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Abstract

Metal/organic interfaces as they appear between electrodes and organic semi-

conductors in organic electronics decisively determine device properties of tran-

sistors, light emitting diodes, or photovoltaic cells. The interactions within the

organic semiconductor and between organic adsorbate and metallic substrate

lead to characteristic properties of the particular interface. These proper-

ties, namely the binding strength, the adsorption geometry, and the electronic

structure, have been studied with comprehensive surface sensitive experimental

methods like high-resolution electron energy-loss spectroscopy (HREELS) and

temperature-programmed desorption (TPD). The use of single crystal metal

surfaces as substrates and self-assembling small organic molecules as adsor-

bates lead to insights into structure-property relationships that will contribute

to the further development of materials and devices.

The first part of this work investigates the bonding strength between metal

substrates and organic adsorbates. With the quantification of binding energies

of simple aromatic molecules on coinage metal surfaces by means of TPD, this

part enters questions of basic surface science. Besides the delivery of bench-

marks of unrivalled accuracy for the further development of computational

methods to model binding properties of adsorbate-covered surfaces the focus

of this part also lays on the first investigation of the extraordinary coverage

dependency of the binding energy of such systems. The second part is about

the self-assembly of small-molecule organic semiconductors on metal surfaces,

and how this arrangement is influenced by the molecular structure. This part

covers the elucidation of adsorption geometries of N-heteropolycyclic aromatic

molecules on the Au(111) surface by means of vibrational HREELS. Moreover,

electronic HREELS enabled us to get insight into the electronic structure of

these interfaces. To maximize the interaction between metal bands and the

π-system of the adsorbate the planar molecules prefer a planar adsorption ge-

ometry. This presetting of a flat geometry works subsequently as a template

for further layers which leads to a growth mechanism and therefore film struc-

ture significantly different from that of the bulk crystal. The last part of this

work studies the influence of organic adsorbate films on collective electronic

properties of the metal surface with angle-resolved HREELS. Characteristic

collective excitations of a two-dimensional electron gas present on the pristine

gold surface are strongly influenced in their properties by adsorbate layers,

e.g., they show a strongly enhanced intensity and a varied dispersion relation.





Kurzzusammenfassung in deutscher Sprache

Metall/Organik-Grenzflächen, wie sie in der organischen Elektronik zwischen

Elektroden und organischen Halbleitern auftreten, beeinflussen maßgeblich die

Eigenschaften von Bauteilen wie Transistoren, Leuchtdioden oder photovoltai-

schen Zellen. Die Wechselwirkungen innerhalb der organischen Schicht und

zwischen organischem Halbleiter und metallischem Substrat führen zu charak-

teristischen Eigenschaften dieser Grenzflächen. Diese Eigenschaften, nament-

lich Bindungsstärke, Adsorptionsgeometrie und elektronische Struktur, wurden

mit Hilfe oberflächensensitiver Methoden wie hochauflösender Elektronenener-

gieverlustspektroskopie (HREELS) und temperatur-programmierter Desorpti-

on (TPD) untersucht. Als Substrat dienten jeweils Metall-Einkristalloberfläch-

en, als Adsorbat molekulare organische Halbleiter. Dies führte zu Einblicken

in Struktur-Eigenschaften-Beziehungen die zur weiteren Entwicklung von Ma-

terialien und Bauteilen beitragen werden.

Der erste Teil dieser Arbeit behandelt mit der quantitativen Bestimmung

der Bindungsenergien von einfachen aromatischen Molekülen auf verschiede-

nen Münzmetalloberflächen mittels TPD grundlegende Fragen der Oberfläch-

enphysik. Neben der Etablierung neuer Richtwerte zur Weiterentwicklung von

rechnergestützten Verfahren zur Modellierung von adsorbatbedeckten Ober-

flächen, lag ein weiterer Fokus auf der erstmals eingehend untersuchten star-

ken Abhängigkeit dieser Bindungsenergien vom Bedeckungsgrad. Der zweite

Teil behandelt die Anordnung von molekularen organischen Halbleitern auf

Metalloberflächen und wie diese Anordnung von der Struktur der Moleküle

beeinflusst wird. Mit HREELS wurden die elektronische Struktur und die Ad-

sorptionsgeometrie neuartiger N-heteropolyzyklischer aromatischer Halbleiter

auf der Au(111)-Oberfläche aufgeklärt. Zur Maximierung der Wechselwirkung

zwischen Metallbändern und π-System des Adsorbats bevorzugen flache orga-

nische Halbleiter planare Adsorptionsgeometrien. Diese Vorgabe einer flachen

Geometrie dient anschließend als Templat für viele weitere Schichten, mit der

Folge, dass sich das Wachstum in dünnen Filmen erheblich von dem im Kri-

stall unterscheidet. Der letzte Teil dieser Arbeit untersucht den Einfluss von

organischen Adsorbaten auf kollektive elektronische Eigenschaften der Metallo-

berfläche mittels winkelaufgelöster HREELS. Charakteristische kollektive An-

regungen eines zweidimensionalen Elektronengases, die auf der reinen Metal-

loberfläche existieren, werden z.B. in ihrer Intensität oder Dispersionsrelation

von Adsorbatschichten wesentlich beeinflusst.
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1. Introduction

With the invention of the transistor by Shockley, Bardeen, and Brattain [1]

the control of small currents became cheap and energy efficient. It is obvi-

ous that these first germanium [2], then silicon based [3] electronics changed

the world completely [4]. And silicon is the perfect material for applications

like central processing units (CPU) or conventional photovoltaic cells where

it is used today. But with ongoing developments new applications are within

reach where organic (molecule based) materials have advantages compared to

silicon or other inorganic materials [5–7]. Such advantages are e.g. trans-

parency, flexibility, and low-weight if a suitable substrate is used [8–12]. This

allows the development of new kinds of displays [13,14], solar cells [15–17], or

light emitting diodes [18–22] which then can be used in new ways we cannot

even predict. As for the use in organic electronic devices only small amounts

of organic molecules are needed, such devices can be cheap [23], even more,

if the organic semiconductors are produced on an industrial scale. Organic

semiconductors are easy to process as many of them are soluble in water, pro-

cessable via printing [13, 24], and do not necessarily need vacuum conditions.

Furthermore, they help to save resources as they are easier to recycle and the

production process works at ambient temperatures and therefore needs less en-

ergy. Organic electronics will not replace silicon-based devices, but they will

expand existing and open up completely new fields for application [25–28].

Probably the most important advantage has not been mentioned yet. Com-

pared to the rigid structure of crystalline silicon with its inherent electronic

structure and given band gap the use of organic molecules allows the tailoring

of a perfect semiconductor material for any intended use [29]. This lead to

the new multi-billion-dollar market for organic light emitting diodes (OLED)

which are used in displays for TVs and smartphones today [30,31]. But efficient

tailoring is only possible if there is a certain understanding of the underlying

structure/function relationship [32], otherwise, it is more of a trial-and-error

approach. To find a rational way to new organic semiconductors that help to

improve device performance, knowledge about critical elementary processes is
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1. Introduction

necessary. Many of these processes like charge separation or charge injection

are related to interfaces [33–39]. And properties of metal/organic interfaces

are determined by, e.g., adsorption of molecules on and binding to a substrate,

molecular aggregation and composition of self-assembled films [40–44]. Due to

the vast amount of possible structure/property relationships, the aim of this

work is to deliver reliable contributions to particular topics. By studying the

binding strength between adsorbate and substrate, the adsorption geometry,

and the electronic structure of a variety of metal/organic interfaces this work

helps to establish guidelines for tailored organic semiconductors.

The binding between an organic molecule and a metallic surface, e.g., be-

tween an organic semiconductor film and an electrode, influences interfacial

properties [33, 34, 44, 45]. Despite long research, there is only little quan-

titative knowledge about the underlying physical processes [46, 47]. As the

study in devices always contains lots of unknowns, the focus in this work is

on well-defined systems, consisting of simple aromatic molecules as organic

adsorbates and the (111)-surfaces of the coinage metals Au, Ag, and Cu,

with their different electronic structures, as substrates. This work investigates

the dependency of the binding energy on the size of the aromatic systems as

well as on the substrate material. First, benzene is studied on Au, Ag, and

Cu with temperature-programmed desorption (TPD) [48], where adsorbate-

covered surfaces are heated with a specific heating-rate in front of a mass spec-

trometer. The (coverage dependent) binding energy is then extracted from the

resulting desorption data with analytical methods [49]. The influence of the

size of the aromatic system is studied on the Au(111)-surface, where the same

technique as above is applied to the acene series from benzene via naphthalene,

anthracene, and tetracene to pentacene. The resulting TPD-data gives hints

on adsorbate-adsorbate and substrate-mediated interactions.

The adsorption and growth of organic semiconductor layers on metal sur-

faces and the resulting film morphology are further crucial research fields, as

parameters like binding strength, charge injection, or charge separation de-

pend strongly on the orientation of the adsorbate molecules relative to the

substrate [40,41,50–52]. The thin-film properties can vary extremely from the

corresponding bulk properties and therefore the prediction of device perfor-

mance demands a knowledge of the behavior at the interface. This work aims

to find structural guidelines to predict film growth behavior from the molecu-

lar shape. Therefore vibrational spectroscopy, namely high-resolution electron

22



energy-loss spectroscopy (HREELS) is applied to a new class of organic semi-

conductors, namely N-heteropolycycles [53], on Au(111) [54,55]. HREELS has

been widely used to study adsorbate-covered surfaces before, e.g. to investigate

planar aromatic molecules [56–58], graphene nanoribbons [59], or isomerization

processes in molecular switches [60–62]. Here, monochromatized low-energy

electrons are accelerated to a sample and analyzed angle- and energy-resolved

after scattering [63]. The use of low-energy electrons deserves the surface

sensitivity, the measurement of loss-energies gives the vibrational spectrum

and the angular dependent measurements lead to conclusions about the ori-

entation of the molecules on the surface. Comprehensive density functional

theory (DFT) calculations allow precise vibrational mode assignments. Signif-

icant progress in organic chemistry in synthesizing N-heteroaromatic molecules

in recent years [64–66] now offers the opportunity to obtain aza-substituted

isoelectronic analogous of well-known purely hydrocarbon organic semicon-

ductors. N-Heteropolycyclic aromatic molecules are promising candidates for

air-stable and soluble n-type semiconductors [64,67–72]. The aza-substitution

itself and further particular variations in the molecular structure by the intro-

duction of sidechains offer the opportunity to study their impact on adsorption

and electronic properties. This will help to find general structure/property re-

lations to find ways to tailored organic semiconductors. Therefore several sys-

tems with different substituents have been studied. The adsorption behavior

of the planar quinoxalinophenanthrophenazine (QPP) [55] is compared with

tBu-QPP, an analogue with bulky tert-butyl sidechains. 6,13-Bis(triisopropyl-

silylethynyl)pentacene (TIPS-Pn) [52, 73] is investigated as well as tetraaza-

peropyrenes (TAPP) derivatives [54]. Substituents cannot only influence the

adsorption behavior. At particular positions, there is also a major influence

on the electronic structure. Thus, TAPP is investigated not only with bulky

groups at the tip-positions of the molecule but also with electron withdraw-

ing halogens at side positions. The performance of organic electronic devices

depends critically on the electronic structure of metal/organic interfaces. And

interfaces usually demonstrate properties which cannot be explained by the

separate components, or a property of one component changes drastically if it

is part of an interface.

With HREELS it is also possible to obtain electronic excitation spectra

which show, e.g., the optical gap and if it is influenced by the interface. Be-

side these single-particle excitations, well-ordered interfaces can also exhibit
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collective excitations of electrons (surface plasmons) or the lattice (surface

phonons) [74]. Surface plasmons can give new ways to transport or adsorb

energy but can also deliver decay channels for former excitations and there-

fore critically influence device performance [75, 76]. Surface plasmons can be

divided into two regimes. A “conventional” surface plasmon of the electrons

close to the surface which are strongly influenced by the bulk electron gas

and a two-dimensional plasmon of electrons associated to the metal surface

state. Due to its acoustic like dispersion in the long-wavelength limit, the

latter is named “acoustic” surface plasmon (ASP) [76, 77]. So far this phe-

nomenon has been studied only on single-crystal metal surfaces [76,78–81] but

older data for adsorbate-covered surfaces suggest that it is still present when

molecules are attached to the surface [82]. Nevertheless, the influence of ad-

sorbates on the ASP is rather unknown and therefore investigated here with

angle-resolved electronic HREELS as this method provides the opportunity

to study the dependency of excitation energies on the transferred wave vector

component parallel to the surface. The collective behavior is studied at various

systems ranging from tetracyanoquinodimethane (TCNQ) and its fluorinated

derivatives via tetrathiafulvalene (TTF) to the acenes anthracene, tetracene,

and pentacene on Au(111). With TCNQ and its di- (F2TCNQ) and tetrafluo-

rinated (F4TCNQ) derivative the influence of a charge transfer can be studied

as the increasing fluorination leads to increased electron affinity and thus to a

substrate-to-adsorbate electron transfer in the case of F4TCNQ/Au(111) while

TCNQ/Au(111) shows none. Earlier studies [82–84] also revealed a connection

between electronic and particular vibrational excitations. Such a Fano-like

coupling has been described for adsorbate-covered surfaces as an interfacial

dynamical charge-transfer but was not connected to plasmonic excitations.

Investigating systems that show a broad plasmonic excitation with vibrational

HREELS leads to insights into the nature of this coupling.

Outline

As with TPD, HREELS, and DFT, several methods are applied to many dif-

ferent adsorbate/substrate systems in this work, a short explanation of the

chosen structure is helpful. After a brief introduction into the used methods

and the experimental setup (Chapter 2), the three main result chapters fol-

low. As these three chapters cover rather different topics there is no general
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theoretical background given. Instead, each chapter begins with an individ-

ual background section to give the information necessary to understand and

rank the related results. Chapter 3 first gives background information about

the metal/organic interface itself and adsorbate-substrate as well as adsorbate-

adsorbate interactions. Then, TPD-studies of benzene on Au(111), Ag(111),

and Cu(111) are presented, followed by the investigation of the acene series on

the Au(111)-surface from benzene via naphthalene, anthracene, and tetracene

to pentacene. In Chapter 4 the introductive part presents the class of N-

heteropolycyclic organic semiconductors and its possible positions for substi-

tutions. The results about adsorbate geometry and electronic structure follow

in the order QPP, tBu-QPP, TIPS-Pn, and TAPP with its derivatives TAPP-

H, TAPP-Cl, TAPP-Br, and TAPP-I. Chapter 5 completes the results part

with an introduction to surface plasmons and the investigations of TCNQ,

F2TCNQ, F4TCNQ, [TTF]+[TCNQ]−, TTF, pentacene, tetracene, and an-

thracene on Au(111) with angle-resolved electronic HREELS. The related vi-

brational properties of TCNQ and its fluorinated derivatives follows in the last

section.
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2. Experimental Methods and Setup

This chapter briefly explains the used experimental techniques followed by

a presentation of the ultra-high vacuum system and an introduction to the

mainly used gold surface and the preparation process. The order of the ex-

plained techniques is loosely oriented at a real experiment which starts with

temperature-programmed desorption (TPD) measurements to get information

about the dosing parameters, the preparation of a certain coverage and fur-

thermore on important properties like the coverage dependent binding ener-

gies. With a well-defined coverage, the different kinds of high-resolution elec-

tron energy-loss spectroscopy (HREELS) measurements are performed and

the corresponding vibrational modes are then assigned with the help of den-

sity functional theory (DFT) calculations. For detailed and comprehensive

information the relevant literature is referenced.

2.1. Temperature-Programmed Desorption

(TPD)

TPD goes back to the 1960s when adsorbate-covered surfaces were heated and

the pressure rise due to desorbing species delivered rudimentary information

about surface related phenomena [85]. The technique was named thermal des-

orption spectroscopy (TDS) and sometimes is today, but as it is no “spectro-

scopic” method in the literal sense, it is better called temperature-programmed

desorption. With the today’s temperature control electronics, the heating of

the sample with a specific heating rate and desorbing species can be precisely

quantified with quadrupole mass spectrometers (QMS) (detailed descriptions

in refs. [86–88].
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Figure 2.1.: TPD scheme showing on-surface processes and resulting TPD measure-

ment. Bottom: Substrate with increasing temperature and decreasing

coverage from left (blue, multilayer) to right (red, pristine surface).

Top: Desorbing species measured with a QMS give the intensity vs.

temperature curve.

Figure 2.1 illustrates the technique from the conditions on the surface (bot-

tom) to the obtained spectrum (top). The metal surface is colour coded from

blue (left, cold) to red (right, hot) and symbolizes the heating of the substrate

with a constant heating rate. The substrate was previously covered with sev-

eral layers of adsorbate molecules and as long the attractive intermolecular

forces exceed the thermal energy no desorption occurs and therefore the QMS

positioned above the surface does not detect any signal (left edge). When

thermal energy equals the intermolecular forces all layers above the mono-

layer desorb one after the other and lead to an intense and sharp peak in the

spectrum. Due to the stronger attractive substrate-adsorbate interactions the

monolayer sticks to the surface up to often much higher temperatures and

desorbs giving a characteristic peak shape depending on the desorption or-

der and the predominate intermolecular interactions. Theoretically, TPD is a

spectroscopy of the desorption energy (Edes) which is needed to let adsorbed

molecules desorb. If an activation barrier has to be overcome during this pro-

cess, this barrier would be measured. But for many cases, it is allowed to put
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2.1. Temperature-Programmed Desorption (TPD)

the measured energy on a level with the binding energy EB which is released

when a molecule sticks to the surface. Following a simple kinetic ansatz with

the coverage θ as

θ =
Nads

N
(2.1)

where Nads and N are the number of occupied and all adsorption sites,

respectively, the rate of desorption rdes in monolayers per second is given by

rdes = −δθ

δt
= kdesθ

n (2.2)

with rate constant kdes and desorption order n. The rate constant can be ex-

pressed by an Arrhenius term and equation 2.2 becomes the so-called Polanyi-

Wigner equation with prefactor ν0 and surface temperature TS:

rdes = ν0θ
nexp(− Edes

kBTS

). (2.3)

With todays control electronics, a precise heating rate β = δTS/δt is exper-

imentally feasible and eq. 2.3 can be rewritten as

− δθ

δTS

=
ν0
β
θnexp(− Edes

kBTS

). (2.4)

Written logarithmically eq. 2.4 has the form of an Arrhenius term and

Edes, n, and ν0 can be obtained from slope and intercept of the lnδθ/δTS vs.

1/TS graph.

ln
δθ

δTS

= ln
ν0
β

+ n lnθ − Edes

kBTS

. (2.5)

Figure 2.2 (a) - (c) show TPD curves with given ν0 (1013 s−1), Edes (2.0 eV),

and colour coded coverages from 0.1 to 1.0 ML for n = 0, 1, 2, respectively.

Zero-order desorption means that the desorption rate is independent of the

coverage. This is the case for multilayer desorption as underneath any desorbed

molecule another one from the next layer appears. The peak shifts to higher

temperatures with increasing coverage, falls abruptly to zero at Tmax and the

rising edges lay on top of each other.
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Figure 2.2.: Desorption spectra (obtained by numerically solving eq. 2.3) with cov-

erages from θ = 0 to 1.0 ML in steps of 0.1 ML, constant heating rate β

= 1 K s−1 and prefactor ν0 = 10−13 s−1 (a)-(d); a constant desorption

energy Edes = 2.0 eV and desorption orders n = 0 (a), 1 (b), 2 (c); and

in (d) desorption order n = 1 and a desorption energy dependence on

coverage Edes(θ) as shown in the inset of (d).

Second-order desorption is typical for recombinative desorption such as Hads+

Hads → H2,gas and shows a peak shift towards lower temperatures for higher

initial coverages. The most common desorption kinetics for atomic or non-

associative molecular desorption are first-order processes. Without any other

interactions the position of the peak maximum in a first-order desorption curve

is coverage independent (see Figure 2.2 b), but it has been shown, that coverage

dependent lateral interactions can play a major role in desorption processes and

let ν0 and Edes, therefore, become coverage dependent as well [89–92]. These

interactions can be attractive or repulsive leading to peak shifts to lower or

higher temperatures for increasing coverages, respectively. Due to the similar-

ities in lineshape, attractive interactions often lead to so-called pseudo-zero-

order desorption and repulsive interactions to pseudo-second-order desorption.

Figure 2.2 (d) shows a common case where two “phases” or desorption sites

with different properties exist on the surface. The higher binding energy site

provides the broad peak at higher temperatures and the lower binding energy

site the sharp peak at 500 K. It is ν0 = 10−13 s−1, n = 1 as in Figure 2.2 (b),

but Edes is now coverage dependent with a decreasing desorption energy from

2.0 eV to 1.5 eV for a rise in coverage from 0 ML to 0.5 ML, respectively. For

coverages higher than 0.5 ML, Edes remains constant at 1.5 eV, as shown in

the inset. A possible scenario: Repulsive lateral interactions lead to a decrease

in binding to the surface with increasing coverage as the mean distance to

neighbouring molecules decreases and therefore the repulsive forces increase.

For coverages above the exemplarily chosen θ = 0.5 ML, the molecules are ad-
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2.1. Temperature-Programmed Desorption (TPD)

sorbed on less favourable sites with a coverage independent desorption energy

of 1.5 eV. The occurrence of such a second monolayer peak is often described

with the existence of a so-called “compressed phase” [93]. In many systems

ν0 and Edes vary together with coverage following more or less strictly the

so-called compensation effect where

ln ν0(θ) = Edes(θ)/RTi + const. (2.6)

with isokinetic temperature Ti [86] and ideal gas constant R. This effect can

occur due to experimental inaccuracies as surface inhomegeneities [94] and low

signal to noise ratios [95] but can also follow from thermodynamics. For non-

activated desorption Edes and ν0 are connected to the standard enthalpy and

standard entropy of desorption by

Edes = ∆H◦
des + RT (2.7)

and

ν0 ∝
kBT

h
exp (

∆S◦
des

R
), (2.8)

respectively. A compensation effect now occurs if H◦
des and ∆S◦

des are strongly

coverage dependent in a way that the resulting standard Gibb’s energy of des-

orption

∆G◦
des(θ) = ∆H◦

des(θ) − T∆S◦
des(θ) (2.9)

remains rather independent of coverage. This compensation in the sense

that a rise in enthalpy with coverage is balanced by a rise in entropy and a

decrease in enthalpy by a decrease in entropy was first observed for reactions in

solutions [96] where strong attractive interactions with solvent molecules lower

the enthalpy and by frustrating vibrational and rotational degrees of freedom

likewise the entropy. Transferred to desorption from surfaces, attractive lateral

interactions weaken the binding to the substrate and the decrease of ∆H◦
des

with higher coverages goes along with a decrease of ∆S◦
des due to restricted

diffusion and hindered vibrations [88].

There exist a couple of methods to evaluate TPD data and Niemantsver-

driet [48] performed a competitive test to check what the restrictions of each

method are. As shown above, a prediction that desorption energy and pre-

factor are coverage independent cannot simply be done for many systems, so
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2. Experimental Methods and Setup

that suitable methods have to take this into consideration. There are only

two methods providing this for a useful range of coverages, the so-called lead-

ing edge analysis by Habenschaden and Küppers [97] and the complete

analysis by King [49]. The crucial part of getting information about cover-

age dependence is to do the evaluation process for the individual Edes(θ1) and

ν0(θ1) data at a somehow constant coverage θ1. The first method provides this

by evaluating only a small part of the spectrum (the leading edge) where the

coverage can be considered as a constant within a reasonable error. But it

is obvious to lose information by evaluating only a fraction of the measured

data or vice versa it is absolutely necessary to have high-quality data with a

high signal-to-noise ratio to get reliable values from the leading edge analysis.

The latter method, developed by King, evaluates the complete spectrum and

the challenge of the constant coverage is achieved by regarding several spectra

with different initial coverages. However, also the complete analysis requires

good quality data otherwise the coverage dependence of Edes and ν0 cannot

be distinguished adequately and a so-called “forced” compensation effect can

occur [95].
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Figure 2.3.: TPD spectra (obtained by numerically solving eq. 2.3) (a) and evalua-

tion scheme (b) - ( d) to illustrate the complete analysis as in ref. [98].

(a) TPD spectra (as in Fig. 2.2 (d)), (b) corresponding integrated

spectra with the residual coverage at any given temperature θ(T ) on

the y-axis and intersections for coverages from 0.1 to 0.9 ML (dotted

lines), (c) Arrhenius-plots for “constant” coverages from 0.1 to 0.9 ML

from the intercept temperatures in (b) and the corresponding QMS-

intensities at these temperatures in (a), (d) resulting desorption ener-

gies Edes (red, left axis) and prefactors ν (black, right axis) depending

on coverage.

Figure 2.3 illustrates the particular evaluation steps. The measured series

of TPD spectra with different initial coverages (a) needs to be integrated in

the way that the y-axis corresponds to the remaining coverage on the surface

at the respective temperature (b). Now the intercepts for a chosen coverage

(dashed lines, e.g. θ1 = 0.1 ML) with the integrated TPD curves give the

temperatures where the respective TPD spectra possess the remaining cover-
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age θ1 and these temperatures now deliver the δθ/δTS values needed for the

Arrhenius plots in (c). According to eq. 2.5 the slope provides Edes(θ1), the

intercept with the y-axis ν0(θ1). Examined for a reasonable number of cover-

ages the coverage dependence of Edes and ν0 can be evaluated as shown in (d).

Another important aspect of TPD used in this work is the convenient way to

quantify adsorbate coverage by simply integrating a measured spectrum. This

approach is described in section 2.4.2.

2.2. High-Resolution Electron Energy-Loss

Spectroscopy (HREELS)

TPD leads to information such as coverage and binding energy that tells some-

thing about the general lateral adsorbate-adsorbate and vertical adsorbate-

substrate interactions. To get more information about the adsorbate mor-

phology, the view is now more focused on the molecular adsorption geometry

and electronic structure. Therefore high-resolution electron energy-loss spec-

troscopy (HREELS) is a versatile tool giving in one experiment information

about the orientation of molecules with respect to a planar surface via vibra-

tional spectroscopy and about the electronic properties by exciting electronic

transitions. There are well-written and detailed descriptions of HREELS in

textbooks [99] [63], reviews [74], theses [100], and in previous works using

the same experimental setup as used here [101], therefore only a brief intro-

duction and the inevitable information is given here. The surface sensitivity

of HREELS comes from the use of low-energy electrons with kinetic energies

from 3 to 100 eV which correspond to a penetration depth of a few monolay-

ers independent of the investigated substrate according to the universal curve

for the mean free paths of electrons [102]. There are several methods using

this surface sensitivity due to slow electrons. Diffraction-based techniques like

low-energy electron diffraction (LEED), but also spectroscopic techniques like

ultraviolet and X-ray photoemission spectroscopy (UPS, XPS), Auger electron

spectroscopy and electron energy-loss spectroscopy (EELS). To receive mea-

surable low-energy electrons from a sample UPS and XPS work with photons,

AES with photons or electrons, LEED and EELS with an accelerated and

focused electron beam. Whilst LEED evaluates the angular distribution of

elastically scattered electrons to get information about the periodicity of the

surface, EELS analyzes inelastically scattered electrons, which give hints to
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2.2. High-Resolution Electron Energy-Loss Spectroscopy (HREELS)

excitations at the surface. However, the angular distribution is also important

in the latter case as it tells something about the dominating scatter mechanism

and therefore about the local symmetry at the surface. EELS is connected to a

technique with high electron energies and only poor resolutions done not only

in reflection but also in transmission. Experimental improvements by Ibach

lead to better resolutions of up to 0.5 meV (high-resolution electron energy-loss

spectroscopy, HREELS) and therefore allowed to resolve vibrational spectra of

adsorbates [103]. Such an Ibach-type spectrometer was used in this work and

is shown in Figure 2.4 (a) as a photograph of the dismounted spectrometer

and in (b) as a schematic draw.

a b

cathode

sample

monochromator

channeltron

analyzer

Figure 2.4.: Picture (a) and corresponding schematic draw ((b), adapted from ref.

[101]) of the SPECS R⃝ Delta 0.5 high-resolution electron energy loss

spectrometer. For a detailed description of labeled parts, see text.

The low-energy electrons (trajectories, red curves) are emitted from a LaB

cathode, monochromatized and accelerated to the desired primary electron

energy by a series of lenses. After being scattered on the sample, the elec-

trons are detected energy- (by varying analyzer potentials) and angle-resolved

(by analyzer rotation) with a channeltron. HREELS can be divided roughly

into two regimes with different dominating excitations which require different

primary electron energies, vibrational and electronic HREELS. The transition

between the two is smooth but for the first, the chosen electron energy is

rarely above 5 eV and for the latter usually 15 eV or more. The main rea-

son for the low primary electron energy in the case of vibrational HREELS is

that a good resolution is necessary, and the resolution of the energy dispersive

127◦-monochromators and analyzer in the setup is proportional to the corre-

sponding pass energy of the electrons. With this, a resolution of 2 meV can

be achieved. A problem of low energies is, to keep the desired current (and

therefore intensity) of electrons constant, the number of electrons per volume
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has to increase with reduced electron velocity. This causes space charge ef-

fects leading to energy divergence and poorer achievable resolutions. So the

flux and measured intensity have to be reduced which makes high scattering

cross-sections necessary. That is the reason why the so-called dipole scattering

mechanism with its high cross-sections for small electron energies [104] is so

important. With higher electron energies of several ten eVs, the resolution

decreases to above 10 meV which is not problematic as electronic excitations

in this energy region itself have widths of several hundred eVs due to their

high energy and corresponding short lifetime. A general expression for the

scattering cross section which takes all interactions into account does not exist

due to the high complexity of the scattering mechanism [105]. So these inter-

actions are divided into several classes. For vibrational measurements three

scattering mechanisms are important, the above-mentioned dipole scattering,

impact scattering, and the formation of negative ion resonance. The latter

involves short living [106] negative ions by attached electrons which decay un-

der the emission of an electron with a characteristic kinetic energy. These

resonances are dependent on the primary electron energy and two primary

electron energy-resolved measurements showed no signs for such resonances,

thus a more detailed description is omitted. Impact scattering describes the

scattering of electrons at local potentials with ranges in the order of atomic

scales. The range allows conclusions on the momentum transfer parallel to

the surface q||. In the kinematic theory of electron diffraction [107] the Fourier

transformed scattering potentials at the surface are important parameters of

the scattering cross-section. For the Fourier expression of small range poten-

tials large expansion coefficients with large q|| values are necessary, hence the

scattering cross-section shows a high isotropy.
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Figure 2.5.: Illustration of dipole scattering and the surface selection rule. The

monochromatized electrons e− (k⃗i, Ei) leave the monochromator (up-

per left) approach the sample under an angle of incidence Φi and are

reflected due to long-range Coulomb interactions in specular direction

Φs = Φi (k⃗s, Es = Ei elastic scattering, Es ̸= Ei inelastic scattering).

These electrons can be measured energy and angle-resolved (to iden-

tify dipole scattered electrons) by the analyzer (upper right). Between

the incident electrons and their corresponding image charge e+ in the

metal an electric field E⃗ is formed (left). This electric field can couple

to dynamic dipole moments µ of vibrations in adsorbed molecules (cen-

tre). These dipole moments are enhanced due to image charge effects if

they have a significant contribution perpendicular to the surface (left,

upstanding molecule) and are diminished if they are orientated mainly

parallel to the surface (right molecule). This coupling only to vibra-

tions with a dynamic dipole moment normal to the surface is called

surface selection rule and leads to a huge increase in the intensity of

such modes. Detailed description, see text.

In contrast, dipole scattering is based on the coupling of long-range dipole

fields of excitations located at or near the surface with the electric field of

the incident electron. Dipole scattering shows characteristically large scatter-

ing cross sections within small angles around specular direction (Φi = Φs in

Fig. 2.5). Due to these long-range interactions the Fourier expression can be

discontinued after small momenta q|| so that large transferred momenta are

negligible. Figure 2.5 depicts the involved processes. Cathode and monochro-
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mator are shown in the upper left. As the incident electron e−, with wave

vector k⃗i and kinetic energy Ei, approaches the surface an electric field E⃗ be-

tween the electron and its image charge e+ in the metal is established. This

long-range dipole field can now couple to likewise long-range dipole fields con-

nected to adsorbate vibrations with a dynamic dipole moment µ. The reflected

electron (k⃗s, Es) is detected under an angle Φs. Figure 2.5 also shows schemat-

ically the surface selection rule for HREELS. Two exemplary vibrations are

shown, one with a dynamic dipole moment oriented parallel to the surface,

one oriented perpendicular, i.e. parallel to the surface normal in z-direction.

These z-parts of dynamic dipole moments are increased due to image dipole

effects (µ′) whereas the parts parallel to the surface are diminished. Excitation

of vibrations with dynamic dipole moments perpendicular to the surface after

the diploe scattering mechanism leads to a huge increase in intensity at the

corresponding energy loss in the spectrum. In effect, dipole scattered electrons

can only be detected under small angles around specular direction and can,

therefore, be discriminated from impact scattered ones by measuring under

different analyzer angles.

Angular-resolved measurements in the electronic regime offer the opportu-

nity to measure dispersions, according to eq. 2.10.

q|| = ki,|| − ks,|| =
1

h̄

(√
2meEi sinΦi −

√
2me(Ei − Es) sinΦs

)
(2.10)

Here q|| is the parallel component of the difference q of the wave vectors ki

(incident electron) and ks (scattered electron). me is the electron mass, Ei

and Es the kinetic energies of the incident and scattered electron, respectively

(∆E = Ei − Es = h̄ω is the measured electron energy-loss). Φi and Φs are

the angles of the incident and scattered electron, respectively, with respect to

the surface normal. The plot of an energy loss over the transferred parallel

momentum is called dispersion curve and gives information about the locali-

sation parallel to the surface of the excited electrons. Within this notation,

energy-loss processes with positive ∆Φ (electrons scattered towards the surface

normal) lead to positive q|| values.
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2.3. Density Functional Theory (DFT)

The following section gives only a brief introduction to density functional the-

ory (DFT) as detailed descriptions can be found in literature [108]. Today,

DFT is a well established versatile tool in chemistry and as such it is used in

this work. To receive the described information from the vibrations detected in

HREELS measurements it is necessary to know something about the nature of

these adsorbate vibrations, i.e. they need to be assigned. This can be roughly

done with textbook tables but it is much more constructive to know exactly

what the observed vibration looks like and, more important, what the orienta-

tion of its dynamic dipole moment is. DFT offers easy access to data like this

and as only pure organic (C, N, O, and H atoms) molecules are part of this

thesis well established standard functionals and basis sets lead to satisfactory

results. However, only gas-phase single molecule data is used as calculations on

surfaces are a still a challenging problem in theoretical chemistry. A short his-

tory of quantum chemistry shall enable to understand and rank the obtained

results and to define the scope of DFT in comparison to other theoretical

chemical methods. In contrast to force-field methods (“molecular mechanics”)

DFT is based on quantum mechanics. But compared to ab-initio methods like

Hartree-Fock (HF) or configuration interaction (CI) it consumes much less

computing capacity for similar accuracy. The most important disadvantages

of DFT are the inability to improve results systematically and the complexity

of depicting crucial properties like van-der-Waals interactions. DFT is based

on the assumption by Hohenberg and Kohn [109], that the ground-state

energy E of a system is explicitly defined by its electron density ρ which itself

depends only on the three space coordinates x, y, and z, where the maxima

of E(ρ) reflect the positions of the nuclei, the respective height the atomic

number and the integral reflects the number of electrons in the system. So

E(ρ) = E(x, y, z) depends on three variables independent of the number of

electrons N involved. Compared to this, wave function based approaches have

the three space coordinates plus a spin coordinate for each electron and there-

fore need 4N variables to describe a given system of N electrons. The problem

of DFT is, that there is no established functional for the dependence of E on

ρ(x, y, z), there are only approximations. The functional can be separated as

E(ρ) = T (ρ) + Ene(ρ) + J(ρ) (2.11)
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with the kinetic energy of the electrons T , the attractive electron-nuclear

interaction Ene, and the problematic electron-electron interaction described

by a Coulomb-term J . The nuclear-nuclear interactions are assumed to be

constant within the Born-Oppenheimer approximation [110]. Thomas [111]

and Fermi [112] and later on Bloch [113] and Dirac [114] obtained first

results with this “orbital-free” approach but the accuracy of the results was

insufficient mainly due to the lack of knowledge of an appropriate functional

for the kinetic energy of the electrons. This problem was solved by the rein-

troduction of orbitals in the form of one-electron Schrödinger equations which

increased the number of variables from 3 to 3N wherefore the breakthrough of

DFT needed the extreme increase in computing capacity over the last decades.

The one-electron wavefunctions or Kohn-Sham equations [115] have the form

(−1

2
∇2 + υeff (r⃗) − ϵj)ϕi(r⃗) = 0 (2.12)

with energy ϵj, Kohn-Sham function ϕi, and the effective potential υeff :

υeff (r⃗) = υ(r⃗) +

∫
n(r⃗′)

|r⃗ − r⃗′|
d3r′ + υXC(r⃗) (2.13)

with the external (electron-nuclear) potential υ(r⃗), electron density n, and

the exchange-correlation potential υXC . With this formalism, all difficulties

occurring in calculations for many-particle systems are concentrated in this

exchange-correlation potential named after its consistency of an exchange term

due to interacting electrons and a correlation term due to derivations from 0

and 1 of occupancy parameters in HF. There exist several approaches, func-

tionals, to find the exchange-correlation potential which can be divided into

three groups: (a) local density approximation (LDA), where υXC is assumed

to be dependent on n which is a good solution for relatively homogenous sys-

tems like the conduction band electrons of a metal; (b) generalized gradient

approximation (GGA), where υXC is also dependent on the derivative n′; and

(c) hybrid methods with one DFT-derived part of υXC and one HF derived

part. The latter is well established for molecules and offer a higher accuracy

than simple DFT functionals. The most common hybrid functional which is

also used in this thesis is B3LYP [116] with contributions of Becke [117],

Lee, Yang, and Parr [118].

As important as choosing the right functional is the use of the right set of

basis functions, called basis set, for the one-electron wavefunctions. Usually, a
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2.3. Density Functional Theory (DFT)

linear combination of several Gaussian-type orbitals (GTO) is used to appro-

priately describe an atomic (Slater-type) orbital. The number of GTOs used to

describe an orbital determines the accuracy but also the computational “costs”

of a calculation. For core electrons, a high number of GTOs is necessary to

get reliable energy values for the molecule as these electrons contribute most

of the energy. The minimal basis set is the one with sufficient orbitals to in-

clude all electrons. To describe chemical bonds a larger basis set is necessary

like one with the doubled (Double Zeta), or tripled (Triple Zeta) number of

orbitals. In most cases, not all basis functions are doubled as only the valence

electrons take part in chemical bonding. An important set of such so-called

split-valence basis sets was established by Pople [119]. Here it is taken into

account, that core electrons need a basis function described by many GTOs

to obtain the correct energy and valence electrons need more basis functions

with different exponents to form new molecular orbitals by a combination. For

example, the 6-311G basis set contains 1 basis function described by 6 GTOs

for the core electrons and has 3 basis functions described by 3, 1, and 1 GTOs

for each valence orbital. This means, a second-row element is described by

one 1s-type basis function (6 GTOs), three 2s-type basis functions (3 + 1 +

1 GTOs), nine 2p-type basis functions ( 3 × 3 + 3 × 1 + 3 × 1 GTOs) or

13 basis functions (26 GTOs) in total. Another common way to improve the

accuracy is to add additional polarization and diffuse functions. Polarization

functions are higher angular momentum (p, d, f, g) functions to polarize the

corresponding lower angular momentum functions and are labelled by a * (5

d-type functions for non-hydrogen atoms) or ** (5 d-type for non-hydrogen, 3

p-type for hydrogen. Diffuse functions are needed for the calculation of anions

or excited states when loosely bound electrons are present. They consist of s-

and p-functions for non-hydrogen atoms (labeled +) or additional s-functions

for hydrogen (++).

All calculations have been performed with the Gaussian09 R⃝ program pack-

age [120] and vibrations are visualized with the Facio 19.1.4 [121] program. An

exemplary Gaussian09 R⃝ input file and all calculated structures in Cartesian

coordinates can be found in Appendix C and J, respectively.
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2.4. Experimental Setup

As mentioned above the used setup was not altered significantly wherefore only

the basics are introduced and for a more detailed description, previous theses

are referenced [101, 122]. Also included in this section is a brief discussion

of the used substrates, especially the Au(111) single crystal, and the sample

preparation with sputtering, annealing, dosing and coverage determination.

2.4.1. Ultra-high Vacuum System

For the detection of low-energy electrons it is mandatory to work under ultra-

high vacuum (UHV) conditions (≈ 10−10 mbar), but also for the work with

well-defined surfaces, it is of great value to have residual gas pressures as low

as possible. Corresponding to

F = p/
√

2πkBT (2.14)

with the molecular flux towards the surface F , chamber pressure p, and the

mass of the residual gas m [87], a monolayer coverage (under the assumption

of a sticking coefficient of 1) is reached after 3 hours (typical HREELS mea-

surement time) at a pressure of 10−10 mbar. To achieve such low pressures

the chamber is pumped in three stages. A 520 L s−1 turbo-molecular pump

is backed by a 60 L s−1 turbo-molecular pump which itself is backed by a

membrane pump to provide pre-vacuum. The UHV system is subdivided into

a (upper) preparation chamber (Figure 2.6 (a) top; (b) 13) and a (subjacent)

spectrometer chamber (Fig. 2.6 (a) bottom; (b) 14). The latter is individu-

ally pumped by an ion getter pump and can be separated from the first with a

gate valve and stay under UHV conditions for months without being externally

pumped. With this system, base pressures around 10−11 mbar are achievable.

The preparation chamber is equipped with a sputter gun for surface cleaning,

a doser for evaporative adsorbate deposition, a quadrupole mass spectrometer

(QMS) for dosing supervision or TPD measurements, and an IR-lamp for small

over-night bake-outs if necessary. The doser system was changed from a home-

built effusion cell to a commercial one with three quartz crucibles which can be

individually heated (and cooled) during this work. The doser can be separated

from the preparation chamber with a gate valve and is individually pumped

with a turbo-molecular and a membrane pump. Both the doser and the QMS

can be shifted in linear position (z-shift) which gives additional flexibility in
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adjusting dosing parameters and QMS detection limits. Located below the

QMS there is a transfer rod to easily exchange samples without breaking the

vacuum. The spectrometer chamber contains the Delta 0.5 HREEL spectrom-

eter and the possibility for illuminating the sample during measurements (not

used in this thesis). Figure 2.6 (b) shows an external picture of the setup with

sample heater power supply (1), LakeShore-340 temperature control unit (2),

pumping control units (3), QMS control unit (4), sputter gun power supply (5),

doser power supply and temperature control (6), channeltron power supply (7),

HREELS power supply (8), liquid nitrogen cryostat (9), x-y-z-β-manipulator

(10), sputter gun (11), QMS (12), dosing system (13), HREEL spectrometer

(14), spectrometer angle-control (15), transfer rod (16), and doser cooling unit

(17).
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Figure 2.6.: (a) Ultrahigh vacuum system consisting of a preparation chamber (up-

per scheme) for single-crystal preparation (sputter gun) and adsorbate

evaporation (Knudsen cell doser) or characterization (QMS). A transfer

rod to exchange samples without breaking the vacuum is located under-

neath the QMS (not shown). The individually pumped spectrometer

chamber is located below the preparation chamber and can be isolated

from the latter with a gate valve. It contains the Delta 0.5 HREEL

spectrometer. Adapted from ref. [101]. (b) Picture of the experimental

setup, numbered parts described in the text. (c) Sample holder. (d)

Arduino R⃝ controlled angle alteration.
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Figure 2.6 (c) shows the molybdenum sample holder with an Au(111) sam-

ple fixed by two tantalum wires. These wires also feature the possibility to

resistively heat the sample. Together with the thermal connection to a liquid

nitrogen cooled crystal and a thermocouple connected directly to the sam-

ple precise temperature control from 100 to 900 K is possible. An additional

setup adjustment is shown in Figure 2.6(d), (1) is the linear shifting to adjust

the HREELS’ analyzer angle. To provide automized angle-resolved HREEL

measurements a conversion unit (3) was connected to the shifting stage and

powered by a stepper motor (4) which is controlled by an Arduino R⃝ single-

board microcontroller (exemplary program code in Appendix I.1). Together

with the spectrometer software’s ability to automatically measure up to 999

succeeding spectra, it offers the possibility to measure small angle steps. The

maximum parameters during this thesis were a 40 h measurement in 61 steps

from -6.9◦ to +6.9◦ off-specular angle. Related to the Delta 0.5 HREEL spec-

trometer it needs to be mentioned that in some measurements there occurs

a previously reported artefact apparently specific for this type of spectrome-

ter [123]. Its energetic position depends on the settings of distinct lenses in

the analyzer part of the spectrometer. See, e.g., Figures 4.7 (a) (at 2000 cm−1)

and 4.9 (top, between 1 and 2 eV) in chapter 4 where the artefact appears at

different positions due to different primary electron energies.

2.4.2. Au(111) Surface and Sample Preparation

In this section, a short overview of the investigated metal surfaces and their

preparation is given. Except for two benzene investigations on Cu(111) and

Ag(111) this was an Au(111) sample, wherefore the focus lies on the latter.

Figure 2.7 (a) shows a face-centered cubic (fcc) unit cell and the 111 plane

(golden spheres). A gold (or copper, or silver) single crystal cut along this 111

plane delivers the used Au(111) surface. Figure 2.7 (b) shows an STM image

of the energetically more stable 22 ×
√

3-“herringbone”-reconstruction with

alternating hcp (hexagonal closest packing) and fcc areas ((c): schematic draw

of the yellow area in (b)). Figure 2.7 (d) shows a calculated top-view of the

blue-shaded area in (c) with first-layer Au-atoms (red) and second-layer atoms

(yellow). The first layer atoms alter between hcp (between three second-layer

atoms) and fcc (between two second-layer atoms) positions.

The Au(111) surface is a suitable substrate as it shows small reactivity

towards adsorbates which provides the possibility to study well-defined intact
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Figure 2.7.: (a) Face-centered cubic (fcc) unit cell, (b) STM image, adapted from

ref. [124], (c) herringbone scheme adapted from ref. [125], (d) calculated

positions adapted from ref. [126]

molecular layers, furthermore it is stable so that after a cleaning cycle simple

heating restores the herringbone reconstruction, and last but not least, gold is

a common electrode material in micro electronics and therefore the study of

Au/semiconductor interfaces is of great interest. The standard [127] (daily)

cleaning procedure (for all three used substrates) consists of 15 min sputtering

with 10−6 mbar Ar+ at 1 keV kinetic energy succeeded by 20 min annealing

at 750 K. After exchanging the substrate, ten or more of such cycles have

to be performed consecutively until the sample shows no more impurities in

HREELS. The so cleaned samples are ready to be covered with adsorbate films.

For this three different dosing systems were used in this work. The two above

mentioned heatable solid evaporators and an additional liquid doser connected

to the preparation chamber via the same gate valve as the other dosers and

consisting of a leak valve with a connected UHV-flask allowing freeze-pump-

cycles to degas the liquids.

Figure 2.8 (a) shows the residual gas QMS intensities of suitable m/z dur-

ing dosing benzene with the liquid doser (black) and F4TCNQ with the solid

doser (red, timescale × 0.2). As can be seen from the curvy red spectrum,

the leak valve of the liquid doser allows a better dosing control (straight black

spectrum) than the heating of the solid doser does. The sharp rises (and falls)
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Figure 2.8.: (a) Exemplary background pressure mass spectra measured during dos-

ing of a liquid (benzene, black) and a solid (F4TCNQ, red, timescale ×
0.2). Characteristic masses are observed with the QMS. The sharp rises

(and falls) in intensity correspond to opening (closing) the gate valve

between the preparation chamber and the doser. (b) Corresponding

TPD spectra on Au(111) show a sub-monolayer of benzene (black) and

2.2 ML of F4TCNQ (red).

correspond to the opening (and closing) of the gate valve between doser and

preparation chamber. The QMS monitored dosing offers a good opportunity

to obtain a desired coverage. The precise coverage determination follows after

other potential measurements (like HREELS) and is pictured for the previous

dosings in Figure 2.8 (b). The black and red spectra are the TPD spectra of

benzene and F4TCNQ, respectively, received after the dosings shown in (a).

Benzene shows a sub-monolayer coverage whereas for F4TCNQ a clear multi-

layer desorption peak is visible. This separated mono- (370 K) and multilayer

(310 K) desorption peaks allow on the one hand a precise coverage determi-

nation by simply integrating the QMS intensity and normalizing this integral

with the monolayer peak area, and on the other precise and reproducible prepa-

ration of monolayer samples by heating (and therefore multilayer desorbing)

the sample to (in this case) 340 K. However, the monolayer preparation is only

possible when the two peaks are fairly separated and the coverage determina-

tion requires a non-degradative desorption of the monolayer. As the dosing

parameters vary slightly from measurement to measurement general informa-

tion is difficult. Hence, the dosing parameters for all measured samples in this

thesis are summarized in Appendix B.
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3. Binding of Aromatic Molecules on

Coinage Metal Surfaces

Due to their small band gaps, aromatic molecules are appropriate candidates

as semiconducting materials in organic electronic devices [52]. The behavior

of corresponding devices like transistors, OLEDs, or photovoltaic cells often

depends strongly on properties of the metal/organic interface as they appear

at the boundary between an electrode and the semiconducting material [34].

To get the ability to modify such interfaces in a way that desired properties are

achieved demands a deeper quantitative understanding of the molecule/surface

system. The work in this chapter is part of a DFT supported multi-technique

approach to get this quantitative understanding by comparing several theoret-

ical modelling methods due to their reproduction of precisely experimentally

determined characteristics. The most basic class of aromatic molecules are

the acenes (see Figure 3.1 (a)). Starting from benzene they are achieved by

adding subsequently benzene rings in a linear way: two rings, naphthalene,

three rings, anthracene, four rings, tetracene, and five rings, pentacene. Due

to the enlargement of the aromatic system, the HOMO-LUMO gap decreases

from roughly 6 eV for benzene to 2 eV for pentacene [128] and thus the higher

acenes are suitable organic semiconductors [52].

a b
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W
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benzene (Bz) naphthalene anthracene

tetracene pentacene (Pn)

Figure 3.1.: (a) Structural formulas of the investigated acenes. (b) Schematic draw

of XSW-measurements to determine the distance d between the first

adsorbate layer and the surface.

One essential characteristic of such a metal/organic interface is the distance
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between the molecular plane of the adsorbed molecules in the monolayer and

the uppermost layer of metal atoms. Such distance can be obtained by nor-

mal incidence X-ray standing wave (XSW) measurements as it is depicted in

Figure 3.1 (b) schematically for the Bz/Ag(111) system. Thereby a stand-

ing X-ray wave is produced by the superposition of the incoming with the

reflected beam under Bragg-conditions leads to a standing wave in front of the

surface [129, 130]. The so created distance dependent X-ray intensity allows

precise, element-specific measurements of adsorption heights. Measurements at

the Bz/Ag(111) interface revealed with unprecedented accuracy a value of 3.04

± 0.02 Å [131]. A second important property of the molecule/metal system

is the binding energy between the two. Most exact as possible experimental

values for these properties allow the development of new and improvement of

existing quantum chemical methods which then allow the precise simulation of

simple aromatic molecules on metal surfaces [132–135]. As described in section

2.1 such energy values can be obtained from TPD spectra with different initial

coverages. In section 3.2 the influence of the underlying metal is investigated

by comparing the binding energy of Bz adsorbed on the coinage metal sur-

faces, namely Au(111), Ag(111), and Cu(111). To study the influence of the

size of the aromatic system on this fundamental property, section 3.4 shows

the results and their discussion for the acenes on Au(111).

3.1. Background: The Metal/Organic Interface

For a better understanding of the obtained results, it is useful to give a brief in-

troduction into the physical properties of metal/organic interfaces. The focus

will lie on vertical adsorbate-substrate and lateral adsorbate-adsorbate inter-

actions. As all parts of this thesis treat metal/organic interfaces it is a useful

introduction not only for this chapter.

3.1.1. Adsorbate-Substrate Interactions

Interfaces often show properties, the single components do not [33, 44]. At

metal/organic interfaces both the metal states which are located close to the

surface (sp-, and d -bands, surface state) and the frontier orbitals of the ad-

sorbed molecules are affected. As aromatic systems like the ones investigated

in this work often have relatively small HOMO-LUMO gaps, the metal/organic

junction can be described adequately with well-established metal/semiconductor
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models. Depending on the interactions between metal and semiconductor sev-

eral scenarios can occur. At such an interface, the Fermi levels, or in the case of

molecules the charge neutrality level (CNL), of the two materials must match

and therefore states are induced in the semiconductor’s band gap. This often

goes along with an interfacial charge-transfer as charge flows from the material

with the higher Fermi level to the other. The arising space charge region often

expands only a few atomic diameters into the metal but several nanometers

into the semiconductor, as the free carrier concentration and therefore screen-

ing is by orders of magnitude lower in the latter [104]. The charge accumulation

is dependent on the distance to the interface. This so-called band bending is

shown in Figure 3.2 (a) to (d) for four different exemplary cases. Figure 3.2 (a)

depicts the situation at the interface of a low work function (Φ, see Fig. 3.2 (a))

metal and an n-type semiconductor. When the two materials are connected,

charge flows from the metal to the semiconductor and forms an accumulation

region. Figure 3.2 (b) shows the respective case with a p-type semiconductor.

Figure 3.2 (c) and (d) describe the situation for a high work function metal.

Here, an electron injection barrier (also Schottky-barrier, ΦSB, Fig. 3.2 (c))

or hole injection barrier (Fig. 3.2 (d)) arise, which hinder an ohmic contact.

The energy level alignment can be separated into two model-like regimes. The

vacuum level alignment if the work function stays constant during adsorption

and the Fermi level alignment where some point of the band gap is pinned to

the Fermi level.

51



3. Binding of Aromatic Molecules on Coinage Metal Surfaces

E
EV

EF

metal
n-type
s. c.

ELUMO

EHOMO

E
EV

EF

metal
p-type
s. c.

ELUMO

EHOMO

E
EV

EF

metal
n-type
s. c.

ELUMO

EHOMO

E
EV

EF

metal
p-type
s. c.

ELUMO

EHOMO

Φ

ΦSB

a b c d

e

unocc. metal
bands

occ. metal
bands

LUMO

HOMOHOMO

metal hybrid state molecule

E
n
e
rg

y

Figure 3.2.: (a) - (d) Schematic band diagrams of metal-semiconductor (s. c.) in-

terfaces with energy E, vacuum energy EV , Fermi energy EF , LUMO

energy ELUMO (or conduction band), HOMO energy EHOMO (or va-

lence band), Schottky-barrier height ΦSB , and metal work function Φ.

(a) and (b) show low work function metals with n- and p-type semi-

conductors, respectively. (c) and (d) high work function metals with

n- and p-type semiconductors, respectively. (a) – (d) adapted from

ref. [104]. (e) Simplified picture of the orbitals/bands involved in the

hybridization of a metal substrate and an adsorbed molecule.

But it is, of course, a simplification if small organic molecules with localized

orbitals are assumed as an infinite system with bands. Figure 3.2 (e) depicts

the metal/organic interface from the molecular point of view. Occupied and

unoccupied metal bands (left) mix here with the molecule’s frontier orbitals

(right) to form new hybrid orbitals (centre). In the case of weak interactions

these new orbitals would be hard to differ from the single components’ ones but

for stronger interactions, depending on the localization more at the metal or

more at the adsorbate these hybrid orbitals can go along with a (partial) charge

transfer and an alteration of properties like the HOMO-LUMO gap [136–138].

Models, where only an integer charge transfer is possible should be handled

with care as hybridization is the more flexible model and integer charge transfer

is only one limiting case.
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3.1.2. Adsorbate-Adsorbate Interactions

In the current chapter, both the influence of the substrate and the influence of

intermolecular interactions shall be investigated by comparing Bz adsorption

on different coinage metal surfaces and by comparing different acenes on the

Au(111) surface, respectively. For the Bz adsorption, the metal/substrate in-

teractions as introduced in the last section are relevant. For the acene study

also intermolecular lateral and substrate-mediated interactions are important.

The adsorption behavior and especially the adsorbate superstructures depend

strongly on the balance between van-der-Waals- (vdW), Pauli-, Coulomb-

(dipole-dipole), and the mentioned substrate-mediated interactions [139,140].
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Figure 3.3.: (a) Structural formula of PTCDA. (b) left, STM image of a sub mono-

layer coverage of PTCDA on Au(111), scale bar 10 nm, adapted from

ref. [141]. (b) right, schematic molecular orientation, adapted from

ref. [142]. (c) left, monolayer PTCDA on Au(111) STM image, scale

bar 10 nm, adapted from ref. [142]. (c) right, STM image visualizing

the hydrogen bonds which cause the attractive lateral interactions, scale

bar 1 nm, adapted from ref. [143]. (d) Structural formula of pentacene.

(e) and (f) left, 0.5 ML and 1 ML pentacene on Au(111) STM images,

respectively. Scale bars 1 nm, right, modelled adsorption geometries.

(e) and (f) adapted from ref. [144].

Figure 3.3 shows two exemplary cases. On the left, perylenetetracarboxylic

dianhydride, PTCDA, (Fig. 3.3 (a)), a well-established organic semiconduc-
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tor [44, 145]. In the sub-monolayer regime, large islands are formed with a

herringbone-like structure (Fig. 3.3 (b)) due to attractive lateral interactions.

Figure 3.3 (c) shows the complete monolayer coverage with a close-up of a

scanning-tunnelling microscopy (STM) image with an improved resolution due

to an H-functionalized tip. Attractive hydrogen-bonds between C-H groups

and O atoms are depicted with dashed lines. So here the attractive interac-

tions predominate and lead to a coagulative self-assembly. On the right-hand

side, (d) to (f), the corresponding situation for pentacene is shown. And here

we see a separation of the individual molecules by several Ångströms in the

sub-monolayer (Fig. 3.3 (e)). Actually, there are several phases observable in

the sub- to monolayer regime, but they can be divided into two groups with

different molecular densities. Figure 3.3 (e) represents the low-density phase

with roughly 4 × 1013 molecules cm−2, (f) represents the high-density phase

with 1 × 1014 molecules cm−2 [144]. Hence, up to a coverage of about 0.4

to 0.5 ML, the molecular self-assembly leads to space between the molecules.

The resulting space is filled up with increasing coverage. Thus, for pentacene

the overall intermolecular forces are repulsive. A similar behavior is also ob-

served for tetrathiafulvalene (TTF) on Au(111) [146] where it is attributed

to a charge-transfer and clear chemisorption. But compared to TTF, pen-

tacene contains no sulfur atoms, which lead to the strong adsorbate-substrate

interactions in the TTF/Au(111) system. The reason for the strong repulsive

forces in the pentacene/Au(111) system lies in the substrate-mediated interac-

tions. They occur due to the perturbation of surface-related electronic states

of the perfectly clean and flat substrate by adsorbates (or step edges and point

defects). These substrate-mediated interactions control the superstructure of

self-assembled adsorbates as they transmit a lateral adsorbate to adsorbate

interaction via the substrate. Han et al. [140] define two types of substrate-

mediated interactions due to different perturbation mechanisms. The first

type is based on chemisorption and shows a short interaction range of 1.5 - 3

Å (comparable to chemical bonds) and a strong interaction potential of 0.5 - 10

eV. The second is based on the electron scattering properties of the adsorbate

(e.g. for surface state electrons, see scattering pattern in Fig. 3.4 (b)) and is

more long-range (up to 10 Å) but weaker (0.001 - 0.1 eV).
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a b

Figure 3.4.: (a) Topographic STM image (460 Å width, VS =

−200 mV, It = 500 pA, 4 K) of atomically flat

Cu(111) with a monoatomic step-edge (diagonal

line), and single-atom defects (dark spots). (b)

dI/dV map of (a) showing standing waves prop-

agating from the step edge and being scattered at

defect sites. Adapted from ref. [147].

Figure 3.4 (a) shows a topographic STM image of a clean Cu(111) surface

with a step-edge and some point-defects. Fig. 3.4 (b) shows the corresponding

dI/dV -map with an increased contrast of the electronic features due to the

mapping of electronic states at the bias determined energy level. The periodic

structures are interference patterns of the surface state electrons scattered at

defect sites. These so-called Friedel oscillations [148] were first observed by

Crommie et al. on Cu(111) [149] and by Hasegawa et al. on Au(111) [150].

The image shows clearly how particular perturbations influence the electronic

structure at the surface by electron scattering even for relatively long distances.

Going back to the pentacene/Au(111) sub-monolayer films, these electronic

substrate-mediated interactions can now serve as an adequate explanation for

the observed patterning. In the end, the perturbation of the surface’s elec-

tronic structure due to these long-range interactions is observed as strong

lateral repulsive interactions. To summarize, the self-assembling properties

of adsorbates at interfaces rely on a subtle balance between attractive vdW

interactions or hydrogen bonds and repulsive Pauli or surface-mediated inter-

actions. The distinct strength of each component determines to a great extent

the first adsorbate layer’s structure.

3.2. Benzene on Coinage Metals

Although the adsorption properties of benzene (Bz) on the coinage metal

surfaces Au(111), Ag(111), and Cu(111) have already been studied exten-

sively [139,151–156], the experimentally determined values for the binding en-
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3. Binding of Aromatic Molecules on Coinage Metal Surfaces

ergy remain surprisingly uncertain and cover a range from 0.43 eV up to 0.84

eV for low coverages. This uncertainty makes them useless for the improve-

ment of the quantitative understanding of such interfaces as it is needed for

the further development of quantum chemical methods. The origin of the wide

range is due to the uncertainties in the methods used to determine the binding

energy. Many groups only use the temperature of the maximum desorption

rate at a given coverage and under the assumption of a pre-factor (Redhead

method [85]). But as the present coverage and the chosen pre-factor differ

from one experiment to the other also the determined values for the binding

energy differ. With the use of the complete analysis as explained in detail in

section 2.1 the binding energy, as well as the pre-factor, can be determined

coverage dependent without any further assumptions. By extrapolating to

zero coverage a benchmark for the use in calculations can be obtained [131].

Figure 2.3 in section 2.1 illustrated the complete analysis with calculated data

obtained by solving numerically the Polanyi-Wigner equation (eq. 2.3) with

arbitrary parameters. Figure 3.5 now uses the same scheme but experimental

data obtained for Bz on Au(111). The evaluation and its specific problems are

explained for the Bz/Au(111) system in detail whereas for Bz/Ag(111), and

Bz/Cu(111) only the results are presented. Figure 3.5 shows TPD spectra of

initial Bz coverages from 0.03 monolayers (ML) up to 1.3 ML on the Au(111)

surface. The preparation conditions can be found in App. B. Three peaks can

be identified labeled as α1, α2, and α3. The peak at the highest temperature

(α3), is assigned to desorption from the monolayer and the highest coverage

spectrum not showing the α2-shoulder is defined as 1 ML coverage (labelled in

Fig. 3.5). It shifts from 235 K at a coverage of 0.03 ML by 45 K to 190 K for

a full monolayer coverage. This shift indicates lateral repulsive interactions as

described in section 2.1. Peak α2 arises as a shoulder at the left side of α3 and

is attributed to a compressed phase as reported for other organic molecules

on noble metal surfaces [157–159] including Bz on Ag(111) [139]. The inte-

grated coverage of α2 exceeds not more than 0.1 ML. α3 represents multilayer

desorption showing clear zero-order desorption behavior. This monolayer def-

inition from the TPD spectrum is important and corresponds to the idea of a

monolayer as a complete layer of molecules with a direct metal contact where

no additional molecules can be adsorbed at positions with equal or higher

substrate-adsorbate interaction. This definition is also widely used in TPD-

and STM-based publications [139, 153]. Other definitions of a monolayer re-
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3.2. Benzene on Coinage Metals

ferring to the relation of adsorbed molecules to substrate atoms [160] are not

useful here. Shall results based on different definitions be compared, a con-

version is necessary. From STM measurements [153] a conversion factor for

Bz on Au(111) of 1 ML (TPD/STM definition) equals 0.18 ML (Bz molecules

per surface atom) can be obtained. For Ag(111) such value should be similar

due to the comparable surface atom density, for Cu(111) it should be signif-

icantly smaller due to the smaller Cu-radius [161] and hence higher surface

atom density.
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Figure 3.5.: Detailed description of the complete analysis evaluation for Bz on

Au(111) analogue to Figure 2.3. (a) the measured TPD spectra, (b)

the integrated spectra, (c) four exemplary Arrhenius plots, and (c) the

resulting EB and lgν vs. coverage relation.

According to section 2.1 the TPD spectra need to be integrated in the way

that they show the actual coverage on the surface at a given temperature (see

Fig. 3.5 (b)). Horizontal lines in this graph stand for a constant chosen cover-
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3. Binding of Aromatic Molecules on Coinage Metal Surfaces

age and the intersections with the curves lead to temperature values at which

each spectrum in Fig. 3.5 (a) has this coverage. With these T -values Fig. 3.5

(a) delivers the corresponding desorption rates and the resulting value pairs

lead to the Arrhenius plots shown in Fig. 3.5 (c). The intercept with the

y-axis (infinite temperature) and the slope lead to the coverage dependence

of the pre-factor (red) and the desorption energy Edes (black) in Fig. 3.5 (d),

respectively. Extrapolation to a coverage of θi = 0 ML leads to Edes(0 ML)

= 0.68± 0.03 eV and ν(0 ML) =1013.9±0.3 s−1. The slope of linear fits between

0 and 0.5 ML are −0.48± 0.04 eV/ML for the desorption energy (see Fig. 3.6

(b)) and -8.08 ±1.36 1/ML for the log of the pre-factor. This coverage de-

pendency of the binding energy is the quantification of the before mentioned

peak shifting to lower temperatures with higher initial coverages. It means

in a descriptive way that the binding between an adsorbing molecule and the

substrate weakens rapidly with an increasing number of already present neigh-

boring molecules, which indicates strong repulsive interactions [162–164]. In

literature, there exists one coverage dependent TPD study for the Bz/Au(111)

system which delivers comparable data, with the exception, that no compressed

phase is observed [165]. However, this data was not evaluated in detail and the

desorption energy was only determined with the use of the Redhead equation

and a supposed pre-factor of 1013 s−1 giving a desorption energy of 0.64 eV for

a coverage of 0.1 ML. Nevertheless this is in good agreement with the present

study (Edes(0.1 ML) = 0.63 ± 0.03 eV and ν(0.1 ML) =1013.2±0.3 s−1).

As it is expected, on the higher temperature side the edges of the monolayer

TPD peaks lie on top of each other (see Fig. 3.5 (a)) and so do the integrals

of the residual coverage above a given temperature (Fig. 3.5 (b)). This leads

to an accumulation of data points on the low 1/T -side of the Arrhenius-plots

which should be itself not a problem, but due to non-infinite pumping rates

and other experimental inaccuracies, a scattering of these accumulated data

points leads to huge scattering of the determined binding energies (see ref. [95]).

Several experimental and evaluation related arrangements face these problems

and reduce their impact. First, a small integration time (tI = 200 ms) is used

for one data point to improve temperature resolution. Second, a small QMS

to sample distance (d = 10 mm) is used to increase the signal-to-noise ratio.

Additionally, the raw data is binned by using a moving average over 10 data

points. The fact, that the falling edges lie on top of each other includes that no

additional information is given by these additional TPD curves. Therefore only
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3.2. Benzene on Coinage Metals

the lowest initial coverage spectrum of such a set of curves is used to reduce the

influence of the increased background pressure in the spectra of higher initial

coverages. To apply this reproducibly, only the TPD data from the initial

coverage (low temperature) to the desorption maximum is used (marked as

solid, non-shaded lines in Fig. 3.5 (a)). A compensation effect as described in

section 2.1 seems not to affect the obtained results largely as the total Edes/θ

dependence varies significantly from the corresponding ν/θ dependence (see

Fig. 3.5 (d) for Au(111) and Fig. 3.6 (d) together with Fig. E.1 in App. E

for Ag(111)).

benzene/Ag(111)

240200160
Temperature [K]

Q
M

S
 i
n

t.
 [

a
rb

. 
u

n
it
s
]

benzene/Cu(111)

benzene/Au(111)

0.8

0.6

0.4

0.2

0.0

Coverage [ML]

D
e

s
o

rp
ti
o

n
 e

n
e

rg
y
 [

e
V

]

1.0 ML

0.5 ML

200150
T [K]

Q
M

S
 i
n

t.
 [

a
rb

. 
u

.]

3.6 ML

1.0 ML

α1

α2

E ( 0) = 0.60 0.05 eV

m = -0.14 0.04 eV/ML
Des θ® ±

±

E ( 0) = 0.65 0.04 eV

m = -0.19 0.05 eV/ML
Des θ® ±

±

0.1 ML

e

240200160
Temperature [K]

240200160
Temperature [K]

c

a

Q
M

S
 i
n

t.
 [

a
rb

. 
u

n
it
s
]

Q
M

S
 in

t.
 [

a
rb

. 
u

n
its

]

2.0 ML

1.0 ML

α1

α2

200150
T [K]

Q
M

S
 i
n

t.
 [

a
rb

. 
u

.]

1.0 ML

α1

α2 α3

2.5 ML

200150
T [K]

Q
M

S
 i
n

t.
 [

a
rb

. 
u

.]

f

d

b

1.0 ML

0.3 ML

0.1 ML

1.0 ML

0.3 ML

0.1 ML

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

Coverage [ML]

0.50.40.30.20.10.0
Coverage [ML]

D
e

s
o

rp
ti
o

n
 e

n
e

rg
y
 [

e
V

]
D

e
s
o

rp
ti
o

n
 e

n
e

rg
y
 [

e
V

]

E ( 0) = 0.68 0.03 eV

m = -0.49 0.04 eV/ML
Des θ® ±

±

0.50.40.30.20.1

0.50.40.30.20.1

0.0

0.0

Figure 3.6.: (a), (c), (e) Measured (sub-)monolayer and multilayer (insets) TPD

spectra for Bz on Au(111), Ag(111), and Cu(111), respectively. (b),

(d), and (f) show the corresponding EB vs. coverage plots with linear

fits (red) between 0.0 and 0.5 ML coverage.
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Figure 3.6 is an overview of the measured TPD spectra ((a), (c), (e)) and the

corresponding desorption energies ((b), (d), (f)) for Bz on Au(111), Ag(111),

and Cu(111), respectively. The results for Bz on Au(111), (a) and (b), have

been discussed above. (d) and (e) show the results for Bz on Ag(111). As can

be seen from the inset of Fig. 3.6 (c) the compressed phase α2 is less separated

compared to the Bz /Au(111) system. The corresponding peak merges with the

multilayer peak (α3) in a way that α1 and α2 seem to be one single phase with a

zero-order shape (steep fall) but contradictory shifting to lower temperatures

with higher initial coverages. Rockey et al. already analyzed this behavior

and assigned it to a compressed phase [139]. The overall shapes of the sub-

monolayer TPD spectra (see Fig. 3.6 (c)) are comparable to the Bz/Au(111)

system, however, the falling edge on the high-temperature side is shifted by

15 K to lower temperatures thus indicating a slightly lower binding energy.

The complete analysis (Fig. 3.6 (d)) leads to a desorption energy in the single

molecule limit of Edes(0 ML) = 0.60 ± 0.05 eV with a coverage dependency

between 0 and 0.5 ML of −0.14 ± 0.04 eV/ML. The extrapolated pre-factor

for zero coverage and the corresponding coverage dependency of the logarithm

are ν(0 ML) =1012.7±0.8 s−1 and -0.17 ±2.58 1/ML, respectively (see App. E).

The most significant difference between the gold and silver measurements is

the coverage dependency which is 70% smaller compared to Au(111), thus

indicating weaker intermolecular interactions. A Redhead derived literature

value is 0.57 eV at a coverage of 0.1 ML using a pre-factor of of 1013 s−1

[156]. For 0.1 ML the complete analysis of the spectra in Fig. 3.6 (c) delivers

Edes(0.1 ML) = 0.59 ± 0.05 eV and ν(0.1 ML) =1012.7±0.8 s−1). It needs to

be mentioned, that desorption from defects (tail above 240 K in Fig. 3.6 (c))

is increased compared to the gold surface, which made data evaluation even

more challenging.

For Cu(111) the compressed phase seems completely vanished (inset of Fig.

3.6 (e)) and the overall shape differs slightly, with increasing peak maxima

for higher initial coverages and simultaneous shifting to lower temperatures.

This causes the occurrence of two falling edges, a steep one up to 0.5 ML

and an additional flat one for higher coverages up to 1 ML (see Fig. 3.6 (e)).

Evaluation analogous to the before mentioned systems (Fig. 3.6 (f)) leads to

Edes(0 ML) = 0.65 ± 0.04 eV, with a slope of the linear fit between 0 and 0.5

ML of −0.19±0.05 eV/ML and ν(0 ML) =1013.8±0.5 s−1 with the corresponding

slope -3.06 ±2.15 1/ML. (see App. E). Thus the interaction strength measured
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as coverage dependency of the desorption energy is comparable to Ag(111).

TPD data from literature gives a binding energy of 0.59 eV at 0.1 ML coverage

[154,166]. For 0.1 ML Edes(0.1 ML) = 0.59±0.05 eV and ν(0.1 ML) =1012.7±0.8

s−1) can be obtained from the linear fit. The desorption from defect sites

(between 240 and 280 K in the TPD spectra in Fig. 3.6 (e)) is even more

pronounced on Cu(111) compared to Ag(111) and is visible as a higher baseline

on the high-temperature side compared to the low-temperature side in Fig. 3.6

(e). Additional HREEL measurements concerning the adsorption geometry of

Bz on Cu(111) are shown and discussed in App. D. It has to be noted that all

cited values for Edes have been reevaluated by Silbaugh et al. [160] with pre-

factors obtained from calculations. These pre-factors deviate from the ones

obtained via the complete analysis by one or two orders of magnitude.

3.3. Discussion: Equal Stability on Different

Metals

The surprising finding of our study is, that despite the different electronic

structure and general chemical “reactivity” of the investigated coinage metal

surfaces, the difference in desorption energy is rather small and within the

error bars equal.

Table 3.1.: Desorption energies of benzene on Au(111), Ag(111), and Cu(111). Linear fit

parameters corresponding to the data in Figure 3.6.

Edes slope [eV/ML] intercept [eV]

Au(111) −0.49 ± 0.04 0.68 ± 0.03

Ag(111) −0.14 ± 0.04 0.60 ± 0.05

Cu(111) −0.19 ± 0.05 0.65 ± 0.04

Table 3.1 and 3.2 summarize the linear fit parameters for the coverage de-

pendent Edes and lg ν, respectively, obtained from the complete analysis. This

suggests a universal trend for the binding energy of aromatic molecules. With

increasing coverage, the desorption energy decreases for all investigated sys-

tems which indicates repulsive lateral interactions. The pre-factors’ behaviors

show similarities but they decrease less strongly than the desorption energy

with increasing coverage.
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Table 3.2.: Obtained coverage dependent prefactors for benzene on Au(111), Ag(111), and

Cu(111). Linear fit parameters corresponding to the data in Figure 3.5 and

Figure E.1 in App. E.

lg ν slope [1/ML] intercept

Au(111) −8.08 ± 1.36 13.95 ± 0.34

Ag(111) −0.17 ± 2.58 12.73 ± 0.78

Cu(111) −3.06 ± 2.15 13.76 ± 0.53

Together with XSW results from Willenbockel et al., the obtained TPD

results served Tkachenkov et al. [131] as experimental benchmarks for a com-

parison of the best available theoretical methods to calculate adsorbate cov-

ered metal surfaces with special attention to binding distance and binding

energy. Despite huge progress of DFT based quantum chemical methods,

surface-related calculations still face several problems. On the one hand, there

is the self-interaction error of the exchange energy leading to wrong energy

levels and electrostatics, on the other hand, there is the missing possibility to

adequately reflect long-range vdW-interactions. To face these problems, differ-

ent exchange-correlation functionals (see section 2.3; Heyd-Scuseria-Ernzerhof

(HSE) [167, 168] and Perdew-Burke-Ernzerhof (PBE) [169]) were combined

with methods to simulate long-range interactions (vdWsurf [135] and many-

body dispersion (MBD) [170,171]) and the results of the different combinations

were compared with the experimentally obtained values. The combination of

HSE and MBD correctly predicts the desorption energies and the binding dis-

tances [131]. Our results together with the corresponding calculations suggest

that this universal binding energy trend for aromatic molecules on coinage

metal surfaces results from the subtle balance between vdW attraction and

Pauli repulsion.
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3.4. Acenes on Au(111)

3.4. Acenes on Au(111)

The former section showed that the binding energy of aromatic molecules on

coinage metal surfaces is rather independent on the kind of metal which is used

and that the adsorption properties rely mainly on intermolecular or substrate-

mediated interactions. This chapter now focuses on the influence of the extent

of the aromatic system on the binding properties, which is obligate to know for

the aim of finding rational routes to tailor organic semiconductors. The easiest

way to “increase” the size of an aromatic system starting from benzene is to

add additional phenyl rings to it and thus getting the acenes from benzene to

pentacene (see Fig. 3.1).
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vs. the number of π-electrons in the corresponding acene.

Figure 3.7 (a) shows TPD spectra (coverage > 1 ML, preparation conditions

in App. B) for all acenes on Au(111). The “position” of the desorption peaks

shifts to higher temperatures for larger systems. This is somehow expected, as

the strength of an interaction depends on the number of interaction partners.

In the case of Bz, 6 H-atoms and 6 C-atoms interact with ≈ 5 Au-atoms

whereas pentacene has 14 H-atoms and 22 C-atoms interacting with ≈ 13 Au-

atoms. But another obvious feature is, that the broad monolayer peak already

observed for Bz is increasing its width rapidly with increasing the size of the

aromatic system. Figure 3.7 (b) shows in red the temperatures corresponding

to the beginning of monolayer desorption, in orange the end of monolayer
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desorption, and in blue the respective temperature ranges depending on the

number of π-electrons of the investigated system. For Bz, the width of the

desorption peak has been correlated to intermolecular interaction strength,

adopting this, the interaction strength increases strongly with the size of the

aromatic system. In a combined TPD and STM study [144] of pentacene on

Au(111), this long tail was not identified as part of the monolayer due to the

weak QMS signal caused by being stretched over a large temperature range.

A further study of all acenes on Au(111) identified it but did not analyze it

quantitatively [172]. The TPD spectra in Figure 3.7 (a) have roughly the same

initial coverage, except a slightly lower one for naphthalene (red). As can be

seen, only Bz (orange) and pentacene (green) show a compressed phase. While

in the case of Bz this phase corresponds to roughly 0.1 ML, it is 0.5 ML in the

case of pentacene on Au(111). In the following analysis, the length of the tail

is correlated with the strength of intermolecular interactions. Another covered

aspect is the nature of the compressed phase in the case of pentacene.

Figure 3.7 (b) shows, that the length of the low coverage tail increases with

the size of the aromatic system. For Bz, it ranges over 80 K for pentacene

over 320 K. But a closer look at the ∆T values (blue crosses) shows, that

the dependency of the size of the system is not linear, it flattens for larger

molecules. The increase in the temperature range from Bz to naphthalene is 65

K, the one from tetracene to pentacene 45 K. It has to be noted that the number

of H-atoms is neglected here, although they also deliver a contribution to the

binding to the substrate. With the complete analysis, there is a tool to quantify

such qualitative statements. The before mentioned difficulties concerning the

complete analysis and repulsive interactions are even more compromising here.

The m/z-restriction of the used QMS (max. 200 m/z) prohibits the detection of

the M+ ion of pentacene (278 amu) and tetracene (228 amu) thus leading to low

signal-to-noise ratios, especially in the area of the long tail. A complete series

of 30 or more TPD spectra with different initial coverages, as it is needed to use

the complete analysis, has only been performed for tetracene and pentacene,

which should be sufficient to get a first quantification of the trend of the

dependency of the binding energy on the system size. But for manifestation,

it is appropriate to measure TPD series also for naphthalene and anthracene.
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Figure 3.8.: (a), (c), and (e) refer to tetracene, (b), (d), and (f) to pentacene. (a) and

(b) show series of (sub-)monolayer TPD spectra (log scaled intensity).

(c) and (d) show the resulting dependencies of the desorption energy on

the coverage with linear and second-order polynomial fits to the data

between 0 and 0.5 ML (red solid and blue dashed lines, respectively).

The green dashed line refers to the parameters used for the simulated

TPD curves (red solid) in (e) and (f). Details, see text.

Figure 3.8 (a) and (b) show the measured TPD spectra for tetracene/Au(111)

and pentacene/Au(111), respectively. The logarithmic intensity axis allows

displaying the multilayer/compressed phase and the high-temperature tail in

one graph. For tetracene, no additional compressed phase can be observed

whereas for pentacene a clear separated peak evolves before the infinite rise of

the multilayer peak with increasing coverage. This separated peak has exactly

the same integrated area as the low coverage tail within the scope of measuring
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accuracy. Theoretically, this peak could also be assigned to desorption from the

second layer, but there is no explanation why second-layer desorption should

lead to a separated peak for pentacene but not for tetracene. Figure 3.8 (c)

and (d) show the resulting Edes vs. coverage plots for tetracene and pentacene,

respectively. The database for pentacene is much better whereas fit models

were established here and transferred to tetracene afterwards. The TPD mea-

surements of the tetracene/Au(111) system were problematic in a way that

artefacts like additional shoulders or varying intensity levels occurred. In Fig-

ure 3.8 (c), the grey dots are ignored as they can be identified as artefacts

from the Arrhenius plot evaluation. The solid red lines are linear fits to the

shown data between 0 and 0.5 ML coverage analogue to the linear fits, applied

to the Bz systems. For tetracene a desorption energy in the single molecule

limit of Edes(0 ML) = 1.68 ± 0.11 eV with a coverage dependency of -1.79 ±
0.32 eV/ML. For pentacene, linear fitting gives Edes(0 ML) = 2.14 ± 0.06 eV

with a coverage dependency of -3.50 ± 0.20 eV/ML. Especially in the case of

pentacene, a clear non-linear behavior is visible. This might be explained with

the long intermolecular distances in the low-coverage limit [144] where an ad-

ditional molecule should not have such a large effect on the desorption energy

as for higher coverages when the distances are reduced. A more suitable pure

quadratic fit (y = ax2 + c, blue dotted lines) gives Edes(0 ML) = 1.4 ± 0.2 eV

(scale factor -2.8 ± 0.5) in the case of tetracene, and Edes(0 ML) = 1.78 ± 0.05

eV (scale factor -6.45 ± 0.31) in the case of pentacene. The green dotted lines

represent a fitting model based on the manual modification of the desorption

energy’s dependence on coverage in TPD simulations to most perfectly repro-

duce a measured monolayer (tetracene) and half-monolayer (pentacene) TPD

(see Fig. 3.3 (e) and (f)). The coverage dependence behind the simulated TPD

(red lines) is a second grade polynomial like y = ax2 + bx + c with a = −0.27,

b = −0.27, and c = 1.7 eV for tetracene and a = −1.1, b = −0.7, and c = 2

eV. Note that c represents the desorption energy in the zero-coverage limit.

The pre-factor was coverage independent and held constant at 1013 s−1 for the

simulations. However, such simulations do not yet have a quantitative mean-

ing. But with the establishment of a procedure which is able to fit the coverage

dependence of the desorption energy and the pre-factor a huge step forward

to easy and reliable TPD evaluation can be made.
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Figure 3.9.: (a) TPD data of a pentacene monolayer on Au(111), the dotted line

marks the position of the high-coverage (compressed) phase peak. The

red part of the spectrum is evaluated via leading edge analysis as shown

in the inset, leading to a desorption energy of EDes = 1.17 eV. (b) shows

the desorption energies vs. the number of π-electrons in the the zero-

coverage limit after Redhead (red) and after complete analysis (blue).

The black line indicates the linear extrapolation of the Bz value for

larger aromatic systems.

Figure 3.9 (a) shows a TPD spectrum of 1 ML pentacene on Au(111) with the

low-coverage tail from 450 to 750 K and the compressed phase centred at 420

K, both representing half a monolayer each. France et al. [144] (see Fig. 3.3 (e)

and (f)) showed that there exist two coverage regimes with different molecular

densities in the monolayer. Different in a way, that the high-coverage phase has

roughly two times the density of the low-coverage phase. In other words, in the

case of pentacene, the repulsive interactions lead to a molecular low-coverage

pattern, where exactly one additional pentacene molecule (with a then lowered

desorption energy) fits in the gaps of the pattern. The symmetric peak at 420

K suggests, that Edes is independent of coverage here. The leading edge analy-

sis [97] of this peak (see inset of Fig. 3.9 (a)) leads to desorption energy of 1.17

± 0.05 eV. So overall, in the pentacene/Au(111) system, it seems to be the

case, that from 0 to 0.5 ML the molecules adsorb in a pattern like it is shown

in Fig. 3.3 (e), whereas the desorption energy drops from 1.8 eV for the single

molecule to 1.2 eV with an increasing number of neighboring molecules. From

thereon all adsorption sites in the gaps of the low-coverage pattern have the

same environment and therefore binding energy (1.2 eV). Due to their long-
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3. Binding of Aromatic Molecules on Coinage Metal Surfaces

range character (several Ångströms), the repulsive forces in the low-coverage

regime cannot be simple direct intermolecular interactions of vdW or Coulomb

type but must be substrate-mediated like the ones introduced in section 3.1.2.

So all investigated systems show the low-coverage tail associated to the re-

pulsive interactions and in the case of pentacene on Au(111) a subtle balance

between molecular structure, substrate geometry, and substrate-mediated in-

teractions leads to an interesting self-assembling system with large intermolec-

ular distances leaving additional space for adsorption in the monolayer. A

quantitative understanding of this relation might allow reliable simulations

of such behaviors. Today, self-assembling is focused mainly on attractive in-

termolecular interactions, from attractive vdW interactions between the alkyl

chains of thiols [173] via coordinated networks [174] up to covalently bound

systems [53]. The target-oriented use of repulsive substrate-mediated interac-

tions opens up new ways to tailored interfaces which can be easily modified

e.g. by co-adsorption of a second adsorbate.

Figure 3.9 (b) shows a comparison of the determined desorption energies

(single molecule limit) in dependency of the size of the systems measured as

the number of π-electrons. The black line is an extrapolation of the value

for Bz obtained with the complete analysis. The red dots mark the desorption

energies for all systems calculated with the Redhead formula using the temper-

atures of the falling edges in Fig. 3.7 (b) and a coverage independent pre-factor

of 1013 s−1. The blue dots mark the complete analysis values. The latter clearly

shows a nonlinear dependence on the system size and thus suggest, that the

interaction strength is not only determined by the molecular size. First the-

oretical insights [175] suggest that many-body effects play an important role

here. This has to be explained in detail by future theoretical work. Additional

experimental work should cover analogous measurements with naphthalene

and anthracene to complete the acene series. Beneficial would be the parallel

development of a new simulation-based evaluation routine for TPD spectra al-

lowing more reliable results and fewer requirements on data quality as the here

used complete analysis. Further theoretical approaches should try to repro-

duce the adsorption behavior of pentacene which would allow the simulation of

the behavior of other comparable molecules leading to tailored self-assembled

adsorbate structures.
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Molecules on Au(111)

4.1. Background: N-Heteropolycyclic Aromatic

Molecules

The former chapter brought general insights into the strengths of lateral and

vertical interactions of planar aromatic molecules on coinage metal surfaces.

The next step is to investigate the consequences of these interactions on the

adsorbate geometry and thin-film morphology. Both have huge influence on

device properties [33, 176–179] and despite long research [42, 180, 181], rules

explaining aggregate morphology from the single molecule’s structure are rare.

As mentioned in the introduction, the variety of small organic molecular com-

pounds suitable for organic electronics is too big to find general structure-

property relationships for millions of substances. But for a small but repre-

sentative and versatile sub-group, it should be possible and constructive. The

use of aromatic systems offers small band gaps, suitable for organic electron-

ics, as already explained in chapter 3. The further constraint on π-conjugated

systems limits the aggregation pathways, but still allows the morphology tun-

ing by varying substituents which cause different intermolecular forces. Also,

the processability (e.g. solubility) can still be tuned by introducing aliphatic

side chains or functional groups [182]. The basic electronic properties like

the character as an electron or hole acceptor remain unchanged due to these

substitutions. The introduction of hetero-atoms (N, O, S) into the aromatic

system of such molecules allows even the tuning of the electronic properties

(e.g., the energetic positions of the frontier orbitals) [183,184]. Nitrogen plays

a special role here as it can be introduced in aromatic systems with three single

bonds as N-H (like in pyrrole) or with a double bond as in pyridine [185,186].

The so manipulated systems can even switch between the two oxidation states

with its corresponding oxidation potentials and electron affinities. Nitrogen

in the pyridine form decreases the energy of both the HOMO and the LUMO
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and hence leaves the optical gap almost constant but improves air- and water-

stability due to an increased ionization potential and electron affinity. On

these grounds, N-heteropolycycles were chosen to be investigated in a collabo-

rative research centre (SFB 1249). As a part of an involved project, this work

investigates the adsorbate geometry and electronic interfacial properties with

means of HREELS, TPD, and DFT.
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Figure 4.1.: The three basic molecular frameworks investigated in this thesis, (a)

pentacene, (b) peropyrene, and (c) dibenzohexacene with the corre-

sponding positions for substitutions to tune film morphology and elec-

tronic properties. For detailed description, see text.

Figure 4.1 shows the structural variability of the chosen basic frameworks

pentacene (a), Pn, peropyrene (b), PP, and dibenzo[hi,uv ]hexacene (c), DBH.

X, Y, and Z represent the possible substitution points. X determines the

basic electronic properties and can be C-H, N or N-H. Y can be hydrogen

(H) or any other side chain, e.g. long aliphatic chains to increase solubility or

bulky groups to adjust the morphology. At the Z-positions, hydrogen, electron-

withdrawing like halogens [187] or electron donating groups can influence the

electronic properties but also morphology and solid state structure. Pentacene

and peropyrene as pristine hydrocarbons (X = C-H; Y, Z = H) are well studied

organic semiconductors [144, 188, 189] but for their N-heterocyclic analogous

this is not the case. Table 4.1 shows all investigated systems. Substituent

positions (X, Y, Z) are equivalent to Fig. 4.1.
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Table 4.1.: Investigated molecules, the positions of substitutents X, Y, and Z can be ob-

tained from Fig. 4.1. 1 triisopropylsilylethynyl

framework X Y Z notation

Pn H TIPS1 H TIPS-Pn

N TIPS H TIPS-TAP

DBH N H H QPP

N tBu H tBu-QPP

PP N H H TAPP

N C3F7 H TAPP-H

N C3F7 Cl TAPP-Cl

N C3F7 Br TAPP-Br

N C3F7 I TAPP-I

For all investigated molecules, gas-phase DFT calculations have been car-

ried out to get information about the electronic structure and, in particular,

the vibrational modes of the respective molecule (a detailed description of the

used theoretical method as well as an exemplary calculation input file can

be found in App. C). Figure 4.2 shows exemplary TAPP-Br with its struc-

tural formula (a), DFT-based geometry optimization (B3LYP/6-311G) (b),

and DFT-derived electron densities (colors reflect the sign of the wave func-

tion) for the HOMO and LUMO, (c) and (d), respectively. The π-conjugation

of the carbon-nitrogen structure forces a planar geometry of the aromatic part

of the molecule (see Fig. 4.2 (b)) with all atoms in one plane. The C3F7-

substituents are due to their sp3-hybridization not in-plane. Both, HOMO

and LUMO, show a nodal plane along the long molecular axis. This causes the

independence of the electronic structure on the nature of the Y-substituents,

which makes it easy to adjust properties like the molecular packing or the

solubility of a predesigned n- or p-channel organic semiconductor. Another

important aspect in this chapter is the epitaxial growth, hence the formation

of crystalline thin films on crystalline surfaces. These films are mainly pre-

pared by vapor deposition techniques. The growth behavior is determined by

adsorbate-adsorbate interactions, surface energies, as well as lattice parameters

and is described by three growth modes [87,190].
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Figure 4.2.: Molecular structure of TAPP-Br (a), DFT-derived optimized molec-

ular geometry (b) and frontier orbitals (HOMO (c) and LUMO (d),

(B3LYP/6-311G).

First, Volmer-Weber growth with the formation of islands and three-dimensional

adsorbate clusters due to stronger lateral (adsorbate-adsorbate) than vertical

(adsorbate-substrate) interactions. Second, Frank-van der Merwe growth with

preferred adsorption on surface sites and thus a layer-by-layer growth due to

strong adsorbate-substrate interactions. Third, a mixture of both, Stranski-

Krastanov growth with the adsorption of one or several “wetting” layers in the

Frank-van der Merwe mode and subsequent island formation in the Volmer-

Weber mode [191, 192]. The difference in the lattice parameters of the sub-

strate and the thin film leads to strain in the film. Close to the surface (e.g.

in the monolayer) strong vertical interactions outweigh the strain in the film.

With increasing coverage (i.e. distance to the surface) the vertical interactions

decrease and at a critical coverage the adsorption switches to island forma-

tion. In all presented systems monolayer formation as in Frank-van der Merwe

or Stranski-Krastanov growth is observed. The situation for multilayer ad-

sorption often is not that clear and discussed in the section of the particular

system. Stranski-Krastanov growth allows to measure excitations in the mono-

layer even at higher coverages, this can be an explanation for the similarities

of mono- and multilayer spectra. All in all, there is more evidence for layer-by-

layer growth but with the used methods a clear distinction was not possible.

Additional Auger electron spectroscopy (AES) experiments can help to get
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4.2. TIPS-Pentacene

more insight into this aspect.

The presentation of all systems starts with a brief introduction and moti-

vation, a short description of the respective TPD spectra, which are shown

for TIPS-Pn and which can be found in the appendix for the other systems.

Afterwards, the vibrational spectra are discussed. At last, a view on the elec-

tronic spectra gives insight into the electronic properties at the surface. The

results start with TIPS-Pn, followed by QPP, and the TAPP system. Prepa-

ration conditions for all shown measurements are summarized in App. B. The

assignments of all observed vibrational modes in tabular form together with

visualizations of these vibrational modes can be found in the respective part

of the Appendix. The relevant (and discussed) vibrations are labelled in the

spectra.

4.2. TIPS-Pentacene

The first presented molecule belongs to the pentacene derivatives (Fig. 4.1

(a)). Pentacene itself is a well-known organic semiconductor [193] and as it is

still widely and successfully used in devices [194] it has the rank of a prototype

material for semiconducting small molecules. Pentacene single-crystals have

one of the highest mobilities in field effect transistors (FET) found for organic

semiconductors. But lacks in other properties such as solubility and hence pro-

cessability lead to developments like the investigated triisopropylsilylethynyl

pentacene (TIPS-Pn) (structural formula in Fig. 4.3) which shows a funda-

mentally different crystal structure [195]. Whilst pentacene crystallizes in a

herringbone-like structure with stacks of tilted molecules (related to the stack

axis) and two different tilting angles in neighboring stacks, TIPS-Pn crystal-

lizes in a brick-like structure with all pentacene planes parallel to each other.

Another interesting aspect is, that pentacene, as well as TIPS-Pn, undergo a

process called singlet fission [196–198]. First discussed for anthracene [199],

this process describes the creation of two excited molecules in the triplet state

from one optically excited molecule in its singlet state. In general, the purpose

is to overcome the Shockley-Queisser [200] limit of theoretical photovoltaic ef-

ficiency by creating two excited states with only one photon. To allow this

process, the energy levels must be in a way that the singlet state (S1) has

roughly twice the energy of the triplet state (T1) which is the case for acenes.

However, studies showed that the singlet fission efficiency depends strongly on

73



4. Adsorption and Growth of Functional Molecules on Au(111)

the orientation of neighboring molecules [201] which strongly depends on the

substituents. So it was a surprising discovery that also the brick-like order of

TIPS-Pn lead to a high singlet fission efficiency. The first aim of this study is to

show that the preparation of well-defined TIPS-Pn films on Au(111) via evap-

oration is possible as this is still under discussion in the literature. Anthony et

al. [202] proclaim that heating TIPS-Pn to temperatures above 140◦C leads to

a phase transition in TIPS-Pn single crystals which destroys the singlet fission

ability. Furthermore, they state that TIPS-Pn decomposes after melting and

before evaporation if the vacuum is not good enough for sublimation. The

second goal is the investigation of these films with respect to morphology and

electronic structure. This may include the direct observation of transitions

involving triplet states as it is possible with EELS [203, 204]. The third goal

is the extension of this study to new nitrogen substituted derivatives.
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Figure 4.3.: (a) TPD spectra of TIPS-Pn on Au(111) for different coverages from

θ = 1.0 ML to 4.0 ML. The structural formulas of TIPS-Pn and of

the observed fragment (m = 73 amu) are depicted. The observed

fragment belongs to the TIPS group. Peaks are labeled from α1 to

α3 with increasing desorption temperature. (b) TPD spectra of a θ

= 2.2 ML TIPS-Pn film on Au(111) for different observed fragments.

The isopropyl-fragment (m = 43 amu) shows a monolayer desorption

peak shifted by 10 K (see labeled temperatures). Figure adapted from

ref. [73].

The presentation of the results starts with coverage- (Fig. 4.3 (a)) and

fragment-mass-resolved (Fig. 4.3 (b)) TPD spectra. The coverage dependent

spectra show three peaks. The high-temperature peak (530 K, α3) shows sat-
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uration before the other peaks start to increase. This clearly indicates the

development of a complete wetting layer before multilayer adsorption takes

place (Stranski-Krastanov or Frank-van-der-Merwe growth mode). The peak

is highly symmetric which reveals simple first-order desorption without exten-

sive lateral adsorbate-adsorbate or substrate-mediated interactions. This is in

strong contrast to the pentacene results presented in the former chapter. α2 is

assigned to second layer desorption as it shows zero-order desorption behavior

and saturation for higher coverages. α1 arises as a shoulder of α2, shows no

saturation for higher initial coverages and also shows zero-order desorption

behavior, it is therefore assigned to desorption from higher layers. The ob-

served fragment (73 amu) is a silicon-containing fragment of the TIPS group

(structural formula is shown in Fig. 4.3 (a)). The shown coverage is deter-

mined by integrating the spectra and comparing the area of α3 to the total

integral. Monolayer coverages are prepared by evaporating significantly more

than one monolayer and heating the sample to a temperature between 420 K

(above multilayer desorption) and 500 K (below monolayer desorption). The

exact dosing and preparation conditions can be found in App. B. Figure 4.3

(b) shows TPD spectra of the same initial coverage of θ = 2.2 ML for differ-

ent observed fragments. All fragments belong to the TIPS group and show a

comparable behavior for mono- and multilayer desorption. Only the iso-propyl

fragment (m/z = 43 amu) shows a different behavior and its monolayer des-

orption peak is shifted to lower temperatures by 10 K to 520 K compared to

the other fragments. This indicates a degradation before the monolayer can

desorb intact which is supported by TPD measurements of the doubly charged

pentacene backbone (m/z = 198 amu) which is only visible in the multilayer

desorption peak (see Fig. F.2 (c) in App. F). This on-surface degradation

of TIPS-Pn around 520 K was already proposed by temperature-dependent

X-ray photoelectron (XPS) measurements [205]. However, the degradation at

520 K indicates an intact evaporation and annealing (monolayer preparation)

process where the maximum temperatures do not exceed 450 K.
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Figure 4.4.: HREEL spectra in specular (black) and off-specular (red) scattering geometry

for mono- (a) and multilayer (b) coverages of TIPS-Pn on Au(111). E0 = 3.5

eV is the primary electron energy of the incident electrons. The energy resolu-

tion measured as FWHM of the elastic peak (zero loss peak) is labeled in the

graphs. The inset of (b) shows the enlarged ν(C-H) stretching vibration re-

gion with corresponding DFT data for TIPS-Pn (blue) and pentacene (green).

(c) shows calculated B3u-mode (dynamic dipole moment perpendicular to the

pentacene plane) frequencies and intensities (B3LYP/6-311G). Figure adapted

from ref. [73].
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The second goal after the shown general probability of evaporative thin

film preparation is the investigation of the molecular orientation relative to

the substrate within these thin films. For non- or weak-interacting substrates

like SiO2 gracing incidence X-ray diffraction (GIXD) measurements showed,

that one TIPS group of the lowermost layer is oriented towards the substrate

and hence the alkyne bond and the pentacene plane (with its short axis) are

oriented perpendicular to the surface [206]. Complementary angle-resolved

near-edge X-ray absorption fine structure (NEXAFS) measurements of TIPS-

Pn on Au(111) showed, that due to the strong metal-aromatic interaction the

pentacene plane is oriented parallel to the metal surface. From the data, a

tilting angle between the molecular plane and the substrate (rotation around

the short axis) is extracted [205]. However, the authors assume to overestimate

their value of 30◦ due to contributions of additional resonances leading to in-

creased intensities under the specific measuring angles. Vibrational HREELS is

now used to further investigate the adsorption geometry of the evaporated thin

films. Figure 4.4 shows HREEL spectra in specular (black) and 10◦ off-specular

geometry (red) for a monolayer coverage (a) and a coverage of θ = 4 ML (b).

Figure 4.4 (c) shows calculated frequencies and intensities (B3LYP/6-311G)

of vibrational modes with B3u symmetry (dynamic dipole moment perpendic-

ular to the pentacene plane). The specular spectrum in (a) is dominated by

four intense modes (γ(C-H) and γ(C-C-C)) which can be attributed to clear

out-of-plane pentacene-related vibrations as a comparison with the DFT data

in Fig. 4.4 (c) shows. Figure 4.5 (a) and (b) visualize the γ(C-H) at 449 cm−1

and the γ(C-C-C) at 692 cm−1 modes, respectively. The black arrow indicates

the orientation of the corresponding dynamic dipole moment vector which is in

both cases clearly perpendicular to the pentacene plane. All dominant modes

show a much higher intensity in specular than in off-specular geometry and

are therefore dipole-active. The observed ν(C-C) and ν(C-H) vibrations are

attributed to modes located primarily in the TIPS groups. Equivalent modes

of the pentacene part with a dynamic dipole moment parallel to the molecular

plane (in-plane modes; visualized in Fig. 4.5 (c) and (d), respectively) show no

significant intensity. From these observations, it can be derived that the TIPS-

Pn molecules lie with its pentacene plane parallel to the Au(111) surface. But

it has to be noted that a slight tilting as proposed in [205] cannot be excluded

from these data, whereas 30◦ seems far too high as in that case modes with its

dynamic dipole moment parallel to the long pentacene axis should show sig-

77



4. Adsorption and Growth of Functional Molecules on Au(111)

nificant dipole activity and therefore high intensity in the specular spectrum.

The multilayer spectrum (θ = 4 ML; Fig. 4.4 (b)) still shows dipole active

out-of-plane modes (γ(C-H) and γ(C-C-C)) but the difference in intensity is

much smaller. Also, the elastic peak intensity is reduced by one fifth when

increasing the coverage from 1 to 4 ML.
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Figure 4.5.: Visualized characteristic vibrational modes (red arrwos, atomic

displacements) of TIPS-Pentacene derived by DFT calculations

(B3LYP/6-311G) with their corresponding dynamic dipole mo-

ment orientations (µ), energies (HREELS monolayer/HREELS mul-

tilayer/DFT) and assignments. In all cases the dipole moment vector

lies in the plane of the paper.

This can be attributed to the larger distance to the surface. The in-plane

modes, ν(C-C) and ν(C-H), are still not dipole active, their intensities, how-

ever, are higher than the dipole active ones’. It is therefore concluded that

TIPS-Pn adopts a molecular orientation with the pentacene plane parallel to

the surface on Au(111) even at higher coverages. However, the uncertainty re-

garding a tilting around the short pentacene axis is still present. Note, that all

observed vibrational modes and their corresponding assignments and visual-
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izations can be found in App. F in Table F.1 and Figure F.1, respectively. The

inset of Figure 4.4 (b) shows the enlarged region of the C-H stretching vibra-

tions around 3000 cm−1 (black crosses) together with DFT calculated spectra

of TIPS-Pn (blue) and pentacene (Pn, green). It is obvious, that the measured

spectrum is well reproduced by the DFT calculation for TIPS-Pn. The two

contributions below 3200 cm−1 are attributed to the aliphatic ν(C-H) modes

of the TIPS groups. The aromatic ν(C-H) vibrations at 3300 cm−1 belong

to the pentacene part. This is a further clear indication for intact TIPS-Pn

molecules on the surface which confirms the previous TPD results.
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Figure 4.6.: Electronic HREEL spectra of 4.4 ML TIPS-Pn on
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vibronic S0 → S1 transition peaks. The primary

electron energy E0 is 15 eV. In the low-energy

regime vibrations νa (γ(C-H)), νb (ν(C-C)), and νc

(ν(C-H)) and visible overtones or combinations are

labeled. Figure adapted from ref. [73].

For the spectrum in Figure 4.6, the primary electron energy was increased

from 3.5 to 15 eV to allow the excitation of electronic transitions like the

optical gap or a direct singlet-to-triplet excitation. The coverage was θ = 4

ML. The monolayer spectrum is not shown, as adsorbate-induced features are

screened there by the Au surface as already observed in electronic HREELS

before [207] (see App. F for the monolayer spectrum). This is somewhat

surprising as the increased distance between the surface and the aromatic

backbone due to the bulky TIPS groups should cause a significant decoupling.
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In contrast the 4 ML spectrum shows several low-energy features (Eloss <

1 eV) which are attributed to the γ(C-H) (νA), ν(C-C) (νB), and ν(C-H)

(νC) vibrations and corresponding combinations or overtones. On the high-

energy side the β-band (S0 →S3 transition) is located at 4.1 eV. At 1.9 eV

the optical gap (S0 →S1 transition) shows the typical vibronic excitations

(“acene fingers”) which are attributed to additional excitations of the ν(C-

C) breathing mode of the pentacene backbone at 1667 cm−1. The optical

gap determined by ultraviolet-visible measurements in solution is also 1.9 eV

[208], whereas spin-cast films show an additional feature at 1.75 eV which is

attributed to aggregation [208]. This indicates that in a 4 ML thin film both

intermolecular interactions and the surface have negligible influence on the size

of the optical gap and that the TIPS-Pn molecules are electronically decoupled.

A possible triplet transition is not observed which can be explained by small

cross sections for the given primary electron energy. In addition, a systematic

primary electron energy dependent study [203, 204] may help to resolve these

interesting excitations.

A further goal was the investigation of the aza-derivative triisopropylsi-

lylethynyl tetraazapentacene (TIPS-TAP; X = N, Y = TIPS, Z = H in Fig.

4.1). The molecules were synthesized by Fabian Paulus (Bunz group of the

institute for organic chemistry at the University of Heidelberg). Routinely

the received substance was investigated before loading the doser and after un-

loading it with electron ionization mass spectrometry at the organic chemistry

institute’s core facility to get information about possible degradation. If the

molecular ion (which cannot be detected by the QMS used for the TPD inves-

tigations as the observable m/z range is restricted to values below 200 amu)

is present in the obtained mass spectrum it is concluded that the dosing pro-

cedure did not lead to degradation. The TIPS-TAP measurement showed a

molecular ion 2 amu larger than expected suggesting a hydrogenation (reduc-

tion) of two out of the four nitrogen atoms. However, an expected increase

of the optical gap due to the altered electronic structure (DFT calculations,

B3LYP/6-311G: TAP EHOMO−LUMO = 2.3 eV, Dihydro-TAP EHOMO−LUMO =

2.9 eV) was not observed in the electronic HREELS measurements. These

showed as well as the corresponding vibrational measurements comparable re-

sults to the ones obtained for TIPS-Pn. Another possible explanation for the

higher mass is, that hydrogen attachment took place inside the mass spec-

trometer when the particular ionization method was applied. Because of this
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uncertainties, the results are only shown and briefly discussed in App. F.

To summarize the TIPS-Pn results, the TPD measurements showed clearly

that the introduction of spatially demanding TIPS-substituents suppresses

strong adsorbate-adsorbate or substrate-mediated interactions by increasing

the lateral distance between two molecules as well as the vertical distance

between substrate and adsorbate. Together with the vibrational HREELS

measurements they also showed that intact sample preparation via evapora-

tion is possible. The annealing to 450 K leads to smooth and well-ordered

(high elastic peak intensity, good resolution) monolayer films which adopt a

parallel orientation of the pentacene planes relative to the Au(111) substrate.

The electronic HREELS data indicate only small intermolecular interactions

as with 1.9 eV the optical gap in a 4 ML thin film is not significantly different

from that in solution. However, the screened HOMO-LUMO transition in the

monolayer is a sign for relevant electronic coupling of adsorbate and substrate

here.

4.3. Quinoxalinophenanthrophenazine (QPP) and

tBu-QPP

The next investigated systems are based on the dibenzohexacene framework

(see Fig. 4.1 (c)). Quinoxalino[2’,3’:9,10]-phenanthro[4,5-abc]-phenazine (QPP;

X = N, Y = H, Z = H in Fig. 4.1 (c)) and the 2,11-di-tert-butyl-substituted

QPP (tBu-QPP; X = N, Y = (tBu, Z = H in Fig. 4.1 (c)) give the opportunity

to directly investigate the effect of the introduction of bulky substituents on

adsorption morphology and electronic structure, i.e., to get insights into the

structure-property relationship. QPP already has been studied in p-channel

transistors and showed rather low field-effect mobilities [209]. tBu-QPP has

been used as a triptycene connected trimer to form hexagonal cage struc-

tures [210, 211] with the intention to act as a light-harvesting material in or-

ganic photovoltaic cells. The structural formulas can be found as insets in

Figure 4.7 (a) and (d) for QPP and tBu-QPP. The detailed sample prepara-

tions can again be found in App. B. The TPD spectra are shown and briefly

discussed in App. G. They show the clear multilayer desorption peak (splitting

into 2nd-layer and multilayer peak visible up to 7 ML) around 450 K whilst the

monolayer desorption is only barely visible for both molecules. The monolayer

preparation is possible by annealing the sample to 500 K.

81



4. Adsorption and Growth of Functional Molecules on Au(111)

N

N

N

N

0

In
te

n
s
it
y
 [
1
0

s
]

5
-1

0

3000200010000
Electron Energy Loss [cm ]

-1

2

3

In
te

n
s
it
y
 [
1
0

s
]

5
-1

23 cm
-1

28 cm
-1

x 250

x 100

buckl.

d(C-C-C)

n(C-N)

1

In
t.
 [
a
rb

. 
u
.]

g(C-C-C)

g(C-H )P

1

n(C-H)

buc.

g(C-H )P

g(C-H )Q

4

2

g(C-C-C)

g(C-H )P

g(C-H )P

g(C-H )Q

d(C-C-C)

n(C-C)

N

N

N

N

0

In
te

n
s
it
y
 [
1
0

s
]

5
-1

8

0

6

4

2

1

2

3

4

In
te

n
s
it
y
 [
1
0

s
]

4
-1

25 cm
-1

32 cm
-1

x 300

x 50

buc.

g(C-H )P

g(C-H )Q

g(C-H )Q

n(C-N)

5

n(C-H)

g(C-C-C)

g(C-H )P

g(C-H )P

n(C-C)

buckl.
g(C-C-C)

n(C-H )ar.

n(C-H )al.

n(C-N)

n(C-C)

QPP/Au(111)
Monolayer, = 3.5 eVE

0

specular
5° off-specular

DFT, B3LYP/6-311G, QPP
calc. intensities of
B - modes3u

3000200010000
Electron Energy Loss [cm ]

-1

In
t.
 [
a
rb

. 
u
.]

3000200010000
Electron Energy Loss [cm ]

-1

In
t.
 [
a
rb

. 
u
.]

3000200010000
Electron Energy Loss [cm ]

-1

In
t.
 [
a
rb

. 
u
.]

DFT, B3LYP/6-311G
tBu-QPP

calc. intensities of
B - modes3u

QPP/Au(111)
= 12 ML, = 3.5 eVθ E

0

specular
5° off-specular

tBu-QPP/Au(111)
Monolayer, = 3.5 eVE

0

specular
5° off-specular

tBu-QPP/Au(111)
= 10 ML, = 3.5 eVθ E

0

specular
5° off-specular

a

b

c f

e

d

Figure 4.7.: HREEL spectra in specular (black) and off-specular (red) scattering geometry

for mono- (top) and multilayer (center) coverages of QPP (left) and tBu-

QPP (right), corresponding structural formulas shown in the upper graphs.

E0 is the primary energy of the incident electrons. The energy resolution

measured as FWHM of the elastic peak (zero loss peak) is labeled in the

graphs. At the bottom, (c) and (f), calculated B3u-mode (dynamic dipole

moment perpendicular to the molecular plane) frequencies and intensities are

shown. Figure adapted from ref. [55].

The coverage determination was done by separating the multilayer peak and

normalizing it with the 2nd-layer peak. Figure 4.7 (a) shows the vibrational

HREEL spectra (specular in black, 5◦ off-specular in red) for a QPP monolayer

on Au(111). The spectrum shows a high resolution of 23 cm−1 measured as

full width at half maximum (FWHM), which indicates smooth well-ordered

films. As in the case of TIPS-Pn, the specular spectrum is dominated by five

out-of-plane γ(C-H) and γ(C-C-C) vibrations, which have a high specular to

off-specular ratio and are therefore assigned as dipole active. The DFT data

in Figure 4.7 (c) shows calculated (B3LYP/6-311G) intensities of infrared ac-
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4.3. Quinoxalinophenanthrophenazine (QPP) and tBu-QPP

tive vibrational modes with B3u symmetry, hence a dynamic dipole moment

perpendicular to the molecular plane. The five out-of-plane modes are well

represented by these calculations. Two of them are visualized in Figure 4.8

(a) and (b) where the molecular plane is perpendicular to the paper plane

while the dynamic dipole moment vector µ lies in the latter. Impact scattered

modes are due to their small cross sections nearly invisible here. The broad

feature around 2000 cm−1 can be assigned to a spectrometer related artefact

(see section 2.4.1 and ref. [123]). Again, all observed vibrational modes and

their corresponding assignments and visualizations can be found in App. G

in Table G.1 and Fig. G.1, respectively. The multilayer spectrum in Figure

4.7 (b) reveals that still in a 12 ML thick film the spectrum is extremely dom-

inated by the before seen dipole active out-of-plane modes suggesting a still

nearly perfect planar adsorption. Due to the larger amount of molecules on the

surface, the small impact scattering cross section is sufficient for showing some

in-plane stretching modes like ν(C-C), ν(C-N), and ν(C-H). The latter consists

of several individual modes, two are visualized in Figure 4.8 (c) and (d) which

show either dynamic dipole moment vectors oriented parallel to the long molec-

ular axis or parallel to the short axis, respectively. Note, that the molecular

plane lies now in the paper plane as well as the dynamic dipole moment does.

As mentioned in section 4.1 the similarities of mono- and multilayer HREEL

spectra could also be explained by Stranski-Krastanov growth but then more

impact scattering from islands and an overall worse resolution and elastic peak

intensity due to a rougher, less-ordered surface would be expected. The com-

parison with the tBu-QPP spectra in Figure 4.7 (d), (e), and (f) shows high

conformity. The only dipole-active modes are the specific out-of-plane wagging

vibrations γ(C-H) and γ(C-C-C). The specular to off-specular intensity ratio

of the dipole active modes as well as the elastic peak intensity is significantly

smaller than for QPP, indicating a rougher, less ordered layer due to the bulky

tBu-groups. However, again no other vibrations show any significant dipole

activity a relevant tilting can be excluded. Increasing the thickness to θ =

10 ML leads to a further reduction of the elastic peak intensity by almost an

order of magnitude which is a sign for a rougher film but is also grounded

in the increased distance to the surface which decreases the dipole scattering

efficiency.
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Figure 4.8.: Visualized characteristic vibrational modes (red arrwos, atomic dis-

placements) of QPP derived by DFT calculations (B3LYP/6-311G)

with their corresponding dynamic dipole moment orientations (µ), ener-

gies (HREELS monolayer/HREELS multilayer/DFT) and assignments.

In all cases the dipole moment vector lies in the plane of the paper as

well as the molecule in (c) and (d). In (a) and (b) the molecular plane

is orientated perpendicular to the paper plane. Figure adapted from

ref. [55].

Nevertheless, the obtained picture is similar to the one for QPP (and TIPS-

Pn), there is clearly no dipole activity of in-plane modes like the ν(C-C) and

ν(C-H) stretching vibrations, and hence, the molecules adsorb in a planar

orientation on the Au(111) surface. Note that the latter now resolves the

separation of aromatic (at the QPP core) and aliphatic (at the tBu groups)

C-H bonds. Table G.1 in App. G also lists frequencies obtained by attenu-

ated total reflectance Fourier-transform infrared spectroscopy (AFT FT-IR)

of the condensed material. The data for the out-of-plane modes of the QPP in

direct metal contact (HREELS) show a redshift of 10 cm−1 indicating a sig-

nificant adsorbate-substrate binding which weakens the intramolecular bonds.

For tBu-QPP this shift is not existent showing that the bulky side groups

decouple the adsorbate from the metal.
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Figure 4.9.: Electronic HREEL spectra including fits to the vi-

bronic S0 → S1 transition peaks of 12 and 10 ML
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sition peak (dashed line), and UV-vis spectroscopic

data by Bernd Kohl et al. are shown for compari-

son. Figure adapted from ref. [55].

The electronic HREEL spectra are shown together with the respective UV/Vis

data in Figure 4.9. The focus lies on the multilayer spectra as the relevant fea-

tures are much better resolved here due to higher intensities. The monolayer

spectra show in addition the conventional Au(111) surface plasmon at 2.5

eV. The HOMO-LUMO transition is observable in the monolayer, which indi-

cates a rather weak adsorbate-substrate interaction as otherwise the frontier

orbitals would be screened by the metal influence. This is in contrast to the
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4. Adsorption and Growth of Functional Molecules on Au(111)

presented results for TIPS-Pn and suggests that the introduction of nitrogen

into a polycyclic aromatic molecule leads to a decreased electronic coupling

between adsorbate and substrate (see App. G for the respective monolayer

spectra). The shown spectra are dominated by strong features around 3 eV

which are assigned to the S0 →S1 transition, the HOMO-LUMO transition or

the optical gap. The visible vibronic features are due to simultaneous exciting

the molecular breathing modes (sym. ν(C-C) and ν(C-N) around 1500 cm−1)

and are typical for extended aromatic systems (“acene fingers”, compare to the

TIPS-Pn results in Fig. 4.6). The comparison with the UV/Vis spectroscopic

data measured in solution surprisingly shows no significant differences like en-

ergetic shifts. The determined optical gaps are 2.98 eV (HREELS) and 3.00

eV (UV/Vis) for QPP, and 2.96 eV (HREELS) and 2.99 eV (UV/Vis) for tBu-

QPP. The optical gap is therefore not affected by the molecular packing and

the metal contact in thin films or by the introduction of bulky substituents in

this specific position. The latter was expected due to the calculated electronic

structure (compare Fig. 4.1 and 4.2). Several additional higher energetic tran-

sitions can be observed which are also confirmed in the UV/Vis spectra. Note

also the well visible (tBu-QPP) and barely visible (QPP) ν(C-H) overtone

around 0.8 eV and the previously mentioned artefact in the QPP spectrum

between 1.2 and 2 eV. As a short summary, it is noted that the bulky side

chains decouple the adsorbate (no surface related frequency shift in the case

of tBu-QPP) significantly but have no effect on the orientation relative to

the substrate. However, the surface roughness seems to increase with the in-

troduction of bulky substituents indicated by a reduced dipole activity. The

electronic spectra show almost no difference between thin films and solutions

and therefore suggest only weak substrate-adsorbate and adsorbate-adsorbate

interactions. The optical gap for both molecules is roughly 3 eV showing, that

the introduction of hydrocarbon substituents in the specific positions does not

affect the energetic position of the frontier orbitals.
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4.4. Tetraazaperopyrene (TAPP) and its

Halogenated Derivatives

The third investigated system, based on the peropyrene structure [212], was

studied with variation in both the Y- and Z-position as the structural formulas

in Figure 4.10 (a) show. The development of the TAPP system goes back to

2007 when Gade et al. [213] showed the synthesis of TAPP itself but also for

a variety of derived compounds. The synthesis is based on the dimerization

of diaminonaphthalene to 4,9-diamino-3,10-perylenequinone diimine (DPDI).

This substance is easily treated with a variety of compounds to get either

the pristine TAPP or several in Y-position substituted derivatives. The per-

fluorinated propyl groups showed promising behavior regarding solubility and

electron-conduction and are therefore studied here. TAPP-Cl and TAPP-Br

have already been successfully studied as n-channel semiconductors in devices

like complementary circuits [214, 215]. So it was part of this work to com-

plete the investigation of the structure-property relationship of halogenated

TAPP derivatives by investigating their on-surface behavior in detail to allow

a target-oriented development of new n-channel organic compounds in the fu-

ture. With an STM study of the TAPP/Cu(111) system [216], so far only the

pristine TAPP has been investigated on a single crystal surface. It showed

interesting aggregation phenomena and on-surface reactivity like oligomerisa-

tion. The study carried out here is the first on Au(111), a more relevant sub-

strate for device application due to its smaller reactivity compared to Cu(111).

Parts of the TAPP, TAPP-H, and TAPP-Cl investigations have already been

done and published in previous works [55, 122, 217, 218] but all shown spectra

were measured during this work with improved resolutions. The results are

presented again for a better understanding of the obtained insights.
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Figure 4.10.: (a) Molecular structures of all investigated TAPP derivatives. (b) -

(d) HREEL spectra in specular (black) and off-specular (red) scat-

tering geometry for a TAPP monolayer (b) and a coverage of 10 ML

TAPP (c) on the Au(111) surface. E0 is the primary energy of the

incident electrons. (d) shows calculated B3u-modes (dynamic dipole

moment perpendicular to the molecular plane) frequencies and inten-

sities (B3LYP/6-311G). Figure adapted from ref. [55].

88



4.4. Tetraazaperopyrene (TAPP) and its Halogenated Derivatives

µ µ

µ µ

n(C-H)
-/3056/3219 cm

-1

g(C-H)
778/809/814 cm

-1

n(C-N)
-/1520/1558 cm

-1

g(C-C-C),
488/510/529 cm

-1

g(N-C-N)

a b

c d

Figure 4.11.: Visualized characteristic vibrational modes (red arrwos, atomic dis-

placements) of TAPP derived by DFT calculations (B3LYP/6-311G)

with their corresponding dynamic dipole moment orientations (µ), en-

ergies (HREELS monolayer/HREELS multilayer/DFT) and assign-

ments. In all cases the dipole moment vector lies in the plane of

the paper as well as the molecule in (c) and (d). In (a) and (b) the

molecular plane is orientated perpendicular to the paper plane. Figure

adapted from ref. [55].

Like for the previous systems, dosing, coverage determination, and distinct

monolayer preparation were monitored with TPD (exemplary TPD spectra,

see App. H). The precise dosing parameters for the samples corresponding to

each shown spectra are listed in Table B in App. B. The TAPP multilayer

desorbs intactly at 320 K, the monolayer decomposes and fragments desorb

between 500 and 650 K showing a compressed phase desorbing at 530 K. The

vibrational HREEL spectra of TAPP on Au(111) are shown in Figure 4.10 (b)

for the monolayer and (c) for a coverage of θ = 10 ML. Figure 4.10 (d) shows the

calculated intensities and frequencies of all B3u modes (B3LYP/6-311G). Again

it is obvious that the specular (black) spectra of the TAPP mono- and multi-

layer are dominated by modes which are well represented by the calculated B3u

89



4. Adsorption and Growth of Functional Molecules on Au(111)

modes. They are all assigned to out-of-plane modes and show a large specular

to off-specular ratio, hence, they are dipole active. The γ(C-C-C) and γ(N-C-

N) wagging modes around 500 cm−1 as well as the γ(C-H) mode at 778 cm−1

are visualized in Figure 4.11 (a) and (b), respectively. Note, that all observed

vibrational modes and their corresponding assignments and visualizations can

be found in App. H in Table H.1 and Fig. H.1, respectively. Whilst the

monolayer spectra show almost no contributions from in-plane modes, like the

ν(C-N) and ν(C-H) stretching vibrations they are well visible in the multilayer

spectra. The significant specular to off-specular is assigned for the most part

to the higher background level of the specular compared to the off-specular

spectrum and not to a significant tilting of the molecules in the multilayer (see

the area between 2000 and 2500 cm−1 in Fig. 4.10 (c)). The mentioned in-

plane modes are visualized in Figure 4.11 (c) and (d). For the pristine TAPP

a picture can be, that goes with the one derived for QPP. The gold metal

surface forces the TAPP molecules to adopt a planar adsorption geometry to

increase the metal-π interaction for the cost of intermolecular π-π interaction

which could be obtained for tilted molecules with overlapping π-systems in the

monolayer. A different behavior was observed before for octithiophene (8T)

on Au(111 [219,220]. Here the molecules are tilted and thus overlapping in the

monolayer. For QPP/Au(111), the further layers seem to adopt also a planar

(relative to the substrate) adsorption geometry as the now predominant inter-

molecular π-π interactions are thus increased. The investigations of tBu-QPP

compared to QPP and TIPS-Pn compared to previous investigations of pen-

tacene gave insight into the consequences of the introduction of a bulky but

rigid substituent – they are rather small. The molecules still adopt a planar

adsorption geometry in the monolayer as well as they do it in the multilayer in

the limits of the experimental inaccuracies. Now, with perfluorinated propyl

groups, a smaller but more flexible substituent is investigated.
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Figure 4.12.: HREEL spectra in specular (black) and off-specular (red) scattering geom-

etry for mono- (top) and multilayer (bottom) coverages of TAPP-H (a),

TAPP-Cl (b), TAPP-Br (c), and TAPP-I (d), corresponding structural for-

mulas are shown in Figure 4.10 (a). E0 is the primary energy of the inci-

dent electrons, θ the particular multilayer coverage. Figure adapted from

ref. [218].
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The TAPP-H on Au(111) HREEL spectra in specular (red) and off-specular

geometry (black) for the monolayer and a coverage of 6 ML are shown in Figure

4.12 (a), and (b). Analogue spectra for TAPP-Cl, TAPP-Br, and TAPP-I are

shown in Figure 4.12 (c) and (d), (e) and (f), and (g) and (h), respectively. The

monolayer spectra show in all cases high specular to off-specular intensity ratios

especially for the γ(C-H) out-of-plane mode around 1000 cm−1 suggesting a

planar adsorption of the aromatic backbone on the metal surface. The relative

intensity of this mode is reduced for higher coverages pointing to a less strict

planar adsorption whilst now in all cases, the spectra are dominated by the

ν(C-F) stretching vibration which is hard to interpret as the C-F bonds point to

several directions due to the tetrahedral geometry of the propyl carbon atoms.

Another hint for a tilting of the peropyrene plane relative to the substrate

above a coverage of 1 ML lies in the intensity and dipole-activity of the ν(C-

N) stretching modes around 1500 cm−1 which show dynamic dipole moments

parallel to the long molecular axis (see e.g. the spectrum for the 5 ML film

of TAPP-Cl on Au(111) in Fig. 4.12 (d) and compare to Fig. 4.11 (c) for

the visualized analogue vibration in TAPP). On the other hand, the ν(C-H)

stretching modes with dynamic dipole moments parallel to the long molecular

axis (compare to Fig. 4.11 (c)) show no dipole activity even in the multilayer

spectra except a little in the case of TAPP-I (see Fig. 4.12 (h)). This indicates

that these dynamic dipole moments are still oriented parallel to the surface

hence, the multilayer molecules must be tilted around the short molecular

axis. The multilayer spectra are a superposition of the contributions of the

flat-lying monolayer molecules and the tilted ones in the upper layers which

makes it hard to identify and interpret especially the modes between 500 and

1000 cm−1 (assignments and visualizations in App. H). The planar adsorption

in the monolayer and the tilting around the short axis for higher coverages

seems universal for the perfluoropropyl substituted TAPPs. The size of the

substituent in Z-position has an influence on the general molecular (long-range)

ordering. For the smaller substituents H and Cl the multilayer spectra show a

good resolution suggesting a well-ordered surface structure where all molecules

are oriented equally. This resolution (note the broad peaks in Fig. 4.11 (f)

and (h)) decreases for bromine and iodine-substituted TAPPs indicating a

rougher surface and less strictly defined adsorption geometry. All findings are

illustrated in Figure 4.14 and summarized at the end of this chapter.
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Figure 4.13.: Electronic HREEL spectra including fits to the

vibronic S0 → S1 transition peaks of multilayer

coverages of the denoted TAPP derivatives on

Au(111). The primary electron energy E0 is 15.5

eV, the spectra are normalized with respect to

the S0 →S1 transition peak (dashed line). Figure

partly adapted from ref. [218].
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The electronic (E0 = 15.5 eV) multilayer HREEL spectra of all measured

TAPP derivatives are summarized in Figure 4.13. The monolayer spectra show

no clear adsorbate induced peaks and are therefore not shown here. The screen-

ing of adsorbate features requires a significant adsorbate-substrate interaction

which is underpinned by the dissociation of the monolayers in the TPD mea-

surements. The observed HOMO-LUMO gaps (S0 →S1 transitions, dark blue

Gaussian fits) range from 2.42 eV (TAPP-Br) to 2.84 eV (TAPP). In all spec-

tra, the already mentioned vibronic features are visible, which are assigned

to additionally excited breathing modes (sym. ν(C-N) and ν(C-C) around

1500 cm−1 and overtones; green and light blue Gaussian fits). The HREELS

derived optical gap of the pristine TAPP (θ = 10 ML) of 2.84 eV is surpris-

ingly close to the UV/Vis derived (solved in toluene [182]) of 2.86 eV showing

negligible molecule-molecule interactions in the thin film. The introduction of

the perfluorinated propyl chains in Y-positions shifts the gap slightly to 2.77

eV (UV/Vis in THF: 2.84 eV [218]). As proposed, only a small reduction by

0.07 eV is observed, indicating a weak influence of substitution in this position

due to the fact that a nodal plane goes through the long molecular axis in

the HOMO as well as in the LUMO (see Fig. 4.2 (c) and (d), respectively).

The replacement of hydrogen in position Z with chlorine shifts the optical gap

clearly stronger by 0.28 eV to 2.49 eV (UV/Vis in THF: 2.64 eV) indicating a

strong influence of the electron withdrawing halogen on the energetic positions

of HOMO and LUMO. The nature of the halogen and so also their differences

in electronegativity seem to play a surprisingly non-relevant role in thin film

HREELS measurements as the similar values for TAPP-Br of 2.42 eV (UV/Vis

in THF: 2.61 eV) and TAPP-I of 2.48 eV (UV/Vis in THF: 2.51 eV) show (all

UV/Vis data from ref. [218]). The UV/Vis values for solutions show significant

differences here which may be caused by solvent effects or due to less good res-

olution in the HREEL spectra. Exemplary for the perfluoropropyl-substituted

TAPPs, the observed vibrations are listed visualized for TAPP-H in Table H.2

and Figure H.2 in App. H.
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4.5. Discussion: Substrate-Directed Growth and

the Influence of Substituents

The described adsorption properties of all investigated compounds are now

placed in a more general context by comparing them with the bulk crystal

structures. Figure 4.14 shows in the top the derived adsorption behaviors for

QPP, tBu-QPP, TIPS-Pn, and TAPP and in the middle the corresponding

crystal structures. The bottom section shows the adsorption behavior for the

TAPP derivatives. The first row repeats the generally observed substrate-

directed planar adsorption in the monolayer and up to at least 10 ML thick

films. This was observed in a strict way for the pure planar molecules QPP

and TAPP and less strict when bulky substituents were symmetrically intro-

duced (tBu-QPP, TIPS-Pn). For all investigated systems and all investigated

thicknesses, the HREELS data show no tilting angles between the molecular

planes and the substrate of more than 20◦. Nevertheless, an exact quantifi-

cation is challenging, especially for increased film thicknesses. On the other

side, the bulk crystal structures show tilting angles between neighboring stacks

of molecules of 82◦ for QPP, 69◦ for tBu-QPP [221] and 35◦ for TAPP [216],

whilst TIPS-Pn crystallizes in a brick-like structure [222] with no tilting like

the substrate-directed growth mode. The bottom row summarizes the behav-

ior of the C3F7-substituted TAPP derivatives. The monolayer adsorbs in a

planar geometry, but the flexible substituents disturb an analogue adsorption

of the further layers. These layers adopt a crystal-like growth mode as long

as the substituent in Z-position is small enough (TAPP-H, TAPP-Cl). The

bigger bromine and iodine substituents suppress a smooth and homogenous

film growth.
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82°

69° 35°

QPP tBu-QPP TIPS-Pn TAPP

TAPP-H TAPP-Cl TAPP-Br TAPP-I

Au(111)

0°

Figure 4.14.: Developed adsorption geometry models for the investigated molecules.

For QPP [221], tBu-QPP [221], TIPS-Pn [222], and TAPP [216] the

corresponding bulk crystal structures measured by X-ray diffraction

are shown. Figure adapted from ref. [218].

To summarize, if an adsorbing molecule shows a reasonable large planar aro-

matic system it will adsorb in a planar fashion on interacting metal substrates

to increase the metal-π interaction, also if there are bulky substituents. This

flat monolayer now acts as a template for the second layer to now increase the

intermolecular π-π interaction between two layers and so on (QPP, textittBu-

QPP, TIPS-Pn, TAPP) as long as such a behavior is not prevented by the

orientation of flexible substituents in the monolayer (C3F7-substituted TAPP

derivatives). There is no observation of a critical coverage from whereon an-

other adsorption geometry is adopted. However, it is self-evident, that the

number of defects increases with an increasing number of layers and there-

fore more and more seed crystals exist that will lead to the bulk like crystal

structure.
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in the depicted structural formulas) QPP, TAPP,

and TIPS-TAP and their respective hydrocarbons

(X = C-H in the depicted structural formulas)

dibenzo[hi,uv ]hexacene (DBH), peropyrene (PP),

and TIPS-pentacene (TIPS-Pn). Figure adapted

from ref. [55].

Regarding the electronic HREELS measurements, it has to be noted, that

in all cases the monolayer was hard to investigate due to screening effects

from the substrate or poor signal-to-noise ratios. The study of thin films with

a coverage between 4 and 10 ML showed a surprisingly well agreement with

UV/Vis data obtained from bulk or solution investigations showing negligible

intermolecular interactions. This study lead also to qualitative and for the

distinct cases also quantitative understanding of the influence of substituents

at the particular positions on the optical gap. The comparison of tBu-QPP

with QPP, as well as the comparison of the substituted TAPPs with the pristine

one, confirm the assumption, that substitution in Y-positon (compare to Fig.

4.1) has no influence on the optical gap as the participating frontier orbitals

show no electron density there. The substitution in Z-position was only studied

at the TAPP system and showed a shift of 0.28 ± 0.09 eV when substituting

H with a halogen. In contrast to UV/Vis measurements, the nature of the

halogen (chlorine, bromine, or iodine) had only a small influence on the size

of the optical gap, which may be due to the poor resolution of the underlying

spectra. The introduction of nitrogen into an aromatic hydrocarbon system
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(X = N in Fig. 4.1) has only little influence on the size of the optical gap.

Complementary DFT calculations in Figure 4.15 for the HOMO and LUMO

energies of the studied N-hetero/hydrocarbon pairs clearly show the collective

shifting of both the HOMO and the LUMO due to the substitution of C-H

with N.

The small band gap of the pentacene derivatives compared to, e.g. TAPP

or QPP, is due to the number of participating π-electrons. In the case of

pentacene (and TIPS-Pn or TIPS-TAP; 22 π-electrons) it fulfills the rule of

Hückel [223] whereas 4n+2 π-electrons lead to aromaticity and 4n π-electrons

to anti-aromaticity. PP or TAPP with 28 and QPP or DBH with 32 π-electrons

are anti-aromatic. This classification is only strict for small aromatic systems

but as the observed differences show, there are still effects in larger systems.
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Metal/Organic Interfaces

Regarding the electronic structure, interfaces can show exceptional proper-

ties. Bulk behavior is completely altered due to the reduction from a three-

dimensional to a two-dimensional system. This also concerns collective ex-

citations of electrons, known as plasmons. Surface plasmons are located at

interfaces and can be sensitive to the charge density distribution at this in-

terface [87] and therefore deliver information about the underlying electronic

structure. This is used e.g. in surface plasmon resonance-based techniques like

biosensors or lab-on-a-chip sensors [224] which all work with the high sensitiv-

ity of the surface plasmon behavior on layer thickness or molecular adsorption.

The smaller wavelength of surface plasmons compared to optical photons also

allows the confinement of photons into smaller structures and the merging of

electronics and photonics at the nanoscale [225] that offers opportunities in

applications like nanolithography [226] or light generation [227]. Collective

excitations are widely studied at metal/vacuum interfaces [76,80,228–233] but

only rarely at metal surfaces covered with thin organic films [82]. At such inter-

faces, the electronic structure of the metal and the organic film can be changed

drastically. Tautz et al. [44,83] observed a screening of the adsorbate’s frontier

orbitals, a shift of the substrate’s surface plasmon frequency and the arising of

new low-energy features at 0.4 eV in electronic HREELS measurements of thin

perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) films on Ag(111) and

Ag(110) (see also Fig. 5.11 (c)). The group of T. Angot investigated similar

low-energy transitions in detail with angle-resolved electronic HREELS at the

ZnPc/Ag(001) and observed an interesting dispersion behavior [82, 234].

Earlier investigations of surface plasmons at metal/vacuum interfaces were

done with optical techniques or high-energy EELS (≈50 keV) [235, 236]. The

first need special conditions or rough surfaces as light cannot directly excite

surface plasmons due to different phase velocities and therefore different wave

vectors which prohibit a direct coupling [74]. The latter lack of surface sensitiv-

ity due to the large penetration depth of high-energy electrons. The obtained
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results with both techniques were ambiguous and the surface plasmon disper-

sion was either positive or zero [229, 237]. Electronic HREELS instead is a

powerful technique for the investigation of plasmonic transitions as it com-

bines the surface sensitivity and the possibility of direct excitation [74, 238].

Angle-resolved electronic HREELS can further give detailed information about

the dispersion. The first part of this chapter shows and discusses the results

obtained by angle-resolved HREELS, first for the pristine gold surface, fol-

lowed by adsorbate-covered Au(111) surfaces. The second part deals with

particular vibrational features which correspond to the electronic HREELS

measurements. For a better understanding, a brief introduction into surface

plasmons with a focus on the properties of the Au(111) surface is given first.

5.1. Background: Plasmons at Metal Surfaces

For many applications, it is sufficient to describe electrons in metals with the

classical Drude model [239]. Here the metal is described as an ionic crystal

and the electrons move freely as a so-called electron gas. This term refers to

similarities to the kinetic gas theory whereas without an external electrical field

the electrons in a conductor behave like gas particles in an enclosed volume.

Due to long-range Coulomb interactions, the electrons in an electron gas can

show collective behavior [240]. For metals, such collective oscillations of the

charge-density are a fundamental property. The corresponding quasiparticle

is the plasmon. The plasma frequency of such a bulk plasmon (BP) ωBP

derived from Poisson’s equation of the electrostatics, the continuity equation,

and Newton’s second law [107,241] is

ωBP =

√
nee2

ϵ0me

(5.1)

with the electron density ne, the elementary charge e, the vacuum permit-

tivity ϵ0, and the electron mass me. With the surface plasmon, Ritchie [242]

introduced a corresponding collective excitation at the metal/dielectric inter-

face. Its frequency ωSP with the dielectric’s permittivity ϵ2 is given by

ωSP = ωBP

√
1

1 + ϵ2
. (5.2)

Within a metal which has a dielectric function described by the Drude model,

there exists a collective excitation above the plasma frequency with both pho-
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tonic and plasmonic character, the bulk plasmon polariton (BPP). In a simple

(local) model, the longitudinal bulk plasmon is dispersion-less whereas the

BPP shows dispersion and its frequency ωBPP dependence on the wave vector

q is given by

ωBPP =
√
ω2
BP + c2q2 (5.3)

with c, the speed of light. A similar excitation can also take place at the

metal/dielectric interface or in two-dimensional systems like artificially struc-

tured semiconductors [243], graphene [244, 245] or ultra-thin metal layers on

dielectric substrates [246] and is named surface plasmon polariton (SPP). Here,

the strong localization of the charges in the dimension perpendicular to the

surface causes a completely altered dispersion relation which shows a square-

root-like dependence on the wave vector:

ωSPP =

√
ϵ1 + ϵ2
ϵ1ϵ2

cq (5.4)

with the permittivity of the metal and the dielectric material ϵ1 and ϵ2,

respectively. In the long wavelength limit, the SPP behaves like a photon

(dispersion relation ω = cq), for higher q it approaches asymptotically the

surface plasmon frequency.

The influence of the considered dimension on plasmonic dispersion was stud-

ied within the random phase approximation (RPA) by Das Sarma et al. [247]

and the obtained dispersions are depicted in Figure 5.1 showing for q → 0

the finite value, the
√
q-dependence, and the

√
ln(q) for 3D, 2D, and 1D,

respectively.
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Figure 5.1.: Calculated 1D (orange), 2D (red), and 3D (blue)

plasmon dispersion with frequency ω and wavevec-

tor q. The grey shaded area is the calculated region

of the single-particle electron-hole-pair continuum

in one dimension (adapted from ref. [247]).

The combined photonic and plasmonic character of an SPP is visualized in

Figure 5.2 (a) where the longitudinal charge oscillation is shown as circles at the

metal surface and the corresponding transversal electrical field lines are shown

above and below. The interaction of a two-dimensional system of free electrons

with another two- or three-dimensional electron gas (see Fig. 5.2 (b)) can lead

to a novel excitation which shows a sound-like behavior (linear dispersion in

the long wavelength limit) and is therefore called acoustic plasmon [248]. This

new excitation attracted notable interest as it offers possible explanations for

dynamics near the Fermi level or the mediation of superconductivity which

cannot be explained with conventional 2D or 3D plasmons due to different long

wavelength behavior [249–251]. The acoustic plasmon was first considered for

a collective excitation in a system of two different electronic carriers [252].
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Figure 5.2.: (a) Surface plasmon at the metal/dielectric inter-

face with its combined electromagnetic wave (red

arrows) and surface charge (+ and -) character. (b)

Interpretation of surface state electrons as a 2D

sheet in the distance zd to the surface of the 3D

bulk material (adapted from ref. [253]. (c) top: Po-

tential (V ) vs. distance z with the metal/dielectric

interface at z = 0 with lattice constant a and vac-

uum potential V0. (c) center: Real part of the one-

dimensional Schroedinger equation solution corre-

sponding to bulk (Bloch) states. (c) bottom: Real

part of the one-dimensional Schroedinger equation

solution corresponding to surface states. Adapted

from ref. [254].

Chaplik et al. [255] later discussed acoustic plasmons in metal-insulator-

semiconductor systems and found out that the valence electrons at the metal

surface alter the plasmon in the semiconductor via screening from square-root

to linear behavior. But the existence of acoustic plasmons was only considered

for spatially separated free electron systems as depicted in Figure 5.2 (b) [256,

257]. In 2004 Silkin et al. [248] predicted that dynamical screening in metals
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with a partially filled surface state band should also lead to the formation

of a 2D plasmon with acoustic-like dispersion. They suggested the Be(0001)

surface as a promising candidate and in 2007 Diaconescu et al. [76] found

the experimental affirmation in an angle-resolved HREELS study of Be(0001).

Figure 5.2 (c) shows the potential in a crystal with lattice constant a (top,

z < 0) and the (simplified) step to the vacuum potential (V0, z > 0). The

Schrödinger equation offers two types of solutions for such a system [258]. The

first type (centre) behaves in the crystal-like normal Bloch waves and decays

exponentially into the vacuum (Bloch states), the second type (bottom) decays

exponentially both into the crystal as well as into the vacuum, hence is located

at the surface (surface states) [254].
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Figure 5.3.: (a) Dispersion of the surface state on Au(111) (note

the Rashba-splitting [259]) in the depicted direc-

tions of the Brillouin-zone with the surface state

(SS), the sp-band region (grey area) and the Fermi

energy EF (adapted from ref. [260]). (b) Calcu-

lated (solid dots and open squares, see ref. [261] for

details) and measured (HREELS, crosses) data for

the conventional (CSP) and acoustic (ASP) surface

plasmon of Au(111) (adapted from ref. [261] with

experimental data from ref. [78]).

Figure 5.3 (a) shows the surface state (SS) dispersion as obtained by angle-

resolved photoelectron spectroscopy (ARPES) for Au(111) [260]. The splitting

(white and black dots) occurs due to the Rashba-effect [259]. With the crossing

of the Fermi level (see the top of the graph), the suggested requirement for the
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occurrence of acoustic plasmons is fulfilled here. Results for the plasmonic exci-

tation at the Au(111) surface obtained experimentally with HREELS [78,230]

and theoretically with two different methods [261] are shown in Figure 5.3 (b).

The experimental data (crosses) show clearly the two plasmonic branches, the

“conventional” plasmon between 2.5 and 3 eV and the “acoustic” one with a

linear dispersion below. These findings were later corrected by Vattuone et

al. [79] who now investigated an Au(111) single crystal instead of a deposited

90 nm thick film in ref. [78] and showed that the observed peak which shows a

linear dispersion essentially consists of two individual ones so that the actual

acoustic plasmon agrees better with the theoretical predictions shown in Fig-

ure 5.3 (b). Experimental (Cu) [80, 81] and theoretical (Ag, Cu) [261] studies

showed that the 111-surfaces of the other coinage metals have similar prop-

erties and can also exhibit a 2D plasmon with acoustic-like dispersion. The

investigation in this study starts with a verification of the mentioned HREELS

measurements on the pristine Au(111) surface before the results for adsorbate-

covered samples are presented. A detailed compendium of the theory behind

surface plasmons and surface plasmon polaritons can be found in ref. [262].

5.2. Angle-Resolved electronic HREELS

measurements

Due to the mentioned mismatch of plasmonic and light wave vectors, direct

coupling between light and plasmon and hence plasmonic excitations are hin-

dered when metallic samples are investigated with optical techniques. This

motivates the use of electrons for studying surface plasmonic properties of ma-

terials. EELS and HREELS have been widely used [76,78–81,230] in this field

and the possibility of angle-resolved measurements offers the opportunity to

measure sensitive to the participating wave vector parallel to the surface q|| and

thus detect dispersions. Nevertheless, it is still challenging to find the right

scattering geometry and incident electron energy that the measured scan line

(energy loss vs. momentum transfer) crosses the plasmonic dispersion curve.

The transferred parallel momentum is for an angle-resolved EELS study given

by equation 2.10 in section 2.2. A small angle step size in angle-resolved mea-

surements increases the information about dispersion and dipole-activity. To

enable this within reasonable experimental efforts an automated angle rota-

tion was established during this work. The Arduino R⃝ controlled step motor

105



5. Collective Excitations at Metal/Organic Interfaces

allows together with the spectrometer software’s ability to perform repeated

measurements with variable energy and angle step size. The only limitation is

the software’s maximum number of subsequently recorded spectra of 999. The

step motor unit is described in section 2.4.1, a commented program code can

be found in App. I.1.

5.2.1. Au(111)

The pristine Au(111) surface was one of the first systems for which the exis-

tence of the proposed acoustic surface plasmon was experimentally proven [78].

The very first system, the Be(0001) surface, showed the collective excitation

in a well-defined form up to almost 2 eV at an incident electron energy of

E0 = 10.74 eV [76]. On Au(111) the corresponding loss-intensity of the sur-

face plasmon peak drops down faster with increasing off-specular angle mea-

surements and becomes difficult to detect. The first step in this study on

the influence of an adsorbate on such collective excitations is the reproduc-

tion of former results for the bare surface to see if sensitive parameters for

sample preparation and measuring (E0, ΦI , ΦS) are appropriate for the detec-

tion of collective low-energy excitations. Figure 5.4 (a) shows the HREELS

measurements for different angles ∆Φ off-specular (in the sense, that rotating

the analyzer towards the surface normal is counted as positive ∆Φ according

to Fig. 2.5). For angles between 1.8◦ and 4.7◦, clearly, two peaks (ASP and

X) can be identified which is in agreement with ref. [79] and in contradiction

to ref. [78] where the split peak was not resolved. The conventional plasmon

(CSP) [230] is barely visible in most spectra around 2.5 eV. The loss energies of

the features vs. the corresponding transferred parallel wave vector q|| are plot-

ted in Figure 5.4 (b). They are i excellent agreement with the measurements

of Vattuone et al. [79]. The ASP shows clearly a linear dependence on q and

goes to 0 for q → 0. It needs to be mentioned that the shown data only covers

positive momentum transfer as the observed peaks in the negative q|| regime

were less well-defined and the intensity decreases rapidly with higher negative

off-specular angles. Such a behavior was observed before in literature [76] and

has been assigned to the narrow dipole lobe that can cause a low excitation

probability in the respective regime.
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Figure 5.4.: (a) Series of electronic HREEL spectra recoreded

under ∆Φ from 0.1◦ to 4.6◦ off-specular analyzer

angles and with a primary electron energy E0 =

15.5 eV. The spectra are separated vertically by

80 counts s−1 and peak positions are marked with

dashed lines for clarity. (b) Corresponding disper-

sion relations of the marked transitions.

The CSP around 2.5 eV shows more or less no dispersion within the observed

momentum range and small signal-to-noise ratio, but the reported [230] small

positive dispersion lies in the error bars of the present experimental data. ASP

and CSP show high accordance to the calculations by Yan et al. [261] shown

in Fig. 5.3 (b). The feature X shows a dispersion almost parallel to the ASP,

shifted by roughly 0.3 eV to higher loss energies and thus not vanishing for

q → 0. Vattuone et al. [79] described it as the upper threshold of interband

transitions between bulk states and the surface state band but did not explain

the situation for small q|| where the surface state is occupied (see Fig. 5.3 (a))

and an excitation should be impossible.

With this knowledge of being able to excite and measure acoustic surface

plasmons on the bare Au(111) surface the next step is the investigation of the

influence of adsorbates.
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5. Collective Excitations at Metal/Organic Interfaces

5.2.2. TCNQ and F4TCNQ on Au(111)

To recapitulate, in the case of bare metal surfaces like Be(0001), Au(111), and

Cu(111), the collective low-energy excitation arises from the interplay of 3D

bulk electrons with the electrons in the partially filled surface state band. Thus

the influence of adsorbates on 2D plasmonic excitation is obviously connected

with the influence of adsorbates on the surface state electrons. It is known

from the literature that this influence ranges from quenching and thus frus-

trating a collective excitation [263] up to a transfer of the metallic properties

to the adsorbate layer and band formation in a spatially separated 2D free-

electron system [44,264]. A high electron affinity (EA) of the adsorbate helps to

form a free-electron system due to withdrawing electron density from the sub-

strate. Therefore a model system with tunable EA and well-studied adsorption

properties was chosen for the present investigation. Tetracyanochinodimethan

(TCNQ) (structural formula, see Fig. 5.5 (b)) has an EA derived from inverse

photoemission spectroscopy (IPES) of 4.23 eV.

Fluorination increases the EA up to 5.08 eV [265] for 2,3,5,6-tetrafluorotetra-

cyanoquinodimethane (F4TCNQ). This difference leads to a special situation

for the adsorption on an Au(111) surface. While for TCNQ the EA is not high

enough to allow charge transfer from the metal to the adsorbate, F4TCNQ is

charged. Due to highly ordering and epitaxial growth of F4TCNQ on Au(111)

the charge is spatially distributed and a space charge region extending up to

a coverage of 10 ML into the organic film can be found [266].

N

N N

NN

N N

NFF

F F

a

F TCNQ
4 TCNQ

1 nm

b

Figure 5.5.: Molecular structures and STM images of F4TCNQ

on Au(111) (a), adapted from ref. [267] and TCNQ

on Au(111) (b), adapted from ref. [268].
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5.2. Angle-Resolved electronic HREELS measurements

Both molecules have been intensively studied on single crystal surfaces [267–

272] as well as in devices like photovoltaic cells [273] or transistors [274, 275].

STM investigations (see Fig. 5.5 (b)) revealed a brick-like adsorption geome-

try with stabilizing hydrogen bonds between neighboring molecules for TCNQ

on Au(111) [268]. A study of F4TCNQ on Au(111) showed significant dif-

ferences [267]. The bright spots between the molecular features in the STM

image in Figure 5.5 (a) are assigned to segregated Au adatoms [276]. The

interaction between the Au(111) surface and the F4TCNQ is thus strong, that

single Au adatoms (purple in Fig. 5.5 (a)) are lifted and coordinated by two

nitrogen atoms of neighboring molecules (blue) leading to a charge transfer

from the metal to the molecule. Note, that at the corner of four adsorbed

F4TCNQ molecules with one Au adatom centered only two nitrogen atoms of

two molecules are directly coordinated to the adatom while the distance to the

other two nitrogen atoms is increased.
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Figure 5.6.: Electronic HREEL spectra including fits for the relevant peaks for F4TCNQ

multi- (a) and monolayers (b), TCNQ multi- (d) and monolayers (e), and

Au(111) ((c) and (f)). The primary electron energy E0 is 15.5 eV. Labeled

peaks are the plasmonic excitation (P), the conventional surface plasmon

(CSP), and the vibronic S0 → S1 transition peaks.
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Details about sample preparation and dosing for all shown measurements

are summarized in Table B in App. B. The electronic HREELS results for

F4TCNQ on Au(111) in specular geometry are shown in the left part of Fig.

5.6. At the bottom, (c), the pristine Au(111) shows the CSP at 2.6 eV as

introduced in the last section and the before mentioned spectrometer artefact

between 1.2 and 1.8 eV. The ASP is not visible here as it vanishes for q → 0

(specular measuring geometry) and the possible interband transition (X in Fig.

5.4) cannot be resolved as a separated peak as it is overlapped by the large

Drude tail of the elastic peak. Figure 5.6 (b) now shows the surprising result

for a monolayer of F4TCNQ on Au(111). Not only a broad low-energy feature

(P) around 0.5 eV loss energy is visible despite measuring in specular geometry

but this feature also shows a drastically increased intensity and signal-to-noise

ratio compared to the ASP measurements on the pristine Au(111) surface

presented in section 5.2.1. The CSP is rather unaffected by the organic layer

and still appears at 2.6 eV as a small peak only a little above the detection limit.

Increasing the coverage up to 9 ML (Fig. 5.6 (a), note the unchanged y-axis

range for comparison of absolute intensities) reduces the intensity of P but does

not affect its energetic position. The CSP is vanished and a peak associated

with the S0 → S1 transition (optical gap) is visible more as a step edge (see

enlarged part of Fig. 5.6 (a)) than a well-defined peak around 3.3 eV (UV/Vis:

3.1 eV [277]). Interestingly the situation in the multilayer alters completely by

changing the procedure of sample preparation. Whilst the presented multilayer

spectrum was obtained after dosing on the sample at room temperature, Figure

I.2 in App. I.2 shows a 3.5 ML thick F4TCNQ layer dosed on a 120 K cold

Au(111) substrate. Although the coverage is half of the amount of the coverage

in Figure 5.6 (a), feature P has almost vanished and also shifted to lower

energies, instead, the S0 → S1 is dominating the spectrum. The electronic

HREELS results in chapter 4 and earlier investigations [44, 58] showed that

a well-defined peak which can be assigned to the S0 → S1 transition in the

multilayer is the usual case. For F4TCNQ on Au(111) it is concluded that

dosing on a 120 K cold sample leads to a less-ordered structure with non- or

only weakly interacting molecules. In contrast, the thermal energy of a 300 K

warm sample allows reorganization to a well-defined molecular crystal. The

well-ordered, epitaxial film growth is also confirmed by low-energy electron

diffraction (LEED) measurements which show a surprisingly similar pattern

for the monolayer as well as for the 20 ML thick F4TCNQ film dosed on
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5.2. Angle-Resolved electronic HREELS measurements

Au(111) at 300 K sample temperature [266]. In the same study, two-photon

photoemission revealed the already mentioned space charge region extending

up to 10 ML into the organic film which explains the hindered HOMO →
LUMO (S0 → S1) excitation. Note, that the decreased intensity of P but an

overall similar spectrum of 1 ML and 9 ML F4TCNQ in Figure 5.6 cannot be

explained by possible Stranski-Krastanov growth as the signal for the S0 →
S1 transition from molecules located in the multilayer islands should be much

larger in that case (see section 4.1 for more details).

The corresponding data for TCNQ on Au(111) is shown in the second col-

umn of Figure 5.6. The CSP of the Au(111) surface (f) has now vanished in

the monolayer spectrum (e). Interestingly and in contrast to F4TCNQ, the

monolayer shows a well-defined peak at 3.0 eV which can be assigned to the

S0 → S1 transition by comparison to UV/Vis measurements in solution (3.1

eV [277]). Again there is a low-energy feature P observable, shifted slightly to

0.6 eV and with significantly reduced intensity, compared to F4TCNQ (note

the ordinates’ equal scaling). The present C-H bonds cause an additional well-

pronounced peak assigned to the excitation of C-H stretching vibrations at 0.4

eV. The increase in coverage to 10 ML (spectrum Fig. 5.6 (d)) causes a shift of

P to slightly lower energies and, more significant, a decrease in intensity espe-

cially when the broad Drude tail of the elastic peak is taken into account. On

the other hand the intensity of the peak assigned to the optical gap rises and

shows vibronic features, i.e., the S0 → S1 and additional vibrational excitation

of ν(C-H) or ν(C-C) bonds (compare to chapter 4 where similar features were

observed in all systems). In this case, the slight deviations of feature P may be

a hint to Stranski-Krastanov growth. Then, the excitation of feature P would

still take place in the monolayer areas of the sample, the intense S0 → S1-peak

instead is caused by intramolecular excitations in the islands.

The peaks labeled as P in Figure 5.6 can be precisely fitted (red lines)

with a Drude function [82] which arises from the dielectric function for metals

consisting of the interband transition contribution ϵ∞ and a Drude term for

the contribution of free carriers:

ϵ(ω) = ϵ∞ − ω2
BP

ω(ω + [i/τ ])
(5.5)

where ωBP is the bulk plasma frequency and τ the relaxation time. The

imaginary part Im now corresponds to the Drude-type loss function [63] and

the measured HREEL intensity Iloss [82, 278,279]
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5. Collective Excitations at Metal/Organic Interfaces

Im

{
−1

1 + ϵ(ω)

}
=

1

1 + ϵ∞

ωωP τ
−1

(ω2 − ω2
P )2 + ω2τ−2

= Iloss (5.6)

with the energetic position of feature P, ωP . Note that 1
1+ϵ∞

and τ−1 define

the maximum intensity and linewidth of P, respectively. The assumption of

free carrier behavior leads to the need for investigation of the dependence on

the transferred parallel momentum q||, i.e., the dispersion.

As shown above, for Au(111), angle-resolved HREELS offers the opportunity

to do so and the obtained results for F4TCNQ and TCNQ are summarized in

Figure 5.7. (a) and (b) show waterfall plots (x- and y-offset between the

spectra) of 45 electronic HREEL measurements between −5◦ (black) and +5◦

(purple) degrees off-specular analyzer angle for monolayers of F4TCNQ and

TCNQ on Au(111), respectively. The most important finding here is, that

the energetic position of feature P shows a dependency on the transferred

momentum. In Fig. 5.7 (c) the respective energies at the maximum intensities

in (a) and (b) are plotted against the transferred momentum and show clearly a

dispersive behavior indicating delocalization. Note for comparison the feature

assigned to the S0 → S1 excitation around Eloss = 3.0 eV in Figure 5.7 (b)

which is clearly unaffected in energy, linewidth and intensity by the transferred

parallel momentum indicating localization on single molecules. The spectra in

Figure 5.7 (a) reveal also a strong dependency of the measured loss intensity

on the off-specular angle, indicating a strong dipole activity of the respective

excitation, i.e., a corresponding dynamic dipole moment perpendicular to the

metal surface. This is depicted in Figure 5.7 (d), where blue data points

refer to F4TCNQ, red data points to TCNQ. The maximum intensity is about

three times as large for F4TCNQ as for TCNQ. Both curves show the highest

intensity around q|| = 0.04 Å−1 and an asymmetric behavior with a tail towards

higher q|| values.
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Figure 5.7.: (a) and (b) 45 angle-resolved electronic HREEL spectra from ∆Φ = -5◦

to 5◦ for monolyers of F4TCNQ and TCNQ on Au(111), respectively.

The primary electron energy E0 is 15.5 eV. Drude-fits to the plasmonic

excitation are shown in red. (c), (d), and (e) show the loss energy

of the plasmonic excitation, the corresponding intensity, and linewidth

depending on the wavevector component parallel to the surface q||, re-

spectively.

The curve for TCNQ (red data points in Fig. 5.7 (c)) shows a minimum of

0.65 eV at q|| = 0.03 Å−1 , F4TCNQ has its minimum of 0.53 eV at q|| = 0.02

Å−1. It is hard to distinguish if the underlying dispersion relation is quadratic

(as known from free electrons) or linear (as presented for the ASP in the

last section). The dependency of the linewidth (in terms of the full width at

half maximum, FWHM) on the transferred momentum is plotted in Fig. 5.7

(e). The almost quadratic curves are centred around 0.04 Å−1 and have their

minima at 0.8 and 1.1 eV for TCNQ and F4TCNQ, respectively. This behavior

is comparable to the FWHM dispersion of surface plasmons for metals like Na,
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5. Collective Excitations at Metal/Organic Interfaces

K, and Cs [74, 278, 280] indicating the existence of almost free carriers at the

interface.

Other measurements which aimed at the influence of the primary electron

energy E0 and the coverage on the observed plasmonic feature need further

investigations and are therefore only shown and briefly discussed in App. I.4

and App. I.5, respectively. It needs to be mentioned that all measurements

are not performed along one of the high-symmetry axes as the used experi-

mental setup does not contain a LEED spectrometer to determine the crystal

orientation. The use of a crystal where the orientation was measured before

at a different setup allowed a rough determination of the orientation during

the HREELS measurements. A comparison of angle-resolved HREELS mea-

surements in two different crystal orientations (one along the ΓK-direction)

revealed no significant differences within the measurement uncertainty (see

Fig. I.3 in App. I.3).

In a previous HREELS study [281], where only spectra recorded in specular

geometry were shown, no electronic low-energy excitation was observed. A

possible explanation would be a different surface cleanliness or a wrong cover-

age determination by using a quartz microbalance compared to the TPD based

procedure in this work.

So far, the results suggest a collective excitation with a plasmonic char-

acter as the origin for the observed dispersive low-energy feature. Before

the obtained results are compared to literature, discussed and interpreted in

detail, complementary results obtained in the present study for additional

metal/organic interfaces are presented.

5.2.3. Analogous Excitations in other Systems

As done before for, e.g. PTCDA/Ag(111) [44], the measured low-energy fea-

ture in the F4TCNQ/Au(111) system could be associated with the strong

adsorbate/substrate interaction (chemisorption), charge transfer, and adatom

coordination. Therefore the finding, that the particular excitation occurs also

in a weaker interacting system such as TCNQ/Au(111) and is not depending on

the special situation at the F4TCNQ/Au(111) interface is surprising. Hence,

an extension of the current study to further well-defined adsorbate/substrate

systems is appropriate. The structural formulas of the investigated further

molecules are listed in Figure 5.8.
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Figure 5.8.: Structural formula of the here studied molecules:

FnTCNQ (n = 0, 2, 4), TTF, [TCNQ]−[TTF]+,

anthracene, tetracene and pentacene.

The study of 2,5-difluorotetracyanoquinodimethane (F2TCNQ) on Au(111)

can give hints if the difference of particular properties between F4TCNQ/Au(111)

and TCNQ/Au(111) occur abruptly or smooth. F2TCNQ has been studied in

charge transfer compounds [282] and transistors [283]. Its EA of 4.59 eV is

located right in between TCNQ (4.23 eV) and F4TCNQ (5.08 eV) [265]. The

investigation of tetrathiafulvalene (TTF) on Au(111) extends the study to a

system with an opposite charge transfer compared to F4TCNQ, i.e., an elec-

tron transfer from the molecule to the gold substrate. TTF is widely used

as n-dopant or pure single crystal in organic electronics [284, 285]. It is also

part of the widely studied [TTF]+[TCNQ]− salt, a charge-transfer system with

interesting metallic properties [286,287]. This donor/acceptor system with its

positive charge on the TTF and the negatively charged TCNQ on Au(111)

again completely alters the surface environment and is thus studied here to

understand the influence of charged species. The investigation is completed

by studying the acenes, namely pentacene, tetracene, and anthracene, which

can lead to insights into the effect of more weakly bound adsorbates on the

properties of the examined collective excitation and can give hints if the molec-

ular size is critical for some collective properties at the interface. These larger

acenes also have been used successfully in organic electronic devices [288–290].
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Figure 5.9.: Specular HREEL spectra for monolayer cover-

ages on Au(111) of TCNQ/TTF salt(turquoise),

F4TCNQ (green), F2TCNQ (light blue), TCNQ

(blue), pentacene (purple, θ = 0.5 ML), TTF (red),

tetracene (orange), and anthracene (yellow). The

primary electron energy E0 is 15 eV.

Figure 5.9 shows electronic (E0 = 15 eV) HREELS spectra for monolayers

(0.5 ML for pentacene) of all mentioned organic molecules on the Au(111)

surface recorded in specular scattering geometry. Preparation parameters

are summarized in App. B, corresponding TPD measurements, specular and

off-specular vibrational HREEL spectra, as well as angle-resolved electronic

HREEL spectra and derived dispersions, can be found in App. I.6. In all spec-

tra, a broad excitation is visible which shifts from 0.35 eV for the [TTF]+[TCNQ]−

salt to 1.67 eV for anthracene. All values are summarized in Table 5.1. The

slightly different value for F4TCNQ in Table 5.1 (0.44 eV) compared to the

one from Fig. 5.6 (b) (0.5 eV) is attributed to the different primary electron

energy (E0 = 15 eV and 15.5 eV, respectively). The intensity is highest for the

[TTF]+[TCNQ]− salt, F4TCNQ, and F2TCNQ and decreases for the systems

where the excitation is located at higher energies.
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5.2. Angle-Resolved electronic HREELS measurements

Table 5.1.: Energetic position of feature P for [TTF]+[TCNQ]−, F4TCNQ, F2TCNQ,

TCNQ, pentacene, tetracene, TTF, and anthracene on Au(111).

Organic adsorbate energetic position [eV]

[TTF]+[TCNQ]− 0.35

F4TCNQ 0.44

F2TCNQ 0.48

TCNQ 0.62

pentacene 1.05

tetracene 1.24

TTF 1.27

anthracene 1.67

In contrast to all other systems, where the plasmonic excitation shows its

highest intensity at a monolayer coverage, in the pentacene/Au(111) system

the highest intensity is observed for 0.5 ML coverage. This is shown in Figure

I.8 in App. I.6 and assigned to the special adsorption behavior of pentacene.

In section 3.4 it has been shown that up to 0.5 ML substrate-mediated interac-

tions influence the adsorption and force pentacene to adsorb in a well-ordered

pattern with large intermolecular distance. Before the observations are sum-

marized and interpreted it is noted, that all molecules investigated in chapter

4 did not show a comparable excitation suggesting that the introduction of ni-

trogen into the aromatic system of planar molecules (TAPP and QPP) and/or

the introduction of bulky substituents and therefore an increased distance be-

tween the metal surface and the organic film (TIPS-Pn, tBu-QPP) suppresses

the examined feature in the respective electronic HREEL measurements.

5.2.4. Discussion: Adsorbate Influenced Surface Plasmon

Excitations

The observations of comparable broad low-energy electronic excitations at

metal/organic interfaces are rare in literature. In the year 2000 Shklover et

al. [264] found a similar feature at the PTCDA/Ag(111) interface at 0.4 eV

which was assigned to a “monolayer exciton” due to the special properties at

this particular interface with an electron transfer from the metal to the ad-

sorbate and thus a completely altered electronic structure. The assumption
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of a localized molecular excitation can be excluded from the present measure-

ments as off-specular electronic spectra (which were not carried out in the

cited study) suggest clearly a dispersive behavior. A second observation at the

perylene/Ag(111) interface in 2004 by Eremtchenko et al. [56] assigns a broad

feature around 0.85 eV to an “interface excitation” without going more into

detail. The first detailed angle-resolved study was realized by Salomon et al. in

2012 [82] at the ZnPc/Ag(001) interface. The measured dispersion is explained

with a collective mode in a space charge layer between the metal surface and

the organic adsorbate. As the origin of the space charge, they claim a vibra-

tional excitation which leads to a dynamical charge transfer. This concept of

an interfacial dynamical charge transfer (IDCT) is investigated and explained

in detail in section 5.3.1 where it is also shown that it is not suitable to explain

the plasmonic excitation in the systems studied in the present thesis.

But the assumption that the observed feature is a plasmonic excitation of

a two-dimensional charge sheet seems likely. A well-studied system in this

context is graphene, the prototype 2D-material [291] and with its delocalized

π-electrons also a prototype for a 2D electron gas (for reviews regarding plas-

monic excitations in graphene, see refs. [292] and [293]). Two-dimensional plas-

mons were observed e.g. for graphene on SiC, Si(111), and SiO2 [244,294–296].

The study of single-layer graphene on SiC(0001) [244] revealed an intensity vs.

transferred momentum dependence similar to the measurements presented for

F4TCNQ and TCNQ on Au(111) in Figure 5.7 (c). The observed asymmetry

and shift of the maximum to a positive q-value are assigned to characteristic

properties of dipole scattering due to coupling to an image-charge electric field

perpendicular to the charge sheet plane [297]. The more detailed investigation

of Liu et al. [294] showed that an increase of graphene layers shifts the plasmon

to lower energies and intensities, a behavior affirmed here especially for TCNQ

on Au(111) (compare to Fig. 5.6 (d) and (e)).

The background section at the beginning of this chapter introduced the ex-

citation of 2D plasmons and in particular the ASP on metal surfaces with a

partially filled surface state (Be(0001) [76], Au(111) [78,79], Cu(111) [80,81]).

Thus, it is known from the literature that there exists a low-energy plasmonic

excitation on the bare metal surface and it is obvious that the participating

charge sheet is strongly influenced by adsorbates. We propose, that the ob-

served feature still originates from the same delocalized electrons as on the bare

Au(111) surface but a pronounced influence on energetic position, intensity
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5.2. Angle-Resolved electronic HREELS measurements

and dispersion is expected, depending on the molecular adsorbate. The most

obvious deviation from the bare Au(111) is, that for the adsorbate/Au(111)

systems the feature is observed most clearly in specular scattering geometry.

For bare Au(111) it is due to the Eloss → 0 for q → 0 behavior not ob-

servable. An explanation could lie in the adsorbate domain size. Rocca et

al. [298] showed in the year 1999 for ultrathin Ag films on Si(111)7×7 that

the dispersion curves of an observed plasmon vary strongly with coverage and

preparation procedure. Especially they observed that the dispersion curves

show a break in the slope with a constant energy between q = 0 and that

particular breakpoint. They explained it with different Ag island sizes due to

the different deposition procedures and thus a minimal plasmon energy as the

corresponding plasmon wavelength cannot extend the island size. Transferred

to the here presented system it needs to be noted that on the hexagonal sym-

metry of Au(111) the build-up of domains is likely and thus there is evidence

that the 2D charge sheet participating in a collective excitation is limited by

these domains. In other words, on the bare surface, the infinite size leads to

the observed Eloss → 0 for q → 0 dependence whereas the limited size due

to adsorbate domains leads to the non-zero energy in the specular geometry

shown in Fig. 5.7 and 5.9. This may not be relevant only for this work as

there are several publications where a 2D plasmon is predicted either with
√
q or linear dependency on q but the experimental data suggest a non-zero

plasmon energy for q → 0 [244, 294, 299]. Therefore a detailed analysis of the

dispersion curves with a comparison to theoretical models known from litera-

ture is set aside here as first theoretical input has to reveal insights into the

conditions at these particular interfaces. The other peculiar observation in

Figure 5.9 is the different plasmon energy for different adsorbates. For strong

electron acceptors, it is small for less-strong acceptors or donors it is shifted

to higher energies. An important parameter in this context seems to be the

EA. Experimental values for the EA from inverse photoemission experiments

(IPES) of thin films (e.g. 5 nm F4TCNQ on polycrystalline Au, see references

in Fig. 5.10 for details), except for TTF where no experimental data was found

and a B3LYP/6-311G DFT calculation was used, are plotted against the ob-

served plasmon energy in Figure 5.10 (a). The linear dependency suggests a

strong influence of this particular parameter or a corresponding property. An

explanation can give a study of K doped single-layer graphene [295] on SiC

where a strong dependence of the observed 2D intraband π-plasmon energy

119



5. Collective Excitations at Metal/Organic Interfaces

at given transferred parallel momentum on the K-doping concentration and

therefore charge carrier density in the sheet is observed. There an increase in

the intrinsic electron density from n = 1.2× 1013 cm−2 to 7.0 ×1013 cm−2 lead

to a plasmon energy shift from 0.5 eV to 0.75 eV (at q|| = 0.05 Å−1). Thus

it is concluded that adsorbates with higher EA lead to a stronger decrease

in electron density of the charge sheet at the metal surface and thus a lower

plasmon energy.
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Figure 5.10.: (a) HREELS plasmonic loss energy vs. experimental electron affini-

ties for anthracene (yellow [300]), tetracene (orange [300]), TTF (red,

B3LYP/6-311G DFT calculation), pentacene (purple [300]), TCNQ

(blue [265]), F2TCNQ (light blue [265]), and F4TCNQ (green [265]).

(b) Schematic picture showing the embedding of the 2D surface state

electrons (grey) in the 3D bulk (blue arrows), the pull- or push-like

interaction with the adsorbate (orange arrows), and the screening in-

teraction of the adsorbate with the incident electrons (red arrows).

To summarize the discussion of the results, the present study leads to a pic-

ture as visualized in Figure 5.10 (b). The collective excitation of the electrons

delocalized in two dimensions in the surface state band (grey and blue sheet)

by the incoming electron beam (red arrows) is influenced by the bulk electron

gas (blue arrows). For the (111)-surfaces of the coinage metals Cu, Ag, and

Au the surface state is partially filled which leads to two possible pathways

for surface plasmon excitations, CSP and ASP as shown in section 5.2.1. The

orange arrows in Figure 5.10 (b) now indicate the interaction of organic ad-

sorbates with the 2D electron gas underneath. The molecular frontier orbitals

interact with the metal states close to EF thus the size of adsorbate domains
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5.3. Vibrational Measurements

also determines the size of the delocalized electron system and so the minimal

plasmon energy. The same interaction also influences the electron density in

the charge sheet and thus leads to the observed shift of the plasmon energy.

But the all-in-all coherent picture still leaves open questions that require

further investigations. First, additional experimental efforts have to include

measurements along the high-symmetry axes to examine the influence of the

crystal orientation on the observed excitation. Therefore the crystal geometry

has to be determined with LEED before an angle-resolved HREELS inves-

tigation. Although there is already a lot of knowledge about the electronic

structure and properties like the adsorption geometries and domain sizes for

the particular systems, it is necessary to perform comprehensive measurements

under exactly the same preparation conditions as these conditions largely in-

fluence the studied properties and in particular the observed low-energy excita-

tion. Hence, the domain size on the investigated samples should be determined

with STM. Additional photoemission experiments and theoretical calculations

should study the band structures of the particular systems. With these larger

data sets theory should be able to deliver a clear picture of the nature of the

observed low-energy plasmonic excitation at metal/organic interfaces.

5.3. Vibrational Measurements

Salomon et al. [82] introduced a connection between a collective excitation at

metal/organic interfaces and the so-called interfacial dynamical charge trans-

fer (IDCT). The latter expresses itself in Fano-like line shapes in vibrational

spectra. HREELS offers the opportunity to measure electronic and vibrational

excitations in a single experiment, so looking also into the vibrational regimes

of the investigated systems is likely. To keep the number of unknowns as

small as possible, this part will focus only on TCNQ and its di- and tetra-

fluorinated derivatives which show the most meaningful vibrational spectra

regarding Fano-like line shapes. Before the presentation of the results, a brief

background section will introduce Fano-resonances in general and additionally

the concept of IDCT.
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5. Collective Excitations at Metal/Organic Interfaces

5.3.1. Background: IDCT and Fano-resonances

Ugo Fano introduced his theory for the occurrence of asymmetric line shapes in

1935 [301] and, gaining much more attention, in 1961 [302] which was applied

successfully in many fields of experimental physics like atomic and nuclear

physics [303], condensed matter physics [304], nanophotonics [305, 306], mag-

netic metamaterials [307], and mechanical waves [308]. The basic principle is

depicted in Figure 5.11 (a).
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Figure 5.11.: (a) Energy dependent cross sections σ for a discrete excitation (left), a

(ideal) continuum (middle) and a continuum coupled Fano resonance

(right), adopted from ref. [306]. (b) IDCT model with an adsorbate

(PTCDA) on a metal surface (Ag(111)) and corresponding energy lev-

els. for the Fermi energy EF , an adsorbate vibration (upper right),

and the adsorbate LUMO close to EF (blue and red). The involved vi-

bration and LUMO are depicted (B3LYP/6-311G DFT calculations),

adapted from ref. [44]. (c) Vibrational (top) and electronic (bottom)

HREELS data for 0.3 ML PTCDA on Ag(111) from ref. [44], with

blue arrows indicating proposed IDCT induced Fano-like vibrations.

A discrete excitation couples with a continuum and leads to a response with a

minimum and a maximum, the Fano-resonance. The two (discrete and broad)

excitations can be seen as a system of two coupled oscillators with eigenfre-

quencies ω1 and ω2 from which one is excited externally (see ref. [306] for a

detailed description). In a weakly coupled system, both oscillators show reso-
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5.3. Vibrational Measurements

nances at frequencies of the external force close to their eigenfrequencies. The

directly excited oscillator shows a symmetric Lorentzian peak (Breit-Wigner

resonance) close to its own eigenfrequency, but close to the resonance of the

other oscillator, it shows an asymmetric peak due to both the (off-phase)

excitation of the external force and the excitation by the in-resonance oscil-

lating coupled oscillator. This leads to destructive followed by constructive

interference and the well-known Fano-like peak shape [309]. In theory, a dis-

crete excitation couples with a continuous one which is not given in most of

the experimental cases. Here the continuum is given by a broad excitation

which has to overlap energetically with a discrete one. An application is the

concept of the interfacial dynamical charge transfer (IDCT), where a broad

electronic excitation couples with a discrete vibrational one. First proposed

for CO on Cu(100) [310] and O2 on Pt(111) [311] and more recently for larger

adsorbates like C60 [312] and PTCDA [83,84] on Ag(111) it describes the cou-

pling of electron-hole pair formation to adsorbate vibrations which leads to

line shifts, increased line-widths and the suppression of surface selection rules

and therefore increased intensities of selected modes. Figure 5.11 (b) illus-

trates the IDCT by the example of PTCDA on Ag(111). In contrast to CO

on e.g. Cu(100) the bonding between molecule and substrate is not a clear

chemical bond here and originates more from electrostatic interactions. These

interactions lead to a hybridization of specific molecular orbitals with metal

bands. In this case, the LUMO of the PTCDA molecule becomes a partially

occupied hybrid orbital which contributes to the metal/molecule bonding. The

energetic position of this hybrid orbital is affected by distinguished vibrational

modes, in this case, the symmetric C-C stretching or “breathing” mode of the

adsorbate. The dynamical manipulated energetic position leads to a dynamic

degree of occupation and hence an oscillating charge transfer from metal to

molecule and vice versa. As the charge transfer is oriented perpendicular to

the surface and the vibration is coupled to this modulation, this specific vi-

bration is connected to a dynamic dipole moment perpendicular to the surface

and becomes thus dipole active. This allows measurements with techniques

based on dipole moment changes like HREEL or IR spectroscopy.

Figure 5.11 (c) shows experimental data for the PTCDA/Ag(111) inter-

face [44] showing the vibrational HREEL spectrum (top) with Fano-like modes

in the breathing-mode region (marked with arrows) and the corresponding

electronic HREEL spectrum with an intense low-energy excitation assigned to
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5. Collective Excitations at Metal/Organic Interfaces

electron-hole pair excitations from hybrid orbitals close to EF . So the vibra-

tional spectrum can give hints to broad continuum-like electronic excitations

and its properties. The next section covers the results of vibrational HREEL

measurements of TCNQ, F2TCNQ, and F4TCNQ on Au(111).

5.3.2. TCNQ and its Fluorinated Derivatives on Au(111)

The amount of occupation or hybridization of an originally unoccupied ad-

sorbate orbital depends largely on the energetic position of the orbital with

respect to the Fermi energy of the metal. Important parameters are the adsor-

bate’s electron affinity (EA) and the work function of the metal. A partially

filled hybrid orbital is one of the criteria for an IDCT as mentioned in the pre-

vious section. TCNQ and its fluorinated derivatives on the Au(111) surface

are a perfect model system as with increased fluorination the EA increases

from 4.23 eV for TCNQ, via 4.59 eV for F2TCNQ to 5.08 eV for F4TCNQ

(see Fig. 5.10 (a) and ref. [265]) thus F4TCNQ is charged on Au(111) whilst

TCNQ is neutral. Figure 5.12 shows the vibrational HREEL measurements

(E0 = 3.5 eV) for monolayer coverages of F4TCNQ (a), F2TCNQ (b), TCNQ

(c) on Au(111) in specular (black) and 5◦ off-specular geometry. For F4TCNQ,

all observed vibrational modes, the respective assignments and visualizations

can be found in App. I.7 in Table I.1 and Figure I.12, respectively. All spec-

tra show good resolutions and high specular count rates indicating smooth,

well-ordered films. The high specular intensities and specular-to-off-specular

ratios of the out-of-plane buckling (100 – 300 cm−1) and γ(C-C-C) vibrations

indicate flat adsorption in all systems as expected from STM investigations for

TCNQ and F4TCNQ (compare to section 5.2.2 and Fig. 5.5). For F2TCNQ

and TCNQ with its C-H bonds the out-of-plane γ(C-H) modes dominate the

spectrum and show high specular/off-specular ratios as well. The in-plane C-H

stretching vibrations around 3000 cm−1 are barely visible further confirming

planar adsorption. From the mentioned STM measurements it is known that

F4TCNQ lifts up Au adatoms from the surface and coordinates to them with

two of its cyano-groups [267], which is not observed for TCNQ [268]. It is fur-

ther known, that negative charge shifts the C-N triple-bond stretching mode

to smaller wavenumbers [281] due to a transfer of charge into anti-bonding

molecular orbitals located at the cyano groups and thus reducing their bond

order. The spectra show for F2TCNQ and TCNQ (barely visible) one mode

around 2200 cm−1 whilst F4TCNQ shows two modes at 2200 and 2100 cm−1.
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5.3. Vibrational Measurements

As F2TCNQ acts here like TCNQ it is concluded that no distinct charge trans-

fer, as well as no coordination of adatoms, takes place as well. One possible

explanation for the observation of two frequencies in the case of F4TCNQ on

Au(111) would be that not all molecules at the F4TCNQ/Au(111) interface

are charged. But there is no reason why one F4TCNQ should be charged and

another one not. Hence it is more probable that there is a balanced interplay

of electron affinity, hybridization, charge transfer, adatom coordination, and

charge distribution in the adsorbed F4TCNQ that causes the two coordinating

cyano groups to show vibrations with shifted intensities whilst the other two

cause a non-shifted mode.
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The focus in this section lies on the region of the symmetric C-C stretching

modes (ν(C-C)) between 1200 and 1500 cm−1 as these breathing modes have

the largest influence on the delocalized electrons in the frontier orbitals which

are assumed to take part in potential IDCT processes or collective excitations

as observed in the last chapter. In Figure 5.12 (c) the TCNQ monolayer shows

the typical behavior for planar adsorption (compare to chapter 4 and refs.

[55, 218]). Only dipole active out-of-plane modes contribute to the spectrum

and in-plane modes including the specific breathing modes are barely visible.

For F2TCNQ, Figure 5.12 (b) shows still almost no intensity for the in-plane

ν(C-N) and ν(C-H) vibrations but the ν(C-C) modes at 1200 and 1400 cm−1

show higher intensities and also a significant specular-to-off-specular ratio. A

closer look also reveals an asymmetry as both modes show a tail on their low-

energy sides. These observations occur in an even more pronounced fashion in

Figure 5.12 (a) for a monolayer of F4TCNQ on Au(111). The ν(C-C) vibration

at 1400 cm−1 becomes one of the dominating features of the spectrum and

shows a clear Fano line shape with a tail on the low-energy side and a sharp

fall as well as reduced intensity on the high-energy side. This suggests a

dependence of the strength of Fano-like behavior on the electron affinity or

the energetic position of the plasmonic excitation derived in the last chapter.

5.3.3. Discussion: Interactive Vibrational and Electronic

Excitations

Tautz et al. [44] assigned the broad electronic low-energy excitation to electron-

hole pair formation close to the Fermi energy and connected it to vibrational

excitations via an IDCT, Salomon et al. [82] assigned a similar electronic ex-

citation to a collective excitation of a space charge layer induced by an IDCT.

Our study proofed the latter wrong as there is no need for an IDCT (expressed

by Fano-like vibrations) to establish a collective excitation at a metal/organic

interface as shown for e.g. TCNQ. The Fano line shape simply occurs if a

discrete excitation couples to an energetically overlapping continuous-like one.

The concept of IDCT implies that the coupling is based on an oscillating charge

transfer into a partially occupied orbital. Transferred to the presented findings

this leads to the insight, that an IDCT is not needed to explain the Fano-like

vibrations. As proposed in chapter 5.2.2 the energetic position of the collective

excitation depends on the electron affinity. A similar dependency is obviously
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5. Collective Excitations at Metal/Organic Interfaces

present for a possible charge transfer. Hence, an IDCT-like behavior (Fano

line shape) is observed in systems where the collective excitation is in the en-

ergetic region of the specific vibrations which implies that the electron affinity

has to be that high that also the assumption of a (partial) charge transfer is

reasonable. So in the derived picture, the collective excitation is a somewhat

fundamental property of planar organic adsorbates on the investigated surface

and the Fano lineshape simply occurs when both the discrete and the broad

excitation overlap energetically. Now, there is still the question why certain

modes can couple to the collective excitation and get dipole activated. Here,

it is reasonable to adopt an argument from the IDCT concept. In the IDCT

concept vibrations experience a Fano broadening if they affect the frontier

orbitals’ energies. In our concept, the molecules are assumed to adopt an ori-

entation with their π-systems oriented parallel to the surface which leads to

maximum interaction of the molecular π-electrons with the electrons located

in the Au(111) surface state. The molecular π-electrons are located in the

molecules’ frontier orbitals which are largely affected spatially and energet-

ically by the particular symmetric C-C stretching vibrations which are also

important in the IDCT concept. When the energy of the collective excita-

tion and the discrete vibration are in the same range a coupling occurs which

transfers dipole activity from the plasmonic excitation to the coupled system.

Future works should include measurements along the high-symmetry axes

with LEED, investigations of the growth mode with Auger electron spec-

troscopy (AES) and DFT studies with geometry optimizations and frequency

calculations for adsorbate structures with and without adatoms. This will help

to explain the dependence of the C-N stretching mode’s frequency on charge

distribution and adatom coordination. It needs to be mentioned that in the

HREELS study by Lu et al. [281] also vibrational spectra were presented. Only

spectra recorded in specular geometry were shown and neither the dipole ac-

tive out-of-plane modes in the monolayer (and therefore flat adsorption) nor

the split ν(C-N) mode was observed. A possible explanation would be again a

wrong coverage determination by using a quartz microbalance (e.g. no mono-

layer coverage) compared to the TPD based procedure in this work in which we

were able to prepare well-defined covered surfaces with precisely determined

adsorbate thicknesses.
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The presented work used a multi-technique approach to gain insight into funda-

mental aspects of metal/organic interfaces and corresponding structure/property

relationships. Such relationships are crucial to establish guidelines for tailored

organic semiconductors. This study focused on three aspects, the binding be-

tween substrate and adsorbate, the adsorption geometry, and the electronic

structure at the interface. The examination of benzene on coinage metal sur-

faces lead to benchmarks of unrivalled accuracy for the binding energy of ben-

zene on Au(111), Ag(111), and Cu(111) that helped to improve theoretical

modelling of interface properties. The surprising finding of this study is the

equal stability of benzene on these surfaces despite the metals’ different elec-

tronic structures. First results from theory suggest, that this universal trend

for the binding energy of aromatic molecules on coinage metal surfaces re-

sults from a subtle balance between repulsive Pauli-and attractive van der

Waals-interactions. Future work should include improving the used evaluation

routines of the experimental data to better face the problems originating from

the analysis of systems with repulsive interactions.

The temperature-programmed desorption (TPD) study of the acene series

from benzene via naphthalene, anthracene, and tetracene to pentacene on

Au(111) revealed a strong coverage dependence of the binding energy on the

coverage. This is interpreted as strong repulsive interactions, which increase

with increasing molecular size. This leads to a shift by almost 300 K in des-

orption temperature between desorption from a coverage of 0 ML to desorp-

tion from a coverage of 1 ML in the case of pentacene. Pentacene additionally

showed an extraordinary desorption behavior with a decreasing binding energy

between 0 and 0.5 ML coverage and a constant one between 0.5 ML and 1 ML.

This is assigned to substrate-mediated interactions that lead to the formation

of a pattern in the low-coverage regime. The gaps in this pattern are filled in

the high-coverage regime. The underlying long-range interactions can be used

to build up tailored patterns and modify surface properties. The zero-coverage

binding energies of the acene series showed that they deviate from a linear ex-
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trapolation of the value for benzene. The collaboration with Tkatchenko et al.

(University of Luxembourg) lead to the suggestion that this deviation origi-

nates from many-body effects. Additional measurements of naphthalene and

anthracene on Au(111) are currently performed. Together with additional re-

sults from theoretical modelling, this will complete the understanding of the

influence of the size of the aromatic system on the binding energy. This first

part helped to get insights into fundamentals of the aromatic/metal binding

and showed ways to tailored self-assembly if substrate-mediated interactions

can be used effectively.

The high-resolution electron energy-loss spectroscopy (HREELS) study of

the adsorption behavior of N-heteropolycyclic aromatic molecules on Au(111)

confirmed, that specific substitution can help to tailor particular properties of

the resulting substrate/adsorbate systems. The most general finding is that

planar aromatic molecules prefer a flat adsorption to increase the metal/π-

interactions and form well-ordered films. For purely planar molecules like

TAPP or QPP this leads to a substrate-directed growth with the aromatic

plane oriented parallel to the metal surface up to thicknesses of 10 ML and

more – still surprisingly well-ordered. This originates from the fact that un-

derlying flat molecules serve as a template for subsequently adsorbed ones and

leads to a thin-film structure significantly different from the bulk crystal struc-

ture. The introduction of rigid bulky side chains to increase, e.g., solubility

like the TIPS-groups in TIPS-Pn, or the tBu-groups in tBu-QPP increase the

distance between metal and aromatic system, hence limiting the interactions

that cause the strictly flat adsorption. Nevertheless, the respective monolayer

HREEL spectra still suggest a flat adsorption but for higher coverages, the or-

dering seems less pronounced compared to the unsubstituted analogous. The

introduction of flexible side chains like the C3F7-groups in the substituted

TAPP derivatives also allows adsorption with a parallel orientation of the aro-

matic plane and the metal surface. In contrast to the systems with rigid side

chains, the arrangement of the flexible chains in the monolayer prevents a pla-

nar adsorption in the second layer and leads to a crystal-like growth mode in

the thin film. The introduction of halogens does not only affect the adsorp-

tion behavior but also the electronic structure, namely the optical gap. The

influence on the adsorption is comparable to the introduction of bulky side

chains. The larger the halogen, the more disordered is the multilayer morphol-

ogy. Electronic HREELS investigations and comprehensive DFT-calculations

130



showed that the introduction of nitrogen into aromatic systems does not affect

the size of the optical gap but shifts both HOMO and LUMO to lower energies

thus increasing air- and water-stability. Monolayer coverages of TAPP and

its derivatives show that the excitation of the optical gap is suppressed here,

probably due to the screening of the participating frontier orbitals by the metal

substrate. Electronic HREELS measurements of all systems at coverages be-

tween 4 and 10 ML showed surprising consistency with UV/Vis measurements

in solution suggesting a negligible influence of packing on the optical gap in the

thin film. The substitution of TAPP-H with halogens at side positions leads

to a shift of the optical gap by 0.3 eV. In contrast to UV/Vis measurements,

no alteration between the different halogens is observed which may be due to

the lower resolution of HREELS compared to UV/Vis.

The last part of this work revealed interesting findings of collective ex-

citations at adsorbate-covered surfaces. Angle-resolved HREEL spectra of

several adsorbate/substrate systems showed broad and dispersive low-energy

(0.4 -– 1.6 eV) excitations in the monolayer regimes. The observed disper-

sion clearly suggests a delocalized electron gas wherefore the observed excita-

tion was associated with a plasmonic excitation of the surface state electrons,

known as acoustic surface plasmon (ASP). So far, ASPs were only reported

for single crystal metal surfaces but the presented study of TCNQ, F2TCNQ,

F4TCNQ, [TTF]+[TCNQ]−, TTF, pentacene, tetracene, and anthracene on

Au(111) showed that it is not limited to bare metals. On pristine metals, the

ASP shows an Eloss → 0 for q → 0 dispersion behavior, whereas our study

on adsorbate-covered metal surfaces revealed finite energies. This deviation is

explained by the different domain sizes (infinite on the pristine surface, finite

on adsorbate-covered ones) which cause a break in the dispersion curve and

finite values in the long-wavelength limit. The comparison of the different

adsorbate-covered samples showed, that the observed excitation energy is also

related to adsorbate properties like the electron affinity which determines the

interactions of the adsorbate with the surface state electrons. A high electron

affinity leads to a pull effect on the surface state electrons, thus increasing

their spatial distribution and hence decreasing the effective electron density,

which leads to a smaller excitation energy for surface plasmons. For all sys-

tems except F4TCNQ /Au(111) the plasmonic excitation is apparently limited

to monolayer coverages. For F4TCNQ multilayers grown epitaxially at room

temperature, a formed space charge region seems to suppress screening and
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6. Conclusion and Outlook

thus this excitation is still possible in 10 ML thick films. Vibrational HREELS

measurements showed a Fano-like coupling between the plasmonic excitations

and particular vibrational modes leading to asymmetric, broadened vibrational

peaks with significantly increased HREELS intensity. In contrast to earlier re-

ports, the degree of coupling simply depends on the energetical overlap of both

the vibrational and electronic excitation. This part about collective excitations

definitely opens up the most entry points for future works. Measurements for

different coverages and primary electron energies have to be evaluated and in-

terpreted carefully. Experimental efforts have to concentrate on measurements

along the high-symmetry axes of the sample and on measurements on different

metal surfaces. Additionally, theoretical input has to confirm the assumptions

made. However, the findings in this part can contribute to a better under-

standing of the electronic interaction mechanisms between organic adsorbates

and the metal electrons located close to the surface. And the observed plas-

monic excitations can play an important role in energy transport along the

surface or as decay channels for other excitations.

In summary, this work contributed interesting experimental results, leading

to causal relationships for several aspects of metal/organic interfaces. The

studies of benzene on different metals and the acene series on Au(111) re-

vealed insights into the interactions of aromatic π-electrons with metal sur-

faces. The investigation of the substituent depending adsorption geometry

and electronic structure revealed important structure/property relationships

and confirmed the possibility of tailoring interfacial properties by tailoring the

organic compounds. The final study of collective excitations at metal/organic

interfaces showed the strong influence of adsorbates on electronic properties of

the metal surface. Future work in the scope of the collaborative research centre

SFB1249 about N-heteropolycyclic molecules as functional materials can build

upon the presented findings and continue the path to a better understanding

of metal/organic interfaces and tailored organic semiconductors.
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A. List of Acronyms

A. List of Acronyms

8T Octithiophene

AES Auger electron spectroscopy

AFT FT-IR Attenuated total reflectance Fourier-transform infrared

ARPES Angle-resolved photoelectron spectroscopy

ASP Acoustic surface plasmon

B3LYP Becke, Lee, Yang, and Parr (functional)

BP Bulk plasmon

BPP Bulk plasmon polariton

Bz Benzene

CI Configuration interaction

CNL charge neutrality level

CPU Central processing unit

CSP Conventional surface plasmon

DBH Dibenzo[hi,uv]hexacene

DFT Density functional theory

DPDI 4,9-Diamino-3,10-perylenequinone diimine

EA Electron affinity

EELS Electron energy-loss spectroscopy

EI Electron ionization

fcc Face-centered cubic

FET Field effect transistors

F2TCNQ 2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane

F4TCNQ 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane

FT-IR Fourier-transform infrared

FWHM Full width at half maximum

GGA Generalized gradient approximation

GIXD Gracing incidence X-ray diffraction

GTO Gaussian-type orbitals

hcp Hexagonal closest packing

HF Hartree-Fock

HREELS High-resolution electron energy-loss spectroscopy

HOMO Highest occupied molecular orbital
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HSE Heyd-Scuseria-Ernzerhof

IDCT Interfacial dynamical charge transfer

IPES Inverse photoemission spectroscopy

IR Infrared

LANL2DZ Los Alamos National Laboratory Double Zeta (basis set)

LDA Local density approximation

LEED Low-energy electron diffraction

LUMO Lowest unoccupied molecular orbital

MBD Many-body dispersion

MO Molecular orbital

ML Monolayer

MS Mass spectrometry

NEXAFS Near-edge X-ray absorption fine structure

OLED Organic light-emitting diode

PBE Perdew-Burke-Ernzerhof

Pn Pentacene

PP Peropyrene

PTCDA Perylene-3,4,9,10-tetracarboxylic dianhydride

QMS Quadrupole mass spectrometers

QPP Quinoxalino[2’,3’:9,10]-phenanthro[4,5-abc]-phenazine

RGA Residual gas analysis

RPA Random phase approximation

SFB Sonderforschungsbereich

SI Supporting information

SP Surface plasmon

SPP Surface plasmon polariton

SS Surface state

STM Scanning-tunnelling microscopy

TAP 5,7,12,14-Tetraazapentacene

TAPP 1,3,8,10-Tetraazaperopyrenes

TAPP-Br 2,9-Bisperfluoropropyl-4,7,11,14-tetrabromo-1,3,8,10-tetraazaperopyrene

TAPP-Cl 2,9-Bisperfluoropropyl-4,7,11,14-tetrachloro-1,3,8,10-tetraazaperopyrene

TAPP-H 2,9-Bisperfluoropropyl-1,3,8,10-tetraazaperopyrene

TAPP-I 2,9-Bisperfluoropropyl-4,7,11,14-tetraiodo-1,3,8,10-tetraazaperopyrene
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A. List of Acronyms

tBu tert-butyl

tBu-QPP 2,11-Di-tert-butyl-quinoxalino[2’,3’:9,10]-phenanthro[4,5-abc]-phenazine

TCNQ 7,7,8,8-Tetracyanoquinodimethane

TDS Thermal desorption spectroscopy

THF Tetrahydrofuran

TIPS Triisopropylsilylethynyl

TIPS-Pn 6,13-Bis(triisopropylsilylethynyl)pentacene

TIPS-TAP 6,13-Bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene

TPD Temperature-programmed desorption

TTF 1,4,5,8-Tetrathiafulvalen

TV Television

UHV Ultra-high vacuum

UPS Ultraviolet photoelectron spectroscopy

UV/Vis Ultraviolet–visible spectroscopy

vdW van-der-Waals

XPS X-ray photoelectron spectroscopy

XSW X-ray standing wave

ZnPc Zinc phtalocyanine
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B. Dosing and Experimental Parameters

All dosing parameters for the shown measurements are summarized in the

following table. Before the dosings, the crystals (obtained from CrysTec R⃝ and

MaTeck R⃝) were prepared with a standard sputter/annealing procedure. Ar+

ions (10−6 mbar) were accelerated with 1 keV towards the sample (15 min)

and the clean but rough crystal surface was annealed at 750 K (for all surfaces)

for 20 min. During this thesis, three different dosers have been used (labelled

as 1, 2, and 3 in table B). (1) was a simple fine valve to dose liquids via the

background pressure, (2) was a home-built doser with one single MACOR R⃝

crucible, and (3) a commercial Kentax R⃝ doser with three glass crucibles. Due

to different positions of the temperature measurement in the dosers, the dosing

temperature for the same substance can vary between doser (2) and (3) by up

to 80 K. The experimental setup allowed the observation of the dosing with

the QMS.
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B. Dosing and Experimental Parameters
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B. Dosing and Experimental Parameters
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C. DFT Parameters and Commented

Gaussian09 Input

All DFT calculations have been performed with the Gaussian09 program pack-

age [120]. This section describes the general procedure from the molecu-

lar structure to the calculated vibrations. First, the molecular structure is

converted to Cartesian XYZ-coordinates with the ChemDraw program and

Chem3D of PerkinElmer Informatics. Within the Chem3D program, a molec-

ular mechanics based pre-optimization is performed and saved in a file format

that can be imported to Gaussian09 (e.g. *.mol2). The so obtained coordi-

nates are loaded into Gaussian09 and a DFT calculation with the appropriate

parameters is started. A typical calculation is a geometry optimization with

a subsequently performed frequency calculation to obtain the vibrational fre-

quencies of the normal modes. Figure C.1 shows an exemplary Gaussian09

input for a TAPP-H. The blue shaded part contains the parameters for the

calculation, the orange shaded part contains the input XYZ-coordinates.

parameters

coordinates

%nprocshared=2
%chk=Y:\thesis\20180105TAPPH_OptFreqSym.chk
# opt freq=(raman,savenormalmodes) b3lyp/6-311+g(d,p)
guess=(huckel,save)
geom=connectivity

20180105TAPPH_OptFreqSym

0 1
C                  0.32685492   -2.73571451    2.29270120
C                  0.16831251   -1.40543534    2.29940028
C                  0.08104479   -0.67279321    1.16829114
C                  0.15881552   -1.33280497    0.00000000
C                  0.31981878   -2.67453656    0.00000000
C                  0.40556024   -3.38577025    1.12592050
...

A
B

F D E
C

G

H

Figure C.1.: Prefactors for Bz on Au(111), Ag(111), and Cu(111) as a function of coverage.

Adapted from the SI of ref. [313].
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C. DFT Parameters and Commented Gaussian09 Input

The parameters are (A) the numbers of cores of the processor which should

be used for the calculation, (B) the path for the checkpoint file (a useful file,

for, e.g., molecular orbital visualization, with all calculation steps), (C) the

important commands opt and freq for geometry optimization and subsequent

frequency calculation (the parameters raman indicates that not only IR-active

vibrations should be calculated), (D) the functional, (E) the basis set, (F)

additional parameters for calculation, (G) the output file path, and (H) the

charge and spin (1 = singulett). The output contains the optimized geometry,

the normal modes and their corresponding IR- and/or Raman-activity, and the

MO-energies. The normal modes can be visualized either within the Gaussview

program or within the Facio program package [121]. Furthermore, there exists

the possibility to draw mapped surfaces. E.g., the overall electron density

surface can get a colour scale for the charge density at any point of the surface.

The same is possible for the electron density surface of single molecular orbitals.

All calculations were performed for single molecules in the gas phase. To

give a better comparability between calculated frequencies and experimental

ones, the obtained frequencies were multiplied with 0.9614 as proposed for the

chosen level of theory in ref. [314]. As the level of theory, usually, the functional

B3LYP and the Pople style basis sets 6-311G were chosen as this level was

used before to properly describe geometries and vibrational frequencies for

pure (metal-free) organic compounds (for details, see section 2.3). Except for

TAPP-I, where the iodine atoms could not be described by the 6-311G basis

set and a LANL2DZ basis set was chosen instead.
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D. Benzene on Cu(111): TPD and

HREELS

As there exist contradictory findings concerning the morphology of the Bz/Cu(111)

interface, additional HREELS measurements have been performed. XSW mea-

surements by Willenbockel et al. [315] suggest a mixed monolayer phase of

upstanding and flat-lying Bz molecules whereas earlier EELS measurements

suggested a pure flat lying first layer and an eventually up-standing second

layer [166]. The coverage dependent HREELS results from this work are sum-

marized and explained in this section. The main result is that in the given

experimental accuracy, Bz adopts an adsorption geometry with its plane par-

allel to the Cu(111) surface up to coverages of 12 ML. For the current topic,

another finding of this investigation is more important. As Cu is (chemically)

more reactive compared to Ag, and Au, CO from residual gas adsorbs more

likely on this surface. This co-adsorption delivers a useful tool to determine

the complete monolayer. To calculate the coverage by integrating TPD spec-

tra, a definition of the area covered by one monolayer in such a spectrum is

essential. In rather weak binding systems as aromatic molecules on coinage

metal surfaces, there is often the problem that there is no clear separation of

the mono- and multilayer desorption peaks (as can be seen in Figure D.1 (a)

for the Bz/Cu(111) system).
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D. Benzene on Cu(111): TPD and HREELS
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Figure D.1.: (a) TPD spectra of Bz on Cu(111) for several coverages from θ = 0.9 ML to

3.6 ML, (b) specular (black) and off-specular (red) HREEL spectrum of 1.2

ML Bz on Cu(111), E0 = 3.5 eV, FWHM = 26 cm−1, (c) specular (black)

and off-specular (red) HREEL spectrum of 12 ML Bz on Cu(111), E0 = 3.5

eV, FWHM =33 cm−1, (d) enlargement of CO peak region between 1500

and 2300 cm−1 with specular HREEL spectra for the different Bz coverages

shown in (a).

Such a separation would allow a simple integration of the monolayer part

of the TPD spectrum and therefore a conclusion on to the total coverage.

With means of high-resolution electron energy-loss spectroscopy (HREELS),

we found a way to determine the monolayer more precisely than before. HREELS

is a surface sensitive technique, which allows vibrational spectroscopy of ad-
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sorbed molecules by exciting vibrations with monochromatic electrons and the

measurement of their energy loss. [63] Figure D.1 (b) and (c) show a mono-

and multilayer HREEL spectrum, respectively. From the relative intensities,

we can derive a rather flat adsorption independent of the coverage. On the,

compared to Au(111) and Ag(111), more reactive Cu(111) surface a distinct

amount of carbon monoxide (CO) adsorbs from residual gas resulting in a

clearly visible CO stretching vibration in the HREEL spectrum (see Figure

D.1 (b)). The energy of this vibration is strongly coverage dependent (see Fig-

ure D.1 (d)). From literature we know, that there exist several sub-monolayer

regimes for pristine CO on Cu(111) leading to electron energy loss peaks of

2080 cm−1 (top site, 1-fold) and 1850 cm−1 (bridge site, 2-fold) [316]. On

Pt(111) and Rh(111) the co-adsorption of CO and Bz leads to a displacement

of CO molecules also on hollow sites (3-fold) leading to a further reduction

of the intra-molecular CO bonding strength and therefore of the correspond-

ing vibrational frequency (clean Pt(111): hollow, 1800 cm−1; bridge, 1850

cm−1; top, 2100 cm−1) [317]. From low-energy electron diffraction (LEED)

studies a densely packed Bz layer with CO molecules in the resulting gaps is

derived [318]. We assume a similar behaviour for the Cu(111)/Bz/CO system.

In a simple picture, the small amounts of CO in our UHV chamber adsorb at

the energetically most favourable adsorption sites, with increasing dosing time

these sites get rarer and rarer until, when the monolayer is completed, none

are left. That is the point where the frequency shifts from the 1-fold 2050

cm−1 (Figure D.1 (d) 0.9 ML) via a mixed 2050 cm−1 and 1760 cm−1 at 1

ML coverage to the only 3-fold 1760 cm−1 at a coverage of 1.2 ML. With the

appearance of α0 (see Figure D.1 (a), 3.6 ML) an additional shift to 1815 cm−1

is visible. This seems to be related to a third layer adsorption above the CO

molecules, compressing them slightly and therefore strengthen the CO bond.

As we know from residual gas measurements and from the total pressure, the

amount of CO must be very small and therefore we do not think, that there

is a significant influence on the adsorption behaviour of Bz.
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D. Benzene on Cu(111): TPD and HREELS
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E. Prefactors for Benzene on Coinage

Metal Surfaces

Beside the binding energy vs. coverage dependence, the complete analysis [49]

also gives the prefactor vs. coverage dependence as depicted in Figure 3.5 for

Bz/Au(111). Figure E.1 shows the determined prefactors for benzene on (a)

Au(111), (b) Ag(111), and (c) Cu(111) as a function of coverage.
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E. Prefactors for Benzene on Coinage Metal Surfaces
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Figure E.1.: Prefactors for Bz on Au(111), Ag(111), and

Cu(111) as a function of coverage. Adapted from

the SI of ref. [313].
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F. TIPS-Pn and TIPS-TAP: Further

Studies and Vibrational Assignments

In Table F.1, all observed vibrational modes for TIPS-Pn are listed and as-

signed. In Fig. F.1, the listed vibrations for TIPS-Pn are visualized with the

Facio19.1.4 program [121].
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F. TIPS-Pn and TIPS-TAP: Further Studies and Vibrational Assignments

Table F.1.: TIPS-Pn - vibrational modes (in cm−1) and assignments for 1 ML and 4 ML

TIPS-Pn adsorbed on Au(111). da refers to dipole active modes. In addition

DFT calculated frequencies based on the B3LYP functional and the 6-311G

basis set of the free molecules are shown. ν, stretching; δ, in-plane bending; γ,

out-of-plane bending; P , pentacene; T , TIPS; E, ethinyle; Repr, representation

and in brackets corresponding orientation of the calculated dipole derivative

vector with respect to the molecular geometry, x long axis, y short axis, z

perpendicular to the pentacene plane).

# TIPS-Pn 1 ML TIPS-Pn 4 ML DFT Mode Repr.

1 273 233 247 buckl. long B3u (z)

2 449 da 462 da 487 γ(C-H)P B3u (z)

3 - 586 597 δ(C-C-C)P B2u (y)

4 692 da 672 da 723 γ(C-C-C)P B3u (z)

5 739 da 744 da 781 γ(C-H)P B3u (z)

6 886 da 878 da 936 γ(C-H)P B3u (z)

7 984 da 988 da 997 γ(C-H)P B3u (z)

8 - 1075 1117 δ(C-C-H)T

9 1203 1152 1186 δ(C-H)P B2u (y)

10 - 1288 1297 δ(C-H)T

11 - 1369 1412 ν(CP -CE) B2u (y)

12 1452 1457 1470 δ(C-H)T

13 - 1667 1691 ν(C-C)P B1u (y)

14 - 2151 2228 ν(C-C)E B2u (y)

15 2870 2859 3029 ν(C-H)T

16 2924 2942 3126 ν(C-H)T

17 - 3053 3208 ν(C-H)P B2u (y)
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Figure F.1.: Visualizations of all observed and assigned vibrational modes for TIPS-Pn.

Visualizations made with the Facio19.1.4 program [121]. The atomic dis-

placement is indicated by the red arrows (enlarged by a factor of 5 for better

visibility.
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F. TIPS-Pn and TIPS-TAP: Further Studies and Vibrational Assignments

F.1. TIPS-Pn and TIPS-TAP: TPD and Mass

Spectrometry

Figure F.2 (a) shows a comparison of a residual gas analysis (RGA) obtained

during dosing at TD = 140◦ (green) with electron ionization mass spectrom-

etry data of the compound as bought (red) and after heating up to 140◦C

obtained from the mass spectrometry core facility of the Institute for Organic

Chemistry, University of Heidelberg. The observed fragments belong to the

TIPS sidechain, the differences in mass of 14 amu are associated with CH2

dissociation. The similarities between the red and black curve suggest that

the dosing does not lead to significant degradation of the substance.

Figure F.2 (b) shows a TIPS-TAP multilayer TPD with different observed

masses. It needs to be noted that all fragments belong to the TIPS sidechain,

except mass 200. The latter belongs to the TAP backbone and its observability

suggests intact desorption from the multilayer and thus also intact adsorption.

The fact that it is not visible in the monolayer is a clear indication of degra-

dation during monolayer desorption. Also, the shift by 10 K to lower tem-

peratures for mass 43 (compared to mass 59) indicates degradation as in the

case of TIPS-Pn (see section 4.2). Figure F.2 (c) shows an additional TIPS-Pn

multilayer TPD, here with mass 198 amu, the doubly charged molecular ion.

As mass 200 in the case of TIPS-TAP, it is only visible in the monolayer. Both

indicating degradation during monolayer desorption but also intact multilayer

desorption and thus intact dosing.
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F.1. TIPS-Pn and TIPS-TAP: TPD and Mass Spectrometry
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Figure F.2.: (a) Comparison of a residual gas analysis (RGA) obtained during dosing,

green, with electron ionization mass spectrometry data of the compound as

bought (red) and after heating up to 140◦C obtained from the mass spec-

trometry core facility of the Institute for Organic Chemistry, University of

Heidelberg. (b) TIPS-TAP multilayer TPD. (c) TIPS-Pn multilayer TPD

including mass 198, the doubly charged molecular ion.
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F. TIPS-Pn and TIPS-TAP: Further Studies and Vibrational Assignments

F.2. TIPS-Pn: Electronic HREELS

Figure F.3 shows the electronic HREELS data for a monolayer of TIPS-Pn on

Au(111) in comparison to data for the pristine Au(111) surface. The Au(111)

surface plasmon at 2.61 eV is still visible in the monolayer, whereas a feature

which could be assigned to the excitation of the optical gap is not visible.

Additional, a broad feature at 0.94 eV is visible which could be associated to

the plasmonic transition, which was also observed for the pentacene/Au(111)

system (see chapter 5. Due to the low signal-to-noise ratio and the difficulty

to distinguish between contributions from the substrate and the adsorbate, a

detailed analysis is skipped here.
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Figure F.3.: Electronic HREELS data of 1 ML TIPS-Pn on

Au(111) (black) and for the pristine Au(111) sur-

face (red).

F.3. TIPS-TAP: HREELS

In this section, the vibrational and electronics results for TIPS-TAP are pre-

sented. Due to the mentioned uncertainties, if the analyzed molecule is wether

TIPS-TAP or the dihydrogenated derivative. Because of this problems, a de-

tailed analysis and interpretation of the obtained results are skipped here.
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F.3. TIPS-TAP: HREELS
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Figure F.4.: HREEL spectra in specular (black) and off-specular (red) scattering geometry

for mono- (a) and multilayer (b) coverages of TIPS-Pn on Au(111). E0 =

3.5 eV is the primary electron energy of the incident electrons. The energy

resolution measured as FWHM of the elastic peak (zero loss peak) is labeled

in the graphs. (c) shows the corresponding multilayer electronic HREELS

data (E0 = 15.5 eV) with gaussian fits to the relevant features.
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F. TIPS-Pn and TIPS-TAP: Further Studies and Vibrational Assignments
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G. QPP and tBu-QPP: Further Studies

and Vibrational Assignments

In Table G.1, all observed vibrational modes for QPP and tBu-QPP are listed

and assigned. In Fig. G.1, the listed vibrations for QPP are visualized with

the Facio19.1.4 program [121]. We pass on a similar presentation for tBu-QPP

due to minor differences.
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Figure G.1.: Visualizations of all observed and assigned vibrational modes for QPP. Visu-

alizations made with the Facio19.1.4 program [121]. The atomic displacement

is indicated by the red arrows (enlarged by a factor of 5 for better visibility.
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G. QPP and tBu-QPP: Further Studies and Vibrational Assignments
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G.1. QPP and tBu-QPP: TPD

G.1. QPP and tBu-QPP: TPD

Figure G.2 shows TPD measurements of QPP and tBu-QPP multilayers on

Au(111). Both molecules only show a peak assigned to multilayer desorption.

This suggests destructive monolayer desorption. The peak for tBu-QPP is

shifted by 50 K to lower temperatures (400 K) compared to QPP (450 K),

an indication for smaller intermolecular interactions between molecules in the

monolayer and molecules in higher layers due to the bulky tert-butyl groups.
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Figure G.2.: TPD measurements for multilayers of (a), QPP,

and (b), tBu-QPP. The observed fragments are

listed in the graph.
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G. QPP and tBu-QPP: Further Studies and Vibrational Assignments

G.2. QPP and tBu-QPP: Electronic HREELS

Figure G.3 shows the electronic HREELS data for monolayers of QPP (blue)

and tBu-QPP (black) on Au(111) in comparison to data for the pristine

Au(111) surface (red). The Au(111) surface plasmon at 2.61 eV is still visible

in the monolayers, whereas a feature which could be assigned to the excita-

tion of the optical gap is not visible. Due to the low signal-to-noise ratio and

the difficulty to distinguish between contributions from the substrate and the

adsorbate, a detailed analysis is skipped here.
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Figure G.3.: Electronic HREELS data of QPP (blue) and tBu-

QPP (black) monolayers on Au(111) and for the

pristine Au(111) surface (red).

160



H. TAPP and its Derivatives: Further

Studies and Vibrational Assignments

In Table H.1, all observed vibrational modes for TAPP are listed and as-

signed. In Fig. H.1, the listed vibrations for TAPP are visualized with the

Facio19.1.4 program [121]. Exemplary for perfluoropropyl-substituted TAAPs,

all observed vibrational modes for TAPP-H are listed and assigned in Table

H.2. In Fig. H.2, the listed vibrations for TAPP-H are visualized. We pass

on a similar presentation for TAPP-Cl, TAPP-Br, and TAPP-I due to minor

differences.
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H. TAPP and its Derivatives: Further Studies and Vibrational Assignments

Table H.1.: TAPP - Vibrational frequencies (in cm−1) and assignments for 1 ML and 10

ML TAPP adsorbed on Au(111). da refers to dipole active modes. In addition

DFT calculated frequencies based on the B3LYP functional and the 6-311G

basis set of the free molecules are shown. ν, stretch; δ, in-plane bending; γ,

out-of-plane bending; C, core; T , tips; representation and in brackets, cor-

responding orientation of the calculated dipole derivative vector with respect

to the molecular geometry, x long axis, y short axis, z perpendicular to the

molecular plane).

# TAPP 1 ML TAPP 10 ML DFT Mode Repr.

1 178 199 176 buckl. long B3u (z)

2 229 237 239 buckl. short B3u (z)

3 449 da - 465 δ(C-C-C) B2u (y)

4 488 da 510 da 504/529 γ(N-C-N)/γ(C-C-C) B3u (z)

5 - 565 572 δ(C-C-C) B1u (x)

6 - 687 692 δ(C-C-C) B2u (y)

7 778 da 809 da 814 γ(C-H)C B3u (z)

8 827 da 855 da 880 γ(C-H)/γ(C-C-C) B3u (z)

9 927 963 990 γ(C-H)T B3u (z)

10 - 1058 1080 δ(C-C-C) B1u (x)

11 - 1142 1163 δ(C-C-H) B2u (y)

12 - 1221 1242 δ(N-C-N) B1u (x)

13 - 1331 1350 ν(C-C) B1u (x)

14 - 1475 1510 δ(N-C-H) B2u (y)

15 - 1520 1558 ν(C-N) B1u (x)

16 - 1619 1663/1650 ν(C-C) B1u/Ag (x/−)

17 - 2929 3159 ν(C-H)T B1u (x)

18 3056 3065 3219 ν(C-H)C B2u (y)
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Figure H.1.: Visualizations of all observed and assigned vibrational modes for TAPP. Visu-

alizations made with the Facio19.1.4 program [121]. The atomic displacement

is indicated by the red arrows (enlarged by a factor of 5 for better visibility.
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H. TAPP and its Derivatives: Further Studies and Vibrational Assignments

Table H.2.: TAPP-H - Vibrational frequencies (in cm−1) and assignments for 1 ML and

6 ML TAPP-H adsorbed on Au(111). da refers to dipole active modes. In

addition DFT calculated frequencies based on the B3LYP functional and the

6-311G basis set of the free molecules are shown. ν, stretch; δ, in-plane bend-

ing; γ, out-of-plane bending; S, side-chains; in brackets: corresponding orien-

tation of the calculated dipole derivative vector with respect to the molecular

geometry, x long axis, y short axis, z perpendicular to the molecular plane).

# TAPP-H 1 ML TAPP-H 6 ML DFT Mode Repr.

1 190 176 168 τ(C-C), buckl. short (x, z)

2 255 232 188 τ(C-C), buckl. long (x, z)

3 - 290 282 side-chain wagging (x, z)

4 523 da 526 da 493 δ(C-C-C)S (z)

5 581 da 607 586 δ(C-C-C)S + δ(C-H) (x, z)

6 - 704 da 662 γ(C-H) (z)

7 734 da 744 da 731 γ(N-C-N) (x, z)

8 806 802 767 γ(N-C-N) (z)

9 851 da 862 da 831 γ(C-H) (x, z)

10 911 - 866 γ(C-H) (x, z)

11 976 da 970 da 883 γ(C-H) (z)

12 1081 1062 968 δ(C-C-C)S + γ(N-C-N) (z)

13 1225 da 1241 da 1206 ν(C-F) (z)

14 1265 da - 1241 ν(C-F) (z)

15 1354 1349 1364 δ(C-C-C)S + δ(N-C-N) (z)

16 - 1527 1462 ν(C-N) (x)

17 - 1617 1562 ν(C-N)T (x)

18 3057 3066 3258 ν(C-H)C (y)

164



1

4

10

7

16

13

2

5

11

8

17

14

3

6

12

9

18

15

Figure H.2.: Visualizations of all observed and assigned vibrational modes for TAPP-H.

Visualizations made with the Facio19.1.4 program [121]. The atomic dis-

placement is indicated by the red arrows (enlarged by a factor of 5 for better

visibility.
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H. TAPP and its Derivatives: Further Studies and Vibrational Assignments

H.1. TAPP and its Derivatives: TPD

Figure H.3 shows TPD measurements of multilayers of TAPP and its deriva-

tives on Au(111). All TAPPs show a peak assigned to multilayer desorption

(note the zero-order desorption) around 450 K. The monolayer behaviour is

rather different but suggests clearly destructive desorption.
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H.2. TAPP and its Derivatives: Electronic

HREELS

Figure H.4 shows the electronic HREELS data for monolayers of TAPP and its

derivatives on Au(111) in comparison to data for the pristine Au(111) surface

(red). It is hard to distinguish between contributions from the substrate and

the adsorbate. Due to these difficulties, a detailed analysis is skipped here. But

there is a significant influence of the halogenation on the monolayer spectra.

The peaks associated to the excitation of the optical gap/Au(111) surface

plasmon around 2.6 eV are shifted by 0.2 eV to higher energies for the non-

halogenated TAPPs (TAPP (blue) and TAPP-H (dark green)).
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face (red).
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I. Angle-Resolved HREELS: Further

Measurements

The following section covers further measurements connected to the investi-

gation of the plasmonic excitation in chapter 5. First, the automized angle-

resolved measurement is explained (section I.1), then the results about the

influence of preparation conditions (section I.2), crystal orientation (section

I.3), primary electron energy (section I.4), and coverage (section I.5) on the

plasmonic excitation are shown. At last, TPD, as well as, vibrational and

(angle-resolved) electronic HREELS measurements for systems that show anal-

ogous plasmonic excitations are presented (section I.6).

I.1. Explanation and Exemplary Arduino Input for

Automated Measurements

This section provides a brief explanation of the developed automized angle-

resolved HREELS measurement. The requirement for the whole project was

the possibility to measure subsequently up to 999 HREEL spectra within the

“average” option of the Delta 0.5 control software. The task was to move

the spectrometers angle-control by a specific value in a limited time between

two measurements. The Arduino controlled stepper motor described in section

2.4.1 fulfils this function properly. However, it was not possible to establish

a simple executable program which sends the relevant parameters to the Ar-

duino, thus for any angle-resolved measurement, the program code has to be

adjusted. An angle-resolved measurement is performed within several steps.

First three things have to be considered: (1) The favoured angle step size, (2)

the angular range, and (3) the length (and thus quality) of a single measure-

ment. Together these values determine the number of measurements and the

length of the complete job. The number of measurements and the parameters

of the single measurements (energy step width, integration time etc.) is set in

the Delta 0.5 control program. The stepper motor control needs only the num-

169



I. Angle-Resolved HREELS: Further Measurements

ber of steps (51 motor steps are 0.01 turns of the spectrometers angle control,

thus a value of 500 leads to 0.1 turns (0.23◦) between two measurements) and

the time between two angle steps (measurement time in ms). Figure I.1 shows

the used Arduino program. The orange part is called “Setup”, as the defini-

tion of variables and the assignments of the shield’s pins is located here. The

“Loop” part (blue) is executed continuously. The first part is a simple “for”-

loop which is repeated 500 times in the example and contains the control of

each solenoid to perform motor steps. After 500 times (which is a change of the

analyzer angle by 0.23◦), a delay is performed. The delay should correspond

to the measurement time minus the time which is needed for the rotation as

between two HREEL spectra no break can be forced.
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I.1. Explanation and Exemplary Arduino Input for Automated Measurements

/*

This is a sketch for automized angle-resolved HREELS measurementsfor

the Adafruit assembled Motor Shield for Arduino v2

*/

int delaylegnth = 30;

int x;

void setup() {

//establish motor direction toggle pins

pinMode(12, OUTPUT); //CH A -- HIGH = forwards and LOW = backwards???

pinMode(13, OUTPUT); //CH B -- HIGH = forwards and LOW = backwards???

//establish motor brake pins

pinMode(9, OUTPUT); //brake (disable) CH A

pinMode(8, OUTPUT); //brake (disable) CH B

}

void loop(){

for (x = 1; x <    ; x+=1) {  //51 steps -> 0.01 turn

digitalWrite(9, LOW);  //ENABLE CH A

digitalWrite(8, HIGH); //DISABLE CH B

digitalWrite(12, HIGH);   //Sets direction of CH A

analogWrite(3, 255);   //Moves CH A

delay(delaylegnth);

digitalWrite(9, HIGH);  //DISABLE CH A

digitalWrite(8, LOW); //ENABLE CH B

digitalWrite(13, HIGH);   //Sets direction of CH B

analogWrite(11, 255);   //Moves CH B

delay(delaylegnth);

digitalWrite(9, LOW);  //ENABLE CH A

digitalWrite(8, HIGH); //DISABLE CH B

digitalWrite(12, LOW);   //Sets direction of CH A

analogWrite(3, 255);   //Moves CH A

delay(delaylegnth);

digitalWrite(9, HIGH);  //DISABLE CH A

digitalWrite(8, LOW); //ENABLE CH B

digitalWrite(13, LOW);   //Sets direction of CH B

analogWrite(11, 255);   //Moves CH B

delay(delaylegnth);

}

delay(       ); // break in milliseconds

}

500

1626666

LOOP

SETUP

number of steps

time for one measure-
ment in ms

Figure I.1.: Commented Arduino program code. (orange) Setup part, which determines

the pin assignement on the board. (blue) Loop part, where the angle step

size between two measurements and the length of a single measurement are

defined.

171



I. Angle-Resolved HREELS: Further Measurements

I.2. Influence of the Preparation

Fig. I.2 shows the electronic HREEL spectra for different preparation condi-

tions for the F4TCNQ/Au(111) system. Fig. I.2 (a) shows the spectrum for

a deposition of 9 ML F4TCNQ on a Au(111) surface at room temperature.

Feature P is well-visible in the low-energy region (0.58 eV) only slightly af-

fected by the high coverage. A feature assigned to the excitation of the optical

gap is only barely visible at 3.28 eV, suggesting screened frontier orbitals up

to the investigated coverage of 9 ML. Fig. I.2 (b) shows the corresponding

spectrum for dosing onto a 120 K cold substrate. The coverage is only half

the coverage in (a) but Feature P has almost vanished and the intramolecular

electronic excitations 3.35 eV and 5.46 eV are well pronounced. This differ-

ent behaviour is assigned to well-ordering and band formation for the room

temperature sample and a disordered multilayer at the 120 K sample.
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trum obtained for a coverage of 3.5 ML dosed at

Tsample = 120 K.
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I.3. Influence of the Crystal Orientation

Figure I.3 shows the investigation of the plasmonic excitation with different

crystal geometries. Unfortunately, the used experimental setup did not contain

a LEED spectrometer to measure the actual crystal geometry. Therefore the

orientation was measured in another setup (2PPE, LEED image in Fig. I.3

(b), and Brillouin-zone in (c)). From this measurement, it was concluded, that

all measurements in this thesis have been performed in a direction between the

Γ-M and Γ-K direction (blue dispersion curve in Fig. I.3 (f)). To investigate

the influence of the crystal orientation, the sample was rotated in the sample

holder by about 11◦ and thus the red curve in Fig. I.3 (f) was recorded in Γ-K

direction. Within the measurement accuracy, no significant change could be

observed.
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Figure I.3.: (a) and (d), pictures of the sample holder with the Au crystal in parallel

orientation (a) and rotated by 12◦ (d); (b) LEED image obtained in 2PPE

chamber in parallel oriention; (c) and (e), corresponding Brillouin-zone scheme

with high-symmetry points (Γ, M, K) and measurement direction (dotted line);

(f), q|| dependence of the plasmon energy as obtained from angle-resolved

HREELS measurements with the two different crystal orientations.
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I. Angle-Resolved HREELS: Further Measurements

I.4. Influence of the Primary Electron Energy

Fig. I.4 shows the results for E0-dependent measurements for monolayers of

F4TCNQ and TCNQ on Au(111). The measurements reveal an increasing loss

energy with increasing E0 for both systems. To draw reliable conclusions, first,

the nature of the plasmonic excitation has to be elucidated in more detail.
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Figure I.4.: (a) and (b) show dispersion curves obtained with different E0 for F4TCNQ and

TCNQmonolayers on Au(111), respectively. (c) and (d) show the resulting loss

energy of the plasmonic feature vs. E0 for F4TCNQ and TCNQ, respectively.
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I.5. Influence of the Coverage

Fig. I.5 shows the results for coverage-dependent measurements of F4TCNQ

and TCNQ on Au(111). The measurements reveal a decreasing loss energy

with increasing coverage for both systems. To draw reliable conclusions, first,

the nature of the plasmonic excitation has to be elucidated in more detail.
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Figure I.5.: (a) and (b) show dispersion curves obtained with different coverages (θ) of
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the resulting loss energy of the plasmonic feature vs. θ for F4TCNQ and

TCNQ, respectively.
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I.6. Analogous Excitations

This section of the Appendix covers all the data correlated to the measurement

of the plasmonic excitation in several systems besides the F4TCNQ and TCNQ

on Au(111) system. Figures I.6, I.7, I.8, I.9, I.10, and I.11, show the data

for [TCNQ]−[TTF]+, F2TCNQ, pentacene, tetracene, TTF, and anthracene,

on Au(111), respectively. All Figures show a multilayer TPD, vibrational

HREELS measurements of the monolayer in specular and off-specular geome-

try, an electronic HREELS measurement in specular geometry, angle-resolved

electronic HREELS measurements, and the obtained loss energy, intensity, and

FWHM dependence on the transferred parallel momentum. Note, whereas

usually, the electronic HREELS data is for monolayer coverages, for pentacene

HREELS measurements for different coverages are presented to show the in-

fluence of the coverage on the plasmonic excitation. A brief discussion of the

obtained results shall show the most pronounced similarities and differences.

A more detailed analysis and interpretation will be part of future works.

The TPD spectra show a separation of mono- and multilayer peaks for

[TCNQ]−[TTF]+ and F2TCNQ, for the other molecules the transition is flu-

ent. The monolayer coverages for the HREELS measurements were obtained

by annealing or dosing at specific temperatures that prevent multilayer ad-

sorption. All vibrational HREELS measurements reveal a well-ordered film

and an adsorption geometry with the plane of the aromatic system oriented

parallel to the surface. All electronic spectra show a dispersive low-energy exci-

tation and the more or less pronounced conventional Au(111) surface plasmon

around 2.6 eV. Anthracene shows an additional low-energy excitation at 1.21

eV (see Fig. I.11 (c)). The angle-resolved measurements show a dispersive

excitation in all systems. The slope of the dispersion curve is rather quadratic

for [TCNQ]−[TTF]+ (see Fig. I.6 (e)) and rather linear for the other systems.

Analogous to F4TCNQ and TCNQ on Au(111), the minimum of the loss en-

ergy and the linewidth (FWHM), as well as the maximum in intensity, are

shifted from q|| = 0.
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specular and off-specular scattering geometry, (c) electronic HREEL spectra,

(d) 45 angle-resolved electronic HREEL spectra (e), (f), and (g) show the loss
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depending on q||, respectively.
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Figure I.7.: (a) TPD spectrum of 2.5 ML F2TCNQ on Au(111), (b) - (g) HREEL data for

1 ML F2TCNQ on Au(111), (b) vibrational HREEL spectra in specular and

off-specular scattering geometry, (c) electronic HREEL spectra, (d) 45 angle-

resolved electronic HREEL spectra (e), (f), and (g) show the loss energy of the

plasmonic excitation, the corresponding intensity, and linewidth depending on

q||, respectively.

178



I.6. Analogous Excitations

Electron energy loss [eV]

F
W

H
M

 [
e

V
]

L
o

ss
 e

n
e

rg
y 

[e
V

]
In

te
n
s
it
y
 [
1
0

s
]

1
-1

c

In
te

n
s
it
y
 [
1
0

s
]

2
-1

d

Electron energy loss [eV]

5°

-5°

0°

q [Å ]||

-1

In
te

n
s
it
y
 [

s
]

-1

q [Å ]||

-1 q [Å ]||

-1

e f g

Temperature [K]

pentacene/Au(111)
θ = 0.4 - 1.1 ML

In
te

n
s
it
y
 [
a
rb

.u
.]

a

In
te

n
s
it
y
 [
1
0

s
]

5
-1

b

Electron energy loss [cm ]-1

m/z 114

pentacene/Au(111)

= 3.5 eV
θ = 0.6 ML
E

0

specular
FWHM = 37 cm-1

5° off-specular

0

1.14 eV

2

1

0.0

pentacene/Au(111)
= 0.4 - 1.1 ML

= 15 eV
θ

E
0

Loss energy Intensity FWHM

4

3

2

1

0

Angle resolved
θ = 0.4 ML

4.0

6

4

2

0
x 250

8

2.54 eV

2.0

1.1

1.0

0.9

15

10

5

3.0

2.0

1.0

0.100.02

800600400 3000200010000

5.04.03.02.01.0

1.1 ML
0.6 ML
0.4 ML

4
5
7 7
2
6

8
8
7

8
0
6

1
9
3

3
0

2
2

x 0.2

1.1 ML
0.6 ML
0.4 ML

0.100.020.100.02

5

Figure I.8.: (a) TPD spectra of 0.4, 0.6, and 1.1 ML pentacene on Au(111); (b) vibrational

HREEL spectra in specular and off-specular scattering geometry for θ = 0.6
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the loss energy of the plasmonic excitation, the corresponding intensity, and

linewidth depending on q||, respectively, as derived from (d).

179



I. Angle-Resolved HREELS: Further Measurements

Electron energy loss [eV]

F
W

H
M

 [
e

V
]

L
o

ss
 e

n
e

rg
y 

[e
V

]
In

te
n
s
it
y
 [
1
0

s
]

2
-1

c
In

te
n
s
it
y
 [
1
0

s
]

2
-1

d

Electron energy loss [eV]

5°

-5°

0°

q [Å ]||

-1

In
te

n
s
it
y
 [
1
0

s
]

1
-1

3

2

q [Å ]||

-1 q [Å ]||

-1

e f g

Temperature [K]

tetracene/Au(111)
θ = 5 ML

In
te

n
s
it
y
 [
a
rb

.u
.]

a

In
te

n
s
it
y
 [
1
0

s
]

5
-1

b

Electron energy loss [cm ]-1

m/z 114

tetracene/Au(111)

= 3.5 eV
θ = 1 ML

E
0

specular
FWHM = 35 cm-1

5° off-specular

0

4.31 eV

0.38 eV

3

2

1

0.0

tetracene/Au(111)
= 1 ML

= 15 eV
average of 5 spectra

θ
E

0

Loss energy Intensity FWHM

8

6

4

2

0

Angle resolved

5.02.5

1.6

1.5

1.4

1.3

0.150.100.05

2.0

1.6

1.2

700600500400300

3

2

1

0
3000200010000

7
4
0

4
5
7

8
8
4

2
6
1

3
0

1
6

x 300

5.0

4

2.63 eV

1.24 eV

2.50.0

4

0.150.100.05 0.150.100.05

Figure I.9.: (a) TPD spectrum of 5 ML tetracene on Au(111), (b) - (g) HREEL data for

1 ML tetracene on Au(111), (b) vibrational HREEL spectra in specular and

off-specular scattering geometry, (c) electronic HREEL spectra, (d) 45 angle-

resolved electronic HREEL spectra (e), (f), and (g) show the loss energy of the
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q||, respectively.
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Figure I.10.: (a) TPD spectrum of 2.1 ML TTF on Au(111), (b) - (g) HREEL data for

1 ML TTF on Au(111), (b) vibrational HREEL spectra in specular and

off-specular scattering geometry, (c) electronic HREEL spectra, (d) 45 angle-

resolved electronic HREEL spectra (e), (f), and (g) show the loss energy of the

plasmonic excitation, the corresponding intensity, and linewidth depending

on q||, respectively.
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I. Angle-Resolved HREELS: Further Measurements
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Figure I.11.: (a) TPD spectrum of 2 ML anthracene on Au(111), (b) - (g) HREEL data for

1 ML anthracene on Au(111), (b) vibrational HREEL spectra in specular and

off-specular scattering geometry, (c) electronic HREEL spectra, (d) 45 angle-

resolved electronic HREEL spectra (e), (f), and (g) show the loss energy of the

plasmonic excitation, the corresponding intensity, and linewidth depending

on q||, respectively.
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I.7. Vibrational Assignements for F4TCNQ

I.7. Vibrational Assignements for F4TCNQ

In Table I.1, all observed vibrational modes for F4TCNQ are listed and as-

signed. In Fig. I.12, the listed vibrations for F4TCNQ are visualized with the

Facio19.1.4 program [121]. We pass on a similar presentation for TCNQ and

F2TCNQ due to minor differences, which can be attributed to the occurrence

of H-atoms in TCNQ and F2TCNQ.

Table I.1.: F4TCNQ - Vibrational frequencies (in cm−1) and assignments for 1 ML and

8 ML F4TCNQ adsorbed on Au(111). da refers to dipole active modes. In

addition DFT calculated frequencies based on the B3LYP functional and the

6-311G basis set of the free molecules are shown. ν, stretch; δ, in-plane bending;

γ, out-of-plane bending; representation and in brackets, corresponding orien-

tation of the calculated dipole derivative vector with respect to the molecular

geometry, x long axis, y short axis, z perpendicular to the molecular plane).

# 1 ML 8 ML DFT Mode Repr.

1 161 da 183 167 τ(C-C), buckl. long B3u (z)

2 254 da 257 263 τ(C-C), buckl. short B3u (z)

3 - 441 486 δ(C-C-C) Ag

4 528 da 557 597 γ(C-C-C) B3u (z)

5 632 609 638 δ(C-C-N) Ag

6 - 803 811 δ(C-C-C) + δ(C-C-F) B1u (x)

7 904 880 897 δ(C-C-C) Ag

8 - 971 986 δ(C-C-C) + ν(C-F) B2u (y)

9 - 1132 1152 δ(C-C-C) + δ(C-C-F) B1u (x)

10 - 1187 1204 δ(C-C-C) B2u (y)

11 1248 1284 1354 δ(C-C-C) + δ(C-C-F) B1u (x)

12 - 1358 1395 δ(C-C-C) + ν(C-C) + γ(N-C-N) B2u (y)

13 1427 da 1455 1499 ν(C-C) Ag

14 - 1584 1621 ν(C-C) B2u (y)

15 - 1652 1696 ν(C-C)S + δ(N-C-N) Ag

16 2084 2217 2311 ν(C-N) B2u (y)
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I. Angle-Resolved HREELS: Further Measurements
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Figure I.12.: Visualization of all observed vibrational modes of F4TCNQ. The numeriza-

tion is corresponding to table I.1 and the visualization was made with the

Facio19.1.4 program [121]. The atomic displacement is indicated by the red

arrows (enlarged by a factor of 5 for better visibility.
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J. Calculated Optimized Structures

Mode assignments in previous chapters are based on DFT frequency calcula-

tions performed after a geometry optimization (all within the Gaussian09 R⃝

[120] program package). Therefore the cartesian coordinates of all calculated

optimized molecular structures are summarized here. A brief DFT explanation

can be found in section 2.3, a commented Gaussian09 R⃝ input file can be found

in App. C.
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J. Calculated Optimized Structures

TIPS-Pn (B3LYP/6-311G)

# Sym X Y Z # Sym X Y Z

1 Si 5.944175 -0.024622 0.101588 51 H -2.500064 4.950522 0.018282

2 C 1.435925 0.001911 0.021098 52 H -2.486783 2.472942 -0.006994

3 C 0.724783 1.237042 0.02518 53 H 7.573527 -0.456177 1.91148

4 C 1.399674 2.478964 0.049645 54 H 4.924499 0.712239 2.936248

5 C 0.721427 3.693938 0.053035 55 H 6.416452 1.620763 2.681122

6 C 1.405594 4.957138 0.076876 56 H 6.342234 0.382447 3.93251

7 C 0.709304 6.133942 0.079176 57 H 6.316983 -2.058462 3.377976

8 C -0.724017 6.132425 0.057696 58 H 6.373347 -2.635255 1.713852

9 C -1.417382 4.954131 0.034587 59 H 4.897256 -1.897651 2.344267

10 C -0.730128 3.692405 0.031142 60 H 6.048809 -2.342673 -0.636254

11 C -1.40561 2.476092 0.008066 61 H 8.284587 -2.568483 -1.674206

12 C -0.727989 1.235452 0.003989 62 H 8.444187 -1.798663 -0.097155

13 C 2.856923 0.002853 0.042714 63 H 8.552143 -0.832327 -1.570114

14 C 4.078534 -0.002177 0.06492 64 H 6.400349 -0.496911 -3.058771

15 C 6.476661 -0.445396 1.918236 65 H 4.865439 -1.181592 -2.522036

16 C 6.0143 0.633895 2.919149 66 H 6.158827 -2.240552 -3.089939

17 C 5.988605 -1.841252 2.356973 67 H 6.032461 2.388811 0.403813

18 C 6.505098 -1.453203 -1.087459 68 H 8.404097 1.672289 0.823165

19 C 8.032861 -1.670899 -1.101034 69 H 8.318661 3.025086 -0.302504

20 C 5.946388 -1.330798 -2.519555 70 H 8.627517 1.401272 -0.906122

21 C 6.537713 1.768208 -0.346109 71 H 4.996717 2.115298 -1.873245

22 C 8.057566 1.970717 -0.168704 72 H 6.583298 1.722912 -2.536872

23 C 6.070226 2.254132 -1.732787 73 H 6.288046 3.319554 -1.857269

24 Si -5.94419 0.024534 -0.10179 74 H -2.480905 -2.47726 -0.067505

25 C -1.435941 -0.001537 -0.02077 75 H -2.488304 -4.955444 -0.092207

26 C -0.724799 -1.236669 -0.024835 76 H -1.235688 -7.07862 -0.096727

27 C -1.399691 -2.478591 -0.049298 77 H 1.252706 -7.075962 -0.059597

28 C -0.721445 -3.693566 -0.052684 78 H 2.500044 -4.950153 -0.017929

29 C -1.405614 -4.956765 -0.076523 79 H 2.486765 -2.472572 0.007343

30 C -0.709325 -6.13357 -0.07882 80 H -7.573213 0.45703 -1.911752

31 C 0.723996 -6.132054 -0.05734 81 H -4.923949 -0.710691 -2.936716

32 C 1.417362 -4.95376 -0.034234 82 H -6.415818 -1.619512 -2.682166

33 C 0.730109 -3.692033 -0.030792 83 H -6.341619 -0.380598 -3.93297

34 C 1.405592 -2.475721 -0.007719 84 H -6.316502 2.060147 -3.377127

35 C 0.727973 -1.23508 -0.003643 85 H -6.3731 2.635995 -1.712681

36 C -2.856938 -0.002496 -0.04247 86 H -4.896908 1.89878 -2.343322

37 C -4.078547 0.002428 -0.064783 87 H -6.050509 2.342276 0.636889

38 C -6.47635 0.446267 -1.918308 88 H -8.285981 2.565688 1.675992

39 C -6.013762 -0.632487 -2.919694 89 H -8.445702 1.796179 0.098804

40 C -5.988253 1.842368 -2.356203 90 H -8.551949 0.82931 1.571547

41 C -6.505752 1.45223 1.088015 91 H -6.399068 0.495324 3.05893

42 C -8.033712 1.668507 1.102427 92 H -4.865131 1.181759 2.521691

43 C -5.946229 1.329868 2.519798 93 H -6.159316 2.239204 3.090606

44 C -6.537276 -1.768735 0.3448 94 H -6.030777 -2.388893 -0.404651

45 C -8.056799 -1.972154 0.165609 95 H -8.402327 -1.67401 -0.826693

46 C -6.071086 -2.25463 1.73193 96 H -8.317403 -3.026677 0.299155

47 H 2.480888 2.477633 0.067855 97 H -8.628004 -1.403026 0.902301

48 H 2.488284 4.955818 0.092561 98 H -4.997808 -2.115246 1.873622

49 H 1.235666 7.078993 0.097086 99 H -6.585357 -1.723817 2.53552

50 H -1.252728 7.076333 0.059955 100 H -6.288466 -3.320188 1.856003

Figure J.1.: Calculated optimized molecular structure for TIPS-Pn, cartesian coordinates (DFT

level: B3LYP/6-311G).
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QPP (B3LYP/6-31G)

# Sym X Y Z

1 C 0 7.238453 0.712701

2 C 0 7.238453 -0.712701

3 C 0 6.052876 -1.416943

4 C 0 4.81527 -0.717789

5 C 0 4.81527 0.717789

6 C 0 6.052876 1.416943

7 N 0 3.639018 -1.409726

8 C 0 2.490364 -0.71926

9 C 0 2.490364 0.71926

10 N 0 3.639018 1.409726

11 C 0 1.224634 -1.449849

12 C 0 0 -0.727268

13 C 0 0 0.727268

14 C 0 1.224634 1.449849

15 C 0 -1.224634 1.449849

16 C 0 -1.209791 2.853545

17 C 0 0 3.548751

18 C 0 1.209791 2.853545

19 C 0 1.209791 -2.853545

20 C 0 0 -3.548751

21 C 0 -1.209791 -2.853545

22 C 0 -1.224634 -1.449849

23 C 0 -2.490364 -0.71926

24 C 0 -2.490364 0.71926

25 N 0 -3.639018 -1.409726

26 C 0 -4.81527 -0.717789

27 C 0 -4.81527 0.717789

28 N 0 -3.639018 1.409726

29 C 0 -6.052876 -1.416943

30 C 0 -7.238453 -0.712701

31 C 0 -7.238453 0.712701

32 C 0 -6.052876 1.416943

33 H 0 8.185277 1.242649

34 H 0 8.185277 -1.242649

35 H 0 6.02326 -2.500619

36 H 0 6.02326 2.500619

37 H 0 -2.159671 3.37391

38 H 0 0 4.63367

39 H 0 2.159671 3.37391

40 H 0 2.159671 -3.37391

41 H 0 0 -4.63367

42 H 0 -2.159671 -3.37391

43 H 0 -6.02326 -2.500619

44 H 0 -8.185277 -1.242649

45 H 0 -8.185277 1.242649

46 H 0 -6.02326 2.500619

Figure J.2.: Calculated optimized molecular structure for QPP, cartesian coordinates (DFT

level: B3LYP/6-31G).
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J. Calculated Optimized Structures

tBu-QPP (B3LYP/6-311G)

# Sym X Y Z # Sym X Y Z

1 C 7.241403 -0.584626 -0.00025 51 H -8.150061 -1.384515 -0.000212

2 C 7.216196 0.838951 -0.000196 52 H -5.970646 -2.599411 -0.000087

3 C 6.020048 1.519991 -0.000126 53 H -1.172812 -6.85152 0.000472

4 C 4.796464 0.800003 -0.000106 54 H -1.850224 -5.48523 0.885908

5 C 4.821844 -0.63158 -0.000153 55 H -1.850995 -5.484923 -0.883907

6 C 6.070155 -1.307673 -0.00023 56 H 0.944736 -6.690293 -1.27456

7 N 3.607232 1.471028 -0.000047 57 H 1.90086 -5.206195 -1.301226

8 C 2.470253 0.76306 -0.000023 58 H 0.366475 -5.278834 -2.172034

9 C 2.496059 -0.676649 -0.000054 59 H 0.367837 -5.278625 2.172293

10 N 3.656896 -1.344134 -0.000125 60 H 0.945676 -6.690103 1.274577

11 C 1.191537 1.471665 0.000019 61 H 1.901671 -5.20591 1.300522

12 C -0.011824 0.725367 -0.000012 62 H 1.172812 6.85152 0.000471

13 C 0.011824 -0.725367 -0.000012 63 H 1.850209 5.485243 0.885936

14 C 1.243097 -1.430515 -0.000006 64 H 1.85101 5.484911 -0.883879

15 C -1.191537 -1.471665 0.00002 65 H -0.944719 6.690296 -1.274568

16 C -1.15058 -2.873927 0.000088 66 H -1.900848 5.206201 -1.301242

17 C 0.059274 -3.575976 0.000112 67 H -0.366456 5.278835 -2.172036

18 C 1.247018 -2.828801 0.000052 68 H -0.367857 5.278625 2.172291

19 C 1.15058 2.873927 0.000088 69 H -0.945693 6.690101 1.274569

20 C -0.059274 3.575976 0.000111 70 H -1.901683 5.205904 1.300506

21 C -1.247018 2.828801 0.000052

22 C -1.243097 1.430515 -0.000005

23 C -2.496059 0.676649 -0.000053

24 C -2.470253 -0.763059 -0.000022

25 N -3.656896 1.344134 -0.000125

26 C -4.821844 0.63158 -0.000153

27 C -4.796464 -0.800003 -0.000105

28 N -3.607232 -1.471028 -0.000046

29 C -6.070155 1.307673 -0.00023

30 C -7.241402 0.584626 -0.00025

31 C -7.216196 -0.838951 -0.000196

32 C -6.020048 -1.519991 -0.000126

33 C 0.126822 -5.117409 0.000196

34 C -0.126822 5.117409 0.000196

35 C -1.275733 -5.764679 0.000702

36 C 0.884178 -5.599452 -1.26594

37 C 0.885004 -5.599269 1.265902

38 C 1.275732 5.764679 0.000717

39 C -0.884165 5.599454 -1.265947

40 C -0.885017 5.599267 1.265895

41 H 8.194 -1.096777 -0.000307

42 H 8.150061 1.384515 -0.000211

43 H 5.970647 2.599411 -0.000086

44 H 6.059408 -2.388169 -0.000269

45 H -2.097784 -3.38762 0.000116

46 H 2.210712 -3.315292 0.000056

47 H 2.097784 3.38762 0.000114

48 H -2.210712 3.315292 0.000056

49 H -6.059409 2.388169 -0.000269

50 H -8.194 1.096776 -0.000308

Figure J.3.: Calculated optimized molecular structure for tBu-QPP, cartesian coordinates (DFT

level: B3LYP/6-311G).
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TAPP (B3LYP/6-311G(d,p))

# Sym X Y Z

1 C 0 1.205222 3.569869

2 C 0 2.444218 2.853335

3 C 0 2.453296 1.492957

4 C 0 1.247015 0.710616

5 C 0 0 1.402357

6 C 0 0 2.825537

7 C 0 -1.247015 0.710616

8 C 0 -2.453296 1.492957

9 C 0 -2.444218 2.853335

10 C 0 -1.205222 3.569869

11 C 0 1.247015 -0.710616

12 C 0 0 -1.402357

13 C 0 -1.247015 -0.710616

14 C 0 0 -2.825537

15 C 0 -1.205222 -3.569869

16 C 0 -2.444218 -2.853335

17 C 0 -2.453296 -1.492957

18 C 0 2.453296 -1.492957

19 C 0 2.444218 -2.853335

20 C 0 1.205222 -3.569869

21 N 0 1.198961 -4.914779

22 C 0 0 -5.499656

23 N 0 -1.198961 -4.914779

24 N 0 -1.198961 4.914779

25 C 0 0 5.499656

26 N 0 1.198961 4.914779

27 H 0 3.360555 3.430404

28 H 0 3.408812 0.98634

29 H 0 -3.408812 0.98634

30 H 0 -3.360555 3.430404

31 H 0 -3.360555 -3.430404

32 H 0 -3.408812 -0.98634

33 H 0 3.408812 -0.98634

34 H 0 3.360555 -3.430404

35 H 0 0 -6.586107

36 H 0 0 6.586107

Figure J.4.: Calculated optimized molecular structure for TAPP, cartesian coordinates (DFT

level: B3LYP/6-311G(d,p)).

189



J. Calculated Optimized Structures

TAPP-H (B3LYP/6-31G)

# Sym X Y Z # Sym X Y Z

1 C 0.322116 -2.844246 2.455942 51 H -0.105695 0.981151 3.420274

2 C 0.167071 -1.48524 2.464645 52 H -0.385068 3.422812 3.369302

3 C 0.0813 -0.708456 1.253636 53 H -0.385068 3.422812 -3.369302

4 C 0.161443 -1.396053 0 54 H -0.105695 0.981151 -3.420274

5 C 0.325141 -2.811964 0

6 C 0.4077 -3.547713 1.214258

7 C 0.0813 -0.708456 -1.253636

8 C 0.167071 -1.48524 -2.464645

9 C 0.322116 -2.844246 -2.455942

10 C 0.4077 -3.547713 -1.214258

11 C -0.0813 0.708456 1.253636

12 C -0.161443 1.396053 0

13 C -0.0813 0.708456 -1.253636

14 C -0.167071 1.48524 2.464645

15 C -0.322116 2.844246 2.455942

16 C -0.4077 3.547713 1.214258

17 C -0.325141 2.811964 0

18 C -0.4077 3.547713 -1.214258

19 C -0.322116 2.844246 -2.455942

20 C -0.167071 1.48524 -2.464645

21 N 0.561507 -4.898703 1.203523

22 N 0.561507 -4.898703 -1.203523

23 N -0.561507 4.898703 1.203523

24 N -0.561507 4.898703 -1.203523

25 C -0.639094 5.485873 0

26 C 0.639094 -5.485873 0

27 C -0.803012 6.993421 0

28 F -1.519465 7.404805 -1.128778

29 F -1.519465 7.404805 1.128778

30 C 0.803012 -6.993421 0

31 F 1.519465 -7.404805 -1.128778

32 F 1.519465 -7.404805 1.128778

33 C -0.533653 -7.765064 0

34 F -1.257909 -7.382302 -1.130787

35 F -1.257909 -7.382302 1.130787

36 C -0.469425 -9.302277 0

37 F 0.1813 -9.771649 -1.11969

38 F -1.751694 -9.813907 0

39 F 0.1813 -9.771649 1.11969

40 C 0.533653 7.765064 0

41 F 1.257909 7.382302 1.130787

42 F 1.257909 7.382302 -1.130787

43 C 0.469425 9.302277 0

44 F -0.1813 9.771649 -1.11969

45 F -0.1813 9.771649 1.11969

46 F 1.751694 9.813907 0

47 H 0.385068 -3.422812 3.369302

48 H 0.105695 -0.981151 3.420274

49 H 0.105695 -0.981151 -3.420274

50 H 0.385068 -3.422812 -3.369302

Figure J.5.: Calculated optimized molecular structure for TAPP-H, cartesian coordinates (DFT

level: B3LYP/6-311G).
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TAPP-Cl (B3LYP/6-311+G(d,p))

# Sym X Y Z # Sym X Y Z

1 C -0.311583 2.82861 2.445809 51 H 0.104373 -0.979639 3.410304

2 C -0.161513 1.474272 2.451689 52 Cl 0.40621 -3.705534 3.940403

3 C -0.078549 0.707639 1.246083 53 Cl 0.40621 -3.705534 -3.940403

4 C -0.155036 1.391961 0 54 H 0.104373 -0.979639 -3.410304

5 C -0.31291 2.804461 0

6 C -0.393917 3.553554 1.204385

7 C -0.078549 0.707639 -1.246083

8 C -0.161513 1.474272 -2.451689

9 C -0.311583 2.82861 -2.445809

10 C -0.393917 3.553554 -1.204385

11 C 0.078549 -0.707639 1.246083

12 C 0.155036 -1.391961 0

13 C 0.078549 -0.707639 -1.246083

14 C 0.161513 -1.474272 2.451689

15 C 0.311583 -2.82861 2.445809

16 C 0.393917 -3.553554 1.204385

17 C 0.31291 -2.804461 0

18 C 0.393917 -3.553554 -1.204385

19 C 0.311583 -2.82861 -2.445809

20 C 0.161513 -1.474272 -2.451689

21 N -0.541512 4.883561 1.192958

22 N -0.541512 4.883561 -1.192958

23 N 0.541512 -4.883561 1.192958

24 N 0.541512 -4.883561 -1.192958

25 C 0.610818 -5.458232 0

26 C -0.610818 5.458232 0

27 C 0.776642 -6.985293 0

28 F 1.4702 -7.377258 -1.09598

29 F 1.4702 -7.377258 1.09598

30 C -0.776642 6.985293 0

31 F -1.4702 7.377258 -1.09598

32 F -1.4702 7.377258 1.09598

33 C 0.597728 7.730695 0

34 F 1.293534 7.350046 -1.097328

35 F 1.293534 7.350046 1.097328

36 C 0.545559 9.291814 0

37 F -0.078786 9.753711 -1.08727

38 F 1.800411 9.763373 0

39 F -0.078786 9.753711 1.08727

40 C -0.597728 -7.730695 0

41 F -1.293534 -7.350046 1.097328

42 F -1.293534 -7.350046 -1.097328

43 C -0.545559 -9.291814 0

44 F 0.078786 -9.753711 -1.08727

45 F 0.078786 -9.753711 1.08727

46 F -1.800411 -9.763373 0

47 Cl -0.40621 3.705534 3.940403

48 H -0.104373 0.979639 3.410304

49 H -0.104373 0.979639 -3.410304

50 Cl -0.40621 3.705534 -3.940403

Figure J.6.: Calculated optimized molecular structure for TAPP-Cl, cartesian coordinates (DFT

level: B3LYP/6-311+G(d,p)).
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TAPP-Br (B3LYP/6-311G)

# Sym X Y Z # Sym X Y Z

1 N 4.901048 -1.198663 -0.496171 51 H 0.977288 -3.409764 -0.096125

2 C 5.491717 -0.00027 -0.5627 52 H 0.977589 3.409679 -0.096228

3 N 4.901146 1.198207 -0.496295 53 H -0.977559 -3.409678 0.095686

4 C 3.5547 1.214618 -0.362856 54 H -0.977259 3.409764 0.095569

5 C 2.813386 -0.000125 -0.28846

6 C 3.554588 -1.214932 -0.362791

7 C 1.397647 -0.000062 -0.143959

8 C 0.709371 -1.248122 -0.07274

9 C 1.477582 -2.456973 -0.149289

10 C 2.834058 -2.45292 -0.286833

11 C 2.834274 2.452672 -0.286934

12 C 1.4778 2.456842 -0.149371

13 C 0.709482 1.248059 -0.072784

14 C -0.70933 1.248122 0.072299

15 C -1.397601 0.000063 0.143562

16 C -0.709441 -1.248058 0.072345

17 C -2.813331 0.000126 0.288157

18 C -3.554639 -1.214617 0.362612

19 C -2.834227 -2.452671 0.286561

20 C -1.477761 -2.456842 0.148914

21 C -1.477544 2.456973 0.148822

22 C -2.834012 2.452921 0.286447

23 C -3.554528 1.214933 0.362539

24 N -4.90097 1.198664 0.496105

25 C -5.491625 0.000272 0.562753

26 N -4.901067 -1.198205 0.496238

27 Br 3.806077 -4.111701 -0.382568

28 Br -3.806397 -4.11136 0.382308

29 Br -3.806038 4.111702 0.382121

30 Br 3.806438 4.111362 -0.382728

31 C -7.003184 0.000221 0.703724

32 F -7.424467 1.132436 1.419711

33 F -7.423943 -1.129226 1.424443

34 C -7.759772 -0.002804 -0.64488

35 F -7.364589 -1.140323 -1.363361

36 F -7.358303 1.127225 -1.371876

37 C -9.300742 0.001654 -0.611854

38 F -9.793048 -1.116404 0.034603

39 F -9.787104 -0.004332 -1.909473

40 F -9.787029 1.129575 0.021822

41 C 7.003305 -0.000221 -0.703353

42 F 7.424229 1.129247 -1.423943

43 F 7.424745 -1.132414 -1.419279

44 C 7.759589 0.002762 0.645423

45 F 7.358006 -1.127328 1.372262

46 F 7.36419 1.140219 1.363881

47 C 9.300567 -0.001624 0.61275

48 F 9.786635 0.004268 1.910479

49 F 9.792969 1.116515 -0.033495

50 F 9.787047 -1.129467 -0.020918

Figure J.7.: Calculated optimized molecular structure for TAPP-Br, cartesian coordinates

(DFT level: B3LYP/6-311G).
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TAPP-I (B3LYP/LANL2DZ)

# Sym X Y Z # Sym X Y Z

1 N -4.934959 -1.188166 0.462923 51 H -0.981472 -3.416498 0.089279

2 C -5.522424 0.018897 0.52402 52 H -0.957264 3.423937 0.085031

3 N -4.925905 1.222655 0.464118 53 H 0.957351 -3.423358 -0.085365

4 C -3.572686 1.237004 0.334747 54 H 0.981583 3.417076 -0.089455

5 C -2.826398 0.010359 0.266461

6 C -3.581553 -1.210778 0.336271

7 C -1.404941 0.00527 0.132387

8 C -0.718064 -1.250075 0.067701

9 C -1.491644 -2.463425 0.138817

10 C -2.863931 -2.466404 0.266958

11 C -2.846511 2.487585 0.264145

12 C -1.474282 2.474617 0.135651

13 C -0.709306 1.255717 0.06601

14 C 0.718167 1.250655 -0.067949

15 C 1.405041 -0.004689 -0.132643

16 C 0.709401 -1.255136 -0.066285

17 C 2.826501 -0.009778 -0.266696

18 C 3.572786 -1.236433 -0.335008

19 C 2.846602 -2.487012 -0.264455

20 C 1.474375 -2.47404 -0.135957

21 C 1.491751 2.464001 -0.139008

22 C 2.864046 2.466976 -0.267088

23 C 3.58166 1.211354 -0.336427

24 N 4.935089 1.188748 -0.463006

25 C 5.522525 -0.018294 -0.524172

26 N 4.925997 -1.22207 -0.464353

27 I -3.934074 -4.288029 0.365064

28 I 3.903866 -4.31605 -0.361095

29 I 3.934203 4.288602 -0.365053

30 I -3.903784 4.316621 0.360734

31 C 7.045776 -0.034281 -0.66239

32 F 7.503839 1.162548 -1.246066

33 F 7.449674 -1.079386 -1.514806

34 C 7.803602 -0.211985 0.698689

35 F 7.68343 -1.543931 1.11431

36 F 7.178687 0.591169 1.671319

37 C 9.324501 0.157896 0.70253

38 F 9.987987 -0.438007 -0.361639

39 F 9.909995 -0.290551 1.881316

40 F 9.513817 1.529037 0.631073

41 C -7.04567 0.034651 0.662399

42 F -7.449871 1.081328 1.512688

43 F -7.503157 -1.161196 1.248639

44 C -7.803807 0.209228 -0.698862

45 F -7.179921 -0.596943 -1.669587

46 F -7.682571 1.540052 -1.117985

47 C -9.325028 -0.159298 -0.701303

48 F -9.910269 0.286052 -1.881405

49 F -9.987883 0.440394 0.361103

50 F -9.51552 -1.530056 -0.625623

Figure J.8.: Calculated optimized molecular structure for TAPP-I, cartesian coordinates (DFT

level: B3LYP/LANL2DZ).
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TCNQ (B3LYP/6-311G)

# Sym X Y Z

1 C -0.678042 -1.23848 0.000018

2 C 0.678042 -1.23848 0

3 C 1.431463 -0.000001 -0.00001

4 C 0.678042 1.238479 0

5 C -0.678042 1.238479 0.000018

6 C -1.431463 0 0.000031

7 C 2.820872 0 -0.000026

8 C -2.820873 0 0.000051

9 C -3.569687 -1.212373 0.000002

10 C -3.569686 1.212372 0.000002

11 C 3.569686 1.212372 -0.000009

12 C 3.569687 -1.212373 -0.000009

13 N 4.173243 -2.213236 0.000004

14 N 4.173241 2.213238 0.000004

15 N -4.173239 2.213239 -0.000036

16 N -4.173243 -2.213237 -0.000035

17 H -1.21752 -2.174745 0.000024

18 H 1.21752 -2.174745 -0.000008

19 H 1.21752 2.174744 -0.000007

20 H -1.21752 2.174744 0.000025

Figure J.9.: Calculated optimized molecular structure for TCNQ, cartesian coordinates (DFT

level: B3LYP/6-311G).
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F2TCNQ (B3LYP/6-311G(d,p))

# Sym X Y Z

1 C 1.196089 0.743691 0

2 C 0.008573 1.383035 0

3 C -1.266863 0.695694 0

4 C -1.196089 -0.743691 0

5 C -0.008573 -1.383035 0

6 C 1.266863 -0.695694 0

7 C 2.488245 -1.348376 0

8 C -2.488245 1.348376 0

9 C 3.700035 -0.596187 0

10 C 2.670073 -2.760393 0

11 C -3.700035 0.596187 0

12 C -2.670073 2.760393 0

13 F -0.008573 2.718364 0

14 F 0.008573 -2.718364 0

15 N 4.679061 0.018762 0

16 N 2.903391 -3.892617 0

17 N -4.679061 -0.018762 0

18 N -2.903391 3.892617 0

19 H 2.106937 1.32859 0

20 H -2.106937 -1.32859 0

Figure J.10.: Calculated optimized molecular structure for F2TCNQ, cartesian coordinates

(DFT level: B3LYP/6-311G(d,p)).
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F4TCNQ (B3LYP/6-311G)

# Sym X Y Z

1 C -0.676642 1.207146 -0.000004

2 C 0.676629 1.207154 -0.000002

3 C 1.472061 -0.000023 -0.000003

4 C 0.676642 -1.20721 -0.000003

5 C -0.67663 -1.207218 -0.000005

6 C -1.472061 -0.000038 -0.000001

7 C 2.859495 0.000002 -0.000003

8 C -2.859495 -0.000012 0.000005

9 C -3.64788 1.189842 0.000004

10 C -3.647969 -1.189808 0.000006

11 C 3.647957 -1.189801 0.000004

12 C 3.647891 1.189848 0.000002

13 N 4.36495 2.111655 0.000006

14 N 4.365114 -2.111532 0.00001

15 N -4.365154 -2.111516 0.000008

16 N -4.364909 2.111672 0.000004

17 F 1.325051 -2.42251 -0.000004

18 F -1.325022 -2.422527 -0.000009

19 F -1.325063 2.422441 -0.000006

20 F 1.325033 2.422457 -0.000001

Figure J.11.: Calculated optimized molecular structure for F4TCNQ, cartesian coordinates

(DFT level: B3LYP/6-311G).
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TTF (B3LYP/6-311G)

# Sym X Y Z

1 S 0 1.545334 1.681366

2 S 0 -1.545334 1.681366

3 S 0 -1.545334 -1.681366

4 S 0 1.545334 -1.681366

5 C 0 0 0.666969

6 C 0 0 -0.666969

7 C 0 0.664105 3.27877

8 C 0 -0.664105 3.27877

9 C 0 -0.664105 -3.27877

10 C 0 0.664105 -3.27877

11 H 0 1.292389 4.154238

12 H 0 -1.292389 4.154238

13 H 0 -1.292389 -4.154238

14 H 0 1.292389 -4.154238

Figure J.12.: Calculated optimized molecular structure for TTF, cartesian coordinates (DFT

level: B3LYP/6-311G).
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