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Introdution

When quantities annot be measured diretly, parameter estimation tehniques

ome into play: with these, the unknown quantity is determined from mea-

surements of observables. This work deals with problems where the relation

between the observables and the desired information is a partial di�erential

equation. Suh parameter estimation problems are then ommonly referred to

as Inverse Problems.

Inverse problems have vast appliations in siene and engineering. In this

work, we onsider problems where internal properties of media are of interest,

whih, however, are often not aessible diretly. For example, in some ap-

pliations we are interested in determining the internal elasti omposition of

bodies without destroying it, or would like to know the underground struture

in searh of oil without atually drilling. These quantities appear as oeÆients

in the partial di�erential equations (heneforth abbreviated by PDE ) whih are

used to desribe the response of the media to fores, and the determination of

these oeÆient naturally leads to inverse problems.

From a numerial point of view, inverse problems involving partial di�eren-

tial equations are very hallenging: unlike nonlinear partial di�erential equa-

tions, they do not only require the solution of one or few linearized subproblems

in eah nonlinear step, but many. Sine we are looking for distributed param-

eters whih may be disretized by thousands or tens of thousands degrees of

freedom, the number of linearized subproblems in eah nonlinear step may be

several hundreds or thousands. As an example, the transmission tomography

appliation disussed in Setion 5.6 required a total of 2008 CG iterations, a-

umulated over some 80 Newton steps. Sine 32 experiments were used, this

means a total of roughly 130,000 solutions of a Helmholtz equation. Computa-

tional onsiderations are therefore of outstanding importane in the design of

algorithms to solve suh problems.

Consequently, the goal of this work is the development of tehniques for

the eÆient numerial solution of suh inverse problems, based on adaptive

�nite element methods. After the statement of the problem in Chapter 1, we

will derive a posteriori error estimates for inverse problems in Chapter 2, both

for natural \energy type" quantities as well as for general funtionals, and

demonstrate their eÆieny. Although adaptivity and error estimation are now

ommonly aepted in the numerial solution of partial di�erential equations,

they have not yet found their way into the solution of inverse problems. These

tehniques are thus new to this �eld and promise a signi�ant gain in eÆieny

ompared to present state-of-the-art algorithms.
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8 INTRODUCTION

A seond, new aspet of this work is the inlusion of bounds into the solu-

tion proess in Chapter 3. In pratial appliations, physial upper and lower

bounds on possible values of the unknown oeÆients are usually available, ei-

ther from prior knowledge of the partiular ase under investigation, or from

extremal material properties existing in nature. For example, when identifying

the underground struture from seismi measurements, densities of roks will

be between approximately 1 g/m

3

(water) and 22 g/m

3

(osmium and alike

metals). In pratie, suh bounds are usually muh tighter, and alike bounds

are available for other properties as well, suh as elastiity oeÆients. The

eÆient inlusion of suh bounds is disussed in Chapter 3 where we develop an

Ative Set Method in a ontinuous setting and show its eÆieny in enhaning

stability of identi�ed oeÆients.

In Chapter 4, we extend the problems under onsideration to the ase that

more than just one measurement is available. This an be favorably used to

suppress the e�ets of measurement noise, and examples of this are shown.

It also allows to solve ertain lasses of problems in whih one measurement

is not suÆient to identify the unknown oeÆient. Beyond the already high

omputational requirements for distributed parameter identi�ation in PDEs,

multiple measurements inrease it even more. This requires using speialized

algorithms tailored to the problem. However, their struture allows for eÆient

parallelization strategies, for example using lusters of omputers. The work

required for eah of the subproblems assoiated with one measurement is thus

distributed to di�erent omputers. The struture of a program doing this will

be introdued in Chapter 4.

The tehniques developed thus far at the Laplae equation will be applied

to parameter identi�ation problems for the Helmholtz equation in Chapter 5.

Sine Helmholtz's equation is the frequeny domain version of the wave equa-

tion, parameter estimation for this type of problems has many appliations in

geophysis. It will be shown that adaptive tehniques and error estimation work

in this ontext as well, and that they lead to very eÆient shemes. The most

omplex problems of this work will be onsidered in this hapter.

We onlude with an outlook on the hallenges of inverse problems that are

not, or only briey, touhed in this work.

Two prototypial appliations

The tehniques developed in this thesis should be onsidered in view of atual

appliations. To this aim, we introdue two prototypial appliations. The �rst

one, nondestrutive testing, tries to determine the elasti properties of a mate-

rial by subjeting it to a known fore, and measuring the resulting deetion.

The seond, eletrial impedane tomography, uses eletrial potentials applied

to the boundary of a body to image its interior.

Nondestrutive testing. Assume we want to infer the sti�ness properties of

a body without taking it apart or destroying it otherwise, for example beause

it is preious or beause an assessment of the body is required before it is
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force f(x)

Figure 1: Priniple of nondestrutive testing by appliation of fores. Left:

Membrane in rest state. Right: Membrane deeted in reation to an applied

external fore �eld f(x).

deployed to use. This frequently ours in quality ontrol of parts in aerospae

industries, and many other appliations.

The idea of the method applied to a membrane of spatially varying elasti

properties is then as follows (see Figure 1): knowing the rest state of the mem-

brane in the absene of external fores, we want to infer the desired material

properties by measuring the deetion after applying a fore of known spatial

distribution and strength.

A mathematially onise de�nition of this problem will be given in Chap-

ter 1, so we only present a sketh of a formulation: For the membrane under

onsideration, assume that its deetion u is desribed by a Poisson equation

�r � (aru) = f;

where f is the applied body fore and a = a(x) the spatially varying oeÆient

we would like to reover. For a omplete model, the equation is of ourse

augmented by suitable boundary onditions.

While we do not know the oeÆient, we have measured the deetion u of

the membrane under ation of the applied fore. We denote this measurement

by z. Sine we an ompute a deetion u for eah possible oeÆient (bounded

away from zero), the problem of parameter identi�ation an then be stated as

follows: �nd that oeÆient for whih the orresponding deetion u mathes the

measured deetion z best. Methods for �nding this oeÆient will be disussed

in the next hapter.

Eletrial impedane tomography. Another, losely related problem is

the determination of the eletrial properties of a body from measurements at

its boundary. This has appliations in the detetion of interior raks in metalli

parts in aerospae industries, but is also envisaged as an imaging tehnique in

medial appliations. Here, see Figure 2, one tries to infer the internal eletrial

ondutivities of a body by applying eletrostati potentials to its boundary; the

observable quantity is then the resulting eletri �eld at the boundary, whih

depends on the potentials and the internal omposition of the body. From this

one hopes to invert for the interior. Beause this method tries to see into the
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apply specified 
electric potential 

measure electric
field

Figure 2: Priniple of eletrial impedane tomography: subjet a body to spe-

i�ed eletrial potentials at its boundary, and measure the resulting eletrial

�elds. Left: Sheme of measurements. Right: omputer tomographi image of

the human upper body, for whih eletrial impedane tomography ould be an

alternative imaging tehnique.

body only from measurements outside of it, it is often alled eletrial impedane

tomography.

Mathematially speaking, we now have a Laplae equation desribing the

eletri potential with a variable oeÆient whih we would like to reover. In-

stead of body fores, we now have Dirihlet boundary values (i.e. the applied

surfae potential) as soures, and the Neumann boundary values (i.e. the ele-

trial �eld at the surfae) as observables. In this thesis, we do not disuss this

partiular problem for the Laplae problem, but for the Helmholtz equation.

Problems related to this one our in a large number of appliations. It is

a reurring theme in geophysis (see the books by Tarantola [63℄ and Parker

[54℄), where, for example, measurements of the gravimetri potential are used to

obtain information about underground strutures assoiated with mass distri-

bution anomalies. If we extend the problems to time dependent ones, the seismi

inversion problem is also of this type: there the goal is to obtain information

about the underground from the measurement of seismi signals. Important

appliations of this are earthquake predition and oil reservoir identi�ation.

What is the solution of an inverse problem?

In this work, we try to identify the maximum likelihood point of a problem. To

keep with the membrane example above, this means that we seek the single one

oeÆient for whih the predited deetion mathes the measured one best.

However, this is in some sense a rather restrited point of view: sine the mea-

surement usually ontains noise, any other noise realization of the measurement

would be equally valid, and for eah we might get a di�erent \best" oeÆient.

The most appropriate de�nition of a solution therefore would be a proba-

bility distribution in oeÆient spae: for eah noisy measurement ourring

with a ertain probability, assign this probability to the orresponding \best"

oeÆient.

For most parameter identi�ation problems involving partial di�erential

equations, reovering this probability density exeeds today's omputational

possibilities by far. We therefore restrit our point of view to the identi�ation
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of one distributed oeÆient funtion, and note that this is also appropriate

for the ase of small noise, sine then the probability density is approximately

Gaussian with peak at this one oeÆient and omputable width. This restri-

tion must, however, be kept in mind when thinking about inverse problems.

For further disussions in this diretion, see the outlook setion of this work

(page 105), and in partiular the book by Tarantola [63℄.

A word on notation

The sienti� ommunities onerned with the numerial solution of partial

di�erential equations, and with optimization maintain di�erent, inompatible

onventions of notation. For example the state variable is ommonly named u

in numerial analysis, while it is denoted by x, or y(x), in optimization theory.

Sine this work is mainly onerned with numerial aspets, in partiular the

�nite element approximation of optimization problems, we will use the notation

ommon in numerial analysis.
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Chapter 1

Parameter estimation for

ellipti problems

In this �rst hapter, we will give an outline of the way by whih we intend to

attak the problem of estimation of distributed parameters in ellipti partial

di�erential equations. We �rst disuss the formal setting of the problem in

mathematial terms, then formulate it as a onstrained minimization problem

for whih we seek the stationary point of a Lagrangian.

This onstrained problem is stated in a ontinuous setting in funtion spaes.

For its solution, we employ Newton's method, again on a ontinuous level. The

individual Newton steps are then disretized using a �nite element method

that di�ers from the approahes used in the available literature in that we use

di�erent meshes and shape funtions for the di�erent types of variables present.

The rest of the hapter is devoted to the disussion of the solution of the

linear subproblems and theoretial questions regarding the framework outlined

so far. The hapter loses with the de�nition of some benhmarks that will be

used in later hapters.

As already mentioned in the introdution, the solutions we are seeking in this

work { by requiring the stationarity of a Lagrangian { are maximum likelihood

points in the model spae. What we all solution to the inverse problem is thus

only a ertain aspet of it. We do not onsider the identi�ation of the full

posterior probability density funtion in the model spae whih would require

us to use signi�antly di�erent tehniques than we intend to disuss in this

work, as for example Monte Carlo sampling. Questions like resolution and

signi�ane, or varianes and ross-varianes are therefore not overed and are

left for future researh. For more details about these questions, we refer to the

book by Tarantola [63℄.

1.1 A model problem

This work is devoted to the identi�ation of distributed oeÆients in par-

tial di�erential equation equations. A model di�usion problem involving the

Laplae equation, as well as the neessary notation to desribe it, is introdued

in this setion. This model problem will be used in all following hapters exept

13



14 CHAPTER 1. PARAMETER ESTIMATION FOR ELLIPTIC PDES

for the last one where identi�ation problems for the Helmholtz equation are

onsidered.

The problems onsidered here are of the following form: assume we have

measurements z of ertain physially observable quantities, suh as displae-

ments of a membrane, eletrial �elds at the surfae of a body, or seismi signals.

We know that these signals are aused by some soures f and g loated in the

interior and on the boundary of the domain, respetively, and that the physial

system an be desribed by a partial di�erential equation that allows a unique

solution u denoting the state the system is in. This equation depends on er-

tain material properties of the system, denoted by the variable a , whih annot

be observed diretly, but whih we would like to infer from the measurements.

The task is then to �nd suh model parameters a for whih the output (i.e. the

state u of the system or ertain aspets of it) mathes the observations best.

We partiularly assume that we are looking for spatially varying parameters

a = a(x) .

In pratial appliations we often have additional knowledge. For example,

information about the parameter of the form a

0

� a � a

1

may be available;

these bounds our sine for model parameters suh as elastiity oeÆients,

density, or attenuation, lower and upper bounds are readily onstrutible by

onsidering the extreme ases for the materials of whih the medium is om-

posed. This information will be inorporated into the methods developed in

this work if possible.

Given the above, a formulation of the problem in words may be as follows:

Problem 1.1. Minimize the di�erene between u and z with respet to a

given mis�t funtional by varying the parameters a(x) , under the onstraint

that at the solution fu

�

; a

�

g the state equation is satis�ed, and that a

0

� a

�

�

a

1

.

Below, one mathematial formulation of this problem will be stated, see

Problem 1.7, and the resulting equations determining the solutions u

�

and a

�

are derived along with methods to solve them. We will frequently drop the

asterisk at the solution if no onfusion is possible.

While we use only one formulation of the parameter identi�ation problem,

we note that there are many whih we do not touh here. Some of these are

mentioned at the end of this setion.

In order to state the problem of parameter identi�ation in a onise way,

we �rst de�ne some notation for later use:

De�nition 1.2 (Funtion spaes). Denote by H

p

(
) the usual Sobolev spae

of funtions over the domain 
 whih are in L

2

(
) and have derivatives up to

order p in L

2

(
), see Yosida [68℄. Let H

1

0

= fv 2 H

1

(
) : vj

�


= 0g, and

de�ne by H

�1

(
) = H

1

0

(
)

0

its dual.

Based on these spaes, let H

1=2

(�) denote the normed spae of traes of

H

1

(
) funtions on �, with norm indued by the trae operator (see Shwab

[59℄). Finally, let �

D

� �
 and de�ne

V

g

= fv 2 H

1

(
) : vj

�

D

= gg;

V

0

= fv 2 H

1

(
) : vj

�

D

= 0g;



1.1. A MODEL PROBLEM 15

with g 2 H

1=2

(�

D

).

De�nition 1.3 (State equation). Let 
 be a bounded, open subset of R

n

and

let

�r � (aru) = f; in 
;

u = g; on �

D

� �
;

a�

n

u = 0; on �

N

= �
� �

D

be the ellipti di�erential equation for whih we want to �nd the parameter a

from measurements z of the solution u . For simpliity, we assume 
 to

be polygonal. The state equation is understood to be in the weak sense, i.e. we

require that for u 2 V

g

satis�es

(aru;r') � (f; ') = 0 8' 2 V

0

(
); (1.1)

where

a 2 A = fa 2 L

1

(
) : 0 < � � ag;

f 2 H

�1

(
);

g 2 H

1=2

(�

D

):

In many appliations, we will also be able to exploit physial knowledge

about the parameter a. While for well-posedness of the state equation we only

need that a is bounded away from zero, known material properties of the

parameters often allow us to bound a

0

� a � a

1

, with a

0

; a

1

being onstant or

varying in spae. We will inlude these bounds into the de�nition of A:

De�nition 1.4 (Parameter spae). Let the admissible set for the parameter

be

A = fa 2 L

1

(
) : 0 < � � a

0

(x) � a(x) � a

1

(x) <1g:

Furthermore, we de�ne the tangent one to A at position a by

A

0

[a℄ =

�

� 2 L

1

: �(x) � 0 for x 2 fx : a(x) = a

0

g;

�(x) � 0 for x 2 fx : a(x) = a

1

g

	

:

The problem we are onerned with in this work involves the minimization

of the di�erene between the solution of an equation u and a measurement z.

We will now de�ne how we measure this di�erene:

De�nition 1.5 (Mis�t funtionals). Let u 2 V

g

be the solution of (1.1), and

z 2 M be the measurement. Let M : V

g

!M be a mapping from the spae of

solutions into the spae of measurements M. We will then measure the mis�t

between solution and measurement,

m(Mu� z);

with a onvex and ontinuous funtional m :M! R

+

0

, normalized to m(0) = 0.
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We will frequently write m(u � z) instead of m(Mu � z) if M is simply

the embedding of V

g

into another spae (e.g. into M = L

2

(
)), or a anonial

restrition (e.g. the restrition to a part 


0

� 
, or the trae mapping from

H

1

(
) into L

2

(�) with some urve �).

The �rst and seond derivative of m(�) at position u� z will be denoted by

m

0

(u� z; �) and m

00

(u� z; �; �), respetively. If m is quadrati in its argument,

m

00

(u� z; �; �) does not depend on u� z.

Examples for mis�t funtionals orresponding to domain measurements are

m(u� z) =

1

2

ku� zk

2

L

2

(
)

; or m(u� z) =

1

2

kru� zk

2

L

2

(
)

:

These are used if measurements of the state variable or its gradient are avail-

able everywhere. Measurements on the boundary are also possible, as well as

weighted norms. More ompliated measurement funtionals may be tailored

to the statistial properties of measurement noise. Examples inlude L

1

norms

of value or gradient, or smoothed variants thereof, suh as Huber's or Ekblom's

measure (see, for example, Amundsen [2℄ and Farquharson and Oldenburg [35℄).

Due to noise in the measurement z we usually need to add a regularization

term to the funtional we want to minimize. Its form is stated in the following

de�nition:

De�nition 1.6 (Regularization funtionals). The regularization funtion-

als used in this work are denoted by r : A ! R

+

0

. They are assumed to be

onvex and di�erentiable, and normalized to r(0) = 0.

Again, �rst and seond derivatives are denoted by r

0

(a; �) and r

00

(a; �; �),

respetively. Common hoies for r(�) inlude

r(a) =

1

2

kak

2

L

2

(
)

; or r(a) =

1

2

krak

2

L

2

(
)

;

or again other funtionals suh as the ones mentioned above. In general, the

hoie of the regularization funtional should be guided by physial insight

into the problem at hand, as regularization should penalize ertain undesirable

properties of oeÆients.

Note that funtionals operating on ra are not de�ned for the weak assump-

tions on A of De�nition 1.4, but an be replaed by di�erene quotients after

disretization of the equations.

Adding a regularization funtional as de�ned above, ommonly referred to

as Tikhonov regularization, is not the only possible method of regularization,

although it is used in the vast majority of publiations on parameter identi�-

ation. See the book by Engl, Hanke, and Neubauer [32℄ for an overview of

methods.

Using the de�nitions above, Problem 1.1 an be stated as follows:

Problem 1.7 (Continuous problem). Minimize the regularized deviation

J(u; a) = m(u� z) + �r(a)
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of u from the measurement z , with � � 0 being a regularization parameter,

subjet to the onstraints:

(aru;r')� (f; ') = 0 8' 2 V

0

;

uj

�

D

= g;

a

0

� a � a

1

:

Solvability and uniqueness for this problem ruially depend on the exat

form of the funtionals m(�) and r(�), and the funtion spaes on whih they

operate. These questions are touhed briey in Setion 1.8.

Before going on with the disussion of methods for solving the onstrained

optimization problem 1.7, we would like to point out that the onstraints are

of very di�erent nature:

� The state equation: Sine we expet to �nd the unknown parameter only

approximately, it would be useless to require u to satisfy the state

equation exatly in every step of the proess.

� Dirihlet boundary onditions: Being linear, these an be observed ex-

atly by setting the initial iterate u

0

suh that it satis�es the boundary

onditions exatly, and then take all updates Æu from the linear subspae

that has zero boundary onditions on �

D

.

� Bounds: The lower bound 0 < � � a needs to be satis�ed exatly, sine

it guarantees well-posedness and solvability of the problem and also on-

tains essential physial meaning. The atual bounds a

0

� a � a

1

may be

violated slightly but their enforement stabilizes the proess, see Chap-

ter 3.

It must be stressed that Problem 1.7 is only one possible formulation of the

problem of parameter estimation. It has, among many other examples, been

used very suessfully for parameter identi�ation and optimization problems

in ODE and DAE systems by Bok et al. [22, 23, 57, 29℄, Shulz [58℄, and Beker

et al. [16, 18℄. Haber and Oldenburg [38℄ use it for appliations in parameter

estimation problems involving ellipti partial di�erential equations. However,

there are many other possible formulations. For example, it is ommon pratie

in applied sienes to treat the state variable as dependent on the parameter,

thus eliminating the expliit state equation onstraint, see for example Kravaris

and Seinfeld [47℄ and Haber et al. [38℄. The resulting formulation is often

referred to as Output Least Squares (OLS) beause it tries to minimize the

square of the di�erene between measurement and the output of the di�erential

equation operator for a given set of parameters. Furthermore, the state equation

onstraint an be treated using a primal-dual strategy (Bergounioux et al. [20℄),

or using an augmented Lagrangian approah (Kunish et al. [42℄). For further

possible duality methods, see for example Chavent et al. [24, 26℄.
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1.2 Optimality onditions and stability

In the following setions, we will develop an approah to solve the onstrained

minimization problem 1.7 by using a Lagrangian formulation and Newton's

method. In a �rst step, we state the neessary onditions for an optimum in

this setion, and prove stability of solutions under suitable onditions. We then

disuss seond order onditions, and �nally show the �rst order onditions for

the onstrained problem. For the time being, we defer the inlusion of the

bound onstraints a

0

� a(x) � a

1

to Chapter 3 and assume that they are

ful�lled even if not expliitly inluded in the problem.

1.2.1 First order onditions

Assuming that the inequality onstraints a

0

� a(x) � a

1

are non-existent, or

inative at the solution, we formulate Problem 1.7 by introduing a Lagrange

multiplier for the state equation onstraint and searhing for a stationary point

of the orresponding Lagrangian funtional.

Problem 1.8 (Unonstrained �rst order onditions). Let � 2 V

0

(
) be a

Lagrange multiplier and let

L(u; a; �) = m(u� z) + �r(a) + (r�; aru)� (�; f) (1.2)

denote the Lagrangian of the problem, then the solution

x = fu; a; �g 2 X

g

= V

g

�A� V

0

of problem 1.7, with inequality onstraints a

0

� a � a

1

negleted, is determined

by the �rst order neessary onditions

r

x

L(x; y) = 0 8y = f'; �;  g 2 X

0

= V

0

�A� V

0

: (1.3)

In expliit form, equation (1.3) reads: Find x = fu; a; �g 2 X

g

suh that for

all y = f'; �;  g 2 X

0

r

u

L(x;') � m

0

(u� z;') + (r�; ar') = 0; (1.4)

r

a

L(x;�) � �r

0

(a;�) + (r�; �ru) = 0; (1.5)

r

�

L(x; ) � (r ; aru)� ( ; f) = 0: (1.6)

The validity of the haraterization of solutions of (1.3) relies on the exis-

tene of a Lagrange multiplier �. This is proven, for example, in Ito and

Kunish [42℄.

1.2.2 Stability of solutions

Existene and uniqueness of solutions an be based on stability. In the following,

we �rst show inf-sup stability for the simpler ase that we are looking for a single

salar parameter only, and afterwards show it for the general ase for a subset of

parameters satisfying some smoothness property. Due to this latter restrition,
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the result annot be used to prove existene and uniqueness, but nevertheless

reveals the dependene of solutions on perturbations in the data.

The �rst proposition proves stability for the ase that we are trying to

identify a onstant parameter. For the proof, we require the existene of a reg-

ularization term, whih seems unneessary for this simple ase. We nevertheless

state this ase as it sets the stage for the following proof onerning distributed

oeÆients, but note that we onsider it likely that the inf-sup onstant an be

made independent of the regularization parameter.

Proposition 1.9 (Stability for onstant parameters). Assume we want to

identify a onstant parameter a 2 R. Let m(u�z) =

1

2

kr(u�z)k

2

, r(a) =

1

2

jaj

2

,

and assume for simpliity that u has zero boundary values. Then the solution

x = fu; a; �g 2 X

0

= H

1

0

� R �H

1

0

of (1.3) satis�es the system

A(x; y) = (rz;r') + (f;  ) 8y = f'; �;  g 2 X

0

;

arising from (1.3) by reordering of terms, with the semilinear form de�ned as

A(x; y) = (ru;r') + (r�;r')a + (ru;r )a+ �a�+ (ru;r�)�:

Then with kxk

2

X

= kruk

2

L

2

+ jaj

2

+ kr�k

2

L

2

there exists  > 0 suh that the

inf-sup ondition

sup

y2X

0

A(x; y)

kyk

X

� kxk

X

;

holds for all x = fu; a; �g 2 X

0

satisfying 0 < a

0

� a <1.

Proof. For eah x = fu; a; �g, we hoose a test funtion ŷ = f�;

1

�

a

2

; u � (

1

a

+

a

�

)�g suh that �rst we have

A(x; ŷ) = akxk

2

X

by anellation of the ross-terms (ru;r�). On the other hand, ŷ is hosen in

suh a way that we an bound kŷk

X

by kxk

X

, by absorbing the ross-term into

the norms of u; �, and hoosing the fators suh that the omponents of kŷk

X

are balaned. To see this, we ompute the norm of ŷ:

kŷk

2

X

= kruk

2

+

�

a

�

�

2

jaj

2

+

�

1 +

�

1

a

+

a

�

�

2

�

kr�k

2

�2

�

1

a

+

a

�

�

(ru;r�):

Using Young's inequality and omparing the relative sizes of the fators in front

of the norms of the omponents of x, we then have

kŷk

2

X

�

�

3

4

+

�

1

2

+

1

a

+

a

�

�

2

�

kxk

2

X

:

Thus,

sup

y2X

0

A(x; y)

kyk

X

�

A(x; ŷ)

kŷk

X

� kxk

X
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with

 = min

a

0

�a<1

a�

r

3

4

�

2

+

�

�

2

+

�

a

+ a

�

2

=

a

0

�

r

3

4

�

2

+

�

�

2

+

�

a

0

+ a

0

�

2

:

The proof arries over diretly to the ase of disretized state and adjoint

variable.

It is not possible to extend the proof of the theorem to the ase of a dis-

tributed oeÆient in a simple way, sine then the hoie of a test funtion

ŷ depending on x in a nonlinear way is not possible any more. However, the

following result holds:

Theorem 1.10 (Stability for the distributed ase). For the ase of a

distributed oeÆient, let

~

A � A be the set of funtions a 2 A satisfying the

bound a � a

0

almost everywhere and for whih we an �nd funtions �� whih

satisfy the smoothness ondition

sup

'2H

1

0





r'� ar(

1

��

')





kr'k

� " < a

0

; (1.7)

and for some onstant M the ondition







1

��

+

a

0

�







W

1;1

�M <1: (1.8)

Then there exists  > 0 suh that the inf-sup ondition

sup

y2X

0

A(x; y)

kyk

X

� kxk

X

;

holds for all x 2 H

1

0

�

~

A�H

1

0

, where

A(x; y) = (ru;r') + (ar�;r') + (aru;r ) + �(a; �) + (ru�r�; �);

and kxk

2

X

= kruk

2

L

2

+ kak

2

L

2

+ kr�k

2

L

2

.

Proof. The proof follows the same ideas as that of Proposition 1.9. However,

sine the oeÆient is no more a salar, we an't use fators of it in the test

funtions, sine we will have to take gradients of it. Rather, we use a smoothed

version �� of the oeÆient a as fator for u and �.

For the proof, we onsider for eah given x the speial test funtion ŷ =

f�;

a

0

�"

�

a; u� (

1

��

+

a

0

�"

�

)�g. Then,

A(x; ŷ) = (aru;ru) + (ar�;r�) + (a

0

� ")kak

2

+

�

ru;r�� ar(

1

��

�)

�

:

Using the bound a � a

0

in the �rst two terms and ondition (1.7) for the last

term, we have

A(x; ŷ) � a

0

kruk

2

+ a

0

kr�k

2

+ (a

0

� ")kak

2

� "kruk kr�k

� (a

0

� ")kxk

2

X

:



1.2. OPTIMALITY CONDITIONS AND STABILITY 21

By assumption, the fator a

0

� � is positive.

On the other hand, let ! =

1

��

+

a

0

�"

�

. Then

kŷk

2

= kruk

2

+ kr�k

2

+

�

a

0

� "

�

�

2

kak

2

+ 2 (ru;r(!�)) + kr(!�)k

2

:

We estimate kr(!�)k by using the boundedness of ! inW

1;1

due to assumption

(1.8), and by Poinar�e's inequality on the norm of � 2 H

1

0

, to obtain

kr(!�)k � k!k

1

kr�k+ kr!k

1

k�k � C




k!k

W

1;1
kr�k = C




Mkr�k:

Thus,

kŷk

2

� kruk

2

+ kr�k

2

+

�

a

0

� "

�

�

2

kak

2

+ 2C




Mkrukkr�k + C

2




M

2

kr�k

2

;

� (1 + C




M)kruk

2

+ (1 + C




M + C

2




M

2

)kr�k

2

+

�

a

0

� "

�

�

2

kak

2

� max

(

1 + C




M + C

2




M

2

;

�

a

0

� "

�

�

2

)

kxk

2

X

;

and the laimed result holds with

 =

a

0

� "

max

n

q

3

4

+ (

1

2

+ C




M)

2

;

�

a

0

�"

�

�o

:

Theorem 1.10 shows that the stability properties of solutions deteriorate

as expeted if the amount of regularization is redued, sine  < �. On the

other hand, for �xed �, the result shows that physially meaningful solutions

satisfying the ondition on the parameter are stable if a

0

is suÆiently large.

Remark 1.11. The requirement (1.7) on the elements of

~

A an be rewritten

as follows: for eah a 2

~

A there must be a funtion �� satisfying

sup

'2H

1

0





(1�

a

��

)r'+ '

a

��

r��

��





kr'k

� " < a

0

:

Using Poinar�e's inequality on ' 2 H

1

0

, this ondition is satis�ed if we an �nd

an approximation �� to a suh that







1�

a

��







+ C












a

��

r��

��









� " < a

0

:

This implies loseness of �� to a as well as smallness of r��. The theorem

shows that the stability deteriorates as " grows.
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If we are looking for Lipshitz ontinuous oeÆients, then the ondition

is satis�ed if a � a

0

> 0 and krak � "a

0

< a

2

0

, by hoosing �� = a. For

onstant oeÆients, we have that " = 0; A =

a

0

�

, and we an reover the result

of Proposition 1.9, but with  worse by a onstant fator of C




.

Remark 1.12. Theorem 1.10 still holds if we replae the L

2

-norm on A by any

other norm, if the regularization term is hosen aordingly. For example, the

theorem holds if kxk

2

X

= kruk

2

L

2

+ kak

2

H

1

+ kr�k

2

L

2

and r(a) =

1

2

kak

2

H

1

.

1.2.3 Seond order onditions

As for �nite dimensional problems, the seond order neessary onditions for

an optimum fu; ag are that

r

2

fu;ag

L(x; fÆu; Æag; fÆu; Æag) > 0 (1.9)

holds for all diretions fÆu; Æag tangential at x to the feasible set de�ned by

�r�(aru) = f , i.e. for all Æu; Æa satisfying

�r�(arÆu) �r�(Æaru) = 0;

see, e.g., Maurer and Zowe [50℄.

For a speial, although slightly unrealisti, hoie of measurement and reg-

ularization funtionals, it is simple to show that these onditions always hold

for an optimum of Problem 1.8 if measurement noise is small enough, or is

ountered by a suÆiently large regularization parameter:

Proposition 1.13. Assume m(') =

1

2

kr'k

2

, r(�) =

1

2

k�k

2

k

; k > dim
=2.

Assume further that 
 is a bounded domain with Lipshitz ontinuous boundary,

and that at the solution x = fu; a; �g the mis�t is m(u � z) < ". Then the

seond order neessary optimality onditions for the Hessian (1.9) hold for all

perturbations Æu 2 H

1

0

; Æa 2 H

k

.

Proof. By assumed ontinuity, onvexity, and positivity of m(�), we infer from

m(u � z) < " that there exists Æ > 0, lim

"!0

Æ(") = 0, growing stritly

monotonously with � suh that km

0

(u � z; �)k

H

�1
< Æ. Due to (1.4) and us-

ing standard ellipti estimates, we therefore have k�k

H

1
< Æ=a

0

.

On the other hand, by onvexity of m(�) and r(�), there are onstants

� > 0; � > 0 with � = inf

Æu

m

00

(Æu; Æu)=kÆuk

2

H

1

, � = inf

Æa

r

00

(a; Æa; Æa)=kÆak

2

k

.

Finally, using the de�nition of the Lagrangian, the ondition reads

r

2

fu;ag

L(x; fÆu; Æag; fÆu; Æag) = m

00

(Æu; Æu) + �r

00

(a; Æa; Æa) + (r�; ÆarÆu)

� �kÆuk

2

H

1

+ ��kÆak

2

k

� k�k

H

1
kÆak

0;1

kÆuk

H

1

� �kÆuk

2

H

1

+ ��kÆak

2

k

�

C

e

Æ

a

0

kÆak

k

kÆuk

H

1
;

where in the last step we have made use of the Sobolov inequality kÆak

0;1

�

C

e

kÆak

k

that holds for the hosen lass of domains 
. Thus, if � large enough,

or Æ and thus " small enough, the entire term is larger than zero and the seond

order ondition holds.
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The result shows that large noise may lead to irregular points in the La-

grangian unless it is ountered by an inreased regularization parameter � >

C

2

e

Æ

2

=(4a

2

0

��). Note that this then implies stability of the solution a with

respet to perturbations in the measurements z. However, as in the stability

theorems above, the stability onstant is only proportional to �. For pratial

purposes, the proposition above is rather uninteresting, sine the regularization

funtional has to be hosen too strong.

1.2.4 First order onditions for the onstrained problem

Previously, we have assumed that inequality onstraints a

0

� a � a

1

either do

not exist or are inative. Although we will base the rest of this hapter on this

assumption and present their inlusion into the numerial proedure only in

Chapter 3, we state the �rst order onditions of the bound onstrained problem

for ompleteness. For this, let us �rst de�ne the one C and dual one C

+

C = fa 2 L

1

: a � 0g; C

+

= f� 2 L

1

: h�; ai � 0 8a 2 Cg: (1.10)

Then, the onstrained ontinuous problem an be stated in the following

form:

Problem 1.14 (Constrained �rst order onditions). Let � 2 V

0

and �

i

2

C

+

; i = 1; 2, be Lagrange multipliers for the state equation and lower and upper

bounds, respetively, and let

L(u; a; �; �

0

; �

1

) = m(u� z) + �r(a) + (r�; aru)� (�; f)

+ (�

0

; a� a

0

) + (�

1

; a

1

� a)

(1.11)

denote the Lagrangian of the problem, then the solution x = fu; a; �; �

0

; �

1

g of

Problem 1.7 is determined by the �rst order neessary ondition

r

fu;a;�g

L(x; y) = 0 8y = f'; �;  g 2 X

0

= V

0

�A

0

[a℄� V

0

;

r

�

i

L(x; ) � 0 8 2 C

+

; i = 1; 2;

(�

0

; a� a

0

)

L

2

= 0;

(�

1

; a

1

� a)

L

2

= 0:

A proof of this under slightly di�erent onditions an be found in Ito and

Kunish [42℄.

1.3 Newton's method for the optimality onditions

Due to their nonlinearity, a diret solution of the �rst order onditions (1.3) is

not possible; we therefore employ a Newton iteration to generate a sequene

of iterates x

k

= fu

k

; a

k

; �

k

g hopefully onverging to the exat solution x =

fu; a; �g of (1.3) as k ! 1. The treatment of bound onstraints a

0

� a � a

1

will later be inluded into the omputation of Newton steps, but we defer this

to Chapter 3.
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Newton's method, as applied here, onsists of two steps: �rst ompute a

searh diretion Æx

k

in whih the updates for x

k

to get to x

k+1

will be hosen.

Then, the length of the step in this diretion is hosen. These two steps will

be disussed in the following. We note that the approah hosen here is fully

equivalent to the Sequential Quadrati Programming (SQP) method as long as

bound onstraints are not inorporated.

Coneptually, the method proposed here an be desribed either on a on-

tinuous or a disrete level: either we �x a disretization and apply a number

of Newton steps until we are satis�ed with the onvergene on this mesh; we

then repeat the same steps on a �ner disretization, of ourse using the old

solution as a starting value. Or, alternatively, we onsider the steps on a on-

tinuous level and ompute an approximation of the ontinuous searh diretion

by separately disretizing eah step, using a priori unrelated disretizations; in

pratie, disretizations will be hanged after a few steps if we are satis�ed with

the redution of the residual on this mesh.

Although formally equivalent, we prefer to view the algorithm the seond

way. We then have an iteration in in�nite dimensional funtion spaes, whih

is more natural sine we are interested in the solution of the problem in these

spaes, rather than on any arbitrarily hosen �xed disretization. The residual

of the optimality ondition is thus measured in ontinuous norms, and errors

are omputed with respet to the ontinuous solution. Also, the disussion of

a stopping riterion for iteration on a �xed mesh is replaed by a riterion for

hoosing a di�erent disretization for the next Newton step.

Aordingly, the following disussion of Newton's method will be based on

a purely ontinuous level, with disretization of eah step being treated in the

next setion.

Computing the Newton searh diretion. In eah step, Newton's method

omputes the next searh diretion by using a loal approximation of the fun-

tion whih we want to �nd a zero of, i.e., of r

x

L. This is done by �tting a

quadrati approximation to L, and taking the diretion to the saddle point of

this quadrati approximation as next searh diretion.

The onditions determining this searh diretion Æx

k

= fÆu

k

; Æa

k

; Æ�

k

g 2 X

0

are then the following equations:

r

2

x

L(x

k

; Æx

k

; y) = �r

x

L(x

k

; y) (1.12)

for all test funtions y = f'; �;  g 2 X

0

, or expliitly:

m

00

(u

k

� z; Æu

k

; ') + (r�

k

; Æa

k

r') + (rÆ�

k

; a

k

r') = �r

u

L(x

k

;');

(r�

k

; �rÆu

k

) + �r

00

(a

k

; Æa

k

; �) + (rÆ�

k

; �ru

k

) = �r

a

L(x

k

;�);

(r ; a

k

rÆu

k

) + (r ; Æa

k

ru

k

) = �r

�

L(x

k

; ):

(1.13)

The Gau�-Newton method. From the �rst order onditions (1.4) we see

that � is small whenever m

0

(u� z; �) is small. This holds at least near the solu-

tion, if the model (i.e. the state equation) hosen to desribe the measurements

z is orret, and if z does not ontain too muh noise. For the problems treated
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in this work, we assume that these onditions are satis�ed; suh problems are

termed small residual problems.

It is then a ommon simpli�ation to omit the terms ontaining � from

the Hessian in the Newton step, resulting in the following equations instead of

(1.13):

m

00

(u

k

� z; Æu

k

; ') + (rÆ�

k

; a

k

r') = �r

u

L(x

k

;');

�r

00

(a

k

; Æa

k

; �) + (rÆ�

k

; �ru

k

) = �r

a

L(x

k

;�)

(r ; a

k

rÆu

k

) + (r ; Æa

k

ru

k

) = �r

�

L(x

k

; ):

(1.14)

The resulting methods are alled Gau�-Newton methods and have found very

suessful appliations in parameter estimation and optimization (see, e.g.,

Bok et al. [22, 23℄, Shulz [58℄, or Pratt et al. [55℄). This modi�ation makes

the problem to be solved in eah iteration simpler, sine the Shur omplement

with respet to the regularization blok beomes positive de�nite under suit-

able onditions (see Lemma 1.21), while the original problem will be inde�nite

usually. Also, the omputation of the Shur omplement is simpler.

For the problems onsidered in this work, the pure Newton and Gau�-

Newton methods perform equally well when omparing the number of iterations

neessary for a ertain auray. We have usually used the latter, in view of the

simpli�ations ourring and in partiular onsidering the size of the problems

to be treated in Chapters 4 and 5. A omprehensive omparison of the suit-

ability of Newton and Gau�-Newton searh diretions in parameter estimation

problems an be found in Bok [23℄.

Computing the step length. One the searh diretion is known, the se-

ond part of a safeguarded Newton method is to determine the step length �

k

,

by whih we de�ne the next iterate as x

k+1

= x

k

+ �

k

Æx

k

. This is neessary

sine in pratie the quadrati approximation of the Lagrangian is not an a-

urate desription of the true behavior, exept in the viinity of x

k

. Thus,

safeguarding the length of a step in diretion Æx

k

is neessary.

To ompute a step length �

k

, several methods are in ommon use, for

example using the Goldstein-Armijo onditions. In general, they hoose �

k

as an approximation of the minimizer �

�

k

of some objetive funtion p(�

k

) =

p(x

k

+ �

k

Æx

k

). For onstrained problems, this penalty funtion has to inlude

the minimization funtional J(�) as well as an appropriately weighted norm of

the residual of the onstraint.

Sine the onstrution of a suitable weight for the norm of the onstraints

is diÆult if the onstraints are partial di�erential equations, we hoose to

minimize the norm of the residual of the optimality ondition r

x

L = 0 instead.

The proper norm for this residual would by the norm of the dual spae X

0

of

X

g

= V

g

�A� V

0

. Sine this involves H

�1

norms, it is impratial to evaluate.

Therefore, we evaluate its disrete analogon, i.e. the norm on the dual X

0

h

of

the disretization spae X

h

= V

h

� A

h

� V

h

to be de�ned in the next setion.

For this, the following representation holds:
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Lemma 1.15. Denote by g = (g

u

; g

a

; g

�

)

T

the disrete gradient of the La-

grangian L(x), i.e.

(g

u

)

i

= r

u

L(x;'

i

); (g

a

)

i

= r

a

L(x;�

i

); (g

�

)

i

= r

�

L(x; 

i

);

where '

i

; �

i

;  

i

are sets of funtions forming a basis of the disretization spae

X

0;h

= V

0;h

� A

h

� V

0;h

to be de�ned in the next setion. Then the following

identity holds:

kr

x

L(x; �)k

2

X

0

h

� sup

y

h

2X

h

L(x; y

h

)

2

ky

h

k

2

X

= g

T

u

A

�1

g

u

+ g

T

a

M

�1

g

a

+ g

T

�

A

�1

g

�

;

where A;M are Laplae and mass matries, de�ned by A

ij

= (r'

i

;r'

j

),M

ij

=

(�

i

; �

j

), respetively. Furthermore, there holds

kr

x

L(x; �)k

X

0

h

� kr

x

L(x; �)k

X

0

:

Proof. The �rst part follows immediately from the de�nition of norms on dual

spaes, using that X

h

is �nite dimensional. The seond part is obvious sine

X

h

� X .

Sine the evaluation of the X

0

h

norm only involves the inversion of two

Laplae matries and one mass matrix, it is roughly as expensive as one eval-

uation of the Shur omplement of the Hessian, see Setion 1.5 below, and is

thus omparably heap.

The following lemma states that this norm is a valid penalty funtional:

Lemma 1.16. Let

p(�) = kr

x

L(x

k

+ �Æx

k

; �)k

2

X

0

h

:

Then full Newton searh diretions Æx

k

are diretions of desent of p, i.e. p

0

(0) <

0.

Proof. As shown in Lemma 1.15, the norm on X

0

h

is indued by a salar produt.

With g(x

k

+�Æx

k

) the projetion of r

x

L(x

k

+�Æx

k

) as de�ned in Lemma 1.15,

we have

p(�) = kg(x

k

+ �Æx

k

)k

2

[A

�1

;M

�1

;A

�1

℄

= kg

u

(x

k

+ �Æx

k

)k

2

A

�1

+ kg

a

(x

k

+ �Æx

k

)k

2

M

�1

+ kg

�

(x

k

+ �Æx

k

)k

2

A

�1

;

with kvk

2

B

= v

T

Bv. Then

p

0

(0) = 2




g(x

k

);

d

d�

g(x

k

+ �Æx

k

)

�

�

�=0

�

[A

�1

;M

�1

;A

�1

℄

By de�nition of g and of the full Newton searh diretion Æx

k

, there holds

d

d�

g(x

k

+ �Æx

k

)

�

�

�=0

= �g(x

k

);

and the laim follows by positive de�niteness of A

�1

and M

�1

.



1.4. DISCRETIZATION OF NEWTON STEPS 27

If the quadrati approximation of the Lagrangian used for the Newton step

were exat, then p(�) would be a quadrati funtion, and sine p

0

(0) = �2p(0),

it would have its minimum at � = 1, i.e. the resulting step length would be

optimal. Numerial experiments indiate that omparably good step lengths

an be obtained by replaing A

�1

in the evaluation of the inverse norm byM

�1

,

whih is signi�antly heaper to evaluate. Even diagonal approximations of the

matries result in good step lengths, keeping in mind that step length seletion

is only an aid in �nding the solution and that we are in general not interested

in optimal step lengths.

1.4 Disretization of Newton steps

For atual omputations, we need to disretize the problem. As disussed above,

we do this separately for eah Newton step. The hoie of meshes and disrete

spaes used here di�ers from ommon pratie in the majority of the available

literature in that the oeÆient is disretized separately. In this setion, we give

a short de�nition of the �nite element spaes we use, and then explain their use

in the disretization and the onnetions to the meshes we use.

We start by briey de�ning the usual pieewise polynomial spaes used in

�nite element methods:

De�nition 1.17 (Spaes on unit ells). Let

^

K be the unit element [0; 1℄

d

,

i.e. the unit square in two and the unit ube in three spae dimensions. Then

the Lagrange interpolation spae of order r on

^

K is de�ned by

^

Q

r

(

^

K) =

n

' :

^

K ! R j ' =

d

Y

i=1

r

X

j=0



ij

x

j

i

o

:

De�nition 1.18 (Spaes on real ells). Let K be an element of a mesh,

suh that there exists a (bi-, tri-)linear mapping � :

^

K ! K from the unit ell

to the ell in real spae. Then the Lagrange interpolation spaes are de�ned as

follows:

Q

r

(K) =

n

'(x) : K ! R j 9'̂(
^
x) 2

^

Q

r

(

^

K); '(x) = '̂(�

�1

(x))

o

:

De�nition 1.19 (Meshes). Let the domains on whih we onsider partial

di�erential equations in this thesis, be bounded open subsets 
 of R

d

; d = 1; 2; 3.

Assume 
 is polygonal. A subdivision T = fKg is alled a mesh in the ontext

of this thesis if it satis�es the following properties:

� K

i

\K

j

= ;, for K

i

;K

j

2 T; i 6= j;

S

K

K = 
;

� eah ell K 2 T is the image of the unit ell

^

K = [0; 1℄

d

under a polynomial

mapping, i.e. the ells are lines, quadrilaterals, or hexahedra, depending

on the spae dimension.

For various estimates, we also require the regularity ondition that the eigen-

values of the Jaobian matrix of the mapping between unit ell

^

K and real ells

K are bounded from below and above.
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De�nition 1.20 (Spaes on meshes). Let T = fKg be a mesh as de�ned

above. Then the spaes of ontinuous funtions of pieewise polynomials of

degree r on T are de�ned by

Q

r



(T) =

�

' : 
! R j ' ontinuous on 
;

'j

K

2 Q

r

(K) 8K 2 T

	

;

and the respetive spaes of disontinuous funtions are

Q

r

d

(T) =

�

' : 
! R j 'j

K

2 Q

r

(K) 8K 2 T

	

:

With these de�nitions, we an disuss the funtion spaes and mesh types

used in the disretization of the Newton steps:

Finite Element Spaes. Of entral importane is the hoie of the disrete

�nite element spaes U

h

;A

h

; �

h

for the primal variable u, the parameter a ,

and the adjoint variable �. By symmetry of the formulation of the problem, it

is reasonable to hoose �

h

= U

h

, and for U

h

to take the usual pieewise tensor

produt polynomial funtion spaes Q

r



(T) of degree r on a given mesh T.

Formally, we hoose the following �nite element spaes:

� for the disretized state and adjoint variables u

h

; �

h

: U

h

= �

h

= Q

r



(T),

i.e., the spaes of globally ontinuous funtions made up of pieewise

tensor produt polynomials of degree r over a mesh T;

� for the disretized parameter a

h

: A

h

= Q

r

0



(T

a

) or A

h

= Q

r

0

d

(T

a

), i.e., the

spaes of ontinuous or disontinuous funtions of pieewise polynomial

degree r

0

over a mesh T

a

.

Choosing di�erent spaes for U

h

and A

h

is an aspet in whih this work

deviates from usual pratie in the literature. There, most often spaes of

pieewise bilinear funtions are used for both primal and dual variables, as well

as the oeÆient, mostly for onveniene (almost all publiations ited within

this work fall into this ategory). Note however Banks and Kunish [13, 3℄

for examples where di�erent spaes are used although restrited to the use of

�xed uniformly re�ned meshes in only one spae dimension. See also Chavent

and Bissell [25℄ and Ben Ameur et al. [19℄ for some experiments on hoosing a

disretization of the oeÆient.

Meshes. In most of the available literature, not only the same �nite element

spaes for state, adjoint and parameter variable are used, seemingly all also

use the same mesh. We pursue a more general approah by taking di�erent,

though related meshes for state and adjoint variable on the one hand and the

parameter variable on the other hand.

This has advantages both on the analytial as well as on the numerial side:

� Choosing di�erent meshes for state/adjoint and oeÆient variables allows

to resolve the loal features of both independently.
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� Choosing oarser meshes and lower-order funtion spaes for the oeÆ-

ient ats as an additional regularization, sine it redues the possibilities

for variation in the parameter. This is sometimes referred to by regulariza-

tion by disretization (see Banks and Kunish [13℄ and Kaltenbaher [46℄),

although this is usually meant in the ontext of �xed meshes. Choosing

adaptive meshes allows for loally di�erent amounts of regularization.

� Stability properties of the disretized saddle point problems are a�eted

by the hoie of disrete funtion spaes. Numerial experiene indiates

that it is bene�ial to use a oarser mesh and/or lower order polynomials

for the parameter variable.

� Choosing a oarser disretization for the oeÆient an be understood

as adaptive model redution. This greatly redues the numerial e�ort

needed to ompute solutions.

� We are antiipating extension to time dependent problems, where di�erent

meshes have to be hosen anyway: the mesh for the state variable hanges

with time, while the oeÆient is usually onstant in time. Furthermore,

regularity levels of state variable and oeÆient di�er.

In this work, we will therefore use two meshes, T and T

a

, for state and

adjoint variable, and the parameter, respetively. For implementational reasons,

we require that T an be obtained from T

a

by re�nement. Taking T

a

= T is

inluded as a speial ase.

1.5 The disretized problem

In eah Newton step, the searh diretion is omputed approximately by dis-

retizing (1.12) using the spaes de�ned in the last setion. Choosing bases

f'

i

g; f�

i

g and f 

i

g and expanding the updates Æu; Æa and Æ� with respet to

these bases yields the following Karush-Kuhn-Tuker (KKT) matrix system:

0
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B R C

T

A C 0

1

A

0

�

Æu

k

Æa

k

Æ�

k

1

A

=

0

�

F

1

F

2

F

3

1

A

: (1.15)

The individual bloks in matrix and right hand side are de�ned by
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ij

;
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whereM orresponds to the mis�t funtional, R to the regularization funtional,

B and C to hyperboli transport operators r� � r+�� and ru � r, and A is

the matrix assoiated with the state equation.

By blok elimination, (1.15) an be reformulated to yield a system where

we �rst solve for Æa

k

, and only afterwards for Æu

k

and Æ�

k

. The equation for

Æa

k

resulting from the full Newton equation has the form

�

R�

�

B C

T

�

�

0 A

�1

A

�T

�A

�T

MA

�1

� �

B

T

C

��

Æa

k

= F

2

�

�

B C

T

�

�

0 A

�1

A

�T

�A

�T

MA

�1

� �

F

1

F

3

�

; (1.16)

where the system matrix on the left hand side is alled the Shur omplement

of the KKT matrix (1.15) with respet to the R blok. The updates for Æu

k

and Æ�

k

are then obtained from

A Æu

k

= F

3

�CÆa

k

;

A

T

Æ�

k

= F

1

�B

T

Æa

k

�MÆu

k

:

(1.17)

If we use the Gau�-Newton method, the blok B in (1.15) is dropped, and the

Shur omplement solution requires the subsequent solution of the following

three equations:

�

R+ C

T

A

�T

MA

�1

C

	

Æa

k

= F

2

� C

T

A

�T

F

1

+ C

T

A

�T

MA

�1

F

3

;

A Æu

k

= F

3

� CÆa

k

;

A

T

Æ�

k

= F

1

�MÆu

k

:

(1.18)

1.6 Condition numbers of the linear problems

The hoie of solvers for the linear problems to be solved in eah Newton step

ruially depends on the ondition number of the Newton and Shur omple-

ment matries. Fig. 1.1 shows a typial eigenvalue distribution of these matries.

Table 1.1 displays the eigenvalues of minimal and maximal absolute value of a

sequene of Newton matries, along with the ondition number in the spetral

norm. The ondition number of the whole Newton matrix grows as h

�6

, for the

L

2

mis�t minimization, and h

�4

for H

1

minimization. The ondition number

of the whole matrix is not signi�antly hanged by dropping the B blok in the

Gau�-Newton method and does also not vary muh as iterations proeed on

one mesh.

Contrary to this, Table 1.2 shows that the ondition number of the Shur

omplement matries is O(h

�4

) and O(h

�2

), depending on the hoie of the

mis�t funtional, and thus by two orders better than that of the full Newton

matrix (this has previously been observed in Asher and Haber [4℄).

1.7 Solution of the linear problems

For the solution of the linear systems (1.15) arising in eah Newton step, sev-

eral methods have been tested. The most suessful, robust, and extensible
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Figure 1.1: Left: Spetrum of the whole Newton matrix (left) and its Shur

omplement (right) for a typial disretization with 81 degrees of freedom for

u

h

and �

h

eah, and 16 degrees of freedom for a

h

. The ondition numbers are

� � 1:5�10

5

and � � 600, respetively.
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h min j�
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min j�
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i
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5:06�10
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6:24�10

�3

9:74 1:6�10
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7:84�10
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10:1 2:6�10
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1:22�10

�8

7:98 6:5�10
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10:2 4:1�10
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1:91�10
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7:99 4:2�10

10

1:56�10
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8:00 2:7�10
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9:74�10
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10:2 1:1�10

8

O(h

6

) O(1) O(h

�6

) O(h

4

) O(1) O(h

�4

)

Table 1.1: Minimal and maximal eigenvalues �

i

, and ondition number with

respet to the spetral norm for the whole Newton matrix for two di�erent mis�t

funtionals m(�). The disretization is as in Fig. 1.1 (whih orresponds to

h = 2

�3

). The mesh for h = 2

�7

has roughly 50,000 degrees of freedom.
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1:70�10

�1

27

2

�4

7:84�10

�7

8:14�10

�3

1:0�10

4

3:96�10

�4

5:27�10

�2

130

2

�5

1:22�10

�8

2:08�10

�3

1:7�10

5

2:49�10

�5

1:48�10

�2

590

2

�6

1:91�10

�10

5:21�10

�4

2:7�10

6

1:56�10

�6

4:35�10

�3

2800

2

�7

2:99�10

�12

1:31�10

�4

4:4�10

7

9:74�10

�8

1:31�10

�3

13000

O(h

6

) O(h

2

) O(h

�4

) O(h

4

) O(h

2

) O(h

�2

)

Table 1.2: Minimal and maximal eigenvalues �

i

, and ondition number with

respet to the spetral norm for the Shur omplements of the same matries

as in Table 1.1. Note that the minimal eigenvalues are idential to those of the

full Newton matrix.
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approah was solving the Shur omplement form (1.18), when using the Gau�-

Newton modi�ation. We will desribe this approah �rst. Other, less suessful

methods have also been tried, and will be disussed briey afterwards.

1.7.1 Shur omplement methods

Shur omplement methods are known to be very eÆient in many ases (see

Shulz [58℄ for an overview of some Shur omplement methods for optimization

problems, or Turek [65℄ for ow problems). Sine the Shur omplement of the

full Newton matrix (1.16) is too ompliated for pratial purposes, we invert

the Gau�-Newton Shur omplement (1.18) instead. This system may be solved

by a Krylov spae method for the (small) Shur omplement, and a standard

method to invert the Laplae matries in eah iteration.

The Shur omplement matrix is not known expliitly, as A

�1

and A

�T

are only de�ned impliitly by solving a linear system with a spei�ed right

hand side. Thus, unless one wants to reover it by forming n matrix vetor

multipliations with it, we an only use iterative methods to invert the Shur

omplement matrix.

However, unlike the full Gau�-Newton matrix, the following lemma shows

that the Shur omplement is symmetri positive de�nite under reasonable on-

ditions. We an then use the Conjugate Gradient method with its good on-

vergene properties. By standard arguments, we have the following lemma:

Lemma 1.21 (Properties of Gau�-Newton Shur omplement). If the

matrix R is symmetri positive de�nite and M symmetri and at least positive

semide�nite, or if R is symmetri positive semide�nite and M is symmetri

positive de�nite and C has full olumn rank, then the Shur omplement matrix

R+ C

T

A

�T

MA

�1

C is symmetri positive de�nite.

It is obvious that for the seond ase, the ondition thatM has to be positive

de�nite an be replaed by the ondition that it must be positive de�nite on the

subspae Y = fy : y = A

�1

Cx; x 2 N(R)g, where N(R) denotes the null spae

of R. However, it is diÆult to haraterize Y in order to hek whether M is

positive on it, in partiular sine it impliitly depends on the present iterates

u

k

; a

k

through A and C.

The requirements stated in the lemma are what an usually be expeted:

the symmetry ofM and R is given by the symmetry of seond derivatives; their

positive semide�niteness is given by the assumed onvexity of the funtionals

m(�) and r(�). Positive de�niteness an be ahieved, for example, by hoosing

one of the two to be a norm. The ondition on C in the seond possibility of

the lemma an be shown to be equivalent to the ondition that u

k

must not

be onstant on ertain pathes of ells; as this an hardly be guaranteed in

pratie, it is better to hoose R positive de�nite.

Note that when using the full Newton system, i.e. without the Gau�-Newton

modi�ation, then the Shur omplement is symmetri but may not be positive

de�nite. We are then fored to use a more expensive method than CG. Also,

multipliations with the Shur omplement of the full Newton matrix take four
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instead of two multipliations with A

�1

or A

�T

, making the iterative solution

signi�antly more expensive.

1.7.2 Iterative solvers

Alternatively, it is possible to invert the original KKT matrix (1.15) instead

of its Shur omplement. Sine it is not positive de�nite, only iterative solvers

suh as the Minimized Residual (MinRes) or Generalized Minimized Residual

(GMRes) method an be used. For their eÆieny, good preonditioners would

be neessary. Their onstrution, though, is not simple due to the saddle-point

struture and inde�niteness. In partiular, MinRes requires a positive de�nite

symmetri preonditioner. In general, solving the whole Newton system with

an iterative solver is onsidered a hard problem, due to the size of the problem,

its ill-onditioning, and the struture of the matrix, see Saad [56℄ and Haber

and Asher [37℄.

The most eÆient solver for the whole linear problem would probably be

a multigrid solver, or an iterative method preonditioned by multigrid. Unfor-

tunately, the �nite element library used in this work does not have multigrid

methods fully implemented yet.

In absene of a multigrid solver, two linear solvers have been used in the

programs that implement the methods of this setion. The �rst is MinRes

(see Paige and Saunders [53℄) with a diagonal saling as preonditioning. Even

though the preonditioning improved the performane signi�antly, the method

often did not onverge in a number of iterations less than the size of the full

Newton matrix. This makes the method unsuitable for the problems we on-

sider.

As a seond alternative, we also tried GMRes (see Saad [56℄), whih al-

lows for non-symmetri and even inde�nite preonditioners. We used ILU or

Vanka type preonditioners [66℄, or, if multi-proessor mahines are available,

blok variants thereof. While it is known that Vanka type methods are better

smoothers than solvers, even ILU did not yield good performane of the solver,

due to the high ost of onstruting and applying the preonditioner. For larger

problems, GMRes did not onverge in a reasonable number of iterations, too.

As a last method, we tried to use the CG method on the normal equations,

H

2

Æx = Hf;

with H the global matrix in (1.15). Unfortunately, H

2

is so ill-onditioned that

the CG method either took many iterations, or failed altogether.

Conluding this setion, neither hoie of iterative linear solvers produed

satisfatory results.

1.7.3 Diret solvers

Instead of the iterative solvers above, we also used diret solvers for the Newton

matries. Due to memory onsiderations and the omplexity of the task, only

solvers that take sparsity into aount an be used.
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In our experiments, we have used the sparse diret solvers MA27 and MA47

from the Harwell Subroutine Library (see Du� and Reid [30, 31, 40℄). They are

speialized to symmetri inde�nite systems of linear equations, and use a sparse

variant of Gaussian elimination (MA27) or a multifrontal Gaussian elimination

solver with 2�2 pivots similar to the Bunh-Parlett fatorization (MA47). The

hoie between the two algorithms depends on a trade-o� between memory

onsumption and omputing time: MA47 is often signi�antly faster, but takes

muh more memory (up to a fator of �ve) than MA27 to ompute the sparse

deomposition.

Although requiring signi�antly more memory than iterative solvers, the

main advantage of the diret solvers is that they never fail to �nd the solution

of the linear subproblems; iterative solvers sometimes break down or take an

exessive number of iterations, in whih ase the Newton algorithm may also

break down due to an insuÆient searh diretion.

The omputing time required by diret solvers is less than or omparable to

that of iterative solvers for the whole system for sizes up to at least 10

5

degrees

of freedom.

1.7.4 Stopping riteria for the linear solvers

Unless we use a diret solver for the linear system (1.15), we do not solve

eah Newton step to very high auraies, sine Newton updates only approxi-

mate the step to the solution of the stationarity ondition anyway. Suh meth-

ods are usually termed trunated or inexat Newton methods, see Noedal and

Wright [51℄.

In pratie, the inner solution is stopped one the linear residual in the

l

2

norm has been redued by a ertain fator, say 10

3

. Sine the size of the

linear systems grows due to mesh re�nement as the outer nonlinear iterations

proeed, redution by a �xed fator amounts to inreasing auray per degree

of freedom in the Newton updates, eventually turning the trunated into an

exat Newton method.

1.8 Theoretial onsiderations

It is not at all trivial to infer that the method proposed above works from

a theoretial point of view. Beyond what is overed in this work, there are

several theoretial questions that we would like to touh as they are needed to

guarantee onvergene to the solution of the original ontinuous problem 1.7.

Sine they are beyond the sope of this work, we only mention them, without

giving answers.

Existene, uniqueness, and stability of solutions. These questions are

disussed in a very general framework in Kravaris and Seinfeld [47℄, and in

the book by Banks and Kunish [13℄, where many results are proven without

referene to onrete funtionals or spaes. These results an then be heked

for atual appliations. However, results of this type usually require unduly

high smoothness.
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Probably the most general existene result for the problem treated in this

hapter is given in Chavent et al. [26℄, where it is shown that there exist solutions

on the rather weak assumptions that u

�

2 H

1

; a

�

2 A � f� 2 L

1

; 0 < a

0

�

� � a

1

g if m(') =

1

2

kr'k

2

. For stability of solutions, refer to Theorems 1.9

and 1.10.

Validity of the Lagrange priniple. The question whether the state equa-

tion onstraint allows an augmentation to a Lagrangian inluding both the

minimization funtional as well as the augmented state equation is disussed

extensively in papers dealing with the Augmented Lagrangian formulation of

the parameter estimation problem, see for example Ito and Kunish [42, 41℄.

We quote here Theorem 2.1 of Ito and Kunish [42℄, in whih existene

and uniqueness of a Lagrange multiplier is proven for a partiular hoie of

funtionals:

Theorem 1.22 (Ito and Kunish). Let x = fu; a; �g 2 H

1

0

�H

2

�H

1

0

and

m(u� z) =

1

2

ju� zj

2

H

1

; r(a) =

1

2

krak

2

+

1

2

kr

2

ak

2

;

L(x) = m(u� z) + �r(a) + (aru;r�)� (f; �):

Then there exists a unique Lagrange multiplier �

�

suh that the solution x

�

=

fu

�

; a

�

; �

�

g of Problem 1.7 is haraterized by the �rst order onditions given

in Problem 1.8.

The proof is given in Ito and Kunish [42℄ for d � dim
 = 2; 3, for whih

the Sobolev inequality kvk

L

1

� Ckvk

H

2
holds. For d = 1, one an also apply

the theorem for r(a) =

1

2

krak

2

.

In the ited paper, it is also shown that onstraints of the form a � a

0

an be treated as well by adding a orresponding term h�; a� a

0

i

H

2

to the

Lagrangian, with a Lagrange multiplier � 2 C

+

, with

C = fw 2 H

2

: w � 0g; C

+

= f� 2 H

2

: h�;wi � 0 8w 2 Cg:

This multiplier is shown to exist and to be unique.

Convergene of ontinuous Newton steps. Rates of onvergene an usu-

ally be stated in the form of a so-alled soure ondition: if F is the op-

erator mapping the parameter to the state spae, i.e. in the present ontext

F (a) = (�r�(ar))

�1

f : A ! V

g

with �xed f ,

F

0

(a)Æa = �[�r�(ar)℄

�1

[�r�(Æar)℄[�r�(ar)℄

�1

f

its derivative in diretion Æa, and F

0

(a)

�

the adjoint, and if the di�erene be-

tween initial estimate a

0

and exat solution a

�

allows a representation

a

�

� a

0

2 range

�

(F

0

(a

�

)

�

F

0

(a

�

))

�

�

(1.19)
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for some real number � � 0, then under ertain additional onditions (see, for

example, Deuhard et al. [28℄, and Kaltenbaher [46℄) the rate of onvergene

is, even in the noise free ase with Æ = 0, only

ka

n

� a

�

k = O

�

n

��

�

; ku

n

� u

�

k = O

�

n

���1=2

�

;

where n denotes the number of the Newton step.

If we neglet the possibility that we put a priori knowledge of potential non-

smoothness into the initial iterate a

0

, the soure ondition an be interpreted

as follows: sine F

0

(a) mapping from the tangent spae A

0

[a℄ of A to V

g

has

smoothing properties, the ondition requires a

�

to be smooth in order to obtain

reasonable rates of onvergene, i.e. � signi�antly greater than zero. If suh

smoothness is missing, then the rate of onvergene an be arbitrarily slow.

As an example, for one dimensional problems, an index � =

1

2

already or-

responds to a

�

�a

0

2 fa 2 H

3

\H

1

0

:

R




�a=

�

r(�r�(a

�

r))

�1

f

�

= 0g while for

� =

1

4

the requirements are loosened to H

2

instead of H

3

, see Kaltenbaher [46℄.

In pratie, suh smoothness requirements are rarely met. In general, we are

thus only able to guarantee qualitative onvergene ka

n

� a

�

k = o(1).

Existene, uniqueness, and stability of disretized Newton diretions.

For the Gau�-Newton modi�ation, existene and uniqueness of disrete searh

diretions is given by Lemma 1.21 under reasonable onditions on the funtion-

als. However, this is not suÆient in general, as we want a stable solution as

the mesh width h! 0. For this ase, refer to Banks and Kunish [13℄.

Convergene of disrete solutions. As we generate a sequene of solu-

tions a

�

h

on suessively re�ned meshes, we are interested in rates of onver-

gene against the solution a

�

of the ontinuous problem. Suh rates are proven

in Falk [34℄, and also in Banks and Kunish [13, Theorem IV.3.1 and Remark

IV.3.6℄, but rely on rather strong assumptions on the smoothness of the un-

known solution a

�

and the proofs in Banks and Kunish [13℄ also require to use

H

2

�nite elements. For ompleteness, we briey restate Theorem IV.3.1 from

[13℄, whih is for the ase of no regularization:

Theorem 1.23 (Banks and Kunish). Let s > 1. If a

�

2 H

s

, f 2 H

s�1

,

z 2 H

s+1

, u

�

2 H

s+1

\ W

2;p

; p > dim
, where u

�

= [�r�(a

�

r)℄

�1

f . Let

a

h

; u

h

be disretized by �nite elements with quadrati onvergene order in the

L

2

norm, and under additional smoothness assumptions on the �nite element

spaes, there exists C > 0 suh that the following weighted estimate holds:





(a

�

h

� a

�

)jru

�

j

2





L

1

(
)

< C

�

h

�2

d+ h

s�1

�

;

where d is the distane of the measurement z from the attainable set fu :

�r�(aru) = f; for a 2 Ag.

Obviously, these smoothness requirements are too strong for pratial pur-

poses. For atual smoothness levels, rates of onvergene are oupled to the
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index of the soure ondition disussed above. In most ases, only qualitative

onvergene an be expeted.

For numerial indiations to this phenomenon, see Setion 2.1.3 and in par-

tiular Fig. 2.2, where we display the onvergene of the parameter in ompu-

tations for the test ases de�ned in Setion 1.9; only for the �rst test ase and

in the noise free ase is the soure ondition satis�ed, with � =

1

2

. It is not

satis�ed for all other test ases even in the noise free ase sine there a

�

62 H

1

.

Note also that the theorem states that without regularization we have to

expet a deterioration of approximation under mesh re�nement if the measure-

ment is not attainable; this, as well, oinides with pratial experiene. For

the reason why the weighting in the norm of the estimate is neessary, see

Setion 4.5.

Convergene of disretized Newton steps. As we do not solve the exat

Newton step (1.12) but a disrete approximation of it, we have to show that

Newton's method still onverges to the orret solution (at least if h! 0 as we

proeed with Newton steps). In �nite dimensional optimization, it is usually

shown that the true and the approximate KKT matrix do not di�er too muh,

i.e. here

krL(x

k

)�

~

H

k

(x

k

� x

�

)k � Ckx

k

� x

�

k

2

:

where

~

H

k

=

�

(P

h

r

x

L(x

k

))

y

P

h

�

�1

is the disretized Hessian, P

h

is the X

g

-

orthogonal projetor onto the �nite dimensional subspae X

h

, and B

y

is the

generalized inverse of B.

While this ondition is diÆult to prove for the present ontext, it is also

not very appropriate in the ontext of ill-posed problems. For a disussion of

this topi, see Kaltenbaher [46, Setion 2.1℄.

1.9 De�nition of test ases

In the following hapters, we will demonstrate various aspets of the methods

disussed at some test ases, whih we de�ne in this setion. Parameters and

state variables are plotted in Fig. 1.2 for the di�erent test ases and for x 2 R

2

.

Test ase 1.1 (Smooth parameter). Let

a(x) = 1 + jxj

2

; u(x) = jxj

2

; f = �r � (aru):

On the boundary �

D

= �
, we set g = u.

Test ase 1.2 (Disontinuous parameter). Let

a(x) =

�

1 for jxj <

1

2

8 else,

u(x) =

�

jxj

2

for jxj <

1

2

1

8

jxj

2

+

7

32

else,

and f = �r � (aru) = �2d for x 2 R

d

. Note that here the loations of

disontinuities in a and in ru math, and the right hand side is a smooth

funtion; this mathes the ase usually found in stationary physial appliations.

We hoose as Dirihlet boundary �

D

= �
, with g = u there.
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Figure 1.2: Parameter a(x) (left) and state variable u(x) (right) for the

di�erent test ases.
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Test ase 1.3 (Singular solution). Let 
 be the slit domain (0; 1)

d

nfx =

1

2

; y �

1

2

g, and

a = 1; f = 1; u = [�r�(ar)℄

�1

f; uj

�


= 0:

For this example, the quantitative resolution of the singularity is deisive

for eÆient algorithms. Although the oeÆient is onstant, we disretize it as

a distributed one as for the other test ases.

Test ase 1.4 (Criss-ross parameter). Let 
 = fx 2 R

d

: kxk < 1g, and

a 2 f1; 2; 6; 7g; f = 1� kxk

2

; u = [�r�(ar)℄

�1

f; uj

�


= 0:

The oeÆient has pieewise onstant values in the four setors of the do-

main divided by the lines y = �

x

3

, as shown in Fig. 1.2. For this ase, a sin-

gularity in u is generated at the point where di�erent values of the oeÆient

meet.

For all test ases, the measurement z is obtained from the exat displaement

u by adding some noise:

z(x) = u(x) + Æ(x);

The noise Æ(x) is a Gaussian random funtion with zero mean.

We remark that even in the noise free ase, i.e. Æ = 0, the optimal solution

fu

�

, a

�

g of Problem 1.7 is not idential to the funtions fu; ag de�ned above if

we add regularization, i.e. � 6= 0.
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Chapter 2

Error estimates and adaptivity

In this hapter, we disuss error estimates and strategies for re�nement of the

disretization. We will primarily base these strategies on error representations

derived using duality arguments, see Beker and Rannaher [17℄ and Beker [15℄,

but will also onsider other approahes suh as stability or Lagrange multiplier

estimates orresponding to disretization onstraints.

Starting this hapter, we disuss error representation formulae with respet

to the minimization funtional J(�), and orresponding mesh re�nement riteria.

For this partiular ase, the use of weighted error estimates does not involve the

solution of an additional problem when solving optimization problems. Thus,

the evaluation of the error estimates basially omes at the same prie as the

evaluation of heuristi indiators. The resulting indiator is ompared to other

indiators with respet to its eÆieny, and its reliability as an error estimator

is veri�ed.

After this, we derive estimates and riteria for the oeÆient parameteriza-

tion. As the disretization of the parameter variable is hosen mostly indepen-

dent of that of the state variable, riteria for this partiular purpose may be

best suited for this. Again, we ompare estimates and auray for eÆieny.

We then onsider estimates based on stability and estimates based on teh-

niques involving the dual problem to the �rst order neessary onditions. These

allow for error representation formulae and re�nement riteria tailored to ar-

bitrary funtionals of the solution. Finally, estimates for the problem with

onstraints on the parameter are disussed.

To the author's best knowledge, there is nothing in the available literature

where adaptive methods based on the atual optimization problem are employed

for distributed parameter estimation problems, despite their obvious applia-

bility in many ases. There are, however, some uses for optimization problems,

see for example Beker et al. [16, 17, 15℄.

2.1 Error estimates for the minimization funtional

In this setion, we will derive a representation of the error in the minimization

funtional J de�ned in Problem 1.7, i.e. for the quantity J(x) � J(x

h

), where

x and x

h

are ontinuous and disrete solutions, respetively. First, we state

41
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its abstrat form only involving the Lagrangian of the problem (Theorem 2.1),

then speialize it for the ellipti problem introdued in the previous hapter

(Theorem 2.2). We will then disuss two ways for the pratial evaluation of

this error representation, assess their pratial performane ompared to more

heuristi approahes, and also hek their eÆieny as error estimates.

2.1.1 Derivation of estimates

For the derivation of an error representation formula, reall that ontinuous

and disrete solutions satisfy the variational equalities

r

x

L(x; y) = 0 8y 2 X

0

; (2.1)

r

x

L(x

h

; y

h

) = 0 8y

h

2 X

h

; (2.2)

respetively. The de�nition of the Lagrangian and of the funtion spaes is

given in Problem 1.8. With these equalities, Galerkin orthogonality for this

nonlinear problem reads:

r

x

L(x; y

h

)�r

x

L(x

h

; y

h

) = 0 8y

h

2 X

h

: (2.3)

Using this identity, an expression for the error in the target funtional is derived

in the following theorem.

Theorem 2.1. Let x and x

h

be solutions to (2.1) and (2.2), respetively. Then

the disretization error with respet to J is given with e = x� x

h

by

J(x)� J(x

h

) =

1

2

r

x

L(x

h

;x� y

h

) +R(x; x

h

) 8y

h

2 X

h

; (2.4)

where the remainder term R(x; x

h

) is given by

R(x; x

h

) =

1

2

Z

1

0

r

3

x

L(x

h

+ se; e; e; e) s(s� 1) ds:

Proof. At the solution points the state equations are satis�ed, therefore

J(x) � J(x

h

) = L(x)� L(x

h

):

On the other hand,

L(x)� L(x

h

) =

Z

1

0

r

x

L(x+ se; e)ds;

with e = x� x

h

, and by approximation by the trapezoidal rule

L(x)� L(x

h

) =

1

2

r

x

L(x; e) +

1

2

r

x

L(x

h

; e)

+

1

2

Z

1

0

r

3

x

L(x

h

+ se; e; e; e) s(s� 1) ds:

The �rst term vanishes by the optimality ondition (2.1). In view of Galerkin

orthogonality (2.3) and the disrete identity (2.2), we have that

r

x

L(x

h

; e) = r

x

L(x

h

;x)�r

x

L(x

h

;x

h

) = r

x

L(x

h

;x)

= r

x

L(x

h

;x)�r

x

L(x

h

; y

h

) = r

x

L(x

h

;x� y

y

)

for any y

h

2 X

h

. The assertion then follows.
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For the di�usion equation introdued in the previous hapter, and for the

partiular ase that mis�t and regularization funtionals are quadrati, the error

representation (2.4) with an arbitrary y

h

= f'

h

; �

h

;  

h

g has the following form:

J(x)� J(x

h

) =

1

2

�

�

u

(x

h

;x� y

h

) + �

�

(x

h

;x� y

h

) + �

a

(x

h

;x� y

h

)

�

+R

(2.5)

with residuals

�

u

(x

h

;x� y

h

) = m

0

(u

h

� z;u� '

h

) + (a

h

r�

h

;r(u� '

h

));

�

�

(x

h

;x� y

h

) = (a

h

ru

h

;r(��  

h

))� (f; ��  

h

);

�

a

(x

h

;x� y

h

) = �r

0

(a

h

; a� �

h

) + (r�

h

�ru

h

; a� �

h

));

and remainder term

R = �

1

12

((a� a

h

)r(�� �

h

);r(u � u

h

)):

The remainder term does not ontain intermediate points any more, sine the

state equation was assumed to be quadrati.

From this representation, we an obtain a loalized error estimate. We

demonstrate this for a partiular hoie of disretization spaes and funtionals,

but it is straightforward to generalize it to other situations.

Theorem 2.2. Let mis�t and regularization funtional be

m(u� z) =

1

2

ku� zk

2

; r(a) =

1

2

kak

2

:

Then, the following error representation holds:

J(x)�J(x

h

) =

1

2

X

K2T

�

(�f�r�(a

h

ru

h

); �� i

h

�)

K

+

1

2

(n�[a

h

ru

h

℄; �� i

h

�)

�K

+ (u

h

� z �r�(a

h

r�

h

); u� i

h

u)

K

+

1

2

(n�[a

h

r�

h

℄; u� i

h

u)

�K

�

+

1

2

X

K

a

2T

a

(�a

h

+r�

h

�ru

h

; a� i

h

a)

K

a

�

1

12

((a� a

h

)r(�� �

h

);r(u � u

h

));

(2.6)

with a generi interpolation operator i

h

ating on X ! X

h

or single omponents,

depending on ontext. For edges  � �K between a ell K and a neighbor K

0

,

we de�ne the jump terms by

n�[a

h

r'

h

℄ =

�

n� (a

h

j

K

0

r'

h

j

K

0

� a

h

j

K

r'

h

j

K

) if  6� �
;

2n�a

h

r'

h

if  � �
:

Proof. Split the integrals in (2.5) into sums over all ells and integrate by parts

on eah ell. Then exhange half of the boundary terms on eah ell with the

neighbors to obtain optimal order loally. Set y

h

= i

h

x.
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Sine the error representation above involves the exat solution x, we eval-

uate it approximatively by using a guess ~x of x; for tehniques to obtain suh

guesses, we refer to the overview artile by Beker and Rannaher [17℄. With

this, we de�ne the following approximate error representation by replaing x

by ~x = f~u; ~a;

~

�g, i

h

x by x

h

, and negleting the remainder term:

�

DWR1

=

X

K2T

�

K

+ �

�K

+

X

K

a

2T

a

�

K

a

;

�

K

=

1

2

�

(u

h

� z �r�(a

h

r�

h

); ~u� u

h

)

K

�

�

f +r�(a

h

ru

h

);

~

�� �

h

�

K

�

;

�

�K

=

1

2

�

1

2

(n�[a

h

r�

h

℄; ~u� u

h

)

�K

+

1

2

�

n�[a

h

ru

h

℄;

~

�� �

h

�

�K

�

;

�

K

a

=

1

2

X

K

a

2T

a

(�a

h

+r�

h

�ru

h

; ~a� a

h

)

K

a

:

(2.7)

If we annot or do not want to provide a guess ~x for x, then the following

theorem may still help us to develop an error estimate:

Theorem 2.3. Let U

h

= �

h

= Q

1



(T), A

h

= Q

0

d

(T

a

). Under the same as-

sumptions as in Theorem 2.2, and assuming that for the exat solution we have

u; � 2 H

2

, a 2 H

1

, there holds the following a posteriori estimate for the error:

jJ(x)� J(x

h

)j � � +

1

12

j((a� a

h

)r(�� �

h

);r(u� u

h

))j

� = C

1

I

X

K2T

�

�

u

K

!

u

K

+ �

u

�K

!

u

�K

+ �

�

K

!

�

K

+ �

�

�K

!

�

�K

�

+ C

2

I

X

K

a

2T

a

�

a

K

a

!

a

K

a

; (2.8)

with residuals and weights

�

u

K

=

1

2

ku

h

� z �r�(a

h

r�

h

)k

K

; !

u

K

= h

2

K





r

2

u





K

;

�

u

�K

=

1

4

kn�[a

h

r�

h

℄k

�K

; !

u

�K

= h

3=2

K





r

2

u





K

;

�

�

K

=

1

2

kf +r�(a

h

ru

h

)k

K

; !

�

K

= h

2

K





r

2

�





K

;

�

�

�K

=

1

4

kn�[a

h

ru

h

℄k

�Kn�


; !

�

�K

= h

3=2

K





r

2

�





K

;

�

a

K

a

=

1

2

k�a

h

+r�

h

�ru

h

k

K

a

; !

a

K

a

= h

K

a

krak

K

a

:

From a pratial point of view, the interpolation onstants C

1

I

; C

2

I

are usually

in the range 0:1 : : : 1.

Proof. Use the Cauhy-Shwartz inequality to separate the salar produts in

(2.6). Assuming the indiated regularity of the exat solution, we an use the

Bramble-Hilbert lemma to estimate ku� i

h

uk

K

� Ch

2

K

kr

2

uk

K

, ku� i

h

uk

�K

�

Ch

3=2

K

kr

2

uk

K

, and likewise for �, and ka � i

h

ak

K

a

� Ch

K

a

krak

K

a

, where

i

h

is a generi interpolation operator V ! V

h

or A ! A

h

, depending on its

argument.
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For �

�

�K

, note that for faes �K � �
 there holds � � i

h

�j

�K

= 0 sine

�j

�


� 0. Thus, these jump residuals give no ontribution at the boundary,

whih we take into aount by setting them to zero sine this information is

lost when estimating k� � i

h

�k

�K

= 0 by Ch

3=2

K

kr

2

�k

K

� 0. Note, however,

that this does not hold for �

u

�K

sine in general u� i

h

u 6= 0 at �
.

Again, the weights ! ontain the exat solution x. However, sine no relation

to the disrete spae X

h

is involved this time, we an hope to get a good

approximation of � by substituting kr

2

uk

K

! kr

2

h

u

h

k

K

with some disrete

approximation r

h

to the gradient r, e.g. a di�erene quotient, and likewise for

the norms in the other weights. For referene below, we de�ne the following

approximate error estimate using this substitution:

�

DWR2

= C

1

I

X

K2T

�

�

u

K

~!

u

K

+ �

u

�K

~!

u

�K

+ �

�

K

~!

�

K

+ �

�

�K

~!

�

�K

�

+C

2

I

X

K

a

2T

a

�

a

K

a

~!

a

K

a

;

(2.9)

with residuals and approximate weights de�ned by

�

u

K

=

1

2

ku

h

� z �r�(a

h

r�

h

)k

K

; ~!

u

K

= h

2

K





r

2

h

u

h





K

;

�

u

�K

=

1

4

kn�[a

h

r�

h

℄k

�K

; ~!

u

�K

= h

3=2

K





r

2

h

u

h





K

;

�

�

K

=

1

2

kf +r�(a

h

ru

h

)k

K

; ~!

�

K

= h

2

K





r

2

h

�

h





K

;

�

�

�K

=

1

4

kn�[a

h

ru

h

℄k

�Kn�


; ~!

�

�K

= h

3=2

K





r

2

h

�

h





K

;

�

a

K

a

=

1

2

k�a

h

+r�

h

�ru

h

k

K

a

; ~!

a

K

a

= h

K

a

kr

h

a

h

k

K

a

:

Remark 2.4. The regularity assumed in Theorem 2.3 is not very pratial. In

partiular, sine the Lagrange multiplier has to satisfy the equation

�r�(ar�) = �(u� z);

it will not be in H

2

if the optimal oeÆient a is not smooth, or if the

domain 
 is not onvex. Similar onsiderations hold for u. Nevertheless,

taking di�erene quotients in the weights in (2.9) is well-de�ned and yields at

plaes of missing regularity negative powers of the mesh width, resulting loally

in the orret order.

2.1.2 Criteria for re�nement of the state mesh

In this setion, we propose several re�nement riteria for the state equation

mesh T. We will then ompare these for example problems.

Re�nement indiator �

DWR1

K

(dual weighted residuals). Starting from

the representation (2.6), we use the approximate error representation (2.7) as

re�nement indiator.
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Re�nement indiator �

DWR2

K

(dual weighted residuals). We an also

base a re�nement riterion on the error estimate (2.8), and use the approximate

error estimate (2.9) as re�nement indiator. Sine the meshes produed by this

and the previous re�nement riterion perform almost idential, we do not list

this indiator in most harts.

Re�nement indiator �

rru

K

(smoothness of u

h

). As a �rst heuristi re-

�nement riterion, we may use an indiator measuring solely the smoothness of

the primal variable:

�

rru

K

= h

(d+3)=2

K

kr

2

h

u

h

k

K

: (2.10)

This indiator is well known from the Laplae equation.

Besides the heuristi argument, the indiator an be made plausible by sim-

pli�ation of the dual error estimator (2.9): assume � 2 H

2

and r�(aru) 2

L

1

(
), and assume onvergene of the term kn�[a

h

r�

h

℄k

�K

! khr�(ar�)k

K

�

h

d=2

kr�(ar�)k

1;K

= h

d=2

ku� zk

1;K

� h

d=2

ku� zk

1;


� 

s

h

d=2

with a stabil-

ity onstant 

s

= ku � zk

1;


. Then the seond term in the error bound (2.8)

an be estimated as

�

u

�K

!

u

�K

� 

s

h

(d+3)=2

~

K

kr

2

uk

~

K

:

The indiator (2.10) then arises by using �nite di�erene quotients instead of

derivatives, replaing the exat value u by u

h

, and dropping the onstant fator



s

whih is irrelevant for re�nement.

We would like to stress that the derivation skethed above is rather heuristi

and does not stand formal riteria. For example, numerial experiments suggest

that in general, the assumed onvergene kn�[a

h

r�

h

℄k

�K

! khr�(ar�)k

�K

does not hold on non-uniform, possibly loally re�ned meshes with hanging

nodes. However, re�nement indiators like the one shown above are used su-

essfully in pratie. Therefore, we use them for omparison.

Re�nement indiator �

rr�

K

(smoothness of �). Using a similar line of

reasoning, take the �rst term in (2.8) and obtain the following re�nement indi-

ator:

�

rr�

K

= h

(d+3)=2

K

kr

2

h

�

h

k

K

; (2.11)

2.1.3 Comparison of re�nement riteria

The performane of the various re�nement riteria with respet to the redution

of J(x

h

) and the resolution of the unknown parameter is ompared in Fig.s 2.1

and 2.2, using the test ases de�ned in Setion 1.9.

Before disussing the results, we note that driving re�nement by setting up

an error estimator for the value of J(�) is, beyond the fat that it is essentially

for free, reasonable sine the value of J(x

h

) may be used to stop an iteration

if it falls below the noise level. As m(u � z) is bounded from below by noise,

we would only resolve this noise if we redued J further. However, this would
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Figure 2.1: Comparison of value of the minimization funtional J(x

h

) for var-

ious re�nement riteria. Top left: Test ase 2 (disontinuous oeÆient). Top

right: Test ase 3 (slit domain). Bottom: Test ase 4 (riss-ross parameter).

not lead to a better resolution of the parameter. Monitoring the value J(x

h

)

and omparing it with an improved estimate therefore helps to stop iterations

when this happens.

The results of omputations are visualized in Fig.s 2.1 and 2.2. They an

be summarized as follows:

� The riterion �

DWR1

K

based on the dual error representation formula per-

forms better than or equal to all other riteria under investigation for all

examples.

� For most examples, the dual weighted error estimate and the �

rr�

K

india-

tor perform equally well. They are always better than the other re�nement

indiators.

� Only for test ase 4 is the dual weighted estimate signi�antly better than

�

rr�

K

.

Meshes generated by the various re�nement riteria are shown in Fig.s 2.3 and

2.4 for test ases 3 and 4. They are only slightly di�erent for all test ases,

even for test ase 4 where the duality based estimator is signi�antly better

quantitatively.

The fat that the dual weighted error estimate does not perform better as

mesh re�nement riterion than the more ad ho indiator �

rr�

K

, defeats intu-

ition at �rst. However, omparing the relative sizes of the ontributions to the

dual weighted error representation (2.7) reveals that in atual omputations the
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Figure 2.2: Comparison of various mesh re�nement riteria with respet to the

error in the oeÆient ka

h

�a

exat

k. Top row: Test ases 2 and 3. Bottom left:

Test ase 4. Bottom right: For omparison ka

h

� a

exat

k for test ase 1, where

all re�nement indiators work equally well. Note that here the error is saled

logarithmially (see also the disussion of ondition (1.19)).

Figure 2.3: Test ase 3 (slit domain): Comparison of meshes generated by

riteria �

DWR1

K

, �

rru

K

, �

rr�

K

(from left to right). Top row: Meshes T for state

and adjoint variable. Bottom row: Meshes T

a

for the parameter a.
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Figure 2.4: Test ase 4 (rissross parameter): Comparison of meshes generated

by riteria �

DWR1

K

, �

rru

K

, �

rr�

K

(from left to right). Top row: Meshes T for state

and adjoint variable. Bottom row: Corresponding meshes T

a

for the parameter

a.

term �

K

a

is small ompared to the other terms, at least in those ases where the

two re�nement riteria perform equally. On the other hand, seond derivatives

of the Lagrange multiplier or omparable terms appear in the two other terms

r

u

L(x

h

;u � i

h

u) and r

�

L(x

h

;� � i

h

�), either as residuals or weights. Sine

these terms in the weighted estimator onsist of produts of funtions of u and

of �, it an only show fundamentally di�erent behavior than the �

rr�

K

indiator

if the regions of roughness of u and � do not oinide. However, this an not

happen sine the Lagrange multiplier satis�es �r�(ar�) = �(u� z), and if no

noise is present then u � z is proportional to r

2

u, i.e. u and � have the same

loal smoothness properties.

On the other hand, for test ase 4, where the dual weighted estimator per-

formed better, the term �

K

a

in (2.7) is not small ompared to the other terms.

These onsiderations explain why the dual weighted indiator and the �

rr�

K

indiator perform equally well in most situations, and in whih situations the

former is better.

2.1.4 Reliability of error estimates

Besides providing re�nement riteria, the error indiators (2.7) and (2.9) may

be used to assess the quality of the �nite element approximation x

h

of (2.2)

with respet to the true solution x = fu; a; �g of (2.1). In this setion, we

disuss how reliable these estimates for the quantity J(x)� J(x

h

) are.

Sine for the general problem the exat solution is usually unknown, we

restrit ourselves to the ase of � = 0, and that z is a feasible point. We an

then assume that we an �nd a parameter a suh that for the orresponding

primal variable u = z holds, and thus m(u� z) = 0. Sine � = 0 we have that

J(x) = 0 and the exat error is given by J(x)�J(x

h

) = �J(x

h

) = �m(u

h

�z).
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Figure 2.5: Comparison of error estimates DWR1 (2.7) and, for test ase 1,

DWR2 (2.9) with the approximate true error

~

E. For the �rst example we also

show the linearization error in (2.5).
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Figure 2.6: Ratio of error estimates (2.7) (DWR1) and the approximate true

error

~

E, for test ases 1 and 3.

Assuming that the sheme onverges to the global solution, we an then ompare

the error estimates with this value.

On the other hand, if � > 0, then at the solution �r(a) > 0, andm(u�z) > 0

sine in general u 6= z. The exat error is then unknown. However, if � is small,

the noise level large, or the omputational mesh oarse, thenm(u

h

�z)� �r(a

h

)

in the range of the x

h

whih we resolve in the ourse of our omputations, and

we an still expet that the quantity

~

E = �m(u

h

� z) is a good approximation

to the true error E = J(x)� J(x

h

). In Fig.s 2.5 and 2.6 we ompare this value

~

E with the estimates (2.7) and (2.9).

It is seen that the error estimates using (2.7) are in very good agreement

with the atual error for test ases 1 and 3, showing the same onvergene

behavior and having a ratio between estimated and true error very lose to the

optimal value of 1. For test ases 2 and 4, where bounds are posed on the

unknown solution, the estimates are unreliable; an extension of the estimates

for the onstrained problem is disussed in Setion 2.5.

For test ase 1, Fig. 2.5 also shows the values of estimate (2.9) where we

have taken residuals and weights apart by the Cauhy-Shwarz inequality. We

have hosen the interpolation onstants equal to C

I

= 0:3. As seen from the

�gure, the estimates are too large, with overestimation fators growing from 50
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to roughly 250 under mesh re�nement. For other examples, the ratio usually

remains bounded, but is signi�antly too large as well.

Finally, Fig. 2.5 shows that the linearization term in (2.5), here omputed

using the exat solution, is suÆiently small that negleting it in the error

estimates is justi�ed. This also holds for the other test ases.

2.2 Error estimates and adaptivity for the oeÆient

parameterization

In this setion, we will desribe methods of re�nement of the parameter mesh

T

a

. We will disuss an idea to use linearized sensitivities to re�ne the mesh

based on a novel approah onsidering disretization as a onstraint. Alterna-

tively, mesh re�nement will be based on heuristi arguments, or, if available,

on information from the dual weighted residual error estimator derived in the

last setion.

Intuitively, one would like to base mesh re�nement for the parameterization

on sensitivities with respet to the state equation: we should re�ne the mesh

where we know that the parameters are resolved best. For the disrete problem,

the unertainties are omputed from the diagonal elements of the ovariane

matrix

C

M

0

= (C

T

A

�T

MA

�1

C)

�1

;

see Tarantola [63℄. Thus, the ovariane matrix is the inverse of part of the

Shur omplement of the Gau�-Newton matrix whih we need in eah step

anyway. Given the omplexity of omputing C

M

0

(this would involve n forward

and n bakward solutions), this approah is not feasible, though. A seond

drawbak is that it is not lear that re�ning where sensitivities are high is also

neessarily a good strategy for the approximation of the parameter. For these

reasons, we have used alternative re�nement riteria for the parameter mesh,

whih we will disuss below.

2.2.1 Criteria based on disretization onstraints

Here, we will �rst derive re�nement riteria based on an unonventional ap-

proah in whih we onsider sensitivities with respet to disretization, whih

we take as a onstraint here. It will be shown that re�nement indiators an be

based on the Lagrange multipliers assoiated with the disretization onstraint.

We show the derivation of suh riteria for the unonstrained ase, show an a

posteriori bound on the error, and then extend the method to the onstrained

ase.

Sine we are only onerned with the parameter disretization, assume for

the derivation that the parameter is disretized, while state and adjoint variable

may or may not be disretized but that the spae

~

V = V or V

h

from whih

they are hosen is not subjet to disussion. Negleting bound onstraints, the
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parameter identi�ation then has the form:

min

u2

~

V ; a

h

2A

h

J(u; a

h

); subjet to (a

h

ru;r') = (f; ') 8' 2

~

V :

In order to view disretization of a as a onstraint, we �rst rewrite this

minimization problem as one over a ontinuous spae A, but then again restrit

a

h

expliitly to A

h

. The above problem is then equivalent to �nding u 2

~

V ; a

h

2

A and numbers �

i

suh that

min

u2

~

V ; a

h

2A

J(u; a

h

);

subjet to (a

h

ru;r') = (f; ') 8' 2

~

V ;

ha

h

� �

i

�

i

�

i

; �i = 0 8� 2 A

0

;

(2.12)

where the �

i

are the shape funtions of A

h

. Introduing a Lagrange multiplier

 2 A

0

for the last onstraint, the optimality system for this problem ontains

the equations of Problem 1.8, (1.3), but also

h; �

h

i = 0 8�

h

2 A

h

; (2.13)

r

a

L(x;�) + h; �i = 0 8� 2 A; (2.14)

with L the Lagrange funtional already introdued in Problem 1.8. The La-

grange multiplier of the disretization onstraint an thus be identi�ed with the

residual �r

a

L, whih is orthogonal to A

h

with respet to the duality pairing

h�; �i.

Note that by the reformulation, we have extended the test spae for the

equation onerning r

a

L from A

h

to A in (2.14). However, this inrease is

ountered by the additional term in (2.14), whih deletes that part of r

a

L that

is not orthogonal to the surplus test spae AnA

h

.

Remark 2.5. If we have disretized u; � to u

h

and �

h

, and if r(a) =

1

2

kak

2

,

then by (2.14) we have the expliit representation

 = �a

h

+ru

h

�r�

h

:

Sine Lagrange multipliers represent the �rst order response of the objetive

funtion to a small hange in the onstraints,  gives an indiation how a

relaxation of the disretization onstraint would hange the value of J(u; a).

Thus, if we would weaken the disreteness onstraint in (2.12) to a��

i

�

i

�

i

= g,

then

J(x)� J(~x) = hg; i +O(kgk

2

); (2.15)

with x; ~x the solutions of the original problem with disreteness onstraint, and

of the problem with perturbed onstraint, respetively.

The mesh should then be re�ned in suh a way that the objetive funtion

dereases maximally, whih we assume to oinide with the best strategy for

the identi�ation of the unknown oeÆient. Re�ning a ell then orresponds
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to enrihing the spae A

h

by the shape funtions of A

h=2

, so we have to hek

the hange in J(�) for funtions g 2 A

h=2

. As re�nement indiator we then take

�



K

a

=

X

i

�

�




g

i

K

a

; 

�

�

�

; (2.16)

where the g

i

K

a

form a basis of A

h=2

on the ell K

a

.

Remark 2.6. If A

h

= Q

0

d

(T

a

), then we an hoose the harateristi funtions

of the hild ells K



a

of K

a

as basis of A

h=2

. Then, (2.16) redues to

�



K

a

=

X

K



a

�

�

�

�

�

Z

K



a

 dx

�

�

�

�

�

:

Remark 2.7. The re�nement indiator �



K

a

an be related to the residual �

a

K

a

from the approximate error estimate (2.9). For example, for A

h

= Q

0

d

(T

a

) we

have

�



K

a

�

p

jK

a

jkk

K

a

=

p

jK

a

j�

a

K

a

:

The saling fator equals the weight !

a

K

a

= h

K

a

kr

h

a

h

k if the oeÆient is

disontinuous sine then !

a

K

a

� Cka

h

k � C

p

a

1

p

jK

a

j.

Further exploiting the approah disussed above, we an derive a lower error

bound for the oeÆient from (2.15) under ertain additional assumptions:

Theorem 2.8. Let x = fu; a; �g and x

h

= fu

h

; a

h

; �

h

g be exat and disrete

solutions. Assume that the state disretization allows to resolve state and dual

variable exatly, and that for the error in the oeÆient ka � a

h

k

A

< Æ with

some �xed Æ � 0. Furthermore, assume that we have a lower estimate for the

error in the objetive funtional, � � jJ(x)�J(x

h

)j, then there exists a onstant

C > 0 suh that

ka� a

h

k

A

�

� � CÆ

2

kk

A

0

:

Proof. If we perturbed the disreteness onstraint in (2.12) to a� �

i

�

i

�

i

= g

with g = e

a

= a� a

h

, then the exat solution a is on this onstraint surfae.

The solution ~x of the perturbed problem is thus the exat solution x sine we

have assumed that state and adjoint variable an be identi�ed exatly. We then

have by (2.15) that

� � jJ(x)� J(x

h

)j � j he

a

; i j+ CÆ

2

;

with some C > 0 bounding the higher order sensitivities in (2.15). The laim

then follows by simple transformations.

The relevane of the bound lies in the fat that as ka � a

h

k ! 0, the

quadrati term CÆ

2

on the right hand side tends to zero with higher order.

This unknown seond order term thus vanishes asymptotially.
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By now, we have negleted the existene of bound onstraints on a in

the derivation of  and �



K

a

. By (2.14), we know that  an be expressed in

terms of the residual r

a

L(x), whih should be zero for the exat ontinuous

solution x = fu; a; �g. However, if a is at one of its bounds, the gradient

of the unonstrained Lagrangian is nonzero, but is ountered by the Lagrange

multiplier orresponding to this onstraint, see (1.11). Thus, we hange the

de�nition of  for the onstrained problem to

h~; �i = r

a

L(x

h

;�) 8� 2 A(


0

); (2.17)

where 


0

is the union of ells where the parameter is not at one of its bounds.

For ells where the parameter is at either bound, ~ is extended by zero.

2.2.2 Criteria based on available information

Alternatively to (2.16), we have used other re�nement riteria for the parameter

mesh T

a

:

� If the dual weighted estimators (2.7) or (2.9) are used, we an use one

of the following terms de�ned on the ells K

a

of the parameter mesh for

re�nement:

�

DWR1

K

a

= �r

0

(a

h

; ~a� i

h

a) + (r�

h

�ru

h

; ~a� i

h

a)

K

a

;

�

DWR2

K

a

= �

a

K

a

~!

a

K

a

:

(2.18)

Due to their derivation, we do not expet signi�ant di�erenes in their

abilities as mesh re�nement riteria and therefore only investigate the �rst

one.

� If the state mesh was re�ned with one of the heuristi riteria de�ned in

Setion 2, then we an also use a more heuristi riterion for the re�nement

of the parameter mesh. For a pieewise onstant approximation of the

parameter we used

�

ra

K

a

= h

1+d=2

kr

h

a

h

k

1;K

; (2.19)

where r

h

is a di�erene quotient approximation to the gradient.

2.2.3 Comparison of re�nement riteria

To assess the quality of the three re�nement riteria �



K

a

(2.16), �

DWR1

K

a

(2.18),

and �

ra

K

a

(2.19), we �rst look at the size of the re�nement indiators for test

ase 2 (see page 37). Obviously, re�nement should be direted entirely into the

irular jump of the oeÆient. Fig 2.7 shows the oeÆient after the �rst few

iterations on the initial mesh, as well as the distribution of the three indiators

listed above.

In this ase where the oeÆient is well identi�ed, all indiators roughly

indiate the same ells for re�nement. However, a ommon observation is that

the DWR indiator only marks a very small number of ells for re�nement,
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Figure 2.7: Comparison of re�nement riteria for the parameter mesh (test

ase 2). Left: Reovered parameter on oarse mesh. Center left: Values of �
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a

.

Center right: Values of �
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. Right: Values of �

ra

K

a
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Figure 2.8: Comparison of re�nement riteria for the parameter mesh (test ase

1 with added noise). Left: Reovered parameter on oarse mesh. Center left:

Values of �



K

a

. Center right: Values of �

DWR1

K

a

. Right: Values of �

ra

K

a

.

leading to slow re�nement of the parameter mesh. In addition, some re�ned

ells are oarsened again in the next step. Thus, the DWR estimator often leads

to rather unpreditable behavior unless a signi�ant amount of heuristis are

added. Due to this, no suitable re�nement strategy ould be found for some

examples.

In ontrast to this, �



K

a

marks the ells around the irle in a more pre-

ditable way, while �

ra

K

a

of ourse pro�ts from the good approximation of the

parameter and therefore has no problems indiating the orret ells.

As a seond example, we onsider the solution of test ase 1 (see page 37),

with 1.5% noise added. The presene of noise leads to a bad reonstrution of

the parameter, whih is ampli�ed by the fat that we use pieewise onstant

elements for the parameter and only penalize the size, but not the roughness of

the parameter by regularization.

The results of this experiment are shown in Fig. 2.8. While �



K

a

seems

relatively una�eted by the bad reonstrution and indiates those ells for

re�nement where the gradient of the exat solution is large (i.e. outwards from

the enter towards the orners) as should be expeted, both the DWR and the

ra indiator seems badly out of touh with the situation, proposing rather

random ells for re�nement.

As a summary, in general �



K

a

is the most robust one, while �

DWR1

K

a

and �

ra

K

a

were too unpreditable in their behavior and often su�ered in the presene of

noise. From the indiated relation between �



K

a

and �

DWR1

K

a

, it seems probable

that the laking robustness of the latter indiator is due to unreliable weights
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Figure 2.9: Comparison of true error ka

h

� a

exat

k

L

2
and error estimates �

1

a

and �

2

a

. Left: Test ase 1. Center: Test ase 2. Right: Test ase 2, but with

the estimate ~ inorporating bound onstraints instead of the original .

~a�a

h

, whih is readily explained by laking smoothness in a

h

. If the appliation

permits it, penalizing roughness might help in this ase.

2.2.4 Reliability of error estimates

In order to hek the auray of the lower error bound provided by Theo-

rem 2.8, we onsider the solution of two of the examples de�ned in Setion 1.9.

As a �rst test, we solve test ase 1, with the regularization parameter � = 0 and

no added noise. With these parameters, we know the exat solution a

exat

of the

problem and an ompare the true error and the estimate. We also know the ex-

at error in the funtional J , sine J(x) = 0 and thus jJ(x)� J(x

h

)j = jJ(x

h

)j.

However, we do not know the value of the onstant C appearing in the theorem.

Negleting this higher order term, we are led to ompare ka

h

� a

exat

k

L

2
with

the estimates

�

1

a

= jJ(x

h

)j=kk

L

2
; �

2

a

= j�

DWR1

j=kk

L

2
:

The latter is omputable even if the exat value of J(x

h

) is unknown. The true

error in the oeÆient ka

h

�a

exat

k

L

2
, as well as the two estimates are reported

in Fig. 2.9. It is seen that �

1

a

provides a reliable lower bound for the error. �

2

a

is too large at the beginning sine �

DWR1

initially overestimates the true error

J(x)� J(x

h

).

In a seond example, we take test ase 2 to hek the auray of the lower

error bound. In ontrast to the �rst example, here the bounds on the parameter

are ative in large areas of the domain. We thus expet that negleting this fat

in the derivation of  will lead to an overestimated value of kk and thus to an

underestimated value of ka � a

h

k. This an indeed be seen in the middle and

right panel of Fig. 2.9, where the true error ka� a

h

k along with the estimates

are shown that are obtained using  and ~. It is lear that negleting bound

onstraints leads to ineÆient error bounds, while the estimate ~ inorporating

bounds performs better.



2.3. ESTIMATES BASED ON STABILITY 57

2.3 Estimates based on stability

Besides the duality based strategies to get a posteriori error estimates, we briey

disuss another possibility for their onstrution. It is based on stability prop-

erties. The result ontains a stability onstant revealing the worst ase stability

of solutions instead of a dual solution representing the stability properties of

a partiular solution; the estimate will therefore greatly exeed the error in

most ases. The onstrution of suh an estimate is nevertheless shown as an

alternative way.

Theorem 2.9. Assume that the disretization spae X

h

= U

h

�A

h

��

h

admits

the following interpolation estimate

inf

y

h

2X

h

ky � y

h

k � Chkyk

X

;

for all y 2 X , with kxk

2

X

= kruk

2

L

2

+ kak

2

H

1

+ kr�k

2

L

2

. Assume further that

the inf-sup ondition

sup

y2X

0

A(x; y)

kyk

X

� kxk

X

8x 2 X (2.20)

holds (see, e.g., Theorems 1.9 and 1.10), with m(') =

1

2

kr'k

2

and r(�) =

1

2

k�k

2

H

1

, and

A(x; y) = (ru;r') + (ar�;r') + (aru;r )

+ �(a; �) + �(ra;r�) + (ru�r�; �):

Let x

�

; x

�

h

be ontinuous and disrete solutions, respetively. Then the a poste-

riori estimate

kek

X

�

C



(

X

K

h

�

�

u

K

+ �

a

K

+ �

�

K

�

+ h

1=2

�

�

u

�K

+ �

a

�K

+ �

�

�K

�

)

+O(kek

2

);

for the error e = x

�

� x

�

h

holds with

�

u

K

= kf +r�(a

h

ru

h

)k

K

; �

u

�K

= k[�

n

u

h

℄k

�K

+ k[a

h

�

n

u

h

℄k

�K

�

�

K

= k�(u

h

� z) +r�(a

h

r�

h

)k

K

; �

�

�K

= k[a

h

�

n

�

h

℄k

�K

;

�

a

K

= k�(a

h

��a

h

) +ru

h

�r�

h

k

K

; �

a

�K

= k[�

n

a

h

℄k

�K

:

Proof. Set x = e = x

�

� x

�

h

. Using Galerkin orthogonality, we have

kek

X

�

1



sup

y2X

A(e; y)

kyk

X

=

1



sup

y2X

inf

y

h

2X

h

A(e; y � y

h

)

kyk

X

:

Integrating by parts in A(�; �), using the Cauhy-Shwarz inequality and the as-

sumed interpolation estimate yields the following estimate (we drop the asterisk
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on the elements of x

�

and x

�

h

for brevity):

kek

X

�

Ch



(

X

K

k ��u+�u

h

�r�(ar�) +r�(a

h

r�) +r�(ar�

h

)

�r�(a

h

r�

h

)k

K

+

X

K

k �r�(aru) +r�(a

h

ru) +r�(aru

h

)�r�(a

h

ru

h

)k

K

+

X

K

k�(a� a

h

��a+�a

h

)

+ru�r��ru

h

�r��ru�r�

h

+ru

h

�r�

h

k

K

+

X

K

1

2

h

�1=2

�

k[�

n

u

h

℄k

�K

+ k[a

h

�

n

u

h

℄� ([a

h

�

n

u℄ + [a�

n

u

h

℄)k

�K

+ k[a

h

�

n

�

h

℄� ([a

h

�

n

�℄ + [a�

n

�

h

℄)k

�K

+ k[�

n

a

h

℄k

�K

�

)

:

Using the optimality onditions for the ontinuous solution, we then obtain

kek

X

�

Ch



(

X

K

k(��(u

h

� z)�r�(a

h

r�

h

))� (r�(e

a

r�) +r�(are

�

))k

K

+

X

K

k(�f �r�(a

h

ru

h

))� (r�(e

a

ru) +r�(are

u

))k

K

+

X

K

k(�(a

h

��a

h

) +ru

h

�r�

h

) + (re

u

�r�+ru�re

�

)k

K

+ jump terms as above

)

:

By tangentiality, r�(e

a

r�) = �r�(are

�

) + O(kek

2

) and likewise for orre-

sponding terms in the seond parentheses of the other ell terms, as well as for

the parentheses in the jump terms. We an thus split o� these higher order

terms and obtain the laimed result.

Remark 2.10. The result of Theorem 2.9 impliitly ontains an estimate of

the error in the parameter, sine

ka� a

h

k

H

1
� kek

X

:

Nevertheless, the theorem is of little pratial value sine it inorporates the

onstant , denoting the worst ase stability properties of A(�; �). It does not, in

general, reet the stability of a partiular solution and will thus lead to a large

overestimation of the error. Exploiting the atual stability of a solution is only

possible by taking into aount the solution of a orresponding dual problem.

To illustrate the overestimation, note that in appliations with small noise

it is often possible to identify the parameter well with very small values of �;

if, for example, � = 10

�8

, then

1



> 10

8

.
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2.4 Estimates for arbitrary funtionals

In some ases, we may be interested in bounding the error with respet to fun-

tionals of the solution|inluding error funtionals of the reovered parameter.

In this setion, we will derive an error representation for arbitrary funtionals.

First, we state the abstrat form, only involving the Lagrangian of the problem,

in Theorem 2.11, then apply it to the ellipti problem introdued in Chapter 1.

Sine the neessary omputation of a dual quantity is too expensive for pratial

purposes, a modi�ation is disussed that makes this feasible.

2.4.1 Statement of estimates

Theorem 2.11. Let E : X

g

! R be an error funtional. Let x 2 X

g

be the

solution of the stationarity ondition rL(x; y) = 0 for all y 2 X

0

, and x̂ 2 X

0

be the solution of the dual problem

r

2

x

L(x; x̂; y) = �r

x

E(x; y) 8y 2 X

0

: (2.21)

Then the a posteriori error estimate

E(x)�E(x

h

) =

1

2

f�(x

h

; x̂� i

h

x̂) + �̂(x

h

; x̂; x� i

h

x)g+R(x; x

h

; x̂; x̂

h

);

(2.22)

holds with residuals

�(x

h

; y) = r

x

L(x

h

; y);

�̂(x

h

; x̂; y) = r

x

E(x

h

; y) +r

2

x

L(x

h

; x̂; y)

and remainder term

R(x; x

h

; x̂; x̂

h

) =

1

2

Z

1

0

n

r

3

x

E(x

h

+ se; e; e; e)

+r

3

x

L(x

h

+ se; e; e; e) +r

4

x

L(x

h

+ se; x̂+ sê; e; e; e)

o

s(s� 1) ds;

where e = x� x

h

, ê = x̂� x̂

h

, and x̂

h

the solution of a disrete ounterpart of

(2.21).

Proof. Let � = fx; x̂g 2 X

g

�X

0

, then x and x̂ satisfy the identity

r

�

�(�; �) = 0 8� 2 X

0

�X

0

;

with the joint Lagrangian �(�) = E(x) +r

x

L(x; x̂) ontaining the Lagrangian

L(x) of the �rst order onditions, see Problem 1.8. The proof ontinues in the

same manner as the proof of Theorem 2.1, yielding

E(x)�E(x

h

) =

1

2

r

�

�(�

h

; e

�

) +

1

2

Z

1

0

r

3

�

�(�

h

+ se

�

; e

�

; e

�

; e

�

) s(s� 1) ds;
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where e

�

= � � �

h

with �

h

= fx

h

; x̂

h

g. The laim then follows by observing

that

r

�

�(�

h

; e

�

) = r

x

E(x

h

; e) +r

2

x

L(x

h

; x̂; e) +r

x

L(x

h

; ê);

with ê = x̂� x̂

h

, and using Galerkin orthogonality on these terms to replae e

by x� i

h

x, and ê by x̂� i

h

x̂. For the remainder term,

r

3

�

�(�

h

+ se

�

; e

�

; e

�

; e

�

) = r

3

x

E(x

h

+ se; e; e; e)

+r

3

x

L(x

h

+ se; e; e; e) +r

4

x

L(x

h

+ se; x̂+ sê; e; e; e):

For the partiular ellipti problem onsidered here, the error estimate above,

negleting the remainder term R, assumes the following form:

E(x)�E(x

h

) �

1

2

n

�

u

(x

h

; x̂� i

h

x̂) + �

a

(x

h

; x̂� i

h

x̂) + �

�

(x

h

; x̂� i

h

x̂)

+ �̂

u

(x

h

; x̂; x̂� i

h

x̂) + �̂

a

(x

h

; x̂; x̂� i

h

x̂) + �̂

�

(x

h

; x̂; x̂� i

h

x̂)

o

;

with the residuals

�

u

(x

h

; x̂� i

h

x̂) = m

0

(u

h

� z; û� i

h

û) + (a

h

r�

h

;r(û� i

h

û))

�

a

(x

h

; x̂� i

h

x̂) = �r

0

(a

h

; â� i

h

â) + (r�

h

�ru

h

; â� i

h

â));

�

�

(x

h

; x̂� i

h

x̂) = (a

h

ru

h

;r(

^

�� i

h

^

�))� (f;

^

�� i

h

^

�);

�̂

u

(x

h

; x̂

h

; x� i

h

x) = m

00

(u

h

; û

h

; u� i

h

u) + (r�

h

�rû

h

; a� i

h

a)

+ (a

h

rû

h

;r(�� i

h

�)) +r

u

E(x

h

;u� i

h

u)

�̂

a

(x

h

; x̂

h

; x� i

h

x) = �r

00

(a

h

; â

h

; a� i

h

a) + (â

h

r�

h

;r(u� i

h

u))

+ (â

h

ru

h

;r(�� i

h

�)) +r

a

E(x

h

; a� i

h

a)

�̂

�

(x

h

; x̂

h

; x� i

h

x) = (a

h

r

^

�

h

;r(u� i

h

u)) + (ru

h

�r

^

�

h

; a� i

h

a)

+r

�

E(x

h

;�� i

h

�):

For loalized re�nement riteria, these residuals should be evaluated only after

ell-wise integration by parts, resulting in ell and fae terms. The negleted

remainder term has the form

R = �

1

12

((a�a

h

)r(���

h

);r(u�u

h

))+

1

2

Z

1

0

r

3

x

E(x+se; e; e; e) s(s�1) ds:

In order to evaluate the error representation pratially, we need the exat

dual solution x̂, or an approximation to it. Sine the disrete ounterpart of

(2.21) is equivalent to one Newton step, the e�ort for the omputation of some

x̂

h

equals the omputation of one searh diretion for the full Newton method.

Regarding the atual evaluation of the error estimate, the same possibilities

exist as in Setion 2.1.

Sine the possibility of solving for exat Newton updates was already dis-

arded for the solution of the inverse problems, the solution of (2.21) is too
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expensive for the evaluation of an error estimate. Rather, we would like to

use an approximate solution that satis�es a Gau�-Newton-type equation. The

following theorem derives an estimate based on this idea:

Theorem 2.12. With the same notation as in Theorem 2.11, split the Hessian

as follows:

r

2

x

L(x; x̂; y) = H

1

(x; x̂; y) +H

2

(x; x̂; y);

where H

2

ontains all seond-order terms involving �, and H

1

all other terms.

Let now x̂ 2 X

0

be the solution of the Gau�-Newton system

H

1

(x; x̂; y) = �r

x

E(x; y) 8y 2 X

0

: (2.23)

Then there holds the a posteriori error estimate

E(x)�E(x

h

) =

1

2

f�(x

h

; x̂� i

h

x̂) + �̂(x

h

; x̂; x� i

h

x)g+R

0

(x; x

h

; x̂; x̂

h

);

(2.24)

with remainder term

R

0

(x; x

h

; x̂; x̂

h

) = R(x; x

h

; x̂; x̂

h

) +

1

2

H

2

(x; x̂; e);

where e = x� x

h

and ê = x̂� x̂

h

, and residuals and remainder R as in Theo-

rem 2.11.

Proof. With the same Lagrangian �(�) as in the proof of Theorem 2.11, we

again have by approximation of the integral by the trapezoidal rule that

E(x)�E(x

h

) =

1

2

r

�

�(�; e

�

) +

1

2

r

�

�(�

h

; e

�

)

+

1

2

Z

1

0

r

3

�

�(�

h

+ se

�

; e

�

; e

�

; e

�

) s(s� 1) ds:

However, sine x̂ is now the solution of a perturbed problem, we no more have

that r

�

�(�; �) = 0 for all test funtions � 2 X

0

� X

0

so that the �rst term

vanishes. Rather, we only have that

r

x̂

�(�; y) = r

x

L(x; y) = 0 8y 2 X

0

;

r

x

�(�; y) = r

x

E(x; y) +r

2

x

L(x; x̂; y) = H

2

(x; x̂; y) 8y 2 X

0

;

by the deomposition of r

2

x

L de�ned above. The remainder R

0

is thus the sum

of the previous remainder R and the new residual term involving H

2

.

The e�ort to obtain an approximation of the dual solution x̂ used in this

error identity is now equivalent to solving one additional Gau�-Newton step.

Note that the main part of the error representation is the same as in the previous

Theorem 2.11, only the remainder term hanges.

For the ellipti equation onsidered so far, the residuals are those de�ned

after Theorem 2.11, while the remainder term now has the additional part

H

2

(x; x̂; e) = (r�; âr(u� u

h

)) + (r��rû; a� a

h

):

In the noise free ase, if the measurement z is atually attainable, i.e. at the

solution u = z, we have that � = 0 and the additional term in the remainder

vanishes.
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Figure 2.10: Left: Mesh as produed by duality based estimate. Center: Mesh

as produed by estimator with respet to J(�). Right: Error redution for re�ne-

ment by \energy indiator" (2.7) and by dual estimator (2.24).

2.4.2 Results

In pratial appliations of distributed parameter estimation problems, the in-

teresting quantities are usually values of the unknown oeÆient at points or

in subdomains. Sine point values might not be de�ned properly, we replae

them by mean values in a small neighborhood of the interesting point. We will

therefore only onsider examples of error funtionals E(�) ating on fu; a; �g of

the form

E(fu; a; �g) =

Z




 (x) a(x) dx;

where  is a weighting funtion.

Example 1. Consider test ase 1 (see page 37) and assume we are interested

in the value of the oeÆient at the point x

0

= (�

2

3

;�

2

3

). Using " = 0:05, we

set the weighting funtion to

 (x) =

�

1=(�"

2

) if jx� x

0

j < ";

0 otherwise:

Fig. 2.10 shows typial meshes as produed by the duality error representa-

tion of Theorem 2.12 with respet to the funtional E(�), and by the estimate

(2.7) with respet to J(�). While the latter mostly sees the uniformly good ap-

proximation of a quadrati funtion by bilinear elements on a globally re�ned

mesh, the former adapts the mesh towards the evaluation point (�

2

3

;�

2

3

). The

�gure also shows the superiority as re�nement riterion of the dual estimator

(2.24) over the \energy indiator" (2.7).

Example 2. In order to hek the auray of (2.24) for the atual estimation

of errors, we onsider a more hallenging example: take test ase 4 (page 39) and

as target funtional use the mean error in the left setor, whih is haraterized

by the weight

 (x) =

�

1 if

x

1

3

� x

2

< �

x

1

3

; x

1

< 0;

0 otherwise:
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Figure 2.11: Left: Comparison of atual error E(x � x

h

) and estimate (2.24).

Right: Overestimation ratio.

Fig. 2.11 shows that the error estimates have the orret order of magnitude,

but are not quite aurate. This also holds for other examples. The reason for

this is presently unlear.

2.5 Estimates for the onstrained problem

In this hapter, we have up to now derived error estimates for Problem 1.7

under the assumption that inequality onstraints an be negleted. We will

extend these estimates to the onstrained ase in this setion.

The basi problem in the inorporation of inequality onstraints is that the

�rst order neessary onditions as stated in Problem 1.14 inlude inequality

onstraints as well, although only impliitly in the de�nition of the dual one

C

+

in (1.10) from whih the respetive Lagrange multipliers are hosen. The

solution is thus haraterized by a variational inequality.

A general framework for error estimation for variational inequalities has

been proposed by Suttmeier and Blum, see [21, 62, 61℄. Although we obtain

related results, we will rather derive estimates for this problem by reformulating

it as an equality onstrained one whih we obtain by presuming that we know

the regions of the domain where the oeÆient is at its bounds. For this, de�ne

by

I

0

= fx : a(x) = a

0

g; I

1

= fx : a(x) = a

1

g;

the sets where the exat solution a is at its bounds. Likewise, let

I

0

h

= fx : a

h

(x) = a

0

g; I

1

h

= fx : a

h

(x) = a

1

g;

be the sets where the numerial approximation is at its bounds. With this,

de�ne a Lagrangian by

L(x; �

0

; �

1

;S

0

; S

1

) = L(x) + h�

0

; a� a

0

i

S

0

+ h�

1

; a

1

� ai

S

1

; (2.25)

where L is the original Lagrangian as de�ned in Problem 1.7, and S

i

are sets

where onstraints a = a

i

will be presribed. Then ontinuous and disrete
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solutions trivially satisfy the stationarity onditions of problems with equality

onstraints on the parameter:

r

x

L(x; �

0

; �

1

;I

0

;I

1

; y) = 0 8y 2 X

0

;

h

i

; a� a

i

i

I

i

= 0 8

i

2 L

1

; i = 0; 1;

(2.26)

and

r

x

L(x

h

; �

0;h

; �

1;h

;I

0

h

;I

1

h

; y

h

) = 0 8y

h

2 X

h

;

h

i;h

; a

h

� a

i

i

I

i

h

= 0 8

i;h

2 A

h

; i = 0; 1:

(2.27)

Here, the Lagrange multipliers are disretized by the same spaes as the param-

eters, and the ative sets impliitly depend on the solution. Sine the Lagrange

multipliers are de�ned only on the ative sets, we are free to extend them by

zero to the whole domain.

2.5.1 Estimates for the minimization funtional

With the onditions above, we �rst derive the following a posteriori estimate

with respet to the funtional J(�) for the bound onstrained problem. An

intuitive interpretation is given afterwards.

Theorem 2.13. Let � = fx; �

i

g and �

h

= fx

h

; �

i

h

g; i = 1; 2; be the solutions of

the inequality onstrained problems (2.26) and (2.27). De�ne by

I

i

+

= I

i

nI

i

h

; I

i

�

= I

i

h

nI

i

; i = 1; 2

that parts of the ontinuous and disrete ative set that are not in the ommon

subset of the two. Then there holds the error representation

J(x)� J(x

h

) =

1

2

h

r

x

L(x

h

;x� y

h

) + h�

0;h

; a� �

h

i

I

0

h

� h�

1;h

; a� �

h

i

I

1

h

i

+Q+R;

(2.28)

for all y

h

= f'

h

; �

h

;  

h

g 2 X

h

, with

Q =

1

2

n

h�

0;h

; a� a

0

i

I

0

�

� h�

0

; a

h

� a

0

i

I

0

+

o

�

1

2

n

h�

1;h

; a� a

1

i

I

1

�

� h�

1

; a

h

� a

1

i

I

1

+

o

;

and the nonlinear remainder R as in Theorem 2.1:

R = �

1

12

((a� a

h

)r(�� �

h

);r(u � u

h

)):

Proof. As upper and lower bounds are treated in exatly the same way, we only

show the proof of the theorem for the terms involving the lower onstraint and

denote the Lagrange multiplier for this onstraint by � = �

0

, the ative set by

I = I

0

, and likewise for I

h

;I

+

;I

�

. The derivation of the respetive terms for

the upper onstraint is straightforward based on the proof.
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Sine at the solutions �; �

h

, state equation and bounds are satis�ed with

respet to orresponding test spaes, we have that

J(�)� J(�

h

) = L(�;I)�L(�

h

;I

h

)

= L(�;I

h

)�L(�

h

;I

h

)

| {z }

A

1

+L(�;I)�L(�;I

h

)

| {z }

A

2

:

The two parts are treated separately. For the �rst one, all integrals extend over

the same domains. Denoting e

�

= � � �

h

, we have by the same argument used

for the other estimates that

A

1

=

1

2

r

�

L(�;I

h

; e

�

) +

1

2

r

�

L(�

h

;I

h

; e

�

) +

1

2

Z

1

0

r

3

�

L(�

h

;I

h

; e

�

; e

�

; e

�

)s(s� 1)ds:

Sine the bounds terms in L are only quadrati in the variables, the third

derivative of L equals the third derivative of L, yielding the remainder term

R. For the �rst term, we use the stationarity ondition (2.26) to anel the

terms involving domain integrals and to separate the integrals over the ative

sets into di�erent parts to obtain

r

�

L(�;I

h

; e

�

) = r

�

h

L(�;I) + h�; a� a

0

i

I

� h�; a� a

0

i

I

h

i

(e

�

)

= r

�

h

h�; a� a

0

i

I

+

� h�; a� a

0

i

I

�

i

(e

�

):

Using that aj

I

+

= a

0

, a

h

j

I

�

= a

0

, and �j

I

�

= 0, this term further redues to

r

�

L(�;I

h

; e

�

) = �h�; a

h

� a

0

i

I

+

+ h�

h

; a� a

0

i

I

�

Likewise, we �nd

r

�

L(�

h

;I

h

; e

�

) = r

x

L(x

h

; e) + h�

h

; a� a

h

i

I

h

+ h�� �

h

; a

h

� a

0

i

I

h

;

where the last term vanishes. By the �rst optimality ondition in (2.27), we

an replae the weight ê by any x� y

h

for y

h

2 X

h

.

The seond term A

2

, using anellation, redues to integrals over the ative

sets. Again noting that aj

I

= a

0

, �j

I

�

= 0, we have

A

2

= h�; a� a

0

i

I

� h�; a� a

0

i

I

h

= 0:

Putting it all together, and treating the terms due to the upper bound alike,

we obtain the laimed result.

2.5.2 Interpretation and evaluation

The error representation derived above has an intuitive interpretation. First,

note that if we identi�ed the ative set orretly, i.e. I

i

= I

i

h

; i = 1; 2, then the

term denoted by Q vanishes sine I

i

�

� ;. For this ase,

r

x

L(x

h

; �

0;h

; �

1;h

; �) = r

x

L(x

h

; �) + h�

0;h

; �i

I

0

� h�

1;h

; �i

I

1
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is the residual of the �rst optimality ondition in (2.26). As usual in a posteriori

energy estimates, this residual is weighted by some x � y

h

with an arbitrary

y

h

2 X

h

.

In the other ase, when we have not identi�ed the ative sets orretly, the

term Q does not vanish. However, it is quadrati in the error: for example, for

the �rst term in Q note that �

0

j

I

0

�

= 0 and a

h

j

I

0

�

= a

0

. Thus

h�

0;h

; a� a

0

i

I

0

�

= �h�

0

� �

0;h

; a� a

h

i

I

0

�

:

We may thus neglet it and only work with the main part of the error repre-

sentation.

In Chapter 3, methods for the atual inlusion of bounds into the solution

proess are disussed. The method of hoie there is an ative set method

whih inludes estimates for the Lagrange multipliers without expliitly om-

puting them. The evaluation of the error representation above is therefore not

straightforward sine the �

i

h

are laking. The following lemma states that the

evaluation is possible nevertheless:

Lemma 2.14. Denote by g

h

2 A

h

the disrete projetion of r

a

L(x

h

; �), i.e.

(g

h

; �

h

) = r

a

L(x

h

;�

h

) 8�

h

2 A

h

:

Then the main part of the error representation in Theorem 2.13 an be written

as

r

x

L(x

h

;x� y

h

) + h�

0;h

; a� �

h

i

I

0

h

� h�

1;h

; a� �

h

i

I

1

h

= r

u

L(x;u� '

h

) +r

a

L(x; a� �

h

)� (g

h

; a� �

h

) +r

�

L(x;��  

h

):

Proof. Sine the Lagrange multipliers �

i

h

are only de�ned on the disrete ative

sets, we an de�ne

�

h

(x) =

8

<

:

�

0;h

for x 2 I

0

h

,

��

1;h

for x 2 I

1

h

,

0 elsewhere:

Seleting now the a-derivative in the optimality ondition (2.27), we have that

0 = r

a

L(x

h

; �

0;h

; �

1;h

;I

0

h

;I

1

h

; y

h

) = r

a

L(x;�

h

) + h�

0;h

; �

h

i

I

0

h

� h�

1;h

; �

h

i

I

1

h

= r

a

L(x;�

h

) + h�

h

; �

h

i

for all disrete test funtions �

h

2 A

h

. We thus see that g

h

= ��

h

and

h�

0;h

; a� �

h

i

I

0

h

� h�

1;h

; a� �

h

i

I

1

h

= h�

h

; a� �

h

i = � (g

h

; a� �

h

) :

The result shows that even if we did not ompute the Lagrange multipliers,

the error estimate an be evaluated: the missing multipliers an be obtained

by projetion of the gradient of the Lagrangian. Sine this projetion is loal

for the disontinuous shape funtions of A

h

, and sine g

h

= ��

h

is zero outside

the ative sets, this is heap.
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Figure 2.12: Comparison of true error, and error estimates inluding bound

onstraints (2.29), and negleting these onstraints (2.7). Left: Values of error

and estimates; values with the wrong sign are plotted at �1. Right: Ratio

between estimated and true error.

Remark 2.15. If the linear funtional r

a

L(x; �) allows a Riesz representation

g 2 L

1

= A

0

, then the identity in Lemma 2.14 an be written in a way more

appealing to intuition as

r

x

L(x

h

;x� y

h

) + h�

0;h

; a� �

h

i

I

0

h

� h�

1;h

; a� �

h

i

I

1

h

= r

u

L(x;u� '

h

) + (g � P

h

g; a� �

h

) +r

�

L(x;��  

h

);

where P

h

g is the projetion of g onto A

h

. In some ases, this representation g

an be obtained simply. For example, if r(a) =

1

2

kak

2

, then the Riesz represen-

tation g of r

a

L(x

k

; �) is

g = �a

k

+ru

k

� r�

k

:

Given the above onsiderations, loalized re�nement riteria an be obtained

from the error representation using the same method as in Setion 2.1, i.e. by

ell wise integration by parts of the individual terms and approximation of the

weights using the disrete solution.

2.5.3 Reliability of estimates

In this setion, we assess the quality of error estimates based on Theorem 2.13

and Remark 2.15. We only onsider the main part of the error representation

in Theorem 2.13, i.e.

� =

1

2

fr

u

L(x;u� '

h

) + (g � P

h

g; a� �

h

) +r

�

L(x;��  

h

)g ; (2.29)

where the individual terms are expanded into ell and fae ontributions as

shown in Theorem 2.2.

Fig. 2.12 shows the value of this estimate ompared to the true error for test

ase 2, where the exat oeÆient is at either bound everywhere. Also shown

is the value of the error estimate (2.7) whih was derived under the assumption

of no bound onstraints.
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While the estimate negleting bounds does not aurately trak the error

and even mispredits its sign, the estimate inluding bounds is relatively au-

rate, with overestimation fators bounded and in the range

1

2

: : : 3.

2.5.4 Estimates for arbitrary funtionals

The ideas used in Setions 2.4 and 2.5.1 an be ombined to obtain an error

representation for the onstrained problem with respet to arbitrary funtionals:

Theorem 2.16. Let E : X

g

! R be an error funtional ating on x = fu; a; �g,

i.e. it does not evaluate the Lagrange multipliers �

i

of the bound onstraints.

Let � = fx; �

i

g and �

h

= fx

h

; �

i

h

g; i = 1; 2; be the solutions of the inequality

onstrained problems (2.26) and (2.27), and de�ne by

^

�;

^

�

h

the solutions of the

dual problems

r

2

�

L(�;I

0

;I

1

;

^

�; �) = �r

�

E(�; �) 8� 2 X

0

� L

1

� L

1

; (2.30)

r

2

�

L(�

h

;I

0

;I

1

;

^

�

h

; �

h

) = �r

�

E(�

h

; �

h

) 8�

h

2 X

h

�A

h

�A

h

; (2.31)

with L as de�ned in (2.25). Then the a posteriori error estimate

E(x)�E(x

h

) =

1

2

n

�(�

h

;

^

� � i

h

^

�) + �̂(�

h

;

^

�; � � i

h

�)

o

+Q+R; (2.32)

holds with residuals

�(�

h
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�
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; �);

�̂(�

h

;

^
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�

E(�
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2

�
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h

;

^

�; �);

and remainder terms
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;

^
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^

�
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1

+

� h�
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and

R(x; x

h

; x̂; x̂

h

) =

1

2

Z

1

0

n

r

3

x

E(x

h

+ se; e; e; e)

+r

3

x

L(x

h

+ se; e; e; e) +r

4

x

L(x

h

+ se; x̂+ sê; e; e; e)

o

s(s� 1) ds;

where e = x� x

h

, ê = x̂� x̂

h

.

Proof. We use the same tehniques as in the proofs of Theorems 2.11 and 2.13.

Steps that were already performed there are not disussed again. For simpliity,

we again restrit attention to the lower bounds and denote � = �

0

, et as in

the proof of Theorem 2.13. The terms due to the upper bound an easily be

added.

Let � = fx; �; x̂; �̂g. Then ontinuous and disrete primal and dual solutions

are solutions to

r

�

�(�; I; �) = 0; r

�

�(�

h

;I

h

; �

h

) = 0;
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for all ontinuous and disrete test funtions �; �

h

, with the joint Lagrangian

�(�;S) = E(x) +r

x

L(x;S; x̂);

where the Lagrangian L as de�ned in (2.25). Then,

E(x)�E(x

h

) = �(�; I)� �(�

h

;I

h

)

= �(�;I

h

)� �(�

h

;I

h

)

| {z }

A

1

+�(�; I)� �(�; I

h

)

| {z }

A

2

:

The integrals in the term denoted by A

1

extend over the same domains and an

be transformed as in all previous examples to yield

A

1

=

1

2

r

�

�(�; I

h

; e

�

)

| {z }

B

1

+

1
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r
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�(�

h

;I

h

; e
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)

| {z }
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2

+

1

2
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1

0

r

3
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�(�

h

+ se

�

;I

h

; e

�

; e

�

; e

�

)s(s� 1) ds

| {z }

B

3

:

The four terms A

2

; B

1

; B

2

; B

3

will now be disussed separately.

First, expanding A

2

yields

A

2

= h�̂; a� a

0

i

I

+

� h�̂; a� a

0

i

I

�

+ h�; âi

I

+

� h�; âi

I

�

Sine aj

I

+

= a

0

and � an be extended by zero to I

�

, the �rst, seond, and

fourth term vanish. Using the de�ning equations for the dual solution x̂, we see

that âj

I

+

= 0 if as assumed E(x) does not depend on �; the fourth term thus

vanishes as well.

As in previous proofs, the terms B

1

, B

2

and B

3

yield the term Q, the main

part of the error representation, and the remainder term R, respetively.

Regarding the evaluation of this error representation, or of its main part

for pratial purposes, the same possibilities exist as disussed in Setions 2.4

and 2.5.1. In partiular, the use of a nearby Gau�-Newton system for the dual

solution instead of the full Newton system is possible, resulting in the same

additional term H

2

as in Theorem 2.12.

2.6 Pratial aspets of mesh re�nement

In this hapter, a number of a posteriori estimates have been derived. Besides

some that used other tehniques, we presented several that were derived using

Galerkin orthogonality and the Lagrangian struture of the problem:

� (2.4) for the error with respet to the minimization funtional J(�);

� (2.22) and (2.24) for the error with respet to arbitrary funtionals E(�)

of the solution;

� (2.28) for the error with respet to J(�) of the bound onstrained problem;
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� (2.32) for arbitrary funtionals for the onstrained problem.

These estimates had in ommon that their pratial evaluation involves inte-

grating by parts the given terms, thus splitting the estimates into ell and fae

residuals. These residuals are either weighted by a quantity derived from the

solution itself (in ase of estimates for J(�)) or from the solution of a dual prob-

lem (in ase of estimates for arbitrary funtionals). The proess of integrating

by parts and splitting into di�erent terms has been made expliit for the �rst

estimate above in Setion 2.1.1 and exemplary in Theorem 2.2. For all other

estimates, this proess is implied and neessary for useful estimates that an

also be used for re�nement.

After splitting the estimates into ell-wise terms, we obtain sums over the

ells of the state mesh T and of the mesh used for the parameter disretization

T

a

. These terms are not split up arbitrarily but rather possess a natural assoi-

ation with either of these meshes. It is readily seen that oarsening of one mesh

does not imply that the quantities on the other mesh generate a larger residual,

and vie versa for re�nement. Therefore, the resulting re�nement riteria for

the two meshes are independent of eah other.

Exept for the ases disussed in Setion 2.2.3 where the atual evaluation

of the estimates inluding the approximation of weight fators presented some

diÆulties, the estimates listed above an therefore be used to drive re�nement

of both meshes without additional heuristis.



Chapter 3

Bound onstraints on the

parameters

In this hapter, we will disuss methods to enfore bound onstraints

a

0

� a(x) � a

1

:

Of ourse, at least guaranteeing a lower bound 0 < � � a(x) is essential for

the well-posedness of the ontinuous problem, but enforement of bounds with

physial values a

0

; a

1

is an important goal when trying to identify parameters

that atually bear physial meaning.

Within this hapter, we will �rst disuss a suessful method { a modi�ed

ative set strategy { to enfore these bounds, then briey mention two methods

{ transformation and projetion { that did not work as well as expeted. An

appliation is shown at the end.

3.1 Treating parameter bounds by ative sets

One very suessful approah to treating inequality onstraints in �nite dimen-

sional optimization is the use of so-alled ative set methods. In this setion,

we propose an ative set strategy that di�ers from the usual methods (see, e.g.,

Noedal and Wright [51℄) in two respets:

� It sales the Lagrange multipliers in aordane with the size of the ells

on whih they are de�ned. This allows to view them as disretized versions

of a ontinuous funtion, and avoids ill-onditioned problems for loally

re�ned meshes.

� It modi�es the strategy by whih the ative set is determined, guarantee-

ing the eÆieny of the method.

Ative set methods work by identifying a set of ative onstraints in eah non-

linear step that are then onsidered as equalities. If this set is hosen appropri-

ately, then it an be guaranteed that the set of onstraints that are ative at

the solution is identi�ed at some point in the proess. Choosing the ative set

is not ompliated and an be done using a simple preproessing step before

71
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eah iteration and is partiularly heap if, as is the ase here, the onstraints

are simple bounds.

In order to desribe the ative set strategy that was used, we briey review

how ative sets work in the �nite dimensional ase �rst, then how they an be

de�ned in the setting of a �nite element disretization of ontinuous problems.

The �nite dimensional ase

Ative set strategies for �nite dimensional problems with inequality onstraints



i

(x) � 0 are based on the observation that if x

�

2 R

n

is a loal solution of the

inequality onstrained problem

min

x

f(x); suh that 

i

(x) � 0; i 2 I;

then it trivially is also a solution of the following problem:

min

x

f(x); suh that 

i

(x) = 0; i 2 I

a

� I; (3.1)

where the ative set I

a

of onstraints is de�ned by I

a

= fi 2 I : 

i

(x

�

) = 0g. If

we knew the ative set I

a

, we ould restate the inequality onstrained problem

as an equality onstrained one. Unfortunately, the ative set depends impliitly

on the unknown exat solution x

�

. Ative set methods therefore work with

approximations W

k

� I to the exat ative set I

a

, and try to make sure that

W

k

! I

a

.

In order to derive an algorithm by whih we an identify W

k

for the speial

appliation disussed in this work, let x = fu; a; �g and onsider the Lagrangian

for the onstrained disrete problem,

L



(x; �) = L(x) + �

T

(a);

where L(x) is the Lagrangian of the problem without inequalities, and 

i

(a) =

a

i

� a

0

(for simpliity, we only onsider lower bounds). Then the optimality

ondition inludes the equations

r

a

L



(x

�

; �

�

) = r

a

L(x

�

) +r(a

�

)

T

�

�

= 0; �

i

� 0: (3.2)

Due to the speial struture of the bound onstraints, r = 1, and for the

optimal Lagrange multiplier

�

�

= �r

a

L(x

�

) (3.3)

holds. If we have not yet found the optimum, the residual of the �rst equation

in (3.2) will in general not vanish. However, we an de�ne by

�

k

= �r

a

L(x

k

) (3.4)

an approximation to the exat Lagrange multiplier. Sine the gradient of the

Lagrangian is a �rst order approximation of the diretion in whih a variable

will move in the next step, we an take the sign of the entries of �

k

to estimate
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whether the respetive omponent of a

k

will move into the feasible or infeasible

diretion in the next step, if it is at the bounds now. Ative set methods

then �x those parameters a

i

k

at the bound a

0

if they are already at the bound

and are expeted to move into the infeasible diretion. In order to guarantee

onvergene W

k

! I

a

, pratial methods impose a set of additional rules on

the hoie of W

k

in eah step.

The disretized ase

If we onsider the disretized Newton steps, we need to de�ne whih parameter

degrees of freedom we want �x in eah step. The working sets W

k

are again

sets of indies i and an be determined by Lagrange multipliers that we will

disretize in the same way as the parameter a

h

itself. A semi-formal derivation

yields that in analogy to (3.4), a ontinuous Lagrange multiplier an be de�ned

by

(�

k

; �)

L

2
= �r

a

L(x

k

; �) 8� 2 A:

Without attempting to justify this formula in a strit sense, we disretize the

Lagrange multiplier. For this purpose, reall that as basis for the parame-

ter spae A

h

we have hosen the shape funtions f�

i

g from Q

r

d

(T

a

). Then,

a

k;h

=

P

i

a

i

k;h

�

i

, and we likewise de�ne a disrete Lagrange multiplier by

�

h

=

P

i

�

i

h

�

i

. With this, we de�ne the approximate Lagrange multiplier by

(�

h

; �

h

) = �r

a

L(x

k

; �

h

) 8� 2 A

h

;

i.e. �

h

is the L

2

projetion of �r

a

L(x

k

; �) onto A

h

. This quantity is easily

omputed, as the right hand side is already available as right hand side of the

Newton step, and the left hand side only involves a mass matrix. The latter

is partiularly simple if disontinuous elements are used. Using this multiplier

estimate, we an de�ne the disretized working set by

W

k

=

�

i : a

i

k;h

= a

0

^ �

i

h

< 0

	

:

Remark 3.1. De�ning the Lagrange multipliers diretly on the disretized

Newton step instead of the ontinuous level would lead to worse saling proper-

ties. This is reognized from the observation that with the de�nition above, we

obtain for �

h

the expression

�

h

= �M

�1

a

J

a

;

with (J

a

)

i

= r

a

L(x

k

;�

i

), while a de�nition of the Lagrange multipliers on the

disrete set would yield a similar formula but with the mass matrix M

a

on A

h

replaed by the identity matrix. For nonuniform meshes, this results in Lagrange

multipliers of whih the sizes are no more omparable.

Seleting the ative set

Most standard ative set methods are not suited for large numbers of on-

straints, or in�nite dimensional problems, sine they allow only one onstraint
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to be added or removed from the working set in eah step, and require that a

quadrati problem is solved upon eah hange in the working set. This results

in an exponential growth of the worst ase numerial e�ort with the number

of onstraints. Although this worst ase behavior rarely ours in pratie,

the atual number is still prohibitively high (at least linear in the number of

parameters) for the problems onsidered in this work.

These methods are therefore not appliable for the problems we onsider

here, for at least two reasons:

� We onsider problems with up to several thousand parameters, eah on-

strained by lower and upper bounds. Thus, any attempt to solve one

quadrati subproblem per hange in the ative set is doomed to exeed

omputational possibilities.

� On eah grid, we only make a small number of Newton steps. Sine we

do not aim for high auray on a �xed grid, there is not point in aiming

at identifying the ative set exatly.

Therefore, we use a modi�ed approah where we hoose the ative set inde-

pendently in eah Newton step, and only solve one quadrati problem with this

set rather than iterating with the same quadrati model until we have found the

exat ative set for this step. This has the drawbak that we annot prove that

we do not run into a yling ative set, but it has the advantage that we an

treat even very large problems. In pratie, this strategy has proven suessful

in all appliations.

The omplexity of the method an be inferred from the following onsider-

ations:

� Before eah step, the ative set is determined by looking at those parame-

ters that are already at their bounds, and the gradient with respet to the

oeÆient. Sine this gradient is available for the Newton step anyway,

this is heap.

� We then �x some parameters and solve for the Newton step with these

equality onstrained parameters. Sine �xing these parameters is equiv-

alent to deleting the respetive rows and olumns of the full or redued

Hessian and the right hand side, this step is not more expensive than

solving the unonstrained problem.

� Deleting rows and olumns is simple even if a matrix is not known ex-

pliitly but only by appliation to a vetor. Therefore, this approah is

simple to implement also for the ase of the Shur omplement (redued

Hessian) method used in this thesis (see Setion 1.7).

� As an iterative sheme is used to invert the Shur omplement matrix, we

note that deleting �xed parameters redues the size of the matrix and the

ondition number of the resulting matrix is at least not larger than before.

Sine often a non-negligible number of parameters is �xed, the ondition

number may even be signi�antly smaller, aelerating onvergene.
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Figure 3.1: Saling funtions for the parameter.

Summarizing, the proposed method yields a very eÆient sheme that is su-

essfully applied even to very large problems with several thousand parameter

degrees of freedom.

3.2 Treating parameter bounds by transformation

As an alternative to the ative set method introdued in the previous setion,

we tried to handle parameter bounds by transformation. To do so, we introdue

a new variable q(x) and de�ne a unique, stritly monotone funtion a = a(q)

suh that

0 < � � inf

q2R

a(q) � a

0

;

a

1

� sup

q2R

a(q) � 1:

One may hoose in�mum and supremum of a(q) equal to a

0

and a

1

, respetively,

in whih ase the bound onstraints are satis�ed exatly. In pratie, however,

it may be better to allow for a ertain violation of these bounds and only enfore

0 < � � inf

q

a(q) stritly, in order to redue the nonlinearity in the working

range a

0

� a � a

1

, and to avoid bad saling. Possible saling funtions that

were tried are

a

1

(q) =

�

a

0

(exp(q) + 1) for q < 0,

a

0

(q + 2) for q � 0;

a

2

(q) =

2

1

�

artan(q) + 

2

;

where for the seond funtion 

1

=

1

2

(~a

1

� ~a

0

), 

2

=

1

2

(~a

1

+ ~a

0

), ~a

0

> 0, and

[~a

0

; ~a

1

℄ � [a

0

; a

1

℄ is an interval that inludes (but may be larger than) the range

of physial parameters. Fig. 3.1 shows a plot of these two saling funtions,

with ~a

i

= a

i

; i = 1; 2. To help in the onvergene of Newton steps, one should

in pratie use a smoother version of a

1

, for example in C

2

or even C

1

.

Compared to the ative set strategy, enforing bounds by transformation did

not work too well. This an, among other fators, be attributed to the inrease

in nonlinearity, foring small step lengths and thus slowing down onvergene.
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Figure 3.2: Comparison of identi�ed oeÆient for various saling funtions.

Furthermore, the approximation of the exat oeÆient was not as good as

when the ative set strategy was used, again due to the fat that an exat

enforement of the bounds is only possible at the ost of strong nonlinearities.

Fig. 3.2 shows the results of a omparison for a one-dimensional version

of test ase 2 (see page 37). The \identity saling" used a(q) = q, while the

\exponential" and \ar tangent" saling used the funtions de�ned above with

onstants set suh that the allowed range is slightly larger than the exat max-

imal and minimal values. For the \strit ar tangent" saling, the bounds are

enfored exatly. The identity saling was inluded for omparison.

Although in this noise free ase all salings should theoretially reover the

solution well, it is obvious that the identity saling is the best strategy. This

holds for other ases as well, unless the reovered oeÆient beomes negative

where the identity saling fails, of ourse.

Summarizing, this approah is signi�antly less well suited to the problems

under onsideration, ompared to the ative set strategy. It is useful to enfore

positivity of oeÆients but its drawbaks prevent its use for more pratial

appliations.

3.3 Treating parameter bounds by projetion

Another, simpler, but equally unsuessful, alternative is to ompute the searh

diretion Æx

k

as in the Newton step without any onstraints on the bounds, but

then only onsider the projetion onto the feasible set with respet to these

bounds,

x

k+1

= P

[a

0

;a

1

℄

(x

k

+ �

k

Æx

k

) ;
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where the projetor P

[a

0

;a

1

℄

applied to x = fu; a; �g is de�ned by

P

[a

0

;a

1

℄

u = u; P

[a

0

;a

1

℄

a =

8

<

:

a

0

if a < a

0

a if a

0

� a � a

1

a

1

if a > a

1

; P

[a

0

;a

1

℄

� = �:

Unfortunately, this approah fails sine the searh diretions are beoming

almost perpendiular to the onstraint. Only bak-projeting the parameters

while not touhing the state variable aordingly then introdues a strong vio-

lation of the state equation, whih fores us to take small steps.

The solution to this is to �rst projet the new parameter onto the feasible

set, and from this ompute state and adjoint variable. The drawbak of this

is that, again, we projet away the larger part of the omputed parameter

update one searh diretions are beome mostly orthogonal to the onstraints.

However, if we do not solve the linear equations to very high equations, the

remaining small tangential omponent of the update is then dominated by the

iteration error and is useless as a searh diretion.

Thus, if we do not want to solve the linear Newton steps to high auray,

it is neessary to projet away onstrained parameters before, rather than after

solving. This is what the ative set strategy disussed above basially does.

3.4 Results

In this hapter, three methods for the inorporation of bound onstraints have

been disussed. While the approah using a transformation of the parameter

su�ers from ill-onditioning, the hosen ative set strategy allows to solve even

very large problems, with up to thousands of parameters, at the same or even

lower numerial ost as for the unonstrained problem.

A third approah using a projetion of the searh diretion, was shown to

be related to the ative set method, but su�ered from problems when linear

systems are not solved to high auraies. In that ase, the remaining update

diretion after projetion inludes the ampli�ed error from the inexat iterative

inversion of the matrix. In usual appliations, the inversion of the Hessian is

only performed up to a redution in linear residual of 10

�2

or 10

�3

ompared

to the initial residual. This explains why the resulting searh diretions of the

projetion method are too inaurate for pratial purposes. Therefore, the

projetion method an only be used if a signi�antly higher numerial ost is

aepted. Sine this is hardly possible for the large sale problems disussed

here, the projetion method is not an option.

Finally, we briey present one example of using bounds in the identi�ation

proess. The method used was the ative set strategy disussed above. We

onsider test ase 2, where the exat oeÆient varies between a

0

= 1 and

a

1

= 8. Fig. 3.3 shows the identi�ed oeÆient after a number of iterations,

with and without noise, and for di�erent bounds imposed. The situation in the

right olumn where we impose exat bounds orresponds to an identi�ation

problem where we know that the material is omposed of two parts, but the

interfae is unknown.
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Figure 3.3: E�et of inorporating bounds. Top row: No measurement error.

Bottom row: 2% measurement error. The atual bounds imposed in eah olumn

are stated in the middle.

It is lear that inorporating bounds ats as a stabilization, even if not

the exat lower and upper bounds are hosen. In the ase of no bounds (left

olumn), the identi�ed oeÆient transgresses the shown range in some parts

of the domain already for the ase of no noise. On the other hand, with noise

added, the identi�ation using bounds is rather stable.



Chapter 4

Multiple experiments

In many appliations we have multiple measurements z

i

. For example, we

may have a situation where we have a high noise level in our measurements

and hoose to measure several times for the same situation, or for di�erent

soures, in order to redue the e�et of the noise to the unertainties in the

reovered oeÆients. Or, we may be in a situation where one measurement

is not even suÆient to reover the oeÆients. A similar situation arises if

experiments are not set up willingly, but if naturally ourring situations are

used for measurements, for example signals generated by earthquakes; we will

subsume this ase likewise with the term multiple experiments.

A similar situation is so-alledmulti-physis inversion: we try to reover pa-

rameters from di�erent types of experiments. For example, subsurfae imaging

in geophysial prospetion is often onduted by olleting data from entirely

di�erent soures, for example from seismi imaging, gravimetry data (reording

the loal gravitational fore on a unit weight at di�erent plaes, usually mea-

sured by ying a gravimeter over the target area), magnetotelluri data (reord-

ing the loal magneti �elds), DC resistivity (measuring the eletri �eld for a

given potential), et. These measurements are desribed by a set of di�erent

state equations, but depend in some way or other on the same set of parameters

(density, elastiity, ...) whih we would like to reover. Sine eah measurement

alone may have little or no sensitivity for ertain parameters, joint inversion is

often the only possibility to obtain a set of onsistent parameters.

In this hapter, we disuss a mathematial formulation for multiple exper-

iments potentially desribed by multiple physis and briey desribe a frame-

work for the implementation of suh a program. Examples will be given for

the ase of multiple experiments for the ellipti equation onsidered in the pre-

vious hapters. Further appliations involving the Helmholtz equation will be

disussed in the �nal hapter.

4.1 Mathematial formulation

Multiple experiment ase. Based on the statement of the problem in Chap-

ter 1, the extension of the parameter estimation problem for measurements de-

sribed by the same state equation is simple. Considering the ase that the state

79
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equation is the parameter-dependent di�usion equation disussed in previous

hapters, eah measurement now is haraterized by a di�erent set of applied

boundary data g

i

and right hand sides f

i

. For the set of all these experiments,

let us de�ne the vetors z = fz

1

; : : : ; z

N

g of measurements, u = fu

1

; : : : ; u

N

g

of solutions, and � = f�

1

; : : : ; �

N

g of Lagrange multipliers, where N denotes

the number of experiments made. We assume that in all realized experiments

the parameter a(x) is unhanged. Goal is then the minimization of deviations

m(u

i

�z

i

) subjet to the onstraint that the u

i

2 V

g

i

satisfy the state equations

�

aru

i

;r'

�

= (f

i

; ') 8' 2 V

0

:

Assuming equal noise levels on all measurements, i.e. giving all observations the

same weight, we de�ne the Lagrangian in analogy to Problem 1.8 to be

L(x) =

N

X

i=1

m(u

i

� z

i

) + �r(a) +

N

X

i=1

��

aru

i

; �

i

�

� (f

i

; �

i

)

�

; (4.1)

where x = fu; a;�g 2 X

g

= V

g

1
�� � ��V

g

N

�A�V

0

�� � ��V

0

. The orresponding

�rst order onditions for solutions x 2 X

g

then read:

r

x

L(x; y) = 0 8y 2 X

0

; (4.2)

where X

0

= V

0

� � � � � V

0

� A

0

[a℄ � V

0

� � � � � V

0

is the tangential one to X

g

.

This nonlinear system is solved using Newton's method in the same way as in

Setion 1.3.

Multi-physis ase. Generalizing the formulation above to the ase of dif-

ferent state equations desribing the di�erent measurements, joint inversion is

desribed by the following quantities:

� The solutions u

i

are now di�erent quantities, having di�erent units and

meanings, eah denoting the measured quantity of one experiment.

� The single oeÆient a is now in general a whole set of parameters, some

of them possibly spae or time dependent.

� The governing equations are desribed by di�erent operators A

i

and right

hand sides f

i

. Not all experiments need to be sensitive to all oeÆients,

i.e. eah A

i

may depend on only a subset of a.

� The measurement funtionals m

i

(�) are di�erent. For example, they may

evaluate time series, salar or spatially distributed values. Also, they may

have di�erent noise and on�dene levels assoiated with them, whih we

inorporate by assoiating di�erent weights �

i

to eah of them.

All this is inluded in the following joint formulation, analogous to Problem 1.7:

Problem 4.1 (Continuous problem). Minimize the regularized deviation

J(u) =

N

X

i=1

�

i

m

i

(u

i

� z

i

) + �r(a)
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of the u

i

from the measurements z

i

, with � being a regularization parameter,

subjet to the state equations

A

i

(a;u

i

'

i

)� (f

i

; '

i

) = 0 8'

i

2 V

i

;

where A

i

(�; �; �) are the semilinear forms assoiated with the operators A

i

and

the set of parameters a, as well as to boundary and initial onditions and

onstraints on the parameters

a

0

� a � a

1

:

This problem is transformed into a Lagrangian formulation in the same way

as in Setion 1.2.

4.2 Solution of the linear problems

After de�ning and disretizing the Newton step for the multiple experiment

ase in the same way as in Setion 1.5, we are faed with the solution of the

following system of linear equations in eah Newton step ompletely analogous

to the system (1.15):

0

�

M B

T

A

T

B R C

T

A C 0

1

A

0

�

Æu

k

Æa

k

Æ�

k

1

A

=

0

�

F

1

F

2

F

3

1

A

: (4.3)

Matries and vetors are now omposed of bloks for the di�erent experiments.

By onsidering the dimension of this system,

n =

N

X

i=1

#u

i

k

+#a

k

+

N

X

i=1

#�

i

k

;

where #' denotes the number of degrees of freedom in the disretized variable

', it is obvious that a diret or iterative solution of the entire system is not

possible if we have more than a small number of experiments.

However, sine measurements and state equations for di�erent experiments

are independent of eah other and are only oupled by the ommon set of

parameters, the system matrix above has the following blok struture:

Using the Gau�-Newton modi�ation, the Shur omplement of this matrix

allows the reformulation of (4.3) to the following equation for Æa

k

,

(

R+

N

X

i=0

C

T

i

A

�T

i

M

i

A

�1

i

C

i

)

Æa

k

= F

2

�

N

X

i=1

C

T

i

A

�T

i

�

F

i

1

�M

i

A

�1

i

F

i

3

�

; (4.4)
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and then in turn for the single experiment state and adjoint variables Æu

k

and

Æ�

k

Æu

i

k

= A

�1

i

(F

i

3

� C

i

Æa

k

); (4.5)

Æ�

i

k

= A

�T

i

(F

i

1

�M

i

Æu

i

k

): (4.6)

Therefore, assuming we have a solver for the single operator matries A

i

, we

an invert the large system with an e�ort that is proportional to the num-

ber of experiments N . Furthermore, sine the solution of forward and adjoint

equations for di�erent experiments, as well as setting up the right hand sides

is independent between experiments, the solution of the system an easily be

parallelized.

4.3 Implementation

If many experiments are involved in one inversion, the numerial solution an

be hallenging: as eah experiment requires memory resoures of the same order

as one forward problem, single omputers an quikly beome too small for a

multiple experiment inversion problem. Also, sine we need many nonlinear

steps and many solutions of forward and bakward problems are neessary in

eah nonlinear step, omputing time requirements are even higher.

For this reason, an approah has been developed to abstrat the imple-

mentation of experiments to a simple interfae between a master proess and

slaves, eah slave representing one experiment. Using this abstration, individ-

ual experiments are sealed entities of whih only the interfae exists outside.

While this makes the implementation of the master proess more omplex, it

allows the simple plaement of slaves on di�erent omputers, thus using the

omputational resoures of workstation lusters.

In Fig. 4.1, the requirements on the interfaes of the three most important

lasses representing the master and the individual experiment slaves, as well

as the desription of parameters are listed. In the atual implementation, the

objets need to provide a few additional funtions that are used mostly for

bookkeeping, suh as omputing the mis�ts or errors.

The interfaes of the di�erent lasses are stritly separated and kept mini-

mal. Information ow between distint modules of the program is restrited to

a minimum, and di�erent objets only ommuniate through their interfaes,

rather than by aessing mutual data. This way, it is possible to only provide

the interfae on one omputer while omputations are atually performed on

a di�erent one, thus parallelizing the omputations for di�erent experiments.

Sine passing parameter vetors to funtions from this interfae is relatively

heap ompared to the atual omputations done on them, the speed-up when

using multiple omputers is almost optimal.

Furthermore, sine the interfae above is �xed, it is simple to extend the

program with additional equations desribing di�erent settings; for the master

proess, the addition of a new experiment type is transparent.
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Master objet

Manages data:

� Manages slave objets

� Manages representation of the

parameter

� Present value a

k

of the param-

eters

Provides funtions:

� ompute rhs,

ompute updates,

perform updates,

ompute residual: distribute

work to respetive funtions of

parameter representation and

slaves

� solve:

{ out: solution Æa of the �rst

equation of the Shur om-

plement system (4.4)

Parameter representation

Manages data:

� Desription of parameters,

e.g. disretization of a dis-

tributed �eld

� Desription of bounds on eah
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� ompute rhs:
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� multiply by R/M:
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a

a
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i
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i

k

; �

i

k
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state and adjoint variables

� Copy of present parameter a

k

Provides funtions:

� ompute rhs:

{ ompute: F

i
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i
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C

T

i
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k+1
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+ �
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� ompute residual:

{ in: test step length �
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,

Æa

k

{ out: residual for this step

length

Figure 4.1: Desription of the three basi interfaes of lasses upon whih the

multiple experiment program is built. Sine the interfaes are stritly separated,

it is not important on whih omputer a ertain objet resides as long as its

interfae is available to allers.
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Figure 4.2: Measurements z(x) for di�erent levels of added noise. Left: no

noise. Center: " = 0:05. Right: " = 0:2.

4.4 Appliation: Noise redution

As a �rst example for the use of multiple experiments, we demonstrate noise re-

dution by multiple measurements of the same quantity. If our measurement z

is subjet to measurement error and other noise, then we an in general not ex-

pet to reover the exat oeÆient. If we measure more than one, either with

the same soure or with di�erent ones, eah of these measurements will again

have its unertainties, but the oeÆient that mathes all the measurements

best will be loser to the \orret" one beause it averages over the di�erent

measurements and their errors.

In order to show the e�et of measuring several times on the quality of

the reovered parameter, we take test ase 1 (see page 37), and put as the

measurement

z

i

(x) = u

i

(x) + Æ

i

"

(x);

where Æ

i

"

(x) is a funtion with random normally distributed values with mean

value zero and " being the standard deviation, i.e. the noise level. The a-

tual representation of the noise Æ

i

"

is hosen di�erently for eah measurement.

Fig. 4.2 shows typial measurements for di�erent levels of added noise. Using

these measurements, we invert for the unknown parameter on a �xed, uniformly

re�ned mesh. For this disretization, a diret alulation shows that the best

L

2

approximation is inf

a

h

ka

h

� a

exat

k

L

2
= 0:1177:::. Throughout this setion,

the grid is �xed to allow for omparisons. However, the results also hold for

general, possibly adapted meshes.

The left panel of Fig. 4.3 shows the results without any regularization,

i.e. � = 0: as the noise level inreases, the resolution of the parameter beomes

inreasingly worse if only one experiment is made. If multiple measurements

are available, the e�et of the noise is learly suppressed. The error an be

�tted well by the dependene ka

h

� a

exat

k / ("=

p

N)

3=4

whih orresponds to

the well-known fat that N independent measurements redue the unertainty

by a fator of

p

N .

The right panel of Fig. 4.3 shows the same experiment if we hoose an opti-

mal amount of regularization (determined by experimenting). Noise is greatly

suppressed with already one experiment, yet more measurements signi�antly

improve identi�ation of the parameter over the ase of only one experiment.

The error now grows as ka

h

� a

exat

k / ("=

p

N)

1=3

, indiating the e�et of
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Figure 4.3: Error ka

h

� a

exat

k in the reovered oeÆient for various levels

of noise and numbers of measurements. Left: No regularization, i.e. � = 0.

Right: Optimal value for �. The dotted line denotes the theoretial limit of

approximation.
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Figure 4.4: Same as Fig. 4.3, but with di�erent experiments using di�erent right

hand sides.

regularization in the exponent.

The e�et of noise an be even further suppressed by using di�erent foring

funtions in di�erent experiments. Fig. 4.4 shows the results for this situation.

As right hand side we use the one given in the de�nition of the test ase (see

page 37) only for the �rst experiment. For subsequent experiments, we use

f

i

= 4�

2

jk

i

j

2

sin(2�k

i

�x) with k

i

2 N

d

being vetors with modulus inreasing

with the index i. Again, the use of several experiments an greatly improve the

identi�ation of the unknown parameter.

4.5 Appliation: Enforing identi�ability

Sometimes, the unknown oeÆient is not identi�able at some points without

regularization. For example, in the one-dimensional ase, assuming no noise,

the parameter identi�ation problem reads: �nd a(x) suh that

u = z; �

�

au

0

�

0

= f:
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Figure 4.5: Example of non-identi�able oeÆient in one spae dimension. Left:

Exat displaement and measurement u = z = sin(2�x). Right: Reovered

oeÆient, without imposition of bounds.

Inserting the �rst identity into the seond yields a �rst order di�erential equa-

tion for the oeÆient with analytial solution

a(x) = �

1

z

0

(x)

Z

x

x

0

f(�)d� + a(x

0

); (4.7)

where x

0

denotes the left end of the interval 
, and where a(x

0

) must be

spei�ed in advane. It is obvious that a(x) is not identi�able at plaes where

z

0

= 0. Likewise, the oeÆient is not identi�able in higher dimensions at plaes

where rz = 0, although the proof of ill-posedness there is more diÆult (see,

for example, Banks and Kunish [13℄).

This onept of identi�ability only onerns single points. For L

1

oeÆ-

ients, we ould simply ignore suh points. However, the oeÆient is usually

badly resolved also in their environment, spoiling the identi�ation proess.

Fig. 4.5 shows this in one spae dimension. We hoose u = sin(2�x), no noise

(i.e. z = u), a = 1 and thus f = �u

00

. We do not use regularization and do

not impose bounds on the oeÆient. The reovery of the oeÆient is learly

insuÆient near points where u

0

= 0.

Adding regularization to the minimization problem allows to identify a o-

eÆient although it is solely determined by the regularization at points where

z

0

= 0, not by measurement. The left panel of Fig. 4.6 shows the result for

an optimal amount of regularization. After the last iteration, the error is

ka

h

� a

exat

k = 0:17.

Instead, we an also perform several experiments in suh a way that at

no point all measurements have (u

i

)

0

= 0. For example, we might hoose the

fores f

i

suh that u

1

= sin(2�x) and u

2

= sin(3�x). The result is shown in

Fig. 4.6. The error in the oeÆient after the last iteration is now ka

h

�a

exat

k =

0:00013, i.e. approximately a fator of 1000 smaller than the result obtained

with regularization.

The importane of this lies in the fat that for some setups of physial

experiments, whole regions are unidenti�able. For example in an imaging ex-

periment, entire regions may lie in the shadow. Then, several experiments
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Figure 4.6: Example of non-identi�able oeÆient in one spae dimension. Left:

Reovered oeÆient with optimal regularization and one experiment. Right:

Reovered oeÆient without regularization and two experiments. Note the dif-

ferent maximal errors ompared to Fig. 4.5.

illuminating from di�erent angles may help to identify the solution. Multiple

measurements with di�erent soures are therefore ommonly used in seismi

imaging experiments.
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Chapter 5

Inverse wave problems

In this hapter, we will apply the tehniques previously developed for the di�u-

sion equation to parameter identi�ation problems for the Helmholtz equation.

Sine this is the frequeny domain version of the time dependent wave equation,

this lass of problems is used in many appliations where time dependent data

is measured, for example seismi data in geophysis.

We will, in this hapter, �rst derive the omplex valued Helmholtz equation

and boundary onditions that desribe the problems we onsider here. Based on

this, the inverse problem is formulated, and a brief omparison of the solution

of inverse problems for wave problems in the time and frequeny domains is

given, to set a bakground for the methods we use here.

In the then following two setions, we briey disuss the di�erenes between

inverse problems for the Helmholtz and the di�usion equation, then touh the

two main mathematial obstales for inverse wave problems, nonlinearity and

non-uniqueness. Next, the error estimates derived in Chapter 2 are adapted to

the present situation.

Finally, appliations are given, that illustrate the general oeÆient resolv-

ing properties of the disussed methods. Furthermore, the superior performane

of weighted error estimator driven re�nement over more ad ho approahes is

shown, and the auray of error estimates is disussed.

5.1 Inversion in frequeny spae

In order to state the inverse problem to be treated in this hapter in a onise

way, we �rst de�ne the forward problem in this setion, and based on this

derive the struture of the inverse problem. Although we onsider a struturally

time dependent problem, we formulate it in the frequeny domain as a family

of Helmholtz equations. The reasons for this and the resulting advantages

partiular to inverse problems will be disussed in a �nal subsetion.

Formulation of the forward problem

In order to derive the equations desribing the forward problem, we start with

the time dependent wave equation, transfer it to frequeny spae by applying

89
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a Fourier transform, and �nally write it in weak form.

As starting point, we hoose the time dependent wave equation on a bounded

domain 
 and in a time interval I = (0; T ),

�

2

t

u�r� (aru) = 0; (x; t) 2 
� I; (5.1)

with Neumann, Dirihlet, and simple absorbing boundary onditions on por-

tions �

N

;�

D

, and �

A

of the boundary �
, respetively:

n�aru = 0 (x; t) 2 �

N

� I;�

N

� �
; (5.2)

u = g (x; t) 2 �

D

� I;�

D

� �
; (5.3)

n � aru+

p

a�

t

u = 0 (x; t) 2 �

A

� I;�

A

� �
: (5.4)

The absorbing boundary onditions hosen here are those of Bayliss and Turkell

[14℄, whih are equivalent to those of Engquist and Majda [33℄. Note that

these boundary onditions make the spetrum omplex valued and in general

ontinuous, even on bounded domains.

Sine here we are only interested in identi�ation of elasti properties, we

have assumed that the density usually appearing before the term �

2

t

u in (5.1)

is onstant. We an then sale it out of the equations. Thus, the oeÆient a

has the interpretation of the square of a wave speed.

We seek the solution of this set of equations in frequeny spae by introdu-

ing the Fourier transform u

!

of the solution u as

u(x; t) =

1

p

2�

Z

1

�1

e

i!t

u

!

(x) d!:

Likewise, we de�ne the Fourier transform g

!

of g. Inserting these funtions into

equations (5.1){(5.4) then yields

�!

2

u

!

�r� (aru

!

) = 0 x 2 
; (5.5)

n�aru

!

= 0 x 2 �

N

; (5.6)

u

!

= g

!

x 2 �

D

; (5.7)

n � aru

!

+ i!

p

au

!

= 0 x 2 �

A

: (5.8)

These equations have to be solved for eah member u

!

of a family indexed by

! 2 R.

The problem is transformed into a weak formulation in the usual way. It

then reads: �nd u

!

2 V

g

!

= fu

!

2 H

1

(
! C ) : u

!

j

�

D

= g

!

g, suh that for all

' 2 V

0

= f' 2 H

1

(
! C ) : 'j

�

D

= 0g there holds

�(!

2

u

!

; ')




+ (aru

!

;r')




+ (i!

p

au

!

; ')

�

A

= 0;

again for every frequeny !. Splitting this equation into its real and imaginary

parts, and denoting u

!

= v

!

+iw

!

, we obtain the �nal form of the state equation

for eah omponent in !-spae:
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Problem 5.1 (Forward problem). For eah ! 2 R, �nd the solution u

!

=

fv

!

; w

!

g 2 V

g

!

= fu

!

2 H

1

(
 ! R)

2

: v

!

+ iw

!

j

�

D

= g

!

g, suh that for all

' = f�; �g 2 V

0

= f' 2 H

1

(
! R)

2

: 'j

�

D

= 0g there holds

A

!

(a;u

!

; ') = 0; (5.9)

with the bilinear form

A

!

(a;u

!

; ') = �(!

2

v

!

; �)




+ (arv

!

;r�)




� (!

p

aw

!

; �)

�

A

+ (!

2

w

!

; �)




� (arw

!

;r�)




� (!

p

av

!

; �)

�

A

:

Note that we have deliberately reversed the sign of the equation de�ning the

imaginary part, making A

!

symmetri, i.e. A

!

(a;u

!

; ') = A

!

(a;'; u

!

). This

has positive e�ets on the solvability of the disretized equations using iterative

shemes.

The inverse problem

The inverse problem of estimating the distributed parameter a in (5.9) is for-

mulated similar to the one disussed throughout previous hapters. Adopting

the same notation regarding mis�t and regularization funtionals m(�) and r(�),

the inverse problem in the single experiment ase reads in analogy to Prob-

lem 1.7:

Problem 5.2. Minimize the regularized deviation

J(u; a) = m(u

!

� z

!

) + �r(a)

of u

!

= fv

!

; w

!

g from the measurement z, with � being a regularization param-

eter, subjet to the state equation (5.9), and the additional onstraints

u

!

j

�

D

= g

!

;

a

0

� a � a

1

:

The haraterization of the solution by a Lagrange funtional and its sta-

tionary points then follow in the same way as in Problem 1.8.

In general, one is not interested in inverting only one measurement with

only one frequeny omponent. In this ase, the mis�t funtional m(�) will

ontain a sum over those frequenies !

i

for whih measurements exist. The

di�erent frequeny omponents u

!

i

then eah have to satisfy a state equation

with semilinear forms A

!

i

, resulting in a multiple experiment situation as dis-

ussed in Chapter 4. We will only onsider this multiple experiment ase in the

following. The orresponding formulation of the identi�ation problem then is

as in Problem 4.1. We expliitly show it here for later referene:

Problem 5.3. Solutions of the multiple experiment Helmholtz inversion prob-

lem are haraterized by stationary points

r

x

L(x; y) = 0 8y 2 X

0

;
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of the Lagrangian L(x), where x = fu

!

1

; : : : ; u

!

N

; a; �

!

1

; : : : ; �

!

N

g 2 X

g

, X

g

=

(

Q

N

i=1

V

g

!

i

)�A�V

N

0

, X

0

= V

N

0

�A�V

N

0

, and V

g

!

; V

0

as de�ned in Problem 5.1.

The Lagrangian is de�ned by

L(x) = J(x) +

N

X

i=1

A

!

i

(a;u

!

i

; �

!

i

); (5.10)

with the form A

!

as in Problem 5.1, and

J(x) =

N

X

i=1

m(u

!

i

� z

!

i

) + �r(a):

Applying Newton's method to the optimality ondition, and disretizing

eah step then leads to a system of linear equations equivalent to (4.4){(4.6),

where we now have the matries

M

i

=

�

M 0

0 M

�

; A

i

=

�

A

!

i

�G

!

i

�G

!

i

�A

!

i

�

; C

i

=

�

C

1

(v

!

i

)� !

i

C

2

(w

!

i

)

�C

1

(w

!

i

)� !

i

C

2

(v

!

i

)

�

;

omposed of the following bloks:

M

kl

= (m

i

)

00

(u

!

i

;'

k

; '

l

); A

!

i

;kl

= �(!

2

i

'

l

; '

l

)




+ (ar'

l

;r'

l

)




;

G

!

i

;kl

= (!

i

p

a'

i

; '

j

)

�

A

;

C

1

(p)

kl

= (rp�r'

k

; �

l

)




; C

2

(p)

kl

=

�

1

2

p

a

p '

k

; �

l

�

�

A

;

with '

k

; �

l

being the trial funtions for primal and dual variables, and param-

eter variables, respetively.

Comparison between time and frequeny domain

Above, we have used the frequeny domain to formulate the problem of identi-

�ation of parameters in a time dependent wave equation. While oneptually

solving in the time or the frequeny domain is equivalent, there are signi�ant

di�erenes when numerially approximating the forward solution on a om-

puter:

� In the time domain, a time-stepping sheme is used to solve the sub-

problems on subsequent time steps. This generates the sought solution

diretly, but eah time step depends on the prior solution of the last time

step. In eah time step, the solutions of at least two time steps have to

be kept in memory. The number of time steps is roughly proportional to

the highest frequeny ourring.

� In the frequeny domain, the solutions u

!

i

for di�erent frequenies !

i

do

not depend on eah other. This allows for simple parallelization. However,

if we are interested in the wave �eld in the time domain, this an only be

omputed by overlaying the solutions of all omponents and forming the

Fourier bak-transform of it. The number of frequeny omponents that
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have to be omputed for a given auray of the time dependent wave

�eld is proportional to the size of the frequeny band that is exited by

soures.

For the present appliation, solution in the frequeny domain is more adequate

for three reasons:

� We are not interested in the time dependent wave �eld, but only in the

omparison to given measurements. This an be done in the time and

frequeny domains equally well.

� In appliations, often only small frequeny bands are exited. While in the

time domain, the numerial e�ort is proportional to the highest frequeny,

in the frequeny domain it is only proportional to the size of the frequeny

band. As an extreme ase, onsider time harmoni exitations: we would

then only have to solve one problem in the frequeny domain, but still

many time steps in the time domain.

� Sine the problems in frequeny domain are independent of eah other,

we an use this to parallelize the problem in the same way as desribed

in Chapter 4.

As will be explained in Setion 5.3, an additional reason for inverting in

the frequeny domain is the stabilization of the problem if one starts with low

frequenies, as this redues the nonlinearity.

5.2 Comparison with di�usion problems

Compared to the stati problems governed by a di�usion equation disussed in

the previous hapters, the problems onsidered here di�er in several respets

onerning omputational omplexity. In this setion, we briey review why the

problems of this hapter are more hallenging. A disussion of mathematial

problems arising with typial inverse problems for the Helmholtz equation is

given in the next setion.

The foremost reason for the higher omplexity is that solving the Helmholtz

equation numerially is more diÆult than the Laplae equation. This has three

main reasons:

� The inde�niteness of the operator disallows the use of simple onjugate

gradient methods. If !

2

is too lose to an eigenvalue of the Laplae

operator, the problem is also ill-onditioned.

� The traveling wave harater of solutions of the Helmholtz equation re-

sults in solutions that do not deay quikly with the distane to soures,

requiring mesh re�nement in large parts of the domain.

� Solutions of the Helmholtz equation are osillatory, where the wavelength

of solutions is � / 1=!. This requires �ne meshes espeially for high

frequenies. For good resolution, the mesh width should satisfy at least

�=h � 10.
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Figure 5.1: Typial solution u

!

= v

!

+ iw

!

of Helmholtz equation with ! = 50.

Left: Real part. Right: Imaginary part. The solution is the same as in Fig. 5.4.

A typial solution of the state equation showing the last two points is displayed

in Fig. 5.1. For this example, there are absorbing boundary onditions at the

bottom, right, and top boundary, and waves are injeted at the enter of the

left boundary.

From these onsiderations, it is lear that solving the Helmholtz equation

is more expensive from a numerial point of view than the Laplae equation.

In partiular, in d spae dimensions, the e�ort grows with the frequeny ! as

!

d

sine the mesh width must be proportional to the wave length. For typial

appliations, diam 
=� � 10 : : : 100, requiring a number of ells in the range of

at least 100

d

: : : 1000

d

. Finally, we remark that solving on an insuÆiently �ne

grids leads to unusable solutions sine the dispersion of �nite elements results

in a phase shift between exat and numerial solution. It is thus often not even

possible to start on a relatively oarse mesh.

Further aspets to be taken into onsideration when omparing inversion for

wave and di�usion problems is that for the former we often only have boundary

measurements, but in a multiple experiment setting. The fat that measure-

ments are only on the boundary requires us to solve to relatively high auraies.

Both aspets further inrease the numerial e�ort.

As a �nal omparison between wave and di�usion problem, we onsider

the ondition numbers of Shur omplement matries. Fig. 5.1 shows the de-

pendene on the mesh width for the Helmholtz equation with ! = 10, for an

otherwise omparable on�guration as Table 1.2 (page 31) shows for the dif-

fusion equation. While the growth of the ondition number as the mesh is

re�ned follows the same orders as for the di�usion equation, their absolute size

is smaller, at least for the more important ase of L

2

measurements, making

the Newton steps simpler to solve.

On the other hand, these ondition numbers also depend on the frequeny,

and on the number of experiments performed. Generally, the ondition number

dereases with higher frequenies and more experiments, making up for part of

the otherwise higher omplexity.
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m(u� z) =

1

2

ku� zk

2




m(u� z) =

1

2

kr(u� z)k

2




h min j�

i

j max j�

i

j �

2

min j�

i

j max j�

i

j �

2

2

�3

0:00195 0:339 170 0:717 32:2 45

2

�4

9:76 � 10

�5

0:160 1600 0:0916 14:8 160

2

�5

2:05 � 10

�6

0:0499 24000 0:00657 4:49 680

2

�6

3:97 � 10

�8

0:013 3:5 � 10

5

0:000479 1:20 2500

2

�7

7:09 � 10

�10

0:0035 4:9 � 10

6

3:73 � 10

�5

0:324 8:7 � 10

3

O(h

6

) O(h

2

) O(h

�4

) O(h

4

) O(h

2

) O(h

�2

)

Table 5.1: Minimal and maximal eigenvalues �

i

, and ondition number with

respet to the spetral norm for the Shur omplement.

5.3 Compliations of tomography

In the appliations disussed in this hapter, we only onsider ases where the

soures of the Helmholtz equation are loated on part of the boundary, as this is

typial for appliations. If measurements are also performed only on the bound-

ary, then this mode is alled tomography. Depending on whether measurements

are made at the same part of the boundary where soures are loated, or on an

opposite part, this is alled reetion tomography or transmission tomography

in the ontext of wave problems.

For the Laplae equation, the main problem of tomography is an extreme

ill-posedness in the interior of the domain, sine information entering at the

boundary of the domain deays quikly as a funtion of the distane to the

boundary. For the Helmholtz equation, just as for inversion in the time domain,

this ill-posedness away from the boundary does not exist, sine the orrespond-

ing Green's funtion has di�erent deay properties. Nevertheless, inverting

wave signals poses a number of mathematial peuliarities. Among these are

strong nonlinearities of the objetive funtion as well as non-identi�ability in

ertain funtion spaes. We will briey disuss these diÆulties in this setion

to illustrate the typial ompliations of inversion for wave problems.

Nonlinearity of the inverse problem

In ontrast to the di�usion problem overed in previous hapters, the objetive

funtional usually has many loal minima for the Helmholtz equation, and

getting stuk in one of them is simple. To illustrate this, onsider the following

one dimensional example: assume we have a string of length L with onstant

but unknown wave propagation veloity  whih we would like to reover within

the range  2 [

0

; 

1

℄. We exite the string at the left end at x = 0 with a time-

periodi signal with frequeny ! and amplitude and phase '(!) 2 C . We

measure the displaement and its phase at x = L, where we assume that an

absorbing end is plaed. The frequeny is hosen suh that the wave length is

small ompared to L, i.e. ! � L=2�.
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Figure 5.2: Visualization of the nonlinearity ourring in inverse problems for

wave equations. Left: Time dependent soure at the left end. Right: Mis�t

funtional m() as funtion of the wave speed .

This situation an be desribed by the following set of equations:

�!

2

u

!

� 

2

�

2

x

u

!

= 0; u

!

(0) = '(!); (i! + �

x

)u

!

(L) = 0: (5.11)

The last boundary ondition represents perfetly absorbing boundary ondi-

tions at x = L. The solution of this problem is u

!

(x) = '(!) os(!x=).

In the inverse problem, we are given a measurement z

!

of u

!

(L). In the

noise free ase, z

!

= '(!) os(!L=

�

) with the \true" wave speed 

�

. We then

seek to minimize the mis�t integrated over all frequenies,

m() = m(u(L)� z) =

1

2

Z

ju

!

(L)� z

!

j

2

d!

=

1

2

Z

j'(!)(os(!L=) � os(!L=

�

))j

2

d!

on the range of admissible wave speeds  2 [

0

; 

1

℄. Note that by de�nition

of the Fourier transform, the mis�t in the time and the frequeny domain are

equivalent:

R

ju

!

(L)� z

!

j

2

d! =

R

ju(L; t)� z(t)j

2

dt.

While the solution of this problem is obvious, the mis�t funtional is strongly

nonlinear. For example, assume we use the signal f(t) shown in the left panel of

Fig. 5.2. Aordingly '(!) is the Fourier transform of this signal. With 

�

= 1,

the mis�t funtional m() is shown in the right panel of Fig. 5.2.

The nonlinearity of the objetive funtional is striking. At the enter, the

osillations result from measurement and simulation being shifted relatively to

eah other by a �xed number of periods in the time domain and likewise by

2� in the frequeny domain; small variations then bring the two funtions out

of phase, yielding a higher value of the mis�t funtional, until the wave speed

hanges so muh that minima and maxima math one again. This phenomenon

is ommonly referred to as aliasing, sine osillations of the simulated solution

math, i.e. alias, the wrong osillations of the measurement.

The distane between two loal minima, and so also the domain of attration

of a minimum, orresponds to the size of hanges in the oeÆient neessary

to displae measurement and predited solution by one wavelength. Thus, it is
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larger for low frequenies. In pratie, low frequeny measurements are there-

fore often used to obtain a good initial guess, whih is then used to proeed

with high frequenies.

This nonlinearity is mostly generi for wave problems, and also exists in

higher spatial dimensions. In appliations, this usually leads to solutions being

trapped in loal minima, unless the parameter identi�ation proess is started

in the lose viinity of the true solution. In applied geophysial inversion, many

tehniques have been developed to either generate good initial guesses, or for

global optimization. The amount of literature on this is so vast that we do not

attempt to give an overview. As we do not endeavor to develop tehniques in

this area, we will always assume that we have starting values lose enough to

�nd the desired optimum with loal searh tehniques suh as the Gau�-Newton

method.

Non-uniqueness of solutions

Another diÆult aspet of waveform inversion is that smooth variations of the

veloity, often alled the bakground veloity, are hard to determine. In fat, in

one spae dimension, it is not identi�able at all: let 

�

be the optimal spatially

onstant wave speed, then in the example of the previous setion all spatially

varying wave speeds (x) = 

�

+ ~ with smooth funtions ~ with zero mean

value will generate the same measurements at x = L. The reason, of ourse,

is that we only measure the arrival times of signals, not whether it traveled

faster or slower on parts of the string. The same holds, if 

�

is not onstant,

but pieewise onstant: what we see is only the arrival times of transmitted

and reeted signals; these signals only ontain the position of disontinuities

(via the arrival times) and the height of the jumps (through the reetion

amplitudes), but not the smooth variations between the jumps.

The situation is better in more than one spae dimension, sine there smooth

variations refrat waves, i.e. wave diretions are bent smoothly by the bak-

ground veloity, but in general the problem of determining the smooth varia-

tions is signi�antly more ill posed than that of reovering disontinuities.

Conlusions for examples

Sine the goal of this work is not to develop tehniques to work around the two

problems mentioned above, we hoose the examples of this hapter suh that

� the sought oeÆients are pieewise onstant, and

� initial values are lose to the exat values, but onstant; therefore, the

initial values do not ontain a priori knowledge about the positions of

jumps in the oeÆient.

Both assumptions are often pratiable in geophysial appliations, as media

in the underground are usually strati�ed, i.e. pieewise onstant. Furthermore,

good initial guesses an, for example, be obtained by traveltime inversion, whih

only uses the time a signal arrives, but not its amplitude and phase, thus

avoiding the nonlinearity problem.
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5.4 Error estimation

In this setion, we briey state the form of error estimates for the problem

onsidered in this hapter. Sine the general form of estimates in terms of the

Lagrangian has already been given in Chapter 2, we only show this for estimates

with respet to the minimization funtional J(�). The form of the estimates for

arbitrary funtionals and for the bound onstrained ase an then easily be

derived from this and the material of Chapter 2.

Theorem 5.4. For the multiple experiment Helmholtz inversion problem 5.3,

the error with respet to the funtional J(�) an be represented by

J(x)� J(x

h
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Figure 5.3: Identi�ation of an inlusion. Layout of example.

Here, x and x

h

are ontinuous and disrete solutions, respetively, and i

h

is

a generi interpolation operator ating on X ! X

h

or single omponents, de-

pending on ontext.

Proof. Use the general form of the estimate in terms of the Lagrangian, given

in Theorem 2.1, expand the Lagrangian (5.10), and integrate by parts on eah

ell.

We will hek the auray of this formula with the appliations at the end

of this hapter. Note that the other error representation formulae derived in

Chapter 2 have similar forms.

5.5 Appliation: Identi�ation of an inlusion

As a �rst example of parameter identi�ation for the Helmholtz equation, on-

sider the situation depited in Fig. 5.3: a plate of elasti material is lamped

at its left side and plaed in dampers absorbing all waves at all other faes.

A time periodi fore is applied at portions of the lamped side. The position

and frequeny of the exitation is varied in di�erent experiments. Finally, we

assume that amplitude and phase of the resulting periodi motion of the plate

an be measured at all positions; suh measurements are possible with lasers,

for example. The goal is to reover an unknown inlusion in the material by

inverting for the spatially varying oeÆient a(x).

Given this setup, the problem an be desribed as follows: let the index 1 �

i � N denote the number of the experiment, then u = fu

!

1

; : : : ; u

!

N

g; u

!

i

2 V

g

i

!

are the solutions of the state equations

A

!

i
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!

i

; ') = 0 8' 2 V

0

;

subjet to boundary onditions u

!

i

j

�

D

= g
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!

, see Problem 5.1. With this on-

straint, the minimization problem reads

minJ(u; a) =

N

X

i=1
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� z

i
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2




+

�
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r(a);
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Figure 5.5: Identi�ation of an inlusion. Left: Identi�ed oeÆient with

bounds 1 � a � 1:3. Right: With bounds 0:5 � a � 5.

where z

i

is the measurement for the ith experiment. For two experiments

di�ering in the position of the exitation, the absolute values ju

!

j

2

= jv

!

+iw

!

j

2

are shown in Fig. 5.4. For both the frequeny is ! = 50. While the waves

injeted in the �rst experiment travel through the domain largely una�eted,

those of the seond are deeted at an a priori unknown satterer.

For the inversion, we onsider 24 experiments with 8 equidistantly spaed

soure positions and frequenies !

i

2 f30; 40; 50g. For these frequenies, the

wavelengths are between 0.125 and 0.21. The inlusion to be identi�ed is a

irle of radius 0.15 with a = 1:3 embedded in a material with a = 1.

Fig. 5.5 shows the identi�ed oeÆient for two ases. In the left, the two

materials are known, so that sharp bounds 1 � a � 1:3 an be posed. Instead,

if we do not know the materials, we only use a rough guess 0:5 � a � 5 and

obtain the oeÆient displayed on the right of the �gure. No regularization was

used in both ases.

In Fig. 5.6, the performane of the weighted error estimate (5.12) as a mesh

re�nement riterion is ompared to global re�nement and the �

rru

indiator

(2.11), whih performed best after the weighted estimator for the Laplae equa-
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degrees of freedom of all 24 experiments. Right: Redution of error ka� a

h

k.

1e-06

1e-05

0.0001

0.001

0.01

100000 1e+06

J
(x

h
)

Accumulated number of degress of freedom

true error J(xh)
estimated error

Figure 5.7: Identi�ation of an inlusion. Comparison of atual and estimated

error.

tion (see Setion 2.1.3). As an be seen, the weighted indiator is signi�antly

better than the other riteria, both in terms of redution of the target funtional

J(�), and of the error ka

h

� a

exat

k whih is of greater pratial interest. Thus,

it is obvious that using this indiator an redue the e�ort to solve the identi-

�ation problem to a given auray greatly. Finally, Fig. 5.7 shows that the

estimated errors in the target funtional J(�) math the true ones reasonably

good on �ner meshes.

5.6 Appliation: Transmission tomography

As seond example, we onsider a similar layout as in the previous example, but

for the muh more hallenging ase that measurements are only available at the

right boundary. This is the typial mode for so-alled ross-hole, or transmission

tomography in geophysis, where explosives are plaed in one bore-hole, and

reeivers in a seond hole a ertain distane away.

A sketh of the layout of this example is given in Fig. 5.8. As an abstrat

desription of this situation, we hoose the same domain as in the previous
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Figure 5.8: Transmission tomography. Layout of example.

example, but with homogeneous Neumann boundary onditions at the top to

simulate the free boundary earth surfae. At the left, the soures are rep-

resented by Dirihlet values, and at the right and bottom simple absorbing

boundaries are given again, to indiate that these are arti�ial boundaries. The

measurements are the Neumann values along the right borehole, i.e.

m(u

!

i

� z) =

1

2

k�

n

u

!

i

� zk

2

�

; � = �
 \ fx = 1g:

The goal is the identi�ation of the medium between the two boreholes. As an

idealized situation, we hoose the same oeÆient struture as in the previous

example, i.e. a irular inlusion, but with smaller variation 1 � a � 1:1. The

size of this variation in the oeÆient is ommon for geophysial media. The

setting of this example is omparable to that used by Pratt et al. [55℄, but we

use a signi�antly higher resolution.

For the identi�ation problem, we use 8 loations for soures along the left

borehole, and the frequenies ! = f20; 25; 30; 35g at eah loation, making a

total of 32 experiments.

As pointed out in Setion 5.3, this problem is diÆult sine relatively small

hanges in the oeÆient an shift the phase of the wave at the reeiver positions

by more than half a wavelength, leading to identi�ation of a loal minimum

instead of the global one. Therefore, we start with the onstant value 1:05,

whih is lose enough for the identi�ation proess to �nd the global optimum.

Nevertheless, this initial value does not reveal information about the struture

of the sought oeÆient. The problem is also hallenging sine it is neessary

to solve the state equation to rather high auray.

The results of omputations an be seen in Fig.s 5.9{5.11. In the �rst �gure,

the identi�ed oeÆient is shown. Its struture is learly resolved, although the

vertial extension of the inlusion is not omputed aurately. However, given

the limited amount of information used for the inversion, this resolution is

already very good. Unfortunately, the omputation ould not be extended to

higher numbers of degrees of freedom due to omputational restritions.

In the seond �gure, 5.10, the redution of target funtional J(x

h

) and the

error ka

h

�a

exat

k is shown for the same two re�nement riteria as above, i.e. the
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Figure 5.9: Transmission tomography. Identi�ed oeÆient.

0

10

20

30

40

50

60

70

1e+06 1e+07

J
(x

h
)

Accumulated number of degrees of freedom

DWR estimator
∇

2
λ refinement criterion

0

0.01

0.02

0.03

0.04

0.05

0.06

1e+06 1e+07

||
a

h
-a

e
x
a

c
t|
|

Accumulated number of degrees of freedom

DWR estimator
∇

2
λ refinement criterion
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h
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degrees of freedom of all 24 experiments. Right: Redution of error ka� a

h

k.

weighted error estimate (5.12) and the �

rru

indiator (2.11). Unlike in the

previous appliation, but as for some of the ases disussed in Setion 2.1.3, the

weighted error indiator is not better than the one using seond derivatives of

the Lagrange multiplier. The weighted error estimator even shows an irregular

behavior on oarse grids.

On the other hand, Figure 5.11 shows that estimated and true errors with

respet to the target funtional J(�) oinide almost perfetly and the ratio is

very lose to one, despite the initial irregular behavior of J(x

h

).
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Outlook

Inverse problems assoiated with partial di�erential equations provide plenty of

subjets for researh. EÆient tehniques for adaptivity, error estimation, and

the treatment of bound onstraints have been disussed in this thesis. However,

at least the following three topis for further researh immediately ome to mind

that have not or only briey been touhed in this work:

Unertainty quanti�ation and inversion for probability distributions.

In this work, we have onentrated on solving for one parameter funtion that

best desribes the measured observation. However, this leaves one aspet en-

tirely out of view: measurements are usually noisy, i.e. the measurement we

have used is only one instane of a family of measurements that satisfy a er-

tain probability law. From eah possible noisy measurement there follows an

inverted parameter to whih we assign the same probability that the measure-

ment has from whih it was omputed. The true solution of an inverse problem

would therefore be a probability density in the spae of parameters, i.e. a fun-

tional that assigns eah element of the parameter spae a probability value.

Knowing this probability distribution would give us enormous information.

For example, it would be simple to assess the loal or global resolution, i.e. the

auray with whih the parameter was resolved globally or at ertain points of

the domain. This would be neessary to evaluate the reliability of the solution.

If we are not satis�ed with the resolution, we ould make more experiments.

Knowledge of the probability distribution ould also be used for experimental

design, whih tailors experimental set-ups suh that they yield maximal reso-

lution, again either globally or loally.

The downside, of ourse, is the likewise enormous omplexity of the task.

Little has been ahieved in this �eld sine the inuential book by Tarantola

[63℄ appeared in 1987 and made this aspet of inverse problems available to the

greater publi in applied sienes. In a few approahes (see, for example, Banks

and Bihari [12℄ and Wojtkiewiz et al. [67℄) the measurement spae was sampled

to obtain respetive samples in parameter spae, but by and large probability

density reovery has been avoided for the pratial solution of PDE onstrained

parameter estimation problems.

Truly inverting for the probability density beyond reovering half-widths

in linear least squares problems with Gaussian noise o�ers an exiting �eld of

researh. With the reent advent of massively parallel lusters of workstations,

the neessary omputing power to solve the literally thousands or millions of

forward problems seems already in plae to do this for small problems.
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Optimal hoie of regularization. As O'Leary [52℄ puts it, \hoosing the

regularization parameter is an art based on good heuristis and prior knowl-

edge of the noise in the observation". Although we have negleted this question

entirely in this work, any reliable approah to inversion needs to have an au-

tomati strategy for the seletion of the regularization parameter. A large

number of approahes for this exist, see for example the book by Engl, Hanke

and Neubauer [32℄ on the subjet. However, most of these approahes only

have a theoretial foundation for linear problems and/or require the solution of

a signi�ant number of additional problems, and only few seem to be suited for

the large sale nonlinear problems assoiated with partial di�erential equation.

One an probably say that these strategies have not yet found their way

into the solution of nonlinear PDE onstrained problems and the aspet of

\art" and \heuristis" prevails to date. This alls for further researh in the

�eld. Duality and sensitivity as touhed in this work ould well be one building

blok for approahes for this. In partiular they might help in an extension

where we make the regularization parameter a spae dependent funtion: set it

to a large value where not enough information is available to reover the desired

information, but set it to a small value where we have this information and do

not need muh regularization.

EÆient solution of large sale problems. Compared to some pratial

appliations, the examples in this work are toy problems. Inversion of seismi

data is frequently listed among the most omputationally intensive appliations

presently solved in industry, for a good reason: it usually involves PDEs stated

in three spae and one time dimension, these PDEs are wave equations with high

frequeny solutions and are thus hard to solve, the number of measurements

goes into the thousands, and the required resolution is high. Handling the

amount of data, measurements in the range of many gigabytes, is a hallenge

in itself. The omputational omplexity of this task is not one or two orders of

magnitude away from the examples in this work, but several.

Yet, the programs used in pratie are algorithmially simple. They do not

usually use adaptivity for the solution of the PDE, or inlude error estimation.

They often do not even involve multiple experiment strutures but invert for one

dataset after the other. Combining the algorithms and mathematial methods

of this work with pratial appliations is likely to gain a signi�ant redution

of numerial e�ort, and an inrease in resolving power. However, the expeted

omplexity of suh programs alls for a very areful design that in itself justi�es

researh.

Outlook. It is probably safe to assert that PDE onstrained inverse and op-

timization problems will beome a major subjet of researh in the near future.

Adaptive methods and error estimation will beome as pervasive as they are now

in the numerial solution of partial di�erential equation. Given the hallenges

and the potential pratial appliations, this promises to beome an interesting

�eld!
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