the skewfield C' since for 1 <
i,7 < m the only nonzero entry in the i*" row and j* column of p*(g) is p(gizlggj) € C*. In
particular, this shows that p*(g) lies in GL,,(C).

We claim that p* has the properties asserted in the lemma. Let A — A’ be finite étale so
that C ®4 A" = Mat,(A’) for a suitable » € N>j. Then p* ®4 A’ is the matrix representation of
the induced representation of

p®a A H— GL,(4)

simply by our construction following [CR81]. This implies the multiplicativity of the map p*, i.e.,
that it is a homomorphism. Moreover, it shows that p* ® 4 A’ is the usual induced representation
of pa A O

Remark 3.2.17. It can be shown that p — p* in Lemma 3.2.16 is uniquely characterized as the
right adjoint of the restriction homomorphism from G-representations to H-representations on
Azumaya algebras.

Definition 3.2.18. We call p* in Lemma 3.2.16 the representation induced from p under H C G
and denote it by Ind% p.

Below we want to have a rather explicit description of the characteristic polynomial of Indg p-
This is prepared in the following lemmas. We could not locate these presumably well-known
results in the literature, so we indicate some proofs.

Let A be a commutative ring, let C' be an Azumaya A-algebra. Recall that for elements
¢ € C one has a notion of characteristic polynomial x.. It is a monic polynomial in A[t] of
degree n where n? is the rank of C over A; it is defined by first passing from A to an étale
splitting extension A’ and then taking the usual characteristic polynomial over A’. We also
write xc(t) = Y o(—1)Ac;(c)t", similarly to Definition 3.1.11. Recall also that if C is an
Azumaya A-algebra, then so is Mat,,(C). We write x7* for the characteristic polynomial (of
degree nm) of ¢ € Mat,,, (C).

Lemma 3.2.19. Let ¢ = (¢;;) be in Mat,,(C). Suppose that there is a permutation o € S,
such that c;j = 0 for i # o(j) and such that c,(j ; lies in C* for all j. Then xi* has the
following description:
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3.2. Geometric loci of universal pseudodeformation spaces

Write o in its cycle decomposition o = o1 -.. . -0y, where the o; are disjoint cycles of length m,
such that > ;_y my = m and let j; be in the support of oy such that oy = (ji,o(j1), . ..,0™ 1(j)).
Then

v
xe'(t) = H Xc(l)(tml) with c(l) = G =1 () Com™i (), 0™ 2 (5) e Coli)an
I=1
Proof. Let s; = mqi+...4+my_q1forl=1,...,v, with mg =0, and let 7 € &,,, be the permutation

whose inverse is given by

<81+1 s1+2 -0 s +my ) '(3v+1 Sy +2 0 syt >
J1 U<j1) Umlil(ji) Ju U<jv) Umvil(jv) ’

and let p = p, in Mat,,(C) be the permutation matrix attached to 7, i.e., with p; ; = 0 for
i # 7(j) and p,(j); = l¢ for all j. Then one verifies that prcp; l'is a block diagonal matrix in
Mat,,, (C) with v blocks on the diagonal, the I*® block lies in Mat,,, (C) and is of the form

0 0 Clrami=1(j)
Co(ji).ii 0 0

0 Co2(5;),0(5)

0 Ce 0 Camlfl(jl),oml’z(jl) 0

We leave it as a simple exercise in matrix manipulations to complete the result in this case. [

Lemma 3.2.20. Let the hypotheses be as in Lemma 3.2.16. Fiz ¢ € G and denote by m' its
order in the group G/H. Then for h € H one has

XInd% p(g’h) (t) = H Xp(971>((g/h)ml) (tm )
geG/H(g')

If G/H(g') is a group (and not only a coset), then the inversion in p9 ") can be omitted.

Recall that the twist p(gfl) as defined in Definition 2.3.1 also applies to the present situation.
Note also that (¢'h)™ lies in H so that the above formula is well-defined, since H C G is a
normal subgroup and m’ = ord ¢, (g).

Proof. Let the notation be as in the proof of Lemma 3.2.16, and set v = m/m’. Define 0, € &,
as the (unique) permutation such that g;g; € g,,(jyH for all [ € {1,...,m}. Let ¢ € Mat,,(C)
be the matrix with ¢;; = 0 for i # 0y(j) and cy,(5); = p(g;lb)glhgj), so that ¢ = p*(gih).
Choose ji,...,J, such that the elements g;, are representatives of the cosets of G/H/g;), or,
equivalently, such that the orbits of the j; under o; are in bijection with the orbits in {1,...,m}
under o;. Now c is monomial, and by Lemma 3.2.19 its characteristic polynomial is given by

!

—1 )
glhgglm/72(js)).“'.p(gdl(js)glhgjs) )

v
Xpr (gih) (1) = H Xo(g7 gthg i1 (g
s=1 1

-1
@) o =1 (g

where we use our explicit shape of ¢, so that in particular j — m; is constant with value m’.
Next one one uses the multiplicativity of p as a representation to combine its arguments as
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a product in which cancellations occur. Using also the twist of p by some g € G defined in
Definition 2.3.1, we obtain

v

Xp*(glh)(t) = H X (g1 (tm )a

S s (g

-1
Now up to isomorphy we can replace g;, in p(gjs) by any other representative of the class
9j.H(g;). To conclude the proof of the formula in the lemma note that we may from that start
assume that the g; are chosen in such a way that ¢’ is among them. O

In the remainder of this subsection, let G be a profinite group, H C G be a normal subgroup
of finite index m, and
Dy:H— B

be a pseudorepresentation of dimension n with values in a commutative ring B. Denote by
Min(B) the set of minimal primes of B. For a local ring A denote by A" its strict henselization.
In order to define an induction of Dy, we additionally assume that the following hold.

Assumption 3.2.21 (Basic assumptions on B and Dy). The ring B is a complete Noetherian
semilocal equidimensional ring of characteristic p satisfying the following;:

(i) The homomorphism B — [ cnin(p) By is injective.

(ii) For each p € Min(B) there is an n-dimensional representation p, of H over B;h such that
Dy ®p Bsh is the determinant attached to py.

Remark 3.2.22. (a) Assumption 3.2.21(i) is equivalent to B satisfying Serre’s condition (S1),
which in turn is equivalent to all associated primes of B being minimal; cf. [Mat89,
Thm. 6.1, Rks. above Thm. 23.8]. This uses that Z = (J{p : p is an associated prime} is
the set of zero divisors of B and that, as is elementary to see, S = B \ Z is the largest
multiplicatively closed subset of B such that B — Byg is injective.

(b) A simple, in our applications sufficient, condition for B to satisfy (S7) is that B is reduced.

(c) If Dy := Dy ®p By is irreducible for all p € Min(B), then Assumption 3.2.21(ii) holds.
This follows from [Chel4, Thm. 2.22] recalled in Theorem 3.1.50(3.1.50), since in this case
Dy®p B;h factors via the Cayley-Hamilton quotient of th [H] which by the results quoted
is a rank n matrix algebra over th.

(d) Due to our treatment below and the explicit formulas we have for characteristic polynomial
coefficients, we expect that eventually Assumption 3.2.21 might be superfluous in what
follows.

In the following we shall write Dz for D ® g (Z) for any pseudorepresentation D defined over
B and any geometric point Z: Spec k(Z) — Spec B.

Theorem 3.2.23. Suppose Assumption 3.2.21 holds. Then there exists a unique pseudorepre-
sentation Dg: G — B whose characteristic polynomial on a coset g¢'H is given by

XDG,B(g/hvt) = H XD(gfl)yB((g/h)mlvtm/)‘ (8)
9eG/H(g) "

It has the following properties.

69



3.2. Geometric loci of universal pseudodeformation spaces

(a) Let T: Speck(T) — Spec B be any geometric point and denote by pz the representation of
H corresponding to Dy z. Then Dqgz is the pseudorepresentation attached to Indg Pz

(b) If Dy is continuous, then so is Dg.

(c) One has

Res% D¢ = @ DY,.
geG/H

(d) Suppose that over an affine open subset U = Spec B’ C Spec B the pseudorepresentation is
irreducible, so that C := B[G]/ CH(Dy) ®p B’ is an Azumaya B'-algebra and Dy is the
determinant attached to the reduced norm of C' composed with the natural homomorphism
Y: G — C*. Then Dg ®@p B = det oInd% v.

(e) Leti € {0,...,nm} and let ¢ € G have order m' in G/H. Then Ap,,(¢') =0 if m' {i.

(f) Let B — B’ be any surjective homomorphism onto a domain B’ (so that B’ satisfies As-
sumption 3.2.21 automatically). Denote by D'y the reduction Dy @ B' and by D,: G —
B’ the unique pseudorepresentation whose characteristic polynomial is given by (8) modi-
fied so that Dy and D¢ are replaced by Dy and Dy, respectively. Then Dg ®p B' = Dy,.

Proof. By the Cohen structure theorem we have By, = k(p)[x1,...,zs]/] for some h € N>; and
some ideal I such that a power of (z1,...,xy) is a subset of I. Then th = k(p)*P[X1,...,zn]/1,
where the canonical inclusion B, — BSh is the strict henselization of By. It follows from As-
sumption 3.2.21(i) that the ring homomorphism ¢: B — B;h = HpeMin(B) Bsh is injective.
Hence we shall regard B as a subring of Bf}h via ¢, and by Assumption 3.2.21(ii) there ex-
ists a representation p,: H — GLn(Bf)h) such that detop, = Dy ®p B,S7h. Define Dg as
det o Ind% p,: G — GLyyp, (Bf]h). Then (8) holds for D¢ by Lemma 3.2.20. Obviously the right
hand side of (8) has coefficients in B. Thus by Proposition 3.1.14 the pseudorepresentation D¢
is already defined over B, and by the same result D¢ is uniquely determined by the coefficients
of Xp. It remains to prove the properties listed in (a)—(e).

To see (a) note first that formula (8) is preserved under base change to x(), i.e., the formula
still holds if we replace simultaneously Dg by Dgz and Dy by Dy z. By the construction of
pz one has x,. = XDy, and by Lemma 3.2.20, the right hand side of (8) over x(7) is equal to
XindG py Lhis proves (a).

Part (b) follows immediately from (8): it suffices to verify the continuity of the characteristic
polynomial coefficients, and this may be done on the open cover gH, g € G. On each open of
this cover, (8) describes these coefficients. Since Dy and hence the Dgl) are continuous and
since gh — (gh)™ is continuous, the result follows.

Next, the formula in (c) clearly holds over B,S7h since there Res% Ind% Py = Syeq/H py. Because
¢ is injective, taking characteristic polynomials, formula (c) holds.

The first half of (d) is proved by an argument analogous to the proof of Corollary 3.2.13(i).
To see the further assertion, one proceeds similar to the proof of (c), using however the injec-
tion : ®p B': B' — Bflh ®@p B'. Part (e) is immediate from (8), since the right hand side is a
polynomial in t™. Part (f) is clear, since we may tensor (8) over B with B’ and since a pseu-
dorepresentation is uniquely determined by its characteristic polynomial by Amitsur’s formula;
see Proposition 3.1.14(i). O

Definition 3.2.24. We call the pseudorepresentation Dg from Theorem 3.2.23 the induced
pseudorepresentation of Dy under H C G and write Ind% Dy for it.
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Lemma 3.2.25. Suppose that Assumption 3.2.21 holds, that U C Spec B and 1 are as in
Theorem 3.2.23(d), and that x is a point of U of dimension 1 with corresponding prime p €
Spec B. Then the following holds:

(i) Dy ®p k() is equal to det o), for v, = @p k(x);
(ii) we have Ind$(Dy ®@p B/p) = (Ind% Dy) ®p B/p;
(iii) if Dy is continuous, then so is Ind% (Dy ®p B/p).

Proof. Assertion (i) follows immediately from x € U. Part (ii) is a special case of Theo-
rem 3.2.23(f). Finally, assertion (iii) follows from Theorem 3.2.23(b) applied to B/p since the
continuity of Dy implies the continuity of Dy ®p B/p. O

The hypotheses in Assumption 3.2.21 clearly hold for B = F?!8, for instance by Remark 3.2.22.
In this case for later use we record the following result.

Lemma 3.2.26. Let D: G — F218 be a continuous pseudorepresentation and Sy be the set of
pseudorepresentations D' Gkay — Fale satisfying Indgi(l) D' =D.

(1) Sp is finite.

(i) If D = D(1), then S5 is nonempty.
In particular, there is a finite extension F' of F such that D and any D' e Sp are defined over F'.

Proof. The first assertion follows from Corollary 3.1.71. If D is irreducible, then this follows
from Theorem 2.3.4. In general one uses the ideas from the proof of Corollary 2.3.6. This is
quite straightforward. O

3.2.3 Loci of regular and singular pseudodeformations in special fibers

We first define the twist of a pseudorepresentation with a character. Next we consider the
closed locus of pseudodeformations that are invariant under certain twists. Finally, we show
that certain irreducible points are regular if (, ¢ K and form open loci. If {, € K, then
the regular locus is empty and if in addition n 1 p we instead consider regular points in the
nilreduction.

Throughout this subsection, we fix an n-dimensional residual pseudorepresentation D: Gx —
F.

Definition 3.2.27. Let S, S’ be A-algebras, let D: S — S’ be a multiplicative A-polynomial
law and let r: S — A be an A-algebra homomorphism.

(a) The twist D @ r of D by r is defined by
(Dor)p:=Dp®rg: S®aB— S ®4B, s+——r(s)-Dpg(s), VB € Ob(CAlga);
it is indeed a multiplicative polynomial law S — S’; we omit the elementary details.

(b) Suppose S = A[G] and x: G — A* is a group homomorphism. Denote by ry: S —
S5 agg — Y agx(g) the induced A-algebra homomorphism. Then the twist D ® x of D
by x is the multiplicative polynomial law D & r,.

Remark 3.2.28. Let the notation be as in the above definition.
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3.2. Geometric loci of universal pseudodeformation spaces

(a) If D is homogeneous of degree n, then so is D ® r. Moreover, if D is an n-dimensional
pseudorepresentation, then this is also true for D ® r.

(b) If D and r are continuous, then so is D ® r.

(c) For the characteristic polynomial coefficients one has the identities

Apgri(s) = Api(s) - (r(s))" for alli and all s € S.

Lemma 3.2.29. Let D,D’: S — A be pseudorepresentations and let v: S — A be an A-algebra
homomorphism. Then D' = D @ r if and only if Ap/;i(s) = Ap.i(s) - (r(s))" for all i and all
seS.

Proof. By the previous remark it suffices to prove the if-direction. However, this follows from
Proposition 3.1.14(i), which says that a pseudorepresentation is determined by its characteristic
polynomial coefficients. O

Corollary 3.2.30. Let D: G — A be an n-dimensional pseudorepresentation of a group G and
x: G — A* a character of finite order prime to p. Then D = D ® x if and only if

Api(g) =0 if ordx(g)ti foralli=0,...,n and g € G.
Proof. By Lemma 3.2.29 we have D = D ® x if and only if
Api(g) = Api(g) - x'(g) for alliand all g € G.

Since 1 — x*(g) is a unit in F*& whenever ord x(g) { 4, and is zero otherwise, the latter is clearly
equivalent to the condition given in the corollary. O

Corollary 3.2.31. Let D := Indg Dy : G — B be the pseudorepresentation that was constructed
in Theorem 3.2.23 under Assumption 3.2.21 on B and Dy: H — B. Then D = D ® x for any
1-dimensional character x: G/H — A*.

Proof. This follows from Lemma 3.2.20 and Corollary 3.2.30. O

Corollary 3.2.32. Let R € Ob(;GW(F)), let D: G — R be an n-dimensional pseudorepresen-
tation and let x: G — R* be a character of finite order prime to p. Let I be the ideal of R
generated by the set

{Api(g) : g€ G,ie{l,...,n} such that ordx(g) fi}.
Then the locus of Spec R on which D = D ® x is the closed subscheme Spec R/I.
Proof. This follows as one has for any ideal J of R:
(D®rR/J)@x=D®rR/J] <<= ICJ. O]
Definition 3.2.33. Let R be in ;GW(F) and let D: G — R be any pseudorepresentation.

(a) For i € Z we write D() for the twist of D by the i-fold tensor power of the Teichmiiller
lift of the mod p cyclotomic character of Gx (which has order dividing p — 1).

(b) If §, ¢ K, we call D special if D = D(1) and nonspecial otherwise.
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3. Equidimensionality of universal pseudodeformation rings

Definition 3.2.34. Suppose ¢, ¢ K.

—~univ

(i) (Y%ﬂv)D( =D ¢ XquV denotes the locus of special points and (X7 )PM#P its comple-
ment (X2) < (X&)D()=D.

(ii) The intersections (Y%ﬁv)i”’l)(l#D = (_Y%ﬁv)i” (XIZ‘)HW) M#D and (X Bmv)‘” DM)=D . —
(X DN (X )PO=L where (X5 )™ as in Definition 3.2.1, denote the loci of non-
special irreducible and special irreducible points of Y%l " respectively.

Note that if D # D(1), then (Xp " )imPO#D — (XHH )i,
Lemma 3.2.35. If (, ¢ K, then we have the following:
(i) (Y%liv)D(I#D C Y@W is Zariski open.
(ii) (X umv)l” DO#D XD is Zariski open.
Proof. By Corollary 3.2.32 the locus (Y%ﬁv)D(l):D - Y%liv is Zariski closed, and this implies (i).

Part (ii) follows from (i) together with Lemma 3.2.2. O

univ

Proposition 3.2.36. Suppose dim XD > 1. Then in each of the nonempty components of the

Jollowing spaces, points of dimension 0 and 1 are very dense. Moreover the first 3 are Zariski

open, the middle one is locally closed and the last 3 are Zariski closed in Xllljmv'

(Xlll)mv)reg, (Y%Uv)irr’ (Y%nv)irr,D(l);ﬁD’ (Y%“V)irr,D(l) (XEHW)D(l):D’ (Y%“V)sing, (Y%nv)red.

Proof. The assertions on openness, closedness and local closedness follow from Lemma 3.2.35
and Lemma 3.2.2, and for (-)™& and (-)*" from [ECA IV, Thm. 6.12.7]. The density assertion
follows from Lemma 2.1.20. O

Remark 3.2.37. Note that Y%l "V contains precisely one closed point, namely D. So typically
dimension 1 points are very dense. Moreover, dim X an \{D} =dim X quV — 1.

( umv)lrr ,D(1)

The following shows that #D is contained in the regular locus.

Lemma 3.2.38. Suppose that U := (Y%liv)i”’D(l)#D N {mpui } is nonempty.  Let x be a
D

dimension 1 point of U. Denote by RP the universal pseudodeformation ring of the associated
pseudorepresentation Dy G — k(x),g — 1 @ww) Dz(g), from Corollary 3.2.13. Then RP is

reqular and dim RP =dn?+1. Moreover, U is reqular and equidimensional of dimension dn?>.

Proof. Consider the Galois representation p,: Gx — GLy(L) with det p, = D}, ®,(,) L from
Theorem 3.1.50 that is defined over a finite extension L of x(z). By assumption, p, satisfies
pz 2 pz(1) so that the regularity of RP follows from

H*(Gi,ady,)” = H%(Gk,ady, (1)) = Homg, (ps, pz(1)) = 0,
using Theorem 2.2.16. By the Euler characteristic formula of the same theorem we also find

dim R? = dim;, H' (G, ad,,) = dn® + dim H*(Gf,ad,,) = dn® + 1.

It follows from Lemma 2.2.12 that z is a regular point of X7 " of dimension dn? +1 — 1 = dn?.
Since x lies on U, it is also a regular point of U. To see that U is regular, let Y C U be the closed
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3.2. Geometric loci of universal pseudodeformation spaces

subscheme of singular points. We know that points of dimension at most 1 will be dense in the
constructible set Y. Since the unique closed point of Y%l " is not in U, points of dimension 1 are
dense in Y C U. However as we just saw, such points are regular and cannot lie in Y. Therefore
Y must be empty. And again by the density of dimension 1 points in U, it follows that U is
regular and equidimensional of dimension dn?. O

It will also be useful to have a weaker result on (X5 iv)i”.

—~univ

Lemma 3.2.39. Let x be a dimension 1 point of U := (Xp )™ ~ {mzuniv }. Denote by RP the
D

universal pseudodeformation ring of the associated pseudorepresentation D :G — ﬁ(x),g —
1 Qw(r) D, (g), from Corollary 3.2.13. Then RP is a complete intersection ring with dim R® €
{dn? 4+ 1,dn?® + 2}. Moreover, U is of dimension at most dn® + 1.

Proof. By exactly the same computations as in the previous result, we obtain a presentation
0—=1—= k(@)[X1,..., Xg210] = Ry — 0, where the ideal I is generated by at most one element

over k(z)[X1, ..., Xgy242]. This proves the claims on ]/%p. The remaining assertion follows from
the density of dimension 1 points in U and Lemma 2.2.12. O

Let us give one further variant of the previous two results.

—~-univ

Lemma 3.2.40. Let x be a dimension 1 point of U := (Xp )™ ~ {mzuniv}. Denote by RP the
D

universal pseudodeformation ring of the associated pseudorepresentation D.: G — k(z),g —
1 @w &) Dz(g), from Corollary 3.2.13. Let py be an absolutely irreducible representation over
a finite extension L of k(x) such that detop, = Dy ®yq) L. Suppose that (, € K and
HO(GK,m) = 0. Then }?Efed is complete reqular local of dimension dn® 4+ 1. In particular, if
pfn, then Useq is regular and equidimensional of dimension dn?.

—univ

Proof. 1t follows from Corollary 2.2.18 that (R,
dn? + 1. From Proposition 3.1.61 and Proposition 3.2.14 we deduce RUDTV Qu(z) L = EE:W, and

the assertion on Efed follows. Since pfn implies that H°(Gk,ad,,) vanishes, the remaining
assertion follows from the density of dimension 1 points in U and Lemma 2.2.12. O

)red 18 complete regular local of dimension

The following proposition summarizes some of the results we have obtained so far:

Proposition 3.2.41. (i) Let det D be the determinant of D as defined in Ezample 3.1.9.
Then the canonical morphism
. univ univ
det: X5 — X W%
from Ezample 3.1.25 is smooth at a point x € (Xp )™ with dimz = 1 (and with p, an ab-
solutely irreducible representation defined over a finite extension of k(x) whose determinant

is equal to Dy ) if one of the following conditions holds:
(1) px(l) F pas
(2) ¢, € K and H°(Gk,ad,,) = 0; note that the second condition is implied by p fn;
(ii) For x € (Y%liv)irr one has pz(1) = py if and only if py is induced from Gk () C Gk, by
Theorem 2.5.4. Moreover, if ¢, & K the locus
(X YmPOD = (o € (KE™V™ : pa(1) 2 )

. . . . . Funiv . L . <Funivy;
of nonspecial irreducible pseudorepresentations in X5 = is Zariski open in (X7 ).
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3. Equidimensionality of universal pseudodeformation rings

(iii) One has

(1) (Xp")rmPOAD C (X5 if G, ¢ K, and (X" =2 if G, € K.
(2) (X%nlzd)‘” (Xan“;d)reg if n fp, where XD red denotes the nilreduction of XDmV.

Proof. Part (i) follows from Lemma 2.2.17, Proposition 3.2.14 and Proposition 3.1.61. Part (ii)
and Part (iii)(1) follow from Lemma 3.2.38, Corollary 2.3.6 and again Proposition 3.2.14.
Part (iii)(2) follows from Lemma 3.2.40 and the last part also uses Corollary 2.2.18. O

3.3 Equidimensionality of special fibers and Zariski density of the regular locus

Recall that we fix an algebraic closure K8 of an extension K of Qp of finite degree d = [K :
Qp] with absolute Galois group Gk, a primitive p™ root of unity (p, and a finite field F of
characteristic p.

This section inductively proves Theorem B (Theorem 3.3.12) on the equidimensionality of the
special fiber of a universal pseudodeformations space. Our proof proceeds with the same steps
as Chenevier’s proof of the equidimensionality of the generic fiber of the universal pseudorepre-
sentation space.

In Subsection3.3.1, Theorem C (Theorem 3.3.1) on the Zariski density of the irreducible locus
is established with the help of two technical lemmas.

In Subsection 3.3.2, Theorem 3.3.6 gives an upper bound for the dimension of the locus of
special (irreducible) pseudodeformations.

This enables us to prove the equidimensionality in Subsection 3.3.3: The base case is Propo-
sition 3.3.11, and the induction step is shown with the help of the proven Theorem C (Theo-
rem 3.3.1).

If , ¢ K, Theorem D (Theorem 3.3.13) says that the reducible locus and the locus of special
irreducible pseudodeformations are contained in the singular locus. We finish Subsection 3.3.4
by describing the regular locus of a universal deformation ring and showing that it satisfies
Serre’s condition (Rp) if (, ¢ K, and either n > 2, or n = 2 and d > 1, as stated in Theorem E
(Corollary 3.3.15).

3.3.1 Zariski density of the irreducible locus

The aim of this subsection is an analog of the Zariski density of the irreducible locus in the
generic fiber [Chell, Thme. 2.1] that we formulate as a result suitable for an induction.

Theorem 3.3.1 (Theorem C). Given n > 2. Suppose that for all D': Gk — F of dimension
n' < n the following hold:

(i) Y%}iv is equidimensional of dimension d(n')? + 1,
(i1) if ¢ ¢ K, then (X umv)lrr DA#D - Yuﬁl}iv is Zariski dense,

niv 111'11V ) irr

(iii) if ¢ € K, then the regular locus (X5 )™)™8 of (X ", is Zariski dense in Y%llir‘éd.

Then for all n-dimensional D: Gg — F the subspace (XD Y e Xp Y is Zariski dense, unless
n=2 and K = Qy and D is reducible.

In the missing case n = 2, K = Qy and D reducible, we have the following:
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Remark 3.3.2. Let D: Gg, — F be a split 2-dimensional pseudorepresentation, so that D =
D1 @ D, for 1-dimensional pseudorepresentations D; — we call them sometimes p; to stress that
they are also representations. Suppose that p; is not isomorphic to pa(l) for I € {0,£1}. Then
H I(Gva pi ,0]-_1) = F for i # j in {0, 1}, and so up to isomorphism there are unique 2-dimensional
representations p; ; that are a non-trivial extension of p; by p;. In this situation it is proved in
[Pas17, Prop. 3.6] that one has isomorphisms

univ. ~v puniv
RQp, RQPvPi,j

for both choices of 7, j. Moreover, as Paskunas explains, it follows from [Chell, Sec. 4] that for
p = 2 one has

RS 2 W (F)[Xol /(X3 — 2X0)[X1. .. X,

and for p > 2 there is an isomorphism Rum" ~ W(F)[Xy,...,X5], as follows from an easy
computation using Galois cohomology. Thls has two consequences, we would like to mention:

—univ —univ

(a) If p = 2, then the ring (Rg, p)rea = F[X1,...,X5] is regular. Since (Rg, 5)™? has

—~-univ

dimension 4, it follows that (X Q2 ) is Zariski dense in Yg;vﬁ We cannot deduce this
from Theorem C (Theorem 3.3.1). We expect that similar explicit computations in the
only remaining case (for p = 2) when D; = D5 also yield the same density result. We
have no proof though.

(b) If p > 2 then REWD = F[Xy,...,X5] is regular. In particular, the presence of a reducible
locus in a pseudodeformation space need not cause singularities if K = Q,; cf. Theorem D
(Theorem 3.3.13).

For the proof of Theorem C (Theorem 3.3.1) we follow closely the argument of Chenevier;

with some adjustments.
quV

—_ XUHIV
FlGk]mn
For ni,ne € Ny with n = ny 4+ no, the addition (D17 Dy) — D & Dy of pseudorepresentations

—univ —univ
]F X,

ni
points, defines a morphism ? XSpf]F X,
denote by iy, n,. Fix a residual pseudorepresentation

We first recall some constructions from Corollary 3.1.72: For n € Ny we set X,

X", Passing to the formal completion at Fag
—suniv
— X

n

yields a morphism ¢y, n,: X

—Suniv . .
of formal F-schemes, which we again

E: GK—>F

—Suniv

— X

n

—=univ

of dimension n. Then the pullback of the latter morphism under X5 = : - = Spf Ry

gives a morphism
—Suniv —5univ
Lﬁ,nl,’rm : D,ni,n2 XD )

which is a closed immersion by Corollary 3.1.72 if D is split and multiplicity free. By possibly
enlarging F, using Corollary 3.1.72 we will assume that we have an isomorphism

—~Suniv —5univ —suniv ~  —suniv
Xﬁ7n17n2 = ’I'Ll,ng (XD ) = |_| Spf(RD ]F/RD )
D;eX unlv(Spf F) for i = 1,2 and D1@®D2=D

5 Arguing as in Lemma 3.3.14 one can show that the dimension is at most 4; by considering semisimple diagonal
representations and invoking Proposition 3.3.11 it is at least 4.
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3. Equidimensionality of universal pseudodeformation rings

where the union on the right is finite. For the following lemma we consider the corresponding
affine scheme

—univ —suniv

—univ —=_un:
Xﬁ,nl,ng T nl,n2 (XD ) |_| SpeC(RE ]F/RDQ ) (9)
EeX“”‘V(lF) for i = 1,2 and D1®Do=D

1

together with the induced morphism

—univ —univ

“Dinimo " ADning XD (10)

that is a closed immersion if D is split and multiplicity free.

—univ

Lemma 3.3.3 ([Chell, Lem. 1.1.]). Let (z,21,72) € Xp ), be such that the pseudorepre-
sentations Dy and Do corresponding to x1 and o, respectively, are irreducible. Consider a

geometric point T lying over x € X%mv Then there is an étale neighbourhood (U,u) of T in
Xquv with an étale morphism py: U — Y%nv such that the base change of D ony s along @y,

, the morphism

—univ ‘Dinqng —~univ

U X¢U7Xun1v XD N1, U X¢U7Y%uv Xﬁ = U,
is a closed immersion with image U™ = U x oy (X5 red,
X D
Proof. By Proposition 3.1.16, the universal pseudodeformation Dunlv RLII)HIV[G K] — R}l)mv fac-
tors via the universal Cayley-Hamilton pseudodeformation
DGy S5 = R [Gr]/ CH(D™) = S$ @ s R — Rp'-

Consider the strictly local ring at =z,

O%;nw, = Oyquv7, —_— COhm( ) O(V)’

where (V,7) runs over all connected étale neighbourhoods of T in Y%liv [Stal8, Lem. 04HX].
Since the formation of the Cayley-Hamilton quotient g%H_umv commutes with arbitrary base

change [Chel4, § 1.22], for any étale neighbourhood (V,v) of Z there is an isomorphism

univ —CH-univ —
O(V)[Gkl]/ CH(DE™ @ gumiv owW)) =55 Dquie O(V) =: Sy

Similarly,

h —CH-univ h s
E%liv OSY%]N’:B) _> SD ®R|Bmv OSYHDDIV"’L' ==. SI

sh univ
O [Gi]/ CHIDE™ &

From Theorem 3.1.50 it follows that S, is a generalized matrix algebra of type (ni,nz2) with
determinant D, := D“m" ®fumv (’)ﬂlmv . In particular, there exists idempotents ej,es € S,
s
with e; +e9 = 1 and for i = 1 2 an 1somorphlsm Yy e;Sze; — Mat,, (Oﬂl‘mw ), whose inverse
T
defines an injective homomorphism

. h <
77/}5/07i . Matm (O%%niv,x) — S;E
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of Oﬂlumv -algebras. Since Mat, (Oilumv ) = colimy 3 Mat,, (O(V)) and S, = colim y/ 7 Sv,

we deduce from [EGAIV3, Thm. 8.5. 2] that there exists an étale neighbourhood U and for
¢t = 1,2 a homomorphism

@DUZ Mat,,,(O(U)) — Sy satisfying @Z);],i Ro) O%l@iv = qﬁ:’m
D 9

such that also szl is injective, since ker¢ is finitely generated [EGA IV3, Cor. 8.5.8(ii)].
By abuse of notation, for : = 1,2 we let e; € Sy be the idempotent that is the image under
—CH-univ —suniv

Yy, of the identity matrix in Mat,, (O(U)). Since S is finitely presented as an Ry -
module [WE13, Prop. 3.2.2.1] and e;Sye; Row )(’)}univ = €;Sze;, by [EGATV3, Thm. 8.5.2
D

and Cor. 8.5.2.4] we know that for i = 1,2 the isomorphism v, ;: €;Sze; — Matni((’)%luniv )
D T

spreads out to an isomorphism ¥ ;: e;Sye; — Mat,, (O(U)). Consider the n-dimensional pseu-
dorepresentation Dy := D%li" ®univ O(U) that satisfies Dy ®o) O;luniv = D,. Since E%l v
D D T

is Noetherian, the kernel Ky of the homomorphism tr —7p,, o ¢,
tr —7p, o (Y1, Pye): Maty, (O(U)) x Maty, (O(U)) — O(U)

is finitely generated and thus Ky must vanish after possibly shrinking the étale neighbourhood U
[EGAIV3, Cor. 8.5.8(ii)].

Therefore, we may assume that Sy is a generalized matrix algebra of type (ni,n2). In
particular, there exist O(U)-modules A;2 and Ag; such that

g g< Matnl(O(U)) Matnl’nQ(Alz) )
U=\ Matpyn (A21) Mat,,(OU)) )°

Let I = Aj9.A91 4+ A1 A12 = Aj2.A21 be the ideal of total reducibility. From Proposition 3.1.48(i)
we deduce that there exist unique pseudorepresentations D;: e;Sye; — O(U)/I for i = 1,2 such
that

(DU mod I) = D1 & Ds.

Consider the locus of total reducibility F' := Spec(O(U)/I), the natural closed immersion
f+ F — U, and the morphism pry: U — Y%uv corresponding to the pseudorepresentation

—univ

Dy mod I. Let g: F — X5, ,, be the morphism corresponding to the O(F)-valued pseu-
dorepresentations (Dy mod I, Dy, D). Then the morphism ¢y o f corresponds to the O(U)/I-
valued pseudorepresentation Dy mod I and there is a commutative diagram

g D,ni,n2
f iLD ny,ng
YU —=Funiv
U Xp

since py o f and 15 ., ny © 9 both correspond to Dy mod I = D1 & Dy. To deduce the assertion

—univ

of the lemma, we want to show that F' = Spec(O(U)/I) is isomorphic to U X —uwiv X5,

so that

U:X

. L=
—~>-univ D,ny,ng U
i/ X ——univ XD nl n2 >
U, XD [
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is a closed immersion of affine schemes. That is, by [Stal8, Def. 01JP] given any connected

affine scheme V together with morphisms f': V — U and ¢': V — Y%rt i:l n, Such that the solid
diagram

U YU lenlv
commutes, we need to check that there exists a unique dashed arrow A making the diagram
comimute.

The morphism ¢y o f' = 15 g © g’ defines an O(V')-valued pseudorepresentation Dy, and
the morphism ¢’ a pair (D] DQ) of O(V)-valued pseudorepresentations D’ of dimension n; for

j = 1,2. The connectedness of V together with (9) implies that there are unique D eX umV(IF)
for i =1,2 and D] € X%‘?i"(O(V)), such that Dy = D{@®D). By Lemma 3.1.49 the base change

Sy = Sy Rowy,(fy» O(V) is a generalized matrix algebra of type (n1,n2). Therefore, we can
apply Proposition 3.1.48(ii) and conclude that the ideal

I':== I @ow) (- OV) = Az @ow),()- OV)

of total reducibility of Sy vanishes. In particular, there exists a morphism h: V' — F such that
(f")* factors as O(U) Ei O(F) UN O(V), as desired.
It remains to understand the image of the closed immersion g. Since the image of

—univ D1n11n2

U X —~univ XD ni,n

U
U, Xp

is clearly contained in U™, it remains to show that any point y € U™ lies in this image.
Suppose that D, is the reducible pseudorepresentation corresponding to the homomorphism

le)mv — O(U) — k(y). By Lemma 3.1.49 the base change S, := Sy Row) k(y)™# of Sy is also a
generalized matrix algebra of type (n1,n2). Since D, is reducible, there exists pseudorepresenta-
tions Dy, Da: G — k(y)alg such that D, = D1 @ Dy. By again applying Proposition 3.1.48 we
find that the ideal of total reducibility of the generalized matrix algebra Sy vanishes, that the two
pseudorepresentations Dy and Dy are the unique pseudorepresentations satisfying D, = D1 @ D>

and that, after possibly reindexing them, we have dim D; = n;. This shows the assertion. ]

In order to prove Zariski density of the irreducible locus, we need another technical result.

univ
n2

Lemma 3.3.4 (Cf. [Chell, Lem. 2.2)). Consider (x1,z2) € (YZTiV)i” xp (X, )% such that

T = lpy oy (T1,22) € aniv is defined over a local field k(x). Let Dy, Dy and D denote the
pseudorepresentations defined by x1, x2 and x. Consider the corresponding representations pg,
and ps, that are defined over a finite extension L of k(x). Suppose that py, 2 pz,(m) for all
m € 2.

(i) There exists a nontrivial extension p: Gx — GLy(L) of py, by puy, and HY(Gk,ad,) = L
The pseudorepresentation D, associated with p coincides with D @) L. The functor D,
of continuous deformations of p on Arp is pro-representable; we shall write R, for the
representing universal ring and pgni": Gr — GLy(R,) for a universal deformation.
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(ii) If (z1,22) € (YZTV)M’D(I#D XF (Yzziv)i”’D(l)#D, then R, is smooth over L of dimension

dimyp, txuniv ) = dn®*+1 with X;miv = Spec R,,.

(i11) If {, € K, then h := dimp, txuniv , = dn?+ 2, and R, has a presentation
0— fR—R:=L[x1,...,25] — R, — 0
for some f € R (that at this point might be 0).

Xy enote by R e unwersal pseudodeformation ring for D,, by ¢: vy X = pec R
w) Denote by RP th [ dod t D,, b Xy — X =8 RP
the map of L-schemes induced by sending p};“iv to its associated pseudorepresentation
_ngniv — det OpEHlV} and by ngI tXpuniv7p
spaces. Suppose that p' € kerdy, i.e., that

— t)?’x the induced L-linear map on tangent

o€ tyuniv , = D,(L[e])) satisfies detop’ = det op.
Then with respect to a suitable basis p’ has constant diagonal blocks and is upper triangular.
(v) For (x1,x2) as in (i), we have

dimy kerdp =dning —1 and dimpimdep = dn?® — dning + 2.

(vi) Suppose ¢, € K. Denote by @req: (X;,miv)red — ()/(\')red the morphism on reduced L-schemes
associated to ¢ and by d preq: t(Xpuniv)
Then

ey t()?)red,w the induced map on tangent spaces.

dimy kerdpyeq = dnine —1—6 and dimpimdg,eq = dn? — dning +2 — &'
for suitable 6,8 € {0,1} such that 6 + ¢ < 1.

Proof. By Theorem 2.2.16, the assumptions imply that
dimp, H2(GK7 Pz & p\z/g) = dimg, HO(GK’ Py & pxz(l)v) = dimy, HomGK (pxl ) p:fcz(l)) =0.
The Euler characteristic formula in Theorem 2.2.16 now gives

dimy, EXtéK (sz ) pxl) = dimg, HI(GK’ Pz @ p(\lt/g)
= dning + dimg, H(Gk, pr, © py,) + dimg H* (G, pay ® py,)
= dnins.

Thus there exists an nonzero element ¢ € Ext};K (Pys Py ) Setting p = < pgl pc > and
T2
applying Lemma 2.2.19 and Theorem 2.2.9 shows (i).

To show (ii), by Theorem 2.2.9 we need to show H?(Gf,ad,) = 0 and dimy, H'(Gf,ad,) =
dn? + 1. By the duality in Theorem 2.2.16, the first part is equivalent to Homg, (p, p(1)) = 0,
and this follows from Lemma 2.2.20 with x = F(1) and the hypotheses on (z1,z2) in (ii). The
other part follows from the Euler characteristic formula in Theorem 2.2.16:

dimy, H'(Gk,ad,) = dn® + dimj, H*(Gk,ad,) + dimj, H*(Gk,ad,) = dn* + 1 + 0.
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3. Equidimensionality of universal pseudodeformation rings

The proof of (iii) is identical to (ii) with the same references and analogous computations. The
point is that here we deduce Homg, (p, p(1)) = L from Lemma 2.2.20. We omit further details.

For assertion (iv), let us first explain how ¢ is constructed. The representation pgni" is the
inverse limit over n of the representations p}fﬁ" = pgni" (mod m}% ): Gk — GLn(R,/m% ) to

local Artin algebras. This yields an inverse system det op™iV

om. Of pseudodeformations of D,. By

the universal property of RP we obtain an inverse system of homomorphisms RF — R, /m’}%p in
Ar L, and in the limit a homomorphism RF — R,. The morphism ¢ is its induced morphism on
spectra X;)mi" — X.

For the proof of (iv), we use the canonical identifications (see [Maz97, Prop., p. 271])

1%

D,(Lle]) = txuniv  and PsDp,(L[e]) 2ty (11)
to identify ker dy with the L-subspace of D,(L|e]), which consists of the deformations of p to L[e]
that map under d ¢ to the trivial pseudodeformation to L[e] of the residual pseudorepresentation
D, associated with p. By definition, the residual pseudorepresentation D, is multiplicity free
and split. Hence we can apply Theorem 3.1.50 to the trivial pseudodeformation D, : Gx — Lle]
associated with p’. It provides L[e]-submodules A;5 and A so that

. Mat,, (L[e])  Maty,n, (A12)

im (p') = L[e][G kerD/%< " nn2

(p) [ H K]/ ( P ) Matmm (A21) Matm(L[s])

is a generalized matrix algebra of type (ni,n2) with determinant D,. Since p is a nonsplit
extension, Aj2 mod € = L or A2; mod ¢ = L. Since furthermore A2 and Ay are ideals in L[¢]
and thus equal to 0, eL or L[¢], we deduce A3 = L[e] or A9 = L[e]. We assume that A9 = Lle].
By assumption D, is a trivial deformation of Dy = D,, ®D,, so that by Proposition 3.1.48(ii)
the ideal of total reducibility Aj2.42; vanishes. Therefore, As; = 0 and im p’ is upper triangular.
By hypothesis, ps, and py, and their respective associated pseudorepresentations Dy, and D,
are irreducible. By Theorem 3.1.26 constancy of D, and D, implies constancy of pg, and pa,.
Since D, is a trivial deformation of Dy = D,, & D, we deduce that the non-split extension
p is constant on its diagonal blocks p,, and py,.

To show in (v) that dimy kerdy = dnins — 1, we consider lifts p1,p2 of p to L[e] whose
associated deformation classes satisfy [p1] = [p2] € kerdp C t Xuniv = D,(L[e]). By assertion
0 C;
0 0
dimy, ker dp, we determine when p; is equivalent to ps. In this case there exists a matrix
U € Mat, (L) such that

0 (&)
pt+e 0 0 = P2

=(1+eU)p1(1—-¢U)

:(1+5U)(p+5<8 %1 >)(1—5U)

(iv) we have p; = p+¢ < ) for some cocycle ¢; € ZY (G, pe, @ py,)- In order to obtain

. . 0 C1
=p+eUp pU—i—(O O>)

Ui Ui2

If ite U =
we write < Upi Usy

) with matrices Us; € Maty, xn; (L) for 1 <i,j < 2, then the above
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3.3. Equidimensionality of special fibers and Zariski density of the regular locus

equality is equivalent to

( 02— > _ < Ui1pz,  Unic+ Ui2pa, > B ( pz Ui + cU2t - pa, Uiz + cUs2 >
0 0 U21pz,  Uzic+ Usapa, Pz U1 Py Us2

Because dim;, H(Gx, pa, ®p¥j) =0 and dimy HY(Gg, ps, @ py,) =1 for 1 <i,j <2 and i # j,
we deduce that Us; = 0 and that U;; and Usg are scalar matrices. Finally, the map

—pay Utz + Ur2ps, € BHGK, psy ® Ps)
is a coboundary. Therefore, co = (Uyy + Usa)c+ ¢ € HY (G, pzy ® py,) and
dimyz, ker dy = dimp, ExtéK(pIQ, pry) — 1 =dimp HY (G, pe, ® Pa,) — 1 =dniny — 1. (12)

Now (v) is immediate from (ii) and dim V' = dimker 4 dimim for a vector space V and a
linear map v with domain V.

For (vi) consider the following diagram with left exact rows and where the middle and right
vertical arrows are injective (by definition of t):

de

0 ker ¢ txuniv , ———>tg D,
T JA dtpred JA
O —> keI" Pred > t(XEniv)redap —_—> t(X)redva .

By a simple diagram chase one deduces ker preq = ker ¢ Nt Xumnivy, 0 C t Xuniv - Next consider
the diagram

0——kerdp ——txuwiv , ——imdp—0

p
T
0 E—— keI‘ dg@red — t(Xgniv)red,p —_— lm d @red - O

with exact rows and where the left and middle vertical arrows are injective. Because of ker p,eq =
ker p Nt Xniv), 40 the map 7 is injective, and we deduce from the 9-Lemma that dim coker o +
dim coker v = dim coker 8. Now from (iii) we have dim R, = dim(R))yea € {1+dn?,2+dn?} and
dimt Xuniv p = dn?+2. One deduces that dim coker 3 € {0, 1}, and the assertions on dim coker «
and dim coker v needed to complete (vi) are immediate. O

Proof of Theorem C (Theorem 3.3.1). We suppose to the contrary that there exists a nonempty

—univ —~univ

open affine V. C X5, such that (X3, )™ NV = @. Since V # SpecF and the one-dimensional

points are very dense in Y%] iv, by Lemma 2.1.20 there exists a 1-dimensional point € V' that
defines a reducible pseudodeformation

D,: Gg — k(x)

of D such that x(z) is a local field. By Lemma 3.2.11(iii) there exist a finite extension L' /k(z)
with finite residue field F’ O T, residual pseudorepresentation D;: Gx — F’ of dimension n; for
some n; € Ng with n1 + n2 = n, and pseudorepresentations Dy, Dy: G — O/ corresponding
to points (z1,x2) € Yuﬁnlw X Yuﬁn;v such that Dy ®,(,) L' = (D1 ® D2) ®0,, L.

Now the inverse image of V' under YDony s from (10) is an open neighbourhood of (z1, z2). It
now follows from hypotheses (ii) and (iii) that we may assume the following
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3. Equidimensionality of universal pseudodeformation rings

a) if (, ¢ K, then z; € U; := Ygiv i D#D for § = 1,2;
( ) P D,

(b) if {, € K, then z; € U; := (X, )I))™8 for i = 1,2.
If ny = ng, we may further assume Dy # Do(m) for all m € {0,1,...,p — 2}, because the X}g‘“
have dimension at least 2 and they contain exactly one closed point, and so the open U; have
to contain infinitely many dimension 1 points by Proposition 2.1.25. We also observe that by
Lemma 3.2.38 the schemes U; are regular in case (a).

Let © be a geometric point above x. By Lemma 3.3.3 there exists an étale neighbourhood

(U,u) of T in Xp = together with an étale morphism ¢p: U — X ?)nw such that the induced
morphism
L —<Funiv tD,nq,ng . —univ
W -— U X(pU’YEan LD,n17n2 D,nl,n2 U - U X@nyunlv XD

is a closed immersion with image U P (X5 )red. We may replace U by ¢y (V), which
is nonempty since x € V, and étale over V, and we may shrink W accordingly. By further
replacing U by an open subset (and accordingly W), we can assume that U is connected and
affine. Since W — U is a closed immersion, the scheme W is affine. But we also have that
W — U is surjective as a map of topological spaces, since all points of V' are reducible. Hence
the nilreduction of W — U is an isomorphism of schemes Wy.q — Uieq, and as a map of

topological spaces W — U is a homeomorphism Since the base change of étale morphisms is
—univ

étale, so is the map W — X5 =~ Xp YD that is the base change of ch under I,D PR C

shrink W (and hence U) to an affine open so that the image of W in Xp D Y xr X5 D hes in the

image of Uy X Uz in that scheme, and we write Wy — Uy x Us for the base change of py along
unl

Uy xU; = Xp V. We display the situation in the following diagram:

=
un1v un1v D,nq,ng uan

| 1 o

Wo w U

—~<Funiv <Funiv . . . . . . .
Since Uy x Uy — X, xp X7, is a homeomorphism onto its image and an immersion, it

follows that Wy — W is a closed immersion and a homeomorphism. Since U; x Uj is regular,
so is its étale cover Wy. We deduce that Wy — W is the nilreduction morphism, and in
particular Wy — Wyeq — ULeq are isomorphisms of (regular) schemes. Let wg € Wy be the point
corresponding to u € U under the homeomorphism Wy — U.

By Lemma 3.3.4 (i), there exists a nontrivial extension p: G — GL, (L) such that

H?*(Gk,ad,)” = H°(Gk,ad,) = L. (13)

Denote by RP the universal pseudodeformatlon ring for D, = detop. Consider its universal

pseudodeformation space X = = Spec RP and the universal deformation space X univ . Spec R,
of p. Then by Lemma 3.3.4 (iv) we have a canonical homomorphism

o XY 4 X

By Lemma 3.3.4 (ii) and (iii) we have a good control of the dimensions R, and by Lemma 3.3.4 (v)
and (vi) the induced map of tangent spaces
dso:tXEnlv —>th50
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3.3. Equidimensionality of special fibers and Zariski density of the regular locus

Note also the important isomorphism RF = (5\/,1 [T] obtained by combining Corollary 3.2.13
and Lemma 2.2.12

We now display this data together with some completed local rings from the previous diagram
in preparation for the completion of the present proof:

~ ~ ~ ~ #
©
OUl xUs,(x1,22) OV,m OV,x,red RP Rp
al ﬁl ﬁred \L l i
P re
OWO,wo OU,u OU,u,reda Rred - Rp,red~

~ .

Tred

Note that (5‘/7;E — @leUQ,(xlm) exists since the inverse image of the open V of Y%ﬁv under
D.ny.mp a0d the nilreduction morphism is an open neighbourhood of (x1,22) in Uy x Us. By
Lemma 2.1.16, the maps « and § are finite étale. By what was observed above for Wy — U,
the kernel of ~ is nilpotent. Moreover the ring @leUQ,(zl z2) 18 regular by hypothesis and hence
SO is (’)WO wo again by Lemma 2.1.16, and both have the same dimension. From /3 bemg étale
it follows that the induced map Seq is finite étale. Also the map Yieq: (’)Uured — OWO wo 18
an 1somorphlsm Hence (QUured is regular and Ov:c red 18 regular and of the same dimension
as OleU%(th) again by Lemma 2.1.16. It follows that R oq 18 regular and that its Krull
dimension is one more than that of (’)le Us,(21,22)"

Suppose first that we are in case (a). Then from Lemma 3.3.4 (ii) we deduce that R, is
regular and hence isomorphic to R, eq. Moreover from Lemma 3.3.4 (v) we have dimy imdy =
dn?® — dnins + 2. Now ¥ factors via f{fe q Which is regular and we deduce

—univ

dn® — dnins +2 < dim R® ; = dim Oy, xy 2y .29) + 1 = dimYD xp Xy =d(n?+n3)+2,

by the hypotheses (i) and (ii) — note that (z1,z2) is a regular point of dimension 1 on the

equidimensional scheme Yuﬁnll Xp X uDr;w. This implies that dnine < 0, which is absurd. We
reach a contradiction.
Suppose now that we are in case (b). Then from loc cit. we have dimy im dypeq = dn?

dning + 2 — ¢ for some ¢’ € {0,1}. Again using that R o4 is regular, we deduce
dn® — dning +2 — 8 < dim R®; = dim O, sy (21.20) + 1 = d(n? +n3) +2,

by the hypotheses (i) and (iii). It now follows that dniny < §’. The only case possible is thus
0 =d=mn1 =ng =1, and from ¢, € K = Q, it also follows that p = 2. Hence the proof of the
theorem is complete. ]

3.3.2  An upper bound for the dimension of special points

In order to prove Theorem B (Theorem 3.3.12) and later Theorem E (Corollary 3.3.15), we now
determine an upper bound for the dimension of the locus of special (irreducible) pseudodefor-
mations. This makes use of the fact that for semisimple representations over algebraically closed
fields being special is equivalent to being induced from H to G by Corollary 2.3.6.

Recall that K is a p-adic field with d = [K : Q). By x: Gx — F* we denote the mod p cyclo-
tomic character. We write K (1) := K((p) so that G (1) = kerx and we set m = [Gx : Gg)]-
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3. Equidimensionality of universal pseudodeformation rings

We often abbreviate G = Gk and H = Gg(;). We fix an n-dimensional continuous pseudorep-
resentation D: G — F, and we assume that F is sufficiently large so that D and its restriction
Res$ D are both split. Then both of them are the determinant of suitable representations defined
over IF, cf. Theorem 3.1.26 and Definition 3.1.27. If D = D ® ¥, then it follows from the exis-
tence of these representations and from Remark 2.3.5 that for a suitable pseudorepresentation
D': H — F one has

D=Ind§ D (14)

In general, D' isnot unique. In this subsection D' will always denote such a pseudorepresentation
H — IF, provided that it exists.

Definition 3.3.5. By Eg%D(l) we denote the quotient of R}?% by the ideal defining the locus
of points D such that D = D(1) holds; cf. Corollary 3.2.32.

In this subsection we prove the following result:

Theorem 3.3.6. One has

. —=D=D(1) . —Suniv G -/ —
dim Ry < max {dim Ry | mads D' =D}

(

Denote further by Y the closure in Spec EgzﬁD 2 of the set of irreducible points and, analogously,

niv

for each D' such that (14) holds, by Y& the closure in YuK(l)ﬁ/ of the set of irreducible points
— as topological spaces. Then one has

. . Gk 7 _ 7
dimY < II%%/X{dlm Yo | IndG‘;(l) D = D},

and moreover, the quantity on the right is bounded above by dmﬁ +2.6

Lemma 3.3.7 ([Hoc07, Prop. (d),(g)]). If R is a complete Noetherian local domain with perfect
residue field F and fraction field K, then [K : KP] < oco.

Lemma 3.3.8. Let R be a complete Noetherian local domain with finite residue field F and
fraction field K. Suppose that D: G — R is a pseudodeformation of D to R such that D =
D(1). Then the following hold:

(i) There exists a finite extension K' of K so that D@k K’ is the pseudorepresentation attached
to a representation p: Gxg — GLp(K').

(ii) The field K' of (i) may be chosen so that furthermore Resgi(l) p= @ieZ/(m) pi for pairwise
non-isomorphic semisimple representations p;: Gy — GLn/m(K’) satisfying piy1 = pf
and p = Indg’;m pi for all i € Z/(m); and so that all simple summands of the p; are
absolutely irreducible. Up to isomorphism, the number of possible p; is finite.

(iii) If D @g K is irreducible, then p in (1) and the p; in (ii) are absolutely irreducible.

(iv) Denote by R’ the integral closure of R in K'. Then R’ is finite over R, a complete Noethe-
rian local domain with finite residue field F' O T, and the pseudorepresentation D; attached
to p; takes values in R'.

6 We expect the last bound to be equal to dn? + 1. By Lemma 3.2.40, this bound holds if p /n.

m
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3.3. Equidimensionality of special fibers and Zariski density of the regular locus

(v) Fori € Z/(m) the pseudorepresentation D; := D;@p/F' satisfies Diy1 = D and if p; is any
semisimple representation over F' with pseudorepresentation D;, then Indgg(l) i = pRrF.

Proof. The argument for (i) is contained in [Chel4, Thm. 2.12ff.]. By Theorem 3.1.28 due to
Chenevier, there is an integer » € N>, a simple K-algebra S; of finite dimension nf over its

center k; for ¢ = 1,...,7r and an isomorphism

K[Gkl/ker D = ] S,
=1

where each k; is a finite field extension of K of degree at most n since [K : KP] < oo by
Lemma 3.3.7; moreover D = @;_, detgzi for m; > 0 such that n = >, m;n;fiq; as in Theo-
rem 3.1.28. By [Gro68, Cor. 3.8] there is a finite separable extension of k; of degree at most
n; that splits S;. We let K’ be a finite extension of K the contains splitting fields for all S;.
Then (i) follows.

Part (ii) follows from Corollary 2.3.6, after possibly enlarging K’ according to the last para-
graph of Remark 2.3.5. The finiteness assertion follows from the finiteness (up to isomorphism)
of simple factors of Resg(l) p @k K&, Part (iii) follows from (ii), the definition of irreducible
for pseudorepresentations and from Theorem 2.3.4.

For (iv), by Proposition 3.1.14 it suffices so show that the characteristic polynomial coefficients
of Dj lie in R’ for all i € Z/(m). For all g € G ) we have xp(g,t) = HiEZ/(m) XD, (g,t), where
xp(g,t) is a monic polynomial in R[t] and for all i € Z/(m) xp,(g,t) is a monic polynomial in
K'[¢]. Then all roots of xp,(g,t) for any i € Z/(m) are integral over R and thus the characteristic
polynomial coefficients are also integral over R. By normality of R’ in K’ the characteristic
polynomial coefficients lie in R'; cf. [Mat89, Thm. 9.2]. Finally, (v) follows from (ii) and (iv). O

Proof of Theorem 3.3.6. Let D}l;%: G — E%% be the universal mod p pseudodeformation of
the pseudorepresentation D: G — F, and define

two._ univ’D:D( ) llIllV D D(l) . *ti}V

as the composition of D‘;(ng with R?g — RN o , where Ry 5 is the quotient of R, K 5 parametrizing

)
univ

mod p pseudodeformations with D = D(1). We denote by DuKn(l1V)D Gray = RK(l),E’ the

universal mod p pseudodeformation for some DG k(1) — F such that Indgl’im D' =D. We
add the subscript red to a ring to denote its reduced quotient. Then by Theorem 3.2.23 we have
an induced pseudorepresentation

1nd G ni Huniv
D = IndH DI;((V) D’ Gk — RK(I) D' red = RD/ ;red”
By Corollary 3.2.31 we have DEE1 = Dﬂfi( ), and so by the universal property of D%W there

exists a unique homomorphism R 5 — RB’ which when precomposed with D%’V gives D%‘fi.

;red

Let now p be a minimal prime of E%N , denote by B, the quotient R%N /p and by k(p) the
quotient field of the latter. We consider the induced pseudorepresentation Dy: G — By — k(p).
We choose a finite extension x(p)’ of s(p) according to Lemma 3.3.8 and denote by B; the
normalization of By in k(p)’ such that

Dy ®(p) k(p) = @ (Dy)? @py r(p)’ (15)
geG/H
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3. Equidimensionality of universal pseudodeformation rings

for a suitable pseudorepresentation Dy: H — By. Let " be the residue field of By; it is a finite

extension of F. Note that (15) also holds without tensoring with x(p)’ if we regard D, as a
pseudorepresentation into By. The latter formula we may reduce from By to F'. It follows,

cf. Theorem 3.2.23, that the reduction D;j ®p; F" is isomorphic to D ®r F’ for some pseudorep-
resentation D : G — F such that D = Ind% D
Let B be the subring of B}, of elements that reduce to IF. Then By lies in Arg and D, takes its

values in By. By the universality of DuK“(iI’) L there is a unique homomorphism R o — By by
which Dy, is induced from D™ . Denote by B’ the image of R, in B]. The ring B} is a
;red p p

K(1),D
domain and so applying again induction for pseudorepresentations, Theorem 3.2.23 gives a pseu-
dorepresentation Ind% Dy G — By’ that deforms D by Theorem 3.2.23(f). By the universality

of D%’V and our construction of B{J we obtain necessarily injective ringhomomorphisms
" 1 /
By, — B," — B, — B,

such that Ind$ Dy, is the composition of D, with B, — B)’. Since B, — B, is finite by
Lemma 3.3.8, the same holds for B, — By, so that dim B, < dim B)". The ring By" is a quotient

of R;{n(ii’)j, and By = E%N /p. Since p € Min(ﬁtﬁw ) is arbitrary, this proves the first inequality.

The second inequality follows by the same argument as the first inequality: We note that
the irreducible locus is open by Lemma 3.2.2, and hence it is dense open in Y and in the Y
by their very definition. This implies that the pseudorepresentations D, that we consider will
be irreducible and by Lemma 3.3.8 that also the pseudorepresentations D,’J will be irreducible.
Hence to obtain the upper bound for dim Y it suffices to minimize over a possibly smaller set of
D' and for each D’ it suffices to only consider the space Y. Finally, the bound at the very end
follows by applying Lemma 3.2.39 to each of the Y. O

By Theorem C (Theorem 3.3.1) the locus of irreducible points is Zariski dense under a certain
induction hypothesis. If (, ¢ K we now prove that also the locus of nonspecial irreducible points
defined in Definition 3.2.34 is dense:

Corollary 3.3.9. Suppose that (Y%ﬁv)m is dense in Y%ﬁv. Then (Y%ﬁv)i”’D(l)#D is dense
open in Y%HV.

—-univ

Proof. Recall from Lemma 3.2.2, that the subset U := (X5 )" of X7 = is open. By our
hypothesis U is also dense. We assume that D(1) = D since otherwise there is nothing to show
—as D # D(1) implies the same for all pseudodeformations. In particular this implies 2 < m.
We also recall that the locus X := (X5 )PM=P is closed in X7 = by Proposition 3.2.36.

We need to show that X N U contains no open subset V' of U. We argue by contradiction
and assume that V exists. As a subset of X35 the set V is locally closed and hence points of

dimension 1 will be dense in it, since only the single closed point of Y%l " has dimension zero.
Let € V be a point of dimension 1. Denote by R, the completion of the local ring Oy.
Because V C X and dimx = 1, the last bound in Theorem 3.3.6 implies

~ dn?
dimR, <dmX —1< 3 11,
m

On the other hand, V is open in U, and it follows from Lemma 3.2.39 and Lemma 2.2.12 that
= 2
dim R, > dn?. We deduce dn? < % + 1, which is absurd since 2 < m and m|n. O
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3.3.3 Equidimensionality of universal mod p pseudodeformation rings

Under certain hypotheses on the n and on [K((,) : K], we now mductlvely prove the equidi-
mensionality of the universal mod p pseudodeformation ring X7 D = Spec RD Y of a fixed
n-dimensional residual pseudorepresentation D: G — F. Also we identlfy a dense open regu-
lar subspace of Y%t ol

Assumption 3.3.10. By replacing F with a finite extension that depends only on the dimension
of D, we shall assume that D as well as D|g K@) are split over IF; cf. Corollary 3.1.71.

We will proceed by induction on the dimension of the residual pseudorepresentation.

Proposition 3.3.11 (Base case). Suppose D has dimension 1, so that D is a 1-dimensional
character and pseudodeformations are deformations and vice versa. Let e € Ny be maximal such
that Cyn € K. Then the following hold:

(i) RWY = W (F)[Gpe][X1, - -, Xata].-

—suniv

(i) Ry™ 2 F[X1,..., Xgn] if G ¢ K.

(iii) RD red = F[Xq,..., Xay1] for any finite extension K of Q.

Proof. We regard D as a 1-dimensional Galois representation. Then the shape of the universal
deformation ring of D is well-known; see Corollary 2.2.18 and its proof. This proves (i). Parts (ii)
and (iii) are straightforward consequences. O

We now prove the main result of this work:

Theorem 3.3.12 (Theorem B). Suppose that p > n or that [K((p) : K] > 1. Then for any
n-dimensional pseudorepresentation D: G — F the following holds:

(i) Y%liv is equidimensional of dimension dn® + 1,

niv

(i1) if ¢ ¢ K, then (X umv)lrr DW#ED s open, reqular and Zariski dense in X5,

(i11) if ¢ € K, then (X umv)reg =@ and (Y%tgd)i” is open, reqular and Zariski dense in Yuﬁr?éd.

Let us note that for p = 2 the above theorem only carries the case n = 1.

—univ

Proof. Recall that we (X757 )™ = @ if (, € K by Proposition 3.2.41. For the other assertions
we proceed by induction. The base case n = 1 is covered by Proposition 3.3.11. Suppose now
that n <porl< [K(Cp) : K] and that (i) — (iii) hold for all pseudorepresentations D': G —F
of dimension n’ € {1,...,n — 1} and such that n’ < por 1 < [K'((,) : K']. It then follows from

—~-univ

Theorem C (Theorem 3.3.1) that (X5 )™ € X3 is Zariski dense (in the case p = 2 we must
have n = 1, and so there is nothing to prove).

Suppose first that ¢, ¢ K Then it follows from Corollary 3.3.9 that (X umv)l” DM#D i5 open
and Zariski dense in X5 . In this situation assertions (i) and (ii) follow from Lemma 3.2.38;

note that the open U from Lemma 3.2.38 has dimension 1 less than X5 = since it does not

——univ

contain the unique closed point Mpuniv of X5
D

—univ

Suppose now that ¢, € K. Then n < p, and it follows from Lemma 3.2.40 that (X5 red)l”

univ —univ

lies in (X5 e d)reg and that U := (X7 0q)™ ~ {mﬁ%rtix;d} is equidimensional of dimension dn?. Tt

follows that X7 ﬁmd is equidimensional and of dimension dn? + 1. O
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3. Equidimensionality of universal pseudodeformation rings

3.3.4 Zariski density of the regular locus and Serre’s condition (Rg)

Throughout this subsection we consider the universal mod p pseudodeformation space Y%l V=
Spec ﬁ%l " of a fixed residual pseudodeformation D: G — F of dimension n.
If ¢, € K, then by Proposition 3.2.41 the regular locus of Y%nv is empty. If ¢, ¢ K, then we

will now describe its regular locus and show that Rp  satisfies Serre’s condition (Ry).

Theorem 3.3.13 (Theorem D; cf. [Chell, Thm. 2.3]). If {, ¢ K, then the following hold:
(i) The closure of Xy 1= (XY YmDW=D figg ip, (T sins.
(ii) Ifn>2 or [K : Q] > 1, then Xy 1= (X V)red ¢ (X5 )sing 7

Proof. We know from Proposition 3.1.60 that Y%l " is a complete Noetherian local ring so that
by a theorem of Nagata [EGA IVy, Thm. (6.12.7)] its singular locus (X5 )*™2 is closed in X35
By Proposition 3.2.36 and Corollary 2.1.21, the points of X; of dimension at most one are dense
in X;, and since dim X; > 0, in fact the points of dimension equal to one will be dense. Note also
that case (ii) is concerned with the image of the spaces Yuﬁnlw X Yuﬁn;v under the maps UDony s
for all pairs (ny,n9) with n; > 1 and ny +ng = n and (D1, D) with D; @ Ds = D as in (10)
and (9). As in the proof of Theorem C (Theorem 3.3.1), to prove (ii) it will suffice to consider
points © = i35, 1, (1, x2) of dimension 1 such that the x; represent n;-dimensional irreducible
pseudorepresentations D; that lie in (Yuﬁw)i”’D (W#D and such that D is not isomorphic to
Dy(1) for any [ € {0,1,...,p—2}.

For points = of the shape identified above and a corresponding absolutely irreducible rep-
resentation p, for D, in case (i) and a pair of absolutely irreducible representations p,, for
D,., i = 1,2, of dimension n; in case (ii), defined over a finite extension L of k(z) so that
det op, = D,, we now show that the local rings 4] x,,z are not regular. To do so we shall show
that their tangent space dimension exceeds dimf%nv — dimx = dn?. For this we shall prove
that the tangent space dimension of the universal deformation ring EE:W in case (i) and the
universal pseudodeformation ring Eg:v in case (ii) are larger than dim Xp = = dn®+ 1, which is
equal to dim EE:W and dim Eg:v, respectively. To see that it is sufficient to show the singularity
of the latter universal rings, we make use of Lemma 2.2.12 and Corollary 3.2.13, as well as of
Theorem B (Theorem 3.3.12) and Proposition 3.2.14.

Let us first consider case (i). The required tangent space computation is standard and pro-
ceeds as in the proof of Lemma 3.3.4(ii): Using that

dimy, H*(Gk,ad,,) = dim;, H*(Gk,ad,, (1)) = 1

since D, = D,(1) one deduces dim H!(Gf,ad,,) = dn? + 2, and thus RE:N cannot be regular.

Let us now consider case (ii). To compute the tangent space dimension of jov, we make
use of [Bell2, Thm. A]. It provides an exact sequence

0 — H'(Gk,ad,, ) ® H'(Gk,ad,, ) — dimty  univ  Op(a) L

pecRp,

h
— EthGK (P15 Pzy) @ EthGK (P22 Pzy) — EXt%‘K (Pz1s Pzy) B EXt%‘K (P15 Prs),

" See Remark 3.3.2 for the case n = 2 and K = Q,.
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3.3. Equidimensionality of special fibers and Zariski density of the regular locus

where the map h is given by the Yoneda product. We conclude as in the proof of [Chell,
Lem. 2.4]: dimg, Hl(GK,adpxi) > 1+ dn?, dimy, ExtéK(pzi,pws_i) = dning, and the second
extension groups vanish. Hence

tSpecR'fj““’ = d(n? +n3) + 2+ d*nin3 > dn® + 1+ (dniny — 1)%
This dimension is strictly larger than dn? + 1, unless dnins =1, i.e., ny =ng = 1 and K = Q.
This proves the claim in case (ii). O

The following result will give a lower bound for the codimension of the singular locus X*®"8.

Lemma 3.3.14. If either n > 2, or n =2 and d > 1, then one has

—univ

max{dim(Y%ﬂv)red dim (X quv) M <dim X5 — 3.

Proof. We have (X 1ll)mv)red C Unynp—n tnine (Xny XF Xy, ). Therefore,

dim(Y%liv)md < max dimX,, +dimX,, = max d(ni4+nd)+2=d(n—-1)2+1)+2,

ni+n2=n ni1+no=n

and therefore

dim X2 — dim(Xa™ e > dn2 + 1 —d(n® —2n+2) —2 = 2d(n—1) -1,
which is at least 3 unless n = 2 and d = 1, in which case the bound is only 1. To complete
the proof we appeal to Theorem 3.3.6. It gives 2= ® 42 for an upper bound of the closure X of

(Y%“V)D O (Y%nv)red where m = [K(1) : K] > 2 and m divides n. Hence now

. d 2 d 2
dim X2 qim X > dn? + 1 — (i +2) >,
m 2
and again this quantity is at least 3 if either n > 2, or if d > 1 and n = 2. ]

Corollary 3.3.15 (Theorem E). Suppose that ¢, ¢ K and that either n > 2, or that n =2 and
—=univ

d > 1. Then (X quv)‘” DWED constitutes the regular locus of Y%ﬁ and it follows that Rp
satisfies Serre’s condition (Rz).

Proof. This follows from Lemma 3.3.14, Theorem 3.3.13 (Theorem D) and Theorem B (Theo-
rem 3.3.12). O
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4.1 Introduction and statement of main results

Deformation rings of Galois representations

Let Gk be the absolute Galois group of a finite extension K of Q, and let p: Gxg — GL,(F)
be a continuous residual representation for F a finite field of characteristic p. Let W (F) be the
ring of Witt vectors of F. We shall always write O for the ring of integers of a finite totally
ramified extension of W (IF)[1/p] and denote by me its maximal ideal and by we a uniformizer.
To simplify notation, we shall write O; for the quotient O/ wfo(’) for any integer ¢ > 1. Denote
by ad the adjoint representation of p, i.e., the representation on M, (F) induced from p by
conjugation and by ad® the subrepresentation on trace zero matrices. -

For p as above, we consider the deformation functor from the category Arp of complete
Noetherian local O-algebras (R, mp) to the category of sets defined by

Ds(R) :=={p: Gk = GL,(R) | p mod mp = p and p is a cont. repr.}/ ~

where p ~ p’ if there exists A € ker (GL,(R) mod Jun GL,(F)) such that o’ = ApA~'. An
equivalence class [p] of p under ~ is called a deformation of p. Since G satisfies the finiteness
condition ®, from [Maz89, § 1.1], by [Maz89, Prop. 1] with a slight strengthening by [Ram93]
one deduces:

! Corresponding author.
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4.1. Introduction and statement of main results

Theorem 4.1.1. The functor D always possesses a versal hull (Rp, mp) which is unique up to
isomorphism. If in addition Endg, (p) =F, then D; is representable and in particular (R, mp)
s unique up to unique isomorphism.

We denote by ps: G — GL,(R;) a representative of the versal class.
For later use, we recall parts of the obstruction theory related to Dj;. Suppose we are given
a short exact sequence
0—J — R — Ry — 0,

where the morphism R; — Ry is in .,/4\r@, and my - J = 0 for my the maximal ideal of R; such a
diagram is called a small extension of Ry. Suppose further that we are given a deformation of
p to Ry represented by pg : Gx — GLy,(Rp). Then Mazur defines a canonical obstruction class

O(po) € H*(G,ad) ® J

that vanishes if and only if py can be lifted to a deformation p; : Gxg — GL,(R1) of p, see
[Maz89, p. 398]. By elementary linear algebra, the obstruction class O(pg) defines an obstruction
homomorphism obs: Homp (J,F) — H?(Gk,ad), and conversely from the latter one can recover

O(po).
The following result describes the mod me tangent space of R; and a bound on the number
of generators of an ideal in a minimal presentation of R; by a power series ring over O.

Proposition 4.1.2 ([Maz89]). (a) If Fle] denotes the ring of dual numbers of F and mj :=
mz/moR;, then one has canonical isomorphisms between the two tangent spaces

tp, == Dp(Fle]) = H'(Gk,ad) = Homp (m;/m>, F) =: tg,.
(b) Let hy := dimp H' (G, ad), let m be the mazimal ideal of Ofz1,...,xp,] and let
0—I— Ofz1,...,zn,] = Rz — 0
be a presentation of R;. Then the obstruction homomorphism
obs: Homg (I/mI,F) — H*(Gk,ad), f— (1® [)(O(py)),

is injective, and thus dimp H?(Gg,ad) bounds the minimal number dimg I /mI of genera-
tors of I.

If in a presentation as in (b) the number of variables is minimal, i.e., if the mod me tangent
space of Ofx1, ..., xp,] is isomorphic to that of Rj, then we call the presentation minimal. Now
fix a character ¥: Gxg — O* which reduces to det p and denote by Dz—f the subfunctor of Dj; of
deformations whose determinant is equal to ¢ (under the canonical homomorphism O — R).

Proposition 4.1.3. If p[/n, then the results of Theorem 4.1.1 and Proposition 4.1.2 hold for
Dg’ as well, if one replaces ad by the adjoint representation ad’ on trace zero matrices, the pair

Rz, m5) by the versal deformation ring le,mlf and the ideal I by a relation ideal IV in a
P> Mp prp
minimal presentation

0—IY — R:=Olz1,...,23]* — RY — 0 with h = dimg H' (Gg,ad®). (1)

2 To avoid notation such as mpy, My, we use the simpler notation R instead of RY for the frequently used
ring R
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

This article presents three results on the deformation rings ?; and Rg’ introduced
above:

For n = 2, we improve the ring theoretic results from [Boc00] by showing that the rings R}é’
are integral domains. On the technical side, we clarify that for this result and the main results
in [Boc00] the knowledge of a suitably defined (refined) quadratic part, see Definition 4.2.4, of
the relation in a minimal presentation of R:,—b suffices.

Using the irreducibility of R}é’, we deduce the Zariski density of crystalline points in Spec R
for n = 2, p > 2 and any p-adic local field K.

For many n and K we give a cohomological description of the quadratic parts of the relations
in a minimal presentation of R;,—Z) via a cup product and a Bockstein formalism in the context of
Galois cohomology of p-adic fields.

We now explain these results in greater detail. From now on we assume that p > 2.

Ring-theoretic results on local versal deformation rings

To describe some auxiliary ring-theoretic results and some ring-theoretic properties of the versal
deformation ring Rg for a fixed 2-dimensional residual representation p: Gx — GLa(F), we fix
some further notation.

For a ring R in .,/él\ro and a proper ideal n of R, we denote by gr,(R) the associated graded
ring @, vl (R) with gri(R) = n’/n*!. By in,: R — gr,(R), we denote the map that sends
r € R~ {0} to its initial term in gr,(R), i.e., if 4, is the largest integer i > 0 such that r € n?,
then iny(r) is the image of r in n®r /n’*1. Further, we set in,(0) = 0 and note that (), n* = {0}
for R in Are. If we wish to indicate 4, in the notation, we write inir (r). For an ideal I C R one
denotes by in,(I) the ideal of gr,(R) generated by {in,(r) | » € I}. To describe the mod mp
reduction of pairs (R, mg) in .//4\ro, we define R := R/mpR and mp := mp/meR. Similarly, we
write 7 for the image of 7 € R in R.

The following is the key technical result to deduce ring theoretic properties of R?:

Theorem 4.1.4. Suppose p is of degree 2 and p > 2. Fiz a minimal presentation of Rg as n
Proposition 4.1.3. Then there ezist an mg-primary ideal ms of R = O[z1,...,x4] of the form
(@, @1, ..., xh) with m2 O IV and generators f1,..., fr of IV such that the following hold:

(a) Let g; = ing (f;) € m2/m3 for j =1,...,r. Then the elementsto, g1, ..., Gy form a regular
sequence in gry (R) = Flto,t1,...,1p], where tg = ing, (w}) and t; = ing,(x;) for i =
1,....h.

(b) The quotient ring gry, (R)/(g1,-..,gr) is an integral domain and one has (gi,...,gr) =

ing, (I¥).

Theorem 4.1.4 will be proven after Corollary 4.3.6. A cohomological interpretation of the g;
is given in Theorem 4.1.14.

As a consequence of Theorem 4.1.4 and some purely ring-theoretic results summarized in
Proposition 4.2.2, we shall obtain the following main theorem in Section 4.2:

Theorem 4.1.5. Let the residual representation p be of degree 2 and let p > 2. Then the
following hold:

(a) The ring E? is a complete intersection.

(b) The ring Rg} is a complete intersection and it is flat over O.
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4.1. Introduction and statement of main results

(¢) The ring R%p is an integral domain and in particular irreducible.

In Lemma 4.4.1 we show that is suffices to prove Theorem 4.1.5 for any fixed choice of lift 1,
for instance for the Teichmiiller lift of det p.

Remark 4.1.6. Parts (a) and (b) of Theorem 4.1.5 were obtained already in [Boc00]. In fact,
our present proof heavily relies on the results of [Boc00] because we shall simply quote the
relations of R%’ in a minimal presentation from there. However, the present article allows one

to redo much of [Boc00] by working with the simpler ring R;,—b /m3, and this would avoid most
of the technical difficulties occurring in [Boc00]. An example of this is given by the proof of
Lemma 4.3.7.

Remark 4.1.7. It does not seem possible to show irreducibility when n =2, p =2 and K = Qo
with ideas of the present article, i.e., by using suitable initial terms in an associated graded
ring of ng. For instance, if p is the trivial representation, then it is simple to check that the
natural degrees of such initial terms are 2 and 3 and that they form a regular sequence. But
the resulting associated graded ring is not an integral domain! However, when K is a proper
extension of o, as shown in the Master thesis of M. Kremer, the methods of this article suffice
to show that Rg is an integral domain for the trivial representation p. For n = 2, p = 2 and
K = Q9, see however Remark 4.1.13.

Irreducible components of versal deformation spaces and Zariski density of crystalline points

Denote by X(p) the versal deformation space of a fixed residual representation p : G — GL, (F)
that is the generic fiber over O[1/p] of its versal deformation ring R in the sense of Berthelot,
see [dJ95, § 7]. The points of X(p) are in bijection with those p-adic representations of G i that
have a mod p reduction isomorphic to p. To explain the consequences of the the ring-theoretic
results in Theorem 4.1.5 to p-adic Galois representations, we introduce the following notions due
to Colmez, Kisin and Nakamuras:

Definition 4.1.8. Let V be a potentially crystalline p-adic representation of Gx of degree n.

(i) V is called regular if for each embedding o: K < @Q, the Hodge-Tate weights of V ® ,Q,
are pairwise distinct.

(ii) V is called benign if V' is regular and the Frobenius eigenvalues a1, ..., a;, of (the filtered
p-module corresponding to) V' are pairwise distinct and satisfy a;/o; # p!, for any i, j,
with f = [Koy: Q).

Using the following important structure result on the irreducible components of X(p), we
show in Lemma 4.4.2 that every component of X(p) contains a regular crystalline point.

Theorem 4.1.9. Suppose p > 2 and let p be a residual representation of Gx of degree 2.
Consider the canonical map D: X(p) — X(det p) induced from mapping a deformation of p to
its determinant. Then D induces a bijection between the irreducible components of X(p) and
those of X(det p). Moreover, for both spaces, irreducible and connected components coincide.
Lastly, the connected components of X(det p) form a principal homogeneous space over the set
poe (K) of p-power roots contained in K.

The proof follows from Theorem 4.1.5 and Lemma 4.4.1, and is thus postponed to Section 4.4.

Question 4.1.10. We wonder whether the assertions of Theorem 4.1.9 hold for all representations
p: Gk — GLy(F) of any degree n, and any p and any finite extension K/Q,? We also wonder
if Theorem 4.1.5 holds in this generality.
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

The following theorem is shown by methods similar to [KislOb]. It generalizes a result of
Colmez and Kisin for K = @, cf. [Col08, Kis10b], and makes crucial use of an idea of Ch-
enevier [Nakl4, Thm. 2.9].

Theorem 4.1.11 ([Nak13, Theorem 1.4]). Suppose n = 2 and that every component of X(p)
contains a regular crystalline point. Then the Zariski closure of the benign crystalline points in
X(p) is non-empty and a union of irreducible components of X(p).

We remark that the above result is also proven for arbitrary n. This is due to Chenevier
[Chel3b] for K = Q) and to Nakamura [Nakl14] for arbitrary finite extensions K/Q,.
Using Theorems 4.1.5 and 4.1.9, we show in Section 4.4 that Theorem 4.1.11 implies:

Theorem 4.1.12. Suppose n =2, p > 2, K is a finite extension of Q, and p: Gx — GLa(IF)
is any residual representation. Then the benign crystalline points are Zariski dense in X(p).

In Corollary 4.4.3, we prove analogs of Theorems 4.1.9 and 4.1.12 for pseudo-representations,
in the sense of Chenevier [Chel4].

In the case K = Q, and n = 2, Theorem 4.1.12 is an important ingredient in Colmez’
proof of the p-adic local Langlands correspondence. In that case it is essentially due to Kisin,
cf. [Boc10], and it is used to establish the surjectivity of Colmez’ functor V', which relies on an
analytic continuation argument and the knowledge of the correspondence in the crystalline case;
see [Coll0, proof of Thm. I1.3.3] or alternatively [Kis10b].

Remark 4.1.13. Suppose p = 2 and K = Q2. The assertions of Theorems 4.1.9 and 4.1.12
for the universal framed deformation space of the trivial representation 1 @ 1 were proved by
Colmez, Dospinescu and Paskunas [CDP15, Thms. 1.1 and 1.2]. The assertion of Theorem 4.1.9
was proved by Chenevier in the case n = 2 if the residual representation is an extension of two
distinct characters, and for arbitrary n if the residual representation is absolutely irreducible
[Chell, Cor. 4.2]. In these two cases the assertion of Theorem 4.1.12 is deduced in [CDP15,
Rem. 9.8].

Generation of quadratic parts of relation ideals through cohomological operations

One possible source of obstruction classes in H?(G g ,ad’) stems from the cup product in coho-
mology: Namely, if one composes the Lie bracket [-,-]: ad’xad® — ad’, (4, B) — AB—BA, with
the cup product H'(Gg,ad’) x HY(Gg,ad’) = H?(G,ad’ ®ad®), which are both alternating,
one obtains a symmetric F-bilinear pairing

b: H'(Gg,ad’) x H(Gg,ad’) — H?*(Gg,ad’),

often called the bracket cup product. As remarked in [Maz89, §1.6], if p # 2 the pairing b gives
the quadratic relations (up to higher terms) satisfied by a minimal set of formal parameters for

In Section 4.6, we shall explain how further information on the relation ideal I ¥ may arise from
cohomology, namely from a Bockstein homomorphism Bsy1: H'(Gx,ad’) — H?(Gg,ad"). The
Bockstein homomorphism can be defined whenever p admits a lift to Oy = O/wg, O for some s.
It measures to what extent lifts from the dual number Fle] can be lifted to Os[e]. In Section 4.6
we then combine the bracket cup product with the Bockstein homomorphism, to show that these

two cohomological operations (essentially) suffice to describe the refined quadratic relations in

We shall prove this and give a precise interpretation in Lemma 4.5.2.

a minimal presentation of R}g.
The results of Sections 4.5 and 4.6 have the following consequences. First, we comple-
ment Theorem 4.1.4:
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4.1. Introduction and statement of main results

Theorem 4.1.14. Let the notation be as in Theorem 4.1.4. Then in addition to the assertions
of Theorem 4.1.4, the following hold:

(a) The elements g; are the images of an F-basis of H?(Gg,ad’)V under the composite of
the dual obstruction homomorphism obs': H*(Gr,ad)V — IY/mpl?¥ with the canonical
homomorphism IV /mpI¥ — m2/m3.

(b) The dual of the map H*(Gr,ad’)V — m2/m3 from (a) factors via —1b& —Bat1-

We prove Theorem 4.1.14 at the end of Section 4.6 by verifying the hypotheses needed to
apply Theorem 4.6.8. In particular, this shows that cohomological information alone suffices to
deduce all parts of Theorem 4.1.5.

Second, we observe in Example 4.2.3 that the bracket cup product alone need not suffice to
show that Rg is an integral domain. Thus important ring-theoretic information is not visible
by the bracket cup product but requires in addition the Bockstein homomorphism.

Third, our results show that for 2-dimensional residual representations of G for p > 2 the
refined quadratic part of I¥ in a minimal presentation of R%} suffices to prove Theorem 4.1.5.
Theorem 4.6.8 then explains that essentially the cohomological operations suffice to deduce all
ring-theoretic properties we are interested in.

The third point above is particular to the set-up we work in. For general fields K little
is known about the pairing b and whether it generates a significant portion of the elements
in the relation ideal I¥ of Proposition 4.1.3. However for K a finite extension of Qp and
p > 2, the universal deformation p;: Gx — GL2(Rj) factors via a profinite group that is an
extension of a finite group by the pro-p-completion G 1 of the absolute Galois group of a finite
extension L of K. The group G 1 is either a free pro-p group or a Demushkin group, and
topologically finitely generated. In the former case, R; will be unobstructed. In the latter case
G 1, is isomorphic to the pro-p completion of a group on generators a1, b, ..., a4, by with a single
relation af - (a1,b1) - ... (ag,by) = 1, where g = [L : Q,] and (z,y) denotes the commutator
bracket 1y tzy; cf. [Lab67] for the classification of Demushkin groups. The Demushkin case
should be compared with the deformation results [GM88a, GM88b] by Goldman and Millson, as
already suggested in [Maz89]. Goldman-Millson study the deformation theory of representations
of fundamental groups of compact Kéhler manifolds, and show in this context that all relations
in a minimal presentation of their deformation rings are purely quadratic. A typical example
is the fundamental group of a compact Riemann surface, which is a group on 2g generators
ai,bi,...,a4,by subject to a single relation (a1,b1)-...-(ag,by) = 1. The formal similarity of the
relation except for the term af suggests that the deformation rings might be very similar. The
term af might explain the importance of the Bockstein homomorphism when trying to detect
the refined quadratic relations from cohomology.

Outline of the article

We briefly explain the organization of the article. In Section 4.2, we adapt some results from
commutative algebra in the way we later wish to apply them. In particular, these results
give a sufficient criterion for certain rings R in Arp to be complete intersections and to be
integral domains in terms of homogeneous initial terms of a presentation of R. The main
results of Section 4.2 together with Theorem 4.1.4 imply the ring-theoretic properties stated
in Theorem 4.1.5. In Section 4.3, we recall the explicit presentations of the versal deformation
rings for 2-dimensional representations p from [B6c00]. In Lemma 4.3.7, we also give a detailed
treatment of some results from [Boc00, §8], whose proofs are somewhat sketchy. At the end of
Section 4.3, we give the proof of Theorem 4.1.4.
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

The short proof of the Zariski-density of crystalline points in local deformation spaces is the
content of Section 4.4. We end this article with Sections 4.5 and 4.6 with (presumably well-
known) results regarding the bracket cup product and the Bockstein homomorphism. These
results might be relevant for tackling higher dimensional cases in future work. The proof of
Theorem 4.1.14 ends Section 4.6.

Acknowledgments: The first author thanks M. Blickle for help in finding the reference
[Her81] which led to [VV78] as well as G. Chenevier for some stimulating discussions. Both
authors thank A. Muller for some useful remarks. Both authors also thank the referee for
a very careful reading and many useful suggestions. G.B. received funding from the DFG
via the Forschergruppe 1920 and the SPP 1489. A.-K.J. benefited from a PhD grant of the
Landesgraduiertenférderung Baden-Wiirttemberg.

4.2 Results from commutative algebra

The aim of this section is to prove some results in commutative algebra in order to deduce
from Theorem 4.1.4 the ring-theoretic results stated in Theorem 4.1.5. In particular, we wish
to transfer ring-theoretic properties from a certain associated graded ring to the ring itself.
Recall that above Theorem 4.1.4 we define an initial term map in, from a ring R in Arp to the
associated graded ring gr, R with respect to a proper ideal n C R, and that we write O; for
O/wé(’), R for R/mpR, mpg for mg/moR and 7 for the image of z € R in R.

Lemma 4.2.1. For a ring R in .//4\ro and proper ideals I = (f1,..., fr),n C R, the following
hold:

(a) If gr, R is an integral domain, then so is R.

(b) If f1,..., fr is a regular sequence in R so that R/I is an integral domain, then R is an
integral domain.

(¢) The natural homomorphism gry, R — gr(n, py/1(R/1I) induces an isomorphism
(gra R)/ inn(l) = gr(ay.y/r(R/1).

(d) If ing(f1),...,ina(fr) is a regular sequence in gr, R, then ing(I) = (iny(f1),...,ina(f)).

(e) If ing(f1),...,ina(fr) is a regular sequence in gr, R, then fi,..., f. is a regular sequence
mn R.

Proof. Part (a) is [Eis95, Cor. 5.5], and (b) follows by induction on 7: For r = 1 we have a short

exact sequence 0 — R EI YR R/(f1) — 0 so that grsy R = R/(f1)[t], and R is an integral
domain by (a). Parts (c), (d) and (e) are [VV78, middle p. 94], [VV78, Prop. 2.1] and [VV78,
Cor. 2.7], respectively. O

The next result is a refinement of Lemma, 4.2.1 suited for our purposes. As a preparation we in-
troduce the following graded ring. Denote by my the ideal (g, 21, ..., 25) of R = Oz, ..., zp]°
for some integer s > 1. Setting to := ing, (wy)) and t; = ing, (x;) for i = 1,..., h, we have
g, R = Oslto, ..., th], gry, R = Flto, t1, ..., 1] and gr . R = Fli1, ..., 13], where #; is identi-
fied with ing, (Z;) for i =1,..., h.

3 In this section, and here only, by (R, mz) we denote a formally smooth ring over O in .,/él\ro and not necessarily
a ring in a presentation as in Proposition 4.1.3.
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Proposition 4.2.2. Let R,mg; and s be as above, and let I C R be an ideal generated by
elements f1,..., fr € R. Then the following hold:

(a) If ingy, (f1), .. » Ny (fr) is a regular sequence in gry, ﬁ,ﬁthen 50 18 WO, f1,--+, [r in R.
In this case, ingy, (1) = (inmy (f1), - - -, inmg (f1)) 0 grm, R and R/I is flat over O.

(b) If ingg (f1), - .-, inmg (fr) is a regular sequence in gr, R and grg, R/ inmy, (I) is an inte-
gral domain, then also R/I is an integral domain.

(c) Ifing, (f1),...,inm,(fr) is a reqular sequence in gry, R, then so is f1,..., fr in R. In this
case, ing, (I) = (ing, (f1), - ., inm, (fr)) and ing (1) = (ing, (f1), ..., inm, (f))-

(d) Ifing, (f1),...,inm, (fr), to is a reqular sequence in gry, R and gry, R /ing, (I) is an integral
domain, then also R/I is an integral domain.

We postpone the proof of Proposition 4.2.2, and first explain some of its content.

Proof of Theorem 4.1.5. Theorem 4.1.4 together with Proposition 4.2.2 applied to the relation
ideal I¥ imply the assertions of Theorem 4.1.5 on R}é) =~ R/IY. O

The following instructive example shows the benefits of using the graded ring associated with
the ideal my in (c¢) and (d) instead of the one associated with mgz in (a) and (b).

Example 4.2.3. Define R := R/I for R = W(F)[z1,x2,z3], I = (f) with f = qx1 — zoxs,
q=p°and s > 1 an integer.* Then by Proposition 4.2.2(a) inm, (/) = (inm, (f)) = (f2f3) in

g, R = F[t1,12,3], and criterion (b) fails to show that R is an integral domain since ¢ and #3
are nonzero zero divisors in grg . R/ ing, (I). However, if we consider the graded ring of R with

respect to my = (q, 1, 2, 23), then ing, (f) = tot1 — fatz lies in gr2, R C gr,, R = Flto, t1, 2, 3]
and R is an integral domain by Proposition 4.2.2(d).

In Sections 4.5 and 4.6, we show that one can use cohomological methods to compute the
quadratic relations in gr%R R resp. gr2 R from the above example. To distinguish there between
these two quadratic relations, we introduce the following notions:

Definition 4.2.4. Let R, n, ms; and s be as above, and let f € R.

(a) If f € m%, then the quadratic part of f is inﬁn(f@)) € gr%R R, where f@ is the homoge-
neous part of f of degree 2 with respect to the grading of R defined by mp.

(b) If f € m2, then the refined quadratic part of f is inm,(f?)) € grZ R, where @ is the
homogeneous part of f of degree 2 with respect to the grading of R defined by ms.

The (refined) quadratic part of an ideal I C R consists of the (refined) quadratic parts of all
elements in 1.

Proof of Proposition 4.2.2. It follows from the hypothesis of (a) and Lemma 4.2.1(e) that (f;);=1,..

is a regular sequence in R. Since clearly wp is a non-zero divisor of R, the first assertion of (a)
is proved. From Lemma 4.2.1(d) it follows that ing, (I) = (inﬁR(fl), ooy inm, (fT)) Finally,
since R is local, the order of the elements in the regular sequence wop, f1,..., fr is arbitrary.

4 The relation ideal of the ring R from [B6c10, Thm. 5] has the shape 6d — be modulo m3, where p = 3. Soin a
qualitative sense R occurs as a versal deformation ring. At the expense of heavy notation, one could also use R
in the example.
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Hence from the definition of a regular sequence it follows that wep is a non-zero divisor of the
O-algebra R/(f1,..., fr), which means precisely that the latter algebra is flat over O.

To prove (b), we deduce by Lemma 4.2.1(c) and (a) that R/I is an integral domain. By the
last assertion of (a) and Lemma 4.2.1(b) we also have that R/I is an integral domain.

For the proof of (c), we define R; := gr, R/(inm,(f1),...,inn,(fi)) for i =0,...,r and g; as
the image of ing,(f;) in R;. By the remarks preceding the proposition, gr, R = Os [to, ..., 1]
and clearly this ring is flat over Og. By our hypothesis, g; is a non-zero divisor of R;_; for
i =1,...,r. We claim, and prove this by induction on i, that R; is flat over O4 and that g;
is a non-zero divisor of R;_1 for each ¢ = 1,...,r. If this is proved, then we have shown that
ing, (f1),---,ingm, (fr) is a regular sequence in gr, R. Then the first assertion of (c) follows
from Lemma 4.2.1(e). The first equality of ideals in (c) follows from Lemma 4.2.1(d) and the
assertion just proved, the second is immediate by reduction modulo we.

To prove the claim, we consider for some j = 2,...,s the following diagram obtained by
tensoring the short exact sequence 0 — O;_1 — O; — F — 0 of O-modules with the right exact
sequence R; 1 — R;_1 — R; — 0 where the map on the left is multiplication by g;:

0

04>Oj_1 ® R;_1 4>Oj QR_1—F®R,_1——0
id ®g; id ®g; id ®g;

O*>0j_1®Ri_1*>Oj®Ri_1 —F®Ri_1——0

Oj_1®Ri Oj®Ri F® R ——0

0 0 0

We assume that the claim is proved for ¢ — 1. Then the two top horizontal sequences are exact
since by induction hypothesis the ring R;_; is flat over Og. The left and middle vertical sequences
are exact because the tensor product is right exact. The right vertical sequence is exact, because
g; is a non-zero divisor of R;_1 by hypothesis.

While i is fixed, we proceed by induction on j = 2,...,s to show that all rows and columns
in the above diagram are in fact left exact as well: In each induction step, the left-most column
is a short exact sequence by induction hypothesis. This implies the same for the middle column
and it follows that all columns are short exact sequences. In this situation, the 9-lemma implies
that the lower row is also a short exact sequence, and the induction step is complete. If we
consider the central column for j = s, then this shows that g; is a non-zero divisor of R;_1. If
we consider the lower row for j = s, we see that Tor*(F, R;) = 0 and hence that R; is flat over
0. This proves the claim.

Finally, we prove (d). By the proof of (c), we know that the ring gr,, R/iny, (1) is flat over

O, and its reduction modulo @ is gr,, R/ing, (/). Consider elements f, g in R\ I. We claim
that there exist integers a,b € {0,1,...,s—1} such that f' = wl f and ¢’ = w%g have non-zero
image in

&0m, R/, (I) = 88, 1)1 (R/T) = @ (wl + 1)/ (mi + moml + 1),
i>0
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where the first isomorphism follows from Lemma 4.2.1(c). If the claim is shown, then this
means that there exist 4,5 > —1 such that f/ € (mit! + 1)~ (mi2 + womitt + 1) and ¢ €
m™ + 1)~ (ml"? + wom Hl + I). Since by hypothes1s gl R/lnm (I) is an integral domain,
it follows that f'¢’ € (mg it + 1)~ (T L momiI T 4 I) and hence that the class of f’¢g’
is non-zero in R/I. But f'¢’ = w(afbfg, and we deduce that the class of fg is non-zero in R/I
and thus assertion (d) follows.

To prepare the proof of the claim, we make some technical remarks:

(i) We have I C my since the hypothesis of (d) implies that ing (f;) € R/mg for all 1 <i <.
In particular, (ms + I)/I =mg/I.
(i) If f € ml~mli™ 4+ 1 for j > 0, then ing, (f) = ing,/7(f + I). In particular, ¢y =

ing, /r(@wg + I) since by hypothesis fy is a non-zero divisor in gry,_ R/inm, () so that
W € Mg N m + 1.

iii) If w? ing /;(h) # 0 for h € R and 0 < b < s, then w? ing_ /7(h) = ing,. /7 (whh) as follows
(@] s/ (@) s/ s/ o
from the definition of multiplication on gry_/; R/I.

(iv) The graded components M/ = glrf;1 /I(R/I) >~ g1 R/ing,(I) are finite over the ring
O = M°. At the beginning of (d) we observed that the M7 are flat over O, and hence they

are finite and free over O;. In particular one has Ker(w®: M7 — MJ) = Im(wf;b: M —
M.

We now verify the claim for f; the proof for g is analogous. Choose ¢ > 0 such that f €
(mf +I) ~ (mit! + I). This is equivalent to ing_ ,;(f + 1) lying in the i-th graded piece of
8w, /1(R/I). If the image of ing, /;(f + I) in gry, ,;(R/I) is non-zero, we choose a = 0 and are
done. Else we have f € wom? + miH! + I and since gr,, R/ing,(I) is annihilated by wg,, we
can find a € {1,...,s — 1} such that @ ' f ¢ (mi*! + I) but wd f € (mit! + I). To prove the
claim, it remains to show that @, f does not lie in mi*2 + wemitl + I.

By (iv), there exists fo € m’ ~ mi{*! + I such that @y “ing,r(fo + 1) = ing (f + 1)
in gry,, /7(R/I). In terms of ideals this means wg, “fo — f € mi! 4 I, using (iii), and fo ¢
wom’ + mitt + I. By (ii) and the hypothesis in (d), the element ty is a non-zero divisor of
gro. /I(R/I), and so we have @, fo ¢ wom’ ™ +m’™2+1. This implies wd f ¢ mi2+wemiH41,
because we have

wHfo— whf =wh - (@ “fo — f) € womitt + whI € womit +mit? + 1. O
We end this section with a simple result on regular sequences, flatness and integral domains:

Lemma 4.2.5. Suppose I is an ideal of R = O[x1, ..., xp] such that I is minimally generated by
m = dimyp I /mg 1 elements. Suppose g1, ...,g; are elements of R and let J = [+Rg1+...+Ry;.

(a) If R/J is a complete intersection ring of Krull dimension h +1 —1—m, then R/I is a
complete intersection ring and I is generated by a regular R-sequence.

(b) If (a) holds and if R/J is flat over O, then R/I is flat over O.

(c) If (a) holds and if R/J is an integral domain, then R/I is an integral domain.

Proof. By induction, it suffices to prove the lemma for [ = 1. Let fi,..., f,, denote a minimal
set of generators of I. The hypothesis of (a) implies that R/(f1,..., fm,g1) is a complete
intersection ring of dimension h + 1 —m — 1 = h — m. It follows that fi,..., fi,, g1 must be a
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

regular sequence, and now (a) is immediate. To see (b), observe that its hypothesis implies that
R/(J + we) is a complete intersection ring of Krull dimension h — I — m. It follows from (a)

that fi,..., fm,g1,wo is a regular sequence. Part (b) is now clear. For (c) note that since g;
(mod I) is a non-zero divisor in R/I by the proof of (a), we may now apply Lemma 4.2.1(b) to
complete (c). O

4.3 Explicit presentations of the versal deformation rings

In order to prove Theorem 4.1.4 using the explicit minimal presentations of versal deformation
rings computed in [Boc00], we note that we can work over the ring of Witt vectors W (F) by
[CDT99, A.1]. First we need to introduce some notation: Denote by H the image of a fixed
residual representation p : Gxg — GLo(F) of degree two, and by U a p-Sylow subgroup of H.
Since G is prosolvable, the group H is solvable. FEither #H is of order prime to p, or U
is a normal subgroup of H. By the lemma of Schur-Zassenhaus, we can find a subgroup G
of H of order prime to p such that U x G = H. By H,G we denote the images of H,G in
PGLy(F). Note that U is isomorphic to its image in PGLo(IF) because its order is prime to the
order of F* and hence we may identify U with its image. The following can now be deduced
from Dickson’s classification of finite subgroups of PGLy(F), see [Hup67, IL.7]. The group G
is either cyclic or dihedral and if U is non-trivial, G must be cyclic (we assume p > 2). We
also introduce finite extensions L D F' D K in a fixed algebraic closure of K by the conditions
G = ker(ﬁ) C Gp = ﬁ71<U) C Gg.

For a character &€ : Gxg — F* we denote by F¢ the one-dimensional vector space F together
with the action via £&. We let triv : Gg — F* be the trivial character and € : G — F* be the mod
p cyclotomic character. Observe that ad = End(p) 2 p@p p¥ = F™Y @ ad” since p > 2 and thus
ad” = Homp (ad’, F). Using local Tate duality, one obtains that H%(Gg,ad’) ((adO)U®IFE)G.

In the remainder of this section, we distinguish the following five cases.

10

(A) G # {1} is cyclic and U is trivial. Then p ~ < 0 ¢ > ®n for some characters &, 7 : G —

F*. Moreover,

ad = (]Ftl‘iv)2 @FE @F£_1 and (adO)U ® FE€ =~ e @ng @Fg—%'

— 1

(B) G # {1} is cyclic and U is nontrivial. Then p ~ < 0 2 ) ® n for some characters &, :
Gk — F*; here x denotes a non-trivial extension, i.e., a non-trivial class in H'(Gg,F¢).
Moreover,

(ad)V = FUY g F&' and (ad®)V @ Fe = Fé e

(C) G is dihedral. Then H = G, and U is trivial. By [Mull3, Prop. 2.1.1], there exists a

character & of a normal cyclic subgroup C), of G of index 2 such that p ~ Indgn (&"). Then
we have

ad = F"Y @ F? @ IndG, F¢ and ad’ ® F* 2 F¥* @ Ind%, F¢ @ F°,

where ¢: G/C,, — F* is the unique non-trivial character of order two and ¢ : C,, — F* is
the character g — 5’(9)1_#]”‘ for kg the residue field of K.

(D) G and U are trivial. Then H is trivial, and H is in the scalars of GLy(FF). Moreover,
ad = (F"V)?  and ad’ ® F® = (F°)3.

101



4.3. Explicit presentations of the versal deformation rings

(E) G is trivial and U is nontrivial. Then p ~ ( (1) 7{ ) ® n for some character n : G — F*,

where x denotes a non-trivial extension. Moreover,
(ad)V = (F")* and (ad’)” @ F° = F*.

Remark 4.3.1. We would like to correct a mistake in [B6c00, Lem. 6.1] when U is nontrivial.
As the character 1 defined at the beginning of [B6c00, §5] corresponds to the character €1 in
the notation used here, in [Boc00, Lem. 6.1] the line ((ad;)V ® u, (L)% = (kX @ kY™ ) should
be replaced by ((ads)V @ p, (L)Y =2 (kX @ k¥X)Y. Further, the condition in case (ix) should read
x = ¢~ ! and not x = 1 as written.

We know from [Boc00, Theorem 2.6] that the versal deformation ring is isomorphic to the
quotient W (F)[z1,...,x]/I¥, where IV is generated by exactly hy := dimp H?(Gx,ad") rela-
tions.

Lemma 4.3.2 (Cf. [Boc00, Lem. 6.1]). If pupeo (F') = {1}, then ho = 0. Else, the dimensions hs
and h take the following values in the cases (A)-(E) introduced above.
(A) (i) If e = triv, then ho =1 and h = 3[K : Qp] + 2;
(11) If e = & and the order of € is two, then hy =2 and h = 3[K : Qp] + 3;
(ii) Ife=€ ore =&Y and € £ €71, then ho =1 and h = 3[K : Q)] + 2;
(iv) In all other cases ho =0 and h = 3[K : Qp] + 1.

(B) (i) If e = ¢71 and the order of € is two, then ha =1 and h = 3[K : Q] + 1;
(i) Ife =€6"1 and € £ €71, then hg =1 and h = 3[K : Q] +1;°
(1it) In all other cases hy =0 and h = 3[K : Qp].

(C) (i) Ife =, then hg =1 and h = 3[K : Q,] + 1;
(1t) In all other cases hy =0 and h = 3[K : Qp].

(D) (i) If e = triv, then ho =3 and h = 3[K : Qp] + 6;
(it) In all other cases hy =0 and h = 3[K : Q,] + 3.

(E) (i) If € = triv, then hg =1 and h = 3[K : Qp] +2;
(it) In all other cases hay =0 and h = 3[K : Qp] + 1.

Proof. If F' contains no p-power roots of unity, then the maximal pro-p quotient Gr(p) of Gp
is a free pro-p group and hg = 0 by [Lab67, §1.4]. Otherwise we use the above decompositions
of ad = F'"V @ ad® and (ad’)V @ F° in the cases (A)—(E), and obtain the values of hy and
ho = dimp H(G,ad’). Recall next that the Euler-Poincaré characteristic of ad® is 3[K :
Qp] = —ho + h — hy from which one computes h. O

For the following explicit descriptions of minimal presentations of R}b, we recall the functor

Eq from [B6c00, Proposition 2.3]. Tt is always representable and its universal ring is a versal hull
for Dg. To describe Epp we need to fix some notation. Since U is a p-group in GLa(FF) we shall
assume that U lies in the set of unipotent upper triangular matrices Us(F). If U is non-trivial,

5 The reason for not combining (i) and (ii) in case (B) into a single case is that the cases of Lemma 4.3.2 are
used throughout this section, and in later parts the distinction is necessary.
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let {gn}» be a minimal set of topological generators of the maximal pro-p quotient Gp(p) of Gp
so that the p(g,) = Mat 14,01 for 4, € F generate U as a G-module. If U is non-trivial, there
is a smallest index ¢ for which @;, is a unit. Then by conjugation by an element of the form
Mat A001, A € F*, which clearly lifts to GLz(W (F)), we will assume from now on that u;, = 1.
For any ring R in Arw( ) we denote by I'y(R) the inverse image of Us(F) under the reduction
homomorphism SLy(R) — SLy(F). We set & := p|g,(p)- If G = {1}, then we define the functor

En: Ary (F) — Sets by sending (R, mg) to the set

11 _
. *> and a = @ (mod mR)}

{a € Homa(Gr(p). Ta() | algi) = (
if U is non-trivial, and else to Homg(Gg(p),[2(R)). Observe that Ey(F) = {a@}. As noted
above, Eqy is representable and its universal ring, we write Ry, is isomorphic to REJ. The gain
is that it is rather elementary to write down explicitly Rg.

Lastly, we define ¢ as the number of p-power roots of unity contained in F' and g, as the

polynomial
(g—1)/2 k—1

q )
9q(@) = Z k1) H(QQ — (2 +1)%)a".
=0 " j=0
Note that the polynomial g, lies in fact in Z[x].

Remark 4.3.3. We take this opportunity to correct another mistake from [Boc00, Rem. 5.5
(i)]: In the formulas for a,j and b, j, the expressions (2k)! and (2k + 1)!, respectively, should
be in the denominator.

Theorem 4.3.4 (Cf. [B6c00, Thm. 6.2 and Rem. 6.3 (iv)]). Suppose ppeo(F') # {1} and set
m = [K : Qp]. There ezists a minimal presentation 0 — Y >R — R}é’ — 0 of Rg, where R
and IV are as follows in the respective cases of the previous lemma.

(4) () R = WERbs el Ad}5'] and 19 = (L7 cbnoinn — (1 + do)? = 1)
(1+do) %
(ii)) R = W(F)[{bi,ci,di}o] and IV = (z;’;o bidm—i — bogq(boco), — S Cidm—i —
Cogq(boco)) ;

(iii) If e = o, then R = W(F)[{bi, di} g, {c;}71] and IV = (zy;o dibyi — qbo>;
Ife =4, then R = W(E)[{bi}7y, {cjs d;} o] and IV = (2;1 o diCm—i — qco);
(iv) R =W(F)[{bi, i}y, {d;}]0] and I? = (0).
(B) (i) R=W(F)[{bi,ci,d; }z 0]]/( 0 dm—io) and 1Y = <_Z:L10,i7éio Cilm—i — 0 (co+2¢iybo) -
9q(bo(co + cipbo)) — 2(1 — (5,-0)cogq(co)), where 0;, € {0,1} is 0 if ig = 0 and else 1;
(i) R = WE)HbH e, Yol /() and 19 = (g i i — aco);
(iii) R = W (F)[{bs,ci,d;}7 ] and I = (0).
(C) (i) R=W(E)[{b:}7m, {d;}7Lo] and ¥ = (221 bibam—it1 — (1 + do)? — (1+ dO)_%)>;
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(i) R = W(E)[{bi}2, {d;}r] and I = (0).

Remark 4.3.5. We point out that in front of the sum ) ¢;d,,—; in the second generator of
the relation ideals in [B6c00, Theorem 6.2(ii) and Prop. 7.3(ii)] a minus sign is missing. This

originates from a sign mistake in [Boc00, Lem. 5.6(B)]: There the matrix ( 0 bi > should

C; 0
read instead ( 0 b >
—C; 0

Proof. The relation ideal of the versal hull of the deformation functor without fixing the deter-
minant is listed in the respective cases in [Boc00, Theorem 6.2]. We remark that the relation
(14ap)?—1 from there is omitted due to our condition on the determinant, and we used a change
of variables according to [Boc00, Remark 6.3(iv)] to simplify the expressions for the relations
and variables. In order to obtain the right number of indeterminates of the power series ring R,
we follow the steps described in the proof of [B6c00, Theorem 2.6].

Since by assumption F' contains a p-power root of unity, Gr(p) is a Demuskin group, and its
Frattini quotient G (p) is isomorphic to F™V@FeF,[G]™ as a G-module. By the Burnside basis
theorem, there are closed subgroups P, of Gr(p) such that the Frattini quotients P, of P, are
irreducible and G(p) = @, P,. Since the tangent space tg := Ey(F[t]/(t?)) of By is isomorphic
to the tangent space tp and ad’ = Ty(F[t]/(t?)) as a G-module, we have h = dimptp =
dimp tp < dimp Homg (G (p),ad’). We can compute the right hand side in terms of those G-
submodules P, of Gp(p) that occur in decompositions of both G (p) and ad’ into irreducible
G-modules, because the G-submodules that do not occur in a decomposition of ad® have trivial
image (prime-to-adjoint principle). As remarked in [Boc00, §6], the multiplicities of the G-
submodules occurring in a decomposition of ad® are (G r(p), Indgn F¥)g = 2m if G is dihedral,
(Gr(p),F7)g = m for any non-trivial character 7 # ¢, and (Gp(p), F"V)g = (Gr(p),F¥)g =
m+ 1+ 0, where (X,Y)q := dimp(Homg (X, Y)) for G-modules and 05 is 1 if £ acts trivially
and 0 otherwise. By [B6c00, Lem. 5.3], we can choose z, € P, such that Gz, topologically
generates P,, and whose image under a homomorphism « : P, — I',(R) is either the identity if
P, does not occur in a decompositions of ad’ or a matrix of the type

S(b,c) = ( Vl:_bc \/liibc) or D(d) := ( Vitd 0 )

for any ring R in ;l\l“w(]p) and b,c,d € mp. If U is non-trivial, we shall take for the g, in the
definition of Ep the generators z,. If p(zg) # id, then we take g; := z0, else we shall assume
that g; := 1 by a suitable permutation of the indices n. In cases (A)—(C), we will consider the
power series ring R over W(IF) in the variables b, ¢,d occurring in the images S(b, ¢) and D(d)
of all generators. Then we will obtain the universal object (Rg, ag) representing Fyr, where Rg
is the quotient ring of R modulo the respective relations in terms of the variables b, ¢, d from
[B6c00, Lemma 5.6 and Theorem 6.2] .

We begin with explicitly describing R and the relation ideal I¥ in case (A). Then we have
that ad® = F'™V g FEgFE " and h = dimg tg = (Gr(p), F™)a + (Gr(p),F&)q + (Gr(p), F¢ ')e.
The following table displays the respective multiplicities of the subrepresentations F¥'V, F¢ and
F¢ ' in Gp(p):
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

k1 = (Gr(p),F™)g | ks = (Gr(p),F)g | ks = (Gr(p),F g
(i) &e=triv m-+2 m m
i) e=¢&e=e! m+1 m+1 m+1
(iii) e=¢e#et m+1 m+1 m
e=¢1 e#Ae! m+1 m m+1
(iv) e ¢ {triv,&, 671} m+1 m m

By [Boc00, Lem. 5.3(ii)-(iv)], there exist by, ¢y, dpr € mp (with n = (m + 1 — kg),...,m,
n'=(m+1—ks),...,mand n” =0,...,k; — 1) such that a generator z,, of a subgroup P,, gets
mapped to either

S(bn,0), S(0,¢n), S(bn,cn), D(dpr) or D(0)

under a G-equivariant homomorphism P,, — GLy(R). Finally, in [B6c00, Lem. 5.6(A)-(D),(F)]
the image of the Demuskin relation involving these matrices is completely described. The thereby
obtained equations define the respective relation ideal IV (as in [Boc00, Theorem 6.2(i)-(iv)]).

In case (B), we have that ad’ = F"V g F¢ F&' and h = dimptp = dimpte < b =
(Gr(p), F™™) o+(Gr(p), FS)a+(Gr(p), F¢ )¢ due to the further conditions that o € Eyy(F[t]/¢2)
has to satisfy if U is non-trivial. As in case (A), there exist b,,cy,d,r € mp (with n =
(m+1—ke),...,m,n =(m+1—ks),...,mand n” =0,...,k; — 1) such that a generator x,,
of a subgroup F,, gets mapped to either

S(tn + bn,0), S(0,cp), S(ap+bn,cn), D(dypr) or D(0)

under a G-equivariant homomorphism P, — GL2(R). Due to the condition on the image of z;,,
the variable b;, occurring in the image of x;, must vanish. In [B6c00, Lem. 5.6(A)-(D),(F)] the
image of the Demuskin relation involving these matrices is completely described. By [Boc00,
Theorem 6.2(ii)-(iii)], this gives rise to the following generators of I¥:

Z (ﬂl + bz)dmfz — (ﬂo + bo)gq((ﬂo =+ bo)Co) and — Z Cidmfi — Cogq((ﬂo —+ bO)C[)) in case (1)
=0 =0

and in case (ii) to Z?ioji#o ¢idm—i—qco. In (i), we use the first relation d,—;, = (@o+bo)gq((2o+
bo)co) — Z?;OJ#O(M + b;)dp,—i to also eliminate d,,—;,. Then the second equation reads

— > cidm—i—cogq((Go+bo)co) = — 3 (ei—cip(@i+b;)) dm—i— (cotcio (Tio+bo)) gq((To+bo)co).
i=0 i=0,i40

We perform a linear change of coordinates by replacing ¢; + ¢;,(@; + b;) by ¢; for i # ip. Note
that @o = 0 if ig > 0 so that we obtain the respective generators of I¥ displayed in case (B).

In case (C), we have that ad® = F¥ @ Indgn F¢ and h = dimptp = (Gr(p),F?)g + 2(Gr(p),
Indgn F¢)g. This means that the multiplicities of the subrepresentations Indgn F¢ in Gr(p) are
2m, and the ones of the subrepresentations F¥ are m + 1 if ¢ = ¢ and m if ¢ # ¢. By [Boc00,
Lem. 5.3(ii),(v)-(vii)], there exist by, d,y € mp (withn =1,...,2m, n’ = 0,...,m in (i) and
n’ =1,...,min (ii)) such that a generator z;, of a subgroup P, gets mapped to either

S(bn,bn), S(bp,—byn), D(dy) or D(0)

under a G-equivariant homomorphism P, — GL2(R). Finally, in [B6c00, Lem. 5.6(E)-(F)] the
image of the Demuskin relation involving these matrices is completely described. The thereby

obtained equations define the respective relation ideal I¥ (as in [B6c00, Theorem 6.2(v)-(vii)]).
U
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4.3. Explicit presentations of the versal deformation rings

We define n to be the ideal in R generated by all the variables b;, ¢y, d;» occurring in the
respective definitions of R in the previous theorem. Further, define the ideal my; C R as my :=
gR + n. In cases (A)-(C) it is now a simple matter to read off from the previous theorem
the initial terms for the graded rings naturally associated to R. Checking that these initial
terms form a regular sequence will imply most parts of Theorem 4.1.4 and, when combined with
Proposition 4.2.2, the assertions of Theorem 4.1.5 in cases (A)—(C).

Corollary 4.3.6. In the cases (A)—(C) of the previous lemma, denote the two generators of IV
in case (A)(ii) by fi and fa, and in the other cases the generator of IV by fi.

(a) Let in be the initial term map R — grz R. Then the following are the initial terms of the
generators of IV in in(I¥) C grz R in the cases (A)-(C) of Lemma 4.3.2, where we only
list those cases in which ho is non-zero.

(A) (i) n(fr) = 2302, Cibm—it1;
(it) n(f1) = = 32120 bidm—i and in(f2) = 371" Cidn—i;
(iii) If € = 1), then in(f) = o Udzbm_z,
Ife =71, then in(f1) = i diCm—i;

F =, . .9 .26
- Zi:o,i;ﬁio Cithm—i — 1 — dip * 3 Co:

(B) (i) in(f1)
(it) in(f1) = Y1 Cidm—i;

(C) (i) in(f1) = Zzilgi@mﬂ'ﬂ-

(b) Let in be the initial term map R — gry, R and set tg := in(q). Then the following

are the initial terms of the generators of ]1/1 in in(I¥) C gry, R in the cases (A)—(C) of
Lemma 4.3.2, where we only list those cases in which ha is non-zero.

(A) (i) in(f1) = >0 Cibm—i+1 — todo;
(ii) in(f1) = Yo bidm—i — tobo and in(f2) = — > 1" Gidm—i — toCo;
(iit) If e =1, then in(f1) = > ito dibm—i — tobo;
Ife = 7,/)71, then in(fl) = Zyio J'Em_i — foé(],’
(B) (i) in(f1) = = 310 isiy Cillm—i — 2 = 81y - toGo — 1 — 0; - § - 3,0
(i1) 1n( 1) =2 Cidm—i — toCo;
(C) (i) in(f1) = X1 bibom—i+1 — todo.

Proof of Theorem /.1.4. First note that we can reduce to the case O = W(F) as follows: by
[Maz97, §12 Prop.] there is an isomorphism R; = Ry ) @wr) O, where R; and Ry (r) are
the universal deformation rings of p that parametrize all deformations of p to coeflicient rings in
Arp and Aryy (), respectively. If the fixed character ¢: G — O* takes values in W (FF)*, then
the same argument shows that Rw = RwW(]F)@W( O, where R_ wr 18 the universal deformation
ring of p that parametrizes all deformatlons of p with fixed determlnant 1 to coefficient rings in
Arw( ). If : Gxg — O is arbitrary, by Lemma 4.4.1 below it can be twisted so that its image
lies in W(IF)*.

We next give the proof in cases (A)—(C): In all cases of (A)—(C) with hy # 0, Theorem 4.1.4(a)
holds since the initial terms given in Corollary 4.3.6(b) together with ¢y form regular sequences

6 Note that the term involving &2 vanishes unless ¢ = 3.
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

in gr, R with ¢y := in(¢q). Moreover, by Proposition 4.2.2(c) the initial terms from Corol-

lary 4.3.6(b) generate in(I¥) in the respective cases and one checks that gr, R/in(I¥) is an

integral domain. Thus Theorem 4.1.4(b) follows from Proposition 4.2.2(d) in cases (A)—(C).
Theorem 4.1.4 in the remaining cases (D) and (E) is a direct consequence of the following

lemma. O

Lemma 4.3.7. In the cases (D) and (E) let q denote the minimum of p and the number of
p-power roots of unity in K. Then there exists a minimal presentation

0—IY = (r1,..., 1) — REW(F)[z1,...,25] — RS — 0

such that, letting mg = (q,x1,...,xy), the following hold:

(a) m2 D IY and in(q),in(r1),. . .,in(ry) € grd, R is a reqular sequence in gry,_ R;

(b) gry, R/ (in(r1),...,in(ry)) is an integral domain and in(I¥) = (in(ry),...,in(ry));

(c) in(ry1),...,in(7y) € gr%R R form a regular sequence in grg, R;

(d) grm, R/(in(F1),...,in(71)) is an integral domain and in(I¥) = (in(r1),...,in(m1));
(e) m = dimp H?(Gf,ad’) and dimg, R? =h+1-—m.

Proof. The proof proceeds along the lines of the proof of [B6c00, Theorem 2.6], but it is simpler
in our case as we shall only determine the initial parts of the g; and r;, and since there is no
action of a finite group of order prime to p. We recall that p ~ Mat 1x01 ® n for some character
n : Gxg — F*, where x denotes an extension. As a preliminary reduction, we may twist p by
n~! so that the image of p is a p-group. Twisting all deformations by the Teichmiiller lift of
n~! provides an isomorphism to the deformation functor of the twist of 5. In particular both
functors are represented by isomorphic versal rings. Since now det p is trivial, we shall also
assume that its fixed lift 1 is the trivial character, since again, changing ¥ has no effect on the
versal deformation ring up to isomorphism. After this reduction, the first case to consider is
that when K does not contain a non-trivial p-power root of unity. Then by Lemma 4.3.2 we
have hy = 0. Hence R}é’ is unobstructed and thus formally smooth, and assertions (a)-(e) are
obvious.

Suppose from now on that K contains a primitive p-th root of unity (,. Then the maximal
pro-p-quotient G (p) of Gk is known to be a Demushkin group of rank 29 = [K : Qp] + 2,
cf. [Lab67, §5]. By the classification of Demushkin groups with ¢ > 2 [Lab67, Theorem 7], the
pro-p group Gk (p) is isomorphic to the pro-p completion II of the discrete group

(1,..., 299 | T)

for the Demushkin relation r = z{(z1, 22) (23, 24) . .. (¥2g—1, T24) — recall that (z,y) = 2~y lay.

In the following we fix an isomorphism G (p) = II.” Note also that 2g > 4, because K
has to contain Q,(¢p) and [Qp(¢p) @ Q) = p—1 > 2. If im(p) is non-trivial, the functor
Ern: Ary (F) — Sets is given by

(R, mp) s {a € Hom(IL, Ty (R)) | a(a;,) = < b ) Al = < é i ) mod mp for all z}

* %

" By slight abuse of notation we shall therefore regard the topological generators z; of II as elements of G'x.
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4.3. Explicit presentations of the versal deformation rings

and else by (R,mg) — Hom(II,T5(R)). As the elements {g,} from the bottom of page 102
we take x1,...,224. As noted there, Ey is always representable and its universal ring Ry is
isomorphic to R%.

In order to find an explicit presentation of Rs, we define S := W (F)[b;, ¢;,d; 13 =1,...,2g].
For each 1 <i < 2g let

- ai bi+u; . (10
Ml.lz—i-(ci d; > Wlthlg.(o 1),

where we choose a lift u; € W(F) of u; € F, subject to the requirement u; = 0 whenever @; = 0,
and where a; € S is chosen so that det M; = 1, i.e., a; = ((bi+ui)c;i—d;) 3 2,5o(—1)"d. Observe
that in case (D) all u; = 0. We define polynomials 74 in S by

r T2

where [M;, M;/] is the commutator bracket Mi_lMlTlMiMi/. Note that (1+71)(1474) —rors =1

and that, as we shall explain in a moment, (r1,...,74) C mg = (q,b;,¢;,d; 1 =1,...,2¢g). It is
now straightforward to see that the ring
R W(F)[bi,ci,di s 1 =1,...,2g]/(r1,7r2,73) in case (D)
T W) [biyeiydi i =1,...,2g]/(r1,72, 73, biy, diy — ciy) in case (E)

together with the homomorphism ag : II — SLa(Rgs) defined by mapping z; to M; — the latter
regarded as a matrix over Rg —is a universal object for Fr;. Note that ag is well-defined precisely
because we imposed the condition that all 75 vanish. In case (E) we may and shall assume that
ip < 4 by permuting the indices of the z; in pairs (2¢' — 1,2¢') for ¢/ € {2,...,¢g}.

For k = 2,3 and 7 = 0,1 we define

Gk,k—j(s) — {12+ < ch Z > € SLy(S):ce mf,a,b,de mfj—j}.

We set §4—3 = 1 if ¢ = 3 and d4—3 = 0 if ¢ # 3. One can easily check the following facts, where
starting from (2) we let j = 0 in case (D) and j =1 in case (E):

(1) the sets G¥*J(S) defined above are subgroups of SLy(S), and moreover G>377(S) is a
normal subgroup of G%277(S) for j € {0,1};

(2) the matrices M{ and [Ma;_1, My;], for i = 1,..., g, lie in G*279(S);
(3) in case (D), computing modulo G33(S), fori = 1,..., g one has My = 1o+Mat —qd1qb1gc1qdy

and

boi_1c2; — bajcoi—1 2b9;—1d2; — 2bo;da;—1
Mo;—q, Mol =19 + ;
[Mai1, Mai] = 12 ( —2¢9i-1dg; + 2¢9idai—1  —bai—102; + b2ic2i—1

4) in case (E), computing modulo G*2(S), for i = 1,..., g one has
( g g

0 1 e
12+ . (q+5q:301), if 10 = 1,
MY = a0
0 0 e
1o + R if 59 > 1,
gcr 0O
[Ma; 1, Ma;] =
1 +< U24—1C2i—U24C2—1 uZ, jcoi—u2;coi—1+2u2;i—1d;—2uz;d2;—1 )
2
U243, _1 —2(U2i—1—U2i)C2i—1C2; —U2i—1¢3; —2¢2i—1d2;+2c2id2;—1 —U2;_1C2i+U2iC2—1 ’
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

(5) for M, M’ € G*>27J(S) one has MM’ = M + M’ — 15 (mod G3379(S)).

Using these facts we can explicitly compute the initial terms of the relations r; since for
j=0,1:

g g

r T —j

12 + < 7“; T‘i > = M{] . H[MZiflaMZi] = M{I + Z ([MQifl,MQi] - 12) mod G3’3 j(S)
=1 =1

In case (D) we have r1,72,73 € m2 from (3) and (5), and in case (E) we deduce 71,72 € m; and
r3 € m? from (4) and (5). Below we make the initial terms of the 7, more explicit. To then
analyze properties of Rg, we shall need the following results from commutative algebra, which
are simple exercises:

(o) if R is a ring and aj,a9,a3 € R, then using total degrees w = zy — a;x — agy + ag is a
non-zero divisor in the polynomial ring R[x,y] over R; if moreover R is an integral domain
and a3 # ajag, then R[z,y]/(w) is an integral domain, as can be seen by performing a
linear coordinate change with x and y, and then passing to Frac(R)[z,y]/(w).

(8) if R is an N-graded Noetherian ring and if f,..., f, € R are homogeneous of positive de-
gree, then they form a regular sequence if they do so in any order (see [Mat89, Remark after
Thm. 16.3]);

(v) if Rand f1,..., f, are as in (3), if the f; form a regular sequence and if R[m]/(fl’

..., fur) is an integral domain for any 1 < w’ < w, then R/(f1,..., f.) is an integral
domain, as well.

We first show assertions (a)—(e) in case (D). Here we take R = S. Because m? contains
(ri,72,73), the presentation 0 — (ry,r2,73) = R — RY — 0 is minimal. We shall consider the
canonical reduction map 7: R — R’ = R/(bi,¢i,di,i = 5,...,2g), and we let m, = w(m;) and
r, = m(ry) for k =1,2,3. The ring R’ is a power series ring over W(F) in 12 variables. Thus
8l R and g R'/(to), for to := in(g), are polynomials rings over F in 12 variables. The

elements in?(7,) = in?(r}) (mod %) are homogeneous elements of degree 2 for k = 1,2, 3, which
by (3) are given by the expressions
6162 — 6251 + 6364 — 5453, i)lcig — Bﬂl + 63624 — B4J3 and 51J2 — Egdl + 536?4 — E4J3.

Using (a) and (3), one easily deduces that &, da, b3, by together with the three displayed relations
above form a regular sequence in any order in R = Flbg,ck,dr : k =1,...,4]. To complete the
argument, we wish to apply (7). If we invert by in R, then forming the quotient of R by the first

two relations is equivalent to eliminating ¢3,ds in R. This will change in?(r}) (mod #) to

Liler, do).

b b b b
w = cydy——dyc) ——cady—cody +—cady+—cody € R = F[b1, b2, b3, bs, 2, c4, dy, dy, b
4

b4 b4 b4 b4

Since (b2d4)(b164) 75 bi(—62d1+2%04d1+%62d4) in the polynomial ring F[bl, bg, bg, b4, C9,C4, dl, d4],
the ring R'/(w) is an integral domain by (). Therefore by (v) the ring gr,, R'/(%o, in(r7),in(r5),

in(r})) is an integral domain, as well. This implies that fo,in(r1), in(r2), in(rs), bs, &, ds, . . . , bag,

Cag, d2g is a regular sequence in gry, ‘R and that the corresponding quotient ring is an integral do-
main. Invoking Lemma 4.2.1(b) for the domain property, this completes the proof of (a) and (b)
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4.4. Crystalline points in components of versal deformation spaces

in case (D). The proof of (c) and (d) is analogous since the elements in(7}) and in(r}) (mod #p)
are formally given by the same expressions for k = 1,2,3. Part(e) follows from Lemma 4.3.2.

We now turn to case (E). Recall that here we have w;, = 1 by definition of Ep. Let i1 # o
denote the index in {1,2, 3,4} such that {ip, 71} is either {1,2} or {3,4}. Using (4) above, one
finds that the coefficients of ¢;; in r; and of d;, in r9 are in {+1,+£2} C W(F)*. In particular
in'(7), k = 1,2, and in'(r}) (mod %), k = 1,2, are F-linearly independent elements in Mg/ /m%,
and m’/(m,)2 (mod ty), respectively. We define R = S/(r1,72,,biy,di, — ¢iy)- Using r1 and ro
as replacement rules to eliminate the variables ¢;; and d;,, we find that the homomorphism

W(F)[[Cioabilabkack,dk ke {1, e 2g} AN {io,il}“ — R,

which sends each formal variable to the same named variable in R, is an isomorphism. By 73
we denote the image of 73 in R. It is clear from (2) that 73 lies in m2, where now my is the
image of (q,b;,¢;,d;,i = 1,...,2¢g) in R. In particular, 0 — (73) - R — RY — 0 is a minimal
presentation.

As in the analysis of (D), we consider the reduction map 7: R — R’ = R/(b;,ci,d;,i =
5,...,2g), we define m, = m(m,) and r4 = 7(73). The ring R’ is now a power series ring over
W (F) in 8 variables. A short computation shows

N 2d7364 — 26?453 + other terms, if i € {1, 2},
(HlOd to) B { 26]152 — 2(]251, if 59 € {3,4}

From w # 0 we deduce (a) and (c). The proof of (e) follows from Lemma 4.3.2. Arguing as for
(D), to prove (b) and (d) it suffices to show that w is a non-zero divisor in

&l R = &lm, R//(EO) = Fllcig, biys br, iy die + k€ {1,2,3,4} N {ido, i1 }]].

We need to show that w is irreducible, i.e., not a product of two linear terms. For this one may
consider w as a bilinear from. If w was reducible, the representing Gram matrix would have
rank at most 2. However, the displayed coefficients of w imply that this rank is at least 4. [

Remark 4.3.8. (a) In Section 4.2, we showed Theorem 4.1.5 by combining Theorem 4.1.4
with Proposition 4.2.2. Alternatively, in cases (D) and (E) Theorem 4.1.5 follows easily
from Lemma 4.3.7(c),(d) combined with Proposition 4.2.2(a),(b).

(b) In cases (D) and (E), Theorem 4.1.4 can also be deduced from [Boc00, §8]. However, we
felt that the arguments there are somewhat sketchy. To make them more precise, we would
have needed to introduce much notation. Since the above proof follows nicely from the
ideas of Section 4.2, we chose this path.

4.4 Crystalline points in components of versal deformation spaces

Let X(p) be the versal deformation space of a fixed residual representation p : Gg — GL, (F).
The Zariski density of benign crystalline points in X(p) for n = 2 is an important consequence
of the integrality results of the previous sections. The purpose of this section is to prove The-
orem 4.1.9 on irreducible components of X(p), and Theorem 4.1.12 on the Zariski density of
crystalline points by showing that any component of X(p) contains a crystalline point.

We fix a character ¢: Gxg — O* that reduces to det p. As is well-known, e.g. [B6c08, Prop. 2.1]
for results of this type, one has the following result:

Lemma 4.4.1. Suppose p does not divide n and ¢': Gg — O* is a second lift of det p. Then
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

(a) Dy — Dg) X Ddet 5 [p) = ([p @ (¥ det p~1)Y/7], det p) is an isomorphism of functors with
z'nvej’se (0], ¢) = [0 @ (P~ HY"]. In particular one has a natural isomorphism R =
RY&0Raet -

(b) D;’—f — Dg,, [p] = [p @ /Y~ is an isomorphism of functors so that Rg and Rg, are
isomorphic.

Lemma 4.4.1 shows that it suffices to prove Theorem 4.1.5 for any fixed choice of lift 1, for
instance for the Teichmiiller lift of det p. Furthermore, together with Theorem 4.1.5, it implies
Theorem 4.1.9:

Proof of Theorem 4.1.9. By Theorem 4.1.5 and part (a) of the previous lemma, the map D: X(p)
— X(det p) of Theorem 4.1.9 induces a bijection of irreducible components. Moreover the
irreducible components of both spaces will be connected components if this holds for X(det p).
To prove this and the remaining assertion of Theorem 4.1.9, it will suffice to describe Rgetp
explicitly. This however has been carried out in [Maz89, § 1.4]: Denote by II the abelianized
pro-p completion of Gk, which by class field theory is isomorphic to (Z,,+) x (1 + mg,-).
Then R; = O[] = O[Ty, - - -, Tix.q,][X]/((1 + X)? — 1) for any character : G — F*, where
q = #ipo (K). The remaining assertions are now immediate. O

Proof of Theorem 4.1.12. By [Mull3, Thm. 0.0.4], we may choose a crystalline p-adic Galois
representation po: G — GL2(Q,) which is a lift of p, i.e., so that [pg] € X(p). By the construc-
tion in [Mull3], we can assume pg to be regular. We want to show that any component of X(p)
contains a regular crystalline point so that the hypothesis of Theorem 4.1.11 holds. Denote by
v the determinant of pg, so that v is crystalline, and by X(p)¥ the rigid analytic space that is
the generic fiber of R;,—Z’ in the sense of Berthelot. By Lemma 4.4.1, we have the isomorphism

X(p)" x X(det p) — X(p), ([¢), ) — o' @ (™).

By the following lemma, we have a crystalline point ¢} in any component i of X(det p). Now the
components form a torsor over piy~ (K'), which is a finite cyclic group of p-power order. Because
2 is prime to p, the characters (%)? still exhaust all components of X(det p), and the same holds
for the translates ¥(¢})%. Now under the above map we have ([pol, ¥ (¢})?) — [po ® ¢/], and
by Theorem 4.1.9 we see that the latter representations give a regular crystalline lift in any
component of X(p). Applying Theorem 4.1.11 completes the proof of Theorem 4.1.12. O

Lemma 4.4.2. Any component of X(det p) contains a crystalline point.

Proof. By twisting by ¥~ it will suffice to prove the lemma for the trivial character 1 in place of
det p. The crystalline points in X(1) correspond to characters Gx — @p* with trivial reduction
1. We shall use the classification of one-dimensional crystalline representations to describe the
crystalline points. Let recy: 7 x O% = G}‘? be the local Artin map. Consider the induced
projection pry: G%’ — O%, and let Px be the set of embeddings K < Q,. Then for any
7o € Pk one defines a character x,, as the composite

Xn i Gk — G2 22 05 5 Q,".
One has the following assertions, cf. [Conll, App. BJ:
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4.4. Crystalline points in components of versal deformation spaces

(a) The character x, is crystalline with labeled Hodge-Tate weights (a;)rcp, where a,, =1
and a, = 0 for 7 € Px \ {ro}.5

(b) Any crystalline character of G is of the form v HTEPK x% for integers £, and an unram-
ified character v. The tuple (¢;),cp, is its labeled Hodge-Tate weight.

As discussed in the proof of Theorem 4.1.9, Ry = O[I1] = O[Ty, . . ., Tix.q, 1[X]/(1+X)?-1)
so that X(1) has ¢ = # e (K) connected components. In order to find a crystalline point in
any component of X(1), we introduce a labeling of its connected components by iy (K): Any
point in X(1) corresponds to a character Gx — @p* with trivial mod p reduction, which factors
via the abelianized pro-p completion II of G, i.e., it induces a character n : II — @*. Via
the isomorphism recg p: Zy x (1 4+ mo, ) 5 1I induced from recg by pro-p completion, the
torsion subgroup fip(K) of (1 + me, ) is isomorphic to the torsion subgroup of II so that
we can define the label of 7 to be noreckp |, o (x)(C) € pip(K) for a chosen generator ¢ of
ppee (K). Equivalently, one can say that the component of X(1) that contains 7 is determined
by the restriction norecg | oo (K)-

Now we use the above labeling of components to find a crystalline character in each com-
ponent. Recall that f = [Ky : Q,], and denote by 79 € Pg our usually chosen embedding

_ f_ _
K — Q,. By (b) above, for any ¢ € Z the character Xﬁg‘f b, Gk — Qp* is crystalline. Because

of the factor ¢/ — 1 in the exponent, its image is a pro-p group, and it is straightforward to see
— f_

that for the induced character n: II — Q, we have 7 o recg,, ‘l-l-mOK = ré(q 1)’1+m01<' Hence

noTeCK,y | oo (K) 18 equal to the homomorphism

2(qf —1) ,g.

ppoe (K) — ppee (K),  a+— =a

By choosing /¢ suitably, it is clear that 1 can be made to lie in any connected component of
X(1). O

For the following result, we assume that the reader is familiar with the theory of determinants
as introduced in [Chel4]. Following [WE13] we shall call them pseudo-representations. Let R
be in Arp. To any representation p: Gxg — GL,(R) one can attach a pseudo-representation
of degree n, i.e., a multiplicative R-polynomial law 7 = 7,: R[Gk] — R homogeneous of degree
n. To describe the latter, denote for any R-module M by M the functor from R-algebras A
to sets that assigns to A the set M ®pr A. Then 7 is the natural transformation R[Gx] — R
that on any R-algebra A is given by 74: A[Gg] — A, > rig; — det (Z r,-p(gi)). In particular,
any residual representation p: Gxg — GL,(F) has an associated pseudo-representation 7. By
[Chel4], if 7 arises from a representation p over R, then the characteristic polynomial x,(g) of
p is equal to x-(g,T) := Trir)(T — g) € R[T] for any g € Gk. The determinant of 7 is defined
as the representation det 7 := 75 = (—1)"x,(__,0): Gx — GL1(R).

In [Chel4, § 3.1], Chenevier defines a deformation functor D, for a residual pseudo-representa-
tions 7: F[Gk] — F. By [Chel4, Prop. 3.3 and Ex. 3.7], the functor D is representable by a
ring Rz in Arp. By XP(7) we denote the generic fiber of Spf Rz in the sense of Berthelot,
see [dJ95, § 7]. If T is associated to p then there are natural functors

X(p) = xP5(7) 2 X(det p), (2)

where 71 is defined by mapping a deformation to the associated pseudo-representation, and 7o
by mapping a pseudo-representation to its determinant. Note that the composite is defined by
the usual determinant of representations.

8 For the definition of labeled Hodge-Tate weights, see [DS15, Def. 3.2].
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

Corollary 4.4.3. Suppose p is a semisimple 2-dimensional residual representation of G and
p> 2.

(a) The morphisms of connected components

mo(m2)

mo(%(2) 5 mo(2(7) 8 wo(X(det )
induced from (2) are bijective.
(b) The benign crystalline points are Zariski dense in XP5(p).

Proof. To prove (a) observe that by Theorem 4.1.9, the composite 7y(m2) o wp(71) is a bijection.
Moreover the map mo(71 ) is surjective: For this it suffices to show that any pseudo-representation
T over Qp, i.e. any closed point in XPS(7), arises from a representation p, i.e. a closed point in
X(p). By [Chel4, Thm. 2.12], it is known that 7 is the pseudo-representation for a semisimple
representation Gx — GL2(Qp). The latter can be realized over a finite extension E of Q, and
then, in turn by a representation p': Gx — GL2(Op) for Op the valuation ring of E. Moreover,
by possibly enlarging F and choosing a suitable lattice, one can also assume that the reduction
p' of p’ modulo mp, is semisimple. Now on the one hand, we have xz = Xx;. On the other
hand 7 (p’) = 7 yields xr = X/, and reducing mod mp,, we deduce xp = x7 = xp. By the
semisimplicity of p and p’, the theorem of Brauer-Nesbitt now implies p = p/. But then p’
represents an element of X(p) that maps to 7, completing the proof of (a).

To prove (b), observe that, by what we just proved, the map m; is surjective on (closed)
points. Moreover for rigid spaces all Zariski closed subsets are the Zariski closures of their
closed points. But then the image under m; of a Zariski dense subset is Zariski dense. It follows
from Theorem 4.1.12 that the set of benign crystalline points in XP*(7), which is the image of
the set of benign crystalline points in X(p), is Zariski dense in XP5(7). O

4.5 The cup product and quadratic obstructions

In the remainder of the article, we consider a residual representation p: Gx — GL,(F) for
n € N arbitrary. Let 0 — I¥ - R 5 Rg — 0 be a minimal presentation of Rg as in (1) of Propo-
sition 4.1.3. In this section, we show that the bracket cup product b: Sym?(H'(Gg,ad’)) —
H 2(GK,adO) determines the quadratic part of the relation ideal I in the sense of Defini-
tion 4.2.4.

As recalled in Proposition 4.1.2 and 4.1.3, Mazur attaches to any small extension 0 — J —
R; — Ry — 0 in Arp and deformation pg: Gg — GL,(Rp) with determinant v an obstruction
class O(pg) € H?*(Gg,ad’) @ J for lifting po to a deformation to R;. First one chooses a
continuous set-theoretic lift p1: G — GL,(R1) of po which still satisfies detop; = .7 Then
O(po) € H*(Gg,ad’ ® J) is given by the 2-cocycle

(g, k) — p1(gh)p1(h) " p1(g) ™ — 1. (3)

Similarly, O(pg) can be described by the obstruction homomorphism obs: Homp (J,F) —
H?(Gg,ad"). The latter is defined as follows: For any f € Homg (J,F), form the pushout on
the left of the given small extension and denote the result by 0 — F — Ry — Ry — 0. If

9 Such a map always exists: For instance choose a continuous set-theoretic splitting Rg — Ri of the given
homomorphism R; — Rp. Observe that since the R, are local, it induces a continuous set-theoretic splitting of
GL,(R1) = GLyn(Ro). Finally, fix the determinant similar to Lemma 4.4.1.
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4.5. The cup product and quadratic obstructions

ps: Gk — GL,(Ry) is a continuous set-theoretic lift of py satisfying det opy = 9, then we set
obs(f) = (O(po), f) = (Id®@f)(O(po)) € H*(Gk,ad"), ie., obs(f) is given by the 2-cocycle
(9,h) — ps(gh)py(h) " ps(g) ' — L.

The following lemma shows that the obstruction class is independent of a chosen small ex-
tension. Its simple proof is left as an exercise.

Lemma 4.5.1. Consider a morphism of small extensions

0 J R Ry 0
0 J R| R}, 0,

i.e., a commuting diagram with both rows a small extension and the right hand square in .74\1"@.
Let O(po) € H*(G,ad’®.J) be the obstruction of a deformation pg : G — GL(Ry) of p. Then

(id®m) (O(po)) = O(mo o po) € H*(G,ad” ® J') =2 H*(Gg,ad”) @ J'.

Recall that — means that we pass to rings mod mo, and minimality of the presentation of
Rg implies that m induces an isomorphism mp/m% = *% / (ﬁg)? In particular, I¥ C m%. In
this section, we consider the filtration {m% };>0 on R, and let in denote the initial term map
R — STag R. The following basic result relates the bracket cup product and the quadratic part

of IY:

Lemma 4.5.2. We assume p > 2. Then the following diagram is commutative:

Homg (H2(Gx,ad?), F) —= o [V /g I¥ (I +m%) /md,

] [

Sym? (Homy (H'(Gk,ad"),F)) —= Sym? (Mg /M%) — = m% /My,

where bY is induced by the dual of the bracket cup product, and obs" is dual to the obstruction
homomorphism. In particular, the quadratic part in2(I¢’) of IV in ﬁ%/ﬁ% agrees with the image
of bV.

Proof. Let J := (I¥ +m%)/m%. We prove that the following diagram is commutative:

Sym? (H'(G,ad’)) —== Sym?* (Homp (mg/m%,F) ) —— Homy (m% /m%, F)

4 |

HQ(GK,adO) <T3Hom1g (I_w/ﬁRI_"/’,F) <~—— > Homp (j, IB‘) .

The first isomorphism in the upper row is the canonical isomorphism from Proposition 4.1.2(a).
We shall show that the image of any ¢; € H'(Gg,ad’) in H?(G,ad®) is independent of whether
we apply —%b or the clockwise composite morphism that passes via obs. Since both maps are
F-linear and elements of the form c? generate Sym? (H Y G, ado)) as an [F-vector space, this will
prove commutativity. Before we embark on the lengthy computation of the composite morphism,
we observe that the bracket cup product of ¢; with itself is represented by the explicit 2-cocycle
(g,h) = [c1(9),Ad p(g)c1(h)], see [Was97, §2] — we write Ad p for the adjoint action of G on
ad’ to have clear notation.
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

We now compute the clockwise composite morphism that passes via obs. First we extend ¢; to
a basis {c1,...,cp} of H(Gg,ad®). Via the isomorphisms H'(Gx,ad®) = Homg (ﬁR/ﬁ%,F),
we obtain a basis of Homp (ﬁn/ﬁ%,F), which by slight abuse of notation, we also denote
{e1,...,¢cp}. For the corresponding dual basis of mg /m% we write {Z1,...,Z;} so that ¢;(Z;)
is the Kronecker symbol d;;. We lift the latter elements to a system of parameters {z1,...,z5}
of mg; this defines an isomorphism R = F[z1,...,x,]. With this notation, the image of ¢ in
Homy (Mm% /Mm%, F) is characterized by ¢3(z;2;) = 0 if one of 4, is at least 2 and ¢f(2%) = 1.
The image of ¢? in Homp (j , IF) is the restriction c?|; to the subspace J C Mm% /M%. Finally, the
composition of the canonical homomorphism I¥/mgI¥ — J and c?|; defines an element f in
Homy (1Y /mgI¥,F). To evaluate obs(f) = (O(pz), f), we consider the following diagram which
displays three morphisms of small extensions:

0——IY/mpl¥ —— R/mpl¥ R/IY 0
0 J R/myp ——=R/(IY +m%) —=0
0 ——m% /m5% R /m3, R/m% 0
i i
1
0 F R/ ker(c?) R/m% 0,

where the last row is obtained by pushout along c? and where we denote by ker(c?) the ideal of
R that is the preimage under R — R/m% of the kernel of ¢?: m% /m% — F. Note that since
R/m% = Rg / (ﬁ%)Q, the right column is the morphism defining the deformation ,0%’ (mod (ﬁ%)Q)
to R/m%.

By Lemma 4.5.1, we can use the last row to compute obs(f). For this, we need a suitable
set-theoretic lift of pg) (mod (ﬁ%})Q) to R/ker(c?). We begin with a cohomological descrip-
tion of pg (mod (f¢)2): using vector space duality, the canonical isomorphism H'(Gf,ad") =
Homp (ﬁR /%, ) can be described equivalently by the 1-cocycle Z L ¢ ®T; in ZY Gk, ad’ ®

mr/m%). Therefore, p%’ (mod (m ﬁ)2) is given by the formula

h
g— (1+ Y alg) @) alo).
i=1
We want to obtain a formula for a set-theoretic lift to R/ker(c?). It will be convenient to
use the exponential map expy(z) = 1+ = + %362 to level 2, which is well-defined as the rings
(R,mp) in :4\ro have characteristics different from 2. Moreover, expy can be applied to matrices
A € My, (mp). If in addition m%, = 0, then one can also verify that det(expy(A)) = expy(Tr(A)).
In particular, expy(A) has determinant equal to 1 if A is of trace zero. Now we take as our
set-theoretic lift

M:

ph: G — GL,(R/ker(c?)), g — exp, ( ci(g) ® :cl>ﬁ g) (mod ker(c?)).

=1

By the remark above on exp,, we have det(p{(g)) = det(p(g9)) = ¥(g9) (mod mp) for all g €
Gk. In R/ker(c?), we have z;z; = 0 whenever ¢ > 1 or j > 1. Hence, the expressions
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4.6. Further quadratic obstructions from the Bockstein homomorphism

exps(ci(g) ® x;) commute for all ¢ and we have exp, (Z?Zl ci(g) ® z;) = H?Zl exps(ci(g)x;).
Using these properties, the class obs(f) is represented by the 2-cocycle

(g: 1) — po(gh)po(h) " ph(g) ™ — 1= ph(gh)ph (h) " ()™t — 1,

where pf is the lift Gx — GLy(R/ker(c})), g — expy (c1(g9) ® 1)p(g) (mod ker(c})), of p. At
this point, it is a simple if lengthy computation to verify that the right hand side of the previous
expression is the 2-cocycle (g, h) = —3[c1(9), Ad p(g)c1(h)] ® 3. Now 7 is our chosen F-basis
of the lower left term in the above diagram and via ¢? it is mapped to 1. Hence, obs(f) agrees
with the expression for —3b(c1,c1) given above. O

Remark 4.5.3. The use of the exponential map in the above proof seems standard, e.g. [Gol84,
1.3].

Corollary 4.5.4. Suppose p is of degree 2 and p > 2. Then the homomorphism
b: Sym? H'(Gg,ad’) — H?*(Gg,ad’)
induced from the bracket cup product is surjective.

Proof. Consider a minimal presentation 0 — I¥ — R — R; — 0 of R;. By Lemma 4.5.2, it
suffices to show that the images of the quadratic parts of generators of I¥ span a subspace of
dimension equal to dimp H?(Gg,ad"). This follows from Corollary 4.3.6(a) in cases (A)—(C),
Lemma 4.3.7(c)—(e) in cases (D)—(E) and Lemma 4.3.2 by direct inspection in the respective
cases of Section 4.3. I

4.6 Further quadratic obstructions from the Bockstein homomorphism

Let p: Gk — GL,(F) be a residual representation and 0 — I¥ — R 5 ng — 0 be a fixed
minimal presentation as in Proposition 4.1.3. In the previous section we gave a description
of the contribution of the bracket cup product b: Sym?(H'(Gg,ad’)) — H?(Gg,ad’) to the
relation ideal I¥. By Lemma 4.5.2, knowing b is equivalent to knowing the quadratic part of
IY. In Example 4.2.3 we saw that knowing the refined quadratic part may have stronger ring-
theoretic implications than knowing the quadratic part only. The theme of this section is the
Bockstein homomorphism and its additional contribution to the relation ideal I¥. The upshot
is a cohomological description of the refined quadratic part of I¥ in cohomological terms in
Lemma 4.6.6 and Theorem 4.6.8.

We suppose that there is a representation psi1: Gx — GLy(Os41) lifting p for some integer
5.10 Observe that psy1 defines a homomorphism a1 : R;—Z’ / (wf;rl) — Og11. For the following
discussion it will be convenient to choose a regular sequence of parameters of R that is compat-
ible with as11 in the following sense: Since the morphism a1 0 (7 (mod wi™)): R/(wh ™) —
Os41 is a surjective homomorphism of formally smooth O i-algebras, it possesses an Ogyq-
splitting. Thus we may choose z1, ..., x;, of R with h = dimp H' (G, ad®) such that R/wg“l &
Osi1[z1, . .., zp] and such that under this identification the homomorphism «jo(7m (mod wf;rl))
sends all x; to zero. For 1 < i < s, let a; 1= agy1 (mod wfg): R%/(wé) — O; and p; = psi1
(mod @w},): Gxg — GL,(0;). Further, for 1 < i < s 4 1, the adjoint representation Adp; :
G — adg of Gk on trace zero matrices adg = Matg((’)i) is given by conjugation with p; so
that ad(l) = ad’. Then for all 2 < i < s+ 1 there is a short exact sequence of G -modules

0 — ad? | =8 ad? 2% ad® —s 0.

10 The delicate matter of the correct choice of ¢ = p® is discussed in Lemma 4.6.9 and Remark 4.6.10.
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Definition 4.6.1. For 2 < i < s+1, the i-th Bockstein operator or the p'-Bockstein homomorphism
is the connecting homomorphism f; in the induced long exact cohomology sequence

. ——= HY(Gg,ad" ;) 2% HY(Gg,ad’) —= H'(Gk,ad’) ) (4)

Bi
L H%(Gg,ad? ) 2% H2(Gr,ad?) —> H2(Gr,ad") — . ..

Now we give an explicit description of §; that will be useful later.

Lemma 4.6.2. Let2 <i<s+1, let c € Z' (Gg,ad’), and let " denote a set-theoretic splitting
of ad? — ad®. The i-th Bockstein operator is given explicitly by

Bille)) = ((9.h) — wg' - (Adpilg)e(h) — egh) + &) ) (mod BA(Gi,ad?. ). (5)

Proof. The connecting homomorphism ; is defined by applying the snake lemma to the following
commutative diagram with exact rows:

CY (G, ad?_;) 2% OV (G, ad?) = OV (G, ad’) —=0

S

0——= ZQ(GK, ad?fl) 7O> Z2(GK, ad?) ? Z2<GK7 ad0)7
where we let C’l(GK,adg) = Cl(GK,adg)/Bl(GK,ad?) and 0; is induced by the coboundary
map
CHGk,ad)) — C*(Gk,ad}), b+ ((g,h) — (Adp;(9)b(h) — b(gh) + b(g)))-

for any 1 < j < s4 1. We lift the given 1-cocycle ¢ € Z'(Gk,ad’) to the 1-cochain by =
(9 — ¢lg) : Gk — ad?, and denote the image of ¢ and by in C'(Gg,ad?) by ¢ and by,
respectively. Since by assumption d (¢) vanishes and the right hands side of the diagram is
commutative, we conclude that 0;(bg) € ker(pr}). Using the exactness of the lower row, we may

define B;([c]) := wy' - 0i(by) (mod B?(G,ad)_;)) so that the desired formula (5) follows from
the definition of 9;. ]

The meaning of the Bockstein operator for obstructions is given by the following straightfor-
ward result.

Lemma 4.6.3. Let i € {2,...,s+ 1} and consider a deformation p. = (1 +ce)-p: Gg —
GL,(F[e]) of p for some ¢ € ZY(Gr,ad®). Then p; has a deformation to O;[e] that lifts p. if
and only if Bi([c]) = 0.

Proof. As in the mod wp case we can write any deformation to O;[e] of p; as
Pic; = (1 +cie) - pi - Gk — GL,(Oje])

for some ¢; € Z' (G, ad?). Using the functorial homomorphism prf : (G, ad?) — C1(Gg,ad?),
we find that the image of p; ., under reduction mod we is given by

(1+ pri(c)e) - 5: Gx — GLn(Fle)).

Hence, such a deformation p;.,: Gk — GL,(O;[e]) of p; that lifts p. exists if and only if
pri(c;) = c¢. The long exact sequence of group cohomology (4) implies that the latter holds if
and only if [¢] lies in the kernel of ;. O
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Corollary 4.6.4. Let i be in {2,...,s+ 1} and consider the presentation

0— I; — Ry = Olxy,...,zp)/(z1,. .. 21)? = Ry i= Rg’/ﬂ((xl, ooz R) — 0
(6)
induced from (1) in Proposition 4.1.3. Then B; = 0 if and only if I; = 0, i.e., if and only if m;
is an isomorphism. In particular, if s = 0, then B; =0 for all j =2,...,s.

Proof. Suppose that I; is non-zero and let f # 0 be an element of I;. By multiplying f by
a suitable power of wp, we may assume that f lies in wglRi, i.e., that f is of the form
wgl(zgl:l Ajz;) for suitable A\; € O; such that at least one A; lies in O}. Let a.: R; — F[e] be
an (-algebra homomorphism such that dE(Z;.LZI )\jxj) is non-zero. Since [§; = 0, there exists

an O-algebra homomorphism
ajc: Ry — O4f¢]

such that a; . = a. (mod wp): R; — Fle]. We deduce

h h
0 m(@:O (am o 7Ti) (wgl(z )\jxj)) O-}g)m. wgl(am e} WZ)(Z )\jxj) c Oi[é‘],
j=1

Jj=1

and it follows that (o com;) ( 2?21 Ajz;) lies in weO;[e], or, in other words, that a ( Z?:l Ajz;)

= 0. This is a contradiction. O
Lemma 4.6.5. Suppose that 85 = 0, so that also fo = ... = Bs_1 = 0. Then the following hold:
(a) Fori=2,...,s, the short exact sequence

. 7'71 .
0—> ad® 2% ady RILES ady | — 0.
-1 *
yields a short exact sequence 0 — H?(Grc, ad®) Zo, H?(Gg,ad?) LN H?*(Gg,ad? ;) —
0.

(b) The Bockstein homomorphism By 1: H' (G ,ad®) — H?(Gg,ad?) induces a homomorph-
sm N
Ber1: HY(Gg,ad®) — H?(Gg,ad’)

with Bs11 = wg‘lﬁs+1 and the following property: A deformation p. = (1 +ce)p: Gx —
GLn(F[e]) of p given by c € ZY(Gg,ad®) lifts to a deformation of psy1 to Ogy1le] if and
only if Bs+1([c]) = 0.

(c) If ¢ € ZYH(Gr,ad),,) denotes a set-theoretic lift of ¢ € Z'(Gr,ad’), then one has the
explicit formula

Bora(le) = ((9.) — =" (Ad por (9)2(h) — Egh) + &g)) ) (mod BA(Gi,ad")).

Proof. For (a), recall that one has scd Gxg = 2 for the strict cohomological dimension of K.
Thus from S5 = 0 and from (4) we obtain the short exact sequence

0 — H2(Gre,ad®_)) T8 H2(Gx,ad?) 25 H2(Gre,ad®) —s 0.
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The groups H?(Gg,ad?) are finite, and we deduce

#H*(Gg,ad?) = #H*(Gg,ad’_ ) - #H*(Gg,ad). (7)
The sequence in (a) of second cohomology groups is part of a long exact cohomology sequence.
Its right exactness thus follows from scd Gxg = 2, and then its left exactness is immediate
from (7).

For (b) and (c) we consider the commutative diagram
H 1 (G K, ado)
P ” im&
£ _s—1

0 —— H*(Gx,ad’) —2= H2(G,ad?) — > H*(Gx,adl_;) —=0
with exact second row. Because 35 = 0, the dashed arrow Es+1 exists, and this proves (b). Finally
the formula for 5511 in (c) follows from multiplying the formula (5) for Bsy1 by w(;(s_l). O

The next result gives the meaning of the Bockstein operator for the relation ideal I¥.

Lemma 4.6.6. Fori = 1,...,s + 1, let m; be the kernel of the composition morphism R —
R%p —» R%/(wéo) X0y, de, m; = (@, x1,...,21). Let Iy1q be the relation ideal in (6) and
denote by IV — I the canonical homomorphism. Suppose Bs = 0. Then one has the following
commutative diagram:

Hz(GKaadO)VLIw/mRIw Isa

—Bzﬂl [
= Vv

H1<GK,adO)V ﬁn/ﬁ% =

s . )
wo

where V = (mg + wngR)/(mgH + wfg'HR) is an F-vector space with basis {whHaj}tj=1, n-

Proof. As in the proof of Lemma 4.5.2, we prove commutativity of the dual diagram

H?(Gre,ad’) <2 SHomg (I*/mp ¥, F) < Homg (I;11, F)
_Bs-‘—lT
Hl(GK, ado) = Hom]F (ﬁR/ﬁ%, F) = HomF (V, F) .

—s
wo .

We start by computing obs(f) € H?*(Gk,ad"), where f is the image in Homp (I¥/mgI?,F)
of a homomorphism f € Homg (V,F). For this, we use f to construct certain deformations of
p and corresponding 1-cocycles that at the end of the proof also determine the image of f in
H?(Gg, ado) under the other composite morphism passing through H'(G, ado).

In order to compute obs(f) with the help of Lemma 4.5.1, let ﬁ+1 V= @?:lefoj — Og41
be a set-theoretic lift of f, and define fsi1: Rsy1 — Ost1[e] by mapping z; to fzﬂ(wéxi) ‘€.
Then we consider the quotient Rs := RS+1/(m§ + wg,)HR) of Rs11. Note that Rsy is the ring
fiber product

Rer — R

y

OS+1 e Os-
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The deformation ps11 defines a homomorphism R}é’ — Os41, and since 85 = 0 there is a surjection
R;—Z’ — Rs by the previous lemma. By universality of the fiber product R, there exists a
homomorphism g : Rg’ — Rs4 that corresponds to a deformation psi: Gx — GL,(Rs4) of p.

Moreover, the homomorphism (fs+1 (mod w?95(93+1)) og: R;—Z’ — Roy — Ostie]/(@whHeOsi1)
defines a deformation ps;: Gx — GLp(Osy1le]/(wHeOs41)). Finally, we form the pushout Ry
of V< Rs11 and f so that there is a commutative diagram

0 1Y jmpI? R/mpI? RY 0
¢ ¢ Y
0 I Tl Rs+1 Rey1— 0
| ¥
0 %4 Rs—f—l R5+ 0
l’f i/ fs+1
0 F Ry — Rqy 0

i i i

0 wHeOs 1 Os1e] Ost1le]/wéHeOs i1

whose rows are small extensions in ;l\ro. Using Lemma 4.5.1, we obtain
obs(f) ® wHeOsi1 = (O(psy), f) ® WHeO0s1 = O(pst) € H? (G, ad” @ whHeOsi1).  (8)

Now we follow the steps explained above Lemma 4.5.1: Namely, we first define a suitable
set-theoretic lift Gx — GL,(Os41]¢]) of psy and then compute the obstruction class (8) by
applying formula (3). Composing the surjection Rg — Ry and fer1 (mod wy): Ry — Ogle]
determines a deformation ps. = (1 + ecs)ps: Gk — GL,(Osle]) for some 1-cocylcle ¢, €
HY(Gk,ads). Let ¢ € Z'(Gk,ad’, ) be a set-theoretic lift of c; that by construction defines a
set-theoretic lift

Pse = (1+ecs)pst1: Gx —> GLp(Os11le]) (9)

of ps+. Using formula (3), we calculate a representative in Z?(Gr,ad” ® (we)) for (8) by
evaluating

(h k) — Psc(hk)psc(k) psc(h)™ =1

(14 k) pag (hE)psg1 (B) (1 = £6a(k)) pag () 7 (1 — ca(R)) — 1
= was (é;(hk) — Adp.s+1(h) CT;(]C) — ag(h)) . w?y’:‘.

Hence, the class obs(f) € H%(Gk,ad’) is obtained from dividing by es).

It remains to compute the image of the homomorphism f € Homp (V,F) under the composite
morphism passing through H'(G g, ad’). First note that the map fo1 (mod we): Flzy,...,zp)
/(x1,...,23)* = Fle] induces a homomorphism f; € Homp (Mg /Mm%, F), which under multiplica-
tion by w§, is mapped to f € Homg (V,F). We want to compute Esﬂ([c]), where ¢ € Z' (G, ad?)
is a representative of the image of fi; under the canonical isomorphism Homp (ﬁn/ﬁ%,F) =
H'(Gg,ad®). Since by construction ps . = (14ecs)ps: Gx — GL,(Osle]) lifts (1+ec)p: G —
GL,(F[e]), it is clear that ¢; € Z1(Gr,ad, ;) is a set-theoretic lift of c. By Lemma 4.6.5(c), it
thus provides us with the representative

(h, k) — w@5° (Ady,, () Ca(k) — Ca(hk) + G(h)) € Z°(Gk,ad”)
for Bs+1([c]). This shows that Bs41([c]) = —obs(f), proving the lemma. O
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

If p has a lift to Oy, then there is a natural refinement of the above with regards to the
filtration of R given by m,. Denoting by in the initial term map with respect to this filtration,
one has isomorphisms

m2/(m34+mi,) 2F-in(w EB@IF in(wy) -in(z;) 2 F-in(wh)? @ V

and

ker (m2/m3 — m2/(m3 + m3,))

||2
D
=
E
§

in(z;) = W /my.

In other WOI‘dS we have a natural 2-step filtration of grZ, ‘R whose first subquotient is isomorphic
to m% /m3 and whose second subquotient is 1somorphlc to F-in(wf))? & V with V as above. A
variant of the above lemma is the following whose proof we leave to the reader:

Lemma 4.6.7. Let I,,1 be the relation ideal in (6) and let IY — I,1 be the canonical homo-
morphism. Suppose that ps11 possesses a lift to Oas and that Bs = 0. Then one has the following
commutative diagram:

H*(Gg,ad’)Y ——=TY/mgl¥ ——————= I,

By g

HY(Gk,ad") ——=mg/m% ——F-in(z))? o V.
Weo:

The use of the above 2-step filtration of gr2, R allows one to apply our results on the Bockstein
operator on one piece and that of the bracket cup product on the other. This gives precise
information on the refined quadratic parts in gr2, R which arise from H (G, ado) — with the
possible exception of the quotient in(w$))? - F. Namely, we have the following result:

Theorem 4.6.8. Suppose p has a lift to Osy1 and that Bs = 0. Then I is contained in
m; +ws+172 and the following diagram is commutative, where all homomorphisms are the natural
ones, as given either in Lemma 4.5.2 or Lemma 4.6.6:

H?(Gg,ad)V IYfmgl¥ ———— I¥/(IY N (m3 + @5 'R))
_E;/+1®_%b\/ l

H' (G, ad”)" & Sym? HY (G, ad”) —— g /mp & My /My C——= ey R/(F-in(w)?).

wg - )@incl.

If in addition p has a lift to Oas, then the above diagram still commutes if one removes the
symbols ‘+w?9+17?,’ in the top right and T - im(wé)2 " in the lower right corner.

We now discuss various issues about the Bockstein homomorphism that were left open so far,
for instance the existence of lifts ps11 and the choice of s.

Lemma 4.6.9. Let p > 2 and p: G — GL,(F) be a representation. Let s be an integer.'! We
fix a minimal presentation ong as in Proposition 4.1.3 and an isomorphism R = Olz1,...,zp],
and set mg := (wy), x1,...,21). Then the following hold:

1 In different items, s may take different values.
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4.6. Further quadratic obstructions from the Bockstein homomorphism

(a) If n =2, then p has a lift to O.

(b) For general n, if p(Gr) is a p-group and if p* = #ppo(K) > 1, then p has a lift to the
ring O/wi 0.

(¢) If the relation ideal IV lies in w2, then p has a lift to Oqs.

(d) If p has a lift to Oa and if Bs = 0, then any choice y; € v; + wHR, i =1,..., h, induces
a change of coordinates isomorphism R = O[x1,...,x5] = Oy, ..., yn] such that my is
independent of whether we use the x; or the y; to define it.

(e) If R}é’ is flat over O, then there exists a finite totally ramified extension of O[1/p| with ring

of integers O’ and a homomorphism Rg — O in :4\1"0, i.e., p has a lift to characteristic
zero, and in particular lifts to O’ [(w,)® for every integer s.

Regarding (e) note that A. Muller [Mull3] has constructed crystalline lifts of a large class
of mod p Galois representations p for any n. Whether such a lift always exists is still an open
question.

Proof. For O = W(IF), part (a) can be obtained from a simple adaption of [Kha97, Theorem 2]
— Khare’s proof using Kummer theory works for all field of characteristic zero — and part (b)
is [B6c03, Prop. 2.1]. For general O, one can apply Lemma 4.4.1 to replace the fixed character
¥ G — O* by a twist of ¢ whose image lies in W (IF)*. Part (c) is rather trivial: the hypothesis
implies that Rg’ =~ R/IY surjects onto R/(p**,z1,...,2) = O. Part (d) is also obvious. For
(e) observe that by flatness the ring Rg[l /p] is non-zero. Hence, its generic fiber X(p)¥ is a
non-empty rigid analytic space over O[1/p|. Thus it has points over some finite extension of
O[1/p]. These points are the desired lifts. O

Remark 4.6.10. The definition of the Bockstein operators §; depends on a choice of a base
point, i.e., a lift ps+1 of p to Os41. We do not know in general in what sense the vanishing of
Bs and the non-vanishing of 8511 could be independent of such a lift. A change of base point
as described in Lemma 4.6.9(d), clearly does not change the integer s for which g5 = 0 and
Bs+1 # 0, assuming the existence of psy1. We also do not know, what an optimal choice of s,
independently of a choice of the lift ps+1 means, although Lemma 4.6.9 provides some reasonable
guesses. If one does have an explicit choice of ps41, and a situation where one can then determine
its infinitesimal deformations, then one can determine whether 5; = 0 and Ss11 # 0. Such an
approach is sketched in the proof of Proposition 4.6.11.

Before giving the proof of Theorem 4.1.14, we discuss the existence of such a base point in
cases (D) and (E) of Section 4.3. For the remainder, suppose that ¢ = # 0 (K) > 1 and set
s := log, g. Suppose also that the image of p is a p-group and that the fixed lift ¢ of det p is
the trivial character — both can be assumed without loss of generality by twisting; cf. the proof
of Lemma 4.3.7.

Proposition 4.6.11. In cases (D) and (E) of Section 4.3 there exists a deformation peo in
D:f(W(IF)) such that Bs = 0 and Bs41 # 0.

Proof. We ask the reader to have the notation and concepts used in the proof of Lemma 4.3.7
at hand. We define

ot w (VT w
M"_<0 1)f0r2—1,3,-~,29 and M2'_( 0 Vi—q )’
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4. Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations

where the u; are all zero in case (D). Then it is easy to verify that the M; satisfy the Demushkin
relation M{[My, My] ... [Mag—1, May] = 1. Hence, the map IT — GLg(W (FF)) defined by mapping
x; to M; yields the desired lift poo.

We use this base point to determine the Bockstein relations, and thus to determine the correct
value of s such that 8, = 0 and 541 # 0, by computing explicitly infinitesimal deformations
of poo. Namely, we define N; := M;(1 +cA;) € GLo(W (F)[e]) for matrices A; = ( CCLl b; >

)
Computing the Demushkin relation N{[Ny, Na]...[Nag_1, Nag] = 1, we obtain a linear relation
whose coefficients lie in ¢WW (F) but not in pgW (F). The assertion follows. O

Remark 4.6.12. We note that the base point lift chosen in the proof of the previous proposition
is obtained as a specialization of the variables in the proof of Lemma 4.3.7 within ¢W (F).
Hence, by Lemma 4.6.9(d), the trivial specialization that sends all variables to zero gives a lift
to W(F)/q*W (F) (in fact to W (F)) so that 8s = 0 and Bs41 # 0.

Proof of Theorem 4.1.14. By the same reduction as in the proof of Theorem 4.1.4, given after
Corollary 4.3.6, it suffices to treat the case O = W (F). By Theorem 4.3.4, we have in cases (A)—
(C) of Section 4.3 that alift pas: Gx — GLao(W (F)/p**W (F)) exists for s = log,, ¢ if we specialize
all variables to zero. Then all the specialized relations will vanish modulo ¢?. Moreover for this
choice, we have #s = 0 and Bsy1 # 0 because the linear terms of the relations vanish modulo ¢
but not modulo pg. By Corollary 4.3.6(b), the images of the quadratic parts of generators of IV
span a subspace of dimension equal to hy = dimp H?(Gg,ad"). Thus Theorem 4.1.14 follows
from Theorem 4.6.8.

It remains to consider cases (D) and (E). We take the specialization from Remark 4.6.12 as
our lift to W (F)/¢*W (F) so that 8s = 0 and Ss41 # 0. By Lemma 4.3.7(c),(e), there exists a
presentation

0— (r1,...y7m) —>R—>R‘g —0
such that in(71), ..., in(7y,) € grzﬁR R form a regular sequence in gr . R and m = dimg H*(G,
ad®). We complete the proof of Theorem 4.1.14 by a further appeal to Theorem 4.6.8. O
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