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Abstract:

In recent years, the rapid development of attosecond pulse techniques opened the door
for studying and eventually controlling electronic dynamics. Due to strong coupling
between the electronic and nuclear motion, control over the pure electronic step offers
the extremely interesting possibility to steer the succeeding chemical reactivity by
predetermining the reaction outcome at a very early stage. Using the electron dynamics
and quantum coherence to induce a particular chemical process is the new paradigm in
the emerging field of “attochemistry”.

One example of physical phenomena, where an electronic dynamics significantly affect
on reactivity is the process of an ultrafast charge migration. The positive charge created
upon ionization of a molecule can migrate throughout the system on a few-femtosecond
time scale solely driven by the electron correlation and electron relaxation. Charge
migration triggered by ionization appeared to be a general phenomenon taking place
both after inner- and outer-valence ionization of molecules.

This thesis is devoted to the theoretical investigation of the fascinating interplay between
the faster electron and the slower nuclear dynamics appearing upon ionization of a
molecular system in the presence of an external electromagnetic field. The possibilities
to manipulate quantum molecular dynamics by applying specifically tailored ultrashort
laser pulses are inspected and analyzed. In particular, the focus is made on the role
which the coherent electronic dynamics plays and how the control of the electronic
movement influences the outcomes of induced processes. We present here both analytical
and numerical approaches allowing one to design laser pulses which can force the
evolution of a quantum system in a predefined way. We demonstrate by fully ab initio
calculations on experimentally interesting molecules that simple pulses can be used
to control the charge-migration oscillations. It is further shown how the correlated
treatment of electronic and nuclear dynamics affects the coherence of the electronic
wave packet. Our full-dimensional calculations on the propiolic acid molecule show
that the electronic decoherence time can be long enough to allow one to observe several
oscillations of the charge before nuclear dynamics eventually traps it. Utilizing the
strong coupling between the electronic and the nuclear motion, we exemplify the key
idea of the attosecond control of molecular reactivity. We demonstrate on a simple
model of molecular fragmentation that the nuclear rearrangement can be guided by
a manipulation of the electronic dynamics only. We argue that this example clearly
illustrates the concept of attochemistry and thus can be used as a starting point to
deepen our understanding of the possibilities to control chemical reactions.




Kurzfassung:

Die rapide Entwicklung der Technologie von Attosekundenpulsen hat den Weg geebnet
fiir die Untersuchung und eventuelle Kontrolle der Elektronendynamik in molekularen
Systemen. Da die Elektronen- und Kernbewungen stark gekoppelt sind, erdffnet
die Kontrolle der Elektronendynamik die Moglichkeit der Steuerung der chemischen
Reaktivitat, wobei speziel die Anfangsphase die Reaktion wichtig ist. Der Einsatz von
Elektronendynamik und Quantenkohérenz um einen chemischen Prozess zu induzieren,
ist das Paradigma des sich entwickelnden Forschungsfeldes der Attosekunden-Chemie.

Ein Beispiel der physikalischen Phénomene, bei denen die Elektronendynamik signifikan-
ten Einfluss auf die Reaktivitat hat, ist der Prozess der ultraschnellen Ladungsmigration.
Dabei kann die durch Ionisation erzeugte positive Ladung eines Molekiils auf einer
Zeitskala von einigen wenigen Femtosekunden durch das System wandern, lediglich
bedingt durch Elektronenkorrelationen und Elektronenrelaxation. Durch Ionisierung
induzierte Ladungsmigration stellte sich als ein generelles Phanomen heraus, sowohl
beider Ionisierung von inneren als auch dufleren Valenzelektronen von Molekiilen.

Die vorliegende Dissertation beschéaftigt sich mit der theoretischen Untersuchung des
Zusammenspiels von schneller Elektronen- und langsamer Kernbewegung in ionisierten
Molekiilen in aufleren elektromagnetischen Feldern. Die Moglichkeit der Manipulation
der molekularen Quantendynamik durch speziell geformte ultrakurze Laserpulse wird
analysiert. Spezielles Augenmerk wird auf die Rolle der kohédrenten Elektronendy-
namik gelegt, d.h. wie die Kontrolle der Elektronenbewegung das Resultat induzierter
Prozesse beeinflusst. Es werden sowohl analytische als auch numerische Herange-
hensweisen préasentiert, welche es erlauben, Laserpulse so zu formen, dass die Evolution
des Quantensystems in einer vorab definierten Art und Weise ablduft. Mithilfe von
ab-initio-Rechnungen fiir experimentell interessante Molekiile wird gezeigt, dass simple
Pulse zur Kontrolle der Oszillationen bei Ladungsmigration verwendet werden kénnen.
Des weiteren wird gezeigt, wie die korrelierte Betrachtung der Elektronen- und Kern-
dynamik die Koharenz des elekrtonischen Wellenpakets beeinflusst. Die Rechnungen
fiir ein Propiolsduremolekiil zeigen, dass die elektronische Dekohérenzzeit lang genug
sein kann, um mehrere Perioden der Ladungsoszillation innerhalb des Molekiils zu
beobachten, bevor die Kernbewegung dies eventuell verhindert. Die grundlegende Idee
der Attosekunden-Kontrolle der molekularen Reaktivitiat wird mithilfe der starken
Kopplung der Elektronen- und Kernbewegung veranschaulicht. Fiir ein einfaches Modell
molekularer Fragmentierung wird demonstriert, dass eine Umordnung der Atomkerne
ausschlieflich mithilfe der Manipulation der Elektronendynamik gesteuert werden kann.
Dieses Beispiel legt deutlich das Konzept der Attosekunden-Chemie dar und kann deswe-
gen benutzt werden, um das Verstandnis der Kontrollmoglichkeiten einer chemischen
Reaktion zu vertiefen.
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INTRODUCTION

The first chapter highlights the motivation of the research conducted in the present
thesis






One of the key problems of physics, which once led to the emergence of quantum
mechanics, is to understand how electrons and nuclei behave in a molecule. The
investigation of molecules and chemical reactions in which they can participate is of
fundamental interest to comprehend the diversity of the world or even life.

From a chemical point of view, the chemical reaction is a process that leads to the
transformation of one chemical substance to another. In terms of the molecular
structure it could be interpreted as the dynamical metamorphosis which leads to
rearrangement of the nuclei in space. Tracking the motion of the individual atoms
inside a molecule is an enormously difficult task since a time scale of this movement is
awesomely rapid. As a case in point, the molecular vibrations typically occur on a
time scale of tens to hundreds of femtoseconds (1 fs = 107'° s) which corresponds to
atomic movement with the speed ~ 1 km/s. It is obvious that to measure this process
one needs to have experimental techniques which are precise enough to guarantee the
required time and space resolution.

Since the earliest days of lasers, they are proven to be a source of the electromagnetic
radiation with extraordinary parameters. Laser beams can be focused to very tiny
spots, achieving a very high irradiance, while their temporal and spatial resolution
can be enough to observe fundamental processes appearing on a microlevel. Utilizing
the exceptional properties of the laser radiation, one was able to “freeze” molecular
structures far from equilibrium and to observe in this way vibrational motion of the
nuclei on its natural time scale [1].

The aim of the scientific efforts has not only been to investigate molecules, but also to
use specific features of a quantum nature of matter in order to control their properties.
For example, one may use the quantum interference and the properties of the laser-
matter interaction to directly exert control over the chemical reactivity of a molecule.
This is the concept behind the research field known nowadays as “femtochemistry” [1,
2], where by specifically tailored femtosecond laser pulses, one tries to steer the
motion of the nuclei in the molecule and thus guide the system throughout the desired
reaction channel. Born in the second half of the past century, femtochemistry is now a
well-established scientific discipline [1-4].

Despite the fact that chemistry is defined by rearrangement of nuclei, the factor which
leads to formation or destruction of chemical bonds between atoms is determined by
the electrons. Being much lighter than the nuclei, the electrons move much faster and
the typical time scale of their motion lies in the range from few femtoseconds down to
hundreds of attoseconds [5]. At the same time, the dynamics of the electrons and the
nuclei inside a molecule are strongly coupled, leading in such a way to the potential
opportunity to affect the nuclei through manipulation of the electronic motion only.
Within the Born—-Oppenheimer approach, i.e. supposing that the nuclei are moving on
the potentials of electronic states, this can be understood as the possibility to guide
the nuclear rearrangement by the redistribution of electronic density between different
potential-energy landscapes. To use the electron dynamics and the quantum coherence
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for inducing a particular chemical process is the new paradigm of the emerging field of
“attochemistry” [6].

This novel concept was to a large extent motivated by the impressive progress in the
laser pulse technology in the past two decades [7, 8]. With the advent of the twenty-
first century, developments of coherent light sources permitted to create attosecond
laser pulses with remarkably well controlled parameters [9, 10]. It has revitalized the
field of atomic and molecular physics due to the possibility to investigate phenomena
which have been long-predicted theoretically but never observed experimentally. Using
advanced laser technologies available nowadays, one is able to initiate and probe
processes that take place before the nuclear dynamics comes into play, i.e., to study
and manipulate electron dynamics on its natural time scale [11-15].

One phenomenon of particular interest for the attosecond science is the process of
transfer of electronic charge within a single molecule. The movement of charge along
a molecular chain is a key step in many essential biological processes and chemical
reactions. It plays an important role in photosynthesis [16], catalysis [17], DNA damage
by ionizing radiation [18], and many other fascinating phenomena in nature [19]. The
investigation of the mechanisms and physical characteristics of charge transfer in
biologically relevant molecules is attracting a great attention both experimentally and
theoretically [5].

The term charge transfer stands for many different physical phenomena irrespective of
the particular mechanism and generally describes the flow of electronic charge along a
molecule. The charge is usually driven from the “donor” to the “acceptor” site by a
nuclear rearrangement caused by an energy stabilization along a reaction coordinate.
Depending on the particular mechanism, the transfer time may vary strongly, but time
scales as short as few tens of femtoseconds have been reported [20, 21].

In contrast to this nuclear dynamics driven mechanisms, it was shown [22] that charge
transfer can take place exclusively on an electronic level and, therefore, on a much
shorter time scale. In their pioneering work [22], Cederbaum and Zobeley demonstrated
that due to the electron correlation, the removal of an electron from a molecular orbital
may create an electronic wave packet (a simultaneous population of a multitude of
cationic states), which will evolve in time. To distinguish this mechanism from the
nuclear driven ones it was termed “charge migration”. Theory predicts [23] that such
ultrafast migration of a charge is driven solely by electron correlation and thus can
happen even with frozen nuclei. Even though the charge migration is governed by
the electronic motion, it affects the dynamics of the whole molecule. Although in the
first few femtoseconds the process represents an ultrafast charge oscillation from one
site of the molecule to another, there were already strong indications [24-31] that the
coupling to the slower nuclear motion can lead to a trapping of the charge and, thus,
achieving irreversibility of the process [23].

The scientific attempts to investigate the interplay between the ultrafast charge



migration and the slower nuclear motion were pioneered by Schlag, Weinkauf, and
co-workers. In a series of experiments they observed a charge-directed reactivity [32] in
electronically excited ionic states of various peptide chains [33-35]. It was reported that,
after localized ionization of the chromophore site of the peptide, the positive charge is
transferred to the remote end of the chain, causing a bond breaking. Time-resolved
measurement on a smaller, prototype molecule (2-phenylethyl-N,N-dimethylamine,
abbreviated as PENNA) showed that the process takes place on the time scale of few
tens of femtoseconds [36, 37]. Extensive ab initio many-body calculations on PENNA
suggested [27] as an explanation that the charge-directed reactivity is a concerted
electron-nuclear dynamics: Immediately after ionization, pure electron dynamics is
triggered and the positive charge starts to oscillate between the chromophore and the
remote amine end of the molecule on a few-femtosecond time scale, while at later times
the coupling to the slower nuclear dynamics causes the trapping of the charge on the
amine site and the bond breaking.

The above mentioned experiments on PENNA molecule were performed using pulses
with durations of 200 and 120 fs for the pump and the probe, respectively, allowing
one to extract information about ultrafast processes on time scale down to few tens of
femtoseconds. The pure electronic dynamics were therefore our of reach. Nowadays,
however, observing and tracing the faster electronic processes became feasible due
to the strongly improved experimental techniques. Several recent experiments have
shown that ultrafast quantum coherences in complex molecules can be followed in time
and analyzed. Using XUV-pump—IR-probe technique, Calegari et al. were able to
observe pure electronic, few-femtosecond charge oscillations triggered by a broadband
ionization of phenylalanine [38] (see also Ref. [39]). Also, electronic wave packets
were created by field ionization and their evolution reconstructed via time-resolved
high-harmonic generation spectroscopy in iodoacethylen [40].

The particular challenge to perform experiments on molecular systems in comparison
with those for atoms is the involvement of many degrees of freedom. For example,
electronic and nuclear motion is usually coupled due to non-adiabatic effects, and its
interplay can crucially affect the possibility to observe the properties of interest. For this
reason, the role of theory as a prerequisite to outline new experiments, and to disclose
their feasibility and informational content, will be stronger than ever before [5]. The
aim of the present thesis is to contribute to the theoretical treatment of the molecular
dynamics under influence of the external electromagnetic field. Special attention is
paid to the possibilities to manipulate ultrafast electronic dynamics by attosecond
laser pulses. The influence of the slower nuclear dynamics on the pure electronic
charge migration process has been studied on model systems and by performing a
full-dimensional coupled electron-nuclear dynamics calculation on an experimentally
interesting molecule. The concept of controlling chemical reactivity by manipulating
electron coherences has been demonstrated.

The thesis is organized as follows. In the next chapter, we present an overview of the
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theoretical methods used for the mathematical treatment of electrons and nuclei in
a molecule. The approaches allowing one to treat electron-nuclear dynamics under
influence of the external electromagnetic field will be considered in some detail. In
chapter 3, we present our results on the control of quantum dynamics by specifically
tailored ultrafast laser pulses. We will show that by applying simple laser field with
controlled parameters one may force the evolution of a quantum system in a practically
arbitrary way. Chapter 4 contains our theoretical study of the control of charge
migration in real molecules. In chapter 5 we demonstrate the theoretical approach
allowing one to treat the coherent electron-nuclear dynamics. The key concept of
attochemistry will be illustrated. Finally, in chapter 6 we discuss future perspectives
of the attosecond quantum control of charge migration, summarize results obtained
within the present thesis, and conclude.



THEORY

This chapter gives a short overview of the theoretical methods for description of
dynamics in a molecular system under the influence of external electromagnetic fields
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Introduction

Quantum dynamics simulations are now established as an essential tool for under-
standing experiments probing the nature of matter at the microscopic level and on
fundamental time-scales. To describe an evolution of a quantum system in time, one
needs to solve the quantum mechanical equation of motion, which is known as the
time-dependent Schrodinger equation

N ov

HY =ih— 2.1

at Y ( )

where H denotes the Hamilton operator, which characterizes all possible physical
properties of the system, and V¥ is the time-dependent wavefunction, which defines the
particular state of the system at any moment of time.

Solving the many-particle Schrodinger Eq. (2.1) is a tedious task. In fact, an analytical
solution can be obtained only for systems with no more than two interacting particles.
In all other cases of interest, one needs to introduce approximations, mathematical
or physical, which will allow to treat more complicated situations. The objective
of the present chapter is to provide a general ansatz for solution of the Schrodinger
equation for systems with several degrees of freedom. To be specific, in this thesis we
will concentrate on the solution of Eq. (2.1) for molecules — the systems consisting
of electrons and nuclei interacting with each other. Special emphasis will be put on
the treatment of the interaction between a molecular system and an external field.
The electromagnetic radiation can strongly influence the motion of both the electrons
and nuclei, and consequently the dynamics of the molecule in general. Therefore, an
accurate theoretical description of the coupling between the electromagnetic field and
the molecule is required.

The chapter is organized as follows. In section 2.2 we will provide an overview of the
basic theoretical concepts underlying the ab initio description of the non-adiabatic
dynamics of a molecule. Starting from formally exact way to represent the molecular
wavefunction in a basis of the electronic states, we will introduce the concept of nuclear
wavefunctions and the equations which govern their evolution in time. Section 2.3 is
devoted to the description of methods for calculation of the electronic wavefunctions
of a molecular system for a given nuclear configuration. Finally, in section 2.4 the
Hamiltonian which represents interaction of a molecule with an external electromagnetic
field is derived and discussed in some detail.
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Electron-nuclear dynamics

The Hamiltonian H that governs the motion of the nuclei and the electrons can be
written in the following form

H(r,R)=T,+ 1.+ U(r,R), (2.2)

where T, and T, are the kinetic energy operators of the nuclei and the electrons,
respectively, and U(r, R) is the total potential energy of the nuclei and the electrons.
The vectors r and R denote the sets of electronic and nuclear coordinates, respectively.
At this point, we do not have to be specific about the choice of these coordinates and
will discuss it more specifically on cases of interest later.

The solution of the Schrodinger Eq. (2.1) with the given Hamilton operator (2.2) is
being represented by a full molecular wavefunction ¥(r, R,¢) which holds information
about the coupled dynamics of both electrons and nuclei. A key development making
this problem tractable for realistic systems is the idea that the molecular wavefunction
can be efficiently constructed as a tensor product of the Hilbert subspaces associated
with the electronic and nuclear degrees of freedom [41-43]. The fundamental reason
allowing this separation is the large mass of the nuclei compared to that of the
electrons indicating a clear difference in the fundamental time scales of their motion.
As a consequence of this heterogeneity, one can expect that a basis set ensuring the
completeness of the electronic subspace will vary slowly during rearrangement of the
nuclei.

2.2.1 | Born—Oppenheimer expansion

A convenient way to choose a basis for the representation of a molecular wavefunction
is to use the eigenstates of the Hamiltonian associated with the movement of the
electrons on potential formed by stationary nuclei

H.(r,R)=1T.+U(r,R), (2.3)
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which is defined for each set of positions of the nuclei R. The eigenvalues V;(R) and
eigenfunctions ®;(r, R) of this Hamiltonian fulfill

A

H.(r,R)®;(r,R) = V;(R)®;(r, R), (2.4)

and, obviously, also have a parametric dependence on the nuclear coordinates. The
set of eigenfunctions {®;(r, R)} form a complete basis in the electronic space at every
value of R

> @ (r,R)®;(r,R) = 6(r — '), (2.5)
where every eigenfunction satisfies the orthonormality condition
((Pz(r, R)'CI)] (I’, R))r = 51] (26)

We introduced the notation (...|...), meaning that the integration is performed over
the electronic coordinates r only. Hereafter, if no subscript indices are present, the
integration is made over all spatial degrees of freedom.

The electronic Hamiltonian commutes with the nuclear position operator, [f{, f[e] =0,
and thus an arbitrary state W(r, R, t) of the full system at any moment of time can be
expanded in a basis of the electronic eigenfunctions

U(r,R, 1) = 3 (R, )@ (r, R). (2.7)

Here,
Xi(R, 1) = (®i(r, R)[¥(r, R, 1)): (2.8)

are the expansion coefficients which carry information about the nuclear position
associated with a given electronic eigenstate. These coefficient are ofter referred to as
nuclear wavefunctions. Mathematically they quantify the fraction of the full molecular
state, defined on the Hilbert space of the Hamilton operator (2.2), onto a set of
electronic states.

The expression (2.7) is known as the Born—Oppenheimer expansion (or Born-Huang,
or adiabatic expansion) [42], and is the starting point for most of the approaches to
describe the dynamics of molecular systems. Formally, the expansion (2.7) is exact,
since the set {®;(r,R)} is complete. It is only when the expansion is truncated
that approximations are introduced [44]. Such a representation of the molecular
wavefunction allows the calculation of dynamical processes in molecules to be divided
into two stages. In the first stage, the stationary electronic problem (2.4) is solved
keeping the atomic nuclei fixed in space. In the second stage, the nuclear dynamics on
a set of predetermined electronic states is treated [45].

The full description of the dynamics of a molecular system involves the determination
of the time evolution of the functions x;(R., ). This can be done by projecting the full



12 2. Theory

Schrodinger Eq. (2.1) on a set of electronic eigenfunctions and integrating over the
electronic coordinates r

(®,(r, R)| H|T(r, R, 1)), = ih;(@i(r, R)|T(r, R, 1)), (2.9)

To proceed, we have to make use of the form of the kinetic energy operator T, of
the nuclei. This choice is not unique, and here the option is made for a rectilinear
coordinate system that yields a diagonal kinetic energy operator, i.e., for which the
different nuclear coordinates are not kinetically coupled [46] (for example Jacobi
coordinates). The nuclear kinetic energy can thus be written as

2
Tn=>_ (— 2%) V2, (2.10)

67

where the sum extends over the nuclear coordinates and M, is an appropriate reduced
mass.

Inserting ansatz (2.7) into Eq. (2.9) and utilizing relation (2.10), one obtains the
equation [44]

. a hQ o a
i (R 1) =3 (- 5 Ma> (2F%(R) - Vo + G5 (R)) x;(R, 1)
’ 2 (2.11)
— >+ Vi(R) | xi(R, ¢
+ (Z ( QM) Vi + Vil >> xi(R. 1),
where we have introduced the non-adiabatic derivative couplings
F(R) = (2;(r,R)[Va|®i(r, R)):, (2.12)

which are obviously vectors in the nuclear coordinate space, and the non-adiabatic
scalar couplings
G5i(R) = (@;(r,R)|V5|®i(r, R))s. (2.13)

By expanding the Laplace operator, it is possible to express the kinetic coupling as a
function of the derivative coupling terms

G4(R) = Vo F3(R) + F4(R) - F3(R), (2.14)

where the first term is the divergence of the derivative coupling vector field. The
derivative coupling terms F¢;(R) form an anti-hermitian matrix, which implies that
for real-valued electronic wavefunctions its diagonal terms are zero. Diagonal terms of
the scalar coupling matrix are not zero due to the second term in Eq. (2.14).

The solution of Eq. (2.11) completely describes the non-adiabatic dynamics of a
molecular system at any moment of time. We see from Eq. (2.11) that all terms in
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the Born—Oppenheimer expansion of the total wavefunction, Eq. (2.7), are coupled
through the nuclear motion, namely by the non-adiabatic coupling terms F$;(R) and
G%;(R). Such a formulation of the molecular dynamics demonstrates that the coupled
motion of electrons and nuclei can be reduced to the study of nuclear motion on the
predefined set of the electronic potentials V;(R).

In general, in order to describe the dynamics of the molecule all electronic states
must be considered. In practice, however, a truncated set of electronic states can
be used. Moreover, as one can see from Eq. (2.11), redistribution of the nuclear
density between electronic states in time depends on the non-adiabatic coupling terms.
In regions of nuclear space where these terms are important, the magnitude of the
coefficients |x; (R, t)| vary in time and the system can be seen as to undertake electronic
transitions.

As one can see from the definition of the non-adiabatic couplings (see Eq. (2.12)),
F5(R) depends on the form of the electronic eigenstates ®;(r, R) and ®;(r,R). By
applying the gradient operator to the electronic Schrodinger Eq. (2.4), one readily
obtains the following useful expression for the derivative couplings

<q)j(r7 R)|(Va]:[e)|q)i(r7 R>>r
Vi(R) - V;(R)

Fi(R) = (2.15)
This equation shows that the non-adiabatic coupling terms become important when the
differences between the energies of the electronic states become small, and diverge for
nuclear geometries for which the electronic states are degenerate. Nuclear configurations

where the derivative coupling is singular are known as conical intersections [44, 47,
48].

The singularity appearing due to dependence of the electronic states on the nuclear
configuration is problematic in numerical computations when treating the nuclear
motion quantum mechanically. However, it can be circumvented by choosing a different
representation of the electronic Hamiltonian H ¢(r, R) for which the derivative couplings
are zero. Such a basis is termed a diabatic basis [49-51]. Contrary to the usual adiabatic
electronic states, the diabatic ones are not the eigenstates of the electronic Hamiltonian
which thus acquires off-diagonal matrix elements in the diabatic representation.

A diabatic basis can be obtained by an orthogonal transformation @(R) of the
adiabatic wavefunctions, taken as the solution of Eq. (2.4), and constructed such that
the derivative couplings become negligibly small (or, ideally, vanish)

(@5(r, R)|Va|{(r, R))r = (;(r,R)|O(R)V.O(R)|®i(r, R)): = 0, (2.16)

where we denoted the new diabatic electronic states as ®%(r,R) = O(R)®;(r,R).
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Within this transformation, Eq. (2.11) for the dynamics of a molecular system become

: 9 d _ h? 2.d
ZhaXz (R7 t) - Z <_ 2Ma> VQXZ- (R, t)

07

+ (@5 (r, R)| e, R) [0 (r, R))ox (R, ),

J

(2.17)

where the coupling between electronic states now transferred from the nuclear kinetic
part to the off-diagonal elements of the electronic Hamiltonian. The obtained equation
operates on the new set of nuclear wavefunctions {x¢(R.,¢)} which are, in turn, a result
of the projection of the total state of the system onto a particular diabatic basis set.

The detailed description of the methods for transformation from adiabatic electronic
states to diabatic ones, as well as the methods for description and characterization of
conical intersections is out of scope of the present thesis. A comprehensive overview
of these interesting phenomena can be found elsewhere (see, e.g., Refs. [44, 48] and
references therein).

2.2.2 | Born—Oppenheimer approximation

In the case when the electronic states are well separated and vary slowly along the
nuclear coordinates R, it is possible to neglect all non-adiabatic coupling terms in
Eq. (2.11). This corresponds to the physical picture that the electrons are always
equilibrated to the much slower motion of the nuclei. In this case, the nuclear terms
in Eq. (2.11) are uncoupled and reduce to

0 h?
h—xi(R,t) = — 2+ ViR) | xi(R,1). 2.18
g = (5 (<5 ) 72 V) ) wre 215)
This simplification and the resulting equation is known as the Born-Oppenheimer
approximation [41, 42]. Contrary to the full set of Eqs. (2.11), the resulting simplified
Egs. (2.18) can be solved independently for every electronic state of interest.

In the frame of the Born-Oppenheimer approximation, the system prepared in a
given electronic state will remain in the same state. Thus, the nuclear motion being
described on the independent potential energy surfaces V;(R) and the population of
the involved electronic states remains constant in time. This approximation and the
underlying idea is central to most dynamical treatments in chemistry and even in
those cases where it fails, it remains the reference to which one can compare and in
terms of which one discusses this failure [44].
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2.2.3 | Static nuclei approximation

Various dynamical effects in a molecular system can take place before the nuclear
dynamics comes into play. In this case, we can consider some particular nuclear
geometry Ry and concentrate only on dynamics of electrons while the nuclear frame
is fixed. Using Taylor approximation, the expansion of the nuclear wavefunctions in
small region around Ry can be expressed as

X;(R07 t)

XZ(Ra t) = Xi(ROa t) + 11

(R—Ryp) + ... (2.19)
Truncating this series on the first term, we assume that the changes of the nuclear
wavefunctions y;(R,t) around Ry with respect to R are negligible. Therefore, the
action of the Laplace operator on it becomes zero

Vexi(Ro,t) = 0. (2.20)

Substituting this relation into Eq. (2.18), we obtain

0
Multiplying this equation by the electronic eigenstates ®;(r, Rg) on both sides, summing
up over the electronic subspace, and using Eq. (2.4), we find

L0 A
Zha Z Xi(RO; t)(IDZ(r, Ro) = He (I‘, Ro) Z Xi(Ro, t)q)l(r, Ro), (222)
which, after substitution of Eq. (2.7), becomes

ihaatlll(r, Ro) = H.(r,Ro)¥(r,Ry). (2.23)
As one can see, the dynamics of electrons on fixed nuclear geometry Ry can be
computed by solving the time-dependent Schrodinger equation with the electronic
Hamiltonian ﬁe(r, Ry) obtained on the corresponding nuclear point. This approach is
known in the literature as the multielectron wave-packet propagation method [52] and
allows to calculate ab initio fully correlated dynamics of few tens of electrons. The
latter can be achieved with the help of the short-iterative Lanczos time-propagation
technique [53, 54].

Despite that in the above presented approach the movement of the nuclei is completely
neglected, it can serve as the starting point to study the ultrafast dynamics of the
electronic cloud before the nuclear movement comes into play. This can be especially
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useful in case of the moderate and big sized molecules for which the nuclear vibrations
are found to be relatively slow [46].

Concluding this section, we would like to point out that only key milestones of the
tremendous set of quantum molecular dynamics methods were considered. Nevertheless,
some alternative approaches, such as e.g. the exact factorization of the molecular
wavefunction will be discussed more specifically on cases of interest later.

PRSI [lcctronic structure methods

The main goal of this section is to provide a short insight into the methods for solution
of the stationary Schrodinger Eq. (2.4) for the electronic subsystem. As was discussed
in the previous section, fixing of the nuclear positions leads to a dependence of the
electronic Hamiltonian ﬁe(r, R) exclusively on the electronic coordinates r, while the
nuclear degrees of freedom R enter the Hamiltonian only as parameters.

To be specific, let us write explicitly the Hamilton operator of N moving electrons
placed in the field of M stationary nuclei

R N h2 M N
He(ryR) :_‘ 2m z_:zz: | _Rozl
= 7.7 (2.24)
_ Hasp
+
; ’ ]I ; [Ro — Rg|’

where m, and ey are the mass and the charge of the electron, respectively, and Z,
denotes the atomic number of the nucleus a. The presented Hamiltonian includes the
kinetic energy operator of the electrons (first term) as well as the potential energy
operators describing electron-nuclei, electron-electron and nuclei-nuclei interactions
(last three terms), respectively.

Last term of Eq. (2.24), namely, the nuclei-nuclei interaction, enters into the Hamil-
tonian only as an additive constant and does not affect thus the eigenvectors of the
time-independent electronic Schrodinger Eq. (2.4). For the sake of simplicity, it is
convenient to exclude this constant term from the solution of Eq. (2.4), thus obtaining
the following expression

H'(r,R)®;(r,R) = E;(R)®;(r,R), (2.25)
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where the new electronic Hamiltonian is defined by the relation

N N YAV
H.(r,R)=H)(r,R)+ Y ef =2 (2.26)
o;ﬁ O|Ra - RB|
and the electronic potentials seen by nuclei become
YAVA
ViR) = E;(R) + > ed 220 2.27
(R) = B(R)+ 3 = (227)

Further in this section we will omit the dependency of the variables and operators
on the spatial degrees of freedom and will use atomic units (e2 = h = m, = 1) for
compactness.

Many methods exist to calculate the electronic wavefunction of a molecular system [55].
Giving an overview of the existing approaches is out of scope of the present thesis.
Here, we will introduce and examine only briefly one of the most important ab initio
models of quantum chemistry, namely the Hartree-Fock method, since it serves not
only as a useful approximation, but also constitutes a convenient starting point for
other, more accurate models of the electronic structure theory. One such a model
particularly used in the present work, namely Green’s function formalism, will be
presented and discussed as well. Special emphasis will be put on the treatment of the
ionization process, i.e. the process by which a molecular system acquires a positive
charge by losing an electron to form an ion. The effective method for calculation of
the ionization potentials by means of the one-particle many-body Green’s function,
referred to as algebraic diagrammatic construction (ADC) [56, 57] method, will be
presented and discussed in some detail.

2.3.1 | Hartree-Fock approximation

The most primitive description of a system containing N electrons is given by the model
of independent particles. This does not mean that one neglects the inter-electronic
interactions, but only that their actual values are replaced by some “averaged” ones [58].
Each electron is moving in an effective field that represents the sum of the field caused
by the nuclei and the averaged field created by the other electrons.

Within this model, every state a of a single electron can be described by its own
wavefunction ¢,(i) = @.(r;,0;) that depends on both the spatial r; and spin o;
coordinates of i-th electron, and is referred to as the one-particle spin orbital. To
ensure all required properties of the many-electron wavefunction (e.g. antisymmetry
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with respect to electron permutations) a suitable ansatz representing a determinant of
one-particle orbitals (known as a Slater determinant) is used [59]

e1(1)  wa(1) - (1)

v 1 |e@) 22 - en(2)

P, :ﬁ : f ] (2.28)
e1(N) @2(N) -+ on(N)

where ¢, (i) is the a-th spin orbital considered as a function of the spatial and spin
coordinates of the i-th electron.

We are interested in finding a set of spin orbitals {¢,} such that the Slater determinant
formed from these orbitals is the best possible approximation to the ground state ®
of the N-electron system described by an electronic Hamiltonian ]:Ié According to
the variational principle [60], the “best” spin orbitals are those which minimize the
electronic energy of the ground state

Ey = (®) |H|®():. (2.29)

It can be shown (see, e.g. Ref. [58]) that the optimal one-particle spin orbitals are the
solutions of the Hartree—Fock equations

(i) + (1)] (i) = €aa(i), (2.30)
where we have introduced two terms, namely the core-Hamiltonian

pov oy S Za
h(i) = —§VZ- + > It —R.|’

a=1

(2.31)

and an effective one-electron potential operator called the Hartree-Fock potential

o) = Y lenl)—

’7
b i — 1]

(1= Pij)len())x,- (2.32)

The operator 7515 interchanges electrons i and j between orbitals ¢,(7) and ¢, (7).

In such formulation, the variational search for the ground electronic state ® is
reduced to the solution of a set of pseudo-eigenvalue problems with the spin orbitals
as eigenfunctions and the energies of the spin orbitals as eigenvalues. One uses the
term “pseudo” since the operator 9(i) has a functional dependence on the solutions
{@a} of the other coupled equations. Thus, the solution of the Hartree—Fock equations
is a nonlinear problem and needs to be solved by iterative procedures.

In practice, the exact mathematical solution of Eq. (2.30) formulated in terms of the
search for optimal spin orbitals is possible only for very simple model situations. In
other cases of interest, one needs to introduce an ansatz for representation of the
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one-particle orbitals. It was shown by Roothaan [61] that the spin orbitals can be
approximated by linear combination of some predetermined basis functions (basis

orbitals)
K

DA (2.33)

p=1
where the orbitals §, form the basis set, and ¢ is the u-th orbital coefficient of the
a-th molecular orbital ¢,. Substitution of this expansion for every one-particle orbital
into the Hartree-Fock Eq. (2.30) leads to the so-called Roothaan equation

FC = SCE, (2.34)

where F is the representation of the h(i) + (i) operator in the basis &, (the Fock
matrix), C is the matrix of the expansion coefficients, S is the overlap matrix of the
basis orbitals, and E is the diagonal matrix of orbital energies. At this point, the
problem of determining the Hartree-Fock molecular orbitals ¢, and orbital energies
g, is reduced to solution of the matrix eigenequation (2.34).

Orbital energy ¢, characterizes in some sense the energy of a single electron in a
molecule. In order to remove this electron from the molecule one needs to apply an
energy sufficient to overcome the sum of kinetic energy of the electron and potential
energy of its interaction with the particles in the system (i.e. with the other electrons
and nuclei).

If one assumes that after removing/putting an electron from/into a molecule the
spin orbitals are identical with those of the neutral molecule then the ionization
potentials and electron affinities will be equal to the negative of the orbital energies
£q. This statement is known as Koopmans’ theorem [62], and is widely used as a
first approximation for prediction properties of a molecule. By using the powerful
formalism of second quantization [63], one can formally define electronic wavefunctions
of the cationic and anionic states as

ot =¢,0),  and 0N =¢lof, (2.35)

where ¢, and 62 are annihilation and creation operators, respectively, @]]DV ~lis an
approximate wavefunction for the (N — 1)-electron system obtained by removing
an electron from spin orbital p, and ®}*! is an approximate wavefunction for the
(N + 1)-particle system obtained by putting an electron into spin orbital ¢. Utilizing
these notations, and also Eq. (2.29), the ionization potential (IP) and electron affinity
(EA) energies can be written as

S IP =&, = (O LB, — (@1 TN ), (2.36)
~BA =g, = (@O, — (@) |8, (2.37)

The orbital energies, however, do not give the exact ionization potentials and electron
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affinities because of two important effects. First, @év ~1and CIDfJV +1 are not the Hartree—
Fock wavefunctions of the (N — 1)- and (N + 1)-particle systems since they were
constructed from spin orbitals of the N-particle system. Second, the correlation effects
between electrons must be considered in more accurate manner.

Despite its great success in the qualitative prediction of molecular properties, the
neglect of the effects of electronic correlation between one-particle orbitals can lead to
large deviations from the real properties of the system. Hence, a number of approaches,
collectively called post-Hartree-Fock methods, have been devised to include electron
correlation to the multi-electron wavefunction. The main purpose of the Hartree—Fock
method is to provide a set of one-electron orbitals and energies, based on which
systematic improvement of the electronic wavefunction and the electronic energy can
be achieved.

2.3.2 | Green’s function method

One of these approaches, namely Green’s function technique, is one of the most
powerful tools of many-body theory. In this subsection we will consider the one-
particle Green’s function which contains information about the electron affinities and
ionization potentials of a N-electron system. The conceptual advantage of Green’s
function methods lies in the fact that the interesting physical information is calculated
directly without the need for separate calculations for the ground and ionic states.
This, in turn, eliminates errors related to inconsistent treatment of the initial and
final states [64]. The one-particle Green’s function theory can provide a systematic
framework that improves the ionization potentials and electron affinities obtained
within Koopmans’ theorem approximation.

The matrix of the one-particle Green’s function G is defined with respect to a suitably
chosen basis of one-particle states, which, in our case, is a discrete set of the Hartree—
Fock orbitals, by

Gpg(t, 1) = —i(DY | T2, ()2l ()| @Y ) (2.38)

where @) is the exact non-degenerate ground state of the considered N-particle system,
¢y(t) and & (t') are the time dependent creation and annihilation operators in the
Heisenberg representation and 7' is Wick’s time-ordering operator. In the spectral
representation, the physical meaning of the one-particle Green’s function becomes
clear [65]

(@ |ep| @YY e (@) | D) 5 (@ et @) 1) e (PN Ep| P e
w+ EY — ENt 4+ — w+ EN-1— EYN —in ’
(2.39)

Gpg(w) = Z

n
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where EN*! and &1 denote the energies and states of the (N + 1)-particle systems,
respectively, £ is the ground-state energy, and a positive infinitesimal 7 is necessary
to guarantee the convergence of the Fourier transformation. The first term in Eq. (2.39),
let us denote it as G} (w), contains the physical information on the (N + 1)-particle
system, and the second term (further denoted as G, (w)) on the (N — 1)-particle one.
The spectral representation G;tq (w) can be written in a compact matrix notation as

G*(w) = xM(w — Q%) 'x, (2.40)

where we defined the transition amplitudes matrix x as

PN|e |V, ne{N+1
np:{< Ve JoNthy,, ne {N+1} 2.41)

(@070 ), mEe{N -1},
and Q7 is the diagonal matrix of the ionization energies and electron affinities
QOF, = F(EY — EYY). (2.42)

Moreover, in general, the spectral representation of any Green’s function I'(w) can
be written in a form of Eq. (2.40) by choosing the appropriate transition amplitudes
matrix x and the corresponding matrix of eigentransitions 2.

As one can see from the definitions (see Eqgs. (2.38) and (2.39)), the Green’s function
formalism operates with the accurate values (the electronic states and their energies),
yet, for practical calculations, one has to introduce approximate schemes. The usual
approximation procedure to evaluate the Green’s function is by using a perturbation
expansion. One of the most practical and systematic ways for constructing such type
of approximations is the so-called algebraic diagrammatic construction (ADC) scheme
introduced by Schirmer et al. [56, 66]. As one can see from the name, the ADC
schemes are based on perturbation expansion of the Hamiltonian which can be directly
compared to the diagrammatic series for the Green’s function of interest.

Most of the methods in the formalism of the one-particle propagators use the so-called
Dyson equation [63, 65] since it results to the relatively simple procedure of the
comparison of the ADC form and the diagrammatic perturbation series for I'(w). A
characteristic (and not always desirable) feature of the Dyson methods is that in these
approaches, the (N = 1)-particle parts of the one-particle Green’s function (G*(w) and
G~ (w), respectively) are interconnected, and the resulting equations are defined with
respect to configurational spaces comprising both (/N 4 1)-electron configurations. It
was shown [57], however, that the ADC approximation can be applied directly to the
Green’s function of interest (G*(w) or G~ (w) in our case), which does not employ the
Dyson equation. This non-Dyson (nD) ADC scheme has several important advantages
over the usual Dyson ADC scheme. Namely, it leads to a decoupling of the Dyson-type
secular equations into two separate sets of equations, one for the ionization energies
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and the other for the electron affinities. The price for this splitting of the secular
problem into two parts is more complicated perturbation-theoretical expressions for
the secular matrix elements.

The ADC approach is based on the following nondiagonal representation for arbitrary
Green’s function I'(w)
I'w) =fl(w—- K- C)'f, (2.43)

where K 4 C is the non-diagonal effective interaction matrix and f is the matrix
of effective transition amplitudes. The obtained nondiagonal representation can be
transformed to the original Eq. (2.40) by solving the secular equation

K+CO)Y=YQ, Yvy=1, (2.44)
where Y denotes the matrix of eigenvectors, and the relation
x =Y'f (2.45)

allows one to determine the corresponding spectroscopic amplitudes. Mathematically,
Eq. (2.43) can be treated as a result of transformation of the basis of exact states
®N+! to a complete set of so-called intermediate states )+ [67, 68]

ONEL =Ny, o (2.46)
J

The intermediate states can be constructed by the orthonormalization of the so-called
correlated exited states C;®) where C; denote excitation operators of the manifold

‘ ee,eleney eteleneien,, ... for  GT(w) (2.47)
J = .
et etele, eteletewe, .. for GH(w),

where k, [, m indices denote the occupied and a, b, ¢ the virtual orbitals, respectively.
The representation of the Green’s function as shown in Eq. (2.43) is thus assigned as
the Intermediate State Representation (ISR).

In the ADC method, the approximate schemes are constructed by expanding the
matrices K, C, and f into a perturbation series

K+C= K+CW4+C® 4 ..

f= O LM 4 e@ 4 (2.48)

Substitution of these relations into Eq. (2.43) with simultaneous expansion of the
denominator in an infinite series and consequent accumulation of the perturbation
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terms of the same order leads to

Tw) = 9w - K,)'£?
i T
oK) 0 ) (2:49)
T
+ 2w -K)CW(w - KT 4

The explicit expressions for the matrix elements K,,, ij}), and fl(f‘) can be derived by
comparison of the expansion (2.49) with the diagrammatic perturbation expansion
for T'(w). Hence, the ADC method opens a highly systematic way for infinite partial
summations for the I'(w) complete through a finite order of perturbation theory
for formulation of approximations to an arbitrary Green’s function. The resulting
equations for the ADC matrix elements of the different Green’s functions can be found

elsewhere [56, 64, 69].

K+C f
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Figure 2.1: Block structure of the secular matrix K + C and of the effective
transition moment matrix f of the non-Dyson ADC scheme.

In Fig. 2.1 we show schematically the block structure of the K + C and f matrices, as
well as the manifold of the corresponding excitations operators, for representation of the
G (w) and G~ (w) by nD-ADC scheme. The explicit nD-ADC expressions for matrix
elements through third order of perturbations can be found in [57, 70]. The subsequent
solution of the eigenvalue problem (2.44) delivers the ionization potentials/electron
affinities matrix QF, as well as the explicit form of the transformation matrix Y in
ISR representation.

Among other advantages of the ISR formulation of the Green’s function method is the
possibility to evaluate the one-electron properties of the final molecular states. Using
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Eq. (2.46), transition matrix elements D,,, of arbitrary one-particle operator D can
be written as [70, 71]

D, = <(I)%i1|ﬁ‘q)gﬂ>r = Z Y£1<§>§Vi1|ﬁ|&)yﬂ>r}/ﬂ] = an]ij (2-50)
I,J

where the matrix D is the representation of the operator D in ISR basis. The matrix D
has a similar block and order structure as the K + C matrix. The explicit expressions
for the matrix elements can be obtained by similar procedure using perturbation
theory [70].

The presented Green’s function method within the ADC scheme combines matrix
diagonalization of a secular matrix and perturbation theory for the matrix elements and
the effective transition moments. The advantages of this approach are the regularity
of the perturbation expansions, compactness of the configuration spaces, and size-
consistency. The most essential drawback of the ADC methods is the restriction
to systems with single-determinant character of the neutral electronic ground state.
Furthermore, relying on a perturbational expansion scheme, the ADC energies typically
do not converge smoothly with the growing perturbational order, but rather exhibit
an oscillatory behavior [70, 72]. Nevertheless, the family of the nD-ADC methods in
ISR formulation represents a powerful tool for treating the electron correlation and
can be efficiently used for the highly-accurate calculation of the electronic states of the
system. Another important advantage of the Green’s function based methods is that
they provide directly the full spectrum of the ionic or excited-state Hamiltonian in a
single run. For comparison, with most of the popular wavefunction based methods,
these states have to be obtained one by one, which substantially reduces their practical
applicability to cases where only the lowest few states are populated and participate
in the dynamics [23].

Interaction of a quantum system with the electromag-
netic field

24

Let us consider two subsystems of particles which interact with each other. The
particular form of such interaction depends on a nature of the system, as well as on
the individual positions of the participating particles. Our goal here is to describe
how one part of the system “feels” the behavior of the other one. Let us assume first
that in some particular moment of time the state of the second subsystem is known.
In this case, one can describe the influence of second subsystem on the first one by
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some function which depends only on the state of the first subsystem. Namely, one
can consider how the second subsystem affects a particular particle in the first one. It
is clear that such interaction can be described by some function of coordinates which
can be referred as a field. If, in addition, the second subsystem is evolving in time
then the field will be also time-dependent. In this case, the field can be completely
defined by a four-component vector which describes the evolution of the field at every
spatial position in time.

As one can see, if we neglect the influence of the first subsystem on the second one
then the behavior of the particles in the first subsystem can be completely described
by knowing the nature of considered species and how they interact with each other,
and by the time-dependent external field. It means that we can move beyond the
consideration of the particular physics which leads to the creation of the field and
concentrate only on the description of the interaction of this field with the system. In
particular, in this section we will concentrate on the consideration of the interaction
of the electromagnetic field with charged particles. An ultimate goal is to derive the
Hamilton operator which describes a quantum system in the presence of external
electromagnetic field. A few useful approximations, such as the dipole approximation,
that simplifies dramatically the resulting Hamiltonian, will be discussed.

The text is organized as follows. In subsection 2.4.1 the Hamilton operator which
describes the behavior of a particle in a field is derived from classical principles. Sub-
section 2.4.2 is devoted to the explanation of the connection between the mathematical
formulation of electrodynamics and the real physical properties of the electromagnetic
field. In subsection 2.4.3 one can find the derivation of the Maxwell equations in
terms of the four-component field vector. In subsection 2.4.4 the mathematical gauge
invariance of the four-component representation is shown. Finally, subsection 2.4.5 is
devoted to the application of the introduced formalism for the derivation of the result-
ing Hamiltonian describing the quantum system in the presence of an electromagnetic

field.

2.4.1 | Mathematical description of a particle in a field

We start with the description of the interaction between a particle and a field repre-
sented by a four-component vector [73]

(As, Ay AL ) (2.51)
—— —

A
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with a vector component A(r,?) and a scalar component ¢(r,t). One needs to keep
in mind that although the four-potential is Lorentz covariant, both the vector and
scalar potentials by themselves depend upon the frame of reference, and upon a given
gauge, and thus in general depend on the spatial position and time. For a particle
moving in a given field, the classical action is made up of two parts: the action for the
free particle, and a term describing the interaction of the particle with the field. The
properties of a particle with respect to interaction with the electromagnetic field are
determined by its charge q.

In order to connect the four-component vector describing the field with the three-
dimensional physical Euclidean space describing the particle, one needs to project
it on the same space. In the following we will concentrate on the description of the
system instead of the field. Thus, it is more convenient to project a field vector on
the space of a particle. In order to do that, one needs to keep in mind the metric
signature of a four-space (+,+,+, —) [74], where first three components represent
spatial positions and the forth one represents a time. Thus, the projected field vector
will have the spatial coordinates with a plus sign and the time component with a
minus sign, respectively.

The action function for a charged particle in an electromagnetic field has the following
form [75]

S = / (?f?dm gA - dr — q¢dt> , (2.52)

where m is the mass of particle, r is the spatial position, and r is the velocity.
Introducing dr = rdt, and changing to an integration over t,

S = / (7;1'«2 FgA - — ng) dt, (2.53)

one can easily extract the Lagrangian £ for a charged particle in an electromagnetic
field which is just the integrand in the above equation

L= %1«2 FgA T — g, (2.54)

The derivative OL/0r is the generalized momentum of the particle; we denote it by p.
Carrying out the differentiation, we find

0 :
p= %L = mr + qA. (2.55)

From the Lagrangian we can find the Hamiltonian H for a particle in a field from the
Legendre transformation [75]

H:f-p—ﬁzgr%ng. (2.56)
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However, the Hamiltonian must be expressed not in terms of the velocity, but rather
in terms of the generalized momentum of the particle. To do that, one can use
relation (2.55). Finally, we find the following expression for the Hamiltonian

H (p—qA)* + 0. (2.57)

1
- 2m

Using canonical quantization rules [76] we can promote conjugate variables to operators,
p — P = —ihV, r — I with commutation relations [p;, Z;] = —ihd;;. Thus, resulting
Hamilton operator can be written as

~ 1 ) 9
= — (—ihV — gA . .
H = 5 (~ihV = qA)’ + g0 (2.58)

In this representation, the coordinate operators work by multiplication and the momen-
tum operators by taking the gradient. Other terms in the Hamiltonian are represented
by Hermitian operators A(r,t) and ¢(r,t) obtained from the corresponding classical
quantities by replacing r by its quantum-mechanical counterpart.

One needs to keep in mind also that in the construction of the Hamiltonian, the
fundamental property of a quantum particle — namely, its spin — was not considered.
Indeed, since spin has no classical counterpart for a point-charge particle, it cannot be
incorporated in the Hamiltonian by following the standard procedure for quantization
of a classical Hamiltonian. However, in this thesis we will work in the frame of the
electric dipole approximation which will be further described in details. Namely, it
will be shown that the magnetic field component of the electromagnetic field can be
neglected in all considerations of interest for the present work. Thus, here we will
neglect the interaction of the magnetic field with the spin of the particle and will not
consider ways to include it in the Hamilton operator.

2.4.2 | Physical description of the electromagnetic field

A charge placed in an electromagnetic field is a subject of a force exerted by the field.
In classical electrodynamics this force is usually referred to as Lorentz force. Following
[77] we will give a derivation of the Lorentz force from classical Lagrangian £ in
terms of the vector and scalar potentials introduced in the previous subsection. Such
a procedure will allow us to connect mathematical quantities introduced previously
with physically measurable properties of the field, such as the electric and magnetic
intensities of the field.
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We must thus find the equations of motion for a charge in a given electromagnetic
field. These equations are obtained by varying the action, i.e. they are given by the

d (0 0
y (af£> = 5.5 (2.59)

Lagrange equations [78]

where £ is given by Eq. (2.54).
Calculating the partial derivatives on a right-hand side of Eq. (2.59), we obtain

;g =VL=gV(A-i)—qVe. (2.60)

Using the vector analysis formula
VX Y)=X-V)Y+ (Y- V) X+ XX (VXY)+Y x(VxX), (2.61)

where X and Y are two arbitrary vectors, and remembering that differentiation with
respect to r is carried out for constant r, we find

;ﬁ_q(l‘-.V)A+qi‘X (V x A) —¢Vo. (2.62)

The derivative L/0F is the generalized momentum of the particle (2.55). Further, we
d (0 . dA

The total differential dA consists of two parts: the change (0A/0t)dt of the vector
potential with time at a fixed point in space, and the change due to the motion from

write

one point in space to another at distance dr. This second part is equal to (dr-V)A.
Thus, we can rewrite the second term in Eq. (2.63)

dA DA

=5 HEVA. (2.64)

Therefore, the Lagrange equation, after substitution of both parts and some simplifica-
tion, takes the form

0A

This is the equation of motion for a particle in an electromagnetic field. On the
left-hand side stands the derivative of the particle’s momentum with respect to time.
Therefore, the expression on the right-hand side in Eq. (2.65) is the force exerted on
the charge in an electromagnetic field and is referred to as Lorentz force. One can see
that this force consists of two parts. The first part (first and second terms) does not
depend on the velocity of the particle. The force of the first type, per unit charge, is
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called the electric field; we denote it by E. So by definition,

0A
=___" _Vo. 2.66
= (2.66)
The second part (third term in Eq. (2.65)) depends on the velocity, being proportional
to the velocity and perpendicular to it. The force of the second type, per unit charge,

is called the magnetic field; we denote it by B
B=VxA. (2.67)

The equation for the Lorentz force, which defines the motion of a charge in an
electromagnetic field, can now be written as

F = q(E +1 x B). (2.68)

Thus, we can connect the vector and scalar potentials A and ¢, which mathematically
describe the field, with the real physically measurable quantities E and B, which are
the electric and magnetic field intensities respectively. We note that the potentials A
and ¢ contain four rather than six components as E and B. The scalar and vector
potentials thus provide a more compact representation of the electromagnetic field
than do the observable electric field strength E and magnetic induction B.

2.4.3 | Maxwell’s equations in vacuum

The behavior of the electric and magnetic fields is governed by Maxwell’s equations.
In this subsection, we present only the main definitions and results which are needed
for the scope of this thesis; for a detailed description of the electromagnetic theory see,
e.g. Refs. [77, 79, 80].

In absence of charges and sources, Maxwell’s equations can be expressed as follows

V-E =0, Gauss’ law (electric), (2.69)
VxE= —aa]?, Faraday’s law, (2.70)
V-B=0, Gauss’ law (magnetic), (2.71)
V x B = gqup ok Ampere-Maxwell law, (2.72)

ot’

where ¢¢ is the electric constant (the permittivity of vacuum), o is the magnetic
constant (the permeability of vacuum). Such a form of Maxwell’s equations is possible
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within the assumption that the particles in the system are far enough from a source
of the electromagnetic radiation in order to neglect the interaction between them.
Consequently, we can restrict ourselves from simultaneous coupled solution of the
Schrodinger equation for the system in the field and Maxwell’s equations for the
electromagnetic field by itself. Thus, here we will consider the solution of Maxwell’s
equation in a vacuum and further we will use this solution for constructing a particular
form of the Hamilton operator (2.58).

Let us now rewrite Maxwell’s equations in terms of scalar and vector potentials by
using relations (2.66) and (2.67). Defining the electric and magnetic fields through
the potentials we automatically fulfill two of Maxwell’s equations: Gauss’ law for

magnetism
V-B=V-(VxA)=0, (2.73)
since the divergence of the curl of any vector field A is always zero, and Faraday’s
taw 0A 0 0B
V x Vx(ng 61%) at(Vx ) T (2.74)

since the curl of the gradient of any twice-differentiable scalar field ¢ is also always
zero. As a consequence, Eqs. (2.71) and (2.70) are satisfied whenever the electric and

the magnetic fields are expressed in terms of the vector and scalar potentials according
to Egs. (2.66) and (2.67).

Substituting the scalar and vector potentials into the second pair of Maxwell’s equations
(Egs. (2.69) and (2.72)), we obtain the following second-order partial differential
equations for the scalar and vector potentials

0
V2 + pr (V-A) =0, (2.75)
0*’A 0
(VQA — Eolho 12 > -V (V <A + 50#0£> = 0, (276)

where we have utilized the curl of a curl relation V x (V x A) = V(V-A) — V2A.
These equations taken together are as powerful and complete as the original Maxwell’s
equations. Once we obtain the solution of these equations, we can get E and B from
the relations (2.66) and (2.67). Thus, we have another form of the electromagnetic
laws which are exactly equivalent to Maxwell’s equations, and in many situations much
simpler to handle.
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2.4.4 | Gauge invariance of the electromagnetic field

An important consequence of the “conditional independence” of mathematical and
physical description of a field is the possibility to introduce a mathematical gauge which
retains the physical properties of the field unchanged under some transformation [81].
Namely, if the transformation

A—-A'=A+VA (2.77)
is made, then B remains unchanged, since
B=Vx(A+VA)=VxA. (2.78)

However, this transformation changes E according to

O0A oA oA 0A
E:‘V¢‘at‘vat:‘v<¢+at>‘at' (279)
If another change
b g =g 2 (2.80)
N ot '

is made then E also remains the same. Hence, the electric E and magnetic B fields are
unchanged if one takes any function A(r,t) and simultaneously transforms the vector
A and scalar ¢ potentials via the transformations (2.77) and (2.80). The potentials
are therefore not uniquely defined; the vector potential is determined to within the
gradient of an arbitrary function, and the scalar potential to within the time derivative
of the same function.

Let us now investigate how a gauge transformation changes the Hamilton operator
and wavefunction in the Schrodinger Eq. (2.1) [82]. As one can see from Eq. (2.58),
the Hamiltonian depends on the scalar ¢ and vector A potentials. Clearly, a gauge
transformation of potentials leads to a different Hamiltonian and as a result to a
different solution of the Schodinger equation

'hg—w:ﬁ(A,@w — iha;;/

ihs = H(A', ). (2.81)

To establish the relationship between ¢ and 1’, let us consider the relation for the
gauge transformed first term of the Hamiltonian

—1hV — gA — gVA = exp (iq/;) (—ihV — qA) exp (—iq/;), (2.82)
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where application of —iAV to the exponential introduces the term —gVA. It is easy
to see that the square of this operator can be written as

A A
(—ihV — qA — qVA)2 = exp (zqh> (—thV — qA)2 exp (—iqh>. (2.83)
Furthermore, the remaining part of the gauge transformed Schrodinger equation can
be written as

A A A
(qd) - q%t - ih;) = exp (iqh> <q¢ - iﬁ;) exp (—iqh>- (2.84)

Combining these two parts, we can write

(ﬁ(A’, @) — ihi) = exp <zq2> <I§r(A, ¢) — ihi) exp <—2’q2>. (2.85)

We find that, if ¢ is a solution to the untransformed Schrodinger equation, then ¢/ =
exp (i/hgA\)v represents a solution of the gauge-transformed Schrodinger equation.

As one can see, the transformations (2.77) and (2.80) lead to the addition of a phase
factor to the gauge-transformed wavefunction. However, the real observable properties
of the system depend on the absolute square of the wavefunction |’|> = |+|? and thus
remain unchanged. We, therefore, can conclude that a gauge transformation of the
scalar ¢ and vector A potentials does neither change the electric and magnetic field
intensities E and B, nor the observable properties, resulting from the solution of the
Schrodinger equation, and can thus be used for making the problem mathematically
more tractable.

In particular, let us investigate the so-called Coulomb, radiation, or transverse gauge [80,
81]. This is the gauge in which the resulting A’ and ¢’ become

V-A'=0, and ¢ =0. (2.86)

To ensure that the Coulomb gauge conditions are satisfied, we require that the

transformation function A must satisfy the system of coupled equations, derived from
Egs. (2.77) and (2.80)

VA = -V A, (2.87)
‘Z/t\ = 6. (2.88)

If we take the transformation in the form A = [ ¢(r,t)dt, Eq. (2.88) is automatically
satisfied, and the solution of Eq. (2.87) also exists, due to the fact that after taking the
time derivative 0/0t and using Schwarz’s theorem (the symmetry of second derivatives),
it is equivalent to the Maxwell Eq. (2.75). To simplify further the notations, we will
omit prime indices in A’ and ¢’ and use them in the original form A and ¢.
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Let us now investigate how the remaining Maxwell’s Eqgs. (2.75) and (2.76) look like
after making a Coulomb gauge transformation. It is clear that by taking the vector
and scalar potentials in the form (2.86), Eq. (2.75) is satisfied automatically and the
last equation becomes

D?A
o2’

As one can see, the gauge transformation of the set of Maxwell’s equations has led

VZA = gy

(2.89)

us to the well-known wave equation describing the electromagnetic field in vacuum.
The solution of this dramatically simplified equation is still general in the vacuum and
in the absence of sources of charge. Thus, by solving this equation one can obtain
an electromagnetic wave, which moves in space and affects the particles in a system
through the coupling terms in the Hamilton operator (2.58). Moreover, we have showed
that a gauge transformation allows us to modify not only Maxwell’s equations but also
the Hamiltonian without changing the physical properties of the system. But it is even
more attractive that we can use one gauge for the solution of the Maxwell equations,
in order to obtain a particular view of the electromagnetic potential, and then use
another gauge to simultaneously transform the obtained solution and to simplify the
resulting Hamiltonian.

2.4.5 | Electric dipole Hamiltonian

The most general solution of Eq. (2.89) can be written as a sum of two arbitrary
functions [79]
A(r,t) = f(r —ct) + g(r + ct), (2.90)

representing a wave propagating through vacuum with the speed of light ¢ = 1/, /Eofto.
In principle, since the equation is linear, the three-dimensional wave equation can have
solutions which are plane waves moving in any direction. Thus, the most convenient
way to represent a general solution of the wave equation is to expand it in a basis of
plane waves moving in all directions and satisfying Eq. (2.90). Namely, let us use the
basis of complex exponents

Ar,t) =>" ALK (1) X exp [z(k T —wt+ gpw’k)}, (2.91)
w,k

where each set of indices in the summation represents a particular wave with frequency
w propagating in space in the direction along the wavevector k, with a spatial period
A = 27/|k|. The wave has an amplitude A%™(¢) which is directed along the polarization
unit vector €“’¥ and the phase shift ¢k,

Now, knowing the explicit expression for the electromagnetic field propagating in
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space, we can investigate how such a wave interacts with the system. In principle,
by substituting the obtained plane wave expansion into the Hamilton operator (2.58)
and remembering that within the introduced Coulomb gauge V-A = 0 and ¢ = 0,
one can obtain the terms which correspond to the interaction of a charged particle
with the electromagnetic field. However, the real numerical solution of the Schrédinger
equation with this Hamiltonian is still a challenging task, in particular, due to the
necessity to calculate the action of the exp [ik - r] operator. One can, however, use the
Taylor series and expand this operator around some particular point ry in space

exp [ik -r] = exp [ik - ro]exp [ik - (r —rg)] = exp [ik -1o](1 + ik-r+...).  (2.92)

We are interested in the consideration of the field in a small region around rj, namely
in range of molecular size. In this case, we can assume that the molecule in some
fixed moment of time does not feel the changes of the field along different directions
and thus we can write exp [ik - r] & exp [ik - rg]. This approximation is known as the
electric dipole approximation (see, e.g. Refs. [83, 84]). By substituting this relation
into Eq. (2.91) we eliminate the dependence of the vector potential on the spatial
coordinates

APA(t) = 37 A (t)e** exp [i(k - 1o — wt + %)), (2.93)
w,k

where we have denoted the vector potential in the electric dipole approximation as
APA(t) = A(r,t)|r—r,- The independence of the vector potential on r leads to the
disappearance of the magnetic field, as it follows from Eq. (2.67). Consequently, as we
already mentioned before, we can completely neglect the interaction of the spin of the
particle with the magnetic field.

Let us now further simplify the resulting Hamilton operator by choosing another gauge
transformation. Namely, let us choose the transformation function in the so-called
length form [82]

A= —r-APA®). (2.94)

It is clear, that the gradient of this function can be written as
VA = —APA(1), (2.95)

and as a result the gauge-transformed vector potential A’ = 0 (see Eq. (2.77)). The
time derivative can thus be written as

oA OAPA ()
e Y 2.96
ot~ ot (2:96)
which leads to the following gauge-transformed scalar potential (see Eq. (2.80) and

remember that ¢ = 0 in the Coulomb gauge)

OAPA() .

¢ =r- pr (2.97)
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Since in the new gauge, and within dipole approximation, the vector potential is equal
to zero, it follows from Eq. (2.67) that the magnetic field component B of the field is
also zero. Therefore, using Eq. (2.66) the electric field can be expressed as

OAPA(t
E(t)=-V¢' = —7(>. (2.98)
ot
Combining these two equations, one can finally derive
¢ = —r-E(t). (2.99)
The resulting Hamilton operator can thus be written as
N h2
H=—-—V?—qr-E(), (2.100)

2m
where the later term represents the interaction of the particle with the field.

In the more general case of many interacting particles, the derivation of the resulting
interaction Hamiltonian is straightforward. In particular, if in the absence of a field
the N-particle system can be described by the time-independent Hamiltonian Hy,
then the interaction of this system with the electromagnetic field in the electric dipole
approximation can be described by the time-dependent operator

H;(t) = -D-E(0), (2.101)

where we have introduced the electric dipole moment operator D= SN gore.

In conclusion, we derived in this section an interaction Hamiltonian, which represents
the influence of the electromagnetic field on the system of interacting charged particles.
We considered the particles quantum mechanically, and treated the field classically.
For the field we assumed that it only represents a time-dependent interaction potential
that acts on the system, but the system does not influence the field. By considering
the field in the frame of the electric dipole approximation, we neglected the spatial
dependence of the field around a small region and in such a way simplified the resulting
Hamiltonian.
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Introduction

The impressive progress in laser technology during last few decades [7, 85] has stimu-
lated theoretical efforts directed on utilizing the exceptional properties of the laser
radiation for deepening our understanding of fundamental properties of matter. As
was already discussed in the introduction to this thesis, the development of coherent
light sources permitted the creation of ultrashort light pulses with a duration from
few femtoseconds in the infrared region and up to a few tens of attoseconds in the
extreme ultraviolet region. Clearly, such ultrashort laser pulses has opened the door
for scientists to deal with phenomena which were not accessible before.

Among the many possible applications of the ultrashort laser pulses, a very exciting
one is the possibility to study and eventually control the electronic motion in molecular
systems. The time scale of the electronic dynamics in a quantum system is defined
by the particular energy states which are participating in the process. That is, in
polyatomics the spacing between the electronic levels in the atoms and molecules ranges
from sub-eV to tens of keV determining the time scale of the electronic motion from
tens of femtoseconds to even below an attosecond [23]. Therefore, it is obvious that
in order to manipulate such an ultrafast processes specific experimental techniques,
allowing certain precision in the controlling of the laser pulse parameters are needed. A
promising way to prepare required laser pulses which allows for a certain flexibility in
designing wave forms with few-femtosecond durations based on the coherent spatial and
temporal superposition of optical wave packets, has been developed by Goulielmakis
and co-workers [86-88|. Being inspired by the possibility to synthesize laser pulses with
arbitrary envelopes, we developed a methodology allowing one to obtain analytical
expressions for laser pulses that can drive a two-level system in an arbitrarily chosen
way [89].

The technique based on the control of the laser pulse envelope, however, has clear
limitations and disadvantages. In particular, for very short laser pulses shaping of the
field is still very challenging experimentally. Thus, alternative theoretical approaches
taking into account the current experimental limitations are required. One of the
possible ways to tackle this problem is the application of a numerical optimization
procedure. The idea to use a numerical optimization to find pulse parameters for
controlling the nuclear dynamics of a molecule undergoing an elementary chemical
reaction was successfully applied in femtochemistry [2]. There, such schemes profited
substantially from the large flexibility provided by the liquid crystals pulse-shaping
techniques [90, 91], allowing the generation of practically arbitrarily complicated
electrical fields with varying in time envelope and frequency. These techniques are,
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unfortunately, not applicable for performing a direct control over the electron dynamics,
as the resulting pulses are with a duration of tens or even hundreds of femtoseconds.
One can, however, use the same idea but restrict substantially the set of parameters
of the external electromagnetic field to be manipulated.

The aim of the present chapter is to demonstrate that by manipulating a very limited
number of laser pulse parameters, one can still achieve a good enough control over the
dynamics in complicated quantum systems. We illustrate here on model examples that
by appropriately tailored simple laser pulses one can still manipulate the evolution
of a quantum system, redistributing populations between involved states in a desired
way.

The chapter is organized as follows. In section 3.2, the general principles of the
quantum control theory are considered. In section 3.3 we present theoretical approaches
allowing one to control quantum dynamics by an external electromagnetic field. In
section 3.4, the developed methodologies for obtaining control pulses are applied on
simple model systems. Finally, in section 3.5 we summarize obtained results, discuss
some perspectives and conclude.

Quantum control theory

In this section, we present briefly the main idea behind the quantum control theory.
We start with the description of a quantum system under the influence of external,
time-dependent fields and proceed with the discussion of the methods for finding
fields that control the evolution of the system. As will be seen, the problem of fully
controllable dynamics is unsolvable analytically in most practically relevant cases.
Nevertheless, it will be shown that in many situations the appropriate approximations
can be used in order to derive analytical expressions for the field that “force” the
system to follow the desired quantum path. In other cases of interest, it will be
demonstrated that the quantum control problem can be reduced to the search for
extreme points on a multidimensional surface formed by varying laser pulse parameters.
The methods and algorithms for solving this problem will be discussed in some detail
and analyzed.

The control problem discussed in this chapter is defined on a closed N-level quantum
system with the Hamiltonian

H(t) = Hy + f} Ey(t)Hy, (3.1)

k=1
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which includes a field-free term Hy and K Hermitian operators {FI k} that represent the
coupling between K control fields { Ex(t)} and the system. Here we will concentrate on
the coupling of the system with electromagnetic fields within the dipole approximation
and, thus, the coupling operators are, in general, the different directions of the electric
dipole moment (detailed description of the dipole approximation can be found in
subsection 2.4.5 of the present thesis).

The evolution of the system is governed by the time-dependent Schrodinger Eq. (2.1)
with the formal solution

w(t) = Texp (—; Ji t ﬁ(ﬂ)ms’)w(c)), (3.2)

where 7' is the so-called time-ordering operator, ensuring that in a Taylor expansion
of the exponent the operators are ordered chronologically, ¢ (t) is a time-dependent
state vector and ¢(0) is the initial state.

It is clear that by changing the parameters in the Hamilton operator (3.1), one can
obtain different evolutions of the system although starting from the same initial condi-
tion ¢(0). Since the operators { Hj,} describe characteristic properties of the system
and thus cannot be changed, one can alter the evolution of the system by manipulating
the external control fields { Ej(t)}. The state vector, therefore, depends functionally
on the external fields, ¥(¢; { Ex(t)}), which play the role of control parameters.

The goal of quantum control theory [92, 93] is to find a set of real functions { Ey(¢)}
which drive the quantum evolution of the system from its initial state ¢(0) along a

time-dependent state 1(t) in such a way that the value of the functional

2

Tt AE(}) = [0t {E:()})] (3.3)

is maximal at any moment of time. In principle, the time-dependent target state ) (t)
can be a result of the action of some operator @ on the wave function (), which, if
Hermitian, can represent the control of some observable of the system, for example
the electron density.

BRI \Nethods to design the laser field

Designing laser fields for reaching a selected state of a quantum system has attracted
a lot of efforts in the last few decades. Different schemes for control of the quantum
dynamics were proposed, like - and chirped pulses [94], stimulated Raman adiabatic
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passage (STIRAP) [95-97], coherent [98, 99] and optimal control [100, 101], to name a
few. It is usually supposed that before the interaction with the laser field the system
is in a particular state and the scheme is designed such that after the interaction it is
found in another (the desired) state. There are many interesting situations, however,
when at the beginning the system is in a superposition of quantum states and we want
to drive it to a new superposed state but controlling the weights with which each
quantum state participates in the mixing. Thus, the main effort in this section will be
put on developing methods of quantum control which are independent on choosing of
initial and final states.

3.3.1 | Analytical methods for control

In general, the maximization of a functional (3.3) is not a trivial mathematical problem
and can be solved analytically only for very simple model systems, like for example a
two-level quantum system [102-104]. Although rarely existing in nature in their pure
form, two-level quantum systems often serve as models in many areas of physics and
are used successfully for describing a large variety of physical phenomena. Situations
when an external field is applied with the aim to control the quantum evolution of
the two-level system can be encountered in nuclear magnetic resonance techniques
[105], Josephson-junction circuits [106], spin rotations in quantum dots [107] and
qubit control in general, as well as in laser-induced population transfer in atoms and
molecules [95, 98].

Although most of the known schemes or protocols for controlling the dynamics of
two-level systems are applicable also to systems being in a superposition of quantum
states, they do not allow for control of the final state mixture. Being designed for
achieving a population inversion, applied to two-level systems in a superposed state
these schemes will bring the system to a new superposed state in which the weights
with which each eigenstate participates are just swapped. In this subsection we show
how one can obtain an analytic expression for a resonant pulse which is able to control
not only the final state superposition, but also the exact path of the transition.

Let us briefly review the general formalism for describing the electric dipole interaction
between a two-level system and a classical monochromatic field. The Hamiltonian in
this case has the following form

H =& |1)(1] +&5]2) (2| - D E(1), (3.4)

where |1), |2) and €1, €5 are the two eigenstates and eigenenergies, respectively, of the
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field-free Hamiltonian, D is the electric dipole operator given by

A

D = o (d]1)(2] + d"[2)(1) (3.5)

with e4 being a unit vector in the direction of the dipole and d denoting the matrix
element of the dipole operator between |1) and |2). In the case of a laser pulse with
carrier frequency w, the electric field E(¢) can be written as

E(t) = E(t)e ™" + E*(t)e™", (3.6)

where £(t) contains the polarization, amplitude, and envelope of the pulse. For
simplicity, in the following we will take the dipole transition matrix element as real
(d = d*) and will get rid of the vector notations by taking the scalar product between
D and E(t), denoting by u the projection of the dipole operator on the polarization
axis of the electric field.

The general form of the wave function describing the evolution of the system is given
by
(1)) = cr(t)e ™ [1) + ea(t)e™]2), (3.7)

where ¢;(t) and c(t) are the time-dependent (in general complex) amplitudes of the
eigenstates |1) and |2), which, due to the orthonormality of the field-free states satisfy
the condition |c;(¢)]? + |co(t)|* = 1 at all times.

Plugging this wave function in the time-dependent Schrodinger Eq. (2.1), one obtains
the following set of coupled equations

a(t) = dca(thu (E()e T @rlt 4 g7 (p)elleme0t) (3.8a)
e(t) = z’cl(t)u(S(t)e*i(“*woﬁ+5*(t)ei<w+w0)t), (3.8D)

where wy = €9 — €1 denotes the resonance frequency.

Since these equations are generally not solvable in analytical closed form, one usually
introduces at this point the so-called rotating-wave approximation (RWA), meaning
that the “rapidly oscillating terms”, i.e. the exponentials e**(“+«0)t in Egs. (3.8), are
neglected. This approximation usually works well if w &~ wy (near resonance) and
the coupling to the field is not very strong. We note that we need the RWA only
for obtaining an analytical expression for the control field. As we will see, this field
will give the desired results also when the exact equations [Eq. (3.8)] for the system
evolution are used. Within the RWA, Egs. (3.8) turn into the following set of equations

a(t) = dca(t)uE*(t)e™, (3.9a)
eot) = e ()pE(t)e™™, (3.9b)
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where § = w — wy denotes the detuning. Equations (3.9) can be integrated exactly for
arbitrary initial conditions to obtain a closed analytical solution.

Our purpose is, however, to find pulses which will bring the system into a state
with a desired proportion of the final populations, given by the modulus square of
the amplitudes ¢; and ¢y. In order to find such solutions we can view Egs. (3.9) as
equations for £(t) and £*(t), i.e

. i ¢y (t)
EXt) = /~LC2(t> (3.10a)
o i CQ(t) zét
E(t) ,u . (t) ) (3.10b)

Substituting these expressions into Eq. (3.6) one obtains

E(t) = L <é2<t)ei“0t + él(t)e““) . (3.11)

p\c(t) ca(t)

Interestingly, the dependence on w cancels out. Now we have an expression that
connects the evolution of the amplitudes with the driving field. Therefore, if we want
that the system evolves in a particular way, we can obtain through Eq. (3.11) the field
which can drive this evolution.

As we mentioned, the amplitudes c¢;(t) and cy(t) are in principle complex functions, so
we can write them in the form

cr(t) = Gp(t)es, k=1,2, (3.12)

where ¢ (t) are real positive functions. Therefore, Eq. (3.11) takes the form

_ i (8 i Weimw))
E(t) ((h(t) a0 : (3.13)

where ¢ = @1 — 5 is the relative phase between the amplitudes ¢, (t) and cy(t).

Let the evolution of the system proceeds according to the function f(t), i.e. let
le1(t)]? = f(t). From the total population conservation condition we automatically
have |co(t)|> = 1 — f(t). Because ¢(t) are both real and positive, we can write that
é(t) = \/m and ¢(t) = /1 — f(t). From Eq. (3.13) we get the following field

1 ()
A= f(1)

sin (wot + ), (3.14)

which has a carrier frequency exactly on resonance with the transition between the
two states wy.
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We see that if we want to drive the system in a particular way, we just need to describe
this evolution via an appropriate control function f(¢). The control field obtained via
Eq. (3.14) will then “force” the system to follow the quantum path given by f(¢). We
note that the control field derived in Eq. (3.14) will keep the relative phase between the
amplitudes. In principle, one can use a similar procedure assuming a time-dependent
relative phase, i.e. taking c(t) = & (t)e™*®). This will lead to a chirped pulse (¢ in
Eq. (3.14) will be time-dependent) and we will introduce an additional term in the
field containing the time derivatives of the individual phases. Since the field has to be
real, one can, in principle, obtain conditions for an additional control function which
can fix the way the relative phase evolves in time. However, in the present work we
would like to concentrate only on the problem of population control.

Let us now illustrate the above reverse-engineering approach with a concrete analytical
example. Suppose that initially our system is in a (superposed) state in which the
population of [1) is equal to a; and we want to drive the system to a state in which
the population of |1) will be ay. A convenient choice for the function controlling this
transition is

ft) = ai(1 —g(t) + arg(t), (3.15)

where ¢(t) is a function which goes smoothly from 0 to 1 and never exceeds 1, i.e.

0<g(t) <1, g(t) == 0, and g(t) =% 1. A possible choice for such a function is

the following
1

)= ——

where the parameter « controls the duration of the transition from a; to ay.

(3.16)

Plugging this particular choice of control function f(¢) in Eq. (3.14), we obtain the
following control field
1 alar —a;)e™

T o0t 0= apena pagemy T2 B0

The parameter o connects the speed of transition with the field intensity. For a faster
transition we will naturally need to apply a stronger field.

We would like to note that although focused on laser-driven population control, the
scheme presented in the present subsection is general and could be applied for designing
other types of control fields. For example, systems often studied for the purposes of
quantum computing are spin systems interacting with a magnetic field. In this case,
the Hamiltonian has the same form as in Eq. (3.4), just the interaction term has to
be replaced by —u - B, where p stands here for the magnetic moment and B for the
magnetic field. As far as the resulting dynamical problem is the same, one may use
the reverse-engineering approach presented here for obtaining magnetic fields that can
drive a spin system in a desired way.
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3.3.2 | Methods based on numerical optimization

Despite of the great interest from a fundamental point of view, the analytical methods
for obtaining optimum control laser fields are usually restricted to very simple systems.
In most realistic cases, the analytical derivation of the laser field which drives the
evolution of a system in predefined way is hardly feasible. Therefore, more general
methods which can be used irrespective of the type of the considered system are
required.

From a mathematical point of view, the control problem can be formulated as the
search for

Jop(t B (1)}) = max J(t; {Ex(t)}) (3.18)
{Bx(t)}
on the time-dependent infinitely dimensional landscape formed by the projection of

all possible solutions of the Schrodinger equation (2.1) on the target state ¢ (t). The
set of real functions { EpP"(¢)}, which maximize the value of the considered functional

(3.3), represent the optimal external fields.

In this form, the quantum control problem represents a very well studied optimization
task. A large number of algorithms for solving optimization problems have been
proposed. They can be divided into two classes: semi-analytical methods (for example
the method of Lagrange multipliers [108]) and purely numerical methods (such as
different gradient-based methods [109], stochastic methods [110] etc.).

3.3.2.1 | Semi-analytical methods

The difficulty to solve a concrete optimization problem depends strongly on the non-
linearity of the resulting control landscape, which reflects the nature of the investigated
system, as well as on the complexity of the desired evolution path @Z)(t) In the case
when the evolution of the quantum system is complicated and the initial and the target
states are superpositions of several eigenstates of the unperturbed system, it is usually
necessary to have enough flexibility in varying the external fields. For this reason,
the class of considered functions describing the external fields should be as broad as
possible. In this situation, the method of Lagrange multipliers [111] has proven to be
especially useful. The solution of the equation (3.18) can be obtained by varying the
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following functional

—J+ / ( he — H(t )) () dt, (3.19)

where we have introduced the time-dependent Lagrange multiplier x(¢). In addition, the
above functional can also be extended by some constraints, for example by restriction
on the duration of the external field or by requirement that the influence of the field
on the system is as small as possible etc.

To find the optimal external field from the functional (3.19), one can perform a total
variation of it with respect to ¥(t), x(t) and {Ex(t)}. Since we are looking for a
maximum of J’, the necessary conditions are

Explicit derivation of the corresponding variations leads to a set of coupled Schrodinger
equations which can be solved, for example, by different iterative algorithms [112-114].
As a result, one usually obtains a set of complicated functions which represent the
dependence of the envelope and frequency of the external field in time. This approach
is usually referred to as quantum optimal control (QOC) theory [93] and was very
much used in last few decades as a tool to find external fields that control the chemical
reactivity of a molecule. The detailed description of the algorithms and implementation
of the QOC theory is out of scope of the present thesis and can be found elsewhere
(see e.g. [93] and references therein).

3.3.2.2 | Purely numerical methods

Despite its great advantages, the application QOC in its classical form for designing
pulses to control electron dynamics is somewhat limited. As we discussed above, due to
experimental limitations, it is a very challenging to synthesize arbitrarily complicated
ultrashort laser pulses. Imposing additional constraints on the pulse parameters, makes
the QOC not very efficient. Instead, due to the dependency of the target functional
on only a very limited set of parameters, the application of purely numerical methods
for optimization becomes more suitable. Thus, the main idea that we follow is to
represent the external fields as some simple model functions depending only on a few
parameters, which we then optimize in order to achieve the required evolution of the
system.

Due to the experimental limitations, the envelope of the ultrashort laser pulses is
usually supposed to have a near-Gaussian form. Therefore, one can define the external
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fields as
E(t) = Eyexp (
where Ej is the electric field strength, ¢y is the time position of the field maximum,

o =7/v4In2 with 7 being the pulse duration (at FWHM), w(t) is the laser frequency
and ¢ is the carrier envelope phase (CEP).

Lo t0>2) cos (w(t)t + @), (3.21)

o2

By solving the time-dependent Schrodinger equation (2.1) with a laser field in the form
of Eq. (3.21), one obtains the evolution of the system, which can be fully represented by
the time-dependent amplitudes c(t) of the eigenstates |k) of the field-free Hamiltonian
Hy (see Eq. (3.1)), i.e.

(1)) = D cr(t)[R). (3.22)

k

In the present work, however, we are interested only on the problem of population
control, i.e. on the evolution of |c;(¢)|?. Moreover, we will focus on controlling only the
final population mixture, without paying attention to the particular evolution path.
The only requirement is the smoothness of the population transfer, i.e. the absence of

Rabi oscillations.

It might seem that the gradient-based methods can be an effective solution to the
optimization problem. However, the functional defined in Eq. (3.3) usually forms a
hyper-surface with a large number of local extrema. Therefore, purely local methods
are not very practical in this case, as they can easily converge to an undesired local
solution. Moreover, the curvature of the hyper-surface is usually strongly non-linear
along the variations of different parameters. It requires, therefore, the use of adaptive
algorithms for changing the variation step. Another important drawback of these
methods is the relative difficulty to calculate the Hessians and the gradients.

An interesting alternative, we suggest to use for the problem at hand, are the so-called
direct search algorithms. This class of methods for solving optimization problems
does not require any information about gradients or higher derivatives of the objective
function. Instead, these algorithms search a set of points around the current point,
and then look whether the value of the objective function is lower than the value at
the current point.

In this work, we have used the so-called mesh adaptive search (MADS) algorithm [115]
implemented within NOMAD software package [116]. MADS is an iterative method
for blackbox optimization of a functional under general nonlinear constraints. At each
step, the algorithm searches a set of points in random directions, called a mesh, around
the current point — the point computed at the previous step of the algorithm. The size
of the mesh is defined adaptively at every time iteration, taking the computed values of
the objective functional as a criterion. The mesh is formed by adding the current point
to the scalar multiple of a set of vectors called pattern. If the pattern search algorithm
finds a point in the mesh that improves the objective function at the current point,
the new point becomes the current point at the next step of the algorithm. Despite
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the fact that this algorithm is not fully global optimizer, by choosing an appropriate
initial guess and mesh search criteria, it can produce a suitable solution.

In this section, we present a few concrete examples of the implementation of the above
described techniques for quantum control. The main idea is to demonstrate that by
applying relatively simple tailored laser pulses one can achieve good enough control
over quantum dynamics in complicated quantum systems.

3.4.1 | Single resonant laser pulse

As a first test example, we will discuss the population control of a two-level system. We
start with illustration of the validity of the reverse-engineering approach [89] described
in subsection 3.3.1. We will use control function f(¢) in the form of Eq. (3.15) with g(t)
described by Eq. (3.16). Let us take the following numerical values for the two-level
system parameters: p = 6 a.u., wo = 0.02 a.u., a; = 0.4, ay = 1, a = 0.01, and ¢ = 0.
That is, we have a two-level system which is initially in a non-stationary state, in
which 40% of the total population is in level |1) and the remaining 60% are in |2), and
we want to drive it such that we transfer the entire population into level |1), i.e., we
want that after the pulse the system is in its lower eigenstate.

Substituting these parameters into Eq. (3.17) we obtain a laser pulse which is shown
in the upper panel of Fig. 3.1. We see that it is slightly asymmetric with respect to
the maximum intensity but otherwise very regular. The asymmetry actually reflects
the “asymmetric” way we want to drive the system. The chosen parameters describe
the situation in which the system is initially in a non-stationary state (a superposition
of |1) and |2), with |1) containing 40% of the total population) and we drive it to
a stationary state, i.e. after the pulse the system is in state |1) (see the blue solid
curve in lower panel of Fig. 3.1). The special case of population inversion, i.e. when
the populations of the states |1) and |2) before and after the pulse are swapped, will
require a symmetric pulse. If we take a; to be 0.6, Eq. (3.17) will give us a symmetric
pulse.
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Figure 3.1: Upper panel: Laser pulse obtained through Eq. (3.17) using the following
parameters: = 6 a.u., wg = 0.02 a.u., a; = 0.4, ay = 1, a = 0.01, and ¢ = 0. Lower panel:
Evolution of the populations of the states |1) (red dotted) and |2) (green dash-dotted) of a
two-level system driven by the such a laser pulse. The control function f(¢) used to obtain
the driving field is depicted in blue solid. We see that the system is driven from a coherent
superposition of states |1) (40%) and |2) (60%) to a system being only in state |1).

To check the validity of the above procedure, we can use the field obtained via Eq. (3.17)
and solve numerically Egs. (3.8), i.e. the equations before introducing the rotating-wave
approximation. We remind that within the dipole approximation for the interaction
with the field, these are the exact equations describing the evolution of the system.
The result is depicted in the lower panel of Fig. 3.1, together with the control function
f(t) giving the evolution of the system within the RWA. We see that the system indeed
follows the desired evolution and that the RWA is a quite good approximation in this
case. The neglected rapidly oscillating terms introduce only small variations in the
transition path.

It is important to know what is the regime in which the above approach for obtaining
the driving field works well, i.e. when the RWA is a good approximation. The condition
for the validity of the RWA is that the envelop of the pulse varies slowly with time
in comparison to the field oscillations, determined by the carrier frequency wy. To
exemplify this, let us take the same parameters as above but reduce the time for which
we want to drive the system to the chosen final state. The transition time is governed
by the parameter o which also determines the width of the pulse envelope. The result
for the pulse obtained with o = 0.05 (all other parameters were kept the same) is
shown in Fig. 3.2 together with the evolution of the system. With these parameters
we obtain a single-cycle pulse with which, as we see in the lower panel of Fig. 3.2, the
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Figure 3.2: Upper panel: Laser pulse obtained through Eq. (3.17) using the same parameters
as in Fig. 3.1 except a = 0.05. Lower panel: Evolution of the populations of the states |1)
(red dotted) and |2) (green dash-dotted) of a two-level system driven by the such a laser
pulse. The control function f(t) used to obtain the driving field is depicted in blue solid. We
see that the full solution start to deviate from the RWA and the pulse is not able to bring
the system 100% to state |1).

full solution starts to deviate more substantially from the one obtained within the
RWA and we are no longer able to bring the system 100% to state |1). However, even
for such a limiting pulse the RWA still gives reasonable results.

3.4.2 | Linearly chirped laser pulses

As we discussed above, finding analytical solutions for the desired control field is possible
only in very limited cases. There are many situations when approximations such as
above mentioned RWA are not applicable. We will instead look for a numerically-exact
solution of the full problem. Moreover, due to experimental limitations the variation
of the envelop of an ultrashort laser pulse envelope is not an easy task. That is why,
here we present the implementation of the optimization procedure to the two-level
quantum control problem by varying of laser pulse frequency, instead of its envelope.

In this example we will look for an optimum laser pulse in the form of Eq. (3.21)
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having a linear frequency chirp, i.e.
w(t) = at + b, (3.23)

where a and b are some coefficients which ensure that the frequency has values
w(t1) = Wmin and w(tz) = Wpay in the time moments t; and ¢y, respectively. We will
use the same parameters of the system as in previous subsection, namely, the energy
difference between the levels wg = 0.02 a.u. = 0.544 €V, and the levels are coupled by
transition dipole moment p = 6 a.u.

Let us first look at the case when the system is initially in its ground state |1) (i.e.,
lc1(0)]> = 1.0) and we want to perform a population inversion, i.e. to drive the system
to its excited state |2), using a Gaussian laser pulse with duration 7 = 5 fs, and carrier
envelope phase ¢ = 0. The optimization of the population inversion has been done,
therefore, by adjusting the maximum field strength Ej, and the frequency-chirping
constants a and b. The results are presented in Fig. 3.3. We see that the pulse drives
a full population transfer and that the transition is relatively smooth. The obtained
optimal chirp is rather small, with a frequency sweep between 0.58 and 0.62 eV, i.e
the pulse is slightly detuned from the resonant frequency of 0.544 eV. The maximum
field strength of the pulse is a bit higher then in previous example, since the duration
of a laser pulse is chosen to be shorter.

An especially interesting situation in the context of the electronic dynamics is when
the system is initially in a superposition of states. Due to fact that the relative phase
between two states starts to play a role in this case, for controlling the system we
will need an additional flexibility in choosing the pulse parameters. Since we want to
keep the Gaussian form of the pulse, such an additional parameter can be the CEP.
To demonstrate this, let us take the initial state to be a superposition of the states
|1) (60 %) and |2) (40 %) and try to find a pulse that can drive the system such that
it finally lands on state |2). The parameters of the system are taken as before, but
in addition to the laser pulse strength and frequency, we allow also the CEP ¢ to
vary in the optimization procedure. The results are presented in Fig. 3.4. We see that
for performing the desired transition, the pulse should have a frequency sweep which
is about ten times larger (about 0.5 eV) compared to the previous case. The pulse
intensity is lower than in previous case, indicating the fact that we start dynamics
from mixture of states |1) and |2) instead of the 100% populated state |1) as was done
in the first example.

Importantly, in both cases it is possible to find laser pulse parameters that can control
the outcome of the evolution of a two-level system. Indeed, even by fixing some
parameters (e.g., the laser pulse envelope and the duration), one has still enough
flexibility to control a two-level system in a basically arbitrary way.
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Figure 3.3: Population inversion in a two-level system driven by a single 5 fs Gaussian
pulse with linear chirp. The optimized frequency variation of the pulse is shown in the
upper panel and the pulse itself in the middle panel. The two-level system has the following
parameters: the energy difference is taken to be 0.02 a.u. and the transition dipole moment
u=>06a.u.

3.4.3 | Laser pulses with an arbitrary chirping

In case of more complex systems, e.g. when more than two states are participating
in the population transfer or when there is no coupling between the initial and final
states, one usually needs to have more freedom in manipulating the external fields.
An interesting possibility is to make a nonlinear modulation of the pulse frequency.
To demonstrate this, we will show in this example how one can achieve a population
transfer in the so-called A-type three-level quantum system by using an ultrashort
Gaussian pulse with a nonlinear chirp.

Consider the three-level A system schematically represented in Fig. 3.5. Suppose that
in the beginning the system is in its ground state |1) and we want to transfer all the
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Figure 3.4: Population control of a two-level system in a superposition state |¢(t)) =
v0.6]1) +1/0.4]2) by a single 5 fs Gaussian pulse with a linear chirp. The optimized frequency
variation of the pulse is shown in the upper panel and the pulse itself in the middle panel.
The two-level system has the same parameters as before (see Fig. 3.3). The pulse is optimized
to drive the system to the excited state |2).

population into the middle excited state |2), but the states |1) and |2) are not coupled
directly. In this case, one can use the state |3), coupled both to |1) and |2), as an
intermediate step, and through it transfer the population into the target state |2).

In the classical stimulated Raman adiabatic passage (STIRAP) technique [96, 97],
one uses two delayed laser pulses with different frequencies, tuned on the resonances
between the levels |1) and |3), and |3) and |2), respectively. Here, we would like to
drive the same transition, but with only one ultrashort laser pulse with a Gaussian
form. To be able to perform a complete transfer, however, we have to allow for more
freedom in the functional form of the frequency chirp.

A way to describe an arbitrary function with only a few parameters is to use a
polynomial expansion and take the expansion coefficients as varying parameters. We,
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Figure 3.5: Schematic representation of the used three-level A system. The states |1) and
|2) are coupled through the intermediate state |3).

therefore, can represent the laser pulse frequency by an expansion

w(t) = chPl(t), (3.24)
=1

where P)(t) is an orthogonal polynomial of order [ and ¢; is an expansion coefficient.
In the present example we use Legendre polynomials, but in principle one can use
any square-integrable function defined on the interval of action of the laser field. For
example, a set of quasimonochromatic wave packets, like those used in the ultrahort
puse-shaping technique of Goulielmakis et al. [86], can play the role of the F(t)’s in
Eq. (3.24).

In this particular example, we restricted the number of basis functions N to six and
optimized the laser pulse duration and the field strength, together with the six ¢
coefficients for expanding the frequency chirping function. The results are presented in
Fig. 3.6. The upper panel of the figure shows the interpolated function, representing
the frequency dependence of the obtained laser pulse on time, while the laser pulse
itself is depicted in the middle panel. The evolution of the populations of all three
levels is presented in the bottom panel. One can see that the population is transferred
completely from state |1) to state |2) through the intermediate state |3).

Note that the laser pulse frequency is changing smoothly in the range from 0.5 eV to
around 2 eV, which is far from the resonance between levels [1) and |3). Interestingly,
the population of the intermediate level follows the modulations of the applied laser
pulse. Namely, the increase of the electromagnetic field induces a stimulated absorption
and transfers a population to the intermediate level. The decrease of the field, on
the contrary, induces a stimulated emission and transfers the population from the
intermediate level to the final one.

Such a technique appears to be very useful also when preparing pulses exactly on
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Figure 3.6: Population transfer in the A-type three-level system shown in Fig. 3.5 by a
single Gaussian pulse having a non-linear chirp. The optimized frequency variation of the
pulse is shown in the upper panel and the pulse itself in the middle panel.

resonance is not possible. In this case, smoothly varying Gaussian pulses with an
appropriately tailored frequency chirp might provide a very practical alternative to
drive the desired population transfer between the states of the system.

3.4.4 | Two delayed laser pulses

Although quite versatile, the above technique still has a limited application due to the
experimental limitations in preparation of laser pulses with arbitrary chirping. The
present-day experimental capabilities, however, allow for an extremely good control
over the time delay between two (nearly) identical pulses. Indeed, beam split and
delay techniques are routinely used nowadays in every femto/atto laser laboratory,
permitting to control the time-delay with an attosecond resolution. It is, therefore,
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insightful to see what kind of possibilities for quantum dynamics control a sequence of
two identical Gaussian pulses might offer.

The idea of the suggested method is to split the initially prepared ultrashort laser
pulse in two identical copies and by varying the time delay between them to control
the evolution of a quantum system. Using a sequence of pulses automatically adds
an additional parameter that affects the system evolution, which, in addition, can be
very precisely controlled. In this way, the relatively poor accuracy in controlling of
other laser pulse parameters will be compensated by adjusting of the time delay.

To demonstrate the large possibilities this method offers, we will consider a rather
involved four-level quantum system with couplings between all levels, schematically
shown in Fig. 3.7. The difficulty to control the population transfer in such a system
is associated with several factors. First of all, the levels of this system are nearly
equally coupled between each other. Second, the middle levels are energetically quite
close to each other. And finally, level |4) is located in the range of the two-photon
resonance relative to the energy difference between ground state and levels |2) and |3).
All these factors, together with the intrinsic wide energy bandwidth of the ultrashort
laser pulses, make the population transfer in such system a complicated task, and
therefore will be a stringent test for the optimization procedure.

A E [eV]
+ 2.5

- 1.8
- 1.2

- 0.0

Figure 3.7: Schematic representation of the used four-level quantum system. All states
are similarly strongly coupled between each other.

Let us suppose that the system is initially in its ground state |1) and we want to transfer
the population exclusively to state |3). The laser field in this case is represented by two
delayed laser pulses in the form of Eq. (3.21) with identical parameters. We optimize
the field strength, the duration, the frequency, and the CEP, as well as the time delay
At between the two pulses.

The results are depicted in Fig. 3.8. The two delayed laser pulses are shown in the
upper panel. In this particular example, the obtained duration of each of the pulses is
around 4 fs, and the delay between them is about 0.6 fs. The strength of the laser field
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is not very high, which as we noted above, depends on the transition dipole moments
between the participating states. The optimized frequency is around 1 eV, which is
again far from the resonance between any pair of states. One can see that despite the
similar coupling between the states, it is possible to completely transfer the population
from the initial state to the intermediate one just by varying the time delay between
two completely identical laser pulses.
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Figure 3.8: Population transfer in the four-level system shown in Fig. 3.7 by a sequence of
two identical Gaussian pulse. The field is obtained by optimization of strength, duration,
frequency, and CEP of the pulses, as well as the time delay between them. We see that
despite the rather complicated system with close lying states and nearly equally strong
coupling one is able to drive the desired transition, transferring all the population from state
|1) to state |3).

Conclusions

The main motivation of the current chapter was to demonstrate that, although still
limited, the possibilities to manipulate ultrashort pulses offer enough flexibility to
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exert control over the quantum evolution of complex systems. We presented several
examples demonstrating that relatively simple laser pulses can be used in order to
achieve controllable population transfer between desired energy levels.

In subsection 3.3.1, we proposed a simple method allowing to obtain laser pulses that
can drive a two-level system in a desired way. Importantly, not only the final populations
can be controlled. By choosing the function f(t), we can exactly predetermine the
evolution of the system and control the population of each state at any moment of
time during the interaction with the field. We exemplified this on a system being in a
superposition of the two states and showed that the analytically obtained resonant
laser pulse can smoothly drive the system such that it lends on only one of the states.

Proposing to use direct search algorithms for solving the control problem, we were
able to find Gaussian-shaped laser pulses that can drive the population of the system
in a predefined way. One of the main advantages of the presented methodologies, in
comparison to the other schemes for population control, is the relative simplicity in its
experimental realization.

By several concrete examples, parameterized mostly to reflect the outer-valence elec-
tronic structure of molecules, we showed a few different techniques for population
control from simple and more involved frequency chirping of single pulses to the
application of a sequence of identical monochromatic pulses with appropriately chosen
time delay and CEP. All those schemes are based on optimizing ultrashort laser-pulse
parameters, for which a certain degree of control have already been demonstrated by
the state-of-the-art laser technology.






CONTROLLING CHARGE MIGRATION IN
MOLECULES

Several examples of charge migration control in complex molecules are presented in
this chapter
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Introduction

Molecules exposed to short light pulses may undergo many fascinating processes caused
by the “shaking” of the electronic cloud. One of such processes of particular interest
which was already discussed in the introduction to the present thesis is the purely
electronic transfer of the positive charge created upon ionization of a molecular system.
This ultrafast charge migration is caused by the coherent superposition of electronic
states [22] generated by the ionization pulse. The particular physics which leads to
the creation of the electronic wave packet can vary from case to case, and is influenced
by the specific properties of a system under investigation. It depends also strongly on
the applied laser pulse. The coherent population of electronic states can be produced,
for example, by the broad energy spectrum of the pulse, which thus can cover several
ionization thresholds of the electronic states of a molecule. Another possibility, which
is especially important in the case of inner shell ionization, is the electronic correlation
effects. The electron leaving into the continuum creates a hole in a certain place in
the electronic cloud, while the remaining electrons respond on this action.

Irrespective of the particular mechanism which has led to the initiation of the charge
migration, it is expected that the created charge will oscillate between the molecular
orbitals, taking part in the construction of the electronic states involved in the dynamics.
It was shown theoretically [25, 27| that the molecular orbitals participating in the
process can be localized on the opposite sides of a system, leading thus to an oscillation
of the charge from one site of a molecule to the other one. Since molecular bonds are
more likely to break in places where the hole has migrated, this ultrafast redistribution
of the charge could be ultimately exploited to obtain a charge-directed reactivity [19].
It is, therefore, very appealing to use attosecond laser pulses to modulate the electronic
motion and redistribute the charge on different sites of the molecule, influencing in
that way the follow-up nuclear rearrangement.

Since its first theoretical prediction [22], charge migration has been intensively studied
theoretically [24-31, 52, 117-141], provoking a rapidly growing experimental interest
on the subject [38-40, 142, 143]. The charge migration has turned out to be a rich
phenomenon, with many facets that are rather characteristic of the molecule studied
(for a recent review, see, e.g. Refs. [5, 19, 23]). Despite the great interest, however, until
now there were only a very limited number of theoretical studies [144-147] devoted
to the investigation of the possibilities to control the charge migration in complex
systems. The goal of this chapter is to demonstrate on real molecules that the charge
can be efficiently controlled by laser pulses prepared using methodologies presented
earlier in this thesis.
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The key aspect in the theoretical treatment of the initiated charge motion is the proper
description of the many-body dynamics appearing on a molecular level. Since the
typical time scale of the charge migration process belongs to few-femtosecond interval,
we can consider the nuclear frame as fixed, and solve the time-dependent Schrédinger
Eq. (2.1) for the electronic part only, i.e. to study the multielectron wave-packet
dynamics (see subsection 2.2.3 of the present thesis). Of course, the ultimate goal will
be to treat on a fully quantum level both the electronic and the nuclear motion, which
will be considered in chapter 5 of this work. The description of the charge migration
process exclusively on the electronic level, however, can give us a useful information
about the physical phenomena appearing on a very first femtoseconds of the evolution
of the ionized molecule.

The chapter is organized as follows. In section 4.2, we review briefly the theoretical
foundations lying behind the charge migration dynamics. We present theoretical
approaches, that one can use in order to analyze the evolution of the charge created
upon ionization of a molecular system. Section 4.3 is aimed at demonstrating the
possibilities to control the charge dynamics by applying specifically tailored ultrashort
laser pulses. Finally, in section 4.4 we summarize results obtained and conclude.

4.2 HUEOL

In this section, we will review briefly the most relevant theoretical approaches to
describe charge migration in real molecules. We concentrate here only on a fully ab
initio methods to trace the charge dynamics in time and space. Thus, other approaches
based for example on the popular density functional theory will not be considered.

All results presented in this chapter are obtained in the frame of the so-called “sudden
approximation” (see, e.g. Ref. [64]). In this approximation, it is assumed that a
hole is created in a specific molecular orbital of the initial wavefunction and that this
hole has no time to relax, thus leading to an electronic wave packet in terms of the
eigenfunctions of the final molecular ion. In this context, the study of charge migration
processes does not require a very challenging dynamical description of the ionization
process, which is currently out of reach for large molecules. We would like to note,
however, that very recently a ground-breaking contribution in this direction was made
by developing a many-body Green’s function-based technique called B-spline ADC [148]
that gives access to first-principles simulation of the many-electron ionization process
in a polyatomic molecule. At the current stage, however, due to its computational
complexity this method can be applied only to very small molecules.



4.2. Theory 65

4.2.1 | Charge migration analysis

Irrespective of the method chosen for evaluation of the many-electron wave packet, one
also needs to find ways to analyze its evolution. A convenient quantity for visualization,
or for tracing in time and space the charge dynamics is the so-called hole density [22,
117]. The hole density is defined as the difference between the electronic density of
the neutral and that of the cation

Q(r,t) = (27 |p(r)|®g ) — (@Y1 ()] p(x) |27 (1))e = po(x) = pion(r,t),  (4.1)

where p(r) is the one-body electronic density operator, @) is the ground state of
the neutral, and ®¥~1(¢) is the propagated cationic wave packet. The quantity
Q(r,t) describes the density of the hole at position r and time ¢ and by construction
is normalized at all times t. The first term in Eq. (4.1) is the time-independent
ground-state density of the neutral system, py(r), and the second one, pion(r,t), is the
time-dependent electronic density of the cation, since created ionic state is not an
eigenstate of the cation.

The time-dependent part of Eq. (4.1) can be written using resolution of identity within
the complete basis set {®;} in the following form

Pion(r,1) =D (@Y TH()|P1)e (@1 ]p(r)[ ) (DD (1))
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where py; is the matrix representation of the density operator within the full set {®;}
of states associated with the cation.

To evaluate the hole density we can use the second-quantization representation of the
density operator p(r) within a one-particle basis, e.g. using the full set of molecular

orbitals {y,(r)}
p(r) = oy (r)eq(r)ele,, (4.3)

where é; and ¢, are the corresponding creation and annihilation operators, respectively.
Within this representation the hole density, Eq. (4.1), can be rewritten in the following
form

Q(r, 1) = > _ 95 (r)eq(r) Npg(t), (4.4)
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where the matrix N(¢) with elements

Nog(t) = (@512 @5 ) = D (VT (1)@ 1)prs (@42 (1)), (4.5)

is referred to as the hole density matrix. Diagonalizing the hole-density matrix N(t)
at each time point ¢ leads to the following expression for the hole density

Q(r,t) = > [@p(r, )"y (t), (4.6)

where @,(r,t) are called natural charge orbitals, and 7,(t) are their hole-occupation
numbers. The hole-occupation number, 7n,(t), contains the information what part of
the initially created hole charge is in the natural charge orbital ¢,(r,t) at time ¢. The
hole occupation numbers, together with the hole density, are central quantities in the
observation and interpretation of the multielectron dynamics taking place after the
removal of an electron [52].

As one can see, by representing one-particle density operator p(r), as well as the
electronic wavefunction ®V~1(¢) within some predefined basis set {®;}, it is possible
to analyze the evolution of the ionized system in time and space. Convenient choice for
such a basis is the ADC-ISR representation discussed in subsection 2.3.2 of the present
thesis. Details on how one can construct the hole density employing the ADC approach
for obtaining the cationic eigenstates can be found in [117, 120]. Additionally, we would
to point out that any complete basis set {®;} can be used for the presented analysis.
It will be shown later in chapter 5 that the use of basis of electronic eigenstates can
be helpful for tracing the charge dynamics coupled to the corresponding non-adiabatic
nuclear motion.

4.2.2 | Choice of the initial state

As was discussed above, due to electronic correlation the ionization of a molecule by
an ultrashort laser pulse can trigger electron dynamics. However, currently there are
neither theoretical, nor experimental methods that can tell us what exactly will be the
state of the system after its interaction with a particular laser pulse. At the same time,
the particular form of the initial wave packet directly affects the follow-up dynamics.

In case of the ionization caused by a high-energy photon (well above the corresponding
ionization threshold), the removed electron has a high kinetic energy and, thus, leaves
rapidly the interaction volume. The remaining electrons have no time to respond on
such effect implying that the ionized electron is removed from the system on a very
short time scale. This is the essence of the “sudden approximation” [64].
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The time needed for the remaining electrons to respond to a sudden ionization was
found to be about 50 asec [149]. It was shown [149] that this time is universal, i.e., it
does not depend on the particular system, and as such appears as the time scale of the
electron correlation. Thus, in practice, sudden ionization is equivalent to ionization
performed faster than the electron correlation.

Mathematically the ionization from a particular molecular orbital can be written by
using annihilation operator ¢; in the following form

Y H0) = &9, (4.7)

where index 7 indicates that we destroys an electron in the molecular orbital ¢; of
the neutral molecule. As will be shown in the next subsection, due to the final-state
correlation, this ansatz for the initial ionic state is equivalent to the creation of a wave
packet.

4.2.3 | Mechanisms of charge migration

Depending on the type of populated cationic states, different mechanisms of charge
migration have been identified and studied [23, 117, 120, 122]. It appeared that there
is a close relation between the ionization spectrum of the considered molecule and a
particular charge migration mechanism initiated after removing an electron from the
system. Therefore, in what follows we will take a closer look on a typical structure of
the cationic state of a molecule.

The wavefunction corresponding to cationic eigenstate ®¥ ' can be expended in terms
of the configuration interaction (CI) series

Y= ed) + Y clhelaad) + . (4.8)
k

a,k<l

where the indices k, [ refer to occupied and a to virtual orbitals of the ground state
®N. Accordingly, the electronic configurations ¢,®{ are the so-called one-hole (1h)
configurations, where one electron has been removed from the neutral ground state
L, and ¢l ¢p¢, @Y are two-hole one-particle (2h1p) configurations, where one electron
has been removed and another one excited into an unoccupied orbital of ®}. The
quantities c,(f) and cfjjl are the corresponding CI coefficients [117].

Let us now examine different classes of cationic states appearing in the ionization
spectrum by considering particular terms in Eq. (4.8). Without correlation effects
between molecular orbitals, i.e. within an independent particle model, the resulting



68 4. Controlling charge migration in molecules

cationic state is constructed from a single configuration ¢, ®2’ corresponding to removing
an electron from molecular orbital ¢, and can be described by Koopmans’ theorem
(see subsection 2.3.1 for details).

If correlation effects are weak — and this is typically the case for ionization from outer
valence orbitals of a molecule — the resulting cationic states will consist of the so-called
main lines which are the combination of 1h configurations. In this case, the molecular
orbital picture is still valid, or, in other words, the quasi-particle approximation
applies.

In case of ionization from the inner valence orbitals, the correlation effects are stronger,
and the cationic states formed by such process are predominantly a sum of 2hlp
configurations with moderate contributions of 1h ones. These so-called satellite
states [150] can be classified in two different groups: relaxation satellites where at least
one of the two holes in the 2h1p configuration is identical to the 1h contribution, and
correlation satellites where both holes differ from the 1h configuration.

At higher ionization energies, when one removes an electron from deep inner valence
and core orbitals, the appeared cationic configurations makes the distinction between
the main lines and the satellites ceases to exist. In this case the spectrum becomes
a quasi-continuum of lines with small to moderate intensities. This phenomenon is
known as the breakdown of the molecular orbital picture of ionization [150].

In general, when a molecule is ionized, different kinds of cationic states can be populated
simultaneously thus creating an electronic wave packet. Depending on the type of
states involved into dynamics, one can classify the follow-up charge migration in
three basic mechanisms: the hole-mixing case, the dominant-satellite case and the
breakdown-of-the-molecular-orbital-picture case. In this thesis, we only deal with the
hole-mixing case which will be described briefly below. Detailed description of other
charge migration mechanisms can be found elsewhere [117, 120].

We start with description of the situation when two populated ionic states represent a
linear combinations of two 1h configurations. These two states can be written as

N-1 A &N ~ &N
(I)I :clcl@o ‘|—02qu)0 s

4.9
CI)J}lil 26267;@6\7 — Cléjq)év, ( )

where, due to the orthonormality of the states, the two coefficients ¢; and ¢y satisfy
the equation ¢? + ¢2 = 1. The time-dependent electronic wave packet formed from
these two states in the Schrodinger representation reads

ON(t) = 2 ()Y 4+ ()P (4.10)

In the above expression, z;(t) and x;(t) are the time-dependent (in general, complex)
amplitudes of the cationic eigenstates, satisfying |z;(t)|* + |z;(¢)|*> = 1 at all times.
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Combining these two expressions leads to the following representation of the wave
packet in terms of the involved molecular orbitals

ONTNE) = (zr(t)er + 2 5(t) )& DY + (zr(t) ey — 25 (t)cr) Py (4.11)

In case of sudden ionization, when an electron is removed from a particular molecular
orbital, say ¢;, it is easy to examine the conditions for amplitudes x; and z; at the
initial moment of time which leads to the situation described by Eq. (4.7) and in
such a way to extract the populations of the involved cationic states. Namely, by
requiring z7(0)c; + x5(0)ca = 1 and x7(0)ey + x5(0)cy = 0, one finds z;(0) = ¢; and
x7(0) = co. As one can see, creating the initial hole in one of the orbitals, will create a
coherent superposition of the ionic states launching in that way electronic wave-packet
dynamics representing quantum beatings. The hole will oscillate between the two
orbitals ¢; and ¢; with a frequency determined by the energy difference between the
two ionic states. If the two orbitals are localized on two different sites of the system,
the hole-mixing mechanism will lead to an oscillation of the initially created positive
charge between these two sites [23, 117]. This mechanism has been extensively studied
and was identified as the driving force of the ultrafast charge migration following outer-
and inner-valence ionization in many different molecular systems [23].

“II Control of charge migration

In the course of our study we have analyzed the possibilities to control ultrafast charge
migration in several experimentally interesting systems. As was already pointed out
in the introduction to this chapter, the charge migration depend significantly on a
molecule under study. Namely, the possibility to localize created charge on a particular
place in a molecule depends on the electronic structure of the considered system. In
this section we will demonstrate on two different molecules how one can stop the pure
electronic, few-femtosecond oscillation of the electronic density, either localizing or
redistributing it along a molecular chain.

4.3.1 | 3-methylen-4-penten-N,N-dimethylamine molecule

A showcase example of strong hole mixing appearing already in the outer valence
orbitals of the molecule is 3-methylen-4-penten-N,N-dimethylamine (MePeNNA) cation.
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Many-body ab initio calculations showed that, due to the electron correlation, the
ground and the first excited ionic states of the molecule are a strong mixture of two 1h
configurations: an electron missing in the highest occupied molecular orbital (HOMO)
and an electron missing in the HOMO—1 (see Fig. 4.1 and Refs. [25, 151]). Therefore,
if we suddenly remove an electron either from HOMO or from HOMO-1, we will
create an electronic wave packet in the form of Eq. (4.10).

Due to the hole-mixing structure of the ionic states, the evolution of the system
described by the wave packet (4.10) will represent an oscillation of the hole charge
between the two involved 1h configurations, or between HOMO and HOMO—1. Since
HOMO is localized on the chromophore and HOMO—1 on the amine group of the
molecule (see Fig. 4.1), the charge migration will represent an oscillation of the
charge between the two ends of the molecule with frequency determined by the energy
difference of the two states wyg = E; — Ey, which is 0.55 eV, meaning that the time
needed for the charge to reach the remote end of the molecule is only 3.8 fs [25, 151].
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Figure 4.1: Ground and first excited cationic states of the molecule MePeNNA computed
using the ab initio many-body Green’s function ADC(3) method [57]. The next ionic state is
located at 10.5 eV. The spectral intensity is defined as the combined weight of the one-hole
configurations in the expansion of the ionic state and is a quantity directly related to the
ionization cross section [150]. The contributions of the 1h configuration (HOMO)™! are given
in red (lower part of the states), while those of (HOMO—1)"! are shown in green (upper
part of the states). The two molecular orbitals localized on the chromophore and the amine
moieties of the molecule, respectively, are also depicted. The figure is adapted from Ref. [25].

Interestingly, the ionization spectrum of MePeNNA suggests that an initial state
of the form of Eq. (4.10) can be achieved experimentally without approaching the
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sudden-approximation limit of removing an electron from a single orbital. As we see
from Fig. 4.1, to prepare such a wave packet, we need a coherent population of the
first two ionic states only, which can be done via a laser pulse with the photon energy
centered between the two states and a bandwidth sufficient to embrace both of them.
Since the states are about 0.5 eV apart, one needs a pulse with a duration of about
1 fs. The next ionic state is located at 10.5 eV, and therefore its population by such
a pulse will be negligible. The initial localization site of the charge (chromophore or
N-terminal) is determined by the relative phase between the two ionization channels.
The latter can be controlled through the ionization pulse parameters, e.g., by chirping
the pulse [152], or by using a m-pulse [94].

We now pose the question whether, after the electron dynamics is triggered and the
charge has started to bounce back and forth between the two ends of the system, we
can control its motion by applying a short laser pulse. The interaction of the system
with an external electric field E(t) can be described (in the dipole approximation) by
the Hamiltonian

H(t) = Hioy — D-E(1), (4.12)
where Hi,, is the full electronic Hamiltonian of the ionized system and D= (ﬁm, ﬁy, ﬁz)
is the vector operator of the dipole moment.

To describe the correlated motion of 69 electrons (the number of electrons in MePeNNA
cation) in the presence of a laser field is an extremely difficult problem, but we solved
it using ab initio methods only. The cationic Hamiltonian H,, is constructed using
nD-ADC(3) scheme [57]. Standard double-zeta (DZ) basis sets [153] were used to
construct the uncorrelated reference states.

One can include the interaction of the field by diagonalizing the cationic Hamiltonian
matrix and using the field-free eigenstates as a basis to expand the dipole operator,
computing the transition dipole matrix elements. Alternatively, when the diagonaliza-
tion is very expensive, one can represent the dipole operator D in the many-electron
basis of the molecular Hamiltonian (in the present case in the intermediate-state-
representation basis [70]) and then directly propagate with the full Hamiltonian [52].
For this purpose, or to perform the wave packet propagation, Eq. (2.23), we used the
short-iterative Lanczos technique [54]. Details of this technique, which allow one to
study the correlated-electron dynamics in systems containing a few tens of electrons,
are given in Ref. [52].

Our aim is to find laser fields E(¢) which can steer the evolution of the wave function
of a system. As mentioned above, under certain ionization conditions, the initial state
of the MePeNNA molecule will be a linear combination of the two lowest eigenstates
of the ionic Hamiltonian and, therefore, can be regarded as a two-level system. In
subsection 3.3.1 of the present thesis, we proposed a general approach to obtain resonant
laser pulses that can drive the populations of a two-level system in a predefined way [89].
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Using this method, we are able to force the evolution of a two-level quantum system
in a practically arbitrary way.

It should be noted that the two-level model is used here only to obtain the field
parameters. To compute the evolution of the hole charge in MePeNNA molecule in the
presence of the control pulse, the propagation was performed with the full Hamiltonian,
Eq. (4.12), as described above.

Let us now examine two situations of particular interest for achieving control over the
charge-migration dynamics, namely, stopping the charge oscillations and localizing the
charge on one of the two molecular sites. To be specific, we will assume that the initial
ionization of our test molecule, MePeNNA, is performed such that the electron is
removed from the HOMO, i.e., the initial hole charge is localized on the chromophore.
As discussed above, this will trigger pure electron dynamics in which the charge will
oscillate between the chromophore and the amine site, and we would like to apply
a control pulse which will stop this oscillation and localize the charge on the amine
group or on the chromophore.

Such control can be achieved by a laser pulse obtained via Eq. (3.17) by choosing the
desired initial and final populations of the two states in the wave packet. In the case
of MePeNNA, if we want to drive the system to a stationary state in which the charge
is entirely localized in the HOMO, we need to choose ay = 1, while if we want to
localize the charge on the amine site, we need to take ay = 0. The initial population
is a; = 0.4, reflecting the fact that an initial state with a hole localized in the HOMO
has the form ®V=1(0) = v0.4®Y ! 4+ /0.605 " (see also Fig. 4.1).

As was mentioned in subsection 3.3.1, the parameter « in Eq. (3.17) controls the
interplay between the duration and the intensity of the pulse needed to perform the
transition — a slow transition can be achieved with a weak pulse, while a shorter pulse
will naturally need higher intensity. Since we want to modulate the charge migration
before the nuclear motion will start to influence the dynamics, we would like that
the pulse is as short as possible. On the other hand, the high intensity of the control
pulse may lead to undesired multiphoton processes, which can, for example, further
ionize the system. Therefore, we need to balance between these two factors. In the
case of MePeNNA | the minimum pulse duration (corresponding to a single-cycle pulse)
needed to perform the transition is about 10 fs, giving an electric field strength which
never exceeds 10° V/m. This corresponds to a pulse with a peak intensity of about
10" W/em?, which is rather weak.

The results of our full propagation, accounting for the influence of the control field
with the above parameters, are shown in Fig. 4.2. The figure depicts the hole density,
defined in Eq. (4.1), of the molecule MePeNNA after creating the initial hole on the
chromophore at time ¢ = 0 and applying a control laser pulse (also shown in the
figure) with the maximum of the field centered at ¢t = 15 fs. As Q(r,t) is difficult
to visualize, it is convenient to keep only the axis along the molecular chain (z in
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Figure 4.2: Time evolution of the hole density, Eq. (4.1), along the molecular axis of
the molecule MePeNNA, after an initial localized ionization of the chromophore, controlled
with a laser pulse (shown on the right) centered at 15 fs. The molecular axis is chosen to
pass through the longest spatial extension of the molecule. Upper panel: The laser pulse is
designed to achieve localization of the charge on the chromophore. Lower panel: The laser
pulse is designed to achieve localization of the charge on the amine site.

our case) and integrate over the remaining two coordinates. The molecular axis is
chosen to pass through the longest spatial extension of the molecule. It is seen that
immediately after ionization, the charge-migration dynamics takes place with the
hole jumping from one end of the system to the other. We clearly see that between
t ~ 10 and 20 fs, the time during which the system is exposed to the control pulse,
the charge oscillations are nearly completely stopped and the hole becomes localized
on the desired site — on the chromophore (upper panel of Fig. 4.2) or on the amine
group (lower panel of Fig. 4.2). We would also like to emphasize that the charge
stays put at the desired site of the molecule after the pulse is over, that is, the pulse
is tailored such that it brings the system to a superposition of electronic states in
which the density is essentially stationary. The small oscillations taking place after
the pulse is over reflect the fact that the molecule is, of course, not a perfect two-
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level system. Because of the electron correlation, in addition to the two mixed 1h
configurations, the two involved ionic eigenstates also contain small contributions
from the two-hole-one-particle (2hlp) configurations [150]. The latter represent an
excitation of an additional electron accompanying the ionized one. The combined
weight of the 2h1lp configurations forms the missing to one part in the states depicted
in Fig. 4.1. Through the 2h1p configurations, other molecular orbitals also contribute
to the dynamics and get populated, while the pulse is optimized to account only for
the HOMO and the HOMO—1. Nevertheless, the suggested simple scheme to obtain
the needed control-pulse parameters works remarkably well in such a complicated
system as the MePeNNA molecule. We note also that the control pulse has a rather
simple form and can be synthesized using spatial-light-modulator (e.g., liquid-crystal
mask) techniques [154, 155].

4.3.2 | Propiolic acid molecule

In this subsection we would like to demonstrate implementation of the numerical
optimization procedure described previously in subsection 3.3.2 of the present thesis.
For this purpose we chose the molecule of propiolic acid (HC;COOH), the simplest
acetylenic carboxylic acid, and the ultrafast charge migration which can be triggered
in this molecule by removing an electron from an outer-valence molecular orbital.

The main motivation to investigate the propiolic acid is that it appears to be suit-
able [156] for performing an experimental study on the charge migration phenomenon.
The molecule can be easily brought to the gas phase, and, due to its linear structure,
can be aligned and oriented, making it amenable to the time-resolved high-harmonic
generation technique, employed recently by Woérner and co-workers for reconstructing
the pure electron dynamics initiated by the ionization of iodoacetylene [40)].

Our calculation consists of the following steps. First, the ground-state geometry
of the neutral molecule is optimized using the standard density functional theory
method [157], with the B3LYP functional [158]. The optimization was done with
Gaussian 09 Package [159]. The molecule is planar and thus belongs to the C,
symmetry group with irreducible representations a’ and a”, and has the following
electronic configuration:

(core)'?(6a")?(7a’)?(8a)*(9a")?(10a")?(11a")?(124a')*
(1a”)2(13a’)2(2a”)2(14a/)2(15a’)2(3a”)2

The next step is the construction of the cationic Hamiltonian H,,. This is done
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using the nD-ADC(3) scheme [57] for representing the one-particle Green’s func-
tion. Standard double-zeta plus polarization (DZP) basis sets [160] were used in all
calculations.

For including the interaction of the system with the external laser field (see Eq. (4.12)),
we represented the dipole operator in the many-electron basis of the cationic Hamilto-
nian (in the present case this is the intermediate-state-representation basis [70]). The
chosen initial states is then directly propagated with the resulting Hamiltonian, using
the short-iterative Lanczos technique [52].
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Figure 4.3: First four cationic states of the propiolic acid computed using the ab initio
many-body Green’s function ADC(3) method. The next ionic state is located at 15.1 eV.
The spectral intensity is defined as the combined weight of all 1h configurations in the
configuration-interaction expansion of the ionic state. The orbitals involved in the hole-
mixing in the first and third state are also depicted.

Let us first look at the ionization spectrum of the propiolic acid. The first four ionic
states are shown in Fig. 4.3. The next excited cationic state is located at 15.1 eV.
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The contribution of the different one-hole (1h) configurations (electrons removed from
a particular molecular orbital) are depicted in different colors. We see that two 1h
configurations, (15a’)~! and (14a’)™!, are strongly mixed in the first and the third
ionic state. The two orbitals involved in this hole-mixing are also depicted in Fig. 4.3.
We note in passing that the ionization spectrum of propiolic acid has been calculated
previously using lower level of theory, giving, however, very similar results [161].

If we now remove an electron from orbital 15a’, due to the hole mixing we will populate
the ground and the second excited state of the cation and thus create an electronic
wave packet. Importantly, although close in energy, the other two cationic states
belong to a different symmetry irrep (a”) and their population can be effectively
suppressed in an experiment by using the orientation of the molecule with respect to
the laser polarization. Within only the electronic space, the evolution of the wave
packet, created by the ionization out of molecular orbital 15a’, will represent quantum
beatings, in which the charge will oscillate between orbitals 15a’ and 14d/, i.e. between
the carbon triple bond and the carbonyl oxygen. The period of these oscillations is
about 6.2 fs, given by the energy splitting between the two cationic states forming the
wave packet. The time scale of this pure electron dynamics is such that the charge
will probably perform a few oscillations before the slower nuclear motion traps it (the
detailed investigation of the time scale of this process will be presented in section 5.3 of
the present thesis). Clearly, the final position of the charge will affect the reactivity of
the molecule. Puling even partially the charge from the carboxylic group may hinder
the proton loss and thus decrease the acidity of the molecule.

Let us now examine the possibility to achieve control over the charge migration
dynamics by the two-pulse technique discussed in subsection 3.4.4 of the present thesis
and, for example, stop the charge oscillations and redistribute the charge along the
molecule. For this, it will suffice to bring the system in its ground ionic state. The
optimal sequence of pulses that can carry out such a transition were found by fixing
the pulse frequency to the resonance between the first and third ionization states of the
system and the CEP to zero, while optimizing the laser pulse intensity, the duration,
and the delay between the two identical laser pulses. We also introduced constraints
on the optimization parameters, in order to assure that the transition is performed as
fast as possible and at the same time the pulse intensities are not very high, in order
to avoid unwanted processes, like further ionization of the molecule by multiphoton
absorption. The optimization procedure was thus run with setting the upper limit
for the total duration of the pulse sequence to 10 fs, and the maximum field strength
to 2x10° V/m.

With all this constraints we obtained that the optimal pulse sequence that can drive
the desired transition is composed of two pulses with a duration of 4.2 fs, arriving with
a time difference of 1.38 fs. The maximum field strength of the pulses is 1.5x10° V/m.
This corresponds to a pulse with a peak intensity of about 5x 10" W /cm?, which is
relatively weak. The obtained control pulse sequence is, therefore, fully within the
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current experimental capabilities and at the same time is “soft” enough to not induce
other unwanted processes.
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Figure 4.4: Time evolution of the hole density, Eq. (4.1), along the molecular axis of
propiolic acid, after an ionization out of molecular orbital 15a’. The triggered charge
migration is controlled by a sequence of two identical monochromatic laser pulses (shown on
the right), the first one of which is centered at 15 fs. We see that the pure electronic charge
oscillation can be stopped nearly completely within about 10 fs.

Let us now see how this pulse sequence controls the charge migration triggered by the
ionization out of orbital 15a’. For this purpose, we computed the evolution of the hole
density, defined in Eq. (4.1), during the first 30 fs after the removal of the electron.
The evolution of the resulting Q(z,t) is plotted in Fig. 4.4. For better exhibit the
field-free charge migration dynamics initiated by the ionization, we set the arrival time
of the first pulse to 15 fs. We see that immediately after the ionization the charge
is localized on the carbon triple bond and, as discussed above, starts to oscillate to
the carboxyl group and back with a period of 6.2 fs. Between ¢t ~ 10 and 20 fs, the
time during which the system is exposed to the control field, the charge oscillations
are nearly completely stopped and the hole becomes spread between two sides of the
system.

Importantly, such a control over the electron dynamics can be achieved also with
a sequence of two laser pulses with 800 nm wavelength, the standard operational
wavelength of Ti:Sapphire lasers. In Fig. 4.5, the obtained laser pulses together with
the evolutions of the populations of the first four cationic states of the propiolic acid
are shown. As one can see, the pulses have nearly the same characteristics as in the
example above, except that the optimal CEP is 7. Due to the large detuning, though,
the peak intensity of the pulses is not so small anymore (~ 6 x 10> W/cm?) and
might induce some “parasitic” processes.
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Figure 4.5: Upper panel: Two identical Gaussian laser pulses with wavelength of 800 nm
obtained by the numerical optimization of the laser pulse intensity, the duration, the CEP,
and the delay between them. Lower panel: Evolution of the populations of the four lowest
in energy cationic states of the propiolic acid molecule driven by the such a laser field. The
field is optimized to drive the system to the ground cationic state.

With the above examples we demonstrated that the charge migration in complicated
molecular systems can be efficiently controlled by external laser fields. We demonstrated
by fully ab initio calculations on two experimentally interesting molecules that simple
pulses can be used to stop the pure electronic, few-femtosecond oscillation of the
charge. We would like to emphasize that the examples of charge migration control
presented in this chapter are only a few notable cases of possibilities to manipulate a
charge in a molecule. The schemes of quantum control developed in the chapter 3 of
the present thesis are general and not restricted to only stopping the charge-migration
oscillations. Through an appropriate choice of a control parameters, one is able to
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obtain pulses that can drive the system to any combination of electronic states, and
thus bring the molecule to the optimum initial condition for the desired follow-up
nuclear motion.

Let us now comment on the possible further evolution of the studied systems. Due to
the similarity of the MePeNNA molecule with the PENNA molecule mentioned in the
introduction to the present thesis [36, 37], one may expect a similar charge-directed
reactivity after localized ionization of the chromophore. The charge starts to oscillate
between the two ends of the molecule until the nuclear motion eventually traps it at the
amine site and the molecule dissociates by breaking the bridging carbon-carbon bond.
However, as we have noted above, the nuclear motion is strongly influenced by the
electron dynamics and, therefore, by controlling the charge migration we may be able
to predetermine the nuclear rearrangement. Localizing the charge on the chromophore
may substantially slow down or even prevent the dissociation, while its localization on
the amine site will most probably speed up the breakup of the molecule.

The same kind of the follow-up evolution is valid also for the molecule of propiolic acid.
Our calculations showed that with two monochromatic laser pulses with about 4 fs
duration and separated by about 1.4 fs one can stop the charge, oscillating between
the two sites of the system, and distribute it along the molecular backbone. It is
intuitively clear that a particular distribution of the charge in the molecule will induce
a particular chemical reaction path, in the form of dissociation or isomerization of
the molecule. It is, therefore, extremely interesting to see whether and how we can
predetermine the chemical reaction path by controlling the initial charge migration
step.

To check these plausible hypotheses, one needs a full quantum treatment of the coupled
electron-nuclear dynamics. The correlated description of electronic and nuclear motion
in such complex systems is extremely challenging for theory. The next chapter of the
present thesis is aimed to tackle this complicated problem.
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Introduction

Molecular quantum dynamics, aiming to solve the time-dependent Schrodinger Eq. (2.1),
is extremely difficult and numerically demanding. In section 4.3, it was shown that
one can treat ab initio the correlated motion of systems with more than fifty electrons
with potential possibility to deal with up to few hundreds. Whereas accurate quantum
mechanical simulation of the molecule with more then ten nuclei in general is not
feasible now [162]. At this point a question naturally arises: what is the fundamental
difference in the description of these two kinds of particles, the electrons and nuclei?

To answer this question let us analyze how the dynamics of a molecule is treated
within the Born—-Oppenheimer approach. As was shown in section 2.2, the solution
of this problem usually starts with obtaining eigenstates and eigenenergies of the
electronic Hamiltonian f[e(r, R). Since at this stage the nuclei are assumed to be
stationary, they enter into the Hamiltonian only as parameters (see Eq. (2.24)).
Mathematically, it means that only the electronic degrees of freedom are acting as
operators in the Hamiltonian. The terms which are responsible for the interactions
between the different kinds of particles in Eq. (2.24) are the Coulomb potentials, rather
structureless two-body interactions. It allows, in turn, to utilize the specific properties
of the Coulomb potential and to develop systematic approaches able to treat many
interacting electrons.

The follow-up nuclear dynamics problem, on the other hand, has to cope with compli-
cated many-body potentials appearing as solutions of the stationary electronic problem,
which are not general but specific for the system under investigation. The strong
interaction between the electronic clouds of atoms that come close to each other may
lead to a very strongly correlated motion [162] which, in turn, makes every system
rather unique for studying. An additional complexity arises when the electronic and
the nuclear motion is strongly coupled. Although the electrons usually equilibrate to
the much slower motion of the nuclei, very often in the polyatomic molecules there are
regions in the configuration space, the so-called conical intersections of potential energy
surfaces, where the Born-Oppenheimer picture completely breaks down and one needs
specific techniques to tackle the problem. It becomes especially challenging when
the non-adiabatic dynamics takes place on several coherently populated electronic
states [5].

In this chapter, we study several interesting effects appearing due to the coupling
between the electron and nuclear dynamics. In section 5.2, a simple model illustrating
the charge migration between two molecular orbitals of a system with a fully quantum
treatment of the nuclei is presented. It will be shown how the electronic decoherence
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caused by nuclear motion leads to the damping of the charge oscillations. In section 5.3,
we will extend these studies by examining the effect of the nuclear dynamics on the
charge migration in propiolic acid, investigated earlier in subsection 4.3.2 of the present
thesis within the fixed nuclei approximation. We will present full-dimensional ab initio
calculations of the electron-nuclear dynamics triggered by an ultrafast ionization of the
molecule. In section 5.4, we demonstrate the possibilities to control a chemical reaction
by using ultrashort laser pulses designed to manipulate the electronic coherence. A
simple model illustrating the charge-directed reactivity will be presented and analyzed.
Finally, in section 5.5 we summarize the results obtained, discuss some perspectives
and conclude.

Coherent electron-nuclear dynamics

In the static nuclei approximation (see subsection 2.2.3 of the present thesis), the
evolution of the electronic subsystem is not perturbed by the nuclear motion, and
therefore the electronic coherence is conserved for an infinitely long time. In case
of ionization, this results in an ultrafast charge migration with frequencies defined
by the energy differences between involved cationic states at the particular nuclear
geometry.

The fixed-nuclei and single-geometry approximations have, however, a limited validity,
as the nuclear motion will alter the potential seen by the electrons and thus the initially
created electronic coherence. In a series of theoretical works [28, 29, 127, 132, 135,
163, 164], Robb and co-workers made a step further by treating the nuclear motion
in a semi-classical way using the Ehrenfest method. It was shown that such classical
treatment of the nuclei only slightly modifies the electron dynamics. The nuclear
motion alters the charge oscillations and their period, but does not affect strongly the
amplitude of the oscillations. However, due to the intrinsic distribution of geometries
in a nuclear wave packet, a fast dephasing of the oscillations in the electronic density
was shown to appear on a femtosecond time scale [130, 132, 133, 135]. Despite the fact
that this approach takes into account the spatial delocalization of the nuclear wave
packet, a fundamental question remains, namely, what is the role played by nuclear
motion in the dephasing process?

Very recently, a more sophisticated approach with a quantum mechanical treatment of
both electron and nuclear dynamics, was presented in a two complementary studies [30,
31]. The results obtained suggest that in molecular systems, the purely electronic
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dynamics that can be described in terms of a coherent electronic wave packet exists
only for a few femtoseconds, and the nuclear motion cannot be neglected.

Coherence appearing between different electronic states does not give by itself an
explicit information about the dynamics of a particular observable property of the
system. Indeed, in order to calculate the desired dynamical quantity one needs to find
the expectation value of the corresponding quantum-mechanical operator. Continuing
the approach presented in Refs. [30, 31], one can reconstruct the full molecular
wavefunction taking into account the electronic structure explicitly. It allows, in turn,
to calculate the time-dependent expectation value of any electronic observable, for
example the hole density.

In this work, we used the multi-configuration time-dependent Hartree method (MCTDH)
to simulate the quantum nuclear dynamics on potential energy surfaces defined by
the electronic Hamiltonian at the respective nuclear geometries. MCTDH is a power-
ful grid-based method for numerical integration of the time-dependent Schrodinger
Eq. (2.1), particularly suitable for threating multi-dimensional problems [162]. The
Heidelberg MCTDH package [165] has been used for all calculations. Having the
time-dependent nuclear wavefunctions at hands, we will demonstrate the influence of
electronic decoherence on the dynamics of the electronic density.

5.2.1 | Theory of electronic decoherence

In order to describe the electron-nuclear dynamics we use Born-Huang anzatz (2.7)
for representation of the molecular wavefunction in terms of stationary electronic
eigenstates (for details see subsection 2.2.1 of the present thesis). The decomposition
of the total wavefunction thus reads

U(r,R,t) ZXth (r,R), (5.1)

where the summation is taken over all involved electronic states 7. The expectation
value of an electronic operator O(r,R) can be calculated via

(O(r,R)) = (¥(r, R, )|O(x, R)|¥(r, R, 1))
= 3" (u(R, 1), (r, R)[O(r, R)[x; (R, £);(x, R)). (5:2)

7’7]
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Since the operator O(r, R) acts only on the electronic degrees of freedom r and depends
on the nuclear ones R only parametrically, we can eliminate the following terms

0y(R) = (@,(r, R)|O(x, R)|®,(r, R)).. (5.3)

where the integration is performed only over the electronic coordinates. These quantities
represent the expectation values of the electronic observable O(r, R) calculated between
a pair of stationary electronic states ®;(r,R) and @;(r, R). Using this representation,
Eq. (5.2) can be expressed as

(O, R)) =>_(xi(R,1)[0;(R)[; (R, 1))r, (5.4)

4,3
where only the integration over the nuclear coordinates R remains.

In case the electronic eigenstates {®;(r,R)}, as well as the operator O(r, R), have a
weak dependence on the nuclear coordinates R, one can simplify the above expression
and obtain [30]

(O, R)) = 3 041, (55)

where we have defined the reduced density matrix, representing the overlap of the
nuclear wave packets on the chosen electronic states

Xii (1) = (a(R, 1) [ xG (R, )R- (5.6)

The off-diagonal elements of the reduced density matrix represent complex functions
which are called electronic coherences. The diagonal elements of the reduced den-
sity matrix are real positive numbers, which give the populations of the electronic
states [31].

As was pointed out in Ref. [30], the electronic decoherence is caused by the fast
spread of the nuclear wave packets along the involved nuclear degrees of freedom. The
time scale of this process depends on the individual contributions along the different
vibrational modes, as well as on the interplay between them. If a strong decoherence
arises even in one vibrational mode, i.e. the overlap of the wave packets evolving on
the corresponding electronic states, Eq. (5.6), gets very small, the system will lose
coherence in general [30].

5.2.2 | Two-level electron-nuclear model

Let us consider the one-dimensional model consisting two electronic states, which
describes a charge transfer from the left site |L) to the right site |R) of a system with
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two symmetric sites coupled by a harmonic string of frequency v = 1/M, where M is
the reduced mass of the nuclei.

The Hamiltonian of this model has the following form [166]

- AVAR VS
H= —m+§R + h(R)(|L)(R| + |R)(L]), (5.7)

where the electronic energy of each of the two equivalent sites is chosen to be the zero
of the energy scale, and the coupling between the sites,

h(R) = ho + R, (5.8)

is taken to be a linear function of the dimensionless distortion R = R — Ry of the
string from its equilibrium point R.

In the diagonal representation, the Hamiltonian, Eq. (5.7), can be written in the
following form

N A&

B = o V(R 1) (8] Vi) ) (8], 5.9

where |®1), |P2), and Vi (R), Vo(R) are the two electronic eigenstates and eigenenergies,
respectively. One can easily see, that this representation can be obtained by the
following manipulation with the electronic states

1

1) (IL) +[R)),
\{E (5.10)
|©2) ZE(W - |R)).
The resulting potential energy surfaces can be expressed as
Vi(R) = SR+ h(R).
(5.11)

Va(R) = 5 —h(R),

which are two harmonic potentials with equivalent strength shifted vertically and
horizontally from each other.

Without loss of generality, one can assume that each electronic state, |L) and |R), is
associated with some electronic orbital, ¢ (r) and pg(r), respectively. Transforming
these orbitals to the chosen diagonal representation, we obtain

p1(r) =—=(pL(r) + ¢r(r)),

(5.12)

[\

#2(r) =7 (1(r) = @r(r)).

It is seen that creating a charge at t = 0 in some particular orbital, say ¢ (r), we
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automatically prepare the electronic state of the system which is a linear combination
of the adiabatic electronic states

1
ﬁ

triggering in such a way the follow-up charge beatings from one site of a system to the
other.

[@(t = 0)) = |L) = —=(|01) +|D2)), (5.13)

The goal of our consideration is to demonstrate the effects of the nuclear dynamics
on the coherent oscillation of the charge. Due to the loss of coherence, it is expected
that at some point the charge migration oscillations will be damped and the charge
will get stuck. To illustrate this, we will calculate the expectation value of the density
operator, given by

pr) = (£1(r)[@1) + @5(r)|®2)) (01(r){Pa] + @2(r)(P2]), (5.14)

on the full molecular wavefunction ¥(r, R, t) obtained by numerically exact solution
of the Schrédinger equation with Hamiltonian (5.9).

To be specific, let us fix the numerical values for the parameters of the system as follows:
M = 0.1 a.um., hg = 0.01, hy = 0.003, and Ry = 4 a.u. It is worth to mention that the
considered model describes the energy of the system during stretching or compressing
the string from its equilibrium point. We would like to note that parameters of the
model do not have a direct relation to any real molecule. The values are chosen only to
demonstrate, as clearly as possible, the interplay between the electron and the nuclear
dynamics. In particular, the selected value for the reduced mass of the system leads
to the fact that only a few oscillations of the charge take place before the nuclear
motion comes into play. This allows, in turn, to visualize clearly the oscillation of the
electronic density, as well as the effect of electronic decoherence.

The adiabatic potential energy surfaces, see Eqs. (5.11), corresponding to the above
chosen parameters are shown in Fig. 5.1. We see that in the adiabatic picture the
energy levels of the system represent two displaced harmonic oscillator potentials. This
creates different gradients on the corresponding electronic states at the equilibrium,
leading in such a way to a diminishing with time spatial overlap between the nuclear
wave packet components and thus to decoherence.

The above presented model does not specify explicitly the molecular orbitals ¢ (r)
and ¢gr(r). Indeed, the non-adiabatic dynamics depends only on the form of potential
energy surfaces but does not relate directly to the structure of molecular orbitals.
The behavior of the created charge density, however, is crucially affected by the
particular form of orbitals. In our study we chose left and right molecular orbitals,
@r(r) and pg(r), respectively, in the form of normalized Gaussian functions with a
width parameter o = 0.7, centered on the hypothetical nuclei. Left panel of Fig. 5.2
illustrates the localized molecular orbitals, computed at equilibrium nuclear distance
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Figure 5.1: Adiabatic potential energy surfaces of the two-level electron-nuclear model. It
is clearly seen that two identical electronic potentials are displaced from each other leading
in such a way to an opposite nuclear gradients around equilibrium point.

Ry, while in the right panel, the adiabatic representations of the molecular orbitals,
©1(r) and @o(r), are shown. In both panels, the horizontal axis of this picture, r,
is taken along the molecular axis and is centered between the nuclei. One can see
that orbital ¢1(r) is constructed by the weighted sum of the localized orbitals, while
orbital ¢o(r) by their difference. It is clear that the positions of molecular orbitals
will change according to the nuclear motion, indicating the fact that electrons follow
their nuclei.

Let us now examine the evolution of the system supposing that the initial nuclear
wave packet is splitted between the electronic states in proportion 1:1 (as suggested
by Eq. (5.13)). We assume that the initial nuclear distribution has a Gaussian form
with width parameter 0 = 0.5 centered at the equilibrium point. Since the initial
wavefunction is constructed from a linear combination of states, both electronically
and nuclearly, one can expect that non-trivial electron-nuclear dynamics will be
induced. We solved the time-dependent Schrodinger Eq. (2.1) for the presented model
numerically. Our calculations show that the nuclear wave packets, x1 (R, t) and x2(R, ),
which represent the nuclear density on the corresponding electronic state, start to move
in opposite directions oscillating back and forth with identical periods of around 30 fs.
Knowledge of the time-dependent nuclear wavefunctions allows one to reconstruct the
full molecular wavefunction, Eq. (5.1), at any fixed moment of time.

This allows us to calculate the time-dependent electronic density, taking into account
the effect of the nuclear dynamics. For pedagogical reasons, however, it is useful to
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Figure 5.2: Left panel: Localized molecular orbitals of the left, ¢ (r), and right, @r(r),
sites of the system. Right panel: Adiabatically transformed molecular orbitals representing
the weighted sum, ¢1(r), and difference, @5(r), of the corresponding localized molecular
orbitals. The x-axis r represents a molecular axis centered between nuclei.

consider the result of the action of the density operator on the molecular wavefunction
before integrating over the nuclear degrees of freedom (see Eq. (5.4)). It allows, in turn,
to visualize the electronic density on different positions in the nuclear configurations
space. In Fig. 5.3 we show snapshots of the electronic density calculated at three
different instants of time. In the left panel, one can see that the initial (¢ = 0) density
is localized on the left site of the system. The electronic density then starts to oscillate
with a composite frequency being a sum of many contributions stemming from all
possible energy differences between the populated eigenstates of the full molecular
Hamiltonian, Eq. (5.9), the so-called vibronic states. The middle panel of Fig. 5.3 shows
the time instant when the electronic density has almost completely migrated to the
opposite site of the system. This is the first moment of time when the electronic density
appears on the right site of the system, performing in such a way oscillations with a
half-period of about 3.85 fs. The right panel of Fig. 5.3 depicts the situation when the
dephasing in the electronic dynamics starts to play a role. It is clearly seen that in the
region around the nuclear equilibrium point, the electronic density is localized on the
left site of the system, while the electronic density of the stretched and the compressed
string (positive and negative deformations on the x-axis, respectively) is distributed
almost equally between the left and the right molecular orbitals. The difference in the
time scales of the electronic oscillations on the different nuclear configurations comes
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from the set of vibronic levels involved in the dynamics. Although the energies of the
vibronic states do not depend on R, due to involvement of a manifold of states in the
migration process, one can interpret this as a result of the dependence of the electronic
energies, V;(R), on nuclear degrees of freedom.

Time: 0.00 fs Time: 3.85 fs Time: 7.70 fs

-5 -2 2 5
R [au] R [au] R [au]

Figure 5.3: Snapshots of the time-dependent electronic density calculated by applying the
operator p(r), see Eq. (5.14), on the full molecular wavefunction ¥(r, R,t) obtained by the
numerical solution of the Schrodinger Eq. (2.1). Left panel: Initial electronic density localized
on the left site of the system. Middle panel: Electronic density calculated at ¢ = 3.85 fs. It is
seen that electronic density has almost completely migrated on the right site of the system.
Right panel: Electronic density calculated at ¢t = 7.70 fs. The differences in the time scale of
the electronic dynamics on the different nuclear points lead to a dephasing of the electronic
coherence. For a better visibility, the density is plotted in a logarithmic scale.

Despite the possibility to calculate a nuclear-resolved electronic density of the molecule,
the analysis of this quantity can be rather complicated due to contributions from many
nuclear degrees of freedom. Indeed, considering the electronic density along a selected
vibrational mode does not give a direct information about the electronic dynamics on
the other modes. Therefore, integrated quantities, such as the reduced nuclear density
matrix, Eq. (5.6), become useful for the interpretation of the electronic decoherence
caused by the nuclear dynamics. In Fig. 5.4 time-dependent matrix elements of the
reduced nuclear density matrix are presented. On the diagonal, the populations of the
electronic states are shown. Their time-independence indicates that the two electronic
states are not coupled and thus the system does not exhibit non-adiabatic transitions.
The off-diagonal matrix elements represent complex functions that oscillate with
frequencies defined by the appropriately averaged differences between the involved
vibronic levels. Furthermore, it is clearly seen that the off-diagonal terms x12(¢) and
X21(t) are experiencing fluctuations of the magnitude. This is a direct consequence
of the fact that starting from a fully coherent state the system starts to decohere
due to the influence of the nuclear motion. Since our model consists of two harmonic
oscillators with identical frequency, the coherence will completely recover after every
oscillation of the nuclear density, i.e. when the nuclear wave packets moving on the
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two potential energy surfaces return to a position when they overlap completely.
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Figure 5.4: Time-dependent matrix elements of the reduced density matrix, Eq. (5.6),
calculated for the two-level electron-nuclear model of charge transfer. The diagonal matrix
elements represent integrated populations of the electronic states. The off-diagonal complex
terms reflect the degree of electronic coherence. It is seen that initially fully coherent states
start to loose their coherence reaching a minimum at around 15 fs. Since the considered
system is a one-dimensional harmonic oscillator, the electronic coherence recovers when the
nuclear densities approach the initially prepared state at around 30 fs.

The integration of the electronic density over the nuclear degrees of freedom allows
one to extract information about the electronic dynamics of the system in general.
Fig. 5.5 shows the evolution of the integrated electronic density for the described model
calculated via Eq. (5.4). We observe that the charge performs one clear oscillation
before the nuclear dynamics perturbs the coherence of the electronic states. In the
time interval between 10 and 20 fs the charge is smeared between the nuclei. During
this time the electronic dynamics is almost completely damped due to the very little
overlap between the nuclear wave packets.

Our fully quantum simulation of the electron-nuclear dynamics shows that the electronic
decoherence appearing as a result of the nuclear motion is a rather complicated effect,
which depends on several parameters of the system. For example, increasing the
horizontal displacement between electronic states will lead to a faster decrease of
the overlap of the nuclear wave packets and thus to a shortening of the decoherence
time. At the same time, the vertical gap between the energy levels affects the time
scale of electronic motion, and therefore increasing this gap will lead to the possibility
to observe several oscillations of the electronic density before the nuclear dynamics
eventually perturbs the picture. The particular form of the potential energy surfaces
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Figure 5.5: Time evolution of the electronic density along the molecular axis of the system
after initial localization of the charge in orbital ¢ (7). The triggered charge beatings are
damaged by the nuclear motion. We see that the charge performs one clear oscillation before
the nuclear dynamics perturbs the coherence of the electronic states. Later, the coherence is
recovered when the system approaches the initial state.

is important as well, since it determines the vibronic levels of the system, affecting in
such a way the distribution of the migration frequencies. In the case of several nuclear
degrees of freedom, the interplay between the various factors can be quite entangled,
requiring thus an explicit investigation of every particular system prepared under
specific initial conditions. The next section is aimed at demonstrating that contrary
to the previously reported [30, 31] few femtoseconds decoherence times, complicated
molecules, in which the pure electronic coherence survives for longer times, seem to

exist.

WM [lectron-nuclear dynamics in propiolic acid molecule

In this section we will illustrate the influence of the nuclear dynamics on the oscillations
of the charge created upon ionization of the propiolic acid molecule. As was shown
in subsection 4.3.2 of the present thesis, the removal of a HOMO—1 electron triggers
a charge migration in the propiolic acid driven by the hole-mixing mechanism. In
the absence of perturbations coming from the movement of the nuclei, the charge
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performs long-lived oscillations along the molecular chain with a period of about 6.2 fs.
A question of particular interest is, of course, how long the charge oscillations could
survive under the decoherence coming from the nuclear dynamics of the molecule.

In order to shed light on this problem, we perform a full-dimensional simulation of
the quantum dynamics of the molecule close to the Franck-Condon region. In this
case, the potential energy surfaces can be approximated by Taylor polynomials up to
second order, a model which is known as the vibronic-coupling Hamiltonian [45, 167].
Within this approximation, the Hamiltonian can be written as

A

H="T,+0+W, (5.15)

where T}, and 7y denote the kinetic and the potential energy of the neutral unperturbed
reference ground state, respectively. Using a harmonic approximation for the vibrational
modes, T}, and 7y can be expressed as

T, = 1}: > (5.16)
n — 2 - WZGQ?’ .
.1 9
Vg = 52&),‘@“ (517)

where atomic units and mass- and frequency-weighted normal-mode coordinates (); are
used, with w; denoting the frequency of mode 7. The matrix W contains information
about the diabatic cationic states, and the non-adiabatic couplings between them.
Using the standard vibronic-coupling theory, Taylor expansion of the matrix elements
of W can be written as

Wik = B+ D ki Qi + 11 Q7 (5.18)

Wi =Y A'Q;, (5.19)

where E}, is the vertical ionization energy of state k, x¥ and 7* are the linear and
quadratic coupling parameter of state k for normal mode 4, respectively, and A is the
linear coupling parameter between states k and [ within the normal mode <.

The propiolic acid belongs to the C, symmetry point group and thus posses two
irreducible representations. The molecule has 15 normal vibration modes (see Table 5.1),
11 totally symmetric modes of a’ symmetry and 4 coupling modes of a” symmetry.
The normal modes have been obtained at the TDDFT/B3LYP [158] level of theory
with the DZP basis set [160] using the Gaussian package [159].

We included the first four cationic states of the propiolic acid into model. This choice
is motivated by the fact that the remaining cationic states are located relatively far
in energy from selected ones (see also Fig. 4.3), and thus can be eliminated from
consideration by the appropriately prepared ionization laser pulse. The potential
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Mode number Symmetry Frequency [cm™]

1 a’ 178.0
2 a” 251.6
3 a’ 462.2
4 a’ 582.4
) a” 621.5
6 a” 674.2
7 a 755.0
8 a” 766.5
9 a 797.1
10 a’ 1200.8
11 a’ 1463.9
12 a’ 1812.0
13 a’ 2349.8
14 a’ 3668.0
15 a’ 3686.2

Table 5.1: Normal modes included in the vibronic-coupling Hamiltonian of the propiolic
acid molecule.

energy surfaces of these states have been calculated in the same way as was described
in subsection 4.3.2 of the present thesis. Using these surfaces, the parameters of the
vibronic-coupling Hamiltonian were obtained through a least-square fit procedure.

The propagation of the nuclear wave packets with the above presented Hamiltonian is
performed using MCTDH method. In order to reduce the computation time, different
vibrational modes were grouped and treated as multidimensional single particles (see
Table 5.2). A primitive basis of harmonic oscillator functions has been used in order
to represent each nuclear degree of freedom. The number of DVR functions was
chosen such that it ensures that the maximal population of the last grid point is
lower than 10~%. The number of single-particle functions is dictated by the maximum
population of the highest natural orbital and is chosen to be lower than 1073. The
initial wave packet is constructed by populating the ionized states from the ground
neutral state according to the nuclear dependent hole-mixing parameters along the 15
nuclear degrees of freedom, assuming ionization from orbital 15a’.

In Fig. 5.6 the evolution of the matrix elements of the reduced nuclear density matrix,
Eq. (5.6), calculated between the involved electronic levels is shown. In the upper panel,
the diagonal elements, corresponding to the adiabatic populations of the electronic
states are presented. It is seen that the system is initially prepared in a linear
combination of states one and three. The initial weights of the participated states are
defined by the corresponding integrated hole-mixing parameters (see also Fig. (4.3)).
Later, the non-adiabatic couplings lead to a redistribution of the populations between
the involved electronic states. In the lower panel, the time evolution of the coherence
between levels one and three is presented. One can see that the fully coherent initial
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Normal modes SPF basis Primitive basis

(1,2,3) 8,888  (12,10,10)
(4,5,6) 8,888  (10,12,10)
(7,8,9) 8,888  (10,10,10)
(10,11,12,13)  [8,8,8,8]  (10,10,14,12)
(14,15) 8,888  (10,10)

Table 5.2: Combination of vibrational modes into the multidimensional single particles for
the propiolic acid molecule. The number of single-particle functions for each state, as well as
the number of primitive basis functions along each mode, are also shown.

electronic state starts to lose its coherence on a time scale of about 10 fs. This shows
that before the nuclear dynamics comes into play the system has time to perform
two to three oscillations of the charge. The time scale of the charge oscillations is
found to be slightly faster than predicted by the static-nuclei approximation (about
5.1 fs against 6.2 fs, respectively). This change is caused by the fact that the involved
cationic states have slightly different nuclear dependence. It leads, in turn, to the
vibronic levels which are shifted further in energy than the pure electronic energies
used in calculations with fixed nuclei. Contrary to the above presented model of
coupled dynamics in harmonic oscillator potentials, the coherence in the present case
is not recovered within the time the propagation was performed. This indicates that
at least one vibrational mode participating in the dynamics has lost its coherence due
to the different time scale of the nuclear oscillations on the corresponding electronic
states.

Using the reconstructed full molecular wavefunction, we computed the expectation
value of the hole density operator, Eq. (4.1). The evolution of the resulting Q(z,t)
along the molecular axis z is plotted in Fig. 5.7. We see that at the initial moment of
time, the charge is localized on the carbon triple bond and, due to the hole mixing of
the involved cationic states, starts to migrate to the carboxyl group of the molecule
and back. The nuclear dynamics perturbs the electronic oscillations leading to the
damping of the charge migration within about 10 fs. It is clearly seen that the charge
has time to perform several oscillations before the strong decoherence suspends its
ultrafast motion and distributes it between the two sites of the molecule.

In this section, we presented an example of a complex system in which the decoherence
coming from the nuclear dynamics is relatively slow. The propiolic acid cation studied
here is the very promising molecule for the experimental investigations. The molecule
has a rather large dipole moment in the neutral state and thus can be relatively
easily aligned by appropriate electromagnetic fields. Due to the particular form of
the ionization spectra, as well as due to the symmetry properties of the system, the
laser pulse can be applied such that only the desired electronic states get populated,
triggering in this way the follow-up charge beatings. As we showed, the created hole
will have time to perform several oscillations before the nuclear dynamics dephases
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Figure 5.6: Time-dependent matrix elements of the reduced density matrix, Eq. (5.6),
calculated for the dynamics in the propiolic acid cation. Upper panel: The diagonal matrix
elements, representing the integrated populations of the electronic states. Lower panel:
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complex term indicating the coherence between states one and three. The

coherence between the remaining states is close to zero.
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Figure 5.7: Time evolution of the hole density along the molecular axis of the propiolic
acid, after the ionization out of molecular orbital 15a’. The appeared charge migration
dynamics is perturbed by the influence of the nuclear motion. We see that after 10 fs the
oscillations of the charge are almost completely stopped.

them and final

ly traps the charge. We argue that the described properties of the

system can be very suitable for the experimental observation of the purely electronic

dynamics in molecules.
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WM Control of electron-nuclear dynamics

Quantum control of molecular processes in terms of attochemistry implies manipulation
of the electronic dynamics only. In this section we will exemplify on a simple one-
dimensional model the concept of attosecond control of a molecular fragmentation. It
will be demonstrated that by an appropriate combination of two identical Gaussian
laser pulses one is able to manipulate the dynamics of electronic density and in this
way to control the molecular reactivity.

Let us consider a model which is similar to the one that was described in subsection 5.2.2
of the present thesis. Our goal is to simulate the process of charge transfer between two
molecular orbitals of a system with potential energy surfaces that imply an opposite
behavior of the nuclear wave packets, namely, a bound and a dissociating states. The
Hamiltonian of such two-level system can be expressed in the form of Eq. (5.9) in which
the lower electronic state Vi (R) is bound, while the higher one, V5(R), is dissociative.
Adiabatic potential energy surfaces corresponding to the described situation are shown
in the upper panel of Fig. 5.8. This model represents the electronic states of a
hypothetical ionized molecule AB*T. We assume that in the dissociation limit the
molecule fragments differently — the lower electronic state corresponds to the situation
when charge is located on fragment A, while the higher electronic state leads to the
localization of the charge on species B.

Molecular orbitals of the AB™ molecule are constructed from uncorrelated orbitals
¢r(r) and pg(r) in the same way as was discussed in subsection 5.2.2. The difference
is that in the present example the corresponding weights of the mixing depend on the
nuclear coordinate R

AS

=

=
[

a(R)pL(r) + b(R)pr(r),

(5.20)
pa(r, R) =b(R)pr(r) — a(R)pr(r),

where relation |a(R)[*+|b(R)|? = 1 fulfills for any nuclear configuration R. In the region
around the nuclear equilibrium point, the correlation between electrons of fragments
A and B are strong leading to a strong mixing of orbitals in both cationic states.
At the same time, in the dissociation limit, the electrons of the different fragments
of the molecule do not interact making the two states pure 1h ones, corresponding
to the situation that the hole is either in ¢ (r) orbital or in ¢g(r). In the lower
panel of Fig. 5.8, the orbital mixing parameters a(R) and b(R) used in the present
calculations are shown. The uncorrelated orbitals ¢ (r) and @g(r) are chosen the
same as described earlier in subsection 5.2.2.
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Figure 5.8: Upper panel: Adiabatic potential energy surfaces of the two-level molecular
fragmentation model. The lower electronic state Vi (R) is strongly bound while the higher
one, V5(R), is dissociative. On dissociation limit the molecule breaks into fragments — the
state |®1) corresponds to situation when charge is located on A fragment while the state |®2)
leads to localization of the charge on B specie. Lower panel: Nuclear depend hole mixing
parameters. It is seen that in the region around nuclear equilibrium point the orbitals are
strongly mixed while on dissociation limit the correlation effects become weaker.

We start with the description of the evolution of the system in the absence of the
external laser fields. The initial state is expressed as

(W(r, Rt = 0)) = a(R)x(R)|®1) + b(R)x(R)|®2), (5.21)

where y(R) is the Gaussian wave packet with the following parameters: o = 0.3,
Ry = 3.9 a.u. It is seen that the wave function is prepared as a linear combination of
electronic states inducing in such a way electronic dynamics. The reduced mass of the
nuclei is chosen to be 0.5 a.u.m. ensuring that the nuclear motion is fast enough to
visualize clearly the physical processes of interest.

What is the expected dynamics of the system? It is clear that such prepared nuclear
wave packets will evolve in accordance to the structure of the corresponding potential
energy surfaces Vi(R) and V,(R). The part of the nuclear wave packet x;(R,t =
0) = a(R)x(R) promoted to the bound potential will oscillate back and forth with
some frequency while the remaining part y2(R,t = 0) = b(R)x(R) will roll out on
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the V5(R) potential, i.e. the system will dissociate. In Fig. 5.9 the electronic density
of the system, calculated using Eq. (5.4) is presented. It is seen that the charge
initially placed on the left site of the system starts to oscillate with a period of about
2.5 fs. Due to the movement of the nuclear wave packet on the dissociative state, the
system loses its coherence after about 12 fs resulting in a disappearance of the charge
beatings. Yellow dashed lines indicate the averaged positions of the fragments moving
on the corresponding electronic state. One can see that the charge partially leaves
with fragment B on state |®3) whereas the remaining part of the charge is distributed
between the nuclei of the bound ion AB™ on state |®).

--"

r [au]
o

—
~a
-
-a.
~a
~a
~an
~a
~a
~a
-~.
~e-a
Seel
~~ao

0 5 10 15 20

time [fs]

25 30 35

Figure 5.9: Time-dependent electronic density plotted along the molecular axis of the
system after the charge is initially localized in orbital (7). It is seen that the charge
performs oscillations from one site of the system to the other with a period of about 2.5 fs.
Due to movement of the nuclear wave packet on dissociative state, the system loses its
coherence at about 12 fs leading to the disappearance of the charge beatings. Yellow dashed
lines indicate the averaged positions of the fragments moving on the corresponding electronic
state. One can see that the charge partially leaves with fragment B on state |®3) whereas
the remaining part of the charge is distributed between the nuclei of the bound ion AB* on
state |®1).

Let us now apply a laser field on the system. The interaction of the system with the
field is treated in the frame of the dipole approximation (see subsection 2.4.5 of the
present thesis). The transition dipole moment between the electronic states is chosen
to be 6 a.u. Our goal is to examine the possibility to achieve control over the molecular
fragmentation by the two-pulse technique discussed in subsection 3.4.4 of the present
thesis. For this, it will suffice to bring the system in the particular electronic state
which thus will automatically lead to the desired follow-up nuclear rearrangement.
The optimal sequence of pulses that can carry out such a transition was found by
the optimization of the laser pulse frequency, the intensity, the duration, the phase,
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the position of the first and the second laser pulses. As one can see, the number
of parameters to be optimized is greater then in the static case discussed earlier,
indicating the fact that the dynamics of the system now is much more complicated.
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Figure 5.10: Control of the molecular fragmentation by an external laser field. The laser
pulse is designed to force the dissociation of the molecule. Upper panel: Two identical
Gaussian laser pulses with parameters optimized to achieve the desired quantum control.
Middle panel: Evolution of the adiabatic populations of the electronic states. Lower panel:
Time-dependent electronic density calculated along the molecular axis. We see that after
applying the laser field, the charge is almost completely localized on fragment B leading in
such a way to the dissociation of the system.

Let us first analyze the situation when the system is controlled in a way to achieve
almost complete dissociation. The obtained laser pulse sequence plotted together with
the time evolution of the electronic density is shown in Fig. 5.10. The middle panel of
the picture illustrates the evolution of the adiabatic populations of the electronic states.
It is clearly seen that starting from a linear combination of states, the specifically
designed laser field bring the system to its higher electronic state. At the same time,
the charge oscillating back and forth between the left and right moieties of the system
almost completely localizes on fragment B. Moreover, one can seen that such kind
of control leads to the dissociation of the system with a speed defined by the kinetic
energy of the nuclei moving on the higher electronic state. Importantly, the laser pulse
affects the system only on the electronic level and the subsequent nuclear dynamics
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takes place without any external influence, illustrating thus the concept of the purely
electronic control of the chemical reaction.
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Figure 5.11: Control of the molecular fragmentation by an external laser field. The laser
pulse is designed to prevent the dissociation of the molecule. Upper panel: Two identical
Gaussian laser pulses with parameters optimized to achieve the desired quantum control.
Middle panel: Evolution of the adiabatic populations of the electronic states. Lower panel:
Time-dependent electronic density plotted along the molecular axis. We see that after
applying the laser field, the charge is redistributed between A and B fragments of the
molecule preventing in such a way the dissociation of the system.

An opposite situation is presented in Fig. 5.11. The two identical laser pulses are
designed to prevent dissociation of the system. In the middle panel of the picture, the
time evolution of the adiabatic populations of the electronic states is presented. It is
seen that after applying the external field, the system is driven such that it almost
completely lends on its lower electronic state. In the lower panel of Fig. 5.11, the
time-dependent electronic density is plotted. The charge initially localized on the
left site of the system is finally redistributed along the molecular axis. The molecule
remains bound, oscillating with a frequency reflecting the swinging motion of the
nuclear wave packet inside the potential well of the lower electronic state.

Concluding this section, we would like to point out that although the parameters of
the model were chosen to exemplify the idea of the attosecond molecular control, they
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are fully within the ranges of the expected values in real molecules. For example, one
can expect that the MePeNNA molecule studied in subsection 4.3.1 of the present
thesis will experience the similar behavior. Our preliminary calculations show that
the potential energy surfaces corresponding to the two lower cationic states have an
opposite nuclear topology. Accordingly, localization of the charge on one of the two
sites of the molecule will directly affect its reactivity. The full quantum mechanical
simulation of the described situation is rather complicated due to non-trivial nuclear
dynamics appearing in this system. However, using the approaches presented in the
present chapter, it seems to be realistic to tackle this interesting problem.

Conclusions

In this chapter we considered several physical effects appearing upon the correlated
treatment of the electronic and nuclear motion. It was shown on a model system how
the ultrafast electronic charge dynamics is influenced be the slower nuclear motion.
We demonstrated that the electronic decoherence caused by nuclear rearrangement
leads to a damping of the electronic density oscillations. The presented example allows
one to better understand the different factors which affect the electronic decoherence,
as well as to see their dependence on the particular form of the involved potential
energy surfaces.

Our full-dimensional ab initio calculations of the electron-nuclear dynamics performed
on the manifold of four cationic states of the propiolic acid molecule have shown that
the electronic decoherence time can be rather long, allowing one to observe several
oscillations of the charge before nuclear dynamics eventually traps it.

In the last section of the chapter, the model situation which illustrates the attosecond
control of a molecular fragmentation is presented. It was shown how one can turn
the rearrangement of the nuclei in required direction by controlling the electronic
dynamics only. The possibility to achieve good enough control over the complicated
electron-nuclear dynamics by using quantum control methods described in previous
chapter is provided. We argue that this model may be used to exemplify the paradigm
of attochemistry. It was demonstrated that a chemical reaction can be controlled be
steering the initial electronic dynamics step which eventually leads to a full control
over the molecular reactivity.

This is a rhetorical question to figure out whether the dissociation leads to the
localization of the charge in a molecule or the control of the charge position affects the
follow-up nuclear dynamics. This two points of view, namely, the one which is based
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on the validity of the potential energy surfaces picture and the other one which is more
chemically-based, reflect the same physical phenomena appearing upon ionization of a
molecule. The control of the charge migration will, under any scenario, offer new ways
to manipulate the dynamics of the whole molecule.



CONCLUSIONS AND OUTLOOK

This chapter provides a summary of the results obtained and discusses possible future

directions in studying electron-nuclear dynamics in external electromagnetic fields
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In this work we investigated the multifaceted interplay between the faster electron
and the slower nuclear dynamics appearing upon ionization of a molecular system
in the presence of an external electromagnetic field. The possibilities to manipulate
quantum molecular dynamics by applying specifically tailored ultrashort laser pulses
were inspected and analyzed. Theoretical approaches allowing to obtain a laser field
which is able to steer the desired evolution of a quantum system were developed. We
proposed a simple analytical expression connecting the evolution of the populations
in a two-level quantum system along a predefined path with the explicit form of
the applied laser field. In case of more complicated systems, we showed that using
direct search algorithms for solving the quantum control problem it is possible to find
Gaussian-shaped laser pulses that can drive the evolution of the system in a predefined
way. Employing the presented methodologies, we demonstrated by fully ab initio
calculations on experimentally interesting molecules that the charge migration can be
controlled on a few femtosecond time scale. It was shown that simple laser pulses can
be used to manipulate the many-body quantum dynamics of the electronic density,
either localizing or redistributing it along the molecular chain.

We studied how the correlated treatment of the electronic and nuclear dynamics
affects the coherence of the electronic wave packet. Our investigation on a simple
model system allowed for a detailed analysis of the factors which influence the charge
oscillations, as well as of the conditions under which the ultrafast electronic dynamics
can survive for a rather long time. We demonstrated by full-dimensional calculations
on the propiolic acid molecule that the electronic decoherence time can be long enough
to allow one to observe several oscillations of the charge before nuclear dynamics
eventually traps it. Utilizing the strong coupling between the electronic and the
nuclear motion, we exemplified the key idea of the attosecond control of a molecular
reactivity. It was demonstrated on a simple model of molecular fragmentation that
the nuclear rearrangement can be guided by a manipulation of the electronic dynamics
only. Using the two-delayed-laser-pulses technique developed in this thesis, we have
shown that the specifically tailored ultrashort laser field can either amplify or almost
completely prevent the dissociation of the system. We argue that this example clearly
illustrates the concept of attochemistry and thus can be used as a starting point to
deepen our understanding of the possibilities to control chemical reactions.

The dissociation process presented in this work as an example of a simple chemical
reaction is a very natural way for a molecule to dispose of its excess electronic energy.
In reality, however, much more interesting transformations can occur. An intriguing
situation appears when two or even more molecules participate in a chemical reaction.
In this case, it is easy to imagine that there are much more opportunities for the
electrons to influence the chemical reactivity. By redistributing electronic density
between different functional sites in one of the molecules, it is possible to directly
affect reaction pathways between the species in the mixture, and thus to initiate
specific rearrangements of the nuclei between the desired reagents. In this way, it
becomes possible not only to control the behavior of the particular molecule but rather



108 6. Conclusions and Outlook

to predefine chemical reactions in which it can participate, as well as to preselect
a particular outcome of these processes. Therefore, theoretical investigations of the
possibilities to manipulate nuclear rearrangement through the control of the electronic
motion on a very early stage of the evolution of a quantum system is an important
direction for future investigations. We would like to note that the fully ab initio
simulation of the chemical transformations caused by the correlated electron-nuclear
dynamics of moderate sized molecules becomes possible with the help of the approaches
developed and presented in this thesis. There is, however, still a lot to be done.

As it was stated in the present thesis, the electronic decoherence coming from the
nuclear motion may crucially affect the possibility to observe dynamical changes of the
electronic observable properties in time. The physical origin of the decoherence is the
dephasing of the electronic oscillations taking place on different nuclear configuration
points. In our calculations the initial phase of the involved cationic states is taken to
be identical at every nuclear geometry, i.e. we assumed that the initial decoherence
of the electronic wave packet is negligible. In reality, however, when the ionization
is performed with a realistic laser pulse, the effect of the initial phase must be taken
into account. In this respect, it has to be studied how the explicit treatment of the
ionization process influences the initial coherence of the electronic subsystem. Ab initio
simulation of the dynamics of ionization, meanwhile, requires an accurate description
of the electron leaving into the continuum. Therefore, the development of theoretical
approaches allowing to represent the wavefunction of the electron far away from the
molecular region is an important direction for the future studies to go.

Another stumbling block in the theoretical simulations of non-adiabatic molecular
dynamics is the proper description of the nuclear rearrangement. While the multi-
dimensional quantum dynamics of a molecule on bound electronic states can be
relatively easy described within the vibronic-coupling model, the representation of
dissociative electronic states is still a big challenge for theory. At the same time, from
the experimental point of view the detection of molecular fragments is an important
source of information about fundamental processes appearing on a molecular level. It
is clear that the accurate theoretical modeling and numerical simulations are essential
for the design of new experimental schemes and for the interpretation of the outcomes
of the already performed complex measurements. Thus, in our opinion, the field of
attochemistry will benefit substantially from the further development of theoretical
approaches allowing to deal with quantum nuclear dynamics of weakly bound and
dissociative systems.

We hope that our study and suggested directions for possible improvements will
stimulate further theoretical and experimental work on the possibilities to control
chemical reactions via the manipulation of the electron dynamics.



APPENDIX

In this appendiz an alternative fully ab initio method allowing one to describe the
correlated motion of electrons and nuclei inside a molecule is presented
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Almost every molecular quantum dynamics method available nowadays is based on the
picture of electronic states provided by the Born—Oppenheimer approximation. The
major outcome of this approach is the representation of the evolution of the system on
potential energy surfaces coupled non-adiabatically to each other. In this case, the
numerical treatment of the multi-level dynamics is typically limited to cases when only
very few electronic states are considered. This restriction is dictated by the fact that
one needs to solve the time-dependent Schrodinger equation for every potential energy
surface involved into consideration which is numerically rather expensive (for details
see section 2.2 of the present thesis).

About ten years ago in his pioneering work [166], Cederbaum showed that the complete
time-dependent wavefunction of a system of electrons and nuclei can be factorized
into an electronic wavefunction and a nuclear wavefunction. This concept leads to
time-dependent Schrodinger equations for each subsystem which could be solved either
in a time-dependent Born—-Oppenheimer approximation [166] or in a formally exact
way [168]. The exact solution, contrary to the Born-Oppenheimer case, accounts for
the full correlation between the two subsystems, regardless of the mass and energy
of the nuclear one. It allows, in turn, to treat the non-adiabatic nuclear dynamics
by solution of only one nuclear Schrodinger equation which nevertheless takes into
account the full electronic dynamics, without a reference to the Born-Oppenheimer
electronic states.

Despite the bright promise of the exact factorization approach, it stumbled on several
computational problems which restricted its current application only to analysis
of exactly solvable models [166, 168-173], theoretical extensions of the quantum
mechanical concepts [171, 174-181], or implementation within mixed quantum-classical
schemes [173, 178, 180, 182-190]. Until now, however, a numerical algorithm which
allows one to solve the exact factorization problem directly has not been reported.
The main goal of the present study is to put forward several useful mathematical
approaches which can allow one to apply the exact factorization formalism to previously
inaccessible situations.

To be specific, let us present here the set of coupled exact equations obtained by
substitution of the following ansatz for the full molecular wavefunction

U(r,R,t) = x(R,1)®(r, R, 1), (A.1)

into the time-dependent Schrodinger Eq. (2.1). Here, x(R,t) is the nuclear wavefunc-
tion and ®(r, R, ) is the electronic conditional wavefunction that satisfies the partial
normalization condition

(®(r, R, 1)|®(r, R, 1))y = 1, (A.2)

for any fixed nuclear configuration, R, at any moment of time. We omit the full
derivation of the equations and present here only the final result (for details see
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Ref. [169])
(He(r,R) + U@, x] - £(R, 1)) &(r, R, 1) = iaat@(r, R,t), (A.3)
(Z . ]\1@(—% L ALR )+ 5(R,t)> R0 =0 xR, (A4)

where H,(r, R) is the familiar Born-Oppenheimer electronic Hamiltonian (see Eq. (2.3)).
The electron-nuclear coupling operator U coup[d, ], scalar potential e(R,t) and vector
coupling A, (R, t) terms are

R N
o Me (A5)
_ZvaX(Rv t) (=i _
(X(Ra 0 +AL(R, t)) (—iVa — AL(R, 1)) |,
SR, 1) = (O(r, R, )| HL(r, R) + U[D, ] — z'gt@(r, R0 (A6)
Au(R, 1) = (D(r, R, 1)| — iVa|®(r, R, ). (A7)

As one can see, the representation of the molecular wavefunction in the form of
Eq. (A.1) leads to the decomposition of the time-dependent Schrédinger equation
in two coupled evolution equations which describe the correlated motion of nuclei
and electrons in a molecule. Eq. (A.4) is similar to the standard nuclear equation of
motion (see Eq. (2.18)) appearing as a result of the Born-Oppenheimer approximation.
The difference is that in the present case, the nuclear wave packet is moving on the
time-dependent potential accounting for the non-adiabatic effects. The electronic
Eq. (A.3) describes how the electronic wave function follows the nuclear evolution and
contains the full dynamical coupling to the nuclear degrees of freedom, encoded in the
operator Uggup [®, x]. In the spirit of the Born-Oppenheimer approach, the resulting
equations can be interpreted as effectively mixing all involved electronic states and in
such a way producing only one equation of motion for the nuclear wave-packet, which
nevertheless takes into account the non-adiabatic dynamics on all involved electronic
states.

Despite the possibility to derive a formally exact set of coupled equations for the
factorized electron-nuclear motion, the real numerical solution of this problem is still
very challenging. In particular, the propagation of both equations in time requires to
calculate the action of the gradient V and the Laplace V? operators with respect to
the nuclear coordinates on the electronic wavefunction ®(r, R,t). In most practically
relevant cases, the electronic Hamiltonian ﬁe(r, R), in turn, can be computed only
for a very limited number of nuclear configurations due to the enormous numerical
complexity of the problem. At the same time, the solution of the electronic Eq. (A.3)
implies that the electronic wavefunction will “accumulate” with time properties of the
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operator H,(r,R) 4+ U< [®, x] — (R, t) in an exponential manner. This explicitly
follows from the formal solution, Eq. (3.2), of the time-dependent Schrédinger equation.
These factors result in fast oscillations of the electronic wavefunction with respect to
nuclear degrees of freedom R, leading thereby to inapplicability of the usual grid-based
methods for calculation of the derivative operators along a limited number of nuclear
configurations.

Although the Born—Oppenheimer approach results in a set of dynamical equations
accounting for the evolution of the nuclear wave packets on the manifold of involved
electronic states, the idea by itself does not go beyond the assumption that the electronic
basis set, obtained as a solution of the time-independent Schrodinger equation with
electronic Hamiltonian H,(r,R), will vary slowly during the rearrangement of the
nuclei. This concept can be used for treating the exact factorization problem as well. In
particular, one can expect that the electronic wavefunction can be expanded in a basis
of the stationary electronic states {®x(r, R)} associated with the Born-Oppenheimer
electronic Hamiltonian in the following way

o(r,R,t) = > (R, 1) exp [ipr(R, )| Pi(r,R), (A.8)

where the real functions ¢, (R,t) and ¢ (R, t) represent the weight factor and the
phase of the corresponding electronic state ®x(r, R), respectively. Due to the large
difference in the time scales of the electronic and the nuclear motion, the introduced
functions will vary slowly along the nuclear degrees of freedom, since they reflect the
non-adiabatic changes in the populations and phases of the involved electronic states
caused by the relatively slow nuclear motion. Even in the case when the non-adiabatic
transitions are triggered, for example, by the influence of external laser fields acting
directly on the electronic wavefunction, the time step of propagation can be chosen
small enough to ensure a smooth change in the functions cx(R,t) and ¢x (R, ?).

The introduced ansatz, Eq. (A.8), for representation of the electronic wavefunction
allows one to follow the evolution of the weights cx(R,t) and phases @i (R, t) of the
corresponding electronic states explicitly. It provides, in turn, the opportunity to
calculate the action of the gradient and the Laplacian operators in a composite way.
Assuming that the electronic basis {®4(r, R)} has a weak dependence on the nuclear
degrees of freedom R (e.g. by choosing an appropriate diabatic representation), one
can express the action of the required operators in the following way

VO = (Ve + i Vior) exp [ipr] P, (A.9)
k

V20 = (Ve + 2iVey, - Vo — ci(Vor)? +ice Viir) exp [igr] . (A.10)
P

Contrary to the usual methods for calculation of the time-dependent expansion co-
efficients, we eliminate the rapidly oscillating phases and use the properties of the



114 A. Appendix

derivative of complex functions. In this way, we obtain semi-analytical expressions for
the action of the derivative operators, while the required contributions, namely, the
gradients Ve, Vi, and the Lapacians V¢, V2py, can be calculated using the usual
grid-based approaches.

Using the presented formulas for the action of the derivative operators on the electronic
wavefunction, one can easily obtain the explicit form of the non-adiabatic vector and
scalar couplings

(V) = (cxVer + i Vi), (A.11)
K
(V@) = > (ax Ve, + 2ic Ve, Vo, — A (Veor)® + i Vi), (A.12)

k

where the orthogonality of the basis states (®;|®;), = J;; was used.

The obtained expressions allows one to reconstruct the vector and scalar potentials,
A, (R,t) and (R, t), respectively, as well as all the required terms in the electron-
nuclear coupling operator U;‘;“p [®, x]. Using the presented scheme, one can solve
the system of Eqgs. (A.3) and (A.4) iteratively, treating the weights cx(R.,¢) and the
phases @i (R, t) separately. Although the presented equations look quite cumbersome,
their numerical solution can be performed relatively easy. For example, the more
challenging electronic Eq. (A.3) represents in this form just the propagation of the
electronic wavefunction on every fixed nuclear point of the grid with the matrix of the
operator er(r, R), while the remaining part of the full operator can be expressed as
additional quantities which modify the corresponding eigenvalues only. The solution
of the nuclear Schrodinger Eq. (A.4) can be obtained as well, since it represents a
very well studied problem of the propagation of the initial wave packet on a known
potential. The only difference is that the potential depends on time and is defined
by the solution of the electronic Eq. (A.3). We would like to emphasize additionally
that despite using the Born-Oppenheimer electronic states as a basis to expand the
electronic wavefunction, Eq. (A.8), the resulting equations which need to be solved are
obtained within the exact factorization approach. Contrary to treating the evolution
of the nuclear coefficients on every included electronic state, we solve here a set of the
electronic Schrodinger equations for every nuclear point on the grid, obtaining in this
way the potential which thus drive the evolution of the total nuclear wavefunction.

The scheme presented has, however, some accompanying disadvantages. The weight
factors cx(R,t) and the phases ¢x(R,t) are continuous functions over the whole
nuclear domain R. While the nuclear wavefunctions xx(R,t) operated within the
Born-Oppenheimer approximation are vanishing on the borders of the nuclear interval,
the coefficients in the expansion (A.8) are, in general, not. This implies certain
difficulties in calculating the action of the derivative operators on the borders of the
chosen grid due to the fact that these operators are non-local. Another complexity lies
in the rather unusual operations which are need to be performed for the calculation of
the gradients and Laplacians of the electronic wavefunction, Eqgs. (A.9) and (A.10), as
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well as the coupling terms, Eqgs. (A.11) and (A.12). Indeed, in order to overcome the
non-locality limitations discussed above, one can use global basis representation of the
corresponding weights and phases. This leads, however, to the necessity to compute
different products between functions represented in some predefined basis set which
is not a trivial mathematical task. Despite the discussed limitations, the presented
approach provides a tool which allows for the very first time the direct numerical
solution of the exact factorization problem.

Let us now illustrate the described methodology on a concrete numerical example. We
will exemplify the direct solution of the exact factorization problem on the two-level
model described in subsection 5.2.2 of the present thesis. The parameters of the model
are chosen to be the same as was used before. Our goal here is to perform numerical
propagation of the nuclear wave packet driven by Egs. (A.3) and (A.4), and compare
the obtained results with the exact solution presented earlier. We use direct numerical
representation of the required functions on the grid. The gradients and the Laplacians
are calculated using the standard finite-difference method.

In Fig. A.1 we show snapshots of the nuclear density moving on the corresponding elec-
tronic states together with the weight factors ¢, (R,t). Within the exact factorization
formalism the nuclear density on a particular state can be obtained by a projection of
the total density on the corresponding electronic state in the following way

XECR, 1 = (e, R)[(r, R, 1)l = |ew(R, DX (R, )], (A.13)

where we have introduced superscript in order to distinguish the obtained densities
from those which are calculated by the numerical integration of the time-dependent
Schrodinger equation for dynamics on the predefined electronic potentials. If for
the exact factorization problem we choose the same electronic basis set {®y(r,R)}
as the one used for constructing the Born—-Oppenheimer nuclear potentials V(R),
the obtained nuclear densities |x${(R,t)|> and |xx(R.,t)|?, respectively, should be
equivalent. In the upper panel of Fig. A.1 the evolution of the nuclear densities
calculated by the exact factorization approach (solid lines) plotted together with the
reference densities obtained through the Born-Oppenheimer approach (dots) is shown.
We see that, as expected, |Y4(R,t)|? coincide with |xx(R,t)|?. We note that within
the exact factorization we obtain one nuclear wavefunction x(R.,t) and x${(R,t) are
just its appropriately extracted components (see Eq. (A.13)). In the lower panel of
Fig. A.1 the evolution of the weight factors cx(R,t) is shown. It is clearly seen that the
weights of the corresponding electronic states are changing in time according to the
redistribution of the electronic wavefunction between the involved electronic states.

As was pointed out in the beginning of this appendix, the form of the electronic
Schrodinger Eq. (A.3) implies that the properties of the corresponding Hamilton
operator will be accumulated to the solution at every iteration time step. At the same
time, the finite-difference method chosen for the calculation of the derivative operators
is not very precise on the borders of the nuclear grid. This, in turn, leads to numerical
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Figure A.1: Upper panel: Time-dependent nuclear densities moving on the corresponding
electronic states reconstructed from the total nuclear density via Eq. (A.13). The total
nuclear density was calculated by the direct numerical solution of the exact factorization
problem, Eqs. (A.3) and (A.4). Dots indicate nuclear densities computed by usual numerical
integration of the time-dependent Schrodinger equation for dynamics on the predefined
potentials. Lower panel: Evolution of the weights factors cx (R, t) which indicate distribution
of the electronic density between involved electronic states.

deviations appearing on the borders of the grid which grow with time. At some point
the accumulated numerical errors become large, preventing the subsequent propagation
of the electronic subsystem. It is worth noting that this problem does not appear when
one works within the time-dependent Born—Oppenheimer version [166] of the exact
factorization approach. In this case, the electronic wavefunction does not accumulate
the errors stemming from numerical treatment of the derivative operators since the
electronic Hamiltonian in this case is reduced to the usual Born-Oppenheimer form.
The calculation of the derivative couplings is very stable in that case, which allows
one to propagate the nuclear wave packet for an infinitely long time.

Although the presented approach utilizes the concept of the electronic states initially
appearing within the Born—-Oppenheimer approach, the resulting equations are based
on the exact factorization formalism. From a practical point of view, the introduced
representation of the electronic wavefunction allows one to solve the exact factorization
Egs. (A.3) and (A.4) numerically for problems beyond those where the explicit form of
the full molecular wavefunction ¥(r, R, %) can be obtained in advance. A direction for
future research in this field is to develop the formalism which will allow to represent
the weight factors (R, ¢) and the phases ¢ (R, t) on a predefined nuclear basis set,
allowing in this way to reduce the numerical errors and consequently to increase the
propagation time.
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