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Abstract

We use a novel kinetic field theory approach to investigate structure formation [1] in

vastly different classical systems ranging from cosmic large-scale structures to many-

body systems of Rydberg atoms or spins. The interaction laws governing the dynamics

of these systems greatly differ from one another.

In the application of the formalism to the formation of cosmic large-scale structures, we

address the question whether the shape of the gravitational potential has any influence

on the shape of the non-linear density-fluctuation power spectrum on small scales.

Since the non-linear power spectrum is a convolution of the NFW halo density profile

with the mass function according to the halo model, we are interested in finding out

whether the NFW profile depends on the potential shape. However, we find that the

balance between the attractive force due to particle interactions and the damping

due to momentum-diffusion is very finely tuned and is broken easily when Newtonian

gravity is replaced by any different power-law interaction potential. This prevents us

from drawing definitive conclusions and requires further analysis.

The applications of the kinetic field theory formalism to classical laboratory systems

such as Rydberg gases and spin-system is a much less evolved field. We therefore

present first results as a test of the applicability of KFT to such systems which, so far,

are encouraging.

Zusammenfassung

Wir verwenden einen neuen Ansatz auf der Grundlage einer Kinetischen Feldtheorie

zur Untersuchung von Strukturbildung [1] in sehr verschiedenen klassischen Systemen.

Diese reichen von großskaligen, kosmischen Strukturen, über Systeme bestehend aus

Rydberg-Atomen bis hin zu Spin-Systemen. Die Wechselwirkungen, die die Dynamik

dieser Systeme bestimmen, unterscheiden sich stark.

In der Anwendung des Formalismus auf kosmische Strukturbildung, beschäftigen wir

uns mit der Fragestellung, ob die Form des Gravitationspotentials Einfluss auf die

Form des nicht-linearen Leistungspektrums von Dichtefluktuationen auf kleinen Skalen

hat. Da das nicht-lineare Leistungsspektrum, dem Halo-Model zufolge, lediglich eine

Faltung des NFW-Dichteprofils von Halos mit der Massenfunktion darstellt, möchten

wir herausfinden, ob das NFW-Dichteprofil von der Potentialform abhängt. Wir stellen

jedoch fest, dass das Gleichgewicht zwischen den anziehenden Kräften aufgrund von
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Teilchenwechselwirkungen und der Dämpfung aufgrund von Impulsdiffusion sehr fein

eingestellt ist. Ersetzt man das Newtonsche Gravitationspotential durch ein anderes

Wechselwirkungspotential, das durch ein Potenzgesetz gegeben ist, so kann dieses

Gleichgewicht leicht gebrochen werden. Daher bedarf es weiterer Untersuchungen um

definitive Aussagen über Dichteprofile treffen zu können.

Die Anwendung des kinetischen Feldtheorie-Formalismus auf Laborsysteme, wie zum

Beispiel Rydberg-Gase oder Spin-Systeme, befindet sich derzeit noch in der Entwick-

lungsphase. Wir stellen daher lediglich erste Ergebnisse in diesem Zusammenhang vor,

um die Anwendbarkeit von KFT auf solche Systeme zu überprüfen. Die Ergebnisse

sind soweit viel versprechend.
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“The story so far:

In the beginning the Universe was created.

This has made a lot of people very angry and been widely regarded as a bad

move.”

– Douglas Adams,

The Restaurant at the End of the Universe
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1

Introduction

This thesis is split into three parts. In the first part a novel analytical approach to struc-

ture formation in classical many-body systems based on a microscopic, non-equilibrium,

statistical field theory (or kinetic field theory) is recapped. This theory is then applied

to the formation of large-scale structure in cosmology in the second part. The third

part of this thesis is dedicated to applications in laboratory many-body systems, such

as Rydberg atoms and spins, on much smaller scales.

The broad range of applications is a consequence of the wide range of applicability

of our kinetic field theory (KFT). The main focus of our work is on the different

interaction laws that govern the formation of structure in these systems.

The formation of structure is a global phenomenon in physics that can be found on all

scales. The forces driving structure formation, however, can be quite different. Un-

derstanding the mechanisms behind this phenomenon on a fundamental level requires

a theory that is abstract enough to be applicable to a great variety of systems. In

this context, structure does not have to mean an accumulation of particles but has a

broader meaning in terms of n-point correlation functions. Due to the non-linearities

generally involved in the formation and evolution of structures, the description of such

correlations and their evolution has proven a formidable task not only in cosmology

but also for laboratory systems. Many approaches – several of which we will discuss

later – have been developed to tackle this problem, but only few have succeeded

in producing viable results. The most successful techniques are based on numerical

many-body simulations. This holds for cosmology as well as for classical or quantum

many-body systems. While numerical simulations are able to provide results that agree
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1. Introduction

well with observations and/or experimental data, they provide little basis for gaining

an understanding of the fundamental principles governing structure formation. In some

cases this is due to the vast amount of adjustable parameters involved and in other

cases the computational capabilities are exceeded so that, yet again, approximations

have to be made.

The analytical framework of KFT is not tuned to any one system, cosmology or other,

and offers a great amount of freedom in choosing the fundamental laws that enter

into the description of structure formation, like the equations of free motion, the

particle interaction potential and the initial conditions. It is this freedom of choice that

has allowed us to apply this approach to cosmology as well as to correlated classical

spin-systems in this thesis. Furthermore, the theory offers no free parameters that can

be tuned or calibrated externally in any way. So far, the results for cosmic structure

formation have been very encouraging.

In this thesis we apply the KFT formalism to three very different systems: cosmic struc-

tures, many-body systems of Rydberg atoms and many-body classical spin-systems. In

all of these systems we investigate how interactions affect the formation and evolution

of structure. For many-body systems of Rydberg atoms or spins, we present first

results and show how to set up the theory in order to treat systems of this kind. In

the cosmological application, which is by far more advanced, we aim at understanding

how the interaction potential affects structures at small scales, i.e. the scales of dark

matter halos, by replacing the Newtonian gravitational potential between particles by

a different power-law potential. With this, we aim at understanding the origin of the

universal Navarro-Frenk-White density profile of dark matter halos.

This thesis is structured as follows: In part one, we give a brief overview of the

theoretical and mathematical tools needed in order to understand the theoretical

framework of our approach in chapter 2. We then introduce the reader to the kinetic

field theory formalism in chapter 3.

In part two, we discuss our cosmological application of KFT to structure formation

on halo-scales and provide the reader with a background on cosmology in general and

approaches to large-scale structure formation, in particular, in chapter 4. We then

present and discuss the results in chapter 5.

Part three harbours the application of KFT to Rydberg systems in chapters 6 and 7,

as well as to classical spin-systems in chapter 8. We give a brief introduction to both,

preceding the discussion of each system respectively.

Finally, we summarise our conclusions in chapter 9.
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Kinetic Field Theory
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2

Theoretical background

2.1 Quantum Field Theory Methods

2.1.1 Path Integrals and Functional Derivatives

In classical mechanics the ordinary integral is used where a function is integrated over

its domain.Thus a sum over all values the function takes at each point of the domain

of the integrand is performed. The path integral on the other hand is a means to

integrate a functional, which is a function of a function, over its domain which itself is

a space or subspace of functions.

In quantum field theory (QFT) the path integral is introduced as a generalisation of

the action principle according to the quantum nature of the systems. The notion of a

single particle with a deterministic trajectory which is to be integrated over is replaced

by an integral over all possible trajectories the particle may take. In the framework

of QFT the particles and their trajectories are replaced by fields and their evolution

in time. The integration over all possible particle trajectories or evolutionary tracks

of the fields allows the computation of a complete transition probability or transition

amplitude between an initial and a final state of the system.

The path integral of a functional F of the function ϕ is denoted by
∫
DϕF [ϕ] (2.1)

where the integration measure Dϕ signifies that the integral has to be taken over all

possible paths, or field configurations.

5



2. Theoretical background

A functional derivative is an operation inverse of the path integral. It relates the

change in a functional in response to a change in a function that the functional depends

on and is familiar from variational principles. It will be useful later to consider that the

functional derivative of a function ϕ(x) with respect to a function ϕ(x′) is given by

δϕ(x)

δϕ(x′)
= δD(x− x′) (2.2)

with the Dirac delta distribution δD[ · ].
Just as the ordinary derivative, the functional derivative satisfies linearity, the product

rule and the chain rule.

2.1.2 The Generating Functional

In quantum field theory, the generating functional is the generator of all correlation

functions and a generalisation of the partition sum known from statistical mechanics.

The generating functional for a scalar field theory Z[J ] is defined as

Z[J ] :=

∫
Dϕ exp

[
i

∫
d4x (L+ J(x)ϕ(x))

]
(2.3)

with the Lagrangian L and the so-called source field J(x).

Correlation functions can then be computed by simply taking functional derivatives of

the generating functional with respect to the source field. The n-point function is then

given by

〈0|Tϕ(x1)ϕ(x2)...ϕ(xn)|0〉 =
1

Z0

(
δ

iδJ(x1)

)(
δ

iδJ(x2)

)
...

(
δ

iδJ(xn)

)
Z[J ]

∣∣∣
J=0

(2.4)

where Z0 := Z[J = 0]. After taking all necessary derivatives, the source field can be

set to zero since it is only an auxiliary field. Each functional derivative brings down a

factor of ϕ.

This generating functional method can also be used for an interacting theory in the

same manner. The expression given in (2.4) does not depend on whether the theory is

free or interacting.

2.1.3 Analogy Between QFT and Statistical Mechanics

The generating functional (2.3) is an integral over all possible configurations of an

exponential statistical weight and thus has the same structure as a partition function.

The source field J(x) plays the role of an external field. The method presented in

6



2.1. Quantum Field Theory Methods

2.1.2 of taking derivatives with respect to the source field to compute correlations is

analogous to the approach often used in statistical mechanics for the computation of

correlation functions by differentiating with respect to variables like the pressure or

the magnetic field.

By performing a Wick rotation – a rotation into the complex plane – for the time

component one can show that the Wick-rotated generating functional Z[J ] becomes

Z[J ] =

∫
Dϕ exp

[
−
∫

d4xE (LE + Jϕ)

]
(2.5)

where the functional LE has the form of an energy (for a complete derivation see

[2]). Furthermore LE is bounded from below and becomes large when ϕ has a large

amplitude or large gradients. It is therefore a reasonable statistical weight for the

fluctuations of ϕ. In this form Z[J ] is now precisely the partition function that describes

the statistical mechanics of a macroscopic system, described approximately by treating

the fluctuating variable as a continuum field.

This correspondence will lay the groundwork for our further analysis.

2.1.4 Remark on the notation

To streamline the notation, we will often use the abbreviations

∫

x
:=

∫
ddxdt and

∫

k
:=

∫
ddk

(2π)d
, (2.6)

throughout this thesis, where d is the number of spatial dimensions.
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3

The kinetic field theory formalism

In order to give the reader a complete picture of the theory this work is based on,

we will go through the steps leading to the central object of our analysis. In the

following chapters we will show how a generating functional is derived from which

n-point correlation functions of collective fields can be computed by applying functional

derivatives.

In this chapter we will be closely following the derivations presented in [1] with a few

minor modifications.

The Kinetic Field Theory (KFT) approach [1] is based on the Martin-Siggia-Rose

formalism [3] and was developed to describe the formation and evolution of cosmic

structures, following the ideas of Mazenko [4, 5] and Das and Mazenko [6, 7]. The

theory is based on a generating functional for classical particles subject to Hamiltonian

dynamics, whose positions and momenta are initially correlated in phase space. Struc-

turally, it resembles a non-equilibrium quantum field theory but simplifies considerably

due to the symplectic structure of the Hamiltonian equations and the deterministic

trajectories of classical particles. Cumulants of collective fields such as the macroscopic

mass density can be obtained by repeatedly applying suitable functional derivatives

to the generating functional. Particle interactions can either be taken into account

by applying an interaction operator to the free generating functional or by evaluating

particle trajectories in the Born approximation.
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3. The kinetic field theory formalism

3.1 Transition probability for classical fields

In this section we show how a path-integral formulation of classical Hamiltonian

dynamics can be derived by giving a functional-integral representation of classical

transition probabilities. This is done by setting the weight for classical paths to unity

and all other possible paths to zero.

We start from a classical field ϕa(t, ~q ) with n components, 1 ≤ a ≤ n, at time t and

position ~q, in d space-time dimensions. The dynamics of this field is given by some

equation of motion, symbolically denoted as

E (ϕa) = 0 . (3.1)

Any classical field ϕa(t, ~q ) must satisfy (3.1) everywhere in the space-time domain

considered.

We then specify initial conditions, ϕa(ti, ~q ) =: ϕ
(i)
a (~q ), which are defined at some

instant of time ti that we set to ti = 0 without loss of generality. By doing so, we pick

out one particular field configuration from all the classical field configurations that

satisfy (3.1). The initial field configuration is mapped to a later field configuration by

the classical flow Φ
(cl)
t ,

ϕ(i)
a (~q ) 7→ ϕa(t, ~q ) = Φ

(cl)
t

(
ϕ(i)
a (~q )

)
, with Φ

(cl)
0 = id . (3.2)

Since we are considering classical fields, it is clear that their evolution is deterministic.

Therefore, a field configuration ϕa(t, ~q ) can be reached at t ≥ 0 beginning with an

initial field configuration ϕ
(i)
a (~q ) if and only if

ϕa(t, ~q ) = Φ
(cl)
t

(
ϕ(i)
a (~q )

)
. (3.3)

In analogy to quantum field theory, we now construct the probability for the transition

of an initial field configuration ϕ
(i)
a (~q ) to a field configuration ϕa(t, ~q ) at a later time

t. This probability must be unity if and only if the evolution from ϕ
(i)
a (~q ) to ϕa(t, ~q )

follows the classical flow Φ
(cl)
t . This can be expressed by a path integral using the Dirac

delta distribution δD[· ]

P
[
ϕa, ϕ

(i)
a

]
=

∫
DΦt δD

[
Φt

(
ϕ(i)
a

)
− Φ

(cl)
t

(
ϕ(i)
a

)]
. (3.4)

If we assume that the equations of motion have a symplectic structure, which is the

case for Hamiltonian equations of motion, it can be directly shown that the functional

determinant for a transformation of the sort

δD[ϕa − ϕ(0)
a ] = δD[R(ϕa)]det

[
∂R(ϕa)

∂ϕb
|ϕa=ϕ0

a

]
, (3.5)
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3.1. Transition probability for classical fields

where ϕa are some vector valued field components and R is some functional mapping

these field components onto the real numbers, equals unity if

R(ϕ(0)
a ) = 0 (3.6)

holds (see [8]).

Using this functional identity where R is identified as E(ϕa), we can write the transition

probability as

P
[
ϕa, ϕ

(i)
a

]
=

∫
Dϕa δD [E (ϕa)] . (3.7)

The meaning of this expression is quite intuitive: while we are integrating over all

possible field configurations ϕa that start with the initial field configuration ϕ
(i)
a , the

functional delta distribution makes sure that only that particular path contributes

which satisfies the equation of motion.

We now re-write the delta distribution by its functional Fourier transform with the

help of a conjugate field χa,

δD [E (ϕa)] =

∫
Dχa exp

{
i

∫

x
χaE (ϕa)

}
, (3.8)

where the integration within the exponential function is taken over all d space-time

coordinates that the fields ϕa and χa depend on. In addition, a summation over a is

implied. The transition probability (3.7) is then given by

P
[
ϕa, ϕ

(i)
a

]
=

∫
Dϕa

∫
Dχa exp

{
i

∫

x
χaE (ϕa)

}
. (3.9)

We now identify the action S with the integral in the exponential

S [ϕa, χa] :=

∫

x
L(x) , (3.10)

with the Lagrange density L given by

L(x) := χa(x)E (ϕa(x)) . (3.11)

If we now take the functional derivative of the action with respect to the conjugate

field χa and evaluate at χa = 0,

δS [ϕa, χa]

δχa(x)

∣∣∣∣
χa=0

= E (ϕa(x)) = 0 , (3.12)

the equation of motion (3.1) is recovered.

11



3. The kinetic field theory formalism

3.1.1 Generating functional of the theory

Now that we have an expression for the transition probability from initial to final

field configurations P [ϕa, ϕ
(i)
a ], we can construct a generating functional for our non-

equilibrium field theory. Since we are working with classical fields, the path from an

initial field configuration ϕ
(i)
a (~q) to a final field configuration ϕ

(i)
a (t, ~q) at a later time

t is, of course, deterministic. The only possible random element in such a theory is

therefore the configuration of initial states. Hence, the configuration space that we

have to integrate or sum over when constructing our generating functional must be the

space of initial field configurations.

We therefore integrate over all possible configurations of initial states, weighted by

an initial probability distribution P0

[
ϕ

(i)
a

]
. This path integral over the initial field

configurations is abbreviated by

∫
Dϕ(i)

a P0

[
ϕ(i)
a

]
=:

∫
DΓi . (3.13)

As a final step, we introduce an auxiliary source field Ja coupling to ϕa into the

Lagrangian and arrive at the generating functional

Z[Ja] =

∫
DΓi P

[
ϕa, ϕ

(i)
a

]
(3.14)

=

∫
DΓi

∫
Dϕa

∫
Dχa exp

[
i

∫

x
(L+ Jaϕa)

]
.

Taking functional derivatives of Z with respect to the source field Ja, evaluated at

Ja = 0, yields

1

i

δZ

δJa

∣∣∣∣
J=0=K

=

∫
DΓi

∫
Dϕa

∫
Dχa ϕaeiS[ϕa,χa] (3.15)

=

∫
DΓi

∫
Dϕa ϕaδD [E(ϕa)] = 〈ϕa〉P0

.

This is simply the classical solution to the equation of motion, averaged over all possible

initial field configurations ϕ
(i)
a drawn from the probability distribution P0

[
ϕ

(i)
a

]
. Field

correlators can now be obtained in the same manner by taking consecutive functional

derivatives with respect to the source field Ja and evaluating at Ja = 0,

〈ϕa1(x1)ϕa2(x2) . . . ϕan(xn)〉 =
δ

iδJa1(x1)
. . .

δ

iδJan(xn)
Z[Ja]|J=0 , (3.16)

as is familiar from quantum field theory. Since we have constructed Z by integration

over a functional delta distribution, we have made sure that Z is normalised, i.e.
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3.1. Transition probability for classical fields

Z[0, 0] = 1.

We can now write down the generating functional again in the form

Z[Ja] =

∫
DΓi

∫
DϕaδD [E(ϕa)] exp

{
i

∫

x
Jaϕa

}
, (3.17)

where the delta functional singles out the solution ϕs
a of the equation of motion for any

given initial field configuration ϕ
(i)
a .

We now suppose that we can split the equation of motion into a free part described

by E0 and a part containing some interaction given by EI. We can then write the

equation of motion as

E (ϕa) = ϕ̇a + E0 (ϕa) + EI (ϕa) = 0 . (3.18)

Introducing the propagator (or Green’s function) Gab(x, x
′) of the free equation of

motion, we can formally write the solution to the full equation of motion as

ϕs
a(x) = Gab(x, xi)ϕ

(i)
b (xi)−

∫

x′
Gab(x, x

′)Fb(x
′) , (3.19)

with a force Fb(x
′) that is given by a gradient of an interaction potential V according

to Hamilton’s equations. Since the equations of motion are a set of linear differential

equations such a Green’s function must exist.

The delta distribution in (3.17) can now be replaced by

δD [E(ϕa)]→ δD [ϕa − ϕs
a] (3.20)

where ϕs
a denotes the solution to the full equation of motion and a constant functional

determinant was absorbed into the normalisation of the generating functional.

This allows us to write the generating functional in terms of the solution ϕs
a

Z[Ja] =

∫
DΓi exp

{
i

∫

x
Jaϕ

s
a

}
, (3.21)

by integrating over the delta distribution.

It is however clear that the particle trajectories (3.26) cannot be evaluated exactly

because the actual particle coordinates would need to be known to evaluate the

interaction potential V or its gradient between particle positions. Therefore, it will

become necessary to introduce expansion or approximation schemes to evaluate the

interaction term later on.
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3. The kinetic field theory formalism

3.2 Microscopic and collective fields

3.2.1 Microscopic degrees of freedom

Instead of using macroscopic fields, we will make the transition to point particles

and describe their kinematics under the influence of Hamiltonian dynamics in three

spatial dimensions. The fields ϕa are therefore replaced by delta distributions at the

phase-space coordinates ~x>j := (~qj , ~pj) for all particles 1 ≤ j ≤ N . The equations of

motion of the phase-space points ~xj are Hamilton’s equations,

∂t~xj = J ∂jH , (3.22)

with the Hamiltonian H and the symplectic matrix

J =

(
0 I3

−I3 0

)
, (3.23)

where Id is the unit matrix in d dimensions.The partial derivative ∂j acts upon all six

phase-space coordinates xj of the j-th particle. The action S in (3.10) is reduced to a

time integral, due to the fields being represented by delta distributions, as is the case

for classical mechanics. The Green’s function will then also depend on time only.

For a compact notation we will organise the positions {~qj} and the momenta {~pj} of

N microscopic particles by means of the tensor product into phase-space coordinate

tensors. The phase-space coordinates of the complete particle ensemble,

~xj :=

(
~qj

~pj

)
, x := ~xj ⊗ ~ej , (3.24)

are bundled into a tensorial structure where the Einstein convention is used to sum

over repeated indices and where ~ej is the N -dimensional column vector whose only

non-vanishing entry is 1 at component j.

The scalar product between such tensorial objects is defined as

〈a,b〉 = 〈~aj ⊗ ~ej ,~bl ⊗ ~el〉 = ~aj ·~bj (3.25)

where again Einstein’s summation convention is implied.

With this notation, the solution to the full equations of motion (3.19) is given by

x(t) = G(t, 0)x(i) −
∫ t

ti

dt′ G(t, t′)

(
0

∇V

)
, (3.26)

14



3.2. Microscopic and collective fields

where

G = G⊗ IN (3.27)

is defined with a 6× 6 dimensional matrix-valued Green’s function G describing the

free propagation of an individual phase-space point

G =

(
gqq(t, t

′) gqp(t, t
′)

0 gpp(t, t
′)

)
. (3.28)

The phase-space trajectories (3.26) explicitly contain the interaction potential V

between particles that is responsible for any deviation from a free evolution of particle

trajectories.

Just as the phase-space coordinates, the source field J is bundled as

Jq = ~Jqj ⊗ ~ej , Jp = ~Jpj ⊗ ~ej , J =

(
~Jqj
~Jpj

)
⊗ ~ej . (3.29)

The phase-space measure is given by

dΓ = P (q,p) dq dp (3.30)

with an appropriate probability distribution P that is chosen according to the initial

conditions at hand and which will be specified later. The integral over the initial

phase-space configurations is now an ordinary rather than a path integral. This, again,

is a consequence of the fields being represented by delta distributions.

The generating functional then assumes the simple form

Z[J] =

∫
dΓi exp

{
i

∫
dt 〈J(t),x(t)〉

}
. (3.31)

3.2.2 Collective fields

Although the generating functional is formulated in terms of microscopic degrees of

freedom which brings an enormous advantage in the description of N -particle ensembles,

we now need to introduce collective fields that will allow us to compute collective

properties, like the n-point functions, of the ensemble from the generating functional.

The most obvious example of such a collective field for our applications is the number

density ρ(t, ~q ),

ρ(t, ~q ) =

N∑

j=1

δD (~q − ~qj(t)) , (3.32)
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3. The kinetic field theory formalism

here assumed to be composed of N point-particle contributions.

The potential V (t, ~q ) experienced by any particle at time t and at position ~q is the

sum over all point-particle potentials v,

V (t, ~q ) =

N∑

j=1

v (~q − ~qj(t)) , (3.33)

and can be written as

V (t, ~q ) =

∫
d3y v (~q − ~y )

N∑

j=1

δD (~y − ~qj(t)) =

∫
d3y v (~q − ~y ) ρ(t, ~y ) (3.34)

in terms of an integral over the density (3.32).

For most cases, computations in Fourier space will prove to be much simpler later

on. We therefore express the density ρ as well as the interaction potential v by their

Fourier transforms assuming that the potential v in (3.33) is translation invariant and

thus depends on the difference ~q − ~y only.

The next step is to promote the density field to an operator, such that applying this

operator on the generating functional will yield n-point density correlation functions.

As assumed in (3.32), the density ρ is composed of delta contributions. In Fourier space,

the one-particle contribution of particle j to the density at the space-time position

1 = (t1,~k1) is

ρj(1) = exp
(
−i~k1 · ~qj(t1)

)
, (3.35)

where ~qj(t1) is the position of particle number j in configuration space at time t1.

In this expression for the density, we replace the particle position ~qj by a functional

derivative with respect to ~Jqj (1), obtaining the one-particle density operator

ρ̂j(1) = exp

(
−i~k>1 ·

δ

iδ ~Jqj (1)

)
. (3.36)

The action of the density operator (3.36) on Z[J] becomes clear if we re-write the

exponential as a series,

ρ̂j(1)Z[J] =

∞∑

n=0

1

n!

(
−~k>1 ·

δ

iδ ~Jqj (1)

)n
Z[J] . (3.37)

Since acting once with δ
iδ ~Jqj (1)

on Z[J] yields

[
−~k>1 ·

δ

δ ~Jqj (1)

]
Z[J] = Z[J]

(
−~k1

∫
dt

〈
δJ(t)

δ ~Jqj (1)
,x(t)

〉)
, (3.38)
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3.2. Microscopic and collective fields

we immediately see that

ρ̂j(1)Z[J] = Z[J + Lj(1)] , (3.39)

where the tensor Lj(1) is defined by

Lj(1) := −~k1 ·
δJ(t)

δ ~Jqj (1)
= −δD (t− t1)

(
~k1

0

)
⊗ ~ej . (3.40)

The application of the density operator ρ̂j(1) thus results in a shift of the source field

J in the free generating functional by the tensor Lj(1). This is not surprising due to

the fact that spatial derivatives generate translations, and so exponentials of spatial

derivatives must be finite translations.

3.2.3 General expressions for density correlators

We now derive a general expression for an m-point density correlator. First m density

operators will have to be applied to the free generating functional. Since no further

derivatives with respect to J will be required afterwards, the source field J can then be

set to zero.

The operator for the density contributions by N particles is simply the sum over the

one-particle density operators,

ρ̂(1) =
N∑

j=1

ρ̂j(1) . (3.41)

As we have shown in (3.39) for a single one-particle density operator, the result of

applying m one-particle density operators to the free generating functional is

ρ̂jm(m) · · · ρ̂j1(1)Z[J]|J=0 = Z[L] (3.42)

with

L = −
m∑

s=1

δD(t− ts)
(
~ks

0

)
⊗ ~ejs . (3.43)

Using (3.41) together with (3.42), we get the m-point density correlator Gρ...ρ(1 . . .m)

by summing over all particle indices,

Gρ...ρ(1 . . .m) =

N∑

j1...jm=1

ρ̂j1 · · · ρ̂jmZ[J]|J=0 =

N∑

j1...jm=1

Z[L] . (3.44)
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3. The kinetic field theory formalism

We see now that all we have to evaluate for m-point density correlators is the generating

functional taken at J = L,

Z[L] =

∫
dΓ exp

{
i

∫
dt 〈L,x〉

}
. (3.45)

With the shift tensors

Lq := −~k1 ⊗ (~e1 − ~e2) , Lp(t) := gqp(t, 0)Lq , (3.46)

we can write the generating functional evaluated at J = L as

Z[L] =

∫
dΓ expi〈Lq ,q〉+i〈Lp(t),p〉−F̄ (t) , (3.47)

with the time-integrated interaction term

F̄ (t) = i

∫ t

0
dt′〈Lp(t′),∇V(t′)〉 =:

∫ t

0
dt′F (t, t′) (3.48)

containing the interaction potential between particles V.

The shift tensors Lq and Lp have non-vanishing components only for the particles

specified by the indices js set by the one-particle density operators applied to the

generating functional. In accordance with (3.44), we can now briefly write

Z[L] = Gρj1 ...ρjm , Gρ...ρ(1 . . .m) =
N∑

j1...jm=1

Gρj1 ...ρjm , (3.49)

for any shift tensor specified by a complete set of m particle indices j1 . . . jm. The

integral over the initial phase-space configuration that remains in the generating

functional Z[L] still has to be carried out. Up to this point the generating functional

is exact.

For later convenience we will introduce what we will call the free generating functional

Z0[J] as the part of the generating functional that does not include the interaction

term,

Z0[L] =

∫
dΓ expi〈Lq ,q〉+i〈Lp(t),p〉 . (3.50)

3.3 Initial probability distribution

3.3.1 Initial conditions for correlated particles

As one of the main results of [1] it was shown that the initial phase-space probability

distribution P (q,p) is given by a multivariate Gaussian distribution. For our derivation,
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3.3. Initial probability distribution

we have assumed that a statistically homogeneous and isotropic, Gaussian random

velocity potential ψ exists such that the momentum ~p at an arbitrary position is given

by its gradient

~p = ~∇ψ . (3.51)

Due to the continuity equation, the density contrast

δ =
ρ− ρ0

ρ0
(3.52)

must then satisfy

δ = −~∇2ψ . (3.53)

This allows us to connect the initial velocity and the initial density fluctuation power

spectra, Pψ and Pδ, via

Pψ(k) = k−4Pδ(k) . (3.54)

It is therefore sufficient to specify the initial density fluctuation power spectrum Pδ(k)

to fully specify the initial probability distribution. As shown in [1], it is given by the

multivariate Gaussian of the form

P (q,p) =
V −N√

(2π)3N detCpp
C(p ) exp

(
−1

2
p>C−1

pp p

)
(3.55)

where p = ~pj ⊗ ~ej with the correlation operator

C(p) =(−1)N
N∏

j=1

(
1 +

(
Cδp

∂

∂p

)

j

)
+ (−1)N

∑

(j,k)

(Cδδ)jk
∏

{l}′

(
1 +

(
Cδp

∂

∂p

)

l

)

+ (−1)N
∑

(j,k)

(Cδδ)jk
∑

(a,b)′
(Cδδ)ab

∏

{l}′′

(
1 +

(
Cδp

∂

∂p

)

l

)
+ . . . (3.56)

where j 6= k as well as a 6= b and { }′ indicates that l runs over all indices except (j, k)

and { }′′ indicates that l runs over all indices except (j, k, a, b).

The correlation matrices in (3.56) are defined as follows

Cδδ := σ2
2 ⊗ IN + 〈δjδk〉 ⊗ Ejk , Cδp := 〈δj~pk〉 ⊗ Ejk and

Cpp :=
σ2

1

3
I3 ⊗ IN + 〈~pj ⊗ ~pk〉 ⊗ Ejk (3.57)

with the matrix

Ejk := ~ej ⊗ ~ek (3.58)
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3. The kinetic field theory formalism

and the correlators

〈δjδk〉 =

∫
d3k

(2π)3
Pδ(k) e−i~k·(~qj−~qk) ,

〈δj~pk〉 = i

∫
d3k

(2π)3
k2 ~k Pψ(k) e−i~k·(~qj−~qk) ,

〈~pj ⊗ ~pk〉 =

∫
d3k

(2π)3
~k ⊗ ~k Pψ(k) e−i~k·(~qj−~qk) .

(3.59)

The moments σ2
n are defined by

σ2
n :=

∫

k
k2n Pψ(k) . (3.60)

3.3.2 Approximation of initial density correlations

If we assume that initially the density correlations Cδδ and density-momentum correla-

tions Cδp are weak, as we expect for cosmology, the probability distribution can be

approximated up to first order in Cδδ and Cδp,

P (q,p) ≈ V −N√
(2π)3N det C̄pp

exp

(
−1

2
p>C̄−1

pp p

)
1 +

N∑

j=1

Mδjpk~pk +
1

2

∑

j 6=k
Cδjδk


(3.61)

with

Mδjpk := C>δjpaC̄
−1
papk

. (3.62)

If we evaluate density correlators at times much later than the initial time, we can

even approximate

C(p) ≈ 1 . (3.63)

For our cosmological applications this case is realised.

Using this approximation for the initial density correlations, we can write down the

free part of the generating functional after having applied arbitrarily many density

operators and set the source field J to zero, as

Z0[L] = V −N
∫

dq exp

(
−1

2
L>p CppLp + i 〈Lq,q〉

)
. (3.64)

The quadratic form

Q := L>p CppLp (3.65)

remaining in (3.64) splits into two terms if we use the definition of Cpp from (3.57),

Q =
σ2

1

3

∑

j

~L 2
pj +

∑

j 6=i

~L>piCpipj
~Lpj . (3.66)
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3.3. Initial probability distribution

Replacing the sum of squares by a squared sum, we can instead write

Q = Q0 −QD +
∑

j 6=i

~L>piCpipj
~Lpj (3.67)

with the damping terms

Q0 :=
σ2

1

3


∑

j

~Lpj




2

, QD :=
σ2

1

3

∑

j 6=k

~Lpj · ~Lpk . (3.68)

We will refer to the Q0 and QD as dispersion and diffusion terms, respectively. It turns

out that Q0 will vanish identically in important cases (see [9] for a complete discussion).

The diffusion term QD on the other hand does generally not vanish and has an intuitive

and important effect on the time evolution of the density-fluctuation power spectrum,

as will be explained in section 3.3.3.

Although expression (3.64) looks fairly simple, the final integral over particle positions

cannot be evaluated without some additional labor.

3.3.3 Full hierarchy of initial momentum correlations

The most obvious course of action is to expand the exponential in (3.64) in a Taylor-

series in orders of the damping factor QD and thus to include the damping term order

by order in the generating functional. While this is easily done, deciding at which

order to truncate the series is not evident. This difficulty has been met with in [1] and

the damping term was included up to second order in momentum correlations at most.

But being able to truncate the series was, in some sense, not completely arbitrary due

to the fact that for our cosmological application we have the advantage of knowing

(from numerical N-body simulations or even observations) what the end result, i.e. the

non-linear density-fluctuation power spectrum, should look like today.

It was then shown in [9] that, in fact, the full hierarchy of momentum correlations

can be included in the free generating functional by a factorisation of the latter. The

derivation of the factorised generating functional can be found in [9] and shall not be

repeated in this work. We will merely state the result of the procedure and discuss its

implications.

The main ideas are that, in a statistically homogeneous field, only relative particle

coordinates ~qj − ~qi must matter, and that all these coordinate differences must be

statistically indistinguishable. The central result is then the form of the generating
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Figure 3.1.: We show the non-linearly evolved power spectrum P̄ where late-time

diffusion is suppressed as specified in [9] Eq. (50) for different times ti (t1

is earliest and t5 is latest). If free streaming is thus neglected, we can see

how structure formation proceeds from small to large scales. The shape of

the non-linear density-fluctuation power spectrum is already recovered to

a large degree. (This figure has been published in [9] as Fig.2.)

functional for a two-point function containing the full hierarchy of initial momentum

correlations that is given in [9] (Eq. 42),

Z0[L] = N eQD(κ,t)
[
(2π)3δD(~κ ) + P(κ, t)

]
(3.69)

with

P(κ, t) =

∫

q

{
e−g

2
qp(t,0)κ2a‖(q) − 1

}
ei~κ·~q (3.70)

and the shift tensors

Lq := −~κ⊗ (~e1 − ~e2) , Lp(t) := gqp(t, 0)Lq (3.71)

where ~κ := ~k1 −~k is defined as the difference between an internal wave vector k that is

integrated over and an external wave vector k1.

We have introduced N to abbreviate the normalisation factor, because its particular

form will not be needed throughout the derivations in this work.

The momentum-diffusion term QD appearing in (3.89) is

QD(κ, t) = −σ
2
1

3
g2
qp(t, 0)κ2 . (3.72)
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The function a‖(q) that appears in (3.87) is the correlation function of the momentum

components parallel to the line connecting the correlated particles (see [9], Eq. B.28),

a‖(q) = µ2ξ′′ψ(q) + (1− µ2)
ξ′ψ(q)

q
, (3.73)

where ξψ(q) is the correlation function of the initial velocity potential and µ is the

angle cosine between the vectors ~κ and ~q.

For sufficiently small arguments of the exponential in (3.70) we can approximate

the evolved power spectrum P(κ, t) by the linearly evolved density-fluctuation power

spectrum,

P(κ, t′) ≈ g2
qp(t

′, 0)Pδ(κ) , (3.74)

as was shown in [9] Eq. (B.41).

We now have a closed analytic expression for the free part of the generating functional

which includes the full hierarchy of momentum correlations. We will neglect density and

density-momentum correlations as they have been shown to be negligible for late cosmic

times. It has been further shown in [9] that including the full hierarchy of momentum

correlations causes a charachteristic deformation of the non-linear density-fluctuation

power spectrum on intermediate scales. This can be observed if, in addition, free

streaming is neglected (see discussion following [9], Eq. (49)). We can then see how

structure formation proceeds from small to large scales and even recover the shape of

the non-linear density-fluctuation power spectrum to a large degree. We show this in

Fig. 3.1.

All that remains to be done now is to find a way of including particle interactions.

3.4 Evaluation of particle trajectories

We have already mentioned in section 3.1.1 that in general we are not able to evaluate

particle trajectories exactly because we do not know the actual coordinates belonging

to each particle. Although we will show a toy example in chapter 8 where we can

write down the full trajectories exactly and can use the generating functional without

any approximation or expansion schemes. But while we are dealing with kinematics

of particles we will need to introduce a workaround for this issue. We choose two

approaches here; one in which the interaction term is evaluated in Born’s approximation,

and one in which particle interactions are evaluated perturbatively.

In the first approach, that is presented in detail in [10], we compute an averaged

interaction term that we evaluate in the Born approximation for particle trajectories.
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3. The kinetic field theory formalism

This means that we replace the actual particle trajectories by inertial trajectories.

This procedure may be familiar to the reader, if they happen to have a background

in cosmology, from weak gravitational lensing and was originally developed by Max

Born for scattering theory in quantum mechanics. The interaction term we obtain

in this way describes the net force exerted on each particle by all other particles of

the ensemble, whereby contributions from particle interactions to the force term are

weighted by the correlation function. This approach gives us a simple, closed expression

for the non-linear density-fluctuation power spectrum containing the full momentum

correlations.

For the second, perturbative approach, we first split off the interaction term and apply

it as the exponential of an interaction operator acting on the generating functional

now containing the free Hamiltonian particle trajectories only, as discussed in full

detail in [1]. To evaluate the resulting expression, the exponential operator is then

Taylor-expanded into a perturbation series. This allows us to compute the non-linear

density-fluctuation power spectrum perturbatively since we must then apply the inter-

action operator order by order in the interaction potential.

3.4.1 Born’s approximation

Let us return to the still exact expression for the generating functional in (3.47).

In [10] it was demonstrated how the interaction term can be evaluated in the Born

approximation for particle trajectories and then averaged over particle positions to

provide an effective force that is experienced by each particle due to the interaction

with all the other particles in the ensemble.

The averaged force term in the Born approximation is given by

〈F (t, t′)〉 = 2gqp(t, t
′)A(t′)~k1

∫

k

~k ṽ
(
k, t′

)
P̄δ
(
κ, t′

)
, (3.75)

with the damped, evolved density-fluctuation power spectrum

P̄δ(κ, t
′) := eQD(κ,t′) g2

qp(t
′, 0)Pδ(κ) (3.76)

and the Fourier transform of the two-particle interaction potential ṽ (k, t′) that we will

specify later.

The time dependence of the potential amplitude A(t′) is attributed to cosmic expansion.

The expression for the amplitude is specified in [10] (Eq. 33).

We can now integrate (3.90) over time and replace the interaction term F̄ (k1, t) in
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3.4. Evaluation of particle trajectories

(3.47) by the result of

〈F̄ (k1, t)〉 =

∫ t

0
dt′〈F (k1; t, t′)〉 . (3.77)

This allows us to give to give a closed, analytic expression for the evolved, non-linear

density-fluctuation power spectrum including the interaction between particles,

P̄(k1, t) = eQD(k1,t)−〈F̄ (k1, t)〉
∫

q

{
e−g

2
qp(t)a‖(q)k21 − 1

}
ei~q·~k1 . (3.78)

In the exponential we have the momentum-diffusion term QD that is being counter-

acted by the interaction term 〈F̄ (k1, t)〉. The exponential is multiplied by the evolved

density-fluctuation power spectrum P(k1, t) given in (3.70).

3.4.2 Perturbative approach

A different way to evaluate the trajectories of interacting particles is through pertur-

bation theory which was presented in detail in [1]. Here we replace the solution of

the equations of motion to the actual particle trajectories by the solution to the free

equations of motion denoted by x̄. In terms of the Green’s function G of the free

equations of motion, the particle trajectories x̄ in phase space are

x̄(t) = G(t, 0)x(i) −
∫ t

0
dt′ G(t, t′)K(t′) , (3.79)

where we have introduced an additional source field K that is going to mediate the

effect of particle interactions on the inertial particle trajectories. K has the same

tensorial structure as the source field J in (3.29).

The free part of the generating functional then reads

Z0[J,K] =

∫
dΓ exp

(
i

∫ ∞

0
dt 〈J, x̄〉

)
. (3.80)

Particle interactions are included by applying an interaction operator ŜI to the free

generating functional. The full generating functional can then be written as

Z[J,K] = eiŜI Z0[J,K] , (3.81)

with

ŜI = −
∫

d1 B̂(−1)ṽ(1)ρ̂(1) . (3.82)

The newly introduced field operator B̂ will be called the response-field operator. The

many-particle response field B describes how a particle ensemble responds to a change
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3. The kinetic field theory formalism

in the phase-space coordinates of one of its particles. In a Fourier-space representation,

these operators are sums over one-particle operators,

B̂j(1) =

(
i~k1 ·

δ

iδ ~Kpj (1)

)
ρ̂j(1) =: b̂j(1)ρ̂j(1) , (3.83)

and ρ̂j(1) retains its form given in (3.36). The response-field operator B̂ thus contains

a density operator ρ̂.

The perturbative evaluation of (3.81) begins with expanding the exponential interac-

tion operator exp(iŜI) into a power series, introducing two density operators ρ̂ and one

response-field operator b̂ per power of ŜI. For an n-th order correlator with m-th order

particle interaction, we therefore need to evaluate one-particle expressions of the form

ρ̂j1(1) · · · ρ̂jr(r) Z0[J,K]|J=0 = Z0[L,K] (3.84)

with r = n+ 2m, and with the particle indices js = 1 . . . N . As we have already seen

in section 3.2.2, the density operators then replace the generator field J by the shift

tensor

L = −
r=n+2m∑

s=1

(
~ks

0

)
δD(t− ts)⊗ ~ejs . (3.85)

The position and momentum components of the shift tensor L are again given by the

projections

~Lqj (c) =
∫∞

0 dt

〈
L(t), G(t, tc)

(
I3

0

)
⊗ ~ej

〉
,

~Lpj (c) =
∫∞

0 dt

〈
L(t), G(t, tc)

(
0

I3

)
⊗ ~ej

〉
. (3.86)

In a second step, we have to apply all response-field operators b̂jc(c) to Z0[L,K]. But

the subsequent application of a single, one-particle response-field operator b̂jc(c) to

Z0[L,K], taken at K = 0, simply returns a response-field pre-factor bjc(c),

b̂jc(c) Z0[L,K]|K=0 = bjc(c)Z0[L, 0] , (3.87)

given in terms of ~Lpjc as defined in (3.86) by

bjc(c) = −i~kc · ~Lpjc (c) . (3.88)
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3.4. Evaluation of particle trajectories

Inserting (3.86) results in

bjc(c) = i
r∑

s=1

(
~kc · ~ks

)
gqp(ts, tc) δjcjs . (3.89)

Note that causality ensures that the particle ensemble can only respond to causes

preceding the response, i.e. gqp(ts, tc) = 0 for tc ≥ ts. Therefore, only response-field

factors with tc < ts contribute.

As usual, correlators of order n in the density are obtained by applying n density

operators to Z[J,K],

Gρ...ρ(1 . . . n) = ρ̂(1) · · · ρ̂(n)Z[J,K] . (3.90)

and setting each of the generator fields J and K to zero once all functional derivatives

with respect to J or K have been applied.

It should be mentioned at this point that while the factorisation of the functional

presented in section 3.3.3 that allowed us to include the full hierarchy of initial

momentum correlations is in principle possible for the generating functional expanded

in this manner, the actual procedure is quite involved and is still work in progress.
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Cosmology
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4

Theoretical background on cosmology

4.1 ΛCDM cosmology

In this section, we will discuss the standard ΛCDM model of cosmology which today is

widely accepted as a valid description of our Universe. This will also be the cosmological

model that we will use in all our calculations later on.

In this model, the Universe is presumed to follow the dynamics of the Friedmann

equations that are derived from Einstein’s field equations under symmetry assumptions

which are the two fundamental assumptions of cosmology:

1. Isotropy: meaning that when averaged over sufficiently large scales, the observable

properties of the Universe must be isotropic i.e. independent of direction.

2. The Cosmological Principle: stating that our position in the Universe is by no

means special or preferred to any other.

By the second assumption, isotropy must hold for any observer. If the Universe is

isotropic around each point, then it must be homogeneous. Isotropy and homogeneity

induce symmetries that simplify the metric greatly. The first assumption implies that,

when averaged over sufficiently large scales, there exists a mean motion of matter and

energy in the Universe with respect to which all observable properties are isotropic.

Together with the second assumption, this means that all fundamental observers, i.e.

imagined observers following this mean motion, experience the same history of the

Universe, i.e. the same averaged observable properties, provided they synchronize their
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4. Theoretical background on cosmology

clocks suitably. The line element

ds2 = gµνdxµdxν (4.1)

in comoving coordinates, i.e. coordinates attached to fundamental observers, simplifies

to

ds2 = g00dt2 , (4.2)

because in such coordinates dxi = 0 for fundamental observers. Requiring further that

the fundamental observer’s proper time be equal to the coordinate time, we must have

ds2 = −c2dt2 ⇒ g00 = −c2 . (4.3)

Isotropy further requires that there must be a coordinate frame in which

g0i = 0 . (4.4)

If this was not possible, it would single out a preferred direction which, in turn, would

violate the isotropy assumption.

The line element, thus, simplifies to

ds2 = −c2dt2 + gijdx
idxj . (4.5)

Spacetime can now be decomposed into spatial hyper-surfaces of constant time that

can be scaled by a function a(t) that depends on time only

ds2 = −c2dt2 + a(t)dl2 , (4.6)

with the line element of isotropic and homogeneous three-space dl. Isotropy requires

three-space to be spherically symmetric. We can thus re-write the line element as

ds2 = −c2dt2 + a(t)

[
dr2

1−Kr2
+ r2dΩ2

]
(4.7)

in terms of polar coordinates, where r is a radial coordinate, chosen such that spheres of

constant r have the surface area 4πr2, and K is a constant parametrising the curvature

of spatial hyper-surfaces. The solid angle dΩ2 is given by

dΩ2 = dθ2 + sin2 θ dϕ2 (4.8)

with polar angles θ and ϕ. The line element specified in (4.7) is known as the Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric.
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4.1. ΛCDM cosmology

The dynamics of the metric (4.7) thus reduces to the dynamics of the scale factor a(t).

Two differential equations for a(t) are obtained from Einstein’s field equations

Gµν =
8πG

c4
Tµν + Λgµν (4.9)

where Λ is the cosmological constant, Gµν is the Einstein field tensor that can be

directly computed from the first and second derivatives of the metric tensor and Tµν

is the energy-momentum tensor of the cosmic fluid. Tµν must be of the form of the

stress-energy tensor of a perfect fluid, which is characterised by pressure p and (energy)

density ρ. Due to homogeneity, p = p(t) and ρ = ρ(t) can only be functions of time.

Using the metric (4.7) in Einstein’s field equations we obtain the two Friedmann

equations

(
ȧ

a

)2

=
8πG

3
ρ− K c2

a2
+

Λ c2

3
, (4.10)

ä

a
= −4πG

3

(
ρ− 3 p

c2

)
+

Λ c2

3
. (4.11)

With the adiabatic equation that follows from combining (4.10) and (4.11)

d

dt
(a3 ρ c2) + p

d

dt
(a3) = 0 , (4.12)

we can derive the scaling behaviour of relativistic and non-relativistic matter. With

the Hubble function

H :=
ȧ

a
, (4.13)

and the critical density

ρcr(t) :=
3H2(t)

8πG
, (4.14)

we can define the dimensionless density parameters expressed in units of the critical

density

Ωi(t) :=
ρ(t)

ρcr(t)
, Ωi 0 :=

ρ(t0)

ρcr(t0)
(4.15)

with i denoting the type of matter (e.g. radiation, Dark Matter, baryonic matter) and

t0 meaning today. This allows us to bring the remaining single Friedmann equation

into the familiar and widely used form

H2(a) = H2
0

[
Ωr0a

−4 + Ωm0a
−3 + ΩK0a

−2 + ΩΛ0

]
(4.16)

with H0 := H(a = 1) and a = 1 expressing today.

Ωr0 is the radiation density and Ωm0 the matter density including ordinary matter
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4. Theoretical background on cosmology

(in cosmology often called “baryonic”1) and dark matter, which does not interact

electromagnetically. ΩK0 denotes spatial curvature and ΩΛ0 signifies the dark energy

content.

The standard cosmological model specifies a universe obeying the Friedmann equation

(4.16). It is further assumed that two forms of matter exist. Ordinary matter is usually

referred to as “baryonic” and the other, and by far larger amount, of matter is called

dark matter due to the fact that it does not seem to interact electromagnetically

and is thus invisible. One usually makes the distinction between “Cold Dark Matter”

and “Warm Dark Matter”. Hereby, the terms “cold” and “warm” do not refer to a

temperature but indicate whether we have non-relativistic (cold) or relativistic (warm)

particles as dark matter candidates. In standard cosmology, cold dark matter is

empirically preferred over warm dark matter. In addition to the existence of dark

matter, standard cosmology assumes a form of energy that leads to the observed

accelerated expansion of the Universe. Within the current limits of observation, this

so-called “dark energy”, whatever it may be, behaves like a cosmological constant Λ.

This cosmological model is often denoted as “ΛCDM” (Λ Cold Dark Matter) cosmology.

4.2 Power spectrum and correlation function

So far, we have described the dynamics of a homogeneous and isotropic Universe in

section 4.1. But of course this cannot be the end of the story, because otherwise our own

existence would not be possible. It is obvious that while the Universe is homogeneous

and isotropic on average, inhomogeneities exist on comparably small scales. We will

now move towards quantifying these inhomogeneities in the Universe which, most likely,

were already present during and after inflation and were amplified and morphed into

the large-scale structures that we observe today.

The correlation function and its Fourier transform, the power spectrum, are useful

tools to quantify structures in the universe. We have defined the density contrast and

its Fourier transform in (4.28) already. The density contrast is a random field, which

must be isotropic and homogeneous in order to agree with the cosmological principle

that the Universe is isotropic and homogeneous on large scales so that its statistical

properties have to be invariant under rotations. The mean of the density contrast is

〈δ〉 = 0 (4.17)

1This jargon may be confusing, because by “baryonic” we actually mean: all particles of the Standard

Model that interact electromagnetically.
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4.3. Dark matter halos

by definition.

In real space, the correlation function of δ is defined as

ξ(y) := 〈δ(~x)δ(~x+ ~y)〉 , (4.18)

where the average is taken over all positions ~x and all orientations of ~y. ξ cannot

depend on the direction of ~y because that would violate isotropy. The correlation

function measures the coherence of the density field between all points separated by a

distance |~y|.
The variance of the density contrast in Fourier space defines the power spectrum Pδ(k)

〈δ̂(~k) δ̂∗(~k′)〉 =: (2π)3 Pδ(k) δD(~k − ~k′) . (4.19)

The power spectrum cannot depend on the direction of ~k because that would violate

isotropy. To ensure homogeneity, the Dirac delta function makes sure that modes of

different wave vectors ~k are uncorrelated in Fourier space. It can be shown that the

power spectrum is simply the Fourier transform of the correlation function.

We will often compute the variance of the filtered density field, expressed by the power

spectrum Pδ(k), which is given by

σ2
R(a) = D2

+(a) 4π

∫ ∞

0

k2dk

(2π)3
P (k)Ŵ 2(k R) , (4.20)

with the power spectrum P (k), a window function Ŵ (k R) and the linear growth

factor D2
+(a). Often, the growth factor D2

+(a) is excluded from the definition and later

multiplied, because for Newtonian gravity it is simply a function of the scale factor a.

The variance on a scale of 8h−1Mpc today, σ8(a = 1), is often used for characterising

the amplitude of the power spectrum at a = 1.

4.3 Dark matter halos

Gravitationally bound, dark matter structures in the Universe can be seen as composed

of individual so-called halos. These are approximately spherical overdense clouds of

dark matter which can reach highly non-linear densities in their centres. It is assumed

that halos are formed through spherical collapse of overdense regions in the Universe.

Thereby halos of different masses and sizes are produced. The distribution of halos

over mass, the so-called mass function, typically gives the comoving number density of

halos at redshift z within the mass range between M and M + dM . There are different,

more or less sophisticated, ways to model the halo mass function. One of the simpler
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4. Theoretical background on cosmology

ones, that still yields qualitatively good results, is the Press-Schechter mass function

which we will discuss below.

4.3.1 Press-Schechter mass function

Press-Schechter theory assumes the spherical collapse of dark matter structures into

halos of different mass on an otherwise smooth background density field. We skip the

derivation which can be found in any good introductory textbook to cosmology and

just state the result here.

The fraction of the cosmic volume filled with halos of masses within [M, M + dM ] is

given by a comoving number density

n(M, z)dM =

√
2

π

ρ0

M

δc

σRD+(a)

d lnσR
dM

exp

(
− δ2

c

2σ2
RD

2
+(a)

)
dM . (4.21)

ρ0 is the mean density of the background, δc is the linear density contrast for spherical

collapse at which structures can be assumed as collapsed. D+(a) is the linear growth

factor and σR is the variance given by

σ2
R = 4π

∫ ∞

0

k2dk

(2π)3
P (k)Ŵ 2(k R) , (4.22)

with the power spectrum P (k) and a window function Ŵ (k R).

The Press-Schechter mass function has turned out to fit the mass distribution of

dark-matter halos in cosmological N-body simulations astonishingly well. The theory

has recently acquired some modifications in order to improve its agreement with large,

high-resolution simulations, or to take into account that halo collapse is not expected

to proceed spherically in general, but elliptically.

4.3.2 The Navarro-Frenk-White density profile

An interesting and at the same time puzzling feature of dark matter halos is the

universality of their density profile. Universality in this context means that the density

profiles of mark matter halos on all scales, from dwarf galaxies to massive galaxy

clusters, can be fitted by the same function. The general form of this function is given

by

ρ(r|m) =
ρs(

r
rs

)α [
1 +

(
r
rs

)β] , (4.23)
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with the scale radius rs and the density at that radius ρs.

The preferred choice today is to set (α, β) = (1, 2) which gives the Navarro-Frenk-White

(NFW) density profile [11, 12]. The NFW profile provides a very good fit to the radial

density distribution of dark matter halos in numerical simulations.

All the profiles used today to fit the density distribution within dark matter halos are

heuristic fits to numerical simulations and/or observational data. It is unclear why

halos of all sizes and masses acquire the same density profile or what determines its

particular shape.

4.4 Conventional approaches to cosmic structure formation

4.4.1 Eulerian perturbation theory

Conventionally, structure growth and evolution are described within the scope of

hydrodynamics where a perturbation ansatz is made. The description is thus based on

the continuity equation, Euler’s equation and the Poisson equation,

∂ρ

∂t
+ ~∇ · (ρ~v) = 0

∂~v

∂t
+
(
~v · ~∇

)
~v = −

~∇p
ρ

+ ~∇Φ

∇2Φ = 4πGρ ,

(4.24)

where ρ(~x, t) is the density, ~v(~x, t) the velocity of the cosmic fluid and Φ the gravitational

potential. The density and the velocity are then decomposed into their homogeneous

background parts ρ0(t) and ~v0(t) and small perturbations δρ and δ~v,

ρ(~x, t) = ρ0(t) + δρ(~x, t)

~v(~x, t) = ~v0(t) + δ~v(~x, t) .
(4.25)

Introducing physical coordinates ~r such that they relate to the co-moving coordinates

~x as ~r = a~x with the scale factor a, the velocity in physical coordinates is given by

~v = ~̇r = ȧ~x+ a~̇x = ~v0 + δ~v (4.26)

with the Hubble velocity ~v0 = H ~r and the peculiar velocity δ~v = a ~̇x2. Together with,

δp = c2
sρ0δ , (4.27)

2Often, ~̇x =: ~u is also called the peculiar velocity.
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relating the pressure fluctuations to the density fluctuations by the sound speed cs,

and the definition of the density contrast,

δ :=
ρ− ρ0

ρ0
=
δρ

ρ0
, (4.28)

we can write down an equation for the evolution of the density contrast

δ̈ + 2H δ̇ = 4πGρ0δ +
c2
s∇2δ

a2
. (4.29)

Since (4.29) is a homogeneous and linear differential equation, it is useful to decompose

δ into plane waves,

δ(~x, t) =

∫
d3k

(2π)3
δ̂(~k, t) e−i~k·~x, δ̂(~k, t) =

∫
d3x δ(~x, t) ei~k·~x , (4.30)

and write (4.29) in Fourier space

¨̂
δ +H

˙̂
δ = δ̂

(
4πGρ0 −

c2
sk

2

a2

)
, (4.31)

decoupling time evolution from the spatial dependence.

The linear evolution of the density contrast during the matter-dominated era in models

with Ωm,0 6= 1 and a cosmological constant, the linear evolution of the density contrast

is given by

δ(a) = δ0D+(a) (4.32)

with the linear growth factor D+(a) that contains cosmological density parameters.

For a ΛCDM-Universe it is well described by the fit-formula given in [13],

D+(a) =
5 aΩm(a)

2

[
Ω

4/7
m (a)− ΩΛ(a) +

(
1 +

Ωm(a)

2

)
+

(
1 +

ΩΛ(a)

70

)]−1

. (4.33)

To proceed beyond linear growth, higher order perturbation terms have to be included

and solved. This is a cumbersome and non-trivial task (for an extensive review see [14]).

This approach faces major conceptual difficulties:

First of all, dark matter is assumed to be collision-less, and yet Eulerian perturbation

theory treats it as a fluid. This is flawed on a fundamental level.

Second of all, at the latest when the density contrast reaches unity, perturbation theory

in the density contrast must break down.

And last, shell crossing (the formation of multiple streams) is a notorious problem

for Eulerian perturbation theory. Whenever shell crossing occurs the description by
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unique and smooth density and velocity fields breaks down.

Despite these difficulties, Eulerian perturbation theory remains the favoured analytical

approach to cosmic structure formation in the community. Much effort has been put

into extending its reach into the non-linear regime (see [15–36] for a selection of works).

4.4.2 Lagrangian perturbation theory

For completeness, we also mention Lagrangian perturbation theory. An extended

review on Eulerian and Lagrangian perturbation theory can be found in [14].

Instead of solving the equations of motion for density and velocity fields, the Lagrangian

approach follows the trajectories of particles or fluid elements. A displacement field
~Ψ(q) is introduced which maps the initial Lagrangian coordinate ~q (i) onto its final

position ~x in Eulerian space at a later time t,

~x(t) = ~q (i) + ~Ψ(~q (i), t) . (4.34)

While solving the equation of motion for the particle trajectories ~x(t) the inverse of

the Jacobian of the transformation between Eulerian and Lagrangian space needs to

be computed and therein lies the again the conceptual problem:

If there is shell crossing, i.e. particles with different initial Lagrangian positions ~q (i)

that end up at the same Eulerian coordinates ~x, the Jacobian of the transformation

vanishes and the density field becomes singular at these points. Thus, the description

of dynamics in terms of a mapping breaks down.

One can, as for Eulerian perturbation theory, set up a Lagrangian perturbation theory

in terms of the displacement field ~Ψ(q) and expand around its linear solution. It can

be shown that, in linear order, the displacement field has the solution

∇q · ~Ψ(1) = D+(t)δ(~q (i)) (4.35)

where δ(~q (i)) is the initial density field satisfying δ(~q (i)) � 1. Thus, in this approx-

imation, particles simply move on straight lines with the time dependence given by

the linear growth factor D+(t). The Zel’dovich approximation now extrapolates these

trajectories to the present time.

4.4.3 The Halo Model

A very crude but surprisingly effective approach to describing large scale structure

formation is given by the Halo Model (for a detailed review see for example [37]).
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The approach assumes that all the mass in the Universe is composed of distinct units,

i.e. halos. If halos are distinct objects, then they are likely small compared to the

typical distances between them. This would suggest that the statistics of the mass

density field on small scales is determined by the spatial distribution within the halos.

At these scales the precise way how the halos themselves are organized into large scale

structures is irrelevant. But then, the details of the internal structure of the halos

cannot be relevant on scales larger than a typical halo. Thus, on large scales, the

important ingredient is the spatial distribution of the halos. This assumption allows

us to decompose the non-linear density-fluctuation power spectrum into contributions

from correlations between any two different dark matter halos and a contribution from

correlations within each single halo.

The two contributions are called the two-halo P 2h(k) and the one-halo P 1h(k) terms,

respectively, and are given by

P 1h(k) =

∫
dmn(m)

(
m

ρ̄

)2

|u(k|m)|2 (4.36)

P 2h(k) =

∫
dm1 n(m1)

(
m1

ρ̄

)
u(k|m1)

∫
dm2 n(m2)

(
m2

ρ̄

)
u(k|m2)Phh(k|m1,m2) ,

which are convolutions of the Fourier transform of the dark matter density profile

u(k|m) and the number density of halos n(m) for halos of given mass m and the mean

density ρ̄. In the two-halo term, Phh(k|m1,m2) represents the power spectrum of halos

of mass m1 and m2 and can, for convenience, be approximated by the linear power

spectrum weighted by some factor correcting for a bias that is usually determined

empirically from observations or simulations.

Since we are not interested in an accurate quantitative comparison between the Halo

Model and N-body simulations, we compute n(m) from the Press-Schechter mass

function [38] for simplicity.

For the halo density profile we will assume the Navarro-Frenk-White profile

ρ(r|m) =
ρs(

r
rs

)[
1 +

(
r
rs

)2
] . (4.37)

In Fourier space it is given by

u(k|m) =
4πρsr

3
s

m

{
sin(krs) [Si([1 + c]krs)− Si(krs)]−

sin(ckrs)

(1 + c)krs

+ cos(krs) [Ci([1 + c]krs)− Ci(krs)]}
(4.38)

with the scale radius rs, the density at that radius ρs and the concentration parameter

c = rvir/rs with virial radius rvir. Numerical simulations show that there is, in fact, a
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distribution of concentrations for halos of the same mass which is well described by a

log-normal distribution

p(c|m, a) =
d ln c√
2πσ2

c

exp



−

ln2
(

c
c̄(m,a)

)

2σ2
ln c



 (4.39)

where

c̄(m, a) = C0 a

(
m

m∗

)γ
(4.40)

is the mean concentration with the mass normalisation taken to be m∗ = 2 · 1013M�.

Thus, the Halo Model actually requires input from numerical simulations to make

sensible predictions for the non-linear power spectrum. There have been further

attempts to expand the model to make predictions match results from numerical

simulations more accurately by, for example, including sub-structures of halos. Including

sub-structures in the Halo Model has been shown to raise the predicted power on

scales k > 1hMpc−1 by up to several 10%. However, an excess in power around

k ≈ 1hMpc−1 has been observed in numerical simulations when compared to results

of the Halo Model which could not be explained by including halo sub-structures[39].

4.4.4 Numerical N-body simulation

Numerical N -body simulation are believed to provide the best model for cosmic

structure formation and thus to produce the most accurate predictions of the non-linear

power spectra.

Numerical simulations follow a quite simple idea: N particles are randomly placed into

a box of volume V according to some initial distribution. The particles move within

the box according to the Hamiltonian equations of motion and interact with each other

via the Newtonian gravitational potential. At some final time the final positions (and

momenta) of particles are sampled and a density (and momentum) correlation function

or power spectrum can be computed. In reality, the whole process is, of course, far

more involved. Clever algorithms, for instance, allow to shorten the runtime of the

simulations considerably while still retaining the required level of resolution.

However, numerical simulations are computationally very expensive. They are, therefore,

not an ideal tool to explore a wide range of cosmological parameters or deviations

from the usual physics that governs large scale structure formation. In addition, higher

order statistics (meaning n-point correlators) are increasingly harder to extract with

increasing n.

It is therefore advantageous to develop an analytic approach that allows us to easily
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access higher order spectra and that is at the same time computationally inexpensive.

In the last years, so-called emulators have been heavily in use to predict the non-linear

power spectrum for different cosmologies without having to run a simulation for every

parameter set. These emulators use results from simulation runs with certain sets

of cosmological parameters and then interpolate between those to get predictions for

parameter sets for which no simulations exist. One example of such an emulator is the

Cosmic Emulator [40–43] from which we obtain our reference power spectra.

4.5 Advantages of the KFT approach to cosmic structure

formation

In Part I we have shown how to develop a kinetic field theory that allows us to describe

the formation of structure in an initially correlated many-body system. In the following,

we will give a short description of how the KFT approach avoids the difficulties known

from other, conventional, approaches and point out its conceptual and methodical

advantages.

The most important advantage of KFT over Eulerian or Lagrangian theory is that, since

KFT is based on the Hamiltonian flow in phase space, the problem of shell crossing does

not occur. Instead, the flow in phase space is diffeomorphic and, due to the symplectic

structure of the Hamiltonian equations, even volume-conserving. The notorious problem

with multiple streams, as they occur in standard perturbation theories based on either

the Boltzmann equation or the hydrodynamic equations which assume the existence of

uniquely valued velocity fields, is absent from KFT by construction since phase-space

trajectories cannot cross. Similar difficulties that arise in Lagrangian perturbation

theories due to functional determinants developing singularities in convergent flows do

not occur in KFT because the functional determinant of the phase-space flow is unity

at all times.

Another conceptual advantage of KFT is that it, in principle, contains the complete

hierarchy of moments and of the particle correlations in configuration and momentum

space because it neither assumes the existence of smooth density or velocity fields nor

their uniqueness and avoids taking moments over momentum space. Since we do not

assume the existence of smooth and uniquely-valued velocity field, the particle motions

in phase space also trace the formation of vorticity on small scales and at late times.

An important methodical advantage of the KFT approach lies in the linearity of

Hamilton’s equations. It guarantees the existence of a Green’s function. We can

thus split the Hamiltonian into parts which are interpreted as an unperturbed and a
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perturbed contribution. How we split the Hamiltonian is to a large degree arbitrary

and thus the Green’s function can be chosen such that the interaction Hamiltonian

becomes small. This is also one of the main reasons why our first-order perturbation

theory is already highly successful in KFT, as demonstrated in [1].
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5

Influence of gravitational potential

on structure formation on small scales

5.1 Overview

In this chapter, we present the main cosmological results of this thesis.

We investigate the influence of the shape of the particle interaction potential on the

slope of the non-linear density-fluctuation power spectrum on scales k ≥ 1hMpc−1.

These scales are considered small in the context of large-scale structure formation.

It is at these small scales that contributions to the non-linear power spectrum from

inner structures of dark matter halos begin to dominate. This will allow us to draw

conclusions on the density profiles of dark matter halos from our analysis.

Our only goal here is to see whether, with the interaction amplitude suitably adapted,

the potential shape is responsible for the shape of the non-linear power spectrum. We

thus allow ourselves to change the interaction amplitude to maximise the agreement

with observations or simulations.

We start our analysis using the perturbative approach described in 3.4.2 for the

evaluation of particle trajectories. Doing so, we show that the slope of the non-linear

contributions to the density-fluctuation power spectrum at k ≥ 1hMpc−1 is seemingly

unaffected by the shape of the interaction potential between particles.

We then check these results using the more recent Born approximation for the evaluation

of particle trajectories. We show that we cannot reproduce the results obtained with

the perturbative approach and discuss the implications of this discrepancy.
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5.2 The scale dependent linear growth factor

One of the consequences of changing the shape of the particle interaction potential

away from Newtonian gravity will be that the linear growth factor (4.32) will be no

longer a function of time only, but will depend on the wave number k in addition.

In this section, we will show how we can modify Poisson’s equation to compute the

appropriate growth factor for a general power-law potential.

We start with the continuity and Euler equations in comoving coordinates,

δ̇ + (1 + δ)~∇ · ~u+ ~u · ~∇δ = 0 (5.1)

~̇u+ 2H(t)~u+
(
~u · ~∇

)
~u = − 1

a2
~∇Φ . (5.2)

We combine these two equations, set up a perturbation ansatz for δ, ~u and Φ and

linearise the resulting equation. For convenience, we can rename the perturbation δ~u

by ~u and do the same for the gravitational potential. Using the continuity equation

once more
~∇ · ~u = −δ̇ , (5.3)

we end up with the following equation for the dynamics of the density perturbations

δ̈ + 2H(a)δ̇ − 1

a2
~∇2Φ = 0 . (5.4)

In Fourier space the equation reads

¨̃
δ + 2H(a)

˙̃
δ +

k2

a2
Φ̃ = 0 . (5.5)

Since we are dealing with a general form of power-law potentials, we cannot simply use

Poisson’s equation to substitute the Laplacian of the gravitational potential. Therefore,

we consider an algebraic modification of Poisson’s equation in Fourier space. It now

reads

−f(k) Φ̃ = 4πGρ̄a2δ̃ (5.6)

with G the gravitational constant and ρ̄ the mean density. The modifying function

f(k) is the inverse of the Fourier-transformed particle interaction potential and is, in

that sense, fixed. For the Newtonian gravitational interaction it is simply k2.

With this modification, (5.5) can be brought into the form

δ̃′′ +

(
3

a
+
H ′(a)

H(a)

)
δ̃′ +

k2

f(k)

3 Ωm(a)

2 a2
δ̃ = 0 , (5.7)
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where we have transformed to a new time variable a, which is the scale factor, and

used

ρ̄ =
3H2(a)

8πG
Ωm(a). (5.8)

This differential equation can then be solved numerically. The growing mode of the

solution is then the linear growth factor D+(k, a) which now in general can depend

on the wave number k. For the Newtonian gravitational potential, the linear growth

factor reduces to the usual, scale-factor dependent function D+(a).

5.3 Power spectrum and NFW density profile

From the halo model (4.36), we know that the non-linear power spectrum is a convo-

lution of Fourier-transformed NFW profiles, weighted with the mass function. Since

we reproduce the non-linear power spectrum at least up to k = 10hMpc−1 with KFT,

both perturbatively and with the Born approximation, un-weighting with the mass

function would lead to the NFW profile. Thus, leaving the relative abundances of

haloes with different mass unchanged, we can conclude from our results how different

choices for the gravitational potential would affect the density-profile shape.

We point out that, while the halo model must be provided with the explicit form of

the halo density profile in (4.36), the KFT approach does not need any input of this

kind. The halo density profile that is produced in the KFT approach is thus the result

of particle interactions and correlations.

For our analysis, we will assume that the non-linear contributions to the power

spectrum obtained from KFT approximately correspond to the one-halo term of the

halo model (4.36). The validity of this assumption is quantified in Fig. 5.1 where we

have computed P 1h(k) using an NFW-density profile (4.38) with C0 = 9, σln c = 0.25

and γ = −0.13, as commonly found in simulations [37, 44], and the Press-Schechter

mass function. The comparison with the Fourier transform of NFW is a consistency

check for us. We find reasonable agreement with our KFT results, although we see a

clear deviation at k > 10. We also show the result for γ = −0.5 which is seemingly

preferred by KFT. Slopes this steep have only been found in analyses conducted with

X-ray surveys [45, 46] so far, whereas simulations yield values around γ ≈ −0.1. A

steeper slope would suggest a stronger trend for high-mass halos to have lower concen-

trations, and a larger scatter of concentrations for a given mass. It is however unclear

how much significance should be attributed to this finding; after all, we are using a

crude implementation of the halo model without including any sub-structures here.

In addition, an excess in power around k ≈ 1hMpc−1 as we see for KFT has been
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Figure 5.1.: The non-linear contributions from KFT are shown with the one-halo term

for γ = −0.13 (default) and γ = −0.5 (best fit) for k > 1hMpc−1. The

one-halo term includes the NFW density profile with commonly used

parameters (C0 = 9, σln c = 0.25 [37]). For γ = −0.13 a deviation at

k > 15hMpc−1 becomes evident. Setting γ = −0.5 instead provides better

agreement with KFT.

observed in numerical simulations as well when compared to results of the halo model.

It should also be noted that we are only at the first-order level of perturbation theory

here, although we do expect corrections from higher-order perturbations to be small if

the perturbation series converges. Because of that and the uncertainties present in the

halo model itself, we would like to refrain from speculations about the meaning of this

high value for γ.

5.4 Analysis in perturbative expansion

We use the perturbative approach (see section 3.4.2) to analyse the small-scale behaviour

of the non-linear contributions to the power spectrum under different gravitational

laws. We include particle interactions up to first order in the interaction operator only,

since we have seen in our previous work [1] that already at this order our result for

the non-linear density-fluctuation power spectrum agrees well with non-linear power
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5.4. Analysis in perturbative expansion

spectra from Cosmic Emulator [40–43] that uses state of the art N-body simulations.

In our KFT approach, initial correlations appear in a quadratic form in an exponential.

We use a Taylor expansion in order to perform the integration over initial particle

positions and momenta in (3.31). Initial correlations are included up to second order

only. Including the full hierarchy of initial momentum correlations proves to be much

more cumbersome in the perturbative approach compared to the Born approximation

(see comment in section 3.4.2). It is also unnecessary for our purposes here to include

the full hierarchy of initial momentum correlations since they only affect the shape

of the power spectrum on intermediate scales (k ≈ 0.3hMpc−1) as we have shown in

[9]. Initial density and density-momentum correlations only contribute at very high

redshifts and can be neglected in our analysis.

We compare the non-linear contributions to the density-fluctuation power spectrum for

interaction potentials of the form

v(r) =
A

(r2 + ε2)
n
2

. (5.9)

with particle distance r, smoothing scale ε and amplitude A. For the actual compu-

tations, we will require the respective Fourier transforms of v(r), which are given by

ṽ(k) = Ā k
n−3
2 K| 3−n2 |(k ε) . (5.10)

Here Ā is again an amplitude and Ka(k ε) is the modified Bessel function of the second

kind of order a.

We present our results in Fig.5.2, where we show the non-linear contributions to the

density-fluctuation power spectrum for various slopes of the interaction potential. Note

that the linear power spectrum in this plot belongs to the Newtonian case only and is

shown for reference only. Linear power spectra consistent with non-linear contributions

for interaction potentials that are not Newtonian will look different. This can be seen if

we derive the appropriate linear growth factors D+(a, k) for non-Newtonian potentials

as discussed in 5.2.

We normalise the linear growth such that σ8 = 0.8 for any interaction potential on

large scales, i.e. k � 1hMpc−1, is reproduced today. We choose the amplitude of

the interaction potential (5.10) and the amplitude of the initial density-fluctuation

power spectrum such that the amplitudes of the non-linear contributions to the

power spectrum for any potential match that of the Newtonian case and the above

normalisation criterion is satisfied.

The linear power spectrum can be obtained by multiplying the initial power spectrum
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Figure 5.2.: The non-linear contributions to the power spectrum today (a = 1) are

shown together with the linear power spectrum for Newtonian gravity

which serves here as a reference only. The power spectrum in the gray-

shaded area, to a large degree, does not depend on the inner correlations

on dark matter halos and is therefore neglected in our analysis. Starting

from k = 1hMpc−1 we assume that inner-halo structures begin to affect

the shape of the non-linear power spectrum. On scales k > 1hMpc−1 we

see a very good agreement of the non-linear corrections independent of the

shape of the interaction potential.

P
(i)
δ with the appropriate linear growth factor corresponding to the interaction potential

being used,

Pδ(k) = D2
+(a, k)P

(i)
δ (k) . (5.11)

It is clear from this expression that the linear growth for non-Newtonian potentials

will be different from the Newtonian case. Therefore, the linear growth together with

the non-linear growth for non-Newtonian gravity will produce power spectra that look

quite different from the Newtonian case. However, this is unimportant for our analysis,

because we are only interested in those contributions to the density-fluctuation power

spectrum which are due to the inner structure, i.e. density profile, of dark matter halos.

If we think about this in the picture of the halo model the argument becomes clearer:

While the linear power spectrum, corresponding to the two-halo term, describes the

correlations between two different dark matter halos, the one-halo term describes the
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5.4. Analysis in perturbative expansion

contributions from the inner structures of halos, which are highly non-linear. Therefore,

also in KFT the information on the density profile of dark matter halos will be hidden

solely in the non-linear contributions.

The conclusion that we then draw from our analysis is that, for smaller scales, i.e.

k > 1hMpc−1, the non-linear contributions show almost no sensitivity to the slope of

the interaction potential. In the gray-shaded area in Fig. 5.2 we see some sensitivity

to the potential slope, however these scales are too large to be relevant for the density

profiles of even the largest dark matter halos.

Since we find that the slopes of the non-linear contributions remain the same even for

strongly varying interactions laws, following the discussion in 5.3 we must conclude

that different choices for the gravitational potential would not affect the density-profile

shape of dark matter halos.

Let us recall, at this point, that the results from the perturbative KFT approach

for the non-linear power spectrum under Newtonian gravity are in good agreement

with predictions from numerical simulations. This agreement was already found when

the perturbation series in terms of the order of the particle interaction potential was

truncated after the first order. If the perturbation series is convergent, which should

be ideally the case, then higher order terms should yield ever smaller corrections to

the non-linear power spectrum that we have so far.

If, however, we use short-ranged interaction potentials most of the structure will be

accumulated on very small scales and higher-order interaction terms will become more

dominant. Hence, the perturbative ansatz is expected to perform worse and may

eventually break down. To see whether this is the case we would need to compute

higher-order terms and check the convergence of the perturbation series.

We would further like to stress that the interpretation of the above results was

done under the assumption that the relative abundances of haloes with different mass

remains unchanged. This assumption was made because we considered the non-linear

contributions corresponding to the one-halo term only. If we had considered the full

non-linear density-fluctuation power spectrum which corresponds to the one-halo term

and two-halo term combined, the mass function in the halo model would have had to

be adjusted accordingly, i.e. more low-mass halos and less high-mass halos for short

ranged interaction potentials. This point will be important for the analysis in the next

section.

51



5. Influence of gravitational potential on structure formation on small scales

5.5 Analysis in the Born approximation

We have described in 3.4 that it is also possible to include particle interactions in

terms of the Born approximation. Naively, we would expect to find the same results

as for the perturbative ansatz. But it turns out that even comparing what we call

“non-linear contributions” in the perturbative ansatz and in the Born approximation

scheme is not straightforward. As general rule, the non-linear contributions must be the

difference between the full non-linear density-fluctuation power spectrum and the linear

density-fluctuation power spectrum. Let us first compare the non-linear contributions

defined in this way in the perturbative ansatz and in the Born approximation for

Newtonian gravity only. In Fig. 5.2, the blue line shows the non-linear contributions

from the pertubative ansatz and in Fig. 5.3 we see (supposedly) the same quantity in

red. While the non-linear contributions in Fig. 5.2 are composed of a negative part

and a positive part, depicting a mode transport from large to small scales, such a

phenomenon is not observed in Fig. 5.3 for the non-linear contributions. Instead we

see a throughout positive contribution to the linear power spectrum. It is therefore

yet unclear how the terms leading to the non-linear contributions in the perturbative

approach could be directly compared to those from the Born ansatz.

To gain better understanding of the physical processes involved in the non-linear

power spectrum in Fig. 5.3, let us take a closer look at the simple analytic expression

(3.78) for the non-linear density-fluctuation power spectrum,

P̄(k1, t) = eQD(k1, t)−〈F̄ (k1, t)〉P(k1, t) . (5.12)

In the leading exponential factor, we have the momentum-diffusion term QD that

is being counter-acted by the Born-approximated interaction term 〈F̄ (k1, t)〉. This

factor is multiplied by the evolved density-fluctuation power spectrum P(k1, t) given

by (3.70).

The orange curve in Fig. 5.3 shows the factor eQD(k1, t)P(k1, t). We can see that the

later shape of the non-linear density-fluctuation power spectrum is already visible

there (see also Fig. 3.1 in 3.3.3). This is a consequence of the full hierarchy of initial

momentum correlations contained in P(k1, t) as was shown in [9].

In the way the interaction term 〈F̄ (k1, t)〉 is included in (5.12), it directly reduces

damping. Neglecting the damping term in (5.12) leads to the behaviour depicted in 5.4

where we see that the interaction term alone would lead to a diverging power spectrum

on small scales. This illustrates the delicate balance between the interaction and the

damping term for Newtonian gravity that leads to the non-linear density-fluctuation
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Figure 5.3.: We show the non-linear density-fluctuation power spectrum in (5.12) (blue)

together with the linear density-fluctuation power spectrum (black) and

the difference thereof, i.e. the non-linear contributions (red). The term

eQD(k1, t)P(k1, t) which already sets the non-linear shape of the power

spectrum (orange).

power spectrum in 5.3 that agrees well with results from numerical simulations.

We will now repeat the analysis discussed in 3.4.2 using Born’s approximation. Our

aim here is to investigate how the slope of the power spectrum at k ≥ 1hMpc−1

is affected by the shape of the interaction potential between particles. We will test

interaction potentials of the form (5.9) with the respective Fourier transforms given by

(5.10).

Let us, at this point, introduce the short hand

m :=
3− n

2
. (5.13)

The smoothing scale ε should be chosen to be much smaller than the smallest scale we are

interested in. Otherwise we run the risk of seeing effects caused by the smoothing scale

in (5.16) that are not physical. We take ε such that the condition 0 < k ε�
√
|m|+ 1

is automatically satisfied, which allows us to approximate the modified Bessel function
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Figure 5.4.: The non-linear density-fluctuation power spectrum from (5.12) is shown

here without the damping term eQD(k1, t) (blue). The term eQD(k1, t)P(k1, t)

is plotted for reference (dashed black).

by its asymptotic form

K|m|(k ε) ≈





Γ (|m|)
2

(
2
k ε

)|m|
, |m| > 0

− ln
(
k ε
2

)
− const. , |m| = 0

(5.14)

up to k ≈ 103 hMpc−1 for ε ≈ 10−4 hMpc−1. Absorbing all factors independent of k

into the amplitude Ā, we are left with

ṽ(k) ≈ Ā k−α (5.15)

for n 6= 3 where we have defined α := m+ |m|. For n = 3, (5.14) as well as (5.15) scale

logarithmically and not as power laws. We will omit the calculation for this case as

there is no new information to be gained from it.

We now need to assess which of the ingredients in (5.12) have to be adjusted to the

new particle interaction potential.

The only explicit appearance of the interaction potential in (5.12) is through the

integral

J =

∫

k

~k1 · ~k ṽ(k) eQD(k1−k,t′)Pδ(k1 − k, t′) (5.16)
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Figure 5.5.: We plot the integral (5.16) for different potentials. In a) we use the same

values of σ1 and the amplitudes of the interaction potential as well as of

the initial density power spectrum as for Newtonian gravity. In b) we

change these accordingly by using values that we have found in section

3.4.2. The slopes of the damping terms remain the same for any potential.

It is clearly visible that at large scales the slopes of the interaction terms

also follow k−2 for all potentials. The deviations from the Newtonian case

become increasingly apparent for k ≥ 0.3hMpc−1.

in the interaction term

〈F̄ (k1, t)〉 =

∫ t

0
2gqp(t, t

′)

∫

k

~k1 · ~k ṽ(k) eQD(k1−k,t′)Pδ(k1 − k, t′) . (5.17)

with the Fourier transform of the two-particle interaction potential ṽ(k) and the time-

evolved density-fluctuation power spectrum Pδ(k1 − k, t′) = g2
qp(t

′, 0)Pδ(k1 − k). The

specific form of the propagator denoted by gqp is of no importance to us here.

Using the interaction potential (5.15) in (5.16) and transforming the integration

variable to ~κ := ~k1 −~k, introducing y := κ
k1

and the angle cosine µ between the vectors

~κ and ~k1, yields the integral expression

J = 2π Ā k5−α
1

∫
dy y2

∫ +1

−1
dµ

(1− yµ) eQD(k1 y,t′)Pδ(k1 y, t
′)

(1 + y2 − 2yµ)α/2
. (5.18)

This function is shown in Fig. 5.5 a).

In Fig. 5.6 we see that the largest contributions to the integral (5.18) are from

scales around κ ≈ 0.02hMpc−1. On scales relevant for the inner halo structure,
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Figure 5.6.: The linear power spectrum with damping factor appearing in (5.16) shows

a peak at κ ≈ 0.02hMpc−1. The largest contributions of this factor to

the value of the integral (5.16) will therefore be found around these small

scales. At larger scales than κ ≈ 0.1hMpc−1, this integration kernel falls

off at least exponentially and damps away any contributions to the integral

(5.16).

k1 > 1hMpc−1, power contributions from the integration kernel are damped away as

shown in Fig. 5.5 a) such that the slope of the integral value remains the same for any

interaction potential. The relevant scaling with wave number k1 is thus,

J ∝ k5−α
1 g(k1) , (5.19)

where the function g(k1) is the value of the integral over dµ and dy in (5.18) as a

function of k1. According to Fig. 5.5, g(k1) has almost the same slope for any potential

on small scales, although its amplitude my change.

For n = 1, the integral J in (5.19) scales as k3
1 g(k1), as we expect for Newtonian

gravity. Going from n = 1 to n = 6, the slope changes from k3
1 g(k1) to k5

1 g(k1).

We consider (5.18) for two cases: In the first case, we set σ1 in the damping term QD

for any interaction potential to the same value as for Newtonian gravity. The result is

shown in Fig. 5.5 a). In the second case, we apply the same normalisation criterion as

in section 3.4.2 for the growth of large scale structures. We use the same amplitudes
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Figure 5.7.: We plot the integral in (5.16) divided by the factor k5−α
1 . It is clearly

visible that the deviations from the Newtonian case of the integral value in

(5.16) for different interaction potentials become negligible for increasing

wave numbers k1. This is due to the exponential damping of the integration

kernel (see Fig.5.6). In conclusion, only the factor k5−α
1 in (5.16) can have

any effect on the slope of the interaction term.

for the initial power spectrum and the interaction potential as in 3.4.2. The result is

then shown in Fig. 5.5 b). Here we see that the slopes at large scales remain the same

for varying interaction potentials, but at small scales, we see a significantly different

scaling with k1 and higher amplitudes. Consequently, this effect will be highly visible

in the non-linear density-fluctuation power spectrum, unless the factor eQD(k1, t)P(k1, t)

in (5.12) can counteract the increase in power on small scales.

The same two cases are shown for the function g(k1) in (5.19) in Fig. 5.5. Interestingly,

g(k1) still has the slope (5.19) b) for any potential on small scales, but the amplitudes

become much higher.

To verify that the delicate balance between the damping and the interaction terms

in (5.12) is still intact, we plot the difference 〈F̄ (k1, t)〉 − QD(k1, t) for interaction

potentials with different slopes in Fig. 5.8, again for the two cases as in Fig. 5.5. We see

that the balance between the damping and the interaction terms is gradually destroyed

with increasing deviation of the potential slope from Newtonian gravity. We see that,

apparently, adjusting the amplitudes by applying the same normalisation criterion as

in section 3.4.2 for the growth of large scale structures, makes the imbalance even worse.
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Figure 5.8.: The difference 〈F̄ (k1, t)〉−QD(k1, t) for interaction potentials with different

slopes in Fig. 5.8 is shown for the same two cases as in Fig. 5.5. The balance

between the damping and the interaction term is gradually destroyed with

increasing deviation of the potential slope from Newtonian gravity.

As a last step in our analysis, we show (5.12) in Fig. 5.9 for a 1
r2

-potential for four

different cases in an attempt to restore the balance between interaction and damping.

In Fig. 5.9 a), we leave all amplitudes at the same value as for Newtonian gravity. We

do not believe that this gives the correct non-linear power spectrum for the 1
r2

-potential,

we simply use it as a reference scenario. If we now adjust the amplitudes according to

the normalisation criterion as in section 3.4.2 for the growth of large scale structures

in (5.12), we end up with Fig. 5.9 c). Although the amplitudes were chosen such that

the linear growth on large scales should reproduce the linear growth for Newtonian

gravity under the assumption of (5.11), we clearly see that this is not the case. In Fig.

5.9 b), we have adjusted the amplitudes in the interaction term 〈F̄ (k1, t)〉 only, but

have left them at the same value as for Newtonian gravity in the term eQD(k1, t)P(k1, t).

We now reproduce the same linear growth on large scales as for Newtonian gravity,

however the non-linear power spectrum deviates strongly from the Newtonian case at

intermediate scales already. Subtracting a purely linear contribution from the non-linear

power spectrum in the sense of (5.11) will lead nowhere near the same results for the

non-linear contributions that we have computed in section 3.4.2. In all of these cases

we have just discussed, we see behaviour similar to that shown in Fig. 5.4 where we
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have switched off the damping term for Newtonian gravity.

Finally, in Fig. 5.9 d) we have adjusted the amplitudes everywhere but in P(k1, t).

Damping is very strong now and wipes away structures starting already at large scales.

These examples illustrate that we cannot restore the balance between the attractive

force due to the interaction between particle-pairs and the damping term in a simple,

heuristic manner.

5.6 Discussion of results

The results can be interpreted in different ways. The question is how well we trust

results obtained either from the perturbative ansatz or with the Born approximation.

The perturbative ansatz is a very straightforward way to include particle interactions.

There is no need for a sophisticated averaging process. Once the inertial trajectories are

defined perturbations with respect to these trajectories are performed in orders of the

interaction potential. If we believe that the results from the perturbative approach are

wrong, then we would expect significant deviations from the first-order approximation

for higher order corrections. This would mean that the series would not simply converge.

The convergence of the expansion series has not been checked so far.

But even if the series is in fact convergent, there might be another problem with

choosing the inertial trajectories: The inertial trajectories which we perturb by means

of the interaction potential are the so-called Zel’dovich trajectories or, to be more

precise, the improved Zel’dovich trajectories. The Zel’dovich approximation is of the

form

x = x(i) +D+(a)u , (5.20)

where x and x(i) are the final and initial particle coordinates, respectively, u is the initial

velocity field, and D+(a) is the linear growth factor and in this case a preferred time

coordinate. At first glance, nothing seems to speak against using the same Zel’dovich

trajectories for all interaction potentials since D+(a) plays the role of a time coordinate.

It is however unclear if this approximation is truly valid for any interaction potential

or if it is a good approximation for the Newtonian gravitational potential only, where

the growth factor is indeed scale independent and only a function of the scale factor

(or time). If this should indeed be the case, then the so produced error is much more

pronounced in the interaction term of the Born approximation, where interactions are

included in the exponential. This would imply that we cannot fully trust our results

from the perturbative ansatz, but the results from the Born approach might be even
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Figure 5.9.: We show (5.12) for a 1
r2

-potential for four different cases. a) We leave all

amplitudes at the same value as for Newtonian gravity. b) We have adjusted

the amplitudes in the interaction term 〈F̄ (k1, t)〉, but have left them at

the same value as for Newtonian gravity in the term eQD(k1, t)P(k1, t). c)

We have adjusted the amplitudes in (5.12) according to the normalisation

criterion described in section 3.4.2 for the growth of large scale structures.

d) We have adjusted the amplitudes everywhere but in P(k1, t).
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farther away from reality.

But what does this mean for the density profiles of dark matter halos?

At this point we can neither confirm nor exclude that the non-linear density-fluctuation

power spectrum is consistent with an NFW profile on scales k ≥ 1hMpc−1 in the

scope of the Born approximation. In the Born approximation, we cannot identify the

term that directly corresponds to the one-halo term of the halo model. The non-linear

power spectrum in the Born approximation gives us a mixture between the one- and

the two-halo terms. Since we expect the mass function n(m) to also change with the

potential slope and the halo-terms are convolutions of the mass function with the halo

density profile, the non-linear power spectra may well be consistent with the NFW

profile. To prove this, it would suffice to obtain the correct mass function for each

interaction potential, which does not rely on the spherical collapse model. It can be

easily shown that the virial radius, which is needed in order to set up the spherical

collapse model, is ill-defined for potentials steeper than 1
r2

. It is also not clear how

to define collapsed structures in the spherical collapse model, since collapse becomes

scale-dependent instead of the uniform collapse found for Newtonian gravity.

5.7 Conclusions

The formation of large-scale dark matter structures in our KFT formulation as well

as in numerical simulations is governed by only a few physical properties. These

are the interaction potential between dark matter particles, the equations of motion

governing particles trajectories, the underlying cosmology, i.e. the expansion history

of the background universe, and initial density and momentum correlations set, as is

most commonly believed, by quantum fluctuations during inflation. It appears that

in observations as well as numerical simulations, these physical properties governing

large-scale structure formation or their interplay lead to a particular shape of the

density profile for dark matter halos that is valid for halos on all scales from dwarf

galaxies to massive galaxy clusters.

In [9], the authors have investigated the effects of full initial momentum correlations

on the non-linear density-fluctuation power spectrum. We have found that taking

into account initial momentum correlations leads to a characteristic deformation of

the non-linear power spectrum on scales of the order of k ≈ 0.3hMpc−1 but not at

the larger k that are relevant for the formation of dark matter halos. Furthermore, it

can be shown that the full initial density correlations play a role for the shape of the
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5. Influence of gravitational potential on structure formation on small scales

density-fluctuation power spectrum at early times but can be neglected for late times

when a = 1.

In this work, we have explored the effects of the particle interaction potential on the

small-scale behaviour of the cosmic density-fluctuation power spectrum. We have shown

that the purely non-linear fraction of the power spectrum obtained in a perturbative

ansatz with KFT is consistent with the one-halo term of the halo model explicitly

containing the universal NFW halo-density profile for any interaction potential. We

treat these results with caution, since we could not reproduce them using the Born

approximation to evaluate particle trajectories. We believe that the perturbative ansatz

becomes increasingly incorrect for increasingly steep interaction potentials, because

most power is accumulated on increasingly small scales. We have also shown that using

the closed expression (5.12) with other interaction potentials than Newtonian gravity

yields un-plausible results, because the balance between interaction and damping seems

to be broken. This may be due to an increasing deviation of the real particle trajectories

for non-Newtonian gravity from Zel’dovich trajectories which are set up for Newtonian

gravity in the first place.

With this, we cannot conclusively answer the question as to whether the form of the

Newtonian interaction potential or the initial conditions determine the particular form

of the density profile or its universal behaviour.

So far our analysis assumes Hamiltonian equations of motion and a ΛCDM cosmolog-

ical model. While we do not see any justification to vary the first assumption, changing

the expansion history may be a worthwhile task. This could give better insights into

how the expansion history affects structure formation and which scales are sensitive to

this.
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Part III.

Classical many-body systems
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6

Theoretical background on Rydberg

systems

6.1 Rydberg atoms

6.1.1 Interaction between Rydberg atoms

In the past decade Rydberg atoms – atoms excited into a very high principal quantum

number n – have gained increasing popularity in theoretical as well as experimental

physics. Due to the large separation of the outer electron and the nucleus, Rydberg

atoms have a strong dipole moment. Therefore the interaction of atoms in Rydberg

states with each other even when they are separated by a microscopic distance is still

strong whereas the van der Waals forces between two ground state atoms separated by

a macroscopic distance would be negligible. In addition Rydberg atoms have a long

lifetime of ∼ 100µs. This makes Rydberg atoms excellent candidates for the study of

interactions in many-body systems [47, 48].

The two properties of Rydberg atoms that make them such interesting systems for us

are their strong interactions and the Rydberg blockade.

Two Rydberg atoms separated by a distance r that is much larger than than the sum

of their radii interact via a dipole-dipole coupling. Depending on their distance the

atoms will either interact through a dipole potential, if they are very close

vd =
C3

r3
, (6.1)
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Figure 6.1.: Illustration of the Rydberg blockade in a gas. The ground state atoms

(blue) are exited into Rydberg states (red). However, due to the Rydberg

blockade, there is a radius Rb (6.3) around each Rydberg atom where no

other ground state atom can be excited.

or a van der Waals interaction if they are farther apart

vvdW =
C6

r6
. (6.2)

Note that the interaction potentials are repulsive.

6.1.2 Rydberg blockade

We consider two atoms separated by a distance r. Individually, each atom is a two-level

system with a ground state |g〉 and a Rydberg state |r〉. The two states are separated

by an energy E. The two-atom system can be in one of the following four states: both

atoms are in the ground state denoted by |gg〉, one of the atoms is in the Rydberg

state and the other is in the ground state denoted by |rg〉 or |gr〉, both atoms are in

the Rydberg state denoted by |rr〉. Assuming that the separation between the two

atoms is large, they are in the van der Waals regime and the energy of the state |rr〉
is shifted by an amount ∆EvdW. All other states are essentially unshifted, since the

atoms only interact strongly when they are both in the Rydberg state. Consequently,

a laser tuned on resonance with the excitation of one atom is not resonant with the

excitation of the second atom, given that the linewidth of the excitation is smaller than

∆EvdW. Thus, the excitation of one atom prevents the excitation of the second one.

This is called the “Rydberg blockade” and is illustrated in Fig. 6.1.

This blockade is confined to a radius Rb which is set by the bandwidth of the excitation.
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6.1. Rydberg atoms

Figure 6.2.: Illustration of energy shift due to the Rydberg blockade. A laser tuned

on resonance with the excitation of one atom is not resonant with the

excitation of the second atom inside the Rydberg blockade radius, given

that the linewidth of the excitation is smaller than ∆EvdW. When in the

Rydberg blockade regime, the system undergoes Rabi oscillations between

the collective states |gg...g〉 and |ψ〉 at a frequency
√
NΩ with the single-

atom Rabi frequency Ω characterizing the coupling between the ground

and Rydberg state of a single atom.

This means, that atoms inside the blockade radius cannot be excited due to the shift

in their excitation energy, but atoms outside Rb can well be excited. In the case of the

van der Waals interaction the blockade radius is given by

~Ω =
C6

R6
b

⇒ Rb =

(
~Ω

C6

) 1
6

, (6.3)

with the Rabi-oscillation frequency Ω. The blockade radius is obtained by replacing

the Rabi frequency Ω by the line width of the laser ∆ν.

The Rydberg blockade can be extended to the general case of N atoms which are

located within a sphere given by the blockade radius Rb. The N -atom system will

oscillate between the collective state |gg...g〉 and

|ψ〉 =
1√
N

N∑

j=1

|gg...rj ...g〉 (6.4)

where all atoms are in the ground state and only one of the N atoms is excited into

the Rydberg state |r〉. The oscillation frequency is
√
NΩ with the Rabi-frequency of a

single atom Ω. This behaviour confirms that the N atoms are not independent of each

other but form a coupled many-body system.
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6.2 Rydberg systems and KFT

The kinetic field theory we have introduced in section 3 can in principle be applied to

any classical many-body system. Strictly speaking, a system of Rydberg atoms has

to be treated in the scope of quantum mechanics. We, however, will treat Rydberg

atoms as classical particles. This is possible because, first of all, we do not describe

the excitation of atoms into Rydberg states. In our description, the Rydberg atoms

are already in existence and we simply describe their (classical) trajectories. Secondly,

we neglect all quantum effects, since we are interested in the classical evolution of

the system. Being able to distinguish between quantum and classical correlations in

strongly-correlated many-body systems is a central task in this field and may help to

understand the nature of correlations due to quantum-mechanical effects.

Rydberg systems are especially suitable for our purposes because of the Rydberg

blockade which provides a natural means to set up a correlation function. In case of

the Rydberg blockade we have an anti-correlation within the Rydberg-blockade radius

Rb, because no two Rydberg atoms can be excited closer together than 2Rb. We will

thus apply our KFT to study the dynamics of many-body Rydberg systems. To do so,

we will shortly describe how the initial conditions and propagation of particles need to

be set up.

6.2.1 Initial conditions

To set up the initial correlation function we imagine the following scenario: N ground-

state atoms with a high packing fraction are simultaneously excited into the Rydberg

state. Due to the Rydberg blockade no two Rydberg atoms are closer than 2Rb. With

this picture in mind, we can well approximate the Rydberg atoms as hard spheres. We

assume that the excitation is a Gaussian random process. This, however, is a simpli-

fying assumption. In reality, gaussianity is broken precisely because of the Rydberg

blockade effect due to a strong interaction between the atoms. It stands to reason that,

although, gaussianity is broken on very small scales around each Rydberg atom, it is

again restored on scales outside of the Rydberg blockade, where interactions between

atoms are negligible and atoms are excited at random. Since we formulate our initial

conditions at the scales of the Rydberg blockade radius and the volume of the Rydberg

blockade is very small compared to the scales we are interested in, we can safely assume

the excitation to be a Gaussian random process. Thus, the initial distribution of

Rydberg atoms will be given by a multivariate Gaussian with a correlation matrix

determined by anti-correlations due to the Rydberg blockade. The initial correlations
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can thus be formulated just as in section 3.3.1.

We will consider systems of N Rydberg atoms where the particle positions are

initially correlated due to the Rydberg blockade. There will, however, be no correlation

of momenta for different particles. We will merely have a momentum dispersion due

to a physical temperature that will be set externally. We will also assume, as in the

cosmological case, that averaged over sufficiently large scales the system is homogeneous

and isotropic.

6.2.2 Propagator

Since we are treating Rydberg atoms as classical particles, their trajectories will be

subject to Hamilton’s equations of motion. However, we will no longer be able to

capture as much of the non-linear structure with a simple perturbative approach to

first order or the Born approximation as in our cosmological application. The reason

for this is that we will no longer be able to use the Zel’dovich trajectories as our inertial

trajectories. As described in 4.4.2, the Zel’dovich trajectories capture part of the effect

of the Newtonian interaction potential on particle trajectories and which consequently

take us already quite far into the non-linear regime.

Thus, if we simply use the Hamiltonian equations of motion to determine the free

motion of particles and set up a perturbation series in the interaction potential which

we truncate at low order, we will end up with small corrections to the free evolution of

particles which might not even be enough to capture the full linear evolution of the

structures.

Since we are considering correlations in particle positions only, it can be shown explicitly

that to first order in perturbation theory we will not be able to capture non-linear effects

due to the homogeneity of the system. It has been shown in [49] that for a two-point

correlations function to first order in the particle interactions, all appearing terms are

linear in the initial power spectrum. During its evolution non-linear structures will,

of course, be built up, but can thus not be captured by the first order perturbation

theory [50].

At the same time, we know that in the scope of a simple perturbative ansatz as used

in [1] we will not get the full linear evolution of structures either. Instead, we will

employ a resummation scheme developed in [51] [paper in preparation]. This allows us

to include all terms linear in the interaction potential already at the lowest order in

this resummed perturbative approach. In this way, we will at least be able to account

for all linear effects. The first results were presented in [52].
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Structure formation in a Rydberg gas

7.1 Density-fluctuation power spectrum

As explained in the previous chapter, we employ the resummation scheme introduced

in [51] to compute the density-fluctuation power spectrum with linear effects. The

resummation scheme is built upon replacing the microscopic by macroscopic fields

and reformulating the path integral in terms of those macroscopic fields. This allows

to set up a new perturbative approach to KFT following the standard procedure in

quantum and statistical field theory, i. e. in terms of propagators and vertices. Since

the development of this scheme is the subject of [51], we mill merely briefly review the

procedure and give the result.

7.1.1 Resummed propagator

Macroscopic fields ψ := (ρ, β) are introduced, with the auxiliary field β being conjugate

to the number density ρ in the same way as χa to ϕa in (3.8). The partition function can

then be reformulated in terms of the macroscopic fields. The macroscopic generating

functional Zψ can be defined by introducing a source field M =
(
Mρ,Mβ

)
conjugate

to ψ into the partition function,

Zψ[M ] :=

∫
Dψ eiSψ [ψ]+iM ·ψ , (7.1)

with the macroscopic action that contains the inverse macroscopic propagator ∆−1 and

the macroscopic (nβ + nρ)-point vertices Vβ···βρ···ρ.
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Within this approach, the interacting 2-point density cumulant Gρρ, for example, is

again obtained analogously to the microscopic formulation via

Gρρ(1, 2) =
δ

iδMρ(1)

δ

iδMρ(2)
lnZψ[M ]

∣∣∣∣
M=0

(7.2)

= ∆ρρ(1, 2) + terms involving vertices . (7.3)

The inverse macroscopic propagator ∆−1 can be identified as

∆−1(1, 2) =

(
(∆−1)ρρ (∆−1)ρβ

(∆−1)βρ (∆−1)ββ

)
(1, 2) (7.4)

=

(
σρB ·G(0)

BB · σBρ i I + σρB ·G(0)
Bρ

i I +G
(0)
ρB · σBρ G

(0)
ρρ

)
(1, 2) , (7.5)

where I denotes the unit 2-point function,

I(1, 2) := (2π)3 δD
(
~k1 + ~k2

)
δD(t1 − t2) . (7.6)

It is also possible to give an expression for the vertices Vβ···βρ···ρ, but we will omit it

here, as we are interested in the tree-level propagator only.

The propagator ∆ is obtained by a combined matrix and functional inversion of ∆−1,

defined via the matrix integral equation
∫

d1̄ ∆(1,−1̄) ∆−1(1̄, 2)
!

= I(1, 2) I2 , (7.7)

with the 2 × 2 unit matrix I2. The matrix part of the inversion can be performed

immediately and yields

∆(1, 2) =

(
∆ρρ ∆ρβ

∆βρ ∆ββ

)
(1, 2) =

(
∆R ·G(0)

ρρ ·∆A −i∆R

−i∆A 0

)
(1, 2) . (7.8)

The remaining functional inverses

∆R(1, 2) = ∆A(2, 1) :=
(
I − iG

(0)
ρB · σBρ

)−1
(1, 2) (7.9)

can generally only be computed numerically.

7.1.2 Analytical result

For a static space-time, no initial momentum correlations and zero temperature,

however, there is an analytical solution,

∆R(1, 2) = I(1, 2)− (2π)3 δD
(
~k1 + ~k2

)
√
k2

1 v(k1)ρ̄

m
sin

(√
k2

1 v(k1)ρ̄

m
(t1 − t2)

)
,

(7.10)
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7.2. Numerical reference model

with the single particle potential v, the particle mass m and the mean number density

ρ̄. The ρρ-component of the propagator then reads

∆ρρ(1, 2) = (2π)3 δD
(
~k1 + ~k2

)
ρ̄2 cos

(√
k2

1 v(k1)ρ̄

m
t1

)
cos

(√
k2

1 v(k1)ρ̄

m
t2

)
P

(i)
δ (k1) ,

(7.11)

resulting in the density-fluctuation power spectrum

Pδ(k, t) = cos2

(√
k2 v(k)ρ̄

m
t

)
P

(i)
δ (k) . (7.12)

The result of this resummation scheme has been applied to cosmic structure formation

for dark matter and for baryonic matter. In both cases, the description has yielded

plausible results. Expanding the resummation to include one-loop corrections to the

propagator, [53] was able to show that the obtained power spectra for cosmic structure

formation match known results from other perturbative schemes based on Eulerian

perturbation theory. Due to this consistency, we can be confident that the above

proposed resummation approach is a viable description of structure formation.

7.2 Numerical reference model

7.2.1 Molecular dynamics simulation

The ultimate goal of our endeavour is, of course, the comparison of structures in a

system of Rydberg atoms predicted by KFT with the structures found in the exper-

iment. However, until the theory is ready to be put to the test for real systems, we

need a means to assess the quality of predictions made by KFT. We have therefore

set up a simplistic molecular dynamics (MD) simulation as a reference model1. Unlike

cosmological N -body simulations where one has to deal with the long-ranged Newtonian

interaction potential, the interactions in a Rydberg gas are comparably short-ranged,

i.e. van der Waals or dipole interactions. The computational cost is therefore greatly

reduced.

Essentially, the simulation propagates N = 32000 particles in a box of volume

V = (200µm)3 with periodic boundary conditions under the influence of Hamiltonian

dynamics.

The excitation of Rydberg states and the anti-correlation effect due to the Rydberg

1The credit goes to Martin Pauly and Robert Lilow.
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blockade are realised by assigning particles to positions at random. Regions with

blockade radius Rb around each already present Rydberg atom are excluded when a

new particle is assigned a position. We perform several realisations of the system and

then average over those to obtain statistics on the system and thus make it comparable

to our KFT results.

We do not simulate the presence of ground state atoms. All particles in our simulation

are Rydberg atoms. The time scales on which we observe the dynamics of the system

are well within the life-time of a Rydberg state.

7.2.2 Shot noise

In [1] it was argued that shot-noise terms that arise because the density field is

composed of discrete particles can be neglected for our cosmological application in the

thermodynamic limit of N →∞ particles. In our MD simulation, however, we have a

finite number of particles in a finite-sized box. We can therefore not simply assume

that shot noise is negligible. In fact, we will see that we need to take shot noise into

account during the time evolution in our KFT computations to make them comparable

with the MD simulation.

We therefore have to include shot noise in the computation of the power spectrum

from KFT. The analytical expression (7.12) then reads

Pδ(k, t) = cos2

(√
k2 v(k)ρ̄

m
t

) (
ρ̄−1 + P

(i)
δ (k)

)
− ρ̄−1 . (7.13)

where we subtract the shot noise ρ̄−1 again after having evolved the system forward in

time. The same is done in the MD simulation: after the system has evolved including

shot noise, only contributions from distinct particle-pairs are included in the pair-

correlation function. We subtract the shot-noise term, i.e. the one-point contribution,

to obtain the two-point correlations only.

7.2.3 Initial power spectrum

The initial correlation function is set by the Rydberg blockade radius, i.e. two particles

cannot be closer than 2Rb at the initial time, thus providing an anti-correlation. The

Rydberg blockade around each particle can be approximated by a hard sphere. The

initial correlation function is directly sampled from the MD simulations and shown

in Fig. 7.1. Note that we always plot the radial distribution function (RDF) which is

directly connected to the two-point correlation function ξ(r),

RDF(r) = ξ(r) + 1 . (7.14)
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Figure 7.1.: We show the initial radial distribution function (7.14). The black (dashed)

line shows the initial RDF which is sampled directly from a set of MD

simulations. In red (solid) we show the same quantity that has been run

through two Fourier transforms: the initial RDF from MD simulations

(black dashed line) has been Fourier transformed to give the initial power

spectrum used for KFT computations. The initial power spectrum was

then again Fourier transformed to give the initial RDF. We show this to

illustrate the stability of the Fourier transformations involved.

Thus, by construction, the RDF is a positive semi-definite function.

For our KFT computations we require the power spectrum instead of the correlation

function. We therefore Fourier transform the correlation function ξ(r), which is

sampled from the MD simulation, to an initial power spectrum P
(i)
δ (k). We then use

the formalism discussed in section 7.1.1 to compute the evolved density-fluctuation

power spectrum.

7.3 Results

Before we turn to the results, let us introduce a time scale in terms of which we will

present the evolution of the Rydberg system.
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Parameters free evolution Gauss van der Waals

Box volume V [µm3] 8 · 106 8 · 106 8 · 106

Particle mass m [kg] 1.443161 · 10−25 1.443161 · 10−25 1.443161 · 10−25

Particle number n 32000 32000 32000

Rydberg radius Rb [µm] 5 5 5

Potential amplitude [J] A = 0.0 A = 1.47585 · 10−26 C6 = 5 · 10−58

Potential width/

smoothing [µm] 0.0 σ = {0.5, 5, 10} ε = 5

Table 7.1.: Overview of the parameter values used for the MD simulations and the

KFT computations.

With the mean particle distance

d̄ =

(
V

n

) 1
3

(7.15)

where V is the volume of the system and n the number of particles, and the thermal

velocity

vth =

√
kB T

m
(7.16)

with temperature T , particle mass m and Boltzmann constant kB, we define a collision

time-scale

tc =
d̄

vth
. (7.17)

The collision time-scale tc contains information on the average number of particle

encounters and can give an estimate on how strongly particles interact with each other.

If the collision time-scale is short, a particle will interact strongly with many other

particles and we can thus expect, that non-linear effects will become important for the

evolution of structure and thus the actual trajectories of particles will deviate strongly

from their inertial trajectories.

For our parameters (see table 7.1) the collision time-scale is tc ≈ 64µs.

7.3.1 Free evolution

As a first test we compare the free evolution, i.e. no interaction potential between

particles, of the system. The result is shown in Fig. 7.2 for parameters given in table

7.1. We show the result in terms of the RDF for both the MD simulation and the
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Figure 7.2.: We show the comparison between predictions from KFT (dashed) and

MD simulations (solid) for the free evolution, i.e. no interaction potential

between particles, of a system of initially anti-correlated Rydberg atoms.

The parameters we used are summarised in table 7.1.

KFT computation. The RDF can be directly sampled from the MD simulation, but

for KFT, we need to Fourier transform the evolved density-fluctuation power spectrum

first to obtain the RDF.

We see very good agreement between the predictions from simulations and KFT for

the free evolution of particles on all scales. The interpretation is simple: The initial

structures due to the Rydberg blockade are gradually washed out by thermal motion.

7.3.2 Evolution with Gaussian potential

To quantify the influence of the interaction potential on the evolution of structure in

the Rydberg gas, we found it useful to start with a repulsive Gaussian interaction

potential of the form

vG(r) = A e−
r2

2σ2 , (7.18)

with the Fourier transform

ṽG(k) = A (2πσ2)
3
2 e−

k2

2σ2 . (7.19)

With the width of the Gaussian σ we can easily control the range of the interaction

potential.
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The results are shown in Fig. 7.3 where we have kept the interaction amplitude constant

at A = 1.47585 · 10−26 J while varying the potential width σ (see table 7.1). We show

three cases in 7.3: in the first row the potential width has been set to the same value

as the Rydberg blockade radius σ = Rb, in the second row we chose σ = 0.1Rb and in

the third row σ = 2Rb.

Comparing the left and right columns of Fig. 7.3, we see that shot noise is indeed

relevant for this system. Including shot noise brings the KFT predictions very close

to the simulation results. However, we also observe, that when we do include shot

noise in our KFT calculations we get negative values for the RDF at small radii. By

definition, this should never happen. We have not been able to identify the source of

this issue yet. It might be due to an error when including the shot noise or it might

be an artefact from the Fourier transformation of the initial RDF to an initial power

spectrum. Although, we have not been able to find such an error. We will thus ignore

the un-physical occurrence of negative values of the RDF in KFT and focus on the

comparison of the KFT and MD results on scales where the RDF behaves properly.

For all three values of σ we see that structures are wiped out due to thermal damping

and that during the evolution of particle trajectories the particles cross the Rydberg

blockade radius. We also show the evolution due to the interaction potential only in

Fig. 7.4, where we have switched off thermal motion by setting the temperature to zero.

The left column shows the results for KFT and the right for the MD simulation. We

again set σ to three different values as in Fig. 7.3. In the KFT panels we see that either

no evolution is visible (σ = 10µm) or the behaviour becomes un-physical (σ = 5µm

and σ = 0.5µm). For the MD simulation, on the other hand, we observe perfectly

plausible behaviour in all three cases: For the smallest potential width σ = 0.5µm

particles do not feel each other’s interaction potential and there is no evolution. For a

wider potential with σ = 5µm we see that particles feel each other’s repulsive potentials

and thus drift apart. The same can be seen for σ = 10µm, although, we would expect

the drift to be stronger as the potential is wider. However, as a common procedure

for MD simulations, we have introduced a potential cut-off so that the calculations

of the forces between particles can be accomplished in a reasonable amount of time.

The cut-off must be chosen to be much smaller than the box size we consider. This

criterion is, however, poorly fulfilled for σ = 10µm. Since it is so wide-ranged, the

cut-off radius is about one fifth of the box size. Thus, we believe we do not capture

the full effect of the potential interaction. It may also be, that due to the wide range

of the interaction potential the particles do not feel a strong force, because the forces

from different particles average out due to the overlap of interaction potentials.
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Figure 7.3.: Comparison between predictions from KFT (dashed) and MD simulations

(solid) for the evolution of a system of initially anti-correlated Rydberg

atoms with a Gaussian particle interaction potential (7.18) at T = 100µK

for three different values of the potential width σ. Left: Shot noise effects

are included in the KFT description. Right: Shot noise effects are neglected

in the KFT description. For parameters used see table 7.1. 79
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Figure 7.4.: Comparison between predictions from KFT (left column) and MD sim-

ulations (right column) for the evolution of a system of initially anti-

correlated Rydberg atoms with a Gaussian particle interaction potential

(7.18) at T = 0µK for three different values of the potential width σ. For

parameters used see table 7.1.
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If we compare the evolution in Fig. 7.4 to the evolution in Fig. 7.3, we see that thermal

effects dominate in all cases. For σ = 0.5µm we see that the particles undergo a purely

thermal evolution at first, and then encounter the steep potential barrier at radius

r ≈ 0.5µm. However, their kinetic energy is insufficient to cross it.

It is, therefore, due to the dominant effect of thermal motion even at small temperatures

of T = 100µK, that we still see good agreement between the KFT and MD predictions,

although the results for a purely interacting system without temperature do not match

at all. This suggests to study the behaviour in the limit of T → 0, but keeping the

temperature finite.

7.3.3 Evolution with van der Waals potential

In the last step of our analysis we equip the particles with a van der Waals interaction

potential of the form

vW(r) =
C6√

r2 + ε2 6 (7.20)

where we have to introduce a smoothing scale ε in order to perform the Fourier

transform which is given by

ṽW(k) = C6
π2

4

(1 + k ε)

ε3
e−k ε . (7.21)

Once again, the parameters for KFT and MD for this case can be read off table 7.1.

Unfortunately, replacing the Gaussian interaction potential with the van der Waals

potential does not remedy the issues we have seen in 7.3.2. In Fig. 7.5 we show the

results for a van der Waals potential with the smoothing scale set to ε = 5µm which

corresponds to the Rydberg blockade radius.

The RDF obtained from KFT becomes negative for small radii as before for the

Gaussian potential. However, for the van der Waals potential the KFT results disagree

with the MD results on scales around r ≈ 5µm which are most interesting for us

with regard to the evolution of structure. The deviation of KFT predictions from

the simulation results occurs for early times already. Varying the smoothing scale,

unfortunately, brings no improvement. On large scales, though, KFT and MD results

agree well.
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Figure 7.5.: Comparison between predictions from KFT (dashed) and MD simulations

(solid) for the evolution of a system of initially anti-correlated Rydberg

atoms with a van der Waals particle interaction potential (7.20) at T =

100µK for a smoothing scale ε = 5µm. For all parameters used see table

7.1.

7.4 Conclusions

We have shown how to apply the kinetic field theory formalism to non-cosmological

systems. We have discussed that the best way to treat systems that lack initial

momentum correlations and are initially correlated in particle positions only, is by a

resummation scheme. We have then used the KFT resummation scheme proposed by

[51] to compute the full linear evolution of a system of Rydberg atoms, treating them

as classical particles, which are initially anti-correlated due to the Rydberg blockade.

On the one hand, we have shown that the KFT predictions agree well with results from

molecular dynamics simulations for a Gaussian interaction potential. It appears that

even at very small temperatures, i.e. T = 100µK, structure evolution is dominated by

thermal effects. On the other hand, we have observed that if temperature is neglected

completely, i.e. T = 0µK, so that only the evolution due to particle interaction can play

a role, KFT either shows no structure evolution or produces un-physical effects. Seeing

no evolution of structures in KFT when an evolution is observed in MD simulations

may indicate that these effects are purely non-linear and hence cannot be captured
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by the resummed propagator at tree-level. The un-physical behaviour, like negative

RDFs, that KFT produces is an issue that has yet to be resolved.

Furthermore, we have made predictions for a system with a van der Waals particle

interaction potential which is a more realistic description of Rydberg gases and brings

us closer to experiments. However, we observed the same issues as with a Gaussian

potential. What is more, we see that KFT predictions deviate from MD results at very

early times already. This may have to do with an earlier onset of non-linear effects

than for a Gaussian potential. At this point, however, this is just speculation and has

yet to be analysed.
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8

Extension of the KFT formalism to

spin systems

8.1 Motivation

The kinetic field theory formalism does not necessarily need to describe the dynamics

of particles in terms of their positions and momenta. The formalism can be used

to describe the dynamics of more abstract properties for any (classical) Hamiltonian

system like, for example, the dynamics of classical spins. In this chapter, we will develop

a toy model of initially correlated, interacting spins on a lattice and demonstrate how

their many-body spin dynamics can easily be described by the KFT formalism and

how to compute equal-time n-point correlation functions at some later time t.

Interacting spin systems are of fundamental relevance in the study of quantum

many-body systems and thus are the subject of active research in theoretical physics

as well as in experimental physics. In the last couple of years, controlled observations

of non-equilibrium spin dynamics has become experimentally possible [54–56]. Large

systems with long-range interactions, i.e. van der Waals interaction potentials, have

been realised with Rydberg atoms [57, 58]. This development calls for adequate the-

oretical descriptions of such systems, but it appears that current techniques are not

suitable to describe quantum dynamics of large spin systems. Current approaches

using perturbative techniques as well as kinetic theories (usually based on the Langevin

equation) and phase-space models are valid in near-equilibrium situations or on short

time scales only [59, 60]. New numerical techniques are being developed to overcome
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x y

z

s1 s2 si sj sN

z
s  = const.

Figure 8.1.: Illustration of a 1D classical spin lattice. As in our later calculations sz is

the same for all spins and ṡz = 0. The spins are precessing in the x-y-plane.

these limitations [61].

Coming from the field of cosmology, our expertise is not in the field of correlated

spin-systems and we cannot yet assess how well KFT is suited for their description or

if we will be able to properly incorporate quantum effects in our approach.

In the long run, our aim is to find out if our method is suitable to give a sufficiently

accurate description of correlated classical many-body spin systems such that our

classical description may help to understand which effects are the result of the quantum

nature of spin systems and which effects are due to classical dynamics.

The research presented in this thesis is the very first step towards this goal. In this

chapter, we will present how to set up such a spin-lattice system in the scope of KFT

and show simple results which are intended as a proof of concept. This research has

been carried out together with Marie Teich under our direct supervision. Thus, the

results discussed here can also be found in her Bachelor’s Thesis [62].

8.2 Many-body spin systems in KFT

The main idea is very simple:

We consider N � 1 classical rotors, i.e. classical spins, on a (one-dimensional) lattice

with sites i. The spin components of each spin at site i will be given by (sxi , s
y
i , s

z
i ).

For the description of this spin-system we return to (3.31). We name our source field

Q to avoid confusion with the spin coupling later, and replace particle coordinates by

spin components. The generating functional then reads

Z[Q] =

∫
ds0P

(
s0
)

exp

(
i

∫ ∞

0
dt′〈Q(t′), s(t′)〉

)
(8.1)
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where the trajectories of spin-components as well as the source field are bundled into

the tensorial structure,

~sj :=




sxj
syj
szj


 , ~Qj :=




Qxj
Qyj
Qzj


 , (8.2)

s := ~sj ⊗ ~ej , Q := ~Qj ⊗ ~ej , (8.3)

and a summation over the position on the lattice j is implied in 〈·, ·〉. The initial

probability distribution for correlated spin-components P
(
s0
)

as well as the solution

to the equations s(t′) will have to be specified later.

Correlation functions can now be computed analogously to 3.2.2, by applying func-

tional derivatives to (8.1) with respect to the source field Q and setting it to zero

afterwards. We can compute correlations between the same spin-components at different

lattice sites as well as correlations between different spin-components.

8.3 Hamiltonian of the spin-system

The classical Hamilton function for individual spins in the usual phase-space represen-

tation of quantum dynamics is given by

H =
1

2

∑

i 6=j

[
J ⊥ij
2

(
sxi s

x
j + syi s

y
j

)
+ Jzijs

z
i s
z
j

]
+ Ω

∑

i

sxj , (8.4)

with the interaction couplings

J
⊥/z
ij ≡ J

|~rij |n
, (8.5)

where ~rij is the vector connecting spins on sites i and j and J denotes the amplitude.

In addition to interactions between spins we could, in principle, also have an external

transverse field with strength Ω.

The equations of motion for spin-components can be obtained from the Hamiltonian

via

ṡαi = {sαi , H} = 2
∑

β

εαβγs
γ
i

∂H

∂sβi
(8.6)

where {·, ·} denotes the Poisson bracket and εαβγ is the fully antisymmetric Levi-Civita

tensor in three dimensions.

There is no exact solution for the set of equations of motion obtained from the full
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Hamiltonian (8.4), but we can easily give an exact solution to the equations of motion

for the Ising part of this Hamiltonian,

HIsing =
1

2

∑

i,j

Jzijs
z
i s
z
j , (8.7)

with Jzij = Jzji and Jzii = 0. The equations of motion for (8.7) are given by the set of

coupled differential equations

ṡxi = −2 syi
∑

j

Jzi,js
z
j = −2 syi β

z
i ,

ṡyi = 2 sxi
∑

j

Jzi,js
z
j = 2 sxi β

z
i ,

ṡzi = 0 . (8.8)

Taking the second time derivative, we can decouple the equations and write

s̈xi = −2 ṡyi β
z
i

= −4 sxi (βzi )2 . (8.9)

With the usual ansatz, we solve the equations of motion with suitable initial conditions.

The solutions are then given by

sxi (t) = sx,0i cos (2βzi t)− sy,0i sin (2βzi t) ,

syi (t) = sx,0i sin (2βzi t) + sy,0i cos (2βzi t) ,

szi (t) = sz,0i = const. , (8.10)

with the initial condition sxi (t = 0) = sx,0i and syi (t = 0) = sy,0i .

8.4 Initial conditions and correlation functions

We assume that the initial conditions for correlated spin-components are given by a

multivariate Gaussian distribution of the form

P
(
s0
)

=
1√

(2π)3N detC
exp

(
−1

2
s0>C−1s0

)
, (8.11)

as we have done for all our applications so far. We further assume for simplicity, that

initially the z-components of all spins are aligned. Thus, we will only be interested in

the dynamics in the x-y-plane and sz,0i ≡ sz,0 is the same at each lattice site. We can

therefore neglect the integration over the initial conditions of the z-component.
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In order to rid ourselves of the functional determinant in (8.11), we re-write the

generating functional (8.1) in the following way

Z[Q] =

∫
ds0 1√

(2π)3N detC
exp

(
−1

2
s0>C−1s0

)
ei〈s0,Q̄〉 (8.12)

with

Q̄ :=

( ∫∞
0 dt′ [Qxi (t′) cos (2βzi t

′) +Qyi (t
′) sin (2βzi t

′)]∫∞
0 dt′ [Qyi (t

′) cos (2βzi t
′)−Qyi (t′) sin (2βzi t

′)]

)
. (8.13)

Integrating over the initial conditions then gives the simple result

Z[Q] = e−
1
2
Q>CQ , (8.14)

with the correlation matrix

C =

(
Csxi sxj Csxi s

y
j

Csyi sxj Csyi s
y
j
.

)
(8.15)

By taking functional derivatives, we can now compute the general expression for the

2-point correlation function from (8.14)

〈
sαi (t)sβj (t)

〉
=

δ

δQαi (t)

δ

δQβj (t)
Z[Q]

∣∣∣∣∣
Q=0

, (8.16)

where the upper indices indicate spin components and the lower indices denote the

lattice site. The resulting correlation functions are oscillatory. Here, we give an example

of their form,

〈
sxi (t)syj (t)

〉
= Csyi sxj sin (2βzi t) sin

(
2βzj t

)
+ Csxi s

y
j

sin (2βzi t) cos
(
2βzj t

)

− Csxi sxj cos (2βzi t) sin
(
2βzj t

)
− Csyi syj cos (2βzi t) cos

(
2βzj t

)
. (8.17)

The computation of the correlation function was the main subject of [62] and we will

not repeat all the lengthy expressions here.

As a last step we specify the form of the initial correlation functions in the correlation

matrix C. Once again, we adopt a very simple form of the correlation function: a

power law. We assume

Csxi sxj = Csyj s
y
i

=
A0

|i− j|γ , Csyi sxj = Csyj sxi =
B0

|i− j|ρ (8.18)

and set the auto-correlations to unity. To simplify matters further, we can assume

an infinitely ranged interaction force, setting the coupling Ji,j in (8.10) to the same

89



8. Extension of the KFT formalism to spin systems

1 2 3 4 5 6 7
lattice site m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t
J

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2〈
sxi s

x
i+m

〉

A0 = 0.6 , B0 = 0.8
γ = ρ = 3

1 2 3 4 5 6 7
lattice site m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t
J

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2〈
sxi s

x
i+m

〉

A0 = 0.6 , B0 = 0.8
γ = ρ = 1

1 2 3 4 5 6 7
lattice site m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t
J

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2〈
syi s

y
i+m

〉

A0 = 0.6 , B0 = 0.8
γ = ρ = 3

1 2 3 4 5 6 7
lattice site m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t
J

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2〈
syi s

y
i+m

〉

A0 = 0.6 , B0 = 0.8
γ = ρ = 1

1 2 3 4 5 6 7
lattice site m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t
J

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

〈
sxi s

y
i+m

〉

A0 = 0.6 , B0 = 0.8
γ = ρ = 3

1 2 3 4 5 6 7
lattice site m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t
J

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

〈
sxi s

y
i+m

〉

A0 = 0.6 , B0 = 0.8
γ = ρ = 1

Figure 8.2.: We show the 2-point correlation functions from (8.19) of spins separated

by by m lattice sites. Left column: The initial correlations are short

ranged with powers γ = ρ = 3, quickly decaying with increasing distance.

Right column: Here, the initial correlations are long ranged with powers

γ = ρ = 1.
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Figure 8.3.: The 2-point correlation function of the x-components (left) and correlations

between x- and y-components (right) of spins separated by by m lattice sites

are shown. We have chosen different powers and amplitudes for the initial

correlation functions for the initial correlations of same-spin components〈
sαi (t)sαi+m(t)

〉
and different-spin components

〈
sαi (t)sβi+m(t)

〉
with α 6= β.

We see in the left plot that correlations are largest at lattice site m = 2

due to the xy-correlation and then decrease again with increasing distance.

value for all i and j. Since we have chosen the z-components to be aligned initially

and therefore remain so due to ṡz = 0, the oscillation frequency βzj will be the same at

every lattice site, too, which we will simply denote by β. We quote the results from

[62],

〈
sxi (t)sxi+m(t)

〉
= − A0

|m|γ + 2
B0

|m|ρ cos (2βt) sin (2βt) ,

〈
syi (t)s

y
i+m(t)

〉
= − A0

|m|γ − 2
B0

|m|ρ cos (2βt) sin (2βt) ,

〈
sxi (t)syi+m(t)

〉
=

B0

|m|ρ
(
2 sin2 (2βt)− 1

)
. (8.19)

We show (8.19) in Fig. 8.2 and Fig. 8.3 for different values of the correlation

amplitudes A0, B0 and powers γ, ρ. In Fig. 8.2 we simply see the qualitative difference

between long and short range correlations. Correlations simply decay with increasing

distance. In addition, we show a mix of long range correlation between different

spin-components and short range correlations between same spin-components in 8.3

with different amplitudes. If we switched to short range correlation between different

spin-components and long range correlations between same spin-components the picture
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would look much the same. For the
〈
sxi (t)sxi+m(t)

〉
correlation in Fig. 8.3 we can observe

that the second term in (8.19) representing initial x-y-component correlations becomes

dominant at m = 2 because, compared to the x-x-correlations, it is long-ranged.

All in all, we see that correlations decay with distance, and over time a periodic

behaviour of the correlations is manifest. This, of course, is no surprise for a simplistic

setup like that.

8.5 Conclusions and outlook

We have illustrated in this chapter how the kinetic field theory formalism can be ex-

tended to describe the non-equilibrium dynamics of classical many-body spin-systems.

Based on simplifying assumptions about initial correlations and spin interactions, we

have computed the first results for such a system. The simplifications we have made

have allowed us to keep computations very simple, but on the other hand have deprived

us of reproducing any of the more interesting features of the correlation function.

We have chosen here the Ising-Hamiltonian not only because calculations become

manageable for the KFT formalism, but also because exact analytical solutions exist for

this case [63–65] which turns it into an excellent benchmark. These solutions, however,

describe more complex systems than the one we have presented here. Therefore, we

would like to continue to study the non-equilibrium dynamics of the Ising model while

gradually extending the complexity of the system. As a next step, we propose to study

how finite ranged interactions (8.5), i.e. n 6= 0, will affect particle correlations. We

would then suggest to allow an initial distribution of the z-component of the spins

instead of aligning szi at all lattice points i. This would make the integration over

initial conditions in (8.12) more difficult, but is well in the scope of the KFT formalism.

In the long run, however, we would like to extend the description to the full Hamil-

tonian 8.4. The challenge is, of course, that in this case we cannot solve the equations

of motion exactly. A possible way to address this issue might be through an expansion

scheme similar to the one discussed in section 3.4.2. The inertial trajectories then

could be given by the Ising-trajectories (8.10) and the XY interaction in (8.4) could be

understood as an additional force causing deviations from the inertial Ising-trajectories.

So far, we have been solely focusing on classical systems. Going beyond the clas-

sical description of non-equilibrium dynamics of correlated systems will require the

incorporation of quantum effects, like Heisenberg’s uncertainty principle, in our theory.
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It is however possible that under these conditions KFT will simply morph into the

truncated Wigner approximation. This remains yet to be seen.
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Conclusions

In this chapter, we give a summary of the conclusions from the cosmological as well as

from the classical laboratory many-body systems.

We have demonstrated how KFT can be adapted to describe n-point correlation func-

tions of classical spin-systems. The results we presented are for a simple toy model

so far, but can be extended to describe more realistic systems in the future. We are,

however, unsure yet how far into the non-linear regime we can get for this kind of

systems.

In a second application, we have shown how an initially correlated Rydberg gas can be

treated in the framework of KFT. Although the Rydberg atoms and their trajectories

were treated classically, the Rydberg blockade which is a feature of their quantum na-

ture, was taken into account through initial spacial correlations in the initial conditions

in our KFT approach. More work still needs to be done to resolve the issues we have

encountered with badly-behaved radial distribution functions.

The power of the KFT approach, though, lies in its immense flexibility. It is therefore

our long-term goal to combine particle dynamics with spin-dynamics to provide a more

complete description of systems probed by experiments, since spins usually do not grow

on lattices, but are a property of particles that can follow their own dynamics.

In the field of cosmology, which is far more familiar to us, we have used the KFT

approach to investigate the influence of the interaction potential on structure formation

on scales k ≥ 1hMpc−1. Since these are scales where contributions from the inner

structures of dark matter halos to the non-linear density-fluctuation power spectrum
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become dominant, we were hoping to learn about the influence of the interaction

potential between particles on the density profiles of said halos. From perturbation

theory with KFT it seems that the density profiles are insensitive to the shape of

the interaction potential. Recent developments of the KFT approach using the Born

approximation for particle trajectories, however, have shed some doubt on this finding.

Instead, we have learned that a deviation from Newtonian gravity destroys the delicate

balance between a damping due to momentum-diffusion and the attractive particle

interaction.

We are curious to learn why this balance exists for Newtonian gravity in the first place

and whether it can be restored for other power-law potentials as well. Our hope is that

the resummation scheme developed for KFT [51, 53] will be able to provide insight

into a consistent scheme for balancing interactions and damping.
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