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Abstract

Lung cancer is the leading cause of cancer-related deaths world-wide. Due to late diagnosis and
early metastatic spread most patients cannot undergo surgery and systemic therapies have to be
applied. Most of those patients receive chemotherapy and patients with activating mutation in
the epidermal growth factor receptor (EGFR) can receive targeted therapies with tyrosine kinase
inhibitors (TKIs) against EGFR. In case of chemotherapy, many patients suffer from anemia and
have to be treated e.g. with erythropoiesis stimulating agents (ESAs). Yet, treatment with ESAs
is suspected to induce resistance against the chemotherapeutic drug. Many lung cancer patients
treated with EGFR-TKIs also rapidly develop therapy resistance against the treatment. This resis-
tance can be mediated by upregulation of a related receptor tyrosine kinase, the hepatocyte growth
factor (HGF) receptor MET. To understand the complex mechanisms leading to therapy resistance,
a systems biology approach was applied in this work.
To investigate the differential responses of ESAs on healthy or tumor cells, a mathematical model
was developed that identifies cell type-specific differences and that predicts possible targets for
combinational therapies to inhibit survival signaling in tumor cells, but not in healthy erythroid
progenitors. Evidence was obtained that the erythropoietin receptor of endothelial cells is phospho-
rylated upon ESAs stimulation leading to increased vascularization and accessibility of chemother-
apeutics in xenograft mouse models. To determine an optimal ESA dose for each anemic cancer
patient, a mathematical model of ESAs depletion and induced signal transducer and activator of
transcription (STAT)5 signal activation was developed. It was shown on the phosphorylation level
of STAT5 that ESAs with a low binding affinity such as the pegylated CERA induce tumor cells less
than healthy erythroid progenitors compared to ESAs with a high binding affinity such as Epoβ.
Therefore, ESAs with low binding affinity were proposed as safer option to treat chemotherapy-
related anemia.
To identify the mechanism causing MET-mediated resistance against EGFR-TKIs, time- and dose-
resolved activation of signal transduction components in two non-small-cell lung cancer cell lines
was measured upon stimulation with EGF, HGF or co-stimulation. A cell type-specific enhanced
activation of MET upon co-stimulation was observed. Using a mathematical model to describe
the cell-specific dynamics and using single-molecule live-cell microscopy, it could be identified that
formation of EGFR:MET heterodimers with a reduced internalization rate is the mechanism lead-
ing to enhanced activation of MET upon co-stimulation. Further, it was shown that the EGFR to
MET protein expression ratio determines the strength of the enhancement explaining the observed
cell type specificity. This effect was found to influence efficacy of EGFR-TKIs by the formation of
TKI-inhibited heterodimers. It was shown that by decreasing the expression of MET by the phar-
macologic antibody MM-131, the efficacy of EGFR-TKIs is increased suggesting an EGFR/MET
expression ratio-based patient stratification and novel combinatorial treatments to reduce therapy
resistance. In sum, this work provides several new insights into mechanisms of signal transduc-
tion of cancer cells affecting EGFR-TKI efficacy and ESA safety and suggests mechanism-based
treatment strategies to increase the therapy response.
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Zusammenfassung

Lungenkrebs verursacht weltweit die meisten krebsbedingten Todesfälle. Aufgrund der späten
Diagnose und frühen Metastasenbildung sind die meisten Patienten inoperabel und systemische
Therapien wie Chemotherapie müssen angewendet werden. Patienten mit aktivierender Mutation
in dem epidermalen Wachstumsfaktor-Rezeptor (EGFR) können zielgerichtete Therapien mit Ty-
rosinkinaseinhibitoren (TKIs) gegen EGFR erhalten. Viele Chemotherapie-Patienten leiden an
Anämie und müssen z.B. mit Erythropoese-stimulierenden Substanzen (ESAs) behandelt werden,
die möglicherweise jedoch Resistenz gegen die Chemotherapie induzieren. Auch viele Lungenkrebs-
Patienten, die mit EGFR-TKIs behandelt werden, entwickeln schnell Therapieresistenz, die durch
verstärkte Expression einer verwandten Rezeptor-Tyrosinkinase, des Hepatozytenwachstumsfaktor
(HGF)-Rezeptors MET, vermittelt werden kann. Um die komplexen Mechanismen der Therapiere-
sistenz zu verstehen, wurde in dieser Arbeit ein systembiologischer Ansatz angewendet.
Um die unterschiedlichen Antworten von ESAs auf gesunde oder Tumor-Zellen zu untersuchen,
wurde ein mathematisches Modell entwickelt, das Zelltyp-spezifische Unterschiede identifizieren
und mögliche Zielstrukturen vorhersagen kann, die Tumorzellen, aber nicht gesunde erythroide
Vorläuferzellen inhibieren. Es wurde nachgewiesen, dass der Erythropoietin-Rezeptor von En-
dothelzellen bei ESA-Stimulation phosphoryliert wird, was zu einer erhöhten Vaskularisierung
und Zugänglichkeit von Chemotherapeutika in Xenograft-Mausmodellen führt. Um eine opti-
mierte ESA-Dosis für unter Anämie leidende Krebspatienten zu bestimmen, wurde ein mathe-
matisches Modell des ESA-Abbaus und der induzierten Signalaktivierung von STAT5 entwickelt.
Es wurde gezeigt, dass ESAs mit einer niedrigen Bindungsaffinität Tumorzellen weniger induzieren
als gesunde erythroide Vorläuferzellen. Sie wurden daher als sicherere Behandlungsoption von
Chemotherapie-bedingter Anämie vorgeschlagen.
Um den Mechanismus der MET-vermittelten Resistenz gegen EGFR-TKIs zu identifizieren, wurde
die Aktivierung von Signaltransduktionskomponenten in zwei Lungenkrebszelllinien nach Stimu-
lation mit EGF, HGF oder Co-Stimulation zeit- und dosisaufgelöst gemessen. Eine Zelltyp-spe-
zifische verstärkte Aktivierung von MET unter Co-Stimulation wurde beobachtet. Unter Ver-
wendung eines mathematischen Modells zur Beschreibung der zellspezifischen Dynamik und unter
Verwendung von Einzelmolekül-Mikroskopie konnte die Bildung von EGFR:MET-Heterodimeren
mit einer reduzierten Internalisierungsrate als zugrunde liegender Mechanismus identifiziert wer-
den. Weiterhin wurde gezeigt, dass das EGFR zu MET Expressionsverhältnis den Umfang der
Verstärkung bestimmt und dass dieser Effekt die Wirksamkeit von EGFR-TKIs durch Inhibierung
der Heterodimere beeinflusst. Es wurde gezeigt, dass die Wirksamkeit von EGFR-TKIs durch
eine Verringerung der Expression von MET durch den pharmakologischen Antikörper MM-131
erhöht wird. Dieser Mechanismus legt eine Verwendung des EGFR/MET-Expressionsverhältnises
zur Patientenstratifizierung nahe und sagt neuartige Kombinations-Behandlungen zur Reduzierung
von Therapieresistenz vorher. Zusammengefasst liefert diese Arbeit verschiedene neue Einblicke in
Mechanismen der Signaltransduktion, welche die Wirksamkeit von EGFR-TKIs und ESAs beein-
flussen, und schlägt Strategien vor um das Ansprechen auf die Therapien zu erhöhen.
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1 Introduction

1.1 Lung cancer therapy

Lung cancer is the leading cause of cancer-related deaths due to high incidence and high mortal-
ity. [1,2] This is caused by the high intrinsic mutation rate of lung tissue leading to aggressive tumors
with early metastasis and a relatively late diagnosis at advanced stages. Therefore, about 70 % of
the patients is inoperable and can only be treated with radiation and/or systemic therapies. [3]

Unfortunately, the relapse rates of these systemic treatments are extremely high.
Lung cancer is classified in small-cell lung carcinoma (SCLC) with a prevalence of 15 % and non-
small-cell lung cancer (NSCLC) with a prevalence of 85 %. NSCLC can be subdivided in large
cell carcinoma (15 %), squamous carcinoma (30 %) and the most prevalent form adenocarcinoma
(40 %). [4] Until 2004, there was no discrimination between the single histological subgroups regard-
ing the suggested therapy of the patient. [5] The mutation in the epidermal growth factor receptor
(EGFR) was later identified to determine the therapy response to targeted inhibition of EGFR
in patients leading to a stepwise personalization of lung cancer therapy. By today, subdividing
patients according to their driver oncogenes becomes more and more practical in therapy of lung
cancer patients, e.g. >15 % of NSCLC patients harbor a mutation in RAS and 5 - 20 % harbor
a mutation in EGFR (Figure 1.1A). [6] While patients with early disease stages (I-II) can undergo
surgery and radiotherapy, the fraction of early stage diagnosed patients is only about 25 %, while
roughly 70 % of the patients have advanced stage disease (III-IV) at the time of diagnosis. [7]

Patients with advanced stage NSCLC are inoperable and the currently applied systemic standard
therapies are depicted in Figure 1.1B. Besides chemotherapy, there are drugs against the EGFR
approved by the FDA for patients with a mutation in the EGFR such as the EGFR-tyrosine kinase
inhibitors (TKIs) erlotinib, gefitinib and afatinib. [5] They show a pronounced prolongation of the
progression-free survival (PFS), e.g. for erlotinib from 5-7 months PFS for standard chemotherapy
to 10-13 months PFS in first-line setting. For patients with a translocation in anaplastic lymphoma
kinase (ALK) leading to an echinoderm microtubule-associated protein-like (EML)4-ALK fusion
protein, the ALK inhibitors crizotinib and ceritinib are applied. For this subset of patients, treat-
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1 Introduction

ment with ALK inhibitors leads to a PFS of 9-14 months compared to 5-7 months, but unfortunately
there is no improvement of overall survival. [5]

adenocarcinoma / large cell squamous

advanced NSCLC

ALKtranslocatedEGFRmut

afatinib

chemotherapy crizotiniberlotinib chemotherapy

docetaxel ceritinibchemotherapy docetaxel

ramucirumab ramucirumab

nivolumab

chemotherapy

1st line

2nd line

3rd line

RAS

EGFR

HER2

ALK
PI3K
BRAF
MET
MAPK
AKT

others

A B

Figure 1.1: Overview of the currently applied therapy of advanced stage NSCLC patients.
A: Schematic frequencies of driver mutations in NSCLC. [6,8] B: Treatment according to mutation status
for the individual steps of recurrence, adapted from Thomas et al. [5]

Besides the currently approved therapeutic options, there are several further drugs under investi-
gation, including the inhibition of immune escape by programmed cell death protein (PD)-1 and
PD-ligand (PD-L)1 inhibition. While immunotherapy is the first therapy substantially increasing
the long term survival of cancer patients, response rates are with about 20 % still very low. [5]

Beside this, recent studies showed that activated EGFR causes high expression of PD-L1 leading
to immune escape of EGFR mutated tumors. [9] Further, combinational therapies of chemotherapy
with heat shock protein (HSP)90, Janus kinase (JAK), BRAF, vascular endothelial growth factor
(VEGF) or MAPK/ERK kinase (MEK) inhibitors are investigated. [5] Interestingly, it was shown
that a mutation in the EGFR excludes mutations in KRAS, NRAS and MEK, while BRAF muta-
tions can occur. [10] These observations are not yet used for therapeutic approaches. Also epigenetic
drugs are investigated, such as histone deacetylase and DNA methyltransferase1 inhibitors, that
showed promising results to pretreat tumors prior to chemotherapy, while their mechanism of action
is controversially discussed. [11]

1.1.1 Therapeutic EGFR inhibitors

In 90 % of the patients with EGFR driver mutation, patients harbor a primary mutation in the
EGFR that is either a L858R point mutation or ΔE746-A750 deletion leading to increased ki-
nase activity. [12] For the L858R mutation this is accompanied by a reduced affinity for adenosine
triphosphate (ATP) (Table 1.1). [13] Both mutations are suggested to cause constitutive activation
by destabilization of the autoinhibited state of the receptor in which the receptor is present without

2



1.1 Lung cancer therapy

Table 1.1: Binding affinities of different EGFR mutants for ATP and gefitinib. Michaelis-
Menten constant Km for ATP and the dissociation constant KD of gefitinib is depicted for different
EGFR mutations. The ratio of KD/Km is a measure for the inhibitory potential of gefitinib. [13]

EGFR mutation Km(AT P ) KD(gefitinib) KD/Km, ·10−3

wild type (wt) 5.2 µM 35 nM 6.8
T790M 5.9 µM 4.6 nM 0.78
L858R 148 µM 2.4 nM 0.016
L858R/T790M 8.4 µM 10.9 nM 1.3

bound ligand. [13] Erlotinib and gefitinib are first generation EGFR inhibitors binding competitively
in the ATP binding pocket of the EGFR kinase domain. Gefitinib has an even higher affinity for
L858R mutated EGFR compared to wild type (wt) potentially leading to reduced side effects of the
drug. The EGFR-TKI erlotinib (tarceva) was first approved by the FDA in 2004 for second line
and in 2013 also for first line treatment for all NSCLC patients independent from mutation status.
This approval was amended in 2016 and since then erlotinib is indicated only for L858R mutation
in the EGFR and exon 19 or 21 deletions in EGFR. There are two other approved EGFR-TKIs
routinely applied in the clinics, gefitinib (iressa) and afatinib (gilotrif). They are also approved
by the FDA for patients with a mutation in the EGFR. Unfortunately, in almost all cases the
patients develop resistance against these EGFR-TKIs. In about 50 % of the cases, this is caused by
a secondary T790M mutation in the EGFR, often referred to as resistance mutation. [14] Yet, the
T790M mutation mainly affects the binding of ATP to the active site of the EGFR kinase. Because
the initial L858R mutation reduces the affinity of EGFR to ATP, shown by the Michaelis-Menten
constant Km of the EGFR variants for ATP in Table 1.1, gefitinib is highly active in cells with this
mutation, but not in cells harboring EGFR wild type. Upon acquisition of the secondary T790M
mutation, the ATP binding affinity is recovered to normal levels. The dissociation constant KD of
gefitinib binding to the EGFR shows the reduced affinity for wt EGFR. The ratio of KD/Km is
a measure for the inhibitory potential that decreases by two orders of magnitude after secondary
T790M mutation mainly due to recovery of the ATP binding affinity. [13] This leads to reduced
EGFR inhibition by the competitive EGFR-TKIs.
Afatinib is a second generation inhibitor harboring a Michael acceptor group leading to a covalent
binding to Cys797 of EGFR to circumvent this problem. Unfortunately, the efficiency of this drug
for T790M mutated EGFR was lower than expected. Therefore, a new set of inhibitors was designed
to directly target the T790M mutation and to circumvent the sterical repulsion of Met790 reaching
higher binding affinities. Members of the third generation, for example WZ4002, AZD9291 or
CO-1686, are currently under investigation. [15] AZD9291 (tagrisso/osimertinib) has been approved
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1 Introduction

by the FDA in 2015 for patients with metastatic NSCLC with T790M mutation after EGFR-TKI
treatment. There are currently more EGFR-TKIs under investigation, such as the first generation
EGFR-TKI icotinib that was reported to be superior to gefitinib in a phase III trial regarding PFS
and adverse effects. [16]

Yet, upon application of third generation inhibitors, a tertiary C797S mutation in EGFR was
reported that removes Cys797 that forms the covalent bond with the inhibitor leading to an escape
of therapy. [17] Therefore, the development of a fourth generation of inhibitors is ongoing that
allosterically inhibits EGFR. [17]

Apart from inhibitors targeting the tyrosine kinase, there are also monoclonal antibodies binding to
the extracellular domain of the EGFR in its inactive state preventing ligand binding and receptor
activation and leading to receptor degradation. [18] An in lung cancer approved therapeutic antibody
is cetuximab (erbitux). Cetuximab is applied in patients with advanced stage lung cancer and
histological expression of the EGFR in combination with chemotherapy, because studies showed an
increase in survival from 10.1 to 11.3 months in first line setup. [19,20] Necitumumab (portrazza) is
a further monoclonal antibody targeting EGFR that is approved by the FDA only for squamous
lung cell carcinoma in combination with chemotherapy. Also the combination of EGFR-TKIs with
monoclonal EGFR antibodies, for example afatinib with cetuximab, showed promising results,
maybe due to parallel targeting of total and phosphorylated EGFR. [21]

1.1.2 Chemotherapy in lung cancer

Chemotherapy was the first available systemic cancer therapy and is still together with irradiation
and resection the most commonly applied cancer treatment. The term was coined in the early
1900s by Paul Ehrlich and implies the use of small molecules or chemicals for disease therapy,
while nowadays anti-neoplastic drugs are usually called chemotherapeutics. The first chemother-
apeutic drug for cancer therapy, an analogue of mustard gas, was discovered by chance during
World War I to have an anti-proliferative effect on the fast growing blood cells. [22] Cisplatin or cis-
diamminedichloroplatinum(II+) was described in 1973 as cancer therapeutic (Figure 1.2). [23] Since
then, a large set of chemotherapeutics has been developed. While all chemotherapeutics in the
modern sense are cytotoxic agents and block cell proliferation in, the mechanisms of action are dif-
ferent or not completely understood. There are several classes of chemotherapeutics. Most common
are still platinum-based compounds such as cisplatin, carboplatin or oxaliplatin (Figure 1.2), but
also nucleobase or nucleotide analogues such as fluoruracil or gemcitabine are standardly applied.
Apart from them, there are also taxanes such as paclitaxel and docetaxel that disrupt disassem-
bly of microtubules, vinca alkaloids such as vinorelbine that prevent the assembly of microtubules
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or anthracycline antibiotics such as doxorubicin that prevent replication by intercalating in the
DNA/RNA.

NH3

NH3

II+

cisplatin oxaliplatincarboplatin

NH3

NH3

Cl

Cl

II+ II+

Figure 1.2: Structure of common Pt-based chemotherapeutics. The platin(II+)-complexes of
cisplatin, carboplatin and oxaliplatin are depicted.

The common underlying principle is that fast proliferating cells such as cancer cells are affected
stronger than slowly proliferating healthy cells. Therefore, common adverse effects are based on
inhibition of healthy fast dividing cells. For example, this involves the loss of hair, nausea and
gastrointestinal distress. Especially the blood cells belong to the fast dividing cells in the body
and therefore chemotherapy causes the loss of red blood cells leading to anemia and fatigue. This
is the reason, why chemotherapy-treated patients very often receive additional treatment with
erythropoiesis stimulating agents (ESAs) or blood transfusions to counteract the anemia.
Cisplatin is one of the most commonly used chemotherapeutics in lung cancer and is therefore used
as exemplary chemotherapeutics in this work. Cisplatin is chemically inert in a solution containing
100 mM chloride ions such as blood plasma or cell culture medium. Inside the cell, the chloride
levels are much lower at 5 mM and therefore the chloride ions dissociates from the Pt(II+)-complex
leading to an aquatic Pt(II+)-complex that is a strong electrophile. This reactive species bind to
a variety of nucleophiles, including nucleic acids and sulfur containing proteins. [24] It is suspected
that Pt(II+) forms a reservoir with thioethers, for example in metallothioneins, which are then
slowly released to the DNA-complex, [25] while binding to sulfhydryl residues such as in glutathione
(GSH) generate a more inert complex. [26] The main target of cisplatin is the DNA, where it forms
covalent 1,2- or 1,3-intrastrand crosslinks with the N7 of purine bases that were suspected to cause
DNA unwinding leading to recognition of DNA damage. [27] Interstrand crosslinks occur at lower
frequency of 1-2 %, but induce double strand breaks during replication which are suspected as
critical lesions in cell cycle arrest. [28]

These DNA lesions lead to mutations and genomic instability, but also to activation of cell cycle
checkpoints to delay cell cycle progression. This provides time for the cell to repair the DNA or to
undergo apoptosis, if the lesions are too severe. [24] There are several DNA repair mechanisms such as
the nucleotide excision repair (NER) system and the mismatch repair (MMR) system which regulate
the cell cycle checkpoints and activate different pro- or anti-apoptotic signals involved in cisplatin-
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induced cytotoxicity. Further, the tumor suppressor p53 plays an important role in cisplatin-
induced apoptosis which is a complex process and involves pro- as well as anti-apoptotic signals. [24]

This includes activation of the PI3K/AKT- and MAPK-pathways. p53 is a short-lived protein
that is regulated by the E3 ubiquitin ligase MDM2 and regulates the expression of several B-cell
lymphoma (BCL)2-family members, such as BCL-xL, BAD , BAX or BIM leading to cytochrome
c release from the mitochondria and formation of the apoptosome. [29] This causes cleavage of
the initiator caspase-9 and subsequent cleavage of the executor caspase-3 leading to degradation
of multiple cellular components and apoptosis. [24] Apart from that, there is also evidence that
crosslinking of mitochondrial DNA might cause cisplatin-induced apoptosis. [30]

1.1.3 Anemia in lung cancer

Anemia is characterized by the reduced capacity of the blood to transport oxygen. This is caused
by reduced levels of hemoglobin (Hb) that is mostly correlated with low levels of erythrocytes
or with the lack of iron that is required as cofactor of the hemoglobin protein for oxygen trans-
port. Anemia is frequently observed in lung cancer patients, reaching up to 90 % at the advanced
stages of the disease. [31] As erythrocytes exhibit a short half-life of three to four months, they are
constantly regenerated in healthy humans. Therefore, the cytotoxic effect of chemotherapeutics
on the fast proliferating erythroid progenitors has a strong impact on the number of mature ery-
throcytes. [32,33] Apart from that, tumor-associated inflammation decreases half-life of erythrocytes
and platinum-based chemotherapy is nephrotoxic affecting erythropoietin (Epo)-producing cells in
the renal cortex. [32,34] To treat cancer patients suffering from anemia, either blood transfusions
or erythropoiesis stimulating agents (ESAs) are applied. ESAs are mostly analogs of the endoge-
nous cytokine Epo that is mainly produced in the kidney upon reduced oxygen partial pressure
in the blood. It induces proliferation and differentiation on the burst forming unit - erythroid
(BFU-E) and colony forming unit - erythroid (CFU-E) stage of erythropoiesis in the bone marrow
(Figure 1.3). [35]

Therapeutically available ESAs comprise Epoα, Epoβ, CERA and NESP. Yet, treatment with
ESAs is controversially discussed and clinical trials applying ESAs were terminated due to adverse
effects. [36,37] Moreover, the EpoR was reported to be present on tumor cells implying the risk to
induce proliferation or anti-apoptotic signaling in cancer cells. [37,38] However, concerns regarding
the specificity of the antibody-based analyses have been raised, [39] and the expression of EpoR
on tumor cells is controversially discussed. [40] Nevertheless, it was reported that EpoR levels on
lung cancer cells are much lower compared to the expression on hCFU-E, [41,42] but their accurate
detection remains challenging what may lead to the contradictory results in the literature. On the
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hematopoietic
stem cell
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reticulocyte
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Epo Epo

Figure 1.3: Influence of Epo on erythropoiesis. Schematic representation of the process of ery-
thropoiesis. Hematopoietic stem cells in the bone marrow differentiate step-wise to erythrocytes by
the erythropoietin (Epo)-dependent burst forming unit - erythroid (BFU-E) and colony forming unit
- erythroid (CFU-E) stages. The stages that are influenced by Epo are indicated, as well as EpoR
expression. Reticulocytes eject their nucleus and leave the bone marrow and subsequently mature to
erythrocytes.

other hand, the availability of blood for transfusions is limited and the transfusions could cause
several adverse effects such as iron overload, thromboembolic events or increased risk of infection.
As both therapeutic approaches have their drawbacks, the underlying mechanisms need to be
understood to improve the timing and dosing of anemia treatment in cancer. The optimization of
the response and safety of ESA treatment in cancer is an important task regarding therapy of lung
cancer patients.

1.2 Erythropoietin receptor signal transduction

Cytokines play diverse roles in the human body in an autocrine, paracrine or endocrine manner.
They can be subdivided, depending on their function, in interferons, interleukins, tumor necrosis
factors, colony-forming factors and chemokines. This work focuses on Epo which belongs to the
colony-forming factors. It is a glycosylated protein of 166 amino acids that binds to its cognate
receptor EpoR, a type I cytokine receptor. As cytokine receptors lack an intrinsic kinase domain
they are dependent on the recruitment of kinases such as JAKs. There are four members of
the JAK family, JAK1, JAK2, JAK3 and TYK2. JAK2 is the main kinase involved in EpoR
signal transduction. Upon ligand binding, the receptor undergoes conformational changes leading
to the activation of JAK2. Subsequently, JAK2 phosphorylates itself and the EpoR at multiple
tyrosine residues. The eight phosphorylated tyrosine residues of the EpoR serve as docking sites
for multiple signaling proteins leading to the activation of the signal transducer and activator of
transcription (STAT)5, the mitogen activated protein kinase (MAPK) and the phosphatidylinositol-
4,5-bisphosphate 3-kinase (PI3K)/AKT signaling pathways. The phosphorylations at Tyr343 or
Tyr401 of the receptor lead to recruitment of STAT5 via its SRC homology (SH)2 domain. There
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Figure 1.4: Scheme of Epo signaling and induced JAK2-STAT5 signaling. ESAs such as Epo
bind to the receptor dimer and thereby activates JAK2 leading to phosphorylation of itself and the re-
ceptor. Subsequently, STAT5 is recruited, phosphorylated and shuttled to the nucleus. Phosphorylation
is indicated by (P).

are two isoforms of STAT5, STAT5A and STAT5B that have a sequence identity of 93 % and
were reported to show no preference for dimerization. [43] Subsequently, STAT5 is phosphorylated
at Tyr694 for STAT5A and at Tyr699 for STAT5B, dissociates and dimerizes via its SH2 domain.
The STAT5 dimer translocates to the nucleus and induces target gene transcription. The induced
genes include the negative regulators cytokine-inducible SH2-domain containing protein (CISH)

and suppressor of cytokine signaling (SOCS)3. A schematic overview of EpoR signaling is shown
in Figure 1.4. Interestingly, it was found that Epo can convey information on a broad range of
ligand concentration that is necessary for the body to respond to acute hypoxia. [44] It was shown
that the broad range of response to the ligand is mediated by a fast receptor turnover even in the
absence of the ligand and a large intracellular pool of receptors. [44] It was found that only 1− 5 %
of receptors are located on the cell surface in hematopoietic cells. [45,46]

1.3 Epidermal growth factor receptor signal transduction

As already described, receptor tyrosine kinases (RTKs) play a major role in tumor development and
progression by the induction of proliferative, anti-apoptotic and migratory signals in the cancer cells
and their inhibition is a promising approach in several tumor types. In lung cancer, two commonly
deregulated RTKs are the epidermal growth factor (EGF) and MET receptor. [47] Their properties
and functions will be described in the following sections.
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EGFR is a member of the human epidermal growth factor receptor (HER) family, consisting of
EGFR (HER1, ErbB1), HER2 (ErbB2, NEU), HER3 (ErbB3) and HER4 (ErbB4). Their structure
is depicted in Figure 1.5. [48,49] Without ligand, the receptors are in a closed form, where domain II
and IV are bound to each other. For HER2, there is no known ligand and HER2 always exists in
the open conformation enabling permanent dimerization with other activated HER members. [48]

Upon ligand binding to domain I and III of the other HER members, domain II and IV dissociate
and the conformation of the receptor opens for dimerization. After ligand-mediated dimerization,
the kinase domains of both monomers form an asymmetric dimer in which one kinase allosterically
activates the other (Figure 1.5). [50] The kinase domains consist of an ATP binding pocket, an
activation loop and a catalytic loop. The kinase of HER3 has been reported to be inactive based
on measurements of the isolated kinase domain in solution. [48] On the contrary, Shi et al. reported
that the HER3 kinase is active, if it is recruited to a lipid bilayer and that two HER3 receptors
in a homodimer are able to successfully transphosphorylate each other. [51] Although the activity
is about 1 000-fold reduced compared to the EGFR kinase, they suggest that it might be enough
to induce the activating phosphorylation of the kinase of its binding partner. These activating
phosphorylations usually increase the RTKs activity by 150- to 1 000-fold. [51]
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Figure 1.5: Overview of the HER receptor family. The domains of the four HER receptors are
indicated as well as important tyrosine (Y) phosphorylation sites and the recruited adaptors. Upon
ligand binding to domain I and III, domain II and IV dissociate and domain II induces dimer formation
with an other HER member indicated schematically on the left side. Structurally, the HER members
are similar, but HER2 has no known ligand and HER3 has impaired kinase function. The tyrosine
residues phosphorylated upon EGF-binding are indicated with their adaptor proteins. [48,49,52,53]
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It was reported that the HER members exist as monomers without ligand, [48] but there is also
evidence for preformed inactive dimers that are activated upon ligand binding. [54,55] In that study,
Tao et al. used a bimolecular fluorescence complementation assay to show that all HER members
have preformed, inactive homo- and heterodimers, except of HER3 homodimers and heterodimers
with cleavable HER4. Ligand binding and receptor phosphorylation then leads to the activation
of signaling cascades, gene transcription and cellular responses. In normal cells 40 000 - 100 000
EGFR molecules per cell are expressed. In most solid tumors EGFR is commonly overexpressed
reaching up to 2 · 106 molecules per cell. [56]

EGFR Ligands There are many ligands known for the HER family. EGFR is known to bind EGF,
transforming growth factor α (TGFα), betacellulin, amphiregulin, epiregulin, epigen and heparin-
binding EGF-like growth factor (HB-EGF), while HER3 is bound by neuregulin 1-2 and HER4
by neuregulin 1-4, HB-EGF, epiregulin and betacellulin. [57] They all share the EGF motif which
is 35-40 amino acids long, but EGF is one of the ligands inducing strongest EGFR homo- and
heterodimerization [58] and was therefore used for the analysis in this work. EGF is a 53 amino
acid long polypeptide derived from a large precursor and is in humans predominately produced in
the kidney, while in mice the submaxillary gland is the major source of EGF. While EGF plays
an important role in embryonic development, tissue regeneration and ion transport, there is no
obvious phenotype of knock-out mice. [59]

Activation of signaling cascades As depicted in Figure 1.5, several adaptor proteins are re-
cruited to the phosphorylated tyrosin residues of the receptors upon activation. The phosphory-
lated residues are bound by SH2 domains and phosphotyrosine-binding (PTB) domains and the
adaptors subsequently mediate the activation of signaling cascades. The adaptor protein SRC also
phosphorylates the EGFR at Tyr845 in the activation loop of the kinase domain that leads to in-
creased kinase activity. [60] The main induced signaling pathways of EGFR are the MAPK-pathway
and the PI3K/AKT-pathway.
For the MAPK-pathway (Figure 1.6), growth factor receptor-bound protein (GRB)2 binds the re-
ceptor at the phosphorylated sites indicated in Figure 1.5 via its SH2 domain. [48,49] GRB2 harbors
besides the SH2 domain an SH3 domain that recruits the guanine nucleotide exchange factor SOS
to the receptor. [61] SOS also binds directly to the receptor or to SH2 domain protein C (SHC)
that is bound to the receptor by its PTB domain. Once SOS is recruited to the membrane, it
exchanges the GDP of the RAS-GDP complex by GTP and thereby activates RAS. [62] The RAS-
GTP complex activates the serine/threonine kinases RAF (MAP3K) that induces phosphorylation
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1.3 Epidermal growth factor receptor signal transduction

of the dual-specificity tyrosine/threonine kinase MEK (MAP2K). [63] This kinase phosphorylates
the MAP kinase extracellular signal–regulated kinase (ERK) on two residues. ERK subsequently
shuttles to the nucleus and induces target gene transcription. Nuclear phosphorylated ERK ac-
tivats multiple MAP kinase-activated protein kinases by phosphorylation such as RSK, MNK or
MSK. ERK has more than 180 targets thereby promoting to diverse cellular responses such as
proliferation, cell growth, migration, metabolism, differentiation or survival. ERK also activates
the p90 ribosomal S6 kinase (RSK) leading to phosphorylation of the ribosomal protein S6 and
subsequently to upregulation of translation and cell growth. [64,65,66]
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Figure 1.6: Schematic representation of the MAPK- and PI3K/AKT-pathway. A schematic
RTK with bound ligand with the two signaling cascades is shown. Phosphorylation is indicated by (P).

The PI3K/AKT-pathway (Figure 1.6) is initiated by recruitment of the p85 regulatory subunit
of the heterodimeric class I PI3K to the phosphorylated receptor directly by its SH2 domains or
by the adaptor protein GRB2-associated binder (GAB)1. Thereby, the p110 catalytic subunit
is recruited to the cell membrane and induces catalysis of the formation of phosphatidylinositol
3,4,5-trisphosphate (PIP3) from phosphatidylinositol 4,5-bisphosphate (PIP2). This reaction can
be reversed by the phosphatase and tensin homolog (PTEN). PIP3 subsequently recruits protein
kinase B (PKB, or AKT) via the plextrin homology (PH) domain to the membrane where it is
phosphorylated at Thr308 and Ser473 by the 3-phosphoinositide-dependent kinase (PDK)1 and the
mammalian target of rapamycin complex (mTORC)2. Phosphorylated AKT induces inhibitory
phosphorylations of TSC1/2 that leads to the activation of mTORC1 and subsequent phosphoryla-
tion of the p70 ribosomal S6 kinase (S6K). S6K then phosphorylates the ribosomal protein S6. [67,68]

Interestingly, the EGFR has no direct binding sites for p85 and depends on adaptor proteins to
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activate the PI3K/AKT-pathway such as GAB1 or the activation of PI3K/AKT-pathway mediated
by RAS-GTP. On the other hand, HER3 has 6 SH2 binding sites for p85 (Figure 1.5) leading to
very strong activation of PI3K signaling. [48,66,69]

Next to the PI3K and MAPK-pathway, EGFR also activates Ca2+-signaling. It is induced by
the recruitment of phospholipase C γ (PLCγ) that hydrolyzes PIP2 and release inositol 1,4,5-
trisphosphate (IP3) and diacyl glycerol. IP3 is released to the cytoplasm and leads to an opening
of Ca2+-channels. [61] EGFR also activates the JAK1-3/STAT3/5-pathway. [70]

The EGFR signaling network comprises several negative feedbacks to reduce signaling on the re-
ceptor level. For example protein kinase C can be recruited to the receptor and phosphorylate
Thr654 of the EGFR and thereby negatively regulate receptor activity. Further, there are several
phosphatases know to interact with the EGFR, such as SRC homology region 2 domain-containing
phosphatase (SHP)1/2, protein tyrosine phosphatase (PTP)1 and density-enhanced phosphatase
(DEP)1. It is also known that pERK introduces an inactivating phosphorylation in SOS [61] and
activated ERK was described to negatively regulate EGFR. [71] Since the MAPK- and PI3K/AKT-
pathways are the canonical signal transduction pathways of EGFR as well as MET, these pathways
were investigated within this work.

EGFR internalization and degradation Receptor internalization and degradation is a common
mechanism of RTKs to attenuate signals. In the context of cancer it is also of interest, since EGFR
is overexpressed in many tumor types and cancer-associated mutations in EGFR were described to
lead to reduced degradation. [72] Further, it is well established that EGFR induces signaling from
the early endosome leading to downstream activation. [73,74] Apart from that, EGFR is also de-
scribed to shuttle to the nucleus acting as transcriptional regulator [65,75] and to the mitochondria,
where it phosphorylates cytochrome c oxidase (COX)2 and thereby regulates apoptosis. [76] The
mechanism of EGFR internalization can either be clathrin-independent or clathrin-dependent. For
the clathrin-dependent path, the E3 ubiquitin-protein ligase Casitas B-lineage Lymphoma (CBL)
is recruited to the SH3 domain of GRB2 or to Tyr1045 of EGFR (Figure 1.5). CBL then induces
EGFR ubiquitination leading to recruitment of clathrin and subsequent endocytosis of the clathrin-
coated pits. [61] It is assumed that for high EGF concentrations the clathrin-independent mechanism
predominates, as the clathrin-dependent path is saturated. [77] If EGFR is dephosphorylated and
deubiquitinated, EGFR can be fast recycled to the cell surface from the early endosome or otherwise
enters the late endosome. There it is recognized by the endosomal sorting complexes required for
transport and either fused with the lysosome and degraded or fused with the perinuclear endocytic
recycling compartments leading to slow receptor recycling. [73] The clathrin-dependent path has a
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preference for recycling leading to a prolonged signal for low doses of EGF. It has been shown
that also the ligand influences clathrin dependency as well as the degradation pathway. TGFα for
example is less pH stable in the endosome leading to decreased receptor activation and ubiquiti-
nation inducing increased receptor recycling, while EGF is more pH stable leading to increased
degradation. The basal receptor turnover of EGFR without ligand is dependent on the mutation
status and listed in Table 1.2. [78] Interestingly, it was shown that heterodimers of EGFR with other
HER members fail to recruit CBL [79] leading to an increased stability of the HER heterodimers
compared to the homodimers. [58,80] As described in subsection 1.1.1, the endocytosis can also be
mediated by EGFR inhibitors. While antibodies such as cetuximab induce receptor degradation
without leading to autophosphorylation, small molecule inhibitors such as gefitinib affect EGFR
degradation only in some cell lines. [77]

Table 1.2: Receptor half-life of EGFR. Basal receptor half-life of different EGFR mutants based
on Greig et al. [78]

EGFR mutation wild type L858R L858R+T790M ΔE746-A750
half-life 28 h 10 h 9.2 h 7.5 h

1.4 MET receptor signal transduction

MET receptor is expressed in epithelial cells of many organs and plays an important role in em-
bryogenesis, wound healing and cell motility. [81] MET receptor is synthesized as precursor and is
cleaved during shuttling to the cell membrane by FURIN in a α- and β-chain and is linked again
by disulfide bonds. The structure of MET is shown in Figure 1.7, the extracellular part consists
of an N-terminal SEMA domain building a seven-bladed propeller structure, a cysteine rich region
and a stalk-like structure consisting of four immunoglobulin-like domains. The intracellular MET
consists of a juxtamembrane region, the tyrosine kinase and a C-terminal tail. [82] Upon ligand
binding to the MET receptor, it dimerizes and the intrinsic kinase is activated by conformational
changes in the transmembrane region. Subsequently, Tyr1230, Tyr1234 and Tyr1235 in the kinase
domain get phosphorylated leading to an increased kinase activity. Autophosphorylation at Tyr1349

and Tyr1356 at the C-terminal tail is required for recruitment of adaptor proteins such as GRB2,
SHC, PLCγ, p85 and SRC. Unique to MET is the ability to directly recruit GAB1 without require-
ment of other adaptors (Figure 1.7). [81] These adaptors activate the PI3K and MAPK signaling
cascade as described for EGFR in section 1.3. Further, SRC that is recruited to MET activates
the focal adhesion kinase inducing cell migration via integrins and cadherins. [82] Downregulation of
phosphorylated MET occurs by PTPs such as DEP1, LAR or PTP1B. [81] MET receptor exhibits
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moderate expression levels in normal lung tissue, while its mRNA/protein is overexpressed in 1/3

of the adenocarcinomas. Interestingly, in squamous carcinoma the MET levels only rarely exceed
levels of normal lung tissue. [83]
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Figure 1.7: Schematic representation of the structure and dimerization of MET receptor
with bound HGF. Upon binding of HGF, MET receptor dimerizes and forms a homodimer indicated
on the right side of the figure. [82,84] The tyrosine (Y) residues phosphorylated upon HGF-binding are
indicated with their adaptor proteins.

MET Ligand In contrast to the EGFR, there is only one ligand known for the MET receptor and
that is HGF which is also known as scatter factor due to its strong induction of cell migration. It
is processed from a pro-form leading to two subunits, the 69 kDa α-chain and the 34 kDa β-chain
(Figure 1.7). While the α-chain has high affinity for MET, the receptor is only activated by binding
of the β-chain. The main source of HGF are stromal cells affecting multiple cell types throughout
the body. HGF has mainly mitogenic, motogenic, 3D-morphogenic and anti-apoptotic effects and
plays an important role during embryonic liver development and liver regeneration. [85]

MET Degradation MET receptor is also endocytosed and either degraded or recycled depen-
dent on ligand-induced phosphorylation like the EGFR. Endocytosis of MET is mainly clathrin-
mediated, while MET stays signaling competent in the early endosome. [82] Phosphorylation at
tyrosine 1003 in the juxtamembrane region leads to the recruitment of CBL and receptor ubiqui-
tination. Dependent on this, the internalized MET receptor is then sorted either for recycling or
degradation. [82] Apart from this, MET is also degraded via shedding by metalloproteases such as
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ADAM (a disintegrin and metalloproteinase) on the plasma membrane. [86] The half-life of MET
receptor on the surface without ligand was determined to be in the range of 5.6 h in breast cancer
cell lines. [87]

1.5 EGFR/MET crosstalk

The EGFR and MET signal transduction pathways are closely interlinked, since both receptors
were identified by cluster analysis of their signaling networks to belong to the same class of RTKs
and share downstream targets. [88] Several studies showed that dual inhibition of EGFR and MET
effectively inhibits tumor growth. [89,90,91] There are several studies available showing a synergis-
tic behavior of EGF and HGF e.g. on invasiveness in mammary cell lines [92] or on proliferation
and AKT and MET phosphorylation. [91] This was assumed to be mediated by EGFR:MET het-
erodimerization that is found in some studies using co-immunoprecipitation. [93] Yet, EGFR:MET
heterodimers were detectable only in some cell lines, e.g. it was reported that EGFR:MET het-
erodimers form in tumor cells, but not in hepatocytes. [94]

Apart from that, also directed interactions either from EGF to MET or from HGF to EGFR have
been described. Yet, the described interactions are either highly context-specific or multi-factorial
regulating phosphorylated and total levels on time-frames between minutes and days.
Regarding the activation from HGF to EGFR, it was found that cells secrete HB-EGF 6 to
24 hours post HGF stimulation. [47] It was also reported that MET-mediated resistance to EGFR-
TKIs is conferred by transactivation from MET to HER3 signaling, [95] while in breast cancer, it was
shown that EGFR phosphorylation at Tyr845, Tyr992 and Tyr1068 is maintained by MET activation
via SRC even in the presence of EGFR-TKIs 30 min post inhibition. [96]

Regarding the activation from EGF to MET, it has been described that EGF leads to upregula-
tion of MET via sprouty2 [97] or via hypoxia-inducible factor 1α (HIF1α) independent of hypoxia. [98]

It was also described that EGF activates MET after 1 to 2 days via SRC-induced increased MET
protein abundance. [99] In colon cancer cells, transactivation from EGFR to MET within 5 min has
been reported to be mediated by prostaglandin E2 in a EGFR kinase-dependent manner. [100] On
the other hand, in pancreatic cancer cells it was shown that the EGF-induced transactivation of
EGFR to MET after 3 min is mediated by reactive oxygen species (ROS) and the transactivation
required NADPH oxidase activity. [101] Breindel et al. [102] showed in a 32D cell model system that
EGFR activation is sufficient to induce MET phosphorylation that could occur directly, through
EGF-induced activation of MET autophosphorylation or other associated kinases. The crosstalk
was suspected to occur by the regulation of protein expression levels and MAPK-mediated activa-
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tion of MET. Apart from this, the authors found that expression of the EGFR leads to increased
MET stability increasing the basal half-life without stimulus from 3.5 h to 5.5 h. [102] In transformed
epithelial cells that secrete TGFα, MET was found to be constitutively phosphorylated by autocrine
activation of the EGFR. [94] Apart from these directed activating interactions there are also nega-
tive feedbacks described, such as the secretion of metalloproteases upon EGF stimulation leading
to MET depletion. [47]

Further, other interaction partners have been suspected to mediate EGFR/MET crosstalk, such
as HER2/3 or RON that transactivates MET in the absence of HGF [81] or the adaptor protein
GAB1. It was found by Stommel et al. [90] that activated MET and EGFR compete for the bind-
ing to GAB1. They showed that overexpression of constitutively active EGFR leads to increased
recruitment of GAB1 to the EGFR and a reduction of GAB1:MET complexes, while activation of
downstream targets is unaffected. They found that dual inhibition of MET and EGFR is required
to block downstream signaling in glioblastoma. Finally, a study by Tanizaki et al. suggested a
direct crosstalk by the formation of EGFR:MET heterodimers leading to transactivation of the
other receptor. [93]

1.6 Systems biology

Cellular processes are in general highly complex and entangled, thus focusing research on one
molecule might not be sufficient to mechanistically understand cellular interactions. Therefore,
systems biology combines molecular biological assays with mathematical analyses to understand
the cell on its network-level. This understanding of the underlying properties and functionalities
that are emerging from the interplay of multiple components is crucial, since the whole is greater
than the sum of its parts. The analysis of these complex and nonlinear systems is achieved by
the development of mathematical models. Models are abstract representations of a system that
explain certain features and allow to predict the behavior of a system. [103] Although all models are
simplifications of the reality, they can be useful to address specific questions and correct within
their domain of definition. Models can help to clarify concepts, postulate and test hypotheses by a
precise mathematical definition. Further, they can help to visualize certain aspects and to perform
experiments in silico that may be time-consuming or not feasible.
There are two strategies for model development, one can either start from prior knowledge of molec-
ular interactions of a subsystem in a bottom-up approach or start with a holistic description of the
system in a top-down approach. The top-down approach is usually applied for high-throughput

16



1.6 Systems biology

data to identify interactions of a network and is a data-driven approach that requires little prior
knowledge. The bottom-up approach focuses on detailed mechanisms and allows for quantitative
predictions within a defined system.
Apart from this classification, there are multiple types of mathematical models used in systems
biology. Which model is suited best, depends on the addressed question and the intended computa-
tional effort. Models comprise different quantities classified as constants, variables and parameters.
While constants are fixed values such as the Avogadro’s number NA, parameters are determined
experimentally or theoretically such as a reaction rate constant k and therefore change considering
new experiments or model structures. Variables have free values such as the concentration of a
reactant and have a time-dependent behavior c(t). [103]

Statistical models Statistical models are utilized to identify relations between measured data
and help to extract underlying structures of the biological system. [103] Statistical models comprise
regression analyses e.g. for identification of a linear relationship, data mining analyses such as
cluster analysis to identify groups of data sharing a similar behavior and multivariate analysis such
as principle component analysis to separate objects into classes with maximal distance.

Agent-based models In agent-based models each component has a defined location and state. For
each component specific rules are set which allow to change the state of the component according to
their surrounding components. This approach can be computationally less demanding compared to
other modeling approaches. By defining only the rules for single agents there still may be emerging
properties on the systems level that were not defined ab initio. [103]

Network models Network models consist of nodes and edges, which in the context of systems
biology usually describe proteins or genes as nodes and their interactions as edges. The size of
these networks can range from small subnetworks to a holistic description of the cell using omics-
data. Depending on the underlying biological question there are several types of network models
utilized. [104]

Boolean models are typically large networks with binary interactions to identify the connectivity of
components such as gene regulatory networks. Nodes represent genes or proteins and edges their
possible interaction which are either on or off. [105]

Bayesian models are usually a special type of probabilistic graphs that describe the nodes as
continuous or discrete random variables and the edges as their conditional dependencies. Each
node has a probability function depending on the parental nodes and thereby cyclic structures
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are not possible. They can provide the probability of a certain output that was not measured
experimentally as well as the probability for a specific interaction. [106,107]

Stoichiometric models are often used for metabolic networks and are based only on the information
of stoichiometry and reversibility of cellular reactions. Stoichiometric networks can be described by
an n×m matrix, in which n denotes the number of species and m the number of reactions. This
analysis is particular suited for metabolic networks, since therein the flux from input to output
needs to obey the conservation of mass and stoichiometries are usually well known. Therein, one
is interested in comparing the fluxes through the network in steady-state which can be identified
utilizing flux balance analysis. [108]

Stochastic models are typically applied, if particle numbers are small and non-deterministic effects
can not be neglected. While according to the law of large numbers probabilities of single states
cancel out, they may not be neglected in all cases especially for cases with low copy numbers. [109]

biological knowledge
contradictory issues

predictions

mathematical
modeling

experimental
validation

generation of
quantitative

data

design of new
experiments

Figure 1.8: Scheme of the iterative cycle of model development using a systems biology
approach. Adapted from Kitano et al. [110]

Mechanistic models are usually smaller networks focusing on the biochemical interactions and
mechanisms and are typically based on differential equations, as these resemble biochemical reac-
tion kinetics. Assuming the cell as a well-stirred reactor, ordinary differential equations (ODEs)
are applied, while for investigations of spatial dynamics partial differential equations are used. [108]

Pharmacokinetic and pharmacodynamic models are especially important for clinical questions.
While pharmacodynamics describes the effect of a drug on the body, pharmacokinetics describes
how the body affects the drug e.g. by metabolization or excretion. [111]

Especially for the development of mechanistic model, the availability of quantitative and repro-
ducible data in a time- and dose-resolved manner is essential. This data can be used in an iterative
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cycle of model refinement (Figure 1.8). [104] To develop a hypothesis of a mechanistic model, prior
biochemical knowledge is combined with quantitative data. This hypothesis is then translated in
a mathematical frame of coupled ODEs with a given set of parameters θ and the model is cal-
ibrated using the quantitative time- and dose-resolved data. In this process the ODE system is
solved analytically or numerically for a set of initial start-parameters θ0 to obtain the correspond-
ing model trajectory g(x(ti), θ0). The trajectory is defined by the parameters θ and the model
components x(ti) at a given time ti. The distance between the data y(ti) and the model trajectory
g(x(ti), θ) is a measure for the goodness of the parameter estimation and is determined by an objec-
tive function, e.g. the χ2-function resulting from a log-transformation of the maximum likelihood
L estimate assuming Gaussian distributed measurement noise (Equation 1.1). Therein, σ is the
standard deviation and i is the summation index over all data points.

−2 log(L) = χ2(θ) =
∑
i

(
y(ti)− g(x(ti), θ)

σi

)2
+ const. (1.1)

In an iterative process, the objective function is minimized by changing the model parameters θ
comprising rate constants, initial concentrations and offset parameters. All n parameters span an n-
dimensional hypersurface and different algorithms are available to determine minima of this surface.
It was shown that especially gradient-based optimization algorithms are superior in determining
the minima of the objective function in mechanistic models. [112] Yet, to be sure that the minimum
is the global and not a local minimum, usually a multi-start approach for θ0 is used, using e.g.
Monte-Carlo methods or Latin hypercube sampling, as a screening of the complete parameter
space is computationally demanding even for a small n. [112] If the same minimum is found for
multiple distinct initial parameters, the probability is high that this is the global minimum. This
is particularly important, as different minima might have a completely different biological meaning
and mechanisms of action.
After determination of the global minimum, the accuracy of a resulting parameter can be calculated
by varying this parameter while reoptimizing all other parameters. This approach is called profile
likelihood estimation and is able to reliable calculate the confidence intervals of an estimated
parameter within the typically non-linear setting of biological models. If the parameter has no
boundaries of 95 % confidence, it is called non-identifiable. There are practical and structural non-
identifiabilities. [113] While structural non-identifiability is mainly caused by the model structure,
practical non-identifiability is caused by the quality and amount of data. The use of identifiable
parameters for predictions is required to obtain conclusive results. Further, an adequate number of
free model parameters θ should be used compared to the number of data points to avoid overfitting.
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A further important aspect is the steady-state of the model. Thereby, it is assumed that the model is
at t = 0 in a dynamic equilibrium before a perturbation occurs. [114] This constraint helps to reduce
the amount of free model parameters θ and thereby improves the performance of the parameter
optimization process which is especially important in large biological systems. Within this work, an
algorithm developed by Rosenblatt et al. [114] was applied that analytically solves the steady-state
constraint leading to non-negative and simple expressions for the steady-state equations.
To determine the effect of a specific parameter pi on the model output K, a sensitivity analysis
can be performed according to Equation 1.2, wherein SKpi

is the sensitivity of the parameter pi on
the model readout K.

SKpi
= pi
K
· ∂K
∂pi

(1.2)

If the model can capture the dynamic behavior of the data, it can be used to design and predict new
experiments. By iterative steps of validation or refining of the model it converges to a meaningful
tool to gain insights into biological processes and to analyze the properties on the systems-level.
Within this work, ODE-based mathematical modelling was utilized to describe signal transduc-
tion in lung cancer, as this approach is suitable to mechanistically describe biochemical reactions.
Thereby, some assumptions were made to reduce computational effort such as neglecting the spatial
distribution of the cellular components and assuming the cell as a well-stirred reactor with a large
number of molecules per species. Enzymatic reactions were approximated by mass action kinetics
that can be derived from the Michaelis-Menten enzyme kinetics (Equation 1.3), if the reaction of the
enzyme/substrate complex [ES] to the product is fast compared to formation of [ES] or likewise if
the substrate concentration [S] is much smaller than the Michaelis-Menten constant Km = kr+kcat

kf

or if [ES] is small. For signal transduction networks these are usually reasonable assumptions.

[S] + [E]
kf

�
kr

[ES] kcat−→ [E] + [P ] (1.3)

d[P ]
dt

= kcat ·
[E] · [S]
Km + [S] ≈ kf · [E] · [S]

1.6.1 Mathematical models of the EpoR-pathway

Several mathematical pathway models of EpoR signal transduction have been described mainly
focusing on the JAK2/STAT5 cascade. For example the nuclear shuttling of STAT5 has been
identified by Swameye et al. [115] as a crucial mechanism regulating cellular response to Epo. It
was shown by an ODE-based dynamic pathway model by Bachmann et al. (Figure 1.9A) that the
integral of phosphorylated STAT5 in the nucleus over time can be directly linked to cell survival. [116]
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This model comprises Epo-induced activation of JAK2 and EpoR as well as STAT5 shuttling, the
induced negative regulators CIS and SOCS3 and the phosphatase SHP1. A mathematical model
of receptor trafficking by Becker et al. (Figure 1.9B) revealed that fast receptor turnover is a key
feature of Epo signal transduction granting a linear response over a broad dynamic range of Epo
stimulation. The model focused on the receptor-ligand interaction and receptor trafficking testing
several mechanisms of information processing. Both models depicted in Figure 1.9 were used as
starting point for the investigations within this work.
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Figure 1.9: Schemes of previously established mathematical models of EpoR signal trans-
duction. A: Pathway model of Epo-induced JAK/STAT signal transduction by Bachmann et al.
focusing on activation of STAT5 and survival readout. [116] B: Receptor model for EpoR trafficking by
Becker et al. describing receptor-ligand interactions, receptor degradation, turnover and recycling. [44]

1.6.2 Mathematical models of the EGFR and MET pathways

Due to its role in growth, survival, proliferation and differentiation, the EGFR signaling cascade
is one of the best-studied signaling pathways. [117,118] The previously established models have been
integrated by Oda et al. leading to a complete model of HER family signal transduction with more
than 300 species and 200 reactions. [118] Species of this mathematical model include 10 ligands, 10 re-
ceptors, 61 enzymes, 10 transcription factors and 22 adaptor proteins. This complete model showed
a bow-tie structure of the EGFR signaling pathway, in which a large variety of ligand:receptor com-
plexes converges to a conserved core of only few signal transducers such as GTPases and PIPs that
activate a large number of signaling cascades including transcriptional regulators. As this model is
too complex to investigate a specific question, a reduced model structure was applied in this work.
Also the interaction of EGFR with their inhibitors has been addressed by mathematical modeling.
Kleinman et al. [119] found that a fast turnover of receptor phosphorylation has implications on the
mechanism of action of EGFR-TKIs.
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While EGFR signal transduction has been the aim of intensive research including mathematical
modeling, MET signaling has been less studied. Yet, a study of D’Alessandro et al. identified the
network structure and feedback regulation of MET receptor signaling in primary mouse hepato-
cytes. [120] They found several negative feedbacks within the MET signaling cascade including for
example a feedback from AKT to RAF and from RSK to SOS. They also found positive feedbacks
such as a feedback from ERK to PI3K and RAF and from RAS to PI3K. Some of these identified
feedbacks will be used for this work. So far, there are no dynamic pathway models of the EGFR
and MET crosstalk described. While there has been a Boolean model of EGFR and MET sig-
nal transduction reported by Singh et al., [121] this model was developed mainly to investigate the
influence on cell migration and proliferation in keratinocytes. To gain detailed knowledge on the
EGFR/MET crosstalk, not only the connectivity of the signaling cascade, but also information on
the kinetic rates is important.

1.7 Therapy resistance

The term therapy resistance is used for two types of resistance. [122] Primary or intrinsic resistance
usually means that the patient does not show a response within the first 2-4 months of treatment.
This can be caused e.g. by somatic alterations reducing drug efficiency. On the other hand, in
case of secondary or acquired resistance patients show a response or stable disease for at least 6-8
months of treatment and subsequently develop disease progression still on the drug. While this
work focuses mainly on acquired resistance, insights in this area might also be applied to primary
resistance to improve response rates by pre-therapy stratification of the patients.

1.7.1 EGFR-TKI resistance

Development of resistance against EGFR inhibitors is a major obstacle in lung cancer therapy as
almost all patients develop resistance against EGFR-TKI treatment. [5] Although this is an inten-
sively investigated field with numerous described mediators of resistance, a complete understanding
of the cellular processes causing resistance is yet missing. A schematic overview of identified me-
diators of resistance is shown in Figure 1.10. Most common is the development of the resistance
mutation T790M in 55 % of the cases. HER2 and MET amplification are also likely mediators of
therapy resistance.
First, it is of interest whether the formation of resistance is an evolutionary process of clonal selec-
tion or whether alterations occur de novo. This question was recently addressed by high-complexity
barcoding. [123] The authors of this study found that therapy mostly selects pre-existing subclones.
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This is in line with results suggesting that 2/3 of the mutations differ within one microdissected
tumor. [124] Hata et al. found on the other hand, that there is an early and late occurence of ac-
quired resistance that is caused by clonal selection and by de novo mutation of EGFR, respectively,
suggesting that both possibilities occur during disease progression. [125]

The second question is, at which step resistance occurs. This could be pre-target, on-target or
post-target. There is not much evidence for pre-target resistance that e.g. would prevent EGFR-
TKIs from entering the cell. On the contrary, it is described that erlotinib can reverse ATP-binding
cassette (ABC)B1-mediated multidrug resistance. [126] On-target resistance that alters binding of
the drug to the receptor by secondary mutations in EGFR constitutes a major fraction and was
discussed in subsection 1.1.1. As described above, this is maybe the best understood and ad-
dressable mediator of resistance, as there are already four generations of EGFR-TKIs. Post-target
resistance on the other hand, is more diverse and less understood. While there are many reports,
discussing causes of alterations in the efficacy of the inhibitor, there is not much known about
their interplay. For example, the transformation of NSCLC to small-cell lung carcinoma (SCLC) or
epithelial–mesenchymal transition are described processes leading to EGFR-TKI resistance. [5] The
next paragraphs will give a short overview about the described mediators of post-target resistance.

MET (5%)

HER2 (12%)

PIK3CA (5%)

MAPK (3%)
BRAF (1%)

T790M (55%)

others

Figure 1.10: Schematic overview of mediators of EGFR-TKI resistance. Most common medi-
ators of therapy resistance are the T790M mutation in EGFR and amplification of HER2 and MET. [127]

Mutations Development of secondary mutations decreasing efficacy of EGFR-TKIs are very com-
mon especially in lung cancer, as it is besides melanoma the cancer with the highest mutation
rate. [128] This might be even enhanced by some tumors by genomic instability caused by global
hypomethylation that increases adaptability of the tumor to various therapies. [124]

Frequently, mutations occur in PI3K (5 %) and BRAF (1-2 %) leading to resistance, [127] while mu-
tations in KRAS, NRAS and MEK seem to occur exclusivly with EGFR activating mutations. [5,10]

This effect seems to be lung-specific and is not found for example in colon cancer. [129] Further,
there are several rare primary mutations in the EGFR, mainly exon 20 insertions, (5 %) that
initiate tumor growth, but are not susceptible to EGFR-TKI treatment. [127]
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Apoptosis Apoptotic signaling of many cancer cells is deregulated to escape therapy-induced cell
death. In lung cancer this can be realized through inhibition of pro-apoptotic activators via BH3,
through loss of the BCL2 effectors BAX and BAK or through the increase of the anti-apoptotic
protein BCL2. [130] p53 signaling plays a major role in regulation of apoptosis and was described
above in subsection 1.1.2. Beside this, there is an increasing focus on the controversial role of
autophagy in therapy resistance. While autophagy has a cell protective function and autophagy
inhibitors are reported to act synergistic with EGFR-TKI treatment, autophagy is also the first
step to apoptosis and initiators of autophagy are reported to restore EGFR-TKI sensitivity. [131]

Alterations in protein abundance Many studies have been performed analyzing changes in protein
or mRNA abundance in resistant tumor cells. Yet, the underlying mechanism of these regulations
remains often unclear. One already mentioned alteration is the amplification of the MET receptor.
The frequency of MET amplification in NSCLC causing therapy resistance ranges from 5 % to
20 %. [124] There are studies showing that this amplification might already preexist in the treatment-
naive tumor. Schildhaus et al. found high levels of MET amplification in 3 % of the cases and
intermediate amplification in 6 % of drug-naive patients independent from histological subgroup
and EGFR/RAS mutation status. [132] Turke et al. also found preexisting MET amplification in
rare tumor cells in 5 out of 27 patients. After EGFR-TKI treatment, 4 of those patients developed
therapy resistance mediated by MET amplification. [133] These results suggest that a screening
for rare MET amplification before EGFR-TKI treatment might be beneficial to stratify patients
that are likely to develop therapy resistance. In line with this, MET and pMET are reported to
be downregulated upon EGFR-TKI treatment in EGFR-TKI sensitive cells. [134] This important
role of MET might be caused by the fact that both EGFR and MET belong to the same class
of RTKs [88] and, as both genes are located on chromosome 7, that polysomy of chromosome 7 is
common in lung cancer. Interestingly, immunohistochemic staining showed that MET levels are
higher at the tumor edge stressing the role of MET in metastasis. [83] Therefore, therapeutic MET
inhibitors have been investigated in lung cancer either alone or in combination with EGFR-TKIs.
While a phase II trial showed promising results, [135] the phase III trial of ARQ197, a MET kinase
inhibitor, was discontinued because of futility (NCT01244191). A phase III trial (METLung) of
efficacy of onartuzumab (MetMAb), an inhibitory MET antibody, in combination with erlotinib
versus erlotinib alone showed no benefit of the combinatorial treatment in MET-amplified patients
in the second or third line of treatment. [136] A better stratification might be required to target
MET effectively in a specific subset of patients.
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The upregulation of other HER members has also been reported. While HER3 seems to be re-
duced upon EGFR-TKI treatment in resistant cells, [137] it is controversial whether EGFR, HER2
and HER3 are upregulated in resistant cells or only show increased phosphorylation. [138,139] Yal-
lowitz et al. reported an upregulation of phosphorylated and total EGFR and HER2 caused by
p53 mutations. [140] Further, it was shown that dual inhibition of EGFR and HER3 is effective in
resistant cell lines, but not the inhibition of HER3 alone [138] and that the loss of HER3 leads to re-
duced growth of EGFR mutated lung tumors in a mouse model system. [141] A recent study of Pupo
et al. showed for a MET-TKI that the drug also inhibited MET endocytosis, leading to increased
number of MET molecules per cell and an overshoot of MET phosphorylation after withdrawal of
the drug. [142] This might be caused by density-induced phosphorylation of MET that was previ-
ously described by Wickramasinghe et al. [143] and might be an explanation for the controversial
results and stress the importance of dynamic measurements. Insulin-like growth factor 1 receptor
expression levels and activation was also described to induce EGFR-TKI resistance. [144] Apart from
MET, HGF is reported to lead to gefitinib resistance in lung adenocarcinoma. [145]

Apart from the receptors, pretreatment levels of BIM (BCL2L11) seem to be predictive for EGFR-
TKI response. [146] A frequently occurring polymorphism in the BIM gene leads to altered splicing of
BIM and therefore to an increased BIM expression. The RTK AXL is also reported to be activated
by upregulation in 20 % of EGFR-TKI resistant tumors. [127] Apart from that, there are several more
proteins that seem to play a role in therapy resistance and are reported to be upregulated in resistant
tumor cells, e.g. MAPK, [127] ROR1, [147] EBP1, [148] ABCC2, [127] MUC4 [149] or CRIPTO1. [5] Other
proteins are described to be downregulated such as PTEN or NF1. [127]

Heterodimerization of receptors As most of the current therapies target the receptors, the re-
ceptor interactions highly influence therapeutic outcome. Therefore, it is not surprising that het-
erodimerization events have been reported to influence EGFR-TKI sensitivity. Regarding het-
erodimers of the HER family members, it was reported that HER2 is the preferred binding partner
of all HER family members [69] as it is always able to dimerize with its missing ligand binding func-
tion. There are reports that HER3 is only tumorigenic in combination with HER2. [150] While it
is reported that HER heterodimers fail to recruit CBL leading to reduced EGFR degradation and
increased receptor abundance, [77] it is also reported that in EGFR-TKI resistant cells upregulation
of EGFR leads to increased heterodimerization with HER2 and HER3 and to their transactiva-
tion. [139] According to this study patients would benefit from EGFR and HER2/3 dual inhibition.
A study of Kiuchi et al. reported that EGFR:HER3 heterodimers are increased after EGFR-TKI
therapy. [151] The authors also showed that the HER4 CYT2 splice variant forms heterodimers with
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EGFR that compete for CBL and thereby protect EGFR from EGF induced degradation. This
leads to enhanced migration by EGFR:HER4 heterodimerization and to prolonged signal activa-
tion. Thereby, EGFR:HER4 heterodimerization might play a role in therapy resistance in breast
cancer. [151] An other study showed that currently used drugs such as erlotinib, gefitinib or lapatinib
reduce EGFR homodimers, but not heterodimers with other HER members. [152]

Beside this, the heterodimerization of HER family members with MET is of interest. It was shown
that MET-amplified lung cancer signals through HER3 mediating resistance to EGFR-TKIs [95] and
that downregulation of HER3 is required for EGFR-TKI sensitivity. [153] In contrast, HER3 was
also reported to be reduced upon EGFR-TKI treatment in resistant cells. [137] Apart from this, it
has been described that EGFR:MET heterodimers are formed and that MET amplification leads to
HER1-3 phosphorylation that is not inhibited by gefitinib. [93] Further, there are promising results
of a bispecific EGFR/MET antibody which is effective against resistant cells with low toxicity that
showed anti-tumor activity in xenografts in combination with a third generation EGFR-TKI. [154]

Novel four-in-one antibodies against EGFR, HER2/3 and VEGF are more effective in resistant
cells as they are suspected to disrupt HER/MET crosstalk. [155]

RON with its ligand HGF-like protein (HGFL) or MSP is a RTK functionally and structurally re-
lated to the MET receptor that is co-expressed with MET in many cancers and forms heterodimers
with MET. [156] Investigations showed that RON expression is required for oncologic addiction to
MET. There is also evidence for transphosphorylation of RON after EGF stimulation and a RON-
dependent MET and EGFR phosphorylation after HGFL stimulation. [156] As knockout of RON
lead to activation of MET signaling, it might be necessary to co-target MET and RON in patients.

Tumor environment The tumor microenvironment comprises immune cells, fibroblasts and en-
dothelial cells, but also the extracellular matrix. The tumor environment is getting more and
more in focus of investigations, as the tumor cells closely interact with surrounding non-tumor cells
and they also modulate each other. [157] For example, it was shown that cancer-associated fibrob-
lasts secret HGF that induces proliferation and migration in the tumor cells. [158] Further, it was
shown that local differences in drug concentration within the tumor bulk can facilitate formation
of resistance. [159]

Chemotherapy-induced EGFR-TKI resistance Whether chemotherapeutic drugs reduce the effi-
cacy of EGFR-TKIs or not, is controversially discussed. It has been reported that tumors are less
sensitive to EGFR-TKIs after chemotherapy compared to first-line EGFR-TKI treatment. [124,160]

This is speculated to be caused by the loss of PTEN during chemotherapy and subsequent activa-
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tion of AKT. Therefore, erlotinib is now also approved for first-line treatment. Yet, a combined
treatment of erlotinib with chemotherapy compared to chemotherapy alone did not improve ther-
apy outcome in two clinical trials (TRIBUTE, TALENT). [161] Gefitinib showed the same result in
the INTACT 1 and 2 trials. [162] Contrarily, van Schaeybroeck et al. reported a synergistic effect of
EGFR-TKI and cisplatin in a subset of cell lines that show increased EGFR phosphorylation after
stimulation with cisplatin and suggested that a better stratification might be needed to identify
patients that benefit from combined first-line treatment. [163] Apart from that, it has also been
reported that chemo- and radiotherapy-induced ROS lead to EGFR phosphorylation by inactiva-
tion of redox-sensitive, cysteine-based PTPs indicating that patients might benefit from subsequent
EGFR-TKI treatment. [77] It was also reported that stress such as UV irradiation or chemothera-
peutic agents induce EGFR degradation in a p38-dependent manner. Inhibition of this degradation
path led to a reduced efficacy of chemotherapeutic drugs, while inhibition of EGFR by gefitinib
could restore cytotoxicity. These results are in favor of a combinatorial treatment. [164]

1.7.2 Chemotherapy resistance

There are several suggested mechanisms of cisplatin resistance. As for resistance against EGFR-
TKI treatment, they can as well be subdivided in pre-, on- and post-target resistance. [30]

Pre-target resistance Pre-target resistance occurs before cisplatin can bind to the DNA. Although
cisplatin was initially thought to enter the cell by passive diffusion due to its linear and non-
saturable uptake, it has been later reported that the efficiency of cisplatin can be actively impaired
by reducing the cisplatin uptake in the cytosol mediated by copper transporter 1 or increasing
the cisplatin export via ATP7B. [24] There are also other transmembrane proteins involved in this
process such as cystic fibrosis transmembrane conductance regulator and ABCC2. Apart from
this, cisplatin can also be absorbed inside the cell through increased levels of scavengers such as
GSH or glutathione S-transferase (GST). [26,165] The GSH-Pt(II+) complex can then be actively
transported out of the cell by glutathione transporters. [24]

On-target resistance Resistance can also be mediated by affecting the DNA repair mechanism
leading to the apoptotic DNA damage response. Especially the NER and the MMR system can
remove the cisplatin induced DNA damage. Apart from that, the increasing functionality of the
homologous recombination system by compensatory mutations in breast cancer type 1/2 suscepti-
bility protein has been shown to favor cisplatin resistance. [166] It was also shown in lung cancer that
resistant cells harbor mutations in the mitochondrial DNA affecting the respiratory chain. [30] Be-
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side this, compromising the apoptotic machinery can lead to cisplatin resistance (subsection 1.1.2).
Apart from the loss of p53 activity, there are other apoptotic proteins involved including p38MAPK,
c-Jun N-terminal kinase (JNK)1 and BCL2 family members.

Off-target resistance Besides this, resistance can occur at the signaling level activating alterna-
tive anti-apoptotic pathways such as HER2 leading to AKT activation. Moreover, proteins of the
autophagy system and HSPs were reported to mediate resistance. [30] The role of EGFR in chemore-
sistance is discussed controversially, since there is the possibility to treat patients with chemotherapy
and EGFR-TKIs in combination or sequentially. While trials showed that combinatorial treatment
of EGFR-TKI with chemotherapy is not better than chemotherapy alone, [161,162] there are studies
available that chemotherapy is less effective after first-line EGFR-TKI treatment. [167] Yet, there is
evidence for both sequential approaches.
On one hand it was reported that chemoresistant cells have a two- to three-fold higher sensitivity to
gefitinib caused by the upregulation of HER2/3, but not EGFR, and by the upregulation of EGFR
ligands leading to enhanced EGFR-pathway activation. [168] Li et al. showed that EGFR inhibition
increases cisplatin sensitivity. [169] And it was also shown that EGF has a protective function against
cisplatin damage mediated by interleukin-1β secretion. [170]

These results would be in favor of a combined treatment, but on the other hand Yamaguchi
et al. showed that gefitinib inhibits caspase-independent cell death via activation of FOXO3a
and via reduced amounts of ROS. [171] In breast cancer cells, it was shown that heregulin induces
p21WAF1/CIP1 expression being protective against cisplatin-induced genotoxic damage. [172] Mandic
et al. demonstrated that EGFR stimulation leads to increased cisplatin sensitivity due to higher
proliferation. [173] These findings rather speak against combinational treatment of chemotherapy
and EGFR-TKIs.

Drug-induced resistance As already described, ESAs are commonly applied drugs in cancer-
associated anemia. Yet, their role in cisplatin resistance is controversially discussed. [46] Some stud-
ies investigating the role of ESAs compared to placebo in chemotherapy-receiving patients found
a significant decreased survival in ESA-treated patients, [174,175] while others reported the safety of
ESA treatment. [176,177] The adverse effect of ESAs in decreasing cisplatin efficiency was suggested
to be caused by expression of EpoR and Epo in tumor cells. [38,178] Dagnon et al. found expression
of EpoR on protein and mRNA level in NSCLC tumors in 96 % of the samples. [178] As they found
also HIF1α co-expression, they suggested a hypoxia-mediated expression of EpoR and Epo in tu-
mor tissue. These findings led to concerns of treating anemic patients with recombinant ESAs.
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The concerns were supported by the results that Epo induces STAT5, AKT and ERK signaling
in NSCLC. While Epo was reported to not induce proliferation in tumor cells, there are investi-
gations in chemotherapy-treated cells showing increased survival upon Epo co-treatment. [179,180]

Interestingly, a study in patients not treated with recombinant ESAs showed also a reduced 5-year
survival for tumors expressing high levels of EpoR. [181] Yet, concerns have been raised regarding the
specificity of EpoR antibodies [39] and since many of the studies rely on antibody-based analyses,
the role of ESAs in chemotherapy is controversially discussed. [46] A study performed by Sinclair
et al. showed that there are no elevated levels of EpoR mRNA in tumor versus normal tissue. [182] In
summary, although the findings are contradictory, this might highlight a context-specific or diverse
role of ESAs in cancer therapy.

Environment The tumor microenvironment emerged as a highly important factor in cancer devel-
opment and therapy, as tumor cells can reprogram surrounding cells to promote tumor growth and
metastasis. [157] As most tumors arise from epithelial tissue, their size is limited to a diameter of
2 mm due to lacking vascularization. [183] Therefore, tumor-associated endothelial cells need to form
new vessels for tumor propagation and anti-angiogenetic drugs such as regorafenib targeting VEGF
receptor are approved for cancer therapy. It was found that endothelial cells also express EpoR and
that Epo treatment leads to proliferation, migration and release of VEGF in endothelial cells. [46]

It is believed that hypoxic tumor tissue is more chemoresistant mediated by HIF1α, as patients
with low oxygen pressure in the tumor show worse survival. [184] This is suspected to be caused by
increased genetic instability, downregulation of DNA repair and upregulation of HIF1α leading to
VEGF and Epo secretion. [185,186] Although recombinant ESAs improve tumor oxygenation only in
some studies, anemia is suspected to increase hypoxic conditions and therefore risk. [46,187]
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4 Material and methods

4.1 Molecular biology techniques

4.1.1 Polymerase chain reaction

Amplification of specific DNA fragments was performed by polymerase chain reaction using a Phu-
sion High-Fidelity Polymerase (NEB) according to the manufacturer’s instructions in 50 µL total
volume using a ThermoCycler (MyCycler, BioRad). In brief, 10 µL 5× HF buffer were combined
with 10 ng DNA template, 50 pmol forward and reverse primer respectively, 1 µL dNTPs (10 mM,
Roche) and 0.5 µL Phusion polymerase. The length of newly designed primers was set to obtain
a melting temperature TmTmT of 60 ◦C. The cycling program is depicted in Table 4.1. The PCR
product was purified using the QIAquick PCR Purification Kit (QIAGEN) according to the manu-
facturer’s instructions. The yield was determined by absorption at 260 nm using a NanoDrop 2000
UV/Vis-spectrometer (Thermo Scientific).

Table 4.1: Cycling conditions for PCR reactions.
Temperature Duration Cycles

Denaturing 98 ◦C 30 s ×1
Denaturing 98 ◦C 10 s
Annealing TmTmT + 5 ◦C 30 s
Elongation 72 ◦C 30 s/kbp ×35
Elongation 72 ◦C 10 min ×1

4.1.2 Molecular cloning of DNA fragments

For the generation of specific DNA sequences, 1 to 3 µg plasmidic DNA or PCR-purified DNA
were subjected to restriction digestion with commercially available endonucleases (NEB) in a total
volume of 50 µL according to the manufacturer’s instructions. Blunt end DNA strands were gener-
ated in the presence of 300 µM dNTPs (Roche) and 3 U T4 DNA polymerase (NEB) for 20 min at
12 ◦C. The DNA polymerase was subsequently heat inactivated for 15 min at 75 ◦C. The fragments
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were separated by 1 % agarose gel (Invitrogen) containing 1:20 000 MidoriGreen (NIPPON Genetics
Europe GmbH) after addition of 5× GelPilot DNA Loading Dye (QIAGEN). The respective band
was identified using 1kb+ DNA ladder (Invitrogen), excised using an AlphaImager EP (Alpha In-
notech) and purified by QIAEX II Gel Extraction Kit (QIAGEN) according to the manufacturer’s
instructions. The fragments were ligated using Quick Ligation Kit (NEB) using different molar
ratios of vector to insert (3:1 to 1:3) at room temperature for 10 min with an additional control
without insert.

4.1.3 Transformation of E. coli cells

The E. coli strain Subcloning Efficiency DH5α (Invitrogen) was used for transformation of plasmidic
DNA. 50 µL bacteria suspension were thawed on ice and 5 µL of the ligation reaction were added
and gently mixed. After 30 min on ice, cells were transferred for 5 min to 37 ◦C to induce heat
shock followed by 10 min on ice. The cells were then shaken in 500 µL SOC medium for 30 min at
37 ◦C. Cells were centrifuged for 2 min at 2 350×g and resuspended in 100 µL medium, plated on
an ampicillin containing lysogeny broth (LB) agar plate and incubated overnight at 37 ◦C.

4.1.4 Purification of plasmid DNA

A single bacteria colony was selected and incubated in 3 mL LB medium containing 100 µg/mL
ampicillin overnight at 37 ◦C. The DNA was extracted using the QIAprep Spin Miniprep Kit
(QIAGEN) and subjected to enzymatic test digestion. Positive colonies were amplified in 100 to
200 mL LB medium containing 100 µg/mL ampicillin and the plasmidic DNA was purified using
the JetStar 2.0 Maxi Kit (Genomed) according to the manufacturer’s instructions. The sequence of
all plasmids was checked by sequencing (Eurofins MWG GmbH) and the concentration was deter-
mined by measuring absorbance at 260 nm with a NanoDrop 2000 UV/Vis-spectrometer (Thermo
Scientific).

4.1.5 Construction of plasmids

The vectors used for retroviral expression were pMOWS [203] and pBABE [258] containing an ampi-
cillin resistance cassette and either SV40-puromycin or SV40-neomycin resistance cassette for se-
lection in human cells. The pMOWS vector contains a hybrid of an MFG/murine embryonic stem
cell virus (MESV) 5’-long terminal repeat (LTR) and a spleen focus-forming virus (SFFV) 3’-LTR.
It further contains a woodchuck hepatitis B virus post-transcriptional regulatory element (WPRE)
for increased expression. The LTR of the pBABE vector is based on the Moloney murine leukemia
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4.1 Molecular biology techniques

virus (MoMLV). All utilized primers and synthesized vectors are displayed in Table 6.2 to Table 6.6
in the appendix. All vector maps were generated with the program Geneious (V5.3.6). The HALO-
tag (pFN22A) [259] was purchased from Promega and the SNAPf-tag (pSNAPf) [260] was purchased
from NEB.

pSBP-EGFR (V01, appendix)

The human EGFR mRNA was extracted from H1975 cells with the RNeasy kit (QIAGEN). cDNA
was generated by reverse transcription (Agilent) with a poly T primer and specific primers against
EGFR 5’-untranslated region (UTR) (P1a and P1b) designed for 46 ◦C and 60 ◦C annealing temper-
ature respectively. Subsequently, the kinase domain of EGFR was amplified by PCR with primer
P1f and P1r and subcloned in a pSBPEX vector backbone (derived from pGEX, GE Healthcare) [261]

using PacI and MfeI restriction sites. This resulted in a 43.46 kDa fusion protein containing human
EGFR from amino acid G696 till I1018.

pGST-MET (V02, appendix)

The human MET cDNA was kindly provided by Roche Diagnostics as MET-YFP (V08) construct
containing an optimized coding sequence that translates to wild type MET receptor. Using this
template, the cytoplasmic domain was amplified by PCR using the primer P2f and P2r and sub-
cloned in a pGEX (GE Healthcare) vector backbone using BamHI and EcoRI restriction site. The
resulting construct consists of MET receptor from amino acid R958 till the end of the coding
sequence yielding a 76.67 kDa fusion protein.

pMOWS-EGFR (V04, V05, appendix)

The isolated cDNA of EGFR (described above) was amplified with primers against EGFR con-
taining XhoI and PacI restriction sites (primer P4f and P4r). Wild type EGFR was subcloned
in the pMOWS-neo vector backbone and mutant EGFR (T790M, L858R) was subcloned in the
pMOWS-puro vector backbone.

pMOWS-HER3 (V06, appendix)

cDNA of HER3 was generated as described above using the specific primers P5a and P5b. The
coding sequence was amplified by PCR using primers with EcoRV and PacI restriction sites (P5f
and P5r). The insert was subcloned in a pMOWS-puro backbone.
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pMOWS-Lyn-HALO-linker-SNAPf (V07, appendix)

The reporter fusion protein containing a membrane anchor, the HALO-tag with a helical linker, the
SNAP-tag and a HIS-tag was cloned in collaboration with S. Hänselmann (University of Heidel-
berg). [262] The membrane anchor contains the N-terminus of Lyn-kinase leading to myristoylation
and palmitoylation. [207] An insert lacking the HALO-tag was synthesized de novo and the HALO-
tag was introduced by PCR amplification using the primer P6f and P6r.

pMOWS-MET-HALO (V09, appendix)

As first step, the provided MET-YFP plasmid was cloned into the pMOWS-puro vector backbone
using BamHI and NdeI restriction enzymes resulting in the pMOWS-MET-YFP plasmid (V08).
Second, the cDNA of the HALO-tag was amplified by PCR using primers containing EcoRI and
NdeI restriction sites (primer P7f and P7r) and introducing a synonymous mutation in the HALO-
tag removing a XhoI restriction site at the N-terminal end. The PCR product was inserted in the
pMOWS-MET-YFP (V08) plasmid replacing YFP.

pMOWS-MET-linker-SNAP (V10, appendix)

For introduction of the helical linker, the pMOWS-Lyn-HALO-linker-SNAPf-puro (V07) plasmid
was used as template for PCR using the primer P8f and P8r amplifying the linker and the SNAP-tag.
The insert was digested using EcoRI and AseI restriction enzymes. The HALO-tag of pMOWS-
MET-HALO-puro (V09) was removed by EcoRI and NdeI restriction site and replaced by the insert
using the compatible cohesive ends.

pBABE-M3 (V11, V12, appendix)

A multiple cloning site was designed and introduced in the pBABE vector backbone. Comple-
mentary DNA fragments of the sequence shown in Table 6.3 were ordered with additional 3 bases
overhang on each end. For annealing, 19 µL of a 100 pmol/µL DNA dilution of each forward and
reverse strand were combined with 2 µL 1 M NaCl, heated to 95 ◦C and cooled down slowly. The
DNA fragment was subsequently digested with XhoI and EcoRI restriction enzymes and inserted in
the pBABE-puro vector backbone. Subsequently, the puromycin resistance cassette was replaced
by a neomycin resistance. For this purpose, the pBABE-M3-puro vector (V11) was digested with
ClaI restriction enzyme and the resulting overhangs were converted to blunt ends. After heat in-
activation of the T4 polymerase, the plasmid was digested with HindIII restriction enzyme. In
parallel the pMOWS-MCS-neo plasmid was digested with AseI restriction enzyme, blunted and di-
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gested with HindIII to obtain the neomycin resistance cassette. Ligation of the two DNA fragments
resulted in the pBABE-M3-neo (V12) construct.

pBABE-MET-HALO (V13, appendix)

The MET-HALO construct was extracted from the pMOWS-MET-HALO-puro vector (V09) cut-
ting with XhoI and NdeI restriction sites and inserted in the vector pBABE-M3-puro (V11).

pBABE-EGFR-SNAPf (V14, appendix)

The EGFR(wt) cDNA (V04) was amplified by the primers P9f and P9r and cloned in the pMOWS-
Lyn-HALO-linker-SNAPf-puro (V07) construct using XhoI and AseI restriction sites for the PCR
product and XhoI and NdeI for the vector backbone. Subsequently, the EGFR-SNAP1f insert was
cloned in the pBABE-M3-neo (V12) plasmid using XhoI and PacI restriction sites.

pBABE-Lyn-HALO-linker-SNAPf (V15, appendix)

The pMOWS-Lyn-HALO-linker-SNAPf-puro vector (V08) was transferred in the pBABE-M3-puro
vector (V11) in collaboration with S. Hänselmann resulting in the displayed vector (V15).

pBABE-Lyn-GFP (V16, appendix)

The HALO-linker-SNAPf sequence of the pBABE-Lyn-HALO-linker-SNAPf-puro vector (V15) was
replaced in collaboration with S. Hänselmann by EGFP amplified by PCR resulting in the displayed
vector (V16).

pBABE-Lyn-GFP-HALO-linker-SNAPf-puro (V17, appendix)

EGFP was amplified by PCR and inserted into pBABE-Lyn-HALO-linker-SNAPf-puro (V15) in
collaboration with S. Hänselmann resulting in the displayed vector (V17).

4.1.6 Methylation analysis

For determination of differentially methylated genes, DNA was isolated from NSCLC cells using
the High Pure PCR Template Preparation Kit (Roche) according to the manufacturer’s instruc-
tions. Methylation was measured and analyzed by O. Ammerpohl (University of Kiel) according
to Marwitz et al. [263] using the Infinium HumanMethylation450k BeadChip (Illumina).
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4.2 Cell Culture Techniques

4.2.1 Culture of human lung cancer cell lines

Human lung cancer cell lines (H838, H1975, H1650, H23, H1299, H1703) were purchased from
ATCC while H522, H322M, H292, H1993, H747, H441 and H596 were kindly provided by Merri-
mack Pharmaceuticals. All cells were cultured in full growth medium: Dulbecco’s modified Eagle’s
medium (DMEM) (Lonza) supplemented with 10 % fetal calf serum (FCS) (Gibco, Ref:10 270-106;
Lot: 41 G3631K) , 100 µg/mL streptomycin (Gibco) and 100 U/mL penicillin (Gibco). For retrovi-
rally transduced cells 1.5 µg/mL puromycin (Sigma) and/or 400 µg/mL geneticin (G418) (Sigma)
was added. All cells were cultivated at 37 ◦C, 5 % CO2 and 95 % relative humidity. For passaging,
the medium was replaced by phosphate buffered saline (PBS) and incubated for 5 min at 37 ◦C.
Subsequently, the cells were incubated for 5 min with 0.025 % trypsin (Gibco). NCI-H292 and
NCI-H322M cells were incubated with 0.05 % trypsin at 37 ◦C. After removal of the supernatant
by centrifugation at 216×g, the cells were plated on coated cell culture dishes (TPP). Cells were
kept in culture for up to 25 passages. All cell lines were authenticated using Multiplex Cell Au-
thentication and the purity of cell lines was validated using the Multiplex Cell Contamination Test
by Multiplexion (Heidelberg, Germany) as described recently. [264,265] The SNP profiles matched
known profiles or were unique, while no Mycoplasma, SMRV or interspecies contamination was
detected.
Cells were frozen in 80 % full growth medium combined with additional 10 % FCS and 10 % glycerol
(Sigma) in a cryo freezer (Nunc) in isopropyl alcohol at −85 ◦C and stored in liquid nitrogen. Cells
were thawed in a water bath and plated to a 10 cm cell culture dish (TPP). Media was changed
the following day to remove the glycerol.

4.2.2 Culture of Phoenix ampho/eco cells

The Phoenix ampho/eco packaging cell line [266] was cultured in DMEM (Gibco) supplemented with
10 % FCS (Gibco), 100 µg/mL streptomycin (Gibco) and 100 U/mL penicillin (Gibco). Phoenix
cells are third generation virus packaging cells based on the murine leukemia virus (MLV) producing
non-replication competent virus particles. Virus produced by phoenix ampho cells was used for
transduction of human cells and virus produced by phoenix eco cells was used for transduction of
murine cells.
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4.2.3 Culture of human umbilical vein endothelial cells

Human umbilical vein endothelial cells (HUVEC) were kindly provided by D. Doleschel (University
of Aachen) and cultivated in DMEM (Gibco) supplemented with 10 % FCS (Gibco), 100 µg/mL
streptomycin (Gibco) and 100 U/mL penicillin (Gibco). For experiment the cells were seeded
3 days in advance and growth factor depleted in DMEM (Gibco) supplemented with 100 µg/mL
streptomycin (Gibco), 100 U/mL penicillin (Gibco) and 1 mg/mL BSA.

4.2.4 Culture of patient-derived tumor cell lines

Lung cancer tissue samples were provided by the Lung Biobank Heidelberg, the BioMaterialBank
Heidelberg and the Biobank platform of the German Center for Lung Research (DZL) including
written informed consent for the use of the tissue for research purpose for all patients. The inves-
tigation was approved by the local ethics committee of the University of Heidelberg (S-270/2001).
The generation of patient-derived tumor cell lines from NSCLC patients who underwent resection
for adenocarcinoma was performed by M. Meister (Thoraxklinik Heidelberg) and M. Schneider
(Thoraxklinik Heidelberg). The tissue was cut in small pieces and digested with 0.28 Wuensch
Units per mL liberase H (Roche, # 05401054001) on an overhead rotator for 2 h at 37 ◦C. The
resulting cell suspension was filtered using 100 µm and 40 µm filter strainer (Corning, # 352360
and # 352340) and the tumor cells were then isolated performing a ficoll gradient using Histopaque
(Sigma-Aldrich # 1077). Cells from the interphase were collected, washed with PBS, resuspended
in fresh culture medium and transferred to a T-25 culture flask (Greiner). The culture medium
(DMEM/Ham’s F12 (Gibco)) was supplemented with 2 mM Glutamax (Gibco), the Airway Epithe-
lial Cell Growth Medium SupplementPack (PromoCell, C-39160 without epinephrine and retinoic
acid) and 50 µM ROCK inhibitor (Stemcell, 72308). Adherent cell line 4950T was cultivated with-
out agar, suspension culture 170162T in an agar-coated flask. 4950T cells were splitted by rinsing
with PBS and incubation with accutase (Sigma, A6964) for 5 min.

4.2.5 Transfection of Phoenix ampho cells

The generated plasmids were used for transfection of phoenix ampho cells by calcium phosphate
precipitation. For this purpose, 800 000 phoenix cells were seeded in a 6-well plate (TPP) a day
before transfection. 10 µg plasmidic DNA dissolved in 112.5 µL H2O were supplemented with 12.5 µL
2.5 M CaCl2. During vortexing 125 µL 2× HEPES buffered saline (2× HBS, Table 6.1) were added
to precipitate the DNA. The mixture was added dropwise to each well of the Phoenix cells cultured
in medium containing 25 µM chloroquine (Sigma). The media was removed 6 h after transfection
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and replaced by normal growth medium. The virus was harvested 24 h after transfection by passing
through a 0.22 µm filter and used for spin infection or frozen at −80 ◦C.

4.2.6 Retroviral spin transduction

150 000 to 300 000 human NSCLC cells were seeded one day before the spin infection in a 6-well plate
(TPP). The viral supernatant was supplemented with 8 µg/mL polybrene (Sigma) and 1 mL of the
supernatant per well was used for spin infection at 340×g for 3 h. Subsequently, the supernatant
was replaced by normal growth medium. Selection was started 24 h after transduction.

4.2.7 Flow cytometry

For determination of the ploidy of NSCLC cells, flow cytometric measurements were performed.
Cells were growth factor depleted overnight in DMEM without phenol red (Lonza) supplemented
with 100 µg/mL streptomycin (Gibco), 100 U/mL penicillin (Gibco), 1 mg/mL bovine serum albu-
min (BSA) and 2 mM L-glutamine (Gibco) and subsequently harvested by trypsination. The cells
were pelleted at 500×g for 5 min after addition of 10 mL medium and washed with 5 mL ice cold
PBS. The cells were counted and 1 · 106 cells were resuspended in 400 µL ice cold PBS and 800 µL
ice cold ethanol was slowly added for cell fixation. The cells were stored overnight at 4 ◦C. The
following day, cells were slowly heated up to room temperature and pelleted at 500×g for 5 min.
The cells were washed in 1 mL PBS and resuspended in 200 µL propoidium iodid (PI) staining so-
lution (20 µL PI (BioLegend, 421301), 10 µL RNAse A (1 mg/mL, Sigma R6513) and 170 µL PBS).
The cells were stained for 30 min in the dark at 37 ◦C and directly placed on ice in the dark and
measured using a FACS Canto II (BD). Fluorescence at 488 nm was measured as well as forward
and side scatter. For data analysis the FlowJo software (V10.0.8) was used and single cells were
gated as depicted in Figure 2.9. An unstained control was measured and three cell lines H292, H441
and H661 with described modal numbers (47, 52 and 142 respectively, obtained from ATCC [200])
were used for calibration. For calibration the modus of the PI-staining distribution was used. For
ploidy determination used as input for the proteome ruler analysis, [199] the average PI signal was
used as estimate of the cellular DNA content.
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4.3 Protein biochemistry

4.3.1 Cell stimulation and lysis

For immunoblot and mass spectrometric experiments, cells were seeded three days in advance in
DMEM without phenol red (Lonza) supplemented with 10 % FCS (Gibco) 100 µg/mL streptomycin
(Gibco), 100 U/mL penicillin (Gibco) and 2 mM L-glutamine (Gibco). Cells were washed three
times with DMEM without supplements and growth factor depleted overnight in DMEM without
phenol red (Lonza) supplemented with 1 mg/mL BSA (Sigma), 100 µg/mL streptomycin (Gibco),
100 U/mL penicillin (Gibco) and 2 mM L-glutamine (Gibco). For immunoblot analysis, 200 000
cells were seeded in 6 cm plates (TPP). For mass spectrometric analysis, 2 · 106 cells were seeded in
15 cm plates. The cells were stimulated with the indicated ligands or inhibitors shown in Table 4.2
for the indicated time points. Cells were subsequently lysed on ice by NP40-containing buffer
(NP40-substitute, Roche, 11754599001; Lot: 10242500) for cytoplasmic fraction and a RIPA buffer
for total cell lysates (see Table 6.1). The lysates were slowly rotated at 8 ◦C for 30 min and total cell
lysates were further processed by two cycles of sonication for 1 min each on ice (Sonopuls, Bandelin,
amplitude: 80 %; pulse-on: 0.5 s, pulse-off: 0.2 s). Subsequently, the lysates were centrifuged for
10 min at 20 000×g and 4 ◦C. The supernatant was transferred to a new reaction tube and protein
concentration was measured using pre-diluted protein assay standards (Thermo Scientific) and
BCA protein assay reagents (Pierse) in 96-well plates (Grainer bio-one). After incubation at 37 ◦C
for 30 min, absorption at 560 nm was measured with an Infinite F200 Pro spectrometer (Tecan).
The protein concentrations were adjusted to an equal level with lysis buffer, if the variations of
individual samples were larger than 5 %. The supernatant was then either combined with 4×
sample buffer (4× SB) or subjected to IP.

4.3.2 Immunoprecipitation

For immunoprecipitation (IP), the supernatant was combined with 27 µL protein A sepharose (PAS)
and the indicated antibodies (Table 4.4). The suspension was slowly rotated at 8 ◦C overnight. The
following day, the suspension was centrifuged for 5 min and the supernatant was removed. The
sepharose beads were washed twice with 500 µL lysis buffer and once with 500 µL Tris NaCl EDTA
(TNE) buffer. The supernatant was removed completely and 25 µL 2× sample buffer (2× SB) were
added. The IP was stored overnight at 4 ◦C or frozen at −20 ◦C.
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Table 4.2: Stimulation factors and inhibitors.
Ligand Company Catalog Nr. Lot Stock conc.

Epoα Janssen 06301286 GDS2C00 10 U/µL
Epoβ Roche 10021439 PZ1207N409 390 U/µL; 132 µM
CERA Roche 10076977 PZ1202P016 340 µM
EGF Millipore GF144 2591345 1 mg/mL
HRG PeproTech AF-100-03 1208AFC316 100 µg/mL
HGF R&D 294-HG-025 GJ6015021 10 µg/mL

GJ5513121
GJ4512081

Erlotinib Cayman Chemical 10483 50 mM
Afatinib LC Laboratories A-8644 AFT-103 10 mg/mL
Cycloheximid Sigma C1988 100 mg/mL
AKTi (AKT VIII) Millipore 124017 2803932 10 mM
MEKi (U0126) Cell Signaling #9903S 14 10 mM

Table 4.3: SDS gel composition for one gel.
stacking gel 10 % Gel

H2O 7.15 mL 8.5 mL
1.5 M Tris pH 8.8 5 mL
1 M Tris pH 6.8 1.25 mL
10 % SDS 0.1 mL 0.2 mL
40 % Acrylamide 1 mL 5 mL
2 % Bisacrylamide 0.5 mL 1.3 mL
Ammonium persulfate (0.1 g/mL) 100 µL 200 µL
Tetramethylethylenediamine 10 µL 20 µL

4.3.3 SDS-PAGE

The samples were boiled for 2 min at 95 ◦C and mixed thoroughly. Subsequently, the samples were
centrifuged for 2 min at 20 000×g. The samples were loaded to a 10 % sodium dodecyl sulfate
(SDS) polyacrylamide gel (see Table 4.3). For immunoblotting the Magic Marker XP (Invitrogen)
was used and for Coomassie stained gels a Precision Plus Protein dual color standard (BioRad) was
applied. Samples for quantitative dynamics were loaded on the gel in a randomized manner. [204]

Electrophoresis was performed using 40 mA per gel for 2 to 4 h.
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4.3.4 Coomassie gels

Gels for mass spectrometric analysis or measurement of protein concentration were stained with
SimplyBlue SafeStain (Invitrogen) according to the manufacturer’s instructions. Coomassie gels
pictures were acquired with a LumiImager F1 (Roche).

4.3.5 Immunoblot analysis

For immunoblot analysis, the gels were transferred to a membrane using a Hoefer TE 77 semi-dry
transfer unit (Amersham Biosciences). The transfer chamber and all transfer layers were soaked
in Laemmli buffer (Table 6.1). Nitrocellulose membranes (0.2 µm pore size, Protran, Whatman
GmbH) were used for IP and polyvinylidene fluoride membranes (PVDF, 0.45 µm pore size, Immo-
bilon Millipore) were used for total cell lysates. PVDF membranes were activated with methanol for
1 min and rinsed with water for 1 min. Two soaked Whatman papers (10× 15 cm, GE Healthcare)
per electrode were used as buffer reservoir. Proteins were transferred with 260 mA per gel for 1 h.
Subsequently, the membranes were stained with Ponceau S solution (Sigma), washed with dH2O
and blocked with 5 % BSA in TBS-T for 1 h. The membranes were incubated at 4 ◦C overnight with
primary antibodies indicated in Table 4.4. The following day, the membranes were rinsed three
times with water and washed twice for 5 min with TBS-T. The membranes were then incubated
with secondary antibodies indicated in Table 4.4 for 1 h in 1 % BSA in TBS-T. The membranes
were rinsed three times with water, washed twice with TBS-T and once with TBS. Membranes
with secondary antibodies coupled to horseradish peroxidase (hrp) were incubated with a fresh 1:1
mixture of ECL reagent A and B (Table 6.1) for 1 min and chemiluminescence was detected with
an ImageQuant LAS4000 (Version 1.3, GE Healthcare). For quantification of the signal intensities
the ImageQuant TL (version 7.0, GE Healthcare) was used. For reprobing, membranes were either
treated with 30 % H2O2 for 15 min at 37 ◦C, if the species of the antibodies were different, or in-
cubated with stripping buffer at 55 ◦C for 15 min (Table 6.1). After washing, the membranes were
blocked again with 5 % BSA for 1 h and incubated with a new primary antibody overnight.

4.3.6 Mass spectrometry

For mass spectrometric analysis of MET and STAT5 phosphorylation, [267] samples were separated
by SDS-PAGE and stained with Coomassie. Subsequently, the bands were excised at the height
corresponding to the molecular weight of MET or STAT5 respectively. For analysis of global pro-
teome, the whole lane was separated in three to five fractions. For analysis using the proteome
ruler approach [199] a RIPA lysis buffer was utilized to obtain also nuclear fractions (Table 6.1). The
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Table 4.4: List of utilized antibodies.
Primary Antibody Use Source Company Catalog Nr.

Anti-EGFR IB(1:5 000) Rabbit Cell Signaling 4267
Anti-EGFR IB(1:5 000) Rabbit Santa Cruz sc-03
Anti-EGFR IP(3 µL) Rabbit Santa Cruz sc-03
Anti-pEGFR (Y1068) IB(1:5 000) Rabbit Cell Signaling 2234
Anti-HER2 IB(1:5 000) Rabbit Cell Signaling 2165
Anti-pHER2 (Y1248) IB(1:5 000) Rabbit Cell Signaling 2247
Anti-HER3 IB(1:5 000) Rabbit Santa Cruz sc-285
Anti-pHER3 (Y1222) IB(1:5 000) Rabbit Cell Signaling 4784
Anti-HER4 IB(1:5 000) Rabbit Santa Cruz sc-283
Anti-MET IP(8 µL) Rabbit Santa Cruz sc-10
Anti-MET IB(1:5 000) Rabbit Cell Signaling 4560
Anti-pMET (Y1234/1235) IB(1:5 000) Rabbit Cell Signaling 3129
Anti-pTyr IB(1:10 000) Mouse Upstate 4G10
Anti-AKT IB(1:10 000) Rabbit Cell Signaling 9272
Anti-pAKT (S473) IB(1:10 000) Rabbit Cell Signaling 9271
Anti-MEK IB(1:10 000) Rabbit Cell Signaling 9122
Anti-pMEK (T202/Y204) IB(1:10 000) Rabbit Cell Signaling 9121
Anti-ERK IB(1:10 000) Rabbit Cell Signaling 9102
Anti-pERK (T202/Y204) IB(1:10 000) Rabbit Cell Signaling 9101
Anti-S6 IB(1:10 000) Mouse Cell Signaling 2317
Anti-pS6 (S235/236) IB(1:10 000) Rabbit Cell Signaling 2211
Anti-pS6 (S240/244) IB(1:10 000) Rabbit Cell Signaling 2215
Anti-Actin IB(1:10 000) Mouse Sigma Aldrich A5441
Anti-Vinculin IB(1:10 000) Mouse Santa Cruz sc-55465
Secondary Antibody Use Source Company Catalog Nr.

Anti-rabbit-hrp IB(1:10 000) Goat Dianova 111-035-144
Anti-mouse-hrp IB(1:10 000) Goat Dianova 115-035-146
Anti-rabbit-800CW IB(1:10 000) Goat LI-COR 926-32211
Anti-mouse-800CW IB(1:10 000) Goat LI-COR 926-32210

gel fractions were cut in pieces of 1 mm edge length and destained with 900 µL 30 % acetonitrile in
0.1 M NH4HCO3 shaking for 15 min at 1 100 rpm in a low binding reaction tube (nerbe plus).
Samples of MET and total proteome were dehydrated with 50 % acetonitrile and 0.1 % trifluo-
roacetic acid in 0.1 M NH4HCO3, while STAT5 samples were dehydrated with acetonitrile. The
dehydrated gel pieces were vacuum dried in a centrifugal evaporator. STAT5 samples were directly
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subjected to tryptic digestion, while the remaining samples were reduced and alkylated prior to
tryptic digestion.
The proteins were reduced by shaking in 400 µL of a fresh 1.54 mg/mL dithiothreitol solution in
0.1 M NH4HCO3 at 56 ◦C for 45 min. The supernatant was then removed and the sample was dried
for 10 min in a centrifugal evaporator. Subsequently, the proteins were alkylated by 400 µL of a fresh
10 mg/mL iodoacetamide solution in 0.1 M NH4HCO3 in the dark. The supernatant was removed
and the samples were washed with 900 µL 0.1 M NH4HCO3 and dehydrated by 400 µL acetonitrile.
The gel pieces were dried in a centrifugal evaporator and 250 ng trypsin gold (Promega) were added
dissolved in 5 % acetonitrile and 95 % 0.1 M NH4HCO3. The gel pieces were stepwise rehydrated
with 5 % acetonitrile in 0.1 M NH4HCO3 at 38 ◦C and proteins were digested for 14 h at 38 ◦C.
The following day, 1 µL MET or STAT5A one-source standard [267] was added to MET and STAT5
samples. For all samples, the supernatant was transferred into a new vial and the peptides were
eluted from the gel pieces by sequential addition of 200 µL acetonitrile, 200 µL 5 % formic acid and
200 µL acetonitrile. The volume of the combined extracts was reduced in a centrifugal evaporator,
resolved in 40 µL 0.5 % acetonitrile and 0.5 % acetate and further purified by stage tips.
For stage tip purification, [268] a 200 µL MaxRecovery tip (Oxygen) was filled with three 1 mm2

slices of Empore Octadecyl C18 (47 mm) Extraction Disks. The stage tip was activated with 40 µL
methanol, washed with 75 % acetonitrile and equilibrated with 40 µL 0.5 % acetonitrile and 0.5 %
acetate. For each step, the stage tip was centrifuged for 5 min at 2 500×g and the flow through
was discarded. Then, the sample was loaded and washed with 40 µL 0.5 % acetonitrile and 0.5 %
acetate. The tip was transferred to a low binding collection tube and the peptides were eluted in
two steps. First, with 30 µL of 50 % acetonitrile, 0.5 % acetate and 10 mM citrate and second with
40 µL of 50 % acetonitrile, 0.5 % acetate. The flow through was concentrated, resolved in 10 µL of
2 % acetonitrile and stored in an auto sampler vial at −20 ◦C.
The samples were measured by an EASY-nLC 1000 (Thermo Scientific) coupled to a Q Exactive
Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Scientific). Peptides were separated by
a 40 cm liquid chromatography column with 75 µm inner diameter (New Objective) packed with
ReproSil-Pur 120 C18-AQ 3 µm particles (Dr. Maisch HPLC GmbH). For determination of the
degree of MET or STAT5 phosphorylation, intensities of native and labelled MET peptide and
phosphopeptide pairs were analyzed manually using Xcalibur 3.0.63 (Thermo). For whole pro-
teome analysis, the MaxQuant software was used.
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4.3.7 Purification of recombinant proteins

For generation of recombinant calibrators, the generated GST- and SBP-tagged protein vectors
(V01,V02) were used for transformation of the E. coli stain BL21-Codon plus (DE3) as described
above (subsection 4.1.3). A single colony was cultivated in 50 mL LB medium containing 100 µg/mL
ampicillin and 2 µg/mL chloramphenicol overnight at 37 ◦C. The culture was diluted 1:10, cultivated
for 90 min at 37 ◦C and then induced with 200 µM isopropyl β-D-1-thiogalactopyranoside (IPTG)
for 4 h at 37 ◦C. The bacteria were centrifuged for 20 min at 4 500×g and 4 ◦C, washed with PBS,
centrifuged again and frozen at −20 ◦C. The pellet was resuspended with 15 mL lysis buffer (10 mM
Tris pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.23 mg/mL lysozyme, 5 mM dithiothreitol). After 20 min
on ice 2.25 mL 0.1 g/mL sodium lauroyl sarcosinate were added. The suspension was vortexed for
1 min and sonicated (Sonopuls, Bandelin) twice for 1 min on ice (amplitude: 80 %; pulse-on: 0.5 s,
pulse-off: 0.2 s). The lysate was centrifuged for 15 min at 10 000×g, 4 ◦C and the supernatant was
supplemented with 2 % TritonX100 (Roche, Lot: 12918922) and 1 mL glutathione or streptavidin
sepharose beads (GE Healthcare). The suspension was slowly rotated at 8 ◦C for 1 h. The beads
were washed four times with 4 mL buffer containing 9 % PBS, 5 mM dithiothreitol and 1 % NP40-
substitute (Roche) and once with 15 mL PBS containing 5 mM dithiothreitol. The recombinant
protein was eluted five times with 500 µL buffer containing 0.75 mM Tris pH 8.0, 150 mM NaCl,
0.1 % SDS, 5 mM dithiothreitol and either 20 mM glutathione or 2 mM biotin. Each fraction was
stored at 4 ◦C. As control, small samples were collected before induction, after sonication, after
precipitation and after elution. These samples were loaded together with 20 µL of each fraction
on an SDS-gel and the fractions with the highest yield were combined. The concentration was
determined with a calibration curve of BSA standards (Thermo Scientific) on a Coomassie gel.
Aliquots of the calibrator were stored at −80 ◦C.

4.3.8 Determination of molecules per cell

Quantitative immunoblot For calculation of molecules per cell, the cells were lysed as described
above in a 6 cm plate (TPP) and a biological replicate was used for manual cell counting (Neubauer
Improved) to obtain the number of cells (#cells) per lysate. A defined fraction FcFcF of the lysate
was combined with increasing amounts of recombinant protein and separated by SDS-PAGE. The
recombinant protein was used to calculate a standard curve with the slope a. The molecular mass
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of the calibrator McalMcalM and the intensity of the endogenous protein INT was used to estimate the
number of molecules per cell according to Equation 4.1.

molecules

cell
= INT ·NANAN

FcFcF ·#cells · a ·McalMcalM
(4.1)

The error was estimated using the variation of the slope ∆a obtained from linear regression and
the standard deviation of the measured replicates for ∆INT and ∆#cells using propagation of
uncertainty according to Equation 4.2.

∆f(~x) =

√√√√√√√√√√√√√√∑
i

(
∂f(~x)
∂xi

·∆xi
)2

(4.2)

Proteome ruler For determination of molecules per cell by normalization to signal intensities of
histones, the measured ploidy levels were used (subsection 4.2.7) as input for the Perseus pro-
gram. [199] The normalization analysis was performed in collaboration with M. Stepath (DKFZ
Heidelberg) and A. Gorol (DKFZ Heidelberg).

4.3.9 Proliferation analysis

For analysis of cell proliferation, the resazurin-based CellTiter-Blue Cell Viability Assay (Promega)
was utilized. For this purpose, 5 000 to 8 000 cells in 70 µL were seeded in a 96-well plate (TPP)
in growth factor depletion medium. For patient-derived tumor cell lines, 10 000 cells were seeded
in 70 µL culture medium. After 4 hours cells were treated with 0.25 pmol siRNA against EGFR
(Dharmacon, ON-TARGETplus SMARTpool, L-003114-00-0005) or 0.75 pmol siRNA against MET
(Dharmacon, ON-TARGETplus SMARTpool, L-003156-00-0005) or with the indicated doses MM-
131. Control cells were treated either with non-targeting siRNA (Dharmacon, D-001810-10-50) or
medium to correct for the volume of the supernatant. The following day the cells were treated
with the indicated concentrations erlotinib (Cayman Chemicals, 10483) or DMSO for 30 min and
subsequently stimulated with 50 ng/mL EGF and 50 ng/mL HGF. The cells were incubated 0 to
7 days after stimulation with 12 µL of CellTiter-Blue and incubated for 1 hour at 37 ◦C. Subse-
quently, the fluorescence at 610 nm was measured after excitation at 560 nm with the infinite F200
pro Reader (TECAN). Significance was tested using two way ANOVA (SigmaPlot 13.0, α=0.05).
For cell viability of cisplatin treated cells, 5 000 to 8 000 cells were seeded in 70 µL growth medium
and treated the following day with the indicated doses of cisplatin.
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4.3.10 Microscopy

Labeling and microscopic measurements were performed by S. Hänselmann (University of Heidel-
berg). [262] For labeling, a silicon rhodamine N -hydroxysuccinimide ester (SiR NHS ester, Spiro-
chrome) was coupled to O6-benzyl guanine amine (BG) in dimethylformamid with the addi-
tion of N,N -diisopropylethylamine for 3 h at 40 ◦C. The conjugate (SiR-BG) was purified via
high-performance liquid chromatography (HPLC) and identified via mass spectrometry. Tetram-
ethylrodamine HALO-tag (HALO-TMR) ligand was purchased from Promega. H838-EGFRSNAP-
METHALO cells were seeded in 8-well glass-bottom chambers (Nunc Lab-Tek, Thermo Fisher Sci-
entific) in DMEM without phenol red containing FCS, penicillin, streptomycin and L-glutamine.
The cells were labeled overnight with 10 nM SiR-BG and 10 nM HALO-TMR. The following day,
cells were washed four times over one hour with DMEM without phenol red containing BSA, peni-
cillin, streptomycin and L-glutamine to remove unbound dye and deplete the cells from growth
factors. For positive control, H838 cells expressing Lyn-GFP-HALO-SNAP (H838-GHS cells) were
treated in the same way. For negative control H838-GHS cells were labeled overnight with 10 nM
HALO-TMR ligand and 10 nM HALO-SiR (gift from K. Johnson (École Polytechnique Fédérale de
Lausanne)).
The cells were monitored by an inverted microscope (Nikon TiE) using total internal reflection
fluorescence (TIRF) illumination with a four channel diode/DPSS fiber coupled laser (iChrome
MLE-LFA, Toptica) a quadruple dichroic mirror (R405/488/561/635, AHF Analysetechnik) and
an additional quadruple notch filter (ZET405/488/561/640, AHF Analysetechnik). Both dyes were
simultaneously excited with a 561 nm diode pumped solid state (DPSS) laser at 1.2 mW and a
640 nm diode laser at 1.5 mW, respectively. A 100× magnification oil objective lens (Nikon Apo
TIRF 100× 1.49 Oil) was used in combination with a 1.5× magnification lens in the emission path.
The fluorescence signal was detected by a 512×512 pixel electron multiplying CCD camera (Andor
iXon+ 897 Ultra, Andor Technology) with a pixel size of 104 nm. The emission light was separated
using a spectral image splitter (Optosplit III, Cairn Research) in combination with a 605/70 band-
pass filter for the TMR signal (605/70 Et, AHF Analysetechnik) and a 685/50 bandpass filter for
the SiR emission (685/50 Et, AHF Analysetechnik). Each channel was projected to a 256 × 512
pixel wide field of view. Movies of living H838-EGFRSNAPMETHALO cells were recorded at 37 ◦C
and H838-GHS cells were imaged at room temperature at a frame rate of 50 Hz and a total length
of 500 to 1000 frames. The registration of both channels was calculated using multicolor beads
(TetraSpec Microspheres, 0.2 µm, Thermo Fisher Scientific) before each experiment. For recep-
tor depletion time-lapse measurement, H838-EGFRSNAPMETHALO cells were stained, washed and
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imaged as described above, however TMR and SiR were sequentially imaged full frame for three
frames every minute over 30 min. For each condition 10-20 cells were imaged.

4.3.11 Image analysis

To determine the movement of EGFR and MET in the two-channel TIRF live-cell data, a par-
ticle tracking method was used based on probabilistic data association with elliptical sampling
(PDAE) [210] performed in collaboration with Y. Qiang (University of Heidelberg). Image registra-
tion was performed to align the two-channel image data. The Iterative Closest Point algorithm
was used with fiducial markers to determine the registration matrix and this transformation ma-
trix was applied to the imaging data. [269] Automatic particle detection was performed as well as
correspondence finding. Based on the computed trajectories, co-localization analysis of the recep-
tors was performed using a two-state hidden Markov model and the Euclidean distance between
the receptors to determine dimer events and their durations. Two states ωt were considered, a
non-dimer state and a dimer state, at each time point t of the time-resolved image data. The
state ωt was computed given a sequence of observed distances d1:t between two particles in the two
channels. This task was performed within a Bayesian framework using the posterior probability via
ω∗
t = arg max P (ωt|d1:t). The posterior probability was calculated recursively based on the prior

probability P (ωt|d1:t−1) and the likelihood function P (dt|ωt).
For receptor depletion, the average intensity of an outlined cell was measured for each time point
using imageJ (V1.48) and a two-parameter exponential regression was performed for each cell using
the nls-function of R (V3.3.2).

4.4 Mathematical modeling

Mechanistic mathematical modeling was performed by H. Hass (University of Freiburg) using the
open-source D2D framework [191] in MATLAB as described in detail elsewhere. [270] The final model
consists of 24 ODEs that are integrated to obtain the time evolution of their respective model
components x(t). The initial values of 15 model components were determined from analytic steady
state equations comprising kinetic parameters. [114] The inner derivatives of the likelihood needed
in gradient-based parameter estimation were computed via supplied forward sensitivities. [271] The
dynamical system and its sensitivities were integrated numerically by the CVODES integrator. [272]

Optimization was conducted using the LSQNONLIN algorithm [273] implemented in MATLAB. To
grant identification of the global optimum, a multi-start optimization strategy was performed for
each model variant starting from 500 random parameter sets. To compare the model response
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to the 3030 data points the scaled log-likelihood was calculated. Within the maximum likelihood
framework, the optimized parameter set θ̂, consisting of 345 parameters of initial concentrations,
kinetic and observational parameters, and measurement noise is estimated through minimization
of χ2(θ). In the applied non-linear model, the profile likelihood approach was utilized to acquire
parameter uncertainties. [113,274]

4.5 Patient data analysis

Patient survival data was assembled by M. Schneider (Thoraxklinik Heidelberg). Tissue samples
were provided by the Lung Biobank Heidelberg, member of the accredited Tissue Bank of the
National Center for Tumor Diseases (NCT) Heidelberg, the BioMaterialBank Heidelberg and the
Biobank platform of the German Center for Lung Research (DZL). All patients provided written
informed consent for the use of the tissue for research purpose and the study was approved by
the local ethics committee of the Heidelberg University (No. 270/2001). Tumor and matched
normal lung tissue samples were collected from NSCLC patients who underwent resection at the
Thoraxklinik at University Hospital, Heidelberg. Tumor histology was classified according to the
3rd edition of the World Health Organization classification system. [275] Tissue samples were snap-
frozen within 30 min after resection and stored at −80 ◦C. For nucleic acid isolation 10 - 15 tumor
cryosections (10-15 µm each) were prepared for each patient. Only samples with a viable tumor
content of ≥50 % were used for subsequent analyses.
RNA-isolation from tissue, cDNA synthesis and qPCR experiments were performed by M. Schneider
as described elsewhere. [276] The data of qPCR analyses were statistically analyzed under REMARK
criteria [277] with SPSS 24.0 for Windows (IBM, Ehningen, Germany). The endpoint of the study
was overall survival. Univariate analysis of survival data was performed according to Kaplan and
Meier [278] using R (Version 3.3.2, package: survival).
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6 Appendix

Table 6.1: List of used buffers and solutions. AEBSF: 4-(2-aminoethyl)benzenesulfonyl fluoride hy-
drochloride, AP: aprotinin. If not stated otherwise, all chemicals were purchased from Sigma. 20 % SDS
solution was obtained from Serva, Tris from AppliChem, NP40-substitute from Roche.
Buffer Composition

2× HBS 16.4 g/L NaCl, 11.9 g/L HEPES, 0.21 g/L Na2HPO4, pH 7.05
0.5× TAE 4.84 g/L Tris, 1 mM EDTA, pH 8.0

2× NP40
300 mM NaCl, 40 mM Tris pH 7.4, 20 mM NaF, 2 mM EDTA pH 8.0, 2 mM
ZnCl2 , 2 mM MgCl2, 2 mM Na3VO4, 20 % glycerol, 2 % NP40 (fresh), 2 µg/mL
AP (fresh), 200 µg/mL AEBSF (fresh)

2× RIPA
0.1 M Tris pH 7.4, 0.3 M NaCl, 2 mM EDTA, 2 g/L sodium deoxycholate, 1 mM
sodium orthovanadate, 5 mM NaF, 2 % NP40 (fresh), 2 µg/mL AP (fresh),
200 µg/mL AEBSF (fresh)

TNE 10 mM Tris pH 7.4, 100 mM NaCl, 1 mM EDTA, 100 µM Na3VO4

2× SB 32 g/L SDS, 80 mM Tris pH 7.4, 16 % glycerol, 24.6 g/L dithiothreitol, 0.32 g/L
bromophenol blue, 10 % 2-mercaptoethanol (fresh)

4× SB 64 g/L SDS, 160 mM Tris pH 7.4, 32 % glycerol, 49.3 g/L dithiothreitol,
0.64 g/L bromophenol blue, 20 % 2-mercaptoethanol (fresh)

Laemmli 14.4 g/L glycine, 3 g/L Tris, 1 g/L SDS

transfer 14.4 g/L glycine, 3 g/L Tris, 0.75 g/L SDS, 0.092 5 g/L sodium vanadate, 15 %
methanol

TBS 0.15 M NaCl, 0.01 M Tris pH 7.4
TBS-T 150 mM NaCl, 10 mM Tris pH 7.4, 0.2 % Tween 20
ECL A 0.1 M Tris pH 8.5, 1.1 mg/L luminol, 0.185 mg/L p-coumaric acid, 1 % DMSO
ECL B 0.1 M Tris pH 8.5, 0.018 % H2O2

stripping 62.5 mM Tris pH 6.8, 2 % SDS, 0.7 % 2-mercaptoethanol (fresh)
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6 Appendix

Table 6.2: List of all utilized primer sequences. Primers are depicted from 5’ to 3’.
P1a

P1b

P1f

P1r

P2f
METMET

P2r

P4f
EGFREGFR

P4r

P5a

P5b

P5f
HER3HER3

P5r

P6f

P6r

P7f

P7r

P8f

P8r

P9f

P9r
EGFREGFRAseI

Multiple Cloning site inserted in the pBABE vector.
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Table 6.4: List of synthesized vectors.

pSBPEX-HA-EGFR-kinase

V01

pGEX-cyto-hMET
hMET intracellular domain

V02

V04

Signal Peptide

pMOWS-EGFR(act)-NEO

V05

pMOWS-HER3-PURO
HER3HER3

V06

pMOWS-Lyn-HALO-SNAP-PURO

SNAP-tagSNAP-tagSNAP-tag

HALO-tagHALO-tag

V07
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6 Appendix

Table 6.5: List of synthesized vectors.(2)

pMOWS-MET-YFP-PURO
hMET (modified)hMET (modified)

V08

pMOWS-MET-HALO-PURO
hMEThMEThMEThMET

V09

pMOWS-MET-Linker-SNAP-PURO
hMEThMEThMEThMET

SNAP26m-tagSNAP26m-tagSNAP26m-tagSNAP26m-tag

V10 V11

V12

pBABE-MET-HALO-PUROpBABE-MET-HALO-PURO
hMEThMEThMET

pBABE-MET-HALO-PURO
hMET

pBABE-MET-HALO-PURO

HALO-tagHALO-tagHALO-tag

V13
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Table 6.6: List of synthesized vectors.(3)

pBABE-EGFR-SNAPf-NEO

HIS-tag

SNAPf-tagSNAPf-tag

V14

pBABE-Lyn-HALO-SNAP-PURO

SNAPf-tagSNAPf-tag

HIS-tagHIS-tagHIS-tagHIS-tag

HALO-tagHALO-tag

V15

Lyn MyrPalmLyn MyrPalm

HIS-tagHIS-tag

pBABE-Lyn-EGFP-PUROpBABE-Lyn-EGFP-PUROpBABE-Lyn-EGFP-PURO

V16

Lyn MyrPalmLyn MyrPalm

HIS-tagHIS-tag

pBABE-Lyn-EGFP-HALO-SNAP

HALO-tagHALO-tag

SNAPf-tagSNAPf-tag

V17
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Table 6.7: RNAseq data of H838, H1650 and H1975 cells analyzed by S. Krämer (DKFZ Heidelberg).
FPKM H1975 H1650 H838

EGFR 29.5 67.1 5.7
HER2 61.0 72.3 42.1
HER3 30.5 11.0 2.5
HER4 0.0 0.0 0.0
HGF 0.1 0.0 0.0
EGF 1.6 0.2 1.1
NRG1 7.6 2.3 1.2
NRG4 1.3 3.7 12.3
EREG 15.8 0.4 0.1
TGFA 16.7 40.2 0.3
AREGB 26.9 2.9 0.4
AREG 29.4 3.0 0.5
BTC 3.9 1.5 0.0
AKT1 95.3 76.1 72.5
AKT2 24.8 108.7 90.6
AKT3 3.1 17.0 29.7
KRAS 6.5 7.8 79.0
NRAS 14.5 19.7 118.5
RRAS 23.9 53.0 84.9
HRAS 29.6 37.4 28.1
MAPK3 41.2 65.6 65.2
MAPK1 42.2 45.3 43.4
MAP2K1 33.8 32.2 28.5
MAP2K2 127.3 48.6 95.7
PIK3CA 9.4 8.8 19.1
PIK3CB 12.5 17.9 21.8
PIK3CD 1.3 1.0 18.9
PIK3R1 2.7 7.5 3.4
PIK3R2 25.8 24.8 40.5
PIK3R3 11.9 44.0 8.6
PIK3R4 14.0 11.6 17.2
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Figure 6.1: Model selection based on receptor response in H838 and H1650 cell lines.
A: Structure of the ODE-based core model according to the Systems Biology Graphical Notation. [192]

The model selection was performed by H. Hass. B: Bayesian information criterion (BIC) for all tested
model extensions relative to the best model #5. C: Model scheme of different extensions of the core
model to test the agreement between model and dynamic signaling data. The receptor phosphorylation is
shown for H838 and H1650 cells. Experimental data is shown as dots, the result of the best parameter
estimation for each model is depicted as trajectory. The models represent the core model (#1) or
extension by a regulating feedback loop (#2), a limiting phosphatase (#3), a shared ubiquitinase (#4),
EGFR and MET heterodimerization (#5) or heterodimer formation of EGFR and MET as well as a
HER family member (#6). This model describes the data similar to model #5, but the benefit of the
extension is not statistically significant (p-value 0.083).
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6 Appendix

Table 6.8: Ordinary differential equations (ODEs) of the final model. The model consists of 21
differential equations, which are given by the following terms. The reaction velocities v are described in
Table 6.9. d: dimer, i: internalized, p: phosphorylated, t:total. The mathematical model was developed
by H. Hass.

d[dose_EGF]/dt = −v5 + v6 − v7 + v8

d[dose_HGF]/dt = −v11 + v12

d[EGFR]/dt = v1 − v3 + v4 − v5 + v6 − 2 · v16 + 2 · v23

d[EGFR_EGF]/dt = v5 − v6 − v9 + v10 − v13 − 2 · v18 − v28

d[pEGFRd]/dt = v16 + v18 − v19 − v20

d[pEGFRi]/dt = v19 + v20 − v22 − v23

d[EGFR_TKI]/dt = v3 − v4 − v7 + v8

d[EGFR_EGF_TKI]/dt = v7 − v8 + v9 − v10 − v13 − 2 · v14 − v15

d[EGFRd_TKI]/dt = v13 + v14 − v21

d[Met]/dt = v2 − v11 + v12 − 2 · v17 + 2 · v27

d[Met_HGF]/dt = v11 − v12 − v15 − 2 · v24 − v28

d[pMetd]/dt = v17 + v24 − v25

d[pMeti]/dt = v25 − v26 − v27

d[pMet_EGFR]/dt = v28 − v29

d[pMet_EGFRi]/dt = v29

d[MEK]/dt = −v30 − v31 − v32 + v33

d[pMEK]/dt = v30 + v31 + v32 − v33

d[ERK]/dt = −v34 + v35

d[pERK]/dt = v34 − v35

d[AKT]/dt = −v36 − v37 − v38 + v39

d[pAKT]/dt = v36 + v37 + v38 − v39
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Table 6.9: Model flux expressions. All reaction velocities v and their dependency on the model pa-
rameters are listed for the final model. v19 and v20 describe ubiquitin-dependent and -independent
internalization of EGFR. Concentrations are indicated by squared brackets. d: dimer, i: internalized,
p: phosphorylated, t: total. The mathematical model was developed by H. Hass.

v1 = EGFR_prod
v2 = Met_prod
v3 = [EGFR] · EGFR_TKI_binding · Inh
v4 = [EGFR_TKI] · EGFR_TKI_unbinding
v5 = [EGFR] · EGFR_lig_binding · [dose_EGF]

v6 = [EGFR_EGF] · EGFR_lig_binding · EGF_kD
v7 = [EGFR_TKI] · EGFR_lig_binding · [dose_EGF]
v8 = [EGFR_EGF_TKI] · EGFR_lig_binding · EGF_kD
v9 = [EGFR_EGF] · EGFR_TKI_binding · Inh
v10 = [EGFR_EGF_TKI] · EGFR_TKI_unbinding

v11 = [Met] ·Met_lig_binding · [dose_HGF]
v12 = [Met_HGF] ·Met_kD ·Met_lig_binding
v13 = [EGFR_EGF] · [EGFR_EGF_TKI] · EGFR_activation
v14 = [EGFR_EGF_TKI]2 · EGFR_activation
v15 = [EGFR_EGF_TKI] · [Met_HGF] · diRatio · (EGFR_activation ·Met_activation)0.5

v16 = [EGFR]2 · EGFR_basal_activation
v17 = [Met]2 ·Met_basal_activation
v18 = [EGFR_EGF]2 · EGFR_activation
v19 = pEGFR_internalize · [pEGFRd]

v20 = pEGFR_internalize_ub · [pEGFRd] · [pEGFRd]nH

k_EGFRubnH + [pEGFRd]nH

v21 = [EGFRd_TKI] · pEGFR_degradation
v22 = [pEGFRi] · pEGFR_degradation
v23 = [pEGFRi] · pEGFRi_dephosph
v24 = [Met_HGF]2 ·Met_activation
v25 = [pMetd] · pMet_internalize
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v26 = [pMeti] · pMet_degradation

v27 = [pMeti] · pMeti_dephosph

v28 = [EGFR_EGF] · [Met_HGF] · diRatio · (EGFR_activation ·Met_activation)0.5

v29 = [pMet_EGFR] · pMet_EGFR_internalize

v30 = [MEK] ·MEK_phosphorylation_pEGFR · [pEGFRd]

v31 = [MEK] ·MEK_phosphorylation_pMet_EGFR · [pMet_EGFR]

v32 = [MEK] ·MEK_phosphorylation_pMet · [pMetd]

v33 = [pMEK] · pMEK_dephosphorylation

v34 = [ERK] · ERK_phosphorylation_pMEK · [pMEK]

v35 = [pERK] · pERK_dephosphorylation

v36 = [AKT] ·AKT_activation_pEGFR · [pEGFRd]

v37 = [AKT] ·AKT_activation_pMet_EGFR · [pMet_EGFR]

v38 = [AKT] ·AKT_activation_pMet · [pMetd]

v39 = [pAKT] · pAKT_deactivation · (is838 · (relto_AKT_deact− 1) + 1)
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Table 6.10: Estimated dynamic parameter values. In total 345 parameters were estimated from
the experimental data yielding a value of the objective function −2 log(L) = −3244.86 for a total of
3 030 datapoints. Dynamic parameters are listed below. θ̂ indicates the estimated value, θmin and θmax

indicate the upper and lower bounds of the parameters. The log-column indicates, whether the value
of a parameter was log-transformed (t) or not (f). The fitted-column indicates, whether the parameter
value was estimated (t) or whether its value was fixed to a constant value (f). Fixed parameters comprise
MET_activation that could be fixed as part of model reduction. EGF_kD and Met_kD represent ligand
binding affinities taken from the literature, [58,279] and EGFR_TKI_binding, init_AKT, init_ERK,
init_pEGFRd and init_MEK could be fixed due to symmetries in the model structure leading to
structural non-identifiabilities. [280] scale_Ligand, describes the fitted scaling of the ligand concentration
measured in ng/mL to count/µm2, which was chosen for the initial receptor concentrations within the
mathematical model. The mathematical model was developed by H. Hass.

Name θmin θ̂ θmax log non-log θ̂ fitted

AKT_activation_pEGFR -5 -1.9441 3 t 1.14 · 10−02 t

AKT_activation_pMet -5 -1.6900 3 t 2.04 · 10−02 t

AKT_activation_pMet_EGFR -5 -2.3502 3 t 4.46 · 10−03 t

EGFR_TKI_binding -5 3.0000 4 t 1.00 · 10+03 f

EGFR_TKI_unbinding -5 2.5884 3 t 3.88 · 10+02 t

EGFR_activation -5 0.1611 3 t 1.45 · 10+00 t

EGFR_lig_binding -5 -2.4543 3 t 3.51 · 10−03 t

EGF_kD -5 -1.3010 3 t 5.00 · 10−02 f

ERK_phosphorylation_pMEK -5 0.4870 3 t 3.07 · 10+00 t

MEK_phosphorylation_pEGFR -5 -1.4307 3 t 3.71 · 10−02 t

MEK_phosphorylation_pMet -5 -1.4376 3 t 3.65 · 10−02 t

MEK_phosphorylation_pMet_EGFR -5 -2.4451 3 t 3.59 · 10−03 t

Met_activation -3 4 6 t 1.00 · 10+04 f

Met_basal_activation -10 -6.9940 3 t 1.01 · 10−07 t

Met_kD -5 -0.6021 3 t 2.50 · 10−01 f

Met_lig_binding -5 -3.1930 3 t 6.41 · 10−04 t

diRatio -5 -0.3781 3 t 4.19 · 10−01 t

init_AKT -5 0.0000 3 t 1.00 · 10+00 f

init_EGFR -5 2.9666 5 t 9.26 · 10+02 t

init_ERK -5 0.0000 3 t 1.00 · 10+00 f

init_MEK -5 0.0000 3 t 1.00 · 10+00 f

init_Met -5 2.0508 3 t 1.12 · 10+02 t

init_pEGFRd -4 0.0000 2 f 0.00 · 10+00 f

k_EGFRub -5 0.3690 3 t 2.34 · 10+00 t

nH 0 3.0000 10 f 3.00 · 10+00 f

pAKT_deactivation -5 -2.2598 3 t 5.50 · 10−03 t

pEGFR_degradation -5 -2.2930 3 t 5.09 · 10−03 t

pEGFR_internalize -5 -1.8222 3 t 1.51 · 10−02 t
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pEGFR_internalize_ub -5 -0.5605 3 t 2.75 · 10−01 t

pEGFRi_dephosph -5 -2.4644 3 t 3.43 · 10−03 t

pERK_dephosphorylation -5 -0.1417 3 t 7.22 · 10−01 t

pMEK_dephosphorylation -5 -0.9193 3 t 1.20 · 10−01 t

pMet_EGFR_internalize -5 -1.8076 3 t 1.56 · 10−02 t

pMet_degradation -5 -2.0260 3 t 9.42 · 10−03 t

pMet_internalize -5 -0.5389 3 t 2.89 · 10−01 t

pMeti_dephosph -5 -2.0203 3 t 9.54 · 10−03 t

relto_AKT_deact -5 1.2696 3 t 1.86 · 10+01 t

relto_init_EGFR -5 -0.6918 3 t 2.03 · 10−01 t

relto_init_MEK -5 -0.1331 3 t 7.36 · 10−01 t

relto_init_Met -5 -0.1250 3 t 7.50 · 10−01 t

scale_Ligand -3 1.2618 6 t 1.83 · 10+01 t
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Figure 6.2: Parameter profiles of final EGFR/MET crosstalk model. Parameter profiles of
the dynamic parameters used in the final mechanistic model. All parameters reach the 95 % threshold
given by the χ2 distribution, thus are identifiable. Parameter profiles were calculated by H. Hass.
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Figure 6.3: Extended data used for parameter estimation. Data of time-resolved response of
H838, H1650 and H838-EGFR cells is shown as dots with error bars. Errors represent standard deviation
from individual replicates indicated in the figure. Model trajectories are displayed as lines and shading
represents the estimated error by the model. The error bars on the data represent the model-scaled
measurement uncertainty of the biological replicates.
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Figure 6.4: Extended data used for parameter estimation. Data of time- and dose-resolved
response of H838, H1650 and H838-EGFR cells is shown as dots with error bars. Errors represent
standard deviation from individual replicates indicated in the figure. Model trajectories are displayed
as lines and shading represents the estimated error by the model. The error bars on the data represent
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Figure 6.5: Exemplary immunoblot of dose-dependent response in H838 cells. Sample loading
was randomized to avoid systematic blotting errors. [204] MET phosphorylation and total protein levels
were detected after immunoprecipitation (IP). The remaining proteins were detected from cytomplasmic
cell lysate. Utilized antibodies are described in Table 4.4.
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Figure 6.6: Exemplary immunoblot of dose-dependent response in H1650 cells. Sample
loading was randomized to avoid systematic blotting errors. [204] MET phosphorylation and total pro-
tein levels were detected after immunoprecipitation (IP). The remaining proteins were detected from
cytomplasmic cell lysate. Utilized antibodies are described in Table 4.4.
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Figure 6.7: Exemplary immunoblot of H1703 cells. Sample loading was randomized to avoid
systematic blotting errors. [204] MET phosphorylation levels were detected after immunoprecipitation
(IP). The remaining proteins were detected from cytomplasmic cell lysate. Utilized antibodies are
described in Table 4.4.
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Figure 6.8: Exemplary immunoblot of H23 cells. Sample loading was randomized to avoid
systematic blotting errors. [204] MET phosphorylation levels were detected after immunoprecipitation
(IP). The remaining proteins were detected from cytomplasmic cell lysate. Utilized antibodies are
described in Table 4.4.
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