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Abstract
We combine a novel approach to cosmic structure formation called Kinetic Field Theory (KFT) [1]
with resummation methods to investigate the small-scale structure formation in dark and baryonic
matter. For pure dark matter, we compute the first nonlinear corrections to the density contrast
power spectrum and compare these to the results obtained in standard Eulerian perturbation
theory (SPT). We find that we can precisely reproduce the SPT 1-loop result if we adopt the same
expansion scheme as SPT. However, we also show that the natural expansion scheme of resummed
KFT is actually fundamentally different and might thus be able to overcome the problems of
SPT when trying to describe nonlinear structure formation. To describe the effect of baryons,
we demonstrate how isothermal and adiabatic gas dynamics can be implemented consistently
into resummed KFT and how a system of gravitationally coupled dark and baryonic matter can
generally be treated in this framework. In the isothermal case, we further investigate the linear
evolution of this coupled system in a cosmological setting. Our results show a suppression of
the baryonic power spectrum on scales below approximately 1Mpc/h which is qualitatively
comparable to simulation results but underpredicts the effect by nearly an order of magnitude.
Furthermore, simulations show an enhancement of the dark matter power spectrum absent in
our results. We expect these deviations to decrease once adiabatic gas dynamics and nonlinear
corrections are taken into account.

Zusammenfassung
Wir kombinieren einen neuen Ansatz zur Beschreibung kosmischer Strukturbildung, Kinetische
Feldtheorie (KFT) [1] genannt, mit Resummierungsmethoden, um die kleinskalige Strukturbildung
in dunkler und baryonischer Materie zu untersuchen. Für reine dunkle Materie berechnen wir
die ersten nichtlinearen Korrekturen zum Leistungsspektrum des Dichtekontrasts und verglei-
chen diese mit den Ergebnissen der Eulerschen Standard-Störungstheorie (SPT). Es stellt sich
heraus, dass wir die 1-Schleifen-Resultate aus SPT exakt reproduzieren, wenn wir das gleiche
Expansionsschema wie SPT verwenden. Allerdings zeigen wir auch, dass sich das natürliche
Expansionsschema der resummierten KFT davon grundlegend unterscheidet und deshalb mög-
licherweise dazu in der Lage ist, die Probleme zu überwinden, die SPT bei der Beschreibung
nichtlinearer Strukturbildung hat. Zur Beschreibung baryonischer Effekte demonstrieren wir, wie
isotherme und adiabatische Gasdynamik konsistent in resummierte KFT implementiert werden
können und wie man ein System gravitativ gekoppelter dunkler und baryonischer Materie in die-
sem Formalismus allgemein behandelt. Im isothermen Fall untersuchen wir außerdem die lineare
Entwicklung dieses gekoppelten Systems in einem kosmologischen Kontext. Unsere Ergebnisse
zeigen eine Unterdrückung des baryonischen Leistungsspektrums auf Skalen unterhalb ungefähr
1Mpc/h, die mit Simulationsergebnissen zwar qualitativ vergleichbar sind, die Stärke des Effekts
jedoch um fast eine Größenordnung unterschätzen. Des Weiteren zeigen die Simulationen eine
Erhöhung des Leistungsspektrums dunkler Materie, die sich in unseren Resultaten nicht beobach-
ten lässt. Wir erwarten, dass sich diese Abweichungen verringern werden, sobald die adiabatische
Gasdynamik sowie nichtlineare Korrekturen berücksichtigt werden.
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1. Introduction

Studying the evolution of cosmic structures allows us to extend our current knowledge on the
nature of gravity as well as the matter content of our universe. With upcoming astronomical
surveys like Euclid and LSST this endeavour will reach an entirely new level, as they will probe
the matter distribution down to scales of less than 1 Mpc/h with percent-level precision.

Contrasting these observations with theoretical predictions will be challenging: While con-
ventional Eulerian and Lagrangian analytic descriptions of structure formation provide accurate
predictions on linear and mildly nonlinear scales larger than approximately 20 Mpc/h, it has been
notoriously difficult for them to reach further into the nonlinear regime. This is largely due to the
fact that they assume matter to move along a unique velocity field. With collisionless dark matter
dominating cosmic structures, however, particle trajectories can cross and form multiple streams,
at which point this uniqueness assumption breaks down.

Numerical N -body simulations, on the other hand, are able to describe the nonlinear small-scale
dynamics, as they follow the phase-space trajectories of individual tracer particles. But they offer
only little insight into the underlying principles of structure formation and are computationally
very expensive, especially when trying to cover large cosmological parameter spaces or to extract 3-
point or higher-order statistics. These non-Gaussian statistics, though, are crucial for constraining
the cosmological model, as they contain most of the information on nonlinear structure growth
and are also required to estimate covariance matrices.

An analytic framework of cosmic structure formation capable of describing the evolution
of the 2-point as well as higher-order statistics of the matter distribution down to the scales
probed by upcoming surveys would hence be a highly desirable tool for future cosmological
research. A novel approach developed by Bartelmann et al. in [1], dubbed Kinetic Field Theory
(KFT), aims at providing exactly this. Unlike conventional analytic approaches, KFT is built on
the full Hamiltonian dynamics of classical particles in phase-space and can thus be seen as an
analytic analogue to an N -body simulation. First results obtained within this framework are very
promising [1, 2].

In [3] we presented a reformulation of KFT that allows to partially resum the interactions
between particles and showed how this yields the linear large-scale growth of structures purely
from Hamiltonian particle dynamics. In this thesis, we develop this resummed KFT further, aiming
at providing an accurate description of the formation of small-scale structures as well.

This development proceeds along two lines: On the one hand, reaching our goal requires a well-
controlled and precise computation of the nonlinear evolution of the matter distribution under
the influence of gravity. We will investigate the feasibility of achieving this within resummed KFT
by computing the first nonlinear corrections to the evolution of the dark matter 2-point statistics
and comparing these with the results obtained from an Eulerian approach.

But even the most precise treatment of nonlinear structure growth in dark matter will not be
able to predict the full small-scale matter distribution accurately, as there are also baryonic effects
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1. Introduction

becoming relevant at these scales. These include the influence of the collisional baryonic gas
dynamics, radiative cooling as well as astrophysical feedback processes, for example from star
formation, supernovae or active galactic nuclei. Our second line of development is thus concerned
with the incorporation of these baryonic effects into resummed KFT. As a first step, we show in
this thesis how isothermal and adiabatic gas dynamics can be included, and investigate the linear
structure formation in a gravitationally coupled system of dark and baryonic matter.

This thesis is structured as follows: We begin with a short review of the foundations of
cosmology in general and cosmic structure formation in particular in chapter 2. After that, we
introduce the framework of KFT in chapter 3 – including a summary of the basic formalism and a
derivation of its resummed form. In this chapter, we further demonstrate the general properties of
the resummed KFT approach by applying it to a simple non-cosmological test system. In chapter 4,
we then use this framework to describe linear as well as nonlinear structure formation in pure
dark matter and compare our findings to the Eulerian results. Afterwards, we demonstrate in
chapter 5 how the gas dynamics of baryonic matter can be incorporated into resummed KFT, and
investigate the linear evolution of a system of gravitationally coupled dark and baryonic matter.
In the end, we will summarise our results and conclusions in chapter 6.
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2. Cosmology

In this chapter we present a brief summary of the basics of cosmology and conventional approaches
to cosmic structure formation, focussing on those aspects relevant for the considerations in this
thesis. For a more detailed introduction into these matters, we refer the reader to [4] and [5],
respectively.

2.1. Cosmological standard model

2.1.1. Space-time dynamics

The aim of cosmology is to describe and understand the structure and evolution of our universe
at large. It is thus concerned with length scales so large that most of the four fundamental
interactions become irrelevant. The strong and the weak interactions are inherently confined
to the scales of subatomic particles, and even electromagnetism, despite its infinite interaction
length, plays essentially no role for cosmology since the cosmic matter content is electrically
neutral on average.1 Hence, the only interaction relevant on cosmic scales is gravity.

As gravity is described by Einstein’s General Relativity [6], this is also the natural language
of cosmology. The geometry of space-time, characterised by its metric дµν , is thus described by
Einstein’s field equations,

Gµν =
8πG

c4
Tµν + Λдµν , (2.1)

where Gµν is the Einstein field tensor constructed from first and second derivatives of the metric,
Tµν is the energy-momentum tensor of the cosmic matter and radiation content, and Λ is the
cosmological constant. Furthermore, G denotes the gravitational constant and c is the speed of
light. To solve this set of highly nonlinear differential equations, cosmology makes two crucial
assumptions:

1. The universe is spatially isotropic, i. e. independent of direction, about our position if
averaged over sufficiently large scales.

2. Our position in the universe is by no means preferred to any other. This is known as the
cosmological principle.

The combination of these two assumptions implies that on large enough scales our universe has
to be spatially isotropic around all of its points, and thus it must also be spatially homogeneous.

1There are magnetic fields with surprisingly large coherence lengths, but their energy density is very low.
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2. Cosmology

The most general form of the metric under the symmetry constraints of spatial isotropy and
homogeneity is characterised by the line element

ds2 = дµν dx
µdxν = −c2dt2 + a2(t)

[
dr2

1 − κr2 + r
2
(
dθ2 + sin2(θ )dφ2

) ]
, (2.2)

where (r ,θ ,φ) are spherical polar coordinates, κ is a constant parametrising the curvature of
spatial hypersurfaces and a(t) is the scale factor which describes how these hypersurfaces expand
or shrink with time. Isotropy and homogeneity further imply Tµν to take the form of the stress-
energy tensor of a perfect fluid, described only by the cosmic fluid’s mean pressure P̄ and its
mean energy density ρ̄c2. Using this ansatz for the momentum-energy tensor and the metric (2.2)
reduces Einstein’s field equations to two differential equations for the scale factor,(

Ûa
a

) 2
=

8πG

3
ρ̄ − κc2

a2
+
Λc2

3
, (2.3)

Üa
a
= −4πG

3

(
ρ̄ +

3 P̄

c2

)
+
Λc2

3
, (2.4)

known as Friedmann’s equations. Themetric (2.2) is called Friedmann-Lemaître-Robertson-Walker
(FLRW) metric if the scale factor a satisfies the Friedmann equations.

Combining these two equations yields the adiabatic equation

d

dt

(
a3ρ̄ c2

)
+ P̄

d

dt

(
a3

)
= 0 , (2.5)

which describes the conservation of energy. Together with an equation of state that couples the
pressure P and density ρ,

P = w ρc2 , (2.6)

it allows us to characterise the evolution of the mean densities of different forms of matter. Here,w
denotes the equation of state parameter. For non-relativistic matter, pressure can be neglected on
large scales, i. e. wm ≈ 0, while one findswr = 1/3 for radiation and relativistic matter. Inserting
these equations of state into the adiabatic equation yields

ρ̄m = ρ̄m,0 a
−3 , ρ̄r = ρ̄r,0 a

−4 (2.7)

for the mean densities of non-relativistic matter and radiation, respectively. Here, ρ̄m,0 and ρ̄r,0
denote the values of these mean densities at today’s time t0, corresponding to the normalisation
a(t0) = 1 of the scale factor. Given this normalisation, we further define the cosmological redshift
z B 1/a − 1 which describes the wavelength shift of photons caused by the expansion of space.

Conventionally, the first Friedmann equation (2.3) is re-expressed in terms of the Hubble
function H B Ûa/a and the dimensionless density parameters

Ωr B
8πG

3H2
ρ̄r , Ωm B

8πG

3H2
ρ̄m , Ωκ B − κc2

a2H2
, ΩΛ B

Λc2

3H2
. (2.8)

It then reads
H2 = H2

0

[
Ωr,0 a

−4 + Ωm,0 a
−3 + Ωκ,0 a

−2 + ΩΛ,0

]
, (2.9)
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2.1. Cosmological standard model

where the values of the dimensionless density parameters today, Ωj,0 B Ωj (t0), satisfy

1 = Ωr,0 + Ωm,0 + Ωκ,0 + ΩΛ,0 . (2.10)

The current standard model of cosmology, the ΛCDM model, describes a FLRW cosmology
that is spatially flat, Ωκ,0 = 0, and whose matter content is dominated by a form of matter called
cold dark matter. In contrast to ordinary matter, in cosmology usually referred to as baryonic
matter, dark matter does not interact electromagnetically. From the perspective of cosmology, its
dynamics are thus only subject to gravity and can be considered collisionless. Furthermore, “cold”
means that it consists of non-relativistic particles. While the precise nature of these particles is
still an open question, the existence of dark matter currently presents the simplest model able to
explain the observed structures in the universe.

To account for the two types of matter, we introduce separate dimensionless density parameters
Ωd
m and Ωb

m for the dark and baryonic matter, respectively,

Ωm = Ωd
m + Ωb

m . (2.11)

For all calculations in this thesis, we will further use the following parameter values,

H0 = 70
km/s
Mpc

, Ωr,0 = 0 , Ωd
m,0 = 0.26 , Ωb

m,0 = 0.04 , ΩΛ,0 = 0.7 . (2.12)

Note that, in reality, Ωr,0 is not actually vanishing. But its value is small enough that we can
safely neglect it during the matter- and Λ-dominated epochs that we will be concerned with [7].

2.1.2. Cosmic expansion history

According to the ΛCDM model, the history of our universe started approximately 13.8 billion
years ago in a hot big bang, corresponding to a scale factor of a = 0, and continuously expanded
ever since. The details of its evolution in the first fractions of a second are still debated, but it
is widely believed that it underwent a period of rapid, accelerated expansion known as cosmic
inflation, which could explain the flatness and isotropy of the universe observed today. Crucially
for us, inflationary models also predict the emergence of the primordial seeds of cosmic structure
formation from quantum fluctuations.

The expansion history following inflation is conventionally divided into different epochs
corresponding to the dominant form of matter or energy at the time, according to (2.9). It started
with the radiation-dominated epoch, during which the Hubble function scaled like H ∝ a−2, i. e.
the expansion of the universe began to decelerate. In this epoch, protons and neutrons formed
the first nuclei, but photon temperatures where still too high for electrons to bind to these nuclei.
Therefore, photons, nuclei and electrons formed a strongly coupled plasma.

At a redshift of z ≈ 3600, the energy density of radiation dropped below that of matter and
the matter-dominated epoch started. During this era, the cosmic expansion decelerated even
further, H ∝ a−3/2. At a redshift of z ≈ 1090, the photon temperature had decreased to a value of
T p ≈ 3000K and thus became low enough to allow protons and electrons to combine into neutral
hydrogen atoms, resulting in the decoupling of matter and radiation. After that, the temperature of
the decoupled photons continued to drop, reaching a value ofT p

0 = 2.726K today. Measurements
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2. Cosmology

of this cosmic microwave background (CMB) radiation provide strong observational evidence
for the large-scale isotropy of the universe and yield tight constraints on the parameters of our
cosmological model. After the decoupling of the CMB, the hierarchical formation of ever larger
cosmic structures under the influence of gravity sets in. The first stars formed around a redshift
of z ≈ 20, leading to the reionisation of matter, and at z ≈ 6 galaxies started to form.

From a cosmological perspective, the Λ-dominated epoch began only very recently at a redshift
of z ≈ 0.4. It is characterised by an accelerated expansion of space with an approximately constant
Hubble function, and presents the latest expansion epoch within a ΛCDM cosmology.

2.2. Structure formation

2.2.1. Statistics of fluctuations

So far, we only considered the evolution of our universe on the largest scales where it can be
considered homogeneous. On smaller scales, though, this idealised assumption has to be relaxed
to allow the existence of structures – including our very selves. To describe these structures, we
have to consider fluctuations of the cosmic density field ρ around its mean value ρ̄.

For this purpose, we introduce the density contrast δ ,

δ B
ρ − ρ̄

ρ̄
, (2.13)

describing the relative density fluctuations. To satisfy the fundamental cosmological symmetry
assumptions, it has to be a statistically homogeneous and isotropic random field. Thus, we are
interested in its statistical properties rather than its actual value. But as its mean must vanish
by construction, the simplest non-trivial statistical property we can investigate is its variance,
described by the density contrast correlation function between two points ®r and ®r ′,

ξ (|®r − ®r ′ |) B
〈
δ (®r )δ (®r ′)

〉
. (2.14)

Due to homogeneity and isotropy, it can only depend on the distance between both points.
Conventionally, the central quantity used to characterise cosmic structures is its Fourier

transform, the density contrast power spectrum Pδ which is defined as the variance of δ in Fourier
space, 〈

δ
(®k, t ) δ (®k ′, t

) 〉
C (2π)3 δd

(®k + ®k ′) Pδ (k, t) . (2.15)

The appearance of the Dirac delta distribution and the fact that the power spectrum only depends
on the modulus of ®k are the consequences of statistical homogeneity and isotropy, respectively.

Before we can describe the evolution of structures, we of course have to know their statistics
at some initial point in time first. As mentioned in subsection 2.1.2, cosmic inflation predicts
the emergence of primordial macroscopic density perturbations from quantum fluctuations. The
resulting power spectrum usually takes the form of a power law,

P
(prim)
δ (k) ∝ kns , (2.16)

where the so-called spectral index ns is predicted to be close to unity [8, 9]. Observations confirm
this and find an explicit value of ns = 0.967 [7]. Simple inflationary models further predict
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2.2. Structure formation

these fluctuations to be Gaussian and thus fully characterised by this power spectrum alone [10].
While more sophisticated models also allow primordial non-Gaussianities, there is currently no
observational evidence for their existence [11]. In this thesis, we will hence consider Gaussian
initial conditions.

2.2.2. Linear evolution

The conventional Eulerian approach to investigate the growth of the primordial density fluctua-
tions assumes that the cosmic matter and radiation content on the scales of these fluctuations
is still well described by a fluid. This fluid should then obey the continuity, Euler and Poisson
equations,

∂ρ

∂t
+ ®∇r · (ρ ®v) = 0 , (2.17)

∂®v
∂t
+

(
®v · ®∇r

)
®v = −

®∇rP

ρ
+ ®∇rVG , (2.18)

∇2
rVG = 4πG (ρ − ρ̄) , (2.19)

where ®v andVG are the velocity field and the gravitational potential of the cosmic fluid, respectively.
It is then convenient to introduce coordinates that are comoving with the background expansion,

®q B ®r/a, which allow to decompose the velocity ®v into the background Hubble velocity ®vH and
the peculiar comoving velocity ®u,

®v = Û®r = Ûa®q + a Û®q = H ®r + a®u = ®vH + a®u . (2.20)

Expressing the equations (2.17) to (2.19) in terms of comoving coordinates and linearising them
in δ and ®u yields

Ûδ + ®∇q · ®u = 0 , (2.21)

Û®u + 2H ®u = −
w ®∇qδ

a2
−

®∇qVG

a2
, (2.22)

∇2
qVG = 4πGρ̄a2δ . (2.23)

Inserting the divergence of the second equation into the first one then leaves us with a single
equation for the density contrast,

Üδ + 2H Ûδ =
w∇2

qδ

a2
+ 4πGρ̄δ . (2.24)

This linear evolution equation will describe the evolution of the density fluctuations as long as
they are small, δ � 1.

While this is the case during the radiation-dominated epoch, it turns out that one additionally
has to take general-relativistic effects on scales larger than the Hubble radius rH B c/H into
account to capture the correct evolution in this era. The Hubble radius sets the maximal scale
of perturbations which can be in causal contact. Therefore, fluctuations with a wavelength
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2. Cosmology

larger than rH are not suppressed by radiation pressure. Solving (2.24) under this constraint
shows that the resulting matter density contrast power spectrum at some time ti early in the
matter-dominated era scales like

P (i)
δ (k) B Pδ (k, ti) ∝

{
kns if k � keq,
kns−4 if k � keq.

(2.25)

Here, keq denotes the wavenumber corresponding to the size of the Hubble radius at the time of
matter-radiation equality. The precise behaviour around k ≈ keq has to be determined by a more
careful analysis of the full coupled Einstein-Boltzmann equations. In this thesis, we will use the
fitting formula found by Bardeen, Bond, Kaiser and Szalay (BBKS) [12]. As we are interested in
structure formation during the matter-dominated epoch, we will consider P (i)

δ as the initial power
spectrum in our analysis.

To describe the subsequent linear evolution of the density contrast of pressureless matter, we
define the linear growth factor D+ via2

δ (t) C δ (ti)
D+(t)
D+(ti)

(2.26)

and insert this ansatz into (2.24) evaluated atw = 0. The resulting linear differential equation for
D+ reads

ÜD+ + 2H ÛD+ = 4πGρ̄m D+ =
3

2
ΩmH

2 D+ , (2.27)

where we used (2.8) in the second step. For a ΛCDM cosmology, its solution is well-described by
the fitting formula

D+ =
5a

2
Ωm

[
Ω4/7
m − ΩΛ +

(
1 +

1

2
Ωm

) (
1 +

1

70
ΩΛ

) ] −1
(2.28)

given in [13]. The power spectrum of the linearly evolving density contrast is then given by

P (lin)
δ (k, t) B P (i)

δ (k) D
2
+(t)

D2
+(ti)

. (2.29)

The only thing left is to fix the overall amplitude of the power spectrum, which is typically
characterised in terms of the variance on some given scale R,

σ2
R B

∫
d3k

(2π)3 Pδ (k)W
2
R (k) , (2.30)

whereWR(k) is the Fourier transform of a window function of width R. Conventionally, the value
of today’s variance on a scale of 8Mpc/h, σ8, is specified. In this thesis, we will use a value of
σ8 = 0.8.
2Note that inserting the ansatz (2.26) into (2.21) implies the initial comoving velocity field ®u(ti) to be a Gaussian

random field that is correlated with δ (ti).
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2.2. Structure formation

2.2.3. Nonlinear evolution

The linear Eulerian description of the evolution of the density contrast presented in the previous
subsection breaks down once δ approaches unity. Describing the subsequent growth of structures
thus requires a nonlinear treatment instead. One possibility is to expand the fluid equations (2.17)
and (2.18) to higher orders in the density contrast and the peculiar velocity. This approach is
known as Eulerian perturbation theory and will be discussed in more detail in subsection 4.3.3.

Another conventional analytic approach to cosmic structure formation is Lagrangian pertur-
bation theory which follows the spatial trajectories of particles, rather than considering the
dynamics of the density and velocity fields. Its central object of interest is the displacement field
®Ψ that describes the mapping between the initial and final particle positions,

®q(t) C ®q(i) + ®Ψ
(
®q(i), t

)
. (2.31)

Starting from the equations of motion for the particle positions, one can derive an evolution
equation for ®Ψ which is then solved perturbatively. For more details on this we refer the reader
to [5]. Its linear solution is found to be given by

®∇q(i)
®Ψ(1) (®q(i), t ) = −δ

(
®q(i)

)
D+(t) (2.32)

and describes particles moving on straight lines with a constant peculiar comoving velocity ®u, as
can be seen by using (2.26) and comparing with (2.21). In the Zel’dovich approximation, these
trajectories are extrapolated beyond the validity range of the linear Eulerian description [14],
which captures the onset of nonlinear structure formation, but generally underpredicts the growth
of power [5].

For both of these approaches, Eulerian and Lagrangian perturbation theory, it is however
notoriously difficult to describe cosmic structure formation in the strongly nonlinear regime
[15–36]. The reason for this lies in the fact that most of the cosmic matter content consists of
collisionless dark matter particles whose trajectories can cross and form multiple streams during
the gravitational collapse of cosmic structures. At this point, both the Eulerian and Lagrangian
descriptions break down. In the Eulerian approach this is due to the fact that it assumes a
smooth and single-valued velocity field, and can thus only describe a single stream of matter. The
Lagrangian approach, on the other hand, assumes a unique mapping between initial and final
particle positions, which is violated when two particles meet at the same position. In this case,
the inverse Jacobian determinant of the mapping, needed to compute the density field, diverges.

To describe the full nonlinear evolution of cosmic structures, one thus has to resort to N -body
simulations. These sample the cosmic matter distribution inside a given volume at some initial
point in time by a finite number of particles and then evolve the positions and velocities of all
individual particles according to their Hamiltonian equations of motion. At the desired final time,
correlation functions or power spectra of the cosmic density and velocity fields can be computed
from the particle positions and velocities.

While N -body simulations currently provide the most accurate description of structure forma-
tion in the nonlinear regime, they are at the same time computationally very expensive – even
though a large number of sophisticated numerical schemes have been developed to compute
the gravitational forces acting between the particles as efficiently as possible. This becomes
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2. Cosmology

particularly problematic when one needs to investigate large cosmological parameter spaces or
wants to extract higher-order correlators of the matter distribution. An analytic approach that is
capable of describing the formation of cosmic structures far within the nonlinear regime would
thus be a highly desirable tool. In chapter 4 we will investigate if the framework of Kinetic Field
Theory might be a promising candidate for this.

2.2.4. Baryonic effects

So far, we treated the complete non-relativistic matter content of the universe as being pressureless
and thus only subject to gravity during structure formation. However, this is not true for baryonic
matter which also interacts electromagnetically. Due to the fact that baryons only make up a small
portion of the total matter content, neglecting their influence might be a good first approximation,
but there are at least two regimes in cosmic structure formation where baryonic effects become
relevant.

The first of these concerns the evolution of density fluctuations prior to recombination. During
that time, we have to take into account that baryons, unlike dark matter, were strongly coupled
to photons via Compton scattering. The dynamics of such a coupled photon-baryon plasma is
then characterised by repulsive pressure forces and attractive gravitational forces counteracting
each other. This creates oscillations in their density field with a characteristic wavelength set by
the effective speed of sound in the plasma, first described in [37].

Once photons and baryons decouple, these baryon acoustic oscillations (BAO) leave their
imprint in both individual components. In the case of the photons this can be observed in the
spectrum of CMB temperature fluctuations. For baryons, on the other hand, it leads to a peak
in the density contrast correlation function whose position is set by the oscillation wavelength
at the time of the decoupling. The respective baryon power spectrum then shows oscillatory
features with a frequency corresponding to this peak position. Crucially, since baryons and dark
matter couple gravitationally this also affects the dark matter spectrum, though to a lesser extent.
Solving the coupled Boltzmann equations for photons, baryons and dark matter numerically
allows to describe the formation of BAOs very accurately, and the resulting power spectrum is
well-described by a fitting formula found by Eisenstein & Hu [38].

The second regime where baryonic effects are important is the formation of cosmic structures
on very small scales below the Jeans length of the baryonic gas [39]. On these scales, its pressure is
not negligible compared to the gravitational interactions any more and prevents the gravitational
collapse of baryonic structures. Consequently, this results in a partial suppression of the growth
of structures in the total matter content compared to a system of pure dark matter. Furthermore,
in contrast to dark matter, baryonic matter is able to lose energy via radiative processes. This
heat loss leads to a contraction of baryonic gas clouds crucial for the formation of galaxies [40,
41]. Beyond that, baryons are also affected by many different astrophysical processes like star
formation, supernovae or active galactic nuclei.

To describe the small-scale structure formation in the combined dark and baryonic matter
correctly, it is thus insufficient to consider their gravitational dynamics alone. One also has to
take all of the baryonic effects just mentioned into account, which renders this task even harder
than it already was. The state-of-the-art technique for this are hydrodynamical simulations that
additionally include models for the different astrophysical feedback processes [42].
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2.2. Structure formation

Incorporating all of this into an analytic framework for galaxy formation is most likely infeasible.
But it might well be possible that including only some of these effects turns out to be sufficient
to describe the statistics of small-scale structures. In chapter 5 we take a very first step into this
direction by investigating the incorporation of baryonic gas dynamics into KFT.
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3. Kinetic Field Theory

In the previous chapter we have discussed how conventional approaches to cosmic structure
formation are inherently limited by their inability to describe crossing streams of particles. In this
chapter, we will thus introduce the framework of KFT which allows to overcome these limitations
by taking the full phase-space dynamics of microscopic particles into account.

At its very core, KFT is based on the Martin-Siggia-Rose formalism to describe classical systems
in terms of a path integral approach similar to quantum field theory [43]. This was first applied to
Hamiltonian dynamics by Gozzi et al. in [44, 45] and further developed into a full field theoretic
description of kinetic theory by Mazenko and Das in [46, 47]. Building on these pioneering works,
we extended the KFT framework to describe the dynamics of an initially correlated ensemble of
particles and applied this to cosmic structure formation in [1].

We start by summarising the general framework of KFT, following the derivation in [1], and
show how correlation functions of the density and other collective fields can be computed
in a perturbative expansion in orders of the particle interactions. Afterwards, we present a
reformulation of this framework that results in a partial resummation of this perturbation series.
This will be the approach used in all following chapters.

3.1. General framework of KFT

3.1.1. Path integral for classical N -particle system

Consider a classical N -particle system described by the phase-space trajectories ®x j (t) of its
individual particles, j = 1, . . . ,N . To condense the notation, we will combine these single-particle
vectors into N -particle tensors x(t), adopting the conventions introduced in [1] and [48],

a(t) B
N∑
j=1

®aj (t) ⊗ ®ej , (3.1)

a · b B
N∑
j=1

∞∫
ti

dt ®aj (t) · ®bj (t) . (3.2)

where ®ej is the N -dimensional Cartesian base vector with entries
(
®ej
)
i = δi j and ti denotes the

initial time.
The initial phase-space configuration x (i) B x(ti) of such an N -particle system is assumed to

be characterised by a probability distribution Pi
(
x (i)) and its dynamics at times t ≥ ti shall be

governed by some equations of motion E[x(t)] = 0. A central idea of KFT is to encapsulate both
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3. Kinetic Field Theory

of these in the partition function

Z =

∫
dx (i) Pi

(
x (i)) ∫

x (i)

Dx δd
[
x(t) − x (cl) (x (i), t

) ]
. (3.3)

Here, the dynamics is incorporated by functionally integrating over all possible phase-space tra-
jectories x(t) starting from an initial configuration x (i), where a functional Dirac delta distribution
ensures that only the classical N -particle trajectory xcl

(
x (i), t

)
, which solves the equations of

motion, contributes. The stochastic initial conditions are then taken into account by averaging
over the initial probability distribution Pi

[
x (i)] .

Since the full solution of the equations of motion is generally not known, we have to re-express
the delta distribution in (3.3) in terms of the equations of motion themselves,

δd
[
x(t) − x (cl) (x (i), t

) ]
= δd

[
E[x(t)]

]
det

[
δE[x(t)]
δx(t ′)

] ����
x (t )=x (cl)(x (i),t )

. (3.4)

In this work, we will only consider dynamics for which the functional Jacobian determinant on
the right-hand-side is just a constant that can be absorbed into the normalisation of the path
integral measure.1 The partition function can then be brought into the more convenient form

Z =

∫
dΓi

∫
x (i)

Dx

∫
Dχ eiχ ·E [x ] (3.5)

by expressing the delta distribution in terms of a functional Fourier integral with respect to an
auxiliary field χ with components ®χj conjugate to ®x j and defining the short-hand notation∫

dΓi B

∫
dx (i) Pi

(
x (i)) (3.6)

for the initial phase-space average.
If we further introduce the combined microscopic fieldψ B (x , χ ) and define the microscopic

action
Sψ [ψ ] B χ · E[x] , (3.7)

then the partition function takes a form resembling the path integral in conventional nonequilib-
rium quantum and statistical field theories very closely,

Z =

∫
dΓi

∫
x (i)

Dψ eiSψ [ψ ] . (3.8)

Note that the equations of motion are recovered if we require the variation of the action Sψ with
respect to the auxiliary field χ to vanish,

0
!
=

δSψ [ψ ]
δχ

= E[x] . (3.9)

1See [46] for an example of how to treat dynamics with non-constant Jacobian determinant.
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3.1. General framework of KFT

The equations of motion of the systems we are interested in are first-order differential equations
and can hence be written as

E[x] = Ûx + E0[x] + EI[x] , (3.10)

where E0 gathers all contributions linear in x , considered to describe the free evolution of the
system, and EI collects all contributions nonlinear in x , which we interpret as interactions.2 In
that case the microscopic action also splits into a free and an interacting part,

Sψ [ψ ] = Sψ ,0[ψ ] + Sψ ,I[ψ ] (3.11)

where

Sψ ,0[ψ ] B χ ·
(
Ûx + E0[x]

)
, (3.12)

Sψ ,I[ψ ] B χ · EI[x] . (3.13)

For this class of equations of motion, it has been shown in [45] that the Jacobian determinant
appearing in (3.4) can be written as

det

[
δE[x(t)]
δx(t ′)

]
= exp

−
1

2

∞∫
0

dt

∞∫
0

dt ′ tr
δ
(
E0[x(t)] + EI [x(t)]

)
δx(t ′)

 , (3.14)

where the trace runs over all components of x . Using this relation, we can explicitly check our
assumption of the Jacobian determinant being constant for all types of dynamics considered in
this thesis.

A fact that we will make regular use of is that the non-interacting equations of motion, due to
their linearity, can always be solved in terms of a retarded Green’s function G,

x (0) (x (i), t
)
B x (cl) (x (i), t

) ���
EI=0
= G(t , ti)x (i) , (3.15)

with
G(t , t ′) B G(t , t ′) ⊗ IN ∝ θ(t − t ′) , (3.16)

where IN denotes the N -dimensional identity matrix. The free evolution of any system is
thus always fully characterised by specifying the initial phase-space probability distribution Pi,
describing the initial conditions, and the single-particle Green’s function G, describing the free
dynamics.

In this thesis we will mostly consider Hamiltonian systems, whose phase-space is spanned by
the particles’ positions and momenta, ®x j (t) =

(
®qj (t), ®pj (t)

)
. Accordingly, the conjugate auxiliary

fields take the form ®χj = ( ®χqj , ®χpj ), and it is useful to gather the individual position andmomentum
components ®qj , ®pj , ®χqj and ®χpj into their own N -particle tensors q, p, χq and χp , respectively.

The dynamics of such a system is governed by Hamilton’s equations,

0 = E[x] = Ûx −J ∇xH[x] , J B
(
0 I3

−I3 0

)
⊗ IN , (3.17)

2We should point out that the distinction between free and interacting terms simply by their linearity or nonlinearity
is not always applicable. Interactions via an harmonic potential, for example, would correspond to linear terms in
the Hamiltonian. For all systems considered in this thesis, though, there is no such ambiguity.
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3. Kinetic Field Theory

whose Jacobian determinant (3.14) is always equal to unity, as the trace over the symplectic matrix
J vanishes identically. Note that this statement is equivalent to Liouville’s theorem [49]. The
Hamiltonian shall take the form H = H0 +HI, with H0 being at most quadratic in x , describing
the free evolution, and HI containing all interaction terms. In addition, we restrict ourselves to
systems without external forces and assume that HI is the total potential energy generated by a
superposition of single-particle potentials v(q, t) acting between all individual particles,

HI[x(t)] = HI[q(t)] B
1

2

N∑
j,k=1
j,k

v
(
| ®qj − ®qk |, t

)
. (3.18)

Then, the free and interacting parts of the action become

Sψ ,0[ψ ] = χ ·
(
Ûx −J ∇xH0[x]

)
, (3.19)

Sψ ,I[ψ ] = χp · ∇qHI[q] , (3.20)

where we explicitly used that HI only depends on the particle positions. If we further define the
different components of the single-particle Green’s function as

G(t , t ′) B
(
дqq(t , t ′) I3 дqp (t , t ′) I3
дpq(t , t ′) I3 дpp (t , t ′) I3

)
, (3.21)

the complete dynamics of such a system is fully characterised by the five functions дqq , дqp , дpq ,
дpp and v .

3.1.2. Collective fields

Usually, one is not interested in the microscopic state of the system but rather in its macroscopic
properties. For this purpose, it is useful to introduce some collective fields Φ[ψ ] whose cumulants,
i. e. connected correlation functions, will contain the desired macroscopic information. Following
[48], we choose Φ B

(
Φf ,ΦB

)
with Φf being the Klimontovich phase-space density and ΦB the

phase-space response field,

Φf
(
®x , t

)
B

N∑
j=1

δd
(
®q − ®qj (t)

)
δd

(
®p − ®pj (t)

)
, (3.22)

ΦB
(
®x , t

)
B

N∑
j=1

®χpj (t) · ®∇q δd
(
®q − ®qj (t)

)
δd

(
®p − ®pj (t)

)
. (3.23)

The latter encodes how the particle momenta are changed by a given interaction potential. For
our purposes it will be more convenient to work in the Fourier space conjugate to phase-space,
with ®s B

(®k, ®l )
denoting the Fourier vector conjugate to ®x =

(
®q, ®p

)
. The corresponding Fourier
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3.1. General framework of KFT

transforms of the two collective fields are given by

Φf
(
®s, t

)
=

N∑
j=1

e−i
®k · ®qj (t )−i®l · ®pj (t ) , (3.24)

ΦB
(
®s, t

)
=

N∑
j=1

®χpj (t) · i®k e−i
®k · ®qj (t )−i®l · ®pj (t ) . (3.25)

The collective fields Φf and ΦB allow us to express the interacting part of the action defined in
(3.20) as

Sψ ,I[ψ ] =
∫
d1

∫
d2 Φf (−1)σf B(1,−2)ΦB(2) , (3.26)

where we used the conventional abbreviations (±r ) B
(
±®sr , tr

)
as well as∫

dr B

∫
d6sr
(2π)6

∫ ∞

ti
dtr , (3.27)

and defined the interaction matrix element

σf B(1, 2) = σBf (2, 1) B −v
(
k1, t1

)
(2π)3 δd

(®k1+®k2) (2π)3 δd (®l1) (2π)3 δd (®l2) δd(t1−t2) . (3.28)

The delta functions of ®l1 and ®l2 appearing in (3.28) are a consequence of the interaction potential
being independent of the particle momenta.

As we will frequently encounter integrals over 1- and 2-point functions similar to those in (3.26),
introducing a short-hand notation for these will greatly improve the clarity of the calculations.
For general 1-point functions A1(1), B1(1) and 2-point functions A2(1, 2), B2(1, 2) we thus define
their dot products as

A1 · B1 B

∫
d1̄ A1(−1̄)B1(1̄) , (3.29)

(A2 · B1)(1) B
∫
d1̄ A2(1,−1̄)B1(1̄) , (3.30)

(A1 · B2)(1) B
∫
d1̄ A1(−1̄)B2(1̄, 1) , (3.31)

(A2 · B2)(1, 2) B
∫
d1̄ A2(1,−1̄)B2(1̄, 2) . (3.32)

Using this notation, the interacting part of the action condenses to

Sψ ,I[ψ ] = Φf · σf B · ΦB . (3.33)

We can now construct the generating functional of collective-field correlators by introducing
the source field H B

(
Hf ,HB

)
conjugate to the combined collective field Φ into the partition

function (3.8),

ZΦ[H ] B
∫
dΓi

∫
x (i)

Dψ eiSψ ,0[ψ ]+iΦf [ψ ]·σf B ·ΦB [ψ ]+iH ·Φ[ψ ] . (3.34)
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3. Kinetic Field Theory

Functional derivatives of its logarithmWΦ[H ] B lnZΦ[H ] with respect to the source field H ,
evaluated at H = 0, yield the collective-field cumulants, i. e. the connected collective-field
correlation functions,

Gf · · ·f B · · ·B(1, . . . ,nf , 1′, · · · ,n′B) B
〈
Φf (1) · · ·Φf (nf )ΦB(1′) · · ·ΦB(n′B)

〉
c

(3.35)

=
δ

iδHf (1)
· · · δ

iδHf (nf )
δ

iδHB(1′)
· · · δ

iδHB(n′B)
WΦ[H ]

����
H=0
.

(3.36)

Any macroscopic physical observable of the system can then be derived from the pure phase-
space density cumulants Gf · · ·f . Of particular interest are their momentum moments. In real
space, these can be computed by multiplying an nf -point phase-space density cumulant with an
appropriate function of the momenta, Fp (®p1, . . . , ®pnf ), before integrating over these arguments.
In Fourier space, this translates to applying the derivative operator

F̂p B Fp

(
i
∂

∂®l1
, . . . , i

∂

∂®lnf

) �����
®l1=· · ·=®lnf =0

. (3.37)

In the simplest case Fp = 1 this reduces a phase-space density cumulant to a cumulant of the
spatial number density field Φρ ,

Gρ · · ·ρ (®k1, t1, . . . , ®knf , tnf ) = Gf · · ·f (1, . . . ,nf )
���®l1=· · ·=®lnf =0 . (3.38)

For interacting particles, the collective cumulants can generally only be computed perturbatively.
This assumes that the non-interacting theory, described by the free generating functional

ZΦ,0[H ] B
∫
dΓi

∫
x (i)

Dψ eiSψ ,0[ψ ]+iH ·Φ[ψ ] , (3.39)

is exactly solvable in the sense that the free collective-field cumulants

G(0)
f · · ·f B · · ·B(1, . . . ,nf , 1

′, · · · ,n′B) =
δ

iδHf (1)
· · · δ

iδHf (nf )
δ

iδHB(1′)
· · · δ

iδHB(n′B)
WΦ,0[H ]

����
H=0
(3.40)

are exactly known. Here, we definedWΦ,0[H ] B lnZΦ,0[H ].
If this is the case, one possible way to proceed is to pull the interacting part of the action in

front of the path integral by replacing its Φ-dependence with functional derivatives with respect
to H , acting on the free generating functional ZΦ,0[H ],

ZΦ[H ] = e
i δ
iδHf

·σf B · δ
iδHB ZΦ,0[H ] . (3.41)

Expanding the exponential then yields a perturbative series that allows to calculate the interacting
collective-field cumulants up to a finite order in σf B , and hence in the interaction potential v ,
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3.1. General framework of KFT

only requiring the computation of a finite number of free cumulants. This approach has been
discussed in detail in [1, 2] and we will refer to it as the microscopic perturbation theory.

The reformulation of KFT that we will present in section 3.2 also requires the knowledge of the
free collective cumulants. However, for that purpose it will prove more natural to work with free
cumulants involving the dressed response field

ΦF(1) B (σf B · ΦB)(1) =
∫
d1̄σf B(1,−1̄)ΦB(1̄) (3.42)

rather than the bare response field ΦB . The reason for this is that in the calculation of pure
phase-space density cumulants Gf · · ·f every occurrence of the field ΦB will always be dressed
with an interaction matrix element σf B anyway. This is because ΦB appears in ZΦ only via the
interaction term Sψ ,I = Φf · σf B · ΦB once we set HB to zero. If we further re-express Sψ ,I more
abstractly in terms of ΦF ,

Sψ ,I[ψ ] = Φf · ΦF , (3.43)
it will facilitate the extension of our formalism to non-Hamiltonian systems, as we will discuss in
more detail in chapter 5, where we will apply KFT to systems governed by fluid dynamics.

Let us thus define the dressed combined collective field Φ̃ B
(
Φf ,ΦF

)
and its conjugate

source field H̃ B
(
Hf ,HF

)
to construct the generating functional of dressed free collective-field

correlators,

ZΦ̃,0

[
H̃

]
B

∫
dΓi

∫
x (i)

Dψ eiSψ ,0[ψ ]+iH ·Φ̃[ψ ] . (3.44)

The respective dressed cumulants can then be obtained either directly fromWΦ̃,0

[
H̃

]
B lnZΦ̃,0

[
H̃

]
or via their relation to the bare cumulants,

G(0)
f · · ·f F···F(1, . . . ,nf , 1

′, · · · ,n′F) B
δ

iδHf (1)
· · · δ

iδHf (nf )
δ

iδHF(1′)
· · · δ

iδHF(n′B)
WΦ̃,0

[
H̃

] ����
H̃=0

(3.45)

=

nF∏
r=1

(∫
dr̄ σf B(r ′,−r̄ )

)
G(0)
f · · ·f B · · ·B(1, . . . ,nf , 1̄, . . . , n̄F) .

(3.46)

3.1.3. Non-interacting theory

Before we can discuss the properties of the free collective-field cumulants in more detail we need
to specify the initial phase-space probability distribution Pi of the systems we want to investigate.
In section 2.2 we argued that the initial conditions of cosmic structure formation are well described
by a statistically homogeneous and isotropic distribution of matter with appropriately correlated
Gaussian density and momentum fluctuations. This means that the initial macroscopic density
contrast and momentum fields δ (i) and ®P (i) together form a Gaussian random field with zero mean
and covariance matrix(

Cδjδk
®C>
δjpk

®Cpjδk Cpjpk

)
B

(〈
δ (i)(®qj )δ (i)(®qk )

〉 〈
δ (i)(®qj ) ®P (i)(®qk )

〉>〈 ®P (i)(®qj )δ (i)(®qk )
〉 〈 ®P (i)(®qj ) ⊗ ®P (i)(®qk )

〉) . (3.47)
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As shown in [1], the corresponding initial phase-space distribution of the microscopic particles
is then obtained via a Poisson sampling of the macroscopic field distribution. It reads

Pi
(
x (i)) = V −N√

(2π)dN detCpp

C
(
∂

i∂p(i)

)
e−

1
2p

(i)>Cpp
−1 p (i)

, (3.48)

where V denotes the system’s volume and we introduced the momentum correlation tensor
Cpp = Cpjpk ⊗ (®ej ⊗ ®ek ) as well as the polynomial operator

C
(
∂

i∂p(i)

)
=

N∏
n=1

(
1 − i

N∑
m=1

®Cδnpm · ∂
i®p(i)m

)
+

∑
i<j

Cδiδj

N∏
n=1
n,i, j

(
1 − i

N∑
m=1

®Cδnpm · ∂
i®p(i)m

)
+ · · · , (3.49)

containing the density and density-momentum correlations.
Statistical homogeneity and isotropy imply that the covariance matrix can only depend on the

spatial distance | ®qjk | B | ®qj − ®qk | between two points. If we further use that the initial momentum
field is irrotational and related to the density contrast field via the continuity equation, as argued
in [1], we can express all components of the initial covariance matrix in terms of the initial density
contrast power spectrum P (i)

δ ,

Cδjδk =

∫
d3k

(2π)3 ei
®k · ®qjk P (i)

δ (k) , (3.50)

®Cpjδk =
®Cδjpk =

∫
d3k

(2π)3 ei
®k · ®qjk P (i)

δ (k) i
®k
k2
, (3.51)

Cpjpk =

∫
d3k

(2π)3 ei
®k · ®qjk P (i)

δ (k)
®k ⊗ ®k
k4
. (3.52)

The explicit computation of the free cumulants corresponding to these initial conditions, be
they dressed or bare, is rather involved. A thorough treatment of this can be found in [48], where
a diagrammatic approach inspired by the Mayer cluster expansion [50] was developed to compute
them systematically. In Appendix B we list the resulting expressions for the free 1- to 4-point
cumulants used in this thesis. Let us further summarise their physical interpretation and a few
of their general properties derived in [48], which we will make frequent use of throughout this
thesis:

1. The cumulant G(0)
f · · ·f (1, . . . ,nf ) is the connected nf -point correlation of the phase-space

density observed at times t1, . . . , tnf that emerges from the ensemble average over the
initially correlated, freely evolving particles. The cumulantG(0)

f · · ·f F···F(1, . . . ,nf , 1
′, . . . ,n′F),

on the other hand, is the nF-th order response of this nf -point correlation to perturbations
of the non-interacting system at times t1′, . . . , tn′

F
. If nF = 1, this is a linear response.

Microscopically, these perturbations correspond to particles being deflected from their free
trajectories by the forces −®∇v acting between them and other particles. In Fourier space,
this leads to the proportionality

G(0)
f · · ·f F···F(1, . . . ,nf , 1

′, . . . ,n′F) ∝ −i®kr ′ v(kr ′, tr ′) (2π)3 δd
(®lr ′ ) ∀ r ′ ∈ {1′, . . . ,n′F} .

(3.53)
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3.2. Resummed KFT

2. Causality tells us that the phase-space density Φf (u) evaluated at some time tu can only
respond to perturbations experienced at earlier times tr ′ ≤ tu . A more detailed analysis
further shows that the spatial density Φρ

(®ku , tu ) = Φf (u)
��®lu=0 can in fact only respond

to perturbations experienced at strictly earlier times tr ′ < tu . On the level of the free
cumulants this manifests itself in the property

G(0)
f · · ·f F···F(1, . . . ,nf , 1

′, . . . ,n′F) = 0 if ∃ r ′ ∈ {1′, . . . ,n′F}

such that
(
tr ′ > tu

)
or

(
tr ′ = tu and ®lu = 0

) ∀ u ∈ {1, . . . ,nf } .
(3.54)

In particular, every free pure ΦF-cumulant vanishes identically,

G(0)
F ···F(1

′, . . . ,n′F) = 0 . (3.55)

3. In statistically homogeneous systems, a free collective-field cumulant containing nf phase-
space density fields is given by a sum of individual free `-particle cumulants with 1 ≤ ` ≤ nf ,

G(0)
f · · ·f F···F(1, . . . ,nf , 1

′, . . . ,n′F) =
nf∑̀
=1

G(0, `)
f · · ·f F···F(1, . . . ,nf , 1

′, . . . ,n′F) , (3.56)

describing the contribution from correlations between ` particles. They satisfy

G(0, `)
f · · ·f F···F(1, . . . ,nf , 1

′, . . . ,n′F) ∝ ρ̄` (2π)3 δd
(®k1′ + · · · + ®kn′

F
+ ®k1 + · · · + ®knf

)
, (3.57)

where ρ̄ denotes the constant mean number density and the delta function arises due to
the translational invariance in statistically homogeneous systems. Note that all `-particle
cumulants with ` < nf describe shot-noise contributions, arising due to the discrete nature
of the density field. In the thermodynamic limit N → ∞ these become negligible relative
to the dominant term proportional to ρ̄nf .

3.2. Resummed KFT

From the perspective of most quantum and statistical field theories, the KFT partition function
(3.8) is rather unusual in the sense that the fields in which the path integral is expressed, i. e. the
microscopic fieldsψ , are different from our actual macroscopic fields of interest. This renders the
application of many well-established perturbative as well as non-perturbative field theoretic tools
rather difficult. Because of that, we developed in [3] a reformulation of the KFT partition function
as a path integral over the macroscopic spatial density field. This additionally gave rise to a new
perturbative approach to KFT which resums parts of the microscopic perturbation series.

In this section we present a substantially revised and extended derivation of this macroscopic
reformulation that allows to extract cumulants of the full phase-space density. Furthermore, we
demonstrate its application for a simple test system to illustrate the physical meaning of the
resummation procedure involved.
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3. Kinetic Field Theory

3.2.1. Macroscopic action

To reformulate the partition function (3.8) as a path integral over macroscopic fields, we exploit
the exact solvability of the free theory and the fact that the interacting part of the action (3.43)
depends on the microscopic fields ψ only implicitly via the dressed collective fields Φ̃[ψ ]. We
begin by introducing a functional delta distribution to replace the explicitlyψ -dependent field
Φf [ψ ] with a new formallyψ -independent field f ,

Z =

∫
dΓi

∫
x (i)

Dψ
∫
D f eiSψ ,0[ψ ]+if ·ΦF[ψ ] δd

[
f − Φf [ψ ]

]
. (3.58)

Note that the delta distribution ensures that this new field f effectively still carries all the
information of Φf [ψ ]. Most importantly, f - and Φf -correlation functions are precisely the same.
But to emphasise the different origin we will deliberately call f the macroscopic and Φf the
collective phase-space density field in the following.

Similar to what we did in (3.5), we can now express the delta distribution as a functional Fourier
transform with respect to a new macroscopic auxiliary field β conjugate to f ,

Z =

∫
dΓi

∫
x (i)

Dψ
∫
D f

∫
Dβ eiSψ ,0[ψ ]+if ·ΦF[ψ ]−iβ ·(f −Φf [ψ ]) . (3.59)

Pulling allψ -independent parts to the front, we find that the remaining microscopic part of the
path integral precisely takes the form of the free generating functional ZΦ̃,0,

Z =

∫
D f

∫
Dβ e−iβ ·f

∫
dΓi

∫
x (i)

Dψ eiSψ ,0[ψ ]+iβ ·Φf [ψ ]+if ·ΦF[ψ ] (3.60)

=

∫
Dϕ e−iβ ·f ZΦ̃,0

[
ϕ̃
]

(3.61)

where we defined the macroscopic field vectors ϕ B (f , β) and ϕ̃ = (β, f ). It is ϕ̃ which now
plays the role of the dressed collective source field H̃ introduced in subsection 3.1.3.

Finally, usingWΦ̃,0 = lnZΦ̃,0, we arrive at our desired result,

Z =

∫
Dϕ eiSϕ [ϕ] (3.62)

with the macroscopic action
Sϕ [ϕ] B −f · β − iWΦ̃,0

[
ϕ̃
]
. (3.63)

We want to emphasise that this reformulation is exact and hence (3.62) still contains the complete
information on the microscopic dynamics, even though Sϕ does not depend onψ any more. The
microscopic information is now encoded in the free generating functionalWΦ̃,0

[
ϕ̃
]
and thus, by
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3.2. Resummed KFT

means of a functional Taylor expansion, in the dressed free collective-field cumulants,

WΦ̃,0

[
ϕ̃
]
=

∞∑
nβ ,nf =0

1

nβ !nf !

nβ∏
u=1

(∫
du β(−u) δ

δHf (u)

) nf∏
r=1

(∫
dr ′ f (−r ′) δ

δHF(r ′)

)
WΦ̃,0

[
H̃

] ����
H̃=0

(3.64)

=

∞∑
nβ ,nf =0

inβ+nf

nβ !nf !

nβ∏
u=1

(∫
du β(−u)

) nf∏
r=1

(∫
dr ′ f (−r ′)

)
G(0)
f · · ·f F···F(1, . . . ,nf , 1

′, . . . ,n′F) .

(3.65)

3.2.2. Macroscopic propagator and vertices

The path integral in the form of (3.62) allows us to set up a new perturbative approach to
KFT following the standard procedure in quantum and statistical field theory, i. e. in terms
of propagators and vertices. For this purpose, we first split up the action (3.63) into the parts
which are quadratic in ϕ and those which are not,

iSϕ [ϕ]
!
= iS∆[ϕ] + iSV[ϕ] (3.66)

B − 1

2

∫
d1

∫
d2

(
f , β

)
(−1)

(
(∆−1)f f (∆−1)f β
(∆−1)β f (∆−1)ββ

)
(1, 2)

(
f
β

)
(−2)

+

∞∑
nβ ,nf =0
nβ+nf ,2

1

nβ !nf !

nβ∏
u=1

(∫
du β(−u)

) nf∏
r=1

(∫
dr ′ f (−r ′)

)
Vβ · · ·β f · · ·f (1, . . . ,nβ , 1′, . . . ,n′f ) ,

(3.67)

introducing the inverse macroscopic propagator ∆−1 and the macroscopic (nβ +nf )-point vertices
Vβ · · ·β f · · ·f .

Furthermore, we define the macroscopic generating functional Zϕ by introducing a source field
M =

(
Mf ,Mβ

)
conjugate to ϕ into the partition function,

Zϕ [M] B
∫
Dϕ eiSϕ [ϕ]+iM ·ϕ . (3.68)

Then, the vertex part of the action can be pulled in front of the path integral by replacing its
ϕ-dependence with functional derivatives with respect to M , ŜV B SV

[
δ

iδM

]
, acting on the

remaining path integral,

Zϕ [M] = eiŜV
∫
Dϕ e−

1
2ϕ ·∆−1 ·ϕ+iM ·ϕ (3.69)

= eiŜV e
1
2 (iM )·∆ ·(iM ) . (3.70)

Expanding the first exponential in (3.70) in orders of the vertices now gives rise to a new pertur-
bative approach that we will refer to as the macroscopic perturbation theory.
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3. Kinetic Field Theory

Within this approach, the interacting macroscopic cumulants are obtained via

Gf · · ·f β · · ·β (1, . . . ,nf , 1′, · · · ,n′β ) =
δ

iδMf (1)
· · · δ

iδMf (nf )
δ

iδMβ (1′)
· · · δ

iδMβ (n′β )
Wϕ [M]

�����
M=0

,

(3.71)
where we defined the macroscopic cumulant-generating functional Wϕ [M] B lnZϕ [M]. In
particular, this implies that the lowest perturbative order of the 2-point phase-space density
cumulant Gf f , is given by the f f -component of the macroscopic propagator

Gf f (1, 2) =
δ

iδMf (1)
δ

iδMf (2)
Wϕ [M]

����
M=0

(3.72)

= ∆f f (1, 2) + terms involving vertices , (3.73)

For a systematic computation of the higher order contributions involving vertices, we first need
to specify an explicit expansion scheme. We will return to this at the end of subsection 3.2.4 after
we will have introduced a diagrammatic representation for the propagators and vertices, and
investigated the general properties of the macroscopic perturbation theory in more detail.

To find explicit expressions for ∆−1 and Vf · · ·f β · · ·β , we insert (3.65) into (3.63) and identify
terms with (3.67),

∆−1(1, 2) =
(
(∆−1)f f (∆−1)f β
(∆−1)β f (∆−1)ββ

)
(1, 2) =

(
G(0)

FF iI +G(0)
Ff

iI +G(0)
f F G(0)

f f

)
(1, 2) , (3.74)

Vβ · · ·β f · · ·f (1, . . . ,nβ , 1′, . . . ,n′f ) = inβ+nf G(0)
f · · ·f F···F(1, . . . ,nβ , 1

′, . . . ,n′f ) . (3.75)

Here, I denotes the identity 2-point function,

I(1, 2) B (2π)3 δd
(®k1 + ®k2

)
(2π)3 δd

(®l1 + ®l2
)
δd(t1 − t2) . (3.76)

Note that every β-component of an inverse propagator or vertex in (3.74) and (3.75) corresponds
to an f -component of a free cumulant whereas every f -component of an inverse propagator or
vertex corresponds to an F-component of a free cumulant. Together with (3.55), this directly
allows us to conclude that (∆−1)f f and Vf · · ·f vanish identically.

The propagator ∆ is then obtained by a combined matrix and functional inversion of (3.74),
defined via the following matrix integral equation,∫

d1̄ ∆(1,−1̄) ∆−1(1̄, 2) !
= I(1, 2) I2 . (3.77)

The matrix part of this inversion can be performed immediately and yields

∆(1, 2) =
(
∆f f ∆f β
∆β f ∆ββ

)
(1, 2) =

(
∆R ·G(0)

f f · ∆A −i∆R

−i∆A 0

)
(1, 2) , (3.78)

where we defined the abbreviations

∆R(1, 2) = ∆A(2, 1) B
(
I − iG(0)

f F

) −1
(1, 2) (3.79)
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3.2. Resummed KFT

for the remaining functional inverses. In Appendix C we describe how these as well as ∆f f can
be computed explicitly for a given physical system.

But even without specifying the system it is always possible to express (3.79) formally in terms
of a Neumann series by expanding the functional inverse in orders of iG(0)

f F ,

∆R(1, 2) = ∆A(2, 1) =
∞∑
n=0

(
iG(0)

f F

) n
(1, 2) (3.80)

= I(1, 2) + iG(0)
f F(1, 2) +

∫
d1̄ iG(0)

f F(1,−1̄) iG
(0)
f F(1̄, 2) + · · · . (3.81)

Recalling G(0)
f F = G

(0)
f B · σBf from (3.46), we can see that ∆R and ∆A contain terms with arbitrarily

high order in σBf and hence in the interaction potentialv . Inserting them into the f f -component
of (3.78) yields

∆f f (1, 2) =
∞∑

na,nr=0

( (
(iG(0)

f B · σBf
) nr

·G(0)
f f ·

(
σf B · iG(0)

Bf

) na
)
(1, 2) . (3.82)

This demonstrates that the lowest perturbative order within the macroscopic approach already
captures some features which could only be described at infinitely high order within the micro-
scopic perturbation theory. Consequently, we expect the macroscopic perturbation theory to be
generally more powerful than the microscopic one.

We can make this statement more precise by recalling from (3.73) that ∆f f is exactly the result
we get for Gf f by taking no vertices into account. Due to (3.67) and (3.75) this is equivalent to
computing Gf f while ignoring all contributions involving free n-point cumulants with n , 2.
Thus, the transition from the micro- to the macroscopic formulation leads to a resummation of
all contributions appearing in the microscopic perturbative series that only contain free 2-point
cumulants. In a statistically homogeneous system this corresponds to a resummation of all
contributions that do not lead to any mode-coupling beyond that already introduced by the free
evolution.

To understand what this resummation corresponds to on the level of the microscopic particle
dynamics, we need to take a closer look at the meaning of the free cumulants appearing in the
propagator. From the properties 1 and 2 discussed in subsection 3.1.3 we know that iG(0)

f F(1, 2)
describes the linear response of the phase-space densityΦf (1) at time t1 to particles being deflected
from their free trajectories by some perturbing forces acting on them at an earlier time t2 ≤ t1.
The product iG(0)

f F(1,−1̄) iG
(0)
f F(1̄, 2) appearing under the integral in (3.81) accordingly describes

the linear response of Φf (1) to a situation in which the forces generated by those already deflected
particles perturb the trajectories of so far still freely evolving particles at an intermediate time t1̄
with t2 ≤ t1̄ ≤ t1.

This process can be repeated for any possible number of iterations n, with the deflections
occurring continuously at all possible intermediate times t1̄, . . . , tn̄ with t2 ≤ t1̄ ≤ · · · ≤ tn̄ ≤ t1,
as illustrated in Figure 3.1. ∆R and ∆A capture this by summing over all possible numbers of
linear response cumulants iG(0)

f F and integrating over all intermediate times. The correct time
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(
iG

(0)
f F

) n
(1, 2)

(
iG

(0)
f F

) n−1
(1, 2)

(
iG

(0)
f F

) 2
(1, 2)

iG
(0)
f F(1, 2)

t
ti t2 t1̄ t2̄ tn−1 tn̄ t1

Figure 3.1.: Illustration of the microscopic particle dynamical processes resummed in the retarded propaga-
tor ∆R(1, 2). The arrows represent particle trajectories while the wavy lines depict forces acting
on those particles. The different contributions to ∆R(1, 2) denoted on the left side correspond to
different truncations of an iterative process where in each step particles are deflected from their
free trajectories by the forces generated by the already deflected particles from the previous
step. The open wavy line at the top represents the forces initiating the whole process at time t2.

order under the integral is ensured by the property G(0)
f F(1, 2) ∝ θ(t1 − t2) , following from (3.54).

Consequently, we find
∆R(1, 2) = ∆A(2, 1) = 0 if t2 > t1 , (3.83)

andwewill hence call∆R and∆A the retarded and advanced (macroscopic) propagators, respectively.
If we do not want to explicitly distinguish between the two, we will refer to them more generally
as the causal (macroscopic) propagators.

In ∆f f = ∆R ·G(0)
f f · ∆A the forces generated by the initially correlated, freely evolving particles

associated with G(0)
f f cause the perturbation needed to initiate the iterative deflection process

encoded in ∆R and ∆A. Accordingly, it describes the connected 2-point phase-space density
correlation emerging from the ensemble average over initially correlated particles that have
undergone this process. We will thus call ∆f f the statistical (macroscopic) propagator – adopting
the nomenclature used in nonequilibrium quantum and statistical field theory. We want to
stress that even though ∆R and ∆A only contain linear response cumulants, ∆f f will generally
contain contributions that are nonlinear in the initial phase-space density correlation, as the
free-streaming of particles inG(0)

f f itself builds up those nonlinearities as long as the initial particle
momenta are correlated [48].

3.2.3. A simple test system

It will prove very instructive to complement the rather abstract discussion of the macroscopic
propagator’s general properties in the previous subsection with an explicit example. For this,
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3.2. Resummed KFT

we choose to calculate the propagator for a simple test system of N particles of massm in static
space-time, interacting via a potential v that is not explicitly time-dependent but otherwise
arbitrary. The equations of motion for this system read

Û®qj =
®pj
m
, (3.84)

Û®pj = −
N∑
k=1
k,j

®∇qjv
(
| ®qj (t) − ®qk (t)|

)
, (3.85)

which in the non-interacting case,v = 0, are solved by the Green’s function (3.21) with components

дqq(t , t ′) = дpp (t , t ′) = θ(t − t ′) , (3.86)

дqp (t , t ′) =
t − t ′

m
θ(t − t ′) , (3.87)

дpq(t , t ′) = 0 , (3.88)

as shown in Appendix A.2.
To obtain the dressed free collective-field cumulants, we further have to specify the initial

conditions of our test system. The simplest non-trivial choice we can make is to consider Gaussian
initial density correlations but vanishing initial momenta. The general expressions for the bare
free collective-field cumulants in such a setting are listed in Appendix B.1. Inserting the interaction
matrix element (3.28) and the components (3.86) to (3.88) of the Green’s function into these yields

G(0)
f (1) = (2π)3 δd

(®k1) ρ̄ , (3.89)

G(0)
f F(1, 2) = (2π)3 δd

(®k1 + ®k2
)
(2π)3 δd

(®l2) ρ̄ ik21 v(k1) ( t1 − t2
m

+
®k1 · ®l1
k21

)
θ(t1 − t2) , (3.90)

G(0)
f f (1, 2) = (2π)3 δd

(®k1 + ®k2
)
ρ̄2 P (i)

δ (k1) , (3.91)

for the non-vanishing 1- and 2-point cumulants, where we further assumed to be in the thermo-
dynamic limit, allowing us to neglect shot-noise contributions.

To determine the macroscopic propagator, we now first need to insert the expression (3.90) for
G(0)
f F into the functional inverse (3.79) defining the causal propagators ∆R and ∆A. In Appendix C

we show how this inverse can be calculated fully analytically by means of Laplace transforms.
This exploits the fact that G(0)

f F(1, 2) is time-translation invariant, i. e. it only depends on t1 and t2
in terms of their difference. The result reads

∆R(1, 2) = ∆A(2, 1) = I(1, 2) + (2π)3 δd
(®k1 + ®k2

)
(2π)3 δd

(®l2) ∆̃R
(®k1, ®l1; t1, t2) . (3.92)

with

∆̃R
(®k1, ®l1; t1, t2) = −

[
k1c(k1) sin

(
k1(t1−t2) c(k1)

)
+mc2(k1) ®k1 ·®l1 cos

(
k1(t1−t2) c(k1)

) ]
θ(t1−t2) ,

(3.93)
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which immediately fixes the off-diagonal elements of the macroscopic propagator (3.78). The
function c(k) appearing here is defined as

c(k) B
√
ρ̄v(k)
m
. (3.94)

Inserting the results for ∆R and ∆A as well as the expression (3.91) forG(0)
f f into the f f -component

of (3.78) then yields the remaining statistical propagator,

∆f f (1, 2) = (2π)3 δd
(®k1 + ®k2

)
ρ̄2 P (i)

δ (k1)D(1)D(2) , (3.95)

with

D(1) B cos
(
k1t1 c(k1)

)
−mc(k1)

®k1 · ®l1
k1

sin
(
k1t1 c(k1)

)
. (3.96)

There are a number of things we would like to point out about this result for the propagator.
First of all, we note that the sign of the Fourier transformed interaction potential v(k) is crucial
since it appears under a square root in the function c(k). If v(k) > 0, then c(k) is real and the
time-dependence of the propagator is described by the trigonometric sine and cosine functions.
If v(k) < 0, however, c(k) is imaginary and the time-dependence is actually described by the
hyperbolic sine and cosine functions sinh(y) = −i sin(iy) and cosh(y) = cos(iy). In other words,
v(k) > 0 yields oscillating modes, whereas v(k) < 0 yields exponentially growing modes.3

To interpret this behaviour from a physical perspective, we first recall from (3.73) that the
statistical propagator ∆f f is the lowest order perturbative result of the 2-point phase-space density
cumulantGf f . Hence, it describes the evolution of macroscopic structures in the regime where
mode-coupling due to interactions is negligible. We further note that a positive sign of the Fourier
transformed potential corresponds to an repulsive interaction, which should indeed lead to an
oscillatory evolution of structures. A negative sign, on the other hand, corresponds to an attractive
interaction, leading to the growth of structures. Remarkably, the macroscopic propagator is thus
able to capture the characteristic general behaviour of structure formation in both of these very
different types of interacting system.

This clearly demonstrates an important advantage of the macroscopic perturbation theory over
the microscopic one. In the latter approach, cumulants can only be calculated up to a finite order
in the interaction potential v . Expanding the result (3.95) of ∆f f as a series in v and truncating
this series at a finite order would only yield a very crude approximation to the full exponential or
trigonometric behaviour. We thus expect a plain perturbative expansion to any feasible order
in the microscopic approach to only be able to describe the evolution of the system for early
times when the argument ktc(k) is still small. For later times the truncated result should start to
underpredict the growth of structures in systems with attractive interaction, and overpredict it in
systems with repulsive interactions.4

3Technically, the hyperbolic functions are each given by a sum of a growing and a decaying mode. But since the
decaying modes quickly become negligible compared to the growing ones, we will always just speak of growing
modes.

4In [1, 2], where we applied the microscopic perturbation theory to cosmic structure formation, this problem is
bypassed by replacing the Hamiltonian free trajectories with the modified Zel’dovich trajectories introduced in
[51], which already contain part of the gravitational interaction.
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3.2. Resummed KFT

3.2.4. Feynman diagrams

Now that we have gained a good understanding of the properties of the macroscopic propagator,
let us discuss some general properties of the macroscopic perturbation theory as a whole. For
this purpose, it is convenient to introduce diagrammatic representations for the propagators
and vertices. We want to do this in such a way that the diagrams indicate the causal structure
inherited from the free collective-field cumulants. Combining (3.54) and (3.75) yields

Vβ · · ·β f · · ·f (1, . . . ,nβ , 1′, . . . ,n′f ) = 0 if ∃ r ′ ∈ {1′, . . . ,n′f }

such that
(
tr ′ > tu

)
or

(
tr ′ = tu and ®lu = 0

) ∀ u ∈ {1, . . . ,nβ } .
(3.97)

meaning that every f -argument of a vertex must always be evaluated at an earlier time than at
least one of its β-arguments. We visualise this by placing incoming arrowheads on the ends of
f -legs and outgoing arrowheads on the ends of β-legs, indicating the direction of time. A general
vertex is then represented as

Vβ · · ·β f · · ·f (1, . . . ,nβ , 1′, . . . ,n′f ) �

1

nβ 1′

n′f

if nβ ≥ 1, (3.98)

and Vf · · ·f = 0.
The propagator (3.78) contains the building blocks G(0)

f f , ∆R and ∆A. For the first one of these

we can directly adopt the representation (3.98) by means of G(0)
f f = −Vββ ,

−G(0)
f f (1, 2) � 1 2 . (3.99)

But ∆R and ∆A require a new kind of diagram. In accordance with their respective retarded or
advanced causal structure we represent them as a line with an arrowhead in the middle, pointing
towards the later time,

− i∆R(1, 2) = −i∆A(2, 1) � 1 2 , (3.100)

additionally introducing a conventional factor −i. Whenever we connect the diagrams (3.98),
(3.99) and (3.100) in such a way that there are consecutive arrowheads on a line pointing into the
same direction, we further choose to join these into one. This yields the following diagrammatic
representations for the different components of the propagator,

∆(1, 2) �
(

1 2 1 2

1 2 0

)
. (3.101)

Every term in the macroscopic perturbative expansion (3.70) can now be represented by
combining the diagrammatic expressions (3.98) and (3.101) for the vertices and propagators
appearing in that term. Furthermore, it is a well-established fact in quantum and statistical
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3. Kinetic Field Theory

field theory that the terms appearing in the cumulant-generating functionalWϕ [M] B lnZϕ [M]
always correspond to connected diagrams. We will thus only consider those in the following.

In such a diagram every f -leg of each vertex will be attached to an f -end of a propagator and
every β-leg of each vertex will be attached to a β-end of a propagator. This allows some immediate
conclusions. First, one notices that the arrow directions of propagator-ends and vertex-legs being
connected in this way will always agree. There will thus be a consistent and continuous time-flow
throughout the complete diagram. Second, the fact that there are no propagators or vertices with
incoming arrows only means that the time-flow has no sinks. In Appendix D.1 we demonstrate
how these two properties can be used to derive the following

Causality rule A diagram is causally forbidden and vanishes identically if it has only incoming
arrows on its outer legs or contains a subdiagram which does so.

The overall time-flow behaviour in a general diagram nicely illustrates the characteristics of
the initial-value problem we are dealing with when calculating a phase-space density correlation
within the macroscopic perturbation theory:

• The time-flow is sourced by the free collective-field cumulants within the propagators and
vertices since they encode the initial conditions of the system.

• Time-flows can merge and split, as a single event can be influenced by several preceding
ones and it can itself also affect several subsequent ones.

• Time-flows can only end at the outer legs of the diagram since this is where we read off the
cumulant of interest evolved to some final points in time.

If the system of interest is statistically homogeneous, the macroscopic perturbation theory
has some additional very convenient properties. First of all, we recall from (3.57) that the free
cumulants conserve spatial Fourier modes in this case. This property is translated to the propagator
and vertices,

∆(1, 2) ∝ (2π)3 δd
(®k1 + ®k2

)
, (3.102)

Vβ · · ·β f · · ·f (1, . . . ,nβ , 1′, . . . ,n′f ) ∝ (2π)3 δd
(®k1 + · · · + ®knβ + ®k2 + · · · + ®kn′

f

)
, (3.103)

as can be checked by inserting (3.28) and (3.76) into (3.74) and (3.75). Consequently, any connected
diagram has to conserve spatial Fourier modes as well.

Furthermore, we show in Appendix D.2 how this property allows to prove the following

Homogeneity rule In statistically homogeneous systems, a diagram vanishes identically if it
contains a so-called tadpole subdiagram, i.e. a subdiagram which is connected to the rest of
the diagram solely via a single propagator.

The physical interpretation of this rule is straightforward. The only information carried by
a diagram with only one external leg is the value of the mean phase-space density. But a
homogeneous background density can not affect the dynamics of the particles, as this depends on
potential gradients only.
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3.2. Resummed KFT

The two Feynman rules will enable us to drastically reduce the number of contributions to the
macroscopic perturbative expansion that have to be taken into account. The Homogeneity rule
further implies the applicability of the conventional loop expansion scheme when considering
statistically homogeneous systems, as this rule ensures that there will always only be a finite
number of non-vanishing diagrams with a given number of loops. The complete procedure for
calculating the L-loop expression for an interacting nf -point phase-space density cumulant of a
statistically homogeneous system within the macroscopic perturbation theory is then as follows:

1. Draw nf points and label these with the Fourier space arguments 1 to nf .

2. By combining the propagators (3.101) and vertices (3.98) such that the arrow directions of
joint legs always agree, draw all possible connected diagrams with nf outgoing external
propagators ending at the labelled points that are allowed by the Causality as well as the
Homogeneity rule and contain exactly L loops.

3. Divide each diagram by its respective symmetry factor, i. e. the number of possible permu-
tations of internal propagators and vertices which leave the labelled diagram invariant.

4. Translate each diagram into its respective functional expression, taking into account that
every link between a propagator and a vertex corresponds to a Fourier space integral over
the argument at their joint legs, and sum up all resulting expressions.

In this sense, ∆f f is the 0-loop or – adopting the usual field theoretical nomenclature – tree-level
result of the 2-point phase-space cumulant Gf f . Two examples of diagrams appearing in the
1-loop result of Gf f are

1 2 �

∫
d1̄ · · · d6̄ ∆f β (1,−1̄)Vβ f f (1̄,−2̄,−3̄)∆f f (2̄,−4̄)

×∆f β (3̄,−5̄)Vf ββ (4̄, 5̄,−6̄)∆β f (6̄, 2) ,

(3.104)

1 2 �

∫
d1̄ · · · d4̄ ∆f β (1,−1̄)Vβ f β f (1̄,−2̄, 3̄,−4̄)

×∆f β (2̄,−3̄)∆f f (4̄, 2) .

(3.105)

39





4. Dark matter structure formation

In this chapter we use the resummed KFT framework introduced in section 3.2 to describe the
formation of structures in pure dark matter. We will begin by deriving the free collective-field
cumulants obtained from the dynamics of gravitating particles in an expanding space-time. Using
these, we then compute the tree-level and 1-loop contributions to the macroscopic propagator,
which allows us to obtain the first nonlinear corrections to the dark matter power spectrum.
Finally, we compare these to results from numerical simulations and Eulerian perturbation theory,
and discuss the differences and similarities.

4.1. Dark matter dynamics

To describe the dynamics of classical particles in an expanding space-time, we first need to specify
our choice of coordinates. Following [31], we use

η(t) B ln
D+(t)
D+(ti)

(4.1)

as our time coordinate, with D+ being the usual linear growth factor defined in (2.26). Note
that this definition implies ηi = 0. The spatial coordinate is chosen to be comoving with the
homogenous expansion of the background space-time, ®q B ®r/a, where ®r denotes the physical
coordinate and a the cosmological scale factor. As the momentum variable we use ®p B d®q/dη,
i. e. the peculiar comoving velocity with respect to the coordinate time η.

In Appendix E we show that the resulting equations of motion for the phase-space trajectories
of dark matter particles read

d®qj
dη
= ®pj , (4.2)

d®pj
dη
= −

(
3

2

Ωm

f 2+
− 1

)
®pj − ®∇qjṼG ≈ −1

2
®pj − ®∇qjṼG , (4.3)

with the dimensionless matter density parameter Ωm, the growth function f+ B d lnD+/d lna
and the effective gravitational potential ṼG satisfying the Poisson equation

∇2
qṼG =

3

2

Ωm

f 2+

Φρ − ρ̄

ρ̄
≈ 3

2

Φρ − ρ̄

ρ̄
, (4.4)

where ρ̄ denotes themean comoving number density of darkmatter particles. Here, we additionally
used Ωm/f 2+ ≈ 1, which is a very good approximation during the matter- and Λ-dominated
cosmological epochs that we are interested in [5, 52].
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4. Dark matter structure formation

The single-particle Green’s function G (3.21) that solves the equations of motion (4.2) and (4.3)
in the non-interacting case, ṼG = 0, has the components

дqq(η,η′) = θ(η − η′) , (4.5)

дqp (η,η′) = θ(η − η′) 2
(
1 − e−

1
2 (η−η′)

)
, (4.6)

дpq(η,η′) = 0 , (4.7)

дpp (η,η′) = θ(η − η′) e− 1
2 (η−η′) , (4.8)

as shown in Appendix A.3. Furthermore, the Poisson equation (4.4) is solved by

ṼG (®q, t) =
N∑
j=1

ṽG
(
| ®q − ®qj (t)|

)
(4.9)

with the effective single-particle gravitational potential reading

ṽG (k) B −3
2

1

ρ̄ k2
(4.10)

in Fourier space. It replaces the generic potential v in the definition (3.28) of the interaction
matrix element σf B .

We further choose to fix the initial time to some point early in the matter-dominated epoch,
when the cosmic density andmomentum fields were still well-described by Gaussian random fields.
As described in subsection 3.1.3, the initial conditions are then completely fixed by specifying the
initial density contrast power spectrum P (i)

δ . Since we are considering the structure formation in
pure dark matter here, we choose to neglect the effects of baryonic matter in the early universe
and assume an initial BBKS spectrum [12], described in subsection 2.2.2.

General expressions for the free collective-field cumulants resulting from this choice of initial
conditions have been derived in [48], and in Appendix B we listed these for the 1- to 4-point
cumulants used in this thesis. Inserting the Green’s function components (4.5) to (4.8) as well
as the interaction matrix element (3.28) with the potential (4.10) into these yields the specific
expressions needed for our application to dark matter structure formation. In particular, the
resulting non-vanishing 1-and 2-point cumulants read

G(0)
f (1) = (2π)3 δd

(®k1) ρ̄ e− σ2
p
2 T̃ 2

1 l
2
1 , (4.11)

G(0)
f F(1, 2) = (2π)3 δd

(®k1 + ®k2
)
(2π)3 δd

(®l2) θ(η1 − η2)

× −3 i
2

(
T12 + T̃12

®k1 · ®l1
k21

)
e−

σ2
p
2

(
(T1−T2)®k1+T̃1®l1

) 2

,
(4.12)

G(0)
f f (1, 2) = (2π)3 δd

(®k1 + ®k2
)
ρ̄2C2(1, 2) e−

σ2
p
2

[ (
T1 ®k1+T̃1®l1

) 2
+
(
−T2 ®k1+T̃2®l2

) 2]
, (4.13)

where we neglected contributions due to shot noise by taking the thermodynamic limit, as
discussed in item 3 of subsection 3.1.3. This is an excellent approximation on all scales relevant
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4.1. Dark matter dynamics

for cosmic structure formation, as the number of dark matter particles contained in any volume
of interest is huge.

We also already imposed the constraints on ®k2 and ®l2 set by the delta functions, and defined
the short-hand notations

T̃u B e−
1
2ηu , T̃ur B e−

1
2 (ηu−ηr ) , (4.14)

Tu B 2 (1 − T̃u ) , Tur B 2 (1 − T̃ur ) (4.15)

for the time-dependencies introduced by the Green’s function. Furthermore, σ2
p denotes the

1-point variance of the initial momentum field,

σ2
p =

1

3
trCpjpj =

1

3

∫
d3k

(2π)3
P (i)
δ (k)
k2

, (4.16)

and C2 describes the 2-point phase-space density correlations emerging from the free-streaming
of particles. Expanding the latter to second order in P (i)

δ yields

C2(1, 2) = P (i)
δ (k1)

(
1 +

®k1 ·
(
T1®k1 + T̃1®l1

)
k21

) (
1 −

®k1 ·
(
−T1®k1 + T̃2®l2

)
k21

)

+

∫
d3k ′

(2π)3 P
(i)
δ (k ′) P (i)

δ

(��®k1 + ®k ′��) 
(
®k ′ ·

(
T1®k1 + T̃1®l1

) ) (
®k ′ ·

(
−T2®k1 + T̃2®l2

) )
k ′4

×
©«1 +

(®k1 + ®k ′) · ((T1 −T2) ®k1 + T̃1®l1 + T̃2®l2
)

��®k1 + ®k ′
��2

+
1

2

( (®k1 + ®k ′) · (T1®k1 + T̃1®l1) ) ( (®k1 + ®k ′) · (−T2®k1 + T̃2®l2) )��®k1 + ®k ′
��4 ª®®¬

−

(
®k ′ ·

(
T1®k1 + T̃1®l1

) ) ( (®k1 + ®k ′) · (−T2®k1 + T̃2®l2) )
k ′2

��®k1 + ®k ′
��2

 + O
( (
P (i)
δ

) 3)
.

(4.17)

As pointed out in [48], the full nonlinear expression for C2 given in (B.10) has to be evaluated
numerically. The same is true for the analogous functions Cnf with nf ≥ 3 which appear in
the free collective-field cumulants involving nf phase-space density fields and characterise the
nf -point phase-space density correlations emerging from free-streaming. So far, implementing
this in a sufficiently numerically stable manner has unfortunately only been achieved specifically
for the functionC2(1, 2) evaluated at ®k2 = −®k1 and ®l1 = ®l2 = 0. Hence, the only free collective-field
cumulant whose full nonlinear form is currently accessible is the free 2-point cumulant of spatial
densities G(0)

ρρ .
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4. Dark matter structure formation

It turns out that its numerical result is exceptionally well-described by the analytic expression

G(0)
ρρ (1, 2) = (2π)3 δd

(®k1 + ®k2
)
ρ̄2 P (i)

δ (k1) e−
σ2
p
2 (T1−T2)2k2

1 , (4.18)

at least up to wavenumbers of k = 105 h/Mpc which easily covers all scales relevant for cosmic
structure formation. As we can see, the only difference between this expression and the one
obtained when using the linearised result forC2 is the form of their damping factors. In particular,
the full nonlinear result does not experience any damping at all when evaluated at equal times.
Apparently, the influence of the complete hierarchy of initial correlations thus mainly manifests
itself in compensating the dissolution of small-scale structures caused by the particles’ momentum
dispersion. A similar result was found in [2] for Zel’dovich dynamics.

4.2. Tree-level propagator

4.2.1. Analytical large-scale solution

To determine the macroscopic propagator for cosmic structure formation, we first insert the
expression (4.12) for G(0)

f F into the functional inverse (3.79) defining the causal propagators ∆R

and ∆A. In Appendix C we show how this inverse can be computed fully analytically ifG(0)
f F(1, 2)

evaluated at ®l1 = ®l2 = 0 is time-translation invariant, i. e. if it only depends on η1 and η2 in terms
of their difference η12 B η1 − η2. While this is generally not the case for (4.12), we can see that it

is only the remaining k1-dependent part of the Gaussian damping factor, e−
σ2
p
2 (T1−T2)2k2

1 , which
breaks this invariance. For the moment, let us thus consider the large-scale limit k21 � σ−2

p in
which this part of the damping factor becomes negligible and we can follow the steps outlined in
Appendix C to find the analytic solution

∆(ls)
R

(1, 2) = ∆(ls)
A

(2, 1) = I(1, 2) + (2π)3 δd
(®k1 + ®k2

)
(2π)3 δd

(®l2) ∆̃(ls)
R

(®k1, ®l1;η1,η2) . (4.19)

with

∆̃(ls)
R

(®k1, ®l1;η1,η2) = 3

5

[ (
1 +

®k1 · ®l1
k21

)
eη12 −

(
1 − 3

2

®k1 · ®l1
k21

)
e−

3
2η12

]
θ(η12) e−

σ2
p
2 T̃ 2

1 l
2
1 . (4.20)

This immediately fixes the off-diagonal elements of the macroscopic propagator (3.78).
In this limit, the damping factor in the expression (4.13) forG(0)

f f simplifies as well, and restricting
C2 to its linear part becomes a very good approximation, as the nonlinear contributions are
expected to be sub-dominant on large scales. Hence, the large-scale limit of G(0)

f f reads

G(0, ls)
f f (1, 2) = (2π)3 δd

(®k1 + ®k2
)
ρ̄2 P (i)

δ (k1) e−
σ2
p
2

(
T̃ 2
1 l

2
1+T̃

2
2 l

2
2

)
×

(
1 +

®k1 ·
(
T1®k1 + T̃1®l1

)
k21

) (
1 −

®k1 ·
(
−T1®k1 + T̃2®l2

)
k21

)
.

(4.21)
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Inserting (4.19) and (4.21) into the f f -component of (3.78) then yields the remaining statistical
propagator,

∆(ls)
f f (1, 2) = (2π)3 δd

(®k1+®k2) ρ̄2 P (i)
δ (k1) eη1+η2

(
1+

®k1 · ®l1
k21

) (
1+

®k2 · ®l2
k22

)
e−

σ2
p
2

(
T̃ 2
1 l

2
1+T̃

2
2 l

2
2

)
, (4.22)

as shown in detail in Appendix C.
From (4.22) we can infer the large-scale solution of the density contrast power spectrum,

P (∆, ls)
δ (k1,η1) =

∆(ls)
f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄2

������ ®k2=−®k1
®l1=®l2=0
η2=η1

= P (i)
δ (k1) e2η1 = P (i)

δ (k1)
D2
+(η1)

D2
+(0)

= P (lin)
δ (k1,η1) .

(4.23)
We see that we are precisely recovering the well-known linear growth of structures on the very
largest scales. It can not be stressed enough that at no point in the derivation did we have to
employ the Zel’dovich approximation or assume fluid dynamics. Instead, this result was derived
completely analytically from Hamiltonian particle dynamics alone, which, to our knowledge, is
the first time that this has been achieved.

If we compare (4.23) with the large-scale limit of the freely evolved power spectrum,

P (0, ls)
δ (k1,η1) =

G(0, ls)
f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄2

������ ®k2=−®k1
®l1=®l2=0
η2=η1

= P (i)
δ (k1)

(
3 − 2 e−

1
2η1

) 2 (4.24)

we can see that the growth of the latter is drastically slower and even bounded from above
for late times. The reason for this is that, relative to the expanding space-time, freely evolving
particles slow down in comoving coordinates since their initial momentum falls behind the
cosmic expansion [51]. We conclude that the particle interactions resummed in the macroscopic
propagator, as discussed in subsection 3.2.2, precisely compensate the significant lack of large-
scale structure growth caused by this deceleration. Not only does this demonstrate the power of
our resummation procedure, but it also provides a novel insight into the connection between the
formation of structures on cosmic scales and the underlying microscopic Hamiltonian particle
dynamics.

Having the full phase-space information at hand, we can also directly deduce correlations of,
for example, the first momentum moment of the phase-space density,

®π
(
®q,η

)
B

∫
d3p ®p f

(
®q, ®p,η

)
, ®π

(®k,η) = i
∂

∂®l
f
(®k, ®l ,η) ����®l=0 . (4.25)

Here, we used (3.37) to obtain the expression in Fourier space. Its power spectrum is defined via

(2π)3 δd
(®k1 + ®k2

)
Pπ (k1,η) B (ρ̄)−2

〈
®π (®k1,η) · ®π (®k2,η)

〉
c
, (4.26)
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and has the large-scale limit

P (∆, ls)
π (k1,η1) =

i ∂
∂®l1

· i ∂
∂®l2

∆(ls)
f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄2

������ ®k2=−®k1
®l1=®l2=0
η2=η1

=
P (i)
δ (k1)
k21

D2
+(η1)

D2
+(0)

=
P (lin)
δ (k1,η1)

k21
, (4.27)

which agrees with the solution of the linearised Eulerian fluid equations [53].

4.2.2. Numerical solution on all scales

Going beyond the large-scale limit requires a numerical evaluation of the macroscopic propagator.
We have shown in Appendix C how this can be reduced to solving a simple matrix equation and
computing one- and two-dimensional integrals over time arguments. Performing these steps is in
itself computationally cheap and numerically stable. In practice, however, we are of course limited
by the more challenging numerical evaluation of the free 2-point cumulant G(0)

f f entering this
computation. In this thesis, we will thus only consider the numerical evaluation of the tree-level
density contrast power spectrum P (∆)

δ , as this just requires the spatial density cumulantG(0)
ρρ as an

ingredient, which allows us to use the analytic approximation (4.18). The numerical evaluation of
P (∆)
π , which requires to evaluate G(0)

f f (1, 2) also for non-vanishing ®l1 and ®l2, will be the subject of
future work.

In Figure 4.1 we show the result found for P (∆)
δ evolved from the time of CMB decoupling until

today and compare it to the freely evolved spectrum P (0)
δ as well as the linear result P (lin)

δ . At
small wavenumbers, the full tree-level result follows the linear spectrum before it starts to fall
below the linear prediction on wavenumbers k & 20h/Mpc where the influence of the particles’
momentum dispersion starts to become relevant. When going to even higher wavenumbers it
eventually approaches and follows the freely evolved spectrum for k & 104 h/Mpc. The overall
shape of the tree-level spectrum thus interpolates between linear growth on large scales and free
evolution of structures on small scales.

There are two important conclusions that can be drawn from this result. First of all, it suggests
that the partial resummation of gravitational interactions described by the macroscopic tree-level
propagator is not able to capture the full nonlinear hierarchy of initial correlations encoded in
the free 2-point cumulant G(0)

ρρ . Otherwise we would expect to see a similar compensation of
the dispersion-induced damping as observed in P (0)

δ . This is not surprising, though, since the
propagator only takes the linear response of the phase-space density to particle interactions into
account, as discussed in subsection 3.2.2. Consequently, any compensation of the damping effect
is only expected to be captured by higher-order corrections within the macroscopic perturbation
theory.

At the same time, however, we can also infer that the resummed interactions do not enhance
the damping effect either, as the tree-level result never drops below the structure growth found in
the freely evolving system. This differs from the behaviour found in Zel’dovich dynamics which
overpredicts the dissolution of small-scale structures [2, 5].

Altogether, the full tree-level result for the density contrast power spectrum is thus found to
capture the linear effects introduced by gravitational interactions in a way that is fully consistent
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10−4 10−3 10−2 10−1 100 101 102 103 104

k
[
h Mpc−1]10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

P
δ

[ h
−
3
M
pc

3
]

free
linear
tree-level

Figure 4.1.: Density contrast power spectra obtained from the macroscopic tree-level propagator, the free
theory and the linear theory, respectively, evolved from the time of CMB decoupling to redshift
zero. The tree-level result follows the linear growth on large scales, but drops down to the
free-streaming growth on small scales where the particles’ momentum dispersion becomes
relevant.

with the underlying free Hamiltonian particle dynamics.

4.3. Loop corrections

4.3.1. 1-Loop diagrams

Describing the structure formation on scales below approximately 10Mpc/h requires to also take
the nonlinear dynamical effects introduced by the interactions between dark matter particles
into account. Within the macroscopic perturbation theory, this amounts to the inclusion of loop
corrections, as discussed in subsection 3.2.4. In this thesis, we will focus on the computation of
1-loop corrections to the macroscopic propagator.

Let us start by defining the exact macroscopic propagator G as the matrix of all fully interacting
macroscopic 2-point cumulants introduced in (3.71),

G(1, 2) B
(
Gf f Gf β
Gβ f Gββ

)
(1, 2) . (4.28)

To organise the different loop contributions toG , we follow the conventional approach in quantum
and statistical field theory and introduce the macroscopic self-energy Σ, defined via

G(1, 2) C ∆(1, 2) +
(
∆ · Σ · ∆

)
(1, 2) . (4.29)

It corresponds to the sum of all 2-point loop contributions with both their external tree-level
propagators stripped off and thus acts like an effective 2-point vertex. As such it inherits the
causal structure of the tree-level vertices, meaning that Σββ is symmetric in its time arguments,
Σβ f and Σf β have a retarded and advanced time-dependence, respectively, and Σf f vanishes
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identically. We choose to adopt the nomenclature introduced for the propagator and refer to Σββ ,
Σβ f and Σf β as the statistical, retarded and advanced self-energies, respectively.

When computing the propagator corrections to some given loop order, it is then convenient
to first compute the respective loop contributions to the statistical and causal self-energies, and
afterwards use

Gf f (1, 2) = ∆f f (1, 2) +
(
∆f β · Σββ · ∆β f

)
(1, 2)

+
(
∆f β · Σβ f · ∆f f

)
(1, 2)

+
(
∆f f · Σf β · ∆β f

)
(1, 2) ,

(4.30)

Gf β (1, 2) = Gβ f (2, 1) = ∆f β (1, 2) +
(
∆f β · Σβ f · ∆f β

)
(1, 2) (4.31)

to obtain the resulting expressions for the statistical and off-diagonal propagators. This way we
can avoid some redundancy in our calculations. For later convenience, we will also define the
exact retarded and advanced propagators GR B iGf β and GA B iGβ f .

Using the diagrammatic language introduced in subsection 3.2.4, the 1-loop contributions to
the self-energy are given by

Σ(1)
ββ (1, 2) �

1
2 1 2 + 1 2 + 1 2

+ 1 2 + 1
2 1 2 + 1

2 1 2

+ 1
2 1 2 + 1 2 , (4.32)

Σ(1)
β f (1, 2) � 1 2 + 1

2 1 2 + 1 2

+ 1
2 1 2 + 1 2 , (4.33)

After exploiting all the Dirac delta functions appearing in the propagators and vertices, we
find that there are between 4 and 6 non-trivial integrals left in each diagram: 2 integrals for
the modulus and angle of the loop wavevector, and 2 to 4 time integrals – one for each joint
between a propagator and a vertex – all of which have to be performed numerically. While being
computationally quite demanding, this in itself is no fundamental obstacle. However, the fact
that the free collective-field cumulants of two or more phase-space density fields themselves have
to be evaluated numerically poses a problem since we have only been able to implement this
in a sufficiently stable manner for the 2-point spatial density cumulant G(0)

ρρ , as discussed in the
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previous section. Hence, we currently do not have a way of evaluating the full 3- and 4-point
vertices with 2 or more β-legs, appearing in every diagram except for diagram 1 in (4.32) and
diagrams 1 and 4 in (4.33).

While in principle we could compute only these three diagrams and ignore or approximate the
rest, this would break the loop expansion scheme of the macroscopic perturbation theory in a
rather arbitrary fashion and thus render the interpretation of the results very difficult. In this
thesis, we will instead consider an approximation that treats all 1-loop diagrams consistently,
allowing us to investigate the properties of the 1-loop correction in a more well-defined manner.

4.3.2. Expansion in the initial power spectrum

Given the current numerical limitations, we are specifically not able to evaluate the full nonlinear
expressions for the functions C2 and C3 appearing in the free collective field cumulants (B.3) to
(B.7). A minimal approximation scheme would thus consist in expanding these two functions to
some finite order in the initial power spectrum and leaving the remaining expressions for the
cumulants unchanged. In particular, this would take the full exponential damping caused by the
initial 1-point momentum variance σ2

p into account. However, our discussions of the tree-level
density contrast power spectrum in subsection 4.2.2 showed that the effects of the full nonlinear
correlations and σ2

p on the free-streaming of particles are actually strongly linked and partially
cancel each other. Choosing different expansions for these two quantities is thus expected to
generally lead to inconsistencies.

To treat them on equal footing, we will instead consider an expansion of the free cumulants in
orders of the initial covariance matrix (3.47). In the case of cosmic structure formation, (3.50) to
(3.52) imply that this is equivalent to a strict expansion in orders of the initial power spectrum
P (i)
δ and thus also σ2

p , due to (B.16). To keep track of the order in P (i)
δ , it will be useful to denote

the n-th term in this expansion by a subscript n, e. g. G(0)
f f ,2 denotes the contribution to G(0)

f f that

is quadratic in P (i)
δ . As shown in [48], the lowest-order non-shot-noise contribution to a free

collective-field cumulant involving nf phase-space density fields is of order nf − 1 in P (i)
δ , i. e.

G(0)
f · · ·f F···F(1, . . . ,nf , 1

′, . . . ,n′F) =
∞∑

n=nf −1
G(0)
f · · ·f F···F,n(1, . . . ,nf , 1

′, . . . ,n′F) . (4.34)

Recalling the definition (3.75) of the macroscopic vertices, we infer that a vertex with nβ β-legs is
thus at least of order nβ − 1,

Vβ · · ·β f · · ·f (1, . . . ,nβ , 1′, . . . ,n′f ) =
∞∑

n=nβ−1
Vβ · · ·β f · · ·f ,n(1, . . . ,nβ , 1′, . . . ,n′f ) . (4.35)

Since the macroscopic self-energies Σββ , Σβ f and Σf β behave as effective 2-point vertices, their
expansions are defined analogously.

From (3.78) and (3.79) it further follows that the the statistical propagator ∆f f is at least linear
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in P (i)
δ while the causal propagators ∆R and ∆A have a minimal order of 0,

∆f f (1, 2) =
∞∑
n=1

∆f f ,n(1, 2) , (4.36)

∆R(1, 2) =
∞∑
n=0

∆R,n(1, 2) , (4.37)

∆A(1, 2) =
∞∑
n=0

∆A,n(1, 2) . (4.38)

The expansions of the exact macroscopic propagators Gf f , GR and GA are defined analogously.

By construction, the lowest order in this expansion scheme corresponds to the linear theory.
Hence, the lowest-order results for the propagators are precisely given by the large-scale solutions
(4.19) and (4.22) found in subsection 4.2.1 if we set the initial momentum variance σ2

p appearing
in these expressions to zero,

Gf f ,1(1, 2) = ∆f f ,1(1, 2) = ∆(ls)
f f (1, 2)

���
σ 2
p =0
, (4.39)

GR,0(1, 2) = ∆R,0(1, 2) = ∆(ls)
R

(1, 2)
���
σ 2
p =0
. (4.40)

To obtain the next order, we have to add contributions from two different origins. On the one
hand, the statistical and causal tree-level propagators have to be expanded to second and first
order in P (i)

δ , respectively. On the other hand, we also have to take the 1-loop contributions to
the propagator into account, using the lowest-order expressions for the propagators and vertices
inside each loop-diagram. The respective contributions to the exact propagators thus read

Gf f ,2(1, 2) = ∆f f ,2(1, 2) +
(
∆f β,0 · Σ(1)

ββ,2 · ∆β f ,0
)
(1, 2)

+
(
∆f β,0 · Σ(1)

β f ,1 · ∆f f ,1
)
(1, 2)

+
(
∆f f ,1 · Σ(1)

f β,1 · ∆β f ,0
)
(1, 2) ,

(4.41)

Gf β,1(1, 2) = Gβ f ,1(2, 1) = ∆f β,1(1, 2) +
(
∆f β,0 · Σ(1)

β f ,1 · ∆f β,0
)
(1, 2) . (4.42)

Let us first consider the expansion of the tree-level propagators. To find the first-order con-
tribution to the causal propagators, we insert the expansion (4.34) of G(0)

f F into their Neumann

series expression (3.80) and collect all terms linear in P (i)
δ . Omitting the functional arguments for
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brevity, this reads

∆R,1 =

∞∑
n=1

n∑
m=1

(
iG(0)

f F,0

)m−1
· iG(0)

f F,1 ·
(
iG(0)

f F,0

) n−m
(4.43)

=

∞∑
m=1

∞∑
n=m

(
iG(0)

f F,0

)m−1
· iG(0)

f F,1 ·
(
iG(0)

f F,0

) n−m
(4.44)

=

∞∑
m=0

(
iG(0)

f F,0

)m
· iG(0)

f F,1 ·
∞∑
n=0

(
iG(0)

f F,0

) n
(4.45)

= ∆R,0 · iG(0)
f F,1 · ∆R,0 (4.46)

for the retarded propagator. In the second line we exchanged the order of the two sums, in the
third line we shifted their summation indices, and in the last line we identified the zeroth-order
retarded propagator. The expression for the advanced propagator is obtained analogously and
reads

∆A,1 = ∆A,0 · iG(0)
Ff ,1 · ∆A,0 . (4.47)

To find the second-order expression for the statistical propagator, we insert the expansions
(4.34), (4.37) and (4.38) forG(0)

f f , ∆R and ∆A into its definition (3.78) and add all the terms quadratic

in P (i)
δ ,

∆f f ,2 = ∆R,0 ·G(0)
f f ,2 · ∆A,0 + ∆R,1 ·G(0)

f f ,1 · ∆A,0 + ∆R,0 ·G(0)
f f ,1 · ∆A,1 (4.48)

= ∆R,0 ·G(0)
f f ,2 · ∆A,0 + ∆R,0 · iG(0)

f F,1 · ∆R,0 ·G(0)
f f ,1 · ∆A,0

+ ∆R,0 ·G(0)
f f ,1 · ∆A,0 · iG(0)

Ff ,1 · ∆A,0

(4.49)

= ∆R,0 ·G(0)
f f ,2 · ∆A,0 + ∆R,0 · iG(0)

f F,1 · ∆f f ,1 + ∆f f ,1 · iG(0)
Ff ,1 · ∆A,0 , (4.50)

where we inserted ∆R,1 and ∆A,1 in the second line, and identified the first-order statistical
propagator in the last step.

Inserting ∆f f ,2 and ∆f β,1 = −i∆R,1 into the expressions (4.41) and (4.42) for Gf f ,2 and Gf β,1

then shows that we can effectively consider −G(0)
f f ,2 and −G(0)

f F,1 as additional contributions to the
self-energy,

Σ(1)
ββ,2 → Σββ,2 B Σ(1)

ββ,2 −G(0)
f f ,2 , (4.51)

Σ(1)
β f ,1 → Σβ f ,1 B Σ(1)

β f ,1 −G(0)
f F,1 , (4.52)

such that

Gf f ,2 = ∆f β,0 · Σββ,2 · ∆β f ,0 + ∆f β,0 · Σβ f ,1 · ∆f f ,1 + ∆f f ,1 · Σf β,1 · ∆β f ,0 , (4.53)
Gf β,1 = ∆f β,0 · Σβ f ,1 · ∆f β,0 . (4.54)

The next step is now to compute the 1-loop self-energy contributions Σ(1)
ββ,2 and Σ(1)

β f ,1. In
contrast to the full 1-loop expressions, all time integrals involved in these can be calculated
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4. Dark matter structure formation

analytically, leaving us only with a two-dimensional integration over the loop wavevector that has
to be performed numerically. In this thesis, we restrict ourselves to the spatial-density information
contained in the 1-loop diagrams, obtained by evaluating all momentum Fourier vectors ®l at
zero, which allows to simplify the calculations considerably. The explicit expressions obtained
for individual diagrams after performing the time integrations are nonetheless generally very
lengthy and not particularly insightful. But they all share similar structures and it turns out that
a large number of terms cancel when adding all diagrams belonging to the same component of
the self-energy. Rather than showing the resulting expressions for all diagrams individually, we
will thus only discuss their general structure and physical interpretation, and give the result for
the sum of all diagrams in the end.

Let us first have a look at the statistical 1-loop self-energy Σ(1)
ββ,2. We find that the expressions

for all of its contributing diagrams, and thus also for Σ(1)
ββ,2 as a whole, split into two parts with

different types of remaining wavevector integrals,

Σ(1)
ββ,2(1, 2) = Σ(1,P)

ββ,2(1, 2) + Σ(1,C)
ββ,2 (1, 2) (4.55)

where

Σ(1,P)
ββ,2(1, 2)

���®l1=®l2=0 = (2π)3 δd
(®k1 + ®k2

)
P (i)
δ (k1)

∫
d3k ′

(2π)3 P
(i)
δ (k ′)K (1,P)

ββ,2

(®k1, ®k ′,η1,η2
)
, (4.56)

Σ(1,C)
ββ,2 (1, 2)

���®l1=®l2=0 = (2π)3 δd
(®k1 + ®k2

) ∫
d3k ′

(2π)3 P
(i)
δ (k ′) P (i)

δ

(
| ®k1 + ®k ′ |

)
K (1,C)
ββ,2

(®k1, ®k ′,η1,η2
)
,

(4.57)

with some kernel functions K (1,P)
ββ,2 and K (1,C)

ββ,2 . The first contribution is a product of one initial
power spectrum with the weighted integral of the other one, while the second one is a weighted
convolution of both spectra. In the following, we will hence refer to them as the product-
and convolution-contributions to Σ(1)

ββ,2, respectively. Both types of integrals can be performed
numerically stably and fast.

To investigate their impact on the nonlinear dark matter structure formation, we compute their
contributions to the density-contrast power spectrum at redshift zero, obtained via

Pδ,2(k1,η1)
���
Σ
(1,P/C)
β β ,2

=

(
∆f β,0 · Σ(1,P/C)

ββ,2 · ∆β f ,0
)
(1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄2

������� ®k2=−®k1
®l1=®l2=0
η2=η1

, (4.58)

for one exemplary diagram and plot these in Figure 4.2. For this, we chose the 4th diagram in
(4.32), as it contains all characteristic features found in the different Σββ -diagrams. Negative
contributions are plotted as dashed lines, and for reference we also show the linear power spectrum
P (lin)
δ . In addition, the explicit expressions for the kernels of this particular diagram can be found

in Appendix F.
We first note that this diagram appears to describe only a subdominant contribution to the

1-loop correction, as its amplitude only becomes comparable to the linear result on very large
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Figure 4.2.: Contributions of one exemplary 1-loop diagram to the density contrast power spectrum evalu-
ated at redshift zero. For reference, the linear power spectrum is shown as well. The convolution-
contribution describes a transport of power from large to small scales. The product-contribution,
on the other hand, reduces power on small scales and shows an enhancement of power on
arbitrarily large scales.

wavenumbers. But let us ignore this for the moment, and rather focus on its shape, which shows
a number of interesting features also found in other, more dominant diagrams. We see that the
convolution-contribution shows a reduction of power on small wavenumbers whose relative
effect compared to the linear result is strongest around the peak of P (lin)

δ (k) and becomes weaker
when going to smaller k . On large wavenumbers, on the other hand, it shows an increase in power
whose relative effect becomes ever stronger when going to larger k . Overall, it thus describes the
transport of power from large to small scales, similar to our findings in [2].

The product-contribution shows more or less the opposite behaviour: It adds power on small
wavenumbers and subtracts it on large ones. However, while on large k it shows the same slope
as the convolution term, its slope on small k is shallower than that of the convolution term and
appears to match the slope of the linear spectrum instead. Hence, its relative effect compared to
the linear spectrum does not decrease when going to smaller k , which seems unphysical, as those
small wavenumbers should be fully described by the linear theory.

To understand this better, let us investigate the limiting behaviour of (4.56) and (4.57) for small
and large wavenumbers k1. To do so, we exploit the fact that most of the integrand’s weight
comes from the region around the peak of the power spectrum, which can be explicitly checked
by varying the integration boundaries. This implies that taking the limits of small and large values
of k1 corresponds in good approximation to taking the limits k1 � k ′ and k1 � k ′ under the
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integrals, respectively. For our exemplary diagram we then find

Σ(1,P)
ββ,2(1, 2)

���®l1=®l2=0 ∝
{
P (i)
δ (k1)σ2

δ for small k1,
P (i)
δ (k1)k21σ2

p for large k1,
(4.59)

Σ(1,C)
ββ,2 (1, 2)

���®l1=®l2=0 ∝
k

2
1

∫
d3k ′
(2π)3

(
P (i)
δ (k ′)

) 2

k ′2 for small k1,
P (i)
δ (k1)k21σ2

p for large k1,
(4.60)

where we omitted the explicit time-dependencies and defined the initial 1-point density contrast
variance

σ2
δ B Cδjδj =

∫
d3k ′

(2π)3 P (i)
δ (k ′) . (4.61)

Note that the contributions of Σ(1,P/C)
ββ,2 to the power spectrum, given by (4.58), show exactly

the same scaling behaviour since the zeroth-order tree-level propagators ∆f β,0 and ∆β f ,0 are
scale-independent.

We see that on large wavenumbers both terms are dominated by contributions proportional to
the initial 1-point momentum variance σ2

p . We expect this to be related to the fact that small-scale
structures are washed out by the particles’ momentum dispersion, as discussed in subsection 4.2.1.
This effect should actually be described by a Gaussian damping factor. But owing to the fact
that we are currently considering an expansion to second order in P (i)

δ and σ2
p , only the linear

contribution to such a Gaussian can show up.
On small wavenumbers, the convolution term scales like k21 and is thus subdominant compared

to the linear spectrum P (lin)
δ (k1). This is because the latter scales like kns

1 with a spectral index of
ns = 0.967 on small wavenumbers, as described in (2.25). The product term, however, has in this
limit exactly the same k1 dependence as P (i)

δ (k1) and thus also P (lin)
δ (k1), confirming the behaviour

seen in Figure 4.2. Furthermore, we note that the latter is proportional to the initial density
contrast variance σ2

δ . This reveals another problem, as the integral in (4.61) is divergent for initial
power spectra that scale like kn1 with a slope n ≥ −3 in the limit of k1 going to infinity. According
to (2.25), our initial power spectrum has a large-wavenumber slope of n = ns − 4 = −3.033, which
is just barely within the convergent regime. Nevertheless, this still means that the value of this
large-scale correction is very sensitive to the power of small-scale fluctuations, rendering this
contribution even more implausible.

The crucial question is now if this seemingly unphysical behaviour is only a spurious effect of
individual 1-loop diagrams or if it actually survives when summing up all of them? If the latter
was true, this might imply a serious problem for the macroscopic perturbation theory. Before
we can answer this question, though, a few words have to be said on how the properties of the
other statistical as well as causal 1-loop self-energy diagrams compare to those found for our
exemplary diagram.

First of all, performing the same analysis for the remaining statistical self-energy diagrams
reveals that their small- and large-wavenumber limits have scaling behaviours that either agree
with those found in (4.59) and (4.60) or are less relevant in the respective limit. In particular, this
means that there is no Σ(1)

ββ,2-contribution whose small-k limit scales like P (i)
δ (k)kn with n < 0,
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and thus they do not introduce any new type of problematic behaviour other than that already
mentioned.

Examining the causal self-energy diagrams (4.33) shows that they can all be expressed as a
weighted integral over a single initial power spectrum,

Σ(1)
β f ,1(1, 2)

���®l1=®l2=0 = (2π)3 δd
(®k1 + ®k2

) ∫
d3k ′

(2π)3 P
(i)
δ (k ′)K (1)

β f ,1

(®k1, ®k ′,η1,η2
)
, (4.62)

with some kernel K (1)
β f ,1, and that their scaling behaviours are either given by

Σ(1)
β f ,1(1, 2)

���®l1=®l2=0 ∝
{
σ2
δ for small k1,

k21σ
2
p for large k1

(4.63)

or are less relevant than this in the respective limit. It further turns out that their contributions to
the power spectrum,

Pδ,2(k1,η1)
���
Σ
(1)
β f ,1

=

(
∆f β,0 · Σ(1)

β f ,1 · ∆f f ,1

)
(1, 2) +

(
∆f f ,1 · Σ(1)

f β,1 · ∆β f ,0
)
(1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄2

������� ®k2=−®k1
®l1=®l2=0
η2=η1

, (4.64)

show the same scaling behaviour as those of the product-contributions to the statistical self-
energy, due the first-order statistical tree-level propagator ∆f f ,1 being linear in the initial power
spectrum. This means that the causal self-energy diagrams do not introduce any new type of
problematic behaviour either.

We conclude that it suffices to check if there are any terms proportional to σ2
δ in the small-k

limit remaining when summing up all 1-loop contributions to the statistical and causal self-
energies, respectively. Performing this analysis shows that this is not the case, as all appearing
σ2
δ -contributions, including their full time-dependencies, cancel precisely. Thus, both self-energy

components as well as the 1-loop correction as a whole are physically consistent in the sense that
their large-scale limit is subdominant compared to the linear result and insensitive to the power
of small-scale fluctuations. While this is very reassuring, it also suggests that individual 1-loop
diagrams on their own might generally not describe a physical process. We will always have to
keep this in mind when interpreting results within the macroscopic perturbation theory.

However, it turns out that there are in fact three subsets of Σ(1)
ββ,2-diagrams in (4.32) whose

sums are free of σ2
δ -contributions on their own. One set just contains diagram 1, the second set

consists of the diagrams 2, 3, 4 and 7, and the remaining diagrams 5, 6 and 8 form the third set.
We note that these three sets differ in the number of β-legs of their vertices. Set 1 is given by
the only diagram whose vertices have only a single β-leg. All diagrams in set 2 contain vertices
with two β-legs but no vertices with more β-legs than that. And set 3 collects all diagrams
containing vertices with three β-legs. If this was indeed a general pattern, one would also expect
the Σ(1)

β f ,1-diagrams in (4.33) to split into two subsets that are physically consistent on their own:
diagrams 1 and 4, and diagrams 2, 3 and 5, respectively. This is not the case, though, as only the
sum of all Σ(1)

β f ,1-diagrams together is free of σ2
δ -contributions.
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Instead, we suspect a slightly different pattern by recalling from (3.75) that a vertex with n
β-legs involves a free connected n-point phase-space density correlation. Hence, the diagrams in
set 3 of Σ(1)

ββ,2 are the only diagrams involving a connected 3-point correlation, whereas all other
1-loop diagrams contain connected 2-point correlators – if not via the vertices then at least via
the statistical propagators. This suggests the following refinement of the perturbative expansion
scheme proposed in subsection 3.2.4: In addition to fixing a number of loops, one might also
restrict the maximal order of free connected n-point correlations involved in a diagram without
loosing physical consistency. However, this is just a conjecture that still has to be proven or at
least be tested in higher loop orders and in the computation of other macroscopic cumulants than
the propagator. Furthermore, it still has to be investigated if the cancellations of σ2

δ -contributions
found here for the expansion to second order in the initial power spectrum holds in the same way
for the full 1-loop corrections containing the complete hierarchy of initial momentum correlations.

Finally, the expressions for the complete next-to-lowest-order self-energies Σββ,2 and Σβ f ,1
as well as propagatorsGf f ,2 andGR,1, including the tree-level- and loop-contributions, and all
evaluated at ®l1 = ®l2 = 0, are listed in Appendix F. Considering the large number of individ-
ual contributions entering this calculation, the resulting expressions are surprisingly compact.
Beyond that, the results for the propagators also show some remarkable symmetries in their
time-dependencies. In contrast, some of the terms in the expressions for the self-energies show a
rather unusual time-dependence. Unlike all other terms they do not only depend exponentially on
η, but also polynomially. Given the definition (4.1) of η, this corresponds to a spurious logarithmic
dependence on the linear growth factor D+. This might indicate that the self-energies themselves
are not a natural quantity to compute in this expansion scheme, and should only be considered as
an intermediate result during the computation of the propagators.

In Figure 4.3a we plot the different contributions to the density contrast power spectrum as
well as their sum at redshift zero. For comparison we also show the linear result. We first want
to point out that this plot nicely illustrates how all three contributions are indeed free of the
unphysical small-k behaviour found in individual diagrams. Beyond that, we also observe some
remarkable cancellations on large wavenumbers. While all three contributions on their own show
the same large-k scaling behaviour found in individual diagrams, this is not the case for their
sum which appears to have the same slope as the linear power spectrum on these wavenumbers
instead. In fact, this can be confirmed analytically by taking the respective limit of the expression
found for Gρρ,2, which further reveals that the cancellation only occurs if Gρρ,2 is evaluated at
equal times.

To understand this, we have to recall that the large-k limit of individual diagrams scales
like P (i)

δ (k1)k21σ2
p and is hence associated with the momentum dispersion of the particles. The

cancellation of these contributions at equal times is thus reminiscent of the compensation of
damping effects found in (4.18) for the full nonlinear free 2-point cumulant G(0)

ρρ . This is a first
hint at the preservation of this property in the interacting theory.

In Figure 4.3b we compare the sum of the first- and second-order results for the power spectrum
with a fit to numerical simulations provided by [54]. Both agree in the wavenumber above which
the nonlinear evolution sets in, and also their overall shapes show a good match. Considering
that we are currently only investigating the next-to-lowest order expansion in the initial power
spectrum, this is already quite remarkable. The fact that our results overpredict the growth of
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Figure 4.3.: First- and second-order contributions to the density contrast power spectrum evaluated at
redshift zero. In (a) the individual second-order contributions as well as their sum are shown
next to the linear power spectrum. Their sum yields an overall transport of power from large to
small scales. Furthermore, a cancellation of the small-scale effects associated with the particles’
momentum dispersion is seen. In (b) the sum of all first- and second-order contributions is
compared to the nonlinear power spectrum obtained from numerical simulations by [54].

structures on mildly non-linear scales, though, also demonstrates that it will be necessary to take
higher-order corrections into account if we want to achieve a more accurate agreement with
numerical simulations.

4.3.3. Comparison to standard Eulerian perturbation theory

To fully understand the implications of the results found in the previous subsection, it will prove
very useful to compare them to the respective results found in standard Eulerian perturbation
theory (SPT). We will start by providing a short summary of the general formalism of SPT,
focussing on the main aspects only. For more details on this we refer the reader to [5, 55].

In SPT, dark matter is assumed to be described by a collisionless self-gravitating fluid. Its
dynamics is thus governed by the collisionless Boltzmann equation, also referred to as Vlasov
equation,

0 =
df

dη
=
∂f

∂η
+ ®p · ∂f

∂®q − ®∇qṼG · ∂f
∂®p
, (4.65)

where the effective gravitational potential ṼG is satisfying the Poisson equation (4.4). Rather than
trying to solve this evolution equation for the phase-space density f as a whole, though, SPT
deals with the dynamics of the momentum moments of f . Of particular interest are the zeroth,
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first and second moments,∫
d3p f

(
®q, ®p,η

)
= ρ

(
®q,η

)
, (4.66)∫

d3p ®p f
(
®q, ®p,η

)
= ρ

(
®q,η

)
®u
(
®q,η

)
, (4.67)∫

d3p ®p ⊗ ®p f
(
®q, ®p,η

)
= ρ

(
®q,η

)
®u
(
®q,η

)
⊗ ®u

(
®q,η

)
+ σu

(
®q,η

)
, (4.68)

where ®u denotes the peculiar comoving velocity field with respect to the coordinate time η and σu
the stress tensor of the fluid. Their evolution equations are then obtained by taking the respective
moments of the Vlasov equation (4.65). For ρ and ®u this yields

0 =
∂ρ

∂η
+ ®∇q ·

(
ρ®u

)
, (4.69)

0 =
∂®u
∂η
+
1

2
®u + ®u · ®∇q ®u + ®∇qṼG +

1

ρ
®∇qσu . (4.70)

As already hinted at by these two equations, this procedure leads to an infinite hierarchy of
evolution equations since the equation for the n-th moment always couples to the (n + 1)-th
moment. To get a closed set of equations, this hierarchy has to be truncated at some point, which
is usually achieved by making some approximation for the stress tensor σu . The approach taken
in SPT is to assume it to vanish identically, σu = 0, which corresponds to the assumption of
particle trajectories following a single coherent stream [5]. While this is expected to be a good
approximation in the early stages of cosmic structure formation, it will eventually break down
when streams of particles start to cross during the collapse of structures, usually referred to as
shell-crossing.

Conventionally, the equations of motion (4.69) and (4.70) are then expressed in terms of the
density contrast δ and the velocity divergence θ B ®∇ · ®u. If we further define their joint field
vector Ψ B (δ ,−θ ), insert the Poisson equation (4.4) and transform to Fourier space, the resulting
equations of motion can be written in the compact form(

δab ∂η + ωab
)
Ψb

(®k,η) = ∫
d3k1
(2π)3

∫
d3k2
(2π)3 γabc

(®k,−®k1,−®k2) Ψb (®k1,η) Ψc (®k2,η) , (4.71)

where the summation over repeated indices is implied. Here, the linear evolution is characterised
by the matrix

ω B

(
0 −1
−3

2
1
2

)
, (4.72)

and the nonlinearities are collected in the vertices γabc whose only non-vanishing entries are

γ112
(®k, ®k1, ®k2) = γ121 (®k, ®k2, ®k1) B (2π)3 δd

(®k + ®k1 + ®k2
) −®k · ®k2

2k22
, (4.73)

γ222
(®k, ®k1, ®k2) B (2π)3 δd

(®k + ®k1 + ®k2
) k2 (®k1 · ®k2)

k21 k
2
2

. (4.74)
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By means of a Laplace transform it is possible to obtain an implicit integral solution of the
equations of motion,

Ψa
(®k,η) = дab (η)Ψ(i)

b

(®k ) + η∫
0

dη′дab (η − η′)γbcd
(®k,−®k1,−®k2) Ψb (®k1,η′) Ψc (®k2,η′) , (4.75)

where д is the retarded Green’s function of the linearised equations of motion,

д(η1,η2) B
(
eη1−η2

5

(
3 2
3 2

)
+
e−

3
2 (η1−η2)

5

(
2 −2
−3 3

) )
θ(η1 − η2) , (4.76)

usually referred to as the linear propagator, and Ψ(i) denotes the initial field configuration. When
choosing the same initial conditions as described in subsection 3.1.3, both initial field components
are given by the initial density contrast, Ψ(i) =

(
δ (i),δ (i)

)
.1

Correlation functions 〈Ψa1 · · ·Ψan 〉 can now be calculated perturbatively by inserting the
implicit solution (4.75), expanding it to some given order in the initial field configuration Ψ(i) and
taking the average over the initial conditions in the end. Since we are considering Gaussian initial
conditions, this average will always factorise into the 2-point correlators〈

Ψ(i)
a

(®k1) Ψ(i)
b

(®k2) 〉 C (2π)3 δd
(®k1 + ®k2

)
P (i)
ab (k1) = (2π)3 δd

(®k1 + ®k2
)
P (i)
δ (k) ∀a,b , (4.77)

according to Wick’s theorem. Most importantly for us, this means that the perturbative expansion
scheme in SPT matches the expansion in orders of the initial density contrast power spectrum that
we considered in the previous subsection. Comparing the expressions for the density contrast
correlators 〈δ · · · δ〉 obtained from SPT with those obtained from KFT, both expanded to the same
order in P (i)

δ , thus represents the closest possible comparison between both frameworks. In this
thesis, we will explicitly compare the expressions found for the first- and second-order results of
the 2-point correlator.

The linear result in SPT is given by〈
δ
(®k1,η1) δ (®k2,η2) 〉 (SPT)

1
= (2π)3 δd

(®k1 + ®k2
)
д1a(η1) P (i)

ab (k1)д1b (η2) (4.78)

= (2π)3 δd
(®k1 + ®k2

)
P (i)
δ (k) eη1+η2 , (4.79)

and agrees with the linear KFT result found in (4.39),〈
δ
(®k1,η1) δ (®k2,η2) 〉 (KFT)

1
= (ρ̄)−2Gf f ,1(1, 2)

���®l1=®l2=0 = (ρ̄)−2 ∆(ls)
f f (1, 2)

���®l1=®l2=0 , (4.80)

as we already pointed out in subsection 4.2.1 specifically for the equal-time correlator. We want
to stress that this has to be the case, as all approximations made during the derivation of SPT are
actually exact as long as one considers the linear regime of cosmic structure formation.

Let us now compare the results obtained in second order in P (i)
δ , which is the lowest nonlinear

correction. In SPT the respective expression reads〈
δ
(®k1,η1) δ (®k2,η2) 〉 (SPT)

2
= P13

(®k1,η1, ®k2,η2) + P13 (®k2,η2, ®k1,η1) + P22 (®k1,η1, ®k2,η2) , (4.81)
1In the literature this choice is referred to as growing mode initial conditions.
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where

P13
(®k1,η1, ®k2,η2) = 4

η1∫
0

dη′1

η2∫
0

dη′2

∫
d3k ′

1

(2π)3
∫

d3k ′
2

(2π)3 д1a(η1) P
(i)
ab (k1)дcb (η

′
1)γcde

(®k1, ®k ′
1,
®k ′
2

)
× дdf (η′1) P

(i)
f д(k

′
1)дhд(η′2)дei (η′1,η′2)

× γjhi
(®k2,−®k ′

1,−®k ′
2

)
д1j (η2,η′2) ,

(4.82)

P22
(®k1,η1, ®k2,η2) = 2

η1∫
0

dη′1

η2∫
0

dη′2

∫
d3k ′

1

(2π)3
∫

d3k ′
2

(2π)3 д1a(η1,η
′
1)γabc

(®k1, ®k ′
1,
®k ′
2

)
× дbd (η′1) P

(i)
de (k

′
1)дf e (η′2)дcд(η′1) P

(i)
дh(k

′
2)дih(η′2)

× γjhi
(®k2,−®k ′

1,−®k ′
2

)
д1j (η2,η′2) .

(4.83)

As we can see, P13 and P22 show the same general structure as the product- and convolution-
contributions discussed in our 1-loop calculations, respectively. Performing the remaining time
and wavevector integrals and comparing the resulting expression with the KFT result presented
in Appendix F reveals that both do not only share the same structure, though, but are in fact
exactly the same,〈

δ
(®k1,η1) δ (®k2,η2) 〉 (SPT)

2
=

〈
δ
(®k1,η1) δ (®k2,η2) 〉 (KFT)

2
= (ρ̄)−2Gf f ,2(1, 2)

���®l1=®l2=0 . (4.84)

This is a very surprising result that we do not fully understand yet. Our naive expectation
was that both expressions should show some differences, as the approximations made in the
derivation of SPT are expected to introduce deviations from the full particle dynamics once
structure formation becomes nonlinear. And even if the effect of these deviations turned out to be
less significant than expected, they should nonetheless leave their mark on our analytical results.
There are at least four possible explanations for this observation:

• The approximations made in SPT might only affect higher-order nonlinear corrections. This
would be the simplest explanation and it could be tested by comparing the corrections in
third or higher order in P (i)

δ . Computing these quickly becomes a very formidable task,
though.

• SPT and KFT might only appear to yield the same results in this particular expansion
scheme. It is known that the perturbative expansion of SPT does not converge towards
the full nonlinear result [56, 57]. Thus even if the results obtained from both frameworks
agreed in every single order in P (i)

δ , one could not conclude both frameworks to predict the
same full nonlinear result.

• The dynamical effects not captured by SPT might be irrelevant for the highly symmetric
initial conditions assumed in cosmic structure formation. For example, it could be that the
effect of stream-crossing on the evolution of collective-field correlators precisely vanishes
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once we are taking the average over the statistically homogeneous, isotropic, rotation-free
and Gaussian initial conditions. A possible hint at this is given by [56] who tested the effects
of crossing streams in pure Zel’dovich dynamics. They showed that a resummation of SPT
is able to recover the exact nonlinear result for the power spectrum in these simplified
dynamics even though the hydrodynamical equations of motion break down at shell-
crossing. It is however open if this property is preserved in the full gravitational dynamics.

• Our calculations within KFT might implicitly introduce the same approximations as SPT in
a way that we have missed so far. The only approximation we made that we are aware of is
to neglect all shot-noise contributions by taking the thermodynamic limit. As argued in
section 4.1, though, this is expected to be an excellent approximation on all scales relevant
for cosmic structure formation, as the additional terms would be suppressed by powers
of the huge mean number density of dark matter particles. Hence, if it turned out that all
particle dynamical effects not captured by SPT are indeed pure shot-noise contributions,
then this would mean that the approximations made in SPT are better justified than we
expected.

We do not know yet which of these explanations, if any, is correct and it is quite possible that
the truth actually lies somewhere in between. It is certain, though, that investigating this in
more detail will be crucial to fully understand the capabilities but also possible limits of the KFT
framework. Beyond that, it might also shed some new light on the transition from a particle to a
fluid picture in general. We are thus planning to look into this matter in the future.

As a final remark, we want to stress that the further development of KFT is almost certainly
going to provide new insights into the cosmic structure formation in dark matter, even if it
should turn out that KFT and SPT are formally equivalent in this setting. The reason for this
is that the natural expansion schemes of both frameworks are fundamentally different. SPT is
inherently built upon the expansion in orders of the initial power spectrum, while the natural
macroscopic perturbative scheme of KFT is a combined expansion in the number of loops and the
order of freely evolved n-point phase-space density cumulants taken into account, as discussed in
subsection 4.3.2. Therefore, KFT allows to tackle this problem from a completely new angle. In
the last two subsections we only expanded KFT in orders of P (i)

δ to bypass the current numerical
limitations we are faced with otherwise. But the fact that this expansion mixed contributions
from the tree- and 1-loop-level clearly shows that this is not the natural choice for KFT.

This becomes particularly important when considering the fact that the perturbative series
of SPT is known to diverge. While this can be partially fixed by means of various resummation
schemes, e. g. [52, 58–61], the fundamentally different approach of KFT might allow to investigate
cosmic structure formation in an inherently convergent scheme instead. Of course, it still remains
to be shown that our macroscopic perturbation theory is indeed convergent. But the properties
of the full spatial tree-level propagator ∆ρρ , discussed in section 4.2, are already very promising.
The crucial next step will now be to overcome the numerical limitations currently preventing us
from applying the macroscopic perturbation theory without any approximations.
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5. Baryonic effects

In the previous chapter we only considered structure formation in dark matter. However, as
described in subsection 2.2.4, there are a number of different baryonic effects that have to be
taken into account for an accurate description of the evolution of structures on cosmologically
small scales. In this chapter, we focus on one of these: the influence of the baryonic gas dynamics
on a gravitationally coupled system of dark and baryonic matter. There have been a few works
studying this in Eulerian perturbation theory [62–64], but all of these only modelled the effect of
baryonic pressure by introducing a simplified time-independent comoving Jeans length. Instead,
we are aiming at a consistent treatment of the full ideal gas dynamics.

It was first shown in [65] how the hydrodynamical equations can be incorporated into KFT by
introducing effective mesoscopic particles. After briefly summarising this derivation, we show
how the mesoscopic particle model can be implemented into the resummed KFT framework
and how it can be coupled to microscopic dark matter particles. Results on the linear structure
formation in this coupled system obtained from the macroscopic propagator are presented.

This is done in two steps: First, we consider the case of isothermal baryons, which greatly
simplifies the treatment in KFT and allows us to focus on the additional complications introduced
by the treatment of two coupled particle species. In a second step, we demonstrate the imple-
mentation of adiabatic gas dynamics, which is more involved, as it requires to describe particles
with internal degrees of freedom. Results on the linear structure formation in a cosmological
setting are thus only presented for the isothermal case, as the full numerical computation of the
macroscopic propagator in the adiabatic case is still work in progress.

5.1. Baryon dynamics

5.1.1. Ideal hydrodynamics

On cosmological scales, baryonic matter is well-described by an ideal gas, and hence its dynamics
is governed by the three Euler equations. For a general ideal fluid, these read

0 =
d

dt
ρm + ρm ®∇ · ®u , (5.1)

0 =
d

dt
®π + ®π

( ®∇ · ®u
)
+ ®∇P , (5.2)

0 =
d

dt
ε + (ε + P) ®∇ · ®u , (5.3)

where ρm denotes the fluid’s mass density, ®u its velocity field, ®π = ®uρm its momentum density, P its
pressure and ε internal energy density [66]. They represent the conservation of mass, momentum
and energy, respectively.
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To close this set of equations, we still need to relate ε and P . Following [65], we choose to
express both in terms of the enthalpy density h = ε + P and use the equation of state of an ideal
gas,

h = γε =
γ

γ − 1
P . (5.4)

Here, γ denotes the adiabatic index of the gas defined as the ratio of the gas’s heat capacities at
constant pressure and volume, CP and CV . For an ideal gas it can conveniently be expressed in
terms of the number of degrees of freedom f of an individual gas particle,

γ B
CP

CV
=

f + 2

f
. (5.5)

For a monoatomic gas in three dimensions, f = 3 and thus γ = 5/3, for example.
Using (5.4), equations (5.2) and (5.3) can be rewritten in terms of the enthalpy density,

0 =
d

dt
®π + ®π

( ®∇ · ®u
)
+
γ − 1

γ
®∇h , (5.6)

0 =
d

dt
h + γ h ®∇ · ®u , (5.7)

where the second equation now represents enthalpy conservation.

5.1.2. Mesoscopic particles

The Euler equations describe the dynamics of idealised smooth fluid fields. The framework of
KFT, on the contrary, is built upon the dynamics of discrete particles. To bring both together
we make use of one of the most fundamental assumptions in fluid dynamics: the existence of a
hydrodynamical scale hierarchy. It states that there is a length scale which is much larger than
the mean free path of the microscopic gas particles, but at the same time much smaller than all
scales of interest. If this assumption holds true, we can formally divide the fluid into individual
fluid elements with their size corresponding to this intermediate scale.

To incorporate hydrodynamics into KFT, these fluid elements are treated as effective mesoscopic
particles, each being characterised by three properties. The first two are its center of mass
position ®q and its center of mass momentum ®p, corresponding to the averaged positions and
momenta of the microscopic particles contained in the fluid element, respectively. Beyond that,
a mesoscopic particle must carry information about the local thermodynamic properties of the
the fluid, emerging from the random motion and frequent collisions of the microscopic particles
associated with it. In the case of an ideal gas this information is fully captured by assigning each
mesoscopic particle an enthalpy H as a third property.

The equations of motion of these effective particles are then deduced from the Euler equations.
The way this is achieved in [65] closely follows the ideas of smoothed-particle hydrodynamics
(SPH), an approach used in hydrodynamical simulations [67]. One starts by assigning each particle
a smooth density contribution specified by a kernel function w . Then the fluid’s mass density,
momentum density and enthalpy density can be approximated by a sum over the respective
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smoothed individual particle contributions,

ρm
(
®q, t

)
=

N∑
j=1

mw
(
| ®q − ®qj (t)|

)
, (5.8)

®π
(
®q, t

)
=

N∑
j=1

®pj (t)w
(
| ®q − ®qj (t)|

)
, (5.9)

h
(
®q, t

)
=

N∑
j=1

Hj (t)w
(
| ®q − ®qj (t)|

)
. (5.10)

Here, we already assumed that all mesoscopic particles have the samemassm, i. e. they contain the
same number of microscopic fluid particles. In this thesis, we further choosew to be a Gaussian
function of width σw normalised to unity, i. e.

w(q) B
(
2π σ2

w
) −3/2

e
− q2

2σ2
w , (5.11)

w(k) = e−
σ2
w
2 k2

(5.12)

in real and Fourier space, respectively. The length scale σw can be identified with the size of the
fluid elements and hence has to be chosen to fit into the hydrodynamical scale hierarchy.

The values of the mesoscopic particle momenta and enthalpies are obtained by evaluating the
corresponding continuous fluid fields at the positions of the respective particles,

®pj (t) B m ®u
(
®qj (t), t

)
, (5.13)

Hj (t) B m H̃
(
®qj (t), t

)
, (5.14)

where H̃ denotes the specific enthalpy, i. e. the enthalpy per mass. Note that we do not directly
use a momentum and an enthalpy field here since those quantities are not uniquely defined for a
continuous fluid, but require to specify some additional coarse graining scale.

Given (5.8), the mass conservation equation (5.1) is automatically satisfied if we let the particles
move according to

Û®qj (t) = ®u
(
®qj (t), t

)
=

®pj (t)
m
. (5.15)

To obtain the equations of motion for the particle momenta and enthalpies, we insert ®π = ®uρm
and h = H̃ρm into the momentum and enthalpy conservation equations (5.6) and (5.7), and use
(5.1) to find

Û®pj (t) =m
d

dt
®u
(
®qj (t), t

)
= − m

ρm
(
®q, t

) γ − 1

γ
®∇qh

(
®q, t

) ����
®q=®qj (t )

, (5.16)

Û®Hj (t) =m
d

dt
H̃

(
®qj (t), t

)
= − m

ρm
(
®q, t

) (γ − 1)h
(
®q, t

) ®∇q · ®u
(
®q, t

) ����
®q=®qj (t )

(5.17)

= − m

ρm
(
®q, t

) (γ − 1)
[
®∇q · (®uh)

(
®q, t

)
− ®u

(
®q, t

)
· ®∇qh

(
®q, t

) ] ����
®q=®qj (t )

.

(5.18)
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In the last line we re-expressed the velocity divergence in such a way that the derivative always
acts on a smoothed density field and hence onw . Inserting (5.10), the analogous relation for the
composite field ®uh,

(®uh
) (
®q, t) =

N∑
j=1

®pj (t)
m

Hj (t)w
(
| ®q − ®qj (t)|

)
, (5.19)

as well as (5.13) into these equations yields

Û®pj (t) = − m

ρm
(
®qj , t

) γ − 1

γ

N∑
k=1

Hk (t) ®∇qjw
(
| ®qj (t) − ®qk (t)|

)
, (5.20)

Û®Hj (t) = − m

ρm
(
®qj , t

) (γ − 1)
N∑
k=1

Hk (t)
®pk (t) − ®pj (t)

m
®∇qjw

(
| ®qj (t) − ®qk (t)|

)
. (5.21)

It turns out that the mass density appearing in the denominator of both equations of motion
poses a problem for the treatment in KFT. This is because KFT exploits that all nonlinear contribu-
tions to the dynamics can be factorised into sums over single-particle quantities, i. e. they can be
expressed as products of collective fields for which there is a well-defined functional derivative
operator. To deal with the inverse mass density, we thus expand it into a Taylor series around the
mean mass density ρ̄m. Since we are only investigating the linear effects of fluid dynamics in this
thesis, we restrict ourselves to the 0th order term

1

ρm
(
®qj , t

) ≈ 1

ρ̄m
. (5.22)

Higher order terms amount to nonlinear corrections and should only become relevant when
density fluctuations are large.

5.2. Isothermal case

Rather than directly trying to incorporate the complete mesoscopic dynamics into the resummed
KFT framework, we first consider the case of an isothermal fluid, which allows to simplify the
mesoscopic dynamics significantly. Large parts of this research have been carried out together
with Master students Daniel Geiß and Ivan Kostyuk under our direct supervision.

Together with Daniel Geiß we investigated the implementation of the isothermal mesoscopic
model into the resummed KFT framework and the application of this to a purely baryonic system
in an expanding space-time. We further implemented the treatment of a coupled system of dark
and isothermal baryonic matter in a static space-time. Many of the results of this work discussed
here can thus also be found in his Master’s thesis [68].

Together with Ivan Kostyuk we extended the numerical implementation of the computation of
the macroscopic propagator to the case of two particle species, which allowed us to investigate the
linear evolution of coupled dark and isothermal baryonic matter also in an expanding space-time.
We then used this to investigate the formation of BAO and the effects of the baryonic pressure on
cosmic small-scale structures. The results of this work presented here will therefore also be part
of his Master’s thesis.

66



5.2. Isothermal case

5.2.1. KFT path integral

An isothermal ideal gas at temperature T is described by the equation of state

P =
kbT

mmic
ρm = c

2
T ρm , (5.23)

wheremmic is the mass of a microscopic gas particle and cT denotes the isothermal speed of sound.
Using (5.4), (5.8) and (5.10), this implies a constant enthalpy per mesoscopic particle,

Hj =
γ

γ − 1
mc2T , (5.24)

effectively reducing its dynamical degrees of freedom to just ®q and ®p, satisfying

Û®qj (t) =
®pj (t)
m
, (5.25)

Û®pj (t) = −
mc2T
ρ̄

N∑
k=1

®∇qjw
(
| ®qj (t) − ®qk (t)|

)
. (5.26)

When comparing these equations of motion with (3.84) and (3.85) we see that they are formally
equivalent to those of a microscopic Hamiltonian system with an effective repulsive interaction
potential

vP (q) B
mc2T
ρ̄

w(q) , (5.27)

modelling the effects of pressure.
To describe a self-gravitating isothermal gas, we have to add the gravitational potential vG

acting between the mesoscopic particles to this pressure potential. As discussed in detail in [68],
the expression for vG technically has to take the finite size of the fluid elements into account
that the mesoscopic particles are supposed to represent. When two fluid elements get close to
each other, the gravitational interaction between them does not scale with their inverse distance
any more, but is smoothed by their internal distribution of microscopic particles. However, since
the smoothing scale σw is by construction small compared to all scales of interest, we can safely
neglect this effect and approximate vG by the gravitational point-particle potential, given by

vG (q) B −Gm2

q
, (5.28)

vG (k) = −4πGm2

k2
(5.29)

in real and Fourier space, respectively.
This now allows us to apply the whole KFT formalism, as laid out in chapter 3 without any

modifications to a system of self-gravitating isothermal baryons. Before we use this in a cosmo-
logical setting, though, let us first consider our test case of static space-time with initial density
auto-correlations but vanishing initial momenta, introduced in subsection 3.2.3. This way, we can
use the analytic expression (3.95) for the statistical macroscopic propagator ∆f f to qualitatively
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5. Baryonic effects

study the effects we expect to see in the numerical treatment of the cosmological case. Inserting
v = vP +vG , we find the function c defined in (3.94) to be given by

c(k) =
√
ρ̄
vP (k) +vG (k)

m
(5.30)

≈
√
c2T − 4πG ρ̄m

k2
. (5.31)

In the second line we used thatw(k) ≈ 1 as long as we restrict ourselves to the validity range of
our mesoscopic model, k � σ−2

w .
We find that for large wavenumbers the value of c(k) is real, whereas it is imaginary for small

wavenumbers. From our discussion in subsection 3.2.3 we know that this implies growing modes
on large scales, and oscillating modes on small scales, which is exactly what we would expect
from a self-gravitating gas. On large scales the long-ranged gravitational interaction dominates,
building up structures, while small scales are dominated by the gas’s pressure, preventing the
gravitational collapse of structures and creating wave-like perturbations. The propagation velocity
of these waves is given by the value of c(k) on the pressure-dominated scales and matches the
expected isothermal speed of sound cT . We can also correctly reproduce the value of the Jeans
wavenumber kJ, describing the transition scale between both regimes [39, 66], by setting c(k) to
zero,

kJ = k
��
c(k )=0 =

√
4πG ρ̄m
cT

. (5.32)

To illustrate this behaviour, Figure 5.1 shows the density and momentum-density power spectra
obtained from ∆f f normalised to the initial density power spectrum P (i)

δ ,

P̄ (∆)
δ (k1, t1) B

P (∆)
δ (k1, t1)

P (i)
δ (k1)

=
∆f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄2 P (i)

δ (k1)

����� ®k2=−®k1
®l1=®l2=0
t2=t1

= cos2
(
k1t1 c(k1)

)
, (5.33)

P̄ (∆)
π (k1, t1) B

P (∆)
π (k1, t1)
P (i)
δ (k1)

=

i ∂
∂®l1

· i ∂
∂®l2

∆f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄2 P (i)

δ (k1)

������ ®k2=−®k1
®l1=®l2=0
t2=t1

=m2c2(k1) sin2
(
k1t1 c(k1)

)
.

(5.34)

In both of them we can clearly see the transition from the growing to the oscillating regime at
k = kJ. We also note that P̄ (∆)

δ and P̄ (∆)
π oscillate with a phase shift of 180°. Again, this matches

the expected behaviour, as the momenta should be lowest at the peaks and valleys of the density
field, and highest in between where the density gradient is largest.

Altogether, these findings nicely demonstrate the physical consistency of the mesoscopic
particle approach in resummed KFT when applied to an isothermal gas. In contrast, it was found
in [69] that an expansion to some finite order in the interaction operator ŜI quickly develops
unphysical features like negative densities. This can now be understood as a consequence of
truncating the Taylor expansions of the trigonometric functions appearing in the macroscopic
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Figure 5.1.: Normalised density contrast and momentum-density contrast power spectra for a self-
gravitating isothermal gas. Below the Jeans wavenumber kJ gravitational collapse leads to
structure growth, above it pressure prevents this and creates sound waves.

propagator. Hence, the partial resummation of particle interactions described in subsection 3.2.2
is crucial for the treatment of hydrodynamical effects, and thus the macroscopic perturbation
theory should be better suited to describe those than the microscopic perturbation theory.

5.2.2. Coupling micro- and mesoscopic particles

To study the joint dynamics of gravitationally coupled dark and baryonic matter, we have to
extend the KFT formalism to systems of two separate species of particles – one microscopic, the
other mesoscopic. For this purpose, let us introduce a particle species label α and denote the
phase-space trajectories of the two species by ®xαj (t) =

(
®qαj (t), ®pαj (t)

)
with j = 1, . . . ,N α , where

α = d for dark and α = b for baryonic particles. In analogy to the single-particle case, we bundle
these into N α -particle tensors xα and introduce the auxiliary fields χα conjugate to xα .

If we further replace the original unlabelled tensor fields x and χ by the tensor-field vectors
x B

(
xd,xb

)
and χ B

(
χd, χb

)
, respectively, and accordingly redefine ψ B (x , χ ), then the

partition function of the full two-particle-species system retains the form (3.8). The free and
interacting parts of the action now read

Sψ ,0[ψ ] = χ ·
(
Ûx + E0[x]

)
=

∑
α=d,b

χα ·
(
Ûxα + Eα0

[
xα

] )
, (5.35)

Sψ ,I[ψ ] = χ · EI[x] =
∑
α=d,b

χα · EαI [x] , (5.36)

where E0 B
(
Ed
0 ,E

b
0

)
and EI B

(
Ed
I ,E

b
I

)
denote the free and interacting parts of the two particle

species’ equations of motion, respectively. Note that Eα
I

depends on the phase-space trajectories
of both particle species as they interact gravitationally.

To find the equations of motion of an individual dark or baryonic matter particle in this coupled
system, there are three aspects we have to take into account:
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5. Baryonic effects

• The two species will generally have different particle massesmα , mean mass densities ρ̄αm
and mean number densities ρ̄α .

• Both contribute to the total gravitational potential energy

HI,G
[
qd(t),qb(t)

]
B

1

2

∑
α,γ=d,b

N α∑
j=1

N γ∑
k=1

k,j if α=γ

v
αγ
G

(
| ®qαj (t) − ®qγk (t)|

)
, (5.37)

with
v
αγ
G (q) B −Gmαmγ

q
. (5.38)

• Only the mesoscopic baryonic particles interact via the effective pressure potential, which
we can conveniently represent by the additional potential energy contribution

HI,P
[
qb(t)

]
B

1

2

N b∑
j,k=1
j,k

vb
P
(
| ®qbj (t) − ®qbk (t)|

)
, (5.39)

with

vb
P (q) B

mb c2T
ρ̄b

w(q) . (5.40)

We thus find

Û®qαj (t) =
®pαj (t)
mα , (5.41)

Û®pαj (t) = −®∇qαj

(
HI,G

[
qd(t),qb(t)

]
+HI,P

[
qb(t)

] )
. (5.42)

This implies that the expressions (3.33) and (3.43) for Sψ ,I, remain unchanged if we redefine the
collective fields as 2-dimensional particle-species vectors Φf B

(
Φd
f ,Φ

b
f

)
, ΦB B

(
Φd
B ,Φ

b
B
)
and

ΦF B
(
Φd
F,Φ

b
F
)
with components

Φαf (1) B
N α∑
j=1

e−i
®k1 · ®qαj (t1)−i®l1 · ®pαj (t1) , (5.43)

ΦαB (1) B
N∑
j=1

®χαpj (t1) · i®k1 e
−i®k · ®qαj (t1)−i®l1 · ®pαj (t1) , (5.44)

ΦαF(1) B
∑
γ=d,b

(
σ
αγ
f B · ΦγB

)
(1) , (5.45)

and σf B as a 2 × 2 matrix with components

σ
αγ
f B (1, 2) = σ

γ α
Bf (2, 1) B −

(
v
αγ
G (k1)+ δαb δγbvb

P (k1)
)
(2π)9 δd

(®k1 + ®k2
)
δd

(®l1) δd (®l2) δd(t1 − t2) .
(5.46)
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Similarly, the expressions (3.34), (3.39) and (3.44) for the different generating functionals ZΦ[H ],
ZΦ,0[H ] and ZΦ̃,0

[
H̃

]
also retain their form if we additionally redefine the respective source fields

as Hf B
(
Hd
f ,H

b
f

)
, HB B

(
Hd
B ,H

b
B
)
and HF B

(
Hd

F,H
b
F
)
. The particle species components of

the collective-field cumulants are then given by

G
α1 · · ·αnf γ1 · · ·γnB
f · · ·f B · · ·B (1, . . . ,nf , 1′, · · · ,n′B) B

nf∏
u=1

(
δ

iδHαu
f (u)

) nF∏
r=1

(
δ

iδH
γr
B (r ′)

)
WΦ[H ]

�����
H=0

, (5.47)

with analogous definitions for the components of the bare and dressed free cumulants. In [68] it
was further shown that the properties 1 to 3 of the free collective-field cumulants for a system of
a single particle species discussed in subsection 3.1.3 generalise to the case of two species.

Crucially, this means that the complete reformulation of KFT in terms of macroscopic fields
presented in section 3.2 for a single particle-species can be applied in exactly the same fashion to
a system of two particle species if the macroscopic fields, propagators and vertices acquire the
same particle species substructure as the collective fields and cumulants thereof. In particular, the
overall structure of the macroscopic perturbation theory will remain unchanged and one would
just have to extend the diagrammatic language introduced in subsection 3.2.4 by adding a second
line type representing the macroscopic fields of baryons.1

However, some additional remarks regarding the computation of the macroscopic propagator
have to be made since the definition (3.79) of the causal propagators ∆R and ∆A now involves an
additional matrix inversion, due toG(0)

f F becoming a 2× 2 matrix. To deal with this numerically, it
is useful to perform the matrix inversion in (3.79) first, yielding

∆dd
R =

(
I − iGdd(0)

f F − iGdb(0)
f F · Ibb · iGbd(0)

f F

) −1
, (5.48)

∆bb
R =

(
I − iGbb(0)

f F − iGbd(0)
f F · Idd · iGdb(0)

f F

) −1
, (5.49)

∆bd
R = Ibb · iGbd(0)

f F · ∆dd
R , (5.50)

∆db
R = Idd · iGdb(0)

f F · ∆bb
R , (5.51)

with
Iαα B

(
I − iG(0)αα

f F

) −1
. (5.52)

This set of equations can then be solved iteratively by first computing Idd and Ibb, then ∆dd
R

and
∆dd
R
, and lastly ∆db

R
and ∆bd

R
, where the individual functional inversions in the first and second

step can be performed completely analogously to the one discussed in Appendix C.
We further want to point out that ∆R and ∆A can still be computed fully analytically ifG(0)

f F(1, 2)
evaluated at ®l1 = ®l2 = 0 is time-translation invariant, i. e. if it depends on t1 and t2 only in terms
of their difference. In that case, all calculations performed in Appendix C proceed in the same way

1We will not discuss the extension of the diagrammatic language here in detail, as this would only become relevant
when computing higher-order perturbative results for a two-particle-species system, which is beyond the scope of
this thesis.
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as for a single particle species as long as one takes into account that every occurring macroscopic
2-point function acquires a 2 × 2 matrix structure. That is, every product of 2-point functions
becomes a matrix product and the reciprocal of the 2-point function appearing in (C.9) becomes a
matrix inverse.

Our test scenario of a static space-time with initial density-correlations and vanishing initial
momenta allows such an analytical calculation. The necessary expressions for the dressed free
collective-field cumulants of gravitationally coupled micro- and isothermal mesoscopic particles
can be obtained by generalising their expressions for a single particle species, (3.89) to (3.91), in
the following way:

• The number density ρ̄ and particle massm have to be replaced by the values ρ̄α andmα of
the respective particle species.

• The interaction potentialv appearing inG(0)
f F has to be replaced by amatrix with components

vαγ = v
αγ
G + δαb δγbv

b
P .

• The density contrast power spectrum P (i)
δ appearing in G(0)

f f has to be replaced by a matrix

with components P (i)αγ
δ , describing the initial auto- and cross-correlations between the

densities of the different particle species.

To keep things simple, though, we assume all auto- and cross-spectra to be the same, P (i)αγ
δ = P (i)

δ .
We then find

G(0)α
f (1) = (2π)3 δd

(®k1) ρ̄α , (5.53)

G
(0)αγ
f F (1, 2) = (2π)3 δd

(®k1 + ®k2
)
(2π)3 δd

(®l2) θ(t1 − t2)

× ik21

(
v
αγ
G (k1) + δαb δγb vb

P (k1)
) (

t1 − t2
mα +

®k1 · ®l1
k21

)
,

(5.54)

G
(0)αγ
f f (1, 2) = (2π)3 δd

(®k1 + ®k2
)
ρ̄α ρ̄γ P (i)

δ (k1) . (5.55)

Even though the Laplace transforms and matrix algebra involved in the computation of the
macroscopic propagator for this system can be performed analytically, the expressions quickly
become rather unwieldy. Therefore, we used the computer algebra softwareWolframMathematica
for these calculations. The resulting expression for the statistical propagator ∆f f is found to be

∆
αγ
f f (1, 2) = (2π)3 δd

(®k1 + ®k2
)
ρ̄α ρ̄γ P (i)

δ (k1)Dα (1)Dγ (2) (5.56)

with the functions Dα splitting into several contributions with different time-dependencies,

Dα (1) =
∑̀
=±

[
Dα
c , `

(
®s1
)
cos

(
k1t1 c`(k1)

)
+ Dα

s , `

(
®s1
)
sin

(
k1t1 c`(k1)

) ]
. (5.57)
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The coefficients Dα
c ,± and Dα

s ,± are given by

Dd
c ,±(®s) =

1

2

©«1 ±
v̄(k) − 2v̄b

P (k)√
v̄2
T (k) − 4v̄d

G (k) v̄b
P (k)

ª®®¬ , (5.58)

Db
c ,±(®s) =

1

2

©«1 ±
v̄(k)√

v̄2(k) − 4v̄d
G (k) v̄b

P (k)

ª®®¬ , (5.59)

Dα
s ,±(®s) =

®k · ®l
k

mαc±(k)Dα
c ,±(®s) , (5.60)

and the functions c± read

c±(k) B
1
√
2

√
v̄(k) ±

√
v̄2(k) − 4v̄d

G (k) v̄b
P (k) , (5.61)

where we defined the mass- and density-weighted potentials

v̄αG (k) B
ρ̄α

mα v
αα
G (k) = −4πG ρ̄αm

k2
, (5.62)

v̄b
P (k) B

ρ̄b

mb
vb
P (k) = c2T w(k) , (5.63)

v̄(k) B v̄d
G (k) + v̄b

G (k) + v̄b
P (k) . (5.64)

Since v̄d
G < 0 and v̄b

P > 0 for all wavenumbers, we can immediately conclude that c+ is always
real, whereas c− is always imaginary. Thus regardless of the scale we are looking at, Dα will
always be given by a superposition of growing and oscillating modes. This is very different
from the pure self-gravitating isothermal gas discussed in the previous subsection, for which the
regimes of growing and oscillating modes are strictly separated by the Jeans wavenumber kJ.
However, a closer inspection of the coefficients in front of the different modes reveals that for
baryons there is still an effective scale-separation of these modes. To see this, we focus on the
density contrast fluctuations, described by D(1) at ®l1 = 0. Then Dα

s ,± = 0 and

|Db
c ,+(®s)| < |Db

c ,−(®s)| if k < kJ , (5.65)

|Db
c ,+(®s)| > |Db

c ,−(®s)| if k > kJ , (5.66)

|Dd
c ,+(®s)| < |Dd

c ,−(®s)| for any k . (5.67)

At early times, when cos(ktc+) and cos(ktc−) are still comparable in magnitude, we thus expect
the growing modes of the baryons to dominate on wavenumbers smaller than the kJ, while the
oscillating modes should dominate on larger wavenumbers. At late enough times, the growing
mode should dominate even on large wavenumbers, though. For the dark matter, on the other
hand, the growing mode is expected to dominate at all times and on all scales. Figure 5.2, which
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Figure 5.2.: Time-evolution of the normalised density contrast power spectra of the different matter compo-
nents in a system of gravitationally coupled dark and isothermal baryonic matter, shown at two
different wavenumbers. Below the Jeans wavenumber kJ (a) gravitational collapse leads at all
times to structure growth in all matter components. Above it (b) the baryonic structure growth
is suppressed at early times, but sets in once the combined dark and baryonic gravitational
attraction overcomes the baryon pressure.

plots the time-evolution of the normalised density contrast power spectra of the dark, baryonic
and total matter,

P̄
(∆)αγ
δ (k1, t1) B

P
(∆)αγ
δ (k1, t1)

P (i)
δ (k1)

=

i ∂
∂®l1

· i ∂
∂®l2

∆
αγ
f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄α ρ̄γ P (i)

δ (k1)

������ ®k2=−®k1
®l1=®l2=0
t2=t1

, (5.68)

P̄ (∆) tot
δ (k1, t1) B

(
ρ̄dm + ρ̄

b
m

) −2 ∑
α,γ=d,b

ρ̄αm ρ̄
γ
m P̄

(∆)αγ
δ (k1, t1) . (5.69)

for the two wavenumbers 0.5kJ and 2kJ, confirms these expectations. Physically, this behaviour
can be explained by the pressureless dark matter forming deeper and deeper gravitational wells
during its gravitational collapse to the point where the combined gravitational attraction of dark
and baryonic matter is strong enough to overcome the baryon pressure.

In Figure 5.3 we further show the k-dependence of the normalised density contrast and
momentum-density contrast power spectra, where the latter are defined as

P̄
(∆)αγ
π (k1, t1) B

P
(∆)αγ
π (k1, t1)
P (i)
δ (k1)

=
∆
αγ
f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄α ρ̄γ P (i)

δ (k1)

����� ®k2=−®k1
®l1=®l2=0
t2=t1

, (5.70)

P̄ (∆) tot
π (k1, t1) B

(
ρ̄dm + ρ̄

b
m

) −2 ∑
α,γ=d,b

ρ̄αm ρ̄
γ
m P̄

(∆)αγ
π (k1, t1) . (5.71)

First of all, we note that the scale-separation just described can be clearly seen for the baryonic
component in both types of spectra. Beyond that, Figure 5.3a shows the structure growth of dark
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Figure 5.3.: Normalised density contrast (a) and momentum-density contrast (b) power spectra of the dif-
ferent matter components in a system of gravitationally coupled dark and isothermal baryonic
matter. On small scales, where baryons are pressure dominated, the structure growth of the
dark and total matter components is partially suppressed and acquires oscillatory features.

matter to be partially suppressed and to acquire small oscillatory features on those scales where
the baryon pressure is relevant. This demonstrates that the dark matter is indeed affected by the
baryon pressure even though it only couples to the baryons gravitationally. In a cosmological set-
ting we expect this effect to be less pronounced, though, as baryons only account for approximately
16% of the total cosmic matter density rather than the 50% used in the computation of Figure 5.3.

Altogether, these findings show that the macroscopic propagator of a gravitationally coupled
system of dark and baryonic matter is able to capture several non-trivial dynamical effects that
are absent in systems of a single dark or baryonic particle species. The partial resummation of
particle interactions described in subsection 3.2.2 seems to be crucial for this since it was found in
[70] that the strong interplay between both species observed here is not grasped by an expansion
in the interaction operator ŜI to finite order. This implies that a system of two coupled particle
species is better described within the macroscopic than the microscopic perturbation theory.

Finally, we want to point out that the procedure described in this subsection can be extended
straightforwardly to more than two different species of particles if needed.

5.2.3. Expanding space-time

To investigate the influence of baryons on the structure growth in a cosmological setting, the
only thing left is to adopt the mesoscopic particle model to an expanding space-time and the
coordinate choice made in section 4.1. Since the only difference between the microscopic and
the isothermal mesoscopic particle dynamics is the effective pressure potential vb

P , it suffices to
consider how it is modified by this.

We first note that our interpretation of the mesoscopic particles as fluid elements containing a
fixed number of microscopic particles requires the size of the fluid element and thus the smoothing
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length σw to become time-dependent and scale with the cosmic expansion, σw → aσw . However,
this rescaling is cancelled exactly by re-expressing (5.11) in comoving coordinates, ®q → a®q, and
the number density in (5.40) in terms of the comoving number density, ρ̄b → ρ̄b/a3. Overall, vb

P
thus remains unchanged by this and the derivation of the equations of motion of a microscopic
particle in expanding space-time in Appendix E can be equally applied to a mesoscopic particle if
we add the total pressure potential experienced by a single mesoscopic particle,

VP (®q, t) B
1

mb

N b∑
j=1

vb
P
(
| ®q − ®qbj (t)|

)
(5.72)

to the total gravitational potential VG in (E.1). Going through this derivation yields the following
equations of motion for the two particle species,

d®qαj
dη
= ®pαj , (5.73)

d®pαj
dη
= −

(
3

2

Ωm

f 2+
− 1

)
®pαj − ®∇qαj

(
ṼG + ṼP

)
≈ −1

2
®pαj − ®∇qαj

(
ṼG + ṼP

)
, (5.74)

with the effective total gravitational and pressure potentials ṼG and ṼP resulting from our choice
of the time variable η(t) = ln(D+(t)/D+(ti)) and the momentum variable ®p = d®q/dη.

The potential ṼG satisfies the Poisson equation

∇2
qṼG =

3

2

∑
α=d,b

Ωα
m

f 2+

Φαρ − ρ̄α

ρ̄α
≈ 3

2

∑
α=d,b

Ωα
m

Ωm

Φαρ − ρ̄α

ρ̄α
, (5.75)

where we again used the approximation Ωm/f 2+ ≈ 1 for ΛCDM cosmologies during the matter-
and Λ-dominated epochs. It is solved by

ṼG (®q, t) =
∑
α=d,b

N α∑
j=1

ṽαG
(
| ®q − ®qαj (t)|

)
(5.76)

with the effective single-particle gravitational potential ṽαG reading

ṽαG (k) B −3
2

Ωα
m

Ωm

1

ρ̄α k2
= −3

2

Ωα
m,0

Ωm,0

1

ρ̄α k2
(5.77)

in Fourier space. In the second step we conveniently expressed the ratio of the two dimensionless
matter density parameters by their values today, exploiting that this ratio is constant in time since
dark and baryonic matter do not transform into each other.2

2While many dark matter models predict interactions between dark matter and known standard model particles,
none would lead to a significant exchange between dark matter and non-relativistic baryonic matter during the
epochs of matter- and Λ-domination.
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The potential ṼP can be written as

ṼP (®q, t) B
N b∑
j=1

ṽb
P
(
| ®q − ®qbj (t)|

)
, (5.78)

where the effective single-particle pressure potential ṽb
P turns out to read

ṽb
P (k,η) B

vb
P (k)

mba2H2 f 2+
=

Ωm

f 2+

a(η) c2T
Ωm,0H

2
0 ρ̄

b
w(k) ≈

a(η) c2T
Ωm,0H

2
0 ρ̄

b
w(k) (5.79)

in Fourier space. Here, we inserted the Fourier transform of (5.40) and additionally used that
ΩmH

2/a3 is constant in time to express the total matter density parameter and the Hubble function
by their values today.

By construction, the free equations of motion for the two individual particle species are precisely
the same as those of the pure cosmic dark matter system discussed in chapter 4. Consequently,
they are both solved by the same Green’s function G with components (4.5) to (4.8). Therefore,
there are only three aspects that have to be taken into account to generalise the expressions for
the free collective-field cumulants of pure dark matter in expanding space-time, (4.11) to (4.13), to
the case of the coupled system of dark matter and isothermal baryons:

• The number density ρ̄ has to be replaced by the value ρ̄α of the respective particle species.

• The interaction potential ṽ appearing inG(0)
f F has to be replaced by amatrix with components

ṽαγ = ṽαG + δαb δγb ṽ
b
P .

• The function C2 appearing in G(0)
f f , describing the initial correlations of densities and mo-

menta, has to be generalised such that it allows to choose the initial auto- and cross-
correlations between particles of the different species independently.

We can simplify this even further, though. First, we note that the mean number density of the
mesoscopic baryonic particles ρ̄b as well as the mass of a single mesoscopic baryonic particle
mb do not have any physical reality on their own. Only their product, i. e. the mean baryonic
mass density ρ̄bm, is an actual observable. So as long as we make sure not to apply the mesoscopic
model in a situation where the assumptions of the hydrodynamical scale hierarchy break down –
which is of no concern for any cosmologically relevant scale – we are free to choose the values of
ρ̄b andmb in any way that keeps ρ̄bm fixed. We exploit this freedom by matching the masses of
dark and baryonic particles,mb =md. Then their number densities satisfy

ρ̄α

ρ̄γ
=
ρ̄αm
ρ̄
γ
m

mγ

mα =
ρ̄αm
ρ̄
γ
m

=
Ωα
m

Ω
γ
m

. (5.80)

Similar to the test system discussed in the previous subsection, we further assume the initial auto-
and cross-correlations between dark and baryonic matter to be exactly the same, i. e. characterised
by the same initial density contrast power spectrum P (i)

δ . This corresponds to a scenario where
before our chosen initial instance in time all cosmic matter acts like dark matter, and the difference
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5. Baryonic effects

between baryonic and dark matter only becomes relevant after that. In reality, this is not true
since baryons, unlike dark matter, couple to photons and thus evolve very differently during
the epoch of radiation domination, as described in subsection 2.2.4. For our considerations here,
however, we neglect this difference, as we are primarily interested in studying the effect of the
different dynamics of dark and baryonic matter rather than the influence of their different initial
conditions.

With these two simplifications, the free collective 1- and 2-point cumulants for the coupled
system of cosmic dark and isothermal baryonic matter are given by

G(0)α
f (1) = (2π)3 δd

(®k1) ρ̄α e− σ2
p
2 T̃ 2

1 l
2
1 , (5.81)

G
(0)αγ
f F (1, 2) = (2π)3 δd

(®k1 + ®k2
)
(2π)3 δd

(®l2) i (−3
2

Ωα
m,0

Ωm,0
+ δαb δγb

a(η2)c2T
Ωm,0H

2
0

k21

)
× θ(η1 − η2)

(
T12 + T̃12

®k1 · ®l1
k21

)
e−

σ2
p
2

(
(T1−T2)®k1+T̃1®l1

) 2

,

(5.82)

G
(0)αγ
f f (1, 2) = (2π)3 δd

(®k1 + ®k2
)
ρ̄α ρ̄γ C2(1, 2) e−

σ2
p
2

[ (
T1 ®k1+T̃1®l1

) 2
+
(
−T2 ®k1+T̃2®l2

) 2]
. (5.83)

5.2.4. Baryon acoustic oscillations

To test our formalism in a realistic cosmological setting, we will first use it to describe the
formation of baryon acoustic oscillations (BAO), described in subsection 2.2.4. This should provide
a good benchmark for our model, as it presents a physical situation where pressure effects are
crucial on scales and times that are well described by linear structure formation.

An accurate treatment of the BAO formation actually requires to describe the adiabatic evolution
of a tightly coupled baryon-photon fluid. However, CMB observations show that the relative
temperature fluctuations are tiny, δT /T . 10−5. Hence, our isothermal mode, which assumes a
spatially constant temperature, should be a plausible first approximation if we allow this global
temperature to follow a given time-evolution. Furthermore, since our approach can only describe
non-relativistic particles, an explicit description of the photon dynamics is not possible. But we
can exploit the tight coupling between photons and baryons via Compton scattering to model the
influence of photons as an additional effective pressure component felt by the baryons.

We start with the equation of state of a thermal photon gas of temperature T p,

Pp =
ζ (4)
ζ (3) kbT

p ρp , (5.84)

that relates the photon pressure Pp to the photon number density ρp [71]. Here, ζ denotes
the Riemann-Zeta function. In the tight-coupling regime, the number densities of the photons
and the microscopic baryonic particles are approximately proportional, ρbmic = ηb/p ρ

p with
ηb/p = 1.01 · 10−9. The tiny value of ηb/p further implies that the pressure felt by the baryons is
completely dominated by the pressure of the photons, Pb ≈ Pp. We can thus turn (5.84) into an
effective equation of state for the mesoscopic baryons,

Pb =
ζ (4)
ζ (3)

kbT
p

ηb/p
ρbmic =

ζ (4)
ζ (3)

kbT
p
0

a ηb/pm
b
mic

ρbm , (5.85)
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Figure 5.4.: Density contrast power spectra of the different matter components in a system of gravitationally
coupled dark and isothermal baryonic matter, including an effective photon pressure, evolved
from the time of matter-radiation equality to the time of CMB decoupling. The total matter
spectrum shows the formation of wiggles qualitatively comparable to the observed BAOs.

where T p
0 is the temperature of the photon gas today. In the second step we expressed ρbmic in

terms of the baryon mass density ρbm and the microscopic baryon particle massmb
mic, and used

that the photon temperature is inversely proportional to the scale factor a. Comparing (5.85) with
the isothermal gas equation of state (5.23) then allows us to identify an effective time-dependent
isothermal speed of sound,

c̃T (η) =
ζ (4)
ζ (3)

kbT0

a(η)ηb/pmb
mic
, (5.86)

that we can insert into the expression (5.82) for G(0)
f F .

For our calculations we choose to set the initial conditions at the time of matter-radiation
equality at a redshift of z = 3600 since this allows us to approximate the initial density contrast
power spectrum by a BBKS spectrum rather than having to consider the details of the power
spectrum evolution during the epoch of radiation domination. Furthermore, our choice of coordi-
nates is only valid during the epochs of matter and Λ domination. The microscopic baryon mass
is set to the mass of a proton,mb

mic = 1.67 · 10−27 kg, and today’s temperature of the photon gas
is given by the CMB temperature today, T p

0 = 2.726K. We evolve the macroscopic propagator
numerically until the time of CMB decoupling at a redshift of z = 1090 and plot the resulting
density contrast power spectra of the dark, baryonic and total matter in Figure 5.4.

We see that the baryon power spectrum is getting suppressed and shows strong oscillations on
wavenumbers k & 0.1hMpc. While the dark matter power spectrum appears to be largely unaf-
fected by this, the oscillations do leave a clear imprint in the form of wiggles on the total matter
power spectrum. Qualitatively, these wiggles seem comparable with the observed BAOs. For a
more quantitative comparison, we plot the computed total matter power spectrum in Figure 5.5a
next to the Eisenstein-Hu spectrum [38] described in subsection 2.2.4. Additionally, to separate
the BAO feature from the underlying purely gravitational structure growth, we show their relative
deviation from a BBKS power spectrum [12] in Figure 5.5b. We observe three main differences:
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Figure 5.5.: Total matter density contrast power spectrum (a) and its relative deviation from a BBKS
spectrum [12] (b) in a system of gravitationally coupled dark and isothermal baryonic matter,
including an effective photon pressure, evolved from the time of matter-radiation equality to the
time of CMB decoupling. For comparison, the Eisenstein-Hu spectrum [38] is shown. Positions
and amplitudes of the BAO in both spectra agree within a factor of approximately 4. Note in
(b) that the positive peak of the Eisenstein-Hu spectrum at very low k and its rising slope at
large k are not related to the BAO, but are a result of the slight mismatch of the Eisenstein-Hu
and BBKS fitting formulas at the peak and tail of the power spectrum, respectively.

The positions of the wiggles in our result are stretched by a factor of roughly 3.5 compared to
those in the Eisenstein-Hu spectrum. The wiggle amplitude in Eisenstein-Hu decreases with
larger k while it remains constant in our result. And our result shows a mean suppression of
the power spectrum that is by a factor of approximately 4 too large compared to Eisenstein-Hu.
Overall, we thus find that our results for the position and amplitude of the BAO agree within a
factor of 4 with the fit by Eisenstein & Hu. We expect this agreement to improve if some of the
approximations we made are dropped, as we will explain in the following.

The missing decay of the wiggle amplitude, for example, is easily explained by the fact that
we did not include the effects of Silk damping in our analysis, i. e. we did not take into account
that small-scale density fluctuations were damped away by photon diffusion during the time of
recombination [38, 72]. The rescaled wiggle positions are most likely a result of assuming that
the formation of the BAO started only after matter-radiation equality, which is not correct. We
are thus missing the earlier phases of BAO formation when the photon temperature and thus
also the effective speed of sound (5.86) were higher. A higher speed of sound would then lead
to a larger BAO wavelength, corresponding to smaller wavenumbers of the BAO peaks in the
power spectrum. The precise reason for the suppression of power being too strong, on the other
hand, is less obvious to us. We mostly suspect that this is caused by the fact that we ignored
the non-negligible gravitational pull of the photons in the early stages of the matter-dominated
epoch. But it might also be related to our isothermal approximation or our approximation of
equal initial auto- and cross-correlations of dark and baryonic matter. Further analyses which
drop these approximations one at a time would be necessary to pinpoint the responsible effect.
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Sincemost of these approximations are due to the effects of photon rather than baryon dynamics,
though, we nonetheless consider this a successful first test of our mesoscopic model. We further
want to point out that the one approximation which mostly concerns the baryon dynamics itself
was the isothermal assumption, whose influence will be investigated in section 5.3.

5.2.5. Baryonic small-scale effects

Let us now apply our coupled dark and baryonic matter approach to study the late-time baryonic
effects on small-scale structure formation. For this application, the isothermal model is in fact
just a very crude approximation since baryons heat up significantly during their gravitational
collapse, creating significant temperature fluctuations. Nevertheless, this should still allow us to
infer if we are generally able to capture the correct qualitative behaviour of the coupled dark and
baryonic matter on these scales.

Like in the description of the BAO formation, it is important to take the global time-evolution
of the mean baryon temperature into account if we want to approximate the actual adiabatic
dynamics as closely as possible. It turns out that even after recombination the baryon temperature
still follows the photon gas temperature for some time [73]. After that the baryons are cooling
adiabatically, i. e. T b ∝ V 1−γ ∝ a3(1−γ ). Approximating all baryons as atomic hydrogen gas, with
an adiabatic index γ = 5/3, we thus use

T b(a) = T p
0 ×

{
1
a if a ≤ ã,
ã
a2 if a > ã

(5.87)

as a simple model for the time-dependent baryon temperature. Here, ã denotes the scale factor
from which on we consider the baryon temperature to decouple from the photon temperature.
We will test three different values: the limiting cases ã = 1/(zi + 1) and ã = 1, corresponding to a
baryon temperature that decouples immediately or follows the photon temperature until today,
respectively, and the intermediate value ã = 1/200, which had been suggested in [73].

We fix the initial time of our analysis to the time of CMB decoupling, zi = 1090, using a
BBKS spectrum [12] as the initial density contrast power spectrum, and evolve the macroscopic
propagator numerically until today at redshift zero to obtain the resulting density contrast power
spectra of the dark, baryonic and total matter. Their relative differences to the spectrum of a
system of pure dark matter are plotted in Figure 5.6.

They all show a relative suppression of power on wavenumbers k & 1h/Mpc, with the
suppression being strongest for ã = 1, and weakest for ã = 1/zi. This is to be expected, as these
two cases correspond to the slowest and fastest decrease of the baryon temperature and thus
of the effective speed of sound c̃T , respectively. At k = 1h/Mpc the relative suppression of the
baryon spectrum ranges between values of 0.5% and 2%. At k = 10h/Mpc this increases to a
range of 50% to 80%.

We compare these findings with the results from [74], plotted in Figure 5.7, who ran two different
hydrodynamical simulations of coupled dark and baryonic matter. The red curves correspond to
a run with adiabatic gas dynamics, the green ones to a run including radiative cooling and star
formation. Let us first focus on the adiabatic run, as it is closer to the system considered here. In
this run they find a suppression of the different spectra on small k that looks qualitatively similar
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Figure 5.6.: Relative deviation of the density contrast power spectra of the different matter components in
a system of gravitationally coupled dark and isothermal baryonic matter from the spectrum
of a pure dark matter system, evolved from the time of CMB decoupling to today. Different
models for the time-evolution of the mean baryon temperature have been used: following the
photon temperature (a), adiabatic cooling (c), and a model that switches between both at a scale
factor of ã = 1/200 (b). The plots on the right show a close-up view of the behaviour around
k = 1h/Mpc.
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Figure 5.7.: Plot taken from [74], showing the deviation of the density contrast power spectra of the
dark (dotted lines), baryonic (dashed lines) and total matter (solid lines) obtained from hy-
drodynamical simulations relative to the spectrum from a pure dark matter simulation. Two
hydrodynamical simulation runs were performed: an adiabatic non-radiative one (red) and one
that additionally includes radiative cooling and the effects of star formation (green).

to our results, but is significantly stronger. The relative suppression of the baryon spectrum at
redshift zero, for example, already reaches a value of roughly 15% at k = 1h/Mpc, which is nearly
8 times larger than the maximal suppression we find at this wavenumber. A possible explanation
for this deviation could be that our calculation underestimates the speed of sound in the baryonic
gas, similarly to what we have seen in the computation of the BAO in the previous subsection.
Unlike in the case of the BAO, though, we do not expect this to be caused by an underestimation
of the mean baryon temperature since even our results with ã = 1, which overestimate the mean
baryon temperature significantly, are nearly an order of magnitude below the simulation results.
Instead, this suggests that the local temperature fluctuations during gravitational collapse are
crucial to achieve the strong power suppressions found in the simulation. If that is the case, an
adiabatic description of the baryons will be necessary to reproduce this.

For larger wavenumbers, k & 1h/Mpc, even the qualitative behaviour of their spectra starts
to differ significantly from those we computed. On those wavenumbers, the simulation results
show a sudden increase in power such that the dark and total matter power spectra are actually
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enhanced rather than suppressed compared to the pure dark matter simulation. Considering that
the baryon pressure is expected to counteract the gravitational collapse, this result seems very
unintuitive. A possible interpretation of this behaviour has been suggested in [75]. They suspect
that during the gravitational collapse the dark matter is able to transfer energy to the gas by
heating it up, which then allows the dark matter to fall more quickly into the gravitational well.
If this is indeed the underlying physical process, then it is no surprise that our calculations do not
capture it. In our isothermal approximation the gas can not absorb any energy of the dark matter
by heating up. Beyond that, however, it is very likely that this energy transfer is a nonlinear
dynamical process. In that case it could not be captured by our tree-level results even if we drop
the isothermal approximation. We will return to this point after discussing the coupling between
dark matter and adiabatic baryons in subsection 5.3.3.

The results of the radiative simulation run in Figure 5.7 further show that radiative cooling
and star formation strongly affect the baryon spectrum even on wavenumbers k < 0.1h/Mpc. If
we want to be able to fully describe the baryonic structures on those scales, we will thus have to
find a way to model at least some of these effects. Their influence on the dark and total matter
power spectrum, though, only becomes relevant on wavenumbers k & 1h/Mpc. Results from a
different suite of simulations run by [76] confirm this.

Altogether, the qualitatively correct results of our isothermal tree-level calculations on mildly
non-linear scales are promising, but clearly demonstrate that the incorporation of the adiabatic gas
dynamics as well as the inclusion of loop-corrections and eventually even radiative processes will
be essential for the description of the small-scale baryonic effects on cosmic structure formation.

5.3. Adiabatic case

5.3.1. KFT path integral

Incorporating the adiabatic mesoscopic particle model into KFT requires to extend the phase-space
of microscopic particles, introduced in subsection 3.1.1, by the enthalpy. We thus redefine the
microscopic fields as ®x j =

(
®qj , ®pj ,Hj

)
and ®χj = ( ®χqj , ®χpj , χHj ), satisfying the equations of motion

(5.15), (5.20) and (5.21). Inserting these into (3.14) further shows that the corresponding functional
Jacobian determinant still equals unity, even though the dynamics is not Hamiltonian any more.
Crucially, the partition function Z thus retains the form (3.8).

The free equations of motion are now solved by the extended Green’s function

G(t , t ′) B
©«
дqq(t , t ′) I3 дqp (t , t ′) I3 ®0
дpq(t , t ′) I3 дpp (t , t ′) I3 ®0

®0> ®0> дHH(t , t ′)

ª®®¬ ∝ θ(t − t ′) , (5.88)

where ®0 denotes a three-dimensional vector whose entries are all zero. For a static space-time
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one finds

дqq(t , t ′) = дpp (t , t ′) = дHH(t , t ′) = θ(t − t ′) , (5.89)

дqp (t , t ′) =
t − t ′

m
θ(t − t ′) , (5.90)

дpq(t , t ′) = 0 , (5.91)

as shown in Appendix A.4.
To find a macroscopic reformulation of the partition function, we would like to express the

interacting part of the action in terms of collective fields again, similarly to what we had done in
subsection 3.1.2 in the case of Hamiltonian dynamics. There is one notable difference between the
Hamiltonian and the adiabatic mesoscopic interactions, though: while the former only depend
on the spatial particle distances, the latter are additionally dependent on the particle momenta
and enthalpies. One possible way to deal with this, would be to introduce collective enthalpy-
density and momentum-enthalpy-density fields which absorb these explicit momentum- and
enthalpy-dependencies. However, if we did that, the macroscopic reformulation as laid out in
subsection 3.2.1 would require to replace all of these by individual macroscopic fields and introduce
a conjugate auxiliary field for each of them, too. The resulting macroscopic perturbation theory
would thus become rather unwieldy.

Instead, we will exploit the fact that every conceivable collective density field can be expressed
as a moment of the extended phase-space density field

Φf
(
®x , t

)
B

N∑
j=1

δd
(
®q − ®qj (t)

)
δd

(
®p − ®pj (t)

)
δd

(
H −Hj (t)

)
, (5.92)

which we conveniently denote by the same symbol as the original phase-space density field (3.22).
This way, we will end up with a macroscopic perturbation theory structurally equivalent to the
one for Hamiltonian dynamics.

Since both the particle momenta and enthalpies are affected by the mesoscopic interactions,
we further have to introduce two separate respective response fields,

ΦBp
(
®x , t

)
B

N∑
j=1

®χpj (t) · ®∇q δd
(
®q − ®qj (t)

)
δd

(
®p − ®pj (t)

)
δd

(
H −Hj (t)

)
, (5.93)

®ΦBH

(
®x , t

)
B

N∑
j=1

χHj (t) · ®∇q δd
(
®q − ®qj (t)

)
δd

(
®p − ®pj (t)

)
δd

(
H −Hj (t)

)
. (5.94)

The interacting part of the action can then be expressed as

Sψ ,I[ψ ] =
∫
d7x

∞∫
ti

dt

∫
d7x ′

∞∫
ti

dt ′
(
Φf (®x , t)σf Bp (®x , t , ®x ′, t ′)ΦBp (®x ′, t ′)

+Φf (®x , t) ®σf BH (®x , t , ®x
′, t ′) · ®ΦBH (®x ′, t ′)

)
,

(5.95)
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where we defined the two interaction matrix elements

σf Bp (x , t ,x ′, t ′) = σBp f (x ′, t ′,x , t) B − m

ρ̄m

γ − 1

γ
Hw

(
®q − ®q′

)
, (5.96)

®σf BH (x , t ,x
′, t ′) = ®σBH f (x

′, t ′,x , t) B − m

ρ̄m
(γ − 1)H

®p − ®p ′
m

w
(
®q − ®q′

)
, (5.97)

which absorb the explicit momentum and enthalpy dependencies.
In analogy to the Hamiltonian case, it will be more convenient to work in the Fourier space

conjugate to the extended phase-space. Let us thus redefine the Fourier vector as ®s B
(®k, ®l ,y) ,

where y denotes the Fourier variable conjugate to the enthalpy H. The corresponding Fourier
transforms of the three collective fields read

Φf (1) =
N∑
j=1

e−i
®k1 · ®qj (t1)−i ®l1 · ®pj (t1)−iy1Hj (t1) , (5.98)

ΦBp (1) =
N∑
j=1

®χpj (t) · i ®k1 e−i
®k1 · ®qj (t1)−i ®l1 · ®pj (t1)−iy1Hj (t1) , (5.99)

®ΦBH (1) =
N∑
j=1

χHj (t) i ®k1 e−i
®k1 · ®qj (t1)−i ®l1 · ®pj (t1)−iy1Hj (t1) , (5.100)

and Sψ ,I becomes

Sψ ,I[ψ ] =
∫
d1

∫
d2

(
Φf (−1)σf Bp (1,−2)ΦBp (2) + Φf (−1) ®σf BH (1,−2) ®ΦBH (2)

)
(5.101)

= Φf · σf Bp · ΦBp + Φf · ®σf BH · ®ΦBH (5.102)

with

σf Bp (1, 2) = σBp f (2, 1) = − m

ρ̄m

γ − 1

γ
w(k1) i∂y1 (2π)11 δd

(®k1 + ®k2
)
δd

(®l1) δd (®l2)
× δd

(
y1

)
δd

(
y2

)
δd(t1 − t2) ,

(5.103)

®σf BH (1, 2) = ®σBH f (2, 1) = − 1

ρ̄m
(γ − 1)w(k1) i∂y1

(
i®∂l1 − ®∂l2

)
(2π)11 δd

(®k1 + ®k2
)

× δd
(®l1) δd (®l2) δd (y1) δd (y2) δd(t1 − t2) ,

(5.104)

where we reused the short-hand notations introduced for the Hamiltonian systems. The most
notable difference to the interaction matrix element σf B of the microscopic and the isothermal
mesoscopic model is the appearance of derivative operators in σf Bp and ®σf BH , which implement
the aforementioned moments of the phase-space density.

Finally, we choose to absorb both response fields into the definition of a single dressed response
field,

ΦF = σf Bp · ΦBp + ®σf BH · ®ΦBH , (5.105)
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5.3. Adiabatic case

as this brings the interacting part of the action into a form that exactly matches the expression
(3.43) for Hamiltonian systems. Consequently, the reformulation of the partition function solely
in terms of macroscopic fields as well as the structure of the resulting macroscopic perturbation
theory discussed in section 3.2 remain completely unchanged. All the additional effects of adiabatic
gas dynamics are instead absorbed into a more complex internal structure of the dressed free
collective-field cumulants, which are still defined via (3.45). This demonstrates the advantage of
introducing a dressed response field in the first place.

5.3.2. Macroscopic propagator

The derivatives with respect to the Fourier conjugate variables of momentum and enthalpy
appearing in G(0)

f F force us to rethink the way we compute the macroscopic propagator, as the
equation (C.1) defining the functional inverse expressions (3.79) for the causal propagators ∆R

and ∆A now becomes an integro-differential equation rather than a pure integral equation. To get
around this complication, we first note that G(0)

f F can generally be split into three contributions
with different numbers of derivatives appearing,

G(0)
f F(1, 2) =

2∑
n=0

G̃(0)
f F,n

(®k1, ®l1,y1; t1, t2) δn(1, 2) , (5.106)

where

δ0(1, 2) B (2π)7 δd
(®k1 + ®k2

)
δd

(®l2) δd(y2) , (5.107)

δ1(1, 2) B (2π)7 δd
(®k1 + ®k2

)
δd

(®l2) i∂y2 δd(y2) , (5.108)

δ2(1, 2) B (2π)7 δd
(®k1 + ®k2

) ®k2 · i®∂l2 δd (®l2) i∂y2 δd(y2) . (5.109)

The functions G̃(0)
f F,n , which do not contain any derivatives or delta distributions any more, can

be projected out of G(0)
f F in the following way,

G̃(0)
f F,0

(®k1, ®l1,y1; t1, t2) B ∫
d7s2
(2π)7 G

(0)
f F(1, 2) , (5.110)

G̃(0)
f F,1

(®k1, ®l1,y1; t1, t2) B ∫
d7s2
(2π)7 G

(0)
f F(1, 2) iy2 , (5.111)

G̃(0)
f F,2

(®k1, ®l1,y1; t1, t2) B ∫
d7s2
(2π)7 G

(0)
f F(1, 2)

®k2 · i®l2
k22

iy2 , (5.112)

using the relation r ∂r δd(r ) = − δd(r ).
Inserting (5.106) into the Neumann series expansion (3.81) of the causal propagators then

suggests the following ansatz for ∆R,

∆R(1, 2) = I(1, 2) +
2∑

n=0

∆̃R,n
(®k1, ®l1,y1; t1, t2) δn(1, 2) . (5.113)
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5. Baryonic effects

Using this ansatz as well as the expression (5.106) of G(0)
f F in (C.1) then allows us to reduce the

complicated integro-differential equation into a system of three coupled integral equations in
time only,

∆̃R,n
(®k1, ®l1,y1; t1, t2) = (

∆R · G̃(0)
f F,n

) (®k1, ®l1,y1; t1, t2) (5.114)

= G̃(0)
f F,n

(®k1, ®l1,y1; t1, t2)
+

t1∫
t2

dt ′1

2∑
m=0

∆̃R,m
(®k1, ®l1,y1; t1, t ′1) Ωmn

(®k1, ®l1,y1; t ′1, t2) . (5.115)

Here, we defined

Ωmn
(®k1, ®l1,y1; t ′1, t2) B ∫

d7s ′1
(2π)7 δm(1,−1

′) G̃(0)
f F,n

(®k ′
1,
®l ′1, r ′1; t ′1, t2

)
, (5.116)

collecting all the different possible combinations of operators δm acting on the free cumulants
G̃(0)
f F,n .
To solve this system of integral equations numerically, it is useful to reformulate it as a set of

nested equations. After some algebra we find

∆̃R,2 =
[
G̃(0)
f F,2 + G̃

(0)
f F,0 · I00 · Ω02

+
(
G̃(0)
f F,1 + G̃

(0)
f F,0 · I00 · Ω01

)
· I11 ·

(
Ω12 + Ω10 · I00 · Ω02

) ]
· I22 ,

(5.117)

∆̃R,1 =
[
G̃(0)
f F,1 + G̃

(0)
f F,0 · I00 · Ω01 + ∆̃R,2 ·

(
Ω21 + Ω20 · I00 · Ω01

) ]
· I11 , (5.118)

∆̃R,0 =
[
G̃(0)
f F,0 + ∆̃R,1 · Ω10 + ∆̃R,2 · Ω20

]
· I00 , (5.119)

where we defined the functional inverses

I00 =
(
I − Ω00

) −1
, (5.120)

I11 =
(
I − Ω11 − Ω10 · I00 · Ω01

) −1
, (5.121)

I22 =
[
I − Ω22 − Ω20 · I00 · Ω02 −

(
Ω21 + Ω20 · I00 · Ω01

)
· I11 ·

(
Ω12 + Ω10 · I00 · Ω02

) ] −1
.

(5.122)

Similarly to the equations (5.48) to (5.52) in the case of two different species of particles, one can
solve these equations iteratively. First, one has to perform the functional inverses I00, I11 and
I22, in that order, analogously to the one in Appendix C. Afterwards one can use these results to
compute the different contributions to ∆̃R in the order ∆̃R,2, ∆̃R,1 and ∆̃R,0, which only requires to
perform time integrals. A full numerical implementation of this is still work in progress, though.

In some situations, however, the coupled integral equations (5.115) can also be solved an-
alytically. To see this, we define the vectors ∆̃R and G̃(0)

f F with components ∆̃R,n and G̃(0)
f F,n ,
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5.3. Adiabatic case

respectively, as well as the matrix Ω with components Ωmn . The system of integral equations
then condenses to a single matrix integral equation,

∆̃R
(®k1, ®l1,y1; t1, t2) = G̃(0)

f F
(®k1, ®l1,y1; t1, t2) + t1∫

t2

dt ′1 ∆̃R
(®k1, ®l1,y1; t1, t ′1) Ω (®k1, ®l1,y1; t ′1, t2) ,

(5.123)
resembling the equation (C.5) found in the case of Hamiltonian dynamics more closely. This allows
us to generalise the argumentation used in Appendix C to conclude that the computation of ∆̃R

and thus ∆R can be performed fully analytically if Ω depends on its two time arguments only in
terms of their difference. Similarly to the case of two particle species discussed in subsection 5.2.2,
the computation of the macroscopic propagator then proceeds analogously to the steps detailed
in Appendix C as long as one takes the additional matrix algebra into account.

Once more we demonstrate this for our usual test system in static space-time with initial density
correlations and vanishing initial momenta. To extend this to the case of an adiabatic gas, we also
have to specify initial conditions for the particles’ enthalpies. A simple choice that preserves the
time translation invariance of Ω is to give every mesoscopic particle the same initial enthalpy Hi.
In Appendix B.2 we show how the corresponding general expressions for the free collective-field
cumulants can be obtained. Inserting the Green’s function components (5.89) to (5.91) as well as
the interaction matrix elements (5.103) and (5.104) into these expression then yields

G(0)
f (1) = (2π)3 δd

(®k1) ρ̄ e−iy1Hi , (5.124)

G(0)
f F(1, 2) = (2π)7 δd

(®k1 + ®k2
)
ρ̄ i

[ (
vG (k1) +vPp (k1) i∂y2

) (
k21

t1 − t2
m

+ ®k1 · ®l1
)

+vPH (k1)y1 ®k1 · i®∂l2 i∂y2
]
δd

(®l2) δd(y2) e−iy1Hi θ(t1 − t2) ,
(5.125)

G(0)
f f (1, 2) = (2π)3 δd

(®k1 + ®k2
)
ρ̄2 P (i)

δ (k1) e−i(y1+y2)Hi . (5.126)

Here, we defined the two potentials

vPp (k) B
γ − 1

γ ρ̄
w(k) , (5.127)

vPH (k) B
γ − 1

ρ̄m
w(k) , (5.128)

associated with the effects of pressure gradients and pressure-volume work, respectively. Since
we want to describe a self-gravitating adiabatic gas, we also added the gravitational potential vG
defined in (5.29) to the momentum part of the interaction.

We compute the resulting statistical propagator ∆f f , using Wolfram Mathematica to perform
the involved matrix algebra and Laplace transforms. The final result is given by

∆f f (1, 2) = (2π)3 δd
(®k1 + ®k2

)
ρ̄2 P (i)

δ (k1)D ′(1)D ′(2) (5.129)
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with

D ′(1) B
(
1 − ρ̄

HivPp (k1) +vG (k1)
mc 2(k1)

[ (
1 − iy1Hi ρ̄m vPH (k1)

) (
1 − cos

(
k1t1 c(k1)

) )
+mc(k1)

®k1 · ®l1
k21

sin
(
k1t1 c(k1)

) ] )
e−iHis1 .

(5.130)

and

c ′(k) B

√
ρ̄
HivPp (k)

(
1 + ρ̄mvPH (k)

)
+vG (k)

m
(5.131)

≈
√
(γ − 1) Hi

m
− 4πG ρ̄m

k2
. (5.132)

In the second line we used thatw(k) ≈ 1 as long as we restrict ourselves to the validity range of
our mesoscopic model, k � σ−2

w . Note that we introduced the prime here to distinguish them
from the analogous quantities in the isothermal case.

From the expression for c ′ we infer that the self-gravitating adiabatic gas shares the same
characteristic transition from growing modes on large scales to oscillating modes on small scales
as the self-gravitating isothermal gas described in subsection 5.2.1. There are a few notable
differences, though, that we would like to point out. First of all, the wave propagation speed in
the pressure dominated regime, given by the value of c ′(k) on those small scales, matches the
expected adiabatic speed of sound cS rather than the isothermal one cT ,

c ′(k)
���
vG�HivPp

=

√
(γ − 1) Hi

m
=

√
(γ − 1) H̄

m
=

√
γ

kbT̄

mmic
= cS . (5.133)

Here we used that the initial enthalpy per particle has to equal the mean enthalpy per particle at
all times, due to the global enthalpy conservation, and inserted the equation of state of an ideal
gas. The Jeans wavenumber kJ changes accordingly,

kJ = k
��
c ′(k )=0 =

√
4πG ρ̄m
cS

. (5.134)

In Figure 5.8 we further plot the tree-level results for normalised density contrast, momentum-
density contrast and enthalpy-density contrast power spectra of the self-gravitating adiabatic
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5.3. Adiabatic case

gas,

P̄ (∆)
δ (k1, t1) B

P (∆)
δ (k1, t1)

P (i)
δ (k1)

=
∆f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄2 P (i)

δ (k1)

����� ®k2=−®k1
®l1=®l2=0
y1=y2=0
t2=t1

, (5.135)

P̄ (∆)
π (k1, t1) B

P (∆)
π (k1, t1)
P (i)
δ (k1)

=

i ∂
∂®l1

· i ∂
∂®l2

∆f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄2 P (i)

δ (k1)

������ ®k2=−®k1®l1=®l2=0
y1=y2=0
t2=t1

, (5.136)

P̄ (∆)
h (k1, t1) B

P (∆)
H (k1, t1)

P (i)
δ (k1)

=
i ∂∂y1 i

∂
∂y2

∆f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄2 P (i)

δ (k1)

����� ®k2=−®k1
®l1=®l2=0
y1=y2=0
t2=t1

, (5.137)

next to the corresponding isothermal results. Thereby, the enthalpy-density constrast spectrum
P̄ (∆)
h of the isothermal gas is obtained by multiplying its density contrast spectrum P̄ (∆)

δ with the
constant squared value of the enthalpy per isothermal mesoscopic particle (5.24). To make the
results comparable, we chose to identify the initial temperature of the adiabatic gas with the
constant temperature of the isothermal gas.

The first thing we note is that the oscillation frequency of the adiabatic spectra is larger then
that of the isothermal spectra, resulting from the adiabatic speed of sound being higher than the
isothermal one by a factor of √γ . Second, we see that the oscillation amplitude of the momentum-
density spectra is smaller for the adiabatic gas. The most notable difference, though, can be
observed in the density contrast spectra. While the isothermal oscillation peaks all have the
same amplitude, the adiabatic peaks are strongly alternating in height – an effect that is most
likely caused by the pressure-volume work. Lastly, we want to point out that the density contrast
and enthalpy-density contrast spectra of the adiabatic gas are clearly not proportional to each
other. Hence, our results are able to describe the local fluctuations of the enthalpy and thus the
temperature themselves.

Altogether, these findings demonstrate that our resummed mesoscopic model is not only able to
describe the dynamics of an isothermal gas in a physically consistent manner, but also the signif-
icantly richer dynamics of an adiabatic gas. From the perspective of the planned cosmological
application of this model, the fact that local temperature fluctuations are captured is probably the
most important aspect, as these were suspected in subsection 5.2.5 to be essential for an accurate
treatment of the baryonic effects on small scales.

5.3.3. Coupling to dark matter in static space-time

To couple adiabatic baryons to darkmatter we formally would have to start by introducing separate
extended phase-space trajectories for both particle species, construct their joint partition function
and reformulate this in terms of macroscopic fields. Instead of going through this laborious
process, though, we can take a shortcut by combining the results of the preceding two subsections
with the insights into how to couple micro- and mesoscopic particles gained in subsection 5.2.2.
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Figure 5.8.: Comparison between the normalised density contrast (a), momentum-density contrast (b)
and enthalpy-density contrast (c) power spectra of a self-gravitating isothermal and a self-
gravitating adiabatic gas with equal initial temperature. Most notable are the generally higher
oscillation frequency of the adiabatic spectra, the alternating peak heights of the adiabatic
density contrast spectrum and the higher amplitudes of the adiabatic momentum-density
spectrum.
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5.3. Adiabatic case

In both cases, we inferred that the macroscopic reformulation proceeds exactly as laid down
in section 3.2 if one allows the macroscopic fields, propagators and vertices to acquire some
substructure – either different components for the individual particle species coupled by gravity
or a more complex internal structure of the dressed free collective-field cumulants involving
derivative operators.

A joint system of adiabatic baryons and dark matter can hence be described within the macro-
scopic perturbation theory if we introduce separate particle-species components Φαf and ΦαF of
the extended phase-space density field (5.92) as well as the extended dressed response field (5.105),
respectively, where the latter is given by

ΦαF =
∑
γ=d,b

[
σ
αγ
f Bp

· ΦγBp + ®σαγf BH
· ΦγBH

]
, (5.138)

with

σ
αγ
f Bp

(1, 2) B σ
γ α
Bp f

(2, 1) = −
(
v
αγ
G

(
k1, t1

)
+ δαb δγbv

b
Pp

(
k1, t1

)
i∂y1

)
× (2π)11 δd

(®k1 + ®k2
)
δd

(®l1) δd (®l2) δd (y1) δd (y2) δd(t1 − t2) ,
(5.139)

®σαγf BH
(1, 2) B ®σγ αBH f

(2, 1) = − δαb δγbv
b
PH

(
k1, t1

)
i∂y1

(
i®∂l1 − ®∂l2

)
× δd

(®k1 + ®k2
)
δd

(®l1) δd (®l2) δd (y1) δd (y2) δd(t1 − t2) .
(5.140)

Here, vαγG is the gravitational potential defined in (5.38), and

vb
Pp (k) B

γ − 1

γ ρ̄b
w(k) , (5.141)

vb
PH (k) B

γ − 1

ρ̄bm
w(k) , (5.142)

are the baryonic potentials associated with the effects pressure gradients and pressure-volume
work, respectively.

Generalising the the expressions for the dressed free collective field cumulants of a single
adiabatic particle species, (5.124) to (5.126), to the two-particle system proceeds analogously to
the case of an isothermal gas discussed in subsection 5.2.2. The only difference is that we also
have to make sure that only the baryons obtain a non-vanishing initial enthalpy. We thus find

G(0)α
f (1) = (2π)3 δd

(®k1) ρ̄α e−i δαb y1Hi , (5.143)

G
(0)αγ
f F (1, 2) = (2π)7 δd

(®k1 + ®k2
)
ρ̄α i

[ (
v
αγ
G (k1) + δαb δγbvb

Pp (k1) i∂y2
) (

k21
t1 − t2
m

+ ®k1 · ®l1
)

+ δαb δγbv
b
PH (k1)y1 ®k1 · i®∂l2 i∂y2

]
δd

(®l2) δd(y2) e−iy1Hi δαb θ(t1 − t2) ,

(5.144)

G
(0)αγ
f f (1, 2) = (2π)3 δd

(®k1 + ®k2
)
ρ̄α ρ̄γ P (i)

δ (k1) e−i(δαb y1+δγb y2)Hi . (5.145)
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The resulting expression for the statistical propagator, calculated using Wolfram Mathematica,
can be written in a form very closely to the result (5.56) in the isothermal case,

∆
αγ
f f (1, 2) = (2π)3 δd

(®k1 + ®k2
)
ρ̄α ρ̄γ P (i)

δ (k1)D ′α (1)D ′γ (2) (5.146)

with

D ′α (1) = D ′α
0

(
®s1
)
+

∑̀
=±

[
D ′α
c , `

(
®s1
)
cos

(
k1t1 c

′
`(k1)

)
+ D ′α

s , `

(
®s1
)
sin

(
k1t1 c

′
`(k1)

) ]
. (5.147)

The explicit expressions for the coefficients D ′α
0 , D ′α

c ,± and D ′α
s ,± as well as the functions c ′± are

rather lengthy and can be found in Appendix G.
Structurally, the only difference between the statistical propagators in the isothermal and the

adiabatic case is the appearance of an additional constant mode D ′α
0 in the adiabatic result. The

general scale-dependent behaviour of structure formation found in the isothermal case is not
affected by this, though, as we can see from the time-evolution of the normalised density contrast
spectra,

P̄
(∆)αγ
π (k1, t1) =

P
(∆)αγ
π (k1, t1)
P (i)
δ (k1)

=
∆
αγ
f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
ρ̄α ρ̄γ P (i)

δ (k1)

����� ®k2=−®k1
®l1=®l2=0
y1=y2=0
t2=t1

, (5.148)

P̄ (∆) tot
π (k1, t1) =

(
ρ̄dm + ρ̄

b
m

) −2 ∑
α,γ=d,b

ρ̄αm ρ̄
γ
m P̄

(∆)αγ
π (k1, t1) , (5.149)

shown in Figure 5.9. It still holds that the dark matter evolution is always dominated by the
growing modes, while the baryons show an effective time-dependent transition scale between a
dominantly growing regime on large scales and a dominantly oscillating regime on small scales.

To compare the effects of the different gas dynamics more quantitatively, we plot their results
for the normalised density contrast power spectra of the dark, baryonic and total matter in
Figure 5.10 next to each other. There are two important differences that we want to point out.
First, the adiabatic baryon spectrum shows the same characteristic pattern of strongly alternating
peak heights seen in Figure 5.8a for a self-gravitating adiabatic gas on its own. The isothermal
baryon spectrum, on the other hand shows only a negligible variation in peak height caused by
the coupling to the dark matter. Second, the suppression of the dark and total matter spectra on
the pressure dominated scales caused by the adiabatic baryons is substantially weaker than the
suppression caused by the isothermal baryons. However, an enhancement of the dark matter
spectrum, as found in the simulations [74–76] discussed in subsection 5.3.3, can not be seen.

Overall, these results show that the macroscopic propagator is capable of capturing the dif-
ferences in structure formation between a system that couples dark matter to adiabatic baryons
and a system that couples it to isothermal baryons. Furthermore, we have seen that these dif-
ferences do not only affect the baryonic structures but also the dark and total matter structures.
This supports our suspicions that an accurate treatment of the baryonic effects in cosmic structure
formation requires to take the adiabatic gas dynamics into account. The crucial next step will thus
be to implement the full numerical computation of the macroscopic propagator in the adiabatic
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Figure 5.9.: Time-evolution of normalised density contrast power spectra of the different matter components
in a system of gravitationally coupled dark and adiabatic baryonic matter, shown at two dif-
ferent wavenumbers. Below the Jeans wavenumber kJ (a) gravitational collapse leads at all
times to structure growth in all matter components. Above it (b) the baryonic structure growth
is suppressed at early times, but sets in once the combined dark and baryonic gravitational
attraction overcomes the baryon pressure.

case needed for the application in an expanding space-time. After that we will extend our analysis
to the computation of loop corrections, to investigate if these are able to describe the enhancement
of the dark matter power spectrum absent in our tree-level results.
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(a) Dark matter
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(b) Baryonic matter
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(c) Total matter

Figure 5.10.: Comparison between the normalised dark (a), baryonic (b) and total matter (c) power spectra of
a system that couples dark matter to isothermal baryons and a system that couples dark matter
to adiabatic baryons. The initial baryon temperatures are the same for both systems. Most
notable are the alternating peak heights of the baryon spectrum and the weaker suppression
of the dark and total matter spectra in the system with adiabatic baryons.
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6. Conclusions

In this thesis, we used the framework of resummed KFT to investigate the structure formation
in dark as well as baryonic matter, eventually aiming at an accurate analytic description of the
evolution of cosmic structures on scales below 1Mpc/h. We specifically focussed on two different
aspects: the nonlinear evolution of pure dark matter structures and the influence of baryonic gas
dynamics on their coupled linear evolution. In this chapter, we will summarise our results and
conclusions.

In our study of the dark matter structure formation we first computed the tree-level contri-
bution to the density contrast power spectrum. This reproduced the well-known linear growth
of structures on large scales while it showed power on small scales to be suppressed by the
momentum dispersion of dark matter particles. However, unlike the Zel’dovich approximation,
which overpredicts the dissolution of small-scale structure, our result never drops below the power
spectrum resulting from the full nonlinear free-streaming of particles expected from Hamiltonian
dynamics.

In a second step we computed the first nonlinear corrections to the power spectrum by using
the same expansion scheme as standard Eulerian perturbation theory (SPT), i. e. in orders of the
linear power spectrum. Surprisingly, this yielded exactly the same result as the 1-loop correction
in SPT, despite the fact that our approach, unlike SPT, is capable of describing crossing streams of
particles. The reason for this is not understood yet, but we suggested several possible explanations
that we are planning to investigate in future research. This will be crucial to fully understand the
capabilities but also possible limits of the KFT framework. Beyond that, it might also provide new
insights into the transition from a particle to a fluid picture in general.

However, our investigations also showed that the natural expansion scheme in resummed KFT
is actually in the order of the full nonlinear, freely evolved n-point phase-space density cumulants
that are taken into account. This is fundamentally different from the SPT scheme and thus has
the potential of overcoming the difficulties SPT is faced with when trying to describe scales
beyond the mildly nonlinear regime. So far, we could not investigate this in more detail since
we are limited by the numerically challenging evaluation of the free n-point phase-space density
cumulants. An important next step will thus be to improve our numerical implementations to the
point where they allow us to exploit the full potential of resummed KFT.

In our study of the baryonic effects on structure formation we demonstrated how isothermal
as well as adiabatic gas dynamics can be incorporated into resummed KFT by treating baryons as
effective mesoscopic particles corresponding to small fluid elements. The results found for the
linear evolution of these purely baryonic systems are consistent with the behaviour expected
from a self-gravitating isothermal and adiabatic gas, respectively. This is an improvement over
the microscopic KFT expansion in orders of the interaction which tends to develop unphysical
features like negative densities. We thus expect systems with hydrodynamic interactions to be
generally better described within the framework of resummed KFT.
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6. Conclusions

We further demonstrated how the mesoscopic baryons can be gravitationally coupled to
microscopic dark matter particles. The results obtained for the linear evolution of this coupled
system showed a behaviour that could not be obtained from a single dark or baryonic component.
Most notably, we found that an effective time-dependent Jeans length for the baryons emerges.
From this we conclude that any approach trying to model the joint structure formation in dark
and baryonic matter in terms of a single effective type of matter is most likely inherently limited.
Instead, a true 2-species description appears to be essential.

In the case of isothermal gas dynamics, we also investigated the formation of structures in the
coupled system in two cosmological settings. As a benchmark of our approach, we first considered
a situation where nonlinear effects should play a minor role: the formation of baryon acoustic
oscillations in the early matter-dominated epoch. Our results for their position and amplitude
agreed within a factor of 4 with a fit obtained from numerical Boltzmann solvers. As most of the
deviations could be explained in terms of approximations due to our effective treatment of the
photon gas, we consider this a successful first test.

Afterwards we investigated the effect of isothermal baryon dynamics on the small-scale struc-
tures observed today. Our results showed a suppression of the baryonic power spectrum that
is qualitatively comparable with the results found in numerical simulations. Quantitatively,
however, we underpredicted this suppression by nearly an order of magnitude. Furthermore, the
simulations show an enhancement of the dark matter power spectrum that is completely absent
in our results. We could conclude that this is most likely explained by our simplified isothermal
treatment and the fact that we are only considering the linear evolution of our coupled system of
dark and baryonic matter. In the future, we thus plan to extend our analysis of the small-scale
structure formation in an expanding space-time to the case of adiabatic gas dynamics. Once this
will be achieved we will investigate the effect of loop-corrections.

Altogether, our results found in this thesis show that the resummed KFT approach is a promising
candidate for an analytic framework capable of accurately describing the cosmic small-scale
structure formation. But they also show that we are still quite far away from actually reaching
this goal. The focus of our future research will thus lie on overcoming the current limitations
preventing us from using the full potential of resummed KFT.
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A. Computation of the retarded Green’s
function

A.1. General form

The free equations of motion of a single particle are assumed to be linear in its phase-space-
coordinate ®x . They can thus be written as(

∂t + E0(t)
)
®x(t) = 0 , (A.1)

with some possibly time-dependent matrix E0. The general solution to this differential equation,
given the phase-space coordinate is known at some time t ′, reads

®x(t) = ®x(t ′) exp
{
−

∫ t

t ′
dt̄ E0(t̄)

}
. (A.2)

Since we are investigating the evolution of systems given some initial state and not a final one,
we are only interested in the situation t ≥ t ′. We can thus directly read off the corresponding
retarded Green’s function

G(t , t ′) = exp

{
−

∫ t

t ′
dt̄ E0(t̄)

}
θ(t − t ′) . (A.3)

A.2. Hamiltonian test system in static space-time

In the case of the Hamiltonian test system in static space-time introduced in subsection 3.2.3, we
can infer from (3.84) and (3.84) that

E0(t) =
(
03 − 1

m I3
03 03

)
, (A.4)

where 0d denotes a d-dimensional matrix with all entries being zero. Using E2
0 = 0, the respective

Green’s function is found to be

G(t , t ′) =
1∑

n=0

1

n!

(
03

t−t ′
m I3

03 03

) n
θ(t − t ′) =

(
I3 t−t ′

m I3
03 I3

)
θ(t − t ′) . (A.5)
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A. Computation of the retarded Green’s function

A.3. Cosmic structure formation

In the case of cosmic structure formation we can infer from (4.2) and (4.3) that

E0(η) =
(
03 −I3
03

1
2 I3

)
. (A.6)

The respective Green’s function is then found to be

G(η,η′) =
∞∑
n=0

1

n!

(
03 −(η − η′) I3
03

1
2 (η − η′) I3

) n
θ(η − η′) (A.7)

= I6 θ(η − η′) +
∞∑
n=1

1

n!

(
03 −2

(
−1

2 (η − η′)
) n I3

03
(
−1

2 (η − η′)
) n I3 )

θ(η − η′) (A.8)

=

(
I3 2

(
1 − e−

1
2 (η−η′)

)
I3

03 e−
1
2 (η−η′) I3

)
θ(η − η′) . (A.9)

A.4. Adiabatic mesoscopic test system in static space-time

In the case of the adiabatic mesoscopic test system in static space-time introduced in section 5.3,
we can infer from (5.15), (5.20) and (5.21) that

E0(t) =
©«
03 − 1

m I3 ®0
03 03 ®0
®0> ®0> 0

ª®®¬ , (A.10)

where ®0 denotes a 3-dimensional vector with all entries being zero. Like in the Hamiltonian case
we can use E2

0 = 0 to find the respective Green’s function,

G(t , t ′) =
1∑

n=0

1

n!

©«
03

t−t ′
m I3 ®0

03 03 ®0
®0> ®0> 0

ª®®¬
n

θ(t − t ′) =
©«
I3 t−t ′

m I3 ®0
03 I3 ®0
®0> ®0> 1

ª®®¬ θ(t − t ′) . (A.11)
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B. General expressions for the free
collective-field cumulants

B.1. Hamiltonian systems

In [48] general expressions for the free collective-field cumulants in statistically homogeneous
and isotropic Hamiltonian systems with Gaussian initial conditions have been derived. For the
non-vanishing 1- to 4-point cumulants used in this thesis these expressions read

G(0)
f (1) = (2π)3 δd

(®Lq {1}) ρ̄ e− σ2
p
2

®L2p{1} , (B.1)

G(0)
f B · · ·B(1, 1

′, . . . ,n′B) = (2π)3 δd
(®Lq {1,1′, ...,n′

B }
)
ρ̄

nB∏
r=1

(
i®k ′
r · ®Lp {1,1′, ...,n′

B }(t
′
r )

)
e
−
σ2
p
2

®L2
p{1,1′, . . .,n′B } ,

(B.2)

G(0)
f f (1, 2) = (2π)3 δd

(®Lq {1,2}) ρ̄2C2
(®L {1}, ®L {2}

)
e
−
σ2
p
2

(
®L2p{1}+®L

2
p{2}

)
, (B.3)

G(0)
f f B(1, 2, 1

′) = (2π)3 δd
(®Lq {1,2,1′ }) ρ̄2 i®k ′

1 · ®Lp {1,1′ }(t ′1)

×C2
(®L {1,1′ }, ®L {2}

)
e
−
σ2
p
2

(
®L2p{1,1′}+®L

2
p{2}

)
+ (1 ↔ 2) ,

(B.4)

G(0)
f f BB(1, 2, 1

′, 2′) = (2π)3 δd
(®Lq {1,2,1′,2′ }) ρ̄2

×
[ (
i®k ′

1 · ®Lp {1,1′,2′ }(t ′1)
) (

i®k ′
2 · ®Lp {1,1′,2′ }(t ′2)

)
×C2

(®L {1,1′,2′ }, ®L {2}
)
e
−
σ2
p
2

(
®L2p{1,1′,2′}+®L

2
p{2}

)
+

(
i®k ′

1 · ®Lp {1,1′ }(t ′1)
) (

i®k ′
2 · ®Lp {2,2′ }(t ′2)

)
×C2

(®L {1,1′ }, ®L {2,2′ }
)
e
−
σ2
p
2

(
®L2p{1,1′}+®L

2
p{2,2′}

) ]
+ (1 ↔ 2) ,

(B.5)

G(0)
f f f (1, 2, 3) = (2π)3 δd

(®Lq {1,2,3}) ρ̄3C3
(®L {1}, ®L {2}, ®L {3}

)
e
−
σ2
p
2

(
®L2p{1}+®L

2
p{2}+

®L2p{3}
)
,

(B.6)
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B. General expressions for the free collective-field cumulants

G(0)
f f f B(1, 2, 3, 1

′) = (2π)3 δd
(®Lq {1,2,3}) ρ̄3 i®k ′

1 · ®Lp {1,1′ }(t ′1)

×C3
(®L {1,1′ }, ®L {2}, ®L {3}

)
e
−
σ2
p
2

(
®L2p{1}+®L

2
p{2}+

®L2p{3}
)

+ (1 ↔ 2 ↔ 3) ,

(B.7)

where we neglected the contributions due to shot noise, as these are negligible for all systems
considered in this thesis. Furthermore, several new quantities and notations have been introduced
which we will explain and define in the following.

The vector ®LI (t) B
(®Lq I (t), ®Lp I (t)) encodes the phase shift of the Fourier transformed phase-

space density caused by the free particle motion from time t to a later time tr with r ∈ I . Its
components are defined as

®Lq I (t) B
∑
r ∈I

®kr дqq(tr , t) + ®lr дpq(tr , t) , ®Lq I B ®Lq I (ti) , (B.8)

®Lp I (t) B
∑
r ∈I

®kr дqp (tr , t) + ®lr дpp (tr , t) , ®Lp I B ®Lp I (ti) , (B.9)

where дqq , дqp , дpq and дpp are the components of the single-particle Green’s function (3.21). If
t = ti, we omit writing the time-dependence.

The functions C2 and C3 describe the contribution to the 2- and 3-point phase-space density
cumulant emerging from the correlations between 2 and 3 freely evolving particles, respectively.
The most general expression for C2 is given by

C2
(®LI1 , ®LI2 ) B ∫

d3q12 e−i
®Lq I1 · ®q12

[ (
1 +Cδ1δ2 − i®Lp I1 · ®Cp1δ2 − i ®Cδ1p2 · ®Lp I2

+
(
−i®Lp I1 · ®Cp1δ2

) (
−i ®Cδ1p2 · ®Lp I2

) )
e
−®L>p I1Cp1p2

®Lp I2 − 1

]
,

(B.10)

where Cδ1δ2 , ®Cp1δ2 , ®Cδ1p2 and Cp1p2 denote the different components of the initial covariance
matrix (3.47). ForC3 we refrain from presenting its lengthy general expression here, as we do not
need it in its complete form in this thesis. Instead, we are only considering different specialisations
or approximations of C3 which will be presented further below.

The quantity σ2
p is the initial 1-point momentum variance,

σ2
p B

1

3
trCpjpj , (B.11)

and (X1 ↔ · · · ↔ Xn) is to be understood as a short-hand notation for summing over all possible
permutations of the labels X1, . . . ,Xn .

For a system with initial density correlations but initially vanishing momenta, which we
frequently use as a test scenario, ®Cp1δ2 , ®Cδ1p2 and Cp1p2 vanish identically, leaving us with Cδ1δ2
which is conveniently expressed in terms of the initial density contrast power spectrum P (i)

δ , as
defined in (3.50). In that case, σ2

p and C3 vanish identically,

σ2
p

���
p (i)=0

= 0 , (B.12)

C3
(®LI1 , ®LI2 , ®LI3 ) ���

p (i)=0
= 0 , (B.13)
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B.2. Adiabatic mesoscopic systems

and C2 simplifies to
C2

(®LI1 , ®LI2 ) ���
p (i)=0

= P (i)
δ

(��®Lq I1 ��) . (B.14)

In the case of cosmic structure formation, on the other hand, ®Cp1δ2 , ®Cδ1p2 and Cp1p2 are non-
vanishing and can also be related to P (i)

δ , as shown in (3.51) and (3.52). Then, σ2
p , C2 and C3

become

σ2
p

���
cosmo

=
1

3

∫
d3k

(2π)3
P (i)
δ (k)
k2

, (B.15)

C2
(®LI1 , ®LI2 ) ���

cosmo
= P (i)

δ

(��®Lq I1 ��) ©«1 +
®Lq I1 · ®Lp I1

®L2q I1

ª®¬ ©«1 −
®Lq I1 · ®Lp I2

®L2q I1

ª®¬
+

∫
d3k

(2π)3 P
(i)
δ (k) P (i)

δ

(��®Lq I1 + ®k
��) [ (®k · ®Lp I1

) (®k · ®Lp I2
)

k4

×
©«1 +

(®Lq I1 + ®k
)
·
(®Lp I1 + ®Lp I2

)��®Lq I1 + ®k
��2 +

1

2

( (®Lq I1 + ®k
)
· ®Lp I1

) ( (®Lq I1 + ®k
)
· ®Lp I2

)
��®Lq I1 + ®k

��4 ª®®¬
−

(®k · ®Lp I1
) ( (®Lq I1 + ®k

)
· ®Lp I2

)
k2

��®Lq I1 + ®k
��2

 + O
( (
P (i)
δ

) 3)
,

(B.16)

C3
(®LI1 , ®LI2 , ®LI3 ) ���

cosmo
= P (i)

δ

(��®Lq I1 ��) P (i)
δ

(��®Lq I2 ��) ©«1 +
®Lq I1 · ®Lp I1

®L2q I1

ª®¬ ©«1 +
®Lq I2 · ®Lp I2

®L2q I2

ª®¬
× ©«−

®Lq I1 · ®Lp I3
®L2q I1

−
®Lq I2 · ®Lp I3

®L2q I2
+

(®Lq I1 · ®Lp I3 ) (®Lq I2 · ®Lp I3 )
®L2q I1 ®L

2
q I2

ª®¬
+

(
I1 ↔ I2 ↔ I3

)
+ O

( (
P (i)
δ

) 3)
,

. (B.17)

Here, we expanded C2 and C3 only to second order in P (i)
δ , as we are not explicitly using the

expressions for the higher-order terms in this thesis.

B.2. Adiabatic mesoscopic systems

For the description of adiabatic mesoscopic systems, discussed in section 5.3, we have to extend
the results of [48] to particles that have an enthalpy as an additional property. In this thesis, we
will restrict ourselves to the case where all particles have the same initial enthalpy Hi. In that
case the initial extended phase-space probability distribution factorises into

Pi
(
q(i),p(i),H(i)) = Pq,p

i

(
q(i),p(i)) δd

(
H(i) −Hi

)
, (B.18)
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B. General expressions for the free collective-field cumulants

where Pq,p
i takes the same form as the full initial phase-space probability distribution of a

Hamiltonian system.
If we further assume the free evolution of the extended phase-space trajectories to be described

by the Green’s function (5.88), then the free evolution of the particle enthalpies is given by

H(0)
j (t) = дHH(t , ti)Hi , (B.19)

i. e. it is completely decoupled from the free evolution of the particle positions and momenta.
Retracing the steps in [48] then shows that the resulting general expressions for the free collective-
field cumulantsG(0)

f · · ·f Bp · · ·Bp just acquire an additional phase factor e−iyrH(0)(tr ) for each collective
field Φ(r ) compared to their expressions for a Hamiltonian system. The resulting expressions for
the free 1- and 2-point phase-space density cumulants thus read

G(0)
f (1) = (2π)3 δd

(®Lq {1}) ρ̄ e− σ2
p
2

®L2p{1} e−iLH{1,1′}Hi , (B.20)

G(0)
f Bp

(1, 1′) = (2π)3 δd
(®Lq {1,1′ }) ρ̄ i®k ′

1 · ®Lp {1,1′ }(t ′1) e
−
σ2
p
2

®L2p{1,1′} e−iLH{1,1′}Hi , (B.21)

G(0)
f f (1, 2) = (2π)3 δd

(®Lq {1,1′ }) ρ̄2C2
(®L {1}, ®L {2}

)
e
−
σ2
p
2

(
®L2p{1}+®L

2
p{2}

)
e−i

(
LH{1}+LH{2}

)
Hi , (B.22)

where we defined the enthalpy phase-shift factor

LH I (t) B
∑
r ∈I

yr дHH(tr , t) , LH,r B LH,r (ti) , (B.23)

in analogy to (B.8) and (B.9). The expressions for cumulants involving the enthalpy response field
®ΦBH can then be obtained from the cumulants involving the momentum response field ΦBp by
replacing the momentum phase shift vectors ®Lp I (t) with the enthalpy phase shift factors LH I (t),
i. e.

G(0)
f ®BH

(1, 2) = (2π)3 δd
(®Lq {1}) ρ̄ i®k ′

1 LH{1}(t ′1) e
−
σ2
p
2

®L2p{1,1′} e−iLH{1,1′}Hi . (B.24)
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C. Computation of the macroscopic
propagator

C.1. General procedure

The causal macroscopic propagators ∆R and ∆A are given by the functional inverse (3.79) which
is defined as the solution of the integral equation∫

d1̄
(
I(1, 1̄) − iG(0)

f F(1, 1̄)
)
∆R(−1̄, 2) = I(1, 2) , (C.1)

with the identity 2-point function I introduced in (3.76). The physical systems we are most
interested in are statistically homogeneous and have a free Hamiltonian that only depends on the
particle momenta but not their positions. The latter implies дqq(t , t ′) = θ(t − t ′) and дpq(t , t ′) = 0,
as shown in [1]. In this case we can conclude from (3.46) and (B.2) that G(0)

f F can be written as

G(0)
f F(1, 2) = (2π)3 δd

(®k1 + ®k2
)
(2π)3 δd

(®l2) G̃(0)
f F

(®k1, ®l1; t1, t2) ∝ θ(t1 − t2) , (C.2)

where we introduced the reduced cumulant G̃(0)
f F which exploits the constraints set by the delta

functions,

G̃(0)
f F

(®k1, ®l1; t1, t2) B ∫
d6s2
(2π)6 G

(0)
f F(1, 2) . (C.3)

Inserting (C.2) into the Neumann series (3.81) then suggests the following ansatz for ∆R,

∆R(1, 2) = I(1, 2) + (2π)3 δd
(®k1 + ®k2

)
(2π)3 δd

(®l2) ∆̃R
(®k1, ®l1; t1, t2) , (C.4)

where ∆̃R
(®k1, ®l1; t1t2) ∝ θ(t1 − t2). This reduces (C.1) to the following integral equation for ∆̃R,

∆̃R
(®k1, ®l1; t1, t2) = iG̃(0)

f F
(®k1, ®l1; t1, t2) + t1∫

t2

dt1̄ iG̃(0)
f F

(®k1, ®l1; t1, t1̄) ∆̃R
(®k1, 0; t1̄, t2) , (C.5)

which can be solved in two steps. First, we solve it in the case ®l1 = 0,

∆̃R
(®k1, 0; t1, t2) = iG̃(0)

f F
(®k1, 0; t1, t2) + t1∫

t2

dt1̄ iG̃(0)
f F

(®k1, 0; t1, t1̄) ∆̃R
(®k1, 0; t1̄, t2) , (C.6)
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which can be done independently for all possible values of ®k1. Afterwards we insert the result
∆̃R

(®k1, 0; t1, t2) of this into the right-hand side of (C.5) and perform the time integral to obtain
the full ®l1-dependent solution ∆̃R

(®k1, ®l1; t1, t2) .
If G̃(0)

f F
(®k1, 0; t1, t2) depends on t1 and t2 only in terms of their difference t12 B t1 − t2, then

according to (3.81) the same should hold for ∆̃R
(®k1, 0; t1, t2) , and the time integral in (C.6) becomes

a convolution,

∆̃R
(®k1, 0; t12, 0) = iG̃(0)

f F
(®k1, 0; t12, 0) + t12∫

0

dt1̄2 iG̃(0)
f F

(®k1, 0; t12 − t1̄2, 0
)
∆̃R

(®k1, 0; t1̄2, 0) , (C.7)

with t1̄2 B t1̄ − t2. In this case we can turn the integral equation into an algebraic equation by
means of a Laplace transform with respect to t12,

Lt12
[
∆̃R

(®k1, 0; t12, 0) ] (z) = Lt12
[
iG̃(0)

f F
(®k1, 0; t12, 0) ] (z)

+ Lt12
[
iG̃(0)

f F
(®k1, 0; t12, 0) ] (z) Lt12

[
∆̃R

(®k1, 0; t12, 0) ] (z) , (C.8)

where z denotes the complex frequency conjugate to t12. Bringing ∆̃R to one side of the equation
and performing an inverse Laplace transform then yields the solution of (C.6),

∆̃R
(®k1, 0; t12, 0) = L−1

z

[ (
1 − Lt12

[
iG̃(0)

f F
(®k1, 0; t12, 0) ] ) −1Lt12

[
iG̃(0)

f F
(®k1, 0; t12, 0) ] ] (t12) .

(C.9)

Generally, however, the time-dependence of G̃(0)
f F will not be that simple and we have to

determine ∆̃R numerically. This can be done by discretizing the time arguments in (C.6) and
solving the resulting matrix equation for each ®k1-value of interest. Note that due to the retarded
causal structure of G̃(0)

f F and ∆̃R they become lower triangular matrices after discretisation. Hence,
this matrix equation can be solved with minimal computational effort via forward substitution.

Once the causal propagators are known we can insert them into the relation (3.78) for the
complete macroscopic propagator, which immediately fixes the off-diagonal components. The
computation of the remaining statistical propagator then reduces to performing the following
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C.2. Test system in static space-time

time integrals,

∆f f (1, 2) =
∫
d1̄

∫
d2̄ ∆R(1, 1̄)G(0)

f f (−1̄, 2̄)∆A(−2̄, 2) (C.10)

= (2π)3 δd
(®k1 + ®k2

) [
G̃(0)
f f

(®k1, ®l1, ®l2; t1, t2)
+

t1∫
ti

dt1̄ ∆̃R
(®k1, ®l1; t1, t1̄) G̃(0)

f f

(®k1, 0, ®l2; t1̄, t2)
+

t2∫
ti

dt2̄ G̃(0)
f f

(®k1, ®l1, 0; t1, t2̄) ∆̃A
(®k1, ®l2; t2̄, t2)

+

t1∫
ti

dt1̄

t2∫
ti

dt2̄ ∆̃R
(®k1, ®l1; t1, t1̄) G̃(0)

f f

(®k1, 0, 0; t1̄, t2̄) ∆̃A
(®k1, ®l2; t2̄, t2) ]

(C.11)

where we defined ∆̃A analogously to (C.4) and G̃(0)
f f as

G̃(0)
f f

(®k1, ®l1, ®l2; t1, t2) B G(0)
f f (1, 2)

(2π)3 δd
(®k1 + ®k2

)
������®k2=−®k1 . (C.12)

Depending on whether there exist analytic expressions for ∆̃R, ∆̃A and G̃(0)
f f , these integrals can

either be performed analytically or have to be evaluated numerically.

C.2. Test system in static space-time

In the case of static space-time test system introduced in subsection 3.2.3, we infer from (3.90) that

iG̃(0)
f F

(®k1, ®l1; t1, t2) = −k21 ρ̄ v(k1)
(
t12
m
+

®k1 · ®l1
k21

)
θ(t12) . (C.13)

Evaluating this at ®l1 = 0 and Laplace transforming it yields

Lt12

[
iG̃(0)

f F
(®k1, 0; t12, 0) ] (z) = −k21

ρ̄ v(k1)
m

1

z2
, (C.14)

which we can insert into (C.9) to find

∆̃R
(®k1, 0; t12, 0) = L−1

z

[
−

k21
ρ̄ v(k1)
m

z2 + k21
ρ̄ v(k1)
m

]
(t12) = −k1

√
ρ̄ v(k1)
m

sin

(
k1t12

√
ρ̄ v(k1)
m

)
. (C.15)

Inserting this result as well as (C.13) into the right-hand side of (C.5) and performing the time
integral leads to the expression (3.92) for the causal propagators. Using that expression together
with the expression (3.91) for G(0)

f f in (C.11), we find the expression (3.95) for the statistical
propagator after performing the remaining time integrals.
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C. Computation of the macroscopic propagator

C.3. Cosmic structure formation in the large-scale limit

In the case of cosmic structure formation in the large-scale limit, as discussed in subsection 4.2.1,
we find

iG̃(0, ls)
f F

(®k1, ®l1;η1,η2) = 3

2

[
2 −

(
2 −

®k1 · ®l1
k21

)
e−

1
2η12

]
θ(η12) e−

σ2
p
2 T̃ 2

1 l
2
1 . (C.16)

Evaluating this at ®l1 = 0 and Laplace transforming it yields

Lη12

[
iG̃(0, ls)

f F
(®k1, 0;η12, 0) ] (z) = 3

z
− 3

z + 1
2

, (C.17)

which we can insert into (C.9) to find

∆̃(ls)
R

(®k1, 0;η12, 0) = L−1
z

[ 3
2

z2 + z − 3

]
(η12) =

3

5

(
eη12 − e−

3
2η12

)
. (C.18)

Inserting this result as well as (C.16) into the right-hand side of (C.5) and performing the time
integral leads to the expression (4.19) for the causal propagators. Using that expression together
with the large-scale limit (4.21) of G(0)

f f in (C.11), we find the expression (4.22) for the statistical
propagator after performing the remaining time integrals.

108



D. Proofs of the Feynman rules

D.1. Causality rule

Consider a diagram which has only incoming arrows on its outer legs or contains a subdiagram
which does so. From the continuity of the time-flow and the fact that there exist no propagators
or vertices with incoming arrows only, ∆ββ = 0 and Vf · · ·f = 0, it then follows that there has to
be at least one vertex in this diagram from which every possible path along the time-flow ends up
in a closed loop, as illustrated in Figure D.1.

In general, there might be multiple possible loops, as the involved vertices might have multiple
outgoing legs. In this case we consider the loop that is obtained by choosing for each vertex the
path through the outgoing leg evaluated at the latest time argument. Then, the causal structures
of the propagators (3.83) and vertices (3.97) imply that the diagram can only be non-vanishing if
the time arguments along the loop satisfy t in1 ≤ tout1 ≤ t in2 ≤ tout2 ≤ · · · ≤ t in1 .

A closer inspection allows to tighten this restriction even further, though. For this, we first
insert the proportionality relation (3.53) of the free collective-field cumulants into the expressions
(3.75) and (3.80) for the vertices and the retarded/advanced propagator, to infer

Vβ · · ·β f · · ·f (1, . . . ,nβ , 1′, . . . ,n′f ) ∝ δd
(®lr ′ ) ∀ r ′ ∈ {1′, . . . ,n′f } , (D.1)

∆f β (1, 2) = ∆β f (2, 1) = −i∆R(1, 2) = −iI(1, 2)︸ ︷︷ ︸
∝δd

(
®l1+®l2

)
−i

∞∑
n=1

(
iG(0)

f F

) n
(1, 2)︸                ︷︷                ︸

∝δd
(
®l2
)

. (D.2)

Combining both of these relations then yields

1′

2′ n′f

1 nβ

=

∫
d1̄ ∆β f (1′, 1̄)Vf f · · ·f β · · ·β (−1̄, 2′, . . . ,n′f , 1, . . . ,nβ ) ∝ δd

(®l1′ ) . (D.3)

t in1 tout1 t in2 tout2

Figure D.1.: Diagram with a closed loop in its time flow.
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D. Proofs of the Feynman rules

Using this result in Figure D.1 tells us that the ®l-argument at every outgoing β-leg of a vertex
through which the loop passes is set to zero, which means that we actually have to apply the
stricter case of the vertices’ causal restriction (3.97). As a consequence, the considered type
of diagram could in fact only be non-vanishing if the time arguments along the loop satisfied
t in1 ≤ tout1 ≤ t in2 ≤ tout2 ≤ · · · ≤ t in1 . This, however, is always a contradiction and thus the diagram
vanishes identically, concluding the proof of the Causality rule.

D.2. Homogeneity rule

Let the system under consideration be statistically homogeneous, and consider a diagram that
contains a so-called tadpole subdiagram, i.e. a subdiagram which is connected to the rest of the
diagram solely via a single propagator. We first use that due to the conservation of spatial Fourier
modes, (3.102) and (3.103), such a tadpole subdiagram satisfies

1 ∝ δd
(®k1) , (D.4)

where the hatched circle represents a subdiagram with no further outer legs than the one attached
to the propagator on the left. Note that we do not have to consider tadpole diagrams using the
other two possible propagators since they would vanish identically according to the Causality
rule.

Then, we insert the proportionality relation (3.53) of the free collective-field cumulants into the
definition (3.75) of the vertices, to obtain

Vβ · · ·β f · · ·f (1, . . . ,nβ , 1′, . . . ,n′f ) ∝ ®kr ′ v(kr ′, tr ′) ∀ r ′ ∈ {1′, . . . ,n′f } . (D.5)

If we now attach the tadpole diagram to the f -leg of some vertex, (D.4) and (D.5) together imply
that the resulting diagram vanishes identically if ®k v(k, t) = 0 at ®k = 0. Fourier transforming this
condition to real space,

0
!
= ®k v(k, t)

���®k=0 = −i
∫
d3q ®∇qv(q, t) , (D.6)

reveals that it is always satisfied, as the integrand on the right hand side switches sign under
a sign flip of ®q. Physically, this corresponds to the fact that the volume integral of a particle’s
central force field over the whole space vanishes. This concludes the proof of the Homogeneity
rule.

Note that for the gravitational potential (4.10) the condition (D.6) apparently does not hold
in Fourier space, even though it is always satisfied in real space. The reason for this is that the
Fourier transform of an 1/q potential is actually only properly defined as the limit of a large-scale
regularisation,

v(k) ∝ lim
kc→0

∫
d3q

e−kcq

q
e−i

®k · ®q ∝ lim
kc→0

1

k2 + k2c
. (D.7)

Using this proper definition, the condition (D.6) is indeed satisfied for the Fourier transformed
gravitational potential. This is related to the so-called “Jeans swindle” [25]. In practice, however,
one rarely encounters situations where using (D.7) makes a difference. In particular, this is true
for all calculations in chapter 2, which is why we directly set kc to zero in (4.10). Nevertheless,
one should always keep (D.7) in mind.
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E. Equations of motion of a particle in
expanding space-time

The Lagrangian of a single classical point particle of massm in an expanding space-time, expressed
in comoving coordinates ®q = ®r/a and cosmic time t , is given by

L
(
®q, Û®q, t

)
=
m

2
a2 Û®q2 −mVG (®q, t) , (E.1)

with the cosmological gravitational potential VG satisfying the Poisson equation

∇2
qVG =

4πG

a
(ρm − ρ̄m) , (E.2)

as derived in [15, 51]. Here, ρm denotes the comoving mass density of the space-time’s total
matter content, and ρ̄m is its mean value, which is constant in space and time.

Following the steps detailed in [51], we transform the Lagrangian to the new time coordinate
η(t) B ln

(
D+(t)/D+(ti)

)
by demanding the action to be invariant under this transformation,

S =

t2∫
t1

dt L
(
®q, Û®q, t

)
=

η2∫
η1

dη
dt

dη
L

(
®q, d®q
dη

dη

dt
,η(t)

)
!
=

η2∫
η1

dη Lη

(
®q, d®q
dη
,η

)
. (E.3)

Using dη/dt = H f+, where H B Ûa/a is the Hubble function and f+ B d lnD+/d lna the growth
function, we can read off the transformed Lagrangian,

Lη

(
®q, d®q
dη
,η

)
=
ma2H f+

2

(
d®q
dη

) 2
− m

H f+
VG

(
®q, t(η)

)
. (E.4)

By means of a Legendre transformation we then obtain the respective Hamiltonian and deduce
the resulting Hamiltonian equations of motion,

d®q
dη
=

®pcan
ma2H f+

, (E.5)

d®pcan
dη

= − m

H f+
®∇qVG , (E.6)

with the canonically conjugate momentum ®pcan.
For our purposes, though, it is more convenient to work with the rescaled momentum variable

®p B
®pcan

ma2H f+
(E.7)
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E. Equations of motion of a particle in expanding space-time

instead, since this choice will lead to equations of motion that take a very simple form during the
matter- and Λ-dominated epochs of a ΛCDM cosmology. To obtain these, we express ®pcan in (E.5)
and (E.6) in terms of ®p, yielding

d®q
dη
= ®p , (E.8)

d®p
dη
= −

®p
a2H f+

d

dη
(a2H f+) − ®∇qṼG , (E.9)

where we defined the effective gravitational potential

ṼG B
VG

a2H2 f 2+
, (E.10)

satisfying the modified Poisson equation (4.4). Using H f+ = ÛD+/D+ as well as the fact that D+
solves the linearised density contrast evolution equation (2.27). we finally find the equations of
motion (4.2) and (4.3).

Note that our assumption of the functional Jacobian determinant in (3.4) being constant still
holds for the equations of motion (4.2) and (4.3), even though (®q, ®pcan) → (®q, ®p) is no canonical
transformation. This can be checked explicitly by inserting those equations of motion into (3.14).
In fact, it can be shown in general that any invertible time-dependent linear transformation of
(®q, ®pcan) preserves this property.
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F. Next-to-lowest-order self-energies and
propagators of dark matter

For the 4th diagram in (4.32), which we choose as our exemplary 1-loop diagram, the kernel
functions K (1,P)

ββ,2 and K (1,C)
ββ,2 introduced in (4.56) and (4.57), respectively, read

K (1,P)
ββ,2

(®k1, ®k ′,η1,η2
) ���

diagram 4
=

(
3 − 2e−

η2
2

) (
®k1 ·

(®k1 + ®k ′) ) (
®k ′ ·

(®k1 + ®k ′) )
k ′2

��®k1 + ®k ′
��2

×
[
− 1

25
e−2η1

(
−50e2η1(3η1 + 16) − 181e

η1
2 − 450e

3η1
2

+ 450eη1 − 27e
5η1
2 (10η1 − 49) + 9e3η1(15η1 − 41) + 27

)
−

(®k1 · ®k ′) 6
5

(
10η1 −

19

3
e−

3η1
2 − 10e−

η1
2 − 21e

η1
2 + e−2η1 + 15e−η1 + 3eη1 +

55

3

)
+

®k1 · ®k ′

k ′2

(
6η1 − 8e−

3η1
2 − 36e−

η1
2 +

27e−2η1

25
+ 24e−η1 +

12

25
e
η1
2 (15η1 − 71) + 53

)
+

(®k1 · ®k ′) 2
k ′2

(
−12η1 − 8e−

3η1
2 − 48e−

η1
2 +

24e
η1
2

5
+
6e−2η1

5
+ 24e−η1 + 26

) ]
+ (η1 ↔ η2) ,

(F.1)

K (1,C)
ββ,2

(®k1, ®k ′,η1,η2
) ���

diagram 4
=

(
e
η1
2 − 1

) 2 (
e
η2
2 − 1

) 2 (®k1 · ®k ′) (
®k1 ·

(®k1 + ®k ′) )
k ′2

��®k1 + ®k ′
��2

×
[
3 + 4

®k1 · ®k ′

k ′2 e−η1
(
e
η1
2 − 1

) ] [
3 − 4

®k1 ·
(®k1 + ®k ′)��®k1 + ®k ′

��2 e−η2
(
e
η2
2 − 1

) ]
.

(F.2)

Here, (η1 ↔ η2) is to be understood as a short-hand notation for summing over both permutations
of the time variables η1 and η2.

To obtain compact expressions for the complete next-to-lowest-order self-energies Σββ,2 and
Σβ f ,1 as well as propagators Gf f ,2 and GR,1 introduced in subsection 4.3.2, it is convenient to
introduce the dimensionless integration variables r B k ′/k1 and µ B

(®k1 · ®k ′) /(k1k ′). We then
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F. Next-to-lowest-order self-energies and propagators of dark matter

find

Σβ f ,1(1, 2)
���®l1=®l2=0 = (2π)3 δd

(®k1 + ®k2
) k31 e2η2
(2π)2

∞∫
0

dr
P (i)
δ (k1r )
r3

×
[
e

3
2η12 − 1

32

(
4r

(
6r6 + 5r4 − 7r2 + 6

)
− 6

(
2r8 + r6 − 6r4 + r2 + 2

) ln(r + 1)
ln(|r − 1|)

)
+
e2η12 − e−

1
2η12

4000

(
−12r

(
150r6 − 5r4(30η12 − 49) + r2(230η12 − 359) − 60η12 + 198

)
+ 18

(
r2 − 1

) 2 (
50r4 + r2(−50η12 + 165) − 20η12 + 66

) ln(r + 1)
ln(|r − 1|)

) ]
,

(F.3)

Σ(P)
ββ,2(1, 2)

���®l1=®l2=0 = (2π)3 δd
(®k1 + ®k2

) k31 e− 1
2 (η1+η2)

(2π)2

∞∫
0

dr
P (i)
δ (k1) P (i)

δ (k1r )
r3

×
[

1

1500

(
2r

(
450r6 + 75r4(3η1 + 3η2 + 5)

+r2(195η1 + 195η2 + 1267) − 18(5η1 + 5η2 + 23)
)

− 9
(
r2 − 1

) 2 (
50r4 + 25r2(η1 + η2 + 5) − 2(5η1 + 5η2 + 23)

) ln(r + 1)
ln(|r − 1|)

)
+

e
1
2η1

1500

(
−2r

(
1425r6 + 25r4(27η1 + 25) + 39r2(15η1 + 92) − 6(45η1 + 166)

)
+ 3

(
r2 − 1

) 2 (
475r4 + 25r2(9η1 + 40) − 90η1 − 332

) ln(r + 1)
ln(|r − 1|)

)
+
e

1
2 (η1+η2)

16

(
2r

(
12r6 + r4 + 27r2 − 6

)
− 3

(
r2 − 1

) 2 (
4r4 + 7r2 − 2

) ln(r + 1)
ln(|r − 1|)

)
+
e2η1

12

(
1 − 3

2
e

1
2η2

) (
2r

(
6r6 + 5r4 − 7r2 + 6

)
− 3

(
2r8 + r6 − 6r4 + r2 + 2

) ln(r + 1)
ln(|r − 1|)

)
− e

5
2η1

3000

(
1 − 3

2
e

1
2η2

) (
−2r

(
900r6 − 75r4(18η1 − 25) + r2(2070η1 − 2591) − 540η1 + 1422

)
+ 9

(
r2 − 1

) 2 (
100r4 − 75r2(2η1 − 5) − 60η1 + 158

) ln(r + 1)
ln(|r − 1|)

) ]
+ (η1 ↔ η2) ,

(F.4)
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Σ(C)
ββ,2(1, 2)

���®l1=®l2=0 = (2π)3 δd
(®k1 + ®k2

) k31 e− 1
2 (η1+η2)

(2π)2

∞∫
0

dr

1∫
−1

dµ
P (i)
δ

(
k1

√
1 + r2 + 2rµ

)
P (i)
δ (k1r )(

1 + r2 + 2rµ
) 2

×
[
− 4

25
(r + µ)2

+
e

1
2η1

5

(
r2

(
2µ2 + 1

)
+ 2rµ

(
µ2 + 2

)
+ 3µ2

)
− e

1
2 (η1+η2)

16

(
2rµ2 + r + 3µ

) 2
− e

5
2η1

25

(
r2

(
10µ2 − 3

)
+ 2rµ

(
5µ2 + 2

)
+ 7µ2

)
+
e

1
2 (5η1+η2)

40

(
r2

(
20µ4 + 4µ2 − 3

)
+ r

(
44µ3 − 2µ

)
+ 21µ2

)
− e

5
2 (η1+η2)

400

(
r
(
10µ2 − 3

)
+ 7µ

) 2]
+ (η1 ↔ η2) ,

(F.5)

G(P)
f f ,2(1, 2)

���®l1=®l2=0 = (2π)3 δd
(®k1 + ®k2

) k31 e− 3
2 (η1+η2)

(2π)2

∞∫
0

dr
P (i)
δ (k1) P (i)

δ (k1r )
r3

×
[
e

5
2η1

315

(
6r7 − 22r5 − 22r3 + 6r − 3

(
r2 − 1

) 4 ln(r + 1)
ln(|r − 1|)

)
+
e

5
2η1+η2

105

(
2r

(
3r4 + 8r2 − 3

)
− 3

(
r2 − 1

) 3 ln(r + 1)
ln(|r − 1|)

)
+
e

5
2 (η1+η2)

40

(
2r

(
−3r6 + 6r4 − 9r2 + 2

)
+

(
3r2 + 2

) (
r2 − 1

) 3 ln(r + 1)
ln(|r − 1|)

)
+
e

1
2 (7η1+5η2)

420

(
90r7 − 204r5 + 286r3 − 36r − 9

(
r2 − 1

) 3 (
5r2 + 2

) ln(r + 1)
ln(|r − 1|)

)
+

e
1
2 (9η1+5η2)

504

(
2r

(
−21r6 + 50r4 − 79r2 + 6

)
+ 3

(
7r2 + 2

) (
r2 − 1

) 3 ln(r + 1)
ln(|r − 1|)

) ]
+ (η1 ↔ η2) ,

(F.6)
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F. Next-to-lowest-order self-energies and propagators of dark matter

G(C)
f f ,2(1, 2)

���®l1=®l2=0 = (2π)3 δd
(®k1 + ®k2

) k31 e− 1
2 (η1+η2)

(2π)2

∞∫
0

dr

1∫
−1

dµ
P (i)
δ

(
k1

√
1 + r2 + 2rµ

)
P (i)
δ (k1r )(

1 + r2 + 2rµ
) 2

×
[

16

1225
r2

(
µ2 − 1

) 2
+
e

5
2η1

175
4r

(
µ2 − 1

) (
r
(
6µ2 − 1

)
+ 5µ

)
− e

7
2η1

245
4r

(
µ2 − 1

) (
r
(
10µ2 − 3

)
+ 7µ

)
+
e

5
2 (η1+η2)

100

(
r2

(
1 − 6µ2

) 2
+ 10rµ

(
6µ2 − 1

)
+ 25

)
+
e

1
2 (7η1+5η2)

70

(
r2

(
−60µ4 + 28µ2 − 3

)
+ r

(
22µ − 92µ3

)
− 35

)
+

e
7
2 (η1+η2)

196

(
r
(
10µ2 − 3

)
+ 7µ

) 2]
+ (η1 ↔ η2) ,

(F.7)

GR,1(1, 2)
���®l1=®l2=0 = (2π)3 δd
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where

Σββ,2(1, 2) = Σ(P)
ββ,2(1, 2) + Σ(C)

ββ,2(1, 2) , (F.9)

Gf f ,2(1, 2) = G(P)
f f ,2(1, 2) +G

(C)
f f ,2(1, 2) . (F.10)
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G. Statistical propagator of coupled dark
matter and adiabatic baryons

In (5.146) we found an analytic expression for the statistical propagator of a gravitationally coupled
system of dark matter and adiabatic baryons in static-space-time, given by

∆
αγ
f f (1, 2) = (2π)3 δd

(®k1 + ®k2
)
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The different functions appearing in this expression read
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G. Statistical propagator of coupled dark matter and adiabatic baryons
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1
√
2

√
v̄ ′(k) ±
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where we further defined the mass-, density- and enthalpy-weighted potentials
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in analogy to the expressions (5.62) to (5.64) in the isothermal case.
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