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Summary 

The Epstein-Barr virus (EBV) infects the majority of the population. The EBV M81 

strain isolated from a nasopharyngeal carcinoma (NPC) efficiently infects and 

transforms primary B cells, but it also induces potent virus lytic replication in a 

minority of these cells. We used recombinant viruses to reveal the function of the 

EBER RNAs. We found that the number of cells in which lytic replication takes place 

is increased both in vitro and in vivo by the non-coding RNA EBER2, but not by its 

homolog in the genome of the B95-8 strain. M81 and B95-8 EBER2 homologs 

displayed a limited number of polymorphisms, some of which influence their half-life 

and expression levels. M81 EBER2 modified the expression of a large number of 

cellular genes including CXCL8. This chemokine was able to compensate the absence 

of EBER2, suggesting that it represents the main target of this non-coding RNA. We 

found that the exosomal fraction of B cells infected with wild type M81 carries the 

EBER molecules, are able to increase CXCL8 and BZLF1 production. The effect of 

EBER2 on EBV lytic replication required a functional TLR7, a sensor of viral single-

stranded RNA (ssRNA). Therefore, we propose a model in which EBERs are vehicled 

into the exosomal fraction of infected B cells to initiate lytic replication in a paracrine 

manner through CXCL8 secretion induced by TLR7 stimulation. These results 

indicate that EBERs NPC-derived virus variant contribute to lytic replication in B 

cells and activate production of a chemokine involved in carcinogenesis. 
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Zusammenfassung 

Ein Großteil der Bevölkerung ist mit dem Epstein-Barr-Virus (EBV) infiziert. Der aus 

Nasopharyngealkarzinomen isolierte Virusstamm M81 infiziert und transformiert 

primäre B-Zellen, kann aber auch in einem kleinen Teil dieser Zellen eine lytische 

Replikation induzieren. Wir nutzten rekombinante Viren um die Funktion der EBER 

RNAs zu untersuchen. Wir konnten zeigen, dass die Anzahl der Zellen, in welchen 

lytische Replikation stattfand, durch die nicht-kodierende RNA EBER2 sowohl in 

vitro als auch in vivo erhöht wird. Dies war allerdings nicht bei dem Homolog aus 

dem 95-8 Genom der Fall. Die M81 und B95-8 EBER2 Homologe haben eine 

bestimmte Zahl ein Polymorphismen, teilweise können diese ihre Halbwertszeit und 

Expressionslevel beeinflussen. M81 EBER2 hatte Auswirkungen auf die Expression 

vieler zellulärer Gene, darunter auch CXCL8. Dieses Chemokin konnte ein Fehlen 

von EBER2 kompensieren, was ein Zeichen dafür sein könnte, dass CXCL8 das 

Hauptziel von EBER2 ist. Wir fanden heraus, dass Exosomen von M81-infizierten B-

Zellen EBER-Moleküle enthalten, welche die CXCL8 und BZLF1-Produktion 

erhöhen können. Die Wirkung von EBER2 auf die lytische Replikation von EBV 

benötigte einen funktionalen TLR7, welcher ein Sensor für virale einzelsträngige 

RNA (ssRNA) ist. Deswegen schlagen wir ein Modell vor, in welchem EBER in 

Exosomen von infizierten B-Zellen gebracht werden, um so eine lytische Replikation 

durch TLR7-induzierte CXCL8 Sekretion zu induzieren. Diese Resultate weisen 

darauf hin, dass EBER aus NPC-abgeleiteten Virusstämmen zur lytischen Replikation 

in B-Zellen beitragen und die Produktion eines Chemokins aktivieren, welches in der 

Karzinogenese involviert ist. 
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1 Introduction 

1.1 EBV and its related diseases 

Epstein-Barr Virus (EBV) is the first discovered human tumor virus. In March 1964, 

Anthony Epstein and other colleagues identified herpesvirus-like particles in cultured 

tumor cells derived from African Burkitt’s lymphoma tissue (Epstein et al., 1964). At 

that time, the idea that a virus could cause human tumor was met with some 

skepticism because the theory that cancer was infectious had been dismissed in the 

previous century. The Epstein-Barr Virus (EBV) (Figure 1.1 A), also called human 

herpesvirus 4 (HHV-4) is a common human virus that can cause both infectious 

mononucleosis and lymphoproliferative disease. EBV infects more than 90% of the 

adult population between 35-40 years old in the U.S, usually without clinical 

consequences, particularly when people are infected during childhood (Liebowitz D, 

1993).   

Because EBV belongs to the member of the herpesvirus family, it is very 

efficient at establishing a long-term latent infection in B cells. Previous exposure to 

EBV can be detected by serology, and latent forms of EBV can be readily detected by 

molecular methods in a small percentage of B-lymphocytes from healthy individuals.  

EBV is associated with the development of cancers such as Burkitt’s lymphoma, 

Hodgkin’s lymphoma, and nasopharyngeal carcinoma. The virus is able to infect host 

B-cells and epithelia, and induce proliferation of its host via a non-lytic mechanism. 

During this latent process, virus-encoded nuclear proteins (EBNAs) and latent 

membrane proteins (LMPs) are expressed in infected host cells (Young and 

Rickinson, 2004). 
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EBV genome: The Epstein-Barr virus is a Baltimore Class I virus of the family 

Herpesviridae. Researchers used electron microscopy to describe these viral particles 

and found that EBV was very similar in structure to Herpes simplex virions (Fig. 1.1 

A) (Epstein et al., 1964). The EBV genome is made of double-stranded DNA and is 

around 180 kb long (Baer et al., 1984). Herpes viruses possess relatively big 

genomes; Herpes simplex has a 152-kilobase genome (Mahiet et al., 2012). The open 

reading frames (ORFs) of EBV are generally broken up into separate lytic and latent 

sections. While most of the viral genes encode proteins, some of the latent genes 

remain noncoding (EBERs and microRNAs). During latent infection, the EBV 

genome exists in a circularized form localized in the host cell nucleus (Young and 

Rickinson, 2004). The open reading frames for the LMPs and EBNAs are clustered 

separately within the episomes (Fig. 1.1 B). 

 (A)                                                                              (C) 
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                    (B) 

                               
Fig. 1.1 (A) Original micrographs (EM) of cultured Burkitt’s Lymphoma tissue 

published by Epstein and Barr in 1964. V indicates the presence of EBV virions. (B) 

A general diagram of an Epstein-Barr Virus dsDNA episome. Note the clustering of 

open reading frames for EBNA and LMP genes and the location of the origin of 

replication, oriP. The green arrows show the direction of transcription initiation 

during latency III (Young and Rickinson, 2004). (C) A general diagram of the 

structure of a herpesvirus virion (Wikipedia). The dsDNA genome is wrapped around 

a central nucleo-protein. Spike glycoproteins (not labeled) on the surface play a role 

in host cell entry. 

EBV virion structure: Epstein and Barr observed that this lymphoma-associated 

virus was around 20% smaller in size than those typical Herpes simplex virions 

(Epstein et al., 1964). Similar to other Herpesviruses, the innermost part of the EBV 

virion consists of a copy of linearized viral DNA wrapped around a central nucleo-

protein core (Fig. 1.1 C). The core of the virion is surrounded by a nucleocapsid, a 

layer of protein tegument, and an outer envelope with spike glycoproteins (Liebowitz 
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D, 1993). This nucleocapsid consists of a polymer of viral capsid proteins that play a 

key role in wrapping the viral genome into the core of the nucleocapsid layer and the 

delivery of the viral DNA at the nuclear membrane (Kieff et al., 1982). The tegument 

proteins display multiple enzymatic activities that are not only important for the 

infection but also for the maturation of the virus (Kalejta, 2008). Many of these 

glycoproteins are important for host-cell entry and fusion mechanisms. Infected host 

cells release EBV virus particles exclusively during the lytic cycle. 

EBV-related diseases: EBV is transmitted orally and is often acquired during 

childhood. Primary EBV infection is usually clinically silent or not different from the 

usual minor respiratory infections that occur in children. In developed countries, 

infection with EBV is often delayed until adolescence. Infection with EBV may also 

develop unnoticed in this case, although some people develop infectious 

mononucleosis, which is described by symptoms of sore throat, lymphadenopathy, 

fever and fatigue (Balfour et al., 2013). In both cases, EBV infection is countered by a 

robust immune response, natural killer cells, CD8+ cytotoxic T-cells and CD4+ 

helper T-cells (Rickinson et al., 2014). This response can be very potent and the 

consequences of infectious mononucleosis are thought to come from an exuberant 

immune response to infection. Nevertheless, the immune system cannot clear the 

virus that establishes permanent infection in the host’s B-lymphocytes, evading anti-

viral immunity response by silencing viral protein expression. This strategy enables 

EBV to persist for the lifetime of the host as a latent infection. In order to be 

transmitted to new hosts, some of the B cells carrying EBV undergo reactivation, 

producing new progeny virus in the oropharynx for transmission to susceptible 

individuals (Taylor et al., 2015). 
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The co-existence between EBV and its host means that most people have no long-

term health effects from this infection. Although relatively benign in most people, 

EBV has powerful growth transforming potential and is classified as a group I 

carcinogen by the World Health Organization. EBV is associated with several distinct 

lymphomas: Burkitt lymphoma, Hodgkin lymphoma, T/NK lymphoma and about 

10% of diffuse large B cell lymphomas. EBV is also a problem in the transplant 

setting, where iatrogenic immunosuppression may result in post transplant 

lymphoproliferative disease (PTLD) (Rickinson et al., 2014). EBV has the ability to 

infect and transform epithelial cells in vivo. EBV is associated with 10% of gastric 

carcinomas and with almost all cases of the non-keratinizing subtype of 

nasopharyngeal carcinoma (NPC). This subtype represents most cases (>95%) of 

NPC in Southeast Asia where the disease is endemic. Taken together, EBV is related 

to an estimated 200,000 cases of cancer each year, representing 1% of all cancers 

worldwide (Parkin, 2006). 

All EBV-associated malignancies express viral proteins but the viral protein 

expression pattern is different in different diseases (Table 1.1). Post-transplant 

lymphomas, particularly those that arise in the first year after transplantation when 

immunosuppression is greatest, express all nine EBV latent proteins. These comprise 

six Epstein-Barr Nuclear Antigens (EBNAs) and three Latent Membrane Proteins 

(LMPs). The EBNA 3A, 3B, and 3C proteins, which are good CD8+ T-cell targets, 

are expressed (Taylor et al., 2015). In contrast, a lower number of EBV proteins is 

expressed in the remaining EBV-associated malignancies, possibly reflecting their 

origin in people who are not overtly immunosuppressed. 
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Table. 1.1 EBV-associated malignancies and the viral proteins in the tumor cells 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	

	

	

	



	 11	

1.2 The EBV infection modes 

 

1.2.1 Lytic life cycle 

Like all herpesviruses, EBV exhibits two life cycles: latency and lytic replication 

phase that leads to the generation of progeny viruses (Kieff and Rickinson, 2007). 

Although the EBV lytic life cycle is more rarely observed than the latent cycle, it is 

very important since it is the only way that the virus may produce virions and be 

transmitted horizontally between hosts or cells. Increased free virion levels are 

observed in immunosuppressive diseases like AIDS in the blood. While virions are 

often found in the saliva of infected hosts, little or no lytic-infected cells are typically 

detected in the body (Swaminathan S., 2009). Human cytotoxic T-cells are 

particularly good at recognizing and killing lytically infected cells expressing early 

stage lytic genes. Although lytic replication contributes to drive EBV spread in human 

populations, latent infection is more common in infected cells. Alpha and Beta 

herpesviruses have evolved elaborate mechanisms for lytic gene concealment from 

the host immune system; however, EBV has few mechanisms to evade immune-

mediated destruction of lytic-infected cells. For example, Herpes simplex virus is able 

to inhibit host Major Histocombatibility Complex (MHC) expression, which reduces 

B-cell antigen presentation and recognized by cytotoxic T-cells. In contrast to other 

herpes viruses, EBV have a different mechanism to evade the host immune response. 

EBV mainly relies on a latent replication cycle in which it copies its genome within 

dividing host B-cells using the replication machinery of the host (Steven et al., 1997). 

Therefore, unlike other herpesviruses that rely on lytic replication for spread within a 

host, EBV relies more on its latent replication. Because latent mechanisms are 
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responsible for persistence in the host, EBV is not under significant selective pressure 

to develop elaborate lytic immune avoidance traits. 

Latent infection plays a primary role in the development of lymphoproliferative 

disease (LPD) in EBV infected individuals. The role of lytic replication in EBV-

associated malignancies is not well understood. Researches reported that EBV 

mutants (B95-8 strain) that cannot undergo lytic viral replication are defective in 

promoting EBV-mediated lymphoproliferative disease (LPD). In more detail, they 

found that early-passage lymphoblastoid cell lines (LCLs) derived from EBV mutants 

with a deletion of either viral immediate-early gene (BZLF1) grew similarly to wild-

type (WT) virus LCLs in vitro but were deficient in producing LPD when inoculated 

into SCID mice. In addition, lytic infection contributes to stimulate the secretion of 

paracrine factors that may promote the growth of latently infected B-cell lines. While 

it may have a more diffuse effect than the latent mechanism, EBV lytic infection- 

mediated signaling may contributes to the development of lymphoproliferative 

disease (Hong et al., 2005). 

The lytic cycle produces progeny viruses that can target host cells, such as B cells. To 

enter B cells, viral glycoprotein gp350 bind to cellular receptor CD21 (also known as 

CR2) (Nemerow et al., 1987). Then, viral glycoprotein gp42 interacts with 

cellular MHC class II molecules. Subsequently, fusion between the viral envelope and 

endocytotic membrane is mediated by gH/gL and gB (Kirschner et al., 2006). 

Following fusion, the viral capsid enters into the cytoplasm and is transported to the 

nuclear membrane by microtubule-mediated transport. The EBV viral genome is 

released into the nucleus through a nuclear pore. During the lytic replication cycle, the 

viral genome replicates in the nucleus (Daikoku et al., 2005). The viral genome is 
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replicated using an EBV DNA polymerase, which stimulates the production of viral 

structural proteins. Viral particles are assembled in the nucleus (Henson et al., 2009). 

After full particles are assembled, they bud out of the nuclear membrane, then through 

the Golgi membrane.  

Two immediate-early lytic genes including BZLF1 (also known as Zta, associated 

with its product gene ZEBRA) and BRLF1 (associated with its product gene Rta) 

cooperate to promote most of the lytic genes transcription. Early lytic gene products 

perform functions such as replication, metabolism, and blockade of antigen 

processing. Finally, late lytic gene products tend to be proteins with structural roles, 

such as VCA, which forms the viral capsid. Other late lytic gene products, such as 

BCRF1, help EBV evade the immune system. 

1.2.2 Latent infection 

In most cases, once EBV virions accomplish primary infection of B-lymphocytes, the 

virus mainly replicates by a latent form (Jochum et al., 2012). This results in the 

transformation of B-cells into proliferating lymphoblastoid cell lines (LCLs) (Young 

and Rickinson, 2004). The latent replication cycle is defined in two aspects: 1) No 

production of virions, and 2) the production of few viral proteins and transcripts. 

These latent viral proteins activate the proliferation of host B-cells and contribute to 

lymphoproliferative disease (Cesarman, 2011).  

EBV can exhibit three latency programs: Latency I, Latency II, and Latency III. In 

latency I, only EBNA1 is expressed (Cesarman, 2011), while in latency II EBNA1 is 

expressed along with the LMP proteins (Young and Rickinson, 2004). In Latency III, 

the six EBNAs and the three LMP proteins (LMP1, 2A, and 2B) are produced. The 

transcription of EBV genome initiates at either the Wp or Cp promoter. Differential 
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splicing of the same long transcript generates the different EBNA mRNA. In vitro, 

LCLs typically display latency III-like expression profiles (Cesarman, 2011). B-cells 

must have latency III expression profiles for successful generation of LCLs in 

vitro (Klein and Ernberg, 2007). In addition to these latent proteins, several non-

coding RNAs (EBERs) and micro-RNAs are also expressed during all these latency 

types (Fok et al., 2006; Young and Rickinson, 2004). 

1.2.3 Reactivation from latent phase to lytic phase 

Latent EBV in B cells can be reactivated to switch to lytic replication. This is known 

to happen in vivo, but the precise mechanism why EBV is reactivated is unknown. In 

vitro, EBV latency in B cells can be reactivated by stimulating the B cell receptor, so 

reactivation in vivo probably happens when latently infected B cells respond to 

unrelated infections (Odumade et al., 2011). In vitro, EBV latency in B cells can also 

be reactivated by treating with sodium butyrate or TPA. In most EBV-positive cell 

lines, BZLF1 protein alone is sufficient to induce the switch from latency to lytic 

replication.   

BZLF1 interacts directly with histone acetylating complexes, such as CBP and p300 

and the general transcription factors TFIID and TFIIA. During viral reactivation 

(EBV genome is highly methylated in cells), BZLF1 initially activates the 

transcription of BRLF1 gene. BZLF1 and BRLF1 then promote the transcription of 

many of the early lytic viral genes that often contain binding sites for both (Wille et 

al., 2013). They are both needed for expression of many, but not all, of the early-lytic 

genes in the EBV genome (Feederle et al., 2000). BZLF1 also makes contributions to 

the lytic EBV DNA replication, binding directly to many of the essential ZRE sites 

located within the lytic origin of replication, oriLyt. The direct interactions between 
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BZLF1 and core EBV replication proteins likely promote the formation of replication 

complexes.  

BRLF1 can also induce the switch from latency to lytic phase in some EBV-positive 

cell lines, especially in epithelial cells. BRLF1 directly binds to GC-rich motifs 

known as R-responsive elements (RREs) (consensus 5’-GNCCN9GGNG-3’) located 

within the promoters of early lytic genes (Heilmann et al., 2012). R directly interacts 

with both the general cellular transcription factors, such as TBP and TFIIB and the 

histone acetylating complex CBP and p300. Previous published data from transient 

transfection reporter assays suggest that BRLF1 activates both its own promoter and 

the BZLF1 promoter by indirect mechanisms in which the Sp1, MCAF1 and Oct-1 

transcription factors, and some cellular kinases are involved in this process (Adamson 

et al., 2000; Darr et al., 2001; Ragoczy and Miller, 2001; Robinson et al., 2011). 

However, given that the strong enhancer activity of BRLF1-bound RREs, it is 

speculated that BRLF1 directly activates the BZLF1/BRLF1 transcription in the 

context of the EBV genome (Heilmann et al., 2012). At least two EBV-encoded 

proteins are involved in the ability of BRLF1 to regulate viral latency. The early-lytic 

viral protein BRRF1 activates phosphorylation of c-Jun and cooperates with BRLF1 

to induce BZLF1 promoter transcription in the context of the intact EBV genome 

(Hagemeier et al., 2011; Hong et al., 2004). In contrast, the early-lytic EBV protein 

LF2 directly inhibits the activity of BRLF1, therefore, it limits viral lytic replication 

(Calderwood et al., 2008). The opposite roles of BRRF1 and LF2 might help to fine-

tune the transcriptional effects of BRLF1 during the various stages of EBV lytic 

replication. 
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1.3 EBV-encoded small RNAs (EBERs) 

1.3.1 Generalities 

Epstein-Barr virus (EBV) expresses two noncoding RNAs called EBER1 (EBV-

encoded RNA 1) and EBER2, that are 167 and 173 nucleotides (nts) long, 

respectively. They are transcribed by RNA polymerase III (Howe and Shu 1989). The 

EBERs are expressed in all forms of EBV latency and also during lytic replication. 

They are the most abundant viral transcripts in latently EBV-infected cells. EBER1 

accumulates to 106 and EBER2 to 2.5 x 105 copies per infected cell. Currently, 

EBERs are used as preferential target molecules in in situ hybridization (ISH) 

detection of EBV-infected cells in tissues (Chang et al., 1992) and are considered a 

good marker to detect the presence of EBV, as they are highly expressed in EBV-

infected cells. Previous papers have shown that EBERs are oncogenic. Expression of 

these RNAs in B-lymphocytes can induce colony formation in soft agar and tumor 

formation in nude mice (Komano et al., 1999; Ruf et al., 2000). Furthermore, EBERs 

can induce resistance to interferon-alpha-induced apoptosis in BL cells (Nanbo and 

Takada, 2002). Previous studies have also demonstrated that EBERs can induce the 

transcription of various cytokines, such as interleukin-10 (IL-10) in BL cells, insulin-

like growth factor-1 (IGF1) in epithelial cells and IL-9 in T cells. These cytokines can 

subsequently act as autocrine growth factors for EBV-infected cancer cells (Iwakiri et 

al., 2003; Iwakiri et al., 2005; Kitagawa et al., 2000; Yang et al., 2004). More recent 

studies have shown that EBER1 is sufficient to elicit these phenotypes, suggesting 

that EBER2 is redundant (Houmani et al., 2009). The EBERs were reported to 

promote the pathogenic consequence of EBV infection by modulating innate immune 

signals (Iwakiri et al., 2009; Samanta et al., 2006; Samanta et al., 2008). 
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1.3.2 Structure of EBERs 

EBER1 and EBER2 are short, nuclear-enriched non-coding RNAs that are 166 and 

172 nucleotides (nts) in length, respectively (Rosa et al., 1981). These two RNAs 

display 54% sequence homology. The EBER genes are separated by 161 base pairs 

and are transcribed from left to right on the EBV map. Although these two EBERs 

show only limited sequence identity (54%), they exhibit striking similarities in their 

secondary structures and form several short stem loops (Fig. 1.2, (Rosa et al., 1981). 

However, the secondary structures are not identical, suggesting that EBER1 and 

EBER2 might have distinct functions.  

EBER1 is highly conserved in its primary sequence among multiple EBV strains with 

only 5 polymorphisms as shown in Table 1.2, suggesting that the EBERs are very 

important in the virus life cycle. EBER1’s secondary structure is very stable, and is 

organized into five conserved hairpins (Fig. 1.2) radiating from two multi-branch loop 

structures. In addition to its hairpins, EBER1 possesses a 9 nt single-stranded tail at 

its 3′ end. This RNA structure provides a platform for binding of host proteins to form 

EBER1 ribonucleoprotein (RNP). EBER2 also displays some polymorphisms among 

multiple EBV strains (Table 1.3). The distribution of the different EBER2 

polymorphisms in lymphoma and in EBV-associated gastric carcinoma (EBVaGC) is 

nearly identical, however, there are some polymorphisms that are seen more 

frequently in nasopharyngeal carcinoma (NPC) as shown in Table 1.3 and Fig. 1.2, 

suggesting that NPCs carry a specific type of EBER2 that might have unique 

functions.  
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Table. 1.2 EBER1 polymorphisms among 137 EBV strains  

 
In all other 130 EBV strains, EBER1 is identical to B95.8; HN4 is identical to VGO.  

Communication from R. Poirey (DKFZ) 

 

Table. 1.3 EBER2 polymorphisms among multiple EBV strains  

 
B95-8 (derived from IM) is equal to BL36, sLCL-1.02, 11, sLCL-IS1.04, 18, X50-7. 

(7% of total EBV genomes) 

Akata (derived from Burkitt’s lymphoma) is equal to EBVaGC1to9, GC1 (SNU719), 

and to the majority of other EBV strains (about 70% of total EBV genomes). 

M81 is identical to HKNPC1to9 (about 20% of total EBV genomes).  

BL, Burkitt lymphomas; EBVaGC, EBV associated gastric carcinomas; NPC, 

Nasopharyngeal carcinoma; LCL, Lymphoblastoid cell lines; 

Communication from R. Poirey (DKFZ) 

 

 

 

Strains	 20	 52	 106	 116	 160	

B95-8	 A	 T	 T	 C	 C	

Wewak	1	 T	 T	 T	 C	 C	

sLCL-TM1.16	 A	 C	 T	 C	 C	

HN4	 A	 T	 G	 C	 C	

SLCL1.19	 A	 T	 T	 T	 C	

HL05	 A	 T	 T	 C	 G	

Groups 44 46 57 61 93 168 Ratio 

B95-8 T A A A A A 7.0% 

Akata T A A A A G 68.6% 

M81 G T G T C G 16.3% 
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Fig. 1.2 Secondary structures of the EBER1, showing potential protein binding sites 

for L22, PKR, and La in red and blue. EBER1 structure is reproduced from Rosa et 

al. EBER2 structure is reproduced from Lee et al. The blue region (+41 to +64) can 

bind to the terminal repeat (TR) of the EBV genome. The red positions display 

polymorphism between B95-8 and M81 strains. In M81, at position 44 is G, position 

46 is U, position 57 is G, position 61 is U, position 93 is C and position 168 is G. 

RNase H-sensitive regions are indicated in orange. The region hybridizing to the 

antisense oligonucleotides (ASOs) used in capture hybridization analysis of RNA 

targets (CHART) is in red. EBER, Epstein-Barr virus-encoded RNA. 

1.3.3 Synthesis and expression of EBERs 

EBERs are transcribed by RNA polymerase III. These genes show the typical 

intragenic Box A and Box B RNA Pol III promoter sequences. Furthermore, they 

contain three typical upstream promoter elements including a TATA box as well as 

ATF- and Sp1-like promoter elements as shown in Fig. 1.3. Sp1-like promoter 

element binds Sp1 protein or a related protein and ATF-like promoter element binds 

the activating transcription factor (ATF).  These three upstream elements are typical 

of Pol II promoters and they together stimulate in vivo EBERs expression 50-fold. 

Both Pol II and Pol III promoter elements stimulate Pol III, but not Pol II-modulated 

transcription in EBV-transformed lymphocytes (Howe and Shu, 1989). A sequence 
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alignment between M81 and B95-8 shows that M81 and B95-8 carry the same Pol II 

promoter elements for EBER2 as shown in Fig. 1.4, however, they display one 

difference at position 57 in the polymerase III control regions as shown in Fig. 1.5.  

The level of EBER expression appears to be correlated to the EBV DNA molecule 

copy number in infected cells (Arrand and Rymo, 1982). Upon EBV infection of 

primary B-lymphocytes, EBNA2 is expressed firstly at 6 h post infection, followed by 

other EBNA genes, latent membrane protein genes (LMPs) and by the EBERs. The 

non-transforming P3HR-1 strain that carries a deletion of the EBNA2 locus expresses 

only the EBNA-leader protein (EBNA-LP) and trace amounts of EBER1 in primary B 

lymphocytes, however, the same virus can express EBNA1, EBNA3(s), EBNA-LP 

and EBERs upon infection of EBV-negative BL cell lines (Rooney et al., 1989). 

These findings indicate that EBERs expression depends on the host cell, perhaps 

through products specific for the cell cycle or the state of B-cell differentiation 

induced by EBNA2.  

EBER expression seems to be also influenced by the stage of viral life cycle. An early 

paper demonstrated that EBER transcription was down regulated during the switch 

from latent infection to lytic EBV replication. In contrast, the expression of EBERs 

remains unaltered within 72 h after the induction of lytic replication (Greifenegger et 

al., 1998). Although EBER1 and EBER2 are transcribed at approximately equal rates, 

EBER1 is present at about 10-fold higher levels compared to EBER2, probably due to 

the longer half-life of EBER1. Indeed, in the presence of actinomycin D, the half-

lives of EBER1 and EBER2 are 8 to 9 h and 45 min, respectively (Clarke et al., 

1992).  
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Fig. 1.3 Promoter structure of the Epstein–Barr virus-encoded small RNA (EBER)-2-

gene, showing the upstream region containing TATA box (−23 to −28) and 

transcription factor ATF (−40 to −55), and Sp1 (−56 to −77) binding sites and the 

intragenic polymerase III control regions, box A (+11 to +20) and box B (+51 to 

+60). “+1” is the transcription start site (TSS) of the EBER2 transcript. Positive 

values are downstream location after the TSS of the EBER2 transcript. Negative 

values are upstream position before the TSS of the EBER2 transcript.  

 

 
    

Fig. 1.4 A sequence alignment in Pol II promoter elements for EBER2 between M81 

and B95-8.  

 
Fig. 1.5 A sequence alignment in Box A and Box B for EBER2 between M81 and 

B95-8.  

Sp1	 ATF	
-56 to -77 

-40 to -55 

TATA	
-23 to -28 

+1 Box	A	 Box	B	
+11 to +20 +51 to +60 
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1.3.4 Localization of EBERs 

EBERs are found mainly in the nucleus and generate an intense nuclear signal after 

EBER ISH staining (Howe and Steitz, 1986). Fig. 1.6 shows an example of an EBER 

ISH staining. However, high-resolution ISH using confocal laser scanning 

microscopy has shown that EBERs are found in both the cytoplasm and nuclei of 

interphase cells (Schwemmle et al., 1992). Researchers previously reported that 

EBERs are found in a complex with the lupus antigen (La) protein (Iwakiri et al., 

2009). As the EBERs can bind to types of proteins that are not only restricted to the 

nucleus but are also located in the cytoplasm, it was speculated that this is a reason 

why EBERs could also localize in the cytoplasm (Lee et al., 2012; Samanta et al., 

2006).  

 

Fig. 1.6 This picture shows an example in situ hybridization with an EBER specific 

probe. We can see that EBERs can generate an intense nuclear signal after EBER ISH 

staining (Lin et al., 2015).  
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1.3.5 Proteins interacting with EBERs 

La protein:  

EBERs exist in the form of nuclear ribonucleoprotein (RNP) complexes that can be 

immunoprecipitated with anti-La antibodies (Lerner et al., 1981). The La protein 

binds the short oligouridylate stretch at the 3' ends of polymerase III transcripts, 

thereby facilitating the correct folding and maturation of RNA polymerase III 

transcripts (Gottlieb and Steitz, 1989). This binding is transient for most RNAs but 

stable for the EBERs (Howe and Shu, 1988).  Abundantly expressed EBERs make 

stable complexes with La protein, and, therefore, the amount of free La protein is 

significantly reduced in EBV-infected cells (Glickman et al., 1988). Since the La 

protein plays an important role in the biogenesis of RNA polymerase III transcripts, 

the formation of stable complexes between La and EBERs is expected to affect the 

interaction between La and RNA polymerase III in EBV-infected cells.  

La is mainly located in the nucleus, however, it can also be found in the cytoplasm 

under certain conditions (Bachmann et al., 1989; Meerovitch et al., 1993). The 

poliovirus-mediated cleavage of the La nuclear localization signals was reported to 

result in the shuttling of La from the nucleus to the cytoplasm.  Their results suggest 

that La protein is involved in poliovirus internal initiation of translation and might 

function through a similar mechanism in the translation of cellular mRNAs 

(Meerovitch et al., 1993). A recent study indicated that the EBER-La interaction 

complex is making contributions to the secretion of EBER from EBV-infected cells 

into the extracellular medium, because EBER is primarily released when it forms a 

complex with the La protein (Iwakiri et al., 2009). The consequence of EBER-La 

interaction remains unknown, however, it seems likely that it plays some roles in 
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general replication, transcription, or RNA processing in EBV-infected cells. 

PKR: 

The adenovirus-encoded RNAs, VA1 and VA2, are small ncRNAs that are 

transcribed by RNA pol III and that are essential for adenovirus replication and that 

have been shown to inhibit PKR-mediated shutdown of translation (Shiroki et al., 

1999). Although EBERs and VAs display no high sequence homology, they exhibit 

similarities in size, degree of secondary structure and genomic organization as shown 

in Fig. 1.7 (Akusjarvi et al., 1980). Intriguingly, the EBERs can functionally 

substitute for VAI/II and partly rescue replication of adenoviruses lacking VAI/II 

(Bhat and Thimmappaya, 1983). Similar to VA RNAs, EBERs can bind to the 

double-stranded RNA-dependent protein kinase (PKR), a serine/threonine kinase that 

can be induced by IFNα.  PKR plays a role in mediating the antiviral effects of IFNα 

(Fok et al., 2006; Sharp et al., 1993). Previous study demonstrated that PKR could 

bind to the stem-loop IV of EBER1 as shown in Fig. 1.2 (Vuyisich et al., 2002). PKR 

phosphorylates the α-subunit of the protein synthesis initiation factor eIF2 and thus 

results in translational inhibition at the level of initiation. In vitro assays have 

demonstrated that EBERs can inhibit PKR activation and block the phosphorylation 

of eIF2α, thus blocking the eIF2α-mediated inhibition of protein synthesis (Katze et 

al., 1991; Sharp et al., 1993). In BL cells, EBERs were reported to confer resistance to 

IFN α induced apoptosis by directly binding to PKR and inhibiting its 

phosphorylation (Nanbo et al., 2002). A study also reported that EBERs/VAs 

preferentially bind to the latent dephosphorylated form of PKR, with a similar affinity 

to that of dsRNA activators. However, EBERs/VAs prevent PKR dimerization, which 

is required for efficient PKR trans-autophosphorylation. Consequently, the 

phosphorylation of the PKR substrate is blocked, and protein synthesis continues 
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unhindered (McKenna et al., 2007).  

 

Fig. 1.7 The Secondary structure of VA RNAs. The structure of VA RNA1 (A) and 

two possible structures for VA RNAII (B and C) were derived by computer analysis. 

Reproduced from Akusjärvi et al (Akusjarvi et al., 1980). 

L22: 

EBERs exist in the form of nuclear ribonucleoprotein (RNP) complexes that can be 

immunoprecipitated with anti-La antibodies (Lerner et al., 1981). A second highly 

abundant EBER-associated protein (EAP) was also identified in La-containing RNP 

complexes (Toczyski and Steitz, 1991). EBER1 was reported to mainly bind to EAP 

and EAP was subsequently confirmed to be the ribosomal protein L22 (Toczyski et 

al., 1994; Toczyski and Steitz, 1993). Although its functions are not well known, L22 

was identified as the target of chromosomal translocation in certain leukemia-
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associated proteins (Nucifora et al., 1993), indicating that L22 expression levels might 

play an essential role in cell transformation. A study also suggested that the cellular 

functions of L22 might involve its association with the human telomerase (Le et al., 

2000), and L22 has also been shown to interact with many other small viral RNAs 

(Leopardi et al., 1997; Wood et al., 2001).  

L22 is located in the nucleolus and cytoplasm of primary uninfected human B-

lymphocytes. However, in EBV-infected cells, probably 30%–50% of the L22 

interacts with EBER1 and L22 relocalizes to the nucleoplasm (Toczyski et al., 1994). 

This suggests that the L22-EBER1 interaction can cause an abnormal cellular 

redistribution of L22 in EBV-infected cells. A recent study showed that the 

distribution of L22 was predominately located in the cytoplasm in EBV-transformed 

lymphoblastoid cell lines (LCLs), but that this process is independent of EBER1 

(Gregorovic et al., 2011). Previous studies have reported that EBER1 contains 

multiple L22-binding sites, including stem-loop III (Toczyski and Steitz, 1993), stem-

loop IV (Dobbelstein and Shenk, 1995), and stem-loop I (Fok et al., 2006). The 

existence of these multiple L22 binding domains suggest that most EBERs probably 

form complexes with L22 in vivo and that EBERs might modulate protein translation 

(Fok et al., 2006). A previous study reported that L22 and PKR compete for a 

common binding site on EBER1. L22 hampers the ability of EBERs to inhibit PKR 

activation by dsRNA through this competition. Transient introduction of EBER1 in 

murine embryonic fibroblasts causes reporter gene β-galactosidase activity 

upregulation and partially blocks the inhibitory effects of PKR. However, EBER1 is 

also stimulatory when transfected into PKR-null cells, suggesting a function that is 

PKR-independent. L22 expression prevents both the PKR-dependent and -

independent effects of EBER1 in vivo. These findings suggest that the L22-EBER1 
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interaction can reduce the biological effect of viral ncRNA, including PKR inhibition 

and any other mechanism by which EBER1 induces gene expression (Elia et al., 

2004).  

Other interacting proteins: 

Recent studies have reported that yet other cellular proteins can interact with EBERs. 

Pathogens infection can evoke the host innate immune responses that result in the 

elimination of invading pathogens. Cells express a limited number of germ-line 

encoded receptors known as pattern-recognition receptors (PRR) that specifically 

recognize pathogen-associated molecular patterns within microbes. The retinoic acid-

inducible gene I (RIG-I) like receptor (RLR) family, which includes RIG-I 

(Yoneyama et al., 2004), melanoma differentiation-associated gene (Mda)-5 (Kang et 

al., 2002), and LGP2 (Yoneyama and Fujita, 2007), comprises cytoplasmic proteins 

that recognize viral RNA. RLRs are known to play a key role in IFN-inducible 

antiviral effects (Meylan and Tschopp, 2006). When RIG-I is activated by an 

interaction with viral dsRNA, it can initiate signaling pathways that result in the 

induction of protective cellular genes, including type I IFNs and inflammatory 

cytokines. RIG-I contains a C-terminal DExD/H-box RNA helicase domain and an N-

terminal caspase recruitment domain (CARD). The helicase domain is responsible for 

dsRNA recognition, and the CARD domain activates downstream signaling cascades 

via the mitochondrial adaptor IFN-β promoter stimulator (IPS)-1, leading to 

activation of the transcription factors nuclear factor (NF)-κB and interferon regulatory 

factor 3 (IRF3) (Kang et al., 2002; Kawai et al., 2005). 5'-triphosphate RNAs are 

ligands for RIG-I. Therefore the EBERs, as 5'-triphosphate RNA molecules, could 

also interact with RIG-I (Hornung et al., 2006). Further studies found that EBER 

promotes BL cell growth by inducing expression of anti-inflammatory and growth-



	 28	

promoting cytokine IL-10, which is dependent on RIG-I-mediated IRF3 signaling. 

These results suggested that EBER-mediated RIG-I activation contributes to EBV 

oncogenesis (Samanta et al., 2006; Samanta et al., 2008).  

The AU-rich element-binding factor 1 (AUF1) has the ability to bind to AU-rich 

elements present in the 3'-untranslated regions of precursor RNA (Lu et al., 2006). 

The interaction between AUF1 and pre-mRNAs in the nucleus was reported to 

influence pre-mRNA processing, metabolism, and transport (Gratacos and Brewer, 

2010), whereas AUF1 alone might contribute to stabilize certain transcripts (Lal et al., 

2004). A recent paper demonstrated that AUF1 is a novel EBER1 binding protein as 

shown in Table 1.4. The EBER1/AUF1 interaction prevents AUF1 from binding to 

short-lived mRNAs (Lee et al., 2012). How this interaction might regulate the 

expression of EBV genes remains unclear. More recently, Lee et al demonstrated that 

EBER2 interacts with the B cell transcription factor PAX5 and is required for the 

localization of PAX5 to the terminal repeats (TRs) of the virus. Indeed, EBER2 and 

TR have partially complementary sequences that allow their interaction. EBER2 

knockdown phenocopies a PAX5 depletion in upregulating the transcription of 

LMP2A/B and LMP1, the genes located nearest to the TRs. Knockdown of EBER2 

also decreases EBV lytic replication, suggesting the essential role of the TRs in this 

process. Recruitment of the EBER2-PAX5 complex is mediated by base pairing 

between EBER2 and nascent transcripts from the TR locus. The interaction is 

evolutionarily conserved in the related primate herpesvirus CeHV15 despite great 

sequence divergence (Lee et al., 2015). To identify the interaction proteins between 

EBER2 and PAX5, the authors isolated EBER2-PAX5-containing complexes and 

analyzed the protein components by mass spectrometry. The top candidates include 

three host proteins splicing factor proline and glutamine rich (SFPQ), non-POU 
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domain-containing octamer-binding protein (NONO), and RNA binding motif protein 

14 (RBM14), all reported to be components of nuclear bodies called paraspeckles. It 

remains unknown whether SFPQ, NONO, and RBM14 are likewise essential for viral 

lytic replication. Intriguingly, these proteins also play a role in the life cycle of HIV 

(Budhiraja et al., 2015; Kula et al., 2013; Zolotukhin et al., 2003), suggesting a more 

common involvement of these factors in viral regulation. Detailed studies of these 

RRM-containing proteins are complicated by the fact that all three proteins function 

in multiple cellular processes, including transcription regulation, paraspeckle 

formation, and notably alternative splicing (Amelio et al., 2007; Naganuma et al., 

2012; Rosonina et al., 2005). In vivo RNA–protein crosslinking indicates that SFPQ 

and RBM14 contact EBER2 directly. Binding studies using recombinant proteins 

demonstrate that SFPQ and NONO associate with PAX5, potentially bridging its 

interaction with EBER2. Similar to EBER2 or PAX5 depletion, knockdown of any of 

the three host RNA-binding proteins results in the up-regulation of viral LMP2A 

mRNA levels, supporting a physiologically relevant interaction of these newly 

identified factors with EBER2 and PAX5 (Lee et al., 2016).  

Table. 1.4 Summary of other interacting proteins with EBERs 

	

	

Interac(on	
Proteins	

Interac(on	with	EBER1	or	
EBER2	 Interac(on	sites	 Direct	or	indirect	

interac(on	 References	

AUF1	 EBER1	 unknown	 direct	 Lee	et	al.,	2012	

hnRNP	D	 EBER1	 unknown	 direct	 Lee	et	al.,	2012	

Pax5	 EBER2	 unknown	 indirect	 Lee	et	al.,	2015	

SFPQ	 EBER2	 unknown	 direct	 Lee	et	al.,	2016	

NONO	 EBER2	 unknown	 indirect	 Lee	et	al.,	2016	

RBM14	 EBER2	 unknown	 direct	 Lee	et	al.,	2016	
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1.3.6 EBERs-mediated pathogenesis via modulation of innate 

immune signals   

Interactions between EBERs and host dsRNA sensors have been demonstrated to play 

an important role in EBV-mediated pathogenesis (Fig. 1.8). Samanta et al.  reported 

that EBER, which forms dsRNA structures, activates RIG-mediated signaling. The 

results suggest that in BL cells, RIG-I is activated by EBERs, resulting in the 

activation of NF-κB and IRF-3 pathways, and subsequent induction of type-I IFN. 

Although induction of IFN appears to be disadvantageous for the virus, EBV still can 

maintain a latent infection due to resistance to IFN, such as that provided by EBER-

mediated PKR inhibition (Nanbo et al., 2002). EBER promotes BL cell growth by 

inducing expression of the anti-inflammatory and growth-promoting cytokine IL-10, 

which is dependent on RIG-I-mediated IRF3 signaling but independent of NF-κB 

(Samanta et al., 2008).  
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Figure. 1.8 EBER-mediated regulation of innate immune signaling contributes to 

EBV-mediated pathogenesis. Reproduced from Iwakiri et al. Left, in BL cells, 

EBERs are recognized by RIG-I via the RNA helicase domain of RIG-I. Following 

recognition, RIG-I associates with the adaptor IPS-1 protein via its CARD domain. 

IPS-1 initiates signaling that leads to the activation of IRF3 and NF-κB to induce type 

I IFNs and inflammatory cytokine expression. EBERs induce the expression of the 

growth-promoting cytokine IL-10 via RIG-I-mediated IRF3 activation and might 

support BL development. EBERs also bind to IFN-inducible PKR and block its 

activity, which is required for the IFN-mediated antiviral effect. Right, activation of 

innate immunity via TLR3 signaling in response to secreted EBER. During an active 

EBV-infection, EBER1 is released from EBV-infected lymphocytes mainly in a 

complex with La. Circulating EBER induces DC maturation via TLR3 signaling and 

induces type I IFN and inflammatory cytokine production by activating IRF3 and NF-

κB. DC activation leads to T cell activation and systemic cytokine release. 

Furthermore, TLR3-expressing T and NK cells including EBV-infected T or NK cells 

could be activated by EBER1 through TLR3, thus leading to inflammatory cytokine 

production. Therefore, immunopathologic diseases caused by active EBV infections 

including T or NK cell activation and hypercytokinemia, could be attributed to 

EBER1-induced TLR3-mediated T cell activation and cytokinemia. IPS-1, interferon-

β promoter stimulator-1; CARD, caspase recruitment domain; RIG-I, retinoic acid-

inducible gene I; DC, dendritic cell; IFN, interferon; NK cell, natural killer cell; IL, 

interleukin; TLR, Toll-like receptor; PKR, RNA-dependent protein kinase; IRF 3, 

interferon regulatory factor 3.  

Toll-like receptors (TLRs) comprise a distinct family of PRRs that sense virus-

derived nucleic acids and trigger antiviral innate immune responses by activating 

signaling cascades via Toll/IL-1 receptor (TIR) domain-containing adaptors (Akira 

and Takeda, 2004). The role of TLR3 in the dsRNA recognition was demonstrated in 

a study of TLR3-deficient mice (Alexopoulou et al., 2001). DsRNA-induced signal 

transduction via TLR3 leads to the recruitment of TIR domain-containing adaptor 

inducing IFN-β (TRIF) and the subsequent phosphorylation of downstream molecules 

such as IRF3 and NF-κB (Meylan and Tschopp, 2006). Iwakiri et al. demonstrated 
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that EBERs are released in the extracellular environment and are recognized by 

TLR3, leading to the induction of type I IFN and inflammatory cytokines. The 

majority of the released EBER1 exists as a complex with La, suggesting that EBER1 

is released from the cells via the active secretion of La. EBV causes infectious 

diseases such as infectious mononucleosis (IM), chronic active EBV infection 

(CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). 

IM is characterized by the expansion of reactive T-cells and is most likely an 

immunopathologic disease, in which the general symptoms are caused by 

inflammatory cytokines (Rickinson, 2007). CAEBV and EBV-HLH are active EBV 

infections with persistent or recurrent IM-like symptoms. EBV-HLH is characterized 

by an EBV infection of  CD4-positive T cells or natural killer (NK) cells and the 

systemic release of inflammatory cytokines, leading to blood cell hemophagocytosis 

via activation of macrophages (Kasahara et al., 2001; Kikuta et al., 1993). On the 

other hand, in CAEBV, CD8+-T cells are primary EBV infection targets (Kasahara et 

al., 2001). Iwakiri et al. demonstrated that sera from patients with IM, CAEBV and 

EBV-HLH contained EBER1. A further analysis revealed that serum EBER1 

activates TLR3 signaling in immune cells, including dendritic cells, suggesting that 

EBER1, which is released from EBV-infected cells, is responsible for EBV-mediated 

immune activation, and induction of type I IFN and inflammatory cytokines (Iwakiri 

et al., 2009). Because CD8+-T cells and NK cells express TLR3 and can be activated 

by TLR3 signaling (Schmidt et al., 2004; Tabiasco et al., 2006), TLR3-expressing T 

and NK cells could potentially be activated by EBER1 through TLR3 to produce 

inflammatory cytokines. Therefore, EBER1-induced activation of innate immunity 

would account for the immunopathologic diseases caused by an active EBV infection. 

A more recent study of a humanized mice model of an EBV-infectious disease 
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detected EBER1 in the serum, thus suggesting that EBER1 contribute to the disease 

pathology (Sato et al., 2011). In summary, EBERs contribute to EBV infection-related 

pathogenesis, including cancer and active infectious diseases, through interactions 

with RIG-I and TLR3 (Iwakiri and Takada, 2010).  

1.3.7 Oncogenic role of EBERs 

EBERs have been reported to contribute to the malignant phenotype of BL cells.  

Transfection of EBER genes into EBV-negative BL-derived Akata clones can restore 

the cell growth capacity in soft agar, promote tumor formation in severe combined 

immunodeficiency (SCID) mice, confer resistance to apoptotic inducers, and also 

upregulate the expression of anti-apoptotic bcl-2 protein that could protect Akata cells 

from c-Myc induced apoptosis (Komano et al., 1999; Ruf et al., 2000). Previous 

results have confirmed that EBERs can induce various cytokines expression. EBERs 

induce human IL-10 expression in BL cells (Kitagawa et al., 2000)(Kitagawa et al., 

2000). Moreover, IL-10 is consistently expressed in EBV-positive but not in EBV-

negative BL biopsies. Further analysis showed that IL-10 acts as an autocrine growth 

factor for BL cells, suggesting that EBERs play a role in BL development via IL-10 

induction (Kitagawa et al., 2000). Additionally, EBERs were reported to contribute to 

the induction of IL-9, which also acts as an autocrine growth factor for T cell 

proliferation, suggesting that EBERs affect the development of EBV-associated T cell 

lymphoma (Yang et al., 2004). Furthermore, the EBERs have been demonstrated to 

contribute to the growth and proliferation of epithelial cell lines derived from NPC 

and GC. Iwakiri et al. demonstrated that EBERs could induce the expression of IGF1, 

which acts as an autocrine growth factor for NPC and GC cells. Further, IGF1 was 

expressed at high levels in EBV-positive but not in EBV-negative NPC or GC 

biopsies, indicating that EBERs promote epithelial carcinogenesis by the induction of 
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IGF1 expression (Iwakiri et al., 2003; Iwakiri et al., 2005). To determine the role of 

EBERs in the EBV-induced B cell growth program, recombinant EBV strains lacking 

EBERs have been engineered and introduced into host B-lymphocytes. However, 

conflicting observations regarding possible effects on B cell growth and 

transformation have been reported. An early study demonstrated that EBERs played 

no key role in infection with the EBV P3HR-1 strain, viral replication, or B-

lymphocyte growth transformation (Swaminathan et al., 1991). However, another 

study reported that the 50% transforming dose of an EBER-deleted Akata virus was 

approximately 100-fold lower than that of the EBER-positive wild type EBV (Yajima 

et al., 2005); Subsequently, EBER2 was found to make positive contributions to an 

efficient LCL growth transformation via the induction of IL-6 expression (Wu et al., 

2007). More recently, EBER deletion was reported to have no effect on LCL growth 

transformation efficiency of the B95-8 EBV strain (Gregorovic et al., 2011). It is 

important to note that all these results were obtained with different EBV strains. Thus, 

these discrepancies might be due to differences in the EBV strain background used in 

these experiments. We investigated the role of EBERs in the EBV strain M81 that 

was derived from NPC. Owing to the ability of M81 to induce spontaneous lytic virus 

replication, this model allows the study of the role of EBV-encoded small RNAs 

(EBERs) during this process.  

The EBERs were previously shown to be dispensable for lytic replication 

(Swaminathan et al., 1991), suggesting that they exert their functions during latency. 

Furthermore, deletion of EBER1 or EBER2 individually in EBV B95-8 correlates 

with specific gene expression changes in LCLs. The EBER-related genes play 

important roles in membrane signaling, regulation of apoptosis, and interferon 

responses (Gregorovic et al., 2011). Consistent with these data, the EBERs can 
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protect EBV-infected BL cells from interferon alpha-induced apoptosis (Nanbo et al., 

2002; Ruf et al., 2005).  

Further insights into EBER function may come from the unique secondary structures 

adopted by these two RNAs, that can facilitate interactions with host proteins. A 

number of cellular proteins are known to interact with the EBERs to form 

ribonucleoprotein complexes as described above. EBER2 may provide additional 

structured RNA elements for binding to other as yet undefined host factors. Indeed, 

new studies demonstrate interactions between EBER2, the EBV terminal repeats, and 

the B cell transcription factor PAX5 that can mediate LMP expression (Lee et al., 

2015). More recently, Zhao et al. analyzed a large number of samples from Northern 

China, a non-NPC endemic area and found that the distribution of EBER subtypes in 

lymphoma samples was similar to that in EBV-associated gastric carcinoma 

(EBVaGC) and throat washing (TW) from healthy donors, but was significantly 

different from that of NPC, suggesting that the NPC carry its unique EBERs which 

might have different functions. The distributions of EBER subtypes in samples used 

in this study are shown in Table. 1.5 and the location of EBER2 polymorphism is 

shown in Table. 1.6 (Zhao et al., 2017).  

 

Table. 1.5 Distribution of EBER subtypes in lymphoma, NPC, EBVaGC and TW 
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Table. 1.6 Location of the EBERs polymorphism 

   

Numbers in the second row correspond to the nucleotide positions, under which the 

prototypic (B95-8) nucleotide sequence is listed. Here we use “+1” to represent the 

first nucleotide position of the EBER2 transcript. In the upstream of the EBER2 

transcript, we use negative values to define the nucleotide position as shown before.  
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1.4 Animal study 

EBV can only infect human and primates. EBV cannot infect commonly used rodent 

species at all. This makes the in vivo study of EBV very difficult. In this study, we 

inject virus infected fresh B cells intraperitoneally into NSG mice (NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ; NSG). This mouse model simulates the post-transplant 

lymphoproliferative disease (PTLD) in patients infected with EBV. In most cases, 

PTLD is associated with Epstein-Barr virus (EBV) infection of B cells, either as a 

consequence of reactivation of the virus post-transplantation or from primary EBV 

infection. The majority of the PTLD patients display a deficiency in the immune 

system.  
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1.5 Aim of the thesis 

The EBV EBERs have been shown to play an important role during the viral life 

cycle. However, the literature contains conflicting results about their functions and 

their contribution to tumorigenesis. These discrepancies could be due to the use of 

different EBV strains that carry polymorphism in the EBERs.  

Therefore, the aim of my thesis was: 

• To construct recombinant viruses from two different EBV strains B95-8 and 

M81 that lack the EBERs. 

• To understand the contribution of the EBERs in these two different viruses. 

• To unravel the role of polymorphisms in the function of EBERs.  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Eukaryotic cells 

Name	 Description	

	 	 	 	 	HEK293		 A	specific	cell	line	originally	derived	from	human	embryonic	

kidney	cells	

B	lymphocytes	 Primary	B	cells	isolated	from	blood	samples	

	 	WI38	 Primary	human	lung	embryonic	fibroblasts	

	 		

2.1.2 Primary cells 

Name Description 
Peripheral blood 

CD19+ cells 

Isolated from fresh buffy coats by Ficoll density gradient 

followed by selection with anti-CD19 PanB Dynabeads 

and detachment of the beads (Invitrogen) 

Primary epithelial 

cells 

Isolated from normal sphenoidal sinus biopsy material 

License to use human 

primary cells  

The Ethics Committee of the Universtiy of Heidelberg 

approved the study (approval 392/2005) 

	

2.1.3 Cell culture media 

Name  Source of supply 
RPMI 1640 Invitrogen 

 DMEM Life Technologies 

Fetal calf serum 

(FCS) 

Biochrom AG 

	



	 40	

2.1.4 Plasmids 

2.1.4.1 Vector plasmid 

Name Source of supply, description 
pcDNA3.1 This expression plasmid contains a CMV promoter.  

pRK5 This expression plasmid also contains a CMV promoter.  

B1249 B1249 (empty plasmid) contains a minimal CMV promoter 

controlled by a bidirectional Tet operator, a tetracycline 

transactivator protein (Tet-On) driven by a chicken beta-actin 

promoter with CMV enhancer (CAGp). One site of this 

bidirectional promoter contains the human neuron groewth 

factor receptor gene (NGFR) with a truncated cytoplasmic tail 

and GFP (Bornkamm et al., 2005). The other site is available for 

cloning. This plasmid also contains the latent EBV origin of 

replication (OriP) derived from B95-8 genome, and a rat CD2 

gene derived by the hPGK promoter. 

	

2.1.4.2 Expression plasmids 

Name Vector Description 
p509 pRK5 BZLF1 gene derived from B95-8 controled by a CMV 

promoter 

pRA pRK5 BALF4 (=gp110=gB) gene derived from B95-8, This plasmid 

will be co-transfected with BZLF1 to increase the B cells 

infectivity  

B1460 B1249 Co-expression of NGFR gene and EBER1 and EBER2 (4 

copies) derived from M81; controlled by a tetracycline 

inducible promoter 

B1510 B1249 Co-expression of NGFR gene and EBER1 and EBER2 (4 

copies) derived from B95-8; controlled by a tetracycline 

inducible promoter 
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2.1.5 Recombinant EBVs (rEBV; EBV-BAC) 

Name  
EBV 
strains/Backbone Source of supply, description 

B240 M81 M81 strain wild type  

B996 M81/B240 M81 strain wild type EBER1 deletion 

B997 M81/B240 M81 strain wild type EBER2 deletion 

B963 M81/B240 M81 strain wild type both EBER1 and EBER2 

deletion 

B893 M81/B240 Revertant of M81 strain wild type both EBER1 

and EBER2 deletion 

B1468 M81/B240 M81 strain wild type that carry both EBER1 

and EBER2 from B95-8 

B95-8 B95-8/2089 B95-8 strain wild type  

B222 B95-8/2089 B95-8 strain wild type both EBER1 and 

EBER2 deletion 

B1465 B95-8/2089 B95-8 strain wild type that carry both EBER1 

and EBER2 from M81  

	

2.1.6 Plasmids used for constructing recombinant EBV 

	

Name Purpose Description 
pCP15 Template of 

kanamycin 
This vector carries a region of homology with 
the EBV genome in which the kanamycin 
cassette can be inserted 

pCP16 Template of 
tetracycline 

This vector carries a region of homology with 
the EBV genome in which the tetracycline 
cassette can be inserted 

pKD46 Red recombinase 
expression  

This vector contains an Arabinose-inducible Red 
recombinase, which is used for homologous 
recombination in E.coli.  

pCP20 Encoding the FLP 
recombinase 

This plasmid shows temperature sensitive 
replication and thermal induction of FLP  
synthesis.  
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2.1.7 Antibodies 

Name Clone Usage Origin Source of supply 

Anti-alpha-actin ACTN05, 

C4 

WB Mouse, 

momoclonal 

Dianova 

Anti-mouse lgG  

(HRP, secondary  

antibody) 

WB Goat Promega 

Anti-rabbit lgG  

(HRP, secondary 

 antibody) 

WB Goat Cell Signaling 

Anti-rat lgG  

(HRP, secondary  

antibody) 

WB Goat Dianova 

EBNA1 IH4 WB Rat Hybridoma supernatant 

EBNA2 PE2 WB, IHC  Mouse Hybridoma supernatant 

EBNA3A 4A5 WB Rat Hybridoma supernatant 

EBNA3B 6C9 WB Rat Hybridoma supernatant 

EBNA3C A10 WB Rat Hybridoma supernatant 

LMP1 CS1-4 WB, IHC  Mouse Hybridoma supernatant 

LMP2A 4E11 WB Rat 2089 LCL 

BZLF1 BZ.1 WB, IHC  Mouse Hybridoma supernatant 

gp350 72A1 IF Mouse Hybridoma supernatant 

NGFR  IF, cell 

isolation 

Mouse  

CD63 MX-

49.129.5,  

WB Mouse Santa Cruz 

	

2.1.8 Enzymes 

Name Company Usage 

Phusion High-Fidelity DANN 

polymerase 

Thermo Scienfitic PCR for cloning 
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Restriction Enzymes Fermentas, New 

England Biolabs 

Check genomic interity of 

EBV-BAC 

Alkaline Phosphatase Roche Cloning 

Klenow Enzyme Roche Cloning 

T4 DNA Polymerase Fermentas Cloning 

RNase A Roche Mini/Midi-pepe 

Lysozyme Serva mini-prep 

DNaseI Fermentas qPCR 

Proteinase K  Roche Viral titer measurement 

AMV Reverse Transcriptase Roche qPCR 

RNAse inhibitor Roche qPCR 

T4 DNA Ligase Fermentas Cloning 

Taqman Universal Master Mix Life technologies qPCR 

	

2.1.9 Commercial Kits 

Name	 Company	 Usage	in	this	study	

Dneasy	blood&Tissue	kit	 Qiagen	 Isolation	of	total	DANN	

from	cells	

Dynabeads	CD19	PanB		 Invitrogen	 Human	primary	B	cells		

isolation	

Dynabeads	Goat	anti	

mouse	lgG	

Invitrogen	 Cell	isolation	

Hygromycin	B	 Invitrogen	 Stable	cell	selection	

MicroRNA	reverse	

transcript	

Applied	Biosystems	 RT-PCR	

RNU48	 Applied	Biosystems	 Internal	controls	for	miRNA			

RT-qPCR	

Nucleobond	BAC100	 Macherer-Nagel	 EBV-BAC	preparation	

Jestar	2.0	Plasmid	Midi	Kit	 Genomed	 High	quality	DNA		

Preparation	

hGAPDH	endogeous	 Applied	Biosystems	 Internal	controls	for	RT-	
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control	

Human	IL-8	(CXCL8)	ELISA	

development	kit	

Total	Exosome	Isolation	

(from	cell	culture	media)	

	

Mabtech	

	

Invitrogen	

qPCR	

CXCL8	measurement	

	

Exosomes	isolation	

	

2.1.10 Equipment 

Name Source of supply 

Amersham HyperfilmTM ECL Stratagene 

Amersham membrane HybondTM ECL GE Healthcare Life Sciences 

Applied Biosystems 7300 Real-time PCR UVP 

D-Tube Dialyzer Midi, cutoff 3.5kDa Merck Millipore 

G25 Microspin columns Thermo Scientific 

Magnetic rack Applied Biosystems  

Nanodrop GE Healthcare Life Sciences 

	

2.1.11 Chemicals and Reagents 

Name Source of supply 

RNase inhibitor (RNasin) Promega 

Protease inhibitor cocktail Roche 

Acrylamide: 30% stock, with 0-8% 

bisacrylamide 

Roche 

Page Ruler Prestained Protein Ladder Fermentas 

1 kb DNA Ladder Life Technologies 

Taqman microRNA Reverse Transcription Kit Applied Biosystems 

TRIzol reagent Life Technologies 

Chloroform Sigma aldrich 

Phenol/Chloroform/Isoamylalcohol Roth 

Roti-Phenol Roth 
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RNase free water Invitrogen 

3 M sodium acetate, pH 5.5, Rnase free Invitrogen 

GlycoBlue Invitrogen 

Isopropanol Sigma aldrich 

Ethidium bromide Life Technologies 

dNTP mix (10mM) Invitrogen 

Metafectene  Biontex Laboratories 

6x DNA loading dye Thermo Scientific 

	

2.1.12 Buffers and solutions 

Buffer Composition 

Antigen binding and 

washing 

PBS+0.1% Tween 20 

Citrate-phosphate 

buffer 

4.7g/L citric acid, 9.2g/L Na2HPO4, pH 5.0 

SDS loading buffer 100mM Tris-HCl pH=6.8, 4% (w/v) SDS (electrophoresis 

grade), 0.2% (w/v) bromphenol blue, 20% (v/v) glycerol, 

200mM ß-merapto-Ethonal 

5x RIPA lysis buffer 750mM NaCl, 2.5% NP40, 5% Sodium Deoxycholat, 0.5% 

SDS, 25mM EDTA, 100mM Tris HCl pH=7.5 

DNA gel extraction 

buffer 

300mM NaCl, 10mM Tris (pH 8.0), 1mM EDTA 

Stacking gel buffer 2M Tris pH 6.8 

Seperating gel buffer 2M Tris pH 8.9 

10x SDS running buffer 250mM Tris, 1.92M glycine, 1% SDS, pH 8.5-8.8 

2x SDS loading buffer 100mM Tris-HCl pH=6.8, 4% (w/v) SDS (electrophoresis 

grade), 0.2% (w/v) bromphenol blue, 20% (v/v) glycerol, 

200mM ß-merapto-Ethonal 

1x bloting buffer 25mM Tris, 150mM glycine, 10% MetOH 

10x PBST 1.37M Nacl, 27mM KCl, 100mM Na2HPO4, 20mM 

KH2PO4, 1% Tween 20 



	 46	

3% low fat milk 3% low-fat milk power in 1xPBST 

ECL reagents Enhanced Luminol Reagent and Oxidizing Reagent, store at 

4°C 

PBS 137mM Nacl, 2.7mM KCl, 10mM Na2HPO4, 2mM 

KH2PO4, pH 7.4 

PBS-T 0.1% Tween-20 in PBS 

TAE 40mM Tris, 1mM EDTA, 19mM acetic acid 

TBE  100mM Tris, 90mM boric acid, 1mM EDTA 

Lysis buffer (circle 

prep) 

1% SDS, 2mM EDTA, 50mM NaCl, 40mM NaOH 

DNA loading buffer 0.25% Bromphenolblue, 40% (w/v) Sucrose, dissolved in 

H2O 

TE 10mM Tris.HCl, 1mM EDTA (pH 8.0) 

LB medium (2:1:2) Tryptone, Yeast extract, NaCl in H2O pH7.0 

LB agar 15g Bacto-Agar in 1L LB mudium 

4% PFA 4% Paraformaldehyde in PBS (pH 7.4) 

Staining buffer (IF) 10% Heat-inactivated goat serum in PBS 

Mounting buffer (IF) 90& Glycerol in PBS 

	

2.1.13 Oligonucleotides 

Oligonucleotides were synthesized by Eurofins, if not indicated otherwise. All 

oligonucleotides uses in this study and their sequences are listed below. 

Name Sequence Aim 

EBER1 fwd 
5'-
gtcttgaggagatgtagacttgtagacactgcaaaacctcaacagctatga
ccatgattacgcc-3' M81/∆E1 

cloning 
EBER1 rev 

5'-
ggataatggatgcataaatcctaaaacaaaagtttggatcccagtcacgac
gttgtaaaacgac-3' 

EBER2 fwd 
5'-
tttaccagcatgtatagagttacggttcgctacatcaaacaacagctatgac
catgattacgcc-3' M81/∆E2 

cloning 
EBER2 rev 

5'-
tttaccagcatgtatagagttacggttcgctacatcaaacaacagctatgac
catgattacgcc-3' 
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EBER1+2 fwd 
5'-
gtcttgaggagatgtagacttgtagacactgcaaaacctcaacagctatga
ccatgattacgcc-3' M81/∆E1+2 

cloning  
EBER1+2 rev 

5'-
tttaccagcatgtatagagttacggttcgctacatcaaacaacagctatgac
catgattacgcc-3' 

EBER1+2 fwd 
5'-
gtcttgaggagatgtagacttgtagacactgcaaaacctcaacagctatga
ccatgattacgcc-3' B95-8/∆E1+2 

cloning 
EBER1+2 rev 

5'-
tttaccagcatgtatagagttacggttcgctacatcaaacaacagctatgac
catgattacgcc-3' 

EBERseq_fwd 5'-acacaccaactatagcaaacc-3' Cloning of the 
M81/∆E1+2 
revertant  EBERseq_rev 5'-ttttgtgttgtaggggtagc-3' 

EBER SceI EP 
fwd 

5'-
tttcatcctcaggacctacgctgccctagaggttttgctagggaggcttcaa
gatccccgatctatgattccc-3' 

Cloning of the 
∆E1+2 
revertant -put 
I-sceI enzyme 
restriction sites  

EBER SceI EP 
rev 

5'-
tttcatcctgaggtagggataacagggtaatcagagcgcttttgaagctcc
ag-3' 

EBER1 probe 5'FAM-aggacggtgtctgtggttgt-3'TAMRA RT-qPCR for 
Taqman  EBER1 fwd 5’-acgctgccctagaggttttg-3’ 

EBER1 rev 5’-gcagaaagcagagtctggga-3’ 
EBER2 probe 5'FAM-tcccgcctagagcatttgcaa-3'TAMRA RT-qPCR for 

Taqman EBER2 fwd 5’-gttgccctagtggtttcgga-3’ 
EBER2 rev 5’-gccgaatacccttctcccag-3’ 
M81.EBNA2 
probe 5'FAM-cccaaccacaggttcaggcaaaacttt-3'TAMRA 

RT-qPCR for 
Taqman 

M81.EBNA2 
fwd 5'-gcttagccagtaacccagcact-3' 

M81.EBNA2 
rev 5'-tgcttagaaggttgttggcatg-3' 

M81.LMP1 
probe 5'FAM-tgctgttcatctttggctgc-3'TAMRA 

RT-qPCR for 
Taqman 

M81.LMP1 
fwd 5'-cacggacaggcattgtacct-3' 

M81.LMP1 
rev 5'-ggatgaaggccaaaagctgc-3' 

M81.LMP2A 
probe 5'FAM-cagtatgcctgcctgtaattgttgcgc-3'TAMRA 

RT-qPCR for 
Taqman 

M81.LMP2A 
fwd 5'-cgggatgactcatctcaacacata-3' 

M81.LMP2A 
rev 5'-ggcgctgacaacggtactaact-3' 

M81.LMP2B 
probe 5'FAM-cagtatgcctgcctgtaattgttgcgc-3'TAMRA  

RT-qPCR for 
Taqman 

 
M81.LMP2B 
fwd 5'-cgggaggctgtgcttta-3' 
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M81.LMP2B 
rev 5'-ggcgctgacaacggtactaact-3'  

B95-8.LMP1 
probe 

5'FAM-tccagatacctaagacaagtaagcacccgaagat-
3'TAMRA 

RT-qPCR for 
Taqman 

B95-8.LMP1 
fwd 5'-gcacggacaggcattgttc-3' 

B95-8.LMP1 
rev 5'-aaggccaaaagctgccagat-3' 

B95-8.LMP2A 
probe 5'FAM-cagtatgcctgcctgtaattgttgcgc-3'TAMRA 

RT-qPCR for 
Taqman 

B95-8.LMP2A 
fwd 5'-cgggatgactcatctcaacacata-3' 

B95-8.LMP2A 
rev 5'-ggcggtcacaacggtactaact-3' 

B95-8.LMP2B 
probe 5'FAM-cagtatgcctgcctgtaattgttgcgc-3'TAMRA 

RT-qPCR for 
Taqman 

B95-8.LMP2B 
fwd 5'-cgggaggccgtgcttta-3' 

B95-8.LMP2B 
rev 5'-ggcggtcacaacggtactaact-3' 

RN7SK probe 5'FAM-gttgattcggctgatctggctg-3'TAMRA RT-qPCR for 
Taqman RN7SK fwd 5'-tctgtcaccccattgatcgc-3' 

RN7SK rev 5'-ttggaggttctagcagggga-3' 
EBV-pol fwd 5'-ctttggcgcggatcctc-3' 

Quantification 
of viral titers 

EBV-pol rev 5'-agtccttcttggctagtctgttgac-3' 
EBV-pol 
probe 5'FAM-catcaagaagctgctggcggcc-3'TAMRA 

BART 1-3p 
RT 5'-ctcaactggtgtcgtggagtcggcaattcagttgagagacatag-3' 

Stem-loop RT-
qPCR BART 
1-3p Taqman 
PCR 

BART 1-3p 
fwd 5'-acactccagctgggtagcaccgctatccac-3' 

BART 1-3p 
probe 5'FAM-ttcagttgagagacatag-3'TAMRA  

BART 1-3p 
rev 5'-ctcaactggtgtcgtggagtcggca-3' 

BART 7* RT 5'-ctcaactggtgtcgtggagtcggcaattcagttgagtgtttcat-3' Stem-loop RT-
qPCR BART 
7* Taqman 
PCR 

BART 7* fwd 5'-acactccagctgggcctggaccttgactat-3' 
BART 7* 
probe 5'FAM-ttcagttgagtgtttcat-3'TAMRA  

BART 7* rev 5'-ctcaactggtgtcgtggagtcggca-3' 
BART 2-5p 
RT 5'-ctcaactggtgtcgtggagtcggcaattcagttgaggcaagggc-3' 

Stem-loop RT-
qPCR BART 
2-5p Taqman 
PCR 

BART 2-5p 
fwd 5'-acactccagctgggtattttctgcattcgc-3' 

BART 2-5p 
probe 5'FAM-ttcagttgaggcaagggc-3'TAMRA  

BART 2-5p 
rev 5'-ctcaactggtgtcgtggagtcggca-3' 

BHRF 1-1 RT 5'-ctcaactggtgtcgtggagtcggcaattcagttgagaactccgg-3' Stem-loop RT-
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BHRF 1-1 fwd 5'-acactccagctgggtaacctgatcagcccc-3' qPCR BHRF1 
miR1 
Taqman PCR 

BHRF 1-1 
probe 5'FAM-ttcagttgagaactccgg-3'TAMRA 

BHRF 1-1 rev 5'-ctcaactggtgtcgtggagtcggca-3' 
BHRF 1-2 RT 5'-ctcaactggtgtcgtggagtcggcaattcagttgagttcaattt-3' Stem-loop RT-

qPCR  BHRF1 
miR2 
Taqman PCR 

BHRF 1-2 fwd 5'-acactccagctgggtatcttttgcggcaga-3' 
BHRF 1-2 
probe 5'FAM-ttcagttgagttcaattt-3'TAMRA 

BHRF 1-2 rev 5'-ctcaactggtgtcgtggagtcggca-3' 
BHRF 1-2* 
RT 5'-ctcaactggtgtcgtggagtcggcaattcagttgaggctatctg-3' 

Stem-loop RT-
qPCR  BHRF1 
miR2* 
Taqman PCR 

BHRF 1-2* 
fwd 5'-acactccagctgggaaattctgttgcagca-3' 

BHRF 1-2* 
probe 5'FAM-ttcagttgaggctatctg-3'TAMRA 

BHRF 1-2* 
rev 5'-ctcaactggtgtcgtggagtcggca-3' 

BHRF 1-3 RT 5'-ctcaactggtgtcgtggagtcggcaattcagttgaggtgtgctt-3' Stem-loop RT-
qPCR BHRF1 
miR3 
Taqman PCR 

BHRF 1-3 fwd 5'-acactccagctgggtaacgggaagtgtgta-3' 
BHRF 1-3 
probe 5'FAM-ttcagttgaggtgtgctt-3'TAMRA 

BHRF 1-3 rev 5'-ctcaactggtgtcgtggagtcggca-3' 
M81.BZLF1 
fwd 5’-acgacgtacaaggaaacc-3’ 

RT-qPCR for 
Taqman  

M81.BZLF1 
rev 5'-cttggcccggcattttct-3' 

M81.BZLF1 
probe 5'FAM-gcattcctccagcgattctggctgta-3'TAMRA 

GADPH fwd 5'-caatgaccccttcattgacc-3' 
SYBR green  
RT-qPCR  

GADPH rev 5'-tggaagatggtgatgggatt-3' 
CXCL8 fwd 5'-tctgcagctctgtgtgaagg-3' 
CXCL8 rev 5'-ttccttggggtccagacaga-3' 
T44G fwd 5'-ggacacaccgccaacgcgcagtgcggtgctaccgac-3' 

EBER2 
mutation in 
position 44 

T44G G44T 
A46T T46A 
rev 

5'-gaaaccactagggcaacggc-3' 

G44T fwd 5'-ggacacaccgccaacgctctgtgcggtgctgccgt-3' 
T44G G44T 
A46T T46A 
rev 

5'-gaaaccactagggcaacggc-3' 

A46T fwd 5'-ggacacaccgccaacgctctgtgcggtgctaccgaccc-3' 

EBER2 
mutation in 
position 46 

T44G G44T 
rev 5'-gaaaccactagggcaacggc-3' 

T46A fwd 5'-ggacacaccgccaacgcgcagtgcggtgctgccgtccc-3' 
T44G G44T 
rev 5'-gaaaccactagggcaacggc-3' 

A57G fwd 5'-caacgctcagtgcggtgctgccgacccgaggtcaagtc-3' EBER2 
mutation in 
position 57 

A57G G57A 
rev 5'-gcggtgtgtccgaaaccac-3' 
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G57A fwd 5'-caacgcgctgtgcggtgctaccgtcccgaggtcaagtc-3' 
A57G G57A 
rev 5'-gcggtgtgtccgaaaccac-3' 

A61T fwd 5'-tcagtgcggtgctaccgtcccgaggtcaagtcccg-3' 

EBER2 
mutation in 
position 61 

A61T T61A 
rev 5'-gcgttggcggtgtgtcc-3' 

T61A fwd 5'-gctgtgcggtgctgccgacccgaggtcaagtcccg-3' 
A61T T61A 
rev 5'-gcgttggcggtgtgtcc-3' 

A93C fwd 5'-ccgggggaggagaagagcggcttcccgcctagagc-3' EBER2 
mutation in 
position 93 

A93C rev 5'-gacttgacctcgggtcggtag-3' 
C93A fwd 5'-ccgggggaggagaagagaggcttcccgcctagagc-3' 
C93C rev 5'-gacttgacctcgggacggca-3' 

A168G fwd 5'-gggtattcggcttgtccgctgtttttttacgcgttaagatacattgatgag-
3' 

EBER2 
mutation in 
position 168 

A168G 
G168A rev 5'-ttctcccagagggattagagaatcctg-3' 

G168A fwd 5'-gggtattcggcttgtccgctatttttacgcgttaagatacattgatgag-3' 
A168G 
G168A rev 5'-ttctcccagagggattagagaatcctg-3' 
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2.2 Methods 

2.2.1 Bacterial culture and transformation 

2.2.1.1 Culture conditions 

All E.coli strains were cultured in LB-medium by shaking or alternatively on LB-agar 

plates in order to obtain single colonies. Ampicillin (100 ug/ml), kanamycin (50 

ug/ml) or chloramphenicol (15 ug/ml) were used to culture cells in LB-medium or 

LB-agar plates, depending on the antibiotic resistance genes cloned into the plasmids.  

Except special conditions, bacteria were cultured at 37°C. For long-term storage, 10 

% glycerol was used to freeze cells at -80°C.  

 

2.2.1.2 Transformation 

The plasmids were introduced into bacteria by the heat shock method. In general, 

chemically competent cells (eg. DH5α) were mixed with plasmids or the ligation 

product on ice for 5 min. The mixture was then incubated at 42°C for 90 sec, 

immediately added to 900 ul of LB-medium and left in culture at 37°C for 45 min for 

recovery. After recovery, bacteria were spun down by centrifugation at 4800 rpm for 

5 min and the pelleted cells were resuspended and cultured on LB-agar plate 

overnight to obtain single colony.  

 

2.2.1.3 Electroporation 

Electroporation was also used to transform plasmids into electroporation-competent 

bacteria that were made by a technician. In general, 25 ul of electroporation-

competent DH10B cells pre-prepared in 10% glycerol were thawed slowly on ice 

from -80 °C.  The thawed cells were mixed with DNA and this mixture was incubated 
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on ice for 5 min. The mixture was transferred into cuvettes and subjected to 

electroporation at 1.2 KV, 200 Ω, and 25 µFd. The bacteria were then immediately 

resuspended in 1 ml of LB-medium and cultured at 37°C for 1 h. Individual colony 

was obtained in the same way as the heat shock method.  

 

2.2.2 Eukaryotic cells culture and transfection 

2.2.2.1 Culture conditions 

All eukaryotic cells were cultured at 37 °C in the incubator stably supplied with 100% 

humidity and 5% CO2. 

Cells that grow in suspension, including LCLs, were cultured in RPMI with 10% 

FBS. The cells were split 1 to 5 or 1 to 10 regularly, depending on their growth rate or 

state. 293 cells that grow adherently were cultured in RPMI with 10% FBS. 

Additional 100 µg/ml Hygromycin was used to culture 293 cells that stably 

transfected with the recombinant EBV. The 293 cells were split 1 to 10 by using 

0.05% trypsin at 37°C for 2 min when they reach about 80% confluence. WI 38 

feeder cells were cultured in the same condition except that 0.25% trypsin was used to 

split them.  

 

2.2.2.2 293 cells transfection 

The cells were seeded at a concentration of 3x 105 cells/well on a 6-well-plate in 2 ml 

RPMI with 10% FBS without any antibiotics one day before transfection. At day 2, 

the transfection mixture was prepared in the following procedure: 1 µg plasmid DNA 

was resuspended in 100 µl of RPMI w/o any additions and 3 µl of Metafectene was 

also resuspended with 100 µl of RPMI w/o any additions. These two mixtures were 

combined gently by carefully pipetting few times, and left for 25 min at room 



	 53	

temperature. The plasmid-Metafectene mixture was added dropwise into the cells, and 

the cells were incubated at 37°C overnight. At day 3, the medium of the transfected 

cells was carefully removed and replaced with 2 ml fresh medium RPMI with 10% 

FCS. The transfected cells can usually be analyzed 3 days post transfection.  

 

2.2.2.3 LCLs transfection 

We used Neon Transfection System to introduce plasmids into LCLs. The cells were 

washed with PBS without Ca2+ and Mg2+ three times and resuspended with buffer T, 

which is used for primary blood-derived suspension cells, at a final density of 2.0x 

107 cells/mL in a 1.5 mL tube. In parallel, an appropriate amount of plasmid DNA in 

deionized water at a concentration of 3-5 µg/µL was transferred into a 1.5 mL tube. 

The cells and plasmid DNA were combined gently by carefully pipetting few times. 

Then we performed the transfection following the manufacturer’s instructions. The 

mixture was subjected to electroporation at 1.1 KV of pulse voltage, 30 ms of pulse 

width and 2 of pulse number. The transfected cells can usually be analyzed 3 days 

post transfection.  

 

2.2.3 Construction of recombinant EBVs and related techniques 

The wild type EBV strain M81 is available as a recombinant BACMID (Tsai et al., 

2013). The viral genome was cloned onto a prokaryotic F-plasmid that carries the 

chloramphenicol (Cam) resistance gene, the gene for green fluorescent protein (GFP), 

and the Hygromycin resistance gene (B240). All PCR primers used for PCR cloning 

or chromosomal building are listed in the Table and are based on the M81 EBV 

sequence (GenBank accession number KF373730.1). Deletion of the EBER1 

(deletion from nt 6632 to nt 6797) generated ∆E1; deletion of the EBER2 (deletion 
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from nt 6959 to nt 7128) gave rise to ∆E2. The double knockout EBER1 plus EBER2 

(∆E1+2) was obtained by a deletion from nt 6632 to nt 7128 including the intergenic 

sequences between EBER1 and EBER2. These mutations were achieved by 

homologous recombination of the recombinant virus with a linear DNA fragment that 

encodes the kanamycin resistance gene, flanked by Flp recombination sites, and short 

DNA regions homologous to the regions immediately outside of the deletion to be 

obtained, as described (Feederle et al., 2010). We applied the same strategy to the 

wild type B95-8 BAC to obtain a recombinant EBV that lacks EBER1 plus EBER2 

(B95-8/∆E1+2) with a deletion from nt 6630 to nt 7128 including the intergenic 

region between EBER1 and EBER2. We constructed a revertant of ∆E1+2 in M81 

strain by using an En passant mutagenesis method. Here the complete EBER locus, 

from the EBER1 to EBER2, was cloned from the M81 BAC and reintroduced into the 

M81/∆E1+2 BAC genome. In parallel, we applied the same En passant method to 

construct an exchange mutant that carries EBER locus of B95-8 in M81 strain. Here 

the complete EBER locus, from the EBER1 to EBER2, was cloned from the B95-8 

BAC and reintroduced into the M81/∆E1+2 BAC genome. In addition, we also 

applied the same En passant method to construct an exchange mutant that carries 

EBER locus of M81 in B95-8 EBV strain.  

We introduced the rat CD2 gene under the control of an EA-D promoter into the 

BXLF1 gene of the M81 genome (nt 131044 to nt 133362) by homologous 

recombination using a linear vector that included the kanamycin resistance cassette as 

a selection marker. The disruption of BXLF1 gene does not interfere with the growth 

of LCLs (Kanda et al., 2004; Yoshiyama et al., 1995). Upon induction of the lytic 

replication, CD2 is expressed at the surface of replicating cells. CD2-positive cells 

can be pulled down with a specific monoclonal antibody (OX34) coupled with anti-
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mouse IgG Dynabeads and submitted to protein or RNA extraction. 

2.2.4 Generation of EBV/293 producer cells 

To generate HEK293 producer cells stably transfected with EBV, 6 or 8 µg BACmid 

was transfected into 293 cells at a concentration of 3x105 cells/well cultured in 6-well 

plate by using Metafectene following the manufacturer’s instructions. Transfection 

efficiency could be checked under microscope 24 hours post transfection by 

observing the percentage of GFP positive cells. The cells were transferred into 15 cm 

culture dishes in the presence of 100 µg/ml Hygromycin B in order to select 293 cells 

stably transfected with the recombinant EBV. Selected single cell clones were 

transferred to 6 well-plate around 3 weeks post transfection. The cells were expanded 

and tested for virus production by transient transfection of a plasmid encoding 

BZLF1, a viral protein that trans-activates lytic EBV replication. The BZLF1 

transfected clones were stained with antibody against gp350, the major viral 

glycoprotein 3,5 days post transfection. The supernatants of clones with a high signal 

of gp350 staining after BZLF1 transfection was measured by qPCR to determine the 

viral titer. The clones, which display the highest viral titer, were tested by circle 

preparation to determine their genome integrity in 293 producer cells (Lin et al., 

2015). 

2.2.5 Virus production 

After establishment of viral producer cell lines, these cells were continuously 

maintained with 100 µg/ml Hygromycin B selection in order to keep EBV BAC 

inside the cells in the long term. The 293 producer cell lines were lytically induced by 

transfection of a BZLF1 expression plasmid together with a BALF4 expression 

plasmid.  
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The medium of the transfected cells was carefully removed 16 hours post transfection 

and replaced with fresh medium RPMI with 10% FCS. Virus supernatant was 

harvested at 3.5 days post transfection, filtered with 0.45 µm cellulose filter and 

stored at 4 °C (Lin et al., 2015). 

2.2.6 Viral titers measurement by qPCR 

The viral genome copy number was determined by qPCR measurement. 50 µl of 

supernatants were firstly treated with 5 unit DNAseI at 37 °C for 1 h to completely 

remove free viral DNA in supernatants and DNAseI was then inactivated at 70 °C for 

10 min. In this way, the viral DNA inside the viral particles was not digested by 

DNAseI due to the protection from viral envelope. The viral envelope was then 

digested by proteinase K in order to release the vial genome for qPCR analysis. 5 µl 

of DNAseI treated supernatants were incubated with 5 µl of proteinase K (100 µg/ml) 

for 1 h at 50 °C. Proteinase K was destroyed at 75 °C for 20 min. The qPCR master 

mix with primers and probe specific for the viral DNA polymerase BALF5 gene was 

prepared, mixed with the proteinase K treated supernatants and amplified by real time 

PCR using a StepOnePlus device.  

An example is given below for a 25 µl reaction containing the following components: 

12.5 µL  Taqman 2x Universal Mastermix  

2.5 µL  EBV Pol for primer (10 µM) 

2.5 µL  EBV Pol rev primer (10 µM) 

1.0 µL  FAM-labeled EBV Pol probe (20 µM) 

1.5 µL  water 

+5.0 µL  Proteinase K treated samples 

25 µL in total  

The qPCR was run with the following settings: 

50 °C for 2 min (initial denaturation) 

95 °C for 10 min (denaturation) 
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40 cycles:  

95 °C for 15 s 

60 °C for 1 min 

The qPCR results were analyzed to get an abosulate copy number of EBV genomes 

per ml of viral supernatants by using a standard curve (This protocol is modified from 

the shared folder from F100, DKFZ). 

 

2.2.7 Confirmation of the genome integrity of rEBV in the stably 

transfected 293 cells by analyzing the rescued circular BACmid 

(circle prep) 

20 millions of 293 cells were washed in PBS for two times and lysed with circle prep 

lysis buffer at room temperature for exactly 5 min. 500 µl of 1 M Tris-HCl, pH 7.1  

were added into the solution dropwise to neutralize the pH of the lysate. 2 ml of 3 M 

NaCl were then added. Proteins in the lysate were incubated with proteinase K 

(10mg/ml) at 50 °C for 2 h or at 37°C overnight. In order to get a high quality circular 

DNA, a phenol/butanol extraction method was performed. DNA was precipated with 

2.5 volume of absolute ethonal for 1 h at -20 °C or overnight. DNA was pelleted 

down at 5.000 rpm for 30 min at romm temperature. DNA was washed with 70% 

ethonal twice and was dissolved in 50 µl TE. The TE-dissolved BAC DNA was 

transformed into E.coli DH10B and the BACmid from at least 5 cam-resistant 

colonies were prepared and subjected to digestion with the BamHI enzyme. The 

genome integrity of these rEBV in the stably transfected cells was confirmed by using 

the parental rEBV as a control (This protocol is modified from the shared folder from 

F100, DKFZ).   
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2.2.8 Virus infections 

Purified CD19+ human B cells from peripheral blood were exposed to viral 

supernatant with various multiplicity of infection (MOI), determined by qPCR, for 

two hours, then washed once with PBS and cultured with RPMI supplemented with 

20% FBS in the absence of immunosuppressive drugs. For transformation assays, the 

percentages of EBNA2-positive cells in the infected B cells were evaluated by 

immunostaining with a specific antibody at 3 days post-infection (dpi). Cell numbers 

containing 3 or 10 EBNA2-positive cells per well were seeded into 48 wells of 96-U-

well plates that contained 103 gamma-irradiated WI38 feeder cells. Non-infected B 

cells were used as a negative control. The outgrowth of LCLs was monitored at 30 dpi 

(Lin et al., 2015).  

2.2.9 ImmunofIuorescence staining  

The cells were fixed with 4% paraformaldehyde in PBS for 20 min at room 

temperature. Fixed cells were permeabilized in PBS 0.5% Triton X-100 for 2 min 

except for samples stained with an antibody specific for the viral glycoprotein gp350. 

Cells were incubated with the first antibody for 30 min at 37°C, washed in PBS three 

times, and incubated with a secondary antibody conjugated to Cy-3 for 30 min at 

37°C. The stained slides were embedded in 90% glycerol and stored at 4°C. Pictures 

were taken with a camera attached to a fluorescence microscope (Leica) (This 

protocol is modified from the shared folder from F100, DKFZ).  
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2.2.10 RNA extraction  

Total RNA was extracted from LCLs generated with multiple M81 EBV or M81 

mutant or control strains. RNA extracted from HEK293 cells was used as a negative 

control for the data analysis.  

RNA was isolated from each sample by using a TRIzol reagent. Cells pellet was 

lyzed with 1 ml TRIzol and extracted with 0.2 ml CHCl3. TRIzol lysate was 

shaked  

vigorously for at least 30 s at room temperature and then was incubated for 2 

mins. Samples were centrifuged at 4 °C, at 12000 g, for 15 mins (cold room). 

The upper colorless aqueous phase was carefully transferred into a new tube that 

containing 500 µl of 2-Propanol (iso-PrOH). Carefully mix by inverting the 

centrifuge tube and RNA was precipated at -20 °C for at least 20 mins. RNA was 

pelleted at 4°C, at 12000 g, for 10 mins (cold room). The supernatant was 

removed and the pellet was washed with 75% Ethanol (EtOH; prepared with 

nuclease-free water) and centrifuged at 4°C, at 8000 g, for 5 mins (cold room). 

The RNA pellet was resuspended in 40 µl of pre-heated nuclease-free water (95 

°C). To dissolve the RNA pellet completely, the samples were incubated at 60°C 

for 10 mins with vortex. RNA concentration was determined at OD260 nm in a 

nandrop photospectrometer. RNA was stored at -80°C (This protocol is modified 

from the shared folder from F100, DKFZ).  

 

2.2.11 Real-time qPCR  

Total RNA isolated from LCLs were reverse transcribed with AMV-reverse 

transcriptase (Roche) using a mix of random hexamers. 200 ng total RNA was used 

for reverse transcription.  
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An example is given below for a 20 µl reaction containing the following components: 

4 µl   5x RT buffer  

2 µl   2mM dNTPs  

2 µl   random hexamers 

4 µl   MgCl2 

0.8 µl   AMV reverse transcriptase 

1 µl  RNA inhibitor 

1.2 µl   water 

15 µl in total Mix 

5 µl of RNA sample was added to the master mix and incubated on ice for 5 minutes. 

The RT reaction was running following program:  

25 ˚C  10 min 

42 ˚C  60 min  

90˚C   5 min 

4˚C   hold 

Store final cDNA at –20 ˚C until required. Add 80 ul water and use 5ul per RT-PCR 

reaction.  

An example is given below for a 25 µl reaction containing the following components: 

12.5 µL  Taqman 2x Universal Mastermix  

6 µL  Primer/Probe mix   

0.5 µL  hGAPDH 

1 µL   water 

+5.0 µL  cDNA sample 

25 µL in total  

The qPCR was run with the following settings: 

50 °C for 2 min (initial denaturation) 

95 °C for 10 min (denaturation) 

40 cycles:  

95 °C for 15 s 

60 °C for 1 min 
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The qPCR results were analyzed by using 2-∆∆Ct method to get a relative expression 

levels (This protocol is modified from the shared folder from F100, DKFZ).  

 

2.2.12 Real-time RT-qPCR to quantify EBV transcripts 

RNA extracted with Trizol from LCLs was reverse transcribed with AMV-reverse 

transcriptase (Roche) using a mix of random primers. The primers and probes used to 

detect EBER, BZLF1, EBNA2, LMP1, LMP2A, and LMP2B are listed in the table. 

The PCR and data analysis was carried out using the universal thermal cycling 

protocol on an ABI STEP ONE PLUS Sequence Detection System (Applied 

Biosystems). All samples were run in duplicates, together with primers specific to the 

human GAPDH gene to normalize for variations in cDNA recovery (This protocol is 

modified from the shared folder from F100, DKFZ). 

 

2.2.13 Determination of EBER half-time 

We treated LCLs transformed by M81 or B95-8 wild type by adding RNA 

polymerase III inhibitor ML-60218 (100 µM, Sigma Aldrich) to the culture medium. 

Cells were collected at different treatment time and submitted to RT-qPCR (Wu et al., 

2003). 

 

2.2.14 Complementation experiments  

B1460 is a plasmid that contains a bi-directional tetracycline-inducible CMV 

promoter that encodes a truncated nerve growth factor receptor (NGFR) on one site, 

and the EBER1 and EBER2 in 4 copies on the other. B1249 contains only NGFR and 

was used as a negative control. M81/ΔEBER1+2 LCLs were transfected with either 
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B1249 or B1460 (contains M81 EBER1 and EBER2 in 4 copies) or B1510 (contains 

B95-8 EBER1 and EBER2 in 4 copies) and cultured with 1 µg/ml doxycycline for 21 

days. NGFR-positive cells were isolated with specific antibodies and used for protein 

and RNA analyses.  

 

2.2.15 Western blots  

Proteins were extracted with a standard RIPA buffer (150 mM NaCl, 0.5% NP-

40, 1% Sodium deoxycholat, 0.1% SDS, 5 mM EDTA, 20 mM Tris-HCl 

pH7.5, proteinase inhibitor cocktail (Roche)) for 15 min on ice followed by 

sonication to shear the genomic DNA. Up to 20 µg of proteins denatured in 

loading buffer for 10 min at 95 degree were separated on SDS-polyacryl-amide gels 

and electroblotted onto a nitrocellulose membrane (Hybond C, Amersham). After pre-

incubation of the blot in 3% milk dry powder in PBST (PBS with 0.1% Tween-20), 

the antibody against the target protein was added and incubated at 4 degree overnight. 

After extensive washings in PBST, the blot was incubated for 1 hr with suitable 

secondary antibodies coupled to horseradish peroxidase (goat anti-mouse (Promega), 

goat anti-rabbit (Life technologies), or rabbit anti-goat (Santa Cruz) IgG). Bound 

antibodies were revealed using the ECL detection reagent (Pierce) (This protocol is 

modified from the shared folder from F100, DKFZ).  

 

2.2.16 Measurement of CXCL8 production 

Cell culture supernatants were collected and analyzed for CXCL8 production by using 

a Human IL-8 (CXCL8) ELISA development kit (Mabtech) according to the 

manufacturer’s protocol.  
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2.2.17 Human cytokine array 

We seeded LCLs transformed by M81 or M81/∆E1+2 at 30 dpi at a density of 3*105 

per milliliter in a 24-well-plate. Cell culture supernatants were collected after 3 days 

seeding and filtered through a 0.22 µm filter. The filtered supernatants were analyzed 

for cytokine production by using a Human Cytokine Array kit (R&D Systems) 

according to the manufacturer’s protocol.  

 

2.2.18 SYBR Green real-time PCR 

Total RNA isolated from LCLs were reverse transcribed with AMV-reverse 

transcriptase (Roche) using a mix of random hexamers. 200 ng total RNA was used 

for reverse transcription.  

An example is given below for a 20 µl reaction containing the following components: 

4 µl   5x RT buffer  

2 µl   2mM dNTPs  

2 µl   random hexamers 

4 µl   MgCl2 

0.8 µl   AMV reverse transcriptase 

1 µl  RNA inhibitor 

1.2 µl   water 

15 µl in total Mix 

5 µl of RNA sample was added to the master mix and incubated on ice for 5 minutes. 

The RT reaction was running following program:  

25 ˚C  10 min 

42 ˚C  60 min  

90˚C   5 min 

4˚C   hold 
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Store final cDNA at –20 ˚C until required. Add 80 ul water and use 5ul per RT-PCR 

reaction.  

An example is given below for a 20 µl reaction containing the following components: 

10 µL   2x Power SYBR green PCR Mix  

1 µL  Forward primer (target gene) 

1 µL  Reverse primer  (target gene) 

3 µL   water 

+5.0 µL  cDNA sample 

20 µL in total  

And remember to do Internal Reference PCR (eg. GAPDH) 

10 µL   2x Power SYBR green PCR Mix  

1 µL  forward primer GAPDH (10µM) 

1 µL  reverse primer  GAPDH (10µM) 

3 µL   water 

+5.0 µL  cDNA sample 

20 µL in total       

The qPCR was run with the following settings: 

50 °C for 2 min (initial denaturation) 

95 °C for 10 min (denaturation) 

40 cycles:  

95 °C for 15 s 

60 °C for 1 min 

The qPCR results were analyzed by using 2-∆∆Ct method to get a relative expression 

levels (This protocol is modified from the shared folder from F100, DKFZ).  

 

2.2.19 Apoptosis assay 

Apoptosis was induced in LCLs generated with different wild types and mutants at 

40-60 days after infection. Cells were treated with Etoposide (4µg/ml, Sigma), 
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Staurosporine (4µg/ml, Sigma) or a DMSO solvent control for 20 hrs. Cells were also 

treated with Ionomycin (4µg/ml, Sigma Aldrich) for 48 hrs or Simvastatin (2µM, 

Calbiochem) for 5 days.  

Cells were then washed twice with ice-cold PBS, dried on glass slides and fixed with 

4% paraformaldehyde in PBS to perform a TUNEL assay that labels apoptotic cells 

with DNA breaks (Cell Death Detection Kit, TMR red, Roche) following the 

instruction of manufacturer. Cells were also stained with a rabbit antibody specific for 

cleaved caspase 3 (Cell signal technology).  

 

2.2.20 Exosomes isolation 

Exosomes were isolated from multiple EBV positive LCLs transformed with M81, 

M81∆E1+2, M81∆ZR, M81∆E1+2∆ZR, B95-8 viruses and RPMI1640 supplemented 

with 10% Exosomes Free FBS used as a negative control by differential ultra-

centrifugation as previously described. Briefly, 2x107cells in late log phase were used 

for exosomes extraction. Cell viability was checked by trypan blue and cultures with 

viabilities above 95% were used. For each cell line, culture supernatant was 

centrifuged at 1,000xg at 4 °C for 20 minutes to pellet down cells. The supernatant 

was carefully removed, and centrifuged at 2,000xg at 4 °C for 20 min to pellet down 

apoptotic bodies (ABs). The supernatant was then carefully removed, and centrifuged 

at 10,000xg at 4 °C for 30 min using SW32 Ti rotor (Beckman, Fullerton, USA) to 

pellet down microvesicles (MVs) and EBV particles. To further remove microvesicles 

and EBV particles, 0,22 µm filter was used. The supernatant was collected and 

centrifuged at 100,000xg at 4 °C for 70 minutes. The supernatant was carefully 

aspirated off and the exosome containing pellets were resuspended in PBS or RIPA 

buffer for further experiments (Ahmed et al., 2014).  
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2.2.21 Infection experiments in NSG mice 

We isolated human CD19+ B cells from buffy coats and exposed them to virus 

supernatants for 2 hours at room temperature under constant agitation at a MOI 

sufficient to generate 20% of EBNA2-positive cells. The infected cells were collected 

by centrifugation and washed twice with PBS. 2x105 infected primary B cells, 

equivalent to 4x104 EBNA2-positive cells, were injected intraperitoneally into NSG 

mice (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ; NSG). The pre-established inclusion 

criteria in this study were healthy male NSG mice aged between 6 and 8 weeks. The 

mice were euthanized as soon as any clinical symptoms appeared (apathy, food 

refusal, ruffled hair, weight loss, palpable tumor). After careful autopsy, the organs 

were subjected to macroscopic and microscopic investigation, including hematoxylin 

and eosin (H&E) staining and immunohistochemistry (Tsai et al., 2017). 

 

2.2.22 Immunohistochemistry 

The organs from the studied mice were fixed in 10% formalin overnight and 

embedded in paraffin blocks. 3-µm-thin continuous sections were prepared and 

submitted to antigen retrieval at 98°C for 40 min in a 10 mM sodium citrate, 0.05% 

Tween 20 pH 6.0 solution. Bound antibodies were visualized with the Envision+ Dual 

link system-HRP (Dako). In parallel, adjacent sections were stained with H&E. The 

presence of EBV was detected by in situ hybridization with an EBER-specific PNA 

probe, in conjunction with a PNA detection kit (Dako) following the manufacturer’s 

protocol. Pictures were taken with a camera attached to a light microscope (Axioplan, 

Zeiss) (Tsai et al., 2017).  
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2.2.23 Statistical analysis 

All results obtained in in vitro studies with LCLs generated by EBV wild type or 

mutants with B cells from the same blood donor were paired and analyzed by paired 

student t-test. Unpaired student t-test was applied for analyzing the grouped NSG 

mice infected by either M81 or M81/ΔE1+2 virus. All p-values were analyzed as 2-

tailed and the values equal to 0.05 or less were considered significant unless 

indicated. The statistical analyses were performed with the GraphPad Prism 5 

software.  

 

2.2.24 Microarray analysis 

Three independent samples for each of the M81/∆E1+2 mutant and revertant were 

used for the RNA microarray analysis. RNA was isolated from each sample by 

using a TRIzol reagent and treated with DNase to remove genome DNA. RNA 

samples must be provided in a 1.5ml-tube and put on dry ice. The minimal 

concentration and volume for each sample is 50 ng/µl and 10 µl in total respectively. 

After preparing our RNA samples, we send them to Core Facility in DKFZ for further 

analysis. They preform experimental design, incoming QC for quality and 

concentration of all samples, labeling and hybridization to the microarrays, 

monitoring the quality at all steps, and basic data analysis. IIIumina HT12 platform 

was used to analyze our RNA samples.  

 

2.2.25 TLR7 experiments 

We used LCLs generated with M81∆E1+2 mutant for the agonist experiments. Cells 

were treated with Imiquimod (10 µg/ml, Santa Cruz), which is specific for TLR7 
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MyD88-dependent and NF-κB pathways or a DMSO solvent control for 36 hs. After 

36 hs post treatment, cell culture supernatants were collected and analyzed for 

CXCL8 production by using a Human IL-8 (CXCL8) ELISA development kit 

(Mabtech) according to the manufacturer’s protocol.  

We used LCLs generated with M81 wild type for the antagonist experiments. Cells 

were treated with synthetic oligonucleotides (4 µM), which is specific inhibitor for 

TLR7. After 3 days post treatment, cell culture supernatants were collected and 

analyzed for IL-8 production by using a Human IL-8 (CXCL8) ELISA development 

kit (Mabtech) according to the manufacturer’s protocol.  

Synthetic oligonucleotides with phosphorothioate backbones IRS 661 (5-TGC 

TTGCAAGCTTGCAAGCA-3) and a control oligonucleotide (5-

TCCTGCAGGTTAAGT-3) were synthesized by Eurofins (Dominguez-Villar et al., 

2015).  

 

2.2.26 EBER alignment  

 
We completed sequence alignments with 173 EBV EBER1 and EBER2 sequences 

published online. The identified polymorphisms were mostly located in the EBER2 

gene.   
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3 Results 

	

3.1 EBER expression varies after infection with different 

EBV strains 

 

3.1.1 EBER expression pattern in B cells infected with different EBV 

strains 

The EBERs have been implicated in transformation and lytic replication (Lee et al., 

2015; Swaminathan et al., 1991; Wu et al., 2007). Because these properties have been 

reported to be heterogeneous among different viral strains, we assessed EBER 

expression in the same B cells infected by different EBV strains by qPCR. We found 

that EBER2 was expressed 4 times more in cells infected with M81 than in the same 

cells infected with B95-8 (Fig. 3.1). Interestingly, the EBER2 expression levels 

mirrored the lytic replication levels previously recorded in these cells, with cells 

infected with M81 showing the highest levels of replication, followed by the viruses 

identified in gastric carcinomas SNU719, YCCEL1, GP202 and finally Akata and 

B95-8 (Tsai et al., 2017). There was some variation in EBER1 expression levels 

among cells infected by the different strains, but it was much milder than with 

EBER2.  
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Fig. 3.1 EBER expression levels in B cells infected with different EBV strains. 

We assessed EBER expression in B cells infected by different EBV strains by qPCR.  

The data are given relative to values obtained in LCLs generated with B95-8. The 

data represents the mean of three independent experiments ± SD.  

 

3.1.2 M81 EBER2 is more stable than its homolog in the B95-8 EBV 

genome 

The variable EBER2 expression levels could be potentially explained by a different 

half-life of the different EBERs. Therefore, we treated an LCL pair generated by M81 

or B95-8 infection with the drug (CAS 577784-91-9), an inhibitor of the RNA 

polymerase III and recorded EBER1 and EBER2 levels over time (Wu et al., 2003) 

(Fig. 3.2). This analysis showed marginal differences in the half-life of EBER1 

between the species. In contrast, EBER2’s half-life was 50% higher in cells infected 

with M81, relative to cells infected with B95-8. Thus, the higher EBER levels 

recorded in M81-infected cells can be at least in part ascribed to a longer half-life. 
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Fig. 3.2 Half-life of EBER1 and EBER2 from two different strains. We measured 

EBER expression in B cells infected by M81 and B95-8 strains by qPCR after 

treatment with a drug that specifically inhibits RNA polymerase III activity to 

determine the EBER half time. Result from one representative experiment is 

presented. 

 

3.1.3 EBV strains from NPC carry a unique EBER2 sequence 

To explain the differences between B95-8 and M81 EBER2, we completed this 

analysis by performing sequence alignments with all EBER sequences. We identified 

multiple polymorphisms that were mostly located in the EBER2 gene. These 

polymorphisms were not located in the sequences recognized by the primers and 

probes used for the analysis described in Fig. 3.1, except YCCEL1 that carries a 

polymorphism at position 26 (Table. 3.1).  

We found that the distribution of the different EBER2 polymorphisms in lymphoma, 

post-transplant lymphoproliferative disorder (PTLD), infectious mononucleosis (IM), 

and in EBV-associated gastric carcinoma (EBVaGC) was nearly identical. However, 

there are some polymorphisms that are seen more frequently in nasopharyngeal 
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carcinoma (NPC), as described in the introduction section, suggesting that NPCs carry 

a specific type of EBER2 that might have unique functions. Table. 3.1 displays the 

EBER2 polymorphisms in the multiple EBV strains analyzed in Fig. 3.1.  

The B95-8 EBER2 structure is reproduced from Lee et al (Fig. 3.3). The red positions 

display polymorphisms between B95-8 and M81 strains. In M81, position 44 is a G, 

position 46 is a U, position 57 is a G, position 61 is a U, position 93 is a C and 

position 168 is a G. 

 

Table. 3.1 EBER2 polymorphisms in multiple EBV strains 

 

The B95-8 strain was isolated from a patient with infectious mononucleosis (IM). 

Akata and P3HR1 were derived from Burkitt’s lymphoma cells. YCCEL1, SNU719, 

and GP202 were derived from gastric carcinomas cells. M81 was derived from a 

patient with nasopharyngeal carcinoma (NPC).  

 

EBV	strains	 26	 44	 46	 57	 61	 93	 168	

B95-8	 C	 T	 A	 A	 A	 A	 A	

Akata	 C	 T	 A	 A	 A	 A	 G	

YCCEL1	 A	 T	 A	 A	 A	 A	 G	

SUN719	 C	 T	 A	 A	 A	 A	 G	

GP202	 C	 T	 A	 A	 A	 A	 A	

P3HR1	 C	 T	 A	 A	 A	 A	 G	

M81	 C	 G	 T	 G	 T	 C	 G	
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Fig. 3.3 The B95-8 EBER2 structure. The B95-8 EBER2 structure is reproduced 

from Lee et al. The green region (+51 to +60) shows a typical Box B pol III promoter 

sequence in the B95-8 EBV genome (Howe and Shu, 1989). The red positions display 

polymorphisms between the B95-8 and M81 strains. In M81, position 44 is a G, 

position 46 is a U, position 57 is a G, position 61 is a U, position 93 is a C and 

position 168 is a G. 

 

3.1.4 EBER2 polymorphisms contribute to its expression  

To assess the impact of the 6 polymorphisms located in B95-8 and M81 EBER2, we 

introduced each of the mutations present in B95-8 EBER2 in the M81 EBER2 and 

reciprocally those mutations present in M81 EBER2 in the B95-8 EBER2. This 
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analysis showed that the ribonucleotides located at position 44, 46 and 61 had a strong 

influence on EBER2 expression, with M81-type mutations conferring higher 

expression levels than B95-8-type ones (Fig. 3.4). We conclude from this set of 

assays that strain-specific mutations influence the EBER2 expression levels. 

Alignments with available sequences showed that the sequence pattern displayed by 

the Akata EBER2 is the most common one and are shared with 68.6% of all EBV 

genomes. The B95-8 EBER2 is found in 7% of all 172 EBV genomes, and the M81 

EBER2 is common to 16.3% of all 172 EBV genomes, including the majority of 

strains isolated in NPCs.  

 

 

Fig. 3.4 EBER2 polymorphisms influence their expression levels. We assessed 

EBER expression in 293 cells transiently transfected with multiple EBER2 mutation 

plasmids by qPCR. pEGFP-C1 is an empty plasmid. B95-8.P.EBER2 means native 

B95-8 EBER2 in pEGFP-C1 plasmid. M81.P.EBER2 means native M81 EBER2 in 
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pEGFP-C1 plasmid. B95-8.P.EBER2.T44G means B95-8 native EBER2 that carries a 

mutation at position 44, T to G. M81.P.EBER2.G44T means M81 native EBER2 that 

carries a mutation at position 44, G to T. The data are given relative to values 

obtained in 293 cells transfected with B95-8.P.EBER2. The data represent the mean 

of three independent experiments ± SD. 

 

3.2 Lytically replicating cells contain more EBERs than 

latently infected B cells. 

 

3.2.1 Purification of BZLF1-positive cells in LCLs infected with wild 

type M81 

The apparent link between viral lytic replication and EBER2 expression levels led us 

to analyze the expression levels of this non-coding RNA in spontaneously replicating 

cells. To this end, we infected B cells with a recombinant M81 EBV that carries an 

inactive form of the rat CD2 gene driven by an early antigen promoter that is 

responsive to the BZLF1 protein that drives the onset of lytic replication. Thus, 

infected B cells undergoing lytic replication express CD2 at their cell surface and can 

be immunocaptured by a specific antibody (Lin et al., 2015). We quantified BZLF1 

expression in the CD2-positive and CD2-negative populations using quantitative RT-

PCR and western blot (Fig. 3.5). As expected, we found that only CD2-positive cells 

produced BZLF1 at the mRNA and protein levels. This implies that cells that express 

the BZLF1 mRNA also express the BZLF1 protein. This also suggests that these 

mRNAs are not subjected to massive miRNA interference.  
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Fig. 3.5 Purification of CD2-positive cells and CD2-negative cells. CD2-positive 

cells were isolated from LCLs generated with a M81 mutant that expresses a 

truncated form of rat CD2 behind an EA-D-responsive promoter. The CD2-positive 

cells were purified with a specific antibody. CD2-positive or CD2-negative cell 

populations were submitted to RT-qPCR to assess BZLF1 mRNA expression (top 

graph) and to a western blot analysis with a BZLF1-specific antibody (bottom 

picture). 

 

3.2.2 Lytically replicating cells express more EBERs than non-

replicating B cells 

We assessed EBER expression levels in the CD2-positive and CD2-negative 

populations by qPCR. We found that EBER1 and EBER2 are, on average, expressed 

5 and 10 times fold higher in lytically replicating B cells than in non-replicating ones, 
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respectively (Fig. 3.6). Thus, there is a positive relationship between EBV EBER 

RNAs and BZLF1 expression.  Replicating B cells expressed 40 times more EBER2 

than B cells latently infected with B95-8.  

 

Fig. 3.6 EBER expression pattern in CD2-positive cells and CD2-negative cells. 

The scatter plot shows the expression of viral EBER1 and EBER2 extracted from 

CD2-positive or CD2-negative cell populations obtained from 5 different LCLs 

generated with the CD2-expressing virus. A result from one LCL is indicated by a 

square. All the p values were obtained from paired student t tests.  

 

3.2.3 Lytic replication enhances EBER production 

Although replicating cells represent only a minority among infected cells, the very 

high EBER expression levels found in these cells are likely to influence total EBER 

levels. Therefore, we assessed the expression of these non-coding RNAs in LCLs 

generated with wild type M81 or its replication-defective M81/∆ZR version that lacks 

the BZLF1 and BRLF1 transactivators. While EBER1 was produced approximately at 

the same level in both types of LCLs, cells infected with M81 produced nearly twice 
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as much EBER2, relative to cells infected with the M81/∆ZR mutant (Fig. 3.7). 

Considering that only 5% of the cells undergo lytic replication, this suggests that 

replicating cells generate considerable amounts of EBER2 and to a lesser extent of 

EBER1. To confirm that lytic replication enhances EBER production, we transfected 

BZLF1 into LCLs generated with M81/∆Z. Forced expression of BZLF1 led to an 

increase in EBER1 and EBER2 expression that was comparable in intensity to the 

changes observed in spontaneously replicating cells (Fig. 3.7). Thus, EBERs, and in 

particular EBER2, are amplified in replicating cells. These data also suggest that the 

expression of EBER1 and 2 is independent from one another, with EBER2 being 

preferentially transcribed in replicating cells.  

 

(A)                (B) 

  

Fig. 3.7 EBERs are amplified in replicating cells. (A) We determined the EBER 

expression by qPCR in 4 different LCLs generated with M81/∆ZR virus. This scatter 

plot shows the ratio of EBER expression between M81/∆ZR-infected LCLs verse 

M81 wild type-infected LCLs. A result from one LCL is indicated by a square. Paired 

t-student tests were performed to analyze the data. (B) A LCL transformed by 

M81/ΔZ was stably transfected with a plasmid that encodes a truncated form of 

NGFR and BZLF1 or with a plasmid that encodes NGFR only (empty). The NGFR-



	 79	

positive cells were purified with a specific antibody. We determined the EBER 

expression extracted from BZLF1-positive or BZLF1-negative cell populations 

obtained from 4 different LCLs generated with the M81/∆Z virus. A result from one 

LCL is indicated by a square. Paired t-student tests were performed to analyze the 

data.  

 

3.2.4 EBV latent genes mRNA expression profile in replicating cells 

relative to non-replicating cells 

We then extended our analysis to quantify the expression level of some viral mRNAs 

in these 2 cell populations using quantitative RT-PCR. We found that EBNA2 and 

LMP1 transcripts, but not LMP2A are expressed at higher levels in replicating cells 

than in non-replicating cells (Fig. 3.8).  

 

Fig. 3.8 EBV viral mRNA expression profile in replicating cells and in non-

replicating cells. The scatter plot shows expression of viral EBNA2, LMP1, and 

LMP2A mRNAs extracted from CD2-positive or CD2-negative cell populations 

obtained from 5 different LCLs generated with the CD2-expressing virus. A result 
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from one LCL is indicated by a square. All the p values were obtained from paired 

student t tests.  

 

3.3 M81 EBER2 stimulates spontaneous lytic replication in 

B cells 

 

3.3.1 B cells infected with a M81 virus devoid of the EBER RNAs 

display decreased spontaneous lytic replication in B cells 

The EBERs have been implicated in the control of virus production, but different 

groups reported contradictory results (Lee et al., 2015; Swaminathan et al., 1991). To 

delineate the contribution of the EBERs to viral functions, we generated a set of 

triplets that included the wild type M81 virus, an EBER1 and 2 M81 double knockout 

and a revertant thereof (Fig. 3.9).  

We used these viruses to generate a panel of LCLs and assessed lytic replication in 

the infected cells. To this end, we monitored the expression of the BZLF1 protein in 

infected cells using western blot. The Epstein-Barr virus (EBV) immediate-early 

protein BZLF1 is a transcriptional activator that mediates the initiation of lytic 

replication (Mauser et al., 2002). This assay showed a 2 to 5 decrease in BZLF1 

expression at 35 days post infection (dpi) in B cells infected with the M81/∆E1+2 

virus, relative to wild type controls, in three investigated sample sets (Fig. 3.10). 
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Fig. 3.9 Construction of the M81 EBER non-coding RNAs mutants. (A) 

Schematic map of a segment from the rM81 genome that encompasses the EBER 

genes region. The deletion mutants were obtained by replacing the EBER1 and 

EBER2 with a kanamycin resistance cassette. (B) These restriction analyses from 

DNA Bacmid minipreparations show the restriction pattern of the M81/ΔE1, 

M81/ΔE2, M81/ΔE1+2 and M81/ΔE1+2 revertant mutants. The investigated samples 
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include rM81 bacmids after construction in E.coli or after rescue from the producer 

cell lines. The viral DNAs were cleaved with BamHI and separated on an agarose gel. 

The parental rM81 recombinant EBV plasmid was loaded as a control. The arrows 

indicate the viral DNA fragments whose sizes differ between the wild type rM81 and 

the mutants as illustrated in the schematic shown in (A).  

  

 

 

Fig. 3.10 The deletion of the EBER RNAs decreases lytic replication. We 

performed immunoblot analyses on LCLs transformed with M81, M81/∆E1+2 and 

M81/∆E1+2 Rev with antibodies specific for BZLF1 and actin. The graph of bars 

shows the relative intensity of the signals quantified by the ImageJ software. 

 

Sample 1 Sample 2 Sample 3 

36 kDa BZLF1 
actin  42 kDa 

M81 ∆E1+2 ∆E1+2 
  Rev 

M81 ∆E1+2 ∆E1+2 
  Rev 

M81 ∆E1+2 ∆E1+2 
  Rev 
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3.3.2 M81 EBER could affect the initiation of BZLF1 in EBV-

infected B cells 

We confirmed these results with immunofluorescence stains performed at three 

different time points after transformation using antibodies specific to BZLF1. At all 

investigated time points, the M81/∆E1+2 mutant displayed a lower percentage of 

replicating cells than wild type M81 virus (Fig. 3.11).  

 

 

Fig. 3.11 The deletion of the EBER RNAs decreases lytic replication. This picture 

shows the BZLF1 expression pattern in 8 different LCLs transformed by M81 or 

M81/ΔE1+2, as determined by BZLF1 immunofluorescence staining. The percentage 

of BZLF1-positive cells in LCLs from multiple B-cell donors at different days post 

infection (dpi) is given in the scatter plot. All the p values were obtained from paired t 

tests performed with the two types of LCLs.  

M81 M81/∆E1+2 
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3.3.3 Deletion of M81 EBER also affects viral late lytic production 

We further confirmed these results with immunofluorescence stains performed at 

three different time points after transformation using antibodies specific to gp350. 

Gp350 is expressed during the late phase of the lytic cycle and is a major component 

of the mature virion. At all investigated time points, the M81/∆E1+2 mutant displayed 

a lower percentage of replicating cells than wild type M81 virus (Fig. 3.12).  

 

 

Fig. 3.12 The deletion of the EBER RNAs decreases virus production. This 

picture shows the gp350 expression pattern in 8 different LCLs transformed by M81 

or M81/∆E1+2 as determined by gp350 immunofluorescence staining. The percentage 

of gp350-positive cells in LCLs from multiple B-cell donors at different days post 

infection (dpi) is given in the scatter plot. All the p values were obtained from paired t 

tests performed with the two types of LCLs.  

M81	 M81/∆E1+2	
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3.3.4 M81 EBER2 plays an important role in spontaneous lytic 

replication, but EBER1 is also involved in the control of this process. 

We then wished to determine which of the EBERs was responsible for the increased 

replication levels. To this end, we constructed M81 knock out viruses that lacked 

either EBER1 or EBER2 and repeated the aforementioned replication experiments. 

These results showed that the deletion of EBER2 but not of EBER1 reduces lytic 

replication. However, deletion of both EBERs has a stronger impact on lytic 

replication than deletion of EBER2 only, suggesting that both molecules contribute to 

this process, although EBER2 plays a much more important role than EBER1 (Fig. 

3.13).  

 

 

 

Fig. 3.13 M81 EBER2 plays a predominant role in lytic replication in B cells. We 

showed one immunoblot analysis performed on LCLs transformed with M81, 

M81/∆E1, M81/∆E2, and M81/∆E1+2 with antibodies specific for BZLF1 and actin. 

The scatter plot shows the relative intensity of the signals quantified by the ImageJ 
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software from 6 independent samples. The data are given relative to values obtained 

in LCLs generated with M81. All the p values were obtained from paired t tests 

performed with the two types of LCLs.  

 

 

3.4 The EBER2 homolog on the B95-8 EBV genome does not 

influence spontaneous virus lytic replication in B cells 

 

3.4.1 Complementation of M81/∆E1+2 LCLs with M81 EBERs, but 

not with B95-8 EBERs increases spontaneous lytic replication 

Similar experiments were performed with the B95-8 derived virus but neither the cell 

samples infected with wild type virus nor those infected by the EBER1+2 null mutant 

showed evidence of lytic replication (Data not shown). Thus, the B95-8 EBERs are 

not responsible for the absence of virus production in B cells after infection with B95-

8. 

We continued the characterization of B95-8 EBERs by performing complementation 

experiments and by constructing hybrid EBV viruses in which the EBER genes are 

exchanged between the viruses. To this end, we introduced multiples copies of the 

EBERs from B95-8 or M81 cloned in tandem (Komano et al., 1999) under the control 

of a tetracycline-inducible promoter that also drives the expression of a truncated rat 

CD2 protein. After transfection, the CD2-positive cells were purified to obtain a 

homogeneous cell population that we found to express the different EBERs at 40 to 

60% of the levels seen in cells infected with wild type virus (Fig. 3.14). 



	 87	

Transfection of the M81 EBERs but not of the B95-8 EBERs restored BZLF1 

expression in B cells infected with the M81/∆E1+2 mutant (Fig. 3.14). As 

complementation of both M81 and B95-8 EBERs cloned under a tet-inducible 

promoter led to nearly similar expression levels, this suggested that polymorphisms 

between both types of EBER explain the differences between the viral isolates. 

 

                   

Fig. 3.14 M81 EBER2, but not B95-8 EBER2 influences lytic replication. A LCL 

transformed by M81/ΔE1+2 was stably transfected with a plasmid that encodes a 

truncated form of NGFR and both EBER1 and EBER2 from M81 or from B95-8 

strain or with a plasmid that encodes NGFR only (empty). The NGFR-positive cells 

were purified with a specific antibody. We determined the EBERs expression in these 

cells relative to M81 LCL (left panel) and their BZLF1 protein expression (right 

panel). These data represent three independent experiments.  

 

3.4.2 A M81 virus that carries B95-8’s EBERs displays reduced 

spontaneous lytic replication in B cells  

Analysis of the hybrid viruses yielded similar results. The M81 virus that carries B95-

8 EBERs expressed EBERs at levels comparable to those seen in cells infected with 

B95-8 and lower than in cells infected with M81 (Fig. 3.15). This exchange virus 
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produced BZLF1 at levels similar to those observed in cells infected with 

M81/∆E1+2, confirming that the M81 EBER have specific properties (Fig. 3.15). 

Introduction of the M81 EBERs into the B95-8 genome did not lead to lytic 

replication, suggesting that the EBERs only amplify spontaneous lytic replication but 

do not initiate it, a finding in line with the observation that cells infected with 

M81/∆E1+2 still show some degree of lytic replication.  

								 						 	
	
Fig. 3.15 A M81 virus that carries B95-8’s EBERs displays reduced lytic 

replication in B cells. We determined EBERs expression levels in these LCLs 

relative to M81 LCL by qPCR. The data represents the mean of three independent 

experiments ± SD. We showed one immunoblot analysis performed on LCLs 

transformed with M81, ∆E1+2, ∆E1+2 Rev, and Exchange viruses (M81_B95-

8.E1+2) with antibodies specific for BZLF1 and actin. The scatter plot shows the 

relative intensity of the signals quantified by the ImageJ software from 4 independent 

samples. A result from one LCL is indicated by a square. The data are given relative 

to valuse obtained in LCLs generated with M81. All the p values were obtained from 

paired t tests performed with the two types of LCLs.  
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3.5 M81 EBERs control lytic replication in vivo 

 

We wished to confirm our data using an in vivo model of EBV infection and injected 

resting B cells exposed to M81/∆E1+2 or M81/∆E1+2 Rev into immuno-suppressed 

NSG mice. We terminated the experiment at 6 weeks post injection. We analyzed the 

tumor tissues for EBER, BZLF1, gp350, and EBNA2 expression. EBNA2 is a latent 

EBV protein expressed in proliferating cells. Continuous tissue sections were stained 

with hematoxylin and eosin (H&E), immunostained with antibodies specific for 

BZLF1, gp350, EBNA2, or subjected to an in situ hybridization with an EBER-

specific probe. As expected, the mice infected with the M81/∆E1+2 virus did not 

express the EBER molecules and showed reduction in the expression of the early 

marker (BZLF1) and late marker (gp350) of lytic replication as shown in Fig. 3.16A. 

However, the percentage of infected cells that expressed EBNA2 among the EBV-

infected population showed no difference between wild type- and ΔE1+2-infected 

mice (Fig. 3.16B). Therefore, we used EBNA2 expression to normalize the 

percentage of BZLF1 positive cells between wild type- and ∆E1+2-infected mice. All 

infected tissues contained cells expressing the early marker of lytic replication 

(BZLF1), but the ratio between BZLF1 and EBNA2 proved to be globally lower in 

the mice infected with the virus devoid of the EBER RNAs (Fig. 3.16D). We 

conclude that M81 EBERs control lytic replication in vivo.  
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Fig. 3.16 M81 EBERs control lytic replication in vivo. (A) These pictures show 

immunohistochemistry in the tumors that developed in the gut. Continuous tissue 

sections were stained with hematoxylin and eosin (H&E), immunostained with 

antibodies specific for BZLF1, gp350, EBNA2, or subjected to an in situ 

hybridization with an EBER-specific probe. Among 5 M81/∆E1+2 infected mice, 

they all exhibited a lower percentage of BZLF1-positive cells. (B-C) The number of 

total cells per 0.04µm2 (surface of the field at high magnification) is given. The 

boxplots display the ratio between (B) EBNA2- or (C) BZLF1-positive cells versus 

total cells. (D) This boxplot display the ratio between BZLF1-positive cells versus 

EBNA2-positive cells. A result from one mouse is indicated by a square. We used 

two-tailed unpaired student t test for all the results.  

 

(A) (B) 

(C) 

(D) 

H&E 

EBER 

BZLF1 

gp350 

EBNA2 

M81/∆E1+2 M81/∆E1+2 Rev 
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3.6 Latent membrane proteins (LMPs) expression profile in 

B cells infected with EBER knockout in M81 and B95-8 

strain 

 

3.6.1 mRNAs expression profile in B cells infected with EBER 

knockout in M81 and B95-8 strain 

EBER2 was recently shown to bind PAX5 and to promote PAX5 binding to the 

terminal repeat region of the EBV genome (Lee et al., 2015). Knockdown of EBER2 

by small interfering RNA (siRNA) caused a 50% increase in LMP1 and LMP2 RNA 

levels in this study (Lee et al., 2015). Using quantitative TaqMan PCR (qPCR), we 

did not observe any significant difference between the M81 EBER deletion LCLs and 

wild-type EBV LCLs in the levels of LMP2A and LMP2B RNA (Fig. 3.17B and C), 

but LMP1 RNA levels were slightly lower at early days post infection (30-50dpi) 

when M81 EBER2 was deleted (Fig. 3.17A). The same experiments were performed 

in the B95-8 EBV strain. Using quantitative TaqMan PCR (qPCR), we also did not 

observe any significant difference between the B95-8 EBER deletion LCLs and wild-

type EBV LCLs in the levels of LMP2A and LMP2B RNA (Fig. 3.17B and C), but 

LMP1 RNA levels were 2-fold higher at early time day post infection (30-50dpi) 

when B95-8 EBERs were deleted (Fig. 3.17A).  
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(A)                                         (B)                                       (C) 

 

Fig. 3.17 mRNAs expression profile in B cels infected with the EBER deletion 

mutants in M81 and B95-8 strains. (A) We determined the LMP1 expression by 

qPCR in LCLs generated with multiple EBER mutants at different days post infection 

(dpi) in M81 and B95-8 EBV strains. (B) We determined the LMP2A expression by 

qPCR in LCLs generated with multiple EBER mutants at different days post infection 

(dpi) in M81 and B95-8 EBV strains. (C) We determined the LMP2B expression by 

qPCR in LCLs generated with multiple EBER mutants at different days post infection 
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(dpi) in M81 and B95-8 EBV strains. The data are given relative to values obtained in 

LCLs generated with M81 or B95-8. A result from one LCL is indicated by a square. 

All the p values were obtained from paired t tests performed with the two types of 

LCLs.  

 

3.6.2 protein expression profile in B cells infected with EBER 

knockout in M81 and B95-8 strain 

The LMP1 and LMP2A protein levels were comparable in EBER KO and WT 

generated LCLs on the basis of both M81 and B95-8 EBV strains (Fig. 3.18), and 

there was no apparent correlation with EBER expression. Our results thus provide 

some support for the earlier proposed model that B95-8 EBER2 reduces the level of 

LMP1 RNA, but find instead that M81 EBER2 increases the level of LMP1 RNA. 

These discrepancies could be explained by different properties of different EBV 

strains and that could probably result from polymorphic EBER2 sequences.  

 

 

Fig. 3.18 Proteins expression profile in B cells infected with EBER mutant in 

M81 and B95-8 strains. We performed immunoblot analyses on LCLs transformed 
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with M81 or B95-8 wild type strains, and corresponding EBER mutants with 

antibodies specific for LMP1, LMP2A, and actin. Top pictures show immunoblots in 

M81 strain and below pictures show immunoblots in B95-8 strain.  

 

3.7 M81 EBER modulates lytic replication by inducing 

CXCL8 

3.7.1 RNA microarray analysis 

The data gathered so far led us to conclude that M81 EBERs play an important role in 

stimulating spontaneous virus lytic replication in B cells. We wished to understand 

the mechanistic link between EBER expression and lytic replication in B cells. To this 

end, we generated three panels of LCLs infected with M81 wild type and M81/∆E1+2 

mutant and subjected them to a RNA microarray analysis. Table 3.2 shows the top 10 

up-regulated and down-regulated genes following EBER expression. We found that 

CXCL8 mRNA was significantly down regulated in B cells infected with the 

M81/∆E1+2 virus.  
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Table 3.2 Top 10 genes in up-regulation and down-regulation 

 

Previous studies have also demonstrated that EBERs can induce the transcription of 

various cytokines, such as interleukin-10 (IL-10) in BL cells, insulin-like growth 

factor-1 (IGF1) in epithelial cells and IL-9 in T cells (Iwakiri et al., 2005; Samanta et 

al., 2008; Yang et al., 2004). Thus, we also subjected two pairs of LCLs to a Human 

Cytokine Array screening. We found that CXCL8 protein expression level was 

slightly lower in B cells infected with the M81/∆E1+2 virus than in B cells infected 

Symbol Fold Change (∆E1+2/Rev) 

FXYD2 12,67 

HLA-DRB5 3,51 

UGT2B17 3,22 

ATP1B1 3,19 

DBNDD2 3,02 

UGT2B7 2,82 

BHLHE22 2,80 

LINCR 2,72 

LAD1 2,58 

C1orf106 2,56 

LOC401845 0,18 

CXCL8 0,35 

COL5A1 0,41 

LOC649923 0,41 

LOC100134331 0,42 

LOC647450 0,45 

SGK 0,46 

ADM 0,46 

LOC652694 0,45 

RN7SK 0,49 
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with the M81 WT. However, we could not identify any difference in IL-10 expression 

between M81/∆E1+2 and M81 WT LCLs (Fig. 3.19). 

 

Fig. 3.19 Human Cytokine Array screening. We seeded LCLs transformed by M81 

WT or M81/∆E1+2 at 30 dpi at a density of 3*105 per milliliter in a 24-well-plate. 

Cell culture supernatants were collected after 3 days seeding and filtered through a 

0.22 µm filter. The filtered supernatants were analyzed for cytokine production by 

    Cytokines expression levels in M81 LCLs  

Coordinate Target/Control Signal intensity 

A7,A8 MIP-1α/MIP-1β Very high 

E3,E4 MIF High 

A9,A10 CCL5/RANTES High 

B5,B6 CXCL12/SDF-1 Medium 

B11,B12 ICAM-1/CD54 Medium 

D5,D6 IL-16 Medium 

C11,C12 IL-6 Low 

C13,C14 CXCL8 Low 

C15,C16 IL-10 Low 

High 

Low 
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Note: A1,A2, A19,A20, E1,E2 are positive controls; E19,E20 is a negative control. The 
positive control spots are standardized amounts of biotinylated IgG. They are used for signal 
normalization, monitoring of the detection step, and to help orient the array image. The 
negative control spots are printed with buffer only, and thus are not expected to give signals. 
Negative control spots are used for background subtraction. 



	 97	

using a Human Cytokine Array kit (R&D Systems) according to the manufacturer’s 

protocol. 

 

3.7.2 CXCL8 expression in LCLs infected with multiple viruses 

We concentrated on CXCL8 and confirmed its regulation by EBERs using qPCR and 

ELISA in LCLs generated with multiple viruses. These assays showed that CXCL8 is 

clearly down regulated at both the mRNA and the protein levels in M81/∆E1+2 

infected B cells, relative to wild type controls, including M81 WT and M81/∆E1+2 

Rev (Fig. 3.20). 

 

  (A)                (B) 

       

Fig. 3.20 CXCL8 expression in B cells infected with multiple viruses. (A) We 

determined CXCL8 mRNA expression in the same B cells infected by multiple EBV 

viruses by qPCR. The data are given relative to values in LCLs generated with M81. 

The data represents the mean of three independent infection experiments ± SD. (B) 

We assessed CXCL8 expression in the different 4 LCLs generated with multiple EBV 

viruses by ELISA. We used two-tailed paired student t test for all the results.  
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3.7.3 CXCL8 can compensate the absence of EBER RNA in the role 

of lytic replication 

In order to understand why CXCL8 down-regulation in LCLs infected with the 

M81/∆E1+2 virus results in decreased lytic replication in B cells, we performed 

complementation assays by continuously adding recombinant CXCL8 to LCLs 

infected with the M81/∆E1+2 virus for 7 days. We quantified BZLF1 expression in 

LCLs with or without CXCL8 supplementation, relative to wild type controls. We 

found that BZLF1 expression is increased in M81/∆E1+2 LCLs with CXCL8, relative 

to LCLs without CXCL8 (Fig. 3.21). Importantly, CXCL8 supplementation can 

completely compensate the absence of EBER RNA in the role of virus lytic 

replication, suggesting that CXCL8 represents the main target of this EBER molecule. 

We conclude that M81 EBERs stimulate the expression of CXCL8, and that this 

cytokine increases lytic replication in infected B cells.  

 

 

Fig. 3.21 CXCL8 can compensate the absence of EBER RNA in the role of lytic 

replication.  We assessed BZLF1 expression by a BZLF1-specific antibody by 

western blot in the CXCL8 complementation assay (top picture) and bottom graph 
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actin 
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shows 4 independent experiments. A result fron one LCL is indicated by a square. We 

used two-tailed paired student t test for all the results.  

 

3.7.4 The EBER2 homolog on the B95-8 EBV genome cannot induce 

CXCL8 production 

After performing the aforementioned experiments, we concluded that M81 EBER2 

stimulates spontaneous virus lytic replication in B cells. However, its homolog in the 

B95-8 genome loses this property in the control of spontaneous virus lytic replication. 

We also concluded that M81 EBER2 could induce CXCL8 production and that 

CXCL8 was able to compensate the absence of M81 EBER2 in the role of virus lytic 

replication. Next, we wished to understand the role of B95-8 EBER2 in the 

stimulation of CXCL8 production in B cells. We infected B cells with the M81 virus 

that carries B95-8’s EBER2 and performed qPCR and ELISA analysis in these LCLs. 

We found that the expression of CXCL8 in B cells infected with the M81 hybrid virus 

is lower than the expression in wild type controls, including M81 WT and M81/∆ZR 

(Fig. 3.20).  In addition, we performed EBER complementation assays. We 

transfected M81/∆E1+2 infected LCLs with a plasmid that encodes multiple copies of 

the M81 EBERs or B95-8 cloned in tandem under the control of a tetracycline-

inducible promoter that also drives the expression of a truncated nerve growth factor 

receptor (NGFR) or with a control vector. After transfection, the NGFR-positive cells 

were purified to obtain a homogeneous cell population that expresses EBERs at 

approximately 50% of the levels seen in cells infected with wild type virus (Fig. 

3.22). We quantified CXCL8 expression in these cell populations and found that only 

M81 EBER could increase CXCL8 expression, however, B95-8 EBER could not (Fig. 

3.22).  
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           (A)                   (B) 

       

Fig. 3.22 M81 but not B95-8 EBER2 can induce CXCL8 production. A LCL 

transformed by M81/ΔE1+2 was stably transfected with a plasmid that encodes a 

truncated form of NGFR and both EBER1 and EBER2 from M81 or from B95-8 

strain or with a plasmid that encodes NGFR only (empty). The NGFR-positive cells 

were purified with a specific antibody. We determined the EBERs expression by 

qPCR in these cells relative to M81 LCL (left panel) and their CXCL8 protein 

production by ELISA (right panel). This data represents three independent 

experiments.  

In this chapter, we conclude that M81 EBER2 enhances CXCL8 and BZLF1 

production, but its homolog in the B95-8 genome is compromised in these processes.  
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3.8 Exosomal fractions of B cells infected with wild type M81 

that carries the EBER molecules are able to increase 

CXCL8 and BZLF1 production 

 

3.8.1 EBER is able to increase CXCL8 and BZLF1 production after 

exposure to exosomes from infected cells 

The data accumulated so far led us to conclude that M81 but not B95-8 EBER2 

enhances CXCL8 production and spontaneous virus lytic replication.  

CXCL8 is a chemokine that is secreted as a result of an activation of the immune 

system, including its innate branch. We searched for mechanisms that could link 

EBER and CXCL8 production. Because lytic replication takes place in infected B 

cells in the absence of T cells or other members of the adaptive immune response, we 

deemed it more likely that CXCL8 was activated in M81-infected B cells by the 

innate immune response. However, EBER is mainly located in the nucleus of infected 

cells and cannot a priori access restriction factors that are mainly located in the 

cytoplasm or in the endosome compartments. EBER has been reported to be 

incorporated in exosomes produced by infected cells (Ahmed et al., 2014). These 

subcellular organelles could access dendritic cells and activate TLR3 in the endosome 

(Iwakiri et al., 2009). We tested whether such a mechanism could also act in a 

paracrine manner. However, TLR3 is not expressed in B cells (Hanten et al., 2008). 

We canvassed a transcriptome of EBV-infected B cells and looked at the expression 

of TLR members expressed in the endosome. This analysis confirmed that while 
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TLR3 and TLR8 are hardly expressed in infected B cells, TLR7 is expressed in these 

cells, as previously reported (Hanten et al., 2008).  

We performed immunoblot analyses on exosomal fractions isolated from multiple 

LCLs supernatants with antibodies specific for CD63, an exosome marker (Wang et 

al., 2017). We found that the isolates indeed contained CD63 proteins and thus 

confirmed that the isolates contain exosomes (Fig. 3.23A). We also performed 

immunoblot analyses on exosomal fractions with antibodies specific for LMP1, and 

we found that LMP1 proteins can be detected in the exosomal fractions, as previously 

reported (Flanagan et al., 2003) (Fig. 3.23A). We measured EBER2 expression by 

qPCR in the exosomal preparations isolated form the same cell numbers and we found 

that EBER2 expression is 4 times lower in exosomes generated from cells infected 

with B95-8 compared to the cells infected with M81 (Fig. 3.23B). These results 

suggested that we successfully isolated exosomal fractions of B cells and these 

exosomes carry the EBER molecules. To learn whether EBER increases CXCL8 and 

BZLF1 production via exosomes, we assessed CXCL8 expression by ELISA in 

M81/∆E1+2 LCLs treated with exosomes isolated from multiple LCLs. We found that 

exosomal fractions of B cells infected with wild type M81 or M81/∆ZR that carry the 

EBER molecules are able to increase CXCL8 and BZLF1 production. However, 

exosomal fractions of B cells infected with M81/∆E1+2 or M81/∆E1+2/∆ZR that do 

not carry the EBER molecules are unable to do it.  

Exosomes from cells infected with B95-8 contained much less EBER than cells 

infected with M81 (Fig. 3.23B). However, the inability of B95-8 EBER2 to potentiate 

lytic replication could not be ascribed to a low production of EBER2, as incubation of 

a null EBER1+2 M81 LCL with large amounts of B95-8 exosomes had no influence 

on replication. On the other hand, exposure of cells with M81 exosomes at the level 
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found in B95-8 exosomes led to a weak potentiation of BZLF1 production. Thus, the 

inability of B95-8 exosomes to stimulate lytic replication can be ascribed to EBER2 

polymorphisms. 

We conclude that the M81 EBER molecules located in exosomes enhance CXCL8 

and BZLF1 production.  

(A)                                                                   (C) 

                

(B)          (D)                                                                                       

                               

         

Fig. 3.23  M81 EBER molecules located in exosomes enhance CXCL8 and 

BZLF1 production. (A) We performed immunoblot analyses on exosomal fractions 

isolated from R10 (medium only), M81/∆E1+2, M81 WT, B95-8 WT, 

M81/∆E1+2/∆ZR and M81/∆ZR LCLs supernatants with antibodies specific for 

CD63, LMP1, and actin. (B) We assessed EBER2 expression by qPCR in the 

exosomal fractions of B cells infected with M81, M81/∆ZR, and B95-8. The data are 

given relative to values obtained in LCLs generated with M81. Data is the mean of 
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three independent experiments ± SD. (C) We assessed CXCL8 expression by ELISA 

in M81/∆E1+2 LCLs after treatment with exosomes isolated from multiple LCLs. (D) 

We performed immunoblot analyses on these exosomes-treated-LCLs with antibodies 

specific for BZLF1 and actin. Fig. C and Fig. D represent three independent 

experiments. 

 

3.8.2 The EBER molecules can be visualized after exosome uptake by 

B cells 

The data gathered suggested that exosomes transferred the EBERs into the cells 

transformed by M81/∆E1+2. Exosomes are thought to be incorporated into their 

target cells via endocytosis (Mulcahy et al., 2014). Therefore, we exposed 

M81/∆E1+2 LCLs to exosomes from wild type M81 under conditions that inhibited 

(incubation at + 4°C), or stimulated endocytosis (incubation at + 37°C, inclusion of 

polybrene combined to centrifugation) and performed an in situ hybridization on the 

treated LCLs with an EBER-specific probe. This assay unequivocally revealed that 

EBER are incorporated into cells from exosomes and that the incorporation of EBER 

into cells increased in parallel with the conditions that enhance endocytosis (Fig. 

3.24). After cytocentrifugation in the presence of polybrene at 37°C at one hour, 40% 

of the treated cells had incorporated EBER to a level very close to wild type levels. 

Why some LCL cells are resistant to this type of endocytosis remains to be 

determined. This treatment also restored wild type levels of replication (Fig. 3.24). 

We also incubated a ∆EBER1+2 LCL with exosomes from wild type M81 LCLs 

without enhancers of endocytosis ether at 37°C or at 4°C. Only cells incubated at 

37°C with the exosomes showed accumulation of EBER molecules, albeit at much 
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lower levels that in the presence of endocytosis enhancers. Cells incubated at 4°C 

with the exosomes did not show any evidence of endocytosis. 

(A) 

 

(B) 

 

(C)  

 

Fig. 3.24  The EBER molecules can be visulized after exosome uptake by B cells. 

(A) We performed EBER staining in M81/∆E1+2 LCLs treated with exosomal 

fractions isolated from M81 WT LCLs supernatants in the presence of polybrene (6 

µg/ml) and spinoculation at 300 g for 1 h at 24°C. The cells were returned to the 

incubator for 3 h at 37°C. These pictures show an example of EBER staining. (B) We 

assessed CXCL8 expression by ELISA in M81/∆E1+2 LCLs after treatment with 

exosomes isolated from LCLs for 2 days and we performed immunoblot analyses on 

these exosomes-treated-LCLs with antibodies specific for BZLF1 and actin. Fig. B 
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represents three independent experiments. (C) This picture shows an example of 

BZLF1 immunofluorescence staining in M81/∆E1+2 LCLs after treatment with 

exosomes.  

3.8.3 Exosomes uptake is dose-dependent in B cells 

We then repeated the experiments with increasing amounts of exosomes and observed 

a clear dose-dependent relationship, although the maximum enhancement of lytic 

replication was reached at exosome concentrations lower than those observed in cells 

infected with wild type virus. We then compared EBER production in infected cells 

and in exosomes. Interestingly, there was a clear parallel between the level of EBER 

production in these two types of structures (Fig. 3.25A). Also there was a positive 

relationship between the quantity of exsomes applied to M81/∆E1+2 LCLs and the 

CXCL8 production levels (Fig. 3.25B).  

(A)                                                               (B) 

       

 

Fig. 3.25  Exosomes uptake is dose-dependent in B cells. (A) We assessed EBER 

expression in M81/∆E1+2 LCLs treated with different dose of exosomal fractions 

isolated from M81 WT LCLs. (B) We assessed CXCL8 expression by ELISA in 

exosome treated LCLs. This represents three independent experiments.  
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3.9 The impact of EBER2 on EBV lytic replication required 

a functional TLR7, a sensor of viral single-stranded RNA 

(ssRNA) 

 

3.9.1 Transcriptome data in EBV-infected B cells 

We concluded that exosomal fractions of B cells infected with wild type M81 that 

carries the EBER molecules are able to increase CXCL8 and BZLF1 production. The 

molecular mechanism by which M81 EBER2 induces CXCL8 expression needed to 

be clarified. Toll-like receptors (TLRs) are a class of proteins that play a key role in 

the innate immune system. TLR3, TLR7, and TLR8 can sense double-stranded RNA 

or single-stranded RNAs. According to our transcriptome data generated in M81 WT 

and B95-8 WT transformed LCLs, TLR7, a sensor of single-stranded RNA, is highly 

expressed after EBV infection. However, TLR3 and TLR8 are hardly expressed in 

these two types of EBV-transformed LCLs (Table 3.3), although TLR3 is expressed 

in T and NK cells. It is known that TLR7 is located in the endosome (Heil et al., 2003; 

Lee et al., 2003; Nishiya and DeFranco, 2004). Those observations indicate that in 

principle EBER might be able to activate signaling through TLR7 via exosomes and 

induce the production of cytokine CXCL8.  
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Table 3.3 Transcriptome data in M81 and B95-8 LCLs 

 

 

3.9.2 CXCL8 production is increased after TLR7 agonist treatment 

In an attempt to demonstrate that TLR7 is involved in the induction of CXCL8, we 

treated LCLs transformed by M81/∆E1+2 at 30-40 dpi by adding the TLR7 agonist 

Imiquimod to the culture medium for 36 hrs. We included DMSO-treated cells as 

controls. Cell culture supernatants were collected and analyzed for CXCL8 

production by ELISA. Cells were then washed twice with ice-cold PBS and submitted 

to protein analysis. We found that Imiquimod treatment can enhance CXCL8 

production and BZLF1 expression in M81/∆E1+2 LCLs (Fig. 3.26).  

 

                                                    

 

Fig. 3.26 CXCL8 production is increased after treatment with the TLR7 agonist. 

We assessed CXCL8 production by ELISA on LCLs transformed by M81/∆E1+2 
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after treating with the TLR7 agonist Imiquimod (5µg/ml) (left graph). The data shows 

the mean of three independent experiments ± SD. We performed immunoblot 

analyses on the LCLs with antibodies specific for BZLF1 and actin (middle picture). 

The middle picture shows one sample and the right graph represents three 

independent experiments.  

 

3.9.3 CXCL8 production is decreased after TRL7 antagonist 

treatment 

We then treated LCLs transformed by M81 WT by adding the TLR7 antagonist IRS 

661 to the culture medium for 72 hrs. IRS 661 consists of synthetic oligonucleotides 

with phosphorothioate backbones and it specifically targets TLR7 (Dominguez-Villar 

et al., 2015). We included Control-Oligos-treated cells as controls. Cell culture 

supernatants were collected and analyzed for CXCL8 production by ELISA. Cells 

were then washed twice with ice-cold PBS and submitted to protein analysis. We 

found that IRS 661 treatment can suppress CXCL8 production and BZLF1 expression 

in M81 WT LCLs (Fig. 3.27).  

From this series of results, we conclude that the impact of EBER2 on EBV lytic 

replication required a functional TLR7, a sensor of viral single-stranded RNA 

(ssRNA). 
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Fig. 3.27 CXCL8 production is decreased after treatment with the TLR7 

antagonist. We assessed CXCL8 expression by ELISA on LCLs transformed by M81 

wild type after treating with TLR7 antagonist IRS 661 (10 µM) (left graph). The data 

shows the mean of three independent experiments ± SD. We performed immunoblot 

analyses on IRS 661-treated-LCLs with antibodies specific for BZLF1 and actin 

(middle picture). The middle picture shows one sample and the right graph represents 

three independent experiments. 

 

3.9.4 Proposed Model 

In summary, we found that the number of cells in which lytic replication takes place 

is increased both in vitro and in vivo by the non-coding RNA EBER2, but not by its 

homolog on the B95-8 genome. These two EBER2 RNAs display a limited number of 

polymorphisms, some of which influence their half-life and expression levels. M81 

EBER2 modified the expression of a large number of cellular genes including 

CXCL8. This chemokine was able to compensate the absence of EBER2, suggesting 

that it represents the main target of this non-coding RNA. We found that the exosomal 

fraction of B cells infected with wild type M81 that carries the EBER molecules, are 

able to increase CXCL8 and BZLF1 production and thus partly complement the 

phenotype of B cells infected with a virus that lacks the EBER RNAs. The effect of 

EBER2 on EBV lytic replication required a functional TLR7, a sensor of viral single-

stranded RNA (ssRNA). Therefore, we propose a model in which EBERs are vehicled 

into the exosomal fraction of infected B cells to initiate lytic replication in a paracrine 

manner through CXCL8 secretion induced by TLR7 stimulation (Fig. 3.28). These 

results indicate that EBERs from a NPC-derived virus variant contribute to lytic 
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replication in B cells and activate production of a chemokine involved in 

carcinogenesis. 

 

 

Fig. 3.28 Working model. We propose a model in which EBERs are vehicled into 

the exosomal fraction of infected B cells to initiate lytic replication in a paracrine 

manner through CXCL8 secretion induced by TLR7 stimulation.  
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4 Discussion 

The Epstein-Barr virus (EBV) M81 strain was isolated from a carcinoma and induces 

potent spontaneous virus production in infected B cells. M81 lytic replication was 

found to induce chromosome instability, offering a direct link between both events. 

Thus, the study of the mechanisms that mediate M81’s ability to replicate is also 

important to study its oncogenic properties. We found that the non-coding RNA 

EBER2 potentiated lytic replication both in vitro and in vivo, but that this property 

was not shared by its homolog from the B95-8 EBV strain. M81 and B95-8 EBER2 

homologs displayed a limited number of polymorphisms, some of which influence 

their half-life and expression levels.  M81 EBER2 modified the expression of a large 

number of cellular genes including CXCL8. This chemokine was able to compensate 

the absence of EBER2, suggesting that it represents the main target of this non-coding 

RNA. We found that the exosomal fraction of B cells infected with wild type M81 

carries the EBER molecules and is able to increase CXCL8 and to launch virus 

production but that this effect required a functional TLR7, a sensor of viral single-

stranded RNA (ssRNA). Therefore, we propose a model in which EBERs are vehicled 

into the exosomal fraction of infected B cells to initiate lytic replication in a paracrine 

manner through CXCL8 secretion induced by TLR7 stimulation. These results 

indicate that M81 EBERs contribute to lytic replication in B cells and activate 

production of a chemokine involved in inflammation and carcinogenesis. 
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4.1 EBV strains derived from NPC carry a unique EBER2 

sequence 

The pathogenesis of NPC remains unclear. Biopsies of NPC show expression of the 

EBERs, EBNA1, and BART miRNAs, that is accompanied by weak and patchy 

expression of LMP1 and LMP2A/B. This form of EBV latency, also known as latency 

II, was subsequently found in cases of EBV-associated Hodgkin lymphoma (HL) 

(Young and Dawson, 2014). However, the expression of these viral products remains 

unsufficient to transform epithelial cells. 

EBV lytic replication is a major risk factor for the development of EBV-positive 

nasopharyngeal carcinoma (NPC). The geographical distribution of NPC is mainly 

but not entirely restricted to South East Asia (Busson et al., 2004). What causes this 

distribution in disease incidence is unclear, although the age at which EBV infection 

takes place, environmental factors such as food contaminations with nitrosamines and 

phorbol esters or smoking, are all known to play an important role (Hsu and Glaser, 

2000; Hsu et al., 2009; Jia and Qin, 2012; Yu and Yuan, 2002). The genetic 

background of the affected individuals has also been invoked to explain this puzzling 

phenomenon (Hildesheim et al., 1997; Li et al., 2009; Lu et al., 1990; Ung et al., 

1999). Another nonexclusive hypothesis is that the occurrence of these diseases 

reflects the existence of multiple virus subtypes that are endowed with different 

properties but are found only in restricted geographic areas. Strong evidence for 

genetic polymorphisms between EBV isolates has been garnered from partial or total 

sequencing of multiple viruses from all over the world (Feederle et al., 2015).  

By performing alignments in 172 EBV genomes, we found that EBV strains from 

NPC, frequently carry EBER2 polymorphisms that differs from the EBV strains 

derived from benign and tumor lesions such as Burkitt’s lymphomas (BL) and gastric 
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carcinomas (GC). This suggests that NPC strains carry unique EBER2 sequences. 

EBER recombinants have been engineered and introduced into host B-lymphocytes. 

All these observations indicate that M81 EBER2 derived from NPC might have 

unique functions. M81 EBER2 polymorphisms influenced multiple parameters 

including half-life and expression levels. Therefore, we think that the EBER2 RNA 

might play an important role in the development of NPC through its role on lytic 

replication.  

 

4.2 Functional analysis of EBERs in lytic replication in vitro 

and in vivo  

The functions served by the EBERs in the infected cells have been controversially 

discussed since their identification. Early papers found that deletion of the EBERs 

does not influence lytic replication in a model of replication induced by TPA 

(Swaminathan et al., 1991). More recently, EBER2 has been proposed to increase 

lytic replication. Lee et al reported that knockdown of EBER2 decreases EBV lytic 

replication in replication-permissive EBV-positive cell line HH514-16 with sodium 

butyrate. Interestingly, EBER2 knockdown did not affect the expression of BZLF1 

that is important for the initiation of lytic replication (Lee et al., 2015). Thus, the 

effects described in this paper are not related to our own results. 

We used a model of spontaneous lytic replication combined to knockout viruses from 

two viral strains lacking the EBERs in primary B cells to analyze their impact on lytic 

replication. We concluded that M81 EBER2, but not B95-8 EBER2, increases the 

frequency of lytic replication initiation in infected B cells, although some degree of 

lytic replication remained visible in cells infected with the mutant virus. It is 
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important to note that the EBERs only amplify spontaneous lytic replication but do 

not initiate it, a finding in line with the observation that cells infected with 

M81/∆E1+2 still show some degree of lytic replication. The positive contribution of 

EBER2 to M81 replication could be confirmed by complementation assays. Here we 

found that transfection of the M81 EBERs, but not of the B95-8 EBERs, restored 

BZLF1 expression in B cells infected with the M81/∆E1+2 mutant.  

M81 EBER2 possesses unique polymorphisms but M81-infected cells also express 

this non-coding RNA at much higher levels than cells infected with other virus 

strains. Thus, both the quantity and the sequence of the M81 EBER2 might explain its 

ability to boost replication. However, complementation of the M81/∆E1+2 mutant 

with either M81 and B95-8 EBERs cloned under an inducible promoter led to nearly 

similar expression levels. Because the B95-8 EBER2 did not complement 

M81/∆E1+2 efficiently despite being expressed at the same levels as M81 EBER2, 

this suggests that polymorphisms between both types of EBERs rather than 

differences in expression levels explain the differences between the viral isolates. 

However, this does not mean that the high levels of EBER expression in M81 plays 

no role in the amplification of replication. Indeed, the increase in lytic replication 

induced by the M81 EBER2 is dose-dependent. We also evaluated the role played by 

EBER in the control of lytic replication using an in vivo model of EBV infection and 

injected resting B cells exposed to M81/∆E1+2 or M81/∆E1+2 Rev viruses to into 

immuno-suppressed NSG mice. We found that mice infected with the M81/∆E1+2 

mutant also showed a reduction in expression of the lytic proteins as reported in vitro. 

We conclude that the non-coding RNA EBER2 potentiated lytic replication both in 

vitro and in vivo in a mice model.  
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The larger amounts of EBER present in M81-infected cells could partly be ascribed to 

an increased half life of the M81, relative to B95-8 EBER2. Four of the M81-specific 

polymophisms explain this differential behavior and mutation of any of these sites 

clearly modifies the abundance of the non-coding RNA. However, we also found that 

the replicating cells themselves produce very large amounts of EBERs. Indeed, 

induction of lytic replication through transfection of BZLF1 massively increases the 

amount of EBER2, and to a lower extent of EBER1, produced in the cells. A previous 

paper reported that EBER-1 and EBER-2 were downregulated during the switch to 

lytic viral replication (Greifenegger et al., 1998).  In contrast, another paper reported 

that EBER1 and EBER2 were upregulated in Akata cell line following IgG cross-

linking-induced replication (Yuan et al., 2006). These discrepancies could be 

explained by the different experimental systems used in the different studies.  

It remains unclear at this point whether the BZLF1 protein directly transactivates the 

promoter elements of the EBER RNAs or indirectly incluence some viral or cellular 

proteins that play a role in the EBER expression. Although only few cells undergo 

lytic replication, the massive production of EBER by these cells is likely to influence 

the global EBER production of the infected cell population. Thus, multiple 

mechanisms converge to explain the high levels of EBER2 production in M81-

infected cells.   

We currently do not know how the M81 EBER2 polymorphisms render the molecule 

active. We know that they influence the half-life and thus the global production of 

EBER2. Furthermore, they might influence the global structure of the EBER2 RNA 

or modify the multiple RNA-protein interactions of EBER2 that were presented in the 

introduction. It is interesting to note that the EBER2 polymorphisms are located in a 
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region of the molecule that has previously been found to interact with the terminal 

repeats of the viral DNA molecule (Please see paragraph 4.4). 

 

4.3 M81 EBER2 amplifies CXCL8 through TLR7 to 

promote lytic replication 

Using a RNA microarray analysis and a Human Cytokine Array, we found that M81 

EBER2 induces the expression of CXCL8 in infected cells, a chemokine that 

stimulates the intensity of replication in infected cells. This effect was specific to the 

M81 EBER2 molecule and not shared with its B95-8 homolog and this probably 

explains why only M81 EBER2 potentiated lytic replication but not by B95-8 

EBER2. CXCL8 is a chemokine that is secreted as a result of an activation of the 

immune system, including its innate branch. We searched for mechanisms that could 

link EBER and CXCL8 production. Because lytic replication takes place in infected B 

cells in the absence of T cells or other members of the adaptive immune response, we 

deemed it more likely that CXCL8 was activated in M81-infected B cells by the 

innate immune response. However, EBER is mainly located in the nucleus of infected 

cells and cannot a priori access restriction factors that are mainly located in the 

cytoplasm or in the endosome compartments. EBER has been reported to be 

incorporated in exosomes produced by infected cells (Ahmed et al., 2014). These 

subcellular organelles could access dendritic cells and activate TLR3 in the endosome 

(Iwakiri et al., 2009). 

We tested whether such a mechanism could also act in a paracrine manner. However, 

TLR3 is not expressed in B cells. We canvassed a transcriptome of EBV-infected B 

cells and looked at the expression of TLR members expressed in the endosome. This 
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analysis confirmed that while TLR3 and TLR8 are hardly expressed in infected B 

cells, TLR7 is expressed in these cells, as previously reported (Hanten et al., 2008).  

We found that the effect of EBER2 on lytic replication via CXCL8 stimulation could 

be reproduced by exposing infected cells to exosomes from LCLs infected with wild 

type M81 virus, a subcellular structure that was previously identified by several 

authors to contain EBERs in association with the La protein (Iwakiri et al., 2009). 

Extracellular EBERs were previously found to activate TLR3 in NK cells and in T 

cells, leading to the release of IFN beta and gamma, together with TNF alpha (Iwakiri 

et al., 2009). We could not identify such an effect in M81-infected B cells that neither 

express TLR3, nor secrete these latter cytokines. A major difference between the 

present and the published experimental systems is that the latter used transfected 

EBER molecules that are likely to reach cytoplasmic structures where they could 

induce signaling, e.g. after recognition by RIG-I, although EBERs are typically 

nuclear in location. Instead we found a link between EBER, CXCL8 expression and 

TLR7 activation. TLR7 is located in the cellular endosome and its expression is up 

regulated by the EBV infection (Martin et al., 2007). The results of the cytokine array 

and of the transcriptome analysis make us confident that the positive impact of 

EBERs on cytokines in LCLs infected by M81 is limited to CXCL8 and that TLR7 is 

implicated in that process. We could show that the EBER complex contained in the 

exosomes is sufficient to include CXCL8 expression and lytic replication, although it 

remains possible that EBER2 also accesses infected cells through another route. 

Similarly, M81 EBER2 might also interact with cellular PAMPs other than TLR7. It 

is interesting to note that lytic replication itself strongly enhances EBER production 

within replicating cells. This increased production might enhance the total 

concentration of EBER in exosomes of the extracellular milieu and contribute to the 
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induction of lytic replication in neighboring cells, thereby building a self-reinforcing 

positive loop.  

Interestingly, we found that the effect of EBER2 on lytic replication via CXCL8 

stimulation could not be reproduced by exposing infected cells to exosomes from 

LCLs infected with wild type B95-8 virus.  

Researchers reported that guanosine (G)- and uridine (U)-rich ssRNA 

oligonucleotides derived from human immunodeficiency virus-1 (HIV-1) stimulate 

dendritic cells (DC) and macrophages to secrete interferon-α  and proinflammatory, as 

well as regulatory cytokines. These data suggest that ssRNA represents a 

physiological ligand for TLR7 and TLR8 (Heil et al., 2004). Forsbach et al then 

identified GU-rich Oligoribonucleotides (ORNs) as TLR7/8 RNA ligands that 

stimulate human TLR7 and TLR8 immune responses (Forsbach et al., 2008).  

We reported that M81 carries EBER2 polymorphisms that generate a GU-rich 

sequence. Whether these EBER2 polymorphisms influence the TLR7 recognization is 

currently under investigation.  

We conclude from this set of data that the non-coding RNA M81 EBER2 induced 

inflammation in a paracrine manner to enhance virus production. However, it is 

important to note that cells undergoing lytic replication remain a minority, although 

all cells are in contact with exosomes, demonstrating that additional mechanisms that 

negatively control lytic replication exist. We found one of these mechanisms, as only 

40% of cells incorporate EBERs, presumably because they actively block endocytosis 

of EBER-containing exosomes. These observations have important consequences for 

the pathogenesis of EBV-associated tumors. Elevated chronic CXCL8 production is a 

well-established cancer risk. Furthermore, carcinoma cells from nasopharyngeal 

carcinoma cells that are infected with the Epstein-Barr virus frequently express high 
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levels of CXCL8. This identifies a second M81-specific oncogenic trait after the 

ability of the M81 particles to induce centrosome overduplication. 

 

4.4 Interplay between LMP1/2 and the EBER RNAs 

EBER2 has previously been implicated in the lytic replication induced by sodium 

butyrate in the Burkitt’s lymphoma cell line HH514, although the precise role of 

EBER2 in this process is not clear from this study. The authors found that EBER2 

facilitates recruitment of PAX5 to the LMP1 and LMP2 transcripts through RNA-

RNA association between EBER2 and the terminal repeats sequences found in the 

5’UTR of the viral latent proteins. This interaction was suggested to facilitate DNA 

replication, although the precise mechanism that underlies this function remains 

unknown (Lee et al., 2015). There are many differences between this study and the 

currently presented. First, we could not gather any evidence that EBER2 influences 

transcription of M81 LMP1 and LMP2.  These transcripts varied in amplitude over a 

period of 3 months and were actually expressed slightly more in cells infected with 

the ∆EBER knockout. However, it is interesting to note that we observed such an 

effect in cells infected with B95-8, suggesting another difference between B95-8 and 

M81. It is noteworthy that the four polymorphisms that characterize M81 EBER2 are 

located in the EBER region that were found to interact with the terminal repeats, 

thereby possibly explaining the absence of modification of LMP1 and 2 transcription 

in cells infected with M81/∆EBER1+2. Although LMP1 and LMP2 transcription is 

mildly up regulated in cells infected with B95-8/∆EBER, this deletion had no effect 

on the rate of lytic replication in infected cells as cells remained non-permissive to 

lytic replication. Thus, the effects of EBER2 on lytic replication described in the 

study by Lee et al. are distinct from those reported in the present study. The cellular 
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background might also play a role in the effect served by EBER2.  Earlier studies 

found that the deletion of EBER2 had no influence on the lytic replication of primary 

B cells transformed with an EBER-null virus constructed on the basis of P3HR1 and 

induced with TPA (Swaminathan et al., 1991). Therefore, the EBER deletion has a 

different effect in transformed B cells and in Burkitt’s lymphoma B cells. 

 

4.5 The relationship between CXCL8 and NPC 

Nasopharyngeal carcinoma (NPC) has a high incidence rate in southern China and 

southeast Asia. Among head and neck cancers, NPC has the highest metastasis rate 

(Ahmad and Stefani, 1986; Lee et al., 1993): at the time of diagnosis: 74.5% of 

patients present with regional lymph node metastasis and 19.9% present with distant 

metastasis (Huang et al., 1996; Wei and Mok, 2007). Distant metastasis is therefore 

the major cause of treatment failure, although NPC is sensitive to radio-therapy.  

Epstein-Barr virus infection has been closely linked to NPC (Dong et al., 2012; Ji et 

al., 2011; Liang et al., 2012). It has been observed that CXCL8 expression in NPC 

cells can also be induced by Epstein–Barr virus proteins (Hsu et al., 2008; Ren et al., 

2004; Yoshizaki et al., 2001). Here, we have identified that CXCL8 expression in B 

cells can be enhanced by EBV-encoded RNAs.  

Previous papers report that CXCL8 serves as an independent prognostic indicator of 

overall survival, disease-free survival, and metastasis-free survival for patients with 

NPC. CXCL8 promotes NPC metastasis via autocrine and paracrine means, involving 

activation of AKT signaling and inducing EMT in NPC cells (Liu et al., 2012). 

Our study suggests that drugs against CXCL8 receptor could be firstly tested in mice 

model and in case of success could possibly be tested in clinical trials.  
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