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English summary

CD8+ T cells are an important part of the adaptive immune system. They are not only able

to efficiently kill infected cells, but can also provide protection against subsequent infections.

Recently, T cell-based vaccines, which are able to elicit protection-mediating CD8+ T cell re-

sponses, have shown their potential against various infectious diseases, including malaria or HIV.

However, the efficient implementation of these approaches is currently hampered by a lack of

knowledge regarding the dynamical processes generating the protective responses. In this thesis,

we combined experimental data and mathematical modelling to analyse and quantify CD8+ T

cell dynamics in different infectious diseases.

First, we study a specific immune responses elicited by cytomegalovirus (CMV) infection,

known as ’memory inflation’. We used mathematical modelling to test different hypotheses

regarding the processes that generate and maintain memory inflation and analysed how viral

dynamics shape the corresponding CD8+ T cell responses. Since CMV has already been used as

a vaccine vector expressing foreign epitopes, our findings are relevant for improving the efficacy

of these vector-based vaccination approaches.

To generate sufficient protection, vaccination strategies usually require the application of one

or more booster injections. Here, factors such as dosage, frequency and timing of injections

can influence the protective levels reached. To determine the impact of current vaccination

strategies against malaria, we analysed the influence of vaccination regimens, differing in dosage

and frequency of injections, on the generation of organ-specific CD8+ T cell responses. We

identified the underlying cellular differentiation and migration pathway and determined the

impact of different vaccination doses on the build-up and maintenance of protection-mediating

liver-resident memory cells. Our results do not only provide a quantitative understanding of

CD8+ T cell responses elicited by immunisation, but can also be used to improve existing

vaccination approaches.

Understanding the impact of T cell-based vaccination regimes on the immune system requires

knowledge about the underlying cellular dynamics. While mathematical modelling allows the

determination of differentiation pathways and the quantification of cellular turnover, the reliabil-

ity of these analyses depends strongly on the quality of the available data. While the labelling of

cells has been a useful method to increase the amount of information within cellular data, it has

not been analysed so far how the design of applied labelling strategies affects the mathematical

estimation of cellular turnover. To this end, we determined the robustness of different labelling

strategies to infer cellular dynamics including data suffering from experimental limitations. Our

findings can be used as a guideline to determine cellular dynamics more accurately in future

experiments.



In summary, by combining experimental data and mathematical modelling our results do not

provide a quantitative understanding of CD8+ T cell responses in infectious diseases, but can

also be used to improve the efficiency and efficacy of T cell-based vaccines.
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Deutsche Zusammenfassung

CD8+ T-Zellen sind ein wichtiger Teil des adaptiven Immunsystems. Sie sind nicht nur in der

Lage, effizient infizierte Zellen zu töten, sondern können auch Schutz gegen Folgeinfektionen bie-

ten. Vor Kurzem zeigten T-Zell-basierte Impfstoffe, welche schützende CD8+ T-Zell-Antworten

hervorrufen können, auch ihre Wirksamkeit gegen verschieden Infektionskrankheiten, wie Ma-

laria oder HIV. Allerdings fehlt momentan noch genaueres Wissen über die zugrundeliegenden

schutzbietenden Prozesse, um diese Ansätze gezielt anzuwenden. In dieser Dissertation kombi-

nieren wir deswegen experimentelle Daten und mathematische Modellierung um CD8+ T-Zell-

Dynamiken in verschiedenen Infektionskrankheiten zu analysieren und quantifizieren.

Zunächst studierten wir eine spezielle Immunantwort, die sogenannte Gedächtnisinflation ,die

durch Zytomegalovirusinfektion (ZMV) hervorgerufen wird. Hier benutzten wir mathemati-

sche Modellierung um verschiedene Hypothese hinsichtlich der Entstehung und Erhaltung der

Gedächtnisinflation zu finden und analysierten wie virale Dynamiken die zugehörige CD8+ T-

Zell-Antwort beeinflussen. Da ZMV bereits als viraler Vektor benutzt wurde, welcher fremde

Epitope präsentiert, sind unsere Resultate relevant um die Effektivität von vektorbasierten Impf-

methoden zu verbessern.

Oftmals entsteht Schutz durch Vakzinierung erst nach der Zugabe einer oder mehrerer Boos-

terinjektionen. Hier können Faktoren wie Dosierung, Anzahl oder Zeitrahmen der Injektionen

über den bereitgestellten Impfschutz entscheiden. Deswegen analysierten wir den Einfluss von

verschiedenen Vakzinierungsstrategien, welche sich in der Anzahl ihrer Boosterinjektionen sowie

der verabreichten Dosis unterscheiden, in Bezug auf die Generierung organabhängiger CD8+ T-

Zell-Antworten gegen Malaria. Wir identifizierten den zugrundeliegenden Differentiations- und

Migrationspfad und modellierten den Effekt verschiedener Impfdosierungen auf die Entstehung

und Erhaltung schutzbietender CD8+ T-Zellen, welche in der Leber residieren. Unsere Resultate

erlauben es nicht nur, ein quantitatives Verständnis von durch Immunisierung hervorgerufenen

CD8+ T-Zell-Antworten zu entwickeln, sondern ermöglichen es auch, bestehende Vakzinierungs-

strategien zu verbessern.

Um den Effekt von T-Zell-basierten Vakzinierungsansätzen auf die Immunantwort zu verste-

hen, benötigt man Wissen über die zugrundeliegenden zellulären Dynamiken. Hier hängt die

Zuverlässigkeit mathematischer Modellierung, welche es erlaubt Differentiationswege zu identifi-

zieren und zelluläre Umsatzraten zu quantifizieren, stark von der Qualität der verfügbaren Daten

ab. Hier stellt das Markieren von Zellen eine nützliche Methode bereit, um den Informationsge-

halt von zellulären Daten zu erhöhen. Allerdings wurde bis jetzt noch nicht untersucht, wie das



Design von Markierungsstrategien die mathematische Schätzungen zellulärer Parameter beein-

flusst. Deswegen untersuchten wir die Robustheit verschiedener Markierungsstrategien bezüglich

der Schätzung zellulärer Dynamiken von simulierten Daten, inklusive Datensets, welche unter

experimentellen Limitierungen leiden. Unsere Ergebnisse können als Leitfaden benutzt werden,

um in Zukunft die Dynamiken zellulärer Systeme noch genauer zu schätzen.

Durch die Kombination experimenteller Daten und mathematischer Modellierung helfen un-

sere Resultate nicht nur dabei, unser quantitatives Verständnis von CD8+ T-Zell-Antworten in

Infektionskrankheiten zu erweitern, sondern können auch benutzt werden, um die Effizienz und

Effektivität T-Zell-basierter Impfstoffe zu verbessern.
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CHAPTER 1
General introduction

Getting sick is easy.

With bacteria, viruses and parasites seemingly lurking everywhere, waiting for a chance to

exploit the human organism as a nutrition source or reproduction machinery, our environment

presents a constant challenge to our health. Moreover, a constantly evolving and spatially

heterogeneous pathogen distribution means that new threats are literally just around the corner.

Luckily, we do not face these challenges unarmed. Due to the constant evolutionary pressure

over millions of years, we acquired a remarkably effective and efficient immune system, which is

not only able to control and eradicate a broad range of different diseases, but does also provide

protection against previously encountered pathogens, thereby increasing our resilience over the

course of our lifetime.

To mediate all these different functions, however, our immune system needs to be immensely

complex.

1.1 The innate and the adaptive immune system

Our immune system is remarkably competent in handling a wide range of different diseases, which

are caused by various pathogens, including viruses and bacteria. This efficacy is a result of the

tightly woven interplay of many different cell types, which exert a multitude of immunological

functions. The cells involved in immune responses are usually classified by belonging either

to the innate or the adaptive immune system. The innate immune system serves as first line

of defence and provides general protection against many different pathogens, e.g. by inducing

inflammation, phagocytosing foreign pathogens or killing infected cells. The adaptive immune

system, on the other hand, provides specifically tailored responses against infectious agents, such

as the production of pathogen-specific antibodies, the cytotoxic clearance of infected cells, or

the generation of immunological memory, which provides long-term protection against previously

encountered diseases [Kuby 1997]. Despite their classification into separate genera, the innate

and adaptive immune responses are intimately connected and cells of both domains are able to

stimulate to each other.
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CHAPTER 1. GENERAL INTRODUCTION

1.1.1 CD8+ T cells and their role in immune responses

CD8+ T cells (also known as cytotoxic T lymphocytes), are a major part of the adaptive immune

system. Their main function lies in the killing of infected cells and therefore the eradication of

intracellular pathogens, such as viruses or parasites (a sketch of the role of CD8+ T cells, their

functions and their interactions with other immune cells is shown in Fig. 1.1 A).

Every CD8+ T cell expresses a specific T cell receptor (TCR) on its surface, which can

only recognise a single antigen. CD8+ T cells are triggered by the presentation of pathogen-

specific epitopes on the surface of infected cells, which leads to the release of cytotoxic granules,

consisting mainly of perforin and granzymes, that induce cell death by apoptosis. These cytotoxic

granules are specifically released towards the direction of the target cell to minimise damage to

neighbouring tissue [Kuby 1997]. Because of the specificity of the TCR, every CD8+ T cell

targets only cells which present a matching antigen on their MHC I molecules.

Besides their cytotoxic effector function, CD8+ T cells also release interferon-γ (IFN-γ) and

tumour necrosis factor α (TNF-α), which leads to attraction, activation and stimulation of

different immune cells, such macrophages and neutrophils [Kambayashi et al. 2003; Ratner et al.

1993]. Likewise, the efficacy of CD8+ T cells can be increased by stimulatory cytokines secreted

by other immune cells, e.g. by interleukin-2 (IL-2) production from CD4+ T cells [Boyman et al.

2010].

Since the effector functions exerted by CD8+ T cells present powerful immunological weaponry,

their use needs to be tightly regulated. To acquire cytotoxicity, CD8+ T cells first need to be

activated by professional antigen-presenting cells (APCs), like dendritic cells, macrophages or B

cells. Most of the initial priming takes place in the T cell zones of lymph nodes and is mediated

by cross-presentation of antigens on the surface of matured dendritic cells [Haan et al. 2000;

Kurts et al. 2010]. However, to successfully induce CD8+ effector responses and to allow for the

formation of immunological memory, dendritic cells have to be licensed by CD4+ T cells first,

otherwise the CD8+ T cell responses are terminated early. [Allan et al. 2006; Smith et al. 2004].

All these factors guarantee that potent CD8+ T cell functions are only provided when necessary.

1.2 The dynamics of CD8+ T cell responses during infec-

tion

After egressing the thymus, where CD8+ T cells are tested for functionality and self-tolerance,

näıve, i.e. antigen-inexperienced, CD8+ T cells continuously recirculate throughout the vascu-

lature and secondary lymphoid organs until they encounter their cognate antigen [Kuby 1997].

Näıve T cells are thought to be long-lived and to divide in a homoeostatic fashion [Surh et

al. 2008]. When näıve T cells are activated by the presentation of their cognate antigen on

APCs, they start to proliferate extensively, which leads to a substantial increase in the number

of pathogen-specific CD8+ cells. It has been found that a single näıve cell can generate up to

hundreds of thousands daughter cells [Gerlach et al. 2013].
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1.2. THE DYNAMICS OF CD8+ T CELL RESPONSES DURING INFECTION

CD8+ T cell
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Figure 1.1: Immunological properties and phenotypes of CD8+ T cells: (A) The
sketch shows selected interactions of CD8+ T cells and other immune cells: CD8+ T cells are
activated and stimulated by APCs (i.a. dendritic cells, macrophages and B cells) which leads to
the exertion of cytotoxic effector functions and therefore to the death of infected cells. CD8+ T
cells also secrete cytokines that attract, activate and stimulate different immune cells. Likewise,
they react to cytokine secretion from other cells types. (B) A selection of CD8+ T cells subsets
with their corresponding surface marker expression and corresponding anatomical location are
shown. The following subsets are depicted (from left to right): näıve (TN), central memory
(TCM), effector memory (TEM), effector (TE) and tissue-resident memory T cells (TRM).

During clonal expansion, activated CD8+ T cells give rise to memory- and effector-like CD8+ T

cell subsets by acquiring different phenotypes and functions. All these subsets mediate different

actions during or after an infection (see section 1.3).

At the height of an induced CD8+ T cell immune response, most cells are belonging to the

class of effector cells, meaning they are able to release cytotoxic granules. Their high numbers

allows them to closely patrol the body tissues and to efficiently eradicate intracellular pathogens.

Once the infection is resolved, most effector CD8+ T cells die by the activation of apoptosis-

inducing pathways, leaving only long-lived memory-like cells behind [Krammer et al. 2007].

The establishment of immunological memory provides an important contribution towards future

protection against previously encountered pathogens, as memory T cells are able to mount robust

3



CHAPTER 1. GENERAL INTRODUCTION

and rapid immune responses upon reinfection [Bouneaud et al. 2005; Bachmann et al. 2005a;

Woodland et al. 2009].

1.3 CD8+ T cell subsets

Since their first classification in the 1970s, CD8+ T cells have turned out to be quite heteroge-

neous. While early classifications only distinguished between näıve, effector and memory cells,

the research in the last decades has lead to further fragmentation and the proposition of nu-

merous subsets [Masopust et al. 2007; Jameson et al. 2009; Sallusto et al. 2004; Mahnke et al.

2013]. Regarding the subset classification, however, there is some inconsistency in the literature,

as identical subset names have been used to define cells based on different properties such as

surface marker expression, effector functions, short- and long-term maintenance or anatomical

localisation [Masopust et al. 2013; Rocha et al. 2006; Ahmed et al. 2009]. To account for this

varying definitions, the following descriptions of the CD8+ T cell subsets1 summarise the phe-

notypes based on various characterisations found in literature. A sketch of the subsets, their

surface marker expression and their preferred anatomical localisation can be found in Fig. 1.1

B.

Näıve T cells (TN) Näıve T cells are cells that have not encountered their cognate antigen

yet. They recirculate between the secondary lymphoid organs, such as lymph nodes or spleen,

and proliferate homoeostatically [Surh et al. 2008]. The surface marker expression of TN is

usually defined as CD44-/CD62L+/CCR7+, and they show a variable expression of CD127

[Farber et al. 2014; Park et al. 2004]. In mice, it was recently estimated that for every antigen

around 80− 1200 specific näıve cells exist [Obar et al. 2008].

Central memory T cells (TCM) Central memory cells are long-lived T cells that arise after

an infection and provide lasting protection against the encountered pathogen [Farber et al. 2014;

Sallusto et al. 2004]. In case of reinfection, central memory cells show a superior expansion

capacity compared to näıve or effector memory cells, as they are able mount rapid and robust

T cell responses [Bachmann et al. 2005b; Huster et al. 2004; Wherry et al. 2003; Bouneaud

et al. 2005; Roberts et al. 2005]. TCM reside mostly in secondary lymphoid organs and are

characterised by the surface marker expression of CD44+/CD62L+/CCR7+/CD127+ [Arsenio

et al. 2014; Bachmann et al. 2005a; Kaech et al. 2007].

Effector memory T cells (TEM) As the name suggests, effector memory T cells combine

traits associated with both effector and memory compartments. They are mostly found in blood

and peripheral tissues where they provide immediate protection against intruding pathogens

by mounting rapid effector functions such as the secretion of cytokines [Sallusto et al. 2004;

Stemberger et al. 2007]. High levels of TEM were shown to protect against diseases like HIV

or malaria [Hansen et al. 2011; Schmidt et al. 2008]. Therefore, their efficient induction is one

of the major goals of T cell-based vaccine research (see section 1.4). Effector memory cells are

1Only the CD8+ T cell subsets relevant in this thesis are characterised.
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mostly classified as being CD44+/CD62L-/CCR7-, and, depending on the publication, either by

the lack or the expression of CD127, CD27 and KLRG1 [Arsenio et al. 2014; Bachmann et al.

2005a; Bassett et al. 2012; Bolinger et al. 2013; Buchholz et al. 2013; Farber et al. 2014].

Effector T cells (TE) Effector T cells, also known as short-lived effector cells, are cytotoxic

T cells that are responsible for the detection and eradication of infected cells and are mostly

present during acute infections. Effector cells are defined by the surface marker expression of

CD44+/CD62L-/CCR7-/CD127-/CD27-/KLRG1+ and the production of IFN-γ upon antigen

stimulation [Arsenio et al. 2014; Bassett et al. 2012; Buchholz et al. 2013; Stemberger et al.

2007].

Tissue resident memory T cells (TRM) Tissue-resident memory cells are a relatively recent

addition to the CD8+ T cell subsets and therefore still under a lot of investigation [Gebhardt

et al. 2009]. While it is known that they are patrolling organ-specific tissues with seemingly

no exposure to the blood [Fernandez-Ruiz et al. 2016], little is known about their genesis and

maintenance [Farber et al. 2014]. It is assumed that TRM provide immediate in situ protection

against intruding pathogens, as a high number of TRM correlates with protection against tissue-

specific disease [Fernandez-Ruiz et al. 2016; Thom et al. 2016]. TRM are characterised by the

expression of CD44+/CD62L-/CCR7-/CD69+/CD103+.

1.3.1 The CD8+ T cell differentiation pathway

Ever since the identification of different subsets, there has been an ongoing debate about the

underlying CD8+ T cell differentiation pathway. While early work focused mostly on the question

at which time during infection the memory compartment arises, current approaches face the

challenge to identify the differentiation pathways of the various CD8+ T cell subsets, which

might include spatial and temporal aspects as well.

Many hypotheses have been proposed over the last decades concerning the developmental path

of CD8+ T cells. Originally, the only distinction in the activated T cell pool was with respect

to memory and effector cells. As memory cells were simply defined as cells that are present

after an infection, the general assumption about the underlying CD8+ T cell differentiation

pathway was that näıve cells turn into effector cells upon antigen encounter and a fraction of

these would differentiate into long-lived memory cells during or after the resolution of the acute

infection [Althaus et al. 2007; Antia et al. 2003; De Boer et al. 2001] (see Figure 1.2 A). The

identification of heterogeneity in the memory population [Sallusto et al. 2004] resulted in the

revision of this pathway and questions about the generation and connection of central memory

and effector memory cells needed to be addressed [Bouneaud et al. 2005; Gerlach et al. 2010;

Kaech et al. 2007; Wherry et al. 2003; Crauste et al. 2017]. This eventually led to hypotheses of

memory stages preceding the effector stages [Kohler 2007; Buchholz et al. 2013], challenging the

previously established näıve-effector-memory CD8+ T cell differentiation pathways. As of today,

the ongoing identification of new CD8+ T cell subsets over the recent years [Jameson et al. 2009;

Farber et al. 2014] made it clear that our current understanding of CD8+ T cell differentiation
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dynamics is far from being complete and that more data and modelling approaches are needed

to uncover the whole picture.

Challenges regarding the pathway identification The challenges with respect to the

identification of the true differentiation pathway for CD8+ T cells, as well as the reporting of

seemingly contradictory differentiation patterns, can be partially attributed to some fundamen-

tal issues concerning the complexity of the underlying systems. One of these problems is the

inconsistency in terms of CD8+ T cell subset classification (see section 1.3). In previous studies,

for example, the distinction of TCM and TEM in mice was based on the expression of surface

markers CD127/CD62L [Bachmann et al. 2005a; Bassett et al. 2012], CCR7/CD62L [Wherry

et al. 2003; Bouneaud et al. 2005] or CD27/CD62L [Buchholz et al. 2013]. These differences in

subset classifications do not only leave room for ambiguity regarding the lineage identification,

but can potentially result in contradicting predictions about the differentiation dynamics (see

Fig. 1.2 B1).

Another problem is the open question, whether CD8+ T cell subsets represent fates or states.

A fate would imply that a cell moves along a predefined differentiation pathway, while a state

would allow some plasticity with respect to differentiation dynamics, as e.g. cells react to the

presence of immunological stimuli (see Fig. 1.2 B2). While there is some indication about

programmed proliferation, immunological factors are also likely to play a role in determining the

shaping of the CD8+ T cell response [Raue et al. 2013; Redeker et al. 2014].

Another obstacle arises from the anatomical distribution of different CD8+ T cell subsets: As

many of the expressed surface markers of the T cell subsets correspond to a specific anatomical

location [Masopust et al. 2013; Jung et al. 2010; Steinert et al. 2015], a lack of organ-specific

CD8+ T cell data might potentially bias the identification of the differentiation pathway (see

Fig. 1.2 B3). For example, while measurements of CD8+ T cell responses in the blood will

probably represent the general dynamics of TEM or TE , they are less likely to capture the

turnover of TCM and TRM pools, which preferentially localise in secondary lymphoid organs and

organ-tissues, respectively.

In summary, the identification of the underlying CD8+ T cell differentiation pathway is facing

several structural challenges that need to be properly addressed in order to reach conclusive

results.

1.3.2 Mathematical analysis of cellular dynamics

The application of mathematical methods has proven to be very useful to determine underlying

cellular differentiation pathways as it allows the comparison of different hypotheses by determin-

ing the likeliness of each hypothesis (e.g. by using the Akaike or Bayesian information criterion

[Burnham et al. 2003]). These methods do not only take the ability of each mathematical model

to reproduce the experimental data into account, but also penalise for complexity with respect to

the number of model parameters. Hence, mathematical analysis makes it possible to distinguish

between likely and unlikely cellular interactions while simultaneously help to select the simplest

model which is able to explain the observed cellular dynamics. This kind of model selection
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Figure 1.2: Previously proposed CD8+ T cell differentiation pathways and challenges
regarding the identification of cellular lineages: (A) A selection of previously proposed
pathways for CD8+ T cell differentiation. Originally, it was assumed that näıve CD8+ T cells
(TN) give rise to effector cells (TE), which can turn into memory cells (TM) during or after
an acute infection [De Boer et al. 2001]. This general trend was also found, as the subsets
became more diverse and central and effector memory cells (TCM and TEM) were included in
the models [Wherry et al. 2003]. However, this pathway has been recently challenged by models
that assume the memory stage precedes the effector stage [Kohler 2007; Buchholz et al. 2013].
Additionally, the identification of new cellular subsets over the last years, such as memory stem
cells (TSCM) or tissue-resident memory cells (TRM) asks for a further revision of the cellular
differentiation dynamics [Farber et al. 2014]. (B) Potential pitfalls regarding the identification
of cellular lineages: 1) Focussing on different properties can result in contradicting results about
the underlying dynamics: While the shape returns to its original form in our example, the colour
stays permanently changed. 2) The problem of cell fate vs. cell state: The cellular differentiation
dynamics might depend on a predefined pathway (fate) or external stimuli (state). 3) Neglecting
spatial compartments can bias the predicted dynamics: Conversion from orange to green circles
is only found in the upper compartment in our example and would not be predicted if only the
lower compartment was to be analysed.

has also been extensively used for determining the dynamics of CD8+ T cells. For example,

previous studies have analysed possible differentiation pathways by testing and comparing up
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to several hundred different models [Buchholz et al. 2013; Crauste et al. 2017]. In the future,

increasingly available computational resources will make it possible to test even more models,

therefore allowing to analyse the underlying pathways of very complex cellular systems.

Determining the cellular lineage differentiation pathway is only one side of the coin, quantifying

the cellular dynamics is the other. Here, mathematical modelling has proven to be an essential

tool as well. For example, the mathematical studies analysing cellular lineages depicted in Fig.

1.2 A [De Boer et al. 2001; Kohler 2007; Buchholz et al. 2013] also led to the estimation of

differentiation, proliferation and death rates, and therefore gave insight into cellular half-lives,

doubling times and long-term maintenance. Additionally, mathematical modelling was used to

quantify cellular migration [Ganusov et al. 2014], the influence of cytokines on cellular turnover

[Arias et al. 2014] or the division-dependent cellular expansion dynamics [Yates et al. 2007],

thereby broadening our understanding of cellular dynamics in many different ways. Most of

these studies used ordinary differential equations to model the cellular kinetics, which allows to

determine the mean dynamics observed in cellular systems. Other approaches include partial

differential equations to incorporate spatial aspects [Stromberg et al. 2012; Bouchnita et al.

2017] or stochastic modelling to determine the contribution of individual variations [Luciani et

al. 2001; Currie et al. 2012]. Here, the broadness of the mathematical toolbox allows to quantify

cellular processes from almost all kinds of experimental data.

Retrieving information from cellular data However, the amount of information obtainable

by mathematical modelling is limited to the amount of information which is present within the

biological data. For example, measuring only the numbers of specific type of cell allows for

the quantification of the corresponding mean population dynamics, but contains no information

about individual cell behaviour. Therefore, biological experiments frequently use cellular markers

to make individual processes visible. Common labelling methods include the use of genetic

barcodes for lineage determination [Schumacher et al. 2010; Gerlach et al. 2013], the introduction

of congenic markers for subset classification [Shen et al. 1985; Kearney et al. 1994; Buchholz

et al. 2013] or the application of proliferation markers, such as bromodeoxyuridine (BrDU) or

deuterated glucose [Mohri et al. 1998; Borghans et al. 2017]. Mathematical analysis based

on biological data using cellular markers allows for a more accurate determination of rates

describing cellular turnover [Kaiser et al. 2013; Buchholz et al. 2013; Borghans et al. 2017],

thus improving the reliability of model predictions. As not all labelling strategies give the same

amount of information the set-up of the biological experiments has to be carefully planned.

Here, mathematical modelling can be used to determine the reliability of experimental designs

and therefore also serves as a tool to measure the amount and quality of information which is

obtainable from cellular experiments (see chapter 5).

1.4 T cell-based vaccines

Successful vaccination programs against pathogens like smallpox, polio or measles have helped to

control or even eradicate these infectious diseases, thus effectively preventing millions of deaths

per year. The development of vaccines is still a major part of medical research and its relevance
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today is highlighted by a recent WHO announcement that declared our decade as the “decade

of vaccines”.

The basic idea behind every vaccination approach is to generate immune responses that will

result in effective and long-lasting protection against a specific pathogen. To this end, vac-

cines stimulate the adaptive immune system as long-term protection requires the generation

of immunological memory. Pre-existing memory cells allow for a robust and quick expansion

of pathogen-specific immune cells in case the disease is actually encountered. Many vaccines

induce a pronounced B cell response as various infections can be prevented by the release of

pathogen-specific antibodies [Clem 2011].

However, for some diseases, such as malaria or HIV, the production of antibodies alone is

not sufficient to efficiently clear an infection. In these cases, a promising approach lies in the

generation of vaccines that induce pronounced CD8+ T cell responses, which could specifically

target intracellularly replicating pathogens.

As of today, there has been a lot of research on the topic of T cell-based (also known as T

cell-inducing) vaccines [Gilbert 2012; Koup et al. 2011; Korber et al. 2009]. Previous studies

have shown that the induction of high numbers of effector memory CD8+ T cells resulted in

protection of rhesus macaques against SIV infection [Liu et al. 2009; Hansen et al. 2011; Hansen

et al. 2013b]. In these studies, the use of recombinant adeno- and cytomegalovirus vectors

expressing SIV proteins elicited pronounced and protective immune responses. The importance

of readily available CD8+ T cell responses has also been shown for malaria vaccinations, where

high levels of CD8+ T cells correlated with protection against the disease [Schmidt et al. 2008;

Schmidt et al. 2010; Seder et al. 2013; Fernandez-Ruiz et al. 2016].

Hence, an aim for effective T cell-based vaccines in humans lies in the induction of high levels

of pathogen-specific CD8+ T cell responses, that can exhibit immediate effector functions and are

preferable located at the main site of infection. However, tailoring those vaccination approaches

is currently hampered by a lack of knowledge regarding the underlying cellular dynamics. Thus,

identifying and quantifying the cellular responses represent important steps for the creation of

effective T cell-based vaccines [Korber et al. 2009].

1.5 The outline of this thesis

The creation of efficient and effective T cell-based vaccines is a promising approach to tackle

many of today’s most dangerous infectious diseases. However, to achieve this goal, more research

is necessary, especially in terms of the identification of the underlying CD8+ T cell differentiation

pathway as well as the quantification of CD8+ T cell turnover in vivo. In this thesis, we combine

experimental data and mathematical modelling to address some of these topics, which allows

us to gain insight into cellular processes that are difficult to be determined from biological

experiments alone.

A major goal with respect to protective T cell-based vaccination approaches lies in the gen-

eration of sufficient readily available disease-specific cytotoxic cells. As it is known that cy-

tomegalovirus elicits high levels of effector-like CD8+ T cells over long periods of times, under-

standing the factors influencing this particular immune response is of special interest in medical
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research. In chapter 3 we therefore analyse this atypical CD8+ T cell response mathematically.

We test different biological hypotheses regarding the generation of this ’memory-inflation’ re-

sponse and quantify the underlying cellular processes. Additionally, we analyse the influence

of viral reactivation patterns on the shaping of the inflationary CD8+ T cell response. Since

cytomegalovirus can serve as a recombinant vector expressing viral epitopes, our findings are

relevant for determining the efficacy of vector-based vaccination approaches.

In many cases, vaccination-mediated protection requires the application of one or more booster

injections. Here, factors such as dosage, frequency and timing of injections can determine the

protective levels reached by vaccination. To this end, we assess the influence of different malaria

vaccination strategies on the generation of organ-specific CD8+ T cell responses in chapter 4.

To determine the underlying cellular differentiation pathway we established an unbiased model

selection algorithm, which allows to efficiently search for the best model describing the exper-

imental data given a huge variety of possible models. By successfully applying this algorithm

to the malaria data, we can identify and quantify the CD8+ T cell responses in spleen and

liver, which are elicited by different whole sporozoite vaccination approaches. Furthermore, we

model the impact of different vaccination doses on the build-up and maintenance of protection-

mediating liver-resident memory cells. Our results can be used to improve existing vaccination

strategies in terms of dosage and frequency of immunisations.

Understanding the impact of T cell-based vaccination regimes requires knowledge about the

underlying cellular dynamics. While mathematical modelling allows the determination of differ-

entiation pathways and the quantification of cellular turnover, the reliability of these analyses

depends strongly on the provided biological data. Therefore, we study in chapter 5 how the la-

belling of cells affects the estimation of cellular turnover, such as proliferation and differentiation

dynamics. Here, we establish suitable labelling strategies and determine the robustness of math-

ematical estimates derived from data suffering from experimental limitations, such as incomplete

transfer or sampling of cells. Our theoretical findings can help to improve the quantification of

cellular dynamics in the future.

Taken together, the analyses performed in this thesis help to broaden our understanding of

CD8+ T cell dynamics in infectious diseases and have potential implications for the design of T

cell-based vaccines.
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CHAPTER 2
Materials and Methods

2.1 General methods

2.1.1 Parameter estimation

Unless specified otherwise, all simulations were carried out using the R-language of statistical

computing [R Core Team 2016]. Data fitting and parameter estimation was done based on

the built-in optim-function using the default ’Nelder-Mead’ method [Avriel 1976]. Each fitting

routine was run with at least five different randomly selected initial conditions. Additionally,

to guarantee convergence, the fitted output of each run was again used as an initial condition

for a new run. This re-fitting was done until no further change in the fitness measurement1 was

observed.

2.1.2 Model selection

Model comparison was based on the corrected Akaike information criterion (AICc, see [Burnham

et al. 2003]). The AICc is defined as

AICc := −2LL+ 2k +
2k(k + 1)

n− k − 1
,

where −2LL stands for the negative log-likelihood of the model describing the data, k denotes

the number of model parameters and n is the number of data points.

Given a number of n different models, their goodness is assessed by calculating the differences

in their AICcs:

∆AICci := AICci − min
i=1,..,n

{AICci} .

1We used both maximum likelihood approaches and χ2-minimization approaches, see the following sections.
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These values can be used to measure the support each model has given all other models by

calculating Akaike weights, which are defined as

wi :=
e−

∆AICci
2∑n

j=1 e
−

∆AICcj
2

Alternatively, evidence ratios measuring the support of different model types are calculate by∑
i∈A wi∑
j∈B wj

,

where A and B are sets containing models with specific properties. Here, the normalised prob-

ability can be calculated by taking B as the set that contains all tested models.

According to [Burnham et al. 2003], the performance of different models can be quickly assessed

by looking at the ∆AICc: Models with a ∆AICc < 2 are performing almost equally well as the

best model, while models having a ∆AICc > 10 are basically not supported.

2.2 Materials and Methods of chapter 3

2.2.1 Experimental data

Näıve C57BL/6 mice were infected with intravenously injected 5 × 106 pfu MCMV-∆157 and

blood was sampled at several time points between day 7 and 70 p.i. Cells were analysed by flow

cytometry with respect to their surface marker expression, including markers for CD8, CD44,

CD127, CD62L and KLRG1 and their specificity for MCMV epitopes M38 (inflationary) and

M45 (non-inflationary). Cell numbers per millilitre blood were calculated based on extrapolation

with a given number of added fluorescently-labelled PE+ beads. The data is shown in Fig. 2.1.

Measurements having a living leukocyte percentage lower than 90% or a measured PE+ bead

number higher than 104 were excluded from the mathematical analysis, as these values indicated

corrupt data. All experiments were performed by the lab of Prof. Dr. A. Oxenius, Institute of

Microbiology, ETH Zürich.

2.2.2 Model fitting

All models were fitted to the data based on a nonlinear mixed effects model (NLMEM) ap-

proach [Pinheiro et al. 1995]. This method assumes that data from different individuals can be

described based on fixed (i.e. population) and random (i.e. individual) effects. Having data

from n individuals, the aim of an NLMEM approach is to find parameter sets ~θi, i = 1, ..., n,

which maximise the likelihood to observe the experimental data. Before fitting, the underlying

distribution of the parameters needs to specified. In our case, we assumed that the parameters

are log-normally distributed and can be expressed in the form of

log(~θi) = log(~θpop) + ~ψi .
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Figure 2.1: Inflationary and non-inflationary CD8+ T cell dynamics during MCMV
infection: (A) Longitudinal data of inflationary M38-specific CD8+ T cells in the blood for
seven different mice. Measurements were obtained over the course of 70 days after infection
with MCMV. (B) The corresponding data of non-inflationary M45-specific CD8+ T cells. All
experiments were performed by the lab of Prof. Dr. A. Oxenius, Institute of Microbiology, ETH
Zürich. For details see Materials and Methods 2.2.1.

with ~θpop being the vector of the fixed population effects and ~ψi ∼ N (0, σ2Ω) being normally

distributed individual effects. The variance-covariance matrix, Ω, was chosen to be the identity

matrix (Ω = 1) in our simulations. In order to find the population parameters (~θpop, σ
2), it is

necessary to maximise the following likelihood

P(Y |~θpop;σ2) =

∫
P(Y |~θpop;σ2; ~ψ)P(~ψ)d~ψ ,

where Y is the experimental data. Because of the non-linearity in the underlying models (see sec-

tion 3.2), this value needs to be approximated numerically. Here, our results are based on calcula-

tions performed by the software Monolix (Version 2016R1, see http://lixoft.com/products/monolix/)
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using the stochastic approximation expectation-maximisation algorithm [Delyon et al. 1999] and

assuming a proportional error in the measurements. Once the population parameters are esti-

mated, the software determines the individual parameter sets ~θi, i = 1, ..., n by maximising the

corresponding likelihood:

P(~θi|Yi; ~θpop;σ2) ,

where Yi denotes the data belonging to the ith individual.

2.3 Materials and Methods of chapter 4

2.3.1 Experimental data

In order to test the influence of dosage and frequency of vaccination regimens, groups of C57BL/6

mice received one, two or three intravenous injections with different doses of Plasmodium berghei

radiation-attenuated sporozoites (PbRAS) or salivary gland debris (mock control). The irradi-

ation of sporozoites is assumed to prevent the development of liver-stage schizonts, therefore

inducing a pre-erythrocytic termination of Plasmodium infection [Hoffman et al. 2002]. Three

different doses were applied: subprotective (1× 103 PbRAS), normal (1× 104 PbRAS) and high

(1×105 PbRAS). Organs were harvested and the number of CD8+ T cells in spleen and liver was

analysed at the time points depicted in Fig. 2.2. Additionally, groups of mice were challenged

with 1× 104 infectious P. berghei sporozoites to assess protective efficacy.

The gathered samples were analysed by FACS and cells were gated for the surface markers

CD8, CD44, CD62L and CD69. CD8+ T cell populations were classified by their expression of

markers: central memory (CD44+/CD62L+), effector memory/effector (CD44+/CD62L−/CD69−)

and tissue-resident memory cells (CD44+/CD62L−/CD69+).

To assess the pathogen-specific response, the cell numbers were normalised by subtracting the

corresponding subset levels measured in näıve mice. The adjusted data is shown in Fig. 2.3.

All experiments were performed by the lab of Prof. Dr. A.-K. Mueller, Centre for Infectious

Diseases, Parasitology Unit, University Hospital Heidelberg.

CN2 CH2 CS2 CS3 CN2,d 118 CH2,d 118

3/6 7/7 0/3 0/3 6/8 7/8

Table 2.1: Number of mice that showed sterile protection upon challenge (C) with different
dosages of infectious sporozoites. For the corresponding groups see Fig. 2.3. All experiments
were performed by the lab of Prof. Dr. A.-K. Mueller, Centre for Infectious Diseases, Parasitol-
ogy Unit, University Hospital Heidelberg.

2.3.2 Quantifying the interaction between spleen and liver

To quantify the effect of boost and dosing, Dr. F. Graw developed a boost-effect model, which

incorporates a negative feedback from spleen to liver (R. Frank, M. Gabel, K. Heiss, A.-K.
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Mueller, F. Graw, manuscript in preparation). The model is given as

TEMS(b, d) =

[
1 + λd

(
1− T2

EML

T2
EML + Ω2

EML

)b−1]
TEMS(b− 1, d) ,

where b is the number of boosts, d the dose (being either subprotective, normal or high), T. the

number of effector memory T cells in either spleen or liver, λd the dose-dependent expansion

factor and ΩEML the level of effector memory cells in the liver at which the saturation reaches

half of its maximal value. The parameters λ. and ΩEML were estimated based on the data

given in section 2.3.1. The 95% confidence interval for ΩEML was estimated to range from

195, 000 to 269, 000 cells, with the best estimate being 236, 000 cells, which we used in our model

parametrisation in chapter 4.

2.3.3 Parameter estimation

Models were fitted based on maximum likelihood estimation approach and for each model the

negative log-likelihood

−2LL = min
θ

n∑
i=1

(
f(θ, ti)− µi

σi

)2

was minimised. Here, ti, i = 1, ..., n denotes the measurement times of the experimental data,

µi the corresponding data mean, σi the standard error of the mean and f(·) the simulated

prediction given a set of model parameters θ.

The 95% confidence intervals for the parameters were calculate based on a profile likelihood

approach [Raue et al. 2009]. Given a parameter ψ ∈ θ, the corresponding confidence interval is

defined as

CIψ =
{
ψ| − 2LLψ + 2LL < χ2

{0.95,1}

}
,

where −2LLψ is the negative log-likelihood estimate obtained by fitting the model with a fixed

value of ψ to the data and χ2
{0.95,1}(≈ 3.84) is the 95%-quantile of the χ2-distribution with one

degree of freedom.
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Figure 2.2: Sketch of the experimental protocol: Boxes indicate the respective time points
of vaccination shots (black) and harvests (coloured). Mice were either vaccinated with mosquito
salivary gland debris (mock control (M) - grey boxes) or radiation attenuated sporozoites of
different dosages (normal dose (N) - blue, high dose (H) - light blue, subprotective dose (S) -
turquoise). Additionally, challenge experiments were performed by administering live P.berghei
parasites (red boxes). Timing between shots was either 14 days (black, orange and green arrows),
or first 14, then 21 days (purple arrows, group NV3d 139). Experiments were performed by the
lab of Prof. Dr. A.-K. Mueller, Centre for Infectious Diseases, Parasitology Unit, University
Hospital Heidelberg.
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Figure 2.3: The number of CD8+ T cell subset in different organs: Barplots show the
mean ± SEM of the different groups depicted in Fig. 2.2 for spleen and liver according to prime
(P, black), prime-boost (PB, orange), prime-boost-boost (PBB, green), varied prime-boost-boost
(PBBvar, purple) and mock vaccination (grey). Panels show the the number of central memory
cells in spleen (TCM), the number of effector memory/effector cells (TEMS) and the combined
number of effector/effector memory and tissue-resident memory cells (TEML+RM) in the liver.
All experiments were performed by the lab of Prof. Dr. A.-K. Mueller, Centre for Infectious
Diseases, Parasitology Unit, University Hospital Heidelberg.
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2.4 Materials and Methods of chapter 5

2.4.1 Parameter estimation

Estimates for the model parameters were obtained by fitting the predicted summary statistics

for each cell population to the stochastically generated data. The predicted summary statistics,

i.e. the expected mean (E), the coefficients of variation (CV) and - depending on the model

- the correlation coefficients (CC), are obtained by solving the corresponding master equations

of the systems specified in section 5.2.1 (see Appendix C.2 for a detailed description of the

calculations). The fitting procedure is based on Pearson’s χ2-minimisation [Berkson 1980], which

was chosen to avoid assumptions about the underlying distributions of the summary statistics.

Let O = (OE,OCV,OCC)) be the observed and P(~θ) = (PE(~θ),PCV(θ),PCC(θ))) the predicted

summary statistics, where θ denotes a set of model parameters. The best parameter set is then

calculated by minimising

min
θ

∣∣∣∣ (P(θ)−O)2

P(θ)

∣∣∣∣ .
Confidence intervals for parameter estimates were obtained by bootstrapping the data using

the built-in R-package boot, which are calculated based on Efron’s non-parametric and acceler-

ated bootstrap (BCa) method [Carpenter et al. 2000] with 999 repeats and a significance level

of α = 0.05 (see also Fig. 5.3.1 B).

2.4.2 Evaluating the quality of parameter estimates

The appropriateness of different labelling strategies to retrieve the underlying cellular dynamics

was determined by calculating and comparing the following statistical quantities derived from

Burton et al. [Burton et al. 2006].

Bias: The bias indicates how much the mean parameter estimate deviates from the true value.

Let θ̂i, i = 1, ...,m be estimates of the true parameter θ, with θ̂ := 1
m

∑m
i=1 θ̂i defining the

empirical mean. The bias is then calculated by

Bias := θ̂ − θ . (2.1)

Percentage bias: The percentage bias shows on a relative scale how much the mean parameter

estimate differs from the true value and therefore allows the comparison of values based on

different scales.

The percentage bias is defined by

pBias :=
θ̂ − θ
θ

. (2.2)
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Root-mean-square error (RMSE): The root-mean-square error serves as a measure to

describe the deviation of the estimators and is defined as

RMSE :=

√
(θ̂ − θ)2 + Var(θ̂) , (2.3)

with Var(θ̂) := 1
m−1

∑m
i=1(θi − θ̂)2 being the sample variance.

Mean confidence interval length (MCIL): The MCIL serves as a measure of uncertainty

for the parameter estimate. If CIi = [ai, bi] is the estimated confidence interval for parameter θ

in run i, with l(CIi) = bi−ai defining the length of the confidence interval, the mean confidence

interval length calculates as

MCIL :=
1

m

m∑
i=1

l(CIi) , (2.4)

where m denotes the total number of simulation runs.

In some cases, the MCIL cannot be calculated because at least one of the calculated confidence

intervals does not have an upper bound (meaning all values above a certain threshold are equally

likely). In the plots, this is indicated by a grey coloured box for the respective parameter

combination.

False coverage rate (FCR): The false coverage rate is defined as the fraction of simulation

runs in which the estimated confidence interval does not contain the true parameter.
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CHAPTER 3
CD8+ T cell dynamics in MCMV infection

3.1 Introduction

Cytomegaloviruses (CMVs) are a group of species-specific doubled-stranded DNA viruses, which

belong to the family of herpesviruses (Herpesviridae) [Davison et al. 2009]. They are known

to cause life-long persistent infections in different mammal species, including mice (MCMV1),

rhesus monkeys (RhCMV) and humans (HCMV). It is estimated that the prevalence rate of

CMV infections can reach up to 90% in certain human subpopulations [Colugnati et al. 2007].

Although CMV infections are usually clinically asymptomatic in immunocompetent hosts, they

can be a major health issue in immunocompromised individuals [Krmpotic et al. 2002].

The course of an infection with CMV can be divided into an acute and a persistent phase:

During acute infection, the virus replicates rapidly and spreads throughout different host organs

such as spleen, lungs and liver [Zhang et al. 2016; Kurz et al. 1999]. The ongoing viral spread

activates the immune system, which starts clearing the virus, although it is hampered by a

number of viral immune-evasive strategies, such as the down-regulation of MHC I molecules

or the expression of decoy receptors [Reddehase 2002; Hengel et al. 1998]. After a couple of

days, CMV enters a stage of latency, which leads to the establishment of a persistent infection

in the host [Brune et al. 2017; Reddehase et al. 2002]. Preferential sites of latency include the

salivary gland and endothelial cells [Seckert et al. 2009; Thom et al. 2015; Loewendorf et al.

2011]. During latency, the virus is assumed to reactivate sporadically to maintain the status of a

persistent infection and to allow for horizontal transmission to other susceptible hosts [Bolinger

et al. 2013; Campbell et al. 2008; Seckert et al. 2012].

3.1.1 CMV infection induces CD8+ T cell inflation

Contrary to most other diseases, CMV infection triggers two different kinds of CD8+ T cell

responses, termed “inflationary” and “non-inflationary” response [Sierro et al. 2005; Munks et

al. 2006; Kim et al. 2015]. The dynamics of non-inflationary T cells follows the commonly

observed ’expansion-contraction-memory maintenance’ dynamics: During the initial phase of

1According to a recent taxiconomical change proposed by the International Comitee on Taxonomy of Viruses
[Aiaenssens et al. 2017], MCMV is now reclassified as murid betaherpesvirus-1 belonging to the newly established
group of Muromegaloviruses instead of Cytomegaloviruses. However, we will stick with the old terminology as it
is still widely used in the present literature.
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infection, non-inflationary CD8+ T cells increase massively in numbers, but once the acute

infection is cleared, they die off rapidly and only a small pool of memory T cells is maintained

long-term (see section 1.2 and Fig. 3.1 A). Non-inflationary responses are observed for CD8+

T cells specific for the CMV epitopes M45 or M57 [Munks et al. 2006]. On the other hand,

inflationary T cells are also expanding during the acute phase, but instead of contracting at the

onset of the persistent infection, high levels of T cells are maintained over time (see Fig. 3.1 A).

These inflated levels of T cells also show a markedly different composition of T cell phenotypes

compared to their non-inflationary counterparts, as most of the maintained inflationary T cells

do not exhibit a central memory but rather an effector memory or effector phenotype [Snyder

et al. 2008; Hertoghs et al. 2010; Vieira Braga et al. 2015]. Inflationary responses are found for

T cells specific for viral epitopes M38 or IE3 [Munks et al. 2006].

The generation and maintenance of elevated CD8+ T cell responses over the course of a

persistent CMV infection is known as “memory inflation” [Karrer et al. 2003]. The feature of

CMV-induced memory inflation has garnered a lot of interest from immunologists: As CMV can

be used as a vaccine vector expressing pathogen-specific epitopes, it can generate high levels of

protection-mediating CD8+ T cell responses against diseases such as HIV and malaria [Hansen

et al. 2013a; O’Hara et al. 2012; Klenerman 2016; Fruh et al. 2017]. As HCMV and MCMV share

many characteristics, studies analysing the phenomenon of memory inflation are often based on

experiments in mice [Reddehase et al. 2002].

3.1.2 Generation and maintenance of memory inflation

Although several studies have broadened our understanding of the causes of memory inflation

over the recent years, many questions about the generation and maintenance of the inflationary

responses are still left unanswered.

Much progress has been made in determining why memory inflation occurs for certain but not

all CMV-specific epitopes. Recent studies indicate a critical involvement of peptide-processing

by the immunoproteasome and the localisation of the respective epitope in the CMV genome,

as it was shown that recombination of the genome results in the inflation of different epitopes

[Dekhtiarenko et al. 2016; Bolinger et al. 2013; Hutchinson et al. 2011]. Furthermore, it was found

that antigen presentation by non-haematopoietic cells is critical to sustain memory inflation

[Torti et al. 2011b; Seckert et al. 2011], which can be induced even if the initial priming of CD8+

T cells is hampered [Torti et al. 2011a].

However, the exact location of the cells that drive memory inflation has not been determined

yet. One study found that central memory T cells in lymph nodes are dividing rapidly during

MCMV infection and therefore suggested that memory inflation is driven by proliferating T cells

in the lymph nodes [Torti et al. 2011b]. This hypothesis was tested in another study, in which

they blocked the egress of T cells from the lymph nodes [Smith et al. 2014]. However, they

found that memory inflation was not abrogated. Instead they observed that most inflationary

cells have access to the blood supply and therefore argued that memory inflation is dependent

on antigen presentation by cells with access to the vasculature, as e.g. endothelial cells.
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Another currently open question addresses the role of viral dynamics in the shaping and

maintenance of memory inflation. It was found that inflationary T cells have a rather short half-

life, which indicates the need for a constant replacement of lost cells by a source compartment

[Snyder et al. 2008]. However, no viral load is detectable experimentally during the late stages of

infection [Snyder et al. 2011]. Besides the possibility of a continuous viral antigen presentation

with viral loads below the detection limit [Seckert et al. 2012], this has led to the hypothesis of

memory inflation being dependent on sporadic reactivation of CMV from latency [Sims et al.

2015]. It is assumed that viral reactivation can be initiated by local inflammation or a decreased

immune pressure [Reddehase et al. 2002]. However, how a fluctuating antigen stimulus would

affect the long-term stability of the inflationary T cell pool over time (see Fig. 3.1 B) has not

been determined yet.

3.1.3 Chapter overview

Due to its intriguing CD8+ T cell responses and its potential use as a vaccine vector, there have

been lots of studies about T cell dynamics in CMV infection. However, up to now, the factors

involved in the generation and maintenance of memory inflation remain poorly understood.

To gain new insights into the cellular dynamics during CMV infection, we combined mathe-

matical modelling with experimental data measuring CD8+ T cell dynamics in MCMV-infected

mices, which allowed us to not only distinguish between different modes of memory inflation

maintenance, but also to quantify the underlying cellular dynamics and to elucidate the po-

tential influence of sporadically reactivating virus on the shaping of inflationary CD8+ T cell

responses. To our knowledge, the present work also provides the first mathematical analysis of

MCMV-induced memory inflation.

This chapter is structured as follows: In sections 3.2 - 3.4, we use mathematical modelling to

determine in which way the inflationary and non-inflationary CD8+ T cell response are main-

tained. To this end, we set up different mathematical models, describing memory inflation either

by blood-based restimulation or by fuelling from external compartments (section 3.2), and fit

them to the inflationary (section 3.3) and non-inflationary data (section 3.4) obtained from lon-

gitudinal blood measurements of MCMV-infected mice (see Fig. 2.1). In section 3.5, we analyse

how a sporadically reactivating virus would shape the corresponding T cell response and which

factors determine the long-term levels of inflationary CD8+ T cells.

In summary, our results provide a quantitative understanding of the factors determining the

creation and maintenance of memory inflation.

3.2 Mathematical models of memory inflation

To test whether inflationary T cells are maintained primarily by stimulation in the blood periph-

ery or are rather fuelled by an external compartment, e.g. by T cells residing in lymph nodes,

we developed several models of different complexity for each of the two hypotheses.
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Figure 3.1: CD8+ T cell dynamics during CMV infection: (A) CMV induces inflationary
(red) and non-inflationary T cell responses (blue). Inflationary responses are maintaining high
numbers of effector and effector memory T cells over the course of the persistent infection, while
non-inflationary responses decline in numbers and maintain mostly central memory cells once
the acute infection is resolved. (B) Possible virus and T cell dynamics during latency. Constant
virus replication below the detection limit would result in a stable inflationary response over time
(red solid lines). On the other hand, a sporadic reactivation of virus could trigger oscillating or
highly variable T cell dynamics (red dotted lines).

3.2.1 Blood-based reactivation models

According to the theory proposed by [Smith et al. 2014], the maintenance of the inflationary

pool is dependent on the presentation of viral antigen by cells with access to the blood supply.

We will use the following models to describe the possible interactions of viral load and CD8+ T

cells in the vasculature.

Virus-dynamics model (VD) Describing the dependency of MCMV and CD8+ T cells in a

simple manner, we set up a virus-dynamics model, which is based on Lotka–Volterra equations.

The system of ODEs is given as:

dV

dt
= ρVV − kV TE

dTE
dt

=
(
ρTV − δ

)
TE .

(3.1)

Here, V denotes the viral load, which triggers the immune system, and TE the number of CD8+

T cells. The replication and proliferation rates of virus and T cells are denoted by ρV and ρT,

respectively. Virus is assumed to be cleared by T cells at rate k and CD8+ T cells die over time

based on the death rate δ. Including the initial value for the CD8+ T cells at day 7 p.i. (T7),

the VD model has five different parameters. As no data for the viral load was available we set

the initial value for the viral load to V7 = 1/ml.

Non-haematopoietic reservoir model (NR) To test the hypothesis that inflationary res-

timulation is mainly triggered by antigen presentation on non-haematopoietic cells [Torti et
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al. 2011b; Smith et al. 2014], we expanded the virus-dynamics model by splitting the viral

load into two different compartments, representing the stimulus during acute infection and

the non-haematopoietic stimulus during persistent infection. Here, we assume that the non-

haematopoietic viral reservoir builds up over the course of the acute infection and reaches a

constant level shortly after. Additionally, we assume that CD8+ T cells are not able to deplete

the non-haematopoietic viral reservoir2.

The system of ordinary differential equations describing these dynamics are given as

dV

dt
= ρVV − kV TE

dR

dt
= (βV + ρRR)(1−R)

dTE
dt

=
(
ρT(V +R)− δ

)
TE ,

(3.2)

where V denotes the viral stimulus during acute infection, R the viral load in the latent non-

haematopoietic reservoir and TE the number of CD8+ T cells. The expansion rates of virus (acute

and latent) and T cells are denoted by ρV, ρR and ρT, respectively. The viral load during acute

infection is assumed to be cleared by CD8+ T cells at rate k and infects non-haematopoietic

cells at rate β. Since no data about the viral load is available, we set the limit of the non-

haematopoietic reservoir equal to one. CD8+ T cells are assumed to proliferate proportionally

to the overall (i.e. acute + latent) viral load and die with rate δ. Together with the initial

conditions V7 and T7 (the initial viral load in the non-haematopoietic reservoir is set to zero),

the NR model has eight different parameters.

Expanded non-haematopoietic reservoir model (ENR) The expanded non-haematopoietic

reservoir model is almost identical to the NR model. The only difference is that the viral

transmission from acute to latent stages is not subject to the limit of the non-haematopoietic

reservoir. Therefore, the CD8+ T cells can initially receive a stronger stimulus before the non-

haematopoietic steady state is reached.

The expanded non-haematopoietic reservoir model is defined as:

dV

dt
= ρVV − kV TE

dR

dt
= βV + ρRR(1−R)

dTE
dt

=
(
ρT(V +R)− δ

)
TE .

(3.3)

The ENR model has eight different parameters.

2This restriction was imposed to guarantee a long-term viral steady state and does not mean that CD8+ T
cells are not able to clear infected cells. Biologically, it rather corresponds to a balance with respect to new
infections and lysing of infected cells.

25



CHAPTER 3. CD8+ T CELL DYNAMICS IN MCMV INFECTION

3.2.2 Influx-dependent reactivation models

According to Torti et al., memory inflation is fuelled by rapidly dividing T cells in the secondary

lymphoid organs, especially the lymph nodes [Torti et al. 2011b]. Therefore, the number of

CD8+ T cells in the blood is supplied by an external influx. We set up models describing this

influx with different levels of complexity.

Constant influx model (CI) Assuming the influx of CD8+ T cells doesn’t change over time,

the constant influx model is given as:

dTE
dt

= Λ− δTE , (3.4)

where Λ models the constant influx and δT is the loss rate of blood-based CD8+ T cells. The

CI model has three parameters.

Biphasic influx model (BI) Assuming the input of cells changes over time, we considered a

biphasic description of the cellular dynamics which is given as:

Λ =

L1, t < T

L2, t ≥ T
dTE
dt

= Λ− δTE

(3.5)

Here, L1 and L2 are two different influx rates, T is the time the influx changes and δ is the loss

rate of CD8+ T cells. Together with the initial conditions for TE7 , the BI model has five different

parameters.

Variable influx model (VI) Expanding the BI model to allow for a more realistic description

of the influx over time, we set up a new model that describes the external supply by a continuous

function:

dΛ

dt
=

α(L1 − Λ), t < T

α(L2 − Λ), t ≥ T
dTE
dt

= Λ− δTE

(3.6)

Here, L1 and L2 are the maximal influx limits, α is a scaling factor that regulates how quickly

the limits are reached, T is the time at which the influx changes and δ is the loss rate of CD8+

T cells. Together with the initial conditions for Λ7 and TE7 , the influx model has seven different

parameters.

3.3 Modelling the inflationary response

Fitting the mathematical models from section 3.2 to the M38 data based on a non-linear mixed

effects model approach (see Materials and Methods 2.2.2) revealed that the expanded non-
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stimulation in blood external influx of T cells

model VD NR ENR CI BI VI

M38 2092 2084 2077 2091 2097 2084

M45 1896 1794 1812 1769 1777 1785

Table 3.1: Model comparison: The table shows the AICc for the tested models based
on either the inflationary M38 or the non-inflationary M45 data set. The best models are
highlighted.

haematopoietic reservoir model (ENR) is the most appropriate to describe the overall cellular

dynamics and performs much better than all the other models in terms of AICc (see Table 3.1).

The individual and population fits are shown in Fig. 3.2. The ENR model is able to recreate

the secondary expansion dynamics and predicts a long-term decline in cell numbers.

The ENR model estimates that non-latent virus is present up to approximately day 40 p.i. (see

Fig. 3.2 B, orange lines). This is in line with findings by Torti et al. [Torti et al. 2011b], in which

MCMV was still detectable in the lungs and the salivary gland 28 days p.i. The individual and

population dynamics of non-latent virus indicate a change in the viral clearance around 20 days

p.i., with some even showing a small increase in acute viral load (Fig. 3.2 B, orange lines). The

slowing in viral clearance coincides with the build-up of the non-haematopoietic viral reservoir,

which starts increasing around day 15 p.i. and reaches its steady-state approximately ten days

later (see Fig. 3.2 B, blue lines). The combined viral load and the corresponding T cell dynamics

are shown in Fig. 3.2 C and D and resemble a damped oscillation.

The population parameter estimates obtained from fitting the ENR model are found in Table

3.2. Our model estimates that the half-life of inflationary CD8+ T cells is around 2 days.

However, since there is a continuous restimulation, the T cell pool itself is estimated to have a

total half-life of approximately 26 days.

Comparing the modelled expansion dynamics with the individual parameter sets (see Table

A.1), we find a very strong correlation between the peak cell numbers during the acute phase

(before day 20 p.i.) and the parameters determining the viral replication, ρV , (CC = 0.97) and

the T cell-mediated clearance, k, (CC = −0.96). Similar values3 are observed when correlating

these parameters to the increase in cell numbers during the secondary expansion phase, i.e. the

second peak minus the lowest cell number between first and second peak. Therefore, we also

find a strong correlation between the cell numbers at the first peak and the increase during the

secondary expansion (CC = 0.95, neglecting mouse 7).

In summary, our model fits supports the hypothesis proposed by [Smith et al. 2014] that the

inflationary CD8+ T cell response is mainly dependent on viral antigen presence connected to

the blood supply. Additionally, our findings highlight the need for different viral stimuli in the

shaping of the overall inflationary response, corroborating the importance of antigen presentation

on non-haematopoietic cells during persistent infection [Torti et al. 2011b; Smith et al. 2014].

3Here, the model prediction from mouse 7 formed an outlier and was therefore neglected in the following
calculations.
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Figure 3.2: Individual fits to the inflationary M38-specific CD8+ T cell response: (A)
Panels show the model prediction (red) compared to the individual experimental data (black).
(B-D) Population dynamics of viral load and CD8+ T cells.(B) The relative viral load over
time. Depletable viral load, V , is shown in orange, latent reservoir viral load, R, in blue. (C)
The combined load of depletable and latent virus. (D) The population and individual dynamics
of the M38-specific T cells. Solid lines indicate the population dynamics, opaque lines the
individual fits. All experiments were performed by the lab of Prof. Dr. A. Oxenius, Institute of
Microbiology, ETH Zürich.

3.4 Modelling the non-inflationary response

The dynamics of non-inflationary M45-specific CD8+ T cells are characterised by a sharp decline

in cell numbers after day 7 p.i., which is followed by the maintenance of a low number of T cells
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parameter unit population parameters population s.e. relative s.e. (%)

V7 viral load/ml 1.72 0.06 3

T7 #cells/ml 3.6× 104 6.6× 103 18

ρV day−1 0.114 0.036 32

k day−1 3× 10−6 5.5× 10−7 18

β day−1 4.9× 10−4 2.2× 10−4 45

ρR day−1 0.414 0.035 8

ρT day−1 0.296 0.03 10

δ day−1 0.322 0.033 10

Table 3.2: Population parameter estimates for the ENR model: Population parameters,
standard error (s.e.) and relative standard error are given. For model description see Eqs. 3.3.

over time (see Fig. 2.1 B). Fitting our models to the experimental data we find that the

constant influx model (CI) is not only sufficient to describe the experimental data, but also

yields the lowest AICc (see Table 3.1 and Appendix A.1). All other models perform much worse.

Interestingly, all influx models perform better than any of the blood-based reactivation model,

indicating a different long-term maintenance of the non-inflationary compared to the inflationary

pool.

Based on our parameter estimations, the CI model predicts a half-life of roughly one day

(see Table 3.3), which, together with our estimated influx rate, means that around 60% of the

non-inflationary T cells are replaced every day. However, the analysis of the CD8+ T cell subset

distribution reveals that around one third of the non-inflationary pool consists of long-lived

central memory cells (see Appendix A.3). Therefore it is possible that the estimated loss rate

only describes the death of cells due to apoptosis-inducing pathways after resolution of the acute

infection [Krammer et al. 2007]. To correctly determine the long-term maintenance of the CD8+

T cell subsets, more data about the underlying dynamics are needed (see chapter 5).

parameter unit population parameters population s.e. relative s.e. (%)

TE7 #cells/ml 9.48× 104 2.4× 104 25

Λ #cells/ml 5.49× 103 1× 103 18

δ day−1 0.62 0.094 15

Table 3.3: Population parameter estimates for the CI model: Population parameters,
standard error (s.e.) and relative standard error are given. For model description see Eqs. 3.4.
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3.5 The influence of sporadic virus reactivation on CD8+

T cell dynamics

Until now, we always modelled the viral antigen presentation to CD8+ T cells as a continuous

process. However, as it is assumed that latent MCMV only sporadically reactivates, the previ-

ously described dynamics might only represent the mean viral and cellular turnover. To assess

how sporadic viral reactivations would influence the overall CD8+ T cell dynamics, we there-

fore created a model, in which the viral dynamics are based on impulsive differential equations

[Bainov et al. 1993]. This allowed us to test how changes in the reactivation patterns, such as

frequency and magnitude of viral reactivation events, would shape the corresponding CD8+ T

cell response.

3.5.1 Modelling sporadic viral reactivation

To model viral reactivation we used a system of impulsive differential equations. Here, the

increase of the viral load is modelled in pulses at specified time points Ti, i ∈ N and is included

in the dynamics by adding a specified amount of reactivated virus Ri at each time point Ti to

the current amount of virus V (Ti). The equations are given as

dV

dt
= −kV TE, t 6= Ti

∆V = V +Ri, t = Ti

dTE
dt

=
(
ρTV − δ

)
TE ,

(3.7)

with the nomenclature of parameters being identical to the VD model (see 3.1).

3.5.2 Changes in viral burst patterns can lead to memory inflation

To test if memory inflation can also be caused by sporadic viral reactivation, we parametrised the

sporadic reactivation model (see Eqs. 3.7) with the corresponding parameter estimates obtained

from fitting the ENR model to the M38 data (see Table 3.2). To describe the viral reactivation

events we first considered a simple periodic viral burst pattern, in which the duration between

the viral bursts and the amount of released virus stays constant. We found that such a simple

pattern always resulted in a “expansion-contraction-maintenance” dynamics (see Fig. 3.3, black

line), which is similar to the response observed for non-inflationary T cells.

However, by allowing for changes to occur in the viral reactivation pattern or the CD8+ T cell-

mediated clearance of infected cells over time, we could recreate the observed memory inflation

dynamics not only in one but in three separate ways: (1) By decreasing the time between two

reactivation events, (2) by increasing the amount of virus released per reactivation event and

(3) by decreasing the CD8+ T cell dependent virus clearance rate, k (see Fig.3.3). All of these

approaches led to the generation and maintenance of a higher long-term level of CD8+ T cells

compared to a monophasic reactivation pattern.
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Furthermore, we found that changing the viral load per burst led to a proportionally scaling

of the mean number of T cells long-term (based on calculations from day 50 to day 100 p.i.),

while changes in the reactivation frequency and the T cell-mediated clearance scaled inversely

proportional (see Appendix A.4). This means that, for example, a doubled viral load per re-

activation event or a halved clearance rate result both in a doubled mean number of T cells

long-term (see Fig.3.3 B & C). However, even though the scaling of these parameters affected

the predicted mean long-term number in the same way, the oscillatory behaviour in terms of

amplitude or period was very different (see Fig.3.3 and Appendix A.4).

In summary, our results indicate that memory inflation can also be caused by inherent changes

in the MCMV reactivation patterns and/or a change in the CD8+ T cell-mediated clearance of

infected cells.
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Figure 3.3: Memory inflation-like dynamics can be caused by changes in the sporadic
viral reactivation patterns or T cell-mediated clearance: (A) Viral reactivation pattern
based on a 10 days interval scheme (black) vs a 5 day interval scheme (red). The corresponding
dynamics of inflationary CD8+ T cells is shown below. (B) The effect of an increased viral burst
load. The curves show the viral and cellular dynamics for the default (Ri = 2.4, black) versus
the doubled viral load (Ri = 4.8, green). (C) The effect of an decreased T cell mediated viral
clearance. The curves show the viral and cellular dynamics for the default (k = 5× 10−6, black)
versus the halfed clearance rate (k = 2.5×10−6, blue). Vertical dotted lines indicate the time at
day 30 p.i. at which the viral reactivation dynamics changes. Coloured horizontal lines indicate
the mean number of CD8+ T cells from day 50 to 100. Parametrisation of the baseline dynamics
(black curves) is given by k = 5× 10−6, ρ = 0.29, δ = 0.32, Ri = 2.4 and Ti = 10i, i ∈ N0 based
on the sporadic reactivation model given by Eqs. 3.7.
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3.6 Discussion

Understanding the interactions between CMV and the adaptive immune system is not only a

prerequisite for explaining the phenomenon of memory inflation, but is also an important step

towards the precise induction of protective CD8+ T cell responses by CMV-based vaccination

approaches.

Because of its promising features, memory inflation is a frequently studied topic in medical

research. However, many details about its generation and maintenance have only been par-

tially understood so far. Here, we analysed the responses generated by MCMV infection by

mathematical modelling, which allowed us to describe the observed dynamics in a quantitative

way, therefore broadening our understanding of the factors determining the dynamics of memory

inflation.

One of the major questions regarding the CD8+ T cell dynamics during MCMV infection

addresses the maintenance of the inflationary T cell pool. Different biological hypotheses have

been proposed to explain this phenomenon [Smith et al. 2014; Torti et al. 2011b; Seckert et al.

2012]. In our study, we could use mathematical modelling to distinguish between the likelihood

of different theories. By creating and testing various models describing the possible underlying

cellular dynamics and fitting them to the experimental data, we find that our results support

the theory of inflationary CD8+ T cell responses being dependent on direct antigen presentation

in the blood periphery, as proposed by [Smith et al. 2014].

On top of testing different biological hypotheses, our modelling approach also allowed to

analyse the underlying viral dynamics, which are difficult to determine in vivo. Our best-fitting

model predicts that the inflationary response is shaped by two different viral antigenic stimuli,

one of which is dominant during the acute phase of the infection, while the other dictates the

long-term behaviour (see Fig. 3.2 B). These results correspond to findings in previous studies,

which indicated the importance of antigen presentation on non-haematopoietic cells for the

maintenance of the inflationary response during persistent infection [Torti et al. 2011b; Smith

et al. 2014]. In addition, we find that the non-inflationary pool is maintained differently and

seems to be dependent on an external influx, that might potentially be provided by CD8+ T

cells residing in secondary lymphoid organs [Torti et al. 2011b].

Since our study is based on a NLMEM approach, we could also analyse the individual variations

in the inflationary responses. We find that the general shape and the magnitude of the response

is critically dependent on the parameters describing viral replication and T cell-mediated clear-

ance. Here, a reduced clearance and an increased replication rate led more pronounced cellular

expansion dynamics. As both rates are likely to be affected by viral evasion mechanisms, one

could speculate that the magnitude of the short- and long-term response depends mostly on the

ability of the virus to evade the host’s immune control.

Because no viral load is detectable experimentally during late stages of infection, it is assumed

that CMV reactivates sporadically. To provide more insight into the possible effects of sporadic

viral reactivation on the CD8+ T cell dynamics, we set up a mathematical model in which

virus reactivation is occurring based on periodic pulses. To our surprise, we found that memory

inflation-like responses can also be generated by changes in the periodic reactivation patterns
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or the CD8+ T cell efficacy, such as an increase in viral bursts frequency or a decrease in the T

cell related clearance efficacy (see Fig. 3.3). As CMV is able to mount different immune-evasive

strategies [Reddehase et al. 2002; Hengel et al. 1998], a decrease in the CD8+ T cell dependent

clearance rate, possibly due to viral latency [Seckert et al. 2012], might be a plausible cause for

the secondary CD8+ T cell expansion observed in vivo.

Besides being able to describe the longitudinal dynamics, our modelling approach also allowed

us to quantify the viral and cellular turnover during memory inflation. For example, we found

that the reservoir of latently infected cells starts building up around 2 weeks p.i. and reaches

its maximum capacity around day 25 p.i. While this is later than the dynamics observed by

Torti et al., in which a second expansion phase was estimated to occur around day 11-15 p.i.

[Torti et al. 2011b], the difference might result from their focus on cellular frequencies instead

of cell numbers, which can potentially lead to a bias due to a massive loss in non-inflationary

cell numbers occurring around that same time (see Fig. 2.1).

Furthermore, our model predicts a decline in cell numbers which corresponds to a half-life

of inflationary cells of approximately 26 days. However, many other studies show that the

inflationary pool is maintained in a rather stable manner over longer periods of time [Munks

et al. 2006; Torti et al. 2011b; Smith et al. 2014; Walton et al. 2011]. Therefore, our predicted

decline might either be an artefact attributed to the experimental data or indicates a long-term

oscillatory cellular dynamics. Varying inflationary responses might arise from an increase in viral

reactivation events occurring when CD8+ T cell levels falls below a certain threshold [Reddehase

et al. 2002]. However, to address the question about the stability of the inflationary cell pool,

more long-term data is needed for analysis.

Taken together, our results argue for the following hypothesis regarding the generation of

memory inflation: During acute infection, an initial CD8+ T cell response against inflationary

epitopes is primed. This response declines as the acute infection terminates, but is triggered

again by the successful establishment of CMV latency in non-haematopoietic cells, which goes

hand in hand with superior viral immune-evasion and/or diminished CD8+ T cell mediated

clearance of infected cells. In the long run, the overall cellular dynamics are shaped by the

reactivation cycles of the latent virus.

In our analysis of the non-inflationary response we encountered the problem that the quantifi-

cation of cellular turnover is difficult to determine because the system quickly reaches a steady

state and no further change in the overall response or the subset levels is observed (see Fig. 2.1

and Appendix A.3). Here, additional long-term measurements of CD8+ T cell (subset) numbers

would not help to identify the underlying cellular dynamics in terms of proliferation kinetics and

cell longevity. To determine these properties, markers indicating cellular turnover, such as Ki67

or BrDU could be used [Torti et al. 2011b]. Additionally, the use of labelled cell population and

the quantification of cellular turnover based on our methods developed in chapter 5 would allow

to address these questions as well.

Since we are lacking the data of the original expansion phase as well as sufficient long-term

data, our current modelling of MCMV-induced T cell behaviour only describes the CD8+ T cell

dynamics over the course of 7 to 70 days p.i. Analysing cell numbers over the course of the

acute MCMV infection might be used to determine differences in the early expansion dynamics
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of inflationary and non-inflationary T cells. Additionally, the measurements of other organs

besides the blood would help to determine the local dynamics of CD8+ T cells during MCMV

infection. Even though we had additional measurements of CD8+ T cells in lymph nodes and

spleen at day 8, 10 and 12 p.i. at our disposal, these data were not sufficient to infer any

tissue-dependent dynamics.

In our analysis of sporadic reactivation we only generated responses that were build on virus

patterns following a periodic behaviour. However, viral reactivation might be subject to a

stochastic expression pattern, with bursts occurring at irregular time intervals. These stochastic

bursts might facilitate the viral evasion of the immune system and possibly allow the virus to

maintain the state of a persistent infection. However, since all cytomegaloviruses establish life-

long infections, a premature death of the host cannot be in the interest of the virus. Therefore,

it is an interesting speculation if the development of imperfect immune-evasive strategies is an

evolutionary stable strategy for CMVs, meaning that frequent triggering of the adaptive immune

response balances viral replication and host survivability, or, put differently, balances short-term

and long-term viral infectivity. Since the measured CD8+ T cell levels contain information

about viral reactivation patterns, sampling inflationary cells more frequently over the course of

the persistent infection would certainly help to characterise the interactions of CMV and the

immune system.

In summary, our analysis provides an important step towards the quantification of CD8+ T

cell responses induced by MCMV infection and therefore helps to determine potential effects of

vector-based vaccination strategies.
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CHAPTER 4
CD8+ T cell dynamics induced by variable malaria

vaccination approaches

4.1 Introduction

Despite strong efforts in the past, malaria is still one of the most common infectious diseases

today and is especially prevalent in tropical and subtropical regions around the world, where it is

responsible for millions of infections and hundreds of thousands of deaths per year [WHO 2016].

As malaria can cause periodic fevers, diarrhoea, anaemia or even brain damage, it is estimated

that the disease has an enormous social and economical impact in the high-risk regions [Sachs et

al. 2002]. Even though a lot of effort, including medical research, is dedicated towards protection

from malaria, this goal has proven hard to reach so far.

4.1.1 The infection cycle of malaria

Malaria is caused by Plasmodium1, a parasite with a complex life cycle involving multiple stages

in different hosts species (see Fig.4.1 and [Hafalla et al. 2011]). Briefly sketched, Plasmodium,

in the form of sporozoites, is transmitted into humans (but also to other species) by mosquitoes,

where they quickly migrate to the liver tissue to infect hepatocytes. During the liver stage, the

parasites replicate intracellularly and mature into merozoites, which are later released from the

hosting hepatocytes into the blood stream. In the blood, merozoites start to infect red blood

cells (RBCs) in which they replicate and produce new merozoites. The periodic rupturing of

harbouring RBCs establishes an ongoing infection cycle in the blood, over the course of which

the number of available RBCs continuously declines. The progressive loss of blood cells is one

of the reasons for the observable symptoms of malaria, such as characteristic fevers or anaemia.

Over the course of the infection, some merozoites will mature into male and female gametocytes,

which, once taken up by mosquitoes again, will start to reproduce sexually, thus leading to the

formation of new sporozoites.

There are several reasons why the immune system is not able to handle the infection with

Plasmodium parasites properly. One of them is the short time the parasite spends in its liver

stage, which amounts only to a couple of days [Frevert 2004]. As the adaptive immune sys-

1There are many different species of Plasmodium. We will base our following characterisations on Plasmodium
falciparum, which is the most common malaria-inducing parasite type.
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Figure 4.1: The life cycle of Plasmodium: After transmission from mosquitoes, sporozoites
infect liver cells in which they mature into schizonts. Upon bursting, infected hepatocytes release
merozoites (1-4), which start infecting red blood cells where they reproduce intracellularly (5-6).
Some merozoites mature into male and female gametocytes, which are taken up by mosquitoes
again, where they reproduce sexually and generate new sporozoites (7-12). Figure reproduced
and modified with permission from the Centers of Disease Control and Prevention (CDC).

tem needs time to build up, many infected hepatocytes escape the immunological control and

release merozoites into the blood stream2, thereby changing the pattern of the infection. As

infected RBCs do not express MHC I molecules, the intracellular parasite reproduction cannot

be recognised by CD8+ T cells [Mohandas et al. 2012]. Furthermore, infected RBCs can attach

themselves to endothelial cells, which prevents them from entering the spleen, where abnormal

blood cells are usually removed [Chotivanich et al. 2002].

4.1.2 Vaccination approaches against malaria

Currently, there exists only one regulatory approved vaccine against malaria (“RTS,S”), which

targets the parasite liver stage [Cohen et al. 2010; Morrison 2015]. However, several studies have

shown that the vaccine has only intermediate efficacy in adults and low to intermediate efficacy

in children and that the granted protection seems to wane quickly [Abdulla et al. 2008; Bojang

et al. 2009; Agnandji et al. 2014].

2Hypothetically, a single infected hepatocyte that escapes the immune surveillance is enough to establish a
blood stage infection.
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However, since the liver stage serves as a bottleneck in the parasite life cycle, targeting in-

fected hepatocytes seems to be a promising approach for T cell-based vaccine designs. Using

whole sporozoite vaccination strategies, it has been shown that generating high amounts of

liver-resident effector cells confers protection against sporozoite challenges in mice and humans

[Schmidt et al. 2008; Schmidt et al. 2010; Fernandez-Ruiz et al. 2016]. Therefore, a major goal of

T cell-based vaccines for malaria is the build-up of elevated effector-like CD8+ T cell responses

surveilling the liver tissues.

Currently, this approach is hampered by a lack of knowledge regarding the influence of the

vaccination regimen on the underlying CD8+ T cell dynamics [Sallusto et al. 2010]. For example,

it is not known how exactly the number of booster injections or the administered vaccination

dose affect the generation of liver-resident CD8+ T cells. The importance of booster injections

in mediating protection has been shown in previous studies [Schmidt et al. 2011; Patel et al.

2017], but has not been analysed systematically yet.

4.1.3 Chapter overview

To address this question, we set up an extensive experimental protocol, in which we assessed

the influence of different vaccination regimes based on Plasmodium berghei radiation attenuated

sporozoites (PbRAS) on the dynamics of organ-dependent CD8+ T cell responses (see Materials

and Methods 2.3.1). The biological experiments were conducted by the lab of Prof. Dr. A.-

K. Mueller, University Hospital Heidelberg. In these experiments, we varied the number of

booster injections as well as the dosage and measured the corresponding number of generated

CD8+ T cell subsets in liver and spleen at several time points after vaccination. Analysing the

experimental data by mathematical modelling allowed us not only to identify the underlying

cellular differentiation pathway but also to quantify the influence of the vaccination regimen on

the generation of protective CD8+ T cell pools in spleen and liver.

This chapter is structured as follows: In section 4.2, we analyse the organ-dependent CD8+

T cell differentiation and migration pathway and model the cellular responses after vaccination

with several normal-dosed booster injections. To this end, we set up a global model of CD8+

T cell differentiation, including all possible CD8+ T cell subset interactions and establish an

unbiased model selection algorithm that automatically assesses the appropriateness of different

models to explain experimental data. This optimisation routine allows us to determine the most

likely cellular differentiation pathway, of which we subsequently quantify the cellular turnover.

In section 4.3, we additionally determine how the vaccination dose influences the generation

of protective levels of liver-resident CD8+ T cells. Here, we analyse how the cellular responses

are affected by the administration of a high or a subprotective vaccination dose.

In summary, our results allow us to determine the CD8+ T cell dynamics generated after

malaria immunisation and can be used to improve future vaccination approaches.
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4.2 Modelling the CD8+ T cell response after normal dose

PbRAS vaccination

In a first attempt to describe the experimental results by mathematical modelling, we fitted

the normal-dose experimental data to a selection of hand-picked models. While we found some

models that described the data well, a simultaneously tested random selection of models yielded

even better results, meaning that the hand-picked model approach was too biased. Therefore,

we implemented a model selection algorithm, which allowed for the unbiased search of the best

model describing the experimental data. We applied this algorithm on the global model of

cellular turnover, which incorporates all possible CD8+ T cell subset interactions, to find the

most suitable submodel for describing the experimental data.

4.2.1 The global model of cellular turnover

Our global model includes five CD8+ T cell subsets localised in different tissues. For the spleen,

we distinguish between näıve (TN), central memory (TCM) and effector/effector memory3 (TEMS)

CD8+ T cells, while in the liver we separate between effector/effector memory (TEML) and

tissue-resident (TRM) T cells. The TCM response in the liver was neglected, as previous studies

indicated no protection-mediating role for this compartment [Holz et al. 2016].

In our model, we allow each T cell compartment, besides TN , to proliferate and to differ-

entiate into other compartments (for a sketch of all possible dynamics see Fig. 4.2). Since the

experimental data does not allow for the distinction of cellular expansion and death rates, all

proliferation rates are net-proliferation rates, i.e. they include cell death.

To model the antigen-dependent stimulation of CD8+ T cells we use an indicator function,

which changes the model parameter values if antigen is present. Therefore, each cellular rate

consists of two separate parameters and is defined according to the following example:

α := 1{t∈DAG}α
ag + αb . (4.1)

Here, we use the notation αag and αb ∈ R to describe the antigen-dependent and antigen-

independent turnover, respectively (ag stands for antigen, b for baseline). The set DAG contains

the time intervals in which antigen is present and is defined as DAG :=
⋃n
i=1[Ti,Ti + Li], where

n defines the total number of injections, Ti ∈ R+, i = 1, ..., n the time at which injection i is

administered and Li ∈ R+, i = 1, ..., n the corresponding duration of antigen presence. The first

vaccination shot is always given at T1 = 0 and the respective length is set to L1 = 8, which is

a common estimate for the duration of CD8+ T cell expansion during acute infection [De Boer

et al. 2001; Kohler 2007].

To describe the interactions of spleen and liver, we used a negative feedback loop from liver

to spleen, which we modelled via a Hill equation, γ, taking into account the levels of TRM. It is

3The analysed marker expression of CD44, CD62L and CD69 allows no distinction between effector and effector
memory T cells.
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given as

γ(TRM) := 1− TRM
2

TRM
2 + 236, 0002

, (4.2)

which acts exclusively on the antigen-dependent proliferation of TCM in the spleen, ρagCM. The

values are based on the analysis performed by Dr. F. Graw (see Materials and Methods 2.3.2).

Putting all the parts together, the complete CD8+ T cell turnover dynamics of the global

model can be described by the following system of ordinary differential equations:

dTN

dt
= −1{t∈DAG}

(
σag
N−CM + σag

N−EMS

)
TN

dTCM

dt
= 1{t∈DAG}

(
σag
N−CMTN + γ(TRM)ρagCMTCM

)
+ (ρbCM − σCM−EMS)TCM

+ σEMS−CMTEMS

dTEMS

dt
= −1{t∈DAG}σ

ag
N−EMSTN + σCM−EMSTCM

+
(
ρEMS − σEMS−EML − σEMS−RM

)
TEMS

+ σEML−EMSTEML + 1{t∈DAG}σRM−EMSTRM

dTEML

dt
= σEMS−EMLTEMS +

(
ρEML − σEML−EMS − σEML−RM

)
TEML

+ 1{t∈DAG}σRM−EMLTRM

dTRM

dt
= σEMS−RMTEMS + σEMLRMTEML

+
(
ρRM − 1{t∈DAG}(σRM−EMS − σRM−EML)

)
TRM

(4.3)

Together with the parameters describing the durations of antigen presence after the second

and the third vaccination shot, L2 and L3, the global model contains a total of 26 different

parameters.

4.2.2 Unbiased model selection algorithm

The aim of the unbiased model selection algorithm (UMSA) is to find the most appropriate

submodel of the global model (Eqs. 4.3 and Fig. 4.2.1) to describe the experimental data.

Based on a specific submodel, the algorithm tests all neighbouring models and updates the

current model, if a better one is found. Therefore, the algorithm successively progresses through

the space of all possible models. It stops if no better models can be found. The details of the

unbiased model selection algorithm are found below and a sketch is provided in Fig. 4.3.

Critical parameter sets and algorithmic memory To avoid the testing of models that are

not able to reproduce the cellular dynamics the algorithm takes into account critical parameter

sets. Each model has to contain at least one parameter of each critical set in order to be tested.

If this condition is not fulfilled the respective model will be discarded.

For our global model given by Eqs. 4.3, we specified the following six critical parameter sets:

• S1 = {σag
N−CM;σag

EMS−CM;σb
EMS−CM} (differentiation into TCM)
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Spleen Liver

v TCM
TEMS

TEML
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negative feedback from liver to spleen

antigen-dependent increased value if 
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Figure 4.2: Sketch of the global model: This model sketch shows all possible differentiation
and net-proliferation dynamics of the CD8+ T cell subsets localised in spleen and liver. Coloured
arrows indicate if a rate is active only if antigen is present (red) or also independently of antigen
exposure (red arrows with black outline, includes baseline and antigen-dependent turnover).

• S2 = {σag
N−EMS;σag

CM−EMS;σb
CM−EMS} (differentiation into TEMS)

• S3 = {σag
EMS−EML;σb

EMS−EML;σag
RM−EML} (differentiation into TEML)

• S4 = {σag
EMS−RM;σb

EMS−RM;σag
EML−RM;σb

EML−RM} (differentiation into TRM)

• S5 = {ρagEMS} (antigen-dependent proliferation of TEMS)

• S6 = {ρagEML} (antigen-dependent proliferation of TEML)

Additionally, the algorithm checks if the model was already tested before. If this is the case,

the model is skipped and will not be tested again.

The outline of the algorithm Starting from an initial model, the unbiased model selec-

tion algorithm is searching for superior models explaining the experimental data based on the

combination of three different methods:

• Forward search: Adds one parameter to the current model

• Double forward search: Adds two parameters to the current model

• Backward elimination: Removes one of the current model parameters

At each step, the UMSA generates a new set of models based on the chosen method and tests their

performance in comparison to the current model. For example, if the current model contains k
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critical conditions 
violated? model tested before? test

skip

no no

yes
yes

get all neighbouring
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current method

test all 
appropriate 

models

better model
found?

yes update best 
model*

no

change method

current method previous method next method

or

or

terminate

backward elimination

double forward search

forward search

read in starting 
model and method

Figure 4.3: The outline of the unbiased model selection algorithm: After reading in
the initial model and starting method, the algorithm generates a new set of models at each step
based on the current method and tests their performance in comparison to the currently best
model. All models that do not violate the critical conditions are used for testing. The estimated
parameter values of the best fit and the corresponding AICc value are returned. If a better
model is found, the current model is updated and the main routine is repeated with the current
method (*exception: If the current method is a double forward search, the algorithm switches
to a forward search). If no better model is found, the algorithm switches the method and either
continues with the main routine or terminates.

(out of n possible) different parameters, the algorithm will generate k new models for a backwards

elimination and n − k models for a forward search. All models that do not violate the critical

conditions are used for testing. The testing procedure involves the fitting of the respective

model to the experimental data using the optim-fitting routine in R with 5 different starting

conditions for the parameter values (one using the parameter set of the currently best model

and four randomly sampled initial conditions). Convergence of the fitting routine was ensured

by the structural set-up described in Material and Methods 2.1.1. After testing, the estimated

parameter values of the best of the five fits and the corresponding AICc value are returned.

The current model is updated if one of the model shows better a performance according to the

AICc. The different methods (forward search, double-forward search and backward elimination)

are used in successive steps as described below. If none of the different methods finds a better

model, the algorithm is halted and the currently best model is returned.

The exact testing sequence of the algorithm is given as follows (see also Fig. 4.3):
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• Read in the initially specified model. Jump to the initially specified testing method.

• Forward search

1. For each non-model parameter, create a new model by adding the respective param-

eter to the current model. Test all appropriate models.

2. If a better model is found, update the current model and continue with forward search.

3. If no better model is found:

– Continue with backward elimination if the previous method was a forward or a

double forward search.

– Continue with double forward search if the previous method was a backward

elimination.

• Double forward search

1. For each combination of two non-model parameters, create a new model by adding

the two respective parameters to the current model. Test all appropriate models.

2. If a better model is found, update the current model and continue with forward search.

3. If no better model is found, halt the simulation and return the currently best model

and estimated parameter values.

• Backward elimination

1. For each model parameter, create a new model by removing the respective parameter

from the current model. Test all appropriate models.

2. If a better model is found, update the current model and continue with backward

elimination.

3. If no better model is found:

– Continue with forward search if the previous method was a backward elimination.

– Continue with double forward search if the previous method was a forward search.

4.2.3 Model selection and model ranking

In total, we applied our unbiased model selection algorithm to ten different starting models.

These models included (a) the global model, (b) 3 minimal models, in which we selected one

parameter from each critical set of parameters randomly, and (c) 6 different models, in with we

randomly selected one parameter from each critical set of parameters and randomly added five

of the remaining parameters. This means that the models at the start comprised 26 unknown

parameters in (a), 8 (6 + 2 for the antigen presence durations after the second and third shot

L2 and L3) parameters in (b) and 13 (11 + 2) parameters in (c). We used backward elimination

as the starting method for the global model and forward search for the other starting models.

Over the ten runs performed, approximately 2000 different models were tested and fitted to the

normal-dose data (see Materials and Methods 2.3.1). While optimising the models, we applied
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the following restrictions regarding the values of the model parameters: First, all parameters,

besides the baseline net-proliferations, were not allowed to take negative values. Second, the

baseline net-proliferation rate of the TRM compartment, ρbRM was restricted to non-positive

values. This was done to prevent a continuous expansion of the TRM cell pool over time. Third,

the upper limit of all antigen-dependent net-proliferation rates was set to five, thus removing

models that assume a massive increase in cell numbers from the fitting procedure. This artificial

limit corresponds to a division time of 3 hours, which is close to the biological limit found for

CD8+ T cell division during antigenic stimulation [Yoon et al. 2010].

Ordering the results of our model selection algorithm by the ∆AICc (see Materials and Meth-

ods 2.1.2), we found that one model clearly outperformed the others (see Fig. 4.4 A, only the

200 best models are shown). The second best model already had a ∆AICc equal to 4, indicating

considerably less support for this model [Burnham et al. 2003]. Interestingly, we found a clear

distinction between the possible näıve T cell differentiation pathways, as models assuming a

differentiation from TN into TEMS performed worse than those that assumed a differentiation

from TN into TCM (see Fig. 4.4 B).

The best model is shown in Fig. 4.4 C. Here, cell differentiation follows an almost linear

pathway: Upon antigen encounter, TN turn into TCM cells which further differentiate into TEMS

cells. These cells migrate to the liver and turn into TRM cells, if antigen is present. Our

model also predicts an antigen-dependent turnover from TEMS into TCM cells in the spleen. In

case antigen is absent, the compartment of TRM cells is self-sustaining, while both TEMS and

TEML compartments ultimately get supplied by slowly proliferating TCM cells in the spleen.

All model parameters have high Akaike evidence ratios (see Appendix B.1), corroborating the

importance of the respective parameters for describing the cellular dynamics. Interestingly, the

lowest evidence ratio is found for the antigen-dependent proliferation of TRM, indicating that

different possibilities exist to build up this pool given booster injections (see section 4.2.4).

4.2.4 Parameter identifiability

Identifiability of parameters was assessed by performing a profile likelihood approach [Raue et al.

2009]. The corresponding plots are shown in Appendix B.2. All of the baseline parameters turned

out to be identifiable, while most of the antigen-dependent parameters were non-identifiable (see

Table 4.1). Due to a lack of acute infection data, this non-identifiability is most likely structural

and could be resolved if more data points are sampled [Raue et al. 2009].

Analysing the baseline turnovers, we find that TCM cells are estimated to have a doubling time

of 2 to 6 days. However, TCM proliferation is only needed to compensate for the loss of TEML

cells in the liver, which have a half-life or residence time of 6 to 15 hours, indicating continuous

replacement. On the other hand, the number of TRM in the liver tissues is stably maintained

over time without any influx from other compartments.

During antigen presence, TEMS and TEML proliferate rapidly with estimated doubling times

of 4 to 10 and 3 to 6 hours4, respectively. Interestingly, the expansion of TRM cells was mostly

self-dependent, as the differentiation rate from TEML into TRM was very low (see Table 4.1),

4The lower limit of 3 hours for the doubling time of TEML stems from the fact that all proliferation rates were
restricted to values smaller than 5 day−1 (see section 4.2.3).
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Figure 4.4: Model ranking and the pathway of the best model: (A) The ∆AICc (black
vertical lines, left axis) and the number of parameters (red crosses, right axis) for the 200 best
model fits. (B) The ∆AICc for the 200 best model fits, with colour indicating the type of näıve
T cell differentiation pathway: TN → TCM (black), TN → TEMS (red) or TN → TCM /TEMS

(blue). (C) The CD8+ T cell differentiation pathway according to the best model. Coloured
arrows indicate if a rate is active only if antigen is present (red) or also independently of antigen
exposure (black - no change during antigen presence, red with black outline - increased value if
antigen is present)

meaning that TEML were only needed as an initial supply compartment. The antigen-dependent

doubling time of TRM was estimated to be between 11 and 42 hours.

Additionally, we found that the duration of antigen presence after the first and second booster

injections, L2 and L3, were estimated to be only around 0.5 to 3 days, which is much shorter

than the initial expansion phase after prime, which lasted for 8 days (initially fixed value, see
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parameter unit confidence interval

σag
N−CM day−1 non-identifiable

ρbCM day−1 [0.105;0.34]

σag
CM−EMS day−1 [0.6;∞)

σb
CM−EMS day−1 [0.11;0.335]

σag
EMS−CM day−1 [0.03;∞)

ρagEMS day−1 [1.6;3.9]

σb
EMS−EML day−1 [0.16;0.42]

ρagEML day−1 [2.8;5]

ρbEML day−1 [-2.6;-1.08]

σag
EML−RM day−1 [1e-5,0.068]

ρagRM day−1 [0.4;1.5]

L2 days [0.7;3.15]

L3 days [0.55;2.7]

Table 4.1: The confidence intervals for the parameters of the best model: Confidence
intervals were calculated based on a profile likelihood approach (see Materials and Methods
2.3.3 and Appendix B.2). Here, red colour indicates antigen-dependent and grey colour baseline
parameters.

section 4.2.1). These findings would suggest that the immune system is able to handle subsequent

infections much more efficiently.

While the model predictions based on the best parameter sets were in good agreement with

the experimental data, a closer look revealed that predicted TEML cell numbers during the first

expansion phase after prime were unreasonably high. Here, cell numbers could reach values of

109 and more (see Fig. 4.5 A and Appendix B.1). Since the mouse liver is estimated to contain

only around 2×108 hepatocytes [Sohlenius-Sternbeck 2006], these model predictions are beyond

any biological plausibility.

Looking for a reason behind this massive cellular expansion, we found a correlation between

the TEML peak cell numbers and the antigen-dependent differentiation from TEML into TRM,

σag
EML−RM (see Fig. 4.5 B). A low rate corresponds to an accumulation of TEML in the liver as

they differentiate only slowly into TRM. Since no data from the acute phase of infection was

available to resolve this problem, we based our following analyses about the dose-dependency on

ten different parameter sets that predicted TEML cell numbers lower than 5×107 (see Appendix

B.2).
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Figure 4.5: Performance of model predictions: (A) Boxplots show the distribution of
the maximal number of TEMS and TEML cells derived from simulations based on the 800 best
parameter sets obtained by the profile likelihood approach. (B) Correlation between the antigen-
dependent differentiation rate from TEML into TRM, σag

EML−RM, and the TEML cell numbers at
peak. (C) Panels show the cellular dynamics of TCM (middle left), TEMS (middle right), TEML

+ TRM (bottom left) and TEML /TRM compartments (bottom right). Coloured lines represent
the simulated time-courses based either on a prime (P, black), prime-boost (PB, orange) or an
prime-boost-boost (PBB, green) vaccination strategy. Model parameters are chosen according
to set 10 in Appendix B.2. Dots represent the means of the measured T cell numbers based
on the respective normal-dose experiments. Error bars indicate standard error of the mean.
All experiments were performed by the lab of Prof. Dr. A.-K. Mueller, Centre for Infectious
Diseases, Parasitology Unit, University Hospital Heidelberg.
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4.3 The influence of the vaccination dose on cellular dy-

namics

In addition to the normal dose (1×104 PbRAS), experiments were conducted with mice receiving

a high (1× 105 PbRAS) or a subprotective dose (1× 103 PbRAS, see Fig. 2.2). Assuming these

experimental data sets could be described based on slight modifications to the previously ob-

tained parameter sets5 for the normal dose, we generated new models in which a dose dependent

factor, D was affecting different parameter combinations. In these models, a specified subset

of the normal-dose parameter set was modified by multiplying the respective parameter values

with the factor D, thereby increasing or decreasing the corresponding rates. Here, we assumed

that the dose factor can only influence antigen-dependent rates. Our best model for the normal

dose contains nine antigen-dependent rates, therefore 29−1 = 511 different parameter combina-

tions were tested. For all of these possibilities, we determined the corresponding dose-dependent

factor and AICc by fitting them separately to the high or the subprotective dose6.

4.3.1 The effect of a high dose on cellular dynamics

The biological experiments showed that a prime-boost high dose vaccination approach resulted

in 100% short-term protection (see Table 2.1). Additionally, in a corresponding challenge 104

days after the last booster injection, only one out of eight mice developed symptoms of malaria,

indicating that this vaccination approach can also confer long-term protection. According to a

recent study, this superior protection can be attributed to high levels of TRM cells in the liver

[Fernandez-Ruiz et al. 2016], an observation we also found in our experimental data.

Our modelling approach suggest that these elevated TRM responses are a result of a stronger

differentiation stimulus as well as an increased antigen-dependent proliferation of TRM cells (see

Table 4.2). We estimate that the administration of a high dose increases the values of the affected

rates by approximately 15− 20% compared to the rates describing the dynamics for the normal

dose. Additionally to the increased differentiation and proliferation, our model suggests that

antigen-dependent dynamics are prolonged after the second shot, which results in even higher

levels of TRM cells.

The best fit to the high dose data is shown in Appendix B.3.

4.3.2 The effect of a subprotective dose on the cellular dynamics

In our experiments, vaccination approaches based on subprotective dosing were not sufficient

to generate protection and all mice challenged with infectious parasites developed symptoms of

malaria (see Table 2.1).

Here, mathematical modelling revealed that the most likely explanation for the weak response

stems from a drastically reduced differentiation from TCM into TEMS cells in the spleen (see Table

5Since no best parameter set could be determined for the normal dose, we applied the dose-dependent fitting
procedure to ten parameter sets that had TEML cell numbers lower than 5 × 107 - see section 4.2.4

6Since we tested all of these models for the ten different parameter combinations given in Appendix B.2, over
5000 models were fitted in total to each data set.
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-2LL dose factor σag
N−CM σag

CM−EMS σag
EML−RM ρagRM L2 set

50.0 1.19 X X - X X 2

50.3 1.19 X X - X X 3

50.7 1.23 - X - X X 9

51.8 1.17 X X X X X 7

52.2 1.16 X X X X X 4

52.2 1.16 X X X X X 10

52.9 1.17 X X X X X 8

53.8 1.16 X X X X X 5

54.3 1.15 X X X X X 6

55.0 1.18 X X - X X 1

Table 4.2: Each of the ten parameter sets in given in Appendix B.2 was used as a baseline
dynamics to fit the high dose data. The table shows which dose factor combination resulted in
the best fit for the respective parameter sets (’X’ means that the parameter is affected, ’-’ means
not affected, only parameters that were affected at least once are shown) and the corresponding
dose factor. Results are ordered by negative log-likelihood.

4.3). Our model estimates a decrease of up to 60 − 80% compared to the turnover found for

the normal dose. Biologically, this would correspond to an arrest of CD8+ T cell differentiation

in the TCM stage, a feature that has also been observed in other experiments [Redeker et al.

2014; Zehn et al. 2009]. Additionally, our model predicts that the accumulation of TRM cells is

also massively hampered, as all of the ten model fits seen in Table 4.3 show either a decreased

differentiation from TEML into TRM cells or an impaired proliferation of the TRM compartment.

The best fit to the subprotective dose data is shown in Appendix B.4.

4.3.3 Correlating model predictions with protection

Comparing the cellular dynamics in the liver for the different dosages based on a prime-boost-

boost approach, reveals that the TRM pool generation is remarkably inefficient for the subpro-

tective dose, as the predicted levels after three subprotective shots did not even reach the level

observed after administering one normal dose (see Fig. 4.3 A and Appendix B.5). To reach

the presumed 100% protection level (which is found after three shots based on a normal dose or

two shots based on a high dose), our model predicts that 10-11 shots based on a subprotective

dosage would be necessary (see Fig. 4.3 B). However, here we assumed that the duration of

antigen presence for the following booster injections is the same as after the third shot. As this

assumption leads to questionable dynamics of the other cell compartments (see Appendix B.5),

a further reduction in the duration of antigen presence (meaning L1 > L2 > L3 > L4 > ...) or

a change in the antigen-dependent parameters is likely to affect the cellular dynamics as well.

Given the present experimental data, it is not possible to determine these factors. Thus, it re-
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-2LL dose factor σag
CM−EMS σag

EML−RM ρagRM set

53.5 0.17 X - X 2

53.8 0.18 X - X 3

55.3 0.19 X - X 7

56.4 0.22 X X - 8

56.6 0.22 X - X 10

57.6 0.22 X X - 5

57.9 0.22 X X - 1

58.9 0.30 X X - 4

62.3 0.31 X X - 6

66.9 0.4 X X - 9

Table 4.3: Each of the ten parameter sets given in Appendix B.2 was used as a baseline
dynamics to fit the subprotective dose data. The table shows which dose factor combination
resulted in the best fit for the respective parameter sets (’X’ means that the parameter is affected,
’-’ means not affected, only parameters that were affected at least once are shown) and the
corresponding dose factor. Results are ordered by negative log-likelihood.

mains an open question if a sufficient number of subprotective shots can generate any immunity

at all.

4.4 Discussion

Over the last decades, there has been a lot of research on the topic of T cell-based vaccines

for malaria and the obtained results seem very promising so far. While there are still some

major milestones along the way, studies have shown proof of concept and the goals needed to

achieve for efficient vaccine creation are more or less clear. What is currently missing is a better

understanding of the effects of different vaccination approaches on the both short-term and long-

term cellular dynamics, which would allow to optimise existing vaccination protocols to induce

specifically tailored immune responses.

Our present study helps to shed light on this topic in several different ways. First, our

modelling approach revealed the underlying cellular differentiation and migration pathway, con-

necting the spleen as the site of the initial priming with the liver serving as the main site of

infection. As protection against malaria is most likely mediated by the local accumulation of

high levels of hepatic TRM cells [Fernandez-Ruiz et al. 2016], the generation of this compartment

is of high interest. Our model suggests that the original founder population of TRM cells in the

liver stem from hepatic TEM cells, which are supplied by splenic emigrants. However, after es-

tablishment of an initial TRM population, the increase in numbers following booster injections

is mostly due to TRM proliferation, meaning this compartment is more or less self-sustaining,
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Figure 4.6: Comparing the cellular dynamics based on different vaccination doses:
Panels show the cellular dynamics of TCM (top left), TEMS (top right), TEML + TRM (bottom
left) and TRM compartments (bottom right) based on a normal dose (dark blue), high dose (light
blue) or subprotective dose prime-boost-boost vaccination approach (turquoise). Shaded areas
in the TRM plot (bottom right) indicate the regions of 50% (grey) and 100% protection (red) as
found in the experimental challenge data (see Materials and Methods 2.1).

therefore diminishing the contribution of the spleen to hepatic TRM levels in following booster

injections.

The mathematical modelling of the experimental data revealed an almost linear differentia-

tion pathway, following roughly a TN → TCM → TEMS → TEML → TRM pathway. A similar

differentiation pathway has been proposed in other studies [Kohler 2007; Buchholz et al. 2013;

Farber et al. 2014]. However, we also find conversion from TEMS to TCM in the spleen, a fea-

ture that has been suggested in many publications analysing cellular pathways [Wherry et al.

2003; Akondy et al. 2017; Crauste et al. 2017], however without the preceding TCM stage. Since

CD8+ T cell subset characterisation in our study is mostly based on the expression of CD62L,

the predicted conversion might simply characterise an upregulation of this surface marker. Also,

while our modelling is strongly supporting a TN → TCM pathway (see Fig. 4.4 B), we don’t

want to exclude the possibility of additional TN → TEMS conversion.
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In addition to determining the cellular differentiation pathway, our modelling approach also

allowed for the quantification of the parameters describing the cellular turnover. Most parame-

ters turned out to be identifiable, especially the baseline parameters determining the long-term

dynamics and the antigen-dependent proliferation rate of TRM cells (see Table 4.1 and Ap-

pendix B.2). However, we encountered several problems regarding the estimation of the antigen-

dependent parameters. These shortcomings are due to a lack of expansion phase data, which

allows our model to predict different (including unreasonably high) numbers of TEM cells over

the course of acute infections. While we identified the critical parameters which predict the

peak amount of TEM cells, new data is necessary to correctly determine the antigen-dependent

cellular turnover in the days after prime and booster injections.

Furthermore, we analysed how the generation of the different T cell pools is affected by the

vaccination dose. We found that both the high and the subprotective dose data can be mostly

explained by a change in the differentiation strength from TCM to TEMS in the spleen. For

the high dose, our model suggests that more TCM cells are stimulated to differentiate, therefore

increasing the amount of cells that eventually migrate to the liver. On the other hand TCM seem

to arrest in their state if a subprotective dose is administered, most likely due to the absence

of immunological stimuli, such as antigen presentation or inflammation markers. This arrest

of TCM due to weak stimuli is in agreement with previous findings [Redeker et al. 2014; Zehn

et al. 2009]. The importance of local antigenic stimulation for the generation of the TRM pool

is further supported by the prediction of an increased turnover of TEML into TRM in the liver

for the high dose and a decreased turnover for the subprotective dose.

On a more technical note, we implemented an algorithm designed for the unbiased selection

of the most appropriate model to describe the experimental data out of a multitude of possible

models. Although similar algorithms do exist (e.g. found in R packages glmulti, MuMIn or leaps),

they are either based on performing regression analysis or test all models of a given (sub-)set.

Since our modelling approach was based on ODEs and the number of possible models ranged

in the order of several millions, none of the available approaches suited our needs. Therefore,

we created a model selection algorithm, which searches the model space in a more efficient way.

Evaluated in the present context of modelling the immune response to malaria vaccination, our

unbiased model selection algorithm assessed only about 2000 (out of several million possible)

models, before returning appropriate results. Additionally, due to the flexibility our own model

selection approach provided and the computational resources available to us, our algorithm could

test up to 200 models simultaneously, meaning results could be obtained much faster than with

any of the other available model selection algorithms.

While our current model of CD8+ T cell differentiation is only a first step towards the set-up of

a complete model of the CD8+ T cell responses induced by malaria vaccination, it is very useful

in determining potential ambiguities that need to be addressed experimentally. For example, we

find that the antigen-dependent parameters cannot be properly quantified unless data from the

acute infection phases are gathered. Also, more data is needed to estimate the stability of the

TRM pool, which is crucial to determine the generated protection over longer periods of time.

Another important aspect is the general role of the TCM compartment in the spleen: While

there is no significant difference with respect to the tested vaccination approaches (including
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mock, see Fig. 2.3), the measurements of the cell numbers show a high inter-individual variation

and are therefore possibly masking any changes that might occur in individuals over time. For

future experiments, the use of cell labelling (see chapter 5) might help to quantify the turnover

observed in this cell pool, identify its maintenance over time as well as correlate the observed

TCM numbers to other compartments, especially the levels of TRM observed in the liver.

Another important point that needs to be addressed experimentally is the malaria specificity

of the vaccination-induced CD8+ T cell pool. In our current approach, the number of malaria-

specific cells was determined by normalising the measured cell numbers with numbers obtained

from näıve mice. An additional experiment, testing the IFN-γ production after stimulation with

an immunodominant antigen [Hafalla et al. 2013; Doll et al. 2016], revealed that around 5−15%

of the overall response was specific for this epitope, but showed no saturation in either spleen or

liver. As saturation was found for the overall CD8+ T cell response, this could either indicate

that the pathogen-specific response is masked by CD8+ T cells of other specificities or that the

analysed epitope becomes more immunodominant.

In addition to the data that is needed to clarify model and experimental ambiguities, new

experiments are needed to test the predictions generated by our current modelling approach,

which is of crucial importance to confirm or reject certain model assumptions. Of special in-

terest would be biological experiments with more booster injections given the normal, high and

subprotective doses, as they might help to elicit saturation levels in spleen and liver, which are

not incorporated in our current modelling approach (see Fig. B.5). Also, experiments with in-

termediate doses between subprotective/normal or normal/high are needed to find a continuous

mathematical function describing the dose-dependent influence on the cellular dynamics, which

was not possible with the current data set.

In summary, our results allow us to determine the CD8+ T cell dynamics generated after

malaria immunisation and can be used to improve future vaccination approaches.
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CHAPTER 5
On the influence of labelling strategies to infer

cellular dynamics

The results presented in this chapter have been partially published in [Gabel et al. 2017].

5.1 Introduction

The ability to distinguish cells by certain markers and labels has been an indispensable asset

in many biological experiments addressing cellular dynamics and development, including the

analysis of CD8+ T cell dynamics (see section 1.3.2). Tracking differently labelled cells not only

allows for the identification of lineage pathways [Perie et al. 2014], but also the observation of

dynamical changes in cell populations over time [Gerlach et al. 2013]. In addition, the infor-

mation obtained by labelling can be used to quantify cellular turnover, such as cell activation,

proliferation, migration and differentiation dynamics [De Boer et al. 2013; Kaiser et al. 2013;

Ganusov et al. 2014].

5.1.1 The application and use of different labelling approaches

There exists a large variety of experimental techniques to label and track individual cell popu-

lations. For example, staining cells by a single marker, such as BrDU [Tough et al. 1994; Mohri

et al. 1998], the fluorescent dye CFSE [Lyons 2000; Yates et al. 2007], or deuterated glucose and

heavy water [Hellerstein et al. 1999; Ribeiro et al. 2002; Mohri et al. 2001], can be used to infer

cellular turnover and proliferation dynamics. A more fine-grained approach involving several dif-

ferent markers - e.g. by transferring cell populations bearing congenic markers [Shen et al. 1985;

Kearney et al. 1994; Buchholz et al. 2013] or using naturally occurring diverse markers, such as

T cell receptor diversity [Maryanski et al. 1996; Lin et al. 1998; Turner et al. 2003; Blattman

et al. 2000] - allows to distinguish the dynamics of individual subpopulations. Furthermore, la-

belling cells by unique, inheritable genetic barcodes makes it possible to follow cellular dynamics

on a single cell level and therefore allows to address questions regarding cell heterogeneity and

individual cell differentiation pathways [Gerlach et al. 2013; Schumacher et al. 2010; Schepers

et al. 2008; Naik et al. 2014].

Labelling cell populations is particularly useful, if the experimental set-up forbids the sampling

of longitudinal data, e.g. due to harvesting of organs or cell cultures. In these cases the intra-
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individual variability derived from the labelled cell populations can provide enough information

to estimate cellular turnover, even if the data was only sampled at a single time point [Kaiser

et al. 2013; Gerlach et al. 2013]. Interestingly, it is possible to quantify interacting dynamics,

such as linked migration and proliferation, even if not all of the involved cell compartments are

observable. Therefore, using multiple labels can compensate for both the lack of time-resolved

and missing cellular data; shortcomings with are frequently encountered when analysing immune

responses.

5.1.2 Appropriateness of labelling strategies for parameter estimation

Data from labelling experiments have been successfully used to quantify cell population dynam-

ics, including those of CD8+ T cells. The spectrum of the applied labelling approaches in these

experiments is astonishingly broad: Strategies using hundreds of uniquely labelled cells [Gerlach

et al. 2013] are found alongside approaches having only a handful of markers, which are shared

between a large number of cells [Kaiser et al. 2013; Buchholz et al. 2013]. This huge variety

raises the interesting question if all labelling strategies are equally well suited to capture the

underlying cellular dynamics and hence generate appropriate data for analysis. So far, it has

not been determined how these different labelling approaches affect the quantification of cellular

dynamics: To what extent would parameter estimation improve if more labels or more cells per

label are used? Are all labelling strategies able to capture different kinetics, such as cell prolif-

eration and differentiation, equally well? How robust are labelling approaches with respect to

experimental shortcomings such as incomplete transfer or sampling? Answers to these questions

are necessary to establish a guideline for the generation of reliable and robust labelling strategies

with respect to parameter estimation.

5.1.3 Chapter overview

To address these raised questions, we analysed the appropriateness of different labelling strategies

to quantify cellular dynamics by performing a simulation study. Our approaches are based on

actual cellular dynamics, and feature a) homoeostatic turnover, as found e.g. in the maintenance

of näıve or memory CD8+ T cells, and b) cellular expansion dynamics, mimicking the activation

and proliferation of CD8+ T cells during acute infections (see Fig. 5.1 A and section 5.2.1).

Here, we simulated adoptive transfer experiments based on differently labelled cell populations

(see Fig. 5.1 B) and used the data derived from stochastically generated cell populations to

quantify the model parameters (see section 5.2.1). This approach allowed us to evaluate the

impact of different labelling strategies and experimental limitations on parameter estimation.

This chapter is structured as follows: In section 5.2, we establish the mathematical models

(section 5.2.1) and the simulation methods (section 5.2.2) used throughout the rest of this

chapter.

In section 5.3 we systematically analyse the influence of experimental labelling factors on the

estimation of cellular turnover. These factors include the number of labels and the label size

(section 5.3.1) as well as the time point of sampling (section 5.3.2). In section 5.4, we determine

how experimental limitations affect the parameter estimations. Here, we look at the influence
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of incomplete transfer (section 5.4.1), incomplete sampling (section 5.4.2) and missing cellular

compartments (section 5.4.3).

In general, our analysis can be used as a guideline for generating suitable labelling approaches

that will allow to quantify cellular dynamics even more robustly in future experiments.

BA

shared labelling unique labelling

4 10 0 32

N transfer

sampling

#cells

0 8

C

N A

N

TCM TE

TEM

(1)

(2)

(3)

Figure 5.1: Sketch of the cellular dynamics, labelling set-ups and experimental
shortcomings: (A) The sketches show the three simulated cellular dynamics: (1) Homoeostatic
turnover: Näıve cells proliferate only to compensate cell death, therefore maintaining a stable
number of cells. (2) Simple expansion dynamics: By encountering their respective antigen näıve
cells are activated and start to proliferate extensively. (3) Complex expansion dynamics: Upon
activation, näıve cells turn first into central memory precursor cells (TCM) and subsequently
differentiate further into effector memory precursor (TEM) and finally effector cells (TE). All
compartments, besides the näıve cells, are proliferating. (B) A labelling strategy is defined by
the number of different labels and the label size i.e. the number of cells per label. The depicted
labelling strategies show a shared and a unique labelling approach. After transfer into a host,
these cells are thought to follow one of the three cellular dynamics: homoeostatic turnover,
simple or complex expansion dynamics. The label of a cell is passed onto all offspring. At
a specific time, cells are sampled and used for evaluation. Data are gathered in the form of
count data measuring the number of cells of a specific label within the sampled population. (C)
Possible experimental shortcomings: Cells of the initial labelling strategy can be partially lost
during adoptive transfer (incomplete transfer). The transferred fraction of cells subsequently
expands according to the underlying dynamical model. Cells can again be lost when sampling
(incomplete sampling). Figure adapted from [Gabel et al. 2017].
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5.2 Mathematical models and simulation approaches

5.2.1 The mathematical models of cellular dynamics

Here, we distinguish three different scenarios of cellular dynamics, which are based on - but not

limited to - CD8+ T cell dynamics. The corresponding models are described as follows.

(1) Homoeostatic turnover: A cell population is considered to be in equilibrium if the total

number of cells is more or less constant over time. However, this doesn’t imply that there is no

cellular turnover, as cells can still be lost due to cell death, differentiation into other types of cells

or migration into different compartments or organs. To compensate for this efflux, lost cells are

replaced over time, e.g. by remaining proliferating cells or by an influx from elsewhere. Examples

of homoeostatic turnover are the dynamics of näıve CD8+ T cells before antigen encounter, or

the pool of memory T cells that is maintained after an infection [De Boer et al. 2003]. In the

homoeostatic model, we assume that a cell population, here termed näıve cells, N , proliferates

with rate ρ and dies with rate δ. The cellular dynamics are described by the following differential

equation:

dN

dt
= (ρ− δ)N . (5.1)

To ensure homoeostatic turnover, we always set ρ = δ in our stochastic simulations. Unless

specified otherwise, we assume that ρ = δ = 0.5 day−1. While the actual homoeostatic turnover

of näıve CD8+ T cells is much lower [De Boer et al. 2013], this value was chosen to allow for

reasonable simulation times. However, as the parameter estimation quality is not affected by

moderate changes in the sampling time (see Appendix C.1), all results can be derived without

loss of generality.

(2) Simple expansion dynamics: The second analysed dynamics describes the activation

and subsequent proliferation of CD8+ T cells due to antigen exposure (see Fig. 5.1 A) . Af-

ter encountering their cognate antigen, näıve T cells are activated and start to fight effectively

against the invading pathogen by massively expanding in numbers and simultaneously differen-

tiating into effective subpopulations [Buchholz et al. 2013]. Here, to model a simple expansion

dynamics, we distinguish only between näıve, N , and activated T cells, A (based on the nota-

tion in [De Boer et al. 2001]). Näıve cells are activated with rate µ, and activated cells start to

proliferate with rate ρ. The dynamics of this model can be described by the following system of

ordinary differential equations:

dN

dt
= −µN

dA

dt
= µN + ρA

(5.2)

For simplicity, cell death is neglected in this model. Unless specified otherwise, the rates are

always set to µ = ρ = 0.3 day−1.
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(3) Complex expansion dynamics: As the compartment of activated CD8+ T cells in the

simple expansion model is actually heterogeneous and comprised of functionally diverse subsets

(see section 1.3), we set up a third model featuring different types of activated cells. Based on the

analysis performed in [Buchholz et al. 2013], we distinguish between central memory precursor

(TCM), effector memory precursor (TEM) and effector cells (TE). The relationship between these

compartments is given by the following linear differentiation pathway (see also Fig. 5.1 A):

dN

dt
= −µNN

dTCM

dt
= µNN + (ρCM − µCM)TCM

dTEM

dt
= µCMTCM + (ρEM − µEM)TEM

dTE
dt

= µEMTEM + ρETE ,

(5.3)

where µx and ρx describe the differentiation and proliferation rates of the corresponding

compartments. We parametrised the model by using the estimates derived from [Buchholz et al.

2013]; the respective values are given as µN = 2.2 day−1, µCM = 0.2 day−1, µEM = 0.04 day−1,

ρCM = 0.85 day−1, ρEM = 1.42 day−1 and ρE = 1.6 day−1.

5.2.2 Simulating labelling experiments

To generate simulated data for our analysis, we performed stochastic simulations of the systems

defined by Eqs (5.1)-(5.3) based on the Gillespie algorithm [Gillespie et al. 2006]. Simulations

were carried out in R using the package adaptivetau [R Core Team 2016]. In each simulation,

we start with a specified number of differntly labelled näıve cells at time t = 0. Over the course

of each run, these cells proliferate, differentiate or die in a stochastic manner, according to the

underlying model. The label of each individual cell is retained when activating or differentiating

and is passed onto the daughter cells when proliferating. At sampling time T > 0 the simulation

is halted and the number of cells for each label is assessed.

In addition to the model parameters describing the cellular dynamics, each simulation depends

on the sampling time, T , at which cells are sampled, and the labelling strategy, which is char-

acterised by the number of different labels, L, and the label size, M . Unless stated otherwise,

each simulated labelling strategy is uniformly distributed, i.e. every label has the same number

of cells initially.

In case of incomplete transfer we account for the loss of transferred cells by first randomly

sampling a fraction of the original labelling strategy and then using this sample as an initial

condition in our simulation. The sampling is performed by the built-in R function sample.

Similarly, by sampling a predefined fraction of cells from the stochastically generated simulation

output, we can reproduce the experimental limitation known as incomplete sampling. The

sampled cell populations1 are then used to estimate the parameters of the underlying system as

described in Materials and Methods 2.4.1.

1Given the simple or complex expansion model, the compartment of näıve cells was not used for fitting.
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5.3 The influence of experimental factors on parameter

identification

In the following section, we look in detail how different experimental factors affect the estimation

of model parameters. The statistical quantities used for assessing the appropriateness of labelling

strategies are defined in Material and Methods 2.4.2. While the results presented in this section

are based on the simple expansion model (see Eqs. 5.2), identical observations can be found for

the homoeostatic and complex expansion model (see Appendix C).

5.3.1 The influence of the labelling strategy

Assuming labelling strategies are uniformly distributed, i.e. every label has the same number

of cells initially, the applied labelling approaches can be characterised by the following two

parameters: The number of labels, L, and the label size, M , i.e the number of cells per label. To

quantify the influence of the labelling strategy on the parameter estimation quality, we generated

a total of 2450 different labelling approaches by varying the number of labels, L, from 2 to 50

and the number of cells per label, M , from 1 to 50, and subsequently analysed their performance

to correctly estimate the underlying cellular dynamics.

We find that increasing the number of labels, L, continuously improves the estimation quality

for both the activation, µ and the proliferation rate, ρ of the simple expansion model. Here, an

increase reduces the absolute bias, the mean confidence interval length (MCIL) as well as the

false coverage rate (FCR, see Fig. 5.2 C). On the other hand, increasing the number of cells

per label, M initially results in a pronounced decline in these quantities for strategies using a

small number of cell per label, but this effect saturates rather quickly (see Fig. 5.2 D). In our

example, this saturation occurs around M = 10 cell per label, indicating that medium label

sizes might already be sufficient to robustly estimate cellular turnover. However, using uniquely

labelled cells can still help to identify the influence of experimental limitations such as incomplete

transfer (see section 5.4).

In summary, our results argue for the use of a large number of different labels with medium

to large numbers of cells per label to reliably infer cellular turnover.

Influence of the distribution of labels Assuming there is only a limited number of cells,

which can be labelled, we wondered how the initial distribution of label sizes would affect the

robustness of the parameter estimation.

To this end, we repeated our analyses by using a fixed total number of cells that were dis-

tributed amongst L = 50 different markers using either a uniformly, linearly or exponentially dis-

tributed label size (see Fig. 5.3 A). The evaluation of data from non-uniformly distributed label

sizes required the adaptation of the calculations of the corresponding summary statistics (see Ap-

pendix C.4). To compare the performance of the different labelling strategies, we then calculated

the difference between the statistical quantities (e.g. ∆MCIL = MCILUniform −MCILLinear).

We find that of all three distributions, a uniformly distributed labelling strategy yields the

most reliable results, irrespective of the total number of cells transferred (Fig. 5.3 B-E, results
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Figure 5.2: The influence of the labelling strategy on parameter estimation: (A)
Sketch depicting the dynamics of the simple expansion model: Näıve cells are activated with
rate µ and activated cells proliferate with rate ρ. (B) Calculation of heatmaps: Each labelling
strategy is used to generate 100 different stochastically simulated data samples. Each data set is
subsequently bootstrapped with 999 repeats to calculate the corresponding statistical quantities
(see Materials and Methods 2.4.1 and 2.4.2). (C-D) The bias, the mean confidence interval
length and the false coverage rate for the estimation of the activation rate, µ (C) and the
proliferation rate, ρ (D) based on simulations given the model depicted in (A). Parameters
values are given as µ = 0.3, ρ = 0.3 and cells were sampled at time T = 3. Grey colour indicates
values being above or below the depicted range (bias), or that the method is not able to estimate
the respective confidence interval for the corresponding parameter combination (MCIL and FCR,
see Materials and Methods 2.4.2). Figure adapted from [Gabel et al. 2017].

are shown for ∆MCIL). This observation is found for both the activation, µ, and proliferation

rate ρ. As an exponentially distributed labelling strategy performs worst, we conclude that

increasing the inequality of label sizes in the initial labelling strategy impairs the parameter

estimation quality and therefore the number of cells should always be uniformly distributed

amongst the available labels.

5.3.2 The influence of the sampling time

As we assumed that experimental measurements can only be obtained at a single time point,

the choice of the sampling time also affects the robustness of parameter estimation. Our results

indicate that the sampling time influences model parameters in different ways: Given the simple
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Figure 5.3: Influence of the label size distribution on parameter estimation: (A)
Examples of the three different label size distributions used. From top to bottom: Uniformly,
linearly and exponentially distributed initial labelling strategies. Every example distribution
consists of a total of 1000 cells and L = 50 labels. The red dotted lines indicate a corresponding
uniform distribution. (B-C) The difference in the MCIL for the estimation of the activation
rate, µ, between the uniformly and linearly (B), and the difference between uniformly and
exponentially distributed labelling strategies (C). (D,E) Analogous to (B,C) the differences in
the MCIL for the estimated proliferation rate, ρ, are depicted. Figure adapted from [Gabel et al.
2017].

expansion model, we find that for the activation rate, µ, the identifiability first increases and

then decreases with an increased sampling time, T , regarding the MCIL (see Fig. 5.4 A). In

contrast to this, we observe that estimation of proliferation dynamics is continuously improved

given later sampling times with respect to the MCIL (see Fig. 5.4 B) and the percentage bias

(see Appendix C.5). Thus, there is a trade-off regarding the time point of sampling leading to

either more robust estimates for the activation rate or the proliferation rate (Fig. 5.4 C).

This trade-off is also found in simulations based on the complex expansion system (see Ap-

pendix C.5). Here, proliferation rates are estimated more reliably as time increases, while the

transition from näıve to central memory precursor cells is captured especially well for early

sampling time points. In case of the homoeostatic system, no effect of the sampling time on

the parameter estimation is observed, and both the proliferation and death rate are estimated

reliably irrespective of the sampling time (see Appendix C.5).

In summary, our results show that for most rates the identifiability increases with the sampling

time. However, an optimal estimation of all of the involved dynamics might not be possible if

some rates are subject to a temporal restriction.
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Figure 5.4: Influence of the sampling time on parameter estimation: MCIL of the
activation rate, µ (A) and proliferation rate, ρ (B) based on varying combinations of sampling
times, T and proliferation rates, ρ given the model of simple expansion dynamics. (C) Cross
sections of panels (A & B) showing the MCIL of the activation rate, µ, (red) and the proliferation
rate, ρ, (blue) with respect to the sampling time for a fixed proliferation rate (ρ = 0.3). The
black dotted line indicates the time after which no estimates for the MCIL of the activation rate
could be obtained. The estimation for each parameter combination is based on 100 independent
stochastic simulations. Parameters that were kept fixed are µ = 0.3, L = 50 and M = 5. Grey
colour indicate that the method is not able to estimate the respective MCIL for the corresponding
parameter combination (see Materials and Methods 2.4.2). Figure adapted from [Gabel et al.
2017].

5.4 The influence of experimental limitations on the iden-

tification of parameters

In each experimental set-up using cellular labelling techniques, there are factors beyond the ex-

perimentalist’s control, which can influence the parameter estimation quality. In the following,

we will analyse how three common experimental shortcomings (incomplete transfer, incomplete

sampling and missing cellular compartment data) are affecting the identification of cellular dy-

namics.

5.4.1 The influence of incomplete transfer

During adoptive transfer of cells into a living host it is unlikely that all cells survive the transit.

Common experimental obstacles include the failure to reach the target tissue or the host-induced

rejection of labelled cells [Moon et al. 2009]. Therefore, it has to assumed that the experimen-

tally observed cellular responses are generated only from a fraction of the originally transferred

cell population. To study the influence of incomplete transfer on the robustness of parameter

estimates, we adjusted our previously used simulation approach by only transferring a fraction of

the initial labelling strategy (see section 5.2.2) and analysed the output given the homoeostatic

and the complex expansion model (see Eqs. 5.1 and 5.3). Both labelling strategies are based

800 cells in total, which are distributed based on a unique (L = 800 labels with M = 1 cell each)
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or a shared labelling approach (L = 8, M = 100)2. In the following, it is assumed that cells are

only lost during transfer and not during sampling, meaning that all generated cells are recovered

from the system for subsequent analysis.

Given the homoeostatic model, we find that incomplete transfer results in an overestimation

of both the proliferation and the death rate in either of the two labelling strategies used (see

Fig. 5.5 B). The ratio of the two rates was also estimated incorrectly: Instead of both rates

having roughly the same values, the death rate δ was consistently estimated to be higher than

the corresponding proliferation rate ρ. This is due to the fact that the system has to compensate

for the apparent loss of cells over time. We also observed that a higher transfer loss increased

the variation of the parameter estimates for both labelling approaches.

Given the complex expansion model, the findings look slightly different, but can be explained

in the same way. Here, we observe that a loss of cells in transfer mainly affects the initial

differentiation from TN into TCM (see Fig. 5.6). For a unique labelling approach, the subsequent

differentiation into TEM is also strongly biased3. Here, the low cell numbers could be easily

compensated by a reduced activation of näıve cells, as this compartment was not used for fitting.

However, if the transfer fraction is known, it is possible to adjust the estimation procedure,

which leads to unbiased parameter estimates (see Fig. 5.5 C for the homoeostatic model and

Appendix C.6 for the complex expansion model). This works reliably well for both labelling

strategies even if large fractions of cells are lost during transfer.

In summary, our results show that neglecting incomplete transfer can lead to a strong bias in

some, but not necessarily all parameter estimates.

5.4.2 The influence of incomplete sampling

In many cases, sampling cells from the underlying host system allows to recover only a fraction

of the complete cell population, due to the limiting nature of blood or tissue samples and the

scattered localisation of cells [Steinert et al. 2015]. To determine the influence of incomplete

sampling on the parameter estimation procedure we repeated our analysis by using only fractions

of the simulated response for the mathematical evaluation. In the following simulations, we

assumed that no cells are lost during transfer.

Given the homoeostatic system, we find that incomplete sampling results in an underesti-

mation of both the proliferation, ρ, and death rate, δ (see Fig. 5.7 B). However, the bias in

the proliferation rate is more pronounced, indicating that incomplete sampling does not affect

both rates equally. This means that incomplete sampling affects the parameter estimation in

a different way compared to incomplete transfer, where both rates were equally overestimated

(see section 5.4.1).

More diverse effects are observed for the parameter estimation given the complex expansion

model (see Fig. 5.7 C). Similar to the homoeostatic model, incomplete sampling results in

an underestimation of proliferation rates, which is more pronounced given the unique labelling

2Similar strategies have already been used in previous labelling experiments [Gerlach et al. 2013; Buchholz
et al. 2013]

3Note: The bias observed in the parameter estimation of the shared labelling approach is an artefact of the
estimation procedure (see section 5.4.3).
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Figure 5.5: The influence of incomplete transfer given the homoeostatic model: (A)
Sketch depicting the limitation of incomplete transfer: Only a fraction of the initially transferred
cell population survives the transit. Subsequently, surviving cells turn over homoeostatically.
(B) Panels show the distribution of estimates for the proliferation rate, ρ (left), and the death
rate, δ (right), based on different transfer fractions. The labelling strategies are based on 800
cells in total, distributed according to either a shared (L = 8,M = 100, blue) or a unique
labelling approach (L = 800,M = 1, orange). Here, the loss in transfer was not accounted for in
the parameter estimation procedure. (C) Taking the transfer fraction into account resolves the
estimation bias. Each boxplot is based on the results of 100 individual stochastic simulations
with ρ = δ = 0.5 d−1 and cells sampled 8 days after transfer. Red lines indicate the true
parameter values. Figure adapted from [Gabel et al. 2017].

approach. Neglecting the bias in the shared labelling approach (see section 5.4.3), the underesti-

mation of the rates increases with every cellular compartment, being lowest for ρCM and highest

for ρE (see Fig. 5.7 C). On the other hand, differentiation rates are estimated reliably, and,

given the shared labelling approach, almost no influence of incomplete sampling is observable

here.

As for incomplete transfer, the limitation of incomplete sampling can be addressed by rescaling

the measured cell numbers according to the sampling fraction (see Appendix C.7). However, it

might be technically difficult to retrieve this fraction experimentally.

As parameter estimation based on shared labelling approaches are less affected by incomplete

sampling, we would conclude that these strategies are more robust given this experimental

shortcoming.
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Figure 5.6: The influence of incomplete transfer given the complex expansion model:
(A) The linear pathway of cell differentiation of the complex expansion model based on [Buch-
holz et al. 2013]: Näıve cells (N) turn into central memory precursor cells (TCM), which subse-
quently turn into effector memory precursor (TEM) and effector (TE) cells. Cells differentiate
and proliferate according to the corresponding rates µ· and ρ·, respectively. (B) Panels show the
parameter estimation quality for the differentiation (upper row) and proliferation rates (lower
row) given different transfer fractions. The labelling strategies are based on 800 cells in total,
distributed according to either a shared (L = 8,M = 100, blue) or a unique labelling approach
(L = 800,M = 1, orange). Here, the loss in transfer was not accounted for in the parameter
estimation procedure. Every boxplot is based on the results of 100 individual stochastic sim-
ulations. Differentiation and proliferation rates are defined as µN = 2.2 d−1, µCM = 0.2 d−1,
µEM = 0.04 d−1, ρCM = 0.85 d−1, ρEM = 1.42 d−1 and ρE = 1.6 d−1 [Buchholz et al. 2013].
Red lines indicate the true parameter values. Figure adapted from [Gabel et al. 2017].

5.4.3 The influence of missing compartments

So far we implicitly assumed that experimental observations can be obtained for each cellular

compartment. However, due to experimental restrictions, such as spatial or temporal limitations,

it might not be possible to measure certain cellular subsets [Kaiser et al. 2013; Steinert et al.

2015].

In the previous sections, we always neglected the number of näıve cells in our analysis when

fitting the simple and the complex expansion dynamics to the simulated data (see section 5.2.2).

This was done to follow the studies our analysis is based on [Buchholz et al. 2013; Kaiser et al.

2013]. In these studies no data was available for the respective initial model compartment4, but

4In Buchholz et al., the initial compartment consisted of the näıve CD8+ T cell population and in Kaiser et
al., the Salmonella population located in the gut.
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Figure 5.7: The influence of incomplete sampling on parameter estimation: (A)
Sketch depicting the problem of incomplete sampling: Only a fraction of the labelled cells is found
in the sample and will be used for subsequent analysis. (B) Panels show the the distribution
of estimated proliferation, ρ and death rates, δ given different sampling fractions based on the
homoeostatic system shown in A. Here, the results from a shared (blue, L = 8, M = 100) and
a unique (orange, L = 800, M = 1) labelling approach are depicted. (C) The corresponding
results for the complex expansion model. Every boxplot is based on the results of 100 individual
stochastic simulations. For the definition of the model parameters, see captions of Figs. 5.5 and
5.6. Red lines indicate the true parameter values. Figure adapted from [Gabel et al. 2017].

the rates belonging to these compartment could be estimated nevertheless due to the additional

information provided by the applied labelling approaches.

We wanted to investigate how much information is lost if the data belonging to a specific

model compartment cannot be retrieved from the host system and hence used for mathematical

analysis. To this end, we refitted the parameters of the complex expansion model several times
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by selectively removing the data of one of the four different T cell compartments. We then

compared the estimates based on incomplete data to the case in which all available data was

taken into account when fitting the model.

In general, our results show that the rates belonging to the removed compartment show a

larger variation and are estimated more poorly compared to parameter estimates obtained by

fitting the complete data set (see Fig. 5.8). However, this was only partially true for the shared

labelling approach (L = 8, M = 100). Here, we find that all parameters were estimated more

reliably and robustly if the compartment of central memory precursors (TCM) was removed (see

Fig. 5.8, blue boxplots). This surprised us, as we did not expect that less information could

result in a better fit. However, taking a closer look at the data at hand, we find that correlation

coefficients associated with the TCM compartment are highly variable and especially a negative

correlation resulted in a poor fitting quality, as apparently the model was not able to reproduce

the observed quantities (see Appendix C.8). This shortcoming also explains the consistent bias

observed in the previous sections. Therefore, our results argue for wariness with respect to

the use of low-numbered and highly variable data points, but also highlight the benefit of the

application of labelling strategies in terms of estimating cellular dynamics not present in the

data.
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Figure 5.8: The influence of missing data on parameter estimation: The distribution
of the estimated parameters for the complex expansion dynamics based on different missing
data are shown. Every boxplot is based on the results of 100 individual stochastic simulations.
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Red lines indicate the true parameter values.
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5.5 Discussion

Over the last decades experimental advances have steadily increased the number of possibilities

to label cells in biological experiments. As of today, a huge variety of labelling methods, relying

on naturally occurring or artificially induced cellular markers, is available (reviewed in [De Boer

et al. 2013; Schumacher et al. 2010]). The possibility to adjust individual experimental factors,

such as the number of different labels and the number of cells per label, allows addressing many

different biological questions, including the determination of cellular dynamics during immune

reponses. In particular, cell labelling strategies can help to quantify cellular processes, such as

activation, differentiation and proliferation [Gerlach et al. 2013; De Boer et al. 2013; Buchholz

et al. 2013], which is important to understand the behaviour and the possible manipulation of

cellular systems. For example, T cell vaccination approaches need to induce elevated effector

responses crossing a certain threshold to guarantee protection (see chapter 4). Therefore, the

accurate quantification of cellular processes is of utmost importance to reliably induce protective

responses. While many different labelling strategies have been used so far, the extent to which

they allow the appropriate identification and quantification of cellular dynamics has not been

systematically analysed yet.

To address this question, we analysed the performance of different labelling strategies given

various cellular systems and experimental shortcomings in silico. Here, we simulated three

different scenarios of cellular turnover, closely related to dynamics of CD8+ T cell, including

homoeostatic cell proliferation and cellular expansion dynamics. As we assume in our analysis

that cellular data can only be gathered at a single time point, our scenarios represent the most

basic experimental scenario. It is especially in these cases, that cell labelling drastically improves

the amount of available information.

Our results indicate that there are some general conclusions about the appropriateness of

cellular labelling approaches. First, increasing the number of labels, L is continuously improving

the estimation quality in terms of bias and variance (see Fig. 5.2). This makes sense, as each

label adds another data point available for the mathematical analysis. Furthermore, the accuracy

of parameter estimates also benefits from an increased number of cells per label, M , although

this effect saturated rather quickly. Testing two extreme labelling strategies - a shared (L = 8

labels with M = 100 cells each) and a unique labelling approach (L = 8 labels with M = 1

cells each), we would conclude that a higher number of labels is more important than a higher

number of cells, as the unique labelling strategy performs much better than the shared labelling

approach in terms of bias and variance.

Additionally, we found that approaches combining smaller and larger label sizes perform worse

than uniformly distributed labels. In general, a strategy using uniformly distributed label sizes

seems to generate the most reliable data for analysis. However, using unique labelling approaches

can still be useful, as the unique labels allow to estimate the potential fraction of cells that is

lost during adoptive transfer [Buchholz et al. 2013].

Furthermore, we found that increasing the sampling time generally allowed to estimate pro-

liferation and differentiation rates more reliably, with the notable exception of time-constrained

dynamics, such as the activation dynamics of näıve cells in our examples. Hence, the robust
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estimation for all cellular dynamics might not be possible if only one sampling time point is

available.

We also looked at the impact of experimental shortcomings on parameter estimation, namely

incomplete transfer, incomplete sampling and the inability to measure certain cellular compart-

ments. All of these shortcomings can bias the parameter estimates if they are not accounted

for. Interestingly, we found that the effects on parameter estimation quality were different for

incomplete transfer and incomplete sampling. Incomplete transfer seemed to affect dynamics

depending on the associated cell compartment. For example, all rates belonging to the effector

cell compartment were reliably estimated given our complex expansion model irrespective of the

number of cells lost during transfer, while the rates describing the dynamics of the central mem-

ory precursor compartment all exhibited a bias, the strength of which being dependent on the

transfer fraction (see Fig. 5.6). In contrast to this, incomplete sampling selectively affected types

of cellular dynamics irrespective of the associated compartment. Given the complex expansion

model, we found a strong influence on the estimation of the proliferation rates, but barely any on

the estimation of differentiation dynamics (see Fig. 5.7). As the shared labelling approach was

less affected by both incomplete sampling and incomplete transfer, using labelling approaches

with medium or large label sizes seems to be a good strategy to obtain robust results given these

experimental shortcomings.

If the respective transfer or sampling fraction is known, it is possible to correct the parameter

estimation procedure and obtain accurate results (see Fig. 5.5 and Appendix C.7). However,

obtaining these fractions might prove experimentally difficult. While transfer loss can be exper-

imentally determined by using unique labelling approaches [Buchholz et al. 2013], assessing the

sampling fraction remains difficult, especially if cells are localising in different tissues.

In our analyses, we always assumed that labels are stable and do not interfere with the

underlying cellular dynamics. While this is true for certain artificial markers, such as genetic

barcodes or congenic markers [Gerlach et al. 2013; Buchholz et al. 2013; Kaiser et al. 2013], this

assumption will mostly likely not hold in case of naturally occurring markers. For example, the

receptors of CD8+ T cells consist of distinct α− and β-chains [Blattman et al. 2000; Wong et al.

2007; Zarnitsyna et al. 2013], which could potentially be exploited as cellular labels. However,

β-chains are associated with binding affinity and can therefore influence the activation of CD8+

T cells [Stone et al. 2009; Chervin et al. 2013]. As α-chains are less involved in antigen binding,

it remains an interesting question to address their applicability as cellular markers.

In summary, our results show that the set-up of labelling strategies influences the accuracy with

which cellular rates can be determined. To optimise the experimental output for mathematical

analysis, uniformly distributed labelling strategies with at least intermediate numbers of cells

per label should be used. Furthermore, the parameter estimation quality benefits from every

additional label added. Using such labelling approaches should allow for the generation of robust

and reliable data, even in the case of experimental shortcomings. We hope that the application

of the labelling strategies proposed here will contribute towards improving the quantification of

cellular dynamics in the future.
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CHAPTER 6
General discussion

6.1 Implications for the design of T cell-based vaccines

The successful establishment of protection-mediating T cell-based vaccines would be a major

step towards the control of some of the most dangerous infectious diseases today. However, to

reach this goal, more research is necessary, as many properties regarding the efficient induction

of protective CD8+ T cell levels, as well as their short- and long-term maintenance are currently

only poorly understood. We would like to highlight in this last section how the knowledge gained

by our studies can be used in the context of T cell-based vaccination approaches.

6.1.1 On the induction of protective CD8+ T cell responses

Given diseases like malaria or HIV, the generation of immunological memory is not sufficient for

protection. Rather, it was found that high levels of effector-like CD8+ T cells are necessary to

prevent these infections [Hansen et al. 2011; Fernandez-Ruiz et al. 2016]. Therefore, a major goal

in medical research regarding T cell-based vaccines lies in the elicitation of elevated CD8+ T cell

responses which are able to provide immediate effector function and are efficiently surveilling

the cell tissues at risk.

In order to guarantee protection, T cell-based vaccination approaches have to make sure that

the induced immune response crosses a certain threshold. Due to this, setting up successful

vaccination strategies requires a quantitative understanding of cause and effect of the CD8+ T

cell dynamics elicited by vaccination approaches. Here, mathematical modelling is an almost

indispensable tool to accurately determine the underlying cellular turnover.

In our study analysing the CD8+ T cell dynamics in MCMV infection, we find that the

shaping of the inflationary response is depending on different viral stimuli, one corresponding

to the acute and the other one to the latent phase of viral reproduction. The magnitude in cell

numbers reached over the course of the infection seems to be mostly dependent on the efficiency

of viral reproduction, which in our model was determined by the rates describing viral replication

speed and T cell-mediated clearance. Therefore, our results would suggest that the success of

vaccines using CMV vectors to generate elevated effector-like responses critically depends on

prolonged acute viral replication, which presumably leads to an increase in the size of the latent

viral reservoir later on. If this is in fact true, the magnitude of the induced long-term CD8+ T
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cell response by CMV could potentially be boosted by the administration of immunosuppressing

drugs shortly before or after vaccination.

As we found in our study about malaria vaccination approaches, other factors such as the

dosage and the frequency of the vaccination regimen can also determine the level of the gener-

ated CD8+ T cell response. Here, our results indicate that an efficient induction of liver-resident

memory T cells strongly depends on both the administration of booster injections and high

PbRAS dosages. Our modelling suggests that the failure to generate protection after only one

vaccination shot stems from the organ-dependent cellular kinetics: As näıve CD8+ T cells are

mostly activated in the secondary lymphoid organs, the antigens provided by the first vaccina-

tion dose are only sufficient to establish a founder population of TRM cells in the liver. These

cells, however, are expanding rapidly upon antigen re-encounter, which is provided by the ad-

ministration of booster injections. Therefore we would conclude that T cell-based vaccination

approaches targeting malaria necessarily need to include at least one booster injection in order

to mediate protection.

Here, quantifying the proliferation dynamics of TRM cells more accurately would allow to

robustly determine the appropriate number of injections. As we showed, improving the mathe-

matical estimation quality can be accomplished by the use of labelled cell populations. In general,

every approach studying the efficiency and efficacy of T cell-based vaccination approaches could

benefit from the application of suitable labelling strategies. Sticking with the example of Malaria

vaccination regimens, the use of cellular labelling strategies would help to confirm our proposed

differentiation pathway, to estimate the antigen-dependent parameters more robustly and to de-

termine the contribution of the spleen to the TRM response in the liver in subsequent booster

injections. Each of these findings would help in the establishment of a protective T cell-based

vaccine.

6.1.2 On the long-term efficacy of T cell-based vaccines

The induction of long-term protection is an essential goal for all vaccination approaches. For

many currently available vaccines, it is known that protection is waning over time and its loss

needs to be compensated by the administration of well-timed booster injections. Therefore,

analysing the maintenance of pathogen-specific CD8+ T cell responses is crucial to determine

the efficacy of T cell-based vaccination approaches over time.

In both of our studies dealing with MCMV and Plasmodium infection, long-term data of the

respective CD8+ T cell responses was available, which allowed us to predict the stability of

the protection-mediating T cell levels. For the pool of TRM induced after malaria vaccination,

our experimental data and the mathematical modelling suggested that the cell numbers of this

compartment stays more or less stable over the course of months. Additionally, experimental

challenges more than 100 days after the administration of the last booster injection showed that

protective levels reached early after vaccination are also effective long-term, indicating a long

half-life of the induced TRM population.

For CMV, previous studies also indicated a constant maintenance of the elicited inflationary

responses [Munks et al. 2006; Torti et al. 2011b; Hansen et al. 2011]. However, our results
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suggest that the inflationary pool is declining over time (see chapter 3). Not discarding the

possibility of an experimental artefact, a likely explanation would be a varying, maybe oscillating,

maintenance of the long-term CD8+ T cell response, possibly due to viral reactivation events.

This finding would have implications for the mediated protection based on CMV-induced T cell

based-vaccines, as variable levels of effector-lie responses will most likely result in variable levels

of protection over time as well.

Analysing the inherent turnover of a cell population in steady state is difficult, as the overall

cell numbers do not indicate the underlying dynamics. To infer such information, measurements

of proliferation and survival markers, such as Ki67 or BrDU [Torti et al. 2011b], or deuterium

labelling [Borghans et al. 2017] can be used for quantifying CD8+ T cells dynamics. Our study

in chapter 5 showed that cellular turnover in homoeostatic cell populations can also successfully

obtained by the application of appropriate labelling strategies. In our study, this even allowed

us disentangle corresponding proliferation and death rates based on the variation in the labelled

subsets. As our results show that the quantification of cellular dynamics strongly benefits from

the use of specific labelling strategies, its application should be considered in experiments deter-

mining the maintenance of cellular subsets generated by T cell-based responses, including the

pool of TRM after malaria vaccination or inflationary cells in MCMV infection.

6.2 Future work

A scientist’s work is never done.

This adapted version of an old American proverb1 is supposed to capture an inherent property

of science, where the answer to a particular problem almost inevitably seems to raise a new set of

questions. The analyses performed in this thesis provide no exception thereof. Thus, we would

like to highlight the most pressing questions that warrant further investigations and discuss

potential experimental and mathematical approaches that could address these topics in future

studies.

One shortcoming of our analysis of CD8+ T cell dynamics in MCMV infection was that

the model predictions were solely based on measurements obtained from the blood of mice.

While we had a few additional measurements of cell numbers in different organs, these data

were neither enough to predict organ-dependent dynamics nor was it possible to relate the cell

numbers observed in these organs to the numbers measured in the blood. Should future work

indicate a critical involvement of a non-vasculatory organ in the generation and maintenance

of memory inflation, it would be necessary to obtain frequent organ-specific measurements to

reliably quantify the cellular dynamics. Assuming that sampling of cellular data involves the

harvest of host animals, the use of appropriate labelling strategies would strongly increase the

amount of data available for analysis. Furthermore, the stability of inflationary responses over

time should be addressed experimentally. To this end, frequent longitudinal measurements

need to be obtained. As we show in our analysis, the observable CD8+ T cell response holds

information about possible viral reactivation events and could therefore help to determine how

viral latency triggers memory inflation.

1The original saying is Man may work from sun to sun, but woman’s work is never done.
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Gathering more longitudinal data is also important for our analysis of malaria vaccination

approaches. Here, the numbers of tissue-resident memory cells are of special importance, as

they would allow to address questions about the genesis and maintenance of this pool. New

data are also needed to test the mathematical predictions with respect to pathway and turnover

identification. Here, the use of cellular labelling strategies would be a tremendous help. In

addition to determining the optimal dosage and frequency of immunisations approaches, the

influence of the interval between two booster injections should also be analysed. Our approaches

were mostly based on a 14 day interval scheme, but should be consistently extended to shorter

and longer, e.g. 7 or 28 days, intervals. The data of these experiments would allow our modelling

approach to incorporate the influence of the timing of injections as well.

While our theoretical analysis of the influence of labelling strategies on the estimation of cellu-

lar parameters takes many possible dynamics into account, a systematic expansion of additional

cellular interactions, e.g. by including reversible differentiation processes or modelling prolif-

eration by logistic growth, is needed to determine the applicability of the previously obtained

results to more complex systems. Also, quantifying the impact of labelling strategies on parame-

ter estimation given multiple measurement time points will help to assess the benefit of labelling

approaches in situations in which data is less scarce. As both the analyses about CD8+ T cell

dynamics in malaria and MCMV are lacking data from the initial expansion phase, combining

these experiments with our proposed labelling strategies would allow to address many of our

raised points simultaneously.

In summary, the analyses provided in this thesis are an important contribution to the under-

standing of CD8+ T cell dynamics and differentiation in the context of immunity and vaccination.

We therefore hope that our results will aid in the successful development of effective T cell-based

vaccines against various kinds of infectious diseases.
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APPENDIX A
A.1 Model fits to the non-inflationary data

The dynamics of the M45-specific CD8+ T cells as predicted by the constant influx model (see

Eqs. 3.4 and Fig. A.1).
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Figure A.1: Individual fits to the non-inflationary data: Panels show the model predic-
tion (red lines) compared to the individual experimental data (black dots). All experiments were
performed by the lab of Prof. Dr. A. Oxenius, Institute of Microbiology, ETH Zürich. Model
fits were estimated based on the software Monolix. For the respective parameter sets see Table
A.2.
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A.2 Individual parameter estimates

The individual parameters sets are given in Table A.1 (inflationary data) and Table A.2 (non-

inflationary data).

mouse V7 T7 ρV k β ρR ρT δ

1 1.73 61,611 0.15 2.95e-06 5.39e-04 0.414 0.29 0.323

2 1.7 39,356 0.13 3.01e-06 4.79e-04 0.413 0.31 0.318

3 1.79 35,789 0.09 3.12e-06 5.16e-04 0.414 0.29 0.326

4 1.69 33,498 0.1 3.06e-06 4.68e-04 0.413 0.3 0.32

5 1.73 55,775 0.11 3.04e-06 5.15e-04 0.413 0.29 0.324

6 1.7 24,215 0.09 3.14e-06 5.16e-04 0.415 0.29 0.325

7 1.71 30,817 0.18 2.86e-06 5.1e-04 0.414 0.3 0.322

Table A.1: Individual parameter estimates for the ENR model: Parameters obtained
from fitting the ENR model to the inflationary data. For model description see Eqs. 3.3.

mouse TE7 Λ δ

1 100,640 4781 0.64

2 88,659 6176 0.61

3 119,900 4327 0.63

4 78,411 5508 0.62

5 232,120 5751 0.63

6 67,265 7110 0.6

7 77,534 5611 0.61

Table A.2: Individual parameter estimates for the CI model: Parameters obtained from
fitting the CI model to the non-inflationary data. For model description see Eqs. 3.4.
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A.3. SUBSET DYNAMICS OF MCMV-SPECIFIC T CELLS

A.3 Subset dynamics of MCMV-specific T cells

M45- and M38-specific CD8+ T cells were gated for their expression of surface markers CD62L

and KLRG1 and the distribution of the overall pool was assessed at every measurement time.

Fig. A.2 shows the mean distribution over time. Cell subset are classified by belonging either

to central memory (CD62L+/KLRG1-), effector memory (CD62L-/KLRG1-) or effector cells

(CD62L-/KLRG1+).
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Figure A.2: Subset dynamics of MCMV-specific T cells: The dynamics of M45- and
M38-specific CD8+ T cells is shown over time. The top row shows the percentage of the respective
subsets over time and the bottom row the corresponding number of cells. Subsets are analysed
with respect to the expression of surface markers CD62L and KLRG1. Mean ± SEM is shown.
All experiments were performed by the lab of Prof. Dr. A. Oxenius, Institute of Microbiology,
ETH Zürich.
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A.4 The influence of periodic reactivation events on the

corresponding CD8+ T cell dynamics

Based on the sporadic reactivation model given by Eq. 3.7 with parametrisation given as k =

5 × 10−6, ρ = 0.29, δ = 0.32, Ri = 2.4 and Ti = 10i, i ∈ N0, we analysed how the scaling of

parameters determining the viral response would affect the oscillating CD8+ T cell dynamics.

Here, we looked at changes in the viral burst frequency, Ti, the released viral load per burst, Ri

and the CD8+ T cell mediated clearance, k. The effects on the long-term mean cell number,

the amplitude and the minimal cell number are shown in Fig. A.3 and are based on the model

predictions from day 50 to day 100 p.i. Scaling is performed directly for the viral load per burst,

but inversely for the reactivation frequency and the clearance rate. (meaning a scaling factor of

m actually corresponds to a scaling factor of 1
m )).
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Figure A.3: The effects of changes in the sporadic viral reactivation patterns on the
CD8+ T cell dynamics: The long-term mean number of cells (A), the amplitude (B) and the
minimal cell numbers (C) are shown. All properties are calculated based on the CD8+ T cell
numbers from day 50 to day 100 p.i. Scaled parameters include the viral reactivation frequency
(red), the viral load per reactivation event (green) and the T cell mediated clearance rate (blue).
Scaling is performed directly for the viral load, but inversely for the reactivation frequency and
the clearance rate.
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APPENDIX B
B.1 Cell numbers during expansion phases

The fit in Fig. B.1 is based on the parameter combination that gave the lowest negative log-

likelihood value. The number of effector cell in the liver is predicted to be around 4× 109.
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Figure B.1: The best fit obtained by the profile likelihood approach: Panels show
the cellular dynamics of TCM (top left), TEMS (top right), TEML + TRM (bottom left) and
TEML /TRM compartments (bottom right). Lines are based on a prime-boost (PB, orange) or a
prime-boost-boost (PBB, green and purple) vaccination strategy using a normal dosage (1×104

PbRAS). The dots represent the mean measured cell numbers. Error bars indicate the 95%
confidence interval based on the t-distribution. All experiments were performed by the lab of
Prof. Dr. A.-K. Mueller, Centre for Infectious Diseases, Parasitology Unit, University Hospital
Heidelberg
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B.2 Profile likelihoods

Fig. B.2 shows the profiles for the parameters of the best fitting model, based on the calculations

given in Materials and Methods 2.3.3. The profiles were used to calculate the confidence intervals

given in Table 4.1.
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B.2. PROFILE LIKELIHOODS
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Figure B.2: The profiles of the model parameters showing the negative log-likelihood arising
from keeping the respective parameter fixed to specified values. Here, confidence intervals contain
all values falling below the red dotted line (see Materials and Methods 2.3.3 and [Raue et al.
2009]).
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B.3 Akaike weights and evidence ratio

For the calculation of the evidence ratios and normalised probabilities see Materials and Methods

2.1.2.

parameter evidence ratio normalised probability

σag
N−CM 44.9 0.978

σag
N−EMS 0.09 0.083

ρagCM 0.068 0.064

ρbCM 31000 0.999

σag
CM−EMS 17000 0.999

σb
CM−EMS 70000 0.999

σag
EMS−CM 39000 0.999

σb
EMS−CM 0.039 0.038

ρbEMS 0.11 0.102

σag
EMS−EML 0.047 0.046

σb
EMS−EML 41000 0.999

σag
EML−EMS 42000 0.04

σb
EML−EMS 0.041 0.039

ρbEML 21000 0.999

σag
EML−RM 44.9 0.978

σb
EML−RM 0.04 0.039

σag
RM−EML 0.042 0.041

ρagRM 15.2 0.938

ρbRM 0.088 0.082

σag
EMS−RM 0.066 0.062

σb
EMS−RM 0.042 0.041

σag
RM−EMS 0.046 0.044

ρagEMS / ρagEML / L2 / L3 always included 1

Table B.1: The evidence ratios based on the Akaike weights showing how much more likely
a model is that includes the respective parameter (see Materials and Methods 2.1.2). Akaike
weights were calculated based on the 500 best models. The normalised probability shows how
large the support is for the group of models containing the respective parameter given all other
models. Blue colour indicates the parameters of the best fitting model.
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B.4. PARAMETER SETS USED FOR DOSE FITTING

B.4 Parameter sets used for dose fitting

All of the parameters sets below generated TEML cell numbers below the threshold of 5 × 107

cells.

parameter unit Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10

σag
N−CM day−1 2.9e-05 2.2e-01 2.2e-01 5.6e-06 1.5e-05 2.8e-06 1.4e-01 1.2e-01 1.4e-06 1.1e-01

ρbCM day−1 0.16 0.14 0.14 0.14 0.17 0.14 0.13 0.13 0.12 0.13

σag
CM−EMS day−1 3.74 3.02 3.11 5.99 4.1 5.21 3.32 3.59 6.47 3.52

σb
CM−EMS day−1 0.16 0.14 0.14 0.14 0.17 0.14 0.13 0.13 0.12 0.13

σag
EMS−CM day−1 0.25 0.27 0.28 0.45 0.24 0.44 0.32 0.37 0.7 0.37

ρagEMS day−1 3.2 1.95 1.95 3.4 3.3 3.5 2 2 3.6 2.03

σb
EMS−EML day−1 0.23 0.2 0.2 0.2 0.24 0.2 0.19 0.18 0.17 0.18

ρagEML day−1 4.99 3.7 3.6 4.99 5 4.99 3.5 3.4 4.99 3.3

ρbEML day−1 -1.8 -1.62 -1.57 -1.61 -1.79 -1.53 -1.5 -1.4 -1.35 -1.43

σag
EML−RM day−1 8.5e-3 5.1e-3 6.3e-3 1e-2 1e-2 1.2e-2 9.4e-3 1.2e-2 7.8e-3 1.8e-2

ρagRM day−1 0.74 0.53 0.53 0.92 0.74 0.96 0.56 0.59 1.19 0.59

L2 days 1.06 1.52 1.5 0.89 1.04 0.84 1.42 1.36 0.72 1.34

L3 days 0.86 1.2 1.18 0.7 0.86 0.67 1.12 1.06 0.55 1.04

TEML at peak # 4e7 4.2e7 3.2e7 3.3e7 3e7 2.8e7 2e7 1.5e7 4.3e7 9.2e6

Table B.2: The ten best parameter sets that generated TEML cell numbers below the threshold
of 5× 107 cells. The corresponding peak TEML cell numbers are given in the last row.
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B.5 Best fit to the high dose data
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Figure B.3: Model fit to the high dose data: Panels show the cellular dynamics of TCM (top
left), TEMS (top right), TEML + TRM (bottom left) and TEML /TRM compartments (bottom
right). Lines are based on a prime-boost (PB, orange) or a prime-boost-boost (PBB, green)
vaccination strategy using a high dosage (1×105 PbRAS). The dots represent the mean measured
cell numbers. Error bars indicate the 95% confidence interval based on the t-distribution. All
experiments were performed by the lab of Prof. Dr. A.-K. Mueller, Centre for Infectious Diseases,
Parasitology Unit, University Hospital Heidelberg
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B.6. BEST FIT TO THE SUB DOSE DATA

B.6 Best fit to the sub dose data
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Figure B.4: Model fit to the subprotective dose data: Panels show the cellular dynamics
of TCM (top left), TEMS (top right), TEML + TRM (bottom left) and TEML /TRM compartments
(bottom right). Lines are based on a prime-boost (PB, orange) or a prime-boost-boost (PBB,
green) vaccination strategy using a subprotective dosage (1 × 103 PbRAS). The dots represent
the mean measured cell numbers. Error bars indicate the 95% confidence interval based on the
t-distribution. All experiments were performed by the lab of Prof. Dr. A.-K. Mueller, Centre
for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg
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B.7 Comparing different dosage dynamics
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Figure B.5: Comparing the cellular dynamics of different dosages: Panels show the
cellular dynamics of TCM (top left), TEMS (top right), TEML + TRM (bottom left) and TEML

/TRM compartments (bottom right). Lines are based on a prime-boost-boost vaccination strat-
egy using either a normal (1 × 104 PbRAS - dark blue) or high dosage (1 × 105 PbRAS - light
blue). The subprotective (1× 103 PbRAS - turquoise) was simulated to receive 11 shots in total
following a 14 days vaccination scheme.
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APPENDIX C
C.1 The influence of the sampling time given the homoeo-

static model

Moderate changes in the sampling time do not affect the parameter estimation quality given the

homoeostatic model (see Fig. C.1).
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Figure C.1: The influence of the sampling time on parameter estimation given the
homoeostatic model: Panels show the distribution of estimates for the proliferation rate, ρ
(middle), and the death rate, δ (right), for different sampling times. Parameter estimates for
two labelling strategies with N = 800 cells, using either a shared (L = 8,M = 100, blue) or
an unique labelling approach (L = 800,M = 1, orange) are shown. The parametrisation of the
model is given as ρ = δ = 0.5 day−1 as indicated by the red horizontal lines. Figure adapted
from [Gabel et al. 2017].

C.2 Solving the master equations

We will show the derivation of the master equation and the fitting procedure based on the

complex expansion model (see Eqs. 5.3). Here, we also considered the death rates within the

individual compartments. The other two scenarios, homoeostatic turnover (Eqs. 5.1) and simple

expansion dynamics (Eqs. 5.2) can easily be derived from the following calculations by setting

certain parameters equal to zero.
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In the complex expansion model, we distinguish between näıve (N), central memory precursor

(TCM), effector memory precursor (TEM) and effector cells (TE). The relation between these

compartments is given by the following linear differentiation pathway:

dN

dt
= −µNN

dTCM

dt
= µNN + (ρCM − µCM)TCM

dTEM

dt
= µCMTCM + (ρEM − µEM)TEM

dTE

dt
= µEMTEM + ρETE .

(C.1)

The system given in Eq. (C.1) can also be formulated stochastically by a continuous-time

Markov process which is described by the master equations for the state probabilities pk,l,m,n(t)

derived from the corresponding transition probabilities [Haag 2017]. The master equation for the

state probability pk,l,m,n(t), which describes the probability that we observe N = k, TCM = l,

TEM = m and TE = n cells in the different compartments at time t, is then determined by

dpk,l,m,n
dt

= µN (k + 1)pk+1,l−1,m,n + µCM(l + 1)pk,l+1,m−1,n + µEM(m+ 1)pk,l,m+1,n−1

+ ρCM(l − 1)pk,l−1,m,n + ρEM(m− 1)pk,l,m−1,n + ρE(n− 1)pk,l,m,n−1

+ δCM(l + 1)pk,l+1,m,n + δEM(m+ 1)pk,l,m+1,n + δE(n+ 1)pk,l,m,n+1

− (µNk + (ρCM + δCM + µCM)l + (ρEM + δEM + µEM)m+ (ρE + δE)n) pk,l .

(C.2)

We can derive the probability generating function that is defined as

F (z0, z1, z2, z3) =
∑

(n0,n1,n2,n3)

zn0
0 zn1

1 zn2
2 zn3

3 P (n0, n1, n2, n3; t) , (C.3)

with the state vector (n0, n1, n2, n3) characterising the populations of näıve (n0), central mem-

ory precursor (n1), effector memory precursor (n2) and effector cell (n3) at time point t. Inserting

Eq. (C.3) in the master equation Eq. (C.2) leads to the following partial differential equation:

∂tF (z0, z1, z2, z3) =

3∑
i=1

µi(zi − zi−1)∂zi−1
F + δi(1− zi)∂ziF + ρi(z

2
i − zi)∂ziF (C.4)

On the other hand, the probability generating function can be derived with regard to zi and

evaluated at zi = 1, i = 1, ..., 4 which gives the first factorial moments

dF

dzi
|zi=1 =

∑
(n0,n1,n2,n3)

niP (n0, n1, n2, n2; t) (C.5)
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C.2. SOLVING THE MASTER EQUATIONS

The second derivative yields the second moments, and so on. By defining xN := ∂z0F |zi=1, yN :=

∂z20F |zi=1 and cN,CM := ∂z0z1F |zi=1, ..., we can split the partial differential equation in

Eq. (C.4) into a system of ordinary differential equations:

dxN
dt

= −µCMxN

dxCM

dt
= µCMxN + (−µEM − δCM + ρCM)xCM

dxEM

dt
= µEMxCM + (−µE − δEM + ρEM)xEM

dxE
dt

= µExEM + (−δE + ρE)xE

dyN
dt

= −µCMyN

dyCM

dt
= µCMcN,CM + ρCMxCM + (−µEM − δCM + ρCM)yCM

dyEM

dt
= µEMcCM,EM + ρEMxEM + (−µE − δEM + ρEM)yEM

dyE
dt

= µEcEM,E + ρExE + (−δE + ρE)yE

dcN,CM

dt
= µCMyN + (−µCM − µEM − δCM + ρCM)cN,CM

dcN,EM

dt
= µEMcN,CM + (−µCM − µE − δEM + ρEM)cN,EM

dcN,E
dt

= µEcN,EM + (−µCM − δCM + ρCM)cN,E

dcCM,EM

dt
= µCMcN,EM + µEMyCM + (−µEM − µE − δCM − δEM + ρCM + ρEM)cCM,EM

dcCM,E

dt
= µCMcN,E + µEcCM,EM + (−µEM − δCM − δE + ρCM + ρE)cCM,E

dcEM,E

dt
= µEMcCM,E + µEyEM + (−µE − δEM − δE + ρEM + ρE)cEM,E .

(C.6)

The solutions to these equations can be used to calculate the expected mean, the variance and

the covariance of the different cell populations. For the näıve cell population, these values are

obtained by putting

E[N] = xN(t)

Var[N] = yN(t) + xN(t)− xN(t)2

Cov[N,CM] = cN,CM(t)− xN(t)xCM(t) .

(C.7)

The summary statistics used for fitting are the expected mean, the coefficients of variation

(CV) and the correlation coefficients (CC). The latter two are calculated by
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CV[N] =

√
Var[N]

E[N]

CC[N,CM] =
Cov[N,CM]√

Var[N]Var[CM]
.

(C.8)

The summary statistics for the remaining cell populations are calculated accordingly.

C.3 The influence of the labelling strategy on parameter

estimation

Proliferaton rate ρ

number of labels L

la
be

l s
iz

e 
M

0

10

20

30

40

50

0 10 20 30 40 50

0.2

0.4

0.6

RMSE

0

10

20

30

40

50

0 10 20 30 40 50

0.2

0.4

0.6

RMSE

Death rate δ

number of labels L

la
be

l s
iz

e 
M

0

10

20

30

40

50

0 10 20 30 40 50

−0.2

−0.1

0.0

0.1

0.2
Bias

Death rate δ

number of labels L

la
be

l s
iz

e 
M

0

10

20

30

40

50

0 10 20 30 40 50

−0.2

−0.1

0.0

0.1

0.2
Bias

Proliferaton rate ρ

number of labels L

la
be

l s
iz

e 
M

Figure C.2: The influence of the labelling strategy on parameter estimation given
the homoeostatic model: Panels show the estimation quality of the proliferation rate, ρ, (left
column), and the death rate, δ, (right column) with respect to the bias (top row) and RMSE
(bottom row). The parametrisation of the model is given as ρ = δ = 0.5 day−1 and the simulated
data is obtained at sampling time T = 8. Grey colour indicates values outside the shown scale.
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C.3. THE INFLUENCE OF THE LABELLING STRATEGY ON PARAMETER ESTIMATION
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Figure C.3: The influence of the labelling strategy on parameter estimation given
the complex expansion model: (A) Panels show the estimation quality of the differentiation
rate, µN, µCM and µEM with respect to the bias (top row) and RMSE (bottom row). (B)
Similar as in (A), but for the proliferation rates ρCM, ρEM and ρE. The parametrisation of the
model is given as µN = 2.2 day−1, µCM = 0.2 day−1, µEM = 0.04 day−1, ρCM = 0.85 day−1,
ρEM = 1.42 day−1 and ρE = 1.6 day−1 and the simulated data is obtained at sampling time
T = 8. Grey colour indicates values outside the shown scale.
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C.4 Deriving estimates from non-uniformly distributed la-

belling strategies

If the initial labelling strategy is not uniformly distributed, the obtained output data need

to be adjusted to derive the summary statistics. The idea is to rescale all values to achieve

comparability. This is possible because the calculated mean and variance of Eq. C.7 scale linearly

with the initial number of transferred cells, if and only if all other cell compartments are empty at

time t = 0. For our models this condition is fulfilled since we assumed no activated/differentiated

cells exist in the beginning.

To be more exact, if XM describes the number of further differentiated cells at sampling time

T , derived from an initial population of M equally labelled cells, it holds that:

E(XM ) = ME(X1) (C.9)

Var(XM ) = MVar(X1) . (C.10)

This means the distribution of shared labels at time T can be derived from the calculated

quantities based on a unique label.

Now considering a non-uniformly distributed labelling strategy made up of L different labels,

we denote Mi as the initial number of cells of label i and Xi as the corresponding sampled cell

population at time T . We define the quantities

E1 :=

∑L
i=1Xi∑L
i=1Mi

(C.11)

V1 :=

L∑
i=1

(Xi −MiE1)2 . (C.12)

It is immediately clear that the quantity E1 is an unbiased estimator of the expected value of a

cell population starting with M = 1 cell. On the other hand, V1 is a biased estimator as we see
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by calculating

E[V1] =

L∑
i=1

E[Xi −MiE1[2=

L∑
i=1

E[Xi − E[Xi] + E[Xi]−MiE1]2

=

L∑
i=1

E[(Xi − E[Xi])
2 + 2(Xi − E[Xi])(E[Xi]−MiE1) + (E[Xi]−MiE1)]2

=

L∑
i=1

Var[Xi] +

L∑
i=1

E[2(Xi − E[Xi])(E[Xi]−MiE1)] +

L∑
i=1

Var[MiE1]

= MVar[X1]− 2

M

L∑
i=1

E

(Xi − E[Xi])(Mi

L∑
j=1

Xj −ME[Xi])


+

(
∑L
i=1M

2
i )

M
Var[X1]

= MVar[X1]− 2

M

L∑
i=1

E

(Xi − E[Xi])(

L∑
j=1

Mi(Xj − E[Xi]))


+

(
∑L
i=1M

2
i )

M
Var[X1]

= MVar[X1]− 2

M

L∑
i=1

MiE[(Xi − E[Xi])
2] +

(
∑L
i=1M

2
i )

M
Var[X1]

= MVar[X1]−
2
∑L
i=1M

2
i

M
Var[X1] +

(
∑L
i=1M

2
i )

M
Var[X1]

=
M2 −

∑L
i=1M

2
i

M
Var(X1) .

Hence, correcting V 1 by M
M2−

∑L
i=1 M

2
i

leads to an unbiased estimator of the variance of X1,

which we then used in the fitting procedure.
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C.5 The influence of the sampling time on parameter es-

timation
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Figure C.4: Influence of the sampling time on parameter estimates given the simple
expansion model: (A & B) The percentage bias for the estimation of the activation rate,
µ̂ (A) and the proliferation rate, ρ̂ (B) based on varying combinations of sampling times, T
and proliferation rates, ρ. Grey areas in panel B indicate parameter combinations resulting in
a percentage bias larger than one. The corresponding false coverage rates are shown in panel
(C) and (D), respectively. The estimated parameter is shown above the colour scale. Figure
adapted from [Gabel et al. 2017].
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Figure C.5: Parameter estimates for the homoeostatic and complex expansion sys-
tem given different sampling times: (A) Estimation of proliferation and death rates given
the depicted homoeostatic system. (B) The complex expansion system with corresponding dif-
ferentiation and proliferation rates. Panels show the estimated rates given different sampling
times using a shared (L = 8, M = 100, blue) and a unique (L = 800, M = 1, orange) labelling
strategy. Here, no loss in transfer or sampling was assumed. Every boxplot is based on the
results of 100 independent stochastic simulations. Red lines indicate the true parameter values.
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C.6 Adjusting for transfer loss

Losing cells during adoptive transfer can be considered as taking a sample from the transferred

cell population, i.e. the initial population of labelled cells. The presumable number of cells that

each labelled population contributes to the transferred labelling strategy can be calculated by

using the hypergeometric distribution, which needs three input variables: the number of cells

in the chosen label, M , the overall number of cells, N and the considered fraction of cells, p,

that will survive the transfer. While M and N are known from the initial labelled population,

the transfer fraction p needs to be experimentally determined. If all values are known, we can

calculate the expected number and variance of the transferred cells by

E(# of transferred cells) = pM

Var(# of transferred cells) = p(1− p)M(N −M)

N − 1
.

(C.13)

Using Eqs. C.7, these values can be used as presumable initial conditions for the system C.6.

For results based on adjusted transfer fractions see Figs. 5.5 and C.6.
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C.7 Adjusting for sampling loss

Assuming the sampling fraction, p, is known, then all measured cell numbers can be rescaled by

dividing by the sampling fraction.
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Figure C.7: Parameter estimates for the homoeostatic and the complex expansion
system corrected by the pre-known sampling fraction: (A) Schematic depicting the
problem of incomplete sampling: Only a fraction of the labelled cells is sampled and can be
used for analysis. Here, the sampling fraction is known. (B) Estimates for proliferation and
death rate given the homoeostatic system corrected by the sampling fraction. (C) The complex
expansion system with corresponding differentiation and proliferation rates. Panels show the
estimated rates given different transfer fractions using a shared (L = 8, M = 100, blue) and
a unique (L = 800, M = 1, orange) labelling strategy. Here, we accounted for the loss in
sampling. Every boxplot is based on the results of 100 independent stochastic simulations. Red
lines indicate the true parameter values. Figure adapted from [Gabel et al. 2017].
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C.8 Failed parameter estimation due to negative correla-

tion

The bias observed in parameter estimates for the shared labelling approach (L = 8, M = 100)

given the complex expansion model is a direct consequence of the inability of the model to repro-

duce negative correlation coefficients with respect to the central memory precursor cells and the

effector compartments. Here, a negative correlation between TCM and TEM /TE compartments

resulted in an impaired parameter estimation (see Fig. C.8, left and middle panel). No other

correlation between the summary statistics and the goodness of the fit was found, not even for

the correlation of TEM and TE compartments (see Fig. C.8, right panel).
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the parameter estimates: Panels show the dependency of the correlation coefficients
(CC[CM,EM], CC[CM,E] and CC[EM,E]) and the estimation quality with respect to the
minimum χ2 value. Red lines show a linear fit to all data points having a negative correlation
coefficient (i.e. CC< 0)
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