




Dissertation

submitted to the

Combined Faculties of the Natural Sciences and Mathematics

of the Ruperto-Carola-University of Heidelberg. Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Andreas Schreiber

born in Langenhagen, Germany

Oral examination: 18th of May, 2018





Diffusion Limited Planetesimal Formation
Why asteroid and Kuiper-belt objects share a characteristic size

Referees:

Apl. Prof. Dr. Hubert Klahr

Prof. Dr. Cornelis P. Dullemond





Abstract
Planets are surprisingly abundant in our own solar system, but also in extrasolar systems. It is striking to
find no explanation for them, as dust in protoplanetary disks was found to not outgrow metres in size. The
growth barrier of dust to km-sized planetesimals thus states a missing link onto their formation mechanisms.
It is evident for planetesimals to have been present in the early solar system, as their remnants prowl the
solar system today in the form of asteroids, Kuiper belt objects, and comets. Of them, many were found
to be pristine, giving a hint on what once populated the early solar nebula. Studying the sizes of these
pristine objects revealed for all of them a characteristic diameter of 100 km. It is stunning to find this
feature independent of distance from the Sun in most pristine object families, hence this feature has to be
an imprint of their formation mechanism. This thesis derives a formation criterion for planetesimals out
of particle cloud collapse within protoplanetary disks. The found mechanism is capable of reproducing the
characteristic sizes of these pristine objects, as it is to first order independent of radial distance from the
star. By comparing collapse timescale with turbulent particle diffusion timescale, a minimum size criterion
for a dust cloud to collapse is found and investigated. Naturally, dust cloud collapse happens at high
dust-to-gas ratios, thus the streaming instability is a good candidate for this turbulent process. Hence,
the streaming instability is studied in 2-d and 3-d simulations at dust-to-gas ratios well above unity and on
typical collapse length scales. This study found a new instability, namely the azimuthal streaming instability.
It operates in the radial-azimuthal plane and has characteristics similar to the streaming instability, thus its
name. Subsequent collapse simulations in 2-d and 3-d proved the diffusion limited planetesimal formation
to produce planetesimals right at the expected 100km diameter. It is the conclusion of this thesis to have
shown a fundamental concept to be applied in future studies on planetesimals. It has the prospect to make
verifiable predictions which can proof this mechanism to have shaped the solar system as we see it today.

Zusammenfassung
Planeten gibt es nicht nur in unserem Sonnensystem, sondern auch überraschend häufig in extrasolaren Pla-
netensystemen. Bis heute konnte jedoch der Planetenentstehungsprozess nicht final nachvollzogen werden,
da Staub in protoplanetaren Scheiben nicht über eine Größe von Metern hinauswachsen kann. Die dynami-
schen Prozesse, die km-große Planetesimale entstehen lassen, können als Missing Link der Planetenentste-
hung verstanden werden. Es gilt als erwiesen, dass diese Objekte in großer Anzahl im frühen Sonnensystem
vorhanden gewesen sein müssen. Noch heute streifen übrig gebliebene Planetesimale in der Form von Aste-
roiden, Kuipergürtel-Objekten und Kometen durch unser Sonnensystem. Viele von ihnen noch heute in ihrer
ursprünglichen Form und geben einen Einblick in die frühe Phase unseres Sonnensystems. Die Größenvertei-
lungen der meisten dieser Objektfamilien zeigt jedoch unabhängig von der Entfernung zur Sonne eine feste
charakteristische Größe von 100 km, was daher ein Merkmal aus ihrem Entstehungsprozess sein muss. In dieser
Dissertation wird ein Entstehungskriterium für Planetesimale aus dem Kollaps einer Partikelwolke innerhalb
einer protoplanetaren Scheibe hergeleitet. Der gefundene Mechanismus ist in erster Ordnung unabhängig von
der Distanz zum zentralen Stern und daher erstmals in der Lage die charakteristische Größe von den heute
beobachteten Planetesimalen zu reproduzieren. Durch den Vergleich von Kollapszeit mit turbulenter Diffusi-
onszeit, konnte ein minimales Größenkriterium für eine Partikelwolke gefunden werden. Da der zu erwartende
Kollaps bei hohen Staubkonzentrationen stattfindet, ist die Streaming Instabilität der beste Kandidat für
den stärksten turbulenten Prozess. Daher untersucht diese Dissertation in 2-D und 3-D Simulationen diese
Instabilität bei Staubkonzentrationen weit über eins hinaus und auf dem für Kollaps typischen Längenska-
len. In dieser Studie wurde eine neue Staub-Gas-Instabilität gefunden, die azimutale Streaming Instabilität.
Sie ist in der radial-azimutalen Ebene anzutreffen und ähnlich zur Streaming Instabilität. Weiter konnte in
2-D und 3-D Kollaps-Simulationen das hergeleitete diffusionslimitierte Planetesimal-Entstehungskriterium
erfolgreich verifiziert und die Entstehung von 100 km-großen Planetesimalen vorhergesagt werden. Es ist das
Ergebnis dieser Doktorarbeit ein neuen Mechanismus der Planetesimalentstehung identifiziert und verifi-
ziert zu haben. Das Entstehungskriterium ist in der Lage überprüfbare Vorhersagen an unser Sonnensystem
zu stellen und wird hoffentlich in der Zukunft Beweis finden, die belegen, dass dieser Prozess unser heute
beobachtetes Sonnensystem geprägt hat.





For my father.
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Acronyms

ALMA Atacama Large Millimeter/submillimeter Array
aSI azimuthal Streaming Instability
ISM Intersellar Medium
KBO Kuiper Belt Object
MMSN Minimum Mass Solar Nebula
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NEOs Near Earth Objects
PPD Protoplanetary Disk
RDI Resonant Drag Instability
rms Root-Mean-Square
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Symbols

Symbol Definition Description
t time
u, v gas and dust velocity vector
σ σ =

√
1
N

∑N
i (vi− v̄)2 velocity dispersion: rms-velocity

ζ ζ =
√

1
N

∑N
i (vi−u(xi))2 drift velocity between particle and gas

Torb, Ω Torb = 2π/Ω orbital period and frequency
cs speed of sound
η ∆vϕ = ηvK pressure gradient parameter: Sub-Keplerianess
St St = τsΩ Stokes number: dimensionless particle friction
Sc Sc = α/δx Schmidt number: ratio of momentum and material transport
δ, D δ =D/Hcs (dimensionless) diffusion coefficient
α α α-turbulence: disk viscosity
H H = cs/Ω gas disk scale height
Hd Hd =

√
α

Ωτs
dust disk scale height

ε, εmax, ε0 ε= ρd/ρg dust-to-gas density ratio (maximum/initial)
τff free-fall timescale
τc cloud contraction timescale, includes friction
τs stopping timescale via friction
τcoll collision timescale
τD τD = r2/D diffusion time
τshear τshear = 2/3Ω−1 Keplerian shear timescale
Npar number of particles
◦ symbol for global values (simulation domain wide)
� symbol for local values (per simulation grid cell)
ρRoche ρRoche = 12M/πR3 Roche density
ρHill ρHill = 9M/4πR3 Hill density
ρg gas density
ρd dust particle density
ρ0, ρd,0, ρg,0 initial mean (dust/gas) density
ρc ρc ≡ ρHill critical density that is triggering cloud collapse
ρ• solid body density
lc, rc rc = lc/2 critical length scale and radius of a particle cloud
τcorr τcorr = σ2/D correlation timescale: ∼ eddy turn-over time
lcorr lcorr = σ/D correlation length scale: ∼ eddy size
L simulation domain size
ac planetesimal diameter
R�, ρ�, M� stellar parameters
λfree mean free path
Ĝ self-gravity parameter (simulation)
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1 Introduction

Earth, as the planet we live on, defines for us what we call a wanderer in the sky. Besides the Sun, the
Moon, and the stars, bright on the night sky the unaided human eye can observe five planets. By enhancing
our capacity to glimpse into the dark night sky, human kind found a total of eight planets orbiting our sun.
Most of them have their own moons, see Fig. 1.1, Jupiter for example has dozens of them. Interestingly,
there is no sharp size-cutoff between planets and moons. Thus, the category of dwarf planets was introduced
to deal with moon-sized objects on a stellar orbit, similar to a planet. Dwarf planets are sufficiently massive
to have a spherical shape, but they are not massive enough to clear their orbit free of other objects of similar
size. Examples are Ceres and Pluto, both smaller than our moon. This can also be seen in Fig. 1.2, which
shows solar system objects smaller than 10000 km in size. Actually, if the criterion for being a planet would
be simply defined by being a spherical object orbiting the sun, one would end up with hundreds of objects
that would fall into this category. Also, the future for discovering such objects is bright, as thousands more
objects are expected to be present in the outer part of our solar system1. They are only waiting for us to be
found.
Then, there are asteroids, which are meters to kilometres sized (icy) dust balls, in planetology sometimes

informally called rubble piles. Most of them have a suprising low density of around 2g/cm3, some asteroids
even have densities lower than water, but most of them are far from being a solid rock. This tells us that

Figure 1.1: Relative sizes of the 25 Solar System objects smaller than Earth. For example, Mars with 6792km
in diameter is of similar syste as Ganymede, with its 5268km diameter. Mainly, these objects are moons,
but they compare in size with some of the main planets and dwarf planets, such as Pluto and Charon. The
objects Eris, Haumea, Makemake, Sedna, Ceres, 2007 OR10, 2002 TC302, 2007 JJ43 are missing this overview
graphic, as well as some more objects smaller than Tethys, but larger than Nereid, are missing. Notably this
includes Vesta, Pallas, Quaoar and Orcus. Source: Montage by tony_g100 for Wikimedia. Data from NASA /
JPL, JHUAPL/SwRI, SSI, and UCLA / MPS / DLR / IDA.

1http://pluto.jhuapl.edu/News-Center/PI-Perspectives.php?page=piPerspective_08_24_2012
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Figure 1.2: Every known spherical object in the solar system under 10000km in diameter, to scale. For
comparison, the smallest objcets are of several 100km in diameter. The asteroid Vesta (2.36AU) has mean
diameter of 516km and is together with Pallas (2.77AU) one of the two largest objects in the asteroid main
belt. Varuna on the other hand is an object in the Kuiper belt (42.95AU) and has a similar size of 668km. On
the size of Mars and below, there are two planets, 19 moons, 2 asteroids and over 87 trans-Neptunian object
(TNO) discovered so far. Objects that are too large for an asteroid, but too small for a planet, are called
dwarf planets. For example Ceres (2.77AU) is 963 km in size, and Pluto (39.48AU) is the largest dwarf planet
with 2374km in diameter. Source: Montage by Emily Lakdawalla. Data from NASA / JPL, JHUAPL/SwRI,
SSI, and UCLA / MPS / DLR / IDA, processed by Gordan Ugarkovic, Ted Stryk, Bjorn Jonsson, Roman
Tkachenko, and Emily Lakdawalla.

these objects did not undergo a melting process. So, neither heating from collisions nor the radioactive decay
of isotopes was heating the object sufficiently to melt and segregate it. The collisions they experienced did
not even significantly compress them. Consequently, they must consist right out of the material that was
available at the time when our solar system was in its making, and when the planets were forming. They
are the left-over material that was not incorporated into larger celestial bodies.
The asteroids in our solar system come in very different families and in different locations. The asteroids

close to Earth are called Near Earth Objects (NEOs). 17653 of them have been identified yet2. They are
the type of asteroid that occasionally impact on Earth, but also on Mars or the Moon. Some of them are
even right the rocky material that, after an asteroid impact, was catapulted away from the Moon or Mars
surface into space, and that millions of years later hits Earth, bringing these material to us to study. Half of
the NEOs are over 100 m in size, more than 800 of them are even larger than one kilometre. Their orbits are
found to be stable for only a few million years (Morbidelli et al., 2002), as they get eliminated by planetary
perturbations, leading either to a collision with the Sun or a planet, or, they get ejected from the inner
solar system. The origin of these NEOs are thought to be in the asteroid belt, as resonances with Juipter
sends them ultimately into the inner solar system. The reason for only small NEOs to undergo this process,
comes from the Yarkosvski effect (Yarkovsky, 1901), as it brings small asteroids from the main belt into the
Jupiter resonances in the first place. The Yarkovsky effect3 describes a net force that arises from anisotropic
thermal emission of a rotating body that is heated on one side, by the Sun, and is cooled on the other side.
This effect is specially strong for small objects below a few kilometres.

2https://cneos.jpl.nasa.gov/stats/totals.html
3The Yarkovsky effect should not be confused with the YORP effect that initially brings objects into a rotational state.
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Figure 1.3: Cumulative object radius distributions of KBOs, main belt asteroids, Jupiter Trojans and Neptune
Trojans. They all share the common characteristic of having a change in slope around 100km in diameter.
Below this size lies a zone where smaller objects are missing, in the diagram marked by the grey vertical
bar. It is seen as an imprint of the asteroid and KBO formation mechanism that produced them. For this
diagram, both the Jupiter Trojans and Neptune Trojans families, at Lagrangian points L4 and L5, are taken
into account. The Neptune Trojans data stems from Sheppard & Trujillo (2010), the Jupiter Trojans data
from Jewitt et al. (2000), the KBOs data from Fuentes & Holman (2008) and Fuentes & Holman (2008), and
the asteroid main data from Jedicke et al. (2002) and Bottke et al. (2005). Beware that plotted on the x-axis
is object radius, not diameter, i.e. the plateau starts at a diameter of ≈ 100km! Source: Sheppard & Trujillo
(2010). Big thanks for providing this figure.

Most of the asteroids in our solar system are found to reside in condensed rings, namely the asteroid
main belt between 2 and 3.4 AU, and in the Kuiper belt between 30 and 50 AU. One typically speaks of
asteroids when talking over objects of the main belt. Objects in the Kuiper belt are called Kuiper Belt
Objects (KBOs), sometimes they are also called trans-Neptunian object (TNO). They are both large asteroid
reservoirs in terms of mass and number, i.e. the Kuiper belt contains ∼ 0.01 to 0.1M⊕ of material. Still, they
are much less dense than what one would expect from SciFi movies, as the average distance between two
asteroid belt objects is eight times the Earth-Moon distance. The object number density in the asteroid belt
is higher than in the Kuiper belt, and also the orbital timescale is shorter. Hence, the collisional evolution
in the Kuiper belt is less advanced as in the asteroid belt and the KBOs largely remained pristine.
Surprisingly, both of these object families have something very important in common. They share a knee

in the cumulative size distribution, i.e. they have the same shape and an identical location for their size
cut-off, as shown in Fig. 1.3, though their total object number is different. This characteristic is found as
a change in the slope of the cumulative size distribution. This distribution is getting flatter for objects
smaller than 100 km in diameter, indicating that there are almost none of the smaller sized objects below
that characteristic size. The plateau goes down to a diameter of 10 km or even lower, where then collisional
fragments are found and the plateau ends. Thus, in each family, most of the mass and most of the kilometre-
sized objects present, resides in around 100 km sized objects. This is seen by many people in the field of
planet formation as an imprint of the formation mechanism that produced these asteroids and KBOs. It lead
Morbidelli et al. (2009) to the statement of: Asteroids were born big. Interestingly, this characteristic size of
100 km objects is also found for the Trojans of Jupiter and Neptune, see Fig. 1.3. The Trojans are asteroids
that are trapped in the dynamically stables points leading before and trailing the planets position on its
orbit, which are called the Lagrangian points, i.e. point L4 (leading on the orbit) and L5 (trailing on the
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Figure 1.4: This picture of V1213 Tauri and its associated Herbig-Haro 30, taken with the broad wavelength
Wide Field Planetary Camera 2 of the NASA/ESA Hubble Space Telescope in 1995. It shows not only a
beautiful PPD but also jets (Herbig Haro objects). Jets are tracers of accretion of material, here from the disk
onto the star. They transport angular momentum that otherwise would oppose the accretion due to angular
momentum conservation, and thus have a high velocity. One also clearly sees the widening of the disk to its
outer parts, this is called disk flaring. The state of this star-disk systems is similar to our solar system 4.5
million years ago. Source: NASA HST, Wolf Pack (Geckzilla.com)

orbit). In the course of this thesis, an explanation of the mechanisms behind this size distribution feature is
presented and validated in numerical simulations, as it is a direction result from gravitational particle cloud
collapse (Johansen et al., 2006c, 2007; Cuzzi et al., 2008) as the asteroid and KBO formation mechanism
(Safronov, 1972; Morbidelli et al., 2009; Goldreich & Ward, 1973).

A historical view

All these places in our solar system, but also in other stellar systems, are very special in the universe. Not
only because human kind came into existence on one of them, but also on a more general perspective. They
are regions of the universe that are very rich in metals. Typically, in the interstellar medium the values
of solids compare to the values gas, which is mainly hydrogen and helium, by one to one-hundred. The
reason is that solids are composed of higher elements which did not got formed by the big bang 13.8 billion
years ago, but are formed within stars, super novas, and neutron star mergers that happened rather recently
in the universe. The formation of our solar system happened ∼ 4.5 billion years ago, what is known from
lead isotopic dating measurements of calcium-aluminium rich inclusions (CAis) in asteroids (Amelin et al.,
2002). The mechanisms behind planet formation must consequently be very efficient in concentrating these
rare materials up to a level where they are bound by their own gravitational attraction. But, one needs to
understand that the exact path from small dust grains from the Intersellar Medium (ISM), as we find them
in star forming regions, to finally asteroids and massive planets, is not fully understood and remains a topic
of ongoing research. It is most certain that paradigm shifts will occur in near future.
Following Whipple (1964), the first works in this field of research go down to Kant (1755) who believed

that planets could have formed from gas and dust clouds that were orbiting the Sun at a certain point in
history. He also came up with the theory of first having small dust grains that by mutual collisions stick
and grow up to a point where the whole cloud becomes unstable under its own gravity. A similar approach
was formulated by Laplace & Young (1821), not for clouds but for condensed rings which form out of the
primordial gas-dust nebula that should have had surrounded our Sun in early times. Hence, the shape of
this nebula must have had the shape of a thin disk, he concluded. He found this to also explain, why all
planets in our solar system lie in the same plane of motion.
These ideas were brought into the modern age by Weizsäcker (1946), who concluded that turbulent vis-

cosity, meaning the transport of material by underlying turbulence, would separate the nebula into a core,
which later becomes the Sun, containing most of the mass, and a disk containing most of the angular mo-
mentum. He suspected vortices to emerge within this PPD that further concentrate material up to the point
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Figure 1.5: Observation of the HL Tau system at a distance of ≈ 140pc in Taurus constellation. On the left,
the system as seen with the Hubble space telescope. On the right the same system but observed with the
ALMA radio telescope at 1.3 mm in the long baseline configuration. ALMA observes the thermal emission of
the dust grains. The clear ring structure of the dust that was observed by the gas-dust envelope of the system
for the Hubble Space Telescope, could be revealed by the ALMA radio band observation. It is suspected that
these rings come either from dust concentrations by pressure anomalies in the system, or that they are carved
out by planets. The latter would mean that planet formation is an extreme fast process and the age of the
system indicates that the this explanation is hardly true. Source: ALMA Partnership et al. (2015)

where self-gravity brings them to collapse directly into a gravitationally bound object. Another milestone
in the understanding of the solar system, and in general planet formation, was laid by Safronov (1972)
(original Russian publication from 1969), who developed many dynamical models that describe the growth
from µm-sized dust gains in gaseous disks up to planets, which are still widely used today. As a good start
for new readers in the field of planet formation, the summary by Youdin & Kenyon (2013) is recommended.

Observations of protoplanetary disks

Today, from direct observation, we know of the existence of circumstellar disk material around young stellar
objects. The first observational evidence came actually from unresolved star-disk systems, by finding an ad-
ditional bump of the spectral energy distribution in the long-wavelength regime that could only be explained
by an accretion of material onto the host star. With the emergence of the Hubble Space Telescope (HST) and
very sensitive ground based optical telescopes with high-performance adaptive optic systems, such as the
Very Large Telescope (VLT), direct observations of disks around young stars became possible, see Fig. 1.4.
By that technical advancement, the field of planet formation got shifted from a mainly theoretical field, with
very little evidence from our own solar system, to a field that additionally is driven by observations.

PPDs are found especially in star forming regions. They are initially embedded into large molecular clouds
out of gas and dust, which get denser towards their star forming cores. This hinders infrared observations and
astronomers were in need of a high-resolution radio telescope that could unravel the mechanics within PPDs.
In 2013, such a telescope was taken into service. The Atacama Large Millimeter/submillimeter Array (ALMA)
with its 66 radio antennae measures the thermal emission of the dust directly from the disk interior. ALMA
delivered stunning images of PPD sub-structures, such as rings, see right side of Fig. 1.5, non-axisymmetric
dust concentrations, and spirals.
A main discussion in the research field is now to find ways to distinguish these disk features by their origin.

Which features arise from hydrodynamical effects? Which come from planets that already reside in the disk?
Yet, from current observations this cannot be told, as the scales of planet formation remain unresolved. This
is why the field of planet formation stays driven by mainly theoretical research, such as the work on planet
formation in this thesis.

Overview of the theoretical understanding of planet formation

The focus of this work lies on the growth from micrometer-sized dust grains to the very first kilometer-
sized objects. These objects are thought to be the building blocks of planets and are called planetesimals
(Weidenschilling & Cuzzi, 1993; Johansen et al., 2014). These objects are needed to have existed at some
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point, otherwise the formation of planets and of planetary cores, i.e. the seeds that evolve into gas and ice
giant planets, gets impossible, as growth via dust accretion seems to be rather inefficient (Ormel, 2017). For
example, 107 planetesimals with 100 km diameter are needed to form an Earth-sized object. Ten times more
mass is needed to form a gas giant core. Reaching these masses solely by dust grain accretion onto a single
planetesimal would take many PPDs lifetimes (1 - 10 Myr). Moreover, today we still find such primordial
objects in our solar system. But, the formation mechanism of planetesimals is still unclear. This thesis
contributes to the understanding of this missing link of planet formation.
The missing link arises from the fact that dust grains inside of PPDs cannot outgrow sub-meter sizes. This

is often called meter-size barrier, though the largest grain size depends on the radial distance from the star
and underlying disk structure, and can be already emerge at mm grain sizes. This growth barrier is a twofold
growth barrier. First, particles in the outer part of a PPD start to radially drift inwards faster than they
can outgrow drift, leading to a depletion of particles above millimetre. Then, in the inner part of a PPD,
the particles relative velocities are found to be higher than the fragmentation velocity and often undergo
bouncing (Güttler et al., 2010). This leads to primary destructive particle-particle collisions instead of grain
growth.
So far, only two pathways to overcome the growth barriers have been proposed. One way suggests that

dust grains could grow extraordinary fluffy and thus surpass this barrier by being massive on one hand,
but with low frictional coupling to the gas on the other hand. Thus, drift is strongly reduced and the drift
barrier can be surpassed. The fragmentation barrier in the inner disk is surpassed in this model by assuming
the collisions to happen at low relative velocities and fluffiness supporting growth. This path of building
planetesimals is highly sensitive to many parameters of the PPD, e.g. gas turbulence, and at its best only
works within 7 AU, see Kataoka et al. (2013). A second path is stated by Windmark et al. (2012), who
estimated the likelihood for a few lucky winner particles to reach planetesimal size, as they benefit from the
mass transfer in particle-particle collision.
This thesis follows the second path, which states direct formation of planetesimals from small grains via

the gravitational collapse of heavily loaded particle clouds (Safronov, 1972). It comes with uncertainties too,
as these particle clouds have to form inside of a PPD in the first place. But many mechanisms where found
in past years that support this idea, e.g. dust trapping at ice lines, in zonal gas flows, or in vortices. No
matter how, the PPD will be assumed to be able to concentrate dust to a sufficient amount, to allow for dust
cloud collapse. Once a particle cloud approaches its collapse, certain parameters will be fulfilled, such as
dust-to-gas ratio above unity and the particle size can be assumed to be comparably large. This boarder of
stability is the situation where the analysis of the particle dynamics and particle cloud collapse within this
thesis starts. For that, no specific nature of the dust concentrating mechanism has to be assumed.

Outline of this thesis

The goal of this thesis is to derive a dynamical threshold criterion for a dust particle cloud inside of a PPD to
undergo gravitational collapse to a planetesimal, and to characterize the planetesimals formed thereby. The
used canonical criterion for cloud collapse is that a cloud has to have a density large enough for its internal
gravitational binding to be stronger than the Keplerian shear and stronger than tidal forces. This critical
internal density is called Hill density and will be introduced in Sec. 3.1.5. In this thesis, a refined criterion
is presented that takes the particle turbulent dynamic as well as the particle cloud contraction time into
account. Thus, newly derived criterion demands to know the underlying turbulent particle diffusion strength
to be expected for such a cloud collapse situation. The Streaming Instability (SI), which is a turbulent dust-
gas instability acting at dust-to-gas density ratios around and above unity, is found to be a strong source
of particle turbulence right on the scales of the collapsing dust cloud. Consequently, in this thesis the SI is
investigated in a large parameter study of numerical simulations in 2-d and 3-d. For two different particles
sizes, this parameter study sweeps through dust-to-gas ratios from ε0 = 0.1 up to 1000. In 2-d the radial-
azimuthal simulations of this study a new instability was found that is similar to the SI and called azimuthal
Streaming Instability (aSI). The measured diffusion values can be used to estimate a minimum particle cloud
size that allows for cloud collapse to happen. This analytical diffusion limited collapse criterion is then
verified in 2-d and 3-d simulations. An additional project investigates aSI-activity in zonal flows, as the SI is
often stated to not operate in such pressure bumps. The thesis is structured as follows.
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equations are derived, as well as typical PPD parameters, such as the disk gas pressure scale height. For
both ingredients the equations of motion is transformed into the shearing sheet approximation. This is a
approximative coordinate system allowing for local calculations of the dust and gas dynamics. The coordinate
system itself is mimicking an orbital rotation with Keplerian velocity around a central star. Next in this
chapter, the particle frictional interaction with the gas is introduced and its consequences on dust and gas
dynamics are discussed. The Nakagawa equilibrium solutions for dust and gas are derived, which state an
equation for the collective radial dust drift. Also, the SI as major source of particle diffusion in the form of
turbulence, is introduced. Lastly, known mechanisms that can trap dust into a local region of a PPD are
discussed. They are ultimately needed in PPDs to trigger the SI and cloud collapse.

Chapter 3 presents an analytical study on when a particle cloud is gravitationally unstable. Starting out
from the Jeans criterion from star formation, different instability criteria for PPDs are derived, such as Roche
and Hill stability. Also, the collapse time for a particle cloud that includes friction is derived. As friction will
not allow for clouds to collapse on a free-fall timescale but on a contract timescale at terminal velocity. As
most of the simulations performed for this thesis are 2-d simulations, the analytical equivalence of spherical
and cylindrical collapse is shown. Finally, the main collapse criterion is derived by setting collapse timescale
and diffusion timescale equal. It is derived a second time by solving the dispersion relation for this case.
Based on expected solar system values, the criterion is then used to estimate typical planetesimal sizes.

Chapter 4 introduces the used numerical code, which is the PencilCode. Code units are discussed as well
as the implementation of the shearing box coordinate system. As for the collapse simulations the self-gravity
module of the PencilCode had to be turned on, the gravitational constant in code units is derived. It is a
parameter that expresses the total mass in code units and hence needs to be set to Hill density for most of
the performed simulations.

Chapter 5 presents the numerical results of the study on the aSIand SI in 2-d radial-azimuthal, 2-d radial-
vertical and 3-d simulations. In order to study the pure form of the aSI/SI, stellar gravity and self-gravity is
excluded. Particle and gas turbulent strength are investigated and additional parameters for describing the
present turbulent instability are discussed. From the measured particle diffusion the corresponding critical
length scales for particle cloud collapse are derived, which directly can be used in future research projects.
An additional resolution study is performed to ensure the convergence of the results. Lastly, additional
simulations with aSI-activity in an artificial zonal flow are presented.

Chapter 6 gives a summary over the results from an 3-d equivalent study on the SI. Turbulent diffusivities
are measured an critical collapse length scales derived, that can directly be used in future research projects.

Chapter 7 finally investigates the diffusion limited collapse criterion that has been derived in Chapter 3. It
uses two sets of numerical 2-d experiments and one different setup for a 3-d experiment. The 2-d experiments
test the validity of the length scale criterion by altering the simulation domain size around the critical length
scale. As will be seen, only simulations with a larger domain size do collapse. This shows the correctness of
the derived collapse criterion. An additional investigation of this collapse criterion was performed by altering
the pressure gradient strength. The properties of the produced planetesimals are recorded and analysed.
Lastly, an additional study on cloud collapse in 3-d simulations did not only confirm the collapse criterion,
but also showed that strong radial diffusion is sufficiently preventing a collapse. It is not the vertical diffusion
that drives collapse in these simulations. If these simulation outcomes are directly applicable to reality is
still an open question.

Chapter 8 summarizes the results and discusses them in the context of solar system observations. Possible
future experiments and investigations are outlined that state the next steps towards fully understanding the
formation of planetesimals in our solar system and in extra-solar systems.
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2 Theory of Dust and Gas in Protoplanetary Disks

This chapter introduces the two main players in the context of planet formation in PPDs: gas and dust. PPDs
are mainly located in star forming regions where temperatures are around 10 to 20 Kelvin above absolute
zero. The material in the gas phase is mainly hydrogen and helium. Every higher element is typically called
metals by astronomers. The metallicity Z is defined by Z = (Mmetal/Mtotal) and typical values for the ISM
are found to be Z ≈ 0.01, see Ansdell et al. (2016).
In PPDs, these metals are found to be condensed out into the form of fluffy dust grains. These grains are

µm to cm agglomerates made out of silicates and ices. The mass ratio, at which gas and dust components
appear in PPDs, is also called metallicity and assumed to be typically equal to the value of the ISM. Meaning,
in PPDs there is expected to be 100 times more mass in the gas than in the dust. This ratio does not come
from observational measurements of PPDs as these still lack a full understanding of the observed quantity. A
reason for disk observations being difficult comes right from the fact that they mainly consist out of Hydrogen
and Helium, both cannot be directly observed. The dust-gas ratio of PPDs can thus only be estimated by
indirect measurements. For example by taking the metallicity of stars, e.g. our Sun has a metallicity of
Z� = 0.0134, or by using the values known for the ISM. It is thus certain that the average metallicity of
a PPD will be at a similar value. The recent publications that try to determine the dust-to-gas ratio in
PPD surveys use the C/O-ratio and find actually values above ≈ 0.01, see Ansdell et al. (2016). As direct
consequence emerges the fact that the planetesimal formation mechanism must somehow have the ability to
collect enough dust to enhance its concentration locally by orders of magnitude.
In order to understand the dynamics of gas and dust, and in order to investigate planetesimal formation

mechanisms, this chapter derives the leading equations for both components. Starting with introducing
the internal properties of the gas, i.e. its thermodynamical state and the global pressure gradient, the gas
dynamics are calculated using Euler and continuity equations in a local frame of reference. This coordinate
system is set to orbit with Keplerian velocity around the central star. It is called shearing box, since the
Keplerian shear is linearised around its origin. The equations of the dust are then very similar to the gas,
since its major difference lies in the fact that the dust is not feeling the gas pressure gradient due to the grains
high internal density. But, dust has its own characteristics, such as the dust particle size that is determining
the strength of the mutual interplay with the gas via friction. It will be shown that this friction leads to an
equilibrium state in which dust is drifting inwards and gas outwards, herein referred to as Nakagawa drift,
see Nakagawa et al. (1986). The chapter closes with a discussion of possible ways to capture dust locally in
non-equilibrium flow features, such as vortices that are capable of enhancing dust concentration locally up
to values that trigger gravitational collapse of the trapped particle cloud.

2.1 Gas dynamics
The gas in a PPD has internal properties that dust is lacking, such as a pressure P that comes from the gas
temperature T . Since the internal dust particle density is much larger than the gas density, the resulting force
from the gas pressure is neglectable. From the inner part, close to the star, the temperature is decreasing
towards the outer part of the disk. Hence, a gradient in pressure is acting in radial inward direction. The
pressure is supporting the gas radially against stellar gravity, together with the centrifugal force from the
circular orbit motion. The structure of this section follows this line of thought. It ends with a transformation
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into a local coordinate system that is co-moving on an Keplerian orbit. This allows to follow the gas dynamics
without taking care of the central star and large scale, i.e. global, disk dynamics.

2.1.1 Equation of state and adiabatic index
This thesis focuses on local approximations of a PPD and thus one can assume the gas to be isothermal
locally, meaning the gas has a constant temperature T = const. and hence the sound speed cs is a constant,
too. The equation of state is obtained from the ideal gas equation:

P = P (ρ) = kBT

µ︸︷︷︸
c2

s =const.

ρ , (2.1)

with molar mass µ and gas density ρ. For this local approximation, and the later presented simulations
that are performed in a local disk approximation, one wants to study the evolution of gas density over time.
Hence, the gas pressure gradient get rewritten into

dP
dr

= dP
dρ

dρ
dr

.

By using the ideal gas equation (Eq. (2.1)), one can write the radial change in gas pressure as a change in
gas density multiplied by the local pressure:

dP
dr

= P

ρ

dρ
dr

= P
d lnρ

dr
.

Multiplying this with ρ−1 leads to an equation with isothermal sound speed inside:

1
ρ

dP
dr

= P

ρ︸︷︷︸
c2

s

d lnρ
dr

. (2.2)

If one instead is interested in the adiabatic form of this equation, one can consider an adiabatic sound
speed together with an adiabatic index γ. The sound speed is known as c2s,ad = γ Pρ , with γ = cp/cV , i.e.
γ = 5/3 for a mono-atomic ideal gas, such as helium, or γ = 7/5 for molecular hydrogen. Plugging

P

ρ
=
c2s,ad

γ

into Eq. (2.2) gives

1
ρ

dP
dr = 1

γ c
2
s,ad

∂ lnρ
∂r (2.3)

In this equation, one can see what happens if one assumes isothermal sound speed with γ = 1. This
equation is used for all the following numerical experiments and in general throughout this thesis.

2.1.2 Gas disk pressure scale-height
PPDs do cool significantly fast via their large surface area. This makes them rather small in their vertical
extent (D’Alessio et al., 1998). Still, they are vertically stabilized by a pressure gradient on a pressure scale
height H, which arises from the increasing gas density towards the disk mid-plane. In a steady state, the
vertical gravity must then be equal to the vertical pressure gradient ρ−1

g ∂P/∂z. The vertical gravity comes
mainly from the central star, as typical PPD models use disk masses of mdisk ≈ 0.01M?. See Andrews et al.
(2013) for further reading, as they suggest a typical disk mass to be 0.6 % of the stellar mass. So the disk
self-gravity contribution is negligible in first order approximations. The gravitational pull from the star g?
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on a gas parcel at a distance r from the star and height z over the mid-plane, with z� r, is then

g?,z = g? sinθ = GM?

r2 +z2 ·
z√

r2 +z2
' GM?z

r3 , (2.4)

where tanθ = z/r. From this, one gets the Keplerian angular frequency

Ω =
√

GM?
r3 (2.5)

Following the assumption of an isothermal disk, i.e. taking the equation for the gas pressure from Eq. (2.1),
and setting the pressure gradient equal to the vertical gravitational force, one gets

c2s
dρg

dz
=−Ω2z . (2.6)

This can be solved by simple integration to

ρg (z,r) = ρg,0(r)exp
(
− z2

2H(r)2

)
, (2.7)

where the vertical gas disk scale height is introduced by defining

H(r) := cs(r)/Ω. (2.8)

Parametrizing the sound speed via cs(r) ∼ r−βs and one gets a disk aspect ratio of h(r) ∼ r−βs+1/2. A
disk with a constant aspect ratio has βs = 1/2, while a flared disk has a larger outer disk aspect ratio, thus
βs < 1/2. Simple PPD models assume no disk flaring, hence a fixed ratio between gas disk scale-height H(r)
and radius r. This is expressed as a fixed disk aspect ratio via:

h= H
r ≈ const. (2.9)

Consequently, a disk with a typical aspect ratio of h ≈ 0.04 (Hayashi, 1981) has a circumference of
U = 2π/hH ≈ 157H, a value that later will be compared to, when a local coordinate system for the nu-
merical experiments is introduced.

Of course, there are more complex PPD models. Some take the ice lines of volatiles into account. They
mark the radial distance at which water, or other volatile elements, are no longer solid but gaseous. By
being outside of the water ice line, the dust grains are of silicate-ice mixture and therefore have an enhanced
stickiness. In comparison, the CO ice line though it produces observational features, does not enhance
the stickiness. A special model for our solar system is the Minimum Mass Solar Nebula (MMSN) model
from Weidenschilling (1977) and Hayashi (1981). In the MMSN model the initial mass distribution in the
solar nebula is estimated, from which planets, moons and asteroids have formed. One gains by that a
lower threshold for the mass distribution of the early solar system. For this estimate, one takes all planets,
together with their moons, as well as the asteroid and Kuiper belt, and then distributes their mass over half
the distance to the respective next object. However, the actual original solar nebular is expected to have
had a few times more mass than what is observed today. With surface density

Σ(r) =
ˆ ∞
−∞

ρg(z,r)

the MMSN model can be approximated by

Σ(r) = 1700g/cm2
( r

AU

)−3/2
.
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The slop of the MMSN is found to be steeper than in observed PPDs (Andrews et al., 2010) and steeper than
what is found in viscously evolving disks (Armitage, 2015), hence one should use this model rather as a
reference then as a prescription of a PPD.

2.1.3 Global pressure gradient

An object on a circular in the solar system of today moves around the Sun with Keplerian orbital speed of

vK = Ωr , (2.10)

with distance to the central star r and orbital frequency Ω.
A main feature of a protoplanetary disk now is its high gas content, leading to a different equilibrium

state in which the gas is not travelling with Keplerian orbital speed but instead slower. This comes from its
intrinsic, radially inward pointing gradient in the gas density and hence existing gas pressure gradient. The
change in orbital velocity then depends on the strength of this additional force from the pressure, as it is
stabilising now the gas together with the orbital centrifugal force, see Adachi et al. (1976) and Weidenschilling
& Davis (1985).
In a gas free 1-d case, in radial direction, the gravitational acceleration is

g = GM?

r2 = Ω2r = v2
K
r

.

The additional acceleration g′ due to the force from the gas pressure gradient, adds to the gas velocity via:

g′ :=− 1
ρg

∂P

∂r

Consequently, the gas is in hydrostatic equilibrium under the condition of

u(r)2

r
= v2

K
r

+g′ · r ⇔ u(r) = vK ·

√
1 + g′ · r

v2
K

g′�g
≈ vK + g′ · r

2v2
K
vK .

This can be expressed as deviation from the original Keplerian orbital velocity via

∆u= vK−u= vK−vK− g′r
2v2

K
vK =− g′

2g vK (2.11)

Using the conditions for an isothermal disk, of P = c2s ρ and H = cs/Ω, this can be well parametrized in the
often used beta-parameter βln(ρ) via

g′ =−1
ρ

∂P

∂r
=−c

2
s

ρ

∂ρ

∂r
=−c2s

∂ lnρ
∂r

=−HcsΩ
r

∂ lnρ
∂ lnr

:=−βln(ρ)csΩ.

One can also use the disk aspect ratio h=H/r in order to become an even shorter expression for βln(ρ):

βln(ρ) =−h∂ lnρ
∂ lnr . (2.12)

With βln(ρ), the acceleration from the pressure gradient becomes

g′ =−csΩβln(ρ) . (2.13)

Now, defining the sub-Keplerianess η of the gas velocity u as a factor between Keplerian velocity and its
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deviation from it, via

uϕ = vK(1−η) , (2.14)

one finds η =− g′

2g . Consequently,

η = g′

2g =
− 1
ρ
∂P
∂r

2Ω2r
=−

csΩβln(ρ)
2Ω2r

=− cs

2Ωrβln(ρ) (2.15)

and η gets a rather compact form of

η =−1
2
H
R βln(ρ) , (2.16)

or with vK = Ωr and cs =HΩ, this can also be written as

η =−1
2βln(ρ)

cs

vK
.

Typically, the orbital velocity at a distance of r= 1AU around a star with massM? =M� is about 32km/s.
With a PPD typical value for η ≈ 10−3, the gas orbits at 1AU with a velocity of

uϕ = (1−η)vK ≈ 31.968 km
s
≈ 114 km

h
.

This velocity difference might look insignificant, but the resulting radial particle drift due to friction with
the gas, challenges the planet formation community now for decades. As will be seen in the following of
this chapter, once particles grow to a size where they decouple from the gas, they try to move with the full
Keplerian speed, hence radial drift of the particles and the gas, as well as turbulent dynamics arise.

2.1.4 Viscous stress
A canonical prescription of turbulent gas transport inside of PPDs is the α-model. It was introduced for
the use in black hole accretion disks by Shakura & Sunyaev (1973) and describes the accretion rate from
turbulent viscosity. It got also a widely used prescription of turbulent angular momentum transport in all
kind of astrophysical accretion disks. In general, α is a parameter that measures viscous stress originating
from gas turbulence and magnetic fields that couple onto the ionized part of the gas. Sometimes, α is
determined from observationally measuring accretion rates. But, a certain α-value does not state anything
on the largest turbulent eddy scale or on the appearing turbulent velocity (Cuzzi et al., 2001).
Per definition, the α-value scales the turbulent viscosity, see Shakura & Sunyaev (1973). Lin & Papaloizou

(1980) and Pringle (1981) introduced a splitting of the α-parameter onto a turbulent velocity component
and a turbulent length scale, i.e. eddy size, via

ν = αscs ·α1−sH .

Here, s is the free parameter that controls the splitting into the two fractions of turbulent velocity and eddy
length scale. A low s value state the turbulent eddies to be small but quickly turning, a high value would
mean to have large, slowly turning eddies. Thus, this parameter will be between 0 ≤ s ≤ 1, as turbulent
eddies will not turn over faster than sound speed, as this would rise shocks, and will not be larger than the
disc scale height. Following the estimations by Cuzzi et al. (2001), this parameter is assumed to be s= 1/2
in PPDs. In their paper, they assume the largest eddies within PPDs are only allowed if they have a Rossby
number of RO = 1. This ensures that all turbulence is 3-d and isotropic, and hence a Kolmogorov cascade
via vortex stretching is allowed. The Rossby number for a turbulent eddy in a PPD can be expressed via

RO '
u

Ω0l
= ω

Ω0
,
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with Ω0 the disk orbital frequency, and ω ' u/l the largest eddy frequency. The argument in Cuzzi et al.
(2001) is that an eddy with ω < Ω0 cannot follow a Kolmogorov cascade. Hence, in a PPD, the largest
turbulent eddy that cascades to smaller scales has to satisfy RO ≥ 1. The assumption herein made, is that
the eddy resides then on the largest scale for a given α, which means RO = 1.
One can do now the following ansatz:

u= αscs and l = α1−sH . (2.17)

By combining this ansatz with the Kolmogorov cascade (Kolmogorov, 1991) for turbulence in gas, which
states for a turbulent cascade the energy transfer rate to be a scale-invariant:

u2︸︷︷︸
specific energy

· u/l︸︷︷︸
dissipation time

= u3

l
= energy transfer rate = const.

And by using the assumptions of being in a point, where RO = 1, one gets

RO = 1 = αscs

Ω0α1−sH
= α2s−1 ∀ α ⇒ s= 1/2

Under this assumption, the α-turbulence in a PPD distribute equally into the largest eddy size and highest
turbulent velocity. Moreover, since the slope of a line in the u-l diagram for R0 is with u∼ l steeper than for
the Kolmogorov cascade, with u ∼ l1/3, the turbulent cascade of an turbulent eddy in a PPD will probably
always loose energy into the disk. Hence, the gas turbulence could be weaker on smaller scales than what is
expected from this extrapolation in α down to smaller scales.
From the above, one can state a definition for the measurement of α in simulations via

α= ν/(csH) , (2.18)

where to calculate ν the Reynolds stress component Arϕ is typically used. Canonical values for α in PPDs
are found from simulations of turbulent instabilities, i.e. the Magneto-Rotational Instability (MRI) (Balbus
& Hawley, 1991), the vertical shear instability (Nelson et al., 2013; Flock et al., 2017), also called Goldreich-
Schubert Fricke instability, or the convective overstability (Klahr & Bodenheimer, 2003; Lyra & Klahr, 2010;
Raettig et al., 2013; Klahr & Hubbard, 2014). They are mostly around α = 10−4 to 10−3. Lately also
observational upper limits on α were tried to be measured, see Teague et al. (2016), Flaherty et al. (2016),
and Flaherty et al. (2017).

2.1.5 Equation of motion in the shearing sheet approximation
The dynamics of gas in a PPD are described by momentum equation, which is an Euler equation with different
terms for the individual physical processes that induce momentum:

d~u
dt︸︷︷︸
(1)

+ (~u∇)~u︸ ︷︷ ︸
(2)

=−1
ρ
∇P︸ ︷︷ ︸

(3)

+ 1
ρ
~J × ~B︸ ︷︷ ︸
(4)

− 1
τs

(~u−~v)︸ ︷︷ ︸
(5)

−∇Φ︸ ︷︷ ︸
(6)

+other forces (2.19)

This equation describes the change over time of the velocity field of a fluid (1): It changes due to advection
(2), and other physical processes that are described on the right hand. These are the gas pressure (3) (see
Sec. 2.1.3), magnetic fields that couple onto a charge current (4), friction with particles that have a velocity
~v and a friction coefficient of τ−1

s (5) (see Sec. 2.2.1), and gravity (6). But, many other terms might enter
this equation. Term (4) will be dropped in the following as no magnetic fields are discussed.

The shearing sheet coordinate system

For this thesis, scales L� H are of interest, where H is the pressure scale height. These scales L are so
small that a numerical computation in the form of a global disk, covering the whole PPD is not feasible.
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systems to omit vertical gravity. But, cylindrical coordinate systems are global and once one is interested
in the micro-physics that is happening on the scales of a percent of a disk scale height H, one cannot use
a global coordinate system anymore. Hence the shearing sheet, or shearing box, coordinate system was
introduced. In this drawing it is the primed system with coordinates x′ and y′. It is a coordinate system that
orbits around the star with the Keplerian velocity at its origin. Hence, unity vectors in ϕ̂ transform into ŷ
of the primed system. Consequent, the Keplerian shear has to be linearised in the shearing sheet coordinate
system. In order to have the radial boundary condition periodic, one include a shear periodic boundary
condition that adjusts the azimuthal velocity when surpassing the radial boundary.

Comparing the scales of interest with the circumference of a disk, see Eq. (2.9), shows that these scales are
six orders of magnitude smaller than the full azimuthal extent of a disk. Moreover, if one is interested in
investigating the local micro-physics of gas, and later including dust, a local approximation is needed. This
is done by changing from the global Cartesian coordinate system, into a local Cartesian coordinate system at
a distance R0 from the central star that itself orbits around the central star with Keplerian velocity vK (R0).
Linearising the local shear that arises due to the Keplerian rotation is sufficient to mimic the dynamics
of a co-rotating system, without having that intrinsic rotation explicitly calculated. As assumed by the
linearisation, this local coordinate system will only allow for scales that are much smaller than R0, in order
to hold the approximation of being local and able to linearise, see below. This type of coordinate system is
called shearing sheet, or shearing box coordinate system.
The goal of this section is to derive the equations of motion for such a shearing sheet coordinate system.

The derivation starts from Eq. (2.19), but the coordinate transformations will only affect the left hand side
terms, i.e. the time derivative (1) and the advection term (2). This is only partly true, since also the
gravitational potential will change, as shown later in this section. Since a PPD is a rotating system that
transformation will introduce Coriolis forces. Fig. 2.1 shows the three needed coordinate systems:
(a) the Cartesian coordinate system around the star, with axis (x, y, z)

(b) the cylindrical coordinate system around the star, with axis (r, ϕ, z)

(c) the local Cartesian coordinate system that orbits the central star in a distance R0, with axis (x′, y′).

Linearising the Keplerian shear

But first, the Keplerian shear needs to be linearised around R0. For this, a Taylor expansion of Eq. (2.5)
around R0 at the point p=R0 + ∆r can be done, which leads to

TNΩ(R0;p) =
N∑
n=0

f (n)(p)
n! (x−p)n ≈ Ω0 + Ω′ (r =R0) · (��R0 + ∆r−��R0) = Ω0

[
1− 3

2
∆r
R0

]
,
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where Ω0 = Ω(R0). Using the primed radial coordinate, ∆r becomes x′, and by using v = ΩR0 the orbital
velocity becomes its linearised form

v = Ω0

(
1− 3

2
x′

R0

)
R0 = Ω0R0−

3
2Ω0x

′ .

Thus, the linearised Keplerian shear velocity is approximated in the co-rotation frame as

vshear =−3
2Ω0x

′ . (2.20)

Transforming the advection term (2) into the shearing sheet coordinate system

As stated, the terms (1) and (2) can be dealt with separately. Starting with the advection term (2) is
recommended, as this one is easier to transform. In the following the Einstein index notation is used, where
there is an unwritten but existing sum over all indices that appear twice. Hence, term (2) is (~u∇)~u= ui∂iuj .
This now is getting transformed into the primed Cartesian coordinate system via

u → u′+u′0 = u′− 3
2Ω0x

′ŷ′ ,

where ∇′ ≡∇ since x′�R and y′�R. Thus, (2) becomes

ui∂iuj =
[(
~u′+~u′0

)](
~u′+~u′0

)
=
[(
~u′+~u′0

)
∇′
]
~u′︸ ︷︷ ︸

(2a)

+
[(
~u′+~u′0

)
∇′
]
~u′0︸ ︷︷ ︸

(2b)

with

(2a) = (ui+u0)∂iuj = ui∂iuj +u0,i∂iuj =
(
~u′∇′

)
~u′+u0,y

∂~u′

∂y′

(2b) = (ui+u0,yδiy)∂iu0,yδjy = ui∂iu0,yδjy +u0,yδiy∂iu0,yδjy = ŷ′(−3
2Ω0ux) +u0,y∂yu0,y︸ ︷︷ ︸

=0

The last term in (2b) is zero, since the Keplerian shear velocity changes only in the radial direction, but not
in the azimuthal direction, see Eq. (2.20). Reassembling both terms, (2) from Eq. (2.19) becomes

(2) =
(
~u′∇′

)
~u′+u′0,y

∂~u′

∂y′
− 3

2Ωu′xŷ′

Transforming velocity time derivative (1) into the shearing sheet coordinate system

In order to rewrite term (1) of the momentum equation, one has to express d~u
dt in polar coordinates. In

contrast to the Nabla operator, now the time derivative of the velocity field introduces on one hand the
shear advection and on the other hand the Coriolis forces. Thus, one has to take care of the time derivative
of the unit vectors of the coordinate system and it is a good choice to do this carefully:

d~u
dt

= d
dt

(ṙr̂+ rϕ̇ϕ̂) = ..
rr̂+ ṙϕ̇ϕ̂+ ṙϕ̇ϕ̂+ rϕ̇

dϕ̂
dt

(2.21)

From ϕ̂= (−sinϕ, cosϕ,0)ᵀ follows

dϕ̂
dt

=−cosϕϕ̇x̂− sinϕϕ̇ŷ =−ϕ̇r̂
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and Eq. (2.21) becomes

d~u
dt

= ∂~u

∂t
+ 2ṙϕ̇ϕ̂− rϕ̇2r̂︸ ︷︷ ︸

(4)

.

The right term (4) has now to be transformed into the primed coordinate system via

x′ = r−R0, y′ =R0 (ϕ−ϕ0−Ω0t) , z′ = z, and t′ = t . (2.22)

Using this transformation, one gets the following table that translates the expressions within (4):

ϕ̂= ŷ′ ϕ̇= Ω0 + 1
R0

∂y′

∂t︸︷︷︸
ẏ′

= Ω0 + 1
R0

u′y

r̂ = x̂′ r =R0 +x′

ṙ = ẋ′ = u′x ϕ= y′

R0
+ϕ0 + Ω0t

Hence, the term (4) becomes

(4) = 2ẋ′
(

Ω0 + 1
R0

u′y

)
ŷ−
(
x′+R0

)︸ ︷︷ ︸
x′�R0

(
Ω0 + 1

R0
u′y

)2
x̂

= 2u′xΩ0ŷ+ 2u′xu′y ŷ︸ ︷︷ ︸
≈0

−R0

[
Ω2

0 +
2Ω0u

′
y

R0
+
(
u′y
R0

)2]
x̂

= 2u′xΩ0ŷ−R0Ω2
0x̂−2Ω0u

′
yx̂ .

Transformed momentum equation

Putting everything together, and renaming the primed system to unprimed, i.e. switching into the primes
system as our new coordinate system, the momentum equation becomes

∂~u

∂t
+ (~u∇)~u+u0,y

∂~u

∂y
− ~f (~u)−R0Ω2

0x̂︸ ︷︷ ︸
(∗)

=−1
ρ
∇P + . . . (2.23)

with Coriolis forces

~f (~u) =

 2Ω0uy
−1

2Ω0ux
0

 . (2.24)

The term with the (∗) is a constant in this equation which represents the equilibrium velocity profile R0Ω2
0 =

−∂Φ
∂r |r=R0 that is introduced in the coordinate transformation. This can be dropped on the arrival in the

primed coordinate system, as it is part of the global gravitational potential. It can be found by approximating
the gravitational force of a point massM? in radial direction to first order, and evaluating this force at x= 0:

g?,x =− GM?

(R0 +x)2 =−GM?

R2
0

1
1 + 2 x

R0
+ x2

R2
0

≈−GM?

R2
0

(
1−2 x

R0

)

The final momentum equation of the fluid reads in the shearing sheet coordinate system as

∂~u
∂t + (~u∇)~u+u0,y

∂~u
∂y′ −f (~u) =− 1

ρ∇P −
1
τs

(~u−~v)−∇Φ′+ . . . (2.25)
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where Φ′ now is the change in the gravitational potential from the potential of the central star as point
mass. The dots represent additional momenta that act on the fluid, for example coupling of magnetic fields
or molecular viscosity. And the same can be done for the continuity equation, leading to:

∂ρg
∂t =−u0,y

∂ρg
∂y −∇

(
ρg~u
)

(2.26)

Together, these equations give a good approximation of the gas evolution in a local patch of a PPD. In the
continuity equation, the first term on the right hand side is again the advection of density by the Keplerian
shear flow, the latter two terms come from transforming the original ∇

(
ρg~u
)
term likewise as done with the

equation of motion.
As a consequence of the coordinate transformation, the gas movement, including pressure support and

Keplerian shear, in the shearing frame changed from Eq. (2.14) to

uϕ(x) =−3
2Ωx−vKη =−3

2Ωx+ 1
2βln(ρ)cs .

2.2 Dust dynamics

The dynamics of the dust are very similar to the one of the gas, but without the effect of the gas pressure.
The Euler equation is identical to Eq. (2.25), but without term (3),

∂~v
∂t + (~v∇)~v+u0,y

∂~v
∂y′ − ~f (~v) =− 1

τs
(~v−~u)−∇Φ′+ . . . , (2.27)

where Φ′ again is the change in the gravitational potential, from the potential of the central star as point
mass. Here, ~f is again the Coriolis force, see Eq. (2.24). And the continuity equation reads:

∂ρd
∂t =−u0,y

∂ρd
∂y −∇(ρd~v) (2.28)

Though the equations of motion are merely similar, introducing dust into a coupled system changes the dyn-
amics of both components tremendously. Friction couples two systems that have different natural azimuthal
velocities. The dust wants to orbit with Keplerian velocity vK whereas the pressure supported gas tries to
orbit with (1−η)vK, or ηvK in the primed system. The section introduces the friction timescale τs, with its
canonical representation in dimensionless Stokes number St, and deals with the consequence of dust inward
drift.
As stated earlier, the interaction of dust and gas happens via the friction force, i.e. (5) in Eq. (2.19).

This friction introduces interesting dynamics into the system. This section will thus also discuss the most
important effects: The relative drift of dust and gas that can be derived by solving for an equilibrium solution
of the two components by treating them as homogeneous fluids. The Streaming Instability (SI) is a linear
(Youdin & Goodman, 2004; Youdin & Johansen, 2007) and non-linear (Johansen & Youdin, 2007) instability
of the dust-gas mixture. It arises once the dust-to-gas density ratio

ε= ρd

ρg
= Z

1−Z
Z�1
≈ Z

reaches unity, where Z is in the beginning of this chapter defined (local) metallicity. Often Z is also used
to describe the disk column metallicity, i.e. the ratio of dust and gas in an infinitely extended cylinder in
vertical direction. From the latter, one cannot derive the mid-plane dust-to-gas ratio, since it gets a function
of H, and dust scale height Hd.
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Figure 2.2: Computer model of compact and fluffy dust aggregates. They consist of 104 to 105 monomers and
have a diameter of 100 µm. Dust grains can be compact (center) or fluffy (right). It is still unclear, what the
optimal shape of dust grains in PPDs is, but they will tend to have a combination of both, being fluffy but not
to fragile (left). They can grow by mutual sticking only as long as relative velocities are below . 1m/s, see
Seizinger & Kley (2013). Source: Seizinger et al. (2013)

2.2.1 Particle friction and Stokes number

Dust particles and icy aggregates can have complicated shapes and properties. Visit Dominik & Tielens
(1997), Paszun & Dominik (2009), Seizinger et al. (2013), and Wada et al. (2013) for further reading.
Though they might share an identical mass m and size a, they can have different filling factors, sometimes
called fluffiness, and they might be far from an ideal spherical shape, see Fig. 2.2. Describing the interaction
with an underlying gas flow would seem complicated, if not the physical description of a particle interacting
with a gas flow via a friction force comes to rescue. In the herein considered cases, the friction forces are
proportional to the velocity difference, times a constant:

~fdrag =−A(~v−~u)

The constant A is a parametrized strength of the frictional coupling. A feather and a bowling ball have
different constants, as a feather easily gets affected by air currents, the bowling ball does not. This constant
has the units of s−1 and thus one calls A−1 the friction time τs and writes

~fdrag =− 1
τs

(~v−~u) . (2.29)

The friction time is often also called stopping time, since it resembles the time a particle needs to adjust to
the underlying flow. From this, the stopping length ls can be derived as

ls =
ˆ ∞

0
dt(~v(t)−~u) = v0

ˆ ∞
0

dte−t/τs = v0τs ,

where v0 is the absolute value of the velocity difference between dust and gas.
A picture to have in mind is throwing a ball while being underwater. If the ball is small, i.e. a tennis ball,

the ball will within a few seconds lose its initial velocity due to friction with the water and instead will follow
the flow of the water current. If the ball is large, i.e. a bowling ball, the ball will not be affected much by
the water current and instead follow its trajectory until gravity takes over and it sinks to the ground. This
gedanken experiment can also be done in PPDs, where tiny dust particles might couple to the sub-Keplerian
gas flow within a fraction of an orbital timescale, or where a planetesimal will basically never adjust to the
gas flow.
Though Eq. (2.29) is correct, for the dust within a PPD the friction time in the two extreme cases from

the gedanken experiment has to be calculated differently. In the first case, the particle radius a is smaller
than the mean-free-path λfree and the particle is in the Epstein drag regime, which is the regime where
particle and gas can both be treated as particles. If the particle size is larger than the mean-free-path, the
particle is in the Stokes drag regime, which is the fluid regime where a large particle is embedded into the
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gas, described as a fluid, see Epstein (1924) and Stokes (1851). The friction times are

τs =


τ

(Ep)
s = 3m

4ρgvthAp
, for a≤ 9

4λfree (Epstein)

τ
(St)
s = 4a

9λfree
· τ (Ep)

s , for a > 9
4λfree (Stokes)

where Ap is the particle surface area and vth =
√

8/πcs the mean thermal velocity of the gas molecules. The
mean-free-path within a PPD can be approximated via

λfree '
mg

σmolρg
,

following Okuzumi et al. (2012), which is valid as long as the particle background is not moving. With the
geometrical collisional cross section of the hydrogen gas molecules of σmol ≈ 2 · 10−15cm3, this leads to a
mean-free-path of

λfree (r) = 120cm
(

r
5AU

)11/4
(

152g/cm3

ρg(r)

)
(2.30)

in the mid-plane. So, it is of order of meters and consequently most of the dust particles will be in the
Epstein regime! Further, assuming the particles can be described as being spherical, the stopping time in
the Epstein regime can be expressed via

τ
(Ep)
s = ρ•a

ρgvth
.

Typically, the stopping time is normalized by the characteristic timescale 1/Ω, i.e. normalized on orbital
timescales. The stems from the radial drift of particles which scales via vr ∼ τsΩ. The emerging dimensionless
quantity is the Stokes number

St := τsΩ. (2.31)

The Stokes number will be used throughout this thesis. Note that it is defined independently from the
underlying drag regime, i.e. it is a valid quantity in both, Epstein and Stokes drag regime, or any other drag
regime. The Stokes number is hence a description of how long a particle takes to couple to the gas, in terms
of orbits.

2.2.2 Collective drift: Nakagawa solution for dust and gas

Nakagawa et al. (1986) and Weidenschilling, Stuart J. (1987) found that dust and gas in a PPD have an
equilibrium solution that surprisingly determines the fate of the dust to be doomed. The result is a steady
inward drift of larger particles that is much faster transporting dust radially inwards than it can grow by
collisions.
Starting from the equations of motion for a homogeneous gas and dust, means one can drop advection

terms. The equations for the gas velocity ~u and the dust velocity ~v are

d~u
dt

=−Aρd (~u−~v)− GM?

r3 ~r− 1
ρg
∇P (2.32)

and

d~v
dt

=−Aρg (~v−~u)− GM?

r3 ~r− 1
ρ•
∇P︸ ︷︷ ︸
'0

. (2.33)

28



Ch
ap

te
r2

10 2 10 1 100 101 102 103
10 5

10 4

10 3

10 2
u x

 |
 (u

x
v x

)
gas

dust

relative

10 5

10 4

10 3

10 2

v x

(a) Radial gas velocity and radial drift ux − vx are
positive. Radial dust velocity is negative (inwards).
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(b) Azimuthal dust and gas velocities are both
negative. Relative drift uy−vy is positive.

Figure 2.3: Radial (left) and azimuthal velocities (right) of dust (red) and gas (blue), and their relative
velocity (green), as calculated from the Nakagawa solution in Eq. (2.36) and Eq. (2.37). Plotted for St = 0.1
(solid) and St = 0.01 (dashed) particles, with η = 0.005, and cs = 1. The radial gas velocity is positive
(outwards, left y-axis), whereas the dust and the relative velocity are negative (inwards, right y-axis). The
absolute values of azimuthal dust and gas velocity are almost identical and sub-Keplerian (negative). The
maximum relative azimuthal velocity is 10−3 for St = 0.1 and 10−5 for St = 0.01. Even for ε= 1000 the relative
azimuthal velocity deviates from the Keplerian velocity by 0.1 % in both components, dust and gas.

In these equations, the acceleration by the gas pressure gradient onto the dust particles can be neglected as
their internal density ρ• is orders of magnitude larger than ρg. The coefficient A is the drag coefficient that
is different for the Stokes and the Epstein regime, see Sec. 2.2.1:

A=


cs

ρ•R
R.

9
4λfree (Epstein)

3csλfree

2ρ•R2 R>
9
4λfree (Stokes for Re≥ 1)

(2.34)

The Eq. (2.32) and Eq. (2.33) are in Cartesian coordinates and need to be rewritten in polar coordinates
and then linearised in velocity, similar to Sec. 2.1.5. The cylindrical coordinates are ~r = r (cosϕ, sinϕ)ᵀ with

d~r
dt

= ṙr̂+ rϕ̇ϕ̂

The z-component is found to be zero in the equilibrium solution, which is clear since there is no reason
for vertical motions. The radial and azimuthal velocity components can be treated separately.

Radial dust velocity component

Starting with the radial dust component, it reads

d
dt
vr = d

dt
(~vr̂) =

(
d~v
dt

)
r̂+~v ˙̂r =

(
d~v
dt

)
r̂+ (ϕ̇ϕ̂) · (rϕ̇ϕ̂+ ṙr̂)

=−Aρg (vr−ur)−
GM

r3 r︸ ︷︷ ︸
Ω2r

+(rϕ̇ϕ̂)(ϕ̇ϕ̂)︸ ︷︷ ︸
rϕ̇2=

v2
ϕ
r

+(ṙr̂)(ϕ̇ϕ̂)︸ ︷︷ ︸
=0

=−Aρg (vr−ur)−Ω2r+
v2
ϕ

r
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Now, one can transform the velocities to be expressed as relative to the Keplerian orbital velocity ~vK = rΩϕ̂.
For the gas and dust velocities this yields, respectively:

~U = ~u−~vK and ~V = ~v−~vK .

Consequently, with vK = ~vKϕ̂, the equation of radial motion component for the dust gets

d
dt
vr =−Aρg (Vr−Ur)−Ω2r+ (Vϕ−vK)2

r

where

(Vϕ−vK)2

r
= 1
r

 V 2
ϕ︸︷︷︸
≈0

+2VϕrΩ + r2Ω2

= 2VϕΩ + rΩ2 ,

where V 2
ϕ = (ηvK)2 ≈ 0. Thus,

d
dt
vr =−Aρg (Vr−Ur) + 2ΩVϕ .

Azimuthal dust velocity component

One can do a similar derivation for the azimuthal velocity component of the dust:

d
dt
vϕ =

(
d
dt
~v

)
ϕ̂+~v ˙̂ϕ= d~v

dt
ϕ̂+~v · (−ϕ̇r̂) =−Aρg (vϕ−uϕ)− (rϕ̇ϕ̂+ ṙr̂) ϕ̇r̂︸ ︷︷ ︸

ṙϕ̇= vϕvr
r

=−Aρg (Vϕ−Uϕ)− (Vϕ+ rΩ)Vr
r

=−Aρg (Vϕ−Uϕ)− VϕVr
r︸ ︷︷ ︸
≈0

+ΩVr

Where the term 1/r is small since the distance r is very large. This leads to

d
dt
vϕ ≈−Aρg (Vϕ−Uϕ)−ΩVr .

The gas velocity components

A similar procedure for the equation of motion for the gas leads to

d
dt
ur =−Aρd (Ur−Vr) + 2ΩUϕ−

1
ρg

∂P

∂r
,

for the radial velocity. Now the last term is the additional gas pressure. The azimuthal reads

d
dt
uϕ =−Aρd (Uϕ−Vϕ)−ΩUr .

The Nakagawa drift

Nakagawa et al. (1986) and Weidenschilling, Stuart J. (1987) showed that in these derived solutions of the
four velocities components a steady state solution exists. It can be found by using ∂/∂t≡ 0, and by assuming
homogeneous dust and gas densities. Which means the dust-to-gas ratio is fixed. The original solution is
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Güttler et al. (2010) and Windmark et al. (2012). For the MMSN at 1 AU particle sizes above a few cm
can hardly be achieved. Though, beyond the ice line, water ice could improve the ability of grains to stick
(Gundlach & Blum, 2015; Lorek et al., 2016) (CO2 in contrast has sticking properties that compare rather to
silicates, see Musiolik et al. (2016)), this is not enough to have grains surpass the fragmentation barrier. Still,
if some would do, they will end up at the drift barrier, see Fig. 2.5. Source: Windmark et al. (2012)

this set of four equations:

Ur = ρd

ρg +ρd

2DΩ
D2 + Ω2 ηvK Uϕ =

(
ρd

ρg +ρd

D2

D2 + Ω2 −1
)
ηvK

Vr =− ρg

ρg +ρd

2DΩ
D2 + Ω2 ηvK Vϕ = ρg

ρg +ρd

D2

D2 + Ω2 ηvK

With the simplifiction of D = A
(
ρg +ρd

)
, and η is the parametrized deviation from the Keplerian velocity,

see Eq. (2.16).
These set of solutions can be further simplified by using the dust-to-gas ratio ε = ρd/ρg and expressing

the particle drag coefficient A via the Stokes number:

St = τsΩ = ρ•a

ρgvth
Ω = Ω

ρgA
.

Using in this equation the formulation of the Epstein drag coefficient of

A= vth

ρga
,

with particle size a and thermal speed, which is typically the sound speed vth ≡ cs. From this, the radial
drift of the gas becomes:

Ur
ηvK

= ρd

ρg +ρd

2DΩ
D2 + Ω2 −1 = ε

ε+ 1
2Ω2 (ε+ 1)

St2
(

Ω2

St2 (ε+ 1)2 + Ω2
)

This can be simplified by using

λ := 1
(1 +ε2) + St2

. (2.35)
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The simplified version of the Nakagawa drift is then

Ur
ηvK

= 2εStλ .

Doing this steps for both components of the gas and the dust velocity, leads to a short writing of the set
of equations as:

Ur
ηvK

= 2εStλ and Uϕ
ηvK

=−
(
1 +ε+ St2

)
λ (Gas) (2.36)

Vr
ηvK

=−2Stλ and Vϕ
ηvK

=−(ε+ 1)λ (Dust) (2.37)

The difference of dust and gas velocity is the relative Nakagawa drift, herein this thesis used and defined
in its absolute value:

ζNakagawa := |~v−~u|=
√

(Vr−Ur)2 + (Vϕ−Uϕ)2 (2.38)

2.2.3 The drift and fragmentation barrier
If dust and gas are in their velocity equilibrium state, the Nakagawa solutions showed for this case how the
dust steadily drifts inwards while gas is transported outwards, see also Whipple (1972). The reason for the
drift is a centrifugal deficiency of the dust. As particle Stokes numbers are low, the dust adjusts to the local
gas velocity via friction in less than one orbit. But, the dust can not maintain this sub-Keplerian orbital
velocity because it is not stabilized by the force from the gas pressure gradient. It hence lacks a compensation
for the lower centrifugal force and the particle feels a net inward force. When it moves inward, it has to
readjust to the now even lower gas velocity via momentum transport onto the gas, thus the dust gives
momentum to the gas. Thus, as consequence from momentum conservation, the gas has to move outwards.
But, this does not implicate a gas depleted inner disk. Since the gas pressure scale height is larger than the
dust disk scale height, the gas can easily get replenished by the upper parts of the disk its atmosphere. For
the dust, the drift states a problem, since in an isolated disk it cannot be replenished from outwards. The
dust thus radially drifts into the star and no planets do form. Which cannot be as we have strong evidence
for their existence. The expected drift velocities peak at a value of 100 m/s for dust particle of 100 cm in
size. Taking smaller dust as an example, in a MMSN a 10 cm particle would drift 100 AU in only 30000 years,
see Brauer et al. (2008).
But, there is a second problem with the dust growth that comes from particle-particle collisions. These

high drift velocities, and also the expected Root-Mean-Square (rms)-velocities of cm-sized dust leads to a
stall in dust growth when they collide. Fig. 2.4 shows the outcome of these collisions. Here, schematically
shown is the collisional outcome for pure silicate dust grains. A more detailed review can be found, e.g.,
in Birnstiel et al. (2016). Only small dust grains can stick. Further increasing the particle sizes leads to
bouncing (Zsom, A.; Ormel, C. W.; Güttler, C.; Blum, J.; Dullemond, 2010), erosion and fragmentation,
see Brauer et al. (2008) and Birnstiel et al. (2009). The only path through this fragmentation barrier lies
in the possibility of small grains hitting a larger grain and the latter then is able to grow via mass transfer.
Still, this process only works as long as only a few large grains exist, and if the small-grain on large-grain
scenario stays the dominant collision mode. If instead if larger grains exist, they will destroy themselves by
mutual collisions. In the end this scenario of growth via mass transfer is unlikely, since no process is known
that reduces the supply on larger grains to a level that a few of them are able to surpass the fragmentation
barrier via mass transfer.
This can be best seen in the results of a numerical dust evolution model from Birnstiel et al. (2012), as

shown in Fig. 2.5. This dust evolution model incorporates the growth of dust via sticking, dust fragmentation
due to collisions, where the relative velocities take the drift velocity and the particle rms-velocities into account
and the radial drift. The dust rms-velocity comes from gas turbulence, where in the shown model the gas
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Figure 2.5: Dust evolution model from Birnstiel et al. (2012) that incorporates the growth of dust via sticking,
dust fragmentation due to collisions from relative velocities and the radial dust drift. It shows that growth
gets stalled by two barriers, the fragmentation barrier (solid line) and the drift barrier (dashed). The three
pictures show the temporal evolution of the dust surface density for an initial smooth disk of small dust
particles. The disk has a gas turbulence level of α = 10−3, see Sec. 2.1.4. In the first picture, the dust could
grow more easily in the denser inner disk, but the growth is stalled by the fragmentation barrier. Later
times bring the drift barrier down, as the dust density depletes, since growth takes longer. The outer disk
consequently gets drift limited. In this model, no planetesimals form and all the dust vanishes into the central
star. Source: Birnstiel et al. (2012)

turbulence has a level of α= 10−3, see Sec. 2.1.4. The results show that growth gets stalled by two growth
barriers: The fragmentation barrier (solid line) and the drift barrier (dashed). The three pictures show the
temporal evolution of the dust surface density for an initial smooth disk of small dust particles. In the first
picture, the dust could grow fast in the denser inner disk, but the growth gets stalled by the fragmentation
barrier. Later times bring the drift barrier down, as the dust density depletes. This comes from the fact
that with less dust the time needed to grow becomes longer. The outer disk consequently gets earlier drift
limited. In this model, no planetesimals from direct grow form and all the dust vanishes into the central
star. If one would add planetesimal formation by adding a unspecified collapse mechanism, this process
would represent an additional sink for the dust density and consequently the dust growth gets drift limited
already at earlier times throughout the whole disk.

2.2.4 The streaming instability and its azimuthal counterpart
A second consequence from the difference in particle and gas velocity arises once inhomogeneities in the dust-
to-gas ratio are considered. The Nakagawa solution for the gas (Eq. (2.36)) and for the dust (Eq. (2.37))
both scale with ε. Consequently, the solution for the velocities changes, if a perturbation in ε is introduced.
A patch with a slightly higher dust concentration will drift slower and dust from underdense regions can
fall into this patch from the radial outward direction. This is then even further enhancing the locally higher
dust concentration making this patch even drift less and would be a run away process if not non-linearities
come into play.
The linear instability was first endeavoured in Youdin & Goodman (2004) and a simplified version of

the equations can be found in Jacquet et al. (2011). They named it the Streaming Instability (SI), and
found it by solving the dispersion relation for this problem in r-z direction, i.e. the azimuthal symmetry
is assumed. The found instability does not require self-gravity or stellar gravity to act. Already in pure
hydrodynamical dust-gas calculations, see Youdin & Johansen (2007), the instability can act quite strongly.
The growth timescales of this instability are found to be faster than the radial drift timescales. Thus,
Youdin & Goodman (2004) suggested that the SI might be the trigger for planetesimal formation, as it can
significantly concentrate dust locally and this maybe even up to values that trigger collapse. However, the
latter has never been fully proven, though claims are out there, i.e. from Johansen et al. (2015) or Simon
et al. (2016). The open question in their work is whether the collapse comes from SI alone or is assisted by
stellar gravity together with extremely high dust-to-gas ratios.
In the works of Johansen & Youdin (2007), and every work that followed, the SI is not considered as
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Figure 2.6: Time evolution of the 3-d SI with ε0 = 1 and St = 0.1. Initial dust density distribution is
homogeneous, but then SI modes emerge from noise perturbations in the dust and gas densities. The shown
simulation domain size is L = 0.1H. The maximum dust density fluctuations reached in a single grid cell is
≈ 10. The last snapshot (right) shows the SI to populate the full simulation domain when saturated.

a linear instability anymore, as they find the non-linear phase to drive the dust dynamics in particle-gas
simulations. The non-linear phase of the SI comes with additional strong turbulence in the dust particle
field, see Fig. 2.7b. This turbulence stalls the maximum dust concentration at values of εmax/ε0 ≈ 10, where
ε0 is the initial mean dust-to-gas ratio. In Johansen & Youdin (2007), the non-linear SI is found to occur
for particles with St = 0.1 and 1.0, at dust-to-gas ratios above unity. The SI is found to work the best for
marginally coupled particles of around St≈ 0.1 . . .1. But, the instability can be found for Stokes numbers as
low as St = 10−3, see Yang et al. (2016), and up to St = 4, as found by Carrera et al. (2015).
So far, in basically all the published work, the SI has been considered in either 3-d simulations or in 2-d

simulations, where the 2-d simulations only covered the r-z plane. No analysis has been done on the SI in
radial azimuthal direction, besides a first prove of its existence in Raettig et al. (2015). The reason is, it was
believed from the solution of the dispersion relation (Youdin & Goodman, 2004) that the SI is an instability
acting in radial-vertical direction only.
In Chapter 5 of this thesis the results from the performed numerical study on the SI in the r-ϕ plane found

in fact a very similar non-linear instability. The found instability shows a mode pattern and parameters very
similar to the SI. Since the equivalence of this new-found instability to the SI is not analytically proven, it is
named azimuthal Streaming Instability (aSI). Note that in the following the term SI is sometimes also used
for the aSI, since the physical implication from both instability as equal. A sample for the aSI, in comparison
with the SI is shown in Fig. 2.7.
After the work of Johansen & Youdin (2007), no further investigations into the pure SI has been performed,

until recently in Squire & Hopkins (2017); Squire & Hopkins (2017) the SI was becoming part of a more
general family of instabilities, the resonant drag instabilities. From the works that followed Johansen &
Youdin (2007) they all included stellar gravity and self-gravity. Out of them, the work of Bai & Stone
(2010a) is notable, as they found the SI to be the particular instability that prevents the dust settling to the
disk mid-plane, where before the Kelvin-Helmholtz instability was believed to do so.
The mentioned parameter study from Chapter 5 investigates a parameter space of ε= 0.1 up to ε= 1000,

on scales of L= 0.1H down to 0.001 H, for St = 0.1 and St = 0.01 particles. For the whole parameter space,
the SI growth rates were calculated. They are shown in Fig. 2.8 and Fig. 2.9, for the two Stokes numbers
respectively. The growth rate s in this plot is the expression for

s= =(ω) ,

for the SI amplitude ∼ exp
(

i~k~x− iωt
)
. It can be seen that at dust-to-gas ratios well above unity, the SI does

not die out. The fastest growing modes are found to shift towards smaller wavelengths, but most of the
kx-kz wavenumber space gets populated with SI modes. For comparison, the domain sizes of the simulation
translate into log10 (kxηr) of 0.5, 1.5, and 2.5, respectively. This concludes that the aSI should not be found
for St = 0.1 and ε= 0.1, but still the SI should show active modes, specially in vertical direction. As can be
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(a) aSI in r-ϕ plane at 1282 resolution.
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(b) SI in r-z plane at 1282 resolution.
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(c) aSI in r-ϕ plane at 12602 resolution.

Figure 2.7: Examples for the saturated non-linear SI from gravity-free simulations of St = 0.1 particles. Plotted
is the local dust-to-gas ratio that was initially set homogeneously with ε = 1. The two snapshots (top) are
from low resolution 2-d simulations with N2 = 1282. The left is set up in the r-ϕ plane and thus shows the
aSI. The right is set up in the r-z plane and thus shows the SI. The simulations in the lower figure is identical
to the one of the top-left, but with almost ten times higher resolution. Interesting to note, the SI and the aSI
both look very similar. The difference in the mode pattern arises from the additional Keplerian shear which
stretches and tilts the aSI-modes in azimuthal direction. The higher resolution allows for aSI-modes with
higher wavenumber and thus the mode pattern looks similar but is also refined.
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(a) τs = 0.1 - ε= 0.1 (b) τs = 0.1 - ε= 0.3 (c) τs = 0.1 - ε= 0.5

(d) τs = 0.1 - ε= 1.0 (e) τs = 0.1 - ε= 3. (f) τs = 0.1 - ε= 10.

(g) τs = 0.1 - ε= 30. (h) τs = 0.1 - ε= 100. (i) τs = 0.1 - ε= 1000.

Figure 2.8: Logarithmic growth rate s (colour) for the SI for St = 0.1 particles. Calculation based on Squire &
Hopkins (2017).

36



Ch
ap

te
r2

(a) τs = 0.01 - ε= 0.1 (b) τs = 0.01 - ε= 0.3 (c) τs = 0.01 - ε= 0.5

(d) τs = 0.01 - ε= 1.0 (e) τs = 0.01 - ε= 3. (f) τs = 0.01 - ε= 10.

(g) τs = 0.01 - ε= 30. (h) τs = 0.01 - ε= 100. (i) τs = 0.01 - ε= 1000.

Figure 2.9: Logarithmic growth rate s (colour) for the SI for St = 0.01 particles. Calculation based on Squire &
Hopkins (2017).

37



Figure 2.10: The solution (Eq. (2.41)) of the diffusion equation (Eq. (2.40)) for three different time steps. The
diffusion coefficient in this sample is D = 1 and the initial number of particles is Np = 5. Over time the initial
peak spreads out by the underlying diffusion, but the Gaussian shape is maintained.

seen in Fig. 5.2 this is right the numerical finding. In contrast, for St = 0.01 and at the same dust-to-gas
ratio, the numerical simulations confirm that both, SI and aSI modes are active. Additional simulations of
the SI in 3-d simulations are performed that show mode patterns as in Fig. 2.6. Since in 2-d the particles
can actually surround gas parcels, and thus the gas must stream through these dust particle filaments, in
3-d the gas can flow above such a dust filament. The consequence is that the SI can be weaker in 3-d, in
terms of ability to concentrate dust and in terms of particle turbulence strength.

2.2.5 Turbulent particle diffusion
The non-linear SI is a turbulent instability of the dust together with the gas, though the gas densities and
velocities only change by one percent at maximum, the dust is strongly affected. The dust velocities get
strongly turbulent as the back-reaction onto the gas is changing due to local dust fluctuations. These dust
density fluctuations itself are only stable for a short time and continuously form and vanish.
As mentioned in the introduction, the measurement of this particle turbulence in terms of particle diffusion,

is a main topic of this thesis. The measurement is discussed in the following. The derivation follows the
lecture of Prof. Dr. Martin Keller from the TU Dresden and of Prof. Dr. Karl-Heinz Gericke from the TU
Braunschweig.

Diffusion equation and coefficient

The physical problem of describing the thermal conduction through a rod, the dispersion of a gas in another
gas, and the movement of micro-organism, they all have in common that these processes show the same
behaviour, they are spreading in the direction of the negative gradient of that quantity. This process is called
diffusion. In order to simplify things, herein the derivation of the diffusion is restricted to one dimension: x.
Diffusion has two main properties, one is the conservation of the total of the quantity, the other is the flow
from a large concentration of that quantity, to a lower concentration.
By looking at the rate J at which a quantity q is flowing from x0 to x0 + ∆x, one can try to understand

this phenomenon. Since the total of the quantity is conserved, one can write

∂

∂t

ˆ x0+∆x

x0

q (t,x)dx= J (t,x0)−J (t,x0 + ∆x) .

Dividing this equation by ∆x and taking the limit of ∆x→ 0 gives directly the equation of conservation for
the quantity q:

∂

∂t
q (t,x) =− ∂

∂x
J (t,x) (2.39)
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As the process is diffusion, one knows that the rate J (t,x) is determined by the spatial change in concen-
tration u(t,x). Hence, the diffusion rate has to be a function of that concentration gradient, i.e.

J (t,x) = F

(
∂

∂x
q (t,x)

)
,

i.e. a constant concentration results in no diffusion F (0) = 0. Since the flow of the concentration happens
from the higher to the lower concentration, one can do a linear ansatz, which is also called Fick’s first law:

J (t,x) =−D∂q

∂x
(t,x) ,

where the mobility D is introduced that is scaling the ability of a concentration to flow along a infinitesimal
small distance. Plugging this into Eq. (2.39) leads to Fick’s second law, the diffusion equation:

∂q
∂t =D ∂2q

∂x2 (2.40)

This differential equation is an equation of second order in space and first order in time. To solve it, one
needs to state two spatial (initial) conditions and one temporal condition. Assuming particles in a turbulent
fluid, at t= 0 all Np particles are at x= 0 and within a dx of space. The following ansatz is a valid solution
of this equation:

q (t,x) = αt−1/2 exp
(
− x2

4Dt

)
,

where α is a parameter that expresses the number of particles, as will be seen in the following. Now, for
t→ 0 its q(t = 0,x) = 0 for all x, except q(t = 0,x = 0) =∞. Since all Np particle are initially at the same
spot. Using the conservation of total number of particles, leads to

Np =
ˆ ∞
−∞

q (t,x)dx= α

ˆ ∞
−∞

t−1/2 exp
(
− x2

4Dt

)
dx= 2α(πD)1/2 .

Solving for α and plugging it into the ansatz leads to

q (t,x) =Np

√
1

4πDt exp
(
− x2

4Dt

)
. (2.41)

In Fig. 2.10 shown, is an example for the time evolution of this solution for the diffusion problem.

Looking on a single particle out of this ensemble, one can ask for the probability if a particle has travelled
a distance x after a time t. Let this probability be p(x)dx. It describes the probability of a particle to be in
the interval x to dx. One can get this probability from the fraction of particles within this interval and the
total number of particles.

p(x)dx= u(x, t)dx
Np

=
√

1
4πDt exp

(
− x2

4Dt

)
dx

Using this, one can ask for the mean squared distance after a time t:
〈
x2〉. Beware that 〈x〉 = 0 from the

ansatz of all particles being at x= 0 in the beginning. Then

〈
x2〉=

ˆ ∞
−∞

x2p(x)dx

has to be solved. The computation is not trivial, and the result is〈
x2〉= 2Dt .
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Figure 2.11: Histogram of the radial travel distance for a group of particles from a SI simulation. The travel
distance is the distance a particle has surpassed, measured from its initial position xi(t= 0). The curve centre
moves inward due to the net radial particle drift from the Nakagawa solution. It is further spreading due to
turbulent diffusion acting as a random walk equivalent. As consequence, the Gaussian width increases with
the square root of time. The Gaussian distribution of this measure is found to be slightly platykurtic, or
flat tailed, due to the fraction of particles that experience a decreased diffusion as being in one of the more
massive particle clumps. Source: Johansen & Youdin (2007).

This could already be seen from Eq. (2.41), since a Gaussian has a function of y ∼ exp
(
−1

2
x2

σ

)
and for a

Gaussian one finds directly:
〈
x2〉≡ σ = 2Dt.

Particle diffusion: δ

For dust particles in PPDs, one has to deal with the particle concentration in a gas. Since the gas density can
be assumed to be constant, see Sec. 7.4.2, the differential equation (Eq. (2.40)) transforms into an equation
for the dust density ρd, as

ρ̇d =D∇2ρd .

A solution for the 1-d case is known from above, but this solution is for all particles initially at the same
position and a constant diffusion coefficient D. Still, with that solution, the particles will reach a mean
square distance of〈

xi (t)2
〉
i

= σ = 2Dt

after a time t.
In order to technically use this solution, one can use the assumption of a constant diffusion coefficient.

Then, one has not to track the absolute particle position xi(t), but their position relative to the individual
initial position xi(t)− xi(t0). Consequently, σ is the root-mean-square of the travel distance, or as in
Fig. 2.11, the width of a travel distance histogram. The equation than can be read as

D = 1
2
∂σ2

∂t . (2.42)

So, the diffusion coefficient can be obtained from the time derivative of the root-mean-square travel distance.
Beware, that herein this equation the factor 1/2 is introduced in order to compensate the factor 2 from the
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solution of Fick’s second law, compare with Eq. (3.35).
The diffusivities D can also be expressed in disk units, of orbits Ω and sound speed cs, as a dimensionless

quantity:

δ = D

c2s /Ω
. (2.43)

As will be shown in Chapter 4, these units are right the code units of the PencilCode. In the following
analysis of the performed simulations, the diffusion is measured by tracking the position of a sample of at
least 104 super-particles and measuring their travel distance over time, compare with Johansen & Youdin
(2007). Note that in a shearing box only radial and vertical diffusivity can be measured by this method
since shearing motions dominate in azimuthal direction.

2.2.6 Dust trapping and planetesimal formation
The scientific community discusses two major ways that allow planetesimals to form. One is direct growth
from µm to km. The authors of this idea claim that the dust can undergo the growth barriers, namely
drift and fragmentation barrier, see Sec. 2.2.3, by growing in a very fluffy fashion (Kataoka et al., 2013).
Another states that some particles are lucky and surpass the meter-size barrier by gaining mass from mass
transfering collisions only (Windmark et al., 2012). By that the dust stays at a comparable low Stokes
number, though its mass increases, see Fig. 1 in Okuzumi et al. (2012). The third way, as followed in this
thesis, expects planetesimals to form via gravitational collapse of a dust heavy particle cloud. The formation
of planetesimals would then be comparable to the formation of stars. As a stability formation criterion
is known for stars, a similar criterion should exist for particle clouds that collapse to planetesimals. This
diffusion limited collapse criterion will be investigated in the following Chapter 3.
The fluffy growth scenario is hampered by the need of fine-tuning the parameters of turbulence in the PPD.

The works by Kataoka et al. (2013) showed that under the right conditions planetesimals could from fluffy
growth within R ≤ 7AU. Where the final compactification comes from gas ram pressure, self-gravity and
internal heating. But, they do not take collisional erosion into account (Krijt et al., 2014, 2015). In contrast,
the gravitational collapse can only happen in a situation where the dust volume density is significantly higher
than the gas density. Since the dust concentration within a PPD is typically assumed to be Z = 0.01, ways
to enhance the dust have to be found. The good thing is that planets in extra-solar systems where found
to be rather abundant. This means nature must have a robust way to form planetesimals to explain this
observation.
The dust cloud collapse scenario can be separated into two regimes as well. One is the global enhancement

of the dust concentration by reducing the amount of gas, the second is the local trapping of dust in particle
traps (Whipple, 1972; Lucas & Ackbar, 1983; Klahr & Lin, 2000; Haghighipour & Boss, 2003; Fromang &
Nelson, 2005). The triggering of gravitational collapse by the reduction of disk gas mass, and hence increase
in disk metallicity, is found need a dust concentration of around Z = 0.02. Only then particle clumps where
found to form, see Johansen et al. (2015), Carrera et al. (2015), and Yang et al. (2016). Considered situations
where this can happen, is late phase disk evaporation, when the PPD dissolves and only the dust remains
(Carrera et al., 2017), or when gas giant planets deplete the gas disk. The first situation might be an
explanation for asteroids and comets, but both are not a good explanation for planets and gas giants itself.
The seeds of planets demand to form early, else there is no time to grow and accrete gas. If not the current
understanding of disk physics is completely off, the way to form such dust concentration has to come from
local particle trapping. Several approaches on this where done in the past years.
Raettig et al. (2015) investigated trapping in anticyclonic vortices (Barge & Sommeria, 1995). Vortices

are shown to form on multiple ways, for example vertical convection cells (Klahr & Henning, 1997; Klahr
& Hubbard, 2014; Lyra, 2014) or the baroclinic instability (Klahr & Bodenheimer, 2003; Klahr, 2004).
Raettig et al. (2015) found in local shearing box simulations the particle concentration to increase up to four
orders in magnitude, and even found evidence of SI activity inside these dust concentrations. The work by
Johansen et al. (2007), Johansen et al. (2009), and Dittrich et al. (2013) found a azimuthally extended rings,
called zonal flows (Whipple, 1964; Klahr & Lin, 2000), to also trap particles efficiently, and even showed
planetesimal formation therein. Zonal flows represent radial pressure bumps that can trap particles since
particles seek the point of highest pressure, see Whipple (1972). They can emerge in different ways, one
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Figure 2.12: Schematic view on an axisymmetric pressure bump that is capable of trapping particles
(Whipple, 1972). This type of gas flow feature is typically referred to as zonal flow, as it is an axisymmetric
gas flow perturbation. The y-axis shows the pressure gradient, see Sec. 2.1.3, the x-axis the radial distance
from the trapping location (x+), normalised to the global pressure gradient η. An locally increased gas
pressure slows the particle drift down. If the gas pressure gradient vanishes, i.e. reaching the horizontal grey
line in this plot, particles can get trapped where the gas velocity is right at Keplerian speed. If the pressure
bump is even stronger, it forms a region where particle start to drift outwards (between x− and x+). The
point x− is not a particle trap, as this is an unstable equilibrium point. As can be seen, the slope in pressure
gradient is much higher in the vicinity of the zonal flow than on the global disk scale. Hence, if dust-to-gas
ratios around unity are reached, the SI might be even more violent within a zonal flow. Figure based on Onishi
& Sekiya (2017)

is from magnetic coupling onto the disk gas (Kato et al., 2009). Zonal flows might explain the dust rings
observed in recent ALMA observations, see Fig. 1.5. They arise from magnetic coupling of the ionised gas
disk onto the stellar magnetic field. They act efficient in increasing the dust density by up to four orders of
magnitude, too.
Different approaches on dust trapping take static disk features, like the inner disk rim, inner edge of a

turbulence-dead zone (Lyra et al., 2008; Dra̧żkowska et al., 2013), gaps carved by other planets (Lyra et al.,
2009; van der Marel et al., 2013), or the ice lines of volatiles. In the inner of an ice line, i.e. water ice line, the
volatiles evaporate but can get transported radially outwards, so they re-condensate on grains right at the ice
line (Stammler et al., 2017). This could also trigger planetesimal formation (Schoonenberg & Ormel, 2017)
by increasing the locally increasing the dust concentration. Another perspective for dust concentration are
high-pressure regions between turbulent eddies on the smallest scale of the Kolmogorov cascade (Sec. 3.3.4),
see Cuzzi et al. (2001), Cuzzi et al. (2008), and Johansen et al. (2014). Some discussed mechanism work
only in strongly turbulent disks, with a turbulent α-values above 10−3, and by that are less likely to be the
dominant mode of planetesimal formation.
There might be not the one and only way to form planetesimals. It might be a combination of may inter-

linking processes or different processes being active at different times. The hope is to better understand these
processes in the future, and maybe even find more. If one is lucky, the planetesimals that are found today
in the solar system have imprints from their formation mechanism and one day we are able to distinguish
solar system objects by their formation time and path. One distinctive feature could be the asteroid size. As
shown in the following chapter, it is the turbulent particle diffusion that determines the lowest planetesimal
size. In the future, also the compositional structure of a planetesimal (Jansson et al., 2014) will become
important to study.
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3 Gravitational Instability of a Particle Cloud

In the following of this chapter, the stability of self-gravitating particle clouds in PPDs is analytically investi-
gated. Thus, the chapter has two main components, that in the end merge into the diffusion limited collapse
criterion. The components are:

i) The two canonical used instability criteria are the Roche stability and the Hill stability criterion.
The first was calculated in the 19th century by Édouard Roche, who investigated the stability of loosely
bound material in the vicinity of larger bodies, such as the breakup of comets close to the Sun. A good
example is the breakup of Shoemaker-Levy 9 while approaching Jupiter in 1994, see Fig. 3.1. Based on
the work of Édouard Roche, George William Hill calculated the dynamical stability of a testmass around a
smaller body in a rotating frame. This is typically interpreted as a spherical volume around a minor body,
e.g. around Earth, in which a small body, e.g. the Moon, stays bound to it. Being outside of this sphere
of influence, the gravitational attraction onto the small body is dominated by a major body, i.e. the Sun.
Points on the surface of this sphere show little net acceleration forces. Characteristic points of these are
the Lagrangian points. The Lagrangian Points L1 and L2 are often used for positing satellites therein. The
Lagrangian points L3 and L4 are trailing and leading points of stability on the orbit of the respective minor
body. In L3 and L4 of Jupiter an asteroid reservoir resides that objects are called Jupiter Trojans. The Hill
sphere is sometimes also called after its origin Roche lobe, after its origin. Both criteria state that stability is
granted as long as mutual gravitational interaction within a particle cloud is stronger than the gravitational
gradient, exerted by a larger mass outside of the body of interest, which is in our case a particle cloud, see
Sec. 3.1.4 and following. The Hill stability differs from the Roche criterion by demanding an orbital motion of
the particle cloud around a central mass. The thereby induced additional centrifugal force further stabilises
the particle cloud by reducing the gravitational gradient across the cloud. A Roche criterion that neglects

Figure 3.1: Breakup of comet Shoemaker-Levy 9 when it approached Jupiter in 1993. This comet can be
taken as a good example where the tidal forces of Jupiter where stronger than the internal binding. Since
the internal binding of a comet is rather loose, they are also called rubble piles. For Shoemaker-Levy 9 the
internal density has been calculated to a surprisingly high value of ρ = 5g/c3m (Asphaug & Benz, 1996).
Source: NASA/ESA, H. Weaver and E. Smith (STScI).
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an orbital motion is obviously an insufficient criterion for particle cloud stability analysis in PPDs. Also, the
Hill criterion might be invalid in a PPD as these disks contain a non-negligible amount of gas interacting
via drag with the particles. Therefore, the Hill criterion might be used as an approximation as long as drag
forces can be neglected, see Sec. 3.2.

ii) If a particle cloud is allowed to collapse depends not only on the Keplerian shear and tidal forces.
It also depends on the dynamical state the particles have at the moment of collapse. Obviously, a too high
particle rms-velocity will ballistically disperse a particle cloud faster than it collapses. The same is true for
underlying turbulent diffusion (Shariff, Karim and Cuzzi, Jeffrey N., 2015) that resides in the particle-gas
mixture. Such a turbulent scenario was briefly discussed in Shariff, Karim and Cuzzi, Jeffrey N. (2015). This
work will go into more depth and show the turbulent diffusion to state a threshold on particle cloud collapse.
By stating the particle diffusion timescale to be as long as the gravitational collapse time a criterion on cloud
stability will be found by the end of this chapter.
The derivation of the final diffusion limited collapse criterion is based on the co-author paper Klahr &

Schreiber (2015) and Klahr et al. (2018). In both papers, I independently set up, tested, performed and
evaluated the numerical experiment. I also extensively contributed to the theory and the paper writing.

3.1 Stability criterion
In Sec. 3.3 a stability criterion for a particle cloud will be derived, which follows a similar idea as the collapse
of an interstellar cloud to a star, see Fig. 3.2. Before this can be done, this chapter will introduce the
basic concepts of gas and dust stability analysis. The section starts with the case of a basic star formation
criterion, the Jeans criterion by Jeans (1902). It asks, if the gas pressure from the internal temperature is
stronger than the cloud its own self-gravity. Only if gravity is stronger, a star can form from collapse. Else,
the cloud either has to cool in order to shrink any further, or gets dispersed, not forming a star.
As described in points i) and ii) from above, a collapsing cloud has not only to be internally stable against

tidal forces and Keplerian shear, i.e. Hill stable, but also particle rms velocity and diffusion has to be low.
Comparing with star formation, the diffusion takes the part of the internal pressure, but now it is a question



Figure 3.2: The situation of a collapsing dust particle cloud to a planetesimal is very similar to the case
of a interstellar cloud that tries to collapse into a star. Internal pressure as the obstacle in the stellar case
translate into turbulent particle diffusion for planetesimal formation. This changes the picture form a force
balance into a picture of dynamical timescale balance. Additionally, the Keplerian shear and stellar tidal
forces pull on the particle cloud, and so the cloud has to overcome both of these effects. The shear stability
is generally assumed to be reached at Hill density. In order to deal with the turbulent diffusion, herein this
work the collapse timescale is set equal to the diffusion timescale. This directly gives a length scale criterion
similar to the Jeans length, but for planetesimal formation in PPDs.
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of timescales rather than competing forces. Meaning, collapse can only occur if the collapse is faster than
turbulent diffusion.
In the following different stability criteria investigated are, starting with the Jeans criterion (Sec. 3.1.1),

over the Toomre instability that describes collapse of gas clouds in PPDs (Sec. 3.1.2), secular gravitational
instabilty (Sec. 3.1.3), describing a mode of instability in dust rings, and the section is ending with the Roche
(Sec. 3.1.4) and the Hill stability criteria (Sec. 3.1.5). The following derivations of the Jeans criterion and of
the free-fall timescale follows Susanne Höfners (Uppsala University) lecture notes4. The author gratefully
thanks her for providing this at open access and for inspiring the herein derived criterion for particle cloud
stability and collapse times.

3.1.1 Star formation in a nutshell
The subject of consideration is a gas cloud that has formed within a gas filament inside of a galaxy. This gas
cloud is about to collapse into a star. For a given homogeneous density ρ and temperature T = PV/nR, the
gravitational stability of this gas cloud is investigated. Assuming spherical symmetry, the problem reduces
to a one dimensional analysis.
The dynamics are descriped by the equation of continuity

∂ρ

∂t
+ ∂

∂x
(ρu) = 0 (3.1)

and the 1-d equation of motion

∂

∂t
(ρu) + ∂

∂x

(
ρu2)=−∂P

∂x
−ρ∂Φ

∂x
, (3.2)

with u the radial gas velocity and Φ the gravitational potential of the gas cloud. The latter is given by
Poisson’s equation for self-gravity:

∂2Φ
∂x2 = 4πGρ . (3.3)

Assuming the gas to be in isothermal equilibrium holds as long as the gas can cool faster than it heats up due
to compression from the collapse, i.e. as long as the gas is not getting optically thick and cooling by radiation
remains efficient. Being isothermal is indeed justified in most astrophysical processes as the timescales for
thermal adjustment are short compared with the timescales of dynamical changes in the system. Hence, the
barotropic equation of state can be used, as in Eq. (2.1), i.e.

P = c2s ρ ,

with isothermal sound speed cs.
Initially, the gas cloud shall have a constant density ρint and internal gas pressure P0, and be at rest u0 = 0.

Now, considering a small perturbation in the form of exp[i(kx+ωt)]. One can express the change (primed)
in density, pressure, potential, and consequently gas velocity as

ρ= ρint +ρ′, P = P0 +P ′, Φ = Φ0 + Φ′, u= u′,

were the unperturbed quantities have a 0 as index. The perturbation are considered of being small and
isothermal: P ′ = c2s ρ

′, with cs remains unchanged, i.e. cooling is fast.
Inserting this perturbation into the equations Eq. (3.1) - Eq. (3.3), one obtains three equations that

4http://www.astro.uu.se/~hoefner/astro/teach/apd_files/apd_collapse.pdf
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describe the dynamics of the induced perturbation. First, the equation of continuity:

∂ρint

∂t︸ ︷︷ ︸
=0

+∂ρ′

∂t
+ρint

∂u′

∂x
+ ∂

∂x

(
ρ′u′

)︸ ︷︷ ︸
≈0

= 0 (3.4)

∂ρ′

∂t
+ρint

∂u′

∂x
= 0 (3.5)

Here, time derivatives of the constant initial values cancel, as well as the products of two perturbations, since
both are already individually considered to be very small, and so also their derivatives are small. Second,
the equation of motion:

∂

∂t

((
ρint +ρ′

)
u′
)

+ ∂

∂x

((
ρint +ρ′

)
u′u′︸︷︷︸
≈0

)
=−∂ (P0 +P ′)

∂x
−
(
ρint +ρ′

) ∂ (Φ0 + Φ′)
∂x

(3.6)

∂u′

∂t
=− c2s

ρint

∂ρ′

∂x
− ∂Φ′
∂x

(3.7)

Third, the Poisson’s equation for the perturbation can be separated from the initial potential Φ0 to

∂2Φ′
∂x2 = 4πGρ′ . (3.8)

Assuming a solution of the form exp[i(kx+ωt)] exists to all these perturbed quantities, the set of these
homogeneous linear equations can be solved in Fourier space, since the derivatives transform in Fourier space
into

∂

∂x
≡ ik and ∂

∂t
≡ iω .

This leads to ω kρint 0
c2

s k
ρint

ω k

4πG 0 k2

 ·
ρ′u′

Φ′

=

0
0
0

 .

This set of equations can only have a non-trivial solution if the determinant, which is right the dispersion
relation, is zero:

ω2 = c2s k
2−4πGρint (3.9)

This dispersion relation has two different solutions. One, if ω is real, and another one if it is imaginary. If
ω is a real number, then the solution is an oscillation around a given amplitude, i.e. exp(iωt). If it is an
imaginary number, the perturbation is unstable, i.e. exp(−=(ω) t). If the solution for ω is unstable, it is
either unstable in form of a decreasing amplitude (damping) or in form of an increasing amplitude (growth).
Consequently, to get the gas cloud to be unstable, ω2 needs to be negative, i.e. k2c2s −4πGρint < 0 and thus
wavenumbers smaller than

kJeans =
√

4πGρint

c2s
,

get unstable. Which is expressed in wavelength

λJeans =
(

π

Gρint

)1/2
cs .

So, perturbations with λ > λJeans are unstable. This is called the Jeans criterion for star formation.
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Figure 3.3: Growth modes of an instability have w2 < 0. For Toorme values Q < 1 there are many unstable
wavenumbers, but the one at its minimum is the most unstable wavelength with kcrit.

3.1.2 Toomre stability of a gas disk

Taking the derivation of the Jeans criterion as a basis for stability analysis, one can derive a similar criterion
for a gas cloud in a PPD that includes Keplerian shear. Following the analysis as above, the determinant of
equations that describe a fluid in a shearing box, see Sec. 2.1.5, is

ω2 = c2s k
2︸︷︷︸

pressure

−2πGΣ |k|︸ ︷︷ ︸
gravity

+ Ω2︸︷︷︸
shear

. (3.10)

Here, a thin disk approximation has been used, which translates a volume density ρ into a column density
Σ via

Σ(r) :=
ˆ ∞
−∞

ρg (r,z)dz .

In this stability analysis, a growing mode needs to satisfy ω2 < 0, meaning ω needs to be imaginary. One
can also ask for the most unstable wavelength kcrit, i.e. the maximum/minimum of ω2 via

0 != ∂ω2

∂k
= 2c2s kcrit−2πGΣ ⇒ kcrit = πGΣ

c2s

and combine this with Eq. (3.10) yielding

ω2 =− (πGΣ)2

c2s
+ Ω2 !

< 0,

which has to be less than zero in order to give an imaginary ω. Solving this, an instability criterion is found,
the so called Toomre instability criterion. It is usually expressed in the form of

Q := Ωcs
πGΣ

!
< 1, (3.11)

where Q is the Toomre parameter. It represents the ratio of Keplerian shear together with temperature over
self-gravity. If self-gravity is stronger than both other effects, the collapse of a pure gas cloud in a PPD is
possible. The gas disk surface densities Σ needed in order to trigger this Toomre collapse are very large
(Kuiper, 1951). It is still unclear if Toomre instability plays a major role in planet formation, see Baehr &
Klahr (2015). But, if Toomre instability occurs, the planets that would form would be of the order of several
Jupiter masses, and thus are reaching into the realm of brown dwarfs and stars.
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(a) Roche criterion (b) Hill criterion

Figure 3.4: The Roche criterion (left) is a criterion on internal stability. It can be simplified for two masses
m that are held together only by their mutual gravitational attraction. Breakup of this system can only
occur, if an external force is stronger than their binding forces. In the Roche criterion, the force that tries to
disrupt them, is the gravitational force gradient from a larger mass M . If this force gradient is stronger, the
two smaller masses separate from each other, i.e. the objects breaks up. The Hill criterion (right) is a similar
criterion. It looks for the boundedness of a test mass µ onto a smaller mass m, in the vicinity of a larger mass
M . The Hill analysis assumes the smaller mass to have an orbital motion around the larger mass, which is not
the case in the Roche criterion. The Roche criterion can be used for the situation of an asteroid, or comet,
that approaches a planet and one is interested in the point of breakup of this object. The Hill analysis leads
to a Hill sphere, which is the sphere of zero acceleration around the mass m. Everything inside this sphere is
bound, under the assumption of not having escape velocity or other perturbations occurring. From the Hill
analysis result the Lagrangian points of a planet. These are points of stability along the star-planet axis, but
also in front and behind the planet on its orbit. They are favoured for the positioning of satellites, but also
the Trojans are found in the Lagrangian points (Emery et al., 2015).

3.1.3 Secular gravitational instability of dust
The Secular Gravitational Instability (SGI) (Youdin, 2011; Takeuchi & Ida, 2012) is a Toomre-like criterion,
but for dust rings in PPDs. Doing a similar analysis for the dust, one can drop the pressure term c2s k

2. The
assumption of particles to be initially at rest, v0 = 0, gives as result that there is no fastest growing mode,
since the dispersion relation is now a monotonic function in k. Meaning, everything with

−2πGΣ |k|+ Ω2 < 1

is unstable. This can be reformulated to derive a critical dust surface density Σcrit for an annulus with
diameter λ at distance R from a star with mass M?:

Σcrit = λ

4π2
M?

R3 . (3.12)

The result scales with ring width λ. So for a wider ring a higher density is needed to have it collapse. But,
making the ring smaller, arbitrary small densities can collapse into small rings. It has to be kept in mind
that particle rms velocities and turbulent diffusion will destroy the small rings, stating a lower limit for the
SGI.
This SGI is a slowly growing gravitational instability with comparable slow growth rates. Takahashi &

Inutsuka (2014) found for a solar mass star at a distance of 100AU a most unstable wavelength of around
13AU and a growth timescale around 2 ·104 yrs. Latter & Rosca (2016) found that SGI is only allowed for
very low gas turbulence values, i.e. in terms of paramterized turbulent viscosity of α < 10−4, see Sec. 2.1.4.

Still, it cannot be ruled out that in a locally low turbulent disk, i.e. in a so called turbulent dead zone
(Gammie, 1996; Turner & Drake, 2009), low dense particle rings can form from SGI and trigger collapse, if
enough time is given. On might visit the review paper Chiang & Youdin (2010) for further reading.

3.1.4 Roche stability
Compared with Toomre and SGI, the Roche and Hill stability criterion are both not based on perturbation
theory, but on force equilibrium. Assuming two spheres with identical mass m which are only bound by
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their mutual gravitational force, see Fig. 3.4. They are getting disrupted by tidal forces, if their mutual
gravitational force fm is weaker than the differential gravitational force ∆FM , exerted from the larger
central object, e.g. a star, with mass M :

stable⇔∆FM ≤ 2fm.

This leads to an equation of critical stability if all net forces sum up to zero:

0 = Gmm

(2r)2 −

[
GMm

(D− r)2 −
GMm

(D+ r)2

]

Using M �m and D� r, this can be simplified to

0≈ m

M

1
4r2 −

r

D2

[
4 r
D

1 + 2 r
D −2 r

D + 4 r2
D2

]
≈ m

M

1
4r2 −

r

D2

[
4 r
D

]
.

Reformulating to m/M = 16r3/D3 gives a relation for the necessary distance to keep the spheres bound
together as

Dcrit = r · 3

√
16M
m
≈ 2.5r · 3

√
M

m
.

This can be further reformulated in order to derive a critical densities of a dust sphere. The critical density
is then

ρc = ρm = 3m
4πr3 .

Using the Roche criterion from above gives the so called Roche density:

ρRoche = 12
π
M
D3 ≈ 3.82 M

D3 (3.13)

3.1.5 Hill stability
The Hill stability criterion is a dynamical criterion. It is very similar to the Roche criterion, see Fig. 3.4.
Since both analyse, for Roche and Hill, are done in 1-d, the dynamics narrows down to the additional
centrifugal force by the orbital motion in the Hill criterion. Everything within the Hill sphere of the mass
m, or Hill radius in the 1-d case, is gravitationally bound to it. Everything outside is bound to the larger,
primary object, with mass M , e.g. the central star. Asking for the Hill sphere is equivalent to asking for
a ’zero-acceleration’ sphere. It is the surface at which a rigidly bound test mass µ will not get accelerated.
Rigidly bound means the centrifugal forces of m and µ are set to be equal. One can write that centrifugal
forces on m are in equilibrium with the gravitational pull from M :

mΩ2
mD = GmM

D2 ⇒ Ωm = GM

D3
!
≈ Ωµ.

The forces acting on µ are Fµ =
∑
iFi = 0 and thus

0 != −Fgrav,M +Fgrav,m+Fcentrifugal

= − GMµ

(D−a)2 + Gmµ

a2 +µΩ2
µ (D+a) =− 1

(D−a)2 + 1
a2

m

M
+ D−a

D3

= −1 + (D−a)2

a2
m

M
+ (D−a)3

D3

= −1 + D2−2Da+a2

a2
m

M
+ D3−3D2a+ 3Da2−a3

D3 .
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Again, going for the limit of D � a leads to (D+a)2 ≈ D2. Further using D2 � D · a simplifies the
equation to

3a3

D3 = m

M
.

Solving for the minimal stable distance of the µ-m-system to M , gives

Dcrit = a · 3

√
3M
m
≈ 1.44a · 3

√
M

m
. (3.14)

For the critical density of a particle cloud, one assumes m to be the center of mass of this cloud, e.g. a
sphere of particles with m=

∑
iµi, and thus m= ρ4

3πa
3. The critical density of the particle cloud m is then

ρHill = m
4
3πa

3 = 9
4π

M
D3 ≈ 0.72 M

D3 . (3.15)

The derived critical density value is smaller than the Roche density by a factor of 5. This is because the
bound rotation of the whole particle cloud around its host star gives an additional stabilising effect to it.
Sekiya (1983) defines his critical density for an axisymmetric 3-d annulus of particles and finds a value of

ρSekiya = 0.62M
R3 , (3.16)

which is in fact very close to the presented 1-d derivation.
This density of a particle sphere can now be used as a first approximation for the stability of the system.

It is derived in a 1-d case and clearly some effects are missing, such as friction with the underlying gas disk.
But still, as will be shown within this work, the derived criterion works surprisingly well when it comes down
to predicting planetesimal formation via cloud collapse.

3.2 Collapse time
Having a criterion for stability against Keplerian shear and tidal forces is not enough to ensure planetesimal
formation by cloud collapse. Collapse takes its time, especially when it comes to particles with small Stokes
numbers, see Sec. 2.2.1. This collapse time then might be longer than the time a particle cloud needs to
disperse from intrinsic rms-velocities or turbulence. Also, secondary effects, such as cloud erosion by gas ram
pressure, might prevent a final collapse.

3.2.1 Classical collapse time
To find out, what this collapse timescale τc is, one can assume the collapse to happen at free-fall velocity, i.e.
τc = τff. A particle at distance r from the center of mass, with cloud mass m= 4π

3 R
3
0ρint, has an acceleration

and velocity of

r̈ (t) =− Gm

r (t)2 and ṙ (t) = v (r(t)) .

Using these two equations yields

r̈ = d
dt

(
dr
dt

)
= d

dt
(v (r(t))) = dr

dt
dv
dr

= v
d
dr
v = 1

2
d(v2)

dr
,

that can be plugged into the equation of motion from above as

1
2d
(
v2)=−Gm

r2 dr .
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This equation can be integrated and the solution is, by using out that r(t= 0) =R0 and v(t= 0) = 0:

v =

√
2Gm

(
1
r
− 1
R0

)
.

Using v = ṙ, this can be rewritten under the substitute of κ= r/R0 and dκ= dr/R0, giving

dt=−
(

2Gm
R3

0

)−1/2 dκ

(κ−1−1)1/2 =−
(

8πGρint

3

)−1/2(
κ

1−κ

)1/2
dκ .

The integration of this equation will directly give the free-fall time τff. The boundaries of this integration
are the beginning of collapse, where κ= 1, and the end of the collapse, where κ= 0:

τff =−
(

8πGρint

3

)−1/2ˆ 0

κ=1
dκ
(

κ

1−κ

)1/2
.

The integral in κ can be calculated by making another substitution of κ = sin2 (φ). Thus the integral
becomes, with dκ= dφ2sinφcosφ:

ˆ 0

1
dκ
(

κ

1−κ

)1/2
=
ˆ 0

π/2
dφ2sin2φ= 2

[
1
2 (φ− sinφcosφ)

]0

φ=π/2
=−π2 .

Leading to a free-fall timescale of

τff =
(

3π
32Gρint

)1/2
(3.17)

that only depends on the cloud density, but not on the actual size of the dust cloud. Inserting the Hill
density from Eq. (3.15), this leads to a collapse time of τff (ρ= ρHill)≈ 0.1Torb.

3.2.2 Contraction time for frictional particles

Once taking into account that the cloud particles undergo friction with the gas while collapsing, the collapse
will take longer than the free-fall time τff. This new cloud collapse timescale is the contraction time τc =
τc (St,ρint). It is now not only a function of cloud density, but also of particle size, i.e. more specific, the
Stokes number from Eq. (2.31).
In the following, it is assumed that the collapse happens at terminal velocity and the gas is assumed to

be incompressible, i.e. the gas density is constant throughout the collapse.
The assumption of collapse to be at terminal velocity means that stopping time τs by particle-gas friction

is shorter than the free-fall time (Cuzzi et al., 2008). Being at terminal velocity means that the velocity of
a cloud particle can be expressed via

vt (r(t)) =−τs
mG

r2 (t) . (3.18)

With m the total mass of the cloud. During the collapse, the stopping time does not depend on r, since ρg
is assumed to stay roughly constant, see Sec. 7.4.2. The new frictional contraction time τc can be calculated
from this equation via integration of Eq. (3.18):

r(t) = 3
√
r3
0−3Gτsmt

r(τc)=0⇒ τc = r3
0

3Gτsm
(3.19)

Where the collapse starts at t= 0. Hence, a spherical clump of size r0 and mass density ρint is expected to
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collapse within a collapse time

τc = 1
4Gπτsρint

. (3.20)

Now, this can be expressed in terms of free-fall time. Combining both terms for long (Eq. (3.17)) and short
stopping times (Eq. (3.20)) gives an approximation of the collapse time for marginally coupled particles as

τc = τff

(
1 + 8τff

3π2τs

)
. (3.21)

This approximation gives good results in the limit of tightly coupled and loosely coupled particles, but might
be a factor ∼ 2 off when it comes to marginally coupled particles, compare with Fig. 3.5.
For the case of a cloud at Hill density, i.e. plugging Eq. (3.15) into Eq. (3.21), one finds a radius independent

limit for particles with Stokes number smaller that a critical value of

Stcrit = 8
3π2 τffΩ = 0.172. (3.22)

For this approximation in density and Stokes number, the cloud contraction time becomes

τc = 1
9St

Ω−1 . (3.23)

Numerical verification of the contraction time

A comparison of the analytical approximation for the collapse time with a numerical value from a Leap Frog
approach on the differential equation for frictional collapse, i.e.

∂tv =−Gm
r2 −

v

τs
, (3.24)

gives as result Fig. 3.5. Here the collapse times are plotted as expressed in free-fall time for Stokes numbers
ranging from St = 0.001 to 10. Comparing this result with the approximation from Eq. (3.23) gives good
agreement up to particles with St = 0.1.

3.2.3 Equality of spherical, cylindrical and plane parallel collapse time
Within this thesis, results from simulations on particle cloud collapse will be presented. Most of them are 2-d,
due to the strong increase in computation time when going to 3-d. So, one might guess that the contraction
time from Eq. (3.21) is acutally different, when dealing with 2-d simulations. In a 2-d simulation, a sphere
becomes a vertical cylinder, since the vertical dimension is a single grid cell which vertical extend is a full
domain size. In order to verify that the collapse calculations from above are also valid for a cylindrical
collapse, the collapse time of an infinitely extended cylinder to a line has to be calculated, and compared
with the collapse time of a sphere to a point.
It might be surprising that comparing the collapse of a cylinder with a sphere leads to exact the same

collapse time, though the collapse motion is different. Starting with the same ansatz as in Sec. 3.2, a different
expression for the gravitational acceleration g of a cylinder of length L, radius R0 and density ρint, is needed.
The calculation will be done for a cylinder of length L, but later the transition for L−→∞ will be done.
The gravitational acceleration g of a homogeneous cylinder one can get in two different ways. One, solving

the Poisson equation ∆Φ = 4πGρ and using g/m=−∇Φ. Or by using the Gauss law for
˛
S

dA~g ·~n=−4πGm

and integrating over a cylindrical surface around the cylinder. Both ways are equivalent, since the Poisson
equation can be derived from the Gauss law.
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Figure 3.5: Contraction time τc for a dust cloud at Hill density in units of free-fall time τff, as a function of
the particle Stokes number. The dotted line is the full expression from Eq. (3.21) for the contraction time that
is combining the solutions for large and small particles. The analytic approximation for the solution for small
Stokes number particles from Eq. (3.23) is plotted as a dashed line. The solid line results from numerical Leap
Frog integration of Eq. (3.24). As can be seen, the analytic solution holds quiet well, and the approximation
for small particles should only be used for St≤ 0.1.

Derivation via potential

The first way to calculate the equation of motions from the Poisson equation needs further knowledge of the
problem, hence one can assume ∆Φ(ρ > R0)≡ 0 and ∆Φ(ρ≤R0)≡ 4πGρint. Since the cylinder is symmetric
and infinitely extended, the potential will not depend on ϕ and z, so Φ(r,ϕ,z) = Φ(r). Further simplification
are for the Laplace operator in cylindrical coordinates

∆f = 1
r

∂

∂r

(
r
∂f

∂r

)
+ 1
r2
�
�
�7

0
∂2f

∂ϕ2 +
�
�
�7

0
∂2f

∂z2 .

Solving the Poisson equation for r ≤R0 leads to

1
r

∂

∂r

(
r
∂Φ
∂r

)
= 4πGρint ⇒ r

∂Φ
∂r

= 2πGρintr
2 + const.

Solving for the potential leads to

Φ(r ≤R0) = πGρintr
2 +���

���:
0

ln(r) · const.︸ ︷︷ ︸
asym.

.

Where the last term can be dropped, since the potential needs to be symmetric for positive and negative r.
The potential is then

Φ(r ≤R0) = πGρintr
2 (3.25)
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for the inner of the cylinder.
For the outer part known is ∆Φ(r > R0) = 0, consequently

[r (∂rΦ)]r≥R0
= const. ∀r ≥R0, so choose r =R0 .

Solving this equation directly leads to

const. =R0 (∂rΦ) = 2πGρintR
2
0

!= r
∂Φ
∂r

∀r ≥R0

This now can be solved by integrating radially from R0 to r via

Φ(r) = Φ(R0) +
ˆ r

R0

dr′ 2πGρintR
2
0

1
r′

= Φ(R0) + 2πGρintR
2
0 (ln(r)− ln(R)) .

where one can use the solution for the inner cylinder and get

Φ(r) = πGρintR
2
0 [1 + 2(lnr− lnR0)] . (3.26)

The resulting force is:

F
m =−∇Φ =

{
−2πGρintr r ≤R0, inner
−2πGρintR

2
0/r r > R0, outer

(3.27)

Derivation via Gauss law

This result can be derived in a shorter number of steps by using the Gauss law:
˛
S

dA~g ·~n=−4πGm (3.28)

Here, S is the surface on which the gravitational force is to be calculated and ~n the normal vector on S. Since
the cylinder is assumed to be infinitely extended, there is no interest in the end-caps of the cylinder. Though
if the end-caps would matter, one would find ~g ·~n= 0 as long as ~g ∼ r̂, and so they do not contribute to the
overall integral. Along the curved surface of S the vector ~g is anti-parallel to ~n, i.e. ~g ·~n=−g. Bringing this
constant outside of the integral leads to

−g
˛
S

dA=−4πGm .

Performing this integral over the cylinder surface becomes

−2πrLg = 4πGm ,

here with m being the mass enclosed by the surfance S. With an infinitely extended cylinder, one cannot
use a total mass but has to use a line density λ=m/L for a line segment of length L. With this segments
mass λL, this is giving

−2πrLg = 4πGλL .

Reformulating for the g, one finds the gravitational pull to be

g =−2Gλ
r . (3.29)
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Figure 3.6: Comparison of the free-fall trajectory of a spherical distribution of particles and a cylindrical
distribution. The initial radius of both is set to r0 = 1. The cylinder has an infinite extend in z. The cylinder
collapses faster in the beginning, but the spherical collapse catches up towards the end, so both situations
have the same collapse time τcoll.

One can directly identify the linear mass density to be λ= πρintR
2
0 and gets the same result as in Eq. (3.27).

2-d planar collapse of a circle

At this point, it is interesting to note that the collapse in 2-d gives a almost identical result. The Gauss
integral from Eq. (3.28) can be applied onto a 2-d circle and gives(

4πr2r̂
)
· (gr̂) =−4πGm .

Solving for the gravitational force g gives a result similar to Eq. (3.29), of

g =−2Gm
r (3.30)

Collapse time of a cylinder

Going back to the ansatz for a collapsing spherical cloud, one can again assume the collapse of a cylinder to
happen at terminal velocity and thus

vt(r) =−τsg =−τs
2λ0G

r (t) . (3.31)

Integrating this equation in time leads to an equation of motion for the collapsing cylinder and a contraction
time:

r(t) =
√
R2

0−4πGτsλ0t
r(τc)=0⇒ τc = R2

0
4Gτsλ0

(3.32)

Hence, a cylinder of size R0 and mass density ρint is expected to collapse within a collapse time that is
identical to the collapse time of a sphere:

τc = 1
4πτsρ0G

≡ τc,sphere . (3.33)

This is shown in Fig. 3.6 for a sphere and a cylinder with identical intial radius R0. The cylinder is
collapsing faster in the beginning of the collapse. At around half the collapse time, the collapse of a sphere
speeds up and both geometries have an identical overall collapse time.
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Plane parallel collapse

For a slab with infinite extend in x and y direction and height R0, the gravitational pull is independent of
hight above the slab. It reads

gz = 4πLzρHillG .

Thus, the collapse of a slab happens linear over time, see Fig. 3.6. Calculating the collapse time of such a
slab, again at terminal velocity, yields

τc,slab = 1
4πτsρ0G

= τc,sphere . (3.34)

Hence, also the collapse time of a slab is identical to the one of a sphere.

3.3 The length scale criterion on dust cloud collapse

In order to formulate a comprehensive collapse criterion that is incorporating the above outlined criteria on
Keplerian shear stability and short collapse time, one further needs to quantify the collapse opposing effects,
which are of diffusing nature. It will be found that only a clump of a specific diameter of lc = 2rc or larger
can contract against any sort of underlying turbulent particle diffusion D.

3.3.1 The critical length scale

The idea that leads to a critical length scale criterion is by comparing the time a spherical particle cloud
needs to collapse with the time a turbulent diffusion process needs to disperse the cloud, i.e. the time it takes
a diffusion of strength D to surpass a distance rc. This is also why the equality of the cylindrical and the
spherical collapse time is important, as derived in the previous section. The simulations that are presented
in the following Chapter 7 are 2-d simulations that mimic cylindrical and not spherical collapse.
Considering small particles with St� 1 which fall at their terminal velocity. The free-fall timescale is

known from equation Eq. (3.33). The diffusion timescale stems from Fick’s second law of diffusion,

ρ̇=D∇2ρ .

Here, this equation is used as a description of density diffusion, where normally it is concentration diffusion,
i.e. the ratio of two mass densities. But, since the gas density is in first order constant throughout the
collapse phase, as will be shown in the simulation results in Sec. 7.4.2, this equation holds. From this
equation, a solution for the spreading of a perturbation can be found in the form of〈

r2 (t)
〉
x

=Dt . (3.35)

In this equation, D is defined as in Eq. (2.42). The typical expression of Eq. (3.35), e.g. from Einstein
(1905), has an additional factor of 2, that is incorporated into the diffusion coefficient D.
This equation can be reformulated in the form of a diffusion timescale τD. This timescale is a measure

for the time a particle needs to surpass a distance rc by a diffusion process of strength D. The diffusion
timescale reads

τD = r2
c
D . (3.36)

In order to use this timescale in the analysis of PPDs, it can be rewritten into a dimensionless diffusion via

δ = D

csH
. (3.37)
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This translates the Ansatz τc
!= τD into:

r3
c

3τsmG
= 1

4πτsρintG

!= r2
c

D
= r2

c

δHcs
(3.38)

Where m = 4/3πr3
c ρint is the bulk mass of the spherical cloud with critical radius rc. By expressing the

internal cloud density in terms of multiplies f of Hill density ρHill, one gains further flexibility by scaling the
critical cloud density,

ρint = f ·ρHill = 9f
4π

M
R3 . (3.39)

Though shear stability is a primary condition for planetesimal formation via gravitational collapse, it is not
necessarily reached right at Hill density, since Hill density neglects the influence of gas and friction on the
collapse. By introducing f , one is in no need to exactly specify this ’real’ critical density ρc, in order to
derive a critical length scale, but the critical length scale is scalable for different critical densities.
With this density, Eq. (3.38) can be solved for the cloud size right at the border of stability in both, critical

density and turbulent diffusion (Shariff, Karim and Cuzzi, Jeffrey N., 2015). The critical cloud diameter is

lc = 2
3

√
δ
f ·St H . (3.40)

This expression is called the diffusion limited collapse criterion and was first derived by H. Klahr in 2015
and first published in Klahr & Schreiber (2015). Note that this criterion is valid for all f as long as for
the individual situation the condition for shear and tidal stability is given. For example, a particle cloud
at Roche density would have a parameter f ≈ 5.3 and a cloud at quarter of Hill density f = 0.25. Such a
cloud at Roche density is clearly shear stable, but would probably have already collapsed at an earlier, lower
density. A cloud at a quarter of Hill density is not shear stable in the first place, thus the criterion cannot
be used.
The diffusion limited collapse criterion is further investigated in Chapter 7. Therein, numerical experiments

are performed that show actually f ≈ 1 is indeed a sufficient value and gas influence can be neglected to first
order.

3.3.2 Stability analysis via solving the dispersion relation
A different approach to a critical length scale criterion can be performed, by doing a linear stability analysis
of the problem in a local shearing sheet model (Goldreich & Lynden-Bell, 1965) and deriving a stability
criterion from the dispersion relation. This is following a mixed case of Goldreich & Ward (1973) and
Safronov (1972), similar yet not identical to the SGI, see Ward (2000).
Being only interested in radial and azimuthal length scales that are on the order or smaller than the

particle scale height

Hd =
√
α/Ωτs ,

which expression is only valid for small particles, one has to consider the dust clouds in terms of 3-d dust
volume densities ρd. A treatment of the dust as surface density Σd is not sufficient. Consequently, a razor thin
approximation cannot be made. The gravitational potential can be modelled as acting on plane waves in the
Wentzel-Kramers-Brillouin (WKB) approximation ∼ ei(krr+ωt), i.e. gravitational potential Φ′ = 4πGρ′/k2

has to be taken, rather than Φ′ = 2πGΣ′/|k| (Safronov, 1972).
In contrast to the SGI of a dust layer, in the case of dust cloud stability only the wavelengths λ smaller

than the vertical extent are of interest. In the herein investigated case for the final collapse phase of a
spherical cloud to a planetesimal, which is found in 3-d simulations (Johansen et al., 2007), the amplitudes
of radial and vertical wavenumbers will be on the same order. This leads to a treatment of gravity that is
the same as applied in the numerical simulations with the PencilCode, see Sec. 4.4.
The ansatz is the equations describing the evolution of the dust density, and the two dust velocity com-
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ponents. To the equations here added are terms describing the frictional coupling between dust and gas
(1), see Ward (1976), Ward (2000), Coradini et al. (1981), and Youdin (2005), and turbulent dust density
diffusion (2) (Binney et al., 2009).

1
ρd

∂ρ′d
∂t

+ ∂v′r
∂r

= D

ρd

∂2ρ′d
∂2r︸ ︷︷ ︸

(2)

(3.41)

∂v′r
∂t
−2Ωv′φ =−∂Φ′

∂r
− v′r

τs︸︷︷︸
(1)

(3.42)

∂v′φ
∂t
− κ2

2Ωv
′
r = 0 (3.43)

A pressure term for the dust, i.e. − c
2

ρd

∂ρd
∂r , can be ignored, because effects of a velocity dispersion for the

dust are treated in the diffusivity D (Shariff & Cuzzi, 2011). Further ignored is the effect of azimuthal
friction −v′φ/τs, by assuming to be already in the dust dominated regime, i.e. dust-to-gas ratio being larger
than unity and hence the gas follows the particle dynamics. Still, friction in the radial velocity expression is
maintained, because here the gas cannot follow the collapse of the particles because the gas is incompressible.

A limiting case is gained for very long coupling times and zero diffusivity. In this limit one receives the
dispersion relation as

ω2 = Ω2−4πGρd . (3.44)

This dispersion relation defines the minimum density needed to have a dust ring radially contracting from
self-gravity against the acting Coriolis force:

ρc >
1

4π
M?

R3 (3.45)

This density is by a factor of 9 smaller than the Hill density as defined in Eq. (3.15), because Keplerian
shear has no influence on axis-symmetric ring collapse.

The full non-axissymmetric dispersion relation, but without diffusion and friction, is

ω2 = Ω2−4πGρd + i6πGkxky
k2

Ω
ω

. (3.46)

Where kx is now a function of time, because a plane wave Ansatz is subject to shear. This gets clear when
imagining a line of tracer particles that is laid out in radial direction. This line will tilt due to the Keplerian
shear, and so do pure radial modes get transformed into azimuthal modes over time. As being interested
in collapse, this means one has to limit this down to cases where |kx|< ky. Thus, the complex term on the
right-hand-side can be neglected.

In order to have |kx|< |ky| fulfilled for a sufficient long time, the growth of the instability has to be faster
than the Keplerian shear is ripping it apart. Thus, the growth rate −iω has to be larger than the shear rate
that can be determined from kx(t) = 3

2kyΩt, which comes from the linearised shear, see Eq. (2.20). Choosing
the growth rate to be double the shear rate gives ω2 =−9Ω2. The resulting critical density in that case is

ρc >
10
4π

M

R3 , (3.47)

which is still in good agreement with the Hill density.
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Considering diffusion and friction in the dispersion relation for the axis-symmetric, or WBK case, with

k =
√
k2
x+k2

y ≈ kx

because of kx� ky, one receives:

ω3 +ω2
(
−iDk2− i

τs

)
+ω

(
−Dk

2

τs
+ 4Gπρd−Ω2

)
+ iDk2Ω2 = 0. (3.48)

The roots of this equations are given by

ω2− Dk
2

τs
+ 4Gπρd−Ω2 = 0 and ω2

(
Dk2 + 1

τs

)
−Dk2Ω2 = 0. (3.49)

The second equation finds

ω2 = τsDk
2

τsDk2 + 1Ω2, (3.50)

which is always leading to positive, i.e. stable solutions for ω2. The first equation has its roots at

−Dk
2

τs
+ 4Gπρd−Ω2 = 0. (3.51)

Thus, the critical wavenumber is dependent on the underlying density:

k =
√
τs

D
(4Gπρd−Ω2) (3.52)

For ρc from Eq. (3.15) this is

k =
√

8f τs

D
Ω, (3.53)

or translated into a critical wave length:

lc = π√
2

√
δ
fStH (3.54)

This is almost identical to the timescale derivation in the previous section (Eq. (3.40)) and differs only
in a factor of 3.3, which may be attributed to the approximation in the linear regime and the restriction to
axis-symmetric modes, i.e. ring collapse. Thus, it only tells us from what minimum wavelength a kind of
SGI would start to operate, while neglecting Keplerian shear. The fully turbulent state on the other hand is
apparently better described by the timescale criterion based on a non-linear amplitude. As numerical tests
will later show, the criterion derived in Eq. (3.40) is in fact the relevant one.

3.3.3 Initial planetesimal size derived from collapse criterion
From this length scale criterion on a spherical particle cloud, one can try to estimate the resulting planetesi-
mal diameter ac. For this purpose, one can assume the particles within a collapsing cloud of mass m=mHill
to get transformed into a spherical planetesimal of mass mp = q ·m. Here, q is the quality of the collapse
and describes what fraction of the initial particle cloud gets incorporated into the final planetesimal.
Using this a priori assumption, one can determine the mass of the resulting planetesimal mp. The cloud

is assumed to contract to a solid, spherical body with size ac and solid density ρ•.

mp = 4
3πa

3
cρ• = q · 43πr

3
c fρHill ,

61



see Eq. (3.39), where rc = lc/2 is the critical cloud radius. The resulting body would then have a diameter
of

ac = q · lc
(
fρHill

ρ•

) 1
3

= q · lc
R
f

1
3R�

(
3ρ�
ρ•

) 1
3

.

Hence, the resulting planetesimal size will only depend on the initial particle cloud density via ac ∼ ρ−6
int .

Combining this equation with the critical length scale criterion from Eq. (3.40) and expressing ac in terms
of solar radii, one arrives at the relation

ac = f−
1
6 3
√

8ρ�
9ρ•

√
δ
St

H
RR� , (3.55)

where the first two terms are of order unity and can be neglected for order of magnitude estimates.
One can do a naive estimate on this, by using best guess solar nebula parameters. For a typical value of

the solar nebula thickness H/R = 0.04 (Bell et al., 1997; D’Alessio et al., 1998) the radial flux dominating
particle size, measured in Stokes number, is St = 0.1, as was found in numerical simulations of the dust
evolution in the solar nebula (Birnstiel et al., 2012). Together with a moderate numerically determined
diffusivity value of δz(St = 0.1) = 2.7× 10−6, taken from 3-d SI simulations of Johansen & Youdin (2007),
performed at a dust-to-gas ratio of ε= 10, this results in planetesimals of diameter of

ac =
( q

1.
) 1

3
(

1.
f

) 1
6 H/R

0.04

√
δ

2.7·10−6

√
0.1
St 98km . (3.56)

The found planetesimal diameter is comfortably in agreement with the observed characteristic object sizes,
i.e. diameter at which the number density peaks, i.e. the cumulative size distribution has a knee in asteroid
belt (Bottke et al., 2005), Kuiper belt (Nesvorný et al., 2011; Parker & New Horizons Science Team, 2015),
Jupiter Trojans (Jewitt et al., 2000; Emery et al., 2015) and Neptune Trojans (Sheppard & Trujillo, 2010), see
Fig. 1.3. Following Delbo et al. (2017), it is also the value at which the center of the likely initially Gaussian
size distribution of the initial planetesimals in the asteroid belt lies (Morbidelli et al., 2009). Note that
the absolute distance R from the Sun does not directly enter this equation, making planetesimal formation
self-similar to first order at all distances from the Sun. Instead, the planetesimals formed depend on the disk
aspect ratio h=H/R.

This result relies on the assumption of a complete conversion of a dust cloud into a single planetesimal, i.e.
q = 1. One could also imagine a similar planetesimal formation scenario as for the birth of a multiple stellar
system from a single but large turbulent molecular cloud core. In which case more than one planetesimal
would form in a binary or even hierarchical system. The in Chapter 7 presented results of collapse simulations
of such clouds show actually only a certain percentage of the available material gets converted into a bound
clump, suggesting q ≈ 0.1 - 0.2. Though this efficiency factor q needs to be further studied, with ac ∼ q

1
3 the

resulting planetesimal diameter itself will only change slightly. Also, the other parameters St and δ influence
the size of the planetesimals only weakly. Further consequences of this finding can be found in the discussion
in Chapter 8.
The used value for the turbulent particle diffusion in Eq. (3.56) comes from measurements of 3-d SI

simulations. If a stronger source for particle turbulence is found, this value has to be adjusted accordingly.

3.3.4 Kolmogorov cascade of large scale turbulence as particle diffusion source
Now, one might assume that it is not the turbulent diffusion from the SI that drives the particle diffusion
in Eq. (3.40). Instead, it could be the large scale gas turbulence, i.e. α-turbulence in the gas that couples
onto the particles. One can try to estimate the actual strength of this gas turbulence on the scales of
planetesimal formation, and then compare this value with the value obtained from SI simulations. The
following derivation should be taken as a worst-case approximation and not as a guaranteed value, since the
Rossby criterion from Cuzzi et al. (2001) from Sec. 2.1.4 might play an additional role. Also the turbulent
cascade in the dust-gas mixture might be different. Thus, here assumed is that the turbulent cascade of
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pure gas turbulence happens in an environment with a density ρg. This turbulence cascades down onto the
scales of planetesimal formation and then, on this scale, the turbulent energy gets transferred onto a new
fluid that has the combined density of dust and gas, i.e. ρg (1 +ε), with ε the dust-to-gas ratio.
A typical value for gas turbulence in a PPD is α≈ 10−3, see for example Turner et al. (2014). This values

stems from measurements of the turbulent strength of different gas instabilities in pure gas simulations.
Hence, these simulations all have in common that they are performed without taking dust into account and
cannot give reliable results on turbulent particle diffusion strength. Especially as the herein discussed dust
particles are marginally coupled and do a back-reaction onto the gas. This considerations are neglected in
(most) α measurements in the literature. The simulations presented in the following chapters to measure the
gas turbulence to have a strength of α< 10−4 found cases with active SI, compare with Fig. 5.11. But, if one
wants to compare this value with the typical value of α= 10−3 this takes neither the turbulent Kolmogorov
cascade nor the additional dust load of the performed aSI and SI simulations into account.
The Kolmogorov cascade describes the way a turbulent eddy transports energy down onto smaller sized

eddies via vortex stretching. This cascade reaches down to smaller sizes until the scale of molecular viscosity
is reached and the flow gets laminar. Hence, a turbulence with a certain α-value does not mean this value
is identical an all scales. In PPDs, the turbulence of gas is typically parametrized as a turbulent viscosity
(α= νcsH). The α parameter can be separated into a gas turbulent velocity u and a characteristic eddy size
L0, as argued by Cuzzi et al. (2001), via

u0 =√α0cs and L0 =√α0H , (3.57)

see Sec. 2.1.4. As the α prescription does not state the nature of the turbulence, the turbulence herein will
be assumed to be isotropic an on a scale of L0. This is not necessarily the correct physical situation that is
found in all simulations of, i.e. the MRI or the vertical shear instability. In them also large (spiral) waves, or
shear waves, do transport angular momentum. But, the following analysis stays with the idea of an isotropic
turbulence in order to derive a value comparison for the turbulent viscosity on the scales of planetesimal
formation. Still, the derived values for the turbulence at the small scales of planetesimal formation should
be seen as a worst case scenario. In any other scenario the velocity u′ on the small scales will be lower.
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Now, taking the turbulent velocity from Eq. (3.57), and letting it undergo the Kolmogorov cascade for an
isotropic turbulence, see Kolmogorov (1991), one finds

u2 · u
l

= u3
0
L0

= C = const. , (3.58)

where u2 is the kinetic energy, u/l the energy dissipation timescale, and the C is the dissipation rate. This
rate is constant over all length scales for a Kolmogorov turbulence cascade, until the molecular dissipation
scale is reached.
However, this neglects the influence of dust within the dust-gas mixture, as it is the medium in the

presented aSI and SI simulations. Hence, the turbulent momentum in the gas has to additionally undergo an
energy transfer from pure gas into a mixture of dust and gas, which has to be done in the energy dissipation
picture of Kolmogorov. Assumed here is for simplicity that the dust and the gas have the same velocity.
This means, the additional load of the dust onto the gas is introduced similar to an enhancement in the gas
density, i.e. as if one sets St = 0. This means, the cascade gets feeded with the prescription from Eq. (3.58)
and cascades down onto the primed length scales l′ of planetesimal formation. Then, on the primed scale,
the kinetic energy gets transferred onto a new eddy with (1 + ε) higher mass. In this energy picture, since
the density changed from ρg to ρg +ρd = ρg(1 + ε), the Kolmogorov cascade of a turbulence α0 produces a
turbulent velocity u′ on the scale of l′, as

C = u3
0
L0

=
√
α0

3c3s√
α0H

= α0c
2
s Ω != u′

3
0
l′

!= u′
2 (1 +ε) · u

′

l′
. (3.59)

The α-value measured in the presented simulations needs to be compared with a turbulent viscosity ν on
the corresponding scales l′ of the simulation domain. In order to get this viscosity, one can use the mixing
length cascade from Eq. (3.59):

ν′ = l′u′ =
[
l′

1+εC
]1/3

l′ =
(
α0

1+ε

)1/3
l′

4/3 . (3.60)

This equation now can be used to calculate a turbulent viscosity value that originates from a pure gas
turbulence of strength α0, but cascaded down onto the scales of the aSI and the SI, by taking the dust load
into account. The scale l′ that one has to use for this comparison is in the best case dx, and in the worst
case Lx. The results of this comparison with the measured α in the simulations, is done in Sec. 5.2.
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4 Numerical Methods

The simulations presented in the course of this thesis use the open source PencilCode5, see Brandenburg
(2001), Brandenburg & Dobler (2002), Brandenburg (2005), and Youdin & Johansen (2007) for details on
the implementation of the specific methods. In general, the PencilCode is a numerical solver. In this
work, it is used in form of a finite-difference solver for hydrodynamic problems. It comes with a scheme that
uses sixth-order symmetric spatial derivatives and a third-order Runge-Kutta time integrator. The code is
written in Fortran-95. It has different modules for different physical problems and for different numerical
schemes, such as the implementation of Lagrangian particles and the shearing sheet approximation. It is
parallelized via the message passing interface (MPI), and runs smoothly on up to a few ten-thousand cores in
hydro-only simulations, and a few thousand cores in simulations that also incorporate Lagrangian particles.
Within this thesis, all the presented simulations are performed in the shearing-sheet approximation. This

is a Cartesian coordinate system that is co-rotating with the Keplerian orbital frequency Ω at an arbitrary
distance R0 from the star, see Sec. 2.1.5. Arbitrary means that the simulation results are valid independent
of the distance from the star, and thus the simulation time and length scales are set in PPD units of H and Ω.
In the following, all the code parameters and quantities, e.g. distance, Stokes number, or particle diffusion,
are set to be in dimension free disk units as well. The coordinate system (x,y,z) of the shearing box can
be identified as (r,ϕ,z) for small r and ϕ, see Fig. 2.1 and Fig. 4.1. In the following these notations will be
used interchangeably. The boundary conditions of the shearing sheet are periodic in y- and z-direction, and
shear-periodic in x-direction. The latter means that the velocities and positions have to be readjusted for a
quantity or particle that is transported over the radial boundary condition, see below.

Figure 4.1: The shearing sheet approximation allows to simulate a patch (blue box) out of a protoplanetary
disk (black grid). The center of the shearing box has a distance R0 from the star and moves with Kepler
velocity vK = ΩR0 around it. This movement is translated by the coordinate transformation and shear
linearisation into a linear shearing motion, see Sec. 2.1.5. In this shearing box coordinate system, the center of
the domain is at rest. Everything closer to the star (x < 0) moves forward in azimuthal direction, everything
towards the outside of the domain (x > 0) moves backwards. Illustration by Thomas Müller.

5http://pencil-code.nordita.org/
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The particle prescription used in the presented simulations describes the particles as Lagrangian super-
particles. Super-particles represent a swarm of identical particles that interact with the gas as a group.
Their properties, e.g. density, is smoothed out over the neighbouring grid cells via the Triangluar Shaped
Cloud (TSC) scheme, see Youdin & Johansen (2007) for details on the implementation in the PencilCode.

4.1 Solving the streaming instability problem in a shearing sheet
approximation

The presented simulations solve the momentum equation for the motion of the gas and dust particles on
a Cartesian grid in a shearing box approximation, see Goldreich & Lynden-Bell (1965), Balbus & Hawley
(1992) and Brandenburg et al. (1995). The gas velocity ~u, relative to the Keplerian shear, is evolved via its
Euler equation:

∂~u

∂t
+ (~u ·∇)~u+u0,y

∂~u

∂y
=
(

2Ωuyx̂−
1
2Ωuxŷ+ Ω2zẑ

)
− c2s∇ lnρg−2Ωηx̂− ε

τs
[~u−~v] + ~fν(~u,ρg) . (4.1)

Its derivation is performed in Sec. 2.1.5. The terms in this equation are as follows. The second and the third
terms of the left-hand side are the advection terms, where the third term resembles the advection by the shear
flow. On the right-hand side are the terms for the Coriolis force, stellar gravity, the local pressure gradient,
with ∇P = c2s∇ρ, the global radial pressure gradient from Eq. (2.13), the particle-gas drag interface and
the numerical hyper-viscosity term ~fν (VonNeumann & Richtmyer, 1950). The dust-to-gas ratio is defined
as volume density ratio of dust and gas, i.e. ε = ρd/ρg. All in the following presented simulations do not
include vertical gravity from a central star, hence Ω2z = 0. The unperturbed Keplerian orbital velocity in
the local Keplerian frame is u0,y =−3

2Ωx, from Eq. (2.20).
The gas density is evolved via the continuity equation:

∂ρg

∂t
+∇·

(
ρg~u
)

+u0,y
∂ρg

∂y
= fD(ρg) .

Here, the function fD(ρg) is the numerical hyper-diffusivity (VonNeumann & Richtmyer, 1950). Together
with the numerical hyper-viscosity, they both ensure the stability of the PencilCodeby reducing steep
gradients in densities and velocities. The hyper-viscosity is also responsible for the shock viscosity, see
PencilCode manual for further reading.
The particles positions are evolved via

∂~x

∂t
=−3

2Ωxpŷ+~v+ ~fD(ρd) ,

with particle radial position xp and particle velocity ~v. The particle velocities are evolved, similar to the gas
velocity, via

∂~v

∂t
+ (~v ·∇)~v+u0,y

∂~v

∂y
=
(

2Ωvyx̂−
1
2Ωvxŷ−Ω2zẑ

)
− 1
τs

[~v−~u(~x)] , (4.2)

were again the stellar gravity term is neglected in the calculations, Ω2z = 0, which was here added for
completeness. In the equation for the dust particles, the global gas pressure gradient is not acting. The
reason is the physical density of a particle that is much higher then the gas density and thus the exerted
momentum from the gas pressure onto a particle is small.

4.2 Code units, boundary conditions and the shearing sheet
implementation

Fig Fig. 4.2 illustrates how the shear periodic boundary for a shearing sheet domain L works. At the initial
timestep t= t0 (top), the radial periodicity is similar to a classical periodic boundary condition. But, with
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Figure 4.2: Example for the shear periodic boundary condition for a shearing box of L in size. At the initial
time step t0 (top), the radial periodicity is similar to a normal periodic boundary condition. But, with
evolving time, the linear shear moves this periodic boundary in azimuthal direction. A particle leaving the
radial inner boundary re-enters the simulation domain shifted by the shear-offset, see yellow arrow, and its
azimuthal velocity is shear corrected. Illustration by Thomas Müller.

evolving time, the linear shear moves this periodic boundary in azimuthal direction. The azimuthal velocity
of the radially next inner domain is

vR−∆r =−3
2Ω(−L) = 3

2ΩL .

In order to correct for this shearing bondary condition, a particle that leaves the radial inner boundary at
an azimuthal position of yp,−L, re-enters the simulation domain on the outer boundary at a position yp,+L.
This new azimuthal position has to be shifted by the shear-offset of the radially inner box, i.e.

yp,+L = yp,−L+ mod
(

3
2ΩL · t,L

)
.

The particle azimuthal velocity also has to change by the velocity offset from the inner to the outer boundary,
which is also

v−L = v+L−
3
2ΩL︸ ︷︷ ︸
vshear

.

Of cource, the same, but with different sign, happens to a particle that crosses the outer radial boundary.

69



4.3 Implementation of the global pressure gradient

A main driver in the investigated dynamics inside of a PPD is the sub-Keplerian velocity of the gas. It is
induced by the global gas pressure gradient. Assuming an isothermal disk, the pressure gradient arises from
the density gradient via

P = ∂ lnρg

∂ lnr = r
∂ lnρg

∂r
= r

(
∇ lnρg

)
⇒ ∇ lnρg = P

r
.

As Sec. 2.1.3 showed, this can be reformulate into a sub-Keplerianess parameter η via

ηvK =−1
2

(
∂ lnρg

∂ lnr

)
h2vK ,

where h=H/R is the disk aspect ratio.

For using this pressure gradient in the PencilCode, the pressure gradient has to be normalized to disk
units by

ηvK =−1
2

(
∂ lnρg

∂ lnr

)
h︸ ︷︷ ︸

:=βln(ρ)

·cs ⇒ η =−1
2βln(ρ)h .

Now, the sub-Keplerianess of the gas can be expressed in βln(ρ), together with the disk aspect ratio h, see
Eq. (2.12). The sub-Keplerianess is found by looking at the expression of ηvK and plugging vK = cs/h into
if. Where the latter expression comes from

cs

vK
= H

R
,

which isefl is a combination of Eq. (2.8) and Eq. (2.10).

It follows

ηvK = η
cs

h
=−1

2βln(ρ)
cs

�h
�h=−1

2βln(ρ)cs

The herein chosen value for the gas pressure gradient is βln(ρ) = −0.1 to be comparable with Johansen &
Youdin (2007). This value translates into η = 0.05 ·H/R, see Sec. 2.16, i.e. η = 0.005 for cs/vK = H/R= 0.1.

To conclude, by re-formulating the pressure gradient in terms of a dimension-free sub-Keplerianess βln(ρ),
the sub-Keplerian velocity of the gas becomes independent of a specific disk model. This adds a degree of
freedom to the code interpretation. So, by defining the value of βln(ρ), one does not define a specific disk
model in terms of H/R. Hence, the simulation length scales, i.e. herein expressed in disk scale height H,
can later in the interpretation changed. Either by choosing a specific value for H/R or by choosing a value
for η.

They are all interlinked by this equation:

−1
2βln(ρ)H = ηR ⇒ H =−2 η

βln(ρ)
R .

When studying the source code of the PencilCode, beware of there is also beta_glnrho_scales defined
in the code, which is set to beta_glnrho_global*Omega/cs0 for code internal reasons.
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4.4 Deriving a gravitational model for the dust density to be at Hill
density

The gravitational potential in the code is calculated by solving the dimension-free form of the Poisson
equation

(H∇)2 Φ/c2s = Ĝ
ρd

ρg
(4.3)

via the Fourier method, see Johansen et al. (2007). Hence, the ansatz for the gravitational potential is

Φ(~x) =
∑
k

Φk exp
(

i~k ·~x
)

,

with spatial wavenumber ~k and

Φk =−4π Ĝρ̃k∣∣∣~k∣∣∣2 .

Here, ρ̃k is the Fourier amplitude of the density and Ĝ is the self-gravity parameter in code units.

4.4.1 Justification for neglecting the vertical stellar gravity component
Chapter 7 numerically analyses the gravitational instability of a dust cloud, especially the cloud stability
criterion as derived in Sec. 3.3. It might surprise, but the dominating source of gravitational force at work
actually is the self-gravity of the dust cloud. The additional contribution by the vertical stellar gravity
component can be neglected. This approximation can be confirmed by either looking at the gravitational
acceleration on the surface of a sphere with Hill density, or by looking at the gravitational acceleration that
is exerted by an infinitely extended slab at Hill density. The slab in this case represents a disk mid-plane at
Hill density.

Gravitational acceleration on the surface of a Hill sphere

First, the gravitational acceleration gHill,sphere is calculated on the surface of a Hill sphere with radius z and
compared with the stellar gravity component. The stellar gravity is known from Eq. (2.4) as

g? = Ω2z = z · GM?

R3 .

The gravitational acceleration by a spherical Hill mass cloud is

gHill,sphere = GmHill

z2 = 3z3

z2
GM?

R3 = 3z · GM?

R3 .

Where the spherical cloud is assumed to be centred around the disk mid-plane. By comparing these two,
one can conclude that the gravitational pull of a dust sphere at Hill density is three times stronger than the
vertical stellar gravity.

Gravitational acceleration by a disk mid-plane at Hill density

The considered Hill sphere will properly be part of a very dense mid-plane layer of hight z. This mid-plane
layer can be guessed to be infinitely extended in radial and azimuthal direction. This dense mid-plane
can further be assumed to also be right at Hill density. This assumption on the mid-plane density is the
considered case in the following collapse simulations of Chapter 7. One can calculate the gravitational force
by approximating the dense mid-plane as an extended slab of thickness z. The gravitational acceleration
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can be found via the Gauss integral:
˛
~gHill,slab ·d ~A=−4πGm

−2gHill,slabA=−4πGρHillA2z

One finds in this formula the extend of the slab to be incorporated in the surface area A, and this then
cancels out, i.e. the extend of the slab is of no importance. The resulting gravitational acceleration is

⇒ gHill,slab = 2πG 9
4π 2zM?

R3 = 9zGM
R3

This means that a particle right above a mid-plane at Hill density will feel a nine times stronger pull from
the self-gravity of the disk mid-plane, than from the star.

4.4.2 Gravitation constant for Hill density in code units
The way one can set a simulation to be at Hill density, is by altering the gravitational constant in the
code input parameters. Since the coordinate transformation into the shearing frame did already remove
the gravitational potential from the star, changing the gravitational constant in the code only affects the
self-gravity.
By looking at the Poisson equation in code units, one finds the correct way to alter the gravitational

constant in order it to represent a value that sets the total simulation density at its Hill density. This can
be achieved by dividing the Poisson equation by a factor of Ω2 and using the fact that densities in the code
are normalized in a way that the mean gas density is ρ0 = 1.

∇2Φ
Ω2 = 4πGρ

Ω2 = 4π (Gρ0)
Ω2 · ρ

ρ0

This is right the Poisson equation expressed in code units. Reformulating it leads to

∇2Φ̂ = 4πĜρ̂ . (4.4)

The gravitational constant in code units reads

Ĝ=Gρ0/Ω2 , (4.5)

and the density in code units as

ρ̂= ρ/ρ0 . (4.6)

Now, Eq. (3.39) can be used to scale the code internal density by means of Hill density, by introducing
again the scaling parameter f . Eq. (3.39) can be rewritten into an equation for the gravitational constant,
by using M?/R

3 = Ω2/G, such that it reads

G= 9f
4π

Ω2

ρgε
.

Plugging this into Eq. (4.5) leads to a gravitational constant in code units of

Ĝ= 9f
4πε , (4.7)

which now expresses densities in terms of Hill density, by scaling it with f , i.e. f = 1 is right the condition
for the simulation to be at Hill density.
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5 Azimuthal and Vertical Streaming Instability on the Scales
of Planetesimal Formation

This chapter studied the Streaming Instability (SI) in radial-vertical 2.5-d simulations for St = 0.1 and
St = 0.01 particles at initial dust-to-gas ratios from ε0 = 0.1 up to 1000. Here, 2.5-d means radial-vertical
simulations that take variations in the azimuthal velocity component into account. Additionally, investiga-
ted are 2-d simulations in radial-azimuthal extend of the same initial parameters. The simulations in the
radial-azimuthal plane found a very similar instability to the streaming instability. This new instability is
named azimuthal Streaming Instability (aSI), as this new instability is not proven to be identical to the SI, as
known from Youdin & Goodman (2004) and Johansen & Youdin (2007). Before this project has been carried
out, the canonical view on the SI saw this instability to only operate in radial-vertical extend, as Youdin &
Goodman (2004) only solved the dispersion relation for the SI solely in the radial-vertical plane. The only
appearance in the literature of the aSI in 2-d radial-azimuthal simulations is in the work of Raettig et al.
(2015), yet, no afford was made in further studying this instability in radial-azimuthal simulations. The here
in this chapter presented work can thus be seen as the very first dedicated endeavour into the realm of the
aSI. This new instability should actually keep its new name, as it is still unclear if the presented instability
identical to the SI.
Before going into the simulation results, the first section of this chapter defines the diagnostic quantities

that help to characterize the instabilities, e.g. rms-velocities and correlation length. With this set of tools
in hand, Sec. 5.2 then presents the results from four performed parameter studies. Two parameter studies
were performed for the SI (r-z plane) and two for the aSI (r-ϕ plane). For each instability, one parameter
study performed with St = 0.01, and one with 0.1 particles. Each of these four parameter studies then
covered simulations domain sizes of L = 0.1H, 0.01H and 0.001H, with a numerical resolution of N = 128.
As second parameter, the initial dust-to-gas ratios was altered from ε0 = 0.1 up to 1000. Additionally, a
resolution study was performed for the aSI with St = 0.1 particles that additionally investigate the instability
in simulations with numerical resolutions of N = 256 and N = 1260, see Sec. 5.3. The results presented on
the 2-d parameter study are from the first author publication Schreiber & Klahr (2018).
In the case of dust trapping in a zonal flow, the aSI/SI has to operate within it a pressure bump if the

diffusion limited collapse scenario is correct. This has already been shown numerically in the work by
Johansen et al. (2007) and analytically in Auffinger & Laibe (2017), but only for the SI and not for the
aSI. Thus, Sec. 5.4 investigates the aSI in an artificial zonal flow. Lastly, also 3-d simulations of the SI were
performed. Their results are presented separately in Chapter 6.

5.1 Investigated quantities
A main part of this project is the measurement of the particle diffusivities δ of the SI and the aSI. The
measurement method for the particle diffusivity is presented in Sec. 2.2.5. For a better understanding of the
SI and aSI properties, further quantities were studied, and these quantities are introduced in the following.

5.1.1 Particle dispersion σ
The dispersion describes which velocity an ensemble of particles is spreading out with. This is not necessarily
due to a diffusion process.
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Consider a heap of force-free particles, all of them with a different initial velocity. This heap will disperse,
i.e. fly apart ballistically. The reason is each particle has its own velocity direction and nothing keeps them
bound. The heap is clearly dispersing and not diffusing, since the spreading of the particle is not following
the laws that define a diffusion process, see Sec. 2.2.5, i.e. their movement does not compare with a random
walk. In order to quantify such a dispersive behaviour, the Root-Mean-Square (rms) deviation from mean
velocity of the particle heap is measured:

σ ≡ vrms =

√√√√√ 1
Npar

Npar∑
j=1

∣∣∣~vpar,j−
〈
~vNpar

〉
x

∣∣∣2 (5.1)

Here, Npar is the number of particles in the heap and
〈
~vNpar

〉
the mean velocity of the particle ensemble.

Where the angle bracket is the arithmetic mean value.
In a numerical simulation, this quantity can be derived globally, meaning for the whole simulation domain,

and locally, meaning for a single simulation grid cell. In the following, globally will be indicated by a ◦
symbol and locally by a � symbol.

5.1.2 Correlation time τcorr

Comparing the measurment methods for δ, see Sec. 2.2.5, with σ from above, one sees that the method for
estimating δ has the drawback of only being able to give a single value for the whole simulation domain, and
not a local diffusivity at a certain spot. The reason is that a constant diffusion coefficient has to be assumed
in order to use the time derivative of the rms of the travel distances for measuring the diffusion strength, see
Eq. (2.42). Thus, it would be preferable to measure the local particle dispersion σ� and link it to a local
diffusivity δ� via a correlation time:

τcorr := δ/σ2 ⇒ δ� = τcorrσ
2
� (5.2)

This is only true under the assumption that τcorr is constant on all turbulent scales for a whole SI-active
simulation. Which is not necessarily true on all scales, since the correlation time resembles the turbulent
eddy turn-over time.
The correlation time can be derived from assuming the turbulent diffusion to be Fickian process, see

Johansen et al. (2006b). Assuming uk to be the turbulent velocity amplitude on the length scale lk, over
which the turbulent eddy transport Dk is occuring, then Dk ' uklk. One can approximate lk = ukτk, with
τk the eddy turnover time. In this equation, the turbulent velocity can be seen as

√
u2/cs, which is right

the Mach number. Hence, the diffusion coefficient should scale with σ2. Averaging over all scales leads to
Eq. (5.2), where τk ≡ τcorr = const.

5.1.3 Correlation length lcorr

One can ask, if the simulations resolve the dominant scales of the turbulent eddies. Thus, the correlation
length

lcorr = δ

σ
(5.3)

can be computed, which is a measure for the turbulent eddy size. If lcorr is getting smaller than dx they tend
to be not resolved by the simulation grid and eddies larger than the domain size L should not be present as
they do not fit inside the simulation domain. It can also be seen as an ’poor mans fourer analysis’, giving
the most prominent eddies size.

76



Ch
ap

te
r55.1.4 Particle drift ζ

In order to investigate the behaviour of the particles with respect to the underlying gas velocity, one can use
the particle drift ζ as rms deviation of the particle velocity v from the gas velocity u at the particle location
~xi, via

ζ =

√√√√ 1
Npar

Npar∑
i=1
|~vi−~u(~xi)|2, (5.4)

with Npar the total number of particles within a grid cell or the total number of particles when evaluated
globally. This expression should be equal to the Nakagawa drift solution from Eq. (2.38). Again, it can be
distinguished between local drift ζ� and global drift ζ◦. For the simulation results, the interpolation of the
gas velocity at the particle position is done via the TSC method, see Chapter 4.

5.1.5 Viscous stress α

As explained in Sec. 2.1.4, the canonical prescription of turbulent gas transport inside of PPDs is done via
the α-turbulence model. In the presented shearing box simulations, it is calculated by setting the Reynolds
stress equal to an artificial, equivalent viscous stress, via

〈u′xu′y〉= ν∇·~u . (5.5)

Here, the perturbation theory notation is used, i.e. perturbations from the mean flow u are marked as
primed, u′. The turbulent viscosity ν that originates from turbulent Reynolds stress is canonically written
in the form of α viscosity by normalizing them to disk units, via

α= ν/(csH) . (5.6)

Starting from Eq. (22) from Klahr & Bodenheimer (2003), the r-ϕ Reynolds stress tensor component reads

α=Arϕ =
〈
u′ϕ (ρur)′

〉
ρ̄c2s

,

where the angle brackets and bar represent spatial and time averages. One can further simplify this equation
by using

〈u′xu′y〉= 〈uxuy〉−〈ux〉〈uy〉

and ∇~u=−(3/2)Ω. Where the latter is again the linearised Keplerian shear approximation, see Eq. (2.20).
A new form is obtained as

α= −2(〈uxuy〉−〈ux〉〈uy〉)
3c2

s
, (5.7)

where a constant gas density was assumed. A constant gas density is valid, since the measured gas density
fluctuations in the presented simulations have at their maximum an amplitude of 10−3. In this equation,
the averaging 〈·〉 is done in space and time.
In this equation now, the present underlying linear gas transport gets subtracted by the second term. In

the herein presented SI simulations the linear gas transport arises from the Nakagawa drift solution. Hence,
this second term is non-negligible as the Nakagawa gas drift does not contribute to the Reynolds stress
tensor, but is part of the unperturbed gas flow.
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5.1.6 Schmidt number Sc

Additionally investigate is the Schmidt number. It is defined as the ratio of radial momentum transport over
radial mass diffusion:

Sc = α/δx (5.8)

Here in this analysis the Schmidt number is used to investigate the ratio of gas transport α against particle
diffusion δ. Note that some authors assume δ ≡ α, which is only true for tightly coupled particles. As will
be seen, this is not true for the SI nor for the aSI.

5.2 2-d parameter study on the streaming instability and its azimuthal
counterpart

This first numerical project is a parameter study of the SI and the aSI in 2.5-d/2-d simulations at dust-
to-gas ratios well above unity. The SI is known from Youdin & Goodman (2004) as a dust-gas instability
in radial-vertical direction. They showed that only one direction, e.g. kr 6= 0 and kz = 0, is insufficient to
trigger an instability. The non-linear behaviour of the SI is known from Johansen & Youdin (2007), but
only for the radial-vertical extent. Though they performed 3-d simulations, their work did not indicate the
SI, or a similar instability, to operate in the radial-azimuthal direction. This presented work is a dedicated
investigation to the presence of a SI-type instability in 2-d simulations of radial-azimuthal extent. Indeed,
a similar instability is found that previously was only barely known from Raettig et al. (2015). This new
instability is named azimuthal Streaming Instability (aSI), since there is no clear proof of this new instability
to be identical with the classical SI.
The following of this section will deepen the understanding of the numerical SI and aSI in 2-d (r-ϕ)

and 2.5-d (r-z) simulations, respectively. In the future, this performed parameter study can be used to
estimate the expected diffusion values from the aSI/SI, which is present during particle cloud collapse. In
the following, meant by 2-d simulation is a simulation domain were the vertical direction is only covered
by a single grid cell. This grid cell stands for a vertical column with infinite extend, since the boundary
condition is periodic in z, though no vertical motions are present. Consequently, modes in vertical direction
get completely suppressed. The density in this kind of simulations represent the vertical column density
Σ = ρ ·Lz, with simulation box height Lz. For simplicity and consistency, this will also be declared as ρ. In
the r-z runs, the vertical direction is well resolved but the azimuthal direction is only resolved by a single
grid cell. Meaning, these simulations can be treated as being axisymmetric in azimuthal direction. Still,
these kind of simulations considers fluctuations in the azimuthal dust and gas velocity (Johansen & Youdin,
2007; Youdin & Johansen, 2007) as the Keplerian shear is included in the Euler equations for radial-vertical
dynamics. This is called 2.5-d, since azimuthal modes get suppressed but the needed azimuthal velocity is
included. In this parameter study the following four parameters were altered:

1. Particle size, in terms of Stokes number: St = 0.1 or 0.01

2. Simulation domain extend: either r-ϕ (2-d) or r-z (2.5-d)

3. Simulation domain size: L= 0.1H, 0.01H, or 0.001H

4. Initial dust-to-gas ratio: ε0 = 0.1 . . . 1000

The initial dust-to-gas ratio is altered in equidistant manner in log-space, with higher coverage of dust-to-gas
ratios below unity. The numerical resolution is N = 128 grid cells in each direction, each cell is initialized
with Npar = 10 particles in drag-force equilibrium with the gas. This high particle number is needed in order
to cover the SI also in regions of low dust density, compare with Johansen & Youdin (2007). Simulations
of the SI that include vertical gravity thus can have lower total particle numbers, as they automatically get
concentrated into the mid-plane achieving a proper dust resolution. The following of this section presents
the results of all four parameter studies as a whole. Afterwards, the results of a resolution study on the aSI
in the r-ϕ plane are shown. A full list of the measured diagnostic quantities for all simulations are found in
the appendix, in Tab. D.1 to Tab. D.4.
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Figure 5.1: Values of maximum dust density fluctuations and their standard deviation. The simulations
with active multi-mode aSI/SI manage to enhance their dust concentration locally to a value of ∼ 10. Only
in the cases where zonal flows are emerging, e.g. (r-ϕ, St = 0.1,L = 0.1H, ε0 = 30), or vertical bands, e.g.
(r-z, St = 0.1,L = 0.001H, ε0 = 1), further concentrations form that range up to values of εmax/ε0 ≈ 100.
Surprisingly, for St = 0.01 the aSI is showing activity also for initial dust-to-gas ratios below ε0 = 1, see
Fig. 5.3. For this Stokes number, no activity could be found in the simulations with the largest domain size
(blue curve). On the smallest scales, suprinsingly high dust density fluctuations are found for simulations with
initial dust-to-gas ratio below unity that need further investigations.
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Figure 5.2: Last snapshots of the dust-to-gas ratio normalized to ε0 (yellow). Over-densities are coloured
in red, particle voids in blue. Beware of the changing colormap range in the upper and lower ε range. All
simulations have the same number of grid cells.
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Figure 5.3: Last snapshots of the dust-to-gas ratio normalized to ε0 (yellow). Over-densities are coloured in
red, particle voids in blue. All simulations have the same number of grid cells. Colour mapping changes for
high and low ε0.
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Figure 5.4: Timeseries of the maximum occurring dust-to-gas ratio in the simulations with St = 0.1 and
ε = 10 of the r-ϕ, i.e. the aSI simulations. The time frame in this figure is limited to the growth phase of the
aSI. Clearly, the modes grow the fastest on the intermediate (orange) and the smallest (green) scales, as in
these runs the maximum dust-to-gas ratio increases to their saturation level within less than one orbit. The
measured growth rates can be found in Tab. 5.1.

5.2.1 Dust density fluctuations
The active aSI/SI is enhancing the dust-to-gas ratio locally by having the particle clump together, as they
are energetically more stable in a group. This likewise creates particle voids, see Fig. 5.2 and Fig. 5.3. The
mutual drag between dust and gas is different for different dust-to-gas ratios, see Eq. (4.1), which leads to
growing perturbations that can grow up to a value that triggers a non-linear state with turbulence.
Taking the timeseries of the maximum dust density, ρd,max, one can calculate the normalized maximum

dust-to-gas ratio that is occurring in the simulations as
εmax

ε0
= max

(
ρd/ρg

)
,

where for simplicity ρg = ρ0 = const. is assumed, as the variation in this value are found to be insignificant.
This maximum value on particle concentration is plotted in Fig. 5.1 together with its standard deviation.
In most of the simulations, the dust density is found to get enhanced by a factor of ≈ 10. Only for the
special case of zonal flows emerging, e.g. (r-ϕ, St = 0.1,L = 0.1H, ε0 = 30), the dust enhancement goes up
to values of ≈ 100, see Sec. 5.2.9. An additional discussion on the influence of the numerical resolution on
the maximum dust-to-gas ratio is done in Sec. 5.3. One should keep in mind that this value is the absolute
maximum value and only occurs in a single grid cell. As explained in Chapter 3 a high value is not a
guarantee for gravitational collapse and the enhancing of dust is not a run away process that increases with
numerical resolution, see Sec. 5.3.
In Fig. 5.1a, one sees that the aSI has an active range from ε0 = 0.8 till ∼ 300. Meaning that the aSI is able

to concentrate dust locally significantly higher than the mean dust density value. For ε= 1000, the aSI seems
to be dead by having an dust enhancement factor of ≈ 3 on the largest scale. But, on the two smaller scales
the aSI remains active, by providing dust density fluctuations up to a value of εmax/ε0 ≈ 5. Furthermore, the
aSI does has a surprisingly sharp cut off at low dust-to-gas ratios and emerges first on the largest scale (blue
line at ε = 0.8), and on the two smaller scales at ε = 1. The saturation level is for L = 10−2H and 10−3H
identical for all ε0.
The achieved maximum dust-to-gas ratios in the case of pure SI in r-z are very similar to the one of the aSI

in r-ϕ, compare Fig. 5.1b with Fig. 5.1a. But, in the majority of the cases, the simulations are dominated
by strong horizontal or vertical modes, see Fig. 5.2b. They do much stronger concentrate particles, similar
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r5to the zonal flow in the r-ϕ run, mentioned above. Thus, the maximum dust enhancement values in most

cases exceed the aSI values. These dominant modes appear in most of the investigated SI-active simulations
for St = 0.1 particles. They are a consequence of the chosen simulation domain sizes. This is visible from
the row for ε0 = 3 in Fig. 5.2b, where there is a strong horizontal band in the smallest simulation (right),
but a typical non-linear SI mode behaviour in the next larger run (center) without band-like structures.
The largest of the three simulations (left) then shows the presence of a strong horizontal mode that looks
different again if one goes to even larger domain sizes, see run BC in Fig. 3 in Johansen & Youdin (2007),
where there are many vertically aligned particle concentrations, but no clear single mode structure resides.
One can follow this also up with the simulations on the smallest scales, by looking at the green curve in

Fig. 5.1b. It shows the emerging of single mode dominated behaviour when following this curve from large
(right) to small (left) initial dust-to-gas ratios. This is also true for the largest simulations (blue) where
towards higher dust-to-gas ratios vertical modes appear that come along with high particle trapping therein.
They range up to values of εmax/ε0 ≥ 100. In all the setups, one finds that the many-mode turbulent SI is
clearly only capable of enhancing the dust-to-gas ratio only up to the typical value of ≈ 10. It is then the
presence of these single horizontal bands (smallest scales) and horizontal modes (largest scales) that induces
stronger particle clumping that from the pure SI.
The picture changes for St = 0.01 particles. The maximum dust density fluctuations found for the SI are

extremely similar to the ones of the aSI in r-ϕ. On the largest scales (blue) no aSI and no SI can be found,
see Fig. 5.1c. Hence, these simulations can be neglected in the following of this analysis. On the next
smaller scale (orange) both instabilities appear up to a value of ε0 ≈ 10. The smallest scale (green) shows
surprisingly an activity throughout the whole parameter space, especially including simulations with ε0 ≤ 1.
In all the aSI-/SI-active runs, there appear no zonal flows or horizontal bands, as they were found in the
simulations with St = 0.1. It is also surprising to find a very high ability to still concentrate dust at the
lowest initial dust-to-gas ratio of the study, with values of up to εmax/ε0 ≈ 60. In contrast, the aSI and the SI
on the intermediate scales both peaks at ε0 = 1 with a value of εmax/ε0 ≈ 10, what is again the aSI/SI typical
value. This strong increase on the very smallest scales needs further investigations.
On the intermediate scale (orange), the peak in the maximum dust density fluctuations for the SI is shifted

slightly towards lower initial dust-to-gas ratios, to ε= 0.5, where for the r-ϕ runs it is at ε= 1. This indicates
that a higher dust load is needed to trigger the instability if an additional shear is present. On the smallest
scales (green) again the parameter space is covered with SI up to a value of ε0 = 100. Comparing the slope
with the ones from Fig. 5.1c for the r-ϕ runs, the drop in the ability to enhance the dust concentration is
slightly steeper in the r-z runs, i.e. for (L = 0.001H, ε0 = 100) the SI is active in the r-ϕ case, but seems
rather inactive in the r-z case.

5.2.2 Growth rates
Fig. 5.4 shows an example for the timeseries of the maximum dust-to-gas ratio, again normalized to its
initial mean value, for the aSI simulations with St = 0.1 and ε0 = 10. The timeseries in this figure is specially
shortened to the initial saturation phase, where the SI reaches its typical dust density fluctuation value of
≈ 10. Here, one clearly sees the saturation time to be the fastest on the smaller scales (orange and green).
This is a consequence of the fastest growing mode to get smaller with increasing ε, i.e. the wavenumbers get
larger. The SI growth rates are analytically calculated and plotted in Fig. 2.8 for St = 0.1 particles, and in
Fig. 2.9 for St = 0.01 particles.
From the εmax timeseries, the growth rate s can be estimated in units of Ω, by fitting the logistic function,

i.e.

ε(t) =A+ B

1 + e−s(t−t0)

to it. The logistic function has an exponential growth for times shorter than the saturation time, i.e.
f(t� t0)≈A+Bes(t−t0). Thus, one than can derive from the function fit the growth rate via

s= 4
B

dε
dt

(t= t0) .

As expected, the resulting growth rates for the aSI/SI-active simulations depend on the simulation domain
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size. They are listed in Tab. 5.1. Simulations with active zonal flows, or vertical bands, show growth rates
below 10−1. The horizontal bands in the r-z simulations do not show an imprint on the measured growth
rates.

5.2.3 End-state snapshots

For the ε range around unity, the aSI for St = 0.1 particles shows the same behaviour on all scales, i.e. from
left to right it appears like a zoom-in, see Fig. 5.2a. In fact, the relevant modes are visually rather similar but
identical in the ability to concentrate dust, see Fig. 5.1a. For ε0 > 30 the aSI slowly vanishes on the largest
scale, but remains active on smaller scales. Hence, simulations with an insufficient resolution will suppress
these very small but turbulent aSI modes. For ε < 1 a sharp cut-off in aSI activity is found. Any mode
activity in this parameter sub-space is found to depend on the underlying hyper-viscosity and -diffusivity,
see Sec. 5.2.10.
The SI for St = 0.1 particles shows activity throughout most of the parameter space. It has a rather

similar mode pattern as the aSI. Though may simulations are dominated by large vertical bands (zonal
flows) and horizontal bands. These cases with a multimode pattern can best be identified in Fig. 5.1b, since
for them the maxima in the dust density fluctuations are found to be around εmax/ε0 ≈ 10. A value that
will be found throughout all aSI and SI simulations when the only the multi-mode instability is active. For
L= 0.1H (left column) many of the simulations are dominated by horizontal modes (vertical bands). They
start to appear starting from ε≥ 3, with a decreasing wavelength for increasing ε, i.e. more vertical bands
appear with higher dust load. The modes here might be similar to the zonal flows observed in the (r-ϕ,
St = 0.1,L= 0.1H, ε0 = 30). But, this remains to be shown. Similar band structures are found on the scale
of L = 0.01H (middle column) for runs with ε ≥ 30. For L = 0.001H, single horizontal bands are found for
ε ≤ 10. In contrast to the horizontal modes on the large scales, here only a single band appears that gets
vertically more compact with smaller ε. In constrast to the vertical bands on the largest scales, no second
band emerges on the smallest scales within the parameter range. Also, these dominant horizontal bands do
not show up in the next larger simulations with L= 0.01H (center), though particle concentrations increase
significantly here as well. This indicates that the SI modes might more strongly concentrate particles at lower
dust-to-gas ratios, than what is expected from the L= 0.1 simulations. This also needs further investigations.
The simulations with St = 0.01 show in the r-ϕ and the r-z simulations a very similar pattern. Both, aSI

and SI show strong active dust density fluctuations for rather low initial dust-to-gas ratios that even reach
below ε0 = 1. On the intermediate scale (orange) the aSI is strongest around ε0 = 1 and peaks there at the
typical value for the maximum dust density fluctuations of ≈ 10, as did the previous St = 0.1 runs. The aSI
on the smallest scales is throughout the whole parameter space actively enhancing the dust-to-gas ratios up
to values close and well above 10. The dust density enhancements on this scale even reach up to values close
to 100, which also needs further investigations. For the case of the SI on the intermediate scale, the strongest
peak in the dust density fluctuation is around ε0 = 0.5, where for the aSI this peak is at ε0 = 1. see Fig. 5.1.

L= 0.1H L= 0.1H L= 0.01H L= 0.01H L= 0.001H L= 0.001H
SI aSI SI aSI SI aSI

St = 0.1 4e−1 3e−1 8e−1 1 1.5 2
St = 0.01 - - 5e−1 5e−1 3.0 4.0

Table 5.1: Mean growth rates in units of Ω, for SI and aSI simulation in comparison. They tend to not
significantly depend on the intial dust-to-gas ratio ε0. They are found to be similar for SI and aSI, and also
similar for St = 0.1 and 0.01 particles. For St = 0.01 and on the scales of L= 10−1H no SI/aSI is found and thus
no growth rate can be expressed. These values compare well with the maximum growth rate from Fig. 2.8 for
St = 0.1 particles, and in Fig. 2.9 for St = 0.01 particles, as they show that the fastest growing SI mode tends
to be on scales below L = 10−1H. This suggests that the growth rates of the SI can fairly well be used for the
aSI, too.
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Figure 5.5: Particle diffusion δx estimated by treating the SI as a random walk. For comparison, in grey circles
(2D) and triangle (3D) the diffusivities for St = 0.1 particles and L ≥ 2H from JY07 Tab. 3 are plotted.
Diffusion values for St = 0.01 on the scales of L = 0.1H are not due to SI or aSI, but residing turbulence from
the initial condition, compare with Fig. 5.3a.

5.2.4 Particle diffusion
The particle diffusion is measured by treating the aSI and SI as a random walk-like process and using Eq. (2.42)
to measure the diffusion kernel.

Radial diffusion, see Fig. 5.5

When exceeding ε= 30, the diffusivities for the aSI for St = 0.1 particles shows a steeper drop on large scales
(blue) than on smaller scales, see Fig. 5.5a. The slope of the radial diffusion for this setup goes with ε−2

on the large scales and with ε−1 on smaller scales. For comparison plotted in grey circles (2D) and triangle
(3D) are the diffusivities from JY07 Tab. 3, for St = 0.1 particles and L≥ 2H.

The SI on the same Stokes number shows a radial particle diffusion with a slope between δx∼ ε−1.1 . . .ε−1.5,
see Fig. 5.5b. For comparison plotted in grey circles (2D) and triangle (3D) are the diffusivities for St = 0.1
particles and L ≥ 2H, from JY07 Tab. 3. Surprisingly, the presence of vertical modes (large boxes, high
εmax/ε0) maintains vertical diffusion.
For the smaller Stokes number particles, the slope of the radial diffusion for the aSI goes with ε−1.5 on

intermediate scales (orange), and with ε−1.0 on small scales (green). Diffusion values on the largest scales
(blue) are not from the aSI, see Fig. 5.3a, but from lasting gas turbulence that is induced by the initialization
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Figure 5.6: Particle diffusion δy estimated by treating the SI as a random walk. For comparison plotted in
grey circles (2D) and triangle (3D) are the diffusivities for St = 0.1 particles and L ≥ 2H, from JY07 Tab. 3.
Diffusion values for St = 0.01 on the scales of L = 0.1H are not due to SI or aSI, but residing turbulence from
the initial condition, compare with Fig. 5.3a.

of the particles in drag force equilibrium. The origin of this gas turbulence is still unclear and needs further
investigations. Since no dust fluctuations and no SI modes were found, this is a clear sign that these values
must come from different effects.
Very similar values for the radial particle diffusion of the SI for this Stokes number are found. The radial

particle diffusion has a δx ∼ ε−2.0 slope. The diffusion values on the largest scales (blue) are again not from
the SI, see Fig. 5.3a, but stem from the initial particle density noise and resulting rms velocity introduced by
the drag force equilibrium between dust and gas.

Vertical diffusion, see Fig. 5.6

Clearly, the measurements for vertical diffusion are only for the SI simulations possible, since in the aSI
vertical modes are suppressed. For St = 0.1, the vertical particle diffusion scales with a δz ∼ ε−0.3 . . .ε−1.5

slope, see Fig. 5.6a. For comparison plotted in grey circles (2D) and triangle (3D) are the diffusivities for
St = 0.1 particles and L≥ 2H, from JY07 Tab. 3. The presence of vertical modes (large boxes, high εmax/ε0)
maintains vertical diffusion, but the presence of a strong horizontal band (small box, low εmax/ε0) shuts
down the vertical diffusion but maintains radial diffusion, see above.
For one order of magnitude smaller Stokes number particles, the vertical particle diffusion of the SI has a

slope of δx ∼ ε−0.5. The diffusion values on the largest scales (blue) are again not from the SI, see Fig. 5.3a,
but from the initial particle density noise and resulting rms velocity introduced by the drag force equilibrium
between dust and gas.

Comparing radial and vertical diffusion, see Fig. 5.7

A comparison of vertical and radial diffusion is done in Fig. 5.7 for the r-z SI. Vertical diffusion is found to
be mostly lower than the radial diffusion, i.e. δx/δz > 1. Once vertical modes or horizontal bands appear,
the strongest diffusion is in the direction of the corresponding particle concentrating structure. On the
intermediate scale, for St = 0.01, the vertical diffusion for the SI active simulations is found to be as strong
as the radial diffusion. Once going to smaller scales, the radial diffusion gets stronger again.

5.2.5 Particle dispersion and drift
In Fig. 5.8 plotted are the global and local particle dispersion values (Eq. (5.1)) and in Fig. 5.9 the drift
speed (Eq. (5.4)) values.
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Figure 5.7: Comparison of radial and vertical particle diffusion from SI runs. Left figure shows the comparison
for St = 0.1, and right figure the comparison for St = 0.01. As can be seen, an active SI provides most of the
time a stronger radial diffusion than vertical diffusion. The ratio of these two values is larger for the St = 0.1
particles. The blue curve for the smaller Stokes number particles can be ignored, since in these simulations
there is not active SI found.

The dispersion in the case of an symmetric unperturbed Keplerian flow in a shearing box approximation
is zero. In the case of aSI/SI, the dispersion is a measurement of the appearing turbulent velocity. Fig. 5.8a
compares global dispersion σ◦ (colored lines) with local dispersion σ� (shaded contours), were the local
dispersion is calculated for each grid cell with two or more particles inside (grey dots), hence the scatter is
large. The plots show σ� being on average much smaller than σ◦, which is a result of the aSI having large
extended modes, whereas grid cell wise the particles behave as a group, only slowly dispersing. For smaller
ε�-values the dispersion reduces as a result of the particle voids being the less turbulent regions (blue areas
in Fig. 5.2a). For larger ε� the particles locally dominate with their momentum over the frictional influence
of the gas, consequently particle groups stay longer together. In between the aSI/SI is actively stirring the
particles.
Fig. 5.9 shows the particle motion relatively to the gas. This drift speed ζ is found to be nearly identical

on local and global scales and only marginally larger than the Nakagawa drift values from the Nakagawa
et al. (1986) steady state solution from Eq. (2.38). Note that all particles were initially set to be in local
Nakagawa drift equilibrium with the gas. That indicates that the aSI increases the particle drift speed by a
factor of ∼ 2. But, this value is still up to a factor of 100 times lower than without the frictional feedback.
Furthermore, particles that group together at very high dust-to-gas ratios of ε > 100 do drift one order

of magnitude faster than what is predicted by Eq. (5.4). In the simulations, this behaviour is found such
that local particle heavy heaps do drift radially inwards with a significantly higher speed than the dust
background. This indicates a limit around ε= 100 on the validity of the Nakagawa equations, at least from
the presented simulations.
In the r-z case, one finds the particle dispersion and the measured drift speed to have values that compare

well to the r-ϕ simulations. Simulations with non-active SI, here the simulations with larger domain size
and with ε < 1 show a strong drop in particle dispersion but not as strong as in the r-ϕ simulations. The
global particle drift ζ◦ again agrees well on large and small scales. Slight increases in the drift speed can be
found for the simulations with strong radial modes, as they produce zonal flows, e.g., L= 0.1H with ε0 = 10
to 100 and L= 0.01H with ε0 = 100.
For simulations with St = 0.01, the dispersion magnitude again follows the slope of the Nakagawa solution

for particle drift (dashed line). But now, since the aSI is active, also for ε0 ≤ 1, the global dispersion values
on the intermediate and smallest scales do actually continues to follow the Nakagawa solution, whereas for
St = 0.1 one observes a knee at around ε= 1.
The particle drift in Fig. 5.9c again shows a perfect agreement between local and global drift values. For
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Figure 5.8: Global dispersion σ◦ (lines) and local dispersion σ� (contour). Blue, orange and green lines show
the individual global values. The local, i.e. grid cell wise, values for all simulations combined are shown in
shaded contours. As reference in dashed is shown the absolute magnitude of the Nakagawa drift speed from
Eq. (2.38). The dispersion values all seem to follow the curve of the Nakagawa drift. Once the aSI or SI breaks
down, the measured rms-velocities drop. The blue lines for St = 0.01 can be ignored, since the measured
velocity is not from the aSI or SI, respectively.

this Stokes number, one finds the drift values to even be closer to the predicted value from Eq. (2.38). In
the blue contours that represent ζ�, the horizontal bars in this plot indicate the drift velocity to depend
rather on the mean dust-to-gas ratio, which is equal to ε0, and does not follow the expected value from the
Nakagawa drift solution. The particle dispersion for the r-z simulation with St = 0.01, shown in Fig. 5.8d, is
almost identical to the dispersion that is found for the r-ϕ case. This again shows that for this lower Stokes
number the aSI and the SI are to a high degree similar.

5.2.6 Correlation time and correlation length
The correlation time represents a measure for the characteristic turbulent eddy turnover time. It can be
used to link the turbulent rms-velocity with the particle diffusion, see Sec. 5.1.2. The eddy size can be
approximated by the correlation length, see Sec. 5.1.3, which is measured by the ratio of particle diffusion
and particle rms-velocity.

Correlation time: eddy turnover time

Assuming a correlation between δx and σ◦ via τcorr, as stated in Eq. (5.2), for aSI-active runs, one finds for
St = 0.1 and r-ϕ a typical correlation time of τcorr ≈ 0.3Ω−1. For this value only runs were considered with
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Figure 5.9: Global drift σ◦ (lines) and local drift σ� (contour). Blue, orange and green lines show the
individual global values. The local, i.e. grid cell wise, values for all simulations combined are shown in
shaded contours. As reference in dashed is shown the absolute magnitude of the Nakagawa drift speed from
Eq. (2.38). Global and local drift shows perfect agreement, whereas the local dispersion values are always
well below the global values. The latter indicates that local particle groups move with similar velocity, but
comparing two groups in distinct grid cells they move independently. The similarity in all ζ◦ indicates that
particles and gas on all scales moves similar relative to each other, following Nagakawa drift prescription. But,
clumps ε≥ 102 drift faster than actually predicted.
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(a) St = 0.1 - r-ϕ plane (b) St = 0.1 - r-z plane

(c) St = 0.01 - r-ϕ plane (d) St = 0.01 - r-z plane

Figure 5.10: The correlation length resembles the characteristic eddy size in the simulations. In this plot, it is
compared with the simulation domain size (dashed) and the grid size (dotted).

clear multi-mode aSI/SI, i.e. St = 0.1, L= 0.1H and ε≥ 30, compare Sec. 5.2.9. Non-aSI/SI-active simulations
typically show τcorr = 1.0. Simulations with decaying aSI/SI-activity show values for the correlation time that
are in-between these two values.
For the SI-active simulations with St = 0.1, the found correlation time is τcorr ≈ 0.3Ω−1. A similar value as

found for the aSI with the same Stokes number. The correlation time for both cases is on average flat over ε
and only increases, and more strongly varies, once horizontal or vertical modes emerge. For the cases with
no active SI, the correlation time increases to τcorr > 1. The same is true for the simulations at the larger
scales in the presence of radial modes.

Correlation length: eddy size

Fig. 5.10 shows the correlatio length for the simulations. The measured lcorr is mostly found to be smaller
than the domain size and most large than the grid scale. Only for cases with vanishing aSI/SI smaller or
larger values are found. All the results from simulations with lcorr > H or lcorr < dx should thus be trusted
with reservations.

5.2.7 α-value and Schmidt number
The turbulent strength in the gas is measured in terms of α, see Sec. 2.1.4. In the literature, authors often
set the turbulence particle diffusion equal to this α-value. This might be true for tightly coupled particles,
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Figure 5.11: As most investigated quantities for the aSI and SI, the gas α-turbulence shows a steep drop-off
once the aSI/SI gets weaker at high dust-to-gas ratios. Plotted as dashed and dotted lines are comparison
values that stems from Eq. (3.60). These lines are for comparing the simulations results with an initial
α0 = 10−3 turbulence that underwent a turbulent Kolmogorov cascade and energy transfer from a pure
gas turbulence into a dust-loaded turbulence. The dashed line represents the upper limit, by having the
Kolmogorov cascade to end at the size of the simulation domain, i.e. l′ = L. The dotted line represents an
lower limit, by having the cascade to end at the size of the simulation grid scale, i.e. l′ = dx.

but not for St > 10−2. Herein this work, one is in the lucky position to actually measure both quantities.
From compare the turbulent gas transport α with particle diffusivity δ, one gains the Schmidt number, see
Sec. 5.1.6.

α-turbulence

Fig. 5.11 shows the measured values for the turbulent viscosity, i.e. α-turbulence. Similar to the particle
diffusion, the α gas turbulence shows a strong drop-off with SI getting inactive. One finds α to drop towards
higher ε-values with the same slope as in the diffusivity measurements. Hence, the measured gas turbulence
is correlated with the turbulence in the dust, see also below for the corresponding Schmidt values.
The St = 0.1 runs in r-z show for ε < 1 a significant alpha turbulence on the intermediate and on the

smallest scales. It stems from the found SI-activity in these runs, hat is not present in the corresponding
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aSI case. For St = 0.01, the shape of the measured α-turbulence is quite similar for the aSI and the SI. The
for St = 0.01 measured α-values are around one order of magnitude lower than for St = 0.1. But, for the
smaller Stokes number simulations, the instability is found to be active for ε0 ≤ 1 and thus providing at
these dust-to-gas ratios additional gas turbulence. It is specially strong on the intermediate scales (orange).
It may seem that the measured α-values from the aSI and the SI are much lower than the values known from

typical turbulent gas processes in PPDs, like the MRI or the vertical shear instability. But, the α-turbulence
stemming from these large scale gas turbulence needs to cascade down via the Kolmogorov cascade, onto
the considered scales of L< 0.1H, as explained in Sec. 3.3.3. On these scales, the turbulence will actually be
less strong than the turbulence from the aSI/SI. This is especially true, for ε� 1, where the momentum of
an initially pure gas turbulence needs to be pass over onto a mixture of dust and gas. Thus the turbulent
strength should get reduced. This is shown in the form of the dashed and dotted lines in Fig. 5.11, which
represent the viscosity estimate ν′ from Eq. (3.60). In this comparison, an initial value of α0 = 10−3 is
injected on the length scale of L0 =

√
αH≈ 0.03H. The dashed line represents the corresponding turbulent

strength that can be expected to be on the scales of the domain size, L, with for each simulation in its
respective colour. The dotted line does the same, but on the scales of the respective grid scale dx. One
could also do this comparison for the prominent eddy size measured in our simulations via lcorr, as calculated
below in Sec. 5.2.6. But, in Fig. 5.11 the range of turbulent viscosity that one might expect to find from
a turbulent α cascading is shown. These plots show that the expected turbulent viscosity ν′ is in a rather
broad range of values. The reason is that simulation domain size and grid resolution span a range of two
orders of magnitude, hence also the viscosity spans two orders of magnitude. Still, for St = 0.1 the found α
by the aSI/SI is well above the best case for the turbulent cascade down onto the scale of l′ = dx. Sometimes
the measured α-values are even stronger than what is expected for the worst case, i.e. cascade down to only
l′ = L.
This whole discussion does not take all effects into account. How the particles react to the gas turbulence

is only mimicked by an energy transfer on a dust loaded eddy. In reality, not a single particle size is present,
but a particle distribution of different sizes. Also, the herein this work used Kolmogorov cascade is in reality
not present, since it will never be a pure gas turbulent cascade, but instead a dust loaded form that one
has to account for. Also, turbulence can only occur as long as the Reynolds criteria is fulfilled. How this
criterion behaves on the broad range of scales that are important for planetesimal formation, and in general
in the situation of a dust loaded PPDs, remains to be shown. Also, the scales and location where the α0
turbulence is actually present, i.e. MRI in the upper disk atmosphere, probable is not the same location were
aSI/SI is at work or planetesimals form. For example, in a dead zone, the MRI might be active in a layer on
top of a dead zone, but the SI could be active within the mid-plane if a sufficient dust-to-gas ratio can be
reached. In order to consider those cases, the turbulence not only has to cascade down, but the turbulent
velocity needs to be advection towards the mid-plane, i.e. the location of active aSI/SI. Also, a fraction of
the turbulent energy that resides in the particles, might get lost earlier in the cascade than in our model,
since particle can undergo elastic collisions and by that energy might dissipate more strongly than modelled.

Schmidt number

The found Schmidt numbers are plotted in Fig. 5.12. In this work, the Schmidt value expresses the ratio
of turbulent α transport against radial particle diffusion δx, see Eq. (5.8). This ratio shows a rather flat
profile within the aSI/SI-active range. The Schmidt number is found to depend mainly on the size of the
simulation domain. Found is also that the particle turbulence is in most of the cases stronger, or at least
equality strong, as the gas turbulence. Only on the smallest scales (green) the gas turbulence is slightly
stronger within a larger fraction of the aSI/SI-active range. Comparing the r-z runs with the r-ϕ, one finds
that in the simulations that have vertical bands present, i.e. smallest scales and lowest dust-to-gas ratio, the
Schmidt number to decrease. This comes from the presence of the vertical bands in the r-z simulations that
are strongly diffusing particles in radial direction, though the underlying gas flow is unaltered by them, and
hence α-turbulence stays low.
One can conclude that typical Schmidt values for the aSI/SI are of 0.1< Sc< 1. For smaller Stokes number

the Schmidt number gets slightly lower. But, this shows that one cannot assume δ ≈ α for the cases of active
aSI/SI.

92



Ch
ap

te
r5

10-1 100 101 102 103

ε

10-1

100

101

S
c

xy-run: schmidt number
L=0.1 H L=0.01 H L=0.001 H

(a) St = 0.1 - r-ϕ plane

10-1 100 101 102 103

ε

10-3

10-2

10-1

100

101

S
c

xz-run: schmidt number
L=0.1 H L=0.01 H L=0.001 H

(b) St = 0.1 - r-z plane

10-1 100 101 102 103

ε

10-2

10-1

100

101

S
c

xy-run: schmidt number
L=0.1 H L=0.01 H L=0.001 H

(c) St = 0.01 - r-ϕ plane

10-1 100 101 102 103

ε

10-3

10-2

10-1

100

101

S
c

xz-run: schmidt number
L=0.1 H L=0.01 H L=0.001 H

(d) St = 0.01 - r-z plane

Figure 5.12: The Schmidt number in the case of active aSI is mostly between 0.1 < Sc < 1. This shows that
the particle diffusion is in most cases stronger than the gas turbulence. Active zonal flows and active vertical
bands, i.e. r-z runs with ε0 < 10, imprint an increase in Schmidt number.
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(a) St = 0.1 - r-ϕ plane (b) St = 0.1 - r-z plane

(c) St = 0.01 - r-ϕ plane (d) St = 0.01 - r-z plane

Figure 5.13: Critical length scales lc,x from aSI and SI radial particle diffusion δx measurements, by using
Eq. (3.40).

5.2.8 Critical length scales from the (azimuthal) streaming instability
From the measured particle diffusivity one can estimate now the critical length scale that is allowed to
collapse, as stated in Sec. 3.3. The values that use the radial diffusivity are shown in Fig. 5.13, and the
ones from the vertical diffusivity in Fig. 5.14. As can be seen, mostly the critical length scales that one can
expect are around 10−3. The interpretation of these values is difficult, since a cloud that tries to collapse,
i.e. that is at Hill density, is not isolated. The turbulent diffusion that is acting on the cloud thus does not
solely comes from the turbulence of the aSI/SI that is residing inside the cloud, but also from its surrounding.
Since the surrounding should tend to be at a lower dust-to-gas ratio, the modes that get produced are larger
and might increase the turbulent strength acting on the cloud. Still, many of the investigated parameters
sets show critical length scales that are larger than the corresponding simulation domain size. This indicates
that these simulations are prohibited from collapse, as will be shown in Chapter 7. In many of the presented
cases, the critical length scale based on the radial diffusion is larger, than the one that is calculated from the
vertical particle diffusion. Moreover, as long as the aSI/SI is active, one find that in most cases the critical
length scale does only slightly depend on the simulation domain size, but more strongly on the dust-to-gas
ratio. Surprisingly, the critical length scales do not strongly depend on the Stokes number, since lc ∼

√
δ/St,

and the critical length scales for St = 0.01 particles is only slightly larger than for the bigger particles.

5.2.9 Special cases: zonal flows and vertical band structures
As can be seen in Fig. 5.2, strong horizontal modes, e.g. (r-ϕ, St = 0.1,L = 0.1H, ε0 = 30), and horizontal
bands, e.g. (r-z, St = 0.1,L = 0.001H, ε0 = 0.8), appear in the parameter study. They emerge where the
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(a) St = 0.1 - r-ϕ plane (b) St = 0.1 - r-z plane

Figure 5.14: Critical length scales lc,z from SI vertical particle diffusion δz measurements, by using Eq. (3.40).

aSI/SI modes get to large and only a fraction of the previous modes remain to be resolved. One gets this by
comparing the resolved length scales in the simulation with the analytic growth rates for the SI in Fig. 2.8
and Fig. 2.9. Primarily, the band structures appear in the SI simulations, so it could be that in the aSI
simulation most of them get destroyed by the Keplerian shear. Since the difference between kx-kϕ and kx-kz
modes is that the shear transforms kx waves numbers into kϕ, by winding them up. Imagine a straight
line of points in radial direction in a shearing box frame of reference, this line will tilt by the shear, since
the underlying Keplerian shear velocity goes with vshear ∼ x. Consequently, strong horizontal bands as they
appear in (r-z, St = 0.1,L= 0.001H, ε0 = 0.8) cannot reside in the r-ϕ plane.

Looking at the special case of (r-ϕ, St = 0.1,L = 0.1H, ε0 = 30), one observes the aSI to saturate in a
time between 20 and 30 orbits on a comparable similar maximum dust density fluctuation level of ≈ 10,
as it is achieved in most other aSI-active simulations. But, after 30 orbits, the dust further concentrates,
reaching maximum dust density fluctuations above εmax/ε0 = 100. This concentration happens in local non-
axisymmetric particle heaps residing in zonal gas flows, see Fig. 5.15. They are stable for the rest of the
simulation duration and seem to be unaffected by the underlying aSI. These zonal flows are around 0.02H
to 0.03H in width and are limited in azimuthal extend by no more than 0.08H. Similar structures could not
be observed in the smaller r-ϕ runs with ε= 30, because the zonal flow radial wavenumber is smaller than
the smallest wavenumber that is fitting into the next smaller simulation. For the simulations with ε≥ 100 a
similar strong phenomenon could also not be observed. One could argue that these bands would disappear
if the spatial resolution is increased, therefore a resolution study was performed on the aSI. The results of
this study are shown in Sec. 5.3.
One also might expect very strong particle trapping in these modes, as they have ten times higher dust

concentrations than the typical value for the aSI, and hence a decrease in particle mobility should be expected,
i.e. lower particle diffusivity. But still, averaged over the whole simulation domain, these structures do not
significantly affect the measured diffusivity values to a significant degree. For 20 < t < 30Torb, before the
zonal flow emerge, the diffusivity is found to be

δx = (2.62±1.35) ·10−6,

whereas in the case of the fully developed zonal flows the diffusivity is measured to be

δx = (3.71±2.14) ·10−6.

The reason for this might be that the mixing time of particles to get into the heap and out again, is comparable
short. Because the zonal flows are found to be fully aSI-active, even within the high dust overdensities.
The global particle drift value ζ◦ for this zonal flow case is slightly increased, as the particle heaps have

a significant higher dust-to-gas ratio and consequently radially drift faster inwards, as seen in the dip in the
blue line for ε0 = 30 in Fig. 5.9a.
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Figure 5.15: St = 0.1 - r-ϕ plane: The (L = 0.1H, ε0 = 30) run is able to produce three zonal flows with
strong particle clustering. Left shows the normalized particle density, right shows the underlying azimuthally
averaged gas flow perturbation. The flows emerge after t = 30Torb and further concentrate particles up to
ε= 100 and do not show up in other simulations. Snapshot is taken at t= 120Torb.

Similar structures as the zonal flow in (r-ϕ, St = 0.1,L= 0.1H, ε0 = 30) are found for the r-z simulations
with St = 0.1 as vertical or horizontal bands. The vertical bands emerge for (r-z, St = 0.1,L= 0.1H, ε0 = 3)
to (r-z, St = 0.1,L = 0.1H, ε0 = 100), and (r-z, St = 0.1,L = 0.01H, ε0 = 30) to (r-z, St = 0.1,L = 0.01H,
ε0 = 100). These bands show a repetition with a fixed separation, very similar to the discussed zonal flows
in the aSI simulations. It could be that both of this phenomenon are the incarnation of the same physics and
a product of the radial wavenumbers of the linear SI to be stronger limited than the vertical wavenumbers,
see Fig. 2.8. In the simulations (r-z, St = 0.1,L = 0.001H, ε0 = 0.1) to (r-z, St = 0.1,L = 0.001H, ε0 = 3.0)
horizontally extended bands are found that do not show a repetitive pattern in the simulations, as the zonal
flows do. It might be that these are the incarnation of larger modes that get unresolved on these small
scales. As can be seen in Fig. 2.8 for such small dust-to-gas ratios, the mode activity of the SI is limited to
modes with very large extend in radial direction, but all kind of extends in vertical direction are allowed.
This is right what is observed in the simulation.

5.2.10 Influence of Hyper-Viscosity and -Diffusivity
An additional remark has to be done on the numerical hyper-diffusivity and -viscosity, see Sec. 4.1. The
whole presented parameter study was performed with a resolution dependent but then fixed hyper-viscosity
and -diffusivity value of 1.573 ·10−19, 1.573 ·10−24 and 1.573 ·10−29, for the three simulation domain sizes
respectively. It has been found later in the post-processing that this is not the lowest stable value for
all simulations and by decreasing this value, many of the aSI/SI-inactive simulations could additionally be
populated with aSI/SI modes. Still, it is of interest to have the same value of hyper-viscosity and -diffusivity
for all simulations of the parameter study, in order to have them consistent and keep the results comparable.
To comprehend how this additional parameter influences the results, additional simulations with St = 0.1
particles were performed.
The first run is (L= 0.1H, r-ϕ, ε0 = 100), where the hyper-diffusivity and -viscosity was increased by one

order of magnitude. The result show maximum dust density fluctuations dropped to 〈εmax/ε0〉t ≈ 2, instead
of ≈ 10 from the original run. The timeseries of this simulation is shown in Fig. 5.1a, where one can see that
the maximum dust density even decreases from the initial maximum value. The particle diffusivity in this
case is found to drop from δx = 1.93 ·10−07 down to 4.84 ·10−08. As can be seen, the new diffusivity value
is not just zero, but only one order of magnitude smaller. The reason for this effect is not understood yet,
and similar diffusivity drops can be observed for the St = 0.01 simulations with the largest domain size.
The second run is (L = 0.1H, r-ϕ, ε0 = 0.5) with one order of magnitude lower hyper-viscosity and -

diffusivity. The previously aSI-dead simulation now was populated with aSI and showed maximum dust
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Figure 5.16: Timeseries of maximum dust-to-gas ratio normalized to the initial dust-to-gas ratio for two cases
of (L = 0.1H, r-ϕ, ε0 = 100) and (L = 0.01H, r-ϕ, ε0 = 0.5). The choice of hyper-viscosity and -diffusivity
strength can suppress the aSI since small modes grow the fastest.

density fluctuations up to a value of 〈εmax/ε0〉t ≈ 20, instead of ≈ 3 from the aSI-dead case. The particle
diffusivity increased by two orders of magnitude, from δx = 1.09 ·10−7 to 1.42 ·10−5.

So from the point of numerical resolution, these two simulations are able to resolve the aSI. But, fastest
grow happens on small wavelengths, see Fig. 2.8 that can get suppressed by hyper-viscosity and -diffusion.
This then can prevent grow of larger modes as well, since the initial perturbation that the simulations
starts with is not strong enough, or because their growth rate is too small, i.e. to small to compete with the
Keplerian shear. One sees when looking into a time evolution of the simulations in the form of a video. First,
small modes grow, then it takes a while until the larger modes fully develop. Lastly, PencilCode users
are recommended to use the mesh based hyper-diffusion and -viscosity, as presented in Yang & Krumholz
(2012), to avoid such consideration.

5.3 Resolution study on aSI at L= 0.1H with St = 0.1 particles

The project above found and characterized the azimuthal Streaming Instability (aSI). Still, the numerical
convergence of these results had to be shown. This was done in a numerical resolution study on the aSI
for St = 0.1 particles, which is presented within this section. The simulations of this resolution study were
setup with L = 0.1H in the r-ϕ plane, and are thus basically identical to the simulations from Sec. 5.2.
Since the focus lies on aSI-active cases, the initial dust-to-gas ratio was limited to the simulations with
ε0 ≥ 1. The used grid resolutions are N = 128, N = 256, and 1260, where the runs with N = 128 are the
original runs from the previous section. Hyper-viscosity and -diffusivity were decreased for each resolution
step accordingly, in order to resolve the very small length scales. The runs with N = 1260 actually state
the highest feasible numerical resolution in 2-d, where still the amount of data produced could be handled
by the output system of the PencilCode. This project was taking the most effective computational time,
all together the simulations ran over 814 days, of course they ran partly in parallel. An overview over the
computational effort is stated in Appendix A. An optimized data output scheme is needed if one wants to
drive this number to even higher values.
Snapshots of the simulation end-states are shown in Fig. 5.18. In this figure, they are compared with

the corresponding original N = 128-type simulation. Not all the simulations with N = 1260 achieved full
saturation, or even if, then not for a longer duration. The reason is that the time stepping gets very small
for L = 0.1H and N = 1260. Still, no significant change in the investigated quantities is to be expected if
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Figure 5.17: Comparison plot for the maximum dust density and radial diffusivity for the resolution study on
the aSI, with St = 0.1. The investigated resolutions are N = 256 and N = 1260 that get compared with the
simulations with N = 128 from Sec. 5.2. The aSI at the highest resolution is found to be able to increasing the
maximum dust-to-gas ratios at lower ε0 by a factor of 2.5. The N = 128 shows only a significant increase for
ε0 = 100, where now zonal flows are found. Also the simulations with ε0 = 30, i.e. the simulation in which
zonal flows appear, is only marginally increasing the maximum dust density by a factor of 2. The radial
particle diffusion on the other hand stays roughly constant. Only on very high numerical resolutions the
diffusivity drops by a factor of 2.

the simulation were continued for any longer.
Due to the higher resolution, the aSI was able to develop smaller modes than before. These modes are

then found to be active even within the larger of the aSI modes. Also, aSI modes are again found to be
active inside the emerging zonal flows and particle clumps, see below. The zonal flows found in the (r-ϕ,
St = 0.1,L = 0.1H, ε0 = 30) simulation from the previous chapter, are active in all the simulations with
higher resolutions. Thus, the zonal flows in the N = 128 simulations are not an effect of a lack in resolution.
With increasing resolution, the zonal flows appear to get finer and compacter. Especially in the azimuthal
direction the particles cluster into regions of smaller extend. As can be seen in Fig. 5.17a, this refinement of
the zonal flows leads to an increase in the maximum occurring dust-to-gas ratio by only a factor of 2 that
also equal for both higher resolutions.
For all simulations with higher resolution, only a marginal increase in the maximum dust-to-gas ratio

could be found. In the lower end of dust-to-gas ratio range, the simulations with N = 1260 produced
actually three times stronger maximum dust concentrations, but every other run produced only an average
increase in the maximum dust concentration by a factor of two. A surprising peak for this value can be
found in the simulation with (N = 256, ε0 = 100). This simulation shows sharp zonal flow features with
a high spatial frequency in radial direction, see Fig. 5.18. The herein present structures were unresolved
in the equivalent N = 128 simulation and thus the simulation now show a sharp increase in the measured
maximum dust density. The parameter set of this simulation marks a transition into a realm where the radial
aSI wavelengths get too small to be resolved, though from a linear stability analysis they remain present, see
Fig. 2.8. If these high dust-to-gas ratios remain of interest in the topic of PPDs and planetesimal formation
is doubtful.
As a reminder, the simulation with ε0 = 30 already showed in the N = 128-run a maximum dust con-

centration enhancement above 100, a ten times higher value than the average. In the herein investigated
simulations with higher resolution, this value now peaks at double the value. A factor two in Fig. 5.17a seem
small, but the absolute value remains to be a very strong increase in the maximum occurring dust density.
Still, for this case, no difference between the N = 256 and N = 1260 simulations is found. Once can conclude
that a higher refined zonal flow is not necessarily increasing the in the found maximum dust-to-gas ratio.
Which stays in contradiction to the found increase in Johansen et al. (2015), which clearly not comes from
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Figure 5.18: St = 0.1 - r-ϕ plane - L= 0.1H: Last snapshots of the dust-to-gas ratio normalized to ε0 (yellow).
Over-densities are coloured in red, particle voids in blue. The aSI mode pattern gets more refined with
increasing numerical resolution. The three zonal flows from Sec. 5.2.9 for ε0 = 30 also emerge at the doubled
resolution. At N = 1260 found are seven zonal flows with high particle concentration that are smaller in both
azimuthal and radial direction than in the runs with coarser resolution. The emerging particle over-densities
show aSI activity inside and signs of erosion, i.e. particle flows in radial outward direction at the azimuthal
back of the heap.



higher resolving the SI, but by their additional stellar and self-gravity.
Fig. 5.17b now compares the measured radial turbulent diffusivity δx with the values measured in the

original N = 128 simulations. Similar to the comparison of the found maximum dust density fluctuations,
one finds the diffusivity to stay also at a constant level. The diffusivity drops at maximum by half its value
from the N = 128 simulation. This means, the associated critical wavelength gets roughly 70 % smaller. For
unknown reasons, the ε = 1000 simulation with N = 256 doubles its diffusion value. Since the N = 1260
simulation did not show a similar behaviour, this value is considered to be an outlier.
Overall, the simulations with N = 128 can be concluded to not be hampered by their coarser resolution.

In contrast, the diffusion and maximum dust density values show no significant resolution dependency. One
might conclude here on the strongest diffusion to be right injected into the particles by the largest aSI modes.
Once these modes are resolved, the measured diffusivity stays fixed for the corresponding value of initial
dust-to-gas ratio. The maximum dust density concentrations on the other hand are slightly affected by the
resolution. Since with higher resolution smaller aSI modes can be resolved. These smaller modes now can
reside within the larger aSI modes and within zonal flows. Since the larger modes already concentrated the
dust, the smaller within them can further increase the dust concentration by a factor of 2 to 3. Hence,
with smaller resolved modes, slightly higher concentrate of dust are possible. Once the in initial dust-to-gas
ratio reaches a level were the aSI shuts down, the dust density fluctuations stay on an identical level for all
resolutions. This can be seen in Fig. 5.17a, where the green line drops towards higher values of ε0 onto a
level, where all resolutions have merely the same maximum occurring dust densities. It can be concluded
that differently as stated in Johansen et al. (2015), which investigates the SI under the influence of stellar
and self-gravity, the pure aSI does not increase its maximum dust-to-gas ratio to arbitrarily high numbers,
when the resolution is increased. Probably the same is true for the SI itself.

5.4 Simulations on planetesimal formation within zonal flows
The goal of this thesis is to investigate a model for self-regulated planetesimal formation right at a turbulent
diffusion threshold. The threshold is found to be given by the strongest turbulent process in the particles,
acting on the scales of planetesimal formation. As seen above, the SI is an excellent candidate to be the
driving source of turbulence in the particles. But, two problems gets often stated on this approach. The first
comes from the lack of the needed high dust-to-gas ratios in typical PPD models. The found dust density
are too low to trigger the SI. A typical approach to overcome this, is by include an additional dynamical
process that locally enriches the dust-to-gas ratio up to values where the SI and dust cloud collapse can
happen. These particle enhancing processes are typically called particle traps, as explained in Sec. 2.2.6.
But, secondly, particle traps are often criticized as being regions of vanishing pressure gradient. Hence, no
SI should be active. This section endeavours this claim from the perspective of available literature, and
by performing additional simulations of 2-d shearing sheet simulations in radial-azimuthal extent, with an
artificially induced zonal flow.
Starting by repeating the main facts on SI. Youdin & Goodman (2004) and Squire & Hopkins (2017)

showed the SI to need a velocity difference between dust and gas. In PPDs this comes from the gas pressure
gradient and its consequence of gas moving with a sub-Keplerian velocity. See Sec. 2.1.3 on the global gas
pressure gradient and Sec. 2.2.4 on the SI. A particle trap now, especially a zonal flow, is characterised by
being a region of locally enhanced and/or reduced gas pressure, see Fig. 2.12. In contrast, for a vortex (Barge
& Sommeria, 1995; Raettig et al., 2015) as a particle trap, this is only partly true as also the cumulative
net forces inside trap particles. Still, a vortex in a PPD is typically anti-cyclonic, i.e. a region of increased
pressure. What is claimed, is that these type of particle traps should have no pressure gradient right at their
centre, where the particles get trapped. Ergo, no SI should be active inside of particle traps.
Now, many authors showed this to be incorrect, and so do the carried out simulations. The SI actually

should be expected to be active within such kind of particle traps, especially in the vicinity of the zero
relative velocity point. First, a local pressure bump is typically local and thus its spatial extent is small
compared to the disk. Consequently, the increase in gas pressure takes place on a smaller radial extent. Plus,
the gas pressure in a trap has to increase by a great amount in order to achieve a zero pressure gradient. The
pressure gradient consequently has to be steep in the vicinity of a particle trap, compare with pressure bump
model in Taki et al. (2016) and Onishi & Sekiya (2017). Zonal flows additionally often show a second region
of depleted gas density, see Dittrich et al. (2013) or Onishi & Sekiya, 2017 with a good visualisation on that.
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active. Or, to be precise, active already at dust-to-gas ratios below unity. Johansen et al. (2007) for example
showed zonal flows that emerge from magnetic coupling of the gas onto an imposed stellar magnetic field.
In this work, the SI was indeed shown to be active within the long-lived zonal flow. The SI even managed to
increase the dust concentration within the trap by another order of magnitude, and planetesimal formation
could be triggered, i.e. in terms of Hill density was reached. A similar approach was done in Raettig et al.
(2015), where a vortex was proven to be a good particle trap as well, and were the authors could show aSI
activity within it.
Auffinger & Laibe (2017) investigated this situation of SI in a pressure bump analytically. They find the

SI to actually have an activity preference inside of zonal flows and go so far to claim SI to only operate inside
of a pressure bump. Their finding in increased activity comes from the differential advection of dust and gas
into the pressure bump, which gives rise of a higher order variant of the SI. Numerical models of particles
inside of a zonal flows tried to argue against this scenario, e.g. Taki et al. (2016) argued that the back
reaction of the particles onto the gas will lead to a dispersing zonal flow. But, the timescales of this dispersal
are much longer than the typical scales of particle trapping, SI growth time, and cloud collapse. They also
did not re-enforce the zonal flow into presence, as done self-consistently in Johansen et al. (2007). A more
optimistic approach was presented in Onishi & Sekiya (2017), who also found that pressure bumps are not
erased by the particle back reaction. Still, this study lacked an clear indication of active SI, if they even
resolve it. Their pressure bumps still reached dust-to-gas ratios well above unity in regions of non-vanishing
pressure gradient, where than directly the self-regulated planetesimal formation would start to operate in.
To settle the debate if the within this section newly found aSI can be active within a pressure bump,

the PencilCode was extended in a small side project by a pressure bump module. It handles the shape
(pb_shape) and amplitude (pb_amplitude) of a pressure bump, and contains an additional force source
acting permanently onto the gas. The shape can be set either as Gaussian or as sine wave function in radial
direction, i.e. symmetric in azimuthal and vertical direction. More pressure bump shapes could be added in
the future, i.e. one that mimics a vortex, or a non-axisymmetric pressure bump might become useful in the
future, as well as vertically correct models of pressure bumps. The radial extend of the pressure bump is set
as being the radial domain size. The initial gas velocity has to be set into a grid-wise equilibrium solution
with this new pressure force. The equilibrium is thus set by

f(ix,iy,iz,iuy) =f(ix,iy,iz,iuy)+
1/(2∗Omega)∗cs20∗beta_glnrho_scaled(1)∗pb_profile(ix−l1 + 1).

Where the scaling of the gas pressure gradient βln(ρ), i.e. the pressure bump shape and amplitude, is
contained in the one-dimensional array pb_profile. This array basically represents a scale-free pressure
bump, as numerically evaluated onto the radial grid space. This then also becomes multiplied with the
global acceleration value from the pressure gradient. The pressure bump acts as a force on the radial gas
acceleration via

df(l1 : l2,m,n, (iux−1)+j) = df(l1 : l2,m,n, (iux−1)+j)−p%cs2∗beta_glnrho_scaled(j)∗pb_profile ,

and thus the pressure bump is mimicked as being a steady forcing onto the gas. One might compare this
with βln(ρ) from Sec. 4.3.
The module was tested in two different ways in 2-d radial-azimuthal simulations with N = 256 grid cells,

10 particles per grid cell and St = 0.1 particles. First, the general ability to trap particles should be showed.
Hence, a simulation containing a very strong zonal flow was evaluated. In this run, a pressure bump
with sinusoidal shape, and peak amplitude of PB0 = 5 was tested on an initial dust-to-gas ratio of ε0 = 0.01.
Fig. 5.19a shows the resulting particle density (left) and azimuthal mean gas velocity (right) of the simulation
end-state. All the dust is concentrated into a small dense ring with dust-to-gas ratio above 102, right at the
inner boundary of the zonal flow, where the gas velocity profile is zero. This is the typical trapping location
of particles, hence the other point with uy = 0 is unstable to perturbations in the dust particle position. This
zonal flow is strong compared with what might be expected in PPDs, compare Onishi & Sekiya (2017) and
Taki et al. (2016), and should be seen as a proof of the numerical concept. The strength of the zonal flow
actually leads to azimuthal gas velocities between −0.3cs ≤ uy ≤ 0.2cs. Were the sub-Keplerian azimuthal
gas velocity in the absence of the pressure bump would be uy = −0.05cs. The simulation showed that no
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particles could escape such a strong trap. In a lower resolution version of this run, the code actually crashed
due to high dust density gradients, with this higher resolution the code was stable for several tens of orbits.
Four more simulations where performed, identical to this run, but with a pressure bump amplitude of

PB0 = 1 and variation in the initial dust-to-gas ratio. The pressure bump amplitude is set such the maximum
azimuthal gas velocity reaches Keplerian velocity in a single point. These pressure bumps are thus weaker
as the in Onishi & Sekiya (2017) and Taki et al. (2016) discussed pressure bumps, but similar in its radial
extent. The four simulations start with initial dust-to-gas ratios of ε0 = 0.01, 0.1, 0.5, and 1.0. The end-
states of the dust density distribution is shown in Fig. 5.19b to Fig. 5.19e, together with azimuthal gas
velocity profile in the beginning (blue) and in the end-state (green). Particle trapping is found to occur
in all cases, but with higher dust load the pressure bump and trapping gets weaker. This comes from the
pressure force that now has to stabilize not only the gas, but the gas-dust mixture coupled via friction. It
might also be that the dust-density distribution was not initialized in an equilibrium solution, as the dust is
initially homogeneously distributed. This could lead to a decrease in gas velocity as regions of the gas profile
now have to support higher dust densities. Still, a pressure bump is visible in Fig. 5.19b and Fig. 5.19d.
Also found is activity of the aSI once a dust-to-gas ratio above unity is reached. The modes that appear are
seem small, but these simulations are much larger in their extent then the simulations from the aSI and SI
parameter study above. Still, aSI modes are found to appear everywhere in the simulations, as can be seen
by the noisy pattern and tilted line patterns. The maximum dust densities reached are max(ρd)≈ 0.15, 0.5,
2.0, and 7.3. It is unclear if and how strongly the SI is active in (c), but in (d) on can see that the SI indeed
is active within the pressure bump. It seems the particle trapping in (b) - (e) is diffuse, i.e. no real trapping
but a slow down in the pressure gradient maxima. But this diffuse particle concentration will also come from
particle diffusion by the SI, but this needs further investigations.
A last experiment was conducted in a pressure bump that is thought to be similar to the one in Taki et al.

(2016) and Onishi & Sekiya (2017), see Fig. 5.19f for the end state. In this run the pressure bump amplitude
was increased to PB0 = 2 and the initial dust-to-gas ratio is set to ε0 = 0.5. One finds this stronger trap to
build up much higher dust density within its pressure gradient maximum, up to a value of ρd ≈ 6, then the
aSI builds up. The aSI manages to further increase the local dust-to-gas ratio in small patches, see Fig. 5.19f,
up to values of ρd ≈ 25. These regions then have dust-to-gas ratios around ≈ 50. The gas density in the runs
(b) - (e) increases locally by up to 3 %, whereas in the last run (f) the gas density increases up to 5 %.
This study needs to be continued in the future. Higher resolutions will activate more SI modes within the

pressure bump and one might test the diffusion limited collapse in such an simulation. For comparison, the
SI study from Sec. 5.2 had a grid resolution of dx= 7.8125 ·10−4, whereas the five zonal flow runs here have
a one order of magnitude coarser resolution. Also, other schemes in manifesting a pressure bump could be
explored, especially the vertical dimension is not resolved in the presented experiments. As one sees, the
gas velocity strongly drops once particle load is onto the pressure gradient. The work by Onishi & Sekiya
(2017) did not show a strong decrease in the gas velocity profile and hence the applied force in the herein
presented experiments might be too weak. Also, these experiments completely lack the vertical extent, and
the dust will concentrate only in a small vertical fraction of the gas pressure bump, hence adding a vertical
direction will alter the presented results completely. Still, shown has been the activity of aSI in a pressure
bump, and maybe one can do better 2-d setups in future that will help to study planetesimal formation in
such environments.
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(a) PB0 = 5, ε0 = 0.01 (b) PB0 = 1, ε0 = 0.01

(c) PB0 = 1, ε0 = 0.1 (d) PB0 = 1, ε0 = 0.5

(e) PB0 = 1, ε0 = 1.0 (f) PB0 = 2, ε0 = 0.5

Figure 5.19: End states of particle distribution (left box) and azimuthal mean gas velocity < uy − u(0)
y >y

(right box) in zonal flow simulations. The azimuthal mean gas velocity is plotted as initialized (blue) and
of the end-state (green) that corresponds to the dust density snapshot to the left. (a) resembles a test run
with PB0 = 5 a very high initial pressure bump amplitude, where all particles get trapped into a narrow band
in the pressure gradient minimum. Fig. 5.19b has the same initial parameters, but a lower pressure bump
amplitude, PB0 = 1. The amplitude is chosen such that there is a single point where the gas reaches Keplerian
velocity. Still, this is sufficient to trap, i.e. slow down, the particle drift and dust density reach values of up to
εmax/ε0 = 16. The simulations Fig. 5.19c to Fig. 5.19e are identical but have higher dust load ε0. Maximum
enhancements of the dust-to-gas ratio are 5, 5, and 7. It is unclear how much SI is visible in Fig. 5.19c, since
by that numbers the maximum occurring dust-to-gas ratio is 0.5 and as shown in Sec. 5.2 this is insufficient to
trigger the SI. Starting with run Fig. 5.19d, first signs of the SI are visible, specially also within the pressure
bump. The pressure bump itself suffers from the additional dust load, as the azimuthal gas velocity profile
deviates from the initial profile (blue). The particles manage to shift the gas velocity profile and reduce the
pressure bump amplitude.
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5.5 Discussion on the streaming instability in simulations
In the past, only very few works investigated the SI in its pure form, as most of the simulations in literature
took sedimentation and self-gravity into account. The main work in the field of numerical SI thus remains
to be Johansen & Youdin (2007). In their paper, they study the SI in 2-d and 3-d simulations, but no
dedicated investigation in the radial-azimuthal plane was performed. The herein this thesis presented aSI
hence remained undiscovered. In order to numerically investigate the relation between SI and aSI, one should
perform in future additional simulations. One possibility would be SI simulations in r-z and then slowly
superimpose a shear in z direction, until the situations a situation is reached which resembles the aSI, i.e.
where the Keplerian shear parameter is q = 3/2. Analytically investigating the aSI will be difficult, since the
Keplerian shear induces a time dependency that is hard to handle, see Bühler (2016). Wavenumbers in radial
direction will get transformed into wavenumbers in azimuthal direction, as the Keplerian shear tilts them
over time. As been found by measuring the growth rates, aSI modes show growth also on timescales that are
slow compared with a shear timescale. Thus, a good aSI prescription and a verification of its similarity to
the SI remains to be a future work.
As said, most recent works on the SI investigated only situations with active gravity. This explains why

many works on the SI deal with dust disk surface densities, instead of dust volume densities, e.g. Carrera
et al. (2015) or Yang et al. (2016). The work by Carrera et al. (2015) presented a parameter study that
targeted for non-transient particle clumping as an indicator for SI-activity. But, one has to be careful with
calling this increase of dust concentration to be the effect of the SIsolely. Because, without frictional back
reaction of the dust onto the gas, the old picture of Safronov (1972) and Goldreich & Ward (1973) would
be correct. It is the turbulent diffusivity of the SI, or the Kelvin Helmholtz instability, see Bai & Stone
(2010a) for a comparison of both effects that is actually prohibiting sedimentation and fragmentation. In
this picture SI actually prohibits fragmentation. To which degree the measured dust density fluctuations
of the aSI/SI contribute to the measured fragmentation on larger scales, remains to be shown. At least the
simulations carried out within this chapter showed the SI only to able to concentrate dust up to a factor
of ≈ 10. The performed zonal flow simulations then showed only in combination with an assisting zonal
flow, total dust-to-gas ratio enhancements can get greater than 10. Where each, the zonal flow and the aSI
increased the dust-to-gas ratio by a factor of . 10.
From the study of the aSI and SI within this chapter, one might state a criterion on when the non-linear

instability is active, and when not. If the instability is at work, one finds two features. First, the dust
concentration rises, and secondly the particles get diffused by the turbulence. Other combinations of these
effects to not indicate the non-linear instability to be at work. It can be summarized as in Tab. 5.2.
Latest work by Squire & Hopkins (2017) need to be mentioned, as they found a new way in describing the

SI as part of a Resonant Drag Instability (RDI). In which instability, dust can get unstable in any suspended
media with a relative motion, if this media allows for undamped oscillatory modes. The RDI can be used
to separate the SI into two instabilities, one acting at low dust-to-gas ratios and one at high. The RDI also
links the SI to the settling instability, where relative motions between dust and gas are induced by settling
of the dust to the disk mid-plane and convective motions. But he settling instability has been found to have
larger growth rates by an order of magnitude, suggesting the SI to drive the dynamics in collapsing particle
clouds. What might be important in the following and upcoming investigations of particle cloud collapse.

ε enhancement particle diffusion possible origin
yes yes (azimuthal) streaming instability
no yes effects of buoyancy / particle not initialized in equilibrium
yes no linear streaming instability / traffic jam / zonal flow
no no homogeneous disk / no particle feedback

Table 5.2: To find out if the non-linear SI is active, is not always an easy task. Some performed simulations
show particle diffusivity, but no dust density enhancements. These show effects of buoyancy by the additional
dust load fluctuations, or particles not initialized in perfect local equilibrium. Dust density enhancements
without particle diffusion should only exist in the case of a linear SI, or dust trapping, i.e. traffic jam or zonal
flows.
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6 3-d Streaming Instability at High Dust-to-Gas Ratios and
on Small Scales

The numerical project from the previous chapter studied the SI together with the newly found aSI in 2-d
simulations. This chapter now takes also the third dimension into account, and investigates the SI in 3-d
simulations for St = 0.1 and St = 0.01 particles. The investigated length scales are the same as before, i.e.
the simulation domain sizes are altered between L = 0.1H, L = 0.01H, and L = 0.001H, and the numerical
resolution is set to N = 1283. Already by these configurations, the computational effort and the storage
space needed are extreme, specially since a high temporal resolution is required in order to be able to extract
the particle diffusion over time. In total, the in the following presented simulations take up over 23 TB on
disk space. Besides high temporal resolution, another reason for this high number in data consumption
comes from 128 times higher number of particles, which come from the additional third dimension. As
done in the 2-d simulations, each grid cell has to be initialised with 10 particles. Hence, a total number
of Npar = 20971520 particles need to be evolved per run, instead of the Npar = 163840 particles in the 2-d
equivalent simlations. See Appendix A for an overview on the data and CPU hour consumption of all the
performed projects.
To keep this 3-d project reasonable, the range of investigated dust-to-gas ratios got limited down onto

values greater than unity. Most of the analysis from the 2-d study were performed on this 3-d simulations,
too. But, the computational afford sets its limits, so mainly the important quantities are investigates, such
as fluctuations in the particle density εmax/ε0 and particle diffusivity in radial δx and vertical δz direction.
The definitions for the presented quantities can be found in the previous chapter and will not be repeated.
If one wants to compare the found values, the only comparison found in the literature is still the work of
Johansen & Youdin (2007). In their work, they also performed two 3-d simulations with St = 0.1 particles,
but on much larger domain sizes of L= 2H and L= 40H. Still, they will be used as reference for comparing
the herein this thesis found results. Specially for St = 0.01 particles reference values are missing, hence these
values get compared with the St = 0.1 run values, too. The performed parameter study represents a corner
stone for selecting initial parameters for the 3-d particle cloud collapse simulations in Sec. 7.6.

6.1 Dust density fluctuations
The 3-d SI is found to induce dust density fluctuations with an amplitude very similar to the values of the
2-d aSI/SI, see Fig. 6.1 and compare it with Fig. 5.1. Maximum occurring dust density fluctuations in this
3-d SI simulations with St = 0.1 particles reach the typical values as measured in the 2-d aSI/SI simulations,
i.e. the typical value of εmax/ε0 ≈ 10 is reached in 3-d, too. In strong contrast, the 3-d SI for St = 0.01 shows
only very limited activity. The typical value of εmax/ε0 ≈ 10 is only reached in the simulations on the very
smallest scales and only for ε0-values around unity. For increasing dust-to-gas ratio, the 3-d SI with St = 0.1
is found to be almost identical in its ability to locally concentrate dust, as the aSI run with the same Stokes
number. For St = 0.01 particles the 3-d SI is only found to be less active and does not compare in activity
to the 2-d aSI/SI. Still, 3-d SI-activity has been found.
The simulations with St = 0.1 again show zonal flow features. They appear now not only for ε0 = 30, but

now also for ε0 = 10, see Fig. 6.3. This figure shows on the left a top view, i.e. slice through the computational
domain volume, of the simulation end states, and on the right the corresponding front view. The observed
zonal flows are very similar to the ones found in the 2-d simulations, compare with Fig. 5.2a. But, whereas
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Figure 6.1: Values of the maximum dust density fluctuations and their standard deviation as error bars.
The 3-d SI shows a comparable activity as in the 2-d cases from the previous chapter. For St = 0.1 the 3-d
SI basically everywhere produced dust density fluctuations that reach up to dust density values of ≈ 10,
so identical to the 2-d case. For this Stokes number again zonal flows appear, but now for ε0 = 10 and 30.
These zonal flows seem to be more efficient in concentrating dust, since values of εmax/ε0 ≈ 400 were reached.
The picture for St = 0.01 again shows merely no SI-activity. Only on the smallest scales and for the lowest
investigated dust-to-gas ratios activity of the SI could be found. The bump at ε0 = 30 does not come from the
SI, see Fig. 6.3 and text on the snapshots below.

in the 2-d case the maximum dust densities were found to be around ε= 100, in the 3-d simulations now the
zonal flows were able to concentrate dust up to a value of ε= 400. This might indicate that these modes of
the 3-d SI are more efficient in concentrating dust. If the observed behaviour of SI inside of SI induced zonal
flows is similar to the situation from Sec. 5.4, where SI was found inside an artificial zonal flow, needs to be
investigated. One might further speculate here that planetesimal formation is linked to the appearance of
these modes. So far, this could not be proven in any collapse simulation. Specially the collapse simulations
from the next chapter have a initial dust-to-gas ratio well below the values for triggering zonal flows.
For the 3-d SI with St = 0.01, the maximum occurring dust densities measured is plotted in Fig. 6.1b. Its

values are almost throughout the whole parameter space below εmax/ε0 = 10. As can be seen in Fig. 6.4,
only a very small part of the investigated parameter range is actually populated with the 3-d SI. Hence,
the bump at ε0 = 100 in all three curves of Fig. 6.1b does not originate from the SI. Also, if the 3-d SI for
St = 0.01 shows activity for initial dust-to-gas ratios below ε0 ≤ 1 needs to be investigated in further studies,
as they are out of the scope of this analysis. If the mode activity at low dust-to-gas ratios are of any interest
for the final collapse of a particle cloud is doubtful. Still, the rise of the maximum dust-to-gas ratio around
unity suggests that SI-activity should be present. Maybe the instability drives turbulent dynamics on the
very small scales at dust-to-gas ratios well before planetesimal formation, but how much this influences the
overall dust dynamics needs to be studied in future.

6.2 Growth rates
The measured growth rates s are not flat over the initial dust-to-gas ratio, as was it the case in the 2-d
simulations. Meaning, now a dependency on the initial dust-to-gas ratio is evident for the 3-d SI. On the
largest investigated scale, the simulations with St = 0.1, and initial dust-to-gas ratios of ε0 = 1 and 3 show
a growth rate of around s ≈ 1. With increasing initial dust-to-gas ratio, the simulations show zonal flows
emerging. In these two simulations with ε0 = 10 and 30 the growth rates decreased by more than one order
of magnitude, to values between s= 10−1 and 2 ·10−2.

Actually, on all three domain sizes the growth rate at ε0 = 1 is s≈ 1. But, on the intermediate (orange) and
the smallest (green) scales, the growth rate rises with increasing initial dust-to-gas ratio, whereas decreased
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Figure 6.2: Timeseries of the maximum occurring dust-to-gas ratio in the 3-d SI simulations, with St = 0.1 and
ε0 = 10. The time frame in this figure is limited to the growth phase of the instability. In contrast to the 2-d
simulations, compare with Fig. 5.4, the growth on the smallest scales (green) is now much faster than on the
intermediate scale (orange). On the largest scale, the growth of the SI is very slow. Both, the smaller and the
intermediate sizes simulation converge in maximum dust-to-gas ratio to the typical value of εmax/ε0 ≈ 10. The
continuation of this plot can be found in Appendix C.

on the largest scale. On the intermediate scale, the growth rate is on average s ≈ 1.5. On the smallest
scales the average growth rate is slightly higher with s ≈ 5. For comparison, in the 2-d aSI/SI simulations
the growth rates on the intermediate and smallest scales where merely similar. Now, in 3-d the growth on
the smaller scales happens faster. As said, growth rates are also in general higher, maybe because both
instabilities, the aSI and the SI, can grow and enhance each other mutually.
An example for the growth of the maximum dust-to-gas ratio is shown in Fig. 6.2 for the simulation with

ε0 = 30. It shows how slowly the modes grow on the largest scale (blue). It also shows the faster growing
of modes on the smallest scales (green), compared with the intermediate scale (orange). The full set of all
timeseries can be found in Appendix C. They show the zonal flows to emerge after t= 40Torb (ε0 = 10) and
after t= 30Torb (ε0 = 30). Thus zonal flows get faster triggered with higher total dust density.

6.3 End-state snapshots
Snapshots of the simulation end-states are shown in Fig. 6.3 and Fig. 6.4. In 3-d simulations found is the
best way for visually inspect the 3-d SI mode pattern is in the form of slices in r-ϕ (left image collection)
and r-z (right image collection) direction through the simulation domain. A 3-d volumetric visualisation is
picturesque, but not helpful in understanding the dynamics and mode structure. This type of visualization
becomes more helpful when if comes to planetesimal formation and will be used in the next chapter on cloud
collapse simulations.
The 3-d simulations with St = 0.1 find significant SI activity throughout the parameter space. The only

exception is the simulation with ε0 = 100 on the largest scale, as it shows to be dynamically dead. But for
the same initial dust-to-gas ratio is SI remains active on the smaller scales. For St = 0.01 the final picture is
different, see Fig. 6.4. It is also different to what was found previously in 2-d simulations, as there remains
only a single hot-spot of SI-activity at around ε0 ≈ 1, and this on the very smallest scales. But, every other
spot of the parameter space is only weakly SI-active or even dynamically dead.
Comparing the two slice orientations, one sees the St = 0.1 particles clearly the effect of the Keplerian

shear, as the modes in r-ϕ are strongly tilted. From visual inspection, the strength of this tilt seem to
be a function of both ε0 and domain size. The SI mode pattern also seems to have larger modes active in
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Figure 6.3: Slices from the last snapshots of the 3-d SI simulations with St = 0.1. Shown is the dust-to-gas
ratio, normalized to ε0 (yellow). Over-densities are coloured in red, particle voids in blue. The pattern of
the SI can be found in almost every simulation of that parameter space. Besides the simulations with the
zonal flows, the found particle concentrations are the highest on the intermediate and smallest scales. The
zonal flows appear only on the largest scales, but in contrast to the 2-d SI simulations now also for ε0 = 10.
The zonal flows in 3-d also manage to four times higher concentrate the dust into small patches. The zonal
flow is a 2-d flow, i.e. a planar flow in vertical-azimuthal direction. This plane has no tilt with respect to the
Keplerian shear, but the SI mode pattern itself seems to show a tilt in r-ϕ plane that angle depends on ε0 and
the simulation domain size. Numerical resolution of all runs is N = 1283, and the simulations start with 10
particles per grid cell.

r-ϕ, than in r-z. And as similar to the 2-d simulations, the SI mode pattern gets smaller with increasing
dust-to-gas ratio.
For ε0 = 10 and 30, the largest simulations show also the appearing of zonal flows. They are now in 3-d

planar in ϕ-z. Hence, the representation in 3-d seem to be the superposition of the patterns from the aSI and
the SI, suggesting the dominant radial wavenumbers in both cases could be identical, compare with Fig. 5.2.
The zonal flows appear to not be homogeneous in either the directions, as particle clumps of significant
higher density are visible. Also, smaller modes of the SI are found to be active within them. As in 2-d, these
zonal flows appear to concentrate particle in azimuthal and vertical patches of very high dust concentration.
In contrast to the 2-d simulations, these patches achieve in 3-d four times higher values. The zonal flows in
the 3-d simulation with ε0 = 10 were not present in the 2-d aSI equivalent run, but in the 2-d SI simulation.
If the simulation with ε0 = 3 shows a first sign of a zonal flow is unclear from this analysis, but it would not
be surprising since again in 2-d SI a large zonal flow was visible for this configuration.
It might be that the observed zonal flows come from the two allowed regimes of SI to grow in, see Squire

& Hopkins (2017) for further reading. As can be seen in Fig. 2.8g, which shows the analytic growth rates
for the SI for kx and kz at ε0 = 30, the SI has two major branches were the instability is allowed to grow.
The one branch has very low wavenumbers in radial and in vertical direction. These SI modes thus have
large wavelengths and might thus be the ones inducing the formation of zonal flows. If this is true, it would
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Figure 6.4: Slices from the last snapshots of the 3-d SI simulations with St = 0.01. Shown is the dust-to-gas
ratio, normalized to ε0 (yellow). Over-densities are coloured in red, particle voids in blue. The pattern of the
SI can only be found in the simulations with low initial dust-to-gas ratio around unity, and only on the small
and intermediate scales. Though this is similar to the 2-d simulations, still the 3-d SI at this Stokes number
seems to be much less present and if, weaker. Modes that appear in r-ϕ does not show a strong tilt as the
St = 0.1 simulation did. The mode pattern in r-ϕ and r-z looks very similar, i.e. not spatial preference can be
found. The found particle concentrations are the highest in the run with ε0 = 1 and L = 0.001H. The result
suggests for this Stokes number an 3-d SIactive range for ε0 < 1, as in the 2-d equivalent from the previous
chapter. Numerical resolution of all runs is N = 1283, and the simulations start with 10 particles per grid cell.
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explain why the zonal flows remain populated with smaller SI modes, as the smaller modes remain active
even at very high dust-to-gas ratios. Even in situations were one would expect the SI to die out as the
particle density strongly dominate over the gas density, the small mode SI can operate, and this is right
the one active in the zonal flows from the large scale SI. This would explain why the zonal flows are that
regularly spaces, as this resembles the fastest growing mode of the large-scale SI regime. Further, it might
be that these modes are identical to the ones producing zonal flows in the 2-d simulations, but since an
analytic solution for the 3-d SI is not derived yes, this remains speculation from the obtained data. But, if
this is shown to be true, the second branch with small wavelengths, i.e. high wavenumber, state the realm
from which the actively turbulent SI modes stem from that are suggested to stall particle cloud collapse.
As said, for the St = 0.01 particles the parameter study shows the 3-d SI to mainly operate on the smallest

scales. This result is not too surprising from the previous 2-d experiments. Still, the 3-d SI at St = 0.01
seems to be even weaker than its 2-d equivalent. The peak of activity is reached at dust-to-gas ratios around
unity, see the visualisation of the slice data in Fig. 6.4. On the intermediate scale, the SI modes are barely
visible. But, they are present, as can be seen in the orange line of Fig. 6.1b and in the particle diffusion,
see below. The achieved maximum dust densities on this intermediate scales are low, though, with values
of around εmax/ε0 ≈ 4. Going to initial dust-to-gas ratios around 100, the maximum dust-to-gas ratios that
are measured surprisingly increase again on all scales, but the simulation do not show any signs of SI mode
patterns. From manually going through the data it can be said that these high particle concentrations come
from very few dense isolated blobs that slowly form, see the timeseries of the simulations in Appendix C.
Since this effect is present on all scales, it could be a numerical issue that is observed. A further investigation
on the underlying process is recommended, before these values are used in any physical sense.

6.4 Particle diffusion
The particle diffusion is measured by using the prescription from Eq. (2.42). As described in Sec. 2.2.5 this
treats the turbulence driven particle movement as a random walk-like process. The diffusion coefficient can
be calculated from the spreading of the particle travel distance over time. The measured diffusion strength
is expressed in terms of disk units, see Eq. (2.43). Fig. 6.5 presents the particle diffusion strength for both
Stokes numbers (columns), and separately for radial and vertical diffusion (rows). The measured values are
again compared with the values found by Johansen & Youdin (2007), where there are no values available for
St = 0.01 to compare to, hence the same reference values as for St = 0.1 particles are plotted. The diffusion
measured in the simulation with St = 0.1, L = 0.1 (blue line), and ε0 = 1.0 is right the value found by
Johansen & Youdin (2007), though their simulation domain size is one order of magnitude larger. Hence,
the driving 3-d SI modes reside on the scales covered by the large simulation of this parameter study and no
stronger turbulent diffusion should be expected.
The diffusion values show the SI-active simulations to have significant particle diffusion in radial and

vertical direction. For comparison, the 2-d simulations showed a maximum radial particle diffusion of
δx ≈ 10−4. In the 3-d simulations the maximum radial diffusion is slightly higher than δx ≈ 10−5. Comparing
the maximum dust-density fluctuations for the St = 0.01 simulations on the intermediate and smallest scales,
one finds only very small dust-density fluctuations on the intermediate scale. But, the particle diffusivity on
the intermediate scale is still one order of magnitude larger than the value on the smallest scale. So, even if
no strong SI is visible, the underlying particle diffusion can act stronger than one might expect.
The slopes of the measured particle diffusion are as follows. For St = 0.1, the radial diffusivity drops with a

slope of δx ∼ ε0.59 . . .ε1.25, and the vertical diffusivity with δz ∼ ε0.32 . . .ε0.83. The slope in the radial diffusion
for the St = 0.01 simulation is δx ∼ ε0.83 . . .ε0.91, and the vertical diffusivity drops with δz ∼ ε0.56 . . .ε0.91.
For this estimate, only values from simulations with clear signs of SI were taken into account and outliers
are ignored.
Fig. 6.6 now compares the measured radial diffusivity with the azimuthal diffusivity. Interesting to note,

the simulations with active 3-d SI have around one order of magnitude larger radial diffusion than in vertical
direction. For initial dust-to-gas ratios around unity, the 3-d SI on the smallest scales is even two orders of
magnitude larger in radial, then in vertical direction. A consequence arises from that observation for the
picture of diffusion limited collapse. The vertical direction will collapse faster than the radial direction, which
might lead to interesting phenomena considering cloud collapse in 3-d, see Sec. 7.6. It has to be investigated
how much stronger a radial diffusivity has to be, in order to compensate for the vertical collapse. But,
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Figure 6.5: Radial (upper row) and vertical (lower row) particle diffusion for the SI with St = 0.1 (left column)
and St = 0.01 (right column) particles. For comparison plotted in grey circles (2D) and triangle (3D) are the
diffusivities for St = 0.1 particles and L≥ 2H, from JY07 Tab. 3. This is also the case for the right plot, where
the grey dots and triangle mark the same comparison values as in the left column, for St = 0.1 particles, since
no comparison value for this smaller Stokes number is available in the literature.
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Figure 6.6: Comparison of radial with vertical particle diffusion from the 3-d SI runs. Left figure shows the
comparison for St = 0.1, and right figure the comparison for St = 0.01. From these plots one can clearly see the
radial diffusion to be much stronger than the vertical diffusion. Specially when it comes down to the smaller
scales, the radial diffusion can be 10 to 100 times higher. The blue curve for the smaller Stokes number
particles can be ignored, since in these simulations no SI-activity is found. The homogeneity in the mode
pattern of the SI with St = 0.01 particles that could be found visually in Fig. 6.4, does not show up in the
comparison of the diffusivity. The radial diffusivity is found around one order of magnitude larger throughout
the parameter space.

Figure 6.7: Comparison of 3-d SI with 2-d SI radial particle diffusion for St = 0.1 particles. The 2-d data is
taken from the aSI simulations. On average, the diffusion is larger in 2-d than in 3-d simulations, by almost
one order of magnitude. Still, some of the 3-d SI simulations at the smallest scales (green), and the one with
the zonal flows on the largest scales (blue), show almost similar values in the strength of the particle diffusion.
From this diagram, one can further find the slope of the decrease in the diffusion on the intermediate scales
(orange) are equal in the 2-d and 3-d SI.
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this comparison shall not neglect the azimuthal direction. Though in the presented parameter studies the
azimuthal diffusion could not be measured, a contribution in this direction is given. The vertical collapse
thus needs to actually be faster than the combined radial and azimuthal diffusion. A sophisticated model
for cloud collapse is needed that accounts for all effects present at the cloud collapse state.
Lastly, a comparison of the radial particle diffusion strength from the 3-d simulations with the diffusion

obtained previously in the 2-d aSI simulations, is presented in Fig. 6.7. One finds the diffusion in 3-d to be
almost one order of magnitude smaller than in the 2-d aSI. Only on the smallest scales with initial dust-to-gas
ratio around unity, and in the simulations with zonal flows, the diffusion in both simulations is almost equal.
Hence, when using the diffusion values to estimate planetesimal sizes, the difference in the planetesimal size
in 2-d and 3-d should be a factor of ≈ 2. Which is still okay, since the final planetesimal size also depends
on the effectiveness of the collapse, i.e. factor q in Eq. (3.56), which probably will differ in 2-d and 3-d.

6.5 Critical length scales from the 3-d streaming instability
At very last, the diffusion values can be used to derive critical length scales for particle cloud collapse, by
using Eq. (3.40). As with the planetesimal size, the critical length scale also scales with lc ∼

√
δ and thus

the critical length scale are not much different in 3-d compared with 2-d. Still, only very few parameter sets
show to have critical length scales larger than the simulation domain size. This is crucial, as in the following
of this thesis collapse simulations shall verify the derived diffusion limited collapse criterion. The scheme to

(a) St = 0.1 - lc,x (b) St = 0.01 - lc,x

(c) St = 0.1 - lc,z (d) St = 0.01 - lc,z

Figure 6.8: Critical length scales for particle cloud collapse as estimated by using Eq. (3.40) and the measured
diffusion values for the 3-d SI.
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do so, is by altering the simulation domain size around the critical collapse length scale. Only if the critical
length scale is resolved within the simulation domain, collapse is allowed. Hence, the 2-d aSI simulations
allowed using initial dust-to-gas ratios of ε0 = 3. For collapse simulations in 3-d, it is probably saver to start
with a lower value as initial dust-to-gas ratio. Later studies then can try to find the limits on the feasible
parameters for such an approach.
It is interesting to note the slope of the critical length scale to be rather flat, or not steeper than unity.

Hence, when interpreting the simulation domain size L as the particle cloud diameter, then there will allways
be a critical size where the cloud becomes smaller than its critical wave length just from the diffusion within
it. But, this interpretation is missleading, as such a particle cloud will be embedded in a larger cloud of
lower dust-to-gas ratio and thus stronger turbulence. The diffusion felt by the particles in such an embedded
cloud is not investigated herein, but the presented values state a minimum critical length scale.
With this, the project on investigating the SI at dust-to-gas ratios well above unity is completed and one

can go over to collapse simulations that incorporate these findings.
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7 Simulations on Diffusion Limited Collapse

The efforts made throughout this thesis converge in the following chapter. This chapter investigates the
diffusion limited collapse criterion from Eq. (3.40) in 2-d r-ϕ and 3-d simulations. The way of testing the
diffusion limited particle cloud collapse criterion is very similar to what has been done to validate the Jeans
criterion for star formation, see the approaches in Bodenheimer (1994) and Truelove et al. (1997). In their
work, they vary the simulation domain size around the critical Jeans length scale. A derivation of this length
criterion can be found in Sec. 3.1.1. By altering the domain size, one alters the effective gas cloud size. The
prediction on the simulatoin is thus, that the Jeans criterion predicts collapse to happen once the critical
length scale is resolved within the simulation domain. Hence, one should find collapse to occur once the
simulation domain size exceeds the critical Jeans scale, i.e. once the critical length scales is resolved. Smaller
simulations should not show any kind of fragmentation.
The herein this project used scheme to verify the diffusion limited critical length scale lc for particle cloud

collapse is identical. One starts with choosing a computational feasible initial parameter set of particle
Stokes number and initial dust-to-gas ratio. The previously performed parameter study from Chapter 5
showed which of these showed the critical length scale to be resolvable in the simulation domain. The chosen
parameter set should also allow the simulation to be computed within a reasonable time frame, i.e. it is
suggestive that the domain size should not undergo a size of L ≥ 0.001. From this parameter set, a series
of simulations is set up with domain sizes around the predicted value for lc, estimated from the diffusion
values from Sec. 5.2. These simulations than have to run into SI saturation, in order to have the turbulent
particle diffusion and the maximum density fluctuations fully developed. Then, particle self-gravity can be
switched on, with a value at Hill density, i.e. of f = 1. Since, the cloud density in code units is expressed
via Ĝ, one has to alter the gravitational code constant to a value that represents Hill density, see Eq. (4.7).
Now, gravity can compete with turbulent diffusion from the SI and collapse should occur as stated by the
prediction, if done right. Note that in the following the term SI is also used as a synonym for aSI. The
following work is based on Klahr & Schreiber (2015) and Klahr et al. (2018) (in prep.), but extended and
reworked to the presented form.

7.1 Small or large clump? The proper regime for gravitational collapse
Two different Stokes numbers are separately investigated in this collapse study project: St = 0.1 and 0.01.
These are values that are expected to be the largest sizes of grains occurring in PPDs (Birnstiel et al., 2010)
and values were the turbulent diffusion strength is known from Sec. 5. As St< 1 particles couple comparable
fast onto the gas, one might ask, if in the situation of a collapsing particle cloud with dust-to-gas ratio well
above unity would not drag along the underlying gas. If so, one should investigate a suspension of dust and
gas that is collapsing and not treat dust as particles. In the estimate for the collapse time in Sec. 3.2 the gas
is assumed to be static and hence particle in a suspension with the gas would not follow the collapse length
prediction. This could further be underlined by the fact of contraction time of St = 0.01 particles cloud is
significantly larger than for St = 0.1 particles:

τc (St = 0.01)≈ 11.71Ω−1 ≈ 1.86Torb

τc (St = 0.1)≈ 1.75Ω−1 ≈ 0.28Torb
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Shi & Chiang (2013) discusses a gravitational instability criterion for such small particles that are tightly
embedded into the gas. They find two cases. One, in which the sound crossing time across a self-gravitating
particle cloud is longer than the stopping time (τsound > τs) between particles and gas, and a second case in
which it is shorter. In the first case, the mixture behaves like a suspension and the clump gets stabilised by
the gas cloud internal pressure gradient as the cloud is getting compressed. In this case, one has to consider
the stability of the gas-dust mixture, see also Cuzzi et al. (2008). In the other extreme case, dubbed as
’small clump’ regime, when the stopping time is longer than the sound crossing time (τsound < τs), one can
neglect the effect of the gas, as its not getting compressed.
Now, considering particles with a Stokes number of St= 0.1 and typical dust-to-gas ratios of ε= 3−100,

then for collapse the sound crossing distance can be evaluated via

λ=H
St√
ε
> 10−2H ,

see Eq. (39) in Shi & Chiang (2013). This distance is much larger than the clumps consider in the following
project, as the clumps are found to have lc ≈ 4 ·10−3 H, see below. Consequently, the gas can be treated as
incompressible in the following considerations. In the case for the smaller particles (St= 0.01), one actually
enters the large clump regime, see further analysis on the simulations in Sec. 7.4.2, as in this case the gas
is found to get slightly compressed during the collapse of the particle cloud. Nevertheless, it will be shown
that the diffusion limited collapse criterion still holds, though it is derived only for the ’small clump’ regime.

7.2 Numerical model
The numerical model is very similar to the model used in the parameter study of the aSI/SI in Chapter 5. The
difference is that now gravity is allowed, but only self-gravity. This is justified, since the stellar gravity only
is a tenth of the strength of the self-gravity of a dust layer at Hill density, revisit Sec. 4.4.1. As a numerical
feasible, and physically speaking not completely off value, the initial dust-to-gas ratio is chosen to be ε0 = 3.
The gravitational constant right at Hill density, one gets from Eq. (4.7) in code units as Ĝ = 0.2387. The
collapse study is performed in 2-d simulations with St = 0.1 and 0.01, as described above. In the thereafter
presented 3-d simulations use St = 0.1 particles. In the 3-d study, not the simulation domain size but the
gravitational constant was altered, as this also alters the critical length scale. The details are described in
Sec. 7.6.

7.3 Effects of particle collisions during the collapse
The whole project is performed without particle-particle collisions. Firstly, this project shall show the basic
principle of the critical length scale criterion to be valid. Secondly, taking collisions into account would state
a need on specifying the exact particle size, and this would restrict the results onto a certain distance from the
central star only. Lastly, the initial chosen parameters, e.g. ε0, where taken from the aSI/SI parameter study
from Chapter 5 which also neglected collisions. Hence, taking now collisions into account would not only
undermine the goal to be achieved, but also would change the resulting particle diffusion and the collapse
simulations would not be comparable to that previous result.
Still, if this decision to neglect particle collisions is justified, can be verified by estimating the collisional

timescale τcoll and compare it to the collapse timescale from Sec. 3.2. If the collapse is fast enough, collisions
will not play a driving roll. The collision time per particle is given by the particle its mean-free-path and
the particle bulk rms-velocity via

τcoll = λfree

vrms
.

The mean-free-path is a function of particle number density n, of the particle size a and of their combined
cross section σ = 4πa2. From this, the mean-free-path can be expressed as

λfree = 1
4πna2 .
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The particle number density n has to be calculated from the particle mass density, which is ρd = fρHill. The
particle mass density herein gets again expressed in multiples f of the Hill density. With this, the number
density becomes

n= fρHill
4
3πa

3ρ0
,

and thus the mean-free-path is expressed by

λfree = a

3f
ρ0
ρHill

.

This could be explicitly calculated if only the actual particle size would be known. As explained in the
derivation of the Stokes number, this is only possible if one would define all the physical parameters entering
the relation between Stokes number and particle size, i.e. stellar mass, distance to the star, density and gas
temperature and lastly the porosity of the dust (Krijt et al., 2014). But, as one knows that the particle mass
density equals the Hill density, or multiples f of it, plus the particle Stokes number was set to be St = 0.1,
one can further simplify things. Starting with the equation for friction in the Epstein regime, see Eq. (2.34),
of

St = τsΩ = aρ•Ω
ρgcs

,

this directly gives a particle size

a= HStρHill

ρintε
.

Where the gas density is expressed in terms of Hill density per dust-to-gas ratio ε. Combining both expres-
sions results in:

λfree = HSt
3fε (7.1)

With the chosen run parameters of ε= 3 and St = 0.1, this relates to

λfree = 0.01
f

H. (7.2)

Consequently, for all simulations, inside their initial homogeneous particle distribution, the mean-free-path is
larger than the smallest expected critical length of lc ' 0.004H. Within late stage particle overdensities with
f ≥ 10 this now changes to λfree ≥ 0.001H. Still, the length scale of the overdensity with size l ≈ 0.0001H is
smaller.
One can conclude, for all clumps found in the following simulations the mean-free-path is equal to or larger

than the clump size itself. Once the mean-free-path gets comparable to the clump size, and demanding the
particle rms-speed to stay lower than the collapse velocity of the clump, than the collision timescale will still
be longer as the collapse timescale.
It is therefore safe to neglect collisions in the present work. In follow up studies, one will have to treat

them correctly in order to get a better understanding of the collision processes on the final outcome of
planetesimals. Collisions could be responsible for e.g. multiplicity, which is the fraction of bound multi-
planetesimal systems, or the spin rate, or the dust grain size structure of the final planetesimal. This
derivation here is equivalent to the discussion by Youdin & Lithwick (2007).

7.4 Collapse simulations in 2-d
In two studies of 2-d simulations, the collapse of a particle cloud to a planetesimal is investigates and
compared with the critical collapse length scale lc from Eq. (3.40). The particle cloud size is equivalent
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Name L[H] dx,y[H] η Tmax,orb

Ae3L002 0.02 7.81e−5 0.05 2.82
Ae3L001 0.01 3.91e−5 0.05 3.67
Ae3L0005 0.005 1.95e−5 0.05 4.24
Ae3L0005lp 0.005 1.95e−5 0.025 13.06
Ae3L0005hp 0.005 1.95e−5 0.1 32.78
Ae3L0003 0.003 1.17e−5 0.05 10.03
Ae3L0003lp 0.003 1.17e−5 0.025 14.47
Ae3L0002 0.002 7.81e−6 0.05 3.83
Ae3L0001 0.001 3.91e−6 0.05 3.50

(a) St = 0.1 simulations - A-runs

Name L[H] dx,y[H] η Tmax,orb

Be3L005 0.05 1.95e−4 0.05 12.57
Be3L003 0.03 1.17e−4 0.05 26.22
Be3L002 0.02 7.81e−5 0.05 50.93
Be3L001 0.01 3.91e−5 0.05 31.83
Be3L0005 0.005 1.95e−5 0.05 16.84
Be3L0003 0.003 1.17e−5 0.05 11.58

(b) St = 0.01 simulations - B-runs

Table 7.1: Initial parameters for the 2-d collapse simulations: Domain size L, grid spacing dx,y, gas
sub-Keplerianess η and maximum simulation runtime in orbits. All simulations have the same numerical
resolution of 2562 grid cells and same initial dust-to-gas ratio of ε0 = 3. The physical domain size L is altered
around the predicted critical length scale lc. Self gravity is enabled at T = 1.59Torb (A-run) or T = 4.77Torb
(B run). Additional simulations where performed with variation in the pressure gradient η, by a factor of 2
(hp = high pressure) or by a factor ½ (lp = low pressure).

by the simulation domain size, and hence simulations with domain sizes L larger than lc are expected to
collapse. This study is performed in 2-d shearing sheet simulations, similar to the ones of the previous
parameter study from Chapter 5. Each simulation uses 16 CPUs in x- and 8 CPUs in y- and 1 CPU in
z-direction. They evaluate a numerical grid out of 256×256×1 grid cells, and the particles therein. The
runs are initiated with 10 super-particles per grid cell, thus having 655,360 particles per run. Two particles
sizes, in terms of Stokes number, are used, each comes with its own set of simulations. The simulation
with St = 0.1 particles are the A-runs, and the B-runs have St = 0.01 particles, see Tab. 7.1 for an overview
over the simulation setups. The particles are initially randomly distributed, but such they match an initial
average dust-to-gas ratio of ε0 = 3. Both, gas and dust particle velocities are initiated in Nakagawa drag
force equilibrium, see Sec. 2.2.2. As the simulation domain represents a dust particle cloud of size L, the
domain size is varied around lc, see Tab. 7.1, and simulations with domain size larger than lc are expected
to show collapse. The results confirm the lc collapse criterion to be valid in these 2-d simulations. From
reducing the problem onto two dimensions, no contradiction arises in the collapse time. As was shown in
Eq. (3.33), the collapse time of a homogeneous cylinder is equal to the one of a homogeneous sphere.
All simulations start initially with gravity switched off. This ensures the SI to be saturated once gravity

is turned on, i.e. the maximum turbulent strength is present before collapse is allowed. This is done by
activating self-gravity after t = 1.59 orbits in the A-runs, and t = 4.77 orbits B-runs. A longer time in the
B-runswas actually not needed, as the aSI grows faster at St = 0.01, see Sec. 5.1. The gravitational constant
is set such that the density in the simulation domain represents Hill density, as derived in Sec. 4.4.1.
Additionally, the impact of variations in pressure gradient η on the stability criterion is investigated. This

is done in three A-run simulations with St = 0.1 particles that are set up around lc ≈ L with 2 · η (hp) and
0.5 ·η (lp), see Tab. 7.1a.

7.4.1 Simulation results
The radial diffusivity δx is needed to estimate the critical length scale. The diffusion is thus measured when
the SI is saturated, but before gravity is switched on, see Fig. 7.7. Fig. 7.1 shows the measured diffusivities.
These measurements show an increase in diffusivity with increasing simulation domain size L. This confirms
the findings from Sec. 5.2, as larger SI modes stronger diffuse the particles. Or differently, the larger SI
modes get suppressed with decreasing simulation domain size. The blue lines in Fig. 7.1 are linear fits to the
values simulations without a variation in the pressure gradient (circles). The measured slope p in these fits
are sallow, with pA = 6.04 ·10−4 and pB = 4.98 ·10−4. The triangle pointing up indicates the run with double
the pressure gradient (hp), triangles pointing down indicate runs with half the pressure gradient (lp).
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Figure 7.1: Radial particle diffusion plotted over simulation domain size. Circles indicate unaltered runs,
in terms of pressure gradient (A-run). If a symbol is filled, it marks a run in which collapse occurred. The
straight line is a fit to the diffusion values of the unaltered simulations, i.e. circles. Slopes of these fits are
sallow with pA = 6.04 · 10−4 and pB = 4.98 · 10−4. The triangle pointing up indicates the run with double the
pressure gradient (hp), triangles pointing down indicate runs with half the pressure gradient (lp).

(a) A-runs with St = 0.1 (b) B-runs with St = 0.01

Figure 7.2: Numerical results compared with the analytical predicted diffusion limited collapse criterion. With
domain size L on the x-axis plotted are the individual critical length scale lc for each simulation. This scale
is determined by measuring the particle diffusivity of the SI before switching on self-gravity. The red region
indicates L < lc where no collapse should be possible whereas in the green region L > lc collapse should occur.
It has been found for St = 0.1 and 0.01 a very good agreement between the prediction and the simulation
results. Meaning, all simulations with filled symbols did collapse and lie in the green region, all the ones with
open symbols did not collapse and lie in the red region. Added to this study are three additional runs right
at the boarder of stability, in which the radial pressure gradient is altered. The triangle pointing upward
indicates a model that was collapsing beforehand, but did not do so if the pressure gradient is doubled, the
reason is the therefore induced stronger turbulence. Reversely, the downward pointing triangles indicate
models with a reduced pressure gradient by a factor of two, which both collapsed.
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Figure 7.3: St = 0.1: Particle distribution for the two simulations closest to the boarder of stability. In the two
rows compared are two simulations with only slightly different box-sizes of L= 0.005H and 0.003H. The three
columns show different time steps. From left to right, the gravity free SI in its saturation phase, the formation
of a self-gravitating filament one orbit after self-gravity is switched on. The upper right picture shows the
planetesimal (white cricle) that formed from the collapse of the filament (middle column), the lower instead
shows the situation where the self-gravitating cloud did not collapse but dissipated. This simulation is in a
steady gravitoturbulent state. The larger simulation (upper) covers the critical collapse length scale, with
L ≈ 1.02 · lc, see Fig. 7.2a, i.e. the critical length scale is resolved. This lc is given by the underlying turbulent
diffusion as described in Sec. 3.3. Hence, the particles in the simulation are allowed to undergo gravitational
collapse by self-gravity. The smaller simulation (lower) has a box size of L ≈ 1.29 · lc and is consequently not
allowed to collapse by the formulated critical length scale criterion. In the middle column, both simulations
had an equally strong maximum in their dust density fluctuations, see Fig. 7.7 , but only the large cloud could
collapse. The simulations are performed at Hill density, i.e. f = 1 in Eq. (4.7).

Fig. 7.2 shows the corresponding critical length scales. They are derived from the measured particle
diffusivity. The blue line stems from the linear function fitted onto the diffusion data points and translated
into a critical length scale. In this diagram, the unfilled symbols indicate simulations that did not collapse,
the filled symbols indicate collapsed simulations. The red region marks the area, where the critical length
scale is larger than the simulation domain size, where, following the lc criterion, collapse is not allowed. The
green are marks the opposite, where the critical length scales is resolved and collapse is allowed. The data
points are filled symbols if the particular simulation collapsed, and unfilled if not. As can be seen, the filled
symbols (collapse) all lie in the green area, whereas the unfilled symbols (no collapse) all lie in the red area.
This shows for the investigated cases the diffusion limited collapse criterion to perfectly hold for both Stokes
number particles.
Herein this study, the error in particle diffusivity ∆δ is estimated by calculating the standard deviation of

the diffusivity timeseries D (t), see Eq. (2.43). From this, one also gets the error in the critical length scale
via error propagation. The error in lc can be calculated via

∆lc = 2
6∆δ · δ− 1

2 , (7.3)

and plotted in Fig. 7.2.
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Figure 7.4: St = 0.1: Final particle concentration for all runs with fixed pressure gradient, see Tab. 7.1. In
white circles highlighted are all planetesimals formed, i.e. areas with a particle concentration several hundred
times higher than the mean value. Only the runs with blue-colored labels (upper row) produced planetesimals
as predicted by the critical length scale criterion. In these simulations the formed planetesimals are particle
clumps which stay bound together after its formation. Since each simulation is set at its critical Hill density,
one would expect all runs to completely collapse to a single object. In contrast, the simulations show for
clouds (i.e. simulation domain) much larger than its corresponding lc the formation of more than one object.
The runs with sizes less than its lc (lower row) do not collapse due to the diffusion from the underlying SI. For
all images the tick spacing is kept equal. The simulation with L= 0.01H produced even 8 bound objects. Also
two binary objects are formed.

Results of the A-runs

The simulations Ae3L0003, Ae3L0002, and Ae3L0001 are the ones not collapsing from the A-run parameter
set. In contrast, the simulations with larger domain size Ae3L0005, Ae3L001, and Ae3L002 did collapse. This
is right as predicted by the diffusion limited collapse criterion in Sec. 3.3. The run Ae3L0003 did not even
collapse after more than 8 orbits, though it is close to the boarder of stability. Fig. 7.7a shows the timeseries
of the maximum dust-to-gas ratio for all these runs. The grey area on the left marks the time range where
gravity was switched off. The largest two simulations immediately collapsed after gravity was turned on.
The Ae3L0005 simulation did only collapse one orbit after self-gravity was switched on.
Hence, the collapse criterion cannot be seen as a sharp criterion, but rather as a collapse likelihood.

Particle clouds close or above the critical length scale have a higher tendency to collapse. This becomes clear
once one considers dust density fluctuations within the particle cloud. If the density fluctuations exceed the
value stated by the criterion, they can indeed trigger collapse. With a higher likelihood in producing strong
density fluctuations comes thus a higher likelihood for collapse. But, this collapse is only successful if not
diffusion acts faster. This could be seen in the Ae3L0005 run, where after the first planetesimal formed,
another cloud tried unsuccessfully to collapse. The cloud is visualized under the name e_e3L0005H_1 in the
two-page planetesimal overview graphic on page 138. If one looks closely on this object, one actually finds it
to have a long tail at its back and two particle outflows starting from its head. The latter come from erosion
by gas ram pressure, see Fig. 7.9.
From these results, one can conclude for the considered scales the particle diffusion to act faster than
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Figure 7.5: St = 0.01: Particle distribution for the two simulations closest to the boarder of stability. In the
two rows compared are two simulations with only slightly different box-sizes of L = 0.03H and 0.02H. The
three columns show different time steps. From left to right, the gravity free SI in its saturation phase, the
formation of a self-gravitating filament one orbit after self-gravity is switched on. The upper right picture
shows the planetesimal (white cricle) that formed from the collapse of the filament (middle column), the lower
instead shows the situation where the self-gravitating cloud did not collapse but dissipated. This simulation is
in a steady gravitoturbulent state. The larger simulation (upper) covers the critical collapse length scale, with
L ≈ 1.06 · lc, see Fig. 7.2a, i.e. the critical length scale is resolved. This lc is given by the underlying turbulent
diffusion as described in Sec. 3.3. Hence, the particles in the simulation are allowed to undergo gravitational
collapse by self-gravity. The smaller simulation (lower) has a box size of L ≈ 0.84 · lc and is consequently
not allowed to collapse by the formulated critical length scale criterion. All simulations of the B-run did not
produce a clear filament, which is in contrast to the A-runs. The simulations are performed at Hill density, i.e.
f = 1 in Eq. (4.7).

cloud collapse from self-gravity. Whereas in the three simulations with scales larger than L ≥ 0.005H 15
planetesimals formed, see section below and Tab. 7.2, the simulations with smaller domain did not produce
a single one, even after many orbits with gravity switched on. The run Ae3L0005 is found to be the smallest
simulation still capable of producing a planetesimal. It is found to be right on the boarder of stability, see
Fig. 7.2a. Moreover, in this run there is only one planetesimal forming, a second gets disrupted in its making.
For the next larger simulation (Ae3L001) one can count 8 bound objects of different size, see the discussion
on planetsimals below in Sec. 7.5. Four of these planetesimals are actually found to be bound in a binary
system, which should get compared with the results from numerical N-body simulations in the future, such
as presented in Nesvorny et al. (2010). The Ae3L002 simulation was special, as it produced first several
smaller collapsing clouds, which then collided and merged into one single object. A second planetesimal is
formed in this run at later time, so in the end two planetesimals get produced of which one is extremely
heavy.
Fig. 7.3 shows in two rows the time evolution of the dust density in three snapshots. The two simulations

shown are the ones that are right at the boarder of stability, i.e. Ae3L0005 (upper) and Ae3L0003 (lower).
The first column shows the SI saturated state before gravity is switched on. The measured particle diffusion
is in the Ae3L0005 simulation 1.7 times stronger, though the visual inspection shows not much of a difference
in the aSI mode pattern. Also, the maximum dust-density concentrations reach identical values in both runs
at a similar time, see Fig. 7.7a. The middle column of this plot shows the gravitoturbulent state of these
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Figure 7.6: St = 0.01: Final particle concentration for all runs with fixed pressure gradient, see Tab. 7.1. In
white circles highlighted are all planetesimals formed, i.e. areas with a particle concentration several hundred
times higher than the mean value. Only the runs with blue-colored labels (upper row) produced planetesimals
as predicted by the critical length scale criterion. In these simulations the formed planetesimals are particle
clumps which stay bound together after its formation. Since each simulation is set at its critical Hill density,
one would expect all runs to completely collapse to a single object. In contrast, the simulations show for
clouds (i.e. simulation domain) much larger than its corresponding lc the formation of more than one object.
The runs with sizes less than its lc (lower row) do not collapse due to the diffusion from the underlying SI. For
all images the tick spacing is kept equal. The simulation with L= 0.05H produced 2 bound objects.

two simulations, right before the filament in the larger simulation collapses into a planetesimal. As said, in
this snapshot, both simulation have an identical over density of εmax/ε0 ≈ 200, but only the larger fragment
collapses. The larger simulations shows a very impressive view on the actual collapsing dust filament. In this
filament reside 38.7 % of all the available particles as they try to collapse to a planetesimal. In the end, only
9.1 % of the filamentary mass gets incorporated into the final planetesimal, which is named e_e3L0005H_0
in the following. This planetesimal then has 3.5 % of the total available mass of the simulation in it. This
seems to represent only a small fraction of the total mass, but since the final planetesimal radius scales with
∼m1/3, the radius is still around 80 km for typical solar system parameters, see the planetesimal analysis
blow. The last column in this figure shows the end-state of both simulation. The larger simulation produced
a single planetesimal (white circle), whereas the smaller did not.
The end-states of all simulations are compared in Fig. 7.4. From the top left to bottom right, the simulation

domain size decreases. Simulation with blue title show collapse, the ones with red title do not. Already from
this plot, one sees the one planetesimal in Ae3L002 that is extremely large. This object is the combination of
many fragments that formed in the dust cloud immediately after self-gravity is switched on. In contrast, the
Ae3L001 run shows a cloud of planetesimals, where also two binary systems are formed, see the intersecting
white circles. The Ae3L0005 run only produced a single planetesimal. As stated, a second collapse actually
occurred but is not successful. The second collapsing cloud has only 17.7 % of the mass of the filament that
in the end formed e_e3L0005H_0, and thus was simply to low in mass. It also shows a rather spherical
shape and is thus different to the larger elongated filament. The cloud got disrupted from a combination
of turbulent diffusion, a high intrinsic rms-velocity, and gas ram pressure which comes from a high radially
inward drift velocity.
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Figure 7.7: Time evolution of maximum dust-to-gas ratio. Simulations with L > lc are colored in blue, smaller
simulations with L < lc in red. Particles self-gravity is turned on at t = 1.59Torb (A-runs) and t = 4.8Torb
(B-runs). As a smaller Stokes number means longer collapse time (see Sec. 3.2) the simulations with St = 0.01
takes longer to collapse. The border cases just below the instability criterion (bright red) have been running
the longest to show the validity of this criterion. Additionally to the collapse, this is when the εmax increases
by orders of magnitude within a short time, one sees post-formation growth and merging events of this
fragmented objects. The B-runs show an additional increase in maximum solid concentration due to the SI
but still our criterion holds.

The simulations with an increased or decreased pressure gradient are discussed separately below in
Sec. 7.4.2.

Results of the B-runs

The B-runs with St = 0.01 particles also find agreement with the critical length scale prediction, see Fig. 7.2b.
From the maximum particle density timeseries in Fig. 7.7b, one finds an overall increase in the maximum
particle concentration with decreasing domain size. Interestingly, this is not sufficient to trigger cloud
collapse. Hence, the collapse is determined only by resolving the critical length scale. In the B-runs, only
the largest two simulation did collapse, see Fig. 7.6. The simulation right on the boarder of stability forms
only a single planetesimal, though with very high mass. The largest simulation is well in the collapse regime
and hence overshoots in planetesimal formation by producing two planetesimals. See the discussion on the
formed planetesimals in Sec. 7.5.
Fig. 7.5 compares the time evolution of the two runs that are closest to the boarder of stability. The lower

row shows the simulation with the smaller domain size that is not showing cloud collapse, the upper is the
larger simulation with one planetesimal formed by collapse. The gravity-free situation in the left column now
seems to be very identical in both simulations, as the mode pattern is almost indistinguishable. Comparing
the situation right before collapse, middle column, the collapsing filament in the B run is now much larger
and fills the whole simulation domain, which itself is also now six times larger than in the A-run. This
filament then collapses again only into a single planetesimal. As the smaller simulation does not collapse,
this states the diffusion limited collapse criterion to be valid for St = 0.01 particles, too. How much these
simulations benefit from being periodic in azimuthal direction and thus axisymmetric collapse is beneficial
needs to be investigated in a future project. Having simulation domains with a higher aspect ratio could
lead to smaller minimal planetesimal sizes as this makes axisymmetric collapse less efficient.
The final end-state of the two collapsing and four non-collapsing simulations is shown in Fig. 7.6. The

simulation in the non-stable realm, i.e. Be3L005 and Be3L003, show three planetesimals to be formed in
total. The simulations with domain size below the critical length scale, i.e. with L ≤ 0.02, surprised with
an increasing values in the maximum achieved dust densities, see Fig. 7.7b, but still, these enhancements do
not promote collapse to a planetesimal.
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Name Np. δx ∆δx lc urms urms,x vrms vrms,x

Ae3L002 2 1.23e−5 4.80e−8 7.40e−3 5.77e−3 6.93e−3 4.02e−3 5.02e−3
Ae3L001 8 8.34e−6 6.94e−8 6.09e−3 4.24e−3 6.78e−3 3.05e−3 4.88e−3
Ae3L0005 1 5.86e−6 2.95e−8 5.10e−3 3.55e−3 4.39e−3 2.74e−3 3.22e−3
Ae3L0005lp 3 2.25e−6 1.19e−6 3.16e−3 2.27e−3 2.60e−3 1.79e−3 2.00e−3
Ae3L0005hp 0 1.48e−5 9.09e−6 8.12e−3 6.20e−3 8.08e−3 4.76e−3 6.44e−3
Ae3L0003 0 3.35e−6 1.95e−6 3.86e−3 2.55e−3 4.20e−3 1.71e−3 2.96e−3
Ae3L0003lp 1 1.04e−6 5.61e−7 2.15e−3 1.59e−3 2.52e−3 1.23e−3 2.07e−3
Ae3L0002 0 2.00e−6 1.58e−8 2.98e−3 1.62e−3 2.61e−3 1.34e−3 1.82e−3
Ae3L0001 0 1.31e−6 8.04e−9 2.41e−3 1.79e−3 4.56e−3 0.88e−3 2.84e−3

Be3L005 2 2.36e−5 8.25e−6 3.24e−2 5.68e−3 6.81e−3 5.53e−3 6.61e−3
Be3L003 1 1.81e−5 9.23e−6 2.84e−2 4.27e−3 5.05e−3 4.07e−3 4.83e−3
Be3L002 0 1.28e−5 7.40e−6 2.39e−2 3.97e−3 4.91e−3 3.75e−3 4.67e−3
Be3L001 0 5.09e−6 1.44e−6 1.50e−2 3.44e−3 3.54e−3 3.22e−3 3.32e−3
Be3L0005 0 2.85e−6 9.35e−7 1.13e−2 3.54e−3 3.09e−3 2.40e−3 2.88e−3
Be3L0003 0 1.49e−6 6.58e−7 8.13e−3 3.36e−3 2.77e−3 2.56e−3 2.46e−3

Table 7.2: Simulation results A-runs with St = 0.1 particles and B-runs St = 0.01. Diffusivities and velocities
are measured by tracking the radial position of 104 particles for several orbits and treating it similar to
a turbulence driven random walk. Diffusivity and rms-velocities are measured in the non-gravitating fully
turbulent situation. The number of planetesimals Np is the number of objects we find in our final snapshots.

Conclusions

Combining both series of simulations, one can conclude that there is not much variation allowed in the
steepness of the lc criterion in Fig. 7.2. One could for example assume the observed formation threshold
to be the result of shear timescale being faster than the collapse timescale. This means that shear is the
mechanism that disrupts the collapsing filaments and not diffusion. One can evaluate this by setting the
diffusion timescale equal the shear timescale. The result would be a criterion like l∗c =

√
8/3
√
δH that is

not corre and which would also be much steeper. Hence, this is not in agreement with the observed collapse
threshold.
Tab. 7.2 gives an overview over all simulation results: number of planetesimals formed Np, measured

particle diffusion δx, the corresponding error in the diffusivity ∆δx, the therefrom calculated critical length
scale lc, and the rms-velocities of gas and dust. The rms-velocities are respectively given for the radial
component and in the form of the absolute value. All the given rms-velocities, and the particle diffusivity,
are measured before gravity was turned on and in a simulation snapshot that is fully SI turbulent. The
gas rms-velocities are measured by using the grid data, particle rms-velocities by using the full particle data
set. Diffusivities are calculated by tracking a set of 104 particles and estimating the spreading of the travel
distance, see Eq. (2.42).
A further conclusion can be drawn by looking at the reached dust densities. The maximum dust densities

in the fully gravitoturbulent state of the SI are well above the Hill density, see Fig. 7.7, as εmax = 3 is set
by Ĝ to represent Hill density. Consequently, reaching Hill density is not sufficient for cloud collapse. Most
authors in the literature use the Hill, or Roche, density, but the underlying turbulent physics in the particles
were falsely neglected. One should at least take particle rms-velocities into account, see Sec. 5.2.5, if the
underlying diffusion is unknown or unresolved. As long as diffusion by turbulence is faster than the collapse
timescale, collapse gets unlikely.
This also stages the situation of planetesimal formation in a particle trap. A trap will slowly get filled with

dust coming from the outer radii and the planetesimal will be formed right at the boarder of stability. They
thus will produced one by one and probably all with a similar initial size. Hence, simulations like the one
from Johansen et al. (2015) or Simon et al. (2016) do produce an overshooting in planetesimal formation,
i.e. an outburst in planetesimal formation. What they thus need to do, is repeat their simulation but slowly
increase the dust density until a single planetesimal forms. It is the prediction from this study that this
single planetesimal then will have a size of around 100 km, if the turbulence driving length scales are resolved.
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Figure 7.8: Timeseries of the maximum dust enrichment for the two runs that base on the Ae3L001-run, but
with half (blue) and a third (red) of Hill density. The initial Ae3L001-run did collapse immediately when
self-gravity is switched on and eight planetesimals were formed in total. Now, the run with half the Hill
density does still collapse, but it takes two more orbits to collapse for the first time, though high overdensities
did form already at earlier times that not finally collapsed. The run with a third of Hill density did produce
over-density spikes but non of them collapsed within the 12 orbits runtime with gravity on.

Similar overshooting in dust mass and outbursts in planetesimal formation are seen in the runs Ae3L002,
Ae3L001, Be3L005, and Ae3L0005lp, which one might compare these results with.

7.4.2 Further effects on planetesimal formation
Many other effects can influence the shown planetesimal formation process. Some of them are discussed in
the following. One should keep in mind how new this diffusion limited collapse scenario to the community
is. Many of the simulation performed in the literature simply lack the needed resolution in order to resolve
lc. One could thus think of a sub-grid model that includes the unresolved particle dynamics. The following
discusses some more ideas that came up working with the stability criterion. Hopefully, they lead to new
ideas that will further refine the presented diffusion limited collapse criterion.

Assuming critical density lies below Hill density

In Eq. (3.39) an additional degree of freedom f is added to scale the critical density for shear stability,
i.e. scaling in terms of Hill density. From this followed Eq. (3.40), showing how the critical length scale is
scaling with this underlying density via f . To narrow down this parameter f , two simulations with f = 0.5
and f = 0.33 where performed, based on the setup of the Ae3L001-run. This original run is ’super-critical’,
i.e. meaning in this run not one, but eight planetesimals were formed. The first collapse also occurred
immediately after gravity is switched on.
The new run with f = 0.5 showed a delayed collapse, which took four orbits until it occurred, see Fig. 7.8.

Further reducing the density scaling parameter to a factor of f = 0.3 leads to no collapse within 15 orbits,
after which the simulation was stopped.
Going for the values for the critical length scales for that specific runs, and comparing it with the simulation

domain size of L= 0.01, one finds for the different f values:

lc (f = 0.5) = 8.6 ·10−3 < Lx and lc (f = 0.3) = 1.1 ·10−2 > Lx . (7.4)

Hence, the observed result is in very good agreement with the presented critical length scale criterion under
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Figure 7.9: Change in gas density (red) during the collapse phase of the dust cloud (grey) for both
investigated Stokes numbers. Gas density is equal to gas pressure, hence this represents a measure of how
much the collapsing dust cloud is able to drag along the gas. In these figures, the last orbits of the collapse
are shown. Only for St = 0.01 a small change in gas density can be found, as the one in the run with St = 0.1
does not correlate with the cloud collapse, but with the formation of a second cloud that radially drifts
inwards and gets stripped of particles by ram pressure. From this timeseries, no hints on a strongly delayed
collapse by oscillations can be found. They may remain unresolved or could be stronger present in the case of
higher initial dust-to-gas ratios.

scaling with the f parameter. Moreover, whereas the Ae3L001-run produced 8 planetesimals, for f = 0.5 only
a single planetesimal is formed. Still, this result is surprising, since f < 1 should state a non-shear stable
density and no collapse should occur in any cases. The explanation for this is not final, but one it could
be the density fluctuations in the simulation domain reach values which are still shear stable, i.e. f = 0.5
combined with the maximum dust-to-gas ratio of εmax/ε0 & 10, gives still a density higher than Hill density
in certain parts of the simulation domain. Another possibility is an axisymmetric collapse that is triggered
from the short azimuthal extent of the simulation domain. This would undermine the presented results and
thus should be investigated in upcoming studies.

Variations in pressure gradient

Another verification of the presented numerical results was performed by doing additional simulations of
the A-runswith variations in the pressure gradient. These simulations are marked in Tab. 7.1a with lp and
hp suffix in the name, standing for lower pressure gradient and higher pressure gradient respectively. If not
proven elsewise by these additional simulations, one could actually argue that the smaller simulations did not
undergo collapse because the spatial resolution was simply smaller, as the number of grid cells throughout
the whole study is fixed. Or, because the weaker SI is leading to lower dust density fluctuations. Both might
potentially inhibit fragmentation.
Therefore, the largest non-collapsing setup (Ae3L0003) was taken and the pressure gradient was reduced

by a factor 1/2. This led to a weaker SI and consequently weaker diffusivity, see left downward triangle in
Fig. 7.1a. As result, the critical length lc is reduced as well, now fitting again into the simulation domain, see
Fig. 7.2a. The lc prediction then expected collapse to occur, which is right what happened in the performed
numerical experiment, see Fig. 7.10. This result is in good agreement with Bai & Stone (2010b), where they
showed that a small pressure gradient results in a smaller particle disk scale height Hp, as the SI gets weaker
in its ability to diffuse particles. The same is true here, where the now weaker radial SI turbulence can no
longer prohibit the collapse.
Vice versa, increasing the pressure gradient of a collapsing case (Ae3L0005) does strengthen the turbulent

diffusivity. Found in the simulations is collapse to become indeed stalled by diffusion. This is another
confirmation for the collapse criterion, as it tests the physical effects of the particle diffusion and one does
not get fooled by numerical artefacts or Keplerian shear being responsible for preventing collapse.
Furthermore, decreasing the pressure gradient in Ae3L0005 leads again to a weaker SI turbulent strength.
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Figure 7.10: Comparison of final particle concentration for the simulations with variation in the pressure
gradient strength. The upper row shows the original comparing A-run simulations with default pressure
gradient. The lower row the two simulations with half the pressure gradient (middle and right) and the one
with double the pressure gradient (left). A lower pressure gradient results in a less diffusive SI. Hence, the run
L = 0.003H is able to collapse. In contrast, when the pressure gradient is increased in the L = 0.005H run,
no collapse is found to occur anymore. This demonstrates the diffusion of the SI to be the cause of a stalled
collapse and not the Keplerian shear! Hence, the criterion of being close to collapse at Hill density holds in
absence of additional introduced diffusion. Moreover, for a decreasing diffusivity in the L= 0.005H run found,
is an increasing planetesimal formation rate, i.e. at the end of runtime this run produced three instead of only
a single planetesimal. In all images the tick spacing is kept equal.
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Observed for this case os collapse to occur faster, and not one, but three planetesimals were produced, see
Fig. 7.10.

Building up of local gas pressure by the dust cloud collapse

The gas pressure inside the collapsing cloud might increase during the collapse phase due particle friction,
dragging the gas along while collapsing. The reason is that the collapse phase is a situation of high dust
concentration, meaning momentum of the dust is large, and Stokes number is lower than unity. Hence, the
dust motion remains well coupled onto the gas, and the gas has to relax faster than it gets compressed by
the collapsing particle cloud. Shariff, Karim and Cuzzi, Jeffrey N. (2015) describes this effect in numerical
1-d models. They claim it can lead to oscillations in cloud dust density and the forming cloud core itself. In
their study, they find the oscillations to delay the collapse for a certain parameter range of initial dust-to-gas
ratios from ε= 10 to 100.
In the herein presented simulations, the gas pressure is equal to the gas density, since the calculations

are in the ideal gas limit and thus P = c2s ρg. The simulations are consequently investigated for an increase
in gas density that correlates with particle cloud collapse. Fig. 7.9 shows the timeseries of gas and dust
density for the critical collapsing cases for both investigates Stokes numbers, i.e. the runs Ae3L0005 and
Be3L003. For St = 0.1 basically no change in gas density could be observed and the strongest change in gas
density is happening far after the planetesimal has formed. This increase in dust density has been found to
correlate with the formation of a second unsuccessfully collapsing particle cloud that feels gas ram pressure
as it rapidly drifts inwards, see section below. For St = 0.01 found is indeed a correlated increasing in gas
pressure, being slowly build up while the dust cloud is collapsing. But, the change in pressure is with
∆p ≈ 0.01 rather small. Consequently, one can assume to not be in the suspension regime. If the increase
in gas pressure might has an influence at unresolved scales should be subject to further studies with higher
resolution. Still, the found oscillations of the bound particle cloud probably will not prevent a final collapse
and the found results in the planetesimals holds.

7.5 Properties of the formed planetesimals
Within the 15 presented 2-d simulations, seven of them produced planetesimals, here leaving out the si-
mulations with altered density parameter f as no diagnostics has been performed in them, yet. In total,
18 planetesimals of different sizes were formed and analysed. Part of the analysis, the visualization tool
UnShear and some of the plots are from the co-author paper Müller et al., 2018. By planetesimal meant in
the following is a gravitationally bound, mostly spherical particle cloud that stays bound for the rest of the
simulation duration. It is not necessarily a planetesimal in the actual sense, since the numerical resolution
does not allow for following the further evolution of the bound particle sphere. In the simulations, these
planetesimals come in very different shapes and sizes, see the large overview graphic on page 138f. The
overview graphic shows not the clouds to scale, as they appear in the simulations, but scaled to their final
planetesimal size, as calculated below. This size is basically proportional to the square root of the total
number of particles bound to it. If one would scale the clouds by their actual diameter as one would get
them from the simulations, see Tab. 7.3, the largest object would be 104 times larger than the smallest one.
As the further compactification of these objects is unresolved, they mark a perfect start for further analysis
in smooth particle hydrodynamics and N-body simulations.
The overview graphic shows the variety of shapes of the found planetesimals. Some are rather isotropic,

some show clear spirals, and substructures, i.e. up-winded structures that steam from the SI mode pattern
in the collapse phase. These structure indicate a slow collapse in which the cloud internal pattern remains
throughout the collapse, whereas other planetesimals clearly got homogenized. The largest planetesimal are
found specially for the St = 0.01 particle simulations (B-runs), but also one is found in the Ae3L002 run,
which marks the largest simulations with St = 0.1 particles. The smallest planetesimal are found for the
simulations that are right at the boarder of criticality, see Sec. 3.3.1.
Tab. 7.3 gives an overview of all produced planetesimals. It shows the width of the particle cloud which has

been identified as being the planetesimal. The particles that belong to a planetesimal are marked by hand
in the specially for this simulations developed tool UnShear6 (Müller et al., 2018). Therefore, particles

6Thank you, Thomas Müller, for developing this unique tool!
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(a) standard view (b) centered around p1 (c) centered around p2 (d) velocity

Figure 7.11: Maximum intensity projection rendering of space-time stacks for the simulation e3L0005H, the
bottom of this view marks the time where gravity is switched on. (a) The standard view on the domain
does not show clear the structures of the forming planetesimal, nor the particle cloud collapse. (b) The
view is centred around the main planetesimal e_e3L0005H_0 now clearly shows the formation process.
(c) Centred view around a particle of a second collapsing cloud that does not succeed in staying bound,
e_e3L0005H_1, see planetesimal overview graphic. (d) Stacked view of the sheer-free particle velocities. Here,
the main planetesimal clearly separates from the aSI turbulent particle ensemble, and undergoes radial inward
migration. This migration slows down with time and the planetesimal enters a circular orbit. It reaches nearly
Keplerian orbital velocity and by that lies ahead of the underlying particles cloud in the velocity digram. The
non-collapsing particle cloud can be seen as a finger-shaped filament in the velocity-time stack. From this one
sees that the rms-velocity is much higher than it was in the successfully collapsing cloud before. This explains
why collapse is not possible. Thanks to Thomas Müller for the support with this work. (Müller et al., 2018)

where selected by being closely packed in the velocity space and bound over time in the position space. In
order to measure the final planetesimal shape, a 2-d Gaussian is fitted by means of two standard deviations.
The longer side, gives the planetesimal width, as shown in Tab. 7.3 together with its its aspect ratio. This
value can then be compared to the numerical grid resolution dx, which is additionally shown in the table.
Note that the particle cloud width is measured in the simulation end-state for all planetesimal, and their
size might already shrank over time, as they loose spin due to friction with the gas. By counting the number
of bound particles within the planetesimal and dividing it by the total number of particles, the dust mass
fraction κ incorporated into the planetesimal is estimated. This mass fraction κ is not equal to the collapse
efficiency q from Eq. (3.56), which compares the mass of the planetesimal with the mass of its original cloud.
The spin l is a measure of the specific angular momentum of a planetesimal. It is calculated via

l =
∑
i

(ry,ivx,i− rx,ivy,i) ,

which then is directly used to calculate the rotational frequency ω via

ω = l

r2
i

.

Here, ri is the absolute distance from the planetesimal center-of-mass to its particle i, with its velocity ~vi.
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(a) Single planetesimal (b) Binary system (c) velocity

Figure 7.12: Maximum intensity projection rendered space-time stacks centred around different planetesimals
from simulation Ae3L001H. (a) a planetesimal and (b) a different planetesimal that is bound in a binary
system, see spiral black line around the central line of the planetesimal in focus. (c) shows the velocity of all
particles. Specially prominent are the eight black lines of produced the planetesimals. The shown timesteps
range from the activation time of gravity at N = 1000 up to N = 2307. Thanks to Thomas Müller for the
support with this work. (Müller et al., 2018)

Note again that the spin is measured for all planetesimals in the final snapshot of the simulation and by that
time they already might have lost some angular momentum via friction with the underlying gas.
The final planetesimal size ac is an estimate that relies on assumptions on the PPD it is forming in. By

that it depends on the parameters of the central star. It is derived from the mass fraction inside of the
planetesimal κ=mc/Mtot, by assuming the final planetesimal to be a sphere of density ρ• and set the total
mass equal to the planetesimal mass from the simulation:

4
3πa

3
cρ• = κρHill ·LxLyLz = κρHillL

3 .

Where the total mass within the simulation domain has been used, as ρHillL
3. Solving this equation for the

planetesimal diameter yields

ac = 3

√
9ρ�
4πρ•

R�
3√κL

R
,

where the ratio of L/H indirectly expresses the H/R ratio together with the simulation domain size.
These final planetesimal sizes are of major interest, as they directly can be compared with the observations

of planetesimals in our solar system and they can directly be used in planetesimal models in protoplanetary
disk simulations and planet synthesize codes. Hence, Fig. 7.14 gives an overview over the formed planete-
simals in four histograms that highlight different formation scenarios. In these diagrams, the grey bars in
the background resemble the total of all 18 planetesimals, binned by size. Subplot 7.14a shows the planete-
simals that formed in e_e3L001H, which is a run that produced more than one planetesimal. It thus can be
compared to Johansen et al. (2015) and Simon et al. (2016), in which also an outburst of planetesimals was
recorded. Though, the for this work interesting simulations are the ones right at the boarder of stability,
shown in subplot 7.14b. They now can be compared with observation data, if one accaptes the fact that the
main belt asteroids and KBOs stem from a process that produced them right at the cloud stability threshold
of planetesimal formation. The work by Delbo et al. (2017) actually found the main belt asteroids to initially
have had a Gaussian distribution in their size, with a characteristic size of 80 to 85 km and a Gaussian width
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name width in H dx in H w/h κ spin ω binary ac in km

b_e3L003_0 54.93e−5 11.72e−5 0.91 43.3 % 8.3e−1 85.3 - 1005.9
b_e3L005_0 13.39e−5 19.53e−5 0.66 0.5 % −2.25e−5 −2311.2 - 366.5
b_e3L005_1 29.38e−5 19.53e−5 0.73 3.4 % −7.47e−3 −42.7 - 716.7
e_e3L0005H_0 0.66e−5 1.95e−5 0.87 3.5 % −1.30e−7 58.0 - 72.5
e_e3L001H_0 1.39e−5 3.91e−5 0.91 2.9 % −1.18e−6 48.1 - 136.2
e_e3L001H_1 0.31e−5 3.91e−5 0.36 1.5 % 2.94e−7 −691.8 2 110.4
e_e3L001H_2 3.98e−5 3.91e−5 0.78 7.3 % −2.42e−4 −43.2 1 185.8
e_e3L001H_3 0.42e−5 3.91e−5 0.78 2.0 % 7.41e−7 177.5 - 119.6
e_e3L001H_4 6.47e−5 3.91e−5 0.86 14.3 % −1.50e−5 12.1 5 231.6
e_e3L001H_5 0.58e−5 3.91e−5 0.73 2.4 % 2.29e−6 −547.7 4 127.9
e_e3L001H_6 0.19e−5 3.91e−5 0.20 1.2 % 7.95e−9 3882.9 - 102.5
e_e3L001H_7 10.16e−5 3.91e−5 0.56 4.4 % 4.56e−4 23.5 - 156.5
e_e3L002H_0 49.79e−5 7.81e−5 0.64 66.6 % −6.47e−1 −78.5 - 774.0
e_e3L002H_1 3.62e−5 7.81e−5 0.63 2.8 % 2.87e−5 661.4 - 270.4
lp_e3L0003H_0 6.17e−5 1.17e−5 0.91 17.3 % 6.64e−4 28.1 - 74.0
lp_e3L0005H_0 8.93e−5 1.95e−5 0.76 8.6 % −4.84e−4 −31.3 1 97.9
lp_e3L0005H_1 4.12e−5 1.95e−5 0.70 1.8 % 1.31e−5 8.2 0 58.3
lp_e3L0005H_2 24.10e−5 1.95e−5 0.41 4.9 % 9.88e−4 −0.5 - 81.3

Table 7.3: Overview of planetesimal properties from the 2-d simulations, measured in the simulation end-state.
The particle that belong to a planetesimal are marked by hand in the UnShear tool, developed by Thomas
Müller. The numbering of the planetesimals does not indicate the birth order. The planetesimal width is
estimated by fitting a 2-d Gaussian to the particle point cloud and taking its semi-major axes. In order to
compare this value with the numerical resolution of the respective run, the grid scale dx is listed, too. The
planetesimal aspect ratio w/h indicates if the object has a spherical shape. Most of them are spherical to a
good degree, though the simulation runtime is too short to guarantee this to be the final value. The mass
fraction κ indicates the percentage of all the available mass that ended into the object. The spin gives the
specific angular momentum. When the object is in a bound binary system, the partner is written by its
number in that column. The planetesimal size is calculated as derived in the text, and the value is based on
typical parameters for the early solar system.

of 45 km. This falls in very good engagement with the resulting planetesimal sizes for the St = 0.1 particle
simulations, though many of the produced planetesimals are still larger than what is found for the initial
main belt asteroids. This is not too surprising, since the presented simulations are 2-d and have parameters
that are not right what can be expected for the solar nebular, i.e. dust-to-gas ratio will not have been ε= 3.
In the info graphic on page 138 shown is also e_e3L0005_1, which is not a planetesimal, but a collapsing

cloud with a short time stability. It can also be seen in the stacked view plot in Fig. 7.11c, and as a finger
in the stacked view on the particle velocity in Fig. 7.11d. This self-gravitating clump desolves quickly by
gas ram pressure, as can be seen in a time-correlated increase in gas density in Fig. 7.9.
The planetesimals from the A-runs were taken for a deeper analysis in their simulation domain. A problem

that arises is the shearing sheet domain, in which the formation of the planetesimal cannot easily be followed
up, as it multiple times crosses the shearing sheet boundary. This induces a time depended offset and a
shift in the relative velocity, so that a coordinate transformation into the planetesimal frame of reference
was wishful, as well as into a global frame of reference. This side-project was carried out with the support
of the intern-student Patrick Quicker and the visualization assistant Thomas Müller. Fig. 7.11 shows the
simulation e_e3L0005_0 once in the shearing sheet frame (a), in the frame of reference of the forming
planetesimal (b), in the frame of reference of the short time existing second self-gravitation clump, and in
(d) the shear-substracted velocity field. The time evolution of the collapsing filament from Fig. 7.3 can
now be followed up in this still image. The filament has been found to only partly collapse, explaining
why only ≈ 10% of the filament mass ends in the planetesimal. The environment of the collapse is still
highly turbulent and second, the moment the planetesimal is born it starts to radially drift inwards, and
accelerate in azimuthal direction, see (d) of this figure. Hence, the planetesimal moves out of the collapsing
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Figure 7.13: Drift trajectory of the planetesimal e_e3L002H_0 after its birth in radial (x) and azimuthal (y)
direction. The planetesimal is followed over many simulation domain length, as it drifts radially inward.
In the PencilCode, when the planetesimal is jumping over the radial domain boundary, the planetesimal
enters the domain again on the opposite side, but shifted by the shear length and corrected in velocity. In
this picture now the planetesimal is followed over the boundary by now shifting the simulation domain by the
respective distance such that it looks like the planetesimal can leave the simulation domain and enter the
radially next one. Counting the number of simulation domains that the planetesimal is traveling through,
one ends with a travel distance of 3.5 simulation domains. Since each simulation domain is 0.02 H in size,
this translates into an radial drift of 0.07 H. For a disk with aspect ratio h = 0.04, this translates into a drift
distance of 0.3 % of its birth radius. This figure is not necessarily the ground truth, but suggest that further
analysis of the drift distance after birth is needed.

filament and stalls the mass supply by the filament. The second clump that finally not collapses, shows in
subplot 7.11c its short appearance. The collapsing filament shows to be smaller and short-lived, explaining
the low mass in this clump. This clump than also immediately starts to drift inwards. This is seen in (d) in
the form of the upper finger to the right (radially inward). This velocity plot also shows a significant larger
rms-velocity within this clump, i.e. the finger that resembles this clump in velocity space is comparable more
extent. But it is also the gas ram pressure, compare with Fig. 7.9, disrupting the clump. This can be seen
in the overview from page 138 as a long tail to the back and two tails starting from the head of the clump.
Since only 3 % of the total mass was incorporated into the planetesimal e_e3L0005_0, it is understandable
for the simulation to undergo collapse again. From the stability criterion perspective, it is not too uprising to
find this second collapse to not be successful. If not over a longer time a second planetesimal could actually
form, needs to be shown in future work.
One might see e_e3L0005_0 as an archetype of a planetesimal, as it formed not only right on the stability

threshold, but also resembles a planetesimal size that is expected for asteroid main belt objects to be their
initial size. Hence, the planetesimal is followed in its first few orbits in Fig. 7.15. The figure shows the
rms-velocity in the clump (top left), the rotational period ω, the velocity of the centre of mass in radial (vx)
and azimuthal direction (vy), the squared distance from the centre of mass sigmax, and a quantity that
resembles the flatness of the object, which is sigmax/vrms. The plot of sigmax shows the planetesimal to
be initially spread out over 2 ·10−3 H, but than the collapse starts at t= 1500 and the planetesimal forms as
an object with lower than 10−5 H in size. The planetesimal is found to radially migrate inwards during the
collapse phase and its first orbits of existence. During this period the planetesimal increases its azimuthal
velocity until it reaches Keplerian velocity. The diagram of the azimuthal velocity shows many smaller jumps
which come from the velocity correction when passing over the radial shearing sheet boundary condition.
The particle rms-velocity is found to approach zero, i.e. the particles that resemble this object gain an
ordered rotational motion around the centre of mass. With this rotation the planetesimal rotates 50 times
per orbital revolution around its rotational axis.
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As found in the previous section, the simulation Ae3L001H has the largest outburst in planetesimal for-
mation with 8 planetesimals formed in total. Fig. 7.12 shows centered views on two of these planetesimals.
In Fig. 7.12a one sees that is hard to entangle the dynamics of these objects, still the formation in a small
filament can be identified and a lot of planetesimals that pass by and interact gravitationally. In the top
left of this image two curly lines can be found that resemble a binary system of planetesimals. Changing
into this binary system give Fig. 7.12b, where one can find the binary system to not come from a capturing
event, but from a single collapsing filament. Which is something very hard to spot in a simple video analysis.
The velocity diagram in Fig. 7.12c reveals that all planetesimals initially drift inwards, but the mutual inte-
raction deflects them so their trajectory is hard to follow. This diagram shows a lot of kinks the come right
from these gravitational interactions. Still, all the planetesimals try to take the velocity space volume with
very low inward drift velocity and Keplerian azimuthal velocity. The variety in the formed planetesimals is
astonishing, as they all have different sizes, but only one would be larger than 200 km in our solar nebula.
Still, some of them rotate very fast, i.e. e_e3L001_6 with an additionally weirdly low aspect ratio, small
size, and hence small spin. This simulation also is special, as it produced two binary systems.
The run Ae3L002H was further used to study the initial planetesimal behaviour. This run produced the

objects, e_e3L002_0 a very massive planetesimal which is a merger product of many clumps that formed
during the collapse. And e_e3L002_1 is comparable to the planetesimals from the smaller simulations sizes.
e_e3L002_0 was followed during its formation and lifetime in a global reference view. This is shown in
Fig. 7.13 in a diagram with radial (x) and azimuthal y direction, where once the target jumps of a boundary,
the simulation domain was shifted and distorted accordingly to the Keplerian shear as if the planetesimal
could leave the simulation domain and as if one could follow its path through the PPD. The formation of this
object happened in an extended cloud in the top right corner. The simulation domain size is still visible in
the quadratic boxes within this plot, and since the box size is 0.02 H, one can conclude the collapsing cloud
in this simulation to be larger than 0.01 H. But one also sees this cloud to collapse into many objects that
then merge into what is called planetesimal e_e3L002_0. The formed planetesimal then quickly leaves its
formation cloud and drifts inwards over a time. The drift distance here is around four simulation domain
sizes, hence ≈ 0.08H. Then the planetesimal has readjusted to the Keplerian velocity and the planetesimal
starts to orbit the central star.

Discussion on the initial mass function

These results now give a new impression on the simulations that have been performed by Johansen et al.
(2015) and Simon et al. (2016). In their work they derived an initial mass and size distribution for planete-
simals as being a power spectrum, with lower end close to 100 km. From the interpretation of overshooting
planetesimal formation in this work, their simulation results are not too surprising. One, they still lack the
needed resolution for diffusion limited collapse, and two, their simulation are brought to fast into a high
dust-to-gas ratio regime. Due to the too high dust load they observe the collapse not to happen at the boar-
der of stability, but well in the unstable regime. The presented work finds already by a slight overshooting
in dust mass the formation of a cluster of planetesimals or very massive planetesimals. It is thus highly
recommended repeating the simulations from Johansen et al. (2015) and Simon et al. (2016), but with a
much slower increase in dust-to-gas ratio. Then the collapse should only happen at the boarder of stability
and the resulting planetesimal sizes can get directly compared to the analytic prediction from the diffusion
limited collapse criterion. Hence, it is the prediction from this work that the initial size function is not a
power law (Hopkins, 2016), but a narrow Gaussian around a mean size of 80km in diameter.
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(a) Planetesimals formed within e_e3L001H This is the
simulations with a ’burst’ of planetesimal formation.

0 200 400 600 800 1000
ac

0

1

2

3

4

5

6

7

8

nu
m

be
r o

f p
la

ne
te

si
m

al
s

number of planetesimals in boarder cases e_e3L0005H, lp_e3L0003H, b_e3L003H

(b) The three planetsimals that formed in the
three simulations right at the boarder of stability:
e_e3L0005H_0, lp_e3L0003H_0, and b_e3L005_1.
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(c) Planetesimals from the four simulations that lie well
in the collapsing realm. They represent overshooting
cases, where collapse is granted: Ae3L002,Ae3L001,
Ae3L0005lp, and Be3L005.
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(d) Planetesimals that are formed in simulations with
St = 0.01 particles tend to be much more massive.

Figure 7.14: Histograms of the planetesimals diameters ac that formed in all the 2-d collapse simulations.
Grey are all the planetesimals for reference, orange are from a selected group, as described in the caption
below each plot. The planetesimal size is estimated by counting the number of particles that are bound into
the objects and by multiplying this with the mass represented by each particle. Most of the planetesimals are
found to be around 100 km in size. Which is right the value where the cumulative size distribution in pristine
solar system objects has a knee (Sheppard & Trujillo, 2010). Specially, for St = 0.1 the planetesimals formed
right at the boarder of stability are 72.5 and 74.0 km in size. The planetesimal diameter can be calculated,
since it is found to be to first order independent from the radial distance from the star, see Sec. 3.3.3.
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Figure 7.15: Physical parameters of the planetesimal e_e3L0005H_0. Measured are, from top left to bottom
right: Particle rms-velocity, rotation frequency of the planetesimal Ωc, radial and azimuthal velocity of its
centre of mass, flatness sigmax/vrms, and squared particle distance from the centre of mass, here named
sigmax. Thanks to Thomas Müller for the support with this work.
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7.6 Collapse simulations in 3-d

In this project, a first step into analysing the presented diffusion limited collapse criterion in 3-d has been
made. A simulation with domain size Lx = Ly = LZ = 0.001H, St = 0.1 particles, pressure gradient of
βln(ρ) = −0.1 and initial dust-to-gas ratio ε0 = 1 has been carried out. This simulation is thus similar to
one of the investigated gravity-free 3-d SI simulations, see their diffusion values in Fig. 6.5. The runtime of
such a simulation is quite long, as it took 22 days of effective runtime to bring the simulation into a state
with saturated SI, i.e. before gravity could be switched on. Hence, any further tests were performed with
this single simulation as its basis. This initial run was set up at Hill density with f = 1, i.e. Ĝ = 0.71, see
Eq. (3.40). The timeseries of the maximum dust-to-gas ratio is shown in Fig. 7.17 (blue). The vertical grey
bar indicates when self-gravity is switched on. The particle diffusivity is measured in the saturated SI state
in radial and vertical direction before gravity was switched on. Measured are the diffusivities as:

δx = (1.90±1.22) ·10−6 and δz = (7.25±2.20) ·10−9.

Hence, the radial diffusivity was found to be more than two orders of magnitude larger than the vertical
diffusion. These values translate into critical length scales of

lc,x = (2.90±0.30) ·10−3H ≈ 2.9Lx ,

and

lc,z = (0.18±0.01) ·10−3H ≈ 0.2Lz .

As the critical length scale in vertical direction is a factor of ten smaller, the question is if the strong radial
diffusivity is enough to prevent collapse. Surprisingly, no collapse happened in the run with f = 1.
As can already be expected from these values together with no planetesimal formation, the simulation

found the particles to undergo a collapse into a dust layer. This dust layer is not the disk mid-plane, as there is
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Figure 7.16: Timeseries of the maximum dust-to-gas ratio occurring in the 3-d collapse simulation with St =
0.1 particles. Grey vertical line marks the time, where self-gravity is turned on. The initial gravity parameter
is set to Ĝ = 0.71, which represents Hill density (blue). The measured critical length scales predicted that
vertical collapse is allowed, but radial collapse is not. Since the result was no collapse, as predicted, the
gravity parameter was increased (other coloured lines), starting from a gravitoturbulent snapshot. The
simulation with eight times higher gravity collapsed immediately (yellow). The one with four times higher
gravity took longer, but collapsed after a quarter of an orbit (orange). The run with two times higher gravity
did not collapse (purple).
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(a) f = 1 - t= 2.94Ω

(b) f = 2 - t= 2.89Ω

(c) f = 4 - t= 2.79Ω

(d) f = 8 - t= 2.69Ω

Figure 7.17: Simulation end-states of the 3-d collapse study. The views present projects along the vertical
(left), azimuthal (middle), and radial (right) axis. Thus, the colorbar shows the column dust-to-gas ratio
along the projection axis. All four simulations have the same set of parameters, only the internal density, i.e.
total mass that gets scales via Ĝ, is altered by the f parameter. Simulations with f ≤ 2 show no fragments,
but f = 1 shows a single prominent large self-gravitating cloud, and f = 2 two distinct clouds (see right view).
The two simulations with higher total mass collapsed each into a single planetesimal, though the run with
f = 8 shows some additional overdensities which are unclear if the collapse, or merge with other over-densities.
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not stellar gravity inside these simulations. The observed dynamics are better described as self-sedimentation
to the maximum in the vertical dust density. Such thin dust layers can trigger other instabilities, as the
known Kelvin Helmholtz instability (Johansen et al., 2006a). Moreover, Bai & Stone (2010a) suggest the
SI might change its behaviour. As found in their work, the SI can sustain a vertical dust layer to a greater
amount than what is thought. This happens due to an increase in turbulent strength when sedimenting to
the disk mid-plane. If in this is the case in the presented simulations has to be shown.
Thus, the vertical dust layer is investigated. It is found to have a Gaussian shape. Hence, the dust layer

has a scale height, which can be measured via the standard deviation. With s = 1.31 · 10−4 the vertical
dust scale height was found to be a tenth of the simulation domain size. From this, one can try to estimate
the underlying turbulent strength δ′z be setting the collapse timescale equal to the diffusion timescale. This
approach is similar to Birnstiel et al. (2010), where they used settling timescale and stirring timescale. Using
the vertical gravitational force gz from a dense mid-plane at Hill density with vertical height s, which shall
now represent a dense particle layer, i.e. compare with Eq. (4.4.1), the gravitational force is given by

gz = 4πLzρHillG .

This is a constant force, independent from the height over the dust layer. Thus, Eq. (37) from Johansen
et al. (2006a) could not be used to determine the turbulent strength as their gravitational acceleration is a
function of height.
The particle layer is stable only if the collapse time τcoll = s/v is equal to the diffusion timescale, which is

again τD = s2/D′. With D′ the diffusion constant and v the collapse velocity. This collapse velocity can be
again set to be the terminal velocity of a dust grain with a certain Stokes number. The terminal velocity is
thus expressed by

v = τsgz = 4πτsLzρHillG .

Setting collapse timescale and diffusion timescale equal asks for an equilibrium solution between turbulent
diffusion and vertical settling, which is basically the observed state in the simulation. Solving this equilibrium
for the needed vertical diffusion coefficient δ′z, i.e. D′ is herein expressed in code units, gives

δ′z = 9 sLSt
(
L
H

)2 . (7.5)

With this formula, the vertical diffusivity in the simulation could be estimated to be

δ′z ≈ 1.18 ·10−7 ≈ 16 · δz .

A critical length scale from this diffusivity might not be fully conclusive, but interestingly is with

l′c,z ≈ 1.63Lz

larger than the simulation domain.
As this project turned out to be computational expensive, it was not repeated with different domain sizes,

as done in the 2-d collapse experiments from Sec. 7.4. Instead, the total mass was altered to values larger
than Hill density, which similar to altering the box size as this reduces lc/L, too. By using the scaling in
density f from Eq. (3.40), one can estimate that a simulation with f = 2 should still not collapse, see below,
but f = 4 and higher should do. Three new simulation were setup up such that they start already with the
self-sedimented dust layer, but with higher f parameter. The corresponding critical scale length for collapse
should be

f = 2 : l′c,z ≈ 1.15Lz
f = 4 : l′c,z ≈ 0.81Lz
f = 8 : l′c,z ≈ 0.58Lz
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The maximum dust-to-gas ratio timeseries in Fig. 7.16 shows from where the snapshot was taken and
the time evolution for this three additional simulations, with f = 2 (purple), 4 (orange), and 8 (yellow).
Surprisingly, the l′c,z criterion was giving a good hint on the result of these experiments, as the simulation
with f = 2 remained stable, too, and the simulation with f = 4 was taking longer to collapse as the simulation
with f = 8.
The radial particle diffusion was found to also change within the emerging of the self-gravitating dust

layer. In contrast to the vertical diffusion value, the new radial diffusion value δ′x can be measured with
the default method of tracking the particle travel distance over time, see Eq. (3.40). The new value for the
radial particle diffusion is

δx = (2.38±1.38) ·10−5 .

Hence, the radial diffusion strength was in the dust-layer ten times higher than in the ideal SI situations
before gravity was switched on.
It remains an open question if the vertical collapse observed with f ≥ 4 could happen in a situation with

outflow boundaries, where the collapsing dust cloud could spread in the x-y plane while collapsing in z. The
radial particle transport by diffusion might be faster than the collapse and hence prohibit the collapse of the
particle cloud. If this is true should be analysed in a future project. This will than answer if still the higher
radial diffusivity states the final collapse criterion on planetesimal formation in PPDs.
Fig. 7.17 shows the end-states of all four simulations. The simulation with f = 1 finds a particle layer with

a single self-gravitating cloud in it, see Fig. 7.17a. But this cloud is continuously dispersing and reforms
again. The simulation with double the density, see Fig. 7.17b, finds two of such self-gravitating clouds. The
height of the particle layer also reduced to half the size of the f = 1 simulation, which is right what one
expects from the estimate of δ′z above. Going to even higher densities, the run with f = 4 slowly collapses,
forming a single planetesimal. The run with f = 8 directly collapses to a more massive filament, and the
resulting planetesimal number is unclear by this shown state. For comparison, the radial diffusion is much
stronger and would in a similar approach actually require a increase in total density by a factor of f ≈ 8,
but only under the assumption that the radial diffusivity remains unaltered once the particle layer forms,
which is not what is observed.
One might conclude here that the diffusion limited collapse criterion holds in 3-d only roughly. Still,

already this set of simulations shows that diffusion can prevent the collapse of a particle cloud. Thus, the
general scheme of diffusion limited collapse holds. But, with outflow boundary conditions it is a good guess
that none of the simulations would have collapse as radial diffusion is too strong. Only by allowing the mass
inside the cloud to remain within it, vertical collapse could proceed.
The properties of the planetesimals were tried to estimate, though the particle cloud that states the

planetesimal was not clearly to be identified and the following values should be taken with caution. In the
simulation with f = 4, the mass efficiency, see Sec. 7.5, is κ≈ 0.036. In the run with f = 8 the mass efficiency
of the largest particle clump is κ ≈ 0.015. Hence, the planetesimal have a size of 58.8 km in the f = 4-case
and 86.5 km in the f = 8-case.

146



Ch
ap

te
r7

147





Ch
ap

te
r8

8 Discussion and Outlook

Understanding the formation of planetesimals is crucial for explaining the solar system as we observe it
today. But still, the transformation of µm-sized dust into km-sized planetesimals states a missing link in
our understanding of the formation of planets and moons, and all the variety of objects tat are observable
with current techniques. Such as the strange visitor Oumuamua (Raymond et al., 2017) that could be a
planetesimal remnant from an extra-solar nebula. Observations of extra-solar systems revealed planets to
be highly abundant7, debris disks to be common (MacGregor et al., 2017), and even comets are now found
in extra-solar systems (Rappaport et al., 2018)k an explanation of their formation, too. This missing link
further prevents us from deriving a self-consistent picture of a planetary system in its making. Furthermore,
when it comes to deriving the abundance of certain elements in the early solar system, a final explanation
for the observed elementary abundances in our solar system today cannot be made without a formation
mechanism of the initial planetary building material at hand.

A diffusion criterion on planetesimal formation
This work is a big step towards closing this missing link of planet formation. It was the endeavour of this
thesis to derive a criterion on the formation of a planetesimal from an initial dust cloud via gravitational
self-collapse (Chapter 3), and to verify this criterion on numerical experiments (Chapter 7). The instability
criterion has been derived for the first time by H. Klahr during this work was carried out and afterwards
further refined by myself. It was published in Klahr & Schreiber (2015). A second publication including the
herein presented results on the collapse simulations is in preparation. The collapse criterion is derived by
comparing the turbulent diffusion timescale τD with the collapse timescale τcoll of a self-gravitating particle
cloud. A mechanism that was not foreseen to be at work in the original works of Safronov (1972) and
Goldreich & Ward (1973). The herein used collapse timescale takes the friction of the particles with the gas
into account. It was found to be inversely proportional to the Stokes number.

The collapse is assumed to start with a Hill stable particle cloud, as this states stability against Keplerian
shear and tidal forces. This can be seen as a minimum density condition ρc > ρHill for a collapsing particle
cloud in a PPD, and is regularly used in other works as a boarder of gravitational stability. The in this
thesis identified turbulent processes are found to undermine this minimal density criterion. Thus, it had to
be replaced by the presented dynamical criterion which incorporates the Hill stability, but is based on the
particle dynamics during the collapse. A future project should determine if the assumption of Hill density
being the critical density is justified for cloud collapse inside of a PPD, as friction with the gas is dragging
on the particles. The critical density, herein this work expressed via the f parameter, cold thus be found to
be a function of Stokes number and local sub-Keplerianess.

The new diffusion limited collapse criterion states the condition on a particle cloud to be larger than a
critical size L ≥ lc in order to collapse faster than turbulent diffusion can dissolve it, see Sec. 3.3.1. This
expression can be understood as a critical length for planetesimal formation, similar to the Jeans length
in star formation. Regions of less than the critical density and of diameter less than lc cannot collapse.
But, larger or more massive regions can do. The diffusion timescale for this criterion is determined by the

7See www.exoplanet.eu
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strongest particle diffusion process right on the scales of particle cloud collapse. Since the collapse has to
happen at Hill density, one can expect the dust-to-gas ratio ε > 1. The process that is diffusing the particles
has thus to be specially strong in the realm of such high dust-to-gas ratios.

A turbulent process that is active right in suchlike particle dense regions has already been found in the
work by Youdin & Goodman (2004), Youdin & Johansen (2007) and Johansen & Youdin (2007), as they
discovered the Streaming Instability (SI) in PPDs. In most works that followed, the SI has been thought of
as a mechanism to enhance the dust density locally, though Johansen & Youdin (2007) already measured
a significant turbulent strength in the non-linear instability phase. The turbulence found in their work yet
went unnoticed in its consequences till today, and has mainly been discussed in literature by its ability to
concentrate particles. An exception to be noted is Bai & Stone (2010a), who found the particle turbulent
from the SI to vertically limit the dust scale height, a very similar process to cloud collapse.

Combining the diffusion values from Johansen & Youdin (2007) with the derived diffusion limited collapse
criterion leads to critical length scales that are of the order of lc ≈ 8 · 10−3 H. This is a reasonable value
for cloud collapse in a PPD. Consequently, turbulent particle diffusion has to be taken into account when
it comes to particle cloud collapse. The resulting critical length scale is found to depend on the underlying
dust density via

√
f . But, in the size estimate for the resulting planetesimals it arises via f1/6 and hence the

planetesimal size has only a very weak dependency on the precise collapse density. Moreover, cloud collapse
will always set in once this newly found boarder of stability is reached. Thus, larger or more massive clouds
are unlikely to form in the first place. Only if a lot of mass is provided on a short timescale, as done in
Johansen et al. (2015) and Simon et al. (2016), this boarder of criticality can be surpassed. If so, it can
come to an outburst in planetesimal formation, producing more and larger objects at once. In contrast,
the herein found mode of diffusion limited planetesimal formation predicts them all to be formed around a
characteristic size and is thus by all means different from other initial planetesimal mass functions that have
been derived, e.g. by Hopkins (2016), Johansen et al. (2015), and Simon et al. (2016).

In conclusion, the typical mass of planetesimals is given as being proportional to the Hill density ρHill times
the cubed value of the critical length scale lc. But, whereas the Hill density decreases with distance from
the star, the cubed critical length scale increases at the same rate, leading to constant initial planetesimal
masses at all distances. Moreover, in Sec. 3.3.2 a similar expression to Eq. (3.40) could be derived from
solving the dispersion relation for the SGI under the additional influence of turbulent diffusion. The derived
length scales for the linear phase are a factor of three times larger than from the timescale based estimation.
The carried out numerical verification of the diffusion limited collapse criterion showed clearly the timescale
criterion to be the right one, see the results of Chapter 7.

Planetesimal formation moderated by the streaming instability
As already noted in Cuzzi et al. (2008) and Shariff & Cuzzi (2014), the processes that can stall a particle
cloud collapse can be divided into internal and external processes. From the picture posed in this thesis, it is
the turbulent diffusion from inside and outside the collapsing cloud that can bring collapse to a stall. Hence,
the SI strength from outside the clump needs to be taken into account, too. This is foremost neglected with
this work, but needs to be kept in mind for future research. The described collapse is observed in all but
one performed numerical simulation, which is the simulation Ae3L0005. In this case, a second particle cloud
tries to collapse after already a planetesimal formed, but is not successful. After its formation, the cloud
is observed to rapidly drift inwards. Correlated with this drift is a measured increase in the maximum gas
density, indicating this cloud to actually get disrupted by gas ram pressure, as suggested to happen by Cuzzi
et al. (2008). Still, it is found to be the turbulent strength that is responsible for limiting the cloud collapse
in all other investigated cases and the criterion holds in all investigated cases. Also, in some performed
simulations the collapse happens on scales smaller than the simulation domain size. It is already in those
cases not only internal turbulence limiting collapse, but also cloud external turbulence.

Now, with this new stability criterion at hand, one needs to know what turbulent diffusion strength can
be expected within a collapsing particle cloud, and also its surrounding. As the surrounding can be expected
to be particle dense too, this could actually state another driving source of turbulence. Hence, an intense
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parameter study in 2-d, 2.5-d (Chapter 5), and 3-d simulations (Chapter 6) was carried out in a total of 225
simulations over the past four years. They covered a parameter space of dust-to-gas ratios from ε0 = 0.1
to 1000, had domain sizes varied from 0.1 H to 0.001 H, particle Stokes numbers of St = 0.01 and 0.1, and
resolutions from N = 128 to 1260 grid cells per direction. Some of these simulations took months to perform.
This parameter study helped in classifying not only the turbulent strength of the SI, but also found a new
turbulent instability. This new instability was found to operate in the r-ϕ plane and hence named azimuthal
Streaming Instability (aSI).

This new aSI shows very similar properties as the 2-d SI. Both, when fully active, manage to induce
fluctuations in the maximum dust-to-gas ratio by a factor of εmax/ε0 ≈ 10. Both also show similar growth
rates and similar activity levels at the same initial parameters, and both drop similar in strength when going
from St = 0.1 particles to 0.01 particles. Hence, one might state, the two instabilities have the same origin.
This also shows the Keplerian shear to not be able to suppress aSI modes in the r-ϕ plane. The performed
2-d and 3-d simulations both found the strongest diffusion to be in radial direction. The radial diffusion
is found to differ from the vertical diffusion by up to two orders of magnitude. As seen in the collapse
simulations from Chapter 7, this might result in non-spherical collapse. This states directly an opportunity
for a future project, in which this observation is to be classified and one improves the analytical diffusion
limited collapse criterion into a form that takes non-isotropic turbulent diffusion into account. For St = 0.01
only very little aSI/SI-activity was found, but the calculations of linear growth rates suggest that they might
be operating on even smaller wavelength than what was investigated in this thesis.

The presented work neglects any influence that might arise from external gas turbulence, see for example
Turner et al. (2014) on possible origins thereof. One can argue that especially at large dust-to-gas ratios and
on small scales the SI should dominate the particle dynamics. Still, if a disk is on large scales sufficiently
turbulent in the gas, this could cascade down onto the considered small scales of planetesimal formation.
But, even if the gas turbulence dominates the particle diffusion, then the diffusion that enters the critical
length scale would have to be replaced by this stronger external driven turbulent diffusion. The argument
over the role of diffusion to set a critical length scale for planetesimal formation still holds, as it is a
fundamental process. Strong external turbulence might therefore have the possibility to lead to even larger
initial planetesimals, as more mass would be needed to overcome the turbulent diffusion threshold. In the
numerical experiment from Johansen et al. (2007) and Johansen et al. (2011), they did show the SI to operate
in simulations were a global turbulence was induced with a value of up to α= 3 ·10−3. But still, they showed
SI remained active on the small scales. Therefore, one can safely assume the SI to define the birth size of
planetesimals and not the global turbulence. Only if for some reason no turbulence is active, or a disk patch
suddenly has too much mass, then the resulting planetesimals will deviate from the predicted size.

Large scale turbulence is also found to form particle traps, such as zonal flows and vortices. They were
found to concentrate particles sufficiently to trigger the SI (Dittrich et al., 2013; Raettig et al., 2015; Auffinger
& Laibe, 2017). The numerical experiments conducted in Johansen et al. (2007) and Johansen et al. (2011)
already showed 3-d SI to be active within zonal flows, and the work from Raettig et al. (2015) showed SI-
activity in a particle trapping vortex Barge & Sommeria (1995); Raettig et al. (2015). Still, often this is
unclear to the scientific community, as a zonal flow has a point where the pressure gradient is zero and hence
SI should be inactive. Sec. 5.4 goes through some of these arguments and numerically showed the newly
discovered aSI to be active right within a zonal flow. In combination, this confirms the findings of Auffinger
& Laibe (2017), who analytically found SI-activity within zonal flows. A future continuation of the zonal
flow experiments should add a vertical extend and dust settling to a disk mid-plane. By that, the back
reaction of the particles gets focused onto the disk mid-plane, whereas in the herein performed experiments
the back reaction is distributed over the whole disk column. Then, the upper gas disk atmospheres can
replenish the pressure bump, see Onishi & Sekiya (2017). This project should also investigate a correct
initial condition for particles to be fed into the simulation, as they were herein this work homogeneously
distributed, similar to the project Onishi & Sekiya (2017). It might be even better to seed the dust into the
simulation domain at the outer boundary condition, and have them outflow again at the inner boundary.
Finally, self-gravity should be included in these simulations, which rises hope to find the proclaimed diffusion
limited planetesimal formation at work within the zonal flow. This would give insight in the minimum dust
mass flux needed for a zonal flow to form planetesimals and the zonal flow dust trapping efficiency. Also,
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the local pressure gradient varies in the vicinity of a dust trap and thus the value for the diffusivity may be
different then in the performed estimates within this work.

It is interesting to note that the SI might have a dual role in the process of planetesimal formation, both
being contrary to each other. On large scales, the SI helps to form planetesimals by concentrating dust locally
into dense filaments. Yet, on the small scales, it prevents the formation of arbitrarily small planetesimals by
diffusing collapsing clumps faster than they could potentially collapse.

Verification of the derived diffusion limited collapse criterion
The derived diffusion limited collapse criterion states a sharp criterion on when collapse can occur and when
not. Hence, it had to be testable in simulations that isolate the case onto situations which clearly state if
collapse should occur or not. In Chapter 7 this was carried out in a series of 2-d and 3-d experiments that
simulate the collapse of an isolated particle cloud. In this project, the simulation domain itself mimicked
the particle cloud in its size. Hence, a simulation domain smaller than the critical length scale should not
be able to collapse. A scheme already used to verify the Jeans criterion (Truelove et al., 1997). The critical
length scales derived in Chapter 5 and Chapter 6 where used to determine a set of numerical parameters
that allowed for such a scheme to be performed on, i.e. at one point the critical length scale had to be larger
than the corresponding simulation domain size.

In this project, shearing box simulations with fully developed SI for St = 0.1 and St = 0.01 particles got
induced with dust self-gravity right at the Hill density. By varying the simulation domain size L around
lc, the correctness of the critical length scale could be proven, as only simulations within the allowed realm
collapsed, see Fig. 7.2. In contrast to previous works of Johansen et al. (2015) and Simon et al. (2016),
the critical length scale lc was resolved in this project by 128 grid cells. Some simulations were successfully
adjusted to be right at the boarder of stability. Each of these critical runs formed only a single planetesimal,
further underlining the correctness of the diffusion limited collapse criterion. Going to higher total masses
in the simulations resulted in an outburst of up to eight planetesimals being formed, or in the formation
of extremely large objects. In these out-bursting simulations, it would be interesting to study the order in
which the planetesimals form and to check if in these cases the larger planetesimals formed first. If such
overshooting situations exist in real PPDs has to be understood in future research. Larger initial planetesimals
would allow a quicker start of pebble accretion if they exceed several 100 km and thus faster planet formation
Weidenschilling & Cuzzi (1993); Kobayashi et al. (2016); Ormel (2017). A consequence is that planetesimal
formation in numerical simulations demands patience, as inducing too much mass, or a too high metallicity,
will produce larger objects than what the critical value would give.

Future studies will have to show how turbulent diffusion from the SI depends on the present particle size
distribution. Such studies could help to explain the observed variations in the typical masses and colours
of the different object families. The results of this thesis thus have the implication to be tested against
the continuously improving observational data. For example, the compositional mapping of the asteroid
belt objects (DeMeo & Carry, 2014), or the colour range of binaries, which is surprisingly indistinguishable
from the larger population of single trans-Neptunian objects (Benecchi et al., 2009). Whatever mechanism
produced the colours of apparently single TNOs acted equally on binary systems. Hence, the most likely
explanation is that the colours of trans-Neptunian objects and binaries alike are primordial and indicative
of their origin in a locally homogeneous, globally heterogeneous PPD but common formation mechanism.
As found in the performed 2-d simulations, two binary system could be produced from in the overshooting
parameter set. This confirms the high tendency of gravitational collapse to produce binary systems. The
further evolution of a binary planetesimal, e.g. by dissipation of orbital energy via tidal forces, can result
in a slowly merging binary. This merged binary then becomes a contact binary, for example as seen in the
comet Tschurjumow-Gerassimenko (Rickman et al., 2015).

For comparison, it is in the nature of planetesimal formation via fluffy dust growth to demand at each
given time a continuous size distribution of objects from small to large. This is in contradiction to the
recent findings of an initial Gaussian size distribution for the asteroid belt by Delbo et al. (2017). From
the maximum dust density timeseries of the simulations performed, see Fig. 7.4, one finds with decreasing
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domain size it takes longer to form a planetesimal, until planetesimal formation is finally forbidden. This can
be understood as the collapse criterion is in reality not a razor-sharp criterion, but rather gives a collapse
likelihood around the boarder of stability. A result from this could be right a Gaussian planetesimals size
distribution which then could be compared with the initial size distribution of the asteroid belt from Delbo
et al. (2017). A first impression of such a size distribution gives the size histogram in Fig. 7.14. It not only
shows most of the planetesimals of this study to have a size around 100 km, but also that only very few larger
planetesimal were produced and even less smaller planetesimals. The higher number in larger objects comes
specially from the simulations that have too much mass and are initialized as overcritical, in terms of the
ability to gravitationally collapse. Taking only simulations around the boarder of stability shows a rather
Gaussian distribution, though this is low number statistics. This states another future project, in which as
many planetesimals as possible get produced right at the boarder of stability, leading to a size distribution
that directly can be compared with finding of Delbo et al. (2017). Today, the power-law in the asteroids
size distribution is then the outcome of planetesimal collisions and particle accretion (Johansen et al., 2015).
In fact, Tsirvoulis et al. (2016) published recent observational evidence for the initial size distribution of
asteroids to have been much shallower than presumed. This could be reproduced indeed by a Gaussian
initial size distribution centred around 80− 85km (Delbo et al., 2017). The diffusion limited gravitational
collapse of a particle cloud in a dust trap is so far the only prediction for a narrow initial size-distribution
of planetesimals instead of a power law distribution. Nevertheless, the process of collisional growth in a
turbulent disk (Kobayashi et al., 2016) is of major importance to understand the further evolution of the
initial planetesimals to planetary cores as well as to the size distribution among asteroids and other minor
bodies observed today.

Of course not all possible influences on planetesimal formation were investigated in the conducted numerical
experiments, as it was designed to be a dedicated verification of the derived stability criterion. One might
argue that the planetesimal sizes found in the 2-d simulations are different to what should be expected in
3-d. What can be said is that spherical collapse and cylindrical collapse were found to have identical collapse
timescales. Moreover, the critical length scales does scale with lc ∼

√
δ, and hence a one order of magnitude

lower diffusion, see comparison of 3-d and 2-d diffusion coefficients in Fig. 6.7, should only change the critical
length scale by a factor of ≈ 3. The same is true for the found planetesimal size prediction. But, how this
incorporates into the collapse efficiency parameter q, see Eq. (3.56), needs to be studied in a future project.
So far, the collapse efficiency tends to be around q ≈ 0.1.

As a consequence from this work, one should be careful with the term streaming instability assisted
planetesimal formation in the future, as this is actually misleading. As already found in Bai & Stone
(2010a), it is the turbulent diffusion of the SI that stalls collapse, in their work it stalls the collapse of the
dust dense mid-plane. Instead, the SI should not be understood as a process producing the planetesimals,
but as a process controlling it. This process shall be called diffusion limited planetesimal formation.

Lastly, 3-d collapse simulation were performed for one parameter set that showed the diffusion limited
collapse criterion to hold in 3-d, too. Instead of altering the simulation domain size, the total mass in these
simulations was increased stepwise. The increase was induced in a situation where a dense particle layer
had already been fully developed and thus might not reflect spherical collapse. In these two simulations, the
collapse was stalled by vertical diffusion. This is a surprise, as vertical diffusion was lower than the radial
diffusion and hence collapse should be allowed. By measuring the vertical dust layer height, the turbulent
strength could be derived that supported the dust layer. The vertical diffusion was found to have increased
in its value and this new value stated the collapse criterion to hold again. A prediction on how much the
total mass had to be increased in order to trigger collapse was fulfilled once the f parameter was altered.
Here, the increase in the total mass via f is similar to increasing the physical simulation domain size, but
this way the underlying turbulent diffusion strengths were kept at a fixed value. From the 3-d experiments,
one cannot conclude that a lack in vertical diffusion will ultimately trigger cloud collapse in PPDs. As the
simulations were set up with periodic boundaries, the radial were not able to diffuse away the cloud mass
and hence could not compete with the vertical collapse. The same is true for the azimuthal diffusion, which
has not been considered so far as shear dominates that direction. The reason is the mass does re-entered
the simulations over the (shear) periodic boundary. Hence, the mass of the dust layer was maintained. In a
real situation, the mass would have been transported away from the cloud, as diffusion acts in the direction
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of the negative concentration gradient. Then, collapse would have been possible only if the vertical collapse
is faster than the radial and azimuthal turbulent transport of the dust. A future projects on 3-d dust cloud
collapse will have to deal with non-isotropic diffusion strength and maybe the periodic boundary condition
should be changed to an outflow boundary once gravity is switched on.

In either way this project develops in the future, both 3-d and high-resolution 2-d studies become very
extensive in computational demands. Not only time-stepping becomes slow from the high physical resolution,
particles in the PencilCode tend to produce large amounts of data that need a better handling strategy.
2-d simulations are found to be easier for understanding the underlying physics, diagnostics can be done
faster, as file sizes and numbers are drastically lower than in 3-d and also the critical length scales needed to
be resolved are slightly larger. 3-d simulations are more realistic and might give a more precise picture that
can be compared with reality. Still, how the process of diffusion limited planetesimal formation operates
in such setups is only at its beginning to be understood. As diffusion is measured via the particle travel
distance, this measurement sets an upper limit on the temporal output rate. Future studies should consider
additional post-processing schemes which collect the data produced from the simulations in efficient hdf5-
files. These will give easier and faster access to the data and hopefully allows progressing in understanding
the formation of planetesimals by supporting the methodology of this research.

On planetesimal formation in protoplanetary disks and our solar system
The idea of planetesimals were born big was postulated in Morbidelli et al. (2009). Their finding of all main
belt asteroids should have started at a nearly identical size, was lately confirmed by Delbo et al. (2017).
This thesis now analytically and numerically supports their observation, by stating that turbulent diffusion
prevents smaller planetesimals from being formed and larger planetesimals will not form as their birth cloud
should have already collapsed earlier. Surprisingly, the predicted sizes for this initial planetesimals and
the planetesimals found within the carried out numerical experiments, both were found to be right at the
characteristic size suggested by the observations. This characteristic size is not only found in observations of
the asteroid belt (Bottke et al., 2005), but also the Kuiper belt (Nesvorny et al., 2010; Nesvorný et al., 2011;
Parker & New Horizons Science Team, 2015), the Jupiter Trojans (Jewitt et al., 2000; Emery et al., 2015),
and lately the Neptune Trojans (Sheppard & Trujillo, 2010), see Fig. 1.3. But, even with this work, the
missing link of dust growing into km-sized planetary building blocks is not completely closed. Still, the exact
mechanisms to form gravitationally unstable dust over-density at different times and in different locations of
a PPD, has to be understood. Suggested are a variety of particle traps and dust instabilities that could drive
this mechanism, but which of them was actually at work in which particular situations remains unclear. It
is a hope for the future of the diffusion limited collapse criterion to give hints back on the underlying dust
trapping mechanism.

Another situation discussed lately, i.e. in Carrera et al. (2017), are high metallicity disks that might
occur towards the end of the gas disk lifetime. As this is clearly too late for planet formation, obviously for
gas giants, this could be the point in time where leftover material gets transformed into smaller comets. It
would be an interesting project to study if the presented diffusion limited collapse criterion also holds in high
metallicity, low mass disks, and if this can produce objects of comet sizes. Due to the high metallicity the
late phase could be an ideal situation for triggering the SI. Roche density would then be reached at higher
dust-to-gas ratios, thus lower diffusivity. Consequently, the formed planetesimal sizes are smaller than in the
gaseous disk phase. Enough material should still be available as the dust mass reservoir in the outer disk
is often found to be significantly large (Birnstiel et al., 2012), as the steady radial gas outflow transported
small dust grains outwards. Comets have the benefit to be observed regularly, many of them are found to
be pristine, i.e. unprocessed, and they come from far away of the inner solar system. Hence, they could
provide a good test bed for the presented collapse criterion. See Fernández & Sosa (2012) and Meech et al.
(2000) for further reading on comet size statistics.

The planetesimal sizes obtained in this work mainly come from 2-d simulations, and only two planetesimals
were found in the 3-d study. Still, it can be expected for a higher number of 3-d collapse simulation to find
a very similar planetesimal statistic. If so, this is giving initial planetesimal distributions in good agreement
with observations from the solar system. As the found planetesimal sizes fit extremely well to what is
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observed in the solar system and as the diffusion limited collapse criterion is only weakly depending on the
distance from the star, it is hard to believe there is a different mechanism at work with an identical outcome.
But, if diffusion limited planetesimal formation is the driving mode for planetesimal formation in the early
solar system, and also in all other PPD, has to be proven in the future. One should stay open for other
convincing formation mechanisms that are not covered by this work, e.g. fluffy growth and the lucky-one
scenario, as so often in nature a combination of all possible pathways is the key.

From the presented derivation of a critical length scale, one finds that basically all planetesimals will be,
to first order, proportional to H/R. This is in typical disk models relatively constant with radius (Bell et al.,
1997; D’Alessio et al., 1998). This explains why all asteroids and classical Kuiper Belt objects were initially
roughly of the same size, see Sheppard & Trujillo (2010). Maybe at earlier times, with stronger SI the
resulting planetesimals were larger, but they cannot be found any more today, or at the very late times with
little gas left in the nebula the SI was so weak to allow for the formation of smaller planetesimals, which may
be the cause of the more like 10km sized comets. Further research will have to clarify this. In this paradigm,
larger asteroids up to giant planet cores are the result of secondary growth processes like particle accretion
(Ormel & Klahr, 2010; Johansen et al., 2015) and collisions (Kobayashi et al., 2016). Smaller objects are
then the outcome of a collisional fragmentation cascade (Morbidelli et al., 2009). These evolution processes
explain the currently observed power laws above and below initial planetesimal size. Hence, it can be said
that the characteristic size observed today in the solar system, is an imprint of their initial size.

From this thesis, one can conclude the critical length criterion lc to be a fundamental concept that has
to be applied on the planetesimal formation process in future research. Hopefully, one will be able to
make predictions for the solar system from the diffusion limited collapse criterion which verify this path of
planetesimal formation to be the one that shaped the solar system as we see it today.
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A Appendix

A Disk space and CPU consumption of the presented projects

Project name St Cluster Num. files Total size Comp. time Core hours
in days ·1000

2-d SI resolution study 0.1 ISAAC 1115147 1.9 TB 31.0 1118.1
3-d collapse study 0.1 ISAAC 344347 274 GB 58.7 1441.9
3-d SI 0.01 ISAAC 10022804 15.2 TB 165.0 2027.1
2-d SI 0.1 ISAAC 2949998 3.0 TB 109.3 108.5
2-d aSI 0.1 ISAAC 2680051 3.1 TB 69.1 66.4
2-d aSI 0.01 ISAAC 1999408 3.1 TB 70.5 77.9
2-d SI 0.01 ISAAC 1478634 1.9 TB 90.2 86.6
3-d SI 0.1 HYDRA 1335648 2.2 TB 1262.0 14792.1
2-d collapse 0.1 HYDRA 10273905 4.5 TB 132.9 406.7
2-d collapse 0.01 HYDRA 38177295 19.0 TB 157.9 490.9
TOTAL 70377237 46.7 TB 2146.5 20616.0

Table A.1: Statistic over the performed numerical projects from within this thesis. Many other studies were
performed that could not find their place within this thesis. The statistic also only takes the work performed
on ISAAC and HYDRA into account, not the work on JUQUEEN, DRACO, and THEO

.
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B Timeseries from the 2-d streaming instability parameter study
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Figure B.1: Timeseries of the maximum dust-to-gas ratio for the r-ϕ plane simulations with St = 0.1. Time
range on the x-axisis not equal in all figure.
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Figure B.2: Timeseries of the maximum dust-to-gas ratio for the r-ϕ plane simulations with St = 0.1. Time
range on the x-axisis not equal in all figure.
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Figure B.3: Timeseries of the maximum dust-to-gas ratio for the r-z plane simulations with St = 0.1. Time
range on the x-axisis not equal in all figure.
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Figure B.4: Timeseries of the maximum dust-to-gas ratio for the r-z plane simulations with St = 0.1. Time
range on the x-axisis not equal in all figure.
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Figure B.5: Timeseries of the maximum dust-to-gas ratio for the r-ϕ plane simulations with St = 0.01. Time
range on the x-axisis not equal in all figure.
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Figure B.6: Timeseries of the maximum dust-to-gas ratio for the r-ϕ plane simulations with St = 0.01. Time
range on the x-axisis not equal in all figure.
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Figure B.7: Timeseries of the maximum dust-to-gas ratio for the r-z plane simulations with St = 0.01. Time
range on the x-axisis not equal in all figure.
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Figure B.8: Timeseries of the maximum dust-to-gas ratio for the r-z plane simulations with St = 0.01. Time
range on the x-axisis not equal in all figure.
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C Timeseries from the 3-d streaming instability parameter study
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Figure C.9: Timeseries of the maximum dust-to-gas ratio for the 3-d SI simulations with St = 0.1. Time range
on the x-axisis not equal in all figure.
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Figure C.10: Timeseries of the maximum dust-to-gas ratio for the 3-d SI simulations with St = 0.01. Time
range on the x-axisis not equal in all figure.
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D Detailed lists of simulation results

D.1 Simulation results I: aSI for St=0.1
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Table D.2: 2-d simulations in r-ϕ extent. Simulation name is constructed from St number, domain size Lx,y
and dust-to-gas ratio ε0.
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D.2 Simulation results II: aSI for St=0.01
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Table D.3: 2-d simulations in r-ϕ extent. Simulation name is constructed from St number, domain size Lx,y
and dust-to-gas ratio ε0.
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D.3 Simulation results III: SI for St=0.1
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Table D.4: 2-d simulations in r-z extent. Simulation name is constructed from St number, domain size Lx,z
and dust-to-gas ratio ε0.
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Table D.5: 2-d simulations in r-z extent. Simulation name is constructed from St number, domain size Lx,z
and dust-to-gas ratio ε0.

171



172



E List of own publications
These scientific publications have been submitted and published during my studies, or are in preparation for
a publication with this year. The following articles are partially or fully presented within this thesis:

1. Schreiber, A. & Klahr, H. 2018,
Azimuthal and Vertical Streaming Instability at High Dust-to-gas Ratios and
on the Scales of Planetesimal Formation,
submitted to ApJ, under review

2. Klahr, H., Schreiber, A. & Johansen, A. 2018,
Turbulent Diffusion Determines the Initial Size of Planetesimals,
in prep.

3. Müller, T., A. Schreiber, H. Klahr & F. Sadlo 2018,
Tracking Planetesimals Formation in Protoplanetary Disks,
in prep.

4. Schreiber, A. & Klahr, H. 2018,
The Azimuthal Streaming Instability Regulates the Planetsimal Formation in Zonal Flows,
in prep.

5. Schreiber, A. & Klahr, H. 2018,
Diffusion Limited Planetesimal Formation in 3-D Simulations,
in prep.

6. Klahr, H., & Schreiber, A. 2016,
Linking the Origin of Asteroids to Planetesimal Formation in the Solar Nebula,
Asteroids: New Observations, New Models, 318, 1

7. Klahr, H. H., Birnsitel, T., Schreiber, A., & Lenz, C. 2015,
Linking the Origin of Asteroids to Planetesimal formation in the Solar Nebula,
IAU General Assembly, 22, 2255939

Additional publications addressed the public domain and outreach:

8. Schreiber, A. & Obermeier, C. 2016,
Planetenforscher im Datenreichtum,
Sterne und Weltraum 11|2018

9. Klahr, H. & Schreiber, A. 2015,
The formation of planetesimals: building bricks for planetary systems,
NIC Symposium 2016

10. Schreiber, A. & Klahr, H. 2015,
Gravoturbulent Planetesimal Formation,
GCS Press release





Bibliography

Adachi, I., Hayashi, C., & Nakazawa, K. 1976, Progress of Theoretical Physics, 56, 1756 20

ALMA Partnership, Brogan, C. L., Pérez, L. M., et al. 2015, ApJ, 808, L3 13

Amelin, Y., Krot, A. N., Hutcheon, I. D., & Ulyanov, A. A. 2002, Science (New York, N.Y.), 297, 1678 12

Andrews, S. M., Rosenfeld, K. A., Kraus, A. L., & Wilner, D. J. 2013, Astrophysical Journal, 771, 1305.5262 18

Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2010, Astrophysical Journal, 723, 1241 20

Ansdell, M., Williams, J. P., van der Marel, N., et al. 2016, ApJ, 828, 46 17

Armitage, P. J. 2015, 128 20

Asphaug, E., & Benz, W. 1996, Icarus, 121, 225 45

Auffinger, J., & Laibe, G. 2017, MNRAS, 11, 1 75, 101, 151

Baehr, H., & Klahr, H. 2015, ApJ, 814, 155 49

Bai, X.-N., & Stone, J. M. 2010a, The Astrophysical Journal, 722, 25 34, 104, 145, 150, 153

Bai, X. N., & Stone, J. M. 2010b, Astrophysical Journal Letters, 722, 10 131

Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214 22

Balbus, S. A., & Hawley, J. F. 1992, The Astrophysical Journal, 400, 610 68

Barge, P., & Sommeria, J. 1995, A&A, 295, L1 41, 100, 151

Bell, Cassen, P. M., Klahr, H., & Henning, T. 1997, Astrophysical Journal v.486, 486, 372 62, 155

Benecchi, S. D., Noll, K. S., Grundy, W. M., et al. 2009, Icarus, 200, 292 152

Bühler, R. 2016, Bachelor’s Thesis, Streaming-instability in protoplanetary discs 104

Binney, J., Tremaine, S., & Freeman, K. 2009, Physics Today, 62, 56 60

Birnstiel, T., Dullemond, C. P., & Brauer. 2010, Astronomy and Astrophysics, 513, 79 119, 145

Birnstiel, T., Dullemond, C. P., & Brauer, F. 2009, Astronomy and Astrophysics, 503, L5 32

Birnstiel, T., Fang, M., & Johansen, A. 2016, Space Science Reviews, 205, 41 32

Birnstiel, T., Klahr, H., & Ercolano, B. 2012, A&A, 539, A148 32, 33, 62, 154

Bodenheimer, P. 1994, Three-dimensional fragmentation calculations of protostar collapse (Numerical Simulations in
Astrophysics) 119

Bottke, W. F., Durda, D. D., Nesvorný, D., et al. 2005, Icarus, 179, 63 11, 62, 154

Brandenburg, A. 2001, Advances in Non-linear Dynamos, 269 67

Brandenburg, A. 2005, Astronomische Nachrichten, 326, 787 67

175



Brandenburg, A., & Dobler, W. 2002, Computer Physics Communications, 147, 471 67

Brandenburg, A., Nordlund, A., Stein, R. F., & Torkelsson, U. 1995, Dynamo-generated Turbulence and Large-Scale
Magnetic Fields in a Keplerian Shear Flow, doi:10.1086/175831 68

Brauer, F., Dullemond, C. P., & Henning, T. 2008, Astronomy & Astrophysics, 480, 859 32

Carrera, D., Gorti, U., Johansen, A., & Davies, M. B. 2017, The Astrophysical Journal, 839, 16 41, 154

Carrera, D., Johansen, A., & Davies, M. B. 2015, Astronomy & Astrophysics, 579, A43 34, 41, 104

Chiang, E. I., & Youdin, a. N. 2010, Forming Planetesimals in Solar and Extrasolar Nebulae, Vol. 38, 493,
arXiv:0909.2652 50

Coradini, A., Magni, G., & Federico, C. 1981, A&A, 98, 173 60

Cuzzi, J. N., Hogan, R. C., Paque, J. M., & Dobrovolskis, A. R. 2001, ApJ, 546, 496 21, 22, 42, 62, 63

Cuzzi, J. N., Hogan, R. C., & Shariff, K. 2008, The Astrophysical Journal, 687, 1432 12, 42, 53, 120, 150

D’Alessio, P., Canto, J., Calvet, N., & Lizano, S. 1998, The Astrophysical Journal, 500, 411 18, 62, 155

Delbo, M., Walsh, K., Bolin, B., Avdellidou, C., & Morbidelli, A. 2017, Science, 357, 1026 62, 135, 152, 153, 154

DeMeo, F. E., & Carry, B. 2014, Nature, 505, 629 152

Dittrich, K., Klahr, H., & Johansen, A. 2013, Astrophysical Journal, 763, 18 41, 100, 151

Dominik, C., & Tielens, a. G. G. M. 1997, The Astrophysical Journal, 480, 647 27

Dra̧żkowska, J., Windmark, F., & Dullemond, C. P. 2013, A&A, 556, A37 42

Einstein, A. 1905, Annalen der Physik, 322, 549 58

Emery, J. P., Marzari, F., Morbidelli, A., French, L. M., & Grav, T. 2015, in Asteroids IV No. June 2015, 277–326
50, 62, 154

Epstein, P. S. 1924, Physical Review, 23, 710 28

Fernández, J. A., & Sosa, A. 2012, Monthly Notices of the Royal Astronomical Society, 423, 1674 154

Flaherty, K. M., Hughes, A. M., Andrews, S. M., et al. 2016, ApJ, 818, 97 22

Flaherty, K. M., Hughes, A. M., Rose, S. C., et al. 2017, ApJ, 843, 150 22

Flock, M., Nelson, R. P., Turner, N. J., et al. 2017, The Astrophysical Journal, 850, 131 22

Fromang, S., & Nelson, R. P. 2005, Monthly Notices of the Royal Astronomical Society: Letters, 364, L81 41

Fuentes, C. I., & Holman, M. J. 2008, Astronomical Journal, 136, 83 11

Gammie, C. F. 1996, ApJ, 457, 355 50

Goldreich, P., & Lynden-Bell, D. 1965, Monthly Notices of the Royal Astronomical Society, 130, 125 59, 68

Goldreich, P., & Ward, W. R. 1973, The Astrophysical Journal, 183, 1051 12, 59, 104, 149

Gundlach, B., & Blum, J. 2015, Astrophysical Journal, 798, arXiv:1410.7199 31

Güttler, C., Blum, J., Zsom, A., Ormel, C. W., & Dullemond, C. P. 2010, A&A, 513, A56 14, 31

Haghighipour, N., & Boss, A. P. 2003, The Astrophysical Journal, 583, 996 41

Hayashi, C. 1981, Progress of Theoretical Physics Supplement, 70, 35 19

Hopkins, P. F. 2016, Monthly Notices of the Royal Astronomical Society, 456, 2383 140, 150

Jacquet, E., Balbus, S. A., & Latter, H. 2011, Monthly Notices of the Royal Astronomical Society, 415, 3591 33

Jansson, K. W., Johansen, A., Wahlberg Jansson, K., et al. 2014, Astronomy & Astrophysics, 570, A47 42

176



Jeans, J. H. 1902, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 199, 1 46

Jedicke, R., Larsen, J., & Spahr, T. 2002, Asteroids III, 71 11

Jewitt, D. C., Trujillo, C. A., & Luu, J. X. 2000, The Astronomical Journal, 120, 1140 11, 62, 154

Johansen, A., Blum, J., Tanaka, H., et al. 2014, Protostars and Planets VI, 547 13, 42

Johansen, A., Henning, T., & Klahr, H. 2006a, The Astrophysical Journal, 643, 1219 145

Johansen, A., Klahr, H., & Henning, T. 2011, Astronomy & Astrophysics, 529, A62 151

Johansen, A., Klahr, H., & Mee, a. J. 2006b, Monthly Notices of the Royal Astronomical Society: Letters, 370,
arXiv:0603765 76

Johansen, A., Klahr, H. H., & Henning, T. 2006c, The Astrophysical Journal, 636, 1121 12

Johansen, A., Low, M.-m. M., Lacerda, P., & Bizzarro, M. 2015, Science Advances, 1 33, 41, 98, 100, 129, 135, 140,
150, 152, 153, 155

Johansen, A., Oishi, J. S., Low, M.-M. M., et al. 2007, Nature, 448, 1022 12, 41, 59, 71, 75, 101, 151

Johansen, A., & Youdin, A. N. 2007, The Astrophysical Journal, arXiv:0702626v1 26, 33, 34, 40, 41, 62, 70, 75, 78,
83, 104, 107, 112, 150

Johansen, A., Youdin, A. N., & Klahr, H. 2009, The Astrophysical Journal, 697, 1269 41

Kant, I. 1755, Allgemeine Naturgeschichte und Theorie des Himmels, oder Versuch von der Verfassung und dem
mechanischen Ursprunge des ganzen Weltgebäudes nach Newtonischen Grundsätzen abgehandelt (Petersen) 12

Kataoka, A., Tanaka, H., Okuzumi, S., & Wada, K. 2013, Astronomy & Astrophysics, 557, L4 14, 41

Kato, M. T., Nakamura, K., Tandokoro, R., Fujimoto, M., & Ida, S. 2009, ApJ, 691, 1697 42

Klahr, H. 2004, Astrophysical Journal, 606, 1070 41

Klahr, H., & Bodenheimer, P. 2003, ApJ, 582, 869 22, 41, 77

Klahr, H., & Henning, T. 1997, \Icarus, 128, 213 41

Klahr, H., & Hubbard, A. 2014, ApJ, 788, 21 22, 41

Klahr, H., & Lin, D. 2000, in Astronomical Society of the Pacific Conference Series, Vol. 219, Disks, Planetesimals,
and Planets, ed. G. Garzón, C. Eiroa, D. de Winter, & T. J. Mahoney, 375 41

Klahr, H., & Schreiber, A. 2015, Proceedings of the International Astronomical Union, 10, 1 46, 59, 119, 149

Klahr, H., Schreiber, A., & Johansen, A. 2018, in prep. 46, 119

Kobayashi, H., Tanaka, H., & Okuzumi, S. 2016, The Astrophysical Journal, 817, 105 152, 153, 155

Kolmogorov, A. N. 1991, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 434,
15 22, 64

Krijt, S., Ormel, C. W., Dominik, C., & Tielens, A. G. G. M. 2014, 16 41, 121

—. 2015, A&A, 13 41

Kuiper, G. P. 1951, Proceedings of the National Academy of Science, 37, 1 49

Laplace, P. S., & Young, T. 1821, Elementary Illustrations of the Celestial Mechanics of Laplace (J. Murray) 12

Latter, H. N., & Rosca, R. 2016, Mon. Not. R. Astron. Soc, 000, 0 50

Lin, D. N. C., & Papaloizou, J. 1980, MNRAS, 191, 37 21

Lorek, S., Gundlach, B., Lacerda, P., & Blum, J. 2016, A&A, 128, 14 31

177



Lucas, G., & Ackbar, G. 1983, It’s A Trap! 41

Lyra, W. 2014, The Astrophysical Journal, 789, 77 41

Lyra, W., Johansen, A., Klahr, H., & Piskunov, N. 2008, Astronomy and Astrophysics, 491, L41 42

Lyra, W., Johansen, A., Klahr, H., & Piskunov, N. 2009, A&A, 493, 1125 42

Lyra, W., & Klahr, H. 2010, arXiv, astro-ph.E, arXiv:1011.0497 22

MacGregor, M. A., Matrà, L., Kalas, P., et al. 2017, ApJ, 842, 8 149

Meech, K. J., Hainaut, O. R., & Marsden, B. G. 2000, Minor Bodies in the Outer Solar System, ed. Fitzsimmons,
Jewitt, & West (Springer), 75, 1 154

Müller, T., Schreiber, A., Klahr, H., & Sadlo, F. 2018, in prep. 133, 134, 135

Morbidelli, A., Bottke, W. F., Nesvorný, D., & Levison, H. F. 2009, Icarus, 204, 558 11, 12, 62, 154, 155

Morbidelli, A., Bottke Jr., W. F., Froeschlé, C., & Michel, P. 2002, in Asteroids III, 409–422 10

Musiolik, G., Teiser, J., Jankowski, T., & Wurm, G. 2016, The Astrophysical Journal, 827, 1 31

Nakagawa, Y., Sekiya, M., & Hayashi, C. 1986, Icarus, 67, 375 17, 28, 30, 87

Nelson, R. P., Gressel, O., & Umurhan, O. M. 2013, Monthly Notices of the Royal Astronomical Society, 435, 2610
22

Nesvorný, D., Vokrouhlický, D., Bottke, W. F., Noll, K. S., & Levison, H. F. 2011, The Astronomical Journal, 141,
159 62, 154

Nesvorny, D., Youdin, A. N., Richardson, D. C., et al. 2010, The Astronomical Journal, 3, 1 126, 154

Okuzumi, S., Tanaka, H., Kobayashi, H., & Wada, K. 2012, The Astrophysical Journal, 752, 106 28, 41

Onishi, I. K., & Sekiya, M. 2017, Earth, Planets and Space, 69, 1 42, 100, 101, 102, 151

Ormel, C. W. 2017, in Astrophysics and Space Science Library, Vol. 445, Astrophysics and Space Science Library,
ed. M. Pessah & O. Gressel, 197 14, 152

Ormel, C. W., & Klahr, H. 2010, Astronomy and Astrophysics, 520, A43 155

Parker, A., & New Horizons Science Team. 2015, New Horizons Press Conference at the 47th Annual AAS/Division
for Planetary Science Meeting in Washington, D.C on Nov. 9, 2015, 547 62, 154

Paszun, D., & Dominik, C. 2009, A&A, 507, 1023 27

Pringle, J. E. 1981, Annual Review of Astronomy and Astrophysics, 19, 137 21

Raettig, N., Klahr, H., & Lyra, W. 2015, Astrophysical Journal, 804, 1 34, 41, 75, 78, 100, 101, 151

Raettig, N., Lyra, W., & Klahr, H. 2013, ApJ, 765, 115 22

Rappaport, S., Vanderburg, A., Jacobs, T., et al. 2018, MNRAS, 474, 1453 149

Raymond, S. N., Armitage, P. J., Veras, D., Quintana, E. V., & Barclay, T. 2017, ArXiv e-prints, arXiv:1711.09599
149

Rickman, H., Marchi, S., A’Hearn, M., et al. 2015, Astronomy & Astrophysics, 583, A44 152

Safronov, V. 1972, Israel Program for Scientific Translations, Jerusalem, 11 12, 13, 14, 59, 104, 149

Schoonenberg, D., & Ormel, C. W. 2017, A&A, 21, arXiv:1702.02151 42

Schreiber, A., & Klahr, H. 2018, Apj, submitted 75

Seizinger, A., & Kley, W. 2013, A&A, 551, A65 27

Seizinger, A., Krijt, S., & Kley, W. 2013, A&A, 560, A45 27

178



Sekiya, M. 1983, Progress of Theoretical Physics, 69, 1116 52

Shakura, N. I., & Sunyaev, R. a. 1973, Astronomy and Astrophysics, 24, 337 21

Shariff, K., & Cuzzi, J. N. 2011, ApJ, 738, 73 60

Shariff, K., & Cuzzi, J. N. 2014, The Astrophysical Journal, 805, 42 150

Shariff, Karim and Cuzzi, Jeffrey N. 2015, Astrophysical Journal, 805, arXiv:1409.2541 46, 59, 133

Sheppard, S. S., & Trujillo, C. A. 2010, Astrophysical Journal Letters, 723, 233 11, 62, 141, 154, 155

Shi, J.-M., & Chiang, E. 2013, The Astrophysical Journal, 764, 20 120

Simon, J. B., Armitage, P. J., Li, R., & Youdin, A. N. 2016, The Astrophysical Journal, 822, 55 33, 129, 135, 140,
150, 152

Squire, J., & Hopkins, P. F. 2017, ArXiv e-prints, arXiv:1711.03975 34, 36, 37, 100, 104, 110

Squire, J., & Hopkins, P. F. 2017, MNRAS, arXiv:1706.05020 34

Stammler, S. M., Birnstiel, T., Panić, O., Dullemond, C. P., & Dominik, C. 2017, A&A, 140, arXiv:1701.02385 42

Stokes, G. G. 1851, Mathematical and Physical Papers, 1 28

Takahashi, S. Z., & Inutsuka, S.-i. 2014, The Astrophysical Journal, 794, 55 50

Takeuchi, T., & Ida, S. 2012, ApJ, 749, 89 50

Taki, T., Fujimoto, M., & Ida, S. 2016, A&A, 1 100, 101, 102

Teague, R., Guilloteau, S., Semenov, D., et al. 2016, A&A, 592, A49 22

Truelove, J. K., Klein, R. I., McKee, C. F., et al. 1997, ApJ, 489, L179 119, 152

Tsirvoulis, G., Morbidelli, A., Delbo, M., & Tsiganis, K. 2016, Icarus, 0, 1 153

Turner, N. J., & Drake, J. F. 2009, ApJ, 703, 2152 50

Turner, N. J., Fromang, S., Gammie, C., et al. 2014, eprint arXiv, 1401, 7306 63, 151

van der Marel, N., van Dishoeck, E. F., Bruderer, S., et al. 2013, Science, 340, 1199 42

VonNeumann, J., & Richtmyer, R. D. 1950, Journal of Applied Physics, 21, 232 68

Wada, K., Tanaka, H., Okuzumi, S., et al. 2013, Astronomy & Astrophysics, 559, A62 27

Ward, W. R. 1976, in Frontiers of Astrophysics, ed. E. H. Avrett, 1–40 60

Ward, W. R. 2000, On Planetesimal Formation: The Role of Collective Particle Behavior, ed. R. M. Canup, K. Righter,
& et al., 75–84 59, 60

Weidenschilling, S. J. 1977, Astrophysics and Space Science, 51, 153 19

Weidenschilling, S. J., & Cuzzi, J. N. 1993, Protostars and planets III 13, 152

Weidenschilling, S. J., & Davis, D. R. 1985, Icarus, 62, 16 20

Weidenschilling, Stuart J. 1987, MNRAS, 1 28, 30

Weizsäcker, C. 1946, Naturwissenschaften, 8 12

Whipple, F. 1972, From Plasma to Planet, 211 32, 41, 42

Whipple, F. L. 1964, Proceedings of the National Academy of Science, 52, 565 12, 41

Windmark, F., Birnstiel, T., & Güttler, C. 2012, arXiv preprint arXiv: . . . , 73, 1 31

Windmark, F., Birnstiel, T., Ormel, C. W., & Dullemond, C. P. 2012, A&A, 544, L16 14, 41

179



Yang, C.-C., Johansen, A., & Carrera, D. 2016, 1 34, 41, 104

Yang, C.-C., & Krumholz, M. 2012, The Astrophysical Journal, 758, 48 97

Yarkovsky, I. 1901, The density of luminiferous ether and the resistance it offers to motion 10

Youdin, A. N. 2005, ArXiv Astrophysics e-prints, astro-ph/0508659 60

Youdin, A. N. 2011, The Astrophysical Journal, 731, 99 50

Youdin, A. N., & Goodman, J. 2004, The Astrophysical Journal, 620, 1 26, 33, 34, 75, 78, 100, 150

Youdin, A. N., & Johansen, A. 2007, The Astrophysical Journal, 662, 613 26, 33, 67, 68, 78, 150

Youdin, A. N., & Kenyon, S. J. 2013, Planets, 1 13

Youdin, A. N., & Lithwick, Y. 2007, Icarus, 192, 588 121

Zsom, A.; Ormel, C. W.; Güttler, C.; Blum, J.; Dullemond, C. P. 2010, arXiv preprint arXiv: . . . ,
arXiv:arXiv:1001.0488v1 32

180



Danksagung

„If I have seen further it is by standing on the sholders of Giants.“
- Sir Isaac Newton

First, I would like to thank my supervisor Hubert Klahr for the four years of support and tea-
ching. Without you, this whole project would not have been a success. I am very grateful for the
opportunity to spend my PhD years on such a ground breaking astrophysical project and for the
confidence you put in me. These years in your group was an endeavour, I will look back to and be
very thankful. I hope we will be proven right with our origin for the planetesimals! What a joyful
time we had. Thanks for the beer!

I want to thank my many supporters from our scientific community: Chao-Chin Yang, who I could
always ask on my Pencil Code problems. Jono Squire, who supported my efforts for deriving the
linear growth rates for the streaming instability. Anders Johansen, for providing this awesome par-
ticle module. Til Birnstiel, Kees Dullemond, Willy Kley, Andrew Youdin, Alessandro Morbidelli,
Akimasa Kataoka, Wlad Lyra, Chris Ormel and many more, for the fruitful discussion and support
with the idea of a diffusion limited collapse criterion. And of course, the whole Pencil Code com-
munity, specially Simon Candelaresi who develops together with me a new Python based diagnostic
tool kit for the pencil code.

I have very big gratitude for my beloved Vivien, my lovely family and my friends, Alexander Adam
and Marcel Langer, as they never stopped supporting me. Especially, in the last weeks of writing,
the support I got from you, Vivien, kept me on track. I want to thank my mother and my brother
who backed me up in these very hard times of ours. Dad, we miss you. This thesis is for you, who
always saw in me what great think I could achieve. I wish you could see..

Furthermore, I want to thank all the nice people I met during the past years. Starting with the
Elsässer crew, I thank you for this wonderful office and the time we spend. These are Adriana Pohl,
Paul Molliere, Christian Lenz. Big thanks also goes to the rest of our awesome PSF theory group!
Special thanks to Hans Baehr and Adriana Pohl, for teaching skiing to Vivien and me. Another
special thanks goes to the thesis proofreaders: Vivien, Christian and Adriana.

I also want to thank the friends I made in the past years for sharing endurance and all the fun
activities we had. This list is long, so if I do not mention you by name, since you read this, yes
its you! Thanks! :-) A big greeting goes to all the people from the MPIA! Specially I want to
thank: Paul Mollière, for spreading his passion for science. Christian Obermeier, who encouraged
me to start using my camera. Matthias Samland, all the nice food we had. Matthäus Schulik, who
proved one can do science in metal-style. Christoph Mordasini, for the drunken time. Yuri Fujii
and Masanobu Kunitomo, for their warmly welcoming in Japan. Many thanks to the students that
spend their time with me on these projects: Fabian Krautgasser, Tunde Aluko, Patrick Quicker
and Robin Bühler. Big gratitude also goes towards Thomas Mueller, who helped me a lot with the
analysis of the planetesimal formation simulations and visualising them.

Lastly, I also want to thank my thesis committee, Hubert, Kees, Eva Grebel, and Mario Trieloff,
who kindly agreed to referee this work.





Declaration of Originality

Declaration of Originality

I hereby declare that this thesis is my own work and
that I have used no other than the stated sources and aids.

Declaration

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, der 20. März 2018

(Andreas Schreiber)






	1 Introduction
	2 Theory of Dust and Gas in Protoplanetary Disks
	2.1 Gas dynamics
	2.1.1 Equation of state and adiabatic index
	2.1.2 Gas disk pressure scale-height
	2.1.3 Global pressure gradient
	2.1.4 Viscous stress
	2.1.5 Equation of motion in the shearing sheet approximation

	2.2 Dust dynamics
	2.2.1 Particle friction and Stokes number
	2.2.2 Collective drift: Nakagawa solution for dust and gas
	2.2.3 The drift and fragmentation barrier
	2.2.4 The streaming instability and its azimuthal counterpart
	2.2.5 Turbulent particle diffusion
	2.2.6 Dust trapping and planetesimal formation


	3 Gravitational Instability of a Particle Cloud
	3.1 Stability criterion
	3.1.1 Star formation in a nutshell
	3.1.2 Toomre stability of a gas disk
	3.1.3 Secular gravitational instability of dust
	3.1.4 Roche stability
	3.1.5 Hill stability

	3.2 Collapse time
	3.2.1 Classical collapse time
	3.2.2 Contraction time for frictional particles
	3.2.3 Equality of spherical, cylindrical and plane parallel collapse time

	3.3 The length scale criterion on dust cloud collapse
	3.3.1 The critical length scale
	3.3.2 Stability analysis via solving the dispersion relation
	3.3.3 Initial planetesimal size derived from collapse criterion
	3.3.4 Kolmogorov cascade of large scale turbulence as particle diffusion source


	4 Numerical Methods
	4.1 Solving the streaming instability problem in a shearing sheet approximation
	4.2 Code units, boundary conditions and the shearing sheet implementation
	4.3 Implementation of the global pressure gradient
	4.4 Deriving a gravitational model for the dust density to be at Hill density
	4.4.1 Justification for neglecting the vertical stellar gravity component
	4.4.2 Gravitation constant for Hill density in code units


	5 Azimuthal and Vertical Streaming Instability on the Scales of Planetesimal Formation
	5.1 Investigated quantities
	5.1.1 Particle dispersion 
	5.1.2 Correlation time corr
	5.1.3 Correlation length lcorr
	5.1.4 Particle drift 
	5.1.5 Viscous stress 
	5.1.6 Schmidt number Sc

	5.2 2-d parameter study on the streaming instability and its azimuthal counterpart
	5.2.1 Dust density fluctuations
	5.2.2 Growth rates
	5.2.3 End-state snapshots
	5.2.4 Particle diffusion
	5.2.5 Particle dispersion and drift
	5.2.6 Correlation time and correlation length
	5.2.7 -value and Schmidt number
	5.2.8 Critical length scales from the (azimuthal) streaming instability
	5.2.9 Special cases: zonal flows and vertical band structures
	5.2.10 Influence of Hyper-Viscosity and -Diffusivity

	5.3 Resolution study on aSI at L=0.1 H with St=0.1 particles
	5.4 Simulations on planetesimal formation within zonal flows
	5.5 Discussion on the streaming instability in simulations

	6 3-d Streaming Instability at High Dust-to-Gas Ratios and on Small Scales
	6.1 Dust density fluctuations
	6.2 Growth rates
	6.3 End-state snapshots
	6.4 Particle diffusion
	6.5 Critical length scales from the 3-d streaming instability

	7 Simulations on Diffusion Limited Collapse
	7.1 Small or large clump? The proper regime for gravitational collapse
	7.2 Numerical model
	7.3 Effects of particle collisions during the collapse
	7.4 Collapse simulations in 2-d
	7.4.1 Simulation results
	7.4.2 Further effects on planetesimal formation

	7.5 Properties of the formed planetesimals
	7.6 Collapse simulations in 3-d

	8 Discussion and Outlook
	Appendix
	A Disk space and CPU consumption of the presented projects
	B Timeseries from the 2-d streaming instability parameter study
	C Timeseries from the 3-d streaming instability parameter study
	D Detailed lists of simulation results
	D.1 Simulation results I: aSI for St=0.1
	D.2 Simulation results II: aSI for St=0.01
	D.3 Simulation results III: SI for St=0.1
	D.4 Simulation results IV: SI for St=0.01

	E List of own publications

	Bibliography

