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Abstract

Nowadays, an increasing number of numerical modeling techniques, notably by means of the
finite element method (FEM), are involved in the industrial design process and play a vital role
in the area of the biomedical engineering. Particularly, the computational fluid dynamics (CFD)
has become a promising tool for investigating the fluid behavior and has also been used to study
the cardiovascular hemodynamics to predict the blood flow in the cardiovascular system over the
recent decades.

However, simulating a fluid in rotational frames is not trivial, as the classical fluid calculation
considers that the geometry of the fluid domain does not alter along the time. In the meanwhile,
due to the high rotating speed and the complex geometry of the ventricular assist device (VAD), a
turbulent flow must be developed inside the pump housing. The Navier-Stokes equations are not
applicable in respect of our available computing resource, additional assumptions and approaches
are often applied as a means to model the eddy formation and cope with numerical instabilities.

For many applications, there is still a big gap between the experimental data and the numer-
ical results. Some of the discrepancies come especially from uncertain data which are used in the
physical model, therefore, Uncertainty Quantification (UQ) comes into play. The Galerkin-based
polynomial chaos expansion method delivers directly the mean and higher stochastic moments in
a closed form. Due to the Galerkin projection’s properties, the spectral convergence is achieved.

This thesis is dedicated to developing an efficient model to simulate the blood pump assuming
uncertain parametric input sources. In a first step, we develop the shear layer update approach
built on the Shear-Slip Mesh Update Method (SSMUM), our proposition facilitates the update
procedure in parallel computing by forcing the local vector to retain the same structure. In a sec-
ond step, we focus on the Variational Multiscale method (VMS) in order to handle the numerical
instability and approximate the turbulent behavior in the blood. As a consequence of utilizing
the intrusive Polynomial Chaos formulation, a highly coupled system needs to be solved in an
efficient manner. Accordingly, we take advantage of the Multilevel preconditioner to precondi-
tion our stochastic Galerkin system, in which the Mean-based preconditioner is prescribed to be
the smoother. Besides, the mean block is preconditioned with the Schur-Complement method,
which leads to an acceleration of the solution process. Hence, by developing and combining the
proposed solvers and preconditioners, dealing with a large coupled stochastic fluid problem on
a modern computer architecture is then feasible. Furthermore, based on the stochastic solu-
tions obtained from the previous described system, we obtain valuable information about the
blood flow accompanied with certain level of confidence, which is beneficial for designing a new
blood-handle device or improving the current model.





Zusammenfassung

Heutzutage spielen in zunehmender Zahl numerische Modellierungstechniken - allen voran
Techniken, welche die Finite-Elemente-Methode (FEM) verwenden - eine Rolle bei Prozessen
im Industriedesign, Dar uber hinaus sie sind ebenso nicht mehr wegzudenken aus dem Bereich
der biomedizinischen Ingenieurwissenschaften. Insbesondere die Numerische Strömungsmechanik
(CFD) hat sich zu einem wichtigen Werkzeug entwickelt, um das Verhalten von Fluiden zu un-
tersuchen, und wurde in den letzten Jahrzehnten unter anderem dazu verwendet, kardiovaskuläre
Hämodynamik zu studieren und den Blutfluss im kardiovaskulären System vorherzusagen.

Allerdings birgt die Simulation einer Flüssigkeit in einem rotierenden Gebiet einige Herausfor-
derungen. Denn bei klassischen Flüssigkeitsberechnungen wird die Geometrie eines Strömungs-
gebiets als unabhängig von zeitlichen Veränderungen betrachtet. Wegen der hohen Rotations-
geschwindigkeit und der komplexen Geometrie des ventrikulären Unterstützungssystems muss
sich im Pumpgehäuse eine turbulente Strömung entwickeln. Die Navier-Stokes-Gleichungen sind
nicht direkt anwendbar im Hinblick auf die uns zur Verfügung stehenden Berechnungsressour-
cen, zusätzliche Annahmen und Herangehensweisen werden oft eingesetzt, um beispielweise die
Formierung von Kehrwasser zu modellieren und numerische Instabilitäten zu bewältigen.

Für viele Anwendungen besteht noch eine große Lücke zwischen den experimentellen Da-
ten und den numerischen Ergebnissen. Einige Diskrepanzen haben ihre Ursache insbesondere
in unsicheren Daten, die für die physikalischen Modelle verwendet werden; daher kommt die
Unsicherheitsquantifizierung (UQ) ins Spiel. Die Galerkin-basierte polynomielle Chaosentwick-
lung liefert direkt den Erwartungswert und höhere stochastische Momente in einer geschlossenen
Form. Aufgrund der Eigenschaften der Galerkin-Projektion erhält man direkt die Konvergenz im
Spektralraum.

Die vorliegende Arbeit widmet sich der Entwicklung eines effizienten Modells, um eine Blut-
pumpe unter der Annahme unsicherer parametrischer Eingabe-Quellen zu simulieren. In einem
ersten Schritt entwickeln wir dabei den sogenannten Shear Layer Update Approach, gestützt
auf die Shear-Slip Mesh Update Method (SSMUM); dieses Vorgehen erleichtert die Aktualisie-
rungsprozedur im Parallelrechner, indem sie den Erhalt der Struktur für den lokalen Vektor
erzwingt. In einem zweiten Schritt konzentrieren wir uns auf die Variational Multiscale Method
(VMS), um die numerische Instabilität zu bewältigen und das turbulente Verhalten des Blutes
zu approximieren. Die Verwendung der intrusiven polynomiellen Chaosentwicklung führt dazu,
dass wir ein stark gekoppeltes System auf effiziente Weise lösen müssen. Dazu bedienen wir uns
des Multilevel-Vorkonditionierers, um unser stochastisches Galerkin-System vorzukonditionieren,
bei welchem der Vorkonditionierer des Erwartungswertes als Glätter für alle stochastischen Mo-
mente verwendet wird. Weiterhin wird der Erwartungswert-Block mit dem Schur-Komplement-
Verfahren vorkonditioniert, was zu einer Beschleunigung des gesamten Lösungsprozesses führt.
Auf diese Weise wird es, durch die Entwicklung und Kombination der vorgeschlagenen Löser und
Vorkonditionierer, praktikabel, ein großes, gekoppeltes stochastisches Strömungsproblem auf ei-
ner modernen parallelen Computer-Architektur zu behandeln. Ferner erhalten wir, basierend
auf den aus dem vorherigen System erzielten stochastischen Lösungen, wertvolle Informationen
über den Blutfluss mit einer gewissen stochastischen Verlässlichkeit. Dies ist von Vorteil sowohl
für das Design eines neuen blutführenden Medizinproduktes als auch für die Verbesserung des
gegenwärtigen Modells.
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Chapter 1

Introduction

This work is concerned with the quantification of uncertainties in a rotating device considering
of the generalized Polynomial Chaos (gPC) method. More precisely, we are interested in modeling
the propagation of input uncertainties, and how they can influence the blood flow through a blood
pump device [55]. Some main challenges need to be addressed: the modelization of the rotating
mechanism, the simulation of a high Reynolds number flow, the development of efficient solvers
and the preconditioning techniques for an intrusive stochastic Galerkin system.

There is considerable high mortality caused by the heart failure worldwide. The patients
suffer from the insufficient hearts’ pumping action, which triggers several symptoms, such as
shortness of breath, fatigue, confusion, high heart rate. The ventricular assist devices (VADs)
became one of the most effective solutions over the last two decades for the patients who have
cardiovascular diseases. The main functionality of the blood pump is to provide an additional
blood flow into the cardiovascular system according to the body needs. In that context, there is
still on important need to increase the safety under different operational conditions for the blood
pump devices, especially for the long-term users.

Numerical methods play already an important key role in the industrial design process, in
particular the Computational Fluid Dynamics (CFD), which provides a qualitative and quantita-
tive prediction about the fluid flow and improves the development process significantly. However,
the ability to investigate the impact of uncertain parameters is a key issue in order to achieve a
reliable design. Uncertainty Quantification (UQ) is an important ingredient with respect to this
aspect, it aims at quantifying the impact of uncertainty on the computed solutions. In our case
particularly, it implies that the UQ techniques can help engineers to better understand how the
blood pump device works under different conditions and ensure the reliability and the fidelity of
the instruments. Furthermore, UQ can also enhance the patient-specific assessment, especially,
it provides a possibility to take the variance of anatomical parameters of an individual patient
into account.

1.1 Heart Failure and Blood Pump

Heart failure (HF) generally refers to the congestive heart failure, this disease mainly
happens when the heart can not support enough blood as the human body requires. Due to
the structural or functional changing of the heart, it leads to two kinds of heart failures: The
systolic HF, it happens when the heart ventricles can not pump the blood strong enough during
the systole. Or the diastolic HF, it happens when there is not enough blood to fill the heart
chamber during the diastole. In both situations, the blood moves back into the lung, which causes
a further congestion. For that reason, the heart failure is often referred to as the congestive heart
failure (CHF). The heart failure can affect the left ventricle (left-sided HF), the right ventricle
(right-sided HF) or even both (bi-ventricular HF). A large quantity of diseases can trigger the
heart failures, which result in either thickened and stiffened ventricular walls or thinned and
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Chapter 1. Introduction

stretched ventricular walls. The heart cells are then ruffled, this effect causes ultimately the
arrhythmia.

There are more than 26 million people suffering from the heart failure globally and 15 million
new patients a year in Europe [3]. However, the prospect of HF patients is normally not very
optimistic, the survival rate is even lower than the cancer. Furthermore, this illness places
tremendous strain not only on the patients, but also on the social health system. Especially,
considering the growth of the percentage of ageing populations in the next decades, the demands
on the efficient and affective health care services are urgently needed. The ventricular assist
device is for the moment one of the most effective solutions for replacing partially or completely
the functionalities of a defected heart.

Ventricular assist device (VAD), also known as blood pump, is a mechanical instrument
that supports the heart to pump the blood through the body. The ventricular assist devices have
mainly three different models: the right ventricular assist device (RVAD), the left ventricular
assist device (LVAD) and the bi-ventricular assist device (BiVAD). They support either the right
ventricle, the left ventricle or both. The LVAD is the most implanted model among these three,
as the left ventricle pumps the blood through the aorta under a high pressure (the left ventricle
is the left low chamber of the heart).

Figure 1.1: The aorta and the heart are connected additional by a ventricular assist device. The
battery provides the power to the pump. The control unit can conduct the flow rate, only the
pipe is implanted inside the body (source: http://www.mayoclinic.org/).

In general, the ventricular assist devices have two types of purposes. One type is designed to
be used by the patients who are waiting for a surgery, it is made for the short-term use, which
is also called "bridge to transplant". This type of VADs can support patients after the surgery
until the heart recovers. Another type is made for the long-term use, the device serves as a
long time treatment solution, which is also called "destination therapy". This type of VADs is
designed for the patients who are not eligible candidates for the heart transplantation.

1.2 Uncertainty Quantification

Uncertainty Quantification (UQ) aims at investigating the impact of errors, which are
associated with input data and/or model parameters, in order to provide more reliable results in
real world applications. UQ is a broad and interdisciplinary topic, it involves different research
fields, such as applied mathematics, computer science, physics, statistics, engineering. UQ is the
end-to-end study of the reliability of scientific inferences and is also a technique to discover the
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1.2. Uncertainty Quantification

dependencies and correlations between data [28, 160, 82].
Overall, there are two categories of uncertainties:

• Aleatoric Uncertainty: irreducible uncertainties. It means that certain parameters or
information are inherently "unstable" (in the sense that the values of characteristic features
are fluctuating and unpredictable precisely). For example, the angle of attack of an airfoil
during the fly, it can have some small variations. Aleatoric uncertainty is conventionally
unbiased and typically treated under the probabilistic framework.

• Epistemic Uncertainty: reducible uncertainties. This kind of uncertainty comes from the
simplification of the physical models or simply the lack of knowledge. It can be diminished
by improving the techniques or using the advanced methods. For instance, employing the
boundary layer model assumption for certain flows or using the nonlinear models instead of
linear models for the soft tissue simulation. It is generally biased, and less clearly modeled
under the probabilistic framework.

Uncertainty Quantification is usually divided into two disciplines, the forward problems and
the inverse problems. The forward problems concern with the uncertainties in the system outputs
propagated from the uncertain input data through a computational model. The inverse problems
are focused on using the outcomes of the simulations to examine the values of the parameters
which characterize the model.

In the first place, we write an abstract forward problem as follows:

u(ξ) =M(X(ξ)) , (1.1)

where, X(ξ) represents the non-deterministic input data, which is characterized by the random
variable ξ (a random variable is a variable whose domain is a set of random events θ, and its
range is a numerical representation of these outcomes, denoted by ξ = ξ(θ)). M is our system
of interest, and we are interested in the random output u(ξ). For the forward problem, we want
to calculate u(ξ), which contains the information of the error propagation from X(ξ) through
M. In contrast to the latter case, if we want to study the sensitivity of M to the input, the
inverse problem needs to be involved. For the inverse problems,M is still the system of interest,
whereas u(ξ) becomes the observation data or the output information. The goal is to infer X(ξ),
such thatM(X(ξ)) = u(ξ). In the most common situation, the inverse problem is ill-defined.

As mentioned above, UQ is about measuring the impact of errors on the numerical solutions.
The accuracy of the numerical calculations can be influenced mostly by the following three error
contribution [109]:

• Model errors: The numerical calculation relies on the mathematical formulation, which
should describe the phenomena of the considered system precisely, although this is not
always the case. When one tries to describe a physical occurrence, some assumptions and
simplifications are commonly taken into account. As the result, even an analytical solution
obtained from the mathematical formulation could lead to wrong results due to erroneous
assumptions associated to the mathematical model. For example, the turbulence models
can not fully resolve the vortex in a small scale.

• Numerical errors: In practice, the numerical solutions are generally obtained by the ap-
proximation techniques, all these techniques introduce the numerical errors. For instance,
the mesh discretization can not exactly describe a physical domain, or using the finite
polynomials as the shape functions has always truncation errors.

• Data errors: This class of error is connected with the data used by the numerical model, and
these data only reflect partially the reality because of inaccurate measurements. The errors
may involve the geometry of computing domain, the initial conditions and the parameter
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Chapter 1. Introduction

variabilities. For instance, the gravity is often considered as constant for many applications,
the geographical influence is simply ignored. The deterministic simulation tries to view
this kind of variation as a noise and minimize their influence on the final results as much
as possible. Nevertheless, the sensitivity of the system needs to be further analyzed in
regard to the noise of the input, such that we can obtain a reasonable relation between
the numerical results and the reality. Under the Uncertainty Quantification framework, we
seek to model these errors with the aid of the stochastic models.

The main consideration of this work is focusing on the forward uncertainty propagation
problem, where the system parameters are regarded as uncertain. The aim is to quantify the
influence on the numerical solutions by taking into account the input data errors with the help
of an intrusive Stochastic Galerkin Method [109]. Particularly, a blood flow is subject to a
non-deterministic system with the uncertain parametric information through a blood pump in-
strument [55]. Furthermore, the focal point of this work is about solving an intrusive Polynomial
Chaos (PC) system and investigating the uncertainties.

1.2.1 Non-intrusive Method

The non-intrusive method treats the deterministic simulation as a "black box" solver, it does
not require any modification from the existing code. The stochastic moments are only computed
based on the realizations of the random variable ξ (Equation (1.1)). The standard technique
is to create a limited number of samples ξ(1), ξ(2), ..., ξ(N), N ∈ N. After that, realizing the
computation individually with each ξ(i), i ∈ [1, N ] as follows:

u(ξ(i)) =M(X(ξ(i))) , (1.2)

for i = 1, ..., N . For instance, the mean value can be obtained via a straightforward way:

E(u) = lim
N→∞

N∑
i=1

u(ξ(i))wi , (1.3)

where, u(ξ(i)) is the response of the system M with respect to ξ(i), wi is pre-defined weight.
The "non-intrusive" concept implies that once ξ(i) and wi are available, the deterministic system
needs to run N times according to the different value of ξ(i).

There are several non-intrusive methods, such as, the Monte-Carlo method [125], the Stochas-
tic Collocation method [121, 175], the Sparse Grid technique [156] and the non-intrusive Poly-
nomial Chaos [138, 120].

The Monte-Carlo method is a well-known non-intrusive approach. Considering Equation (1.3),
the general Monte-Carlo method suggests having an equal weight, i.e. wi = 1

N , and the values
of ξi are generated purely random. Therefore, the sampling points are unbiased and consistent.
However, the convergence rate of the standard Monte-Carlo method is O(1/

√
N), it means that

we need to sample four times more in order to reduce the error by half. Hence, various techniques
are proposed for improving the sampling quality, e.g.: The quasi Monte-Carlo [129, 71], it gives
an improved convergence rate as O((logN)kN−1) (k is the number of random variables). Or
the Latin hypercube sampling [95], this stratified sampling method ensures an even number of
sampling points for each stochastic variable. In recent years, the Multilevel Monte-Carlo method
[74, 64] has gained a lot of attention because of the fast convergence in the variance.

The Stochastic Collocation (SC) method [121, 122, 13] models the uncertain parameters
via the pre-selected basis, usually the Lagrange interpolating polynomials. The stochastic solu-
tion relies simply on the interpolation instead of approximating the solution in the pre-defined
stochastic subspaces, a decomposition of the stochastic parameters and physical parameters is
achievable. However, the number of Collocation points increases exponentially due to the exten-
sion of the tensor product. In order to circumvent the curse of dimensionality [24], the Sparse
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1.3. The Important Ingredients of the Thesis

Grid (SG) method is introduced based on the Smolyak sparse grid [156]. In contrast to the
Stochastic Collocation, the Sparse Grid can reduce the amount of sampling points from an order
O(Nk) to O(N(logN)(k−1)) with the same accuracy of the solution (k is the number of random
variables) [130].

Another type of the non-intrusive method is the non-intrusive Polynomial Chaos (NIPC)
[138]. This method combines the spectral method with the sampling techniques. The NIPC
relies on the numerical integration to evaluate the coefficient of each spectral mode instead of
substituting the model parameters and variables into the governing equations. Moreover, by
using advanced sampling techniques, especially if they correspond to the probability distribution
of the random parameters, NIPC can achieve a fast convergence comparing to the Monte-Carlo
method [85].

1.2.2 Intrusive Method

In this work we concentrate on the intrusive approach based on the Polynomial Chaos ex-
pansion (PCE). Ghanem and Spanos [62] were the very first scholars, who applied this technique
to the real world applications. Their work was mainly focusing on the uncertainty propagation
caused by the uncertain input within a mechanical structure. Thenceforward, the Polynomial
Chaos expansion is employed for the incompressible Navier-Stokes equations [119, 120, 177] and
also for more complex problems [45, 178, 148, 81].

The main concept of the intrusive PCE is to build a direct functional connection between
the random variable ξ and the stochastic solution u(ξ), such as:

u(ξ) = lim
P→∞

P∑
i=0

uiψi(ξ) . (1.4)

Here, the set of ψi is defined for the pre-selected basis functionals, ui denotes the stochastic
Polynomial Chaos mode solution. As a consequence, there are some regularity assumptions for
the solution u(ξ) in order to be able of constructing the series representation. The stochastic
solution u(ξ) can be obtained by means of the stochastic Galerkin projection method. This
approach projects the model systemM (Equation (1.1)) onto a stochastic space, which is spanned
by the basis functionals ψi. As the solution and the input random data are both expressed by
using the Chaos Polynomials (e.g. Equation (1.4)), the intrusive method leads to a coupled
system of equations including stochastic modes. Therefore, we have to further investigate the
solving strategies for this highly coupled system in order obtain the stochastic solutions efficiently
(Chapter 4).

1.3 The Important Ingredients of the Thesis

This work focuses on applying the intrusive Polynomial Chaos expansion technique to a blood
pump simulation. Modeling a rotating device has a high potential for industrial applications,
particularly how one can deal with a moving mesh. We propose a shear layer update approach,
which is similar to the Shear-Slip Mesh Update Method [23]. Our suggestion is more suitable
in the context of the High Performance Computing (HPC). Furthermore, since simulating the
high Reynolds number flow is also very challenging, we propose to use the Variational Multiscale
method (VMS) [91] to cope with the turbulence modeling. The VMS considers a fluid flow
to be decomposed into different scales and introduces the variational projections for building
the links between the scales. In order to simulate the uncertainties propagation within a blood
pump device, we employ the generalized Polynomial Chaos expansion (gPCE) technique [178].
The Galerkin projection forms the governing system based on a weighted residual formalism,
and it inherits the corresponding convergence property from the Galerkin methods. However,
owing to the special construction of Galerkin method, the resulting coupled stochastic system

9



Chapter 1. Introduction

becomes very large in regard to the order of Chaos Polynomials. The direct solvers and the
standard iterative solvers are then not able to deal with this system efficiently. Therefore,
in this work, we consider a Polynomial Chaos expansion Multilevel preconditioner in order to
handle the stochastic system. Furthermore, the stochastic Mean-based preconditioner is used
as the smoother in the Multilevel approach, and the Schur Complement method is applied to
precondition the linear system associated with the mean block matrix. Finally, based on our
efficient solving strategies, the stochastic solutions can be obtained within a reasonable time
frame.

1.4 Outline

This work is organized as follows: Chapter 2 describes the modelization of the blood pump de-
vice, it depicts the shear layer update approach for the moving mesh strategy and the Variational
Multiscale method for the high Reynolds number flow modeling. Chapter 3 provides an overview
of the generalized Polynomial Chaos expansion (PCE) technique. The special hierarchical struc-
ture of the PCE is studied. The governing equation, which combines the Variational Multiscale
approach and the intrusive Polynomial Chaos expansion based on the spectral-stochastic finite
element method (SSFEM), is introduced. In addition, the numerical discretization schemes are
also presented. Chapter 4 concentrates on the numerical algorithms and the solving strategies
related to the stochastic Galerkin system and the deterministic Variational Multiscale problem.
Chapter 5 presents the scalability studies of the fluid solver and the PCE Multilevel precondi-
tioner. Chapter 6 provides the numerical experiments for this blood pump simulation in consid-
eration of the parameterized input uncertainties. Chapter 7 concludes this work and describes
the perspectives for possible further developments.
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Chapter 2

Modelization of the FDA Blood Pump

2.1 FDA Blood Pump

The prototype (Figure 2.1), which we consider in this work, is the FDA (U.S. Food & Drug
Administration) blood pump. This project is established under the framework of the FDA’s
Critical Path Initiative (CPI) Computational Fluid Dynamic/Blood Damage Project [55]. In
this project, the FDA will provide the laboratory experiments of the blood flow in this blood
pump device, and the project participants can simulate the blood flow in this device with their
own software and models. The comparison between the numerical results and the experiments
will be taken place in the end of the project. The purpose of this project is to develop a benchmark
model for a centrifugal blood pump in order to enhance the performance of this instrument and
promote further developments.

Figure 2.1: A simple schematic diagram of the functionality of the FDA blood pump. The arrows
indicate the flow direction.

As mentioned in Chapter 1, the pump device is placed between the lower heart chamber
and the aorta in order to provide an additional blood flow into the circulatory system for the
heart failure patients. In the pump instrument, the blood flow is driven by the rotor (red in
Figure 2.1), whose power is supplied by an external motor. The blood moves toward a nozzle
structure for a further acceleration after passing through the pump housing. Concerning this
FDA ventricular assist device, the diameter of the pump housing is only 60 mm, and 52 mm for
the rotor, the angular speed is 2500 RPM (revolution per minute).

The main challenge of modeling a blood pump device can be considered as two major parts:
modeling a high Reynolds number flow and simulating a rotating effect. The following of this
chapter provides the detailed information in regard to these two topics.

11



Chapter 2. Modelization of the FDA Blood Pump

2.2 Modelization of High Reynolds Number Flow

According to [55], the blood pump must operate in a high rotational speed, the blood is
driven by the impeller from the housing to the aorta. In order to study a fluid, the Reynolds
number can be used to forecast the flow patterns, namely the laminar flow or the turbulent flow.
For our rotating device, the Reynolds number is defined as [31]:

Re =
ρωD2

µ
. (2.1)

Here, ρ denotes the fluid density, ω is the angular speed, D is the diameter of the rotor and µ is
the dynamic viscosity. The simulation conditions provided by FDA [55] are stated in Table 2.1:

ρ 1035 kg/m3 ω 261.667 rad/s

D 52 mm µ 0.0035 kg/m/s

Table 2.1: Simulation conditions.

As a result, the Reynolds number in our FDA blood pump is approximately 210, 000, it means
that the convection mechanism is dominant compared to the diffusion phenomena. Choosing an
appropriate flow model is very crucial to this blood pump simulation. Hence, we give a short
overview of the existing methods of the high Reynolds number modelization.

2.2.1 Overview of Methods for Turbulent Flow Modeling

As the turbulent models are derived from the Navier-Stokes equations, we state at first the
incompressible Navier-Stokes equations:

∂u

∂t
+ u · ∇u− µ

ρ
∆u+

1

ρ
∇p = f , in [0, T ]×D , (2.2a)

∇ · u = 0 , in [0, T ]×D . (2.2b)

Here, D ⊂ Rd, d = 2, 3, D is a bounded domain. u(x, t) is the velocity, p(x, t) is the pressure,
and [0, T ] is a finite time interval. f(x, t) describes the external body force, ρ represents the
density, and µ is the dynamic viscosity.

RANS: The Reynolds-Averaged Navier-Stokes equations. The RANS is a statistical ap-
proach and is derived by using the Reynolds decomposition (Definition 2.2.1) of the Navier-Stokes
equations [136].

Definition 2.2.1 (Reynolds decomposition). Let Φ(x, t) be the quantity of interest, which is
defined on a domain Ω ⊂ Rd, d = 2, 3. t is the time variable, t ∈ [0, T ]. We assume that Φ(x)
exists in terms of the time averaged sense, thus:

Φ(x, t) = Φ(x) + Φ′(x, t) . (2.3)

Φ′(x, t) is the fluctuating part. Φ(x) is the time averaged part, which does not depend on time.
Φ represents the velocity and the pressure in the Navier-Stokes equations.

One additional interpretation by employing the time average is:

Φ = Φ , and Φ
′
= 0 . (2.4)
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2.2. Modelization of High Reynolds Number Flow

We insert Equation (2.3) into the incompressible Navier-Stokes equations. Then we take the
time average. As u is independent of time, the RANS yields [136]:

∂ui
∂t

+
∂

∂xj
uiuj −

µ

ρ

∂2ui
∂xi∂xj

+
1

ρ

∂p

∂xi
+
∂u′iu

′
j

∂xj
= fi , (2.5a)

∂ui
∂xi

= 0 , (2.5b)

where, u′iu
′
j is the Reynolds stress tensor, which establishes the link between the fluctuating field

and the average field.
If we consider the 3D case, there exist six unknowns introduced by the Reynolds stress

tensor u′iu
′
j , which implies that Equation (2.5) is not closed. Hence, several approaches try to

provide a closure of the RANS. The Boussinesq hypothesis [30] is built on the turbulent viscosity
hypothesis. Boussinesq presumed that the Reynolds stress is proportional to the local mean
strain rate. It means that the turbulent stress is linearly dependent with respect to the mean
strain (i.e. the turbulent viscosity is constant). The fluid transport effect is simply ignored,
because he assumed that the Reynolds stress is generated locally. Therefore, this approach is
not valid in general situations. Afterward, Prandtl attempted to correctly derive the turbulent
eddy viscosity under Boussinesq’s framework with his mixing length theory. This approach can
be considered as a zero-equation model or an algebraic model, as the scale of the turbulent
velocity is completely determined by the mean flow. More specifically, the zero-, one- or two-
equation models are referring to how many partial differential equations needed to make RANS
equation to be closed. Moreover, the turbulent kinetic energy model [105] belongs to the one-
equation model. This approach replaces the mean flow with the kinetic energy obtained from the
transport equation in order to achieve a closure of the equations. The k−ω and k−ε models are
also widely used, both approaches belong to the two-equation models. The advantage of these
two approaches is that the turbulent viscosity can be determined consistently, a specification of
the length scale is no more necessary.

LES: The Large Eddy Simulation. The LES is another kind of turbulence model, which is
lying between the RANS and the direct numerical simulation [131]. The general LES consists of
different steps [128]:

• Decompose the fluid into large-scale and small-scale by using filtering techniques.

• Filter the governing equation into the solvable part and the unsolvable part.

• Model the small eddies with the subgrid-scale model.

• Solve the governing system and obtain the solution only on the large-scale.

Φ(x, t) = Φ(x, t) + Φ′(x, t) . (2.6)

Considering the LES decomposition in Equation (2.6), it has a same form as the Reynolds
decomposition in Equation (2.3), whereas, the interpretation is different. For LES, Φ is the
solvable-scale part (or filtered part), and Φ′ is the subgrid-scale part (or residual part). In
contrast, Φ is a random field, u′ 6= 0 and Φ 6= Φ.

The filtering process can be regarded as a convolution of the velocity with a filtering kernel
G:

u(x, t) =

∫ +∞

−∞
G(x− x′)u(x′)dx′ . (2.7)
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Following the same technique in Equation (2.5), we have:

∂ui
∂t

+
∂

∂xj
uiuj −

µ

ρ

∂p

∂xi
+

1

ρ

p

∂xi
+

1

ρ

∂τij
∂xj

= 0 , (2.8a)

∂ui
∂xi

= 0 . (2.8b)

Here, τij is the subgrid stress:
τij = uiuj − uiuj . (2.9)

According to the Leonard decomposition [110], τij = Lij + Cij + Rij . Lij is the Leonard
stress, which reflects the interactions within the large-scale, the cross tensor Cij represents the
interactions between the large-scale and the small-scale, and the subgrid-scale Reynolds stress
Rij stands for the interactions among the subgrid-scales.

Similarly, the subgrid stress introduces an unclosed system, so τij must be modeled with sup-
plementary models. The most common subgrid-scale models employ the Boussinesq hypothesis
in order to compute the subgrid-scale stress, e.g.:

τij = 2µtSij −
2

3
Kδij , (2.10)

where Sij is the traceless mean rate of strain tensor, K is the turbulent kinetic energy, and
µt is the eddy viscosity. Various subgrid-scale Reynolds stress models are proposed besides the
previous approach, e.g., the Smagorinsky model [155], the dynamic subgrid-scale model [61] [112],
the similarity model [16], the mixed model [180, 6, 146].

DNS: The direct numerical simulation. From the modeling point of view, the DNS is truly
straightforward. It solves the unsteady Navier-Stokes without making any auxiliary assumptions.
It hence computes the flow problems directly on the scale of the viscous dissipation. In other
words, the mesh grid size and the time step must be fine enough to capture the dynamics
numerically [131].

The DNS is used currently only for theoretical studies, the cost of the DNS computations is
proportional to the Reynolds number in the order of Re37/14 [40]. For this reason, computing an
engineering application with the DNS requires a huge amount of computing resources.

SUPG/PSPG/GLS: The Streamline Upwind Petrov-Galerkin / Pressure-Stabilizing Petrov-
Galerkin stabilized / Galerkin least-squares scheme. Using the Galerkin finite element method for
solving the incompressible Navier-Stokes equations introduces two major sources of the instabil-
ity, which are the advection term in the momentum equation and the inappropriate combination
of interpolation functions for the velocity and the pressure [165]. So as to reduce these instabil-
ities, a combination of the following three stabilization schemes is commonly employed.

The SUPG formulation [34] considers the momentum conservation equation as a parameter.
This approach introduces an artificial diffusion only along the streamline direction, and the
amount of the diffusion is typically controlled by the stabilization parameter τSUPG. If we
consider a general partial differential equation (PDE) with a form:

Lu = f , (2.11)

where, L is a general differential operator. The weak form of Equation (2.11) can be formulated
like: ∫

D
v∗ · (Lu− f) = 0 , (2.12)

where D is the spatial domain. The test function v∗ is written as:

v∗ = v + τSUPGLadvv . (2.13)
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2.2. Modelization of High Reynolds Number Flow

Here, Ladv is the advection part of the differential operator L. v is in the same function space
as the solution u. However, the test function v∗ does not have to be in the same function space.
Therefore, the SUPG introduces an extra weighted advection part of the governing equation
into the test function. Furthermore, the consistency of this formulation is fulfilled as the exact
solution satisfies the weak formulation.

The PSPG formulation [167] is very similar to the SUPG, and its aim is to stabilize the
coupling problems. Analogously to the SUPG, τPSPG is also used to regulate the magnitude of
the stabilization. If we only look at the NS equations, the PSPG prefers to introduce the product
of the residual of momentum equation and the perturbation τSUPG∇q, here q is the test function
of the continuity equation.

The GLS formulation [92] is encouraged by the numerical analysis rather than introducing
artificial diffusions. This approach is normally used to evade the LBB condition [65]. In contrast
to the SUPG and the PSPG, the test function is constructed as:

v∗ = v + τGLSLv , (2.14)

L is the total differential operator. For that reason, the GLS stabilization systematically allows
an arbitrary combination of basis functions [92].

Thus, if we consider some suitable finite-dimensional function spaces, V h and Qh, with the
Galerkin finite element method, then the weak formulation of the general stabilized incompress-
ible Navier-Stokes equations combined with three previous techniques is given as:

Find uh ∈ V h and ph ∈ Qh, such that,

∫
D

(
∂uh
∂t

+ uh · ∇uh) · vh dx+

∫
D

µ

ρ
∇uh : ∇vh dx (2.15a)

−
∫
D

1

ρ
ph∇ · vh dx−

∫
D
fh · vh dx

+

ne∑
e=1

∫
De
rM · τSUPGuh · ∇vh dx

+

ne∑
e=1

∫
De
rC · τGLS∇ · vh dx = 0 , ∀vh ∈ V h ,

∫
D
qh∇ · uh dx+

ne∑
e=1

∫
De
rM · τPSPG∇qh = 0 , ∀qh ∈ Qh , (2.15b)

where,

rM =
∂uh
∂t

+ uh · ∇uh −
µ

ρ
∆uh +

1

ρ
∇ph − fh , (2.16a)

rC = ∇ · uh . (2.16b)

rM , rC are the residuals of the momentum equation and the continuity equation, respectively. D
is the spatial domain, De is the spatial domain of a mesh cell e, ne is the number of mesh cells.
uh and ph are the discrete solutions for the velocity and the pressure, and fh is the external
body force.

VMS: The Variational Multiscale method. The VMS is a theoretical framework for the scale
separation that one can cope with the turbulent flow. If we are only interested in the solution
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Chapter 2. Modelization of the FDA Blood Pump

on the macroscopic level, the homogeneous theory is very robust and efficient. But once the
physical behavior on the subscale becomes non-negligible, a sub-linear scaling algorithm is often
required. The VMS provides a general framework for covering the influence from the fine-scale
into the governing system [90, 170]. The VMS method suggests a splitting of the physical models
in order to handle the multiscale phenomena in the engineering applications [90, 170]. First, we
state a two-scale decomposition (Figure 2.2) for the Navier-Stokes equations:

u = u+ ũ , (2.17a)
p = p+ p̃ . (2.17b)

u

u

ũ

Figure 2.2: Two-scale sum decomposition.

This decomposition consists of a division of the exact solution (u, p) into two separated scales.
(u, p), (ũ, p̃) denote the solution on the resolvable scale (or coarse-scale) and the solution on
the unresolvable scale (or fine-scale), respectively. By this means, (u, p) can be generally ap-
proximated by any kind of numerical methods. (ũ, p̃) is placed on the small-scale, which is not
captured conversely. Under the finite element method framework, (u, p) may reflect the solution
obtained on a rough mesh, while (ũ, p̃) represents the solution on a fine mesh.

There exists also the three-scale decomposition by means of the large resolvable scale, the
small resolvable scale and the unresolvable scale [41]. The scale decomposition is defined as:

u = u+ û+ ũ , (2.18a)
p = p+ p̂+ p̃ . (2.18b)

Here, (u, p) is the solution on the large resolvable scale, (û, p̂) is the solution on the small
resolvable scale, and (ũ, p̃) is the solution on the unresolvable scale. The main purpose of the
three-scale separation is to take explicitly into account the impact of the eddy dissipation arising
from the unresolvable scale (ũ, p̃) on the resolvable scale. Likewise, the solution relying on the
unresolvable scale is not meant to be solved directly, but rather projected on resolvable scales.
Moreover, in order to simplify the model, it is also commonly assumed that the unresolvable
scale (ũ, p̃) has no influence on the large resolvable scale (u, p).

With respect to the implementation purpose, we consider that the spaces where the resolvable
scales rely on are finite-dimensional spaces, and an infinite-dimensional space is considered for
the unresolvable case. Especially for the two-scale decomposition case, we can make use of the
finite element spaces to be the resolvable space, and the effects on the unresolvable space are
nevertheless represented via additional models. Therefore, governing system can be expressed
under the FEM framework.
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2.2. Modelization of High Reynolds Number Flow

Remark 2.2.1 (The relation to LES). One can consider the VMS as an extension of the LES
method. On the other hand, it also establishes a transition from the LES to the DNS. The LES
only tries to define the prediction on the large-scale which is averaged in the space, whereas, the
VMS exploits the scale separation instead of the filter function. Owing to the filtering operators,
the LES leads to commutation errors on a bounded domain [48] [27]. Additional treatments of the
boundary condition and the boundary layer are often required for the LES as a consequence of the
smooth convolution kernel. Moreover, the LES is based on the strong form of the NS equations.
On the contrary, the VMS exploits the derived variational formulation of the NS equations.

In this work, we choose the Variational Multiscale method for modeling our high Reynolds
number flow within the pump geometry, because the VMS offers a fundamental system that
links the standard stabilized methods and the large eddy simulation modeling. More specifically,
we utilize the two-scale residual-based VMS, which has a similar feature as the stabilized finite
element scheme, but it provides a more sophisticated theoretical framework. Therefore, we are
more independent in selecting the upscaling algorithms, which is not only beneficial for our flow
application, but there also exist fundamental studies about fluid problems. The basic concept of
the VMS and the selected models will be addressed in Section 2.2.2.

2.2.2 Variational Multiscale Method for the Incompressible Navier-Stokes
Equations

In this subsection, we present the basic theory about the two-scale Variational Multiscale
method for the incompressible Navier-Stokes equations with the residual-based technique. Be-
fore discussing the concepts behind the Variational Multiscale method, we provide here the
weak formulation of the incompressible Navier-Stokes equations (Equation (2.2)), as it is often
mentioned in the following sections.

Taking V := H1
0 (D)d and Q := L2(D). Find u ∈ V , p ∈ Q, such that:

∫
D

(
∂u

∂t
+ u · ∇u) · v dx+

∫
D

µ

ρ
∇u : ∇v dx (2.19a)

−
∫
D

1

ρ
p∇ · v dx =

∫
D
f · v dx , [0, T ]×D ,∫

D
q∇ · v dx = 0 , [0, T ]×D . (2.19b)

∀v ∈ V , ∀q ∈ Q.
Equation (2.19) can also be written by using the operator notation, i.e.:
Find u ∈ V , p ∈ Q, such that,

A(u; (u, p), (v, q)) = f(v) , ∀(v, p) ∈ V ×Q . (2.20)

Two-Scale VMS

The flow is decomposed into the large- and small-scales [1]. A set of coupled equations is
derived from this scale separation. The relationship between two scales is generally defined
via the residual on the resolvable scale, and the flow problem on the small-scale is additionally
modeled in order to achieve the closure of equations.

Let us consider the two-scale direct sum decomposition:

V = V ⊕ Ṽ , (2.21a)

Q = Q⊕ Q̃ . (2.21b)
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Inserting Equation (2.17) into Equation (2.20), we take the same decomposition for the test
functions in Equation (2.20). It yields:

A(u; (u, p), (v, q)) +A(u; (ũ, p̃), (v, q)) = f(v) , ∀(v, q) ∈ V ×Q , (2.22a)

A(u; (u, p), (ṽ, q̃)) +A(u; (ũ, p̃), (ṽ, q̃)) = f(ṽ) , ∀(ṽ, q̃) ∈ Ṽ × Q̃ . (2.22b)

Equation (2.22a) is then defined for the resolvable scale and Equation (2.22b) for the unresolvable
scale. If we decompose A(·; ·, ·) into a linear part Alin(·, ·) and a trilinear part b(·; ·, ·) (convective
term) [97, 93], Equation (2.20) becomes:

A(u; (u, p), (v, q)) := Alin((u, p), (v, q)) + b(u;u,v) . (2.23)

Here, b(u;u,v) consists of several terms because of the sum decomposition. Among these terms,
b(ũ, ũ,v) is actually the Reynolds stress term, b(u, ũ,v) and b(ũ,u,v) are the cross-stress terms.
Equation (2.22b) can be rearranged as follows [1]:

Alin((ũ, p̃), (ṽ, q̃)) + b(ũ;u, ṽ) + b(u; ũ, ṽ) + b(ũ; ũ, ṽ) = 〈r(u, p), (ṽ, q̃)〉 , (2.24)

where 〈·, ·〉 = 〈·, ·〉Ṽ ∗×Q̃∗,Ṽ ∗×Q̃∗ , and

〈r(u), p), (ũ, q̃)〉 = f(ũ)−Alin((u, p), (ũ, p̃))− b(u,u, ṽ) . (2.25)

Here, r(u, p) = rM (u, p)+rC(u), r(u, p) ∈ Ṽ ∗×Q̃∗. r(u, p) is the system residual on the solvable
scale which contains the residual of the momentum equation rM (u, p) and the residual of the
continuity equation rC(u). Furthermore, Equation (2.24) provides another interpretation that
the unresolvable scale can be obtained via a function which takes the residual on the resolvable
scale as the parameter, i.e.:

(ũ, p̃) ' F (r(u, p)) . (2.26)

Equation (2.22) can be then simplified to a single function:

A(u+ ũ; (u, p) + F (r(u, p), (v, q)) = f(v) , ∀(v, q) ∈ V ×Q . (2.27)

Here, Equation (2.27) depends only on the solution on the resolvable scale (u, p), whereas it
also represents the governing equation for the full scales. The turbulence modeling is therefore
"closed", because (u, p) is obtained by solving Equation (2.27), and (ũ, p̃) depends on the large-
scale solution. The goal of the two-scale VMS is to model the function F (r(u, p)) and solve the
complete system on the resolvable scale at once. Besides, F (r(u, p)) does not have to rely on
any physical hypothesis.

Two-Scale Residual-Based VMS Formulation

The two-scale residual-based VMS method [20], which is employed in this work, can be viewed
as a generalization of the stabilized finite element method [166, 164].

Modeling (ũ, p̃) is in fact the key point for the two-scale VMS (Equation (2.27)). One can
make use of the perturbation series of a quantity which is based on the residual, i.e. ε :=
‖r(u, p)‖Ṽ ∗×Q̃∗ . The perturbation series yield as:

(ũ, p̃) = ε(ũ1, p̃1) + ε2(ũ2, p̃2) + · · · =
∞∑
i=1

εi(ũi, p̃i) . (2.28)

It is obvious that if the resolvable space becomes larger, ε gets smaller as (u, p) approximates
better to the real solution (u, p).
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In [20], the authors propose to truncate Equation (2.28) after the first order, which means:

(ũ, p̃) ≈ ε(ũ1, p̃1) , (2.29)

combining it with a so-called fine-scale Green’s operator [94], (ũ1, p̃1) can be approximated via
an explicit formulation:

(ũ1, p̃1) ≈ τ ′r(u, p)

ε
, (2.30)

Furthermore, Equation (2.30) can be rewritten as:

(ũ, p̃) ≈ −τr(u, p) . (2.31)

Here, τ is a tensor-valued function, which is defined as:

τ :=

(
τM1d 0d
0Td τC

)
, (2.32)

d is the dimension of the spatial space. We take advantage of the finite element space to represent
the resolvable space as both of them are finite. If V h and Qh are the finite element spaces
obtained from the triangulation Th with a cell size h, then we set then V = V h, Q = Qh. The
approximation of (ũ, p̃) is explicitly expressed as:

(ũ, p̃) '
(
−τM (∂uh

∂t
+ uh · ∇uh − µ

ρ∆uh + 1
ρ∇ph − fh)

−τC(∇ · uh)

)
=

(
−τMrM,h

−τCrC,h

)
, (2.33)

where, uh and ph are the discrete solutions of the velocity and the pressure, respectively.
We can now state the variational formulation of the residual-based VMS for the incompress-

ible Navier-Stokes equations. Let us take V := H1
0 (D)d, Q := L2(D) [153]. Further let V h ⊂ V

and Qh ⊂ Q be the finite element spaces.
Find uh ∈ V h, ph ∈ Qh, such that:

(
∂uh
∂t

,vh) + (uh · ∇uh,vh) (2.34a)

+
µ

ρ
(∇uh,∇vh)− 1

ρ
(ph,∇ · vh)

+(τMrM,h,uh · ∇vh) + (τCrC,h,∇ · vh)

−(τMrM,h · ∇uh,vh)− (τMrM,h, τMrM,h · ∇vh) = (fh,vh) , in [0, T ]×D ,

(∇ · uh, qh) + (τMrM,h,∇qh) = 0 , in [0, T ]×D . (2.34b)

∀(vh, qh) ∈ V h×Qh. Note that, (τMrM,h,uh ·∇vh), (τMrM,h ·∇uh,vh) are again the cross-stress
terms, (τMrM,h, τMrM,h · ∇vh) is the Reynolds-stress term. If we omit the last two terms from
Equation (2.34a) on the left-hand side, the formulation is identical to the classical stabilization
method (Equation (2.15)). One can consider that the VMS is a generalization of the stabilization
scheme with the cross-stress terms and the Reynolds stress term in addition.

Following the suggestion in [113], we rearrange Equation (2.34) with an encoded convective
velocity ûh, ûh := uh − τMrM,h. Equation (2.34) becomes:

(
∂uh
∂t

,vh) + (ûh · ∇uh,vh) (2.35a)
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Figure 2.3: Show case: the pressure isosurface colored by the velocity magnitude for a flow around
a rectangular cylinder. The computation is accomplished by using the Variational Multiscale
method with 52 Millions degrees of freedom, and the Reynolds number Re = 390, 000.

+
µ

ρ
(∇uh,∇vh)− 1

ρ
(ph,∇ · vh)

+(τMrM,h, ûh · ∇vh) + (τCrC,h,∇ · vh) = (fh,vh) , in [0, T ]×D ,

(∇ · uh, qh) + (τMrM,h,∇qh) = 0 , in [0, T ]×D . (2.35b)

According to [113], the encoded convective velocity can produce a better approximation for the
eddy vorticity. Therefore, we use this version in the following work. The explicit formulation of
τ can be computed based on the scaling arguments [17]. However, we focus on the stabilized
Variational Multiscale method in this work. The explicit expression of τ can be found in [94, 20].

2.3 Rotating Device Modeling

Modeling the transient flow in a rotating device is a challenging task. There are several ways
to achieve that. However, they all belong to the moving mesh techniques, which means that we
need to obtain a deformed computing domain, and at the same time the continuity of the flow
must be preserved. The main approaches can be divided into three classes: the mesh patching,
the mesh embedding and the mesh adapting [25].

The mesh patching technique brings into play the common interface between the subdivisions,
and it requires the shared boundaries to be continuous when the flow passes through. The
Sliding Mesh algorithm [159] is one of the most applied methods, especially in industry. It
relies on the interpolation and projection [54] procedure in order to ensure the continuity of
the flow between disjointed subdomains. Besides, the subdomains can be even adjacent in case
that an arbitrary movement is needed. The Shear-Slip Mesh Update Method (SSMUM) [23]
focuses more on the revolving movement. It recommends constructing a regular layer between
the stationary domain and the transient domain. Only the layer is deformed in order to acquire
the independence of rotation and sustain the connectivity between meshes. The deformation
in the layer is accomplished while a maximum level is achieved, the shared interface is then
disconnected and reconnected again to the subsequent grids. The mesh patching technique has
a good efficiency in terms of the computation if the movement is regular, all subdomains can be
computed simultaneously once the interface condition is defined.

The mesh embedding technique requires an overlapped layer instead of a shared boundary,
this overlapping area is supposed to assist the construction of the solution mapping. The Over-
set/Chimera method [107, 158, 86] belongs to this category, and it requires a background mesh
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2.3. Rotating Device Modeling

and a sub-mesh, the sub-mesh needs to accommodate the moving object. Except the overlap-
ping area, the embedded mesh is cut after the sub-mesh changes, a supplementary interpolation
between the neighboring domains maintains the continuity of the flow.

The mesh adapting technique tries to evolve the mesh by utilizing the adaptive algorithm
[89]. The advantage of this method is to employ the initial mesh rather than reconstruct a new
mesh, and the quality of the solution can be improved by adjusting the mesh locally.

We give here two different approaches, which we studied in this work, for modeling the
rotating effect: The shear layer update approach, in which we suggest having two layers instead
of one layer as in SSMUM in favor of accelerating the update process. The combination of
Continuous and Discontinuous Galerkin approach proposes to utilize the continuous Galerkin
method (CG) on the whole grid, except the interface between the adjacent meshes, where the
discontinuous Galerkin method (DG) ensures the necessary conditions for the continuity of the
flow.

2.3.1 Shear Layer Update Approach

(a) 2D. (b) 3D.

Figure 2.4: Illustration of the mesh for the shear layer update approach. Two corresponding
layers (yellow and red) are identical in terms of the grid shape, the dark blue and red parts
belong to the static domain, the light blue and yellow parts belong to the rotating domain.

The shear layer update approach can be characterized in the group of the mesh patching
technique, and it is mainly inherited from the Shear-Slip Mesh Update Method (SSMUM). The
main difference is that we build two identical layers by means of the grid shape instead of one
layer (Figure 2.4). Under this situation, the mirror layers can expedite the update process in
case that a mesh regeneration is desired.

For the mesh patching technique and the mesh embedding technique, there are always some
parts of the mesh which are in the immovable position, and the other parts of the mesh are
changing their location over time (the global computing domain is separated naturally into
the different subdivisions). In our method, we also consider two main subdivisions (dark blue
and light blue in Figure 2.4), one of them is supposed to be fixed, and another one, which
accommodates the rotating object, rotates under certain specifications. Besides, it can be more
than just one rotating object, it means that we have to build more subdivisions in order to hold
the objects, but they all belong to the rotating mesh. Between those two domains, we require
two additional mesh layers (yellow and red in Figure 2.4), which have the identical shape with
respect to the mesh cell. Eventually, the dark blue and red parts are categorized as the static
domain, and the rest belongs to the rotating domain. All those four subdivisions build up the
global mesh, this mesh is conforming everywhere thanks to the coincided interfaces.

The parallelization of a finite element computation is built on the mesh decomposition. At
the beginning of the decomposition process, one processor holds all the information of the global
geometry, the global mesh is decomposed and distributed to each processor by this "master"
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processor 0

globlal mesh
processor 1 processor 2 processor n

SubMesh_1

SubMesh_2

SubMesh_ ...

SubMesh_n

compute_ghost_cells

processor 0

local mesh 0

processor 1

local mesh 1

processor 2

local mesh 2

processor n

local mesh n

Figure 2.5: The common procedure of mesh decomposition. At the beginning, processor 0 (red),
i.e. the "master" processor, handles the global mesh, then it distributes the sub-meshes to each
processor. After computing ghost cells, each processor possesses a local mesh, which contains
the interior cells (sub-mesh) and the ghost cells.

processor. After each processor receives a decomposed mesh (SubMesh in Figure 2.5), one
additional layer will be added on this decomposed mesh. This additional layer is built based on
the surrounding decomposed meshes in order to share information between processors. Hence,
the final local mesh consists of two parts: one part is completely local, another part is this
additional layer. Sometimes, this extra layer is also referred to as "ghost cells" (Figure 2.5).

Many mesh decomposition algorithms rely on the graph theory [100, 99], the main purpose
is to achieve a good load balancing between subdomains and a convenient numbering of entities.
Still, the premeditated location of the decomposition is usually not taken into account. In other
words, the local vector and the local matrix may contain a part of the static domain and another
part of the rotating domain simultaneously. However, for the rotating device modeling, the
mesh regeneration is frequently required. Because of the modification of the physical location
in certain parts of the local meshes, the local vector and the local matrix can be different as
before. Here, the regeneration means the relationship between sub-meshes is modified. If just
cell vertices move, we rather consider it as a mesh deformation but not a regeneration. A mapping
procedure from the old vector space to the current vector space is inevitable in order to advance
the computation. For this reason, the local solution vector needs to be projected to the new
local vector. However, this operation often involves a physical point search routine, which is
computationally expensive.

In order to overcome this barrier of the expensive vector update process, we suggest using two
communication groups [18] instead of one for the mesh decomposition (Figure 2.6). Hence, we
have two "master" processors, which manage the static mesh and the rotating mesh separately.
For that reason, each decomposed mesh consists only of a part of the static mesh or the rotating
mesh. After decomposing the mesh inside the groups, the compute_ghost_cells process handles
all sub-meshes together. In consequence, all added ghost cells on the sub-mesh are in the same
category, it means that they come from either the static mesh or the rotating mesh. Except
those which have the shared interface between the static and rotating mesh, their ghost cells
come from both domains (Figure 2.7). In general, the local vector also contains two parts: the
interior cells part and the ghost cells part. They both are contributed by interior cells and ghost
cells (Figure 2.6), respectively. The advantage of our method is that the local vector keeps the
same structure after the mesh regeneration. The value of the interior cells part stays unchanged,
only those of the ghost cells part need to be modified. However, the ghost cells part can be
updated by using the update_ghost function, which is commonly available for the most of finite
element implementations.
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processor 0

static mesh
processor m

processor m+1

rotating mesh
processor n

SubMesh_ ...

SubMesh_m

SubMesh_ ...

SubMesh_n

compute_ghost_cells

processor 0

local mesh 0

processor m

local mesh m

processor m+1

local mesh m+1

processor n

local mesh n

Figure 2.6: The mesh decomposition procedure for the shear layer update approach. At the
beginning, processor 0 (red) and m+1 (red), which are our "master" processors, handle the static
mesh and the rotating mesh separately. They distribute sub-meshes to each processor within
their own communication group. But the compute_ghost_cells function performs within all
processors, namely a global communication. In the end, each processor possesses a local mesh,
which contains the interior cells (sub-mesh) and ghost cells.

local mesh m local mesh n

Figure 2.7: Ghost cells for two local meshes, which are located on the interface between the
static and rotating mesh. Local mesh m has its own interior cells (red left) and ghost cells (blue
left), which comes from the local mesh n, vice versa for the local mesh n.

On the other hand, since they are two geometrically identical layers (Figure 2.4), the revo-
lution of the rotating mesh is limited by the number of cells on the perimeter of the interface.
Although, changing the size of the time step can give us some flexibilities, it is not optimal for
complex simulations. Thence, we propose the similar technique as in SSMUM [23], we shear one
of these two layers during the computation.

Shear Layer Procedure

We demonstrate the shear layer procedure with the help of Figure 2.8:

(a): The initial position. The red layer allows a shearing effect, and the green part can rotate,
both of them belong to the rotating mesh. The blue part is the static mesh. e.g., cell 15675
and 137 are both ghost cells for each other, they have a shared interface in common. Cell
15675 consists of the vertices 3659, 161, 885 and 1674.

(b): Shearing process. Deforming the layer (red) regarding a revolving speed of the rotating
part. The vertices on the shared interface stay unaltered. In this case, the global mesh
is just deformed, but no new mesh generation is required. Therefore, we do not have to
change the local vector, only the mesh’s geometry needs to be updated.
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Figure 2.8: Illustration of the procedure for shear layer update approach.

(c): Reaching the maximum deformation. The maximal displacement has the same length as
the cell on the interface. However, the status of the mesh is similar as in step (b).

(d): Disconnect and reconnect. The vertices on the shared interface disconnect from the original
location, then they reconnect to the upstream vertices. Whence, certain cells’ connectivity
is modified: e.g. cell 15675 is constructed now by vertices 1675, 1674, 885 and 886. But
there is no deformation within the static mesh, only the solution on the ghost cells have to
be updated.

ALE Formulation of Navier-Stokes Equations for Moving Mesh Modeling

After presenting the main procedure of our shear layer update approach, we also have to
show the needed modification in the governing equations. The formulation of the moving mesh
problem can be defined with the Arbitrary Lagrange-Euler (ALE) method [46, 87]. We briefly
show the modification by using the incompressible Navier-Stokes equations, but the principle
also applies to other systems. The strong formulation of the incompressible NSE is given as:

∂u

∂t
+ (u− ur) · ∇u− µ

ρ
∆u+

1

ρ
∇p = f , in Dt × [0, T ] , (2.36a)

∇ · u = 0 , in Dt × [0, T ] , (2.36b)
ur = d× ω , in Dtrot × [0, T ] , (2.36c)
ur = 0 , in Dtstat × [0, T ] . (2.36d)

Here, u is the velocity, and p is the pressure. µ and ρ are the dynamic viscosity and the density,
respectively. Dtrot is the rotating domain, and Dtstat is the static domain, Dt = Dtrot∪Dtstat, Dtrot∩
Dtin = ∅. The superscript t indicates that the mesh is evolving with respect to time t, t ∈ [0, T ].
ur is the evolution velocity of the mesh, it means the rotating domain revolves with the same
velocity as the accommodated object. d is the distance from a physical point in Dtrot to the
rotation axis and ω is the angular speed.

24



2.3. Rotating Device Modeling

ur plays actually the extra convective effects on the momentum conservation equation (Equa-
tion (2.36a)), it represents the additional relative motion between the flow particles and the
computational grid of the reference domain due to the mesh rotation.

One remark of the practical aspect for the finite element implementation is, when we need to
assemble the matrix and the vector in the shear layer, the material velocity ur does not depend
on the distance d anymore (Equation (2.36c)). The angular speed ω is not constant with respect
to the quadrature points due to the shearing.

Thence, the variational formulation with the Variational Multiscale method can be written
as:

Find uh ∈ V h, ph ∈ Qh, such that:

∫
Dt

(
∂uh
∂t

+ (ûh − urh) · ∇uh) · vh dx+

∫
Dt

µ

ρ
∇uh : ∇vh dx (2.37a)

+

∫
Dt

1

ρ
ph∇ · uh dx−

∫
Dt
fh · vh dx

+

∫
Dt

[
∂uh
∂t

+ (uh − urh) · ∇uh −
µ

ρ
∆uh +

1

ρ
∇ph − fh] · τM (ûh − ur) · ∇vh dx

+

∫
Dt
τC∇ · uh · ∇ · vh dx = 0 ,

∫
Dt
qh∇ · uh dx (2.37b)

+

∫
Dt
τM∇qh · [

∂u

∂t
+ (uh − urh) · ∇uh −

µ

ρ
∆uh +

1

ρ
∇ph − fh] dx = 0 .

∀vh ∈ V h, ∀qh ∈ Qh.

2.3.2 Combination of Continuous and Discontinuous Galerkin Approach

The shear layer update approach we proposed in the previous subsection focuses on the con-
tinuous Galerkin (CG) method [182]. The advantage is that there are already well established
theories for flow problems, and a large amount of efficient parallel solving strategies are available.
However, the static mesh and the rotating mesh should constantly keep conformed, therefore re-
calculating the ghost cells and updating the solutions are inevitable. Thus, we use the continuous
Galerkin method and the discontinuous Galerkin (DG) method together in order to avoid this
inconvenience.

rotating mesh
CG

static mesh
CG

DG

Figure 2.9: The static mesh and the rotating mesh are computed with the Continuous Galerkin
method, only for the computation of the shared interface, we used the discontinuous Galerkin
method.

The main concept is to consider the DG method on the interface between the static and
rotating mesh. Within both domains, the flow problem is still modeled by using the CG method
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(Figure 2.9). Yet, the degrees of freedoms (DOFs) on the shared interface are duplicated compar-
ing to the shear layer update approach, the communication between two subdomains are linked
by specific jump terms [88]. Therefore, we need to append the following terms to the weak
formulation (Equation (2.37)):

−
∫

Γtinterface

t(ustat,urot, pstat, prot) · (vstat − vrot) dx (2.38a)

−
∫

Γtinterface

(ustat − urot) · t̃(vstat,vrot, qstat, qrot) dx (2.38b)

+

∫
Γtinterface

(ustat − urot) · τB(vstat − vrot) dx . (2.38c)

Γtinterface = Dtstat∩Dtrot denotes the shared interface between the static domain and the rotating
domain. vstat and vrot represent the test functions on Γtinterface from the side of Dtstat and Dtrot,
they have the identical shape functions. However, all those basis functions are duplicated by the
virtue of the concept of the discontinuous Galerkin method and belong to different subdomains.
The rest of the parameters in Equation (2.38) are defined as follows:

t(ustat,urot, pstat, prot) =
1

2
(−1

ρ
pstatnstat +

µ

ρ
(∇ustatnstat + (∇ustat)Tnstat) (2.39a)

+
1

ρ
protnrot −

µ

ρ
(∇urotnrot + (∇urot)Tnrot)) ,

t̃(vstat,vrot, qstat, qrot) =
1

2
(
1

ρ
qstatnstat +

µ

ρ
∇vstatnstat −

1

ρ
qrotnrot −

µ

ρ
∇vrotnrot) (2.39b)

+ (vstat − vrot)({ustat · nstat}_ + {urot · nrot}_) ,

τB =
1

2
(
Cstatµ

hstatρ
+
Crotµ

hrotρ
) . (2.39c)

nstat, nrot are the normal vectors on the static side and the rotating side. {A}_ indicates the
negative part of A, i.e., {A}_ = A, if A < 0, and {A}_ = 0, if A ≥ 0. hstat, hrot denote the
length of the cells, Cstat, Crot are positive constants.

Figure 2.10: Show case: 2D channel benchmark using the combination of Continuous and Dis-
continuous Galerkin approach for a rotating rectangle. The second picture shows a discontinuity
on the shared interface.

However, our final computation is accomplished based on the shear layer update approach
instead of the combination of Continuous and Discontinuous Galerkin approach, because the ad-
ditional interface conditions from the latter model need to be treated in a different way compared
to the continuous Galerkin part. Otherwise, our developed flow solver is not efficient. Therefore,
we decide to adhere to the shear layer update approach in the following work.
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2.3. Rotating Device Modeling

2.3.3 Pyramid Element

One arising issue for the shear layer update approach is the mesh generation, especially when
we have a complex geometry in 3D. Generating two layers, whose cells are equally sized and
shaped is a nontrivial task. Meanwhile, the orientation of the cells should also be suitable for
the shearing. In general, we expect a situation as in Figure 2.4 that the cells of the layers are
hexahedrons in order to handle the shearing. It implies that the other two domains should
have one surface with quadrilateral meshes. However, as the rotating domain accommodates the
moving object which holds a complex shape, an unstructured mesh is preferable.
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Figure 2.11: The location and the numbering of degrees of freedom. The left one is the first order
element, the right one is the second order element. For the first order case, the DOF numbering
also overlaps the numbering of vertices.

Therefore, we would like to have structured meshes for the layers, it implies that we need to
utilize an adequate "glue element" for connecting structured and unstructured meshes. There
exist two kinds of standard elements, which are suitable for this situation: the pyramid element
and the prism element. In our hybrid mesh, we choose the pyramid element as the "glue element".

The construction of shape functions for a pyramid element is unfortunately ambiguous, in
addition, maintaining the conforming feature of the cell is not trivial. It is proven that it is
impossible to obtain conforming continuously differentiable basis functions on a pyramid element
[172, 115]. We state the theorem as follows:

Theorem 2.3.1 (Pyramid shape function construction). There exists no continuously differen-
tiable conforming shape functions for the pyramid element, which is linear on triangle facet and
bilinear on rectangle facet.

The detailed proof can be found in [172, 116, 115]
Therefore, we can not construct the quadratic shape functions on a whole pyramid element,

we have to use composite elements instead. In our implementation, we divide a pyramid by four
equal-sized tetrahedrons. Figure 2.11 shows the location of the degrees of freedom for the first
and the second order pyramid element. We state here only the first order shape functions, the
higher order functions are shown in [115, 172, 116, 38], and the Gaussian quadrature points for
the numerical integration can be found in [108, 39].

ϕ0 =


−1

2ζ + (1
4ξ − 1

4)(η − ζ − 1) , ξ > η and ξ < −η ,
1
4ζ(ξ + η − 2) + (1

4ξ − 1
4)(η − ζ − 1) , ξ ≥ η and ξ ≥ −η ,

(1
4ξ − 1

4)(η + ζ − 1) , ξ < η and ξ > −η ,
1
4ζ(ξ − η − 2) + (1

4ξ − 1
4)(η − ζ − 1) , ξ ≤ η and ξ ≤ −η ,

(2.40a)
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ϕ1 =


−1

2ζ + (1
4ξ + 1

4)(−η + ζ − 1) , ξ > η and ξ < −η ,
−1

4ζ(ξ + η + 2) + (1
4ξ + 1

4)(−η + ζ + 1) , ξ ≥ η and ξ ≥ −η ,
(1

4ξ + 1
4)(−η − ζ + 1) , ξ < η and ξ > −η ,

−1
4ζ(ξ − η + 2) + (1

4ξ + 1
4)(−η + ζ + 1) , ξ ≤ η and ξ ≤ −η ,

(2.40b)

ϕ2 =


(−1

4ξ + 1
4)(η − ζ + 1) , ξ > η and ξ < −η ,

−1
4ζ(ξ + η) + (−1

4ξ + 1
4)(η − ζ + 1) , ξ ≥ η and ξ ≥ −η ,

−1
2ξζ(−1

4ξ + 1
4)(η − ζ + 1) , ξ < η and ξ > −η ,

−1
4ζ(ξ − ζ) + (−1

4ξ + 1
4)(η − ζ + 1) , ξ ≤ η and ξ ≤ −η ,

(2.40c)

ϕ3 =


(1

4ξ + 1
4)(η − ζ + 1) , ξ > η and ξ < −η ,

1
4ζ(ξ + η) + (1

4ξ + 1
4)(η − ζ + 1) , ξ ≥ η and ξ ≥ −η ,

1
2ξζ(1

4ξ + 1
4)(η − ζ + 1) , ξ < η and ξ > −η ,

1
4ζ(ξ − η) + (1

4ξ + 1
4)(η − ζ + 1) , ξ ≤ η and ξ ≤ −η ,

(2.40d)

ϕ4 = ζ . (2.40e)
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Chapter 3

Stochastic-Spectral Finite Element
Method for the Incompressible
Navier-Stokes Equations with the
Variational Multiscale Method

The aforementioned chapter focused on the modelization of high Reynolds number and the
mesh techniques for a rotating system. Within this chapter, we show how to apply the Variational
Multiscale method for the blood pump modeling. After defining a proper model for the rotating
machinery simulation, we investigate the influence of the uncertain input data on the numerical
solution by considering the blood pump as a stochastic dynamic system. As mentioned already
in Chapter 1, we quantify the uncertainties in the numerical model by means of the generalized
Polynomial Chaos expansion (gPCE). We use the intrusive UQ technique in the blood pump
modelization, which is further detailed in this chapter.

This chapter begins with the basic knowledge in probability theory and partial differential
equations with the random input data. Afterward, the generalized Polynomial Chaos expansion
and the standard procedure of constructing an intrusive Polynomial Chaos (PC) formulation is
presented. Moreover, with the help of the abstract representation of the weak form of the stochas-
tic problem, the structure of the specific stochastic system is also discussed. The Galerkin tensor
plays a key role in building the PC formulation and is also essential for developing the precon-
ditioners, which will be presented in Chapter 4. The chapter ends with the spectral-stochastic
finite element method, more specifically, the discretized stochastic Variational Multiscale method
formulation of the blood handling device is given.

3.1 Uncertainty Quantification

Over the last decade, Uncertainty Quantification has gained a great deal of attention in the
field of engineering and applied mathematics. The goal of UQ is to explore the influence on the
computational results from uncertainties in the input data or in the models. This uncertainty
study may subsequently be used to provide more reliable information and or quantify the un-
certainties within the systems. In this work, we investigate uncertainties in the fluid problem
associated with the blood pump, which is formulated as a stochastic partial differential equation
(SPDE). Therefore, we first introduce some basic needed theories for the derivation of the overall
model.
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Chapter 3. SSFEM for the incompressible NSE with VMS

3.1.1 Probability Theory

In the following section, we give an overview of the necessary definitions in probability theory.
This overview is an excerpt from [118, 109] with the definitions of the terms and concepts.

Definition 3.1.1 (σ-algebra). Let Θ be a set. A family F of subsets of Θ is a σ-algebra on Θ,
if and only if it satisfies the following conditions:

1. ∅ ∈ F .

2. A ∈ F =⇒ Ac ∈ F .

3. Ai ∈ F , i ∈ I , I is countable =⇒ ⋃
iAi ∈ F .

Definition 3.1.2 (Topological space). Let Θ be a set, τ is a family of subsets of Θ with the
following properties:

1. the empty set ∅ and Θ are both in τ .

2. τ is closed under finite intersections.

3. τ is closed under arbitrary unions.

The pair (Θ, τ) is a topological space.

Definition 3.1.3 (Borel σ-algebra). For a topological space Θ, B(Θ) represents the Borel σ-
algebra, it equals to the smallest σ-algebra containing all open subsets of Θ.

Definition 3.1.4 (Measurable space). Any A ∈ F , F is a σ-algebra, is known as a measure set,
and the pair (Θ,F) is known as a measurable space.

Definition 3.1.5 (Measure). A measure µ on a measurable space (Θ,F) is a mapping, µ : F →
[0,+∞], such that:

µ(
∞⋃
i=0

Ai) =
∞∑
i=0

µ(Ai) , ∀Ai ∈ F , Ai ∩Aj = ∅ , i 6= j ,

i.e. it is countably additive. A triple (Θ,F , µ) is called a measure space.

Definition 3.1.6 (Measurable set). Let (Θ,F) be a measurable space. A subset A ⊆ Θ is
measurable, if and only if A ∈ F .

Definition 3.1.7 (Measurable function). Let (Θ,F), (Ψ, T ) be two measurable spaces. A func-
tion u : Θ→ Ψ is measurable, if:

u−1(E) := {x ∈ Θ|u(x) ∈ E} ∈ F , ∀E ∈ T .

If we focus on the stochastic process, one important measurable space is the probability space.

Definition 3.1.8 (Probability space). A probability space is an ordered triple (Θ,F ,P), where
(Θ,F) is a measurable space, F are the measurable subsets of Θ, P is a measure over F .

P : F → [0, 1] with P(Θ) = 1:

• Θ is the sample space, which is a nonempty set.

• F is the event space.

• P is the probability function.
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Lemma 3.1.1 (Properties of the probability function). Let (Θ,F ,P) be a probability space.
∀A,B ∈ F , then:

1. P(B) ≤ P(A) , ifB ⊆ A .

2. P(A) = 1− P(Ac) .

3. P(A ∪B) = P(A) + P(B)− P(A ∩B) .

Definition 3.1.9 (Random variable). Let (Θ,F ,P) be a probability space and (Ψ,G) be a measur-
able space. A measurable function X : (Θ,F) → (Ψ,G) is called F-measurable random variable
or random variable. The observed value of X(θ) for a given θ ∈ Θ is also called a realization of
X.

For the most common case, (Ψ,G) = (R,B), with the real number and a Borel σ-algebra
B(R), X is a real-valued random variable. Each random variable X : Θ → Ψ has an associated
probability distribution PX .

Definition 3.1.10 (Random vector). The random vector X is a vector of random variables:

X = [X1, ..., Xn]T , n ∈ N .

Definition 3.1.11 (Probability distribution). Let X be a Ψ-random variable, (Ψ,G) is a mea-
surable space. and (Θ,F ,P) is the corresponding probability space. The probability distribution
PX of X, PX := g → [0, 1], is the probability measure on (Ψ,G):

PX(G) := P(X−1(G)) ,where,X−1(G) := {θ ∈ Θ : X(θ) ∈ G} , G ∈ G .
In particular, if (Ψ,G) = (R,B), the probability distribution can be written as:

PX(x) := P(X−1((−∞, x])) = P({θ : X(θ) ≤ x}) = P(X ≤ x) .

Proposition 3.1.1. If the distribution function PX is absolutely continuous with respect to the
Lebesgue measure on R, there exists an integrable function, ρ : R→ [0,+∞) such that:

PX(b)− PX(a) =

∫ b

a
ρ(x)dx, a < b .

Definition 3.1.12 (Probability density function (PDF)). ρ is called the probability density func-
tion. Notably, if ρ(x) is continuous at x, the probability density function can be also obtained
by:

ρ(x) =
d

dx
PX(x) . (3.1)

Considering a random variable X : Θ → R, defined on a probability space (Θ,F ,P). Two
well-known density functions, Gaussian (X ∼ N (µ, σ2)) and uniform (X ∼ U(a, b)), are widely
used in engineering and research:

• Gaussian or normal density function:

ρµ,σ2 =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (3.2)

• Uniform density function:

ρa,b =

{
1
b−a x ∈ [a, b]

0 otherwise
. (3.3)
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Definition 3.1.13 (Joint probability distribution and density function). For a random vector
X, the joint probability distribution PX : Rd → [0, 1] is defined as:

PX(x) := P(
d⋂
i=1

(Xi ≤ xi)) ,

where, x = (x1, ..., xd) ∈ Rd. If PX is absolutely continuous with respect to the Lebesgue measure
on Rd, the joint probability density function ρ : Rd → [0, 1] is defined as:

ρ :=
∂dPX(x)

∂x1 . . . ∂xd
.

Definition 3.1.14 (Integrability). Let (Θ,F ,P) be a probability space and X be a random vari-
able. X : (Θ,F) → (Ψ,G), (Ψ,G) is a measurable space. The integral of X with respect to P
over the event F ∈ F is defined as:∫

Θ
IF (θ)X(θ)dP(θ) =

∫
F
X(θ)dP(θ) .

Here, IF is the indicator function of F . If the integral exists and is finite, X is called P-integrable
over F .

Definition 3.1.15 (Expectation). Let X : Θ → R be an integrable real-valued random variable
on a probability space (Θ,F ,P). The expectation of X is defined:

E(X) :=

∫
Θ
X(θ)dP(θ) . (3.4)

The expectation is also called mean.

Definition 3.1.16 (Variance). Let X be a real-valued random variable over a probability space
(Θ,F ,P), µ = E(X). The variance is defined as:

V ar(X) := E[(X − µ)2] .

σ :=
√
V ar(X) is called standard deviation.

Definition 3.1.17 (Covariance). Considering two real-valued random variables X and Y over
a probability space, µX = E(X) and µY = E(Y ), the covariance is defined:

Cov(X,Y ) := E[(X − µX)(Y − µY )] .

If X and Y are integrable, then:

Cov(X,Y ) = E[XY ]− µXµY .

Particularly, Cov(X,X) = V ar(X).

Definition 3.1.18 (Correlation). The covariance can be rescaled into the range [−1, 1] :

ρ(X,Y ) :=
Cov(XY )

σXσY
,

which is defined as the correlation coefficient. σX is the standard deviation of X, and σY is the
standard deviation of Y .

Definition 3.1.19 (Uncorrelated random variables). If Cov(X,Y ) = 0, the random variables
X, Y are called uncorrelated.

32



3.1. Uncertainty Quantification

Definition 3.1.20 (Independence of events). Two events F,G ∈ F , if P(F ∩ G) = P(F )P(G),
they are independent.

Definition 3.1.21 (Independence of σ-algebra). Two sub-σ-algebras F1, F2 of the σ-algebra F
are independent, if the events F1, F2 are independent for all F1 ∈ F1 and F2 ∈ F2.

Definition 3.1.22 (Independence of random variables). Two random variables, X and Y , are
independent on a probability space (Θ,F ,P), if the σ-algebra σ(X) and σ(Y ) generated by X and
Y are independent.

Definition 3.1.23 (Stochastic process). Given a probability space (Θ,F ,P) and a measurable
space (Ψ,G). A stochastic process is defined as a family of random variables {X(t), t ∈ T} for
some index set T and X(Θ,F)→ (Ψ,G), ∀t ∈ T .
Definition 3.1.24 (Almost surely). Let (Θ,F ,P) be a probability space, an event F ∈ F happens
almost surely (a.s.), if P(F ) = 1.

3.1.2 Partial Differential Equation with Stochastic Data

With the previously discussed elementary knowledge in probability theory, we can focus now
on partial differential equations (PDEs) with stochastic data, as it governs the physical behavior
which is studied in this work.

Let us first consider an abstract partial differential equation (PDE):

L(a)u = f , inD × [0, T ] . (3.5)

L is a partial differential operator in a domain D ⊂ Rd , d ∈ N denotes the spatial dimension. The
partial differential operator includes the initial and boundary conditions, f is the external forcing
term. L may also depend on some space-time dependent parameter function a : D× [0, T ]→ Rr,
where r is the dimension of the parametric space. In general, we consider Equation (3.5) as a
parametrized partial differential equation (PPDE) [76]. Especially, we consider a quantity of
interest qi(a) ∈ R, which is regarded as a functional of u(a), and u(a) is the solution of a PDE.
Here, "parameterized" refers to the input parameters.

In order to concentrate on parameterized partial differential equations with random data, we
introduce first a stochastic space (Θ,F ,P) and consider the input parameters a to be random.
In other words, a stochastic process is added into the system, a : Θ×D× [0, T ]→ Rr, a becomes
thus a space-time stochastic parameter. In the meantime, we also specify the system forcing
term f(x, θ, t) to be random, i.e. f : Θ×D× [0, T ]→ Rs and θ ∈ Θ, x ∈ D, s ∈ N. The solution
u is also dependent on the set of outcomes, u(x, θ, t) : Θ×D × [0, T ]→ Rs.

The abstract PDE with stochastic data problem can be defined as follows:

Definition 3.1.25 (Partial differential equation with stochastic data). For a given stochastic
space (Θ,F ,P), find a solution u : Θ×D × [0, T ]→ Rs, such that

L(a)u = f , in Θ×D × [0, T ] . (3.6)

Here, D ⊂ Rd is the spatial domain, T > 0, T ∈ R is the final time. a : Θ×D×[0, T ]→ Rr is the
space-time stochastic parameter. d, s, r ∈ N. L is a partial differential operator with appropriate
boundary and initial conditions. f is the external forcing term to the PDE.

For a Banach spaceW (D) [123] with a function v : D → R, the stochastic Banach space [130]
looks like:

LqP (Θ,W (D)) :=
{
v : Θ→W (D)|v is strongly measurable and∫

Θ
‖v(·, θ)‖qW (D)dP (θ) < +∞

}
,

(3.7)
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for q ∈ [1,+∞), and for q =∞:

L∞P (Θ,W (D)) :=
{
v : Θ→W (D)|v is strongly measurable and

P − ess supθ∈Θ‖v(·, θ)‖2W (D) < +∞
}
.

(3.8)

Particularly, we are interested in L2
P (Θ,W (D)), whose elements have finite second stochastic

moments.
Therefore, one can view the solution of Equation (3.6) as a random field, and the random

variables are indexed by a multidimensional parameter, which can be even infinite-dimensional.
As mentioned previously, investigating the influence of the random parameters of a fluid is one of
the focusing points of this thesis. According to the definitions above, u must exist for all θ ∈ Θ,
whereas the existence and the uniqueness of strong solutions to the Navier-Stokes equations are
still not proven. However, we have to assume that we can obtain the solution numerically in our
study of the considered stochastic flow problem.

3.1.3 Assumption of Finite-Dimensional Probability Space

Throughout the rest of this thesis, we assume firstly that we are only dealing with a low
dimensional probability space, i.e. a small number of random variables is considered. Even
though, the infinite-dimensional stochastic PDEs cover more general situations and numerous
physical phenomena, focusing only on certain important criteria with respect to the random
resources in order to quantify the stochastic numerical solutions of a specific system is the most
common situation for engineering applications.

Therefore, we assume in our considered problem that just a small number of independent
random variables is subject to a pre-defined probability space. We state the similar assumption
as in [12]:

Assumption 3.1.1 (Finite-dimensional noise). For a given probability space (Θ,F ,P), θ ∈ Θ is
a single outcome. The coefficients in Equation (3.6) have the following form:

a(θ,x, t) = a(Y1(θ), ..., YN (θ),x, t) , (Θ,x, t) ∈ Θ×D × [0, T ] , (3.9a)
f(θ,x, t) = f(Y1(θ), ..., YN (θ),x, t) , (Θ,x, t) ∈ Θ×D × [0, T ] , (3.9b)

where, N > 0, N ∈ N. {Yi}Ni=1 are real-valued random variables on (Θ,F) with zero mean value
and unit variance.

Theorem 3.1.1 (Karhunen-Loève expansion [109, 174]). Let (Θ,F ,P) be a probability space, and
a : Θ×D → R, a ∈ L2(Θ,F ,P) is a random field with a(·, θ) ∈ L2,∀θ ∈ Θ, then a ∈ L2(Θ×D).
Therefore, we can describe this random field by using the Karhunen-Lòve expansion:

a(x, θ) = E[a](x) +

∞∑
i=1

√
λiψi(ξ)ai(θ) , (3.10)

where, ψi is a sequence of eigenfunctions, and λi is a sequence of eigenvalues of the following
eigenvalue problem: ∫

D
Cov[a](x,x′)ψi(x

′)dx′ = λiψi(x) , ∀x ∈ D . (3.11)

Moreover, {ai(θ)} are mutually independent random variables:

E[ai] = 0, E[aiaj ] = δij . (3.12)

Here, δij is the Kronecker delta. ai is defined as:
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3.1. Uncertainty Quantification

ai(θ) =
1√
λi

∫
D

(ai(θ)− E[a](x)ψi(x)dx . (3.13)

Example 3.1.1 (Karhunen–Loève expansions). If we consider the random variables a(θ,x, t)
and f(θ,x, t) in Assumption 3.1.1 and assume them can be decomposed by using Karhunen-Loève
expansion as described in Theorem 3.1.1. These two random variables can be approximated with
the following forms:

a(θ,x, t) ≈ a0 +
N∑
n=1

√
λanψ

a
n(θ)an(x, t) . (3.14)

f(θ,x, t) ≈ f0 +
N∑
n=1

√
λfnψ

f
n(θ)fn(x, t) . (3.15)

Referring to Mercer’s theorem [124], any random field, e.g. a(θ,x, t), with a continuous covari-
ance function can be modeled as a sum of the infinite random variables based on a bi-orthogonal
decomposition. For many simulations, the expression of the series is truncated to a finite number
of terms, in Equation (3.14), λn,an, n = 1, ..., N , are the dominant eigenvalues and eigenfunc-
tions. It holds the same for Equation (3.15).

There are several ways to represent a random field with a finite-dimensional basis. Apart from
the Karhunen-Loève expansion, the Polynomial Chaos expansion is extensively applied in many
fields. The Polynomial Chaos representation for the random variables is the main technique that
we employ in this work for quantifying uncertainties, it will be introduced in the next section
(Section 3.2).

3.1.4 Uncertainty Quantification for PDEs with Random Inputs

Considering the partial differential equations with stochastic data (Equation (3.6)), we briefly
illustrate the model-based PDE simulation for the Uncertainty Quantification. As outlined in
Figure 3.1, we concentrate in the first place on our PDE system with random inputs. We model
the input random field into a finite-dimensional manner as mentioned in the previous assumption,
then we solve the stochastic system in order to obtain the stochastic solution u(θ,x, t). This
process is generally considered as a forward propagation of the uncertainty. It means that we are
interested in observing the impact of the input parameters with respect to their random behavior
on the solution u(θ,x, t).

Inputs
a(θ,x, t)

f(θ,x, t)

PDEs
L(a)u = f

Solution
u(θ,x, t)

Quantity
of

interest

Forward propagation

Backward propagation

Figure 3.1: Illustration of the Uncertainty Quantification for the partial differential equations
with the random inputs.

As the solution u(θ,x, t) depends on stochastic parameters, we also want to extract certain
information, which is more valuable to our perspective, from the stochastic solution. Therefore,
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the forward propagation can be even extended to the process of computing a given quantity of
interest (QoI). On the other hand, it is also important to identify the unknown objects from the
input parameters so as to improve the modeling of the random inputs, this procedure is stated
as backward propagation. In this work, we focus only on the forward problem of the Uncertainty
Quantification, but, it has to be mentioned that the inverse problem is also a very important step
in the real world applications. In the rest of this chapter, modeling the input random field and
setting the random partial differential equation for our fluid problem are discussed, the solving
techniques will be studied in the next chapter (Chapter 4).

3.2 Generalized Polynomial Chaos Expansion

The term Polynomial Chaos is initially introduced by Wiener [171], who modeled a countable
sequence of uncorrelated Gaussian random variables with the aid of a series of Hermite poly-
nomials. Soon afterward, Ghanem proposed using the truncated polynomial chaos expansions
as the trial functions in the finite element method to solve structural mechanics problems with
some parametric random parameters [62]. This approach is then named as the stochastic finite
element method (SFEM), also known as the stochastic Galerkin method. Thereafter, Xiu carried
this concept to a more general framework in order to adapt general probability distributions,
it stands for the generalized Polynomial Chaos (gPC) [176]. This subsection lays emphasis on
the concept of the generalized Polynomial Chaos expansion and the structural pattern of the
stochastic Galerkin system.

3.2.1 Wiener Polynomial Chaos Expansion

Let (Θ,F ,P) be a probability space, and a real-valued random variable X := X(θ) : Θ→ R.
θ ∈ Θ is a random event in the sample space Θ. Moreover, we assume thatX is square-integrable,
i.e.:

X ∈ L2(Θ) := {X(θ) : θ → R,E(X2) <∞} . (3.16)

Here, E(X2) denotes the expectation value (Equation (3.4)) of X2 with respect to P. We obtain
therefore a Hilbert space of real-valued random variables with inner product (·, ·)L2(Θ) and norm
‖·‖L2(Θ). Considering a Gaussian Hilbert space H ⊂ L2(Θ,F ,P) consisting only of the normal-
ized, centered and uncorrelated Gaussian variables {ξi}Mi=1, where, ξi : Θ → R, ξi ∼ N (0, 1).
As the moments of the independent Gaussian random variables are purely the products of each
individual moment, for any Gaussian Hilbert space H, we have:

PK(H) :=
{
pk(ξ1, ..., ξM )| p is a polynomial of degree k , k ≤ K , K ∈ N0 ,

ξi ∈ H , i = 1, ...,M ,M ∈ N
}
.

(3.17)

is a linear subspace of L2(Θ,F ,P). PK(H) consists of polynomials with arbitrary number of
random variables, which are selected from H.

Theorem 3.2.1 (Cameron-Martin theorem [52]). Under the conditions mentioned above, a space
P̃K is supported by the polynomial PK in Equation (3.17) at degree K, which is defined as:

P̃K = PK(H) ∩ Pk−1(H)⊥ , K ∈ N . (3.18)

PK is the closure with respect to L2. The spaces {P̃k}k∈N0 form a sequence of closed and pairwise
orthogonal linear subspaces of L2(Θ,F ,P), such that:
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∞⊕
k=0

P̃k = L2(Θ, σ(H),P) . (3.19)

σ(H) is the σ-algebra generated by a set H of random variables. Particularly, if σ(H) = F , the
orthogonal decomposition yields:

L2(Θ,F ,P) =
∞⊕
k=0

P̃k . (3.20)

The first proof can be found in [36], a more general formulation is stated in [96].
Therefore, the original random variable X can be expressed as [178]:

X(θ) = a0H0 (3.21)

+
M∑
i1=1

ai1H1(ξi1(θ))

+

M∑
i1=1

i1∑
i2=1

ai1i2H2(ξi1(θ), ξi2(θ))

+
M∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3H3(ξi1(θ), ξi2(θ), ξi3(θ))

+ · · · .

Here, Hp(ξi1 , ..., ξip) is the multivariate or multidimensional univariate Hermite polynomial of
degree p with the standard Gaussian variables (ξi1 , ..., ξip), i.e. ξj ∼ N (0, 1), j = 1, ...,M . This
orthogonal decomposition converges almost surely to X in a mean-square sense:

lim
p→∞

E[(a0H0 + · · ·+
M∑
i1=1

· · ·
ip−1∑
ip=1

ai1···ipHp(ξi1 , · · · , ξip)−X)2] = 0 . (3.22)

The multivariate Hermite polynomials are built on the one-dimensional Hermite polynomials.
The general expression is stated as [176]:

Hp(ξi1 , · · · , ξip) = e
1
2
ξT ξ(−1)p

∂p

∂ξi1 · · · ∂ξip
e−

1
2
ξT ξ . (3.23)

Equation (3.21) can be hence written in a compact form:

X(θ) =

∞∑
i=0

xiψi(ξ(θ)) , ξ = {ξ1, ..., ξM} . (3.24)

Here, xi are called Polynomial Chaos (PC) coefficients. Each ψi(ξ) has one-to-one mapping to
a corresponding Hermite polynomial Hp(ξi1 , · · · , ξip). In the following, ψi(ξ) is employed more
often for representing the general polynomial basis for the conventional purpose. The polynomial
ψi can be constructed generally by a tensor product of one-dimensional polynomials φi with a
suitable multi-index αi = (αi1, ..., α

i
p) ∈ N0, i.e.:

ψi(ξ1, ..., ξp) :=

p∏
k=1

φαik
(ξk) . (3.25)
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Remark 3.2.1. If the number of the random variables is more than one, there are more than
one polynomial for p > 0. However, the input setting (ξi1 , ..., ξip) can determine Hp differently
for the same order of polynomial p. Moreover, ψi(ξ) is only a single polynomial, not a set of
polynomials.

Example 3.2.1 (Three-dimensional Hermite polynomials). The multi-index αi has a compact
support, there exits only a finite number of indices, which is non-zero. i indicates the global index
and p denotes the degree of polynomials (Table 3.1).

i p ψi αi

0 0 1 (0,0,0)
1 1 ξ1 (1,0,0)
2 1 ξ2 (0,1,0)
3 1 ξ3 (0,0,1)
4 2 ξ2

1 − 1 (2,0,0)
5 2 ξ1ξ2 (1,1,0)
6 2 ξ1ξ3 (0,1,1)
7 2 ξ2

2 − 1 (0,2,0)
8 2 ξ2ξ3 (0,1,1)
9 2 ξ2

3 − 1 (0,0,2)
· · · · · · · · · · · ·

Table 3.1: The polynomials of the three-dimensional Hermite polynomials (up to the second
order).

As mentioned in the theorem above, the Hermite-Chaos Polynomials offer a complete orthog-
onal basis:

〈ψi, ψj〉 = 〈ψi, ψi〉δij , (3.26)

δij is the Kronecker delta function, 〈·, ·〉 is the inner product, it implies:

〈f(ξ), g(ξ)〉 :=

∫
f(ξ)g(ξ)w(ξ)dξ , (3.27)

where, w(ξ) is the weight function or the probability density function of the multi-dimensional
standard Gaussian random variable ξ. Furthermore, according to Equation (3.1), the probability
density function can be calculated from the derivative of the joint probability distribution P (ξ)
of ξ, hence:

〈f(ξ), g(ξ)〉 :=

∫
f(ξ)g(ξ)dP (ξ) . (3.28)

However, for the practical reasons, we can not employ an expansion (Equation (3.24)) with
an infinite number of terms, we have to utilize a truncated decomposition of the form:

X(θ) =

P∑
i=0

xiψi(ξ(θ)) + ε(M,p) . (3.29)

X(Θ) depends on a finite number of random variables M . We truncate the degree of the poly-
nomials up to L, the total number of polynomials (P + 1) can be computed via:
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P + 1 =
(M + L)!

M !L!
. (3.30)

ε(L) is the error with respect to L. It vanishes if we decompose X(θ) into the infinite number
of basis random variables and use the infinite degree of polynomials, it implies:

lim
L→∞

ε(L)→ 0 . (3.31)

3.2.2 Generalization

The Cameron-Martin theorem [36] provides the ability of modeling stochastic differential
equations (SPDEs) with Gaussian random inputs. Another types of random input can also be
modeled with this technique. Nonetheless, using the Hermite polynomials to approximate the
non-Gaussian inputs is not optimal, and it leads to a slow convergence behavior.

Whence, the Wiener-Askey Polynomial Chaos expansion [176] is introduced for dealing with
more general random inputs based on the Wiener-Chaos expansion. This technique generates
different classes of polynomials by making use of the Askey-scheme [4, 11, 104]. These polynomi-
als are optimal in terms of applying the correct measure of the probability distribution function
to each random variable. This scheme offers a structure of the hierarchical relations between
the hypergeometric orthogonal polynomials, and the lower hierarchy polynomial can be then
obtained by taking the limit of certain parameters from the upper polynomial. Additionally, the
Hermite polynomial is placed to the end of the structure.

Example 3.2.2. The Hermite polynomial Hn(x) can be calculated by taking the limit of α in
the Jacobi polynomial Pα,αn (x) [161].

lim
α→∞

α−
1
2
nP (α,α)

n (
x√
α

) =
Hn(x)

2nn!
.

We can rewrite the decomposition from the Hermite-Chaos expansion (Equation (3.21)) in a
more general form, i.e., the general second order random process X(θ):

X(θ) = a0I0 (3.32)

+
M∑
i1=1

ai1I1(ξi1(θ))

+
M∑
i1=1

i1∑
i2=1

ai1i2I2(ξi1(θ), ξi2(θ))

+

M∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3I3(ξi1(θ), ξi2(θ), ξi3)

+ · · · .

Here, Ip(ξi1 , ..., ξip) denotes the Askey polynomial at the order p, and (ξi1 , ..., ξip) are defined
similarly (Equation (3.25)) by the multi-index. The construction is identical as in Equation (3.25)
by taking the product of the one-dimensional polynomials regarding the multi-index αi. The
general compact form of the truncated stochastic spectral expansion can be stated as:

X(θ) '
P∑
i=0

xiψi(ξ) , ξ = {ξ1, ..., ξM} . (3.33)
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Here, we use the truncated version and assume that the truncation error ε(L) is relatively small.
Note that, ψi(ξ) is the general Wiener-Askey polynomial, which takes a random vector ξ con-
sisting of the random variables defined in the Askey-scheme as the parameter. The orthogonality
of the Wiener-Askey chaos polynomials is defined analogously as in Equation (3.26). Now we
consider the random process X(θ) being a function of the random vector ξ(θ) = [ξ1(θ), ..., ξM (θ)],
and we exploit directly the relation between the realizations θ ∈ Θ and the random vector ξ(θ).
Subsequently, we note X(ξ) instead of X(θ) for the sake of convenience, because ξ is also de-
fined directly on the sample space Θ. The Askey scheme forms a complete Hilbert space for
each class of polynomial, the orthogonality of the multidimensional polynomials with multiple
random variables applies in the same way as in Equation (3.26). Besides, the generalized Poly-
nomial Chaos expansion (gPCE) is not restricted to standard probability distributions anymore,
the weight function in Equation (3.27) is constructed with respect to each individual polynomial.
A summary of the Wiener-Askey polynomials with the corresponding random variables can be
found in Table 3.2.

Random variables ξ Wiener-Askey chaos ψ(ξ) Support

Continuous Gaussian Hermite-chaos [−∞,+∞]

Uniform Legendre-chaos [a, b]

Gamma Laguerre-chaos [0,+∞]

Beta Jacobi-chaos [a, b]

Discontinuous Poisson Charlier-chaos {0, 1, 2, ...}
Binomial Krawtchouk-chaos {0, 1, ..., N}

Negative Binomial Meixner-chaos {0, 1, 2, ...}
Hypergeometric Hahn-chaos {0, 1, ..., N}

Table 3.2: The Wiener-Askey polynomials with the corresponding random variables.

The generalized polynomial basis is then built by taking the most optimal univariate basis
from the Wiener-Askey scheme for each random input, and the multivariate polynomials are
simply the product of Wiener-Askey polynomial chaos basis according to the multi-index. In a
similar fashion, the weight function is also the product of one-dimensional weight functions for
each univariate basis. Nonetheless, one important assumption is to presume that the random
variables ξ are mutually independent. Because of that, the construction of the Polynomial Chaos
basis in the multidimensional case is less complicated, and we use this assumption also within
this thesis. However, the generalized PC can also deal with dependent random variables, more
details can be found in [109, 80]. By exploiting the orthogonality of the Chaos Polynomials, the
mean value and the variance of the random process X(θ) can be written as:

E[X(θ)] = E[

P∑
i=0

xiψi(ξ(θ))] (3.34)

= x0E[ψ0(ξ(θ))] +
P∑
i=1

xiE[ψi(ξ(θ))]

= x0 .

V ar(X(θ)) = E[(X(ξ(θ))− E[X(ξ(θ))])2] (3.35)

= E[(
P∑
i=0

xiψi(ξ(θ))− x0)2]
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= E[(
K∑
i=1

xiψi(ξ(θ)))2]

=

P∑
i=1

x2
i 〈ψi(ξ(θ)), ψi(ξ(θ))〉 .

Concerning Equation (3.33), xi is regarded as the stochastic mode henceforth. The final goal
of studying a second order random process with the help of the generalized Polynomial Chaos
expansion is to define the stochastic mode xi and the appropriate Polynomial Chaos basis ψi.
The k-th stochastic mode can be obtained by utilizing the orthogonality:

〈X,ψk〉 = 〈
P∑
i=0

xiψi, ψk〉 (3.36)

=
P∑
i=0

ui〈ψi, ψk〉 = xk〈ψk, ψk〉 .

Likewise, the higher order moments can also be computed in a similar way by exploiting the
properties of the orthogonal PC basis.

3.2.3 Stochastic Galerkin Method

We seek the stochastic solution from a parameterized partial differential equation with ran-
dom inputs:

L(a(x, t, ξ))u(x, t, ξ) = f(x, t, ξ) , inD × [0, T ]×Θ . (3.37)

L represents a partial differential operator, it contains the spatial derivatives with a spatial
variable x ∈ D ⊂ Rd, the time derivatives with a time variable t ∈ [0, T ] and the linear or
non-liner parts. ξ is a random vector ξ := [ξ1, ..., ξM ] : Θ → R, which is defined on the sample
space Θ. The random vector contains the initial conditions, the boundary conditions and the
equation parameters, etc. u is denoted the solution of this partial differential system, which is
dependent on time, space and the stochastic parameter as well. The stochastic Galerkin method
employs the weighted residual function to construct a Polynomial Chaos system consisting of the
PC coefficients and the corresponding projected solutions, which build the relation between the
system solutions and the random data.

Given a pre-defined approximated stochastic Polynomial Chaos basis ψi, the representation
of the solution u(x, t, ξ) is given as:

u(x, t, ξ) =

P∑
i=0

ui(x, t)ψi(ξ) . (3.38)

ξ = {ξ1, ..., ξM} and {ψi} are chosen with respect to the stochastic properties of the random in-
puts, the highest number of the Polynomial Chaos mode P can be obtained from Equation (3.30).
ψi is a multidimensional orthogonal polynomial by taking ξ as the random variables. The orthog-
onality is given with respect to an inner product over the parameter space. u(x, t, ξ) ∈ V⊗SP ,
V is a well-defined Hilbert space for the deterministic solution and independent from the random
inputs. SP is the approximated stochastic space spanned by the Chaos Polynomials:

SP = span{ψ0, ..., ψP } . (3.39)
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Remark 3.2.2. The approximated stochastic space is a subset of the full stochastic space, which
is defined by expanding the stochastic process onto the infinite stochastic basis:

SP ⊂ S , S =

∞⋃
i=0

span{ψ0, ψ1, ..., ψi} . (3.40)

Substituting u(x, t, ξ) in Equation (3.37) by Equation (3.38) yields:

L(a(x, t, ξ))(

P∑
i=0

ui(x, t)ψi(ξ)) = f(x, t, ξ) , inD × [0, T ]×Θ . (3.41)

The Galerkin projection employs the same approximated stochastic space for the solution and
the test random variables [109]. It conveys that we multiply the basis polynomial ψi on each
side of Equation (3.41), then we take the inner product:

〈L(a(x, t, ξ)(
P∑
i=0

uiψi(ξ)), ψj(ξ)〉 = 〈f(x, t, ξ), ψj(ξ)〉 , j = 0, ..., P . (3.42)

By taking the inner product defined in Equation (3.27), we project Equation (3.41) thus onto
each basis polynomial ψi. Thanks to the orthogonality of the PC basis polynomials, the error
comes only from the truncation (Equation (3.38)).

Moreover, the stochastic partial differential equation (Equation (3.37)) reduces to a system
consisting of the coupled deterministic partial differential equations weighted by the coefficients,
which are formed from the stochastic Galerkin projection.

Stochastic Linear System

We shall first look at the deterministic partial differential operator:

L(a(x, t))u(x, t) = f(x, t) , inD × [0, T ] . (3.43)

∀u ∈ V. V is an appropriate solution space which can accommodate the solution vector u. In this
work, the deterministic PDE system is solved by applying the finite element method with time-
stepping scheme. The numerical solution of Equation (3.43) needs to lay on a finite-dimensional
functional space Vh ⊂ V. The finite element discretization leads, possibly after a linearization
in case of nonlinear L, to a linear system as follows:

Au = b . (3.44)

A is a (N ×N) matrix, N = dim(Vh) . u and b are vectors of a dimension RN . If we introduce
the random inputs as in Equation (3.37), Equation (3.44) can be extended to be a stochastic
linear system, it is given as:

A(ξ)u(ξ) = b(ξ) . (3.45)

The stochastic solution u(ξ) is in the space RN
⊗SP , which is a subspace of RN

⊗
L2(Θ,P).

The coupled system of Equation (3.45) can be expressed:A00 · · · A0P
...

. . .
...

AP0 · · · APP


u0

...
uP

 =

b0
...
bP

 . (3.46)

The latter equation is viewed as a spectral problem consisted of several PC modes ui, i =
0, 1, ..., P . The sub-matrices above have a similar structure as in the deterministic case (Equa-
tion (3.44)). bi is computed by taking the inner product (Equation (3.27)) as follow:
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bi := 〈b, ψi〉 . (3.47)

The determination of the sub-matrix Aij depends on the property of the stochastic differential
operator L(a(x, t, ξ)), it has an important effect on the sparsity structure of the system matrix
of Equation (3.46). To be more specific, after the Galerkin projection procedure, we obtain
higher order tensor structures (≥ 3), because the orthogonality occurs only mutually between
two polynomials. Therefore, the tensor structure introduces more non-zero elements by means
of the sub-matrices into the system matrix in Equation (3.46).

Structure Pattern for the Linear Case

A special case is that the linear operator A(ξ) is independent from the random inputs, i.e. the
influence of the random inputs appears purely on the right-hand side (b(ξ)) of Equation (3.46).
It means that the SPDE (Equation (3.37)) is a deterministic system with uncertain boundary
conditions or/and uncertain external forcing terms, and L is nothing but a deterministic operator.
Equation (3.46) is simplified as follows:

A0 0 · · · · · · 0

0 A0
. . .

...
...

. . . . . . . . .
...

...
. . . A0 0

0 · · · · · · 0 A0




u0

u1
...

uP−1

uP

 =


b0

b1
...

bP−1

bP

 . (3.48)

The global matrix is then only a diagonal matrix filled by sub-matrix A0, and its inverse is just
the inversion of sub-matrices accordingly. Therefore, we obtain essentially a decoupled system,
each Polynomial Chaos mode can be obtained in a same manner by solving the deterministic
problem (Equation (3.44)), i.e.:

ui = A−1
0 bi . (3.49)

The spectral problem generated by this special case only needs to be solved for a set of (P + 1)
linear systems with a matrix size (N × N). As they are independent, (P + 1) systems can be
computed sequentially or in parallel.

Structure Pattern for the General Case

In contrary to the linear case, the matrix A(ξ) is no longer a deterministic operator when
the product of two or more stochastic quantities appear in the SPDE system. For the case that
only the product of two random properties arises, the third-order tensor Cijk comes into play
due to the stochastic Galerkin projection:

Aij :=
P∑
k=0

AkCkji , (3.50)

where,

Cijk :=
〈ψiψj , ψk〉
〈ψk, ψk〉

. (3.51)

The third-order tensor Cijk is one of the essential ingredients for the generalized Polynomial
Chaos expansion technique, particularly when the governing equations exhibit nonlinear terms
with respect to the stochastic parameters. Cijk is named as the Galerkin tensor or the multiplica-
tion tensor [120]. This tensor is symmetric with respect to the first two indices, i.e. Cijk = Cjik,
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Figure 3.2: The sparsity structure of the global matrix when L = 3 with the different number of
random variables M , each block represents Aij .

and the symmetric property affects also the global system matrix, i.e. Aij = Aji. In general,
there are no symmetries respecting the third index k.

Because of the orthogonality of the stochastic basis, many entries of the Galerkin tensor on
the off-diagonal are zero. Figures 3.2 and 3.3 illustrate the sparsity structure of the block system
of the spectral problem (Equation (3.48)). Hereby, we define a sparsity ratio Rs of the matrix,
which is calculated by the number of non-zeros block entries over the size of total blocks (P+1)2.
Figure 3.4 shows the sparsity ratio Rs and the number of non-zero entries. One observes that
Rs increases when the expansion order grows, but becomes small when we increase the number
of random variables for a fixed expansion order. Anyhow, the size of the block system expands
exponentially as claimed in Equation (3.30), the number of the non-zero entries are therefore
very large. In spite of the spectral convergence behavior of gPCE, the curse of the dimensionality
becomes important when M and L increase. In practical situations, dim(Vh)� dim(SP ), as we
envisage applying the finite element method for our PDEs, the spatial discretization induces a
large system in order to well represent the physical domain and obtain the accurate solution. For

44



3.2. Generalized Polynomial Chaos Expansion

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

(a) L = 3, dim(SP ) = 35.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

(b) L = 4, dim(SP ) = 70.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(c) L = 5, dim(SP ) = 126.

0 50 100 150 200

0

50

100

150

200

(d) L = 6, dim(SP ) = 210.

Figure 3.3: The sparsity structure of the global matrix whenM = 4 with the different polynomial
degree L, each block represents Aij .

instance, if we consider a typical situation where M = 10, L = 10, it results dim(SP ) = 184756.
The dimension of this stochastic space is equivalent to the number of unknowns for a 2D Poisson
problem on a unit square domain discretized by 400 × 400 grids with using only the linear
elements. Therefore, we keep normally the gPCE to be dealing with a small dimension of the
random variables and a low Chaos Polynomial degree.

Note that, Figures 3.2 to 3.4 demonstrate the situation when the random variables have
the same polynomial order as the expansion order in the stochastic basis. However, in many
cases, the first order or lower order expansions are used for describing the random inputs. The
Galerkin tensor becomes sparser, because the integration of certain multivariate polynomials is
zero. Figure 3.5 illustrates the sparsity structure of the spectral problem based on the selected
combinations of M and L when the expansion order of the random inputs Lt has only the first
order, viz. Lt = 1. Hence, the block structure is more diagonal dominated. For our blood pump
modelization, the random input are also chosen to be modeled with the first order expansion.
Therefore, we concern in this work rather with the structure in Figure 3.5, and how to solve such
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Figure 3.4: The sparsity ratio and the number of non-zero entries evolve along the dimension of
random inputs M and the expansion order L.

a coupled structure will be discussed in Chapters 4 and 5.
For the practical purpose, the Galerkin tensor Cijk is computed as a pre-processing step

instead of calculating each component during the assembly process. The construction of the
multi-index is the first procedure once the dimension of random variables and the expansion
order are defined. Throughout the evaluation of multidimensional polynomials, one can store
the integration of the polynomial at each order in regard to the different probability distributions
in advance. It avoids the repeated computations in the situation where the random variables
have the same probability distribution. The implementation details can be found in [62, 120].

Remark 3.2.3. Considering the double product m(ξ) := u(ξ)v(ξ), u, v ∈ SP with the pre-defined
expansion:

u(ξ) :=
P∑
i=0

uiψi(ξ) , v(ξ) :=
P∑
i=0

viψi(ξ) . (3.52)

Then,

m(ξ) :=
P∑
i=0

P∑
j=0

uivjψi(ξ)ψj(ξ) . (3.53)

It implies, m(ξ) /∈ SP , yet, it is always in L2(Θ,P), if Θ is bounded. By the Galerkin projection:

mk :=
〈m,ψk〉
〈ψk, ψk〉

=

P∑
i=0

P∑
j=0

uivjCijk , ∀k = 0, ..., P , (3.54)

or,

m̃ :=
P∑
k=0

(
P∑
i=0

P∑
j=0

uivjCijk)ψk . (3.55)

The result of Equation (3.54) is called the Galerkin product of u and v and is an element of SP .

The Galerkin tensor plays a fundamental role in the generalized Polynomial Chaos expansion
technique, it serves for the most common physical models. Still, some physical phenomena also
possess a higher-order nonlinearity, therefore, a higher-order tensor needs to be constructed.

Let us consider a triple product m(ξ) := u(ξ)v(ξ)w(ξ), u, v, w ∈ SP :

u(ξ) :=
P∑
i=0

uiψi(ξ) , v(ξ) :=
P∑
i=0

viψi(ξ) , w(ξ) :=
P∑
i=0

wiψi(ξ) . (3.56)
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Figure 3.5: The sparsity structure of the global matrix when the random variables are represented
by the first order polynomials (Lt = 1).

Then,

m(ξ) :=

P∑
i=0

P∑
j=0

P∑
k=0

uivjwkψi(ξ)ψj(ξ)ψk(ξ) . (3.57)

Using the Galerkin projection:

ml :=
P∑
i=0

P∑
j=0

P∑
k=0

〈ψiψjψk, ψl〉
〈ψl, ψl〉

uivjwk =

P∑
i=0

P∑
j=0

P∑
k=0

uivjwkCijkl , ∀l = 0, ..., P (3.58)

or,

m̃ :=
P∑
l=0

(
P∑
i=0

P∑
j=0

P∑
k=0

uivjwkCijkl)ψl . (3.59)

47



Chapter 3. SSFEM for the incompressible NSE with VMS

Cijkl :=
〈ψiψjψk,ψl〉
〈ψl,ψl〉 is the fourth-order tensor.

The construction of this fourth-order tensor follows the same principle as in third-order
tensor (Galerkin tensor). Since the computation becomes (P + 1) times more expensive as well
as the storage, the complexity grows exponentially with the order of the tensor. In practice, we
approximate the higher-order tensor with the help of the Galerkin tensor rather than evaluating
it exactly.

The fourth-order Galerkin product can be approximated by:

m̃ ≈
P∑
l=0

(
P∑

m,k=0

(
P∑

i,j=0

uivjCijm)wkCmkl)ψl

≈
P∑
l=0

(
P∑

i,j,m,k=0

uivjwkCijmCmkl)ψl ,

(3.60)

where, Cijm :=
〈ψiψj ,ψm〉
〈ψm,ψm〉 , Cmkl := 〈ψmψk,ψl〉

〈ψl,ψl〉 . Therefore, the higher order tensor can be con-
structed recursively as in Equation (3.60).

3.3 Spectral-Stochastic Finite Element Method for Flow Problem

The previous two sections focus on the stochastic problem setting and the generalized Poly-
nomial Chaos expansion approach. This section is dedicated to the spectral-stochastic finite
element method (SSFEM), because we intend to solve the flow problem within the blood pump
device by using the finite element method (FEM). This section will concentrate on the discretiza-
tion of the deterministic space and the probability space for the Variational Multiscale model
with random data and the stochastic Galerkin projection system.

3.3.1 The Deterministic Incompressible Navier-Stokes Equations

It is reasonable to model the flow within a blood pump device by utilizing the unsteady
incompressible Navier-Stokes equations, because the blood represents well the incompressibility
and no important additional physical driving forces in the system. For our case, the main driving
force is the rotation of the rotor, and it introduces whereas no additional physical effects, e.g.
thermodynamic forces, electrodynamic forces. We consider hence an instationary flow defined
in D × [0, T ] ⊂ Rd × R, d = 2, 3 without considering the blood pump scenario. The unsteady
incompressible Navier-Stokes equations with the homogeneous boundary condition read:

∂u

∂t
+ u · ∇u− µ

ρ
∆u+

1

ρ
∇p = f , inD × [0, T ] , (3.61a)

∇ · u = 0 , inD × [0, T ] , (3.61b)
u = 0 , in ∂D × [0, T ] , (3.61c)

u(t = 0) = u0 , inD . (3.61d)

Here, D is a bounded domain with Lipschitz boundary. u ∈ D× [0, T ] is the velocity of the fluid
field, p ∈ D × [0, T ] states for the pressure, T <∞ is the final time. Regarding the assumption
of the incompressibility, ρ ∈ R+ is constant, it also means that we utilize only the Newtonian
fluid, as µ is considered to be constant. µ ∈ R+ is the dynamic viscosity, which represents the
internal resistance or the friction to the flow. Sometimes, we also prefer to operate with the
kinematic viscosity ν := µ

ρ ∈ R+, which can be considered as a measure for the diffusivity of the
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momentum. f ∈ D × [0, T ] is the external body force. u0 indicates the initial condition for the
velocity, it is defined on the whole domain D only when t = 0.

If u, p are classical solutions for Equation (3.61), which means that u is twice differentiable
in space and once differentiable in time, continuous on the boundary and initial condition. p
is once differentiable in space. We obtain the energy equality by multiplying the momentum
equation (Equation (3.61)) with u and integrating over [0, T ], it yields:

1

2
‖u(t)‖2 +

∫ t

0

µ

ρ
‖∇u(t′)‖2dt′ = 1

2
‖u0‖2 +

∫ t

0
(f(t′),u(t′))dt′ . (3.62)

It implies the balance between two sums of energies, one side is contributed by the kinetic energy
and the total dissipated energy, another side is provided from the initial kinetic energy and the
total input energy. (·, ·) here stands for the inner product of L(D).

Remark 3.3.1. The incompressible NSE is derived from Newton’s second law with a constant
density. The momentum conservation equation (Equation (3.61a)) can be considered as a special
form of the Cauchy momentum equation [153]:

Du

Dt
=

1

ρ
∇ · σ + f ,

D
Dt := ∂

∂t + (u · ∇) denotes the material derivative operator, σ is the stress tensor. More infor-
mation about the continuum mechanics theory can be found in e.g. [37].

One of the fundamental concepts for understanding the incompressible Navier-Stokes equa-
tions in the mathematical framework is the weak solution. We define at first the function spaces
which are used in the following sections:

V (D) :=
{
v ∈ H1

0 (D)d
}
,

Q(D) :=
{
q ∈ L2(D) |

∫
D
q dx = 0

}
,

Hdiv(D) :=
{
v ∈ L2(D)d | ∇ · v = 0,v · n = 0 on ∂D

}
,

Vdiv(D) :=
{
v ∈ V (D) | ∇ · v = 0,v = 0 on ∂D

}
.

Definition 3.3.1 (The variational formulation of the incompressible NSE). Find (u, p) ∈ V (D)×
Q(D), such that:

(
∂u

∂t
,v) + (u · ∇u,v) +

µ

ρ
(∇u,∇v)− 1

ρ
(p,∇ · v) = (f ,v) , (3.64a)

(∇ · u, q) = 0 . (3.64b)

∀u ∈ V (D), ∀q ∈ Q(D).

Definition 3.3.2 (The weak solution of NSE). Given any f ∈ L2([0, T ],D) and u0 ∈ Hdiv, find
u ∈ L2([0, T ], Vdiv) ∩ L∞([0, T ], Hdiv), such that:

∂

∂t
(u,v) + (u · ∇u,v) +

µ

ρ
(∇u,∇v) = (f ,v) , (3.65a)

u(t = 0) = u0 . (3.65b)

∀v ∈ Vdiv.
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It is well known that the existence of the weak solution (Definition 3.3.2) is guaranteed by
the Leray-Hopf theorem, it is given as:

Theorem 3.3.1 (The existence of the weak solutions). Let D ∈ Rd, d = 2, 3. Given any
u0 ∈ Hdiv(D) and f ∈ L2([0, T ],D), there exists at least one weak solution accordingly to Defi-
nition 3.3.2. This solution satisfies the following two additional properties:

• 1
2‖u(t)‖22 +

∫ t
0
µ
ρ‖∇u(t′)‖22dt′ ≤ 1

2‖u0‖22 +
∫ t

0 (f(t′),u(t′))dt′ t ∈ [0, T ] .

• lim
t→∞
‖u(t)− u0‖2 = 0 .

The theorem is proven by applying the Faedo-Galerkin method, and the detailed proof can be
found in [59, 111, 84, 163].

Equation (3.62) denotes the energy equality which is satisfied the strong solution of Equa-
tion (3.61), as well as the Galerkin approximation to the weak solution. The inequality from
theorem 3.3.1 associated with the weak solution is the current optimal result for the weak solu-
tions.

Remark 3.3.2. The Leray-Hopf theorem (Theorem 3.3.1) shows the existence of the weak solu-
tion of the Navier-Stokes equations with the homogeneous boundary condition, and the uniqueness
for the two-dimension situation is also proven [114]. However, the uniqueness of the weak solution
in three-dimension is not clear yet based on Theorem 3.3.1. There is also another way to provide
the uniqueness of the weak solution [163] by assuming u ∈ L2([0, T ], H1

div)∩L∞([0, T ], Hdiv) and
u ∈ L8([0, T ],L4(D)), but for this solution space, the existence is still unclear.

Remark 3.3.3. The results above are only valid for a homogeneous boundary condition, in
contrast, the mixed boundary conditions need to be applied for the blood pump simulation, e.g.
the inflow boundary is applied with a Poisseuille profile condition, the outflow is considered as
the "do-nothing" boundary condition. Still, a complete proof to the existence for a such situation
is not clear.

3.3.2 Residual-Based Variational Multiscale Method for Blood Pump Mod-
eling

As mentioned in Chapter 2, we restrict ourselves to the two-scale Variational Multiscale
method, more specifically, the two-scale residual-based VMS model. This model creates a single
set of equations, which consists of the resolved scale and the unresolved scale. Furthermore, the
solution on the subgrid scale is approximated and inserted in the resolved scale with the help of
the additional stabilization formulations. Moreover, the residual-based techniques do not have
to rely on the statistical hypothesis of the turbulent flow, to put it differently, there are no eddy
viscosity models involved and the inertial interactions are already covered by the subgrid models.
It is also contrast to the three-scale VMS models that additional eddy viscosity terms are obliged
to be coupled on the small resolved scale.

Before presenting the full two-scale residual-based Variational Multiscale method for the
blood pump modeling, we provide the finite element spaces which we wish to work with. V h and
Qh are the finite element space for the velocity and the pressure, respectively. V h and Qh can be
constructed on general triangulations with both first finite elements under the conforming finite
element method framework.

V h ⊂ V (D) =
{
v ∈ H1

0 (D)d
}
,

Qh ⊂ Q(D) =
{
q ∈ L2(D) |

∫
D
q dx = 0

}
.
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The weak formulation is given as:
Find uh ∈ V h, ph ∈ Qh:

(
∂uh
∂t

,vh) + ((ûh − urh) · ∇uh,vh) (3.67a)

+
µ

ρ
(∇uh,∇vh)− 1

ρ
(ph,∇ · vh)

+(τMrM,h, (ûh − urh) · ∇vh) + (τCrC,h,∇ · vh) = (fh,vh) , inDt × [0, T ] ,

(∇ · uh, qh) + (τMrM,h,∇qh) = 0 , inDt × [0, T ] . (3.67b)

∀vh ∈ V h, ∀qh ∈ Qh. V h and Qh are both finite element spaces. Additionally,

ûh = uh − τMrM,h , inDt × [0, T ] , (3.68a)

rM,h =
∂uh
∂t

+ (uh − urh) · ∇uh −
µ

ρ
∆uh (3.68b)

+
1

ρ
∇ph − fh , inDt × [0, T ] ,

rC,h = ∇ · uh , inDt × [0, T ] , (3.68c)
urh = d× ω , inDtrot × [0, T ] , (3.68d)
urh = 0 , inDtstat × [0, T ] , (3.68e)
uh = uI , on Γtin × [0, T ] , (3.68f)

(−1ph +
µ

ρ
∇uh) · n = 0 , on Γtout × [0, T ] , (3.68g)

uh = d× ω , on Γtrotor × [0, T ] , (3.68h)
uh = 0 , on Γtwall × [0, T ] . (3.68i)

(·, ·) represents the inner product, the residuals rM,h, rC,h are defined in a similar way as in the
previous chapter (Chapter 2). The superscript t on the domains and the boundaries indicates
that the mesh can alter along the time because of the shear layer update approach (Section 2.3).
ur is the revolving speed and acts only on the rotating domain. The computing domain is
divided into the rotating part and the static part, i.e., Dt = Dtrot ∪ Dtstat, Dtrot ∩ Dtstat = ∅.
Regarding the boundaries, ∂Dt = Γtin∪Γtout∪Γtrotor∪Γtwall. uI indicates for the inflow boundary
condition, whose explicit form will be given in the following chapter as it is one of three uncertain
sources under our consideration. We apply the "do-nothing" boundary condition on the outflow
boundary Γtout. The "do-nothing" condition implies that the pressure has mean zero value on
the outflow boundary [68, 67]. The "no-slip" condition is used on the rigid walls Γtwall, and the
rotor’s surface undergoes the rotating speed. We show the discretized weak formulation directly
because the two-scale residual-based VMS can only be seen in the discretized weak form, whereas,
the further details about the spatial discretization will be shown in the following subsection.

3.3.3 Discretization of the Deterministic VMS

This subsection is dedicated to the temporal and spatial discretization of the deterministic
VMS formulation (Equation (3.67)) by using the finite element method, later, it will be extended
under the SSFEM framework in Section 3.3.4.

Concerning the unsteady NSE, we utilize the Rothe time discretization method [139, 101].
This method proposes that a discretization of the time variable must be considered first, then
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the standard finite element techniques are used to solve the derived stationary PDEs. There-
fore, varying the type of trial functions is possible, i.e. an independent spatial discretization
between each time step is allowed. The Rothe method differs from another common time step-
ping approach "method of lines" (MOL), which employs the spatial discretization before the time
discretization, after that, a set of Ordinary Differential Equations (ODEs) needs to be solved.
However, since the MOL is clearly unsuitable for the mesh adaptation, we do not consider it for
the blood pump modelization.

Time Discretization

Concerning the temporal discretization, it is common to employ the standard techniques
developed for the Ordinary Differential Equations (ODEs) [47, 169]. We utilize the Crank-
Nicolson scheme [43] to approximate the transient solution from one time step to another. This
method can be regarded as a finite difference approach and it is a second-order A-stable scheme.
The basic idea behind the Crank-Nicolson scheme is to average with a pre-defined weight the
explicit scheme at the time step n and n + 1, i.e., the θ-scheme with θ = 0.5. It can be
demonstrated with an abstract unsteady initial value problem. For instance:

du

dt
+ F (u) = f(t) , t ∈ [0, T ], u(0) = u0 , (3.69)

where u(t) ∈ RN . The Crank-Nicolson method reads:

un+1 − un
∆t

+ θF (un+1) + (1− θ)F (un) = θf(tn+1) + (1− θ)f(tn) , θ = 0.5 . (3.70)

Noted that, θ > 0 yields an implicit scheme, it often allows a larger time step size comparing
with the explicit methods. In Equation (3.70), ∆t is the time step size, and it is defined as
∆t := tn+1−tn. We consider an equal-sized time length, i.e. T := NT∆t, tn := n∆t, t = 0, ..., NT ,
NT ∈ R. In [56], they suggest using a semi-implicit Backward Differentiation Formulas (BDF)
time discretization in order to cope with the higher order nonlinear terms which appear in
Jacobian assembly for the VMS. The way we employ here is to embed two stabilization terms
into the advection velocity (Equations (2.34) and (2.35)) and consider the modified velocity û as
a whole. Accordingly, we are able to discretize Equation (3.67) with the standard Crank-Nicolson
scheme, it is given as:

Seeking un+1
h ∈ V h, pn+1

h ∈ Qh, such that,

(un+1
h − unh,vh) (3.71a)

+ ∆t θ ((ûn+1
h − urh) · ∇un+1

h ,vh) + ∆t (1− θ) ((ûnh − urh) · ∇unh,vh)

+ ∆t θ (
µ

ρ
∇un+1

h ,∇vh) + ∆t (1− θ) (
µ

ρ
∇unh,∇vh)

−∆t (
1

ρ
pn+1
h ,∇ · vh)

−∆t θ (fn+1
h ,vh)−∆t (1− θ) (fnh ,vh)

+ (τM [(un+1
h − unh) + ∆t

1

ρ
∇pn+1

h

+ ∆t θ ((un+1
h − urh) · ∇un+1

h − µ

ρ
∆un+1

h − fn+1
h )

+ ∆t (1− θ) ((unh − urh) · ∇unh −
µ

ρ
∆unh − fnh )], (ûn+1

h − urh) · ∇vh)

+ ∆t (τC∇ · un+1
h ,∇ · vh)
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+ ∆t
1

ρ
(∇ · un+1

h , qh) (3.71b)

+ (τM [(un+1
h − unh) + ∆t

1

ρ
∇pn+1

h

+ ∆t θ ((un+1
h − urh) · ∇un+1

h − µ

ρ
∆un+1

h − fn+1
h )

+ ∆t (1− θ) ((unh − urh) · ∇unh −
µ

ρ
∆unh − fnh )],∇qh) = 0 .

∀vh ∈ V h, ∀qh ∈ Qh.
In Equation (3.71), (un+1

h , pn+1
h ) are the solutions for the new time step, and (unh, p

n
h) are

for the old time step. The issue with the implicit scheme is that the system is still nonlinear
after the temporal discretization. The convective terms in VMS provide the nonlinearity in
the weak formulation, and an additional linearization procedure is required before applying the
Newton-Raphson method [72].

The Newton scheme is an iterative method and relies on the first order terms of the Taylor
series from the considered nonlinear system. The basic algorithm is demonstrated as:

JF (xk) δxk = −F (xk) . (3.72)

F is an arbitrary nonlinear system, xk is an approximation of the solution at the k-th Newton
step, δx is the increment (or the correction), JF (xk) is the Fréchet derivative of F , i.e.:

lim
‖z‖→0

‖F (xk + z)− F (xk)− JF (xk)z‖
‖z‖ = 0 . (3.73)

The next Newton step proceeds with a new approximation xk+1 := xk + δx until it reaches
certain convergence criteria.

We note that [unsh , p
ns
h ] are the solutions obtained from the last Newton step, and [utsh , p

ts
h ]

are the last time step solutions, [uns+1
h , pns+1

h ] = [unsh + δunsh , p
ns
h + δpnsh ] are the solutions for

the next Newton step, [δunsh , δp
ns
h ] are the increments between two Newton steps. Hence, we

illustrate the necessary linearized terms, which occur in the Fréchet derivative or the Jacobian
matrix, JF (utsh , p

ts
h ,u

ns
h , p

ns
h ,vh, qh) = [JF1, JF2]T . It is given as:

JF1(utsh , p
ts
h ,u

ns
h , p

ns
h ,vh, qh)[δunsh , δp

ns
h ]T := (3.74a)

(δunsh ,vh) + ∆t θ (δunsh · ∇unsh ,vh) + ∆t θ ((ûnsh − ur) · ∇δunsh ,vh)

+ ∆t θ (
µ

ρ
∇δunsh ,∇vh)−∆t (

1

ρ
δpnsh ,∇ · vh)

+ (τMδu
ns
h , (û

ns
h − urh) · ∇vh) + ∆t θ (τMδu

ns
h · ∇unsh , (ûnsh − urh) · ∇vh)

+ ∆t θ (τM (unsh − urh) · ∇δunsh , (ûnsh − urh) · ∇vh)−∆t θ (τM
µ

ρ
∆δunsh , (û

ns
h − urh) · ∇vh)

+ ∆t θ (τM
1

ρ
∇δpnsh , (ûnsh − urh) · ∇vh)

+ (τM [(unsh − utsh ) + ∆t
1

ρ
∇pnsh

+ ∆t θ ((unsh − urh) · ∇unsh −
µ

ρ
∆unsh − fn+1

h )

+ ∆t (1− θ) ((utsh − urh) · ∇utsh −
µ

ρ
∆utsh − fnh )], δunsh · ∇vh)

+ ∆t (τC∇ · δunsh ,∇ · vh) ,

JF2(utsh , p
ts
h ,u

ns
h , p

ns
h ,vh, qh)[δunsh , δp

ns
h ]T := (3.74b)
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∆t (
1

ρ
∇ · δunsh , qh) + (τMδu

ns
h ,∇qh)

+ ∆t θ (τMδu
ns
h · ∇unsh ,∇qh) + ∆t θ (τM (unsh − urh) · ∇δunsh ,∇qh)

−∆t θ (τM
µ

ρ
∆δunsh ,∇qh) + ∆t (τM

1

ρ
∇δpns,∇qh) .

Here, ûh is defined as ûh := uh− τMrM.h. The residual of the momentum equation is evaluated
with the solutions from the previous Newton step [unsh , p

ns
h ]:

ûn+1
h := un+1

h + τM (
unsh − utsh

∆t
+ unsh · ∇unsh −

µ

ρ
∆unsh +

1

ρ
∇pnsh − fn+1

h ) , (3.75a)

ûnsh := unsh + τM (
unsh − utsh

∆t
+ unsh · ∇unsh −

µ

ρ
∆unsh +

1

ρ
∇pnsh − fn+1

h ) . (3.75b)

Additionally, the two stabilization parameters τM , τC are also evaluated with the solutions on
the previous Newton step respectively. Note that, our formulation can also be considered as a
modified Crank-Nicolson scheme where the residual part in ûh is handled with the backward
Euler method.

If we replace [un+1
h , pn+1

h , ûn+1
h ] by [unsh , p

ns
h , û

ns
h ] in Equation (3.71), the left-hand side is

exactly F as in Equation (3.72). Hence, a Newton step is defined according to Equation (3.72)
with the definitions above, it yields:

JF (unsh , p
ns
h ,u

ts
h , p

ts
h )[δun+1

h δpn+1
h ]T = −F (unsh , p

ns
h ,u

ts
h , p

ts
h ) . (3.76)

In practice, we employ the Inexact Newton approach [50] in order to achieve a better control
and the flexibility on the local convergence.

Space Discretization

Although we used already the notation of space discretization (uh, pn) in our time discretiza-
tion formulation, we give more detailed information about the finite element discretization in
this subsection. We redefine the functional spaces for the weak form of the incompressible of
NSE by taking into account the Dirichlet boundary condition.

V (ΓD;D) :=
{
v ∈ H1

0 (D)d | v = 0 on ΓD

}
, (3.77a)

Q(D) :=
{
q ∈ L2(D) |

∫
D
q dx = 0

}
, (3.77b)

where ΓD is the Dirichlet boundary. Regarding the incompressible NSE, the pressure p plays
essentially a role of the Lagrange multiplier for the incompressibility.

The finite element method is employed to solve the Newton step (Equation (3.76)), the
computing domain D is triangulated to construct the finite-dimensional vector spaces for the
trial function and the test function. As we utilize a conforming method, the finite-dimensional
spaces are actually subspaces of the continuous spaces in Equation (3.77), i.e. V h ⊂ V , Qh ⊂ Q.

Definition 3.3.3 (Sobolev space Hk(Ω)). The Hilbert space of all elements u ∈ L2(D) with
square-integrable weak derivatives ∂αu ∈ L2(D) for all α with |α|1 ≤ k, it yields:

Hk(D) := {u ∈ L2(Ω) : ∂α ∈ L2(Ω) , ∀0 ≤ |α|1 ≤ k} . (3.78)

The Sobolev space Hk(Ω) is equipped with the inner product:
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(u, v)k,D :=
∑

0≤|α|1≤k

∫
Ω

(∂αu)(∂αv) dx . (3.79)

Theorem 3.3.2. Let D be a bounded domain, which is partitioned into a finite number of subdo-
mains {z1, ..., zN} and Xh is a space of functions, where x|zi ∈ C∞, ∀x ∈ Xh. Then Xh ∈ Hk(D),
k ≤ 1, if and only if Xh ⊂ Ck−1(D) [19].

The theorem above provides a process to construct a set of finite-dimensional subspaces of
Hilbert spaces, and any finite-dimensional vector space is spanned by a set of piecewise polyno-
mial basis functions ϕi, it implies:

Xh := span{ϕh1 , ..., ϕhNh} . (3.80)

xh :=

Nh∑
i=0

chi ϕ
h
i , (3.81)

where chi ∈ R. The result of the partitioning process in Theorem 3.3.2 is the triangulation Th,
which consists of a finite number of regular elements:

Th := {z1, ..., zn} , (3.82)

and,

N⋃
i=1

zi = D , zi ∩ zj = ∅ if i 6= j . (3.83)

The essential argument for the velocity/pressure approximations in V h ×Qh to be stable is the
Ladyshenskaja-Babuška-Brezzi (LBB) condition [32]:

inf
qh∈Qh

sup
vh∈V h

(qh,∇ · vh)

‖∇vh‖‖qh‖
≥ β0 > 0 . (3.84)

Therefore, the mixed elements (e.g. the Taylor-Hood elements [65]) need to be considered for
the incompressible NSE simulation in order to obtain a well-posed discrete saddle point prob-
lem. However, our residual-based VMS formulation employs the stabilization techniques, which
overcome the numerical instabilities even on non-LBB-stable finite element spaces, e.g. the
equal-order finite elements. Hence, we focus only on the equal-order linear finite elements in
this work, since they are easier to be handled. Figure 3.6 shows three different cells which are
involved in the three-dimensional case under the requirement of the shear layer update approach
(Chapter 2).

After being discretized in time, Equation (3.67) can be solved with the Newton-Raphson
method [72], the structure of a single Newton step is stated as:[

A B
C D

] [
uh
ph

]
=

[
−F1

−F2

]
, (3.85)

where, [uh, ph] are the unknowns of the linear system, and uh ∈ RdN , ph ∈ RN . d is the
dimension of the computing domain D. Moreover, A ∈ RdN,dN , B ∈ RdN,N , CN,dN , DN,N ,
F1 ∈ RdN , F2 ∈ RN . Besides, the linearized system of the incompressible NSE has a saddle
point structure, it infers D = 0, C = BT . Whereas, for Equation (3.67), the PSPG stabilization
term contributes to the sub-block D, the linearized system is no longer saddle point system
because of the stabilization formulations.
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(a) Tetrahedron (b) Hexahedron (c) Pyramid

Figure 3.6: Three basic elements are involved in the three-dimensional situation: tetrahedron,
hexahedron and pyramid. The red dots indicate the location of DOFs for the linear elements.

3.3.4 Stochastic VMS for Blood Pump Modeling

The previous section provides the insight of the discretization of the VMS formulation and
establishes a framework together with Chapter 2 for solving a high speed rotating machinery.
Now we extend our deterministic setting in the direction of the stochastic system. Henceforth,
we restrict within this work that there are only three uncertain inputs which are deliberated:
the inflow boundary condition uI , the dynamic viscosity µ and the rotation speed ur. Those
uncertain sources cover mainly the different types of the modification on the global structure
once we employ the generalized Polynomial Chaos expansion method to the nonlinear equations.
Yet this restriction is carried out only owing to the perspective of the application. More random
parameters can be drawn into the system in a similar manner, whereas, the essential patterns
of the system do not alter. Thereafter, the corresponding Polynomial Chaos system is first
developed for the incompressible NSE, afterward, it is extended to the VMS formulation as
desired.

gPCE Galerkin Method for the Incompressible NSE

Based on Section 3.2, our random vector is precisely defined as ξ := [ξ1, ξ2, ξ3] ∈ R3. We
denote that ξ1, ξ2 and ξ3 correspond to the boundary condition, the dynamic viscosity and the
rotating speed, respectively. We restrict ξ to be real-valued random variables and mutually
independent. Moreover, each random variable is defined on a continuous probability space.
Therefore, the two unknown variables of the incompressible NSE, namely the velocity u and the
pressure p, are also described with respect to the random vector ξ.

∂u(ξ)

∂t
+ (u(ξ)− ur(ξ)) · ∇u(ξ) (3.86a)

−µ(ξ)

ρ
∆u(ξ) +

1

ρ
∇p(ξ) = f , inDt × [0, T ] ,

∇ · u(ξ) = 0 inDt × [0, T ] , (3.86b)
ur(ξ) = d× ω(ξ) , inDtrot × [0, T ] , (3.86c)
ur(ξ) = 0 , inDtstat × [0, T ] , (3.86d)
u(ξ) = uI(ξ) , on Γtin × [0, T ] , (3.86e)

(−1p(ξ) +
µ

ρ
∇u(ξ)) · n = 0 , on Γtout × [0, T ] , (3.86f)

u(ξ) = d× ω(ξ) , on Γtrotor × [0, T ] , (3.86g)
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u(ξ) = 0 , on Γtwall × [0, T ] . (3.86h)

This set of equations denotes the incompressible NSE for a rotating machinery in strong for-
mulation under a random ξ of input parameters. We recall that the main theorem about the
incompressible NSE in Section 3.3.1 holds for Equation (3.86) for a fixed ξ, only if µ(ξ) > 0.
Analogously to Equation (3.38), the Polynomial Chaos expansions of the velocity and the pres-
sure are approximated as a linear combination of Chaos Polynomials:

u(x, t, ξ) '
P∑
i=0

ui(x, t)ψi(ξ) , (3.87a)

p(x, t, ξ) '
P∑
i=0

pi(x, t)ψi(ξ) . (3.87b)

(P + 1) is the dimension of the PC space, which is defined by the number of random variables
and the truncated order of the polynomials (Equation (3.30)). The discretized stochastic space
can be written as:

SP = span{ψ0(ξ), ..., ψP (ξ)} ⊂ S :=

∞⋃
i=0

span{ψ0(ξ), ..., ψi(ξ)} . (3.88)

The three uncertain parameters can also be expressed analogously to Equation (3.87):

µ(ξ) =
P∑
i=0

µiψi(ξ) , (3.89a)

uI(x, ξ) =
P∑
i=0

uI,i(x)ψi(ξ) , (3.89b)

ω(ξ) =

P∑
i=0

ωiψi(ξ) . (3.89c)

Therefore, we write Equation (3.86) by inserting u, p, µ, uI and ω from Equation (3.87) and
Equation (3.89):

P∑
i=0

∂ui
∂t

ψi +
P∑
i=0

P∑
j=0

(ui − uri ) · ∇ujψiψj (3.90a)

−
P∑
i=0

P∑
j=0

µi
ρ

∆ujψiψj +
P∑
i=0

∇piψi =
P∑
i=0

fiψi , inDt × [0, T ] ,

P∑
i=0

∇ · uiψi = 0 , inDt × [0, T ] , (3.90b)

P∑
i=0

uriψi =
P∑
i=0

d× ωiψi , inDtrot × [0, T ] , (3.90c)

P∑
i=0

uriψi = 0 , inDtstat × [0, T ] , (3.90d)
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P∑
i=0

uiψi =
P∑
i=0

uI,iψi , on Γin × [0, T ] , (3.90e)

(−
P∑
i=0

1piψi +

P∑
i=0

P∑
j=0

µi
ρ
∇ujψiψj) · n = 0 , on Γout × [0, T ] , (3.90f)

P∑
i=0

uiψi =
P∑
i=0

d× ωiψi , on Γrotor × [0, T ] , (3.90g)

P∑
i=0

uiψi = 0 , on Γwall × [0, T ] . (3.90h)

Multiplying Equation (3.90) by ψk and computing the expectation, the Galerkin projection
procedure gives us:

∂uk
∂t

+
P∑
i=0

P∑
j=0

(ui − uri ) · ∇uj Cijk (3.91a)

−
P∑
i=0

P∑
j=0

µi
ρ

∆uj Cijk +
1

ρ
∇pk = fk , inDt × [0, T ] ,

∇ · uk = 0 , inDt × [0, T ] , (3.91b)
urk = d× ωk , inDtrot × [0, T ] , (3.91c)
urk = 0 , inDtstat × [0, T ] , (3.91d)
uk = uI,k , on Γin × [0, T ] , (3.91e)

(−1pk +
P∑
i=0

P∑
j=0

µi
ρ
∇uj Cijk) · n = 0 , on Γout × [0, T ] , (3.91f)

uk = d× ωk , on Γrotor × [0, T ] , (3.91g)
uk = 0 , on Γwall × [0, T ] , (3.91h)

for k = 0, ..., P . Cijk is defined by the third-order tensor product (Equation (3.51)), and it
substantially establishes the couplings between the stochastic modes in the stochastic Galerkin
formulation (Equation (3.91)). We can state the stochastic variational formulation by applying
the functions v ∈ V , q ∈ Q:

(
∂uk
∂t

,v) +

P∑
i=0

P∑
j=0

((ui − uri ) · ∇uj ,v)Cijk (3.92a)

+
P∑
i=0

P∑
j=0

µi
ρ

(∇uj ,∇v)Cijk −
1

ρ
(pk,∇ · v) = (fk,v) , inDt × [0, T ] ,

(∇ · uk, q) = 0 , inDt × [0, T ] . (3.92b)

for k = 0, ..., P , {uk} ⊂ V and {pk} ⊂ Q, i.e., u ∈ V ⊗ SP , p ∈ Q ⊗ SP . We neglect
the boundary conditions from Equation (3.91) for the sake of simplicity. In addition, we leave
the modeling part of the random inputs uI(x, ξ), µ(ξ) and ur(x, ξ) open for the moment,
even though, their modeling can affect the sparsity of the global system matrix, the precise
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formulations will be given in Chapter 6. Equation (3.92) is a semi-discrete function, knowing
that only the stochastic space S is discretized. Furthermore, Equation (3.92) involves a set of
deterministic problems, which have a similar structure as the incompressible NSE. Therefore,
the stochastic spectral problem develops into finding a set of solutions for the velocity and the
pressure ([u0, ...,uN ] and [p0, ..., pN ]). We can pursue the spatial discretization on V and Q in
order to obtain uh,k ∈ V h ⊂ V , ph,k ∈ Qh ⊂ Q. Equation (3.92) becomes, therefore, a stochastic
Galerkin finite element variational formulation. It is important to note that the stochastic
weak form under the stochastic-spectral finite element method framework is derived at first by
performing the Galerkin projection on the discretized stochastic space, then determining the
corresponding variational formulation. The alternative derivation of the spectral problem is to
start with the weak form of the governing equations, then performing the Galerkin projection
[119]. The stochastic spectral problem for the VMS is obtained with the latter suggestion by
inserting Equation (3.87) into Equation (3.67).

gPCE Galerkin Method for VMS

We rewrite Equation (3.87) in consideration of a spatial discretization:

uh(x, t, ξ) '
P∑
i=0

uh,i(x, t)ψi(ξ) , ∈ V h ⊗ SP , (3.93a)

ph(ξ, t, ξ) '
P∑
i=0

ph,i(x, t)ψi(ξ) , ∈ Qh ⊗ SP , (3.93b)

where uh,i ∈ V h, ph,i ∈ Qh. The superscript h stands for the spatial discretization, and i
stands for the stochastic mode. Therefore, we provide the stochastic variational formulation of
Equation (3.67):

Find uh ∈ V h ⊗ SP , ph ∈ Qh ⊗ SP , such that,

(
uh,k
∂t

,vh) +
P∑
i=0

P∑
j=0

((ûh,i − urh,i) · ∇uh,j ,vh) Cijk (3.94a)

+
P∑
i=0

P∑
j=0

µi
ρ

(∇uh,j ,∇vh) Cijk −
1

ρ
(ph,k,∇ · vh)− (fh,k,vh)

+(τM [
∂uh,k
∂t

+
P∑
i=0

P∑
j=0

(uh,i − urh,i) · ∇uh,j Cijk

−
P∑
i=0

P∑
j=0

µi
ρ

∆uh,j Cijk +
1

ρ
ph,k − fh,k], (ûh,0 − urh,0) · ∇vh)

+(τC∇ · uh,k,∇ · vh) = 0 ,

(
1

ρ
∇uh,k, qh) (3.94b)

+(τM [
∂uh,k
∂t

+
P∑
i=0

P∑
j=0

(uh,i − urh,i) · ∇uh,j Cijk

−
P∑
i=0

P∑
j=0

µi
ρ

∆uh,j Cijk +
1

ρ
∇ph,k − fh,k],∇qh) = 0 ,
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∀k = 0, ..., P , ∀vh ∈ V h and ∀qh ∈ Qh. The explicit form of ûh,i is given as:

ûh,i := uh,i + τM [
uh,i
∂t

+ (uh,i − urh,i) · ∇uh,i −
µi
ρ

∆uh,i +
1

ρ
∇ph,i − fh,i] . (3.95)

Remark 3.3.4 (Separable expansion). The stochastic finite element solution uh and ph can be
written in the following fashion:

uh(x, ξ) =

N∑
i=0

P∑
j=0

ui,jϕ
u
i (x)ψj(ξ) , ph(x, ξ) =

N∑
i=0

P∑
j=0

pkϕ
p
i,j(x)ψj(ξ) , (3.96)

ψi(ξ) represents the i-th generalized Polynomial Chaos basis function, ϕu(x) and ϕp(x) are the
finite element basis function for the velocity and the pressure, respectively. They are separable in
terms of the spatial part and the stochastic part, i.e. uu(·, ξ) ∈ Sp, uh(x, ·) ∈ V h.

Structure of Stochastic Discretized VMS

Equation (3.85) gives a matrix structure of the linearized Equation (3.67) on a single Newton
step, the linearization of the stochastic weak formulation (Equation (3.94)) is carried out in a
systematic manner as in Equation (3.71) and Equation (3.74). As stated above, the discretization
in space V h and Qh remains the same for each mode, undoubtedly, each individual sub-block in
the global matrix has a similar structure as in the deterministic case. For a stochastic mode k,
the matrix-vector structure is given by:

P∑
i=0

P∑
j=0

(
Cijk

[
Ai Bi
Ci Di

] [
uh,j
ph,j

])
=

[
−F1,k

−F2,k

]
, k = 0, ..., P . (3.97)

Here, Ai ∈ RdN,dN , Bi ∈ RdN,N , Ci ∈ RN,dN , Di ∈ RN,N , uh,j ∈ RdN , ph,j ∈ RN , F1,k ∈ RdN
and F2,k ∈ RN . It is equivalent to:

P∑
i=0



Ci00

[
Ai Bi
Ci Di

]
· · · CiP0

[
Ai Bi
Ci Di

]
... · · · ...
... · · · ...
... · · · ...

Ci0P

[
Ai Bi
Ci Di

]
· · · CiPP

[
Ai Bi
Ci Di

]





uh,0
ph,0
...
...
...

uh,P
ph,P


=



−F1,0

−F2,0
...
...
...

−F1,P

−F2,P


. (3.98)

Alternatively, Equation (3.98) can be rewritten as:

P∑
i=0




AiCi00 · · · AiCiP0

... · · · ...

... · · · ...
AiCi0P · · · AiCiPP



BiCi00 · · · BiCiP0

... · · · ...

... · · · ...
BiCi0P · · · BiCiPP


CiCi00 · · · CiCiP0

... · · · ...

... · · · ...
CiCi0P · · · CiCiPP



DiCi00 · · · DiCiP0

... · · · ...

... · · · ...
DiCi0P · · · DiCiPP








uh,0
...
...

uh,P


ph,0
...
...

ph,P




=




−F1,0

...

...
−F1,P


−F2,0

...

...
−F2,P




.

(3.99)
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The latter version collects all velocities and pressures from the stochastic modes together, which
can be beneficial for certain preconditioners when we apply them directly on the global matrix.
However, the solving technique suggested in this work prefers to operate with the former matrix-
vector representation (Equation (3.98)) by virtue of the hierarchical structure, especially the
sub-block is sparse according to the finite element discretization.

Moreover, the global matrix A ∈ R(P+1)(d+1)N,(P+1)(d+1)N in Equation (3.98) can even be
exhibited by using the Kronecker product:

A :=
P∑
i=0

Ki ⊗ Āi , (3.100)

Āi :=

[
Ai Bi
Ci Di

]
∈ R(d+1)N,(d+1)N , (Ki)jk := Cijk. The tensor product expression shows that the

global matrixA depends on the total number of the stochastic mode (P+1) and the sub-blocks Āi.
One can notice Āi are repeatedly employed for the construction of A, therefore, it is not needed
to keep the large matrix A into the computing memory for the numerical implementation, the
sub-matrices Āi are able to reconstruct the global matrix A dynamically during the computation.
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Chapter 4

Solvers and Preconditioners

As the stochastic spectral problem increases the size of the governing system exponentially,
solving such a set of coupled equations, notably regarding the spectral-stochastic finite element
method, is very arduous. Besides, dealing with an unsteady high Reynolds number flow has
additionally greater demands on the spatial and temporal discretization level, thus our problem
becomes more computationally challenging. Within this chapter we concentrate particularly on
the numerical algorithms and the solving strategies related to the stochastic Galerkin system
as well as the deterministic problem, since the resolution of a deterministic problem can play a
crucial role in constructing preconditioners for the coupled system arising from the stochastic
Galerkin projection. A special concern of solving the linear system associated to the variational
multiscale method formulation will also be presented by using a Schur Complement precondi-
tioner as the accelerator. We avoid utilizing direct solvers by reasons of efficiency and feasibility.
We restrict our focus to the stochastic linearized equations arising from the spectral-stochastic
finite element method. In this chapter, we begin with the solving techniques for the global
system, after that we draw our attention to the solvers for the VMS formulation.

4.1 Stochastic Galerkin Matrix-Vector Multiplication

Although the numerical implementation does not have an impact on the solver’s efficiency
on the theoretical level, it is worthwhile to provide a short remark about the stochastic Galerkin
matrix-vector multiplication, before discussing the solving techniques for Equation (3.98). How-
ever, the solvers can profit from the pattern of the stochastic Galerkin matrix, once we are solving
high dimensional algebraic systems.

=

Akj

Uj

bk

Akj Uj

Ā0C000 Ā1C110 Ā2C220 Ā3C330 Ā4C440

Figure 4.1: Illustration of the Stochastic Galerkin matrix-vector multiplication.
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Figure 4.1 demonstrates the algorithm of the matrix-vector multiplication for the stochastic
Galerkin structure. In our case, the linear equation is obtained by combining Equation (3.74)
and Equation (3.94), Akj is a sub-block of the global Galerkin matrix A, Uj is the solution of
a stochastic mode j, bk is the right-hand side for the stochastic mode k. The matrix-vector
multiplication is given by:

AkjUj :=

P∑
i=0

CijkĀiUj = bk , j, k = 0, ..., P . (4.1)

Equation (3.100) intends to build the global matrix A by collecting all matrices Āi, i = 0, ..., P .
The matrices Āi can be easily constructed from the sub-blocks on the first row of A, i.e. A0j

(blue blocks in Figure 4.1), by exploiting the zero patter of Cijk. It implies:

A0i := Cii0Āi , (4.2)

or,

P∑
i=0

Cij0 = Cii0 . (4.3)

Furthermore, if the random variables have different expansion orders than L, denoted by Lt.
Equation (4.1) can be reduced to:

AkjUj :=

Pt∑
i=0

CijkĀiUj = bk , j, k = 0, ..., P , (4.4)

where, Pt + 1 := (M+Lt)!
M !Lt!

. More specifically, if Lt = 1, then Pt = M , which is obviously smaller
than the total number of stochastic modes P (e.g. Figure 3.5). Therefore, the storage of the
sub-matrices Āi has only the linear complexity with respect to M .
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Number of random variables
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L = 2, Lt = 2

L = 3, Lt = 3
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L = 2, Lt = 1

L = 3, Lt = 1

L = 4, Lt = 1

Figure 4.2: The ratio (in percentage) of the stored sub-matrices to the total number non-zero
sub-matrices. The solid lines represent that the random inputs have a same order of polynomial
expansion as L, i.e. Lt = L, and the dotted lines consider only the linear random inputs cases,
i.e. Lt = 1. All random variables are modeled by the normalized Uniform distribution.
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Figure 4.2 exhibits the ratio of the stored sub-matrices against the total non-zero blocks in
the global matrix A accompanied by two different expansion orders of the random inputs, namely
Lt = L and Lt = 1. The ratio drops rapidly when the number of the random variables increases,
as well as for the polynomial order L. This consideration is greatly helpful once A becomes very
large, because the memory consumption is reduced by a significant factor.

In the following sections, the linearized equation (Equation (3.98)) in the Newton step has a
form as:

AU = b , (4.5)

where, A ∈ R(P+1)(d+1)N,(P+1)(d+1)N , U ∈ R(P+1)(d+1)N , b ∈ R(P+1)(d+1)N . In addition,

Akj :=

P∑
i=0

CijkĀi , Āi ∈ R(d+1)N,(d+1)N . (4.6)

U := [U0, ..., UP ] , Ui := [uh,i, ph,i] , uh,i ∈ RdN , ph,i ∈ RN . (4.7)

b := [b0, ..., bP ] , bi = [−F1,i,−F2,i] , F1,i ∈ RdN , F2,i ∈ RN . (4.8)

The subscript i indicates the stochastic mode.

4.2 FGMRES for the Global Linear System

The ultimate intention for solving Equation (4.5) is to obtain the solution vector U , which
has an analytical algebraic expression. It is given by:

U = A−1b . (4.9)

Notwithstanding, a direct inversion of a large dimensional matrix A can be impracticable. In-
stead, solving the large linear system is carried out with the iterative methods in our simulation.
More specifically in this work, we employ the Krylov subspace methods, which are primarily
based on a projection technique. These methods approximate A−1b by qm(A)b, which yields:

U := A−1b ≈ U (0) + qm−1(A)r(0) = U (m) . (4.10)

Here, U (0) is any initial guess of U , and r(0) = b − AU (0) is the residual with respect to U (0).
qm−1 is a polynomial of degree (m−1), U (m) is the solution after the m-th iteration. The Krylov
subspace is denoted as:

Km(A, v) := span{v,Av,A2v, ..., Am−1v} , (4.11)

which is also referred to as the Krylov sequence. Besides, U (m) − U (0) := qm−1(A)r(0) is in a
Krylov subspace Km(A, r(0)). Hence, the approximate solution U (m) can be defined by imposing
the Petrov-Galerkin condition:

b−AU (m) ⊥ Lm , (4.12)

where, Lm is another subspace with the dimension m. Consequently, U (m) can be expressed:

U (m) = U (0) + V (W TAV )−1W T r(0) . (4.13)

where V and W are matrices consisting of the basis of Km and Lm, respectively.
In our case, although the stochastic Galerkin tensor Cijk has a symmetric structure [109], Āi

is asymmetric owing to the VMS formulation (Equation (3.74)). The common choice for solving a
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non-symmetric linear system under the Krylov subspace iterative method is the generalized min-
imal residual method (GMRES) [144]. For the global stochastic system, we employ a modified
version of GMRES solver, which is the flexible generalized minimal residual method (FGMRES)
[143]. GMRES and FGMRES belong to the Arnoldi process [7], which is characterized as a
projection method onto Km for the general non-Hermitian matrices. FGMRES generalizes the
preconditioned GMRES method by enabling the feasibility of making use of different right pre-
conditioners in each iteration and satisfies the minimization property of the residual over the
preconditioned Krylov subspace as in the GMRES scheme.

Algorithm 1 Flexible GMRES (FGMRES) with right preconditioning [145]
1: Choose an initial guess U (0)

2: Start: r(0) = b−AU (0), β = ‖r(0)‖2 , v1 = r(0)/β
3: for j = 1, ..., n do
4: zj := M−1

i vj
5: w := Azj
6: for i = 1, ..., j do
7: hi,j := (w, vi)
8: w := w − hijvi
9: end for

10: hJ+1,J = ‖w‖2
11: vj+1 = w/hj+1,j

12: Define Zn := [z1, ..., zn], H̄n = {hi,j}1≤i≤j+1,1≤j≤n
13: end for
14: Compute yn = argminy‖βe1 − H̄ny‖2
15: Set U (n) = U (0) + Znyn
16: Restart: if convergence stop, else U (0) := U (n), GoTo 2

Algorithm 1 provides a pseudo algorithm of the FGMRES method, the steps 3 − 13 are
basically the Arnoldi process. Usually, the FGMRES requires more memory resources than the
GMRES, because an additional storage of the vectors zi is required. On the other hand, the
additional flexibility may cover the extra cost comparing with the standard GMRES, but more
important it is beneficial for non-fixed preconditioners [145]. It is obvious that our large coupled
system can be extremely difficult to resolve only with the FGMRES solver, preconditioning
processes are definitely necessitated. Accordingly, the FGMRES plays only the role as the global
linear solver in our application, it guards the overall linear equation, whereas the convergence
speedup also benefits from our customized preconditioners. The Polynomial Chaos expansion
Multilevel preconditioner is designed to cope with the stochastic Galerkin system and will be
discussed in the next section.

4.3 Polynomial Chaos expansion (PCE) Multilevel Preconditioner
for the Global Linear System

Developing an efficient preconditioner is very crucial for solving the global linear system
in our problem, and it is also a major obstacle for applying the intrusive stochastic Galerkin
approach. This section is devoted specially to the Polynomial Chaos expansion (PCE) Multilevel
preconditioning technique (or spectral Galerkin Multilevel preconditioner). The PCE Multilevel
preconditioner [149] exploits the recursive hierarchical structure of the stochastic Galerkin matrix.
From another point of view, it also inherits the central idea from the Multigrid methods [70, 2,
142] by eliminating the error on different scales accordingly, in our case, on different Chaos
Polynomial degrees.
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Linear System

The stochastic space is discretized by the Chaos Polynomials, with a polynomial degree L, or
to put it differently, the stochastic space is discretized with (P+1) Chaos Polynomials. We rewrite
the expression of the stochastic space spanned by the Chaos Polynomials in Equation (3.39) by
taking into account the polynomial degree L:

SL = SPL = span{ψ0, ..., ψPL} . (4.14)

We can then denote a subspace of SL:

Sl = SPl = span{ψ0, ..., ψPl} ⊆ SL , (4.15)

where, 0 < l ≤ L, Pl + 1 := (M+l)!
M !l! . The hierarchy is naturally defined by a nested sequence of

spaces:

S0 ⊆ S1 ⊆ · · · ⊆ SL . (4.16)

Therefore, the matrix Ki in Equation (3.100) has also a hierarchical structure, it reads (here Kl

= Ki):

Kl :=

[
K̃l El
ETl Fl

]
, Kl ∈ RPl+1,Pl+1 , (4.17)

with K̃l ∈ RPl−1+1,Pl−1+1, El ∈ RPl−1+1,Pl−Pl−1 , Fl ∈ RPl−Pl−1,Pl−Pl−1 . By recursion, the sub-
matrix K̃l has the same construction as Kl−1 and corresponds to the Chaos Polynomial degree
(l − 1). The recursion terminates with K̃l ∈ R1,1, which indicates the zero-th order Chaos
Polynomial (l = 0).

Corollary 4.3.1. If the random inputs have only a first order expansion, then the off-diagonal
elements of the sub-matrix Fl are all zero.

The proof of Corollary 4.3.1 can be found in [141], a graphical illustration is shown in Figure 4.3
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(b) M = 4, L = 4, Lt = 1.

Figure 4.3: Sparsity patterns of the coefficients in matrix Ki.

We denote the solution vector with respect to the Polynomial Chaos expansion order, namely
the PC level, which is given as:
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U l := [ U0, ..., UPl ] , l = 0, ..., L , (4.18)

the corresponding matrix is defined by:

Al :=

Pl∑
i=0

(Ki ⊗ Āi) , l = 0, ..., L . (4.19)

Hence, we can adapt the concept of the sub-grids from the standard Multigrid algorithms to
the subspaces Sl of the discretized stochastic space SL by supposing the "grid level" to be l in
Equation (4.15). In the following, we introduce the restriction operator Rl and the prolongation
operator Pl:

Rl :=
[
IPl−1

0
]
⊗ I(d+1)N , Pl :=

[
IPl
0

]
⊗ I(d+1)N . (4.20)

A smoothing process can be written as in Equation (4.21) at the corresponding level l. It is given
by:

U l,(n+1) := BlU l,(n) = U l,(n) + (Il ⊗ Ā0)−1(bl − (

Pl∑
i=0

Ki ⊗ Āi)U l,(n)) . (4.21)

Here, n denotes the n-th iteration, Il ∈ RPl+1,Pl+1 is the identity matrix, Bl := (Il ⊗ Ā0)−1

denotes as the smoother, which is constructed by the Mean-based preconditioner [150] with
utilizing an approximation of the inverse of the mean block A0. The detailed information about
this preconditioning technique will be presented in Section 4.4.

Algorithm 2 PCE Multilevel preconditioner/solver : MML [150]
1: if l = 0 then
2: solve A0U0 = b0

3: else
4: U l = Bν1l U l
5: rl = bl −∑Pl

i=0(Ki ⊗ Āi)U l
6: rl−1 = Rlrl
7: for i = 1 to µ do
8: ML(bl−1, U l−1, l − 1)
9: end for

10: cl = Plcl−1

11: U l = U l + cl

12: U l = Bν2l U l
13: end if

Algorithm 2 illustrates one cycle of the Multilevel preconditionerMML. The functionML(U l, bl, l)
takes the vector U l and the right-hand side bl on level l. The step 4 and 12 represent the pre-
and post-smoothing process with the user-defined iteration parameters ν1 and ν2. µ represents
the option setting for the V-cycle (µ = 1) or the W-cycle (µ = 2). The information exchange
between S l−1 and S l is done via the restriction and prolongation operators (Equation (4.20)),
the steps 6 and 10 are the restriction and prolongation operations, respectively. When l = 0,
Algorithm 2 tries to solve the deterministic problem, i.e. A0U0 = b0.

Remark 4.3.1. The restriction operation and the prolongation operation can be implemented
implicitly if the stochastic vector is built as a combination of sub-vectors Ui explicitly. Therefore,
the restriction implies removing the sub-vectors, and the prolongation implies appending the vector
with zero entries.
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The practical consideration of employing the spectral Galerkin Multilevel preconditioner is to
calculate the inverse of A0. Here, A0 = Ā0. As the analytical expression of the inversion of VMS
is not available in our case, (A0)−1 ought to be obtained by applying solvers directly on a linear
system, e.g. A0x = b. Owing to the size of our problem, iterative solvers are preferable, one of
the center complications of the Multilevel preconditioner is then about solving the deterministic
VMS problem.

4.4 Stochastic Mean-Based Preconditioner for the Lobal Linear
System

The Mean-based preconditioner [137, 51] is a simple but powerful preconditioning technique
for the stochastic Galerkin system. This approach is in effect a block-diagonal preconditioner,
which incorporates only the mean block. It has been shown numerically to be very efficient for
the problems with a moderate variance with respect to the mean, that is to say, the stochastic
Galerkin matrix Ki must be approximately diagonal dominant.

Note that, for our final blood pump simulation, the Multilevel preconditioner is applied
instead of the Mean-based technique on the global linear system because of the better convergence
behavior. Moreover, a numerical comparison between the Mean-based preconditioner and the
different Multilevel preconditioners are provided in Chapter 6 in order to support this argument.
On the other hand, the smoother proposed in Section 4.3 for the PCE Multilevel technique
corresponds to the Mean-based approach. The Mean-based preconditioning can be conducted
by considering a splitting method [141], i.e.:

P∑
i=0

K+
i ⊗ ĀiU (n+1) = b−

P∑
i=0

K−i ⊗ ĀiU (n) , (4.22)

the Mean-based approach is regarded as a Jacobi-type splitting of Ki, which yields:

IP ⊗ Ā0U
(n+1) = b−

P∑
i=1

Ki ⊗ ĀiU (n) . (4.23)

Here, the preconditioner matrix is defined as:

MMean := IP ⊗ Ā0 , Ā0 ∈ R(d+1)N,(d+1)N . (4.24)

The most attractive feature about the Mean-based preconditioner is the effortless paralleliza-
tion. The parallel scheme can be referred to as the block-Jacobi preconditioner acting on each
stochastic mode, which infers that the parallelization is achieved on the spatial and stochastic
level simultaneously. Therefore, this method enables the possibility of handling a larger size
stochastic problem in comparison to the Multilevel method.

4.5 Schur Complement Preconditioner for Mean Block

As mentioned in Section 4.4, the linear system of the mean block needs to be solved re-
peatedly in Algorithm 2 because of the smoothing process (i.e. the Mean-based preconditioner).
Concerning the mean block, we deploy again the Krylov subspaces solver FGMRES owing to the
same arguments in Section 4.2. Furthermore, we suggest using the Schur Complement method
to precondition the linear system resulting from the deterministic VMS formulation. The linear
equation involved with the mean block can be written as:

Ā0u =

[
A0 B0

C0 D0

] [
x
y

]
=

[
f
g

]
= b̄ . (4.25)
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We extend the notation of the linear system arising from VMS by introducing the sub-matrices
of Ā0 (Equation (4.25)), in which A0 is assumed to be nonsingular. b̄ is any right-hand side
vector from the preconditioning process of the global linear system. The block preconditioner
technique is deployed for our mean block solving process as it has been shown to be flexible and
robust [145]. For constructing a block preconditioner, we start first with the LDU decomposition
of Ā0:

Ā0 := LbDbUb =

[
A0 B0

C0 D0

]
=

[
I 0

C0A
−1
0 I

] [
A0 0
0 S

] [
I A−1

0 B0

0 I

]
. (4.26)

We focus here directly on the matrix Ā0 in Equation (3.100), where Ā0 is the mean block
associated with VMS formulation. Therefore, in Equation (4.25), x is the velocity vector, y is
the pressure vector. In Equation (4.26), A0 is the velocity-velocity block, B0 is the velocity-
pressure block, C0 is the pressure-velocity block, D0 is the pressure-pressure block. The most
block preconditioners are built on a mixture of the sub-matrices above. Especially, S is known
as the Schur Complement matrix, and it is given by:

S := D0 − C0A
−1
0 B0 . (4.27)

The block Schur Complement states as:

Sy = g − C0A
−1
0 f , (4.28a)

A0x = f −B0y . (4.28b)

Here, Equation (4.28a) is referred as the pressure Schur Complement equation, and the solution
process of the coupled system develops in the first place into a scalar problem of the pressure
only. Once the solution of the pressure is available, the velocity vector is computed subsequently
with Equation (4.28b). However, one practical concern is that the matrix S−1 must be easily
accessible, as it can not be calculated explicitly. Especially for the finite element method, matrix
A0 is sparse, but its inverse is generally a dense matrix.

Finding an efficient way to solve Equation (4.28a) is vital. However, S−1 is normally calcu-
lated via some iterative methods, in other words, only the matrix-vector multiplication operation
is required. Therefore, the splitting process (Equation (4.28)) can be very efficient as inverting
the sub-matrices is less complicated than inverting the matrix Ā0.

The general approach of dealing with the inversion of S is to solve Equation (4.28a) by an
iterative solver with an appropriate preconditioner S̃app [168]. The right preconditioning yields:

SS̃−1
appy

′ = (g − C0A
−1
0 f) , with y = S̃−1

appy
′ . (4.29)

Here, S̃app is an approximation of matrix S, it must be constructed easily. There are several
ways to build S̃app, e.g., SIMPLE iteration [132, 73] suggests replacing A−1

0 by diag(A0)−1 or
IA0 . Or the pressure convection diffusion (PCD) preconditioner [152, 102, 154] suggests S̃−1

app =
M−1
p FpA

−1
p , where Mp and Ap are the projections of mass matrix and Neumann Laplacian

matrix on the pressure, Fp is the projection of the velocity operator [117] in the context of the
incompressible Navier-Stokes equations.

We state the Schur Complement algorithm (Algorithm 3), which is implemented in our flow
solver. The FGMRES solver is explicitly imposed in the step 6, as S̃−1

app needs to be obtained
numerically with an iterative solver. In our computation, S̃app is defined as follows:

S̃app := D0 + ε1Mp + ε2Lp , (4.30)
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Algorithm 3 Schur Complement
1: Given Ā0, b
2: Extract (A0, B0, C0, D0) from Ā0, (f, g) from b
3: Solve A0hx = f
4: hy = C0hx
5: g := g − hy
6: Solve Sy = g by FGMRES with preconditioner S̃−1

app

7: f := f −B0y
8: Solve A0x = f

9: Return u :=
[
x y

]T
where ε1 = ν, ε2 = −θ∆t2ν. θ is the control parameter of the θ-scheme for the time discretization.
Mp is the pressure mass matrix, and Lp is the pressure Laplace matrix. This configuration is
based on the augmented Lagrangian (AL) approach [66, 26, 168, 26, 57], they proposed an
expression built on a linear combination of the pressure mass matrix and D0. It is given as:

S̃app = D0 + εMp . (4.31)

We have to mention that the block matrices of the VMS formulation are different from the
general incompressible NSE, precisely:

Ā0 =

[
Ans Bns
Cns 0

]
+

[
Avms Bvms
Cvms Dvms

]
. (4.32)

Here, the first matrix represents the incompressible NSE block structure, the second matrix
provides the sub-blocks derived from the VMS formulation with Dvms = D0 (in Equation (4.25)).
Hence, one possible simplification is to omit the contribution from {Avms, Bvms, Cvms} and only
take Dvms into account for designing S̃app, because the second matrix is negligible compared to
the first matrix. However, the stabilized Navier-Stokes scheme offers the possibility to access
the pressure-pressure block directly, then only the C0A

−1
0 B0 part needs to be approximated.

Furthermore, one correction matrix ε2Lp is also included into S̃app in order to improve the
convergence rate. Still, ε2 has the same order as ∆t2, when the time step is small, this correction
matrix does not have a significant influence.

Hereon, we state the block preconditioner of our Schur Complement system, which can be
further used by Algorithm 1, it is given as:

MSC :=

[
A0 B0

0 S̃app

]
. (4.33)

AsMSC plays only the role of the preconditioner in the FGMRES algorithm, the accuracy of the
approximation to S does not necessitate to be very strict, a trade-off between the computational
cost of S̃app and the amount of FGMRES iterations needs to be taken into account.

In regard to Algorithm 3, several sub-solvers are involved, some further information is listed
below (Table 4.1):

For the sake of completeness of Chapter 4, we also state the algorithm of the Conjugate
Gradient (CG) and the Algebraic Multigrid [75, 77] in Algorithm 4 and Algorithm 6, respectively.
Besides, the algorithm of GMRES is not given here because it is very similar to the FGMRES.

The Multigrid preconditioners have been shown to be very efficient in highly parallel systems
[33, 49, 14], though the fine properties are originally based on the system matrix A being a M-
matrix [135, 98]. However, concerning Table 4.1, A0 and S̃app are mass matrix dominant, both
are suitable to be associated with Multigrid preconditioners.

Before exercising the AMG algorithm (Algorithm 6), some components need to be defined in
advance. Let us consider an abstract linear equation [75, 179]:

71



Chapter 4. Solvers and Preconditioners

System matrix Solver Preconditioner

A0 GMRES AMG

S FGMRES S̃−1
app

S̃app CG AMG

Table 4.1: Sub-solvers with corresponding preconditioners in Algorithm 3.

Algorithm 4 CG with preconditioning [145] (Ax = b)
1: Choose an initial guess u(0)

2: Start: r(0) = b−Ax(0), z0 = M−1r̃0, p0 = z0

3: for j = 1, ..., until convergence do
4: αj = (rj , zj)/(Apj , pj)
5: xj+1 = xj + αjpj
6: rj+1 = rj − αjApj
7: zj+1 = M−1rj+1

8: βj = (rj+1, zj+1)/(rj , zj)
9: pj+1 = zj+1 + βjpj

10: end for

Ax = b . (4.34)

We use the superscripts to indicate the level number and set 1 to represent the finest level, i.e.
A1 = A and Ω1 = Ω. Ω is the pre-defined grid. The necessary components are listed as follows:

1. Grids Ω1 ⊃ Ω2 ⊃ · · · ⊃ ΩM with subsets:
set of coarse points: Ck, k = 1, 2, ...,M − 1, set of fine points: F k, k = 1, 2, ...,M − 1.

2. Grid operators: A1, A2, ..., AM−1.

3. Interpolation operators: P k, k = 1, 2, ...,M − 1.

4. Restriction operators: Rk, k = 1, 2, ...,M − 1.

5. Smoothers: Sk, k = 1, 2, ...,M − 1.

Algorithm 5 AMG preconditioner/solver setup [179]
Set k = 1
Partition Ωk into disjoint sets Ck and F k

Set Ωk+1 = Ck

Define interpolation operator P k

Define Restriction operator Rk

Setting Sk

if Ωk+1 is mall enough then
M := k + 1

else
GoTo 2

end if

These components above are constructed in a setup phase of AMG preconditioner, which is
defined as in Algorithm 5.
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Algorithm 6 AMG preconditioner/solver (V-cycle): MAMG [75] (Ax = b)
1: if k = M then
2: Solve AMxM = bM

3: else
4: Apply smoother Sk µ1 times on Akxk = bk

5: rk = bk −Akxk
6: rk+1 = Rkrk

7: MAMG(Ak+1, Rk+1, P k+1, Sk+1, ek+1, rk+1)
8: ek = P kek+1

9: xk := xk + ek

10: Apply smoother Sk µ2 times on Akxk = bk

11: end if

Moreover, we use directly an external library, Hypre [53], in our solver configuration, as a
setup phase for the Multigrid preconditioner is tedious and thorny. The supplementary knowledge
about the considered linear system is always preferable, the available options of the BoomerAMG
are referred to [53, 75].

Remark 4.5.1. Algorithm 2 inherits the main features from Algorithm 6, such as the coarse-
grid correction, restriction, prolongation, etc. Yet, the PCE Multilevel preconditioner is even
more straightforward on building different "sub-grids", because the hierarchy nature is directly
deployed.

4.6 Summary of Solvers and Preconditioners

A

Ā0

S

A0

S̃app

FGMRES

+
PCE Multilevel

FGMRES

+
Schur Complement

GMRES

+
BoomerAMG

FGMRES

+
S̃−1
app

CG

+
BoomerAMG

Figure 4.4: The combination of solvers and preconditioners on the different levels.

We give a brief summary about the solvers and the preconditioners which are employed in
the final blood pump simulation. Figure 4.4 illustrates the combination of the solvers and the
preconditioners on different linear systems. The ultimate goal of these solvers is to obtain a
correct solution on the global linear system in terms of fulfilling the convergence criteria in the
Newton scheme. For that reason, certain linear solvers and preconditioners in Figure 4.4 do not
have to provide high quality results as long as the upper solving process can still converge. In
other words, under the context of the Krylov subspace solvers, the search direction just needs
to be appropriate. Hence, the FGMRES solver on the matrix A requires only a low quality
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solution from the PCE Multilevel preconditioner, as well as for the FGMRES solver and the
Schur Complement preconditioner on Ā0. The blue line between block A and Ā0 indicates that
the preconditioner (PCE Multilevel) demands only a rough quality of the solution from the inner
linear solver (FGMRES). For the reason that the FGMRES on Ā0 plays the role as the smoother.
The red lines signify the requirement of a high quality resolution from the upper preconditioner
to the lower linear solvers, and the dotted line intimates that the matrix S̃app is obtained partially
from S. Furthermore, we control the quality of solutions and the solving processes by setting a
large relative error or a limited number of iterations, even using a combination of both.

74



Chapter 5

Scalability of Solvers and
Preconditioners

In the previous chapters, the basic theories and the solving procedures for the blood pump
simulation were presented. The turbulent character of the blood flow is modeled by the Vari-
ational Multiscale method as described in Chapter 2. The moving geometry is conducted by
the shear layer update approach under the framework of the finite element method (Chapter 2).
The propagation of the uncertainties from the random inputs is simulated with the stochastic
Galerkin method as described in Chapter 3. Moreover, the solving strategies are explicitly de-
fined in Chapter 4. We consider the Krylov subspace solvers as sub-solvers, and we combine
them into our customized preconditioners, e.g., the PCE Multilevel and the Schur Complement
preconditioner. Yet, for a time dependent high-dimensional coupled system combined with UQ,
the performance of the solving process must also be prioritized. In this chapter, we show the
scalability results of the flow solver and the PCE Multilevel preconditioner. The flow solver test
is studied with a deterministic channel flow, as the mean block is used as the smoother in the
PCE Multilevel preconditioner, then the efficiency of solving the deterministic flow equation is
important. The scalability of the PCE Multilevel preconditioner is studied with a stochastic
Poisson equation, because the deterministic Poisson problem can be solved efficiently, such that
we can focus on the efficiency of the Multilevel preconditioner. Two different solving strategies of
the PCE Multilevel preconditioner are also compared. Moreover, a modification of the Multilevel
method is studied with a 2D channel flow problem in order to further reduce the computing time
of our stochastic flow problem. We could not show the scalability study based on the blood
pump simulation due to the large problem size and the available computing resources. However,
the important parts which are involved in the blood pump computation, such as the flow solver
and the PCE Multilevel preconditioner, are studied in this chapter.

5.1 Flow Solver

Let us focus on the VMS formulation for a deterministic system, especially with the inflow
and outflow conditions (i.e. not a closed flow problem), which imitate the conditions as they
also occur in the blood pump instrument. The channel flow with an obstacle problem [147, 21]
is taken to be the test example for our scalability test. The corresponding VMS formulation
(Chapter 2) with the boundary conditions is given below:

Find uh ∈ V h, ph ∈ Qh:

(
uh
∂t
,vh) + (ûh · ∇uh,vh) (5.1a)

+
µ

ρ
(∇uh,∇vh)− 1

ρ
(ph,∇ · vh)
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+(τMrM,h, ûh · ∇vh) + (τCrC,h,∇ · vh) = (fh,vh) , in [0, T ]×D ,

(∇ · uh, qh) + (τMrM,h,∇qh) = 0 , in [0, T ]×D . (5.1b)

∀vh ∈ V h, ∀qh ∈ Qh. Here,

ûh = uh − τMrM,h , inD × [0, T ] , (5.2a)

rM,h =
∂uh
∂t

+ uh · ∇uh −
µ

ρ
∆uh (5.2b)

+
1

ρ
∇ph − fh , inD × [0, T ] ,

rC,h = ∇ · uh , inD × [0, T ] , (5.2c)

uh =

16Umaxyz(H − y)(H − z)/H4

0
0

 , on Γin × [0, T ] , (5.2d)

(−1ph +
µ

ρ
∇uh) · n = 0 , on Γout × [0, T ] , (5.2e)

uh = 0 , on Γwall × [0, T ] . (5.2f)

uh and ph are the velocity and the pressure. vh and qh are the test functions for the velocity and
the pressure. rM,h, rC,h are the residuals for the momentum and continuity equation, respectively.
H is the height and the width of the channel. µ is the dynamic viscosity. ρ is the density. Umax
is the maximal inflow velocity and plays only an effect on the direction of x-axis. Γin, Γout and
Γwall are the boundaries of inflow, outflow and solid walls, respectively. The channel geometry
is detailed in [147], P1-P1 elements are utilized for the velocity and the pressure accordingly.

Physical parameter
ρ 1035 kg/m3 µ 0.0035 Pa · s Umax 0.5 m/s

H 0.41 m

Time discretization
θ-Scheme 0.5 ∆t 0.001 s

Nonlinear solver (Newton)
Tolabs 1.0× 10−10 Tolrel 1.0× 10−6 Itermax 1000

Forcing EisenstatWalker2

Linear solver (FGMRES)
Tolabs 1.0× 10−10 Tolrel 1.0× 10−6 Itermax 1000

Preconditioner (Schur Complement)
FGMRES for block S

Tolabs 1.0× 10−16 Tolrel 1.0× 10−16 Itermax 10

GMRES for block A0 (preconditioned with BoomerAMG)
Tolabs 1.0× 10−10 Tolrel 1.0× 10−6 Itermax 1000

CG for matrix S̃app (preconditioned with BoomerAMG)
Tolabs 1.0× 10−10 Tolrel 1.0× 10−6 Itermax 1000

Table 5.1: General settings for the flow solver test.
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5.1. Flow Solver

Table 5.1 shows the basic settings for the flow solver test. Especially the physical parameters
are chosen the same as for the blood simulation. It means that the flow solver test is simulating
the same fluid as in the pump device. As mentioned in Chapter 4, the Schur Complement
preconditioner is restrained by the total number of the iterations (Itermax = 10), which implies
that the solution quality obtained from the Schur Complement method is rather low but still
good enough to precondition the linear system.
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Figure 5.1: Scalability test for the flow solver.

Besides, the mesh contains 8, 257, 280 tetrahedrons, it results 5.7 Millions degrees of freedom
(DOFs) with using P1-P1 linear elements. Figure 5.1 shows the scalability test of the flow solver
with the settings mentioned above based on the first 100 time steps. The scalability test starts
with 32 processors instead of 1 processor owing to the size of the problem (5.7 Millions DOFs).
The speedup Sp and the efficiency Ep are defined as follows:

Sp :=
To
Tp

, Ep :=
Sp
p
. (5.3)

The time Tp is the total solving time for the first 100 time steps, p stands for the number of
the processors used, To is the time consumed by the minimum number of the processors, i.e.,
To = T32. One can observe from Figure 5.1, the speedup performs favorably up to 512 cores.
The efficiency drops down to 55% approximately at 2048 cores, because the communication time
increases. However, the flow solver can still handle more than 2000 processors with a reasonable
performance, which is crucial in practice for the PCE Multilevel preconditioner to be efficient.
Figure 5.2 provides the time consumption for the different number of processors used. The
reduction rate becomes very small on the last two columns.

In practice, the number of the iterations of the iterative solvers can be influenced by the
problem size and the number of the processors. Figure 5.3 shows the amount of the iterations
for solving a linear system associated with the matrix A0 and the matrix S (Equation (4.28)),
as both procedures are important for the Schur Complement’s performance (Algorithm 3). One
can observe that the amount of the iterations remains stable for the different quantities of the
computing resources or the different problem sizes. It has to be mentioned that the effective
performance benefits from the BoomerAMG solver [53], which guarantees that the number of
the iterations has the minimum dependence of the mesh size and the number of the processors.
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Figure 5.2: Computation time in seconds of the flow solver.
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Figure 5.3: The total number of the iterations of solving the linear system associated with the
matrix A0 (cyan) and the matrix S (red) for the first 100 time steps.

Furthermore, we can also state that the Schur Complement method gives a remarkable im-
provement in preconditioning our system with the FGMRES solver. Figure 5.4 illustrates the
amount of Newton iterations and FGMRES iterations for the first 100 time steps, both quantities
remain stable when the problem sizes increases. Additionally, each Newton step demands in av-
erage only two FGMRES iterations (Figure 5.4), it means that the Schur Complement algorithm
can precondition our linear system in a very efficient way.

5.2 PCE Multilevel Preconditioner

Another important component of our solving strategy is the PCE Multilevel Galerkin spectral
preconditioner (Section 4.3), which we use to cope with the global stochastic system. The
main idea behind this preconditioner is to utilize the degree of the Chaos Polynomials as the
level of the hierarchical structure in the stochastic spectral system. Based on the Multigrid
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Figure 5.4: The total number of Newton iterations (blue) and the FGMRES iterations (coral)
for the first 100 time steps.

method, a satisfactory convergence property is achievable once we want to deal with a large
dimensional problem. In contrast to Section 5.1, in this section we exploit a stochastic system
based on the Poisson equation, where the viscosity parameter ν is designed as a multidimensional
random variable. Because of the reduced complexity in the testing problem, we can focus on the
performance of the Multilevel preconditioner. The governing equation is stated as below:

−∇ · (ν(x, θ)∇u(x, θ)) = 1 , inD, θ ∈ Θ , (5.4a)
u(x, θ) = 0 , on ∂D, θ ∈ Θ . (5.4b)

Here, Θ is the sample space, and θ represents the random event. We introduce an uncertain
model of ν:

ν(x, θ) := ν0 + ν0σ

M∑
i=1

qi−1 sin(2πix1) sin(2πix2) sin(2πix3)ξi(θ) . (5.5)

ξ(θ) := [ξ1(θ), ..., ξM (θ)] represents the random vector. We assume each of the components to be
uniformly distributed on the interval [−1, 1], i.e. ξi ∼ U(−1, 1). Additionally they are assumed
to be mutually independent. Concerning Equation (5.5), the mean value of the ν is exactly ν0,
so the second part of the model can be regarded as the artificial noise around ν0, i.e. E(ν) = ν0.
Moreover, σ is a variation factor, which parametrizes the magnitude of the fluctuations with
respect to ν0. q denotes the decay rate of the fluctuations. In order to ensure this problem to be
well-posed, we impose one extra condition:

0 < q < 1 , 0 <
σ

1− q < 1 . (5.6)

Therefore, we can employ the Polynomial Chaos expansion method and assume a square-
integrable stochastic function u(x, ·) ∈ L2(Ξ), for all x ∈ [0, 1]3 with Ξ being the range of the
variables ξ. The truncated stochastic spectral expansion of the solution u(x, ξ) is given as:

u(x, ξ) =
P∑
i=0

ui(x)ψi(ξ) . (5.7)

Here, P + 1 = (M+L)!
M !L! . M is the number of random variables, and L is the maximum polynomial

order of ψi. ui and ψi are the deterministic part and stochastic part respectively, ψi(ξ) are the
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pre-defined basis functions. Because all ξi are modeled with the standard Uniform distribution
in our example, ψi(ξ) consequently denote the multivariate Legendre polynomials (Table 3.2).
Further, Equation (5.4) can be expressed with the random variables ξ instead of θ. Thus, we
insert then Equation (5.7) into Equation (5.4).

In order to apply the generalized Polynomial Chaos expansion approach, we multiply the pre-
selected random basis polynomials on both sides of Equation (5.4a). As u(x, θ) in Equation (5.4a)
is extended with Equation (5.7), it gives:

− 〈∇ · (ν(x, ξ)u(x, ξ), ψ(ξ)〉 = 〈1, ψ(ξ)〉 , ψ ∈ SP , (5.8)

where u(x, ·) ∈ SP , SP is the approximated stochastic space, SP = span{ψ0, ψ1, ..., ψP }. The
viscosity ν is also projected into SP , which implies:

ν(x, ξ) :=

M∑
i=0

νiψi(ξ) , (5.9)

νi(x) := ν0 , i = 0 , (5.10a)

νi(x) := ν0σq
i−1 sin(2πx1) sin(2πx2) sin(2πx3) i = 1, ...,M . (5.10b)

We consider only the situation that the viscosity ν has a first order expansion. In addition, the
first order polynomials of ψi are defined as:

ψi(ξ) := ξi , i = 1, ...,M . (5.11)

Then, we exploit the orthogonality of the random basis polynomials, and Equation (5.8) becomes:

−
M∑
i=0

P∑
j=0

∇ · (νi(x)∇uj(x))Cijk = δ0k , ∀k = 0, ..., P . (5.12)

Cijk is the Galerkin third-order tensor (Equation (3.51)). The stochastic weak discrete problem
is given by:

Find uh,i ∈ V h ⊂ H1
0 (D), i = 0, ..., P , such that,

M∑
i=0

P∑
j=0

νi(∇uh,j ,∇vh)Cijk = (δ0k, vh) , inD , (5.13)

∀k = 0, ..., P , ∀vh ∈ V h.
Hence, we are allowed to employ the stochastic finite element method to compute the stochas-

tic solution of the considered system (Equation (5.4)) in order to study the scalability feature of
the PCE Multilevel preconditioner. The calculation settings are stated in Table 5.2.

The computational domain is a unit cube [0, 1]3 with two different refinement levels: 6 and 8.
Therefore, the Poisson test is shown for two different ranges of the computing nodes according to
the refinement levels (Table 5.3). It means that the refinement level 6 is subject to the computing
node range 2 to 64 and the refinement level 8 is subject to the computing node range 128 to
2048. We restrict ourselves by taking only three random variables, because three random inputs
are also considered in our blood pump model. Four different truncated polynomial orders, 2 to
5, are considered in this example, which implies that the dimension of the stochastic space also
increases due to this alteration. Additionally, the random inputs are modeled only with the first
order Chaos Polynomials (Equation (5.9)). Besides, we propose two different solving strategies
regarding the PCE Multilevel preconditioner, namely the exact Multilevel preconditioner and the
inexact Multilevel preconditioner. The main variation of these two strategies is that the inexact
fashion merely requires a rough approximation. This is achieved by setting a large relative error
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Stochastic discretization
M 3 L 2, 3, 4, 5 P + 1 10, 20, 35, 56

q 0.5 σ 0.2, 0.5, 0.8 ν 0.01

Global system
Linear solver (FGMRES)
Tolabs 1.0× 10−10 Tolrel 1.0× 10−10 Itermax 1000

Preconditioner (PCE Multilevel)
Tolabs 1.0× 10−10 Tolrel 1.0× 10−10, 1.0× 10−1 Itermax 1000, 3

Mean block
Linear solver (CG) (preconditioned with BoomerAMG)
Tolabs 1.0× 10−10 Tolrel 1.0× 10−10, 1.0× 10−1 Itermax 1000

Table 5.2: Settings for stochastic Poisson test cases. The relative tolerance (Tolrel) and the
maximum number of iterations (Itermax) have two values, they correspond to the exact strategy
and the inexact strategy, respectively.

and a low iteration limit. The main idea is comparable to the Schur Complement preconditioner
for the flow problem in Section 4.4. We also take the value of σ (σ = 0.2, 0.5, 0.8) into account,
which in general influences the level of the diagonal dominance of the global system.

L 2 3 4 5
modes 10 20 35 56

The processor range: 2 to 64 (refinement level 6)
DOFs 2.75 Millions 5.49 Millions 9.61 Millions 15.38 Millions

The processor range: 128 to 2048 (refinement level 8)
DOFs 169.75 Millions 339.50 Millions 594.11 Millions 950.58 Millions

Table 5.3: Problem size (i.e. the number of DOFs).
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Figure 5.5: The scalability test of the exact PCE Multilevel preconditioner, σ = 0.2.

For the exact PCE Multilevel preconditioner, we set that the relative tolerance and the
maximum number of iterations of the PCE Multilevel to be 1.0× 10−10 and 1000, respectively.
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Figure 5.6: The scalability test of the exact PCE Multilevel preconditioner, σ = 0.5.
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Figure 5.7: The scalability test of the exact PCE Multilevel preconditioner, σ = 0.8.
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Figure 5.8: The computation time in second for the usage of 2048 processors. The numbers on
top of the bars represent the number of FGMRES iterations (exact PCE Multilevel).
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In other words, the PCE Multilevel solves the linear system relatively accurate. Three values
of σ (0.2, 0.5 and 0.8) are also used for this comparison. When the value of σ increases, the
global system matrix becomes less diagonal dominant. This effect can be seen in Equation (5.9)
and Equation (5.13). It implies that the deviation of the input parameters in relation to the
mean value becomes larger. The general consequence for the performance of the PCE Multilevel
method is that it requires more iterations because the smoother for the Multilevel approach is
the Mean-based preconditioner, which is actively influenced by the diagonal dominance of the
global Galerkin matrix [150, 79].

In this scalability study (Figures 5.5 to 5.7), two ranges of the number of processors are
considered, namely from 2 to 64 and 128 to 2048, also with different problem sizes (Table 5.3).
We observe that the efficiency remains around 50% for both ranges of processors. The results
of the range 2 to 64 are slightly below 50% and these of the range 128 to 2048 are marginally
above 50%.

Figure 5.8 provides the information about the time consumption of the solving procedures
and the number of FGMRES iterations by using the results obtained with 2048 processors. We
observe that the solving time increases once the value of σ becomes larger, as well as the number
of FGMRES iterations. This outcome meets the explanation which is related to the change in the
structure of our global matrix. Nonetheless, the number of FGMRES iterations does not alter
dramatically when we expand the stochastic solution into higher polynomials, it corresponds
analogously to the behavior of the Multigrid method (i.e. it is independent from the mesh size).
Besides, the number of FGMRES iterations stays in a relatively low level when the global matrix
becomes less diagonally dominant, and each of FGMRES iterations requires only 1 or 2 Multilevel
V-cycles. It means that the PCE Multilevel preconditioner is still effective with respect to this
alteration.

5.2.2 Inexact PCE Multilevel
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Figure 5.9: Scalability test for the inexact PCE Multilevel preconditioner, σ = 0.2.

In Contrast to the exact PCE Multilevel solving strategy, the inexact Multilevel only neces-
sitates an approximated solution from the computation. In this subsection, the inexact strategy
is realized by adjusting the relative error and the maximum iteration of the PCE Multilevel
preconditioner to 1.0× 10−1 and 3, respectively.

We consider the same problem sizes as in the previous case (Table 5.3) and obtain similar
scalability results (Figures 5.9 to 5.11) as in Section 5.2.1. We observe that both preconditioning
strategies show that they have over 50% efficiency up to 64 cores for the first range of processors
(2 to 64). But, for the second range, the efficiency drops to 40% instead of 50% for the inexact
Multilevel preconditioner. A significant decrease in the performance happens after 1024 proces-
sors. Similar to Figure 5.8, Figure 5.12 also shows the computational time and the number of
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Figure 5.10: Scalability test for the inexact PCE Multilevel preconditioner, σ = 0.5.
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Figure 5.11: Scalability test for the inexact PCE Multilevel preconditioner, σ = 0.8.
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Figure 5.12: The computation time in second for the usage of 2048 processors. The numbers on
the top of the bars represent the number of FGMRES iterations (inexact PCE Multilevel).
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FGMRES iterations with respect to different PC orders. However, we restrict ourselves to 2048
computing cores for the final simulation based on the spatial discretization and the available
computing resources.

5.2.3 Exact vs. Inexact

Although the PCE Multilevel preconditioner scales worse for the inexact solving strategy
than for the exact case, it is still beneficial to consider the inexact version with respect to a
reduction of computing time. For that reason, in this subsection we provide a brief comparison
of these two solving strategies.

Figure 5.13 shows a comparison of the computing time and the amount of outer solver it-
erations of both solving strategies based on the same testing problem which is presented in
Figures 5.8 and 5.12. The inexact Multilevel preconditioner takes less computing time compar-
ing with the exact Multilevel preconditioner for each examined problem (Figure 5.13a). This
superiority is even greater once the problem size becomes larger. In the meantime, the amount
of FGMRES iterations does not alter. Only in few cases the number of iterations increases by 1.
This outcome supports the same conceptional arguments in Section 5.1 that the precondition-
ers only need to provide a solution with a reasonable accuracy, such that the Krylov subspace
solvers can generate a "good search direction" for the next iteration. We investigate also the
amount of smoother iterations (i.e. the mean block solver) in the PCE Multilevel preconditioner.
The inexact strategy requires only 50% of the iterations of the exact strategy (Figure 5.14). In
addition, the selected simulation results are shown in Figure 5.15.

Remark 5.2.1. Our implemented linear algebra structure for the Polynomial Chaos expansion
is designed such that each computing processor holds all stochastic mode solution vectors (i.e.
there is no decomposition with respect to the stochastic space). It means that the dimension of
the stochastic modes can not be very large. This concept is based with regard to the efficiency of
the PCE Multilevel method, because the restriction procedure and the prolongation procedure can
be done efficiently within a single processor, otherwise, the communication between the processors
can be expensive. However, as explained in Chapter 3, we restrict ourselves to a low dimensional
stochastic space, therefore, we are not dealing with a large number of stochastic modes. More-
over, the Mean-based preconditioner can be more flexible if the stochastic mode solutions are also
parallelized. However, we do not provide further demonstrations about the parallelization of the
Mean-based preconditioner in this work.

5.3 A Modification of the PCE Multilevel Preconditioner

As described and motivated in Chapter 4 and Section 5.2, we utilize the PCE Multilevel
method to precondition our global linear system. Although the number of iterations of the PCE
Multilevel solver is generally independent of the stochastic levels, the computing effort of one
preconditioning cycle (V- or W-cycle) is effected by the number of levels and the random inputs.
For example, for a V-cycle, the number of mean block computations is given by:

N := 2

M∑
i=0

(i+ L)!

i!L!
− 1 . (5.14)

M is the number of random parameters, L is the truncated Chaos Polynomial degree.
Figure 5.16 shows that the amount of the mean block computations increases faster than

the total number of the stochastic modes. This quantity can be considered analogously to the
computational effort of the preconditioning process, because we only employ the Mean-based
preconditioner as the smoother. Consequently, the number of mean block computations in the
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Figure 5.13: Comparison of the computing time and the number of FGMRES iterations for the
Poisson problem at 2048 processors.

preconditioning process grows exponentially expensive with respect to the dimension of the
approximated stochastic space.

Thus, we try to reduce the amount of the mean block computations within the preconditioning
process. One of our proposals is that we firstly keep the smoothing process only on level 0, 1
and L, then we select another level l, which is located between 1 and L, as a transition level. On
the level l, the Mean-based smoother is also applied.
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(a) Mode 1. (b) Mode 3. (c) Mode 6. (d) Mode 10.

(e) Mode 15. (f) Mode 20. (g) Mode 22. (h) Mode 33.

Figure 5.15: The numerical results on a cross-section with regard to selected stochastic modes.
The cross-section is located in the middle of the unit cube along the direction of the z-axis.

Figure 5.17 demonstrates the modified version of the PCE Multilevel preconditioner. Each
black dot represents a stochastic level. The red circles indicate the selected levels, which are
utilized by the smoothing process. The restriction operator R and the prolongation operator P
are only performed between these selected levels. The rest of the levels, which are represented
by the black dots without the red circle, are simply omitted in the restriction and prolongation
steps.

Hence, we have tested two configurations based on the 2D channel benchmark problem [147].
The first configuration is the channel flow with a circular shaped obstacle. The inflow boundary
condition and the viscosity are modeled as the uncertain sources. The second configuration
is a flow driven by a rotating object. The computing domain is very similar to the previous
configuration, and only the circular obstacle is replaced by a rotating rotor (Figure 5.19). In
addition, the rotor’s velocity is also modeled as an uncertain parameter. Instead of applying the
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Figure 5.16: Number of mean block computations.
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Figure 5.17: An illustration of the modified version of the PCE Multilevel preconditioner by
means of a V-cycle.

incompressible NSE as in [147], we use the VMS formulation as defined in Chapter 3 in order
to better adapt to our blood pump simulation. These two testing cases provide very promising
results in regard to the performance. Here, we only give the numerical results of the second case.

Figure 5.18 presents a comparison of the computational time between the full levels PCE
Multilevel preconditioner (algorithm 2) and the selected levels PCE Multilevel preconditioner
(Figure 5.17). The red line represents the number of stochastic modes regarding the polyno-
mial order L, the blue line is the total number of mean block computations needed for a V-cycle
(Equation (5.14)). One can observe that the computational time for the full levels preconditioner
follows proportionally the number of the stochastic modes per a V-cycle (blue line), because the
amount of the V-cycles needed per time step remains basically the same. Furthermore, the
computational effort is reduced by employing the modified version of the Multilevel precondi-
tioner, the time increases slowly and follows the red line. Note that, when L = 1, 2 and 3, the
time consumed by the modified version follows also the blue line, because we intend to always
keep the level 1 and level L. Besides, we provide a visualization of the numerical solution of
the second configuration (Figure 5.19). The middle figure shows the mean value of the velocity

88



5.3. A Modification of the PCE Multilevel Preconditioner

1 2 3 4 5 6

PC order, L = 1, 2, 3, 4, 5, 6

0

5000

10000

15000

20000

25000

30000

35000

40000

C
om

pu
ta

ti
on

al
ti

m
e

(s
)

0

20

40

60

80

100

120

140

160

180

N
um

be
r

of
st

oc
ha

st
ic

m
od

es

Time of full levels
Time of selected levels
Nb. mode per V-cycle (selected levels)
Nb. stoch. modes per V-cycle (full levels)

Figure 5.18: Solving time (the sum of first 200 time steps) vs. the number of stochastic modes.
The computation is based on the 2D channel flow with a rotor.
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Figure 5.19: The numerical solution at the time step 100.

field at the time step 100, where the velocity around the rotor has higher magnitude due to the
rotation. The upper one is colored by the standard deviation of the velocity along the direction
of the x-axis, the resulting shape is warped proportionally by the value of the standard devia-
tion. Correspondingly, the lower case indicates the standard deviation along the direction of the
y-axis.
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Chapter 6

Numerical Experiment

After presenting the scalability of the solvers and the preconditioners, we can summarize the
important components, which are necessary for the blood pump simulation: The generalized
Polynomial Chaos expansion method used for quantifying parameterized uncertainties (namely
the inflow boundary condition, the blood viscosity and the revolving speed of rotor). The shear
layer update approach used for realizing the moving mesh concept. The Variational Multiscale
method used for modeling the turbulent flow. The Polynomial Chaos expansion Multilevel
technique used for preconditioning the global stochastic linear system. The Schur Complement
used for preconditioning the mean block.

This chapter is dedicated to the numerical experiments of the blood pump simulation in
consideration of assessing the uncertainties. The chapter consists of two sections, the first part
is devoted to a stationary case in a simplified pump geometry, this example is regarded as
an intermediate step before proceeding the unsteady state calculation. We enhance again the
importance of applying the inexact Multilevel preconditioner by using this steady flow simulation.
The second part contributes to the model calibration, in which the numerical results of the
stochastic model of the FDA’s blood pump are illustrated. All the components, which are
studied in the previous chapters, are brought into play.

6.1 Stationary Case

Performing a moving mesh computation for a high rotating speed system is always a tedious
and expensive process. However, for engineering perspectives, a stationary result can be very
serviceable to provide an overview about the flow behavior in the average sense. Moreover, the
results obtained from the steady flow simulation can also be served as the initial guess in the
unsteady simulation in order to accelerate the convergence of the first time step iteration.

The Multiple Reference Frame (MRF) method is designed for simulating an axisymmetric
rotating structure [35, 103, 44, 106] in a steady state. This approach proposes to divide the
computational domain into two adjacent areas, i.e. the stationary zone and the moving reference
frame zone (Section 2.3). In our steady simulation, the stationary zone is governed by the steady
incompressible Navier-Stokes equations. In the moving reference frame zone, the Coriolis force
and the centrifugal force have to be included into the momentum equation.

Figure 6.1 shows the geometry of the computing domain D, where DR is the moving reference
frame zone, DI is the stationary frame zone, D = DR ∪DI , DR ∩DI = ∅. Γi indicates the inflow
boundary, Γo is the outflow boundary, Γr is the surface of the rotor, Γw is the boundary of the
rigid wall, ∂D = Γi ∪ Γo ∪ Γr ∪ Γw. D is the diameter of the rotor.

Thence, the governing equations are given by:

u · ∇u− µ

ρ
∆u+

1

ρ
∇p = 0 , inDI , (6.1a)
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(a) 3D geometry with cutting plane for (a).
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(b) 2D cross-section of the pump geometry.

Figure 6.1: The demonstration of the blood pump, the stationary zone DI and the moving
reference zone DR. (a) is the 3D geometry the blood pump. The 2D plan in (a) indicates
the location of the cross-section. The moving reference frame zone DR of the MRF method is
highlighted in (b).

uR · ∇uR + 2ω × uR + ω × ω × d (6.1b)

−µ
ρ

∆uR +
1

ρ
∇p = 0 , inDR , (6.1c)

∇ · u = 0 , inDI , (6.1d)
∇ · uR = 0 , inDR , (6.1e)

u = g(x) , on Γi , (6.1f)
u = 0 , on Γw , (6.1g)
uR = h(x) , on Γr , (6.1h)

(−1p+
µ

ρ
∇u) = 0 , on Γo . (6.1i)

Here, u is the velocity, and p is the pressure. µ is the dynamic viscosity, and ρ is the density.
ω is the angular speed and g(x) is the inflow boundary condition. uR is the velocity on the
rotating frame (DR), and uR is defined by:

uR := u− ω × d , (6.2)

uR is acting on DR instead of u in order to better represent the rotating effect in the steady
state. The angular speed is only nonzero along the direction of the z-axis (i.e. the rotating axis)
in our configuration (Figure 6.1), it means:

ω :=

0
0
ω

 . (6.3)

Note that, there are no additional boundary conditions needed between DI and DR. The inflow
boundary condition g(x) is modeled with a Poiseuille profile, whose center-line is aligned with
the z-axis. It is given as:

g(x) := g(x, y, z) =

 0
0

−Umax(1− (x2 + y2)/R2)

 . (6.4)

Here,
√
x2 + y2 < R, R indicates the radius of the inlet cylinder, which conducts the blood flow

into the chamber. Umax > 0 is the maximum inflow velocity. Consequently, two additional terms

92



6.1. Stationary Case

are brought in:

2ω × uR : Coriolis force.
ω × ω × d : centrifugal force.

The Coriolis force represents the deflecting effect (inertial force) on the object’s motion in a
rotating reference frame. The centrifugal force is also an inertial force, which is pointed outward
the rotating axis. Note that, there are normally three additional fictitious forces introduced by
the rotating reference frame. Except these two forces, there is also the Euler force. However, the
Euler force only appears when the system is in an unsteady rotating reference frame. Therefore,
the Euler force does not appear in our case (Equation (6.1)). Moreover, d is the distance from
an arbitrary coordinate on the rotating frame to the revolving axis (Figure 6.1).

Hence, with the aid of Equation (6.2), u or uR can be eliminated from Equation (6.1). There-
fore, no additional quantities are involved in regard to the incompressible NSE. The Dirichlet
boundary condition on the blade (Figure 6.1b) is given as:

h(x) := h(x, y, z) = ω × d =

−xωyω
0

 . (6.6)

We consider then three different random inputs: the inflow boundary condition g(x), the
rotor’s speed ω and the dynamic viscosity µ. These three parametric uncertainties are modeled
with the independent Uniform distributed random variables ξi ∼ U(−1, 1), i = 1, 2, 3. The
explicit forms are given by:

g(x) = g0(x) + σ1g0(x)ξ1 , (6.7a)
µ = µ0 + σ2µ0ξ2 . (6.7b)
ω = ω0 + σ3ω0ξ3 , (6.7c)

where, g0(x), ω0 and µ0 are the mean values regarding the three random inputs. σi, i = 1, 2, 3
are the variation factors with respect to the mean values, σi satisfy the condition 0 < σi < 1
in order to ensure the positivity. Note that, all three random parameters are essentially scalar
values, therefore, the random variables ξi can be seemed to be assigned straightly to Umax,
ω0 and µ0, respectively. Subsequently, we collect the three random variables into one random
vector ξ := [ξ1, ξ2, ξ3], it enables us to map a probability space (Θ,F ,P) with the sample space
Θ, sigma-algebra F ⊆ 2Θ and the probability measure P to the subset Ξ ⊂ R3 (Chapter 3).
Thence, all stochastic quantities can be expressed in terms of ξ. We use the Polynomial Chaos
expansion technique to represent the solutions of the velocity and the pressure, they are given
as:

u(x) =

∞∑
i=0

uiψi(ξ) , p(x) =

∞∑
i=0

piψi(ξ) . (6.8)

As mentioned above, the three random variables are modeled with the Uniform distribution,
i.e. ψi(ξ) correspond to the normalized multivariate Legendre polynomials [176]. One of the
important features of the Chaos Polynomials is the orthogonality with respect to the probability
density function, it means: ∫

[−1,1]3
ψi(ξ)ψj(ξ)

1

23
dξ = δij , (6.9)
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δij is the Kronecker operator. However, Equation (6.8) has to be truncated up to a certain
number P (Equation (3.30)) in order to cope with stochastic-spectral finite element method.
The truncated expressions read:

u(x) =

P∑
i=0

uiψi(ξ) , p(x) =

P∑
i=0

piψi(ξ) . (6.10)

We insert Equation (6.10) and Equation (6.7) into Equation (6.1). By considering the Galerkin
projection technique, we obtain:

P∑
i=0

P∑
j=0

ui · ∇uj Cijk −
P∑
i=0

P∑
j=0

µi
ρ

∆uj Cijk +
1

ρ
∇pk = 0 , inDI , (6.11a)

P∑
i=0

P∑
j=0

uR,i · ∇uR,j Cijk +

P∑
i=0

P∑
j=0

2ωi × uR,j Cjik (6.11b)

+
P∑
i=0

P∑
j=0

ωi × ωj × r Cijk −
P∑
i=0

P∑
j=0

µi
ρ

∆uR,j Cijk +∇pk = 0 , inDR ,

∇ · uk = 0 , inDI , (6.11c)
∇ · uR,k = 0 , inDR , (6.11d)

uk = gk(x) , on Γi , (6.11e)
uk = 0 , on Γw , (6.11f)

uR,k = hk(x) , on Γr , (6.11g)

(−1pk +

P∑
i=0

P∑
j=0

µi
ρ
∇uj Cijk) = 0 , on Γo . (6.11h)

Inflow maximal speed (m/s) 0.55 Inflow speed variation (σ1) 10%

Dynamic viscosity (N · s/m2) 0.0035 Angular speed variation (σ2) 10%

Angular speed (rad/s) 261.8 Viscosity variation (σ3) 10%

RPM (r/min) 2500 Density (kg/m3) 1.035

Radius R (m) 0.006 Diameter D (m) 0.06

Table 6.1: Model parameters.

The focus of this stationary flow computation is to investigate the flow behavior in the
pump geometry and compare the different solution strategies of our problem setting [150]. The
outcome verifies once again the decision in Chapter 5, it means that the inexact Multilevel
approach outperforms than the other methods. Table 6.1 indicates the physical parameters of
this numerical simulation, we choose synthetically σi to be 10%, namely the uncertainties within
the input data have a 10% deviation from their mean value (Equation (6.7)). Note that, we
reduce the density artificially by a factor of 1000 for the sake of simplicity.

Accordingly, the spatial part of Equation (6.11) is discretized by using the finite element
method with the Lagrangian Taylor-Hood elements P2 − P1 [162]. In regard to the nonlinear
equation, the inexact Newton method is applied on the global nonlinear system with a time
stepping strategy "choice 1" of Eisenstat and Walker [150, 50]. For solving the linear system
arising from the Newton iteration, we analyze three solution strategies as follows:

• GMRES + Mean-based preconditioner.
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6.1. Stationary Case

• Exact PCE Multilevel solver.

• Inexact PCE Multilevel solver.

Note that, we employ here the PCE Multilevel scheme as a global solver instead of a precondi-
tioner comparing with the test examples in Chapter 5. Both solvers, the GMRES and the PCE
Multilevel, require multiple iterations with respect to the mean operator Ā0, because two solvers
exploit the Mean-based solver/preconditioner on different levels. We define therefore an "inner"
solver for the mean block system by utilizing the GMRES solver together with the incomplete
LU factorization preconditioner (ILU). The inexact Multilevel solver is configured in a simulta-
neous manner as in Section 5.2, i.e., the relative tolerance of the mean block solver is assigned
to be 10−1. For the exact Multilevel solving strategy, the relative tolerance is adjusted to 10−12.
Furthermore, the Newton scheme restricts the absolute and relative tolerance to be under 10−9.

As defined in [150] and Equation (2.1), the configuration above defines a Reynolds number
around 200, the fluid should behave as a laminar flow. We compare three different PC orders
(L = 3, 4, 5) of the Chaos Polynomials, which result in 20, 35 and 56 PC stochastic modes for the
stochastic solution variables accordingly. The blood pump geometry (Figure 6.1) is triangulated
by 192, 451 tetrahedral elements, it arises 919, 334 DOFs per PC mode.

Newton Iter. (L = 3) Newton Iter. (L = 4) Newton Iter. (L = 5)

1 2 3 4 1 2 3 1 2 3

GMRES

Niter 1 2 3 - 1 2 3 1 2 3
Nres 2 3 4 - 2 3 4 2 3 4
NĀ0

23 60 80 - 23 102 140 23 136 224
N̄iter,Ā0

706 931 967 - 706 755 933 706 619 893

MLexact

Niter 1 1 1 - 1 1 2 1 1 1
Nres 11 11 11 - 14 14 27 17 17 17
NĀ0

55 68 67 - 107 139 278 180 251 251
N̄iter,Ā0

758 1380 1804 - 715 1307 919 600 1093 1346

MLinexact

Niter 1 1 3 2 1 1 3 1 1 1
Nres 11 11 31 21 14 14 40 17 17 33
NĀ0

57 69 207 138 108 139 417 183 251 502
N̄iter,Ā0

63 95 137 338 49 75 107 41 63 102

Table 6.2: Comparison of the number of iterations for different solving procedures.

Table 6.2 provides a comparison of the number of iterations between the different PC degrees,
also between the solving strategies. Niter represents the number of the GMRES iterations or the
V-cycles in the Multilevel solver. Nres denotes the number of residual computations. NĀ0

is the
number of mean block computations, it involves the matrix Ā0. N̄iter,Ā0

denotes the averaged
number of the GMRES iterations in order to compute the solution from a linear system which
is associated to Ā0, the average number means that it is chosen at every Newton iteration
over all mean block solving parts. We notice from Table 6.2 that the amount of the Newton
iterations needed is almost the same for these three solving strategies, the exact Multilevel solver
(MLexact) overcomes the other two methods in terms of the convergence behavior within the
Newton iteration. However, the exact Multilevel solver requires more iterations in average for
obtaining the solution of the mean block systems. The amount of the Newton iterations increases
slightly for the inexact Multilevel approach (MLinexact) because the relative error is less strict
comparing to the exact Multilevel solver. Thus, additional Newton iterations are demanded. Yet,
the inexact Multilevel approach necessitates much less mean block computations, the amount of
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Figure 6.2: Comparison of the computational cost of GMRES, MLexact and MLinexact.
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Figure 6.3: Mean value of the flow velocity (m/s) and the pressure (Pa).

computations is reduced by a factor 10 or even higher. A comparison of the computational costs
is highlighted in Figure 6.2.

Herewith, we define the computational cost for this test by taking Cs := NĀ0
N̄iter,Ā0

. One
can read from Figure 6.2 that the strategy with the GMRES as the global linear solver is more
powerful by saving the computational effort in contrast to the exact Multilevel method. The
GMRES solver preconditioned with the Mean-based method requires only 20− 40% of the com-
puting power as the exact Multilevel solver needs, especially when PC order increases. On the
other hand, the inexact Multilevel strategy has clearly a better performance than the other two
methods, the saving of the computational cost is significant. Even when PC order L = 3, the
inexact Multilevel strategy requires one more Newton iteration, the total computational cost is
lower than any other strategy.

The mean value of the velocity and the pressure on a cross-section of the pump chamber
is presented in Figure 6.3. The highest values of the pressure are placed in the region around
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Figure 6.4: Standard deviations for the velocity (m/s) and the pressure (Pa).

the inlet due to the specified inflow boundary condition. In the pump chamber, the pressure is
differing from both sides by reason of the effect of the Coriolis force and the centrifugal force.
Obviously, the velocity in the area around the rim (close to the outer edge) is higher than the
region near to the hub because of the rotor’s speed.

In Figure 6.4, the standard deviation of the three velocity components and the pressure are
illustrated, the highest uncertainty occurs in the region where the mean value is extreme. Con-
cerning the pressure, the uncertainty concentrates in the region around the inlet. The standard
deviation of the velocity is located more around the rotor’s rim and the diffuser in the direction
of x- and y-axis. Along the direction of z-axis, the majority of the uncertainties stays at the
inlet, also around the outer edges. However, the mean value and the standard deviation indicate
evidently a laminar regime due to the modification of the density (Table 6.1), the flow layers
are rather ordered. Therefore, we expect more turbulent behavior of the fluid in the next sec-
tion (Section 6.2). Notwithstanding, the three solving strategies are examined with the different
settings, the results sustain the arguments in Chapter 5 that the inexact Multilevel method is a
reasonable choice for our problem.

6.2 Model Calibration

This section is devoted to the final results of quantifying three uncertainty sources within a
FDA blood pump by using the generalized Polynomial Chaos method. The key elements, which
are responsible for dealing with different complexities in this work, are listed as follows:

• Moving mesh: shear layer update approach.

• Turbulent flow: Variational Multiscale method.
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• Uncertainty Quantification: generalized Polynomial Chaos expansion.

• Stochastic Galerkin system: PCE Multilevel preconditioner.

• Flow problem: Schur Complement preconditioner.

The shear layer update approach enables the rotor’s movement to be handled effortlessly,
it preserves the possibility of staying in the framework of the continuous Galerkin method. By
dividing the computational domain into separated functions, the revolving realization affects only
the relevant regions, a merely limited number of cells has to be deformed in terms of the grid
shape. Moreover, the spatial coordinate correction on the rotating domain has to be considered
due to the moving effect, whereas, only the shape functions, which are located on the shearing
elements, need to be updated because of the deformation of the grid. Therefore, a simplification
is achieved for the moving mesh technique. Furthermore, with the help of a special treatment
of the domain decomposition, the localization of the data is optimized. The solution correction
procedure is embedded into the standard solution update routines, the scalability of the parallel
calculation is then extended.

Inside the pump chamber, the blood flow undergoes a high rotational speed arising from the
blades, this action brings an external thrust and compels the fluid to be in the turbulence regime.
For this reason, the residual-based Variational Multiscale method comes into play and builds a
link between the stabilized finite element methods and the turbulence models.

Despite the fact that the intrusive Polynomial Chaos expansion method requires more im-
plementation effort in order to establish the Galerkin system, whereas this approach is the most
effective way for modeling a stochastic system in a low-dimensional stochastic space. One has
to admit that there are even more uncertain sources during the development of a complex me-
chanical instrument. But still, these three uncertain parameters, which we studied, cover the
most aspects of quantifying uncertainties in a rotating device. The inflow boundary condition
leads to a significant deviation on the numerical results of a blood flow, because it is taken as an
idealized inflow profile description [58]. The dynamic viscosity is in consideration of the patient-
specific criterion. The angular speed takes the operational variation into account. By expressing
the stochastic solutions with the Chaos Polynomials, the stochastic space and spacial space are
strongly coupled at each time step comparing to the non-intrusive methods. Furthermore, as
the intrusive approach inherits the well-known properties of the Galerkin method, a spectral
convergence behavior can be expected based on this fact.

One of the main challenges for exploiting the intrusive Galerkin method is the solution strat-
egy, the Multilevel method is then proposed in this work to cope with this matter. Our Polyno-
mial Chaos expansion Multilevel approach can be considered as a scale decomposition method,
which is proven to be greatly efficient for many numerical methods. The Multilevel method,
which is employed in this work, is inherited conceptually from the Multigrid method. In general,
the Multigrid preconditioner tries to reduce errors on different wave-length components. Com-
paratively, the Polynomial Chaos expansion Multilevel preconditioner tries to reduce the errors
components on different Chaos Polynomial orders, as the stochastic mode solutions on the higher
order Chaos Polynomials contribute much less than those on the lower orders to the stochastic
moments.

Undoubtedly, choosing an appropriate smoother is also a crucial point to ensure the efficiency
of the PCE Multilevel strategy. Comparing to the Multigrid approach, the Jacobi and Gauss-
Seidel schemes are commonly applied, because they are sufficient in the sense for the smoothing
process and can easily be constructed. The smoother, we choose for the Multilevel method,
is the Mean-based preconditioner. This approach can be understood as an adapted Block-
Jacobi scheme, the efficiency is then also comparable. Furthermore, the feasibility of solving
efficiently the linear system associated with the mean block is another practical challenge, thus the
Schur Complement based preconditioning scheme comes into play. By applying the Variational
Multiscale formulation, the flow solver does not have to suffer anymore from the saddle-point
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structure as the incompressible Navier-Stokes equations. Meanwhile, as the pressure-pressure
block is virtually accessible, it facilitates therefore the construction of the preconditioner for
the Schur Complement matrix in our VMS system. Additionally, the reusability of the Schur
Complement preconditioner without the reconstruction of the full structure is workable, hence,
the PCE Multilevel method can be further accelerated.

6.2.1 Model Geometry

We state here the geometry of the blood pump, which is referred to the information in [55].
We post-processed the original geometry provided from the CAD (Computer Aided Design)
configuration by shortening the inflow and outflow pipes for the sake of saving the computing
power. Another reason is that we concentrate more on the fluid within the pump’s chamber
rather than the flow in the pipes. Note that, defining the location and the analytical formulation
of the inflow and outflow boundary conditions can be extremely difficult [83, 69, 15], whereas we
ignore this complication in our work. The simplification of the geometry is taken as in Figure 6.5.

(a) The modified geometry used by this work. (b) The CAD geometry provided by FDA.

Figure 6.5: Illustration of the original CAD geometry (red) provided by FDA and the modified
geometry considered in this work (blue).

Figure 6.6: The visual clearance between the housing (light blue) and the rotor (dark blue).

99



Chapter 6. Numerical Experiment

60mm (D)

20mm

215.4mm

4.39mm (D)

12mm (D)

20◦

A A

(a) Geometrical information of the housing.
12mm

1mm

1mm

9mm

(b) Cross-section A-A.

2.4mm

5mm(R)

(c) Detailed information of the nozzle part.

Figure 6.7: Geometrical information of the blood pump’s housing.

100



6.2. Model Calibration

The clearance between the rotor and the housing is illustrated in Figure 6.6, the rotor is
embedded clearly into the center of the chamber. However, the rotor holds the most volume
of the chamber. In other words, the flow in the chamber can be extremely sheared due to the
tiny space and the high rotating speed, the decrease of the section in the inlet caused by the
rotor hub accelerates this occurrence as well. In reality, the shaft under the rotor is much longer
than it is shown in Figure 6.6, because it is actually connected and moderated by an external
motor. However, the motor is not directly modeled in this configuration, its outcome as the
rotor’s revolution is imitated instead.
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(a) Geometrical information of the rotor.
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Figure 6.8: Geometrical information of the rotor.

Figure 6.7 provides the geometrical information about the blood pump, which consists mainly
of a chamber and two pipes. The chamber is responsible for accommodating the rotor, and two
pipes conduct the flow inward and outward the chamber. As mentioned already in Chapter 2, the
complete device is rather small, the diameter of the chamber is only 60 mm, and two pipes have
an equal diameter of 12 mm. In Figure 6.7c, a nozzle structure (or diffuser) is placed between the
chamber and the outlet pipe. The diffuser’s shape is designed to minimize the energy loss and
maintain the fluid’s axial orientation in the outlet, such that the conversion of the velocity head
into the pressure head is more efficient. Besides, the nozzle has only 2.4 mm clearance to the
upper side of the pump chamber. Therefore the fluid pushed by the rotor can enter the outlet
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without any deviation. The clearance between the housing and the rotor (Figure 6.6) is even
more meticulous in Figure 6.8b, there is only 1 mm between the blades and the upper chamber,
as well as for the rotor disk and the lower chamber.

In Figure 6.8, the further information of the rotor’s geometry is detailed. The rotor has a
diameter of 52 mm and its disk has a thickness of 4 mm. Four blades are located on the disk in
an equiangular way, a hub is placed in the middle with a diameter of 8 mm. Referring also to
Figure 6.7b, one can recognize that the fluid should be accelerated after it encounters the rotor
hub because of a diminution in space of the inlet tube. The fluid is led quickly into the chamber
and spread on the disk, afterward the blades shove the blood toward the outlet.

In principle, we are only interested in the fluid domain, namely Figure 6.7. As we have to
deal with the moving mesh, the rotor’s shape is thus also very important as it defines the fluid
domain at each time step (Figure 6.8).

One can perceive that the confined space in the chamber and the high revolving speed of the
rotor induce together a chaotic change in the velocity and the pressure, it is the central difficulty
of the mathematical and physical modelings of our blood pump simulation.

6.2.2 Governing Equations

After introducing the blood pump’s geometry, we continue with the mathematical modeling
of the stochastic flow in this configuration. Our considered problem is essentially covered by
the incompressible Navier-Stokes equations combined with the shear layer update approach. By
reason of the turbulent flow, we extend the weak formulation of the incompressible NSE by using
the Variational Multiscale Method. Moreover, as mentioned previously, three uncertain input
sources are modeled with the generalized Polynomial Chaos expansion, a fully coupled system is
therewith developed.

Strong Formulation

Recalling the stochastic unsteady incompressible Navier-Stokes equations under the context
of the moving mesh technique (Section 2.3), it is given as:

∂u(ξ)

∂t
+ (u(ξ)− ur(ξ)) · ∇u(ξ) (6.12a)

−µ(ξ)

ρ
∆u(ξ) +

1

ρ
∇p(ξ) = 0 , in Dt × [0, T ] ,

∇ · u(ξ) = 0 , in Dt × [0, T ] , (6.12b)
ur(ξ) = d× ω(ξ) , in Dtrot × [0, T ] , (6.12c)
ur(ξ) = 0 , in Dstat × [0, T ] , (6.12d)
u(ξ) = uI(ξ) , on Γtin × [0, T ] , (6.12e)

(−1p(ξ) +
µ(ξ)

ρ
∇u(ξ)) · n = 0 , on Γtout × [0, T ] , (6.12f)

u(ξ) = d× ω(ξ) , on Γrotor × [0, T ] , (6.12g)
u(ξ) = 0 , on Γwall × [0, T ] . (6.12h)

u and p are the velocity and the pressure, respectively. ρ is the density, and µ is the dynamic
viscosity. ur is the moving velocity of the grid. uI is the inflow boundary condition, and ω is the
angular speed. d is the distance from a physical point in the rotating domain to the rotating axis,
which is the x-axis in our configuration. The equations are defined in a bounded but open domain
Dt ∈ Rd, d = 3. The domain Dt is subject to be different between two consecutive time steps.
Dtrot is the rotating domain, and Dtstat is the static domain. [0, T ] is the time interval of interest.
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Three Dirichlet boundary conditions are given on the inflow boundary (Γin) , the rigid wall
(Γwall) and the rotor’s surface (Γrotor), respectively (Figure 6.9). The outflow boundary (Γout)
condition (Equation (6.12f)) is chosen as the "do-nothing" condition, also called the natural
boundary condition. Additionally, ξ is a finite-dimensional random vector, which is defined on
a probability space (Θ,F ,P) (Chapter 3). Note that, there is no extra body force applying to
the system, thence, on the right-hand side of the momentum equation (Equation (6.12a)), f is
directly set to 0.

Γin

Γout

Γrotor

ω

x

y
z

Figure 6.9: Illustration of the boundaries and the axis of rotation on the blood pump geometry.

We consider in this study only three uncertain sources, viz., the inflow boundary condition
uI(ξ), the dynamic viscosity µ(ξ) and the angular speed ω(ξ). These three random inputs are
modeled in the following way [157]:

uI(ξ) = uI,0ψ0(ξ) + σ1uI,0ψ1(ξ) , (6.13a)
µ(ξ) = µ0ψ0(ξ) + σ2µ0ψ2(ξ) , (6.13b)
ω(ξ) = ω0ψ0(ξ) + σ3ω0ψ3(ξ) . (6.13c)

Three uncertain parameters above are mutually independent and assumed to be in the Uniform
distribution, i.e. ξi ∼ U(−1, 1), i = 1, 2, 3. Here we employ the first order expansion for the
random inputs (Equation (6.13)), which are similar to the definitions in Section 6.1. uI,0, ω0

and µ0 are the mean values for these three random inputs. σi, i = 1, 2, 3 are the decay factors,
which assess the amount of the uncertainty with respect to their mean value.

The mean value of the inflow boundary condition is chosen as a Poisseuille profile, which is
defined as follows:

uI,0(x) := uI,0(x, y, z) =

 0
0

−Umax(1− (x2 + y2)/R2)

 , (6.14)

Umax is the maximum value of the inflow and R is the radius of the inflow cylinder (Figure 6.7).
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Variational Formulation

Although we are intended to solve the incompressible Navier-Stokes equations on the pump
geometry. However, because of the strong rotor’s revolution, it is merely impossible to represent
the turbulent flow based on our computing resource without further additional assumptions and
models on the mathematical formulations. Hence, as introduced in Section 2.2, the Variational
Multiscale Method is chosen for modeling the blood flow, and it introduces additional terms only
in the discrete variational formulation based on the scale decomposition technique. We consider
then the spectral-stochastic finite element method to treat the input uncertainties combining
with the Chaos Polynomials. After having obtained the stochastic solutions from the coupled
stochastic Galerkin system, the statistical moments can be computed and examined.

More specifically, the resulting system consists of multiple deterministic VMS systems, which
can be studied by using the standard finite element method. We state here the approximation
of the discrete solutions of velocity uh and pressure ph with the corresponding gPC expansions,
they are defined as:

uh(x, t, ξ) =
P∑
i=0

uh,i(x, t)ψi(ξ) ∈ V h ⊗ SP , (6.15a)

ph(x, t, ξ) =

P∑
i=0

ph,i(x, t)ψi(ξ) ∈ Qh ⊗ SP . (6.15b)

Here, uh,i and ph,i are the discrete stochastic mode solutions on the space V h and Qh in regard
to the velocity and the pressure. ψi(ξ) are the basis polynomials corresponding to the assumed
probability density functions. The truncated number P is obtained by:

P + 1 =
(M + L)!

M !L!
, (6.16)

where, M is the number of random parameters, L is the desired polynomial expansion order.
Hence, we can insert Equation (6.15) into the discrete variational formulation of Equation (6.12),
the Galerkin-type projection constructs an expansion of the system variables by projecting the
system onto the space spanned by the pre-defined orthonormal Chaos Polynomials. In this case
especially, these pre-defined orthogonal polynomials are constructed based on our three random
variables ξ. We state immediately the discrete variational formulation combined with the two-
scale residual-based Variational Multiscale model for our rotating system:

Find uh ∈ V h ⊗ SP , ph ∈ Qh ⊗ SP , such that,

(
∂uh,k
∂t

,vh) +
P∑
i=0

P∑
j=0

((ûh,i − urh,i) · ∇uh,j ,vh) Cijk (6.17a)

+

P∑
i=0

P∑
j=0

µi
ρ

(∇uh,j ,∇vh) Cijk −
1

ρ
(ph,k,∇ · vh)

+(τM [
uh,k
∂t

+
P∑
i=0

P∑
j=0

(uh,i − urh,i) · ∇uh,j Cijk

−
P∑
i=0

P∑
j=0

µi
ρ

∆uh,j Cijk +
1

ρ
ph,k], (ûh,0 − urh,0) · ∇vh)

+(τC∇ · uh,k,∇ · vh) = 0 , in Dt × [0, T ] ,
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(
1

ρ
∇uh,k, qh) (6.17b)

+(τM [
∂uh,k
∂t

+

P∑
i=0

P∑
j=0

(uh,i − urh,i) · ∇uh,j Cijk

−
P∑
i=0

P∑
j=0

µi
ρ

∆uh,j Cijk +
1

ρ
∇ph,k],∇qh) = 0 , in Dt × [0, T ] .

∀k = 0, ..., P , ∀vh ∈ V h and ∀qh ∈ Qh. Here, ûh,i is defined as [9, 133]:

ûh,i := uh,i + τM [
uh,i
∂t

+ (uh,i − urh,i) · ∇uh,i −
µi
ρ

∆uh,i +
1

ρ
∇ph,i] . (6.18)

We provide also the explicit forms of the stabilization coefficients which are employed in this
study:

τM := (
4

∆t2
+
‖ūh,0‖
h4

+ C
µ0

ρh2
)1/2 , (6.19a)

τC := (
τM
h2

)−1 . (6.19b)

Here, ∆t is the time step size, h is the mesh size parameter and the coefficient C is chosen as
0.5 in our computation.

The variational formulation (Equation (6.17)) is obtained by multiplying the basis polyno-
mials ψi(ξ) on the both sides of the weak form generated by the VMS (with an additional
consideration of our shear layer update approach). V h and Qh are the conforming finite element
spaces for the velocity and the pressure, which are already defined in Section 3.3. The mesh
consists explicitly of three different mesh cells, viz., tetrahedrons, hexahedrons and pyramids.
And yet, only the first order elements are utilized for the velocity and the pressure. SP is
the approximated stochastic space, which is spanned by a set of basis polynomials {ψ0, ..., ψP }
(Section 3.2). Moreover, Cijk is again the third-order tensor product, and it is given by:

Cijk :=
〈ψiψj , ψk〉
〈ψk, ψk〉

. (6.20)

6.2.3 Numerical Simulation

Our numerical simulation is about solving the coupled stochastic Galerkin system (Equa-
tion (6.17)) in order to obtain the stochastic flow in the pump geometry. Several iterative solvers,
as previously introduced in Chapter 4, are involved in the solving algorithm. The settings of
these solvers and the physical parameters are shown in the Table 6.3.

In Table 6.3, #element represents the amount of mesh cells which is used for triangulating
our pump geometry, DOFs (d) is the degrees of freedom for the deterministic problem, DOFs
(g) is for the global system. hmax and volmax are two important restriction criteria for our mesh
generation, hmax is the maximum length of an individual mesh cell, and volmax is the maximum
value of the cell volume. σ1, σ2 and σ3 are the variation factors with respect to the mean value for
the uncertain parameters, we choose synthetically σ1,2,3 = 10% in order to keep consistent with
the stationary case (Section 6.1). Note that, the pump geometry is partitioned into 2, 984, 259
grids, it results 2, 274, 904 degrees of freedom in the deterministic case and 45, 498, 080 degrees
of freedom in the global linear system. Because we truncate the Chaos Polynomials to degree 3,
i.e. there are 20 stochastic modes (Equation (6.20)).

As multiple linear solvers and preconditioners are involved, we list the relationships between
the solvers/preconditioners and the linear systems in our solving algorithm:
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Physical parameter
ρ 1035 kg/m3 µ 0.0035 Pa · s Umax 0.55 m/s

RPM 2500 r/min ω 261.8 rad/s R 0.006 m

Stochastic discretization
M 3 L 3 P + 1 20

σ1 0.1 σ2 0.1 σ3 0.1

Time discretization
θ-Scheme 0.5 ∆t 0.0001 s T 0.12

Space discretization
d 3 #element 2984259 DOFs (d) 2274904

DOFs (g) 45498080 hmax 3.5× 10−4 m volmax 5× 10−12 m3

Global system
Nonlinear solver (Newton)
Tolabs 1.0× 10−9 Tolrel 1.0× 10−6 Itermax 1000

Forcing EisenstatWalker2

Linear solver (FGMRES)
Tolabs 1.0× 10−9 Tolrel 1.0× 10−6 Itermax 1000

Preconditioner (PCE Multilevel)
Tolabs 1.0× 10−9 Tolrel 1.0× 10−1 Itermax 3

Mean block
Linear solver (FGMRES)
Tolabs 1.0× 10−9 Tolrel 1.0× 10−6 Itermax 1000

Preconditioner (Schur Complement)
FGMRES for block S

Tolabs 1.0× 10−16 Tolrel 1.0× 10−16 Itermax 10

GMRES for block A0 (preconditioned with BoomerAMG)
Tolabs 1.0× 10−9 Tolrel 1.0× 10−6 Itermax 1000

CG for matrix S̃app (preconditioned with BoomerAMG)
Tolabs 1.0× 10−9 Tolrel 1.0× 10−6 Itermax 1000

Table 6.3: General setting for the blood pump simulation.

• Nonlinear equation: Inexact Newton scheme + "choice 1" Eisenstat and Walker time steep-
ing.

• Global linearized equation: FGMRES + PCE Multilevel preconditioner.

• Mean block (Mean-based preconditioner from PCE Multilevel): FGMRES + Schur Com-
plement preconditioner.

• Schur Complement preconditioner:

– Block S: FGMRES.

– Block A0: GMRES + BoomerAMG.

– Matrix S̃app: CG + BoomerAMG.
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Furthermore, the computation is performed on bwForCluster ML&WISO cluster with 128
computing nodes, each node has 16 Intel Xeon Haswell processors and 64 GB memory. Ac-
cordingly, among these 128 computing nodes, 40 nodes are used for the static domain and 88
nodes are used for the rotating domain. The simulation is implemented in our open source finite
element library HiFlow3 [5, 78, 140, 60]. The total computational time lasts for approximately
96 hours.

Mean and Standard Deviation

We illustrate the selected results of the mean values and the standard deviations for the
blood flow in the pump geometry at two different instants, namely at the time step 50 and 1200.
Figures 6.10, 6.11, 6.13 and 6.14 are split into 6 subfigures, the first five subfigures are the velocity
in the direction of x-, y-, z-axis, the velocity magnitude and the pressure on a cross-section (the
cross-section is located at 6.5 mm from the bottom of the pump housing). The last subfigure
shows the pressure value on the rotor’s surface.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.10: Mean value at the time step 50.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.11: Mean value of at the time step 1200.

The results at the time step 50 and 1200 show two stages of the fluid. The first time
instant is when the rotor operates during the first revolution, i.e. at the very beginning when
the impellers start pressing the blood. And the latter case is when the flow is already fully
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developed after several completions of the revolution. For the first case (Figure 6.10), the high
velocity regime is mainly generated in the pump chamber. No flow velocity is produced after
the diffuser (Figure 6.10d), and the pressure is even negative in this region (Figure 6.10e). On
the other hand, after the fluid is fully developed (Figure 6.11), the flow coming from the inlet is
diverted in the blade-to-blade passage, the shockless velocity is therefore no longer guaranteed.
The separation of the flow can be observed at the outer edge of the blades (Figure 6.11d), this
separation is the main source of the energy loss and can further affect the flow direction toward
the outlet. As a result of the inertia effect, an increase in flow velocity can occur a decrease of the
pressure (Figures 6.11e and 6.11f). Therefore, the pressure on the suction side is slightly higher
than on the pressure side, the difference can be even larger if the blades are curved. Furthermore,
the 3D visualization of the streamline of these two time steps can be found in Figure 6.12.

(a) Time step 50. (b) Time step 1200.

Figure 6.12: The streamline of the mean value at the time step 50 and 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.13: Standard deviation at the time step 50.

Regarding the standard deviation, at the time step 50, the uncertainties are mainly located
in the housing (Figure 6.13), it is comparable to the situation for the mean value, where the
high velocity and the high pressure occur mainly in the housing. However, the distribution of
the standard deviation does not follow the mean value’s allocation, particularly for the pressure
(Figure 6.13e). At the time step 1200, the uncertainties are more located in the area around
the throat and the diffuser (Figure 6.14), the standard deviation is smaller in the chamber. In
contrast to the previous example, the pressure distribution (Figure 6.14e) corresponds mostly to
the pressure’s mean value (Figure 6.11e), it implies that the standard deviation becomes larger
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(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.14: Standard deviation at the time step 1200.

where the pressure magnitude is high.

(a) Time step 50. (b) Time step 1200.

Figure 6.15: The mean value of the relative velocity (m/s) at the time step 50 and 1200.

(a) Time step 50. (b) Time step 1200.

Figure 6.16: The mean value of the static pressure (Pa) at the time step 50 and 1200.

Figure 6.15 shows the relative velocity in the region around the rotor. The eddies occur in
the area between two blades for both cases. In Figure 6.15a, one big eddy can be found in each
flow passage, they are roughly axisymmetric. At the time step 1200, only small eddies appear in
three passages. The passage, which is connected to the outlet, has basically no eddies occurred
due to the outflow. An analogous separation of the flow is observed in both examples around
the trailing edge as described previously in Figure 6.11d. Furthermore, the jet-wake structure
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(a) Mean value, time step 50. (b) Mean value, time step 1200.

(c) Standard deviation, time step 50. (d) Standard deviation, time step 1200.

Figure 6.17: The streamline (mean value and standard deviation) of the velocity (m/s) at the
time step 50 and 1200 in the casing.

[31] is clearly noticeable in each passage as well. This occurrence can be strongly disturbed by
the backflow in the passage that is linked to the outlet.

In Figure 6.16, the static pressure (or hydrostatic pressure) around the rotor is illustrated.
The static pressure represents in general the resistance to the fluid and can be obtained with
Equation (6.21):

pt := ps +
1

2
ρu2 . (6.21)

Here, pt is the total pressure (pt = p), ps is the static pressure, and 1
2ρu

2 is the dynamic pressure
which is related to the kinetic energy. The static pressure increases progressively from the inner
side to the outer side along the radial direction, the pressure drop also happens in the areas right
after the outer side of the blades following the rotational direction. Furthermore, as the static
pressure is essentially calculated with the velocity and the total pressure (Equation (6.21)), the
standard deviation of the velocity and the pressure contribute together to the uncertainty of the
static pressure.

The blood flow enters into the casing after being discharged from the impellers, vortices are
formed as a consequence of a strong flow recirculation in this area (Figures 6.17a and 6.17b).
At the time step 1200, the lower vortex is more dominant than the upper one, it can become
even more prominent once this structure approaches to the throat. Besides, these vortices and
the backflow provoke a pressure fluctuation, which indicates an energy loss in the outlet. Con-
trariwise, the standard deviation (Figures 6.17c and 6.17d) does not possess any clear vortex
structure, yet the uncertainty is higher in the region where the shearing flow is developed.
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(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.18: Stochastic mode 1 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.19: Stochastic mode 2 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.20: Stochastic mode 3 at the time step 1200.

Stochastic Modes

As introduced in Chapter 3, our discrete stochastic solutions are expressed by using the
Polynomial Chaos expansion. A system of coupled equations is formed by using the Galerkin
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(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (Pa). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.21: Stochastic mode 4 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.22: Stochastic mode 5 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.23: Stochastic mode 6 at the time step 1200.

projection as described in Chapter 3. Accordingly, the stochastic solution of the velocity uh and
the pressure ph can be written by using (P + 1) Chaos Polynomials as follows:
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(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.24: Stochastic mode 7 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.25: Stochastic mode 8 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.26: Stochastic mode 9 at the time step 1200.

uh(ξ) =

P∑
k=0

uh,kψk(ξ) , ph(ξ) =

P∑
k=0

ph,kψk(ξ) . (6.22)
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(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.27: Stochastic mode 10 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.28: Stochastic mode 11 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.29: Stochastic mode 12 at the time step 1200.

Here, uh,k, ph,k, k = 0, ..., P are the stochastic mode solutions, the individual mode solutions (the
zero-th mode solution is the mean value) at the time step 1200 are shown in Figures 6.18 to 6.36.
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(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.30: Stochastic mode 13 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.31: Stochastic mode 14 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.32: Stochastic mode 15 at the time step 1200.

The first order mode solutions are shown in Figures 6.18 to 6.20, they correspond to the
polynomials ψk, k = 1, ..., 3. These three stochastic modal solutions have mostly the same im-
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(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.33: Stochastic mode 16 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.34: Stochastic mode 17 at the time step 1200.

(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.35: Stochastic mode 18 at the time step 1200.

portance in terms of the contribution to the standard deviation. Referring to Equation (6.13),
the uncertain sources are assigned to three Uniform variables in the following order:
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(a) Velocity in x (m/s). (b) Velocity in y (m/s). (c) Velocity in z (m/s).

(d) Velocity magnitude (m/s). (e) Pressure (Pa). (f) Pressure on rotor (Pa).

Figure 6.36: Stochastic mode 19 at the time step 1200.

• Inflow boundary condition (uI) ∼ ξ1.

• Dynamic viscosity (µ) ∼ ξ2.

• Angular speed (ω) ∼ ξ3.

Note that, in regard to our multidimensional Legendre polynomials (M = 3), there is only one
polynomial for the zero-th polynomial, viz. ψ0(ξ) = 1. Accordingly, the first order polynomials
are only dependent on each particular random variable. They are defined as:

ψ1(ξ) = ξ1 , ψ2(ξ) = ξ2 , ψ3(ξ) = ξ3 . (6.23)

Hence, the first order stochastic mode solutions (Figures 6.18 to 6.20) are independent from
each other with respect to the uncertain parameters ξ1, ξ2 and ξ3. One can observe that the
stochastic mode 3 (Figure 6.20), which is strongly related to the rotating speed, has a similar
pattern as in the standard deviation (Figure 6.14). Notably for the pressure, the absolute value
of the pressure for the PC mode 3 and the pressure standard deviation appear correspondingly in
the same location. Besides, the velocity distribution has also a comparable appearance in both
results. Also, the mode solutions 1 and 2 do not possess a clear common pattern from either the
mean value or the standard deviation. The high velocity region appears in the same locations
as the standard deviation. In other words, the strong fluctuation of the velocity happens mainly
in the outlet area.

The second order stochastic modal solutions (Figures 6.21 to 6.26) correspond to the poly-
nomials ψk, k = 4, ..., 9, they capture principally the dependence between the random variables
pairwise. Yet, these results are difficult to interpret the physical meanings, because there are the
nonlinearities of the dynamics in the flow and the nonlinearities between the stochastic modes.
Still, the velocity distribution shows some chaotic behaviors among all figures, the velocity and
the pressure are strongly correlated especially in the outlet region. Moreover, the absolute value
of these results is one order of magnitude lower than the first order modal solutions, which
demonstrates the spectral convergence of the gPCE for the stochastic moments.

The third order stochastic mode solutions are illustrated in Figures 6.27 to 6.36. They
contribute less to the standard deviation comparing to the first order modal solutions, but they
can enhance the accuracy of the results. Furthermore, it is unclear how to explain the physical
meanings and the relations to the standard deviation. This is due to the complexity of our
considered system.
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Pressure Loading and Force on the Impeller

line 1

line 2

line 3

line 4

Figure 6.37: Illustration of the location for calculating the pressure loading (the rotor is colored
by the pressure value at the time step 1200).

As the local pressure fluctuation on the blades are the main reason for material fatigue, which
can lead to a mechanical fracture. Therefore, it is necessary to survey the pressure loading on
the impeller and its uncertainties.
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(a) Line 1.
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(b) Line 2.
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(c) Line 3.
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(d) Line 4.

Figure 6.38: Pressure loading with twice the standard deviation confidence interval at the time
step 1200.

Figure 6.37 demonstrates four locations, which are chosen on the upper surface of the impeller,
for investigating the pressure loading. Line 1 and Line 2 are focused on the blades, Line 3 and
Line 4 are concentrated in the rotor’s surface. Additionally, the four lines all pass through the
rotor hub. Similar to the previous subsection, we also choose the solution at the time step 1200
to illustrate the numerical results. One can observe from Figure 6.38 that the linear pressure
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loading increases steadily from the hub center (the middle) toward the rotor rims. The mean
value (red) of the pressure loading is embedded into a confidence interval (gray) which is defined
in a range of (x̄−2σ, x̄+2σ), where x̄ is the mean, σ is the standard deviation. The shape of these
four plots are nearly indistinguishable. They correspond well to the pressure allocation on the
rotor (Figure 6.37), the middle curves represent the disposition of the rub. Yet, the confidence
interval of Line 1, 2 is slightly larger than Line 3, 4, the reason behind is that the velocity and
the pressure are much more unstable on the trailing edges.
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(a) Total pressure.
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(b) Static pressure.

Figure 6.39: The total pressure and the static pressure on the periphery of the impeller at the
time step 1200.
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(a) Axial force on the blades.
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(b) Radial force on the blades.

Figure 6.40: The axial force and the radial force on the blades.

The impeller’s revolution results in a non-uniform pressure distribution at its periphery,
Figure 6.39 shows the corresponding result at the time step 1200. The total pressure and the
static pressure behave dissimilarly in terms of the shape, the range of the confidence interval,
etc. Moreover, four pulsations can be found in both figures (the pulsations in Figure 6.39a are
in the negative direction). One can observe that the size of the confidence interval of the total
pressure is much larger than the confidence interval of the static pressure. We can also state that
the velocity is much higher at every peak of the pulsation in Figure 6.39a than their neighboring
region. On account of the fact that the static pressure is obtained by subtracting the dynamic
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pressure from the total pressure (Equation (6.21)), therefore the uncertainties are smaller.
The axial force is typically toward the suction, because a low pressure occurs on the upper

surface of the rotor while the pump operates. The thrust bearings are normally selected based
on the estimated axial forces. An incorrect bearing size can damage the pump, even induce a
breakdown during the performance. Hence, it is very important to well predict the axial thrust in
order to retain the impeller’s balance as much as possible. Figure 6.40a displays the fluctuation
of the axial force on the impeller by varying the time steps, and the mean value is bounded
again with twice the standard deviation. In our computation, each revolution contains 240 time
steps. We can then state that the axial force becomes negative only within the first revolution,
whereas it is alway positive during the regular operation. This effect of the negative values can
be occurred because the flow is not yet fully developed. One also observes that there is a rapid
decrease in the magnitude of the axial force right before the rotor returns to the initial position,
this effect is due to a discharge of fluid from the chamber to the outlet.

Analogously to the axial force, the radial force is another quantity for characterizing the
dynamic working condition. It is mostly influenced by the rotating frequency and the volute
tongue clearance. Figure 6.40b shows again the mean value and the related confidence interval.
The fluctuation of the radial force is noticed to be more unstable than the axial force, and the
radial force acts only in a quasi-periodic way. However, the periodic manner does not appear
persuasively within each rotation, this can be explained with the strong impact of turbulence,
thus the flow is highly unstable. Moreover, the standard deviation becomes relatively large within
the second revolution, because the flow is not yet fully developed analogously to the situation of
the negative value in Figure 6.40a. However, it is not very clear why this phenomenon can not
be seemed during the first revolution. We state that the radial force is much smaller than the
axial force, as well as the standard deviation. This implies that the axial force is more important
in choosing the mechanical components of the rotor.

Hemolysis

The human blood consists mainly of the red blood cells (RBCs), the white blood cells
(WBCs), the platelets and the plasma. The RBCs account for 45% of the blood volume and are
responsible for transporting the oxygen from the lung to the living tissues with the help of the
circulatory system. The WBCs constitute comparatively a small portion (1% of the total blood
volume), they are the first defenders for our immune system. The platelets are the cell fragments
of cytoplasm without the nuclei in the bone marrow, their main function is to stop bleeding by
clotting blood vessels. The platelets can on the other hand cause clots which plug blood vessels,
this effect can potentially induce a stroke. The plasma occupies 55% of the blood, 90% of the
plasma is water, and the rest consists only of dissolved proteins.

rouleaux biconcave ellipsoidal hemolysis

shear rate

Figure 6.41: The development of RBCs under shearing from rouleaux to hemolysis.

When we study a blood pump, one important factor which always should be considered is
the hemolysis. The hemolysis is commonly provoked by a sublethal shattering of RBCs. Under
this condition, RBCs start being developed into the plasma and further losing the capability
of transporting oxygen. Still, the sublethal damage does not occur directly under a stress but
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rather is a time-demanding process. If the shear rate of the blood increases, the RBCs can be
deformed by the undergoing shear into different stages [22] (Figure 6.41).

When the plasma protein concentration is high, the RBCs transform into stacks, which are
called the rouleaux (Figure 6.41). The rouleaux structure is disassembled due to the increase of
the shear rate, but the RBCs can still preserve the biconcave shape and start tumbling in the
flow if the shear stress is below 0.1 Pa [151]. Additionally, if the shear stress is above 1 Pa, the
shape of RBCs is developed into an ellipsoidal form, whose major axis attempts to be aligned
with the streamline of the flow. Therefore, the RBCs can be hemolyzing once the shear stress
and the exposure time both surpass their critical values. As a consequence, the microscopic pores
on the membrane open, the hemoglobin can penetrate into the blood. Furthermore, the release
of the hemoglobin (∆Hb) into the plasma can be considered as a measurement for assessing the
hemolysis.

There exist several clinical indices for estimating the hemolysis [42, 127, 181, 134], we employ
the so-called index of hemolysis (IH) in this work. IH is defined as:

IH := (1− Hct

100
)
∆Hb

Hb
× 100 . (6.24)

Here, Hct is the hematocrit in %, it represents the amount of RBCs in the blood. Hb is the total
amount of hemoglobin, ∆Hb is the released hemoglobin. However, this index is impractical to
be calculated with the results obtained from the simulations, an empirical model is suggested by
using the power law. It is given by:

∆Hb

Hb
= AHbσ

αHb
s t̃βHb . (6.25)

Equation (6.25) creates a relationship between the plasma-free hemoglobin (AHb), a scalar shear
stress (σs) and the exposure time (t̃). Moreover, there are mainly two kinds of models, the stress-
based hemolysis model [29, 63] and the strain-based hemolysis model [8], for estimating the blood
damage. We consider the stress-based version in this work, but the strain-based approach can
also be computed in a systematic way by using the same data obtained from our computation.
The major difference between the these two approaches is how to define the scalar shear stress.
For the stress-based approach, the stress parameter σs is defined as:

σs := µGf = µ
√

2ε : ε , (6.26)

where, Gf is the shear rate of the flow field, ε is the rate of deformation tensor. ε is defined as
follows:

ε :=
1

2
(∇u+∇uT ) . (6.27)

Sometimes, the von Mises criterion [126] is employed in the place of σs in Equation (6.25)
[173, 10]. Although, it is not the case for this work, it is still interesting to show the von Mises
stress distribution on the rotor, as this criterion is often referred in engineering applications.
Thence, we first state the formulation of the von Mises criterion:

σvm :=

√
1

6
((σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2) + σ2

xy + σ2
yz + σ2

zx . (6.28)

Here, σ is the stress tensor of the fluid:

σ := −pδij + 2µε , (6.29)

where ε is again the rate of deformation tensor as in Equation (6.27).
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(a) Mean value. (b) Standard deviation.

(c) Mean value. (d) Standard deviation.

Figure 6.42: The mean value and the standard deviation of the von Mises stress distribution at
the time step 1200 on the rotor.

(a) Mean value. (b) Standard deviation.

(c) Mean value. (d) Standard deviation.

Figure 6.43: The mean value and the standard deviation of σs distribution at the time step 1200
on the rotor.
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On the upper surface of the rotor, we observe that the mean value of the von Mises criterion
is rather located around the blades, especially on the trailing edges and the area after the blades
following the rotation direction (Figure 6.42a). However, the standard deviation varies over the
rotor irregularly and is one order of magnitude lower than the mean solution, which is similar to
the situation in Figures 6.11 and 6.14. The mean value and the standard deviation on the outer
edges (Figures 6.42c and 6.42d) have a similar behavior, by this means, they both (the mean
value and the standard deviation) retain the high value of σvm. More particularly, their highest
values are all located on the lower edge.

Before presenting the hemolysis in the pump chamber, we provide the distribution of the
scalar shear stress σs (Equation (6.26)) on the rotor’s surface. As the von Mises criterion can
play a similar role in the estimation of the hemolysis, e.g. in [10], σs (Figures 6.43a and 6.43c)
should act in a similar way on the rotor comparing to Figures 6.42a and 6.42c. In other words,
the order of the magnitude and the distribution on the upper surface should behave similarly.
Figure 6.43b shows that the standard deviation of σs has also an irregular distribution as in the
previous plot for the von Mises stress, even so, its value pursues more distinct the distribution
of the mean value. In spite of the fact that the mean value of σs is smaller in comparison with
the von Mises criterion, the standard deviation seems to be estimated twice larger. Moreover,
the mean value and the standard deviation on the outer edge (Figures 6.43c and 6.43d) have
a comparable distribution as in the case of the von Mises stress. Besides, we also notice from
our numerical results that σs is very high in the region which is next to the outlet, whereas this
effect is not marked by the von Mises stress.

(a) Mean value on the cross-section. (b) Standard deviation on the cross-section.

(c) Mean value on the upper wall. (d) Standard deviation on the upper wall.

Figure 6.44: The mean value and the standard deviation of IH distribution at the time step
1200.
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Finally, the free plasma hemoglobin ratio is calculated with Equation (6.25). We consider
the model in [181]. The coefficients are defined as follows:

AHb = 1.228× 10−5 , αHb = 1.9918 , βHb = 0.6606 . (6.30)

In addition, based on the information provided by the FDA [55], the hematocrit is equal to 36%,
the hemolysis index can be thus computed with Equation (6.24).

We present the hemolysis index at two different locations (Figure 6.44), one is on the cross-
section (z = 6.5 mm from the bottom of the pump chamber), another one is on the upper wall
of the pump chamber. We observe that the hemolysis is very high around the outer fringe of the
trailing edges on the cross-section, as well as in the surroundings of the blades (Figure 6.44a). On
the other hand, the index of hemolysis on the upper wall is much higher in the area between the
blades (Figure 6.44c), and the highest concentrations are close to 0.02%. Regarding the standard
deviations (Figures 6.44b and 6.44d), both cases follow a similar pattern as their mean value,
which means that the IH increases approximately where the mean values become important.
Besides, unlike in Figure 6.43, the standard deviation of the index of hemolysis is almost two
magnitudes lower with respect to the mean value, it implies that the confidence interval is rather
narrow (only a few percentages with respect to the mean value).
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Chapter 7

Conclusion

The aim of this thesis is devoted to the numerical simulation of the flow in a blood pump
device assuming uncertainty quantification. In order to achieve this goal, we have to overcome
several difficulties: modeling the high Reynolds number flow; modeling the moving mesh ef-
fect; deploying the generalized Polynomial Chaos technique for quantifying the uncertainties;
constructing efficient solvers and preconditioners in order to accelerate the solving process.

We derive the modelings for the high Reynolds number flow in Chapter 2. By comparing
the existing models, we choose the two-scale Variational Multiscale Method (VMS) to govern
the flow behavior in the blood pump configuration. Because the VMS does not only provide a
general consistent framework for the multiscale problems, but it enables also the stabilized finite
element methods, which are widely employed in many fields. We then introduce two techniques
for coping with the moving mesh requirement. Although the combination of the Continuous
and Discontinuous Galerkin techniques fit better the domain separation for the rotating device
modelization, the shear layer update approach is definitely much more efficient. By taking
advantage of the special treatments on the mesh decomposition, the shear layer update approach
is able to reuse many functions, which are available for the most of finite element libraries.
The solution update procedure, which is required after the mesh regeneration, becomes almost
effortless. Moreover, the pyramid element which acts as a "glue" element is also implemented.

For the Uncertainty Quantification, we consider the intrusive stochastic Galerkin method,
since the generalized Polynomial Chaos expansion enables the possibility of representing the
square-integrable stochastic process in a very efficient manner. However, the increase of the size
of the global system and the possible convergence breakdown due to the higher degree random
inputs in a nonlinear system can be a barrier for utilizing this method. However, as described
in Chapter 3, when the random inputs have only the first order expansion, the system matrix of
the stochastic spectral problem becomes sparse. This matrix structure is easier to be deployed
during the solving processing.

Concerning solving the coupled stochastic system, we propose a new approach for the differ-
ent components in the global linear system. We start with the stochastic Galerkin matrix-vector
multiplication in Chapter 4, such that, we are able to reduce the memory storage by a consid-
erable factor. We combine the FGMRES solver and the Polynomial Chaos expansion Multilevel
preconditioner to cope with the global system. The PCE preconditioner deploys the hierarchy
structure of the Chaos Polynomials and tries to eliminate the errors on the different levels. This
preconditioning technique is shown to be very efficient by using several test examples in this
contribution (Chapter 5 and Chapter 6). Especially, the inexact version can be scaled with
more than 2000 processors and reduce the computing time significantly. Analogously to the
Multigrid method, we have to choose a suitable smoother for the PCE Multilevel preconditioner.
The Mean-based preconditioner comes into play, because this preconditioner is very easy to be
constructed and comparably powerful. Moreover, solving the linear system associated with the
mean block matrix efficiently is another breaking point for designing the proposed solving strat-
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egy. We use here the Schur Complement preconditioner to precondition the linear system in the
FGMRES iteration. Thanks to the VMS, the pressure-pressure block is directly accessible in the
system matrix. Based on the augmented Lagrangian approach, the approximation of the Schur
Complement is hence built.

In Chapter 6, we provide the numerical results of the blood pump simulation. We start
with a steady flow computation in order to further prove the arguments of choosing the inexact
Multilevel preconditioner for our computation. We select three uncertain inputs in our nu-
merical model: the inflow boundary condition, the dynamic viscosity and the rotational speed.
These three parameters cover different uncertain sources: the modeling error, the variance of the
anatomical parameters and the operative variation of the machines. Afterward, the numerical
solution of our stochastic partial differential equation is presented. We show the flow behav-
ior of the mean value and the standard deviation at two different stages. Some quantities of
interest are also studied, such as the axial and radial forces on the rotor, the pressure loading
on the impeller, the static pressure on the periphery of the impeller. Furthermore, we provide
the hemolysis quantification based on the stress-based hemolysis model. The regions with high
hemolysis index in the blood pump are identified by using our stochastic solution.

Our final simulation computes 20 Polynomial Chaos modes with the Chaos Polynomial degree
3. The total degrees of freedom is about 45.5 Millions, the computation is performed with 2048
processors. Thence, it would be very interesting in a further work to increase the mesh resolution
of the deterministic problem to investigate whether the flow has a dramatic change on a finer
mesh. Further, we could also increase the Chaos Polynomial degree in order to examine the
contribution from the higher order PC mode solutions to the stochastic moments. Concerning
the deterministic problem, the stabilization parameters are chosen from the existing literatures,
a further numerical investigation of those coefficients may also be needed.

Currently, experimental data are in the process of preparation, it is important after their
release to compare our simulation outcomes with the experiments. We can then pursue the
inverse Uncertainty Quantification techniques and the Data Assimilation techniques in order to
identify the unobservable objects in the data and the simulations.
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