
Dissertation

submitted to the

Combined Faculties of the Natural Sciences and Mathematics

of the Ruperto-Carola-University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

André Junker

born in Schwetzingen, Germany

Oral examination: May 30, 2018





Advances in the Performance and

Applicability of Modal Electromagnetic

Simulations

Referees:

Prof. Dr. Karl-Heinz Brenner

Prof. Dr. Frank Wyrowski





Advances in the Performance and Applicability of Modal Electromagnetic
Simulations

The ’rigorous coupled-wave analysis’ (RCWA) is advanced in performance and extended in
its application range. First, the RCWA framework is adapted to the treatment of struc-
tured incident and transmitted regions in order to enable the exact modeling of axially
extended objects such as integrated optical components, long waveguides or fibers with-
out incurring unwanted back-reflections from distant interfaces to homogeneous regions.
Furthermore, a method to determine the propagation direction of eigenmodes is derived.
Second, the treatment of coherent bidirectional light incidence is introduced and applied to
the simulation of sample-induced aberrations in 4π-microscopy. In this context, a consistent
formulation to describe arbitrary polarization states of structured incident light sources is
derived. Third, the ’fast rigorous iterative method’ (FRIM) is developed, an algorithm
based on an iterative approach, which enables the rigorous simulation of structures such as
certain diffractive optical elements with a significantly higher mode count than presently
possible. This is achieved by replacing the computationally complex eigenmode decomposi-
tion inherent to standard modal methods by a sequence of efficient matrix multiplications.
Thereby, the numerical cost is reduced from O

(
N̄3
)
to O

(
N̄ logN̄

)
, and at the same time

the memory requirement is eased from O
(
N̄2
)
to O

(
N̄
)
, N̄ being the number of modes in

the calculation.

Fortschritte im Leistungsvermögen und Anwendungsspektrum von Modalen
Elektromagnetischen Simulationen

Die ’rigorous coupled-wave analysis’ (RCWA) wird sowohl im Leistungsvermögen als auch
im Anwendungsspektrum erweitert. Einerseits wird der RCWA-Algorithmus zur Behand-
lung strukturierter Randregionen angepasst, um die exakte Modellierung axial ausgedehn-
ter Strukturen wie integrierter optischer Komponenten, langer Wellenleiter oder Fasern
zu ermöglichen, ohne unerwünschte Rückreflexionen von entfernten Grenzflächen zu ho-
mogenen Regionen betrachten zu müssen. In diesem Zusammenhang wird zudem eine
Methode zur Bestimmung der Propagationsrichtung von Eigenmoden hergeleitet. Zweit-
ens wird die kohärente beidseitige Lichteinstrahlung in die RCWA eingeführt und auf die
Simulation von objekt-induzierten Aberrationen in der 4π-Mikroskopie angewendet. Dies
beinhaltet außerdem eine konsistente Formulierung zur Beschreibung beliebiger Polarisa-
tionszustände von strukturierten Beleuchtungen. Drittens wird die ’fast rigorous iterative
method’ (FRIM) entwickelt, ein auf einem iterativen Ansatz basierender Algorithmus, der
die rigorose Simulation von Strukturen wie z.B. bestimmter diffraktiver optischer Elemente
mit einer signifikant höheren Modenzahl als bisher ermöglicht. Dies wird dadurch erreicht,
dass die numerisch komplexe Eigenmodenzerlegung, die in Modalmethoden inhärent ent-
halten ist, durch eine Aneinanderreihung effizienter Matrixmultiplikationen ersetzt wird.
Dadurch erfolgt eine Reduzierung der numerische Komplexität von O

(
N̄3
)
auf O

(
N̄ logN̄

)
und eine gleichzeitige Verringerung des Speicherbedarfs von O

(
N̄2
)
auf O

(
N̄
)
, wobei N̄

die Gesamtanzahl der in der Rechnung verwendeten Moden beschreibt.
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a Amplitude of dielectric waveguide eigenfunctions in CMT.
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alm Coefficient in the spherical wave decomposition.
a (r) = |t (r)| Amplitude of the transmission function t (r).
A, ∂A Surface area, closed path around a surface area.
Âll

′

± Matrix in the derivation of the S-matrix approach.
b̂(l) Matrix used in the ETMA.
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ε0µ0
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c
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± Forward (+) and backward (-) propagating eigenmode co-

efficient vector.
Ĉ Circulant matrix (without upper index).
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Fourier mode coefficient vector in region I/III.
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l d

(l) Thickness of the grating.
dap Aperture diameter.
dcore Core diameter of a planar dielectric waveguide.
dgap Distance between the cores of two adjacent waveguides.
d(l) Thickness of the lth grating layer.
dA Scalar surface element.
dA = n dA Vectorial surface element.
ds Unit vector in the direction of the vectorial path s.
dx = Px

M
Position space sampling in x-direction.

dy = Py
N

Position space sampling in y-direction.
D̂ Some diagonal matrix.
D (r, t) Electric flux density as function of r and t.
D (r, ω) Electric flux density as function of r and ω.
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successive iterations.
errRCWA (nit) Error estimate of the FRIM iteration by comparison to the

RCWA result.
E (r, t) Electric field as function of r and t.
E (r, ω) Electric field as function of r and ω.
Ẽmn (z) Polarization vector of the electric field Fourier mode coef-
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f Focal length.
f (x), f (x, y) Piecewise continuous, piecewise smooth, bounded periodic

function of x (and y) with periods Px (and Py).
f̂ (l) Matrix used in the ETMA.
f Direction of a waveplate’s fast axis.
F̂ Fourier matrix.
F (r, t) General field as function of r and t.
F (r, ω) General field as function of r and ω.
g Real coefficient.
g (x), g (x, y) Piecewise continuous, piecewise smooth, bounded periodic

function of x (and y) with periods Px (and Py).
ĝ(l) Matrix used in the ETMA.
h Small axial propagation step in the RK method.
H Height.
H (r, t) Magnetic field as function of r and t.
H (r, ω) Magnetic field as function of r and ω.
H̃mn (z) Polarization vector of the magnetic field Fourier mode co-

efficient (m,n) inside the grating.
i =
√
−1 Imaginary unit.

Iunperturbed Intensity without the SNOM fiber tip.
jl Spherical Bessel functions.
jfree (r, t) Free electric current density as function of r and t.
k = 2πn

λ
Length of the wave vector in a medium.

k0 = 2π
λ

Length of the wave vector in vacuum.
kx0 Offset of the wave vector’s x-component.
kx;mn x-component of the wave vector for the mode (m,n).
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ky;mn y-component of the wave vector for the mode (m,n).
kz;mn z-component of the wave vector for the mode (m,n).
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K̂x = diag

(
kx;mn
k0

)
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k0

)
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K1/2/3/4 Vectors in the RK4 method.
l = 0 .. L+ 1 Layer index. l = 0: incident region, l = L+ 1: transmitted

region.
L Number of layers in the grating.
L̃(I/III)
mn Polarization vector of the incident Fourier mode coefficient

(m,n) in region I/III.
m As a lower index: Fourier coefficient index with respect to

x.
M = 2M0 + 1 Total number of modes in x for a mode truncated system.
M0 One-sided number of modes in x for a mode truncated sys-

tem.
M̂ (l) Coupling matrix of the lth layer.
M (r, t) Magnetization as function of r and t.
n As an elevated attribute: component normal to the inter-

face.
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√
εµ. As a lower index:

Fourier coefficient index with respect to y.
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nfast Refractive index of a birefringent material’s fast axis.
nit Iteration variable.
nmin Minimum of the refractive index of a structured medium.
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nslow Refractive index of a birefringent material’s slow axis.
n̄ = 〈n〉x,y Average refractive index of a medium.
n Unit vector normal to an interface.
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Nit Number of iterations in the FRIM.
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method.
No Expansion order of the exponential function in the FRIM.
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system.
p(l) Vector used in the ETMA.
Pcoupled Amount of power coupled into a SNOM fiber.
Pdiss Dissipated power.
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(l)
± (z) Diagonal forward (+) and backward (-) propagation ma-
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r = |r| Absolute value of the spatial coordinate vector.
rhwp Radius of the half-wave plate.
r = (x, y, z)T Spatial coordinate vector.
rI Point on an interface.
r±I Location close to rI, shifted infinitesimally in n-direction

to either side of the interface.
r(l) Vector used in the ETMA.
R Radius.
R̂ R-matrix.
R̃mn Polarization vector of the reflected Fourier mode coefficient

(m,n) in region I.
R̃aprx Some approximation to the reflected Fourier mode coeffi-

cient vector.
s Vectorial path, or direction of a waveplate’s fast axis.
s(l) Vector used in the ETMA.
S (r, t) Poynting vector as function of r and t.
Ŝ S-matrix.
t As an elevated attribute: component tangential to the in-

terface.
t Time in [s].
t (r) Transmission function as function of r.
t Unit vector tangential to an interface.
T̂ T-matrix.
T̃mn Polarization vector of the transmitted Fourier mode coeffi-

cient (m,n) in region III.
u Eigenmode of a planar dielectric waveguide.
ṽ Some Fourier space vector.
V , ∂V Volume, closed surface around a volume.
V̂ (l) Coupling and conversion matrix of the lth layer from the

eigenmode coefficient vector to the magnetic field Fourier
mode coefficient vector.

w Mixing parameter in the FRIM.
W Width.
Ŵ (l) Coupling matrix of the lth layer from the eigenmode coef-

ficient vector to the electric field Fourier mode coefficient
vector.

x x-component of the spatial coordinate vector.
X̂(l) Diagonal eigenmode vector propagation matrix of the lth

layer, X(l)
qq′ = eik0
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λ
(l)
q d(l) δqq′ .

y y-component of the spatial coordinate vector.
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yl Spherical Bessel functions.
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l (θ, ϕ) Spherical harmonics.
z z-component of the spatial coordinate vector.
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Notation Description
α Apex angle of a SNOM fiber tip, or coefficient of êTE-vector.
β Coefficient of êTM-vector.
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Γ̂ Transition matrix unsed in the FRIM.
δn Residual refractive index variation (δn = n − n̄) in the BPM,

or refractive index difference of a birefringent material (δn =
nslow − nfast).

δx Shift in x-direction.
∆φ Phase difference.
∆x Lateral offset.
∆z Axial offset.
ε0 Electric permittivity of the vacuum.
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θc Critical angle for total internal reflection.
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λ Vacuum wavelength.
λ
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q Diagonal entries of the eigenvalue matrix Λ̂(l).
λ
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max Eigenvalue of the matrix ik0M̂
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λmax,Ξ̂ Eigenvalue of the matrix Ξ̂ with the largest absolute value.
Λ̂(l) Diagonal eigenvalue matrix of the lth layer with entries λ(l)
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µ0 Magnetic permeability of the vacuum.
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Spatial frequency.
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Ξ̂ Contraction operator in the FRIM.
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σ Width of a Gaussian function.
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CHAPTER 1. INTRODUCTION 1

1 | Introduction

1.1 Scientific context

The ’rigorous coupled-wave analysis’ (RCWA) was initially developed in the year
1981 by Moharam and Gaylord as an exact solver of Maxwell’s equations for the
long wavelength electromagnetic domain[1]. The application of the algorithm in the
optical wavelength regime was initially not intended and was also impeded by the
lack of sufficient processing power and memory space, which would have been nec-
essary to simulate realistic physical settings. Nevertheless, the interest to apply the
RCWA also to optical wavelengths existed, but was, in consequence, limited to the
simulation of structures in the nanooptical scale with dimensions in the order of a
few tens of wavelengths or to periodic problems with periods in the size of a few tens
of wavelengths.

Within the last two decades, the progress in lithographic fabrication was one of the
driving forces for the advancement of rigorous electromagnetic simulations. While
the dimensions of the smallest fabricable structures were still well above 1 µm in
the beginning of the 1980s, presently the possible resolution comes down to some
14 nm[2], which is significantly less than one tenth of optical wavelengths. This
development lead to several enhancements of the initial RCWA. In 1993, the algo-
rithmic framework was extended by Li to handle multiple grating layers[3], and in
the same year, the treatment of two-dimensional gratings was introduced by Bräuer
and Bryngdahl[4]. In 1995, conical light incidence was included[5]. While the RCWA
seemed to work well for transversal electric (TE) polarization, it was noted that
the convergence properties of the algorithm were not satisfactory for transversal
magnetic (TM) polarization, especially when one dealt with metallic gratings. In
1996, first an empiric solution to this problem was found independently by Lalanne
and Morris[6] and Granet and Guizal[7]. The latter was then formalized by Li, who
found out that the bad convergence behavior was caused by an insufficient Fourier
reconstruction of position space products of functions with pairwise-concurrent jump
discontinuities. These findings subsequently lead to the so-called ’Li’s factorization
rules’[8, 9]. Moreover, the inherent stability of the RCWA was also greatly improved
by new methods to enforce the boundary conditions, namely the introduction of the
’R-matrix approach’ and the ’scattering matrix approach’ (S-matrix approach)[10],
as well as the ’enhanced transmittance matrix approach’ (ETMA)[11, 12]. In 2001,
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the concept of ’perfectly matched layers’ (PMLs) was introduced, which facilitated
the simulation of non-periodic structures[13]. Furthermore, Popov and Nevière[14]
and later Li[15] extended the RCWA to the treatment of linear anisotropic media.
Based on an idea formulated in [14], Schuster introduced normal vector fields for
the description of refractive index structures, this way being able to generalize Li’s
factorization rules to material interfaces with arbitrary orientation[16]. In 2014, Auer
and Brenner published how structured light incidence could be efficiently imple-
mented in the existing framework without changing the complexity of the RCWA
algorithm[17].

Despite all the advances in this field, and despite the huge progress made in com-
puter technology during the last couple of decades, I would like to emphasize that
the RCWA is still far from being fully developed. In fact, one of its main problems
- the limitation to very small problem sizes - remains, and, so far, there exists no
satisfactory solution to reduce the extreme memory consumption and algorithmic
complexity of the RCWA down to an acceptable level. The only attempt known to
me is the approach of Semenikhin and Zanuccoli[18], who recently claimed to have
reduced the numerical complexity of modal methods in certain cases from O

(
N̄3
)
to

O
(
N̄2
)
by calculating the eigenmode expansion coefficients via an iterative proce-

dure, where in the case of a modal description N̄ represents the number of modes in
the calculation. Indeed, scalar wave-optical propagation algorithms are still mostly
preferred to exact Maxwell solvers like the RCWA or the ’finite-difference time-
domain’ (FDTD) method[19], which are only used if truly necessary due to their
severe time and memory constraints. Furthermore, it should be noted that, still, not
all problem geometries can be represented in the standard RCWA framework.

1.2 Structure of this dissertation

This dissertation advances the performance of the RCWA and extends its applica-
tion range to a much wider set of problems than presently possible. To this end,
several modifications and generalizations are made at multiple levels of the currently
existing framework. In the following, the contributions of this dissertation to the
field are introduced. The structure is as follows.

Chapter 2
The basic principles of optics, as far as required within the scope of this disserta-
tion, are explained and derived based on Maxwell’s equations. The latter include
the derivation of the continuity conditions across material interfaces, the modeling
of light matter interactions for general and linear media including absorption, the
derivation of the Poynting theorem, and an overview and the categorization of several
established propagation algorithms. These include, amongst others, the ’Sommerfeld
propagation’ and the ’angular spectrum propagation’ in homogeneous media, and the
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’thin element approximation’ (TEA), the ’beam propagation method’ (BPM), the
’wave propagation method’ (WPM) and the FDTD for structured media. Finally, it
is shown how the electromagnetic fields can be normalized in order to change to a
symmetric and dimensionless description of Maxwell’s equations.

Chapter 3
The framework of the RCWA is derived. The latter includes a definition of the
RCWA problem geometry, the Fourier analysis of Maxwell’s equations for linear
isotropic and linear anisotropic media using Li’s factorization rules, the derivation
of the most general solution of the resulting system of coupled differential equations,
and the introduction of several standard methods for enforcing boundary conditions
like the S-matrix approach and the ETMA. Furthermore, the consistency require-
ments for tilted structured light incidence as proposed by Auer an Brenner[17] are
derived. The numerical complexity and the memory requirement of the RCWA is
motivated. The framework is subsequently applied to the simulation of a ’near-field
scanning optical microscopy’ (SNOM)[20] experiment, which was is published in [A1].

Chapter 4
It is demonstrated how the RCWA is extended to structured incident and transmit-
ted regions. To this end, the boundary value problem of the RCWA is reformulated
and the energy flow properties of eigenmodes in structured media are investigated.
The aim is the fully vectorial modeling of axially extended objects such as infinitely
long waveguides or fibers. The numerical results are compared to the analytically
known eigenmodes of planar dielectric waveguides. Furthermore, comparative simu-
lations are conducted with approximative algorithms like the ’coupled mode theory’
(CMT)[21, 22] (evanescent coupling) and the BPM. This chapter is based on the pub-
lication [A2].

Chapter 5
The RCWA framework is extended to the treatment of coherent bidirectional light
incidence and the simulation of 4π-microscopy. To this end, three different concepts
are combined. First, the idea of structured illumination presented in [17] is applied
in order to model focused beams in a fast and consistent manner. Second, it is
derived how structured light sources of different polarization types, such as linear,
radial, azimuthal or elliptic polarization, can be realized in a general form. Third, it
is shown how coherent bidirectional structured light incidence is integrated into the
existing RCWA framework. The mentioned concepts are combined to investigate the
near field of light propagating in the vicinity of a specimen in 4π-microscopy. This
chapter is based on the publications [A3, A4].

Chapter 6
As mentioned in the introductory part, one of the main drawbacks of rigorous
Maxwell solvers is the limitation to very small calculation domains due to the high
algorithmic complexity and memory consumption. In this chapter, the ’fast rigor-
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ous iterative method’ (FRIM) is developed, an exact algorithm based on an iterative
approach, which, under certain conditions, allows solving also large size problems ap-
proximation free. The latter is achieved by replacing the computationally complex
eigenmode decomposition inherent to standard modal methods, which is responsible
for the algorithmic complexity of O

(
N̄3
)
, by a sequence of efficient matrix multi-

plications. It is shown that, thereby, the numerical cost is reduced from O
(
N̄3
)
to

O
(
N̄ logN̄

)
, and the memory requirement is eased from O

(
N̄2
)
to O

(
N̄
)
, where N̄

represent the number of modes in the calculation. Apart from the derivation of the
FRIM iteration scheme, the mathematical and the empiric convergence properties
are analyzed in detail. The validity of the FRIM is verified by comparison to other
simulation methods, amongst others the standard RCWA for small-scale problems,
and the TEA and the WPM for larger problem sizes. The decrease of the numer-
ical complexity achieved with the FRIM enables to raise the lateral dimensions of
rigorously analyzable structures like certain large sized diffractive optical elements
(DOEs) to a much higher level, with mode counts in the order of 2000 × 2000 and
more being possible. In this context, the FRIM becomes especially useful in cases,
where a small scale periodicity, such as in gratings, is not present and, therefore,
large calculation domains are inevitable. Furthermore, it is demonstrated that the
FRIM can be directly extended to the treatment of linear anisotropic media. This
chapter is based on the publications [A5, A6].
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2 | Theoretical basis

In this chapter, the basic principles of optics that are needed throughout this theses
are derived. In Sect. 2.1, a brief historical background about the field of optics is
given, starting from the early beginnings and closing with the discovery of Maxwell’s
equations. In Sect. 2.2, Maxwell’s equations are presented and the transition to the
temporal frequency domain is performed. In Sect. 2.3, the continuity conditions of
the electromagnetic fields across material interfaces are derived using Gauss’s and
Stokes’ theorem. In Sect. 2.4, general and linear media are introduced. Sect. 2.5
derives the Poynting theorem and establishes a connection between the electric per-
mittivity, the magnetic permeability and the absorption properties of a material. In
Sect. 2.6, the wave equation and the Helmholtz equation are derived. Furthermore,
the plane wave decomposition and the spherical wave decomposition are introduced.
Sect. 2.7 gives an overview over the spectrum of numerical propagation algorithms
in general. Furthermore, several selected methods are presented in more detail. This
includes the angular apectrum and Sommerfeld propagation in homogeneous media,
and the BPM, the WPM and the FDTD for structured media. Finally, in Sect.
2.8, it is shown how the electromagnetic fields are normalized in order to obtain a
symmetric and dimensionless description of Maxwell’s equations.

Unless indicated otherwise, the derivations shown in this chapter can be found in
[23, 24].

2.1 A brief history of optics

The properties and characteristics of light have been subject of scientific research for
thousands of years. Already the Egyptians and the ancient Greek investigated the
properties of crystal lenses and developed theories about the propagation of light[25].
In the early beginnings of classical optics, the field was mainly dominated by math-
ematicians like Euclid, who viewed optics from a very geometrical perspective. At
this early stage, it was thought that light was spreading along straight lines, which
they called ’rays’[26]. Optics experienced its first renaissance with the advent of early
modern astronomy in the beginning of the 17th century. At that time, Johannes Ke-
pler and Galileo Galilei studied the movement of the stars and planets in the sky
with their at that time very sophisticated refractive telescopes. They discovered
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and characterized new effects, such as the atmospheric refraction[27, 28]. Only little
later, in 1621, the Dutch astronomer Willebrord Snellius succeeded in mathemati-
cally formalizing the refraction of light at material interfaces in his famous law of
refraction[29]. In the late 17th century, the phenomenon of dispersion was discovered
by the English scientist Isaac Newton, when he found out that white light could be
decomposed into its spectral colors by a prism. From this, he concluded that every
refractive telescope would suffer from chromatic aberrations[30, 31]. He eliminated
this problem by the design of a reflecting telescope, the quality of whose mirrors he
judged very accurately by means of ’Newton’s rings’[31]. The foundation of diffractive
optics and the wave theory of light was subsequently laid by the Dutch mathemati-
cian Christiaan Huygens in 1690, whose main proposition was that the speed of light
was finite[32]. In 1801, his theories were picked up by the English physician Thomas
Young in the explanation of his famous double slit interferometer experiment[33]. In
the early 19th century (1815-1818), the young french physicist Augustin-Jean Fres-
nel backed Huygens’s and Young’s results with a series of detailed analyses of the
interference and diffraction properties of differently polarized light sources[34, 35].

At about the same time as Fresnel did his research on the properties of light,
the scientists Michael Faraday and André-Marie Ampère worked on problems in a
seemingly completely different field. In 1822, Ampère found out that an electric
current passing through two wires causes these wires to attract or repel each other
depending on the direction of the current[36]. In 1831, Faraday discovered the law
of electromagnetic induction when experimenting with two insulated coils wrapped
around an iron core[37]. Their work was studied little later by the Scottish scientist
James Clerk Maxwell, who, in 1861, published a work, in which he proposed how
electricity and magnetism could be described in just one single linked set of differen-
tial equations[38]. At that time, he also noticed that one possible solution of his new
system of equations represented an oscillating electric and magnetic field traveling
through empty space at approximately the same speed that one had before measured
for the propagation of light[39]. It was, indeed, not until this point in time in the late
19th century that the scientific community realized that all these phenomena, light,
electricity and magnetism, were attributed to one and the same underlying phys-
ical effect. The famous Maxwell’s equations in the vectorial notation as we know
them today were, however, developed at a later point by the English physicist Oliver
Heaviside[40], the American scientist Josiah Willard Gibbs[41] and the German physi-
cist Heinrich Hertz[42, 43] as a simplification of the initially 20 equations published by
Maxwell.

2.2 Maxwell’s equations

The macroscopic Maxwell’s equations are a set of partial differential equations that
describe the interplay of electric and magnetic fields with electric charges, currents
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and matter. In their differential form they read

∇ × E (r, t) = −∂B (r, t)

∂t
Maxwell-Faraday equation (2.1a)

∇ × H (r, t) = jfree (r, t) +
∂D (r, t)

∂t
Ampère’s circuital law (2.1b)

∇ · D (r, t) = ρfree (r, t) Gauss’s law (2.1c)

∇ · B (r, t) = 0 Gauss’s law for magnetism (2.1d)

The Maxwell-Faraday equation states that a time-varying magnetic flux density
B (r, t) induces an electric field E (r, t). Following Ampère’s circuital law, a mag-
netic field H (r, t) is induced by a current jfree (r, t) of free electric charges and the
so-called ’displacement current’, which is the derivative of the electric flux density
D (r, t) with respect to time. Gauss’s law states that the free electric charge density
ρfree (r, t) is the source of the electric flux density D (r, t). Similarly, Gauss’s law for
magnetism states that the magnetic flux density B (r, t) is always source-free, which
is equivalent to the statement that there exist no free magnetic monopoles.

Within the scope of this thesis, no free currents or free charges are involved.
Therefore, we set jfree (r, t) = 0 and ρfree (r, t) = 0. With these simplifications,
Maxwell’s equations read

∇ × E (r, t) = −∂B (r, t)

∂t
(2.2a)

∇ × H (r, t) = +
∂D (r, t)

∂t
(2.2b)

∇ · D (r, t) = 0 (2.2c)

∇ · B (r, t) = 0 . (2.2d)

The latter are Maxwell’s equations with the fields being functions of position
r = (x, y, z)T and time t. Maxwell solvers like, for instance, the FDTD directly
operate on Eqs. (2.1) or Eqs. (2.2). Other solvers, like for instance the RCWA, are
Fourier domain methods, i.e., only monochromatic fields are considered. For these
methods, Eqs. (2.2) are transformed into the temporal frequency domain. This is
done by defining

F (r, t) =
1

2π

∫ +∞

−∞
F (r, ω) e−iωt dω , (2.3)
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where F ∈ {E,B,H,D} and F ∈ {E ,B,H,D}. Eqs. (2.2) can then be rewritten
in terms of the transformed fields F (r, ω),

∇ × E (r, ω) = +iωB (r, ω) (2.4a)
∇ × H (r, ω) = −iωD (r, ω) (2.4b)
∇ · D (r, ω) = 0 (2.4c)
∇ · B (r, ω) = 0 . (2.4d)

Throughout this thesis, the calligraphic font always indicates a field, which is Fourier
transformed with respect to the time coordinate. On the other hand, the normal font
always indicates a field in the time-domain. The arguments ω or t may be dropped
in order to facilitate the readability.

2.3 Continuity conditions

It is commonly known that the tangential electric and magnetic field components
are continuous across a discontinuous material interface. Moreover, also the normal
components of the electric and magnetic flux densities are continuous. In the follow-
ing, these continuity conditions are derived directly from Maxwell’s equations via
Gauss’s and Stokes’ theorem.

2.3.1 Electric and magnetic flux density

Assume a material interface as depicted in Fig. 2.1 and a Gaussian box, which
is arranged symmetrically around a point rI on the interface. Following Gauss’s
theorem, from Eq. (2.2c) one obtains∫

V

∇ ·D (r, t) dV =

∫
∂V

D (r, t) · dA = 0 . (2.5)

Now let the height H of the box go to zero symmetrically around the interface, i.e.,
such that the upper/lower circular boundary of the box remains on the upper/lower
side of the interface. In the limit H → 0, the area of the cylinder’s side walls goes
to zero and, therefore, does not contribute to the surface integral in Eq. (2.5). Only
the circular areas on the top/bottom contribute. Then, let the radius R of the box
go to zero. In the limit R→ 0 one obtains

lim
R→0
H→0

∫
circular
areas

D (r, t) · dA

πR2
= Dn

(
r+

I , t
)
−Dn

(
r−I , t

)
= 0 , (2.6)

where r±I = lim
ξ→0

rI ± ξ n, and Dn
(
r±I , t

)
=
[
D
(
r±I , t

)
· n
]
n represent the normal

components of the electric flux density on the two sides of the interface. From Eq.
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R

dA

rI H

Figure 2.1: Gaussian box (green cylinder) with radius R and height H, symmetrically ar-
ranged around the material interface (yellow). The vectorial surface element is dA = ndA,
n being the normal vector to the interface.

(2.6) follows the continuity of the normal component of the electric flux density,

Dn
(
r+

I , t
)

= Dn
(
r−I , t

)
. (2.7)

The same line of arguments can be followed for the magnetic flux density. One
obtains

Bn
(
r+

I , t
)

= Bn
(
r−I , t

)
. (2.8)

2.3.2 Electric and magnetic fields

Assume a material interface as depicted in Fig. 2.2 and a Stokes path, which is ar-
ranged symmetrically around a point rI on the interface. Following Stokes’ theorem,
from Eq. (2.2a) one obtains

−
∫
A

∂B (r, t)

∂t
· dA =

∫
A

[∇× E (r, t)] · dA =

∫
∂A

E (r, t) · ds . (2.9)

Now let the height H of the rectangle go to zero symmetrically around the interface,
i.e., such that the two paths parallel to the surface remain on the upper and lower
side of the interface, respectively. In the limit H → 0, the area of the rectangle goes
to zero, i.e.

lim
H→0

∫
A

∂B (r, t)

∂t
· dA = 0 . (2.10)
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HrI

W

ds

s
Figure 2.2: Stokes path s (border of the green rectangle) with width W and height H,
symmetrically arranged around a material interface (yellow). The unit vector parallel to
the Stokes path is denoted by ds.

Furthermore, the paths perpendicular to the interface vanish and, therefore, do not
contribute to the line integral on the right side of Eq. (2.9). Only the paths tangential
to the interface contribute. Then, let also the width W of the rectangle go to zero.
One obtains

lim
H→0
W→0

∫
tangential

paths

E (r, t) · ds

W
= Et

(
r+

I , t
)
− Et

(
r−I , t

)
= 0 , (2.11)

with r±I as before. Here, Et
(
r±I , t

)
=
[
E
(
r±I , t

)
· t
]
t are the tangential components of

the electric field on the two sides of the interface, where t is a unit vector tangential
to the interface at rI. From Eq. (2.11) follows the continuity of the tangential
component of the electric field,

Et
(
r+

I , t
)

= Et
(
r−I , t

)
. (2.12)

Since the orientation of the unit vector t is arbitrary within the tangential plane of
the interface, all tangential components of the electric field are continuous across the
interface. The same line of arguments can be followed for the magnetic field. One
obtains

Ht
(
r+

I , t
)

= Ht
(
r−I , t

)
. (2.13)
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2.4 Material properties

2.4.1 General media

The quantities E (r, t), B (r, t), and D (r, t), H (r, t) denote the electric and magnetic
fields on a microscopic and macroscopic level. Generally, the material response is
described by the electric polarization P (r, t) and the magnetization M (r, t). The
dependence is

D (r, t) = ε0 E (r, t) + P (r, t) (2.14a)
B (r, t) = µ0H (r, t) + µ0M (r, t) . (2.14b)

This relation is, by definition, exact, but in many applications impractical when
the exact dependence of P (r, t) on E (r, t), or M (r, t) on H (r, t) is either unknown
or very complicated. Therefore, to characterize a material, the medium response
is usually expanded in powers of the external field. In first order, the relation is
just linear, which is a good approximation to a large number of real materials. The
latter are called ’linear dispersive media’. Nevertheless, there exist also materials
that exhibit also a higher order response to the external fields. In literature, these
media are then referred to as ’non-linear materials’.

2.4.2 Linear media

Linear dispersive media

For linear dispersive media, the fields in the temporal Fourier domain obey the
following linear relation,

D (r, ω) = ε0 ε̂ (r, ω) E (r, ω) (2.15a)
B (r, ω) = µ0µ̂ (r, ω)H (r, ω) , (2.15b)

where ε0ε̂ (r, ω) and µ0µ̂ (r, ω) are the 3 × 3-tensors of the electric permittivity and
the magnetic permeability. Dispersion is defined as a frequency dependence of the
electric permittivity ε̂ (r, ω) or the magnetic permeability µ̂ (r, ω).

Linear dispersionless media

If the electric permittivity and magnetic permeability do not depend on ω, a material
is called ’dispersionless’, i.e.

D (r, ω) = ε0 ε̂ (r) E (r, ω) (2.16a)
B (r, ω) = µ0µ̂ (r)H (r, ω) . (2.16b)
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In this case, this relation also directly transfers to the fields in the temporal domain,

D (r, t) = ε0 ε̂ (r) E (r, t) (2.17a)
B (r, t) = µ0µ̂ (r) H (r, t) . (2.17b)

Linear isotropic media

For isotropic media, the material response is independent of direction, i.e., the ma-
terial tensors become scalar quantities,

D (r, ω) = ε0 ε (r, ω) E (r, ω) (2.18a)
B (r, ω) = µ0µ (r, ω)H (r, ω) . (2.18b)

Linear dispersionless isotropic media

Linear dispersionless isotropic materials combine the properties of dispersionless and
isotropic media. One obtains the relations

D (r, ω) = ε0 ε (r) E (r, ω) (2.19a)
B (r, ω) = µ0µ (r)H (r, ω) (2.19b)

and

D (r, t) = ε0 ε (r) E (r, t) (2.20a)
B (r, t) = µ0µ (r) H (r, t) . (2.20b)

2.5 Energy conservation

2.5.1 Poynting theorem

Multiply Eq. (2.2b) with E (r, t) from the left,

E (r, t) · [∇×H (r, t)] = E (r, t) · ∂D (r, t)

∂t
, (2.21)

and rewrite the left side using a vectorial identity,

H (r, t) · [∇× E (r, t)]−∇ · [E (r, t)×H (r, t)] = E (r, t) · ∂D (r, t)

∂t
. (2.22)

By replacing ∇× E (r, t) using Eq. (2.2a) one obtains

∇ · S (r, t) = −E (r, t) · ∂D (r, t)

∂t
−H (r, t) · ∂B (r, t)

∂t
, (2.23)
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where S (r, t) = E (r, t) × H (r, t) is identified as the Poynting vector, which has
units of an energy flux density [S] = Jm−2s−1. By integrating Eq. (2.23) over an
arbitrary connected volume V and applying Gauss’s theorem on the left side, one
obtains∫

∂V

S (r, t) dA = −
∫
V

[
E (r, t) · ∂D (r, t)

∂t
+ H (r, t) · ∂B (r, t)

∂t

]
dV . (2.24)

For the special case of linear dispersionless isotropic media this simplifies to∫
∂V

S (r, t) dA = − ∂

∂t

∫
V

u (r, t) dV (2.25)

with the local energy density

u (r, t) =
1

2
ε0ε (r) E2 (r, t) +

1

2
µ0µ (r) H2 (r, t) . (2.26)

Eq. (2.25) is known as the Poynting theorem. It states that the total energy flux
per unit time across a closed surface must be equal to the negative rate of change
of the internal energy inside the enclosed volume. In other words, if there is a total
net energy flux per unit time across a closed surface, there must be a source or sink
inside the volume (corresponding to gain or absorption).

2.5.2 Time averaging

The oscillation frequency of visible light is in the order of several 1014 Hz, which is
significantly faster than the time scale of the processes that are usually of interest
in optics. Therefore, the time average of the physical fields or dependent quantities
are generally far more important. In the following, it is shown how the time aver-
aged quantities can be calculated from the time dependent quantities. To this end,
monochromatic fields of the form F (r, t) = < [F (r, ω) e−iωt] are assumed. Only the
real part of the complex field is considered because, as a function of position and
time, the physical fields must be real-valued.

Time average of an isolated monochromatic field

〈F (r, t)〉t = 〈<
[
F (r, ω) e−iωt

]
〉t

=
1

2
〈F (r, ω) e−iωt〉t + c.c.

=
1

2
F (r, ω) 〈e−iωt〉t + c.c.

= 0 (2.27)

The time average of an isolated monochromatic field is always zero.
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Time average of the product of two monochromatic fields

〈F1 (r, t) · F2 (r, t)〉t

= 〈<
[
F1 (r, ω) e−iωt

]
· <
[
F2 (r, ω) e−iωt

]
〉t

=
1

4
〈
[
F1 (r, ω) e−iωt + c.c.

]
·
[
F2 (r, ω) e−iωt + c.c.

]
〉t

=
1

4
〈F1 (r, ω) ·F2 (r, ω) e−2iωt + F1 (r, ω) ·F∗2 (r, ω)〉t + c.c.

=
1

4
F1 (r, ω) ·F∗2 (r, ω) + c.c.

=
1

2
< [F1 (r, ω) ·F∗2 (r, ω)] (2.28)

From this result, for the absolute value squared of a field follows

〈|F (r, t)|2〉t =
1

2
|F (r, ω)|2 . (2.29)

The same calculation leads to

〈F1 (r, t)× F2 (r, t)〉t =
1

2
< [F1 (r, ω)×F∗2 (r, ω)] . (2.30)

Time average of the product of a monochromatic field and the time
derivative of a monochromatic field

〈F1 (r, t) · ∂F2 (r, t)

∂t
〉t

= 〈<
[
F1 (r, ω) e−iωt

]
· ∂
∂t
<
[
F2 (r, ω) e−iωt

]
〉t

=
1

4
〈
[
F1 (r, ω) e−iωt + c.c.

]
·
[
−iωF2 (r, ω) e−iωt + c.c.

]
〉t

=
1

4
〈−iωF1 (r, ω) ·F2 (r, ω) e−2iωt + iωF1 (r, ω) ·F∗2 (r, ω)〉t + c.c.

=
1

4
iωF1 (r, ω) ·F∗2 (r, ω) + c.c.

=
1

2
< [iωF1 (r, ω) ·F∗2 (r, ω)] (2.31)

From this result, it follows

〈F (r, t) · ∂
∂t

F (r, t)〉t = 0 . (2.32)
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2.5.3 Local absorption and gain

By time averaging Eq. (2.24) and applying Eq. (2.31), one obtains

〈
∫
∂V

S (r, t) dA〉t

= −
∫
V

1

2
< [iωE (r, ω) ·D∗ (r, ω) + iωH (r, ω) ·B∗ (r, ω)] dV . (2.33)

The integrand on the right side denotes the local absorption density. In the special
case of linear isotropic media one obtains

〈
∫
∂V

S (r, t) dA〉t

= −
∫
V

ω

2

{
ε0= [ε (r, ω)] |E (r, ω)|2 + µ0= [µ (r, ω)] |H (r, ω)|2

}
dV . (2.34)

One observes that the amount of absorption of a medium is linearly dependent on
the imaginary part of the electric permittivity and magnetic permeability. A positive
imaginary part describes absorption, whereas a negative imaginary part corresponds
to gain.

2.6 Wave equation and Helmholtz equation

Consider a volume, which is homogeneously filled with a linear dispersionless isotropic
medium. Inside this volume, the electric permittivity and the magnetic permeability
are constant in space. Therefore, from Eqs. (2.20) one obtains the relations

D (r, t) = ε0 ε E (r, t) (2.35a)
B (r, t) = µ0µH (r, t) . (2.35b)

The wave equation can be directly derived from Maxwell’s equations. To this end,
calculate the rotation of Eq. (2.2a),

∇× [∇× E (r, t)] = −∇× ∂

∂t
[B (r, t)] . (2.36)

Rewrite the left side and, on the right side replace B (r, t) using Eq. (2.35b),

∇ [∇ · E (r, t)]−∇2E (r, t) = −µ0µ
∂

∂t
[∇×H (r, t)] . (2.37)

On the left side, the divergence of the electric field is zero, since ∇ · D (r, t) =
∇ · [ε0εE (r, t)] = ε0ε∇ ·E (r, t) = 0. On the right side, substitute ∇×H (r, t) using
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Eq. (2.2b),

∇2E (r, t) = µ0µ
∂

∂t

[
∂D (r, t)

∂t

]
. (2.38)

By replacing D (r, t) using Eq. (2.35a), one obtains the wave equation,

∇2E (r, t)−
(
n

c0

)2
∂2

∂t2
E (r, t) = 0 , (2.39)

where n =
√
εµ is the refractive index and c0 =

√
ε0µ0

−1 denotes the speed of light
in vacuum. By transforming the electromagnetic fields into the temporal Fourier
domain, one obtains the vectorial Helmholtz equation,

∇2E (r, ω) +

(
nω

c0

)2

E (r, ω) = 0 . (2.40)

As one can see, the three components of the electromagnetic field entirely decouple
in this equation. That is why also the scalar Helmholtz equation is of high relevance
in optics. It has the identical form as Eq. (2.40), whereas the electric field is assumed
to be a scalar quantity.

2.6.1 Plane wave decomposition

Plane waves are a complete and orthogonal set of solutions of the wave equation,
Eq. (2.39). They take the form[23]

E (r, t) = E0 e
i(kr−ωt) , (2.41)

where k = (kx, ky, kz)
T is the wave vector, which defines the propagation direction.

It can be easily checked that a valid solution fulfills the dispersion relation,

|k| = nk0 =
nω

c0

, (2.42)

where

k0 =
ω

c0

=
2π

λ
(2.43)

is the wave vector in vacuum, and λ is the vacuum wavelength1. Consequently,
the spatial components of the wave vector are not independent of each other. One
often defines the axial component kz = ±

√
n2k2

0 − k2
⊥ as a function of the lateral

components. Since the differential equation is only solved for this particular choice
of kz, in optics one usually Fourier transforms the electromagnetic fields only in the

1k is related to the spatial frequencies ν via k = 2πν.
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two coordinates x and y,

Ẽ (k⊥, z) =

+∞∫
−∞

E (r⊥, z) e
−ik⊥·r⊥d2r⊥ , (2.44)

where the ω-dependence of the quantities is dropped. Eq. (2.44) is called the ’plane
wave decomposition’ or ’angular spectrum decomposition’ of the electric field. The
latter is illustrated in Fig. 2.3.

z

x, y · · ·

Figure 2.3: The angular spectrum decomposition of the electromagnetic field corresponds
to a superposition of plane waves with different amplitudes (colors) and propagation direc-
tions.

If kz ∈ R, the corresponding plane wave is called ’propagating’, since eikzz is a pure
phase factor. If kz ∈ iR, the corresponding plane wave is called ’evanescent’, since
eikzz is an exponentially increasing or decreasing amplitude factor. One can think
of evanescent waves as the waves with propagation angles larger than 90◦. If kz is
some other complex number, there must be either absorption or gain in the medium
of propagation - in this case, the distinction between ’propagating’ and ’evanescent’
waves is more intricate.

2.6.2 Spherical wave decomposition

In spherical coordinates, (r, θ, ϕ), the most general solution of the scalar Helmholtz
equation is[44]

E (r, ω) =
∞∑
l=0

+l∑
m=−l

[almjl (kr) + blmyl (kr)] Y
m
l (θ, ϕ) , (2.45)

where jl (kr) and yl (kr) are the spherical Bessel functions, and Y m
l (θ, ϕ) are the

spherical harmonics, which represent a complete set of orthogonal functions on the
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sphere[45]. The lowest mode of this expansion, i.e., l = m = 0, is well-known as ’the’
spherical wave

E (r, ω) ∝ eikr

r
, (2.46)

which is rotationally symmetric.

2.7 Optical propagation algorithms

2.7.1 Development of numerical optics

As more and more computer processing power became available in the second half
of the 20th century, scientific research increasingly dealt with the numerical analysis
of physical problems. In optics, the numerical modeling of propagating electromag-
netic fields was of particular interest. In the 1950s, several basic approaches already
existed as, for instance, the propagation via the Kirchhoff diffraction integral[46],
the Sommerfeld diffraction integral[47], or the angular spectrum (AS) propagation
method[48, 49]. The mentioned algorithms, which were by the way all proven mathe-
matically equivalent by Weyl[50], are representatives of what is commonly known as
’scalar propagation algorithms’, because all components of the vector-valued electro-
magnetic fields are treated equally, or as it is sometimes formulated: the vectorial
character of the electromagnetic fields is ’neglected’. However, since these propaga-
tion algorithms lacked the ability to describe both polarization and reflection, the
interest in fully vectorial solvers was quite high. In 1966, for the first time such an
algorithm was presented by Yee, the FDTD method[19], which operates in the time
and spatial domain. As its direct counterpart in the spatial and temporal frequency
domain, the RCWA was published by Moharam and Gaylord in 1981[1]. Both the
FDTD and the RCWA could, indeed, correctly predict reflections and treat polar-
ization, but unfortunately, their efficiency in terms of memory requirements and
numerical complexity was so poor, that only extremely small problem sizes with
dimensions in the order of a few wavelengths could be analyzed. Therefore, also new
scalar propagation algorithms were developed as, for example, the BPM by Feit and
Fleck in 1978[51] or the WPM in 1993 by Brenner and Singer[52]. Many variations and
combinations of the different algorithms, and also extensions to vector-valued fields
exist[53, 54]. Generally, it can be said that, even today, scalar propagation methods
are still extensively applied if polarization and reflection effects play a minor role.
Due to their severe time and memory constraints, exact Maxwell solvers like the
FDTD or the RCWA are only used if truly necessary. The latter is usually given
when the characteristic length scales of the refractive index structures become sig-
nificantly smaller than the wavelength of light, which nowadays is most often the
case in structures written with state-of-the-art lithographic devices.

Optical propagation algorithms can be subdivided into several groups of methods.
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There are at least five different categories.

1. Homogeneous and inhomogeneous medium propagation

2. Exact and approximate methods

3. Scalar and vectorial methods

4. Paraxial and high numerical aperture (NA) methods

5. Position space and frequency space methods

Fig. 2.4 shows a sorted list of several selected established methods. Of course, this
list is not complete. It is only meant for the reader to obtain a quick overview over
the categorization of the most important methods in the field. In the following,
several representatives are introduced in more detail.

2.7.2 Homogeneous medium propagation

Angular spectrum propagation

The AS propagation was first developed by [48, 49] as a scalar propagation method.
Even so, it can be directly extended to vectorial electromagnetic fields[56]. In tem-
poral and spatial Fourier space, the propagation of each individual plane wave is
represented by the multiplication with the corresponding propagator given in Eq.
(2.41). Therefore, the electromagnetic field is decomposed into its angular spec-
trum, as illustrated in Fig. 2.3. The propagation of a superposition of plane waves
along the z-axis is then carried out via

E (r⊥, z) =

+∞∫
−∞

Ẽ (k⊥, z = 0) e±i
√
n2k2

0−k2
⊥z eik⊥·r⊥

d2k⊥

(2π)2 , (2.47)

where the sign ± determines the propagation direction[23]. In the actual implemen-
tation on a computer, the assignment in Eq. (2.47) is normally carried out via two
’fast Fourier transformations’ (FFTs) and a multiplication,

E (r⊥, z) = F−1
{

F [E ] (k⊥, z = 0) e±i
√
n2k2

0−k2
⊥z
}

(r⊥) . (2.48)

The numerical complexity of the AS propagation is dominated by the numerical com-
plexity for carrying out the FFTs, which is of the order O

(
N̄ logN̄

)
, N̄ representing

the number of Fourier modes in the calculation. The memory requirement is of the
order O

(
N̄
)
. It can be shown that, due to the finite sampling of the electromagnetic

field and the propagator, the propagation distance is limited to[58],

z ≤ zcrit =
Px dx

λ
, (2.49)
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approximate

VBPM[53]

VTEA[55]

vectorial

...

Maxwell solvers

homogeneous media inhomogeneous media

vectorial AS[56]

exact approximate

scalar

...
...

exact

FDTD[19]

RCWA[1]

...

AS[48, 49]

Sommerfeld[47]

Fresnel[23]

BPM[51, 57]

WPM[52]

scalar

...

paraxial

vectorial
Rayleigh

high NA position space frequency space

Sommerfeld[56]

TEA[23]

VWPM[54]

Figure 2.4: Categorization of the most important numerical propagation algorithms. The
fill color of the boxes indicates whether the propagation algorithm is paraxial (green) or
high NA (blue). The border color of the boxes indicates whether the method operates
in position space (blue) or frequency space (red). For some methods, both is possible or
operations are performed in both spaces. In these cases, the border color is a blue-red
dashed line.
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where Px is the diameter of the computational grid area and dx is the position space
sampling. Hence, the AS propagation is a near field propagation method.

Sommerfeld propagation

The propagation according to Sommerfeld[47] is a scalar propagation method, which
is realized by a convolution in position space,

E (r⊥, z) = − 1

2π

+∞∫
−∞

E (r′⊥, z
′ = 0)

∂

∂z

[
eik|r−r

′|

|r− r′|

]∣∣∣∣
z′=0

d2r′⊥ , (2.50)

in contrast to the multiplication in Fourier space just seen in the AS approach. The
mathematical equivalence of both methods was proven by Weyl[50]. As can be seen
from Eq. (2.50), each point of the field at z = 0 can be interpreted as the source
not of spherical waves as supposed by Huygens, but of the z-derivative of spherical
waves as illustrated in Fig. 2.5. An alternative and mathematically equivalent form

z

x, y

· · ·

Figure 2.5: Sommerfeld diffraction: each point of the field at z = 0 can be interpreted as
the source of the z-derivative of a spherical wave.

of Eq. (2.50) is given by

E (r⊥, z) = − 1

2π

+∞∫
−∞

[
∂

∂z
E
]

(r′⊥, z
′ = 0)

eik|r−r
′|

|r− r′|

∣∣∣∣
z′=0

d2r′⊥ . (2.51)

One way of implementing these equations on a computer is carrying out the convolu-
tion as a matrix multiplication. The numerical complexity of this procedure is then,
however, of the order O

(
N̄2
)
. An alternative way is a similar procedure as for the

AS propagation, but where the propagator is determined by the FFT of the sam-
pled position space propagator. In this case, the numerical complexity comes back
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down to O
(
N̄ logN̄

)
. The propagation according to Sommerfeld then is a far field

propagation method, i.e., z ≥ zcrit
[58]. Vectorial extensions like the one presented in

[56] also exist.

2.7.3 Structured medium propagation

Thin element approximation

The TEA is probably the most simplified way to model the transition of light through
a structured object. A good description can be found in [23]. The principle is il-
lustrated in Fig. 2.6. The following two assumptions are made. 1) The incident

n1

z

x, y

n1n2

aperture stop

Figure 2.6: TEA: an object is approximated by a transmission function t (r⊥) =
a (r⊥) exp [iφ (r⊥)], whose amplitude corresponds to absorption (or gain), and whose phase
describes the optical path differences accumulated by the traversing light.

electromagnetic field contains only small propagation angles (paraxial approxima-
tion). 2) The diffraction object is infinitely thin, i.e., all changes of the field in terms
of amplitude and phase occur in only one single definite location in the object plane.
Consequently, the electromagnetic field in front and behind the object are connected
via the complex transmission function t (r⊥) = a (r⊥) exp [iφ (r⊥)],

E ′ (r⊥, z) = a (r⊥) eiφ(r⊥) E (r⊥, z) . (2.52)

The changes in the amplitude, a (r⊥), model absorption (or gain), for instance at
an aperture stop. The changes in the phase, φ (r⊥), correspond to optical path
differences, for instance a DOE or a thin lens. The treatment of a diffraction object
in TEA becomes problematic if the object becomes too thick, or if the lateral coupling
within the object plays an important role.
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Beam propagation method

The BPMmethod was initially developed by Feit and Fleck in 1978 for the scalar sim-
ulation of microoptical components and waveguides[51]. Both spatial and frequency
domain BPMs exist. Both cases have in common the assumption that the refractive
index variations and the propagation angles are and remain small throughout the
propagation process. In the spatial domain solution, the scalar Helmholtz equation
is solved with a separation ansatz in slowly varying envelope approximation[51]. How-
ever, also a very elegant split step solution exist[57], which is illustrated in Fig. 2.7
and shortly outlined here.

dz

z

x, y

Figure 2.7: The BPM propagates the electromagnetic field in small axial steps dz through
the structured medium. In each step, the propagation operator is split into an AS propa-
gation and a spatial transmission function.

For the mentioned assumptions, operator splitting can be applied to the exact
propagator, which then separates into a purely position-dependent and a purely
frequency-dependent part,

E (r⊥, z + dz) =

+∞∫
−∞

Ẽ (k⊥, z) e
i
√
n2(r⊥)k2

0−k2
⊥ dz eik⊥·r⊥

d2k⊥

(2π)2

≈ eik0 dz δn(r⊥)

+∞∫
−∞

Ẽ (k⊥, z) e
i
√
n̄2k2

0−k2
⊥ dz eik⊥·r⊥

d2k⊥

(2π)2 , (2.53)

where n̄ = 〈n (r⊥)〉x,y is the averaged refractive index in x and y and δn (r⊥) =
n (r⊥) − n̄. The propagation through the structured medium is done in small axial
steps dz. To this end, the electric field is alternately transformed to the frequency
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space and back,

E (r⊥, z)
F−−−→ Ẽ (k⊥, z)

Ẽ (k⊥, z) −−−→ Ẽ (k⊥, z) e
i
√
n̄2k2

0−k2
⊥ dz =: Ẽ ′ (k⊥, z + dz)

Ẽ ′ (k⊥, z + dz)
F−1

−−−→ E ′ (r⊥, z + dz)

E ′ (r⊥, z + dz) −−−→ eik0 dz δn(r⊥) E ′ (r⊥, z + dz) =: E (r⊥, z + dz) .

(2.54)

The Fourier transformations can be implemented using the FFT. Therefore, the
numerical complexity of the BPM is of the order O

(
N̄ logN̄

)
. Upon each propagation

step, a small numerical error is accumulated. Therefore, the reliable propagation
distance is limited.

Wave propagation method

In contrast to the BPM, the WPM[52] keeps the exact propagator and no operator
splitting is applied. As in the BPM, the propagation through the structured medium
is done in small axial steps dz. To this end, the electric field is again alternately
transformed to the frequency space and back,

E (r⊥, z)
F−−−→ Ẽ (k⊥, z)

E (r⊥, z + dz)
′F−1 ′

−−−→
+∞∫
−∞

Ẽ (k⊥, z) e
i
√
n2(r⊥)k2

0−k2
⊥ dz eik⊥·r⊥

d2k⊥

(2π)2 .

(2.55)

Since the propagator does not separate into purely spatial and frequency dependent
components, the inverse Fourier transform cannot be calculated via the FFT, but
must be implemented as a matrix multiplication. Therefore, the WPM has the nu-
merical complexityO

(
N̄2
)
. For small numbers of different refractive indices in lateral

direction, the procedure may be accelerated up to, in the best case, O
(
N̄ logN̄

)
[59].

With the WPM, also high NA components can be calculated. The advantages over
the BPM lie, for instance, in a much more reliable simulation of strongly focused
fields. However, as the BPM, a similar small numerical error is accumulated upon
every propagation step. Therefore, the reliable propagation distance is also limited.

Finite-difference time-domain method

The FDTD was first published by Yee in 1966[19]. It is a fully vectorial and exact
optical propagation method, i.e., it does not assume approximations prior to solving
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Maxwell’s equations. As the name already suggests, the system of equations is dis-
cretized in both the time and all spatial coordinates by finite difference quotients.
Thereby, the FDTD implements a second order accurate leapfrog scheme[60] for the
advancement of the electromagnetic fields in time. In his publication, Yee further-
more introduced the so-called ’Yee grid’, which samples the electric and the magnetic
fields not at the same spatial positions, but always half a grid cell from each other in
each direction. This way, Yee achieved inherently divergence-free fields. The FDTD
has the following advantages.

+ There is no limitation to narrow bands of frequencies. The impulse response of
the materials to all frequencies contained in the electromagnetic spectrum can
be modeled in one single step. This is particularly interesting for the simulation
of incident short (and therefore broadband) pulses.

+ Nonlinear materials can be handled in a very uncomplicated manner.

+ The algorithm is easily implementable on a parallel architecture.

On the other hand, the disadvantages of the FDTD are the following.

- Only very small computation volumes can be handled. The reason is that any
calculation area must be sampled in the order of the smallest electromagnetic
wavelength, which quickly leads to very high numbers of sampling points.

- The response function of the materials to an external electromagnetic field
must be explicitly modeled in the time domain. Depending on the material,
this calculation is computationally expensive.

- Upon the discretization, the Courant-Friedrichs-Lewy (CFL) condition[61] must
be satisfied. Otherwise, the Leapfrog scheme may become unstable.

- Boundary conditions need to be introduced at the boundaries of the calculation
domain.

- The electromagnetic field at a distant point outside the computation domain
cannot be determined in a straightforward manner.

The FDTD can be referred to as the direct counterpart of the RCWA, which solves
Maxwell’s equations in the temporal and spatial frequency domain (cf. Chapter 3).

2.8 Normalized fields

The electric and magnetic fields occurring in Maxwell’s equations are dimensionful
numbers. In many cases, it is, however, favorable to rescale these quantities such,
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that the equations for the scaled fields contain no or as little as possible dimensionful
constants. As suggested in [62], one defines

E (r, ω) = E0 E ′ (r, ω)

H (r, ω) =

√
ε0
µ0

E0 H′ (r, ω) , (2.56)

where E0 carries the dimension of the electric field and the primed functions are now
dimensionless or ’normalized’ fields. For linear dispersive media, Maxwell’s equations
in the temporal frequency domain, Eqs. (2.4), then transform to

∇× E ′ (r, ω) = +ik0µ̂ (r)H′ (r, ω) (2.57a)
∇×H′ (r, ω) = −ik0ε̂ (r)E ′ (r, ω) (2.57b)
∇ · [ε̂ (r)E ′ (r, ω)] = 0 (2.57c)
∇ · [µ̂ (r)H′ (r, ω)] = 0 . (2.57d)

Starting from Chapter 3, all the occurring electromagnetic fields are defined as nor-
malized fields, unless explicitly stated otherwise.
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3 | Rigorous coupled-wave
analysis

In this chapter, the framework of the RCWA is derived. A detailed outline of the sci-
entific background and an overview of the advancements in the field from the early
1980s until today have already been given in the introductory part of this thesis.
The organization is as follows. In Sect. 3.1, the typical problem geometry treated by
the RCWA is defined. Furthermore, the mathematical formalism used to describe
the grating and the electromagnetic fields is introduced. Sect. 3.2 presents the
function arithmetic in Fourier truncated systems, including the product-convolution
relation and Li’s factorization rules in one and two dimensional systems. In Sect.
3.3, Maxwell’s equations are expressed in terms of the frequency domain quantities
for the case of linear isotropic and linear anisotropic media. The general solution of
this system of equations is derived in Sect. 3.4. In Sect. 3.5, several methods for
enforcing the boundary conditions are presented and compared. The numerical com-
plexity and memory requirement of the RCWA is considered in Sect. 3.7. Sect. 3.6
discusses the consistency requirements of the RCWA algorithm for tilted structured
light incidence. A sample RCWA simulation of a SNOM measurement is shown in
Sect. 3.8.

3.1 Problem definition

If not otherwise stated, the reader may also refer to [5, 63] for the definitions and
derivations shown in this section.

3.1.1 Geometry

The geometry of a typical RCWA problem is illustrated in Fig. 3.1. A superposition
of plane waves, which is characterized by the Fourier coefficients L̃(0)

mn, is incident
on a lamellar grating structure of thickness d, which is periodic in x and y with
periods Px and Py. The incident light is diffracted into different reflected (R̃mn)
and transmitted (T̃mn) mode channels. The grating properties and the incident light
are given. From this, the reflected and transmitted Fourier mode coefficients can be
determined with the RCWA.
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Figure 3.1: RCWA grating problem. A superposition of plane waves L̃(0)
mn (green), whose

central mode is parameterized by the angles θ and ϕ, is incident on an x-y-periodic grating
structure (blue) of thickness d. The polarization of the wave is given by the angle ψ. The
mode coefficients of the transmitted and reflected light, T̃mn) and R̃mn (red), are unknown
and shall be calculated.



3.1.2 REFRACTIVE INDEX EXPANSION 29

3.1.2 Refractive index expansion

Along the z-axis, space is divided into three different regions. Region I (z < 0)
and region III (z > d) are assumed to be linear isotropic homogeneous media, i.e.
the electric permittivity ε(I/III) and the magnetic permeability µ(I/III) are constant
in space. Region II (0 ≤ z ≤ d) is a lamellar diffraction grating with the following
properties.

1. The electric permittivity ε̂ (r) and the magnetic permeability µ̂ (r) are periodic
functions of x and y with the fix periods Px and Py.

2. ’Staircase approximation’: in z-direction, the grating is subdivided into L lay-
ers. In each layer l = 1..L, the electric permittivity ε̂(l) (x, y) and the magnetic
permeability µ̂(l) (x, y) do not depend on z - cf. Fig. 3.2b.

3. ’Zigzag approximation’: The functions ε̂(l) (x, y) and µ̂(l) (x, y) are approxi-
mated by a zigzag contour, whose segments are parallel to the x and y coordi-
nate axes. This way, material discontinuities are either only in x direction or
only in y direction2 - cf. Fig. 3.2c.

x

y

x

y

z

x

y

z

(a) (b) (c)

z
staircase zigzag

Figure 3.2: Continuous object with z-dependent permittivity and permeability distribu-
tion (a), which is approximated by the staircase approximation (b) and the zigzag approxi-
mation (c). In (b), the structure is subdivided into layers with piecewise constant material
properties in z. In (c), the contour is additionally approximated by segments parallel to
the x and y coordinate axes.

In the following, an upper index in parentheses always indicates a layer dependence.
In this context, the quantity l represents the layer index. For the sake of consistent
notation, l = 0 and l = L+ 1 denote the incident and transmitted regions I and III.

2This approximation is needed when transforming Maxwell’s equations with Li’s factorization
rules. A more general approach was suggested by [14, 16, 64], which works for arbitrary contour
orientations. The latter goes, however, beyond the scope of this thesis and is, therefore, not
shown here.
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If the structure under consideration has a z-dependent permittivity or permeability
distribution, it has to be approximated according to the staircase and zigzag approx-
imation. Clearly, the higher the number of layers, the better the approximation of
the original structure. The computational complexity then grows linearly with the
number of layers in the grating.

The RCWA is a special case of the so-called group of ’modal methods’. The
characteristic of this group of methods is that both the electromagnetic fields as well
as the electric permittivity and magnetic permeability are expanded in a complete
and orthogonal set of functions. In the RCWA, the latter are chosen to be the Fourier
modes, which is why the RCWA is also called the ’Fourier modal method’ (FMM).
Since the grating structure is assumed to be periodic in x and y with periods Px and
Py, the spectra of the electric permittivity and the magnetic permeability become
discrete. Hence, the functions ε̂(l) (x, y) and µ̂(l) (x, y) can be expanded into a Fourier
series,

ε̂(l) (x, y) =
∑
mn

ε̂(l)mn exp

{
2πi

(
m

Px
x+

n

Py
y

)}
(3.1a)

µ̂(l) (x, y) =
∑
mn

µ̂(l)
mn exp

{
2πi

(
m

Px
x+

n

Py
y

)}
, (3.1b)

where the Fourier coefficients are given by

ε̂(l)mn =
1

Px Py

∫
Px

∫
Py

ε̂(l) (x, y) exp

{
−2πi

(
m

Px
x+

n

Py
y

)}
dx dy (3.2a)

µ̂(l)
mn =

1

Px Py

∫
Px

∫
Py

µ̂(l) (x, y) exp

{
−2πi

(
m

Px
x+

n

Py
y

)}
dx dy . (3.2b)

In the standard RCWA by Moharam and Gaylord [1, 5], these coefficients are calcu-
lated analytically or numerically with a high precision. However, also other possi-
bilities, like a sampling with the mode count number, exist. The advantages and
disadvantages of these choices have been discussed in [17, 63].

3.1.3 Electromagnetic field expansion

Grating region

In the grating region, the electromagnetic field propagates within the lamellar diffrac-
tion grating, which is x-y-periodic with periods Px and Py. According to the Floquet-
Bloch theorem, the most general solution of such a system are pseudo-periodic fields
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of the form

E (II) (r) =
∑
m,n

Ẽmn (z) exp {ikx;mnx+ iky;mny} (3.3a)

H(II) (r) =
∑
m,n

H̃mn (z) exp {ikx;mnx+ iky;mny} , (3.3b)

which is simply a Fourier series in the lateral coordinates. The wave vector compo-
nents are given by

kx;mn = kx0 + 2π
m

Px
kx0 = k0

√
ε(0)µ(0) sin θ cosϕ (3.4a)

ky;mn = ky0 + 2π
n

Py
ky0 = k0

√
ε(0)µ(0) sin θ sinϕ (3.4b)

The offsets kx0 and ky0 correspond to a three-dimensional tilt of the entire mode set
by the angles θ and ϕ in spherical coordinates.

Throughout this thesis, the tilde (̃· · · ) always indicates a field, which is Fourier
transformed with respect to the x and/or y coordinate. In this context, the index
m is always used for the Fourier coefficients with respect to x, n for the Fourier
coefficients with respect to y. Also partly transformed fields are marked with the
tilde. In this case, the transformed coordinate is recognizable by the indexing. In
some situations, the arguments x and y, or the indexing m and n may be dropped
in order to facilitate the readability of formulas. If a quantity lacks both indices, m
and n, it is always Fourier transformed with respect to both coordinates x and y.

Incident and transmitted region

In the standard RCWA, the incident and transmitted regions are assumed to be
isotropic and homogeneous media. Following Sect. 2.6.1, the most general solution
of Maxwell’s equations in such media is a superposition of forward and backward
propagating plane waves,

E (0) (r) =
∑
mn

L̃(0)
mn exp

{
i
(
kx;mnx+ ky;mny + k(0)

z;mnz
)}

+
∑
mn

R̃mn exp
{
i
(
kx;mnx+ ky;mny − k(0)

z;mnz
)}

(3.5a)

E (L+1) (r) =
∑
mn

T̃mn exp
{
i
(
kx;mnx+ ky;mny + k(L+1)

z;mn z
)}

+
∑
mn

L̃(L+1)
mn exp

{
i
(
kx;mnx+ ky;mny − k(L+1)

z;mn z
)}

, (3.5b)
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where L̃(0/L+1)
mn , R̃mn and T̃mn are the Fourier coefficients of the incident, reflected

and transmitted light, and the z-components of the wave vectors are calculated via

k(0/L+1)
z;mn =

√
k2

0ε
(0/L+1)µ(0/L+1) − k2

x;mn − k2
y;mn . (3.6)

It should be noted that, so far, RCWA calculations have only been conducted for
one-sided light incidence, i.e. L̃(L+1)

mn = 0. In Chapter 5, the framework is extended
for actual two-sided light incidence.

Structured illumination and mode set tilt

Part of this section about structured illumination is taken from the publication [A3].

In the first publications related to the RCWA, the illuminating light was always
assumed to be an isolated plane wave at the origin of the frequency space, i.e.
L̃(0)
mn ∝ δm0δn0

[1, 5]. A tilt of the incident wave vector was then usually realized via
a k-space shift by kx0 and ky0 according to Eq. (3.4). In position space, the incident
wave is then

L̃(0) (r) =

cosψ cos θ cosϕ− sinψ sinϕ
cosψ cos θ sinϕ+ sinψ cosϕ

− cosψ sinϕ

 eik0nI(sin θ cosϕx+sin θ sinϕy+cos θ z) ,

(3.7)

where ψ defines the linear polarization angle of the plane wave. This situation is
illustrated in Fig. 3.3a. However, realizing a tilt like this is normally sensible only
for single mode light incidence as it is the case in the RCWA initially developed
by [1, 5]. In many cases the incident field should be, however, not a plane wave,
but some arbitrary structured illumination like for instance a focused or Gaussian
beam. These types of illuminations can generally be represented as a superposition
of multiple plane waves. In the past, simulations with structured illumination were
often realized by carrying out as many RCWA calculations as there are incident
Fourier modes [65]. However, this method is not only computationally very costly,
but also not consistent as shown in [17] and Sect. 3.6. Instead, [17] suggests to
realize tilted light incidence by directly exciting other than the central mode in the
incident light Fourier mode vector (cf. Fig. 3.3b). In this case, the offsets defined in
Eqs. (3.4a, 3.4b) are set to zero. This approach also allows the consistent description
of structured illumination by simply changing the Kronecker-type input vector into a
fully occupied Fourier mode vector. Sect. 3.6 investigates under which circumstances
these two approaches are consistent.
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Figure 3.3: Two ways to model a tilted plane wave. (a) Excitation of the zero order
harmonic with a shift in k-space, (b) excitation of mnth order harmonic with a constant
factor. The bold red line represents the excited mode.

3.1.4 Mode truncation

The sums that occur in the refractive index expansion and in the electromagnetic
field expansion generally run over all integers m,n = −∞..∞. In the RCWA, these
sums are truncated symmetrically around the zero mode, i.e. the indices run from
m = −M0 ..M0 and n = −N0 .. N0, i.e., one does the transition

∑
mn

→
+M0∑

m=−M0

+N0∑
n=−N0

. (3.8)

The one-dimensional number of modes in x and y are denoted by M = 2M0 + 1
and N = 2N0 + 1, respectively. In the following, the symmetric mode truncation is
always implicitly assumed and not written out. In case that no mode truncation is
assumed, i.e. the infinite system is regarded, this is explicitly indicated.

3.2 Function arithmetic in Fourier mode truncated
systems

Due to the assumed periodicity of the grating and the electromagnetic fields, it is
advantageous to rewrite Maxwell’s equations in terms of the Fourier transformed
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quantities. This transformation is often called the ’Fourier analysis of Maxwell’s
equations’. On the one hand, Maxwell’s equations contain spatial derivative oper-
ators, which transform to a simple multiplication in Fourier space. On the other
hand, Maxwell’s equations also contain direct products of position space functions,
namely ε̂ (r)E (r) and µ̂ (r)H (r), which need to be transformed accordingly. In this
section, the Fourier analysis of such position space products is considered, and ’Li’s
factorization rules’ are introduced.

3.2.1 Product-convolution relation

Given two periodic functions f (x) and g (x) with period Px. The Fourier coefficients
of these functions are

f̃m =
1

Px

∫
Px

f (x) exp

{
−2πi

m

Px
x

}
dx (3.9a)

g̃m =
1

Px

∫
Px

g (x) exp

{
−2πi

m

Px
x

}
dx . (3.9b)

The direct product in position space,

[fg] (x) = f (x) g (x) , (3.10)

is described by a convolution in frequency space. For the non-truncated system, the
relation is

(̃fg)m =
1

Px

∫
Px

f (x) g (x) exp

{
−2πi

m

Px
x

}
dx =

∑
m′

f̃m−m′ g̃m′ . (3.11)

On the right side of Eq. (3.11), the quantity f̃m−m′ can be understood as a matrix
with entries

[[f ]]m,m′ = f̃m−m′ , (3.12)

which is by definition a Toeplitz matrix. The latter is a matrix, whose diagonal
and all secondary diagonals are constant. The concept is illustrated in Fig. 3.4.
Hence, the product of two periodic functions f (x) and g (x) in position space is
equivalent to a convolution in Fourier space, which can be represented as the matrix
multiplication

(̃fg)m =
∑
m′

[[f ]]m,m′ g̃m′ , (3.13)

where [[f ]] is a Toeplitz matrix as defined in Eq. (3.12).
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Figure 3.4: A Toeplitz matrix is a matrix, whose diagonal and secondary diagonals are
constant.

3.2.2 Li’s factorization rules

Direct rule

Consider Eq. (3.13), which is exact for non-truncated systems. Assume that the
system is now truncated symmetrically around the central mode. In this case, both
the set of coefficients g̃m′ and the Toeplitz matrix are truncated symmetrically. After
the truncation, the vector has the dimension M × 1, and matrix has the dimensions
M ×M . The product is then approximated by the finite Matrix multiplication

(fg)(direct rule)m =
+M0∑

m′=−M0

[[f ]]m,m′ g̃m′ . (3.14)

If the mode truncation is conducted according to Eq. (3.14), it is said that the ’direct
rule’ or ’Laurent’s rule’ is applied[9].

Inverse rule

In the early beginnings of the RCWA, all direct position space products were Fourier
analyzed by the direct rule. However, it turned out that the resulting algorithm con-
verges well for TE-polarized light, but is characterized by a rather slow convergence
behavior for TM-polarization and especially metallic gratings. It was demonstrated
that the reason for the slow convergence is a bad position space reconstruction of
the products ε̂ (r)E (r) and µ̂ (r)H (r)[8]. Across a material interface, the normal
component of these products is continuous, i.e., both ε̂ (r) and E (r), and µ̂ (r) and
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H (r) possess concurrent and pairwise complementary jump discontinuities. How-
ever, when reconstructing the position space product from the mode truncated func-
tions using the direct rule, a strong Gibbs phenomenon may be present near the
interface. This problem and Li’s solution is discussed in the following.

As an example, assume the functions

f (x) =

{
1
2
−5 ≤ x ≤ 0

3
2

0 < x < 5
(3.15a)

g (x) =

{
2 −5 ≤ x ≤ 0
2
3

0 < x < 5
, (3.15b)

which are illustrated in Fig. 3.5. Assume that these function are periodically con-
tinued outside the interval −5 ≤ x < 5. Both functions have discontinuities at
x = 0 and at the period boundaries x = ±Px/2, whereas the product f (x) g (x) = 1
is continuous for all x. Fig. 3.6 (solid blue line) shows the reconstructed product

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2 f (x)
g (x)
f (x) g (x)

Figure 3.5: Two functions f (x) (solid blue) and g (x) (solid red) with a simultaneous
discontinuity at x = 0. The product f (x) g (x) = 1 (dashed green) is continuous for all x.

function,

(fg)(direct rule) (x) =
+M0∑

m,m′=−M0

[[f ]]m,m′ g̃m′ exp

{
2πi

m

Px
x

}
. (3.16)

It possesses strong Gibbs oscillations near the discontinuites x = 0 and x = ±Px/2,
whereas the analytic value of the product function is (fg)(analytic) (x) = 1. According
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(fg)direct rule

(fg)inverse rule

(fg)analytic

Figure 3.6: Product function (fg)(direct rule) (x) (solid blue) reconstructed from the trun-
cated mode coefficient vector using the direct rule. Strong Gibbs oscillations are present
near the discontinuities x = 0 and x = ±Px/2. The reconstruction using the inverse rule,
(fg)(inverse rule) (x) (solid red), and the analytic reconstruction, (fg)(analytic) (x) (dashed
green), have the constant value 1.

to [8], the problem described above can be resolved by applying the so-called ’inverse
rule’. In essence, the mode truncation is simply not done on Eq. (3.10), but on the
transformed equation

g (x) =
1

f (x)
(fg) (x) . (3.17)

The functions 1
f(x)

and (fg) (x) do not have simultaneous jump discontinuities, since
(fg) (x) is continuous in x. Therefore, the direct rule applies for this product. The
mode truncated version of Eq. (3.17) then is

g̃m =
+M0∑

m′=−M0

[[
1

f

]]
m,m′

(̃fg)
(inverse rule)

m′ , (3.18)

which can be transformed to

(̃fg)
(inverse rule)

m =
+M0∑

m′=−M0

[[
1

f

]]−1

m,m′
g̃m′ (3.19)

by matrix multiplication. This procedure is called the ’inverse rule’. Fig. 3.6 (solid
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red line) shows the corresponding reconstructed product function,

(fg)(inverse rule) (x) =
+M0∑

m,m′=−M0

[[
1

f

]]−1

m,m′
g̃m′ exp

{
2πi

m

Px
x

}
. (3.20)

In contrast to the result of the direct rule, no strong Gibbs oscillations are present
near the discontinuities x = 0 and x = ±Px/2. Moreover, the reconstructed function
is nearly equal to the analytic product function (fg)(analytic) (x) = 1 at the sampling
points.

Summary - Li’s factorization rules

Li’s factorization rules for Fourier factorization are a set of three rules, which summa-
rize the above observations[9]. Be f (x) and g (x) two piecewise-continuous, piecewise
smooth, bounded, periodic functions of x.

1. If f (x) and g (x) have no concurrent jump discontinuities (product type 1),
the direct rule must be applied for Fourier factorization.

2. If f (x) and g (x) have pairwise complementary jump discontinuities (product
type 2), the inverse rule must be applied for Fourier factorization.

3. If f (x) and g (x) have pairwise concurrent but not complementary jump dis-
continuities (product type 3), neither the direct rule nor the inverse rule can
be applied for Fourier factorization. Hence these types of products must be
avoided.

It should be noted that, for the non-truncated infinite system, the direct rule and
the inverse rule, Eq. (3.14) and Eq. (3.19), are mathematically identical.

Extension to two dimensional functions

So far, Li’s factorization rules were presented for product functions of one variable x
only. In the following, this framework is extended to functions of two variables x and
y as presented in [9], which is necessary for the Fourier analysis of Maxwell’s equations
in two coordinates. To this end, assume two x-y-periodic functions f (x, y) and
g (x, y) with periods Px and Py. The Fourier transformation can now be calculated
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for the variable x, y, or both. The notation is

f̃m (y) =
1

Px

∫
Px

f (x, y) exp

{
−2πi

m

Px
x

}
dx (3.21a)

f̃n (x) =
1

Py

∫
Py

f (x, y) exp

{
−2πi

n

Py
y

}
dy (3.21b)

f̃mn (x) =
1

Px Py

∫
Px Py

f (x, y) exp

{
−2πi

(
m

Px
x+

n

Py
y

)}
dx dy . (3.21c)

In order to describe the position space product of f and g as a convolution in Fourier
space, one has to differentiate between three different cases.

1. The direct rule applies to the Fourier transformation in both x and y, i.e.,

(̃fg)

(
direct rule in x
direct rule in y

)
mn =

+M0∑
m′=−M0

+N0∑
n′=−N0

[[f ]]mn,m′n′ g̃m′n′ , (3.22a)

where

[[f ]]mn,m′n′ = f̃m−m′,n−n′ . (3.22b)

2. The inverse rule applies to the Fourier transformation in x, and the direct rule
applies to the Fourier transformation in and y, i.e.,

(̃fg)

(
inverse rule in x
direct rule in y

)
mn =

+M0∑
m′=−M0

+N0∑
n′=−N0

bdfecmn,m′n′ g̃m′n′ , (3.23a)

where

bdfecmn,m′n′ =
1

Py

∫
Py

⌈
1

f

⌉−1

m,m′
(y) exp

{
−2πi

n− n′

Py
y

}
dy (3.23b)

⌈
1

f

⌉
m,m′

(y) =
1

Px

∫
Px

1

f (x, y)
exp

{
−2πi

m−m′

Px
x

}
dx . (3.23c)

3. The direct rule applies to the Fourier transformation in x, and the inverse rule
applies to the Fourier transformation in y, i.e.,
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(̃fg)

(
direct rule in x
inverse rule in y

)
mn =

+M0∑
m′=−M0

+N0∑
n′=−N0

dbfcemn,m′n′ g̃m′n′ , (3.24a)

where

dbfcemn,m′n′ =
1

Px

∫
Px

⌊
1

f

⌋−1

n,n′
(x) exp

{
−2πi

m−m′

Px
x

}
dx (3.24b)

⌊
1

f

⌋
n,n′

(x) =
1

Py

∫
Py

1

f (x, y)
exp

{
−2πi

n− n′

Py
y

}
dy . (3.24c)

3.2.3 Reduction of dimensions - mapping 4d → 2d

Consider Eqs. (3.22-3.24), which contain the two-dimensional quantitiy g̃mn and
three different forms of four-dimensional Toeplitz matrices, [[f ]]mn,m′n′ , bdfecmn,m′n′
and dbfcemn,m′n′ . In order to work with these types of quantities on a computer, it is
necessary to reduce the dimensionality of the system by a factor of two. The latter
is achieved by combining two and two dimensions in one, i.e. one implements the
mapping

g̃mn︸︷︷︸
2d

→ g̃mN+n︸ ︷︷ ︸
1d

and [[f ]]mn,m′n′︸ ︷︷ ︸
4d

→ [[f ]]mN+n,m′N+n′︸ ︷︷ ︸
2d

. (3.25)

While the mapping of g̃mn from 2d → 1d is fairly easy to imagine, an intuitive
picture for the mapping of the Toeplitz matrix [[f ]]mn,m′n′ from 4d → 2d is given
in Fig. 3.7. In the literature [63], the form of this matrix is often described as
’block-Toeplitz Toeplitz-block’ (BTTB), because it represents a Toeplitz block ma-
trix, whose blocks again consist out of Toeplitz matrices. The Toeplitz matrices
bdfecmn,m′n′ and dbfcemn,m′n′ have a very similar structure, but with inverted blocks.

3.3 Fourier analysis of Maxwell’s equations

In this section, Maxwell’s equations, as shown in Eq. (2.57), are Fourier analyzed
in the variables x and y following Li’s factorization rules. In the first part, this
transformation is done for linear isotropic materials, which is the most frequent
case. In the second part, the derivation is conducted for the more general case of
linear anisotropic media.
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Figure 3.7: BTTB matrix: a Toeplitz block matrix, whose blocks again consist out of
Toeplitz matrices.
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3.3.1 Linear isotropic media

The following approach was initially presented by Li in 1997[9]. Maxwell’s equations
are Fourier factorized in x and y according to Li’s factorization rules as presented
in Sect. 3.2.2. In the lth layer of the grating, the first two Maxwell equations for
isotropic materials and normalized fields read

∂yEz (r) − ∂zEy (r) = +ik0µ
(l) (x, y)Hx (r) (3.26a)

∂zEx (r) − ∂xEz (r) = +ik0µ
(l) (x, y)Hy (r) (3.26b)

∂xEy (r) − ∂yEx (r) = +ik0µ
(l) (x, y)Hz (r) (3.26c)

∂yHz (r) − ∂zHy (r) = −ik0ε
(l) (x, y) Ex (r) (3.26d)

∂zHx (r) − ∂xHz (r) = −ik0ε
(l) (x, y) Ey (r) (3.26e)

∂xHy (r)− ∂yHx (r) = −ik0ε
(l) (x, y) Ez (r) (3.26f)

In the following, the upper index (l), which indicates the layer number, is dropped
to ensure readability.

Fourier transformation of Eqs. (3.26c, 3.26f)

First, Eqs. (3.26c, 3.26f) are Fourier transformed with respect to the variables x and
y. The quantities Hz (r) and Ez (r) on the right side are both continuous in x and
y. Therefore, the direct rule applies,

ikx;mnẼy;mn (z) − iky;mnẼx;mn (z) = +ik0

∑
m′n′

[[µ]]mn,m′n′ H̃z;m′n′ (z) (3.27a)

ikx;mnH̃y;mn (z) − iky;mnH̃x;mn (z) = −ik0

∑
m′n′

[[ε]]mn,m′n′ Ẽz;m′n′ (z) . (3.27b)

Fourier transformation of Eqs. (3.26a, 3.26d)

Eqs. (3.26a, 3.26d) are Fourier transformed only with respect to the variable x. Con-
sider first Eq. (3.26a). The right side is equal to the magnetic flux density Bx (r),
whose normal component is continuous across material interfaces. Therefore, the
product µ (x, y)Hx (r) is a continuous function of x, whereas the individual factors
µ (x, y) and Hx (r) possess concurrent and pairwise complementary jump discon-
tinuities. With the same line of arguments it is concluded that, in Eq. (3.26d),
the product ε (x, y) Ex (r) is a continuous function of x, and that the individual fac-
tors ε (x, y) and Ex (r) possess concurrent and complementary jump discontinuities.
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Therefore, in both cases the inverse rule applies for the Fourier transformation in y,

∂yẼz;m (y, z) − ∂zẼy;m (y, z) = +ik0

∑
m′

d1/µe−1
m,m′H̃x;m′ (y, z) (3.28a)

∂yH̃z;m (y, z)− ∂zH̃y;m (y, z) = −ik0

∑
m′

d1/εe−1
m,m′ Ẽx;m′ (y, z) . (3.28b)

In Eq. (3.28a), the right side is a continuous function of y. This directly follows
from the continuity of H̃x;m′ (y, z) in y. The same is true for the right side of Eq.
(3.28b). Therefore, in both cases the direct rule applies,

iky;mnẼz;mn (z) − ∂zẼy;mn (z) = +ik0

∑
m′n′

bdµecmn,m′n′H̃x;m′n′ (z) (3.29a)

iky;mnH̃z;mn (z)− ∂zH̃y;mn (z) = −ik0

∑
m′n′

bdεecmn,m′n′ Ẽx;m′n′ (z) . (3.29b)

Fourier transformation of Eqs. (3.26b, 3.26e)

Eqs. (3.26b, 3.26e) are Fourier transformed only with respect to the variable y.
Following the same line of arguments as above, it is concluded that the products
µ (x, y)Hy (r) and ε (x, y) Ey (r) are both continuous functions of y, whereas the con-
stituent functions possess concurrent and complementary discontinuities. Therefore,
the inverse rule applies,

∂zẼx;n (x, z) − ∂xẼz;n (x, z) = +ik0

∑
n′

b1/µc−1
n,n′H̃y;n′ (x, z) (3.30a)

∂zH̃x;n (x, z)− ∂xH̃z;n (x, z) = −ik0

∑
n′

b1/εc−1
n,n′ Ẽy;n′ (x, z) . (3.30b)

In Eq. (3.30a), the right side is a continuous function of x. This directly follows
from the continuity of H̃y;n′ (x, z) in x. The same argument is true for the right
side of Eq. (3.30b). Therefore, in both cases the direct rule applies for the Fourier
transformation in x,

∂zẼx;mn (z) − ikx;mnẼz;mn (z) = +ik0

∑
m′n′

dbµcemn,m′n′H̃y;m′n′ (z) (3.31a)

∂zH̃x;mn (z)− ikx;mnH̃z;mn (z) = −ik0

∑
m′n′

dbεcemn,m′n′ Ẽy;m′n′ (z) . (3.31b)
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Matrix equation

By solving Eqs. (3.29, 3.31) for the ∂z derivatives and eliminating H̃z;mn (z) and
Ẽz;mn (z) using Eqs. (3.27), one obtains the matrix equation

∂

∂z

[
Ẽ⊥ (z)

H̃⊥ (z)

]
= ik0

[
0 M̂12

M̂21 0

][
Ẽ⊥ (z)

H̃⊥ (z)

]
, (3.32a)

where

M̂12 =

[
K̂x [[ε]]−1 K̂y −K̂x [[ε]]−1 K̂x + dbµce

K̂y [[ε]]−1 K̂y − bdµec −K̂y [[ε]]−1 K̂x

]
(3.32b)

M̂21 =

[
−K̂x [[µ]]−1 K̂y K̂x [[µ]]−1 K̂x − dbεce

−K̂y [[µ]]−1 K̂y + bdεec K̂y [[µ]]−1 K̂x

]
(3.32c)

Ẽ⊥ (z) =

[
Ẽx (z)

Ẽy (z)

]
(3.32d)

H̃⊥ (z) =

[
H̃x (z)

H̃y (z)

]
(3.32e)

K̂ρ;mn,m′n′ =
kρ;mn

k0

δm,m′ δn,n′ . (3.32f)

Here, note that the Fourier indices are omitted. Furthermore, one has to keep in
mind that the layer index was dropped in the beginning of the derivation and that,
therefore, the coupling matrix in Eq. (3.32a) is layer dependent, i.e. M̂12 ≡ M̂

(l)
12

and M̂21 ≡ M̂
(l)
21 .

3.3.2 Linear anisotropic media

The subsequent part follows the procedure from [15]. However, it must be noted that
the result in [15] does not simplify to the result of Sect. 3.2.2 in the linear isotropic
case. The subsequent approach is, therefore, modified such, that both approaches
are consistent. In the following, the arguments of the functions are dropped in order
to facilitate the readability3. Start from Maxwell’s equations, Eq. (2.57),

∂yEz − ∂zEy = +ik0 [µxxHx + µxyHy + µxzHz] (3.33a)
∂zEx − ∂xEz = +ik0 [µyxHx + µyyHy + µyzHz] (3.33b)
∂xEy − ∂yEx = +ik0 [µzxHx + µzyHy + µzzHz] (3.33c)

3The arguments can be reconstructed from the normal/calligraphic style as explained earlier.
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∂yHz − ∂zHy = −ik0 [εxxEx + εxyEy + εxzEz] (3.33d)
∂zHx − ∂xHz = −ik0 [εyxEx + εyyEy + εyzEz] (3.33e)
∂xHy − ∂yHx = −ik0 [εzxEx + εzyEy + εzzEz] . (3.33f)

Partial Fourier transforms of Eqs. (3.33a, 3.33d) in x or in y

First, Fourier transform Eqs. (3.33a, 3.33d) in x. To this end, rewrite,

∂yEz − ∂zEy = +ik0µxx [Hx +µ−1
xxµxy Hy +µ−1

xxµxz Hz ] (3.34a)
∂yHz − ∂zHy = −ik0εxx [Ex +ε−1

xx εxy Ey +ε−1
xx εxz Ez ] . (3.34b)

Consider Eq. (3.34a). The left hand side (LHS) is a continuous function of x. The
reason is that LHS = Bx (r), whose normal component is continuous across material
interfaces. Next, consider the bracket on the right hand side (RHS). The functions
Hy,Hz are continuous in x, i.e. the direct rule applies for their prefactors. On the
other hand, µxx possesses jump discontinuities in x. From the continuity of the LHS,
it is concluded that, on the RHS, µxx and the bracket must possess concurrent and
complementary jump discontinuities, i.e. the inverse rule applies. The same line of
arguments can be followed to transform Eq. (3.34b) in x,

∂yẼz;m − ∂zẼy;m = +ik0dµ−1
xx e−1

m,m′

[
H̃x;m′ + dµ−1

xxµxyem′,m′′H̃y;m′′

+dµ−1
xxµxzem′,m′′H̃z;m′′

]
(3.35a)

∂yH̃z;m − ∂zH̃y;m = −ik0dε−1
xx e−1

m,m′

[
Ẽx;m′ + dε−1

xx εxyem′,m′′ Ẽy;m′′

+dε−1
xx εxzem′,m′′ Ẽz;m′′

]
, (3.35b)

where one sums over repetitive indices (sum convention).

Next, one Fourier transforms Eqs. (3.33a, 3.33d) in y. To this end, one solves Eqs.
(3.33b, 3.33e) for Ey,Hy and inserts the result into the RHS of Eqs. (3.33a, 3.33d),

∂yEz − ∂zEy = +ik0

[
−i/k0 µxyµ

−1
yy (∂zEx − ∂xEz)

+
{
µxx − µxyµ−1

yy µyx
}
Hx

+
{
µxz − µxyµ−1

yy µyz
}
Hz

]
(3.36a)

∂yHz − ∂zHy = −ik0

[
+i/k0 εxyε

−1
yy (∂zHx − ∂xHz)

+
{
εxx − εxyε−1

yy εyx
}
Ex

+
{
εxz − εxyε−1

yy εyz
}
Ez
]
. (3.36b)

Consider the bracket on the RHS of Eq. (3.36a). The quantities By = ∂zEx − ∂xEz,
Hx and Hz are continuous in y. Therefore, the direct rule applies to the prefac-
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tors. The same argument applies to the transformation of Eq. (3.36b). By Fourier
transformation in y one obtains

ikyEz;n − ∂zEy;n = +ik0

[
−i/k0 bµxyµ−1

yy cn,n′ (∂zEx;n′ − ∂xEz;n′)
+bµxx − µxyµ−1

yy µyxcn,n′Hx;n′

+bµxz − µxyµ−1
yy µyzcn,n′Hz;n′

]
(3.37a)

ikyHz;n − ∂zHy;n = −ik0

[
+i/k0 bεxyε−1

yy cn,n′ (∂zHx;n′ − ∂xHz;n′)

+bεxx − εxyε−1
yy εyxcn,n′Ex;n′

+bεxz − εxyε−1
yy εyzcn,n′Ez;n′

]
(3.37b)

Fourier transform Eqs. (3.33b, 3.33e) in x or in y

In the same manner as before, one partially Fourier transforms Eqs. (3.33b, 3.33e)
in x and y. The result is

∂zEx;m − ikxEz;m = +ik0

[
−i/k0 dµyxµ̂−1

xx em,m′ (∂yEz;m′ − ∂zEy;m′)

+dµyy − µyxµ̂−1
xxµxyem,m′Hy;m′

+dµyz − µyxµ̂−1
xxµxzem,m′Hz;m′

]
(3.38a)

∂zHx;m − ikxHz;m = −ik0

[
+i/k0 dεyxε−1

xx (∂yHz;m′ − ∂zHy;m′)

+dεyy − εyxε−1
xx εxyem,m′Ey;m′

+dεyz − εyxε−1
xx εxzem,m′Ez;m′

]
(3.38b)

and

∂zEx;n − ∂xEz;n = +ik0bµ−1
yy c−1

n,n′

[
bµ−1

yy µyxcn′,n′′Hx;n′′ +Hy;n′

+bµ−1
yy µyzcn′,n′′Hz;n′′

]
(3.39a)

∂zHx;n − ∂xHz;n = −ik0bε−1
yy c−1

n,n′

[
bε−1
yy εyxcn′,n′′Ex;n′′ + Ey;n′

+bε−1
yy εyzcn′,n′′Ez;n′′

]
. (3.39b)

Fourier transform Eqs. (3.33c, 3.33f) in x

Solve Eqs. (3.34a, 3.34b) for Hx, Ex and insert into the RHS of Eqs. (3.33c, 3.33f),

∂xEy − ∂yEx = +ik0

[
−i/k0 µzxµ

−1
xx (∂yEz − ∂zEy)

+
(
µzy − µzxµ−1

xxµxy
)
Hy

+
(
µzz − µzxµ−1

xxµxz
)
Hz

]
(3.40a)
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∂xHy − ∂yHx = −ik0

[
+i/k0 εzxε

−1
xx (∂yHz − ∂zHy)

+
(
εzy − εzxε−1

xx εxy
)
Ey

+
(
εzz − εzxε−1

xx εxz
)
Ez
]

(3.40b)

Consider the bracket on the RHS of Eq. (3.40a). The quantities Bx = ∂yEz − ∂zEy,
Hy and Hz are continuous in x. Therefore, the direct rule applies to the prefactors.
The same argument applies to the transformation of Eq. (3.40b). One obtains

ikxEy;m − ∂yEx;m = +ik0

[
−i/k0 dµzxµ−1

xx em,m′ (∂yEz;m′ − ∂zEy;m′)

+d
(
µzy − µzxµ−1

xxµxy
)
em,m′Hy;m′

+d
(
µzz − µzxµ−1

xxµxz
)
em,m′Hz;m′

]
(3.41a)

ikxHy;m − ∂yHx;m = −ik0

[
+i/k0 dεzxε−1

xx em,m′ (∂yHz;m′ − ∂zHy;m′)

+d
(
εzy − εzxε−1

xx εxy
)
em,m′Ey;m′

+d
(
εzz − εzxε−1

xx εxz
)
em,m′Ez;m′

]
(3.41b)

Partially transformed Maxwell’s equations

Now insert

1. Eqs. (3.35) in Eqs. (3.41),

2. Eqs. (3.39) in Eqs. (3.37),

3. Eqs. (3.35) in Eqs. (3.38).

One obtains two sets of partially transformed Maxwell’s equations - one that is
Fourier transformed only in x, and another one that is Fourier transformed only in
y,

∂y Ez;m − ∂z Ey;m = +ik0[M̂ (x)

xx;m,m′Hx;m′ +M̂
(x)

xy;m,m′Hy;m′ +M̂
(x)

xz;m,m′Hz;m′ ] (3.42a)
∂z Ex;m − ikxEz;m = +ik0[M̂ (x)

yx;m,m′Hx;m′ +M̂
(x)

yy;m,m′Hy;m′ +M̂
(x)

yz;m,m′Hz;m′ ] (3.42b)
ikxEy;m − ∂y Ex;m = +ik0[M̂ (x)

zx;m,m′Hx;m′ +M̂
(x)

zy;m,m′Hy;m′ +M̂
(x)

zz;m,m′Hz;m′ ] (3.42c)

∂y Hz;m − ∂z Hy;m= −ik0[Q̂(x)

xx;m,m′Ex;m′ +Q̂
(x)

xy;m,m′Ey;m′ +Q̂
(x)

xz;m,m′Ez;m′ ] (3.42d)
∂z Hx;m − ikxHz;m= −ik0[Q̂(x)

yx;m,m′Ex;m′ +Q̂
(x)

yy;m,m′Ey;m′ +Q̂
(x)

yz;m,m′Ez;m′ ] (3.42e)
ikxHy;m − ∂y Hx;m= −ik0[Q̂(x)

zx;m,m′Ex;m′ +Q̂
(x)

zy;m,m′Ey;m′ +Q̂
(x)

zz;m,m′Ez;m′ ] , (3.42f)
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where

M̂ (x)=


d 1

µxx
e−1 d 1

µxx
e−1dµxy

µxx
e d 1

µxx
e−1d µxz

µxx
e

dµyx
µxx
ed 1

µxx
e−1 dµyx

µxx
ed 1

µxx
e−1dµxy

µxx
e+dµyy−

µyxµxy

µxx
e dµyx

µxx
ed 1

µxx
e−1d µxz

µxx
e+dµyz−

µyxµxz

µxx
e

d µzx
µxx
ed 1

µxx
e−1 d µzx

µxx
ed 1

µxx
e−1dµxy

µxx
e+dµzy−

µzxµxy

µxx
e d µzx

µxx
ed 1

µxx
e−1d µxz

µxx
e+dµzz−µzxµxzµxx

e


(3.42g)

Q̂(x) =


d 1

εxx
e−1 d 1

εxx
e−1d εxy

εxx
e d 1

εxx
e−1d εxz

εxx
e

d εyx
εxx
ed 1

εxx
e−1 d εyx

εxx
ed 1

εxx
e−1d εxy

εxx
e+dεyy−

εyxεxy

εxx
e d εyx

εxx
ed 1

εxx
e−1d εxz

εxx
e+dεyz−

εyxεxz

εxx
e

d εzx
εxx
ed 1

εxx
e−1 d εzx

εxx
ed 1

εxx
e−1d εxy

εxx
e+dεzy−

εzxεxy

εxx
e d εzx

εxx
ed 1

εxx
e−1d εxz

εxx
e+dεzz− εzxεxzεxx

e

 ,
(3.42h)

and

ikyEz;n − ∂z Ey;n = +ik0[M̂ (y)

xx;n,n′Hx;n′ +M̂
(y)

xy;n,n′Hy;n′ +M̂
(y)

xz;n,n′Hz;n′ ] (3.43a)
∂z Ex;n − ∂x Ez;n = +ik0[M̂ (y)

yx;n,n′Hx;n′ +M̂
(y)

yy;n,n′Hy;n′ +M̂
(y)

yz;n,n′Hz;n′ ] (3.43b)
∂x Ey;n − ikyEx;n = +ik0[M̂ (y)

zx;n,n′Hx;n′ +M̂
(y)

zy;n,n′Hy;n′ +M̂
(y)

zz;n,n′Hz;n′ ] (3.43c)

ikyHz;n − ∂z Hy;n= −ik0[Q̂(y)

xx;n,n′Ex;n′ +Q̂
(y)

xy;n,n′Ey;n′ +Q̂
(y)

xz;n,n′Ez;n′ ] (3.43d)
∂z Hx;n − ∂x Hz;n= −ik0[Q̂(y)

yx;n,n′Ex;n′ +Q̂
(y)

yy;n,n′Ey;n′ +Q̂
(y)

yz;n,n′Ez;n′ ] (3.43e)
∂x Hy;n − ikyHx;n= −ik0[Q̂(y)

zx;n,n′Ex;n′ +Q̂
(y)

zy;n,n′Ey;n′ +Q̂
(y)

zz;n,n′Ez;n′ ] , (3.43f)

where

M̂ (y)=


bµxy
µyy
cb 1

µyy
c−1bµyx

µyy
c+bµxx−

µxyµyx

µyy
c bµxy

µyy
cb 1

µyy
c−1 bµxy

µyy
cb 1

µyy
c−1b µyz

µyy
c+bµxz−

µxyµyz

µyy
c

b 1

µyy
c−1bµyx

µyy
c b 1

µyy
c−1 b 1

µyy
c−1b µyz

µyy
c

b µzy
µyy
cb 1

µyy
c−1bµyx

µyy
c+bµzx−

µzyµyx

µyy
c b µzy

µyy
cb 1

µyy
c−1 b µzy

µyy
cb 1

µyy
c−1b µyz

µyy
c+bµzz−

µzyµyz

µyy
c


(3.43g)

Q̂(y) =


b εxy
εyy
cb 1

εyy
c−1b εyx

εyy
c+bεxx−

εxyεyx

εyy
c b εxy

εyy
cb 1

εyy
c−1 b εxy

εyy
cb 1

εyy
c−1b εyz

εyy
c+bεxz−

εxyεyz

εyy
c

b 1

εyy
c−1b εyx

εyy
c b 1

εyy
c−1 b 1

εyy
c−1b εyz

εyy
c

b εzy
εyy
cb 1

εyy
c−1b εyx

εyy
c+bεzx−

εzyεyx

εyy
c b εzy

εyy
cb 1

εyy
c−1 b εzy

εyy
cb 1

εyy
c−1b εyz

εyy
c+bεzz−

εzyεyz

εyy
c

 .
(3.43h)

The two equations marked in gray are not needed in the subsequent derivation. In
the following, these partially transformed Maxwell equations are transformed also in
the second coordinate.
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Fourier transform Eqs. (3.42a, 3.42d) in y

Solve Eqs. (3.42b, 3.42e) for Hy;m, Ey;m and insert the result into the RHS of Eqs.
(3.42a, 3.42d),

∂yEz;m−∂zEy;m=+ik0

[
−i/k0

{
M̂

(x)
xy M̂

(x)−1

yy

}
m,m′

(∂zEx;m′−ikxEz;m′)

+
{
M̂

(x)
xx −M̂ (x)

xy M̂
(x)−1

yy M̂
(x)
yx

}
m,m′

Hx;m′

+
{
M̂

(x)
xz −M̂ (x)

xy M̂
(x)−1

yy M̂
(x)
yz

}
m,m′

Hz;m′
]

(3.44a)

∂yHz;m−∂zHy;m=−ik0
[
+i/k0

{
Q̂

(x)
xy Q̂

(x)−1

yy

}
m,m′

(∂zHx;m′−ikxHz;m′)

+
{
Q̂

(x)
xx −Q̂(x)

xy Q̂
(x)−1

yy Q̂
(x)
yx

}
m,m′

Ex;m′

+
{
Q̂

(x)
xz −Q̂(x)

xy Q̂
(x)−1

yy Q̂
(x)
yz

}
m,m′

Ez;m′
]
. (3.44b)

Consider the bracket on the RHS of Eq. (3.44a). The quantities By,m′ = ∂zEx;m′ −
∂xEz;m′ , Hx;m′ and Hz;m′ are continuous in y. Therefore, the direct rule applies to
the prefactors. The same argument applies to the transformation of Eq. (3.44b). By
Fourier transformation in y one obtains

ikyEz;mn−∂zEy;mn=+ik0
[
−i/k0 bM̂ (x)

xy M̂
(x)−1

yy cmn,m′n′(∂zEx;m′,n′−ikxEz;m′,n′)

+bM̂ (x)
xx −M̂ (x)

xy M̂
(x)−1

yy M̂
(x)
yx cmn,m′n′Hx;m′,n′

+bM̂ (x)
xz −M̂ (x)

xy M̂
(x)−1

yy M̂
(x)
yz cmn,m′n′Hz;m′,n′

]
(3.45a)

ikyHz;mn−∂zHy;mn=−ik0
[
+i/k0 bQ̂(x)

xy Q̂
(x)−1

yy cmn,m′n′(∂zHx;m′,n′−ikxHz;m′,n′)

+bQ̂(x)
xx −Q̂(x)

xy Q̂
(x)−1

yy Q̂
(x)
yx cmn,m′n′Ex;m′,n′

+bQ̂(x)
xz −Q̂(x)

xy Q̂
(x)−1

yy Q̂
(x)
yz cmn,m′n′Ez;m′,n′

]
. (3.45b)

Fourier transform Eqs. (3.43b, 3.43e) in x

In the same way, one Fourier transforms Eqs. (3.43b, 3.43e) in x. The result is

∂zEx;mn−ikxEz;mn=+ik0
[
−i/k0 dM̂ (y)

yx M̂
(y)−1

xx emn,m′n′(ikyEz;m′,n′−∂zEy;m′,n′)

+dM̂ (y)
yy −M̂ (y)

yx M̂
(y)−1

xx M̂
(y)
xy emn,m′n′Hy;m′,n′

+dM̂ (y)

yz;n,n′−M̂
(y)
yx M̂

(y)−1

xx M̂
(y)
xz emn,m′n′Hz;m′,n′

]
(3.46a)

∂zHx;mn−ikxHz;mn=−ik0
[
+i/k0 dQ̂(y)

yx Q̂
(y)−1

xx emn,m′n′(ikyHz;m′,n′−∂zHy;m′,n′)

+dQ̂(y)
yy −Q̂(y)

yx Q̂
(y)−1

xx Q̂
(y)
xy emn,m′n′Ey;m′,n′

+dQ̂(y)
yz −Q̂(y)

yx Q̂
(y)−1

xx Q̂
(y)
xz emn,m′n′Ez;m′,n′

]
. (3.46b)
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Fourier transform Eqs. (3.42c, 3.42f) in y

In the same way, one Fourier transforms Eqs. (3.42c, 3.42f) in y. The result is

ikxEy;mn−ikyEx;mn=+ik0
[
−i/k0 bM̂ (x)

zy M̂
(x)−1

yy cmn,m′n′(∂zEx;m′,n′−ikxEz;m′,n′)

+bM̂ (x)
zx −M̂ (x)

zy M̂
(x)−1

yy M̂
(x)
yx cmn,m′n′Hx;m′,n′

+bM̂ (x)
zz −M̂ (x)

zy M̂
(x)−1

yy M̂
(x)
yz cmn,m′n′Hz;m′,n′

]
(3.47a)

ikxHy;mn−ikyHx;mn=−ik0
[
+i/k0 bQ̂(x)

zy Q̂
(x)−1

yy cmn,m′n′(∂zHx;m′,n′−ikxHz;m′,n′)

+bQ̂(x)
zx −Q̂(x)

zy Q̂
(x)−1

yy Q̂
(x)
yx cmn,m′n′Ex;m′,n′

+bQ̂(x)
zz −Q̂(x)

zy Q̂
(x)−1

yy Q̂
(x)
yz cmn,m′n′Ez;m′,n′

]
, (3.47b)

Fully transformed Maxwell’s equations

Now insert

1. Eqs. (3.46) in Eqs. (3.45) [obtain Eqs. (3.48a, 3.48d)],

2. Eqs. (3.45) in Eqs. (3.46) [obtain Eqs. (3.48b, 3.48e)], and then

3. Eqs. (3.48b, 3.48e) in Eqs. (3.47) [obtain Eqs. (3.48c, 3.48f)].

Now Maxwell’s equations are Fourier transformed in both x and y,

iky;mnEz;mn − ∂z Ey;mn = +ik0[{M̂xxHx}
mn

+{M̂xyHy}
mn

+{M̂xzHz}
mn

] (3.48a)
∂z Ex;mn − ikx;mnEz;mn = +ik0[{M̂yxHx}

mn
+{M̂yyHy}

mn
+{M̂yzHz}

mn
] (3.48b)

ikx;mnEy;mn − iky;mnEx;mn = +ik0[{M̂zxHx}
mn

+{M̂zyHy}
mn

+{M̂zzHz}
mn

] (3.48c)

iky;mnHz;mn− ∂z Hy;mn= −ik0[ {Q̂xxEx}
mn

+ {Q̂xyEy}
mn

+ {Q̂xzEz}
mn

] (3.48d)
∂z Hx;mn− ikx;mnHz;mn= −ik0[ {Q̂yxEx}

mn
+ {Q̂yyEy}

mn
+ {Q̂yzEz}

mn
] (3.48e)

ikx;mnHy;mn− iky;mnHx;mn= −ik0[ {Q̂zxEx}
mn

+ {Q̂zyEy}
mn

+ {Q̂zzEz}
mn

] , (3.48f)

where

Q̂xx=
{

1−bQ̂(x)
xy Q̂

(x)−1

yy cdQ̂(y)
yx Q̂

(y)−1

xx e
}−1

bQ̂(x)
xx −Q̂(x)

xy Q̂
(x)−1

yy Q̂
(x)
yx c (3.49a)

Q̂xy=
{

1−bQ̂(x)
xy Q̂

(x)−1

yy cdQ̂(y)
yx Q̂

(y)−1

xx e
}−1

bQ̂(x)
xy Q̂

(x)−1

yy cdQ̂(y)
yy −Q̂(y)

yx Q̂
(y)−1

xx Q̂
(y)
xy e (3.49b)

Q̂xz=
{

1−bQ̂(x)
xy Q̂

(x)−1

yy cdQ̂(y)
yx Q̂

(y)−1

xx e
}−1

×
{
bQ̂(x)

xy Q̂
(x)−1

yy cdQ̂(y)
yz −Q̂(y)

yx Q̂
(y)−1

xx Q̂
(y)
xz e+bQ̂(x)

xz −Q̂(x)
xy Q̂

(x)−1

yy Q̂
(x)
yz c

}
(3.49c)

Q̂yx=
{

1−dQ̂(y)
yx Q̂

(y)−1

xx ebQ̂(x)
xy Q̂

(x)−1

yy c
}−1

dQ̂(y)
yx Q̂

(y)−1

xx ebQ̂(x)
xx −Q̂(x)

xy Q̂
(x)−1

yy Q̂
(x)
yx c (3.49d)

Q̂yy=
{

1−dQ̂(y)
yx Q̂

(y)−1

xx ebQ̂(x)
xy Q̂

(x)−1

yy c
}−1

dQ̂(y)
yy −Q̂(y)

yx Q̂
(y)−1

xx Q̂
(y)
xy e (3.49e)
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Q̂yz=
{

1−dQ̂(y)
yx Q̂

(y)−1

xx ebQ̂(x)
xy Q̂

(x)−1

yy c
}−1

×
{
dQ̂(y)

yx Q̂
(y)−1

xx ebQ̂(x)
xz −Q̂(x)

xy Q̂
(x)−1

yy Q̂
(x)
yz c+dQ̂(y)

yz −Q̂(y)
yx Q̂

(y)−1

xx Q̂
(y)
xz e

}
(3.49f)

Q̂zx=bQ̂(x)
zy Q̂

(x)−1

yy c
{

1−dQ̂(y)
yx Q̂

(y)−1

xx ebQ̂(x)
xy Q̂

(x)−1

yy c
}−1

×
{
dQ̂(y)

yx Q̂
(y)−1

xx ebQ̂(x)
xx −Q̂(x)

xy Q̂
(x)−1

yy Q̂
(x)
yx c

}
+bQ̂(x)

zx −Q̂(x)
zy Q̂

(x)−1

yy Q̂
(x)
yx c (3.49g)

Q̂zy=bQ̂(x)
zy Q̂

(x)−1

yy c
{

1−dQ̂(y)
yx Q̂

(y)−1

xx ebQ̂(x)
xy Q̂

(x)−1

yy c
}−1

dQ̂(y)
yy −Q̂(y)

yx Q̂
(y)−1

xx Q̂
(y)
xy e (3.49h)

Q̂zz=bQ̂(x)
zy Q̂

(x)−1

yy c
{

1−dQ̂(y)
yx Q̂

(y)−1

xx ebQ̂(x)
xy Q̂

(x)−1

yy c
}−1

×
{
dQ̂(y)

yx Q̂
(y)−1

xx ebQ̂(x)
xz −Q̂(x)

xy Q̂
(x)−1

yy Q̂
(x)
yz c+dQ̂(y)

yz −Q̂(y)
yx Q̂

(y)−1

xx Q̂
(y)
xz e

}
+bQ̂(x)

zz −Q̂(x)
zy Q̂

(x)−1

yy Q̂
(x)
yz c (3.49i)

M̂xx=
{

1−bM̂ (x)
xy M̂

(x)−1

yy cdM̂ (y)
yx M̂

(y)−1

xx e
}−1

bM̂ (x)
xx −M̂ (x)

xy M̂
(x)−1

yy M̂
(x)
yx c (3.49j)

M̂xy=
{

1−bM̂ (x)
xy M̂

(x)−1

yy cdM̂ (y)
yx M̂

(y)−1

xx e
}−1

bM̂ (x)
xy M̂

(x)−1

yy cdM̂ (y)
yy −M̂ (y)

yx M̂
(y)−1

xx M̂
(y)
xy e (3.49k)

M̂xz=
{

1−bM̂ (x)
xy M̂

(x)−1

yy cdM̂ (y)
yx M̂

(y)−1

xx e
}−1

×
{
bM̂ (x)

xy M̂
(x)−1

yy cdM̂ (y)
yz −M̂ (y)

yx M̂
(y)−1

xx M̂
(y)
xz e+bM̂ (x)

xz −M̂ (x)
xy M̂

(x)−1

yy M̂
(x)
yz c

}
(3.49l)

M̂yx=
{

1−dM̂ (y)
yx M̂

(y)−1

xx ebM̂ (x)
xy M̂

(x)−1

yy c
}−1

dM̂ (y)
yx M̂

(y)−1

xx ebM̂ (x)
xx −M̂ (x)

xy M̂
(x)−1

yy M̂
(x)
yx c (3.49m)

M̂yy=
{

1−dM̂ (y)
yx M̂

(y)−1

xx ebM̂ (x)
xy M̂

(x)−1

yy c
}−1

dM̂ (y)
yy −M̂ (y)

yx M̂
(y)−1

xx M̂
(y)
xy e (3.49n)

M̂yz=
{

1−dM̂ (y)
yx M̂

(y)−1

xx ebM̂ (x)
xy M̂

(x)−1

yy c
}−1

×
{
dM̂ (y)

yx M̂
(y)−1

xx ebM̂ (x)
xz −M̂ (x)

xy M̂
(x)−1

yy M̂
(x)
yz c+dM̂ (y)

yz −M̂ (y)
yx M̂

(y)−1

xx M̂
(y)
xz e

}
(3.49o)

M̂zx=bM̂ (x)
zy M̂

(x)−1

yy c
{

1−dM̂ (y)
yx M̂

(y)−1

xx ebM̂ (x)
xy M̂

(x)−1

yy c
}−1

×dM̂ (y)
yx M̂

(y)−1

xx ebM̂ (x)
xx −M̂ (x)

xy M̂
(x)−1

yy M̂
(x)
yx c

+bM̂ (x)
zx −M̂ (x)

zy M̂
(x)−1

yy M̂
(x)
yx c (3.49p)

M̂zy=bM̂ (x)
zy M̂

(x)−1

yy c
{

1−dM̂ (y)
yx M̂

(y)−1

xx ebM̂ (x)
xy M̂

(x)−1

yy c
}−1

dM̂ (y)
yy −M̂ (y)

yx M̂
(y)−1

xx M̂
(y)
xy e (3.49q)

M̂zz=bM̂ (x)
zy M̂

(x)−1

yy c
{

1−dM̂ (y)
yx M̂

(y)−1

xx ebM̂ (x)
xy M̂

(x)−1

yy c
}−1

×
{
dM̂ (y)

yx M̂
(y)−1

xx ebM̂ (x)
xz −M̂ (x)

xy M̂
(x)−1

yy M̂
(x)
yz c+dM̂ (y)

yz −M̂ (y)
yx M̂

(y)−1

xx M̂
(y)
xz e

}
+bM̂ (x)

zz −M̂ (x)
zy M̂

(x)−1

yy M̂
(x)
yz c . (3.49r)
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Matrix equation

In Eqs. (3.48), eliminate Ez;mn and Hz;mn using Eqs. (3.48c, 3.48f) and solve for
∂zEx/y;mn and ∂zHx/y;mn. One obtains the first order differential equation

∂

∂z

[
Ẽ⊥ (z)

H̃⊥ (z)

]
= ik0

[
M̂11 M̂12

M̂21 M̂22

][
Ẽ⊥ (z)

H̃⊥ (z)

]
, (3.50a)

where

M̂11 =

[
+M̂yzM̂−1

zz K̂y−K̂xQ̂−1
zz Q̂zx −M̂yzM̂−1

zz K̂x−K̂xQ̂−1
zz Q̂zy

+M̂xzM̂−1
zz K̂y−K̂yQ̂−1

zz Q̂zx −M̂xzM̂−1
zz K̂x−K̂yQ̂−1

zz Q̂zy

]
(3.50b)

M̂12 =

[
+M̂yx+K̂xQ̂−1

zz K̂y−M̂yzM̂−1
zz M̂zx +M̂yy−K̂xQ̂−1

zz K̂x−M̂yzM̂−1
zz M̂zy

−M̂xx+K̂yQ̂−1
zz K̂y+M̂xzM̂−1

zz M̂zx −M̂xy−K̂yQ̂−1
zz K̂x+M̂xzM̂−1

zz M̂zy

]
(3.50c)

M̂21 =

[
−Q̂yx−K̂xM̂−1

zz K̂y+Q̂yzQ̂−1
zz Q̂zx −Q̂yy+K̂xM̂−1

zz K̂x+Q̂yzQ̂−1
zz Q̂zy

+Q̂xx−K̂yM̂−1
zz K̂y−Q̂xzQ̂−1

zz Q̂zx +Q̂xy+K̂yM̂−1
zz K̂x−Q̂xzQ̂−1

zz Q̂zy

]
(3.50d)

M̂22 =

[
−K̂xM̂−1

zz M̂zx−Q̂yzQ̂−1
zz K̂y −K̂xM̂−1

zz M̂zy+Q̂yzQ̂−1
zz K̂x

−K̂yM̂−1
zz M̂zx+Q̂xzQ̂−1

zz K̂y −K̂yM̂−1
zz M̂zy−Q̂xzQ̂−1

zz K̂x

]
, (3.50e)

with Ẽ⊥ (z), H̃⊥ (z) and K̂x/y as before. Just like for the linear isotropic case, also
here the layer index was dropped in the beginning of the derivation, i.e. the coupling
matrix in Eq. (6.25a) is layer dependent, i.e. M̂11 ≡ M̂

(l)
11 , M̂12 ≡ M̂

(l)
12 , M̂21 ≡ M̂

(l)
21 ,

and M̂22 ≡ M̂
(l)
22 . In fact, it can be easily checked that the coupling matrix simplifies

to the same result as derived in Sect. 3.3.1 in the linear isotropic case.

3.4 Eigenspace solution and eigenmodes

3.4.1 Linear isotropic media

Solution for the electric field

The matrix equation for the lth layer, Eq. (3.32a), can be transformed into the
second order differential equation for the electric field,

∂2

∂z2
Ẽ⊥ (z) = −k2

0M̂
(l)
12 M̂

(l)
21 Ẽ⊥ (z) , (3.51)
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M̂
(l)
12 M̂

(l)
21 =

[
−K̂x

[[
ε(l)
]]−1

K̂xbdε(l)ec − dbµ(l)ceK̂y

[[
µ(l)
]]−1

K̂y + dbµ(l)cebdε(l)ec
bdµ(l)ecK̂x

[[
µ(l)
]]−1

K̂y − K̂y

[[
ε(l)
]]−1

K̂xbdε(l)ec
· · ·

· · · −K̂x

[[
ε(l)
]]−1

K̂ydbε(l)ce+ dbµ(l)ceK̂y

[[
µ(l)
]]−1

K̂x

−K̂y

[[
ε(l)
]]−1

K̂ydbε(l)ce − bdµ(l)ecK̂x

[[
µ(l)
]]−1

K̂x + bdµ(l)ecdbε(l)ce

]
.

(3.52)

Be Ŵ (l) the right eigenvector matrix of M̂ (l)
12 M̂

(l)
21 . Then Eq. (3.51) can be decoupled

via

∂2

∂z2

[
Ŵ (l)−1Ẽ⊥ (z)

]
= −k2

0 Ŵ
(l)−1M̂

(l)
12 M̂

(l)
21 Ŵ

(l)︸ ︷︷ ︸
Λ̂(l)

Ŵ (l)−1Ẽ⊥ (z) (3.53)

where Λ̂(l) = diag
(
λ

(l)
1 , · · · , λ

(l)

2N̄

)
is the corresponding diagonal eigenvalue matrix,

and N̄ = MN is the total number of modes in the calculation. The most general
solution of this differential equation is[

Ŵ (l)−1Ẽ⊥ (z)
]
q

= c
(l)
+;q e

+ik0
√
λ
(l)
q z + c

(l)
−;q e

−ik0
√
λ
(l)
q (z−d(l)) . (3.54)

where d(l) is the thickness and the position z = 0 is defined as the left interface of the
lth layer4. They are typically interpreted as the forward and backward propagating
eigenmode coefficients inside a layer. It is shown in Chapter 4 that this assignment
is correct for most physical materials, but not generally true. Eq. (3.54) can be
solved for Ẽ⊥ (z),

Ẽ⊥ (z) =
[
Ŵ (l) Ŵ (l)

] [P̂ (l)
+ (z) 0

0 P̂
(l)
− (z)

][
c

(l)
+

c
(l)
−

]
, (3.55)

where P (l)
+;qq′ (z) = e+ik0

√
λ
(l)
q z δqq′ and P

(l)
−;qq′ (z) = e−ik0

√
λ
(l)
q (z−d(l)) δqq′ .

Solution for the magnetic field

From the matrix equation, Eq. (3.32a), one knows the relation

H̃⊥ (z) = − i

k0

M̂
(l)−1
12

∂

∂z
Ẽ⊥ (z)

= − i

k0

M̂
(l)
21 Ŵ

(l)Λ̂(l)−1Ŵ (l)−1 ∂

∂z
Ẽ⊥ (z) . (3.56)

4Mathematically, the z-shift by d(l) in the second term is not required, since the effect is only
a multiplication of the coefficient vector c

(l)
−;m by a constant. When enforcing the boundary

conditions in Sect. 3.5, this shift is only assumed for the ETMA.
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By inserting Ẽ⊥ (z) from Eq. (3.55) and carrying out the z-derivative one obtains

H̃⊥;m′ (z) =
∑
q′

[
M̂

(l)
21 Ŵ

(l)Λ̂(l)− 1

2

]
qq′︸ ︷︷ ︸

Vqq′

(
c

(l)
+;q′ e

+ik0

√
λ
(l)

q′ z − c(l)
−;q′ e

−ik0
√
λ
(l)

q′ (z−d(l))
)
.

(3.57)

In matrix form, this is

H̃⊥ (z) =
[
V̂ (l) −V̂ (l)

] [P̂ (l)
+ (z) 0

0 P̂
(l)
− (z)

][
c

(l)
+

c
(l)
−

]
. (3.58)

Combined solution

Eqs. (3.55, 3.58) can be combined in one equation,[
Ẽ⊥ (z)

H̃⊥ (z)

]
︸ ︷︷ ︸
Fourier modes

=

[
+Ŵ (l) +Ŵ (l)

+V̂ (l) −V̂ (l)

]
︸ ︷︷ ︸

conversion and
coupling matrix

[
P̂

(l)
+ (z) 0

0 P̂
(l)
− (z)

]
︸ ︷︷ ︸

propagation

[
c

(l)
+

c
(l)
−

]
︸ ︷︷ ︸

eigenmode
coefficients

, (3.59)

which describes the light propagation in axial direction inside the lth layer. It de-
composes into three parts.

1. The eigenmode coefficient vector
[
c

(l)
+ c

(l)
−

]T
: at this point the coefficients are

unknown and need to be determined (cf. Sect. 3.5).

2. The propagation matrix: consists of the z-dependent forward P̂ (l)
+ (z) and back-

ward P̂ (l)
− (z) propagator.

3. The conversion and coupling operator: the matrix Ŵ (l) converts from eigen-
mode space to the electric field’s Fourier space. The matrix V̂ (l) does the
same, but subsequently conducts an additional conversion from the electric to
the magnetic field.

Interpretation of
√
λ

(l)
q

Almost all real passive materials have an at least slight positive absorption rate, i.e.
their electric permittivity and/or magnetic permeability have a positive imaginary
part. The latter transfers directly onto the eigenvalues λ(l)

q . Therefore, for these

types of materials,
√
λ

(l)
q lies in the first quadrant, i.e. has a positive real and imagi-

nary part. As a result, as one can see from the form of P̂ (l)
± (z), the forward/backward

propagating mode is exponentially decreasing/increasing in +z-direction. If, how-
ever, the initial assumption (the medium has a positive absorption rate) is violated,
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for instance for active materials, then the normalization of the eigenmode coefficients
has to be reconsidered (cf. Chapter 4).

3.4.2 Linear anisotropic media

The coupling matrix of the lth layer from Eq. (6.25),

∂

∂z

[
Ẽ⊥ (z)

H̃⊥ (z)

]
= ik0

[
M̂

(l)
11 M̂

(l)
12

M̂
(l)
21 M̂

(l)
22

][
Ẽ⊥ (z)

H̃⊥ (z)

]
, (3.60)

is diagonalized, so that

∂

∂z

{
Ŵ (l)−1

[
Ẽ⊥ (z)

H̃⊥ (z)

]}
= ik0 Ŵ

(l)−1

[
M̂

(l)
11 M̂

(l)
12

M̂
(l)
21 M̂

(l)
22

]
Ŵ (l)

︸ ︷︷ ︸
Λ̂(l)

Ŵ (l)−1

[
Ẽ⊥ (z)

H̃⊥ (z)

]
,

(3.61)

where Λ̂(l) = diag
(
λ

(l)
1 , · · · , λ

(l)

4N̄

)
is the corresponding diagonal eigenvalue matrix5.

The most general solution of this first order differential equation is{
Ŵ (l)−1

[
Ẽ⊥ (z)

H̃⊥ (z)

]}
q

= c(l)
q e+ik0λ

(l)
q z . (3.62)

Eq. (3.62) can be solved for

[
Ẽ⊥ (z)

H̃⊥ (z)

]
,

[
Ẽ⊥ (z)

H̃⊥ (z)

]
q

=
∑
q′

W
(l)
qq′c

(l)
q′ e

+ik0λ
(l)

q′ z . (3.63)

[
Ẽ⊥ (z)

H̃⊥ (z)

]
= Ŵ (l)P̂ (l) (z) c(l) , (3.64)

where P (l)
qq′ (z) = e+ik0λ

(l)
q z δqq′ .

5It is fairly easy to show that, in the isotropic case, the eigenvalues found with this approach
are indeed equal to plus or minus the square root of the eigenvalues found in Sect. 3.4.1. The
reason is that, in isotropic structures, there exist always two identical eigenmodes, that differ
only by the sign of their axial propagation constant.
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3.5 Enforcing boundary conditions

The boundary conditions are defined by the light, which is incident from z = ±∞
on the grating. In this section, several methods for enforcing the boundary condi-
tions are presented, which allow determining the reflected and transmitted Fourier
mode coefficients and the eigenmode coefficients inside each layer. In literature, the
different approaches to solve the boundary value problem can be classified in groups,
depending on the quantities that are related to each other. Fig. 3.8 gives a first
overview of the situation.

z

x, y (a) (b) (c)

Layer: (0) (1) (L) (L+ 1)· · ·

[
L̃(0)
⊥

R̃⊥

] [
c

(1)
+

c
(1)
−

] [
c

(L)
+

c
(L)
−

] [
T̃⊥
0

]

[
Ẽ (0)
⊥

H̃(0)
⊥

] [
Ẽ (l)
⊥

H̃(l)
⊥

] [
Ẽ (L)
⊥

H̃(L)
⊥

]
Figure 3.8: Given : incident light Fourier mode coefficients from the left (L̃(0)

⊥ ) and
right (0). Unknown : reflected (R̃⊥) and transmitted (T̃⊥) Fourier mode coefficients,
eigenmode coefficients of each layer (c(l)

± ). At the layer interfaces (a-c), the tangential
electric and magnetic field components (Ẽ⊥, H̃⊥) must be continuous.

3.5.1 T -matrix approach

The ’transfer matrix approach’ (T -matrix approach)[10] relates the Fourier compo-
nents of the electric and magnetic fields on the two sides of a diffracting structure
via the T -matrix. By evaluating Eq. (3.59), one obtains[

Ẽ (l)
⊥

H̃(l)
⊥

]
=

[
+Ŵ (l) +Ŵ (l)

+V̂ (l) −V̂ (l)

] [
X̂(l) 0

0 X̂(l)−1

] [
+Ŵ (l) +Ŵ (l)

+V̂ (l) −V̂ (l)

]−1

︸ ︷︷ ︸
T̂ (l)

[
Ẽ (l−1)
⊥

H̃(l−1)
⊥

]
, (3.65)
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where X̂(l) are the diagonal eigenmode propagation matrices, withX(l)
qq′ = eik0

√
λ
(l)
q d(l) δqq′ ,

and T̂ (l) is the T -matrix of the lth layer. By combining the T -matrices of all layers,
one obtains[

1 1
Ĉ(L+1) −Ĉ(L+1)

] [
T̃⊥
0

]
︸ ︷︷ ︸[

Ẽ (L)
⊥ H̃(L)

⊥

]T
=

1∏
l=L

T̂ (l)

︸ ︷︷ ︸
T̂

[
1 1
Ĉ(0) −Ĉ(0)

][
L̃(0)
⊥

R̃⊥

]
︸ ︷︷ ︸[

Ẽ (0)
⊥ H̃(0)

⊥

]T
, (3.66)

where T̂ is the T -matrix of the whole grating and Ĉ(l) is defined as the matrix that
converts the electric- into the magnetic-field Fourier mode coefficient vector,

H̃⊥ = Ĉ(l)Ẽ⊥ (3.67a)

Ĉ(l) =

− K̂xK̂y

µ(l)K̂
(l)
z

− K̂2
y+K̂

(l) 2
z

µ(l)K̂
(l)
z

K̂2
x+K̂

(l) 2
z

µ(l)K̂
(l)
z

K̂xK̂y

µ(l)K̂
(l)
z

 . (3.67b)

This form of the conversion matrix can be obtained directly from Eqs. (2.57a, 2.57b)
and is only valid for homogeneous layers. Mathematically, the T -matrix approach
seems straightforward and very elegant. However, it is numerically unstable[10]. The
reason is that in each of the layer T -matrices, T̂ (l), a propagation of the eigenmodes
is done in both positive and negative direction, which is represented by the matri-
ces X̂(l) and X̂(l)−1. The inverse of the matrix X̂(l) contains, however, potentially
very large terms, which is always the case when evanescent waves or absorption
are involved. In this case, the matrix multiplication in Eq. (3.65) is not properly
conducted in a numerical sense due to arithmetic overflow.

3.5.2 S-matrix approach

In contrast to the T -matrix approach, the S-matrix relates the eigenmode coefficients
in front and behind a diffracting structure to each other. More precisely, the S-matrix
of the lth layer relates the forward and backward propagating eigenmode coefficients
c

(l+1)
± and c

(l−1)
± via[66][

c
(l−1)
−

c
(l+1)
+

]
= Ŝ(l)

[
c

(l−1)
+

c
(l+1)
−

]
. (3.68)

The first publication, in which this approach was applied to modal methods, was by
Li in 1996[10]. More modern publications involve, for instance, [66] from 2011 with
an updated notation. In order to better understand the term ’scattering matrix’,
consider Fig. 3.9. The 2× 2-blocks of Ŝ(l) have the following meaning.

• Ŝ
(l)
21 : forward scattering of the incident light from the left.
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• Ŝ
(l)
12 : backward scattering of the incident light from the right.

• Ŝ
(l)
11 : backward scattering of the incident light from the left.

• Ŝ
(l)
22 : forward scattering of the incident light from the right.

(l − 1) (l) (l + 1)

· · · · · ·

[
c

(l+1)
+

c
(l+1)
−

][
c

(l−1)
+

c
(l−1)
−

] Ŝ
(l)
21

Ŝ
(l)
12

Ŝ
(l)
11 Ŝ

(l)
22

Figure 3.9: Meaning of the S-matrix elements. The four 2× 2-blocks of Ŝ(l) describe the
scattering of each of the two input/incident channels into each of the two output channels.

The advantage of this approach becomes apparent when the S-matrix elements are
written out explicitly. By evaluating Eq. (3.59) at both interfaces of the lth layer,
one obtains

Ŝ
(l)
11 =

(
Â

(l,l−1)
+ − X̂(l)Â

(l,l+1)
− Â

(l,l+1)−1
+ X̂(l)Â

(l,l−1)
−

)−1

×
(
X̂(l)Â

(l,l+1)
− Â

(l,l+1)−1
+ X̂(l)Â

(l,l−1)
+ − Â(l,l−1)

−

)
(3.69a)

Ŝ
(l)
12 =

(
Â

(l,l−1)
+ − X̂(l)Â

(l,l+1)
− Â

(l,l+1)−1
+ X̂(l)Â

(l,l−1)
−

)−1

X̂(l)

×
(
Â

(l,l+1)
+ − Â(l,l+1)

− Â
(l,l+1)−1
+ Â

(l,l+1)
−

)
(3.69b)

Ŝ
(l)
21 =

(
Â

(l,l+1)
+ − X̂(l)Â

(l,l−1)
− Â

(l,l−1)−1
+ X̂(l)Â

(l,l+1)
−

)−1

X̂(l)

×
(
Â

(l,l−1)
+ − Â(l,l−1)

− Â
(l,l−1)−1
+ Â

(l,l−1)
−

)
(3.69c)

Ŝ
(l)
22 =

(
Â

(l,l+1)
+ − X̂(l)Â

(l,l−1)
− Â

(l,l−1)−1
+ X̂(l)Â

(l,l+1)
−

)−1

×
(
X̂(l)Â

(l,l−1)
− Â

(l,l−1)−1
+ X̂(l)Â

(l,l+1)
+ − Â(l,l+1)

−

)
(3.69d)

Âll
′

± = Ŵ (l)−1Ŵ (l′) ± V̂ (l)−1V̂ (l′) . (3.69e)

A more detailed derivation is presented in [66]. In the S-matrix elements, Eqs. (3.69),
the matrix X̂(l) is not directly inverted at any position, i.e. the arithmetic overflow
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is avoided. In order to determine the S-matrix of a layer stack, it is necessary to
combine the S-matrices of two or more successive layers or structures to one single
composite S-matrix. Following [66, 67], this is done via the so-called Redheffer Star
Product,[

Ŝ
(AB)
11 Ŝ

(AB)
12

Ŝ
(AB)
21 Ŝ

(AB)
22

]
=

[
Ŝ

(A)
11 Ŝ

(A)
12

Ŝ
(A)
21 Ŝ

(A)
22

]
⊗

[
Ŝ

(B)
11 Ŝ

(B)
12

Ŝ
(B)
21 Ŝ

(B)
22

]
(3.70a)

Ŝ
(AB)
11 = Ŝ

(A)
11 + Ŝ

(A)
12

[
1− Ŝ(B)

11 Ŝ
(A)
22

]−1

Ŝ
(B)
11 Ŝ

(A)
21 (3.70b)

Ŝ
(AB)
12 = Ŝ

(A)
12

[
1− Ŝ(B)

11 Ŝ
(A)
22

]−1

Ŝ
(B)
12 (3.70c)

Ŝ
(AB)
21 = Ŝ

(B)
21

[
1− Ŝ(A)

22 Ŝ
(B)
11

]−1

Ŝ
(A)
21 (3.70d)

Ŝ
(AB)
22 = Ŝ

(B)
22 + Ŝ

(B)
21

[
1− Ŝ(A)

22 Ŝ
(B)
11

]−1

Ŝ
(A)
22 Ŝ

(B)
12 . (3.70e)

Eventually, one is left with the global S-matrix equation,[
R̃⊥
T̃⊥

]
= Ŝ

[
L̃(0)
⊥
0

]
. (3.71)

This equation relates the set of known quantities (right side) to the unknown quan-
tities (left side) via the global S-matrix.

3.5.3 R-matrix approach

The R-matrix approach is very similar to the S-matrix approach. However, instead of
the eigenmode coefficients, the R-matrix of the lth layer relates the Fourier coefficient
vectors of the electric and magnetic fields at the two layer interfaces to each other.
The electric and magnetic fields appear on opposite sides of the equation sign. For
completeness, the definition of the R-matrix is given at this point[10],[

Ẽ (l)
⊥

Ẽ (l−1)
⊥

]
= R̂(l)

[
H̃(l)
⊥

H̃(l−1)
⊥

]
. (3.72)

The solution principle of the R-matrix approach is very similar to the S-matrix
approach and is not shown here, since is not needed in the context of this thesis.
The interested reader may refer to [3, 10, 68].

3.5.4 Enhanced transmittance matrix approach

In the following, the so-called ’partial solution approach’ of the ETMA as first pro-
posed by [11] is presented, which means that it only applies for one-sided light
incidence. The notation and derivation sticks very closely to that used in Chapter 5,
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where the method is extended to two-sided light incidence based on the publication
[A3]. Even though the name suggests otherwise, the algorithm provides the full so-
lution. In the following, the basic principle is explained by means of Fig. 3.8. First,
the tangential electric and magnetic field components, which are continuous in axial
direction across the layer interfaces, are set equal. To this end, one calculates the
electric and magnetic field mode coefficient vectors at the layer boundaries using Eq.
(3.59), including the propagator shift by d(l), as mentioned in the derivation. At the
leftmost interface, Fig. 3.8a, the continuity condition gives[

1 1
Ĉ(0) −Ĉ(0)

] [
L̃(0)
⊥

R̃⊥

]
=

[
+Ŵ (1) +Ŵ (1)X̂(1)

+V̂ (1) −V̂ (1)X̂(1)

][
c

(1)
+

c
(1)
−

]
. (3.73)

At an intermediate interface between two layers l − 1 and l, Fig. 3.8b, one gets[
+Ŵ (l−1)X̂(l−1) +Ŵ (l−1)

+V̂ (l−1)X̂(l−1) −V̂ (l−1)

] [
c

(l−1)
+

c
(l−1)
−

]
=

[
+Ŵ (l) +Ŵ (l)X̂(l)

+V̂ (l) −V̂ (l)X̂(l)

] [
c

(l)
+

c
(l)
−

]
. (3.74)

At the rightmost interface, Fig. 3.8c, one obtains[
+Ŵ (L)X̂(L) +Ŵ (L)

+V̂ (L)X̂(L) −V̂ (L)

][
c

(L)
+

c
(L)
−

]
=

[
1 1

Ĉ(L+1) −Ĉ(L+1)

] [
T̃⊥
0

]
. (3.75)

Starting from the rightmost interface, Eq. (3.75) can be written as[
+Ŵ (L)X̂(L) +Ŵ (L)

+V̂ (L)X̂(L) −V̂ (L)

][
c

(L)
+

c
(L)
−

]
=

[
f̂ (L+1)

ĝ(L+1)

]
c

(L+1)
+ , (3.76)

where one identifies c
(L+1)
+ = T̃⊥ and f̂ (L+1) = 1, ĝ(L+1) = Ĉ(L+1). By rearranging

Eq. (3.76), one obtains[
−Ŵ (L) f̂ (L+1)

V̂ (L) ĝ(L+1)

][
c

(L)
−

c
(L+1)
+

]
=

[
Ŵ (L)X̂(L)

V̂ (L)X̂(L)

]
c

(L)
+ , (3.77)

which can be transformed to

c
(L)
− = â(L)c

(L)
+ (3.78a)

c
(L+1)
+ = b̂(L) c

(L)
+ (3.78b)

with [
â(L)

b̂(L)

]
=

[
−Ŵ (L) f̂ (L+1)

V̂ (L) ĝ(L+1)

]−1 [
Ŵ (L)X̂(L)

V̂ (L)X̂(L)

]
. (3.79)
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Eq. (3.78) is now being substituted back into Eq. (3.74) for l = L, which expresses
the continuity conditions between the second last and last layer,[

+Ŵ (L−1)X̂(L) +Ŵ (L−1)

+V̂ (L−1)X̂(L) −V̂ (L−1)

][
c

(L−1)
+

c
(L−1)
−

]
=

[
f̂ (L)

ĝ(L)

]
c

(L)
+ , (3.80)

where[
f̂ (L)

ĝ(L)

]
=

Ŵ (L)
(

1 + X̂(L)â(L)
)

V̂ (L)
(

1− X̂(L)â(L)
) . (3.81)

One observes that Eq. (3.80) is the same as Eq. (3.76), except that the index is
decremented. The procedure [Eqs. (3.76-3.81)] is therefore repeated for the remain-
ing layer interfaces in decreasing order until the leftmost interface, where one is left
with [

1 1
Ĉ(0) −Ĉ(0)

][
L̃(0)
⊥

R̃⊥

]
=

[
f̂ (1)

ĝ(1)

]
c+
1 . (3.82)

This can finally be solved for R̃⊥ and c+
1 via[

R̃⊥
c+
1

]
=

[
−1 f̂ (1)

Ĉ(0) ĝ(1)

]−1 [
1
Ĉ(0)

]
L̃(0)
⊥ . (3.83)

Eq. (3.78) and its equivalents for the other layers can subsequently be used to
determine the remaining unknowns c

(l)
+ , c

(l)
− and T̃⊥ iteratively.

3.6 Consistency requirements

Part of this section is based on [A3].

In Sect. 3.1.3, two different methods for realizing a tilt of the incident light modes
are presented. In method 1, the amplitude of the central mode is set to one and
a shift of kx0 = nk0 sin θ cosϕ and ky0 = nk0 sin θ sinϕ is applied to the lateral
components of the k-vectors. In method 2, a higher order Fourier mode is excited
in the incident mode coefficient vector, while the k-vector shift is omitted. If the
angles corresponding to the k-vector shift in method 1 are equal to the angles of the
excited higher order grating mode in method 2,[√

ε(0)µ(0) sinθ cosϕ√
ε(0)µ(0) sinθ sinϕ

]
=

[
mλ/Px
nλ/Py

]
, (3.84)
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the identical physical situation is described6. One naturally expects that the re-
sult is independent of the applied method. The authors of [17] demonstrated that
this is not automatically the case. The explanation is that the mode truncation
in the two scenarios is different. In method 1, the mode truncation is asymmet-
ric, whereas method 2 results in a symmetric mode truncation. In order to avoid
inconsistencies between the two methods, the suggestion in [17] was requiring that
the resulting set of differential equations must be identical in both cases (’angular
shift-invariance’ [17]). In this very publication, it was shown that, for mode-truncated
systems, this requirement is fulfilled under the following prerequisites (cf. also Fig.
3.10).

• The electromagnetic field’s Fourier coefficient vectors, Ẽ⊥, must be truncated
symmetrically around zero. Outside the truncation boundaries, the Fourier
mode coefficients are assumed to be continued in a periodic manner.

• Outside the truncation boundaries, the lateral wave vector components, kx/y;mn,
are assumed to be continued periodically. This way, it is ensured that the
highest mode +M/N is always followed by the lowest mode −M/N (’centered
bandwidth limitation’ [17]).

• The electric permittivity ε̂ (x, y) and the magnetic permeability µ̂ (x, y) are
assumed to be band limited to the chosen mode truncation boundaries. The
corresponding Toeplitz matrices, [[ε]] and [[µ]], are continued in a circulant fash-
ion in the upper right and lower left corners.

It should be noted that, for the circulant definition of the Toeplitz matrices, the
application of the direct rule and the inverse rule as described in Sect. 3.2 result in
mathematically identical matrices, i.e., [[ε]] = [[1/ε]]−1. Consequently, Li’s factoriza-
tion rules are automatically fulfilled.

Recently, there has been some debate about Li’s factorization rules. It was shown
that, due to the non-circulant definition of the Toeplitz matrices, the energy balance
between the external fields and the local absorption is not consistent[69]. In the
mentioned publication, it is also demonstrated that this problem is solved for the
circulant definition of the Toeplitz matrices. In combination with [17, 63], this
result suggests that Li’s factorization rules merely counteract the symptoms of mode
truncation rather than solving the true underlying problem, i.e., the inconsistent
occupation of the Toeplitz matrices.

3.7 Numerical complexity and memory requirement

The numerical complexity of the standard RCWA algorithm is dominated by
6If the tilt according to method 1 is not equal to a grating mode angle, no corresponding mode
can be found with method 2. The reason is that, in this case, the incident electromagnetic field
does not feature the same lateral periodicity as the grating.
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Ẽx/y;−1
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Figure 3.10: The electromagnetic field Fourier coefficient vector is continued periodically
outside the symmetric truncation limits. Furthermore, the mode truncation corresponds to
an effective band limitation of ε (x, y) or µ (x, y), respectively. Therefore, the corners of the
truncated Toeplitz matrix are completed in a cyclic fashion - it then becomes a circulant
matrix.

1. the diagonalization of the coupling matrix in the process of solving the coupled
differential equation, Eqs. (3.53, 3.61), and

2. the matrix inversions in the process of enforcing the boundary conditions, Eqs.
(3.69, 3.79).

These matrices have the dimensions 2N̄ × 2N̄ or 4N̄ × 4N̄ , respectively. The nu-
merical complexity of both the diagonalization and the inversion are of the order
O
(
N̄3
)
. The memory requirement is given as the number of elements in the matrix,

which is of the order O
(
N̄2
)
.

In consequence, only very small problem sizes can actually be solved with the
RCWA. To make an example, consider a grating, which should be sampled with
M0 = N0 = 50, i.e. N̄ = 1012 ≈ 104 modes. Consequently, the coupling matrix
has

(
4N̄
)2 ≈ 1.6 · 109 complex elements. Assuming a double-precision arithmetic,

the memory requirement is already 24 GB. On an off-the-shelf hexacore server with
3.70 GHz clock rate and 64 GB RAM used for this work, the calculation time of this
problem is approximately 8 h.



64 3.8 SIMULATION OF A SNOM MEASUREMENT

3.8 Simulation of a SNOM measurement

In this section, a simulation from the early beginnings of my PhD studies is shown,
which was published in [A1] and nicely illustrates a number of problems inherent to
the current RCWA. In the following chapters, the majority of these problems will be
solved.

SNOM is a method, which acquires evanescent field information, thus overcoming
the Abbe resolution limit. It is a technique used for sub-λ imaging at optical fre-
quencies in experimental physics[20]. SNOM is generally thought to be understood
well, since it works in practice and, experimentally, one finds that the resolution
is in the order of a few tens of nm[70]. In the past, there were several attempts to
simulate the coupling of light into a SNOM fiber tip, using for example the BPM[71]

or the FDTD[72]. Here, the recently developed ’localized input field RCWA’ (LIF-
RCWA)[17] is applied to simulate SNOM measurements. Two different simulations
are shown. First, in Sect. 3.8.1, the scanning of a narrow focal spot is considered and
the influence of different parameters on the resolution of SNOM images is investi-
gated. Second, Sect. 3.8.2 studies how the presence of the SNOM-probe changes the
spatial electromagnetic field during a measurement. To this end, the undisturbed
electric field intensity is compared to the field distribution altered by the presence
of the SNOM probe.

3.8.1 Scanning a narrow focal spot

A two-dinensional SNOM-measurement is simulated, where a narrow focal spot
serves as a sample. Fig. 3.11 illustrates the electric permittivity distribution of
the fiber tip, where dap denotes the aperture diameter, α corresponds to the apex
angle of the fiber tip, ∆z denotes the vertical distance between sample and aperture
and ∆x is the lateral offset of the sample with respect to aperture. In the following,
the focus is moved laterally across the aperture and an RCWA calculation is con-
ducted at each ∆x. One obtains an intensity profile by plotting the amount of power
coupled into the fiber core versus ∆x. In all simulations, a wavelength of λ = 850 nm,
a calculation period of P = 2 µm and a total mode count of M = 101 are assumed.
In order to obtain a narrow focus in front of the SNOM-tip, the LIF-RCWA[17] is
used to excite the 81 central modes of the incident field in TM-polarization. This
results in a peak width of approximately 40 nm. The power density distribution of
one simulation is shown in Fig. 3.12. It can be clearly seen how light couples through
the tip into the fiber. Also, one can see that the amount of energy coupled into the
fiber is small compared to the incident power. In the following, the influence of the
parameters dap, α, and ∆z on the width of the resulting intensity profile is sum-
marized. First, one observes that the width of the recorded peak is approximately
proportional to the width of the aperture diameter dap. The measured Gaussian
width ranges from σ = 24 nm at dap = 40 nm to σ = 84 nm at dap = 300 nm. As
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Figure 3.11: Permittivity distribution of the fiber tip. The transmitted region (on the
right side) is homogeneous and index-matched with the fiber core to reduce unwanted
reflections. The fiber cladding is slightly absorbing to remove non-guided modes from the
fiber.
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Figure 3.12: Clipped power density distribution inside a SNOM-probe for dap = 40 nm,
α = 25◦, ∆x = 0 nm, and ∆z = 30 nm.
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expected, the amount of intensity coupled into the fiber core increases significantly
for larger aperture diameters. Second, varying the apex angle α does not signifi-
cantly change the width of the recorded peak. However, the amount of intensity
coupled into the fiber increases significantly for larger α. Third, one observes that
the measured peak width grows with increasing ∆z. The Gaussian width ranges
from σ = 24 nm at ∆z = 30 nm to σ = 143 nm at ∆z = 200 nm. This observation
can be explained by the characteristic exponential decay of the evanescent modes,
which is where the sub-λ spatial characteristics are encoded. Due to the exponential
decay of their amplitudes, the propagation distance from the focus to the fiber acts
as a low-pass filter.

3.8.2 Scanning a grating structure

In the following, a SNOM-measurement of a back-illuminated grating structure is
simulated in order to investigate the influence the SNOM fiber tip on the measure-
ment. Fig. 3.13 illustrates the electric permittivity distribution. Furthermore, a
fixed dap = 40 nm and ∆z = 30 nm are assumed. All remaining parameters are cho-
sen in the same way as in Sect. 3.8.1. In Fig. 3.14, the power density distribution
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Figure 3.13: Permittivity distribution of the grating structure and the fiber tip. In lateral
direction, the grating blocks on the left are 500 nm wide each.

is shown without (left) and with (right) the fiber tip inserted for the tip position
∆x = 325 nm. It can be seen that the presence of the tip severely disturbs the power
density distribution.

One might think that the amount of light coupled into the fiber is proportional to
the integrated disturbed power density distribution in front of the SNOM aperture.
Fig. 3.15 (left) shows a lateral line scan of the integrated undisturbed power density
distribution. In contrast, Fig. 3.15 (right) shows the amount of power, which is
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actually coupled into the fiber core as a function of ∆x. It can be clearly seen that
both curves are not in agreement. The width and position of the ‘step’ in Fig. 3.15
(right) are determined by a least squares fit of a smoothened step function. One
finds that the width of the step, σ = 43 nm ≈ λ/20, is small, but its position is
shifted by approximately δx ≈ 82 nm with respect to the original step position in
the grating.
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Figure 3.14: Undisturbed power density distribution with only the grating (left, arbi-
trary intensity scale) and power density distribution with fiber probe inserted (right, same
intensity scale as in left image).
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Figure 3.15: Line scan of the unperturbed power density distribution at ∆z = 30 nm as
a function of the lateral position x (left, arbitrary intensity scale), and amount of power
coupled into the fiber as a function of the SNOM probe position ∆x (right, same scaling
as in left image).

In summary, one finds that the aperture size, the apex angle of the fiber tip,
and the distance between sample and tip play a critical role when it comes to the
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resolving power of SNOM measurements. Furthermore, the simulations show that
retroactive effects of the fiber tip on the power density distribution are important
and, consequently, the intensity profile of the measurement may deviate from the
true underlying structure of the sample.

3.8.3 Analysis and discussion

Since the first publication in the 1980s, many useful extensions, generalizations and
stabilization mechanisms were introduced to enhance the original RCWA. However,
situations and parameter ranges still exist, which are currently inaccessible, be it
due to time or memory constraints, or for lack of algorithmic development. Consider
the example simulation of the SNOM fiber tip from the previous section.

1. The incident and transmitted regions have to be homogeneous in the RCWA.
Therefore, the light coupled into the SNOM fiber eventually radiates into the
homogeneous transmitted region, which is index-matched to the fiber core in
order to minimize reflections. Clearly, it would be advantageous if the trans-
mitted region could be defined as a structured region, so that a very long fiber
can be modeled.

2. Light is only allowed to be incident from one direction in the RCWA. For an
inversion of the light path, a backside illumination would be the easiest and
most direct solution. However, in the standard framework, this possibility
does not exist. The only way to emulate a backside illumination consists in
mirroring the entire refractive index distribution. This procedure is, however,
prone to implementation errors. Furthermore, it does not allow a simultaneous
two-sided illumination.

3. The resolution of RCWA simulations is restricted to very small problem sizes
due to time and memory constraints. In most cases, only 2d-calculations are
possible in order to retain a sensible sampling.

In the following chapters, the three mentioned problems are considered. In Chapter
4, the RCWA is generalized as to allowing also structured incident and transmitted
regions, where the incident light is described as a superposition of eigenmodes. In
Chapter 5, the RCWA framework is extended for coherent bidirectional light in-
cidence. In Chapter 6, the limitation to very small problem sizes is removed for
the case of certain thin optical elements, which is achieved by an iterative solution
approach.
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4 | Structured incident and
transmitted regions

This chapter is partly based on the publication [A2]7.

4.1 Motivation and structure

The standard RCWA framework is limited to the simulation of grating layer stacks,
which are embedded between two homogeneous regions. However, especially in cases
where the refractive index structures are constant over a wide axial range, the in-
fluence of distant interfaces usually needs to be neglected. This is, for instance, the
case for the simulation of long waveguides, fibers or integrated optical components,
i.e., when the spatial coherence length is smaller than the axial extend of the object.
Therefore, in this chapter, the common RCWA is extended to the treatment of struc-
tured incident and transmitted regions. To my knowledge, the very basic idea was
actually first brought up by Lalanne[73], but an adapted procedure was indeed never
formulated. Furthermore, at this point it was not recognized that, in order to be able
to set sensible boundary conditions at the outer interfaces, it is essential to unam-
biguously determine the propagation direction of the eigenmodes in the incident and
transmitted regions. While this is fairly simple for homogeneous regions and Fourier
modes, it becomes nontrivial for structured layers. Therefore, it is investigated how
the propagation direction of individual eigenmodes is determined unambiguously.
It is shown that the standard RCWA algorithm with its homogeneous incident and
transmitted regions is a special case of this new generalized description. Throughout
this chapter, linear isotropic materials are assumed.

This chapter is organized as follows. In Sect. 4.2, the modified boundary value
problem for structured incident and transmitted regions is formulated. Sect. 4.3
compares the two cases, with homogeneous and with structured incident and trans-
mitted regions, and shows that the standard RCWA is just a special case of the
generalized structured treatment. Furthermore, it is demonstrated how the transi-
tion from structured to homogeneous regions is expressed in the boundary condi-
tions. In Sect. 4.4, the energy flow properties of structured layer eigenmodes are

7© 2016 IEEE.
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derived. Furthermore, it is shown how the propagation direction of an eigenmodes
is unambiguously determined from the Ponynting vector. The latter is necessary to
set the boundary conditions in a sensible manner. In Sect. 4.5, several simulation
examples are shown in order to verify the findings. First, the numerical eigenmodes
are compared to the analytic eigenmodes of a planar dielectric waveguide. Second,
the evanescent coupling between two closely adjacent waveguides is simulated and
compared to the results of CMT in the case of weak and strong coupling. Third,
the mode coupling from vacuum into a long graded index (GRIN) waveguide with a
sech-profile is simulated and compared to the analytic solution.

4.2 Reformulation of the boundary value problem

In the standard implementation of the RCWA, a periodic grating structure is situated
between the incident and transmitted regions with known and constant indices of re-
fraction. A superposition of Fourier modes is assumed to be incident from z = −∞,
no light is incident from z = +∞ (cf. Chapter 3). In the following, the restriction
to homogeneous incident and transmitted regions is removed. As illustrated in Fig.
4.1, these regions should now be treated as structured media instead. In order to
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Figure 4.1: Boundary conditions for the RCWA with structured incident and transmit-
ted regions. The eigenmode coefficients of the incident field, c(0)

+ , are given. No light is
assumed to be incident from the right half space. The reflected and transmitted eigenmode
coefficients, c(0)

− and c
(L+1)
+ , are unknown, so are the eigenmode coefficients c(l)

± within the
layers.

do so, it is necessary to conduct an eigenmode decomposition as it is usually done
for the grating layers (cf. Sect. 3.4.1). Furthermore, now, a linear superposition
of eigenmodes is assumed to be incident from z = −∞. At this point, no light is
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assumed to be incident from z = +∞. Nevertheless, as shown in Chapter 5, bidi-
rectional light incidence is fully compatible with this approach. So far, no definition
for a ’forward’ and ’backward’ propagating eigenmode was given. At this point, it is
simply assumed that this distinction can be made and that c+ (c−) correspond to
the ’forward’ (’backward’) propagating eigenmodes. A full definition is given later
in Sect. 4.4.4. In order to set the boundary conditions, the tangential electric and
magnetic field components must be matched at the layer interfaces similar to Sect.
3.5. For the interface between the incident region and the first layer, Fig. 4.1a, this
reads [

+Ŵ (0) +Ŵ (0)

+V̂ (0) −V̂ (0)

][
c

(0)
+

c
(0)
−

]
=

[
+Ŵ (1) +Ŵ (1)X̂(1)

+V̂ (1) −V̂ (1)X̂(1)

][
c

(1)
+

c
(1)
−

]
. (4.1)

At an intermediate interface between two layers l − 1 and l, Fig. 4.1b, one gets[
+Ŵ (l−1)X̂(l−1) +Ŵ (l−1)

+V̂ (l−1)X̂(l−1) −V̂ (l−1)

][
c

(l−1)
+

c
(l−1)
−

]
=

[
+Ŵ (l) +Ŵ (l)X̂(l)

+V̂ (l) −V̂ (l)X̂(l)

][
c

(l)
+

c
(l)
−

]
. (4.2)

At the rightmost interface, Fig. 4.1c, one obtains[
+Ŵ (L)X̂(L) +Ŵ (L)

+V̂ (L)X̂(L) −V̂ (L)

][
c

(L)
+

c
(L)
−

]
=

[
+Ŵ (L+1) +Ŵ (L+1)

+V̂ (L+1) −V̂ (L+1)

][
c

(L+1)
+

c
(L+1)
−

]
. (4.3)

These equations are the direct equivalent to the continuity conditions given in the
derivation of the ETMA, Eqs. (3.73-3.75). Based on Eqs. (4.1-4.3), the ETMA is,
indeed, derived in just the same way as done in Sect. 3.5.4, so that the ’new’ algo-
rithm now solves for the eigenmode coefficients of a structured layer. The interested
reader finds a complete reformulation of the ETMA including the implementation
of bidirectional illumination in Chapter 5. There, it is also shown that the S-matrix
approach is also applicable.

4.3 Structured vs. homogeneous regions

In the derivation of the RCWA, the general solution of Maxwell’s equations for x-
y-periodic structured layers of linear isotropic materials was derived. On the other
hand, it is known that the solutions of Maxwell’s equations in homogeneous linear
isotropic materials are plane waves. Consequently, one expects that, in the limit of
homogeneous layers, there is a smooth transition of the very general RCWA solution
into a superposition of plane waves. In order to investigate the connection, consider
again Eq. (3.51),

∂2

∂z2
Ẽ⊥ (z) = −k2

0M̂
(l)
12 M̂

(l)
21 Ẽ⊥ (z) . (4.4)
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In the special case of a homogeneous layer l, the Toeplitz matrices built from the
electric permittivity and magnetic permeability become diagonal. It is straightfor-
ward to show that, in consequence, also the coupling matrix in Eq. (4.4) becomes
diagonal,

M̂
(l)
12 M̂

(l)
21 →

[
ε(l)µ(l)1− K̂2

x − K̂2
y 0

0 ε(l)µ(l)1− K̂2
x − K̂2

y

]
, (4.5)

i.e., the system of differential equations is already fully decoupled. Therefore, a
diagonalization as conducted in Sect. 3.4.1 is not necessary. Instead, one directly
onbtains Ŵ (l) → 1 as the eigenvector matrix, and Λ̂(l) → M̂

(l)
12 M̂

(l)
21 as the diagonal

eigenvalue matrix. The diagonal entries of M̂ (l)
12 M̂

(l)
21 can, indeed, be identified as the

z-components of the wave vectors in homogeneous media. The matrix V̂ (l) turns into
the matrix Ĉ(l), which is the homogeneous space conversion matrix from the electric
field Fourier mode vector into the magnetic field Fourier mode vector,

H̃⊥ = Ĉ(l)Ẽ⊥ , (4.6)

as previously defined in Eq. (3.67). In summary, one obtains the relations

Ŵ (l) → 1 (4.7a)

Λ̂(l) → M̂
(l)
12 M̂

(l)
21 = K̂(l)

z (4.7b)

V̂ (l) → Ĉ(l) . (4.7c)

Hence, in the limit of homogeneous layers, the RCWA eigenmode solution turns into
a simple superposition of plane waves. From this follows that, indeed, the eigen-
modes of homogeneous regions are the Fourier modes, i.e., plane waves!

Now, consider again the boundary conditions at the layer interfaces, Eqs. (4.1-
4.3). Note that, by making the transition to homogeneous layers, as shown above,
one directly retrieves Eqs. (3.73-3.75) from the standard ETMA. Hence, the gener-
alization presented in Sect. 4.2 is consistent with the existing framework. Therefore,
also homogeneous layers can be treated with this very general approach.

4.4 Energy flow direction and Poynting vector

As presented in the previous section, it is assumed that a given superposition of
eigenmodes of the incident region illuminates the grating from z = −∞. On the
other hand, an unknown ’transmitted’ and ’reflected’ superposition of eigenmodes
propagates away from the grating in the structured incident and transmitted regions
towards z = ±∞. The above statements contains the implicit assumption that the
propagation direction of the eigenmodes is already known. In fact, this is a fairly
simple task for Fourier modes, i.e., in the case of the standard RCWA with homo-
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geneous incident and transmitted regions, where the z-component of the Poynting
vector is usually taken as a measure. However, the definition of the propagation di-
rection of a general eigenmode of a structured layer is not anymore straightforward.
In the following, it is derived how the propagation direction of a general eigenmode
can be unambiguously determined.

4.4.1 Plane waves in homogeneous media

First, consider a homogeneous region, for which the solution of Maxwell’s equations
is known to be a superposition of plane waves,

E (r, ω) =
∑
q

Ẽq e+ikz;qz eikx;qx+iky;qy (4.8a)

H (r, ω) = − i

µk0

∇× E (r, ω)

=
1

µk0

∑
q

kq × Ẽq e+ikz;qz eikx;qx+iky;qy . (4.8b)

In general, the time-averaged Poynting vector is calculated from the electric and
magnetic fields via

〈S〉t (r) =
1

2
< [E (r, ω)×H∗ (r, ω)]

=
1

2

∑
qq′

<
[

1

µ∗k0

Ẽq ×
(
k∗q′ × E∗q′

)
ei(kx;q−kx;q′)x+i(ky;q−ky;q′)y+i(kz;q−k∗z;q′)z

]
(4.9)

For an isolated propagating plane wave in a non-absorbing medium, i.e., Ẽq = ẼQ δqQ
and = [ε] = = [µ] = = [kz] = 0, the Poynting vector simplifies,

〈S〉[Q]
t (r) = 〈S〉[Q]

t =
1

2
|EQ|2

kQ
µk0

. (4.10)

In this case, the energy flow is in the direction of kQ and independent of r. On the
other hand, it can be shown that for evanescent waves, energy flows only in x-y-
direction, and not in axial direction. Another interesting property of plane waves is
also that∫

〈S〉t (r) dx dy =
∑
q

〈S〉[q]t , (4.11)

i.e., the x-y-integrated energy flow of the superposition of plane waves is equal to the
sum of the plane waves’ individual energy flows. Not that, therefore, it is sensible
to define the diffraction efficiencies of the Fourier modes as DEq ∝ 〈S〉[q]t [5]. For
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a linear superposition of forward and backward propagating Fourier modes, mixed
terms appear in the expression for the Poynting vector. These terms are, for instance,
responsible for the finite energy flow in the tunneling region of an evanescent coupler.
Therefore, even though an isolated evanescent wave does not carry energy in axial
direction, for a superposition of a forward and backward propagating evanescent
waves this is very well possible.

4.4.2 Eigenmodes in structured media

Now consider the more general case of a structured layer. From Eqs. (3.54, 3.57)
one obtains

Ẽ⊥;q (z) =
∑
q′

Wqq′c+;q′ e
+ik0
√
λq′z (4.12a)

H̃⊥;q (z) =
∑
q′

Vqq′ c+;q′ e
+ik0
√
λq′z , (4.12b)

where only the forward propagating eigenmodes are considered, i.e., c−;q = 0. In
order to calculate the energy flow of an isolated eigenmode, one assigns c+;q =
c+;Q δqQ, where an arbitrary eigenmode can be chosen by setting Q to a constant
index. By separating the matrices Ŵ and V̂ into an upper and lower half, Ŵ =[
Ŵx Ŵy

]T
and V̂ =

[
V̂x V̂y

]T
, one obtains

E [Q]
x;q (r, ω) =

∑
q

Wx;qQ c+;Q e+ik0
√
λQz eikx;qx+iky;qy (4.13a)

E [Q]
y;q (r, ω) =

∑
q

Wy;qQ c+;Q e+ik0
√
λQz eikx;qx+iky;qy (4.13b)

H[Q]
x;q (r, ω) =

∑
q

Vx;qQ c+;Q e+ik0
√
λQz eikx;qx+iky;qy (4.13c)

H[Q]
y;q (r, ω) =

∑
q

Vy;qQ c+;Q e+ik0
√
λQz eikx;qx+iky;qy , (4.13d)

where q = mN + n is the concatenated index, which runs simultaneously over both
Fourier dimensions kx and ky as described in Sect. 3.2.3. The time-averaged Poynting
vector is calculated from the electric and magnetic fields via

〈S〉t (r) =
1

2
< [E (r, ω)×H∗ (r, ω)] . (4.14)
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By inserting Eqs. (4.13) into Eq. (4.14), one obtains

〈Sz〉[Q]
t (r) =

1

2
e
−2k0=

[√
λQ
]
z
∑
qq′

<
[(
Wx;qQV

∗
y;q′Q −Wy;qQV

∗
x;q′Q

)
× ei(kx;q−kx;q′)x+i(ky;q−ky;q′)y

]
. (4.15)

The z-component of the Poynting vector is only z-dependent via the imaginary
part of

√
λQ, which characterizes the absorption strength of the medium. For non-

absorbing media, the energy flow 〈Sz〉[Q]
t (r) is constant in z. If absorption (amplifi-

cation) is present, the z-dependence is an exponential decrease (increase), depending
on the sign of =

[√
λQ
]
. Note that, in the lateral coordinates x and y, the energy

flow of an eigenmode is not necessarily constant as it is the case for plane waves. As
an example, Fig. 4.2 shows the numerically calculated Poynting vector of a planar
slab waveguide eigenmode.
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Figure 4.2: Numerically calculated z-component of the Poynting vector (right image,
normalized to a maximum amplitude of 1) for the lowest order eigenmode of the slab
waveguide shown in the left image (core diameter dcore = 12 µm). RCWA parameters:
Px = 125 µm, M0 = 200, λ = 1.55 µm.

4.4.3 Analytic Poynting vector for the 2d-case

In the two-dimensional case, i.e., if both the grating and the fields are constant in
y, the analytic Poynting vector can be determined. For ky;mn = 0, the eigenvalue
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decomposition splits into two parts,

M̂12M̂21 =

[
−K̂xdεe−1K̂xdε−1e+ dµedε−1e 0

0 −dµ−1eK̂xdµe−1K̂x + dµ−1edεe

]
=

[
Ŵ11 0

0 Ŵ22

] [
Λ̂1 0
0 Λ̂2

] [
Ŵ−1

11 0
0 Ŵ−1

22

]
=

[
Ŵ11Λ̂1Ŵ

−1
11 0

0 Ŵ22Λ̂2Ŵ
−1
22

]
. (4.16)

Furthermore, one obtains

V̂ = M̂21Ŵ Λ̂−1/2

=

[
0 −dµ−1eŴ22Λ̂

1/2
2

dε−1e−1Ŵ11Λ̂
−1/2
1 0

]
. (4.17)

By inserting Eqs. (4.16, 4.17) into Eq. (4.15), one obtains

〈Sz〉[Q]
t (x, z) =

1

2
e
−2k0=

[√
λQ
]
z

×
∑
qq′

<
{([

Ŵ ∗
11 0

]
qQ

[
dε−1e−1Ŵ11Λ̂

−1/2
1 0

]
q′Q

+
[
0 Ŵ ∗

22

]
qQ

[
0 dµ−1eŴ22Λ̂

1/2
2

]
q′Q

)
e−i(kx;q−kx;q′)x

}
.

(4.18)

In the two summands, due to the Fourier back transformation, the Toeplitz matrices
dε−1e−1 and dµ−1e can be replaced by the product with the functions εrec (x) and
µ−1

rec (x), i.e., the mode-truncated reconstructions of ε (x) and µ−1 (x). Furthermore,
the matrices Λ̂

−1/2
1 and Λ̂

1/2
2 are diagonal and can be separated. One obtains

〈Sz〉[Q]
t (x, z) =

1

2
e
−2k0=

[√
λQ
]
z

(
<
{
εrec (x) Λ̂

−1/2
1;Q

}∑
q

∣∣∣[Ŵ11 0
]
qQ
eikx;qx

∣∣∣2
+<

{
µ−1

rec (x) Λ̂
+1/2
2;Q

}∑
q

∣∣∣[0 Ŵ22

]
qQ
eikx;qx

∣∣∣2) . (4.19)

As in Eq. (4.15), the sign of 〈Sz〉[Q]
t (x, z) does not depend on z. Furthermore, one

can see that the expression separates into two parts. Depending on the choice of
Q, the contribution either comes from the first (x-polarized modes) or second (y-
polarized modes) summand. No mixing of the two terms occurs. For the x-polarized
modes, the sign of the energy flow is completely determined by <

{
εrec (x) Λ̂

−1/2
1;Q

}
.

For absorption-free materials, this means that the energy flow changes its sign simul-
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taneously with εrec (x). In analogy, the sign of the energy flow for y-polarized modes
is completely determined by <

{
µ−1

rec (x) Λ̂
+1/2
2;Q

}
, i.e., for absorption-free materials the

energy flow changes its sign simultaneously with µrec (x).

4.4.4 Propagation direction of eigenmodes

In Eqs. (4.15, 4.19), the z-component of the time averaged Poynting vector of an
eigenmode, 〈Sz〉[Q]

t (r), is derived. Furthermore, it is shown that the quantity gen-
erally is a function of x, y and z. However, since the z-dependence is only an
exponential decay or growth, the sign does explicitly not depend on the variable z.
Therefore, 〈Sz〉[Q]

t (r) can be regarded as a measure for the propagation direction of
the Qth eigenmode. However, as mentioned before, the energy flow in z-direction
may be subject to sign changes within a period in x and y, i.e., in some lateral
intervals energy flows in positive direction, whereas in others it flows in negative
direction. Therefore, one must consider the direction of the net energy flow in z-
direction, which is obtained by integrating Eq. (4.15) over one period in both x and
y, ∫∫

Px Py

〈S (r, t)〉[Q]
t dx dy =

1

2
e
−2k0=

[√
λQ
]
z
∑
q

<
[(
Wx;qQV

∗
y;qQ −Wy;qQV

∗
x;qQ

)]
.

(4.20)

The propagation direction of the Qth eigenmode is then defined as the sign of this
quantity,

σ[Q] = sgn

∫∫
Px Py

〈S (r, t)〉[Q]
t dx dy

 . (4.21)

It is straightforward to show that changing the sign of
√
λQ in Eq. (4.12) causes

also a sign change in the energy flow, i.e., in Eq. (4.21). Therefore, by choosing
the correct sign for each

√
λq separately, one can achieve a proper assignment of

the coefficients c+;q / c−;q as the forward / backward propagating eigenmodes. In
principle, the freedom in this assignment also allows providing the transmitted field
and subsequently using the RCWA to calculate the necessary back-side illumination
(cf. Chapter 5).

4.5 Simulation examples and verification

In this section, several RCWA simulation examples are presented, which make use of
the possibility for structured incident and/or transmitted regions. In Sect. 4.5.1, a
comparison between the analytic eigenmodes of a planar dielectric waveguide and the
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numerically determined RCWA eigenmodes is made. In Sect. 4.5.2, the evanescent
coupling of the electric field between two adjacent waveguides is demonstrated and
compared to CMT. In Sect. 4.5.3, the mode coupling across a fiber interface into a
GRIN fiber with sech profile is investigated and compared to a BPM simulation.

4.5.1 Planar dielectric waveguide: comparison to analytic
eigenmodes

The two-dimensional planar dielectric waveguide as depicted in Fig. 4.3 is one of
the few examples of structured media, for which analytic eigenmodes are known. A
detailed derivation can be found in [24] (Chapter 8.2) and [74] (Chapter 2.4). In
the following, the most important results of this derivation is shortly outlined. The

x

y

z

dcore

ncladding

ncoreinciden
t light

0

Figure 4.3: Planar dielectric waveguide of diameter dcore with refractive indices ncore and
ncladding. The refractive index distribution is constant in y.

eigenmodes of a planar dielectric waveguide are characterized by their individual
propagation angle θm, which is determined by a consistency equation. Here, the
consideration is restricted to TE-polarization, i.e., the electric field polarization vec-
tor oscillates in y-direction. Similar results are obtained for TM-polarization. In the
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TE case, the consistency equation reads

tan

(
π
dncore

λ
sin θq − q

π

2

)
=

√
cos2 θc

sin2 θq
− 1 , (4.22)

where θc = asin (ncladding/ncore) is the critical angle for total internal reflection. This
equation only has a solution for a finite number of m, i.e., the number of propagative
eigenmodes is limited. From the highest propagative eigenmode angle, the NA of
such a waveguide can be determined,

NAwaveguide =
√
n2

core − n2
cladding . (4.23)

The electric field of the qth eigenmode is of the form

ETE
x;q (r) ∝

cos
(

2π ncore sin θq
λ

x
)
eiβqz for q = 0, 2, 4 . . .

sin
(

2π ncore sin θq
λ

x
)
eiβqz for q = 1, 3, 5 . . .

(4.24)

for the propagation inside the waveguide core, −dcore/2 ≤ x ≤ +dcore/2, with βq =
ncore k0 cos θq. In the cladding, |x| > dcore/2, one obtains an exponential decrease in
the direction away from the core,

ETE
x;q (r) ∝ e−γq|x| eiβqz , (4.25)

where γq =
√
β2
q − n2

claddingk
2
0. At the interface between the cladding and the core,

the electric field is continuous. In Fig. 4.4, the normalized electric field amplitudes
ETE
x;q (r) are plotted for the parameters ncore = 1.47, ncladding = 1.46 and dcore = 12 µm.

For this parameter set, only three propagative eigenmodes exist. In Fig. 4.5, these
analytic eigenmodes are compared to the TE eigenmodes that are determined nu-
merically by means of the RCWA. It is observed that the eigenmode decomposition
of the RCWA reproduces the analytic eigenmodes very well. In the following, as-
sume a homogeneous medium with n(0) = 1.47 for z < 0, and a Gaussian beam
light incidence with waist σ0 = 3.5 µm. In the half space z ≥ 0, assume the pla-
nar dielectric multi-mode waveguide with the parameters as given before. Fig. 4.6
shows the resulting normalized electric field amplitude calculated numerically with
the RCWA. The stated simulation parameters are chosen to be the same as in [63]
(Sect. 3.10.4), who simulated a 1400 µm long waveguide slab sandwiched between
two index-matched homogeneous regions. However, in contrast to [63], in the sim-
ulation conducted here, the waveguide explicitly has no right interface. Indeed, the
simulation results for the field inside the fiber look similar, but visible differences
exist. Furthermore, the treatment of the waveguide as structured transmitted region
without a rear interface has the following advantages.

• Unwanted back-reflections originating from the rear waveguide interface are
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Figure 4.6: Gaussian beam incident on the left interface of a planar dielectric waveguide
(normalized electric field amplitude, parameters given in the text). No right waveguide
interface is assumed. The dashed red lines indicate the core boundaries. RCWA parameters:
Px = 125 µm, M0 = 200, λ = 1.55 µm.

inherently avoided. In contrast, previous publications still had to sandwich
the waveguide between two index-matched homogeneous regions[63].

• The transmitted waveguide eigenmode coefficients can be directly identified
as the coupling efficiencies of the illuminating light into the different mode
channels across the waveguide interface.

• Arbitrary propagative or non-propagative waveguide eigenmodes can be di-
rectly excited as incident light. This may, for instance, be useful in the cal-
culation of the mode coupling out of a fiber. Before, the simulation of such
a setting was only possible in very restricted cases. For instance, [63] moti-
vated how an isolated fundamental mode in a single mode waveguide could be
produced in the standard RCWA framework.

4.5.2 Evanescent coupling between waveguides

Consider the setup shown in Fig. 4.7. Two planar dielectric waveguides of diameter
dcore are aligned parallel to each other with the separation dgap. The refractive in-
dices of the core and cladding are ncore and ncladding. From the analytic eigenmodes
of the isolated waveguides, Eqs. (4.24, 4.25), one can see that the electric field is not
strictly zero outside the waveguide core, but that there is an exponential decay of
the amplitude inside the cladding. If two waveguides are sufficiently close to each
other, the eigenfunctions of the waveguides may to a certain degree overlap with
the close-by other waveguide via the exponentially decaying branch, as illustrated in
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Figure 4.7: Two planar dielectric waveguides of diameter dcore and refractive index ncore

at a separation dgap. The refractive index of the cladding is ncladding. Assume that the
waveguide has no interface in axial direction.

Fig. 4.8. If an electric field is excited in one of the waveguides, due to this overlap, it
is possible to transfer this excitation across the barrier. This effect is called ’evanes-
cent coupling’, because the coupling is solely communicated via the exponentially
decaying or ’evanescent’ branch of the eigenfunctions. A good description of this
effect can be found in [24]. In order to find the exact solution of this problem, one
must find the eigenmodes of the global system. For strong coupling, dgap � λ, the
resulting eigenmodes naturally deviate from those of the isolated waveguides. For
weak coupling, dgap � λ, one expects the eigenfunction of the two waveguides to
separate and look similar to the isolated waveguide eigenmodes.

First, consider the case of weak coupling (parameters given in Fig. 4.9) and that
the eigenmode of an isolated waveguide is illuminated in the upper waveguide. In Fig.
4.9 (top), the axial propagation of the field is calculated with the RCWA. The exact
solution of these types of systems are often very complex and tedious to calculate
due to the limited amount of computation power. For larger sized three-dimensional
systems, this problem still persists today. In the case of weakly coupled single-mode
waveguides, however, CMT is a good approximative theory. A good derivation can
be found in [21, 22, 24]. In the following, the results obtained with the RCWA are
compared to the result of CMT. To this end, the derivation of [24] is sketched at this
point. Be u1 (x) exp (iβ1z) and u2 (x) exp (iβ2z) the eigenfunctions of the isolated
single-mode waveguides. The major assumption of CMT is that the mode coupling is
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Figure 4.9: Evanescent coupling between two fibers for weak coupling (dcore = 0.6 µm,
dgap = 1.8 µm). Electric field intensity calculated with the RCWA (top) and with CMT
(bottom). The dashed red lines indicate the core boundaries. RCWA parameters: Px =
10 µm, M0 = 200, λ = 633 nm.
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communicated solely via the field amplitudes. The part of the electric field amplitude
in waveguide one, which overlaps with the solution of waveguide two, is regarded as
a source term for waveguide two and vice versa. This way, one obtains two coupled
differential equations for the amplitudes a1 and a2 of the waveguide eigenmodes,

da1

dz
= −iκ21e

+i∆βza2 (z) (4.26a)

da2

dz
= −iκ12e

−i∆βza1 (z) , (4.26b)

where ∆β = β1−β2. The coupling strengths κ12 and κ21 are determined via the over-
lap integrals as defined in [24]. For a2 (0) = 0, this system of differential equations
is solved by

|a1 (z)|2 = |a1 (0)|2
[

cos2 (γz) +

(
∆β

2γ

)2

sin2 (γz)

]
(4.27a)

|a2 (z)|2 = |a1 (0)|2 |κ21|
γ2

sin2 (γz) , (4.27b)

with γ2 =
(

∆β
2

)2
+ κ12κ21. From this equation, one can see that, upon propagation

in z, power is transferred from one waveguide to the other and back. For identical
waveguides one even obtains a full transfer of power,

|a1 (z)|2 = |a1 (0)|2 cos2 (κz) (4.28a)

|a2 (z)|2 = |a1 (0)|2 sin2 (κz) , (4.28b)

where κ = κ12 = κ21. Fig. 4.9 (bottom) shows the electric field intensity inside
the fiber simulated with the RCWA. For the given parameters, CMT predicts a
full transfer of power after π/(2κ) ≈ 2019 µm, which is just slightly more than the
1950 µm predicted by the RCWA calculation (deviation of 3.5 %). Still, the intensity
maxima in the RCWA simulation are significantly wider in axial direction.

Now consider the case of strong coupling. For the parameters given in Fig. 4.10,
the waveguides are not single-mode waveguides, but support three propagative eigen-
modes. In the following, the lowest eigenmode of an isolated waveguide is excited in
the upper waveguide. The electric field intensity inside the fiber calculated with the
RCWA and CMT is shown in Fig. 4.10. Also in this case, the signal oscillates back
and forth between the two waveguides due to evanescent coupling. However, the
intensity peaks in the RCWA calculation are far more perturbed and look different
from one peak to another. The reason is that light is also coupled into the higher
eigenmodes of the waveguides and not only into the fundamental eigenmode. For
these parameters, CMT predicts a full energy transfer after π/(2κ) ≈ 134 µm, which
significantly deviates from the RCWA result by 18% (∼ 158 µm).
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Figure 4.10: Evanescent coupling between two fibers for strong coupling (dcore = 1.5 µm,
dgap = 0.2 µm). Electric field intensity calculated with the RCWA (top) and with CMT
(bottom). The dashed red lines indicate the core boundaries. RCWA parameters: Px =
10 µm, M0 = 200, λ = 633 nm.

In summary, CMT makes very strong assumptions about the system and predic-
tions become unreliable for either multi-mode waveguides and/or strong coupling.
On the other hand, in the RCWA calculation, the coupling coefficients are inher-
ently determined in the correct manner, and the mode coupling into all the higher
waveguide eigenmodes is automatically taken into account.
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4.5.3 Mode coupling into a long graded index fiber

In the following, assume a two-dimensional GRIN waveguide, where the refractive
index distribution of the core possesses a sech- or cosh−1-profile as illustrated in Fig.
4.11. The light propagation in sech-profile fibers can be solved analytically, and

x

y

z

dcore

ncladdi
ng = 1.5

ncore
(x) = npeak

sech (gx)

inciden
t light

0

Figure 4.11: GRIN waveguide (2d) with sech-profile core of diameter dcore, and con-
stant refractive index in the cladding. Sample parameters: dcore = 60 µm, ncladding = 1.5,
npeak = 1.6, g = 2

d sech−1
(
ncladding

npeak

)
. The NA of the waveguide for these parameters is

NAwaveguide = 0.56. The refractive index is constant in y-direction.

it is known that this type of GRIN fiber has imaging characteristics, i.e., the field
distribution at any axial position is repeatedly imaged across some characteristic
length in axial direction[75]. As an example, consider an interface between vacuum
(n(0) = 1) and a sech-profile waveguide with parameters as given in Fig. 4.11.
Assume that the waveguide is very long, i.e., its rear interface is far away and does
not play a role. At z = 0, the waveguide’s left interface is illuminated with a slightly
off-centered diffraction limited focal spot. Fig. 4.12 shows the RCWA and BPM
simulations of this setting. Indeed, the imaging characteristics is correctly predicted
by the RCWA calculation. In comparison to the BPM, the following differences are
observed.

1. The BPM predicts a slightly shorter axial imaging length than the RCWA.

2. The peak height of the focus at z = 0 is significantly elevated in the RCWA
due to the reflection at the fiber interface.
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3. The the overall field amplitude within the fiber is lower in the RCWA calcula-
tion due to reflection losses.
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Figure 4.12: Interface of a sech-index fiber illuminated by a diffraction limited focus
(NA = 0.3), which is shifted 2 µm off-center. Electric field amplitude calculated with the
RCWA (top) and BPM (bottom). The dashed red lines indicate the core boundaries.
RCWA/BPM parameters: Px = 100 µm, M0 = 200, λ = 633 nm.

Furthermore, the RCWA also allows a valid and fast field calculation for quite
large propagation distances, i.e., far away from the waveguide interface. This is
explicitly not the case for other established algorithms that are often applied for
light propagation in fibers, also for the BPM. As mentioned in Sect. 2.7, the BPM
accumulates errors upon every propagation step. The resulting effect is shown in
Fig. 4.13, which shows the electric field amplitude 18-20 mm inside the waveguide.
Clearly, the BPM result is already highly perturbed after a few millimeters of prop-
agation, while the RCWA still gives reasonable results. The propagation distance
possible with the RCWA is, in principle, only limited by the numerical errors in the
eigenvalue decomposition.
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Figure 4.13: Electric field amplitude calculated with the RCWA (top) and BPM (bot-
tom) 18 mm inside the fiber. The BPM simulation features severe perturbations, whereas
the RCWA simulation still gives reliable results. The dashed red lines indicate the core
boundaries. RCWA/BPM parameters: Px = 100 µm, M0 = 200, λ = 633 nm.

In the given setup, an interesting interpretation also concerns the transmitted
eigenmode coefficients, which represent the coupling efficiencies about the interface.
The absolute value of the eigenmode coefficients in the waveguide region corresponds
to the degree of excitation of the individual eigenmodes.

4.6 Conclusions

In this chapter, the RCWA framework is extended to allow for the normally ho-
mogeneous incident and transmitted regions to be structured as the grating layers.
Possible applications constitute the light propagation in structured layers of large
axial extent, for instance the mode coupling into or out of long waveguides, or gen-
erally all cases where possible reflections from an unwanted distant interface of a
structured region should be neglected. This way, it is possible to treat waveguides
with only one or even with no interface to a homogeneous region at all. In or-
der to set sensible boundary conditions, the propagation direction of the individual
eigenmodes must be known in these regions. The RCWA extension derived in this
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chapter is verified by a comparison to the analytic eigenmodes of a planar dielectric
waveguide. Furthermore, the evanescent coupling between two adjacent waveguides
is successfully reproduced, including a positive comparison to CMT for a weakly
coupled system. On the other hand, it is shown that, as expected, the predictions
of CMT significantly deviate from the RCWA result for a strongly coupled system.
Moreover, the mode coupling from vacuum into a long GRIN fiber is simulated. The
typical imaging characteristic of a sech-profile waveguide is demonstrated. Further-
more, it is demonstrated that the RCWA also allows a valid and fast field calculation
for quite large propagation distances, i.e., far away from interfaces. This is explicitly
not the case for other propagation algorithms that are often applied to waveguides
or fibers, such as for instance the BPM[51] or the WPM[52], which accumulate errors
upon every propagation step. The propagation distance possible with the RCWA is,
in principle, only limited by the numerical error in the eigenvalue decomposition.
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5 | Bidirectional light
incidence in rcwa

This chapter is partly based on the publications [A3] and [A4]8.

5.1 Motivation and structure

The standard RCWA framework is limited to unidirectional plane wave light inci-
dence. However, in applications like, for instance, 4π-microscopy, coherent wave
fronts are actually incident from both sides onto the object[76, 77] (cf. Fig. 5.1).
Therefore, in this chapter, the framework of the RCWA is extended to bidirectional

z

x, y

L̃(0)
⊥

L̃(L+1)
⊥R̃ ⊥

T̃⊥

Figure 5.1: Principle of a 4π-microscope. A specimen is illuminated with two coherent
converging wave fronts from opposite directions.

coherent light incidence. In order to model the setting of the 4π-microscope in the
RCWA, three distinct concepts are combined. First, the previously introduced idea
of structured illumination is applied to model focused beams in a fast and consistent
manner (cf. [17] and Sect. 3.1.3). Second, in Sect. 5.2, it is shown how structured

8© 2017 IEEE.
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light sources of different polarization types, such as linear, radial, azimuthal or el-
liptical polarization, can be realized in a general form. Eventually, in Sect. 5.3,
the concept of coherent bidirectional light incidence is integrated into the RCWA
framework. In Sect. 5.4, these techniques are combined to simulate bidirectional
focused illumination and sample-induced wave front aberrations in 4π-microscopy.

5.2 Polarization of structured incident fields

In this section it is shown how polarization is introduced into a multi-mode treatment
of rigorous diffraction. This problem has been addressed much earlier before in the
context of high NA imaging[78, 79, 80]. These authors, unfortunately, did not provide a
clear cut derivation. In [78, 79], only a plausibility consideration is given, whereas in
[80] the final result is presented as given. The basic idea of the derivation shown here
goes back to an idea of Brenner[81]. The full derivation is provided here. Interestingly,
the result that is obtained can be considered as the very general case of the results
presented in [78, 79, 80].

êTE ′mn

L̃′0

êTM ′mn

k′
êTEmn

L̃mn

êTMmn

kmn

z

x

y

Figure 5.2: A plane wave with amplitude L̃′0 and wave vector k′ = kêz passes an optical
system, which transforms it into a superposition of plane waves with amplitudes L̃mn and
wave vectors kmn.

In an imaging experiment, as well as in microscopy, a structured field distribution is
usually formed by an initially polarized wave front, which is structured by some kind
of optical system. In imaging, the optical system consists of a mask illuminated by a
plane wave, which is imaged by some kind of imaging optics. In confocal microscopy,
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the optical system reshapes a planar wave front into a diffraction limited focus.
Consider the situation depicted in Fig. 5.2. A plane wave with given amplitude and
polarization state L̃′0, and wave vector k′ = kêz is incident upon an optical system.
The latter transforms the incident plane wave into a spatially structured wave front,
which consists of a superposition of multiple plane waves with wave vectors kmn.
Now consider one specific kmn. The plane wave’s particular decomposition into TE
and TM components depends only on kmn itself. The TE-direction is specified as
perpendicular to the plane spanned by the vectors kmn and k′. Thus, êTE

mn is given
by

êTE
mn =

1√
k2
x;mn + k2

y;mn

−ky;mn

+kx;mn

0

 . (5.1)

The TM polarization vector then follows from orthogonality, kmn ⊥ êTM
mn ⊥ êTE

mn.
Thus, the TM direction is given by

êTM
mn =

1

|kmn|
1√

k2
x;mn + k2

y;mn

 kx;mnkz;mn
ky;mnkz;mn

−k2
x;mn − k2

y;mn

 . (5.2)

Now, it is assumed that the initial polarization state êTE ′
mn , êTM ′

mn of the plane wave
is converted into the new set of polarization components êTE

mn, êTM
mn by a rotation of

the coordinate system around the êTE
mn direction. Thus,

êTE ′
mn =

1√
k2
x;mn + k2

y;mn

−ky;mn

+kx;mn

0


êTM ′
mn =

1√
k2
x;mn + k2

y;mn

+kx;mn

+ky;mn

0

 . (5.3)

From the transversality of the electromagnetic fields, it can be concluded that any
given polarization vector L̃′0 can be decomposed into

L̃′0∣∣∣L̃′0∣∣∣ = αêTE ′
mn + βêTM ′

mn , (5.4)

where α and β are complex coefficients. Since the TE and TM polarization vec-
tors are obtained by rotation, the coefficients α and β are unchanged in the new
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coordinate system,

L̃mn∣∣∣L̃mn

∣∣∣ = αêTE
mn + βêTM

mn . (5.5)

Eq. (5.5) specifies how the Fourier components of a structured light distribution are
polarized for a given incident polarization. The description in Eq. (5.5) allows to
describe arbitrary polarization states, including linear, azimuthal, radial and elliptic
polarization. In the following, these cases are outlined.

5.2.1 Azimuthal polarization

A pure TE-polarization is achieved for α = 1 and β = 0. It can be seen directly from
the form of êTE ′

mn in Eq. (5.3) that this is equivalent to an azimuthal polarization
(eTE ′
mn =̂ êϕ). In this case, from Eq. (5.5) one obtains

L̃mn∣∣∣L̃mn

∣∣∣ =
1√

k2
x;mn + k2

y;mn

−ky;mn

kx;mn

0

 . (5.6)

Fig. 5.3 (left) shows an azimuthally polarized Gaussian profile.

5.2.2 Radial polarization

A pure TM-polarization is achieved for α = 0 and β = 1. It can be seen directly
from the form of êTM ′

mn in Eq. (5.3) that this is equivalent to a radial polarization
(eTM ′
mn =̂ êr). In this case, from Eq. (5.5) one obtains

L̃mn∣∣∣L̃mn

∣∣∣ =
1

|kmn|
1√

k2
x;mn + k2

y;mn

 kx;mnkz;mn
ky;mnkz;mn

−k2
x;mn − k2

y;mn

 . (5.7)

Fig. 5.3 (right) shows a radially polarized Gaussian profile.

5.2.3 Linear polarization

In order to achieve linear polarization, one requires

L̃′0∣∣∣L̃′0∣∣∣ = cosψ êx + sinψ êy , (5.8)



5.2.3 LINEAR POLARIZATION 95

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

m

n

−60 −40 −20 0 20 40 60
m

Azimuthal Radial

Figure 5.3: x-y-polarization vectors of a sample Gaussian illumination for azimuthal (left)
and radial (right) polarization.

where ψ denotes the angle between the x-axis and the polarization direction. The
coefficients α and β are then calculated via

α =
L̃′0∣∣∣L̃′0∣∣∣ · êTE ′

mn =
−ky;mn cosψ + kx;mn sinψ√

k2
x;mn + k2

y;mn

β =
L̃′0∣∣∣L̃′0∣∣∣ · êTM ′

mn =
+kx;mn cosψ + ky;mn sinψ√

k2
x;mn + k2

y;mn

. (5.9)

With Eqs. (5.5, 5.9), one then obtains

L̃mn∣∣∣L̃mn

∣∣∣ =
−ky;mn cosψ + kx;mn sinψ

k2
x;mn + k2

y;mn

−ky;mn

kx;mn

0


+

1

|kmn|
kx;mn cosψ + ky;mn sinψ

k2
x;mn + k2

y;mn

 kx;mnkz;mn
ky;mnkz;mn

−k2
x;mn − k2

y;mn

 . (5.10)

This result can be directly compared to Eq. (5) in [78]. Eq. (5.10) can be imple-
mented for, for instance, a linearly polarized focused beam. Fig. 5.4 shows a linearly
polarized Gaussian profile for ψ = 0◦ (left) and ψ = 45◦ (right).
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Figure 5.4: x-y-polarization vectors of a sample Gaussian illumination for 0◦-linear (left)
and 45◦-linear (right) polarization. Only every 10th vector is plotted in each dimension.

5.2.4 Elliptical / circular polarization

In the case of elliptical polarization, the incident polarization vector is

L̃′0∣∣∣L̃′0∣∣∣ = cosψ êx + i sinψ êy , (5.11)

where the only difference to linear polarization is an additional imaginary unit in
the y component. Accordingly, the result is very similar to linear polarization,

L̃mn∣∣∣L̃mn

∣∣∣ =
−ky;mn cosψ + ikx;mn sinψ

k2
x;mn + k2

y;mn

−ky;mn

kx;mn

0


+

1

|kmn|
kx;mn cosψ + iky;mn sinψ

k2
x;mn + k2

y;mn

 kx;mnkz;mn
ky;mnkz;mn

−k2
x;mn − k2

y;mn

 . (5.12)

5.3 Bidirectional light incidence in RCWA

In this section it is described how bidirectional light incidence can be incorporated
in the existing RCWA framework. Fig. 5.5 shows an L-layer structure with light
incident from both sides, left and right. To be most general, a possible structuring
of the incident and transmitted regions as described in Chapter 4 is included in
the following derivation. The incident light is given in the form of the eigenmode
coefficient vectors c

(0)
+ and c

(L+1)
− of the incident and transmitted region. In the
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case of homogeneous incident and transmitted regions, these coefficients are equal
to the Fourier mode coefficients L̃(0)

⊥ and L̃(L+1)
⊥ , respectively. It is clear that a

(a) (b) (c)

z

x, y

Layer: (0) (1) (L) (L+ 1)· · ·

[
c

(0)
+

c
(0)
−

] [
c

(1)
+

c
(1)
−

] [
c

(L)
+

c
(L)
−

] [
c

(L+1)
+

c
(L+1)
−

]

Figure 5.5: RCWA layout with a stack of L layers and light incident from both sides.
The mode coefficients of the incident light, c(0)

+ and c
(L+1)
− , are known. The reflected and

transmitted mode coefficients, c(0)
− and c

(L+1)
+ , as well as the eigenmode coefficients inside

the grating layers, c(l)
+ and c

(l)
− , are unknown.

change in the illumination only has an effect on the boundary conditions. Therefore,
the modifications do not concern the eigenmode decomposition within the layers.
The changes rather relate to the method, by which the boundary conditions are
enforced. In the literature one can find various ways to solve the boundary value
problem (cf. Sect. 3.5). The most prominent methods are the ETMA[11] and the
S-matrix approach. The latter was first described in the context of RCWA by [10], a
more modern description can be found in [66]. In principle, two-sided light incidence
can be incorporated in all the described methods.

5.3.1 Adapting the S-matrix approach

In the S-matrix approach, the transition of light through the lth layer is modeled
by the so-called S-Matrix. As described in Sect. 3.5.2, the latter connects the
amplitudes of the forward and backward propagating eigenmodes of the previous
and successive layer via[66][

c
(l−1)
−

c
(l+1)
+

]
=

[
Ŝ

(l)
11 Ŝ

(l)
12

Ŝ
(l)
21 Ŝ

(l)
22

][
c

(l−1)
+

c
(l+1)
−

]
. (5.13)

Furthermore, the global S-matrix of a multi-layer stack can be obtained from the
individual S-matrices of the layers via the Redheffer star product, cf. Sect. 3.5.2
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and [66]. The global S-matrix then connects the vector of unknowns to the vector
of knowns, i.e., the injected light at the entry and exit of the multi-layer stack. The
amplitude of the back-propagating wave at the stack exit is commonly set to zero.
In order to account for bidirectional illumination, this vector must be changed from
zero to the amplitudes of the injected light modes. In Eq. (5.14) this change is
highlighted in dark blue,[

c
(0)
−

c
(L+1)
+

]
=

[
Ŝglobal

11 Ŝglobal
12

Ŝglobal
21 Ŝglobal

22

][
c

(0)
+

c
(L+1)
−

]
. (5.14)

In the case of homogeneous incident and transmitted layers, the relation simplifies
to [

R̃⊥
T̃⊥

]
=

[
Ŝglobal

11 Ŝglobal
12

Ŝglobal
21 Ŝglobal

22

][
L̃(0)
⊥

L̃(L+1)
⊥

]
. (5.15)

Mathematically, this change only means that the zero vector is replaced by a non-zero
vector. Thus, the boundary value problem is equally solved for coherent bidirectional
illumination. Moreover, the numerical complexity and the memory requirement are
the same as before, which can seen from the comparison with Sect. 3.7 and [66]. The
same S-matrix is used for both illumination situations. Therefore, the computation
time for bidirectional illumination in the S-matrix approach is practically the same
as for one-sided illumination.

5.3.2 Adapting the ETMA approach

In the following, the so-called ’partial solution approach’ of the ETMA as first pro-
posed by [11] and presented in Sect. 3.5.4 is modified, which in its original version
only applies for one-sided light incidence. Furthermore, it is extended to structured
incident and transmitted regions as suggested in Chapter 4. Even though the name
of the approach suggests otherwise, the algorithm provides the full solution of the
boundary value problem. First, the lateral electric- and magnetic field components,
which are continuous in z-direction across the layer interfaces, are set equal. To
this end, one calculates the electric and magnetic field mode coefficient vectors at
the layer boundaries using Eq. (3.59). At the leftmost interface, Fig. 5.5a, the
continuity condition reads[

+Ŵ (0) +Ŵ (0)

+V̂ (0) −V̂ (0)

][
c

(0)
+

c
(0)
−

]
=

[
+Ŵ (1) +Ŵ (1)X̂(1)

+V̂ (1) −V̂ (1)X̂(1)

][
c

(1)
+

c
(1)
−

]
. (5.16)

At an intermediate interface between two layers l − 1 and l, Fig. 5.5b, one gets[
+Ŵ (l−1)X̂(l−1) +Ŵ (l−1)

+V̂ (l−1)X̂(l−1) −V̂ (l−1)

][
c

(l−1)
+

c
(l−1)
−

]
=

[
+Ŵ (l) +Ŵ (l)X̂(l)

+V̂ (l) −V̂ (l)X̂(l)

][
c

(l)
+

c
(l)
−

]
. (5.17)
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At the rightmost interface, Fig. 5.5c, one obtains[
+Ŵ (L)X̂(L) +Ŵ (L)

+V̂ (L)X̂(L) −V̂ (L)

][
c

(L)
+

c
(L)
−

]
=

[
+Ŵ (L+1) +Ŵ (L+1)

+V̂ (L+1) −V̂ (L+1)

][
c

(L+1)
+

c
(L+1)
−

]
. (5.18)

Starting from the rightmost interface, Eq. (5.18) can be written as[
+Ŵ (L)X̂(L) +Ŵ (L)

+V̂ (L)X̂(L) −V̂ (L)

][
c

(L)
+

c
(L)
−

]
=

[
f̂ (L+1)

ĝ(L+1)

]
c

(L+1)
+ +

[
p(L+1)

q(L+1)

]
, (5.19)

where one identifies f̂ (L+1) = Ŵ (L+1), ĝ(L+1) = V̂ (L+1), p(L+1) = Ŵ (L+1)c
(L+1)
− and

q(L+1) = −V̂ (L+1)c
(L+1)
− . Rearrange Eq. (5.19),[

−Ŵ (L) f̂ (L+1)

V̂ (L) ĝ(L+1)

][
c

(L)
−

c
(L+1)
+

]
=

[
Ŵ (L)X̂(L)

V̂ (L)X̂(L)

]
c

(L)
+ −

[
p(L+1)

q(L+1)

]
. (5.20)

From Eq. (5.20) one obtains

c
(L)
− = â(L)c

(L)
+ +r(L) , (5.21a)

c
(L+1)
+ = b̂(L)c

(L)
+ +s(L) , (5.21b)

where[
â(L)

b̂(L)

]
= +

[
−Ŵ (L) f̂ (L+1)

V̂ (L) ĝ(L+1)

]−1 [
Ŵ (L)X̂(L)

V̂ (L)X̂(L)

]
, (5.21c)[

r(L)

s(L)

]
= −

[
−Ŵ (L) f̂ (L+1)

V̂ (L) ĝ(L+1)

]−1 [
p(L+1)

q(L+1)

]
. (5.21d)

Eq. (5.21a) is now being substituted back into Eq. (5.17) for l = L, which describes
the boundary conditions between the second last and last layer,[

+Ŵ (L−1)X̂(L) +Ŵ (L−1)

+V̂ (L−1)X̂(L) −V̂ (L−1)

][
c

(L−1)
+

c
(L−1)
−

]
=

[
f̂ (L)

ĝ(L)

]
c

(L)
+ +

[
p(L)

q(L)

]
, (5.22a)

where[
f̂ (L)

ĝ(L)

]
=

Ŵ (L)
(

1 + X̂(L)â(L)
)

V̂ (L)
(

1− X̂(L)â(L)
) , (5.22b)

[
p(L)

q(L)

]
=

[
+Ŵ (L)X̂(L)r(L)

−V̂ (L)X̂(L)r(L)

]
. (5.22c)
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One observes that Eq. (5.22a) is virtually the same as Eq. (5.19), but with decre-
mented index. The procedure [Eqs. (5.19-5.22)] is, therefore, repeated for the re-
maining layer interfaces in decreasing order until the leftmost interface, where one
is left with[

+Ŵ (0) +Ŵ (0)

+V̂ (0) −V̂ (0)

][
c

(0)
+

c
(0)
−

]
=

[
f̂ (1)

ĝ(1)

]
c

(1)
+ +

[
p(1)

q(1)

]
. (5.23)

This can finally be solved for c
(0)
− and c

(1)
+ via[

c
(0)
−

c
(1)
+

]
=

[
−Ŵ (0) f̂ (1)

V̂ (0) ĝ(1)

]−1([
Ŵ (0)

V̂ (0)

]
c

(0)
+ −

[
p(1)

q(1)

])
. (5.24)

Eq. (5.21) and its equivalents for the other layers can subsequently be used to de-
termine the remaining unknowns c

(l)
+ , c

(l)
− iteratively.

In terms of the numerical complexity, it can be seen from the comparison with Sect.
3.5.4 and [11] that p(l), q(l), r(l) and s(l) are the only newly introduced quantities.
These quantities are vectors with a length determined by the number of modes, 2N̄ ,
considered in the calculation. On the other hand, the matrices â(l), b̂(l),f̂ (l), ĝ(l), which
are already needed in the original one-sided algorithm, are 2N̄×2N̄ -matrices. Thus,
the treatment of bidirectional illumination does not add any substantial memory
or time complexity to the case of single sided illumination. Furthermore, it can
be seen from Eqs. (5.21c, 5.21d) that the matrix inversion can be reused, thus the
computational effort is basically unchanged.

5.4 Application to the 4π-microscope

In the following, the algorithm presented above is applied to 4π-microscopy. The
principle was already illustrated in the motivation of this chapter, Fig. 5.1. The
latter is a variation of confocal microscopy that was introduced in the 1990s with
the intent to increase the axial resolution for thick samples. The basics are well ex-
plained in [76, 77]. The general idea is to employ two coherent counter-propagating
converging waves as a light source instead of applying focused light only from one
side. Since in most cases the objects of interest are in the sub-wavelength regime,
a scalar treatment is not sufficiently accurate. Therefore, exact optical methods are
considered as relevant for the simulation of 4π-microscopy. Fig. 5.6 illustrates an
x-z slice through the undisturbed foci produced by both one-sided (2π) and coher-
ent two-sided (4π) illumination. In this example, the 2π illumination generates one
single diffraction limited focal spot with the well-known lateral and axial extents pro-
portional to λ/NA and λ/NA2[82]. Bidirectional 4π-illumination results in a standing
wave interference pattern, which exhibits an axial intensity modulation with a sharp
λ/4 sized central peak and two side lobes. The position of the excitation focus can
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be controlled by shifting the relative phase of the two illumination beams, cf. [76,
77].
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Figure 5.6: Intensity of the undisturbed foci (central x-z slice) with one-sided 2π- (top) and
coherent two-sided 4π-illumination (bottom). The incident electric field is linearly polarized
in y-direction. Number of modes M = N = 41, grid period Px = Py = 10 µm, wavelength
λ = 800 nm, surrounding material water n = 1.33, NA = 1.28, linear polarization angle
ψ = 90◦.

Consider the situation illustrated in Fig. 5.7. In 4π-microscopy, certain regions of
the sample are prepared with fluorescence markers that are subsequently excited by
the illumination. For detection, only the global fluorescent light is measured[83]. For
testing the position and resolution accuracy, one assumes a microscopic ovoid pro-
tein sample suspended in water, which contains a small sub-λ region prepared with
fluorescence markers at its right boundary. Since the fluorescence molecule produces
a local absorption of the excitation light, the fluorescence markers are modeled by a
positive imaginary part in the local permittivity ε(~r).

First, it is investigated how the form of the focus changes in the presence of the
sample. To this end, the region prepared with the fluorescence markers is positioned
at the center of the undisturbed 4π-focus. An x-z slice through the aberrated 4π-
focus is shown in Fig. 5.8. It can be observed that the aberrations introduced by the
sample significantly change the form of the focus. On the one hand, the amplitude
of the central peak is decreased and intensity is spilled into the side lobes, which are
no longer arranged symmetrically around the central focus. On the other hand, the
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focus position is shifted in z-direction by more than 100 nm out of its original central
position.
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Figure 5.7: Spatial permittivity distribution ε(~r) (central x-z slice), which consists of
an ovoid protein envelope with axis diameters dp,x × dp,y × dp,z = 4 µm × 6 µm × 4 µm
(εp = 1.96) in water (εw = 1.77), containing another small ovoid structure with axis
diameters dfl,x×dfl,y×dfl,z = 0.8 µm×0.8 µm×0.4 µm prepared with fluorescence markers
(εp = 2.24 + 0.3i). For the calculation, the sample is divided into 28 layers and Gaussian
apodization is applied to the Fourier components of ε(~r).
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Figure 5.8: Intensity of the aberrated focus generated by 4π-illumination of the sample
shown in Fig. 5.7 (central x-z slice, parameters as before). The focus form and peak
height are significantly changed (cf. Fig. 5.6 bottom). The dashed green box indicates the
position and size of the fluorescent structure. Clearly, the focus is not located centrally
inside the sample.

In a second step, the sample is shifted along the z-axis, and the amount of fluo-
rescence light at several positions is determined. To this end, one assumes that the
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fluorescence light power is proportional to the light power that is absorbed in the
sample[84]. Fig. 5.9 shows the resulting curve (solid red line) and for comparison the
same curve for the sample consisting of only the fluorescent structure without the
protein envelope (blue dotted line). Clearly, the peak is shifted by approximately
100 nm compared to the case without protein envelope and, additionally, the form
of the peak is changed. This means that the small protein structure introduces
significant aberrations, which affect the measurement. The authors of [85] address
the problems generated by sample-induced aberrations in thick biological samples
and propose to implement an adaptive optics scheme in the experimental setup.
With the combination of the above concepts, these kinds of aberrations can now be
consistently simulated and, therefore, be better understood and avoided.
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Figure 5.9: Fluorescence light power Pfl vs. z-shift of the sample with (solid red) and
without (blue dotted) protein envelope.

5.5 Conclusions

In this chapter, the RCWA is applied to the simulation of 4π-microscopy. To this
end, various modifications are introduced. For the focused illumination, the localized
field approach by Auer and Brenner[17] is adopted for a fast and consistent handling
of arbitrarily structured illumination. Furthermore, a derivation for describing the
polarization state of an arbitrary structured illumination is provided. As an example,
the expressions for radial, azimuthal, linear and elliptic polarization are derived.
Finally, the introduction of an additional backside illumination into the existing
framework of the RCWA is presented. As an application, it is investigated how
the focus in 4π-microscopy is aberrated due to the presence of clustered protein
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structures. One observes that, if not corrected, this may result in a position shift
of the fluorescence peak in the range of several hundred nanometers. Hereby, it
is shown that sample-induced aberrations can be simulated with an exact method
for realistic 4π-illumination scenarios. Therefore, it is expected that this enables to
better understand and correct the aberrations occurring in these types of systems in
the future.
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6 | Fast rigorous iterative
method

This chapter is partly based on the publications [A5, A6].

6.1 Motivation and structure

The application of rigorous optical simulation algorithms is limited to the nanoop-
tical scale due to severe computing time and memory constraints. This is true even
for today’s high performance computers. To address this problem, the FRIM is
presented in this chapter, an algorithm that reduces the numerical complexity of
modal methods from O

(
N̄3
)
to O

(
N̄ logN̄

)
under certain conditions. At the same

time, the memory requirement decreases from O
(
N̄2
)
to O

(
N̄
)
. The FRIM is based

on circumventing the numerically complex eigenmode decomposition, which is re-
sponsible for the O

(
N̄3
)
dependence, by replacing this operation by a sequence of

efficient matrix multiplications. Apart from speed, another major advantage of the
iterative FRIM is the possibility to trade accuracy versus calculation time at the
desired mode count, which is not possible in standard modal methods. In the latter,
the only possible trade-off is a reduction of the number of modes considered in the
calculation. In the following, it is shown that, with the FRIM, structures like for
example certain large sized DOEs can be simulated exactly with a high mode count
in the order of 2000×2000 as shown in Table 6.1. This table illustrates the reduction
in calculation time and memory space achieved with the FRIM in direct comparison
to the RCWA.
Also the limitations of the FRIM have to be considered, which concern the layer

thickness, the NA, and the amount of absorption. It is shown that only objects with
thicknesses up to a few wavelengths can be simulated. Second, the NA of the calcu-
lation should be moderate, i.e., NAcalc ≤ nmin, where nmin is the smallest refractive
index in the grating structure. Third, only weak absorption should be present in the
object medium. Within the scope of these limitations, the FRIM can be considered
as an ideal method for the exact electromagnetic simulation of large sized DOEs,
which in most cases are presently modeled by treating the DOE in the TEA with a
subsequent scalar AS propagation. Especially at higher incident angles θ, the TEA
is known to loose its validity, producing unreliable results with no satisfactory alter-
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Table 6.1: Calculation time and memory demand of the RCWA and
the FRIM for different mode counts.

Calculation time Memory demand (RAM)
N̄ RCWA FRIM RCWA FRIM
202 5 s 6 s 47 MB 27 kB
1002 8 h 46 s 25 GB 638 kB
2002 22 d 279 s 389 GB 2.5 MB
20002 60 000 yr 11 h 3822 TB 244 MB
For the RCWA, the numbers at N̄ = 2002 and N̄ = 20002 are extrapolated values, where the
calculation time and the memory demand are assumed to grow with O

(
N̄3
)
and O

(
N̄2
)
, respectively.

All the other values originate from actual calculations conducted with an off-the-shelf hexacore server
with 3.70 GHz clock rate and 64 GB RAM.

native simulation method being available. In this chapter, the differences between
simulations conducted with the FRIM and the TEA are investigated. In the cases,
for which the TEA is known to fail, the FRIM is compared to the WPM[52] in order
to validate the results. Finally, it is illustrated that the FRIM becomes especially
useful in cases, where a small scale periodicity, such as in gratings, is not present
and, therefore, large calculation domains are inevitable. As an example, a numerical
simulation of the Zernike phase contrast method is performed.

This chapter is organized as follows. In Sect. 6.2, the iteration scheme of the FRIM
is derived. In Sect. 6.3, it is shown how the proposed algorithm can be efficiently
implemented at a numerical cost of O

(
N̄ logN̄

)
and with a memory requirement

of only O
(
N̄
)
. Sect. 6.4 investigates the convergence properties of the FRIM. On

the one hand, a strict mathematical convergence criterion is developed. It is derived
that the convergence behavior is exponential and shown how the number of necessary
iterations can be predicted before starting the calculation. On the other hand, an
empiric convergence condition is given in terms of the grating thickness, the object’s
absorption properties and the NA of the calculation. In Sect. 6.5, several simulation
results are shown in order to validate the FRIM. As a first test, the FRIM is directly
compared to the RCWA for a small sized DOE in order to verify that equal results
are obtained. In the second part, a large size Fresnel zone plate (FZP) out of fused
silica and with a phase height difference of π is simulated with the FRIM. The latter
cannot be simulated with the RCWA due to time and memory constraints. The result
is subsequently validated by both testing the energy conservation properties and by
a comparison to a scalar simulation treating the grating in TEA and a subsequent
AS propagation. In the third part, the FRIM is compared to a WPM simulation for
the case of a FZP with a phase height difference of 2π. This is especially interesting
because the intensity pattern behind the element originates only from diffraction at
the lateral interfaces, whereas the TEA would act as if no DOE were present at all.
In the fourth part, the Zernike phase contrast method is rigorously simulated with
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the FRIM. Finally, in Sect. 6.6, the FRIM is extended to the treatment of linear
anisotropic media.

6.2 Iteration scheme

In this section, an iterative algorithm for the full rigorous optical simulation of
spatially structured objects is developed. In the derivation of the RCWA, Sect. 3.3,
the propagation of the electromagnetic field within one grating layer slab was found
to be described by the first order differential equation9

∂

∂z

{[
Ẽ⊥
H̃⊥

]
(z)

}
= ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

][
Ẽ⊥
H̃⊥

]
(z) , (6.1)

where Ẽ⊥ and H̃⊥ denote the Fourier coefficients of the lateral electric and magnetic
field components, and M̂ (l)

12 and M̂ (l)
21 are the mode coupling matrices of the lth grating

layer. The general solution of Eq. (6.1) can be expressed as a matrix exponential,[
Ẽ⊥
H̃⊥

]
(z) = exp

{
ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

]
z

}[
Ẽ⊥
H̃⊥

]
(0) . (6.2)

Hence, Eq. (6.2) can be used to back-propagate the electromagnetic field across the
respective layer via[

Ẽ (l)
⊥;left

H̃(l)
⊥;left

]
= exp

{
−ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

]
d(l)

}[
Ẽ (l)
⊥;right

H̃(l)
⊥;right

]
, (6.3)

d(l) being the thickness of the lth layer. Consequently, the electromagnetic fields at
the left and right interface of the entire L-layer grating are connected via[

Ẽ (1)
⊥;left

H̃(1)
⊥;left

]
=

L∏
l=1

exp

{
−ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

]
d(l)

}[
Ẽ (l)
⊥;right

H̃(l)
⊥;right

]
. (6.4)

To obtain the most generality, as introduced in Chapter 5, also here it is assumed
that light may be incident from both the left and the right onto the grating. In
terms of the incident (L̃(0/L+1)

⊥ ), reflected (R̃⊥) and transmitted (T̃⊥) Fourier mode

9The algorithm also works with anisotropic permittivities / permeabilities, for which all blocks of
the coupling matrix are fully occupied (cf. Sect. 3.3.2). This extension is shown in Sect. 6.6 of
this chapter.



108 6.2 ITERATION SCHEME

coefficients, Eq. (6.4) reads[
1 1
Ĉ(0) −Ĉ(0)

] [
L̃(0)
⊥

R̃⊥

]
=

L∏
l=1

exp

{
−ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

]
d(l)

}

×
[

1 1
Ĉ(L+1) −Ĉ(L+1)

][
T̃⊥

L̃(L+1)
⊥

]
, (6.5)

where Ĉ(0/L+1) are the conversion matrices from the electric- to the magnetic field
Fourier mode coefficients in the homogeneous incident and transmitted regions as

given in Sect. 3.5. Eq. (6.5) can now be solved for either
[
L̃(0)
⊥ R̃⊥

]T
or
[
T̃⊥ L̃(L+1)

⊥

]T
,

whichever is needed,[
L̃(0)
⊥

R̃⊥

]
= Γ̂

[
T̃⊥

L̃(L+1)
⊥

]
(6.6a)[

T̃⊥
L̃(L+1)
⊥

]
= Γ̂−1

[
L̃(0)
⊥

R̃⊥

]
, (6.6b)

where

Γ̂ =

[
1 1
Ĉ(0) −Ĉ(0)

]−1

︸ ︷︷ ︸
∗c

L∏
l=1

exp

{
−ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

]
d(l)

}
︸ ︷︷ ︸

∗b

×
[

1 1
Ĉ(L+1) −Ĉ(L+1)

]
︸ ︷︷ ︸

∗a

(6.7a)

Γ̂−1 =

[
1 1

Ĉ(L+1) −Ĉ(L+1)

]−1 1∏
l=L

exp

{
+ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

]
d(l)

}

×
[

1 1
Ĉ(0) −Ĉ(0)

]
. (6.7b)

The matrices Γ̂ and Γ̂−1 are each a product of three different kinds of matrices
denoted by (*a), (*b) and (*c). Subsequently, Eqs. (6.6) are used to construct the
FRIM iteration scheme, which is illustrated in Fig. 6.1.

1. On the left side of the grating, initialize the iteration with the stacked vector[
L̃(0)
⊥;0 R̃⊥;0

]T
=
[
L̃(0)
⊥ R̃aprx

⊥

]T
, where the lower indices denote the iteration

index. R̃aprx
⊥ is a first approximation to the reflected mode coefficient vector10.

10One good choice for the initial R̃aprx
⊥ can, for instance, be obtained from the back propagation

of L̃(L+1)
⊥ through the grating in TEA.
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z

x, y

Layer: ...1 L

[
L̃(0)
⊥

R̃⊥

] [
T̃⊥

L̃(L+1)
⊥

]

[
L̃(0)
⊥;0

R̃⊥;0

]
=

[
L̃(0)
⊥

R̃aprx
⊥

]

[
L̃(0)
⊥;1

R̃⊥;1

]

[
wL̃(0)
⊥;1+L̃(0)

⊥

w+1

R̃⊥;1

]

[
T̃⊥;0

wL̃(L+1)
⊥;0 +L̃(L+1)

⊥

w+1

]

[
T̃⊥;0

L̃(L+1)
⊥;0

]

[
T̃⊥;1

L̃(L+1)
⊥;1

]

Nit

Γ̂

Γ̂−1

Γ̂−1

1. 2.

3.

4.

5.

6.

Figure 6.1: The FRIM iteration scheme alternately applies Γ̂ and Γ̂−1 to propagate the
mode coefficient vectors back and forth across the grating while partially mixing in the true
incident light coefficients at each side given some mixing parameter w ∈ R+

0 .

2. Apply Γ̂−1 to propagate the mode coefficient vector through the structure to
the right grating interface.

3. Mix the lower half of the resulting mode coefficient vector with the true incident
light coefficients L̃(L+1)

⊥ .

4. Apply Γ̂ to propagate the modified mode coefficient vector back through the
structure to the left grating interface.

5. Mix the upper half of the resulting mode coefficient vector with the true inci-
dent light coefficients L̃(0)

⊥ .

6. Repeat steps 2-5 until reaching convergence. The total number of iterations is
denoted by Nit.
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6.3 Fast and memory efficient implementation

In the following, it is shown how the iteration scheme derived in Sect. 6.2 can be im-
plemented fast and at the same time memory efficient by conducting efficient matrix
multiplications. It is proven that the proposed method has a numerical complexity
of the order O

(
N̄ logN̄

)
and a memory requirement of the order O

(
N̄
)
, N̄ being the

total number of modes in the calculation. These complexities are, in principle, the
same as for conducting a scalar AS propagation.

The numerical performance of the iteration scheme’s implementation in terms of
memory efficiency and calculation time mainly relies on the ability to efficiently
multiply an arbitrary known vector to both Γ̂ and Γ̂−1. In the following, it is shown
that these multiplications can be conducted such that the calculation time is of the
order O

(
N̄ logN̄

)
, and that the memory requirement is of the order O

(
N̄
)
. In the

following, only the efficient multiplication of the matrix Γ̂ is explained, since the
same procedure also applies to the multiplication of Γ̂−1. As shown in Eq. (6.7),
the matrix Γ̂ is made up of a multiplication of three separate matrices. In order
to multiply the entire matrix to a known vector, one has to conduct a consecutive
multiplication of all three constituent matrices.

6.3.1 First constituent matrix

The efficient multiplication of the first constituent matrix (∗a),[
1 1

Ĉ(L+1) −Ĉ(L+1)

]
, (6.8)

to a known vector is straightforward, since 1 is the identity matrix, and the matrix
Ĉ(L+1) is by definition a 2 × 2 block diagonal matrix. Clearly, this multiplication
can be implemented such that both the memory requirement and the numerical
complexity of the involved operations are of the order O

(
N̄
)
.

6.3.2 Second constituent matrix

The second constituent matrix consists of a product of matrix exponentials (∗b),
which need to be multiplied to a known vector. Ref. [86] summarizes several different
possibilities to compute the result numerically. In the following, two different ways
are presented - the first via a Taylor series expansion and the second via the ’Runge-
Kutta’ (RK) method. However, mind that there still exist numerous alternative
numerical integration schemes that could be used here. In principle, the applied
integration scheme only plays a minor role, if run at a sufficient accuracy level.
Though, differences may be observed in the runtime of the algorithm.
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Taylor series expansion

The most direct and therefore easiest way is to expand the exponential function into
a Taylor series via

exp

{
−ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

]
d(l)

}
≈

No∑
n=0

(
−ik0d

(l)
)n

n!

[
0 M̂

(l)
12

M̂
(l)
21 0

]n
. (6.9)

The expansion is truncated at some adequate order No. Given the desired accuracy
of the calculation, the necessary order No can be obtained as follows. First, calculate
the eigenvalue of the matrix

ik0M̂d(l) =

[
0 M̂

(l)
12

M̂
(l)
21 0

]
d(l) (6.10)

with the largest absolute value, λ(l)
max. This can be done iteratively, for instance, via

the Arnoldi iteration[87] using the same efficient multiplication techniques that are
described later in this section. Subsequently, determine the order No up to which

exp
(∣∣λ(l)

max

∣∣) =
No∑
n=0

∣∣∣λ(l)
max

∣∣∣n
n!

(6.11)

needs to be expanded to reach the desired accuracy by estimating the size of the
remainder[88]. For layer thicknesses in the order of the wavelength, one typically
needs to expand up to the order No ≈ 40 to reach machine precision. In order to
multiply the entire matrix shown in Eq. (6.9) to a known vector, it is sufficient to
be able to multiply the sub-matrices[5, 14, 86]

M̂
(l)
12 =

[
K̂x

[[
ε(l)
]]−1

K̂y −K̂x

[[
ε(l)
]]−1

K̂x + dbµ(l)ce
K̂y

[[
ε(l)
]]−1

K̂y − bdµ(l)ec −K̂y

[[
ε(l)
]]−1

K̂x

]
(6.12a)

M̂
(l)
21 =

[
−K̂x

[[
µ(l)
]]−1

K̂y K̂x

[[
µ(l)
]]−1

K̂x − dbε(l)ce
−K̂y

[[
µ(l)
]]−1

K̂y + bdε(l)ec K̂y

[[
µ(l)
]]−1

K̂x

]
(6.12b)

efficiently. The matrices that appear in the blocks of Eq. (6.12) are, however,
not entirely arbitrary, but have a specific structure. On the one hand, K̂x/y are
the diagonal matrices containing the normalized lateral wave vector components.
On the other hand,

[[
ε(l)
]]
and

[[
µ(l)
]]
denote the Toeplitz matrices made up of the

Fourier components of the electric permittivity ε(l) (x, y) and magnetic permeability
µ(l) (x, y), respectively. The multiplication of the diagonal matrices K̂x/y to a known
vector is again straightforward. The multiplication of the Toeplitz matrices, for
instance

[[
ε(l)
]]
, is equivalent to a convolution. This convolution can be carried out
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as a point-wise multiplication in position space, i.e.,[[
ε(l)
]]

ṽ = F
{
ε(l) (x, y) F−1 [ṽ] (x, y)

}
, (6.13)

where F is the two dimensional Fourier operator in the lateral coordinates x and
y. For continuous functions and an infinite number of modes this relation is exact.
However, for discrete systems and when using the FFT for Fourier transformation
it only remains exact, if the matrix

[[
ε(l)
]]
is defined in a circulant fashion11,12. The

reason is that, independent of their specific entries, all circulant matrices share the
same eigenvector matrix, which is known analytically and corresponds to theM×M
Fourier matrix

Fmm′ =
1√
M

e2πimm
′

M , (6.14)

familiar from the discrete Fourier transform (DFT)[89]. In the two-dimensional case,
the Fourier transformation operator reads

Fmn,m′n′ =
1√
MN

e2πimm
′

M e2πinn
′

N . (6.15)

Therefore, discrete counterpart of Eq. (6.13) is∑
m′n′

[[
ε(l)
]]
mn,m′n′

ṽm′n′ =
∑
m′n′

[
F̂diag

(
ε(l)
)
F̂−1

]
mn,m′n′

ṽm′n′

=
∑
m′n′

F̂mn,m′n′ ε
(l) (xm′ , yn′)

[
F̂−1ṽ

]
m′n′

. (6.16)

Identically, the multiplication of the inverse of the Toeplitz matrix,
[[
ε(l)
]]−1, can be

conducted via[[
ε(l)
]]−1

v = F
{
ε(l)−1 (x, y) F−1 [v] (x, y)

}
. (6.17)

The multiplication of the matrices
[[
µ(l)
]]
and

[[
µ(l)
]]−1 is done in the same way.

Altogether, the numerical complexity of multiplying the entire second constituent
matrix is dominated by the Fourier transformation, and is, therefore, of the order
O
(
N̄ logN̄

)
. The memory requirement is of the order O

(
N̄
)
.

11Additionally, an implicit band limitation of the permittivities and permeabilities is assumed and,
at the same time, also a periodic continuation of the truncated mode coefficient vectors of the
fields as explained in [17].

12In this case, Li’s factorization rules are not necessary, since the direct rule and the inverse rule
produce identical results[17]. Therefore, in Eq. (6.12), all Toeplitz matrices involving the inverse
rule can be identically replaced and treated like the Toeplitz matrices involving the direct rule.
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Runge-Kutta Method

Another possibility to compute the exponential matrix-vector product is via the RK
method[90], which solves first order differential equations of the form of Eq. (6.1).
Here, the ’fourth-order RK’ method, commonly referred to as ’RK4’, is applied. To
this end, each layer is subdivided into N (l) small slices of thickness h(l) = d(l)/N (l).
From one layer slice to the next, the field then changes according to[

Ẽ⊥
H̃⊥

] (
z + h(l)

)
=

[
Ẽ⊥
H̃⊥

]
(z) +

1

6
(K1 + 2K2 + 2K3 + K4) +O

(
h(l) 5

)
,

(6.18a)

where

K1 = h(l) ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

] [
Ẽ⊥
H̃⊥

]
(z) (6.18b)

K2 = h(l) ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

] {[
Ẽ⊥
H̃⊥

]
(z) +

K1

2

}
(6.18c)

K3 = h(l) ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

] {[
Ẽ⊥
H̃⊥

]
(z) +

K2

2

}
(6.18d)

K4 = h(l) ik0

[
0 M̂

(l)
12

M̂
(l)
21 0

] {[
Ẽ⊥
H̃⊥

]
(z) + K3

}
(6.18e)

This way, the electric and magnetic fields can be traced through the grating step
by step. This procedure can be applied for both the forward- as well as for the
backward-propagating direction, the latter with negative step size. Furthermore, if
this procedure is applied, it is not necessary to first approximate a continuous and
z-dependent refractive index distribution by the staircase approximation as in the
RCWA - the RK4 integrator can be directly applied to the z-dependent structure.

6.3.3 Third constituent matrix

The third constituent matrix (∗c) is the matrix inverse of a 2×2 block matrix, where
each block by itself is invertible. Therefore, one can rewrite[

1 1
Ĉ(0) −Ĉ(0)

]−1

=
1

2

[
1 −Ĉ(0)−1

1 +Ĉ(0)−1

]
. (6.19)

Moreover, since the matrix Ĉ(0) is a 2 × 2 block diagonal matrix, the inversion can
be conducted analytically. Therefore, as for the first constituent matrix, both the
memory requirement and the numerical complexity are of the order O

(
N̄
)
.
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6.4 Convergence and limitations

In this section, the convergence conditions of the algorithm proposed in Sect. 6.2
is investigated. In the first part, a mathematical convergence criterion based on
matrix eigenvalues is developed. In the second part, it is shown that the empiric
convergence criteria for the iterative method are as follows.

1. The grating thickness is in the order of few wavelengths or lower.

2. The NA of the calculation is approximately equal or smaller than the lowest
refractive index in the grating.

3. The grating structure is weakly or non-absorbing.

6.4.1 Mathematical convergence criterion

Consider the iteration scheme described in Sect. 6.2. In one full iteration step the
following procedure is conducted,[

L̃(0)
⊥;nit+1

R̃⊥;nit+1

]
= Γ̂

{[
1 0
0 w

w+1
1

]
Γ̂−1

([
w
w+1

1 0
0 1

][
L̃(0)
⊥;nit

R̃⊥;nit

]

+

[
L̃(0)
⊥

w+1

0

])
+

[
0

L̃(L+1)
⊥
w+1

]}
. (6.20)

If one inserts[
L̃(0)
⊥;nit

R̃⊥;nit

]
=

[
L̃(0)
⊥

R̃⊥

]
+

[
∆L̃(0)

⊥;nit

∆R̃⊥;nit

]
(6.21)

into Eq. (6.20) and simplifies, one directly obtains the relations[
L̃(0)
⊥;nit+1

R̃⊥;nit+1

]
=

[
L̃(0)
⊥

R̃⊥

]
+ Γ̂

[
1 0
0 w

w+1
1

]
Γ̂−1

[
w
w+1

1 0
0 1

]
︸ ︷︷ ︸

Ξ̂

[
∆L̃(0)

⊥;nit

∆R̃⊥;nit

]
(6.22)

and [
∆L̃(0)

⊥;nit

∆R̃⊥;nit

]
= Ξ̂nit

[
∆L̃(0)

⊥;0

∆R̃⊥;0

]
, (6.23)

where Ξ̂ is the contraction operator. Be λmax;Ξ̂ the eigenvalue of Ξ̂ with the largest ab-
solute value, which can be computed iteratively for instance via the Arnodi iteration[87].
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From Eqs. (6.22, 6.23), a convergence behavior of the form∣∣∣∣∣
[

∆L̃(0)
⊥;nit

∆R̃⊥;nit

]∣∣∣∣∣ ,
∣∣∣∣∣
[
L̃(0)
⊥;nit+1

R̃⊥;nit+1

]
−

[
L̃(0)
⊥;nit

R̃⊥;nit

]∣∣∣∣∣ ∝ ∣∣∣λmax;Ξ̂

∣∣∣nit

, (6.24)

is expected, i.e., the iteration series converges if and only if
∣∣∣λmax;Ξ̂

∣∣∣ ≤ 1. From this it

is also clear that the convergence rate increases for smaller
∣∣∣λmax;Ξ̂

∣∣∣. In order to test
the convergence behavior, a FRIM simulation of a small sized focusing DOE as shown
in Fig. 6.2 is conducted, which is illuminated with the plane wave êx exp (ik0z). The
DOE is obtained by the scalar design method described in [91].
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Figure 6.2: Refractive index distribution of a small sized DOE (scalar design[91]) made of
fused silica nFS = 1.4607[92], wavelength λ = 532 nm, thickness d = 577 nm. The element
is designed to produce a focus with NA = 0.5 at z = f = 1.2 mm. FRIM parameters:
Px = Py = 25 µm, M = N = 65.

Fig. 6.3 shows the convergence curve of the FRIM for this particular simulation.
It is in agreement with the analysis involving Eq. (6.24), i.e., the algorithm converges
exponentially until reaching the numerical limit. This includes another major ad-
vantage of the FRIM. Unlike standard methods, the iterative method allows trading
accuracy for speed at a given mode count by terminating the iteration at any desired
accuracy before reaching full convergence. It is observed that the convergence curve
flattens when the average error of a single mode coefficient is approaching machine
precision. It is remarkable that the convergence behavior does not depend on the
form of the incident light at all, but depends only on the wavelength, the grating
properties, the number of sampling points, and the choice of the mixing parameter
w. The exact influence of these quantities on λmax;Ξ̂ is, however, unknown. For the
mixing parameter, it was empirically found that a value of w = 0.5 .. 1 works quite
well in most cases.
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Figure 6.3: Convergence curve of the FRIM (solid blue line). The error estimate

errit (nit) = 1
N̄

∣∣∣∣[L̃(0)
⊥;nit+1 R̃⊥;nit+1

]T
−
[
L̃(0)
⊥;nit

R̃⊥;nit

]T ∣∣∣∣ is plotted versus the iteration

number nit. An exponential convergence curve according to
∣∣∣λmax;Ξ̂

∣∣∣nit

(dotted red line) is

observed, as predicted. The quantity
∣∣∣λmax;Ξ̂

∣∣∣ ≈ 0.3501 has been calculated via the Arnoldi

iteration[87]. The convergence curve flattens upon reaching almost machine precision.

6.4.2 Empiric convergence criteria

In Sect. 6.4.1 a mathematical convergence criterion was developed for the iteration
series presented in Sect. 6.2. However, no analytic relation between the physical set-
ting, the simulation parameters and the eigenvalues of Γ̂ and Ξ̂ is known. Therefore,
at this point, the empirically determined limits, within which the iterative algorithm
typically converges, are presented and motivated. Note that the three conditions
stated below are not strict limits. They should rather be seen as guidance values,
i.e., it is possible to violate one to a certain degree at the expense of another.

Grating thickness d ≈ λ

The grating thickness should be in the order of a few wavelengths or smaller. The
reason is that for too thick layers the Taylor expansion of the matrix exponential in
Eq. (6.9) has to be performed to very high orders No.
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Moderate NA

The NA of the calculation, NAcalc = λ

√(
M0

Px

)2

+
(
N0

Py

)2

, should be approximately

NAcalc < nmin, where nmin is the smallest refractive index in the grating, which is
typically air. As before, Px/y are defined as the diameter of the computation field
and M0/N0 as the one dimensional one-sided number of modes in the calculation. It
is observed that upon passing the evanescent limit in the corners of the calculation
area, i.e., NAcalc > nmin, the quantity

∣∣∣λmax;Ξ̂

∣∣∣ quickly becomes larger than one, which
leads to a diverging iteration. By going to even higher NAs, i.e., NAcalc � nmin, the
highest evanescent mode coefficients may become excessively dominant in the matrix
exponential, Eq. (6.9). In consequence, the double precision arithmetic may at some
point numerically cut off relevant contributions from the remaining modes.

Weakly absorbing structures

The exact relation between the absorption strength within the grating and the quan-
tity

∣∣∣λmax;Ξ̂

∣∣∣, which determines the convergence behavior of the FRIM, is not straight-
forward. However, empirically one observes the following. Compared to the non-
absorbing case, the quantity

∣∣∣λmax;Ξ̂

∣∣∣ is just slightly affected by weak absorption.
When gradually increasing the absorption strength there is, in first approximation,
also a gradual increase in

∣∣∣λmax;Ξ̂

∣∣∣. At some intermediate absorption level one ap-

proaches
∣∣∣λmax;Ξ̂

∣∣∣ = 1, where the FRIM would start to diverge. This transition point
varies, however, depending on the grating thickness and the particular structure.

As stated above, it is observed that a trade-off between the three mentioned limits
is always possible up to a certain degree. One may violate one limit to a certain
degree at the expense of another. Example: a grating of thickness d = 4λ may be
simulated with the FRIM if no absorption is present in the grating at all. At the
other extreme, one could also simulate a grating of thickness d = λ/20 with a higher
NA or a comparably high absorption.

6.5 Simulation results

In the first part of this section, the FRIM is validated by a direct comparison to the
RCWA. To this end, a small sized focusing DOE is simulated with both methods
and the results are compared. In the second part, the FRIM is used to rigorously
simulate a large sized focusing FZP (phase height π) out of fused silica, which cannot
be simulated with the RCWA due to time and memory constraints. The result
is validated by testing the conservation of energy, and it is compared to a scalar
simulation treating the grating in TEA and a subsequent AS propagation (TEA-
AS). In the third part, the FRIM is compared to the WPM for a FZP with a phase
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height of 2π. In the fourth part, the Zernike phase contrast method is rigorously
simulated with the FRIM.

6.5.1 Comparison: FRIM vs. RCWA (small sized DOE)

As a first test, the FRIM is validated by comparing its results to an actual RCWA
simulation. To this end, one considers again the small sized focusing DOE shown
in Fig. 6.2, which can still be simulated with the RCWA. The DOE, which is
illuminated with the plane wave êx exp (ik0z) at λ = 532 nm, is simulated with both
the RCWA and the FRIM. In the RCWA simulation, the circulant definition of the
Toeplitz matrices as proposed in [17] is applied. The reason is that this circulant
definition is inherently contained in the FRIM algorithm due to the representation
of the Toeplitz matrices as a multiplication in position space. Fig. 6.4 shows an x-z
slice through the simulated focus produced by the DOE for both the FRIM (top) and
the RCWA (bottom). The differences between the RCWA and the FRIM simulations
are in the order of machine precision.
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Figure 6.4: FRIM (top) and RCWA simulations (bottom). Electric field amplitude (x-
z slice through the focus) produced by the DOE shown in Fig. 6.2 for straight plane
wave incidence. The RCWA and FRIM results are identical up to machine precision.
FRIM/RCWA parameters: M0 = N0 = 32, No = 46, Nit = 30, NAcalc = 0.96.
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Figure 6.5: Convergence curve of the FRIM (solid blue line). The error estimate

errRCWA (nit) = 1
N̄

∣∣∣∣[L̃(0)
⊥;nit+1 R̃⊥;nit+1

]T
−
[
L̃(0)
⊥;RCWA R̃⊥;RCWA

]T ∣∣∣∣, which denotes the

error with respect to the RCWA result, is plotted versus the iteration number nit. The
same exponential convergence behavior as shown in Fig. 6.3 is observed.

In Fig. 6.3, convergence was defined as the difference between successive iterations.
In Fig. 6.5, convergence is considered as the difference to the RCWA result. For
each iteration step, nit, one defines the deviation of the iterative result from the
RCWA result via the error measure errRCWA (nit). One clearly sees that the algorithm
converges exponentially to the RCWA result until reaching a limit of approximately
10−13. Also, here the

∣∣∣λmax;Ξ̂

∣∣∣nit

convergence behavior predicted in Sect. 6.4.1 is
confirmed.

6.5.2 Comparison: FRIM vs. TEA-AS (large sized FZP)

Now, a problem is regarded, which is not solvable with the RCWA due to time and
memory constraints. Consider a large sized FZP with a phase height of π and the
following parameters. Material fused silica, nFS = 1.4607[92], wavelength λ = 532 nm,
thickness d = 577 nm, number of radii nradii = 160, focus at z = f = 200 µm,
computational grid period Px = Py = 300 µm, number of pixels M = N = 783.
This FZP is illuminated with the plane wave êx exp (ik0z). Fig. 6.6 shows an x-y
slice through the focus simulated with the FRIM (left) and the TEA-AS (right). One
observes that the TEA-AS focus is perfectly rotationally symmetric. In contrast, this
is not what one expects from a vectorial calculation. At this size scale, one anticipates
an asymmetry in x-y-direction due to polarization effects, which the FRIM result
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Figure 6.6: Exact FRIM simulation (left) and scalar TEA simulation (right) of the focus.
Electric field amplitude (x-y slice) generated by the large size π-FZP for straight plane
wave incidence. Due to polarization effects, the FRIM focus is clearly smeared out in x-
direction, whereas the TEA focus is perfectly rotationally symmetric. FRIM parameters:
M0 = N0 = 391, No = 30, Nit = 20, NAcalc = 0.98.

clearly shows. This characteristic asymmetric oval focus form is typically known
from a lens focus with linear incident polarization. Unfortunately, it is not possible
to compare the FRIM result in Fig. 6.6 to the RCWA. The reason is that the
RCWA calculation would take approximately 216 years on the same computer, and
it would require at least 90 TB of RAM (cf. Table 6.1). Therefore, one has to rely
on consistency requirements to assess whether the FRIM result is correct. In this
case, the conservation of energy is considered. Since the DOE is non-absorbing,
the amount of energy contained in the incident wave must equal the amount of
energy contained in the reflected and transmitted waves combined. In this particular
example, the power dissipation is Pdiss < 10−13. Hence, the energy is conserved
almost up to machine precision.

6.5.3 Comparison: FRIM vs. WPM (large sized FZP)

In the following, consider the same illumination and the same FZP structure as in
Sect. 6.5.2, but now with a phase height of 2π, i.e., a thickness of d = 1155 nm.
In this case, the TEA treats the structure as a constant transmission object and
one can, therefore, expect that the incident plane wave is not altered by the TEA
at all. One of the few methods for treating inhomogeneous media at high NA is
the WPM[52], which is scalar and unidirectional. It was recently demonstrated[93]
as very comparable to rigorous COMSOL simulations[94]. Therefore, the FRIM is
compared to the result of the WPM. Fig. 6.7 shows a central x-z slice (top) and y-z
slice (center) of the electric field amplitude behind the 2π-FZP for the FRIM, and a
central x-z slice for the WPM (bottom). First, one observes that, for both simulation
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methods, the wave form differs significantly from that of a plane wave, which is what
the TEA would predict in the transmitted region. Furthermore, in all three images
two foci are seen at z ≈ 95 µm and z ≈ 200 µm, respectively. In principle, also
other features, such as the tails of the foci, look quite similar. Note, however, that,
in the scalar WPM simulation, the peak amplitude of the second focus is predicted
higher than in the exact simulation. Moreover, in the scalar WPM simulation the
second focus is predicted to be nearly symmetric in axial direction, whereas this is
clearly not the case in the exact FRIM simulation. The asymmetry is a polarization
artifact, since one observes significant differences in the x- and y-polarization slices
for the FRIM.
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Figure 6.7: Electric field amplitude behind a 2π-FZP for plane wave light incidence.
Rigorous FRIM simulation (top: x-z slice; center: y-z slice) and WPM simulation (bottom:
x-z slice). Both simulations exhibit similar features and differ significantly from the form of
a plane wave. Differences in the focus form and amplitude are observed. FRIM parameters:
M0 = N0 = 391, No = 60, Nit = 18, NAcalc = 0.98
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6.5.4 FRIM simulation of the Zernike phase contrast method

To give an example for a large scale problem, the FRIM is applied to simulate the
Zernike phase contrast method[95]. With this method, pure phase objects can be
made visible on a detector by filtering with a phase plate in the Fourier domain.
The corresponding optical setup is illustrated in Fig. 6.8. Here, the electric field
behind the phase object, which is shown in Fig. 6.9, is considered as given. It
is assumed that the phase object is very thin, i.e., the TEA can be applied here
and the polarization of the initial wave is not affected upon the transition. The
combination of the lens and the propagation to the phase plate is treated by a
Fourier transformation, here realized by a FFT. The result is used as the input
for the rigorous FRIM calculation, where the polarization direction of the electric
field modes in front of the phase plate, L̃ (k) /

∣∣∣L̃ (k)
∣∣∣, is obtained as described for

linear polarization in Sect. 5.2. The propagation from the back side of the phase
plate to the detector is again treated by a FFT. The FRIM is applied only for the
transmission through the phase plate, because there the illumination is a strongly
converging wave with high NA, whereas the thin phase object is only illuminated by
a plane wave.

f f ff

phase platephase object detector

z

x, y

Figure 6.8: Optical setup of the Zernike phase contrast method. A phase object is illumi-
nated by a plane wave, followed by an optical Fourier transformation. In the Fourier plane,
the light passes through a circular λ/4 phase plate with a diameter of 2.5 µm. Another
optical Fourier transformation represents the propagation to the detector.

In the following, it is assumed that λ = 633 nm and that the initial incident plane
wave is y-polarized, i.e., êy exp (ik0z). Fig. 6.10 shows the simulated detector images
for the case that the transition through the phase plate is, on the one hand, calculated
with the FRIM (left) and, on the other hand, with the TEA (right). Generally, both
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Figure 6.9: Sample phase object consisting of 100 randomly distributed circles with radius
r = 2 µm incident at the optical setup shown in Fig. 6.8. The phase jump within a circle
is ∆φ = 0.1π. Grid period Px = Py = 100 µm, number of pixels M = N = 201.
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Figure 6.10: Rigorous FRIM simulation (left) and scalar TEA simulation (right) of the
Zernike phase contrast method (electric field amplitude at the detector) for the incident
phase object shown in Fig. 6.9. FRIM parameters: M0 = N0 = 100, No = 30, Nit = 30,
NAcalc = 0.633
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detector images reproduce the initial phase object. However, the background in the
FRIM image is much more strongly modulated than in the TEA image. The reason
is that, in contrast to the TEA, in the exact FRIM simulation, reflections and mode
coupling across the lateral phase plate interfaces are taken into account. Therefore,
a different fraction of the actual object information crosses the phase plate.

6.6 Extension to anisotropic media

The FRIM can be directly extended to anisotropic media by replacing the isotropic
coupling matrix in Eq. (6.1) by its anisotropic counterpart derived in Sect. 3.3.2,

∂

∂z

[
Ẽ⊥ (z)

H̃⊥ (z)

]
= ik0

[
M̂11 M̂12

M̂21 M̂22

][
Ẽ⊥ (z)

H̃⊥ (z)

]
, (6.25a)

with

M̂11 =

[
+M̂yzM̂−1

zz K̂y−K̂xQ̂−1
zz Q̂zx −M̂yzM̂−1

zz K̂x−K̂xQ̂−1
zz Q̂zy

+M̂xzM̂−1
zz K̂y−K̂yQ̂−1

zz Q̂zx −M̂xzM̂−1
zz K̂x−K̂yQ̂−1

zz Q̂zy

]
(6.25b)

M̂12 =

[
+M̂yx+K̂xQ̂−1

zz K̂y−M̂yzM̂−1
zz M̂zx +M̂yy−K̂xQ̂−1

zz K̂x−M̂yzM̂−1
zz M̂zy

−M̂xx+K̂yQ̂−1
zz K̂y+M̂xzM̂−1

zz M̂zx −M̂xy−K̂yQ̂−1
zz K̂x+M̂xzM̂−1

zz M̂zy

]
(6.25c)

M̂21 =

[
−Q̂yx−K̂xM̂−1

zz K̂y+Q̂yzQ̂−1
zz Q̂zx −Q̂yy+K̂xM̂−1

zz K̂x+Q̂yzQ̂−1
zz Q̂zy

+Q̂xx−K̂yM̂−1
zz K̂y−Q̂xzQ̂−1

zz Q̂zx +Q̂xy+K̂yM̂−1
zz K̂x−Q̂xzQ̂−1

zz Q̂zy

]
(6.25d)

M̂22 =

[
−K̂xM̂−1

zz M̂zx−Q̂yzQ̂−1
zz K̂y −K̂xM̂−1

zz M̂zy+Q̂yzQ̂−1
zz K̂x

−K̂yM̂−1
zz M̂zx+Q̂xzQ̂−1

zz K̂y −K̂yM̂−1
zz M̂zy−Q̂xzQ̂−1

zz K̂x

]
. (6.25e)

As shown in the derivation of the fast and efficient matrix multiplication scheme in
Sect. 6.3, all the constituent matrices are required to be either diagonal or circulant
matrices for the algorithm to work. In fact, also in the anisotropic case, the matrices
K̂x/y are diagonal and the matrices M̂αβ and Q̂αβ retain a circulant form. The
latter may be not directly obvious, but can be derived from some basic properties of
circulant matrices.

6.6.1 Properties of circulant matrices

As mentioned before, all circulant matrices have the same eigenvector matrix (the
Fourier matrix)[89]. From this property, the following can be concluded.

1. All circulant matrices commute,

Ĉ1Ĉ2 = Ĉ2Ĉ1 . (6.26)

2. The sum of two circulant matrices is a circulant matrix. The eigenvalues of



6.6.2 SIMULATION OF A HALF-WAVE PLATE 125

the sum equals the sum of the eigenvalues,

Ĉ1 + Ĉ2 = F̂ D̂1F̂
−1 + F̂ D̂2F̂

−1 = F̂
(
D̂1 + D̂2

)
F̂−1 , (6.27)

where D̂1/2 are the diagonal eigenvalue matrices.

3. The product of two circulant matrices is a circulant matrix. The eigenvalues
of the product equals the product of the eigenvalues,

Ĉ1Ĉ2 = F̂ D̂1F̂
−1F̂ D̂2F̂

−1 = F̂ D̂1D̂2F̂
−1 . (6.28)

Obviously, it is possible to operate with circulant matrices just as one would with
complex numbers. Since the matrices M̂αβ and Q̂αβ only consist of sums and products
of circulant matrices, they themselves must also have this form. Consequently, the
fast multiplication scheme shown in Sect. 6.3 can be applied to the anisotropic
coupling matrix as is.

6.6.2 Simulation of a half-wave plate

As an example, consider a circular-shaped half-wave plate (HWP) with radius rhwp =
30 µm as shown in Fig. 6.11, which consists out of the material calcite - a mate-
rial that exhibits birefringence. At the wavelength λ = 590 nm, the refractive in-
dices of the ordinary and extraordinary axes are nslow = 1.658 and nfast = 1.486,
respectively[96]. Assume that this HWP is illuminated centrally and head-on by a

k
f

s
ψ

ψ

half-wave plate

Figure 6.11: A HWP is illuminated with a linearly polarized Gaussian beam at the angle
ψ = 45◦ to the fast axis. The polarization angle of the incident light is turned by 2ψ = 90◦.

linearly polarized Gaussian beam with σ = 40 µm, where the electric field polariza-
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tion vector and the fast axis form the angle ψ = 45◦. Due to the refractive index
differences along the fast and slow axis, a relative phase difference δφ = k0 δn d
is created between the polarization components upon the propagation through the
waveplate, where δn = nslow − nfast and d is the thickness of the waveplate. The
thickness of a HWP is chosen such that δφ = π, i.e., the component along the slow
axis is retarded by half an oscillation cycle, which corresponds to a sign change. In
consequence, the HWP is expected to turn the plane of polarization by 2ψ = 90◦

relative to the incident polarization. Fig. 6.12 shows the orientation of the polariza-
tion vectors before (left) and behind (right) the waveplate calculated with a FRIM
simulation. It is clearly seen that, as expected, the HWP rotates the polarization
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Figure 6.12: Anisotropic FRIM simulation: fraction of linearly polarized light at the front
(left) and back (right) of the HWP. Every 10th vector is plotted in each dimension. FRIM
parameters: Px = Py = 200 µm, M = N = 401.

vector of the incident light by 2ψ = 90◦, whereas the original polarization state
remains unchanged outside the waveplate area.

6.7 Conclusions

In this chapter, the FRIM is introduced, a new algorithm for the exact simulation
of large scale and high resolution optical problems. It is shown that, under certain
conditions, both an eigenvalue decomposition and large numeric matrix inversions
as inherent to modal methods can be circumvented by replacing these operations by
a sequence of efficient matrix multiplications. This approach reduces the numerical
complexity from O

(
N̄3
)
in modal methods to O

(
N̄ logN̄

)
. At the same time, the

memory requirement decreases from O
(
N̄2
)
to O

(
N̄
)
. This makes the complexity of
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the FRIM comparable to standard scalar propagation methods like, for instance, the
AS propagation. A major advantage of the iterative nature of the FRIM is the pos-
sibility to trade accuracy versus calculation time at any desired mode count, which
is not possible in standard modal methods, for which the only possible trade-off is a
reduction of the number of modes considered in the calculation. It is demonstrated
that, with the FRIM, large scale structures, such as certain DOEs, can be simulated
rigorously at very high mode counts, with 2000 × 2000 sampling points and more
being possible. Due to this dense sampling of the angular spectrum, the FRIM en-
ables to raise the lateral dimensions of rigorously analyzable structures to a much
higher level. Furthermore, it is proven that the results of the FRIM coincide with
the RCWA, provided that an RCWA simulation can still be conducted. When no
such comparison is possible, it is shown that, on the one hand, the FRIM result
is indeed fully energy conserving, and, on the other hand, gives similar results as
established scalar propagation methods like the TEA and the WPM. Furthermore,
it is demonstrated that the FRIM is also especially useful for the simulation of struc-
tures that do not exhibit a small scale periodicity as in gratings, i.e., in cases where
large calculation domains are inevitable. As an example, a numerical simulation of
the Zernike phase contrast method is performed. Eventually, it is shown how the
FRIM can be extended to the treatment of anisotropic media as well. To this end,
the transition of a linearly polarized Gaussian beam through a HWP is simulated.

Furthermore, also the convergence properties of the FRIM are investigated. First,
a strictly mathematical convergence criterion is derived, which permits estimating
the number of necessary iterations as well as the calculation time before actually
starting with the iteration. Second, the empiric convergence behavior of the FRIM
is motivated. It is found that the physical limitations concern the layer thickness (up
to a few wavelengths), the NA of the calculation (NAcalc ≤ nmin), and the amount of
absorption in the grating (weak). Nevertheless, it is also shown that one may violate
one limit to a certain degree at the expense of another, i.e., the mentioned limits are
not strict and a trade-off is always possible.

In the section about the convergence properties it is concluded that, when any of
the iterations diverges, this does not necessarily mean that the limited accuracy of the
double precision arithmetic is the cause. Therefore, it is expected that convergence
improvements of the FRIM are still possible and that, potentially, also other iteration
schemes with a better convergence behavior may still be found.
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7 | Conclusions and outlook

In this dissertation, the application range of the RCWA is extended. The modifica-
tions of the framework are presented in three parts.

In Chapter 4, the RCWA is extended to allow for the simulation of structured
incident and transmitted regions. This way, axially extended objects, such as long
waveguides, fibers or integrated optical components can be simulated in an exact
and fully vectorial manner, while reflections from unwanted distant interfaces with
homogeneous regions are completely avoided. Furthermore, it enables treating struc-
tured layers of large axial extent with only one or even no interface to a homoge-
neous region at all. Possible examples include the mode coupling into or out of long
waveguides, perturbations and small defects in long waveguides and their effect on
eigenmode propagation, or the evanescent coupling between waveguides. In order to
extend the framework, the boundary value problem of the RCWA is reformulated
and established solution algorithms like the S-matrix approach or the ETMA are
adapted. Furthermore, the energy flow properties and the propagation direction of
eigenmodes in structured media are derived, so that sensible boundary conditions
can be set at the outer layer interfaces.
In order to verify the approach, first, it is demonstrated that the numerically cal-

culated eigenmodes of a planar dielectric waveguide are in good agreement with the
analytic eigenmodes. Second, it is shown that the evanescent coupling between two
adjacent waveguides can be reproduced. A comparison to CMT is done for both a
weakly and a strongly coupled system. A good agreement is, indeed, observed in
the weakly coupled regime. Third, the mode coupling of a focused Gaussian beam
from vacuum into a long GRIN fiber without a rear interface is simulated. On the
one hand, the analytically known imaging characteristic of sech-profile waveguides
is demonstrated. On the other hand, it is observed that, for medium to large prop-
agation distances, the BPM develops strong artifacts, which are not present in the
RCWA simulation. The reason is that the BPM accumulates errors upon every prop-
agation step dz. This is clearly not the case for the RCWA, which allows a valid and
fast field calculation even for large propagation distances. The latter is, in principle,
only limited by the numerical error from the eigenvalue decomposition.

In Chapter 5, the framework of the RCWA is extended to the treatment of coherent
bidirectional structured light incidence. To this end, the following concepts are com-



130 CHAPTER 7. CONCLUSIONS AND OUTLOOK

bined. First, the localized field approach by Auer and Brenner[17] is adopted for a fast
and consistent modeling of arbitrary structured illumination. Second, a framework
is introduced, which allows modeling an arbitrary given polarization state on struc-
tured wave fronts. As an example, expressions for different polarization types such
as linear, radial, azimuthal or elliptic polarization are stated. Third, coherent bidi-
rectional structured light incidence is integrated into the existing RCWA framework.
The additional introduction of a backside illumination symmetrizes and, therefore,
completes the description of the RCWA. Finally, the mentioned concepts are com-
bined to investigate how the light focus in 4π-microscopy is aberrated due to the
presence of clustered protein structures. One observes that, if not corrected, the
aberrations may result in a fluorescence peak position shift in the range of several
hundred nanometers in the vicinity of a specimen. In summary, it is shown that,
in principle, sample-induced wave front aberrations can be simulated with an exact
method for realistic 4πillumination scenarios. Therefore, it is expected that this
enables a better understanding and correction of the aberrations occurring in these
types of systems.

In Chapter 6, the FRIM is developed, which represents a new algorithm for the
exact simulation of large scale and high resolution optical problems based on an
iterative approach. It is shown that, under certain conditions, the FRIM can reduce
the algorithmic complexity from O

(
N̄3
)
of modal methods to O

(
N̄ logN̄

)
, where at

the same time the memory requirement decreases from O
(
N̄2
)
to O

(
N̄
)
. The latter

is achieved by circumventing the computationally complex eigenmode decomposi-
tion inherent to standard modal methods, which is responsible for the algorithmic
complexity of O

(
N̄3
)
, by replacing this operation by a sequence of efficient matrix

multiplications. Indeed, this makes the numerical complexity of the FRIM compa-
rable to standard scalar propagation methods like, for instance, the AS propagation.
This way, one of the main drawbacks of rigorous Maxwell solvers - the limitation to
very small calculation domains - may be eased. It is demonstrated that the FRIM
is applicable to certain large scale structures, such as certain DOEs, which can be
simulated rigorously at very high mode counts, with 2000 × 2000 sampling points
and more being possible. Due to this dense sampling of the angular spectrum, the
lateral dimensions of rigorously analyzable structures is raised to a much higher
level. Furthermore, a major advantage of the FRIM is the possibility to terminate
the iteration process at any desired accuracy, i.e., it is possible to trade accuracy
versus calculation time at any desired fix mode count. The latter is not possible in
standard modal methods, for which the only possible trade-off is a reduction of the
number of modes considered in the calculation.
To verify the validity of the FRIM, several comparisons to established simulation

methods are conducted in different application scenarios. First, it is shown that the
FRIM and the RCWA coincide for small problem sizes - here a focusing DOE with
small-scale periodicity - provided that an RCWA simulation can still be conducted.
Second, in the case of a large sized FZP with a phase height of π, it is demonstrated
that the FRIM result is comparable to the TEA, whereas the typical asymmetric
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focus shape is, indeed, reproduced by the rigorous FRIM. Since in this case no
comparison with the RCWA is possible, it is pointed out that the FRIM result indeed
conserves the energy in the order of 10−13. Third, for a large sized FZP with a phase
height of 2π, the FRIM is compared to the high-NAWPM, since the intensity pattern
behind the phase object originates only from diffraction at the lateral interfaces and
the TEA acts as if no phase object were present at all. It is shown that both the
FRIM and the WPM results have similar characteristics. However, especially in
focused regions the WPM deviates significantly from the FRIM. It is shown that the
latter likely is a polarization effect, since, in these regions, one observes differences
in the FRIM results for TE- and TM-polarization. Fourth, it is shown that the
FRIM becomes especially useful in cases, where a small scale periodicity, such as in
gratings, is not present and, therefore, large calculation domains are inevitable. As an
example, a numerical simulation of the Zernike phase contrast method is performed.
Finally, it is shown that the FRIM can be directly extended to the treatment of
anisotropic media. To this end, the transition of a linearly polarized Gaussian beam
through a HWP is simulated. As expected, a rotation of the polarization direction
is observed behind the waveplate.
In addition to the mere results, the mathematical and the empiric convergence

properties of the FRIM are analyzed in detail. On the one hand, a strictly mathe-
matical convergence criterion is derived on the basis of a contraction operator. Since
the mathematical convergence is nearly exponential, the number of necessary itera-
tions as well as the calculation time may be estimated before actually starting with
the calculation. On the other hand, the empiric convergence behavior of the FRIM
is motivated. It is found that the physical limitations concern the layer thickness (up
to a few wavelengths), the NA of the calculation (NAcalc ≤ nmin) and the amount
of absorption in the grating (weak). Furthermore, it is shown that it is possible to
violate one limit to a certain degree at the expense of another, i.e., the mentioned
limits are not strict and a trade-off is always possible.

Outlook

With the extensions presented in this dissertation, the RCWA becomes applicable
to a much wider set of realistic problems. First, the extension to structured incident
and transmitted regions is expected to facilitate the exact simulation of waveguides,
optical fibers and integrated optical components, since eigenmode illumination is in-
herently treated and no artificial interfaces to homogeneous regions must be enforced
at the boundaries. The latter should be especially useful in the modeling of small-
diameter optical fibers, where polarization effects play a critical role. Furthermore,
in the context of waveguides and fibers, for the first time the error-free numerical cal-
culation of fiber coupling efficiencies is possible within the RCWA framework, since
unwanted reflections from unphysical interfaces can be entirely eliminated. Second,
the RCWA extension to coherent bidirectional light incidence allows an exact simu-
lation of multi-directional illumination scenarios, which may be applied, for instance,
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to the simulation of 4π-microscopy experiments. Another advantage of this extension
is the possibility to invert the light path in a simulation without having to rotate or
mirror the electric permittivity and magnetic permeability distribution. This way,
implementation errors can easily be detected and avoided. Third, the FRIM allows
simulating certain problem geometries with an unprecedented resolution. It is ex-
pected that the rigorous design of, for instance, DOEs is greatly facilitated or even
made possible at all, since the inverse grating problem is known to require a larger
number of iteration steps. Furthermore, in the section about the FRIM convergence
properties, it is motivated that a diverging iteration must not necessarily be caused
by running into the limits of the double-precision floating point arithmetic. The
decision about convergence or divergence should rather be regarded as an intrinsic
property of the iteration scheme with the grating and the mode count as parameters.
Therefore, convergence improvements may still be found, for instance by applying
alternative iteration schemes. This way, the present limitations on the FRIM may be
eased and more general problem geometries may be simulated with a high resolution
in the near future.
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