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SUMMARY 

Pluripotent stem cells are considered a prime source of cells for regenerative therapies and gene therapy 

applications because of their extensive proliferation, the potential for self-renewal and their capability 

for multi-lineage differentiation. A great advantage of induced pluripotent stem cells (iPSCs) is their 

derivation from a patient’s somatic cells, which can be isolated using non-invasive techniques, thus 

eliminating not only ethical concerns associated with embryonic stem cells but also the risk of immune 

rejection. Therefore, iPSCs are an attractive tool for personalised medicine, drug screening and to 

generate disease models. Typically, the modification of pluripotent cells is done by using integrating 

viral vectors. Although vectors based on modified viruses are unquestionably the most effective gene 

delivery systems in use today, their efficacy at gene transfer is, however, tempered by their potential 

integration and genotoxicity. Non-viral DNA vectors are attractive alternatives to viral gene delivery 

systems because of their low toxicity, relatively easy production and great versatility. However, their 

efficiency is still regarded as below the requirements for realistic in vivo gene therapy due to deficient 

delivery exacerbated by the merely transient gene expression of plasmid DNA in vivo.  

Thus, the development of safer, more efficient and easily and economically prepared persistently 

expressing genetic vectors remains one of the main strategic tasks of gene therapy research and is the 

crucial prerequisite for its successful clinical application. An ideal vector for the genetic modification 

of cells should deliver sustainable therapeutic levels of gene expression without compromising the 

viability of the host in any way. Permanently maintained, episomal and autonomously replicating DNA 

vectors, which comprise entirely human elements, might provide the most suitable method for 

achieving these goals.  

This thesis presents the development of a non-viral, non-integrating and autonomously replicating 

DNA vector system based on the use of a Scaffold Matrix Associated Region (S/MAR), for the persistent 

genetic modification of differentiating and dividing cells, including but not limited to murine and 

human Stem Cells (SCs). Although this DNA Vector is among the best of its class, one of its limitations 

is that as it is produced in bacteria it comprises a large proportion of bacterial sequences which are 

unnecessary and undesirable for clinical application. Accordingly, the vector system has been refined, 

updated and all aspects of its functionality have been improved whilst also reducing its impact on cells 

following its delivery, resulting in higher levels of more sustained expression than previous versions. 

Molecular and genetic analysis of S/MAR-labelled cells revealed that the vectors are kept at low copy 
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numbers, are present in their episomal forms and do not modify or genetically damage the cells or their 

progeny, as the cells fully retain their pluripotent capabilities and are able to generate chimeric mice.  

This new vector system is also used to generate iPSCs from murine or patient-derived fibroblasts.  

For the first time, this work shows that genetic modification with this DNA vector system provides 

robust transgene expression which is sustained through the reprogramming and differentiation process 

in vitro and in vivo.  
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ZUSAMMENFASSUNG 

Pluripotente Stammzelllen werden wegen ihres beträchtlichen Wachstums, ihrer Fähigkeit der 

Selbsterneuerung und ihrem Vermögen sich in verschiedene Linien zu differenzieren als wichtigste 

Zellquelle für regenerative Therapien und Gentherapie-Anwendungen angesehen. Ein großer Vorteil 

von induzierten pluripotenten Stammzellen (iPSZ/iPSCs) ist, dass sie von einer somatischen Zelle 

eines Patienten stammen, welche durch nicht-invasive Methoden isoliert werden können. Daher 

werden mit ihrer Hilfe nicht nur das Risiko einer Immunabstoßung, sondern auch ethische Bedenken, 

welche mit embryonalen Stammzellen einhergehen, umgangen. Aufgrund dessen sind iPSCs attraktive 

Werkzeuge für die personalisierte Medizin, Medikamentenscreens und für die Herstellung von 

Krankheitsmodellen. Üblicherweise werden pluripotente Zellen durch integrierende virale Vektoren 

verändert. Während Vektoren, die auf modifizierten Viren basieren zweifellos die effizientesten 

Übertragungssysteme heutzutage sind, wird der Vorteil ihrer Leistungsfähigkeit beim Gentransfer 

durch ihre potentielle Integrierung und Genotoxizität gemindert. Nicht-virale DNA Vektoren sind 

aufgrund ihrer geringen Toxizität, relativ leichter Herstellung und großer Vielseitigkeit attraktive 

Alternativen zu viralen Gentransport-Systemen. Allerdings wird ihre Effizienz aufgrund von 

unzureichender Lieferung und obendrein lediglich transienter Genexpression von Plasmid DNA in vivo 

immer noch als zu gering erachtet um für realistische in vivo Gentherapie in Frage zu kommen.  

Daher bleibt die Entwicklung von sichereren, effizienteren und leichter und wirtschaftlicher 

hergestellten anhaltend exprimierenden Genvektoren eine der strategischen Hauptaufgaben der 

Gentherapie-Forschung und ist eine wesentliche Voraussetzung für ihre erfolgreiche klinische 

Anwendung. Ein idealer Vektor für die genetische Veränderung von Zellen sollte nachhaltige 

therapeutische Mengen an Genexpression liefern, ohne die Viabilität der Wirtszelle in irgendeiner 

Form zu beeinträchtigen. Dauerhaft erhaltene, episomale und autonom replizierende DNA Vektoren 

welche ausschließlich humane Elemente enthalten, könnten die geeignetste Methode sein um dieses 

Ziel zu erreichen.  

Diese Arbeit zeigt die Entwicklung eines nicht-viralen, nicht-integrierenden und autonom 

replizierenden DNA Vektoren Systems, welches auf der Verwendung einer Scaffold Matrix Associated 

Region (S/MAR) basiert, für die beständige genetische Modifizierung von sich differenzierenden und 

sich teilenden Zellen, einschließlich, aber nicht beschränkt auf murine und humane Stammzellen 

(SZ/SCs). Obwohl dieser DNA Vektor einer der Besten seiner Art ist, ist eine seiner Limitierungen, 
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dass er aufgrund seiner Produktion in Bakterien zu einem Großteil aus bakteriellen Sequenzen besteht 

welche für die klinische Anwendung unnötig und nicht wünschenswert sind. Dementsprechend wurde 

das Vektorensystem verfeinert, aktualisiert und alle Aspekte seiner Funktionalität verbessert, während 

sein Einfluss auf die Zellen nach dem Transport reduziert wurde, was im Vergleich zu früheren 

Versionen in höheren Levels von nachhaltigerer Expression resultierte. Molekulare und genetische 

Analysen von S/MAR-gelabelten Zellen haben gezeigt, dass die Vektoren in niedriger Kopienzahl 

behalten werden, in ihrer episomalen Form vorliegen und die Zellen und ihre Nachfolger nicht 

verändern oder genetisch beschädigen. Das neue Vektorensystem wurde außerdem verwendet um 

iPSCs aus murinen oder Patientenfibroblasten zu generieren.  

Diese Arbeit zeigt zum ersten Mal, dass die genetische Modifizierung mit diesem DNA Vektorensystem 

robuste Transgenexpression liefert, welche während des gesamten Reprogrammierungs- und 

Differenzierungsprozess in vitro und in vivo aufrechterhalten bleibt.  
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1. INTRODUCTION 

1.1 Overview  

One of the ultimate goals of gene and cell therapy is the development of safer, more efficient and easily 

and economically prepared persistently expressing genetic vectors. An ideal vector for the genetic 

modification of cells should deliver sustainable therapeutic levels of gene expression without 

compromising the viability of the host cell in any way. Integrating vectors have been the most effective 

and most commonly used gene delivery tool in the past years. They reached a success peak in the field 

of gene therapy in 2017, with 671 clinical trials [1] and the approval of gene therapy drugs for the 

correction of degenerative eye diseases (Luxturna) or cancer (Kymriah and Yescarta) [2, 3], among others. 

However, their efficacy is tempered by their potential integration [4] and genotoxicity [5 - 6]. 

Alternatively, non-viral DNA vectors are attractive alternatives to viral gene delivery systems because of 

their lower toxicity, relatively easy production and great versatility [7 - 8]. However, their deficient 

delivery and merely transient gene expression of plasmid DNA in vivo [9] hampers their suitability for 

gene therapy applications. 

In this thesis, we aimed to develop an episomal DNA vector system based on entirely human elements 

which can persistently genetically modify differentiating cells without toxicity and without altering the 

cells’ capabilities. This vector system can be used as a safer alternative to viral vectors for the genetic 

modification of stem cells or derivation of patients’ somatic cells for therapeutic purposes. 
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1.2 Genetic modification of cells 

The genetic modification of cells consists of introducing, replacing or removing genetic information 

to improve or to generate new characteristics. For example, DNA is delivered into cells with the purpose 

of creating a specific feature (transgenesis) or using a gene as a drug to treat a disease (gene therapy). 

Genetic modification has several applications in the fields of medicine, industry, agriculture and 

research, and can be applied in a wide range of plants, animals and microorganisms. This is done by 

isolating and cloning a particular gene of interest (GOI) that produces a particular characteristic into a 

vector, which shuttles the genetic information into the cell. Although there are several mechanisms by 

which cells can be modified, there is no vector able to modify cells, yielding high levels of persistent 

expression and that has minimal (if not any) effect on the modified cells. 

1.2.1 Applications of genetic modification 

There are several fields in which genetic modification has important applications. Particularly pertinent 

for this study are applications in medicine and research, especially for the generation of transgenic 

models and for gene therapy purposes. Some relevant applications are summarised in Table 1. 

Table 1: Applications of genetic modification 

Field Application Examples References 
Medicine Drug manufacturing Recombinant insulin, 

hormones 
Goeddel et al., 1979. [10] 

Hybridomas Monoclonal antibodies Roque et al., 2004 [11] 
Chimeric antigen 

receptors 
CAR-T cells Han and Kwon, 2018 [12] 

Pre-clinical models: 
genetically modified 

mice 

Study of obesity, cancer, 
diabetes, ageing, 

degenerative diseases 

Palmiter, 1982 [13] 

Gene Therapy X-linked SCID 
Leukaemia, Parkinson, 
degenerative diseases 

Fischer et al,. 2010 [14] 
Black et al,.2014 [15] 

Cereso et al., 2014 [16] 
Geiselhart et al., 2012 [17] 

Milsom and Williams, 2010 [18] 
Research Transgenic models: 

Genetically modified 
mice 

Gain of function (knock-in) Alberts, 2008 [19] 
https://www.genome.gov/12514551/ 

 
 

Loss of function (knock-
out) 

Tracking/labelling 
Industry Protein production Insulin, hormones Rosano and Ceccarelli, 2014 [20] 

Vaccine production  Ihssen et al., 2010 [21] 
Biofuels  Koppolu and Vasigala, 2016 [22] 

Agriculture Genetically modified 
crops 

Herbicide resistance, 
stress resistance 

Punja, 2001 [23] 

Genetically modified 
livestock 

Drug and protein 
production 

Krimpenfort 1991 [24] 
Lai,2006 [25] 
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1.2.2 Types of genetic modification 

There are three possible ways in which genetic information can be modified: either by introducing 

additional information (gene supplementation, gene editing), by deleting or changing endogenous 

DNA sequences (gene editing); or by interfering with gene expression, either at the transcriptional or 

post-transcriptional level (gene interference). Regardless of the modification performed, the genetic 

material, which can be integrated or be kept extrachromosomal, needs to be delivered into the cell via 

gene delivery mechanisms, which are discussed below. 

1.2.2.1 Gene supplementation 

Gene supplementation consists of introducing additional genetic information into a cell. Many clinical 

trials have been focused on treating monogenic diseases by delivering the correct version of a mutated 

gene. For example, correct expression of FancA was sufficient to restore a functional DNA repair 

pathway in Fanconi Anaemia patients [26] and the introduction of FancC rescued the diseased 

phenotype in mice [27]. Likewise, the addition of Rep1 was sufficient to rescue the progressive eye 

degeneration caused in Choroideremia patients, suffering from an X-linked monogenic disorder 

affecting this gene [28 - 29]. However, the gene supplementation strategy does not influence correcting 

diseases caused by dominant negative mutations. In these particular cases, gene editing technologies 

allow more flexibility and offer a greater versatility to target altered genes resulting in deficient products.   

1.2.2.2 Gene editing 

Gene editing technology offers the possibility to add, delete and correct pre-existing genetic 

information. Editing techniques rely on nuclease-induced double-strand breaks (DSBs) that can be 

repaired via two mechanisms: 1) Nonhomologous end-joining (NHEJ) repair results in insertions or 

deletions (indels) of variable length at the site of DSB, which translates into disruption of pre-existing 

open reading frames (ORFs) and the ablation of the original genetic message. Alternatively,  

2) homology-directed repair (HRD) can be used to introduce specific sequence alterations in the 

presence of a homologous DNA template, that following homologous recombination, will insert a 

particular genetic change or a whole sequence in a specific genomic location.  

Genome editing mechanisms, first described in 2005, were based on engineered Zinc Finger Nucleases 

(ZFN), which could induce DSBs to a specific DNA target [30 - 31]. However, their complex engineering 

and customisation was the primary limiting factor for broader use. Later on, in 2009, the DNA binding 

domains of bacterial transcription activator-like effector nucleases (TALENs) also proved to modify a 
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desired DNA sequence efficiently [32]. However, a complex design of a specific pair of nucleases per 

DNA target was required. The latest improvement on gene editing technologies came in 2012 from the 

hand of Jinek et al., who showed that the bacterial ‘immune system’ based on clustered regularly 

interspaced palindromic repeats (CRISPR) and the endonuclease Cas9, could specifically cut DNA 

sequences when a specific complementary short guide RNA (gRNA) was present [33]. 

Genome editing techniques overcome some of the leading safety issues, such as the genotoxicity due to 

random or semi-random integration, the dysregulation of nearby proto-oncogenes, the knock-out of 

tumour suppressor genes or aberrant splicing.  

1.2.2.3 Gene interference  

Genetic interference is based on the activity of interfering RNA (iRNA), initially described in 

Caenorhabditis elegans [34]. These effector molecules can interfere with gene expression at a 

transcriptional or post-transcriptional level. For example, siRNA are dsRNA molecules acting as 

transcriptional repressors via chromatin modifications [35 - 36]. Also, siRNA can be processed via the 

endoribonuclease DICER complex, resulting in single-stranded siRNA, which complementary binds to 

mRNA, recruits the RNA-induced silencing complex (RISC) and results in mRNA cleavage [37]. 

Another type of iRNA is microRNA, which is involved in regulating gene expression during 

development and differentiation [38]. Endogenous microRNAs are only partially complementary to 

mRNA and bind to their 3’ untranslated region (3’UTR), resulting in mRNA degradation and 

translational repression [39]. 

Because of the ability of iRNA to specifically and potentially knock down specific expression of a gene 

with a known sequence, they found their place in therapeutical applications. For example, iRNA have 

been used to treat viral infections [40], neurodegenerative disorders [41], cancer [42] and age-related 

macular degeneration [43]. Depending on the duration and desired intensity of knock-down activity, 

iRNA can be delivered using Lentivirus [44], Adenovirus or AAV [45]. Alternatively, iRNA can be 

delivered using non-viral methods, via complexation with chemical carriers to avoid RNAse  

degradation [46]. 
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1.2.3 Gene delivery systems 

Gene delivery is the process by which foreign genetic material is introduced into cells. The process can 

be physical (e.g. microinjection, hydrodynamic injection, electroporation or biolistics), chemical  

(e.g. lipid or polymer carriers) or biological (e.g. viral or non-viral vectors). Although they differ in 

mechanism, the common underlying principle of all gene delivery systems is that the genetic material 

needs to overcome a range of extra- and intra-cellular barriers. Examples of extracellular barriers are the 

cornified cells of the skin [47] and skin nucleases [48], nuclease degradation of the transgene when 

delivered intravenously [49] or intramuscularly [50], interaction with serum proteins [51] and 

extravasation from blood circulation [52]. Once the genetic material faces the target cell, it must cross 

a semipermeable cell membrane [53 - 54], survive endosomal degradation and cytoplasm environment  

[55] and ultimately reach the nucleus. Entry into the nucleus can be attained either by fusion to nuclear 

membrane, addition of nuclear localisation signals (NLS) or taking advantage of the temporary 

disruption of nuclear membrane during cell division [53, 56, 57]. Some of these barriers can be 

overcome by complexing DNA with polymers or lipids; or directly delivering it into the cytoplasm or 

nucleus (electroporation, nucleofection) [52]. 

Because of their efficiency in delivering genetic material and their variety of tropism, viruses are the 

most commonly used vector for cellular and gene therapy, constituting 67,4% of the current clinical 

trials [1] (Figure 1). However, they have limitations in the size of transgene they can accommodate, 

which in turn limits the control of genetic material they deliver. More importantly, their use leads to 

some safety concerns related to insertional mutagenesis [58], associated immune reactions [59, 61], and 

cytotoxicity [4]. Over the past years, considerable effort has been made in improving chemical and 

physical delivery methods by making gene delivery more efficient and safer [62]. A summary of different 

gene delivery systems is shown in Table 2. 
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Table 2: Gene delivery systems  
 

 Mechanism Advantages Disadvantages Examples 
Biological Transfer of genetic 

material through a 
natural viral infection 
pathway using 
replication-deficient 
viruses. 

• High transduction 
efficiency 

• Persistent 
transgene 
expression 

• Induction of immune 
responses 

• Insertional 
mutagenesis 
(oncogenesis) 

• High production costs 
• Size limitations 

• Integrative viruses 
• Lenti [63], [64] 

/retrovirus [63] 
• Non-integrative 

viruses (AAV, 
AdV…) [65] 

Chemical Transfer of genetic 
material complexed 
with lipid or 
polymer-based 
complexes through 
endocytosis. 
 

• Safer and cheaper 
to produce 

• Chemical 
modification of 
complexes allows 
targeted delivery 

• Effective in in vitro 
experiments 

• Short transgene 
expression 

• Low transfection 
efficiency 

• Low efficiency in non-
dividing cells 

• Lipofection [66] 
• PEI [67] 
• Poly-L-Lysine [68] 

Physical Physical transfer of 
genetic material 
through transient 
pores in the plasma 
membrane, created 
by mechanical and 
physical forces. 
 

• Effective in vitro and 
in vivo 

• Effective in dividing 
and non-dividing 
cells 

• Specific tissue 
transfection 

• Local tissue damage 
after application of 
physical/mechanical 
force 

• Requires specialised 
instruments 

• Optimised protocol 
and parameters are 
cell and tissue-specific. 

• Needle 
microinjection [69] 

• Biolistics/gene gun 
[70] 

• Electroporation [71] 
• Nucleofection [72] 
• Sonoporation [73] 
• Magnetofection [74] 
• Cell squeezeing [75] 

Adapted from [62] 

1.2.4 Delivery vectors  

Gene delivery is the process by which foreign genetic material is transferred into host cells with the help 

of a shuttle molecule called vector. Broadly, delivery vectors are categorised as viral or non-viral [76]. 

Viral vectors are extensively used due to their natural ability to infect cells and to deliver genetic 

material. However, their potential to integrate as well as the associated immune reactions raise safety 

concerns that limit their use [77]. Non-viral vectors are safer alternatives, although they face a delivery 

efficiency challenge due to their inherent hydrophilic nature, which results in complexation with 

delivery vehicles (cationic polymers or lipids) or forced entry via physical methods (electroporation, 

magnetofection) [78]. 

1.2.4.1 Viral vectors 

Viruses are very efficient vectors because their survival depends on their innate ability to infect cells, 

which they use as machinery for their expression. Because of their high transduction efficiencies and 

natural ability to infect and deliver genetic material into a cell nucleus, surpassing all cellular barriers, 

viral vectors became the most successful and extensively used delivery mechanism – representing 67,4% 

of the current clinical trials [1], as shown in Figure 1.  
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However, their immunogenicity and cytotoxicity limit their clinical application. For instance, 

integration close to proto-oncogenes or tumour suppressor genes leads to malignant transformation 

[58] and even patient death in clinical trials [6]. 

 

 

 

 

 

 

 

Figure 1: Current vectors used in gene therapy clinical trials 
 

Although viral genomes are modified to accommodate foreign genetic material by deleting regions 

responsible for viral replication and toxicity, strong systemic inflammatory responses following viral 

delivery have been observed [59]. These are mostly due to cytotoxic immune responses elicited by viral 

gene products or the transgene itself [61]; as well as humoral responses due to viral capsid proteins [60]. 

Currently, there are eight types of viruses that can be used as delivery vectors and are classified into two 

groups, depending on whether their genomes integrate into the host cell chromosomes; (γ-Retrovirus, 

Lentivirus) or persist as extrachromosomal entities (AdVs, AAVs, Sendai Virus, Herpes Virus, EBV, 

and Poxvirus). 

1.2.4.1.1 Viral	integrative	vectors	

The genetic material is encoded in a virus, which is delivered and integrated into the host cell genome. 

Although typically very efficient at transducing cells integrative vectors are potentially dangerous and 

their use raises safety concerns. They can cause cellular damage due to insertional mutagenesis [4] and 

its potential for malignant transformation, possibly via activation of neighbouring proto-oncogenes or 

inactivation of tumour-suppressor genes [58], which in some cases have led to patient deaths [5]. 

Additionally, they can induce silencing by de novo methylation of the inserted gene or neighbouring 

DNA [79, 80]. 
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• γ-Retrovirus  

γ-Retrovirus, such as Murine Leukemia Virus (MLV), are enveloped, single-stranded RNA (ssRNA) 

viruses that belong to the Retroviridae family. The genetic information is contained and encapsulated 

into a modified retroviral ssRNA genome, which cannot replicate [63, 81], and must necessarily be 

retrotranscribed into cDNA before integration. Retroviruses transduce dividing cells with high 

efficiency. The main limitations of retroviruses are their small cloning capacity (8kb) and their inability 

to infect post-mitotic (non-dividing) cells, therefore limiting the spectrum of cells to target (e.g.: neurons, 

myocytes…). Also, they tend to integrate into regulatory regions (5’UTR) of the gene [82, 83], they can 

integrate in tandem, generating differential expression of the transgene. High titres are difficult to 

obtain [84].  

• Lentivirus 

Lentiviruses are a subclass of retrovirus, and they belong to the Retroviridae family. They are also 

enveloped ssRNA viruses but their incubation time is slower (Lente-, Latin for slow) and they can infect 

both dividing and non-dividing cells with high efficiency [85] but not quiescent cells [86]. They are less 

immunogenic than retrovirus but still stimulate the immune system via activation of TLR3 and  

TLR7 [87]. Their maximum loading capacity is 9kb, and they integrate randomly in coding regions of 

the genome [88]. However, directed mutations in the integrase gene resulted in impaired integration 

and existence of episomal forms [89]. 

1.2.4.1.2 Viral	non-integrative	vectors	

Other viral vectors can infect cells and remain as episomal DNA forms or as RNA molecules in  

the cytoplasm. 

• Adenovirus (AdV)  

Adenoviruses belong to the Adenoviridae family and are non-enveloped viruses with an icosahedral 

capsid and linear dsDNA genome. They can infect dividing and non-dividing cells with low host 

specificity, which makes them efficient at transducing almost all tissues. Their cloning capacity is similar 

to retroviruses (around 8kb), and they can be produced in high titres. AdV enter the cells by recognising 

widespread Coxsackie and Adenovirus receptors (CAR) and αv integrins [90], making it difficult to 

generate cell-specific adenoviral vectors. AdV rarely integrate into the genome but rather stay in their 

episomal form [91] and yield transient transgene expression. Their capsid mediates a high inflammatory 
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response, which has lead to severe side effects and patient deaths in clinical trials [59, 92, 93].  

Also, there is a pre-existing immunity against AdV5 since commonly infects humans [94]. 

• Adeno-associated virus (AAV)  

AAVs are small non-enveloped and non-pathogenic ssDNA or dsDNA (self-complementary) viruses 

belonging to the Parvoviridae family. Their productive infection takes place only in the presence of a 

helper virus, either Adenovirus (hence their name –associated) or Herpes virus [95]. In the absence of 

helper virus, AAV2 can integrate at specific parts of the genome and establish a latent infection [65]. 

Although AAV virus can specifically integrate to establish a latent infection, AAV-based vectors are 

designed to remain episomal, avoiding the risks associated with insertional mutagenesis. They can also 

infect dividing and non-dividing cells and persist episomally in the nucleus yielding strong transgene 

expression. AAV can infect a broad range of cells, and each serotype is cell-type specific, making them 

good candidates for gene therapy [96]. AAV infect cells by interacting with proteoglycans [97] and the 

internalisation is facilitated by interactions with αvß5 and αvß1 integrins [98, 99], FGFR1 [100], and 

laminin receptor [101]. Although rare, integration events are possible (e.g.: AAV2). Their cloning 

capacity is slightly smaller (4 - 5kb), and there is a pre-existing immunity against a range of  

serotypes [60, 65]. 

• Sendai Virus  

Sendai viruses (SeV) belong to the Paramyxoviridae family. They have negative ssRNA genomes around 

15Kb, without a DNA phase, and their replication takes place in the cytoplasm. They possess strong 

immunogenic potential and can persist in infected cells for long periods of time, making the removal 

of the viral particle rather complicated [102]. 

• Herpes Virus  

Herpes virus are enveloped viruses with an icosahedral capsid and a linear dsDNA genome. They belong 

to the Herpesviridae family. Upon infection, the viral genome is delivered to the nucleus where it remains 

episomal, although in rare events integration might occur. They can accommodate large transgenes 

(150kb) and are neurotropic, which makes them a suitable tool for gene delivery in neurons and 

nervous-related structures. They can be produced at high titres. There is a pre-existing immunity since 

herpes virus are the cause of the widely spread cold-sores [103]. 
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• Epstein-Barr Virus (EBV) 

Epstein-Barr is also an enveloped 170Kb dsDNA virus that belongs to the Herpesviridae family.  

They have a tropism for B-cells [104]. Upon infection, they persist episomally in the nucleus and deliver 

long-term expression of the transgene [105]. However, adaptative immunity develops after infection, 

and they have oncogenic potential [106]. 

• Poxvirus (Vacciniavirus)� 

Poxviruses are large, enveloped, linear dsDNA viruses that belong to the Poxviridae family. They replicate 

in the cytoplasm by using virally encoded polymerases to replicate and transcribe [107], which yield 

high levels of cytoplasmic transgene expression. Their cloning capacity is larger than Retrovirus (25kb), 

which makes them a very attractive tool for gene delivery. Although not naturally integrative, 

recombinant vaccinia vectors are engineered to insert the transgene into the genome via direct site-

specific recombination [108]. However, their biology and structure is complex and therefore, they are 

not so extensively used as gene delivery tools [109].  

 

Figure 2: Schematic depiction of most commonly used viral based vectors and their integration potential 
Engineered retroviral vectors and adeno-associated viruses (AAV) are the most widely used vectors to provide long-term transgene 
expression in modified cells. Although efficient, their use is hampered by potential risks such as integration, transgene silencing or 
immunogenicity. Non-integrative Adenovirus or Sendai Virus are safer, but their transgene expression is transient.  
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1.2.4.2 Non-Viral vectors 

Because of the significant safety concerns associated with viral vectors and the inherent size limitation 

of accommodating genetic material into a protein capsid, much effort has been invested towards the 

development of non-viral systems for gene delivery. Non-viral vectors are designed via basic molecular 

engineering to deliver larger payloads of genetic material, providing flexibility in the size of the 

transgene, as well as allowing better control of expression due to the incorporation of regulatory 

sequences. Additional to their decreased pathogenicity and reduced immunotoxicity as compared to 

viral vectors, non-viral systems are easier and cheaper to produce on a large scale. 

Although plasmids can deliver large amounts of genetic content, and they are much less immunogenic, 

their delivery efficiency is lower than that of viral vectors because of their difficulty to surpass multiple 

cell barriers [52]. While viruses have evolved to deliver genetic material into host cells proficiently, non-

viral vectors have to overcome each physical and physiological obstacle in a cell. When delivered in vivo, 

they have to survive a hostile plasma environment, including shear forces, degrading enzymes and 

interaction with plasma proteins and antibodies. Then, non-viral vectors still have to retain their ability 

to cross the cell membrane, resist cytoplasmic degradation and pass through the double nuclear 

membrane to reach the nucleus (reviewed in [52]). Also, because of their large size and hydrophilic 

nature, the cells prevent DNA entry through negatively charged membranes. Therefore, much effort is 

invested in developing techniques to increase the vectors’ delivery efficiency via physical delivery or 

complexation with chemical carriers (Section 1.2.2). 

1.2.4.2.1 Non-viral	integrative	vectors	

• Excisable systems  

Excisable systems introduce, invert or release a specific sequence or gene of interest (GOI) into/from a 

certain genomic locus. The excision takes place at homologous regions that flank the GOI. There are 

currently four systems described: 1) The λ integrase [110], 2) Cre/LoxP system [111], 3) the Flp/FRT 

system [112] and 4) the φC31 recombinase [113]. Some disadvantages of excisable systems are the DNA 

foot-print or genomic ‘scar’ left on the genome upon excision and the need of administrating the 

recombinase enzyme separately to excise the desired genes at specific time points. 
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• Transposons 

Transposable elements or transposons are DNA sequences that can change their position within the 

genome (Nobel prize Barbara Mcclintock 1983, [114]). This jumping elements often result in 

duplication of the same genetic material. A commonly used transposon system is the Sleeping Beauty 

transposon, which is a synthetic transposase reconstructed from extinct transposase sequences from 

salmon [115]. Although transposons are efficient and deliver long-term expression of the transgene, 

they can be considered mutagenic as they can be inserted into functional genes or into regulatory 

regions, disrupting normal gene expression. 

1.2.4.2.2 Non-integrative	

• Plasmid DNA 

The simplest form of a non-integrative and non-viral vector is a naked plasmid DNA, which consists of 

a circular, dsDNA molecule different from the chromosomal DNA that usually remains in an 

extrachromosomal state. A conventional plasmid is composed of two modules: the expression cassette 

and the bacterial backbone. The mammalian expression cassette usually comprises an 

enhancer/promoter region, a 5’ untranslated region (5’UTR) including introns, and a transgene, which 

can be a reporter gene, therapeutic gene or any gene of interest followed by a polyadenylation tail.  

The bacterial backbone is composed of a bacterial origin of replication (ori) and an antibiotic resistance 

or a selectable marker for plasmid amplification in bacterial strains. However, plasmids have some 

inherent limitations. For example, the lack of mammalian replicative sequences results in transient 

expression of the transgene due to vector dilution [116]; and the recognition of unmethylated CpG of 

bacterial origin are hotspots for immune recognition [117]. Also, plasmids can break upon delivery, 

which could lead to rearrangements and integrations, although at a rate less than 10-5 stable 

integrants/transfected cell [118]. These limitations have led to modifications to satisfy the requirements 

for their clinical use [7], which resulted in increased use of DNA vectors in clinical trials (Figure 1).  

• Minicircles and miniplasmids 

Several studies suggest that decreasing the plasmid size improves transfection efficiency [119]. In 1997, 

Daraquet et al. used site-specific recombination to eliminate bacterial sequences from plasmids to turn 

them into minicircles [120]. Minicircles are small circular DNA molecules that are excised from a 

parental plasmid upon recombination, using the excision mechanisms mentioned above. They are 

devoid of bacterial sequences (ori and bacterial selection), which are left in the residual miniplasmid. 

Also, the reduction of bacterial unmethylated CpG content reduces the immunogenicity of the 
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vector [117]. However, the absence of bacterial backbone complicates the vector purification after 

recombination. Minicircles are not self-replicative, and they get lost in the host cell after few rounds of 

replication [7]. Overall, vectors devoid of bacterial sequences have better transfection efficiencies  

in vitro, ex vivo and in vivo [119], yield better levels of transgene expression [120] and are safer for  

clinical use. 

• Self-replicative episomal vectors 

Conventional non-viral episomal vectors cannot replicate their genomes, leading to dilution of the 

vector during cell division and transient expression of the transgene. To tackle this issue, replication-

driving sequences such as Epstein-Barr Nuclear Antigen 1 (EBNA-1) [105] or the SV40 large T antigen 

[121, 122], were added to plasmid DNA. These viral element-based vectors proved to be self-replicative 

and provided long-lasting transgene expression. Although not a virus per se, the EBNA-1 viral 

components have been associated with cellular transformation [123] in lymphocytes. 
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Table 3: Summary of viral and non-viral gene delivery  
 
Vector type Example Advantages Disadvantages 

Viral 

Integrative Retrovirus/ 
Lentivirus 

• High transduction efficiency 
• Long-term expression 
• Infect non-dividing cells 

(Lentivirus) 
 

• Small cloning capacity (8kb) 
• Infect only dividing cells 

(Retrovirus) 
• Insertion in tandems 
• Insertional mutagenesis 
• Oncogenic potential 

Non-
integrative 

Adenovirus (AdV) 

• Infects dividing and non-
dividing cells 

• Low host specificity 
(efficient transduction of 
most tissues) 

• High titres 

• Small cloning capacity (8kb) 
• Transient expression 
• Capsid mediates inflammatory 

response 
• Pre-existing immunity towards 

AdV5 

Adeno associated 
virus (AAV) 

• Infects dividing and non-
dividing cells 

• Less inflammatory 
• Strong transgene expression 

• Rare but possible integration 
events 

• Limited cloning capacity  
(4-5kb) 

• Complicated vector 
production 

• Pre-existing immunity against 
AAV2 

Sendai virus 

• RNA genome kept in the 
cytoplasm 

• Strong immunogenic potential 
• Long-term persistence after 

infection (labour-intensive 
particle removal) 

Herpes Virus 

• Large transgene capacity 
(150kb) 

• Neurotropism 
• Episomally maintained 
• High titres 

• Pre-existing immunity 
• Potential to integrate 

Epstein-Barr virus 
• Long-term expression 
• B-cell tropism 
• Episomally maintained 

• Adaptative immunity after 
infection 

• Oncogenic potential 

Poxvirus 

• High levels of transgene 
expression in the cytoplasm 

• Large cloning capacity 
(25kb) 

• Complex structure and 
biology 

• Risk of cytopathic effects 

Non-
viral 

Integrative 

Excisable systems 
(Cre/LoxP or 
Flp/FRT) 

• Insertion/removal of the 
flanked region at specific 
time points 

• DNA footprint or genomic 
scar upon excision 

• Separate administration of 
recombinase 

Transposons 
• High efficiency 
• Long-term expression 

• Random integration 
(mutagenic) 

• Genomic scar 

Non-
integrative 

Self-replicative 
episomal vectors 

• Self-replicative 
• Easy to manufacture 

• Longer expression might 
require repeated transfections 

Minicircles 
• Reduction in size 
• Elimination of bacterial 

sequences 

• Purification might be difficult 
• Short-term expression 
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1.3 Episomal vectors 

Lots of effort has been invested in developing more effective and safer vectors for gene delivery.  

While integrative vectors are widely used and highly efficient, their use is hampered by the risk of 

insertional mutagenesis [4] and genotoxicity [5, 6]. The use of non-viral vectors is safer and allows better 

flexibility on the size and design of the vector [124], although it compromises the efficiency of gene 

delivery [9, 52]. In general, non-viral and non-integrative (episomal) vectors are preferable, in particular 

for gene therapy, where the aim is to correct and treat patients whilst avoiding collateral damage caused 

by the therapeutic vector. However, their use for gene delivery is still regarded to be below requirements, 

mainly due to a lack of DNA development. While all the attention has been focused on improving 

both transfection efficiency and the amount of DNA that reaches the nucleus, less work has been done 

in developing the DNA sequence, configuration and elements that can improve the vector performance 

and unleash its potential.  

This chapter introduces and describes the use of non-integrative episomal vectors for gene delivery 

and highlights their advantages and disadvantages. It introduces the use of chromosomal elements, 

such as Scaffold Matrix Attachment Regions (S/MARs), to drive episomal maintenance and replication 

of DNA vectors while preventing epigenetic silencing and enhancing transgene expression. 

1.3.1 Advantages of episomal vectors 

There are several advantages inherent to non-integrative episomal vectors. Most importantly, they are 

potentially less toxic as they remain extrachromosomal thus eliminating the risk of insertional 

mutagenesis [125]. Their production is relatively easy, as they can be produced in bacterial strains such 

as E.coli [120, 126]. They are not subject to size constraints, allowing larger DNA payloads that would 

enable controlled modulation of gene expression. For instance, Lufino et al. delivered an iBAC vector 

based on an S/MAR motif coding for the 135kb locus of low-density lipoprotein receptor (LDL-R) 

using a high-insert capacity Herpes Simplex virus [124]. Additionally, episomal vectors usually persist 

in multiple copies per cell, as compared to integrative vectors, which integrate at one site/virus [127]. 

However, episomal vectors also have some significant limitations. 

1.3.2 Limitations of episomal vectors 

Their efficiency is still regarded to be below the requirements for realistic in vivo applications due to 

inefficient delivery [52, 119]; exacerbated by the typically transient gene expression of plasmid DNA  
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in vivo (reviewed in [128]). Once non-viral vectors are efficiently delivered into cells, one of the major 

obstacles is to maintain stable and persistent levels of transgene expression. Upon DNA delivery, 

transgene expression reaches a maximum peak after 12-48h and then it gradually decreases until its 

expression is barely detectable after a week, both in vitro and in vivo [116]. To improve and generate 

better DNA vectors, it is essential to understand the mechanisms by which vectors can lose expression 

of their transgenes. The reasons explaining the drop in transgene expression might be diverse. 

Vector damage following delivery can lead to DNA degradation, rearrangement or integration into the 

genome [129]. The DNA can also be lost due to dilution of vector copy numbers if no self-replicative 

mechanisms are incorporated into the plasmid (reviewed in [130]), promoter CpG methylation [131, 

132], DNA heterochromatinisation [133] or inflammatory responses to elements of the vector via 

activation of TLR9 [134, 135], which result in downregulation of expression at a post-transcriptional 

level [136, 137]. The expression of foreign proteins in circulation can induce an inflamed state, 

resulting in silencing of protein expression and removal of expressing cells [135, 138] to prevent the 

spread of ‘infection’. Also, modifying vectors derived from viruses or bacteria can be identified by both 

the adaptive and the innate immune systems of the target host [117], and these reactions can have a 

severe consequence on the efficacy of delivery and the host itself [135].  

1.3.2.1 Immune reactions towards the vector  

Both the delivery system as well as the DNA molecule can be immunogenic. For example, cationic 

polymers used to complex DNA molecules can elicit immune reactions when delivered in vivo [139], 

and DNA vectors can trigger immune responses upon recognition of high-density unmethylated CpG 

islands from bacterial origin [117]. Mammalian DNA contains 25 to 30% fewer CpG motifs than 

bacterial DNA and 80% of this mammalian sequences are found methylated. The presence of highly 

unmethylated bacterial CpG motifs is recognised by the Toll-like Receptor 9 (TLR-9) [134, 135], which 

in turn activates a cascade of proinflammatory cytokines and chemokines such as AP-1, TNFα, IFNγ 

or IL-12; that can downregulate expression post-transcriptionally [136, 137]. The immune response 

against the vector backbone leads to silencing of the transgene or the elimination of transduced  

cells [135]. 

1.3.2.2 Epigenetic events 

Epigenetic silencing is a naturally occurring process essential for controlling gene expression. Epigenetic 

events occur in different contexts, for example: during embryonic development, at specific cellular 
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states or as a consequence of foreign DNA recognition. During embryonic development there are 

different methylation patterns, beginning with both hypermethylated gametes and embryo, that need 

to be epigenetically erased after fertilisation due to an extensive genomic demethylation. After resetting 

the epigenetic landscape like a ‘blank canvas’, the blastocyst undergoes rapid remethylation after 

implantation and a gradual remethylation during development to specify different somatic  

lineages [140]. Remethylation of the genome requires de novo methylation at CpG sites due to cis-acting 

methylation sequences. Epigenetic events might also occur at specific stages, for example in a 

differentiated state as opposed to a pluripotent state [141, 143]. Another common epigenetic silencing 

event occurs following gene delivery into mammalian cells and especially using non-viral vectors. 

Transgene silencing is the consequence of evolutionary mechanisms developed by Eukaryotic cells to 

detect foreign DNA and abnormal proteins. Silencing takes place due to de novo methylation by DNA 

methyltransferases together with histone modifications (H3K9). These create methylated centres that 

trigger chromatin condensation, which spreads towards neighbouring chromatin unless blocked by  

an insulator. 

DNA methylation, and therefore silencing of gene expression, is a reversible process. The regulation of 

gene expression is cell-, time- and context-specific and in turn, determines the properties of the  

cell [144]. For example, stem cells and progenitor cells are hypomethylated (low levels of DNA 

methylation), which means that they are less prone to gene silencing. However, these cells become 

methylated upon differentiation and may silence endogenous as well as exogenous genes (transgenes) 

[145]. Therefore, using chromosomal elements that counteract or prevent DNA methylation and 

silencing can be particularly beneficial for the genetic modification of stem cells. 

1.3.2.3 Effects of neighbouring chromatin - Positional effects  

In genomic DNA and integrated transgenes, position effect variegation (PEV) is the influence of the 

chromatin environment on gene expression. For example, high levels of transcription can be achieved 

at nuclear sites specialised in transcription that are protected and separated from heterochromatic 

regions, where silenced genes are located. In turn, RNA polymerase complexes and TFs influence the 

chromatin state by recruiting chromatin remodelling and histone modifying enzymes [146], which 

ensure that the region to be transcribed is accessible. However, compact chromatin has an adverse effect 

on gene expression and also has a negative influence on regulatory elements flanking the integration 

site of a transgene [147]. Therefore, it is desirable to identify genetic elements that shield or protect the 
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transgene from these effects or that control the chromatin structure to develop non-viral vectors to 

target active chromatin regions and avoid compartments where gene expression is switched off. 

However, the influence of chromatin in episomal vectors is not fully understood. The establishment of 

episomal vectors is a stochastic and infrequent event that strongly depends on which nuclear 

compartment the vector settles after transfection [148]. Previous studies have shown colocalisation of 

S/MAR episomal replicons with early replicating foci and regions enriched with active histone marks 

[149], although no specific chromosome or chromosomal localisation preference could be observed. 

Subsequently, Hadegorn et al. mapped the genomic contact sites of S/MAR-based episomes and 

showed a preferential localisation in actively transcribed regions, preferentially within promoter 

sequences, and transcription start sites, which were enriched for open chromatin markers and localised 

in close proximity to origins of replication [150]. In agreement with the transcription factory model 

proposed by Cook in 1999, active genes are found co-localized with polymerases and transcription 

factors in clusters (factories) in which transcription, replication and DNA repair occurred [151]. 

Hagedorn et al. proposed that episomal replicons were established and transcribed in a specific factory 

and that once the episome found their niche in that factory, their presence would be maintained over 

mitotic divisions [150]. 

1.3.3 Evolution of episomal DNA vectors 

To overcome some of the forementioned limitations, such as decreasing the immunogenicity of the 

vector as well as preventing epigenetic silencing or positional effects; several improvements have been 

made in the vector design. These improvements go in line with abandoning the use of virally-derived 

vectors and moving towards replicating non-viral DNA molecules. 

1.3.3.1 Replication-deficient viruses   

The ancestors of episomal vectors are replication-deficient viruses based on AdV or AAV, which are 

naturally able to be episomally retained by using viral proteins. The replication-deficient versions of 

these viruses lack the ability of the respective wildtype virus to replicate and generate viral progeny. 

They are delivered as naked DNA into the cells without encapsidation into viral proteins, and once the 

viral-replicon reaches the nucleus, it establishes and replicates [152]. However, viral replicons are 

expensive to produce, and replication-deficient viruses still have safety issues such as leaky immunogenic 

viral products, which have been reported. Additionally, a low frequency of integration occurs in  

AAV2 [153]. 
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1.3.3.2 Substitution of viral replicons by viral proteins 

The next step in the development of episomal vectors was the substitution of viral replicons by viral 

proteins responsible for viral replication. For example, the SV40 virus requires the large T antigen (Tag) 

[154], and the EBV needs the Epstein-Barr Nuclear Antigen 1 (EBNA-1) protein [155] to initiate 

replication at the viral ori. These viral proteins are also needed for the segregation of the viral episomes 

during cell division (Figure 3). 

A significant limitation of these vectors is the requirement of a trans-acting viral protein EBNA or  

SV40 Tag, which have transforming potential, which constrains their use in vivo. For instance, Snudden 

et al. showed that EBNA-1 could bind to RNA in vitro and can, therefore, play a role in  

post-transcriptional regulation [156]. Sung and Pagano suggested that OriP resembles the enhancer 

region close to c-Myc, which raises the possibility of EBNA-1 deregulating the expression of the proto-

oncogene [157]. Also, EBNA-based episomes are lost at a 4% rate over time in the absence of selective 

pressure and continuous selection led to the integration of the episomes. EBNA encoding vectors can 

lead to cellular transformation in lymphocytes [106]. SV40 Tag leads to transformation by interfering 

with the retinoblastoma and p53 tumour suppressor pathways [158]. 

1.3.3.3 Episomal vectors based on chromosomal elements (S/MAR) 

Because of the safety concerns related to viral-replicons and episomes based on viral proteins, efforts 

have been directed towards the construction of replicating episomal vectors composed of chromosomal 

elements.  

In the 1980s, autonomously replicating sequences, that act as binding sites for ORC [159], were 

discovered in yeast. These sequences were subcloned into a plasmid [160] to investigate whether the 

vector could replicate autonomously; they were either lost or integrated into the genome. In a similar 

attempt, putative mammalian origins of replications were inserted into plasmids and resulted in few 

cases of episomal maintenance [161]. A thorough analysis of these putative sequences revealed that the 

sequences were AT-rich and contained scaffold/matrix attachment regions (S/MARs). 
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In order to generate an episomal construct in which no viral protein was needed for the vector 

replication, the group of Hans Lipps replaced the SV40 Tag, required for episomal maintenance, by a 

S/MAR motif from the 5’ region of the human β interferon gene cluster [162], while keeping the SV40 

origin of replication. This change gave birth to pEPI (Figure 4); the first virus-free episomally 

maintained DNA vector. This vector provided episomal replication and maintenance [163] in a wide 

range of cells tested [164], including human hematopoietic stem cells [165], and it was kept at low copy 

numbers [149]. In addition, it conferred mitotic stability in the absence of selection [162], co-segregated 

with chromosomes during mitosis (Figure 3) and had unlimited cloning capacity [124].  

 

 

 

 

 

Figure 3: Episomal retention of EBNA and S/MAR-based episomal vectors 
Different mechanisms of episomal retention are shown in this figure. EBV-derived 
vectors rely on the expression of the oncoprotein EBV nuclear antigen 1 (EBNA1) to 
replicate and segregate, whereas S/MAR-based vectors do not require any expression 
and are docked to the DNA through transcription factors. 
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Figure 4: pEPI vector: The first virus-free replicating vector 
Cartoon depicting the plasmid pEPI with all necessary components for replication, maintenance and expression. This vector contains 
the S/MAR region derived from the human interferon β gene, as well as the SV40 origin of replication. The expression of the reporter 
gene eGFP is driven by the CMV intermediate-early promoter. A large bacterial backbone comprises a double antibiotic selection 
and a bacterial origin of replication.  
 

Based on the originally described pPEI prototype, several modifications were made to improve its 

potential applications and are summarised in [166]. For example, the promoter was replaced by a range 

of more suitable promoters for in vivo applications, such as CAG [167], AAT [168], UbC [169]. 

Additionally, the CpG content from the backbone was depleted [170] and the bacterial elements were 

removed by generating S/MAR-based minicircles [171]. 
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1.4 Scaffold/Matrix Attachment Regions (S/MARs) 

S/MARs are 300-3000bp long evolutionarily conserved AT-rich sequences that play a role in 

chromosomal and nuclear architecture [172, 173]. These DNA structural motifs bind chromatin to the 

nuclear matrix, partitioning the genome into independent chromatin loops (structural function) [174]. 

These loops are domains involved in several functions, for example, DNA replication, transcription, 

RNA processing, signalling and transduction (regulatory functions) [147, 175]. S/MARs co-localise 

with transcription factories and they are involved in gene expression by controlling chromatin structure 

and accessibility as well as recruiting of TFs. Also, due to their AT-rich sequence, they facilitate the 

unwinding of DNA strands [176] and allow access to DNA replication machinery, favouring DNA 

replication. S/MARs also function as insulators by protecting a transgene from epigenetic silencing and 

augmenting transcription [177]. 

1.4.1 Structural function - S/MAR and loop domain organisation  

The nuclear matrix is defined as the insoluble fraction of the nucleus that remains after removing DNA 

and histones. It’s composed of regulatory (hnRNP, TFs) and structural proteins. The nuclear matrix 

interacts with the chromatin through protein complexes during interphase, and these DNA interaction 

points are the S/MAR motifs [172], which help to organise the chromatin in independent functional 

looped domains that contribute to regulating transcription and replication. 

1.4.2 Regulatory function - S/MAR mediated transcriptional regulation 

Several pieces of evidence indicate that S/MARs play a regulatory role in transcription, rather than just 

being involved in anchoring chromatin loops to the nuclear matrix. For example, a genomic analysis 

revealed that the S/MAR density is similar to gene density, suggesting that each gene has its own 

S/MAR motif ‘one gene-one S/MAR hypothesis’ [178]. Also, actively transcribed genes are localised 

in inaccessible (peripheric) chromatin loops, which provide a permissive and relaxed environment for 

TFs and transcription machinery to access the DNA (Figure 5a,b). On the contrary, inactive genes are 

topologically compact and inaccessible to TFs (Figure 5d). It has been shown that S/MAR motifs 

adjacent to non-expressed genes are not physically interacting with the nuclear matrix, which suggests 

that transcription running through the S/MAR is a requirement for its activity [179]. It has also been 

shown that vectors without S/MAR or whose transcription stopped upstream of the S/MAR motif, 

resulted in integration and subsequent methylation of the promoter, which ultimately resulted in 

epigenetic silencing and loss of transgene expression [180]. Data from a proof-of-principle experiments 
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published by Rupprecht et al., in which an inducible TetON promoter was driving the S/MAR 

transcription unit, showed that when Doxycycline was removed, the vector was lost [181]. 

Finally, the affinity of S/MARs for the nuclear matrix involves them in other biological processes such 

as protection from positional effect variegation [177], transcription augmentation [173], long-term 

maintenance of transgene expression [169, 182], enhancer function and function as origins of 

replication [183, 184]. 

 

Figure 5: Structural and regulatory functions of S/MAR motifs. 
Chromosome model showing inactive (highly compact) and active (looped domains) regions. Active genes (green regions) are 
localised in the surface of the loop, where RNA is formed within large transcription and splicing complexes (A). Spatial patterns of 
gene expression (B-D). The coiled structure indicates closed chromatin and inactive genes are represented as a red cylinder.  
Open chromatin is depicted as linear structures and active genes as green cylinders. S/MAR elements are represented as orange 
segments that bind to the matrix that compartmentalise genes by creating transcriptionally active loops. Schematic depiction of 
episomal replication and maintenance of S/MAR vectors (E). The S/MAR motif binds to DNA through scaffold matrix attachment 
protein A (SAF-A) and other auxiliary replication/transcription proteins.  

1.4.2.1 Insulator function 

As described above, the interaction of S/MAR vectors with the nuclear matrix is essential for generating 

independent chromatin domains [183] and insulating those loops from the adverse silencing effects 

from surrounding chromatin (PEV) [177], as well as to allow local access of TFs to promoters and 

enhancers. The S/MAR insulating function has been shown on several occasions. For instance, when 

a reporter gene was integrated into the host cell DNA, the S/MAR could enhance expression of the 

reporter gene only in stably transfected cells but not in transiently transfected cells [185, 186].  

These findings were reinforced with the one gene-one S/MAR hypothesis, that predicts each gene to 

be regulated by one S/MAR [187]. In other studies with the immunoglobulin κ chain transgene, which 
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is methylated (inactive) in pre-B cells and hypomethylated (active) in B cells, it was shown that the  

κ chain transgene was demethylated only when an S/MAR was present after B cells were  

transfected [188]. Others found that S/MAR could initiate transcription in genes with demethylated 

CpG [189]. Finally, S/MAR sequences bind to chromatin remodelling proteins such as SAF-A or p300, 

which influence histone acetylation and nucleosome remodelling [147]. 

1.4.2.2 Transcription augmentation 

Similar to other cis-acting transcription regulatory elements, such as promoters and enhancers, S/MARs 

are usually found in the first intron, and their transcriptional effect depends on the distance from the 

promoter and direction of transcription [190]. Although it is not clear how exactly S/MARs upregulate 

gene expression; some suggest that S/MAR can mediate changes in the chromatin by establishing an 

active locus [191] and by increasing the probability of a permissive chromatin state while minimising 

the silencing [192]. Others suggest that S/MAR sequences could directly bind to TFs (SAF1A), which 

interact with the transcription machinery, favouring the accessibility of the plasmid to transcription 

factories. Finally, fluorescent in situ hybridisation (FISH) shows that S/MAR vectors are localised in the 

periphery of chromosomes, where the chromatin remains easily accessible to transcription  

complexes [193, 194]. 

1.4.2.3 S/MAR as origins of replication 

The S/MAR sequences are evolutionary conserved, and although they do not have a consensus 

sequence, they comprise 70% of AT-rich sequences [172, 173], which facilitate dissociation of DNA 

strands and allow the chromatin to open, unwind and be accessible to the DNA replication machinery. 

Also, S/MAR motifs contain binding sites (ATTA) for replication initiation proteins. The S/MAR 

function as an origin of replication allowed the construction of episomally replicating expression 

vectors for mammalian cells. Its association with the nuclear matrix is essential for the plasmid 

replication, maintenance and segregation during mitosis. 

1.4.2.4 Mitotic stability 

The molecular mechanisms by which S/MAR episomes are mitotically stable and equally segregated 

are not entirely understood. There is evidence suggesting that S/MAR sequences associated with 

nuclear proteins such as Topoisomerase II, Lamin B1, SATB1 or Histone H1, which would enable the 

vector co-segregation during mitosis [183]. Like EBNA-1 or SV40 Tag, S/MAR sequences recruit 

nuclear components that result in destabilisation of the DNA strands and allow the recruitment and 
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assembly of the replicating machinery (ORC). That means that placing an S/MAR sequence into a 

DNA vector would allow the episome to be efficiently maintained in active chromatin and to associate 

with early replicating chromosomal sequences (Figure 3). Proof of that is the pEPI vector, which is 

shown to be kept at low copy numbers and to localise at specific regions of the chromosome, being 

pseudo-symmetrically distributed in daughter cells after mitosis [149]. 

1.4.3 Limitations of S/MAR vectors 

Although promising, the originally described S/MAR-based vectors still had some limitations.  

Once the vector was delivered to the target cells and reached the nucleus, it established stochastically 

as an episome depending on the nuclear compartment where it falls, that means depending on the 

chromatin structure and ongoing transcription (position effect). If the region of the nucleus is actively 

transcribed, the vector will establish episomally but if the region is transcriptionally inactive, the vector 

will integrate or get lost during subsequent cell divisions [149]. However, once established the vector 

will be maintained through limitless cell divisions. [195, 196]. This stochastic localisation in the 

‘correct’ nuclear compartment results in a relatively low efficiency of establishment, around 9.5 ±7,5%  

for the originally described pEPI vector [197]. To overcome this limitation, several improvements have 

been made in order to achieve higher levels of expression, improve the long-term expression and avoid 

the silencing due to position effect variegation. The most recently described S/MAR vectors were 

published by Hagedorn et al., in which a Ubiquitous Chromatin Opening Element (UCOE) was added 

to the vector and significantly improved transgene expression by keeping the DNA in the ‘active areas’ 

and avoiding heterochromatic silencing. In addition, a chicken insulator (cHS4) was also added which 

improved the vector establishment via interaction with the nuclear matrix [198]. 

1.4.4 Potential applications of the vector 

Episomal S/MAR vectors are an alternative system to the vectors described before and can be used for 

a range of purposes generating minimal impact to the host cell or organism. For example, S/MAR 

episomal vectors offer the possibility to efficiently and persistently (over)express a gene of interest, or 

to produce shRNA stably, or to express CRISPR/Cas9 for gene editing approaches persistently. Their 

versatility in genetic modification opens a myriad of suitable applications, amongst them are the genetic 

modification of stem cells, the introduction of new genetic traits (transgenesis) into organisms as well 

as the supplementation of ‘corrected’ therapeutic genes (gene therapy) in monogenic diseases where 

the mutated gene does not have a dominant adverse effect.   
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1.5 Stem cells and reprogramming 

Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells 

(iPSCs), are considered to be a prime cell source for regenerative therapies and cell therapy applications 

because of their extensive proliferation, self-renewal potential and multi-lineage differentiation 

capabilities [199]. SCs are also a valuable tool for modelling diseases in vitro and to better understand 

embryogenesis and early stages of development. This section provides an overview of stem cell biology 

and offers a recapitulation of different methods to genetically modify SCs and reprogram iPSCs while 

also discussing the advantages and limitations. 

1.5.1 Definition and properties of SCs 

Stem cells are undifferentiated, karyotypically normal cells with self-renewing capacity and the ability 

to differentiate into representatives of the three embryonic layers. One crucial stemness feature is self-

renewal, which consists of the ability of cells to generate at least one identical daughter cell.  

Another defining feature is the unlimited proliferation while maintaining an undifferentiated  

state [200]. Stem cells can be classified based on their potency, which is their ability to differentiate. 

Therefore, totipotent (or omnipotent) cells are found early in development and can generate both 

embryonic (endoderm, mesodermal and ectodermal) and extraembryonic (trophectoderm) lineages. 

Pluripotent cells can generate cells from the three germ layers and germline but not extraembryonic 

tissues. Multipotent cells are much less plastic and can give rise to a limited subset of cells within the 

same germ-layer. Oligopotent stem cells can only differentiate into few cell types, and unipotent cells 

can only produce one cell type but still retain the self-renewal capabilities (as opposed to  

progenitor cells).  

Stem cells can also be classified based on their origin or stage in which they appear in the organism’s 

lifetime. Embryonic Stem Cells (ESCs) are pluripotent cells isolated from the inner cell mass (ICM) of 

early-stage blastocysts. Somatic (adult) Stem Cells (SSCs) are scarcely found in adult tissues and serve 

as a cell source for tissue repair. Most adult stem cells are lineage-restricted (multipotent). Foetal Stem 

Cells (FSC) are multipotent cells that can be isolated from foetal blood, bone marrow and other tissues, 

such as kidney or liver [201]. 

Finally, induced (pluripotent) stem cells (iPSC) are derived from somatic cells that have regained their 

pluripotent properties after receiving a defined set of reprogramming factors, such as Oct3/4, Sox2, 

Klf4 and cMyc in murine fibroblasts (MEFs) [142] or Oct3/4, Sox, Klf4, cMyc  or Oct3/4, Sox2, Nanog, 
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Lin28 and L-Myc for human dermal fibroblasts [202, 203]. iPSC offer several advantages when 

compared to ESC: 1) they eliminate the ethical concerns associated with embryonic stem cells, 2) they 

are derived from somatic cells that can be obtained via non-invasive techniques, 3) they are individual-

specific, eliminating the risk of immune rejection and 4) they can be used for personalised medicine, 

drug screenings and disease models [204]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Stem Cell hierarchy 
Totipotent cells are found in the first stages of embryonic development (zygote to morulae) and retain the ability to differentiate into 
embryonic (ICM) and extraembryonic (Trophectoderm, TF) tissues. Pluripotent cells, such as embryonic stem cells (ESC) are 
originally found in the inner cell mass (ICM) of early-stage blastocysts and can only give rise to representatives of the three embryonic 
layers (endoderm, mesoderm and ectoderm). Multipotent stem cells, such as mesenchymal stem cells (MSC), hematopoietic stem 
cells (HSC), neuronal stem cells (NSC) or foetal stem cells (FSC) can differentiate into a subset of cells from the same germ layer. 
Oligopotent cells can only differentiate into few cell types. Terminally differentiated cells, as well as intermediate pluripotent cells, 
can be reprogrammed into induced pluripotent cells (iPSC) upon administration of a defined set of transcription factors.  
Adapted from [205]  
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1.5.1.1 Cellular properties 

Stem cells are round and compact cells with large nuclei. Murine Stem Cells (mSC) form dense dome-

shaped colonies while human stem cells (hSCs) are flat and sharp-edged. They express high levels of 

telomerase to ensure active proliferation and self-renewal. To maintain SCs in an undifferentiated 

state, they grow on layers of feeder cells (inactivated murine embryonic fibroblasts, MEFs), which on 

the one hand, support SC growth by providing growth factors and on the other hand, prevent 

spontaneous differentiation. To reinforce pluripotency and prevent spontaneous differentiation, SC 

cultures are supplemented with anti-differentiation cytokines; for instance, mSCs are supplemented 

with leukaemia inhibitory factor (LIF), while hSCs are grown in serum replacement supplemented with 

fibroblast growth factor (FGF2).  

1.5.1.2 Pluripotency 

SCs are characterised by expression of pluripotent markers. Both murine and human SCs express 

alkaline phosphatase (AP)-related antigens, although they differ in the surface antigens expressed. 

While murine cells are characterised by the expression of the glycolipid antigen SSEA-1, human cells 

express SSEA-3, SSEA-4, the keratin sulphate antigens Tra-1-60 and Tra-1-81; and the protein antigens 

CD9 and CD90 (Thy1), among others.  

The gene expression profile of pluripotent cells is characterised by intense expression of development-

related genes such as Oct3/4, Nanog and Dnmt3b.  

Pluripotent cells can form embryonic bodies (EBs) when differentiation inhibitors are withdrawn from 

the media. EBs consist of a core of mitotically active and dividing cells and a periphery of differentiating 

cells, in which representatives of the three germ layers can be found.  

When injected into immunodeficient mice, pluripotent cells spontaneously generate teratomas, which 

are tumours consisting of cells derived from the three germ layers. Teratoma formation is a landmark 

test for pluripotency. A more stringent pluripotent test consists of the ability of pluripotent cells to 

generate chimaeras when injected into the inner cell mass of embryos. Finally, pluripotent cells can 

develop into viable non-chimeric mice when injected into tetraploid blastocysts, which can only form 

extraembryonic tissues, a process known as tetraploid complementation [206, 207]. 
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1.5.1.3 Epigenetic status 

During fertilisation, hypermethylated gametes, as well as the fertilised zygote, undergo rapid global 

demethylation to reset the epigenetic landscape of the embryo and turn into a ‘blank canvas’, in which 

epigenetic profiles can be ‘painted’ as cells differentiate.  

With this epigenetic reset, early embryos (blastocysts) and therefore stem cells, have the potential to 

take all cell fate decisions and differentiate into specific lineages [140], gradually losing their potency 

and acquiring specific epigenetic modifications (remethylation) [208, 209]. However, this 

differentiation–acquired methylation primes the cells to a somatic fate that must be reverted and reset 

in primordial germ cells (PGC), which will give rise to the germ-line and must ensure the necessary 

plasticity to generate games and a totipotent zygote in the next generation. 

Figure 7: Epigenetic landscape during (murine) development. 
The hypermethylated gametes and zygote are quickly demethylated after fertilisation to erase epigenetic marks and turn the genome 
into ‘blank canvas’ in which epigenetic profiles can be ‘painted’ when cells differentiate. Primordial Germ Cells (PGC), which are 
somatically primed, must be reset back to a ‘blank’ state so that germ cells can give rise to totipotent zygotes. Somatic cells can be 
reverted to a pluripotent state by a defined set of reprogramming factors. Derivation of iPSC is a very inefficient process which can 
be enhanced by using agonist or antagonists of chromatin remodelling molecules. 

 

Maintenance of stemness, lineage commitment (differentiation) and cellular fate are tightly and finely 

controlled by epigenetic mechanisms such as DNA methylation, histone modifications, remodelling of 

chromatin structure, non-coding RNA, miRNA and TFs [210]. For instance, promoters of 

pluripotency-associated genes, such as Oct4 or Nanog, are demethylated in pluripotent cells, indicating 
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active expression of pluripotency-associated genes. In addition, H3 histones associated with pluripotent 

genes (Sox2, Oct4 and Nanog) are also demethylated [211, 212]. At the microRNA level (miRNA), 

miRNA302/367 are expressed in embryonic stem cells and are involved in maintaining pluripotency 

by being direct targets of pluripotency genes and by regulating the cell cycle [213]. 

Although generally stable in vivo, the epigenetic balance defining cell fate can be manipulated and 

reversed in vitro, as demonstrated by Gurdon et al., who showed that somatic cells could be reversed 

back to a pluri- or totipotent state by transferring somatic nucleus to oocyte environment [214].  

This could also be achieved by cell fusion [215] or ultimately, by overexpressing a set of crucial 

reprogramming factors [142]. However, the frequency of reversing somatic cells back to pluripotency is 

very low but can be externally influenced by using chemical regulators of chromatin restructuring  

enzymes [141]. For example, using inhibitors of histone deacetylases (HDACs), such as Valproic Acid 

(VPA) or cofactors of the histone demethylases Jhdm1 a/b, such as Ascorbic acid/Vitamin C. Ascorbic 

acid not only mediates demethylation of H3K26 but is also involved in accelerating the cell cycle, 

inhibiting senescence (repression of p53/p21) and apoptosis; being an agonist of the Hypoxia Inducible 

Factor (HIF) pathway as well as upregulating the expression of the aforementioned miRNA 302/367 

cluster [216]. 

1.5.2 Genetic modification of pluripotent cells 

Traditional approaches to genetically modify ESC or derive iPSC, require the use of Lentiviral vectors, 

which integrate into the host cell genome and might potentially cause insertional mutagenesis [5, 58]. 

Other approaches rely on the use of adeno associated viruses, which still retain the potential to  

integrate [65]. Alternatively, episomal modification of pluripotent cells is based on the EBNA-1 protein, 

which also has oncogenic potential [217]. In addition, iPSCs used for clinical applications should be 

devoid of exogenous reprogramming factors, to exclude residual expression and avoid malignant 

transformation due to their oncogenic potential [218, 219]. This issue has been partially circumvented 

by developing gene delivery methods that evolved from integrative viruses to episomal modification of 

stem cells or transient delivery of reprogramming factors to derive iPSC. This chapter provides an 

overview of current techniques for stem cell modification and reprogramming as well as the current 

limitations that these are facing. 
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1.5.2.1 Genetic modification of Stem Cells 

Originally, stem cells were transduced using retroviruses. For instance, Moloney Murine Leukaemia 

Virus (MLV), was used to transduce hematopoietic (HSC) and mesenchymal (MSC) stem cells, but 

resulted in low transduction efficiency together with the short-lasting expression of the transgene [220]. 

Also, some groups demonstrated transgene silencing during differentiation [221], probably due to 

methylation on the viral promoter. Another significant limitation was the random integration in 

untranscribed regulatory regions (5’UTR) and the consequent possible dysregulation of proto-

oncogenes and tumour suppressor genes. An example of retroviruses as double-edged swords was a 

clinical trial in patients with X-linked SCID, in which bone marrow CD34+ cells were transduced with 

a retroviral MLV vector carrying the therapeutic γ-chain gene. The corrected autologous cells were 

successfully transplanted back into the patients, with 8/9 successful correction of the 

immunodeficiency [222]. Unfortunately, 4/9 treated patients developed acute leukaemia as a 

consequence of insertional mutagenesis [6, 223]. These limitations, together with the inability of 

retrovirus to infect non-dividing cells, lead to a switch to Lentiviral vectors, which have been the tool 

of choice to modify stem cells, and in particular HSC. 

Lentiviral vectors can infect non-dividing cells, although not quiescent G0 cells, can accommodate larger 

DNA loads and preferentially integrate into coding regions of genes. A safer version are  

Self-inactivating (SIN) lentiviruses, which contain a deletion in the transcriptional element 3’ LTR to 

avoid generation of new viral genomes in transduced cells [224]. However, lentiviruses share significant 

drawbacks with their retroviral relatives regarding their potential integrative mutagenesis and that they 

typically become silenced either directly at the stem cell stage or during differentiation. One explanation 

is that virally derived promoters and sequences are highly methylated in stem cells and during 

differentiation [225]. To circumvent the differentiation-induced silencing, Pfaff et al. added the 

chromatin insulating element UCOE into SIN-Lentivirus [226]. They showed that by doing so, 

transgene expression could be maintained during hematopoietic differentiation (independently of 

using a viral or a housekeeping promoter) and that the presence of a UCOE element reduced promoter 

CpG methylation by almost 3-fold. However, the UCOE element holds the potential to disrupt 

neighbouring gene function by divergent transcription, due to its double divergent promoter nature; 

as well as to affect splicing of surrounding DNA sequences. Also, clonal differences in transcription 

and gene silencing were found and attributed to the UCOE element [226]. 
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Adeno-associated vectors (AAVs) are amongst the most used vectors for gene delivery and gene therapy 

to date. However, their use might not be suitable for all cell types, and especially for stem cells, as 

confronting data suggests that transduction in stem cells is highly variable as well as AAV might induce 

toxicity in undifferentiated cells [227]. For example, Walsh et al. successfully corrected primary 

peripheral blood CD34+ progenitor cells from FA patients using AAV [228] and Zhou et al. 

demonstrated that blood CD34+ cells could be transduced with AAV without cytokine stimulation 

[229]. However, Ellis et al. showed that HSC were refractory to AAV [230].  

Similar to AAV, Adenoviral reports on stem cell modification seem to be inconsistent. Some claim 

that dividing MSC infected with AdV lose expression after three weeks and that AdV has no 

detrimental effect on the differentiation potential [231]. Others have reported impaired  

differentiation [232] and high immunogenicity [233], which led to activation of antigen presenting cells 

(APC), CD4+, CD8+ and cytotoxic cells and to the degradation of viral particles and subsequent 

silencing of the transgene. 

Other methods to modify stem cells include direct delivery of DNA via microinjection [234], 

electroporation [235], nucleofection [236], calcium phosphate transfection [237], lipofection [238] or 

cationic polymers [239]. However, the efficiency of these mechanisms is rather low, and the long-term 

expression of the transgene must be ensured either by integrative mechanisms (transposition) or 

replicative plasmids. 

1.5.2.2 Derivation of iPSC 

Ever since Takahashi and Yamanaka demonstrated that differentiation could be reversed by providing 

somatic cells with the right combination of reprogramming factors [142], several cocktails of 

transcription factors as well as gene delivery techniques have been developed to improve the still low 

efficiency of reprogramming. 

Originally, Takahashi et al. delivered the reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) by means 

of retroviral transduction [142]. Although simple and effective, this method involves the risk of 

insertional mutagenesis as well as the oncogenic potential of some reprogramming factors, such as Oct4 

and cMyc, which can be a concern for clinical applications. This oncogenicity concerns were 

circumvented by using excisable Lentiviral systems, in which LoxP or FRT sites were introduced at the 

3’LTR. Upon administration of the respective recombinase after iPSC were obtained, the integrated 

reprogramming factors could be floxed out of the genome [240, 241]. Alternatively, the use of 
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transposons to deliver reprogramming factors proved to be efficient at delivering long-term expression 

and generating iPSC [242 - 244]. However, both excisable lentivirus and transposons retain the ability 

to integrate and leave behind a ‘genomic scar’ after homologous recombination. The remaining 

concerns about genome integrity led to the development of non-integrative delivery methods.  

For instance, by using non-integrative DNA viruses, such as adenovirus [91], or RNA viruses  

(Sendai-virus) [245]. However, AAV still retains the potential to integrate and as Sendai viruses, can 

trigger immune responses. Therefore, a tedious and labour intensive viral particle removal is required 

for clinical applications of iPSC generated with these methods. Alternatively, polycistronic minicircles 

[246], plasmids transfections [218, 247] or delivery of reprogramming factors in the form of mRNA 

and proteins [248] have been also used for safer derivation of iPSC, although compromising the 

efficiency of delivery and hence, reprogramming. Recently, the use of episomal DNA vectors based on 

SV40 virus, Epstein-Barr virus (EBV) or S/MARs, offered a much more attractive alternative to 

transient or integrative methods [249, 250]. Only episomal vectors based on OriP/EBNA-1 were able 

to successfully generate iPSC [251, 252], although their use might influence the cells’ behaviour by 

remodelling the chromatin or altering the cell’s transcription profile [253]. 

1.5.3 Applications 

The advances in gene modification combined with the unique properties of stem cells, such as their 

rapid growth, self-renewal and potential to differentiate into multiple cell types; opened a myriad of 

possibilities and applications for engineered stem cells. Two possible scenarios where modified stem 

cells and derived iPSC can be used are described in the following sections. On the one hand, murine 

stem cells can be genetically manipulated to introduce desired traits (transgenesis) or a therapeutic gene 

for pre-clinical validation of gene therapy strategies. iPSC can be derived from patient somatic cells, 

corrected in vitro and used for autologous transplantation for ex vivo cell therapy approaches. 
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1.6 Transgenesis  

The breakthrough in Transgenic technology came in the 1970s, when it became common to introduce 

foreign DNA into cells to generate lines of genetically modified organisms. However, transgenesis was 

not fully recognised until Palmiter et al. introduced the growth hormone gene under the expression of 

the metallothionein promoter into 1-cell stage embryos by pronuclear injection, and the offspring of 

such injection showed differential growth [13]. However, some problems quickly emerged. For example, 

the levels of transgene expression were elevated and uncontrollable, which resulted in giant mice 

overexpressing the growth hormone. Ever since, transgenic techniques have become extremely 

important since they provide new approaches for life sciences, which cannot be achieved by just 

culturing cells in vitro. Additionally, transgenic technologies are applied for the large-scale 

manufacturing of biological compounds for therapeutic and pharmaceutic purposes or the study of 

genetic regulation in animal development and disease. Not least significant, transgenic animal models 

are a pre-requisite for testing therapeutic genes or molecules before human clinical trial applications. 

Although a significant improvement on methods to obtain transgenic animals have been made in the 

past decades, limitations on the efficiency of gene transfer and the control of gene expression  

remain [254]. 

1.6.1 How to generate transgenics 

To generate transgenic animals, DNA coding for a desired transgene has to be introduced into the 

embryos of the desired animal model and must be transmissible to the progeny. To date, there are two 

techniques to introduce the DNA and generate transgenics: 1) a direct approach in which foreign DNA 

is delivered into the pronucleus of a 1 cell-stage fertilised zygote or 2) an indirect approach where DNA 

is introduced into embryonic stem cells, which later on will be injected into a later stage  

embryo (Blastocyst).  

1.6.1.1 Indirect ‘ex vivo’ approach: Modification of Stem Cells 

This method relies on the genetic modification of Stem Cells (SCs), which are then reimplanted back 

into the embryo. First, SCs are removed from the inner cell mass (ICM) of early blastocysts. Then, they 

are cultured, modified in vitro, selected and screened to select for cells containing the desired  

genetic modification.  
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Since SCs are pluripotent and responsible for generating all cell types of the embryo, they can be 

reintroduced back into the embryonic stage from where they are derived, after being genetically 

modified. This double origin embryo containing unmodified and genetically modified cells is called a 

chimaera. The born offspring will transmit the genotype as long as the modified transgenic cells 

contributed to form the germ cells. The mechanisms by which the transgene is delivered into the cells 

are reviewed in Sections 1.2.3, 1.2.4 and 1.5.2.1. 

1.6.1.2 Direct approach: Targeting the zygote 

1.6.1.2.1 DNA	microinjection		

Pronuclear DNA injection (PNI) relies on the microinjection and integration of linear DNA into 

fertilised zygotes at 1-cell stage and the subsequent integration of such DNA in the chromosomes [69]. 

To ensure that the transgene is equally distributed in all cells, it is necessary to introduce the DNA at 

very early stages, when the embryo is still at a 1-cell stage and before the first cell division, and cleavage 

occurs. This developmental stage, also called Zygote, occurs following the entrance of the sperm cell 

into the oocyte and it is easily identifiable because the two pronuclei are still visible individually and 

have not fused yet. The transgene or foreign DNA can be injected into either pronucleus, although 

injection into the male pronucleus is more common due to its slightly larger size and proximity to the 

cell surface. After microinjection, the developing embryos are transferred into foster pseudo-pregnant 

females. To preserve and propagate the animal line, germ-line transmission must be achieved, meaning 

that the gonads have integration of the transgene, which can be transmitted to subsequent generations. 

1.6.1.2.2 Transposons	

Pronuclear injection of a recombinant transposon is one way to ensure the integration and 

transmissibility of a transgene and has been successfully used to generate transgenic fish, chicken and 

mammals [255]. Also, Ivics et al. generated transgenic pigs by cytoplasmic injection of Sleeping Beauty 

transposon and achieved germline transmission [256]. 

1.6.1.2.3 Lentiviral	transduction		

Lentiviral transduction of 1-cell embryos is efficient in several species, including mice, rats, chicken and 

large farm animals (reviewed in [257]). High ratios of transgenic offspring can be achieved  

(20-30%) with almost 90% of the injected animals expressing the transgene [258].  
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However, the low cargo capacity (7-8kb) of the virus and the epigenetic silencing of integrated constructs 

limit their potential [225, 259]. 

1.6.1.2.4 Intracytoplasmic	sperm	injection	(ICSI)	

Intracytoplasmic sperm injection of membrane permeabilised spermatozoa incubated with exogenous 

DNA has been used to generate transgenic mice and pigs [254]. Advantages of ICSI are the possibility 

to introduce large DNA fragments and the rapid integration of the transgene at one cell stage. A more 

complex possibility consists of modifying sperm precursor cells in vitro and reintroduce them back to 

the testes for generation of modified sperm.  

1.6.1.2.5 Gene	targeting	

The previous mechanisms result in uncontrolled gene integration; although not entirely random, since 

the DNA is preferentially integrated into gene-rich regions. A way to precisely target a specific genomic 

region would be using gene targeting methods [260]. The use of Zinc Finger Nucleases (ZFN), 

Transcription Activator-Like Effector Nucleases (TALENs) or CRISPR/Cas9 technologies directly into 

the 1-cell embryo, allow the generation of knock-in and knock-out lines. The problems associated with 

these targeted techniques are the sophisticated design of specific nucleases, possible off-target effects 

and tedious genotyping. 

1.6.1.2.6 Episomal	vectors	

Current episomal vectors rely on episomally replicating viral vectors, namely EBV or SV40- derived 

vectors, or on plasmid vectors based on viral proteins. The development of self-replicative S/MAR 

based vectors (pEPI) bypassed the use of virally-derived systems. pEPI was delivered via sperm-mediated 

gene transfer (SMGT) into pig embryos and generated transgenic foetuses [261]. Although expressing 

the episomal vector, these foetuses were not brought to term and germ-line transmission could not  

be assessed. 
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1.6.2 Summary of the section 

Generation of transgenic animals is a valuable tool for basic research, pre-clinical models for gene 

therapy, xenotransplantation, industrial production of drugs or improvement of livestock. Currently, 

a range of methods is available to deliver DNA directly into the 1-cell embryo or to genetically modify 

stem cells in vitro, which will then be implanted back into embryos. However, these methods rely mostly 

on integrating techniques, such as transposition or viral vectors (Lentivirus), episomally replicating 

(AAV) vectors or plasmid-DNA vectors based on viral proteins (EBNA). Some attempts to generate 

transgenic pigs have been made by using the episomal S/MAR-based vector pEPI. However, aspects like 

transgene expression in adult animals or germ-line transmission were not addressed.  
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1.7 Cell and Gene Therapy  

Gene therapy can be defined as the therapeutic use of nucleic acids as drugs to replace, repair or 

regulate dysfunctional genes to prevent or treat diseases. Cell therapy is the use of modified cells as 

vehicles to achieve the same goals. 

This novel branch of modern medicine emerged as a consequence of the recombinant DNA revolution 

together with the improvements in vector delivery and materialised in the 1990s with the first attempts 

to cure diseases using integrative retroviruses and AAVs [262]. However, serious safety concerns and 

side effects required a better understanding of biology, virology and immunology to develop better 

delivery vectors and mechanisms. A decade later, Lentiviral vectors became the predominant choice in 

the gene therapy arena. Their improved delivery efficiency together with the ability to accommodate 

larger DNA loads made them the preferred tool to treat immunologic conditions and 

hemoglobinopathies. More importantly, their capacity to infect non-dividing cells opened up the 

possibility to modify differentiated cells and to treat neuronal and muscular disorders. On the other 

hand, improvements on AAV technology favoured their in vivo administration to target retinal, hepatic 

and nervous system diseases. A few years later gene editing techniques came into play. Differently from 

viral and DNA vectors, which are genome ‘additive’, editing technologies based on engineered 

nucleases can add, remove or correct pre-existing genetic information. Like other gene modification 

technologies, this can be done in vivo to modify the genome in situ, or to modify cells ex vivo. 

Originally, gene therapy was envisioned as a treatment for monogenic disorders, with the idea that a 

single administration of the ‘corrected gene’ would be sufficient to generate a life-long benefit.  

For example, the first successful cell-based clinical trial for a monogenic disorder, mentioned earlier in 

this introduction, was aimed to correct an X-chromosome linked SCID by using a single administration 

of retrovirally corrected CD34+ cells. Nowadays, the palette of genes and diseases appointed as 

candidates for gene therapy has increased significantly, and polygenic diseases, such as cancer, account 

for the majority of clinical trials [262, 263]. 

1.7.1 The two roads of gene therapy 

Gene therapy can be performed either by direct in vivo administration of the therapeutic gene into the 

living organism (direct gene transfer) or by using ex vivo modified (stem) cells as vehicles for gene 

delivery (cell transfer) as depicted in Figure 8. 
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Figure 8: Gene therapy strategies. 
Direct gene transfer consists of the in vivo delivery of therapeutic DNA/RNA via viral, non-viral or genome editing strategies. Cell 
transfer, on the other hand, consists of the ex vivo correction of either isolated stem cells or somatic cells that can be reprogrammed, 
corrected, differentiated into other cell types. Upon expansion, these corrected cells are transplanted back into the patient. 
 Adapted from [264]. 

1.7.1.1 Direct gene transfer or ‘in vivo’ delivery  

In vivo delivery relies on direct tissue targeting via local delivery and avoids the complex problems 

associated with cell therapy – cell isolation, culturing, modification, expansion and transplantation. 

Simplicity is at the same time, its primary weakness; as direct transfer does not allow much control over 

the therapeutic gene due to integration (Lentivirus) or short-term persistence of episomal forms (AAV). 

Additional immune responses towards the vector components might occur, which do not happen  

in vitro. 

In the past years, clinical trials delivering therapeutic genes to liver, eye and muscle have been 

accomplished or are on the way to succeed. For instance, different AAV serotypes targeting the liver 

have been used as tools to deliver factor VIII and IX for the treatment of Haemophilia A and B, 

respectively. However, in some cases, the expression persisted only for few weeks [60], and the transgene 

was silenced due to pre-existing neutralising antibodies against the AAV capsid as a consequence of 

frequent AAV infections in the population [61]. Short term expression was partially solved with  

short-term immunosuppression [265]. 
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Other examples include the subretinal injection of AAV2 coding for the RPE65 gene in patients with 

inherited blindness, who showed clinical improvement after vector administration [266]. In contrast, 

other clinical trials reported regression of the visual function in some patients [267]. The in situ injection 

of AAV is currently being used in clinical trials for other inherited blindness diseases, such as 

achromatopsia, X-linked retinitis pigmentosa and choroideremia.  

Even though neuromuscular diseases, are multigenic, physiologically more complex and less 

understood than monogenic disorders, there have been efforts in treating some of these conditions.  

As an example, AAV2 was used to deliver the dopamine synthesising enzyme Aromatic L-aminoacid 

decarboxylase (AADC) to enhance the conversion of L-dopamine to dopamine in Parkinson’s disease, 

which is characterised by a loss of dopaminergic neurons [268].  

1.7.1.2 Stem cell transfer or ‘ex vivo’ delivery  

As mentioned earlier, stem cells are a very versatile tool for cell therapy applications, which rely on the 

infusion or transplantation of living cells into a patient. Although cell-based therapies are inherently 

more complex than direct in vivo approaches due to their handling complexity, the in vitro manipulation 

allows better precision and control over the therapeutic gene than inside the body (in vivo). Also, in vitro 

culturing allows getting enough cell numbers required for transplantation. Moreover, some cells (HSC) 

have ‘homing’ mechanisms that allow them to return to their original location in the body, conferring 

regional therapeutical specificity. At the same time, this handling complexity associated with isolation, 

culturing, correction, expansion and transplantation is a significant limitation and can be complicated 

further when somatic cells undergo reprogramming and differentiation into a new cell type, before or 

after genetic correction. Not least important, long culturing can be detrimental and favour the 

acquisition of deleterious mutations. 

Blood transfusions are considered one of the first types of cell-therapy, followed by bone-marrow 

transplantation and HSC transplantation. In fact, of all types of Stem Cells being used in clinical trials, 

CD34+ hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC) are mainly exploited due 

to the ease of collection and high differentiation capabilities [269, 270]. More interestingly, the patient’s 

cells can be used for autologous transplantation to avoid the risk of immune rejection or graft-versus-

host disease [271]. However, when a patient carries a genetic disease, autologous cell therapy would not 

be sufficient as the harvested cells would also carry the genetic mutation after transplantation [272].  

To overcome the problem of autologous cell therapy for genetic diseases is necessary to correct the 
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genetic defect before re-implantation. Although some studies have appointed AAV as successful tools 

to modify and correct stem cells, they have been replaced by integrating vectors and non-integrating 

adenoviral vectors [273]. Rapti et al. showed that AdVs were more efficient at infecting both 

undifferentiated and differentiated cells and that Lentivirus was applicable to undifferentiated whereas 

AAVs were more efficient at delivering to differentiated cells [274]. Also, they showed AAV-induced 

toxicity in SCs as a consequence of inducing cell cycle arrest and apoptosis. 

Alternative to autologous HSC transplantation, patient somatic cells can be isolated, reprogrammed 

into iPSC, corrected and differentiated to the desired cell type. In some cases, such as Fanconi Anaemia, 

the genetic mutation impairs the reprogramming capabilities [275], and it is, therefore, necessary to 

first correct the genetic defect and then derive the iPSC. 

1.7.2 Summary of the section 

This section reviewed and summarised the advances on development of gene and cell therapy 

treatments as well as pointed out some of the encountered challenges of therapy vectors, such as safety 

concerns due to gene integration, short-term expression, silencing during differentiation or immune 

reactions towards vectors and therapeutic genes. Although successful gene and cell therapy trials have 

been documented, a significant amount of literature calls into question the suitability of currently used 

therapy vectors, indicating the need of further vector development and refined vector design.  

Improved vectors could be used to revisit therapy approaches for the treatment of several types of 

diseases, such as blood (Fanconi Anemia) and eye disorders (choroideremia), which will be discussed 

in the following section. 
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1.8 Potential therapeutic applications of S/MAR vectors 

1.8.1 Fanconi Anaemia 

Fanconi Anaemia (FA) is a highly heterogeneous autosomal recessive disease characterised by 

congenital abnormalities, defective haematopoiesis and high risk of developing acute myeloid 

leukaemia (AML) and solid tumours; both being the primary cause of mortality and morbidity. FA can 

be caused by a mutation in any of the proteins involved in the FA DNA repair pathway. Although there 

have been advances in preventive treatment, especially in hematopoietic cell transplantation, a 

successful curative treatment that solves the problem of genomic instability and risk of developing solid 

tumours when the patients reach adulthood, still does not exist. 

FA is an ideal candidate to be treated with gene therapy because the supplementation of the correct 

gene is enough to restore the functionality of the pathways as well as to rescue the phenotype.  

Several gene therapy attempts have been performed using retrovirally-mediated gene transfer of 

autologous HSC, although success has not yet been achieved. Moreover, virally-mediated gene therapy 

raises inherent safety concerns due to the random integration of the viral vectors and the potential 

associated insertional mutagenesis. Therefore, the investigation of gene therapy alternatives it is 

desirable in this particular disease.  

1.8.1.1 Gene therapy strategies 

FA is an ideal candidate for gene therapy due to its monogenetic nature and the correction of the 

disease phenotype by supplementing the right copy of the defective gene. Although there has been 

successful correction of FancC knockout mice using retrovirally-mediated gene transfer [27], the success 

in humans has not been as promising [276]. Part of the failure can be attributed to the low success rate 

of autologous HSC transplantation. HSC in the bone marrow are scarce and hard to mobilise, making 

it harder to obtain enough cells to transduce and correct in vitro and even less successfully corrected 

cells to transplant back into the patient. Also, retroviral transduction efficiencies are low, although 

Lentiviruses seem a bit more promising, but still integrate into the genome, deregulating neighbouring 

genes; or they get silenced due to epigenetic effects [226]. A possible solution to these problems is the 

derivation of iPSC from the patient’s cells [26], which could surpass the difficulty in mobilizing HSC 

from the bone marrow. However, Müller et al. showed that restoration of FA pathway is a pre-requisite 

for generation of iPSC from FA in mice [275]. FA-affected cells are arrested in G2 and are very 

susceptible to DNA damage, which is inherent to the reprogramming process itself. Therefore, FA 
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affected fibroblasts must be first corrected and then reprogrammed into iPSC. In these studies, the 

authors correct FancA and FancC knockout cells using retroviral vectors, which randomly integrate 

into the host cell’s genome and can potentially lead to dysregulation of the neighbouring genes. In a 

context where the cell’s DNA is prone to accumulate mutations due to a defective DNA repair pathway, 

the use of integrative viruses which can themselves mutate the genome is equivalent to the use of a 

ticking time bomb. Therefore, the use of alternative non-integrative methodologies such as 

CRISPR/Cas9, designed endonucleases or episomal vectors is desired in this case.  
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1.8.2 Choroideremia  

Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations in the Rab 

Escort Protein 1 (REP1) gene. Mutations that lead to loss of REP1 function disrupt normal intracellular 

trafficking and post-translational lipid modification of Rab small GTPases (Rab proteins) leading to 

progressive degeneration of the retinal pigment epithelium, photoreceptors, and choroid.  

CHM is an ideal target for human gene therapy as there is a detailed understanding of its disease 

pathophysiology and comprehensive knowledge of its genetics with identified disease-causing variants 

in the CHM gene typically resulting in a loss of REP1. There is also a refined protocol established 

involving techniques to deliver gene therapy vectors into the subretinal space providing access to the 

affected cellular layer. Some gene therapy attempts to correct CHM have been performed by using AAV 

vectors coding for the REP1 gene. Although successful in some patients, some severe adverse effects 

related to the AAV administration have been reported; indicating the need for further investigation 

and gene therapy alternatives. 

1.8.2.1 Gene therapy strategies 

There have been successful attempts to correct deficient cells by lentiviral delivery of a vector coding 

for REP-1-eGFP in vitro and in vivo [28]. The transduced cells showed efficient expression of Rep1 as 

well as rescued functional activity of the protein. Another group used a recombinant adeno-associated 

virus serotype 8 (rAAV8) vector to correct murine cells in vivo and in vitro [15]. The first clinical trial 

for CHM assessed the effects of retinal gene therapy using an adeno associated virus (AAV) vector 

encoding REP1 (AAV.REP1) in patients with Choroideremia [277]. The choice of vector for this initial 

trial was greatly influenced by previous ocular gene therapy trials that demonstrated safety and efficacy 

of subretinal injection of AAV in individuals with other congenital eye disorders. 

The initial six-month follow-up report of six patients treated with AAV.REP1 vector described the 

improvement in both rod and cone function for two of the six treated individuals [278]. In the case of 

CHM, additional concerns about administrations into the subfoveal space were addressed by the 

findings that the initial six individuals did not lose a 'clinically significant' degree of visual acuity at six 

months and the mean thickness of the retina remained unchanged [278]. However, one patient who 

received a lower dose of the AAV vector did exhibit severe visual acuity loss in the treated eye more 

than the untreated control. Also, in another cohort of five treated individuals, other measures of visual 
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function such as microperimetry sensitivity and colour vision decreased and did not recover following 

subretinal detachment [279]. 

A more recent trial in Canada, which utilised the same AAV vector, reported a severe adverse event of 

localised intraretinal inflammatory response with a slow recovery of visual acuity and the structural loss 

of the Retina Pigmented Epithelia (RPE) complex was reported in one of the treated patients [280]. 
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2. AIMS 

2.1 Challenges of current vectors 

Current gene therapy vectors are limited not only by the transient nature of transgene expression [9] 

but also by the impact that the vector — and its genetic material — has on the target cell [59 - 61].  

The increasing use of modifying vectors in experimental animal models and in the clinic has raised 

awareness of vector-mediated toxicity. Viruses and bacteria are pathogens, and their target host and its 

cells have developed a range of mechanisms to detect infection and reduce its damage.  

Modifying vectors derived from these pathogens can be identified by both the adaptive and the innate 

immune systems of the target host [117], and these reactions can have a severe consequence on the 

efficacy of delivery and the host itself. By inducing an inflamed state in a cell, the vector can merely be 

silenced, or the cell itself can be destroyed to prevent the spread of ‘infection’ [135, 138].  

Additionally, vectors which are specifically designed to integrate into the genome of a host’s cells as a 

means for providing persistent transgene expression also introduce the risk of random integrative 

genotoxicity [4, 6].  

Some of these challenges can be overcome by having a closer look at the DNA vector itself and refining 

its sequence, components and the arrangement of its elements. 

2.2 The ideal vector  

With clearly established risks involved in the clinical application of integrative or otherwise oncogenic 

viral vectors and the increasing understanding of vector-mediated toxicity; the design of a novel, safe 

and efficient gene therapy vector is desired and demands that:  

• The delivery system should be efficient, atoxic, specific and comprise no bacterial or viral 

components.  

• The vector should remain extrachromosomal, to avoid genotoxic effects. 

• The genetic component should be devoid of non-human elements. Bacterial sequences, which 

contain unmethylated CpG motifs from bacterial DNA that stimulate innate immune 

responses, should be removed or minimised.  
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• The persistence of the vector in the cell must be guaranteed and should be designed to be 

sustained and replicate�in cells episomally.  For that, the vector should be self-replicative and 

segregate during mitosis. If the vector is intended to be inheritable through generations, 

survival through meiosis should also be ensured.  

• The vector should remain active throughout the lifespan of a cell, including cellular processes 

where epigenetic changes and methylation events are common. For that, insulating elements 

could be included to avoid silencing and negative effects of neighbouring chromatin.  

• Specifically designed and selected regulatory sequences, such as promoters, should drive tailored 

expression of the transgene. If the vector is to be used for clinical applications, expression levels 

equivalent to those endogenous are desired; whereas if the vector is used to confer new traits, 

higher levels of expression would be preferred.  

• The maintenance and expression of the constructs should have no adverse or toxic 

consequences for the host�at either the cellular or somatic level. That means not altering the 

cell’s properties, such as pluripotency or differentiation potential (in stem cells) or engraftment 

(tumour cells). 

• Size limitation should not be an issue. That would allow inclusion of transgene regulatory 

sequences to mimic better the cell’s expression as well as several expression cassettes that would 

allow the vector to be multifunctional.  

• If the vectors are to be used in clinical applications, they should be designed and implemented 

specifically for the target disease and cell type. 

However, vectors meeting all these criteria are not yet available. 
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Figure 9: Cartoon depicting an ideal episomal vector. 
An ideal episomal vector for a broad range of applications should remain extrachromosomal and avoid integration. Self-replication, 
episomal retention and co-segregation during mitosis should be ensured by placing an S/MAR element and coupling it to the 
transcription unit. A polyA tail is added downstream for transcript stabilisation. The choice of promoter and regulatory elements 
should be adapted and tailored to cell type and purpose, to ensure the right levels of transgene expression. Also, other chromosomal 
elements, such as insulators, would be desirable to avoid epigenetic silencing. A selection marker should be included when cells were 
to be modified in vitro and should be an active part of the vector establishment. The inclusion of multiple expression cassettes would 
allow a multifunctional vector. Finally, removal of bacterial sequences, rich in unmethylated CpG, would decrease the plasmid 
recognition and silencing by the immune system. 

2.3 Potential applications of the vector 

This work aims to build upon previous studies in which S/MAR vectors have been used to genetically 

modify dividing cells efficiently and stably [281], without the risk of integration-mediated genotoxicity 

and providing robust and sustained gene expression [171]. The knowledge in S/MAR DNA vectors 

combined with the great potential that stem cell technology offers, will be used to develop an 

alternative, less toxic and safer vector system. This novel vector platform could fulfill all the above-

mentioned requirements, can support stable episomal maintenance and persistent gene expression in 

pluripotent and differentiated cells, for in vitro and in vivo applications. 

 

 



AIMS 

 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MATERIALS 

 51 

3. MATERIALS 

3.1 Cells 

3.1.1 Human cells 

Table 4: Human cells used in this study 

Name Description Reference/origin 
HEK293T Human embryonic kidney cells expressing adenoviral E1A and 

E1B and the simian virus 40 (SV40) large T antigen 
[282] 

HeLa Henrietta Lacks cervical cancer cell line. Human malignant 
epithelial cells, derived from an epidermoid carcinoma of the 
cervix 

[283] 

Be(2)C BE(2)-C is a clone of the SK-N-BE(2) Neuroblastoma cell line, 
established in November of 1972 from a bone marrow biopsy. 
Does not display MYCN amplification  

A kind donation from Dr 
Jeanninne Lacroix (DKFZ) 

LN-18 Grade IV Glioblastoma from human origin ATCC, CRL-2610. A kind gift 
from Dr Georgios Giamas 

LN-229 Glioblastoma cell line from human origin ATCC, CRL-2611. A kind gift 
from Dr Georgios Giamas 

U-118 Glioblastoma cell line from human origin ATCC, HTB-15. A kind gift 
from Dr Georgios Giamas 

U-87 Glioblastoma cell line from human origin ATCC, HTB-14. A kind gift 
from Dr Georgios Giamas 

U-138 Glioblastoma cell line from human origin ATCC, HTB-16. A kind gift 
from Dr Georgios Giamas 

T-98 Glioblastoma multiforme cell line from human origin ATCC, CRL-1690. A kind gift 
from Dr Georgios Giamas 

CLN474 patient 
HDF 

Human Dermal Fibroblasts with p62 amplification A kind Gift from Prof. Tristan 
Mckay (MMU) 

NHDFs Neonatal Human Dermal Fibroblasts Promocell C-12300 

hESC Human Embryonic Stem Cells A kind Gift from Prof. Tristan 
Mckay (MMU) 

   
Be(2)C GFP Be2C cell line labeled with vector 18 (pSMARt_GFP) generated in this study 
Be(2)C Luc Be2C cell line labelled with vector 50 (pSMARt_Luciferase) generated in this study 
LN-18 GFP LN-18 Glioblastoma cells labelled with vector 18 (GFP-S/MAR) generated in this study 
LN-229 GFP LN-229 Glioblastoma cells labelled with vector 18 (GFP-

S/MAR) 
generated in this study 

U-118 GFP U-118 Glioblastoma cells labelled with vector 18 (GFP-S/MAR) generated in this study 
U-87  
GFP 

U-87 Glioblastoma cells labelled with vector 18 (GFP-S/MAR) generated in this study 

U-138 GFP U-138 Glioblastoma cells labelled with vector 18 (GFP-S/MAR) generated in this study 
T-98  
GFP 

T-98 Glioblastoma cells labelled with vector 18 (GFP-S/MAR) generated in this study 

hiPSC_ 
EBNA 

HDF reprogrammed into hiPSC using EBNA episomal vectors 
containing Oct4, Klf4, Sox2, Lin28 , L-Myc and shRNA for P53 

generated in this study 

hiPSC_ 
S/MAR 

HDF reprogrammed into hiPSC using S/MAR episomal vectors 
containing Oct4, Klf4, Sox2, Lin28, L-Myc and shRNA for P53 

generated in this study 

hiPSC_ 
nPOP 

HDF reprogrammed into hiPSC using a minimally sized S/MAR 
vector containing a polycistronic expression cassette with 
Oct4, Klf4, Sox2 and c-Myc 

generated in this study 

− Highlighted cell lines are of particular relevance in this study 
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3.1.2 Murine cells 

Table 5: Murine cells used in this study 

Name Description Reference/origin 

PMEF-CFL Primary Mouse Embryo Fibroblasts, Not 
Mytomycin C Treated, Strain CF1. Used for 
Reprogramming experiments. 

Merck Millipore,  
L00183 

iMEFs Immortalised Mouse Embryonic fibroblasts used 
for feeder layers 

A kind gift from Anne 
Rademacher (PD Dr Karsten 
Rippe, DKFZ) 

BL6 mESC C7 BL6 wildtype Mouse Embryonic Stem Cell line 
(clone 7) 

Kind gift from Paul Kaschtunig, 
Dr.Milsom Lab (Hi-STEM), 
DKFZ 

E14  mESC Male embryonic stem cell line derived from mouse 
strain 129Ola inner-cell masses 

A kind gift from Franciscus van 
der Hoeven (Transgenics 
Service, DKFZ). 

Lung Fibroblasts BL6 wildtype Lung Fibroblasts A kind gift from Dr Joschka 
Willemsen (Binder lab, DKFZ) 

      

iPSC C6 Mouse Embryonic Fibroblasts reprogrammed to 
iPSC using Lentivirus (OKSMdTom) 

generated in this study 

E14 v71, v85, v105, v106 mESC labeled with vector 71 (pSMARt_CAG), 
vector 85 (nSMAR_CAG), vector 105 (nSpliced) 
or vector 106 (pSMARter) 

generated in this study 

iPSC GFP Lung Fibroblasts labelled with vector 72 
(pSMARt_SV40LT) and reprogrammed using 
Lentivirus (OKSMdTom) 

generated in this study 

− Highlighted cell lines are of particular relevance in this study 

3.1.3 Bacteria  

Table 6: Bacterial cells used in this study 

Name Description Reference/origin 
ElectroMAX™ DH10B™ Cells Electrocompetent E.coli used for high-

efficiency cloning 
Life Technologies GmbH 18290-
015 

MAX Efficiency® DH5aTM 
Competent Cells 

Chemically competent E. coli used for 
routine subcloning 

Life Technologies GmbH   
18258-012 

One Shot® Stbl3™ Chemically 
Competent E. coli 

Chemically Competent E. coli, designed 
especially for cloning direct repeats 
found in lentiviral expression vectors. 

Life Technologies GmbH   
C7373-03 

Stellar Competent Cells Chemically competent E. coli HST08 
strain that provides high transformation 
efficiency used when using InFusion 
cloning system 

Takara Bio Europe 
Clontech,  
636766 
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3.2 Vectors 

3.2.1 DNA vectors  

Table 7: DNA vector library 

# Name Description Reference/origin 

1 
2 

pMAXcoGFP Basic pMAX backbone with CMV promoter driving 
expression of coGFP 

Lonza 

3 pMAX_coGFP-
S/MAR 

Basic pMAX backbone with CMV promoter driving 
expression of coGFP with an S/MAR motif 

Cloned in this study 

4 pCAG_S/MAR 
empty 

S/MAR based vector containing the CAG promoter Cloned by Dr Suet P. 
Wong* 

5 pMAX_S/MAR_ 
intronless 

pMAX backbone without 5' intron Cloned in this study 

6 pTurboFP635-N 
(Katuschka) 

Basic backbone containing TurboFP635 reporter gene 
driven by CMV 

A kind gift from Dr 
Francesca Peri (EMBL).  
Evrogen. 

7 pMAX_CMV:: 
tGFP-S/MAR 

pMAX backbone with turboGFP and S/MAR motif Cloned in this study 

8 pEPI_CMVintron Basic pEPI backbone with a 5' intron Cloned in this study 
9 pMAX_S/MAR_ 

G418 
pMAX backbone with S/MAR motif and G418 resistance Cloned in this study 

10 pCAG_tGFP_ 
S/MAR 

pEPI backbone with turboGFP under the expression of 
the CAG promoter 

Cloned by Dr Suet P. 
Wong* 

11 pEPI_CMV_S/MAR pEPI backbone containing MCS and S/MAR motif Cloned by Dr Suet P. 
Wong* 

12 pMAX_UbC pMAX backbone with S/MAR motif and the UbC 
promoter driving expression of coGFP 

Cloned in this study 

13 pMAX_no 
Promoter 

Promoterless pMAX backbone Cloned in this study 

14 pMAX_UCOE pMAX backbone with S/MAR motif and the insulating 
element UCOE 

Cloned in this study 

15 pSMARt_GFP-2A-
G418 

pMAC backbone. CMV driving expression of GFP-2A-
G418 and coupled to the S/MAR motif 

Cloned in this study 

16 pSMARt_GFP-IRES-
G418 

pMAC backbone. CMV driving expression of GFP-IRES-
G418 and coupled to the S/MAR motif 

Cloned in this study 

17 pMAX_GFP-2A-
Luc 

pMAX backbone with CMV promoter driving GFP-2A-
Luciferase (no S/MAR motif). 

Cloned in this study 

18 pSMARt_GFP-2A-
Puro 

pSMARt backbone. CMV driving expression of GFP-2A-
Puro and coupled to the S/MAR motif. Used for GFP 
labelling of cells 

Cloned by Matthias 
Bozza* in this study 

19 pSMARt_GFP-IRES-
Puro 

pSMARt backbone. CMV driving expression of GFP-IRES-
Puro and coupled to the S/MAR motif 

Cloned by Matthias 
Bozza* in this study 

20 pSMARt_GFP-2A-
G418-cHS4 

pSMARt backbone with CMV::coGFP-2A-G418-S/MAR 
and the insulating element CSH4 

Cloned in this study 

21 pSMARt_GFP-IRES-
G418-cHS4 

pSMARt backbone with CMV::coGFP-IRES-G418-S/MAR 
and the insulating element CSH4 

Cloned in this study 

22 pSMARt_PGK:: 
GFP-IRES-G418 

pSMARt backbone with PGK::coGFP-IRES-G418-S/MAR Cloned in this study 

23 pSMARt-Luc-IRES-
G418 

pSMARt backbone with CMV::fLuc-IRES-G418-S/MAR. Cloned in this study 

24 pPOP  pMAX backbone with SFFV::human Oct4,Klf4,Sox2,cMyc-
IRES-dTom-S/MAR 

Cloned in this study 

25 pMAX_CMV:: 
hOKSMdTom 

pMAX backbone with CMV::human Oct4,Klf4,Sox2,cMyc-
IRES-dTom-S/MAR 

Cloned in this study 

26 pSMARt_UbC:: 
GFP-IRES-G418 

pSMARt backbone with UbC::coGFP- IRES- G418-S/MAR Cloned in this study 
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28 pSMARt_GFP-2A-
Luc-IRES-Puro 

pSMARt backbone with CMV driving coGFP-2A-Luc-IRES-
Puro-S/MAR 

Cloned in this study 

29 pBeast 1 pMAX backbone containing CMV::coGFP-IRES-Puro 
S/MAR and a second expression cassette with 
SFFV::hOKSM-IRESdTom 

Cloned in this study 

30 pSMARt_UbC:: 
GFP-2A-Luc-IRES-
G418 

pSMARt backbone with CMV driving GFP-2A-Luciferase 
followed by an IRES-PURO-S/MAR 

Cloned in this study 

31 pSMARt_UbC:: 
GFP-2A-Puro 

pSMARt vector (18) with UbC promoter 
 

Cloned by Terence 
Osere* in this study 

32 pSMARt_UbC:: 
Luc-IRES-G418 

pSMARt backbone with UbC driving Luciferase-IRES-
G418-S/MAR 

Cloned by Terence 
Osere* in this study 

33 pBeast 2 pSMARt backbone with UbC driving GFP-2A-Puro-S/MAR 
and a second expression cassette with SFFV:: OKSM-IRES-
dTom. The reprogramming cassette is flanked by LoxP 
sites 

Cloned by Terence 
Osere* in this study 

34 pMAX_IRES.Puro pMAX backbone with CMV:: GFP-IRES-Puro-S/MAR Cloned in this study 
35 pPOP pSMARt backbone with SFFV driving human Oct4, Klf4, 

Sox2, cMyc-IRES-dTom-IRES-Puro-S/MAR. 
Reprogramming vector 

Cloned in this study 

36 pSMARt_CMV:: 
GFP//UbC:Luc 

pSMARt backbone with expression cassettes: CMV:GFP-
2A-Puro and Ubc::Luciferase 

Cloned in this study 

37 pGOI pSMARt backbone with MCS-IRES-Luciferase-S/MAR Cloned in this study 
38 pSMARt_CMV:: 

GFP//UbC:Luc/UC
OE 

pSMARt backbone with two expression cassettes. 
CMV::GFP-2A-Puro and Ubc::Luciferase with UCOE 

Cloned in this study 

39 pSMARt_PGK:: 
rLuciferase 

pSMARt backbone with PGK driving renilla Luciferase-
IRES-G418-S/MAR 

Cloned in this study 

40 pMAX_CMV::fLuc-
2A-Puro.2LoxP 

pSMARt backbone with UbC driving GFP-2A-Puro-S/MAR 
and a second expression cassette with SFFV::OKSM-IRES-
dTom. The reprogramming cassette is flanked by LoxP 
sites 

Cloned by Matthias 
Bozza* in this study 

41 2xLoxP_fLuc.rLuc 
(no PolyA) 

pSMARt backbone containing two expression casettes: 
CMV driving fLuciferase-2A-Puro-S/MAR and PGK driving 
rLuc (w/o polyA tail) 

Cloned in this study 

42 2xLoxP_fLuc.rLuc 
(with PolyA) 

pSMARt backbone containing two expression casettes: 
CMV driving fLuciferase-2A-Puro-S/MAR and PGK driving 
rLuc (w/ polyA tail) 

Cloned in this study 

43 iCre plasmid Vector containing iCre recombinase, tagged with Myc and 
containing SV40NLS, driven by the CMV promoter 

Cloned by Matthias 
Bozza* in this study 

44 tGFP-2A-iCre Vector containing GFP-2A-iCre recombinase, tagged with 
Myc and containing SV40NLS,  under expression of the 
CMV promoter 

Cloned by Matthias 
Bozza* in this study 

45 pSMARt_UbC:: 
GFP-2A-
Puro.2LoxP 

pSMARt backbone with UbC driving GFP-2A-Puro-
S/MAR, flanked by LoxP sites 

Cloned in this study 

46 pMAX_CMV:: 
FANCA-IRES-Luc-
S/MAR 

pMAX backbone with CMV::Fanconi A-IRES-firefly 
Luciferase-S/MAR (no selection marker) 

Cloned by Terence 
Osere* in this study 

48 PGK_coGFP-
S/MAR 

pMAX backbone with PGK driving GFP-S/MAR Cloned in this study 

49 PGK_IRES-GFPnls-
S/MAR 

pSMARt vector with PGK and a MCS-IRES-eGFP-S/MAR Cloned in this study 

50 pSMARt_Luc-2A-
Puro-S/MAR.El40 

pSMARt backbone. CMV driving expression of 
fLuciferase-2A-Puro and coupled to the S/MAR motif and 
the insulating Element 40. Used for Luciferase labelling of 
cells 

Cloned by Matthias 
Bozza* in this study 

51 pBeast 3.0 pSMARt backbone with UbC driving GFP-2A-Puro-S/MAR 
and a second expression cassette with SFFV::OKSM-IRES-

Cloned in this study 
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dTom. The bacterial backbone and reprogramming 
cassette is flanked by LoxP sites 

52 pBeast 3.1 pSMARt backbone with UbC driving GFP-2A-Puro-S/MAR 
and a second expression cassette with SFFV::OKSM-IRES-
dTom. The reprogramming cassette is flanked by LoxP 
sites and the insulating element 40 separating both 
expression cassettes 

Cloned by Bojana 
Pavlovic* in this study 

53 pSMARt_EF1a:: 
GFP-2A-Puro-
S/MAR 

pSMARt backbone (18) with EF1a driving expression of 
GFP-2A-Puro-S/MAR 

Cloned by Bojana 
Pavlovic* in this study 

54 pBeast 3.2 pSMARt backbone with UbC driving GFP-2A-Puro-S/MAR 
and a second expression cassette with SFFV::OKSM-IRES-
dTom. The reprogramming cassette is flanked by LoxP 
sites and the insulator UCOE separating both expression 
cassettes 

Cloned by Bojana 
Pavlovic* in this study 

55 pBeast 3.3 pSMARt backbone with EF1a driving GFP-2A-Puro-S/MAR 
and a second expression cassette with SFFV::OKSM-IRES-
dTom. The reprogramming cassette is flanked by LoxP 
sites and the insulator Element 40 separating both 
expression cassettes 

Cloned by Bojana 
Pavlovic* in this study 

56 pBeast 3.4 pSMARt backbone with EF1a driving GFP-2A-Puro-S/MAR 
and a second expression cassette with SFFV::OKSM-IRES-
dTom. The reprogramming cassette is flanked by LoxP 
sites w/o insulating element separating both expression 
cassettes 

Cloned in this study 

57 pBeast 3.5 pSMARt backbone with EF1a driving GFP-2A-Puro-S/MAR 
and a second expression cassette with SFFV::OKSM-IRES-
dTom. The reprogramming cassette is flanked by LoxP 
sites and the insulator UCOE separating both expression 
cassettes 

Cloned in this study 

58 pSMARt_CMV/ 
El40 

pSMARt backbone with CMV driving expression of GFP-
2A-Puro-S/MAR. Contains the insulating Element 40 

Cloned in this study 

59 pSMARt_UbC/ 
El40 

pSMARt backbone with UbC driving expression of GFP-
2A-Puro-S/MAR. Contains the insulating Element 40 

Cloned in this study 

60 pSMARt_EF1a/ 
El40 

pSMARt backbone with EF1a driving expression of GFP-
2A-Puro-S/MAR. Contains the insulating Element 40 

Cloned in this study 

61 pSMARt_CMV/ 
UCOE 

pSMARt backbone with CMV driving expression of GFP-
2A-Puro-S/MAR. Contains the insulator UCOE 

Cloned in this study 

62 pSMARt_EF1a/ 
UCOE 

pSMARt backbone with EF1a driving expression of GFP-
2A-Puro-S/MAR. Contains the insulator UCOE 

Cloned in this study 

63 pSMARt_CMV:: 
dTom-IRES-Puro 

pSMARt backbone with CMV driving expression of 
dTomato-IRES-Puro-S/MAR 

Cloned in this study 

64 pSMARt_CMV:: 
Katy-IRES-Puro 

pSMARt backbone with CMV driving expression of 
Katuschka-IRES-Puro-S/MAR 

Cloned in this study 

65 pPOP 2 pSMARt backbone with SFFV driving human Oct4, Klf4, 
Sox2, cMyc-IRES-dTom-S/MAR (w/o Puromycin 
selection). Reprogramming vector 

Cloned in this study 

66 pSMARt_EF1a:: 
dTom-IRES_Puro 

pSMARt backbone with EF1a driving expression of 
dTomato-IRES-Puro-S/MAR 

Cloned in this study 

67 pSMARt_UbC:: 
dTom-IRES-Puro 

pSMARt backbone with UbC driving expression of 
dTomato-IRES-Puro-S/MAR 

Cloned in this study 

68 pSMARt_EF1a:: 
Kat-IRES-Puro 

pSMARt backbone with EF1a driving expression of 
Katuschka-IRES-Puro-S/MAR 

Cloned in this study 

69 pSMARt_UbC:: 
Kat-IRES_Puro 

pSMARt backbone with UbC driving expression of 
Katuschka-IRES-Puro-S/MAR 

Cloned in this study 

70 PGK_FANCA-
IRES-GFPnls-S/MAR 

pMAX backbone with PGK::FANCA-IRES-eGFPnls-S/MAR Cloned in this study 

71 pSMARt::CAG-
coFGP-2A-S/MAR 

pSMARt backbone with CAG driving expression of 
coGFP-2A-Puro-S/MAR. Used for mESC labelling. 

Cloned in this study 
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72 pSMARt_SV40LT-
GFP-S/MAR 

pSMARt backbone with CMV driving expression of 
SV40LT-2A-GFP-SMAR and the insulating element 40. 
used for immortalisation and labelling of MEFs 

Cloned by Matthias 
Bozza* in this study 

73 pSMARt-hSK pMAX backbone with the CAG promoter driving 
expression of human Sox2-2A-Klf4 

Cloned in this study 

74 pSMARt-hML pMAX backbone with the CAG promoter driving 
expression of human nMyc-2A-Lin28 

Cloned in this study 

75 pSMARt-hOct4-
shP53 

pMAX backbone with the CAG promoter driving 
expression of human Oct4 and U6 driving shRNA for p53 

Cloned in this study 

76 pSMARt-shP53 pSMARt backbone with CMV driving GFP-2A-Puro-
S/MAR and U6 driving shRNA for p53 

Cloned in this study 

77 pCXLE-gw (Empty Backbone) Non-integrating (episomal) expression 
vector with Gateway cassette 

A kind gift from Prof. 
Tristan Mckay (MMU) 
[284] 

78 pCXLE-hOct4-
shP53 

Integration-free (episomal) expression of human OCT3/4 
and shRNA against p53 

A kind gift from Prof. 
Tristan Mckay (MMU) 
[203] 

79 pCXLE-hSK Integration-free (episomal) expression of human SOX2 
and KLF4 

A kind gift from Prof. 
Tristan Mckay (MMU) 
[203] 

80 pCXLE-hML Integration-free (episomal) expression of human L-MYC 
and LIN28 

A kind gift from Prof. 
Tristan Mckay (MMU) 
[203] 

81 nanoPOP1 (n35) Minimal pSMARt backbone with SFFV:OKSM-IRES-dTom-
IRES-Puro-S/MAR. No bacterial backbone 

Nature Technology 
(NTC), Lincoln, NE 
(USA) 

82 nanoFanca (n46) Minimal pSMARt backbone with CMV::FancA-IRES-Luc-
S/MAR. No bacterial backbone 

Nature Technology 
(NTC), Lincoln, NE 
(USA) 

83 nanoEF1a (n53) Minimal pSMARt backbone with EF1a::GFP-2A-Puro-
S/MAR. No bacterial backbone 

Nature Technology 
(NTC), Lincoln, NE 
(USA) 

84 nanoPOP2 (n65) Minimal pSMARt backbone with SFFV::OKSMdTom-
S/MAR. No bacterial backbone 

Nature Technology 
(NTC), Lincoln, NE 
(USA) 

85 nanoCAG (n71) Minimal pSMARt backbone with CAG::coGFP-2A-Puro-
S/MAR. No bacterial backbone 

Nature Technology 
(NTC), Lincoln, NE 
(USA) 

86 pSMARt_CAG:: 
dTom-IRES_Puro 

pSMARt backbone with CAG driving expression of dTom-
IRES-Puro-S/MAR. 

cloned in this study 

89 pSMARt_SFFV:: 
vLuc 

pMAX backbone with SFFV driving expression of vLuc 
and S/MAR motif 

cloned in this study 

90 pSMARt_NFKB:: 
GFP-2A-Luc 

pMAX backbone with the NFKB activating region driving 
expression ofnLuc and GFP with S/MAR motif 

cloned in this study 

91 nanoBeast 3.2 (54) Minimal pSMARt backbone with UbC driving GFP-2A-
Puro-S/MAR and a second expression cassette with 
SFFV::OKSM-IRES-dTom. The reprogramming cassette is 
flanked by LoxP sites and the insulator UCOE separating 
both expression cassettes 

Nature Technology 
(NTC), Lincoln, NE 
(USA) 

92 nanoBeast 3.4 (56) Minimal pSMARt backbone with EF1a driving GFP-2A-
Puro-S/MAR and a second expression cassette with 
SFFV::OKSM-IRES-dTom. The reprogramming cassette is 
flanked by LoxP sites w/o insulating element separating 
both expression cassettes 

Nature Technology 
(NTC), Lincoln, NE 
(USA) 

93 nanoBeast 3.5 (57) Minimal pSMARt backbone with EF1a driving GFP-2A-
Puro-S/MAR and a second expression cassette with 
SFFV::OKSM-IRES-dTom. The reprogramming cassette is 
flanked by LoxP sites and the insulator UCOE separating 
both expression cassettes 

Nature Technology 
(NTC), Lincoln, NE 
(USA) 
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94 nanoFanca (70) Minimal pMAX backbone with PGK::FANCA-IRES-
eGFPnls-S/MAR 

Nature Technology 
(NTC), Lincoln, NE 
(USA) 

95 pCXLE-OKSM-
dTom-Puro 

Integration-free (episomal) vector containing expression 
of human codon optimised Oct4, Klf4, Sox2 and cMyc, 
coupled to an IRES dTomato and IRES Puromycin 

cloned in this study 

96 pCAG_ΔS/MAR SMAR deficient version of vector 71  
97 MR226105 Commercial vector encoding for murine P62 A kind gift from Prof. 

Tristan Mckay (MMU) 
 

98 mP62_S024 mP62 S024 mutant generated for Prof. McKay cloned in this study 
99 mP62_S351 mP62 S351 mutant generated for Prof. McKay cloned in this study 
100 mP62_W340 mP62 W340 mutant generated for Prof. McKay cloned in this study 
101 EBNA_GFP-2A-

Puro 
pCXLE backbone expressing EBNA and GFP-2A-Puro. 
For labelling of hESC. 

cloned in this study 

102 pSMARt_GFP-2A-
Luc 

pSMARt backbone with CAG driving expression of 
coGFP-2A-Luciferase and IRES-Puro-S/MAR. Improved 
version of vector 71 for in vivo and in vitro applications 

cloned in this study 

103 Rep1-GFP Gene corrective vector encoding for human Rab Escort 
Protein 1 (Rep1)-GFP under CMV promoter and shielded 
by Element 40. 

Cloned by Matthias 
Bozza* in this study 

104 nRep1-GFP Minimal backbone devoid of bacterial sequences encoding 
for human Rab Escort Protein 1 (Rep1)-GFP under CMV 
promoter and shielded by Element 40. 

Nature Technology 
(NTC), Lincoln, NE 
(USA) 

105 nSMAR_Spliced Minimal backbone containing a spliced S/MAR region, 
which will be removed after transcription 

Nature Technology 
(NTC), Lincoln, NE 
(USA) 

106 pSMARter pSMARt backbone with a minimally sized S/MAR motif 
from human Apolipoprotein B 

Cloned by Matthias 
Bozza* in this study 

− Highlighted vectors are of special relevance in this study 
− Marked names (*) correspond to former or current members of the DNA Vector Lab, DKFZ 

3.2.2 Viral vectors 

Table 8: Viral plasmids used in this study  

# Name Description Reference/origin 

27 pRRL.PPT.SF. 
hOKSM-IRES-dTom 

Lentiviral vector encoding for Oct4, Klf4, 
Sox2 and cMyc and dTomato as a reporter 
gene 

A kind gift from Dr.Milsom (Hi-STEM, 
DKFZ) and Prof. Dr Axel Schambach  
[285] 

47 pFANCA_ 
S11FAIEGnls 

Lentiviral vector with MSCV::FANCA-
IRES-eGFP-nls 

A kind gift from Dr.Milsom (HiSTEM, 
DKFZ) 
[286] 

 pCMV-ΔR8.91 coding for HIV Gag-Pol A kind gift from Dr Joschka Willemsen 
(Binder Lab, DKFZ) 
[287] 

 pMD.2G coding for VSV-G glycoprotein A kind gift from Dr Joschka Willemsen 
(Binder Lab, DKFZ) 
[287] 

 pWPI-Puro scramble vector A kind gift from Dr Joschka Willemsen 
(Binder Lab, DKFZ) 
[287] 
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3.3 Cell culture 

3.3.1 Cell culture components  

Table 9: Cell culture components 

Reagent Company Catalog Number 

Accutase Gibco (Life Technologies GmbH) A11105-01 

Collagenase III Worthington LS004183 

Dimethyl sulfoxide (DMSO) Carl Roth GmbH,  4720.1 
DPBS (no calcium, no magnesium) Gibco (Life Technologies GmbH) 14190094 
Dulbecco's phosphate-buffered saline (1xPBS) Sigma-Aldrich D8537-500ML 
Dulbecco’s Modified Eagle’s Medium (DMEM) - high 
glucose, With 4500 mg/L glucose, L-glutamine, and 
sodium bicarbonate, without sodium pyruvate 

Sigma-Aldrich D5796-6X500ML 

DMEM:F-12 1:1 Mixture w/15mM Hepes, L-Gln 500ml Lonza BE12-719F 
DMEM/F-12 + GlutaMAX Gibco (Life Technologies GmbH) 31331-028 
Enzyme-free dissociation buffer Gibco (Life Technologies GmbH) 13-151-014 
ESGRO LIF Merck Millipore  ESG1106 
Fetal Calf Serum (FCS) Superior Merck Millipore  S 0615 
Fetal Bovine Serum (FBS) Sigma-Aldrich  F7524-500ml 
GeneticinR Selective Antibiotic (G418 Sulfate) Life Technologies GmbH  11811-031 
IMDM (with L-glutamine and 25mM EDTA) Gibco (Life Technologies GmbH) 12440061 
Knock Out DMEM Gibco (Life Technologies GmbH) 10829018 
KO Serum replacement (ESC/iPSC) Gibco (Life Technologies GmbH) 10828010 
L-Glutamine (L-Glu) Gibco (Life Technologies GmbH) 25030-024 
MEM Non-essential Amino Acid Solution (NEAA) Gibco (Life Technologies GmbH) 11140-035 
Minimum Essential Medium Eagle (with Earle's salts, L-
glutamine and sodium bicarbonate) 

Sigma-Aldrich  M4655-500ML 

Opti-MEM Reduced Serum Medium Life Technologies GmbH  31985062 
Penicillin-Streptomycin (P/S) Gibco (Life Technologies GmbH) 15140-122 
Protein-free hybridoma medium (PFHM-II) Gibco (Life Technologies GmbH) 12040077 
Puromycin Applichem  A2856,0010 
RPMI-1640 Medium with L-glutamine and sodium 
bicarbonate, liquid, sterile-filtered, cell culture tested 

Sigma-Aldrich  R8758-6X500ML 

Trypan Blue solution 0.4%, liquid, sterile-filtered, 
suitable for cell culture 

Biozym T13001 

TrypLE Express enzyme, no phenol red Gibco (Life Technologies GmbH) Gibco (Life 
Technologies 
GmbH) 

Trypsin-EDTA 0,25% Sigma-Aldrich  T4049-100ML 

3.3.2 Other cell culture reagents 

Table 10: Other cell culture reagents 

Reagent Company Catalogue Number 
2-Phospho-L-Ascorbic Acid Sigma-Aldrich  49752-10G 
All-Trans-Retinoic acid (ATRA) Sigma-Aldrich  R2625-50MG 
β-mercaptoethanol Gibco (Life Technologies GmbH) 31350010 
Bovine Holotransferrin Sigma-Aldrich T1283 
CHIR99021 (GSK3 inhibitor) Sigma-Aldrich  SML1046-5MG 
Fibroblast Growing Factor (FGF2) Peprotech 100-18B 
Gelatin from porcine skin Sigma-Aldrich  G1890-100G 
Monothioglycerol (MTG) Sigma-Aldrich M6145 
PD0325901 (MEK inhibitor) Sigma-Aldrich  PZ0162-5MG 
Plasmocin  Invivogen  ant-mpt 
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rhBMP-4 R&D 314-BP-050 
rhFGF R&D 233-FB-025 
rhVEGF R&D 293-VE-050 
rh/m/rActivin A R&D ACFP338 
Valproic Acid Sodium Salt (VPA) Sigma-Aldrich  P4543-10G 
Y-27632 Sigma Y0503 

3.3.3 Cell culture composition 

3.3.3.1 Cell media composition 

Table 11: Cell media composition 

Cells Media  Composition Vol. 
Freezing media Fetal Bovine Serum (FBS) 

Dimethyl sulfoxide (DMSO) 
90% 
10% 

40 ml 
10 ml 

HEK293T DMEM (With 4500 mg/L glucose, L-glutamine, and 
sodium bicarbonate, without sodium pyruvate) 
Fetal Bovine Serum (FBS) 
Penicillin-Streptomycin 

89% 
 
10% 
1% 

500 ml 
 
50 ml 
5 ml 

HeLa DMEM (With 4500 mg/L glucose, L-glutamine, and 
sodium bicarbonate, without sodium pyruvate) 
Fetal Bovine Serum (FBS) 
Penicillin-Streptomycin 

89% 
 
10% 
1% 

500 ml 
 
50 ml 
5 ml 

Be(2)C RPMI-1640 (With L-glutamine and sodium bicarbonate) 
Fetal Bovine Serum (FBS) 
Penicillin-Streptomycin 
Non-Essential Amino acids (NEAA) 

88% 
10% 
1% 
1% 

500 ml 
50 ml 
5 ml 
5 ml 

iMEFs 
pMEFS-CFL 

DMEM (With 4500 mg/L glucose, L-glutamine, and 
sodium bicarbonate, without sodium pyruvate) 
Fetal Bovine Serum (FBS) 
Penicillin-Streptomycin 

89% 
 
10% 
1% 

500 ml 
 
50 ml 
5 ml 

mESCs 
 
miPSC 

KnockOut DMEM 
Fetal Calf Serum (FCS) Superior 
Penicillin-Streptomycin 
Non-Essential Aminoacids (NEAA) 
L-Glutamine 
B-Mercaptoethanol 
LIF 
CHIR99021 (GSK3 inhibitor) 
PD0325901 (MEK inhibitor) 
* plus additives  

82% 
15% 
1% 
1% 
1% 
0,1 mM 
1:500 dil 
3 μM 
1 μM 

410 ml 
75 ml 
5 ml 
5 ml 
5 ml 
1 ml 
500 μl 
15 μl 
5 μl 

Other reagents  
mESCs resuspending 
media 

IMDM 
Fetal Bovine Serum (FBS) 
Penicillin-Streptomycin 
L-Glutamine 

88% 
10% 
1% 
1% 

500 ml 
50 ml 
5 ml 
5 ml 

nHDF DMEM (With 4500 mg/L glucose, L-glutamine, and 
sodium bicarbonate, without sodium pyruvate) 
Fetal Bovine Serum (FBS) 
Penicillin-Streptomycin 
L-Glutamine 

88% 
 
10% 
1% 
1% 

500 ml 
 
50 ml 
5 ml 
5 ml 

hESC 
hiPSC 

DMEM/F-12 + Glutamax 
Knockout Serum Replacement (KSR) 
Penicillin-Streptomycin 
Non-Essential Aminoacids (NEAA) 
B-Mercaptoethanol 
* FGF2 (add fresh)  

80% 
20% 
1% 
1% 
0,2% 
10ng/μl 

400 ml 
100 ml 
5 ml 
5 ml 
1 ml 
50 μl 
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mEB 
Differentiation media 

Knockout DMEM 
Knockout Serum Replacement 
L-Glutamine 
Non-Essential Aminoacids (NEAA) 
Penicillin/Streptomycin 
Ascorbic acid  

83% 
15% 
1% 
1% 
1% 
1:1000 

83 ml 
15 ml 
1 ml 
1 ml 
1 ml 
 

mEB–HSC 
differentiation media 

IMDM 
EB FCS 
Protein Free Hybridoma medium (PFHM) 
Penicillin/Streptomycin 
L-Glutamine 
Ascorbic Acid 
Monothioglycerol (MTG) 
Holotransferrin  
+ Cytokines (BMP-4, Activin A, VEGF and FGF2) 

78% 
15% 
5% 
1% 
1% 
50 μg/ml 
4,5 mM 
200 μg/ml 
see Other 
reagents 

388,75 ml 
75 ml 
25 ml 
5 ml 
5 ml 
250 μl 
19 μl 
1 ml 
 

hEB 
Differentiation 
media 

Day 0-4 
hESC/hiPSC media 
FGF2 
Y-27632 
Day 4-15 
DMEM 
Fetal Bovine Serum (FBS) 
Penicillin-Streptomycin 
L-Glutamine 

 
 
10ng/μl 
10uM 
88% 
 
20% 
1% 
1% 

 
 
 
 
50 ml 
 
10 ml 
0,5 ml 
0,5 ml 

3.3.3.2 Other reagents 

Table 12: Other reagents 

Reagent Stock 
Concentration 

Diluent  Final 
Concentration 

Activin A 5μg/ml 
0.1% BSA, 1% 1M 
HEPES in PBS 5 ng/ml 

All -trans Retinoic Acid (ATRA) 10mM DMSO 10 μM 
Ascorbic acid 500mg/ml H2O 50 mg/ml 

BMP-4 5μg/ml 
0.1% BSA, 1% 1M 
HEPES in PBS 5 ng/ml 

CHIR99021 10mM DMSO 3 μM 
Gelatin 1% w/v H2O 0,1%  
Geneticin (G418) 50mg/ml H2O  1 mg/ml 
Holotransferrin 100mg/ml  200 µg/ml 
Monothioglycerol (MTG)   4,5 mM 
PD0325901 10mM DMSO 1 μM 
Puromycin 1 mg/ml H2O 0.5 - 1 µg/ml  
Valproic Acid (VPA) 2M H2O 2 mM 

Fibroblast Growing Factor (FGF2) 10μg/ml 
Tris/HCl pH 7.6 + 
0.1% BSA 10 ng/ml 

Plasmocidin 25mg/ml (treatment)  2.5 mg/ml 
(prophylactic) 

Proteinase K 25 mg/ml H2O 600 µg/ml 
VEGF 

5μg/ml 
0.1% BSA, 1% 1M 
HEPES in PBS 5 ng/ml 

Y-27632 10mM H2O 10 μM 
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3.3.4 Transfection Reagents 

3.3.4.1 Chemical Transfection 

Table 13: Chemical transfection reagents 

Kit/Reagent Company Catalogue number  

Effectene Transfection Reagent Qiagen 301425 
FuGENE 6 Transfection Reagent Promega E2691 
FuGENE HD Transfection Reagent Promega E2311 
in vivo JetPEI Polyplus 201-10G 
jetPEI Polyplus 101-10N 
jetPRIME Polyplus 114-01 
Lipofectamine® 2000 Transfection Reagent ThermoFischer Scientific 11668030 
Lipofectamine® LTX Reagent with PLUS™ Reagent ThermoFischer Scientific 15338030 

3.3.4.2 Physical Transfection/Nucleofection 

Table 14: Nucleofection reagents 

Kit/Reagent Company Catalogue 
number  

Mouse ES Cell Nucleofector Kit Lonza VPH-1001 
Mouse/Rat Hepatocyte Nucleofector Kit Lonza VAPL-1004 
NHDF Nucleofection Kit Lonza VPD-1001 

 

3.4 Bacterial culture 
Table 15: Bacterial culture 

Media Composition Amount   
LB media Tryptone 100 g  

Yeast extract 50 g 
NaCl 50 g 
H2O Up to 10L 

LB agar LB 500 ml 
Standard agar 10 g 

Antibiotic Stock concentration Working dilution 
Ampicillin 100 mg/ml in H2O 1:1000 
Carbenicillin 50 mg/ml (in Ethanol) 1:1000 
Kanamycin  30 mg/ml (in H2O) 1:1000 
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3.5 Chemicals and reagents  
Table 16: Chemicals and reagents 

Chemical/Reagent Company Catalogue 
number  

1x Stripping Buffer Thermo Scientific  46430 
20x MOPS SDS Running Buffer Life technologies NP0001 
6X Gel Loading Dye, Purple,  no SDS New England Biolabs (NEB) B7025S 
Acetic acid Merck 100063   
Acetone Fischer Chemicals  A/0600/17  
ACK Lysis Buffer Sigma-Aldrich 11814389001 
Agar Roth S210-3 
Agarose Sigma-Aldrich A9539-500G 
Bovine Serum Albumin (BSA) heat shock fraction, protease free, 
suitable for hybridisation, pH 7, ≥98% 

Sigma-Aldrich B4287-5G 

Bromophenol Blue Merck  108122  
Chloroform  Sigma-Aldrich  3221  
CloneAmp HiFi PCR Premix (2X) Clontech 639298 
Complete mini EDTA free proteinase inhibitor complex Roche 11836170001 
DNAseI Roche  4536282001 
DNAZap PCR DNA Degradation Solution Life technologies AM9890 
Ethanol  Fischer Chemicals  E10650DF/C17 
Ethylenediaminetetraacetic acid (EDTA) Acros Organics  147850010  
Glycerol Sigma-Aldrich 15523  
HEPES Roth 9105.4 
Hydrochloric acid (HCl) Sigma-Aldrich 30721 
Isopropanol Sigma-Aldrich 33539-2  
ß-Mercaptoethanol (electrophoresis grade)  Gibco 21985-023 
Methanol Sigma-Aldrich 32213-2  

Mix dNTPs (25 mM each) MP Biomedicals NTPMX250 
Paraformaldehyde (PFA) Sigma-Aldrich  252549  
Phenol:Chloroform:Isoamylalcohol (25:24:1) Sigma-Aldrich 77617-100ML 
Powdered milk  Roth  T145.2  
Propidium iodide Life technologies P3566 
Proteinase K Roche 3115836001 
Random Hexamers (dN6) Roche  11034731001 
RNAseA solution VWR E866-1ML 
RNASeOUT cleaning solution Life Technologies 10777019 
SapphireAmp® Fast PCR Master Mix Clontech RR350A 
Sodium acetate (3M) Invitrogen  AM9740 
Sodium chloride (NaCl) Sigma-Aldrich 433209 
Sodium deoxycholate Serva 18330.02 
Sodium Dodecyl Sulfate (SDS) Serva 20750 
Sodium hydroxide (NaOH) Merck 106469 
Tris Base Sigma-Aldrich T1503 
Triton X100 Applichem A4975,0500 
TRIzol reagent Cellutron Life Technologies 15596-026 
Tween 20 Applichem A1389,0500 
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3.6 Buffers and solutions 
Table 17: Buffers and solutions 

Application Buffer Reagent Absolute 
amount 

Relative 
amount 

DNA electrophoresis 

50x Electrophoresis Buffer 
(EB) 
(2L) 
 

Tris  2M 484,6 g  
Sodium Acetate 0.25M 41 g  
EDTA 0.05M 37,2 g  
pH (acetic acid) 7.8 aprox. 160 ml 
dH2O  Up to 2 L 

1x EB (5L) 
 

50x EB buffer  50 ml 
dH2O  4,5 L 

Western Blot 

1x Running Buffer 20x MOPS SDS 
Running buffer 

commercial  200 ml 
 

dH2O   800 ml 
1x Stripping Buffer Restore PLUS Stripping Buffer (Life Technologies) 
4x Laemmli Buffer (20ml) 
 

Tris (pH 6,8) 2M 2 ml  
SDS 8% 1,6 g  
100% Glycerol 40% 8 ml  
Bromophenol Blue 0.01% 2 µl  
ß-mercaptoethanol  2% 4 ml  
dH2O  6 ml 

1x RIPA Buffer  
(50ml) 

Tris (pH 7,5) 1M 500 µl  
NaCl 5M 1,5 ml  
EDTA (pH 8,0) 0.5M 100 µl 
SDS 10% 500 µl  
Sodium 
Deoxycholate 

 
0.5% 

0,25 g  

NP-40 10% 5 ml  
Complete mini inhibitor complex 1 mini tablet 

10x TBS 
(1L) 

Tris Base (pH 7,6) 1M 500 ml 
NaCl 5M 300 ml 
dH2O  200 ml 

1x TBS-T 
(1L) 

10X TBS  100 ml 
dH2O  900 ml 
Tween 20  1 ml 

5% milk/TBST (w/v) Milk powder 5% 5 g 
1x TBST 95% 100 ml 

Immunofluorescence 
Neuroblastoma 

Fixation Solution Paraformaldehyde 
(PFA) 

4%   

PBS -  
Permeabilisation solution Triton X100  0,2%  

PBS -  
Blocking solution FCS 2%  

PBS -  
Storage solution 1x PBS   

Immunofluorescence 
Stem Cells/EBs 

Fixation Solution 100% Methanol -  
Acetone -  

Permeabilisation solution Tween20  0,1%  
PBS -  

Blocking solution 
 
 
 

BSA 0,5%  
FCS 1%  
TritonX100 0,1%  
PBS  -  

Storage solution 1x PBS  -  
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Southern Blot 

Depurination Buffer HCl 0.25M  
Denaturation Buffer NaCl 

NaOH 
1.5M 
0.5M 

 

Neutralisation Buffer 
(10L) 

NaCl 
Tri-Sodium citrate-
2H2O 
Tris 
pH (HCl) 

1.5M 
 
0.5M 
 
7.0 

1753 g 
 
884 g 
605 g 
approx. 400 
ml 

20x SSC 
 

NaCl 
Tri-Sodium citrate-
2H2O 

3M 
 
0.3M 

 

Church Buffer 
(1L) 

SDS 7% 70 g 
NaPi 0.5M 18,96 g 

NaH2PO4 
48,56 g  
Na2HPO4 

EDTA 1mM 2 ml (0,5M 
EDTA) 

BSA 1% 10 g 
Wash Buffer 1 
(100ml) 

2x SSC  10 ml 
(20xSSC) 

SDS 0,1% 1 ml (10% 
SDS) 

Wash Buffer 2 
(100ml) 

0.5x SSC  2,5 ml 
(20xSSC) 

SDS 0,1% 1ml (10% 
SDS) 

Phenol-Chloroform 

DNA Lysis Buffer 1 
(100ml) 

TrisHCl pH 8.0 20mM  
NaCl 20mM  
EDTA 20mM  
SDS 1%  

DNA Lysis Buffer 2 
(100ml) 

NaCl 150mM  
EDTA pH 8.0 10mM  
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3.7 Kits  
Table 18: Kits used in this study 

Kit/Reagent Company Catalogue 
number  

Alkaline Phosphatase Staining Kit II Stemgent  00-0055 
Avidin/Biotin Blocking kit Vector Labs SP-2001 
CloneAmp HiFi PCR Premix Clontech 639298 
Dako Cytomation Target Retrieval Solution Citrate pH 6.0 Dako S2369 
Dako Real Antibody diluent Dako S2022 
Dako Real Detection System, Peroxidase/AEC, 
rabbit/mouse 

Dako K5003 

Dako Real Peroxidase Blocking Solution Dako S2023 

rDNAse I Invitrogen AM1906 
DNeasy Blood and tissue Qiagen 69504 
Dual Luciferase Reporter Assay System Promega E1910 
EndoFree Plasmid Maxi Kit Qiagen 12362 
gDNA Clean & Concentrator Zymo research D4011 
GenElute Gel extraction kit Sigma-Aldrich NA1111 
High Pure RNA Isolation Kit Roche 11828665001 
HotStar Taq Polymerase mix Qiagen 203203 
Phire Tissue Direct PCR Master Mix Thermo Fischer Scientific F170S 
Pierce™ BCA Protein Assay Kit Thermo Fischer Scientific 23227 
Prime-It II Random Primer Labeling kit Agilent 300385 
QIAGEN Plasmid Maxi Kit Qiagen 12163 
QIAprep Spin Miniprep Kit  Qiagen 27106 
QIAquick PCR purification kit Qiagen 28106 
QuantiTect SYBR Green PCR Kit  Qiagen 204143 
Quick-gDNA™ MiniPrep - Capped column Zymo-Research D3024 
RNeasy Mini Kit Qiagen 74104 
SignalFire™ ECL Reagent Cell Signalling Technology 6883P3 

3.8 Markers 
Table 19: Ladders and markers 

Marker Company Catalogue 
number  

100 bp DNA ladder New England Biolabs (NEB) N3231L 
1 kb DNA ladder New England Biolabs (NEB) N3232L 
GeneRuler 1 kb DNA ladder Life Technologies GmbH  SM1331 
PageRuler Plus Prestained Protein Ladder Fermentas  26619 
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3.9 Enzymes 

3.9.1 Restriction enzymes 

Table 20: Restriction enzymes used in this study 

Enzyme Company Catalogue 
number  

Age I/Bsh TI Thermo Fischer Scientific  FD1464 
Ase I New England Biolabs  R0526S 
BamHI Thermo Fischer Scientific  FD0054 
BcuI / SpeI Thermo Fischer Scientific  FD1254 
Bgl I Thermo Fischer Scientific  FD0074 
Bgl II Thermo Fischer Scientific  FD0084 
BmtI / BspOI New England Biolabs  R0658S 
BspEI / Kpn2I New England Biolabs  R0540S 
BsrGI / Bsp1407I Thermo Fischer Scientific  FD0934 
ClaI/Bsu15I Thermo Fischer Scientific  FD0143 
DpnI Thermo Fischer Scientific  10819410 
EcoRI Thermo Fischer Scientific  FD0274 
EcoRV / Eco 32I Thermo Fischer Scientific  FD0303 
Hind III Thermo Fischer Scientific  15207038 
MluI Thermo Fischer Scientific  FD0564 
NdeI Thermo Fischer Scientific  FD0583 
NheI Thermo Fischer Scientific  FD0973 
NsiI/Mph1103I Thermo Fischer Scientific  FD0734 
PstI Thermo Fischer Scientific  FD0614 
SalI Thermo Fischer Scientific  FD0644 
SmaI Thermo Fischer Scientific  FD0663 
SnaBI New England Biolabs  R0130S 
XbaI Thermo Fischer Scientific  FD0684 
XhoI Thermo Fischer Scientific  FD0694 

3.9.2 Other enzymes 

Table 21: Other enzymes used in this study 

Enzyme Company Catalogue 
number  

Alkaline Phosphatase + Buffer Invitrogen  18011015 
Antartic Phosphatase + Buffer New England Biolabs  M0289S 
T4 DNA Ligase + Buffer New England Biolabs  M0202S 
T4 polynucleotide kinase + Buffer Invitrogen 18004010 

 
 

Enzyme Company Catalogue 
number  

CloneAmp™ HiFi PCR Premix Clontech 639298 
DNAseI Roche Diagnostics 4536282001 
InFusion HD cloning Clontech 639649 
M-MLV Reverse Transcriptase + Buffer Promega M1701 
Proteinase K Roche Diagnostics 3115836001 
RNAseA Sigma-Aldrich 10109142001 



MATERIALS 

 67 

3.10 Antibodies 

3.10.1 Primary Antibodies 

Table 22: Primary antibodies used in this study 

Antibody Origin  Specificity Dilution used Company Catalogue 
number  

α-Tubulin Mouse 
monoclonal 
(DM1A)  

Human, mouse, rat, 
porc, cattle, chicken, 
Gebril, guinea pig, 
amphibian 

WB (1:10.000) ThermoFischer 
scientific 

62204 

αSMA Mouse 
monoclonal 

Mouse, rat, human, 
avian 

IF (1:100) Santa Cruz 
Biotechnology 

SC-53142 

β3-Tubulin Mouse 
monoclonal 
(2G10) 

Mouse, rat, human, 
bovine 

IF (1:100) Santa Cruz 
Biotechnology 

sc-80005 

cMyc Mouse 
monoclonal 
(9E10) 

Human cMyc 
myc Tag 

IF (1:150) Santa Cruz 
Biotechnology 

SC-40 

coGFP  Rabbit 
polyclonal 

coGFP  WB (1:5000)  Evrogen AB513 

coGFP Rabbit 
polyclonal 

coGFP IHC (1:500) Abcam AB290 

FancA Rabbit 
polyclonal 

Human WB (1:5000) Merck  AB5063 

FoxA2 
(HNF3b) 

Mouse 
monoclonal 
(H4) 

Mouse, rat, human  IF (1:100) Santa Cruz 
Biotechnology 

SC-374376 

Gap-43 Mouse   IF (1:500) Sigma-Aldrich G9264-100ul 
GAPDH  Mouse 

monoclonal 
(G-9) 

 Mouse, rat, human WB (1:500)   Santa Cruz 
Biotechnology 

SC-365062 

Klf4 Goat 
polyclonal 

Mouse, human WB (1:200) R&D Systems  AF3158 

Klf4 Rabbit 
polyclonal 
(H-180) 

Human, mouse, rat 
GKLF 

WB (1:500) Santa Cruz 
Biotechnology 

sc-20691 

Lin-28 Mouse 
monoclonal 

Human  WB (1:200) Santa Cruz 
Biotechnology 

sc-374460 

Luciferase Rabbit 
polyclonal 

Luciferase of 
Photinus pyralis 

WB (1:500) Santa Cruz 
Biotechnology 

sc-32896 

Nanog Rabbit 
polyclonal 

human, mouse, 
monkey 

IF (1:150) Abcam  AB80892 

Nanog Mouse 
monoclonal 
(1E6C4) 

human  IF (1:150) Santa Cruz 
Biotechnology 

SC293121 

Ncam Coat 
polyclonal 

  IF (1:500) Chemicon MAB5324 

Oct-3/4 Goat 
polyclonal 
(N19) 

Human, mouse and 
rat  

WB (1:200) Santa Cruz 
Biotechnology 

sc-8628 

Rep1 Mouse 
monoclonal 
(2F1) 

Human WB (1:1000) Santa Cruz 
Biotechnology 

Sc-23905 

Sox2 Rabbit 
polyclonal 

Human, mouse WB (1:1000) Merck  AB5603 
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SSEA1 Mouse 
monoclonal 
(480) 

Human, mouse, rat IF (1:150) Santa Cruz 
Biotechnology 

SC21702 

SSEA3 Rat 
monoclonal 
(631) 

Human, mouse, Rat IF (1:100) Santa Cruz 
Biotechnology 

SC21703 

SSEA3 mouse 
monoclonal 
(480) 

Human, mouse IF (1:100) R&D Systems MAB1434 

SSEA4 Mouse 
monoclonal 
(813-70) 

Human, mouse, Rat IF (1:100) Santa Cruz 
Biotechnology  

Sc-21704 

SSEA4 Rat 
monoclonal 
(MC-631) 

Human, mouse  IF (1:100) R&D Systems  MAB1435 

TRA-1-60 Mouse 
monoclonal  

Human IF (1:100) Santa Cruz 
Biotechnology  

Sc-21705 

TRA-1-60 Mouse 
monoclonal 
(MC-813-70) 

Human IF (1:200) R&D Systems  MAB4770 

CD45 
eFluor 450 

Rat 
monoclonal 
(30-F11) 

Mouse,  
human 

Flow Cytometry 
(0,5ug/test) 

eBioscience 48-0451-82 

CD11b-
APC 

Rat 
monoclonal 
(M1/70) 

Mouse Flow Cytometry 
(0,125ug/test) 

eBioscience 17-0112-82 

B220-APC Rat 
monoclonal 
(RA3-6B2) 

Mouse,  
human 

Flow Cytometry 
(0,25ug/test) 

eBioscience 17-0452-83 

CD41  
PE-Cy7 

Rat 
monoclonal 
(GK1.5) 

Mouse, human Flow Cytometry 
(1:300) 

eBioscience 25-0041-82 

CD170 
(ckit)-Alexa 
780 

Rat 
monoclonal 
(ACK2) 

Mouse Flow Cytometry 
(1:2000) 

eBioscience 47-1171-82 

CD144/ 
Vcadherin - 
PE 

Rat 
monoclonal 
(11D4.1) 

Mouse Flow Cytometry 
(1:200) 

BD Pharmigen 562243 

CD8a 
PE-Cy7 

Rat 
monoclonal 
(53-6.7) 

Mouse  Flow Cytometry 
(0,5ug/test) 

eBioscience 25-0081-82 

B220  
PE-Cy7 

Rat 
monoclonal 
(RA3-6B2) 

Mouse, human Flow Cytometry 
(0,5ug/test) 

eBioscience 25-0452-82 
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3.10.2 Secondary antibodies 

Table 23: Secondary antibodies used in this study 

Antibody Origin  Specificity Dilution 
used 

Company Catalogue 
number  

DAPI - - 2 ug/ml Sigma-Aldrich 10236276001 
anti-Chicken-
Alexa594 

Goat polyclonal  Chicken IF (1:400) Invitrogen A-11042 

anti-Goat-
Alexa488 

Donkey polyclonal Goat IF (1:2000) Invitrogen A-11055 

Anti-Goat-
Alexa568 

Donkey polyclonal Goat IF (1:5000) Invitrogen A-11057 

anti-Goat-
Alexa647 

Donkey polyclonal Goat IF (1:2000) Invitrogen A-21447 

anti-Mouse-
Alexa488 

Donkey polyclonal  Mouse IF (1:2000) Invitrogen A-21202 

Anti-Mouse-
Alexa568 

Goat polyclonal Mouse IF (1:500) Invitrogen AB-175473 

anti-Mouse-
Alexa594 

Donkey polyclonal  Mouse  IF (1:400) Invitrogen A-21203 

anti-mouse-
Alexa647 

Goat polyclonal  Mouse  IF (1:2000) Invitrogen A-21236 

anti-Rabbit-
Alexa488 

Donkey polyclonal Rabbit IF (1:2000) Invitrogen A-21206 

Anti-Rabbit-
Alexa633 

Donkey Polyclonal Rabbit IF (1:500) Invitrogen A-21070 

anti-Rabbit-
Alexa647 

Donkey polyclonal Rabbit IF (1:2000) Invitrogen A-31573 

Anti-Goat-HRP Donkey Polyclonal Goat WB (1:10.000)  Life technology A15999 
Anti-Mouse-HRP Goat Polyclonal Mouse  WB (1:10.000)  Life technology  A31430  
Anti-Rabbit-HRP Donkey Polyclonal Rabbit WB (1:10.000)  Life technology A16023  

3.11 Primers 

3.11.1 Cloning primers 

Table 24: Cloning primers used in this study 

# Oligo name Sequence (5’->3’) 
1 pMAX_smar.FOR CTTCGCCAGATCTCGAGCTCGATGATAATGAATGTCTAAGTTAATGCAGAAAC

GGAGAGACA 
2 pMAX_smar.REV CCTTTTGCTCACATGTAAGATACATTGATGAGTTTGGACAAACCACAACT 
3 AmpR_promoter.FOR TTGACATGCATGGGACGCGGAACCCCTATTTGTTTATTTTTC 
4 AmpR_promoter.REV TCTCCTCCCTTTGCAAAAGCCTAGGCCTCC 
5 CMV_SMAR.FOR CCTTTTGCTCACATGTGGCATTGATTATTGACTAGTTATTAATAGTAATCAAT

TACGGGG 
6 coGFP_BglII.REV AAGAATATCAAGATCATGGAGAGCGACGAGAGCGG 
7 preAbP.FOR AATATTATTGAAGCATTTATCAGGGTTCGTCTC 
8 PostAbP.REV CCAATATTGATTTATGCTATATAACCAATGAATAATATGGCTAATGG 
9 CMVturboGFP.FOR CCTTTTGCTCACATGTGGCATTGATTATTGACTAGTTATTAATAGTAATCAAT

TACGGGG 
10 CMVturboGFP.REV CGCCGAGGCCAGATCTTTATTCTTCACCGGCATCTGCATCCG 
11 turboGFP.FOR GGGGTACCGAAGCCGCTAGCATGGAGAGCGACGAGAGC 
12 turboGFP.REV TATCATCGAGCTCGAGTTATTCTTCACCGGCATCTGCATCCGG 
13 Neo/Kan.REV TCAGAAGAACTCGTCAAGAAGGCGATAG 
14 OriC_AmpNeoKanPoly

A.REV 
AATGTATCTTACATGTTTTCCATAGGCTCCGCCCCC 
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15 PciI_CMVintroncoGFP.F
OR 

CCTTTTGCTCACATGTGGCATTGATTATTGACTAGTTATTAATAGTAATCAAT
TACGGGG 

16 PciI_CMVintroncoGFP.R
EV 

GCAGGAAAGAACATGTTCATCGAGCTCGAGATCTGGCG 

17 Ori. For TCTGTCGATACCCCACGAATTCTTGAGATCCTTTTTTTCTGCGCG 
18 Ori.Rev CGCAGGAAAGAACATGATAACTTCGTATAATGTATGCTATACGAAGTTATTTT

CCATAGGCTCCGCCCCC 
19 SpeI_EF1a.FOR TTGATTATTGACTAGTAAGCTTTGCAAAGATGGATAAAGTTTTAAACAGAGAG

G 
20 SpeI_EF1a.REV CAATAAAGCTACTAGTGGCCGGCCAGCTTGAG 
21 SpeI_UbC.FOR TTGATTATTGACTAGTGGCCTCCGCGCC 
22 SpeI_UbC.REV CAATAAAGCTACTAGTTCTAACAAAAAAGCCAAAAACGGCCAGA 
23 SpeI_PGK.FOR TTGATTATTGACTAGTCCACGGGGTTGGGGTTG 
24 SpeI_PGK.REV CAATAAAGCTACTAGTCCTGGGGAGAGAGGTCG 
25 BstAPI_Backbone.FOR AAATTGCTAACGCAGTCAGTGCCCATTGGGGCCAATACGC 
26 NheI_backbone.REV GACCGGTAGCGCTAGCAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTA

ACCTGAGG 
27 P3noSpeI.FOR TTGATTATTGACTAGCCCCGGGCGCGA 
28 P3_SpeI.REv CAATAAAGCTACTAGTCAGGAGCTTGTGGATCTGTGTGAC 
29 Insert Seq. REV CTCTCCGTTTCTGCATTAAC 
30     
31 hPGK.FOR TGGCATTGATTATTGACTAGTCCACGGGGTTGGGGTTG 
32 hPGK.REV TACCGCAATAAAGCTACTAGTCCTGGGGAGAGAGGTCG 
33 EF1a.FOR TGGCATTGATTATTGACTAGTAAGCTTTGCAAAGATGGATAAAGTTTTAAACA

GAGAGG 
34 EF1a.REV TACCGCAATAAAGCTACTAGTGGCCGGCCAGCTTGAG 
35 pMAXseq1 TATGTACATTTATATTGGCTCATGTCCAATATGACCGCC 
36 pMAXseq2 GGTTACAAGACAGGTTTAAGGAGGCC 
37 pMAXseq3 TGTAATGTGGCATTCTGAATGAGATCCC 
38 pMAXseq4 GACCCAACACCGTGCG 
39 pMAXseq5 GCCCCTGATGCTCTTCGTCC 
40 coreUCOE.FOR ATCTATATCATAATATGTACAGCCTACAGCTCAAGCCACAT 
41 coreUCOE.REV ATGAGCCAATATAAATGTACAAAGGGAATAAGAATTCCCGCCT 
42 MCS.For CCGGTCGCCACGGCCGGATATCCAAGCTTCCA 
43 MCS.Rev GATCTGGAAGCTTGGATATCCGGCCGTGGCGA 
44 NLS.For TCGAGCTCGACCAAAAAAGAAGAGAAAGGTA 
45 NLS.Rev TCGAGTCATACCTTTCTCTTCTTTTTTGG 
46 [P]-3NLS.For [P]TCGAGCTCGACCAAAAAAGAAGAGAAAGGTAGATCCAAAAAAGAAGAGAA

AGGTAGATCCAAAAAAGAAGAGAAAGGTATGAC 
47 [P]- 3NLS.Rev [P]TCGAGTCATACCTTTCTCTTCTTTTTTGGATCTACCTTTCTCTTCTTTTT

TGGATCTACCTTTCTCTTCTTTTTTGGTCGAGC 
48 cHS4.For GAATTCTGCAGTCGACTATATTCTCACTGAC 
49 cHS4.Rev CCGCGGTACCGTCGACGAGCTCACGGGG 
50 GFP_p2A_NeoKan.For CGCCTTCGCCAGATCTGCCACCAACTTCAGCCTGCTGAAGCAGGCCGGCGACG

TGGAGGAAAACCCTGGGCCCATGATTGAACAAGATGGATTGCACGC 
51 HindIII.For GAAAAAAAGGATCTCAAGAAGATCCTTTGATAAGCTTTTCTACGGGGTCTGAC

GCTCAGTGGAACG 
52 HindIII.Rev CGTTCCACTGAGCGTCAGACCCCGTAGAAAAGCTTATCAAAGGATCTTCTTGA

GATCCTTTTTTTC 
53 Amp_Fragment.For TGCTTCAATAATATTAAGCTTCGCGGAACCCCTATTTGTTTATTTTTCT 
54 Amp_Fragment.Rev TTTGGTCATGCCGTCCAGAAGCTTTTACCAATGCTTAATCAGTGAGGC 
55 pMAX_Vector.For AATATTATTGAAGCATTTATCAGGGTTCGTCTCG 
56 pMAX_Vector.Rev GACGGCATGACCAAAATCCCT 
57 coGFP.For CGCTAGCGCTACCGGTATGCCCGCCATGAAGATCGAGTGCC 
58 stop_XhoI_3xNLS_XhoI

_GFp.rev 
TATCATCGAGCTCTCGAGTCATACCTTTCTCTTCTTTTTTGGATCTACCTTTC
TCTTCTTTTTTGGATCTACCTTTCTCTTCTTTTTTGGCTCGAGCGAGCGAGAT
CTGGCGAAGGC 

59 IRES_NeoKan_F1.FOR CGCCTTCGCCAGATCTCGTGCTCGATGACGCCCCCCCCCC 
60 IRES_NeoKan_F1.REV TCAATCATGATATCGCTTATCATCGTGTTTTTCAAAGGAAAACCAC 



MATERIALS 

 71 

61 IRES_NeoKan_F2.FOR ATCGAGCTCGAGATCGTCAGAAGAACTCGTCAAGAAGGCGA 
62 IRES_NeoKan_F2.REV GATAAGCGATATCATGATTGAACAAGATGGATTGCACG 
63 p2A_NeoKan.FOR CGCCTTCGCCAGATCTGGCAGCGGCGCCACCAACTTCAGCCTGCTGAAGCAGG

CCGGCGACGTGGAGGAAAACCCTGGGCCCATGATTGAACAAGATGGATTGC 
64 p2A_NeoKan.REV ATCGAGCTCGAGATCTTCAGAAGAACTCGTCAAGAAGGCG 
65 GFP_p2A_luc.FOR CTTCGCCAGATCTCGCGCCCGAGCCACCAACTTCAGCCTGCTGAAGCAGGCCG

GCGACGTGGAGGAAAACCCTGGGCCCATGGAAGATGCCAAAAACATTAAGAAG
GG 

66 GFP_Luc.REV ACTCATCGAGCTCGACTCGAGTTACACGGCGATCTTGCCG 
67 AgeI_Luc.FOR CGCTAGCGCTACCGGTATGGAAGATGCCAAAAACATTAAGAAGGG 
68 BglII_Luc.REV ATCGAGCACGAGATCTTTACACGGCGATCTTGCCGCC 
69 AgeI_coGFP.For CGCTAGCGCTACCGGTATGCCCGCCATG 
70 BamHI_cHS4.FOR CGCGGGCCCGGGATCCTATATTCTCACTGACTCCGTCCTGG 
71 BamHI_cHS4.REV TAGATCCGGTGGATCCGAGCTCACGGGGACAG 
72 AgeI_OKSMdTom.FOR CGCTAGCGCTACCGGTATGGCCGGACACCTGG 
73 BglII_OKSMdTom.REV ATCGAGCTCGAGATCTTTACTTGTACAGCTCGTCCATGC 
74 SpeI_SFFV.For TTGATTATTGACTAGTAGCTAGCTGCAGTAACGCC 
75 NheI_SFFV.Rev ACCGGTAGCGCTAGCTCGGAGGACTGGCGCGCCGT 
76 76seq_hOct34.For GACCCCAGGCGCCGTG 
77 77seq_hOct34.Rev GGGCTTCGAATCTGCAGATGG 
78 78seq_hOct34II.For AGAACAGAGTGCGGGGC 
79 79seq_hOct34II.Rev CCAGAGGAAAGGACACGGG 
80 80seq_p2A.For TCCGGAGCCACCAACTTCTCC 
81 81Seq_hKlf4.Rev ACAGACTCAGGAGGGTGGG 
82 82seq_hKlf4.For CTTCACCTACCCCATCAGAGCCGG 
83 83seq_hKlf4II.Rev AGGTGTGTACAGCTGCTGACG 
84 84seq_hKlf4II.For GCTGTCCAGCAGAGACTGCC 
85 85seq_hKlf4II.Rev CCGGCGTAATCGCAGG 
86 86Seq_T2A.For GGCTCCGGAGAGGGCC 
87 87seq_hSox2.Rev GGTCTTTCTTCTGGGCCGG 
88 88seq_hSox2.For GCCGGCGTGAACCAGC 
89 89seq_hSOX2II.Rev GGGGCGGCAGGTTCAGGC 
90 90Seq_E2A.For CAGTGCACAAACTACGCCC 
91 91seq_hmyc.rev AAGCCGCTCCACATACAGTCC 
92 92Seq_hmyc.For CGCGCAAAGACAGCGGC 
93 93seq_hmycII.Rev CCCTCTTGGCAGCAGG 
94 94seq_hMycII.For CCTGAGACAGATCAGCAACAACCG 
95 95seq_Ires.FOr GCCCCTCTCCCTCCCCC 
96 96seq_IRES.rev CAGAGGCACCTGTCGCC 
97 BglII.XhoI_Luc.Rev ATCGAGCTCGAGATCTTTACACGGCGAT 
98 SacI_IRES_Puro.FOR GTGTAACTCGAGTCGAGCTCCGCCCCCCCCCCCCT 
99 BsrGI_LoxP_SFFV.FOR TATCATAATATGTACAATAACTTCGTATAGCATACATTATACGAAGTTATAGC

TAGCTGCAGTAACGCC 
100 BsrGI_Tom.Rev CCAATATAAATGTACATTACTTGTACAGCTCGTCCATGCC 
101 UCOE_NsiI.For CCCGGTCTCCTCCCACaGCCTACAGCTCAAGCC 
102 UCOE_NsiI.Rev TGGCCAATATTGACAAtgcataAaGGGAATAAGAATTCCCGCCTCCGCG 
103 SnaBI.LoxP.SFFV.For TATCATAATATGTACTACGTAATAACTTCGTATAGCATACATTATACGAAGTT

ATAGCTAGCTGCAGTAACGCC 
104 AseI.LoxP.Tom.REV CCAATATAAATGTACATTAATATAACTTCGTATAATGTATGCTATACGAAGTT

ATTTACTTGTACAGCTCGTCCATGCC 
105 SpeI_SFFV.For TTGATTATTGACTAGTAGCTAGCTGCAGTAACGCC 
106 IRES-dTOm.REV GGGGGGGGGGCGTTACTTGTACAGCTCGTCCATGCC 
107 dTom-IRES.FOR CGAGCTGTACAAGTAACGCCCCCCCCCCCCTAACGTTACTGGCC 
108 BglII_Puro.Rev ATCGAGCTCGAGATCTTCAGGCACCGGGCTTGCGGGTC 
109 Fanca.FOR CGCTAGCGCTACCGGATGTCCGACTCGTGGGTC 
110 Fanca.REV GGGGGGGGGGCGTCAGAAGAGATGAGGCTCCTGGG 
111 IRES.For GCCTCATCTCTTCTGACGCCCCCCCCCCCCTAACG 
112 IRES.Rev GTTTTTGGCATCTTCCATGATATCGCTTATCCTTATCATCGTGT 
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113 Luc.For GATAAGGATAAGCGATATCATGGAAGATGCCAAAAACATTAAGAAGGG 
114 Luc.Rev ATCGAGCTCGAGATCTTACACGGCGATCTTGCC 
115 115_UbC.For TATCATAATATGTACGGCCTCCGCGCCG 
116 116_EcorV.Luc.Rev TGAGCCAATATAAATGaTAtCTTACACGGCGATCTTGCCG 
117 117_UCOE.For ATCGCCGTGTAAGATCAGCCTACAGCTCAAGCCAC 
118 118_UCOE.Rev GCCAATATAAATGATAAAGGGAATAAGAATTCCCGCCTCCG 
119 119_EcoRV.IRES.For CGCCTTCGCCAGATATCCGCCCCCCCCCC 
120 120_EcorV.dTom.Rev GGGGGGGGGGCGGATATCTTACTTGTACAGCTCGTCCATGCCGTACAGG 
121 Fanca.For TACCGAAGCCGCTAGATGTCCGACTCGTGGGTC 
122 Fanca.Rev GACCGGTAGCGCTAGTCAGAAGAGATGAGGCTCCTGGG 
123 IRES-Luc.For CTACCGGTCGCCACCCGCCCCCCCCCCCCTAACG 
124 Luc.Rev CATTATCATCGAGCTTTACACGGCGATCTTGCCG 
125 125_ires.luc.for CGCTAGCGCTACCGGCGCCCCCCCCCCCCTA 
126 126_Fanca.For (new) TACCGAAGCCGCTAGATGTCCGACTCGTGGGTC 
127 127_Fanca.rev (new) CGCCGGTAGCGCTAGTCAGAAGAGATGAGGCTCCTGGG 
128 GFP-2A-puro.Rev ATCGAGCTCGAGATCTTCAGGCACCGGGCTTG 
129 PciI.LoxP.For AATGTATCTTACATGTCAATAACTTCGTATAGCATACATTATACGAAGTTATT

GTGAGCAAAAGGCCAGCAAAAG 
130 NsiI.Neo.Rev TGGCCAATATTGACATGCATGGGAGGAGACC 
131 SnaBI.SFFV.For TATCATAATATGTACTACGTAAGCTAGCTGCAGTAACGCCAT 
132 AgeI.Rluc.For CGCTAGCGCTACCGGTATGACTTCGAAAGTTTATGATCCAGAACAAAG 
133 BglII.Rluc.For ATCGAGCACGAGATCTTTATTGTTCATTTTTGAGAACTCGCTCAACGAAC 
134 PGK.Rluc.For ACGAAGTTATAAGCTCCACGGGGTTGGGGTTG 
135 PGK.Rluc.Rev TGCTCACATGAAGCTTTATTGTTCATTTTTGAGAACTCGCTCAAC 
136 136_Fanca1 TGGAGCCTGAAAAAATGCCGC 
137 137_Fanca2 CGACCTCAAGGTTTCTATAGAAAACATGGG 
138 138_Fanca3 CTCCCAGAGGTGGATGTGGG 
139 139_Fanca4 CCAGCCTTCAGAGACAGAGGG 
140 140_Fanca5 TTCCATGAAGACGCGGCC 
141 Luc.For AACACGATGATAAGCATGGAAGATGCCAAAAACATTAAGAAGG 
142 IRES.Rev TTTGGCATCTTCCATGCTTATCATCGTGTTTTTCAAAGGAAAACCAC 
143 rLuc.PA.HindIII.Rev CCTTTTGCTCACATGAAGCTTGAACAAACGACCCAACACCCGTGCGTTTTATT

CTGTCTTTTTATTGCCGTTATTGTTCATTTTTGAGAACTCGC 
144 FAnca6.Rev GGAAAGCAGACAACCAGGGC 
145 Fanca7.Rev CCACAGCATGCATGTCGG 
146 Fanca_outwards.for CCAGGAGCCTCATCTCTTCTGA 
147 Fanca_outwards.rev GGACCCACGAGTCGGACAT 
148 FancaH1.Rev CGCCGGTAGCGCTAGCACGTCCACACATGGTCCTCACGAAGAGG 
149 FancaH2.For GTGTGGACGTGCTAGTGCTCCCTGCAGT 
150 SnaBI.LoxP.Ori.For CATCAATGTATCTTATACGTAATAACTTCGTATAGCATACATTATACGAAGTT

ATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCG 
151 AseI.LoxP.REV CCAATATAAATGTACTATTAATATAACTTCGTATAATGTATGCTATACGAAGT

TATTGTACATATTATGATATAGATACAACGTATGCAATG 
152 SFFV.For ATCATAATATTGTACAGCTAGCTGCAGTAACGCC 
153 PA.dTom.Rev ACGAAGTTATTGTACGAACAAACGACCCAACACCCGTGCGTTTTATTCTGTCT

TTTTATTGCCGTTACTTGTACAGCTCGTCCATGCC 
154 NheI.Fanca.For TATATATATATATATATATAGCTAGCATGTCCGACTCGTGGGTC 
155 NheI.Fanca.rev TATATATATATATATATATAGCTAGCTCAGAAGAGATGAGGCTCCTGGG 
156 156_IRES.GFPnls.For CGCTAGCGCTACCGGTCGCCCCCCCCCC 
157 157_IRES.GFPnls.Rev ATCGAGCTCGAGATCTTCACACCTTCCTCTTCTTCTTGGG 
158 158_AgeI.Fanca.For CGCTAGCGCTACCGGATGTCCGACTCGTGGGTC 
159 159_AgeI.Fanca.Rev GGGGGGGGCGACCGGTCAGAAGAGATGAGGCTCCTGGG 
160 GFPnls.Rev CATCGAGCTCGAGATCTTCACACCTTCCTCTTCTTCTTGGGTGGCTTGTACAG

CTCGTCC 
161 161_Nsi.SFFV.for CCCGGTCTCCTCCCAAGCTAGCTGCAGTAACGCC 
162 162_NsiI.TK.dTom.Rev TGGCCAATATTGACAGAACAAACGACCCAACACCCGTGCGTTTTATTCTGTCT

TTTTATTGCCGTTACTTGTACAGCTCGTCCATGCCG 
163 163_AseI.El40.For TACGAAGTTATATTAGATCAAGAAAGCACTCCGGGC 
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164 164_AseI.El40.Rev ATAAATGTACTATTAGATCTAATGTACATCATGAGGGCTATAGTTAATAAAAA
TGTATTGTCT 

165 CAG.For TTGATTATTGACTAGTCTAGTTATTAATAGTAATCAATTACGGGGTCATTAGT
TCA 

166 CAG.Rev CAATAAAGCTACTAGTGCCGCCGGTCACACGCCA 
167 AseI.UCOE.FOR TACGAAGTTATATTACAGCCTACAGCTCAAGCCAC 
168 AseI.UCOE.Rev ATAAATGTACTATTAAAAGGGAATAAGAATTCCCGCCTCCGCGCCCCACTTTC

ACCCC 
169 dTom.For CATCACCTCCCACAACGAGG 
170 BsrGI.El40.For TATCATAATATGTACGATCAAGAAAGCACTCCGGGCTCCAGAAG 
171 BsrGi.El40.Re CCAATATAAATGTACGATCTAATGTACATCATGAGGGCTATAGTTAATAAAAA

TGTATTG 
172 AgeI.dTOm.For CGCTAGCGCTACCGGTATGGTGAGCAAGGGCGAGGA 
173 EcoRV.dTom.Rev GGGGGGGGGGCGGATATCTTACTTGTACAGCTCGTCCATGCCGTACAGG 
174 AgeI.Kat.For CGCTAGCGCTACCGGTATGGTGGGTGAGGATAGCGT 
175 EcoRV.Kat.Rev GGGGGGGGGGCGGATATCTCAGCTGTGCCCCAGTTTGCT 
176 Fanca.outwards2.Rev GGATTATATTTTTCCCTCTTGACCCTTCC 
177 eGFP.outwards.for GATCACTCTCGGCATGGACG 
178 eGFP.outwardsII.For CCACTACCAGCAGAACACCCCC 
179 NotI.Fanca.For CGCTAGCGCTACCGGGCGGCCGCTCGAG 
180 NheI.eGFP.nls.Rev ATCGAGCTCGAGATCGCTAGCTTGCCAAACCTACAGGT 
181 SpeI.CAG.For GACCGGCGGCTCTAGACTAGTAGCTTTATTGCGGTAGTTTATCAC 
182 SPeI.CAG.Rev TATTAATAACTAGCGACTAGTAACATGGCGGTCATATTGGACATG 
183 U6.shRNAP53For AATGTATCTTACATGGATCCGACGCCGCCA 
184 U6.shRNAP53.Rev CCTTTTGCTCACATGCCCCGGGCTGCAGGA 
185 AgeI.hOCT34.For CGCTAGCGCTACCGGTGAATTCGCCCTTCACCATGGC 
186 XhoI.hOCT34.Rev TATCATCGAGCTCGAGTCATATGACTAGTCCCCGAAGCTTGAATTCG 
187 AgeI.hSox2.For CGCTAGCGCTACCGGTGAATTCGCCCTTCACCATGTACAAC 
188 XhoI.hKlf4.REV TATCATCGAGCTCGAGTTAAAAATGTCTCTTCATGTGTAAGGCGAGGT 
189 AgeI.hLMyc.For CGCTAGCGCTACCGGTGAATTCGCCCTTCACCATGGAC 
190 XhoI.hLin28.Rev TATCATCGAGCTCGAGTCAATTCTGTGCCTCCGGGAGCA 
191 Fanca-ires-GFPnls.For GACCGGCGGCTCTAGCTAGTAGCTTTATTGCGGTAGTTTATCACAGT 
192 Fanca-IRES_tGFPnls.Rev TATTAATAACTAGCGAACATGGCGGTCATATTGGACATG 
193 Lenti18.for ATCTCGACGGTATCGATGGCATTGATTATTGACTAGTTATTAATAGTAATCAA

TTACGG 
194 Lenti18.rev TCGGAATTCCCTCGAGGTCAGGCACCGGGCTTGCG 
195 cPPT GTGCAGGGGAAAGAATAGTAG 
196 SFFV.For TTGATTATTGACTAGTGTAACGCCATTTTGCAAGGCATG 
197 vLuc.Rev TATCATCGAGCTCGAGTCACTTGCACTCGTCGGGC 
198 AgeI.NFKB.For ATTGACTAGTTATTAATACAAGTTTGTACAAAAAAGCAGGCT 
199 BglII.eGFP.rev ATCGAGCTCGAGATCTTTACTTGTACAGCTCGTCCATGCC 
200 attR.For TTGATTATTGACTAGTATCAAACAAGTTTGTACAAAAAAGCTGAACGAGAA 
201 EBNA_OKSM.For TGGCAGTACATCTACAGCTAGCTGCAGTAACGCC 
202 EBNA_OKSM.Rev AGAGGGAAAAAGATCTCAGGCACCGGGCTTGCG 
203 SnaBI.OKSM.For tggcagtacatctacgtaagctagctgcagtaacgcc 
204 SnaBI.OKSM.Rev agagggaaaaagatctttacttgtacagctcgtccatgcc 
205 BglII.Puro.For gtacaagtaaagatcgccaccaacttcagcct 
206 BglII.Puro.Rev agagggaaaaagatcttcaggcaccggg 
207 BsrGI.GFP.For caaacaagtttgtacaATGCCCGCCATGAAGATCG 
208 BglII.P62.For GGTACCGAGGAGATCTATGGCGTCGTTCACG 
209 MluI.P62.Rev GCGGCCGCGTACGCGTCAATGGTGGAGGGTGCTTCGAATACTGG 

210 BglII.S024.For 
GGTACCGAGGAGATCTATGGCGTCGTTCACGGTGaagGCCTATCTTCTGGGCA
AGGAGGAGGCGACCCGCGAGATCCGCCGCTTCGCTTTCTGCTTCAGCCCGGA 

211 XbaI.W340.Rev 

CTGTGAGGGGTCTAGAGAGCTTGGCCCTTCCGATTCTGGCATCTGTAGAGACT
GGAGTTCACCTGTAGaTGGGTCCACTTCTTTTGAAGACAAATGTGTagcGTCA
TCGTCTC 

212 XbaI.S351.Rev 
CTGTGAGGGGTCTAGAGAGCTTGGCCCTTCCGATTCTGGCATCTGTAGAGACT
GGAGTTCACCTGTAGcTGGGTCCACTTC 

213 seq.PA.For GCTTATAATGGTTACAAATAAAGCAATAGC 
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214 seq.M13.For GTTGTAAAACGACGGCCAGT 
215 Seq.M13.Rev TCTGTTCAGGAAACAGCTATGAC 
216 seq.P62.For AGCTGAAACATGGACACTTT 
217 seq.P62.Rev TTACTCTTGTCTTCTGTGCC 
218 seq.T7.For GAATTTTGTAATACGACTCACTATAGGG 
219 EcoRI.GFP-2A-Puro.For ttttggcaaagaattcATGCCCGCCATGAAGATCG 
220 EcoRI.GFP-2A-Puro.Rev cccgaagcttgaattctcaggcaccgggcttgc 
221 KpnI.hP62.For AGTCGACTGGATCCGGTACCATGGCGTCGCTC 
222 EcoRI.hP62.Rev GTGCGGCCGCGAATTCTCACAACGGCGG 

223 K7A.For 
AGTCGACTGGATCCGGTACCATGGCGTCGCTCACCGTGgcgGCCTACCTTCTG
GG 

224 ClaI.T269A.For 
TTGAAGTTGATATCGATGTGGAGCACGGAGGGAAAAGAAGCCGCCTGgcgCCC
GTCTCTCC 

225 S403.Rev TCAGAGAAGCCCATGGcCAGCATCTGG 
226 cPPt.for TAATAGCAACAGACATAC 
227 mP62.subclone.for ATCCGGTACCGAATTATGGCGTCGTTCACGGTGAAGGC 
228 mp62.subclone.rev GTGCGGCCGCGAATTCAGGAAACAGCTATGACCGCG 
229 seq.hP62.rev CGCTACACAAGTCGTAGTCTGGG 

3.11.2 q(RT)-PCR primers  

Table 25: (q)RT-PCR primers used in this study 

# Oligo name Sequence (5’->3’) Efficiency Binds to 
hOKSM 
(exogenous) 

Binds to 
mOKSM 
(endogenous) 

Q7 hOct3/4.For CAGCATCGAGAACAGAGTGC 2,03 YES NO 
Q8 hOct3/4.Rev ACACTCTCACGACGTCCTTT 
Q17 hKLF4.For AGAGAGAAAACACTGCGGCA 2,03 YES NO 
Q18 hKLF4.Rev CAGCGGCCAGATCATAAGGT 
Q29 hSOX2.For AAAGAGCACCCCGACTACAA 2,04 YES NO 
Q30 hSOX2.Rev ACTCCGCTGGCCATAGAATT 
Q35 hMYC.For CTGTTGAAGCTGGCTGGAGA 2,06 YES NO 
Q36 hMYC.Rev TAACGTTGAGGGGCATGGAG 
 hGAPDH.For gctgcattcgccctctta 2,00 - - 
 hGAPDH.Rev gaggctcctccagaatatgtga 
Q51 Puromycin1.For ATCGGCAAGGTGTGGGTC 1,97 - - 
Q52 Puromycin2.Rev CTCAACTCGGCCATGCGC 
Q53 mOCT3/4.For TAGGTGAGCCGTCTTTCCAC 2,11 A bit YES 
Q54 mOCT3/4.Rev GCTTAGCCAGGTTCGAGGAT 
Q55 mKLF4.For AACATGCCCGGACTTACAAA 2,20 A bit YES 
Q56 mKLF4.Rev TTCAAGGGAATCCTGGTCTTC 
Q57 mSOX2.For GAAACGACAGCTGCGGAAA 2,23 A bit YES 
Q58 mSOX2.Rev TCTAGTCGGCATCACGGTTTT 
Q59 mMYC.For TAACTCGAGGAGGAGCTGGA 2,21 A bit NO 
Q60 mMYC.Rev GCCAAGGTTGTGAGGTTAGG 
Q61 mNANOG.For TTGCTTACAAGGGTCTGCTACT 2,11 NO YES 
Q62 mNANOG.Rev ACTGGTAGAAGAATCAGGGCT 
Q63 mGAPDH1.For AGCTTGTCATCAACGGGAAG 2,18 NO YES 
Q64 mGAPDH2.Rev TTTGATGTTAGTGGGGTCTCG 
Q65 Puromycin3.For TGCAAGAACTCTTCCTCACG 2,03   
Q66 Puromycin4.Rev CGATCTCGGCGAACACC 
Q67 GFP3.For CTTCCTGCACGCCATCAACAAC

G 
2,22   

Q68 GFP4.Rev GATGATCTTGTCGGTGAAGATC
ACG 

Q69 mGAPDH3.For GTTGTCTCCTGCGACTTCA 1,93   
Q70 mGAPDH4.Rev 

GGTGGTCCAGGGTTTCTTA  
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3.11.3 Genotyping primers  

Table 26: Genotyping primers used in this study 

# Oligo 
name 

Sequence (5’->3’) Tm (˚C) Amplicon 
(bp) 

G5 IMR_0015 *  CAAATGTTGCTTGTCTGGTG 53.2 150 
G6 IMR_0016 * GTCAGTCGAGTGCACAGTTT 
G7 Luc.For GGACTTGGACACCGGTAAGA 59.9 

 
439 

G8 Luc.Rev GTCCACGAACACAACACCAC 
GFP1 GFP1 GCCGCATGACCAACAAGATG 69,3 515 
GFP2 GFP2 GTTGCTGTGCAGCTCCTCCA 
IC1 Sox21 AGCCCTTGGGGASTTGAATTGCTG 72,2 237 
IC2 Sox21 GCACTCCAGAGGACAGCRGTGTCAATA 
G9 eGFP.For GCAA GGGC GAGG AGCT GTTC ACC 72˚C 329 bp 
G10 eGFP.Rev GGCG AGCT GCAC GCTG CCGT CGTC 

*Chr14: TCRD Region 54142899-54143104 

3.12 Materials 
Table 27: Materials used in this study 

Material Description Company  

Ampuwa water distilled water for injection 
Fresenius Kabi Deutschland 
GmbH 

Bacterial spreaders  individually wrapped, sterile VWR 
Cell culture dishes Ø 6 / 10 / 15 cm greiner bio-one  
Cell culture flasks 25/ 75 / 175 cm2 greiner bio-one  
Cell culture multidishes 6 / 12 /24/ 96 well greiner bio-one  / nunc  
Cell scraper 28 cm length greiner bio-one  
Combitips  5 ml Eppendorf 
Cuvettes gene pulser 0,1 cm gap, package of 50 Bio-Rad 
EDTA-Tubes EDTA-tubes for blood collection BD Bioscience 
FACS tubes 12x7.5 ml BD FACS tubes  BD  Bioscience 
Falcon tubes 15 and 50 ml Falcon 
Filter Unit 0,22 / 0,45 µm GE Healthcare/Whatman  
Filtered tips  10, 20, 100, 200 and 1000 µl Nerbe 
Hybond XL nylon 
membrane  Nylon membrane for Southern Blot (Amersham Biosciences 

iBlot 2 Transfer Stacks, 
PVDF 

Each iBlot® 2 Transfer Stack contains a copper coated 
electrode and appropriate cathode and anode buffers in 
the gel matrix to allow fast, reliable transfer of 
proteins.Pore size 0,2 um Life Technologies 

LightCycler 480 
Multiwell Plate 96 

white, half-skirted, white polypropylene 96 well plates 
supplied with a bar-code label. 96-well for reaction 
volumes from 10 to 50 µl. Roche 

LUNA cell counting 
slides 

disposable precision slides for Trypan blue and 
fluorescence cell counting Logos Biosystems 

Lysing Matrix D  2 ml tube with grinding beads MP biomedicals 
Membrane 
VMWPO2500 

composed cellulose membrane with 0.025 um pore size 
for DNA and protein dialysis MERCK Millipore 

Millex-GV 0,22 um Filter unit MERCK Millipore 

Mini Protean Gels 4-
20% 

4–20% precast polyacrylamide gel, 8.6 × 6.7 cm (W × L), 
for use with Mini-PROTEAN Electrophoresis Cells. 
Separation of polypeptides ~2–400 kDa.  Can be used 
for both standard denaturing protein separations as well 
as native electrophoresis. Bio-Rad 

Mini Protean tetra Cell mini gel electrophoresis system  Bio-Rad 
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Multipette M4 multistep pipette with a range from 1 μl to 10 ml Eppendorf 

Nalgene cryogenic vials 25 sterile tubes 
ThermoFischer 
Scientific/Nalgene 

Needles 0.9/0.8 x 40 mm and 0.5 x 25 mm BD (Franklin Lakes, US) 
Nitrocellulose 
membrane 

PROTAN® Whatman (Maidstone, UK) 

Nylon membrane Amersham HybondTM-N+ 
GE Healthcare (München, 
Germany) 

Nylon mesh mesh size 40-70uM Nitex 

Pasteur pipettes 
9 inch, 5.5 mm, Disposable, Bulk Pack, Non-Sterile, 
Unplugged 

Corning Incorporated  

PCR strips   Neolab 
PCR tubes 0,2 ml thin-walled tubes with flat caps ThermoFischer Scientific 
Plastic pipettes (sterile) 5, 10, 25 and 50 ml Corning/Costar 
PVDF membrane 0,45 um, 26.5 cm x 3.75 m roll ThermoFischer Scientific 
Reagent reservoir 50ml deposits, sterile, polystyrene Corning Incorporated  
Safelock tubes 1,5 / 2,0 / 5,0 ml Eppendorf 
Scalpels Disposable stainless steel blade with plastic handle feather 
Stericup filtering unit HV, 0.45 µm, 500 ml MERCK Millipore 
superFROST plus slides 25 x 75 x 1,0 mm ThermoFischer Scientific 
Syringes 5 and 50 ml Terumo 
Syringes 1/ 3 / 5 / 10 / 50 ml BD Bioscience 
Transferpette 
multichannel 200 ul Brand 

vacushield filters 

Hydrophobic, microporous PTFE membrane filter 
achieves 99.97% D.O.P. retention (0.3 µm particles in 
air). Features polypropylene housing and 6.4–12.7 mm 
(1/4–1/2") stepped hose barb connections (internal taper 
accepts male Luer fitting). Dimensions: 7.3 dia.x8.2L cm 
(27/8x31/4").  VWR 

Whatman paper 3 mm Whatman  

µ-Plate 24 Well 
µ-Plate 24 Well ibiTreat: #1.5 polymer coverslip, tissue 
culture treated, sterilised, black iBidi 

µ-Plate 96 Well 
µ-Plate 96 Well ibiTreat: #1.5 polymer coverslip, tissue 
culture treated, sterilised, black iBidi 
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3.13 Equipment 
Table 28: Equipment used in this study 

Device Company 

Microscope EVOS™ XL Core Cell Imaging System Thermo Fischer Scientific 
Gamma Cell 1000 irradiator Gamma cell 
Chemiluminiscense Imaging - Fusion SL Analis 
Bacterial Shaker Centromat SII B. Braun Biotech International 
BD LSRFortessa  BD Biosciences 
BD FACSCalibur cell analyzer BD biosciences  
Luminometer Mithras LB943 multimode reader Berthold Technologies 
Electroporator MicroPulser Bio-Rad 
Gel basic power supply PowerPac™  Bio-Rad 
Mini-PROTEAN® Tetra Vertical Electrophoresis Cell Bio-Rad 
IVIS lumina III Caliper life sciences 
-20˚C freezer Comfort 
Centrifuge Ependorff 5430R Eppendorf 
Centrifuge Eppendorf 5424R Eppendorf 
Centrifuge Eppendorf 5810 Eppendorf 
Eppendorf® Thermomixer® R Eppendorf 
Pipettes 2, 10, 20, 200, 1000ul Gilson 
Table top spinner PCV_240  Grant-bio 
Incubator In-Vitrocell 200L ibs-tecnomara 
MS2 minishaker (vortex) IKA 
Integra Vacusafe Integra 
Pipette Boy Integra 
iBlot 2 Invitrogen 
Water bath Julabo 
Microscope Keyence BZ-X700 Fluorescent  Keyence 
UV transluminator N90 LW366 Konrad Benda 
PCR Workstation (hood) Labcaire 
+4˚C fridge Liebherr medtime 
LUNA automated Cell counter Logos Biosystems 
Amaxa 4D Nucleofector / Amaxa II Nucleofector Lonza 
Gel printer Mitsubishi P93D Mitsubishi 
Tube roller NeoLab  NeoLab 
-80˚C freezer U725 innova New Brunswick (Eppendorf),  
Camera Nikon DS-Qi2 Nikon 
Microscope Nikon Eclipse Ti/X-Cite120Led Nikon 
Microscope phase contrast Olympus CK40  Olympus 
Packer bag sealer Packer 
Gel chambers PerfectBlue Wide Gel System ExM  Peqlab 
precellys 24 lysis and homogenisation peqlab 
QIAcube robot QIAgen 
Incubator Stem Cells Queue 
Real-Time PCR System LightCycler® 96 Roche 
Microwave oven Siemens 
PersonalHyb oven Stratagene 
Liquid Nitrogen cryostorage system K Series Tec-Lab 
Bacterial hood, class II type A/B3 The Baker company 
Cell culture hood Safe2020  ThermoFischer scientific 
Centrifuge rotor F10-6x-500y FiberLite rotor ThermoFischer scientific 
Centrifuge Sorvall RC6+  ThermoFischer scientific 
Nanodrop 2000C ThermoFischer scientific 
PCR thermocycler peqSTAR 2X/96X  Universal Gradient VWR Peqlab 
XGI-8 Gas anesthetic chamber xenogen 
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3.14 Software 
Table 29: Software used in this study 

Name Description Origin  
Ascent Software (Version 2.6) ELISA and BCA analysis software to measure absorbance 

and determine concentrations 
 

Affinity designer Graphic design package (similar to Adobe Photoshop) Pantone 
Fiji Image processing package. Distribution of ImageJ, which 

bundles Java, Java3D and allows addition of new plugins 
and macros. 

[288] 

FlowJo 10 Platform for single-cell flow cytometry analysis FlowJo, LLC 
Primer 3 Primer design for PCR, qPCR and qRT-PCR [289], [290] 
SnapGene Molecular biology tool for planning, visualisation and 

documentation of DNA cloning and PCR 
GSL Biotech LLC 

Papers 3.4.6 Referencing software Labtiva, Inc 
Graphic Graphic design for Mac Autodesk, Inc.  
NIS- Elements version 4.40 Nikon Microscope imaging software Nikon 
BD CellQuest Pro FACS software acquisition and analysis BD Biosciences 
FUSION-CAP Software Chemiluminescence Imaging software for image 

acquisition and analysis 
Analis 

LightCycler® 96 Real-Time 
PCR System  

Allows absolute and relative quantifications, Tm calling 
and Endpoint genotyping 

Roche  
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4. METHODS 

4.1 Cell culture methods 

4.1.1 Standard cell culture 

The cells used in this project (Section 3.1) were incubated under standard conditions (37˚C and 5% 

CO2). The media used for each cell type is described in Section 3.3.3. 

Unless specifically required, cells were passaged 2 or 3 times per week (on demand). For that, the cells 

were first washed once with 1x PBS and subsequently trypsinised with 0.25% Trypsin/EDTA for 5 

minutes at 37˚C. Afterwards, a gentle rocking was applied to ensure complete detachment from the 

plate. The trypsin was inactivated with the same amount of FCS-containing media (specific for each 

cell type), and the detached cells were pipetted up and down to achieve single cell suspensions. Finally, 

single cells were re-plated at the desired density in fresh medium. Because mouse Stem Cells (mESC 

and iPSC), as well as human Stem Cells (hiPSC), were co-cultured with feeder-layers, they required 

more complex culturing techniques. The preparation of gelatinised plates, feeder-layers and the Stem 

Cell culture are explained below.  

4.1.2 Gelatine coating of cell culture plates 

The desired plate format was pre-coated with 0,1% Gelatin in dH2O (from a 1% Gelatin stock) and 

incubated for 20-30min at 37˚C. The gelatin was aspirated afterwards. At this point, the plates were 

ready to use or could be wrapped and stored at 4˚C for 1-2 weeks. 

4.1.3 Preparation of feeder layers 

Immortalised Mouse Embryonic Fibroblasts (iMEFs) were used as feeder-layers for co-culture of both 

mouse and human Stem Cells. The cells were cultured as described above and grown until 90% 

confluency. One of the two methods described below were used to inactivate and prevent the cells from 

undergoing cell division: 

1) Mitomycin C treatment. Without removing the media, Mitomycin C (Stock 100 μg/ml, 

final concentration 10 μg/ml) was added to the plate, and the cells were incubated for 2h 

at 37˚C and 5% CO2. After the incubation period, the cells were washed with PBS and 

trypsinised as described.  
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2) γ-irradiation. The cells were washed in PBS, trypsinised and resuspended in FCS-containing 

media. The single-cell suspension was transferred into a 15 ml tube, and the cells were 

exposed to 60 Gy of γ-irradiation (Gamma cell 1000).  

Once the cells were inactivated, they were counted, and a total amount of 1,25x106 cells were seeded 

per plate (regardless of the format). For each plate format, the total amount of cells was divided by the 

number of wells. 

4.1.4 Stem Cell culture 

4.1.4.1 mESC/miPSC 

Murine stem cells were grown on feeder layers (in gelatin-coated plates) and in mouse Stem Cell media 

containing LIF and differentiation inhibitors (2i) (Section 3.3.3). When the stem cells reached 70-80% 

of confluency (the colonies were dense, but their limits did not touch with each other after 4 days of 

passaging), they were washed twice with PBS and trypsinised as usual. After trypsinisation, the cells 

were resuspended in IMDM without LIF or inhibitors. At this point, both stem cells and feeder layers 

were mixed in suspension. To separate them, a differential sedimentation step was performed, which 

relies on the separation of the cells by their density. Fibroblasts, which are bigger and denser than stem 

cells, will sediment and attach faster to the plate. After 20-30 min incubation time at 37˚C and 5% 

CO2, the supernatant containing the stem cells was collected, counted and re-seeded to the desired cell 

format, in Stem Cell media with LIF and 2i. 

4.1.4.2 hESC/hiPSC 

Human stem cells were also grown on feeder layers, and gelatin-coated plates in hSC media containing 

FGF2 and plasmocin (Section 3.3.3.1) in a prophylactic concentration against mycoplasma 

contaminations.  The media was replaced every second day. When hSC reached 70-80% confluency 

(which corresponded approximately to one week after passaging), they were picked and passaged as 

described below in Section 4.1.12.2. 

4.1.5 iPSC Reprogramming using defined Transcription Factors 

4.1.5.1 miPSC Reprogramming (OKSM) 

To reprogram murine iPSC, early passage fibroblasts (not later than passage 5) were transfected or 

transduced as described in Sections 4.1.10.1 and 4.1.14.2, with either the 4in1 Lentivirus (vector 27) 
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or the S/MAR versions POP (vector 35) and nanoPOP (vector 84), all containing the human codon-

optimised transcription factors: Oct4, Sox2, Klf4 and cMyc. Right after nucleofection, the cells were 

placed in DMEM+10% FCS and devoid of antibiotics or selection, to allow the cells to recover. Two 

days and four days after transfection and transduction, the media was replaced with MEF media with 

antibiotics and selective pressure (if needed). At day six, the media was replaced by mESC media (with 

optional Vitamin C and VPA supplements) and changed every second day. 

At day 8, the cells were washed, trypsinised and expanded into a bigger plate format (24 well to a 6 well 

or 6 well to a 10cm plate), which was coated with gelatin and contained feeder layers, and the media 

was replaced by supplemented mESC media. The media was changed every second day, and the cell 

morphology was also monitored every second day. By day 16, the first compact dome-shaped colonies 

emerged. At that point, the colonies were picked as explained in Section 4.1.12.2. 

Figure 10: Murine iPSC reprogramming timeline  

4.1.5.2 hiPSC Reprogramming (OKSML/shP53) 

Human Dermal Fibroblasts (HDF) at early passages (p3-5) were transfected as described in Section 

4.1.10, using either EBNA-based vectors (vectors 77-80) or S/MAR-based (vectors 73-76) containing 

the human transcriptions factors: Oct4, Klf4, Sox2, Lin28 and N-Myc, together with shRNA for p53. 

After transfection, the cells were plated into a well of a 6-well plate in DMEM media without antibiotics 

(DMEM, 10%FCS, 1% L-Glut, 1% NEAA) in order to allow the cells to recover. Two days after, the 

media was replaced by DMEM with antibiotic and Puromycin selection (if required). At this point, the 

cells were split into a T25 flask, on demand, and DMEM media was changed every second day. At day 

seven, a 6-well plate was gelatinised and feeder layers were seeded at a confluency of 1,25x106 cells/plate. 

The next day, the cells were transferred to the feeder plate (30.000 cells/well of a 6-well plate or 

15.000/well of a 12-well plate). The leftover cells were lysed and kept for other purposes, such as 

Western Blot or gDNA extraction. The fibroblast media was replaced by hESC media containing FGF2, 

and the cells were fed every second day. 
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The cell morphology was monitored using an EVOS™ XL Core Cell Imaging System (Thermo Fischer 

Scientific). Human iPSC colonies started to appear at day 17-21 and could be picked once the colony 

size was big enough (more than 100 cells) as described in Section 4.1.12.2. 

Figure 11: Human iPSC reprogramming timeline 

4.1.6 Stem Cell random differentiation via Embryonic Bodies (EBs) 

4.1.6.1 Murine EB formation 

To differentiate mESC and miPSC into the three embryonic germ layers (ectoderm, mesoderm, 

endoderm), the cells were forced to form Embryonic Bodies, via formation of hanging drops as depicted 

in Figure 12. To achieve this, the cells were passaged as described above and diluted in EB medium, 

devoid of LIF and inhibitors, to a density of 3x104 cells/ml (or 600 cells per 20μl). With the help of a 

multichannel pipette, 80-100 drops of 20µl were placed on the lid of a bacterial petri dish, and the dish 

was filled with PBS to preserve the humidity. The lid was closed quickly but carefully (to avoid collapsing 

of drops), and the plate was incubated at 37˚C and 5%CO2 for 3 days. During this time, the cells 

collapsed in the bottom of the drop and formed undifferentiated aggregates. After 3 days, the drops 

from one lid were harvested and pooled with 4ml of EB medium, and the aggregates were cultured in 

suspension in EB media for additional 3 days. After, the aggregates were transferred into a 15ml conical 

tube with EB media (at this point, the aggregates were visible to the naked eye) and sedimented at room 

temperature for about 10 minutes. They were resuspended in fresh EB media and 1-2 aggregates were 

transferred per well of a gelatin-coated μ-plate 24 well (iBidi). The plate was incubated for 1-2 weeks 

and the media was replaced by fresh EB media every second day.  

At this point, the cell aggregates started adhering and spreading on the well, while slowly differentiating. 

The embryonic Bodies were checked regularly for differentiation and when obvious differentiated 

structures formed (e.g.: beating cardiomyocytes, neurons…), they were fixed and stained with antibodies 

against markers of the 3 germ layers. Protocol explained in Section 4.3.3.3. 
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Figure 12: Random differentiation of mESC via Embryonic Bodies using hanging drops 
Stem cells were forced to collapse during 3 days into drops forming undifferentiated aggregates. Then, the collected drops were 
transferred into adherent culture (gelatin-coated plates) and allowed to attach, spread and differentiate in the absence of LIF and 
differentiation inhibitors (2i). After approximately 10 days of adherent culture, differentiating structures became apparent. 

4.1.6.2 Human EB formation 

The hiPSC were grown on feeder cells in gelatinised plates and hiPSC media + FGF2 and were passaged 

two days before EB formation. To generate EBs, hiPSC colonies were scratched with a pipette tip, and 

the cell aggregates were transferred into an ultra-low attachment plate (Corning) and grown in hiPSC 

+ FGF2 + 10 μM Y-27632 (Sigma). The media was changed every second day to hiPSC+FGF2. At day 

4, the media was replaced by DMEM + 20% FCS and changed every second day. At day 7, the EBs 

were plated on black glass-bottom tissue culture treated plates (iBidi) coated with 0.1% porcine gelatin 

(Sigma), without feeders. The media Change media every second day until day 15 when differentiated 

structures appeared. At that point, the cells were fixed, permeabilised and stained as described in 

Section 4.3.3.3. 

 
 
Figure 13: Random differentiation of human hiPSC via Embryonic Bodies 
hiPSC were scratched to form undifferentiated aggregates, which were kept in suspension in ultra-low attachment plate and hiPSC 
media. At day 7, the aggregates were transferred into adherent culture (gelatin-coated plates) and allowed to attach, spread and 
differentiate in the absence of differentiation inhibitors. After approximately 7 days of adherent culture, differentiating structures 
became apparent. 
 

4.1.7 Stem Cell directed Hematopoietic differentiation via Cytokines 

Directed differentiation experiments were performed by Marleen Büchler, from Dr Michael Milsom’s 

lab (Hi-STEM, DKFZ). 

Mouse ESC were grown to confluency, washed twice in PBS, trypsinised and resuspended into single 

cells in EB-HSC differentiation medium. The mESC were separated from feeder layers via differential 
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sedimentation. Then, 75.000 cells were counted and plated in Ultra low attachment T25 flasks 

containing EB-HSC medium and incubated for 2,5 days (60h) under hypoxic conditions (5% CO2 and 

5% O2). Another 500.000 cells were stained with a panel of hematopoietic differentiation antibodies 

and used for FACS analysis at day 0. 

After 60h, the media was replaced by EB-HSC media containing 5 ng/ml of cytokines (BMP-4,  

Activin A, VEGF and FGF2) and incubated for 60h in hypoxia. 

At day 5, the Embryonic Bodies were allowed to settle at the bottom of the flask. Then, the majority of 

the media containing cytokines was removed and centrifuged to pellet cell debris. Fresh EB media 

without cytokines was added to the Embryonic Bodies, and the centrifuged cytokine-containing media 

(conditioned media) was added back to the flask, which was then incubated for another 60h in hypoxic 

conditions. 

At day 6, the EBs were collected, washed with PBS and let to be settled by gravity. Then, they were 

dissociated in 250 µl Enzyme-free dissociation mix in 1 ml of PBS and incubated at 37˚C for 20min 

with occasional swirling of the tube. Then, another 8ml of enzyme-free dissociation media was added 

to the cells, which were then incubated for 5 minutes at room temperature. Finally, the cells were 

mechanically dissociated and washed with PBS, collected by centrifugation (1500rpm for 5min at 4˚C) 

and used for downstream analysis such as FACS.  

The hematopoietic differentiation panel of antibodies used, included: CD41 (1:300), CD144/VE-

Cadherin (1:200) and CD117/c-Kit (1:2000). 

4.1.8 Neuronal differentiation using ATRA 

Neuroblastoma (Be2C) cells were forced to differentiate into neurons upon addition of 10 µM  

All-Trans Retinoic Acid (ATRA).  

For this, 25.000 cells were counted and plated per well of a 24 well plate. Each cell line was plated in 

eight replicates, four of which were treated with ATRA and the other four were treated with DMSO 

(untreated control). 

The day after, the media was replaced by RPMI media (10% FCS, 1% P/S, 1% NEAA) containing  

10 µM ATRA (diluted in DMSO). The same volume of DMSO was used as ‘untreated control’. 
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The media was changed every second day, and the cells’ morphology as well as GFP expression (if any) 

were also monitored every second day using either a Keyence BZ-X700 or a Nikon Eclipse Ti/X-

Cite120Led fluorescent microscopes. 

At day 10, immunostainings for neuronal markers were performed according to Section 4.3.3.3.  

Also at that point, ATRA was withdrawn from half of the wells (2 wells per cell line), and the other half 

was kept under ATRA treatment for another 10 days.  

4.1.9 Chemical Transfection 

Several chemical transfections were performed according to the manufacturer’s instructions (Refer to 

Section 3.3.4.1 for more information). The most common chemical transfection protocols used in this 

study were using jetPEI and Effectene. 

Note that for vector comparisons, the equal amounts of vector molecules (molecular ratio) were added 

in each transfection. 

4.1.9.1 Transfection with PEI 

Transfection with PEI was most commonly performed in Glioblastoma, HEK293T and HeLa cells. 

The cells were grown to confluency, washed with PBS, trypsinised and counted. The number of cells 

to be transfected varied depending on the plate format and the reagent used. (refer to Table 30).  

The day after, the cells achieved 60-80% confluency and were ready to be transfected. The amount of 

DNA and reagent varied depending on the plate format and the cell line (Table 31). 

Most commonly, 2-10 µg of plasmid DNA were diluted in NaCl buffer, and the jetPEI reagent was also 

diluted in NaCl buffer. Both mixes were vortexed and spun. Then, the PEI mix was added to the DNA 

mix (in this order), and the solution was immediately vortexed and spun, followed by a 30 minutes 

incubation at room temperature to allow the formation of PEI-DNA complexes. 

Finally, the complexes were added to the cell’s media in a drop-wise manner, followed by a gentle 

rocking of the plate. The plate was brought back to the incubator, and the media was replaced by fresh 

media with 1 µg/ml Puromycin selection the day after.  

 



METHODS 

 86 

Table 30: Recommended format and number of cells to seed the day before transfection 

 

 
Table 31: Complex preparation for transfection in different cell culture formats 
 

 
These tables were taken from ‘jetPEI in vitro DNA transfection’ manufacturer’s Protocol (Polyplus) 
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4.1.9.2 Transfection with Effectene 

Effectene was mainly used to transfect Neuroblastoma cells, according to an optimised protocol from 

Dr Jeannine Lacroix (DKFZ). 

The cells were grown to confluency, washed with PBS, trypsinised and counted. Effectene transfections 

were performed in 6-well plates, and 2x105 cells were used per reaction. 1 µg of plasmid DNA was 

diluted in 100 µl of EC-buffer, containing 2 µl of Enhancer. The mix was vortexed, spun and incubated 

5 minutes at room temperature. Then, 7,5 µl of Effectene were added, and the mix was vortexed, spun 

and incubated 30 minutes at room temperature, to allow the formation of DNA complexes.  

Finally, the complexes were equilibrated with 400 µl of OptiMEM, and the complex-containing 

solution was delivered to the cells in a drop-wise manner. The cells were incubated overnight at 37˚C, 

and 5% CO2 and the media was replaced with fresh media containing 1 µg/ml Puromycin selection 

the day after. 

4.1.10 Physical Transfection/Nucleofection 

Nucleofection was used to transfect Fibroblasts (NHDF nucleofection kit) and Stem Cells (Mouse ES 

Cell Nucleofector kit) using the Amaxa II electroporation device and following the manufacturer’s 

instructions. Note that for vector comparisons, the equal amounts of vector molecules (molecular ratio) 

were added in each transfection. 

4.1.10.1 Nucleofection of Fibroblasts (MEFs and HDFs) 

The desired well-plate format (usually 6-well plate) was gelatinised in advance. When the fibroblasts 

(either MEFs od HDFs) reached 80-90% confluency, they were washed, trypsinised and counted.  

Unless otherwise stated, 500.000 cells were used per nucleofection. Afterwards, such number of cells 

were aliquoted into a 1.5ml tube and centrifuged at 200 g for 10 minutes at room temperature. Then, 

the cell pellet was washed with PBS and centrifuged again. Meanwhile, 2-10 µg of plasmid DNA were 

diluted in 100 µl of supplemented solution (82 µl NHDF Solution and 12 µl supplement) for MEFs 

and 110 µl (90 µl NHDF Solution and 20 µl supplement) for HDFs. This DNA-containing mix was 

used to resuspend the cell pellet, which was quickly transferred into a nucleofection cuvette and 

nucleofected using program U-020 (MEFs) or P-022 (HDFs) and the Amaxa Nucleofector II (Lonza). 

Finally, the nucleofected cells were gently pipetted and transferred into a gelatine-coated 6-well plate 

with DMEM containing 10% FCS without selection nor antibiotics, to allow the cells to recover from 
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the nucleofection procedure. Two days after, the media the media was replaced by DMEM with 10% 

FCS, containing antibiotics and 0,5-1 µg/ml of Puromycin selection (if needed). 

4.1.10.2 Nucleofection of mESC 

A gelatin-coated 6-well plate with feeder layers was prepared the day before nucleofection. When the 

stem cells reached the desired confluency, they were washed, trypsinised and differentially sedimented 

as described above. Meanwhile, 2 - 10 µg of plasmid DNA (usually containing a selection marker) were 

diluted in 100 µl of supplemented solution (82 µl mESC Solution and 12 µl supplement). 

After the feeder layers sedimented, the supernatant containing the stem cells was transferred into a new 

tube, and the stem cells were counted. Between 5x105 - 2x106 cells per reaction were aliquoted, washed 

with PBS and centrifuged at 200 g for 5 minutes. Then, the cell pellet was resuspended in the 100 µl 

DNA-containing solution, quickly transferred into a nucleofection cuvette and nucleofected using 

program A-013 (Amaxa Nucleofector II, Lonza). Finally, the nucleofected cells were gently pipetted and 

transferred into a gelatin-coated feeder containing 6 well plate with mESC media without selection, to 

allow the cells to recover from the nucleofection procedure. Two days after, the media was replaced by 

mESC media containing antibiotics and 500 ng/ml of Puromycin for selection.  

4.1.11 Cell selection using antibiotics 

The transfected cells were grown in their respective media, split at a low density and kept under selective 

pressure (1 mg/ml G418 or 0,5 - 1 µg/ml Puromycin) for approximately 2 weeks or until all the 

untransfected cells were dead, and all the remaining attached cells were positive for the vector’s reporter 

gene (usually GFP or dTomato). Because of the low density passaging after transfection and the selective 

pressure, the cells grew to form more or less defined and separated colonies. 

4.1.12 Clonal selection 

4.1.12.1 Single cell-dilution 

After selection, the cells were washed trypsinised as usual. Then, the cells were counted and diluted to 

100.000 cells/ml while a 96 well-plate was labelled and filled with the appropriate media. 

Afterwards, 1/10 serial dilutions were performed to obtain single cells in a well of a 96-well plate.  

The cells were kept under selection, allowed to grow until reaching a sub-confluent state and were then 

expanded to a bigger format. 
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4.1.12.2 Colony picking 

4.1.12.2.1 Fibroblasts,	HEK293T	and	HeLa	cells	

After selection and passaging, the remaining GFP positive colonies were observed under a fluorescent 

microscope (Keyence microscope). To facilitate the picking process, the plate was carefully marked, with 

the help of a permanent marker, around the region where the colonies of interest were. 

Before starting with the picking procedure, a new plate with appropriate media was prepared.  

Also, Vaseline and 1000 µl pre-cut tips (cylinders corresponding to the wide diameter of the tip) were 

autoclaved. The cells were washed twice with PBS, and the colonies of interest were localised thanks to 

the labelling underneath. The cylinder was soaked in Vaseline and was positioned surrounding the 

desired colony. Trypsin was added to the cylinder, which was sealed thanks to the Vaseline.  

After trypsinisation, the colonies were resuspended and transferred to a new plate. After two days, the 

cells were checked for attachment, and the media was replaced every second day. 

 

 

 

 

 

 

 

 

Figure 14: Non-Stem cells colony picking method  
Pre-cut 1000ul tips and Vaseline were autoclaved and stored. A pre-selected colony was surrounded by the tip soaked in Vaseline, 
to prevent leakiness. Trypsin was added to the cylinder, and the cells were trypsinised for 5 minutes at 37˚C. Then, the colony was 
mechanically disrupted by pipetting up and down and transferred into a 24 well-plate with appropriate media 

4.1.12.2.2 Stem	cells	(mESC/miPSC)	

The day before picking Stem Cell colonies, a gelatinised 24-well plate with feeder layers was prepared. 

After selection and passaging, the remaining GFP-positive colonies were observed under a fluorescent 

microscope (Keyence microscope). To facilitate the picking process, the plate was carefully marked, with 

the help of a permanent marker, around the region where the colonies of interest were. A stereoscopic 

microscope was carefully disinfected, placed under the cell culture laminar flow hood and sterilised 

under UV lamps, an hour before picking colonies. 
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Before starting the picking procedure, a 96 well-plate containing trypsin, 10 µl thin, sterile tips and 

some sterile surgical needles were prepared under the hood. The polyclonal SCs colonies, growing in 

10 cm dishes or 6 well plates, were washed twice with PBS, which was then not completely removed to 

prevent the cells from drying. The plate was positioned under the stereomicroscope, and the pre-marked 

selected colonies were identified. 10 µl of trypsin was added to the desired colony, and with the help 

of surgical needles, the compact-round-shaped stem cell colonies were lifted from the feeder-layer cells 

and carefully pipetted to a trypsin-containing well of a 96-well plate. The colonies were trypsinised in 

the 96-well plate at 37˚C for 5 - 10 minutes and pipetted to disrupt the colony and obtain single cells.  

Each cell suspension was transferred into a well of a gelatine-coated and feeder containing 24-well plate 

containing mESC media. After two days, the cells were checked for attachment, and the media was 

replaced every second day. 

Figure 15: Murine SCs colony picking method  
With the help of surgical needles, the area surrounding the colony of interest was cut. Then, a drop of trypsin was added, and the 
colony was aspirated and transferred to a 96-well plate containing trypsin. The colony was trypsinised for 5 minutes at 37˚C and 
mechanically disrupted to get individual cells. Single cells were finally transferred into a gelatin-coated 24 well-plate with feeder layers. 

4.1.12.2.3 Stem	cells	(hESC/hiPSC)	

The day before picking human Stem Cell colonies, a gelatinised plate with feeder layers was prepared 

as described above. The day of picking, the hESC media was replaced, and the plate was visualised 

under the EVOS™ XL Core Cell Imaging System (Thermo Fischer Scientific). At the same time and 

with a 1000 µl sterile tip, hSC colonies were scratched and lifted from the plate. Then, the floating 

colonies were aspirated and transferred into a gelatinised plate with feeder layers, containing  

hSC media. 



METHODS 

 91 

4.1.13 Luciferase Assay 

4.1.13.1 In vitro Luciferase Assay 

This method was used to measure Firefly Luciferase as a single reporter gene. The cells were washed 

twice with PBS and then incubated in serum-free DMEM containing Luciferin (10 µl/ml media) for  

5 minutes at 37˚C. Afterwards, the plate was imaged using a FusionSL device, with exposure varying 

from 5 - 20 minutes. After imaging, the media was replaced with the appropriate media containing 

serum and antibiotics and the cells were kept in culture. Note that this was not a final measurement 

and the cells could be kept for other applications. 

4.1.13.2  Dual Luciferase Assay (Promega) 

This method was used to detect expression of Renilla and Firefly Luciferase, in dual-reporter systems. 

The assay was performed following the manufacturer’s instructions, and the samples were analysed in 

triplicates. Before measuring, a working dilution (1:5) of passive lysis buffer (PLB) was diluted in water. 

Also, master mixes of LARII and Stop and Go (S&G) solutions were also prepared. Taking into account 

pipetting errors, the master mixes were prepared in excess. For the LARII master mix (50 µl/sample), 

LARII stock solution was diluted in Milli-Q water (1:5). For the S&G master mix (50 µl/sample), the 

S&G stock was diluted (1:5) in milliQ water and 1:50 of S&G substrate was added to the mix.  

Both master mixes and PLB working solution could be used immediately or stored at 4˚C. 

The cells were then rinsed with PBS, trypsinised, counted (50.000 cells/sample) and harvested at  

2000 rpm during 5 minutes. Then, the aliquoted cells were rinsed again, centrifuged and the cell pellet 

was re-suspended in 50 µl of PLB solution. Finally, the cells were incubated for 20 minutes at room 

temperature, shaking (1400 rpm) to allow cell lysis. Lysates could be analysed immediately or stored at 

-20˚C for further analysis. 

To measure the expression of both Renilla and Firefly luciferase, 25 µl of cell’s lysates (in triplicates) 

were loaded into a white non-transparent 96 well-plate, which was analysed in the Luminometer 

Mithras LB943, using the following analysis protocol: Dispense 50ul LARII, shake 2 seconds at lowest 

amplitude, measure 10 seconds in luminometric mode without filters set, dispense 50ul S&G solution, 

shake 2 seconds at the lowest amplitude and ‘Measure’. 
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4.1.13.3 In vivo Luciferase Assay  

A luciferin stock solution of 15mg/ml was prepared in DPBS and sterilised through a 0,2 µm filter.  

The aliquoted stock solutions could be used or stored at -20˚C. 

After the animals were anaesthetised, luciferin was injected (10 µl/g of body weight) intraperitoneally 

(IP), 10-15 minutes before imaging the animal, which allowed the Luciferin to reach the brain. For a 

10 g mouse, 100 µL was injected to deliver 1.5 mg of Luciferin (or 150 mg luciferin/kg body weight). 

After 15minutes, the animals were sacrificed by an overdose of narcotic, dissected and the brains were 

collected and placed in unsupplemented RPMI containing luciferin (10 µL/ml). The brains were 

imaged as soon as possible the using Chemiluminescence Imaging system Fusion SL (exposure time  

5 - 10 min). After imaging, the brains were washed in PBS and fixed overnight in 4% Paraformaldehyde 

at 4˚C for immunohistochemical analysis. 

4.1.14 Virology methods 

4.1.14.1 Lentiviral production  

Dr Joschka Willemsen and Dr Jamie Frankish, from the Virus Associated Carcinogenesis department 

(F170, DKFZ) kindly produced the lentiviral particles used in this study. 

Briefly, HEK293T cells were infected with viral vectors derived from the plasmid pWPI-BLR.  

The lentiviral particles were produced as described elsewhere [291] by calcium phosphate transfection 

of the three individual plasmids at a 3:1:3 ratio: (i) pCMV-ΔR8.91, coding for HIV Gag-Pol; (ii) 

pMD.2G, encoding the VSV-G glycoprotein; and (iii) the lentiviral vector (v27) pRRL.PPT.SF.hOKSM-

IRES-dTom or empty pWPI-backbone. (pCMV-ΔR8.91 and pMD.2G were kind gifts from Didier 

Trono, Lausanne [287]. Finally, the supernatants of HEK293T cells were collected, filtered and frozen 

for further use, without viral particle titration. 

4.1.14.2 Lentiviral transduction  

Mouse Embryonic Fibroblasts (MEFs) at the lowest possible passage (p3 - 5) were seeded (25.000 - 

50.000 cells) in a well of gelatin-coated 24 well-plate (per transduction). Transduction was performed 

in three rounds. The next morning (day 1), the media was aspirated, and the cells were infected with 

200 µl of viral particles suspended in DMEM media. The infection was repeated on the evening of the 

same day (day1) and the morning of the day after (day 2). Finally, the viral supernatant was aspirated, 
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and without washing steps, the cells were fed with standard DMEM supplemented with FCS and 

antibiotics. 

Since Lentivirus (Retroviridae family) are ssRNA viruses, their genomes must be reverse transcribed 

and integrated into the host cell genome to be expressed, which takes approximately 72h. This means 

that transgene expression is expected to appear after 2 - 3 days. 

4.2 Molecular biology methods 

4.2.1 InFusion Cloning 

InFusion cloning technology is designed for fast and directional cloning of one or more fragments of 

DNA into any vector. This technology relies on the homologous recombination of 15bp between the 

amplified insert(s) and the vector. The insert(s) are amplified by regular PCR and with primers 

containing 15bp of homology with the vector. The vector is digested with the desired restriction 

enzymes. The homologous recombination reaction occurs in vitro and the infused product can be then 

transformed into competent cells. 

Figure 16: InFusion cloning principle 
The DNA fragment(s) of interest is amplified by PCR using specific primers with 15bp overlap with the vector backbone. The 
backbone is linearised using specific restriction enzymes. Both insert and vector are purified from an agarose gel and mixed with the 
InFusion mix. During the reaction, the InFusion recombinase will recognise the 15bp of homology between vector and insert and will 
rearrange both fragments, generating a circular recombinant vector, which can be directly transformed into the appropriate E.coli 
strain of competent cells. Image is taken from the InFusion HD Cloning kit user manual. TakaraBio. 
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4.2.1.1 Processing of vector and insert 

First, 1-3 µg of vector backbone were digested with 1-3 Units of the desired restriction enzyme(s) for 1h 

at 37˚C, following the example on Table 32 (FastDigest restriction digestions could be incubated for 

15 - 20min). In parallel, the insert was amplified by PCR using specific primers containing 15bp of 

homology with the vector as described above. Then, both PCR insert, and digested vector was loaded 

into a 1% agarose gel and run at 120V for 30 - 40 minutes. An undigested negative control (parental 

vector) was also run to assess complete digestion of the vector. Afterwards, the bands corresponding to 

both insert and digested vector were excised from the gel, and the DNA was extracted using a GeneElute 

Kit (Sigma), following the manufacturer’s instructions. The concentration of both purified DNA 

fragments was assessed using spectrophotometry (Nanodrop). 

Table 32: InFusion cloning: vector processing 
 
 
 
 
 
 

 

Table 33: InFusion cloning: insert processing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

* Annealing temperature depends on the primer’s Tm 
** CloneAmp HiFi polymerase has a processivity of 1000bp/5sec and the extension time was calculated according to the  
amplicon size. 
 
Table 34: InFusion reaction 

 

 
 

 
*   The ratio vector: insert varied depending on their size 
** The volume of vector + insert should not exceed 7 µl. If so, double the reaction volume. 

Step Reagent  Amout 

Restriction 
Digestion  
(Vector) 

Vector backbone 1-3 µg 
Restriction enzyme 1 1-3 U (1-3 µl) 
Restriction enzyme 2 1-3 U (1-3 µl) 
10x Restriction Buffer 5 µl 
dH2O Up to 50 µl 

Step Reagent   Amount  

PCR 
(insert) 

DNA template 1-10ng 
Forward primer 0,75 µl 
Reverse primer 0,75 µl 
2x HiFi mix 12,5 µl 
dH2O Up to 25 µl 
Program 
Preheat lid 110˚C   
Initialisation  95˚C 2 min  
Denaturation 98˚C 10 sec 

30 cycles Annealing Tm-5˚C * 10 sec 
Elongation 72˚C X sec ** 
Final Elongation 72˚C 10 min  
Final hold 8˚C   

Step Reagent  Amount 

InFusion 
reaction 

Vector (100ng) * X µl ** 
Insert (50 ng) * Y µl ** 
2x InFusion mix 2 µl 
dH2O Up to 10 µl 
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4.2.1.2 Recombination ‘In Fusion’ reaction 

To proceed with the recombination reaction, 100 ng of vector and 50 ng of the insert were mixed with 

water containing the 5x InFusion mix, containing the appropriate buffer and enzyme to allow 

homologous recombination between the 15bp of homology. It was essential that the volume of 

insert+vector did not exceed 7 µl. In such case, the InFusion reaction volume was doubled.  

The recombination reaction took place in a water bath at precisely 50˚C for 15 minutes. Meanwhile, 

a 50 µl aliquot of E.coli Stellar Competent cells were thawed on ice.  

4.2.1.3 Transformation of Stellar competent cells 

The InFusion reaction containing the recombined plasmid product was placed on ice and 2,5 µl were 

used to transform the competent cells. The cells were incubated on ice for 30 minutes to allow the 

DNA to diffuse, subsequently heat shocked at 42˚C for 45 seconds and immediately placed on ice for 

2 minutes. Then, 450 µl of SOC media were added to the heat-shocked cells, which were incubated for 

1h at 37˚C (with gentle shaking) to allow their recovery. Passed this time, 100 µl of transformed cells 

were seeded in the appropriate LB-antibiotic plates and incubated overnight at 37˚C. 

4.2.2 Plasmid DNA preparation  

The amount of pDNA and the preparation size varied depending on the downstream application.  

For cloning and generation of vectors, a small amount of DNA (usually few nanograms) is required and 

therefore, a mini preparation (miniprep) was used. For in vitro and in vivo applications, a higher amount 

is needed (µg or mg) and was obtained by using a maxiprep. 

For animal experiments or for transfection of cells that would be later on injected into animals, an 

Endotoxin-free maxiprep was used to reduce bacterial products in the preparation, which could trigger 

undesired immune reactions.   

All plasmid preparations were performed using Qiagen commercial kits (QIAprep spin miniprep kit, 

QIAGEN plasmid maxi kit and Endofree plasmid maxi kit) and prepared according to the 

manufacturer’s instructions. 

Regardless of the preparation format, the underlying procedure was standard for all preparations. First, 

the bacterial culture (5ml for minipreps and 300ml for maxipreps) was grown overnight at 37˚C and 

shaking. Second, the bacterial cells were harvested by centrifugation. Third, the bacterial pellet was 

resuspended in RNAseA containing buffer and lysed under alkaline conditions (pH 12) given by the 
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presence of NaOH in the lysis buffer. Alkaline lysis allowed denaturation of chromosomal DNA and 

proteins while plasmid DNA remained stable. Successful lysis could be noticed by the colour change of 

the pH indicator (if contained in the buffers) or by the suspension’s change of consistency and 

appearance of mucus, corresponding to the chromosomal DNA, intracellular proteins and solutes. 

Afterwards, the lysate was neutralised upon addition of acetate-containing buffer, which further 

precipitated large chromosomal DNA and proteins while plasmid DNA remained soluble. Once all 

intracellular molecules, except for the plasmid DNA, where denatured and precipitated, plasmid DNA 

was purified using Spin-columns, whose solid matrix bound to the negatively charged DNA and allowed 

other components to flow through. Plasmid DNA can be eluted upon changing the charge conditions 

of the column. Finally, the concentration was measured, and the plasmid DNA was either used or 

stored at -20˚C. 

4.2.3 Total DNA preparation 

Isolation of total DNA (genomic, mitochondrial, viral and episomal) was performed either using a 

DNAeasy Blood and Tissue kit (QIAGEN) or a classical Phenol-chloroform extraction.  

4.2.3.1 gDNA extraction (DNeasy Blood and tissue, QIAGEN) 

For cultured cells, 1,5x106 cells were counted, washed and resuspended in 200µl PBS. Then, 20µl of 

Proteinase K were added per sample.  

For tissues, 30mg of tissue was homogenised in 180µl ATL buffer and 20µl of Proteinase K in a Lysing 

Matrix D (MP biomedicals). The lysate was then centrifuged at 4000rpm for 5 minutes, and the 

supernatant was separated from tissue debris and collected in a new tube. 

Afterwards, 200µl of buffer AL were added to the homogenates, followed by brief vortexing. Then, 

200µl of 100% Ethanol was added and mixed with the lysates by vortexing. The mixture was transferred 

into a DNeasy spin column, which was then centrifuged at 8000rpm for 1 minute. The flow-through 

was discarded, and the column was washed with 500µl of Buffer AW1, followed by another wash with 

500µl of Buffer AW2. Finally, the column was air dried by centrifugation during 3 minutes at 

14000rpm, and the tDNA was eluted with two rounds of 50 µl Buffer AE. The concentration of the 

100µl eluate was measured, and the tDNA was either used or stored at -20˚C. 
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4.2.3.2 Phenol-Chloroform extraction  

For this extraction protocol, three critical points were considered: 1) the tubes were not vortexed but 

inverted, 2) pipette tips were cut to prevent shearing of the nucleic acids and 3) pipetting was performed 

under a chemical hood since most chemicals used in this protocol were toxic and volatile. 

To purify tDNA from cultured cells, 106 to 5x106 cells were harvested, pelleted and resuspended in  

500 µl of DNA lysis buffer 2 (see Section 3.6). Proteinase K was added to a final concentration of  

600 µg/ml (from a 25 mg/ml stock), and the cells were lysed upon addition of 500 µl of DNA lysis  

buffer 1. The tube was carefully inverted, and the digestion took place at 42˚C for 1h or at room 

temperature overnight. Then, the Proteinase K treatment was repeated by adding another 600 µg/ml 

of protein and incubated overnight at room temperature, to ensure complete digestion.  

Alternatively, 30 mg of tissue or 0.2 - 0.4 cm tail biopsies were lyzed in 100 µl of DNA lysis Buffer 2, 

followed by addition of proteinase K (600 µg/ml) and 100 µl of DNA lysis Buffer 1 and incubated 

overnight at 12000 rpm at 42˚C. 

The day after, the lysate was incubated with 50 µg/ml of RNAseA (from a 10 mg/ml stock) for 1h at 

37˚C. Then, one volume (1ml) of phenol:chloroform:isoamyl alcohol (25:24:1) was added, and the 

tube was inverted until emulsion droplets formed and the mix became cloudy. The emulsion was 

centrifuged at 13000 rpm during 5 minutes at room temperature and resulted in the separation of  

2 phases: 1) an organic, apolar, denser-phase, containing the phenol-chloroform and proteins; and  

2) an aqueous, transparent upper-phase containing soluble DNA. The upper aqueous phase was 

collected into a fresh tube and another volume of phenol: chloroform: isoamyl alcohol was added, to 

further purify the DNA from proteins. After another round of centrifugation, the upper phase was 

again collected and transferred into a fresh tube, in which one volume of chloroform was added. The 

tube was inverted until emulsion droplets formed and centrifuged at 13000 rpm during 5 minutes at 

room temperature. The upper phase was again collected and the DNA was precipitated by adding 1/10 

volumes of 3M sodium acetate (which provided positively charged ions to neutralise the negative 

charges of DNA, which made it less soluble in water) and 3 volumes of 100% Ethanol (which is much 

less polar than water and allows stable ionic bonding between the negatively charged DNA and the 

positively charged ions, which allowed DNA precipitation).  

The precipitation was performed overnight at -20˚C or during 1h at -80˚C.�Next day, the precipitated 

DNA was pelleted for 30 minutes at 13000rpm and 4˚C, washed with 75% Ethanol for 5 minutes and 
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centrifuged again for 1 minute. The supernatant was removed, and the pellet was air-dried to allow 

evaporation of ethanol traces. Finally, the DNA pellet was re-dissolved in 200 µl TE Buffer, its 

concentration was measured, and it was either used or stored at -20˚C. 

4.2.4 Genotyping of biological samples 

Ear punches, tail or organ biopsies were processed using the Phire Tissue Direct PCR Master Mix 

(Thermo Fischer), which served for lysing and releasing the DNA as well as to use the lysed tissue for 

PCR analysis directly. Briefly, 20 µl of Dilution Buffer and 0,5 µl of DNA release were added to the 

biological samples. Brief vortexing and spinning of the samples were performed to ensure the totality 

of biopsy was covered in the buffer. Then, the samples were incubated 5 minutes at room temperature 

followed by 5 minutes at 98˚C. Afterwards, 1 – 2 µl of the reaction were directly used as a template for 

PCR or stored at -20˚C. 

4.2.5 DNA/RNA electrophoresis 

Electrophoresis was used to either visualise nucleic acids after extractions, to confirm successful PCR 

amplifications or successful restriction digestions. This technique relies on the separation of nucleic 

acids based on its size, and how they migrate in an agarose matrix when an electric field is applied. 

For that, an agarose gel was prepared in Electrophoresis Buffer (see Section 3.6). The percentage of 

agarose (ranging from 0,8 - 2%) and the intensity of the electric field (60 – 120 V) varied depending on 

the nucleic acid’s size and the desired degree of separation. In general, 1% agarose gels were used and 

run at 120 V for 30-40 min.  

4.2.6 RNA extraction  

4.2.6.1 RNA extraction from cultured cells  

RNA was extracted from cell pellets using the High Pure RNA isolation kit (Roche) and following the 

manufacturer’s instructions. For that, 106 cells were washed twice in PBS, trypsinised, counted and 

resuspended in 200 µl of PBS. Then, 400 µl of Lysis/Binding buffer was added to the cells, which were 

vortexed for 15 seconds. The lysate was then transferred to a High Pure filter, placed in a collection 

tube, and the nucleic acids were bound to the column by centrifugation at 8000 g for 30 seconds.  

After centrifugation, the flow through was discarded, and the DNA was digested in the column upon 

addition of 10 µl of DNAseI in 90 µl of DNaseI incubation buffer for 15 minutes at room temperature. 

Past the incubation time, 500 µl of Washing Buffer 1 were added to the upper reservoir followed by a 
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1 minute centrifugation at 8000 g. Then, two more washing steps were performed by first adding  

500 µl of Washing Buffer II and centrifuging at 8000 g and then adding 200 µl and centrifuging to 

remove residual buffer. Finally, the RNA was eluted with 50 µl of Elution Buffer and by centrifugation 

at 13000g for 1 minute. The eluted RNA could be directly used for RT-PCR or stored at -80˚C for 

subsequent analysis. 

4.2.6.2 RNA extraction from tissues  

RNA from animal tissues was extracted using RNeasy Mini Kit (Qiagen), following the manufacturer’s 

instructions. Before starting, the lysing solution was prepared by mixing (per sample) 1ml of RLT buffer 

with 10 µl of β-mercaptoethanol. The starting material (<30mg of frozen tissues) was first homogenised 

in 600 µl of lysing solution (RLT + β-mercaptoethanol) using Lysing Matrix D columns  

(MP biomedicals) in a homogenizer (Precellys 24, Peqlab) using program P1. The supernatant 

containing the homogenate was then transferred into a microcentrifuge tube and spun 3 minutes at 

full speed to pellet cell debris. Afterwards, the supernatant was transferred into a new microcentrifuge 

tube, and 1 volume of 70% RNAse-free Ethanol was added to the lysate. At this point, the lysates could 

be processed manually or loaded into a QIAcube robot. 

The lysates were then loaded into an RNeasy column, centrifuged at >8.000g for 1 minute and the flow 

through was discarded. Then, successive washing steps were performed by first adding 700 µl of Buffer 

RW1 and spinning, followed by two washes with 500µl of RPE buffer and spinning. The membrane 

was then air dried by centrifugation for 1 minute, and the RNA (together with DNA) were eluted using 

50 µl of RNAse-free water (DEPC-water). The RNA concentration was then measured by 

spectrophotometry (Nanodrop) and the extractions were stored at -80˚C for further analysis.  

Note: To remove the DNA present in the samples, DNAseI treatment was performed before 

downstream applications (Ambion DNA-free Kit, Invitrogen). 

4.2.7 Protein extraction – Whole cell lysates 

4.2.7.1 Overtrypsinisation of cells 

The cells were washed twice with PBS to remove medium components (especially divalent ions such as 

Calcium or Magnesium, which inactivate Trypsin), trypsinised and harvested with an equal volume of 

media. Then, they were transferred to a centrifuge tube and spun down at 1000 rpm for 5 minutes.  
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The supernatant was aspirated, and the pellet placed immediately on ice and resuspended in 40 µl 

RIPA Lysis Buffer (See Section 3.6).  

4.2.7.2 Cell scrapping  

The cells were washed twice in PBS and plated on ice. Then, 400 µl of RIPA Lysis Buffer was added 

and spread through the plate with a cell lifter. After scrapping the cells from the plate, the suspension 

was drawn up through a 21G needle and transferred into a tube.  

In both cases, the suspensions were pipetted up and down or drawn up through a 21G needle to further 

homogenise and shear the cells. The lysates were incubated on ice for additional 10 minutes and were 

subsequently centrifuged at 14000rpm for 10 – 20 min at 4˚C to pellet cell debris. The supernatant 

was collected and either stored at -80˚C or analysed to determine the total amount of protein using  

BCA assay. 

4.2.8 Polymerase chain reaction (PCR) 

The PCRs for cloning procedures were performed using the primers indicated in the section Cloning 

primers and the CloneAmp™ HiFi PCR Premix (Clontech) following manufacturer’s instructions.  

The primers used to amplify DNA inserts for InFusion cloning contained 15bp of homology with  

the vector. 

PCRs used for validation of rescued vectors were performed using S/MAR primers (primers 1, 2) and 

primers amplifying the expression cassette (primers 36, 128) and the PCR program described above.  

4.2.8.1 Genotyping PCR 

DNA was extracted with the Phire Tissue Direct PCR Master Mix (Thermo Fischer), and the PCR was 

performed according to the manufacturer’s instructions, in a total volume of 20 µl per reaction. 

Degenerate primers amplifying a mammalian genomic DNA region of Sox21 were used as internal 

controls (provided with the kit). GFP primers for amplification of 515bp coGFP were designed using 

Primer3 and validated in silico. The PCR reactions for GFP and the internal controls were performed 

separately to get better amplification of GFP bands. 
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Table 35: Genotyping primers 
 

Primer Sequence (5’->3’) Annealing 
(˚C) 

Amplicon 
(bp) 

coGFP1 GCCGCATGACCAACAAGATG 69,3 515 
coGFP2 GTTGCTGTGCAGCTCCTCCA 
eGFP.For GCAA GGGC GAGG AGCT GTTC ACC 72 329  
eGFP.Rev GGCG AGCT GCAC GCTG CCGT CGTC 
Sox21.For AGCCCTTGGGGASTTGAATTGCTG 72 237 
Sox21.Rev GCACTCCAGAGGACAGCRGTGTCAATA 

 

Table 36: PCR reaction components 

 

 

 

 

 

 

 

Table 37: PCR conditions 

 

 

 

 

 

 

4.2.9 Quantitative Real-Time PCR (qPCR) 

Quantitative PCR was used for 1) absolute quantification of S/MAR vectors to determine their copy 

number in established cell lines or for 2) relative quantification of transcription factors during 

reprogramming of iPSC. In both cases, qPCR was performed using QuantiTect SYBR Green PCR Kit 

(QIAGEN) and a Real-Time PCR System LightCycler® 96 (Roche). Absolute and relative 

quantifications were performed using the LightCycler® 96 Software (Roche).  

4.2.9.1 Absolute quantification – Copy number Assay 

To quantify the number of S/MAR-vector copies present in established cell lines, gDNA was extracted 

as described either using Phenol-Chloroform or DNeasy Blood and Tissue kit (QIAGEN) as described 

 GFP 
PCR 

Internal control 
PCR 

Reagent Amount (µl) Amount (µl) 

DNA template 1 µl 1 µl 

Universal control primer mix - 0,4 µl 
Forward primer (20µM) 0,5 µl - 
Reverse primer (20µM) 0,5 µl - 

2x Phire PCR Premix 10 µl 10 µl 

dH2O 8 µl 9,6 µl 

Program 

Preheat lid 110˚C   
Initial denaturation 98˚C 5 min  
Denaturation 98˚C 5 sec 

40 cycles Annealing 69,3˚C* 5 sec 
Elongation 72˚C 30 sec 
Final Elongation 72˚C 1 min  
Final hold 4˚C Hold  
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above. Two standard curves were performed to determine 1) the number of cells present in each sample 

and 2) the number of vector molecules present per cell. 

A standard curve to determine the number of cells per sample was generated by performing 1:5 serial 

dilutions of gDNA (50, 10, 2, 0.4 and 0.08 ng/µl). GAPDH primers were used to determine how many 

genome copies were present in the samples, assuming that the cells were diploid and contained 2 copies 

of GAPDH. Then, 1µl of each serial dilution was mixed with 10µl of 2x SYBR green PCR mix, 0.1µl 

of each primer and 8.8µl of RNAse free water, to a total volume of 20µl per reaction. Each dilution 

was loaded in triplicates. A water negative control (also run in triplicates) without gDNA, was used to 

rule out the possibility of primer dimers or gDNA contamination. 

A standard curve to determine the number of vector molecules per sample was generated by 

performing 1:10 serial dilutions of the desired vector. Briefly, a miniprep of the desired vector was 

diluted to 20 ng/µl and subsequently serial diluted (from 2x101 until 2x10-10 ng/µl) to potentially 

achieve a single molecule dilution. A range of six serial dilutions was chosen to build the standard 

curve. Note that the criteria for choosing the dilutions depended on how many vector molecules were 

expected per cell, in other words; when higher copy numbers were expected, a higher range of dilutions 

was chosen and vice versa. Puromycin primers were chosen to determine the copies of the vector.  

Note that S/MAR primers would not have been suitable since S/MAR motifs are naturally occurring 

in the genome. Then, 1 µl of each serial dilution was mixed with 10 µl of 2x SYBR green PCR mix,  

0.1 µl of each primer and 8.8 µl of RNAse free water, to a total volume of 20 µl per reaction. Each 

dilution was loaded in triplicates. A water negative control (also run in triplicates) without vector was 

used to rule out the possibility of primer dimers. 

Finally, each sample was diluted to 5 ng/µl, and 1 µl (5 ng) per reaction was amplified with GAPDH 

and Puromycin primers (both run in triplicates), following the reaction conditions and program 

explained in Table 38 and Table 39.  

To minimise pipetting errors, 2 master mixes were prepared per sample: One containing the primers 

and the 2xSYBR green mix; and the other containing the template (gDNA or vector) diluted in water. 

To minimise plate-loading errors, the Primer master mix was pipetted horizontally, and the DNA mix 

was pipetted vertically, following the Plate loading scheme in Table 40. The plate was carefully sealed, 

centrifuged at 1000rpm for 1 minute, and run into a LightCycler® 96 (Roche) following the cycling 

conditions in Table 39. 
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Table 38: qPCR reaction conditions (per sample) 
 

 Reagent  Amount   

Primer 
master mix 

2x SYBR green PCR mix  10  µl 
Forward primer 0.1 µl 
Reverse primer 0.1 μl 

Sample 
master mix 

Sample (cDNA, gDNA, vector) 1 μl 
RNAse free-H2O 8.8 µl 

 TOTAL volume 20 μl 
 
Note: take into account the number of replicates when preparing the master mixes. Each sample must be run in triplicates 

 

Table 39: qPCR program conditions 
 

 

 

 

 

 

 

* All qPCR primers were designed to have an annealing temperature of 60˚C the free software Primer3 
** The extension time varied according to the amplicon length, varying from 100-120 bp 
 
Table 40: qPCR loading scheme 
 

 
Each square corresponds to a well, and each sample was run in triplicates. 
The values of the standard curves correspond to the concentration of DNA and the amount (ng) of DNA loaded in 1µl. For each 
sample, 5ng were added per reaction, corresponding to 1µl of a 5ng/µl dilution. 

 

Data analysis was performed using the LightCycler® 96 Software (Roche) and Microsoft Excel. 

First, the amount (ng) of gDNA for a single diploid cell was calculated following the next equation: 

Length of diploid genome= 6.47x109 bp 

Weight/bp = 660 Da (g/mol) 

 Step  Time 
(sec) 

Temp 
(˚C) 

Heat inactivation 900 95 

3-step cycling 
(45 cycles) 

Denaturation  15 94 
Annealing  25 60* 
Extension 20** 72 

Melting curve 
10 95 
60 65 
1 97 

Cooling   

  1 2 3 4 5 6 7 8 9 10 11 12  
Standard 
gDNA 

A 50 10 2 0.4 0.08 H2O H2O S1 S2 S3 S4 S5 
Primers 
(GAPDH) B 50 10 2 0.4 0.08 H2O H2O S1 S2 S3 S4 S5 

C 50 10 2 0.4 0.08 H2O H2O S1 S2 S3 S4 S5 

Standard 
vector 

D 2E0 2E-1 2E-2 2E-3 2E-4 2E-5 2E-6 S1 S2 S3 S4 S5 
Primers 
(Puro) 

E 2E0 2E-1 2E-2 2E-3 2E-4 2E-5 2E-6 S1 S2 S3 S4 S5 
F 2E0 2E-1 2E-2 2E-3 2E-4 2E-5 2E-6 S1 S2 S3 S4 S5 

 G              
 H              
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!"#$%&#'(	*$+,ℎ.	"/	0+1,#$	,$1"!$	(
,
!"#

) = 	6.47910<	×	660 = 4.27910?@ 

 

Then, using Avogadro’s number (6.023x1023) we calculate the weight in (ng) for a single haploid 

genome, which is 7 pg or 0.007 ng 

,	"/	0+1,#$	,$1"!$ = A.@<B?CDE

F.C@GB?CEH
= 7910I?@			"(	 7	J, 

 

Second, the amount of cells per sample was calculated by dividing the concentration of cells (ng of 

cells in 1 µl of loaded sample), which was calculated from the Cq value, by the weight of a diploid 

genome (0,007 ng): 

%$##0
0'!J#$

=
1,	%$##0
0.007	1,

= K	%$##0 

 

For example:  Amplification of Sample #1 with GAPDH primers gave a Cq mean of 24.18, which 

corresponded to 11.90  ng of gDNA. 

In this case, 11.90  ng cells/ 0.007 ng genome = 1.7x103 cells 

Third, the number of vector molecules was calculated by taking into account the vector’s size (bp) and 

by using online resources (http://cels.uri.edu/gsc/cndna.html).  

For example, for a 11921bp vector, there are 1.55x109 molecules in 20 ng. This relationship should be 

kept constant for all the points of the standard curve.  

Fourth, the number of vector copies was calculated by multiplying the concentration of vector, which 

was calculated from the Cq value, for the number of known copies from the standard curve and divided 

by the number of ng loaded in the standard curve: 

 

L$%."(0
0'!J#$

=
1,	L$%."(	 +1	1&# ∗ !"#$%&#$0	"/	L$%."((/("!	0.'1N'(N)

	1,	L$%."(	(0.'1N'(N)
	= O	%"J+$0 

 

For example, amplification of Sample #1 with Puromycin primers gave a Cq mean of 21.19, which 

corresponds to 4.61x10-5 ng of vector. 
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In this case, (4.61x10-5 ng vector  x 1.55x109 molecules of vector)/20 ng vector = 6.94x103 copies 

Finally, the number of vector copies per cell was determined by dividing the Y number of vector 

molecules by the X number of cells. 

L$%."(0
0'!J#$

=
O	%"J+$0
K	%$##0

 

 

For the stated example, 6.94x103 copies/1.7x103 cells = 4.1 copies/cell 

These calculations were applied to each sample and their errors to represent the values of copies/cell 

in a column chart with error bars. 

4.2.10 Reverse Transcription PCR (RT-PCR) 

RT-PCR was used to confirm expression of pluripotency markers in fibroblasts, mESC and 

reprogrammed iPSC. For that purpose, the cells growing in a 6-well plate were harvested. Fibroblasts 

were directly harvested, and Stem Cells were harvested after differential sedimentation. Then, total 

RNA was extracted as described above, using the High Pure RNA isolation kit (Roche) with on-column 

DNAseI treatment and following the manufacturer’s instructions. 

The reverse transcription reaction was performed using M-MLV Reverse Transcriptase (Promega) in its 

supplied buffer, and all the reactions were performed in triplicates. A negative control (RT- control) 

without Reverse Transcriptase was also performed in triplicates to rule out the possibility of gDNA 

contamination after DNAseI treatment.  

The cDNA synthesis had a total volume of 20µl per reaction. First, 1µg of RNA was mixed with 2µg 

(1µl from a 2µg/µl aliquot) of random hexamer primers (dN6) and RNAse free-H2O to a total volume 

of 10µl.The mixture was pre-incubated at 70˚C for 10 minutes. Then, 4 µl of 5x M-MLV buffer, 2 µl 

of 100mM DTT (pH=7), 0,5µl of dNTPs (25mM each), 0,5 µl of RNAseOUT, 1µl of M-MLV reverse 

transcriptase and 2 µl of RNAse free-H2O were added to the mix, to reach a final volume of 20µl.  

The reactions were incubated in a thermocycler using the conditions described in Table 42.  

Specific RT-PCR parameters are detailed below. 
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Table 41: Reverse Transcription reaction conditions 

 

Reagent  Amount   

Total RNA  1000  ng 
Random hexamers (2µg/µl) 1 µl 
RNAse free-H2O Up to 10  µl 
Then add per reaction…  
RNAse free-H2O 2   µl 
5x M-MLV Buffer 4   µl 
DTT (100mM) 2  µl 
dNTPs (25mM) 0,5  µl 
MMLV-RT 1  µl 
RNAseOUT 0,5  µl 
TOTAL 20   µl 

 

Table 42: Reverse Transcription cycling conditions 

 

Step Temperature  Time 
Pre-incubation 70 ˚C 10 minutes 

Reverse 
Transcription 

37 ˚C 10 minutes 
42 ˚C 60 minutes 
46 ˚C 20 minutes 
52 ˚C 20 minutes 
56 ˚C 20 minutes 
95 ˚C 5 minutes 
4   ˚C storage 

 

The generated complementary DNA (cDNA) had an estimated concentration of 50 ng/µl, assuming 

that all RNA (1000 ng) was reverse transcribed into cDNA in a 20 µl reaction volume. Such cDNA was 

either stored at -20˚C or used for quantitative PCR analysis. 

4.2.10.1 Relative quantification – Expression of reprogramming factors 

In order to distinguish between endogenous pluripotency factors, switched on when the cell becomes 

pluripotent, and exogenous reprogramming factors (OKSM) delivered either with the 4in1 Lentivirus 

or the S/MAR vectors (POP and nPOP); a relative quantification by qRT-PCR was performed.  

This was only possible because the exogenous reprogramming factors are human codon optimised and 

differ from the endogenous mouse factors. 

RNA from 1) wild-type ESC (containing endogenous factors), 2) ESC transduced with a Lentivirus 

(Endogenous and exogenous factors), 3) wildtype MEFs (no factors) and 4) MEFs transduced with a 

Lentivirus (exogenous factors) was used. The expected primer amplifications are shown below. 
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 1)mESC ∅ 2)mESC + Lenti 
OKSM 

3)MEFs ∅ 4)MEFs +   
Lenti OKSM 

Endogenous (murine) OKSM YES YES NO NO 
Exogenous (human codon-
optimized OKSM) 

NO YES NO YES 

 

Primer sets targeted to amplify endogenous murine or exogenous human codon-optimized Oct4, Klf4, 

Sox2 and cMyc (Section 3.11.2) were designed and tested in silico.  

RNA was extracted, and cDNA was synthesised at a concentration of 50 ng/µl, as explained above. 

Then, cDNA serial dilutions of each sample (50 ng/µl, 5 ng/µl, 0,5 ng/µl and 0,05 ng/µl) were 

performed to build a standard curve and determine the primer pair efficiency.  

The exogenous primers were tested in cDNA from HEK cells transfected with exogenous OKSM, and 

1μl of each serial dilution as well as water controls were run in duplicates. 

The endogenous primers were tested in cDNA from mESC and 1μl of each serial dilution as well as 

water controls were run in duplicates. 

Also, 1 μl of the 5 ng/μl dilution of each cDNA (1 - 4) was used as a template and run in triplicates for 

each primer set. A more comprehensive overview of the experiment is shown in the following tables: 

Table 43: Standard curve for exogenous (human) primers and endogenous (murine) primers 

 

 

Table 44: Test of exogenous (human) primers in murine cells 
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Table 45: Test of endogenous primers in murine cells 

 

It was necessary to include one point of the standard curve on each plate so that the software could 

apply the primer’s efficiency to each sample and analyse their relative quantification. 

The PCR reaction set-up and cycling conditions are those cited above in Table 38 and Table 39, as the 

primers were designed to all have the same annealing temperature and extension time. 

After the standard curves were built, the primer efficiency and the relative quantification of the 

exogenous and endogenous genes were determined using the LightCycler 96 software. 

4.2.11 Plasmid Rescue 

Rescuing of plasmid DNA is one way to prove that a vector is not integrated and that it remains in its 

episomal state. This protocol relies on the ability of circular DNA to re-transform bacteria after its 

recovery from mammalian cells; in other words, an episomal circular DNA that was used to transfect 

mammalian cells should replicate and segregate with the cells keeping its integrity and can, therefore, 

be recovered from gDNA preparations and used to retransform bacteria. 

4.2.11.1 Plasmid Rescue Protocol 1 

A protocol for successful plasmid rescue was designed and optimised in this study.  

Initial attempts to rescue plasmids were performed, in which the gDNA directly extracted from 

mammalian cells was transformed into E.coli competent cells. However, no colonies were grown, which 

suggested that the vector could not be rescued. This result did not necessarily mean that the vector was 

‘unrescuable’ or not episomal, but rather that some intermediate steps were required to enrich the 

episome and facilitate its entry into bacteria. For example, after extraction of DNA, all DNA forms 

were present and mixed together. Since gDNA is the largest and most abundant of all, it might create 

a ‘DNA matrix’ in which all DNA molecules are tangled to each other. In this case, although a circular 

DNA might not be integrated into the genome, it will probably not retransform bacteria, simply because 
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it is tangled and trapped with gDNA and because the bacteria’s pore size is limited and will not allow 

molecules larger than a certain size to enter, therefore the plasmid DNA was not able to retransform 

bacteria and could not be rescued. 

 

Figure 17: Cartoon depicting a Plasmid rescue protocol  
Eukaryotic cells (HEK293T, Be2C, MEFs or mESC were labelled with GFP-SMAR episomal vectors. After generating stable cell lines 
with established vectors, the cells were lysed, and total DNA (genomic, mitochondrial and episomal) was digested with Proteinase 
K, to release the vector from proteins, and extracted using Phenol/Chloroform and precipitated using ethanol. The large and tangled 
gDNA was digested with a plasmid’s non-cutter enzyme, and the circular DNA was purified either using i) agarose gel electrophoresis, 
ii) miniprep spin column or iii) gDNA spin column. The enriched and purified circular DNA was then electroporated into E.coli 
DH10β competent cells. The clones where then miniprepped and the DNA was digested and subjected to PCR to check for vector 
rearrangements and integrity. Finally, successfully rescued clones were confirmed by sequencing.  
 

First, total DNA was extracted using Phenol-Chloroform extraction and ethanol precipitation as 

described above. Then, 10 µg of total DNA (containing genomic, mitochondrial and episomal DNA) 

was digested for 1h at 37˚C (Table 32) with a vector non-cutter, in other words, an enzyme that digested 

the genomic DNA but kept the plasmid intact. This was a crucial step to cut and reduce the gDNA in 

size and to ‘untangle’ and release the circular episomal DNA. An undigested total DNA control was 

used to assess correct DNA digestion.  
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At this point, one of the three purification strategies could be used to enrich the episomal DNA: 

• DNA Electrophoresis and cutting of the approximate DNA band  

The digested and undigested control DNA was run on a 1% agarose gel, at 120V for 45 minutes and 

the presence of a genomic DNA smear confirmed the successful digestion. To purify as much episomal 

DNA as possible, the agarose gel was cut around the expected episome size (e.g.: 6000bp) ± 1000bp to 

avoid losing different conformations of the circle that might have run differently in the gel. One must 

keep in mind that this purification step is ‘targeting’ or forcing the purification of the ‘correct’ or 

parental episomal vectors and other rearranged forms of different sizes (if any) are not selected and 

therefore not considered.  

The circular DNA together with linear gDNA fragments of similar size were recovered from the gel 

band using the GeneElute Kit (Sigma). 

• ‘Miniprep’ column  

Digested DNA was treated as if it was bacteria by following the miniprep kit manufacturer’s protocol. 

With this purification step, the circular DNA was selectively purified in a Spin column while the linear 

gDNA was washed away. Note that the purpose of doing so and of using the ‘unnecessary’ buffers for 

bacterial lysis is to provide the appropriate ionic charge for the spin column in order to avoid premature 

elution of the circular DNA, which is diluted in water. 

First, 250 µl of resuspension buffer containing RNAseA followed by 250 µl of Lysis buffer were added 

to the digested DNA. Then, the solution was neutralised upon addition of 350 µl of Neutralisation 

buffer containing sodium acetate and subsequently bound to the spin column. The plasmid DNA was 

washed twice with 500 µl of isopropanol based buffer followed by 750 µl of Ethanol based buffer.  

Finally, the circular DNA was eluted with 30 µl of pre-warmed elution buffer (EB) provided by the kit. 

• ‘gDNA clean and concentrator’ column  

The digested DNA was purified using a commercial gDNA purification kit and following the 

manufacturer’s instructions, with the intention of purifying also circular DNA. For this, 2 volumes of 

CHIP binding buffer were added to the DNA digestion product, which was then loaded into the spin 

column and centrifuged at 13000 rpm for 30 seconds. Upon binding of the DNA to the column,  

200 µl of washing buffer were added and the column was again centrifuged. Finally, the DNA was 

eluted with 30 µl of pre-warmed elution buffer. 
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Once the DNA was purified using one of these methods, 100-200 ng (no more than 5 µl) of purified 

episomal plasmid were electroporated into E.coli DH10β competent cells. For this, an aliquot of 20 µl 

of competent cells was thawed on ice. An electroporation cuvette with 0,1 cm gap and the DNA was 

aliquoted in a fresh tube, were also placed on ice. Once the cells were thawed, they were added to the 

DNA and the mix was transferred to the cooled electroporation cuvette, which was quickly 

electroporated with the BioRad micropulser’s ‘Bacterial program’. Immediately after, 950 µl of SOC 

media were added to the cells and they were transferred into a 15ml Falcon tube, where they were 

incubated for 1 - 2h at 37˚C, shaking. Past the recovery time, the cells were harvested at 4000rpm for 

5minutes, the supernatant was discarded and the bacterial pellet was re-suspended in the leftover media 

and plated in the appropriate LB-antibiotic plates, which were grown overnight at 37˚C. 

The day after, colonies were picked and grown in a 5 ml LB- antibiotic pre-culture, overnight at 37˚C. 

The following day, bacteria were harvested and minipreped as described above. The integrity of rescued 

DNA was confirmed by restriction digestion and compared to the digested parental vector. In addition, 

PCR amplification of the vector’s expression cassette and S/MAR motif was performed in order to 

confirm their unaltered presence in the vector. Correct rescued clones were confirmed by sequencing. 

4.2.11.2 Plasmid Rescue Protocol 2 

100 µl of Total gDNA extracted with DNeasy Blood and Tissue kit (Qiagen) were digested using a 

restriction enzyme that would digest the genomic DNA but not the vector to be rescued, usually  

EcoRV-HF (NEB). The amount (units) of enzyme was adjusted depending on the gDNA extraction 

yield, considering that 10 U of enzyme are required to digest 1 µg of DNA in 1h at 37˚C. The digestion 

volume was adjusted to 150 µl and the gDNA was digested overnight at 37˚C, shaking. The next day, 

total gDNA (digested) containing intact plasmids were extracted using phenol: chloroform. For that, 

one volume (150 µl) of Phenol:Chloroform were added to the restriction reaction, followed by vigorous 

vortexing and a centrifugation step for 10 minutes at 4˚C and maximum speed. Then, the aqueous 

phase was recovered and 1/10 volume of Sodium Acetate as well as 3 volumes of 100% Ethanol were 

added. The DNA was allowed to precipitate at -80˚C for 30 minutes or overnight at -20˚C.  

After precipitation, the DNA was pelleted by centrifugation at 4˚C for 30 minutes at maximum speed. 

The DNA pellet was washed with 70% Ethanol and centrifuged again for additional 10 minutes. 

Finally, the ethanol was removed, the DNA pellet was allowed to air-dry and it was resuspended in  

10 µl of TE buffer. The DNA concentration was measured using spectrophotometry (Nanodrop). 
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Afterwards, between 400 ng and 1 µg of digested gDNA were electroporated into E.coli DH10β.  

Briefly, an aliquot of 20 µl of competent cells was thaw on ice. An electroporation cuvette with 0,1 cm 

gap was placed on ice and the DNA was aliquoted in a fresh tube, also placed on ice. Once the cells 

were thaw, they were added to the DNA and the mix was transferred to the cooled electroporation 

cuvette, which was quickly electroporated with the BioRad micropulser’s ‘Bacterial program’. 

Immediately after, 950 µl of SOC media were added to the cells and they were transferred into a 15 ml 

Falcon tube, where they were incubated for 1 - 2h at 37˚C, shaking. Past the recovery time, the cells 

were harvested at 4000rpm for 5minutes, the supernatant was discarded and the bacterial pellet was re-

suspended in the leftover media and plated in the appropriate LB-antibiotic plates, which were grown 

overnight at 37˚C. 

The day after, colonies were picked and grown in a 5 ml LB-antibiotic pre-culture, overnight at 37˚C. 

The following day, bacteria were harvested and miniprepped as described above. The integrity of 

rescued DNA was confirmed by restriction digestion and compared to the digested parental vector.  

In addition, PCR amplification of the vector’s expression cassette and S/MAR motif was performed in 

order to confirm their unaltered presence in the vector. Correct rescued clones were confirmed  

by sequencing. 

4.2.12 Southern Blotting 

4.2.12.1 DNA Probe synthesis 

DNA probes used for southern blot analysis were radioactively labelled with [α32P]dATP  

(3000 Ci/mmol) or [α32P]dCTP (3000 Ci/mmol) using Prime-it II Random Primer Labeling Kit 

(Agilent) and following the manufacturer’s instructions. 

For that, the DNA fragment to be served as probe, usually against the gene corresponding to coGFP or 

Puromycin, was digested with an appropriate restriction enzyme or amplified by PCR and isolated via 

separation in a 1% agarose gel. The DNA was recovered using a GeneElute Kit (Sigma), following the 

manufacturer’s instructions. The concentration of the purified DNA fragment was assessed using 

spectrophotometry (Nanodrop). Then 25 ng of DNA fragment or control DNA were mixed with 10µl 

random oligonucleotide primers, in a total volume of 34 µl. Then, the reaction tubes were boiled in a 

water bath for 5 minutes and centrifuged briefly at room temperature. After, the following reagents 

were added to the reaction tubes: 10 µl of 5x dCTP or dATP Primer Buffer, 5 µl of labelled nucleotide 

[α32P]dATP (3000 Ci/mmol) or [α32P]dCTP (3000 Ci/mmol) and 1 µl Exo(-) Klenow  
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Enzyme (5U/µl). The content was mixed thoroughly by pipetting and incubated at 37˚C for  

10 minutes. The reaction was then stopped upon addition of 2µl of Stop mix. Finally, the probe was 

used for hybridisation. 

4.2.12.2 Restriction and gel electrophoresis 

100 µl (7-12 µg) of gDNA extracted with DNeasy Blood and Tissue kit (Qiagen) were used to perform 

Southern Blot experiments. For that, the total gDNA including the circular vector was digested with 

an enzyme that would linearise the vector, as well as digest the gDNA (usually BamHI linearises vectors 

with pSMARt backbone). The reaction volume was adjusted to 50 µl and the reaction took at 37˚C for 

at least 4h at 37˚C, shaking. In addition, 2 – 5 ng of parental plasmids were also digested as positive 

controls. Past the digestion time, the digested gDNA and linearised vector were loaded in a 0,8% 

Agarose gel, which was run overnight at 15 - 25V. After imaging the gel to check for correct gDNA 

digestion by presence of a smear, the gel was immersed in Depurination buffer (250mM HCl) for  

10 minutes, in gentle agitation, followed by two washed with milliQ water. Then, the gel was placed in 

Denaturation Buffer (1.5M NaCl and 500mM NaOH) and incubated twice for 15 minutes, in agitation. 

Then, the gel was Neutralised (1.5M NaCl, 0.5M Tri-sodium citrate, pH 7.0) and incubated twice for 

15 minutes, in agitation. Immediately after, the gel was equilibrated twice in 20xSSC Buffer, for  

10 minutes. 

4.2.12.3 Transfer into membrane 

Meanwhile, a Hybond-XL nylon membrane (Amersham Biosciences) was first soaked in milliQ water 

and then pre-equilibrated in 10x SSC buffer. In order to transfer the ssDNA into the membrane, a 

Transfer apparatus was set up as depicted in Figure 18. The gel was supported on a layer of Whatmann 

paper, which was soaked in a tank containing 10xSSC buffer. The nylon membrane was placed on top 

of the gel and the air bubbles were removed by carefully rolling a glass pipette. Then, a couple of layers 

of Whatmann paper (soaked in 10xSSC buffer) were placed on top of the membrane and the air 

bubbles were also removed. In order to promote the linear movement of water by capillarity, the 

remaining unused area of the plate was covered in parafilm. Finally, a stack of paper towels was 

positioned and a weight was balanced on top. The transfer occurred overnight. 
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Figure 18: Representation of a Southern Blot apparatus 

 

The next day, the apparatus was disassembled and the membrane was exposed to UV-B radiation in 

order to covalently and permanently cross-link the DNA to the membrane, which could then be stored 

in a sealed plastic bag at 4˚C or hybridised. 

The membrane was then pre-hybridised in Church Buffer (7% SDS, 0.5M NaPi, 1mM EDTA, 1% 

BSA) for at least 30 minutes at 65˚C in a rolling glass bottle. 

Meanwhile, 100 µl of radioactively-labelled DNA probe was denatured at 95˚C for 10 minutes, chilled 

on ice and immediately transferred into an ice bath for 5 minutes. Afterwards, the DNA probe was 

diluted in 1 ml of Church buffer, mixed and added to the rolling membrane. The hybridisation was 

carried out overnight at 65˚C. 

The next day, the hybridisation solution was removed, and the membrane was washed four times. First, 

two washes with 100 ml Wash buffer 1 (2xSSC, 0.1% SDS), first for 5 minutes and then for 15 min at 

65˚C. Then, another two washes with 100 ml of Wash buffer 2 (0.5xSSC, 0.1% SDS), for 15 minutes 

at 65˚C. 

Finally, the membrane was placed in a plastic bag and developed for short exposures (3-4h) to overnight 

or up to a week. 
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4.3 Biochemical methods 

4.3.1 Bicinchoninic acid (BCA) Assay 

To prepare the samples for Western Blotting, whole cell lysates from cells were obtained as described 

in Section 4.2.7. Briefly, cells growing in a 6-well plate were washed, trypsinised and lysed in 40 µl of 

RIPA buffer (for 1 well of a 6 well plate).   

After lysing the cells, the total amount of proteins was determined using the Pierce BCA Protein Assay 

kit and following manufacturer’s instructions. Briefly, this colourimetric assay measured the total 

protein concentration in a given sample as compared to a known protein standard (BSA) by the 

formation of a purple-coloured product, which had an absorbance at 562 nm. 

4.3.2 Sodium Dodecyl Sulphate (SDS) Polyacrylamide Gel 
Electrophoresis (PAGE) and Western Blotting  

After the total protein concentration was determined, 30 µg of total protein were mixed with  

4x Laemmli Buffer, diluted in RIPA buffer to a final volume of 20 µl and denatured for 5 minutes  

at 95˚C. Then, pre-casted Mini-PROTEAN Gels 4 - 20% (Bio-Rad) were assembled into the 

electrophoresis chamber (Mini-PROTEAN Tetra Cell). The chamber was filled with 1x Running Buffer 

and the samples together with the pre-stained Protein Ladder (PageRuler Plus), were loaded into the 

acrylamide gel. The electrophoresis was performed at 100 – 120 V for 1 - 2h. For buffer composition, 

refer to Section 3.6. 

After the SDS-PAGE gel was run and the proteins were separated by size, a dry transfer of proteins into 

a PVDF membrane was performed. For that, the gel was separated from the plastic plates, the stacking 

gel was cut off and the resolving gel was soaked in running buffer to facilitate its handling. Then, the 

gel was placed in between the commercial iBlot 2 Transfer Stacks,	containing: filters, Whatman paper, 

the PVDF membrane and the electrodes. The dry transfer was performed at 20 V for 7 minutes using 

an iBlot 2 device (Invitrogen). The membrane was then blocked in blocking buffer (5% powdered milk 

in 1x TBS) for 1h at room temperature and incubated with the correspondent primary antibody 

(diluted in blocking buffer) overnight at 4˚C in rotation.  

The day after, the membrane was washed three times with 1x TBST buffer (each wash lasted for 10 

minutes, in shaking conditions) and incubated for 1h at room temperature with the appropriate 

secondary antibody coupled to HRP (diluted in blocking buffer). For primary and secondary antibody 
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specifications and dilutions, refer to Section 3.10. After the secondary antibody incubation, the 

membrane was again washed three times with 1x TBST and finally developed using 

Chemiluminescence (SignalFire™ ECL Reagent) and exposed using a FusionSL machine.  

4.3.3 Immunostainings and microscopy 

4.3.3.1 Immunohistochemistry  

Immunohistochemistry stainings for coGFP were performed in collaboration with Vanessa Vogel and 

Ornella Kossi (Hi-STEM, DKFZ). 

Tissues were fixed, deparaffinised and sectioned into slices by Andrea Pohl-Arnold (DKFZ, W420) as 

described in Section 4.6.4. Some slides were stained using Haematoxylin and Eosin to identify and 

visualise the tissue architecture while others were subjected to immunohistochemistry staining for GFP 

(AB290, Abcam) using biotinylated secondary antibodies and a Peroxidase/AEC detection system 

(DAKO Real Detection system, K5003). 

First, the tissue sections were deparaffinised in Xylol (twice for 10 minutes each time and an extra rinse 

in Xylol). Then, the tissues were dehydrated in decreasing Ethanol concentrations: two times in 100% 

Ethanol for 5 minutes each, followed by a 5-minute bath in 96% ethanol, a rinse with the same ethanol 

concentration and a final dehydration step in 70% ethanol for 5 minutes. The slides were rinsed in 

distilled water before retrieving the epitope. 

Second, a damp heat-induced epitope retrieving step was performed to unmask and expose the antigens. 

This was achieved by boiling the samples for 15 minutes in a steam pot with citrate buffer at pH 6.0, 

followed by a 30-minute cooling-off period in the same buffer. The slides were rinsed with  

distilled water. 

Third, the tissues were subjected to blocking with Avidin/Biotin (Avidin/Biotin blocking kit, SP-2001, 

Vector Laboratories). For that, the slides were rinsed in 1xPBS-T, followed by a 10-minute incubation 

at room temperature in Avidin Block. Then, the slides were rinsed again in PBST and incubated with 

Biotin block for another 10 minutes at room temperature. A final rinse in PBST was performed to 

remove residual blocking solution. 
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Forth, the samples were incubated with the primary antibody Rabbit anti-GFP (AB290, Abcam), diluted 

1:500 in Dako Real antibody diluent (Dako, S2022). For that, 200µl of antibody dilution was added 

per slide and incubated for 30 minutes at room temperature. Then, the slides were rinsed in PBST. 

Fifth, secondary antibody incubation was performed by adding 200µl per slide of multilink secondary 

antibody (Goat anti-Rabbit) provided in the Dako Peroxidase/AEC detection system (DAKO Real 

Detection system, K5003). The secondary antibody was incubated for 20 minutes at room temperature, 

and the slides were then washed in PBST. 

Sixth, the activity of endogenous tissue peroxidase was depleted by adding 200µl of Dako Real 

Peroxidase blocking solution (Dako, S2023) and incubating for 5 minutes at room temperature, 

followed by a rinse in PBST. 

Seventh, 200µl of streptavidin-peroxidase (HRP) was added and incubated for 20 minutes at Room 

Temperature, followed by a rinse in PBST. 

Eighth, 200µl of AEC (reddish) chromogen was added to the specimen, and the samples were incubated 

and monitored under a microscope until a red product appeared (approximately 5 minutes).  

The reaction was stopped by rinsing the slides twice in PBST and finally in distilled water. 

Finally, the tissue sections were counterstained for 1 minute in Haematoxylin, rinsed in tap water and 

mounted in Aquatex mounting media. 

4.3.3.2 Alkaline Phosphatase staining  

Alkaline Phosphatase stainings were performed in either black µ-Plate 96 Well (Ibidi) coated with 

gelatin (together with the immunostainings to detect pluripotency markers) or in gelatin-coated regular 

24 well plates. The staining was performed using Alkaline Phosphatase Staining Kit II (Stemgent) and 

following the manufacturer’s instructions. Briefly, the cells were washed once with PBS with 0.05% 

Tween20. Then, the cells were fixed with the fixative solution provided with the kit for 2-5 minutes 

and washed again with PBST afterwards. Finally, a staining mix containing equal volumes of solution 

A, B and C were added to the cells, which were incubated for 5-15 minutes in the dark. When the cells 

turned purple, the reaction was stopped by washing with PBS. The images were taken with a Keyence 

microscope (Keyence). 
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4.3.3.3 Immunofluorescence stainings  

4.3.3.3.1 Neuroblastoma	cells	

Immunostainings to detect neuronal markers (GAP43, NCAM, β3-tubulin) were performed in a black 

µ-Plate 24 Well (Ibidi). Neuroblastoma cells were seeded in the staining plate, and they were treated 

with 10µM ATRA or DMSO and differentiated into a neuron-like phenotype, as explained in  

Section 4.1.8. After 10-12 days, the cells exhibited a neuron-like morphology, with elongated neurites 

and extensions. At this point, the cells were washed twice with PBS, fixed with 4% Paraformaldehyde 

(4% PFA) for 30 minutes at room temperature and washed again twice with PBS. Then, the cells were 

permeabilised using 0,2% Triton X-100 in PBS during 10 minutes at room temperature, followed by 

another two washes with PBS. At this point, the plate could be stored at 4˚C overnight. 

The day after, the cells were blocked with Blocking solution (2% FCS in PBS) for 1h at room 

temperature and incubated with the primary antibody (diluted in blocking solution) for another 1h at 

room temperature. Then, the cells were washed five times with PBS and incubated with the secondary 

antibody conjugated with Alexa-Fluor dyes and 2	µg/ml DAPI as a nuclear counterstaining for 1h at 

room temperature and protected from the light. Afterwards, five washes with PBS followed by another 

five washes with 100% Ethanol were performed. Finally, the wells were covered with PBS and the plate 

was either stored at 4˚C (in the dark) or imaged using a	Nikon Eclipse Ti/X-Cite120Led microscope. 

For primary and secondary antibody specifications and dilutions, refer to Section 3.10. 

4.3.3.3.2 Stem	Cells		

Immunostainings to detect pluripotency or differentiation markers were performed on Stem Cells 

cultured on black µ-Plate 96 Well, glass bottom (Ibidi). Three days before staining, the cells were 

washed, trypsinised and sedimented as described before and 10-20µl of a confluent 6-well plate were 

transferred per well of a gelatinised and feeder containing µ-Plate 96. Three days after, the cells were 

washed twice with cold PBS and fixed with 100% Methanol for 7 minutes at -20˚C followed by a rinse 

with acetone for 20 seconds also at -20˚C. When plastic plates were used, the acetone-rinsing step was 

avoided to prevent the plastic from degrading. Then, the cells were permeabilised with 0,1% Tween20 

in PBS (PBST) for 5 minutes at room temperature and washed three times with cold PBST for 5 minutes 

at room temperature. At this point, the plate could be stored at 4˚C overnight or blocked to proceed 

with the staining. The next day, the cells were blocked with Blocking solution (1% FCS, 0,5% BSA, 

0,1%TritonX100 in PBS) for 30 minutes at room temperature and incubated with the primary antibody 
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(Murine SCs: Oct4, Nanog, SSEA1; Human SCs: Tra160, SSEA3, SSEA4 and Nanog) diluted in blocking 

solution, overnight at 4˚C. The day after, the cells were washed three times with blocking solution and 

then incubated with the secondary antibody conjugated with Alexa-Fluor dyes and 2	µg/ml DAPI as a 

nuclear counterstaining for 1h at room temperature and protected from the light.  

After that, the cells were washed with cold PBST followed by two other washes with cold PBS and the 

wells were covered with PBS to prevent drying of the samples. Finally, the plate was either stored at 

4˚C (protected from the light) or imaged using a	 Nikon Eclipse Ti/X-Cite120Led microscope.  

For primary and secondary antibody specifications and dilutions, refer to Section 3.10. 

4.3.3.3.3 Embryonic	Bodies	

Immunostainings to detect differentiation markers corresponding to the 3 germ-layers (β3-Tubulin for 

ectoderm, α-Smooth Muscle Actin for mesoderm and FoxA2 for endoderm) were performed on EBs 

cultured on black µ-Plate 24 Well (Ibidi) as described on Section 4.1.6 and following the same protocol 

as described above in Section 4.3.3.3.2. 

The EBs were washed twice with cold PBS and fixed with 100% Methanol for 7 minutes at -20˚C 

followed by a rinse with acetone for 20 seconds also at -20˚C. Then, they were permeabilised with 0,1% 

Tween20 in PBS (PBST) for 5 minutes at room temperature and washed three times with cold PBST 

for 5 minutes at room temperature. At this point, the plate could be stored at 4˚C overnight or blocked 

to proceed with the staining. The next day, the cells were blocked with Blocking solution (1% FCS, 

0,5% BSA, 0,1%TritonX100 in PBS) for 30 minutes at room temperature and incubated with the 

primary antibodies (β3-Tubulin, αSMA and FoxA2) diluted in blocking solution, overnight at 4˚C. 

The day after, the cells were washed three times with blocking solution and then incubated with the 

secondary antibody conjugated with Alexa-Fluor dyes and 2	µg/ml DAPI as a nuclear counterstaining 

for 1h at room temperature and protected from the light.  

After that, the cells were washed with cold PBST followed by two other washes with cold PBS and the 

wells were covered with PBS to prevent drying of the samples. Finally, the plate was either stored at 

4˚C (protected from the light) or imaged using a	Nikon Eclipse Ti/X-Cite120Led microscope. 
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4.4 Flow cytometry 

4.4.1 Quantification of transfection efficiency and vector performance 

Flow cytometry was used to determine transfection efficiency of S/MAR vectors as well as to monitor 

their GFP expression over time. To prepare the cells for analysis, the media was removed, and the cells 

were washed twice in PBS, trypsinised for 5 minutes and re-suspended in FCS containing media. Then, 

the cells were harvested at 1000 - 1500rpm for 5 minutes, washed, re-suspended in PBS containing 

Propidium Iodide (1:100) and filtered through a 15 ml filtered BD FACS tube, placed on ice to prevent 

cell clumping. 

4.4.2 Hematopoietic Stainings 

The analysis of hematopoietic tissues was performed in collaboration with Sina Stäble and Marleen 

Büchler, from Dr Milsom Lab (Hi-STEM/DKFZ). 

4.4.2.1 Blood staining 

The animals were anaesthetised and the blood was collected by terminal bleeding in EDTA-tubes. 

Then, 30 µl of each blood sample was transferred into a tube (in duplicates) to stain for a panel of 

hematopoietic cell surface markers or check for GFP expression. 

The unstained blood cells were diluted in 70 µl of 2% FCS/PBS. For the panel staining, a master mix 

containing CD45.1, CD45.1, CD11b, B220, CD4 and CD8a antibodies was prepared in 2% FCS/PBS 

and 70 µl were added to the blood sample and incubated for 30 minutes at 4˚C. 

Table 46: Blood staining panel for FACS analysis 

 

 

 

 

Then, 1 ml of ACK Lysis buffer was added to each sample and incubated for 10 minutes at room 

temperature with occasional shaking, to lyse the red blood cells. Then, the cells were pelleted at 845g 

for 5 minutes at 4˚C, washed with 1 ml of 2% FCS/PBS and re-suspended in 200 µl of 

7AAD/2%FCS/PBS (5µl/ml, 1:200 dilution). Finally, the cells were filtered through polystyrene FACS 

tubes and analysed using an LSRII cytometer. 

CD45 Pan blood surface marker 
CD11b Macrophage surface marker 
B220 B cells surface marker 
CD4 T cells surface marker 
CD8a T cells surface marker 
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4.4.2.2 Spleen Staining 

After sacrificing the animals, the spleens were placed in IMDM media, kept at 4˚C and processed as 

soon as possible. To disrupt the tissue, the spleen was smashed through a filter (40 µm EASYstrainer, 

Greiner bio-one) and collected in 2% FCS/PBS. The cells were then stained with CD45-Pacific Blue 

antibody for 30 minutes at 4˚C, and the red blood cells were lysed as described above. The splenocytes 

were finally pelleted, washed, filtered, and FACS analysed using an LSRII cytometer. 

4.4.2.3 Bone Marrow staining 

After sacrificing the animals, the femur and/or tibia from back legs were placed in IMDM media, kept 

at 4˚C and processed as soon as possible. The bones were then cleaned from muscle, and the bone 

marrow was flushed out in 2 ml PBS/FCS with the help of a syringe. The bone marrow cells were then 

stained with CD45-Pacific Blue antibody for 30 minutes at 4˚C, and the red blood cells were lysed as 

described above. The cells were finally pelleted, washed, filtered, and FACS analysed using an  

LSRII cytometer. 

4.4.3 Data acquisition 

The data was acquired with the BD FACS Fortessa™ or LSRII analysers™ analysers (BD Biosciences) 

and the FACSDiva (BD Biosciences) acquisition software. 

For vector transfections, population distributions were analysed by gating the single cell population 

(SSC-A vs SSC-H). Then, the viable cell population was gated on single cells by plotting the PE-Texas 

red-A vs side scatter. GFP fluorescence intensity (Alexa Fluor 488-A) was gated on the viable population 

of GFP fluorescence intensity (Alexa Fluor 488-A). For hematopoietic stainings, CD45-positive cells 

were gated on living cells (7-AAD-negative population), and GFP was gated on CD45-positive cells.  

4.4.4 Data analysis 

The following parameters: Number of events, % Gated, % Total, Mean, Geometric Mean, SD, CV and 

Median, were analysed per gated population. Usually, a histogram of GFP-positive cells recorded at 

different timepoints served as a measure for vector transfections and performance.  

For hematopoietic stainings, a histogram of GFP-positive cells was used as a measure of chimerism and 

degree of transgenesis. For hematopoietic differentiation experiments, a histogram of GFP-positive cells 

was used to assess survival of GFP-expressing vectors during differentiation. 
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4.5 DNA Sanger sequencing 

Sequencing of DNA plasmids was performed by GATC Biotech AG. For this, 5 µl of >100 ng/µl 

plasmid DNA was mixed with 5 µl of primer at a final concentration of 5 µM.  

4.6 Animal experiments 

4.6.1 Subcutaneous Neuroblastoma injections  

Animal experiments involving the subcutaneous injection of human Neuroblastoma cells were 

performed in collaboration with Dr MD Jeannine Desiree Lacroix and Domenic Hartmann, from the 

Pediatric haematology and Oncology department of the Heidelberg University Clinic and the Tumor 

Virology department (F010) from DKFZ. Domenic Hartmann performed the subcutaneous injections. 

A total of 25 SCID mice were injected subcutaneously and distributed in groups as represented in 

Table 47. Of these 25 mice, ten were injected with Be2C-GFP (labelled with vector 36): five of which 

were injected with 106 cells and the other five were injected with 5x106 million cells. The other mice 

were injected with Be2C-Luciferase (labelled with vector 50): five of which were injected with 106 cells 

and the other five were injected with 5x106 million cells. Also, five other mice were injected with 106 

parental Be2C (unlabelled) cells. 

Table 47: Neuroblastoma subcutaneous injections 

 

Number of mice Cell line Amount 
(cells) 

25 10 5 Be2C-GFP 1x106  

5 Be2C-GFP 5x106  
10 5 Be2C-Luciferase 1x106  

5 Be2C-Luciferase 5x106 
5 5 Be2C (parental) 1x106  

 

To prepare the cells, Be2C Neuroblastoma cells labelled with GFP (vector 36) or Luciferase (vector 50) 

were cultured into three T125 flasks (per cell line). When the cells reached 80% confluency, they were 

washed once with cold PBS+, followed by another wash with ice-cold PBS- and trypsinised for 5 minutes 

at 37˚C. After that, trypsin was inactivated upon addition of PBS- containing 10% FCS and the cells 

were re-suspended vigorously to disrupt clumps. They were then washed twice with cold PBS+ and 

finally re-suspended in the same buffer. Afterwards, 106 and 5x106 cells (per injection) were counted for 

Be2C-GFP and Be2C-Luciferase labelled cells, and 106 cells (per injection) were counted for Be2C 

parental cells. For each injection, such amount of cells was then re-suspended in 120 µl of ice-cold PBS. 
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Also, an extra tube per injection type was prepared to have a cell backup in case of unexpected events 

during the injections, such as clumping or clothing of the needles. 

Before injecting, the cells were mixed with Matrigel and subsequently injected subcutaneously into 

severe combined immune deficient (SCID) mice. Cell engraftment was assessed by the formation of 

tumours and the monitoring their growth over time until they reached a critical diameter of 15 mm 

and the animals had to be sacrificed. 

For each time point, all injected mice were checked for the presence of tumours and, if present, their 

length, height and width were measured using a calliper. Afterwards, the tumour volume (mm3) was 

calculated as follows: 

.&!"(	L"#&!$ =
P×Q×R ×	S

3
 

 

It should be taken into consideration that the actual tumour volume might be overestimated when 

using this formula due to the inability to properly address the infiltration of inflammatory tissues, 

infiltration of blood, necrosis or calcification.   

Once the tumours reached 10% of the animal’s body weight or exceeded 15 mm in diameter, the 

animals were sacrificed by cervical dislocation Thereafter, the animals were dissected and each tumour 

was removed and cut in three pieces: one piece was fixed in 4% PFA overnight and paraffin embedded 

to perform immunohistochemistry stainings, another piece was snap frozen in liquid nitrogen and the 

last piece was trypsinised, mechanically homogenised and cultured in Be2C media. The cultured 

primary cells from the tumours were finally checked for GFP or Luciferase expression. 

4.6.2 Stereotactic Neuroblastoma injections  

Animal experiments involving stereotactic injection of Neuroblastoma cells, were performed in 

collaboration with Prof. Dr Ana Martin-Villalba and Sascha Dehler, from the Molecular Neurobiology 

Department (A290) from DKFZ. Sascha Dehler performed the stereotactic injections. 

For intracranial injections of S/MAR-labelled Be2C cells, 8-week old female SCID BEIGE (CB17.Cg-

PrkdcscidLystbg-J/Crl) mice from Charles River were used. A total of 7 females were injected 

intracraneously in the striatum (AP=0 /ML=2.5/DV=3.5) via stereotactic surgery. Before injection, 

GFP or Luciferase S/MAR cells were washed with PBS – (without Calcium and Magnesium), 
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trypsinised and resuspended in FCS containing RPMI media to inactivate the trypsin. Then, the cells 

were centrifuged at 200g for 5 minutes and washed twice in PBS – containing 1 mM EDTA and  

25 mM HEPES in order to prevent cell clumping. Afterwards, 1,25x106 cells were counted, aliquoted 

in PBS (+ 1 mM EDTA, 25 mM HEPES) and placed on ice during transportation. While preparing the 

stereotactic apparatus and the mice, the cells were kept in the water bath at 37˚C and were only 

centrifuged and resuspended in 3 µl PBS- right before injection. 

Injected mice were checked regularly for behavioural changes, such as impaired motility or balance. 

Upon appearance of visual tumour signs, the mice were sacrificed and the brains were removed and 

analysed via Luciferase Assay. For this, 150 mg Luciferin/kg of weight (10 µl/g from a 15 mg/ml stock, 

filter sterilised) were injected intraperitoneally 10 - 15 minutes before sacrificing of the animals, to allow 

the Luciferin to reach the brain tissue. After, the animals were administrated with an overdose of 

narcotics and the brains were removed and placed in unsupplemented RPMI, containing 10 µl/ml of 

Luciferin. The brains were quickly imaged with a 10 minutes’ exposure time using Fusion SL - 

Chemiluminescence Imaging (Analis). After imaging the tumours, the brains were fixed in 4% PFA 

overnight at 4˚C. The day after, the PFA was replaced by PBS and the brains were fixed and cut into 

50µm coronal sections by using a Leica VT1200 Vibratome. The brain slices were rinsed in PBS and 

were subsequently mounted with Fluoromount-G/DAPI (eBioscience) on glass slides, which were 

imaged using a	Nikon Eclipse Ti/X-Cite120Led Microscope. 

4.6.3 Generation of Transgenic mice 

4.6.3.1 Indirect approach: Stem Cell injections into Morulae/Blastocyst  

Animal experiments involving the generation of Chimeric mice were performed in collaboration with 

Franciscus A. van der Hoeven and Ulrich Kloz, from the Transgenic Service (W450) from DKFZ. 

In the first chimaera generation attempt, which was performed under the experimental License 

number: G-97/12, CD1 albino mice were mated, and embryos at a morula stage (E3.0) or late blastocyst 

(E4.5) were collected after surgery. 
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Black 6 Mouse embryonic stem cells (mESC BL6) labelled with pSMARt_GFP (vector 71) were 

cultured, washed and trypsinised as described above. Then, Zona Pellucida was laser ablated, and 6 - 12 

mESC were injected into either morulae or late blastocysts. The day after injection, the embryos were 

transferred into pseudo-pregnant females that were previously mated with sterile males. The embryos 

were brought to term, and the pups were checked for coat chimerism as well as for GFP expression as 

depicted in Figure 19. 

Figure 19: First attempt to generate chimeric mice via morulae/blastocyst injections of BL6 mESC labelled with 
pSMARt vectors. 

 

The second attempt to generate chimeric mice was performed under the License Number G-148/13. 

This time, 129Ola E14-1 Mouse Embryonic Stem Cells (E14) were labelled either with pSMARt_GFP 

(pCAG), vector 71; or nSMARt_GFP (nCAG) vector 85. Transfected cells were cultured as described 

and between 6 - 12 stem cells were injected into C57BL/6N x B6D2F1 embryos as described above, 

following the strategy shown in Figure 20. 

Figure 20: Second attempt to generate chimeric mice via morulae/blastocyst injections of E14 mESC labelled with 
pCAG and nCAG vectors. 
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4.6.3.2 Direct approach: DNA Pronuclear injections  

Plasmid DNA pronuclear injections were performed in collaboration with Dr Franciscus van der 

Hoeven, from the Transgenic Service (W450) from DKFZ, under the License number: G-97/12. 

Before injection, approximately 100 µl of plasmid DNA (vector 71) at a concentration 1000 ng/µl were 

filtered through a Millipore Millex-GV 0.22 µm by using a disposable 1ml syringe and with an air-

bubble to fill up the rest of the volume. Then, 50 µl of filtered DNA was placed on top of a floating 

Millipore membrane VMWPO2500 (0.025 µm pore size) and desalted via dialysis in 50 - 100 ml of 

Dialysis Buffer (100 ml Ampuwa ddH2O, 10 mM Tris and 0.1 mM EDTA) for 3 hours at 4˚C to avoid 

evaporation and DNA loss. After 3h, the DNA drop was carefully recovered, and both quality and 

quantity of DNA were assessed via spectrophotometry (Nanodrop) and Agarose Gel electrophoresis. 

DNA recoveries ranging from 70 - 80% were achieved. The DNA solution was stored at -20˚C or used 

for downstream applications. 

The day of injection, 1 - 2 picoliters of plasmid DNA at a concentration of 1 - 3ng/µl were injected into 

the pronucleus of E0.5 murine C57BL/6N zygotes. After, the zygotes were transferred into a foster 

mother and brought to term as shown in Figure 21. 

Figure 21: Generation of transgenic mice via pronuclear injection 

 

4.6.4 Processing and analysis of murine tissues and samples 

The processing and analysis of transgenic animals was performed in collaboration with Dr Karin Müller-

Decker, Stephanie Laier and Andrea Pohl-Arnold, from the Tumor model department (W420) from 

DKFZ, under the killing number (VV number DKFZ345). 

The mice were sacrificed by cervical dislocation or anaesthetised with Isofluorane and terminally bled. 

The blood was collected in EDTA-tubes and analysed via Flow Cytometry. The animals were then 
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dissected, and internal organs from different embryonic derivatives such as liver, kidney, heart, skeletal 

muscle, skin and testes were taken and cut into four pieces. One piece was fixed in 4% PFA and used 

for immunohistochemistry, another piece was used for fluorescent imaging, and two pieces were snap 

frozen for further molecular analysis. 

For quantification of GFP, the spleen and bone marrow from the femurs of sacrificed animals were 

placed in IMDM media and stained with a panel of hematopoietic markers for FACS analysis as 

described in Section 4.4.2. 

4.6.5 Sperm collection 

The collection of sperm from transgenic animals was carried out by Heinrich Steinbauer and Andrea 

Rausch, from the cryopreservation service (DKFZ W430). The males were euthanised with CO2 

inhalation and cervical dislocation. After an abdominal incision and a peritoneal cut, the testes and 

cauda epididymis were exposed, cut and separately placed in PBS. With the aid of a stereomicroscope 

and tweezers, the cauda epididymis was cut, and the sperm was released into the buffer. 

For imaging, 10 µl of sperm in PBS were placed on a slide and covered with a coverslip. Then recordings 

of motility or fluorescence images were taken using a Nikon Ti microscope and a 20x objective.  

When the sperm could not be freshly imaged, it could be kept alive and motile at room temperature 

for up to 2 hours. The remaining sperm was pelleted and frozen for total DNA extraction and 

downstream applications. Modified protocol from [292]. 

4.6.6 Isolation of seminiferous epithelium 

The protocol from the isolation of seminiferous epithelium and depletion of interstitial cells was 

adapted from [293]. Murine testes were placed in Digestion media (DMEM/F12 supplemented with 

25 mM HEPES and 1% Penicillin-Streptomycin). Under a stereomicroscope and with the help of 

tweezers, the testes were immobilised, and the Tunica albuginea was perforated and removed, allowing 

the release of the seminiferous tubules, which were then mechanically separated with tweezers. Then, 

the tubules were subjected to sequential digestion. First, they were transferred into a 15 ml Falcon tube 

containing 5ml of Digestion media and 12,5 µl of Collagenase III; and incubated for 30 minutes at 

37˚C with occasional shaking, which allowed the tubules to break into smaller pieces and release the 

interstitial cells. The tubules were allowed to settle at the bottom of the tube, and the supernatant 

containing the interstitial cells was removed. Then, they were washed with PBS and allowed to settle 
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by gravity. Second, the tubules were disaggregated, and the seminiferous epithelial cells were released 

during a 5-minute incubation with trypsin. Finally, the cells were filtered through a cell strainer to 

remove cell clumps and processed for downstream applications, such as Flow Cytometry or  

DNA extraction. 
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5. RESULTS  

5.1 Vector development 

Several studies demonstrated that S/MAR vectors were able to transfect all cell lines tested [126], 

including CD34+ HSC cells [165]. However, the use of S/MAR vectors for the genetic modification of 

pluripotent stem cells, including mESCs and iPSCs, has never been shown before.  

In this chapter, the evolution and development of DNA episomal vectors; from the originally described 

pEPI vector to the latest improved nano plasmid versions, is described. Most of the vector developing 

work has been performed by Dr Matthias Bozza (DNA vector Lab) and has been performed in 

collaboration with Nature Technology Corporation, who generated the nano vector versions of our 

plasmids. Finally, the suitability of the newly generated vectors is evaluated in mouse embryonic stem 

cells (mESCs) and mouse embryonic fibroblasts (MEFs). 

5.1.1 Evolution of S/MAR vectors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Cartoon depicting the evolution of S/MAR DNA vectors 
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The critical vector development points are listed below, represented in Figure 22 and explained in 

detail in the coming sections. 

1. Changing of the selection marker (Neomycin/G418 to Puromycin) and the configuration of 

the vector by forcing the selection marker to be an active part of the transcriptional unit resulted 

in increased levels of transgene expression (pSMARt generation, Figure 22c) 

2. Addition of insulating elements, such as UCOE or Element40, enhanced expression and 

improved the vector establishment (pSMARt.1 generation, Figure 22e) 

3. Reduction of the bacterial backbone resulted in enhanced expression and vector establishment 

(nSMARt generation, Figure 22d). 

4. Replacement of the original S/MAR motif by a smaller one substantially increased the 

performance of the vector (pSMARter generation, Figure 22g). 

5. Splicing the S/MAR sequence from the mRNA transcript resulted in better expression and 

establishment of the vector (nSpliced generation, Figure 22f). 

5.1.2 Suitability of pEPI minicircle for stem cell work 

The use of S/MAR vectors for the genetic modification of murine embryonic stem cells has not 

previously been shown. Therefore, we started by evaluating the suitability of the described pEPI 

minicircle vector for stem cell work.  

In collaboration with Dr Michael Milsom’s Lab (Hi-STEM/DKFZ), mESC were transfected with the 

pEPI minicircle, which contained an eGFP reporter gene driven by the CMV promoter and the S/MAR 

motif. Transfected mESC were picked and 18 mESC clones were expanded and evaluated for GFP 

expression via Flow Cytometry as shown in Figure 23. The number of GFP-positive clones obtained as 

well as the levels of GFP expression were not very promising. Only 7 out of 18 selected clones showed 

some degree of GFP expression. It is worth noticing the heterogeneity of GFP expression, especially in 

clones 3, 16 and 17. 

Although the transfection efficiency, as well as the transgene expression levels, were low, this test 

experiment suggested that S/MAR vectors have the potential to transfect mESC and hence, the pEPI 

vector served as a starting point to improve the vector’s features and performance.  
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Figure 23: pEPI minicircles are unable to sustain homogeneous and high levels of transgene expression 
The ability of S/MAR vectors to transfect murine embryonic stem cells (mESC) was evaluated by transfecting a pEPI minicircle, 
containing GFP After transfection, eighteen mESC clones were analysed for GFP expression using flow cytometry. Only seven clones 
heterogeneously expressed GFP. 7AAD was used as live-dead staining to define the viable cell population. 

5.1.3 Rearranging the vector – the birth of pSMARt 

5.1.3.1 Change and relocation of the selection marker  

The original pEPI vector contains a dual Kanamycin/G418 selection cassette (Figure 22a).  

Establishing cell lines using G418 as selection marker was not only inefficient but a lengthy process, 

taking up to a month to obtain clones (data not shown). Also, spontaneously G418 resistant clones 

were commonly detected. This problem was overcome by changing and repositioning the selection 

marker. This was accomplished by directly coupling the gene of interest (GOI), in this case, GFP, to 

the selection marker Puromycin (instead of G418) and the S/MAR motif. This small change allowed 

to make the establishment of the vector part of an active process that can be directly controlled by the 

amount of selective pressure applied to the cells.  

When neuroblastoma cells were transfected with S/MAR vectors with a CMV promoter driving 

expression of firefly Luciferase and G418, the cells showed low levels of Luciferase expression. Also, we 

observed the presence of Luciferase negative spontaneously resistant clones, which contributed to the 

dilution of the vector (and therefore luciferase) in the population cell population (Figure 24a).  

When the selection marker was replaced by puromycin the reporter’s gene expression was 5-fold higher 

as compared to cells selected with G418 (Figure 24b). Also, when the anti-repressive Element40 was 

used, the luciferase expression increased by almost 17-fold as compared to G418 selection and 3,4-fold 

as compared to puromycin marker (Figure 24c).  
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Figure 24: Replacing and repositioning the selection marker improves the transgene expression 
Neuroblastoma cells were transfected with CMV::Luciferase constructs coupled to either G418 (vector 23) or Puromycin (vector 
28) and selected for 2 weeks. Also, a third construct (vector 50) containing the chromatin shielding element (Element40) was also 
used. Afterwards, the Luciferase expression was measured using a chemiluminescent reader (FusionSL) and quantified with ImageJ.  
A notorious difference in Luciferase expression was achieved with minimal modification and change of selection marker and its 
position on the vector. The expression increased even further when insulating elements, such as Element40, were included. 

5.1.3.2 Addition of chromosomal elements enhances the vector’s expression 

We then built a library of different vectors with different arrangements; including different selection 

markers (Puromycin or G418), different molecular linkers (IRES or 2A sequences) or different anti-

repressive elements (UCOE or Element40), and compared them to each other and to the originally 

described pEPI vector. This vectors including shielding elements and based on pSMARt backbone were 

named pSMARt.1 generation (Figure 22e). The addition of the insulating Element40 resulted in 

increased transgene expression in Be2C cells (Figure 24c).  

Different S/MAR prototype vectors were transfected into HEK293T cells, which were then sorted. 

100 GFP- positive cells were plated and kept under selection for four weeks. After this period, cell 

colonies were stained and counted to determine the efficiency of vector’s establishment in a colony 

forming assay as shown in Figure 25. 
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Figure 25: Evaluation of the establishment efficiency of different S/MAR vectors in a colony forming assay. 
Different versions of GFP-S/MAR vectors containing different chromosomal elements and selection markers in different combinations 
were tested in HEK293T cells. A non-S/MAR construct was used as negative control. After transfection, the GFP positive cells were 
FACS sorted, and 100 cells were plated and grown for 4 weeks in the presence of the respective antibiotic (0.5ug/ml Puromycin or 
0,75mg/ml G418). After a month, the colonies were fixed, stained and quantified. The cells containing pSMARt vectors shielded with 
genomic elements (UCOE or Element40) generated a more substantial number of colonies as compared to their non-shielded 
counterparts and the original pEPI vector prototype. (The statistical comparison between vectors was performed using a T-test **p 
<0.005, * p< 0.05). Credit: Matthias Bozza, DNA Vector Lab 

 

From this experiment, we observed that by introducing anti-repressive elements before the mammalian 

expression cassette, we could improve the vector establishment efficacy. The colony forming assay also 

revealed that by linking the reporter gene and the selection marker with the self-cleaving P2A peptide 

was more efficient than using internal ribosome entry site (IRES) sequences.  

The use of a P2A sequence creates a direct link at the transcriptional and translational level between 

transgene and selection marker. This configuration was used for further studies.  

Since the insulator sequences significantly improved the number of the resistant colonies, the anti-

repressive Element 40 was selected for other applications. The UCOE element, although efficient, was 

dropped because its intellectual property is protected (Patent number: WO 2002024930 A2) [294]. 

All vectors containing the Puromycin selection coupled to the reporter gene via 2A self-cleaving 

peptides were named ‘pSMARt’ generation (Figure 22c).  
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5.1.4 Less is more – the birth of nSMARt 

Some cells, especially primary cells, are refractory to transfection with plasmids carrying large 

conventional bacterial backbones including prokaryotic selection markers and pUC origins of 

replication. It has also been suggested that plasmids with large bacterial sequences and CpG islands are 

prone to silencing [295]. To overcome these limitations, we generated minimally sized DNA vectors 

devoid of bacterial backbone based on the NanoplasmidTM technology in collaboration with Nature 

Technology Corporation (NTX) [296].  

This novel class of vectors can be propagated and produced at high yield in an engineered E.coli strain, 

taking advantage of the antibiotic-free system developed by Nature Technology. This system is based on 

small interfering 70bp antisense RNA present in the plasmid, that binds to the chromosomally encoded 

constitutively expressed levansucrase (sacB) mRNA, which prevents its expression, allowing growth on 

sucrose media. In the absence of nanoplasmids, bacteria produce levansucrase, which results in cell 

death in the presence of sucrose. 

5.1.4.1 nSMARt vectors show better establishment and transgene 
expression 

 ‘Nano’ versions of the previously generated pSMARt vectors, which were named nano-SMARt 

(nSMARt) vectors (Figure 22d), were generated and compared to their pSMARt counterparts.  

The expression levels were not only higher (as shown in Figure 30 to Figure 32) but also their 

establishment efficiency was significantly increased Figure 26. The colony forming assay showed the 

detrimental effect of the bacterial backbone in the plasmid expression and establishment.  
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Figure 26: Evaluation of establishment efficiency of pSMARt and nSMARt vectors in a colony forming assay. 
Different versions of pSMARt vectors and their minimally sized nSMARt counterparts were transfected into HEK293T cells. A non-
S/MAR construct was used as negative control. After transfection, the GFP positive cells were FACS sorted, and 100 cells were 
plated and grown for 4 weeks in the presence of the respective antibiotic (0.5ug/ml Puromycin or 0,75mg/ml G418). After a month, 
the colonies were fixed, stained and quantified. The vectors were more stable, and their efficiency was significantly increased when 
the bacterial sequences were removed from the vector backbone. The statistical comparison between vectors was performed using 
a  T-test (p< 0.05) and the transfection was standardised to the number of DNA molecules. Credit: Matthias Bozza, DNA Vector Lab. 

5.1.4.2 pSMARt and nSMARt vectors’ effects on cell transcription 

We then investigated the effects of pSMARt vectors on cell transcription. The human pancreatic 

adenocarcinoma cell line Capan-1 was used and stably transfected with the pSMARt_Luciferase vector. 

After selection, RNA was isolated, and a microarray was performed to unravel how many genes were 

dysregulated due to the presence of the S/MAR and the bacterial backbone. We found that only 1% 

of the cell’s transcriptome was changed, which corresponded to 252 downregulated and 190 

upregulated genes (Figure 27a). 

In a similar experiment, the effect of nSMARt vectors was investigated in more challenging pancreatic 

cancer cells. Patient-derived Pancreatic Cancer Cells (Paco-2) were stably transfected with a nSMARt 

vector expressing the reporter gene GFP, (nSMARt_GFP). The RNA profiles of stably modified  

Paco-2 cells were compared to parental untransfected cells. The absence of bacterial backbone resulted 

in only a 0,05% change in RNA transcription, which corresponded to only 5 upregulated genes, mostly 

related to inflammatory pathways (Figure 27b). 
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Figure 27: Genome-wide RNA profiles from pSMARt and nSMARt labelled pancreatic cell lines. 
RNA from pancreatic tumours was extracted and used for microarray analysis on an IlluminaHuman.12 chip. The array was performed 
by Matthias Bozza with the help of the DKFZ Genomic and Proteomic Core Facility. The normalisation of samples was also performed 
there. For the analysis, pancreatic tumours from 3 mice were analysed per cell line, and the gene expression was quantified using 
Partek Genomic Suite Software (Thermo Fischer). The data analysis was performed by Matthias Bozza with the help of Mattia Falcone 
and Dr Elisa Espinet (HiStem, DKFZ). A cut off of > 2 fold and <-2 fold, FDR = 0.1 was applied to study the expression differences. 
The figure shows the number of genes up- and down-regulated in pSMARt_luciferase modified cell lines when compared to the 
parental cells (A) and between nSMARt_GFP and parental cells (B). 

5.1.5 Replacing the S/MAR motif – The birth of pSMARter 

After rearranging the conformation of the vector by coupling the selection marker to the expression 

cassette and reducing the size of the vector and its immunotoxicity by eliminating the bacterial 

backbone, we replaced the most important feature of this vector system. The S/MAR motif was first 

cloned in 1999 from the human ß-interferon gene [162], and it has been considered irreplaceable until 

now. However, we challenged the original vector sequence and replaced the human ß-interferon 

S/MAR motif by a smaller and more efficient sequence. This change gives rise to the new generation 

of smaller pSMARter vectors (Figure 22g). 

This new vector prototype was tested and compared to the previously generated vectors in HEK293T 

cells. Although no nano version of pSMARter has been generated yet, this vector performed better in 
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HEK293T cells than any other type of vector, including the nano vectors, devoid of bacterial backbone 

(Figure 28). 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Comparison of establishment efficiencies between all DNA vector series. 
This figure illustrates the colony forming assay and establishing the efficiency of all the series of vectors generated in the lab in the 
past three years. As described before, the DNA was transfected into HEK293T cells, which were sorted for GFP expression suing a 
FACS Aria II. Then, 100 GFP positive cells were plated and selected with 0.5ug/ml Puromycin for 4 weeks. After colonies were 
formed, those were fixed with PFA and fixed with crystal violet. The results are the average of 3 independent experiments, and a 
picture of colonies from a representative experiment is shown above the graphs. pSMARter, although carrying a bacterial backbone, 
performed better than the other nano vectors and the nano-SMAR-splice vector produced the highest amount of colonies.  
Credit: Matthias Bozza, DNA Vector Lab 
 

5.1.6 Splicing the S/MAR out of the transcript – the birth of nSpliced 

A spliced version of S/MAR vectors was designed and gave rise to the nSpliced vector generation 

(Figure 22f), which contained an expression cassette that would mimic a human endogenous gene in 

which the transgene contains intron-exon like structures. We compared a nano S/MAR spliced vector 

(nSpliced) to the previous vector series in a colony forming assay (Figure 28). We also compared the 

levels of transcript expression performing RT-PCR and showed that the nano-SMAR-spliced had the 

highest and most stable mRNA expression (data not shown).  
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5.1.7 Perfecting the system - Finding the right promoter 

Previously described vector improvements were performed in vectors containing a CMV promoter. 

Although yielding high levels of transgene expression, viral promoters tend to get silenced already in 

pluripotent cells or during differentiation [225], making them unsuitable for stem cell work. Therefore, 

a library of vectors based on the pSMARt generation was cloned and tested in HEK293T cells. Vectors 

with different promoters from eukaryotic origins, such as UbC, PGK, EF1, or the chimeric promoter 

CAG; were transfected and its expression was monitored over time (Figure 29).  The cells were imaged 

24h post transfection, and no visual differences were observed regarding transfection efficiency. 

However, two weeks after selection with Puromycin, a significant drop in GFP expression was observed 

in all vectors except for pSMARt_CAG. 

Figure 29: Testing a library of pSMARt vectors with different promoters in HEK293T cells. 
A range of vectors with different promoters (CMV, UbC, EF1a and CAG) were used to transfect HEK293T cells. The cells were 
selected with Puromycin and imaged over time. No differences in the transfection efficiency were observed at 24h. However, only 
the pSMARt_CAG vector was able to sustain the expression of the transgene after two weeks of selection. 
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5.1.7.1 Testing of different S/MAR prototypes in mouse embryonic 
fibroblasts  

The use of S/MAR vectors for the derivation of iPSC has never been shown before. For this, the vector 

has to be expressed in differentiated cells, such as fibroblasts, but remain expressed through 

reprogramming. Therefore, the transfection efficiency and expression levels of pSMARt_CAG (pCAG) 

and nSMARt_CAG (nCAG) were tested in immortalised MEFs. Taking into account the vector 

establishment performance of nSpliced_CMV and pSMARter_CMV they were also included in this 

comparative experiment. 

MEFs were electroporated and kept under Puromycin selection for 4 weeks. After that period, the 

selective pressure was then removed. The GFP expression was monitored via fluorescent microscopy 

and quantified using flow cytometry. Representative fluorescent images and FACS histograms are 

shown in Figure 30. 

In this comparison, both pSMARt_CAG and its minimally sized counterpart nSMARt_CAG were 

found to be suitable for transfecting and labelling MEFs as well as to express high levels of the transgene 

(GFP) over time, even in the absence of selection. nSMARt_CAG showed better transfection efficiency 

than pSMARt_CAG (21,8% vs 16,5%). Also, nSMARt_CAG transfected cells had slightly higher GFP 

expression levels, and the population was more homogeneous as compared to the pSMARt_CAG 

population. The spliced version nSMAR_Spliced showed the best transfection efficiency (33,6%) 

amongst all vectors tested, and its GFP intensity was comparable to that from nSMAR_spliced. 

Although pSMARter showed similar transfection efficiencies, its GFP expression levels were almost 

one log scale lower than nSMAR_spliced. 
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5.1.7.2 Testing of different S/MAR prototypes in murine stem cells (mESC) 

A principal aim of this work is to understand the S/MAR vector behaviour during differentiation.  

As described above, S/MAR vectors such as the original pEPI minicircle, were able to transfect mESC; 

although their expression levels were heterogeneous and dramatically dropped during the experiment. 

After improving and testing the aforementioned vector prototypes in HEK293T, their transfection 

efficiency was tested, and their expression levels were monitored in the mESC-line E14 129/Ola.  

The cells were electroporated and kept under Puromycin selection for 4 weeks. After that period, the 

selective pressure was then removed. The GFP expression was monitored microscopically and 

quantified using flow cytometry. Representative fluorescent images and FACS histograms for 

polyclonal and clonal populations are shown below in Figure 31 and Figure 32. 

Both pSMARt_CAG and its minimally sized counterpart nSMARt_CAG were suitable for transfecting 

and labelling mESC and both vectors were able to express high levels of the transgene (GFP) over time, 

even in the absence of selection. nSMARt_CAG showed better transfection efficiency than 

pSMARt_CAG (45,1% vs 39,2%). Even more obvious than in MEFs, the nSMARt_CAG transfected 

cells had the highest GFP expression levels, and the population was more homogeneous as compared 

to the other vectors. The spliced version nSMAR_Spliced and pSMARter, showed similar performance 

compared to pSMARt_CAG, albeit containing a CMV promoter with an insulating element.  

When clones from S/MAR-labelled mESC were picked after one week of Puromycin selection, we 

could observe that nSMAR_CAG was the highest expressing vector in mESC. Also, pSMARt_CAG 

and nSMAR_spliced showed similar expression levels, whereas pSMARter performed the worst 

amongst all vectors tested. 

Note: this experiment was chronologically performed after deciding in favour of pSMARt_CAG and 

nSMARt_CAG vectors as best performing vectors at the time. Later in the course of this thesis, other 

vectors such as nSMAR_Spliced and pSMARter, showed to have similar performance in transfecting 

and maintaining expression in MEFs. However, no differentiation or in vivo study was performed with 

them, and their suitability should be further tested. Also, the subsequent molecular analysis was 

performed mostly on pSMARt_CAG but not on nSMARt_CAG labelled cells. The reason being the 

absence of bacterial backbone and the inability of nano vectors to be rescued and retransformed  

in bacteria. 
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5.1.8 Introducing the main characters 

This section describes the relevant vectors used in this thesis for in vitro and in vivo studies and that are 

based on the aforementioned vector prototypes. Here the reader can get a better understanding of the 

vector configuration as well as to the vectors’ functionality, which is tested by assessing their protein 

and reporter gene expression.  

5.1.8.1 Labelling vectors: pSMARt_CAG and nSMARt_CAG 

pSMARt_CAG and nSMARt_CAG were chosen for in vitro and in vivo experiments. Differently, from 

the original pEPI vector, both vectors were capable of stably transfecting MEFs and mESC as shown in 

previous sections. Their expression levels were high and kept for as long as the cells were cultured, and 

their establishment efficiency was significantly improved. 

Figure 33: pSMARt (A) and nSMARt (B) labelling vectors. Immortalizing and labelling vector (C). 

 

Both vectors are based on the chimeric CAG promoter, which comprises the cytomegalovirus (CMV) 

enhancer fused to the promoter and first intron of chicken ß-actin and the splice acceptor of rabbit  

ß-globin gene. A chimeric intron, which is meant to enhance the mRNA transcript stability, is placed 

directly downstream of the promoter. The transcription unit consists of the reporter gene coGFP and 

the selective marker Puromycin, separated by a self-cleavage 2A sequence, and runs through the S/MAR 

motif until the polyadenylation tail (polyA).  

pSMARt_CAG contains approximately 1.5kbp of bacterial backbone, comprising a bacterial origin of 

replication and a dual Neomycin/Kanamycin resistance, whereas nSMARt_CAG contains a minimal 
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bacterial backbone (MBB) consisting of approximately 400 bp. However, the reduction of its bacterial 

backbone limits downstream applications, such as plasmid rescue experiments. 

Both pSMARt_CAG and nSMARt_CAG were used to transfect MEFs and mESC as described above 

stably, and their expression after establishment is shown in Figure 34. 

 

 

 

 

 

 

 

 

 

Figure 34: pSMARt and nSMARt drive persistent and high levels of transgene expression in MEF and mESC 
MEFs and mESCs were nucleofected using the Amaxa II nucleofector device and the NHDF nucleofector kit or Mouse ES Cell 
nucleofector kit respectively. The cells were kept under selection with 500ng/ul of Puromycin for 4 weeks, and their GFP expression 
was checked using a Nikon Ti microscope (Exposure 1 second, amp gain x2.1). Scale bar=200um. 
 

5.1.9 Labelling and immortalising vector 

A bifunctional labelling and immortalising S/MAR DNA vector was generated by Matthias Bozza 

(DNA vector lab). This vector is based on the pSMARt backbone, but the puromycin was replaced by 

the SV40 Tag, linked to GFP through a 2A self-cleavage peptide. The CMV promoter drives the 

expression of the cassette, which is further protected from silencing by the anti-repressive Element40. 

A cartoon illustrating the vector is shown in Figure 33c. 
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5.1.10  Reprogramming vectors derived from the 4in1 Lentiviral vector:  
POP and nPOP  

Different versions of S/MAR vectors for mice and human reprogramming were generated in this study. 

The episomal vectors are based on the polycistronic lentiviral reprogramming vector ‘4in1’ described 

by Warlich et al. [285] and Kuehle et al. [297], which codes for the human codon optimised sequence 

of the Yamanaka reprogramming factors Oct4, Klf4, Sox2 and cMyc, separated by different 2A self-

cleavage sequences and driven by the viral SFFV promoter. The red reporter gene dTomato (dTom) is 

separated by an internal ribosome entry site (IRES). The different 2A sequences, which have different 

self-cleavage efficiencies, generate a decreasing amount of protein encoded in the mRNA transcript 

(expression levels Oct4>Klf4>Sox2>cMyc). Also, the viral SFFV promoter is chosen due to its silencing 

after reprogramming; when the cell switches on its internal pluripotency machinery and the external 

reprogramming factors are not desirable anymore [225]. 

Two reprogramming vector series were generated in this study and are depicted in Figure 35. Both are 

based on the Lentiviral 4in1 vector but featuring different elements, which will allow them to serve 

different purposes. 

Figure 35: Cartoon depicting different versions of reprograming vectors 

 

 



RESULTS 

 147 

The Proof-of-Principle (POP) vector was generated by subcloning the transcription unit of the 

Lentiviral 4in1 vector into a pSMARt vector, already containing an IRES-Puro linked to the S/MAR. 

This resulted in a hexacistronic cassette controlled by the SFFV promoter driving the expression of 

OKSM, the reporter gene dTomato and the selective marker puromycin. This vector not only allows to 

reprogram cells into iPSC but also serves as a proof-of-principle that the S/MAR motif needs to be part 

of a transcriptionally active unit to be kept episomal and functioning. Upon transfection, the POP 

vector will express the OKSM reprogramming factors, together with the dTom reporter gene and can 

also be selected with Puromycin. However, when the transfected cells reach pluripotency, the viral SFFV 

promoter will get silenced, which will result in loss of the vector containing the reprogramming factors, 

which are not only useless at that stage but also undesirable.  

The nano-Proof-of-Principle (nPOP) vector is a minimally sized version of POP, in which the bacterial 

backbone is reduced and replaced by a minimal sequence. Its reduced size allows better transfection 

efficiency and the minimal bacterial sequence makes it less prone to be methylated and silenced, 

yielding higher and longer expression of reprogramming factors, and overall making the 

reprogramming process more efficient. It is important to highlight that both POP and nPOP vectors 

should lose expression of their reporter genes, and hence the vector, after reprogramming. 

The reprogramming vectors were tested and transfected using jetPEI into HEK293T cells to check for 

fluorescent reporter expression as well as protein expression by Western Blot. Untransfected cells, 

which were used as negative control, did not show fluorescent expression of the reporter genes.  

The lentiviral vector 4in1, which was used as positive control, expressed the reporter gene dTom as well 

as pPOP (Figure 36a). The expression of reprogramming factors was further tested by Western Blot, as 

shown in Figure 36b. nPOP was generated at a later timepoint, and its expression analysis is not 

included in this experiment. 
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Figure 36: Assessment of reprogramming vector functionality in HEK293T cells. 
HEK293T cells were transfected with the reprogramming vectors Lenti4in1 and POP using jetPEI. The cells were then imaged 24hpt 
with a Keyence fluorescent microscope. Scale bar = 200um. All vectors showed expression of the reprogramming cassette (dTom) 
(A). Whole cell lysates from transfected HEK293T cells were obtained 24hpt. The protein concentration was determined using a 

BCA and 30ug of total protein were loaded per lane.  αTubulin (55kDa) was used as a loading control. Both vectors showed 
expression of the Yamanaka reprogramming factors Oct4, Sox2, Klf4 and cMyc (B). 

5.1.11 Reprogramming vectors derived from the EBNA-1/OriP system 

Previously, lots of effort has been directed into developing safer and non-integrative (episomal) 

alternatives for the genetic modification of cells, for example by using EBNA-1 based vectors.  Although 

non-integrative, EBNA-based vectors rely on continuous expression of the oncoprotein EBNA-1, which 

might affect the cells’ behaviour by remodelling the chromatin or altering the cells’ transcription profile 

[253]. By replacing the EBNA-1 by S/MAR motifs, we hoped to lower the impact of the vector on cell 

transcription as well as to eliminate the oncogenicity of the vectors. Prof. Dr Mckay from Manchester 

Metropolitan University (MMU) in the United Kingdom, kindly provided the EBNA-1 vectors 

containing the reprogramming factors Oct4, Sox2, Klf4, L-Myc and Lin28 described in [298].  

The EBNA-1 reprogramming system comprises 4 vectors, two of them containing a CAG promoter 

driving expression of a bicistronic cassette containing either Sox2 and Klf4 or Lin28 and L-Myc, 

separated by a 2A self-cleavage peptide, and the OriP/EBNA-1 sequences. A third vector with the same 

configuration codes for Oct4 and a shRNA to knockdown P53, which enhances the reprogramming 

efficiency by preventing the cell cycle arrest and therefore, increase cell proliferation [299 - 301].  

A fourth vector containing only EBNA-1 is used to boost the expression of this protein and aid the 

replication of the other three vectors (Figure 37a). 
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The S/MAR reprogramming system is composed of 3 vectors, which are derived from the 

aforementioned EBNA-1 vectors. To generate them, the reprogramming factors were amplified and 

subcloned into pSMARt_CAG, which was digested with AgeI and XhoI to remove the GFP-2A-Puro 

sequence (Figure 37b). In the 3-S/MAR vector system, there is no need for a 4th ‘S/MAR enhancing’ 

vector since the S/MAR motif does not need to be translated to be active. An intermediate 

pSMARt_CAG vector, including the shRNA to knockdown P53, was also generated. This vector was 

used as a labelling vector for co-transfection with the reprogramming vectors POP and nPOP. 

Figure 37: Cartoon depicting the EBNA-1 reprogramming vectors and their S/MAR counterparts 

 

Since both EBNA and S/MAR vectors lacked the presence of a reporter gene, the expression and 

functionality of the vectors were tested by assessing the presence of the reprogramming factors via 

Western Blot, as shown in Figure 38. For this, the three reprogramming EBNA vectors, as well as the 

three S/MAR vectors, were transfected separately into HEK293T cells. Untransfected cells were used 

as negative control, and Lentivirally transduced cells with the 4in1 vector were used as positive control. 

However, the total protein concentration from the 4in1 sample was low, and the expression of the 

reprogramming factors was almost undetectable. All EBNA and S/MAR vectors showed expression of 

the reprogramming factors, which proved successful cloning and demonstrated the functionality of the 

vectors. Due to the lack of L-Myc antibody, its expression could not be determined. However, 

expression of Lin28, which is transcribed together with L-Myc, could be detected and suggested that  

L-Myc was also expressed. 
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Figure 38: Yamanaka factors’ expression (OKSML) from EBNA-
1 and S/MAR reprogramming vectors. 
Whole cell lysates from HEK293T cells transfected individually with the 
EBNA and S/MAR reprogramming vectors were obtained at 24hpt.  
The protein concentration was determined using a BCA and 30ug of total 
protein were loaded per lane.  αTubulin (55kDa) was used as a loading 
control. All vectors showed expression of the reprogramming factors 
Oct4, Sox2, Klf4 and Lin28. Although expression of L-Myc could not be 
assessed due to lack of antibody, its expression was presumed since it 
belonged to the same transcription unit as Lin28.  

 

5.1.12 Therapeutic vectors  

Two candidate diseases were chosen to be targeted and corrected using our S/MAR vector technology: 

Fanconi Anemia (FA) and Choroideremia. Although in principle very different, both diseases share 

their monogenic recessive nature and can be corrected by supplementation of the defective gene, which 

makes them an ideal candidate for gene therapy.  

5.1.12.1 FANC-A vectors 

The reference S11FAIEGnls vector (FancA_GFP) described in [275, 286] was kindly provided by  

Dr Milsom (Hi-STEM, DKFZ). This lentiviral vector contains a CMV promoter driving expression of 

the FancA cDNA and the reporter gene eGFP with a nuclear localisation signal (NLS), separated by an 

IRES sequence. The FancA cDNA was subcloned into a pSMARt backbone containing firefly 

luciferase, to generate the pSMARt_FancA-Luc vector. 

Both vectors were tested for reporter gene and FancA expression in HEK293T cells. For this, the same 

amount of molecules of each plasmid were transfected using jetPEI, and whole cell lysates were obtained 

after 24h. The reporter gene expression was determined by delivering Luciferin (10 μl/ml) into the 

cultured cells and measuring chemiluminescence with a Fusion SL device. The eGFP expression was 

measured via conventional fluorescent microscopy (Figure 39a). To detect the expression of FancA,  

30 μg of total protein extracts were used in a Western Blot. Untransfected HEK293T cells were used 

as a negative control and αTubulin was used as a loading control. FancA expression was quantified by 
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measuring the intensity of the protein band in the blot and using the FusionSL analysis software  

(Figure 39b).  Both vectors were functional and expressed both the therapeutic FancA gene and their 

respective reporter genes. Although having equalled the number of molecules of FancA-GFP and 

pSMARt_FancA-Luc, the latest vector showed higher expression of FancA. It is important to note that 

HEK203T cells are of human origin and they endogenously express FancA. However, the 

overexpression of exogenous FancA proceeding from the vector transfection can be readily observed by 

comparing the intensity of the band between the negative control and FancA overexpressing cells. 

 

 

 

 

 

 

 

 

Figure 39: Testing the therapeutic FancA vectors in HEK293T cells. 
The lentiviral S11FAIEGnls vector was provided by Dr.Milsom (Hi-STEM, DKFZ) and used as a reference vector. A pSMARt_FancA-
Luc vector was generated by subcloning the cDNA from FancA into a pSMARt backbone. Both vectors were transfected into 
HEK293T cells, and untransfected cells were used as negative control. The reporter gene expression was checked either by 
fluorescent microscopy or addition of 10ug/ml of Luciferin (A). 30ug of Whole Cell Lysates were used to detect FancA expression 
in a Western Blot, which was later on quantified (B). Both FancA vectors were functional and expressed the FancA as well as their 
respective reporter genes. 
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5.1.12.2 REP-1 vectors 

The CHM/REP1 lentiviral vector was kindly provided by Dr Tanya Tolmachova [28]. The Rep1 cDNA 

was subcloned into a pSMARt backbone, replacing the selective marker Puromycin and generating 

pSMARt_Rep1-GFP. A minimally sized nano vector (nSMARt_Rep1-GFP) was synthesised in 

collaboration with Nature Technology Corporation (NTX). To test the vectors’ functionality, the same 

amount of molecules from both vectors were transfected into HEK293T cells using jetPEI. After 24h, 

the expression of the reporter gene was determined by fluorescent microscopy (Figure 40a). Also,  

30 μg of total protein extracts were used in a Western Blot. Untransfected HEK293T cells were used 

as a negative control and αTubulin was used as a loading control. Rep1 expression was quantified by 

measuring the intensity of the protein band in the western blot and using the FusionSL analysis 

software (Figure 40b). 

Both vectors were functional and expressed both the Rep1 protein and GFP. Although having equalled 

the number of molecules of pSMARt_Rep1-GFP and nSMARt_Rep1-GFP, the latest vector showed 

higher expression of the therapeutic gene. It is important to note that HEK203T cells are of human 

origin and they endogenously express Rep1. However, the overexpression of exogenous Rep1 can be 

readily observed by comparing the intensity of the band between the negative control and Rep1 

overexpressing cells. 
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Figure 40: Testing the therapeutic Rep-1 vectors in HEK293T cells. 
The lentiviral Rep1 vector was provided by Dr Tolmachova and used as a reference vector. A pSMARt_Rep1-GFP vector was 
generated by subcloning the cDNA from Rep1 into a pSMARt backbone. A minimally sized nSMARt_Rep1-GFP was also synthetised. 
Both vectors were transfected into HEK293T cells, and untransfected cells were used as negative control. The reporter gene 
expression was checked by fluorescent microscopy (A). 30ug of Whole Cell Lysates were used to detect Rep1 expression in a 
Western Blot, which was later on quantified (B). The functionality of both vectors was confirmed by expression of GFP and Rep1. 
The expression levels of nSMARt_Rep1-GFP were higher than those in pSMARt_Rep1-GFP. 

5.1.13 Summary  

An overview of the S/MAR DNA vector’s evolution from the originally described pEPI vector is 

provided in this chapter. These modifications included resulted in a series of vectors that, by all means, 

outperformed the original vector. Also, relevant vectors for this study are described. Their expression 

is assessed by fluorescent microscopy or chemiluminescence as well as by Western Blot. 

• The change and relocation of the selection marker gave raise to pSMARt series of vectors, which 

was later on refined by removing the majority of its bacterial backbone (nSMARt). 

• Different mammalian promoters were evaluated and the CAG promoter proved to be the most 

suitable for both mESC and also MEFs work (which will eventually be reprogrammed  

into iPSCs).  

• Vectors such as nSMAR_spliced and pSMARter proved to be the best performing vectors in 

expression and establishment (in HEK293T cells). However, pSMARter seems unsuitable for 

mESC work, probably due to the presence of CMV promoter. 

• The vector series pSMARt, nSMARt (cloned early in this study) were used for further in vitro 

and in vivo studies, whereas the suitability of both nSMAR_spliced and pSMARter (cloned later) 

should be further evaluated.  
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5.2 Evaluating the potential of S/MAR vectors to survive 
differentiation and de-differentiation in ATRA-
mediated neuronal differentiation model 

To investigate whether S/MAR vectors would retain expression throughout differentiation and 

reprogramming, a model based on All-Trans Retinoic Acid (ATRA) mediated differentiation of Be2C 

neuroblastoma cells was used (Figure 41). Be2C cells were labelled with pSMARt vectors, and their 

expression during differentiation was assessed through different molecular analysis. Domenic 

Hartmann and Dr Jeannine Lacroix (DKFZ), kindly provided the neuroblastoma cells and the expertise 

on the topic. 

Figure 41: ATRA-mediated neuronal differentiation 
In this model, Be2C neuroblastoma cells are forced to ‘differentiate’ into a neuron-like phenotype following the addition of ATRA. 
This simulates a differentiation process from a pluripotent to a differentiated cell. The reverse ‘de-differentiation’ process is achieved 
by withdrawing the ATRA and allowing the cells to recover their original neuroblastoma phenotype, which imitates the 
reprogramming process from a differentiated to a pluripotent state. 

 

Although the terms ‘differentiation’ and ‘de-differentiation’ are used to refer to transitions between a 

cancer- and a neuron-like phenotype, such processes cannot be taken as real or biologically accurate. 

Due to the nature of the neuroblastoma cells, which carry an altered genotype, any differentiated 

progeny coming from the cells would also carry an altered genotype. Therefore, the results obtained 

using this model are only indicative and might serve as a tool to understand the behaviour of S/MAR 

vectors during a real differentiation from a stem cell to a fully differentiated cell. 

5.2.1 Persistent expression of S/MAR vectors in neuroblastoma cells 

Be2C neuroblastoma cells, a cancer cell line derived from a bone marrow biopsy of a 2-year-old boy, 

were labelled with pSMARt_GFP, pSMARt_Luciferase or a dual pSMARt_GFP-Luciferase. The cells 

were selected with 1µg/ml Puromycin for a month, and the selective pressure was removed afterwards. 

The cells were kept in culture and checked regularly for GFP and Luciferase expression as shown  

in Figure 42. 
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Figure 42: pSMARt vectors are persistently expressed in Be2C neuroblastoma cells 
Be2C neuroblastoma cells were transfected with pSMARt vectors expressing either GFP (vector 18), Luciferase (vector 50) or a dual 
GFP-Luciferase cassette (vector 36). The cells were kept under selection with Puromycin for one month, and the selective pressure 
was then removed. The cells continued expressing the respective reporter genes in the absence of selection. 

5.2.2 ATRA mediated neuronal differentiation of S/MAR labelled cells 

5.2.2.1 S/MAR expression during ‘differentiation’ and ‘de-differentiation’ 

We then wondered how pSMARt vectors would behave when labelled cells were grown in the presence 

of ATRA. Because fluorescence is more straightforward to monitor than chemiluminescence, 

pSMARt_GFP clones were chosen for differentiation experiments. As depicted in Figure 43, upon 

addition of 10µM of ATRA, pSMARt-GFP labelled Be2C cells started showing morphological changes, 

including elongation and neurite extensions in a dose-dependent manner as compared to the untreated 

cells (DMSO), as early as day 4. After 8-10 days, the cells clustered into ‘ganglion-like’ structures and 

stopped proliferating, as compared to the untreated control. At that point, the cells were still expressing 

GFP. At day 10, ATRA was withdrawn, and the cells recovered their cancer-like morphology as well as 

their proliferation, also in a dose-dependent manner.	 
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5.2.3 S/MAR vectors are kept at low copy number 

After labelling Be2C cells with the respective pSMARt vectors, we determined how many copies of the 

vector were present per cell. For this, a copy number assay was performed in the GFP and Luciferase 

Be2C-expressing clones using an absolute quantification (qPCR) of the transgenes compared to the 

housekeeping gene (GAPDH). This allowed inferring the number of cells present in the sample as well 

as the number of copies of each vector. The generated pSMARt_GFP (Be2C 18c2 and 18c4) and 

pSMARt_Luc (Be2C 50c5 and 50c6) showed low vector copy number, ranging from 2 to 4 copies per 

cell (Figure 44). 

 

 

 

 

 

 

 

 

Figure 44: Determination of S/MAR vector copy number in labelled neuroblastoma cells. 
Genomic DNA of Be2C clones labelled with pSMARt-GFP (18c2 and 18c4) or pSMARt-Luciferase (50c5 and 50c6), was purified and 
used for absolute quantification of GFP and Luciferase and compared to the expression of the housekeeping gene GAPDH.  
The analyzed clonal populations showed low copy numbers of the pSMARt vectors, ranging from 2 to 4 copies/cell. 

5.2.4 S/MAR vectors remain episomal 

To ascertain whether pSMARt vectors were kept episomal or integrated, a plasmid rescue experiment 

was performed. This method relies on the ability of circular DNA (but not linear DNA) to transform 

bacteria. For this, total DNA of stably labelled pSMARt_GFP Be2C cells was isolated, and the circular 

DNA fraction was enriched and used for electroporation of DH10b competent cells, which were then 

cultured and expanded. Finally, the plasmid was purified in a mini-prep and digested with BglII.  

The presence of intact S/MAR and GFP-2A-Puro units in the rescued vectors was confirmed by PCR 

amplification and sequencing of the amplicons (Figure 45). Also, total DNA of HEK293T cells labelled 

with the same pSMARt_GFP vector (lanes 1-5) was also used in this experiment, to gather evidence 

from different cell lines. 
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All clones contained an intact S/MAR and transcription unit (GFP-2A-Puro) as shown by PCR 

amplification. The restriction analysis revealed that clones 7, 8, 11-14 had an identical band pattern 

compared to the original vector, confirming then a successful 42,85% rescue efficiency of the vectors. 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: pSMARt_GFP can be rescued as an episome from stably transfected Be2C cells. 
HEK293T (lane 1-5) or Be2C (lane 6-14) cells were labelled with pSMARt_GFP (vector 18). Total DNA from stable cells was 
extracted, and plasmid DNA was purified and used to transform DH10b competent cells. Transformed colonies were grown, and 
plasmid DNA was prepped and digested with BglII or used as a PCR template to amplify both the S/MAR region and the transcription 
unit GFP-2A-Puro. The S/MAR motif, as well as the GFP-2A-Puro unit, were present in all clones. Clones 7, 8, 11-14 showed an 
identical band pattern after restriction as compared to the original vector 18, which indicated a successful plasmid rescue and 
therefore, proved the episomal existence of pSMARt_GFP in stably transfected cells. 

 

5.2.5 S/MAR vectors do not modify the cells’ behaviour 

5.2.5.1 S/MAR-labelled cells retain the expression of neuronal markers 

Following up on previous findings of the minimal impact of S/MAR vectors in the cell transcriptome 

(Figure 27), we evaluated the expression of three neuronal markers (N-Cam, Gap43 and β3-Tubulin). 

Immunofluorescence stainings were performed in Parental or pSMARt_GFP labelled Be2C cells, 

before and after differentiation and in DMSO or ATRA-treated cells (Figure 46). Both parental, as well 

as GFP cells, showed expression of all three neuronal markers (in red) and its expression was 

independent of the treatment. Also, the GFP expression was kept during differentiation as observed by 

endogenous transgene expression (green).  
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Figure 46:  pSMARt-labelled Be2C cells express neuronal markers 

Parental as well as pSMARt_GFP labelled Be2C were stained for three neuronal markers: Gap43, N-Cam and β3-Tubulin, before and 
during differentiation, under DMSO or ATRA treatments. Both parental and S/MAR labelled cells showed expression of the neuronal 
markers (red), suggesting that the S/MAR presence does not modify the cell’s identity. Expression of GFP was kept during 
differentiation as observed by endogenous GFP expression (green). Nuclei were stained with DAPI (blue). 

5.2.5.2 S/MAR-labelled cells engraft when injected into SCID mice 

We then evaluated whether pSMARt modified Be2C cells would retain their tumorigenic and 

engrafting potential when heterotopically injected into SCID mice. In collaboration with Domenic 

Hartmann, either 106 or 5x106 Be2C cells labelled with pSMARt_GFP or pSMARt_Luciferase were 

injected subcutaneously into SCID mice. Parental (unlabelled) Be2C cells were used as a control.  

As soon as day 4 post-injection, tumour masses started developing and were measured every three days 

[tumour volume (cm3) = width x length x depth] until the tumours reached a critical size of 15mm in 

diameter, at that point the animals had to be sacrificed. The tumour growth is shown in Figure 47. 

 

Figure 47: pS/MARt-labelled Be2C 
cells engraft when injected into SCID 
mice. 
Either 106 or 5x106 Be2C cells labelled with 
pS/MARt_GFP (v18) or pS/MARt_Luciferase 
(v50) were injected subcutaneously into 
SCID. The neuroblastoma cells engrafted 
and formed tumours as early as day 4 and 
kept growing until reaching a critical mass at 
day 16. The tumour size was measured 
every three days. Be2C parental cells were 
injected in a separate experiment. 
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Also, in collaboration with Sascha Dehler and Prof. Dr Ana Martin-Villalba from the Molecular 

Neurobiology department (DKFZ), 500.000 pSMARt_GFP or pSMARt_Luciferase Be2C cells were 

stereotactically into the striatum of SCID mice. After two weeks, injected mice showed impaired motor 

abilities and were sacrificed at that point. The brains were removed and directly imaged to check for 

luciferase expression (Figure 48a) or fixed, sectioned and imaged for GFP expression, without the need 

to stain Figure 48b. 

 

Figure 48: pSMARt-labelled Be2C cells form tumours when injected when injected intracranially 
pSMARt_Luciferase and pSMARt_GFP-labelled cells (500.000 cells/mice) were injected stereotactically into the striatum of SCID 
mice. After two weeks, the mice showed impaired motor abilities and were sacrificed at that point. The brains were removed and 
directly imaged upon Luciferin administration (A) or fixed, sectioned and imaged directly for GFP expression using DAPI as 
counterstaining (B). 
 

5.2.5.3 S/MAR-labelled tumours express the transgene 

Images of the cultured neuroblastoma cells expressing the reporter genes were taken before injection 

(Figure 49a). After removal, the tumours were either snap-frozen for further molecular analysis or 

homogenised and kept in culture. Primary tumours cells kept expressing the reporter genes GFP and 

Luciferase after engrafting (Figure 49b). Also, protein extracts from snap-frozen tumour samples were 

used to determine GFP expression in a Western Blot (Figure 50). GFP could be detected in all 

pSMARt_GFP labelled tumours whereas the reporter gene expression was undetectable in the parental 

Be2C cells.  
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Figure 49: pS/MARt-labelled Be2C cells retain transgene expression after forming tumours. 
Be2C cells labelled with pS/MARt_GFP (v18) or pSMARt_Luciferase (v50) were injected subcutaneously into SCID mice. Images of 
cultured cells expressing the reporter genes were taken before injection (A). After two weeks, the animals developed tumours and 
were sacrificed after reaching a critical tumour mass of 15mm. The tumours were then removed, homogenised and the primary 
tumour cells were kept in culture. After engrafting and removal, pSMARt-labelled cells remained expressing the reporter gene (B). 
 

 

 

 

 

 

 

 
Figure 50: pSMARt-labelled Be2C xenografts retain expression of reporter genes. 
Total protein from tumours developed upon injection of Be2C pSMARt_GFP cells was used for Western Blot analysis. The reporter 
gene GFP (27kDa) was detected in all pSMARt_GFP tumours analysed, whereas no GFP could be detected in parental Be2C tumours. 
Tubulin (55 kDa) was used as loading control. Credit: Julia Hermann, DNA Vector Lab, DKFZ. 
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5.2.6 Summary  

To elucidate whether S/MAR vectors could retain the levels of transgene expression as well as to remain 

episomal throughout differentiation and de-differentiation, a neuronal differentiation model induced 

by All-Trans Retinoic Acid (ATRA) was used. For this, Be2C neuroblastoma cells were stably labelled 

with either pSMARt_GFP or pSMARt_Luciferase vectors, which robustly and persistently express the 

transgene. The DNA vectors remained episomal in neuroblastoma cells, as they could be rescued in 

their circular form, and neither altered the cells’ behaviour in vitro nor in vivo. We evaluated the ability 

of the S/MAR DNA vectors to sustain expression during a differentiation-like process, in which the 

cells were forced to differentiate into neurons upon addition of ATRA. Neuronal traits, including 

elongation and neurite extensions, were apparent as early as day 4 and by day 10, the cells clustered 

into neurospheres and stopped proliferating. At that point, the cells still expressed robust levels of  

the transgene. 

Also, we evaluated the DNA Vector’s ability to be retained throughout the reverse process in which the 

neuron-like cells were allowed to regress into to their original neuroblastoma state by withdrawing the 

ATRA. They recovered their cancer-like morphology and maintained the expression of GFP.  

In addition, immunocytological analysis of parental and labelled cells showed no difference in the 

expression of neuronal markers, suggesting that the vectors did not modify the cells’ molecular profile. 

Finally, we engrafted genetically labelled cells by subcutaneous or intracranial injections into SCID 

mice. These cells formed representative tumours, with robust expression of the reporter genes.  

 

 

 

 

 

 

 

 

 

 

 



RESULTS 

 164 

 

  



RESULTS 

 165 

5.3 Immortalisation, labelling and reprogramming of 
murine fibroblasts into iPSC with S/MAR vectors – Do 
S/MAR vectors survive reprogramming? 

In this chapter, the use of S/MAR vectors is further challenged by testing their suitability and 

performance in a real reprogramming process, from murine somatic cells (e.g.: fibroblasts) into induced 

pluripotent stem cells (miPSC). For this, mouse primary lung fibroblasts were first GFP-labelled and 

SV40LT-immortalised to get enough starting material for reprogramming. Then, the immortal GFP-

fibroblasts were reprogrammed, first using the Lentivirus 4in1 and then testing the S/MAR 

reprogramming vectors POP and nPOP. An additional reprogramming efficiency comparison between 

Lentivirus and S/MAR DNA vectors in human dermal fibroblasts is shown in Section 5.6.2.2. 

5.3.1 Immortalisation and labelling of mouse fibroblasts 

Primary murine lung fibroblasts, kindly provided by Dr Joschka Willemsen (Binder Lab, DKFZ), were 

nucleofected using the bifunctional labelling-immortalising pSMARt_SV40LT vector. The cells were 

grown in the absence of selection, as successfully transfected cells would possess a selective ‘immortal’ 

advantage over the untransfected ones. The cells were cultured and remained in division for over 100 

passages. Due to the presence of GFP in the immortalising S/MAR vector, the immortal cells also 

expressed GFP as compared to primary untransfected fibroblasts Figure 51. 

 

 

 

 

 

 

 

 

 

Figure 51: S/MAR vectors can label and immortalise murine fibroblasts. 
A bifunctional pSMARt_SV40LT vector expressing GFP was nucleofected into murine primary lung fibroblasts. Successfully 
transfected cells not only expressed GFP but could also be kept in culture for more than 100 passages, confirming immortalisation. 
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5.3.2 Do S/MAR vectors survive reprogramming? 

5.3.2.1 Reprogramming S/MAR labelled fibroblasts with Lentivirus  

To answer whether S/MAR vectors were able to survive a real reprogramming process from somatic 

cells into iPSC, pSMARt_SV40LT-immortalised fibroblasts were transduced with 4in1 Lentiviral 

particles containing the OKSM reprogramming factors. Wild-type lung fibroblasts were used as negative 

control. Due to its higher transduction efficiency, we decided in favour of lentiviral reprogramming 

over S/MAR reprogramming (e.g.: POP, nPOP vectors). The reprogramming capabilities of these 

vectors are tested below. After transduction, the fibroblasts were provided with the right culturing 

conditions to allow them to undergo a mesenchymal-epithelial transition (MET) and reprogramming. 

After a couple of weeks, the original elongated-mesenchymal morphology typical from fibroblasts 

transitioned into a smaller and more compact epithelial shape, with the cells clustered in dome-like 

colonies (miPSC colonies). Those miPSC colonies retained the expression of GFP, also at the 

pluripotent stage, as compared to the unlabelled primary fibroblast control (Figure 52). Both iPSC 

expressed dTomato as proof that the reprogramming factors were being expressed. After reaching 

pluripotency, the expression of dTomato was switched off (not shown) in wildtype cells but not in 

immortalised cells.  

Figure 52: pSMARt vectors remain expressed through reprogramming. 
Wildtype (negative control) and pSMARt_SV40LT-immortalised fibroblasts were transduced using the 4in1 Lentivirus coding for the 
Yamanaka Factors OKSM. The fibroblasts were kept under reprogramming conditions until dome-like iPSC colonies were observed 
after a couple of weeks. The iPSC colonies were imaged and checked for reporter gene expression. Both labelled, and unlabelled 
iPSC colonies expressed the reprogramming factors, as indicated by the expression of dTomato. pSMARt_SV40LT fibroblasts kept 
expressing GFP, suggesting that S/MAR vectors survived the reprogramming process.  
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5.3.2.2 Reprogramming mouse embryonic fibroblasts (MEFs) with the 
S/MAR reprogramming vectors POP and nPOP 

Because S/MAR-labelled cells could sustain the expression of GFP throughout reprogramming after 

Lentiviral delivery of the reprogramming factors, we then tested a safer approach by using the S/MAR 

vectors as reprogramming tools. 

For that, the aforementioned S/MAR reprogramming vectors POP and nPOP were nucleofected into 

low passage commercial murine embryonic fibroblasts (MEFs), transducing the Lentivirus 4in1 as a 

positive control. However, the transfection efficiency of the S/MAR reprogramming vectors POP and 

nPOP was low, as we could barely observe dTomato-positive cells 24hpt. Therefore, no miPSC colonies 

formed, due to insufficient expression of reprogramming factors (data not shown). To increase the 

transfection efficiency and the delivery of reprogramming factors, repeated transfections of POP and 

nPOP were performed. Nucleofected MEFs were then kept under puromycin selection to remove 

untransfected cells, and dTomato-positive cells were placed under reprogramming conditions until 

miPSC colonies could be observed after four weeks. We observed that the morphology of nPOP-

reprogrammed miPSC was more similar to that obtained using the Lentiviral 4in1 vector, whereas POP 

miPSC had a less defined colony morphology (Figure 53). 

 

Figure 53: The S/MAR reprogramming vector nPOP can reprogram murine fibroblasts into iPSC. 
The ability of the S/MAR reprogramming vectors to turn MEFs into miPSC was assessed by nucleofecting the S/MAR-based 
reprogramming vectors POP and nPOP. Transduction with 4in1 lentivirus was used as positive control. Two repeated transfections 
were performed to increase the transfection efficiency. The cells were selected with puromycin and allowed to reprogram for a 
month. Although the transfection efficiencies were lower than viral transduction, miPSC colonies emerged after four weeks.  
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5.3.3 Summary  

In this chapter, the ability of S/MAR vectors to survive reprogramming from somatic cells  

(e.g.: fibroblasts) to induced pluripotent stem cells (miPSC) was challenged. To ensure enough starting 

material, murine lung fibroblasts were first immortalised using a bifunctional labelling and 

immortalizing pSMARt_SV40LT vector. Then, immortal GFP-fibroblasts were reprogrammed first by 

using 4in1 Lentiviral particles and later, by testing the reprogramming ability of the S/MAR 

reprogramming vectors themselves. pSMARt-immortalised fibroblasts were able to maintain the 

reporter gene expression throughout the reprogramming process, suggesting that the vector was not 

lost nor silenced. Also, mouse embryonic fibroblasts could be reprogrammed using the nPOP vector, 

although the reprogramming was not as efficient as with Lentiviral particles. Although possible, the low 

reprogramming efficiency of nPOP was mostly due to the low transfection efficiency, possibly due to 

MEFs being refractory to transfection.  
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5.4 Labelling and in vitro differentiation of murine Stem 
Cells with S/MAR vectors – Do S/MAR vectors survive 
differentiation? 

The use and suitability of S/MAR-based vectors for labelling dividing and differentiating cells has been 

tested in the aforementioned ATRA-mediated differentiation and de-differentiation model using 

neuroblastoma cells, suggesting that S/MAR-based vectors were capable of surviving differentiation.  

In this chapter, the use of S/MAR vectors in a real differentiation process from murine embryonic stem 

cells to somatic cells is validated. For this, mESC were labelled with either pSMARt or nSMARt vectors, 

and stable GFP-expressing mESC lines were generated. Then, basic molecular analysis were performed 

to determine the copy number and the integration or episomal status of the vector. The pluripotency 

and differentiation abilities of either 1) mESC labelled with pSMARt or 2) pSMARt_SV40LT 

reprogrammed miPSC were also tested; as well as the ability of the vector to survive differentiation.  

For this, immunofluorescence stainings for murine pluripotency markers were performed. 

Additionally, pSMARt-mESC cells were forced to differentiate either randomly into representatives of 

the three germ layers or directly into hematopoietic progenitors by using specific cytokines.  

The expression of GFP and presence of the S/MAR vector, were evaluated through differentiation.  

5.4.1 Labelling of mESC with pSMARt and nSMARt vectors. 

The suitability of pSMARt or nSMARt to transfect and label mESC has been shown in Section 5.1.7.1 

and 5.1.7.2. We then generated stable GFP-mESC lines using these vectors to evaluate their ability to 

remain active through differentiation. For this, 10 µg of either pSMARt or nSMARt were delivered 

using the Amaxa II nucleofector and the mESC kit (Lonza). The cells were kept under Puromycin 

selection for a couple of weeks to remove untransfected cells as well as to favour the retention of the 

S/MAR vectors. After removal of the selective pressure, the cells kept expressing GFP for months after 

and until today, as shown in Figure 54. 

Clones from both cell lines were picked and expanded and one clone each was chosen for further 

analysis. The pSMARt clone v71c22 homogeneously expressed GFP, whereas clone v85c17 (nSMARt) 

was somewhat heterogeneous due to selection and picking of a mixed mESC colony, which was 

generated from cells expressing various levels of GFP.  
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Figure 54: pSMARt and nSMARt can persistently modify mESC 
A representative cartoon showing the mESC labelling process using pSMARt and nSMARt (A). For this, 500.000 mESC were 
nucleofected with 10ug of plasmid DNA and kept under selection with 500ng/ul Puromycin for two weeks. Afterwards, the selection 
was removed, and the cells kept expressing GFP for months after, until today. Then, mESC clones from both cell lines were picked 
and expanded and their GFP expression is shown (B). 
 

5.4.2 S/MAR Vectors are kept at low copy number 

The selected mESC clones labelled with pSMARt (v71c22) and nSMARt (v85c17) were then analysed 

to determine the number of vector copies per cell. For this, total DNA from a confluent 6cm-plate was 

extracted using a DNeasy Blood and tissue kit (QIAGEN) or Phenol/Chloroform. Standard curves for 

both genomic and plasmid DNA were prepared to be able to quantify the number of cells and vector 

in each the sample. The vector was quantified by amplification of Puromycin (Primers Puro3-4), and 

the cells were quantified by amplification of the housekeeping gene GAPDH (primers mGAPDH3-4). 

The number of copies per cell was calculated as explained in Section 4.2.9.1 and untransfected mESC 

were used as negative control. We observed that S/MAR vectors were kept at low copy number (between 

1-2 copies/cell).  

 

Figure 55: pSMARt and nSMARt vectors are 
kept at low copy numbers  
Total DNA from mESC clones (pSMARt v71c22 and 
nSMARt v85c17) was purified and used for absolute 
quantification of Puromycin as compared to a 
constitutively active gene GAPDH. The results showed 
more copies/cell in the homogeneous v71c22 clone, 
whereas the copy number is underestimated in the 
heterogeneous clone v85c17.  
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5.4.3 S/MAR vectors remain episomal 

Next, we performed a plasmid rescue experiment and a southern blot to exclude genomic integrations 

and prove the vectors’ episomal maintenance. Integration analysis of pSMARt labelled mESC clones 

and polyclonal populations is currently being performed in collaboration with Prof. Dr Christof von 

Kalle, Dr Manfred Schmidt and Dr Irene Gil-Farina, from NCT, but the results could not be included 

in this thesis due to time constraints. 

5.4.3.1 Plasmid rescue of pSMARt episomes from mESC-labelled cells 

Total DNA from pSMARt labelled mESC was extracted using phenol-chloroform and 10µg of genomic 

DNA were then digested with the vector non-cutter restriction enzyme (EcoRV). The undigested 

pSMARt was purified and transformed into DH10ß competent cells. Then, bacterial colonies were 

picked, miniprepped and digested using the restriction enzyme BglII. The restriction pattern of rescued 

clones was compared to the original pSMARt vector. Also, the integrity of the S/MAR motif as well as 

the expression cassette containing GFP-2A-Puro was confirmed by PCR amplification, as shown in 

Figure 56. A total of 9/10 rescued clones showed identical restriction pattern as compared to the 

original pSMARt (v71) vector as well as successful PCR amplification of both vector regions, suggesting 

that the vector integrity is not disturbed upon establishment in mESC. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
Figure 56:  Episomal forms are detected in stably transfected mESC 
Total DNA from pSMARt labelled mESC was extracted using phenol-chloroform and digested with the restriction enzyme EcoRV, 
which did not digest pSMARt. Then, circular vectors were purified and transformed into competent cells. The grown clones were 
miniprepped and digested with BglII. Their restriction pattern was compared to that from the original pSMARt vector (v71).  
The integrity of the vector was confirmed by PCR amplification of both the S/MAR motif (2268bp) and the expression cassette 
(1337bp). The successful rescue of pSMARt was finally confirmed by sequencing the rescued clones. 
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5.4.3.2 Southern Blot of S/MAR vectors from mESC-labelled cells 

40 µg of total DNA extracted with Phenol/Chloroform was digested with a vector unique-cutter enzyme 

(BamHI, common in all S/MAR vectors), to linearise the plasmids. Additionally, 2-5ng of parental 

plasmids were also digested as positive controls. Then, digested DNA was ethanol-precipitated, and 

100ng was loaded on a 0,8% agarose gel, which was run overnight at 15V. The DNA was transferred 

to a Hybond-XL nylon membrane and hybridised with GFP probes. Linearised plasmids (Figure 57, 

left blot) showed sharp bands at their expected sizes: pSMARt (7162bp), nSMARt (5915bp), nSpliced 

(6546 bp) and pSMARter (6085bp). The amount of nSMARt loaded was underestimated, and the band 

did not appear as intense as the other vectors. However, only nSpliced-labelled cells showed a faint 

band (Figure 57, right blot), suggesting that the S/MAR was present in the sample. The upper left part 

of the blot showed some unspecific background, with an intense spot over Untransfected and pSMARt-

labelled cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57: Integrated forms cannot be detected in S/MAR-labelled mESC clones. 
Total DNA from S/MAR-labelled cells (40ug) was digested with a unique vector cutter (BamHI). Parental plasmids were used as 
positive controls. Then, 100ng of digestion product, including linearised episomes, were loaded on a 0,8% agarose gel and run 
overnight at 15V. The DNA was transferred into a membrane and hybridised with GFP probes. Positive control plasmids (left blot) 
showed sharp bands at their expected sizes, although the amount of nSMARt was somehow underestimated. Despite the background 
of the blot, only nSpliced could be detected from mESC cells (right blot). 
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5.4.4 S/MAR vectors do not alter pluripotency in murine stem cells 

Next, the functionality and pluripotency of generated pSMARt-labelled mESC and miPSC were 

assessed. For this, the expression of pluripotency markers was analysed via immunofluorescent staining. 

Then, S/MAR labelled cells were subjected to in vitro differentiation, either randomly or directed 

towards the hematopoietic lineage with the help of cytokines. The expression of GFP was monitored 

and quantified before, during and after differentiation. 

5.4.4.1 Assessment of pluripotency in S/MAR-pluripotent cells  

The pSMARt_SV40LT-immortalised lung fibroblasts reprogrammed into miPSC using the Lentivirus 

4in1, as well as the pSMARt-labelled mESC, were subjected to Alkaline Phosphatase (AP) staining.  

This hydrolytic enzyme, which is responsible for dephosphorylating molecules under alkaline 

conditions, is highly expressed in undifferentiated cells with self-renewal potential. After fixation and 

staining with Alkaline Phosphatase staining kit II (Stemgent), undifferentiated cells appeared stained 

in purple while differentiated cells appeared colourless. Also, murine pluripotent cells are characterised 

by expression of a set of pluripotency markers, amongst them: the surface marker SSEA-1 as well as the 

endogenous transcription factors Oct4 and Nanog. The expression of these pluripotency markers was 

also assessed by performing immunofluorescence stainings as shown in Figure 58. Unlabelled mESC, 

as well as unlabelled miPSC, were used as negative controls. All pSMARt-labelled cells expressed GFP, 

as shown by the fluorescent images obtained before staining. Control and pSMARt-labelled mESC as 

well as control miPSC showed expression of all pluripotency markers tested. However, 

pSMARt_SV40LT immortalised and reprogrammed iPSC did not stain positive for the pluripotency 

marker Nanog and the cells kept expressing the exogenous reprogramming factors, as observed by 

dTomato expression. 
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Figure 58: S/MAR-modified stem cells express pluripotent markers 
A panel of pluripotent markers was assessed in unlabelled and pSMARt-labelled mESC and miPSC. This included Alkaline Phosphatase 
staining and immunofluorescence for the surface marker SSEA-1 and the transcription factors Oct4 and Nanog. After fixation and 
staining, both unlabelled controls and S/MAR-labelled mESC showed expression of all pluripotent markers tested. However, 
immortalised iPSC did not show expression of Nanog and retained the expression of endogenous reprogramming factors, as indicated 
by the reporter gene dTomato, suggesting partial reprogramming. 

 

5.4.4.2 Random differentiation of S/MAR-mESC via embryonic bodies 

After successful confirmation of pluripotency in both mESC and miPSC, the cells were subjected to a 

more stringent test consisting on in vitro random differentiation into representatives of the three germ 

layers (ectoderm, mesoderm and endoderm) via the transient formation of embryonic bodies (EBs).  

For this, the cells were withdrawn from all differentiation inhibitors (2i) and LIF and allowed to collapse 

into hanging drops, which were later on placed into adherent culture and allowed to attach and spread 

while differentiating (Figure 59a). 

During the experiment, the EBs were monitored and imaged regularly to check for GFP expression and 

therefore, for the presence and functioning of the S/MAR vectors during the differentiation process. 
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Data collected from two independent experiments revealed that both mESC (unlabelled) and pSMARt-

labelled mESC formed compact EBs, which differentiated into different cell types. More importantly, 

pSMARt-mESC kept the expression of GFP throughout differentiation (Figure 59b). Control iPSC 

reprogrammed with 4in1 Lentivirus, formed EBs and differentiated into distinct structures. However, 

iPSC generated from pSMARt_SV40LT-immortalised lung fibroblasts, initially formed EBs, which kept 

the GFP expression (Figure 59c), but failed to differentiate. Immortal cells kept expressing the 

exogenous reprogramming factors (dTom) and could not differentiate properly.   

 

Figure 59: S/MAR vectors are expressed in EBs and through mESC differentiation  
To generate Embryonic Bodies (EBs), single stem cell suspensions were allowed to collapse at the bottom of a hanging drop, devoid 
of differentiation inhibitors (2i) and LIF. Then, the EBs are transferred into gelatinised plates and allowed to attach and spread, while 
the proliferating cells differentiated into representatives of the three germ layers (A). Both unlabelled (negative control) and pSMARt-
labelled mESC formed EBs that differentiated into defined structures. pSMARt cells kept the expression of GFP throughout the 
differentiation process (B). Unlabelled miPSC formed EBs, which differentiated and formed distinct structures. However, 
immortalised miPSC formed EBs but failed to differentiate. The exogenous reprogramming factors remained expressed, as suggested 
by the expression of dTomato (C). 
 

After differentiated structures could be observed microscopically, such as neurons or beating 

cardiomyocytes, the cells were fixed and stained for ectodermal (ß3-Tubulin), mesodermal (α-SMA) and 

endodermal (FoxA2) markers Figure 60. 
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Both control and pSMARt-mESC differentiated into representatives of the three germ layers. Also, 

endogenous GFP expression, although faded due to the fixation of cells, could also be observed. 

Unlabelled miPSC differentiated into ectoderm and mesoderm, although endodermal structures could 

not be found. In contrast, immortalised miPSC could not differentiate as they remained expressing 

reprogramming factors. Therefore, they were excluded from further in vivo experiments. 

 
Figure 60: S/MAR-labelled stem cells can differentiate into derivatives from the three germ layers 
After formation of EBs, differentiating structures, such as neurons or beating cardiomyocytes, could be observed microscopically. 
Then the cells were fixed, permeabilised and stained for markers from the three embryonic layers: ectoderm (ß3-Tubulin), mesoderm 
(α-SMA) and endoderm (FoxA2). Both control and pSMARt-labelled mESC differentiated into all three germ layers. Also, pSMARt-
labelled cells showed expression of endogenous GFP. Unlabelled miPSC differentiated into ectoderm and mesoderm structures 
although no endodermal structures were found. Immortalised miPSC failed to differentiate, as they kept expressing the 
reprogramming factors. 

5.4.4.3 Directed hematopoietic differentiation of S/MAR-mESC  

After confirming that GFP was expressed through random differentiation and that mESC could 

differentiate into all embryonic layers, we then quantified the GFP expression of different S/MAR-

labelled cell lines in a directed differentiation setting. For this, an in vitro hematopoietic differentiation 

experiment was performed in collaboration with Marleen Büchler (Dr Milsom Lab, Hi-STEM, DKFZ). 

Different lines of stably transfected E14 mESC with pSMARt_CAG (pCAG), nSMARt_CAG (nCAG), 

nSMAR_Spliced or pSMARter, were forced to collapse into EBs under hypoxic conditions	(5%O2), as 

this enhances the efficacy. Unlabelled E14 cells were used as negative control. All the samples were 

prepared in triplicates. After 60h, cytokines such as BMP-4 (mesodermal development), Activin A; and 

growth factors such as VEGF (endothelial lineage) and FGF2 were added into the media to push the 

cells down the hematopoietic differentiation path. After another 60h, the EBs were collected, 

disaggregated and stained with a panel of endothelial (c-kit, VE-Cadherin) and hematopoietic markers 

(CD41) markers for FACS analysis (Figure 61). 

At the mESC stage (Day 0), the cells were negative for the hematopoietic marker CD41 and showed 

predominant expression of the endothelial marker c-kit but not CD144/VE-cadherin. After 6 days, the 
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cell population shifted and acquired expression of the hematopoietic marker CD41 and lost 

endothelial characteristics, as observed by the loss of c-kit and VE-Cadherin expression. However, 

expression of c-kit and VE-cadherin should still be observed at the HSC stage [302].  

Also, the GFP expression was quantified at the mESCs (day 0) and HSC (day 6) stage. A slight decrease 

in GFP expression was observed in pCAG and pSMARter-labelled cells, whereas the GFP expression 

from nCAG and nSpliced remained constant. Interestingly, the decrease in GFP expression 

corresponded to cells labelled with vectors which contained bacterial sequences and was not observed 

in minimally sized bacterial backbones or nano vectors. Within the nanovectors, the CAG promoter 

provided more constant levels of GFP as compared to CMV shielded with Element 40. 
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Figure 61: S/MAR-labelled mESC retain expression of GFP during hematopoietic differentiation 
Schematic representation of expected populations according to hematopoietic (CD41) and endothelial markers (c-kit and VE-
Cadherin) (A). E14 mESC were transfected and stably labelled with pCAG (v71), nCAG(v85), nSpliced (v105) and pSMARter (v106). 
(C-F). Untransfected E14 cells were used as negative control (B). Before differentiation (day 0), mESC were stained for endothelial 
(c-kit and VE-Cadherin) and hematopoietic (CD41) markers; and the GFP expression was quantified in the viable gated population. 
Then, mESC cells were forced to collapse into EBs under hypoxic conditions. Unlabelled E14 cells were used as negative control.  
All the samples were prepared in triplicates. After 60h, cytokines and growth factors were added into the media to push the cells 
down the hematopoietic differentiation path. After 120h (day 6), the EBs were disaggregated, counted and stained with the same 
hematopoietic panel as day 0. The same gating scheme used on mESC was applied to HSC and GFP was quantified in the HSC viable 
population. pCAG and pSMARter showed a slight decrease in GFP expression, whereas the expression from nano vectors nCAG 
and nSpliced remained constant. 
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5.4.5 Summary  

This chapter shows that pSMARt vectors can modify murine stem cells without compromising the cells’ 

capabilities. The S/MAR vectors provided high and robust levels of transgene expression during 

extended periods of time, despite the low number of vector copies per cell. The molecular analysis 

suggested that the vectors were kept episomal, as they could be rescued from stably labelled mESC and 

integrations were never detected in a southern blot. 

Moreover, pSMARt did not interfere with the stem cells’ pluripotent features, as shown by the 

expression of all pluripotency markers tested as compared to control mESC. The S/MAR vectors were 

further challenged in a random differentiation experiment, in which both labelled, and unlabelled 

mESC cells, as well as miPSC, were forced to collapse into embryonic bodies and to differentiate into 

representatives of the three germ layers. The expression of GFP, which reflected the presence and 

functionality of the vector, was kept throughout the process. However, immortalised miPSC failed to 

differentiate and kept expressing the reprogramming factors and therefore, they were excluded from 

further in vivo experiments. The same vector behaviour pattern was observed during directed 

hematopoietic differentiation using specific cytokines. Here, a range of mESC lines labelled with 

different S/MAR vectors, including pSMARt, nSMARt, nSpliced and pSMARter were tested and 

quantified for GFP expression before (mESC) and after (HSC) differentiation. A slight decrease in GFP 

expression was observed in pCAG and pSMARter, whereas nCAG and nSpliced were able to sustain 

the levels of GFP throughout differentiation.  
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5.5 A novel tool to generate transgenic animals –  
Do S/MAR vectors survive in vivo differentiation? 

This chapter introduces the use of S/MAR vectors for in vivo applications, such as the generation of 

chimeric and transgenic mice. Most importantly, it shows in a real in vivo developmental process that 

S/MAR DNA vectors can survive and keep their expression throughout a differentiation from an 

embryo into a whole organism.  

There are two methods to generate transgenic animals: either with an ‘indirect’ or cell-mediated 

approach using genetically modified stem cells, which are then implanted into blastocysts; or with a 

‘direct’ DNA-mediated approach, in which the DNA is directly delivered into the zygote’s pronucleus. 

Based on our expertise in in vitro modification of cells with DNA vectors, we first generated chimeric 

mice using stably pSMARt or nSMARt-labelled mESC that were implanted into embryos. Then, we 

attempted to generate (iso)transgenic mice by directly injecting pSMARt vectors into the pronucleus of 

1-cell stage zygotes. The presence of the vector in the transgenic tissues was evaluated through GFP 

expression using a variety of techniques. Finally, the suitability of S/MAR vectors for the inheritable 

modification of organisms was challenged by analysing the germ-line transmission of S/MAR vectors 

into the offspring of transgenic animals. 

5.5.1 Cell-mediated approach – pSMARt labelled mESC cells  
can form chimaeras 

A more stringent pluripotency test is to assess the stem cells’ ability to form chimaeras when injected 

into embryos at the morulae or blastocyst stage. In order to investigate whether S/MAR labelled cells 

were able to do so and to ascertain if the vectors maintained their expression through an in vivo 

differentiation process, two rounds of chimeric mice were generated in collaboration with Franciscus 

van der Hoeven and Ulrich Kloz, from the Transgenics Service (DKFZ). 

First, high-passage pSMARt-labelled mESC from BL6 origin were injected into blastocysts of CD1 

albino mice. Although we could observe coat-chimerism in the born pups with black patches resulting 

from the contribution of our modified mESC, the percentage of chimerism was unsatisfyingly low  

(data not shown). In a second attempt to generate better chimaeras, a more suitable, low-passage stem 

cell line (E14 129Ola) was used. E14 cells were transfected either with pSMARt_CAG (pCAG) or 

nSMARt_CAG (nCAG) and kept under puromycin selection for two weeks. The clones were then 

picked and expanded, which resulted in the aforementioned clones v71 c22 and v85 c17. These E14 
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129Ola clones were injected into morulae of BL6 embryos and transferred into foster mothers.  

49 chimeric pups were born, in which the presence and contribution of E14 cells could be observed by 

an agouti/chinchilla coat chimerism over the black background (Figure 62).  

All pups showed varying degrees of chimerism: more than half of the animals had over 50% of coat 

chimerism, in some cases reaching a 100% chinchilla coat colour, which translates into almost the 

whole animal being originated from the genetically modified S/MAR-mESC. 

 

 

 

 

 

 

 

 

 

 

Figure 62: pSMARt and nSMARt-labelled mESC can form chimaeras 
E14 129Ola mESC were transfected and established in vitro with pSMARt. Expanded clones were injected into black (BL6) embryos 
(A), which resulted in the formation chimaeras, as observed by the agouti/chinchilla coat colour (B). The percentage of chimerism 
was dramatically improved as compared to using high-passage mESC, in some cases obtaining 100% chinchilla mice. 
 

5.5.2 DNA-mediated approach – Microinjection of S/MAR vectors into  
1-cell stage zygotes 

All previous work performed in this thesis was accomplished by transfecting, selecting, and modifying 

cells in vitro. These modified cells carrying additional genetic information (e.g.: GFP) could, later on, be 

transplanted into living organisms (e.g.: to form chimaeras), which would also express the transgenic 

traits. However, the selection of positive cells via the addition of antibiotics was somehow artificial.  

So far, the cells have been kept under selective pressure for a defined period to force them to retain the 

exogenous DNA vector; in order words, either the cell kept the vector at all costs, or it died. The need 

of keeping exogenous DNA to survive under pressure conditions could be at the expense of integrating, 

breaking or rearranging such DNA. To get a better insight on the vector’s behaviour in a ‘selective-free’ 
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in vivo environment, we sought to investigate the establishment and expression of pSMARt vectors 

during embryonic development, from a 1-cell zygote to a fully developed living mouse. 

Also in collaboration with the Transgenic Service, between 130 and 780 molecules of pSMARt_CAG 

(pCAG) vector were injected into 1-cell stage zygotes of BL6 mice. 250 microinjected embryos were 

then transferred into 10 foster mothers and brought to term. 34 pups were born, and 3 died shortly 

after birth, which corresponded to approximately 13% survival rate. To check for toxicity of the 

transgene (GFP) and the to assess the microinjection performance, 12 embryos were kept aside in 

culture and monitored daily to check for correct development and GFP expression until hatching 

occurred (Figure 63). One of the embryos got arrested at the 1-cell stage and did not complete the first 

cellular division. Other three embryos failed to compact and also stopped dividing. The remaining eight 

embryos underwent compaction and developed into blastocysts. Embryo 9 hatched and attached to 

gelatinised and feeder-coated plates, and expressed GFP at that point. Unfortunately, the embryo died 

after a couple of days in adherent culture.  

Figure 63: Expression of pSMARt vectors during the first stages of development 
The establishment and expression of S/MAR vectors in a ‘selection-free’ environment, were analysed during the first stages of 
embryonic development. For this, pSMARt was microinjected into 250 C57BL/6 embryos at a 1-cell stage, which were then 
transferred into foster mothers. Twelve embryos were kept aside and monitored daily for transgene toxicity, GFP expression and 
correct embryonic development. Eight out of twelve embryos underwent compaction into blastocysts and one hatched from the 
zona pellucida and attached to a feeder-coated plate. The embryos expressed GFP throughout the first stages of embryonic 
development, suggesting that the vector does not damage the embryos and can be expressed from the first cell divisions. 
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5.5.3 S/MAR vectors are expressed transgenic tissues 

5.5.3.1 GFP expression in chimeric mice 

Although the S/MAR-labelled cells contributed to form chimaeras, as observed by the apparent  

coat-chimerism, the expression of GFP and therefore the presence and functionality of the vector 

remained unknown. To tackle this question, ear biopsies from 49 born chimaeras were analysed via 

fluorescent microscopy and by PCR. No difference was observed in the intensity of GFP between 

pSMARt and nSMARt-generated chimaeras (Figure 64a). The overall mean fluorescence intensity was 

significantly higher in the chimeric ears as compared to biopsies from BL6 negative controls  

(Figure 64b-c), although the fluorescence from individual ear biopsies was in some cases difficult to 

distinguish from background autofluorescence (represented by a red threshold line around 6 relative 

light units (RLU)) (Figure 64d). Since microscopic images were not always conclusive, PCR was used 

to amplify a 515 bp fragment of coGFP (Primers GFP1-2). The highly conserved non-coding region of 

the mammalian gene Sox21 (237bp) was used as an internal control (Primers IC1-2). GFP was detected 

in 26/49 biopsies (Figure 64e), although the positive samples did not always correspond to the GFP 

detected in the images and vice versa.  

Since PCR and fluorescent results were not always coinciding, ten chimaeras were selected for further 

analysis (c6, c19, c32, c34, c35, c39, c44, c47, c48 and c49). The selection criteria applied was: GFP 

amplification via PCR, detection of fluorescence in the microscopic images and above 50% coat 

chimerism. Chimeras c6, c39, c44, c47 and c48 were bred with C57BL/6J mice. Chimeras c19, c32, 

c34 and c49 and later on c39 and c44, were sacrificed and the GFP expression was analysed in the 

chimeric organs as shown in Figure 66. 
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Figure 64: S/MAR vectors are expressed in chimeric ear biopsies 
The GFP expression from pSMARt or nSMARt vectors was analysed in ear biopsies of 49 born chimaeras, via fluorescent microscopy 
and PCR. The overall fluorescence of pSMARt and nSMARt biopsies was significantly higher than biopsies of black mice with the same 
genetic background (BL6), although there was no difference in the overall intensity between pSMARt and nSMARt chimaeras (A). 
Similarly, when grouped, the overall fluorescent intensity of all chimeric biopsies was significantly higher than the autofluorescence 
from the negative controls (B-C). The fluorescence of individual ear biopsies was also analysed and compared to the background 
fluorescence, represented by a threshold line at 6 RLU (D). Also, a 515bp fragment of coGFP was amplified in 26/49 samples.  
A 237bp corresponding to the conserved mammalian Sox21 gene was used as internal control (E).  
*p-val=1,30E-03. **p-val=1,21E-05. ***p-val=1,67E-06. 

5.5.3.2 GFP expression in pronuclear injected mice 

Similarly, tail biopsies from 31 pronuclear injected pups were taken and analysed both microscopically 

as well as by PCR. The tails were compared to biopsies from C57BL/6 mice. Overall, transgenic tails 

showed a significantly higher fluorescence as compared to the background autofluorescence from the 

negative controls, which corresponded to 6 relative light units (RLU). When analysed individually, the 

specimens showed varying degrees of GFP. Also, GFP was analysed by PCR, which did not always 

correspond to the GFP detected by fluorescence microscopy (Figure 65).  
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Figure 65: S/MAR vectors are expressed in biopsies of pronuclear injected mice. 
The GFP expression from the pSMARt vector was analysed in tail biopsies from 31 born pups and negative controls, via fluorescent 
microscopy and PCR (Primers GFP 1-2). The overall fluorescence of pSMARt biopsies was significantly higher than biopsies of black 
mice with the same genetic background (BL6) (A-B). The fluorescence of individual tail biopsies was also analysed and compared to 
the background fluorescence, represented by a threshold line at 6 RLU (C). Also, a 515bp fragment of coGFP was amplified in some 
samples (D) as compared to the negative controls (C1 and C2). *p-val=0,00459. 

 

Since fluorescence and GFP amplicons were not always coinciding, 13 transgenic animals that showed 

GFP amplification as well as fluorescent expression were selected (T3, T4, T5, T6, T7, T11, T12, T14, 

T18, T21, T28, T30 and T31). Transgenics T11, T14, T18, T21, T28 and T30 were used for breeding 

and assessing the germline transmission of the vectors. Transgenics T4, T5, T6, T7, T8, T12 and later 

on T11, T18 and T21, were sacrificed and their tissues were analysed for the presence of S/MAR vector 

Figure 66. 

The selected chimaeras and transgenics, together with C57BL/6J mice (negative control) and a 

constitutively active integrated UBC::GFP mice (positive control), were anaesthetised and terminally 

bled via heart puncture. The blood was collected in EDTA-tubes and analysed via Flow Cytometry.  

The animals were then dissected, and internal organs from different embryonic derivatives such as liver, 

kidney, heart, skeletal muscle, skin and testes (Table 48) were taken and cut into four pieces. One piece 
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was fixed in 4% PFA and used for immunohistochemistry, another piece was used for fluorescent 

imaging, and two pieces were snap frozen for further molecular analysis.  

Together with the blood, spleens and femurs (bone marrow) were collected and placed in IMDM media 

for additional FACS analysis of hematopoietic organs (Figure 67 - Figure 69). 

Table 48: Embryonic origin of organs and tissues 

 

Organ Embryonic origin 
Liver Endoderm  
Skeletal Muscle Mesoderm 
Kidney Mesoderm 
Heart Mesoderm  
Skin Ectoderm/ mesoderm 
Spleen Mesoderm 
Bone Marrow/ 
blood 

Mesoderm 

Testes  Mesoderm 

 

The tissues were imaged using a motorised fluorescent stereomicroscope (Leica M205 FA. Exposure  

1 sec, Amp gain 1,9x, digital exposure 4). GFP was detected in all chimaeras analysed and was highly 

expressed in the muscle, skin and liver and to a lesser extent in the heart. No GFP was detected in the 

kidney. One transgenic (T11) showed high GFP expression in muscle and skin and less in the heart, 

but no expression in kidney or liver. The constitutively GFP-expressing mice used as positive control 

showed GFP expression across all organs whereas the C57BL/6 negative control showed no detectable 

fluorescence. Organs and tissues from a selection of analysed animals are shown in Figure 66. 
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Figure 66: S/MAR vectors are expressed in transgenic organs 
Organs derived from the three germ layers from chimeric and pronuclear injected mice were imaged using a motorised fluorescent 
stereomicroscope (Leica M205 FA. Exposure 1 sec, Amp gain 1,9x, digital exposure 4). GFP was detected in all chimaeras analysed 
and was highly expressed in muscle, skin and liver and to a lesser extent in kidney and liver. Only one of the analysed mice derived 
from pronuclear injection of pSMARt (T11) showed high GFP expression in the muscle and skin and to a lesser extent in the heart. 
As expected, the constitutively GFP-expressing mice used as positive control showed GFP expression across all organs whereas the 
C57BL/6 negative control showed no detectable fluorescence. Scale bars = 2mm.  
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Also, hematopoietic tissues such as the spleen, bone marrow and peripheral blood, were processed, 

stained for the common leukocyte surface antigen CD45, and their GFP expression was quantified via 

Flow Cytometry.  

Blood samples were stained with a different panel of surface markers (CD45.1, CD11b, B220, CD4 

and CD8a) to subgroup the GFP+ blood cells into T cells, B cells and myeloid cells (Figure 67). 

However, the EDTA-tubes were filled with too much blood, which resulted in insufficient EDTA to 

prevent coagulation and affected the overall quality of blood samples. No GFP was detected in the 

blood of Mouse 6 (Negative control) (A), whereas the majority of the blood from Mouse 7 (positive 

control) was GFP positive (B). None of the analysed mice generated by pronuclear injection showed 

GFP positive blood (C-E). The analysed chimaeras (F-G) showed the varying percentage of GFP blood 

cells (46,3 – 63,2%), with different blood cell type contribution. GFP population gated on viable cells 

and blood subpopulations gated on GFP positive cells.  

A similar pattern was observed in the GFP expression from bone marrow. None of the analysed mice 

generated by pronuclear injection showed GFP -positive bone marrow cells (Figure 68C-E), while the 

analysed chimaeras (F-G) showed the varying percentage (31 - 46,7%) of GFP-positive cells. 

A slight difference was detected in splenocytes (Figure 69). Almost 3% of GFP-positive splenocytes were 

detected in Mouse 1 (pronuclear injected mice T11) (C) but not in the others (D-E). The analysed 

chimaeras (F-G) showed the varying percentage of GFP-positive spleen cells (26,9 – 55,8%). 
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Figure 67: GFP analysis of Blood from chimeric and transgenic animals via Flow Cytometry. 
Blood samples from chimaeras and pronuclear injected mice were obtained by terminal heart puncture and analysed for GFP 
expression. Also, a panel of surface markers (CD45.1, CD11b, B220, CD4 and CD8a) was used to subgroup GFP positive cells into 
T cells, B cells and myeloid cells. No GFP was detected in the blood of Mouse 6 (Negative control) (A), whereas the majority of the 
blood from Mouse 7 (positive control) was GFP positive (B). None of the analysed mice generated by pronuclear injection showed 
GFP positive blood (C-E). The analysed chimaeras (F-G) showed the varying percentage of GFP blood cells (46,3 – 63,2%), with 
different blood cell type contribution. GFP population gated on viable cells and blood subpopulations gated on GFP positive cells. 
Note: the EDTA-tubes were filled with too much blood, which resulted in insufficient EDTA to prevent coagulation and affected the overall quality 
of blood samples. 
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Figure 68: GFP analysis of Bone Marrow from chimeric and transgenic animals via Flow Cytometry. 
The bone marrow (BM) was flushed from the femur and stained against the common leukocyte surface antigen CD45, common in all 
hematopoietic cells. No GFP was detected in BM from Mouse 6 (Negative control) (A), whereas the majority from Mouse 7 (positive 
control) was GFP positive (B). None of the analysed mice generated by pronuclear injection showed GFP positive BM (C-E). The 
analysed chimaeras (F-G) showed the varying percentage of GFP cells (31 - 46,7%). CD45 population gated on viable cells and GFP 
population gated on CD45 positive cells. 
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Figure 69: GFP analysis of Spleen from chimeric and transgenic animals via Flow Cytometry. 
The spleens were homogenised and the recovered splenocytes were stained with CD45. No GFP was detected in the spleen from 
Mouse 6 (Negative control) (A), whereas the majority from Mouse 7 (positive control) was GFP positive (B). Almost 3% of GFP-
positive splenocytes were detected in Mouse 1 (C) but not in the other pronuclear injected mice (D-E). The analysed chimaeras 
(F-G) showed the varying percentage of GFP positive spleen cells (26,9 – 55,8%). CD45 population gated on viable cells and GFP 
population gated on CD45 positive cells. 
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5.5.4 Germ-line transmission of S/MAR vectors 

5.5.4.1 Stem Cell transmission of S/MAR-labelled mESC in chimaeras 

After confirming that S/MAR-mESC were able to form chimeras and to retain the vector expression 

throughout cell division and differentiation both in vitro and in vivo, we wondered whether the pSMARt 

or nSMARt labelled mESC would contribute to germ-line transmission (stem cell transmission) and 

most importantly, whether the vector would be able to survive meiosis and be passed onto the offspring 

(vector transmission).  

To investigate this, six chimaeras (➁c6 and ➀c35, c39, c44, c47 and c48), which had above 80% of 

coat chimerism and showed GFP amplification in a screening PCR, were selected for breeding with 

C57BL/6J mice. In the positive scenario where S/MAR-labelled mESC (129 Ola) would contribute to 

the germ-line (ectoderm), either a mixed black and agouti or a 100% agouti coat-colour offspring would 

be expected. In the negative scenario, only black offspring would be produced.  

Surprisingly, two of the best chimaeras (c39 and c44, both males) showed stem cell germ-line 

transmission as the totality of their offspring was agouti (Figure 70). Both pSMARt (c44) and nSMARt 

(c39) labelled mESC were able to contribute to the germ-line.  

Figure 70: S/MAR-modified stem cells contribute to the germ-line 
To investigate whether S/MAR-labelled mESC were able to contribute to the germ-line, the best six generated chimaeras (generation 
F0) were backcrossed to C57BL/6J mice. In a positive scenario of germ-line transmission, all offspring (F1 generation) would have an 
agouti coat colour. In a negative scenario, all the offspring would be black. Two out of six bred chimaeras c39 (nSMARt) and c44 
(pSMARt), both males, resulted in 100% agouti offspring. 
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5.5.4.2 Vector transmission in chimaeras  

After confirming that the transplanted 129Ola mESC were able to contribute to the germ-line and 

could be passed onto the offspring, we wondered if that would be the case for the S/MAR vectors and 

if vector germ-line transmission was possible. However, little is known about episomal vector behaviour 

during meiosis and gametogenesis. To tackle this, a GFP screening was performed in blood (protein 

level) and tail biopsies (DNA level) from agouti pups (F1 generation) from c39 (nSMARt) and  

c44 (pSMARt), which had a 50% 129Ola mESC contribution. Therefore, assuming vector 

transmission, GFP would be expected in all F1 pups. First, a GFP expression screening was performed 

in blood, which was obtained from a puncture in the facial vein, collected in EDTA tubes and analysed 

via Flow Cytometry to detect expression of GFP (Figure 71).  

Figure 71: pSMARt and nSMARt are not expressed in the chimeric F1 generation 
Six generated chimaeras (F0) were bred with C57BL/6 mice. Two male chimaeras: c39 (nSMARt) and c44 (pSMARt), showed stem 
cell transmission and produced agouti offspring. To investigate whether the F1 generation expressed either nSMARt or pSMARt, 
blood from the facial vein was collected from all pups and analysed using flow cytometry. As expected, black pups without 129Ola 
mESC contribution did not show expression of GFP (data not shown). Surprisingly, GFP was only detected between 1-6% of blood 
cells in agouti pups, which have a 50% contribution of exogenous mESC.  
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As expected, the blood from the F0 generation (c39 and c44) was almost 50% chimeric, with  

46 – 49,1% of GFP-positive cells, as compared to the negative control (C57BL/6 mice). However, only 

one pup from c39 showed four pups from c44 showed above 1% of GFP positive cells, ranging from 

1,04 to 6,23%. 

We then wondered if the lack of GFP expression was a consequence the DNA being lost during meiosis 

or being present but silenced. For that, a screening PCR was performed on two different litters from 

c39 and c44, which stem cell transmission (agouti coat). Although GFP could be amplified in the F0 

generation, no amplification was found in the F1 offspring, regardless of the litter; suggesting that the 

vector was not present either episomally or integrated (Figure 72).  

Figure 72: pSMARt and nSMARt are not present in F1 chimeric tissues 
Six generated chimaeras (F0) were bred with C57BL/6 mice. Two male chimaeras: c39 (nSMARt) and c44 (pSMARt), showed stem 
cell transmission and produced agouti offspring. However, the F1 generation did not show GFP expression when peripheral blood 
was examined. To investigate whether the offspring lacked GFP expression due to loss or silencing of the DNA, a genotyping PCR 
was performed. Although GFP could be amplified in the two F0 males, no GFP amplification was detected neither in the C57BL/6 
(negative control) nor two litters from the F1 generation, suggesting that the transgene was not transmitted to the offspring, neither 
episomally or integrated. The internal control corresponds to a conserved fragment of the mammalian Sox21 gene. 

 

This data suggested that the vector was either lost or silenced during gametogenesis and that the 

outcomes are independent of which vector type was used. 
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5.5.4.3 Vector transmission in pronuclear injected mice 

Differently, from the chimeric animals, pronuclear injected mice had no phenotypic trait that could 

suggest the presence or absence of S/MAR vectors. Therefore, a GFP screening was performed in all 

31 generated F0 mice, either via PCR amplification of GFP (Figure 65) or flow cytometry. 

Surprisingly,  three F0 animals (T11, T18 and T21) expressed GFP, ranging from 4 to 10% of positive 

cells in peripheral blood (Figure 73), as compared to C57BL/6 mice (negative control).  

 

Figure 73: pSMARt is expressed in F0 pronuclear injected mice 
All 31 born mice (F0) generated by pronuclear injection of pSMARt, were analysed for GFP expression in peripheral blood from a 
facial vein puncture. From these, three males (T11, T18 and T21) showed varying degrees of GFP expression ranging from 4-10% as 
compared to the negative C57BL/6 mouse. 

 

Some animals (T11, T14, T18, T21 T28, T30 and T31) were selected for breeding with C57BL/6J mice 

to check for germ-line transmission of the pSMARt vector, as well as to analyse its presence or absence 

in the germ-line. When the litters were born, blood from the facial vein was used to determine the 

expression of the vector as well as PCR to confirm its presence. 

Mouse T11, which showed GFP expressing cells in blood, generated two litters that were subjected to 

a genotyping PCR to check for the presence of pSMARt (Figure 74). No GFP could be detected in 

biopsies from the first litter. The second litter contained two pups which showed amplification of GFP.  
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Figure 74: pSMARt can be detected in the F1 generation of pronuclear injected mice 
Mouse T11 was bred with a C57BL/6 female and produced two litters. No GFP could be amplified in any of the pups from the first 
litter, although GFP expression could be detected via Flow cytometry. Surprisingly, two pups from the second litter showed 
amplification of GFP via PCR. 

 

5.5.4.4 Study of S/MAR behaviour during meiosis 

The previous analysis of GFP in the F1 generation pointed at meiosis as a significant obstacle for 

episomal germ-line transmission. To investigate the behaviour of S/MAR vectors during this particular 

cell division process, the presence and expression the S/MAR vector were evaluated before and  

after gametogenesis.  

For this, the testes and sperm from chimaeras c39 and c44 as well as from the pronuclear injected mice 

T11, T18 and T21 were collected and analysed for both expression (GFP fluorescence) and presence 

(GFP amplification) of the S/MAR vectors. Black C57BL/6J mice as well as a constitutively expressing 

mouse with integrated GFP driven by the UBC promoter (UBC::GFP mice, Jackson Lab) were used as 

negative and positive controls respectively.  

The testes were imaged with a Leica M205 FA microscope (Exposure 1 sec, Amp gain 1,9x, digital 

exposure 6. Scale bars = 2mm) as shown in (Figure 75a). GFP expression could be detected in both 

chimaeras (c39 and c44) as well as in one of the pronuclear injected mice (T11). To exclude that the 

fluorescence detected was emitted by the external testicular membrane or Tunica Albuginea, the 

seminiferous tubules were homogenised to isolate the germinal cells, comprised by spermatogonias, 

spermatocytes and spermatids. The GFP fluorescence from these cells was analysed by flow cytometry 

(Figure 75b), which revealed the same expression pattern than fluorescent images from testes. Finally, 

the sperm was collected from the epididymis and imaged using a Nikon Ti microscope  

(scale bars = 100um). GFP could only be detected in sperm from the positive control UBC::GFP  

(Figure 75c). 
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We then addressed whether the lack of GFP fluorescence in the sperm was due to silencing or loss of 

the episome during spermatogenesis. For this, DNA from sperm and testes was amplified via PCR 

(Figure 76). GFP could be detected in both sperm and testes from mice c39, c44 and T11, as well as in 

the technical and biological positive controls, suggesting that S/MAR vectors are present at both initial 

and end stage of spermatogenesis but are only expressed before meiosis occurs. 

 
Figure 76: S/MAR vectors can be detected in both testes and sperm 
To investigate the presence or absence of GFP (and therefore, episomal DNA) in the reproductive tissues, both sperm and testes 
from chimeric and pronuclear injected mice were subjected to PCR amplification of the transgene. GFP could be detected in sperm 
and testes from the chimaeras c39 and c44 as well as from the pronuclear injected mice T11. The positive control mice (UBC::GFP) 
as well as the pSMARt_CAG plasmid (v71) showed successful GFP amplification whereas the biological (C57BL/6J mice) and technical 
(water) negative controls did not. 

 

We then investigated at which stage of spermatogenesis did the loss of expression occur (Figure 77). 

For this, the germinal epithelia from the seminiferous tubules were subjected to immunohistochemistry 

and stained against GFP, with haematoxylin counterstaining (upper row). Sections stained only with 

secondary antibody were used as technical controls (middle row), and Haematoxylin-Eosin (HE) 

staining revealed the tissue architecture (lower row).  

Pronuclear injected mice T11 as well as chimaeras c39 and c44 showed expression of GFP in the most 

peripheral layer of cells, which corresponds to spermatogonial cells (see the cartoon in Figure 75 for 

histological reference). However, no GFP could be detected in more advanced meiotic cells, such as 

spermatocytes, spermatids or sperm cells. The negative control C57BL/6 mice showed no GFP expression 

at all, whereas the constitutively active UBC::GFP mice showed GFP expression along the  

germinal epithelia. 
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Figure 77: S/MAR expression is lost during meiosis 
Immunohistochemical staining for GFP with haematoxylin counterstaining (upper row), unstained control (middle row) and HE 
(bottom row) of testicular sections from chimeric and pronuclear injected mice. T11, as well as C39 and C44, showed GFP expression 
in the outer cell layer, which corresponds to spermatogonial cells, but no GFP expression could be detected in spermatocytes or 
sperm. Scale bars=100µm 
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5.5.5 Summary 

The generation of bona fide chimaeras can be achieved by using ‘freshly’ generated and low passage 

mESC, in some cases reaching almost complete coat chimerism. Both pSMARt (pCAG) and nSMARt 

(nCAG)-labelled mESC contributed to form chimaeras, which expressed significantly higher levels of 

fluorescence as compared to background autofluorescence from C57BL/6 negative control mice. 

However, no significant difference in overall GFP expression was observed between pSMARt and 

nSMARt chimaeras. The presence of S/MAR vectors was also detected by PCR amplification of GFP, 

which was observed in some of the chimaeras. Similarly, transgenic mice generated by pronuclear 

injection of pSMARt into the zygote also showed a significant degree of GFP expression as compared 

to negative controls. Transgenics generated both ‘ex vivo’ and ‘in vitro’ with either S/MAR-labelled 

mESC or pronuclear injected zygotes, contributed to generate organs derived from the three germ-

layers, confirming that the vectors could survive differentiation to fully committed and differentiated 

cell types of a living organism.  Finally, the capabilities of S/MAR vectors were further challenged by 

investigating their germ-line transmission potential. At least two male chimaeras produced entirely 

agouti F1 litters, which proved that S/MAR-labelled mESC could contribute to the germ-line (stem cell 

transmission). The unknown behaviour of episomal DNA vectors during meiosis was challenged by 

checking the GFP expression in those agouti F1 litters from chimaeras and pronuclear injected mice 

(vector transmission). Although the S/MAR vectors could be detected before (testes) and after meiosis 

(sperm), their expression was lost at the spermatid stage.  
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5.6 Genetic modification and reprogramming of human 
fibroblasts to hiPSC 

In this chapter, the reprogramming abilities of the S/MAR vector system are compared to the state-of-

art for episomal reprogramming, the EBNA-1/OriP system, using the vectors described in  

Section 5.1.11. For this, the reprogramming efficiency as well as the pluripotent quality of generated 

EBNA and S/MAR-hiPSC clones were compared. In a separate section, the reprogramming abilities of 

the 4in1 Lentiviral-derived vectors POP and nPOP, described in Section 5.1.10, were also tested in a 

more suitable and easier to transfect cell line of human dermal fibroblasts.  

5.6.1 Comparison between S/MAR vectors and the EBNA-1/OriP 
system 

As explained earlier in this thesis, the transfection in murine fibroblasts (MEFs) was not efficient 

enough to deliver high levels of reprogramming factors to allow efficient reprogramming. To overcome 

the DNA delivery barrier, we tested different S/MAR reprogramming vectors in human dermal 

fibroblasts (HDFs), which can be routinely and efficiently transfected.  

5.6.1.1 S/MAR vectors can reprogram hiPSC  

In collaboration with Prof. Mckay (Manchester Metropolitan University, UK), we compared the 

reprogramming potential and efficiency of S/MAR vectors to the well established EBNA-1/OriP vector 

system. Prof. Mckay kindly provided the expertise and the EBNA-based vectors [203] from which 

S/MAR versions containing the human Reprogramming factors Oct4, Sox2, Klf4, L-Myc and Lin28 

(OKSML), as well as shRNA against p53 were subcloned (Figure 37).  

Both EBNA-1 or S/MAR vectors were nucleofected into CLN7 474 human dermal fibroblasts (HDFs) 

from patients suffering from Batten disease, which were commonly used in Prof. Mckay’s lab. 

Transfected cells were kept under reprogramming conditions for three weeks. At day 21, HDFs that 

received the reprogramming factors delivered in EBNA vectors showed signs of Mesenchymal-Epithelial 

Transition (MET). The cells that were transfected using S/MAR vectors had a slight delay in 

reprogramming but showed the same morphological changes at day 23 (Figure 78a). Thereafter, the 

emerging hiPSC colonies were picked and expanded, and their morphology was monitored over time. 

After a couple of passages, the pluripotency of hiPSC was assessed using Immunofluorescence stainings 

for human pluripotency markers, such as Tra160, SSEA3, SSEA4 and Nanog (Figure 78b).  

Both EBNA-1 and S/MAR reprogrammed colonies showed expression of all pluripotency markers as 
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well as the positive control (hESC). A slight expression of the embryonic surface marker SSEA-3 was 

detected in feeder layers, as they also are of embryonic origin. All work performed in human embryonic 

stem cells (hESC) was performed at Prof. Mckay’s lab in Manchester, UK. 

Figure 78: EBNA-1 and S/MAR episomal reprogramming and pluripotency assessment in hiPSC. 
CLN7 474 human dermal fibroblasts (HDFs) were electroporated with EBNA-1 or S/MAR episomal vectors and kept under 
reprogramming conditions for over a month. At day 21, signs of MET were obvious in EBNA-1 transfected cells, whereas S/MAR 
containing fibroblasts showed a slight delay in reprogramming. However, after a month of reprogramming, there were no apparent 
microscopical differences between EBNA-1 and S/MAR reprogrammed fibroblasts (A). The expression of pluripotency markers 
(Tra160, SSEA-3, SSEA-4 and Nanog) was assessed in the generated hiPSC (B). Both EBNA-1 and S/MAR reprogrammed colonies 
showed expression of all pluripotency markers as well as the positive control (hESC). A slight expression of the embryonic surface 
marker SSEA-3 was detected in feeder layers, as they are from embryonic origin. All work performed in human embryonic stem cells 
(hESC) was performed at Prof. Mckay’s lab in Manchester, UK. 

5.6.1.2 Comparison between EBNA and S/MAR reprogramming efficiencies 

The reprogramming efficiencies between EBNA-1 and S/MAR vectors were then compared. Due to 

limited access to Batten disease fibroblasts, early passage wildtype NHDFs (Promocell) were used for 

further experiments. The cells were nucleofected with the respective EBNA or S/MAR vectors (together 

with pSMARt as a GFP-labelling vector) and kept under reprogramming conditions for a month. 

Untransfected NHDFs were used as negative control. As observed with patient fibroblasts, EBNA 

colonies started showing mesenchymal-epithelial transition (MET) and a morphology resembling 
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hiPSC at around day 20, whereas S/MAR colonies were delayed by approximately 10 days. At day 30, 

the cells were fixed and stained with the Alkaline Phosphatase (AP) Staining Kit II (Stemgent). 

Out of 60.000 cells that were allowed to reprogram, EBNA-nucleofected fibroblasts generated 55  

AP-positive colonies (0.092%), whereas fibroblasts nucleofected with S/MAR vectors resulted in 3  

AP-positive colonies (0.005%) and 2 colonies that showed some degree of MET but were AP-negative 

(Figure 79a). Both reprogramming and stainings were performed in quadruplicates of 15.000 cells each. 

The results are expressed as a total number of AP-positive colonies/total number of cells. Also, GFP-

expressing colonies were found in both S/MAR and EBNA-1-reprogrammed hiPSC as a result of  

co-transfecting the labelling vector pSMARt (Figure 79b), suggesting that pSMARt vectors were also 

capable of surviving human reprogramming. 

 

Figure 79: S/MAR vectors reprogram hiPSC less efficiently than EBNA-1 vectors 
Wildtype NHDFs were nucleofected with either EBNA-1 or S/MAR vectors, in combination with the labelling vector pSMARt. 
Untransfected fibroblasts were used as negative control. After 30 days under reprogramming conditions, the cells were fixed and 
stained for Alkaline Phosphatase (AP). The reprogramming and stainings were performed in quadruplicates of 15.000 cells each 
(60.000 cells in total). A total of 55 AP-positive colonies emerged from EBNA-nucleofected cells (0.092% reprogramming efficiency), 
whereas 3 S/MAR colonies stained positive for AP (0.005%) (A). Also, NHDF cells were co-transfected with the GFP-labeling vector 
pSMARt (B), and GFP-expressing hiPSC were also obtained (pictures from two independent experiments). 

 

5.6.1.3 S/MAR-labelled hiPSC retain expression through  
in vitro differentiation 

pSMARt-labelled or unlabelled hiPSC generated with EBNA-1 vectors were forced to form Embryonic 

Bodies (EBs) and allowed to randomly differentiate into representatives of the three germ layers.  

For this, hiPSC colonies were passaged and plated into ultra-low attachment plates (Corning), in the 

presence of hiPSC media + 10 µM Rock inhibitor. The growing EBs were transferred to a gelatinised 

black plate and allowed to expand and differentiate in the absence of differentiation inhibitors. 
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pSMARt-labelled hiPSC remained expressing GFP through EB formation and differentiation, as 

observed in Figure 80.  

After two weeks, differentiated structures could be observed microscopically, and the cells were then 

fixed, permeabilised and stained for ectodermal (ß3-Tubulin), mesodermal (α-SMA) and endodermal 

(FoxA2) markers (Figure 81). Both pSMARt-labelled and unlabelled cells were able to differentiate into 

all germ layers, although endodermal structures were difficult to obtain. pSMARt-labelled hiPSC 

retained expression of GFP (Figure 81b). 

 
Figure 80: S/MAR vectors are expressed in EBs and through hiPSC differentiation 
To generate human Embryonic Bodies (EBs), stem cell colonies were scratched, and hiPSC clumps were allowed to collapse in ultra-
low attachment plates in the presence of hiPSC media with 10µM Rock inhibitor. After 7 days, the EBs were transferred into 
gelatinised plates in the presence of DMEM 20% FCS and allowed to attach and spread, while the proliferating cells differentiated into 
representatives of the three germ layers. Both unlabelled (negative control) and pSMARt-labelled hiPSC formed EBs that differentiated 
into defined structures. pSMARt cells kept the expression of GFP throughout the differentiation process. Scale bars=100µm. 
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Figure 81: S/MAR-labelled hiPSC can differentiate into derivatives from the three germ layers and express GFP 
After formation of EBs, differentiating structures, such as neurons or tubular structures, could be observed microscopically. The cells 
were then fixed, permeabilised and stained for markers from the three embryonic layers: ectoderm (ß3-Tubulin), mesoderm  
(α-SMA) and endoderm (FoxA2). Both unlabelled and pSMARt-labelled hiPSC differentiated into all three germ layers. Also, pSMARt-
labelled cells remained expressing endogenous GFP. Scale bars=100µm 

5.6.2 Assessment of nPOP as a hiPSC reprogramming tool 

Because human fibroblasts could be routinely and easily transfected, overcoming the problem of DNA 

delivery in murine fibroblasts, we sought to investigate the suitability and efficiency of reprogramming 

of the previously described (Section 5.1.10) S/MAR pentacistronic vectors coding for Oct4, Klf4, Sox2, 

cMyc and the reporter gene dTomato (OKSMdTom) and compare them to the originally described 

4in1 Lentivirus [285, 297]. The S/MAR vector (POP) contained the aforementioned pentacistronic 

cassette (OKSMdTom), whereas its minimally sized version (nPOP), was devoid of bacterial sequences. 

An additional aim of this experiment was to investigate the effect of bacterial sequences in transgene 

expression and reprogramming. We hypothesised that plasmids with reduced or absent bacterial 

sequences would be 1) smaller and therefore, easier to deliver to cells; and 2) less prone to silencing, 

which would yield to higher and longer expression of reprogramming factors.  

5.6.2.1 S/MAR reprogramming vectors can reprogram hiPSCs 

Also in collaboration with Prof. Mckay, we nucleofected low passage CLN7 474 HDFs with either POP 

or nPOP. Also, the cells were co-transfected with a pSMARt-GFP-shP53 labelling vector with shRNA 

against p53, since cells with reduced p53 levels have been reported to reprogram into hiPSC with better 

efficiencies than normal cells [301]. Fibroblasts transfected with pSMARt-GFP-shP53 were used as 

negative control, to discard the effect of either S/MAR or knockdown p53 in reprogramming.  

The transfected cells were kept under reprogramming conditions for a month. As observed in S/MAR 
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reprogrammed hiPSC (Section 5.6.1.1), POP and nPOP nucleofected cells also showed a delay in MET 

and reprogramming. We could only reprogram hiPSC with nPOP, while POP failed to generate fully 

reprogrammed colonies, as observed by the remaining expression of exogenous factors (dTomato) and 

the aberrant colony morphology. Also, we observed two nPOP hiPSC colonies which also expressed 

GFP, indicating a successful co-transfection, establishment and survival of pSMARt during 

reprogramming. Moreover, GFP-negative hiPSC colonies (without shP53) were also obtained, 

suggesting that shp53 might be desirable but not dispensable for human reprogramming. 

Figure 82: Assessment of the reprogramming capabilities of POP and nPOP in HDFs 
Patient CLN474 Human Dermal Fibroblasts (HDFs) were co-nucleofected with a labelling pSMARt-GFP-shp53 vector and either an 
S/MAR vector containing the human reprogramming factors Oct4, Klf4, Sox2, c-Myc with a bacterial sequence containing OriC and 
antibiotic resistance (POP) or a minimally sized version (nPOP), devoid of bacterial sequences. After a month of reprogramming, 
POP failed to reprogram hiPSC fully and generated only partially reprogrammed colonies, which displayed an aberrant morphology 
and remained expressing the exogenous factors (dTom); whereas nPOP generated cell colonies resembling the morphology of hiPSC. 
Also, some of the nPOP-generated colonies expressed GFP (pSMARt-GFP-shP53), demonstrating that S/MAR vectors can survive 
and establish during the reprogramming process. 
 



RESULTS 

 209 

5.6.2.2 Comparison between reprogramming efficiencies of Lentivirus and 
S/MAR vectors 

After successfully reprogramming patient HDFs with nPOP, we wondered how efficient the 

pentacistronic S/MAR vectors would be as compared to the state-of-art 4in1 Lentivirus, from which 

they were subcloned. Due to limited access to patient fibroblasts, we performed this comparison in low 

passage wildtype NHDFs (Promocell). For this, the cells were either nucleofected with the S/MAR 

vectors POP and nPOP or transduced with 4in1 Lentiviral particles. Scrambled Lentiviral particles 

based on the pWPI vector were used as a negative control. At day 30, the cells were fixed and stained 

with the Alkaline Phosphatase (AP) Staining Kit II (Stemgent).  

Out of 60.000 cells that were allowed to reprogram, 4in1 Lentivirally transduced cells showed more 

colonies (n>400) than nPOP (n=25) and than any other episomal reprogramming system.  

The reprogramming and staining were performed in quadruplicates of 15.000 cells each. The results 

are expressed as a total number of AP-positive colonies/total number of cells. Although the efficiency 

of reprogramming in Lentivirally transduced cells was higher than nPOP (0.667% vs 0.042%), the 

morphology and quality of the AP-positive colonies did not resemble those from human stem cells (for 

example, EBNA-generated hiPSC or hESC), but rather the aberrant morphology obtained with POP 

vectors. No hiPSC colonies were observed in POP transfected cells Figure 83. 

 
 
Figure 83: Reprogramming efficiencies of Lentivirus 4in1 and S/MAR-transfected HDFs 
Wildtype NHDFs were either nucleofected with either POP or nPOP and co-transfected with pSMARt-GFP-shp53 or transduced 
with 4in1 Lentiviral particles. Scramble particles were used as negative control. After 30 days of reprogramming, the cells were fixed 
and stained for Alkaline Phosphatase (AP). The reprogramming and staining were performed in quadruplicates od 15.000 cells each 
(60.000 cells).  More than 400 AP-positive colonies emerged from 4in1 transduced cells (0.667% reprogramming efficiency), whereas 
25 nPOP colonies stained positive for AP (0.042%). No colonies emerged from POP-transfected cells.  
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5.6.3 Summary  

In this chapter, three systems were tested and compared for the reprogramming of human fibroblasts: 

our S/MAR episomal vectors were compared to the state-of-art of episomal reprogramming based on 

EBNA-1/OriP coding for OKSML; as well as compared to the Lentiviral 4in1 construct.  

When compared to other episomal systems, such as EBNA-1/OriP, S/MAR vectors showed a slight 

delay in reprogramming and a slightly lower reprogramming efficiency. However, their pluripotency 

and quality were comparable to those hiPSC colonies obtained with EBNA-1 vectors. Also, GFP-

expressing hiPSC colonies were obtained when reprogramming fibroblasts were co-transfected with a 

pSMARt_GFP vector, suggesting that pSMARt vectors were established and kept their functionality 

during human reprogramming.  

When the pentacistronic vectors POP and its bacterial backbone-reduced counterpart nPOP were 

compared to the described 4in1 Lentivirus, we observed a much better reprogramming efficiency in 

lentivirally transduced cells (0,667%) than in S/MAR transfected cells. However, those lentiviral-

reprogrammed hiPSC showed aberrant morphology and failed to grow after passaging. No POP-hiPSC 

colonies were obtained, whereas the minimally sized nPOP, devoid of bacterial sequences, managed to 

reprogram hiPSC colonies with a 0,042% of efficiency. 
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6. DISCUSSION 

6.1 Overview 

The use of episomal DNA vectors, entirely comprised of human elements, to persistently modify stem 

cells has never been shown before. Therefore, we aimed to develop episomal DNA vectors based on 

S/MAR motifs as a tool to persistently genetically modify Stem Cells, which is typically achieved by 

using integrating viral vectors or virally-derived episomal vectors. Episomal vectors offer several 

advantages over integrative systems, as they avoid non-specific integrations into the host genome and 

the risk of cellular transformation; as well as over virally-derived episomal vectors, which still retain 

some oncogenic potential and can be detected as ‘pathogenic’ by the innate immune system, leading to 

silencing and short expression of the transgene. In particular, episomal vectors based on S/MAR motifs 

are attractive alternatives to virally-derived vectors as they can deliver sustained levels of transgene 

expression without compromising the viability of the host cell. However, the ability of S/MAR vectors 

to sustain high levels of transgene expression through different cellular states (differentiated vs 

pluripotent) without getting integrated or silenced was unknown to us. 

6.2 Summary of results 

The suitability of the originally described pEPI minicircle was first assessed in mESC. However, its 

performance was poor, and the transgene expression was heterogeneous and weak. Therefore, the 

vector design was refined and improved in all its functional aspects. First, the selection marker was 

replaced and relocated inside the transcription unit (pSMARt). Second, anti-repressive elements, such 

as UCOE or Element 40, were added to enhance expression and improve the vector establishment 

(pSMARt.1). Third, bacterial sequences were removed to decrease immunotoxicity and enhance the 

transgene expression (nSMARt). Fourth, the original -interferon S/MAR was replaced by a smaller and 

more effective S/MAR (pSMARter). Finally, the splicing of the S/MAR motif from the mRNA 

transcript resulted in better expression and establishment (nSpliced). Then, the activity of different 

promoters was evaluated, which resulted in the CAG promoter being the most suitable promoter for 

pluripotent cells’ work. The vector series pSMARt, nSMARt were used for further in vitro and in vivo 

studies, whereas the suitability of both nSMAR_spliced and pSMARter should be further evaluated.  

The reprogramming and differentiation survival of pSMARt vectors was first assessed in an all-trans 

retinoic acid (ATRA)-mediated neuronal differentiation model, in which neuroblastoma cells were 
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forced to differentiate into neurons upon addition of ATRA. When ATRA was withdrawn, the neurons 

de-differentiated and recovered their neuroblastoma morphology. The pSMARt expression remained 

active throughout ‘differentiation’ and ‘de-differentiation’, suggesting that the vector was neither lost 

nor silenced during the processes. Molecular analysis revealed that pSMARt was kept at low copy 

numbers (2-4 copies/cell) and could be rescued in its episomal form. More importantly, the vector did 

not modify the cells’ behaviour as observed by expression of the neuronal markers tested, and by the 

retention of engraftment and tumorigenic potential when the cells were injected both subcutaneously 

and intracranially into SCID. 

Then, both pSMARt and nSMARt vectors were used to modify mESC persistently and to reprogram 

somatic cells into miPSC. Molecular analysis of the vectors demonstrated that were kept at low copy 

numbers (1 - 2 copies/cell) and could be detected and rescued in their episomal forms. The presence 

of integrated forms could not be detected via Southern Blot but cannot be excluded; thus requiring 

further investigation and integration analysis.  

The impact of S/MAR vectors into the host stem cell was evaluated by assessing their pluripotent 

potential and differentiation capabilities. S/MAR-modified stem cells stained positive for all the 

pluripotency markers tested and were able to differentiate into representatives of the three-germ layers 

when randomly differentiated in vitro, while still being able to express the reporter gene GFP.  

Directed hematopoietic differentiation revealed that S/MAR vectors could deliver stable and high 

levels of the transgene, even at the HSC stage. 

The pluripotent capabilities, as well as the differentiation potential of modified stem cells, were further 

challenged during in vivo differentiation. Modified mESC were injected into early-stage embryos and 

resulted in the formation of chimeric mice. The presence and expression of S/MAR vectors were 

observed in organs derived from all embryonic layers. Also, pSMARt vectors were microinjected into 

the pronucleus of 1-cell stage zygote and established in the absence of selection, resulting in transgenic 

mice that also expressed the vector across different tissues.  

The behaviour of S/MAR vectors during meiosis was addressed by investigating their germ-line 

transmission in animals generated with both S/MAR-modified mESC or vectors microinjected into 

the pronucleus. Although modified stem cells could be transmitted into the offspring of chimeric 

animals, as agouti pups were obtained, the presence of S/MAR vectors in the F1 generation was rarely 

detected, suggesting that the vector was lost during meiosis. 
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The survival of S/MAR vectors during reprogramming was also addressed. For that, S/MAR-GFP 

vectors were used to label both human and murine fibroblasts, which were then reprogrammed into 

iPSC by delivering the reprogramming factors OKSM(L). The vectors could survive reprogramming 

without getting silenced, as observed by persistent expression of the transgene GFP. The ability of 

S/MAR vectors as reprogramming tools was also addressed by comparing them to the current state-of-

art for integrative and episomal reprogramming. Although less effective than EBNA-1 episomal vectors 

or lentivirus, S/MAR vectors were able to reprogram murine and human fibroblasts into bona fide iPSC, 

which expressed all pluripotency markers tested and were able to differentiate in vitro into derivatives 

of the three germ layers. 
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6.3 Improvement and refinement of S/MAR vectors 

6.3.1 pEPI vector is not stable in mESC 

Although several studies have shown that S/MAR vectors can transfect all cell lines tested [126], no 

previous work has reported the use of S/MAR vectors to modify stem cells persistently or to derive 

iPSC. Understanding on how S/MAR vectors function in SCs as well as their limitations, was necessary 

to set up the foundations of this work. Therefore, the suitability of the originally described pEPI 

minicircle was evaluated in mESC.  

Although the pEPI minicircle can transfect mESC and GFP+ positive clones are obtained, the 

expression is heterogeneous and almost lost in most cases (Figure 23). Different reasons can explain 

this loss of expression: 

1) Epigenetic silencing of the CMV promoter due to methylated CpG regions. This issue can be 

solved by depleting CpG regions as showed by the CpG vector pEPIto [170]. 

2) Epigenetic silencing of viral promoters in stem cells [303], which can be circumvented by placing 

an insulating UCOE element, as reported in [198, 226]. 

6.3.2 Evolution of S/MAR vector 

The low expression of GFP in mESC suggests that the first described pEPI vector requires further 

development, regarding the choice of promoter, insulating elements and depletion of CpG motifs;  

as well as reconsideration about the general configuration of the vector. For that several improvements 

have been done: 

1) Building of a vector backbone devoid of SV40 origin of replication and that relies exclusively 

on the S/MAR motif for episomal replication and maintenance. The fact that S/MAR 

minicircles can be episomally retained [295] makes the presence of the SV40 origin of 

replication not only redundant but also makes the vector more prone to silencing due to the 

recognition of viral sequences.  

2) Substitution of the dual kanamycin/G418 selection marker for Puromycin and coupling to 

the transcription unit and the S/MAR motif, making the establishment of the vector part of an 

active process that can be directly controlled by the amount of selective pressure applied to the 

cells. In other words, the more Puromycin the cells receive, the more vector they need to survive 
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and therefore, the more they are forced to retain the S/MAR vector. The use and coupling of 

puromycin to the transcription unit result in a 5-fold increase in reporter gene expression 

(Figure 24). 

3) Placing of different molecular linkers between transgene and Puromycin. When IRES or 2A 

separating elements are used to link GFP and puromycin, the establishment efficiency is higher 

with 2A sequences as compared to using an internal ribosome entry site (IRES) (Figure 25), 

probably due to the random binding of the ribosomes to the IRES versus an equimolar 

expression of both proteins due to the self-cleaving 2A sequence.  

4) Introduction of anti-repressive elements such as Ubiquitous Chromatin-Opening Element 

(UCOE) or Element 40, which are cis-acting sequences known to increase the episomal vector 

expression and establishment [304, 305]; as well as to increase transcript and protein  

stability [306] by preventing the spreading of repressive chromatin marks (histone deacetylation 

and methylation patterns) to neighbouring DNA sequences. When these elements are placed 

upstream of the CMV promoter, the reporter gene expression is increased by 4-fold (Figure 24). 

Also, a statistical improvement on vector establishment is also observed in vectors containing 

UCOE or Element 40 (Figure 25). However, the use of UCOE elements was dropped due to 

their intellectual property protection. 

5) Reduction of bacterial backbone. Bacterial sequences are recognised by the immune system, 

which results in vector silencing [117, 135]. Therefore, vectors with reduced or absent bacterial 

backbone are less prone to silencing and yield higher and more persistent levels of transgene 

expression [307 - 309]. According to work published by Argyros et al., the minimally sized 

S/MAR minicircles yielded higher and more sustained levels of transgene expression in the 

absence of selection, both in vivo and in vitro [308]. Accordingly and in collaboration with 

Nature Technology Corporation (NTX), we have created the nano vector generation.  

These vectors rely on the RNA-OUT antibiotic free-selection system, which overall reduces the 

size of the bacterial backbone by almost 30% and the overall vector size by 1,5kb, which 

facilitates the DNA delivery in difficult cells such as primary human material. Last but not least, 

one of the most essential features of the NanoplasmidTM  technology is their approved use in 

humans by the Food and Drug Administration (FDA). 
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The removal of bacterial backbone and an overall decrease of CpG motifs results in not only statistically 

significant improvement of vector establishment (Figure 26) but more importantly, into a less impact 

on cell transcription (Figure 27). CpG islands are not only more frequent in prokaryotic genomes but 

they are also ordinarily unmethylated [170]. This pattern change is recognised by the human innate 

system via toll-like receptor 9 signalling [134], activating a cascade of inflammatory cytokines that elicit 

an inflammatory response against the vector and result in its silencing [137]. According to this, our 

expression profile data reveals that pSMARt vectors alter 1% of the cells’ expression profile but more 

interestingly, it reflects the minimal impact of minimally sized nano vectors (nSMARt) into the cells’ 

transcriptome, which accounts for only 0,05% of genes being altered. 

6) Replacing the long 2000bp S/MAR sequence from the β-interferon gene by a smaller and more 

efficient sequence, which results in a better vector establishment efficiency (Figure 28). 

7) Splicing and removal of the S/MAR motif from the transcript. It has been reported that the 

S/MAR motif has to be part of an actively transcribed unit to be kept active [149] and that its 

decoupling from transcription will result in either loss or integration of the vector.  

Although transcription is necessary for the S/MAR functioning and hence, is required for the 

S/MAR vectors to be kept episomal; the presence of a 2kb S/MAR region in the transcript is 

unnecessary. Therefore, its splicing and removal from the mRNA can potentially enhance the 

stability of the transcript and its expression. As expected, when the S/MAR motif is spliced out 

of the transcript, the RNA stability increases (data not shown), probably due to binding of 

splicing proteins which protect the transcript from degradation. The longer life of the transcript 

(expressing puromycin) in the cell results in increased vector establishment (Figure 28). 

6.3.3 CAG promoter is suitable for stem cell work 

The choice of promoter is mainly determined by the purpose of the vector and the cell type in which 

has to be expressed. Although in general viral promoters, such as CMV or SFFV, yield high levels of 

transgene expression, they eventually become silenced due to extensive methylation of CpG islands in 

pluripotent and differentiating cells, which makes them unsuitable for stem cell work [310]. Therefore, 

is necessary to find a suitable promoter that is not only able to keep high levels of transgene expression 

but also that its expression can be kept constant, independently of epigenetic events or cellular states.  

Accordingly, we have generated a library of vectors containing a range of viral and mammalian 

promoters, which have been tested in HEK293T, MEFs and mESC. According to our comparison, the 



DISCUSSION 

 218 

chimeric CAG promoter, which consists on the cytomegalovirus early enhancer element (C), the 

promoter, first exon and intron of the chicken β-actin gene (A) and the splice acceptor of the rabbit  

β-globin gene (G); proves to be the most suitable promoter for both stem cell and fibroblast work.  

The CAG promoter not only provides the highest levels of expression but is the most stable over time. 

These findings go in line with those published in [311 - 314], in which the CAG promoter was found 

to be the most suitable promoter for ESC work.  

Although the CAG promoter is suitable when the aim is to overexpress a gene, it might be too strong 

when the goal is to achieve physiological levels of a therapeutic gene. In such cases, a milder promoter 

such as UbC or PGK should be considered. 

6.3.4 The new generations of S/MAR vectors are persistently 
expressed in MEF and mESC  

After deciding in favour of the CAG promoter, the different vector generations were tested in murine 

fibroblasts (MEFs) and stem cells (mESC) to determine the most suitable vector configuration for 

pluripotent cells, including iPSC.  

Not surprisingly, nSMARt_CAG has the best transfection efficiency, expression and homogeneity 

amongst all vectors tested (Figure 30 to Figure 32). Its success can be attributed to the right 

combination of the promoter (CAG) together with the reduction in the bacterial backbone, which 

positively influences the transfection efficiency and the high and stable levels of expression, making the 

vector less prone to silencing. pSMARt_CAG is the second best performing vector for stem cell work, 

with slightly heterogenous and lower expression. nSpliced is a CMV-based vector which contains the 

anti-repressive Element40 to shield the promoter from silencing. This protective combination together 

with its reduced size and the introduction of splicing sites flanking the S/MAR motif results in a very 

competitive performance of the vector, comparable to that from nSMARt. However, pSMARter, which 

also has an insulating element shielding the CMV promoter from silencing, does not perform at the 

same level than the other vectors, probably due to the presence of bacterial backbone. 

When mESC are subjected to hematopoietic differentiation, both nSpliced and nSMARt, provide 

sustained and high levels of expression throughout differentiation, outperforming the vectors 

containing bacterial-backbone (pSMARt and pSMARter) as shown in Figure 61. This suggests that 

differences in performance cannot be attributed to the promoter, since shielding the CMV promoter 

with Element 40 (nSpliced) results in comparable performance to the CAG promoter (nSMARt), but 
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instead suggests that the bacterial backbone is a hotspot for epigenetic modifications resulting in 

silencing of the vector. In other words, it is preferable to reduce the bacterial backbone rather than to 

change the promoter when stable levels of expression are to be achieved. 

However, the application of the vector dictates the configuration that this should have. For example, 

when the purpose is to modify stem cells and their differentiated progeny or to generate transgenics, 

the vector should be highly and ubiquitously expressed. Therefore, a stable and high-performance 

vector, such as nSpliced or nSMARt, is preferable. However, if the purpose is to correct physiological 

levels of a therapeutic gene, a milder vector configuration and promoter should be chosen. 

The vector series pSMARt, nSMARt (cloned early in this study) were used for further in vitro and  

in vivo studies, whereas the suitability of both nSMAR_spliced and pSMARter (cloned later) should be 

further evaluated.  
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6.4 S/MAR vectors survive differentiation and  
de-differentiation in a neuronal model 

One unanswered question and critical point of this study was to elucidate whether S/MAR vectors 

were able to ‘survive’ differentiation and reprogramming, in other words, if S/MAR-labelled cells could 

retain the levels of transgene expression as well as to remain episomal throughout these processes.  

To gain insight, we used an ATRA-mediated differentiation and de-differentiation model in 

neuroblastoma cells. 

6.4.1 Effects of ATRA on cell cycle and transcription 

All-Trans Retinoic Acid (ATRA) or Vitamin A, is a morphogen known to direct neuronal 

differentiation in ESC as well as to promote neuronal differentiation and induce apoptosis in 

neuroblastoma cells [315]. These processes are triggered by the binding of retinoic acid (RA) to its 

receptors RAR and/or RXR, which dimerise and translocate to the nucleus where they bind to Retinoic 

Acid Response Elements (RAREs) and modulate gene expression [316, 317]. They also recruit protein 

complexes containing Histone Deacetylase (HDACs), which remove acetyl groups from histones 

making the overall chromatin charge more positive and increase the attraction to the negatively charges 

DNA, making the chromatin more compact. This condensation of chromatin limits the transcription 

of specific genes [318]. In addition to directing neuronal differentiation, ATRA is also known to up-

regulate the CDK inhibitors p21 and p27 involved in the 

regulation of cell cycle checkpoints (Figure 84). This results 

in the arrest of the cell cycle [315] and prevents the cells 

from proliferating.  

 

Figure 84: ATRA effects on cell cycle 
Schematic depiction of ATRA effects on the cell cycle. Besides its 
morphogenetic activity and contribution to neuronal differentiation during 
development, ATRA also up-regulates p21 and p27, which in turn inhibit 
cdk/cyclin complexes, arresting the cell cycle. Therefore, upon ATRA 
administration, the cells will undergo cell cycle arrest and stop of 
proliferation. Modified from Taieb et al. [319]. 
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6.4.2 S/MAR persistence through ATRA-mediated differentiation 

Taking into consideration the aforementioned effects of ATRA on the cell cycle, and the need of 

transcription running through the S/MAR for the vector to be kept episomal, four possible scenarios 

need to be considered when looking at GFP expression and persistence of the vector during ATRA-

mediated differentiation (Figure 85). After the establishment of the pSMARt_GFP vector, all Be2C 

cells contain between 2 to 4 copies of pSMARt tethered to the DNA through a protein complex.   

Upon ATRA administration, the cells could still divide for a while and progressively start 

differentiating, generating the following scenarios: (1) The vector survives differentiation and remains 

active and episomal throughout the process, and the cells differentiate into neurons with a functional 

episomal vector, expressing GFP. (2) The vector is initially episomal and tethered to the DNA, but as 

the cells keep differentiating, the vector detaches but does not get lost, since the cells do not divide. 

This result in neurons that are expressing GFP but in which the vector is not functional. (3) The vector 

does not survive the process from the beginning, resulting in loss or dilution of the vector (and hence 

GFP expression) in the differentiated population. (4) The vector integrates into the genome, which also 

results in GFP expressing differentiated cells. 

 

 

 

 

 

Figure 85: Possible outcomes after ATRA-mediated neuronal differentiation 
Upon ATRA administration, neuroblastoma cells kept dividing for a while and progressively started differentiating, slowing cell division 
until they stopped dividing. Assuming the vector is initially episomal and tethered through a protein complex, there could be different 
scenarios: (1) The vector remains active throughout the process, and the cells differentiate into neurons with a functional episomal 
vector, expressing GFP. (2) The vector does not survive differentiation late in the process (when cells are slowing or not dividing), 
and cells differentiate into neurons which are expressing GFP, but the vector is not tethered to the DNA. (3) The vector does not 
survive the process from the beginning, resulting in loss or dilution of the vector (and hence GFP expression) in the differentiated 
population. (4) The vector integrates into the genome, which results in continuous expression of GFP. 
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After inducing ‘differentiation’ and ‘de-differentiation’, the cells kept expressing GFP (Figure 43), 

which suggests that the vector is either still tethered to the DNA and has not been lost during the 

process (outcome 1) or is integrated (outcome 4).  

6.4.3 S/MAR does not modify neuroblastoma cells’ behaviour 

The effect of S/MAR presence in neuroblastoma cells was evaluated by first assessing the effect of the 

vector in the expression of neuronal markers. Immunofluorescent stainings show that the presence of 

S/MAR vectors does not modify the expression of N-Cam, Gap43 and β3-Tubulin; and that these 

markers are expressed both at the neuroblastoma and neuron stage, regardless of the treatment or 

presence of vector (Figure 46). 

Then, the engrafting and tumorigenic capabilities of S/MAR-labelled cells were challenged in 

heterotopic injections into immunodeficient mice. Neuroblastoma is a type of cancer that forms into 

specific nervous tissues and is most frequently found in adrenal glands or the spine.  

Although orthotopic adrenal injections are preferred to investigate the biology and treatment of 

neuroblastoma [320], the injections are complex and require considerable skills to perform. 

Alternatively, heterotopic injections are easier to perform although differences in tumour environment 

and blood supply differ from the orthotopic model [321]. Taking advantage of neighbouring expertise 

in heterotopic injections, pSMARt-Be2C cells expressing GFP or Luciferase were injected either 

subcutaneously or intracranially into SCID mice, to address whether the cells would engraft and form 

tumours that expressed GFP. Indeed, the cells formed tumours regardless of being modified with 

S/MAR vectors and regardless of the transgene expressed (GFP or luciferase) (Figure 47 and  

Figure 48). These tumours were isolated, homogenised and cultured, and remained expressing the 

reporter genes (Figure 49 and Figure 50). 

This data demonstrates that the pSMARt DNA vectors are capable of genetically modifying dividing 

and differentiating cells and can provide sustained robust expression of transgenes during 

‘differentiation’ and ‘de-differentiation’ processes, therefore demonstrating that they are a valuable 

genetic tool that can be used to generate sophisticated isogenic cell lines without molecular or  

genetic damage. 
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6.4.4 S/MAR vectors are retained episomally and kept at low copy 
numbers in neuroblastoma cells 

Up to this point, we focused on investigating the behavioural aspects of S/MAR vectors during 

differentiation and de-differentiation in the ATRA-mediated neuronal differentiation model, to 

understand how such processes, influenced the vector’s expression and persistence. However, a closer 

examination of the vector status was missing.  

To investigate the molecular state of the vector, a plasmid rescue experiment was performed. The results 

show that episomal forms of S/MAR vectors can be recovered intact from Be2C labelled cells  

(Figure 45). However, the recovery of episomal forms does not rule out the possibility of coexisting 

integrated forms of the vector, and therefore, further integration analysis required. 

The number of vector copies per cell was also determined in stable Be2C clones. In agreement with 

published literature [149], we found that S/MAR vectors are kept at low copy number, ranging from  

2-4 copies/cell (Figure 44), and more interestingly, that the copy number is stable during ATRA-

mediated differentiation and de-differentiation (data not shown). 
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6.5 S/MAR vectors are expressed during reprogramming 

The use of S/MAR DNA vectors for the generation of iPSC has never been described. Originally, iPSC 

derivation was accomplished by retroviral transduction of reprogramming factors Oct4, Klf4, Sox2 and 

cMyc [142]. Later, safety concerns regarding the oncogenicity of cMyc were addressed by using an 

excisable lentiviral polycistronic cassette [240], which allowed the removal of unnecessary 

reprogramming factors once pluripotency was achieved. Alternatively, transposons were also used to 

generate iPSC efficiently [242]. However, they rely on integrating factors that could leave a ‘genomic 

scar’ upon excision. Non-integrative methods such as Adenovirus [91], Sendai RNA virus [245], 

polycistronic minicircles [307] or direct delivery of mRNA and proteins [248] were used as safer 

alternatives, albeit compromising the efficiency of reprogramming. The current state-of-art episomal 

reprogramming system relies on the combined transfection of four EBNA-1 based plasmids [203]. 

Although able to efficiently generate iPSC, EBNA vectors are regarded as potentially oncogenic and 

might also influence the cells’ expression profile [253]. 

The suitability of pSMARt vectors for labelling dividing and differentiating cells has been tested in a 

neuronal differentiation model using ATRA, suggesting that S/MAR-based vectors are capable of 

surviving both differentiation and a de-differentiation process. Then, the vectors were used in a real 

reprogramming process, from somatic cells (fibroblasts) to iPSC, in both murine and human cells.  

Not only do S/MAR-labelling vectors survive reprogramming but they also can themselves derive  

bona fide murine and human iPSC, although less efficiently than lentivirus or EBNA-1 vectors. 

These results prove that S/MAR vectors are capable of surviving a real reprogramming process and can 

keep their expression throughout the process, even at the pluripotent state, suggesting that the vectors 

are not getting silenced or lost during the process. Taken altogether, these data point at S/MAR vectors 

as useful, cheap and safer alternative to integrative vectors or viral-based episomal vectors for both 

murine and human reprogramming. 

6.5.1 pSMARt-vectors can immortalise murine fibroblasts 

It has been reported that immortal cells are more straightforward to reprogram since they overcome 

replicative senescence [322, 323]. Based on this knowledge, we first labelled and immortalised lung 

fibroblasts by overexpression of SV40LT expressing pSMARt-GFP vectors (Figure 51). Although useful 

and efficient in generating immortal cells, the downside of SV40LT is that it promotes cellular 

transformation through suppression of p53 and pRb, which result in the cells entering S-phase and 
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dividing in a dysregulated manner [158]. Although suppressing tumour suppressor genes enhances the 

efficiency of the reprogramming due to evasion of DNA-damage responses and apoptosis [324] – which 

is especially relevant and useful for diseased or old patient cells – the manipulation of oncogenes rules 

out the possibility to use these cells for therapeutic applications. Therefore, a transient silencing of p53 

would be desirable, increasing both efficiency and safety. 

6.5.2 pSMARt-based vectors retain expression through reprogramming 

Stably labelled pSMARt-SV40LT-GFP fibroblasts were reprogrammed via lentiviral delivery of OKSM 

factors and resulted in miPSCs expressing GFP. This indicates the presence and function of the S/MAR 

vector through reprogramming (Figure 52). However, the exogenous reprogramming factors are not 

switched off in immortalised miPSC colonies, which results in the inability of these cells to differentiate 

properly. Therefore, the use of SV40LT-immortal cells for reprogramming and differentiation 

experiments was dropped, and primary cells were used for further experiments. 

Next, human dermal fibroblasts were co-transfected with both EBNA or S/MAR-reprogramming 

vectors containing the OKSML factors and the labelling vector pSMARt_GFP. Successfully 

reprogrammed GFP+ hiPSC colonies were obtained, which indicates that pSMARt vectors establish 

and remain active through reprogramming (Figure 79b). However, the frequency of GFP+ hiPSC is 

very low, which might be attributed to the simultaneous co-transfection of four EBNA reprogramming 

vectors or three S/MAR reprogramming vectors together with the labelling vector pSMARt. In another 

experiment, patient CLN474 fibroblasts were also co-transfected with nPOP and pSMARt_GFP, 

resulting in GFP+ hiPSC (Figure 82), which evidences again the ability of S/MAR vectors to  

survive reprogramming.   

6.5.3 S/MAR vectors can reprogram murine and human fibroblasts  

After confirming the ability of S/MAR vectors to establish and sustain transgene expression during 

reprogramming, we sought to address the capabilities of S/MAR vectors as reprogramming tools 

themselves. For that, two comparative experiments were performed. In the first one, the S/MAR-based 

vectors POP and nPOP were used in parallel with the integrative Lentivirus 4in1. In the second 

experiment, S/MAR-based vectors were compared to the episomal state-of-art EBNA-1 vectors. 
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6.5.3.1 S/MAR vectors reprogram miPSC although less efficiently than 
Lentivirus 

First, mouse embryonic fibroblasts (MEFs) were transduced with polycistronic vectors coding for Oct4, 

Klf4, Sox2 and cMyc. The Lentivirus 4in1, which was used as positive control, could reprogram MEFs, 

whereas both POP and nPOP failed to do so in the first attempts. One possible explanation is that both 

S/MAR vectors have a very low transfection efficiency, probably due to their larger size (11kb) as 

compared to normal pSMARt-labelling vectors (around 7kb). Despite being low, the transfection 

efficiency of nPOP is slightly higher than POP, probably due to its reduced size and lack of bacterial 

backbone. In the next attempts, repeated transfections of S/MAR vectors resulted in enough levels of 

reprogramming factors to achieve reprogramming in nPOP-transfected cells, but not in cells transfected 

with POP (Figure 53). We hypothesise that the reprogramming success of nPOP is due to its reduced 

bacterial sequences, which results in the vector being less prone to silencing and therefore, in more 

prolonged and higher levels of reprogramming factors. On the contrary, POP cannot sustain enough 

levels of OKSM to induce reprogramming.  

We then tried the S/MAR reprogramming vectors POP and nPOP in human dermal fibroblasts. First, 

we tried in CLN474 cells from a patient with Batten disease, due to unreported observations that these 

cells reprogram better than wildtype cells. Similarly to MEFs, we could reprogram CLN474 cells using 

nPOP but not POP (Figure 82), probably because of its smaller size and better transfection efficiency 

as well as its less tendency to silencing, hence providing higher levels of reprogramming factor 

expression and for a longer time. However, when we repeated the same experiment in wild-type human 

dermal fibroblasts (Promocell), we were unable to accomplish successful reprogramming neither with 

the lentivirus, POP or nPOP. Cells transduced with Lentivirus and transfected with nPOP, stained 

positive for AP (0.667% vs 0,042%) but showed aberrant morphology and failed to progress to a distinct 

hiPSC morphology (Figure 83), suggesting that the reprogramming factor combination (OKSM) is not 

suitable for human reprogramming or that the expression of reprogramming factors is too high or is 

expressed for too long, so the cells cannot switch off the exogenous factors and rely on their endogenous 

pluripotent machinery.  

In summary, we show that S/MAR reprogramming vectors based on the OKSM expression cassette 

(nPOP) can induce pluripotency in murine fibroblasts, although less efficiently than the Lentivirus. 

Also, the reprogramming efficiency, as well as the miPSC quality, seem to be dependent on the levels 
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of expression of reprogramming factors, which in turn depends on the vector and the transfection 

efficiency, making nPOP but not POP a suitable tool for murine fibroblast reprogramming.  

The results also show that only nPOP can reprogram patient-derived cells but not wildtype fibroblasts, 

suggesting that there must be a relationship between this particular patient-fibroblast line and 

reprogramming. However, this relation is out of the focus of this study. Not surprisingly and in 

agreement with our hypothesis, POP is not able to generate fully reprogrammed colonies, as observed 

by the remaining expression of exogenous factors (dTomato) and the aberrant colony morphology. 

When used in wild-type fibroblasts, both lentiviral transduced and nPOP transfected cells develop into 

colonies with aberrant morphology, suggesting that the combination of OKSM factors might not be 

suitable for human fibroblast reprogramming.  

6.5.3.2 S/MAR vectors can reprogram bona fide hiPSC but less efficiently 
than EBNA-1 based vectors 

We then compared the reprogramming efficiencies of EBNA-1 and S/MAR-based vectors. The three 

S/MAR vectors or the four EBNA vectors (Figure 37), both systems expressing the reprogramming 

factors OKSML, were cotransfected together with a labelling pSMARt-GFP vector.  

In collaboration with Prof. Mckay (MMU), we first tested and compared the reprogramming efficiencies 

of EBNA and S/MAR vectors in CLN474 patient fibroblasts. Although we observed a slight delay in 

reprogramming and a slightly lower amount of AP colonies in S/MAR transfected cells (data not 

shown), successful reprogramming was achieved with both EBNA and S/MAR vectors. Once 

reprogramed, both EBNA and S/MAR hiPSC are morphologically indistinguishable and stained 

positive for all pluripotent markers tested (Figure 78). 

We then compared the two vector systems in wildtype nHDFs. Similarly to patient-derived cells, 

S/MAR vectors were also slower and less efficient at reprogramming than EBNA (0.005% vs 0.092%) 

(Figure 79). In this case, however, S/MAR transfected cells looked partially reprogrammed, although 

they stained positive for AP, but failed to progress to a distinct hiPSC morphology.   
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The differences in kinetics and reprogramming efficiency between S/MAR and EBNA-based vectors 

could have several explanations: 

1) A potential reprogramming synergy of EBNA-1 by binding to the enhancer region of  

c-Myc [157], which is not present in the cocktail of delivered reprogramming factors. This could 

result in upregulation of the oncogene, adding a ‘switched on’ reprogramming factor, making 

the process faster and more efficient.  

2) Binding of EBNA-1 to cellular promoters, resulting in dysregulation the cells’ transcriptome 

and genes associated with cell growth [325].  

3) Better expression of S/MAR vectors, due to their reduced size and absence of viral sequences, 

resulting in excessive exogenous factor delivery. The excess of reprogramming factors might 

difficult the ‘switch off’ of exogenous reprogramming factors and ‘switch on’ of the endogenous 

pluripotency machinery. 

Overall, both morphology and immunofluorescence images suggest that there are no apparent 

differences between EBNA-1 and S/MAR reprogrammed hiPSC albeit a slight delay in the S/MAR 

reprogrammed cells. However, a closer look at the effects of EBNA in reprogramming is missing.  

We are currently conducting a microarray analysis in EBNA and S/MAR modified cells, which  

will provide a closer insight into the effect of both viral and mammalian sequences in the  

cells’ transcriptome.  

In summary, we show that S/MAR vectors can reprogram human fibroblasts and that once 

reprogrammed, both morphology and quality of both EBNA and S/MAR hiPSC are indistinguishable 

after few passages. The possible synergising effects of EBNA in reprogramming, together with its 

oncogenic potential, point at S/MAR-vectors as a safer reprogramming alternative. Finally, the 

generation of GFP-positive hiPSC colonies from the co-transfection of pSMARt-labeling vectors 

together with reprogramming vectors, suggests that S/MAR vectors are not only capable of 

reprogramming human cells but also that can survive the reprogramming process and establish as 

episomal entities.  
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6.6 S/MAR vectors are kept at low copy numbers and are 
found episomally in murine pluripotent cells 

After assessing the abilities of S/MAR vectors to survive differentiation and reprogramming, the next 

logical step was to perform molecular analysis to determine the number of copies per cell. In agreement 

with the literature [195], molecular analysis of pSMARt and nSMARt labelled mESC show that the 

vectors are kept at low copy numbers, ranging from 1-2 copies/cell in the selected clones (Figure 55). 

We then assessed the molecular status of the vector to exclude genomic integrations and prove the 

vectors’ episomal maintenance. For that, a plasmid rescue experiment, which allowed recovery of 

episomal molecules, was performed in pSMARt labelled mESC. Our data shows that pSMARt could 

be rescued in its circular form both labelled MEFs, miPSC (data not shown) and labelled mESC  

(Figure 56), suggesting that the vectors can be retained episomally in stably labelled cells. Also, the 

presence of intact S/MAR and expression cassette was confirmed by PCR amplification and sequencing 

of the respective amplicons, suggesting that the vector remains stable. 

Plasmid rescue experiments determine the presence of circular (episomal) forms in labelled cells but do 

not exclude the possibility of integrated forms. For that, Southern Blot was performed, in which both 

integrated and episomal forms could be detected. However, only nSpliced could be detected as an 

episome, and we could not rule out the possibility of other vectors being integrated as no band or smear 

could be detected in a Southern Blot (Figure 57). Further optimisation of protocols for episomal DNA 

isolation and detection is required. 

Although the results are not conclusive, other pieces of evidence presented later in this discussion  

(e.g.: lack of episomal germ-line transmission as opposed to integration) contribute to the hypothesis 

that S/MAR vectors remain episomal. To definitively prove the episomal status of the vector, a 

thorough integration analysis should be performed. We are currently performing integration analysis 

of pSMARt-labelled mESC to address this issue. However, the results of these experiments could not 

be included in this thesis due to time constraints. 
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6.7 S/MAR vectors do not modify pluripotency of murine 
and human stem cells 

One characteristic of S/MAR vectors that makes them distinct from other gene delivery systems is the 

absence of virally-derived sequences and proteins. Their design based mainly on human elements, 

results in minimal influence on labelled cells, with only 1% of dysregulated genes in stable cell lines 

(Figure 27a). When bacterial sequences are removed, the effect drops to only 5 up-regulated genes 

(Figure 27b), resulting in practically isogenic cell lines.  

S/MAR-labelled neuroblastoma cells show expression of all neuronal markers tested and retain their 

engraftment potential, which contributes to evidence supporting the minimal impact of S/MAR vectors 

in the cells. Similarly, we addressed the effect of S/MAR vectors on modified mESC, miPSC and 

hiPSC, and most importantly, evaluated if the presence of an S/MAR vector would impair the 

pluripotent capabilities of stem cells.  

First, we examined the expression of pluripotent markers in S/MAR-labelled mESC as well as miPSC. 

The cells were stained with Alkaline Phosphatase, a hydrolytic enzyme highly expressed in 

undifferentiated cells and one of the markers used for early detection of emerging colonies. Then, the 

cells were stained with more specific pluripotency markers, such as SSEA-1, Oct4 and Nanog  

(Figure 58). pSMARt-labelled mESC express all pluripotency markers and can, therefore, be considered 

pluripotent, indicating that the S/MAR vector does not modify or damage the cells. miPSC derived 

from lung fibroblast also show expression of all pluripotency markers. However, SV40LT-immortalised 

fibroblasts do not express Nanog, indicating that the internal pluripotency network is not switched on. 

Also, they keep the expression of the exogenous reprogramming factor (as observed by dTom 

expression), which reinforces the idea of aberrant reprogramming due to immortalisation and  

p53 dysregulation.  

When the pluripotency was addressed in human reprogrammed iPSC labelled with pSMARt-GFP, 

both expression of AP as well as the human pluripotency markers Tra160, SSEA3, SSEA4 and Nanog 

(Figure 78) was observed, regardless of being reprogrammed with EBNA or S/MAR vectors.  

This suggests that reprogramming with S/MAR vectors was successfully achieved and that the presence 

of S/MAR vector does not alter the cells’ behaviour.  
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Another feature of pluripotent cells is their ability to differentiate into representatives of the three 

germ layers. The differentiation potential of both murine and human stem cells was assessed in a 

random differentiation experiment in vitro. pSMARt-labelled cells can differentiate into ectoderm, 

mesoderm and endoderm representatives (Figure 60 and Figure 81), just like unlabelled stem cells.  

Persistently expressing differentiated hematopoietic precursors can also be obtained from S/MAR-

labelled mESC (Figure 61). A more challenging assessment of pluripotency consists of generating 

chimaeras upon injection of stem cells into early-stage embryos. pSMARt and nSMARt-labelled mESC 

can form chimaeras when injected into early-stage embryos (Figure 62). Random three-lineage 

differentiation, hematopoietic differentiation and chimaera formation experiments are discussed in 

more detail in the following sections.  

The results prove that S/MAR vectors per se, do not modify the stem cells and does not prevent them 

from differentiating either in vitro or in vivo. 

  



DISCUSSION 

 233 

6.8 S/MAR vectors survive in vitro differentiation 

Previous reports on episomal modification of stem cells failed to show persistent expression of the 

transgene, either because it was being silenced at the episomal state or during differentiation [26, 225, 

226]. We challenged the improved S/MAR vectors were and subjected them to several differentiation 

tests, both in vitro and in vivo. We conclusively show that the vectors are not only able to persistently 

and safely modify stem cells but also that their expression can be maintained during differentiation.  

6.8.1 Random differentiation of pSMARt-mESC and miPSC 

First, pSMARt and nSMARt-labelled mESC were allowed to spontaneously differentiate in vitro in 

the absence LIF and 2i inhibitors. The results show that representatives of the three germ layers can be 

obtained from both unlabelled and S/MAR-labelled mESC and more importantly, that the expression 

of GFP, and therefore the S/MAR vector, is maintained during differentiation (Figure 59). Although 

miPSC reprogrammed from wildtype fibroblasts can differentiate into ectoderm and mesoderm 

(endodermal structures could not be found), pSMARt-SV40LT immortalised miPSC fail to 

differentiate. This experiments also highlight the importance of the SFFV promoter silencing and loss 

of exogenous OKSM expression in the pluripotent state as observed by the impossibility of miPSC to 

differentiate. However, the expression of pSMARt is retained, as observed by persistent expression 

 of GFP. 

6.8.2 Random differentiation of pSMARt-hiPSC 

In a similar experiment, pSMARt-GFP-hiPSC or unlabelled-hiPSC, both generated with EBNA-1 

vectors, were subjected to a random differentiation in vitro. Unlabelled and S/MAR-labelled hiPSC can 

differentiate into representatives of the three germ layers (Figure 81) and the differentiated progeny 

retains expression of GFP throughout differentiation (Figure 80). 

6.8.3 Directed Hematopoietic differentiation  

After assessing the S/MAR vector behaviour in random differentiation experiments, an in vitro 

hematopoietic differentiation was performed from mESC to hematopoietic progenitors. Although not 

entirely differentiated, HSC represent an intermediate step in between pluripotency and fully 

differentiated cell and can, therefore, provide some information about the vector behaviour and 

expression during differentiation and in a desired differentiated cell type. 
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mESC were stably transfected with different generations of S/MAR vectors, including pSMARt, 

nSMARt, nSpliced and pSMARter (Figure 61). At day 0, mESC cells were stained with a panel of 

endothelial (VE-cadherin and c-kit) as well as hematopoietic (CD41) markers. mESC were negative for 

CD41 and slightly positive for c-kit, which is both a stem cell as well as a hematopoietic precursor 

marker. A slight CD144 (VE-Cad) expression on day 0 is observed, which can be from some residual 

feeder cells. 

At day 6 and following the addition of cytokines and growth factors, mESC acquire hematopoietic 

features: they acquire expression of the surface marker CD41 and lose expression of endothelial 

characteristics (c-kit and VE-cadherin). However, expression of c-kit and VE-cadherin should still be 

observed at the HSC stage [302], suggesting that these cells already acquired a further differentiated 

state [326]. Independently from the slightly more differentiated state of HSC, the data shows that both 

unlabelled mESC (negative control) and S/MAR-mESC follow the same marker expression profile and 

behave in the same way, suggesting once again that the S/MAR vectors do not modify the pluripotent 

behaviour and capabilities of mESC. 

Not surprisingly, vectors devoid of bacterial sequences (nSMARt and nSpliced) result in the most stable 

and persistent expression of transgene during differentiation. Amongst them, vectors devoid of 

bacterial sequences provide stable and persistent expression of the transgene. nSMARt (which has a 

CAG promoter) is the most stable, followed by nSpliced. Vectors containing bacterial sequences 

(pSMARt and pSMARter) show a decrease in transgene expression, suggesting that the vectors are 

probably losing expression due to silencing events during differentiation. 
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6.9 S/MAR vectors survive in vivo differentiation 

In a more representative and closer-to-development in vivo experiment, pSMARt- and nSMARt-mESC 

were injected into early-stage embryos, which developed into chimeric mice, as observed by coat 

chimerism. When these mice were analysed, GFP was expressed in their tissues, indicating the presence 

of the vector and its survival from stem cell to a fully developed organism. In another experiment, 

pSMARt vectors were directly microinjected into the pronucleus of 1-cell stage zygotes and were able 

to generate transgenic mice (in the absence of selection), which also expressed GFP in their tissues. 

6.9.1 pSMARt-labelled mESC cells can form chimaeras 

S/MAR-labelled mESC were injected into embryos and generated chimeric mice. First, high passage 

pSMARt-labelled BL6 mESC were injected into CD1 albino blastocysts, which resulted in low 

percentage chimerism (data not shown). One possible explanation for the low quality of chimaeras is 

the old passage and poor quality of the injected pSMARt-mESC, as a result of continued culturing to 

perform the previously described molecular analysis and pluripotency tests. To circumvent that, a 

second round of chimaeras was generated by injection of low passage pSMARt or nSMARt-labelled 

129Ola mESC. This resulted in much better chimaeras, reaching in some cases complete chinchilla 

coat colour, which corresponds to practically 100% pSMARt-mESC contribution (Figure 62).  

By reducing the mESC passage number and improving the quality of the injected cells, the percentage 

of chimerism and the overall quality of the chimaeras obtained is significantly improved. Therefore, 

129Ola/BL6 chimaeras were used for further molecular analysis and downstream experiments. 

6.9.2 Microinjection of S/MAR vectors into 1-cell stage zygotes results 
in the generation of isotransgenic mice 

Current methods to generate transgenic mice involve the use of integrative techniques, such as 

transposons [256], lentiviral transduction or gene editing techniques [260]. Differently, from these 

techniques, which might leave a genetic ‘scar’ on the genome, mice generated with S/MAR vectors 

should retain the same genomic sequences and information as wild-type animals and could be 

considered isogenic transgenics (isotransgenic) mice. The only difference between isotransgenics and 

the unmodified mice would then be the overexpression of supplementary genetic information without 

damage to the genomic DNA. The first attempt to generate transgenic mice using S/MAR vectors was 

made by pEPI delivery into pig embryos via sperm-mediated gene transfer [261], in which transgene 
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expression was achieved in foetuses, but they were not brought to term, and the germ-line transmission 

could not be addressed. 

To investigate the potential of S/MAR vectors as a tool to generate isotransgenic mice, pSMARt vectors 

were microinjected directly into the pronucleus of 1-cell stage zygotes, which also allowed to gain a 

better understanding of the vectors’ expression and establishment in a ‘selection-free’ environment. 

For that, between 130 and 780 molecules of the pSMARt vector were injected into 1-cell stage zygotes 

of BL6 mice. 250 microinjected embryos were then transferred into 10 foster mothers and brought to 

term. 34 pups were born, and 3 died shortly after birth, which corresponded to approximately 13% 

survival rate. Taking into account that the survival rate of born embryos after DNA microinjection 

ranges between 10-25%, as compared to approximately 80% without microinjection [327], a survival 

rate of 13% should be considered normal. Although 95% of the embryos look viable after injection 

and before embryo transfer, the decrease in viability might be due to mechanical damage of the embryos 

with a glass capillary during the microinjection procedure itself (source: Transgenic service, DKFZ).  

After microinjection, 12 embryos were kept in culture to check for toxicity of the vector and correct 

embryonic development (Figure 63). Considering that culturing of embryos in vitro is an artificial 

situation that generates differences in development between individual embryos, and that the DNA 

microinjection itself reduces the viability from 80% to 10-25%, a ratio of 8/12 embryos reaching the 

blastocyst stage in vitro is an indicative that the transgene (GFP) has no detrimental effect on the 

embryos. By monitoring the microinjected embryos, it can be observed that pSMARt is expressed 

throughout the first stages of embryonic development until hatching occurs. 

Although all surviving embryos express GFP, even at the blastocyst stage, conclusions about the 

establishment of the vector in a ‘selection-free’ environment cannot be drawn at this point. The 

following assumptions should be considered: 

1. S/MAR vector dilution. The vectors segregate during mitosis but do no establish (replicate), 

which results in vector dilution. Considering that between 1-2 picoliters of pSMARt (1-3ng/ul), 

corresponding to 130-780 copies of plasmid, were injected to 1-cell zygote, and that a late 

blastocyst has roughly 128 cells, which corresponds to 7 cell divisions; and assuming that in 

every cell division the vector is segregated in equal numbers to the daughter cells, that results 

in 1 to 5 copies of pSMARt vector in each cell of the blastocyst (Table 49). In other words, the 
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GFP expression observed might be due to ‘excess’ of vector copies per cell, rather than due to 

the vector being established and replicating episomally. Assuming no vector establishment, the 

vector would start being diluted from the 8th cellular division, which would result in an adult 

mouse with 130-780 molecules of pSMARt (which corresponds to the initial number of 

molecules microinjected) distributed along its body. This practically equals no detectable GFP 

expression, as the chances of finding positive cells in the adult mouse are too low. 

Table 49: Dilution of pSMARt vector copies in the first stages of embryonic development. 
 

Cell division Cell stage Copies of vector  

- Zygote (1-cell) 130 – 780 

1 2 cell 65 – 390 

2 4 cell 32,5 – 195 

3 8 cell 16,25 – 97,5 

4 16 cell 8,12 – 48,75 

5 Blastocyst 32 cell 4,06 – 23,38 

6 Blastocyst 64 cell 2,03 – 11,69 

7 Blastocyst 128 cell 1,02 – 5,85 

 

2. S/MAR vector establishment. Assuming that the pSMARt vector is equally segregated and 

established (autonomously replicating) in a selection-free environment during the embryonic 

development, a complete and homogeneous transgenic (GFP expressing) mice is expected.  

3. S/MAR vector silencing. One might also argue that S/MAR vectors can become silenced in 

the early phases of development and that the expression of GFP detected at the blastocyst stage 

is a residual expression from a vector that was originally ‘active’ in the zygote. However, 

considering that the turboGFP (a variant of coGFP) half-life is approximately 2h [328, 329], the 

transgene expression observed at the blastocyst stage (4-6 days after injection), has to be the 

consequence of the vector being active and transcribing. 

However, no conclusions about vector establishment under selection-free conditions could be made 

until the pups were born and the GFP expression was confirmed. Later, we could confirm that out 31 

born transgenic pups, only one expressed GFP in different tissues, therefore proving that, albeit low 

frequency (3,22%), S/MAR vectors can segregate and establish in vivo in the absence of selection. 
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6.9.3 S/MAR vectors are expressed in transgenic tissues 

The expression of S/MAR vectors was evaluated in born transgenic and chimeric mice using 

fluorescence microscopy, flow cytometry, and PCR amplification of GFP. 

The results show that S/MAR vectors can be detected in tissues from all germ layers; such as heart, 

kidney, liver, muscle, skin, blood, bone marrow and spleen. However, a tendency towards skeletal 

muscle is observed, which might be explained by the abundant actin presence in muscle and the 

presence of the first intron of the chicken ß-actin gene in the vector CAG promoter. On the contrary, 

expression in the kidney is rarely found. This differences in expression across tissues might have several 

explanations:  

1) In the case of microinjected pSMARt: The vector does not segregate or establish equally in the 

embryonic cells early in the development, and therefore, there is some degree of mosaicism in 

the adult mice. This mosaicism can potentially explain heterogenous GFP expression and 

difficult detection via PCR.  

2) In the case of Chimeras: pSMARt-mESC can have a preference towards a specific cell lineage 

in vivo. We observed a tendency of mESC towards ectodermal derivatives during in vitro random 

differentiation experiments, while mesodermal structures were less frequent and endodermal 

derivatives were hard to obtain.  

3) S/MAR vectors get silenced in specific tissues (e.g.: kidney), due to the cell microenvironment 

or cell-specific epigenetic mechanisms. 
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6.10 S/MAR DNA vectors are transmitted to the gametes 
but fail to generate transgenic offspring 

Little is known about the ability of S/MAR-labelled stem cells to contribute to the germ-line (stem cell 

transmission) or even more interestingly, about the inheritance of episomal DNA vectors  

(vector transmission). Was addressed these questions by breeding 129Ola/BL6 chimaeras or transgenic 

mice with C57BL/6 mice and investigating the presence and expression of S/MAR vectors into  

the offspring. 

6.10.1 pSMARt and nSMARt-labelled mESC contribute to the germ-line  

Chimeric males generated with both nSMARt (c39) and pSMARt (c44) resulted in 100% agouti litters 

(Figure 70), which indicates that S/MAR-labelled mESC contributed to the germ-line and the next 

generation. This is another piece of evidence that pSMARt and nSMARt stem cells retain their 

pluripotent capabilities and that their potential is not limited by the type of vector they contain. 

6.10.2 pSMARt and nSMARt are not transmitted to the offspring  

Next, we addressed whether S/MAR vectors, which could be detected in F0 chimeric and pronuclear 

injected mice, were also present and expressed in the F1 litters. However, flow cytometry analysis failed 

to detect relevant GFP expression (Figure 71). The next logical step was to investigate the presence of 

S/MAR vector in the offspring. Surprisingly, the S/MAR vectors could not be detected via PCR in any 

of the chimeric litters (Figure 72),  suggesting that the vector is lost in the F1 generation. Intriguingly, 

when the same experiments were performed in the litters from pronuclear-injected mice, pSMARt 

could be amplified in two pups (T82 and 83) from mice T11 (Figure 74). Different possibilities 

explaining the one-off presence of S/MAR vectors in F1 generations are discussed below. 

Overall, the absence of vectors in the F1 generation points at meiosis (spermatogenesis) as a significant 

hurdle for the transmission of S/MAR vectors into the offspring. 

6.10.3 Spermatogenesis  

Spermatogenesis is the process by which haploid sperm cells are obtained from diploid germ cells, 

located in the basal membrane of the seminiferous tubules. Spermatogonial stem cells (diploid) 

undergo mitosis to generate primary spermatocytes. Primary Spermatocytes undergo one round of 

cellular replication and two subsequent rounds of cellular division. Each primary spermatocyte first 
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divides meiotically into two secondary spermatocytes, which in turn divide again to generate two 

haploid spermatids each. The biological processes in which gametes are produced, cannot be fully 

understood without taking into account the epigenetic mechanisms involved. These are mainly relevant 

during spermatogenesis, in which DNA is highly methylated, the majority of histones are substituted 

by protamines and the remaining ones are highly modified [330].  

Considering that high DNA methylation results in a substantial reduction of transcription and that 

S/MAR vectors need transcription running through the S/MAR to be kept episomal [163], it is 

reasonable to think that S/MAR vectors can be strongly influenced by epigenetic changes happening 

during spermatogenesis, and that these changes can explain the lack of transgene expression in the 

offspring. Therefore, we had a closer look into spermatogenesis and evaluated the vector presence and 

expression before (testes) and after (sperm) meiosis. 

As observed in (Figure 75a) fluorescent microscopy shows expression of the transgene in testes of 

transgenic (T11) and chimeric (C39, C44) mice. To exclude that the fluorescence is emitted by the 

external testicular membrane or tunica albuginea, and that fluorescence is coming from meiotic cells, 

the seminiferous tubules were homogenised to isolate the germinal cells, comprised by spermatogonias, 

spermatocytes and spermatids. The same GFP expression pattern was observed in the cellular 

compartment via Flow cytometry (Figure 75b), suggesting that the vectors are present and expressed in 

germinal cells. Finally, the end stage of meiosis, which corresponds to mature sperm, was analysed. 

However, no GFP could be detected in sperm from T11, C39 or C44 via fluorescent microscopy; except 

for the sperm from the positive control mice (Figure 75c). Taking into account that the positive control 

mice contain UBC::GFP integrated and that S/MAR vectors need active transcription to remain 

episomal, there are two possible explanations accounting for the lack of episomal GFP detection  

in sperm:  

1) Sperm cells are characterised by highly packaged and compact DNA and a reduction of 

transcription. Considering that the expression levels of GFP in UBC:GFP testes and germ cells 

are much higher than those from T11, C39 and C44, this could result remaining GFP in the 

cytoplasm of positive control sperm, a phenomenon that could not have been observed in the 

cytoplasm of sperm with lower levels of GFP expression. 

2) Episome is inactive and lost during meiosis, while integrated GFP is not. However, PCR 

amplification revealed that GFP is present in both testes and sperm (Figure 76) suggesting that 
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the vector is not lost but silenced in sperm cells, probably due to high DNA compaction and 

reduction of transcription.  

We then investigated at which stage of spermatogenesis are the vectors getting silenced. 

Immunohistochemistry stainings of GFP from transgenic and chimeric testes reveal that GFP can be 

found in spermatogonias but not in intermediate or end-stage meiotic cells, suggesting that silencing 

occurs at the spermatogonia-primary spermatid transition (Figure 77). 

6.10.4 Fertilisation 

Considering that S/MAR vectors are present, although not expressed, in sperm cells; we propose several 

options that can explain the lack of S/MAR detection in the F1 generation; taking part before, during 

or shortly after fertilisation (Figure 86). We also provide evidence suggesting that the vectors are not 

integrated in the S/MAR-modified F0 generation, although they can become integrated  

after fertilisation. 

1. S/MAR vectors are integrated in the F0 generation. Integration in transgenic and chimeric F0 

could result in GFP expression in the sperm cells and offspring, similarly to the integrated 

UBC::GFP positive control mice. Since sperm cells from S/MAR transgenic animals do not 

express GFP and the F1 generation does not contain the vectors, it seems unlikely that the 

vectors are integrated. 

2. S/MAR vectors become integrated during spermatogenesis. Epigenetic events happening 

during spermatogenesis, such as DNA methylation or histone modifications, could result in a 

decrease of transcription, which could lead to the integration of S/MAR vectors. Also, during 

the first meiotic division, homologous recombination between non-sister chromatids occurs. 

The homology between plasmid and endogenous S/MAR motifs could lead to vector 

rearrangements or integration. This might explain the two pSMARt-GFP detections in F1 mice 

from T11 (Figure 74). 

3. S/MAR becomes silenced during meiosis. The same epigenetic events could lead to silencing 

of S/MAR vectors during meiosis, as observed by the loss of GFP expression in the germinal 

epithelia. Although not expressed, the vector remains episomal in the sperm cell. 

4. Differential segregation vs equal segregation of S/MAR vectors. Between 1 to 2 copies of 

S/MAR vectors are established per cell. Meiosis involves one round of replication and two 
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rounds of cell division. Assuming equal segregation of the vector, all sperm cells could get at 

least one copy of the vector, while a differential segregation scenario could result in ¼ or ½ of 

sperm cells having the vector.  

5. Detrimental effect of S/MAR-sperm. In the case of a mixed pSMARt sperm population 

(differential segregation setting), the presence of pSMARt vectors would increase the sperm cell 

weight by 0,007 femtograms (7,55 x10-18 g, corresponding to one pSMARt molecule of 7Kb), 

which could result into slowing sperm swimming and in a fertilisation disadvantage.  

6. Immunity of female reproductive tract towards S/MAR- sperm. Expression of GFP antigens 

in the sperm could be recognised in the female reproductive tract, resulting in only the GFP-

negative sperm being able to fertilise. However, there are studies showing that seminal plasma 

suppresses immune responses in the female reproductive tract, making it tolerant to  

sperm [331]. 

7. Immunity of zygote/embryo against pSMARt-sperm. Recognition and silencing of the vector 

at the embryonic stage seems unlikely since pSMARt vectors were microinjected into 1-cell stage 

zygotes to generate transgenics, were expressed during the first stages of development and 

contributed to the generation of pSMARt-expressing isotransgenic mice. 

8. Vector re-establishment. The establishment efficiency of pSMARt in vitro is approximately 5% 

and 3,22% in vivo, after DNA microinjection. Assuming that sperm cells deliver between 1-2 

copies of pSMARt into the zygote and that the vectors have to re-establish in the new embryo, 

the chances of 1-2 copies of DNA being established after fertilisation are too low, resulting in 

the vector being diluted during cell divisions. 

9. DNA repair mechanisms after fertilisation leading to vector integration. DNA repair 

mechanisms are absent in late phases of spermatogenesis [332] but become very active after 

fertilisation [333]. The DNA repair mechanisms, involving in some cases homologous 

recombination, could lead to rearrangements of the vector and integrations. This might explain 

the few pSMARt-GFP detections in F1 mice from T11 (Figure 74). 
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6.10.4.1 Working hypothesis  

The absence of pSMARt vectors in the F1 generation is likely to be a consequence of a low-efficiency 

vector re-establishment after fertilisation. The sperm cells, which contain inactive episomal DNA, 

deliver 1 - 2 copies of S/MAR vectors into the egg. Considering that the in vitro and in vivo establishment 

efficiencies are around 5% and 3% respectively and that vector establishment is a stochastic event, the 

chances of vector re-establishment after fertilisation are very low. Therefore, the few episomal vector 

copies would dilute as the embryo develops, which would result in loss of vector transmission in the F1 

generation. Despite the establishment chances being low, it is still possible to detect S/MAR vectors in 

the F1 generation, as observed by PCR amplification of GFP (Figure 74). However, the molecular state 

of this detected vectors remains unclear. 

Although with the present data, ‘the re-establishment hypothesis’ seems the most plausible, further 

experiments are needed to validate or discard it. For example, a combination of in vitro fertilisation of 

pSMARt-sperm cells with subsequent FISH analysis on fertilised embryos would provide some hints 

about the number of vector copies ‘delivered’ to the egg. Tracking those embryos with fluorescent 

microscopy would shed some light on the establishment and expression of S/MAR vectors after 

fertilisation. Also, investigation of S/MAR vector behaviour in female gametogenesis (oogenesis) could 

determine possible differences between meiotic processes. Chimeric females were bred but stem cell 

transmission was not found, and the vector transmission could not be addressed.  

We could not discard the infrequent but possible S/MAR integrations before, during or after meiosis, 

which could also result in detection of S/MAR vectors in the F1 pups. Likewise, we did not have 

enough evidence supporting equal vector segregation during meiosis, which could be investigated via 

Fluorescent In Situ Hybridisation (FISH) of S/MAR vectors in the germinal epithelia, and in sperm 

cells in particular. This would allow to track the vector segregation during meiosis and to detect how 

many sperm cells receive DNA vectors. 
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Figure 86: S/MAR vector fate during meiosis and fertilisation
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7. CONCLUDING REMARKS 

This thesis shows the development and improvement of S/MAR DNA vectors from the originally 

described pEPI vector, which we demonstrated to be incapable of sustaining transgene expression in 

pluripotent cells; through a range of vector generations. The new vectors have improved all aspects of 

their functionality and are capable of persistently modifying dividing and differentiating cells for an 

unlimited period while providing sustained and high levels of transgene expression in their 

differentiated progeny, without causing molecular damage to the cells they modify. 

This work shows for the first time that S/MAR DNA vectors can: 

• Persistently express high levels of the transgene in rapidly proliferating cells, including but not 

limited to neuroblastoma cells, murine embryonic stem cells (mESC), murine induced 

pluripotent stem cells (miPSC) and human induced pluripotent stem cells (hiPSC). 

• Retain transgene expression during ATRA-mediated differentiation and de-differentiation in 

neuroblastoma cells. 

• Generate minimal impact on modified neuroblastoma cells, as they retain the expression of 

neuronal markers and are able to engraft when injected into immunodeficient mice (NB), 

generating transgene-expressing tumours. 

• Establish at low copy numbers, ranging from 2 - 4 copies/cell in neuroblastoma cells and  

1 - 2 copies/cell in mESC. 

• Remain extrachromosomal as an episomal replicon in both neuroblastoma and mESC. 

• Preserve the pluripotent capabilities of modified mESC, miPSC and hiPSC. 

• Retain transgene expression during in vitro differentiation, from mESC and hiPSC into 

representatives of the three germ layers. 

• Retain high levels of transgene expression during in vitro hematopoietic differentiation, from 

mESC to CD34+ hematopoietic precursors. 
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• Survive in vivo differentiation and generating transgenic animals either by pronuclear injection 

of DNA vectors or injection of genetically modified mESC into embryos. 

• Persistently express high levels of the transgene in transgenic organs and tissues. 

• Be transmitted to the gametes but fail to generate transgenic offspring. 

• Serve as reprogramming tools for the derivation of murine and human primary cells into miPSC 

and hiPSC. 

• Retain transgene expression during cellular reprogramming, in both miPSC and hiPSC.  

• Immortalise primary cells, such as murine lung primary fibroblasts. 
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8. FUTURE DIRECTIONS 

The development and improvement of the S/MAR vectors’ functionality result in the persistent and 

robust modification of dividing and differentiating cells, which broadens the horizon of future 

applications of this vectors, including their application for gene and cell therapy, the generation of 

transgenics and the immortalisation of cells. 

8.1 Gene and cell therapy 

An ideal application S/MAR vectors would be the generation of disease-corrected and transgene-free 

iPSC for autologous transplantation with the aim to treat monogenic diseases. For that purpose, a 

prototype of a multifunctional S/MAR vector, named pAmpel, was designed and tested. This vector is 

composed of 1) constitutively expressed labelling cassette, which drives the expression of a reporter 

gene, the selection marker and the S/MAR, maintaining the episomal status of the vector; a  

2) reprogramming cassette containing the reprogramming factors (OKSM for mice or OKSML for 

human) and a red reporter gene (dTom). This cassette can be removed upon transient addition of Cre 

recombinase, either in a vector or delivered as mRNA; and 3) a therapeutic cassette containing the gene 

of interest and the reporter gene luciferase. The combination of three functional units would allow the 

delivery of one unique multifunctional DNA molecule to the cells, avoiding the low efficiency of 

corrected-hiPSC obtained when four EBNA vectors are co-transfected with pSMARt-GFP. However, 

the large size of this multifunctional vector compromises the efficiency of DNA delivery. 
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Figure 87: Cartoon representing the multifunctional vector pAmpel   

 

To generate pAmpel, the different units were first cloned and tested separately. pSMARt-labelling 

vectors (Figure 33), reprogramming vectors (Figure 35), and therapeutic vectors (Figure 39 and  

Figure 40) are shown in Section 5.1.8. Then, both labelling and reprogramming units were combined 

into one vector (pBeast vector series) and tested in MEFs. pBeast constitutively expressed S/MAR 

driving cassette containing the reporter gene coGFP with the selective marker Puromycin, and a 

reprogramming cassette containing the OKSM factors and the reporter gene dTom. Two LoxP sites are 

flanking the reprogramming cassette, which can be excised upon addition of Cre recombinase; leaving 

behind the functional labelling GFP-2A-Puro_S/MAR cassette. Other versions of pBeast with a 

combination of other promoters and chromosomal elements were cloned but not tested. Although 

pBeast demonstrated that the co-existence of two expression cassettes in one S/MAR vector is possible, 

the pBeast vector series was left aside in this study due to its large size and the difficulty of delivering 

large DNA into MEFs [334]. Therefore, the idea of using a combined pAmpel multifunctional vector 

was dropped and refocused on exploiting the individual parts of the vector separately. 

However, the improved vector spliced design in combination with minimally sized nanovectors, 

together with an easier transfection efficiency in human fibroblasts, opens up the possibility to revisit 

the multifunctional pAmpel vector idea. 
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Therapeutic vectors coding for FancA (Figure 39) and Rep1 (Figure 40) were cloned, tested, and are 

ready to be cloned into pAmpel or used in combination with S/MAR reprogramming vectors to 

reprogram and genetically correct patient-derived cells.  

8.1.1 Simultaneous correction and reprogramming of Fanconi Anaemia 
patient-derived cells 

Fanconi Anaemia is an ideal candidate to be treated with gene therapy because the supplementation of 

the correct gene is enough to restore the functionality of the pathways as well as to rescue the phenotype. 

Several gene therapy attempts have been performed using retrovirally-mediated gene transfer of 

autologous HSC, although success has not yet been achieved. One reason is that HSCs are hard to 

mobilise from the bone marrow and hard to transduce with lentivirus. A possible solution to overcome 

these problems is the derivation and correction of patients’ cells.  

Müller et al. showed that Correction of FancA is necessary to overcome reprogramming resistance of 

Fanca-/- cells [275]. We demonstrated that our improved S/MAR vectors are capable of reprogramming 

patient-derived fibroblasts as well as to persistently label mESC and sustain high levels of transgene 

expression through hematopoietic differentiation (Figure 61). Therefore, pSMARt-FancA vectors could 

be inserted into pAmpel to transfect patient fibroblasts, which could be corrected by supplementation 

of FancA as well as reprogrammed into hiPSC. Corrected hiPSC could then be differentiated into HSC 

and transplanted back into the patient. 

8.1.2 Genetic correction, derivation and autologous hiPSC 
transplantation for the correction of degenerative eye diseases 

Retinal degenerative diseases are a group of debilitating conditions that affect the photoreceptor cell 

layer of the retina, also called retinal pigmented epithelia (RPE). The most common degenerative 

disease is threatening the vision in older populations of developed countries is age-related macular 

degeneration (AMD). AMD is characterised by the development neovasculature in the subretinal space 

of the centre of the retina (macula), which disrupts and damages the RPE. Current treatments involve 

the intraocular injection of anti-vascular endothelial growth factor (VEGF) drugs, which ameliorate but 

do not solve the underlying issue; or surgical removal of the neovasculature. Regenerative therapies 

were first based on allotransplantation of RPE derived from human embryonic stem cells, which 

resulted in graft rejection. Alternatively, autologous transplantation of patient-derived-hiPSC showed 

promising results [335]. However, the derivation of hiPSC was done either by using retroviral delivery 
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of reprogramming factors [336], or EBNA-1 derived vectors [203]. Alternatively, S/MAR 

reprogramming vectors could be used to derive patient cells and generate hiPSC, which could be then 

differentiated into RPE and transplanted back to the patients. 

Other afflictions of the RPE are inherited forms of blindness, such as Choroideremia. Choroideremia 

(CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations in the Rab Escort  

Protein 1 (REP1) gene. Mutations that lead to loss of REP1 function disrupt normal intracellular 

trafficking and post-translational lipid modification of Rab small GTPases (Rab proteins) leading to 

progressive degeneration of the retinal pigment epithelium, photoreceptors, and choroid.  

Previous attempts to correct deficient cells were based either on in situ delivery of lentiviral [28] or 

adenoviral [278] particles containing the therapeutic gene Rep1. However, inflammatory responses led 

to severe side effects in treated patients.  

Alternatively, pSMARt-Rep-1 vectors could be used in pAmpel or combination with S/MAR 

reprogramming vectors to correct the Rep1 genetic defect of patient-derived hiPSC. Directed 

differentiation and autologous transplantation of the hiPSC-derived RPE would represent an 

alternative to current gene therapy approaches to cure choroideremia.  

  

prenylation
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8.2 Transgenics 

The new generations of S/MAR vectors have been designed and refined to sustain high levels of 

ubiquitous expression when combined with an appropriate promoter. S/MAR vectors can retain 

expression of the transgene across different tissues for the lifetime of the mice when they are 

microinjected into the pronucleus or used for labelling mESC. Although the vector seems to be present 

in some F1 pups, the episomal state of the vectors in the progeny is not yet clear. Therefore, one missing 

point and potential direction of this work is the presence assessment of vector episomes after female 

gametogenesis (oogenesis). 

Although vector transmission is not yet completely understood, the S/MAR vector technology could 

still be used as a safer alternative to the current transgenic technology, which relies on the use of 

integrative techniques or viral-derived episomal vectors. For example, S/MAR vectors could be used to 

generate transgenic mouse lines containing a specific GOI. These modified mice could be used as a 

source of modified cells for in vitro applications.  

Another application of S/MAR vectors could be the reprogramming of human cells for the generation 

of xeno-transplantable organs. This idea is was coined by the group of Izpisua-Belmonte, which 

generated inter-species chimaeras via blastocyst complementation between human iPSC and pig 

embryos to generate xeno-transplantable human organs [337]. Human fibroblasts were reprogrammed 

using the aforementioned EBNA vectors described by Okita et al.  [298], and hiPSC were then injected 

into pig blastocysts, which resulted in the formation of human-pig chimaeras. With optimised DNA 

delivery protocols, S/MAR vectors could reprogram (and even correct) either wildtype or patient-

derived fibroblast into hiPSC, which could then be implanted into pig embryos to generate (corrected) 

xeno-transplantable organs.  
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8.3 Cellular immortalisation 

Immortal cells can evade cellular senescence and undergo an indefinite number of cell divisions. Their 

indefinite propagation has made the culturing of immortal cells a tool for biochemical, cell biology and 

toxicology analysis. Typically, immortal cells can be isolated from 1) certain types of cancer cells with 

specific mutations that confer them immortality or 2) cells infected with viral genes that dysregulate 

cell cycle (e.g.: HEK293T cells infected with the adenoviral protein E1 or HeLa cells infected with HPV). 

Immortal cells can also be generated artificially via expression of proteins required to overcome 

senescence (e.g.: TERT), or that dysregulate the cell cycle (e.g.: SV40 large T antigen). 

Another potential application of S/MAR vectors is their use as immortalising tools for culturing of 

primary cells. S/MAR-immortalisation can be achieved by a typical transfection of primary cells with a 

pSMARt vector containing SV40LT or TERT. For instance, patient-derived cells could be immortalised 

and cultured for drug screenings in vitro, but the indirect manipulation of oncogenes rules out the 

possibility to use these cells in therapeutic applications. 
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