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I follow the Moskva
And down to Gorky Park
Listening to the wind of change

An August summer night
Soldiers passing by
Listening to the wind of change

The world is closing in
And did you ever think
That we could be so close, like brothers

The future’s in the air
I can feel it everywhere
Blowing with the wind of change

Take me to the magic of the moment

On a glory night

Where the children of tomorrow dream away
In the wind of change

Take me to the magic of the moment

On a glory night

Where the children of tomorrow dream away
In the wind of change

The wind of change blows straight
Into the face of time

Like a storm wind that will ring
The freedom bell for peace of mind
Let your balalaika sing

What my guitar wants to say

Scorpions
Wind of Change

This thesis investigates the
non-equilibrium behaviour of
a synthetic physical system created
with the depicted complex machinery,

but the theme of this work is very general.

This theme is to explore, to document,

and to understand change. Change defines history,

captured by this song text during the fall of the Soviet Union, reminding me of how these
events shaped personal lives like my own, and how change defines my research.






Abstract

This thesis presents several experiments investigating the regimes of behaviour of a proto-
typical open quantum many-body system far away from equilibrium. The experimental
platform is based on ultracold atoms laser-excited to Rydberg states, which we engineer to
emulate a strongly interacting, driven-dissipative quantum spin system. The high degree
of control over the relevant microscopic processes and their parameters, as well as the
ability to widely tune interaction and driving strengths provides the means to address
fundamental questions on how different regimes of dynamical behaviour emerge in complex
open quantum systems and how they can be characterised.

In the first part, we discuss how control over the relevant properties of Rydberg spin
systems, like temperature, density, long evolution times, strong interactions, tunable driving,
and dissipation can be achieved. We introduce the new experimental apparatus developed
during this thesis, which combines both single-photon and two-photon Rydberg excitation
schemes with high atom densities and long excitation times using an optical dipole trap.
Additionally, we investigate theoretically how long coherence times exceeding motional
timescales combined with strong many-body interactions can be achieved in such a system.
We identify an optimal parameter regime for two-photon excitation where such conditions
can be generated with coherence times and interaction strengths comparable to what is
achievable for single-photon excitation.

In the second part we explore the macroscopic non-equilibrium behaviour of our system
and devise suitable observables for characterising different regimes of behaviour. We
discover that the slow atom loss inherent to our system provides a convenient observable
for the many-body state of the system. Focussing on evolution times where the effect of
the atom loss on the evolution is small, we discover that the rate of atom loss exhibits
powerlaw scaling with the driving strength over several orders of magnitude. The measured
scaling exponents reveal the non-equilibrium phase structure of the many-body system and
allow us to distinguish dissipation-dominated, paramagnetic and critical regimes, as well
as an instability. In the observed critical regime, collectively enhanced driving dominates
over dissipation, leading to scaling associated to the critical point of the non-dissipative
equilibrium Rydberg spin system. Based on the known microscopic processes of our
system, we perform classical many-body rate equation simulations, which agree well with
the observed phase structure as well as the position and associated scaling exponents of
the individual regimes. These findings open up new means to study and classify out of
equilibrium systems based on slow particle loss and powerlaw scaling.

In the last part of this thesis we reveal a second type of criticality in our system,
which is genuinely non-equilibrium in character and arises from an absorbing state phase
transition. The critical state of this phase transition dominates the system evolution at
late times where particle loss is no longer negligible. We identify self-organisation as the
mechanism driving the system to this critical state, which we observe through powerlaw
scaling of the non-equilibrium steady-state. These experiments establish Rydberg atoms
as a well controlled platform for implementing and exploring models of absorbing state
phase transitions and self-organised criticality with unprecedented access to the underlying
microscopic properties of the system.



Zusammenfassung

Diese Doktorarbeit handelt {iber die experimentelle Untersuchung der Verhaltensbereiche
eines prototypischen offenen Quantensystems weit entfernt vom Gleichgewichtszustand.
Unsere experimentelle Plattform basiert auf ultrakalten Atomen, die mittels Laseranre-
gung an Rydberg-Zustianden gekoppelt werden, um ein stark wechselwirkendes, getrieben-
dissipatives Quantenspinsystem nachzubilden. Der hohe Grad an Kontrolle iiber die
entscheidenden mikroskopischen Prozesse und deren Parameter, sowie die Fahigkeit die
Starke der Wechselwirkung und des Antriebs iiber einen weiten Bereich einzustellen, erlaubt
es uns grundlegende Fragen iiber die Emergenz verschiedener Regime des dynamischen
Verhaltens komplexer Quantensysteme und deren Charakterisierung zu behandeln.

Im ersten Teil erortern wir wie die Kontrolle iiber die entscheidenden Eigenschaften
des Systems wie Temperatur, Dichte, lange Entwicklungszeiten, starke Wechselwirkungen,
stimmbarer Antrieb und Dissipation erreicht werden kann. Wir stellen den Versuchsauf-
bau vor, welcher im Rahmen dieser Doktorarbeit entwickelt wurde und Einzelphoton-
sowie Zweiphotonenanregung mit hohen Atomdichten und langen Anregungszeiten in
einer optischen Dipolfalle kombiniert. Dartiber hinaus untersuchen wir theoretisch, wie
Kohéarenzzeiten langer als typische Bewegungszeitskalen bei gleichzeitig starken Vielteilchen-
wechselwirkungen in solchen Systemen erreicht werden kénnen. Wir identifizieren einen
optimalen Parameterbereich der Zweiphotonenanregung, fiir den solche Bedingungen in
vergleichbarer Stirke zu Einphotonanregung erreicht werden konnen.

Im zweiten Abschnitt erforschen wir das makroskopische Nicht-Gleichgewichtsverhalten
und entwickeln geeignete Observablen um verschiedene Verhaltensbereiche zu charakter-
isieren. Wir beobachten, dass der unserem System inharente langsame Teilchenverlust solch
eine passende Observable bietet, und endecken, dass die Teilchenverlustrate iiber mehrere
Grofenordnungen eine Potenzabhéngigkeit zur Antriebsstérke zeigt. Die gemessenen
Skalierungsexponenten offenbaren die nicht-gleichgewichts Phasenstruktur des Vielteilchen-
systems und erlauben es uns dissipative, paramagnetische und kritische Bereiche sowie
eine Instabilitat zu unterscheiden. In dem beobachteten kritischen Bereich dominiert
kollektiv-verstarkter Antrieb iiber Dissipation, was zu Skalierungsverhalten verbunden
mit dem kritischen Punkt des nicht-dissipativen Gleichgewichtssystems fiihrt. Basierend
auf den bekannten mikroskopischen Vorgéingen fithren wir Simulationen mit klassischen
Vielteilchen-Ratengleichung durch, welche in guter Ubereinstimmung mit der beobachteten
Phasenstruktur wie auch mit der Position und den Skalierungsexponenten der einzelnen
Bereiche sind. Unsere Resultate er6ffnen neue Moglichkeiten zur Untersuchung und Klassi-
fikation von Nicht-Gleichgewichtssystemen basierend auf langsamem Teilchenverlust und
Skalierungsverhalten.

Im letzten Teil dieser Arbeit decken wir einen zweiten Typ kritischen Verhaltens auf,
welcher einen originaren Nicht-Gleichgewichts-Charakter hat und von einem absorbierenden
Phasentiibergang herriihrt. Der kritische Zustand dieses Phaseniibergangs beherrscht die
Systementwicklung zu Zeiten, bei denen der Teilchenverlust nicht vernachlassigbar ist.
Wir bestimmen Selbstorganisation als den verantwortlichen Mechanismus, welcher das
System in diesen kritischen Zustand treibt, was wir durch die Potenzabhéngigkeit des Nicht-
Gleichgewichts-Stationarzustands beobachten. Diese Experimente etablieren Rydberg-
Atome als eine wohl-kontrollierte Plattform zur Erforschung von Modellen absorbierender
Phaseniibergange und selbstorganisierter Kritikalitdt mit beispiellosem Zugang zu den
zugrundeliegenden mikroskopischen Eigenschaften des Systems.
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Many-body physics far away from
equilibrium

“All happy families are alike; each unhappy family is unhappy in its own way.”
Leo Tolstoy, Anna Karenina

“To paraphrase Leo Tolstoy’s quote about happy and unhappy families, all forms of
equilibrium matter are alike whereas every form of non-equilibrium matter seemingly
behaves in its own way.”

Victor Gurarie, Quantum Phase Transitions Go Dynamical [1]

It is one of the most astonishing and fundamental phenomena in nature that an aggrega-
tion of many relatively simple interacting objects, i.e. a many-body system, can develop
complex structures characterised by behaviour quite distinct from that of the individual
object. This notion was perhaps captured most eloquently and famously by the condensed
matter physicist Philip Anderson, who summarily declared “more is different!” [2] In his
seminal work Anderson observed that new levels of complexity emerge on all scales of
nature, each characterised by distinct properties which often are almost intractable to
describe from fundamental principles. [3, 4, 5] For example, the shape and stability of
atomic nuclei is very difficult to predict from the fundamental interaction properties of
protons and neutrons [6, 7]. Turning to larger scales, the structure and intricate folding of
proteins are not obviously given by the bound atoms [8]; and again on an entirely different
scale, living organisms rely on complex self-regulating and self-organising mechanisms
to maintain their function and to maintain life [9], which goes far beyond a mere soup
of complex molecules [10]. Also in physical systems an overwhelming range of complex
many-body phenomena has been uncovered and studied. Illustrative examples are the
versatile phases and properties of materials, e.g. of semiconductors or glasses [11], as well
as the crossing of phase transitions between different phases. In dynamically evolving
systems, one investigates for example the different regimes of turbulence in fluid flow, or
the spontaneous formation of intricate patterns like in snowflakes [5]. Even the universe
itself is well known to be organised in a hierarchy of complex structures ranging from
stellar systems and galaxies to galaxy clusters and super-clusters [12, 13].

A unifying property of many of these complex systems is that they are evolving in
time, which can be observed for example by the motion of objects resulting in transport
and currents and the formation of new structures in time. Such systems are not at rest,
because the external forces acting on them are unbalanced, giving rise to a dynamical system
evolution. This condition of a system is called non-equilibrium. This certainly applies to the
universe as a whole, which is packed full with complex structures and is still very young on
the timescale of the lifetime of stars like the sun, and therefore out of equilibrium ever since
its volatile big bang creation. [5] It should not be a surprise then that most subsystems of the



1 Many-body physics far away from equilibrium

universe, including our daily environment and physical systems, also are out of equilibrium
typically. It should also not be a surprise that big branches of sciences are bent on analysing,
predicting and modelling properties of complex non-equilibrium systems, including those
mentioned above. However, strong quantitative measurements or predictions are often
hard to obtain for “natural” systems, since it usually is not possible to directly access
or manipulate the individual constituents or important system parameters, or to repeat
an experiment. Many “natural” systems are also highly interconnected and governed
by many different processes and system parameters, making their investigation even
more difficult. Furthermore, unlike in equilibrium settings there is no unifying statistical
framework for non-equilibrium settings available, inhibiting general predictions [14]. For
these reasons it is typically very difficult, requiring extensive numerical and computational
efforts, to establish quantitative connections between the microscopic details governing
a non-equilibrium system and the observed complex macroscopic behaviour, as well as
between theory predictions and experimental measurements.

To address questions like, on what microscopic details does complex and non-equilibrium
macroscopic behaviour depend, what are the regimes of qualitatively different behaviour,
or how this behaviour changes with the various parameters characterising a system, one
can study artificial laboratory systems, which are simpler than “natural” systems, but still
truly complex many-body systems. Such laboratory systems can for example be isolated
from many environmental influences, have controllable system parameters, can be probed
repeatedly, and have known microscopic details allowing for model descriptions. Especially
physical phenomena can be isolated and studied that way, since they often are based on
rather simple, inanimate and well-controllable constituents. One class of systems, which
in the last decade have developed into a versatile testbed for non-equilibrium physics,
are synthetic quantum platforms. These systems can, in general, be isolated from most
environment couplings, have known and controllable microscopic details, have diverse
means for manipulation and measurement, and their model description is founded on
quantum mechanical principles. Furthermore, they can be used to study both classical
(for strong dephasing of quantum mechanical coherences) and quantum non-equilibrium
phenomena. However, a full theoretical prediction of the macroscopic behaviour of quantum
many-body systems typically is impossible, such that experiments on quantum systems are
a vital tool for advancing our understanding of complex many-body systems.

In this thesis, we will explore the non-equilibrium behaviour of a prototypical open
quantum spin system, which is based on an experiment employing ultracold atoms laser-
excited to Rydberg states. It is governed by strong interactions, external driving and
dissipation, making its evolution genuinely non-equilibrium. We will experimentally explore
the non-equilibrium dynamics of our system, map out its phase structure of non-equilibrium
behaviour, and qualitatively and quantitatively elucidate the mechanisms leading to the
observed many-body behaviour.

In this chapter we will summarise general characteristics of non-equilibrium conditions
and discuss how non-equilibrium conditions can in general lead to the dynamical formation
of complex many-body behaviour. We will furthermore highlight a selection of physical
phenomena arising under non-equilibrium conditions, including turbulence, thermalisation,
and non-equilibrium phase transitions. Thereafter we will outline a range of synthetic
quantum platforms which are used to explore non-equilibrium physics. From these, we will
introduce our platform of ultracold atoms driven to Rydberg states in more detail. Finally,
this chapter will conclude by presenting an outline of the work presented in this thesis.



1.1 Complexity in non-equilibrium conditions

1.1 Complexity in non-equilibrium conditions

Systems in nature as well as artificial systems in the laboratory typically are open and
in contact with an environment of one or several reservoirs, with whom the system will
exchange energy, particles, or other conserved quantities. These couplings act on the
microscopic level of many-body systems, but may drive macroscopic currents through
the system which lead to a dynamical evolution. Such internal currents can be electric
conduction, the flow of liquid media or the transport of excitation to name a few. Such non-
equilibrium behaviour corresponds to finite probability currents between microstates, i.e.
the microscopic configurations of the system, which is called broken detailed balance [14].
The probability currents between microstates are driven by free energy provided by the
couplings to external reservoirs, such that the macroscopic entropy of a non-equilibrium
system is not maximal and the macroscopic temporal evolution is in general not reversible.

Equilibrium arises naturally from non-equilibrium conditions through thermalisation in
the limit that all currents of exchange with the environment, and all internal currents of
the system have decayed. Typically, the internal currents characterising non-equilibrium
lead to dissipation of free energy and to the relaxation towards equilibrium, such that
in the thermodynamic limit, i.e. for systems with many degrees of freedom, fluctuations
between microstates are marginal. In this case the system is said to obey detailed balance.
Figure 1.1 illustrates the differences between a system at equilibrium and a system out of
equilibrium, where equilibrium essentially is the situation where nothing changes, while
away from equilibrium various processes happen, e.g. converting potential energy into fluid
flow, into electric current, into marvellous new things like chocolate.

At equilibrium, statistical mechanics provides powerful tools connecting the probability
distribution of microstates with the macroscopic properties of the system [15]. Away
from equilibrium, the probability distribution may be dynamical, allowing for complexity,
but no unifying, generally valid formalism has been found yet to describe the behaviour
of such systems. Instead, case-specific master equations may be employed to describe
the probability distribution of the microstates [14], highlighting that typically no non-
equilibrium phenomenon is like the other. Thus investigating and classifying non-equilibrium
behaviour poses a challenging research frontier both for experiment and theory.

The state and dynamical evolution of a non-equilibrium many-body system depends
on a variety of system parameters, for example the interactions between the constituents,
the couplings to the environment and the initial conditions. The environmental couplings
can be distinguished between those that drive redistribution currents by adding energy or
particles, and such couplings that dissipate energy or particles. Typical driving scenarios
resulting in non-equilibrium behaviour are potential gradients or quenches of a potential,
while typical dissipation mechanisms are friction, diffusion and the spontaneous emission
of radiation. Dissipative processes can be conserving (e.g. diffusion) or non-conserving
(e.g. spontaneous emission). In laboratory systems, desired coupling and interaction
strengths are free tuning parameters or may even be engineered, the initial conditions
may be controlled, and the system may also be isolated against undesired environment
couplings. The routinely achieved high degree of control over synthetic open systems and
their flexibility make them an ideal platform for studying non-equilibrium behaviour. In
the next section we will introduce a selection of such phenomena which can be realised
and studied in laboratory experiments.
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1.2 Complex phenomena in non-equilibrium physics

Non-equilibrium phenomena can be categorised broadly into two different classes [16, 5]:
On the one hand there are phenomena driven by a continuous injection and loss of energy
or particles, such that the state of the system is maintained away from equilibrium. On the
other hand a system can be brought out of equilibrium by a quench, i.e. changes in system
parameters effected by the environment, with subsequent relaxation to a new equilibrium
state, called thermalisation. In the following we will give a range of examples for both
cases, demonstrating the wealth of non-equilibrium phenomena in physics.

The exact process of how a system reaches its thermal steady state remains a very active
field of research. One example is fluid flow, where the relaxation dynamics of both quantum
and classical fluids may be governed by turbulent flow due to the competition between
driving and dissipation (here friction due to the finite viscosity of the fluid). Understanding
turbulence in classical fluids, for example the transition from laminar flow to turbulence,
remains a challenging problem in classical physics [17, 18] with tremendous applications
for instance in atmospheric physics, the formation of stellar systems and engineering.
Another example are material properties after rapid quenches. By way of supercooling
of liquids, i.e. the abrupt reduction of temperature, a liquid can be brought into an
amorphous aggregate state, the glass phase, instead of a crystalline phase [11, 19]. Closely
connected to the glass transitions are (physical) ageing phenomena, i.e. extremely slow
relaxation dynamics in the glass state, which shows universal non-equilibrium properties
of the dynamical evolution [20, 19, 21, 22]. In quantum systems, prethermal fixed points

(a) Equilibrium (b) Non-equilibrium

Figure 1.1: Equilibrium versus non-equilibrium, illustrated by a simple water-flow system. At
equilibrium (a) there is no external driving mechanism and the water surface becomes balanced
and flat representing detailed balance. Only out-of-equilibrium (b) water is driven to flow from the
top reservoir to the bottom by gravity. This water flow represents the internal probability currents
characterising a non-equilibrium system. This flow may drive other processes, like the water wheel
and the fountain. It can also lead to an exchange of particles or energy with other adjacent systems,
which we illustrate by the conversion of potential energy into an electric current, which again may
drive machines producing the products our societies rely on. In all these non-equilibrium processes
energy is dissipated, which we illustrate as the steam emitted by the factory chimneys.
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have been revealed to govern thermalisation [23, 24, 25, 26, 27, 28]. A further type of
non-equilibrium phenomena has been observed in artificial isolated quantum systems after a
quench, so called dynamical phase transitions [1, 29, 30]. Here, the redistribution dynamics
between eigenstates of the underlying Hamiltonian [31] shows non-analyticities signifying
an abrupt change in system behaviour. Dynamical phase transitions were first observed
in [31, 32] for chains of trapped ions emulating a transverse-field Ising model.

Continuously driven systems do not thermalise to an equilibrium state, since detailed
balance is broken for all times, but may relax to a non-equilibrium steady state which
characterises the system. For example, the transport of both non-interacting classical or
quantum waves can reach distinctly non-equilibrium steady states in the presence of a
disordered medium, where interference leads to the absence of diffusion. This phenomenon
is called Anderson localisation [33], which has been studied for example with light [34, 35]
and matter waves [36, 37]. An analogue to Anderson localisation exists for interacting
quantum many-body systems, called many-body localisation [38, 39, 40, 41], where an
isolated disordered quantum system fails to thermalise in the presence of strong interactions
and instead retains some memory of its initial conditions. Building on this effect, isolated
quantum systems with periodic driving have been shown to have periodic order and
broken symmetry in time, an effect termed discrete time crystal [42, 43]. Further types
of continuously driven systems showing non-equilibrium behaviour are driven-dissipative
systems, with well-known phenomena being lasing and superradiance. The working
principle of lasing is based on population inversion of a gain medium by an external pump,
such that stimulated emission of electromagnetic radiation can lead to amplification of
directed coherent light [44]. Superradiance is a non-equilibrium phenomenon in quantum
optics, where collective coherent interaction of many emitters with a common light field
leads to amplified spontaneous emission [45, 46, 47]. As a last typical phenomenon in
continuously driven-dissipative systems we would like to introduce pattern formation and
self-organisation [5], with well-known examples being the aforementioned turbulence in
fluid convection, growth of snowflakes in supersaturated water vapours, solitonic waves
and many others.

Phase transitions are manifestations of complexity which are of special importance in
physics. Although mostly studied in the thermal equilibrium limit, they nonetheless require
external control to tune system parameters to the critical point of a phase transition, or
to quench the state of a system across a phase transition as discussed above. We also
introduced phase transitions which are genuinely non-equilibrium in nature. Among these,
non-equilibrium phase transitions characterised by absorbing states are an important class
so far unmentioned, which have been conjectured as a mechanism governing the behaviour
of many natural and artificial systems, including the system of Rydberg atoms studied in
this thesis [48, 49, 50, 51]. Therefore we will in the following introduce the notion of phase
transitions and their characteristic critical states in general, as well as of absorbing state
phase transitions specifically.

1.2.1 Phase transitions and critical states

Different phases of matter are characterised by their respective distinct behaviour, which is
typically described by an order parameter. If the behaviour of a system changes abruptly
from one phase to another at a specific point of a system parameter, one speaks of a
phase transition. At the phase transition, the order parameter is non-analytic [14]. One
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distinguishes two types of phase transitions. First order phase transitions require the
absorption or emission of a fixed energy density resulting in the coexistence of mixed
phases at the phase transition and hysteresis effects upon dynamical crossing. Typical
examples are boiling (condensation) of water and melting (freezing) of ice, but also the
quantum Ising model with antiferromagnetic interactions in a longitudinal field, which
shows a first order phase transition from antiferromagnetic to ferromagnetic order [52].
Second order phase transitions show a continuous transition of the entire system without
phase coexistence, such that the phase transition is pinned to a singular point, the so called
critical point, of a system parameter. Also second order phase transitions are abundant in
nature with critical opalescence in alcohol-water mixtures, the liquid-gas transition at the
critical temperature or the classical ferromagnetic Ising model at the critical temperature.

Second order phase transitions have been most intensely studied in equilibrium settings
and have been shown to arise from dynamically formed long-range correlations which
diverge at criticality. This has fundamental implications for the critical system, since at the
critical point fluctuations dominate over microscopic details on all scales: The susceptibility
to an external conjugate field diverges at the critical point, to which there is no analogous
quantity in a first order phase transition [53|. In the vicinity of the critical point, all system
properties and observables obey scale invariance and thus are given by power laws. It
is this scale invariance which makes critical phenomena unique in nature and intensely
investigated. Crucially, it renders the critical system independent of its microscopic details,
a property called universality. Then only a few scaling exponents suffice to characterise
the phase transition, which only depend on the number of spatial dimensions, the number
of components of the order parameter and the symmetries of the interaction. This implies
that totally unrelated systems can show identical critical behaviour, it is then said that
they fall into the same universality class. A celebrated example of universality is the Ising
universality class [54] encompassing both the aforementioned classical ferromagnetic Ising
model and the critical liquid to gas transition.

It may seem surprising that the given phenomenological definition of a phase transition
also applies away from equilibrium [55]. Even though detailed balance is broken, concepts
like criticality, diverging fluctuations and universality hold nonetheless. A well known class
of non-equilibrium critical behaviour in driven-dissipative systems are the absorbing-state
phase transitions, which we will discuss in the following.

1.2.2 Absorbing state phase transitions

A second order non-equilibrium phase transition between an absorbing and an active phase
is called an absorbing state phase transition. The active phase is characterised by sustained
dynamical evolution at all times and finite fluctuations of the local order parameter, while
the absorbing phase is governed by a set of microstates at which the evolution stops and
all fluctuations freeze out fully. Such a state can not be left again by the system and
is therefore also called inactive. [14] In many systems, this macroscopic irreversibility
of the system evolution arises directly from irreversible microscopic dynamics. Typical
microscopic processes leading to absorbing states distinguish between active and inactive
states of a lattice site. To give an example, we will focus on driven-dissipative processes
illustrated in Figure 1.2(a). Here, external driving causes active sites to spread by flipping
an inactive site next to an active one to active also (branching), or leads to the inverse
process (coalescence). Dissipation, here in the form of decay of active sites to inactive,
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Figure 1.2: Example of an absorbing state phase transition. Here, the medium consists of a
regular lattice of sites which are either in a low energy state called inactive (e.g. unoccupied or
unexcited) represented by small blue circles, or in a high energy state called active (e.g. occupied
or excited) represented by large orange spheres. The state of the system evolves stochastically via
the microscopic rules depicted in panel (a). A high energy state may decay spontaneously, but
the inverse process is forbidden. Importantly, this encodes irreversibility of time microscopically.
Furthermore, active sites may spread to nearest neighbours (branching) or recombine (coalescence).
Panel (b) illustrates one possible evolution scenario where the system was initialised with one active
seed, leading to spreading of activity for intermediate times. But eventually the system decays fully
into the absorbing state, which can not be left by the rules of panel (a). At long times, the system
is characterised by a non-equilibrium steady-state with an active density p, depicted in panel (c). p
is the order parameter of the system, showing a second order phase transition between inactive and
active phases.

break time reversal symmetry explicitly, giving rise to genuinely non-equilibrium dynamics.
A system in the absorbing state can not leave this state by the given microscopic rules,
making absorbing states non-fluctuating, as is illustrated by the example evolution depicted
in Figure 1.2(b). The phase transition is characterised by the density of active sites, which
in the late time limit is zero in the inactive phase and finite in the active phase (Fig. 1.2(c)).
The competition between driving and decay rates is a tuning parameter of the system,
which has to be adjusted precisely to reach the critical transition value.

Maybe the most intensely studied class of absorbing state phase transitions is the directed
percolation (DP) universality class. A large variety of systems are thought to fall into this
class, e.g. catalytic reactions, granular flow, calcium dynamics in cells, turbulence and
others. [14] Also the processes illustrated in Figure 1.2 lead to directed percolation. Most
research in the field of absorbing state phase transitions has focussed on theoretical model
systems, while only very few successful implementations in experiments exist. In the case
of directed percolation, only very recently an experiment on turbulent liquid crystals [56]
and two on turbulent channel flow [57, 58] were able to demonstrate that these systems
both fall into the DP universality class. Research on absorbing state phase transition has
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been exclusively focussed on classical dynamics, with extensions to coherent evolution
recently considered in [50] and potentially enabled by modern synthetic-quantum-systems
experiments. For an experimental platform based on Rydberg atoms an absorbing state
phase transition was recently reported in [48].

Extending the processes of absorbing state phase transitions to open systems including
external particle loss and particle addition leads to completely new behaviour and in
specific limits to self-organised criticality (SOC). Here, the system drives itself, via particle
exchange with the external reservoir, to the critical state of the absorbing state phase
transition, such that no fine tuning of system parameters is required for the system to
be critical. Pure self-organised criticality arises in a double limit of infinitely separated
time scales, where the external dynamics is infinitely slower than the internal dynamics
and the particle loading is infinitely slower than the particle loss.! Then on all time
scales particle loading will increase the total population density n of an absorbing state
(Oyn > 0) till the critical population is reached and the system becomes active, while the
particle loss decreases the overall population density in the active state (9yn < 0) till
the system becomes subcritical. Therefore the particle density in the non-equilibrium
steady-state is independent of the initial state of the system and independent of the system
parameters. The state of the system fluctuates around the critical state which was reached
by a self-organisation process. Thus the critical point is an attractor of the evolution. This
self-organised criticality is characterised by internal redistribution avalanches with powerlaw
distribution. The avalanche dynamics is critical in the sense that it shows self-similarity
between small and large scales and that the average avalanche size diverges for infinitely
large systems [59].

SOC has been conjectured as one possible fundamental mechanism behind the observed
abundance of natural phenomena with apparent powerlaw distributed behaviour ranging
from the activity in electrical circuits [60, 61], neural networks [62] and stock markets [59],
to the distribution of avalanches and earthquakes [63], and to the spread of diseases [64],
forest fires [65], or even how ideas spread across social networks [66]. SOC has for example
been observed in rice piles [67], vortex avalanches in type-II superconductors [68] and
neuronal spike avalanches in brains [69, 70]. In many of these cases the scientific debate is
ongoing whether the considered systems show true SOC [71, 72], especially if the internal
driven-dissipative dynamics violates local energy conservation [73, 69, 71], or whether SOC
is sufficient as a mechanism to lead to observed powerlaw distributions across many orders
of magnitude in system parameters [72]. Since many well studied theoretical models apply
to systems where direct laboratory experiments are difficult, like earthquakes or epidemics,
great importance comes to clean experimental analogues to address the unresolved questions
in new ways.

In the next section we will introduce synthetic quantum systems as novel platforms
where non-equilibrium behaviour may be observed in the quantum realm, but also in the
classical limit. Due to their high degree of isolation, control and engineerability these
platforms open up new paths to address fundamental questions in non-equilibrium physics
and to establish quantitative links between experiments and theory models.

'For loading rate a — 0" and loss rate b — 07 we require a/b — 0, such that loading effectively only
happens after all activity has stopped. If the limits are only realised approximately a finite cut-off time
scale emerges.
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1.3 Experimental approaches to non-equilibrium physics based
on synthetic quantum systems

In the last decade a new kind of laboratory systems has evolved which are genuinely non-
equilibrium. Broadly speaking, these are synthetic open quantum systems characterised by
external driving, dissipation and many-body interactions. The strength of the quantum
approach lies in the ability to isolate a tailored state-space with well-known microscopic
processes such that accurate models can be formulated. Even more, a variety of tools
allows experimentalists to engineer a variety of macroscopic and microscopic system
properties like the geometry, dimensionality and (dis)order, interactions, driving and also
dissipation. [24, 74, 75, 76|

Synthetic open quantum systems study for example crystals of laser cooled ions [77, 78,
79, 74, 80], which have been employed to reveal the aforementioned time crystals [43] and
dynamical quantum phase transition [31, 32] and are for example well suited to create
engineered baths interacting with a system in open system quantum simulations [74, 77].
A complementary approach for open-system quantum simulation are superconducting
circuits [81, 82, 83]. In yet another approach, resonator cavities can be utilised to shape
properties of constituents, especially of driving and dissipation. Driven-dissipative Bose
Einstein condensates have been created as exciton-polariton condensates in semiconductor
microcavities [84, 85, 86, 87] and with photons in dye-filled microcavities [88, 89], where
the short lifetime of the created quasiparticles leads to a competition between many-
body coherence and dissipation. Also ultracold atoms in an optical cavity have been
studied [90, 91, 92], where the resonator mediates both an open driven environment and
controllable long-range interactions, such that the system emulates for example the non-
equilibrium phase transition of the quantum Dicke model. Ultracold atoms can also be
engineered to exhibit long-range interactions by laser-coupling to highly excited atomic
states, so called Rydberg states. This is the approach explored in this thesis, which we will
introduce in more detail in the next section.

1.4 Driven-dissipative Rydberg systems

The platform used in our experiments is a laser driven ensemble of Rydberg atoms [93,
74, 94, 95, 96, 97], which are intrinsically driven-dissipative systems [98]. Atoms excited
to Rydberg states, i.e. highly excited atomic states, provide exaggerated interaction
properties which are both strong and long-range in character. These interaction properties
alone have opened many interesting research avenues in the past, ranging from many-
body interaction effects like Rydberg blockade [99, 100, 101, 102, 103], exotic quantum
phases [104, 105, 106, 107, 108, 109] and ultracold chemistry [110] over quantum non-linear
optics [111] and quantum simulation [112, 113] to strongly correlated plasmas [114, 115].
Furthermore, driving and dissipation very naturally arise from the driving of the atomic
transition and the finite lifetime of the excited Rydberg states, respectively, making the
Rydberg approach a fantastic testbed for non-equilibrium physics.

Ultracold Rydberg atoms fulfil all the criteria for artificial laboratory experiments
studying non-equilibrium physics highlighted at the beginning of this chapter. They
achieve a high degree of isolation from the thermal environment and isolate an engineered
state space with well-known microscopic properties. Interactions, driving and dissipation,
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which govern the non-equilibrium dynamics on a microscopic level, can be manipulated by
the experimentalist and can be described within the framework of the quantum master
equation. Thus it is possible to uncover connections between the microscopic details of
the system and observed behaviour on the macroscopic level. Furthermore, the required
experimental tools, like laser and vacuum systems, and techniques, like the preparation of
ultracold atom clouds and the measurement of suitable observables, are well developed
and documented. [96, 97, 112, 74] Using ultracold atom gases coupled to Rydberg states, a
range of non-equilibrium phenomena has already been studied in experiment and theory.
These include their driven-dissipative dynamics [116, 117, 98, 118, 119, 120], aggregate
formation [121, 122, 123], optical bistability [124, 125, 126, 127, 128, 129] and energy
transport [130, 131]. Also signatures of an absorbing state phase transition have been
reported in [48, 51]. However, the emerging non-equilibrium properties of Rydberg systems
due to the competition between external driving, dissipation and many-body interactions
remain subject of ongoing research, where for example the behaviour of mesoscopic
systems [116] or the phase structure of classical disordered clouds [48, 117], of lattice
geometries [132, 133] and of quantum degenerate clouds [134] has been examined. Hot
topics are, for example, the nature of the non-equilibrium quantum states in the presence of
dissipation [50, 135, 51, 133], the existence of metastable or bistable states [126, 127, 124],
or the possibility to create novel phases of matter based on soft-core interactions [104, 136,
137, 138].

1.5 Outline of this thesis

In this thesis we will discuss and explore the emerging non-equilibrium behaviour of a
prototypical open many-body spin system both in experiment and in theory. Based on our
discussion of the general properties of complex structures and of non-equilibrium physics,
we formulate two guiding questions along which we will develop our investigations:

How can the dynamics and phase structure of a non-equilibrium system be
measured and characterised?

How do the dynamics and phase structure emerge from the microscopic pro-
cesses of the many-body system?

To address these questions, we have designed a new experimental apparatus for creating
open quantum spin systems, devised suitable experimental observables for assessing its
non-equilibrium behaviour, and employed suitable models to describe the macroscopic
experimental observations microscopically. In the following, we will outline the different
parts of this work and their key results.

The work and the findings presented in this thesis are based on the experimental platform
introduced in chapter 2, which was developed and set up as part of my doctoral studies.
Our setup comprises clouds of ultracold 3°K atoms laser excited to Rydberg states, which
endow the atoms with strong many-body interactions and dissipation. By preparing this
system in ultra-high vacuum conditions it is essentially isolated from coupling to the
room-temperature environment (except for blackbody radiation), such that the coherent
laser excitation can isolate a two-level quantum system within the electronic level structure
of an atom. In this chapter we will introduce the necessary experimental machinery to
efficiently create and control ultracold atoms, which comprises a 2D-MOT as an atom
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source, a 3D-MOT, a gray molasses stage for cooling to ultracold temperatures, and an
optical dipole trap to suspend the atom cloud inside the vacuum chamber. Our setup
allows for long interrogation times, which we will explore up to hundreds of milliseconds,
much longer than the typical lifetime of excited Rydberg states. The key features of our
experimental apparatus are complemented by versatile laser sources for Rydberg excitation,
comprising both two-photon and single-photon excitation with strong driving strengths
between ground and Rydberg states. In our experiment, important system parameters of
the driven-dissipative Rydberg gases can be controlled and manipulated. Specifically, the
interaction strength can be controlled by the atom density and the addressed Rydberg state,
and the driving properties can be tuned by the strength and detuning of the excitation
lasers. In combination, the achieved high degree of control and tunability make our
experiments well-suited to experimentally studying emerging many-body behaviour far
from equilibrium.

In chapter 3 we introduce the quantum spin system emulated by the Rydberg atoms in
our experiments. We will show that the laser driving isolates a two-level quantum system
in each atom, the effective spin-1/2, which comprises the atomic ground and the Rydberg
states. Thereafter we will discuss how the driving, interactions and dissipation processes
arise, which govern the effective spin system at the microscopic level, and introduce the
quantum master equation describing the system. Our elaborations will also encompass
particle loss inherent to our system, which can lead to non-Markovian feedback at late times
compared to the effective inverse particle loss rate. Based on this understanding of the
microscopic system details, we will discuss emerging many-body properties of Rydberg spin
systems, which arise from the competition between interactions, driving and dissipation.
These include collective blockade, facilitation dynamics, the equilibrium phase structure
and Rydberg dressing. We will also develop approximate models, which will allow us
to efficiently describe our experiments on a microscopic level. This will allow us in the
following chapter to bridge the gap between macroscopic observations in the experiment
and microscopic system properties, and to characterise the observed phase structure and
many-body dynamics.

Chapter 4 will focus on the microscopic processes of the interacting Rydberg spin system
and explore ways to control the dissipation of the system and to create many-body systems
with long phase coherence times and strong pair-interactions at the same time. The
investigated approach will be based on weak Rydberg dressing with large laser detunings,
which we study self-consistently with the previously introduced quantum master equation.
We will employ this framework to search for suitable dressing conditions with coherence
times longer than motional timescales in two-photon dressing comparable to single-photon
dressing. This is of specific interest to our experiments, since we are able to utilise both
excitation schemes. Our studies will reveal a parameter regime of two-photon dressing,
based on cooperative, multiphoton resonances, where two-photon dressing may work
effectively.

In chapter 5 we will turn to investigate the macroscopic non-equilibrium behaviour of
driven-dissipative Rydberg spin systems, tackling the first guiding question. Investigating
the dynamical evolution of the system on timescales where the particle loss acts as a small
perturbation to the many-body spin-1/2 system, we will find that dissipation itself provides
a powerful tool for characterising the macroscopic behaviour, which we will observe as a loss
of population. By measuring atom loss over orders of magnitude in driving strength and
detuning, we will be able to uncover scaling properties of the system, which will provide us
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with an emergent observable of the non-equilibrium phase structure. We will demonstrate
that, depending on the relative strength of driving, dissipation and interactions, our system
shows different regimes of non-equilibrium behaviour with clearly distinguishable scaling
exponents, which include a dissipation-dominated and a paramagnetic regime dominated
by the detuning of the driving field, as well as a critical and an unstable regime. Combining
experimental observation and the theoretical tools developed in chapter 3, we will address
the second guiding question and elucidate the mechanisms leading to the observed many-
body regimes. We will show that the instability originates from facilitation dynamics
competing with decay of excited Rydberg states, and that the critical regime arises from
a quantum critical point of the non-dissipative equilibrium Rydberg spin system. This
demonstrates that the complex non-equilibrium behaviour of Rydberg spin systems is
governed by bot equilibrium and non-equilibrium properties.

Chapter 6 will then focus on driving regimes with large laser detunings and strong
Rydberg facilitation, and explore the resulting non-equilibrium dynamics on all timescales.
At weak driving below the instability we will observe that the paramagnetic regime persists
on all timescales. At late times and strong driving above the instability, we will find that
the system is characterised by a non-equilibrium steady state with finite atom density,
despite the particle loss inherent to our system. We will observe that the steady state
density is independent of the initial density and that it follows a powerlaw with the driving
strength. These characteristics of the late time phase structure, together with a separation
in time scales between the facilitation dynamics and all other processes, will lead us to
identify self-organised criticality as a mechanism at work in our system leading to the
emergence of genuinely non-equilibrium critical behaviour.

Finally, chapter 7 summarises the main results of the work presented in this thesis and
gives an outlook onto possible ramifications of our findings.

12



Development of a new
experiment for non-equilibrium
physics using Rydberg atoms

To study the dynamical evolution and phase structure of any system in an experiment
requires a high degree of sophistication regarding control over microscopic processes as
well as strategies of measurement and characterisation. Only then may one hope to gain
insight into the mechanisms linking microscopic processes to the observed macroscopic
phase structure and dynamics. As we have demonstrated in section 1.3, synthetic quantum
systems are established model systems for far-from-equilibrium many-body physics. Their
strength lies in isolating a designed quantum state space with well defined couplings to
external environments, for which desired properties can be engineered. Therefore synthetic
quantum systems provide a high degree of control over initial states and widely tunable
system properties such as interactions and environmental couplings. This thesis is based on
the experimental realisation and investigating of driven-dissipative Rydberg spin systems.
At the beginning of my doctoral studies we developed and build a new experimental
apparatus tailored to this task, which will be introduced in this chapter.

Our experiments utilize clouds of ultracold 3K atoms, which are to a large degree
thermally isolated from the environment and suspended in an optical dipole trap. We
use laser excitation to strongly-interacting Rydberg states with a finite lifetime to create
strongly-interacting driven-dissipative spin systems. The non-equilibrium dynamics of our
system is ruled by external laser driving (strength 2 and detuning A), dissipation due to
decay of the excited states and the dephasing induced e.g. by the finite laser linewidth
(strengths T' and ~ge respectively) and atomic motion, and van der Waals interactions
between excited states (strength Cg/R® and atom density ng). A convenient parameter
to characterise the strength of van der Waals interactions between neighbouring Rydberg
excitations is J = Cgno?. In this chapter we will focus on how these microscopic processes
are implemented and controlled in our experiment, and how the thermally isolated quantum
system is created. For the quantum mechanical description of our system based on its
atmoic details we refer to chapter 3. In the following, we will first summarise the criteria
we applied to design our apparatus and to tailor its properties to study non-equilibrium
phenomena. In section 2.2 we then discuss the creation and isolation of the atomic medium,
and section 2.3 focuses on out implementation id one and two-photon laser driving to
Rydberg states.

2.1 Design of the ultracold atoms experiment

The experiments carried out in this thesis rely on a completely new apparatus which
was designed and set-up during the first half of my thesis work with the purpose of
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studying non-equilibrium dynamics and relaxation of strongly-interacting many-body
systems. Specifically, the following design criteria were applied:

Near-complete isolation from the thermal environment: In ultracold atom ex-
periments, a cloud of ultracold atoms is created, which initialises all atoms in the atomic
ground state such that specific desired electronic states can be addressed subsequently.
This approach requires a near-total isolation from the thermal atmosphere, which can be
achieved by placing the experiments inside an ultrahigh-vacuum apparatus. The atoms are
cooled and suspended by a series of magneto-optical and optical traps inside the vacuum
system, such that any contact with thermal surfaces is impossible. The only remaining
thermal coupling to the external environment is via blackbody radiation, which leads to an
important decay mechanism of Rydberg states. For Rydberg states with principle quantum
numbers n 2 30, as will be used in this thesis, blackbody induced decay dominates over
spontaneous decay, with typical total decay rates I'/27 < 1kHz.

Strong and tunable driving to Rydberg states: The internal state of the atoms will
be manipulated with laser light, thereby driving the whole system away from equilibrium.
The driving strength and detuning are key parameters determining the evolution of the
system and will be essential tuning knobs for driving the system to different regimes of
behaviour. Therefore, these parameters should be tunable over several orders of magnitude.
We envisage studying regimes both on resonance and far from resonance, as well as strong
and weak driving regimes. For the latter, driving should at least compete with dissipation
and dephasing ) ~ I' 4+ 74, which will be on the order of 100 kHz.

Good optical access: To manipulate matter with laser light is the core capability of
our experiments. Initially hot atoms are cooled by the momentum recoil of impinging
directed laser light and the geometry of the final cloud is determined solely by the shape
and structure of the optical dipole trap used to suspend the atoms. The thus created
ultracold atom cloud will thereafter be addressed for state manipulation by further laser
beams and in the end the cloud will be imaged using again an extra laser beam and
high-resolution optics. It is essential for the success of our experiments to accommodate
all of these laser beams and their corresponding optics around the atom cloud.

High atom densities: The powerlaw nature of the interactions between Rydberg
excitations makes the interactions dependent on the atom density ng, with J = Cgng?
characterising the interaction strength. A strongly-interacting regime is only realised
for J > Q, I" + v4e, which is equivalent to noryS > 1 [96]. Here 7,3 parametrises the
interaction volume by the characteristic blockade radius (cf. sec. 3.3.1). Far from resonance
(Q, T’ + vge < A) this condition becomes even more stringent with the facilitation radius
replacing the blockade radius. Typical interaction radii are several micrometers large,
necessitating atom densities > 10 cm™3. Furthermore, the atom density should be widely
tunable such that J independently adjustable.

Long interrogation times: The evolution of a laser driven atomic system will progress
in successive cycles of excitation and decay, whose timescales are approximately given by
I'y and I' in equation (3.24). In the accessible parameter range the slowest process usually
is the single-atom seed creation, which can be as low as ~ 10 Hz, while typical relaxation
rates of the many-body system can be of similar order. To study the non-equilibrium
dynamics of a system one would like to be able to cover all time scales up to the formation
of a quasi-steady state, requiring long interrogation times of possibly ~ 100 ms.

Low temperatures and small laser dephasing noise: Dephasing noise is an im-
portant limitation for our experiments. As can already be seen from the classical rates
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for (de)excitation in equations (3.24), dephasing reduces the occupation probability in the
excited state and thus mitigates the impact of the driving strength. Additionally, it reduces
the quantum coherence of the transitions and renders the system more classical. Although
the many-body evolution in the classical limit is highly interesting in itself, crossing the
threshold towards quantum coherent evolution represents an additional and exciting new
frontier. Two important factors which dominate the dephasing rate are the frequency
stability of the driving lasers and Doppler broadening due to thermal motion of the atoms.
To improve their frequency stability, all lasers will be actively stabilised to a high stability
reference. To minimise the Doppler effect, we will strive to achieve as low temperatures as
possible. However, even at temperatures as low as 1 1K the atoms will still move with a
thermal velocity of ~ 20 um/ms. Given the envisaged long interrogation times, motion will
not be negligible.

For future experiments: The possibility to create ultracold fermionic or
bosonic matter: The apparatus was designed such that both fermionic and bosonic
isotopes of the same atomic species can be cooled and trapped. Cooling to ultracold
temperatures combined with Rydberg excitation would allow for the investigation of
strongly interacting quantum states with either fermionic or bosonic statistics. Among the
alkali atoms, which are the most widely used group of atoms in ultracold atom experiments,
only lithium and potassium have stable isotopes of both kinds. In our experiments potassium
was selected, which was the first fermionic isotope to be cooled to degeneracy [139], because
of its higher mass, which suppresses tunnelling in structured traps. However, quantum
degenerate gases were not created in this thesis and all experiments were performed with
the bosonic *°K in the non-degenerate regime.

For future experiments: Multiple detection capabilities: Besides the manipula-
tion and preparation of non-equilibrium many-body states with a high degree of control and
tunability, the measurement capabilities are a central feature of a successfully experiment.
For experiments relying on ultracold atoms with Rydberg excitations, typical observation
strategies are optical imaging measuring the spatial distribution of atoms and Rydberg
excitation counting [96]. The most widely used imaging technique is absorption imaging,
which is well suited for fast image taking and large fields of view to study large samples.
For high resolution imaging on small scales resolving individual atoms in an optical lattice
fluorescence imaging is chosen, employing high resolution objectives with achieved diffrac-
tion limited resolutions close to the employed optical wavelengths. Counting of Rydberg
excitations provides a second, independent observable, which is measured by electric field
ionisation and detection of ions. Our experimental apparatus was designed to incorporate
all of these complementary approaches, necessitating multiple optical imaging setups as
well as an in-vacuum electric field structure and ion detectors.

Design solutions

To incorporate all the afore-noted design objectives into a single apparatus, we opted
for a large-volume ultra-high vacuum steel chamber to house the required in-vacuum
components and to allow for many-beam optical access along the horizontal plane and
along the vertical and diagonal axes. Inside the central chamber we installed an electrode
structure which can be used to both compensate for stray electric fields and to field ionise
Rydberg excited atoms. The ions can be detected on two microchannel plates. To allow
for high resolution imaging despite the large dimensions of the vacuum chamber, a high
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resolution objective lens was installed inside above the electrode structure. This part of
the setup is depicted in Figure 2.1. Furthermore, a 2D-MOT acts as an atom source of 3K
, which supplies a high flux of atoms facilitating rapid loading. The final trap in our setup
is an optical dipole trap, which allows for long Rydberg excitation times and with tunable
atom density. Additional gray-molasses cooling is utilised to achieve efficient loading of
ultracold and high-density atom clouds into the dipole trap. Finally, we implemented
both single-photon and two-photon excitation to Rydberg states, each based on frequency
doubling of high-power lasers to reach the desired strong driving regimes (illustrated in
Fig. 2.5). In the following we will detail these core features of our apparatus.

2.2 Preparation of the medium

The work horse of our apparatus is an optically trapped atom cloud at temperatures
around 10puK. At such ultracold temperatures all valence electrons will “freeze” to the
energy ground state!, which for potassium is |4s; /2). Thus trapped atoms in their ground
state are the starting point of all of our experiments. The experiment procedure is cyclic,
starting from hot atoms which undergo a sequence of cooling stages employing different
cooling and trapping strategies until an ultracold atom cloud has been prepared. Since we
are interested in long laser interrogation times our atom clouds will be held in an optical
dipole trap during the Rydberg excitation phase. The optical dipole trap does not lead
to electronic excitations, leaving the ground state of the atoms unperturbed at all times
except for the trapping potential. This cloud will then be manipulated and probed for
experiments and finally be released for destructive absorption imaging. The cycle then
restarts anew. In the following we will describe the employed apparatus used to create
these atom clouds. Many aspects of the apparatus have been adapted from the Rubidium
Rydberg apparatus in Heidelberg, described in [140]. Many of the components of our
system, including those specific to 2?K , have been described in detail in a series of Bachelor
and Master theses [141, 142, 143, 144, 145, 141, 146].

2.2.1 Vacuum system for thermal isolation

To isolate the ultracold atom cloud from the room temperature atmosphere, the atom
cloud is prepared inside an ultra-high vacuum chamber, Figure 2.1(a). Pressures as low as
10~ mbar are achieved routinely with a titanium-sublimation pump? combined with a
1251/s ion pump?. For trapping and cooling of atoms a dedicated dual chamber system is
used, with a large volume science chamber 4 and a separate glass cell for the atom source®.
The glass cell is connected to the science chamber via a small CF16 aperture, leaving all
eight large apertures along the periphery free for optical access. Care was taken to use only
components made from stainless steel® with low magnetic permeability inside and close to

the science chamber to reduce magnetisation effects due to strong changing magnetic fields.

1At 10 pK temperature the thermal energy is kgT/h =~ 200 kHz, much lower than the near-optical transition
energy from the ground state |4s1/2) to the first excited state |4p;/2), which is ~ 400 THz

2 Agilent Technologies; TSP Cartridge Filament Source

3 Agilent Technologies; Vaclon Plus 150 Ion Pump StarCell

4Kimball Physics; 8 Multi-CF Spherical Square MCF800-SphSq-G2E4C4A16

5The glass cell is AR coated (780 nm) on the outer cell walls and manufactured by Japan Cell

6Steel code 316LN
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Figure 2.1: The experimental setup for cooling and trapping of atoms. (a) The vacuum system.
The apparatus is based on a science chamber @ for atom trapping and manipulation, which is
loaded from a separate 2D-MOT atom source @. The whole vacuum system is maintained at ultra
high vacuum by a titanium sublimation pump ® and a 1251/s ion pump ®. The science chamber
provides optical access via multiple viewports (chiefly top and bottom, 8 sides along the equator)
with optics positionable on three breadboard levels around the science chamber (not displayed). (b)
Photo of the interior of the science chamber, with a rendering of the same components at the top
right. Two rings of electrodes ® are mounted on the bottom flange and placed symmetrically around
the atom cloud at the centre of the chamber for electric field control. They are complemented by
two microchannel plates ® for detection of field-ionised Rydberg atoms. The atom cloud is depicted
in green at the centre of the vacuum chamber rendering (not o scale). The top flange holds a high
numerical aperture objective lens @ inside a steel lens holder ® (orange in the rendering). Around
the lower part of the lens holder a radio frequency antenna was wound @. The viewport on the top
side is recessed inside the chamber to allow close optical access to the in-vacuum lens. (¢) Beam
geometry around the science chamber. Three pairs of counter propagating beams are used to create
the 3D-MOT and the gray molasses at the centre of the chamber. Two dipole trap beams cross at
a shallow angle to form a confining optical dipole trap. Here we show the dipole trap beam setup
using a retroreflected beam (chapter 5), which was replaced by two independent crossing beams
later (chapter 6). Either UV light or probe and coupling light are used to drive the transition from
ground to Rydberg states. The atom cloud is absorption imaged on a CCD camera.
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2 Development of a new experiment for non-equilibrium physics using Rydberg atoms

The chamber openings are vacuum sealed with viewports made from fused silica. We
installed two types of viewports depending on the laser sources to minimise thermal lensing
in high-power laser applications, loss from reflection and to prevent damage to the glass.
We use five types of laser wavelengths to manipulate the external or internal degrees of
freedom of the atoms in our experiments: infrared (IR) light at 1064 nm wavelength for
the optical dipole traps, near-infrared light at 767 nm and 770 nm to drive the D2 and D1
transitions of potassium to the first excited state, respectively, blue light at 457 nm to
excite from the first excited state to Rydberg states and ultraviolet (UV) light at 288 nm
to directly couple from ground to Rydberg states. The most stringent requirements are
posed by the UV beam and the high intensity dipole trap beams, which are combined
on one chamber axis. Therefore we used a special kind of fused silica for the viewports
along this axis, which combines both of these extreme requirements by having a low OH
content to minimise thermal lensing by IR absorption and an elevated hydrogen content
to suppress damage through UV absorption.” These viewports were not anti-reflection
coated because of the risk of damage to the coating by high-intensity UV light. All other
openings were sealed with viewports allowing for maximum flexibility in future experiments
by being anti-reflection coated for all non-UV wavelengths. Among these wavelengths, the
far-infrared light requires by far the highest intensities, wherefore an IR-grade fused silica
was chosen for the substrate.®

Inside the science chamber an intricate electrode structure was mounted, with the
purpose of minimising stray electric fields and counting Rydberg excitations via field
ionisation [140, 96]. Stray electric field compensation is necessary because Rydberg states
have a huge electric polarisability and we will null stray electric fields to minimise the
influence of the DC-Stark effect [145]. The electrode structure comprises two quarter-split
ring electrodes placed symmetrically above and below the centre of the vacuum chamber?,
as well as two microchannel plates!? for ion detection. Additionally we placed a high
numerical aperture lens'! inside the chamber to allow for high resolution imaging in e.g. a
quantum gas microscope [148, 149]. High resolution imaging and field ionisation capability
were not employed before completion of this thesis, though. Furthermore, a coil was wound
around the in-vacuum lens holder to serve as a radio frequency antenna.

2.2.2 Versatile laser source for D1 and D2 light

Many stages of our experiment require strong laser light on the finestructure transitions to
the first excited state of K , which are called D1 transition (|4s;/5) — [4p;/2), 770 nm)

"Corning HPFS 7980 KrF grade, mounted by VACOM into stainless steel viewports

8The viewports are manufactured by UKAEA out of Heraeus Suprasil 3001. They were anti-reflection
coated for 460nm (two-photon excitation to the Rydberg state in combination with 767 nm light),
575nm (optional two-photon single-wavelength excitation, not used in this thesis), 767 nm (MOT and
imaging light), 1064 nm (high-power dipole traps).

9Designed and manufactured in-house [147, 140).

Hamamatsu F1551-21S

11 Asphericon A45-32 HPX. Aspheric lens with numerical aperture 0.61 and 32 mm focal length. The planar
side faces the atomic cloud and was coated with an anti-reflection coating for 767 nm combined with an
an indium thin oxide (ITO) coating as the last layer (Evaporated Coating Inc. #939). This increases
the electric conductivity to prevent the build-up of space charges on the glass surface as Rydberg atoms
are sensitive to electric fields. The convex side was only anti-reflection coated (Evaporated Coating Inc.
#6408) alone. The transmission of the ITO is specified as 98 %. In combination with an external lens,
the combined optical array has a 47 fold design magnification.
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2.2 Preparation of the medium

and D2 transition (|4s;/9) — [4p3/2), 767nm). An overview of the required transitions is
given in Figure 2.2. Uses are the 2D-MOT, the 3D-MOT and the gray molasses, imaging
of the atom cloud and also one leg of the two-photon Rydberg excitation in combination
with 457 nm light. Furthermore, we need to be able to address individual hyperfine state
transitions, which have different transition energies of up to several hundred MHz.

Figure 2.3 shows the laser system used to meet all the outlined tasks. The D1 and D2
laser light is created by two separate diode lasers'?, which are frequency stabilised by
Doppler-free modulation-transfer spectroscopy to a linewidth of 150 kHz [142]. To enhance
the stability of the D2 laser light further for the second set of experiments discussed in
chapter 6, the spectroscopic reference was replaced by an ultrastable cavity (section 2.3).
Four home-built tapered amplifiers'® [150] are used to amplify the light from ~ 30 mW to
a total of =~ 3 W, where the output can be switched between D1 and D2 light. Switching
between the two sources is enabled by an electro-optic modulator (EOM), which rotates
the polarisation of the overlapped D1 and D2 light, and a subsequent polarisation selecting
beamsplitter cube. Specific hyperfine transitions are reached by splitting the output into
several branches with dedicated frequencies set, and individually tunable, by acousto-optic
modulators (AOM) [142, 141]. This way both hyperfine ground states can be addressed
optically on both the D1 and D2 transition. Furthermore, by switching the diffraction order
of the double pass AOMs of all three output branches in Figure 2.3 simultaneously, we can
switch the trapped isotope between 39K and 4K [141]. We were able to demonstrate this
in our experiment, but the very low abundance of “°K in our atom source precluded any
efficient preparation of sufficiently large ultracold clouds.

2.2.3 Source of pre-cooled atoms

Our atom trap at the centre of the science chamber is loaded from a 2D-MOT, which
provides a directed beam of pre-cooled potassium atoms. The design was adapted from [147].
Magneto-optical traps provide cooling through the scattering force of near-resonant laser
light [151]. Photons are absorbed from the directed laser beam and spontaneously reemitted
in random direction yielding a directed momentum transfer on average. In combination with
a quadrupole magnetic field and counter-propagating laser beams of orthogonal circular
polarisation, confinement is also achieved. [152]

Our 2D-MOT is based on a glass cell connected to the science chamber by a small
differential pumping hole. Inside the glass cell a hot vapour of potassium atoms is supplied
by dispensers'® with a natural isotope abundance!®. Since the transition frequencies utilized
in a MOT the trapping and cooling is isotope specific. We select potassium-39 in our
apparatus, since it has the highest abundance. To address population in both hyperfine
ground states of potassium-39, we use a two-wavelength scheme with a cooler on the
4512, F' = 2) — [4p3 )2, I "= 3) transition, which is a closed transition, and an additional
repumper on the [4sy 9, F' = 1) — [4p3 /9, F' = 2) transition (cf. Fig. 2.2). Repumper and
cooler light is transmitted by optical fibres first to a distribution board [143], where both
beams are first overlapped and mixed and subsequently split equally to yield light for

12Toptica: Tunable diode laser DL Pro

13Based on TA chips from Eagleyard (EYP-TPA-0780-01000-3006-CMT03-0000)

4 Alvatec AS-3-K-100-F with natural abundance distribution. Procured dispensers with enriched “°K
AS-3-K40(14%)-10-F were empty.

15The natural isotope abundances of potassium are: 3°K 93%, “°K 0.01%, 'K 7%
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Figure 2.2: Diagram of the energy levels of 3°K and “°K in comparison. Frequencies are given in
MHz relative to the finestructure resonances of 3°K indicated by dashed lines. The position of the
hyperfine levels are not drawn to scale. The spectroscopy transitions used for locking of the lasers
are indicated in green, the MOT transitions in red and the gray molasses (GM) in blue. There, (+)
and (-) indicate required blue and red laser detuning depending on the type of trap. Reproduced
from [141].

both transverse cooling axes of the 2D-MOT. The light is transmitted to the 2D-MOT
cooling modules via fibres. Because of the small hyperfine splitting of the excited state!6,
a repumper of comparable power to the cooler is required. The magnetic quadrupole field
and cooling light are provided along the transverse direction to the long axis of the glass
cell. An additional red detuned pusher beam yields a pushing force along the long axis
of the glass cell and into the science chamber to enhance the atom flux. Our 2D-MOT
provides a strong flux of potassium atoms of up to 2-10% atoms/s (for a low dispenser
current of 1.9 A) filling the 3D-MOT with 3 - 10° atoms to saturation within 1s.

1621.1 MHz between F’ = 2 and F’ = 3, which is 3.5 times the natural decay rate of the [4ps/2) state
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Figure 2.3: Schematic of the combined D1 and D2 laser system with spectroscopic frequency
stabilisation, power amplification by tapered amplifiers (TA), frequency shifting by acousto-optic
modulators (AOM) and transmission to the core apparatus by optical fibres. An electro-optic
modulator (EOM) is used to switch between D1 and D2 light and to overlap the two by applying a
phase shift. Double-pass AOMs (DP) are passed twice and are used to tune the frequency around
an offset frequency. The frequency offset can be further enlarged or compensated by a single-pass
AOM (SP), which is not used to tune the frequency of the light, but its power by changing the
power in the used diffracted order of the AOM. Reproduced from [141].

2.2.4 3D-MOT

The 3D-MOT is based on the same operation principle as its 2D-MOT prestage (for details
see [144, 143]), but cools and traps in all three spatial dimensions by applying three pairs
of counter-propagating laser beams with superimposed cooler and repumper light. We use
large diameter (1”7) MOT beams to create a large trapping volume. Each MOT beam
carries a maximum of about 10 mW cooler and 3 mW repumper light. The quadrupole
field is provided by two water-cooled coils outside the vacuum chamber. Also our 3D-MOT
is fibre coupled to improve beam pointing stability. After loading for 1s, we compress
the MOT by maximising the magnetic field gradient and ramping the laser detunings
accordingly to compensate the changing Zeeman shift. In this way we achieve a smaller
volume of the trap to improve overlap with the dipole trap. In our setup, efficient cooling
of potassium-39 in a 3D-MOT stops at 2 mK because of the narrow spacing of the excited
state hyperfine structure, such that traditional sub-Doppler cooling mechanisms [152, 153]
in the MOT are prevented.

2.2.5 Dipole trap

In order to confine and suspend ultracold atoms without driving electron transitions and to
control the temperature and density of the cloud, we use all-optical dipole traps [152, 154].
In this scheme, a conservative trapping potential is solely realised by a high power laser
beam which is far detuned from any electron transition. Thus the internal state of an
atom is preserved by the trap and the trapping effect does not require any specific spin
configuration. Another advantage of dipole traps is that they are created by external laser
beams and optics solely and thus are rapidly switchable and can be easily adapted, moved
or shaped for new experiments.
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2 Development of a new experiment for non-equilibrium physics using Rydberg atoms

Optical dipole traps generate a gradient force on the atoms, in contrast to the scattering
force employed by the previous MOT cooling stages. In the limit where the detuning of
the coherent laser light interacting with an atom transition is much larger than the driving
strength, the effect of the laser is not to drive a transition, but to modify the energies of
the electronic states. This potential energy is proportional to the laser intensity and its
spatial profile. Therefore a trapping potential can be generated this way by engineering
an intensity profile with a global intensity optimum, which is trapping for red (negative)
detunings and antitrapping otherwise [152].

In our experiments we employ a crossed dipole trap, see Figure 2.1(c), where the foci of
two laser beams are overlapped to create a strongly confining trap in all spatial directions.
The beams cross at an angle of approximately 10°. For the experiments presented in
chapter 5 the second beam was derived by retroreflection from the first to double the
trapping power, for the later experiments discussed in chapter 6 two independent beams
were used. To avoid interference between the trap beams they have orthogonal linear
polarisation. In both cases an elongated trap geometry is created, which is well suited for
our Rydberg excitation experiments. The large opening angle makes it possible to guide
the Rydberg excitation beams between the dipole trap arms such that the long axis of the
atom cloud is almost collinear with the excitation beams. Furthermore we focus the trap
beams tightly to a waist of approximately 30 um [146], allowing for tightly focussed high
intensity Rydberg excitation beams which are nearly uniform over the atom cloud volume.
This is an important precondition for achieving strong driving to Rydberg excitations in
the experiments of this thesis.

The dipole trap beams are derived from a single frequency laser at 1064 nm with 50 W
maximum output power.!” From this, about 10 W were split off for the trap, while the
remainder was reserved for future lattice traps [155]. The power of the laser light is tuned
and switched (on/off) by a high-power AOM!® and guided by a photonic crystal fibre!? to
the designated vacuum viewport to ensure directional stability. The maximum combined
trap power was 5.4 W, yielding an estimated maximum trapping depth of ~ kg - 500 pK.

2.2.6 In-trap gray molasses cooling

To achieve efficient loading of the dipole trap one should strive for a large phase space overlap
with the precursor trap. This ensures high atom densities as well as low temperatures. From
the 3D-MOT we already derive a compressed cold sample, however it is not cold enough
for efficient loading of our dipole trap. Therefore we additionally use gray-molasses cooling
to achieve temperatures as low as 20 pnK. This technique was established in [156, 157, 158]
for potassium. It relies on blue-detuned light (A > 0) coupling two hyperfine states with
angular momentum F — F’ < F. Then there is at least one ground |F,mp) state which
is dark irrespective of the light polarisation, i.e. it is decoupled from the light field. For
39K the D1 transition is used because the wider hyperfine splitting of the |4p; /2> excited
state allows for better state selectivity. Then a suitable transition presents itself for the
cooler on the F' = 2 — F’ = 2 transition, which is blue detuned to all other transitions
as well (Fig. 2.4(a)). Since the alkali atoms have a second hyperfine ground state, the
repumper is used analogously to the MOT scheme to couple the F' = 1 ground state to

"Mephisto MOPA
13EQ photonics AOM 3080-1990
19T,arge mode area photonic crystal fibre LMA-PM-15 with a 14.8 micron core from NKT Photonics.
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Figure 2.4: Gray molasses cooling of *°K utilising the A-scheme. (a) Level scheme for cooling on
the D1 line with o polarisation. |F = 2,mpg = 2) is decoupled and therefore a dark state. The
cooler and repumper are blue (positive) detuned by A, and A, respectively. Close to Raman
detuning § = A,e — Ao = 0 this A-scheme has additional coherent dark states. (b) Hlustration of
the cooling mechanism for an atom moving in positive z direction and initially in the dark state. If
a bright state is energetically close the coupling probability into the bright state is highest. From
there the atom climbs the potential energy hill provided by the polarisation gradient of the cooling
light. Spontaneous decay results in an average kinetic energy loss. (c) Measurement of the gray
molasses cooling efficiency. The observable is the peak optical density of the atom cloud after 6 ms
time of flight. Then a higher density corresponds to a lower temperature. Dashed lines indicate
resonant transitions. The diagonal features correspond to the resonance condition § = 0, for which
cooling is most efficient. Reproduced from [155, 156].

F’' = 2 also. This has the additional benefit that cooler and repumper form a coherently
coupled three-level system in A-configuration. If the two-photon Raman detuning § is zero,
this leads to extra coherent dark states which enhance the population trapping.

In contrast to the dark states, all bright states within the ground state manifold have
an optical admixture of excited states, which shifts bright states above dark states for a
blue laser detuning. Therefore only bright states are influenced by polarisation gradients
formed by the interfering laser cooling beams, see Figure 2.4(b). An atom moving relative
to the light field may couple between dark and bright states by motional coupling or dipole
coupling via off-resonantly excited hyperfine states [156]. This happens preferentially when
dark and bright states are closely spaced, i.e. at a potential energy valley of the bright
state. Once the atom has transitioned into a bright state, motion transforms kinetic energy
into potential energy much like in Sisyphus cooling [153]. Eventually the bright state
will decay to a lower energy state and thus on average dissipate potential energy until
eventually arriving back at the dark state.

In our experiment we reuse the optics of the 3D MOT and inject repumper and cooler
branches with D1 light.2° The configuration with three pairs of counter propagating beams

20For details see [141]
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2 Development of a new experiment for non-equilibrium physics using Rydberg atoms

in 0o~ configuration used for the 3D-MOT is suitable for providing gray molasses cooling
in all spatial directions and at the same time allows for a compact and cost-efficient setup
while maintaining full independent control over all beam powers and detunings.

Figure 2.4(c) shows a detailed scan of the cooler and repumper detunings revealing
optimal cooling conditions. Here gray molasses cooling was applied for 5 ms in free space
prior to holding the atoms for 200 ms in the optical dipole trap. We release the atom cloud
from the trap and measure the peak optical density after 6 ms free expansion. The cloud
expansion is proportional to the cloud temperature, such that the peak optical density
serves as a cooling performance parameter. Cooling is dominated by the cooler light
leading to prominent horizontal stripes of cooling (bright) and no cooling or heating (dark).
We attribute this to the dominant cooler power, which was two to four times stronger
than the repumper light. The crossover between the horizontal cooling and heating bands
is marked by a resonant transition matching the specified laser detunings (blue dashed
lines). In addition, resonant heating by the repumper causes the vertical dark stripes
in the spectrum.?’ The widths of the resonance features are in agreement with the D1
linewidth of 5.96 MHz [159]. Thus we conclude that the observed cooling corresponds to
a blue detuned transition and thus gray molasses, while no cooling was observed for red
detunings. Cooling works best for positive detunings of two to four linewidths for both
repumper and cooler. In addition to the horizontal and vertical features, we also detect
two thin diagonal stripes originating from the A-enhancement at resonant Raman detuning.
Best gray molasses cooling was achieved with A-enhancement if both repumper and cooler
were tuned above F/ = 2 and this configuration was utilized for optimising the loading of
the optical dipole trap.

2.2.7 Absorption imaging of the ultracold atom cloud

After Rydberg excitation, the atom cloud is measured by absorption imaging, which allows
one to estimate the size, atom number and density of the cloud. The optical array used for
absorption imaging is placed outside the vacuum system (Fig. 2.1) and is based on a 4f-
configuration (numerical aperture 0.2, onefold magnification) and a standard near-infrared
camera??,

In total, each cycle requires approximately 1.5s to create a ready-to-use ultracold atom
cloud of ca. 100000 atoms. We achieve densities, measured by absorption imaging, up
to 5- 10" cm™3, which we can freely reduce to as low as 4-10° cm™> by adapting the
3D-MOT loading time. This way the atom density is independent of the dipole trap
potential. The atomic cloud has e~'/2 radii with typical values {o,, 0.} ~ {10 pm, 200 um}.
Typical temperatures range between 20 pK and 40 pK. For these conditions, the measured

lifetime of the trapped cloud is approximately 3s.

2.3 Laser sources for one and two-photon Rydberg excitation

Within this thesis, both two photon (chapter 5) and single photon (chapter 6) excitation
have been used to drive transitions to Rydberg states. A schematic of all laser sources
is given in Figure 2.5. In single photon excitation |np) states can be addressed, while

21 Additional vertical lines at A, = —31 MHz and —40.5 MHz correspond to D2 repumper light at the
F=2—F =2and F =2 — F' =1 transitions leaking into the D1 gray molasses.
*21DS UI-3240ML-NIR-GL
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Figure 2.5: Laser sources for Rydberg excitation. (a) Direct one photon excitation (288 nm) from
the ground state to a [np) state, or two photon excitation to |ns) states via the intermediate [4ps,2)
state can be used. For two-photon excitation a probe beam (767nm, cf. Fig 2.3) is combined
with a coupling beam (457nm). (b) Laser setup for creating the coupling light, consisting of a
Titanium-Sapphire (Ti:Sa) laser and a second harmonic generation (SHG) cavity. The Ti:Sa is
stabilised to a reference cavity, which itself is stabilised to a 3K Doppler-free spectroscopy reference.
(¢) Schematic of the final stage of the Rydberg excitation setup comprising both single photon and
two photon excitation lasers. The UV light is derived via second harmonic generation from a dye
laser (576 nm), the blue light originates from a second SHG setup seeded with a tapered amplifier
(TA) laser (913 nm), and the red light is taken from the TA setup used to drive the magneto optical
traps. All three lasers are stabilised to the ultrastable cavity. Reproduced from [145, 160].

two-photon excitation couples to |nd) and |ns) states. The (non-interacting) |ns) states
have an isotropic wavefunction and therefore isotropic van der Waals interactions [96]. The
small transition dipole moments between Rydberg and low lying states necessitate high
power and tightly focused laser sources to achieve large Rabi frequencies (cf. section 3.2.2).
Additionally a major consideration was to minimise decoherence from laser phase noise.
Therefore our efforts focused on both the laser sources as well as the laser frequency
stabilisation.
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2 Development of a new experiment for non-equilibrium physics using Rydberg atoms

Focusing on laser sources, two-photon excitation allows for several choices depending
on the addressed intermediate state. In the following, we will refer to the light driving
transitions between ground |g) and intermediate |e) states as probe light and to the
one coupling intermediate and Rydberg |r) states as coupling light. Typically the first
excited state is used as the intermediate state (here [4p3/5)), such that laser light from
magento-optical trapping is readily available as probe light (cf. Fig. 2.3). But also an
alternative route via the second excited state (|5ps/2) correspondingly), the so-called
“Inverted” excitation scheme, is within the range of standard lasers [96, 123, 161]. This
poses an interesting alternative since then high-power infrared diode lasers become available
for the coupling light. A third alternative is single-colour two-photon excitation, which
is very far detuned from any intermediate state [162]. We opted for the most common
technique of coupling to the first excited state with |e) = [4p3/9), since the probe laser is
readily available then, requiring a coupling laser in the blue wavelength regime.

One common approach to creating high-power laser light for the coupling beam is to
use frequency-doubled semiconductor laser systems with typical output powers < 1W
and stabilised laser linewidths < 200kHz. For the experiments reported in this thesis
using two-photon excitation schemes we explored an alternative, which was reported
in [160]. It consists of a Titanium-Sapphire laser?® (wavelength ~ 922nm) stabilised to a
reference cavity and frequency-doubled?* to the blue spectral region (Fig. 2.5(b)). The
Titanium-Sapphire laser delivered 5 W in day-to-day operation, which was transmitted
to the frequency-doubling cavity by a single-mode polarisation maintaining fibre?® with
50% coupling efficiency. With this setup we achieved output powers of blue light of up to
1.5 W. To frequency stabilise this laser system the reference cavity length of the Titanium-
Sapphire laser was itself stabilised to a 767 nm wavelength atomic reference via Doppler-free
modulation transfer spectroscopy of a 3K thermal vapour [160, 163]26. Hereby the atomic
reference light can be frequency shifted within the free spectral range of the reference
cavity to tune the corresponding frequency of the blue laser light. We used a double pass
AOM?” with a centre frequency of 800 MHz and a direct digital synthesizer (DDS)?® as a
frequency source to perform this task. The reference cavity is locked to the reference light
using the Pound-Drever-Hall technique [164, 165], with the required sidebands generated
by an EOM. The blue laser linewidth of the thus stabilised system was measured to be
120(20) kHz.2? One additional benefit of the frequency doubled Titanium-Sapphire laser
system is the large wavelength tuning range spanning output wavelengths from 455 nm to
463 nm, which allows one to excite to Rydberg states of potassium with principal quantum
numbers ranging from n = 18 to above the ionisation threshold, as was shown in [160].

Turning to single-photon excitation (Fig. 2.5(c)), the transition wavelengths typically lie
in the ultraviolet, for which high-power lasers are more difficult to create. For potassium,
transition wavelengths of ~ 288 nm need to be implemented. At this wavelength, light is also
prone to damage optical elements (e.g. the vacuum viewports, cf. sec. 2.2) and biological
tissue. To achieve single-photon operation, we implemented a dye laser (wavelength

Z3The Titanium-Sapphire laser is a continuous wave ring-laser (Sirah Lasertechnik Matisse TX). It was
pumped by a solid state laser (Spectra-Physics Millenia e¢V) with an output up to 22 W.

2 Toptica SHG-pro

ZNKT-photonics LMA-PM-15

26The same spectroscopic technique was used to frequency stabilise the MOT laser system, cf. section 2.2.2.

*"Brimrose TEF-600-400

28 Analog Devices AD9914

29Measured with an optical cavity. Sirah Lasertechnik, EagleEye.
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~ 576 nm) stabilised to an ultrastable reference cavity and frequency doubled to the UV.
The dye laser was set up by exchanging the gain medium and optical elements of our
Titanium-Sapphire laser?®, and the doubling cavity was swapped accordingly'. For this
setup we achieved day-to-day powers of 3 W output of the dye laser, which was transmitted
by the same photonic crystal fibre as in the precursor setup (coupling efficiency 50%) to
the doubling cavity. The maximal UV output power was 80 mW. To stabilise the dye laser
an ultrastable, high-finesse cavity®? was used without an intermediate reference cavity.
With this stabilisation scheme the achieved UV laser linewidth was 360 kHz [145]. As an
absolute frequency reference we employed a high-finesse wavemeter?. The ouput light is
freely tunable via a fibre-coupled EOM?3* which provides both the carrier frequency (100 -
600 MHz) to freely tune the UV laser frequency across a free spectral range of the cavity,
and the sideband (20 MHz) for the laser lock. Here we opted for a fibre-coupled EOM,
since it is much easier to implement than the large-tuning range AOM used beforehand.
In parallel, a new seed laser3® for the blue frequency doubling cavity was installed, but not
used in this thesis.

Comparing the two different schemes and setups for laser excitation used in this thesis,
single-photon excitation outperformed two-photon excitation achieving larger effective
coupling Rabi frequencies from ground to Rydberg state at smaller effective loss rates.
For UV excitation we were able to generate Rabi frequencies up to 200 kHz for effective
Rydberg decay rates of approximately 10 kHz, including photoionisation. In contrast to
Rydberg |ns) states, |np) states have a much higher ionisation cross section [166, 167]. For
two-photon excitation we achieved effective Rabi frequencies up to 100 kHz and effective
decay rates of 100 kHz including decay of the far-detuned intermediate state. However, the
achieved dephasing noise in both excitation schemes remains large with v40/2m = 360 kHz
for the UV laser and an estimated combined dephasing rate of 300 kHz for two-photon
excitation. These strong dephasing rates limit the timescale on which phase coherent
evolution can be observed, leading to dephased, effective classical behaviour on the ms
timescales investigated in the experiments presented in this thesis.

Conclusion

To summarize, we have established an experimental apparatus based on ultracold 3K
atoms laser-coupled to Rydberg states and tailored towards studying the driven-dissipative
evolution of the many-body system. This platform is characterised by wide-range control
over driving, interaction and dissipation properties of the system, making it well suited to
explore vastly different regimes of non-equilibrium behaviour corresponding to different
system parameters. Control over laser driving encompasses strength, detuning and the
addressed Rydberg state. Employing both single and two-photon excitation schemes
Rydberg |ns), |np) and |nd) states can be addressed, extending our control to the strength
and anisotropy of the interactions as well as the spontaneous lifetime of the Rydberg state.

30Girah Lasertechnik provides optics sets for the required wavelength range (MOS-4) as well as the dye
pump and dye injection nozzle.

31Girah Lasertechnik Wavetrain IT

32Gtable Laser Systems ATF 6010-4

33HighFinesse WS7

34 Jenoptik PM594

35Combined diode laser tapered amplifier system, Toptica TA-pro
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2 Development of a new experiment for non-equilibrium physics using Rydberg atoms

Additionally, we achieve high densities and ultracold temperatures of the atom clouds by
utilizing a 2D-MOT as an atom source and gray molasses cooling. The atom density can be
tuned via the 3D-MOT loading time independent of the dipole trap potential, allowing for
independent interaction strength control. Our laser systems are characterised by low phase
noise resulting in low decoherence rates of quantum states, which we achieved by referencing
the lasers to Doppler-free spectroscopy or an ultrastable cavity. This set of capabilities
enabled the experimental studies reported in this thesis. Future experiments can also
draw on an available fermionic atom species (*°K ) to realise novel quantum states of
matter [168, 104, 106, 169, 170], as well as additional detection schemes via high-resolution
fluorescence imaging [148, 149] and Rydberg excitation counting [117, 116, 121]. The
combination of these characteristics make this platform, and ultracold Rydberg atoms in
general, a platform ideally suited for studying quantum systems close to or far away from
equilibrium.
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From atomic physics to
interacting driven-dissipative spin
systems

In this thesis, a platform of ultracold atoms is engineered into an analogue of open quantum
spin systems. In our approach, Rydberg states, i.e. highly excited atomic states, are the
means to induce and control strong and long-range interactions between spins. External
driving of the spin system by the laser fields coupling atomic ground to Rydberg states,
and dissipation via the finite Rydberg state lifetime complete the core characteristics of
the microscopic details of our model system. In the previous chapter we discussed how our
ultracold atom platform is implemented in the laboratory and how the parameters governing
the microscopic processes can be controlled and manipulated by the experimentalist. In
our setup, special care was taken to achieve good thermal isolation from the environment,
such that the only coupling to the environment occurs via electromagnetic radiation in the
form of laser fields, and additionally vacuum fluctuations and thermal blackbody radiation
leading to dissipation. In particular, the excitation lasers address specific target Rydberg
states, isolating an effective two-level system within the manifold of electronic states of an
atom. Building on this basis, we will be able to formulate a microscopic description of our
system, and map it to an open quantum spin system. Figure 3.1 illustrates this mapping
from the electronic level structure of an atom to the synthetic Rydberg spin system with
interactions, external driving and dissipation.

At the beginning of this chapter, the fundamental framework for describing open
quantum spin systems will be introduced, where the state of the system is captured by
a density matrix evolving according to a quantum master equation. Thereafter, we will
turn to the properties of Rydberg states and the microscopic properties which derive from
these. In section 3.2 the mapping to the spin system is introduced and the characteristic
microscopic properties discussed. This will be followed in section 3.3 by a discussion of
central many-body properties of Rydberg spin systems, which emerge from the interplay
between interactions, driving and dissipation. In the final part of this chapter we will use
the gathered knowledge on Rydberg spin systems to formulate approximate models. These
will be vital in establishing quantitative links between our experimental observations of
macroscopic properties of our system and the foundational microscopic details.

3.1 The quantum master equation framework

The density-matrix formalism is well suited to describe the evolution of open many-body
quantum systems, where the environment couples to the system under consideration. The
effect of the environment is to introduce stochastic transitions, leading to dissipation of
energy and a dampening of phase coherence between states of the system. This requires a
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3 From atomic physics to interacting driven-dissipative spin systems
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Figure 3.1: Mapping of the electronic level structure of an atom to an effective quantum spin
system. (a) The manifold of electronic states of a potassium atom compared to hydrogen. In
hydrogen, the angular momentum [ states are degenerate, while they become energetically separated
for alkali atoms like potassium. The ground state of potassium is the |4s) state, which we encode
as a ||) state. We selectively address a Rydberg |nl) state with a laser light field, which serves
as the |1) state. (b) Reduced spin system for the case of two-photon coupling from |}) = |4s) to
[t} = |ns), comprising the effective laser driving field with detuning A and strength 2, effective
decay rate I' and Rydberg-Rydberg van der Waals interaction Vj; between a pair of atoms j, k.
The interactions originate from perturbative couplings to neighbouring Rydberg states, which are
dominated by induced transition dipoles d.

statistical description of observables in terms of ensemble averages, where the expectation
value of an observable with operator A is given by

(A) = Tr[Aj)]. (3.1)

In general, the density matrix operator p gives the probability distribution of microstates
on the diagonal, while off-diagonal terms give the corresponding coherences between
microstates. In the limit where the coherences can be neglected, the density matrix
describes an effectively classical system.

In principle, the evolution of a system including its environment and the couplings
between both can be described by an extended Hamiltonian. The temporal evolution
of such an extended system with density matrix piot is governed by the von Neumann
equation,

8t/3tot - [H7 [)tot]v (32)

i
h
which is the density-matrix equivalent of the Schrédinger equation. However, the state
space of the environment typically is intractably large and the state of the environment is
not observed. The equation of motion of the density matrix of the (open) system itself can
then be obtained by the partial trace over all states of the environment 0;p = Treny[O¢ptot]-
Under the Born-Markov approximations, which assume that system and environment
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3.2 Microscopic processes of ultracold atoms excited to Rydberg states

remain approximately separable for all times, and that phase correlations within the
environment decay instantly, the quantum master equation can be written in Lindblad
form. [171]

Orp = —=[H, pl + L(p) (3-3)

)
“h
In this equation the Hamilton operator H governs the unitary part of the evolution, in our
case interactions and coherent driving. The Lindblad superoperator £ describes dissipative,
non-unitary processes acting on p, which we use to model decay and irreversible dephasing.
The Born-Markov approximations are valid for example if the system-environment coupling
is weak and the state space of the environment is much larger than the one of the system
itself. These conditions also apply to environment couplings via vacuum fluctuations and
thermal blackbody radiation, which lead to dissipation in our system. Additionally we also
describe dephasing from laser phase noise by a Lindblad superoperator, where we assume
that the amplitude of the phase fluctuations are small. The Lindblad superoperator has
the general form

A ) LiLp+ pLiL;
L(p)=h> |LipLl - % . (3.4)
{L;}

In this equation the effect of the stochastic coupling to the environment is captured by a
set of jump operators {L;}, which describe the dampening of coherences and dissipation of
energy. For our system, the L; will be local operators acting on individual atoms. The
local density matrix of a single atom j can be obtained by tracing over all other atoms
pl) = Ty p-

In the next section we will discuss how our experimental platform of ultracold atoms
laser-excited to Rydberg states can be reduced to a spin system. Furthermore, we will
show how laser driving, dissipation and induced interactions, which govern the evolution of
the system, can be cast as Hamilton or Lindblad operators acting at the microscopic level
on the density matrix p.

3.2 Microscopic processes of ultracold atoms excited to
Rydberg states

The coherent laser fields used for excitation effectively isolate a two-level system within
the electronic state space of an atom (Fig. 3.1(a)), such that it may be identified as a
pseudo-spin 1/2 system. The evolution of the resulting Rydberg spin system (Fig. 3.1(b)) is
governed by interactions Vj; between two atoms j, k excited to Rydberg states, driven with
strength  and detuning A, and dissipation with decay rate I'. In the case of two-photon
excitation the addressed intermediate state will be populated in addition to the ground
and Rydberg states. The effect of the intermediate state population on the interaction
and dissipation properties of the spin system, as well as laser driving scenarios where this
population is minimal will be discussed in the next chapter and in the context of the
experiments employing two-photon excitation in section 5.2. There we will also introduce
appropriate expressions for the effective driving strength €2, the two-photon detuning, and
the effective decay rate of two-photon Rydberg excitation incorporating the finite lifetime
of both excited states.
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3 From atomic physics to interacting driven-dissipative spin systems

In our system, driven-dissipative dynamics of the internal spin-1/2 state space is ad-
ditionally supplemented by pure particle dissipation to shelving states external to the
coupled spin-1/2 system. Thus, our system is subject to dissipation of energy and loss of
particles and intrinsically open. All the characteristic properties of this system depend on
the properties of the addressed Rydberg state, especially its dipole moments for transitions
to other electronic states. Therefore, we will begin our discussion with a summary of
the relevant properties of Rydberg states. Subsequently, we will show how the relevant
processes can be cast as Hamilton or Lindblad operators acting at the microscopic level on
the many-body density matrix p. Our goal is to establish the quantum master equation
specific to our system, which describes the evolution and behaviour of its microstates. In
the following descriptions, we will use the reduced internal spin-1/2 state space and treat
the particle loss as a coupling to an external reservoir. !

3.2.1 Properties of Rydberg states

Rydberg states, i.e. highly excited states, are in many ways extreme electronic states of
atoms, with very different properties compared to low-energy states. While the radial size
of a 39K atom in its electronic ground state is 4.7 ag, the spatial extent of a Rydberg state
wavefunction easily becomes as large as 100 nm for typical Rydberg states with principal
quantum number n ~ 40, as used in this work. An electron in such a highly excited state
is only loosely bound to the atom core such that the electron wavefunction overlap with
the core as well as with low energy states is very small. Therefore Rydberg states can
be viewed as hydrogen-like irrespective of the atomic species and the structure of the
core. The properties of Rydberg states can thus be described by a modified principal
quantum number n* = n—4, ; for n the principal quantum number of the specific Rydberg
state and d,,; ; the quantum defect for the state |n, [, j) [172].2 All properties of Rydberg
states, including lifetime and interaction strength, scale with powers of n* and have been
documented extensively, for example in [172, 96] with values for 3°K presented in [145] and
calculated using the ARC library [174].

The central aspects for our non-equilibrium many-body system are driving, dissipation
and interactions of Rydberg states. Their respective strengths are all determined by
transition dipole moments, either to neighbouring Rydberg states (interactions) or to
low energy states (driving and dissipation by spontaneous decay). Compared to the
transition dipole moment between the ground and first excited state (2.90 eag for [4sy5)
- |4ps/a) of 39K ), the transition dipole moment between neighbouring Rydberg states
(| {(n — 1)p|er |ns) | oc (n*)?) easily reaches or exceeds a three orders of magnitude larger
amplitude for typical Rydberg states around n = 40, while the transition dipole moment
between low lying states and Rydberg states (e.g. | (4s|er |np)| o< (n*)~%/2) typically
is three orders of magnitude smaller. This disparity is caused by the very large wave
function overlap between Rydberg state wavefunctions on the one hand, or their very small
overlap with low energy state wavefunctions on the other hand. As a consequence, Rydberg
states have long lifetimes of ~ 10 ps, much longer than the lifetime of low energy states,

!The reduction from the state space {|g), |e), shelving state |s)} to the internal spin-1/2 states can be
achieved by the projection operator P = |e) (e| + |g) (g| acting on the local density matrix Pp") P. The
thus reduced density matrix is no longer trace preserving.

2Quantum defects for potassium are reported in [173] using high precision spectroscopy. We were able to
verify them in our own experiments [160]
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3.2 Microscopic processes of ultracold atoms excited to Rydberg states

which are complemented by highly exaggerated interaction properties as we will see in the
following. However, the very weak dipolar coupling strengths to low-lying states poses
significant challenges to create sufficiently powerful light sources for strong laser driving of
the ground-to-Rydberg state transition.

In our experiments, the energy scales associated with the atom-light interactions, the
interactions between Rydberg atoms, and dissipative processes can all be made comparable
with one another. This provides the interesting scenario in which the quantum many-body
dynamics are governed by a competition between driving, long-range interactions and
dissipation. In the following we will summarise how these processes can be modelled,
such that we can formulate the microscopic quantum master equation for the probability
distribution of microstates of our many-body system. We will restrict our discussion here
to single-photon excitation coupling ground and Rydberg states directly. Extensions of the
developed descriptions to multilevel systems will be introduced in the next chapter.

3.2.2 External laser driving

In our experiments we use coherent laser light interfacing with atoms to drive transitions
between specific atomic states. In this thesis we are concerned with strong laser fields,
making a semi-classical description possible[171], where the light field is treated classically
as an oscillating electric wave E(t,x) = Eg cos(wt — kx) of field strength Fy and angular
frequency w = c¢/|k|. The intensity of such a field is given by I = egcFy?/2 with €g the
vacuum permittivity and c the vacuum speed of light. Under the condition that the light
field is near-resonant to only a single atomic transition between two atomic states labelled
ground state |g) and excited state |e), the atom can be reduced to a two-level system
with energy splitting hwey. Then the light field is detuned from the atomic transition by
A=w-— weg.3

To describe the interaction of the light field with the atomic transition, we employ
the dipole approximation®, where the classical light field E couples to the transition’s
electric dipole operator deg = er via the interaction Hamiltonian —deg - E. The validity
of this approximation for Rydberg states has been shown in [175]. Transforming into a
co-rotating frame and applying the rotating wave approximation for near-resonant driving

(A < w~+ wey) [171], the coupling between states |g) = <(1]> and |e) = <(1)> induced by
the light field can be modelled by the atom-light Hamiltonian operator

h(—A Q
Hdrive = 5 < 0 A) . (35)

This Hamiltonian describes both coherent absorption and coherent stimulated emission,
where at resonance the population of an initially unexcited atom oscillates with the Rabi

3For this definition of the detuning, so-called red detuning corresponds to A < 0 and blue detuning A > 0.
This classification corresponds to the optical spectrum, where high energy light has blue colour and low
energy light red colour correspondingly.

“The dipole approximation is valid in the limit | {e|r |g) | < 1/|k|, where the transition moment {e|r|g) is
limited by the wavefunction of smaller size. Then higher multipole components are much weaker than
the electric dipole moment. This condition is fulfilled for (near) optical transitions between low-energy
states of potassium, but also for the (near) optical transitions between these and highly excited Rydberg
states considered in this thesis. Even though the extent of the Rydberg-state wavefunction is ~ 100 nm
and therefore similar to optical wavelengths, the overlap to low-energy states remains small, as is
reflected in the small electric dipole matrix elements of these transitions.
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3 From atomic physics to interacting driven-dissipative spin systems

frequency €2 in time. Since the Rabi frequency characterises the strength of the atom-light
coupling, we will refer to it as the driving strength in this thesis. The two-level atom-light
coupling description is valid, if the condition weq > |A|, Q holds, where we,, is the frequency
difference between the targeted excited state |e) and any other state. In our experiments,
this condition is fulfilled [96, 112].

The coupling is parameterised by the detuning A and the driving strength 2, which is
given by

|deg ) EO’

Q=
h

(3.6)
Here we see how the small transition dipole moments coupling ground and Rydberg states
(cf. sec. 3.2.1) lead to very small driving strengths, requiring high power and tightly focussed
laser sources to compensate. In the course of this thesis we were able to achieve driving
strengths between ground and Rydberg states with a free tuning range from ~ 2kHz to as
high as ~ 200 kHz, while the detuning can be freely tuned to ~ 10 MHz above and below
resonance. The large tuning range over orders of magnitudes of both driving parameters
and the achieved large maximal driving strengths are a central capability in the experiments
reported in this thesis.

3.2.3 Van der Waals interactions

The interaction between two alkali atoms (positions rj and ri) with a separation R = |R| =
|rj — ri| much larger than the size of the electronic wavefunction (R < n?ag) is dominated
by the electrostatic interaction energy of the two valence electrons V;, = 47;15;1"}{‘ .5 Then
exchange interactions can be neglected and the interaction potential can be derived in

multipolar expansion [177, 178]. The dominant dipole-dipole interaction energy is given by

1 <dj ‘i 3(dy- R)(dk-R)> |

Vji (3.7)

- 4meq R3 RS
with dj, dy electric transition dipole operators. As is illustrated in Figure 3.1, this
interaction operator acts as a perturbation on the energy of a pair of atoms in state
|11)) via dipole mediated couplings to other nearby pairstates |«3) [179] (for a review cf.
to [172, 112, 96]). In this thesis, we will excite atoms only to one Rydberg state isolated
by the laser driving and rely on the induced interactions between atom pairs [1)). The
resulting interaction energy then is pairwise additive in a many-body system [97, 180]. To
second order in perturbation theory the dipole-dipole interaction leads to a modification of
the pair energy, which is given by

o W Vglag) P G
s gl; Eyy—EBap h|1’.i — k|6 (33)

Typically the energy spacing of any two pair states |Eyy — Eqag| is much larger than the
corresponding dipole-dipole coupling strength | (42| Vji, |a3) |, such that any admixture of

5The minimal distance at which the overlap may be neglected can be approximated by the Le Roy
radius [176], which typically is ~ 0.5 pm. Below a separation of typically two to three times the Le Roy
radius, non-perturbative contributions dominate due to pair state resonances, leading to a crossover to
near-resonant dipole-dipole interactions [112].
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3.2 Microscopic processes of ultracold atoms excited to Rydberg states

|1h1)) with other pair states is negligible and that the interaction energy is well approximated
by second order in perturbation theory. [127, 112] Additionally, the bandwidth of the
excitation field, which is given by € for strong driving, is much smaller than the dipole-dipole
coupling strength, such that only the |¢1)) pair state is populated by the light field. The
effective Rydberg-Rydberg interaction potential scales with 1/RS and is identified as van der
Waals interaction between the induced transition dipoles. In the following, the separation
R can be treated as a classical variable since the atomic motion is much slower than the
internal electronic dynamics. In total, the condition |Eyy — Eqg| > | (V0| Vik |aB) | > Q,
for which the van der Waals interactions act as a perturbation to the Rydberg-Rydberg pair
state energy and do not populate any other states significantly, holds in our experiments.
Hence the two-level approximation of the atomic level structure is valid also under the
influence of van der Walls interactions.

The effective interaction strength Cg scales dramatically with principal quantum number,
owing to the n*? scaling of the dipole moment and the n*~3 scaling of the energy of
adjacent pair states, in total resulting in Cs oc n*''. According to our definition, Cg > 0
corresponds to repulsive interactions, which is the case for the used Rydberg states of
potassium with typical interaction coefficients being Cg /271 ~ 103 MHz pm®. Because the
interaction strength falls off as a power law with separation, the interactions are long-range
in the sense that an excitation can influence the state of many nearby atoms far beyond
nearest neighbours. Therefore the effective interaction strength depends on the local density
of atoms ng, such that a convenient parameter characterising the interaction strength
between neighbouring atoms in the Rydberg state is J = Cgng? ~ 10 MHz for typical
atomic densities in our experiments.

3.2.4 Dissipation from decay and dephasing

The state of the atoms is not only influenced by coherent driving and interactions, but also
by decay of excited states and pure decoherence mechanisms. These dissipative processes
are irreversible and break the conservation of total energy. In particular, our system also
realises decay to states which are not coupled by the internal (de)excitation dynamics, for
instance by decay to a subset of decoupled hyperfine states of the ground state manifold
or ionised states, leading to non-conservation of the total particle number also. This will
be an important property in our experiments, which we make use of as an observable in
chapters 5 & 6.

One source of decay in the experiments reported in this thesis is coupling to the vacuum
electromagnetic field modes, i.e. spontaneous decay. The electromagnetic field has many
degrees of freedom, corresponding to all possible directions of the emitted photon, making
the deexcitation process dominant and essentially irreversible. Additionally, we treat the
coupling to the environment electric fields as not being part of the system, such that this
contribution to the evolution of the system is non-unitary and causes decoherence [171].
The spontaneous decay rate in vacuum has the form I' = #zrddegﬁ and is dominated
by transitions to low energy states due to the w® scaling of the spontaneous decay rate.
Thus Rydberg states have a much larger lifetime compared to low energy atomic states.
For Rydberg states an additional cause of decay is the coupling to finite temperature
blackbody radiation [96], for which approximate expressions are documented in [181].
Typical combined decay rates including spontaneous and blackbody contributions are
I'/27 ~ 10kHz. If excitation to Rydberg states is carried out while the atoms are held
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3 From atomic physics to interacting driven-dissipative spin systems

in an optical dipole trap, an additional photoionisation loss is possible [116, 175]. For
Rydberg |ns) states photoionisation rates lie below 1kHz, while for Rydberg |np) states
photoionisation has a typical magnitude of ~ 10kHz for principle quantum numbers
~ 40. [166, 167, 116]

We describe decay by the Lindblad superoperators given in equation (3.4). To include
particle loss out of this internal state space due to decay, the modified operator

L'L;p+ pLIL;
it L J] (3.9)

L(p) = h; [(1 —b)L;pL} — 5

can be used. The branching parameter 0 > b > 1 gives the ratio of decay to coupled and
uncoupled states, with the total particle number conserved for b = 0. In our experiments
we observe that b ~ 0.1. The jump operator L; for decay acts on individual atoms and is
defined as

(4) ()

. . —p) /2
Li=vVTlg)lel. =  £(V)y=nr| 7 b /2 3-10
i |95) (€] (p*7) (_pgg/z (1—b)ptd) 310

In the last step we gave the Lindblad decay operator from equation (3.9) explicitly, using

the single spin density matrix components pgﬁ) We note that the given form of the

Lindblad decay operator is not trace preserving by incorporating the loss of particles. This
loss with rate préJ;) depends on the bare particle loss rate bI" and the population of the
excited Rydberg state, leading to a macroscopic loss rate by ensemble averaging. Since this
particle loss couples population of the Rydberg state to the total population, the driven-
dissipative evolution of the internal many-body state can depend on the previous evolution
of the system, which is sometimes referred to as non-Markovian evolution. This may have
important consequences on the dynamics of the many-body system. In chapters 5 and 6
we will explore possible consequences of the particle loss dynamics on the non-equilibrium
dynamics and phase structure of Rydberg spin systems.

In addition to decay, our system is influenced by pure dephasing, e.g. from laser
phase noise, which reduces coherences in the system and broadens the apparent spectral
width of transition resonances. Assuming that the dephasing mechanisms are spatially
uncorrelated they can be accounted for by equation (3.4) and the phenomenological local
jump operator [182, 183]

(7)
e e (g 0 —peg /2
Lf = Vaclej) (il . = L2(Y)) = e ( o9 /2 pg/ ) (3.11)
Y

The explicit form of the dephasing operator £4¢ shows that it has the effect of reducing
coherences. In our experiments, typical dephasing rates are ~ 100 kHz.
3.2.5 Mapping to a spin system

In the previous sections we have established that in our experiments the coupled atom-light
system isolates an effective two-level system between the atomic ground state and a targeted

5The quantum master equation is trace preserving if the Lindblad superoperator £ is extended to include

Yp oaiartr.
the shelving state, i.e. £(p) =h>_; {b Is;) (ejl ples) (s;] + (1 — b)Lj[)L; — w .
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Rydberg
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Figure 3.2: Prototypical non-equilibrium quantum spin system based on a laser trapped gas of
ultracold atoms driven to Rydberg states and subject to decay. Ground state atoms are depicted
as blue dots and identified as |}) state, which are suspended in a cigar-shaped trapping geometry
throughout the temporal evolution. The optical dipole trap is indicated as a grey shaded area in
the background. An external coherent laser source drives transitions between the ground state
and the highly excited Rydberg state, which is depicted as red spheres (|1)). The driving field
is parametrised by the driving strength Q and detuning A, which compete with the decay rate
I and Rydberg-Rydberg interactions V' in the internal state space. Decay of excited states may
transfer population to the ground state, which is coupled by the driving laser fields, or to decoupled
shelving states |s). Both lead to dissipation of excitation energy, and the latter additionally leads to
particle dissipation. Pairs of Rydberg excitations interact via repulsive van der Waals interactions
V altering the pair state energy, which have a long-range power law shape.

Rydberg state. Thereafter we found that the van der Waals interactions Rydberg pair
states act as a perturbation to the pair state energy, for which the two-level approximation
is appropriate. This allows us to identify the two-level atom as a pseudo-spin 1/2 system,
assigning |}) = |g) and |1) = |e) and introducing the Pauli spin matrices o, and o,. The
full Hamiltonian, comprising both atom-light coupling and Rydberg-Rydberg interactions,
can then be written as

hA . Q) . ﬁC’6
M= 2o+ 3ol + =2 3
J J k,j#k

()

kn
12

|r.] _rk|6 (3.12)

The operator nU) = (a,(zj ) 4 1)/2 projects on the excited state. We discuss the phase
structure of this many-body Hamiltonian in section 3.3.2 for repulsive interactions, which
is the relevant case for this thesis.

The driven-dissipative Rydberg spin system emulated by our experiments is depicted in
Figure 3.2. Here, the state of the system is determined by the external longitudinal field
A, transverse field €, long-range spin-spin interactions parametrised by Cg and decay to
internal |]) states or external shelving |s) states.

In the next section we will discuss important phenomena emerging for many-body
Rydberg spin systems in the limit of weak or no dissipation, including Rydberg blockade
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3 From atomic physics to interacting driven-dissipative spin systems

and facilitated excitation as well as Rydberg dressing and equilibrium many-body phases.

3.3 Emergent many-body effects in Rydberg-interacting driven
systems

In the course of this thesis we aim to explore the large parameter space afforded by the
interplay of driving (€2 and A), dissipation (I' and 7g.) and interactions (J = Cgng?).
We introduced the relevant frequency scales for our experiment in the previous section
already. To set the stage for this task, we will now introduce a number of many-body
effects of Rydberg spin systems arising in special parameter regimes. We will focus on those
phenomena applicable to the low-temperature, homogeneous atomic gas regime realised in
our own experiments.

3.3.1 Rydberg blockade and facilitation dynamics

For strongly interacting systems the dynamical evolution of an atom strongly depends on
the state of its neighbours. On resonance (A = 0) the interaction energy shift equation (3.8)
of an excited atom can suppress the excitation of neighbouring atoms. This effect is called
Rydberg blockade [184, 96, 112, 185, 186] and originates from the competition between
the interaction energy and the excitation bandwidth. Thus only atoms sufficiently far
away from the seed can undergo a transition where the energy shift due to the interactions
is sufficiently small. For weak dissipation the excitation bandwidth is dominated by
power broadening with width A2 giving the blockade condition V' > A} and therefore a
characteristic blockade distance
O\ /6
Ty = (Q> . (3.13)

Rydberg blockade leads to an effective reduction of accessible many-body states since
multiply excited are far-detuned inside a blockade volume. This effect is of particular
interest for quantum information processing since it can be utilised to realise fast two-qubit
gates [187, 184, 167, 188] (for reviews see [112, 97]). Additionally, Rydberg blockade
was found to lead to collective excitation of entangled states [189, 186, 190] and spatial
correlations of excitations in the system [191]. Within a Rydberg blockade volume, only
states comprising a single Rydberg excitation can be accessed, which is given by the
totally symmetric Dicke state Y, |g1 ..., € ..., gn) /V/N for N atoms within the blockade
volume.” The excited many-body state is a fully entangled state, opening the possibility for
deterministic entanglement creation [192]. Effectively Rydberg blockade reduces the entire
multi-atom system within the blockade volume to an effective two-level system, which is
sometimes called superatom [193]. Its driving strength is collectively enhanced to v NQ.8
We would like to point out that the emergence of this new energy scale makes the definition
of the blockade radius ambiguous, with the collectively modified blockade radius being

ry = (\%{2)%. (3.14)

"The light field preserves symmetry under particle exchange
8These simple phenomenological definitions are in good agreement with the cited experiments as well as
numerical many-body simulations [194]

38



3.3 Emergent many-body effects in Rydberg-interacting driven systems

(a) R C6/R6 (b) ) .
= {: Q e
- Q o '.'-*.. "::.:;.!.;;'fo : ;:‘;:.:-:, '
oy RSO
c Ot B S N
W QI : v X1 S
e S s -"s: " -. .'.f'
144 o
Iy R' ’ )
(c) A CG/RG (d)
\ . L] .«
r— . ‘. . ':’6'.0 N '?.
< Fete o WY
- S |11 oL "_‘{..?!.; PR .
5 TS R s
R Oppat
5 gf T e e
. & o Seeg %
y . MDA A
e 8 LA °
1) S
I's R' ’

Figure 3.3: Collective effects in Rydberg excitation for two atoms. For resonant excitation (a,b)
the long-range powerlaw tail of the interaction potential leads to Rydberg blockade. (a) For large
separations R, both atoms can be excited simultaneously. Below a critical distance r}, determined
by the excitation bandwidth 2, the doubly excited state |11) becomes off-resonant, giving rise
to the excitation blockade. (b) Sketch of the Rydberg blockade effect in an atomic cloud. A
Rydberg excitation is associated with a blockade volume denoted by a dashed line, inside which no
further atoms can be excited. Far away from resonance (c,d) the excitation dynamics is dominated
by facilitation. An off-resonantly excited Rydberg seed leads to resonant excitation of further
Rydberg atoms for separations R in the vicinity of the facilitation radius ry, where the detuning
compensates the Rydberg-Rydberg interaction potential. Inside the facilitation radius Rydberg
blockade suppresses further excitation.

Here, N has to be determined self-consistently from the blockade volume V4, and the atom
density ng. We will be able to determine in chapter 5 the relevant blockade scale in our
experiments.

In the case of a large detuning from resonance (|A| > Q) with the same sign as the
interactions, a present excitation will shift the excited state energy of atoms at a specific
distance into resonance (A = V), leading to the opposite effect to blockade which is
referred to as anti-blockade [195] or facilitation, illustrated in Figure 3.3(c). The facilitation
distance is given by the competition between detuning and interactions as

n—(&OW- (3.15)

Based on Rydberg facilitation, for example the dynamical creation of Rydberg aggre-
gates [121, 122, 123], optical bistability [124, 125, 126, 127] and the observation of kinetic
constraints [196, 93] has been reported.
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3 From atomic physics to interacting driven-dissipative spin systems

3.3.2 The coherent Ising-like quantum spin system

The non-dissipative Rydberg spin system has been explored intensively, where the quantum
state of the system is governed purely by the Hamiltonian (3.12). Then the longitudinal and
transversal fields realised by the laser driving and Rydberg-Rydberg interactions govern the
system. It closely resembles the quantum Ising model with long-range interactions [197, 190].
The correlations between Rydberg excitations [194] arising from repulsive van der Waals
interactions (realised in all our experiments) are predicted to endow the many-body ground
state with crystalline long-range order for A > € [132, 198], which has also been successfully
observed in mesoscopic systems [199]. Moreover, [197] revealed the phase diagram of this
system, which we show in Figure 3.4. It features a second order quantum phase transition
at 2, A = 0 connecting a crystalline phase of regularly spaced Rydberg excitations (A > 0)
to a paramagnetic phase of weakly excited atoms without correlations (A < 0). For finite
driving strengths close to the critical point an additional quantum critical region appears.
The notion of phase transitions and critical states was introduced in section 1.2.1. In a
quantum system, the properties of the individual phases are given by the respective energy
ground states of the many-body system. At the quantum critical point, the energy gap
between crystalline and paramagnetic many-body eigenstates becomes zero, creating a
nonanalytic point in the ground state energy. [200] For finite 2 the energy gap between
the ground state and higher energy states becomes finite, giving rise to the quantum
critical region close to resonance. In this regime the behaviour of the order parameter is
governed by the vicinity to the critical point as a function of the driving strength, leading
to powerlaw scaling. Microscopically, the vicinity to the critical point is determined by the
collectively enhanced Rydberg blockade introduced in equation (3.14). [197] based their
investigations of the phase structure of Rydberg spin systems on mean field calculations
which incorporate the density-density correlations of the Rydberg blockade to lowest order
and use the fraction of Rydberg excitation m as the order parameter.” The predicted
on-resonance critical scaling m o Q% has a mean field scaling exponent ayr = 2/5 in
three dimensions. Powerlaw scaling is also predicted in the critical phase as m oc A?
with Syr = 1/2 (also in three dimensions). Subsequent experiments by [201] revealed
the resonant critical scaling as a function of €2 for the first time in an experiment. These
theoretical and experimental efforts combined established that the Rydberg-interacting
spin system belongs to a new universality class.

It is an important question whether, and under which conditions, properties of the
equilibrium and non-equilibrium phase structures are linked. In this thesis we will explore
such connections experimentally and theoretically in chapter 5. To this end, we will extend
the afore-mentioned theoretical mean field treatment of the coherent Rydberg spin system
to its non-equilibrium counterpart in section 3.4.1. This will provide us with a powerful
tool to guide our experimental explorations.

3.3.3 Rydberg dressing

We have seen that atoms excited to Rydberg states offer a promising approach to create
strongly correlated matter allowing us to engineer the strength and range as well as the
anisotropy of the interactions. However, the energy scale associated with the Rydberg-
Rydberg interaction (J/2m ~ 10 MHz) is incompatible with the energy scales of driving and

9This model is extended to dissipative Rydberg spin systems in the following section.
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Figure 3.4: Phase structure of a quantum many-body system with van der Waals Rydberg-Rydberg
interactions as a function of the laser driving parameters  (strength) and A (detuning). The
ground state of the continuously driven system is characterised by the Rydberg fraction as the order
parameter and shows a second order phase transition at Q, A = 0. It separates a paramagnetic
phase of low excitation fraction from a phase of high excitation fraction with crystalline order.
Around A = 0 and for finite Rabi frequencies, these two phases are separated by a quantum critical
regime.

dissipation (2, I' + v4e < 27 - 100 kHz), making a large sector of highly excited many-body
states inaccessible. Additionally, the relatively short lifetime of Rydberg states (~ 10 us)
is seemingly incompatible with the typical time scales associated with ultracold atomic
motion or equilibration (~ 10ms). A possible resolution is offered by off-resonant driving,
as was first proposed in [202], realising “Rydberg dressed” states. Here, the atomic state of
each atom is described by a coherent superposition of the atomic ground |g) and Rydberg
le) states as |¢) =~ |g) + [ |e). The small Rydberg-state admixture 5 < 1 is tunable by the
laser driving parameters. If the laser detuning can compensate the interaction (A = V(R)),
an avoided crossing is created at separation R which strongly mixes ground and excited
states. In the opposite case the resulting interaction potential of a pair of Rydberg dressed
atoms shows a characteristic soft-core potential, as is illustrated in Figure 3.5. It arises
from the Rydberg blockade in second order light coupling between the |gg) and |ee) pair
states. Its characteristic size is approximately given by the facilitation radius (eq. 3.15) and
its maximum strength (R — 0) is proportional to 43. This interaction strength is shared
amongst all particles within the interaction range, such that the strongest interaction effect
is expected for intermediate densities where on average two atoms share an interaction
volume [138]. Outside the characteristic distance the Rydberg dressed atoms do not interact
significantly, leading to essentially independent atoms which each exhibit an energy shift
BV . At the same time, the decay strength of the dressed atoms is reduced to Ry = 5T,
which would allow Rydberg dressed atoms to coherently evolve under the influence of
strong and long-range interactions for up to tenths of a second.

The presented Rydberg dressing idea has generated considerable research efforts, with
predicted many-body phenomena ranging from novel strongly correlated phases [105, 203,
106, 137, 136, 104, 204], phases with topological order [168], to solitons in a BEC [205]
and proposed applications for quantum annealing [206]. Effects of Rydberg dressing
haven been predicted to be measurable as mechanical deformations of Bose Einstein
condensates [207, 208], however, first experiments have been unsuccessful [138] because of
the large densities in BECs suppressing the interaction strength. As an alternative, Ramsey
interferometry has been proposed [209]. Further experiments in large systems were also
unsuccessful in observing signatures of Rydberg dressed interaction because of reported
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Figure 3.5: Soft core interaction potential between two dressed Rydberg atoms. (a) The dressed
pair energies for the same laser parameters as given in chapter 4 in the case of negative detuning
and repulsive interactions. Starting from lowest energy, the depicted eigenstates are the dressed pair
ground state and dressed singly and doubly excited states. (b) Zoom in on the dressed ground state,
which shows a characteristic soft core potential (solid line). For large separations, independent
atom behaviour with a small energy shift 3%V per atom is recovered (dashed curve).

anomalous interaction induced broadening [98, 120]. However, Rydberg dressing has been
successfully applied to mesoscopic systems to entangle two atoms [210] and to observe
coherent evolution of approximately 100 atoms in a quantum gas microscope [211, 212].

In chapter 4 we will explore the Rydberg dressing concept further and establish optimal
parameter regimes for Rydberg dressing minimising decay and maximising interactions. To
this end we will theoretically study the minimal system of two atoms with the full master-
equation treatment introduced previously in this chapter, allowing us to self-consistently
determine the relevant interaction and dissipation characteristics.

In chapters 5 and 6 we will experimentally explore the dynamics and phase structure of
open Rydberg quantum spin systems. To establish quantitative links between our macro-
scopic observations and the microscopic model description, we will introduce approximate
models in the next section, which can be solved efficiently.

3.4 Approximate models for efficient simulation

To solve the quantum master equation introduced in section 3.1 is computationally in-
tractable for large systems with atom numbers 2 10 and long times since the Hilbert space
of the many-body system grows exponentially with spin number. To facilitate a model
description of our experiments and to guide the interpretation of our results we will now
introduce two approximate models reducing the complexity of the description to a mean
field model with approximate two-point correlations and a classical master equation.

All our reduced models can be derived starting from a set of coupled single-atom quantum
master equations. As was shown in section 3.1, single-atom quantum master equations can
be obtained from the quantum master equation governing the density matrix p of the full
system by tracing over all other atoms:

O p9) = Tryr;0p. (3.16)
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The dynamics of each atom j is given by single-body dissipation and the Hamiltonian

1) — _%(A — Vo) + %agj) with V=Y Virplk), (3.17)
Wi

where the effect of the sum of all Rydberg pair interactions on atom j is captured by V;.
We also set & =1 in the following.

3.4.1 Mean-field approximation including two-point correlations

This subsection is based on the following manuscript, from which parts of the
text are reproduced verbatim with permission by the American Physical Society:
Uncovering the non-equilibrium phase structure of an open quantum
spin system

S. Helmrich, A. Arias and S. Whitlock

submitted to Physical Review X

Mean-field theory provides a relatively simple way to qualitatively understand the different
phases of the driven dissipative spin system by providing analytic expressions for the
magnetisation. The mean-field equations can be obtained by assuming each spin interacts
with the average field produced by all other spins. However, to account for the strong
correlations which arise due to the Rydberg blockade effect (cf. sec. 3.3.1) in a self-
consistent way, we include a distance dependent cutoff to the interaction term Vj. This
model has previously been shown to reproduce the quantum critical behaviour associated
with the antiferromagnetic Ising model in the absence of dissipation [197, 201, 119]. Here
we extend this description to open system dynamics, by applying the self-consistent mean-
field approximation to the full master equation (eq. (3.3)). In the following we briefly
describe the derivation of this model and its quasi-steady-state magnetisation. We will
present the derivation for arbitrary dimensions d and Rydberg-Rydberg interactions with
power law exponent p > d, which is the experimentally relevant regime. In chapter 5 we
will experimentally explore the phase structure of our Rydberg spin system and in our
discussion also draw on the mean field model presented here. There, further inspection of
the mean-field solution will allow us to identify different regimes of behaviour.

Mean-field theory applies an approximation to many-body terms, which in our system
are given by the Rydberg-Rydberg interactions. This approximation is given by

Vi — Z ijmgg(|rj — rk|). (3.18)
Py

This describes the effective interaction of a single spin with all other spins weighted by
the local average Rydberg fraction m. Following [197], we approximate the two-point
correlation function by the Heaviside step function ga(|r|) = ©(|r| — r¢), where 7¢ is a
characteristic distance for the correlations characterising blockade and facilitation. Next
we replace the discrete sum by an integral with homogeneous local atom density ng,

Vi ~ frio mnoVijk ddrk, (3.19)

which is a good approximation in the experimentally relevant situation that the mean
interparticle distance is much less than r.. Substituting Vj, = Cp/|rj — ri|P (where p =6
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3 From atomic physics to interacting driven-dissipative spin systems

for van der Waals interactions) and using the spherical symmetry allows one to carry
out the integration explicitly. Furthermore, we self-consistently set r. by requiring that
there is on average only one excitation within the correlation distance due to Rydberg
blockade [102], [nom(1 — go(r)) d’r = 1, yielding:

_ Cpd (mnon)p/d
— —d

V; = JemP/?, (3.20)
where we have introduced the volume of the d-dimensional unit sphere V; and ¢ =
Vi#/4d/(p — d) is a dimensionless constant. Thus the mean-field interaction strength is
parametrised by Jm?/?¢ = C’pnomp/ ¢ which is the interaction coefficient times the average
local density of Rydberg excitations.

The resulting mean-field Hamiltonian, using n = (o, + 1)/2 and dropping the atom
index (j) as well as a constant energy offset, is

1 Q
= —— —_ p/d -
H 5 (A Jem ) o, + 5 0 (3.21)

which can be readily inserted into the master equation (3.16) for the single-spin density
matrix p. The mean-field master equation is solved self-consistently for the Rydberg
population m = Tr[p]| = pee, whose solution can be expressed implicitly for small Rydberg
fraction as

mI
'+ Vde '

0% ~ <4(A — Jem?4)? 4 (I + yde)2> (3.22)
In chapter 5 we will discuss the different regimes of this solution and the resulting different
regimes of non-equilibrium behaviour, in association to our experimental exploration of the
phase structure of driven-dissipative Rydberg spin systems. There, a numerical solution
of the Rydberg fraction as a function of detuning and driving strength is provided in
Figure 5.4(b). We would like to point out here already that the dissipative mean field
model predicts in the string driving limit the same resonant critical scaling as in the non-
dissipative equilibrium case described above (cf. sec. 3.3.2). It remains for our experiments
to see whether such critical behaviour can be found away from equilibrium.

3.4.2 Classical master equation model

To efficiently simulate many-body systems, including e.g. disordered microscopic atom
distributions and effects due to the locally varying cloud trapping potential, we introduce
the classical master equation model (also known as rate equation model). It is valid for
long times, where decoherence processes and decay have washed out phase coherence in
the system, which is the studied regime in our experiments.

The main idea behind the classical master equation model is to reduce the full quantum
master equation (3.3) to a rate equation of populations. This can be achieved by adiabati-
cally eliminating coherences on the single atom level [195, 213, 94| given by equation (3.16).

This is sufficient since coherent transitions oc aé’ ) and dissipation processes only act on
individual spins, while the Rydberg-Rydberg interactions Vj; = Cs/|r; — rk|® act as an
additional local detuning on atom j [213]. We perform the adiabatic elimination step on
9,p\9) by setting the temporal evolution of off-diagonal coherences (Otp(% for a # ) to
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zero, which is a valid approximation on time scales ¢ > vge~!. Solving for the coherences we
finally obtain rate equations for the total population n?) = pgjg) + pgj ) and the population

of the excited state pl¥) = pg) of a two-level atom

9,09 =L (n) — p@)y T p)
on) = — pIpl), (3.23)

with the microscopic excitation and deexcitation rates I'y and I'| respectively. For the last
equation above we have taken into account the finite particle dissipation with rate bI'.

The processes coupling the various microstates of the system can be expressed elegantly by
the microscopic rates I'y and I'|, which reveal the competition between the energy scales for
driving (detuning A and strength ), dissipation I" and pair interactions V; = 3", £ V}kpg;)
very naturally.

: r 0?
Excitation rate of atom j: F%] ) = (' + 7ae) 5
(' + 7ae)? + 4(A = V)
Deexcitation rate of atom j: Fij ) = ng ) + T
Loss rate of excited atom j: Fl(ggs =l (3.24)

This classical many-body master equation can be solved efficiently using kinetic Monte
Carlo techniques [214], including the temporal evolution. Furthermore, this model retains
the local information of the atom positions within an atom cloud, such that the locally
varying distribution of atom density and trap lightshifts can be accounted for in a simulation.
This will allow us to compare our experimental observations in chapter 5 to classical rate
equation simulations directly. We use the implementation presented in [215]. Additionally,
we incorporate the effect of motion, which is described in appendix A.

In the framework of the classical master equation we recover the illustrative picture
discussed in the section 3.3.1, in which an atom in the Rydberg state shifts the Rydberg
states of nearby atoms out of or into resonance of the excitation transition. For resonant
laser driving (A = 0) this results in Rydberg blockade, and for far off-resonant driving
(1Al > Q, I' + 7qe) compensating the interactions V; we can identify facilitation. In
the latter case the excitation rate separates into fast near-resonant excitation (rate I'y)
facilitated by neighbouring seed excitations for A ~ V}, and slow off-resonant excitation
(rate I'y) for A 5% Vj. These excitation rates, as well as the corresponding externally driven
deexcitation rates, can be approximated by

02 0?2
F+’7de7 Fs%(F‘F’Yde)E'

I (3.25)
Facilitation and seed (de)excitation additionally compete with decay and loss of excited
atoms in our system. In combination, these microscopic transition rules bear striking
similarities to the processes leading to absorbing state phase transitions discussed in
section 1.2.2. Facilitation then acts analogously to branching (facilitated excitation) and
coalescence (facilitated deexcitation), while the correspondence of decay is direct. However,
the slow off-resonant excitation in principle introduces a small amount of fluctuations to any
absorbing state, making it an open question whether the perturbation is sufficiently small
to allow one to observe features of an absorbing-state phase transitions in our experiments.
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3 From atomic physics to interacting driven-dissipative spin systems

Also the influence of the particle loss on this dynamics, including potential non-Markovian
evolution suggested in section 3.2.4, can be elucidated in our experiments. We will perform
such experiments in chapter 6 and interpret these building on the presented analogy between
microscopic processes in the facilitation limit and the processes leading to absorbing state
phase transitions.

Conclusion

In this chapter we showed that ultracold atoms excited to Rydberg states provide an
experimental platform which is well suited to emulate driven-dissipative quantum spin
systems. In our experiments, the Rydberg excitation laser isolates an effective pseudo-spin
1/2 within the manifold of atomic states, whose dynamics is governed by the external laser
driving, dissipation and interactions between Rydberg states. Subsequently we showed how
these microscopic processes can be described within the framework of the Lindblad quantum
master equation in terms of Hamilton and Lindblad operators, such that the whole non-
equilibrium dynamics of the spin system can in principle be described. Thus we have shown
that we can both create non-equilibrium spin systems in the laboratory and also describe
the microscopic processes governing their dynamics. In the next chapter we will extend
our discussions to include effects of intermediate states weakly populated by two-photon
excitation on the resulting interaction and dissipation characteristics of Rydberg atoms. In
combination, the theoretical description introduced in this chapter puts us in a position
where we will be able to explore quantitative links between macroscopic observations in
the experiments and microscopic model descriptions in the following chapters.

Based on the microscopic properties of Rydberg spin systems, we reviewed emerging
many-body properties of such systems, which will also influence the non-equilibrium
dynamics observed in this thesis. In the last part of this chapter we introduced the
dissipative mean field and classical master equation as approximate models of our system,
which we will use to efficiently describe and interpret our experimental findings to establish
the various regimes of non-equilibrium behaviour emerging in our system. An important
feature of our system is particle dissipation, in addition to dissipation of energy, which can
lead to non-Markovian evolution on times long compared to the inverse effective particle
loss rate. In chapter 5 we will first study the many-body dynamics on timescales where
the impact of particle loss on the dynamics of the spin-1/2 system is small, and establish
the non-equilibrium phase structure of the system in this limit. Thereafter, we will study
the full temporal dynamics in the facilitating limit, including non-Markovian effects, to
explore the striking analogy between classical (de)excitation processes occurring in our
system and processes leading to absorbing state phase transitions. Beforehand, we will
use the quantum master equation of our system and apply it to explore the microscopic
properties of atoms dressed to Rydberg states by multiple laser fields in the next chapter.
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Two-body interactions and decay
of Rydberg-dressed atoms

This chapter is based on the following publication, from which parts of the text
are reproduced verbatim with permission by IOP Publishing:

Two-body interactions and decay of three-level Rydberg-dressed atoms
S. Helmrich, A. Arias, N. Pehoviak and S. Whitlock
Journal of Physics B: Atomic, Molecular and Optical Physics 49, 03LT02 (2016)

Engineering the properties of synthetic quantum systems at the microscopic level, for
example by controlling the shape and range of interactions or the strength of dissipation,
is a central capability of modern experimental platforms [24, 74, 75, 76, 92]. For example,
this is of great interest for quantum simulation[77, 216, 113, 95], and allows for the creation
of novel states of matter [217, 199, 168, 134, 104, 106, 169]. One approach facilitating
engineered interactions and dissipation is Rydberg dressing. In this scheme the electronic
ground state of atoms is weakly admixed with highly excited Rydberg states by coherent
laser coupling [202]. This way the longevity of the ground states is combined with the
strong and long-range interactions of the Rydberg states. The Rydberg admixture can
be set by the parameters of the laser fields arbitrarily, allowing control over the strength
and range of interactions and decay. This way, the seemingly incompatible energy scales
associated with the Rydberg-Rydberg interactions (~ h - 10 MHz) and atomic motion
(~ h-kHz), as well as the relatively short lifetimes of Rydberg states (~ 10 ps) compared to
the time scales of equilibration (~ 10 ms) can be reconciled for small Rydberg admixtures.
The typical laser parameter choice for this weak dressing regime is a large detuning from
all relevant atomic states (A > Q, T).

The smallest unit for which engineered interactions and decay can be investigated is a
binary system. In the following, we will use this minimal unit to explore the large parameter
space afforded by multiple dressing laser fields and theoretically analyse the resulting dressed
interactions and decay rates. Specifically, we will focus on two and three-level dressing,
which are the two most widely used excitation schemes in experiments [201, 112, 97]. So
far, theoretical and experimental studies have employed a two-photon excitation scheme
with a large detuning from an intermediate state (effective two-level regime) [203, 105,
207, 218, 205, 219, 106, 138, 136, 220, 98, 208] or direct excitation via a single laser
field [210, 221, 222, 223, 224, 204, 206, 211, 212]. However, experimentally reaching
conditions where lifetimes exceed motional timescales still remains an important challenge.
The implementations of two and three-level dressing in our experiments and the achieved
laser driving parameters are summarised in sec. 2.3.

To study both interactions and decay self-consistently in a unified framework we will
employ the quantum master equation approach in this chapter, whose foundation was
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4 Two-body interactions and decay of Rydberg-dressed atoms

already outlined in sec. 3.1. As a first step we will revisit the quantum master equation
and adapt it to a three-level scheme. Thereafter we will will apply it first to the standard
Rydberg dressing approach which is far detuned from intermediate and Rydberg states [207].
In the following section we will investigate the full parameter space available to three level
dressing to find optimal parameters beyond far detuned dressing for this scheme. We will
discover that optimal three-level dressing coincides with destructive interference of the
intermediate state population and a cooperative enhancement of the Rydberg admixture
due to multiphoton excitations shared by multiple atoms [225]. For these parameters the
dressed-state interaction strength and lifetime can be comparable to, or even exceed what
is possible for two levels.

4.1 Quantum master equation description

To self-consistently calculate the effective interaction potential U and the residual photon
scattering rate Ry as a function of the bare Rydberg-Rydberg interaction strength V' we
use a quantum master equation treatment which includes spontaneous decay from the
excited states. The master equation, which was introduced in sec. 3.1, of the two-particle
system is O;p = —i[H, p| + L[p] (here and in the following we use units where ii = 1). The
Hamiltonian consists of three parts H = H® +H? +V, where the H) are the individual
atom-light Hamiltonians of atom (), respectively, in the rotating wave approximation (cf.
sec. 3.2.2) and V = V'|rq) |ra) (r1] (re| is the two-body interaction between bare Rydberg
states. The superoperator L[p] = Z{L} LpLt — (L'Lp + pLTL)/2 describes spontaneous
decay of the excited states, where {L} is a set of decay operators. Focusing on the three-
level ladder system (Fig 4.1(a)), in which each atom is composed of a long lived ground
state |g) coupled to the Rydberg state |r) via a short lived intermediate state |e), then

5 Qe Q,
HY) =5 lg;) (ej] + 5 lej) (ryl
A, A
— lej) (ej] — 3 75} (rj| + h.c. (4.1)

Here €2, denote the Rabi frequencies of the respective laser fields and A, A refer to the
one photon and two photon detunings. Additionally, L) = {\/T¢|g;) (e;], vVTr |e;) (r;]}
describes spontaneous decay from the intermediate state and the Rydberg state respectively
with excited state decay rates I'c,. The states |g) and |r) are not dipole coupled and thus
direct decay can be neglected. We neglect possible couplings to other Rydberg states and
the much weaker interactions between atoms in the |g) or |e) states. Typically I'. > T, and
the internal degrees of freedom reach steady state on a timescale ~ I';! which we assume
is much faster than typical motional timescales. Therefore it is sufficient to calculate the
steady state values of the dressed potential and residual scattering rate for each value of V/
without explicitly considering the motion of the particles. However, care must be taken
applying the same reasoning to the two-level case or to atoms with metastable intermediate
states for which internal state dynamics can be much slower.

To calculate U (V') we first solve the master equation for steady state (0;p = 0) and then
compute the expectation value

U(V) = Te[Hp] — Te[Hplv=0, (4.2)
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Figure 4.1: (a) Level scheme for two atoms with distance R dressed by one or two laser fields
coloured red and blue respectively. (b) Comparison of the interaction strength U(Cs/RS) and
scattering rate Rgs.(Cg/RS) for two-level (dashed red lines) and three-level systems (solid blue
lines) assuming repulsive van der Waals interactions between Rydberg states. We show repulsive
interaction potentials, requiring A = 0, A, > 0 (three-level) and A < 0 (two-level). (c) Same as
in (b) but for attractive van der Waals interactions. The parameters used for the calculations are
given in the text. Reproduced from [226].

where the last term subtracts the single particle light shifts. Similarly, the dressed-atom
decay rate (per atom) responsible for heating and loss of dressed atoms is given by

Ry =Y Tr[LpLY]/2. (4.3)
{L}

We define the Rydberg fraction in the non-interacting limit as
1 R
5= 5 STl (il Al (44)
J

In the next section we will give approximate expressions for Rydberg dressing in two and
three level scenarios where the detuning is dominant.

4.2 Detuned two and three-level dressing

In the case of two-level dressing, approximate analytical expressions for the effective
interaction potential and the decay rate can be found, which illustrate the Rydberg
dressing concept. Example curves are given in Figure 4.1(b). Applying equation (4.2) in
the limit of weak dissipation and large detunings as well as under the condition that no
facilitation is possible (sign(V') # sign(A)), the dressed interaction potential is, to leading
order, given by the soft-core potential

ot va-V)
S AA3 (V= 2A)2

U (4.5)

The effective interaction potential follows the powerlaw dependence of the bare Rydberg-
Rydberg interaction for large separations, while “softening” to a plateau of constant
interaction energy U(®°) = —2Q3? for close atom pairs as a consequence of the Rydberg
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4 Two-body interactions and decay of Rydberg-dressed atoms

blockade [184]. Outside the blockade distance the atoms are independent with an energy
shift of 3%V per atom. Here we have identified 5 = Q2/(2A)? as the two-level Rydberg
fraction. Weak dressing is achieved in the far detuned limit A > Q. The behaviour of
the interaction potential reproduces the observed behaviour of the dressed Hamiltonian
eigenvalues in sec. 3.3.3. Furthermore, the self-consistently calculated decay rate of dressed
atoms is to leading order for all distances R given by

Ry =T,5° (4.6)

In adapting the two-level dressing approach to three levels special care must be taken for
the very short lived intermediate state. While typical lifetimes of Rydberg states are 10 s,
low energy intermediate states have typical lifetimes three orders of magnitude smaller.
The weak dressing approach introduced for two levels can be adapted to three levels by
detuning far from the short lived intermediate state (A, > Q¢, Q,, I'¢) in addition to
detuning far from the Rydberg state. Inspecting the three level quantum master equation of
a single atom in this limit, we find that its state is governed by an effective Rabi frequency
Qer = Qe,./|2A,|, for which the Rydberg fraction again has the form 2 = Q.g2/(2A)32
as in the two-level case. The decay rate is, to leading order, given by

2

Ry = FGZ&; + 2T, 52, (4.7)
For large intermediate-state detunings an effective two-level regime is recovered [207].1,
with the two-level interaction potential eq. (4.5) holding approximately. Numerically
analysing the three level dressed interaction potential for A, > Q., Q., I'e, we find that
achieving strong interactions is challenging for experimentally achievable laser parameters
(see also Fig. 4.2 and cf. [228]). The requirement of small decay rates (< 10 Hz) imposes
strong limitations on the achievable dressed interaction potential strength to compensate
for the fast decay of the intermediate state. Thus we will open our search for optimal
dressing conditions to the full parameter space available for three level dressing, allowing
for cooperative effects and multiphoton interference to engineer the desired properties.

4.3 Cooperatively enhanced three-level dressing

Generally, the inclusion of the intermediate state can have a dramatic influence on the
shape and strength of the dressed interactions as well as the residual decay rate as a
function of the interparticle separation d. Figures 4.1(b,c) show calculated two-body
dressed state potential energy surfaces U(Cg/R%) and decay rates Rs.(Cg/RS) for the
two-level and three-level systems assuming van der Waals interactions with strength
Cgs/2n = +£1.0 GHz pum®, which is typical for e.g. alkali atoms excited to principal
quantum number n ~ 40. Furthermore, the following achievable experimental values were
assumed: I'./27 = 6.0 MHz, I'; /27 = 10 kHz, Q./27 = 1.2 MHz, €, /27 = 200 MHz,
A./2m =100 MHz, A = 0 (three-levels). For comparison with the two-level scheme we use
Q/2r = 5.0 MHz and A /27 = —79 MHz, where 2 is the one-photon Rabi frequency and
A the respective laser detuning. These parameters were chosen such that both systems

For A > Q., Q,, T'. the population of the intermediate state is very small. Then the description of the
system can for example be simplified by adiabatically eliminating the intermediate state [227].
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Figure 4.2: Dressed state decay rates and interaction strength as a function of the laser detunings.
(a) Decay rate per atom Rég) for V' — 0 corresponding to two independent particles. The bright
stripes of maximum decay correspond to the Autler-Towns resonances. The dark stripe in between
at two-photon resonance A = 0 is the electromagnetically induced transparency (EIT) resonance

of destructive interference. (b) Decay rate per atom Réé"’ ) for V= o0 corresponding to the fully
blockaded limit. The EIT-condition is broken at A, &~ +£,./2, indicating a cooperative enhancement
of the Rydberg fraction. (c) Dressed state interaction strength U(>). Blue corresponds to repulsive
and red to attractive interactions. Resonance lines appear as local extrema, corresponding to
the Autler-Towns resonances and the cooperative resonances described in the main text. (d)
Figure of merit f = U(>) / R§2° ). Extrema indicate good dressing conditions, with global extrema
corresponding to the crossings between the EIT resonance and the cooperative resonances as
described in the main text. The arrows indicate the detunings used in Figure 4.1. The three-level
dressing regime of large detuning from all excited states appears in these plots for |A.| > Q, in
the vicinity of the Autler-Towns resonances. The colourscales for figures (a~c) follow a powerlaw
to emphasize small features whereas (d) is on a linear scale. The horizontal bars above each plot
show the corresponding two-level parameters on the same colourscale as a function of the detuning
A. Units of both Ry./2m and U/27 are Hz in accordance with Figure 4.1. Figure reproduced
from [226].

exhibit similarly small decay rates (< 10 Hz) and long-range effective interactions which
“soften” to a constant value U(%) at short distances. We note however that the three-level
dressed potential is considerably more box-like than for two-levels, and its range is shorter
due to the larger excitation bandwidth resulting in a smaller blockade radius.
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4 Two-body interactions and decay of Rydberg-dressed atoms

A distinguishing feature of three-level dressing is that the decay rate can be strongly
spatially dependent, which is in contrast to the two-level case which only shows a small
reduction of Rg. at short distances. We focus on two limits: V' =0 and V — oo. For large
interparticle separations or dilute-gas experiments the residual decay rate Rég) = Rs(V =0)
is minimized due to destructive interference of the intermediate state population due to
electromagnetically induced transparency (EIT). For short distances or in dense gases on the
other hand the Rydberg blockade effect breaks the EIT condition leading to increased decay
rates which plateau at a value Régo) = Rs.(V — 0). This enhanced distance dependent
decay may find applications in quantum state engineering via dissipation [229] or novel
cooling techniques [169, 230, 231]. Another important difference between the three-level
and two-level cases concerns the dependence on the sign of the bare-state interactions. In
the two-level case the sign of V' and A must be opposite to avoid level crossings which
deform the potential and give rise to strongly enhanced decay (Fig. 4.1(c)). In contrast,
the shape and sign of the potential in the three-level case can be made independent of the
sign of V and can be manipulated by A..

While the two-level case has relatively few tuning parameters (£2 and A), the three-
level case presents additional possibilities through independently tuning ., 2., A, and
A. Therefore we search for optimal parameters which maximize U(>) while keeping R
small. To ensure a small Rydberg state population we exploit Autler-Townes splitting,
focusing on the parameter regime Q, > I', > I, and Q, > Q..2 The qualitative features
of Ry and U(®) in this parameter regime are mostly independent of the Rabi frequencies
which predominantly influence the overall energy and time scales. Figures 4.2(a,b) show
the characteristic decay rates Rég), R§S° ) for the three-level system as a function of the
intermediate- and two-photon detunings A, and A respectively. The Autler-Townes doublet
is clearly seen as bright bands for A, = Q2/(4A) and the distinct minimum for A = 0
is due to destructive interference of the intermediate state amplitude. In the interaction
dominated regime we observe two additional features in R for A, = —(A£+/A%2+Q2)/2
(Fig. 4.2(b)). These features correspond to cooperative resonances between the two-atom
ground state and the |e1) |ea), |e1) |r2) and |r1)|ea) states. This is a cooperative effect
since the multiphoton multiatom excitations enhance the Rydberg fraction beyond the
corresponding non-interacting single-atom value [225]. Approximate analytical relations
for U(V) and Rs.(V) valid in this regime can be found in [228].

Figure 4.2(c) shows the interaction strength U(>) which is split into two domains of
repulsive (blue) and attractive (red) interactions. Maximum interaction strengths are
found on the Autler-Townes resonances (coinciding with maximal decay rates) and on
the cooperative resonances (with small decay rates). This cooperative enhancement of
the dressed-state interactions does not appear in an effective two-level description. A
similar type of enhancement exploiting molecular resonances for specific pair distances and
Rydberg states has recently been proposed [232], however the cooperative enhancement
reported here works for any Rydberg state and preserves the soft-core nature of the dressed
potential. We also expect it to persist for more than two atoms [225], therefore it may also
prove beneficial for the implementation of collective many-body interactions in Rydberg
dressing [138].

2The two Autler-Townes resoannces have a Lorentzian distribution with a small overlap at the two-photon
EIT resonance condition A = 0 for destructive interference.
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2-level optimized 3-level
g2 0?/(20)? 02/02
& r, 82 2r, 32
&)~ st + R pior, + RY
Uee) —2530) sign(A,) 34031,

_ -1 -1
B -2 14 Gk

Table 4.1: Key parameters and approximate scaling relations characterising the dressed-state
potential in the weak dressing regime: Rydberg fraction 32, residual decay rates Réé’c ) and Rég),

interaction potential U(>) and the figure of merit f = U (O")/ Récoo ). We restrict our analysis to
B8 < 1 and sign(V') # sign(A) (two-level case) and A =0 and A, = £, /2 (optimized three-level
case). () refers to the Rabi frequency of the direct one-photon transition.

4.4 Figure of merit for optimal Rydberg dressing

We search for dressing conditions characterised by large interaction strengths U(>) and
small scattering rates. We combine these requirements into the figure of merit for Rydberg
dressing

f=U /R, (4.8)

Figure 4.2(d) shows our figure-of-merit as a function of the two detunings. The optimal
detunings are clearly revealed as dark crosses at the intersection of the two-photon resonance
line and the cooperative resonances at (A, A.) = (0,£,/2) which coincides with the
parameters chosen for Figure 4.1(b,c). Here, U(*®) /27 ~ 0.3kHz and Régo)/%r ~ 10 Hz,
leading to f = 30 for three-level dressing. This large figure of merit indicates that
interactions are more pronounced than decay, allowing for strong dressed interactions at
long excitation times.

We now discuss the scalings with system parameters of the interaction strength, decay
rate and the figure of merit for three-level dressing with detunings corresponding to the
two-photon resonance as well as the cooperative resonance. A summary of these relations
is presented in Table 4.1. In the non-interacting limit the Rydberg fraction on two-photon
resonance is 3% ~ 02/02 as expected for the EIT dark state [182]. Remarkably, the decay
rate is independent of I'. and is given by RéS) ~ 2I',3%. Both the interaction strength
and the decay rate are maximal at the cooperative resonance with ‘Ué;i)‘ ~ B0 /T? and

R£§° ) ~ BAO2/T . + Rgg), which for small I';. is dominated by the first term. Comparing
these two yields a figure of merit |f| =~ €, /T'c. This shows that the optimal condition for
three-level dressing requires small intermediate-state decay rates and large couplings on the
upper transition, but is independent of the Rydberg state admixture and the dressed state
lifetime, which is free to be chosen through the ratio Q2/Q2. Corresponding expressions
for the two-level system are provided in Table 4.1. By comparing the scalings of two- and
three-level dressing for equal decay rates we conclude that the figure of merit for three-level
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4 Two-body interactions and decay of Rydberg-dressed atoms

dressing may outperform two-level dressing if

Q, 2Q /R,
foptawl = =— > — [ == | = fau. (4.9)
I

Conclusion

In conclusion, we have analyzed effective two-body interaction potentials and decay rates
for Rydberg-dressed atoms coupled by multiple laser fields using a master-equation treat-
ment. Although we primarily focused on two-level and three-level dressing schemes, this
approach is also applicable to systems with more levels and more than two coupling
fields. While two-level dressing (i.e. employing a single laser field coupling ground and
Rydberg states) completely eliminates the population of short-lived states, which may
be important for achieving long dressed-state lifetimes, we also find favorable conditions
in the three-level system by making use of EIT interference on two-photon resonance.
Recent experiments [119] and corresponding theorertical modeling [228] have investigated
a similar idea for Rydberg dressing of strontium. Additionally, we have identified opti-
mum laser parameters corresponding to a cooperative enhancement of the dressed state
potential which is not present for the effective two-level descriptions considered previously.
The achievable interaction strength shown in Figure 4.1(b) corresponds to an energy
of ~ kg x 15 nK. This energy scale is within reach in ultracold quantum gases which
should make it possible to observe the effects of long-range Rydberg dressed interactions in
Bose-Einstein condensates and degenerate Fermi gases. The figure of merit for three-level
dressing under these conditions scales with Q,/T'., indicating that large coupling strengths
between intermediate and Rydberg states and long lifetimes of the intermediate state are
desirable. This highlights the importance of high power lasers and large matrix elements
for the upper transition, combined with long intermediate state lifetimes, such as is possible
using the |ns) — [(n+1)p) — |r) excitation scheme (with |ns) corresponding to the
electronic ground state) in the alkali atoms [161]. However, the experimental challenge will
be to isolate a three-level system without spuriously populating additional intermediate or
Rydberg states. Other Rydberg states can potentially be populated by blackbody-driven
transitions [98, 119] or via resonant two-atom excitation of Rydberg pair states at small
distances R < 1 pum [112]. Interestingly, the sign of the three-level dressed state potential is
independent of the sign of the bare Rydberg-Rydberg interactions, opening the possibility
to study purely repulsive anisotropic interactions, thereby minimizing losses or dipolar
relaxation [233]. Another interesting feature of three-level dressing is the possibility to
introduce and control density dependent dissipation, which could be advantageous for
studying, for example, non-equilibrium superfluidity in coupled quantum fluids of matter
and light with strong and tuneable interactions [85].

54



Unravelling the phase structure
of driven-dissipative Rydberg spin
systems

This chapter is based on the following manuscript, from which parts of the text
are reproduced verbatim with permission by the American Physical Society:

Uncovering the non-equilibrium phase structure of an open quantum
spin system

S. Helmrich, A. Arias and S. Whitlock

submitted to Physical Review X

Statistical mechanics provides a powerful framework for understanding and classifying
states of matter close to thermal equilibrium - a seminal example being the transition
between paramagnetic and ferromagnetic phases of Ising magnets and the liquid-gas
transition in fluids [54]. Close to their respective transition points, critical fluctuations
with diverging correlations dominate, giving rise to remarkably simple scaling laws for
macroscopic observables [200]. As it happens, in the case of the Ising transition and the
liquid-gas transition, these scaling laws involve just a few common exponents, indicating
that both systems infact belong to the same universality class.

Comparatively little is known about many-body systems in out-of-equilibrium scenar-
ios [55], especially open quantum systems, governed by a competition between quantum
coherent evolution and dissipation. This is becoming especially relevant with the emer-
gence of a new generation of experiments that are genuinely non-equilibrium in nature. A
selection of relevant experimental platforms and phenomena was presented in section 1.3.
An important feature of these systems is the interplay between coherent driving, dissipation
(e.g., due to spontaneous decay) and interactions between the particles, that can give
rise to fundamentally new states and dynamical behaviour that are quite distinct from
equilibrium matter. A selection of relevant non-equilibrium phenomena was introduced in
section 1.2. Classifying these new states of matter poses a significant challenge to state-of-
the-art many-body theory and experiments, in part because theoretical methods capable
of dealing with open many-body systems are less developed and because it is difficult to
devise observables capable of distinguishing the vastly different types of behaviour they
can exhibit.

Here we experimentally investigate the long-time dynamics of a widely tunable open
quantum spin system (Fig. 5.1) with well known microscopic processes governing the
evolution of each spin. We show that the overall rate of population loss due to the decay of
excited states provides a convenient macroscopic observable for the many-body state which
can be measured with a dynamic range covering several orders of magnitude. We discover
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Figure 5.1: Prototypical open quantum spin system based on laser driven Rydberg atoms in an
optical trap. (a) Geometry of the atomic gas (blue dots) with Rydberg excited atoms depicted as
orange spheres. The ground and Rydberg states of each atom form a pseudo-spin 1/2, where the
laser coupling (€2) and detuning (A) play the role of transverse and longitudinal fields. Ising-like
interactions arise from the repulsive van der Waals interactions between Rydberg states, while
dissipation arises via decay of the excited state, which returns population either to the |]) state
or with branching factor b out of the system to auxilliary shelving states represented by [s). (b)
Non-equilibrium phase diagram obtained from mean-field theory showing the steady state fraction
of Rydberg excitations m (assuming b = 0 and otherwise similar parameters to the experiment).
The competition between driving, dissipation and interactions gives rise to a rich phase structure,
including paramagnetic, dissipation dominated, critical and unstable regimes. Reproduced from
[234].

that this observable exhibits approximate powerlaw scaling over a wide parameter range,
with exponents that we associate to qualitatively different regimes. Our observations are in
good agreement with theoretical modelling of the open-system dynamics based on coupled
rate-equation simulations that include the effects of strong and long-range interactions
between Rydberg excited atoms. Combining theory and experiment, we map out the
non-equilibrium phase diagram of this system which exhibits four distinct regimes including
dissipation-dominated and paramagnetic regimes as well as two distinct many-body regimes
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5.1 Quantum description of the open spin system

which arise through the competition between interactions and driving.

5.1 Quantum description of the open spin system

Our system consists of a gas of ultracold atoms driven by a laser field to create a small
fraction of short-lived Rydberg excitations (Fig. 5.1(a)). We again use the quantum master
equation in Lindblad form for the many-body density matrix p to describe our system,
which was introduced in section 3.1. It is given by (h = 1)

Op = —i[H, p| + L + L£°. (5.1)

In this equation, the Hamiltonian H accounts for the coherent part of the dynamics, while
the Lindblad operators account for dissipative processes. In the following we assume that
the excitation laser couples the ground and Rydberg states, which are identified as the
spin-down and spin-up states of a pseudo-spin 1/2, respectively. Then the Hamiltonian
reads

Hzgzpygzp@+§§p%wmw, (5.2)
J J JkF#j
where oV ), o) are Pauli spin matrices and n() = (ogj )+ 1)/2 projects onto Rydberg
states.

In our experiment antiferromagnetic spin-spin interactions originate from the repulsive
van der Waals interactions between Rydberg excitations. These interactions fall off as a
powerlaw Vj, = Cg/|7; — 7%|® but due to the extremely large Cy coefficients of Rydberg
states they can extend far beyond nearest-neighbors. This has the consequence that a
single excitation can suppress the subsequent excitation of hundreds of nearby spins within
a characteristic volume called the Rydberg blockade volume (cf. sec. 3.3.1). A convenient
parameter which characterises the van der Waals interactions between neighbouring Rydberg
states is J = Cgng? where ng is the peak atomic density. The atom-light coupling strength
2 and the detuning from the atomic transition A correspond to transverse and longitudinal
fields respectively, which can be tuned over a wide range via the Rydberg excitation laser.

Dissipation processes in our system originate from decay of excited states and single-spin
dephasing (cf. sec. 3.2.4). We represent decay with rate I' by the local Lindblad operator

LiL;p+ pLIL;
AN ‘AT_jJ )
ﬁ@—}jk—w@@j .

J

with jump operator L; = VT 45 (1]

(5.3)
and single spin dephasing, e.g. to account for laser phase noise, by

L;jeTszepA + pL;leTL;je
2

with L§® = \/ae [17) (1] (5:4)

J

de/ de » rdef
LYE(p) = Z [Lj pL" —

In the Lindblad operator for decay we have explicitly taken particle dissipation with rate bI"
into account, which arises from decay to shelving states |s) external to the laser coupling.

Neglecting dissipation for a moment, this system closely resembles the quantum Ising
model in transverse and longitudinal fields [197, 199, 190] as discussed in section 3.3.2. The
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5 Unravelling the phase structure of driven-dissipative Rydberg spin systems

equilibrium quantum phase diagram is characterised by the Rydberg fraction m = <n(j))
of the many-body system, which plays the role of the magnetisation.! Thus, in the
limit 2 — 0 the resulting equilibrium quantum ground state phase diagram includes a
paramagnetic phase (for A < 0) and a hierarchy of crystalline phases (for A > 0) with
varying excitation densities [199]. Increasing the coherent laser coupling 2 > 0 introduces
quantum fluctuations which lead to the appearance of an experimentally accessible quantum
critical region [235, 201]. However, the inclusion of spontaneous decay of the Rydberg states
breaks the detailed-balance condition of equilibrium physics, which can have dramatic effects
on the many-body state characterised by the Rydberg fraction and on the corresponding
phase structure.

To help navigate the non-equilibrium phase structure, we present mean-field results
for the non-equilibrium Rydberg fraction m in steady state and without particle loss
(b =0) in Figure 5.1(b). Mean-field theory provides a relatively simple way to qualitatively
understand the different phases of the driven-dissipative system by providing analytic
expressions for the magnetisation and corresponding scaling laws. We introduced our mean
field model of the driven-dissipative system in section 3.4.1, where we assumed a product
state ansatz and a homogeneous system, but explicitly included a hardcore constraint
for the two-point correlations which captures the Rydberg blockade effect. We found
(eq. (3.22)) that the mean field Rydberg fraction is described by

mI
r'+ ’Vde’

0% =~ <4(A - Jcmp/d)2 + (T + yde)2> (5.5)

for which we show a numerical solution in Figure 5.1(b). Except for the orange region in
this figure, the system has a unique steady state corresponding to a small and smoothly
varying fraction of Rydberg excitations. From further inspection of the mean-field solution
we can identify four different regimes depending on the dominant energy scales:
Paramagnetic regime (|A| > JemP/? T' 4 ~4.): For detunings far above or below
resonance and for weak interactions and dissipation, each spin aligns with the external field
according to the relative strength of 2 and A. For large detunings the Ising interaction term
can be considered a small perturbation yielding a paramagnetic state with magnetisation

m:<9>2r+%‘e. (5.6)

2A r

This is equivalent to each atom being in the weakly-dressed state [1) ~ [|) + £ 1) with
B=Q/(2A) < 1.

Dissipation-dominated regime (A ~ 0; I'+~g4e > Jc mP/ 4): Driving the system close
to resonance, if the single-spin spontaneous decay (or dephasing) rate is large compared to
the driving strength €2, then this results in a continuous projective measurement of each
spin in the o, basis. Consequently, the system will evolve to a classical spin configuration
comprised of a small but fluctuating number of spin-up excitations. In this limit the steady
state Rydberg fraction scales as

QQ

m = T+ 90 (5.7)

'Here, the expectation value includes averaging over individual atoms.

58
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Critical regime (A = 0; Jc mP/e > T + vde): Also close to resonance, as the driving
field strength is increased, the system undergoes a crossover from the dissipation-dominated
regime to a high-density liquid-like state. This coincides with a change in the {2 dependence
of the magnetisation that originates from the critical regime associated to the quantum
critical point of the equilibrium Ising-like model at A = Q = 0.2

Q T 1/6
m=< +7de> with 5:§+

L 5.8
2JcV T 2 (5.8)
Thus the mean-field magnetisation scales as Q/% in the critical regime. For our system
p = 6 and d = 3, resulting in a mean field scaling exponent of 2/5, which is one of the
universal critical exponents of the model [197].

Unstable regime (JA — JemP/4| > T + v4.): The competition between dissipation,
driving and interactions is perhaps most striking for intermediate detunings above resonance
(i.e. the orange region of Fig. 5.1(b) for A > 0), the magnetisation takes on multiple
solutions with low and high Rydberg fraction, according to

Q=2ym A—Jcmp/d(,/FfV. (5.9)
de

It is debated whether such bistabilities due to Rydberg-Rydberg interactions can be
observed in experiments [125, 128, 129, 126], while theoretical studies of similar models
taking into account beyond-mean-field corrections suggest that the bistable phase may be
replaced by a first order transition and a tricritical point [236, 237].

Transition from critical to dissipation dominated regimes: From the above
formulas, expressions for the boundaries between the regimes can also be derived. As an
example, we will discuss the threshold between driving and dissipation dominated regimes
found by equating eq. (5.7) and eq. (5.8):

T+ vae | %
Q= r<F+~yde>( ”d> (5.10)

The last factor in the equation above can be expressed in terms of the d-dimensional
blockade volume W}, = Vd(ri(’;r; )d/P containing N = ngWy, atoms [96]. Thus we find for
the crossover position:

DT + 7de)
VNQ, = M (5.11)

5.2 Experimental platform with two-photon excitation

In the following we will experimentally explore this rich non-equilibrium phase structure. For
a detailed description of the setup and the preparation of the ultracold atom cloud we refer to
chapter 2. Here we will only summarise the specific parameters relevant for the experiments
discussed in this chapter. We perform experiments on a gas of 7.5 - 10% 3°K atoms initially

2We introduced the notion of a critical point in section 1.2.1 and the equilibrium phase diagram of the
Rydberg spin system in section 3.3.2.

59



5 Unravelling the phase structure of driven-dissipative Rydberg spin systems

prepared in the |]) = [4s1/9, F' = 2,mp = 2) state and randomly distributed in a cigar
shaped optical dipole trap. The peak atomic density and temperature are ng = 5 - 10 cm =3
and 7' = 19.4 pK respectively. All atoms in the sample are then driven from || ) to |1) = |66s)
by a two-photon laser excitation with large detuning from the intermediate state such that it
can be mostly neglected. As described in detail in section 2.3, this excitation scheme utilises
a weak ‘probe’ laser at 767 nm wavelength for the lower ||) <> |e) = [4p3/5) transition and
a strong ‘coupling’ laser at 456 nm wavelength for the upper |e) <> [1) transition. The
atomic cloud has e~'/2 radii {0,,0.} = {7pm,220um} assuming a normal distribution.
The probe laser is aligned perpendicularly to the long axis with a waist of ~ 10mm. It
homogeneously illuminates the cloud with tunable driving strength Q, /27 < 1.2 MHz and
detunings from the |e) state in the range A,/27 = (80 & 20) MHz. The coupling laser is
derived from a frequency doubled Ti:Sa laser with a total power of 1.15 W focused to a
waist of approximately 30 pm and is aligned collinearly with the long axis of the atom
cloud for maximum homogeneity. In our measurements we keep the driving strength and
detuning of the coupling laser fixed to the values Q./27 ~ 20 MHz, A./27 = —77MHz
and tune €, and A,. The combined linewidth of both lasers is < 200 kHz.

The three-level system can be reduced to an effective two-level system (with driving
parameters 2, A) in the limit that the population in |e) is negligibly small, e.g. in the limit
A =~ [Ac] > Qe > Qy, Te. For A, = —A, we can describe the coupling from [|) < |1)
by an effective two-photon driving strength  ~ £Q,, where ¢ = Q./(2|A.|) < 1, and
an effective detuning A = A, + A. + Aopr, where Agpr /27 = 4 MHz accounts for the
additional light shifts from the 1064 nm optical dipole trap laser. The position of maximum
loss is additionally shifted by 0.5 MHz due to the light shift produced by the coupling
laser and averaging over the inhomogeneous optical dipole potential. The effective excited
state decay rate I'/271 ~ (T, + £2T)/27 ~ 100 kHz is a combination of the bare Rydberg
state decay I',/27m ~ 1.2kHz (including blackbody transitions) [181] and the residual
intermediate state admixture which spontaneously decays with rate I'c /27 = 6.03 MHz.
Additional loss processes for ns-Rydberg states, e.g., photoionisation or penning ionisation
are estimated to be below 1kHz [166, 167] and can be neglected.

Our measurements are performed by varying the probe laser intensity over the range
from 30 nW /cm? to 30 yW /cm?, which corresponds to €2/27 from 3kHz to 100 kHz. The
corresponding atom-light interaction time 7 is set by pulsing an acousto-optical modulator
for the probe laser while the coupling laser is kept on continuously. The strength of the
nearest neighbour van der Waals interactions of Rydberg pair states is J/27 = 65.4 GHz
(for a calculated van der Waals interaction strength Cg/27 = 270 GHz pm® [174]), greatly
exceeding all other energy scales such as those associated to single particle driving and
decoherence, leading to strong blockade effects. The total effective decay rate of the
excited states, including spontaneous emission and black body decay from the Rydberg
and short-lived intermediate states, is I'/2m &~ 100 kHz. This brings the atom either back
to the original ground state |]) or to auxiliary shelving states |s) external to the spin-
1/2 description, such as the [4s) /5, F' = 1) state, with an estimated probability b = 0.18
(cf. sec. 5.5). This ultimately leads to all the population accumulating in |s). However,
interesting quasi-steady states can be reached for significant periods of time even when

b 0.
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Figure 5.2: Time resolved measurements of the fraction of atoms remaining in the ground state
after an excitation pulse of varying duration. Data for a fixed driving strength of /27 = 22kHz
and four different detunings are shown. The boundary between white and grey backgrounds marks
the waiting time 7 = 4.1 ms used in all experiments for this value of . Reproduced from [234]

5.3 Probing the open system dynamics

To probe the open system dynamics we take advantage of the slow loss of population
out of the spin-1/2 subspace and measure the remaining fraction of atoms P(7) after an
evolution time 7. Starting with all atoms initially prepared in the ground state, i.e. the
fully magnetised state with m = 0, we suddenly switch on the driving field with fixed
values of 2 and A corresponding to different regions of the non-equilibrium phase diagram
(Fig. 5.1(b)). Following this quench, the system evolves towards excited many-body states
on a timescale set by the inverse dissipation rate (I' +v4.)~!. To probe the non-equilibrium
behaviour of the system we let the system evolve for a time 7 that is orders of magnitude
longer. We then switch off the driving field and use absorption imaging to measure the
remaining number of ground state atoms P(7)/P(0).

Measuring the population decay in the experiment, we find that the temporal evolution of
the remaining fraction of atoms is well described by a pure exponential decay if the resonant
loss fraction of atoms satisfies P(7)/P(0) < 0.5. In Figure 5.2 we present time resolved data
of the population loss for /27 = 22 kHz and four different detunings spanning the different
regimes of behaviour observed in the following. According to our measurement protocol,
the waiting time 7 used to extract R for this value of Q was set to 4.1 ms (boundary
between white and grey shaded regions). The data in the region t < 7 is very well described
by exponential decay curves, confirming that the formula R = —7~!In[P(7)/P(0)] can be
used as a good estimator for the loss rate.> For different values of 2 (not shown here) we
find similar exponential behaviour. This observation is consistent with the quasi-steady
state magnetisation being constant and particle loss being a small correction to the internal
state dynamics during the exponential decay. Then the loss rate is given by R ~ bI'm.

3The deviations from pure exponential decay observed for later times will be discussed in the following
chapter.

61



5 Unravelling the phase structure of driven-dissipative Rydberg spin systems

0.15f V "Q/2n [kHz] |
i~ E _ ' — 3.1
= = — 10.
£ 0.10} o 1$146.5ms — 3o -
q -15 0 15 '
o A/2n[MHZz] — B65.
= 100
© .
7 0.05 ]
2]
o
-

0.00

-20 -10 0 10 20
Detuning A/2n [MHZ]

Figure 5.3: Measured loss rates as a function of detuning A for various driving field strengths
Q. As Q) is increased the spectra become asymmetric and broaden due to strong and repulsive
Rydberg-Rydberg interactions. Inset: Fraction of atoms P(7)/P(0) remaining in |}) for the smallest
driving field strength /27 = 3.1kHz. Reproduced from [234].

This implies that the internal dynamics establishes a quasi steady state on timescales much
faster than the population loss, with the effect of particle loss on the quasi steady state
magnetisation m being small.

In the following we will turn the slow particle loss into a tool to investigate the many-body
state of our system as a function of driving strength 2 and detuning A. For each value of
) we measure the remaining number of ground state atoms P(7) and adapt the evolution
time 7 to limit the maximum lost fraction to < 0.5 on resonance. The choice of 50% loss on
resonance maximises the signal to noise ration of our measurements. This is then converted
to a rate by assuming exponential decay R = —7~!In[P(7)/P(0)] as observed previously.
Depending on €2, we cover evolution times between 1.4 ms and 146.5 ms, making it possible
to measure R with a dynamic range of over four orders of magnitude in our experiments.

To verify that the loss rate is indeed sensitive to the state of the system, we measure
its dependence on the driving strength and detuning (Fig. 5.3). For the smallest Q we
observe an approximately symmetric Gaussian lineshape with a full width half maximum
of 3MHz (Fig. 5.3(inset)). This is an order of magnitude broader than the estimated
dephasing rate, but is consistent with single-atom master equation calculations including
the inhomogeneous light shifts produced by the dipole trap laser (see sec. 5.5). This
agreement is expected, as for small driving amplitudes the density of Rydberg excitations
remains small enough that the gas is effectively non-interacting. As €2 is increased however,
the width of the loss resonance grows and becomes noticeably asymmetric towards positive
detunings, which is a clear consequence of the strong repulsive interparticle interactions
between Rydberg ns states. This is compatible with previous experiments which directly
measured the Rydberg excitation fraction and observed asymmetric broadening for short
excitation pulses [121, 117]. Our maximal observed particle loss rate of 0.15kHz is well
below the non-interacting saturated limit (I'/27)b/2 = 9 kHz which is another indication
that interactions strongly influence the loss dynamics.
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Figure 5.4: Powerlaw scaling of the loss rate R as a function of driving strength with different
exponents that depend on the different regimes of the driven system. The thick shaded lines show
the powerlaw scaling with exponents used to distinguish the different regimes discussed in the text.
Rate equation simulation results are shown with + symbols. In panel (b) we additionally show
homogeneous results for the rate equation simulations (crosses) and for mean-field theory (thin
solid line). (a) Far from resonance the loss rate exhibits paramagnetic scaling with o = 2. (b) Close
to resonance the loss rate exhibits two different scaling regimes with o = 2 (dissipation-dominated)
and o = 1.185 (critical). (c) For intermediate detunings we observe a > 2 attributed to facilitated
excitation that tends to drive the system into the critical regime with o < 2 for large 2. Reproduced

from [234].
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5 Unravelling the phase structure of driven-dissipative Rydberg spin systems

5.4 Non-equilibrium scaling laws

To exploit the high dynamic range of the loss measurements we now analyse the data
for fixed detunings as a function of 2 as shown in Figure 5.4. Generally, the data can
be empirically described by multiple powerlaws R o« %, each spanning one or more
orders of magnitude in R and €2 (shaded lines). The exponents change depending on the
detuning and the range of driving field strengths. In the remainder of this chapter we
show that these powerlaws and the boundaries in-between can be used to experimentally
distinguish qualitatively different regimes of the driven-dissipative system anticipated from
Figure 5.1(b).

For detunings far above or below resonance and for weak driving, the data exhibits
powerlaw scaling with a ~ 2 over most of the measurement range (Fig. 5.4(a)). This is
consistent with paramagnetic behaviour expected from mean-field theory.

Driving the system close to resonance (Fig. 5.4(b), when going from small to large
we observe a transition from o &~ 2 to a weaker exponent (o < 2). The best fit exponent
for large 2 has a mean of o = 1.185 and standard deviation of 0.025 for detunings in the
range £1 MHz. The threshold between these two scaling behaviours, determined from a
piecewise powerlaw fit, occurs around /27 ~ 12kHz. While the precise value of the
scaling exponent differs from the mean-field expectation for the critical regime ayr = 2/5,
the change in scaling behaviour is similar to the crossover from the dissipation dominated
to the critical regime associated to the quantum critical point at A = Q = 0.

For intermediate detunings above resonance (Fig. 5.4), we observe a continuous increase
of the loss rate with driving strength which appears to obey a powerlaw with stronger
scaling (o > 2) compared to all other regimes (Fig. 5.4(c)). This is highly suggestive
of the effect of an instability driven by fluctuations (in the sense of a continuous phase
transition) as opposed to the bistable phase predicted by mean-field theory. To test if the
data is indeed well described by a powerlaw scaling we compare fits to both powerlaw and
exponential growth models. For the data shown in Figure 5.4(c) we obtain o = 2.81(9)
with a reduced x? = 0.63 for the powerlaw model which is favored over the exponential
model with x? = 11.3. Power-law scaling with exponents o = 2.8 + 0.4 is observed over a
wide range of detunings above resonance (A/27 ~ (7 £ 3) MHz) as well as a smaller range
below resonance (A/2m ~ (—3.5+ 1.5) MHz).

A microscopic mechanism that can explain the stronger scaling above resonance is
facilitated excitation (cf. sec. 3.3.1) [121, 117, 123, 118, 93]. In our data this is very
pronounced above resonance, but is also seen slightly below resonance, most likely due
to the inhomogeneous light shifts of the optical dipole trap or slight anisotropies of the
interaction potential at short interatomic distances. This effect corresponds to broadening
of the spectrum below resonance, for which similar features were for example discussed
in [98, 238, 239]. was also observed Earlier experimental studies under similar experimental
conditions have observed these facilitated excitation processes through super-Poissonian
number fluctuations and temporal dynamics [121, 117, 118]. Powerlaw scaling is a newly
observed feature of this dynamics.

For the largest driving strengths reached Q/27 2 50 kHz we observe another crossover
to weaker scaling (o < 2) which is connected to the same critical regime observed on
resonance (as can be more clearly seen in Figure 5.5(b). This crossover appears for driving
fields and detunings outside the window associated to the critical regime in Fig. 5.1(b),
indicating that runaway facilitation processes tend to drive the system to criticality over
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a wider parameter range than predicted by mean-field theory (seen by the dotted line in
Figure 5.5(b)).

5.5 Coupled rate-equation modelling

To quantitatively describe the experiment and further elucidate the origin of the different
scaling behaviours we go beyond mean-field theory, turning to numerical rate equation (RE)
simulations. The basic idea of the RE approach is to describe the excitation dynamics in
terms of stochastic jumps between classical spin configurations approximated by single-spin
transition probabilities. RE models enable efficient simulation of the steady-state and
dynamics of large systems comparable to those realized in experiment and have proven
very successful in reproducing the behaviour of driven-dissipative Rydberg systems in the
presence of dephasing [213, 132, 121, 240, 93].

Although atomic motion cannot be fully neglected in our experiments, for simplicity we
start with a quasi-static model where each atom is treated with a fixed position and consists
of the ground and Rydberg states only. As was shown in section 5.3, our experiments
probe time scales where the internal state dynamics has reached a non-equilibrium quasi
steady state approximately unperturbed by particle loss. For our simulations we focus on
this quasi steady state and set b = 0. We also include single atom dephasing with rate
Yde/2m =~ 300 kHz, compatible with the combined effects of laser linewidth and residual
Doppler broadening in our experiment. By eliminating off-diagonal elements (coherences)
of the quantum master equation (5.1) [94] as discussed in section 3.4, we obtain the single
spin jump rates I'y | that have the form

r
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where V; =3, V}kpﬁ) accounts for van der Waals interactions on atom j depending on
the instantaneous configuration of all other spins. We approximate the slow loss out of the
two-level subspace by evolving the classical rate equations from the fully magnetised state
until the average fraction of Rydberg excitations has converged to its asymptotic value.
This is then multiplied by the experimentally found bI" to recover the loss rate R.

Before performing RE simulations for the full many-body system we calibrate the model
against the low intensity loss rate data shown in Figure 5.3(inset). For this we take the ana-
lytic solution for the single-atom steady state Rydberg population multiplied by a factor bI'.
However, the experimental spectrum is significantly broadened because of inhomogeneous
level shifts mainly originating from the optical dipole trap laser. Therefore, we convolve
the simulated spectra by the energy distribution of atoms in the trap, parameterized by the
ratio of the cloud radius to the waist of the optical dipole trap o/w. We fix the dephasing
rate (accounting for the combined effect of laser linewidth and motional dephasing) to
Yde/2m = 300kHz and adjust the unknown parameters b = 0.18, Appr/27 = 4.0 MHz
and o/w = 0.30 to obtain best agreement with the data within the known experimental
constraints. Careful inspection of the experimental loss rate data additionally reveals an
unexpected broad pedestal centred around A /27 ~ 2.1 MHz with a standard deviation of
8.7MHz but with an amplitude one order of magnitude smaller than the peak loss rate.
We include this pedestal into the RE model as an additional single atom excitation process.
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5 Unravelling the phase structure of driven-dissipative Rydberg spin systems

To quantitatively describe the data shown in Figures 5.3,5.4, we found it necessary to
modify the static RE model to include the effect of thermal atomic motion, which enhances
the excitation probability for A > 0 due to the possibility for Landau-Zener transitions.
This can be incorporated in the RE model by adding a second term to I'y in equation (5.12)
accounting for the velocity dependent Landau-Zener transition probability and the Maxwell-
Boltzmann velocity distribution as well as the finite lifetime of the Rydberg state (see
Appendix A). Without this term, the RE simulations were unable to reproduce stronger
scaling observed above resonance within the experimentally accessible range of driving
strengths. Finally, we account for the optical trap by averaging the simulated loss rates
over the distribution of local detunings and atomic densities assuming Gaussian profiles
for the trap laser and atomic cloud (see sec. 5.2).

Results of the RE simulations are presented alongside the experimental data in Figure 5.4.
The RE model reproduces the key features of the experimental data over essentially the
full range of parameters explored. For example, close to resonance (Figure 5.4(b)) the
RE model clearly shows the change in scaling around {;,, transitioning from o = 2 to
a weaker scaling close to the experimental value of a = 1.185. The RE model however
does not appear to exhibit quite as sharp a transition as in the experiment. To investigate
further, we also present mean-field and RE simulation results for a homogeneous system
focusing on a region close to the centre of the trap where effects due to averaging over the
inhomogeneous distribution of local atom density and trap lightshifts can be neglected
(dotted line and crosses in Figure 5.4(b) respectively). Here the powerlaw scaling is even
more pronounced with an exponent o = 0.4, in agreement with the mean-field quantum
critical exponent in three dimensions. Thus we can attribute the deviation compared
to the experimentally measured scaling exponent to averaging over the inhomogeneous
trap volume. It may be surprising at first that the RE model, which neglects quantum
coherences, can reproduce this scaling behaviour. We attribute this to the fact that we
concentrate on a relatively simple observable (the global magnetisation) in the long time
limit after which any observable effects of coherent dynamics are effectively washed out.
Based on this agreement between mean-field theory and the RE simulations as well as
between the RE simulations and the experiment, we confirm that the change in scaling
occuring around 2y, is a consequence of the transition from dissipative to critical behaviour
linked to the equilibrium critical point of the Ising-like model.

Interestingly, the crossover found in experiment and theory occurs for driving strengths
significantly below the dissipation rate, which in mean-field theory is set by /I'(I" + vge)-
This can be understood as a collective effect arising from the Rydberg blockade, similar to
the crossover from weak-coupling to collective strong-coupling regimes of cavity quantum
electrodynamics [241, 90]. Assuming the crossover occurs at the point where the collectively
enhanced driving strength exceeds the total dissipation rate vV NQ, ~ /T(T + 74e) we
estimate the number of participating atoms to be around N = 300. This is quite small
compared to an independent estimate of the peak number of atoms per Rydberg blockade
volume N = (47/3)[2J/(I" + 74e)]"/? = 2400 based on the three-dimensional blockade
volume [96]. This indicates that the relatively low density wings of the atomic cloud play
a dominant role in determining the loss rate. It also shows the importance of the v N
enhancement of the atom-light coupling, previously observed for nearly isolated Rydberg
superatoms [242, 189], on the non-equilibrium phase structure of the driven-dissipative
system.
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Figure 5.5: Experimentally measured non-equilibrium phase diagram. (a) As a function of the
driving parameters (A, ) the loss rate R is fairly smooth with few distinguishing features. (b)
In contrast, the locally determined scaling exponent o shows clearly distinguished regimes. The
critical regime is identified as the blue region (« = 1.2), while the unstable regime is red (a > 2).
The black points and dashed lines show the estimated boundary positions, the dotted line indicates
the boundary to the critical regime predicted from mean-field theory corresponding to the highest
density region of the cloud (trap center). Reproduced from [234].

The RE model also qualitatively reproduces the stronger scaling (o > 2) of the loss rate
found above resonance as a consequence of the instability (further enhanced by atomic
motion). This is seen in the RE simulations in Figure 5.4(c)) as an upwards trend around
Q/2m 2 5kHz for positive detunings. Fitting the RE simulations over a similar range of 2
and A as for the experimental data yields an exponent of @ = 2.40 & 0.1, while neglecting
trap averaging o = 3.2 £+ 0.2, which spans the range of values found experimentally. The
RE model also reproduces the crossover to weaker scaling for large {2 connected to the
critical regime (Fig. 5.4(c)).

5.6 Full non-equilibrium phase diagram in the particle number
conserving limit

We have demonstrated that the rate of population loss and associated scaling laws provide
a convenient and robust way to identify vastly different regimes of strongly-interacting
open quantum systems. Using the experimentally observed scaling we can even map out
the non-equilibrium phase diagram as a function of the control parameters 2 and A,
as illustrated in Figure 5.5. To produce this phase diagram, the scaling exponents are
obtained from the slopes of linear fits to R(€2) in a moving window on a log-log scale. To
locate the boundaries between the regimes we fit connected piecewise linear functions to
the log-log-scaled loss rates for each detuning. In contrast to the loss rate R, which has
relatively few distinguishing features (Fig. 5.5(a)), the scaling exponents show distinct
regimes corresponding to the critical (blue) and unstable (red) scaling regimes (Fig. 5.5(b)).
The dissipation dominated regime appears as a mostly white region within the detuning
interval |A|/27m < 2MHz and for /27 < 12kHz. Looking at larger positive-to-negative
detunings we note a slight trend from red-to-blue is apparent, which might be evidence of
a weak interaction effect on the paramagnetic state.

67



5 Unravelling the phase structure of driven-dissipative Rydberg spin systems

Conclusion

To conclude, scaling laws found in the rate of population decay have made it possible to
uncover the non-equilibrium phases of an Ising-like open quantum spin system governed by
the competition between driving, dissipation and interactions. We show that the phase
structure is extremely rich, exhibiting features which can be attributed to the equilibrium
quantum Ising model, i.e. critical scaling in the regime where driving and interactions
dominate, but also genuinely new non-equilibrium features, e.g. the collectively enhanced
crossover from the dissipation-dominated to the critical regime and an instability towards
strongly-correlated states for positive detunings. While the former appears to be captured
by mean-field theory which approximates two-point correlations, the latter could only be
adequately described using rate equation simulations including many-body correlations.
The observed scaling laws also appear to be quite robust, as we find qualitatively similar
behaviour for a wide range of Rydberg states including ns and nd states which posses
different interaction strengths and anisotropies. Thus, we expect they will serve as
a powerful tool for identifying universal and non-universal aspects of non-equilibrium
quantum systems and as a benchmark for future many-body theories.

Future experiments aiming to learn more about the microscopic origins of this scaling
behaviour could reveal the build up of spatial correlations between the spins (e.g. using
high resolution imaging techniques for Rydberg atoms [191, 130]) or look for possible self
similar dynamics in the transient evolution [243]. For these studies the unstable regime
is of special interest since it has no counterpart in the equilibrium phase structure. One
immediate possibility for experimental studies is to investigate the full temporal evolution
beyond the time scale (bI')~! probed here, which we will attempt in the next chapter.
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Exploring the non-conserving
dynamics of Rydberg facilitation

Observing a many-body quantum system evolve is the essence of studying its behaviour, and
even of the quantum simulator envisioned by Richard Feynman [244]. Rydberg spin systems
are an ideal platform for following this idea [74, 112], because this system is accessible
to both experiments and theory. The known microscopic details allow one to engineer
system properties, and to bridge the gap between microscopic processes and macroscopic
behaviour. Furthermore, these many-body systems are inherently open quantum systems
governed by an intricate interplay between coherent driving, dissipation, and van der
Waals interactions. In the preceding chapter we unravelled the phase structure resulting
from this setting for particle-number conserving dynamics, which we found to comprise
dissipation-dominated, paramagnetic and a critical regime, as well as an instability. The
observed instability, which appears to separate paramagnetic and critical regimes for large
positive detunings, was identified as a genuinely non-equilibrium feature without any
counterpart in the equilibrium quantum phase structure of Rydberg spin systems.! A
comparison to rate equation simulations suggested facilitated excitation driving the system
to high excitation densities as a mechanism leading to this instability, however the details
of this mechanism were not understood well. In this chapter we investigate this intriguing
feature further by observing the many-body dynamics originating from the instability at
timescales where particle loss has a strong effect on the system dynamics. We discover that
the facilitation dynamics and non-conservation of particle number establish a new type of
non-equilibrium many-body behaviour, which we identify as self-organisation to criticality.

The experiments reported in chapter 5 were subject to strong decay from the weakly
coupled intermediate state. To attempt to reduce the dissipation rate by approximately
one order of magnitude and to potentially extend the domain where many-body effects
can be observed, we decided to implement a completely different laser excitation scheme
in our apparatus. The experiments discussed in this chapter are based on single-photon
excitation, completely eliminating intermediate state laser coupling and reducing the total
decay rate to I'/27 ~ 10kHz.2

At the onset of this chapter we show experimentally that we are able to access strongly
interacting many-body regimes with the new single-photon excitation. As a result we
could verify that the observed phase structure is remarkably robust concerning different
excitation schemes as well as the strength and anisotropy of the van der Walls interaction.
From there we embark on investigating the full temporal many-body dynamics associated
to the instability, observing it as a function of driving strength and initial atom density. We
discover that for strong laser driving associated to the critical regime the system reaches

'The equilibrium phase structure of the non-dissipative Rydberg quantum spin system was outlined in
section 3.3.2.
2The details of this new experimental setup were presented in section 2.3.
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6 Exploring the non-conserving dynamics of Rydberg facilitation

a steady-state characterised by an atom density independent of the initial density and
obeying powerlaw scaling with the laser driving strength. These surprising observations,
combined with a clear separation of timescales between facilitated excitation and particle
loss on the microscopic level, allow us to identify self-organised criticality as the mechanism
governing the many-body behaviour of the system in this regime.

6.1 Rydberg spin systems with single-photon driving

To improve our control over the Rydberg excitation and completely eliminate the strong
dissipation from laser-coupled intermediate states observed with two-photon excitation
(cf. sec. 5.2), we implemented a new excitation scheme based on single-photon excitation.
Here, the ground and Rydberg states, i.e. our two spin states, are coupled directly. It
comprises a frequency doubled dye laser generating ultraviolet light with a wavelength
around 288 nm and a maximum output power of 80 mW, which we use to drive transitions
from the initial state ||) = [4s1 /o, F' = 1) to the 1) = [39p3/2) Rydberg state. Utilizing this
new laser system, the relevant Rydberg-Rydberg and atom-light interactions have different
parameters compared to the previous chapter. The driving strength of the excitation laser
was calibrated by measuring the lightshift induced on ground state atoms with Ramsey
interferometry (see app. B). By additionally measuring the power of the excitation laser for
every repetition of the experiment, we can log the driving strength for every data point. We
estimate that the relative statistical error of the driving strength due to e.g. shot-to-shot
power fluctuations is 0.2 %. We achieve driving strengths /27 between 20 kHz (limited by
the sensitivity of the used photo diode for power measurement) and 200 kHz (limited by
laser power). We estimate the dephasing rate to be y4./2m = 360 kHz, based on independent
laser linewidth measurements. The van der Waals interaction between Rydberg excitations
is anisotropic [167], with maximum strength Cg/27 = 600 MHz nm® [174]. The excited
state decay rate is a combination of the bare Rydberg state decay including blackbody
transitions I'/2m = 3kHz [181] and photoionisation due to the dipole trap laser, which
we estimate to be between I'p;/2m = 1kHz and 10kHz [166, 167]. We estimate that any
charged particles produced in this way are lost from the trap on a timescale < 1 ms, and
therefore have no great effect on the dynamics of the system, apart from an overall atom
loss.

The setup for cooling and trapping of ultracold atoms, as well as the cloud geometry
remained essentially unchanged compared to the previous chapter (cf. chap. 2 and sec. 5.2).
We trap up to 10° 3K atoms with maximum peak atom density ng = 2.6 - 10" cm ™3,
estimated from absorption images of the atom cloud, and 40 uK temperature in a cigar
shaped optical dipole trap. We vary the atom density independent of the dipole trap
potential depth by changing the loading time of the 3D-MOT between 30ms and 1s,
allowing us to prepare atom clouds with initial peak densities as low as 5- 100 cm™3.
The atomic cloud has maximum e~'/2 radii {o,,0,} ~ {10 pm, 200 um}, determined from
absorption images. The driving laser was aligned collinearly to the long cloud axis to
combine homogeneity with maximal intensity of the excitation laser across the atom cloud.

Since the interaction and decay properties as well as the driving mechanism are different
in this new setup compared to chapter 5, we will first test whether the resonant strong
driving regime can be reached, before embarking on studying the temporal dynamics of
Rydberg facilitation in section 6.2.
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Figure 6.1: Powerlaw scaling of measured population loss rates R for different driving strengths
of resonant single-photon driving. (a) Time resolved measurement of the remaining atom density
n after an excitation period of varying duration for driving strengths € spanning a full order of
magnitude. The decay is well approximated by exponential loss with population loss rates R for all
probed driving strengths. (b) Scaling of the loss rate as a function of driving strength. The loss
rate exhibits power law scaling Q% with fitted scaling exponent ov = 1.14(6), indicating behaviour
of the critical regime. This shows that strong driving underlies the observed many-body dynamics.

6.1.1 Verifying strong driving to critical behaviour

We start by verifying that key features of the non-equilibrium phase structure observed
in chapter 5 persist, given the very different parameters realized using the single-photon
excitation scheme. In the previous chapter we found that the initial loss dynamics follows
an exponential decay with a measured population loss rate R, which exhibits powerlaw
scaling as a function of the driving strength (%) with a scaling exponent « characteristic of
the non-equilibrium regimes of behaviour. On resonance and for strong driving we observed
a scaling exponent a = 1.185, which was linked to the critical regime of the non-dissipative
equilibrium Rydberg spin system with the scaling exponent o = 2/5 modified by trap
averaging effects.

Using single photon excitation, we measured the evolution of the peak atom density n(t)
on resonance for driving strengths covering a full order of magnitude from /27 = 20 kHz
up to 200kHz, which we show in Figure 6.1. We observe that the initial evolution of
the remaining atom density after an excitation time ¢ is well described by the expected
exponential decay for all probed driving strengths. Here we plot the atom density, contrary
to the fraction of remaining atoms given in chapter 5, since we will also investigate the
dynamical evolution for different initial densities in this chapter. We estimate the standard
deviation of the density in this dataset to be 1-10%cm™3. The resonance position was
determined spectroscopically at low densities and driving strengths. The observed change
of the loss rate relative to the driving strength follows a power law with least-squares fitted
scaling exponent o = 1.14 and standard deviation 0.06. This value is in very good agreement
with the scaling exponent of the critical regime observed in the last chapter. A crossover
to the dissipative regime at weak laser driving was not observed in this measurement,
showing that we are able to access the strongly interacting many-body regime across the
full available range of driving strengths on resonance.? These measurements verify that
the scaling laws discovered in chapter 5 are a robust feature of the many-body dynamics

3To access smaller driving strength, a more sensitive photodiode measuring the excitation laser power
would be required, which can be implemented without difficulty in future experiments.
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that are not strongly influenced by the anisotropy and strength of the interactions or the
nature of dominant dissipative processes.

6.2 Investigating the dynamics of facilitation and particle loss

The central objective of the experiments presented in this chapter is to explore the many-
body evolution of driven-dissipative Rydberg spin systems at far-detuned regimes governed
by facilitation and particle loss. Facilitation is a cooperative process arising in Rydberg
spin systems, which becomes dominant for large detunings |A| > Q. T' + ~vg4e, such that
the detuning of the driving field can compensate the long-range van der Waals interactions
between Rydberg excitations. Then the interaction potential originating from a seed
excitation shifts other nearby atoms into resonance, leading to facilitated (de)excitation
(cf. sec. 3.3.1). In the experiments discussed in this chapter we are interested in evolution
times long compared to both single-body decay and dephasing, such that the microscopic
rates of these processes can be obtained from the effective classical rate equation model
introduced in section 3.4.2. With the experiments in chapter 5 we established that this
model describes the behaviour of our system well. Then the dynamics of our system can
be thought off as being governed by a set of microscopic processes comprising facilitated
(de)excitation (rate I'y), seed excitation (I'y), decay of excited atoms (I') and loss of atoms
in the excited state ('), which are given by

0?2 02
T+ 40’ s = (M 7a0) 333

Iy [ogs = L. (6.1)
The branching ratio for the decay out of the system is denoted by b. Since facilitation is
near-resonant, this process can be much faster than off-resonant (de)excitation of isolated
seeds in our experiments, depending on the atom density. At a macroscopic level, the
microscopic loss rate [Ny leads to an overall loss of particle density as the system evolves.
The (macroscopic) population loss rate R, = R(t) at any evolution time ¢ is related to the
instantaneous Rydberg excitation density p; of the system via Ry = Oyny = Flosspt.4 Thus,
measuring n; will allow us to gain insight into the internal dynamics of our system on all
timescales of interest.

In the previous chapter we studied the phase structure of our system for early evolution
times where we found that the population loss rate is constant, which we denote as the
initial population loss rate R. On timescales early compared to the inverse population
loss rate R~!, the internal dynamics of the Rydberg spin system is only weakly perturbed
by the particle loss, which we refer to as particle-number conserving dynamics. The
phase structure governing the early time behaviour consists of an instability separating
a paramagnetic and a critical regime. The paramagnetic regime is characterised by a
small Rydberg excitation fraction, corresponding to slow particle loss and single-body
behaviour with powerlaw (R o« Q%) scaling exponent o = 2. In the critical regime, the
excitation fraction is sufficiently large to lead to interactions competing with driving, such
that Rydberg blockade suppresses the growth of excitation density with driving strength
(v < 2). At the instability, the excitation fraction increases rapidly over a small range of

4This equation arises from the statistical average over atoms j of the classical master equation (3.23),
where ny = (n{”’) and p; = (p{).
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Figure 6.2: Many-body dynamical evolution under Rydberg facilitation conditions for fixed initial
density. These measurements were performed for A/27 = 30 MHz. (a) The evolution of the final
atom density n(t) after evolution time ¢ for driving strengths /27 > 100 kHz shows an initial
plateau of constant density followed by fast population decay saturating at a finite steady state
density. The observed temporal behaviour is well reproduced by fits of delayed exponential curves
no exp[—R(t — to)] + ny (solid lines), except for a short time window of reduced loss rate before
the steady-state density is reached. The error bars give the standard error calculated from three
independent repetitions. The inset shows the slow decay of the steady state density on very long
timescales, here up to 100 ms for /27 = 180kHz. A pure exponentially decaying fit produced a
loss rate of R = 0.37(1) Hz represented by the solid line. (b) The population loss rate R of the
early exponential decay follows a powerlaw Q% with measured scaling exponent o = 1.7(1) (solid
line). For the smallest two driving strengths investigated here, we observe loss rates below this
line, indicating the onset of the instability. (c) The steady-state densities ny follow a powerlaw
behaviour for the same range of driving strengths as R, with measured powerlaw scaling Q~? and a
measured 5 = 1.60(2). In this plot, the error bars are smaller than the point size.

driving strengths to connect from small to large excitation fractions (and the corresponding
slow to fast loss) leading to a > 2.

In the following, we will investigate the many-body dynamics of far-detuned regimes in
the vicinity of the instability, extending the covered evolution times beyond the initial loss
investigated previously.” We expect that the interplay between the internal dynamics of
the Rydberg spin system and the particle loss will lead to new non-equilibrium behaviour,
since the resulting behaviour now depends on the excitation history of the system, i.e. the
temporal dynamics is non-Markovian (cf. sec. 3.2.4). We begin by observing the evolution
of the atom density for a large initial density as a function of driving strength, allowing
us to verify the particle-number conserving phase structure including the existence of the
instability, and to observe first features of the non-conserving behaviour. We then repeat
this experiment keeping the driving strength constant and varying the initial atom density.
This will establish the initial density as a new system parameter of the non-equilibrium
dynamics.

5We saw already in Figure 5.2 that the initial exponential decay breaks off at later times leading to new
features of the many-body dynamics.
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Figure 6.2 shows the dynamical evolution for a fixed initial density (ng ~ 2.6 - 10t cm ™3,
A/2m = 30 MHz) as a function of driving strength over three orders of magnitude in time
(t = 30pus to 10ms). We observe two strikingly distinct regimes of dynamical evolution.
For sufficiently large driving strengths (Fig. 6.2), the atom density evolves according to
a distinctive pattern of a short initial plateau of constant density, followed by fast decay
which saturates at a finite steady-state density ny. The previous chapter focussed on
the initial part of this evolution, which is well described by an exponential decay time
dependence. For low driving strengths (€2/27 < 100kHz), we find that the dynamics are
effectively frozen on the same observation times ¢ < 10ms, such that ny ~ ng. Going
to much longer excitation times (¢ < 100ms) in both regimes, we observe a subsequent
very slow decay with much smaller loss rates Ro /27 < 1Hz (inset Fig. 6.2(a)). Since the
slow loss is present for all driving strengths, it can be associated to excitation of isolated
seeds with rate I's. Hence, we conclude that the observed weak driving regime is governed
by small excitation fractions characteristic of paramagnetic behaviour on all investigated
timescales. In the opposite strong driving regime the fast initial loss and the subsequent
slow loss act on very different time scales, such that n; characterises the steady state of
the non-equilibrium dynamics.

To parametrise the observed pattern of dynamical evolution in the strongly driven regime
in Figure 6.2(a), we fit the data with delayed exponential functions ng exp[—R(t —to)] +ny,
where R is the initial atom loss rate and ¢y a delay time, which accounts for the onset time
of facilitated dynamics depending on the slow seed excitation rate. We do not investigate
the delay time in the following, but investigate focus on the dynamics at later times. This
phenomenological function reproduces the observed behaviour well (solid lines), except for
a short time window between exponential decay and saturation where the particle loss
slows down noticeably. To determine the origin of this feature remains the objective of
future experiments. Focussing on the loss and saturation dynamics, we find that the initial
loss rate R follows a power law for sufficiently large driving strengths (Fig. 6.2(b)) with
scaling exponent o = 1.7(1). Similar scaling behaviour with a@ < 2 at far detuned and
strong driving conditions was observed in the previous chapter and associated to facilitation
driving the system to states with high excitation density similar to the critical regime
(cf. Fig. 5.5). For driving strengths between 100 kHz and 120kHz, i.e. just above the
paramagnetic regime, the observed loss rates deviate to smaller values below this scaling
relation, suggesting scaling behaviour of the instability at the crossover to the paramagnetic
regime. Turning to the steady-state density characterising late evolution times, we find
very similar behaviour (Fig. 6.2(c)). For strong driving ny follows a powerlaw 07 with
measured scaling exponent 5 = 1.60(2). We will explore this scaling relation further in the
following. The steady-state density also shows a crossover in behaviour between 100 kHz
and 120 kHz driving strength in analogy to the loss rate R, where ny starts to plateau at
the level of the initial density. This suggests that the position of the instability marks a
common phase boundary between different regimes of behaviour across all timescales and
irrespective of particle loss.

In the next step, we further characterise the dynamical evolution of the system as a
function of the initial atom density ng and at maximal driving strength (with the laser
parameters /27 ~ 190kHz and A/2r = 30 MHz). In the experiment, we change the
initial atom density and keep the depth of the optical dipole trap fixed, by changing the
loading time of the 3D-MOT (for details see sec. 2.2). The resulting temporal dynamics
given in Figure 6.3(a) shows the same striking two regimes of dynamical evolution, and the
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Figure 6.3: Steady-state density for fixed driving strength. (a) Temporal evolution of the atom
density. For high initial density we see a fast initial decay to a finite steady-state density which is
independent of the initial density. For lower initial densities no evolution is measured. We used
linear sampling here to highlight the steady-state plateau at late times. (b) Steady-state density
versus initial density. A sharp crossover between the regime of frozen dynamics (the dashed black
line indicates ny = ng) and the regime of loss to a steady state plateau independent of the initial
state. The datasets in (a) and (b) were both taken for /27 ~ 190 kHz and A /27 = 30 MHz, but
on different days. We attribute the small change in steady-state density to slow drifts in the overlap
between the atom cloud and the excitation laser. In both panels the error bars give the standard
error calculated from three independent repetitions.

same saturation dynamics in the high initial density regime as seen before for strong driving.
Even more so, we discover that the steady-state density is independent of the initial density
ng for sufficiently high ng. To highlight this behaviour further, we show in Figure 6.3(b)
the steady-state density after 10 ms driving as a function of initial density. Here, the regime
of nearly frozen dynamics is revealed by a slope of unity indicated by the black dashed
line, which shows a sharp crossover into the regime of constant steady-state density for
large initial densities. The behaviour in the high density regime is characteristic of an
attractor of the dynamics, which brings the system to the same steady state independent
of the initial conditions. The inset in Figure 6.3(a) shows the distribution of steady-state
densities for data points between 5and 10 ms, for which we find that the distribution is
Gaussian. The standard deviation of this distribution is compatible with the shot-to-shot
fluctuations given by the noise in our absorption imaging. This indicates that the system
evolution stops at a unique steady-state density that is independent of the initial state
within the measurement resolution.

The previous two experiments revealed that the particle loss has a dramatic influence
on the behaviour of the system. As key signature of this evolution we have identified the
steady-state density ny, which is an attractor of the evolution of the particle density for
strong driving and high initial density. These observations suggest that the non-conservation
of particle number at late times leads to a new regime of many-body behaviour, which can
not be related to equilibrium critical properties, but arises from the purely non-equilibrium
interplay between facilitation and particle loss. In the following we will employ the steady-
state density as an observable to further characterise the non-equilibrium phase structure
without number conservation.
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Figure 6.4: Non-equilibrium phase diagram of the non-conserving system corresponding to the
late-time steady-state with density ny. These measurements were performed for A/2m = 18 MHz.
(a) The phase diagram shows two regimes of behaviour, characterised by ny/ng ~ 1 (light blue)
and ny/ng < 1 (dark blue). The red points and line indicate the transition between the two (see
main text), which follow a powerlaw Q7 with 8 = 1.74(1). (b) The same data plotted on top of
each other, with lighter hues of blue corresponding to higher initial densities. The initial density
ng can be readily read off in the weak driving regime to the left. In the strong driving regime, all
points collapse onto a single curve, which is independent of initial conditions and follows the fitted
powerlaw Q7 with 8 = 1.76(2) (black dashed curve).

6.2.1 Phase diagram with particle loss

To unveil the non-equilibrium phase diagram of the two observed regimes of behaviour at
late times, we performed a new set of experiments measuring the steady-state density ny.
To this end we measure the atom density at ¢t = 10 ms against almost an order of magnitude
in both initial density ng and driving strength © (for this measurement, A /2w = 18 MHz).°

5This measurement was taken with five repetitions for each datapoint and 100 laser excitation powers.
For every dataset with fixed initial density, the logged optical powers of the excitation laser were binned
linearly with 80 bins and the mean and standard error determined for every bin individually, giving on
average 6 measurement points per bin. The optical power associated to each bin was then converted to
a driving strength.
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Figure 6.4(a) shows the late time non-equilibrium phase diagram, which comprises two
separate regimes of non-equilibrium behaviour: For low initial density and driving strength,
ng/ng = 1is observed (light blue), i.e. the system is in the paramagnetic regime. In the
opposite regime we find ny/ng < 1 (dark blue).”

To inspect the behaviour in the strong driving and high initial density regime, as well
as the transition to the opposite regime, it is instructive to plot the n¢(£2) curves for the
different ng on top of each other, as is shown in Figure 6.4(b). Here it becomes apparent
that all curves in the high density, strong driving regime collapse onto a single curve, which
is independent of the initial state. We observe that this curve follows a powerlaw ny o Q7.
for which we measure the scaling exponent § = 1.76(2). This value is close to the previous
estimate of 5 = 1.60(2) in Figure 6.2(c), which was measured for a fixed initial density.
We also observe that the two regimes of behaviour are separated by a sharp crossover. The
red points in Figure 6.4(a) are estimates of the transition driving strengths based on fits of
a piecewise function (constant for low driving strength and powerlaw decay otherwise) to
datasets with fixed initial densities. The red line is the previously determined powerlaw
curve ny B, which the estimated crossover points follow closely.

In the presented experiments we were able to show that the non-Markovian dynamics
of our Rydberg spin system exhibits an attractor state characterised by a steady-state
density which is independent of the initial state and follows a powerlaw as a function of
the driving strength. In the following we speculate on the microscopic mechanisms leading
to this behaviour.

6.3 Self-organisation driving the system to criticality

The observations that the system tends to evolve to a unique steady state independent of
initial conditions, and that the steady state density follows a powerlaw are suggestive of self-
organised criticality (SOC). This is an organising mechanism which is conjectured to occur
in non-equilibrium many-body systems, where the dynamics includes particle exchange
with an external reservoir bringing the system to the critical state of an absorbing-state
phase transition [14, 59, 245, 61, 246, 60, 247]. An absorbing state phase transition is
associated to the competition between decay and non-linear spreading processes. © SOC
typically is associated with the emergence of characteristic spatio-temporal correlations
on all scales of the system in the thermodynamic limit (i.e. if it is infinitely large), and
without the need to fine tune system parameters to reach the critical state of the absorbing
phase transition. Instead, this critical state is an attractor of the dynamics, assuming
that particle addition I'\nq and particle loss I'jogs act on timescales infinitely longer than
the internal system dynamics, and that particle addition is infinitely slower than particle
loss [248, 245, 71], i.e.

Fload

Floada Floss —0 and
I‘loss

— 0. (6.2)

These conditions imply that SOC arises in a slow-driving limit, where all internal dynamics
of the system is faster than the external particle exchange. In a physical experiment, these

"In the previous measurements we investigated cross sections through this phase diagram for fixed driving
strength and fixed initial density.
8We introduced absorbing state phase transitions in section 1.2.2.
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conditions can only be realised in an approximate sense, requiring instead

Finternal > I‘loss > Fload- (63)

In the temporal evolution, the addition of particles will increase the total particle density
n(t) in the inactive phase (9yn > 0) until the critical density is reached and the system
becomes active, while the particle loss decreases the overall particle density (O;n < 0) in
the active phase till the system becomes subcritical. Therefore the particle density in
the non-equilibrium steady-state becomes independent of the initial state of the system,
and fluctuates around the characteristic critical steady-state value ny which was reached
by the self-organisation process. The dynamics of the system at criticality is charac-
terised by redistribution avalanches within the internal state space following a powerlaw
distribution [59].

We have identified four requirements of SOC [248, 71, 59], which we will verify in the
following in the context of our experimental results.

e Competing microscopic processes leading to an absorbing state phase transition.
In the limit if no so seed excitation I'y — 0 and for particle number conservation,
facilitated excitation can be identified as branching and facilitated deexcitation as
coalescence, which both compete with decay as is illustrated in Figure 6.5(a). In
this analogy the ground state of the atoms is identified as the inactive state and
the Rydberg state as the active state. The combination of facilitation and decay
processes gives rise to an absorbing state phase transition with the excitation density
p as the order parameter, which has been conjectured to be part of the directed
percolation universality class [49]. This non-equilibrium phase transition comprises
an inactive (absorbing) phase with vanishing excitation density (p = 0) below a
critical facilitation rate, and a corresponding active (fluctuating) phase where a finite
excitation density prevails for all times (Fig. 6.5(b)). The observed transition from a
state with vanishingly small excitation density (previously referred to as paramagnetic
behaviour) and high excitation density is characteristic of this absorbing-state phase
transition. Signatures of this absorbing state phase transition have also been observed
in [48].

e Non-conservation of particle number. In general, this is associated to the external
addition and loss of particles. In our experiments only particle loss is present, such
that an organising process can only be observed in the active phase. In our system
the facilitation rate depends on the laser driving strength of the laser coupling, giving
rise to the observed two regimes of behaviour e.g. in Figure 6.4, where the system is
inactive for small driving strengths and active/self-organising for strong driving. We
will refer to these two regimes as inactive and active, respectively, in the following.

e Separation of timescales between facilitation dynamics and particle loss. This condi-
tion is satisfied on the basis of the microscopic parameters in equation (6.1). Looking
at the measured macroscopic rate of population loss R (e.g. Figure 6.2(b)), we find
that it is slower than any timescale associated with the internal state dynamics,
except for the seed excitation rate. Therefore the observed temporal evolution of the
particle density corresponds to slow self-organising avalanches towards the critical
state (Fig. 6.5(c)).
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Figure 6.5: Self-organised criticality arising from an absorbing state phase transition augmented
by slow particle exchange with an external reservoir. (a) Illustration of the absorbing state phase
transition realised by Rydberg spin systems in the absence of independent seed excitation and
particle exchange. Microscopically, externally driven facilitation realises branching and coalescence
processes, in addition to decay of excitations. We illustrate the excited Rydberg state (the active
state) by large orange spheres, and the ground state (inactive) as small blue circles. The density
of excitations p is the order parameter of the phase transition between an inactive (absorbing)
phase and an active (fluctuating) phase. The critical point characterising this second order phase
transition occurs at a specific value of the branching rate, which can be controlled externally by
the driving strength in our experiments. (b) In our experiments loss of particles in the excited
state is an additional process governing the system. Then the total particle density is an additional
system parameter, which is self-organised in the active phase (starting from the initial density ng)
by the system dynamics till the critical state (with density ny) is reached. The mechanism of the
self-organisation dynamics is independent of the branching rate.

e Vanishingly small seed excitation rate. Independent seed excitation acts as a conjugate
field of the absorbing state phase transition generating excitation density independent
of the system dynamics. Thereby additional fluctuations are added to the state
of the system, introducing a gap to the critical point of the phase transition and
perturbing the inactive phase. The microscopic processes in equation (6.1) satisfy
the condition that the seeding rate is the smallest rate in the system for all probed
driving strengths. This condition is corroborated by the observed clear separation
between fast and slow loss regimes in Figure 6.2(a). Thus the gap introduced by the
seeding process is very small in our experiments.

In the following we will summarise the expected consequences of SOC in the context
of our experiments. We have observed a unique steady state which is independent of the
initial conditions. Furthermore, we observe the same qualitative saturation behaviour
independent of the driving strength, which suggests that the underlying self-organising
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Figure 6.6: Measurement of the response of the many-body state of the system to a perturbation in
the driving strength. (a) We probe the system response by preparing the system in the steady-state
for a driving strength 2; and subsequently switching to a different driving strength Q¢ for which
we observe the resulting steady-state density. We investigate three different scenarios, starting from
an initial driving strength Q; below (light red), at (dark blue) or above (green) the crossover (€;1,)
between the inactive and the SOC regimes. The thick red line represents the observed shape of
the steady state density, which is flat in the inactive regime and follows a powerlaw in the SOC
regime. (b) We parametrise the system response by comparing resulting steady state densities of
two final driving strengths {271 < Q7 and Q2 > €2 measured in subsequent experimental cycles
(dn =n(Qy1) — n(Qy2)) with a constant difference in final driving strengths dQ?c = Q?l — chz. (c)
The measured susceptibility x = dn/ dQ?c for the three different initial driving strengths.

mechanism requires no fine tuning of system parameters, in agreement with the SOC
mechanism. Critical properties of the self-organised state typically are associated to
powerlaw distributions of spatial and temporal properties of reordering avalanches [59, 61,
67, 70]. We have observed the properties of the steady state in a different observable, which
is the dependence of the steady state density on the microscopic facilitation rate. The
observed powerlaw scaling is highly suggestive of critical properties of the steady state. The
relevant mass scale for determining universal scaling properties is 2, since the facilitation
rate is proportional to the square of the driving strength. The thus measured scaling
exponent of the steady-state density as a function of the facilitation rate (ny oc (22)~#) is
B = 0.88(2). It is interesting that this value is close to the universal scaling exponent of
the directed percolation absorbing-state phase transition (8 = 0.813(9) [14]), which was
also conjectured based on the microscopic processes [49]. However, further experiments
reducing systematic effects and careful quantitative comparison to microscopic theory,
including for example potential effects due to inhomogeneous distributions associated to
the dipole trap, need to be undertaken to elucidate the nature of the critical state.

To further test the conjecture of SOC giving rise to the observed behaviour, we performed
one more experiment investigating the sensitivity of the steady-state density to pertur-
bations. After having demonstrated that the strong driving, high initial density regime
is fully governed by the attractor which exhibits power law scaling, we now investigate
whether this state persists after a perturbation. If indeed the steady state corresponds
to a self-organised critical state in the active phase, it should exhibit a strong sensitivity
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to external perturbations which trigger excitation avalanches returning the system to the
critical state. To this end we first prepare the system in an initial state with driving
strength €; and allow the system to evolve to the steady state density n(2;) for an exposure
time t = 10 ms (Fig. 6.6(a)). Then the driving strength is changed abruptly to a new value
Q, for which we measure the new steady-state density n(€y) after further 10 ms evolution.
We probe the system response by comparing two final states with dn = n(251) — n(Qy2),
separated by a constant driving strength difference dQ2 = Q?l — Q}Z (Fig. 6.6(b)). We
here use 22 to parametrise the atom-light coupling strength, since this is the relevant
mass scale of the microscopic processes. The system response can be parametrised via
the susceptibility y = dn/dQ? measured as a function of the distance between initial
and finial driving strengths dQ2? = ch — Q2. This susceptibility observable compares two
density measurements obtained with the same exposure protocol but different final driving
strengths Q1, Q79 to subtract and thereby reduce potential systematic effects.

In the following we present in Figure 6.6(c) three different experiments showing the
susceptibility for €2; values below, close to, and above the threshold value €2, for the
absorbing state phase transition (measured for A/27m = 24 MHz). All three curves qual-
itatively follow the same qualitative shape. The susceptibility is very close to zero for
small distances to the initial driving strength dQ? = Q?p — Q?, which is characteristic of no
system response in the inactive phase. For stronger dQ? values a pronounced minimum
of strong susceptibility to the perturbation develops, signifying that the system strongly
adapts to the perturbation and thereby losing atom density by the self-organising process
in the active phase. The distance between the onset of increased susceptibility and the
strongest susceptibility should be identical in an ideal experiment where dQ?c — 0, resulting
in a discontinuity. The transition is smoothed here due to the finite dQ? /An? ~ 103 kHz?
and an applied moving average to reduce statistical noise of dn. For €; < €y, (light red
points), the onset of strong susceptibility occurs at positive dQ?, showing that the active
phase is reached only above a threshold value. The measured susceptibility curve for
Q; ~ Q, (dark blue points) shows an onset of strong susceptibility close to dQ? = 0, which
is perturbed slightly by the moving average, showing that in this measurement the system
was prepared in a highly susceptible initial state. If the system is prepared within the active
phase for €; > Qy, (green points), the onset of the susceptibility curve again lies close to
zero, indicating that the system is characterised by a strong system response within the
active phase irrespective of the value of the driving strength. These measurements suggest
that the steady-state of the system indeed returns to the critical state, in agreement with
self-organised criticality. Based on this observation we have overlaid the data points with
calculated curves of the susceptibility, which are based on the measured ny(£2¢) values
(including the measured dﬂfc) and the assumption that the state of the system always falls
back onto the same curve n(€2s) after the perturbation for Qy > €;,Qy, and else remains
unchanged at the level of n(€;). These curves qualitatively agree well with the measured
susceptibilities, verifying our interpretation. In combination, these measurements indicate
that the active phase is very susceptible to perturbations in system parameters, returning
the state of the system to a critical state by particle loss, in agreement with the SOC
mechanism.
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6 Exploring the non-conserving dynamics of Rydberg facilitation

Conclusion

In this chapter we probed the driven-dissipative dynamics of Rydberg spin systems with
competing facilitation and dissipation, uncovering a regime of self-organised criticality for
strongly driven facilitation. Our system exhibits all building blocks of SOC, including
microscopic processes braking detailed balance and leading to an absorbing state phase
transition in the absence of particle exchange with an external reservoir, and a separation
of timescales between the fast internal dynamics of the Rydberg spin system and slow
seed excitation as well as particle loss. Our experimental platform does not include
particle addition, such that the SOC regime only emerges for sufficiently strong driving
and high initial densities corresponding to the active phase of the absorbing state phase
transition. Slow external driving by particle addition during the system evolution could be
implemented in future experiments. Our driven-dissipative system also does not obey energy
conservation, whose importance for SOC is controversially debated [248, 71], but violated
in many important model systems with conjectured SOC, like forest fire models [249]
and earth quake models [250, 63], or the reported observation of SOC in the response of
neuronal networks to external stimulation [70, 72]. Rydberg spin systems are, unlike many
natural systems for which SOC has been conjectured, governed by well-known microscopic
details and are accessible to investigation and manipulation in both laboratory experiments
and theoretical modelling. This will allow us to quantitatively compare our experimental
observations to microscopic models like the classical master equation (cf. sec. 3.4.2) in the
future. This will also help us establish the universality class of the SOC process in our
system. Due to the long-range van der Waals interactions between Rydberg excitations it is
promising to introduce a coarse-grained description of our system, enabling one to compare
our system to similar models for which SOC has been conjectured, like forest fire models or
earth quakes on an equal basis. Thus Rydberg spin systems have the potential of shedding
light on conjectured critical properties of complex natural systems and whether these can
be understood in terms of the discussed rather simple SOC mechanism. Naturally, more
work needs to be done to explore the different aspects of SOC in Rydberg spin systems.
Future experiments will also be dedicated to elucidating the dynamics of the approach to
the critical state, for which we observed a peculiar slowdown in loss rate, and to observe the
spatio-temporal correlations of the critical avalanche dynamics. Furthermore, it would be
interesting to verify in more detail that the instability marks the common phase boundary
of the early and late time dynamics and to explore possible connections between the scaling
behaviour of the particle loss rate R in the number conserving limit and the behaviour of
the steady state density ny. Our work establishes ultracold Rydberg atoms as a platform
for simulating absorbing state and SOC phenomena in classical settings, with the potential
to extend this concept to quantum coherent evolution [50, 51, 135].
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Conclusions and Outlook

In this thesis, we have explored both in experiment and theory the non-equilibrium
dynamics and phase structure of driven-dissipative Rydberg spin systems. At the onset of
our explorations we posed two guiding questions:

How can the dynamics and phase structure of a non-equilibrium system be
measured and characterised?

How do the dynamics and phase structure emerge from the microscopic pro-
cesses of the many-body system?

In the following, we will first summarise our experimental approach and its theoretical
underpinnings for addressing these questions and then recapitulate our findings.

The studies presented in this thesis were made possible by a completely new experimental
apparatus based on ultracold trapped 3°K atoms laser-coupled to highly-excited Rydberg
states. This setup, introduced in chapter 2, was designed to reach versatile Rydberg
excitation, covering ns, np and nd Rydberg states as well as a broad range of principle
quantum numbers n, with both single-photon and two-photon coupling. Furthermore, the
setup allows for strong many-body interactions, widely tunable experimental parameters
like driving strength, laser detuning and atom density, and long excitation times compatible
with timescales of many-body dynamics of the internal states and atomic motion. These
capabilities provide us with the means to control the population of the addressed Rydberg
state in each experiment, as well as the resulting interaction and dissipation properties
of the system. A further strength of our approach lies in our control of couplings to
the environment. The ultrahigh vacuum system shields the atom cloud from coupling to
the room-temperature environment except for thermal blackbody radiation, creating a
largely thermally isolated quantum system. As we describe in chapter 3, each atom can
be conveniently described as a pseudo-spin 1/2 quantum system comprising the atomic
ground state and a specific Rydberg state, which is isolated by the excitation laser within
the manifold of states of each atom. Therefore our experimental platform emulates a
quantum spin system which is driven by the external laser driving, is dissipative due to
the finite lifetime of Rydberg states, and possesses strong interparticle interactions due
to the long-range van der Waals interaction of Rydberg states. This places the system
firmly in a setting of competing interactions, driving and dissipation, which we showed
in our experiments gives rise to a rich non-equilibrium phase structure. The microscopic
properties of our system can all be captured by a quantum master equation, from which we
derived approximate models to describe the many-body behaviour: a dissipative mean field
model with Rydberg blockade correlations which can be solved analytically, and a classical
master equation which allowed us to efficiently simulate many-body systems including
system details like atom trapping and atomic motion. This combination of experiment
and theory allowed us in the following to draw qualitative and quantitative connections
between macroscopic experimental observations and the underlying microscopic processes.
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7 Conclusions and Outlook

To identify good conditions for experiments, characterised by strong interactions, long
coherence times and weak dissipation, and to access the effects of spontaneous decay of
short lived intermediate states populated in two-photon excitation, we first theoretically
investigated the interaction and dissipation properties for the minimal system of two atoms
in chapter 4. Since both the effective dissipation and interaction strengths arise from the
population of the Rydberg state, weak Rydberg dressing has been proposed as a means
to enhance the coherence times of the system to timescales of atomic motion. In this
scheme, a small and tunable population of excited states is created by far off-resonant
laser driving (JA| > Q, I'). Additionally, the resulting effective interaction potential shows
an unusual soft-core behaviour. [202, 207, 138] However, an open question at the time
was whether it is possible to achieve long coherence times and strong interactions at the
same time for three level (i.e. two photon) excitation, because the coupling to short lived
intermediate states leads to unavoidable decay and decoherence [138]. Through careful
analysis of solutions of the quantum master equation for such systems, we were able to
establish that the desired conditions can be achieved by exploiting multiphoton coherences,
namely electromagnetically induced transparency and a cooperative multiphoton resonance.
For sufficiently strong coherent driving on the upper transition (€2, > I'¢) this optimised
three-level dressing scheme allows for the creation of sufficiently strong soft-core interaction
potentials on par with what can be achieved via two-level dressing. Additionally, we found
that the effective dissipation rate becomes distance-dependent, exhibiting a soft-core shape
similar to the interaction potential. To reach regimes where interaction strengths become
comparable with motion with the optimised three-level dressing scheme requires driving
strengths on the upper transition which are unavailable in our experimental setup, due to
the limited achievable laser power. However, for so called “inverted” three-level dressing
via higher intermediate states [161] sufficiently strong laser sources for the upper transition
are available, which will make optimised three-level dressing with strong interactions and
small decoherence rates available in the future.

We then turned to experimentally investigating many-body effects in atomic Rydberg
gases in chapters 5 and 6. Employing our ability to reliably create, manipulate and
probe atomic gases coupled to Rydberg states, we explored the non-equilibrium dynamics
and phase structure of driven-dissipative quantum spin systems. We discovered that the
particle loss inherent to our system (e.g. by hyperfine ground states decoupled from the
Rydberg excitation or by photoionisation) provides a powerful tool for observing the state
and evolution of our system across many orders of magnitude in excitation time and
Rydberg excitation density. This became the main experimental tool for the observations
of many-body spin dynamics reported in this thesis, covering excitation times ranging in
total from ¢t = 30 s to 150 ms, which goes far beyond typical natural lifetimes of Rydberg
states ~ 100 s, as well as four orders of magnitude in Rydberg fraction. Investigating
the particle loss dynamics, we found that for times short compared to the inverse particle
loss rate R™1, particle loss is well described by an exponential decay governed by R, but
which otherwise constitutes a small perturbation to the state and dynamics internal to
the coupled spin-1/2 system. We refer to this limit of the temporal evolution of the
spin system as the particle-number conserving limit, and to longer times, where particle
loss influences the evolution of the spin system, as not particle number conserving. In
chapter 5 we used the particle loss rate as a measurement tool to determine the different
regimes of non-equilibrium behaviour of driven-dissipative Rydberg spin systems in the
particle-number conserving limit and to map out the non-equilibrium phase diagram of
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these regimes. Thereafter we observed the particle loss dynamics on even longer timescales
in chapter 6, where we found that the interplay between internal state dynamics and
particle loss to external states leads to a new regime of non-equilibrium behaviour which
we identified as self-organised criticality.

In chapter 5 we were able to unravel the non-equilibrium phase structure of the driven-
dissipative Rydberg spin system and to identify its different regimes of dynamical behaviour.
Investigating the particle loss rate R we found, to our surprise, that it exhibits powerlaw
scaling as a function of the driving strength (2%), with exponents that depend on the
strength and detuning of the external driving laser field. In conjunction with theoretical
modelling we could then show that these exponents are characteristic of the different regimes
of behaviour of the system. Close to resonance, the established phase structure comprises a
dissipation dominated regime for weak driving characterised by « & 2, and a critical regime
for sufficiently strong driving with a measured scaling exponent o = 1.185(25). Far from
resonance we observed paramagnetic regimes for positive and negative detunings and weak
driving characterised by small Rydberg fractions and scaling exponents a = 2, while for
strong driving we observed a crossover to the critical regime even for large detunings. For
large detunings and strong facilitation (at positive detunings for the repulsive interactions
realised in our system) we additionally found an instability separating paramagnetic and
critical regimes with an amplified scaling exponent o > 2. A complete coverage of all of
the different regimes of behaviour and their classification had not been achieved before,
neither experimentally nor theoretically.

To understand the origin of the observed regimes and their characteristic scaling behaviour
we employed the theoretical microscopic models developed in chapter 3. The mean field
model can be solved analytically and therefore allowed us in a first step to associate the
different regimes to the respective dominant energy scale, and to elucidate the nature and
characteristic scaling exponents of the different regimes. The mean field model does not
reproduce the observed instability, instead suggesting bistable behaviour. To go beyond
the mean field approximation and to include additional experimental details we employed
classical rate equation simulations, which are surprisingly well suited for describing our
experiments because the excitation times are long compared to the timescale of dephasing
(e.g. due to laser phase noise). These simulations confirmed the mean field scaling
behaviour in homogeneous systems, reproduced the observed instability, and allowed us
to include atomic motion as well as inhomogeneous density and light shift distributions
due to the dipole trap potential. With this approach we were able to quantitatively
reproduce the measured scaling exponents as well as the positions of the regimes within
the non-equilibrium phase diagram.

Through the combination of experiment and theory we could shed light on the different
mechanisms leading to the observed phase structure and to distinguish single-body regimes
from regimes with emerging many-body behaviour. For example, we determined that the
dissipation dominated regime and the paramagnetic regime share the same exponent o = 2,
since the driving strength can be considered small compared to the dissipation rate or
the detuning, resulting in small Rydberg excitation densities and single-body behaviour.
In contrast, for strong driving in the critical regime collective Rydberg blockade due to
the long-range Rydberg-Rydberg interactions leads to a collective enhancement of the
driving strength (v/NQ). The characteristic scaling exponent of the critical regime is
a = 2/5 [201], which averaging over the inhomogeneous atom cloud in the dipole trap
increases to the scaling exponent « &~ 1.2 in our simulations, confirming our experimental
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7 Conclusions and Outlook

measurements. The measured critical scaling reveals that in this regime the behaviour
of the system is governed by the critical properties of an underlying equilibrium phase
transition at €2, A = 0, despite the dissipation inherent to our system. Surprisingly, te
observed crossover from dissipation dominated to the critical regime occurs for driving
strengths much lower than the effective dissipation rate, due to the collectively enhanced
driving strength (V. NQ, ~ /T(T 4 7qe)), which is a direct consequence of the long-range
character of the Rydberg-Rydberg interactions. In our system, the dissipative regime, and
the paramagnetic regime above resonance, as well as the associated instability towards larger
driving strengths, are features without counterparts in the equilibrium phase structure,
which highlights the importance of dissipation competing with driving and interactions for
the non-equilibrium (ground state) phase structure of the corresponding quantum Ising
model. Additionally, we showed in chapter 6 that the observed phases and dynamical
behaviour are quite robust and insensitive towards microscopic details. For example, we
have performed experiments using both one-photon and two-photon excitation schemes,
ns and np Rydberg states that exhibit very different interaction properties, and different
principal quantum numbers, but observed the same regimes of behaviour. As a result, we
are confident that scaling laws will serve as a valuable tool for identifying and classifying
new regimes of other driven-dissipative quantum systems.

Some of the features observed in the non-equilibrium phase structure can also be
recognised in other works. The powerlaw scaling on resonance and off-resonance might
also be present in [116], but was not discussed there. For driving above resonance, the
instability caused by facilitated excitation processes was identified as a regime of large
fluctuations (bimodal counting statistics) in [117] separating a regime of low and one of
high Rydberg excitation density. However, powerlaw scaling reported in this thesis is a
newly observed feature of these dynamics. We would like to further point out that also in
their work a transition from low to high excitation density was observed on resonance as a
function of driving strength.

In chapter 6 we extended our explorations to the full time dynamics beyond the particle-
number conserving limit arising from the interplay between particle loss and the internal
dynamics of the spin system. Here we focussed on laser driving conditions with large
detuning, where we observed unstable behaviour in the particle-number conserving limit.
We found that the system exhibits strikingly nonlinear dynamical evolution comprising two
regimes of behaviour. For small driving strengths or small initial densities we found the
dynamics consists of a slow exponential loss for all times that is linked to the paramagnetic
state, while at large driving strengths the temporal dynamics consists of a relatively fast
initial loss of atoms breaking off at a steady state with an effectively constant and non-zero
particle density, despite the non-negligible particle loss. We showed that the steady-state
density is independent of the initial density and follows a powerlaw as a function of the
driving strength ny o Q=7 with scaling exponent 3 = 1.76(2). Our observation that the
system drives itself to the same final density independent of the initial density, combined
with the powerlaw dependence with the driving strength, leads us to conclude that self-
organised criticality is the underlying mechanism governing this peculiar dynamics. This
remarkable conclusion is consistent with the “ingredients” conjectured to lead to SOC,
which are microscopic processes leading to an absorbing-state phase transition, and slow
external driving and slow particle loss driving the system to the critical state of this phase
transition [248, 71]|. Further studies are needed to corroborate this discovery and to clarify
the nature of the absorbing state phase transition, for which directed percolation is a
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Figure 7.1: Identified features associated to critical many-body states in driven-dissipative Rydberg
spin systems. The given phase diagram was obtained by classical rate equation simulations assuming
a static, disordered and homogeneous distribution of atoms in a box with periodic boundary
conditions, particle number conservation and system parameters close to chapter 5. (a) We show the
calculated scaling exponents « as a function of driving strength (). White indicates o = 2 scaling
which is characteristic of weakly excited single-body regimes, which are dissipation dominated
on resonance and paramagnetic off-resonance. On resonance we observe critical scaling o < 2
associated to an equilibrium quantum phase transition (light blue dashed line). For large positive
detunings the facilitation condition is met, giving rise to the instability (a > 2, light red dashed
line), which in the far detuned limit denotes the phase boundary between an inactive and an active
phase. We show the transition between these two phases in panel (b) for the Rydberg fraction,
which is the normalised Rydberg excitation density. Including particle loss, the system in the active
phase self-organises to the critical point of the absorbing state phase transition.

likely candidate [14, 248, 49, 48]. First signatures of an absorbing-state phase transition
in driven-dissipative Rydberg spin systems with a large particle reservoir were reported
in experiments by [51]. They were also unable to clearly identify the universality class
of the phase transition, although their results are consistent with directed percolation in
one spatial dimensions. The surprising identification of SOC highlights driven-dissipative
Rydberg spin systems as a laboratory analogue for experimentally exploring complex
non-equilibrium phenomena, which is accessible to both experiments and theory.
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7 Conclusions and Outlook

Combining the results of chapters 5 and 6, we have extensively addressed our guiding
questions and explored the non-equilibrium phase structure and dynamics of driven-
dissipative Rydberg spin systems by identifying suitable experimental observables to
characterise the various regimes of behaviour, and by relating the macroscopic behaviour
to microscopic models. In Figure 7.1 we illustrate everything we have learned about
the non-equilibrium phase structure as a function of the driving strength and detuning,
using a phase diagram for an idealised static and homogeneous system obtained by a
classical rate equation simulation. We assumed particle number conservation and system
parameters close to the experiments in chapter 5. Analogously to our experiments we
plot the scaling exponent « as a function of the driving strength. Figure 7.1 nicely
illustrates the presence of two types of criticality at work in one system, that arise from
very different mechanisms. The associated regimes arise for strong laser driving, with
the system parameter distinguishing between the two being the laser detuning. The
critical regime close to resonance (light blue dashed line) is governed by an equilibrium
quantum critical point at 2, A = 0, despite the dissipation inherent to our system. Far
above-resonance, where facilitated excitation and decay govern the system dynamics, an
absorbing state phase transition between inactive and active phases arise in the absence of
particle loss (Fig. 7.1(b)). The non-equilibrium critical point of this phase transition is
given by the instability observed in our experiments (light red dashed line). For late times
of the system dynamics, SOC emerges as a mechanism driving the system to the critical
point of this absorbing-state phase transition. Our results show that in driven-dissipative
systems a variety of critical phenomena associated to different mechanisms can arise.

The work presented in this thesis opens up a variety of research avenues, concerning
the properties and nature of the SOC dynamics, the interplay between quantum coherent
and dissipative dynamics, as well as potential novel phases of synthetic non-equilibrium
quantum systems with engineered microscopic details. Future experiments on SOC in
Rydberg spin systems could focus on observing other properties of the critical dynamics,
for example the distribution of critical avalanche sizes, which is expected to follow a
powerlaw distribution. Furthermore, experiments could try to access spatial and temporal
correlations using direct high-resolution imaging of the Rydberg excitations in an optical
lattice [148, 149]. A further detection technique complementary to our absorption imaging
and suitable to observing avalanches of Rydberg excitations is counting of the ions created
by photoionisation [116, 51, 121]. Both high-resolution imaging (using the implemented
in-vacuum high-resolution objective lens) and ion detection (using the in-vacuum electrode
structure and microchannel plates) are possible with our apparatus as discussed in chapter 2.
Additionally, systematic effects of the inhomogeneous density and lightshift distributions
associated to our optical dipole trap, which we found to influence measured scaling
exponents, can be reduced by atom trapping in box-like trapping geometries [251], or
pulsed excitation where the trapping potential only is on between excitation pulses. We
expect that following this route, Rydberg spin systems will allow one to shed light on the
surprising abundance of phenomena with powerlaw distributed observables in nature, for
which SOC has been conjectured as an organising mechanism [59, 71, 246, 70]. Beyond
the simulation of effectively classical phenomena, our experiments also have the potential
of opening up the path to studying the crossover from classical many-body dynamics to
dynamics dominated by quantum fluctuations. Upon further reducing the laser linewidths
and effects of the atomic motion (e.g. by pinning the atoms in an optical lattice), this
would allow one to study for example largely unexplored first order absorbing state phase
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transitions predicted in [50, 51, 135]. If it becomes possible to extend coherence times to
timescales comparable to atomic motion and equilibration, one can explore novel types
of quantum fluids enhanced by Rydberg-dressed interactions. The resulting soft-core
interaction potential opens the possibility of creating novel non-equilibrium phases of
matter [85, 104]. Our extensions to Rydberg dressing concepts to include dissipation
self-consistently in chapter 4 uncovered distance-dependent dissipation for two-photon
Rydberg dressing, which may find additional applications in quantum state engineering
via dissipation [229] or novel cooling techniques [169, 230, 231].

Finally, the work reported in this thesis more generally reflects an explosion of interest
in the last years in quantum systems far from equilibrium, spanning a variety of physical
platforms. The momentum in this field is to a large part based on the ability to control
and engineer a large, ever increasing range of properties of synthetic quantum systems,
and the possibility to comprehensively describe these systems microscopically. We expect
that the findings reported in this thesis, especially powerlaw scaling and the identification
of genuine non-equilibrium critical behaviour, will transcend far beyond Rydberg spin
systems and are applicable in diverse non-equilibrium scenarios. Non-equilibrium settings
lead to a diverse host of complex many-body phenomena - we have just begun to open the
door to understanding and exploiting all the richness non-equilibrium has to offer, with a
room full with new surprises ahead!
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Appendix: Motional
enhancement of the facilitated
excitation probability

The following appendix is based on the following manuscript, from which the
text is reproduced verbatim with permission by the American Physical Society:

Uncovering the non-equilibrium phase structure of an open quantum
spin system

S. Helmrich, A. Arias and S. Whitlock

submitted to Physical Review X

For the long times relevant for our experiments, atomic motion can play a significant
role in the excitation dynamics, especially for A > 0. The dominant effect is that,
compared to the case of static disorder, motion enables a greater fraction of atoms to
meet the resonance condition at the faciliation distance re,. = (Cg/ A)l/ 6 and to undergo
Landau-Zener transitions.

To account for this motion enhanced excitation probability in the RE simulations we
derive an expression for the probability to excite an atom from its ground state while
it moves with velocity v relative to a pre-excited Rydberg atom. Their separation r is
treated as a classical parameter, while the excitation dynamics of the ground-state atom is
described by the quantum master equation (eq. 5.1), which includes decay and dephasing
terms and an effective position dependent detuning A— V(7). Figure A.1(a) shows examples
of the time-dependent excited state probability assuming the two atoms start at the same
initial position (r = 0) and move apart as a function of time, for parameters similar to
the experiment and for three different detunings. After the atom crosses the facilitation
distance (indicated by gray vertical lines in Figure A.1(a) for each detuning), the excitation
probability peaks and undergoes oscillatory dynamics which are damped due to spontaneous
decay and dephasing. The peak excitation probability is much larger than the off-resonant
(static) probability and, depending on the relative velocity of the atoms, can be a sizable
fraction of the maximum on-resonant probability (Fig. A.1(b)).

For the experimental parameters assumed, the typical crossing time is comparable to
the dissipation rate making an analytic treatment difficult. However, by inspecting the
numerical simulations we found that the peak excitation probability Pz is well described
by a heuristic model which incorporates the usual Landau-Zener transition probability PEZ
with a cut-off given by the static resonant excitation probability fr, according to:

A —<1+1>1 (A1)
LZ — fR PLOZ .

93




0.010}
N [
o L 15MHz |

0.005} T

0.000 L -

22 24 26 28 30 32 34 36
time (us)

(b) 441

107g z : :

> “

%

[yy]

o)

o

S 1072

C

S

I

2

wl o

1073k , , , 3

-10 0 10 20 30 40
Detuning A [MHZz]

Figure A.1l: Landau-Zener transition probability for an atom moving away from a Rydberg
excitation with a velocity of 0.2m/s. (a) transient excitation dynamics for three different detunings.
The dashed red horizontal lines show the analytic approximation (see text) and the vertical gray lines
mark the time at which the atom reaches the facilitation shell for each detuning. (b) Peak excitation
probability as a function of detuning. The solid black line shows the full numerical simulations,
the red dashed line is the modified Landau Zener theory including dissipation (Eq. (A.1)), the
dash-dotted line is the usual Landau-Zener result neglecting dissipation and the dotted line is the
steady state Rydberg fraction assuming static atoms.

where
Iy

o (A.2)
Dr+Tyly_a

Pl =1- 6—27T(Q/2)2/\5|7 fr=
and 6 = v(dV/dr) = —6vA7/6/C'é/6 is the slew rate of the Landau-Zener energy level
crossing evaluated at the facilitation distance (assuming van der Waals interactions).
Fig. A.1(b) shows a comparison of the peak excitation probability for the modified Landau-
Zener probability Pz (dashed red line) and the full numerical simulation of the time-
dependent master equation (solid black line) alongside the bare excitation probability
without motional enhancement (dotted gray line) and the usual Landau-Zener result
without dissipation (dash-dotted gray line). For A/27w > 5 MHz the motion-enhanced
excitation probability is more than an order of magnitude larger than the excitation
probability without motion.
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So far, this treatment does not include the probability that a given atom actually
undergoes a Landau-Zener crossing, which depends on it’s initial position and velocity
as well as the lifetime of the Rydberg state. To account for this we assume a Maxwell-
Boltzmann velocity distribution characterised by a thermal velocity vy, = (2kpT/m)'/2.
For the experimental parameters, the distance the atoms move during the excited state
lifetime is small compared to the facilitation distance. Therefore it is sufficient to use
a one-dimensional model in which the facilitation shell is treated as a planar boundary
at © = wp.. After integration we find that the probability for a given atom with initial
position x; to cross the boundary within the time ¢ is:

1 Tfac — Tj
Peross = ierfc <| atC'Uth J’> . (A3)
To account for the possibility that the Rydberg atom decays before the boundary is reached,
we time-integrate the crossing probability weighted by an exponential decay

fooo Pcrosse_zﬂrtdt
fOOO e—27I't J¢t

\}g exp (—352/3) (A4)
where in the last step we use an approximation to the MeijerG special function for
& = 7l |%gae — 5] /ven > 0 which is accurate within 14%.

To incorporate this model into the RE simulations we modify equation (5.12) according
to T4 — T4 + TPz Peross, substituting wg,e = (C6/A)Y% and z; ~ (Cs/V;)'/6. Generally,
this prescription underestimates the effect of motion as it doesnt include forces between
the atoms or the possibility that there are multiple Rydberg excitations in the viscinity
of a given atom. For the results shown in Fig. 3, we find best agreement with the data
assuming Prposs is four times larger than the expression given in equation (A.4).

P cross

Q
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Appendix: Calibration of the
driving strength by Ramsey
spectroscopy
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Figure B.1: Calibration of the driving strength of Rydberg excitation by Ramsey interferometry
spectroscopy. Ramsey oscillations between two hyperfine ground states are measured in time, while
they are coupled to the Rydberg state by a single laser field. The Fourier spectrum with frequency
f is determined for a range of laser detunings, showing a peak at the frequency of the respective
lightshift induced by the Rydberg laser. The spectrum is offset by 900 Hz here (white dashed line),
which is the bare detuning of the Radio frequency field coupling the two hyperfine ground states.
The laser driving strength obtained in this measurement is /27 = 170 kHz.

To calibrated the driving strength €2 of the single-photon Rydberg excitation, we measure
the induced lightshift experienced by ground state atoms. To this end we implement
Ramsey interferometry spectroscopy [252, 211] between the two hyperfine ground states
4512, F' = 1,mp = 0) and |45} 9, F' = 2, mp = 0). We drive the magnetic dipole transition
between these two states with a radio-frequency (RF) antenna inside the vacuum chamber
(see Fig. 2.1). This transition is insensitive to magnetic fields, and the differential light shift
due to the dipole trap is negligibly small, making it suitable to measure lightsifts originating
from the Rydberg excitation laser. The Ramsey sequence is based on a 7/2 pulse creating
an equal superposition between the two coupled hyperfine ground states, a subsequent
free coherent evolution time ¢t and a final 7/2 rotation to close the interferometer. Then,
the population in the F' = 2 state is measured as a function of ¢, which we measure from
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zero to 15 ms. The measured population oscillates in time with an oscillation frequency f
given by the total difference frequency of the RF field relative to the addressed hyperfine
transition. This difference frequency is a combination between the known RF detuning
and the additional lightshift induced by the Rydberg excitation laser. Hence this lightshift
is revealed as a peak in a Fourier spectrum of the measured oscillations, which we show
in Figure B.1. The RF detuning was set to 900 Hz, indicated by the white dashed line.
The lightshift of the Rydberg excitation laser was measured by coupling to the F' = 2
ground state with laser detunings ranging from —40 to 40 MHz. This detuning range is
much smaller than the ground state hyperfine splitting, such that the laser coupling to
the F' =1 ground state can be neglected in the following. Furthermore, the RF driving
strength is much smaller than the driving strength of the Rydberg excitation laser, such
that lightshifts due to RF driving are negligible. Hence the lightshift induced on the F = 2
state is fully determined by the Rydberg excitation laser (parameters 2 and A), leading to
the observed Autler-Townes spectrum of the form (A + /A2 4+ Q?)/2 in Figure B.1. From
this measurement we determine the Rydberg laser driving strength to be /27 = 170 kHz.
To avoid interaction-induced lightshifts in this measurement we used low atom densities.
The measured driving strength can be directly related to the applied optical power P of
the Rydberg excitation laser to create a Rabi frequency calibration Q/27 = ayv/P. We
measure P for every individual data point on a photodiode to account for potential drifts
in the laser power on timescales much larger than the experimental cycle. With the driving
strength calibrated by the effected light shift on an atomic transition, the biggest systematic
uncertainty of the driving strength measurement is small drifts of the cloud position relative
to the focus of the excitation laser on timescales of several hours. We estimate that such
drifts are smaller than the Rayleigh range of the focus of the excitation laser and therefore
lead to only small drifts in the resulting driving strength of the addressed atomic transition.
Based on the shot-to-shot fluctuations of measured optical powers we estimate that the
relative statistical error of the driving strength is 0.2 %.
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