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Summary 

Mitotic phosphatases play crucial roles in anaphase regulation and mitotic exit by 

annulling the kinase-mediated protein phosphorylation. In budding yeast 

Saccharomyces cerevisiae, Cdc14 (cell division cycle 14) phosphatase antagonizes key 

Cdk1 (cyclin-dependent kinase 1) functions to drive cells out of mitosis. Despite the 

presence of highly conserved catalytic domains, human CDC14s are dispensable for 

cell cycle progression. Nevertheless, to decipher the molecular mechanisms of 

human CDC14s functions, we have investigated the knockout cellular models aided 

by various imaging and proteomics approaches. Phenotypic analyses of the 

generated hCDC14A knockout in human retinal pigment epithelium (hTERT-RPE1) 

cells have exhibited the occurrence of longer primary cilia upon serum starvation. 

The intermediate longer cilia in haploid-insufficient cells, as well as the extended 

cilia observed upon siRNA-mediated acute depletion of hCDC14A, have further 

confirmed the phenotype. Primary cilia are microtubule-based structures that control 

various aspects of growth and development through sensing extracellular signals. 

Defects in this regulation lead to a host of pathological conditions collectively known 

as ciliopathies. Indirect immunofluorescence and electron microscopy have revealed 

that the disassembly pathways, as well as the crucial structures like axoneme and 

basal body, were intact in the elongated cilia. Inducible expression of hCDC14A has 

indicated its presence in the proximal end and subdistal appendage of the basal 

body. Global phosphoproteome along with proximity-based interaction proteomics 

approaches under conditions that favor ciliation have identified substrates for 

hCDC14A. Some of the identified substrates are involved in actin cytoskeleton 

reorganization with a function in cilia length control. The actin bundling protein 

drebrin (DBN1) was one of the identified hCDC14A substrates that have recently 

been reported to be associated with ciliogenesis. We show that the counteracting 

phospho-regulation of DBN1 at serine residue 142 by the proline directed kinase 

CDK5 and hCDC14A phosphatase regulates cilia length. However, significantly 

longer cilia in hCDC14A knockout cells than those from DBN1 knockout cells 

indicate that there are more substrates for hCDC14A that might be involved in 

ciliogenesis. The longer cilia phenotype in hCDC14A knockout cells could be 

explained by the enhanced recycling endosomes (transferrin) as well as increased 

ciliary vesicle docking (smoothened) in the pericentrosomal areas. 
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Zusammenfassung (Summary in German) 

Mitotische Phosphatasen spielen eine entscheidende Rolle bei der Regulierung der 

Anaphase und dem Austritt aus der Mitose durch die Aufhebung der Kinase-

vermittelten Proteinphosphorylierung. In der Bäckerhefe Saccharomyces cerevisiae 

wirkt Cdc14 (Cell division cycle 14) den Schlüsselfunktionen von Cdk1 (Cyclin-

dependent kinase 1) entgegen, um die Mitose abzuschließen. Trotz hoch 

konservierter katalytischer Domänen sind humane CDC14 Phosphatasen für die 

Zellzyklus-Progression nicht essentiell. Um die molekularen Funktionsmechanismen 

der humanen CDC14 Phosphatasen zu entschlüsseln, haben wir Knockout-

Zellmodelle mittels verschiedener bildgebenden und proteomischen Verfahren 

untersucht. Phänotypische Analysen des erzeugten hCDC14A-Knockouts in 

humanen retinalen Pigmentepithelzellen (hTERT-RPE1) zeigten das Auftreten 

längerer primärer Zilien nach Serumentzug. Die intermediär längeren Zilien in 

haploid-insuffizienten Zellen sowie die längeren Zilien, die nach siRNA-vermittelter 

akuter Depletion von hCDC14A beobachtet wurden, haben den Phänotyp weiter 

bestätigt. Primäre Zilien sind Mikrotubuli-basierende Strukturen, die verschiedene 

Aspekte des Wachstums und der Entwicklung durch Wahrnehmung extrazellulärer 

Signale kontrollieren. Fehlfunktionen in dieser Regulierung führen zu einer Vielzahl 

von pathologischen Veränderungen, die als Ziliopathien zusammengefasst werden. 

Indirekte Immunofluoreszenz und Elektronenmikroskopie haben gezeigt, dass 

Abbauwege sowie wichtige Strukturen wie das Axonem und der Basalkörper in den 

verlängerten Zilien intakt sind. Induzierte Expression von hCDC14A wies auf die 

Präsens im proximalen Ende und subdistalen Appendix des Basalkörpers hin. 

Globale Phosphoproteom- und auf Proximität beruhende Proteomik-Analysen unter 

Bedingungen, die die Ziliation begünstigen, haben Substrate für hCDC14A 

identifiziert. Einige der identifizierten Substrate sind an der Reorganisation des 

Aktin-Zytoskeletts beteiligt, einhergehend mit einer Funktion bei der 

Längenkontrolle von Zilien. Das Aktin-bündelnde Protein Drebrin (DBN1) ist eines 

der identifizierten hCDC14A-Substrate, das kürzlich in Zusammenhang mit 

Ziliogenese gebracht wurde. Wir zeigen, dass die entgegenwirkende 

Phosphoregulierung von DBN1 am Serin-Rest 142 durch die Prolin-gerichtete Kinase 

CDK5 und der Phosphatase hCDC14A die Zilienlänge reguliert. Signifikant längere 

Zilien in hCDC14A-Knockout-Zellen als in DBN1-Knockout-Zellen weisen jedoch 

darauf hin, dass es weitere Substrate für hCDC14A gibt, die an der Ziliogenese 

beteiligt sein könnten. Der Phänotyp mit längeren Zilien in hCDC14A-Knockout-

Zellen könnte durch ein erhöhtes Aufkommen von Recycling-Endosomen 

(Transferrin) sowie durch ein gesteigertes Andocken ziliarer Vesikel (Smoothened) 

in den perizentrosomalen Bereichen erklärt werden. 
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1 Introduction 

1.1 An overview of cell cycle 

Cells multiply through a precise series of events that are collectively termed as cell 

cycle (Temin, 1971). Most of the time, cells stay in G1 or GAP1 phase during which 

they resume biosynthesis to accumulate nutrients and components necessary for 

DNA synthesis during the next phase termed as S or Synthesis phase. However, if 

the conditions are not conducive to growth, the cells can be arrested in G1 and enter 

a special phase of no growth termed as G0 or GAP0 (Pardee, 1974). When the 

environmental (presence of nutrients and growth factors) and internal (absence of 

damages) conditions are fulfilled, the cells passage through G1 and accomplish S 

phase. S phase is followed by another gap phase, GAP2 or G2, which allows cells to 

check the integrity of cell components as well as newly synthesized genetic material 

and to duplicate the necessary cell organelles. Chromosome segregation 

(karyokinesis) and cell division (cytokinesis) occur during M phase. Mitosis is 

divided into 5 stages: prophase, prometaphase, metaphase, anaphase, and telophase. 

Condensation of chromatin as well as the breakdown of nuclear envelope occurs 

during prophase. Condensed sister chromatids congress during prometaphase and 

align at the equatorial plate of the bipolar spindle in metaphase which is followed by 

anaphase that ensures proper separation of the sister chromatids to the opposite 

spindle poles. Cells exit Mitosis through telophase during which reassembly of 

nuclear envelope and decondensation of chromosomes occur (Baserga, 1968; 

Hartwell and Weinert, 1989). 

The centrosome serves as the key microtubule-organizing center (MTOC) in 

animal cells. It is composed of a microtubule based structure called centriole 

embedded into a protein-rich material organized in concentric circles (pericentriolar 

matrix, PCM) (Conduit et al., 2015; Mardin and Schiebel, 2012). Centrosome 

biogenesis, as well as maturation, is tightly coupled to cell cycle events and it 

duplicates once per cell cycle like cellular genetic material (Figure 1.1). In S phase, a 

daughter centriole is formed perpendicular to pre-existing mother centriole and 
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remain tightly engaged with each other throughout S, G2 and M phase. During S-G2 

phases, the centrosomes maturate by accumulating more PCM with concomitant 

elongation of the linkers connecting them. Eventually, at G2/M transition, the 

centrosomes separate by the dissolution of linker and migrate towards opposite 

poles to form bipolar spindle necessary for sister chromatid separation. After 

mitosis, the mother-daughter disengagement occurs at G1 phase by the 

establishment of linker between them. The disengaged centrioles duplicate in S 

phase to initiate the formation of two mature centrosomes at G2/M transition 

(Agircan et al., 2014; Bettencourt-Dias and Glover, 2007). 

 

 

Figure 1.1: The close association between centrosome and cell cycle in animal cells 

(Adopted from Mardin and Schiebel, 2012). 

Centrosomes are the key organelle for bipolar spindle formation in mitosis and, like 
cellular genetic material, are duplicated once per cell cycle.  
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1.2 Regulation of Cell cycle 

Highly dynamic, yet tightly controlled, protein phosphorylation and de-

phosphorylation events are important avenues to achieve unidirectional and precise 

division of cell components. Opposing kinases and phosphatases are the cellular 

tools to control these processes in a spatial and temporal manner. Cyclin-dependent 

kinases (Cdks) lie at the heart of cell cycle control system and their activities rise and 

fall as the cell progresses through the cell cycle (Morgan, 1997). These fluctuations 

directly correspond to cyclical changes in the phosphorylation of cellular proteins 

and thereby lead to the initiation and accomplishment of cell-cycle events. Cyclin-

dependent kinases (CDKs) are serine/threonine kinases which require cyclin(s) for 

enzymatic activity. The CDK family in mammals have diverse functions and can be 

subdivided into three cell-cycle-related subfamilies (Cdk1, Cdk4 and Cdk5) and five 

transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11 and Cdk20) (Lim and Kaldis, 

2013; Malumbres, 2014). Cdk5 is considered to be an atypical membrane- anchored 

CDK. It is activated by the non-cyclin proteins Cdk5R1 (p35) or Cdk5R2 (p39) and  

T-loop phosphorylation is not required (Arif, 2012; Cheung and Ip, 2012). CDK5 is 

thought to be active in terminally differentiated cells such as neurons because of the 

expression pattern of p35 and p39. However, apart from its critical role in neurons, 

Cdk5 take part in other cellular processes ranging from migration to cytoskeletal 

dynamics (Arif, 2012; Cheung and Ip, 2012; Lim and Kaldis, 2013).  

Several molecular mechanisms including post-translational protein 

modifications and regulated degradation ensure the sequential phase-specific 

activation/inactivation of Cdks. Thus, it can be convincingly presumed that mitotic 

phosphatases play pivotal roles in annulling the kinase-mediated protein 

phosphorylation. However, our current knowledge regarding the regulation as well 

as substrate-specificity of most of the phosphatases is still in its infancy. 
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1.3 Phosphatases in animal cells 

The kinases and their counteracting phosphatases orchestrate the protein 

modifications associated with precise cell cycle phases (Barr et al., 2011). Interference 

with either kinase or phosphatase activity will affect orderly mitotic progression 

(Heinrich et al., 2002). The phosphatases expressed in human can be divided into 

two prominent groups depending on the amino acids that they dephosphorylate: (a) 

protein tyrosine phosphatase (PTP) family and (b) serine/threonine-specific 

phosphatases (PSTPs) family (Tonks, 2006; Trinkle-Mulcahy and Lamond, 2006). 

PTP family includes the dual-specificity tyrosine and serine/threonine phosphatases 

(DUSPs) and, with the exception of Cdc25, PTPs are involved in cellular signal 

transduction rather than in the regulation of mitosis. The PSTPs can be further 

classified into two groups that are both dependent on metal ions for catalysis: (a) 

PPM family of metallo-dependent phosphatases and (b) phospho-protein 

phosphatases (PPP) family (Kumagai and Dunphy, 1991). PPP family includes the 

phosphatases PP1, PP2A, PP2B, PP4, PP5, PP6, PP7 and are the key regulators for 

cell division (Axton et al., 1990; Picard et al., 1989) (Figure 1.2). Treatment of PPP 

specific inhibitor okadaic acid is sufficient to trigger mitotic changes such as 

chromatin condensation and organelles rearrangement, indicating the critical 

opposing role of PPP in mitotic entry (Lucocq et al., 1991; Yamashita et al., 1990). 

PPP phosphatases function as multimeric holoenzyme complexes consisting of a 

catalytic subunit and one or more of a number of associated regulatory and 

scaffolding subunits (Barr et al., 2011). 
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Figure 1.2: Phospho-protein phosphatases (PPP) family are the key regulators of 

cell cycle progression in animal cells (Adopted from Barr et al., 2011).  

Cell cycle dependent rise and fall of key kinase/ phosphatase levels/activity are 
depicted with respective coloured lines. The balance between kinases and 
phosphatases determines the cell cycle progression. 
 

1.4 Cdc14 phosphatase in budding yeast 

CDC14 (cell division cycle 14) belongs to the dual-specificity phosphatases family 

and is essential for cell cycle progression in budding yeast Saccharomyces cerevisiae 

(Hartwell et al., 1973). It is the master regulator of cell cycle completion in yeast 

(Amon, 2008) and mutants of Cdc14  arrest in late anaphase with duplicated, 

separated chromosomes and elongated spindles (Pringle and Hartwell, 1981). 

ScCDC14 is a proline-directed dual specificity phosphatase (serine/threonine) which 

prefers pSPxK/R sites for substrates (Bremmer et al., 2012; Eissler et al., 2014). 

CDC14 dephosphorylates and activates Cdh1, which in turn causes the degradation 

of Clb2 in an APCCdh1 (anaphase-promoting complex) dependent manner. Cdc14 

also augments the synthesis of Cdk-Clb2 inhibitor Sic1 through dephosphorylation 

mediated activation of the transcription factor Swi5. Moreover, Sic1 is stabilized by 
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CDC14  (Feldman et al., 1997; Jaspersen et al., 1999; Knapp et al., 1996). Thus, 

ScCDC14 antagonizes the Cdk1 functions to sharpen the metaphase to anaphase 

transition (Stegmeier and Amon, 2004). 

During the whole interphase and up to the anaphase, ScCDC14 is trapped inactive in 

the nucleolus through the components of RENT (REgulator of Nucleolar silencing 

and Telophase exit) complex including Net1, Sir2 (a NAD-dependent deacetylase), 

Tof2, and Fob1 (Shou et al., 1999). Net1, a protein that directly binds to rDNA, is 

required for the nucleolar localization of ScCdc14 (Huang and Moazed, 2003; 

Straight et al., 1999). Release from the nucleolus and activation of ScCdc14 occur in 

two sequential waves: the Fourteen Early Anaphase Release (FEAR) network and the 

Mitotic Exit Network (MEN) (Amon, 2008; Queralt and Uhlmann, 2008; 

Wurzenberger and Gerlich, 2011) (Figure 1.3).  

 

 

Figure 1.3: The regulatory networks that activate Cdc14 in budding yeast (Adopted 

from Wurzenberger and Gerlich, 2011). 

The Cdc14 early anaphase release (FEAR; yellow) and mitotic exit network (MEN; 
light blue), regulatory networks activate Cdc14 for budding yeast mitotic exit. FEAR 
causes the early anaphase partial release whereas MEN leads to the complete release 
of CDC14 necessary for the completion of mitotic exit (Wurzenberger and Gerlich, 
2011). 
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The FEAR network causes the hyperphosphorylation of Net1 by Cdk1 and 

Cdc5 (a Polo-like kinase) to cause a partial release of ScCDC14. The APCCdc20 is 

activated upon spindle assembly checkpoint (SAC) satisfaction and leads to the 

proteasomal degradation of securin, thereby allowing separase to inactivate PP2A–

Cdc55 and inhibit Net1 dephosphorylation. The MEN network ensures the complete 

CDC14 release by a pathway involving the small GTPase Tem1. The function of 

Tem1 is regulated by the GTPase-activating protein (GAP) Bfa1–Bub2, and the 

putative guanine nucleotide exchange factor (GEF) Lte 1 (low temperature essential 

1). Tem1 regulates the phosphorylation of Net1 by several downstream MEN 

kinases, including Cdc15 and the kinase complex Mob1–Dbf2 (Wurzenberger and 

Gerlich, 2011). 

 

 

Figure 1.4: Schematic representation of Cdc14 primary structures (Adopted from 

Mocciaro and Schiebel, 2010). 

The N-terminal conserved domains are shown in red and the variable C-terminals are 
shown in light blue. The nucleolar targeting sequence in green; catalytic motif in 
yellow; NLS (nuclear localization signal) in dark blue; NES (nuclear export signal) in 
orange. Here, ScCdc14: Budding yeast Cdc14; Clp1: Fission yeast Cdc14-like 
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phosphatase (Clp1); CeCdc14: C. elegans Cdc14; XCdc14A/B: Xenopus Laevis 
Cdc14A/B; cCdc14A/B: Chicken Cdc14A/B) (Mocciaro and Schiebel, 2010). 
 
 

1.5 Cdc14: a family of conserved phosphatases  

The Cdc14 family of phosphatases is highly conserved in almost all higher 

eukaryotes including Saccharomyces cerevisiae, Schizosaccharomyces pombe, 

Caenorhabditis elegans, Xenopus laevis, Gallus gallus and Homo Sapiens (Mocciaro and 

Schiebel, 2010) (Figure 1.4). Schizosaccharomyces pombe and Caenorhabditis elegans 

possess only one gene coding for an ortholog of ScCdc14. The ortholog of ScCDC14 

in fission yeast Saccharomyces pombe is non-essential and is known as Cdc14-like 

phosphatase (Clp1) (Trautmann et al., 2001). Although Clp1 and ScCDC14 share 36% 

sequence identity, the role of Clp1 in cell-cycle control is different than its budding 

yeast ortholog. Clp1 mainly controls mitotic entry and coordinates cytokinesis with 

the initiation of the next cell cycle. It is not crucial for mitotic exit  (Cueille et al., 

2001; Trautmann et al., 2001). Clp1 localization in nucleolus during G1/S phase is 

similar to that of ScCDC14. However, unlike ScCDC14, Clp1 is released at the G–M 

transition and is independent of MEN and FEAR pathway activation (Chen et al., 

2006). After release, Clp1 associates with kinetochore and functions in collaboration 

with Aurora B kinase to ensure accurate chromosome segregation (Trautmann et al., 

2001). During cytokinesis, Clp1 regulates the septum formation. Nevertheless, it is 

not essential for either septation or cytokinesis (Clifford et al., 2008; Cueille et al., 

2001; Khmelinskii et al., 2009; Simanis, 2003; Trautmann et al., 2001).  

Vertebrates such as humans, primates, mice, chickens, and fish were reported 

to have two genes coding for CDC14 phosphatases, CDC14A and CDC14B, with 

high degree of sequence homology to ScCDC14 (Clément et al., 2011, 2012; Li et al., 

1997; Mocciaro and Schiebel, 2010; Rosso et al., 2008; Wei et al., 2011). A 

retroduplication event of CDC14B gene (from Chromosome 9 to 7) generated a third 

gene (CDC14C) coding for a member of CDC14 family in hominoids around 18–25 

million years ago (Rosso et al., 2008). CDC14C was reported to be transcribed only in 

brain and testis (Brawand et al., 2011) (Figure 1.5). 
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Figure 1.5: Expression of Cdc14 isoforms in different organs of human body. 

Degree of expression in TPM (transcript per million) are represented by the intensity 
of blue colour. The expression data was retrieved from the expression atlas 
(https://www.ebi.ac.uk/gxa/home/). The ‘Mammalian Kaessmann` data from eight 
different human tissues are used in the graph (Brawand et al., 2011).  

 

1.6 Functions of hCDC14 proteins 

Human cells encode three paralogs of hCDC14, namely hCDC14A, hCDC14B and 

hCDC14C (Li et al., 2000; Rosso et al., 2008). In spite of the high conservations 

between the catalytic domain of all CDC14 phosphatases (Gray et al., 2003) and the 

complementation of ScCDC14 by hCDC14B (Cho et al., 2005), human CDC14s have 

so far been reported to be involved in functions that are more diverse than that of 

budding yeast (Mocciaro and Schiebel, 2010). hCDC14A was proposed to exert its 

function at centrosome duplication (Mailand et al., 2000) and actin cytoskeleton 

regulation (Chen et al., 2017, 2016) while hCDC14B was implicated in mitotic 

progression (Tumurbaatar et al., 2011), DNA damage checkpoint activation and 

DNA repair (Bassermann et al., 2008; Lin et al., 2015). Nevertheless, hCDC14B 

depleted human cells display normal mitotic exit and cytokinesis (Berdougo et al., 

2008). Moreover, the viability of hCDC14A or hCDC14B single knockout (KO) 

vertebrate cells (Mocciaro et al., 2010) indicates the possible functional redundancy 

of vertebrate phosphatases. It is noteworthy that most of the previously reported 

functions of hCDC14A/B were deduced upon siRNA depletion (often without a 

https://www.ebi.ac.uk/gxa/home/
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rescue experiment) or strong over-expression that causes toxic effects. The extent of 

depletion, as well as the functional redundancy of the phosphatases, was not taken 

into consideration partly because of the inability of available antibodies to recognize 

endogenous hCDC14A and hCDC14B proteins (Guillamot et al., 2011; Mocciaro et 

al., 2010; Ovejero et al., 2012).  

CDC14 proteins display a conserved localization to the microtubule 

organizing centre such as the spindle pole body (SPB) in yeast and the human 

centrosome (Mailand et al., 2002; Pereira et al., 2002). CDC14 is also associated with 

the basal body during ciliogenesis (Ah-Fong and Judelson, 2011; Clément et al., 

2012). Recently, an autosomal recessive nonsense mutation in hCDC14A has been 

reported to cause severe to profound deafness due to defective transient kinocilia of 

developing cochlear hair cells and the persistent kinocilia of vestibular hair cells in 

the organ of Corti (Delmaghani et al., 2016; Imtiaz et al., 2018). Furthermore, shorter 

cilia have been reported in zebrafish upon cdc14a or cdc14b depletion with 

morpholinos (Clément et al., 2011, 2012).  However, it is still an open question 

whether CDC14A regulates primary cilia in human cells and how CDC14A 

promotes ciliogenesis on a molecular level. 

 

1.7 Connection between Cilia and cell cycle 

Cilia and flagella are microtubule-based membranous cell protrusions involved in 

motility and sensation. They are evolutionarily-conserved structures that differ from 

each other based on their length as well as number per cell. Vertebrate cilia are 

conventionally classified into motile cilia and sensory primary cilia (Takeda and 

Narita, 2012). Motile cilia and flagella are considered as highly comparable 

organelles due to their 9+2 axonemal configuration (a central pair of singlet 

microtubules surrounded by nine doublet microtubules) and intraflagellar transport 

(IFT) machinery (Satir and Christensen, 2007; Satir et al., 2008). Primary cilia are 

generally non-motile organelle with a 9+0 axonemal configuration and are involved 

in sensing and integrating external signals. Most cells (not all) have the capacity to 

form cilia whereas most cancer cells (not all) lack cilia (Keeling et al., 2016). 
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Assembly of primary cilia is tightly coordinated with the cell cycle phases. 

Generally, cilia assemble when cells become quiescent (G0) or differentiate. The 

primary cilia are disassembled through the signaling cascade that stimulates cells to 

re-enter the cell cycle. Upon the completion of mitosis, centrosomes become 

competent again to initiate primary cilia formation either in G0 or in early G1 phase 

(Figure 1.6) (Sánchez and Dynlacht, 2016). The structure of primary cilia can be 

divided into ciliary skeleton and ciliary membrane (Figure 1.7) (Hoerner and 

Stearns, 2013). The ciliary skeleton is composed of a basal body with nine 

microtubule triplets and an axoneme extension with nine microtubule doublets 

(Gluenz et al., 2010). The transition between microtubule triplet to doublet is termed 

as transition zone and is marked by Y-shaped bridges extending from microtubule 

doublets to the ciliary membrane (Aubusson-Fleury et al., 2012; Gluenz et al., 2010). 

Thus, the transition fibers serve as anchors for the basal body to the ciliary 

membrane. Ciliary rootlets provide a second level of anchorage by interconnecting 

the mother centriole (basal body) and daughter centriole (Broekhuis et al., 2014) with 

the nucleus (Figure 1.7). 

 

Figure 1.6: Linkage between cilium and cell cycle (Adopted from Sánchez and 

Dynlacht, 2016). 

Primary cilia assemble specifically in G0 or early G1 phase. Only the mother centriole 
with proteinaceous appendages can initiate ciliogenesis (assembly of cilia). Generally, 
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the cilia assembling role and the microtubule organizing spindle assembling role of 
centrosomes are mutually exclusive. So, the cilium assembled in G0 or early G1 phase 
must be disassembled to allow cells entering S phase and assemble spindles in M-
phase (Sánchez and Dynlacht, 2016). 
 

 

Figure 1.7: Structure of primary cilia (Adopted from Ke and Yang, 2014). 

Primary cilia are microtubule-based structures surrounded by ciliary membranes. 
Mother centriole, termed as basal body, primes ciliogenesis by the extension of 
microtubule structure. The transition zone is marked with Y-shaped bridges and 
positioned between basal body with microtubule triplets and axoneme with 
microtubule doublets. The basal body is connected to the daughter centriole through 
ciliary rootlet (Ke and Yang, 2014). 

 

Ciliogenesis is a complex process that involves precise spatial as well as 

temporal regulation of several intertwined cellular events like cell cycle progression, 

vesicular docking, and ciliary extension (Avasthi and Marshall, 2012). Assembly of 

primary cilium initiates through the conversion of mother centriole to basal body 

(Figure 1.8). Upon exit from the cell cycle, a guanine nucleotide exchange factor 

(GEF) called Rabin 8 is recruited to the pericentriolar recycling endosome and gets 



 Introduction 

13 

 

activated by Rab11. Activated Rabin 8, in turn, activates Rab8a vesicles for their 

recruitment and docking to the distal appendages (distal appendage vesicles, DAV). 

Smaller distal appendage vesicles undergo EHD1-mediated fusion to form larger 

ciliary vesicles (CV). Further axoneme growth and microtubule extension depend on 

the acquisition of positive regulators (TTBK2, MARK4, IFT) as well as the removal of 

negative regulators (CP110, Trichoplein). Subsequently, the ciliary gate termed as 

transition zone (TZ) is assembled, and various IFT proteins help transport proteins 

through this gate (Sánchez and Dynlacht, 2016). 

 

 

Figure 1.8: Critical events in primary cilia assembly process (Adopted from 

Sánchez and Dynlacht, 2016). 

A series of highly orchestrated events causes the initiation and elongation of cilia 
termed as ciliogenesis or cilia assembly. The ciliogenesis process can be divided into 
four sequential events: (I) Conversion of mother centriole to basal body through 
acquisition of distal appendage; (II) formation of distal appendages vesicles (DAV) 
through docking of Rab8a vesicles (Yellow); (III) Ehd1-mediated fusion of DAV to 
form larger ciliary vesicles (CV); (IV) removal of negative regulators and concomitant 
acquisition of positive regulators ensuring axoneme growth and microtubule 
extension (Sánchez and Dynlacht, 2016). 

 

Cilium disassembly is triggered when the cell is committed to re-enter the cell 

cycle through stimulation by serum growth factors (Figure 1.9). In G1 phase, the 

concerted actions of two kinesin motor proteins (Kif2a and Kif24) and destabilization 

of acetylated tubulins are critical for cilia disassembly. The kinesins cause the 

inhibition of axoneme extension whereas tubulin de-acetylation leads to the 

disassembly of microtubule cytoskeleton (Sánchez and Dynlacht, 2016). Activation of 
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Aurora A kinase (AurA) by several different ways leads to phosphorylation 

mediated activation of histone deacetylase 6 (HDAC6) and tubulin de-acetylation 

(Plotnikova et al., 2012). HDAC6 was also reported to deacetylate cortactin and 

thereby enhancing actin polymerization by augmenting interaction between 

cortactin and filamentous actin (Ran et al., 2015). Thus, HDAC6 promotes cilium 

disassembly through stimulating actin polymerization. Trichoplein and Pitchfork 

(Pifo) are two additional molecules that lead to activation of AurA and cilium 

disassembly (Inoko et al., 2012; Kinzel et al., 2010; Sánchez and Dynlacht, 2016). 

 

 

Figure 1.9: Critical events mediating cilium disassembly (Adopted from Sánchez 

and Dynlacht, 2016). 

Upon mitogen stimulation, Plk1-mediated phosphorylation of Kif2a causes 
destabilization of acetylated tubulins in the ciliary axoneme. Activation of AurA 
through several signalling inputs activates HDAC6 and causes tubulin destabilization 
by deacetylation. A second depolymerizing kinesin is activated at a later time by 
Nek2 and thereby prevent reciliation throughout S/G2/M phases (Sánchez and 
Dynlacht, 2016). 



 Introduction 

15 

 

 

1.8 Ciliopathies associated with defects in primary cilium signaling 

The roles of cilia in integrating a plethora of signalling pathways critical to 

vertebrate development and differentiation have placed this organelle in the frontier 

of current research (Ishikawa and Marshall, 2017). Loss or malfunction of cilia affects 

a wide range of human organ systems and causes diseases that have been termed as 

ciliopathies (Fry et al., 2014; Reiter and Leroux, 2017). Generally, the ciliopathies can 

be characterized as monogenic recessive disorders and the disease outcome is the 

combination of defective cilia structure and associated altered ciliary signalling 

(Figure 1.10).  

 

Figure 1.10: A schematic overview of the primary ciliary signaling and associated 

ciliopathies (Adopted from Fry et al., 2014). 

Cilia are receptor-enriched cell protrusions and several signalling pathways are 
regulated through cilia. Defective ciliary signalling affects almost all major organs and 
leads to ciliopathies such as MKS (Meckel-Gruber Syndrome); JBTS (Joubert 
Syndrome); BBS (Bardet-Biedl Syndrome); NPHP (nephronophthisis); OFD (Oral-
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Facial-Digital Syndrome); SLS (Senior-Løken Syndrome); AS (Alstrom Syndrome); 
SRPS (Short Rib-Polydactyly Syndrome); EVS (Ellis-van Creveld Syndrome) (Fry et 
al., 2014). 

 

1.9 Actin and ciliogenesis  

The actin cytoskeleton has been described to have significant regulatory input in 

ciliogenesis (Figure 1.11) (Malicki et al., 2017). In general, actin polymerization 

inhibits ciliogenesis whereas actin-severing factors, such as cofilin and gelsolin-

family proteins, boost cilia formation. The addition of low concentrations of the F-

actin depolymerizing drug cytochalasin D promotes cilia elongation partly by 

regulating vesicle trafficking and inhibiting cilia disassembly factors (Kim et al., 

2010, 2015). In addition, actin and the actin regulator drebrin (DBN1) mediate the 

release of vesicles, so-called ectosomes, from the tip of cilia (Nager et al., 2017). 

Recently, it was suggested that a branched, Arp2/3 organized actin network 

surrounds the centrosome and promotes transport of preciliary vesicles to the basal 

body via the action of the myosin-Va motor protein (Wu et al., 2018). Furthermore, 

CDK10/CycM protein kinase was proposed to negatively regulate ciliogenesis by 

inducing actin polymerization (Guen et al., 2016, 2018). 

The modulation of cilia function by actin cytoskeleton raises the question 

about regulators of the actin cytoskeleton, in particular kinases and phosphatases 

that control properties of cilia. In this respect, it is interesting that the proline 

directed phosphatase hCDC14A is associated with the actin cytoskeleton where it 

regulates cell migration and cell adhesion and in addition has functions in 

ciliogenesis (Chen et al., 2017, 2016; Clément et al., 2012; Delmaghani et al., 2016; 

Imtiaz et al., 2018). However, the molecular mechanism(s) governing the regulation 

of ciliogenesis by CDC14A remains elusive. 
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Figure 1.11: Regulation of ciliogenesis by actin cytoskeleton (Adopted from 

Malicki et al., 2017). 

(A) Several pathways regulate periciliary actin cytoskeleton. Posttranslational protein 
modifications such as deacetylation and phosphorylation of the actin regulator 
cortactin lead to actin polymerization and cilia disassembly. Cell cycle dependent 
signalling is also tightly linked to actin cytoskeleton remodelling that has an impact 
on ciliogenesis. (B) Actin affects ciliogenesis through multiple distinct mechanisms 
such as vesicle trafficking to the cilia base as well as localization of the ciliogenesis 
regulators to basal body (Malicki et al., 2017). 
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1.10 Aim of the thesis  

The focus of this study was to decipher the molecular mechanisms of human 

CDC14s functions by analysing knockout cellular models along with various protein 

tagging approaches. I have utilized zinc-finger nuclease (ZFN)-catalyzed double 

strand break followed by homologous recombination-mediated incorporation of 

premature stop codon and selection marker to target CDC14A (hCDC14A) and 

CDC14B (hCDC14B) loci in telomerase immortalized human retinal pigment 

epithelium (hTERT-RPE1) and HCT116 cells. Phenotypic analyses of the generated 

knockout (KO) cells were conducted to assign molecular functions to these proteins. 

RPE1 cells lacking hCDC14A functions displayed elongated cilia upon serum 

starvation. Global phosphoproteome, as well as proximity-based interaction 

proteomics approaches, were employed to identify substrates and thereby decode 

the molecular mechanism(s) of longer cilia in hCDC14A KO cells. 
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2 Results 

The following results and figures are parts of an already published article (Uddin et 

al., 2015) and a manuscript in preparation (Borhan Uddin, Patrick Partscht, Nan-

Peng Chen, Annett Neuner, Manuel Weiß, Robert Hardt, Aliakbar Jafar Pour, Bernd 

Heßling, Thomas Ruppert, Holger Lorenz, Gislene Pereira and Elmar Schiebel; The 

phosphatase hCDC14A and CDK5 kinase regulate cilia length through phospho-

regulation of the actin-binding protein drebrin). I have adopted the results from 

these manuscripts with subtle modifications. 

2.1 Generation of hCDC14 knockout cells 

2.1.1 Strategy for the generation of knockout cell lines 

Zinc finger nucleases (ZFN) specifically designed to target hCDC14A or hCDC14B 

loci were used to generate human cell lines devoid of these two phosphatase 

activities   (CompoZrTM ZFNs, Sigma Advanced Genetic Engineering Labs) (Chen 

et al., 2016; Uddin et al., 2015). hCDC14A and/or hCDC14B knockout cell lines were 

made using two human cell lines with stable genotype (hTERT-RPE-1 and HCT 116). 

Double strand break-induced homologous recombination strategy was employed to 

incorporate premature stop codon and selection markers (neomycin or puromycin) 

into the targeted exons of hCDC14A (9th exon) and hCDC14B (4th exon) (Figure 2.1). 

Southern blot analysis has confirmed the successful biallelic targeting of the 

hCDC14A and hCDC14B loci by NeoR or PuroR cassettes (Figure 2.2). 
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Figure 2.1: Strategy for ZFN-mediated generation of knockout cell lines (Adopted 

from Uddin et al., 2015).  

(A) Exon 9 of hCDC14A was targeted by zinc finger nuclease (ZFN). A donor template 
containing two homologous arms (HA), stop codon and neomycin selection cassette 
was used for their homologous recombination mediated insertion within the double 
strand break (DSB) site. Junction PCR with forward primer (blue arrow) in NeoR 
cassette and reverse primer (red arrow) in the genome outside homology arm 
confirmed successful targeting and insertion of the selection marker.  
(B) Exon 4 was targeted to knockout hCDC14B gene. Like donor template for 
hCDC14A, neomycin selection cassette was used to generate hCDC14B single 
knockout. Puromycin cassette was used when hCDC14B was knocked out on top of 
hCDC14A-/- cells (neomycin). Forward (blue) and reverse (red) primers used for the 
junction PCR are shown in the figure. 
 



 Results 

21 

 

 

Figure 2.2: Southern blot hybridization to confirm biallelic targeting of hCDC14A 

and hCDC14B loci in RPE-1 cells (Adopted from Uddin et al., 2015). 

(A) Map for hCDC14A and hCDC14B genomic locus targeted by zinc finger nuclease 
(ZFN). The probes for Southern blot hybridization were designed in the right 
homologous arms (shown as green bar). In case of hCDC14A, digestion by Hind III 
would result in a 2.9 kb fragment for knockout cells instead of wild-type 1.2 kb band. 
For knocking out hCDC14B, neomycin or puromycin inserted donor templates were 
used. Puromycin construct (with an extra Hind III site) was used when hCDC14B 
knocking out was carried out on top of hCDC14A-/- cells (NeoR) (double knockout). 
On the other hand, neomycin construct was used during generation of single 
hCDC14B knockout. (B) Southern blot hybridization to confirm hCDC14A knockout 
(AKO) with a hCDC14A specific probe. The expected hCDC14A band sizes were 
observed for wild type (Wt, 1.2 kb), hCDC14A single (AKO) and hCDC14A hCDC14B 
double knockouts (DKO) (2.9 kb). (C) Southern blot hybridization to confirm 
hCDC14B knockout (BKO) with a hCDC14B specific probe. The DKO (see A, PuroR) 
and Wt cells have shown anticipated band sizes of 3.2 kb and 4.0 kb, respectively. For 
single hCDC14B knockouts (BKO), two extra bands above and below the expected 
band size of 5.7 kb (asterisks) was persistently observed in different clones. 
Nevertheless, absence of wild type bands (4.0 kb) in these knockouts confirmed the 
successful targeting of both alleles. 
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2.1.2 RT-PCR analysis confirming expression of wild type and in-frame exon-

skipped hCDC14A/ hCDC14B transcripts 

Sequencing of the hCDC14A and hCDC14B RT-PCR (reverse transcriptase 

polymerase chain reaction) products from wild type and selection marker knockins 

verified the presence of exon-skipped mature mRNA in the targeted hCDC14A and 

hCDC14B clones (Figure 2.3). The reading frames remain intact as the skipped exons 

in both the cases (9th exon for hCDC14A and 4th exon for hCDC14B) contained 

nucleotide numbers that could be divided by three. Hence, we assume the presence 

of truncated hCDC14A and hCDC14B proteins. The 9th exon of hCDC14A includes 

the active site cysteine and aspartate residues necessary for phosphatase activity 

(Bremmer et al., 2012; Gray et al., 2003; Hall et al., 2008), suggesting the inactivation 

of hCDC14A phosphatase from these cell lines (we termed these cells as 

hCDC14APD). Conversely, the catalytically important residues for hCDC14B are 

located in 9th exon, downstream to the targeted exon (Gray et al., 2003). Thus, in case 

of hCDC14B, the gene interference strategy most likely creates a small truncation of 

31 amino acids in the hCDC14B protein that might not affect phosphatase activity. 
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Figure 2.3: RT-PCR analysis to confirm expression of wild type and exon-skipped 

transcripts (Adopted from Uddin et al., 2015). 

Gel images for RT-PCR products of hCDC14A (A) and hCDC14B (B) transcripts from 
wild type (Wt) and knockout cells (KO). Maps show the locations of primers (black 
arrows) used for PCR reaction. The generated DNA bands were gel purified and 
sequenced. Sequences of alternating exon junctions are shown in the respective lower 
panels (exon 8 to 10 in case of hCDC14A and exon 3 to 5 for hCDC14B). In-frame exon 
skipping can be deduced from the amino acid sequences written above the codons. 

 

2.1.3 Exon-skipping phenomenon is independent of genome editing approach 

Our ZFN-mediated genome editing of hCDC14A and hCDC14B has clearly indicated 

the skipping of targeted exon from the final transcript. As a faster and more 

affordable alternative to ZFN, there is a recent surge in use of CRISPR-Cas9 system 

for genome editing. We have taken the advantage of CRISPR-Cas9 system to target 

hCDC14A locus with the same donor construct and guide RNA that targets the same 
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genomic hCDC14A DNA sequence as the ZFN. As the lengthy custom design of the 

ZFN was avoided, CRISPR-Cas9 strategy was clearly faster and more than 50-fold 

cost-efficient than the ZFN approach. As anticipated, we observed exon skipping in 

HCT 116 and RPE-1 cells in which hCDC14A was targeted by CRISPR-Cas9 (Figure 

2.4 and Figure 2.5). This further implies that the skipping event is associated with the 

degree of exon alteration not merely a random outcome of genome editing approach. 

 

 

Figure 2.4: Strategy for Cas9-mediated generation of hCDC14A knockout HCT 116 

cells (Adopted from Uddin et al., 2015). 

(A, B) Workflow for CRISPR-Cas9 medicated insertion of NeoR into exon 9 of 
hCDC14A. Guide RNAs (gRNAs) targeting the exon 9 of hCDC14A gene were 
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designed using the web tool (http://crispr.mit.edu/ (Hsu et al., 2013)). ‘Church 
gRNA insert’ containing the U6 promoter and gRNA scaffold (Mali et al., 2013) was 
first synthesized as gBlock and cloned into pJet. The intended gRNAs were then 
inserted through PCR mutagenesis using primers indicated by arrows (top of B). The 
same donor construct (bottom of B) as in case of ZFN-mediated genome editing was 
used to target the locus. (C) Junction PCR (as in Figure 2.1 A) with forward primer in 
NeoR cassette and reverse primer in the genome outside homology arms confirmed 
successful targeting and insertion of the selection marker. (D) RT-PCR of purified 
mRNA from Wt and different CRISPR-Cas9 targeted hCDC14A-KO clonal cells. 
Primers were as in Figure 2.3 A. Presence of both wild type and exon-skipped RNA 
indicated the targeting of single allele in clone 17. The other NeoR clones 7, 15, and 19 
contained bi-allelic targeting of the hCDC14A gene. (E) The generated DNA bands of 
the RT-PCR were gel purified and sequenced. Sequences of alternating exon junctions 
of hCDC14A are shown and in-frame exon skipping can be deduced from the amino 
acid sequences written above the codons. 
 

 

Figure 2.5: Strategy for Cas9-mediated generation of hCDC14A knockout RPE-1 

cells (Adopted from Uddin et al., 2015). 

(A) Workflow for the construction of RPE-1 hCDC14A-KO cell line. pCW-Cas9 
plasmid containing doxycycline (Dox) inducible spCas9 was lentivirally integrated 
into RPE-1 FRT/T-Rex cells. (B, C) Successful expression and nuclear localization of 

http://crispr.mit.edu/
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Cas9 was confirmed by indirect-immunofluorescence (B) and immunoblotting (C). (D) 
Junction PCR with forward primer in NeoR cassette and reverse primer in the genome 
outside homology arm (as in Figure 2.1) confirmed successful targeting and insertion 
of the selection marker. Exon skipping was confirmed by RT-PCR (primers as in 
Figure 2.3). Presence of both wild type and exon-skipped RNA indicated the targeting 
of single allele in clones 1 and 20. 

 

2.1.4 Minimizing the degree of alteration salvages the exon skipping 

As a cause of exon skipping, we hypothesized that large insertion-mediated 

alteration of the targeted exon affects the pre-mRNA structure (Valentine, 1998). 

Hence, to avoid large-scale genome editing, we have taken two experimental 

strategies. First, genomic loci were targeted by the same ZFNs but with error-prone 

NHEJ, to have random smaller insertions or deletions (Figure 2.6 A). Secondly, the 

selection markers flanked by loxP sites were removed by Cre-recombinase to 

generate loci with 45 base pair insertions including stop codons immediately 

followed by the single loxP site (Figure 2.6 B). In both the cases, sequencing of 

genomic loci indicated the expected abruptions. Similarly, sequencing of the RT-PCR 

products confirmed the likewise modifications within the targeted exons without 

their skipping from the mature transcript (Figure 2.6 A, B). Semi-quantitative RT-

PCR using GAPDH as a control (Carbery et al., 2010) indicated that the exon-skipped 

hCDC14B mRNA level was less than half of the wild-type mRNA (Figure 2.6 C). 

Such decrease in mRNA level might be due to transcriptional control (altered 

synthesis) and/or post-transcriptional regulation (altered stability) of disrupted 

cellular transcripts. Because of the lack of anti-hCDC14B antibodies that detect the 

endogenous proteins (Guillamot et al., 2011; Mocciaro et al., 2010; Ovejero et al., 

2012), we were unable to confirm this mRNA decrease at the protein levels. Thus, by 

ZFN and CRISPR-Cas9 strategies we were able to generate hCDC14APD and/or 

hCDC14B-/- RPE-1 and HCT 116 cells. 
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Figure 2.6: Exon skipping can be abolished by minimizing the degree of alteration 

(Adopted from Uddin et al., 2015). 

(A) Exon 4 of hCDC14B was targeted by ZFN to introduce double strand break (DSB) 
and error-prone NHEJ for random insertion and deletion. In some of the targeted loci, 
small alterations in the exon (one to fifteen bases) were observed. ZFN cutting sites 
are written in blue font and base deletions or insertions are marked by red font colour. 
Sequencing of the RT-PCR products confirmed identical base pair changes without 
exon skipping (sequence not shown). (B) The selection cassette flanked by loxP sites 
was removed by Cre-recombinase from HCT 116 and RPE-1 hCDC14B-KO cells. RT-
PCR analysis confirmed the presence of stop codon (11 bp) followed by one loxP site 
(34 bp) within the targeted exon in both the cell lines. (C) Semi-quantitative RT-PCR 
indicated that the exon-skipped mRNA level of RPE-1 cells is less than half of the 
wild-type mRNA. 40 ng of total RNA was used and the input RNA level was 
confirmed by GAPDH amplification as mentioned by Carbery et al. (2010). The 
experiment was performed three times with similar outcome. One representative 
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experiment is shown. The numbers below the agarose gel summarizes the relative 
abundance of the mRNA from three different experiments. 
 
 
 

2.2 Phenotypic analysis of knockout cell lines 

2.2.1 hCDC14C is not expressed in RPE-1 and HCT 116 cells 

We have constructed RPE-1 and HCT 116 cells double deleted for hCDC14A and 

hCDC14B (hCDC14APD hCDC14B-/-). The puromycin or neomycin marker in exon 4 

of hCDC14B was removed by Cre recombination to prevent exon skipping. The 

question remained whether RPE-1 hCDC14APD hCDC14B-/- cells expressed hCDC14C. 

hCDC14C is a retrogene that is nearly identical to the cDNA of hCDC14B (Rosso et 

al., 2008). However, hCDC14C is different from hCDC14B at several nucleotide 

positions (Figure 2.7, red asterisks). Analysis of the hCDC14B and hCDC14C mRNA 

in RPE-1 Wt and RPE-1 hCDC14APD and/or hCDC14B-/- cells by RT-PCR and 

sequencing (mRNA was treated with DNaseI to remove chromosomal DNA) only 

identified bases characteristic for hCDC14B but not for hCDC14C (Figure 2.7, 

middle). Without DNaseI treatment, we detected the mixed-read containing 

hCDC14C signature derived from the chromosomal DNA and the hCDC14B 

signature from the cDNA (Figure 2.7, top). In genomic DNA only the hCDC14C 

fragment was amplified by PCR (Figure 2.7, bottom; retrogene, no introns) because 

of the large intron size in hCDC14B. Identical results were obtained with HCT 116 

Wt and HCT 116 hCDC14APD and/or hCDC14B-/- cells. Thus, hCDC14C is not 

expressed in RPE-1 Wt, RPE-1 hCDC14APD and/or hCDC14B-/-, HCT 116 Wt, HCT 

116 hCDC14APD and/or hCDC14B-/- cells. 
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Figure 2.7: hCDC14C is not expressed in RPE-1 and HCT 116 cells. 

Expression of hCDC14C in various cell lines was tested by RT-PCR and sequence 
analysis. The red stars mark the bases that are different between hCDC14B and 
hCDC14C. Upper lane: mix of chromosomal DNA and cDNA from DNase I untreated 
RNA. Middle: sequence analysis of the RT-PCR product from RPE-1 hCDC14APD and 
hCDC14B-/- (BAKO3) cells showed expression of only hCDC14B but not hCDC14C. 
Identical results were obtained for RPE-1 Wt cells. Bottom: PCR analysis of genomic 
DNA from RPE-1 cells identified only the chromosomal hCDC14C signature. 
 
 

2.2.2 Growth and cell cycle analysis of hCDC14APD and hCDC14B-/- cells 

MTT assay was used for an indirect measurement of cell growth. It is a colorimetric 

assay for evaluating cell metabolic activity, which in turn reflects the total number of 

cells. The MTT assay did not indicate an altered metabolic activity of RPE-1 Wt, 

hCDC14APD and/or hCDC14B-/- cells (Figure 2.8 A, B). Secondly, analysis of the cell 

cycle profile using FACS analysis showed no significant difference in the cell cycle 

phases between Wt, single, and double hCDC14A/B mutant cell lines (Figure 2.8 C). 

So, it can be convincingly stated that hCDC14A/hCDC14B are not essential for the cell 

cycle progression of RPE-1 and HCT 116 cells. 

 

https://en.wikipedia.org/wiki/Colorimetry_(chemical_method)
https://en.wikipedia.org/wiki/Colorimetry_(chemical_method)
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Figure 2.8: Analysis of hCDC14APD and/or hCDC14B-/- cell lines. 

(A, B) Growth analysis of RPE-1 Wt, hCDC14APD (AKO4, 6 and 7), hCDC14B-/- (BKO5 
and 10) and hCDC14APD hCDC14B-/- (BAKO3, 17 and 20) cell lines using the MTT 
assay (colorimetric assay for measuring cells’ metabolic activity). The small growth 
differences seen in B) were statistically insignificant. (C) Investigation of the 
distribution of cell cycle phases of RPE-1 Wt, AKO4, BKO10, and BAKO3 cell lines by 
FACS (propidium iodide) analysis.  
 
 

2.3 hCDC14A regulates cilia length 

2.3.1 hCDC14APD RPE-1 cells have longer cilia than Wt cells  

hCDC14A is a conserved phosphatase with suggested but unclear role in ciliogenesis 

(Ah-Fong and Judelson, 2011; Clément et al., 2012; Delmaghani et al., 2016). To 

understand the function of hCDC14A in cilia formation, we analysed serum starved 

RPE-1 hCDC14APD cells for cilia formation in comparison to Wt cells. hCDC14APD 

cells formed cilia as efficient as Wt cells independent of the cells’ confluency (Figure 

2.9 A, B). However, cilia of hCDC14APD cells were longer in comparison to those of 

Wt cells (Figure 2.9 A, C). siRNA mediated depletion of hCDC14A also caused the 

formation of elongated cilia (Figure 2.9 D). 

https://en.wikipedia.org/wiki/Colorimetry_(chemical_method)
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Figure 2.9: Ablation of hCDC14A phosphatase activity in human RPE-1 cells leads 

to the elongation of primary cilia. 

(A) The cells were serum starved for 48 hours for inducing ciliogenesis prior to 
fixation. Cilia were stained with Arl13B while the basal bodies were marked with 
CEP250 (C-Nap1). Cilia from the magenta box marked area were enlarged for a clear 
view. (B, C) Percent of ciliated cells, as well as the length of cilia, was quantified from 
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A. hCDC14A phosphatase dead (hCDC14APD) cells show a similar percentage of cilia 
compared to wild type (Wt) cells. Cilia length was measured by a semi-automated 
ImageJ macro as described in methods section. (D) Elongated cilia phenotype was 
further confirmed by siRNA-mediated knockdown of hCDC14A. (E) The dynamics of 
ciliogenesis was determined by serum starving the Wt and hCDC14APD cells for 
different time-points (0, 4, 8, 24, 48 and 96 hours). The cilia from hCDC14APD cells 
continue to grow even after 48 hours of starvation whereas those from Wt cells reach 
optimum length within 12 to 24 hours. (F, G) In a time course experiment, the cilia 
disassembly kinetics was measured by first inducing the ciliation through 48 hours of 
serum starvation prior to incubation with serum containing media for different time 
points (0, 1, 4, 6, 24 hours). Measurement of cilia length indicated the comparable 
rates of cilia disassembly in RPE-1 Wt and hCDC14APD cells (**** P<0.0001). Sizes of 
the scale bars are indicated next to the designated images. 

 

Mutations can affect cilia length because of the impairment of cilia 

disassembly when cells re-enter the cell cycle upon growth factor addition (Maskey 

et al., 2015). To evaluate this possibility, we compared cilia formation and cilia 

disassembly of Wt and hCDC14APD cells. Elongation of cilia in response to serum 

starvation plateaued in Wt cells after 12 hours with an average cilium length of 2.8 

µm (Figure 2.9 E). In contrast, cilia continued to elongate in hCDC14APD cells over 96 

hours reaching a length of 4.6 µm. Cilia disassembly was even slightly faster in 

hCDC14APD cells in comparison to Wt cells (Figure 2.9 F, G). This suggests that it is 

cilia length control but not cilia formation or disassembly, which is defective in 

hCDC14APD cells. In addition, hCDC14PD/+ cells carrying only one Wt hCDC14A gene 

displayed an intermediate cilia length phenotype. Conversely, elongated cilia were 

not observed in RPE-1 cells lacking the hCDC14A paralogue hCDC14B (hCDC14B-/-) 

suggesting that the cilia phenotype is specific to hCDC14A (Figure 2.10). 
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Figure 2.10: Elongated cilia phenotype is specific to hCDC14APD cells. 

(A) One allele targeted hCDC14PD/+ cells displayed an intermediate cilia length 
phenotype compared to Wt and hCDC14PD/PD cells. (B) Elongated cilia were not 
observed in hCDC14B-/- RPE-1 cells suggesting that the cilia phenotype is specifically 
due to the lack of hCDC14A phosphatase activity (NS - not significant; ***P≤0.001; **** 
P≤0.0001). 
 

We next characterized the structure of hCDC14APD cilia in comparison to Wt 

to exclude structural defects. Electron microscopy did not show obvious defects in 

the basal body and axoneme organization of hCDC14APD cilia (Figure 2.11). In 

addition, the distal appendage protein CEP164, the subdistal appendage proteins 

CEP170, ODF2, and ninein, the transition zone protein NPHP1, the cilia shaft protein 

ARL13B, the transport protein IFT88, the linker proteins C-Nap1 and rootletin, and 

the PCM protein -tubulin were similarly associated with cilia in Wt and hCDC14APD 

cells (Figure 2.12). Intensity of these important basal body proteins were comparable 

in RPE-1 Wt and hCDC14APD cells (Figure 2.13). Thus, continuous elongation of cilia 

in hCDC14APD cells is causing the prolonged cilia phenotype without any noticeable 

structural defects. We next tested whether hCDC14A overexpression has the reverse 

phenotype of hCDC14A inactivation. Mild overexpression of hCDC14A but not the 

phosphatase dead version hCDC14AC278S from the inducible TetOn promoter 

drastically inhibited cilia formation (Figure 2.14 A). Taken together, hCDC14A 

regulates the assembly and length of cilia. 
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Figure 2.11: Electron micrograph of cilia from Wt and hCDC14APD cells. 

(A) Electron micrograph of cilia from 48 hours serum starved RPE-1 Wt and 
hCDC14APD cells. Basal body and the ciliary axoneme showed no gross structural 
defects in the longitudinal ciliary sections from hCDC14APD cells. (B) Similarly, 
the cross-sections of the basal body from Wt and hCDC14APD cells represented 
well organized triplet microtubule structure. Sizes of the scale bars are indicated 
next to the designated images (EM analysis was done in collaboration with 
Annett Neuner). 
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Figure 2.12: Cilia from hCDC14APD cells are structurally similar to those from Wt 

cells. 

Markers representing various basal body localizations showed no obvious localization 
defects for (A) pericentrin; (B, E and F) the distal appendage protein CEP164; (C, D 
and E) the subdistal appendage proteins (C) CEP170, (D) ODF2, and (E) Ninein; (C 
and G) the proximal end protein C-Nap1; (F) the transition zone protein NPHP1 and 
(G) the ciliary rootlet component rootletin (Scale Bars 1 µM). 
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Figure 2.13: Basal body protein intensities and interphase centrosomal distance of 

hCDC14APD cells are comparable to Wt cells. 

(A-G) Fluorescent intensity of the markers representing various basal body 
localizations were measured using an ImageJ macro described in method section. In 
brief, the fluorescent intensities within a 4.5-µm-radius circle surrounding the basal 
body was measured after background subtraction. 
(H-I) Interphase centrosomal distance (from unstarved cycling cells) were measured 
in Wt and hCDC14APD cells (clone 4, 6, 7) by manually measuring the linear distance 
between two centrosomes marked with Tubulin and PCNT. 
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2.3.2 hCDC14A localizes to the basal body and the actin cytoskeleton of ciliated 

cells  

CDC14A localizes to the axoneme of transient kinocilia of developing cochlear hair 

cells and the persistent kinocilia of vestibular hair cells (Imtiaz et al., 2018). The 

localization of hCDC14A in cells with a primary cilium is, however, unclear. 

Endogenous hCDC14A was detected in the basal body of serum-starved ciliated 

RPE-1 cells using an established anti-hCDC14A antibody (Chen et al., 2016) (Figure 

2.15). Similar localization was observed in RPE-1 cells stably expressing hCDC14A-

GFP and the phosphatase dead version hCDC14AC278S-GFP under TetON promoter 

control (Figure 2.14 D-G). However, we noticed that hCDC14A-GFP expression 

reduced the number of RPE-1 cells with cilia from 70% to 20%. This reduction was 

not observed when the phosphatase dead hCDC14AC278S-GFP was expressed (Figure 

2.14 A). In addition, hCDC14A-GFP was detected along actin cables in ciliated cells 

(Figure 2.14 B and C) as reported for interphase cycling cells (Chen et al., 2016).  

For a more detailed analysis of the hCDC14A localization, we focused on 

hCDC14AC278S-GFP that did not affect ciliogenesis. A closer inspection of the basal 

body indicated the presence of two pools of hCDC14AC278S-GFP. The most intense 

fraction was enriched at the proximal end of the basal body that contains the linker 

protein C-Nap1 (encoded by CEP250) (Fry et al., 1998; Mayor et al., 2000) (Figure 

2.14 D and E). Confirming this localization, hCDC14A-GFP was lost from the basal 

body’s proximal end in CEP250-/- RPE-1 cells (Figure 2.14 F and G) (Panic et al., 

2015). The second pool, relatively weak in intensity, was at the distal end of the basal 

body that organizes the cilium (Figure 2.14 D). hCDC14A localized underneath the 

distal appendage marker CEP164 and overlapped in its localization with the 

subdistal appendage protein ODF2 (Ishikawa et al., 2005; Mazo et al., 2016). The 

cartoon in Figure 2.14 E summarizes hCDC14A localization at basal bodies. Thus, in 

ciliated cells hCDC14A associates with the actin cytoskeleton and basal body. 
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Figure 2.14: hCDC14A negatively regulates ciliogenesis and is localized to actin as 

well as to the basal body. 

 (A) hCDC14A-GFP and hCDC14AC278S-GFP under control of the TetON promoter 
were stably integrated into RPE-1 cells. hCDC14A-GFP and hCDC14AC278S-GFP 
localized to the basal body. In addition, expression of hCDC14A-GFP but not the 
phosphatase dead hCDC14AC278S-GFP mutant inhibited cilia formation. Expression of 



 Results 

39 

 

hCDC14A-GFP and hCDC14AC278S-GFP were validated by immunoblot analysis.  (B) 
TetON-hCDC14A-GFP RPE-1 cells were serum starved for 48 hours prior to fixation 
and immunofluorescence microscopy. hCDC14A-GFP colocalizes with Phalloidin 555 
conjugated dye that marks F-actin fibres. (C) Line scan inside the magenta-coloured 
box showed in B. The scanned areas were enlarged and displayed below the 
corresponding images in B.  (D) Sub-centrosomal localization of hCDC14AC278S-GFP 
was determined by the correlative positioning of GFP signal with the proteins Arl13B 
and IFT88 (cilia), C-Nap1 (proximal end), CEP164 (distal appendage) and ODF2 
(subdistal appendage). (E) Cartoon of cilia indicating the localization of hCDC14A. (F, 
G) CEP250-/- cells showed only the sub-distal and centriolar localizations of 
hCDC14AC278S-GFP indicating the CEP250 dependence of hCDC14A proximal end 
localization. Sizes of the scale bars are indicated next to the designated images. 
 

 

Figure 2.15:  Endogenous hCDC14A as well as BirA tagged hCDC14A are localized 

to basal body. 

(A) Endogenous hCDC14A could be detected in the basal body of RPE-1 Wt cells 
under ciliogenic condition. (B) hCDC14A-BirA or hCDC14AC278S-BirA could also be 
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detected in the basal body, whereas BirA showed a diffused cellular signal without 
any basal body enrichment. Sizes of the scale bars are indicated next to the designated 
images. 
 
 

2.3.3 hCDC14A dephosphorylates actin associated proteins during ciliogenesis 

We have applied global phosphoproteome along with proximity-based interaction 

proteomics approaches under conditions that favor ciliation to identify substrates 

and proximity neighbours for hCDC14A. First, stable isotope labelling with amino 

acids in cell culture (SILAC) (Ong et al., 2002) allowed us to identify proteins that 

became dephosphorylated upon TetON-induced expression of hCDC14A-GFP by 

doxycycline (Dox) under cilia promoting conditions (Figure 2.16 A-D). Comparison 

of the phospho-proteomes of non-induced and induced hCDC14A-GFP expressing 

cells by mass spectrometric analysis identified actin-associated proteins such as 

DBN1, synaptopodin (SYNPO), and the LIM domain and actin binding 1 (LIMA1). 

In addition, we identified the microtubule-associated protein MAP4 that functions in 

cilia length control (Ghossoub et al., 2013) (Figure 2.16 B and C). Interestingly, most 

of the phosphosites that were dephosphorylated by hCDC14A followed the pSP 

consensus of CDC14 phosphatases (Figure 2.16 D) (Chen et al., 2017; Eissler et al., 

2014; Visintin et al., 1998). However, compared to human cycling cells, in which 

hCDC14A preferentially dephosphorylates pSPxK/R sites (Chen et al., 2017), the 

preference for positively charged amino acids at position pS+3 was less pronounced 

under serum starvation (Figure 2.16 D). The proximity BioID analysis (Roux et al., 

2012) was performed with both hCDC14A Wt and the phosphatase dead 

hCDC14AC278S N-terminally tagged to the promiscuous biotin protein ligase (BirA). 

The BirA fused hCDC14A also showed actin as well as basal body localization 

(Figure 2.15). During ciliogenesis, hCDC14A and hCDC14AC278S localized close to 

actin-associated proteins DBN1 and LIMA1 which is consistent with the phospho-

proteome analysis (Figure 2.16 E and F). 
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Figure 2.16: Identification of substrates and proximity neighbors of hCDC14A 

during ciliogenesis. 

(A) Experimental scheme for hCDC14A-GFP overexpression combined with 
phosphoproteome (SILAC) analysis. (B) Molecular network of the hypo-
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phosphorylated proteins in hCDC14A-GFP overexpressed cells. Gene network was 
constructed in Cytoscape using the function prediction GeneMANIA app. Physical 
interactions are denoted by solid lines (edges) whereas the shared protein domain 
interactions are represented by broken lines. The extent of interactions (degree) is 
indicated by the Node size. The query proteins are marked with thick borders and the 
actin-related proteins are marked with Magenta-coloured nodes. (C) Gene Ontology 
(GO) analysis of the proteins that are two-fold hypo-phosphorylated in the heavy 
(hCDC14A overexpressed) samples. Values inside the parentheses indicate P values. 
(D) Substrate motif identified by analysing the sequences of hypo-phosphorylated 
peptides in Perseus. (E) Molecular network of the neighbours of hCDC14A identified 
by Proximity-dependent biotin identification (BioID) during ciliogenesis. Gene 
network was constructed in Cytoscape as described in B by considering the physical 
interactions only. (F) Gene Ontology (GO) analysis of the proteins from which at least 
five peptides were two-fold enriched in the hCDC14A-BirA and hCDC14A-CS-BirA 
samples compared to BirA control. 

 

In a secondary screen, we tested proteins that were identified by the phospho-

proteome and BioID analyses for their impact on cilia length control. Proteins were 

depleted by siRNA during ciliogenesis of RPE-1 Wt and hCDC14APD cells (Figure 

2.17). Cilia length was subsequently measured by indirect immunofluorescence 

microscopy. Depletion of several proteins such as the subdistal appendage protein 

CEP170 had no impact on the cilia length in Wt and hCDC14APD cells (Figure 2.17). 

DBN1, MTCL1, and UBAP2L depletion significantly increased the length of cilia in 

Wt cells without affecting those in hCDC14APD cells. On the contrary, siRNA of 

KANK2, MAP4, PDLIM7, and RPS2 reduced the length of hCDC14APD cilia without 

having an impact on Wt cilia. In summary, hCDC14A phosphoproteome and BioID 

analyses identified putative CDC14A substrates that affect cilia length. 
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Figure 2.17: siRNA screen to find proteins with critical function in cilia length 

control. 

(A) Experimental scheme for siRNA screen to find hCDC14A substrate(s) essential for 
cilia length control. (B, C, D and E) Proteins were depleted by siRNA during 
ciliogenesis of RPE-1 wild type and hCDC14APD cells. Cilia length was subsequently 
measured by indirect immunofluorescence microscopy. (The experiment was 
repeated twice, and 70 to 150 cilia were measured for each experiment; * P≤ 0.05; ** P≤ 

0.01; *** P≤ 0.001; **** P≤ 0.0001). 
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2.3.4 hCDC14A regulates phosphorylation of DBN1 

We focused the further analysis on DBN1, which is a known phosphoprotein with 

functions in ciliogenesis (Nager et al., 2017; Worth et al., 2013). Mass spec analysis 

indicated that serine residue 142 of DBN1 became dephosphorylated by hCDC14A 

in RPE-1 cells during ciliogenesis (Figure 2.18). In cycling cells, this “SP” site is 

phosphorylated by the proline directed kinase CDK5 (Tanabe et al., 2014; Worth et 

al., 2013). Analysis of the phosphorylation status of S142 of DBN1 with a phospho-

specific antibody confirmed dephosphorylation of this site by Tet induced 

hCDC14A-GFP but not by the inactive hCDC14AC278S-GFP or GFP (Figure 2.18 A and 

B). In addition, S142 of DBN1 was hyperphosphorylated in hCDC14APD RPE-1 cell 

lines during ciliogenesis (clone 4, clone 6, and clone 7) compared to the Wt control 

(Figure 2.18 C). The identity of the pS142 DBN1 and DBN1 bands was confirmed by 

their reduction in response to DBN1 siRNA (Figure 2.18 C). Of note, 

phosphorylation of pS142 of DBN1 was reduced during ciliogenesis relative to 

cycling cells (Figure 2.22 A). This suggests that DBN1pS142 is a substrate of hCDC14A 

during ciliogenesis. To confirm direct dephosphorylation of DBN1 pS142 by 

hCDC14A, we incubated immuno-precipitated, phospho DBN1 with recombinant 

and purified hCDC14A. pS412 was efficiently dephosphorylated by recombinant, 

purified hCDC14A (Figure 2.18 D) indicating that hCDC14A directly 

dephosphorylates DBN1. 
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Figure 2.18: The phosphoprotein DBN1 is a substrate for hCDC14A. 

(A, B) hCDC14A, not the inactive hCDC14AC278S, dephosphorylates the serine residue 
142 of DBN1 in vivo. RPE-1 cells expressing GFP, hCDC14A-GFP, and hCDC14AC278S-
GFP under TetON promoter were serum starved in presence or absence of Dox for 48 
hours prior to fixation for immunofluorescence (A) or lysing for immunoblot analysis 
(B). (B) The DBN1pS142/DBN1 ratio was densitometrically measured from the Dox 
treated samples and represented in the graph next to the immunoblot. (C) S142 of 
DBN1 was hyper-phosphorylated in hCDC14APD clones during ciliogenesis compared 
to the wild type control. The specificity of the DBN1pS142 antibody was validated by 
siRNA mediated knock-down of DBN1 in both hCDC14APD cells and GFP/hCDC14A-
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GFP/hCDC14AC278S-GFP stable cells. (D) In vitro dephosphorylation of DBN1 by 
purified hCDC14A enzyme. DBN1-GFP was transfected into HEK293T cells and 
immunoprecipitated with GFP binder after 48 hours of expression. The 
immunoprecipitated phospho-DBN1 was then incubated with hCDC14A to 
dephosphorylate in vitro. 
 
 

2.3.5 Phosphoregulation of DBN1 by hCDC14A contributes to cilia length 

control 

To confirm the function of DBN1 in cilia length regulation, we constructed 

independent DBN1 RPE-1 knockout cell lines using CRISPR/Cas9 technology 

(Figure 2.19 A). Three independent gRNAs targeting different exons of DBN1 were 

used to construct DBN1 KO cells (Figure 2.19 A). Analysis of the DNA sequences 

from several clonal cell lines confirmed the disrupting mutations in the DBN1 gene 

(Figure 2.19 B). As expected from gene disruption, DBN1 was no longer detected in 

DBN1 KO cell lines by immunoblotting with polyclonal antibodies (Figure 2.19 C). 

One clone of each gRNA (1.16, 2.18 and 3.3) was used for further ciliogenesis 

experiment and found to assemble longer cilia than Wt cells (Figure 2.19 D). Clone 

2.19 did not affect cilia length as this cell line did not carry a mutation in DBN1 and 

DBN1 protein was detected by immunoblotting (Figure 2.19 C). This data further 

confirms the role of DBN1 in cilia length regulation. 

 To test the impact of S142 phosphosite in DBN1 on cilia length control, we 

expressed DBN1 versions of Wt, phospho-inhibitory (S142A) and phospho-mimetic 

(S142D) in DBN1 KO and Wt RPE-1 cells under the control of TetON promoter. 

Expression of DBN1 in RPE-1 Wt cells increases cilia length (Figure 2.19 E). Because 

of this overexpression effect, we did not observe rescue of the cilia length phenotype 

by TetON-DBN1 in DBN1 KO cells (Figure 2.19 F). Interestingly, however, the non-

phosphorylated, DBN1S142A (Worth et al., 2013) significantly reduced cilia length in 

comparison to Wt or phospho-mimetic (S142D) DBN1 (Figure 2.19 F). Similar cilia 

length in both Wt and phospho-mimetic DBN1S142D has lead us to speculate that the 

overexpressed DBN1 might be phosphorylated inside the cells leading to the 

inactivation of the non-phosphorylated active DBN1. Indeed, immunoblotting of the 
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cell lysate with phospho-specific antibody confirmed that in TetON-DBN1 cells, 

DBN1 S142 phosphorylation was strongly elevated in comparison to the control 

without Dox (Figure 2.19 G). No DBN1pS142 signal was observed in cells expressing 

the S142A and S142D versions of DBN1, confirming the specificity of the DBN1pS142 

antibodies (Figure 2.19 G). Thus phospho-regulation of DBN1 is a mechanism that 

contributes to cilia length control. 

 

2.3.6 The kinase CDK5 and hCDC14A phosphatase counteract phosphorylation 

of DBN1 during ciliogenesis 

CDK5 is a proline directed kinase that in serum starved cells induces degradation of 

‘nuclear distribution protein nudE’ homolog 1 (NDE1) that promotes cilia 

disassembly upon re-entry of RPE-1 cells into the division cycle (Maskey et al., 2015). 

Hence, cells depleted of CDK5 have shorter cilia (Figure 2.19 H). We first asked 

whether CDK5 counteracts hCDC14A during ciliogenesis. Restoration of cilia length 

in hCDC14APD cells to Wt by CDK5 depletion supports this model (Figure 2.19 H). 

However, this length regulation of cilia by hCDC14A/CDK5 was not on the level of 

NDE1 since protein levels of NDE1 in ciliated hCDC14APD and Wt cells were similar 

(Figure 2.22 B). We next considered the possibility that S142 of DBN1 is also 

phosphorylated by CDK5 in RPE-1 cells during ciliogenesis (Tanabe et al., 2014; 

Worth et al., 2013). Indeed, depletion of CDK5 in hCDC14APD cells strongly reduced 

DBN1pS142 phosphorylation (Figure 2.19 I). To test this further, we expressed S142D 

phospho-mimetic version of DBN1S142D in hCDC14APD RPE-1 cells and subsequently 

depleted CDK5 by siRNA. Cilia length reduction by CDK5 depletion in hCDC14APD 

RPE-1 cells was completely inhibited by the expression of DBN1S142D (Figure 2.19 J). 

Thus, opposing phospho-regulation of DBN1 by CDK5 and hCDC14A affects cilia 

length. 
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Figure 2.19: Phospho-regulation of DBN1 is critical for cilia length control. 

(A) Schematic representation of different domains of drebrin (adapted from Shirao et 
al., 2017) (here ADF-H: ADF homology domain, AB1: Actin-binding region 1, AB2: 
Actin-binding region 2, P: Proline-rich region). The numbers represent the amino acid 
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positions of the denoted domains. Three independent gRNAs targeting three different 
exons (3,5,7) of DBN1 were used to generate DBN1 KO cells. (B) Successful targeting 
of the locus of interest was confirmed by sequencing the PCR amplicons surrounding 
the locus. For example, in clone 3.3, there was a single base insertion in both alleles 
(T/G) to cause disruption of protein expression through introduction of a premature 
stop codon. (C) The absence of DBN1 protein in the targeted clones was further 
verified by immunoblotting of the whole cell lysate. GAPDH is used as loading 
control. (D) One targeted clone from each gRNA (1.16, 2.18, 3.3) including the 
nontargeted clone 2.19 and Wt control were serum starved for 48 hours to induce 
ciliogenesis and measure cilia length. The cilia from DBN1 KO cells were significantly 
longer than those from Wt or non-targeted controls. (E) Overexpression of DBN1-GFP 
in RPE-1 Wt cells caused the elongation of primary cilia. (F) The phospho-inhibitory 
(S142A) version of DBN1 rescued the elongated cilia of DBN1 KO cells. (G) The 
overexpressed Wt DBN1 was hyper-phosphorylated in cells. The pS142 antibody did 
not detect the overexpressed DBN1S142A or DBN1S142D. (H) Depletion of CDK5, the 
kinase that phosphorylates drebrin S142 (Worth et al., 2013), decreased the cilia length 
in Wt cells as well as rescued the elongated cilia of hCDC14APD cells. (I) Immunoblot 
analysis of (H) confirming the successful depletion of CDK5. The decrease in 
DBN1pS142 intensity was associated with CDK5 depletion. (J) CDK5 mediated cilia 
length decrease can be completely blocked by expression of the phospho-mimetic 
DBN1S142D in hCDC14APD cells. (ns = not significant; * P≤ 0.05; ** P≤ 0.01; *** P≤ 0.001; 
**** P≤ 0.0001). 

 

2.3.7 hCDC14APD cells show enhanced recycling endosome as well as elevated 

docking of ciliary vesicles to the basal body 

How does phospho-regulation of DBN1 control cilia length? Previously DBN1 was 

described as a member of an actin network that is involved in ectocytosis of ciliary 

vesicles from the cilia tip of inner medullar collecting duct (IMCD3) kidney cells that 

have an exposed primary cilium (Nager et al., 2017). In contrast to IMCD3 cells, 

DBN1 was not associated with any part of the cilium of RPE-1 cells that assemble 

cilia via the intracellular pathway (Figure 2.22 C) (Mazo et al., 2016). However, 

partial actin-DBN1 colocalization could be confirmed in RPE-1 cells (Figure 2.22 D). 

Continuous growth of cilia under serum starvation condition (Figure 2.9) raises the 

possibility that a feedback mechanism restricting cilia length in Wt cells is failing in 

hCDC14APD cells. Control of endocytic recycling to the pericentrosomal preciliary 

compartment (PPC) as well as the ciliary vesicle transport from the Golgi to the basal 

body may be such mechanisms (Joo et al., 2013; Kim et al., 2010; Ye et al., 2014). 

Interestingly, DBN1 KO HEK293 cells were reported to display enhanced 
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endocytosis of dynamin-dependent cargo (Li et al., 2017). Consequently, we first 

tested the uptake of transferrin as a marker for endocytic recycling during 

ciliogenesis. Indeed, uptake of transferrin was enhanced in hCDC14APD cells 

compared to Wt cells (Figure 2.20 A and B). Furthermore, elevated Smoothened 

(SMO) positive cilia in hCDC14APD cells indicated the enhanced ciliary vesicle 

docking during ciliogenesis (Figure 2.20 C and D). This elevated Smo signal in 

hCDC14APD cells also lead to an increase in ratio of Gli3 – full length/Gli3 – 

repressor form, which indicated that the Sonic Hedgehog signalling was active in 

these cells (Figure 2.21 C and D). The Hedgehog (Hh) signaling pathway plays 

pivotal roles in the regulation of embryonic development as well as of the 

proliferation and differentiation of stem cells. Accumulation of the signalling protein 

Smoothened (Smo), a 7-pass transmembrane (7TM) protein, in the membrane of 

primary cilia is a prerequisite for the activation of Hh signalling cascade. In the 

absence of ligands, the Hh receptor Patched-1 (Ptch) localizes in and around the 

cilium and inhibits the accumulation of Smo (Milenkovic et al., 2015). However, the 

cilia length of RPE-1 Wt and hCDC14APD cells could not be altered by inducing 

(SAG) or inhibiting (cyclopamine) Hedgehog signalling (Figure 2.21 A and B). 

Low dose of actin-depolymerizing drug cytochalasin D was reported to 

promote ciliogenesis by stabilizing the Arp2-associated pericentrosomal actin 

network (Wu et al., 2018). Similarly, we observed enhanced Arp2 as well as 

phalloidin intensity surrounding the 1 µm radius of the basal body in hCDC14APD 

cells (Figure 2.20 E-G). These data denote that hCDC14APD cells have a distinct local 

actin reorganization surrounding the basal body, which in turn contributes to cilia 

elongation. The involvement of actin modulation in cilia length control also come 

from the observation that the ciliogenesis inhibitory effect of hCDC14A over-

expression could be reverted by the treatment of low dose of cytochalasin D (Figure 

2.22 E).  
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Figure 2.20: hCDC14APD cells show enhanced recycling endosome as well as 

elevated docking of ciliary vesicles to the basal body. 

(A, B) hCDC14APD cells take up significantly higher transferrin that marks recycling 
endosomes. The fluorescence intensities of transferrin within a 2-µm-radius circle 
surrounding the CEP164 signal were quantified and presented in B. An ImageJ macro 
was used to measure the intensity as described in method sections. (C, D) Mouse 
smoothened C-terminally tagged to GFP was lentivirally integrated into RPE-1 Wt 
and hCDC14APD clones under TetON promoter. Cells were starved along with Dox 
treatment for 48 hours and the percentage of cilia that contain Smo-GFP signal was 
quantified. All the hCDC14APD clones contained a higher percentage of Smo-GFP 
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positive cilia compared to Wt control. (E, F, G) Sub-centrosomal (1-µm-radius) 
branched actin level was measured by quantifying the intensity of Arp2 and F-actin in 
Wt and hCDC14APD cells. hCDC14APD cells contain significantly higher branched actin 
in the pericentrosomal area (1-µm-radius) compared to Wt cells. The blue boxed 
region are enlarged and represented below the respective channels of both Wt and 
hCDC14APD cells.  
 

 

Figure 2.21: Modulation of Hedgehog signalling does not affect cilia length.  

(A) RPE-1 Wt and hCDC14APD cells were treated with vehicle control or Hedgehog 
signal inducing chemical SAG (Smoothened agonist, 0.4 µM). Cells were serum 
starved for 24 hours prior to SAG treatment along with starvation for 24 hours and 
fixation for immunofluorescence. (B) The Hedgehog inhibitor cyclopamine was also 
treated (10 µM) with similar experimental scheme before fixation and 
immunofluorescence microscopy to measure cilia length. (C) The whole cell lysates 
from RPE-1 Wt and hCDC14APD cells under ciliogenic condition were analysed for 
immunoblot detection of Gli3. (D) The ratio Gli3-FL (190KDa)/ Gli3-R (83KDa) was 
densitometrically determined. 
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Figure 2.22: DBN1 is dephosphorylated during ciliogenesis. 

(A) DBN1pS142 level was decreased over time during ciliogenesis. (B) RPE-1 Wt and 
hCDC14APD cells showed comparable fluctuation of NDE-1 during ciliation and cilia 
disassembly processes, i.e., the level is decreased upon serum starvation and again 
elevates gradually upon serum addition. (C) DBN1-GFP could not be detected in cilia. 
(D) Drebrin and F-actin co-localized in RPE-1 cells during ciliogenesis (scale bar 5 
µM). (E) The ciliogenesis suppressing effect of hCDC14A-GFP overexpression could be 
reversed by treating the cells with actin depolymerizing drug cytochalasin D (200 nM 
for 16hr in serum- free medium, n≥ 200). 
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3 Discussion 

3.1 Genome editing through large insertion leads to the skipping of 

targeted exon 

Genome editing is a robust experimental paradigm to assign cellular function(s) to a 

molecule. Simplicity of genome editing through engineered nucleases has recently 

allured the scientific community to generate knockout cellular models. Highly 

efficient genome editing can be achieved through targeting an endonuclease to 

specific locus of interest. Engineered zinc-finger nuclease (ZFN) and CRISPR-

associated protein-9 nuclease (Cas9) offer such an elegant approach for genome 

editing in vertebrate cells. In this study, we have utilized ZFN and Cas9-catalyzed 

double strand break followed by homologous recombination-mediated 

incorporation of premature stop codon and selection marker to target human cell 

division cycle 14A (hCDC14A) and cell division cycle 14B (hCDC14B) genes. 

Targeting of the hCDC14A and hCDC14B loci in telomerase immortalized human 

retinal pigment epithelium (hTERT-RPE-1) and human colon cancer (HCT 116) cells 

were confirmed by Southern blot hybridization. Nevertheless, DNA sequence 

analysis of reverse transcription polymerase chain reaction (RT-PCR) products 

confirmed that in all the single/double allele ablations, the targeted exon was 

spliced out. The phenomenon of exon skipping was independent of the genome 

editing approaches exploited, Cas9 or ZFN. Because the exons had a nucleotide 

number that could be divided by 3, the reading frame of the exon deletion was 

maintained. This indicates an exon-skipping event possibly due to the insertion of 

large DNA fragments (1.7 to 2.5 Kb) within the targeted exons. As a proof-of-

principle, we have used gene disruption followed by non-homologous end joining 

(NHEJ) approach. Small alterations in the exon (one to fifteen bases) were 

transcribed to mRNA without exon skipping. Furthermore, loxP site-mediated 

removal of selection markers left a 45 bp scar within the targeted exon that can be 

traced in mRNA without exon skipping.  
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Thus, insertion of a large DNA fragment into an exon by genome editing has 

the potential to annihilate secondary pre-mRNA structure and impede cellular 

mRNA processing leading to exon skipping. Hence, more cautious approach needs 

to be taken while designing target sites in such that the possible skipping of targeted 

exon causes a frame-shift mediated incorporation of pre-mature stop codon. An 

alternative strategy could be the introduction of double strand break in an intronic 

sequence to incorporate homologous recombination mediated subtle changes in the 

adjacent exon. These exon modifications could be introduced in the donor along 

with the selection marker. Of note, such skipping mechanisms can be useful to 

engineer proteins with small deletions or for the analysis of acute knockouts in 

response to Cre induced selection marker removal. 

 

3.2 hCDC14A and hCDC14B double knockout cells show no obvious 

growth defects 

Expression analysis of Wt as well as hCDC14A and hCDC14B double knockout cells 

showed that hCDC14C was not expressed in RPE-1 and HCT 116 cells. This ruled out 

the possible functional complementation of hCDC14A and hCDC14B loss by 

hCDC14C. The generated knockout cells were also subjected to general growth 

analysis by MTT and cell cycle distribution analysis by FACS. Absence of any 

obvious growth defects in the knockout cells have indicated that hCDC14A and 

hCDC14B are dispensable for cell cycle progression in RPE-1 and HCT 116 cells. 

Thus, the mitotic exit function of ScCDC14 is not conserved in higher eukaryotes like 

human and is considered to be taken over by PP1 and PP2A (De Wulf et al., 2009).  

 

3.3 The phosphatase hCDC14A regulates cilia length  

CDC14 phosphatases regulate ciliogenesis in several organisms including Zebrafish, 

mouse and human cells. CDC14A mutations in humans and mice that affect the 

activity of the phosphatase impair formation of the transient kinocilia of developing 
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cochlear hair cells and the persistent kinocilia of vestibular hair cells in the organ of 

Corti (Imtiaz et al., 2018). Kinocilia in the organ of Corti are motile 9+2 cilia with a 

special function in the organization of actin-based stereocilia. Data presented in this 

study now indicate that hCDC14A plays a role in cilia length control of 9+0, non-

motile primary cilia. However, in contrast to Zebrafish that showed shorter cilia in 

response to CDC14A or CDC14B depletion (Clément et al., 2011, 2012), expression of 

a phosphatase dead version or hCDC14A depletion resulted in longer cilia. This 

length phenotype was specific to hCDC14A and was not observed in cells lacking 

the paralogue hCDC14B. Presently, it is unclear why inactivation of CDC14A in 

Zebrafish and human cells impact cilia length in opposite ways. However, variations 

in cilia phenotypes between organisms upon inactivation of orthologous have been 

reported before (Hamel et al., 2017). 

Phospho-proteome and BioID analysis revealed several hCDC14A substrates 

during ciliogenesis, which were mostly dephosphorylated on pSP sites. This is the 

signature of CDC14A phosphatases from yeast to human cells (Chen et al., 2017; 

Eissler et al., 2014). However, in contrast to cycling cells, in which hCDC14A prefers 

pSPxK/R sites (Chen et al., 2017) the preference for the positively charged amino 

acid in +3 position was less pronounced under serum starvation conditions that 

promoted cilia formation. The reason for this difference in substrate specificity may 

be the regulation of hCDC14A during ciliogenesis. Here we focused our analysis on 

the actin bundling protein DBN1 because of its reported role in ciliogenesis (Nager et 

al., 2017). Analysis of DBN1pS142 with a phospho-specific antibody confirmed that 

DBN1 was hyper-phosphorylated in hCDC14PD RPE-1 cells in comparison to Wt 

cells, while overexpression of hCDC14A reduced pS142 phosphorylation. Purified, 

recombinant hCDC14A dephosphorylated DBN1 at S142 indicating direct regulation 

by hCDC14A. Our data suggest that S142 of DBN1 is phosphorylated by the proline 

directed kinase CDK5 during ciliogenesis. This is in line with reports on the 

phosphorylation of DBN1 by CDK5 in filopodia formation (Tanabe et al., 2014; 

Worth et al., 2013). Analysis of ciliogenesis in RPE-1 cells expressing the phospho-

mimetic DBN1S142D suggests that the hCDC14A/CDK5 phospho-regulation of S142 
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contributes to cilia length control. Phosphorylation of DBN1S142 by CDK5 relieves an 

intra-molecular interaction within DBN1 and promotes its actin bundling activity 

(Worth et al., 2013). Thus, bundling of actin probably promotes ciliogenesis. 

Presently, it is unclear why DBN1 KO has the same impact on cilia length as 

DBN1S142D. Further studies are required to compare the actin cytoskeleton of DBN1 

KO and DBN1S142 cells and whether cilia elongation in both mutant cell types has the 

same molecular cause. 

CDK5 has been implicated in cilia length regulation since this kinase 

phosphorylates the cilia disassembly factor NDE1 promoting its ubiquitination by 

the E3 ligase FBW7 and the subsequent degradation by the proteasome (Maskey et 

al., 2015). However, Maskey et al. indicated that the CDK5-FBW7-NDE1 brunch is 

only one of several possible modes of action of CDK5 in cilia length control. NDE1 

levels were not affected in hCDC14APD/PD cells during ciliogenesis and hCDC14APD 

cells disassembled cilia even slightly faster than Wt cells in response to serum 

addition. Furthermore, NDE1 was not identified in the hCDC14A phospho-

proteome or BioID screens. This together suggests that NDE1 is not a substrate of 

hCDC14A. Rather, CDK5 affects cilia length in at least two ways: via NDE1 and 

DBN1 (Maskey et al., 2015). While NDE1 regulation reflects the untimely activation 

of a cilia disassembly factor during ciliogenesis, phospho-regulation of DBN1 may 

contribute to cilia length control that is seen between tissues. Additional experiments 

are needed to test this model. 

 How does phospho-regulation of DBN1 affect cilia length? DBN1 was 

reported to function in ectosome release from the tip of the exposed cilia (Nager et 

al., 2017). Ectocytosis is a selective process that removes activated signalling 

molecules from cilia. However, in RPE-1 cells that assemble cilia via the intracellular 

pathway, DBN1 was not detected at the tip of the cilia. This suggests that DBN1 

functions differently in RPE-1 cells. DBN1 negatively regulates endocytosis in 

HEK292 cells (Li et al., 2017). Endocytosis promotes ciliogenesis by delivering 

preciliary vesicles to the basal body (Kim et al., 2010). Interestingly, we observed an 
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increase uptake to transferrin in hCDC14APD RPE-1 cells. We therefore suggest that 

hCDC14A and CDK5 regulate cilia length, at least in part, through phospho-

regulation of DBN1 that then controls the delivery of preciliary vesicles to the basal 

body through endocytosis (Figure 3.1). 

 

Figure 3.1: Proposed model for the elongation of primary cilia in RPE-1 

hCDC14APD cells.  

 

Apart from DBN1, several other proteins such as CEP170, DPYSL2, LIMA1 and 

MAP4 were identified as substrates for hCDC14A. Centrosomal protein of 170 kDa 

(CEP170) is a sub-distal appendage protein which is important for the maturation of 

mother centriole and microtubule anchoring at centrosomes (Huang et al., 2017). 

However, loss of CEP170 affects neither the length of primary cilia nor the 

percentage of ciliated cells, but alters the spatial configuration of cilia (Mazo et al., 

2016). Dihydropyrimidinase-related protein 2 (DPYSL2), which is also known as 

Collapsin response mediator protein 2 (CRMP2), is a substrate for CDK5 and was 

reported to be involved in affecting cilia length by altering microtubule dynamics 

(Husson et al., 2016). In cystic kidney disease, both total CRMP2 and pCRMP2 

(Ser522) are increased, whereas, inhibition of CDK5 activity leads to the reduction of 

CRMP2 and pCRMP2. Microtubule-associated protein 4 (MAP4) was reported to be 

localized to the axoneme where it negatively regulated ciliogenesis (Ghossoub et al., 

2013). Thus hCDC14A has the potential to affect cilia length by modulating 
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axonemal microtubule dynamics through DPYSL2 and MAP4. The actin bundler 

protein LIMA1 might also regulate local pericentrosomal as well as cellular actin 

cytoskeletal status.  

In general, enrichment of actin related proteins in both global phospho-proteome 

and BioID analyses indicates a close connection between hCDC14A function and  

cellular actin regulation. Such cytoskeletal regulation might lead to the alteration of a 

plethora of cellular processes including ciliogenesis, hearing, and fertility. For 

hearing, the epidermal growth factor receptor pathway substrate 8 (EPS8), an actin 

filament remodelling protein that interact with Rab5 GTPase-activator RNtre, was 

proposed to be a substrate for hCDC14A (Imtiaz et al., 2018; Lanzetti et al., 2007). 

However, a precise molecular understanding of the mechanism(s) that govern 

hearing loss in hCDC14A mutants is missing. Another key question that remain 

unresolved is that how hCDC14A is regulated during cell cycle or ciliogenesis. One 

possible mode could be the cell cycle dependent distinct localizations of hCDC14A. 

In such case, the non-conserved variable C-terminal sequence of hCDC14A may be 

involved in determining its localization to exact intracellular compartments (Imtiaz 

et al., 2018). However, post-translational modification dependent regulation could 

also be critical for both localization and function of hCDC14A. 
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4 Concluding Remarks 

In this study, we have employed state-of-the-art gene editing techniques to generate 

hCDC14A and/or hCDC14B knockout cell lines to decode molecular mechanisms of 

their functions. The phenotypic analysis of these generated cells was aided by 

various imaging, biochemical and mass-spectrometry techniques. Taking all the 

findings of this study into consideration, we can conclude that – 

▪ hCDC14A and hCDC14B phosphatases are dispensable for cell cycle 

progression in RPE-1 and HCT 116 cells. 

▪ hCDC14A is localized to the proximal end (C-NAP1-dependent) and the sub-

distal appendage regions of mother centriole (basal body). 

▪ Lack of hCDC14A phosphatase activity in RPE-1 cells causes the elongation of 

primary cilia. 

▪ The elongated cilia in hCDC14APD cells are structurally comparable to those 

from Wt cells. 

▪ Regulated expression of hCDC14A but not its phosphatase dead version 

suppresses cilia formation. 

▪ S142 of DBN1 is a substrate for hCDC14A. 

▪ CDK5 kinase and CDC14A phosphatase regulated phospho-status of DBN1 

pS142 is crucial for cilia length control. 

▪ hCDC14APD cells show enhanced recycling endosomes (transferrin) as well as 

increased ciliary vesicle docking (smoothened) in the pericentrosomal areas. 
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5 Materials and Methods 

5.1 Cell culture and transfection 

RPE-1, HEK293T (human embryonic kidney) and HEK293-GP (GP2-293, Clontech) 

cells were cultured in Gibco DMEM/F-12 (ThermoFisher) media containing 10% 

FBS, 1% L-glutamine and 1% penicillin/streptomycin.  HCT116 cells were cultured 

in McCoy’s 5A (Gibco) medium supplemented with 10% FBS, 1% L-glutamine and 

1% penicillin/streptomycin. All cell lines were cultured at 37 °C with 5% CO2. For 

HCT116 cells, fibronectin (Santa Cruz, sc-29011) coatings were made by incubating 

glass coverslips with 5 µg/cm2 of fibronectin in PBS for 30 min at 37 °C. Plasmid 

DNA transfections were made according to manufacturer’s protocol using 

Lipofectamine 2000 or Lipofectamine LTX (RPE-1 cells). Lipofectamine RNAiMAX 

transfection reagent (ThermoFisher) was used according to the manufacturer’s 

instructions with a final concentration of 20 nM siRNA (please see Table 1 and Table 

2 for details of used siRNA). 

 

Table 1: List of ON-TARGETplus SMARTpool siRNA Reagents – Human 

(Dharmacon) 

Catalog Number Gene Symbol siRNA Sequence (5´-3´) 

LU-003469-00 CDC14A GGACAUUGAUAGCCUGUUA 

LU-003469-00 CDC14A CUUGUGAGUUCAUGAAAGA 

LU-003469-00 CDC14A GCACAGUAAAUACCCACUA 

LU-003469-00 CDC14A GAACAUUAUGAGCGAGUUG 

L-003239-00 CDK5 UAUAAGCCCUAUCCGAUGU 

L-003239-00 CDK5 CCGGGAGACUCAUGAGAUC 

L-003239-00 CDK5 GGGCUGGGAUUCUGUCAUA 

L-003239-00 CDK5 GGAUUCCCGUCCGCUGUUA 

L-010508-00 CTTN CCACGAAUAUCAGUCGAAA 

L-010508-00 CTTN GAACAAGACCGAAUGGAUA 

L-010508-00 CTTN GAGCAUAUCAACAUACACA 

L-010508-00 CTTN CAAGUAACAUCAGAGCUAA 

L-011841-00 DBN1 GGAGGAGGCAGCAGCUAUU 

L-011841-00 DBN1 GGAUUAACCGAGAGCAGUU 

L-011841-00 DBN1 CCUCAAGCUUGCAGCAUCA 

L-011841-00 DBN1 GGAGUUUGCCCAAUCGGAA 

L-031725-00 DOCK7 GAUCGAAGUUGUAAUCGUA 

L-031725-00 DOCK7 UCUCGAAGCCUUAGUAAUA 
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Catalog Number Gene Symbol siRNA Sequence (5´-3´) 

L-031725-00 DOCK7 CGACUCUGCUUUAAAGAUU 

L-031725-00 DOCK7 UAACCAAACUUGCAGAGAU 

L-009519-01 DPYSL2 CCGGGAUAUUGGCGCCAUA 

L-009519-01 DPYSL2 GGUCAAACCUAAACACCGA 

L-009519-01 DPYSL2 GAACUGUGGUGUAUGGCGA 

L-009519-01 DPYSL2 AGUUAAAACCUGACGAUUU 

L-003977-00 IGF2BP1 CGAAACACCUGACUCCAAA 

L-003977-00 IGF2BP1 UGAAGGCCAUCGAAACUUU 

L-003977-00 IGF2BP1 GAAAGUAGAAUUACAAGGA 

L-003977-00 IGF2BP1 GCUUAGAGAUUGAACAUUC 

L-027345-00 KANK2 CGUGCGAUCUAUCAUGAAA 

L-027345-00 KANK2 CAGCUCACAGUACAACUUA 

L-027345-00 KANK2 GACGAGAGCCCUACAUCAU 

L-027345-00 KANK2 GAACGGGACUUGGGCAUGC 

L-019252-00 LMO7 GAUGAUUACUCCACAAAUA 

L-019252-00 LMO7 GAAAGCUUGUGAACAGAUU 

L-019252-00 LMO7 AGAGAGAGAAUUCCAAGUA 

L-019252-00 LMO7 UAGCAGGAUUGGAUAAUAU 

L-013027-01 LUZP1 AAGAAAUGACCUACGGAUU 

L-013027-01 LUZP1 GAAGACAACACGAACGUUU 

L-013027-01 LUZP1 GAGUUUAGCGUCAGAGUUA 

L-013027-01 LUZP1 AUAACGACCUUCAGGAUAA 

L-011724-01 MAP4 GGAGUAGAAGGGAGCGAUA 

L-011724-01 MAP4 GGAGAGAUAAAGCGGGACU 

L-011724-01 MAP4 GAUGAUGUUGUGGGAGAAA 

L-011724-01 MAP4 GAGUCAAAGAAGAAACCGU 

L-014102-01 MPRIP CGGGACAAGAAGUACGCAA 

L-014102-01 MPRIP GUGCCACGGUGUCCGGAUA 

L-014102-01 MPRIP GUGCACCGGUCUCGGAAAU 

L-014102-01 MPRIP CGGGUAAAGGAAUCGGAAA 

L-023376-01 MTCL1 GCAGUACCGUCUUCGGAAA 

L-023376-01 MTCL1 CCGAGAGUGAUGCGGGCAA 

L-023376-01 MTCL1 GGAUGAGCGUGCCCGACUA 

L-023376-01 MTCL1 CAGCAAUAUGCCAGCGACA 

L-013081-00 PDLIM7 GCACCGAGUUCAUGCAAGA 

L-013081-00 PDLIM7 UCACACACAUCGAAGCUCA 

L-013081-00 PDLIM7 GAGCAUCGAUGGCGAGAAU 

L-013081-00 PDLIM7 CGGAUGAGGAGCACCUGAA 

L-013299-01 PRRC2A CCAAAUAUCAGAAGUCGUU 

L-013299-01 PRRC2A GGACUCAGACUUACGCCUA 

L-013299-01 PRRC2A CCUGCAGAGUCUCGGGAAA 

L-013299-01 PRRC2A GGAAAGGGAGUCUGCCGAA 

L-004746-00 RANBP2 GCGAAGUGAUGAUAUGUUU 

L-004746-00 RANBP2 CAAACCACGUUAUUACUAA 

L-004746-00 RANBP2 CAGAACAACUUGCUAUUAG 

L-004746-00 RANBP2 GAAGGAAUGUUCAUCAGGA 
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Catalog Number Gene Symbol siRNA Sequence (5´-3´) 

L-006846-00 RANGAP1 GACCGAAUGUCACCGGAAA 

L-006846-00 RANGAP1 UGUACAAGGUCUAGACUCA 

L-006846-00 RANGAP1 GAAACCGUCUGGAGAAUGA 

L-006846-00 RANGAP1 GCAAGAGCCUCAAACUCAA 

L-013690-00 RPS2 UUAAGGAAUCAGAGAUCAU 

L-013690-00 RPS2 CGUCAAGACCCACACCAGA 

L-013690-00 RPS2 CAUGAUGGCUGGUAUCGAU 

L-013690-00 RPS2 AGUGGAUGCCCGUCACCAA 

L-010500-00 SCRIB GACCGCGUCCUCUCUAUUA 

L-010500-00 SCRIB GGACGACGAGGGCAUAUUC 

L-010500-00 SCRIB CGACAGAGCUGCACGUGCU 

L-010500-00 SCRIB ACAACGAGAUCCAGCGGUU 

L-026032-01 SEC16A GGACGGAAGCCUAUGAGUA 

L-026032-01 SEC16A CCUUACAGGAGACGGGCUA 

L-026032-01 SEC16A AAGCGGACUUUGACGAUUU 

L-026032-01 SEC16A CCUCAGUCCUCUAGCGUGU 

L-010657-01 SND1 GGAAGUCUGUUUCACGAUA 

L-010657-01 SND1 UGAUGGAGAACAUGCGCAA 

L-010657-01 SND1 CGAGAGUUCCUUCGAAAGA 

L-010657-01 SND1 UCAUGGUGGAGGUGCGCAA 

L-011479-01 SORBS2 AGCAAGAGGAGGCGAGUUA 

L-011479-01 SORBS2 GGUAAAGAAACAUCGUUGA 

L-011479-01 SORBS2 AAAUAAAAGCCUUCGGUAA 

L-011479-01 SORBS2 UUGUAAAGUUGCAUCGCUA 

L-021390-01 SYNPO AAUCAGAACCCACCGGCAA 

L-021390-01 SYNPO CCAGAGAAGCUACGCUCAU 

L-021390-01 SYNPO CCACCAAGCAGCCGCCAUA 

L-021390-01 SYNPO GAGAAAUAUGUCAUCGAGU 

L-021220-01 UBAP2L CAACACAGCAGCACGUUAU 

L-021220-01 UBAP2L GUGUGGAGAGUGAGGCGAA 

L-021220-01 UBAP2L CAACAGAACCAGACGCAGA 

L-021220-01 UBAP2L CCUGGGAGAUGGUCGGGAA 

L-006099-00 USP9X AGAAAUCGCUGGUAUAAAU 

L-006099-00 USP9X ACACGAUGCUUUAGAAUUU 

L-006099-00 USP9X GUACGACGAUGUAUUCUCA 

L-006099-00 USP9X GAAAUAACUUCCUACCGAA 

In all the siRNA experiments, ON-TARGETplus Non-Targeting Control siRNA 

(Dharmacon D-001810-01-20; 5´-UGUUUACAUGUCGACUAA-3´) was used as 

control. 

Table 2: List of Silencer® Select siRNAs from Ambion®. 

Gene Symbol siRNA Sequence (5´-3´) 

CEP170 GCAUGAGAAGUUUACCAU 

LIMA1 UUAUAGAGGUUUCUGAGAGGCGUGG 
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5.2 Generation of ZFN-mediated knockout cells 

Human CDC14A and CDC14B specific CompoZrTM knockout Zinc Finger Nucleases 

(ZFN) were designed and evaluated by Sigma Advanced Genetic Engineering Labs. 

The ZFN for hCDC14A (product Number: CKOZFND2170-1KT) targets the sequence 

5’-AGCACACCCAGTGACaacatCGTGCGAAGGTTCCTGAA-3’ in the 9th exon 

(cutting site in lower cases). Target sequence for ZFN against hCDC14B is in the 4th 

exon 5’-TGCTGCCTTCCTTGTtggatGCTACATGGTAAGTATTTG-3’ (product 

Number: CKOZFND5769-1KT). The donor vector was constructed by PCR 

amplification of the genomic locus as described in the previous publications from 

our group (Chen et al., 2016; Panic et al., 2015). In short, the genomic locus 800 bp 

upstream and downstream of the ZFN cut site was amplified and sub-cloned into 

pJet 1.2 vector. The insertion cassette including STOP codon in every frame and 

neomycin/ puromycin resistance was inserted at the cut site of donor vector. 

106 cells were co-transfected with the ZFN mRNAs (2.5 µg of each) and donor vector 

(7 µg) by electroporation (Invitrogen, Neon transfection system). After 

electroporation, cells were cultured for 24 hours at 37 ºC (recovery) followed by 48 

hours at 30 ºC (enhancing ZFN efficiency (Doyon et al., 2010)). Cells were further 

cultured at 37 ºC for 72 hours prior to single cell dilution (limiting) in 96 well plates 

(500 µg/ml neomycin). Two weeks later, the emerging clones were screened by 

genomic PCR and positive clones were further confirmed by RT-PCR as well as 

Southern blot hybridization. Junction PCR with one primer in donor construct and 

the other in the genome outside homology arm confirmed successful targeting and 

insertion of the selection markers. The following primers were used for junction PCR 

- hCDC14A: forward 5´-CGGCTATGACTGGGCACAAC-3´; reverse 5´- 

GCCTCCTCGAAGTCAAACAAG -3´; hCDC14B (for NeoR insertion): forward 5´-

CGGCTATGACTGGGCACAAC-3´; reverse 5´-CGATCTCCGCTCACTG-3´; 

hCDC14B (for PuroR insertion): forward 5´-CGGGGCGAAGGCAAC-3´; reverse 5´-

CGATCTCCGCTCACTG-3´. Similar approach without the donor construct was 

taken in case of NHEJ-facilitated disruption of hCDC14B gene. The resultant 
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insertion/deletion-mediated mutagenesis was detected by sequencing of the 

amplified (Q5® High-Fidelity DNA Polymerase - NEB) genomic locus surrounding 

the ZFN cut site (primers used - forward 5´-TGAATGGTTATGGGATTTGGA-3´; 

reverse 5´-GCACAGCTTCCTTGAATTGG-3´). 

 

5.3 Generation of Cas9-mediated hCDC14A knockout cells 

Guide RNAs (gRNAs) targeting the exon 9 of hCDC14A was designed using the web 

tool (http://crispr.mit.edu/ (Hsu et al., 2013)). gRNA1 (5’-

CCAGTGACAACATCGTGCGA-3’), gRNA2 (5’-CCTTCGCACGATGTTGTCAC-3’) 

and gRNA5 (5’-CTTCGCACGATGTTGTCACT-3’) with scores 96, 91 and 86, 

respectively, were selected as they were exactly targeting the ZFN binding site (5’-

AGCACACCCAGTGACaacatCGTGCGAAGGTTCCTGAA-3’). ‘Churh gRNA insert’ 

containing the U6 promoter and gRNA scaffold (Mali et al., 2013) was first 

synthesized as gBlock from IDT (http://www.idtdna.com/pages/products/ 

genes/gblocks-gene-fragments) and cloned into pJet1.2 vector. The intended gRNAs 

were then ordered as PCR primers with overhangs from U6 promoter and gRNA-

scaffold and inserted between U6 promoter and gRNA scaffold through PCR 

mutagenesis. 

Different strategies were used to generate Cas9-mediated hCDC14A-KO HCT116 and 

RPE1 cells. For HCT116, hCas9 plasmid (a gift from George Church (Addgene # 

41815, (Mali et al., 2013))) was transiently transfected with gRNA and donor 

plasmids. Whereas for RPE1 cells, pCW-Cas9 plasmid (a gift from Eric Lander & 

David Sabatini (Addgene # 50661 (Wang et al., 2014))) containing doxycycline (Dox) 

inducible spCas9 was lentivirally integrated into RPE1 FRT/T-Rex cells. Successful 

expression and nuclear localization of Cas9 was confirmed by indirect 

immunofluorescence and western blot analysis. The cells were then electroporated 

with the plasmids containing gRNA and donor vector. Junction PCR with forward 

primer in NeoR cassette (5’-CGGCTATGACTGGGCACAAC-3’) and reverse primer 

http://crispr.mit.edu/
http://www.idtdna.com/pages/products/
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in the genome outside homology arms (5’-GCCTCCTCGAAGTCAAACAAG-3’) 

confirmed successful targeting and insertion of the selection marker. 

 

5.4 Southern blot hybridization to confirm knockouts 

Genome editing in both RPE1 and HCT116 cells was verified by Southern blot 

hybridization (Southern, 2006). Genomic DNA was isolated using MasterPure DNA 

purification kit (Epicentre, Cat MCD85201) following manufacturer’s instructions. 

20 µg of DNA were digested overnight with FastDigest Hind III-HF (Thermo 

Scientific) and run overnight onto a long (18 cm) 0.8% agarose gel at 30-35 V. The gel 

was subsequently stained and photographed (fluorescent ruler of gel-casting tray 

was used to track the distance of migration of DNA bands). The gel was then 

washed in double distilled water (ddH2O) and DNA was denatured in 0.5 M NaOH, 

1.5 M NaCl (twice for 20 min with gentle shaking). After rinsing once with ddH2O, 

DNA was neutralized by washing thrice for 15 min with 1.5 M NaCl, 0.5 M Tris-HCl 

(pH 7.0) and transferred onto a GeneScreen Plus® Hybridization Transfer Membrane 

(PerkinElmer) by overnight capillary transfer in 10xSSC buffer (1.5 M NaCl, 0.15 M 

trisodium citrate). After rinsing the membrane with 2XSSC buffer, DNA was UV-

crosslinked with a Stratalinker 1800 (Stratagene). 

The membrane was hybridized overnight in DIG Easy Hyb buffer (Roche, 

cat#11603558001) with DIG labeled probe generated by PCR DIG probe Synthesis kit 

(Roche, cat#11636090910). Primers used to generate DIG probes for hCDC14A: 

forward 5´-CATCGCCGTTCACTGC-3´, reverse 5´-ACGTGGGCCTGGAAAG-3´; 

and hCDC14B: forward 5´-GCCCAACTACTTTGGCAAAG-3´, reverse 5´- 

CCAATGATCCAAATGGAGCAC-3´. 

 

5.5 RNA preparation and expression analysis 

Total RNA was isolated from cells using the RNeasy Mini Kit (Qiagen, Hilden, 

Germany) following manufacturer’s instructions. RT-PCR analysis confirming 
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expression of wild type and exon-skipped hCDC14A/B transcripts were carried out 

using SuperScript® III One-Step RT-PCR System with Platinum® Taq DNA 

Polymerase (Invitrogen). Forward primer binding to 8th exon (5’-

ATGGTGACTTCAACTGGA-3’) and reverse primer binding to 10th exon (5’-

CTTCCAGGAAGTGCTGC-3’) were used for RT-PCR of hCDC14A coding sequence 

(CDS). In case of hCDC14B, the forward primer was designed in the 2nd exon (5’-

GCCATTCTCTACAGCAG-3’) while reverse primer in 6th exon (5’-

GCAACTTCCATAGGCAGC-3’). Bands corresponding to wild type and exon-

skipped clones were excised from the gel and sequenced to verify the presence of the 

splice junctions (hCDC14A: exon 8-10; hCDC14B: exon 3-5). Human GAPDH was 

amplified with the primers described by Zhang et al (2007): forward 5’-

ATCCCATCACCATCTTCCAG-3’ and reverse 5’-CCATCACGCCACAGTTTCC-3’. 

For semi-quantitative RT-PCR, 40 ng of total RNA was used as template and the 

relative amount of mRNA in different samples was calculated by measuring the 

band intensity (normalized to GAPDH) using NIH ImageJ software (Carbery et al., 

2010) . 

 

5.6 Generation of RPE-1 stable cell lines 

RPE-1 cells with inducible expression of proteins of interest were constructed using 

retroviral-mediated integration as previously described (Vlijm et al., 2018). RPE-1 

tetR cell line with the tetON system was generated according to the manufacturer’s 

instructions (Retro-X Tet-On 3G, Clontech).  The virus particles were first generated 

by co-transfecting the pRetroX-TRE3G vector carrying the gene of interest and the 

envelope vector pCMV-VSV-G (a gift from Bob Weinberg; Addgene plasmid # 8454; 

(Stewart et al., 2003)) to a HEK293-based retroviral packaging cell line (GP2-293, 

Clontech). Then, the RPE-1-tetR cells were infected by adding the virus-containing 

media and 72 hours later, the positively transduced cells were enriched either by 

puromycin selection or FACS sorting.  
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5.7 Generation of Cas9-mediated DBN1 knockout cells 

CRISPR/Cas9-Mediated drebrin knockout was generated by targeting three 

different exons with three guide RNAs (gRNA1: GTACGGCTTCTGCAGTGTCA for 

exon 3; gRNA2: GCAGCGGCTCTCTAACGGGC for exon 5; and gRNA3: 

GGAGCGCGAGCGGCGCTACC for exon 7). The gRNAs were designed using the 

web tool (crispr.mit.edu/), ordered as primers and inserted next to the U6 promoter 

in the scaffold vector pSpCas9(BB)-2A-GFP(PX458) (a gift from Feng Zhang, Broad 

Institute of MIT and Harvard, Cambridge, MA; Addgene plasmid #48138) (Hsu et 

al., 2013; Ran et al., 2013). The plasmid pX458 with gRNA were electroporated into 

RPE-1 cells (Neon transfection system, Invitrogen; pulse voltage 1,050 V, pulse width 

30 ms, and pulse number 2) and 48 hours later, the transfected cells were selected for 

GFP expression through FACS sorting. The sorted cells were then subjected to clonal 

propagation through limiting dilution on 96-well plate. The emerging clones were 

harvested and screened via sequencing the genomic PCR amplicons (please see the 

Table 3 for primer list). The successfully targeted clones were further confirmed by 

immunoblot analysis. 

Table 3: Primer list for amplifying the gRNA targeted loci in DBN1 gene. 

Primer Name Sequence (5´-3´) 

Dbn1_Exon3_gRNA1_fw_1 AGACCTGACACTCTCCTGATTA 

Dbn1_Exon3_gRNA1_rev_1 CTACACGATAGGGTGCATCTTC 

Dbn1_Exon5_gRNA2_fw_1 CCCTCTTTGCTGGGTACTTT 

Dbn1_Exon5_gRNA2_rev_1 CCAGAACTGCTCTCGGTTAAT 

Dbn1_Exon7_gRNA3_fw_2 GGCACCACCTACCAGAAGAC 

Dbn1_Exon7_gRNA3_rev_2 GCTGTTTCCTCCTGGAACGA 

 

5.8 Immunofluorescence and Microscopy 

Cells were seeded on coverslips ~24 hours before the treatments (starvation +/- 

and/or doxycycline +/- depending on the experimental set up) and washed once 

with PBS prior to fixation. The fixation condition was decided depending on the 

primary antibody used (please see Table 4 for the detailed list of antibodies and 

fixation conditions). 4% paraformaldehyde was used for 10 min at room temperature 
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whereas methanol fixation was carried out at -20 °C for 5 min with ice cold 

methanol. Then the cells were permeabilized with 0.1% Triton-X100 in PBS (10 min 

at room temperature (RT)), incubated with 10% FBS to block unspecific binding and 

incubated with primary antibodies inside a wet chamber for 1 hour. Upon three 

times washing with PBS, the cells were incubated with fluorescently labeled 

secondary antibodies for 30 min at RT, washed thrice and mounted with Mowiol 

(company ?) and dried overnight at RT. DNA was counterstained by adding 

DAPI (4',6-diamidino-2-phenylindole) with the secondary antibody solutions. A 

DeltaVision RT system (Applied Precision) equipped with an Olympus IX71 

microscope was used to image immunofluorescence samples using Softworx 

software (Applied Precision). Comparable samples were always imaged with same 

exposures and intensities as well as the background subtracted images were 

displayed with ImageJ using same Minimum and Maximum brightness. 

 

Table 4: List for commonly used antibodies in immunofluorescence. 

Name Species Dilution Fixation Source 

Acetylated Tubulin Mouse 1:200 Both Invitrogen (32-2700) 

Arl13B Rabbit 1:200 Both 17711-1-AP 

Cep164 Guinea Pig 1:500 Both Gislene Pereira 

Cep170 Mouse 1:500 Methanol Thermo Fisher (72-413-1) 

Cep250 Goat 1:200 Methanol (Panic et al., 2015) 

Cortactin Rabbit 1:100 PFA CST 3503 

DBN1-pS142 Mouse 1:50 PFA Millipore (MABN833) 

DBN1 Mouse 1:10 PFA Progen (MX823) 

Gamma tubulin Mouse 1:1000 Methanol Abchem (ab27074) 

GFP Mouse 1:200 Both Roche (11814460001) 

IFT88 Guinea Pig 1:500 Both Gislene Pereira 

Ninein Rabbit 1:300 Methanol Michel Bornens 

ODF2 Rabbit 1:100 Methanol Gislene Pereira 

Pericentrin Rabbit 1:1000 Methanol Abchem (ab4448) 

Phalloidin  1:500 PFA Invitrogen A34055 

Rootletin-C Rabbit 1:200 Methanol  (Panic et al., 2015) 

Smoothened Rabbit 1:200 Methanol Abchem (ab38686) 

Alexa Fluor 
488/555/647 
(Anti-Mouse/ 
Rabbit/ Goat/ 
Guinea Pig) 

 1:500 Both Invitrogen 
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5.9 Immunoblot analysis 

Cells were seeded on 6 or 12 well plate and lysed directly with Laemmli Buffer 

supplemented with protease inhibitor (Roche; 11 873 580 001), phosphatase inhibitor 

(Roche; 04 906 845 001), phenylmethylsulfonyl fluoride (PMSF) and Benzonase 

(Merck, 101656; 1:500). The lysates were heated at 95 °C for 5 min and centrifuged at 

14,000 rpm for 5 min. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis 

(SDS-PAGE) was performed as previously described (Laemmli, 1970). The 

membranes were blocked in 5% nonfat milk in TBS-T and incubated with 

appropriate primary and secondary antibodies (Table 5). 

 

Table 5: List for commonly used antibodies in immunoblot. 

Name Species Dilution Source 

acetylated α-Tubulin Mouse 1:500 Invitrogen (32-2700) 

Cdc14A Rabbit 1:1000 Zymed (34-8100) 

CDK5 Rabbit 1:1000 CST (2506) 

Cep170 Mouse 1:1000 Thermo Fisher (72-413-1) 

Cortactin Rabbit 1:1000 CST (3503) 

Drebrin Mouse 1:300 Progen (MX823) 

GAPDH Rabbit 1:2000 CST (2118) 

GFP Mouse 1:1000 Roche (11814460001) 

pS142-DBN1 Mouse 1:1000 Millipore (MABN833) 

 

5.10 Measuring Cilia length and protein intensity within a defined region 

of interest (ROI) 

Cilia lengths of the background subtracted images were measured by a semi-

automated ImageJ macro developed and optimized by ZMBH imaging facility. In 

short, the macro finds the best line fit for the channel that represent cilia. The line is 

then skeletonized and inflated to measure the length. Upon mouse click, the macro 

visualizes the processing steps with 400X zoom allowing the poorly processed cilia 

measurements to be discarded. Another macro that allows to select the size of region 

of interest (ROI) as well as to define channels to be measured were used for intensity 
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measurements of signals e.g., transferrin, Arp2, Phalloidin surrounding the 

centrosomes in a 1 to 2 µm radius. If not otherwise mentioned, at least 150 cilia or 

centrosomes were quantified for each experiment and the findings were confirmed 

by at least two independent experiments. The results were expressed as mean ± SD 

(Standard deviation). Prism 7 software (GraphPad) was used for statistical analyses. 

Mean between two groups were compared by t tests whereas multiple inter-group 

differences were analysed by one-way ANOVA (analysis of variance) followed by 

Tukey’s multiple comparison test for post hoc comparisons. 

 

5.11 In Vitro Phosphatase Assay 

DBN1-eGFP construct was transfected into HEK293T cells using polyethylenimine 

(PEI). The cells were harvested by scrapping after 48 hours of transfection and lysed 

with RIPA buffer supplemented with protease inhibitor (Roche; 11 873 580 001), 

phenylmethylsulfonyl fluoride (PMSF) and Benzonase (Merck, 101656; 1:500). The 

DBN1-GFP was immunoprecipitated by GFP-Trap®_A beads (Chromotek) following 

manufacturer’s protocol. Equal amount of bead-captured DBN1 protein was 

incubated with purified hCDC14A in phosphatase assay buffer (30 mM imidazole, 1 

mM DTT, 1 mM EDTA, 150 mM KCl, 1 mM MgCl2, and 25 mM K-Hepes) for 2 hours 

at 30 °C. The products were analyzed on immunoblots following SDS/PAGE. A 

buffer control was used to determine the extent of dephosphorylation by quantifying 

pS142-DBN1/ DBN1 ratio. 

 

5.12 Electron microscopy (in collaboration with Annett Neuner) 

RPE-1 cells were seeded on coverslips and cultured at 3 7°C and 5% CO2 till they 

reached a confluency of 70% to 80%. Cells were rinsed in 100 mM phosphate buffer 

(PBS) three times and then fixed with 2.5% glutaraldehyde (GA) in 50 mM 

cacodylate buffer and 2% sucrose for 30 min at RT. After 5 times washing for 5 

minutes with 50 mM cacodylate buffer, cells were incubated for 40 min in 2% 
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osmium/cacodylate buffer on ice in darkness. Followed by 4 times rinsing with 

dH2O and staining overnight at 4 °C in 0.5% uranyl acetate (in H20). On the 

following day coverslips were rinsed again 4 times with dH2O and via dehydration 

row (40, 50, 70, 80, 90, 95, 100% ethanol). Water was removed by ethanol within the 

cells. Coverslips were immediately placed on capsules filled with Spurr-resin and 

polymerized at 60 °C for 24 to 48 hours. Embedded cells were sectioned using a 

Reichert Ultracut S Microtome (Leica Instruments, Vienna, Austria) to a thickness of 

70 nm. Post-staining with 3% uranyl acetate and lead citrate was performed. Sections 

were imaged at a Jeol JE-1400 (Jeol Ltd., Tokyo, Japan), operating at 80 kV, equipped 

with a 4k x 4k digital camera (F416, TVIPS, Gauting, Germany). Micrographs were 

adjusted in brightness and contrast using ImageJ. 

 

5.13 Quantitative phosphoproteome and BioID mass-spectrometry analyses 

The quantitative phosphoproteome and BioID mass-spectrometry analyses were 

conducted as described before (Chen et al., 2017). For global phosphoproteome 

analysis, RPE-1 cells with inducible expression of hCDC14A-YFP were cultured in 

light (Arg12C14N Lys12C14N) and heavy (Arg13C15N Lys13C15N) SILAC medium 

(Silantes) in separate flasks. After seven passages, cells were expanded to four T175 

flasks for each condition and starved for 48 hours. Doxycycline (10ng/mL) was 

added only to the heavy samples along with starvation for inducing hCDC14A-YFP 

expression. Proteins were extracted and mixed at a ratio of 1:1. Strong cation 

exchange chromatography/immobilized metal affinity chromatography 

(SCX/IMAC) technique was used to enrich phospho-peptides (Villen et al., 2008). 

The resulted 48 fractions (24 phospho-enriched and 24 phospho-depleted) were 

analysed by LC-MS using a Dionex UltiMate 3000RSLC nano HPLC system (Thermo 

Scientific) coupled to a LTQ Orbitrap Elite mass spectrometer (Thermo Scientific). 

Peptide identification and quantification was achieved using the MaxQuant software 

package (1.5.3.8) with its built-in Andromeda search algorithm (Cox and Mann, 

2008). The results of the database search were analysed using Perseus (Tyanova et 
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al., 2016). Two replicates of the experiment were run, and a short list of the results 

are represented in the Table 7 in Appendix section.  

For BioID mass-spectrometry analysis, RPE-1 hCDC14A-BirA-HA, 

hCDC14AC278S-BirA-HA, and BirA-HA cells were cultured in medium containing 50 

µM biotin. Protein expression was induced by adding Doxycycline (10 ng/mL) 

during 48 hours of starvation. The cells were harvested and lysed using RIPA buffer 

[10 mM Tris–Cl, 150 mM NaCl, 1% Triton X-100, 0.1% SDS] supplemented with 

protease inhibitor (Roche; 11 873 580 001), phenylmethylsulfonyl fluoride (PMSF) 

and Benzonase (Merck, 101656; 1:500). The lysate was clarified by centrifuging for 15 

min at 20,000×g and the supernatant was incubated with streptavidin Sepharose 

beads (GE 17-5113-01) at 4 °C for 3 hours. Then the beads were washed thrice with 

RIPA buffer and the bound proteins were eluted by heating at 95 °C for 10 min with 

2X Laemmli buffer containing 2 mM biotin. The samples were dimethyl labelled 

(Heavy – BirA control; Medium - hCDC14ACSBirA and Light – hCDC14A-BirA prior 

to mass spectrometry analysis (Boersema et al., 2009) (Table 8 in the Appendix 

section). 

 

5.14 Flow cytometry 

Cells were trypsinized and washed twice with PBS, followed by fixation using 70% 

ethanol at -20ºC for 3 hours before permeabilization with 0.25% Triton X-100 on ice 

(15 min). Cells were subsequently treated with 250 µg/mL RNase for 30 min at 37 ºC 

before adding 25 µg/ml propidium iodide to stain the DNA for analysis with a BD 

FACS Canto II flow cytometer. For analysing any proteins by FACS, the primary 

antibody solutions in 1% BSA in PBS are added after permeabilization and incubated 

for 90 min at RT. The cells were washed once with 1 ml PBS + 1%BSA and 

appropriate secondary antibodies (1/250 in 1% BSA in PBS) are added and 

incubated for 30 min at RT in dark. After a single wash in PBS, the cells were 

subjected to RNase treatment and DNA staining. 
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5.15  Transformation of E. coli  

50 µl of CaCl2- competent DH5alpha E. coli cells were mixed with 0.5 µl of plasmid 

DNA or 10 µl from ligation reaction on ice for 30 min and heat shock at 42 °C for 1 

min.  Cells were incubated in 1 ml LB-medium at 37 °C for 1 hour by shaking if 

Kanamycin selection was applied afterwards. Cells were spun down and 

resuspended in 200 µl LB medium before bead spreading on antibiotic containing LB 

plates. 

 

5.16 List of plasmids 

During this study different plasmids were generated and details (maps and 

sequences) of all the plasmids can be found in the collection of the Schiebel group 

(Table 6). 

Table 6: List of plasmids 

Name Used for 

pRetroX-TRE3G_hCdc14A-YFP Stable cells 

pRetroX-TRE3G_hCdc14AC278S-YFP Stable cells 

pRetroX-TRE3G_GFP Stable cells 

pRetroX-TRE3G_mSmo-GFP Stable cells 

pRetroX-TRE3G_hCdc14A-BirA-HA Stable cells 

pRetroX-TRE3G_hCdc14AC278S-BirA-HA Stable cells 

pRetroX-TRE3G_BirA-HA Stable cells 

pRetroX-TRE3G_DBN1-GFP Stable cells 

pRetroX-TRE3G_DBN1S142A-GFP Stable cells 

pRetroX-TRE3G_DBN1S142D-GFP Stable cells 

pRetroX-TRE3G_DBN1S141A-S142A-GFP Stable cells 

pRetroX-TRE3G_DBN1S141D-S142D-GFP Stable cells 

pRetroX-TRE3G_IFT20-GFP Stable cells 

pRetroX-TRE3G_mRuby2-Rab8a Stable cells 
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8 Appendix 

Table 7: List of hypophosphorylated peptides upon hCDC14A-YFP expression. 

Gene.names Protein.names Positions Amino 
Acid 

Ratio.H.L. 
normalized 

ABI2 Abl interactor 2 224 S 0.43155 

ABI2 Abl interactor 2 227 S 0.54756 

AKAP10 A-kinase anchor protein 10, 
mitochondrial 

281 S 0.57212 

CARHSP1 Calcium-regulated heat stable 
protein 1 

17 S 0.54136 

DBN1 Drebrin 142 S 0.53107 

DPYSL2 Dihydropyrimidinase-related 
protein 2 

514 T 0.55474 

DPYSL2 Dihydropyrimidinase-related 
protein 2 

521 T 0.46302 

DPYSL2 Dihydropyrimidinase-related 
protein 2 

517 S 0.47602 

DPYSL2 Dihydropyrimidinase-related 
protein 2 

522 S 0.50275 

DPYSL2 Dihydropyrimidinase-related 
protein 2 

518 S 0.47058 

EEF1D Elongation factor 1-delta 133 S 0.39367 

EIF2A Eukaryotic translation initiation 
factor 2A;Eukaryotic translation 
initiation factor 2A, N-terminally 
processed 

501 S 0.54618 

HEATR5B HEAT repeat-containing protein 
5B 

1737 S 0.47532 

IGF2BP1 Insulin-like growth factor 2 
mRNA-binding protein 1 

181 S 0.44091 

KCNMA1 Calcium-activated potassium 
channel subunit alpha-1 

543 S 0.48962 

LARP1B La-related protein 1B 574 S 0.3842 

LIMA1 LIM domain and actin-binding 
protein 1 

610 S 0.45948 

LMO7 LIM domain only protein 7 591 S 0.3737 

MAP4 Microtubule-associated 
protein;Microtubule-associated 
protein 4 

297 S 0.5814 

MAPRE3 Microtubule-associated protein 
RP/EB family member 3 

162 S 0.46471 

MAPRE3 Microtubule-associated protein 
RP/EB family member 3 

161 T 0.51671 

MPRIP Myosin phosphatase Rho-
interacting protein 

365 S 0.57032 

NUF2 Kinetochore protein Nuf2 247 S 0.55403 
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Gene.names Protein.names Positions Amino 
Acid 

Ratio.H.L. 
normalized 

NUP160 Nuclear pore complex protein 
Nup160 

1122 S 0.54839 

PDLIM7 PDZ and LIM domain protein 7 217 S 0.563 

PPP1R18 Phostensin 530 S 0.55116 

PTDSS1 Phosphatidylserine synthase 1 296 S 0.41335 

PURB Transcriptional activator protein 
Pur-beta 

101 S 0.36843 

RANBP2 E3 SUMO-protein ligase RanBP2 2276 S 0.34595 

RANGAP1 Ran GTPase-activating protein 1 442 S 0.30462 

RPRD2 Regulation of nuclear pre-mRNA 
domain-containing protein 2 

923 S 0.17653 

RPS2 40S ribosomal protein S2 264 S 0.54946 

SCRIB Protein scribble homolog 1348 S 0.54901 

SEC16A Protein transport protein Sec16A 1069 S 0.4981 

STUB1 E3 ubiquitin-protein ligase CHIP 19 S 0.49963 

SYNPO Synaptopodin 784 S 0.37795 

SYNPO Synaptopodin 589 S 0.56312 

SZRD1 SUZ domain-containing protein 1 19 S 0.54282 

UBAP2L Ubiquitin-associated protein 2-
like 

609 S 0.51679 

USP9X Probable ubiquitin carboxyl-
terminal hydrolase FAF-X 

2443 S 0.51447 
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Table 8: List of proteins identified in hCDC14A BioID proximity assay. 

Gene names Protein names Unique 
peptides 

Ratio H/L 
normalized 

Ratio H/M 
normalized 

AAK1 AP2-associated protein kinase 1 12 -232.634 -208.767 

AASS Alpha-aminoadipic semialdehyde 
synthase, mitochondrial;Lysine 
ketoglutarate 
reductase;Saccharopine 
dehydrogenase 

13 -174.463 -162.313 

ABLIM1 Actin-binding LIM protein 1 10 -255.741 -188.422 

ACAD9 Acyl-CoA dehydrogenase family 
member 9, mitochondrial 

27 -278.448 -263.173 

ACADVL Very long-chain specific acyl-CoA 
dehydrogenase, mitochondrial 

28 -231.933 -17.731 

ACAT1 Acetyl-CoA acetyltransferase, 
mitochondrial 

12 -151.231 -110.392 

ACOT2;ACO
T1 

Acyl-coenzyme A thioesterase 2, 
mitochondrial;Acyl-coenzyme A 
thioesterase 1 

28 -352.017 -338.737 

ACOT9 Acyl-coenzyme A thioesterase 9, 
mitochondrial 

13 -18.039 -170.167 

ACTN1 Alpha-actinin-1 35 -178.513 -38.895 

ACTN4 Alpha-actinin-4 32 -152.745 -147.369 

ADD1 Alpha-adducin 19 -13.105 -198.604 

AFG3L2 AFG3-like protein 2 31 -189.604 -155.733 

AHNAK Neuroblast differentiation-
associated protein AHNAK 

417 -548.597 -645.748 

AHNAK2 Protein AHNAK2 105 -213.651 -188.763 

AKAP2 A-kinase anchor protein 2 13 -200.144 -158.571 

ALDH18A1 Delta-1-pyrroline-5-carboxylate 
synthase;Glutamate 5-
kinase;Gamma-glutamyl phosphate 
reductase 

28 -145.233 -222.176 

ALMS1 Alstrom syndrome protein 1 18 -133.657 -177.685 

ANAPC1 Anaphase-promoting complex 
subunit 1 

25 -246.212 -192.134 

ANAPC5 Anaphase-promoting complex 
subunit 5 

11 -244.733 -182.495 

ANKRD17 Ankyrin repeat domain-containing 
protein 17 

12 -210.011 -127.953 

AP2A1 AP-2 complex subunit alpha-1 12 -14.346 -127.495 

AP3B1 AP-3 complex subunit beta-1 17 -166.827 -199.447 

ARCN1 Coatomer subunit delta 14 -135.424 -156.009 

ARHGAP21 Rho GTPase-activating protein 21 19 -266.722 -215.991 
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Gene names Protein names Unique 
peptides 

Ratio H/L 
normalized 

Ratio H/M 
normalized 

ARHGAP29 Rho GTPase-activating protein 29 17 -233.964 -213.581 

ASCC3 Activating signal cointegrator 1 
complex subunit 3 

38 -178.126 -160.117 

ATAD3A ATPase family AAA domain-
containing protein 3A 

15 -120.929 -137.759 

ATP5A1 ATP synthase subunit alpha, 
mitochondrial 

33 -217.573 -204.139 

ATP5B ATP synthase subunit beta, 
mitochondrial;ATP synthase 
subunit beta 

22 -302.362 -327.914 

ATXN2L Ataxin-2-like protein 19 -199.062 -146.454 

BCR Breakpoint cluster region protein 10 -158.766 -168.971 

BCS1L Mitochondrial chaperone BCS1 11 -148.965 -127.233 

C17orf80 Uncharacterized protein C17orf80 14 -160.283 -194.886 

CAD CAD protein;Glutamine-dependent 
carbamoyl-phosphate 
synthase;Aspartate 
carbamoyltransferase;Dihydroorota
se 

12 -215.862 -205.685 

CALD1 Caldesmon 38 -216.495 -282.941 

CAMSAP2 Calmodulin-regulated spectrin-
associated protein 2 

11 -309.863 -33.823 

CAND1 Cullin-associated NEDD8-
dissociated protein 1 

24 -176.538 -183.126 

CAPZB F-actin-capping protein subunit beta 10 -106.196 -104.552 

CCT2 T-complex protein 1 subunit beta 24 -197.778 -206.407 

CCT3 T-complex protein 1 subunit gamma 23 -167.397 -214.248 

CCT4 T-complex protein 1 subunit delta 21 -282.021 -301.648 

CCT5 T-complex protein 1 subunit epsilon 25 -109.062 -180.738 

CCT6A T-complex protein 1 subunit zeta 16 -114.283 -172.953 

CCT7 T-complex protein 1 subunit eta 24 -115.418 -201.363 

CCT8 T-complex protein 1 subunit theta 38 -360.679 -473.989 

CD2AP CD2-associated protein 33 -294.109 -283.013 

CDC14A Dual specificity protein phosphatase 
CDC14A 

48 -318.744 -339.358 

CDC23 Cell division cycle protein 23 
homolog 

17 -131.646 -170.844 

CEP131 Centrosomal protein of 131 kDa 35 -302.868 -191.855 

CKAP4 Cytoskeleton-associated protein 4 11 -121.508 -165.018 

CLINT1 Clathrin interactor 1 12 -135.045 -145.954 

CLPX ATP-dependent Clp protease ATP-
binding subunit clpX-like, 
mitochondrial 

19 -256.482 -178.876 
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Ratio H/M 
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CLTC Clathrin heavy chain;Clathrin heavy 
chain 1 

16 -205.968 -205.859 

CNOT1 CCR4-NOT transcription complex 
subunit 1 

32 -16.748 -158.273 

COPA Coatomer subunit 
alpha;Xenin;Proxenin 

34 -182.715 -190.498 

COPB1 Coatomer subunit beta 28 -127.879 -153.249 

COPB2 Coatomer subunit beta 16 -161.989 -165.717 

COPG2 Coatomer subunit gamma-2 30 -265.145 -291.191 

CORO1B Coronin-1B 25 -342.762 -30.418 

CORO1C Coronin-1C;Coronin 23 -32.033 -416.385 

CRK Adapter molecule crk 12 -255.334 -262.691 

CSDE1 Cold shock domain-containing 
protein E1 

34 -234.938 -236.848 

CTNND1 Catenin delta-1 24 -201.188 -302.315 

CTPS1 CTP synthase 1 13 -177.226 -178.463 

CYFIP1 Cytoplasmic FMR1-interacting 
protein 1 

11 -167.738 -159.579 

DAP3 28S ribosomal protein S29, 
mitochondrial 

21 -3.423 -322.351 

DARS Aspartate--tRNA ligase, cytoplasmic 15 -211.223 -229.414 

DBN1 Drebrin 11 -132.775 -134.626 

DBT Lipoamide acyltransferase 
component of branched-chain 
alpha-keto acid dehydrogenase 
complex, mitochondrial 

26 -43.166 -417.132 

DCTN1;DKF
Zp686E0752 

Dynactin subunit 1 34 -175.326 -232.388 

DCTN2 Dynactin subunit 2 10 -14.032 -116.188 

DDX1 ATP-dependent RNA helicase 
DDX1 

12 -189.475 -129.846 

DDX21 Nucleolar RNA helicase 2 15 -165.045 -142.341 

DDX3X;DDX
3Y 

ATP-dependent RNA helicase 
DDX3X;ATP-dependent RNA 
helicase DDX3Y 

32 -145.795 -134.979 

DENND4C DENN domain-containing protein 
4C 

17 -230.979 -195.428 

DHX9 ATP-dependent RNA helicase A 32 -11.151 -112.249 
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Ratio H/M 
normalized 

DLAT Dihydrolipoyllysine-residue 
acetyltransferase component of 
pyruvate dehydrogenase complex, 
mitochondrial;Acetyltransferase 
component of pyruvate 
dehydrogenase complex 

18 -291.159 -270.566 

DLD Dihydrolipoyl dehydrogenase, 
mitochondrial;Dihydrolipoyl 
dehydrogenase 

22 -244.568 -451.655 

DLG5 Disks large homolog 5 86 -272.557 -251.928 

DLST Dihydrolipoyllysine-residue 
succinyltransferase component of 2-
oxoglutarate dehydrogenase 
complex, mitochondrial 

18 -344.941 -335.842 

DNAJC13 DnaJ homolog subfamily C member 
13 

47 -17.134 -153.629 

DNMBP Dynamin-binding protein 45 -227.739 -19.703 

DOCK7 Dedicator of cytokinesis protein 7 35 -177.932 -176.695 

DPYSL2 Dihydropyrimidinase-related 
protein 2 

28 -174.087 -2.044 

DPYSL3 Dihydropyrimidinase-related 
protein 3 

18 -222.075 -23.879 

DYNC1H1 Cytoplasmic dynein 1 heavy chain 1 30 -179.411 -10.858 

EDC4 Enhancer of mRNA-decapping 
protein 4 

23 -187.758 -161.741 

EEF1G Elongation factor 1-gamma 16 -199.522 -242.391 

EFTUD1 Elongation factor Tu GTP-binding 
domain-containing protein 1 

12 -182.808 -183.501 

EIF3A Eukaryotic translation initiation 
factor 3 subunit A 

42 -239.373 -207.686 

EIF3B Eukaryotic translation initiation 
factor 3 subunit B 

15 -175.901 -145.728 

EIF3C;EIF3C
L 

Eukaryotic translation initiation 
factor 3 subunit C;Eukaryotic 
translation initiation factor 3 
subunit C-like protein 

19 -315.804 -251.854 

EIF3E Eukaryotic translation initiation 
factor 3 subunit E 

11 -25.154 -18.594 

EIF3L Eukaryotic translation initiation 
factor 3 subunit L 

15 -243.355 -250.504 

EIF4B Eukaryotic translation initiation 
factor 4B 

15 -328.729 -272.537 

EIF4G1 Eukaryotic translation initiation 
factor 4 gamma 1 

35 -19.443 -181.604 
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Ratio H/L 
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EIF4G3 Eukaryotic translation initiation 
factor 4 gamma 3 

22 -20.077 -193.335 

EIF5 Eukaryotic translation initiation 
factor 5 

15 -235.675 -207.467 

EML4 Echinoderm microtubule-associated 
protein-like 4 

14 -213.062 -213.087 

EPB41L2 Band 4.1-like protein 2 18 -188.801 -158.005 

EPB41L3 Band 4.1-like protein 3;Band 4.1-like 
protein 3, N-terminally processed 

15 -175.916 -174.812 

EPHA2 Ephrin type-A receptor 2 15 -167.683 -138.481 

EPRS Bifunctional glutamate/proline--
tRNA ligase;Glutamate--tRNA 
ligase;Proline--tRNA ligase 

38 -162.411 -220.178 

EPS15L1 Epidermal growth factor receptor 
substrate 15-like 1 

26 -164.268 -141.323 

ERBB2IP Protein LAP2 40 -234.652 -195.054 

ERC1 ELKS/Rab6-interacting/CAST 
family member 1 

68 -258.779 -241.596 

ESYT1 Extended synaptotagmin-1 21 -2.124 -160.073 

ESYT2 Extended synaptotagmin-2 10 -184.166 -167.696 

EXOC4 Exocyst complex component 4 19 -206.401 -199.344 

EZR Ezrin 13 -165.845 -325.925 

FAM120A Constitutive coactivator of PPAR-
gamma-like protein 1 

27 -146.678 -219.008 

FAM129B Niban-like protein 1 17 -104.068 -19.771 

FASN Fatty acid synthase;[Acyl-carrier-
protein] S-acetyltransferase;[Acyl-
carrier-protein] S-
malonyltransferase;3-oxoacyl-[acyl-
carrier-protein] synthase;3-oxoacyl-
[acyl-carrier-protein] reductase;3-
hydroxyacyl-[acyl-carrier-protein] 
dehydratase;Enoyl-[acyl-carrier-
protein] reductase;Oleoyl-[acyl-
carrier-protein] hydrolase 

94 -199.183 -227.593 

FLNB Filamin-B 110 -266.731 -284.415 

FLNC Filamin-C 118 -3.769 -393.514 

FXR1 Fragile X mental retardation 
syndrome-related protein 1 

10 -127.355 -175.502 

GAPVD1 GTPase-activating protein and VPS9 
domain-containing protein 1 

22 -179.626 -174.933 

GBF1 Golgi-specific brefeldin A-resistance 
guanine nucleotide exchange factor 
1 

10 -220.583 -199.798 
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GCN1L1 Translational activator GCN1 65 -253.525 -227.991 

GEMIN5 Gem-associated protein 5 36 -158.005 -172.571 

GIGYF2 PERQ amino acid-rich with GYF 
domain-containing protein 2 

35 -247.161 -260.489 

GLUD1;GLU
D2 

Glutamate dehydrogenase 1, 
mitochondrial;Glutamate 
dehydrogenase 2, mitochondrial 

30 -232.735 -213.068 

GOLGA3 Golgin subfamily A member 3 14 -133.308 -146.705 

HAUS3 HAUS augmin-like complex subunit 
3 

14 -162.118 -164.543 

HAUS5 HAUS augmin-like complex subunit 
5 

15 -127.932 -143.319 

HDLBP Vigilin 45 -269.825 -414.242 

HSD17B10 3-hydroxyacyl-CoA dehydrogenase 
type-2 

11 -231.854 -213.334 

HSDL2 Hydroxysteroid dehydrogenase-like 
protein 2 

13 -262.665 -277.873 

HSPA1B;HS
PA1A 

Heat shock 70 kDa protein 1B;Heat 
shock 70 kDa protein 1A 

23 -176.975 -197.551 

HSPA5 78 kDa glucose-regulated protein 38 -231.545 -251.474 

HSPA8 Heat shock cognate 71 kDa protein 23 -242.291 -242.577 

HSPA9 Stress-70 protein, mitochondrial 33 -158.437 -19.463 

IARS Isoleucine--tRNA ligase, 
cytoplasmic 

25 -105.544 -142.717 

IARS2 Isoleucine--tRNA ligase, 
mitochondrial 

34 -372.994 -392.148 

IGF2BP1 Insulin-like growth factor 2 mRNA-
binding protein 1 

11 -171.558 -161.251 

IGF2BP2 Insulin-like growth factor 2 mRNA-
binding protein 2 

16 -266.749 -258.519 

IPO7 Importin-7 11 -144.721 -123.708 

IQGAP1 Ras GTPase-activating-like protein 
IQGAP1 

40 -115.053 -17.092 

KIAA0196 WASH complex subunit strumpellin 13 -302.315 -312.469 

KIAA1033 WASH complex subunit 7 12 -144.501 -214.318 

KIAA1217 Sickle tail protein homolog 15 -261.493 -18.558 

KIAA1671 Uncharacterized protein KIAA1671 50 -244.175 -158.268 

KIF5B Kinesin-1 heavy chain 37 -179.771 -145.724 

KPNB1 Importin subunit beta-1 37 -273.034 -277.932 

KRT18 Keratin, type I cytoskeletal 18 18 -345.263 -313.062 

KTN1 Kinectin 30 -157.734 -139.236 

LARS Leucine--tRNA ligase, cytoplasmic 20 -152.787 -110.045 
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Ratio H/M 
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LETM1 LETM1 and EF-hand domain-
containing protein 1, mitochondrial 

30 -237.079 -18.984 

LIMCH1 LIM and calponin homology 
domains-containing protein 1 

50 -341.018 -19.686 

LPP Lipoma-preferred partner 18 -202.862 -186.533 

LRPPRC Leucine-rich PPR motif-containing 
protein, mitochondrial 

75 -294.053 -257.596 

LUZP1 Leucine zipper protein 1 65 -217.332 -208.724 

MACF1 Microtubule-actin cross-linking 
factor 1, isoforms 1/2/3/5 

36 -201.829 -144.878 

MAP1B Microtubule-associated protein 
1B;MAP1B heavy chain;MAP1 light 
chain LC1 

46 -154.785 -123.396 

MAP4 Microtubule-associated 
protein;Microtubule-associated 
protein 4 

28 -408.792 -43.687 

MAP7D3 MAP7 domain-containing protein 3 13 -184.715 -151.083 

MAPRE2 Microtubule-associated protein 
RP/EB family member 2 

10 -270.134 -219.383 

MAST4 Microtubule-associated 
serine/threonine-protein kinase 4 

14 -283.054 -185.679 

MCM7 DNA replication licensing factor 
MCM7 

18 -120.128 -122.769 

MDH2 Malate dehydrogenase, 
mitochondrial;Malate 
dehydrogenase 

12 -162.238 -101.762 

MKL2 MKL/myocardin-like protein 2 28 -285.194 -238.037 

MPRIP Myosin phosphatase Rho-
interacting protein 

50 -250.038 -233.337 

MRPL1 39S ribosomal protein L1, 
mitochondrial 

12 -157.785 -126.382 

MRPL15 39S ribosomal protein L15, 
mitochondrial 

16 -24.661 -21.334 

MRPL19 39S ribosomal protein L19, 
mitochondrial 

10 -341.648 -310.495 

MRPL28 39S ribosomal protein L28, 
mitochondrial 

10 -162.482 -137.565 

MRPL37 39S ribosomal protein L37, 
mitochondrial 

20 -253.349 -209.302 

MRPL38 39S ribosomal protein L38, 
mitochondrial 

14 -22.477 -185.872 

MRPL39 39S ribosomal protein L39, 
mitochondrial 

13 -247.361 -217.821 

MRPL4 39S ribosomal protein L4, 
mitochondrial 

10 -298.188 -226.708 
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MRPL44 39S ribosomal protein L44, 
mitochondrial 

12 -174.676 -181.188 

MRPL9 39S ribosomal protein L9, 
mitochondrial 

11 -350.476 -306.106 

MRPS18B 28S ribosomal protein S18b, 
mitochondrial 

12 -349.761 -341.551 

MRPS2 28S ribosomal protein S2, 
mitochondrial 

10 -233.439 -262.531 

MRPS22 28S ribosomal protein S22, 
mitochondrial 

18 -334.511 -278.677 

MRPS27 28S ribosomal protein S27, 
mitochondrial 

20 -344.758 -31.428 

MRPS30 28S ribosomal protein S30, 
mitochondrial 

10 -170.139 -168.427 

MRPS31 28S ribosomal protein S31, 
mitochondrial 

18 -230.287 -204.311 

MRPS34 28S ribosomal protein S34, 
mitochondrial 

13 -332.516 -273.178 

MRPS35 28S ribosomal protein S35, 
mitochondrial 

15 -261.476 -210.774 

MRPS5 28S ribosomal protein S5, 
mitochondrial 

17 -217.338 -216.527 

MRPS7 28S ribosomal protein S7, 
mitochondrial 

14 -259.396 -225.498 

MRPS9 28S ribosomal protein S9, 
mitochondrial 

22 -258.753 -249.834 

MSN Moesin 11 -237.527 -205.439 

MTCL1 Microtubule cross-linking factor 1 19 -279.927 -248.149 

MTHFD1L Monofunctional C1-tetrahydrofolate 
synthase, mitochondrial 

13 -206.631 -186.292 

MYH10 Myosin-10 43 -211.466 -16.291 

MYH9 Myosin-9 178 -494.484 -599.806 

MYO18A Unconventional myosin-XVIIIa 17 -192.517 -110.058 

MYO1B Unconventional myosin-Ib 22 -140.446 -156.854 

MYO1C Unconventional myosin-Ic 28 -166.594 -161.228 

MYO5A Unconventional myosin-Va 15 -164.562 -125.384 

MYO6 Unconventional myosin-VI 11 -15.014 -124.274 

MYOF Myoferlin 39 -184.773 -193.633 

NAP1L4 Nucleosome assembly protein 1-like 
4 

10 -196.162 -189.293 

NCKAP1 Nck-associated protein 1 13 -115.817 -146.973 

NCL Nucleolin 14 -105.218 -112.759 
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NDUFA9 NADH dehydrogenase 
[ubiquinone] 1 alpha subcomplex 
subunit 9, mitochondrial 

14 -347.881 -256.619 

NDUFS1 NADH-ubiquinone oxidoreductase 
75 kDa subunit, mitochondrial 

42 -330.031 -300.243 

NDUFS2 NADH dehydrogenase 
[ubiquinone] iron-sulfur protein 2, 
mitochondrial 

22 -2.662 -241.974 

NDUFS3 NADH dehydrogenase 
[ubiquinone] iron-sulfur protein 3, 
mitochondrial 

17 -314.051 -257.021 

NDUFV1 NADH dehydrogenase 
[ubiquinone] flavoprotein 1, 
mitochondrial 

23 -267.586 -236.223 

NDUFV2 NADH dehydrogenase 
[ubiquinone] flavoprotein 2, 
mitochondrial 

10 -236.312 -206.148 

NDUFV3 NADH dehydrogenase 
[ubiquinone] flavoprotein 3, 
mitochondrial 

24 -377.391 -304.228 

NEK1 Serine/threonine-protein kinase 
Nek1 

17 -159.118 -173.154 

NEXN Nexilin 14 -355.543 -226.951 

NNT NAD(P) transhydrogenase, 
mitochondrial 

19 -193.501 -203.074 

NT5DC2 5-nucleotidase domain-containing 
protein 2 

14 -159.244 -175.867 

NUP214 Nuclear pore complex protein 
Nup214 

42 -135.038 -179.436 

NUP88 Nuclear pore complex protein 
Nup88 

15 -154.422 -176.601 

OFD1 Oral-facial-digital syndrome 1 
protein 

19 -241.442 -162.919 

OGDH 2-oxoglutarate dehydrogenase, 
mitochondrial 

55 -278.886 -275.419 

OTUD4 OTU domain-containing protein 4 12 -234.373 -205.475 

PABPC1;PAB
PC3 

Polyadenylate-binding 
protein;Polyadenylate-binding 
protein 1;Polyadenylate-binding 
protein 3 

12 -204.311 -190.574 

PACS1 Phosphofurin acidic cluster sorting 
protein 1 

10 -156.162 -120.806 
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PAICS Multifunctional protein 
ADE2;Phosphoribosylaminoimidaz
ole-succinocarboxamide 
synthase;Phosphoribosylaminoimid
azole carboxylase 

14 -16.218 -128.026 

PALLD Palladin 37 -143.195 -163.249 

PARP4 Poly [ADP-ribose] polymerase 4 55 -256.602 -222.735 

PDLIM1 PDZ and LIM domain protein 1 17 -143.327 -121.307 

PDLIM4 PDZ and LIM domain protein 4 13 -213.214 -230.251 

PDLIM5 PDZ and LIM domain protein 5 28 -333.625 -323.555 

PDLIM7 PDZ and LIM domain protein 7 14 -228.694 -189.223 

PDPR Pyruvate dehydrogenase 
phosphatase regulatory subunit, 
mitochondrial 

16 -15.655 -14.323 

PEAK1 Pseudopodium-enriched atypical 
kinase 1 

21 -122.597 -179.786 

PHB Prohibitin 18 -289.604 -270.237 

PHB2 Prohibitin-2 18 -36.678 -330.173 

PLEC Plectin 40 -20.095 -188.892 

PLEKHA5 Pleckstrin homology domain-
containing family A member 5 

32 -269.947 -23.734 

PNPLA8 Calcium-independent 
phospholipase A2-gamma 

13 -274.923 -182.434 

PPFIA1 Liprin-alpha-1 16 -161.295 -189.502 

PPFIBP1 Liprin-beta-1 29 -204.204 -133.555 

PPP1R9B Neurabin-2 22 -308.277 -313.302 

PPP6C Serine/threonine-protein 
phosphatase 6 catalytic 
subunit;Serine/threonine-protein 
phosphatase 6 catalytic subunit, N-
terminally processed 

12 -126.979 -198.879 

PPP6R1 Serine/threonine-protein 
phosphatase 6 regulatory subunit 1 

17 -193.545 -174.758 

PPP6R2 Serine/threonine-protein 
phosphatase 6 regulatory subunit 2 

26 -184.752 -177.655 

PPP6R3 Serine/threonine-protein 
phosphatase 6 regulatory subunit 3 

12 -171.781 -146.391 

PRKDC DNA-dependent protein kinase 
catalytic subunit 

42 -159.166 -147.823 

PRRC2A Protein PRRC2A 31 -223.175 -166.392 

PRRC2C Protein PRRC2C 32 -236.045 -146.857 

PSMC2 26S protease regulatory subunit 7 11 -165.513 -140.095 
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PSMD2 26S proteasome non-ATPase 
regulatory subunit 2 

11 -201.293 -156.303 

PSMD3 26S proteasome non-ATPase 
regulatory subunit 3 

17 -148.362 -143.269 

PTCD3 Pentatricopeptide repeat domain-
containing protein 3, mitochondrial 

27 -314.893 -318.968 

PTK2 Focal adhesion kinase 1 10 -121.488 -173.078 

PTRF Polymerase I and transcript release 
factor 

10 -254.532 -241.411 

PYCR1 Pyrroline-5-carboxylate reductase 1, 
mitochondrial;Pyrroline-5-
carboxylate reductase 

14 -269.862 -266.347 

PYCR2 Pyrroline-5-carboxylate reductase 
2;Pyrroline-5-carboxylate reductase 

12 -297.562 -249.867 

QARS Glutamine--tRNA ligase 14 -128.891 -169.469 

RAI14 Ankycorbin 70 -305.445 -285.716 

RAN GTP-binding nuclear protein Ran 13 -214.778 -244.191 

RANBP2 E3 SUMO-protein ligase RanBP2 93 -175.156 -186.675 

RANGAP1 Ran GTPase-activating protein 1 32 -227.872 -254.439 

RAPH1 Ras-associated and pleckstrin 
homology domains-containing 
protein 1 

15 -202.573 -137.699 

RARS Arginine--tRNA ligase, cytoplasmic 28 -190.644 -204.841 

REPS1 RalBP1-associated Eps domain-
containing protein 1 

11 -271.302 -149.924 

RPL3 60S ribosomal protein L3 19 -132.016 -187.118 

RPL6 60S ribosomal protein L6 13 -16.827 -243.831 

RPL7 60S ribosomal protein L7 15 -191.001 -191.615 

RPL7A 60S ribosomal protein L7a 12 -153.604 -140.148 

RPN1 Dolichyl-diphosphooligosaccharide-
-protein glycosyltransferase subunit 
1 

14 -134.168 -143.952 

RPS2 40S ribosomal protein S2 14 -163.075 -179.206 

RPS3 40S ribosomal protein S3 20 -118.161 -155.881 

RRBP1 Ribosome-binding protein 1 32 -110.061 -173.399 

RUVBL1 RuvB-like 1 21 -349.214 -323.868 

RUVBL2 RuvB-like 2 18 -192.895 -251.548 

SCRIB Protein scribble homolog 19 -189.164 -151.742 

SEC16A Protein transport protein Sec16A 40 -188.646 -188.449 

SEC23A Protein transport protein Sec23A 11 -152.966 -119.044 

SEPT11 Septin-11 15 -226.333 -229.612 

SEPT2 Septin-2 15 -366.345 -37.665 
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SERBP1 Plasminogen activator inhibitor 1 
RNA-binding protein 

16 -110.377 -187.049 

SH3D19 SH3 domain-containing protein 19 14 -230.814 -162.937 

SHMT2 Serine hydroxymethyltransferase, 
mitochondrial;Serine 
hydroxymethyltransferase 

30 -422.523 -383.894 

SIPA1L1 Signal-induced proliferation-
associated 1-like protein 1 

33 -14.058 -153.374 

SIPA1L3 Signal-induced proliferation-
associated 1-like protein 3 

10 -117.325 -114.922 

SLC30A9 Zinc transporter 9 20 -239.775 -210.135 

SMC2 Structural maintenance of 
chromosomes protein 2 

10 -14.097 -110.076 

SMC3 Structural maintenance of 
chromosomes protein 3 

14 -119.067 -101.063 

SND1 Staphylococcal nuclease domain-
containing protein 1 

10 -142.082 -157.209 

SNX1 Sorting nexin-1 13 -152.301 -160.147 

SNX6 Sorting nexin-6;Sorting nexin-6, N-
terminally processed 

18 -231.452 -255.716 

SORBS2 Sorbin and SH3 domain-containing 
protein 2 

18 -188.119 -209.943 

SPAG9 C-Jun-amino-terminal kinase-
interacting protein 4 

15 -169.619 -128.525 

SPECC1 Cytospin-B 11 -250.635 -193.644 

SPECC1L;SP
ECC1L-
ADORA2A 

Cytospin-A 14 -188.854 -24.323 

SPTAN1 Spectrin alpha chain, non-
erythrocytic 1 

59 -20.235 -183.624 

SRP68 Signal recognition particle subunit 
SRP68 

15 -136.145 -112.098 

SSFA2 Sperm-specific antigen 2 16 -175.545 -160.274 

STAT1 Signal transducer and activator of 
transcription 1-alpha/beta;Signal 
transducer and activator of 
transcription 

22 -224.154 -22.623 

STRAP Serine-threonine kinase receptor-
associated protein 

19 -201.403 -188.646 

SUCLA2 Succinyl-CoA ligase [ADP-forming] 
subunit beta, mitochondrial 

10 -224.811 -163.873 

SVIL Supervillin 77 -199.752 -168.121 

SYNJ2 Synaptojanin-2 26 -136.863 -126.309 

SYNPO Synaptopodin 31 -305.565 -226.029 
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TANC1 Protein TANC1 26 -226.868 -300.671 

TCP1 T-complex protein 1 subunit alpha 33 -183.506 -204.216 

TDRD3 Tudor domain-containing protein 3 14 -193.998 -112.743 

TLN1 Talin-1 104 -330.315 -287.229 

TLN2 Talin-2 17 -168.316 -101.861 

TNKS1BP1 182 kDa tankyrase-1-binding 
protein 

26 -163.859 -105.718 

TNS3 Tensin-3 36 -384.765 -381.464 

TP53BP2 Apoptosis-stimulating of p53 
protein 2 

11 -177.863 -136.264 

TRAP1 Heat shock protein 75 kDa, 
mitochondrial 

16 -169.106 -143.098 

TRIM25 E3 ubiquitin/ISG15 ligase TRIM25 12 -176.322 -176.068 

TRIOBP TRIO and F-actin-binding protein 32 -20.373 -226.444 

TRMT10C Mitochondrial ribonuclease P 
protein 1 

14 -164.783 -145.166 

TTC28 Tetratricopeptide repeat protein 28 26 -259.423 -208.884 

UACA Uveal autoantigen with coiled-coil 
domains and ankyrin repeats 

41 -222.465 -252.209 

UBAP2 Ubiquitin-associated protein 2 14 -181.522 -182.383 

UBAP2L Ubiquitin-associated protein 2-like 22 -254.937 -204.979 

UGDH UDP-glucose 6-dehydrogenase 11 -134.806 -102.163 

UNC45A Protein unc-45 homolog A 15 -177.374 -184.467 

UPF1 Regulator of nonsense transcripts 1 14 -20.916 -213.258 

UQCRC2 Cytochrome b-c1 complex subunit 2, 
mitochondrial 

13 -141.939 -153.751 

USP10 Ubiquitin carboxyl-terminal 
hydrolase 10 

12 -145.712 -166.841 

USP15 Ubiquitin carboxyl-terminal 
hydrolase 15 

11 -213.885 -150.422 

USP9X Probable ubiquitin carboxyl-
terminal hydrolase FAF-X 

19 -160.999 -193.159 

UTRN Utrophin 78 -183.743 -15.804 

VARS Valine--tRNA ligase 14 -160.863 -187.086 

VCL Vinculin 36 -154.743 -170.162 

VCPIP1 Deubiquitinating protein VCIP135 18 -205.367 -22.587 

VDAC2 Voltage-dependent anion-selective 
channel protein 2 

11 -153.291 -160.025 

VIM Vimentin 51 -271.615 -273.015 

VWA8 von Willebrand factor A domain-
containing protein 8 

47 -18.039 -160.463 

WDR11 WD repeat-containing protein 11 19 -190.942 -175.176 

XPO1 Exportin-1 13 -14.286 -178.121 
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Gene names Protein names Unique 
peptides 

Ratio H/L 
normalized 

Ratio H/M 
normalized 

XRN1 5-3 exoribonuclease 1 53 -233.105 -234.593 

ZC3HAV1 Zinc finger CCCH-type antiviral 
protein 1 

17 -138.387 -152.957 

ZYX Zyxin 16 -232.265 -179.156 
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