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Z U S A M M E N FA S S U N G

Wir untersuchen die Entwicklung von Sternhaufen - von ihrer Geburt in
Klumpen aus molekularem Gas bis zu ihrer völligen Auflösung im Gezeiten-
feld der Milchstraße. Dazu haben wir Parmentier und Pfalzners (2013) Mod-
ell der Sternhaufenentstehung mit direkten N-Körper-Simulationen von
Sternhaufen kombiniert, aus denen instantan das bei der Sternentstehung
zurüchgebliebene Gas ausgestoßen wurde. Unsere Modell-Sternhaufen be-
sitzen ein Sternentstehungseffizienz-(SFE-)Profil, das im Zentrum des
Haufens sein Maximum annimmt. Das bedeutet, dass das zurückgebliebene
Gas ein flacheres Dichteprofil als die Sterne hat. Wir erzeugen ein großes
Gitter von Simulationen, das von drei Parametern - globale SFE, Masse des
Sternhaufens und Galaktozentrische Entfernung - aufgespannt wird.

Wir untersuchen, welche unserer Modell-Sternhaufen die instantane
Ausstoßung des Gases in der Sonnenumgebung überleben würden. Es zeigt
sich, dass eine globale SFE von mindestens 15% nötig ist, damit ein Stern-
haufen gravitativ gebunden bleibt. Zudem lässt sich die beobachtete Au-
flösungszeit von Sternhaufen in der Sonnenumgebung mit unseren Sim-
ulationen reproduzieren, falls die Sternhaufenpopulation von Haufen mit
niedriger globaler SFE (ca. 15%) dominiert wird. Schließlich können wir
zeigen, dass die Überlebensfähigkeit eines Sternhaufen nach instantaner
Ausstoßung des Gases, gemessen am Anteil der an den Haufen gebunde-
nen Sterne am Ende der Phase der “violent relaxation”, unabhängig vom
Gezeitenfeld der Milchstraße ist.

A B S T R A C T

We study the evolution of star clusters, starting from their birth in molecular-
gas clumps until their complete dissolution in the Galactic tidal field. We
have combined the “local-density-driven cluster formation” model of Par-
mentier and Pfalzner (2013) with direct N-body simulations of star clusters
following instantaneous expulsion of their residual star-forming gas. Our
model clusters are formed with a centrally peaked star-formation efficiency
(SFE) profile, that is, the residual gas has a shallower density profile than
stars. We build a large grid of simulations covering the parameter space of
global SFEs, cluster masses, sizes and galactocentric distances.

We study the survivability of our model clusters in the solar neighbor-
hood after instantaneous gas expulsion and find that a minimum global
SFE of 15 percent is sufficient to produce a bound cluster. Then studying
their long-term evolution we find that our simulations are able to reproduce
the cluster dissolution time observed for the solar neighborhood, provided
that the cluster population is dominated by those formed with a low global
SFE (about 15%). Finally, we find that the cluster survivability after instan-
taneous gas expulsion, as measured by cluster bound mass fraction at the
end of violent relaxation, is independent of the Galactic tidal field impact.
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L I S T O F F I G U R E S

Figure 1 The simple sketch illustration of star cluster forma-
tion and evolution. 4

Figure 2 SFE profiles of 5 model clusters with SFEgl = 0.05,
0.10, 0.15, 0.25, and 0.40 as a function of outer limit
radius Rcl given in units of Plummer radius a?. The
black vertical dashed line corresponds to the outer
limit adopted in this study Rcl = 10a?. The black
dotted curve shows the stellar mass of the cluster
within the outer limit of Rcl. 18

Figure 3 Relation between the SF duration (tSF) (given in N-
body units according to Eq.21) and the global SFE
(SFEgl), measured inside Rcl = 10a?. The lowest
value of the global SFE here in this plot is SFEgl =

0.007, which corresponds to an SF duration tSF =

0.01 [NB]. 19

Figure 4 Density profiles of the star cluster (black dashed
line), of the residual (solid lines), and initial (dash-
dotted lines) gas for different SFEgl in scaled phys-
ical units. A total stellar mass M? = 3000 M� and
a 3D half-mass radius rh = 1 pc are assumed. Note
that the stellar density profile is a Plummer pro-
file. 20

Figure 5 Lagrange radii evolution for simulations with an
external potential for two different values of tSF =

0.5 NBU (top panel) and 100 NBU (bottom panel),
which correspond to SFEgl = 0.02 and 0.47 respec-
tively. The simulations are quite stable even with
very low SFE, which shows that our models are ini-
tially in equilibrium with the external potential of
the residual gas clump. 21

Figure 6 Time evolution of the bound fraction Fb of isolated
models (N = 104) as defined by two methods: de-
fined by the fraction of stars with a negative total
energy (solid lines), and defined by recalculating
the total energy of stars in an iterative process (see
text for details; dashed lines). The vertical dotted
line corresponds to t = 20 Myr when we scale the
isolated models with the same scale factor as for
a non-isolated model with M? = 6000 M�, which
also has N ≈ 104. 29

Figure 7 Top panel: bound and final bound fraction evolu-
tion of an isolated cluster with SFEgl = 0.15 (solid
and dashed lines, respectively). Bottom panel: La-
grange radius evolution of the same model. La-
grange radii are given in units of the initial stellar
half-mass radius. 30
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Figure 8 Evolution of the bound fraction of clusters obtained
in our simulations. Different colors correspond to
different global SFEs (see the key). The gray lines
show the impact of mass loss caused by stellar evo-
lution alone. The vertical dotted line corresponds
to t = 20 Myr. Top panel: comparison of the
bound fraction evolution of isolated (dashed lines)
and non-isolated (solid lines) models forM? = 6000M�
with N ≈ 104 stars. Note that the isolated models
are the single-mass models without stellar evolu-
tion and scaled to the same physical units as the
non-isolated models (i.e., M? = 6000 M� and rh =

1.26 pc). Bottom panel: bound fraction (instanta-
neous tidal mass as a fraction of initial stellar mass)
evolution for non-isolated models with different ini-
tial stellar masses (see the key for the line-coding).

32

Figure 9 Different random realizations (see line types in the
key) of the model clusters with M? = 6000 M�
(N = 10455 stars) for rh/RJ = 0.052. 33

Figure 10 Evolution of a non-isolated cluster of the solar neigh-
borhood with SFEgl = 0.20, M? = 6000 M� and
rh/RJ = 0.052 over 50 Myr after gas expulsion.
We show 49 Lagrange radii, ranging from 2 per-
cent to 98 percent in intervals of 2 percent (solid
and dashed lines). The instantaneous tidal radius
RJ of the cluster is shown as the dotted line. Thick
solid lines correspond to every 10 percent of the La-
grange radius, and the dashed line corresponds to
50 percent of the Lagrange radius. 34

Figure 11 Evolution of the bound fraction of M? = 15000 M�
clusters with different impact of the tidal field (see
the key for the line-coding). Different colors corre-
spond to different global SFEs (see the key for the
color-coding). 35

Figure 12 Evolution of the cluster withM? = 6000M�, SFEgl =

0.20 and rh/RJ = 0.025 over the first 50 Myr after
the instantaneous gas expulsion. 36

Figure 13 Bound fraction as a function of global or effective
SFE. We compare our results (red lines) with pre-
vious works. The isolated models are depicted by
the red diamonds, and non-isolated models by red
crosses. In the top panel we use our global SFE
(SFEgl) and in the bottom panel, the eSFE, eSFE=
1/Q? (which is almost the same as the LSF, the lo-
cal stellar fraction of our models). 38
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Figure 14 Volume density maps of clusters with a birth mass
ofM? = 15000M� projected onto the Galactic plane.
The left and middle columns correspond to two
random realizations of a model cluster with SFEgl =
0.15, and the right column corresponds to a SFEgl =
0.25 model. From top to bottom, we provide 5 dif-
ferent snapshots of each model cluster at times t =
0, 5, 10, 30, 70 Myr. Each point corresponds to one
star whose color-coding depicts the local volume
density calculated by means of a 50-nearest-neighbor
scheme. Note: the color-scale does not show densities
higher than 100 M�pc−3 in order to show the color contrast
in low density regions at a later time of cluster evolution. The
central densities at the time of gas expulsion are as high as
1.6 · 103M�pc−3. The dashed circles correspond to
RJ and 2RJ. The bound fractions at t = 30 Myr are,
from left to right: Fbound = 0.06, 0.18 and 0.5. The
corresponding dissolution times are tdis = 0.3 Gyr,
1.2 Gyr and 2.9 Gyr, respectively. 45

Figure 15 Volume density profiles of model clusters whose
birth mass is M? = 15000M� (same models as in
Fig. 14). Each point represents the density at the
location of one star. Left and middle panels corre-
spond to two random realizations of the SFEgl =

0.15 model, while the right panels correspond to
the SFEgl = 0.25 model cluster. The top and bot-
tom panels correspond to the density profiles cal-
culated at t = 30 Myr and t = 70 Myr, respectively.
In each panel, the vertical lines show the location of
1RJ and 2RJ. The horizontal lines correspond to the
mean density within one Jacobi radius, 〈ρJ〉, which
is constant for the considered Galactic orbit of star
clusters. 46

Figure 16 The mean bound mass fractions at the end of vio-
lent relaxation obtained from random realizations
of cluster models with SFEgl = 0.15 as a function
of the birth mass of star clusters. The error-bars
correspond to the standard deviations. The solid
line shows mean bound mass fraction of all model
clusters with SFEgl = 0.15 and shaded area corre-
sponds to the standard deviation. 47

Figure 17 Cluster dissolution time as a function of bound mass
fraction. Cluster birth mass and global SFE are indi-
cated by colors and symbols, respectively, according
to the key. 49
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Figure 18 Star cluster dissolution time versus cluster mass at
the end of violent relaxation (t = 30 Myr in top
panels and t = 70 Myr in bottom panels). We refer
to this as the cluster “initial” mass. The left panels
show the cluster “initial” mass defined as the Jacobi
mass, MJ, while the right panels present it as the
“extended mass”, M2J. Each point represents one
cluster model, with the color-coding defining the
cluster birth mass, and marker shapes coding the
global SFE. The solid line with shaded area corre-
sponds to the cluster disruption model for the solar
neighborhood of Lamers et al. (2005). The dashed
and dash-dotted lines depict the best fits to high-
SFE (SFEgl > 0.20) and low-SFE (SFEgl = 0.15)
model clusters. The red curve in the lower-right
panel connects the median random realizations of
the models with SFEgl = 0.15. 50

Figure 19 Cluster dissolution time as a function of extended
mass at t = 70 Myr. The SFEgl = 0.15 models are
represented by the mean extended mass and mean
dissolution time per model with error-bars repre-
senting the standard deviations. The red curve con-
nects median random realizations of each model as
in the lower right panel of Fig. 18. The dashed,
dotted and dash-dotted lines are best fits to the
SFEgl > 0.20, SFEgl = 0.17 and SFEgl = 0.15 mod-
els. The solid line with shaded area corresponds to
the MDD relation of Boutloukos and Lamers (2003)
for the solar neighborhood (Lamers et al., 2005).

52

Figure 20 Histogram of model clusters by dissolution times
for low-SFE and high-SFE clusters (blue and orange
lines, respectively). The area subtended by each his-
togram is unity. 53

Figure 21 Cluster dissolution time as a function of Roche vol-
ume filling factor at t = 30 and t = 70 Myr (top
and bottom panels, respectively). In the left pan-
els, the cluster initial mass is estimated as the Ja-
cobi mass, MJ, while in the right panels it is es-
timated as the extended mass, M2J. Cluster ini-
tial masses are shown by the color-coding presented
on the right-hand-side color-bar. The half-mass ra-
dius, rh, is measured as the radius containing half
of the cluster initial mass and marked as rJh when
Minit =MJ and r2Jh when Minit =M2J. The gray
arrows indicate those M? = 15k M� model clusters
presented in Figs. 14 and 15. 55
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Figure 22 Cluster dissolution time, tdis (top panels) and clus-
ter Jacobi mass, MJ (bottom panels), as functions of
volume density contrast between cluster center and
outskirts, ρc/ρJ (Eq. 33) measured at t = 30 Myr
and t = 70 Myr (left and right panels, respectively).
Unlike in Fig. 18 the color-coding refers to the clus-
ter Jacobi mass at quoted ages in top panels, and to
the cluster dissolution time in bottom panels. The
best fits (Eq. 34-35) are shown with black curves.
The three M? = 15000M� model clusters presented
in Fig. 14 and Fig. 15 are indicated with the arrows
in each panel in the same order, i.e. from left to
right, as the corresponding panels of Fig. 14 and
Fig. 15. 56

Figure 23 The rotation curve of the Galaxy model (thick blue
line) and its corresponding components (bulge, disc
and halo). The black open circles show the radii
of the circular orbits on which we put our model
clusters: Rorb = 2.9, 4.64, 8.0, 10.95, 18.0 kpc. 64

Figure 24 The bound mass fraction evolution ofM? = 30k M�
clusters for different tidal field impacts. The top
panels present the solar neighborhood clusters (Rorb =

8 kpc) where the tidal filed impact rh/RJ varies with
cluster size rh (i.e. different mean densities) at the
time of instantaneous gas expulsion. The bottom
panels show clusters of identical size, but placed
at different Galactocentric distances. Therefore the
tidal field impact rh/RJ varies with the Jacobi ra-
dius RJ. Left and right panels show the low-SFE
(i.e. SFEgl = 0.15) and high-SFE (i.e. SFEgl = 0.25)
clusters, respectively. The thin vertical dashed lines
indicate the end of violent relaxation, which we ob-
tain in this section and whose values are provided
in Table 8. 67

Figure 25 The characteristic mass-loss time (top panels) and
the bound mass fraction evolution (bottom panels)
of star clusters at two Galactocentric distances Rorb =

2.9 kpc and Rorb = 18 kpc are shown in left and
right panels, respectively. The different colors cor-
respond to cluster global SFEs in such a way that
SFEgl = 0.15 (red), 0.17 (blue), 0.20 (green), and 0.25

(yellow). The red thick line in upper panels corre-
sponds to the median of all simulations at a given
time (irrespective of global SFE and birth mass).
The black dots show the characteristic mass-loss time
of stellar evolution only and correspond to two sim-
ulations with M? = 105M�. The black solid line is
the best fit to stellar evolutionary mass loss charac-
teristic time. In bottom panels the black line shows
the stellar evolutionary mass-loss of aM? = 105M�
cluster. In each panel the vertical blue dashed line
corresponds to the end of violent relaxation, tVR,
with shaded area corresponding to the standard de-
viation (see the text for more explanations). 69

xvii

[ September 17, 2018 at 11:56 – classicthesis version 1.0 ]



Figure 26 The end of violent relaxation as a function of the
tidal field impact, characterized by half-mass to Ja-
cobi radii ratio rh/RJ at the time of gas expulsion.
Each point represents all cluster models for a given
tidal field impact. The black cross and the green
open circle correspond to our ‘standard’ model set
(rh/RJ = 0.052 and Rorb = 8.0 kpc), where the for-
mer shows our earlier estimate from Chapter 3 and
the latter corresponds to the new generalized esti-
mate obtained in Section 5.3. The models marked
with plus symbols are at different Galactocentric
distances, while crosses indicate solar neighborhood
clusters with different densities, therefore with dif-
ferent impact of the tidal field. 71

Figure 27 The end of violent relaxation duration as a function
of the tidal field impact for the same clusters located
at different Galactocentric distances. The solid line
is the best fit power-law function. The dashed line
corresponds to tVR ∝ RJ. 72

Figure 28 The violent relaxation duration as a function of the
impact of the tidal field at a fixed Galactocentric dis-
tance. The solid line is the best fit power-law func-
tion. The dotted lines correspond to tVR ∝

√
rh go-

ing through the most extreme models. The dashed
horizontal line is the mean over all simulations of
the solar neighborhood with the shaded area show-
ing the standard deviation. 73

Figure 29 The final bound mass fraction as a function of clus-
ter birth mass. Panels from top to bottom corre-
spond to three Galactocentric distances of Rorb =

2.9, 8.0, 18.0 kpc. The corresponding tidal field
impacts are: rh/RJ = 0.10, 0.052, 0.03, respec-
tively. The color-coding corresponds to different
global SFEs as following: SFEgl = 0.15 (red), 0.17

(blue), 0.20 (green), and 0.25 (yellow) and are the
same as in Fig. 25. Each point corresponds to the
mean and standard deviation of the random real-
izations performed for each model. 75

Figure 30 The final bound mass fraction as a function of tidal
field impact for different Galactocentric distances.
The color-coding corresponds to the global SFE and
is the same as in Fig. 29. Each point corresponds
to the mean and standard deviation of model clus-
ters with the same global SFE and tidal field im-
pact. 76

Figure 31 The bound mass fraction at the end of violent relax-
ation as a function of tidal field impact for different
central densities at Rorb = 8.0 kpc. Different col-
ors correspond to different global SFEs. Each point
corresponds to the mean and standard deviation of
clusters with the same global SFE at a given tidal
field impact. 76
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Figure 32 The final bound fraction as a function of global SFE
and the tidal field impact. The different colors cor-
respond to the clusters with different the tidal field
impact of our model clusters. Green open circles
show our S0-models. The solar neighborhood clus-
ters with different tidal field impact are shown by
cross symbols, while clusters at different Galacto-
centric distances are presented by plus symbols. Each
point correspond to a mean bound fraction of a set
of simulations with a given global SFE and rh/RJ.
Each set of simulations consist of models with birth
masses range from 3k to 30k M� at least. Black
curves correspond to the results of Baumgardt and
Kroupa (2007) for the case of instantaneous gas ex-
pulsion, where the numbers shown next to black
dots the strength of the tidal field in their simula-
tions. 77
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1
S TA R C L U S T E R S

The evolution of galaxies and of the Universe as a whole is tightly related
to the process of star formation (SF). Stars do not form in isolation and al-
most all star-forming regions contain star clusters, which are fundamental
building blocks of galaxies. Thus constructing a comprehensive picture of
how clusters form and evolve is very important to our overall understand-
ing of the star formation process. Some of the massive and dense clusters
(e.g. globular clusters) can remain bound and survive for a Hubble time,
but most clusters (e.g. open clusters) dissolve shortly after they form and
in doing so contribute to the field star population. Therefore, open clusters
represent the intermediate stage between the clumpy structure of the inter-
stellar medium and the relatively smooth stellar distribution of a galaxy. As
such, they bear crucial information regarding the star-formation histories of
galaxies and their evolution.

Star clusters form in dense regions of giant molecular gas clouds, which
collapse and form stars. In some cases the mutual gravitational potential
of stars can keep them together in clusters for millions and billions of years
after formation. Stars in a given cluster, since they formed from the same ma-
terial and roughly at the same time, have similar ages and chemical composi-
tions. Thereby star clusters became an excellent laboratory to test the stellar
evolution theory, by fitting isochrones - same age curves in color-magnitude
diagram (Johnson, 1954; Meyer-Hofmeister, 1969). Applying stellar popula-
tion synthesis models, one can estimate the cluster ages from the collective
spectral and photometric properties of stars in clusters (Bruzual and Char-
lot, 2003). From the age and mass distributions of star clusters one can probe
the star-formation history of their host galaxies. But star clusters do not stay
the same as they formed initially. They evolve dynamically and can dissolve
in the tidal field of the host galaxy. To study the past of a galaxy from the
present day properties of its star clusters we need to understand well, how
these stellar systems form and evolve through the time.

1.1 general picture of cluster formation and evolution

Star formation takes place in collapsed cold dense gas clumps in the turbu-
lent molecular cloud gas and produce many stars at a time. Star formation
itself is a complicated process and is still being investigated. Once ther-
monuclear reactions start in the core of the first stars, these stars start to
heat, ionize and drive the residual gas out of the star-formation region. The
most massive stars are the most destructive for the parent star-forming gas
clump with their strong winds, radiation pressure, ionizing radiation and
eventually explosion as Super-Novae type II, blowing up the gas from the
star-forming region within the first few million years of star-formation. The
collective stellar feedback from all stars can terminate star formation and
clean the star cluster from its residual gas totally.

The star-formation efficiency (SFE), that is the mass fraction of star-forming
gas converted into stars, is usually below 30 percent in star-forming regions
of the solar vicinity (Lada and Lada, 2003). That is, more than 70 percent of
the total mass escapes from star-forming region thereby weakening the grav-
itational potential of star clusters significantly. The weakening of the cluster
gravitational potential by the residual gas expulsion drives the cluster away
from virial equilibrium, possibly causing its expansion depending on the

3
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4 star clusters

Figure 1: The simple sketch illustration of star cluster formation and evolu-
tion.

cluster dynamical state during the gas embedded phase. The evolution of
star clusters from the state of dynamical non-equilibrium into a new state
of equilibrium is called violent relaxation. During the violent relaxation star
clusters can lose their stars, change their structures and masses and even
dissolve without reaching a new virial equilibrium. Lada and Lada (2003)
reported about high infant mortality of star clusters in the solar neighbor-
hood by analyzing the star cluster age distribution.

Star clusters we observe today as dynamical systems in equilibrium and
which have lived for many million years are those clusters who survived the
gas expulsion and violent relaxation as gravitationally bound stellar systems.
These star clusters then dissolve as time goes by, affected by several cluster
dissolution mechanisms like the evaporation by two-body relaxation, stellar
evolutionary mass-losses or tidal stripping by the host galaxy.

The general picture of star cluster life described above is illustrated with
the simple sketch in Fig 1.

Nevertheless, the life of star clusters is not as simple as depicted above.
Each phase of a cluster life, from star-formation till dissolution, has many
aspects we still do not know in detail.

1.2 bound cluster formation

The formation of bound star clusters can be divided into three phases: 1)
SF 2) expulsion of the residual star-forming gas, and 3) violent relaxation,
that is, the cluster dynamical response to gas expulsion. The dynamics of
stars in young clusters during their formation and after gas expulsion is not
fully understood yet. It has been the object of intense scrutiny over the past
years, with the applied methods ranging from pure N-body simulations
(Baumgardt and Kroupa, 2007; Boily and Kroupa, 2003b; Goodwin, 2009;
Lada, Margulis, and Dearborn, 1984; Lee and Goodwin, 2016; Proszkow
and Adams, 2009; Smith et al., 2011; Tutukov, 1978) and combined hydro-
dynamical and N-body simulations (Bonnell et al., 2011; Fujii and Portegies
Zwart, 2016; Girichidis et al., 2012; Moeckel et al., 2012) to analytical and
semi-analytical models (Adams, 2000; Boily and Kroupa, 2003a; Hills, 1980;
Parmentier and Pfalzner, 2013).
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1.2 bound cluster formation 5

Star clusters form in dense (> 5-10 ×103cm−3) clumps of gas inside giant
molecular clouds (GMC) (Kainulainen, Federrath, and Henning, 2014; Lada,
Lombardi, and Alves, 2010; Lada and Lada, 2003). The global SFE (SFEgl),
the mass fraction of a star-forming region converted into stars, is defined as

SFEgl =
M?

Mgas +M?
, (1)

where M? is the total stellar mass and Mgas is the mass of unprocessed gas.
The SFE measured from observations vary from a few to 30 percent for

the dense clumps of molecular clouds (Higuchi et al., 2009; Lada and Lada,
2003), and from 0.1 percent to a few percent for their host giant molecular
clouds (Evans et al., 2009; Murray, 2011).

Several mechanisms (stellar winds, ionizing radiation, radiation pressure,
Type II supernova explosions) interrupt the SF process and blow up the
unprocessed gas out of the cluster (Dib et al., 2013; Hopkins et al., 2013;
Krumholz and Matzner, 2009; Murray, Quataert, and Thompson, 2010). The
observed open clusters older than 10 Myr are already gas free (Lada and
Lada, 2003; Leisawitz, Bash, and Thaddeus, 1989). The duration of SF is
of the order of 1 Myr, with observations of young star clusters revealing
stellar age spreads ranging approximately between 0.3 Myr and 5.0 Myr
(Kudryavtseva et al., 2012; Reggiani et al., 2011).

The combination of the SF duration with the SFE per free-fall time deter-
mines the global SFE achieved by a cluster-forming clump at the time of gas
expulsion. The SFE per free-fall time, the fraction of gas mass converted into
stars over one free-fall time, was estimated to be 0.01 by Krumholz and Tan
(2007), while Murray (2011) suggested that it varies between 0.01 and 0.50

depending on the GMC mass.
Baumgardt and Kroupa (2007) performed a grid of simulations assuming

an embedded cluster in virial equilibrium with the residual gas, where both
mass density profiles have identical shapes. From these N-body simulations
(see also Fig. 1 in Parmentier and Gilmore (2007) for an overview of earlier
works) it was concluded that a global SFE of at least 33 percent is needed
to form a bound cluster after instantaneous gas expulsion. This minimum
global SFE is slightly higher than the SFEs observed for molecular clumps,
which vary up to 30 percent and are frequently estimated to be around 10

percent (Higuchi et al., 2009; Kainulainen, Federrath, and Henning, 2014;
Murray, 2011). To address this discrepancy between theoretical works and
observations, different solutions exist: adiabatic gas expulsion (Baumgardt
and Kroupa, 2007; Brinkmann et al., 2017; Geyer and Burkert, 2001; Lada,
Margulis, and Dearborn, 1984), a subvirial cluster at the time of gas expul-
sion (Farias et al., 2015; Goodwin, 2009; Verschueren and David, 1989), or
hierarchically formed clusters (Lee and Goodwin, 2016; Smith et al., 2011).

Goodwin (2009) stressed that the critical factor for a cluster to survive
gas expulsion is its dynamical state (as measured by its virial ratio) at the
onset of gas expulsion, and not its global SFE. Because star clusters are not
necessarily in equilibrium with the potential of their clump, he introduced
an alternative SFE derived from the virial ratio of a star cluster measured
immediately after instantaneous gas expulsion and called the effective SFE,
or eSFE (see also Goodwin and Bastian (2006)):

eSFE =
1

2Q?
, (2)

with the virial ratio defined by

Q? =
T?

|Ω?|
. (3)
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Here T? and Ω? are the total kinetic and potential energies of a star cluster
immediately after gas expulsion, and Q? = 0.5 corresponds to virial equi-
librium. The eSFE is equivalent to the global SFE for these models, where
the SFE is constant with the distance to the center of the star-forming clump
(i.e., stars and gas follow the same density profile shape), and stars are in
virial equilibrium with the gravitational potential of residual gas. Accord-
ing to Goodwin (2009), clusters whose virial ratio is Q? < 1.5 (equivalent to
eSFE > 0.33) can survive the instantaneous gas expulsion.

Smith et al. (2011, 2013) and Farias et al. (2015) studied this problem
by proposing a hierarchical merging scenario of substructured embedded
clusters. They also concluded that the dynamical state of a cluster at the
time of gas expulsion is important to cluster survival, while the global SFE is
not. However, their distributions of stars and star-forming gas are different,
while not depending on each other.

The more recent work by Lee and Goodwin (2016) proposed different
dynamical states for the subclusters, which are in virial equilibrium with
each other within the cluster-forming region. The authors also concluded
that the total dynamical state of the whole cluster at gas expulsion onset
is the most important factor in predicting whether the cluster survives gas
expulsion. They did not link the formation of a bound cluster to its global
SFE, however, and, considered only eSFEs. One could nevertheless map their
virial ratio to a subcluster mean SFE, assuming that in each subcluster, stars
and gas present the same density profile shape.

Parmentier and Pfalzner (2013), however, proposed a semi-analytical model
of cluster formation in which the density profile of the embedded cluster is
steeper than that of the cluster-forming gas. That is, the SFE varies locally,
as it steadily increases from the clump outskirts to the clump inner regions
(see Fig. 10 in Parmentier and Pfalzner (2013)). The reason is that the cluster-
forming clump is denser, and therefore experiences faster SF, in its central
regions than in its outskirts. The results of the cluster formation model of
Parmentier and Pfalzner (2013) also explain the star-formation relation be-
tween the surface densities of gas and young stellar objects observed in eight
nearby molecular clouds by Gutermuth et al. (2011).

The dynamical response to gas expulsion of a cluster where the stellar vol-
ume density profile is steeper than that of the gas differs from the most of-
ten investigated cases where the gas and stars density profiles have identical
shapes. This was first investigated by Adams (2000) with a semi-analytical
method. His choice for different gas and star density profiles was not phys-
ically motivated, however. Adams (2000) showed that if the stellar mass is
more concentrated in the cluster center than the gas mass, the cluster sur-
vival probability is significantly increased (see his Fig. 3). The reason is a
gas-poor region in the cluster central regions, which promotes the formation
of a bound cluster, even when the global SFE is low. In addition, Pfalzner
et al. (2014) performed N-body simulations whose initial conditions build
on the model of Parmentier and Pfalzner (2013) for a global SFE of about 18

percent.

1.3 star cluster dissolution

Although surviving bound star clusters reach a quasi-equilibrium state as
violent relaxation ends, they do not stay unchanged forever and dissolve
with the time. Star clusters lose their mass due to the internal evolution of
stars and lose their stars due to two-body relaxation. Since star clusters orbit
inside their host galaxy, they are the object of tidal stripping.

The two-body relaxation is the re-distribution of energy among all stars
of a cluster though the exchange between pairs of stars due to distant gravi-
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1.3 star cluster dissolution 7

tational encounters. These cause to set up a Maxwellian velocity distribution
at each point inside the cluster on the relaxation time-scale (Chandrasekhar,
1942; Spitzer, 1987)

tr =
0.065v3m

nm2G2 lnΛ
, (4)

where G is the gravitational constant, n the number density of stars, m and
vm are the mean mass and the average velocity of stars in the cluster, Λ is
proportional to the number of stars N. Every relaxation time a constant frac-
tion of stars acquire energies above the escape velocity, thus the lifetime of
star clusters should last multiple relaxation times (Baumgardt, 2001; Chan-
drasekhar, 1942; Spitzer, 1987). If the star cluster is in virial equilibrium,
then the half-mass relaxation time (i.e. measured within half-mass radius,
rh) is

trh = 0.138

√
Nr3h√

m
√
G lnΛ

. (5)

Baumgardt (2001) performed direct N-body simulations of star clusters
evolving in the tidal field of the host galaxy and showed that their lifetime
scales with t3/4rh , instead of trh due to the backscattering of the potential
escapers. Spurzem et al. (2005) obtained similar results using the anisotropic
gaseous model based on the Fokker-Planck approximation for the number
of stars less or equal N 6 50000. It was clear that the star cluster lifetime
depends on the number of stars, cluster density and strength of the tidal
field (Baumgardt, 2001; Baumgardt, Hut, and Heggie, 2002; Baumgardt and
Makino, 2003; Gieles and Baumgardt, 2008; Lamers, Baumgardt, and Gieles,
2010; Spurzem et al., 2005, among many others).

Boutloukos and Lamers (2003) found the mass dependent dissolution re-
lation from the observation of star clusters in the solar neighborhood and
nearby galaxies. Their work was supported by the following observational
works: Bastian et al. (2012), Lamers, Gieles, and Portegies Zwart (2005),
Lamers et al. (2005), and Silva-Villa et al. (2014).

Gieles et al. (2006) noted that the simulations of Baumgardt and Makino
(2003) and the observational studies of cluster dissolution by Boutloukos
and Lamers (2003) (improved later by Lamers et al., 2005) result in similar
power-law relation between cluster dissolution time and initial mass, but the
dissolution timescale obtained from the simulations are 5 times longer than
that observed for the solar neighborhood. Therefore, an additional destruc-
tive process, encounters with giant molecular clouds, has been considered
by Gieles et al. (2006) to solve this discrepancy.

Interestingly, Whitmore, Chandar, and Fall (2007), analyzing the star clus-
ter population of the Antennae galaxy-merger, proposed that during the
first gigayear of evolution, the dissolution time of star clusters is not only
independent of their mass but also of their environment. The mass inde-
pendent dissolution has been found also in other galaxies, which are not
mergers as the Antennae galaxy (e.g. Chandar, Fall, and Whitmore, 2010;
Chandar et al., 2014, 2016; Fall and Chandar, 2012; Fall, Chandar, and Whit-
more, 2009; Linden et al., 2017). This led to the empirical “universal law”
of cluster dissolution (also called Mass Independent Dissolution or MID,
Whitmore, 2017).

Although their MID scenario was supported by several follow-up obser-
vational studies, no theoretical work was able to support it, until Ernst et
al. (2015) showed, by means of N-body simulations, that MID is a potential
channel of cluster dissolution during the first Gyr of cluster evolution.

Ernst et al. (2015) performed direct N-body simulations of star clusters
with different Roche-volume filling factors, including clusters overfilling
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their Roche lobe (i.e. overfilling clusters) and found that the latter can dis-
solve independently of their mass. They argued that clusters can overfill
their Roche volume as a result of residual star-forming gas expulsion, i.e.
when the gas is removed from the embedded cluster by stellar feedback,
thereby weakening the gravitational potential. Therefore, the Jacobi radius
of gas-free clusters shrinks and the stars which inhabit the cluster outskirts
can now be located beyond the new Roche volume. In their simulations,
star clusters are gas-free and are initially in virial equilibrium. However, if
star cluster was previously gas-embedded, its gravitational potential should
leave some imprints on the dynamics of gas-free cluster afterwards. That is,
straight after gas expulsion, star clusters are not in virial equilibrium as sug-
gested in Ernst et al. (2015). Instead, they should expand after gas expulsion
if they were in virial equilibrium with the residual gas potential (Baumgardt
and Kroupa, 2007; Brinkmann et al., 2017; Shukirgaliyev et al., 2017).

In 2015, the Legacy Extragalactic UV Survey (LEGUS) collaboration pro-
gram started its work to investigate the connection between environmental
conditions in galaxies and their cluster populations (Calzetti et al., 2015).
Observing 50 local (closer than 12 Mpc) galaxies, the LEGUS program aims
to discriminate among models of star cluster evolution, explore the impact
of environment on star clusters and cluster evolution across the full range
of galactic and interstellar medium properties.

Additionally, with the new observational era, started by the gaia astro-
metric space telescope, and to be continued with the James Webb Space
Telescope in close future, we are all in hope to find answers to our many
questions about star formation and cluster evolution. However, as Louis
Pasteur said: “dans les champs de l’observation le hasard ne favorise que les es-
prits préparés”, that is, “in the fields of observation chance favors only the pre-
pared minds”. In order not to miss the opportunities provided by cornerstone
observational facilities, we should therefore prepare ourselves by building
good star cluster models. With such a wish in mind we have started to look
at the problem of star cluster evolution/dissolution anew.

1.4 motivation

Our wish is to build a star cluster evolution model starting from its forma-
tion and ending with its dissolution in the tidal field of its host galaxy. The
ideal case would be to build a grid of hydro-dynamical simulations consider-
ing the formation and evolution of star clusters starting from the collapse of
turbulent molecular gas clouds. But hydro-dynamical simulations also have
many assumptions, especially on assigning the initial velocities to individ-
ual newly formed stars (see Clarke, 2010). On top of that they are computa-
tionally expensive and limited in terms of the modeled cluster-forming gas
mass (e.g. Bonell et al., 2008, was limited to 4104M�). Bate (2009) reported
that his large hydro-dynamic simulation of cluster formation from a 500M�
gas clump covering a 0.285 Myr time span took nearly 100’000 CPU hours
running up to 16 processors (i.e. at least 8-9 months of calculations for one
model). The situation has not changed significantly in the last decade.

There are hydro-dynamical simulations considering the evolution of en-
tire cluster populations of galaxies (e.g. the mosaics model, Kruijssen et
al., 2011; Pfeffer et al., 2018), which have to sacrifice spatial resolution and
consider an entire cluster as one particle at best. They have many assump-
tions and depend on the models of cluster evolution applied in simulations
(e.g. cluster mass-loss mechanisms). Therefore, these kind of simulations
can miss some important details.

Star cluster long-term evolution can be easily studied with N-body sim-
ulations. For example Wang et al. (2016) performed their famous dragon
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million-body simulation of globular clusters calculating the gravitational
forces between stars by direct summation. There are many other N-body
simulations which have been considered, but almost all of them start from
virial equilibrium and are not necessarily connected to cluster-formation
models.

In this work, instead of using hydro-dynamical simulations for cluster
formation, we decided to use the semi-analytical local-density-driven clus-
ter formation model of Parmentier and Pfalzner (2013) to describe the star-
formation phase of our cluster life model. This give us the initial conditions
for our subsequent direct N-body simulations and we then model the entire
life of star clusters.

We use the local-density-driven cluster formation model, because:

1. it explains the star-formation relation between the surface densities
of gas and young stellar objects observed in eight nearby molecular
clouds by Gutermuth et al. (2011). That is, it provides us with the
observed spatial distribution of gas and stars in embedded clusters
without the need for long hydro-dynamical simulations.

2. it yields a volume density profile with a shallower slope for the star-
forming residual gas than that of the stars, which is similar to the
initial conditions considered by Adams (2000), but now physically jus-
tified. That is, our model clusters, with initial conditions derived from
the Parmentier and Pfalzner (2013) cluster formation model, should
survive instantaneous gas expulsion with lower SFEs.

3. the degree of spatial expansion is very high for surviving star clusters
formed with a low SFE. They thus possibly end up as Roche volume
overfilled clusters similar to those considered by Ernst et al. (2015).
Therefore, it gives us the opportunity to explore the existence of mass
independent dissolution of star clusters.

We think that our direct N-body simulations with more physically justi-
fied initial conditions than in other N-body works, give us a good opportu-
nity to study the evolution of clusters starting almost from their formation,
and up to stellar masses not achieved by hydro-dynamical simulations up
to now.
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2
I N I T I A L C O N D I T I O N S

2.1 star-formation efficiency and density profiles

A semi-analytical model of star cluster formation from centrally concen-
trated spherically symmetric gas clumps with a constant SFE per free-fall
time, εff, was developed by Parmentier and Pfalzner (2013). Because the
free-fall time is shorter in the clump inner (denser) regions than in the clump
outer (less dense) regions, the density profile of the formed star cluster is
steeper than the density profiles of the initial and residual gas. The authors
considered that the total density profile ρ0 of the system remains constant.

The total density profile is the sum of the density profiles of the embed-
ded cluster, ρ?, and the residual gas, ρgas, at any time t after SF onset:

ρ0(r) = ρgas(t, r) + ρ?(t, r); (6)

here r is the distance to the clump center. The density profile of the unpro-
cessed gas at time t is described with Eq. (19) from Parmentier and Pfalzner
(2013), which we reproduce here for the sake of clarity:

ρgas(t, r) =

(
ρ0(r)

−1/2 +

√
8G

3π
εfft

)−2

. (7)

G is the gravitational constant and εff is the SFE per free-fall time. The mass
of the embedded cluster at time t is distributed according to Eq. (20) in
Parmentier and Pfalzner (2013):

ρ?(t, r) = ρ0(r) −

(
ρ0(r)

−1/2 +

√
8G

3π
εfft

)−2

. (8)

Our aim is to investigate the dynamical evolution of such star clusters
after instantaneous gas expulsion and to estimate their survival likelihood.
The instantaneous gas expulsion corresponds to the case when the timescale
of the gas expulsion is significantly shorter than the dynamical timescale of
the system. In terms of cluster survivability, it is the worst scenario we can
envision. If a star cluster survives instantaneous gas expulsion, it is also able
to survive a longer gas expulsion timescale.

We can adopt two different approaches to study this problem.
A. Either the starting point is a molecular clump, with a given density

profile ρ0(r), and we obtain the density profile of the star cluster that formed
after some SF time span based on Parmentier and Pfalzner (2013).

B. Alternatively, the starting point is an embedded cluster with a well-
known profile (e.g., Plummer or King), and assuming an SF time span, we
recover the initial gas density profile of the molecular clump out of which
the cluster has formed.

In case (A) we start with the initial spherically symmetric gas clump that
has a certain density profile ρ0(r) at time t = 0. Then we assume that a star
cluster forms within a time interval t = tSF called SF duration with a con-
stant SFE per free-fall time εff = const. Its density profile is then given by
Eq. 8. Depending on how long the SF process lasts, star clusters with differ-
ent SFEgl are formed (see Fig 9. in Parmentier and Pfalzner (2013)). At time
t = tSF (corresponding to a certain value of SFEgl), we set the instantaneous
gas expulsion, that is, we remove the unprocessed gas from the system. A

13
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star cluster then becomes super-virial because it has lost part of the gravita-
tional potential within which it was in virial equilibrium. This would define
the initial conditions of our direct N-body simulations to study the effect of
instantaneous gas expulsion.

Because model (A) depends on the SF duration, it results in star clusters
with different global SFEs, masses, and spatial and velocity distributions,
which makes it difficult to compare the results of the N-body simulations
to each other. Additionally, generating the initial conditions of such models
for N-body simulations is not trivial.

Our main point is to study the effect of instantaneous gas expulsion on
a star cluster in dependence of its global SFE, therefore we can simplify the
problem and consider clusters with a fixed stellar mass and spatial distribu-
tion while varying the global SFE at gas expulsion. This leads us to our case
(B), on which we focus in this paper.

In case (B), we thus assume a fixed density profile and a fixed stellar
mass for the embedded clusters at gas expulsion. Then the initial clumps
that formed such clusters have therefore different total masses and spatial
distributions depending on the assumed global SFE.

As we wish to study the response of a star cluster to gas expulsion as
a function of the global SFE, we have to find the cluster velocity distribu-
tion for any given global SFE assuming it is in virial equilibrium with the
gravitational potential of the residual gas. To find this distribution, which
depends on the SF duration, we need to solve the inverse problem to that
presented in case (A). That is, having the density distribution of a star cluster
ρ?(r), we determine the density profile of the residual gas at gas expulsion
ρgas(r, tSF), and following from this, the density profile of the whole cluster-
forming clump, ρ0(r, tSF). Then we modify the cluster velocity distribution
function so as to account for its virial equilibrium with the gravitational
potential of the residual gas.

The model developed by Parmentier and Pfalzner (2013) can be applied
to any clump density profile. So we can choose a well-known density profile
ρ? for the embedded cluster and define the density profile of the residual
gas corresponding to an SF duration tSF by modifying Eqs. (6) and (7) and
setting t = tSF:

ρ0(r, tSF) = ρgas(r, tSF) + ρ?(r), (9)

ρgas(r, tSF) =

(
(
ρgas(r, tSF) + ρ?(r)

)−1/2
+

√
8G

3π
εfftSF

)−2

. (10)

In this equation, we note that the SF duration tSF is given in units of Myr if
densities ρ(?, gas) are expressed in M� pc−3 and the gravitational constant
G = 0.0045 pc3 M−1

� Myr−2. Introducing the parameter

k =

√
8G

3π
εfftSF, (11)

which depends on the SFE per free-fall time εff and SF duration tSF , we can
rewrite Eq. (10) as

k4ρ4gas −(4k2− 2k4ρ?)ρ
3
gas −(6k2ρ?−k

4ρ2?)ρ
2
gas − 2k

2ρ2?ρgas +ρ
2
? = 0. (12)

Solving this equation provides us with the residual gas density profile ρgas
as a function of the stellar density profile ρ?, SFE per free-fall time , εff,
and SF duration tSF. The stellar density profile, ρ?, can be any centrally
concentrated spherically symmetric density profile.

[ September 17, 2018 at 11:56 – classicthesis version 1.0 ]



2.1 star-formation efficiency and density profiles 15

Equation (12) can be easily solved using software such as mathematica.
Since the roots of this equation obtained with mathematica are very long,
we made them more compact by introducing the following intermediate
terms:

α = k4ρ2? ; (13)

K0 =
3

√
α3 + 36α2 + 216α+ 24α

√
3 (α+ 27) ; (14)

K1 =

√
α2 +α(K0 + 24) +K0(K0 + 12)

12k4K0
; (15)

K2 =
(α−K0 + 24) (K0 −α)

3k4K0
. (16)

Then we can write the four roots of Eq. (12) as

ρgas(1,2,3,4) =
1

k2
−
ρ?

2
± 1
2

√
K2 +

8

k6(∓K1)
+ (∓K1). (17)

The following relation is true for all real values of k and ρ?

K2 <
8

k6K1
, (18)

which gives complex numbers for two of the roots in case of (−K1). The
other two roots are real, with one decreasing and the other increasing with
ρ?. Since we consider a centrally concentrated clump, where the stellar den-
sity decreases with increasing radius, the gas density should follow the stel-
lar density and decrease as well. Thus we choose the root that increases
together with stellar density toward the clump center with the following
expression:

ρgas =
1

k2
−
ρ?

2
−
1

2

√
K2 +

8

k6K1
+K1. (19)

Parmentier and Pfalzner (2013) used a power-law density profile with a
slope of −2 for their cluster-forming clumps. This yields a power-law den-
sity profile with a slope of about −3 for a star cluster. Such initial conditions
are not ideal for N-body simulations because of their infinite stellar and
gas masses. We need either to truncate these power-law profiles, or choose
steeper profiles with finite masses. Thus we decide to use one of the well-
known spatial density distribution functions for an embedded cluster, that
is, the Plummer profile (Plummer, 1911),

ρ?(r) =
3M?

4πa3?

(
1+

r2

a2?

)−5/2

, (20)

where M? is the cluster total mass and a? is the Plummer radius, which
corresponds to the projected half-mass radius of a star cluster.

Choosing a Plummer profile has many advantages, for instance, a finite
mass for both gas and stars, and an analytical expression. It is also sup-
ported by almost all N-body codes, which makes it possible to compare the
results of different works.
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2.2 phase-space distribution of stars at the time of gas ex-
pulsion

Since our aim is to perform N-body simulations, we adopted dimensionless
N-body ([NB]) units. They are associated with the star cluster parameters,
not with the cluster-forming clump parameters:

G ′ = 1.0, r ′ =
r

a?
, m ′ =

m

M?
,

v ′ = v

√
a?

GM?
, t ′ = t

√
GM?

a3?
. (21)

The N-body units can be converted into physical units when G, a?, M? are
assigned numerical values in their respective units. Here we note that our
‘N-body’ time unit depends on the cluster stellar mass M? and Plummer
radius a? at the time of the instantaneous gas expulsion. It does not repre-
sent the dynamical timescale of the cluster (stars only) because the cluster is
super-virial and its dynamics bears the imprint of the cluster-forming clump
mass at the time of the gas expulsion. Neither does it represent the dynam-
ical timescale of the clump (stars+gas) since the total mass and half-mass
radius of the cluster-forming clump differ from the stellar mass and stellar
half-mass radius because their density profiles have different shapes. We ap-
plied these N-body units for (i) to recover the density profile of the residual
cluster-forming gas with Eq. 12, and (ii) to perform the subsequent N-body
integration of the gas-free cluster after instantaneous gas expulsion.

To generate the initial conditions of our N-body simulations is not trivial
because we need a star cluster in virial equilibrium with the gravitational
potential of the residual gas, where the shapes of the gas and star distri-
butions differ. In that respect, our case differs from most previous N-body
simulations, as radial variations of the SFE increase the degree of complexity
of the problem.

We used the falcON program mkhalo by McMillan and Dehnen (2007),
which produces a spherically symmetric star cluster in virial equilibrium
with an external potential as the initial conditions of direct N-body sim-
ulations. External potential means a gravitational potential produced by
anything but the stars of the cluster. In this framework, the gravitational
potential produced by the residual gas constitutes an external potential.

To use mkhalo for our purpose, we wrote an additional acceleration plu-
gin GasPotential, that is, an additional code, which takes into account the
new external potential of our models. In this GasPotential plugin we cal-
culated the gravitational potential and the forces produced by the residual
gas knowing its density profile. For this, we used Eq. (3.15

′) from Duboshin
(1968):

Φgas(r) = −
4πG

r

r∫
0

r2ρgas(r)dr− 4πG

Rgas∫
r

rρgas(r)dr; (22)

dΦgas(r)

dr
=
4πG

r2

r∫
0

r2ρgas(r)dr; (23)

where ρgas was obtained by solving Eq. 12 (see Sect. 2.1), and Rgas is the
adopted outer edge of the clump of residual gas. We used Rgas = 32a?,
which is the smallest radius possible to use in mkhalo. Because the gas
density profile, ρgas, is not a simple function of r, the distance to the clump
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center, Eqs. (22) and (23) were integrated numerically using the Simpson
method.

In Eq. (22) we need to integrate over two intervals, [0, r] and [r,Rgas]. So
we could have high errors if we use equal number of bins for these two
intervals, when r → 0 and r → Rgas. That is why I consider 3 cases with
different binning for 2 intervals of integration as following:

a) 0 6 r <
1

4
Rgas, Ninbin = 2j+ 1, Noutbin = 3(2j+ 1);

b)
1

4
Rgas 6 r <

3

4
Rgas, Ninbin = 2(2j+ 1), Noutbin = 2(2j+ 1);

c)
3

4
Rgas 6 r < Rgas, Ninbin = 3(2j+ 1), Noutbin = 2j+ 1.

Here j is some natural number, Ninbin and Noutbin are the numbers of bins

for the numerical integrals

r∫
0

r2ρg(r)dr and

Rgas∫
r

rρg(r)dr, respectively. For

our calculations j = 512 is sufficient and the relative errors are roughly of
the order of 10−7 for the clump edge Rgas = 32 a? of the embedded cluster1.
The code listing of the GasPotential acceleration plug-in can be found in
Appendix A.2.

In the framework of this study, we adopted a fixed SFE per free-fall time
of εff = 0.05. Then the only parameter we varied in our acceleration plugin
to produce the initial conditions is the SF duration tSF. To allow a compar-
ison of our results with other works, however, it is better to use as a main
parameter the SFEgl than tSF. To develop a grid of models with a given SFEgl
(0.05, 0.10, ...), we still need to infer the corresponding tSF and add them to
the models.

We defined the global SFE as the ratio between the stellar and total (stellar
+ gas) masses residing inside a chosen outer limit, Rcl. Because a Plummer
model has no finite outer limit, we adopted Rcl = 10a? , which is the radius
inside which about 98 per cent of the stellar mass resides. Here we note that
because of the slope difference between the density profiles of the embedded
cluster and the residual (as well as total) gas, a larger outer limit would
imply a lower global SFE, and vice versa. This is illustrated in Fig. 2, which
presents the global SFE as a function of outer limit radius Rcl. There are
SFE profiles of 5 model clusters with SFEgl = 0.05, 0.10, 0.15, 0.25, and 0.40
presented. Black dotted curve corresponds to the cluster stellar mass within
the outer limit radius and corresponds to the right y-axis. The black vertical
line corresponds to the outer limit adopted in this study, Rcl = 10a?.

The relation between the SFEgl and the corresponding SF duration tSF
calculated in N-body units is presented in Figure 3. In our study we concen-
trated on models with an SFEgl < 0.50. The corresponding values of SFEgl
and tSF for different models are presented in Table 1. Using these values,
we produced the initial conditions of our simulations with mkhalo. Then,
using the generated positions and velocities of the stars, we calculated the
initial potential (Ω?) and kinetic (T?) energies of our model clusters at the
moment of instantaneous gas expulsion, as well as their initial virial ratios
and eSFEs, using Eqs. (3) and (2). The corresponding values are also pre-
sented in Table 1.

1 The code ‘mkhalo’ does not generate any particle at a distance larger than r = 32a?.
Therefore Rgas = 32a? is chosen to be the clump edge in ‘GasPotential’ acceleration
plug-in too.
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Figure 2: SFE profiles of 5 model clusters with SFEgl = 0.05, 0.10, 0.15, 0.25,
and 0.40 as a function of outer limit radius Rcl given in units of
Plummer radius a?. The black vertical dashed line corresponds to
the outer limit adopted in this study Rcl = 10a?. The black dotted
curve shows the stellar mass of the cluster within the outer limit
of Rcl.

We find that in our models the effective and global SFEs are different,
unlike the models that used the same density profile for both the stars and
gas (see Boily and Kroupa (2003a), Goodwin and Bastian (2006), Goodwin
(2009)). Varying the outer edge Rcl of the cluster, we infer that these eS-
FEs are almost the same as the global SFEs measured inside 1.5a? , that
is, similar within 2-3 percent to the global SFEs measured inside a cluster
half-mass radius. The latter also measures the LSF as defined by Smith et
al. (2011). Goodwin (2009) noted that star clusters with an initial virial ra-
tio lower than 1.5 are able to survive the instantaneous gas expulsion (in
the case of Plummer profiles for both stars and gas), which corresponds to
an effective SFE of 33 percent. Taking this into account, we can expect the
minimum SFE needed to form a bound cluster to be SFEgl = 0.15, as it cor-
responds to Q? ≈ 1.5 for our models (see Table 1). This is indeed what we
show in Chaper 3.

The density profiles of the embedded cluster, its residual gas before in-
stantaneous gas expulsion, and the initial clump gas for different global
SFEs are shown in Figure 4. The models were scaled to physical units as-
suming a star cluster mass of M? = 3000 M� and a 3D half-mass radius of
rh = 1 pc. The density units are given in M�pc3 (right y-axis) and molecules
per cm3 (left y-axis). Gas densities on this scale vary within the observed
range of dense clumps (6 105cm−3). The SF durations tSF for these three
models are 0.39 Myr, 2.21 Myr, and 12.77 Myr. As we see, some of our
models are inconsistent with observations in the sense that the inferred SF
duration is longer than what is observed.

For our high-resolution direct N-body simulations we have chosen the
φgrape-gpu code developed by Berczik et al. (2011, 2013). As a check of the
stability of the initial conditions generated by the code mkhalo, we added
our newly created external potential to the φgrape-gpu code and tested the
dynamics of the embedded cluster within the residual gas potential. We
ran a few simulations with external potentials corresponding to different
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2.2 phase-space distribution of stars at the time of gas expulsion 19

Figure 3: Relation between the SF duration (tSF) (given in N-body units
according to Eq.21) and the global SFE (SFEgl), measured in-
side Rcl = 10a?. The lowest value of the global SFE here in
this plot is SFEgl = 0.007, which corresponds to an SF duration
tSF = 0.01 [NB].

tSF. The test runs were performed for isolated clusters with N = 10k single-
mass particles over a time interval of up to 1000 N-BODY time units, which
is slightly shorter than three relaxation times of the same cluster in virial
equilibrium without external potential. We checked the evolution of the La-
grangian radii and cumulative mass profiles for different SFEs varying the
star-formation duration values ltSF from 0.05 to 100 NBU, that corresponds
to SFEgl from 0.02 to 0.47. These exercises showed that our newly gener-
ated initial conditions are indeed in virial equilibrium with the external gas
potential (see Fig. 5).
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Table 1: Global SFEs (SFEgl) and their corresponding SF durations (tSF) in
N-body units (see Eq. 21), the virial ratios Q? of star clusters, and
eSFEs immediately after gas expulsion.

SFEgl tSF [NB] Q? = T?/|Ω?| eSFE = 1/2Q?

0.05 2.14 4.34 0.12

0.10 6.30 2.26 0.22

0.13 9.58 1.77 0.28

0.15 12.09 1.55 0.32

0.20 19.53 1.21 0.41

0.25 28.74 1.00 0.50

0.30 39.96 0.87 0.58

0.35 53.53 0.77 0.65

0.40 69.94 0.71 0.70

0.45 89.85 0.66 0.76

0.50 114.22 0.62 0.81

Figure 4: Density profiles of the star cluster (black dashed line), of the resid-
ual (solid lines), and initial (dash-dotted lines) gas for different
SFEgl in scaled physical units. A total stellar mass M? = 3000 M�
and a 3D half-mass radius rh = 1 pc are assumed. Note that the
stellar density profile is a Plummer profile.
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Figure 5: Lagrange radii evolution for simulations with an external potential
for two different values of tSF = 0.5 NBU (top panel) and 100

NBU (bottom panel), which correspond to SFEgl = 0.02 and 0.47
respectively. The simulations are quite stable even with very low
SFE, which shows that our models are initially in equilibrium with
the external potential of the residual gas clump.
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3
I M PA C T O F S F E - P R O F I L E O N T H E E V O L U T I O N O F
O P E N C L U S T E R S

The results presented in this chapter are published in the peer-reviewed
paper Shukirgaliyev, B., G. Parmentier, P. Berczik, and A. Just (2017). “Im-
pact of a star formation efficiency profile on the evolution of open clusters.”
In: A&A 605, A119. B. Shukirgaliyev performed all N-body simulations, an-
alyzed their outputs and wrote most of the text. All authors contributed
ideas, comments and suggestions throughout the realization of this study
and its preparation as a peer-reviewed paper.

3.1 setting up the simulations

We performed two types of N-body simulations. First, we simulated isolated
single-mass clusters without stellar evolution to observe the pure dynamical
effect of an instantaneous gas expulsion. We ran these simulations with N =

104 particles and covered global SFEs ranging from 5 to 50 percent.
Second, we studied a more realistic scenario of violent relaxation by con-

sidering star clusters consisting of multi-mass stars that evolve in a Galactic
tidal field. We refer to these two sets of simulations as ‘isolated’ and ‘non-
isolated’ models.

For the stellar initial mass function (IMF) of our non-isolated models we
adopted the IMF of Kroupa (2001) with the lower and upper mass limits of
Mlow = 0.08 M� and Mup = 100 M�, respectively.

3.1.1 The tidal field of the Galaxy

We consider star clusters on circular orbits in the Galactic disk plane. For
the Galactic tidal field we use an axisymmetric three-component Plummer-
Kuzmin model (Miyamoto and Nagai, 1975) with the parameters as given
in Just et al. (2009). For the sake of clarity we provide here the Equation (32)
of Just et al. (2009) describing the Galactic tidal field components

Φ(R, z) = −
GM√

R2 +
(
a+
√
b2 + z2

)2 , (24)

where G is the gravitational potential, M is the mass of the component, and
a and b represent the flattening and the core radius of the component. Their
numerical values are given in Table 2. The rotation curve obtained from the
Galactic potential model is presented in Fig. 23.

Table 2: The numerical values of the Galaxy component parameters from Eq.
24.

Galaxy component M [M�] a [kpc] b [kpc]

Bulge 1.4× 1010 0.0 0.3

Disk 9.0× 1010 3.3 0.3

Halo 7.0× 1011 0.0 25.0

25
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26 impact of sfe-profile on the evolution of open clusters

We also use Equation (13) from Just et al. (2009) to calculate the Jacobi
radius:

RJ =

(
GMJ

(4−β2)Ω2

)1/3
, (25)

where MJ is the Jacobi (bound) mass of the cluster (which is the stellar mass
enclosed within one Jacobi radius), β = 1.37 is the normalized epicyclic
frequency and Ω = Vorb/Rorb is the angular speed of a star cluster moving
with an orbital speed Vorb on a circular orbit at a Galactocentric distance
Rorb. This was added to the φgrape-gpu code by Just et al. (2009), and we
used it keeping their parameters.

We considered that our clusters move on a circular orbit in the plane of
the Galactic disk, at a distance of Rorb = 8 kpc from the Galactic center.

3.1.2 From N-body to physical units

We normalized our N-BODY units to the real physical units in order to
assign the correct timescale to the stellar evolution routines (SSE; Hurley,
Pols, and Tout (2000)) implemented in the φgrape-gpu code. This means
that we assigned certain values to the cluster mass (M?) and the initial
Plummer radius (a?).

Our simulations encompass five different initial cluster stellar masses:
M? = 3000, 6000, 10000, 15000, and 30000 M�. Then knowing the distance
of the cluster to the Galactic center, we can calculate the cluster tidal (Jacobi)
radius RJ for a given mass M? using Eq (13) from Just et al. (2009), which
we reproduce here for the sake of clarity:

RJ =

(
GM?

(4−β2)Ω2

)1/3
. (26)

Here β = 1.37 is the normalized epicyclic frequency and Ω = V0/Rorb is
the angular speed of a star cluster on a circular orbit at a distance Rorb
from the Galactic center. For Rorb = 8000 pc, the orbital speed recovered
from the rotation curve of the Galaxy model provided in Just et al. (2009) is
V0 = 234.24 km s−1.

To make the models comparable with each other, we fixed the half-mass
radius to the tidal radius ratio. We calculated it for a cluster mass M? =

3000M� with a half-mass radius of rh = 1 pc. This means that we consid-
ered clusters with different stellar masses, but the same mean stellar volume
densities. The tidal radius of a cluster with M? = 3000M� and rh = 1 pc is
RJ = 19.2 pc, and therefore

rh
RJ
≈ 0.052. (27)

Thus we normalized the N-BODY length unit into physical units of pc
knowing that in a Plummer model rh ≈ 1.3a?,

rnorm = a? ≈ 0.77rh ≈ 0.04RJ, (28)

where the tidal radius is calculated using Eq. (26). For the models with an
initial stellar mass M? = 3000 M� , for instance, the normalized length is
equal to rnorm = 0.77 pc.

With our definition of the outer limit Rcl of our cluster-forming clumps
(see Sect. 2.2), star clusters initially fill their tidal radius up to 40 percent.
This means that the total radius of a star cluster is initially smaller than its
tidal radius: Rcl = 10a? = 0.4RJ. The properties of a star cluster as a function
of its stellar mass are presented in Table 3.
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Table 3: Set of models corresponding to different initial stellar masses.

M? N? RJ rh Rcl = 10a?

[M�] [pc] [pc] [pc]

3000 5227 19.211 1.00 7.664

6000 10455 24.204 1.26 9.656

10000 17425 28.697 1.49 11.449

15000 26138 32.850 1.71 13.310

30000 52277 41.389 2.15 16.512

The scale factor of time units, as shown in Eq. 21, can be found as

tnorm =

√
r3norm
GM?

≈ 0.18 Myr (29)

when rh/RJ = 0.052. Given our assumption of a fixed ratio of the half-mass
to tidal radius (see Eqs. 27 and 28), rnorm ∝ RJ ∝ (GM?)

1/3, tnorm is the
same for all models as well as the mean stellar volume densities.

The corresponding values of SF duration and total (stars + gas) volume
densities averaged within the initial stellar 3D half-mass radius are provided
in Table 4. This table shows that the models are consistent with the observa-
tions in terms of SF duration and clump mean densities. It is thought that
star cluster formation takes between one half and roughly 5 Myr in the solar
neighborhood. We therefore consider the models in these limits to make our
simulations as consistent with reality as possible. This limits the SF duration
of our models between 2.7 and 27 N-BODY time units, which corresponds
to 0.5 and 5 Myr for our chosen scale factor of rh/RJ. Consequently, this also
limits us in the range of achievable SFEgl. According to these limits, we de-
cided to calculate models with SFEgl between 10 percent and 25 percent for
εff = 0.05, which corresponds to an SF duration tSF between 1.15 and 5.25

Myr for all initial cluster masses M?. To cover still higher SFEs, we ran two
additional models with global SFEs of 30 and 35 percent for M? = 6000M�.
To make these runs consistent with the observations in terms of SF duration,
we built on the following feature of Eq. (12): because the parameter k in Eq.
(12) is proportional to εfftSF, our results stand for any model where the
product εfftSF is conserved (e.g., a twice higher SFE per free-fall time with
a twice shorter SF duration). In our two additional runs the SF durations
can therefore be considered as tSF = 3.64 Myr and 4.88 Myr, respectively, if
εff = 0.1. For comparison, additional models with the same spatial distribu-
tion of stars initially in virial equilibrium within a Galactic tidal field, but
without any residual star-forming gas, (i.e., equivalent to SFEgl = 1.0), were
run for M? = 3000, 6000, and 10000 M�.

The mean (total and stellar) volume densities of models are also consistent
with observations of star-forming molecular clumps, where an SF density
threshold has been suggested (> 104 cm−3 in Lada, Lombardi, and Alves
(2010) and > 5× 103 cm−3 in Kainulainen, Federrath, and Henning (2014))
and with stellar densities in embedded clusters, which vary from 100-200 to
1-2×104 stars pc−3 (Hillenbrand and Carpenter, 2000; Lada et al., 1991).

Based on these simulations, we now study the evolution of the bound
fraction of star clusters. We present the results of isolated models scaled to
physical units such that M? = 6000 M� and rh = 1.26 pc (see Table 3) to
compare them with M? = 6000 M� non-isolated models, which consist of
10455 stars.
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Table 4: Global SFEs (SFEgl) and corresponding values of the SF duration
(tSF) in N-body units (Eq. 21) and in units of Myr for the adopted
normalization parameters (using Eq. 29). The rows within the box
highlight the non-isolated models selected for our simulations. We
also show here the mean volume density of the clump (star + gas)
inside the half-mass radius. Because we kept the stellar masses con-
stant while varying the global SFE, we varied the fraction of unpro-
cessed gas. When the global SFE increases, the mass of the residual
gas decreases (keeping stellar mass constant), and as a consequence,
the total volume density decreases as well.

SFEgl tSF tSF ρtot(< rh) nH2,tot(< rh)

[NB] [Myr] [M� pc−3] [cm−3]

0.05 2.14 0.39

0.10 6.30 1.15 1490.73 26405

0.13 9.58 1.75 1177.02 20848

0.15 12.09 2.21 1037.99 18386

0.20 19.53 3.56 813.52 14410

0.25 28.74 5.25 680.92 12061

0.30 39.96 7.29 594.24 10526

0.35 53.53 9.77 533.91 9457

0.40 69.94 12.77

0.45 89.85 16.40

0.50 114.22 20.85
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3.2 cluster-bound fraction evolution

3.2.1 Bound fraction of isolated models

In the classical way, the bound fraction of isolated clusters in virial equi-
librium is defined as the fraction of stars whose total energy (i.e., kinetic
+ potential) is negative, that is, the potential energy dominates the kinetic
energy. The bound fraction defined in the “classical” way shown by solid
lines in Fig. 6, which presents the bound fraction evolution of our isolated
model clusters with different global SFE corresponding to different colors
(see the key).

Figure 6: Time evolution of the bound fraction Fb of isolated models (N =

104) as defined by two methods: defined by the fraction of stars
with a negative total energy (solid lines), and defined by recal-
culating the total energy of stars in an iterative process (see text
for details; dashed lines). The vertical dotted line corresponds to
t = 20 Myr when we scale the isolated models with the same scale
factor as for a non-isolated model with M? = 6000 M�, which also
has N ≈ 104.

Our model isolated clusters become supervirial and start to expand quickly
after instantaneous gas expulsion, however. Thus it is not trivial to distin-
guish between bound and unbound stars in such systems during their ex-
pansion. The unbound stars can be located anywhere inside a such cluster
and make a significant contribution to its gravitational potential depending
on global SFE. Thus the bound fraction remains overestimated until bound
and unbound stars are clearly spatially separated from each other. For in-
stance, model clusters with global SFEs of 0.05 and 0.10 do not survive
the instantaneous gas expulsion. In Fig. 6, however, they retain a signifi-
cant bound fraction for several Myr. For clusters with global SFEs of 0.13

and 0.15, we need to wait for a long time to reach the final bound fraction,
that is, for the unbound stars to have evacuated the cluster region and to no
longer contribute to the cluster gravitational potential. This process can take
quite a long time in isolated systems, especially if the final bound fraction
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is small. For instance, the cluster with SFEgl = 0.15 needs 1 Gyr to approach
the final bound fraction if this is defined in the “classical” way.

These reasons motivated us to develop another technique to define the
final bound fraction early on in the evolution of clusters. We recalculated
the total energies of stars, removing the unbound stars (i.e., stars whose
total energy is positive) from the cluster even if they were located in the
center of the cluster. We iterated until no unbound star remained in the
cluster. Doing so, we excluded the contribution of unbound stars to the
cluster potential. The final bound fraction of our isolated models is defined
as the final fraction of stars that remained bound to the cluster - if any - at
the end of the iterations. We emphasize that removing the unbound stars
does not mean that we removed them from the simulations, but that we
removed them from our selected sample at each snapshot for the purpose of
our analysis only. For each snapshot in time, we always started the iterative
process with the total number of stars.

Figure 7 presents an example of the evolution of the bound fraction and
Lagrange radii of an isolated cluster with a global SFE of 15 percent. As

Figure 7: Top panel: bound and final bound fraction evolution of an isolated
cluster with SFEgl = 0.15 (solid and dashed lines, respectively).
Bottom panel: Lagrange radius evolution of the same model. La-
grange radii are given in units of the initial stellar half-mass radius.

we see when comparing the top and bottom panels, the bound fraction de-
creases during the cluster expansion and reaches its final value when its
bound stars have collapsed back and form a bound cluster. With the new
technique, however, we can predict the final bound fraction already after 2

Myr, when the cluster is still in the expansion phase.Figure 6 and the top
panel of Fig. 7 show that the instantaneous bound fraction converges toward
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the final bound fraction determined with our technique by the end of the
simulations. This shows that with our calculation method we can estimate
the final bound fraction even before the inner part of the cluster starts to col-
lapse back and return to virial equilibrium. We caution, however, that with
this method we underestimate the final bound fraction of a cluster with a
low global SFE during their early evolution after instantaneous gas expul-
sion. This is caused by removing all unbound stars, including the centrally
concentrated ones, which contribute the most to the gravitational field of
the cluster (see Fig. 7). This is the reason for the unusual behavior of the
final bound fractions of isolated clusters with a global SFE of 0.13 and 0.15,
which is 0 at t 6 1 Myr, and why they rise at an early time in the evolution
instead of decreasing.

3.2.2 Bound fraction of non-isolated models

For the non-isolated clusters, that is, those evolving within a Galactic tidal
field, the bound fraction is defined as the stellar mass residing inside the
instantaneous tidal radius normalized to the initial stellar mass,

Fbound =
M?(r < RJ)

M?
. (30)

In the top panel of Fig. 8 we present the time evolution of the bound frac-
tions of our non-isolated (solid lines) and isolated (dashed lines) models.
We note that for the isolated clusters we present the final bound fraction de-
fined with the technique described above, and not the fraction of stars with
negative total energy. This clearly provides a method for determining the
bound mass very early. For our non-isolated models, we also show the im-
print of stellar-evolution mass loss as the gray lines. The model clusters with
SFEgl = 1.0, that is, those that are initially in virial equilibrium without any
residual star-forming gas, are depicted as sky-blue lines. To better visualize
both the very fast evolution shortly after gas expulsion and the cluster long-
term evolution, the scale of the x-axis (time) is logarithmic. The plateau at
the very beginning of the bound mass evolution results from our definition
of the bound mass fraction, which does not account for the high-velocity un-
bound stars within the tidal radius. Because the cluster initial size is smaller
than its tidal radius (rh/RJ = 0.052), almost all stars reside within the tidal
radius during the first few Myr of evolution even when the cluster starts
to expand. The bound mass fraction starts to decrease as the escaping stars
reach the tidal radius and become unbound by our definition.

From the bound fraction evolution of our non-isolated model clusters we
can identify two regimes of mass loss (the solid lines in the top panel of Fig.
8), in addition to the mass loss driven by stellar evolution. During the first
20 Myr after gas expulsion, clusters intensively lose their mass (top panel of
Fig. 8: the solid lines on the left-hand side of the vertical dotted line). During
this time span, the cluster evolution is dominated by the consequences of
gas expulsion, and their response is mostly determined by the cluster initial
virial ratio. More or less flat plateaus can be seen in between two identified
mass-loss regimes around 20 Myr after gas expulsion. This means that the
surviving part of the cluster is not expanding anymore.

The bound fraction then decreases more slowly with time. It is now
mostly affected by stellar evolution and the tidal field of the host galaxy
(top panel of Fig. 8: the solid lines on the right-hand side of the vertical
dotted line).

The bottom panel of Fig. 8 presents results for the non-isolated models
alone for the global SFEs and initial cluster stellar masses quoted in the key.
The color-coding is identical to the coding used in the top panel. We find
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Figure 8: Evolution of the bound fraction of clusters obtained in our simu-
lations. Different colors correspond to different global SFEs (see
the key). The gray lines show the impact of mass loss caused
by stellar evolution alone. The vertical dotted line corresponds to
t = 20 Myr. Top panel: comparison of the bound fraction evolu-
tion of isolated (dashed lines) and non-isolated (solid lines) mod-
els for M? = 6000 M� with N ≈ 104 stars. Note that the isolated
models are the single-mass models without stellar evolution and
scaled to the same physical units as the non-isolated models (i.e.,
M? = 6000 M� and rh = 1.26 pc). Bottom panel: bound fraction
(instantaneous tidal mass as a fraction of initial stellar mass) evo-
lution for non-isolated models with different initial stellar masses
(see the key for the line-coding).
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3.2 cluster-bound fraction evolution 33

Figure 9: Different random realizations (see line types in the key) of the
model clusters with M? = 6000 M� (N = 10455 stars) for
rh/RJ = 0.052.

that the models with identical global SFE show similar evolutionary tracks
within the first 20 Myr (i.e., during the violent relaxation) independently
of their initial stellar mass (bottom panel of Fig. 8). In particular, the mod-
els with a low global SFE dissolve on similar timescales independently of
the initial star cluster mass, M? (see the black curves). Here we recall that
the ratio rh/RJ is kept constant for now. The model with a global SFE of
13 percent and M? = 6000 M� does survive as a bound cluster, although
with a very small bound fraction, around 2 percent (the blue lines in the top
panel of Fig. 8). All other stellar mass models with a global SFE of 13 per-
cent dissolve, however, except for the M? = 30000 M� model, which barely
survives with a 0.17 percent bound fraction, which corresponds to a bound
mass of about 52 M�. Therefore we adopt the models with SFEgl = 0.13 as
the limit between survival and dissolution following cluster gas expulsion
for our adopted tidal field impact rh/RJ = 0.052. Cluster models with a
global SFE of 0.15 and higher can survive instantaneous gas expulsion, as
expected from their initial virial ratios (see Table 1). We note that SFEgl = 0.13

is about 2.5 times lower than the SFE threshold for cluster survival when (i)
the density profiles of the stars and residual gas have the same shape, (ii)
gas expulsion is instantaneous, and (iii) the tidal field impact is negligible.

We performed a few simulations for a given parameter set but differ-
ent random seeds to explore the bound fraction variations that are due
to random realizations. Figure 9 shows that the bound mass fraction at
t = 20 Myr displays a range of variations of about 10 percent for a clus-
ter with N = 10455 stars (i.e., M? = 6000 M� cluster). For a cluster with a
higher number of stars (N = 26138, M? = 15000 M�), the range of bound
mass fraction variations is about 6 percent. The duration of cluster mass-
loss in response to gas expulsion remains shorter than 20 Myr for different
random realizations.

After violent relaxation, the cluster life-expectancy depends on its stellar
mass, as expected (red lines in the bottom panel of Fig. 8). A higher stellar
mass implies a higher probability to survive a longer time (but see Ernst
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et al. (2015)). The models corresponding to the high global SFEs in this set
of simulations show long-term evolutionary patterns similar to the pure
Plummer models (i.e., initially in virial equilibrium without any external
potential).

This study shows us that the mass loss of the cluster in response to gas ex-
pulsion is completed within 20 Myr, independently of its initial stellar mass
and global SFE, and that its dynamical evolution is mostly affected by the
tidal field of the host galaxy thereafter (Fig. 8). Since we focus on the cluster
bound mass evolution, we consider the violent relaxation as the time span
when the cluster loses its mass intensively in response to an instantaneous
gas expulsion. We therefore used t = 20 Myr to measure the final bound
fraction of clusters. We note, however, that the outer shells of surviving clus-
ters need a longer time-span to return to virial equilibrium, as shown by Fig.
10 (see below; see also Brinkmann et al. (2017)). We note therefore that the
violent relaxation duration, as defined here, does not strictly equate with
the cluster revirialization time.

An example of the Lagrange radius Rf evolution of a non-isolated cluster
with SFEgl = 0.20 and M? = 6000M� is presented in Fig. 10. The Lagrange

Figure 10: Evolution of a non-isolated cluster of the solar neighborhood with
SFEgl = 0.20, M? = 6000 M� and rh/RJ = 0.052 over 50 Myr
after gas expulsion. We show 49 Lagrange radii, ranging from 2

percent to 98 percent in intervals of 2 percent (solid and dashed
lines). The instantaneous tidal radius RJ of the cluster is shown as
the dotted line. Thick solid lines correspond to every 10 percent
of the Lagrange radius, and the dashed line corresponds to 50

percent of the Lagrange radius.

radii are defined based on the fraction of initial stellar mass, not on the
number fraction of stars. The dotted line in this figure represents the in-
stantaneous tidal radius. This figure shows that the inner parts of a cluster
recede, form a bound cluster, and return to virial equilibrium within 20-30

Myr after gas expulsion. The inner shells of a cluster revirialize faster than
the outer shells, as also found in Brinkmann et al. (2017), for example. The
cluster tidal radius stays roughly constant after 20 Myr.
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Table 5: Scaling factors to the physical time and duration of 20 Myr in N-
body units corresponding to different ratios of the cluster half-mass
to tidal radius.

rh/RJ tnorm [Myr] 20 Myr [NB]

0.025 0.0608 329

0.052 0.1826 110

0.07 0.2848 70

0.10 0.4863 41

3.3 influence of the cluster initial stellar density

To quantify the effect of the tidal field impact, three additional sets of sim-
ulations were performed for cluster masses M? = 6000 M� and 15000 M�:
one with a weaker tidal field impact (rh/RJ = 0.025), and two with stronger
tidal field impact corresponding to rh/RJ = 0.07 and 0.10. That is, we var-
ied the half-mass radius of our model clusters, keeping them in the solar
neighborhood (i.e., keeping the same tidal radius for a given stellar mass).
Because we varied the initial density of the cluster, we varied the normal-
ization factor of time units as shown in Table 5. For denser clusters (smaller
rh/RJ), a given physical time-span represents a higher number of N-body
time units.

We present the bound mass fraction evolution of M? = 15000 M� clusters
with different initial densities in Fig. 11. We find that the dense clusters

Figure 11: Evolution of the bound fraction of M? = 15000 M� clusters with
different impact of the tidal field (see the key for the line-coding).
Different colors correspond to different global SFEs (see the key
for the color-coding).

evolve quicker than the less dense clusters within the first 20 Myr after gas
expulsion. The violent relaxation duration of clusters and their bound mass
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Figure 12: Evolution of the cluster with M? = 6000 M�, SFEgl = 0.20 and
rh/RJ = 0.025 over the first 50 Myr after the instantaneous gas
expulsion.

fraction at t = 20 Myr depend on the initial cluster mean densities. This is
consistent with Parmentier and Baumgardt (2012) and Banerjee and Kroupa
(2013), who showed that dense clusters have shorter revirialization times
than less dense clusters. However, we find the cluster violent relaxation to
depend fairly weakly on the initial stellar density. The difference during the
first 10 Myr results from our definition of the bound mass fraction. That
is, the most compact cluster (rh/RJ = 0.025) loses mass in response to gas
expulsion faster than the most diffuse cluster (rh/RJ = 0.100). Its escaping
stars reach the tidal radius twice faster because their velocity dispersions
differ by a factor of 2. Although it is not obvious how to define the duration
of violent relaxation accurately, Fig. 11 shows that it remains shorter than
20-25 Myr regardless of the cluster initial density. The key to understanding
the violent relaxation duration may reside in the mean stellar density within
the tidal radius, which is the same for all considered clusters since they all
have the same orbit.

We note that stars that would be bound to the cluster if the cluster is
isolated now become unbound once they cross the tidal radius of the cluster.
Additionally, they are taken away from the cluster by the Galactic tidal field
(see the different behaviors of the 30 percent Lagrange radius in Fig. 10 and
Fig. 12).

In Fig. 12 we present an example of Lagrange radii evolution of a most
compact cluster with M? = 6000 M�, SFEgl = 0.20. We can see that the
inner shells of the cluster with rh/RJ = 0.025 revirialize faster than those of
a more diffuse cluster with rh/RJ = 0.052.

Figure 11 shows the differences in bound mass fraction at t = 20 Myr
to be around 10 percent between the most compact and the most diffuse
clusters. More diffuse clusters have a lower bound fraction since their outer
shells expand beyond their instantaneous tidal radius. We have checked that
a higher number of particles (M? = 15000 M�) does not affect our results.
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3.4 final bound mass fraction in dependence of sfe

We compare our results (represented by the mean values taken from the
model clusters with rh/RJ = 0.052 and different stellar masses) with previ-
ous works (Adams, 2000; Baumgardt and Kroupa, 2007; Boily and Kroupa,
2003b; Fellhauer and Kroupa, 2005; Geyer and Burkert, 2001; Lada, Mar-
gulis, and Dearborn, 1984) in the top panel of Fig. 32, which shows the
bound fraction as a function of global SFE. We note here the improved sur-
vival likelihood of star clusters after instantaneous gas expulsion, and that
although the tidal field is included in our models. Our model star clusters
whose global SFE is lower than 30 percent, but higher than 15 percent, sur-
vive and retain a significant fraction of their stars after violent relaxation.

The global SFEs required by our model clusters to survive gas expulsion
provide a good match to the SFEs observed in embedded clusters, which
are lower than 30 percent (Higuchi et al., 2009; Kainulainen, Federrath, and
Henning, 2014; Murray, 2011). Star clusters are now able to survive instanta-
neous gas expulsion despite a global SFE as low as 15-20 percent. We now
have four avenues to understand the presence of star clusters with ages older
than few Myr in the solar neighborhood despite the low SFE observed: adi-
abatic gas expulsion (Baumgardt and Kroupa, 2007; Brinkmann et al., 2017;
Geyer and Burkert, 2001; Lada, Margulis, and Dearborn, 1984), sub-virial
clusters (Farias et al., 2015; Goodwin, 2009; Verschueren and David, 1989),
hierarchically formed clusters (Lee and Goodwin, 2016; Smith et al., 2011),
and centrally concentrated cluster formation (this contribution).

We argue that the improved survivability of our model clusters is mostly
caused by the difference in density profiles between the embedded clus-
ter and its residual gas, as postulated by Parmentier and Pfalzner (2013),
namely, the stars have a density profile steeper than that of the residual and
initial gas. This is the consequence of SF taking place with a constant SFE
per free-fall time in a centrally concentrated molecular clump.

We reproduce similar results to previous works when we plot the bound
fraction as a function of the eSFE instead of the global SFE (see the bottom
panel of Fig. 32). We note here again that in our models the eSFE and the
LSF are almost the same. Our study thus agrees with all present works,
including the most recent paper of Lee and Goodwin (2016), who concluded
that the effective SFE is the most important parameter in predicting the
cluster survivability. Our study allows us to compare model SFEs to those
achieved in observed forming clusters, however.

3.5 conclusions

We have performed N-body simulations of violent relaxation and bound
cluster formation after instantaneous gas expulsion. The key point of our
study is that we used special initial conditions built on the model of Parmen-
tier and Pfalzner (2013). This means that the density profile of our model
star cluster is steeper than the density profile of the star-forming gas at the
time of instantaneous gas expulsion. If this cluster is in virial equilibrium,
including the gravitational potential of residual gas, it should be able to sur-
vive gas expulsion despite lowSFEs, as shown by Adams (2000) based on a
semi-analytical model.

Since our N-body simulations start from the time of instantaneous gas
expulsion and do not cover the SF phase, we started with a well-known star
cluster model, namely the Plummer model, instead of starting from the star-
free molecular clump. For this we obtained the dependency of the residual
gas density profile on stellar density profile at the time of instantaneous gas
expulsion under the assumptions of Parmentier and Pfalzner (2013). In their
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Figure 13: Bound fraction as a function of global or effective SFE. We com-
pare our results (red lines) with previous works. The isolated
models are depicted by the red diamonds, and non-isolated mod-
els by red crosses. In the top panel we use our global SFE (SFEgl)
and in the bottom panel, the eSFE, eSFE= 1/Q? (which is almost
the same as the LSF, the local stellar fraction of our models).
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cluster-formation model, the density profile of a clump (i.e., stars + gas) is
constant duringSF, and SF takes place with a constant SFE per free-fall time.
Using this, we produced the initial conditions of embedded clusters for our
N-body simulations, which depend on the product of two parameters (SFE
per free-fall time and SF duration). With the equations we provide in the
section 2.1, one can use any centrally concentrated spherically symmetric
density profile for the embedded cluster and recover the initial and residual
gas density profiles.

We adapted the falcON program mkhalo by McMillan and Dehnen (2007)
to our problem and have written an additional acceleration plug-in, which
represents the gravitational potential of the residual gas in dependence on
the SF duration and SFE per free-fall time for a Plummer embedded cluster.
Building on this adapted version of mkhalo, we produced the initial condi-
tions of our simulations, that is, a Plummer star cluster in virial equilibrium
with its residual gas with their respective density profiles obeying Eqs. (18)
and (19) of Parmentier and Pfalzner (2013). We related the SF duration to
the global SFE to make our set of simulations comparable to earlier works,
in which the bound fraction is often presented in dependence on the global
SFE.

We performed two types of cluster simulations, each time covering differ-
ent global SFEs: 1) isolated single-mass clusters, and 2) non-isolated mod-
els, that is, star clusters with stellar evolution and dissolving within a Milky
Way-like galaxy. We studied the effect of different initial cluster stellar masses
as well as of different cluster densities on the evolution of our non-isolated
models. The latter are implemented by varying the cluster half-mass to tidal-
radius ratio, rh/RJ = 0.025, 0.052, 0.07, and 0.10.

Based on the performed simulations, we quantified the bound fraction
evolution and the violent relaxation duration of young clusters. We defined
the violent relaxation duration as the time span of cluster mass-loss in re-
sponse to instantaneous gas expulsion. We note that with our definition,
the violent relaxation duration differs from the cluster revirialization time.
Our models for isolated single-mass clusters allowed us to define an upper
limit to the bound fraction as a function of the global SFE. For the models
considered in our work with their specific parameters – the stellar density
profile (Plummer model), the cluster orbit (with a circular velocity, in the so-
lar neighborhood in the Galactic disk plane), the stellar evolutionary mass-
loss from the SSE routine (Hurley, Pols, and Tout, 2000) and for the cluster
mean volume density range (rh/RJ = [0.025 : 0.100]) – we conclude that
the violent relaxation is not longer than 20 Myr, and its duration depends
weakly on the initial stellar density of a cluster. We found that the violent
relaxation duration of non-isolated model clusters depends neither on the
cluster initial stellar mass nor on the global SFE, keeping the same initial
stellar density. Varying the tidal field impact, that is, varying the cluster
size while retaining the cluster mass, does not affect the cluster mass-loss in
response to instantaneous gas expulsion much.

We also found that the minimum global SFE necessary to form a bound
cluster after instantaneous gas expulsion is SFEgl = 0.15 for a cluster with a
circular orbit in the Galactic disk plane at a distance of Rorb = 8 kpc from
the Galactic center. If the tidal field is stronger, that is, the cluster is closer to
the Galactic center, the minimum SFEgl needed to survive instantaneous gas
expulsion may be different. For the given rh/RJ ratio, the bound fraction of
surviving clusters that achieved the same global SFE does not depend on
the cluster initial stellar mass. The bound mass fraction at the end of violent
relaxation for clusters with rh/RJ of 0.025 and 0.10 differs by only about 10

percent, with denser clusters retaining a higher bound fraction than more
diffuse clusters. The evolution of bound clusters after violent relaxation is
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mostly driven by the tidal field of the host galaxy, and their life expectancy
then depends on their stellar mass.

We compared our results with earlier works. Our final bound fractions
are similar to those found in previous works only when the bound fraction
is plotted in dependence of the eSFE. Thus we agree with Goodwin (2009)
that the virial ratio of a cluster at the time of gas expulsion is a key pa-
rameter for predicting whether it survives gas expulsion. However, when
working in terms of the global SFE, that is, the SFE that can be measured by
observers as the ratio between the stellar mass and the total (gas+star) mass
of a star-forming region, the models proposed in this paper improve the
survival likelihood of star clusters after instantaneous gas expulsion. This is
caused by the difference in density profiles between the embedded cluster
and its residual gas, namely, the stellar density profile has a steeper slope
than that of the residual gas, which is a consequence of SF taking place with
a constant star-formation efficiency per free-fall time in a centrally concen-
trated molecular clump.
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4
C L U S T E R D I S S O L U T I O N A N D C E N T R A L LY- P E A K E D S F E
P R O F I L E

This chapter is a partially revised version of the published peer-reviewed
paper Shukirgaliyev, B., G. Parmentier, A. Just, and P. Berczik (2018). “The
Long-term Evolution of Star Clusters Formed with a Centrally Peaked Star
Formation Efficiency Profile.” In: ApJ 863(2), 171. B. Shukirgaliyev performed
all N-body simulations, analyzed their outputs and wrote most of the text.
All authors contributed ideas, comments and suggestions throughout the
realization of this study and its preparation as a peer-reviewed paper.

4.1 introduction

In previous chapter we have studied how star clusters respond to instanta-
neous gas expulsion when they form according to the local-density-driven
cluster formation model of Parmentier and Pfalzner (2013). That is, model
clusters form in centrally-concentrated spherically-symmetric molecular clumps
with a constant star-formation efficiency per free-fall time. As a consequence,
their stellar volume density profile is steeper than that of the initial and residual
star-forming gas.

In this chapter, we expand our results and look at the problem of cluster
dissolution during the first Gyr of evolution anew. If in chapter 3 we have
studied the violent relaxation of star clusters for different stellar masses
and global SFEs, now we focus on their long-term evolution. We also focus
on our model clusters formed with a low global SFE, i.e. SFEgl = 0.15,
and investigate if they behave in a similar way to the overfilling cluster
models of Ernst et al. (2015), and if they show evidence of MID. In contrast
to their study, our model clusters bear the information about their formation
conditions and the violent relaxation which follows gas expulsion.

4.2 methods

4.2.1 Cluster models

We continue our existing set of directN-body simulations until the full disso-
lution of the model star clusters in the tidal field of the Galaxy. We use only
the models with rh/RJ = 0.05 and which survive as bound clusters after vi-
olent relaxation (i.e. SFEgl > 0.15). We completed this initial model set with
newly-run SFEgl = 0.17 models for some birth masses and SFEgl = 0.15
models for birth masses higher than what was considered in Chapter 3

(i.e M? = 60k M� and 100k M�, equivalent to N? = 105554 and 174257

stars, respectively, for a Kroupa (2001) IMF with mlow = 0.08 M� and
mup = 100 M�). All model clusters considered in this study have evolved
from the time of instantaneous gas expulsion until full dissolution. There-
fore all of them bear the information about their formation conditions and
violent relaxation. The full parameter space covered by our N-body simula-
tions is provided in Table 7.

41
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Table 6: Model cluster parameters. The columns are as follow: (1) total num-
ber of stars, (2) birth mass, (3) global SFE, (4) number of random
realizations per model (number of those calculated till cluster dis-
solution), (5) mean bound mass fraction at the end of violent relax-
ation and its standard deviation when more than one random seed,
(6) mean dissolution time.

N?
M?

M�
SFEgl nrnd 〈Fbound〉

〈
tdis
109 yr

〉

5225 3000 0.15 21 (21) 0.07±0.05 0.19± 0.11
5225 3000 0.17 1 ( 1) 0.21 0.52

5225 3000 0.20 1 ( 1) 0.29 0.71

5225 3000 0.25 1 ( 1) 0.53 1.07

10455 6000 0.15 26 (26) 0.06±0.04 0.23± 0.16
10455 6000 0.17 1 ( 1) 0.21 0.66

10455 6000 0.20 3 ( 1) 0.31±0.02 1.29

10455 6000 0.25 3 ( 1) 0.50±0.03 1.56

17425 10000 0.15 26 (26) 0.06±0.03 0.33± 0.15
17425 10000 0.20 1 ( 1) 0.38 2.11

17425 10000 0.25 1 ( 1) 0.51 2.55

26138 15000 0.15 22 (22) 0.08±0.04 0.53± 0.24
26138 15000 0.17 1 ( 1) 0.18 1.02

26138 15000 0.20 3 ( 1) 0.33±0.02 1.84

26138 15000 0.25 3 ( 1) 0.51±0.01 2.86

52277 30000 0.15 16 (16) 0.08±0.03 0.64± 0.32
52277 30000 0.17 1 ( 1) 0.16 1.37

52277 30000 0.20 1 ( 1) 0.34 3.58

52277 30000 0.25 1 ( 1) 0.56 5.49

104554 60000 0.15 15 ( 9) 0.08±0.02 0.75± 0.35
174257 100000 0.15 3 ( 3) 0.08±0.01 0.96± 0.34

[ September 17, 2018 at 11:56 – classicthesis version 1.0 ]



4.2 methods 43

4.2.2 Random realizations

In chapter 3 we mentioned that the bound mass fraction at the end of vi-
olent relaxation, Fbound (i.e. the stellar mass fraction remaining bound to
the cluster at an age of 20-30 Myr1) can vary by about 6-10 percent of the
birth mass for different random realizations of a given model. Such vari-
ations are almost negligible for model clusters with a high SFEgl > 0.15,
as they survive with more than 20 percent of the birth mass. However, the
situation changes for our SFEgl = 0.15 models, as they survive with the
lowest bound mass fraction (about or even below 0.10), being the transition
models from full destruction following gas expulsion to survival in the pa-
rameter space of SFEgl. For such a low bound mass fraction the variations
mentioned above are significant. Therefore, we performed additional ran-
dom realizations of the SFEgl = 0.15 models to have better statistics for our
study. In forth column of Table 7 we give the numbers of random realiza-
tions per model and in parentheses the number of runs completed till cluster
dissolution. The column 5 shows the mean bound mass fractions and their
standard deviations measured at t = 30 Myr. The discussions and results
on random realizations are presented further in section 4.3.

4.2.3 Cluster mass estimates

To estimate cluster masses is a complex issue, both from an observational
and theoretical point-of-view. Even the very definition of a star cluster varies
through the literature (e.g. see review in Renaud, 2018). To estimate the
luminous mass of an observed star cluster is not straightforward due to
incompleteness issues and field star contamination. To estimate the dynam-
ical mass of an observed cluster is hindered by the contribution of binaries
to the cluster overall velocity dispersion. From a theoretical point of view,
the mass determination is not straightforward due to the unknown second
integral of motion.

In chapter 3, we refer to the cluster mass as the stellar mass within one
Jacobi radius, RJ, which is also supposed to be the bound mass. To calculate
the Jacobi radius of a cluster at a given age, we start with its value at the
time of gas expulsion and the stellar mass it contains using Eq (13) from Just
et al. (2009). Then we re-calculate the Jacobi radius using the mass within
the previously defined Jacobi radius. We iterate until the Jacobi radius con-
verges. Our Jacobi radius calculation method works only if we define the
cluster density center correctly, which can prove an issue for the following
reasons. In our N-body simulations we keep track of all stars, even those
which have definitively escaped the cluster in which they initially formed.
Therefore, escaped stars live in the tidal tails of our model clusters, which
can extend as far as to wrap around the Galaxy making it difficult to define
the cluster center as a center of mass of all stars. That the tidal tails con-
tain epicyclic over-densities yields difficulties to find the exact cluster center
too. That is, we have struggled to find the correct cluster center in the late
stages of cluster evolution, as they are becoming low-mass and diffuse ob-
jects. Their low densities can be then comparable to that of the surrounding
field, or to the epicyclic over-densities of the tidal tails. Our algorithm can
thus incorrectly identify the center of a tidal tail over-density as the cluster
center. In order to prevent this, we use to calculate the cluster center only
those stars which were within 2RJ of it in the previous N-body simulation
snapshot. This allowed us to steer clear of the epicyclic over-densities of

1 In this chapter we refer to the end of violent relaxation as t = 30 Myr after instanta-
neous gas expulsion.
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the tidal tails. Yet, it remains difficult to define correctly the cluster center,
when it consists of few stars, has an extended core, a low volume density, or
presents sub-structures. Usually, this happens in the last stages of evolution
of star clusters, before they get fully destroyed by the Galactic tidal field. In
such clusters, relatively small shifts of the assumed cluster center can lead
to significantly wrong mass estimates because of a wrong Jacobi radius, RJ.

In order to avoid this, we assume that clusters are dissolved if they have
less than 100 M� left within 2 Jacobi radii:

tdis = t(M2J < 100M�), (31)

where M2J is the stellar mass enclosed within 2 Jacobi radii.
We have checked how long some of our model clusters can live beyond

the dissolution time, tdis, defined by Eq. (31). Typically the difference is
about a few tens of Myr, which is not significant, especially for clusters
whose lifetime scales up to a Gyr.

In this contribution we consider two types of cluster-mass estimates. One
is the Jacobi mass (or “bound mass”), MJ, which is the stellar mass within
one Jacobi radius, RJ. The other one, which we refer to as the “extended
mass” M2J, is the stellar mass within 2RJ. The second mass estimate is
important for young clusters as they are surrounded by an envelope of un-
bound stars (Elson, Fall, and Freeman, 1987), most of them located beyond
one Jacobi radius but still within 2RJ. Such envelopes persist for many Myrs,
as Fig. 14 will show. They can count towards the mass of clusters in extra-
galactic studies, where a membership analysis is impossible, and the cluster
mass is estimated by fitting the cluster surface brightness profile.

Figure 14 visualizes the evolution of star clusters with a birth mass of
M? = 15k M� in the form of volume density maps. Each point in these
plots correspond to the position of one star projected onto the Galactic disk
plane. The colors correspond to the local volume density obtained by a
nearest-neighbor scheme with Nnb = 50 neighbor stars. The coordinate
system is centered on the density center of the clusters and the two circles
correspond to 1RJ and 2RJ. The left and middle panels depict two random
realizations of the model with SFEgl = 0.15 and the right column corre-
sponds to SFEgl = 0.25. In each column, different snapshots are presented
(t = 0, 5, 10, 30, 70 Myr).

In Fig. 15 we show the radial volume density profiles of the same 3 model
clusters as in Fig. 14 calculated at the end of violent relaxation (t = 30 Myr,
top panels), and at a later time when clusters are almost cleared of their en-
velope stars (t = 70 Myr, bottom panels). Each point represents the density
at the location of one star, calculated using a 50-nearest-neighbor scheme. In
each panel, the vertical dashed lines correspond to 1 and 2 Jacobi radii, and
the horizontal dotted line corresponds to the mean stellar density within

one Jacobi radius, i.e. 〈ρJ〉 = MJ/
(
4/3πR3J

)
. According to Eq. (13) of Just

et al. (2009), for a given environment, i.e. for a fixed circular orbit in the
Galactic disk plane, the mean density within one Jacobi radius, 〈ρJ〉, is con-
stant and independent of cluster parameters, since RJ ∝ M1/3J . In our case,
for a circular orbit with RG = 8 kpc, the mean density within one Jacobi
radius is 〈ρJ〉 ≈ 0.1M�pc−3.

In the left panels of Fig. 15, the region between 1RJ and 2RJ is well pop-
ulated by stars such that the distant observer, when calculating the clus-
ter mass by fitting its projected density profile, will use the envelope stars
too. For the middle and right columns, however, the envelope stars do not
contribute much to the cluster mass, as evidenced by the density contrast
between the central part and the outskirts of the clusters (see Fig. 14 and
Fig. 15). These density contrasts are about 1-2 orders of magnitude in the
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Figure 14: Volume density maps of clusters with a birth mass of M? =

15000M� projected onto the Galactic plane. The left and middle
columns correspond to two random realizations of a model clus-
ter with SFEgl = 0.15, and the right column corresponds to a
SFEgl = 0.25 model. From top to bottom, we provide 5 different
snapshots of each model cluster at times t = 0, 5, 10, 30, 70 Myr.
Each point corresponds to one star whose color-coding depicts
the local volume density calculated by means of a 50-nearest-
neighbor scheme. Note: the color-scale does not show densities higher than
100 M�pc−3 in order to show the color contrast in low density regions at a
later time of cluster evolution. The central densities at the time of gas expulsion
are as high as 1.6 · 103M�pc−3. The dashed circles correspond to RJ
and 2RJ. The bound fractions at t = 30 Myr are, from left to right:
Fbound = 0.06, 0.18 and 0.5. The corresponding dissolution times
are tdis = 0.3 Gyr, 1.2 Gyr and 2.9 Gyr, respectively.

left panels, about 3 orders of magnitude in the middle panels and about 4-5
orders of magnitude in the right panels.
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Figure 15: Volume density profiles of model clusters whose birth mass is
M? = 15000M� (same models as in Fig. 14). Each point repre-
sents the density at the location of one star. Left and middle pan-
els correspond to two random realizations of the SFEgl = 0.15
model, while the right panels correspond to the SFEgl = 0.25
model cluster. The top and bottom panels correspond to the den-
sity profiles calculated at t = 30 Myr and t = 70 Myr, respectively.
In each panel, the vertical lines show the location of 1RJ and 2RJ.
The horizontal lines correspond to the mean density within one
Jacobi radius, 〈ρJ〉, which is constant for the considered Galactic
orbit of star clusters.

4.3 stochasticity during cluster expansion

Based on our random realizations of SFEgl = 0.15 model clusters, we have
studied how distributed the bound mass fractions Fbound at the end of
violent relaxation (t = 30 Myr) are. Fbound is here defined as the ratio
between the Jacobi mass and the birth mass of a cluster:

Fbound =MJ(t = 30Myr)/M?.

Figure 16 shows the mean bound mass fractions of our SFEgl = 0.15 clus-
ter models as a function of the birth masses, where the error-bars depict the
standard deviation. The solid line and the shaded area depict the total mean
bound mass fraction, 〈Fbound〉, and total standard deviation, obtained for
all SFEgl = 0.15 model clusters. We find 〈Fbound〉 = 0.07± 0.04. As we see
from Fig. 16 the mean bound mass fraction does not significantly depend
on the birth mass, being equal to the total mean bound mass fraction within
the error bars. That the standard deviations are decreasing with increasing
birth mass can result from the smaller numbers of random realizations im-
plemented for models with higher birth mass (see the column 4 in Table 7

for SFEgl = 0.15 models). We also find that the bound mass fractions do not
change significantly from t = 30 Myr to t = 70 Myr.

Our simulations show that a number of stars as high as N? = 100k
(M? = 60kM�) does not remove the relatively large scatter characterizing
the bound fraction of the SFEgl = 0.15 models. We think that this might
be a consequence of the Poisson noise in the initial phase-space distribution
of stars, and of some stochasticity taking place during the cluster expan-
sion. Our model clusters with such a low global SFE as SFEgl = 0.15 can
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Figure 16: The mean bound mass fractions at the end of violent relax-
ation obtained from random realizations of cluster models with
SFEgl = 0.15 as a function of the birth mass of star clusters.
The error-bars correspond to the standard deviations. The solid
line shows mean bound mass fraction of all model clusters with
SFEgl = 0.15 and shaded area corresponds to the standard devia-
tion.

expand so much after gas expulsion, that their central density drops down
significantly. Density sub-structures can form in the inner region, where
density profile becomes shallower, as a result of the local gravitational po-
tential wells of massive stars (more massive than 8M). Even during the early
expansion phase, individual high-mass stars can attract and retain many co-
moving stars in their vicinity. That is, stars co-moving with a nearby high-
mass star can get trapped by its gravitational potential. As a result, these
surrounding stars start to move collectively towards their neighboring high-
mass star and deepen the local potential well. This collective motion contin-
ues even after the high-mass star goes supernova. The more high-mass stars
involved in this sub-cluster formation process, the more massive the sub-
cluster formed. Eventually, the sub-structures formed during expansion can
merge into one bigger cluster, or expand further and dissolve depending on
their bound mass and kinetic energy. This can be seen by comparing the left
and middle panels of Fig. 14, as we discuss later in this section.

Stochastic effects could be significant at this stage due to the relatively
small number of massive stars which do not escape the cluster. Since we
have applied the Kroupa (2001) IMF, the number fraction of massive stars
is about 0.6 percent. That means we have about 600 massive stars at the
time of gas expulsion for a cluster with N? = 100k stars and about 60 high-
mass stars for a N? = 10k cluster. If about 93 percent of these massive stars
escape to the field, as expected for a SFEgl = 0.15model whose mean bound
fraction is Fbound = 0.07± 0.04, at the end of violent relaxation we are left
with about 42 massive stars within one Jacobi radius RJ for the former, and
about only 4-5 high-mass stars for the latter.

If we look at the left and middle columns of Fig. 14 we can see the evo-
lution of two initially identical cluster models with M? = 15k M� and
SFEgl = 0.15. Although model clusters in the left and middle panels are
almost identical at the time of gas expulsion (t = 0 Myr), they slightly differ
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from each other already at t = 5 Myr, the one in the middle panel being
slightly more centrally-concentrated than the other. Both clusters have al-
most the same Jacobi radii RJ, and therefore, the same bound mass (i.e. the
stellar mass within one Jacobi radius, RJ). However, this is still the expan-
sion phase. The middle-panel cluster has a slightly higher number of mas-
sive stars close to its center, while the massive stars of the left-panel cluster
are distributed broadly within RJ. This is seen by the distribution of local
over-densities at the centers of which high-mass stars are usually located.

Later, at t = 10 Myr the difference becomes even clearer. The left-panel
cluster has an extended core whose size is almost one Jacobi radius, while
the middle-panel cluster has formed a relatively dense central core. Again,
at this time, both clusters have comparable bound masses, but markedly
different structures already.

At the end of violent relaxation at t = 30 Myr (when clusters stop losing
mass in response to gas expulsion, although not the re-virialization time yet)
and later on at t = 70 Myr, these two SFEgl = 0.15 clusters present markedly
different bound masses, even though they started with the same birth mass
and the same global SFE. This is the consequence of the highly-stochastic
spatial distribution of high-mass stars inside a broad central core.

By t = 70 Myr model clusters have re-virialized and regain a more
spherically-symmetric shape within the Jacobi radius, which becomes a
good estimator of the cluster radius onward. The clusters are cleaned from
the envelope stars and we can see the tidal tails as streaky features at
t = 70 Myr (see the lowest panels of Fig. 14). We remind the reader that we
have axisymmetric (bulge, halo, disk) Galactic potential without any other
features like spiral arms, bar or disk wrap.

4.4 what does cluster dissolution depend on?

4.4.1 Cluster life expectancy and initial cluster mass

In this section we study the relation between cluster dissolution time and
mass. From the random realizations of model clusters with SFEgl = 0.15 we
find that the differences in bound mass fraction at the end of violent relax-
ation also results in different star cluster lifetimes. Figure 17 presents the
dissolution time tdis of star clusters as a function of the bound mass frac-
tion Fbound at the end of violent relaxation. The cluster dissolution time
is defined according to Eq. (31). The color-coding and symbol-coding corre-
spond to cluster birth mass and global SFE, respectively (see the key). The
general trend is that the higher the bound mass fraction, the longer lives a
cluster. However, the large scatter and the fact that Fig. 17 considers vari-
ous birth masses do not give us much more information about the relation
between cluster dissolution time and its mass.

The cluster dissolution time, tdis, as a function of cluster “initial” mass is
presented in Fig. 18. By “initial” mass,Minit, we mean here the cluster mass
once violent relaxation is over, that is, when the long-term secular evolution
starts. Our cluster “initial” masses are therefore measured at t = 30Myr (top
panels) and t = 70Myr (bottom panels), and are lower than the birth masses
given in Table 7 (the ratio between Jacobi and birth masses is the bound frac-
tion Fbound). We have done so to be consistent with studies which ignore
the violent relaxation phase of cluster evolution when inferring the cluster
dissolution time as a function of cluster mass.

When plotting the cluster dissolution time as a function of cluster initial
mass, not only do we measure the mass at two different cluster ages, we also
consider two definitions of cluster masses in terms of cluster spatial cover-
age. Specifically, the cluster initial mass is defined either as the Jacobi mass
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Figure 17: Cluster dissolution time as a function of bound mass fraction.
Cluster birth mass and global SFE are indicated by colors and
symbols, respectively, according to the key.

MJ (left panels), or as the “extended mass” M2J (right panels). We therefore
investigate 4 different cases in total. The color-coding shows the birth mass
of the model clusters, while the different symbols correspond to different
SFEgl (see the key). The scatter arising from the random realizations of a
given model (given birth mass and given SFEgl) is therefore illustrated by
symbols of a given color and of a given type.

The solid line, with the shaded area accounting for the error-bars, corre-
sponds to the MDD relation of Boutloukos and Lamers (2003)

tdis = t
dis
4

(
Minit
104M�

)γ
, (32)

where Minit is cluster “initial” mass and tdis4 is the dissolution time for a
cluster with “initial” mass of Minit = 104M�. Here we re-call that Minit
is the equivalent of the Jacobi mass, MJ, or the extended mass, M2J, at
t = 30 or 70 Myr, but not of the birth mass, M?. The values of tdis4 =

(1.3± 0.5) · 109 Gyr and γ = 0.6 are taken from Lamers et al. (2005) for the
solar neighborhood. The dashed and dash-dotted lines show the best fits
to our high-SFE (SFEgl > 0.20) and low-SFE (SFEgl = 0.15) model clusters,
respectively. The bold red curve in the lower-right panel connects, for each
cluster birth mass (i.e. for each symbol color), the medians of SFEgl = 0.15
model random realizations.

The overall impression from Fig. 18 is that star clusters dissolve in agree-
ment with MDD, although with some significant scatter. Especially model
clusters formed with a relatively high global SFE (SFEgl > 0.20, open squares
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Figure 18: Star cluster dissolution time versus cluster mass at the end of vi-
olent relaxation (t = 30 Myr in top panels and t = 70 Myr in bot-
tom panels). We refer to this as the cluster “initial” mass. The left
panels show the cluster “initial” mass defined as the Jacobi mass,
MJ, while the right panels present it as the “extended mass”,M2J.
Each point represents one cluster model, with the color-coding
defining the cluster birth mass, and marker shapes coding the
global SFE. The solid line with shaded area corresponds to the
cluster disruption model for the solar neighborhood of Lamers et
al. (2005). The dashed and dash-dotted lines depict the best fits to
high-SFE (SFEgl > 0.20) and low-SFE (SFEgl = 0.15) model clus-
ters. The red curve in the lower-right panel connects the median
random realizations of the models with SFEgl = 0.15.

and triangles in Fig. 18) nicely follow an MDD relation (dashed line), with a
slope a bit steeper (γ ∼ 0.7) than that given by Boutloukos and Lamers (2003),
and a dissolution time longer (tdis4 ∼ 3.8 Gyr, lower left panel of Fig. 18) than
the estimate of Lamers et al. (2005) for the Solar Neighbourhood (solid line).
This is consistent with other theoretical works, that Roche-volume-filling or
under-filling clusters in virial equilibrium dissolve in a mass-dependent way.
However, the cluster dissolution time obtained from our high-SFE models
(tdis4 ∼ 3.8 Gyr) is almost a factor of two shorter than that predicted by
Baumgardt and Makino (2003) with their tdis4 = 6.9 Gyr. This can result
from different models for the Galactic gravitational potential: while we con-
sider an axisymmetric three-component model (Just et al., 2009), Baumgardt
and Makino (2003) consider a spherically-symmetric logarithmic potential.
Another probably more crucial reason is the “initial” density profile of the
star clusters: our density profiles at t = 30 Myr differ from the virialized

[ September 17, 2018 at 11:56 – classicthesis version 1.0 ]



4.4 what does cluster dissolution depend on? 51

King models (with W0 = 5 and W0 = 7) used by Baumgardt and Makino
(2003).

We do not notice any significant difference for the high-SFE models be-
tween the 4 panels. Therefore, for the high-SFE models, how the cluster ini-
tial mass is defined (at t = 30 or t = 70 Myr; bound mass, MJ or extended
mass, M2J) hardly influences the corresponding predicted MDD relation.

In contrast to high-SFE ones, low-SFE models show broad scatter and
differ from panel to panel. The scatter is maximum for extended mass at
t = 30 Myr (upper right panel) and minimum for Jacobi mass at t = 70 Myr
(lower left panel). Since the difference between the Jacobi mass and the ex-
tended mass is larger for low-SFE clusters and negligible for high-SFE clus-
ters the initial masses are characterized by a broader scatter in right panels
than in left panels of Fig. 18. When the clusters have evolved a bit more
in time, the envelope gets cleaned up by an age of t = 70 Myr and the ex-
tended mass of our model clusters then becomes comparable to their Jacobi
mass (bottom panels of Fig. 18), although the scatter persists. Our best fits
to low-SFE models provide a dissolution time in agreement with Lamers
et al. (2005), tdis4 ∼ 1.3 Gyr, but a slightly shallower slope γ ∼ 0.5 (lower left
panel of Fig. 18). For the SFEgl = 0.15 models, we can see that the scatter in
bound mass fractions can yield significant differences in the cluster lifetime
(open circles of a given color). As shown in Fig 14 and 15, (left and middle
panels) this is the result of the development with time of markedly different
density profiles. Additionally, if we consider a vertical bin embracing cluster
masses from 2× 103 to 4× 103M� in the right panels of Fig. 18, we can see
that such clusters can dissolve as fast as within 100–200 Myr or can live as
long as about a Gyr.

For the sake of clarity Fig. 19 shows each low-SFE model (i.e. given birth
mass and global SFE) represented by its mean and standard deviation. The
initial mass is defined as the extended mass, M2J, and the age is t = 70 Myr.
Figure 19 is thus equivalent to the lower right panel of Fig. 18, apart from
the low-SFE models being represented by mean values. Now the results for
the SFEgl = 0.17 models can be seen clearly as open diamonds with the
corresponding fit having tdis4 = 1.8 Gyr and γ ∼ 0.5 (dotted line). The other
lines are as in the lower right panel of Fig. 18, namely, the MDD relation
of Boutloukos and Lamers (2003) and the best fits to the SFEgl > 0.20 and
SFEgl = 0.15 models. The combination of these 3 groups of star clusters can
yield a relation close to that of Boutloukos and Lamers (2003), especially if
low-SFE clusters dominate the cluster population. This is a real possibility
for the solar neighborhood, since observations of nearby gas-embedded clus-
ters tell us that low-SFE embedded clusters are more common than high-SFE
ones (Evans et al., 2009; Kainulainen, Federrath, and Henning, 2014; Kenni-
cutt and Evans, 2012; Lada and Lada, 2003; Peterson et al., 2011).

Gieles et al. (2006) noted that the dissolution time of a 104M� cluster in
the solar neighborhood as inferred from observations by Lamers et al. (2005)
(tdis4 = 1.3 ± 0.5 Gyr) differs by about a factor of 5 from what was pre-
dicted by Baumgardt and Makino (2003) (tdis4 = 6.9 Gyr). They suggested
that the discrepancy can be eliminated by accounting for the influence on
star clusters of Giant Molecular Cloud encounters. Here, we propose yet
another channel to explain the shorter dissolution time of Lamers et al.
(2005), namely, that the star clusters of the solar neighborhood are predom-
inantly the survivors of embedded clusters formed with a global SFE of
SFEgl ≈ 0.15. We expect that most of these clusters will dissolve by the time
they reach an age of 1 Gyr. In contrast to other theoretical studies who con-
sider compact clusters in virial equilibrium as initial conditions, our model
clusters have experienced violent relaxation, which is a natural process af-
fecting the evolution of young clusters. With our approach we are thus able
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Figure 19: Cluster dissolution time as a function of extended mass at t =

70 Myr. The SFEgl = 0.15 models are represented by the mean
extended mass and mean dissolution time per model with error-
bars representing the standard deviations. The red curve connects
median random realizations of each model as in the lower right
panel of Fig. 18. The dashed, dotted and dash-dotted lines are
best fits to the SFEgl > 0.20, SFEgl = 0.17 and SFEgl = 0.15
models. The solid line with shaded area corresponds to the MDD
relation of Boutloukos and Lamers (2003) for the solar neighbor-
hood (Lamers et al., 2005).

to simulate the evolution of clusters which have survived violent relaxation
as bound, but diffuse, objects. They dissolve faster than their compact coun-
terparts, even for otherwise equal “initial” masses, and we probably observe
them as open clusters in the solar neighborhood.

If the low-SFE clusters dominate the cluster census of Galactic disk, then
not many clusters are able to live beyond 1 Gyr as we can see from Fig. 20. It
shows the histogram of cluster dissolution times for low-SFE (SFEgl = 0.15,
blue) and higher-SFE (SFEgl > 0.17, orange) clusters. Each histogram is
normalized such that the sum of all bins equals to unity. The combination
of both distributions, each with each own contribution, will provide the
distribution of dissolution times of a cluster population. The latter can give
us a hint about the shape of the corresponding cluster age distribution. A
cluster population dominated by low-SFE clusters should feature a peak in
cluster logarithmic age distribution (dN/d log t) earlier than 1 Gyr (if the
cluster formation rate is constant), since most low-SFE clusters die before 1

Gyr. The peak at about a few hundred Myr in the age distribution of solar
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Figure 20: Histogram of model clusters by dissolution times for low-SFE and
high-SFE clusters (blue and orange lines, respectively). The area
subtended by each histogram is unity.

neighborhood star clusters has been discussed in Lamers et al. (2005) and
Piskunov et al. (2018).

The question whether the age distribution of low-SFE clusters will change
if we continue our simulations towards massive clusters sounds reasonable.
We should remind the reader that since the initial cluster mass function is
a power-law function with an index of “−2” the number of massive clus-
ters is quite low. If we take into account that to produce a low-SFE clus-
ter as massive as 106M� we will need a molecular clump with a mass of
108M�. That is because the “initial” mass of such cluster is only about 1%
(FbSFEgl = 0.07×0.15) of the total mass of the star-forming clump. This low-
ers the number of possible very massive low-SFE clusters in cluster census of
the Galaxy, because the mass function of molecular clumps is also a power-
law with an index of −2. Additionally, according to Rahner et al. (2017)
the higher the mass of star-forming clump the higher the SFE it requires
to be destroyed by newly formed star cluster. Otherwise, the re-collapse of
the gaseous shell could happen and produce more stars enhancing the SFE
(Rahner et al., 2018). Therefore the distribution presented in Fig. 20 should
not dramatically change if we consider more massive low-mass clusters.

An interesting trend emerges when we consider SFEgl = 0.15 models in
Fig. 19. If we ignore the low-mass end (6 103M�, i.e. the mass range for
which the cluster sample is incomplete in most extra-galactic studies) and
if we take into account that, in extra-galactic observations, the masses of
young clusters can be over-estimated due to the contribution of an envelope
of unbound stars (i.e. the cluster “initial” mass has to be defined as our ex-
tended mass, M2J), an apparent MID mode may be emerging. For initial
mass M2J between 103 and 104M� low-SFE clusters actually show similar
mean (and median) dissolution times, with even increasing standard devi-
ations. On top of that, if we consider model clusters formed with very low
SFEgl < 0.15, which do not survive instantaneous gas expulsion and the
resulting violent relaxation (tdis < 30 Myr), but still observable as young
clusters, then the effect of an apparent MID can be further strengthened.

However, since we do not cover that large a range of cluster masses and
do not have that high a number of random realizations for good statis-
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tics (especially at high-mass), we cannot argue firmly in favor of a mass-
independent dissolution relation for low-SFE star clusters. Here, we stress
that with a mean bound fraction at the end of violent relaxation of Fbound =

0.07, to model a star cluster with an “initial” mass > 104M� and which
formed with SFEgl = 0.15, requires a birth mass of at least 105M�. We are
currently expanding our sample for M? = 105M�, for which we have one
single fully dissolved model at the moment (purple open circle in Fig. 19).
Nevertheless, we can firmly say that we have found a large scatter in the re-
lation between the cluster “initial” masses and the cluster dissolution times
for low-SFE clusters and for a given birth mass. This scatter results from the
massive-star driven stochastic effects taking place during violent relaxation.
Such effects yield, for a given birth mass and given SFEgl = 0.15, different
density profiles (hence different degrees of cluster compactness) and differ-
ent bound fractions at the end of violent relaxation (hence different cluster
“initial” masses.

In summary so far we have found that clusters formed with a high SFEgl
(> 0.15) dissolve in an MDD regime. Clusters formed with a low SFEgl
(= 0.15) also dissolve in an MDD regime, albeit with a significant scatter.
Their dissolution time is comparable to that observationally inferred by
Lamers et al. (2005). There is a strong mass-dependent upper limit to the
cluster dissolution time, which means that, for a given environment, low-
mass clusters cannot live as long as their high-mass compact counterparts.
However, some high-mass clusters can dissolve as quickly as low-mass ones
in the same environment.

4.4.2 Cluster life expectancy and cluster central density

Investigating further the parameters of our model clusters we have found
a correlation between the cluster dissolution time, tdis, and the Roche vol-
ume filling factor measured at the end of violent relaxation, although with
significant scatter (Fig. 21). The Roche volume filling factor is defined as the
half-mass to Jacobi radius ratio, and the half-mass radius refers to the Jacobi
mass or the extended mass (left and right panels of Fig. 21, respectively). The
filling factors are calculated at t = 30 and 70 Myr in top and bottom panels
as in Fig. 18. The color-coding depicts the Jacobi mass, MJ (left panels) and
the extended mass, M2J (right panels) indicated by the common color-bar
at the right-hand-side. Note that the color coding is different from Fig. 18

where it refers to the birth mass of clusters. The shapes of markers still
show the global SFEs. With gray arrows we indicate those M? = 15000M�
clusters presented in Figs. 14 and 15, namely from right-to-left, two random
realizations of the SFEgl = 0.15 model (open circles) and one random real-
ization of SFEgl = 0.25 model (open triangle). The indicated model clusters
here are in the reverse order to that of the order of panels in Fig. 14.

The correlation is such that for a given “initial” mass, the higher the fill-
ing factor, the shorter the dissolution time, as found in Ernst et al. (2015).
However, a comparison between our results and those of Ernst et al. (2015)
is not fully self-consistent. Firstly, our model clusters are still expanding and
have not returned to virial equilibrium yet when they over-fill their Roche
volume. In contrast, model clusters of Ernst et al. (2015) are initially in virial
equilibrium while overfilling their Roche volume. Secondly, our star clus-
ters can present different density profiles (shallow or steep, with extended
or compact core) after violent relaxation, therefore the Roche volume filling
factor, as defined here, cannot characterize them universally.

We also find a correlation between the cluster life expectancy, tdis, and
the volume density contrast between cluster center and outskirts, defined
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Figure 21: Cluster dissolution time as a function of Roche volume filling
factor at t = 30 and t = 70 Myr (top and bottom panels, re-
spectively). In the left panels, the cluster initial mass is estimated
as the Jacobi mass, MJ, while in the right panels it is estimated
as the extended mass, M2J. Cluster initial masses are shown by
the color-coding presented on the right-hand-side color-bar. The
half-mass radius, rh, is measured as the radius containing half of
the cluster initial mass and marked as rJh when Minit = MJ

and r2Jh when Minit = M2J. The gray arrows indicate those
M? = 15k M� model clusters presented in Figs. 14 and 15.
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as the central volume density, ρc, to the volume density at Jacobi radius, ρJ,
ratio:

ρc/ρJ =
ρ(r = 0)

ρ(r = RJ)
. (33)

This is shown in upper left panel of Fig. 22 as measured at the end of violent
relaxation (t = 30 Myr). The smaller the density contrast, the faster the
cluster dissolves and vice versa. The correlation is the tightest if we consider
the density contrast of slightly more evolved clusters (t = 70 Myr, top right
panel of Fig. 22), when the envelope at RJ < r < 2RJ has been cleaned up
of most of its stars. The color-coding corresponds to the Jacobi mass at the
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Figure 22: Cluster dissolution time, tdis (top panels) and cluster Jacobi
mass, MJ (bottom panels), as functions of volume density con-
trast between cluster center and outskirts, ρc/ρJ (Eq. 33) mea-
sured at t = 30 Myr and t = 70 Myr (left and right panels, re-
spectively). Unlike in Fig. 18 the color-coding refers to the cluster
Jacobi mass at quoted ages in top panels, and to the cluster disso-
lution time in bottom panels. The best fits (Eq. 34-35) are shown
with black curves. The three M? = 15000M� model clusters pre-
sented in Fig. 14 and Fig. 15 are indicated with the arrows in each
panel in the same order, i.e. from left to right, as the correspond-
ing panels of Fig. 14 and Fig. 15.

corresponding ages. The best fits, in the form of

tdis = 3.4

[(
ρc

ρJ

)0.25
− 1

]
× 108 yr (34)
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and

tdis = 1.1

[(
ρc

ρJ

)0.37
− 1

]
× 108 yr, (35)

are shown with black curves in the top left and top right panels respec-
tively. For high density contrast (ρc/ρJ > 103) clusters in the top panels of
Fig. 22 we can see nice patterns showing that their dissolution times are
mass-dependent, which is again consistent with earlier studies of dissolu-
tion of Roche Volume filling or under-filling clusters.

When a cluster has a shallow density profile, the shrinking of its Jacobi ra-
dius due to cluster mass-loss (e.g. stellar evolution, tidal stripping, etc.) will
leave outside the new Jacobi radius a number of stars higher than in case of
a steeper density profile. Such clusters therefore dissolve more quickly than
those with a steep density profile. Alternatively, if a cluster has developed
a large core, comparable to the Roche volume, this also leads to the total
destruction of the cluster. Such clusters are located at the very left of the top
panels in Fig. 22, with low density contrasts and therefore short lifetimes.

In order to see better the correlation between these three parameters,
ρc/ρJ, tdis and MJ, we swapped the dissolution time for the Jacobi mass
in the bottom panels. The bottom panels of Fig. 22 show the Jacobi mass,
MJ, as a function of the density contrast, ρc/ρJ, color-coded by the dissolu-
tion time, tdis. As it is seen now clearly here with more or less nice pattern
the dissolution time depends on both “initial” mass and density contrast,
wherein short dissolution time of massive clusters are explained by their
low density contrast (low concentration) and vice versa. This is also consis-
tent with other theoretical works, where the evolution of globular clusters
with initially low concentration has been discussed (see e.g. Fukushige and
Heggie (1995), Takahashi and Portegies Zwart (2000) and Vesperini and Zepf
(2003))

As we see from the foregoing results, when studying the long-term sec-
ular evolution of star clusters it is worth estimating their “initial” mass at
t = 70 Myr after gas expulsion in order not to be biased by the processes
taking place during violent relaxation. The latter is very different form the
subsequent long-term evolution of star clusters. As we showed in Shukir-
galiyev et al. (2017), clusters formed with very low global SFE (< 0.15) dis-
solve during violent relaxation, and their dissolution time is independent of
their birth mass.

We remind the reader that we have modeled the clusters in a given tidal-
field environment (i.e. star clusters have the same mean density at the time
of instantaneous gas expulsion), and that they have the same stellar den-
sity profile at the time of instantaneous gas expulsion. All relations we have
found could thus be affected if birth conditions are different. Star clusters
which at the time of gas expulsion are more compact or more diffuse than
our models may have evolutionary tracks different from those analyzed
here, forming denser or more diffuse bound clusters after violent relaxation.

4.5 discussions and conclusions

We have performed a large set of direct N-body simulations of the evolution
of star clusters in the solar neighborhood starting from their birth in molecu-
lar clumps until complete dissolution in the Galactic tidal field. We have not
considered any hydro-dynamical simulations to account for the formation
of our model embedded clusters. Instead we have used a semi-analytical
approach – the local-density-driven cluster formation model of Parmentier
and Pfalzner (2013), and assumed instantaneous gas expulsion. The model-
ing of the evolution of our clusters therefore covers the time-span from their
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formation to complete dissolution. As a result, our model clusters bear the
information about their formation conditions and their violent relaxation all
through their evolution, even for dissolution times longer than 1 Gyr.

We have found that model clusters with SFEgl = 0.15 present a significant
stochasticity during the expansion phase. That is, initially almost identical
clusters can follow very different tracks in terms of bound mass fraction,
structure and dissolution time. At the end of violent relaxation these clus-
ters retain quite a small bound mass fraction, with relatively large scatter,
Fbound = 0.07± 0.04. The bound mass fraction Fbound does not depend
on the cluster birth mass (see Fig. 16 for SFEgl = 0.15 models or column
(5) in Table 7) and the scatter persist even for a number of stars as high as
N? ≈ 174k. The reason could be in the relatively high virial ratio of low-
SFE clusters (Q ∼ 1.55), combined with Poisson noise in the phase-space
distribution of stars at the time of gas expulsion and with the stochasticity
characterizing the expansion phase due to the relatively small number of
massive stars staying bound to the cluster surviving core.

To be consistent with the other works where the violent relaxation is ne-
glected we introduce the cluster “initial” mass as its mass at the end of
violent relaxation, when the cluster stops to lose mass violently due to gas
removal. In the scope of this study we have provided two cluster “initial”
mass estimates, the Jacobi mass and the “extended” mass. The Jacobi mass
is the stellar mass within one Jacobi radius, RJ, while the extended mass is
the stellar mass within two Jacobi radii, 2RJ. We have estimated the latter,
because escaping stars form an envelope around their natal cluster, which
stays in the cluster surroundings for a few tens of Myrs (see Fig. 14). Such
an envelope possibly contribute to the mass estimate of extra-galactic young
star clusters, where the membership analysis is impossible and the measure-
ment of the tidal radius is not straightforward.

From our simulations we have found that star clusters formed with a
high global SFE (> 0.20) dissolve in a tight mass-dependent regime (tdis ∝
M0.7
init), in agreement with earlier works (Fig. 18). In the solar neighbor-

hood, these clusters dissolve in a way similar to the empirical relation of
Boutloukos and Lamers (2003), with a dissolution time for a 104M� cluster
of tdis4 = 3.8 Gyr. This is almost a factor of two shorter than the estimate
of Baumgardt and Makino (2003) (tdis4 = 6.9 Gyr), but, still longer than that
given in Lamers et al. (2005) (tdis4 = 1.3± 0.5 Gyr).

In contrast, model clusters formed with SFEgl = 0.15 dissolve more
quickly than high SFE clusters (tdis4 ∼ 1.3 Gyr), present a shallower MDD
relation (tdis ∝M0.5

init), and their dissolution time is affected by a relatively
large scatter. That is, variations of the bound mass fraction at the end of vi-
olent relaxation (due to the stochastic impact of the massive stars described
above) can modify sensitively the cluster dissolution time. The lower the
bound mass fraction, the shorter the dissolution time (Fig. 17). We have
found that some of our SFEgl = 0.15 model clusters can dissolve within 100-
200 Myr, while the high-SFE clusters with the same “initial” mass can live
longer than a Gyr (e.g. consider the vertical bin embracing a cluster mass
range from 2× 103M� to 4× 103M� in the right panels of Fig. 18).

Nevertheless, taken all together, our model clusters follow an MDD re-
lation, albeit with a relatively large scatter. The relation between the disso-
lution time and cluster initial mass becomes close to that observationally
found by Lamers et al. (2005) for the solar neighborhood if the cluster popu-
lation is dominated by low-SFE (SFEgl = 0.15) clusters. Such an assumption
is a real possibility for the solar neighborhood since nearby embedded clus-
ters usually show low SFEs. Therefore, in this study, we propose an alterna-
tive way to decrease the cluster dissolution time for the solar neighborhood
found by Lamers et al. (2005) to that proposed by Gieles et al. (2006). While
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Gieles et al. (2006) propose that cluster dissolution time inferred from obser-
vations by Lamers et al. (2005) is shorter than the prediction of Baumgardt
and Makino (2003) due to the additional destructive processes associated to
GMC encounters, we propose here that the difference between theory and
observations can be removed once one takes into account diffuse weakly
bound star clusters, arising from low SFEgl = 0.15.

The distribution of the dissolution times of high-SFE (SFEgl > 0.17) and
low-SFE (SFEgl = 0.15) clusters is provided in Fig. 20. It shows that our
low-SFE clusters usually dissolve within 1 Gyr and our high-SFE clusters,
in contrast, usually survive beyond a Gyr.

If we consider our low-SFE clusters only, estimate their initial mass as
the extended mass at t = 70 Myr and neglect the low-mass end, as for
extra-galactic observations for which the unbound envelope-stars usually
contribute to the cluster mass and the low mass clusters often remain unde-
tectable, an interesting apparent MID relation can emerge (see the flat part
of red curve with 103M� < M2J < 104M� in Fig. 19). But since our simu-
lations do not cover that high a range of cluster “initial” masses, we cannot
firmly argue about MID based on our current data-set.

We have found a correlation between the cluster life expectancy and the
volume density contrast between cluster center and outskirts (top panels of
Fig. 22). The higher the density contrast, the longer the cluster lives. We have
found that they also correlate with cluster initial mass, which is shown with
nice patterns in the bottom panels of Fig. 22.

All correlations found in this paper are tighter if we consider them at the
age of t = 70 Myr rather than at t = 30 Myr. Therefore, we propose that for
cluster lifetime studies, it is more appropriate to measure cluster “initial”
parameters as mass, central density and structure about 70 Myr after gas
expulsion, when star clusters have mostly re-virialized and are cleaned up
from their expanding stellar envelope.

So we summarize that low-mass clusters are unable to live for as long
as their high-mass counterparts. However, high-mass clusters can easily dis-
solve on a short time, if formed with a small SFE, but still outlive most of
their low-mass counterparts. Overall, our model clusters dissolve in a mass-
dependent regime, although with different dissolution times for low- and
high-SFE models. For low-SFE (SFEgl = 0.15), an apparent MID mode can
emerge if we define the extended mass as the initial mass of clusters and
if we restrict our attention to clusters more massive than 103M�, as is after
the case in extra-galactic studies with a dissolution time less than 1 Gyr.
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T H E T I D A L F I E L D I M PA C T O N C L U S T E R
S U RV I VA B I L I T Y

This Chapter was submitted for publication to MNRAS as Shukirgaliyev, B.,
G. Parmentier, A. Just, and P. Berczik (2018). “The star cluster survivabil-
ity after gas expulsion is independent of the Galactic tidal field impact”.
B. Shukirgaliyev performed all N-body simulations, analyzed their outputs
and wrote most of the text. All authors contributed ideas, comments and
suggestions throughout the realization of this study and its preparation as
a peer-reviewed paper.

5.1 introduction

In Chapter 3, we studied the survivability of star clusters after instantaneous
gas expulsion, assuming that clusters form according to the local-density-
driven cluster formation model of Parmentier and Pfalzner (2013). We re-
ported in Shukirgaliyev et al. (2017) that our model star clusters which form
with a centrally peaked SFE profile are more resilient to instantaneous gas
expulsion than earlier models (e.g. Baumgardt and Kroupa, 2007, and refer-
ences therein). That is, our model clusters survive instantaneous gas expul-
sion with a critical global SFE of SFEgl = 0.13 instead of SFEgl = 0.33 as esti-
mated previously. However, Shukirgaliyev et al. (2017) is not the only work
which decreased the critical SFE for cluster survivability after instantaneous
gas expulsion. Smith et al. (2013) considered instantaneous gas expulsion in
hierarchically formed star clusters within different arbitrary external poten-
tials mimicking the residual gas. Farias et al. (2018) also considered clusters
with fractal distributions and tried to link the initial conditions at the time of
gas expulsion to the preceding star-formation phase using hydrodynamical
simulations. But both papers considered isolated clusters and did not take
into account the impact of the tidal field. The advantages of our models are
that the potential of the residual gas is justified by a semi-analytical cluster-
formation model, and the tidal stripping by the Milky-Way-like galaxy is
taken into account. The latter results in a final bound fraction lower than if
clusters were isolated.

We studied mostly the violent relaxation phase of cluster evolution in
Chapter 3. By violent relaxation we mean here the evolution of star clusters
from the dynamical state of non-equilibrium induced by instantaneous gas
expulsion into a new state of quasi-equilibrium. In other words, since our
clusters are super-virial after gas expulsion – being assumed to be in virial
equilibrium with the gas potential – the violent relaxation is also associated
with a rapid cluster mass loss in response to gas expulsion. When violent
relaxation ends, clusters stop losing their mass in response to gas expul-
sion and other mass loss mechanisms (e.g. stellar evolution, tidal stripping)
come into play. The end of violent relaxation is the starting point of the long
term evolution of star clusters which have survived instantaneous gas expul-
sion. In Chapter 4 investigating the long-term evolution of our model star
clusters we showed that both the cluster formation conditions and the vio-
lent relaxation phase influence significantly the subsequent long-term evo-
lution/dissolution of the clusters. That is, the dissolution time of low-SFE
(SFEgl = 0.15) clusters is shorter than that of high-SFE (SFEgl > 0.15), even
when considering clusters with equal masses at the end of violent relaxation.
Generally, the results presented in Chapter 4 confirm the mass dependent

61
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dissolution of clusters, which have survived their violent relaxation. The
relation for low-SFE clusters (see Fig. 18 in Chapter 4), however, present a
large scatter and, possibly, a mass independent trend for clusters more mas-
sive than 103M�. In contrast to the long-term evolution, the evolution of
star clusters is mass independent during the violent relaxation.

Controversial results have been presented by observers regarding the de-
pendence of the cluster dissolution time on the cluster mass and environ-
ment (see Lamers, 2009; Whitmore, 2017, for an overview). One group of
observers reported that star cluster dissolution depends on the cluster initial
mass and cluster environment, i.e. the cluster dissolution time is longer for
higher masses and weaker tidal field of the host galaxy (Bastian et al., 2012;
Boutloukos and Lamers, 2003; Lamers, Gieles, and Portegies Zwart, 2005).
However, Chandar, Fall, and Whitmore (2010), Chandar et al. (2014), Fall,
Chandar, and Whitmore (2009), and Whitmore, Chandar, and Fall (2007)
reported from their extragalactic observations that star clusters dissolve in-
dependently of their mass and of their environment.

In 2015, the Legacy Extragalactic UV Survey (LEGUS) collaboration started
its work to investigate the connection between environmental conditions in
galaxies and their cluster populations (Calzetti et al., 2015). One of the aims
of the LEGUS collaboration is to investigate the influence of the environment
on the cluster evolution/dissolution in nearby galaxies. The most recent pa-
per from the LEGUS collaboration (Messa et al., 2018) studies the cluster
population of the M51 galaxy as a function of galactocentric distance, and
location with respect to the spiral arms (i.e spiral arms and inter-arm re-
gions). Considering the clusters younger than 200 Myr they conclude that
the shape of the cluster mass function does not change with galactocentric
distance and is described by a power law with a slope close to −2. The clus-
ter age distribution, however, depends on both galactocentric distance and
ambient density, showing evidence for faster cluster disruption in the inner
and denser regions than in the outer and diffuse (inter arm) ones, under the
assumption of a constant rate of cluster formation. Clusters younger than
10 Myr were not accounted in the age distribution function because their
census is contaminated by quickly dissolving unbound clusters.

From a theoretical point of view, numerous works have studied the im-
pact of the tidal field on the cluster evolution/dissolution usingN-body sim-
ulations (e.g. Baumgardt and Makino, 2003; Ernst et al., 2015; Fukushige and
Heggie, 1995; Renaud et al., 2008; Rossi, Bekki, and Hurley, 2016; Spurzem
et al., 2005; Tanikawa and Fukushige, 2005, among others). All these studies
show that the impact of the tidal field is significant – the stronger the tidal
field, the quicker the cluster dissolves. However, all these works have con-
sidered the long-term evolution of star clusters, starting from them being in
virial equilibrium. That is, the violent relaxation is neglected, or assumed to
be over.

Theoretical works considering the violent relaxation, which precedes the
re-virialization of star clusters and their long-term evolution, usually ne-
glect the impact of the tidal field of the host galaxy. Only a few papers in
the literature have considered the effect of the tidal field on the cluster early
evolution and survivability after gas expulsion in their N-body simulations:
Baumgardt and Kroupa (2007), Goodwin (1997), and Kroupa, Aarseth, and
Hurley (2001). Baumgardt and Kroupa (2007) are the only ones who mapped
the parameter space of global SFE, gas expulsion time-scale and tidal field
impact in a comprehensive way. They reported that the impact of the tidal
field on the cluster survivability is significant. They considered cluster Plum-
mer models with a radially constant SFE (thus implying that only clusters
whose SFE is larger than at least 0.33 survive instantaneous gas expulsion)
and a spherically symmetric Galactic gravitational potential.
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The impact of the tidal field is usually characterized by the ratio of the
cluster half-mass radius to the Jacobi (tidal) radius, rh/RJ. The tidal field is
stronger when a cluster orbits nearer the Galactic center, and is weaker for
a larger Galactocentric distance, Rorb. That is, for a given cluster mass, the
Jacobi radius increases with Galactocentric distance and, therefore, rh/RJ
decreases for a fixed cluster size. Instead of changing the Galactocentric
distance one can also modify the cluster size (e.g. the half-mass radius) only
and thus change rh/RJ while the Jacobi radius stays constant for given mass
and Galactocentric distance. In that case, the tidal field impact is weaker for
a compact cluster (small rh) and stronger for a diffuse cluster (large rh).

In Chapter 3, we also investigated the impact of the tidal field by vary-
ing the size of clusters on a given orbit and found that it is not significant
within the uncertainty1 of 10% on the bound mass fraction retained by star
clusters at the end of their violent relaxation. However, only a small number
of simulations were performed to study the impact of tidal field and we
were limited to only two different birth masses and 3 random realizations
per model. Therefore in this Chapter, we expand our previous results and
we study the impact of the tidal field in a more comprehensive way, also
varying the cluster Galactocentric distance Rorb. This will be helpful for us
to understand and interpret extragalactic observations and also to compare
the models with the observed reality of the Universe.

5.2 parameter space covered by our grid of simulations

In previous chapters 3 and 4, we considered the evolution of clusters after in-
stantaneous gas expulsion for different global SFEs (SFEgl = [0.1, 0.25]) and
different cluster birth masses M? = [3k, 100k] M� (equivalent to a number
of stars N? ≈ [5× 103, 1.7× 105]). We studied both their violent relaxation
and their long-term evolution till their final dissolution in the Galactic tidal
field. All our model clusters have circular orbits in the Galactic disk plane
at the Galactocentric distance of Rorb = 8 kpc. They all have the same tidal
field impact, rh/RJ = 0.052, at the time of instantaneous gas expulsion.

Now we expand our set of N-body simulations and we study the impact
of the tidal field on star cluster survivability after instantaneous gas expul-
sion. We consider our previous models with rh/RJ = 0.052 as our ‘standard’
set of models, or ‘S0-models’.

We limit ourselves to clusters that survive instantaneous gas expulsion
(i.e. SFEgl > 0.15), and we consider the efficiencies SFEgl = 0.15, 0.17, 0.20,
0.25, and birth masses M? = 3k, 6k, 10k, 15k, 30k, 60k M�. We do not
consider any eccentric or inclined (with respect to the Galactic disk plane)
orbits in this study.

In the scope of this paper we vary the impact of the tidal field, charac-
terized by the ratio of the cluster half-mass radius to Jacobi (tidal) radius,
rh/RJ, in two ways with respect to our standard set of models:

1) We vary the Galactocentric distance Rorb of the model clusters while
keeping constant their physical size (rh) at the time of instantaneous
gas expulsion. We have chosen 4 additional Galactocentric distances:
Rorb = 2.9, 4.64, 10.95, and 18.0 kpc, which correspond to rh/RJ = 0.1,
0.075, 0.04, and 0.03. This completes our initial set of “standard” S0-
model clusters, i.e. rh/RJ = 0.052 at Rorb = 8.0 kpc. We name the
additional models as ‘extra Inner-’ (xI), ‘Inner-’ (I), ‘Outer-’ (O) and
‘extra Outer-’ (xO) orbit model clusters, respectively. In Fig. 23, which

1 The uncertainty is a consequence of the randomization of the initial conditions of
the N-body simulations.

[ September 17, 2018 at 11:56 – classicthesis version 1.0 ]



64 the tidal field impact on cluster survivability

0 5 10 15 20 25
R [kpc]

0

50

100

150

200

250

300

V
ro

t
[k

m
/s

]

total

bulge

disc

halo
Rorb

Figure 23: The rotation curve of the Galaxy model (thick blue line) and its
corresponding components (bulge, disc and halo). The black open
circles show the radii of the circular orbits on which we put our
model clusters: Rorb = 2.9, 4.64, 8.0, 10.95, 18.0 kpc.

presents the rotation curve of the Galaxy model, their positions are
indicated by black open circles.

2) We vary the physical size rh of the ’S0-model’ clusters, while keeping
them in the solar neighborhood (Rorb = 8.0 kpc). That is, we vary the
cluster density. In this case, we expand the few simulations already
performed in Chapter 3 for rh/RJ = 0.1, 0.075, 0.025 and consider a
larger range of birth masses and more random realizations per model.
These models are named: ‘the most diffuse’ (or S+2, when rh/RJ = 0.1),
‘the diffuse’ (or S+1, 0.075) and ‘the compact’ (or S−1, 0.025) model
clusters.

The number of random realizations performed per model, where each
model is described by a global SFE (SFEgl), cluster birth mass M? and tidal
field impact rh/RJ, are presented in Table 7.

5.3 the violent relaxation duration

The impact of the tidal field on the cluster survivability can be quantified
by the variations of the cluster bound mass fraction at the end of violent
relaxation. We consider the cluster bound mass as the stellar mass enclosed
inside one Jacobi radius at a given time, also called the Jacobi mass MJ.
Although it has been discussed that there are stars beyond the Jacobi radius
staying around the cluster for several mega-years (Just et al., 2009; Ross,
Mennim, and Heggie, 1997), we decide to keep our definition of the bound
mass as the Jacobi mass to avoid any overestimation.

Before proceeding any further, we have to clarify the definition of the
violent relaxation and its duration, i.e the criteria used to determine the end
of violent relaxation. This is important since we measure our final bound
fraction at the end of violent relaxation.
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Table 7: Number of random realizations performed for each model cluster,
where each model is described by its birth mass (M?), global SFE
and tidal field impact (rh/RJ).

M?/M� SFEgl nrnd

rh/RJ = 0.100 0.100 0.075 0.070 0.050 0.040 0.030 0.025

S+2 xI I S+1 S0 O xO S-1

3000 0.15 15 15 16 15 26 16 15 15

3000 0.17 6 6 6 6 6 6 6 6

3000 0.20 6 6 6 6 6 6 6 6

3000 0.25 1 1 1 1 1 1 1 1

6000 0.15 10 10 11 10 36 11 10 10

6000 0.17 6 6 6 6 6 6 6 6

6000 0.20 8 8 6 8 8 6 8 8

6000 0.25 3 3 1 3 3 1 3 3

10000 0.15 11 11 11 11 36 11 11 11

10000 0.20 1

10000 0.25 1

15000 0.15 11 11 12 11 32 12 11 11

15000 0.17 6 6 6 6 6 6 6 6

15000 0.20 8 8 6 8 8 6 8 8

15000 0.25 3 3 1 3 3 1 3 3

30000 0.15 10 10 11 10 27 11 10 10

30000 0.17 6 6 6 6 6 6 6 6

30000 0.20 6 6 6 6 6 6 6 6

30000 0.25 1 1 1 1 1 1 1 1

60000 0.15 8 15 15 15

60000 0.17 1 1 1

60000 0.20 1 1 1

60000 0.25 1 1 1

100000 0.15 3

300000 0.15 1
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By definition, violent relaxation is the dynamical evolution of a star clus-
ter from a state of non-equilibrium into a new state of (quasi-)equilibrium
(Lynden-Bell, 1967). Our model clusters become super-virial once the instan-
taneous gas expulsion has taken place, because they were in virial equilib-
rium with the total (gas+stars) gravitational potential. The violent relaxation,
as a response to instantaneous gas expulsion in our case, starts immediately
after gas expulsion and causes clusters to lose their mass rapidly (violently).
This mass-loss should stop when the violent relaxations ends, that is, when
the cluster has returned to virial-equilibrium, if it survived as a bound clus-
ter.

In previous works, we assumed that the violent relaxation ends at an age
of 20 Myr2, when the bound mass fraction of all model clusters becomes
more or less constant (see Fig. 3 of Chapter 3). We reported that the violent
relaxation ends within 20 Myr independently of the global SFE and of the
birth mass of star clusters for a given tidal field impact. However, varying
the cluster size rh, hence the impact of the tidal field rh/RJ, influences the
violent relaxation duration. The violent relaxation ends earlier for a denser
cluster than for a diffuse one, but the time difference does not correlate
with the crossing time of star clusters (i.e. it does not scale with

√
r3h , see

Chapter 3 or consider the upcoming Fig. 28 at the end of this section).
The evolution of the bound mass fraction for a M? = 30k M� cluster

with a low SFE (left panels) and a high SFE (right panels), and for different
half-mass radii rh at Rorb = 8kpc, is shown in the top panels of Fig. 24. In
this case, the tidal field impact rh/RJ varies because of the variation of rh.

Now in the bottom panels of Fig. 24, we place our ‘standard’ S0-model
clusters at different Galactocentric distances Rorb. We can see that the violent
relaxation, as a rapid mass loss in response to instantaneous gas expulsion,
ends within different time-spans depending on the tidal environment (the
different colors correspond to different Galactocentric distances). We now
need to define the end of the violent relaxation, since this is the time at
which we need to measure the bound fraction to assess the cluster surviv-
ability after gas expulsion when varying the tidal field impact.

Since our model clusters are not isolated, but evolve in the tidal field of
the Galaxy, and consist of evolving stars, different mass-loss mechanisms
are involved during the evolution after gas expulsion. They are: stellar evo-
lutionary mass loss, rapid (violent) mass loss in response to gas expulsion,
and on the long-term, mass-loss through the two-body relaxation (evapora-
tion) and long-term mass loss due to the tidal stripping. The cluster evapora-
tion through two-body relaxation is the least efficient mass-loss mechanism
among those considered here. The stellar evolutionary mass loss is quite
significant and cause the clusters to lose their mass within the first hundred
mega-years, due to the quick evolution of massive and intermediate mass
stars. It is especially high within the first 3-4 Myr after the cluster forma-
tion. Stellar evolutionary mass-losses become less significant at a later time
because low-mass stars evolve (read: lose their mass) more slowly.

The rapid (violent) mass loss of star clusters in response to gas expulsion
is very significant and happens in the very beginning of the cluster evolu-
tion after gas expulsion while it is expanding. This type of cluster mass loss
highly depends on the SFE, the dynamical state of the cluster immediately
before gas expulsion, the gas expulsion time-scale, and the spatial distribu-
tion of stars and gas relative to each other (Baumgardt and Kroupa, 2007;
Brinkmann et al., 2017; Goodwin, 2009; Shukirgaliyev et al., 2017; Smith et
al., 2013; Verschueren and David, 1989, among others).

2 i.e. 20 Myr after the instantaneous gas expulsion
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Figure 24: The bound mass fraction evolution of M? = 30k M� clusters
for different tidal field impacts. The top panels present the solar
neighborhood clusters (Rorb = 8 kpc) where the tidal filed impact
rh/RJ varies with cluster size rh (i.e. different mean densities) at
the time of instantaneous gas expulsion. The bottom panels show
clusters of identical size, but placed at different Galactocentric
distances. Therefore the tidal field impact rh/RJ varies with the
Jacobi radius RJ. Left and right panels show the low-SFE (i.e.
SFEgl = 0.15) and high-SFE (i.e. SFEgl = 0.25) clusters, respec-
tively. The thin vertical dashed lines indicate the end of violent
relaxation, which we obtain in this section and whose values are
provided in Table 8.
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The tidal stripping would be another long-term mass-loss mechanism
which would not be highly significant at the beginning of cluster evolution
if our model clusters remained in virial-equilibrium. But as we mentioned
before, our model clusters expand after gas expulsion and lose their mass
rapidly. Here the tidal stripping comes in combination with rapid mass loss
and cut out those stars which went beyond the Jacobi radius. We note that
these “far traveled stars” would be bound to the cluster if the latter were iso-
lated. Once the violent relaxation is over, that is, the cluster is not expanding
any more, the mass-loss due to the tidal stripping becomes negligibly small
compared to stellar evolutionary mass-losses.

Therefore, we assume that the violent relaxation ends when the cluster
mass-loss rate is equal to, or less than the stellar evolutionary mass losses.

In top panels of Fig. 25 we present the evolution with time of the char-
acteristic mass loss time-scale of star clusters, defined as the inverse of the
cluster mass loss rate normalized to the cluster birth mass:

τ =
1

−
dMJ/M?

dt

= −
M?

ṀJ
. (36)

We show here as an example only clusters at two Galactocentric distances,
Rorb = 2.9 kpc and Rorb = 18.0 kpc in the left and right panels of Fig. 25,
respectively. In the bottom panels of Fig. 25 the corresponding bound mass
fraction evolutions are presented. The different colors correspond to differ-
ent global SFEs (red, blue, green and yellow for SFEgl = 0.15, 0.17, 0.20 and
0.25, respectively). The red thick curve in the top panels shows the median
value of the characteristic mass-loss times of all model clusters for a given
environment (i.e. Rorb). The black dashed line in the bottom panels depicts
stellar evolutionary mass-loss.The stellar evolutionary mass-loss time-scales
as defined by Eq. 36 for two M? = 105M�cluster models are shown with
black dots in top panels. The thin solid black curve corresponds to the best
fit to the stellar evolutionary mass loss characteristic time within the time
interval from 4 Myr to 100 Myr:

τSTEV = −
M?

ṀSTEV
= 17.8 (t− 2)1.06 [Myr]. (37)

Lamers et al. (2005) already provided some approximation, which describes
the stellar evolutionary mass loss fraction of their model clusters for ages
t > 12.5 Myr with an accuracy of a few per cent. However, we need an ex-
pression of the stellar evolutionary mass-loss which is valid also at younger
ages. Additionally, we use the IMF Kroupa (2001), instead of the IMF of
Salpeter (1955) as Lamers et al. (2005) did. Therefore, we fit our own ap-
proximation (Eq. 37), which provides an excellent fit for all ages younger
than 100 Myr.

The stellar evolutionary mass loss rate normalized to the cluster birth
mass is the same for any cluster mass, except for a large background noise
in the case of low-mass clusters Therefore, we decide to compare the char-
acteristic times τ (Eq. 36) of all models with the fit function for stellar evolu-
tion provided in Eq. 37. That is, we identify the time when the characteristic
mass-loss time of model clusters becomes longer than the fit function. We
then take the average over all model clusters of a given tidal field impact
and define it as the end of violent relaxation. This average tVR is indicated
by the vertical dashed lines in each panel of Fig 25, where the shaded area
corresponds to the standard deviation. The numerical values are provided
in Table 8.
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(a) Rorb = 2.9 kpc, tVR = 7.9± 1.1 Myr (b) Rorb = 18.0 kpc, tVR = 33.0± 4.6 Myr
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Figure 25: The characteristic mass-loss time (top panels) and the bound

mass fraction evolution (bottom panels) of star clusters at two
Galactocentric distances Rorb = 2.9 kpc and Rorb = 18 kpc are
shown in left and right panels, respectively. The different colors
correspond to cluster global SFEs in such a way that SFEgl = 0.15
(red), 0.17 (blue), 0.20 (green), and 0.25 (yellow). The red thick
line in upper panels corresponds to the median of all simulations
at a given time (irrespective of global SFE and birth mass). The
black dots show the characteristic mass-loss time of stellar evolu-
tion only and correspond to two simulations with M? = 105M�.
The black solid line is the best fit to stellar evolutionary mass
loss characteristic time. In bottom panels the black line shows
the stellar evolutionary mass-loss of a M? = 105M� cluster. In
each panel the vertical blue dashed line corresponds to the end
of violent relaxation, tVR, with shaded area corresponding to the
standard deviation (see the text for more explanations).

Table 8: End of violent relaxation for different tidal field impacts.

Model name Rorb [kpc] rh/RJ tVR [Myr]

xI 2.9 0.100 7.9± 1.1
I 4.64 0.075 12.4± 2.3
O 10.95 0.040 23.9± 2.9

xO 18.0 0.030 33.0± 4.6
S+2 8.0 0.100 19.5± 3.2
S+1 8.0 0.070 17.5± 1.9
S0 8.0 0.050 17.9± 2.3
S-1 8.0 0.025 14.4± 1.7
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5.3.1 Relation between the tidal field impact and the violent relaxation du-
ration

Figure 26 shows the time of the end of violent relaxation, tVR, as a function
of the tidal field impact, rh/RJ. The black cross at the center of the figure
stands for our earlier estimate of the end of violent relaxation as measured
by eye for ‘standard’ S0-models in Chapter 3, while the green open circle
indicates the generalized estimate of the end of violent relaxation based on
the method described in previous subsection. As we can see from this figure,
both results are consistent with each other. The cluster models of the solar
neighborhood with different densities are indicated with crosses, while the
model clusters with different Galactocentric distances are indicated with
plus symbols (see the key).

The violent relaxation duration tVR does not change significantly for the
clusters with different densities but the same Galactocentric distance, while
a change of more than 20 Myr shows up when considering different Galac-
tocentric distances.

The violent relaxation duration, tVR, correlates almost linearly with the Ja-
cobi radius at the time of gas expulsion, when we consider identical clusters
at different Galactocentric distances (Fig. 27). This means that the violent re-
laxation duration is proportional to the Jacobi radius, or rather to the cluster
crossing time measured at the Jacobi radius:

tVR ∝
RJ

V
. (38)

Here V is the characteristic speed of the cluster stars, which is constant
when we consider different galactocentric distances, because in that case we
do not change any other physical parameters of clusters such as mass, size
or velocity dispersion.

On the other hand, when we vary the impact of the tidal field for a fixed
galactocentric distance (i.e.the Jacobi radius is fixed) by changing the cluster
half-mass radius, we modify the cluster velocity dispersion too. This is be-
cause we assume that our clusters are in virial equilibrium before gas expul-
sion when the forming cluster total mass is Mtot =M? +Mgas =M?/SFEgl,
and therefore:

V ∝
√

MJ

rhSFEgl
. (39)

Chapter 3 already showed that the duration of the violent relaxation does
not scale with the crossing time measured at the half-mass radius as we
mentioned before. Let us assume that the violent relaxation duration scales
with the crossing time (Eq. 38) measured at Jacobi radius instead, as we
found in the case of different galactocentric distances. Then in Eq. 38 we can
substitute V by Eq. 39, where MJ is replaced by R3J according to Eq. 25. In
this case we have the following expression for the end of violent relaxation:

tVR ∝
√
rh
RJ

SFEgl. (40)

Since SFEgl varies only from 0.15 to 0.25 in our simulations, the dependence
of tVR on SFEgl is quite weak, less than 15%. Therefore, we average the
duration of violent relaxation over all SFEgl-models. Then, since the Jacobi
radius is fixed for a given Galactocentric distance and a given mass, the
violent relaxation duration is expected to scale mostly with the square root
of the half-mass radius.

But, Fig. 28 shows us that the duration of violent relaxation for a given
Galactocentric distance (i.e. the S+2, S+1, S0 and S−1 models) does not scale
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Figure 26: The end of violent relaxation as a function of the tidal field im-
pact, characterized by half-mass to Jacobi radii ratio rh/RJ at the
time of gas expulsion. Each point represents all cluster models
for a given tidal field impact. The black cross and the green open
circle correspond to our ‘standard’ model set (rh/RJ = 0.052 and
Rorb = 8.0 kpc), where the former shows our earlier estimate from
Chapter 3 and the latter corresponds to the new generalized esti-
mate obtained in Section 5.3. The models marked with plus sym-
bols are at different Galactocentric distances, while crosses indi-
cate solar neighborhood clusters with different densities, there-
fore with different impact of the tidal field.
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Figure 27: The end of violent relaxation duration as a function of the tidal
field impact for the same clusters located at different Galactocen-
tric distances. The solid line is the best fit power-law function.
The dashed line corresponds to tVR ∝ RJ.
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Figure 28: The violent relaxation duration as a function of the impact of
the tidal field at a fixed Galactocentric distance. The solid line is
the best fit power-law function. The dotted lines correspond to
tVR ∝

√
rh going through the most extreme models. The dashed

horizontal line is the mean over all simulations of the solar neigh-
borhood with the shaded area showing the standard deviation.

with the cluster half-mass radius to the power of 1/2. We over-plot the rela-
tion tVR ∝

√
rh through the most extreme cases with dotted lines in Fig. 28.

Also the mean violent relaxation duration averaged aver all simulations at
Rorb = 8 kpc is shown with the dashed line. The shaded area corresponds to
its standard deviation. The solid black line is the best fit power-law function.
it has an index of 1/5.

Probably, when we consider the fixed Jacobi radius and vary the cluster
size, for a small rh/RJ (i.e. compact cluster), the surviving bound part of
a cluster does not expand as much as to fill the Jacobi radius. Then this
bound part of a cluster, when it stops its expansion, can still be surrounded
by some to-be-unbound stars which are about to escape, but still need some
time to reach the Jacobi radius. Therefore, the end of violent relaxation can
be prolonged compared to a diffuse cluster as all unbound stars are leaving
the Jacobi radius of the cluster.

In case of a diffuse cluster, that is, large rh/RJ, the central part of a cluster
can expand as much as to even overfill the Jacobi radius. Therefore the
duration of the violent relaxation can become shorter for clusters with large
rh/RJ than expected if it was following the relation tVR ∝

√
rh.

If that is the case, we can expect to have slightly higher final bound frac-
tion for compact clusters, and lower final bound fraction for diffuse clusters.
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5.4 final bound fraction

The final bound fraction Fbound is the bound mass fraction measured at the
end of violent relaxation tVR. This is an indicator of cluster survivability af-
ter gas expulsion. We showed previously that the final bound fraction does
not depend on the cluster birth mass M? for solar neighborhood clusters
(Chapter 3, Chapter 4). This stands also for other galactocentric distances.
Figure 29 shows the final bound fraction against the birth mass at different
Galactocentric distances (Rorb = 2.9, 8.0, 18.0 kpc from top to bottom). As we
can see, for each global SFE (i.e. for each color) the final bound fraction stays
constant within the error-bars and does not show any clear dependence on
the birth mass of star clusters in all three panels (i.e. for all three galactocen-
tric distances). Therefore, in the following figures, the final bound fraction
for a given global SFE and a given tidal field impact has been averaged
through all cluster birth masses.

Now, Figure 30 demonstrates that the final bound fraction of our model
clusters is not significantly affected by the tidal field when we consider
clusters at different Galactocentric distances. The color-coding, again, cor-
responds to the global SFE and is the same as in Fig.25 and 29.

Figure 31 presents the final bound fraction of star clusters as a function
of tidal field impact for a fixed Galactocentric distance of Rorb = 8 kpc. The
black dashed lines are the linear fits to the final bound fractions of a given
global SFE as a function of rh/RJ. Their slopes are shown on the right hand
side of the figure. In this case, where different tidal field impacts are driven
by various cluster densities (i.e. our solar neighborhood model clusters),
a clear trend can be seen where the final bound fraction is a decreasing
function of the tidal field impact (Fig. 31). Nevertheless, the differences in
the final bound fraction are not very large and remain consistent with each
other within the error-bars.

Figure 32 presents the final bound fraction as a function of the global
SFE and the tidal field impact. Our model clusters with a given global SFE
and tidal field impact are represented by the mean final bound fraction av-
eraged over all birth masses and random realizations performed per model.
Standard deviations are not shown for the sake of clarity. Our standard S0-
model clusters are indicated by green open circles. Solar neighborhood clus-
ters with different tidal field impacts are represented by ×-symbols. Model
clusters with different tidal field impacts due to different Galactocentric dis-
tances are indicated by +-symbols. For each case, the color-coding corre-
sponds to different tidal field impacts (see the key). We compare our results
with those of Baumgardt and Kroupa (2007) obtained for instantaneous gas
expulsion and different tidal field impacts rh/rt = 0.01, 0.033, 0.06 and 0.100

(black dots connected with lines, from top to bottom).
As we mentioned before, Baumgardt and Kroupa (2007) considered clus-

ters with radially constant SFE, on circular orbit in a spherical gravitational
potential representative of the host galaxy. In contrast, we consider clusters
formed with a centrally-peaked SFE profile, as a result of star-formation tak-
ing place with a constant efficiency per free-fall time, and moving on circular
orbits in the disk plane of an axisymmetric Galactic potential consisting of
a bulge, a disk and a dark halo. In addition, we consider the impact of the
tidal field not only at different Galactocentric distances, but also for clusters
of different sizes, but at the same galactocentric distance.

As it is shown in Fig. 32, not only are our model clusters formed with a
centrally-peaked SFE profile able to resist instantaneous gas expulsion on
SFE as low as SFEgl = 0.15, their survival likelihood is also independent of
the impact of the tidal field within the scope of our simulations.
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Figure 29: The final bound mass fraction as a function of cluster birth mass.
Panels from top to bottom correspond to three Galactocentric
distances of Rorb = 2.9, 8.0, 18.0 kpc. The corresponding tidal
field impacts are: rh/RJ = 0.10, 0.052, 0.03, respectively. The
color-coding corresponds to different global SFEs as following:
SFEgl = 0.15 (red), 0.17 (blue), 0.20 (green), and 0.25 (yellow) and
are the same as in Fig. 25. Each point corresponds to the mean
and standard deviation of the random realizations performed for
each model.
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Figure 30: The final bound mass fraction as a function of tidal field im-
pact for different Galactocentric distances. The color-coding cor-
responds to the global SFE and is the same as in Fig. 29. Each
point corresponds to the mean and standard deviation of model
clusters with the same global SFE and tidal field impact.
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Figure 31: The bound mass fraction at the end of violent relaxation as a
function of tidal field impact for different central densities at
Rorb = 8.0 kpc. Different colors correspond to different global
SFEs. Each point corresponds to the mean and standard deviation
of clusters with the same global SFE at a given tidal field impact.
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Figure 32: The final bound fraction as a function of global SFE and the
tidal field impact. The different colors correspond to the clusters
with different the tidal field impact of our model clusters. Green
open circles show our S0-models. The solar neighborhood clus-
ters with different tidal field impact are shown by cross symbols,
while clusters at different Galactocentric distances are presented
by plus symbols. Each point correspond to a mean bound frac-
tion of a set of simulations with a given global SFE and rh/RJ.
Each set of simulations consist of models with birth masses range
from 3k to 30k M� at least. Black curves correspond to the results
of Baumgardt and Kroupa (2007) for the case of instantaneous
gas expulsion, where the numbers shown next to black dots the
strength of the tidal field in their simulations.
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Relying on the results of our simulations we conclude that the surviv-
ability of star clusters after instantaneous gas expulsion is independent of
the tidal field impact at different Galactocentric distances. The impact of
the tidal field on clusters with different densities at a given Galactocentric
distance results in small variations of about 0.1 in the final bound fraction.

5.5 conclusions

We have studied the influence of the tidal field impact on the survivability of
star clusters after instantaneous gas expulsion. To do so, we have expanded
our grid of simulations from Chapter 3 and Chapter 4, and considered dif-
ferent Galactocentric distances (Rorb = 2.9, 4.64, 8.0, 10.95, 18.0 kpc), as well
as solar neighborhood clusters (i.e. Rorb = 8 kpc) with different volume den-
sities. Both cases yield variations of the impact of the tidal field, that we
define as rh/RJ.

Our model star clusters are formed with a centrally-peaked SFE profile
and have circular orbits in the Galactic disc plane, with the Galactic potential
modeled as a three-component axisymmetric Plummer-Kuzmin model (Just
et al., 2009; Miyamoto and Nagai, 1975).

We have measured the duration of violent relaxation for all our model
clusters. We define the end of violent relaxation as the moment when stel-
lar evolutionary mass losses start dominating the rapid (violent) mass-loss
resulting from gas expulsion.

As we showed previously in Chapter 3 the violent relaxation duration
does not depend significantly on the cluster global SFE and birth masses.
Therefore the violent relaxation duration is averaged over all birth masses
and global SFEs for a given tidal field impact. We have found that the violent
relaxation duration, measured at different Galactocentric distances, scales
with the cluster crossing time measured at its Jacobi radius (Fig. 27). How-
ever, it is more or less constant when the impact of the tidal field varies
through variations of cluster size/density at a given Galactocentric distance
(Rorb = 8 kpc, see Fig 28). The violent relaxation does not last longer than
40-50 Myr in our simulations.

We have also measured the final bound fraction (i.e. bound mass fraction
at the end of violent relaxation) of our clusters to quantify the impact of
the tidal field on the cluster survivability. Identical clusters located at differ-
ent Galactocentric distances, which thus experience different impacts of the
tidal field, show the same final bound fraction at the end of violent relax-
ation irrespective of their galactocentric distance (Fig. 30). However, clusters
at the same Galactocentric distance of 8 kpc, but different volume densities,
which also experience different tidal field impacts, present small variations
of about 0.1 in their final bound fraction such that compact clusters retain
a higher final bound fraction than diffuse clusters. Therefore, we conclude
that, within the scope of our simulations, the cluster survivability after in-
stantaneous gas expulsion as measured by their bound mass fraction at the
end of violent relaxation Fbound, is independent of the tidal field impact
rh/RJ.
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6
S U M M A RY A N D F U T U R E W O R K S

6.1 summary

Using a novel approach we have studied the evolution of star clusters from
their formation in gaseous clumps till complete dissolution in the tidal field
of their host galaxy. To that purpose, we have combined the semi-analytical
“local-density-driven” cluster formation model of Parmentier and Pfalzner
(2013) with direct N-body simulations of clusters following instantaneous
gas expulsion. Our model clusters are formed with a centrally peaked SFE
profile, that is, the residual gas has a density profile that is shallower than
that of the embedded cluster. This configuration is expected if star formation
proceeds with a constant star-formation efficiency per free-fall time in a
centrally concentrated, spherically symmetric, molecular gas clump.

We have built a large grid of N-body simulations covering the param-
eter space of global SFE (SFEgl = [0.1, 0.25]), cluster birth mass (M? =

[3× 103, 105]M�) and the tidal field impact (rh/RJ = [0.025, 0.10]). The vari-
ation of the impact of the tidal field has been considered by varying the
cluster galactocentric distance, as well as by the varying the size (hence
volume density) of those located at a galactocentric distance of 8 kpc. The
initial conditions for our direct N-body simulations were generated by the
program "mkhalo" from the package "falcON", adapted for our models with
the specially developed acceleration plug-in GasPotential. Our model star
clusters have a Plummer profile and are in virial equilibrium with the grav-
itational potential of the cluster-forming clump immediately before gas ex-
pulsion. The residual gas contribution is computed from the local-density
driven clustered star formation model in our GasPotential plug-in. Our
simulations include cluster mass loss by stellar evolution as well as the tidal
field of a Milky-Way-like host galaxy.

We have studied the effect of the instantaneous expulsion of the residual
star-forming gas on model star clusters of the solar neighborhood in Chapter
3. We have found that a star cluster with a minimum global SFE of 15 per-
cent is able to survive instantaneous gas expulsion and to produce a bound
cluster. Its violent relaxation lasts no longer than 20 Myr, independently of
its global SFE and initial stellar mass. At the end of violent relaxation, the
bound fractions of the surviving clusters with identical global SFEs are simi-
lar, regardless of their birth stellar massM?. Their subsequent lifetime in the
gravitational field of the Galaxy depends on their bound stellar masses. We
therefore conclude that the critical SFE needed to produce a bound cluster is
15 percent, which is roughly half the earlier estimate of 33 percent. Thus we
have markedly strengthened the survival likelihood of young clusters after
instantaneous gas expulsion. Young clusters can now survive instantaneous
gas expulsion with a global SFE as low as the SFEs observed for embedded
clusters in the solar neighborhood (15-30 percent). The reason is that the star
cluster density profile is steeper than that of the residual gas. However, in
terms of the effective SFE, measured by the virial ratio of the cluster at gas
expulsion, our results are in agreement with previous studies. The results
were published in Shukirgaliyev et al. (2017).

Then, we have studied the long-term evolution of star clusters of the solar
neighborhood, until their complete dissolution in the Galactic tidal field in
Chapter 4. We have studied the relation between cluster dissolution time,
tdis , and cluster “initial” mass, Minit, defined as the cluster mass at the

81
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end of the dynamical response to gas expulsion (i.e., violent relaxation),
when the cluster age is 20–30 Myr. We have considered the “initial” mass
to perform consistent comparisons with other works that neglect violent re-
laxation. We have found that the model clusters formed with a high SFE
follow a tight mass-dependent relation, in agreement with previous theoret-
ical studies. However, the low-SFE models present a large scatter in both the
“initial” mass and the dissolution time and a shallower mass-dependent rela-
tion than high-SFE clusters, and most dissolve within 1 Gyr (cluster teenage
mortality). Both groups differ in their structural properties on average. Com-
bining two populations of clusters, high- and low-SFE ones, with domina-
tion of the latter, yields a cluster dissolution time for the solar neighbor-
hood in agreement with that inferred from observations, without needing
any additional destructive processes such as giant molecular cloud encoun-
ters. An apparent mass-independent relation may emerge for our low-SFE
clusters when we neglect low-mass clusters (as expected for extragalactic ob-
servations), although more simulations are needed to investigate this aspect.
Chapter 4 has been published as Shukirgaliyev et al. (2018a).

Finally, in Chapter 5 we have studied the impact of the Galactic tidal field
on the survivability of star clusters following instantaneous gas expulsion.
We have measured the duration of violent relaxation and the bound mass
fraction of all our model clusters at the end of violent relaxation. We have
found that the violent relaxation duration at different Galactocentric dis-
tances scales with the cluster crossing time measured at its Jacobi radius.
In contrast, it is about constant when the impact of the tidal field varies
through variations of the cluster size/density at a given Galactocentric dis-
tance of 8 kpc. The violent relaxation does not last longer than 40-50 Myr in
our simulations. Identical model clusters placed at different Galactocentric
distances result in a bound fraction at the end of violent relaxation indepen-
dent of the tidal field impact. Clusters at a given Galactocentric distance, but
with different densities, also experience tidal field impact variations, which
result in limited variations of about 0.1 of their final bound fraction. We have
concluded that the cluster survivability after instantaneous gas expulsion,
as measured by their bound mass fraction at the end of violent relaxation,
Fbound, is independent of the tidal field impact, rh/RJ, where rh and RJ are
cluster half-mass radius and Jacobi radius. The results presented in Chap-
ter 5 have been submitted for publication in MNRAS as Shukirgaliyev et al.
(2018b).

6.2 future works

There are a few projects that are already planned as a continuation of this
thesis. In one of them we will study the few Gyr evolution of star clusters in
the Milky Way (MW) and Large Magellanic Cloud (LMC). For that we will
continue our existing simulations for the MW and will run new simulations
of star cluster evolution, with our specific ICs, in the LMC using the LMC
tidal-field model developed by Rossi, Bekki, and Hurley (2016). Luca Rossi
has agreed to provide us with his code and tools in private communication.

Based on our simulations we will study:

- The effects of varying model input parameters quoted above on the
first few Gyr of evolution of clusters. In particular, we will follow the
cluster bound mass, size and structure, and estimate their lifetime.
Different SFEs will result in different SC Roche volume filling factors
and SC structures at the end of violent relaxation. Therefore they can
lead to different dissolution mechanisms. Varying the cluster orbit we
will investigate if a cluster dissolution mechanism independent of the
tidal field impact exists.
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- The observational biases on cluster mass and size estimates for the
Solar neighborhood and LMC. In most cases the cluster mass is esti-
mated by fitting the observed cluster surface brightness (SB) profile
with King profiles. However, Meylan (2002) showed that tidally dis-
rupting globular clusters with tidal tails are not well fitted with King
models (see also Elson, Fall, and Freeman, 1987). This gives signifi-
cant observational biases on the mass estimate of globular clusters.
The situation is even worse for low mass, less concentrated clusters
evolving in the tidal field of their host galaxy. We will make mock
observations of our model clusters putting them together with simu-
lated field star distribution of the host galaxy. We will then measure
the mass of SC based on their “observed” SB profile and compare it to
the actual cluster mass. For our study of the impact of observational
biases on cluster mass estimates in the Solar neighborhood we will
use the Galaxia model (Sharma et al., 2011). The Galaxia model re-
produces the distribution of Galactic field stars in a given field of view
in a heliocentric framework. We will integrate our simulation outputs
into the Galaxia model with tools we are currently developing. We
will then produce mock observations of model clusters in the sea of
Galactic field stars to study the observational biases. For our studies
of star clusters in external galaxies, we will use some synthetic obser-
vation codes like COCOA (Askar et al., 2018) or MYSO (Khorrami,
Vakili, and Chesneau, 2016, private communication with Dr. Z. Khor-
rami), or develop our own tools of mock observations if needed.

- Assuming the canonical power-law initial cluster mass function (ICMF),
a log-normal distribution of SFEs (e.g. as estimated by Kainulainen,
Federrath, and Henning, 2014) and different star-formation histories
we will build the corresponding cluster age-mass distribution using
our simulated star clusters and reproduce the cluster distributions ob-
served in the Solar neighborhood and LMC for cluster ages younger
than a few Gyr.

Furthermore, analyzing the outputs of our grid of simulations we will
study star cluster structures and tidal tails. We will try to detect tidal tails
of open clusters analyzing and comparing the mock observations of our
simulations with the Gaia data. Many other interesting studies can be done
based on the model of cluster evolution considered in this thesis.
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A
G A S P O T E N T I A L A C C E L E R AT I O N P L U G - I N F O R
M K H A L O

a.1 manual

I use program mkhalo from the package falcON (McMillan and Dehnen,
2007) to generate the initial phase-space distribution of stars in virial equi-
librium within total (stars + gas) gravitational potential for my N-body sim-
ulations. I developed the special acceleration plug-in ‘GasPotential’ to in-
troduce the external gravitational potential of the residual gas. In order to
start to use mkhalo with GasPotential plug-in, one need to install the
falcON (the “Force Algorithm with Complexity O(N)”) package.

falcON package can be installed easily with extensible Stellar Dynamics
Tools NEMO (Teuben et al., 1995).

The official web-page of NEMO on github portal provides a simple 4

step instruction to install NEMO. Before proceed to this simple instruction
I would like to note few issues I have found useful relying on my own
experience:

• Work in C-shell. Whenever I tried to install NEMO within usual bash,
I failed. Once I started C-shell by typing csh in terminal, everything
goes very smooth. Even after successful installation, start C-shell be-
fore you run mkhalo.

• Do not change the recommended installation path. When I tried to
install in other directory, I failed. But once I used the same path as
given in the github web-page of NEMO it works without any problem.

• I tried only on Linux Operating system.

Here are the instruction from https://teuben.github.io/nemo/#installation:

%1 wget https://teuben.github.io/nemo/install_nemo

%2 chmod +x install_nemo

%3 ./install_nemo nemo=$HOME/opt/nemo

%4 source $HOME/opt/nemo/nemo_start.csh

After successful installation of NEMO you can use any program of falcON
including mkhalo, which you can find in the following path:

$HOME/opt/nemo/usr/dehnen/falcON/bin/

Program mkhalo generates initial conditions for a spherical self-consistent
N-body system in virial equilibrium within a given external potential. If you
run mkhalo without any parameter, it gives nice description of all its pa-
rameters. Any available external potential can be used in mkhalo with pa-
rameter “accname”. All available external potentials, also called acceleration
plug-in, can be found in the following path:

$HOME/opt/nemo/usr/dehnen/falcON/acc/

Now we need to add our own, specially developed acceleration plug-in
GasPotential describing the gravitational potential of residual gas into
falcON package.

To do so, first download the source file of acceleration plug-in GasPotential.cc

from github: https://github.com/BS-astronomer/GasPotential or type in
your terminal
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git clone https://github.com/BS-astronomer/GasPotential.git

Once you have downloaded it, put the file GasPotential.cc into the ac-
celeration plug-in source directory of falcON:

$HOME/opt/nemo/usr/dehnen/falcON/src/public/acc/

Next step to do, in order to compile the GasPotential plug-in, is to
add into $HOME/opt/nemo/usr/dehnen/falcON/makepub file under the com-
mented line ‘accelerations’ the following lines (‘%1’ and ‘%2’ are given to
indicate the numbers of lines and should not be added into makepub file):

%1 $(ACC)GasPotential.so: $(SACC)GasPotential.cc $(ACCT) $(

defacc_h) $(makefiles)

%2 $(MAKE_ACC)

As for the next step, proceed into the main directory of falcON

cd $HOME/opt/nemo/usr/dehnen/falcON/

then compile the plug-in GasPotential:

g++ -o $HOME/opt/nemo/usr/dehnen/falcON/acc/GasPotential.so $HOME

/opt/nemo/usr/dehnen/falcON/src/public/acc/GasPotential.cc -

Iinc/ -Iinc/utils/ -I$HOME/opt/nemo/inc -I/$HOME/opt/nemo/lib

-D_FILE_OFFSET_BITS=64 -std=c++0x -march=native -mfpmath=sse

-mpreferred-stack-boundary=4 -ggdb3 -Wall -Wextra -Winit-

self -Wshadow -O2 -fPIC -fopenmp -funroll-loops -fforce-addr

-rdynamic -Llib/ -lfalcON -Lutils/lib -lWDutils -L$HOME/

opt/nemo/lib -lnemo -ldl -shared

and re-compile mkhalo

g++ -o $HOME/opt/nemo/usr/dehnen/falcON/bin/mkhalo $HOME/opt/nemo

/usr/dehnen/falcON/src/public/exe/mkhalo.cc -Iinc/ -Iinc/

utils/ -D_FILE_OFFSET_BITS=64 -std=c++0x -march=native -

mfpmath=sse -mpreferred-stack-boundary=4 -ggdb3 -Wall -Wextra

-Winit-self -Wshadow -O2 -fPIC -fopenmp -funroll-loops -

fforce-addr -rdynamic lib/halo.o -DfalcON_SINGLE -

DfalcON_NEMO -Llib/ -lfalcON -Lutils/lib -lWDutils -L$HOME

/opt/nemo/lib -lnemo -ldl -lm

Now, mkhalo program with GasPotential acceleration plug-in is ready
to use. In order to run, you need to copy the binary files
$HOME/opt/nemo/usr/dehnen/falcON/bin/mkhalo

and
$HOME/opt/nemo/usr/dehnen/falcON/acc/GasPotential.so

into your work directory. You also will need the program
$HOME/opt/nemo/usr/dehnen/falcON/s2a

to convert the output file of mkhalo from binary format into ASCII format.
GasPotential plug-in recovers the gravitational potential of the resid-

ual gas using two parameters: εff – SFE per free-fall time, and tSF – star-
formation duration.

The star cluster must have a Plummer model density profile, therefore the
option: model=Plummer must be given always. The plug-in GasPotential

works in the same units as mkhalo program, that is

G = 1, M? = 1, a? = 1.

Here a? is the characteristic radius of Plummer model for a stellar cluster,
G is the gravitational constant, and M? is the total stellar mass.

We calculate the global SFE as SFE within 10 Plummer radii,

SFEgl =
M?(r 6 10a?)

M?(r 6 10a?) +Mgas(r 6 10a?)
.
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The residual gas mass can be simply calculated by taking an integral of
residual gas density function

Mgas(r 6 10a?) =

10a?∫
0

r2ρgas(r)dr,

where

ρgas(r) =
1

k2
−
ρ?

2
−
1

2

√
K2 +

8

k6K1
+K1,

k =

√
8G

3π
εfftSF,

ρ?(r) =
3M?

4πa3?

(
1+

r2

a2?

)−5/2

, (a Plummer model)

K1 =

√
α2 +α(K0 + 24) +K0(K0 + 12)

12k4K0
,

K2 =
(α−K0 + 24) (K0 −α)

3k4K0
,

α = k4ρ2? ,

K0 =
3

√
α3 + 36α2 + 216α+ 24α

√
3 (α+ 27).

Here we provide some values of SF duration, tSF, corresponding to a
given global SFE for εff = 0.05 in the following table:

SFEgl 0.05 0.10 0.13 0.15 0.17 0.20 0.25 0.30 0.35 0.40 0.45 0.50

tSF 2.14 6.30 9.58 12.09 14.86 19.53 28.74 39.96 53.53 69.94 89.85 114.22

Now, we can generate the initial conditions for N-body simulations. Here
I provide an example bash-script to generate the initial conditions for N =

10k equal mass stars with SFEgl = 0.15:

#!/bin/csh

### number of particles

N=10000

### SFE per free-fall time

e_ff=0.05

### SF time-span

t_sf=12.09

### random seed

seed=1111

### the name of output file

outfile=outputfilename

### running the code

./mkhalo out=${outfile} nbody=${N} model=Plummer accname=

GasPotential accpars=${e_ff},${t_sf} seed=${seed}

### converting the output binary file into ASCII-file. header=f

means we do not print a header of the ASCII file.

./s2a in=${outfile} out=${outfile}.dat rformat=%24.16 header=f

Before running the script make sure that the falcON environment is loaded,
otherwise you run the following command:

source $HOME/opt/nemo/nemo_start.csh
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This script will result an ASCII-file with N lines and 7 columns: one
for mass, three for positions and three for velocities. However, phi-GRAPE
snapshot-file format is a bit different from this, and have three header lines
describing the number of snapshot, total number of particles in snapshot
and time of snapshot in each and one additional column for particles ordi-
nal numbers. To bring the output of mkhalo into a phi-GRAPE snapshot-
file format one can use the following python script ‘makeinp.py’ (listing
A.1), which can be run simply by typing ‘python makeinp.py’ in command
line.

# makeinp.py

import numpy as np

in = ’ inputfilename ’ #input file name should be provided inside

the script

out = open( ’data . inp ’, ’w’)
data = np.genfromtxt(in,unpack=True)

N = len(data[0])

#correction to the center of mass

M = np.sum(data[0])

for i in np.arange(6):

data[i+1] -= np.sum(data[0]*data[i+1])/M

m = data[0]

x, y, z = data[1],data[2],data[3]

vx, vy, vz = data[4],data[5],data[6]

out.write("%06d\n%06d\n%.8e\n"%(0,N,0))
for i in np.arange(N):

out.write(

’%06d\t %.10e\t % .10e % .10e % .10e\t % .10e % .10e % .10e\n’
%(i, m[i], x[i], y[i], z[i], vx[i], vy[i], vz[i])

)

out.close()

Now, the file named ‘data.inp’ is ready to use as initial conditions for the
subsequent direct N-body simulation with phi-GRAPE code. For that you
need to copy the file into the directory with phi-GRAPE executable file and
run the simulations.

If you want to run with a given IMF, you just need to replace the masses
of particles with the sample you generate according to your desired IMF.
Since the both, kinetic and potential energies of particles contain their mass
in each, the ratio of them, therefore the virial ratio of cluster does not change
significantly when we sample the IMF.

a.2 gaspotential code listing

#define POT_DEF

#include <cmath>

#include <defacc.h> // $NEMOINC/defacc.h

#define SQR(x) x*x

#define Pi 3.141592653589793

double M_sc = 1.0, a_pl = 1.0; //mass and scale radius of a star

cluster

double K, RmaxGasPot;

double G_const = 1.0, e_ff, t_sf;
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// rs() - calculates density of stars at given r (distance from

the center) for a Plummer sphere

double rs(double const r){

double rhos = (3.0 * M_sc)/(4.0 * Pi * a_pl*a_pl*a_pl)*
pow((1 + r*r/a_pl*a_pl),(-(5./2.)));

return rhos;

}

// rg3() - calculates density of residual gas at given r (

distance from the centre)

// and parameter k, which calculates as

// K = sqrt(8.0 * G_const/(3.0 * Pi)) * e_ff * t_sf;

double rg3(double const r, double const k){

double k4 = k*k*k*k;

double k6 = k*k*k*k*k*k;

double aa = k4 * rs(r) * rs(r);

double K0 = pow(( aa*aa*aa + 36*aa*aa + 216*aa + 24*aa*
sqrt(3*(aa + 27)) ),(1.0/3.0));

double K1 = sqrt( (aa*aa + aa*(K0 + 24) + K0*(K0 + 12))

/(12*k4*K0) );

double K2 = (aa - K0 + 24)*(K0 - aa)/(3*k4*K0);

double rhog= 1.0/(k*k) - 0.5*rs(r) + K1 - 0.5*sqrt(K2 +

8.0/(k6*K1) );

return rhog;

}

namespace {

class GasPotential {

public:

static const char* name() { return "GasPotential"; }

GasPotential(const double*pars,

int npar,

const char *file)

{

if(npar < 2)

warning("%s : recognizing 2 parameters:\n"
" e_ff star formation efficiency per free−

f a l l time [0.05]\n"
" t_sf duration of star formation phase [NB

] [1 .0]\n"
"\n\n",name());

if(file && file[0])

warning("%s : f i l e \"%s\" ignored",name(),file);
double

eff = npar>0? pars[0] : 0.05,

tsf = npar>1? pars[1] : 1.0;

if (!((eff < 1.0))&&(eff > 0))

error(" e_ff value is out of range : %f\n"
"\t\t\t correct range is : 0.0 < e_ff < 1.0 ",eff);

if (tsf <=0.0)
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error(" t_sf value is out of range : %f\n"
"\t\t\t correct range is : 0.0 < t_sf ",tsf);

RmaxGasPot = 32.0; // Maximum radius for Plummer sphere with

a = 1 is 32 in mkhalo

e_ff = eff;

t_sf = tsf;

if(npar > 2) warning("%s : skipped parameters beyond 2\n"
" parameters : e_ff = %f\n"
" t_sf = %f\n",
e_ff, t_sf ,name());

nemo_dprintf (1,

" init ial izing %s\n"
" parameters : e_ff = %f\n"
" t_sf = %f\n",
name(), e_ff, t_sf);

}

template<typename scalar>

void potacc(scalar const&Rq,

scalar &P,

scalar &T) const

{

register scalar R = std::sqrt(Rq);

double ff_in, ff_out,

R_min, R_max, R_len,

R_len_1_2,

R_len_1_4,

R_in_min,

R_out_max,

R_in_max,

R_out_min;

int i1, i2, ii, bins, indx = 512;

double dr_in, dr_out,

R_in, R_out;

R_min = 0.0;

R_max = RmaxGasPot;

R_len = R_max-R_min;

R_len_1_2 = R_len/2.0;

R_len_1_4 = R_len/4.0;

K = sqrt(8.0 * G_const/(3.0 * Pi)) * e_ff * t_sf;

// check whether we close to the center or to the outskirts in

order to find most efficient binning

if (R < R_len_1_4){

i1 = 1 * indx;

i2 = 3 * indx;

}

else if (R > R_len_1_2 + R_len_1_4){

i1 = 3 * indx;
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i2 = 1 * indx;

}

else{

i1 = 2 * indx;

i2 = 2 * indx;

}

R_in_min = R_min;

R_out_max = R_max;

if (!(R > R_max)) {

R_in_max = R;

R_out_min = R;

}

else{

R_in_max = R_max;

ff_out = 0.0;

nemo_dprintf (1,

"warning in %s\t "
"max_R < R\n"
,name());

goto in_edge;

}

ii = i2;

bins = 1+ii*2;

dr_out = 1.0*(R_out_max - R_out_min)/(bins-1.0);

ff_out= 0.0;

for (int i = 0; i < bins; i++){

R_out = dr_out * i + R_out_min;

if ((i > 0)&&(i < bins-1)){

if (i % 2 == 0)

ff_out += 2 * rg3(R_out,K) * (R_out);

else

ff_out += 4 * rg3(R_out,K) * (R_out);

}

else

ff_out += rg3(R_out,K) * (R_out);

}

ff_out *= dr_out / 3.0 * 4.0 * Pi;

in_edge:

ii = i1;

bins = 1+ii*2;

dr_in = 1.0*(R_in_max - R_in_min)/(bins-1.0);

ff_in = 0.0;

for (int i = 0; i < bins; i++){

R_in = dr_in * i + R_in_min;

if ((i > 0)&&(i < bins-1)){

if (i % 2 == 0)

ff_in += 2 * rg3(R_in,K) * SQR(R_in);

else

ff_in += 4 * rg3(R_in,K) * SQR(R_in);
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}

else

ff_in += rg3(R_in,K) * SQR(R_in);

}

ff_in *= dr_in / 3.0 * 4.0 * Pi;

//ff_in - cumulative mass of gas inside R

//that is an integral : Int_0^R[4 Pi r^2 \rho_{gas}(r) dr]

//ff_out - an integral : Int_R^R_max[4 Pi r \rho_{gas}(r) dr]

P = - (G_const * ff_in / R + G_const * ff_out);

T = - G_const * ff_in / (R*R*R);

// nemo_dprintf (1,"R = %.8E P = %.8E T = %.8E\n",R,P,T);

}

};

}

//-------------------------------------

__DEF__ACC(SphericalPot<GasPotential>)
__DEF__POT(SphericalPot<GasPotential>)

//-------------------------------------
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