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SUMMARY 

High DNA replication fidelity is achieved by the interplay of DNA polymerase nucleotide selectivity 

and proofreading activity and the DNA mismatch repair (MMR) system. Moreover, the overall 

concentration and the balance between the different dNTPs influence DNA polymerase fidelity. 

Consequently, deregulations in any of these four processes are frequently associated to increased 

mutagenesis and cancer susceptibility. This work addresses first, whether additional previously 

unrecognized genes support DNA replication fidelity and second, how altered dNTP pools impact 

on DNA replication fidelity in Saccharomyces cerevisiae. 

To identify previously unrecognized genes that prevent the accumulation of mutations, the budding 

yeast non-essential gene deletion collection was screened for increased mutagenesis in the 

presence of either the WT or low-fidelity DNA polymerase active-site mutants used as “sensitized 

mutator backgrounds”. This screen identified that loss of the folylpolyglutamate synthetase Met7 

caused an increased mutator phenotype as well as increased gross chromosomal rearrangements 

(GCRs). GCRs were driven in large by dUTP accumulation and processing of uracil 

misincorporated into genomic DNA. Further characterization revealed that the accumulation of 

uracil alone is not sufficient to cause GCRs in budding yeast suggesting that GCRs in the absence 

of Met7 are the combined result of uracil accumulation and a DNA double-strand break repair 

defect.  

The genome-wide screen also revealed a group of genes that become critically important if DNA 

replication fidelity is compromised. Loss of either the CTP synthetase Ura7 or glutamine deficiency 

due to the absence of the transcription factor Gln3, resulted in reduced de novo CTP production. 

This alteration in the dNTP precursor pool caused a severe dNTP imbalance with a high mutagenic 

potential for which neither the ribonucleotide reductase (RNR) nor any mechanism downstream 

RNR could compensate. Thus, this study highlights the importance of the dNTP precursor 

metabolism on dNTP homeostasis and DNA replication fidelity and suggests that low CTP/dCTP 

pools are the Achilles’ heel of dNTP pool regulation. 

To investigate the effect of different dNTP pool alterations on DNA replication fidelity a RNR1 

random mutagenesis screen was performed. The screen revealed key residues in RNR1, the large 

subunit of RNR, with crucial functions for dNTP homeostasis. The identified rnr1 alleles caused 

highly mutagenic dNTP alterations with different dependencies on DNA proofreading and MMR. 

dNTP imbalances characterized by one limiting dNTP facilitated not only base pair substitutions, 

but also frameshift mutations. In the subset of the identified dNTP alterations, the ones with low 

dATP and strongly elevated dGTP pools were most detrimental for DNA replication fidelity causing 

strong mutator phenotypes even in the presence of WT DNA polymerases and MMR. 

Taken together, this study highlights the pivotal role of the cellular metabolism and dNTP pool 

homeostasis on DNA replication fidelity. The identified genes and conditions may play a role as 

mini-drivers during tumor evolution and potentially represent future drug targets or prognostic 

markers. 
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ZUSAMMENFASSUNG 

Das Zusammenspiel von der Nukleotidselektivität und der DNA-Proofreading Funktion der DNA-

Polymerasen mit der DNA Mismatch-Reparatur ermöglicht die extreme hohe Genauigkeit der DNA-

Replikation. Des Weiteren beeinflussen die Konzentration und das Verhältnis der dNTPs, den 

Bausteinen der DNA-Replikation, die Genauigkeit der DNA-Polymerasen. Dementsprechend kann 

die Deregulation der vier Mechanismen zu erhöhter Anzahl von Mutationen und 

Krebsprädisposition führen. Diese Arbeit beschäftigt sich daher mit den Fragen, ob erstens weitere, 

bis jetzt unbekannte Gene die Genauigkeit der DNA-Replikation erhöhen und zweitens, wie 

veränderte dNTP Konzentrationen die Genauigkeit der DNA-Replikation in Saccharomyces 

cerevisiae beeinflussen. 

Um bis jetzt unbekannte Gene zu identifizieren, die die Anhäufung von Mutationen verhindern, 

wurde die nicht-essentielle Gendeletionskollektion der Bäckerhefe in der Gegenwart von entweder 

WT oder DNA-Polymerasemutanten, die durch Mutationen im katalytisch aktiven Zentrum mehr 

Replikationsfehler generieren und deswegen im Experiment als „sensitiver Hintergrund“ dienen, auf 

erhöhte Mutationen hin untersucht. Die Abwesenheit der Folylpolyglutamatsynthetase Met7 

verursachte nicht nur Mutationen, sondern auch „gross chromosomal rearrangements“ (GCRs). 

Zum Großteil wurden diese durch die dUTP-Akkumulation und der Verarbeitung von genomischen 

Uracil ausgelöst. Weitere Untersuchungen zeigten, dass die dUTP-Anhäufung alleine nicht 

ausreichend für einen GCR-Phänotyp in Bäckerhefe ist, was darauf hindeutet, dass die GCRs in 

der Abwesenheit von Met7 durch eine Kombination aus Uracilakkumulation und einem 

Doppelstrangbruchreparaturdefekt ausgelöst werden. Untersuchungen im „sensitiven 

Mutationshintergrund“ identifizierte eine Gruppe von Genen, deren Funktion insbesondere dann 

wichtig ist, wenn die Genauigkeit der Replikation beeinträchtigt ist. In der Abwesenheit der CTP-

Synthethase Ura7 oder in Situationen, in denen Glutamin limitierend ist, wie in der Abwesenheit 

des Transkriptionsfaktors Gln3, ist die de novo CTP-Synthese stark reduziert. Dieses NTP-

Ungleichgewicht führt zu einem schwerwiegenden dNTP-Ungleichgewicht, das weder durch die 

Ribonukleotidreduktase (RNR) noch durch irgendeinem anderen RNR nachgeordneten 

Mechanismus ausgeglichen werden kann. Deshalb hebt diese Studie die Wichtigkeit des NTP-

Gleichgewichts für das dNTP-Gleichgewicht und für die Genauigkeit der DNA-Replikation hervor 

und deutet an, dass niedrige CTP/dCTP-Konzentrationen die Achillesferse der dNTP-

Gleichgewichtsregulation sein könnten. 

Um den Effekt von verschiedenen dNTP-Konzentrationsveränderungen auf die Genauigkeit der 

DNA-Replikation zu untersuchen, wurden zufällig generierte rnr1 Mutanten auf erhöhte 

Mutationsphänotypen getestet. So konnten Schlüsselaminosäuren in Rnr1, der großen 

Untereinheit von RNR, für das dNTP-Gleichgewicht identifiziert werden. Die gefundenen rnr1 Allele 

verursachten stark mutagene dNTP-Konzentrationsveränderungen mit unterschiedlicher 

Abhängigkeit für DNA Polymerase Proofreading und DNA Mismatch-Reparatur. Die dNTP-

Ungleichgewichte mit einem limitierenden dNTP verursachten nicht nur Basenpaarsubstitutionen, 

sondern auch Leserastermutationen. Unter den identifizierten dNTP-Konzentrationsveränderungen 

waren diese mit niedrigen dATP- und stark erhöhten dGTP-Konzentrationen am verheerendsten 
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für die Genauigkeit der DNA-Replikation und führten sogar in der Gegenwart von WT DNA 

Polymerasen und der DNA Mismatch-Reparatur zu starken Mutationsphänotypen. 

Zusammenfassend zeigt diese Arbeit die herausragende Rolle des zellulären Metabolismus, 

insbesondere des dNTP-Gleichgewichts, für die Genauigkeit der DNA-Replikation. Die 

identifizierten Gene und Konditionen könnten eine Rolle als „Mini-Driver“ in der Krebsevolution 

spielen und könnten potentielle zukünftige Kandidaten für die Arzneimittelforschung darstellen oder 

als prognostischer Marker dienen. 
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1 INTRODUCTION 

1.1 Eukaryotic DNA replication fork 

One fundamental principle of life is that all living organisms have to copy their genome prior mitotic 

cell division. For this, the genetic information encoded within the DNA is replicated during the 

synthesis phase (S phase) of the cell cycle in a semiconservative manner. By doing so, each 

parental DNA strand serves as template for DNA polymerases (Pol), which synthesize the daughter 

strand according to the Watson-Crick model (WATSON AND CRICK 1953). In eukaryotes, the genome 

is organized as linear chromosomes. Due to the size of the eukaryotic genomes (e.g. ~12 million 

base pairs for haploid Saccharomyces cerevisiae (S. cerevisiae) cells (GOFFEAU et al. 1996) and 

~3 billion base pairs in haploid human cells (INTERNATIONAL HUMAN GENOME SEQUENCING et al. 

2001; VENTER et al. 2001), DNA replication is initiated at multiple replication origins per 

chromosome (RAGHURAMAN et al. 2001; WYRICK et al. 2001). To assure that each DNA is replicated 

only once per cell cycle, origin licensing during G1 phase and origin firing during S phase are highly 

regulated by different protein complexes and cell cycle regulated kinases (BELL AND LABIB 2016). At 

an activated origin, the two head-to-head loaded CMG helicases (Cdc451 (SANCHEZ-PULIDO AND 

PONTING 2011; MAKAROVA et al. 2012), Mcm2-7 (DAVEY et al. 2003; BOCHMAN AND SCHWACHA 

2008), and GINS (Sld5 and Psf1-3)(TAKAYAMA et al. 2003)) pass each other (DOUGLAS et al. 2018) 

and unwind the DNA double-strand forming two divergent DNA replication forks (BURGERS AND 

KUNKEL 2017). The resulting single-stranded DNA is coated and stabilized by the single-strand 

binding protein replication protein A (RPA (Rfa1-3))(BRILL AND STILLMAN 1991; ALANI et al. 1992; 

LONGHESE et al. 1994). As DNA polymerases can only replicate genetic information in a 5’ to 3’ 

orientation, DNA replication forks are asymmetric (LUJAN et al. 2016). The leading strand is 

synthesized continuously, whereas the lagging strand is replicated discontinuously in ~100-200 

nucleotide (nt) long Okazaki fragments (OKAZAKI et al. 1968; SMITH AND WHITEHOUSE 2012). At 

each origin and Okazaki fragment DNA synthesis is initiated by the Pol α-primase complex (Pol1, 

Pol12, Pri1 and Pri2)(BELL AND LABIB 2016). Primase synthesizes a 7-10 nt long RNA primer, which 

is than further extended up to 20 deoxynucleotides by Pol α before the high-fidelity DNA 

polymerases Pol δ (Pol3, Pol31 and Pol32)(BYRNES et al. 1976; GERIK et al. 1998) and Pol ε (Pol2, 

Dpb2-4)(HAMATAKE et al. 1990; MORRISON et al. 1990; CHILKOVA et al. 2003) continue to replicate 

the majority of the genome (JOHANSSON AND DIXON 2013; BELL AND LABIB 2016; LUJAN et al. 2016). 

In addition to their polymerase domain, the B-type DNA polymerases Pol  and Pol  possess a 3’ 

to 5’ exonuclease function, required for proofreading of the newly synthesized DNA strand and 

consequently high DNA replication fidelity (BYRNES et al. 1976; MORRISON et al. 1991; MORRISON 

AND SUGINO 1994). Furthermore, Pol ε contributes to origin assembly (MURAMATSU et al. 2010) as 

well as to S-phase checkpoint activation (NAVAS et al. 1995). Pol δ not only proofreads Pol α 

replicated DNA (PAVLOV et al. 2006), but also the leading strand in trans (FLOOD et al. 2015). 

Moreover, Pol δ plays an additional role in DNA strand displacement repair, whereby a nicked 

strand is separated from the complementary strand by the advance of Pol δ creating a flap which is 

then further removed by the flap endonuclease Rad27 (PRINDLE AND LOEB 2012). The ring-shaped 

                                                      
1 All gene nomenclature refers to Saccharomyces cerevisiae if not differentially stated. 



INTRODUCTION 

4 
 

homotrimeric sliding clamp proliferating cell nuclear antigen (PCNA)(Pol30 in budding 

yeast)(BAUER AND BURGERS 1990; KRISHNA et al. 1994) supports Pol δ and Pol ε processivity by 

binding them and anchoring them to DNA (CHILKOVA et al. 2007). Furthermore, PCNA acts as 

loading platform for various other proteins and allows coupling of different processes, including 

DNA repair and nucleosome assembly to DNA replication (MAILAND et al. 2013). PCNA is loaded 

on double-stranded DNA by the replication factor C (RFC) clamp loader complex (Rfc1-5)(BOWMAN 

et al. 2004).  

 

 

Fig. 1.1 The eukaryotic replication fork. 
The CMG helicase unwinds the DNA double strand. Primase initiates replication at each origin and Okazaki 

fragment by synthesizing a short RNA primer (orange), which is further elongated by Pol α with up to 20 nt 

DNA (red). Pol ε replicates the leading strand in a continuous manner, whereas Pol δ synthesizes the lagging 

strand discontinuously as Okazaki fragments. The single-strand binding protein RPA binds and stabilizes 

single-stranded DNA. The sliding clamp PCNA supports DNA polymerase fidelity and serves as loading 

platform to couple various processes to the replication fork. 

 

Whereas it is widely accepted that the minimal eukaryotic replisome consists of the CMG helicase, 

the Pol α-primase, the sliding clamp PCNA, the RFC clamp loader complex, the high-fidelity DNA 

polymerases Pol δ and Pol ε, as well as the single-strand binding protein RPA (ZHANG AND 

O'DONNELL 2016), the contribution of Pol δ and Pol ε to leading- and lagging-strand synthesis is still 

under debate. The most accepted model for DNA replication is the “division of labor” model (LUJAN 

et al. 2016), in which Pol ε (catalytic subunit Pol2) is the leading-strand polymerase (PURSELL et al. 

2007) and Pol δ (catalytic subunit Pol3) synthesizes the lagging strand (NICK MCELHINNY et al. 

2008) (Fig. 1.1). The Kunkel lab proposed this model based on the characterization of active-site 

mutant alleles of Pol ε (pol2-M644G) (PURSELL et al. 2007) and Pol δ (pol3-L612M) (NICK 

MCELHINNY et al. 2008) in budding yeast. These low-fidelity DNA polymerase alleles confer a weak 

mutator phenotype and a specific mutational signature. Mutational hotspot analysis of a reporter 

(URA3) placed in two orientations next to a well-characterized origin (autonomous replicating 

sequence (ARS) ARS306) (STINCHCOMB et al. 1979; POLOUMIENKO et al. 2001) allowed to link Pol δ 
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to lagging-strand and Pol ε to leading-strand replication. Several lines of evidences have further 

supported these initial findings and the “division of labor” model. First, low-fidelity DNA polymerase 

alleles, which incorporate ribonucleotides with a higher frequency, were introduced in S. cerevisiae 

(NICK MCELHINNY et al. 2010a) and S. pombe (MIYABE et al. 2011). Based on the genome-wide 

distribution of misincorporated ribonucleotides Pol δ and Pol ε were assigned to the lagging and 

leading strand, respectively (CLAUSEN et al. 2015; KOH et al. 2015; REIJNS et al. 2015) (DAIGAKU et 

al. 2015). Second, Pol δ was specifically linked to the lagging strand and Pol ε to the leading strand 

using eSPAN (enrichment and sequencing of protein-associated nascent strand DNA). For this, 

chromatin immunoprecipitation of Pol δ and Pol ε was followed by the enrichment for the BrdU 

marked and thus nascent single-stranded DNA. Subsequent DNA sequencing and mapping 

revealed strong enrichment for Pol δ at the lagging strand and Pol ε at the leading strand (YU et al. 

2014). Third, biochemical reconstitution experiments of the eukaryotic replisome using a 

nucleotide-biased forked substrate also supported the “division of labor model” and indicated a role 

of the CMG helicase in dividing the labor (GEORGESCU et al. 2015). Despite the growing evidence 

for Pol ε as leading-strand DNA polymerase, one study questioned whether Pol ε functions as 

major leading-strand DNA polymerase (JOHNSON et al. 2015). This study proposed that Pol δ is the 

major DNA polymerase for both the leading and lagging strand. According to this model, Pol  

functions in DNA proofreading of the leading strand and in the activation of the S-phase 

checkpoint. Nonetheless, there is a general agreement that Pol α and Pol  replicate the lagging 

strand. Due to the strong supportive data for the “division of labor” model, Pol  will be assigned as 

leading strand DNA polymerase in this thesis. However, further studies are needed to clarify the 

contribution of Pol  and Pol  to leading-strand synthesis.  

Besides the essential DNA polymerases Pol α, Pol  and Pol  (also referred to as replicative DNA 

polymerases), other specialized error-prone DNA polymerases, termed translesion synthesis (TLS) 

DNA polymerases, contribute to DNA replication under certain conditions (MCCULLOCH AND KUNKEL 

2008; LANGE et al. 2011). These TLS polymerases are recruited to stalled replication forks to 

bypass sites of exogenous or spontaneous DNA damage and to complete DNA replication. 

Alternatively, the newly synthesized sister chromatid and template switching is used for error-free 

DNA damage bypass (BOITEUX AND JINKS-ROBERTSON 2013). The pathway choice for both 

branches of post-replicative repair (PRR) depends on the ubiquitination status of PCNA: TLS 

polymerases are recruited by PCNA mono-ubiquitination whereas template switching is induced 

upon PCNA poly-ubiquitination (HOEGE et al. 2002). 

1.2 DNA replication fidelity 

Eukaryotic cells have to replicate their genomes fast and with high accuracy to allow efficient cell 

proliferation and to pass high quality genetic information to their progeny. Remarkably, S. 

cerevisiae replisomes progress with approximately 50 nucleotides per second (RAGHURAMAN et al. 

2001) and generate in diploid wild-type cells less than one mutation per ten billion replicated 

nucleotides (1.7 x 10-10 average genome-wide base mutation rate per base pair) (LYNCH et al. 

2008; LANG et al. 2013; LUJAN et al. 2014). Human cells replicate their genome with similar fidelity 

(10−9 to 10−11) (DRAKE et al. 1998; LOEB 2001). The high replication fidelity in eukaryotic cells is 
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achieved by the interplay of DNA polymerases’ nucleotide selectivity and proofreading function and 

the post-replicative DNA mismatch repair (MMR) system (ARANA AND KUNKEL 2010; KUNKEL AND 

ERIE 2015). Furthermore, the levels and balance of the deoxynucleoside triphosphates (dNTPs) 

influence DNA polymerases’ fidelity (Fig. 1.2) (KUNZ et al. 1994; PAI AND KEARSEY 2017). 

Accordingly, defects in any of these four processes have been linked to increased mutagenesis 

and cancer predisposition (PELTOMAKI 2003; BOLAND AND GOEL 2010; BRIGGS AND TOMLINSON 2013; 

MATHEWS 2015). Furthermore, 66% of all mutations found in cancers worldwide were proposed to 

originate from DNA replication errors (TOMASETTI et al. 2017). Replication errors are frequently 

base substitution mutations, which are either transitions (purine-purine and pyrimidine-pyrimidine 

mispairs) or transversions (purine-pyrimidine mispairs) (ARANA AND KUNKEL 2010). Their frequency 

depends on the nucleotide selectivity of the replicating DNA polymerase and the balance between 

the different dNTPs. Insertion and deletion (indels) frameshift mutations are another type of 

replication error. Frameshift mutations originate from DNA polymerase slippage events and occur 

most frequently at repetitive sequences like tandem repeats or mononucleotide runs, so called 

microsatellites (KROUTIL et al. 1996).  

 

 

 

 

Fig. 1.2 The four pillars of high-fidelity DNA 
replication.  
High-fidelity DNA replication depends on DNA 
polymerase proofreading activity and nucleotide 
selectivity, both influenced by the levels and balance 
of the dNTP pools. In addition, the DNA mismatch 
repair (MMR) pathway corrects replication errors, 
increasing about 100-1000x DNA replication fidelity. 
Consequently, mutations affecting DNA polymerase 
proofreading activity or nucleotide selectivity as well 
as mutations inactivating MMR function are known 
drivers of genome instability and human cancer. 

 

Even though not necessarily a mutagenic, the most frequent DNA replication error is the 

misincorporation of ribonucleotides (WILLIAMS et al. 2016). During each round of DNA replication 

replicative DNA polymerases insert approximately one ribonucleotide per 1200 incorporated 

nucleotides in S. cerevisiae (NICK MCELHINNY et al. 2010b) and one ribonucleotide per 7600 in mice 

(REIJNS et al. 2012). Misincorporated ribonucleotides are normally efficiently removed from 

genomic DNA by ribonucleotide excision repair (RER)(WILLIAMS et al. 2016). However, in the 

absence of RER topoisomerase 1-dependent removal of ribonucleotides can lead to 2 to 5 bp 

deletion events in tandem repeats and genome instability (NICK MCELHINNY et al. 2010a; KIM et al. 

2011). 

1.3 DNA polymerase nucleotide selectivity and proofreading 

Replication errors are counteracted by two intrinsic properties of eukaryotic DNA polymerases - 

high nucleotide selectivity and DNA proofreading. Among all factors that determine the high DNA 

replication fidelity in eukaryotes (one replication error per 109 - 1011 synthesized nucleotides 
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(DRAKE et al. 1998; LOEB 2001; LYNCH et al. 2008; LANG et al. 2013; LUJAN et al. 2014)), the largest 

contribution is set by the DNA polymerase nucleotide selectivity (Fig. 1.2) (KUNKEL 2009). 

Remarkably, S. cerevisiae DNA Pol α, δ and ε generate just one replication error per 104 to 105 

synthesized nucleotides in vitro (KUNKEL et al. 1989; SHCHERBAKOVA et al. 2003; FORTUNE et al. 

2005). This high stringency of the DNA polymerase active-site to discriminate against incorrect 

dNTPs and to prevent their incorporation is achieved by the concerted action of three processes: 

Hydrogen bonding of the template and incoming nucleotide (KOOL 2002), enthalpy-entropy 

compensation (PETRUSKA AND GOODMAN 1995) and the complementary architecture of the 

nucleotide binding pocket, which binds the four canonical Watson-Crick nucleotide pairs without 

steric clashes (ECHOLS AND GOODMAN 1991; GOODMAN 1997; MCCULLOCH AND KUNKEL 2008). 

Furthermore, the balance between the different dNTP pools influences nucleotide selectivity (PAI 

AND KEARSEY 2017).  

Mutation studies of the highly conserved mofif A in the active-site of the bacteriophage T4 DNA 

polymerase revealed mutant polymerase alleles that possess a modest mutator phenotype, but are 

proofreading proficient and moreover result in sensitivity to the viral DNA polymerase inhibitor 

phosphonoacetic acid (REHA-KRANTZ AND NONAY 1994; STOCKI et al. 1995), Based on this 

pioneering work the homologous active-site mutations have been introduced in the budding yeast 

DNA polymerases Pol α (pol1-L868M), Pol δ (pol3-L612M) and Pol ε (pol2-M644G). These active-

site mutations allow normal growth in vivo and, in case of Pol  and , do not compromise the DNA 

proofreading function. However, the mutant alleles confer a mild mutator phenotype and a 

characteristic mutational signature (NIIMI et al. 2004; PAVLOV et al. 2006; VENKATESAN et al. 2006; 

PURSELL et al. 2007; NICK MCELHINNY et al. 2008). The pol3-L612M allele shows elevated T-A to C-

G transitions and generates T-dGTP mismatches ≥28 fold more frequently than A-dCTP 

mismatches. Furthermore, G-C to A-T transitions and single A/T base deletions are also increased 

in pol3-L612M and driven by G-dTTP mismatches and T deletions, respectively (NICK MCELHINNY 

et al. 2007; NICK MCELHINNY et al. 2008). In contrast, the pol2-M644G mutational signature is 

characterized by T-A to A-T transversions and the allele generates T-dTTP mismatches ≥39 fold 

more frequently than A-dATP mismatches (PURSELL et al. 2007). These mutational biases for 

certain mismatches have been utilized in combination with reporter (PURSELL et al. 2007; NICK 

MCELHINNY et al. 2008) or genome-wide sequencing (LUJAN et al. 2014) to propose the “division of 

labor model” (LUJAN et al. 2016). Besides some similarities between the active-site DNA 

polymerase mutant alleles (pol1-L868M, pol2-M644G and pol3-L612M), one major difference is 

that only pol2-M644G requires an active S-phase checkpoint and elevated dNTP levels for survival 

(WILLIAMS et al. 2015; SCHMIDT et al. 2017).  

Strikingly, previous reports have identified DNA polymerase active-site mutations have been 

identified in human cancer patients (BRIGGS AND TOMLINSON 2013; MERTZ et al. 2015). Moreover, 

the analysis of inherited biallelic MMR-deficient tumors revealed in some of them acquired somatic 

mutations in Pol  and Pol  resulting in ultra-hypermutated cancers (SHLIEN et al. 2015). 

Interestingly, one of the identified Pol  driver mutations was POLD1-L606M, which is the exact 

homologous mutation to the budding yeast pol3-L612M allele. Furthermore, in mice the 

replacement of the homologous residue L604G/K in murine Pol  is homozygous lethal and the 
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heterozygous mutation causes increased genome instability and tumorigenesis (VENKATESAN et al. 

2007). Thus, evidence from biochemical to in vivo studies, and from phage T4 to humans, highlight 

the importance of nucleotide selectivity for high-fidelity DNA replication.  

As mentioned earlier, high-fidelity DNA polymerases Pol  and  possess in addition to the 5’ to 3’ 

DNA polymerase domain a second domain with 3’ to 5’ exonuclease function (MORRISON et al. 

1991; MORRISON AND SUGINO 1994). This domain allows proofreading of the last-incorporated 

nucleotide. Therefore, to suppress replication errors by DNA proofreading, the excision of the 

terminal misincorporated nucleotide has to occur before DNA polymerase further extends the 

misincorporated nucleotide. The balance between DNA synthesis and DNA proofreading heavily 

depends on the dNTP concentrations (Fig. 1.3) (ROBERTS et al. 1991; ROBERTS et al. 1993; REHA-

KRANTZ 2010). The next-nucleotide effect describes the influence of the nucleotide that is going to 

be incorporated next on DNA proofreading efficiency of the last-incorporated nucleotide. High 

dNTP levels are mutagenic as they favor DNA synthesis over DNA proofreading. In contrast, low 

dNTP levels slow down DNA replication and increase DNA replication fidelity by giving more time 

for DNA proofreading and repair (REHA-KRANTZ 2010). Furthermore, in vitro studies suggest that 

DNA proofreading is inhibited by nucleoside 5’-monophosphate (NMPs) / deoxyribonucleoside 5’-

monophosphate (dNMPs) (QUE et al. 1978; FERSHT AND KNILL-JONES 1983). As dNMPs are the 

products of the 3’ to 5‘ exonuclease reaction, this may represent a product inhibition mechanism to 

prevent excessive excision of the newly synthesized strand. 

 

 

Fig. 1.3 The dNTP pool size influences DNA polymerase function. 
dNTPs are the substrates for DNA polymerases polymerization domain (POL). However, the high-fidelity DNA 

polymerases Pol δ and Pol ε also possess a 3’-5’ exonuclease domain (EXO), which allows proofreading of 

the last-incorporated nucleotide. The balance between synthesis and excision (proofreading) strongly depends 

on the dNTP levels, in particular the concentration of the nucleotide that has to be incorporated after the last-

incorporated nucleotide (next-nucleotide effect). High dNTP concentrations promote DNA polymerase 

polymerization on the expense of proofreading, whereas low dNTP pools slow down replication and give more 

time for proofreading. 

 

In S. cerevisiae the DNA polymerase exonuclease-deficient alleles pol2-04 (MORRISON et al. 1991) 

and pol3-01 (MORRISON et al. 1993) cause a mutator phenotype (MORRISON AND SUGINO 1994; 

TRAN et al. 1999). Interstingly, the mutator phenotype of pol3-01 is approximately 10-fold stronger 

than pol2-04 (MORRISON AND SUGINO 1994; TRAN et al. 1999). This difference may be explained by 

reports that Pol  proofreads a higher proportion of the genome than Pol : Pol  not only 

proofreads Pol -replicated DNA, but also DNA synthesized by Pol α (PAVLOV et al. 2006) as well 

as the leading strand in trans (FLOOD et al. 2015). Furthermore, Pol  performs DNA repair 
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synthesis and consequent proofreading of repaired DNA sequences (PRINDLE AND LOEB 2012). 

Moreover, in haploid yeast both pol2-04 and pol3-01 cause synthetic lethality in the absence of 

MMR (TRAN et al. 1999; GREENE AND JINKS-ROBERTSON 2001; WILLIAMS et al. 2013). This type of 

lethal interactions occurs when the mutation rate is so high that at least one essential gene is 

inactivated per round of DNA replication and has been referred to as “error-induced extinction” 

phenotype (HERR et al. 2011). In line with a conserved function of DNA proofreading in mutation 

avoidance, DNA proofreading deficiency in mice causes increased tumorigenesis and shorter 

lifespan (GOLDSBY et al. 2001; GOLDSBY et al. 2002; ALBERTSON et al. 2009). Furthermore, 

sequencing of human cancer patient genomes revealed DNA proofreading-deficient polymerase as 

driver of cancer progression (BRIGGS AND TOMLINSON 2013; CHURCH et al. 2013; PALLES et al. 2013; 

SHLIEN et al. 2015). In summary, both Pol  and Pol  DNA proofreading function contribute to 

eukaryotic DNA replication fidelity.  

1.4 DNA mismatch repair 

Unrepaired replication errors become permanent mutations during the next round of DNA 

replication. To counteract the propagation of replication errors that escaped DNA polymerase 

proofreading, most living organisms possess a spell-checking mechanism named DNA mismatch 

repair (MMR). This post-replicative MMR system recognizes and repairs replication errors, 

increasing replication fidelity approximately 100-fold (LANG et al. 2013; LUJAN et al. 2014). 

Interestingly, the MMR correction efficiency in vivo is proportional to the frequency of generated 

DNA replication errors (KUNKEL AND ERIE 2015). Thus, MMR is most effective in the suppression of 

frequently generated frameshift mutations. Consequently, defects in MMR results not only in an 

overall increased mutator phenotype, but specifically in increased frameshift mutations. The 

seminal discovery that increased mutations rates caused by defects in human MMR genes are 

responsible for the predisposition to develop an early-onset form of colon cancer called hereditary 

nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome (BOLAND AND GOEL 2010; BOLAND AND 

LYNCH 2013; KOLODNER 2016), further stresses the importance of MMR as genome stability 

mechanism. Of note, HNPCC is the most prevalent human hereditary cancer predisposition and 

HNPCC tumors as well as tumors, which have sporadically inactivated MMR, show a microsatellite 

instability (MSI) phenotype (PELTOMAKI 2003). 

The MMR mechanism is best understood in Escherichia coli (E. coli) (IYER et al. 2006). In E. coli, 

the mismatch is recognized by the MutS homodimer (where “Mut” stands for mutator). This MutS 

recognition complex recruits a MutL homodimer to the site of the mismatch. Next, the MutL repair 

intermediate complex recruits MutH, a DNA methylation-sensitive endonuclease. Upon activation 

by MutL, MutH introduces a nick in the newly synthesized strand. In E. coli, hemi-methylation of 

d(GATC) sites is the strand discrimination signal (PUTNAM 2016). Directly after DNA replication the 

newly synthesized DNA strand is transiently unmethylated which allows the MutH endonuclease to 

discriminate the daughter from the parental strand and specifically introduce the nick in the 

daughter strand (LANGLE-ROUAULT et al. 1987; WELSH et al. 1987). The generated nick acts then as 

entry site for single-strand specific exonucleases that excise part of the newly synthesized strand. 

Repair is completed by DNA PolIII-dependent re-synthesis.  
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Fig. 1.4 The S. cerevisiae 
MSH and MLH complexes. 
Arrows represent the functional 

interaction and the potential role 

in vivo. Thick arrows indicate 

major roles in the process, 

whereas thin arrows represent 

minor contributions. Dashed 

arrows indicate functional 

relevance for the process only 

in certain genetic backgrounds. 

Figure is adapted from (REYES 

et al. 2015) 

 

Key aspects of the MMR mechanism are conserved between bacteria and eukaryotes and as in 

bacteria MutS-homolog (MSH) and MutL-homolog (MLH) family members play critical roles in the 

eukaryotic repair process (Fig. 1.4) (IYER et al. 2006; REYES et al. 2015). In eukaryotes, several 

MSH proteins exist which are active as heterodimers. Mismatches in eukaryotes are recognized by 

Msh2-Msh6 and Msh2-Msh3, as well as by Msh2-Msh7 in plants (CULLIGAN AND HAYS 2000). 

Furthermore, an additional MSH complex called Msh4-Msh5 has been reported (ROSS-MACDONALD 

AND ROEDER 1994) (HOLLINGSWORTH et al. 1995). However, in contrast to the previously mentioned 

complexes it does not play a role in MMR but during meiotic cross-over (SANTUCCI-DARMANIN et al. 

2002; SNOWDEN et al. 2004; KOLAS et al. 2005). In contrast to human cells, in which the Msh2-

Msh6 complex is the major mismatch recognition complex, Msh2-Msh6 and Msh2-Msh3 play a 

more balanced role in S. cerevisiae (MARSISCHKY et al. 1996; SIA et al. 1997). However, the two 

yeast complexes differ in their substrate specificity. Yeast Msh2-Msh6 recognizes seven out of the 

eight possible base substitutions (C-C mispairs are poorly recognized), as well as one and two 

nucleotide indels (SRIVATSAN et al. 2014). In contrast, yeast Msh2-Msh3 functions preferentially on 

smaller and larger indels and to a lesser degree on base substitutions (ACHARYA et al. 1996; 

MARSISCHKY et al. 1996; HARRINGTON AND KOLODNER 2007; SRIVATSAN et al. 2014). Msh2-Msh3 

and Msh2-Msh6 recruit heterodimeric MLH repair intermediate complexes to the mismatch site. 

Three repair intermediate complexes exist in eukaryotes – Mlh1-Pms1 (human Mlh1-Pms2), Mlh1-

Mlh2 (human Mlh1-Pms1) and Mlh1-Mlh3. The Mlh1-Pms1 complex is essential for the MMR 

reaction (KUNKEL AND ERIE 2015; REYES et al. 2015), whereas Mlh1-Mlh2 (PROLLA et al. 1998; 

HARFE et al. 2000; CAMPBELL et al. 2014) and Mlh1-Mlh3 play only minor roles in MMR (FLORES-

ROZAS AND KOLODNER 1998; CHEN et al. 2005). In contrast to E. coli, eukaryotes do not encode for 

a MutH endonuclease homolog. However, the Mlh1-Pms1 (KADYROV et al. 2006) and Mlh1-Mlh3 

(NISHANT et al. 2008) complexes possess endonuclease activity that is stimulated by the interaction 

with PCNA (KADYROV et al. 2006; PLUCIENNIK et al. 2010).  
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Fig. 1.5 Mechanistic model about the MMR reaction in S. cerevisiae. 
(1) The Msh2-Msh6 heterodimer recognizes the mismatch either coupled or uncoupled to the DNA replication 

fork. (2) Msh2-Msh6 recruits Mlh1-Pms1 to the mismatch site and facilitates the catalytic loading of Mlh1-

Pms1 complexes. (3) Upon activation by the sliding clamp PCNA, Mlh1-Pms1 endonuclease nicks the DNA. 

(4) The newly synthesized strand is excised either in an exonuclease 1 (Exo1)-dependent or in an Exo1-

independent reaction. The latter, was proposed to involve multiple rounds of nicking catalyzed by Mlh1-Pms1. 

(5) Finally, Pol δ resynthesizes the DNA. For details see text. 

 

Taken together, the current model of the eukaryotic MMR reaction (exemplified using the S. 

cerevisiae MMR protein names) can be outlined in five steps (Fig. 1.5)(KUNKEL AND ERIE 2015; 

REYES et al. 2015): (1) Mismatch recognition: Msh2-Msh3 or Msh2-Msh6 either coupled or 

uncoupled to the DNA replication fork recognizes the mismatch. Coupling of mismatch recognition 

complexes to DNA replication forks is achieved by tethering Msh2-Msh3 and Msh2-Msh6 to PCNA 

using PCNA-interacting protein (PIP) motifs present at the N-terminus of Msh3 and Msh6 (CLARK et 

al. 2000; FLORES-ROZAS et al. 2000; KLECZKOWSKA et al. 2001). (2) Mlh1-Pms1 recruitment: 

Mismatch recognition complexes recruit Mlh1-Pms1 to sites of damage and facilitate catalytic 

loading of these repair intermediate complexes on DNA (HOMBAUER et al. 2011a). (3) Incision 

reaction: PCNA stimulates the Mlh1-Pms1 endonuclease that nicks the newly synthesized strand. 

(4) Excision reaction: The exonuclease 1 (Exo1), a 5’ to 3’ exonuclease, uses the generated nick 

as entry site to excise the newly synthesized strand. As the absence of Exo1 causes only a mild 

mutator phenotype in S. cerevisiae (TISHKOFF et al. 1998; AMIN et al. 2001) and mouse (WEI et al. 

2003; EDELMANN AND EDELMANN 2004) and no other exonuclease functioning in MMR has been 
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discovered so far (GOELLNER et al. 2015), it has been proposed that multiple rounds of Mlh1-Pms1-

dependent nicking may substitute for the loss of Exo1 (GOELLNER et al. 2014). Therefore, the 

eukaryotic MMR excision can either be a fast Exo1-dependent or a slower Exo1-independent 

reaction. However, the exact mechanism still remains elusive.  

(5) DNA re-synthesis: MMR reaction is completed by Pol -dependent re-synthesis of the daughter 

strand using the parental strand as template.  

As MMR functions coupled to DNA replication, it has been suggested that strand discrimination is 

accomplished by making use of a transient DNA replication-associated signal, which allows repair 

in a short time frame (KLECZKOWSKA et al. 2001; HOMBAUER et al. 2011a; HOMBAUER et al. 2011b). 

In contrast to E. coli, eukaryotes as well as most of the bacteria that do not belong to the 

gammaproteobacterial, do not use the hemi-methylation status of d(GATC) sites as strand 

discrimination signal (GAO et al. 2009; PUTNAM 2016). Several not mutually exclusive strand 

discrimination signals have been proposed for eukaryotic MMR: transient nicks between Okazaki 

fragments on the lagging strand (HOLMES et al. 1990; THOMAS et al. 1991; FANG AND MODRICH 

1993), transient nicks generated due to the removal of misincorporated ribonucleotides by RER 

(GHODGAONKAR et al. 2013; LUJAN et al. 2013) or loading of PCNA in a specific orientation 

(PLUCIENNIK et al. 2010). However, nicks due to Okazaki fragments do not explain the strand 

discrimination at the continuously synthesized leading strand. Furthermore, the absence of RER 

and ribonucleotide removal does not cause a strong MMR-defect. Moreover, PCNA has been 

shown to be less important for leading strand processivity (GEORGESCU et al. 2014) and therefore 

most likely does not serve as strand discrimination signal during leading strand replication. Hence, 

none of the proposed signals sufficiently explain eukaryotic strand discrimination (REYES et al. 

2015) and further studies are required to unravel the strand discrimination signal in eukaryotes. 

Besides the important role of MMR in DNA replication fidelity, MMR complexes also play non-

canonical roles in various other processes, like the DNA damage response (LI et al. 2016), somatic 

hypermutation of immunoglobulins (ZANOTTI AND GEARHART 2016), triplet-repeat expansion 

(CROUSE 2016), meiotic crossing overs (MANHART AND ALANI 2016) and homeologous 

recombination (THAM et al. 2016).  

In summary, MMR proteins prevent the accumulation of mutations and counteract the development 

of cancer.  

1.5 dNTP pool homeostasis 

dNTPs are the building blocks for genome replication in living organisms. In most organisms, in 

which dNTP pools have been determined, the concentration of different dNTPs is not equimolar but 

rather exist in a natural imbalance that is apparently beneficial for DNA replication fidelity. dTTP is 

the most abundant dNTP pool followed by dATP and dCTP. dGTP is always the least abundant, 

contributing just 5-10% to the total dNTP pool (MATHEWS AND JI 1992; MARTOMO AND MATHEWS 

2002; CHABES et al. 2003). Interestingly, mitochondrial dNTP pools, which represent a physically 

and metabolically distinct compartment, are dominated by dGTP (SONG et al. 2005; NIKKANEN et al. 

2016). This difference between nuclear and mitochondrial dNTP pools has been suggested to be 

an adaptation to the oxidative environment present in the mitochondria, which may potentially favor 
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oxidation of dGTP to mutagenic 8-oxo-dGTP (MATHEWS 2006). Remarkably, the 

underrepresentation of dGTP found in nuclear dNTP pools does not strongly affect replication 

fidelity in comparison to equimolar dNTP concentrations used in in vitro DNA replication reactions 

(MARTOMO AND MATHEWS 2002). Furthermore, the telomere length seems to be positively correlated 

with the dGTP concentration in S. cerevisiae (GUPTA et al. 2013; MAICHER et al. 2017). 

In eukaryotes, dNTP concentrations peak during S phase (CHABES et al. 2003; HÅKANSSON et al. 

2006a; HÅKANSSON et al. 2006b). However, even during S phase dNTP levels are not sufficient to 

allow DNA replication of the whole genome (REICHARD 1988). Thus, to complete genome 

replication dNTPs have to be constantly generated during S phase. In agreement with dNTP pools 

being a limiting factor for the speed of DNA replication, elevated dNTP pools increase replication 

fork progression and shorten S-phase length in S. cerevisiae (POLI et al. 2012; DOVRAT et al. 2018). 

Even though it is still not fully understood why it could be advantageous for eukaryotic cells to 

prolong their S phase by limiting the dNTP pools, there might be several arguments to do so: First, 

elevated dNTP pools cause increased mutagenesis in vitro (ROBERTS et al. 1991; ROBERTS et al. 

1993) and in vivo (CHABES et al. 2003). Thus, lower dNTP levels might increase DNA replication 

fidelity presumably by diminishing the next-nucleotide effect and therefore promoting DNA 

polymerase proofreading. Second, as TLS polymerases require high dNTP concentrations, low 

dNTP pools may restrict the contribution of error-prone TLS polymerases to overall DNA synthesis 

to those situations in which they are absolutely required (PRAKASH AND PRAKASH 2002; LANGE et al. 

2011). Third, high activity of the ribonucleotide reductase (RNR) complex, the rate limiting enzyme 

in the de novo synthesis of dNTPs (NORDLUND AND REICHARD 2006), may cause accumulation and 

incorporation of potentially mutagenic dUTP in situations in which dTTP synthesis is impaired (HU 

et al. 2012; CHEN et al. 2016). Fourth, increased dNTP pools in G1 result in a delayed S-phase 

entry in budding yeast (CHABES AND STILLMAN 2007) and mammalian cells (FRANZOLIN et al. 2013). 

However, the mechanism is not understood. Finally, a longer S phase may give sufficient time to 

not only replicate the genetic, but also the epigenetic information with high accuracy (PAI AND 

KEARSEY 2017).  

However, also dNTP deficiency can lead to impaired chromatin replication (JASENCAKOVA AND 

GROTH 2010; PAPADOPOULOU et al. 2015) and prevent high-fidelity DNA replication (BESTER et al. 

2011). So, low dNTP pools can result in increased misincorporation of ribonucleotides (WANROOIJ 

et al. 2017), stalled replication forks and underreplicated regions which can lead to anaphase 

bridges and chromosome loss (MAGDALOU et al. 2014). Thus, dNTP levels are a critical parameter 

for high-fidelity DNA replication that balances replication fork progression and DNA proofreading. 

In addition to dNTP levels also the balance between the different dNTP pools is of outmost 

importance for high-fidelity DNA replication. In in vitro DNA replication reactions, imbalanced dNTP 

pools not only result in increased base pair substitutions (ROBERTS AND KUNKEL 1988; MARTOMO 

AND MATHEWS 2002) but also promote the generation of frameshift mutations (BEBENEK et al. 1992). 

Furthermore, dNTP pool imbalances in vivo lead to increased mutagenesis and characteristic 

changes in the mutation spectra in E. coli (LU et al. 1995; MILLER et al. 2002; TSE et al. 2016), S. 

cerevisiae (KUMAR et al. 2010; KUMAR et al. 2011; WATT et al. 2016) and mammalian cells 

(WEINBERG et al. 1981; TRUDEL et al. 1984; WEINBERG et al. 1985; MATTANO et al. 1990; RENTOFT et 
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al. 2016). Thus, the relative ratio between different dNTPs influences DNA polymerases’ nucleotide 

selectivity and impacts on DNA replication fidelity. However, why certain dNTP imbalances are 

more mutagenic than others, is still not fully understood.  

1.6 de novo dNTP biosynthesis 

Given the importance of dNTP pool homeostasis for DNA replication fidelity, dNTP biosynthesis is 

highly regulated (Fig. 1.6)(GUARINO et al. 2014). In S. cerevisiae dNTP pools are maintained  

exclusively by de novo dNTP biosynthesis in the cytoplasm, whereas in mammalian cells dNTP 

salvage pathways also contribute to the total dNTP pools (MATHEWS 2015; PAI AND KEARSEY 2017). 

The master regulator of the de novo dNTP biosynthesis and dNTP pools is the RNR complex, 

which catalyzes the reduction of ribonucleoside diphosphates (NDPs) to their corresponding 

deoxyribonucleoside diphosphates (dNDPs) (NORDLUND AND REICHARD 2006; GUARINO et al. 2014). 

Next, NDP kinase (Ynk1) phosphorylates dNDPs to the corresponding dNTPs (JONG AND MA 1991; 

TSUNEHIRO et al. 1993). Whereas dATP, dGTP and dCTP are direct substrates for high-fidelity DNA 

synthesis, dUTP has to be further converted to dTTP. For this, dUTPase (Dut1) dephosphorylates 

dUTP to dUMP (GADSDEN et al. 1993). Next, thymidylate synthase (Cdc21) catalyzes the reductive 

methylation of dUMP to dTMP (TAYLOR et al. 1982). dTMP is than subsequently phosphorylated to 

dTTP by thymidylate kinase (Cdc8) (KUO AND CAMPBELL 1983; JONG et al. 1984) and NDP kinase.  

Furthermore, dCMP deaminase (Dcd1) balances dCTP and dTTP pools downstream of RNR by 

converting dCMP to dUMP (MCINTOSH AND HAYNES 1984). Consequently, dCTP pools are 

increased and dTTP pools decreased in the absence of Dcd1 (KOHALMI et al. 1991; SANCHEZ et al. 

2012) 

 

1.7 The ribonucleotide reductase 

The RNR complex is essential for the de novo dNTP biosynthesis in all living organisms. In 

eukaryotes, the minimal RNR complex (α2β2) is composed of a dimer of two large α subunits (Rnr1-

Rnr1 in S. cerevisiae and Rrm1-Rrm1 in human) and a dimer of two small β subunits (Rnr2-Rnr4 in 

S. cerevisiae and Rrm2-Rrm2 in human) (NORDLUND AND REICHARD 2006; GUARINO et al. 2014). 

Moreover, S. cerevisiae encodes also for an alternative large subunit RNR3, which is only weakly 

expressed under normal growth conditions, but is strongly induced upon DNA replication stress or 

DNA damage (ELLEDGE AND DAVIS 1990). In contrast to S. cerevisiae, the expression of an 

alternative small subunit p53R2 is induced by p53 upon DNA damage in mammals (TANAKA et al. 

2000; GUITTET et al. 2001). 

While the small RNR subunits stabilize the diferric-tyrosyl radical cofactor which is required to 

initiate the radical driven reduction of NDPs at the catalytic site (C-site), each large subunit 

contains one C-site as well as two allosteric sites - the activity site (A-site) and the specificity site 

(S-site) (Fig. 1.7A) (NORDLUND AND REICHARD 2006). The A-site, which is located at the N-terminus 

of Rnr1, regulates the overall activity of RNR by binding ATP or dATP. ATP binding to the A-site 

stimulates RNR activity, whereas dATP acts as negative feedback inhibitor by inducing the 

formation of inactive α6β2 oligomers in yeast and human RNR (Fig. 1.7C) (FAIRMAN et al. 2011). 
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Fig. 1.6 The de novo dNTP biosynthesis pathway in S. cerevisiae. 
Metabolic genes identified in the genome-wide screen are encircled in red. Figure was adapted from 

(MATHEWS 2015) and (SCHMIDT et al. 2017). 

 

Consequently, the expression of a rnr1 allele (rnr1-D57N) in S. cerevisiae that lacks dATP 

feedback inhibition results in an overall increase in dNTP levels, a mild mutator phenotype and an 

increased resistance to exogenous DNA damage (CHABES et al. 2003). The S-site regulates the 

balance between the different dNTP pools by sensing three out of the four dNTPs and priming the 

C-site for binding to specific NDP substrates. So, binding of dATP or ATP to the S-site promotes 

the reduction of CDP and UDP at the C-site, whereas dTTP and dGTP binding to the S-site 

facilitates the reduction of GDP and ADP, respectively (Fig. 1.7B). Two conserved flexible loops 
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play important functions in the S-site allosteric regulation of RNR: loop 1 interacts with the bound 

dNTP effector at the S-site and loop 2 interconnects the S-site of one subunit with the C-site of the 

other subunit (XU et al. 2006a). Based on the RNR crystal structure, loop 2 has been proposed to 

be critical for dNTP homeostasis (XU et al. 2006a). In line with this, expression of rnr1 alleles in S. 

cerevisiae carrying point mutations in the loop 2 cause severe dNTP imbalances, increased 

mutator phenotypes and in some cases growth defects and S-phase checkpoint activation (KUMAR 

et al. 2010; KUMAR et al. 2011). 

In addition to the intrinsic allosteric regulation of RNR, its activity and dNTP pools are controlled on 

three other levels in S. cerevisiae (Fig. 1.7D): First, RNR gene expression peaks during S phase 

(ELLEDGE AND DAVIS 1990; ELLEDGE et al. 1993; TSAPONINA et al. 2011) and is otherwise 

transcriptionally repressed by Crt1 (HUANG et al. 1998). Second, the small unstructured protein 

Sml1 acts as an RNR inhibitor by directly binding to Rnr1 at equimolar concentrations (CHABES et 

al. 1999; ZHAO et al. 2000). Third, outside S phase Dif1 shuttles Rnr2-Rnr4 into the nucleus (LEE et 

al. 2008) where Wtm1 acts as a nuclear anchor for the heterodimer (LEE AND ELLEDGE 2006; ZHANG 

et al. 2006). In this way, the large and small subunits of RNR are spatially separated in the 

cytoplasm and nucleus, respectively, and cannot form an active cytoplasmic complex.  

Recently, another small unstructured protein Hug1 has been implicated to negatively regulate RNR 

in S. cerevisiae. Hug1 binds to Rnr2 and promotes the dissociation of the RNR tetramer. This way, 

Hug1 suppresses RNR activity and may prevent excessive dNTP pool expansion after completed 

DNA replication or repair (AINSWORTH et al. 2013; MEURISSE et al. 2014).  

In mammalian cells, dNTP pools are even more strictly regulated and actively downregulated 

outside S phase by the dNTP triphosphohydrolase sterile alpha motif and histidine-aspartate 

domain-containing protein 1 (SAMHD1) (POWELL et al. 2011; FRANZOLIN et al. 2013). Elevated 

dNTP levels outside S phase in mammalian cells promote viral DNA replication (GOLDSTONE et al. 

2011; LAGUETTE et al. 2011) and genome instability (GUARINO et al. 2014; KOHNKEN et al. 2015). 

Accordingly, mutations in SAMHD1 as well as reduced SAMHD1 expression levels have been 

reported in several cancers (KOHNKEN et al. 2015; RENTOFT et al. 2016).  

dNTP pools are upregulated upon DNA damage or DNA replication stress as part of the DNA 

damage response (DDR) (CICCIA AND ELLEDGE 2010; PARDO et al. 2017) in bacteria (GON et al. 

2011), yeast (CHABES et al. 2003) and to a lesser extend in mammalian cells (HÅKANSSON et al. 

2006b; ZHANG et al. 2011). In S. cerevisiae, Mec1 phosphorylates the mediators Rad9 or Mrc1, 

which phosphorylate the effector kinase Rad53 on multiple sites. One function of Rad53 is the 

activation the Dun1 kinase that phosphorylates the inhibitors of RNR (Sml1, Crt1 and Dif1) and 

mark them for degradation (PARDO et al. 2017). Consequently, RNR expression levels, in particular 

Rnr2, Rnr3 and Rnr4, and RNR activity raise leading to increased dNTP pools. Elevated dNTP 

pools facilitate DNA fork re-start and DNA synthesis by TLS polymerases to bypass replication 

obstacles. Moreover, elevated dNTP pools supply DNA repair processes with sufficient dNTPs in 

particular outside S phase (PAI AND KEARSEY 2017). In conclusion, RNR plays a key role for dNTP 

pool homeostasis and its regulation allows fine tuning of dNTP biosynthesis during normal DNA 

replication as well as under DNA damage conditions. Hence, inhibitors of RNR, like hydroxyurea 
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(HU) or gemcitabine, are potent chemotherapeutics (XU et al. 2006b; WANG et al. 2007; WANG et 

al. 2009; AYE et al. 2014).  

 

 

Fig. 1.7 Regulation of ribonucleotide reductase in S. cerevisiae.  
(A) Model of the Rnr1-Rnr1 homodimer based on the crystal structure (PDB: 2cvv and 3hne). The catalytic site 
(C-site) and the two allosteric sites, the activity site (A-site) and the specificity site (S-site), are labeled in one 
subunit. Loop 1 and the loop 2 are colored in blue and violet, respectively. (B) Schematic representation of the 
regulation of the C-site by the S-site. Depending on which dNTP (right) binds to the S-site, the C-site is primed 
for a specific NDP substrate (indicated by the orange arrows). (C) Model for the regulation of RNR overall 
activity by the A-site. Upon nucleotide binding to the S-site two large subunits (α) (green) form a dimer. 
Together with a small subunit (β) dimer (violet) the minimal active RNR (α2β2) is assembled. dATP binding to 
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the A-site induces catalytic inactive RNR hexamers. In the process of hexamerization a short-lived tetrameric 
intermediate (marked with ?) has been postulated. Figure panel was modified from (FAIRMAN et al. 2011). (D) 
S. cerevisiae RNR activity throughout the cell cycle and upon DNA damage and replication stress. In G1 and 
G2 phase, the RNR dimers are spatially separated and Sml1 inhibits Rnr1-Rnr1 dimers. Consequently, dNTP 
levels are low. During S phase Sml1 levels are reduced, functional cytoplasmic RNR complexes are formed 
and dNTP pools are elevated. Upon damage or replication stress, the DNA damage checkpoint induces the 
expression of RNR subunits and the degradation of negative regulators of RNR, which results in high dNTP 
pools. 

 

1.8 Folate one-carbon metabolism 

The one-carbon metabolism is central for various biosynthetic processes including the biosynthesis 

of dTMP, purines, amino acids, vitamins, and formyl-methionyl-tRNA (fMet-tRNA), which is 

required for the initiation of bacterial, chloroplast and mitochondrial protein biosynthesis (APPLING 

1991; DUCKER AND RABINOWITZ 2017).  

All of these processes have in common that the interconvertible folate cofactors serve as one-

carbon donors (STOVER AND FIELD 2011). Consequently, due to the fundamental role of folates in 

promoting cell proliferation and growth, antifolate drugs have been developed and are widely used 

as chemotherapeutics, in the treatment of chronic autoimmune diseases and as drugs against 

bacterial or parasite infections (VAN TRIEST et al. 2000; NZILA 2006; CHATTOPADHYAY et al. 2007; 

VISENTIN et al. 2012; MURIMA et al. 2014). 

Folate cofactors differ in the oxidation state and position of the one-carbon unit that is either bound 

to N5, N10 or both of tetrahydrofolate (THF) (Fig. 1.8A) (STOVER AND FIELD 2011). In eukaryotic cells, 

the folate one-carbon metabolism is highly compartmentalized (Fig. 1.8B)(APPLING 1991; STOVER 

AND FIELD 2011). In the mitochondria, the one-carbon metabolism is required for glycine 

biosynthesis, formylation of the initiator tRNA and the production of formate for the cytoplasmic 

one-carbon metabolism. In the cytoplasm, one-carbon metabolism facilitates the de novo synthesis 

of purines and thymidylate as well as the remethylation of homocysteine to methionine (FOX AND 

STOVER 2008). Moreover, serine and glycine can be interconverted in the mitochondria and 

cytoplasm by compartment-specific isoforms of serine hydroxymethyl transferase (mitochondrial 

Shm1 and cytoplasmic Shm2)(MCNEIL et al. 1994). Furthermore, in both compartments the 

folylpolyglutamate synthetase (FPGS) (Met7) catalyzes the addition of glutamate chains at the γ-

carboxyl residue of folate cofactors under the consumption of ATP (DESOUZA et al. 2000). Folate 

polyglutamylation is critical for the cellular one-carbon metabolism because it increases intracellular 

retention of folates and enhances the affinity of folates to folate-metabolizing enzymes (SCHIRCH 

AND STRONG 1989). As FPGS not only modifies folates, but also classical antifolates, increasing as 

well their cellular retention and toxicity, inactivation of FPGS has been identified as a common 

resistance mechanism of cancer cells upon antifolate treatment (GONEN AND ASSARAF 2012; 

VISENTIN et al. 2012). 

In contrast to most of the bacteria, yeast and plants, which can synthesize folates de novo, animals 

depend on dietary folate intake (DUCKER AND RABINOWITZ 2017). Therefore, insufficient folate intake 

or defects in one-carbon metabolizing enzymes results in folate deficiency leading to anemia in 

adult humans and to neural tube and congenital heart defects in the developing embryo (BAILEY 

AND BERRY 2005; BEAUDIN AND STOVER 2009). Thus, the folate one-carbon metabolism is crucial for 

cellular proliferation and an attractive drug target for anti-proliferative therapies.  
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Fig. 1.8 The folate one-carbon metabolism in S. cerevisiae.  
(A) Structure of tetrahydrofolate (THF). The one-carbon unit is bound either to N5, N10 or both at the R1 and R2 
position. Intracellular folates are polyglutamylated with variable chain length by FPGS to increase intracellular 
retention and affinity to folate metabolizing enzymes. (B) Model of folate one-carbon metabolism in S. 
cerevisiae. Folates are utilized in the cytoplasm and in the mitochondria. Metabolic genes are labels in bold 
and italic. Important products of folate one-carbon metabolism in each compartment are highlighted in bold 
and red. 
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1.9 Aim of the study 

The interplay between DNA polymerases with high nucleotide selectivity and DNA proofreading 

functions and the post-replicative MMR mechanism enable cells to replicate their genomes with 

extremely high accuracy. Furthermore, the level of and balance between the different dNTPs, the 

building blocks of DNA, influences DNA polymerases’ nucleotide selectivity and proofreading 

function. Defects in any of these DNA replication fidelity mechanisms increase the number of 

mutations generated during each round of DNA replication. Consequently, mutations in DNA 

polymerases and in MMR components increase cancer susceptibility (KUNKEL AND ERIE 2015). 

Moreover, inactivating mutations affecting the DNA polymerase proofreading domain and MMR 

components cause in human familial colorectal/ovarian cancer (BRIGGS AND TOMLINSON 2013; 

CHURCH et al. 2013; PALLES et al. 2013; SHLIEN et al. 2015) and the most frequent hereditary 

cancer predisposition Lynch syndrome (PELTOMAKI 2003; BOLAND AND GOEL 2010), respectively. 

The latter is characterized by increased mutagenesis in particular at repetitive sequences so called 

microsatellites. Thus, mutations caused by DNA replication errors are critical drivers of 

malignancies like cancer (TOMASETTI et al. 2017) but also enable evolution. 

Interestingly, even though the majority of microsatellite-instable tumors can be linked to the 

inactivation of Mlh1, Msh2 or Msh6, around 5-10% of the tumors cannot be explained by mutations 

in or silencing of canonical MMR components (PELTOMAKI 2003) suggesting that additional factors 

may contribute to the suppression of frameshift mutations. In the past, powerful systematic screens 

in S. cerevisiae revealed many genes that prevent the accumulation of mutations (HUANG et al. 

2003; SMITH et al. 2004), which were than further characterized in detail. 

This work investigated DNA replication fidelity mechanisms focusing in particular on the 

identification of previously unrecognized genes that counteract the acquisition of mutations and 

moreover on the impact of deregulated dNTP pools on the generation of mutations.  

In the first part of this study a genome-wide screen in budding yeast using a modified version of the 

synthetic genetic array (SGA) (TONG AND BOONE 2006) was performed to identify previously 

unrecognized non-essential genes that prevent the accumulation of base pair substitutions and 

frameshift mutations. For this, low-fidelity active-site mutants of the three major eukaryotic DNA 

polymerases Pol α, Pol  and Pol  (pol1-L868M, pol2-M644G and pol3-L612M, respectively) that 

confer a weak mutator phenotype by themselves were used as “sensitized mutator backgrounds” to 

detect mutational enhancers that are otherwise buffered in the WT background. Furthermore, 

according to the “division of labor” model of DNA replication (LUJAN et al. 2016), pol1-L868M/pol3-

L612M and pol2-M644G are linked to lagging- and leading-strand replication, respectively. 

Therefore, the screen revealed specific mutator interactions with the leading and lagging-strand 

alleles that suggest differential dependencies of leading- and lagging strand DNA synthesis and 

repair on the identified genes. Thus, in the first part of this study, previously unrecognized non-

essential genes that prevent the accumulation of mutations were identified and their contribution to 

DNA replication fidelity characterized.  

The second part of this study aimed at elucidating the effect of imbalanced or elevated dNTP levels 

on DNA replication fidelity in S. cerevisiae. As the levels and balance of the dNTP pools influence 

DNA polymerases’ nucleotide selectivity and proofreading activity, dNTP pool alterations cause 
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increased mutator phenotypes (CHABES et al. 2003; KUMAR et al. 2010). However, why certain 

dNTP pool alterations are more mutagenic than others is not understood. To address this question, 

a collection of PCR-mutagenized rnr1 alleles was screened for increased mutagenesis under the 

assumption that the mutator phenotypes of these alleles were caused by alterations in the dNTP 

concentrations. Next, the effects of the identified mutagenic rnr1 alleles on the dNTP pools were 

determined and their impact on DNA replication fidelity further characterized.  

Taken together, this study identified previously unrecognized genes that contribute to DNA 

replication fidelity which potentially act as mini-drivers during human cancer evolution. 

Furthermore, this study improved the understanding on how different dNTP pool alterations 

influence DNA replication fidelity in S. cerevisiae. 
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2 MATERIALS 

2.1 Equipment  

Table 2.1 List of equipment. 

Equipment Supplier 

Autoclave Systec DE-65 Systec 

Autoclave VAPOR-Line lite VWR 

BioShake XP, 96-Well Vortex Scientific Industries 

Bunsen burner Labogaz 470 Campingaz 

Cellgard class III biological safety cabin NuAire 

Centrifuge J2-21M/E Beckman 

Centrifuge 5424 Eppendorf 

Centrifuge Heraeus Fresco 21 Thermo Scientific 

Centrifuge 5810 R Eppendorf 

Criterion Blotter Bio-Rad 

Disruptor Genie Scientific Industries 

Dri-block pB3 Techne 

FACS CantoII  BD Biosciences 

Forceps Roth 

Freezer Liebherr 

Fusion Solo S System Vilber 

Gelelectrophoresis chamber Biozym 

Gelelectrophoresis Power Supply, ST606 Gibco BRL Life Technologies 

GelDoc system Bio-Rad 

Gene Pulser Bio-Rad 

Grinder Severin 

Ice machine Hoshizaki 

Imaging System Bio-Rad 

Incubator B6420 Hereaus 

Incubator Heratherm Thermo Scientific 

Incubator shaker, Ecotron Infors HT 

Incubator shaker, Multitron Pro Infors HT 

Light microscope Carl Zeiss 

Liquidator (96-Well Pipet) Mettler Toledo 

Low temperature freezer New Brunswick Scientific 

Magnetic stirrer with heating, MR Hei-Standard Heidolph 

Microscale, PG 503-S Mettler-Toledo 

Microwave AEG 

Microwave Sharp 

Mini Protean® 3 System Bio-Rad 

Mini Protean® Tetra Cell Bio-Rad 

Multichannel pipette, 20 and 200 μL Brand Tech Scientific 

Multipette Plus Eppendorf 

Optimax TR X-ray film processor Protec 

Peristaltic pump Dosierfix Welatec 

Pharmaceutical refrigerator Panasonic 

pH-Meter, inoLab pH 720 WTW 

Pipetboy IBS Integra Bioscience 

Pipetman pipettes 2 µl, 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl  Gilson 

Plate sealer (96-well) 4titude 

PowerPac basic Bio-Rad 

Replica plating block DKFZ 

Reusable bottle top filter unit Thermo Scientific Nalgene 

Roller RM5 V-80 CAT 

RoToR robot Singer Instruments 

Scale, BP 3100 S neoLab 

Scale, DL-501 Denver Instruments 

Scalpel neoLab 

Shaker 3015 GFL 

Sonicator - Sonifier 250 Branson 

Sturdier vertical slab gel electrophoresis chamber Hofer 

Thermocycler C1000 Touch Bio-Rad 

Thermocycler GeneAmp PCR system 9700 Applied Biosystems 

Thermomixer comfort and compact Eppendorf 
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Transilluminator Nippon Genetics 

UV cabinet Grant Instruments 

UV/Vis Spectrometer, Pharmacia LKB Ultrospec III Pharmacia 

Vioflo II, 8 channel multipipette 12,5 µl Integra Bioscience 

Vortex Genie 2 Scientific Industries 

Washing machine Fagor 

 

2.2 Software 

Table 2.2 List of Software. 

Software Supplier 

Adobe™ Illustrator™ CS6 Adobe Systems 

BD FACSDiva™ Software Becton Dickinson Biosciences 

EndNote X7.7.1 Thomson Reuters, USA 

FlowJo, v10.1 Tree Star Inc. 

ImageJ, 1.47v National Institute of Health, USA 

Lasergene 12 DNASTAR 

Office 2011 Microsoft 

OligoCalc 

http://biotools.nubic.northwestern.edu/OligoCalc.html  

Northwestern University 

QuikChange® Primer Design Program 

https://www.genomics.agilent.com/primerDesignProgram.jsp  

Agilent 

R, v3.3.3 https://www.R-project.org/ 

Sigma plot Systat Software Inc. 

 

2.3 Consumables 

Table 2.3 List of Consumables. 

Consumables Supplier 

Cellulose nitrate filter, pore size 0.45 µm Sartorius Stedim Biotech 

Combitips advanced for Multipette Plus, 5 ml, 10 ml Eppendorf 

Cryotube vials, 1.8 mL Thermo Scientific 

Cuvettes Brandt 

Electroporation cuvettes, 2 mm Steinbrenner 

Filter pipette tips, 10 μL, 200 μL Neptune 

Filter pipette tips, 20 μL, 1000 μL Greiner Bio-One 

Falcon tubes, 14 ml Greiner Bio-One 

Falcon tubes, 50 ml Greiner Bio-One 

Gel Saver II Tip, 200µL Starlab 

Glass beads, 0.5 mm Scientific Industries 

Glass beads, acid wahsed Sigma 

Liquidator tips, 20 µl, 200 µl Mettler-Toledo 

Microscope cover glasses 18x18 mm Menzel-Gläser 

Microscope slides ca./env. 76x26 mm Menzel-Gläser 

4-15% Mini-PROTEAN TGX gels Bio-Rad 

Nitrile gloves Microflex 

PCR tubes 0.2 ml Thermo Scientific 

Petridishes, 60x15 mm Sarstedt 

Petridishes, 94x16 mm Greiner Bio-One 

Petridishes, 145x20 mm Greiner Bio-One 

Picks, flat Kögler 

Precision wipes Kimtech Science 

RoToR Plus Plates Singer 

PolyPrep® Chromatograhy column  Bio-Rad 

Tips, 10 µl, 200 µl, 1000 µl Starlab 

Reaction tubes, 0.5 mL Sarstedt 

Reaction tubes, SafeSeal 1,5 ml, 2 ml Sarstedt 

Super RX-N Fuji medical x-ray films  Fujifilm 

Tubes, round-bottom, 14 mL Greiner Bio-One 

96-Well Plate lids Greiner Bio-One 

96-well plate seal, aluminum 4titude 

96-well plate seal, breathable 4titude 

http://biotools.nubic.northwestern.edu/OligoCalc.html
https://www.genomics.agilent.com/primerDesignProgram.jsp
https://www.r-project.org/
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96-Well Plates, U-bottom Greiner Bio-One 

Chromatography paper 3MM Chr Whatman 

 

2.4 Kits 

Table 2.4 List of Kits. 

Kit Order number Supplier 

Gentra Puregene Yeast/Bact. Kit B 158567 Qiagen 

Immobilon Western chemiluminescent HRP substrate WBKL S0500 Millipore 

QIAprep Spin Miniprep Kit 27106 Qiagen 

QIAquick Gel Extraction Kit 28706 Qiagen 

 

2.5 Chemicals and reagents 

Table 2.5 List of chemicals and reagents. 

Name Order number Supplier 

Acetic acid A0820 AppliChem 

Acrylamide-bisacrylamide solution, 40% (29:1) 10680 Serva Electrophoresis 

Adenine A8626 Sigma 

Adenosine 5-triphosphate (ATP) disodium salt hydrate A26209 Sigma 

α-factor RP01002 GenScript 

Ammonium persulfate (APS) 13375 Serva Electrophoresis 

Agar-agar, Kobe I 5210 Roth 

Agarose 3810 Roth 

Ampicilin 1046 Gerbu 

Arginine A5006 Sigma 

Aspartic acid A9256 Sigma 

β-mercaptoethanol M6250 Sigma 

Butane / propane  CV470 Campingaz 

cOmplete EDTA free protease inhibitor  1169749001 Roche Diagnostics  

BactoTM peptone 211820 Becton, Dickinson 

BactoTM yeast extract 212720 Becton Dickinson 

Bovine serum albumin (BSA) A7030 Sigma 

Bromophenol blue 15375 Serva Electrophoresis 

L-canavanine sulfate C9758 Sigma 

Coomassie brilliant blue G250 17524 Serva Electrophoresis 

Cycloheximide 10700 Serva Electrophoresis 

Difco™ agar 214530 Becton Dickinson 

Difco™ nutrient broth 231000 Becton Dickinson 

DifcoTM yeast nitrogen base without amino acids 291930 Becton Dickinson 

DifcoTM yeast nitrogen base without amino acids without 

ammonium sulfate 

233420 Becton Dickinson 

Dimethyl sulfoxide (DMSO) D8418 Sigma 

dNTP sets, 100 mM each M3015 Genaxxon  

Dithiothreitol (DTT) 6908 Roth 

Ethanol E/0650DF/15 Fisher Scientific 

Ethylenediaminetetraacetic acid (EDTA) 1034 Gerbu 

5-Fluoroorotic acid monohydrate (5-FOA) F5050 Biomol 

GelRed™ nucleic acid gel stain M3199 Genaxxon 

Geneticin (G418) sulfate sc-29065B Santa Cruz Biotechnology 

D(+)-glucose monohydrate 6887 Roth 

Glycerol 15523 Sigma 

Glycine G7126 Sigma 

Glutamic acid monosodium salt  49621 Sigma 

Histidine H8000 Sigma 

Hydrochloric acid, 37% 20252 VWR Chemicals 

Hydroxyurea, 98% H8627 Sigma 

Hygromycin B, 50 mg/mL 10687010 Thermo Scientific 

Imidazole I0125 Sigma 

Isoleucine I2752 Sigma 

Isopropanol 6752 Roth 

Kanamycin sulfate from Streptomyces kanamyceticus K4000 Sigma 
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Leucine L8000 Sigma 

Lithium acetate dihydrate L4158 Sigma 

Lysine L5501 Sigma 

Magnesium chloride M2670 Sigma 

Methanol M/4000/PC17 Fisher Scientific 

Methionine M9625 Sigma 

Ni-NTA agarose 30210 Qiagen 

Nocodazole T2802 Target Molecule 

Nourseothricin, clonNAT 5.0000 Werner BioAgents 

NP-40, IGEPAL® CA-630 56741 Sigma 

Phenol:Chloroform:Isoamylalcohol (25:24:1) A156 Roth 

Phenylalanine P2126 Sigma 

Phleomycin from Streptomyces verticillus P9564 Sigma 

Phenylmethylsulfonyl fluoride (PMSF) 6367 Roth 

Poly(ethylene glycol), 3350 88276 Sigma 

Potassium acetate P1190 Sigma 

Potassium dihydrogen phosphate 4873 Merck 

Salmon sperm AM9680 Invitrogen 

Skim milk powder 70166 Sigma 

Sodium acetate 106268 Merck 

Sodium azide S8032 Sigma 

Sodium chloride 31434 Sigma 

Sodium citrate 71405 Fluka 

Sodium dodecyl sulfate (SDS) 1610302 / 20765 Bio-Rad / Serva 

Electrophoresis 

Sodium hypochlorite solution, 12% Cl 9062 Roth 

Sodium hydroxide 2020 Gerbu 

Sodium dihydrogen phosphate T878 Roth 

di-Sodium hydrogen phosphate·2H2O 4984 Roth 

Sytox Green S7020 Life Technologies 

TEMED T7024 Sigma 

Threonine T8625 Sigma 

Trichloroacetic acid (TCA) A1431 AppliChem 

Triton X-100 T8787 Sigma 

Trizma® base T1503 Sigma 

Tryptone 70172 Sigma 

Tryptophan T8941 Sigma 

Tween-20 P1379 Sigma 

Tyrosine T3754 Sigma 

Uracil U0750 Sigma 

Valine V0500 Sigma 

 

2.6 Markers for electrophoresis 

Table 2.6 Markers for electrophoresis. 

Marker Order number Supplier 

GeneRuler 1Kb, ready-to-use SM0313 Thermo Scientific 

Precision Plus Protein™ Dual Color Standards #1610394 Bio-Rad 

 

2.7 Oligonucleotides 

All oligonucleotides were purchased by Sigma, dissolved in HPLC-H2O at a concentration of 100 

μM. 

Table 2.7 List of oligonucleotides. 

HHP# Name Sequence 5’-3’ 

507 Can1Fx GTTGGATCCAGTTTTTAATCTGTCGTC 

508 Can1Rx TTCGGTGTATGACTTATGAGGGTG 

1018 Nat_fw1 CTAATCTCGAGGCGAATTTC 

1036 Kan_K2 GTCAAGACTGTCAAGGAGGG 

1037 kl-TRP1_rev GACGTTGTTCGATTCTGGTG 

1038 kl-TRP1_fw CAACGGTTTGCAAACCACAC 
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1062 CYH2_3v  GGCTTCCAGATGTTAACTGC 

1063 CYH2_fw GAACAGTCATACTGTCTACTC 

1100 rnr1_3v GCGCATCCTGGGAATCTA 

1276 POL1_L868M_fw GTTTTAGTCATGGACTTTAATTCTATGTATCCATCTATTATCCAGGAATTT 

1277 POL1_L868M_rev AAATTCCTGGATAATAGATGGATACATAGAATTAAAGTCCATGACTAAAAC 

1378 Kan_K3 CGCCTCGACATCATCTGCCC 

1380 hph_JE345fw GGCTGTGTAGAAGTACTCGCCG 

1381 his3_5'test CATTTGTAATACGCTTTACTAGGGC 

1382 his3_3'test CGCATTTTCTTGAAAGCTTTGCAGAG 

1872 pRS425_GAL_PMS1-

FLAG_rev 

GCAAGTGTAGCGGTCACGC 

1949 pMFA1_kl-LEU2_fw AACTGTTTCTCGGATAAAACCAAAATAAGTACAAAGCCATCGAATAGAAATGTCT

AAGAATATCGTTGTC 

1950 pMFA1_kl-LEU2_rev AGCGGAAAAGGAAGATAAAGGAGGGAGAACAACGTTTTTGTACGCAGAAATTAA

GCCAAGATTTCCTTGA 

1955 hom3-10.HIS3_fw ATCCACCTTTCTTCTTCACTTTAATGATAGAATATTAATTTTCCCTTTATGAGCAG

ATTGTACTGAGAGTGCACC 

1956 hom3-10.HIS3_rev ATTAATATATATGTAAATATATGTGCGCGTATATATATATATATATATATCTCCTTA

CGCATCTGTGCGGTATTTC 

2001 pMFA1-

klLEU2.hphLYS2_rev 

GGCGCGCCTTAATTAACCCGGGGATCCGTCGACCTGCAGCGTACGGATCCGCA

GGCTAACCGGAA 

2002 LYS2.hph_S1_300pb 

before ATG 

GTCTATATTCATTGAAACTGATTATTCGATTTTCTTCTTGCTGACCGTACGCTGC

AGGTCGAC 

2003 LYS2.hph_S2_before 

ATG 

TTGAAGAGTTTTCCTCGCTAAAACTGTGCGATGCCTCTAGAAGCGATCGATGAA

TTCGAGCTCG 

2004 pMFA1-

klLEU2.300pb_hphLYS2

_fw 

GTCTATATTCATTGAAACTGATTATTCGATTTTCTTCTTGCTGACCAGGATAGTGT

GCAACGTGG 

2197 URA3_5v GGGAAGACAAGCAACGAAAC 

2198 URA3_3v GGAAACGCTGCCCTACAC 

2201 kl-URA3_fw TGATTTTGTGGACATGGTGC 

2202 kl-URA3_rev GTTGGCAGAGGACTTTTCG 

2220 kl-URA3_downMlh2_fw CTCTAATATTGCATTGTTACGACATCCTGTTGTCATGCGACTAAACAATACAACA

GATCACGTG 

2657 met7_S1 ATTGTCTTATTTCTGAAGCTCACTGAAGAACATTGCTTTATTATGCGTACGCTGC

AGGTCGAC 

2797 scPOL3_NotI_fw  CTGACTGCGGCCGCTCTTCGTTCAACTTGTTTTCCTTG 

2798 scPOL3_SmaI_rev  GGTGACCCCGGGGTTTACAAATTACTGACAATAAA 

2801 met7DM_S4 CAAAGAGTTTAGCGCAGTAACAGCGTCTCGATAAGTTTTTCCAACCATCGATGA

ATTCTCTGTCG 

2876 URA3_fw CGAAAGCTACATATAAGGAAC 

2877 URA3_rev TTAGTTTTGCTGGCCGCATC 

2947 URA3_seq GGAGCACAGACTTAGATTGG 

2973 CAN1_rev GAGCCAATGTAGAAGGTTAAG 

2974 CAN1_fw2 CCTCTTTGATTAACGCTGCC 

2976 RNR1_fw_promoter CAGCTCAGTCACATGAGAC 

3285 pRS315_rev CGATTCATTAATGCAGCTGGC 

3489 rnr1-R256Q_fw GTATTGGTCTACATATCCATAACATTCAATCAACTGGTTCTTACATTGCTGG 

3490 rnr1-R256Q_rev CCAGCAATGTAAGAACCAGTTGATTGAATGTTATGGATATGTAGACCAATAC 

3574 RNR1_D57N_fw GGTGTCACAACAATCGAACTAAACAACTTAGCCGCTG 

3575 RNR1_D57N_rev CAGCGGCTAAGTTGTTTAGTTCGATTGTTGTGACACC 

3678 CAN1_downstream_S1 ACCAAAGACTTTTTGGGACAAATTTTGGAATGTTGTAGCATAGATATGACCGTAC

GCTGCAGGTCGAC 

3679 CAN1.downstream_S2 ATGAGGGTGAGAATGCGAAATGGCGTGGAAATGTGATCAAAGGTAATAAAACAT

CGATGAATTCGAGCTCG 

3700 pRS_RNR1linked_fw GTCGAATAATTTAACATGAACATTTTAAGCTGTCCTTGTAAGAAGGCGAGCAGAT

TGTACTGAGAGTGCACC 

3701 pRS_RNR1linked_rev CAATGTTGCCTAGACCCCATTTCGGGGCAGGGGGGAATCTGTATCATGCTCCTT

ACGCATCTGTGCGGTATTTC 

3861 RNR1-I262V_fw CATTCGTTCAACTGGTTCTTACGTTGCTGGTACAAACGGTACTTC 

3862 RNR1-I262V_rev GAAGTACCGTTTGTACCAGCAACGTAAGAACCAGTTGAACGAATG 

3863 RNR1-N291D_fw CCGTTATGTTGACCAGGGTGGTGATAAAAGACCTGGTGCGTTTGC 

3864 RNR1-N291D_rev GCAAACGCACCAGGTCTTTTATCACCACCCTGGTCAACATAACGG 

4105 URA3_A4 TCATTACGACCGAGATTCC 

4196 DUT1_promoter_BamHI_

fw 

CATGATGGATCCCATGCCCCATCTCCACGCTC 

4197 DUT1_3v CAGACCCTATTAGGAGCCC 
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4198 DUT1_G82S_fw GAAAAACGGTATCCAAACCGGTGCTAGTGTTGTCGACAGAGATTACACCGG 

4199 DUT1_G82S_rev CCGGTGTAATCTCTGTCGACAACACTAGCACCGGTTTGGATACCGTTTTTC 

 

2.8 Plasmids 

All plasmids were stored in E. coli TOP10F’ or E. coli BL21 (DE3) as glycerol stock at -80 °C. 

Minipreps were purified with QIAprep Spin Miniprep Kit and stored at -20 °C.  

 

Table 2.8 Plasmids used in the study. 

Name Relevant genotype rnr1 base  

substitution (s) 

Reference 

pFA6a-

hphNT1 

ampr hphNT1 none (JANKE et al. 2004) 

pFA6a-

kanMX4 

ampr kanMX4 none (WACH et al. 1994) 

pFA6a-

natNT2 

ampr natNT2 none (JANKE et al. 2004) 

pOM13  ampr loxP.klLEU2.loxP.6HA none (GAUSS et al. 2005) 

pRS303 ampr HIS3 none (SIKORSKI AND HIETER 

1989) 

pUG72 ampr loxP.klURA3.loxP none (GUELDENER et al. 

2002) 

pUG73 ampr loxP.klLEU2.loxP none (GUELDENER et al. 

2002) 

pYM22 ampr 3HA.klTRP1 none (JANKE et al. 2004) 

pYM23 ampr 3Myc.klTRP1 none (JANKE et al. 2004) 

pYM-N14 ampr kanMX4.pGPD none (JANKE et al. 2004) 

pYM-N15 ampr natNT2.pGPD none (JANKE et al. 2004) 

pHHB296 pSIC1_SIC1(NTR)_3MYC_(GA)5 (ampR, natNT2, pSIC1-

sic1NTR(aa1-100)-3Myc-(GA)5) 

none This study 

    

pRS316 ampr CEN6 ARSH4 URA3 none (SIKORSKI AND HIETER 

1989) 

pHHB388 pRS316-POL3 (ampr, CEN6, ARSH4, URA3) none (SCHMIDT et al. 2017) 

pHHB560 pRS316-RNR1 (ampr, CEN6, ARSH4, URA3) none This study 

    

pRS315 ampr CEN6 ARSH4 LEU2 none (SIKORSKI AND HIETER 

1989) 

pHHB351 pRS315-POL3 (ampr, CEN6, ARSH4, LEU2) none (SCHMIDT et al. 2017) 

pHHB396 pRS315-pol3-01 (ampr, CEN6, ARSH4, LEU2) none (SCHMIDT et al. 2017) 

pHHB561 pRS315-RNR1 (ampr, CEN6, ARSH4, LEU2) none This study 

pHHB649 pRS315-rnr1-G8D,V278A (ampr, CEN6, ARSH4, LEU2) c.23G > A, c.833T > C This study 

pHHB632 pRS315-rnr1-F15S (ampr, CEN6, ARSH4, LEU2) c.44T > C This study 

pHHB635 pRS315-rnr1-D226G (ampr, CEN6, ARSH4, LEU2) c.677A > G This study 

pHHB648 pRS315-rnr1-D226V (ampr, CEN6, ARSH4, LEU2) c.677A > T This study 

pHHB655 pRS315-rnr1-S117P,D226N (ampr, CEN6, ARSH4, LEU2) c.349T > C, c.676G > A This study 

pHHB650 pRS315-rnr1-I231T,T244A (ampr, CEN6, ARSH4, LEU2) c.692T > C, c.730A > G This study 

pHHB634 pRS315-rnr1-S242T (ampr, CEN6, ARSH4, LEU2) c.724T > A This study 

pHHB628 pRS315-rnr1-K243E (ampr, CEN6, ARSH4, LEU2) c.727A > G This study 

pHHB647 pRS315-rnr1-T244I,V278A (ampr, CEN6, ARSH4, LEU2) c.731C > T, c.833T > C This study 

pHHB651 pRS315-rnr1-A245V,Q671R (ampr, CEN6, ARSH4, LEU2) c.734C > T, c.2012A > G This study 

pHHB721 pRS315-rnr1-A245V (ampr, CEN6, ARSH4, LEU2) c.734C > T This study 

pHHB630 pRS315-rnr1-R256H,Y779C (ampr, CEN6, ARSH4, LEU2) c.767G > A, c.2336A > G This study 

pHHB667 pRS315-rnr1-R256H (ampr, CEN6, ARSH4, LEU2) c.767G > A This study 

pHHB668 pRS315-rnr1-R256Q (ampr, CEN6, ARSH4, LEU2) c.767G > A, c.768T > A This study 

pHHB642 pRS315-rnr1-I262T,M275I (ampr, CEN6, ARSH4, LEU2) c.785T > C, c.825G > A This study 

pHHB678 pRS315-rnr1-I262V,N291D (ampr, CEN6, ARSH4, LEU2) c.784A > G, c.871A > T This study 

pHHB677 pRS315-rnr1-I262V,Q561L (ampr, CEN6, ARSH4, LEU2) c.784A > G, c.1682A > T This study 

pHHB875 pRS315-rnr1-I262V (ampr, CEN6, ARSH4, LEU2) c.784A > G This study 

pHHB637 pRS315-rnr1-T265A (ampr, CEN6, ARSH4, LEU2) c.793A > G This study 

pHHB638 pRS315-rnr1-G267C (ampr, CEN6, ARSH4, LEU2) c.799G > T This study 

pHHB641 pRS315-rnr1-S269P (ampr, CEN6, ARSH4, LEU2) c.805T > C This study 

pHHB652 pRS315-rnr1-G271S (ampr, CEN6, ARSH4, LEU2) c.811G > A This study 

pHHB653 pRS315-rnr1-P274L,N466S (ampr, CEN6, ARSH4, LEU2) c.821C > T, c.1397A > G This study 

pHHB1000 pRS315-rnr1-P274L (ampr, CEN6, ARSH4, LEU2) c.821C > T This study 

pHHB636 pRS315-rnr1-M275T (ampr, CEN6, ARSH4, LEU2) c.824T > C This study 
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pHHB633 pRS315-rnr1-T282A (ampr, CEN6, ARSH4, LEU2) c.844A > G This study 

pHHB676 pRS315-rnr1-R21C,T282S (ampr, CEN6, ARSH4, LEU2) c.61C > T, c.844A > T This study 

pHHB999 pRS315-rnr1-T282S (ampr, CEN6, ARSH4, LEU2) c.844A > T This study 

pHHB654 pRS315-rnr1-A283V,S425L (ampr, CEN6, ARSH4, LEU2) c.848C > T, c.1274C > T This study 

pHHB679 pRS315-rnr1-Y285C (ampr, CEN6, ARSH4, LEU2) c.854A > G This study 

pHHB876 pRS315-rnr1-N291D (ampr, CEN6, ARSH4, LEU2) c.871A > T This study 

    

pRS306 ampr URA3 none (SIKORSKI AND HIETER 

1989) 

pHHB97 pRS306-pol1-L868M (ampr, URA3) none (SCHMIDT et al. 2017) 

pHHB1093 pRS306-DUT1 (ampr, URA3) none This study 

pHHB1094 pRS306-dut1-1 (ampr, URA3, dut1-G82S) none This study 

pHHB424 pRS306-RNR1 (ampr, URA3) none This study 

pHHB718 pRS306-rnr1-F15S (ampr, URA3) c.44T > C This study 

pHHB752 pRS306-rnr1-D57N (ampr, URA3) c.169G > A This study 

pHHB869 pRS306-rnr1-S242T (ampr, URA3) c.724T > A This study 

pHHB682 pRS306-rnr1-K243E (ampr, URA3) c.727A > G This study 

pHHB736 pRS306-rnr1-A245V (ampr, URA3) c.734C > T This study 

pHHB868 pRS306-rnr1-R256H, Y779C (ampr, URA3) c.767G > A, c.2336A > G This study 

pHHB933 pRS306-rnr1-I262V, N291D (ampr, URA3) c.784A > G, c.871A > T This study 

pHHB695 pRS306-rnr1-Y285C (ampr, URA3) c.854A > G This study 

    

pHHB118 pET28c-Sic1 (kanR, 6HIS-SIC1) none Gift of G. Pereira 

 

2.9 Enzymes 

Table 2.9 List of enzymes. 

Enzyme Order number Supplier 

AccuPrime™ Pfx DNA polymerase, 2.5 U/μL 12344 Invitrogen 

Ape I, 10 U/μL M0282 NEB 

BamHI-HF, 20 U/μL R3136 NEB 

BglII, 10 U/μL R0144 NEB 

Bsu36I, 10 U/μL R0524 NEB 

Exonuclease I, 20 U/μL M0293 NEB 

HindIII, 20 U/μL R0104 NEB  

KpnI-HF, 20 U/μL R3142 NEB  

Lysozyme 100834 MP Biomedicals 

NcoI, 20 U/μL R0193 NEB 

NotI-HF, 20 U/μL R3189 NEB 

Phusion® High-Fidelity DNA polymerase 2 U/μL M0530 NEB 

Proteinase K M3036 Genaxxon 

Ribonuclease A 7156 Roth 

Shrimp Alkaline Phosphatase (rSAP), 1 U/μL M0371 NEB 

SacII, 20 U/μL R0157 NEB 

SmaI, 20 U/μL R0141 NEB 

Taq DNA polymerase, 5 U / μL M0273 NEB 

Uracil-DNA Glycosylase (UDG) M0280 NEB 

Velocity DNA polymerase 2 U/μL BIO-21098 Bioline 

XcoI, 20 U/μL R0146 NEB 

Zymolase 100T, 10 mg/mL Z1005 US biological 

 

 

2.10 Antibodies 

2.10.1 Primary antibodies 

Primary antibodies are diluted in either 3% BSA or skim dry milk in PBS-T containing 0.02% 

sodium azide and 0.001% Thimerosal. 
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Table 2.10 List of primary antibodies for Western blotting. 

Antigen Species Clone Dilution Order number Source 

Clb2 rabbit polyclonal 1:1000 sc-9071 Santa Cruz 

Biotechnology 
c-Myc mouse 9E10 1:1000 05-419 Millipore 
Pgk1 mouse 22C5D8 1:20000 459250 Invitrogen 
Rad53 mouse EL7.E1 1:1000 ab166859 Abcam 
Rnr1 rabbit polyclonal 1:60000 AS09576 Agrisera 
Rnr2 rabbit polyclonal 1:30000 AS09575 Agrisera 
Rnr3 rabbit polyclonal 1:1000 AS09574 Agrisera 
Sic1 guinea pig polyclonal  1:10000 - this study 
Tubulin/Rnr4 rat YL1/2 1:40000 92092402 Sigma 

 

2.10.2 Secondary antibodies 

All secondary antibodies are linked to horseradish peroxidase (HRP) and used in a concentration 

of 1:10000 diluted in 0.5% skim dry milk in PBS-T.  

Table 2.11 List of secondary antibodies for Western blotting. 

Antigen Species Conjugate Dilution Order number Source 

guinea pig IgG rabbit HRP 1:10000 A60-211P Bethyl Laboratories 

mouse IgG sheep HRP 1:10000 NA9310 GE Healthcare 

rabbit IgG donkey HRP 1:10000 NA934 GE Healthcare 

anti-rat IgG goat HRP 1:10000 401416 Calbiochem 

 

2.11 Buffers and solutions 

If not other mentioned buffers and solutions are done in H2O. 

 

Table 2.12 List of buffers and solutions. 

Buffer and solutions Composition 

APS 10% APS 

Ampicillin, 1000x 100 mg/mL ampicillin 

Buffer A 2% Triton X-100 

1% SDS 

100 mM NaCl 

10 mM Tris-Hcl pH 8.0 

1 mM EDTA pH 8.0 

Coomassie destaining solution II 10% acetic acid 

20% ethanol 

Coomassie fixing and destaining I solution 10% acetic acid  

40% ethanol 

Coomassie staining solution stock I 0.2% brilliant blue G in 90% ethanol  

Coomassie staining solution stock II 20% acetic acid 

EDTA, 0.5 M, pH 8.0 0.5 M EDTA in H2O, pH 8.0 

Elution buffer, pH 8.0 50 mM NaH2PO4 x H2O  

600 mM NaCl   

250 mM imidazole 

10 mM β-mercaptoethanol 

G418, 1000x 200 mg/mL geneticin 

GSD buffer 3x 335 mM DTT 

6.7% SDS  

33% glycerol 

tip of bromophenol blue  

few drops 1M Tris pH 6.  

GSD/TRIS buffer, 1x 2 volume GSD buffer, 3x 
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1 volume Tris unbuffered 

3 volumes H2O 

Kanamycin, 1000x 50 mg/mL kanamycin sulfate 

LiAc, 10x 1 M LiAc, pH 7.5 

Lysis buffer, pH 8.0 50 mM NaH2PO4 x H2O  

300 mM NaCl   

20 mM imidazole 

10 mM β-mercaptoethanol     

0.1% Tween-20  

1mM PMSF 

1 tablet cOmplete, EDTA free  

1 mg/mL Lysozyme 

Magnesium chloride, 1M 1 M magnesium chloride 

Nourseothricin, 1000x 100 mg/mL nouseothricin 

PBS, 10x 1.37 M NaCl 

27 mM KCl 

82 mM Na2HPO4 x 2 H2O 

15 mM KH2PO4 

PBS-T, 1x 1:10 dilution of 10x PBS in H2O 

0.05% Tween-20 

PEG3350, 50% 50% (w/v) PEG3350 

PMSF stock, 100x 0.2 M PMSF in isopropanol 

Running buffer, 10x 250 mM Tris 

1.9 M glycine 

10% SDS 

Salmon sperm 2 mg/mL salmon sperm 

10 mM Tris/HCl, pH 8.0 

1 mM EDTA 

Sodium citrate, 50 mM 50 mM sodium citrate 

SDS, 20% 20% SDS 

Separating gel buffer, 4x 1.5 M Tris/HCl pH 8.8 

TE, pH 7.5, 10x 1 M Tris/HCl 

10 mM EDTA 

Sodium azide, 1000x 20% sodium azide 

Stacking buffer, 4x 0.5 M Tris/HCl, pH 6.8 

TCA, 50% 50% (w/v) TCA 

Thimerosal, 1000x 1% thimerosal 

Washing buffer, pH 8.0 50 mM NaH2PO4 x H2O  

300 mM NaCl   

20 mM imidazole 

1mM PMSF 

Western blot blocking solution 3% skim dry milk in 1x PBS-T 

Western blot transfer buffer 25 mM Tris 

190 mM glycine 

20% (v/v) methanol 

YEX buffer 1.95 NaOH 

7.5% β-mercaptoethanol 

 

 

2.12 Media 

SD amino acid mix was prepared as described in (AMBERG et al. 2005). For the SGA screen, SD 

amino acid mix was prepared as described in (TONG AND BOONE 2006).  
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Table 2.13 List of media. 

Medium Composition 

CAN plates 0.67% Difco yeast nitrogen base without amino acids  

0.8 g/L arginine- amino acid dropout mix 

60 mg/L canavanine 

2% glucose 

2% agar-agar 

CAN plates + nourseothricin 0.17% yeast nitrogen base without amino acids and without ammonium 

sulfate 

1 g/L glutamic acid mono sodium salt hydrate 

0.8 g/L arginine- amino acid dropout mix 

60 mg/L canavanine 

100 μg/mL nourseothricin 

2% glucose 

2% agar-agar 

5-FOA plates 0.67% Difco yeast nitrogen base without amino acids  

0.8 g/L uracil- amino acid dropout mix 

50 mg/L uracil 

1 g/L 5-FOA 

2% glucose 

2% agar-agar 

GCR plates 0.67% Difco yeast nitrogen base without amino acids  

0.8 g/L arginine- uracil- amino acid dropout mix 

60 mg/L canavanine 

50 mg/L uracil 

1 g/L 5-FOA 

2% glucose 

2% agar-agar 

Minimal plates 0.67% Difco yeast nitrogen base without amino acids  

2% glucose 

2% agar-agar 

SGA diploid selection medium YPD plates 

+ 200 mg/L G418 

+ 100 mg/L nourseothricin 

SGA double mutant selection plates SGA haploid selection plates 

+ 1 g/L 5-FOA 

+ 100 mg/L nourseothricin 

+ 10 mg/L cycloheximide 

SGA haploid selection plates 0.17% Difco yeast nitrogen base without amino acids and ammonium 

sulfate 

1 g/L glutamic acid monosodium salt 

2 g/L leucine- dropout mix (TONG AND BOONE 2006) 

2% glucose 

200 mg/L G418 

2% Difco agar-agar 

SGA presporulation plates 3% Difco nutrient broth 

1% Bacto yeast extract 

5% glucose 

2% Difco agar-agar 

SGA de-condensation plates SGA haploid selection plates 

+ 100 mg/L nourseothricin 

SGA sporulation plates 1% potassium acetate 

0.1% Bacto yeast extract 

0.5 g/L glucose 

0.05 g amino acid supplement powder for sporulation (mix of 2 g histidine, 

10 g leucine, 2 g lysine and 2 g uracil) 

50 mg/L G418 

2% Difco agar-agar 

Sporulation medium, pH 7.0 1% potassium acetate 

0.19 g/L amino acid mix CSM  

Synthetic dropout (SD) medium 0.67% yeast nitrogen base without amino acids  

0.8 g/L amino acid dropout mix 
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2% glucose  

SD medium plates SD medium with 2% agar-agar 

SD medium for drugs 0.17% yeast nitrogen base without amino acids and without ammonium 

sulfate 

1 g/L glutamic acid mono sodium salt hydrate 

0.8 g/L amino acid dropout mix 

2% glucose 

SD medium plates for drugs SD medium for drugs with 2% agar-agar 

YPD 1% Bacto yeast extract  

2% Bacto peptone  

2% glucose 

YPD plates YPD with 2% agar-agar 

YPG plates 1% Bacto yeast extract 

2% Bacto peptone  

3% glycerol 

2% agar-agar 

 

2.13 E. coli strains 

Table 2.14 E. coli strains used in this work. 

Strain Genotype Order number Source 
BL21 (DE3) E. coli B F- dcm ompT hsdS(rb

-mb
-) galλ(DE3) 200131 Agilent  

TOP10F’ F´{lac Iq  Tn10  (TetR )} mcr A Δ (mrr-hsd RMS-mcr 

BC) Φ 80lac ZΔ M15 Δlac X74 rec A1 ara D139 Δ (ara-

leu )7697 gal U gal K rps L end A1 nup G 

C303003 Invitrogen 

 

2.14 S. cerevisiae strains 

For the SGA, the non-essential gene deletion collection TKY3503 (Transomic technologies) was 

used. Yeast strains from this collection correspond to the BY4742 background with the following 

genotype:  Matα his3Δ1 leu2Δ0 ura3Δ lys2Δ yfg::kanMX4. 

 

Table 2.15 S. cerevisiae strains used in this work. 

Name Relevant genotype Reference 

RDKY3686 Matα ura3-52 leu2∆1 trp1∆63 hom3-10 his3∆200 lys2-10A (AMIN et al. 2001) 
RDKY5964 Mata ura3-52 leu2∆1 trp1∆63 hom3-10 his3∆200 lys2-10A (HOMBAUER et al. 2011a) 

   

HHY6484 RDKY5964 MFA::klLEU2 (SCHMIDT et al. 2017) 

HHY6485 RDKY5964 hph.300lys2-10A CAN1::URA3 (SCHMIDT et al. 2017) 

HHY6486 RDKY5964 pMFA1-klLEU2.hph.300lys2-10A, can1::URA3 (SCHMIDT et al. 2017) 

HHY6487 RDKY5964 cyh2-Q38K (SCHMIDT et al. 2017) 

HHY6488 HHY6487 hom3-10.HIS3 (SCHMIDT et al. 2017) 

HHY6489 RDKY3686 pMFA1-klLEU2.hphNT1.lys2-10A, hom3-10.HIS3, cyh2-Q38K (SCHMIDT et al. 2017) 

HHY6490 HHY6489 MLH2.klURA3 (SCHMIDT et al. 2017) 

HHY5298 RDKY5964 cyh2 Q38K hom3-10.HIS3 pMFA1-klLEU2.hphNT1.lys2-10A 

MLH2.klURA3 POL1.natNT2 
(SCHMIDT et al. 2017) 

HHY5292 RDKY5964 cyh2 Q38K hom3-10.HIS3 pMFA1-klLEU2.hphNT1.lys2-10A 

MLH2.klURA3 pol1-L868M.natNT2 

(SCHMIDT et al. 2017) 

HHY5284 RDKY5964 cyh2 Q38K hom3-10.HIS3 pMFA1-klLEU2.hphNT1.lys2-10A 

MLH2.klURA3 pol2-M644G.natNT2 

(SCHMIDT et al. 2017) 

HHY5289 RDKY5964 cyh2 Q38K hom3-10.HIS3 pMFA1-klLEU2.hphNT1.lys2-10A 

MLH2.klURA3 pol3-L612M.natNT2 

(SCHMIDT et al. 2017) 

   

HHY6370 RDKY5964 met7::kanMX4 This study 
HHY6441 RDKY5964 kanMX4.pGPD-DUT1 met7::klTRP1 This study 
HHY6636 RDKY5964 rev3::natNT2 met7::klTRP1 This study 
HHY6650 RDKY3686 dut1-G82S This study 

HHY6707 RDKY5964 dut1-G82S This study 
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HHY1910 RDKY5964 rfa1::TRP1 pKU1-t48 (LEU2) (CHEN AND KOLODNER 

1999) 

   
HHY1794 RDKY5964 exo1::hphNT1 (SCHMIDT et al. 2017) 

HHY6372 RDKY5964 gln3::HIS3 (SCHMIDT et al. 2017) 

HHY6378 RDKY5964 rrm3::kanMX4 (SCHMIDT et al. 2017) 

HHY6374 RDKY5964 shm2::kanMX4 (SCHMIDT et al. 2017) 

HHY6376 RDKY5964 ura7::kanMX4 (SCHMIDT et al. 2017) 

   
HHY6425 RDKY5964 dun1::hphNT1 (SCHMIDT et al. 2017) 

HHY6517 HHY6425 gln3::HIS3 (SCHMIDT et al. 2017) 

HHY6519 HHY6425 ura7::kanMX4 (SCHMIDT et al. 2017) 

   
HHY5746 HHY1794 gln3::HIS3 (SCHMIDT et al. 2017) 

HHY5752 HHY1794 rrm3::kanMX4 (SCHMIDT et al. 2017) 

HHY6415 HHY1794 shm2::kanMX4 (SCHMIDT et al. 2017) 

HHY5743 HHY1794 ura7::kanMX4 (SCHMIDT et al. 2017) 

   
HHY6505 RDKY5964 msh2::HIS3 (SCHMIDT et al. 2017) 

HHY6507 RDKY5964 msh2::natNT2 gln3::HIS3 (SCHMIDT et al. 2017) 

HHY5596 RDKY5964 msh2::natNT2 rrm3::kanMX4 (SCHMIDT et al. 2017) 

HHY6509 RDKY5964 msh2::natNT2 shm2::kanMX4 (SCHMIDT et al. 2017) 

HHY5749 RDKY5964 msh2::natNT2 ura7::kanMX4 (SCHMIDT et al. 2017) 

   

HHY5195 RDKY5964 msh3::HIS3 (SCHMIDT et al. 2017) 

HHY6511 HHY5195 gln3::HIS3 (SCHMIDT et al. 2017) 

HHY2248 HHY5195 rrm3::kanMX4 (SCHMIDT et al. 2017) 

HHY6513 HHY5195 shm2::kanMX4 (SCHMIDT et al. 2017) 

HHY6515 HHY5195 ura7::kanMX4 (SCHMIDT et al. 2017) 

   

HHY780 RDKY5964 msh6::hphNT1 (SCHMIDT et al. 2017) 

HHY6419 HHY780 gln3::HIS3 (SCHMIDT et al. 2017) 

HHY2246 HHY780 rrm3::kanMX4 (SCHMIDT et al. 2017) 

HHY6421 HHY780 shm2::kanMX4 (SCHMIDT et al. 2017) 

HHY6423 HHY780 ura7::kanMX4 (SCHMIDT et al. 2017) 

   

HHY6252 RDKY5964 pol1-L868M.natNT2 (SCHMIDT et al. 2017) 

HHY6428 HHY6252 dun1::hphNT1 (SCHMIDT et al. 2017) 

HHY6379 HHY6252 exo1::hphNT1  (SCHMIDT et al. 2017) 

HHY6381 HHY6252 gln3::HIS3 (SCHMIDT et al. 2017) 

HHY6431 HHY6252 gln3::HIS3 dun1::hphNT1 (SCHMIDT et al. 2017) 

HHY6399 HHY6252 rrm3::kanMX4 (SCHMIDT et al. 2017) 

HHY6387 HHY6252 shm2::kanMX4 (SCHMIDT et al. 2017) 

HHY6393 HHY6252 ura7::kanMX4 (SCHMIDT et al. 2017) 

   

HHY6405 RDKY5964 pol2-04.natNT2 (SCHMIDT et al. 2017) 

HHY6429 HHY6405 dun1::hphNT1 (SCHMIDT et al. 2017) 

HHY6407 HHY6405 gln3::HIS3 (SCHMIDT et al. 2017) 

HHY6433 HHY6405 gln3::HIS3 dun1::hphNT1 (SCHMIDT et al. 2017) 

HHY6413 HHY6405 rrm3::kanMX4 (SCHMIDT et al. 2017) 

HHY6409 HHY6405 shm2::kanMX4 (SCHMIDT et al. 2017) 

HHY6411 HHY6405 ura7::kanMX4 (SCHMIDT et al. 2017) 

   

HHY1993 RDKY5964 pol2-M644G.natNT2 (SCHMIDT et al. 2017) 

HHY1947 HHY1993 exo1::hphNT1 (SCHMIDT et al. 2017) 

HHY6383 HHY1993 gln3::HIS3 (SCHMIDT et al. 2017) 

HHY6401 HHY1993 rrm3::kanMX4 (SCHMIDT et al. 2017) 

HHY6389 HHY1993 shm2::kanMX4 (SCHMIDT et al. 2017) 

HHY6395 HHY1993 ura7::kanMX4 (SCHMIDT et al. 2017) 

   

HHY1996 RDKY5964 pol3-L612M.natNT2 (SCHMIDT et al. 2017) 

HHY1943 HHY1996 exo1::hphNT1 (SCHMIDT et al. 2017) 

HHY6385 HHY1996 gln3::HIS3 (SCHMIDT et al. 2017) 

HHY6435 HHY1996 gln3::HIS3 dun1::hphNT1 (SCHMIDT et al. 2017) 

HHY6497 HHY1996 gln3::HIS3 rad30::hphNT1 (SCHMIDT et al. 2017) 
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HHY6501 HHY1996 gln3::HIS3 rev1::klTRP1 (SCHMIDT et al. 2017) 

HHY6163 HHY1996 gln3::HIS3 rev3::kanMX4 (SCHMIDT et al. 2017) 

HHY6403 HHY1996 rrm3::kanMX4 (SCHMIDT et al. 2017) 

HHY6391 HHY1996 shm2::kanMX4 (SCHMIDT et al. 2017) 

HHY6397 HHY1996 ura7::kanMX4 (SCHMIDT et al. 2017) 

HHY6437 HHY1996 ura7::kanMX4 dun1::hphNT1 (SCHMIDT et al. 2017) 

HHY6495 HHY1996 ura7::kanMX4 rad30::hphNT1 (SCHMIDT et al. 2017) 

HHY6503 HHY1996ura7::kanMX4 rev1::klTRP1 (SCHMIDT et al. 2017) 

HHY6499 HHY1996 ura7::kanMX4 rev3::hphNT1 (SCHMIDT et al. 2017) 

   

HHY6481 RDKY3686 pol3::hphNT1 + pHHB388 (pRS316-POL3) (SCHMIDT et al. 2017) 

HHY6482 HHY6481 ura7::kanMX4 (SCHMIDT et al. 2017) 

HHY6483 HHY6481 msh2::HIS3 (SCHMIDT et al. 2017) 

HHY6526 HHY6481 can1::klTRP1 (SCHMIDT et al. 2017) 

HHY6525 RDKY5964 pol3::hphNT1 + pHHB388 (pRS316-POL3) (SCHMIDT et al. 2017) 

HHY6528 HHY6525 CAN1.natNT2 (SCHMIDT et al. 2017) 

HHY6529 HHY6482 can1::klTRP1 (SCHMIDT et al. 2017) 

HHY6530 HHY6525 ura7::kanMX4 (SCHMIDT et al. 2017) 

HHY6531 HHY6531 CAN1.natNT2 (SCHMIDT et al. 2017) 

HHY6521 MATa/α ura3-52/ura3-52, leu2∆1/leu2∆1, trp1∆63/trp1∆63, hom3-10/hom3-10, 

his3∆200/his3∆200, lys2-10A/lys2-10A, pol3::hphNT1/pol3::hphNT1 + pHHB388 

(pRS316-POL3) 

(SCHMIDT et al. 2017) 

HHY6523 HHY6521 ura7::kanMX4/ura7::kanMX4 (SCHMIDT et al. 2017) 

HHY6533 HHY6521 can1::klTRP1/CAN1.natNT2 (SCHMIDT et al. 2017) 

HHY6535 HHY6521 can1::klTRP1/CAN1.natNT2 ura7::kanMX4/ura7::kanMX4 (SCHMIDT et al. 2017) 

   

HHY1941 RDKY3686 exo1::hphNT1 This study 

HHY6620 RDKY5964 lig4::HIS3 This study 

HHY6551 RDKY5964 rnr1::kanMX4 + pHHB560 (pRS316-RNR1) This study 

HHY6553 HHY6551 dun1::hphNT1 This study 

TSY2941 HHY6551 mrc1::natNT2 This study 

TSY2947 HHY6551 rad9::natNT2 This study 

HHY6214 HHY6551 exo1::hphNT1 This study 

HHY6555 HHY6551 exo1::hphNT1 lig4::HIS3 This study 

HHY6556 HHY6551 msh2::HIS3 This study 

HHY6558 HHY6551 msh3::HIS3 This study 

HHY6560 HHY6551 msh6::hphNT1 This study 

HHY6562 HHY6551 pol2-04.natNT2 This study 

HHY6566 HHY6551 pol3-01.natNT2 This study 

HHY6570 HHY6551 rnr3::hphNT1 This study 

   

HHY6572 RDKY5964 rnr1.HIS3 This study 

HHY6574 RDKY5964 rnr1-F15S.HIS3 This study 

HHY6578 RDKY5964 rnr1-D57N.HIS3 This study 

HHY6580 RDKY5964 rnr1-S242T.HIS3 This study 

HHY6582 RDKY5964 rnr1-K243E.HIS3 This study 

HHY6584 RDKY5964 rnr1-A245V.HIS3 This study 

HHY6586 RDKY5964 rnr1-R256H,Y779C.HIS3 This study 

HHY6588 RDKY5964 rnr1-I262V,N291D.HIS3 This study 

HHY6596 RDKY5964 rnr1-Y285C.HIS3 This study 

   

HHY6598 HHY1794 rnr1-F15S.HIS3 This study 

HHY6602 HHY1794 rnr1-D57N.HIS3 This study 

HHY6604 HHY1794 rnr1-S242T.HIS3 This study 

HHY6606 HHY1794 rnr1-A245V.HIS3 This study 

HHY6608 HHY1794 rnr1-R256H,Y779C.HIS3 This study 

HHY6610 HHY1794 rnr1-I262V,N291D.HIS3 This study 

HHY6618 HHY1794 rnr1-Y285C.HIS3 This study 

   

HHY6634 RDKY5964 rnr1-I262V,N291D.HIS3 ura3-52::URA3 This study 

   

RDKY6678 Mata ura3-52 leu2Δ1 trp1Δ63 his3Δ200 hom3-10 lys2ΔBgl ade2Δ1 ade8 

iYEL072W::hph can1::hisG yel072w::CAN1/URA3 

(PUTNAM et al. 2009) 

HHY6491 RDKY3686 iYEL072::hph can1::hisG yel072w::CAN1/URA3 (SCHMIDT et al. 2017) 

HHY6492 RDKY5964 iYEL072::hph can1::hisG yel072w::CAN1/URA3 (SCHMIDT et al. 2017) 

HHY6493 HHY6491 sml1::klTRP1 (SCHMIDT et al. 2017) 

HHY6494 HHY6492 bar1::loxP.klLEU2.loxP (SCHMIDT et al. 2017) 
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HHY6443 RDKY5964 iYEL072W::hph can1::hisG yel072w::CAN1/URA3 

bar1::loxP.klLEU2.loxP 

(SCHMIDT et al. 2017) 

HHY6537 RDKY3686 iYEL072W::hph can1::hisG yel072w::CAN1/URA3 

bar1::loxP.klLEU2.loxP 

(SCHMIDT et al. 2017) 

   

HHY6445 HHY6443 met7::kanMX4 This study 

HHY6447 HHY6443 met7::klTRP1 natNT2.pGPD-DUT1 This study 

HHY6449 HHY6443 met7::klTRP1 ung1::kanMX4 This study 

HHY6638 HHY6443 natNT2.pGPD-DUT1 This study 

HHY6451 HHY6443 ung1::kanMX4 This study 

HHY6640 HHY6443 met7::klTRP1 natNT2.pGPD-DUT1 ung1::kanMX4 This study 

HHY6642 HHY6443 natNT2.pGPD-met7ΔM This study 

HHY6644 HHY6443 met7-3Myc.klTRP1 This study 

HHY6646 HHY6443 dut1-G82S This study 

HHY6648 HHY6443 dut1-G82S ung1::kanMX4 This study 

HHY6713 HHY6443 dut1-G82S dcd1::natNT2 This study 

HHY6716 HHY6443 dcd1::natNT2 This study 

TSY534 HHY6443 natNT2.pSIC1-SIC1NTR(aa1-100)-3Myc-(GA)5-RMI1 This study 

   

RDKY3615 Mata ura3-52 leu2∆1 trp1∆63 his3∆200 lys2∆Bgl hom3-10 ade2∆1 ade8 

yel069c::URA3 

(CHEN AND KOLODNER 

1999) 

HHY6477 RDKY3615 met7::HIS3 This study 
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3 METHODS 

3.1 Molecular biological methods 

3.1.1 Agarose gel electrophoresis 

PCR products or restriction digests were separated according to their size by agarose gel 

electrophoresis using 0.8% - 1.5% agarose gels stained with GelRed (1:20000 diluted). Prior to 

loading, DNA samples were mixed with 6x loading buffer. 1 kb GeneRuler DNA Ladder was used 

as a reference for size estimation of separated DNA fragments. Electrophoresis was carried out in 

0.5 M TBE buffer in running chambers at constant voltage of 130 V. 

 

3.1.2 Polymerase chain reaction (PCR) 

To amplify specific sequences from genomic DNA, polymerase chain reaction (PCR) was used. For 

this, a reaction mix (Table 3.1) was pippeted into PCR stripes on ice, briefly mixed (vortex), spun 

down and transferred to the 95°C pre-heated PCR block. PCR run was run according to Table 3.2. 

 

Table 3.1 PCR reaction mix for one reaction. 

Reagent TAQ PCR [μL] Velocity PCR [μL] Phusion PCR [μL] 

TAQ DNA polymerase 0.25 - - 

Velocity DNA polymerase - 0.5 - 

Phusion DNA polymerase - - 0.5 

TAQ standard buffer, 10x 2.5 - - 

Hi-Fi buffer, 5x - 10 - 

Phusion HF or GC buffer, 10x - - 5 

dNTPs, 2 mM each 2.5 5 5 

DMSO - 1.5 1.5 

primer mix, 5 μM each 2.5 5 5 

genomic DNA 1 1 1 

dH2O 16.25 27 32 

total volume 25 50 50 

 

Table 3.2 PCR programs. 

 TAQ PCR Velocity or Phusion HF PCR 

Step# Temperature [°C] Time [min] Temperature [°C] Time [min] 

1 95 5 98 3 

2 95 1 98 1 

3 55 1 55 1 

4 72 1 / 1 kb length 72 1 / 1 kb length 

5 72 10 72 10 

6 4 ∞ 4 ∞ 

Steps 2 – 4 were repeated for 30 cycles.  

 

3.1.3 Colony polymerase chain reaction 

Colony-PCR was used to test yeast transformants for the presence of the selection cassette at the 

expected genomic integration site. For this, yeast was transferred to PCR stripes, microwaved for 

90 sec and PCR reaction components (Table 3.3) were added on ice. PCR was run as listed in 

Table 3.4. 
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Table 3.3 Colony-PCR reaction mix 

Reagent Colony-PCR [μL] 

TAQ DNA polymerase 0.25 

TAQ standard buffer, 10x 2.5 

dNTPs, 2 mM each 2.5 

primer mix, 5 μM each 2.5 

colony - 

dH2O 17.25 

total volume 25 

 

Table 3.4 Colony-PCR program. 

Step# Temperature [°C] Time [min] 

1 95 5 

2 95 0.5 

3 55 0.5 

4 72 1 

5 72 10 

6 4 ∞ 

Steps 2 – 4 were repeated for 30 cycles.  

 

3.1.4 Cloning 

To clone PCR products or subclone plasmid fragments into plasmids, restriction digest of DNA was 

performed at 37 °C for either 2 h or overnight. Reaction buffer was used as suggested by the 

manufacturer. The composition of the reaction mixture is listed in Table 3.5. 

 

Table 3.5 Composition of restriction digestion mixture. 

Reagent Volume [μL] 

PCR product / mini prep 50 / 10 

restriction enzyme A 0.5 

restriction enzyme B 0.5 

Buffer X, 10x 10 

dH2O up to 100 

total volume 100 

 

A small aliquot of the restriction digest was first checked by agarose gel electrophoresis, and then 

the remaining sample was loaded on a preparative agarose gel. Fragments of correct size were cut 

and extracted from the agarose using QIAquick Gel Extraction Kit following manufacturer’s 

protocol. Purified fragments were run on an agarose gel to determine the volumes needed for a 3:1 

ratio of insert to backbone in the ligation reaction. Ligation reaction was performed either for 1 h at 

RT or at 16 °C, overnight. The composition of the ligation reaction mixture is listed in Table 3.6. For 

every ligation reaction, a re-ligation control missing the insert was run in parallel under same 

conditions. Next, 3 μL of ligation reaction mix was transformed in electrocompetent bacteria as 

described in 3.1.6. Cultures of transformants were grown at 37 °C, overnight and plasmids were 

purified using QIAprep Spin Miniprep Kit following manufacturer’s protocol. Presence of insert was 

checked by restriction test digestion and positive mini preps were sequenced (GATC). 
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Table 3.6 Composition of the ligation reaction mixture. 

Reagent Volume [μL] 

T4 ligase 1 

T4 ligase buffer, 10x 2 

insert x 

backbone y 

dH2O up to 20 

total volume 20 

 

3.1.5 Site-directed mutagenesis 

Plasmids containing specific point mutations were frequently generated by site-directed 

mutagenesis. Mutagenic primers were designed using QuikChange® Primer Design Program. 

Reagents for site-directed mutagenesis PCR were pipetted on ice as listed in Table 3.7 and PCR 

was run as depicted in Table 3.8. 

 

Table 3.7 Site-directed mutagenesis PCR mix. 

Reagent Site-directed mutagenesis PCR [μL] 

Accuprime Pfx DNA polymerase 1 

Accuprime Pfx buffer, 10x 5 

primer A, 100 μM 1 

primer B, 100 μM 1 

plasmid DNA (mini prep) 1 

dH2O 41 

total volume 50 

 

Table 3.8 Site-directed mutagenesis PCR program. 

Step# Temperature [°C] Time [min] 

1 95 5 

2 95 0.5 

3 55 1 

4 68 1.5 / 1 kb plasmid DNA 

6 4 ∞ 

Steps 2 – 4 were repeated for 18 cycles.  

 

Next, 10 μL PCR reaction was digested with 1 μL DpnI in a total volume of 50 μL 1x Cutsmart 

buffer (50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, 100 μg/ml BSA, 

pH 7.9) for 1 h at 37 °C. Finally, 3 μL DpnI-treated sample was transformed into electrocompetent 

cells as described in 3.1.6. Presence of the desired point mutation and absence of additional 

mutations were confirmed by sequencing (GATC). 

 

3.1.6 Transformation of E. coli 

Thawed electrocompetent E. coli TOP10F’ were diluted 1:5 with cold dH2O and 3 μL of ligation or 

site-directed mutagenesis reactions were added to 100 μL bacteria. The mix was incubated for 15 

min on ice, transferred to a cuvette and electroporated at 2.48 V for 4 sec. Cells were resuspended 

in 1 mL LB medium and incubated for 1 h at 37 °C, shaking. Afterwards, cells were spun down, 

plated on solid LB medium containing the corresponding antibiotic and grown at 37 °C, overnight.  



METHODS 

44 
 

To retransform plasmid mini preps into bacteria, chemical competent E. coli were thawed on ice. 

0.5 to 1 μL mini prep was added to competent cells and mix incubated on ice for 10 min. Cells were 

heat-shocked at 42 °C for 35 sec and incubated on ice for 5 min. Cells were resuspended in 1 mL 

LB medium and incubated at 37 °C for 1 h, shaking. Afterwards, cells were spun down, plated 

irregularly on solid LB medium containing the corresponding antibiotic and grown at 37 °C, 

overnight. 

 

3.2 Protein biochemical methods 

3.2.1 Yeast crude cell lysates 

For yeast cell crude cell lysates, 500 μL overnight culture was added to 5 mL fresh medium and 

grown for 3 h at 30 °C, shaking. Cells were pelleted (3000 rpm, 10 min, RT), resuspended in 150 

μL YEX buffer and transferred to a pre-chilled 1.5 mL reaction tube. Samples were incubated on 

ice for 10 min. Next, 150 μL 50% TCA was added to each sample. To mix the sample, the sample 

was vortexed and again incubated for 10 min on ice. To precipitate proteins, sample was spun 

down (14000 rpm, 10 min, 4°C) and the pellet was resuspended in 100 μL 1x GSD+Tris buffer. 

Samples were boiled for 5 min at 95 °C, spun down and either loaded on an SDS-PAGE gel or 

stored at -20 °C.  

 

3.2.2 SDS polyacrylamide gel electrophoresis 

Sodiumdodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate 

proteins according to their molecular weight. Yeast crude protein lysates were boiled for 5 min at 

95 °C, spun down and loaded onto the prepared 7, 8, 10 or 12% SDS polyacrylamide gel (Table 

3.9) or commercial 4-15% Mini-PROTEAN TGX gels. SDS-PAGE was run in 1x SDS running buffer 

at 80 V for approximately 20 min and then at 200 V until the running front reached the bottom of the 

gel. For protein size estimation, a prestained Precision Plus Protein™ Dual Color Standards protein 

marker was run on each gel. 

 

Table 3.9 SDS-PAGE recipe for one SDS-PAGE gel. 

Reagent Separating gel Staking gel 

 7% 8% 10% 12% 5% 

dH20 5.65 5.4 4.9 4.4 3.125 

separating buffer 2.5 2.5 2.5 2.5 0 

stacking buffer 0 0 0 0 1.25 

SDS, 10% 0.1 0.1 0.1 0.1 0.05 

Acrylamide-Bis, 40% 1.75 2.0 2.5 3 0.625 

APS, 10% 0,03 0.03 0,03 0.03 0.015 

TEMED 0.015 0.015 0.015 0.015 0.0075 

 

3.2.3 Coomassie staining 

To visualize proteins with Coomassie brilliant blue G250, the SDS-PAGE gel was first incubated in 

fixing solution for 30 min, RT, shaking. Next, the gel was stained with Coomassie staining solution 

(a one to one mixture of stock solution I and II) for 20 min, RT, shaking. Afterwards, the gel was 
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destained in destaining solution I for 30 sec to 5 min and destainig solution II as long as needed. 

The destained gel was washed with dH2O twice and imaged using a scanner.  

 

3.2.4 Western blot 

To transfer proteins present in the SDS-PAGE gel on a PVDF membrane a wet blotting system 

(Bio-Rad) was used. First, the PVDF membrane was activated with methanol. Next, the blotting 

cassette including sponges (one on each side), Whatman 3M paper (two on each side), the 

separating gel and the PVDF membrane was assembled and inserted in the blotting system.  

Transfer was performed for 1 to 4 h at 350 mA. After disassembling the apparatus, the membrane 

was washed with PBS-T once and blocked with in 3% milk dissolved in PBS-T for 1 h at RT with 

shaking. The membrane was washed once with PBS-T and incubated with the diluted primary 

antibody in either 3% milk or 3% BSA in PBS-T for 1 h at RT or overnight at 4 °C. After washing the 

membrane with PBS-T for 5 min at RT (repeat step three-times), the membrane was incubated with 

the secondary antibody coupled to horseradish peroxidase (HRP) in 0.5% milk diluted in PBS-T for 

1 h at RT. Next, the membrane was again washed with PBS-T for 10 min at RT (repeat step three-

times) and then incubated with Immobilon Western Chemiluminscent HRP substrate and imaged 

using Fusion Solo S System or Super RX-N Fuji medical x-ray films and an Optimax TR X-ray film 

processor. All antibodies used for Western blot analysis (including used dilutions) are listed in 

Table 2.10 and 2.11. 

 

3.2.5 Sic1 antibody generation 

To raise antibodies against yeast Sic1 in guinea pigs, first, 6xHis-tagged full-length Sic1 was 

expressed from pET28c-Sic1 (kind gift from Dr. Gislene Pereira) in E. coli BL21 (DE3) and purified 

using Ni-NTA agarose affinity purification. For this, the overnight culture was diluted 1:50 in 1 L 

LB+Kan and growth at 37 °C, shaking (230 rpm) was followed by measuring OD595. At an OD595 of 

0.8 Sic1 expression was induced by addition of IPTG (cfinal = 1mM). After 4 h of incubation at 37 °C, 

230 rpm, the culture was spun down by centrifugation in a Beckman centrifuge (JA-10 rotor, 

5000rpm, 15 min, 4 °C) and the mass of the wet pellet was measured. Pellets were resuspended in 

PBS, transferred in one 50 mL Falcon tubes and centrifuged again (4000 rpm, 15 min, 4 °). Cell 

pellet was resuspended in lysis buffer, lysozyme was added to a final concentration of 1 mg/mL 

and sample was incubated for 30 min on ice. Next, the sample was sonicated on ice for six 10 sec 

bursts with 1 min cooling period between each burst. The lysate was transferred to a centrifugation 

flask and centrifuged at 10000 x g for 30 min at 4 °C to pellet cellular debris. The supernatant was 

transferred to a 50 mL Falcon tube and magnesium chloride and ATP was added to the 

supernatant to a final concentration of 10 mM and 2 mM, respectively. 2 mL 50% Ni-NTA slurry 

was added to a 50 mL Falcon tube and washed twice with 1 mL lysis buffer (1500 rpm, 4 °C, 5 

min). All subsequent steps are carried out in the cold room. The supernatant was added to the 

prepared Ni-NTA slurry and mixed gently on a rotary wheel for 2 h at 4 °C. The lysate Ni-NTA 

mixture was loaded into a PolyPrep® Chromatograhy column, the bottom cap was removed and 

flow through was collected. Column was washed with 4 mL wash buffer, twice and wash fractions 
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were collected. Finally, Ni-NTA-bound proteins were eluted by adding 8 times 250 μL elution buffer. 

All eluates were collected in individual tubes and analyzed by SDS-PAGE followed by Coomassie 

staining. The concentration of purified Sic1 in each eluate was estimated using a BSA standard. 

The different steps of the Ni-NTA affinity purification of 6xHis-Sic1 is shown in Fig. 3.1A. At the 

DKFZ core facility for monoclonal antibodies, two guinea pigs were immunized with 6xHis-Sic1. 

Specificity of serum was tested by immunoblotting (Fig. 3.3B). 

 

Fig. 3.1 Sic1 purification and α-Sic1 serum test. 
(A) Proteins in lysate, flow through, washes and eluate 3 (the most concentrated eluate) were separated on a 

12% SDS-PAGE and stained with Coomassie. (B) α-factor release experiment of TSY534 to test for specificity 

of the α-Sic1 serum. Cells were arrested in G1 by α-factor and released in fresh medium. Samples were taken 

every 15 min. The α-Sic1 serum recognizes Sic1 (1), the Sic1-NTR-Rmi1 fusion protein (2) expressed under 

the control of the Sic1 promoter, as well as one unspecific band (*). Clb2 was used as G2 marker and Pgk1 

was used as loading control. Cropping of the image is shown as dotted lane. 

 

3.3 S. cerevisiae methods 

3.3.1 Growth conditions 

S. cerevisiae strains were grown at 30°C either in yeast extract-peptone-dextrose (YPD) media, or 

in synthetic dropout (SD) media. For plates, media contained 2% agar-agar. Yeast extract-peptone-

glycerol (YPG) media was used to test for petite phenotype (dysfunctional mitochondria). Mutator 

plates and growth medium used to measure mutation rates in strains with plasmid-borne rnr1 

alleles were prepared as described above but lacking leucine (Leu) to select for the rnr1 plasmid 

(ARS-CEN, LEU2). Antibiotics were used at the following final concentrations (unless otherwise 

specified): 200 μg/mL geneticin (G418), 300 μg/mL hygromycin B (hph), 100 μg/mL nourseothricin 

(nat) and 10 μg/mL cycloheximide. The DNA damaging agents Hydroxyurea (HU) and Phleomycin 

from Streptomyces verticillus were used in the indicated concentrations in YPD medium. 
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3.3.2 Generation of competent yeast cells 

To generate competent yeast cells, 2 mL of a saturated overnight culture was added to 50 mL fresh 

media and incubated for 4 h at 30 °C with shaking. Cells were pelleted (3000 rpm, 10 min, RT), 

washed once with 1x LiAc/TE buffer and resuspended in 600 μL LiAc/TE. Cells were incubated at 

30 °C in a shaking incubator for 15 min and stored up to one week at 4 °C. 

 

3.3.3 Yeast transformation 

To transform a PCR product or a plasmid into competent yeast cells, competent cells were 

pelleted. DNA, 40% PEG, 10x LiAc and salmon sperm was added to the pelleted cells (Table 3.10). 

Transformation mix was resuspended and incubated for 30 min at 30 °C followed by 20 min at 42 

°C. Cells were washed once with sterile dH2O and plated on YPD or drop-out plates. In case of a 

transformation of an antibiotic resistance cassette as selection marker, cells were replica plated 

onto an YPD plate containing the antibiotic next day. Alternatively, cells were directly resuspended 

in 5 mL liquid YPD after the transformation, grown for 5 h at 30 °C and plated on YPD containing 

the antibiotic.   

 

Table 3.10 Yeast transformation mix. 

Reagents PCR product [μL] Plasmid [μL] 

competent cells 200 30 

PCR product 25 - 

plasmid mini prep - 0.5 - 1 

PEG3350, 50% w/v 240 60 

LiAc, 1M 36 9 

salmon sperm, 2mg/mL 25 5 

 

3.3.4 Sporulation and random spore analysis 

To obtain diverse genetically modified yeast strain combinations yeast mating followed by random 

spore isolation was used. Mata and Matα haploid yeast cells were mated and diploids were 

selected either following auxotrophic and resistance markers or by testing for mating type with 

mating type tester strains. 1 mL of the diploid overnight culture was washed once with dH2O and 

resuspendend in 3 mL sporulation medium. Cells were incubated at 30 °C with shaking for 5-7 

days, and sporulation was checked visually using light microscopy. To purify spores, 1 mL 

sporulated culture was pelleted. Cells were resuspended in 40 μL zymolase (c = 0.5 mg/mL) and 

incubated at 30 °C for 30 min. 500 μL sterile dH2O was added to the sample and cells were 

pelleted. 70 μL dH2O was added to the sample and the sample was subsequently vortexed in a 

disruptor genie for 5 min, RT.  Supernatant was removed using vacuum and cells were washed 6 

times with 1 mL dH2O. Finally, 1 mL dH2O containing 0.01% NP-40 was added to the sample and 

cells were vortexed for 1 min, RT. Depending on the sporulation efficiency different volumes were 

plated on selection medium plates. Purified spores were patched on YPD agar and tested for the 

presence of auxotrophic/drug resistance markers linked to specific genetic modifications according 

to the desired genotype. 
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3.3.5 α-factor arrest and release 

α-factor arrest and release experiments were performed in a bar1Δ background. Cells were grown 

in YPD overnight. The logarithmically growing control cultures were prepared as described in 

(3.2.1). To arrest cells in G1 with α-factor, 2 mL of the overnight culture was washed with sterile 

water twice and then resuspended in 20 mL YPD medium containing 0.1 μg/mL α-factor followed 

by incubation at 30 °C for 3 h with shaking. Next, cells were washed twice with sterile water, 

released in 20 mL YPD medium containing 15 μg/mL nocodazole and grown at 30 °C with shaking. 

Samples for DNA content analysis and cell lysates were taken every 10 min. Cell cycle progression 

was analyzed by DNA content using flow cytometry and by SDS-PAGE/immunoblotting. 

 

3.3.6 Spotting on solid media 

Proliferation of different yeast strains was compared using the “spotting assay” in which serial 

dilutions of a yeast culture are spotted in a solid media agar plate. Yeast cultures were grown 

overnight in YPD. Next day, cultures were normalized to the lowest OD595 and spotted in 10-fold 

serial dilution on solid YPD plates, YPG plates and on YPD plates containing phleomycin from 

Streptomyces verticillus in the indicated concentration. Plates were incubated at 30 °C and imaged 

using the GelDoc system. 

 

3.3.7 Proliferation assay 

Saturated overnight cultures were diluted to OD600 = 0.1 in fresh YPD. Growth at 30 °C was 

followed by OD600 measurement every hour. For each genotype at least two independent isolates 

were used and determination were done at least in triplicates. The OD600 mean with standard 

deviation was plotted in a log2 scale against incubation time. 

 

3.3.8 DNA content analysis 

For DNA content analysis, saturated overnight cultures were diluted 1:20 in fresh YPD and grown 

for 3 h at 30 °C with shaking. 200 μL culture aliquot was washed with cold dH2O. Cells were 

resuspended in 300 μL cold dH2O and transferred to a 14 mL culture tube. While constantly 

vortexing, cells were fixed by adding 700 μL cold absolute ethanol. Fixed cells were incubated for 1 

h at RT and then either stored at 4 °C or further processed. To prepare cells for DNA content 

analysis, cells were resuspended in 50 mM sodium citrate buffer and sonicated (5 pulses, 1 sec 

break; 30% output). Samples were treated with 1 mg/mL proteinase K and 0.25 mg/mL 

ribonuclease A in 50 mM sodium citrate overnight at 37 °C. Next day, cells were pelleted, 

resuspended in 50 mM sodium citrate containing 1 μM sytox green and incubated in the dark at RT 

for at least 1 h. DNA content was measured at FACS CantoII. 30000 events were recorded per 

sample. Data was analyzed using FlowJo and the percentage of cells in S phase was determined 

using FlowJo cell cycle analysis plug-in. 
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3.3.9 Purification of genomic DNA 

Genomic DNA was prepared either using Qiagen Puregene Yeast / Bact. Kit B following 

manufacturer’s protocol or using phenol-chloroform extraction (HOFFMAN AND WINSTON 1987). For 

the latter, a saturated 5 mL yeast overnight culture was spun down and resuspended in 200 μL 

buffer A. 200 μL TE was added and mixture was transferred to 2 mL safe-lock reaction tube 

containing 400 μL glass beads. In the fume hood, 200 μL phenol-chloroform-isoamyl alcohol 

(25:24:1) was added to the sample, followed by vortexing for 3 min at RT using a disrupter genie. 

Samples were centrifuged (14000 rpm, 10 min, 4 °C) and 50 μL of the upper aqueous phase, 

which contains the genomic DNA, was transferred to a fresh 1.5 mL reaction tube.  

 

3.3.10 Plasmid rescue from yeast cells 

For plasmid rescue from yeast cells, DNA was purified as described in 3.3.9, but instead of 50 μL 

300 μL of the DNA containing aqueous phase was transferred to a new 1.5 reaction tube. To 

precipitate DNA, 1 mL 96% ethanol was added, the sample mixed by inverting the tube and 

centrifuged at 14000 rpm for 2 min. The supernatant was discarded and pellet resuspended in 400 

μL TE. Next, 15 μL 3 M sodium acetate, pH 5.2 was added to the sample, mixed (vortex), followed 

by the addition of 1 mL 96% ethanol and vortexing. Sample was centrifuged at 14000 rpm for 2 

min. The supernatant was removed carefully and pellet air-dried for 10 min. DNA was resuspended 

in 50 μL TE and either incubated at 65 °C for 1 h or at RT, overnight. Finally, 3 μL DNA was 

electroporated into electrocompetent TOP10F’ following protocol 3.1.6. 

 

3.3.11 Uracil accumulation assay 

Uracil accumulation assay was mainly done as described (SEIPLE et al. 2006). Genomic DNA was 

isolated from logarithmic cultures using Puregene Yeast / Bact. Kit B. Genomic DNA was incubated 

overnight at 37 °C in the presence or absence of 10 U uracil DNA glycosylase from E. coli (UDG) 

and 20 U human AP endonuclease (APE I) in 1x NEBuffer 4 (50 mM potassium acetate, 20 mM 

Tris-acetate, 10 mM magnesium acetate, 1 mM DTT, pH 7.9). DNA was precipitated and loaded on 

a 0.8% agarose gel stained with GelRed. Images were taken using the GelDoc system. 

 

3.3.12 Determination of NTP and dNTP pools 

NTP and dNTPs were measured in Dr. Chabes lab as described in (RENTOFT et al. 2016; SCHMIDT 

et al. 2017). 

 

3.3.13 Synthetic lethal interaction with polymerase mutants by plasmid shuffling 

To test for potential lethal interactions between ura7Δ and the DNA proofreading-deficient pol3-01 

allele, plasmid shuffling was performed. For this, first the POL3 vectors were cloned. The POL3 

gene, including 1 kb upstream and 200 bp downstream of POL3, was amplified from genomic DNA 

with primers HHP2797 and HHP2798, introducing a NotI and a SmaI sites to clone the amplified 

fragment into pRS315 and pRS316 (SIKORSKI AND HIETER 1989) to generate pHHB351 (pRS315-
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POL3) and pHHB388 (pRS316-POL3), respectively. To generate pRS315-pol3-01, plasmids 

RDK3097 (DATTA et al. 2000) and pHHB351 were digested with NcoI and BglII. The 2015 bp pol3 

fragment of RDK3097 plasmid containing D321A and E323A mutations, and the 8479 bp fragment 

of pHHB351 were gel extracted and ligated to generate pHHB396 (pRS315-pol3-01). All plasmid 

inserts and junctions were sequenced. Next, the strains used for the DNA polymerase plasmid 

shuffling experiments were generated by mating RDKY3686 and RDKY5964. In this diploid wild-

type strain an hphNT1 cassette (amplified from pFA6a-hphNT1) was used to replace one of the two 

POL3 alleles. Next, strains were transformed with pHHB388 (pRS316-POL3) and sporulated to 

generate HHY6481. In HHY6481, URA7 was deleted with a kanMX4 cassette (amplified from 

pFA6a-kanMX4) and MSH2 with a HIS3 cassette (amplified from pRS303) to generate HHY6482 

and HHY6483, respectively. HHY6481, HHY6482 and HHY6483 were transformed with pHHB351 

and pHHB396. To check for synthetic lethality, transformants (Ura+Leu+) were streaked on 5-FOA 

plates (to select for the loss of WT-POL3-URA3 plasmid) and in SD media lacking Ura and Leu (as 

control). The msh2Δ pol3Δ strain (HHY6483) transformed with pHHB396 (pRS315-pol3-01) was 

used as a positive control for a synthetic lethal interaction (TRAN et al. 1999). Strains were imaged 

after 3 days of growth with a GelDoc system. Homozygous diploid strains HHY6521 and HHY6523 

were generated by mating and used for plasmid shuffling as described above. 

 

3.3.14 Synthetic lethal interactions between rnr1 mutants and DNA replication fidelity or 

checkpoint-compromised mutants by plasmid shuffling 

To investigate genetic interactions between rnr1- and replication fidelity or checkpoint-

compromised mutants by plasmid shuffling, different plasmid shuffling queries were generated by 

mating. All these queries lack the essential RNR1 gene, but are complemented by a low copy 

plasmid expressing WT-RNR1 (pHHB560, pRS316-RNR1) in addition to the indicated additional 

gene deletion/mutation. Plasmids  either expressing the WT-RNR1 or mutant rnr1 alleles (ARSH4-

CEN6, LEU2) were transformed into the query strains. Overnight cultures were spotted in serial 

dilutions on media lacking Leu, in the presence or absence of 5-FOA. Plates were incubated for 4 

days at 30 °C, imaged and scored visually.  

 

3.3.15 Determination of mutation rates in haploid cells 

Mutation rates for the CAN1 inactivation assay, the lys2-10A and hom3-10 frameshift reversion 

assay and the standard and post-duplication gross-chromosomal rearrangement (GCR) assay 

were measured by fluctuation analysis as described previously (MARSISCHKY et al. 1996; AMIN et al. 

2001; PUTNAM AND KOLODNER 2010). Mutation rates were determined based on two biological 

isolates and at least 14 independent cultures. 95% confidence intervals were calculated for all 

fluctuation tests. 
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3.3.16 Determination of mutation rates in diploid cells 

CAN1 inactivation rates in diploid strains were determined by fluctuation analysis in HHY6533 and 

HHY6535 strains after plasmid shuffling as previously described (HERR et al. 2014). Both, 

HHY6533 and HHY6535 were transformed with either pHHB351 (pRS315-POL3) or pHHB396 

(pRS315-pol3-01). The transformants were streaked out for single colonies on Leu- medium 

containing 5-FAO and nat to select for loss of the plasmid expressing WT-POL3 (pHHB388, 

pRS316-POL3). Mutation rates for the CAN1 inactivation assay were determined by fluctuation 

analysis as previously described with the modification that cells were grown in YPD media 

containing nat, plated on YPD containing nat and or CAN1 inactivation assay plates containing nat. 

Each mutation rate was determined by using two biological isolates and at least 14 independent 

cultures. 

 

3.3.17 CAN1 and URA3 mutation spectra analysis 

To determine CAN1 mutation spectra in different yeast genetic backgrounds, individual colonies 

were patched on YPD and replicated on CAN1 mutator plates. CanR clones were re-streaked on 

SD plates containing canavanine and single independent colonies were used for genomic DNA 

isolation. CAN1 gene was amplified with Phusion High-Fidelity DNA polymerase using primers 

HHP507 and HHP508. PCR product was checked by agarose gel electrophoresis and sequenced 

with primers HHP2973 and HHP2974 by GATC. Sequences were analyzed using Lasergene 12 (or 

more recently, Lasergene 15) and mutations were annotated in the CAN1 sequence. A mutational 

hotspot was defined as a specific mutation found in more than 5% of all sequenced CanR clones of 

the genotype. Mutations rates for specific positions were calculated by multiplying the overall CanR 

mutation rate of the strain with the percentage of the specific mutation relative to the overall 

observed mutations. Mutation spectra distributions and mutational hotspots were compared with 

Fisher’s exact test in R. 

To determine the URA3 mutation spectrum of the rnr1-I262V, N291D mutant, two isogenic strains 

(HHY6634 and HHY6635) were generated, in which the ura3-52 allele was replaced by a WT-

URA3 gene by transforming an URA3 cassette lacking the ATG, amplified from pRS306 with 

primers HHP2876 and HHP2877. Next, individual colonies were patched on YPD and replica 

plated on 5-FOA containing plates. 5-FOAR colonies were re-streaked on 5-FOA plates. Single 5-

FOAR colonies were used for genomic DNA isolation. The URA3 gene was amplified with Phusion 

High-Fidelity DNA polymerase using primers HHP2197 and HHP2198 and sequenced with primers 

HHP4105 and HHP2947 by GATC. Sequences were analyzed using Lasergene 12 (or 15) and 

mutations were annotated in the URA3 sequence. URA3 spectrum was compared to WT URA3 

mutation spectrum reported by (LANG AND MURRAY 2008) using Fisher’s exact test in R.  

 

3.3.18 Strain construction 

Gene deletions and gene-tagging were performed using standard PCR-based recombination 

methods, followed by confirmation by PCR (WACH et al. 1994; JANKE et al. 2004). Alternatively, 

strains carrying combination of different genetic alterations were generated by mating and 
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sporulation as described in 3.3.4. Correct insertion of tags, promoters or point mutations, as well as 

absence of additional unwanted mutations, were confirmed by sequencing.  

To generate HHY6642, which overexpresses the cytoplasmic met7ΔM allele that lacks the 

mitochondrial leader sequence (DESOUZA et al. 2000), a constitutive GPD promoter was introduced 

directly upstream of MET7 methionine 63 in HHY6443 using PCR-based recombination method 

with pYM-N15 (JANKE et al. 2004) as PCR template and primers HHP2657 and HHP2801. 

Promoter and junction were confirmed by sequencing. 

Specific mutations were introduced by pop-in/pop-out strategy (polymerase alleles and rnr1 alleles) 

or PCR-based recombination methods (cyh2-Q38K) and the presence of the desired mutations, as 

well as the absence of additional mutations, were verified by sequencing.  

DNA Polymerase active-site mutations: pol2-M644G (PURSELL et al. 2007) and pol3-L612M (LI et 

al. 2005) were introduced in RDKY5964 by pop-in/pop-out strategy as previously described in 

(HOMBAUER et al. 2011a). The pol1-L868M mutation was introduced in RDKY5964 following the 

same strategy, but with BamHI linearized plasmid pHHB97. pHHB97 was generated by site-

directed mutagenesis using primers HHP1276 and HHP1277 and pRS306-POL1 as DNA template, 

which contains the full-length wild-type POL1 gene, including 1 kb of the 5'-UTR and 738 bp of the 

3'-UTR, cloned in between the KpnI and SacII sites of pRS306. 

To generate strains expressing dut1-1 mutant allele integrated at the chromosomal DUT1 locus, 

the DUT1 gene, including 1 kb upstream and 752 nt downstream of DUT1 was amplified with 

primers HHP4196 and HHP4197 from genomic DNA isolated from RDKY5964. The introduced 

BamHI site in combination with an XhoI site downstream of DUT1 was used to clone the amplified 

fragment into pRS306 (SIKORSKI AND HIETER 1989) to generate pHHB1093 (pRS306-DUT1). The 

dut1-G82S mutation (GUILLET et al. 2006) was introduced in pHHB1093 by site-directed 

mutagenesis using primers HHP4198 and HHP4199 to generate pHHB1094 (pRS306-dut1-1). 

Next, the HindIII linearized pHHB1094 was used to introduce the dut1-1 allele (dut1-G82S) at the 

chromosomal DUT1 locus of RDKY3686 by pop-in/pop-out strategy generating HHY6650. The 

presence of the desired dut1-G82S mutation, as well as the absence of unwanted mutations, was 

confirmed by sequencing. Next, HHY6650 was crossed against HHY6441 and HHY6451 to 

generate HHY6707 and HHY6646, respectively.  

To integrate rnr1 alleles into the RNR1 chromosomal locus by pop-in/pop-out strategy, first the 

RNR1 gene (including promoter and 3’ UTR) was amplified from genomic DNA with primers 

HHP1100 and HHP2976, digested with KpnI and partially with BglII, gel extracted and cloned into 

pRS306 (SIKORSKI AND HIETER 1989) to generate pHHB424 (pRS306-RNR1). pHHB424 contains 

the WT-RNR1 gene, 786 nt of the promoter and 135 nt downstream of the RNR1 STOP codon. 

Second, the desired rnr1 mutations were introduced using site-directed mutagenesis or subcloning. 

The resulting integrative plasmids encoding for the specific rnr1 mutations were linearized with 

BglII or with Bsu36I in case of pHHB718 and pHHB752 prior to transformation. To mark the mutant 

rnr1 alleles a HIS3 cassette (amplified from pRS303 (SIKORSKI AND HIETER 1989) with primers 

HHP3700 and HHP3701) was integrated 232 nt downstream of the RNR1 STOP codon.  
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3.3.19 Strain construction post-GCR 

The post-duplication GCR strain HHY6443 was generated in three steps. First, RDKY6678 

(PUTNAM et al. 2009) containing the post-duplication gross chromosomal rearrangement reporter 

was crossed against RDKY3686 (AMIN et al. 2001) containing the lys2-10A allele to generate 

HHY6491 and HHY6492. Next, a TRP1 cassette from Kluyveromyces lactis (klTRP1) was amplified 

from pYM22 (JANKE et al. 2004) and introduced at the SML1 locus in HHY6491 to generate 

HHY6493. In parallel, a LEU2 cassette from Kluyveromyces lactis (klLEU2) flanked by loxP sites 

was amplified from pUG73 (GUELDENER et al. 2002) and introduced at the BAR1 locus in HHY6492 

to generate HHY6494. Finally, HHY6493 was crossed against HHY6494 and sporulated to 

generate HHY6443. 

 

3.3.20 Strain construction to measure mutation rates in diploids 

HHY6533 and HHY6535 were used as query strains to measure mutation rates in diploids as 

described in 3.3.16. HHY6533 was generated as follows: First, a TRP1 cassette from 

Kluyveromyces lactis (klTRP1) was amplified from pYM22 (JANKE et al. 2004) and introduced at the 

CAN1 locus in HHY6481 to generate HHY6526. Second, a natNT2 cassette was amplified from 

pFA6a-natNT2 (JANKE et al. 2004) using primers HHP3678 and HHP3679 and introduced 7 nt 

downstream of the CAN1 STOP codon in the CAN1 3’UTR of HHY6525 (a Mata version of 

HHY6481) to generate HHY6528. Third, HHY6526 was crossed with HHY6528 to generate 

HHY6533.  

HHY6535 was generated as described for HHY6533, with the modification that the initial CAN1 

deletion and the integration of the natNT2 cassette were done in HHY6482 and HHY6530, 

respectively. 

 

3.3.21 SGA query strain construction 

Due to the incompatibility of the selectable markers used in the query of the original SGA protocol 

(TONG AND BOONE 2006) with the genetic markers required for the mutator assays the query was 

modified as follows: First, because the CAN1 inactivation assay requires a functional CAN1 gene 

and strains carrying the lys2-10A allele depend on the lysine permease Lyp1 for survival, 

canavanine and thialysine could not be used to kill diploids cells. Thus, to kill diploids a 

combination of cycloheximide and 5-FOA was used. For this, the cycloheximide-resistant mutation 

(cyh2-Q38K) (KAUFER et al. 1983) was introduced at the CYH2 locus and a URA3 cassette from 

Kluyveromyces lactis (klURA3) was integrated downstream of MLH2 by PCR-based recombination 

method. Second, the LEU2 gene from Kluyveromyces lactis (klLEU2) under the control of the 

mating type a specific MFA1 promoter and an hphNT1 cassette were introduced upstream of the 

lys2-10A allele. The pMFA1-LEU2 cassette allows the selection of haploid Mata progeny, whereas 

the hph resistance marker is used to select for those strains carrying the lys2-10A reporter. Third, 

downstream of the DNA polymerase mutant alleles (pol1-L868M, pol2-M644G and pol3-L612M) 

and the wild-type POL1 gene a natNT2 cassette was integrated, which allows selection for mutant 

or wild-type polymerase alleles by nourseothricin resistance.  
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In detail, the query strains were generated as follows. First, the klLEU2 open reading frame (ORF) 

and 143 nt of the 3’-untranslated region (3’-UTR) was amplified with primers HHP1949 and 

HHP1950 from pOM13 (GAUSS et al. 2005) and the PCR product was used to replace the MFA1 

ORF in RDKY5964 generating HHY6484. In parallel, a hygromycin B resistance cassette (hphNT1) 

from pFA6a-hphNT1 (JANKE et al. 2004) was amplified with primers HHP2002 and HHP2003 and 

inserted upstream of the lys2-10A allele in HHY5218 resulting in HHY6485. Second, the MFA1 

promoter and the klLEU2 gene (pMFA1-klLEU2) were amplified with primers HHP2001 and 

HHP2004 from genomic DNA of HHY6484. This pMFA1-klLEU2 cassette was than inserted directly 

upstream the hphNT1 cassette in HHY6485 to generate HHY6486.  

In parallel, the cycloheximide-resistance cyh2-Q38K mutation was introduced into RDKY3686 by 

transformation of a PCR product amplified from genomic DNA from RDKY7593 (which harbors the 

cyh2-Q38K mutation, generously provided by C.D. Putnam and R. D. Kolodner, Ludwig Institute for 

Cancer Research, San Diego) with primers HHP1062 and HHP1063 creating HHY6487. Then, a 

HIS3 cassette amplified from pRS303 (SIKORSKI AND HIETER 1989) with primers HHP1955 and 

HHP1956 was integrated in the 3’-UTR of the hom3-10 allele in strain HHY6487 to generate 

HHY6488.  Third, HHY6486 was crossed against HHY6488 and sporulated to generate HHY6489. 

Fourth, a klURA3 cassette was amplified from pUG72 (GUELDENER et al. 2002) with primers 

HHP2220 and HHP2221 and introduced in the 3’-UTR of MLH2 resulting in HHY6490. Fifth, the 

active-site polymerase mutations were introduced in RDKY5964 by pop-in/pop-out as described in 

3.3.18. Next, a natNT2 cassette was amplified from pFA6a-natNT2 (JANKE et al. 2004) and 

integrated in the 3'-UTR of DNA polymerase active-site mutant alleles or wild-type POL1. Finally, 

these strains were crossed against HHY6490 to generate the pol1-L868M, pol2-M644G, pol3-

L612M and WT-POL1 SGA queries (HHY5292, HHY5284, HHY5289 and HHY5298, respectively). 

 

3.3.22 SGA 

All the steps until the freezing of the generated double mutant cells were done using RoToR robot.  

The four SGA query strains HHY5298, HHY5292, HHY5984 and HHY5289 (grown on YPD + hph 

agar plates) were crossed to an array of the quadruplicated non-essential BY4742 gene deletion 

collection TKY3503 by pinning onto fresh YPD agar plates. After 1 day of growth at 30 °C, cells 

were subjected to two rounds of pinning onto SGA diploid selection medium and grown for 2 days 

and 1 day, respectively at 30 °C. Afterwards, cells were pinned onto SGA presporulation medium 

and grown for 1 day at 30 °C. 

Next, cells were pinned onto SGA sporulation medium and incubated for 7 days at 23-25 °C. 

Spores were pinned onto SGA haploid selection medium and grown for 5 days at 30 °C followed by 

two rounds of pinning on SGA double mutant selection medium (in the second round of pinning 

medium contained additional 50 μg/mL hph) for 1 day at 30 °C. Next, cells were de-condensed 

from 1536- to 384-format by pinning onto SGA de-condensation medium and grown for 2 days at 

30 °C. Finally, cells were transferred to 96-well plates containing liquid SD medium without Leu 

containing 15% glycerol, G418 and nat, grown for 2 days at 30 °C and stored at -80 °C.  

The generated double mutants were spotted on YPD-agar using Liquidator 96, grown for 2 days at 

30 °C. Then, plates were imaged using the GelDoc system for documentation and replica-plated 
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onto two mutator plates, either lacking lysine (for lys2-10A frameshift reversion assay) or lacking 

Arg and supplemented with canavanine (CAN1 inactivation assay). After 4 days of growth at 30 °C, 

mutator plates were imaged and scored visually. Positive hits were re-checked and those mutants 

that confer an increased mutator phenotype were generated in S288C background (RDKY5964 

and HHY6443) for further analysis. 

 

3.3.23 Strain construction for RNR1 random mutagenesis screen 

The RNR1 random mutagenesis screen was performed in HHY6555, which was complemented by 

pHHB560 (pRS316-RNR1) plasmid. To generate HHY6555, we inactivated the LIG4 gene (to 

prevent non-homologous end joining events) with a HIS3 cassette (amplified from pRS303) in 

RDKY5964 (HOMBAUER et al. 2011a) and crossed it with HHY1941. In the resulting diploid strain 

one of the two RNR1 alleles was replaced by a kanMX4 cassette, amplified from pFA6a-kanMX4. 

The heterozygous diploid strain was transformed with pHHB560 (pRS316-RNR1) and sporulated to 

obtain HHY6555. HHY6124 and HHY6551, which were used for further analysis, were generated 

following the same strategy. 

 

3.3.24 Construction of a rnr1 mutation library 

To generate an rnr1 mutant library, the RNR1 gene was amplified from pHHB424 (pRS306-RNR1) 

using primers HHP3285 and HHP1872 with standard Taq polymerase (3’-5’ exonuclease-deficient) 

for 12 cycles under standard conditions (3.1.2) in 52 independent reactions. Next, all PCR 

reactions were pooled and purified using QIAquick Gel Extraction Kit. The rnr1 PCR products were 

co-transformed with a purified 6 kb fragment of HindIII and NotI digested pHHB561 into HHY6555 

for in vivo gap repair.  Transformants containing the gap-repaired plasmids were selected by 

growth on SD plates lacking Leu and replica plated on SD plates lacking Leu but containing 5-FOA 

to select for the loss of pHHB560 (pRS316-RNR1). 

 

3.3.25 Screening for mutator phenotypes, plasmid rescue and identification of rnr1 

mutations 

To screen for mutator phenotypes in the hom3-10 and lys2-10A frameshift reversion assay as well 

as in the CAN1 inactivation assay, the colonies obtained after plasmid shuffling (Leu+ + 5-FOAR) 

were replica-plated on SD media lacking threonine (Thr) or lysine (Lys) or lacking Arg containing 

canavanine. Cells were grown for 3 days at 30 °C. Colonies, which showed increased papillation in 

at least two mutator assays or multiple small canavanine-resistant colonies were re-tested for 

mutator phenotype. Clones that confer an increased mutator phenotype after re-testing, were 

inoculated for DNA extraction with subsequent plasmid rescue as described in (3.3.10). Plasmids 

were prepared using QIAprep Spin Miniprep Kit and transformed into competent HHY6214. After 

plasmid shuffling in SD media lacking Leu and containing 5-FOA, clones were screened for 

increased mutator phenotypes in the hom3-10 and lys2-10A frameshift reversion assay as well as 

in the CAN1 inactivation assay. Plasmids that consistently increased the mutator phenotype were 
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sequenced to identify rnr1 mutation(s). Next, yeast strains expressing rnr1 mutant alleles were 

used for mutations rate analysis as described in 3.3.15. The identified rnr1 alleles were also 

expressed in a WT-EXO1 background (HHY6551) and the obtained strains were qualitatively 

tested for mutator phenotype.  
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4 RESULTS 

4.1 A genome-wide screen reveals genes that prevent the accumulation of 

mutations. 

To identify non-essential genes that contribute to replication fidelity, a genome-wide screen in S. 

cerevisiae was performed. For this, four query strains expressing either the WT or one of the low-

fidelity DNA polymerase alleles pol1-L868M, pol2-M644G and pol3-L612M were crossed against 

the quadruplicated yeast non-essential gene deletion collection (~4800 different gene deletions) 

following a modified version of the synthetic genetic array (SGA) (TONG AND BOONE 2006)(Fig 

4.1A).  

 

 

 

 

 

 

 

Fig. 4.1 Genome-wide 
screen reveals genes 
that affect DNA 
replication fidelity in S. 
cerevisiae.  
(A) Strategy used to 
cross the nonessential 
gene deletion collections 
against DNA polymerase 
active-site mutants and 
the WT. (B) The forward 
CAN1 inactivation assay 
(+canavanine) and the 
lys2-10A frameshift 
reversion assay (lysine-) 
were used to screen for 
mutator phenotypes in 
96-well format. Cells 
were spotted on YPD, 
grown and replica plated 
on mutator plates. The 
number of colonies is 
indicative for the strength 
of the mutator phenotype. 
In the zoom-in on the 
right side, msh6Δ shows 
elevated papillation in the 
frameshift-specific 
mutator assay and the 
general CAN1 
inactivation assay, 
whereas ubc13Δ showed 
increased number of 
colonies exclusively in 
the CAN1 inactivation 
assay. Figure was 
adapted from (SCHMIDT et 
al. 2017). 
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Table 4.1 List of single gene deletions resulting in increased mutator phenotypes.  

Gene lys2-10A CAN1 WT function Reference 

CCS1  X Copper chaperone, oxidative stress response 1 

CSM2  X Component of Shu complex, error-free DNA repair 1, 2 

ELG1 X X Subunit of RFC1-like complex, DNA replication and genome 

integrity 

1, 2 

EXO1 X X 5’-3’ exonuclease and flap endonuclase, DSB repair, error-free 

PRR and MMR  

3 

MET7  X Folylpolyglutamate synthetase this study 

MLH1 X X MMR  1, 2 

MLH3 X  MMR, meiotic recombination 4 

MMS2  X Ubiquitin-conjugating enzyme, error-free PRR 1, 2 

MPH1  X DNA helicase 2 

MRE11  X Nuclease subunit of MRX complex in DSB 1, 2 

MSH2 X X MMR 1, 2 

MSH3 X X MMR 2 

MSH6 X X MMR 1, 2 

OGG1  X 8-oxoguanine DNA glycosylase, BER 1, 2 

PIF1  X DNA helicase 1 

PMS1 X X MMR 1 

PSY3  X Component of Shu complex, error-free DNA repair 1 

RAD1  X Single-stranded DNA endonuclease, NER, DSB 2 

RAD4  X NER 5 

RAD5  X DNA helicase, PRR 1, 2 

RAD10  X Single-stranded DNA endonuclease, NER, DSB 6 

RAD14  X NER 7 

RAD17  X DNA damage checkpoint 8 

RAD18  X E3 ubiquitin ligase, PRR 1, 2 

RAD27  X 5' to 3' exonuclease, 5' flap endonuclease, DNA replication and 

repair 

1, 2  

RAD50  X Subunit of MRX complex, DSB repair 1 

RAD51  X DSB repair 1 

RAD52  X DSB repair 1, 2 

RAD54  X DSB repair 1, 2 

RAD55  X DSB repair 1 

RAD57  X DSB repair 1, 2 

RNH203  X Ribonucleotide H2 subunit, ribonucleotide excision repair 1 

SHU1  X Component of Shu complex, error-free DNA repair 1, 2 

SHU2  X Component of Shu complex, error-free DNA repair 1 

TSA1  X Thioredoxin peroxidase, oxidative stress response 1, 2 

UBC13  X E2 ubiquitin-conjugating enzyme, error-free PRR 9 

UNG1  X Uracil-DNA glycosylase, BER 1, 2 

XRS2  X Subunit of MRX complex, DSB repair 1 

YAP1  X Transcription factor, oxidative stress response 1 

The following mutants including: sli15Δ, ygr050cΔ, yhl005cΔ, yml083c, ymr166cΔ, and zwf1Δ were identified as false 

positives. Abbreviations: base excision repair (BER), double-strand break (DSB), mismatch repair (MMR), nucleotide 

excision repair (NER), post-replicative repair (PRR).  References:  1 (HUANG et al. 2003); 2 (SMITH et al. 2004); 3  (TISHKOFF 

et al. 1997); 4 (FLORES-ROZAS AND KOLODNER 1998); 5 (HOWLETT AND SCHIESTL 2004); 6 (BERTRAND et al. 1998); 7 (SCOTT 

et al. 1999); 8 (COLLURA et al. 2012); 9 (BRUSKY et al. 2000). 
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The generated double mutants were subsequently screened in a “semi-high-throughput” 96-well 

format for increased mutator phenotypes in the lys2-10A frameshift reversion assay and the 

forward CAN1 inactivation assay (Fig. 4.1B). The lys2-10A assay is specific to one A:T nucleotide 

deletion events in a mononucleotide run of 10 A:T (TRAN et al. 1997). The CAN1 inactivation assay 

is a general forward mutation reporter assay (WHELAN et al. 1979) and scores for events that 

inactivate the CAN1 gene facilitating resistance to the toxic arginine analog canavanine. These 

inactivating events can be base pair substitutions and frameshift mutations, but also more complex 

genetic alterations and gross chromosomal rearrangements (GCRs). 

The active-site mutant alleles of the three major DNA polymerases used in the screen confer a mild 

mutator phenotype (NIIMI et al. 2004; PAVLOV et al. 2006; VENKATESAN et al. 2006; PURSELL et al. 

2007; NICK MCELHINNY et al. 2008) but do not interfere with Pol2/Pol3 DNA proofreading function. 

In the screen, the low-fidelity alleles serve as “sensitized backgrounds” to identify previously 

unrecognized genes that contribute to DNA replication fidelity. Furthermore, due to the postulated 

role in leading- and lagging-strand DNA replication according to the “division of labor” model, the 

comparison of the genetic mutator interactions may reveal mechanistic differences between 

leading- and lagging-strand replication and repair as previously reported for the 5’-3’ double-

stranded exonuclease Exo1 (HOMBAUER et al. 2011a; LIBERTI et al. 2013). 

In the WT polymerase background 8 single gene deletions were identified that showed an elevated 

frameshift mutator phenotype in the lys2-10A reporter assay (Table 4.1). All of them have been 

previously reported (FLORES-ROZAS AND KOLODNER 1998; TISHKOFF et al. 1998; HUANG et al. 2003; 

SMITH et al. 2004) and most of them are well-characterized MMR components (REYES et al. 2015). 

Given that the screen identified not only mutations resulting in strong (mlh1Δ, pms1Δ and msh2Δ) 

but also in weak mutator phenotypes (elg1Δ, and mlh3Δ), it is unlikely that additional non-essential 

single deletion mutants may cause an increased frameshift mutator phenotype.  

Analysis of the CAN1 reporter assay plates revealed 38 single gene deletions that resulted in 

increased CAN1 inactivation in the presence of WT DNA polymerases. Most of them have been 

previously identified in two genome-wide screens (HUANG et al. 2003; SMITH et al. 2004) and have 

known roles in DNA replication and DNA repair (Table 4.1). Interestingly, one gene deletion met7Δ 

has not been previously linked to an increased CAN1 mutator phenotype. Therefore, the role of 

Met7 in mutation avoidance and genome stability was further investigated. A detailed analysis is 

described in section 4.2. 

Analysis of the qualitative mutator phenotypes in the presence of low-fidelity DNA polymerase 

alleles revealed a group of genes (EXO1, GLN3, RRM3, SHM2 and URA7) that showed synergistic 

mutator interactions with at least two of the low-fidelity DNA polymerase alleles in the CAN1 

reporter assay (three representative examples of the screening plates are shown in Fig. 4.2). 

However, besides the previously reported synergistic interaction between low-fidelity DNA 

polymerase alleles and exo1Δ (HOMBAUER et al. 2011a; LIBERTI et al. 2013), no additional gene 

mutation caused an elevated frameshift mutator phenotype in the presence of the low-fidelity DNA 

polymerase alleles, arguing again for no additional, unrecognized single-gene deletion that 

increases frameshift mutations in the subset of the non-essential yeast genes (Fig. 4.2). 

Interestingly, none of the identified gene deletions, except exo1Δ, caused an increased mutator 
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phenotype in the presence of WT DNA polymerases. Moreover, these identified genes have not 

been previously linked to the suppression of mutations. Thus, this group of genes was further 

examined in respect to their role in replication fidelity and the results are described in section 4.3. 

 

 

Fig. 4.2 Representative images of mutator plates (zoom-in) illustrating the synergistic mutator 
interactions in some S. cerevisiae double mutants. 
Inactivation of EXO1, GLN3 or SHM2 in combination with the lagging-strand DNA polymerase active-site 
mutants (pol1-L868M and pol3-L612M) results in a strong increase in the number of colonies on CAN1 
mutator assay plates (+canavanine), whereas increased papillation on the frameshift reporter plates (-lysine) 
was exclusively observed in exo1Δ double mutants. Figure was adapted from (SCHMIDT et al. 2017). 
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4.2 The folylpolyglutamate synthetase Met7 prevents uracil accumulation and 

genome instability. 

4.2.1 Met7 prevents the accumulation of mutations and GCRs. 

The genome-wide screen identified MET7 as the only previously unrecognized gene that prevents 

the accumulation of mutations. MET7 encodes for the cytoplasmic and mitochondrial 

folylpolyglutamate synthetase (FPGS) in S. cerevisiae (DESOUZA et al. 2000). FPGS catalyzes the 

ATP-dependent addition of a glutamate to the terminal glutamate of folates (Fig. 1.8A). 

Polyglutamylated folate show increases cellular retention and higher affinity to their metabolizing 

enzymes (SCHIRCH AND STRONG 1989). In S. cerevisiae, inactivation of MET7 has been shown to 

result in mitochondrial dysfunction (petite phenotype) (CHEREST et al. 2000; MERZ AND 

WESTERMANN 2009), methionine auxotrophy (MASSELOT AND DE ROBICHON-SZULMAJSTER 1975), 

short telomeres (ASKREE et al. 2004; GATBONTON et al. 2006), a non-homologous end-joining defect 

and dNTP imbalance (RUBINSTEIN et al. 2014). However, inactivation of MET7 has not been linked 

to increased mutator phenotypes. Thus, to validate the initial qualitative met7Δ mutator phenotype 

identified in the genome-wide screen, MET7 was inactivated in a WT strain and the CAN1 mutation 

rate was measured. Indeed, loss of Met7 resulted in a 9-fold increase in the CAN1 inactivation 

assay over the WT (Table 4.2). As the CAN1 gene can be inactivated not only by base 

substitutions and frameshifts, but also by GCRs, Met7’s role in the suppression of GCRs was 

investigated using two different GCR assays. These GCR reporters score for the simultaneous 

deletion of a CAN1-URA3 cassette integrated at two different locations in the left arm of 

chromosome V (PUTNAM AND KOLODNER 2017). Inactivation of MET7 caused a 38- and 177-fold 

increase over WT in the standard (CHEN AND KOLODNER 1999) and post-duplication GCR assay 

(PUTNAM et al. 2009), respectively (Table 4.2). Thus, Met7 not only suppresses the accumulation of 

mutations, but is also required to prevent GCRs. 

 

Table 4.2 met7Δ results in accumulation of mutations and gross chromosomal rearrangements 
(GCRs). 

Relevant genotype Mutation Rate CanR  

(fold increase)a 

Standard GCR  

(fold increase)b 

Post-duplication GCR  

(fold increase)b 

WT 7.2 [5.7-9.0] x 10-8 (1) 5.1 [0.0-38.0] x 10-11 (1) 5.6 [3.7-8.3] x 10-8 (1) 

met7Δ 6.4 [4.2-8.8] x 10-7 (9) 2.0 [1.0-3.6] x 10-9 (38) 9.9 [7.4-13.7] x 10-6 (177) 

pGPD-DUT1 met7Δ  2.9 [1.9-5.5] x 10-7 (4) not determined 4.6 [3.6-7.4] x 10-7 (8) 

ung1Δ met7Δ not determined not determined 2.6 [2.0-3.5] x 10-6 (46) 

pGPD-met7Δm not determined not determined 6.3 [4.5-8.1] x 10-8 (1) 

dut1-1 1.3 [1.0-2.5] x 10-7 (2) not determined 1.2 [0.4-1.6] x 10-7 (2) 

rev3Δ met7Δ 3.0 [2.5-3.7] x 10-7 (4) not determined not determined 

a Median rates of inactivation of CAN1 gene (CanR) with 95% confidence interval in square brackets and fold increase 

relative to the WT in parentheses.  
b Median rates of accumulating CanR 5-FOAR progeny in standard and post-duplication GCR with 95% confidence interval in 

square brackets and fold increase relative to the WT in parentheses. 
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4.2.2 Loss of MET7 activates the DNA damage response. 

In the absence of Met7, cells confer a slow growth phenotype (DESOUZA et al. 2000; KOREN et al. 

2010). To investigate, whether met7Δ cells also showed an activated DNA damage response 

(DDR), whole cell lysates of WT and met7Δ cells were analyzed by Western blotting. In the 

absence of Met7, the checkpoint kinase Rad53 showed slower electrophoretic mobility, 

characteristic of Rad53 phosphorylation, and thus the activation of the DDR. Moreover, strong 

induction of the DNA damage inducible alternative large RNR subunit Rnr3 was detected (Fig. 

4.3A). Furthermore, DNA content analysis of logarithmically growing WT and met7Δ cells by flow 

cytometry revealed that cells in the absence of Met7 showed an altered cell cycle profile with cells 

accumulating in S phase (Fig. 4.3B)(KOREN et al. 2010).  

 

 

 

 

 

 

 

 

 

 

 

These observations open up the possibility that Met7 function might be primarily required during S 

phase and that Met7 expression levels may be potentially regulated across the cell cycle. To test 

whether Met7 expression levels are changing during the cell cycle, the MET7 gene was C-terminal 

tagged with 3xMyc tag to follow Met7 protein levels throughout the cell cycle by Western blotting. 

The results indicate that Met7 expression levels were stable throughout the cell cycle (Fig 4.4).  

 

Fig. 4.4 Met7 is present throughout the cell 
cycle. 
Cells expressing C-terminal tagged Met7-3Myc 
from the endogenous chromosomal locus were 
arrested in G1 with α-factor and released in YPD 
containing nocodazole. Samples were taken every 
10 min for whole cell lysates and DNA content 
profiles. Samples were analyzed by SDS-PAGE 
and immunoblotting against Myc for Met7-3xMyc, 
Sic1 as G1 marker, Clb2 as G2 marker and Pgk1 
as loading control. 

 

In summary, inactivation of MET7 results in DNA damage checkpoint activation and accumulation 

of cells in S phase. However, Met7 expression levels were not increased in S phase and relatively 

stable throughout the cell cycle. 

4.2.3 Inactivation of MET7 results in a dNTP imbalance and dUTP accumulation. 

The slow growth phenotype of met7Δ strains (CHEREST et al. 2000; DESOUZA et al. 2000; MERZ AND 

WESTERMANN 2009) and the accumulation of cells in S phase in the absence of Met7 (Fig. 

Fig. 4.3 Inactivation of MET7 causes activation 
of the DNA damage checkpoint. 
(A) Whole cell lysates of logarithmically growing 
WT and met7Δ were analyzed by SDS-PAGE and 
immunoblotting against Rad53, Rnr3 and tubulin. 
As positive control for the activation of the DNA 
damage response, WT cells treated for 3 h with 
200 mM hydroxyurea (HU) were used. (B) DNA 
content profiles of logarithmically grown WT and 
met7Δ cells 
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4.3B)(KOREN et al. 2010) suggested that Met7 supports metabolic reactions important for S phase 

progression. A previous study described a cytoplasmic met7ΔM allele that lacks the N-terminal 

mitochondrial leader sequence, which when overexpressed suppressed the petite phenotype 

described for met7Δ strains (DESOUZA et al. 2000). To test in which compartment Met7 is required 

to suppress DDR activation and GCRs, the cytoplasmic met7ΔM allele was expressed under the 

control of a strong constitutive GPD promoter. This neither resulted in an increased post-

duplication GCR rate (Table 4.2), nor in accumulation of cells in S phase or DNA damage 

checkpoint activation (Fig. 4.7A,B). These findings suggested that the cytoplasmic FPGS activity 

and presumably cytoplasmic folate pools are sufficient to prevent the slow growth phenotype and 

potentially the mutator phenotype in the absence of Met7. As cytoplasmic folate pools are required 

for nucleotide biosynthesis and dNTPs are essential for DNA replication during S phase, NTP and 

dNTP concentrations were determined in logarithmically growing WT and met7Δ mutant strains 

(collaboration with Chabes lab, Umeå University). 

  

Table 4.3 NTP and dNTP concentrations of met7Δ mutants. 

A 

Relevant genotype CTP UTP ATP GTP 

WT 2374 ± 16 (1.0) 5605 ± 32 (1.0) 11339 ± 48 (1.0) 3987 ± 67 (1.0) 

met7Δ 2206 ± 5 (0.9) 4109 ± 60 (0.7) 13697 ± 153 (1.2) 4514 ± 3 (1.1) 

met7Δ pGPD-DUT1 2242 ± 9 (0.9) 3915 ± 13 (0.7) 13676 ± 57 (1.2) 4601 ± 15 (1.2) 

B 

Relevant genotype dCTP dTTP dATP dGTP dUTP 

WT –hDUT1 114 ± 4 (1.0) 203 ± 6 (1.0) 125 ± 4 (1.0) 82 ± 4 (1.0) not detectable 

WT + hDUT1 104 ± 1 (0.9) 203 ± 7 (1.0) 123 ± 4 (1.0) 81 ± 1 (1.0) not detectable 

met7Δ - hDUT1 302 ± 7 (2.7) 125 ± 5 (0.6) 497 ± 1 (4.0) 49 ± 4 (0.6) 9 ± 2 

met7Δ + hDUT1 282 ± 3 (2.5) 125 ± 6 (0.6) 490 ± 9 (3.9) 49 ± 6 (0.6) not detectable 

met7Δ pGPD-DUT1 - hDUT1 314 ± 1 (2.8) 95 ± 2 (0.5) 463 ± 1 (3.7) 38 ± 2 (0.5) not detectable 

met7Δ pGPD-DUT1 + hDUT1 284 ± 1 (2.5) 95 ± 1 (0.5) 444 ± 5 (3.6) 40 ± 2 (0.5) not detectable 

NTP (A) and dNTP (B) concentrations (pmol per 108 cells) are the average of two biological replicates ± standard deviation 

with the fold increase over WT in parentheses. Extracts of + hDUT1 samples were treated for 1 h at 37 °C with 1ng/μL 

recombinant human DUT1 prior the measurement. NTP and dNTP concentrations were measured in collaboration with 

Chabes lab. 

 

In the absence of Met7, NTP purine pools were mildly increased (up to 20%) and NTP pyrimidine 

pools decreased (up to 30%) (Table 4.3A). dNTP concentration measurements revealed that 

inactivation of MET7 caused 2.7-fold increased dCTP and 4-fold increased dATP pools and 40% 

decreased dTTP and dGTP pools, relative to WT levels (Fig. 4.5A, Table 4.3B). The dNTP pool 

measurements were similar to previously dNTP concentrations in met7Δ cells (RUBINSTEIN et al. 

2014). Interestingly, the dNTP pools measured in the absence of Met7 were similar to dNTP pools 

measured in mammalian cells upon antifolate treatment (TATTERSALL AND HARRAP 1973; RITTER et 

al. 1980; YOSHIOKA et al. 1987). Antifolates inhibit folate-dependent metabolic reactions (VAN 

TRIEST et al. 2000; VISENTIN et al. 2012) suggesting that the dNTP pool alterations measured in 
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met7Δ are presumably a consequence of folate depletion due to the absence of Met7. As 

mammalian cells treated with antifolates show not only dNTP imbalance but also dUTP 

accumulation (VAN TRIEST et al. 2000), the consequences of MET7 inactivation on dUTP pools was 

investigated. dUTP pool accumulation is normally efficiently counteracted by the dUTPase Dut1, 

which dephosphorylates dUTP to dUMP (GADSDEN et al. 1993). Consequently, dUTP 

concentrations in WT cycling cells are extremely low. However, analysis of cell extracts obtained 

from met7Δ strains revealed 9 ± 2 pmol dUTP per 108 cells were measured, whereas dUTP 

concentrations in WT was below the detection limit (Fig. 4.5 A, Table 4.3 B). 

 

 

Fig. 4.5 Loss of Met7 results in a dNTP imbalance, accumulation of dUTP and increased uracil 
incorporation. 
(A) dNTP concentration measurement in the indicated strains (Table 4.3B). Error bars represent standard 
deviation (SD). The fold over WT is indicated above each bar and color-coded green or red for increased and 
decreased fold over WT, respectively. Extracts were treated ± recombinant human dUTPase hDUT1 prior to 
the measurement. (B) Total dTTP and dUTP pools in met7Δ. (C) Uracil accumulation assay. Genomic DNA of 
logarithmically growing WT, met7Δ, met7Δ pGPD-DUT1 and dut1-1 cells were treated ± recombinant E. coli 
UDG and human Ape1 and analyzed by agarose gel electrophoresis. Presence of uracil in DNA results in 
fragmentation of the genomic DNA and appears as a smear of lower molecular weight fragments. To enrich 
for genomic uracil the experiment was performed in an ung1Δ background. 

 



RESULTS 

67 
 

To verify that the measured dUTP concentration in met7Δ cells was truly dUTP, cellular extracts 

were treated or not with recombinant human DUT1 (hDUT1) prior to the dNTP measurement. 

Strikingly, dUTP was no longer detectable in the hDUT1 treated met7Δ sample, whereas no major 

changes were observed in the other dNTP pools (Fig. 4.5A, Table 4.3B). Likewise, met7Δ cells 

overexpressing the DUT1 gene (pGPD-DUT1) presented undetectable levels of dUTP and 

otherwise identical dNTP concentrations as measured in the met7Δ strain (Fig. 4.5A, Table 4.3B). 

As DNA polymerases cannot discriminate between dTTP and dUTP, the balance between dTTP 

and dUTP directly determines which dNTP will be incorporated during DNA synthesis (SHLOMAI AND 

KORNBERG 1978; WARNER et al. 1981; TINKELENBERG et al. 2002). According to the dNTP 

concentration measurements in met7 cells, dUTP contributes to 7% of the total dTTP and dUTP 

pool (Fig. 4.5B). Previous studies have shown that the alterations in the dUTP/dTTP balance (e.g. 

caused by antifolate treatment) can lead to increased dUTP incorporation into genomic DNA 

(SHLOMAI AND KORNBERG 1978; WARNER et al. 1981; TINKELENBERG et al. 2002). These 

observations and the altered dUTP/dTTP balance detected met7Δ strains suggest that met7Δ cells 

may incorporate dUTP into genomic DNA. 

To test this idea, uracil accumulation in genomic DNA of WT, met7Δ, met7Δ pGPD-DUT1 and 

dut1-1 cells was analyzed. As uracil is efficiently removed from DNA by the BER system (BOITEUX 

AND JINKS-ROBERTSON 2013), the analysis was performed in an uracil deglycosylase-deficient 

background (ung1Δ) (SEIPLE et al. 2006). Genomic DNA of logarithmically growing cells was 

purified, treated (or not) with recombinant E. coli uracil-DNA glycosylase (UDG) and human 

apurinic/apyrimidinic (AP) endonuclease 1 (hAPE 1) and separated by agarose gel electrophoresis. 

Incorporated uracil results in fragmentation of genomic DNA and appears as smear of lower 

molecular weight fragments. In line with low dUTP concentrations (Fig. 4.5A, Table 4.3B), no 

fragmentation was observed in genomic DNA isolated from WT cells. However, in the absence of 

Met7, genomic DNA was strongly fragmented and fragments up to sizes below 250 nt were 

observed (Fig. 4.5C). In agreement with the dUTP measurements (Fig. 4.5A, Table 4.3B), 

overexpression of DUT1 in met7Δ cells strongly suppressed DNA fragmentation. The previously 

reported dut1-1 allele, which confers reduced dUTPase activity and causes increased genomic 

uracil accumulation (GUILLET et al. 2006) was included in the experiment as positive control and 

showed in line with the previous report massive fragmentation of the genomic DNA (Fig. 4.5C). 

Thus, loss of Met7 induces a dNTP imbalance, dUTP accumulation and increased uracil 

incorporation during DNA replication. 

4.2.4 The met7Δ GCR phenotype is driven by dUTP accumulation and processing of 

genomic uracil. 

In order to test whether met7Δ’s GCR phenotype is driven by dUTP accumulation, GCR rate was 

measured in met7Δ pGPD-DUT1 cells, in which neither elevated dUTP pools (Fig. 4.5A, Table 

4.3B) nor accumulation of genomic uracil species (Fig. 4.5C) could be detected. Strikingly, the 

GCR rate was suppressed from 177- to 8-fold over WT in met7Δ cells that overexpressed DUT1 

(Table 4.2) arguing that the GCRs generated in the absence of Met7 were largely consequence of 

the increased dUTP levels. 
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As previously mentioned, genomic uracil is recognized and repaired by BER (BOITEUX AND JINKS-

ROBERTSON 2013). The uracil glycosylase Ung1 removes the uracil base and creates an abasic 

site. AP endonucleases introduce a single-strand DNA break at the abasic site followed by either 

short or long patch repair. Therefore, a high amount of incorporated uracil may not only result in 

transient single-strand breaks but also DSBs, that can eventually result in GCRs. Consequently, 

inhibiting repair of genomic uracil by inactivation of UNG1 should counteract met7Δ’s GCR 

phenotype. Indeed, inactivation of UNG1 in the absence of Met7 partially suppressed the post-

duplication GCR rate by almost 75% (Table 4.2). This indicates that the processing of genomic 

uracil in the presence of an increased dUTP/dTTP ratio results in futile-repair cycles that may lead 

to GCRs. Therefore, the increased GCRs observed in the absence of Met7 are a consequence of 

dUTP pool accumulation followed by futile-repair cycles.  

4.2.5 Increased mutations in the absence of Met7 are a consequence of a dNTP pool 

imbalance and dUTP accumulation.  

Inactivation of MET7 not only resulted in elevated GCRs, but also in an increased CAN1 

inactivation rate (Table 4.2). Abasic sites, as for example produced by the repair of genomic uracil, 

lead to stalled replication forks and recruitment of specialized translesion synthesis (TLS) DNA 

polymerases, such as Polζ (Rev3) (MCCULLOCH AND KUNKEL 2008; LANGE et al. 2011). These TLS 

DNA polymerases are error-prone and may therefore contribute to the mutator phenotype observed 

in met7Δ. In line with this assumption, the CAN1 mutation rate was approximately 50% reduced in 

the met7Δ rev3Δ double mutant in comparison to met7Δ (Table 4.2).  

 

Table 4.4 CAN1 mutation spectrum of met7Δ. 

 Insertion / deletion  Base change  Complex 

Relevant 

genotype 

 
Mutation Occurrence  Mutation Occurrence  Occurrence 

         

WT ΔA A6 → A5 1 (1)  A-T → G-C 6 (7)  8 (9) 

 ΔT T6 → T5 2 (2)  G-C → A-T 18 (20)   

  T2 → T1 2 (2)  G-C → T-A 29 (32)   

 ΔC C2 → C1 1 (1)  A-T → C-G 3 (3)   

  C1 → C0 2 (2)  A-T → T-A 7 (8)   

 +T T6 → T7 3 (3)  C-G → G-C 6 (7)   

  T2 → T3 3 (3)      

 +G G2 → G3 1 (1)      

   15 (16)   69 (75)  8 (9) 

         

met7Δ ΔA A3 → A2 1 (1)  A-T → G-C 5 (3)  19 (10) 

 ΔT T6 → T5 4 (2)  G-C → A-T 54 (29)   

  T4 → T3 4 (2)  G-C → T-A 40 (22)   

  T3 → T2 2 (1)  A-T → C-G 11 (6)   

  T1 → T0 3 (2)  A-T → T-A 14 (8)   

 ΔG G4 → G3 2 (1)  C-G → G-C 19 (10)   

  G2 → G1 2 (1)      

  G1 → G0 1 (1)      

 ΔC  C3 →C2 2 (1)      

  C2 → C1 1 (1)      

 +T T6 → T7 1 (1)      

   23 (12)   143 (77)  19 (10) 

The CAN1 mutation spectra based on DNA sequencing of individual CanR mutants, shown as the number of clones 
containing the indicated mutations, and in parenthesis as the percentage relative to the total (Fig. S7.1 and Fig. S7.2). 
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Moreover, overexpression of DUT1 in met7Δ suppressed the CAN1 inactivation rate to a similar 

degree as the met7Δ rev3Δ double mutant (Table 4.2). Both results together support the idea that 

dUTP accumulation also contributes to the generation of CAN1 inactivation events. 

To further characterize the type of events that lead to CAN1 inactivation, CAN1 mutation spectra 

analysis were performed in WT and met7Δ strains (Table 4.4). Interestingly, the met7Δ CAN1 

mutation spectrum was not significantly different to the WT CAN1 spectrum (Fisher’s exact test, p 

value 0.2275) and no mutational hotspots could be identified. However, increased amount of G-C 

to A-T mutations and decreased G-C to T-A mutations in the met7Δ CAN1 mutation spectrum were 

in line with elevated dATP and dCTP pools and reduced dTTP and dGTP pools (Table 4.3B). 

Hence, in addition to dUTP accumulation, the general dNTP imbalance seems to contribute to the 

CAN1 inactivation.   

4.2.6 A DSB repair defect is required for dUTP-driven GCRs.  

Both, inactivation of MET7 and reduced dUTPase activity (dut1-1) (GUILLET et al. 2006) caused 

increase uracil incorporation during DNA replication (Fig. 4.5C). Surprisingly, in contrast to met7Δ 

cells, dut1-1 expressing cells showed neither an increased CAN1 inactivation rate nor an elevated 

post-duplication GCR rate (Table 4.2) suggesting that uracil incorporation alone is not sufficient to 

cause increased mutations and elevated GCR rates. To search for potential differences that may 

explain the apparent discrepancy between met7Δ and dut1-1 phenotypes, dNTP concentrations 

were measured. Interestingly, dut1-1 expressing cells had slightly elevated, but balanced dNTP 

pools (Fig. 4.6A). Unexpectedly, dUTP was not detectable in dut1-1 samples using the same 

methodology as in Fig. 4.5A (data not shown) presumably due to insufficient sensitivity of the 

method. Furthermore, RNR subunits were not induced in dut1-1 (Fig. 4.6B) and no accumulation of 

cells in S phase was observed (Fig. 4.6C). This is in agreement with the absence of dNTP pool 

limitations observed in the dut1-1 strain. 

The difference between met7Δ and dut1-1 cells could arise from an overall milder and more 

specific defect in the dut1-1 mutant (Fig. 1.6). As dNTP pools in met7Δ cells are severely 

imbalanced and dTTP and dGTP levels are below WT (Fig. 4.6A), met7Δ cells might be unable to 

sufficiently increase dNTP pools for DNA repair. Moreover, the low dTTP levels in the absence of 

Met7 contribute presumably to an increased dUTP/dTTP ratio. In order to test whether the 

combination of dUTP accumulation and low dTTP and dGTP levels is required to cause a dUTP-

driven GCR phenotype, DCD1 was inactivated in dut1-1 cells. DCD1 is the dCMP deaminase in 

budding yeast, which converts dCMP to dUMP, which is further metabolized to dTTP (Fig. 

1.6)(MCINTOSH AND HAYNES 1984). Previous work in fission yeast suggested that Dcd1 contributes 

to 75% of the produced dTTP, as dcd1Δ cells showed decreased dTTP levels and strongly 

increased dCTP levels (SANCHEZ et al. 2012). Hence, inactivation of DCD1 in dut1-1 expressing 

cells presumably further increases the dUTP/dTTP ratio. In a qualitative post-duplication GCR 

mutator assay the dcd1Δ dut1-1 double mutant showed increased papillation (indicative for an 

elevated GCR phenotype) in comparison to WT and dut1-1 cells, however less than met7Δ cells 

(Fig. 4.6D). Interestingly, dcd1Δ dut1-1 cells did not induce RNR subunits (Fig 4.6B) suggesting 

that even in the presence of both mutations, there is no substantial reduction in dNTP pools to 

trigger activation of the DDR. Moreover, DNA content analysis of logarithmically growing dcd1Δ 
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dut1-1 cells revealed no accumulation of cells in S phase, but a strongly increased population of 

cells in G1 (Fig. 4.6C) arguing for a problem in the G1-S transition.  

 

 

Fig. 4.6 Strains expressing the dUTPase mutant dut1-1 depend on Dcd1 to prevent genome instability. 
(A) dNTP concentration measurement in the indicated strains represented as fold over WT. Fold increases are 
colored in green, whereas decreased levels are labeled red. (B) Whole cell lysates of logarithmically growing 
indicated strains were analyzed by SDS-PAGE and immunoblotting against Rnr1-4 and tubulin. WT cells 
treated for 3 h with 200 mM HU were used as positive control for the activation of the DNA damage response. 
(C) DNA content profiles of logarithmically growing strains of the indicated genotypes. (D) Patch test of the 
indicated strains. Increased papillation is indicative of an increased GCR phenotype. (E) Spotting assay of the 
indicated strains in 10-fold serial dilutions on YPD ± the DNA double-strand break inducing agent phleomycin 
and on YPG to test for mitochondrial dysfunction (petite). 

 

As met7Δ and dcd1Δ dut1-1 mutant strains both showed an increased GCR phenotype and DSB 

are required for GCR formation, the GCR phenotype might be linked to a DSB repair defect in both 

backgrounds. To test this, the sensitivity of met7Δ and dut1-1 dcd1 cells to the DSB-inducing 

agent phleomycin was investigated. In line, with the previously reported NHEJ defect of met7Δ 

cells (RUBINSTEIN et al. 2014), the absence of Met7 caused extreme sensitivity to phleomycin. 

While dut1-1 and dcd1Δ cells showed no sensitivity to phleomycin, dcd1Δ dut1-1 double mutant 

cells were sensitive to phleomycin, similar to met7Δ cells (Fig. 4.6E). Furthermore, as met7Δ cells, 

dcd1Δ dut1-1 cells conferred a slow growth phenotype and dysfunctional mitochondria (Fig 4.6E). 
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Thus, the dcd1Δ dut1-1 double mutant partially recapitulates met7Δ phenotypes, suggesting that a 

combination of dUTP accumulation and DSB repair defect is required to cause uracil-driven GCRs. 

The DSB repair defect might result from dNTP pool alterations and/or defects associated to the 

petite phenotype. 

4.2.7 dUTP accumulation in met7Δ is not responsible for the DNA damage checkpoint 

activation, phleomycin sensitivity and short telomeres. 

Inactivation of MET7 causes pleiotropic effects including slow growth, DNA damage checkpoint 

activation, DSB repair defects and short telomeres, among others. In order to investigate the role of 

uracil accumulation in these phenotypes, the consequence of either overexpressing DUT1 or 

inactivating UNG1 in met7Δ cells were examined.  

First, the impact of dUTP accumulation on DDR activation and growth in the absence of Met7 was 

investigated. Neither the met7Δ double mutant overexpressing DUT1 nor the met7Δ double mutant 

deficient in UNG1 could rescue the altered cell cycle distribution of logarithmically growing met7Δ 

cells (Fig. 4.6A). Moreover, met7Δ single and double mutants both activate the DNA damage 

checkpoint according to the increased Rad53 phosphorylation and Rnr3 induction (Fig. 4.6B). 

Furthermore, all three met7Δ strains showed a slow growth phenotype. Even though pGPD-DUT1 

met7Δ cells grew slightly better than met7Δ, the met7Δ ung1Δ strain grew worse than met7Δ (Fig. 

4.6C). Thus, the altered cell cycle, the slow growth phenotype and DNA damage checkpoint 

activation in met7Δ strains is not driven by dUTP accumulation or futile-repair attempts to remove 

uracil from DNA. 

Second, the effect of dUTP accumulation on phleomycin sensitivity was examined. In the absence 

of Met7, cells confer a NHEJ defect (RUBINSTEIN et al. 2014) and were sensitive to the DSB-

inducing agent phleomycin (Fig. 4.6). The DSB repair defect in met7 cells could originate from an 

inability to increase dNTP pools to sufficient levels to support DSB repair (CHABES et al. 2003). 

Alternatively, inefficient DSB repair could result from the saturation of the DSB repair machinery. 

One possible explanation for this might be the combination of frequent misincorporation and 

removal of uracil together with DSBs induced by phleomycin treatment. To investigate whether the 

phleomycin sensitivity in met7Δ is due to saturation of the DSB repair machinery, met7Δ cells with 

inactivated UNG1 or overexpressing DUT1 were tested for phleomycin sensitivity. Both double 

mutants were as sensitive to phleomycin as the met7Δ single mutant (Fig. 4.6C). Therefore, the 

DSB repair defect of met7Δ cells is not caused by uracil accumulation in DNA. This indicates that 

the DSB repair defect of met7Δ cells might be linked to the petite phenotype and/or be a 

consequence of the inability to increase dNTP pools in the absence of Met7 to sufficient levels to 

facilitate DSB repair. 

Third, the contribution of genomic uracil to the short telomere phenotype (ASKREE et al. 2004; 

GATBONTON et al. 2006; RUBINSTEIN et al. 2014) of cells lacking Met7 was tested. As budding yeast 

telomeres consist of 5’-C1-3A/TG1-3-3’ repeats (WELLINGER AND ZAKIAN 2012) the accumulation of 

dUTP and an increased dUTP/dTTP ratio should also facilitate uracil incorporation into telomeric 

DNA. Futile-repair cycles of genomic uracil at telomeric regions may cause DSBs at telomeric  
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Fig. 4.7 DNA damage checkpoint activation, phleomycin sensitivity and short telomere phenotype in 
the absence of Met7 is not driven by dUTP accumulation. 
(A) DNA content profiles of logarithmically growing strains of the indicated genotypes. (B) Whole cell lysates of 
logarithmically growing indicated strains were analyzed by SDS-PAGE and immunoblotting against Rad53, 
Rnr3 and tubulin. As positive control for the activation of the DNA damage response, WT cells treated for 3 h 
with 200 mM HU were used. (C) Spotting assay of the indicated strains in 10-fold serial dilutions on YPD ± 
phleomycin. (D) Telomere-specific Southern blot for the indicated genotypes (collaboration Luke lab). 

 

regions leading to telomere shortening. To test the contribution of dUTP accumulation and 

processing of genomic uracil to the short telomere length phenotype observed in met7Δ, telomere 
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length was compared in WT, met7Δ, pGPD-DUT1 met7Δ and ung1Δ met7Δ (Fig. 

4.6D)(collaboration with B. Luke lab, IMB). The met7Δ single and double mutants had shorter 

telomeres compared to the WT. However, no difference in telomere length was observed between 

the met7Δ single and double mutants. Thus, the short telomere phenotype in the absence of Met7 

is not driven by uracil accumulation. 

Taken together, these results indicate that neither the DDR activation, the slow growth phenotype, 

the phleomycin sensitivity nor the short telomere length observed in the absence of Met7 were 

triggered by dUTP accumulation and processing of genomic uracil.  
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4.3 Alterations in cellular metabolism triggered by URA7 or GLN3 inactivation 

cause imbalanced dNTP pools and increased mutagenesis.  

4.3.1 Genome-wide screen reveals genes that are critically important if DNA polymerase 

fidelity is impaired. 

The low-fidelity active-site mutant DNA polymerase alleles pol1-L868M, pol2-M644G and pol3-

L612M were used as “sensitized mutator background” in the genome-wide screen to identify 

previously unrecognized genes that contribute to replication fidelity. A group of genes was identifed 

whose deletion caused an enhanced CAN1 mutator phenotype in the presence of the low-fidelity 

polymerase alleles (Fig. 4.2 and Table 4.5). 

 

Table 4.5 Mutation rate analysis of the mutants identified in this screen in combination with DNA 
polymerase active-site mutant alleles. 

  

Mutation Rate (fold increase)* CanR 

Relevant 

genotype 
WT pol1-L868M pol2-M644G pol3-L612M 

WT 7.2 [5.7-9.0] x 10-8 (1) 3.9 [3.3-4.9] x 10-7 (5) 8.4 [7.3-10.6] x 10-7 (12) 9.3 [7.7-11.6] x 10-7 (13) 

exo1Δ 7.4 [6.3-9.8] x 10-7(10) 5.7 [3.1-8.1] x 10-6 (80) 1.9 [1.1-2.9] x 10-6 (26) 6.5 [3.6-10.8] x 10-6 (91) 

gln3Δ 1.0 [0.8-1.2] x 10-7 (1) 2.1 [1.4-4.5] x 10-5 (293) 3.3 [2.6-6.0] x 10-7 (5) 9.1 [7.3-18.2] x 10-6 (127) 

shm2Δ 1.2 [1.1-1.7] x 10-7 (2) 1.7 [1.0-2.0] x 10-6 (23) 5.5 [3.9-7.3] x 10-7 (8) 3.6 [2.1-4.7] x 10-6 (50) 

ura7Δ 1.0 [0.9-1.5] x 10-7 (1) 2.3 [1.3-4.1] x 10-5 (323) 1.1 [0.7-1.5] x 10-6 (15) 1.6 [1.1-2.6] x 10-5 (218) 

rrm3Δ 1.1 [0.8-1.5] x 10-7 (2) 3.5 [2.1-4.4] x 10-7 (5) 2.8 [1.9-4.8] x 10-6 (40) 3.6 [2.6-6.0] x 10-6 (50) 

* Median rates of inactivation of CAN1 gene (CanR) with 95% confidence interval in square brackets and fold increase 

relative to the WT in parentheses. Table was adapted from (Schmidt et al. 2017). 

 

This group includes the double-stranded DNA exonuclease EXO1 (TISHKOFF et al. 1997), the DNA 

helicase RRM3 (IVESSA et al. 2000) and the three metabolic genes GLN3 (COURCHESNE AND 

MAGASANIK 1988), SHM2 (MCNEIL et al. 1994) and URA7 (OZIER-KALOGEROPOULOS et al. 1991). 

The transcription factor Gln3 controls nitrogen metabolism and is negatively regulated by target of 

rapamycin (TOR) (BECK AND HALL 1999; CRESPO et al. 2002). SHM2 encodes for the cytoplasmic 

serine hydroxymethyltransferase and is part of the folate one-carbon metabolism (Fig. 1.8)(MCNEIL 

et al. 1994), whereas Ura7 is the major CTP synthetase in S. cerevisiae converting UTP into CTP 

under the consumption of ATP and glutamine (OZIER-KALOGEROPOULOS et al. 1991; OZIER-

KALOGEROPOULOS et al. 1994)(Fig. 1.6). Remarkably, with the exception of EXO1, which is a mild 

mutator by its own (TISHKOFF et al. 1997), inactivation of all other identified genes did not result in a 

mutator phenotype in the presence of WT DNA polymerases (Table 4.5), suggesting that the 

potential defects might be buffered by WT DNA polymerases. However, in the presence of low-

fidelity DNA polymerases, strong synergistic increases in the CAN1 mutation rates were measured. 

The strongest mutator interactions were observed in the absence of Gln3 or Ura7 in combination 

with pol1-L868M and pol3-L612M (Table 4.5). For example, the pol1-L868M ura7 double mutant 

showed a 323-fold and 65-fold increased CAN1 mutation rate over the WT and the pol1-L868M 

single mutant, respectively. Interestingly, loss of Exo1, Gln3, Shm2 or Ura7 caused strong 
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synergistic increases in the CAN1 inactivation rate in combination with the lagging-strand DNA 

polymerase alleles pol1-L868M and pol3-L612M, but not with the leadings-strand allele pol2-

M644G (Table 4.5). In contrast, inactivation of RRM3 caused increased mutagenesis exclusively in 

combination with pol2-M644G and pol3-L612M, but not with pol1-L868M (Table 4.5).  

To test, whether error-prone TLS DNA polymerases (Polζ, Pol, Rev1) (MCCULLOCH AND KUNKEL 

2008; LANGE et al. 2011) contribute to the synergistic mutator interactions measured in gln3 and 

ura7 pol3-L612M double mutants, CAN1 mutation rates in the absence of Polζ (rev3), Pol 

(rad30) and Rev1 (rev1) were determined (Table 4.6). CAN1 inactivation rate measured in the 

triple mutants in comparison to the gln3 or ura7 pol3-L612M double mutants were not reduced. 

Thus, the synergistic mutator interactions between gln3 and ura7 and the low-fidelity lagging-

strand DNA polymerase mutant pol3-L612M are independent of TLS DNA polymerases. 

 

Table 4.6 Mutation rate analysis (CAN1 inactivation) in pol3-L612M gln3Δ or pol3-L612M ura7Δ strains 
lacking TLS DNA polymerases. 

Relevant genotype Mutation Rate (fold increase)* CanR 

pol3-L612M gln3Δ 9.1 [7.3-18.2] x 10-6 (127) 

pol3-L612M gln3Δ rev1Δ 2.9 [2.3-3.4] x 10-5 (399) 

pol3-L612M gln3Δ rev3Δ 2.3 [1.3-3.3] x 10-5 (327) 

pol3-L612M gln3Δ rad30Δ 1.8 [0.9-2.8] x 10-5 (247) 

pol3-L612M ura7Δ 1.6 [1.1-2.6] x 10-5 (218) 

pol3-L612M ura7Δ rev1Δ 3.7 [2.7-4.9] x 10-5 (521) 

pol3-L612M ura7Δ rev3Δ 1.9 [1.3-4.0] x 10-5 (264) 

pol3-L612M ura7Δ rad30Δ 4.3 [3.4-6.2] x 10-5 (597) 

* Median rates of inactivation of CAN1 gene (CanR) with 95% confidence interval in square brackets and fold increase 

relative to the WT in parentheses. Table was adapted from (Schmidt et al. 2017). 

 

4.3.2 Loss of Gln3 or Ura7 results in a mutational potential that is buffered by DNA 

polymerase proofreading and MMR. 

The active-site mutations in the low-fidelity DNA polymerase alleles used in the screen compromise 

primarily the nucleotide selectivity of the DNA polymerases. However, besides nucleotide 

selectivity also DNA proofreading of Pol  and Pol  and MMR contribute to high-fidelity DNA 

replication (Fig. 1.2) (KUNKEL 2009; KUNKEL AND ERIE 2015). The observed mutator interactions 

could be specific for the low-fidelity DNA polymerases alleles used in the screen or related to DNA 

replication fidelity-compromised backgrounds. To test this idea, the identified genes were 

inactivated in DNA proofreading defective (pol2-04)(MORRISON et al. 1991), or mutant backgrounds 

that confer a partial (exo1, msh3 and msh6)(MARSISCHKY et al. 1996; TISHKOFF et al. 1997) or 

complete MMR defect (msh2) (REENAN AND KOLODNER 1992) and mutation rates were determined 

(Table 4.7). Loss of either Gln3 or Ura7 strongly increased the CAN1 mutation rate in all tested 

DNA replication fidelity-compromised backgrounds except for msh3 (Table 4.7). For example, 

inactivation of URA7 in an exo1 background resulted in a CAN1 mutation rate 261- and 26-fold 

increased over WT and the exo1 single mutant, respectively. GLN3 inactivation in msh6 caused 

a 334- and 26-fold over WT and the msh6 single mutant, respectively. In contrast, SHM2 and 
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RRM3 inactivation resulted in only a mild increase in the measured CAN1 inactivation rate in an 

msh6 background and no increase was observed in the absence of EXO1 (Table 4.7).  

Loss of Gln3, Shm2, Ura7 or Rrm3 in a completely MMR-deficient msh2 background caused an 

increased CAN1 mutation rate in all double mutants which were, except for the shm2 msh2 

double mutant, significantly higher than the msh2 single mutant (based on 95% confidence 

intervals) (Table 4.7). Thus, the identified genes prevent mutations not only in the presence of the 

low-fidelity active-site DNA polymerase mutant alleles, but also in genetic backgrounds with 

compromised DNA proofreading or MMR. 

 

Table 4.7 Mutation rate analysis of the mutants identified in this screen in combination with 
proofreading or partial MMR-defective alleles. 
 Mutation Rate (fold increase)* 

Relevant genotype CanR Lys+ Thr+ 

WT 7.2 [5.7-9.0] x 10-8 (1) 1.5 [0.8-2.2] x 10-8 (1) 2.1 [1.4-3.2] x 10-9 (1) 

gln3Δ 1.0 [0.8-1.2] x 10-7 (1) 1.6 [1.1-3.7] x 10-8 (1) 2.4 [1.7-3.7] x 10-9 (1) 

shm2Δ 1.2 [1.1-1.7] x 10-7 (2) 3.1 [1.2-5.0] x 10-8 (2) 2.6 [1.7-5.6] x 10-9 (1) 

ura7Δ 1.0 [0.9-1.5] x 10-7 (1) 1.4 [1.0-2.5] x 10-8 (1) 1.9 [1.2-5.6] x 10-9 (1) 

rrm3Δ 1.1 [0.8-1.5] x 10-7 (2) 2.4 [1.3-3.0] x 10-8 (2) 4.6 [2.6-7.9] x 10-9 (2) 

exo1Δ 7.4 [6.3-9.8] x 10-7 (10) 1.4 [0.9-1.8] x 10-7 (10) 8.7 [6.1-15.0] x 10-9 (4) 

exo1Δ gln3Δ 1.1 [0.8-1.4] x 10-5 (146) 1.2 [0.7-1.6] x 10-6 (83) 3.5 [2.7-5.0] x 10-7 (170) 

exo1Δ shm2Δ  8.4 [7.1-10.1] x 10-7 (12) 3.5 [2.4-5.1] x 10-7 (24) 1.8 [1.1-2.5] x 10-8 (9) 

exo1Δ ura7Δ 1.9 [0.8-2.4] x 10-5 (261) 1.3 [0.7-1.9] x 10-6 (89) 6.6 [4.9-8.3] x 10-7 (319) 

exo1Δ rrm3Δ 6.3 [4.3-7.6] x 10-7 (9) 1.3 [1.0-1.8] x 10-7 (9) 2.5 [2.0-3.1] x 10-8 (12) 

msh2Δ 5.4 [4.4-7.2] x 10-6 (75) 9.9 [8.1-10.8] x 10-5 (6771) 6.3 [5.2-12.8] x 10-6 (3053) 

msh2Δ gln3Δ 1.3 [0.8-2.1] x 10-5 (177) 8.7 [6.9-14.9] x 10-5 (5972) 4.5 [3.1-6.5] x 10-6 (2149) 

msh2Δ shm2Δ 7.4 [4.8-8.6] x 10-6 (104) 1.4 [1.1-2.1] x 10-4 (9737) 6.1 [4.4-8.2] x 10-6 (2918) 

msh2Δ ura7Δ 3.5 [2.6-4.2] x 10-5 (492) 6.1 [4.7-8.8] x 10-5 (4161) 5.7 [4.1-8.5] x 10-6 (2738) 

msh2Δ rrm3Δ 1.7 [1.2-2.6] x 10-5 (234) 1.1 [0.9-1.2] x 10-4 (7198) 1.6 [1.1-2.4] x 10-5 (7491) 

msh3Δ 1.1 [0.8-1.2] x 10-7 (1) 2.5 [2.0-3.0] x 10-7 (17) 2.7 [2.0-4.2] x 10-8 (13) 

msh3Δ gln3Δ 1.6 [1.1-2.6] x 10-7 (2) 1.9 [1.4-2.3] x 10-7 (13) 1.8 [1.5-1.9] x 10-8 (9) 

msh3Δ shm2Δ 1.5 [1.3-2.9] x 10-7 (2) 1.2 [1.3-2.6] x 10-7 (12) 2.7 [1.7-3.7] x 10-8 (13) 

msh3Δ ura7Δ 1.5 [1.3-2.0] x 10-7 (2) 1.2 [0.8-2.1] x 10-7 (8) 1.7 [1.1-3.0] x 10-8 (8) 

msh3Δ rrm3Δ 2.6 [1.9-3.4] x 10-7 (4) 3.7 [3.5-4.3] x 10-7 (25) 6.1 [4.9-8.3] x 10-8 (30) 

msh6Δ 9.6 [7.8-11.7] x 10-7 (13) 1.3 [0.9-1.6] x 10-6 (86) 1.3 [0.9-1.6] x 10-8 (6) 

msh6Δ gln3Δ 2.4 [1.7-3.4] x 10-5 (334) 1.2 [0.7-4.0] x 10-6 (80) 1.0 [0.6-1.6] x 10-7 (48) 

msh6Δ shm2Δ 2.1 [1.3-2.6] x 10-6 (30) 1.0 [0.9-1.3] x 10-6 (71) 3.5 [2.7-5.4] x 10-8 (17) 

msh6Δ ura7Δ 3.8 [3.2-8.5] x 10-5 (524) 8.6 [6.6-20.6] x 10-7 (59) 9.2 [4.5-26.2] x 10-8 (44) 

msh6Δ rrm3Δ 4.9 [3.6-7.3] x 10-6 (68) 9.1 [6.1-13.8] x 10-7 (62) 5.5 [3.9-6.8] x 10-8 (26) 

pol2-04 6.2 [4.3-7.6] x 10-7 (6) nd nd 

pol2-04 gln3Δ 1.1 [0.9-1.6] x 10-5 (154) nd nd 

pol2-04 shm2Δ 1.5 [1.1-2.3] x 10-6 (22) nd nd 

pol2-04 ura7Δ 2.5 [1.8-5.2] x 10-5 (354) nd nd 

pol2-04 rrm3Δ 1.4 [0.9-1.8] x 10-6 (19) nd nd 

* Median rates of inactivation of CAN1 gene (CanR) and lys2-10A (Lys+) and hom3-10 (Thr+) reversion with 95% confidence 

interval in square brackets and fold increase relative to the WT in parentheses. "nd" indicates not determined. Table was 

adapted from (Schmidt et al. 2017). 
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According to the qualitative frameshift mutator analysis (lys2-10A), most of the identified gene 

deletions (with the exception of exo1) did not caused an inceased frameshift mutator phenotype. 

Moreover, inactivation of the identified genes in MMR-compromised backgrounds did not result in 

strongly increased frameshift mutator phenotypes according to the lys2-10A and hom3-10 reporter 

assay (Table 4.7). Two exceptions were the gln3 exo1 and ura7 exo1 double mutants that 

resulted in a 170- and 319-fold increase over WT in the hom3-10 frameshift assay, respectively. To 

confirm that the hom3-10 assay is specifically reverted by a single T:A deletion event in a 7 T:A 

mononucleotide run (starting at nucleotide position 646) and not due to base pair or complex 

mutations, the hom3-10 reporter of 50 independent ura7 exo1 hom3-10 revertants were 

sequenced. In line with literature (MARSISCHKY et al. 1996) only single T:A deletions events in the 7 

T:A mononucleotide run gave rise to hom3-10 reversion. In conclusion, loss of Ura7 in an exo1 

background causes a mild hom3-10 frameshift mutator phenotype, which is equivalent to 10% of a 

complete MMR-defect (msh2) and presumably a consequence of saturation of MMR due to 

increased base pair substitutions. 

To test whether mutations induced in the absence of the identified genes are corrected by Pol2 

proofreading activity, GLN3, SHM2, URA7 and RRM3 were inactivated in the Pol2 proofreading-

deficient background pol2-04 and CAN1 mutation rates were measured. Whereas only mild 

increases of 3- to 4-fold over pol2-04 were detected in the shm2 pol2-04 and rrm3 pol2-04 

double mutants, loss of either Gln3 or Ura7 increased the CAN1 mutation rates 26- and 59-fold 

over pol2-04, respectively.  

Despite several attempts the URA7 deletion could not be combined with the Pol3 proofreading 

defective pol3-01 allele (MORRISON et al. 1993). Therefore, the possibility of a synthetic growth 

defect or synthetic lethality was investigated by plasmid shuffling. For this, the chromosomal POL3 

gene was inactivated in URA7 or ura7 haploid (n) cells, which were complemented with WT-POL3 

expressed from a low copy number plasmid (URA3-WT-POL3). Next, cells were transformed with 

either WT-POL3 or pol3-01 expressing low copy number plasmids (LEU2-WT-POL3/pol3-01). 

Striking on 5-FOA containing media selected for loss of the URA3-WT-POL3 plasmid and growth in 

the presence of POL3 or pol3-01 was evaluated. Indeed, the ura7 pol3 mutant complemented 

with a pol3-01 expressing plasmid showed a severe growth defect (Fig. 4.8A). In yeast cells, very 

high mutation rates, which are for example observed in mutants with combined DNA proofreading 

defects and complete MMR deficiency, can result in lethality due to “error-induced extinction” (TRAN 

et al. 1999; GREENE AND JINKS-ROBERTSON 2001; WILLIAMS et al. 2013). Under these 

circumstances, cells die because of the extremely elevated mutation rate that results in the 

inactivation of at least one essential gene is inactivated per cell cycle (1 x 10-3 mutations per cell 

division in haploid yeast cells)(HERR et al. 2014). In line with this, no growth was observed in an 

msh2 pol3 mutant complemented with a pol3-01 expressing plasmid (Fig. 4.8A). To evaluate, 

whether the observed slow growth phenotype of the ura7 + pol3-01 double mutant is linked to the 

high mutational load, homozygous diploid (2n) URA7 pol3 or ura7 pol3 plasmid shuffling strains 

hemizygous for CAN1 (CAN1/can1) were generated. In comparison to the very slowly growing 

haploid ura7 + pol3-01 cells, the homozygous diploid ura7 + pol3-01 cells grew better, which is 
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in line with an approximately 10-fold higher error extinction threshold in diploid cells (Fig. 4.8B). 

However, diploid ura7 + pol3-01 cells still grew slower than diploid ura7 + POL3 cells (Fig 4.8B). 

 

  
Fig. 4.8 URA7 inactivation in Pol3 proofreading-defective background results in severe growth defect 

and synergistic increase in the mutations rate.  
(A) Plasmid shuffling assay in haploid pol3Δ, pol3Δ ura7Δ and pol3Δ msh2Δ complemented with a WT-POL3-
URA3 plasmid and transformed with either WT-POL3-LEU2 or pol3-01-LEU2 plasmid. Cells were streaked out 
on Ura-Leu- SD plates (growth control) and on 5-FOA containing SD plates to counterselect for the WT-POL3-
URA3 plasmid. The msh2Δ pol3-01 double mutant serves as positive control for a synthetic lethal interaction. 
(B) Haploid (n) or diploid homozygous (2n) pol3Δ ura7Δ cells expressing either WT-POL3 or pol3-01 were 
grown as in A. (C) Proliferation curve of homozygous diploids of the indicated genotypes after plasmid 
shuffling. Proliferation was followed by OD600 measurement and the values were plotted as mean of three 
independent isogenic strains ± SD in a log2 scale. (D) Quantification of CAN1 mutation rates in diploids 
hemizygous for the CAN1 locus and homozygous for pol3Δ or pol3Δ ura7Δ complemented with WT-POL3 or 
pol3-01 on a LEU2 plasmid. Error bar represent 95% confidence intervals (CIs) and the number on top 
represents the fold increase in the mutation rate over the WT diploid strain (2.4 x 10-7 CanR mutants per cell 
division). Figure was adapted from (SCHMIDT et al. 2017). 
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To compare proliferation of diploid homozygous pol3 or pol3 ura7 strains either complemented 

with WT-POL3 or pol3-01 expressed from a low copy number plasmid, growth was followed over 

time (Fig. 4.8C). In agreement with the previous qualitative growth analysis (Fig. 4.8B), the diploid 

pol3 ura7 strains complemented with the pol3-01 plasmid grew slower than the diploid pol3 

ura7 strains complemented with the WT-POL3 plasmid and the diploid pol3 strains 

complemented with WT-POL3 or pol3-01 plasmids. Next, the CAN1 mutation rates were measured 

in the ura7 + pol3-01 diploids hemizygous for the CAN1 reporter (Fig. 4.8D). Strikingly, the ura7 

+ pol3-01 diploid showed a CAN1 inactivation rate of 1.6 x 10-3 (6482-fold increase over the WT). 

This mutation rate is at the error-induced extinction threshold for haploid cells (1.0 x 10-3 mutations 

per cell division in haploid yeast cells), but below the threshold reported for diploid cells (1.0 x 10-2 

mutations per cell division in diploid yeast cells). Taken together, mutations induced in the absence 

of GLN3 or URA7 and to a lesser degree in shm2 and rrm3 are counteracted by MMR and Pol2 

proofreading. Moreover, inactivation of URA7 in the absence of Pol3 proofreading results in a 

hypermutator phenotype that compromises cell viability. 

4.3.3 Inactivation of GLN3 or URA7 results in activation of the DNA damage response.  

Three of the here identified gene deletions (gln3, rrm3 and ura7) have been previously 

reported to show a prolonged S phase (KOREN et al. 2010). An extended S phase can be caused 

by either replication stress or DNA damage (ROUSE AND JACKSON 2002; PARDO et al. 2017). Upon 

these stress conditions, the Rad53 kinase is phosphorylated on multiple sites, resulting in Rad53 

activation and Dun1 phosphorylation. Dun1 phosphorylates the negative regulators of RNR Sml1, 

Crt1 and Dif1 and marks them for degradation. Consequently, the expression of RNR subunits and 

the activity of RNR is increased which leads to elevated dNTP levels (Fig. 4.9A). To investigate 

whether the reported extended S phase in gln3 and ura7 is due to activation of the DNA damage 

response (DDR), whole cell lysates of logarithmically growing cells were analyzed by 

immunoblotting for Rad53 phosphorylation (represented by a smear in the Rad53 electrophoretic 

mobility) and induction of the RNR subunits. Indeed, the absence of Ura7 and to a lesser degree of 

Gln3 activated the DDR. Loss of Shm2 did not result in Rad53 phosphorylation and Rnr3 induction, 

but to a mild increase in Rnr2 and Rnr4 expression levels. Interestingly, in contrast to the pol2-

M644G mutant, which was previously reported to depend on DDR activation and concomitant 

elevated dNTP pools for survival (WILLIAMS et al. 2015), the lagging strand DNA polymerase 

mutant alleles (pol1-L868M and pol3-L612M) did not activate the DDR. In agreement with the 

Western blotting results, DNA content analysis of logarithmically growing cells revealed that pol1-

L868M, pol3-L612M and shm2 did not show accumulation of cells in S phase, whereas pol2-

M644G, gln3 and ura7 cells did (Fig. 4.9C). Thus, loss of Gln3 or Ura7 causes activation of the 

DDR and accumulation of cells in S phase.  

Next, to test whether the observed synergistic mutator interaction between DNA replication fidelity-

compromised backgrounds and gln3 or ura7 are dependent on the activation of the DNA 

damage checkpoint, CAN1 mutation rates were measured in the absence of Dun1 (Zhou and 

Elledge 1993). Remarkably, inactivation of DUN1 strongly suppressed the mutator phenotypes 

(Table 4.8). For example, loss of Dun1 reduced the CAN1 mutation rates from 293- to 4-fold and  
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Fig. 4.9 Inactivation of GLN3 or URA7 causes DNA damage checkpoint activation. 
(A) Simplified scheme of the DNA damage response in S. cerevisiae. (B) Whole cell lysates of logarithmically 

growing cells were analyzed by SDS-PAGE and immunoblotting against Rad53, Rnr3 and tubulin. As positive 

control for the activation of the DNA damage response, WT cells treated for 3 h with 200 mM HU were used. 

(C) DNA content profiles of logarithmically growing strains with the indicated genotypes. (D) CAN1 mutation 

rates in mutant strains in the presence or absence of DUN1 (Table 4.8). (E) CAN1 mutation rate in the 

indicated strains grown in YPD supplemented or not with 5 mM glutamine (Gln). Error bars represent the 95% 

CI, and numbers on top are the fold increase in the mutation rate over WT. Figure was adapted from (SCHMIDT 

et al. 2017). 
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from 218- to 26-fold over WT in pol1-L868M gln3 and pol3-L612M ura7, respectively (Fig. 4.9D, 

Table 4-8). Moreover, the CAN1 inactivation rate of the exo1 ura7 double mutant was 

suppressed from 261- to 12-fold over WT in the absence of Dun1 (Fig. 4.9D, Table 4-8). These 

findings suggest that the absence of Dun1 increases DNA replication fidelity in gln3 and ura7 

double mutants. Strikingly, this phenotype is not restricted to DNA polymerase mutant allele 

combinations and most likely caused by the constant activation of the negative regulators of RNR 

and consequently lower dNTP pools (FASULLO et al. 2010). Accordingly, the dun1 ura7 double 

mutant showed an even stronger S phase delay in the DNA content analysis, whereas no 

difference was observed in the dun1 gln3 double mutant (Fig. 4.9C).  

 

Table 4.8 Mutation rate analysis in gln3Δ and ura7Δ double mutants in the presence or absence of 
DUN1. 
 Mutation Rate (fold increase)* 

Relevant genotype CanR Lys+ Thr+ 

WT 7.2 [5.7-9.0] x 10-8 (1) 1.5 [0.8-2.2] x 10-8 (1) 2.1 [1.4-3.2] x 10-9 (1) 

gln3Δ 1.0 [0.8-1.2] x 10-7 (1) 1.6 [1.1-3.7] x 10-8 (1) 2.4 [1.7-3.7] x 10-9 (1) 

ura7Δ 1.0 [0.9-1.5] x 10-7 (1) 1.4 [1.0-2.5] x 10-8 (1) 1.9 [1.2-5.6] x 10-9 (1) 

dun1Δ 5.6 [4.2-9.1] x 10-8 (1) 2.1 [0.9-3.5] x 10-8 (1) 2.4 [1.7-5.2] x 10-9 (1) 

exo1Δ 7.4 [6.3-9.8] x 10-7 (10) 1.4 [0.9-1.8] x 10-7 (10) 8.7 [6.1-15.0] x 10-9 (4) 

exo1Δ ura7Δ 1.9 [0.8-2.4] x 10-5 (261) 1.3 [0.7-1.9] x 10-6 (89) 6.6 [4.9-8.3] x 10-7 (319) 

exo1Δ ura7Δ dun1Δ 8.5 [5.4-11.3] x 10-7 (12) 2.6 [1.8-3.6] x 10-7 (18) 8.3 [4.7-10.7] x 10-9 (4) 

pol2-04 6.2 [4.3-7.6] x 10-7 (6) nd nd 

pol2-04 gln3Δ 1.1 [0.9-1.6] x 10-5 (154) nd nd 

pol2-04 dun1Δ 9.4 [6.5-17.4] x 10-8 (1) nd nd 

pol2-04 gln3Δ dun1Δ 8.6 [6.4-16.5] x 10-8 (1) nd nd 

pol1-L868M 3.9 [3.3-4.9] x 10-7 (5) nd nd 

pol1-L868M dun1Δ 9.6 [5.4-15.0] x 10-8 (1) nd nd 

pol1-L868M gln3Δ 2.1 [1.4-4.5] x 10-5 (293 nd nd 

pol1-L868M gln3Δ dun1Δ 2.9 [1.9-4.5] x 10-7 (4) nd nd 

pol3-L612M 9.3 [7.7-11.6] x 10-7 (13) nd nd 

pol3-L612M gln3Δ 9.1 [7.3-18.2] x 10-6 (127) nd nd 

pol3-L612M gln3Δ dun1Δ 3.1 [1.8-4.0] x 10-6 (43) nd nd 

pol3-L612M ura7Δ 1.6 [1.1-2.6] x 10-5 (218) nd nd 

pol3-L612M ura7Δ dun1Δ 1.8 [1.3-3.0] x 10-6 (26) nd nd 

* Median rates of inactivation of CAN1 gene (CanR) and lys2-10A (Lys+) and hom3-10 (Thr+) reversion with 95% confidence 

interval in square brackets and fold increase relative to the WT in parentheses. "nd" indicates not determined. Table was 

adapted from (Schmidt et al. 2017). 

 

The GATA transcription factor Gln3 activates genes upon glutamine limitation (BECK AND HALL 

1999; CRESPO et al. 2002). Glutamine is an important cellular metabolite for energy production, but 

also for purine and pyrimidine biosynthesis, among others. Thus, to test whether defects due to 

glutamine starvation in gln3 are responsible for the synergistic mutator interactions observed in 

gln3 double mutants, CAN1 mutation rates were measured in YPD medium or in YPD medium 

supplemented with 5 mM glutamine. Strikingly, glutamine supplementation suppressed the CAN1 

mutation rates by 70-75% in pol3-L612M gln3, pol2-04 gln3 and exo1 gln3 (Fig. 4.9E). Thus, 

at one stage during the growth of the culture glutamine becomes limiting, even if the culture is 
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grown in nutrient-rich YPD medium. Normally, cells would respond to glutamine limitation by 

activation of Gln3, but in the absence of Gln3 the cells cannot counteract the metabolic imbalance 

resulting in increased mutagenesis. 

4.3.4 Gln3 and Ura7 are critical to maintain balanced NTP and dNTP pools. 

The reported metabolic function of Gln3 (BECK AND HALL 1999; CRESPO et al. 2002) and Ura7 

(OZIER-KALOGEROPOULOS et al. 1991; OZIER-KALOGEROPOULOS et al. 1994), together with the 

activation of the DDR in the absence of both genes (Fig. 4.9B,C)(KOREN et al. 2010) and the 

suppression of the mutator phenotypes by inactivation of DUN1 (Table 4.8), suggested that 

inactivation of either one of these two genes may affect nucleotide pool homeostasis. To test this 

hypothesis, NTP and dNTP pools were measured by HPLC (Fig. 4.10, Table 4-9) (collaboration 

with Chabes lab, Umeå University). Inactivation of GLN3 and URA7 reduced CTP levels to 50% 

and 30%, respectively (Fig. 4.10A, Table 4.9A). Additionally, 1.7-fold increased UTP levels were 

measured in gln3 cells. In contrast, the NTP pools in the absence of Shm2 and in the presence of 

the active-site mutant DNA polymerase alleles did not strongly change.  

 

 

Fig. 4.10 Inactivation of GLN3 or URA7 induces an NTP and dNTP imbalance.  
(A) NTP and (B) dNTP concentration measurements in the indicated strains (Table 4.9). Error bars represent 

SD and the number on top of each bar indicates the folds over WT. Fold increases are colored in green, 
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whereas decreased levels are labeled red. NTP and dNTP concentrations were measured by the Chabes lab. 

Figure was adapted from (Schmidt et al. 2017). 

 
Table 4.9 NTP and dNTP concentrations measured in polymerase, gln3Δ, shm2Δ and ura7Δ mutants. 

A     

Relevant genotype CTP UTP ATP GTP 

WT 2360 ± 532 (1.0) 5384 ± 1406 (1.0) 12088 ± 2351 (1.0) 3705 ± 912 (1.0) 

pol1-L868M 2440 ± 483 (1.0) 5704 ± 942 (1.1) 12310 ± 2029 (1.0) 3719 ± 669 (1.0) 

pol2-M644G 2825 ± 1171 (1.2) 5959 ± 2511 (1.1) 15418 ± 6078 (1.3) 4443 ± 1902 (1.2) 

pol3-L612M 2870 ± 1085 (1.2) 6654 ± 2626 (1.2) 15524 ± 5465 (1.3) 4529 ± 1765 (1.2) 

gln3Δ 1267 ± 443 (0.5). 8957 ± 2458 (1.7) 13167 ± 3592 (1.1) 2929 ± 1130 (0.8) 

shm2Δ 3411 ± 1485 (1.4) 7302 ± 3243 (1.4) 17439 ± 7467 (1.4) 5243 ± 2429 (1.4) 

ura7Δ 808 ± 288 (0.3) 6575 ± 1225 (1.2) 13080 ± 1958 (1.1) 3587 ± 745 (1.0) 

dun1Δ gln3Δ* 1645 ± 172 (0.7) 7533 ± 2824 (1.4) 12246 ± 1371 (1.0) 3272 ± 246 (0.9) 

dun1Δ ura7Δ* 1160 ± 81 (0.5) 8338 ± 874 (1.5) 14723 ± 502 (1.2) 4151 ± 119 (1.1) 

B     

Relevant genotype dCTP dTTP dATP dGTP 

WT 75 ± 4 (1.0) 159 ± 14 (1.0) 102 ± 3 (1.0) 59 ± 0 (1.0) 

pol1-L868M 70 ± 1 (0.9) 214 ± 11 (1.3) 114 ± 1 (1.1) 63 ± 3 (1.1) 

pol2-M644G 292 ± 20 (3.9) 629 ± 37 (4.0) 450 ± 20 (4.4) 205 ± 9 (3.5) 

pol3-L612M 85 ± 25 (1.1) 149 ± 12 (0.9) 91 ± 4 (0.9) 54 ± 2 (0.9) 

gln3Δ 43 ± 3 (0.6) 641 ± 76 (4.0) 293 ± 20 (2.9) 141 ± 6 (2.4) 

shm2Δ 75 ± 2 (1.0) 178 ± 18 (1.1) 115 ± 12 (1.1) 62 ± 3 (1.1) 

ura7Δ 35 ± 6 (0.5) 517 ± 17 (3.3) 386 ± 3 (3.8) 158 ± 7 (2.7) 

dun1Δ gln3Δ* 27 ± 3 (0.4) 134 ± 65 (0.8) 71 ± 34 (0.7) 47 ± 20 (0.8) 

dun1Δ ura7Δ* 27 ± 14 (0.4) 134 ± 2 (0.8) 98 ± 2 (1.0) 42 ± 5 (0.7) 

NTP (A) and dNTP (B) concentrations (pmol per 108 cells) are the average of two biological replicates ± standard deviation 

with the fold increase over WT in parentheses. NTP and dNTP concentrations were measured by the Chabes lab. Table 

was adapted from (Schmidt et al. 2017). 

* NTP and dNTP concentrations were measured at a different time point and normalized according to a WT strain included 

in the same run.  

 

To examine whether the low CTP levels in gln3 and ura7 cells affect dCTP pools, dNTP 

concentrations were measured. The dCTP pools in gln3 and ura7 cells were reduced by 40% 

and 50%, respectively, in comparison to the WT, whereas the other dNTPs were strongly increased 

(2.4- to 4.0-fold over WT) (Fig. 4.10B, Table 4.9B). In agreement with a previous report (WILLIAMS 

et al. 2015), and the observed accumulation of cells in S phase (Fig. 4.9C), the pol2-M644G mutant 

strain showed an overall increase in dNTP pools. Moreover, neither SHM2 inactivation nor the 

lagging strand DNA polymerase alleles caused major dNTP pool alterations (Fig. 4.10B, Table 

4.9B). Taken together, loss of Gln3 or Ura7 causes low CTP pools for which neither RNR nor any 

mechanism downstream RNR can compensate, resulting in a severe dNTP imbalance which is 

characterized by limiting dCTP pools and elevated dTTP, dATP and dGTP pools. 

As the inactivation of DUN1 suppressed the CAN1 mutation rates in gln3 and ura7 double 

mutants, NTP and dNTP concentrations were also measured in dun1 gln3 and dun1 ura7. 

Whereas NTP pools in these double mutants were similar to the levels measured in gln3 and 
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ura7 single mutants (Fig. 4.10A, Table 4.9A), the overall dNTP pools were strongly decreased 

(Fig. 4.10B, Table 4.9B). The dCTP concentrations in dun1 double mutants were still comparable 

to the dCTP concentrations measured in the presence of Dun1 (40% to 60% of dCTP WT levels in 

dun1 gln3 to gln3 and 40% to 50% of dCTP WT levels in dun1 ura7 to ura7, respectively). 

However, the contribution of dCTP to the total dNTP pool was strongly increased in the dun1 

double mutants. For example, dCTP pools in ura7 contributed 3% to the total dNTP pool (19% in 

the WT), whereas dCTP in the dun1 ura7 double mutant contributed to 9% of the total dNTP 

pool. Moreover, the ratio between dCTP to dTTP changed from 1:15 in ura7 cells to 1:5 in dun1 

ura7 cells (1:2 in WT cells). Therefore, the lower overall dNTP pools and the less extreme ratios 

between the different dNTP pools might explain the observed increase in DNA replication fidelity 

upon inactivation of DUN1 in gln3 and ura7 double mutants.     

4.3.5 Inactivation of GLN3 or URA7 results in a CAN1 mutation spectrum dominated by G-

C to A-T transitions. 

In order to investigate whether the measured dNTP pool imbalance in the absence of Gln3 or Ura7 

impacts on the type of replication errors generated, CAN1 mutation spectra analysis was 

performed. Based on the results obtained in the mutator assay (Table 4.5 and 4.7), mostly base 

substitution events were expected in gln3, shm2 and ura7 mutations spectra. Therefore, and to 

avoid potential correction by MMR, the mutation spectra analysis was performed in the absence of 

Msh6, which forms together with Msh2 the mismatch recognition complex primarily responsible for 

the recognition of base pair substitutions (MARSISCHKY et al. 1996).  
 

Table 4.10 CAN1 mutation spectra analysis in WT, msh6Δ, msh6Δ gln3Δ, msh6Δ shm2Δ and msh6Δ 
ura7Δ mutants. 

 

WT msh6Δ 

msh6Δ 

gln3∆ 

msh6Δ 

shm2∆ 

msh6Δ 

ura7∆ 

CanR clones sequenced 91 110 94 95 110 

Mutations overall * 92 (100) 111 (100) 96 (100) 96 (100) 110 (100) 

Base substitutions 69 (75) 102 (92) 95 (99) 95 (99) 109 (99) 

A-T → G-C 6 (7) 9 (8) 1 (1) 1 (1) 0 (0) 

G-C → A-T 18 (20) 60 (54) 92 (96) 77 (80) 104 (95) 

G-C → T-A 29 (32) 27 (24) 0 (0) 14 (15) 5 (5) 

A-T → C-G 3 (3) 2 (2) 0 (0) 3 (3) 0 (0) 

A-T → T-A 7 (8) 1 (1) 0 (0) 0 (0) 0 (0) 

C-G → G-C 6 (7) 3 (3) 2 (2) 0 (0) 0 (0) 

Transitions 24 (26) 69 (62) 93 (97) 78 (81) 104 (95) 

Transversions 45 (49) 33 (30) 2 (2) 17 (18) 5 (5) 

One-base-pair frameshifts 15 (16) 7 (6) 1 (1) 1 (1) 1 (1) 

Complex mutations† 8 (9) 2 (2) 0 (0) 0 (0) 0 (0) 

Mutation spectra analysis based on DNA sequencing of the CAN1 gene in independent CanR mutants, shown as the 

number of clones containing the indicated mutations, and in parenthesis as the percentage relative to the total (Fig. S 7.1 

and Fig. S 7.3-6). Table was adapted from (Schmidt et al. 2017). 

*In few cases (about 1-2% of the sequenced clones) two simultaneous CAN1 mutations (more than 100 bp apart) were 

found. These mutations were included in the analysis and considered as independent mutational events. 
† includes: multiple mutations within 10 nucleotides, insertions or deletions of more than 1 nucleotide and duplication events. 
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Fig. 4.11 The CAN1 mutation spectrum in the absence of Ura7 or Gln3 is dominated by G-C to A-T 
transitions. 
(A) Independent CanR clones (n ≥ 91 per genotype) were sequenced for CAN1 mutations. The graphs 
represent the type of the identified mutations in percentage (Table 4.10). (B) The G-to-A mutational hotspot at 
nucleotide 788 was frequently found in msh6Δ gln3Δ, msh6Δ shm2Δ and msh6Δ ura7Δ strains. Predicted 
mutation is noted in red. Nucleotides marked in green are more abundant in gln3Δ and ura7Δ than in the WT 
and facilitate rapid extension of the mispair. (C) The G-to-A mutational hotspot at nucleotide 497 was 
frequently found in msh6Δ and msh6Δ shm2Δ, but not in msh6Δ gln3Δ or msh6Δ ura7Δ. Here, immediately 
after the predicted G-dT mispair a dCTP needs to be incorporated, which is less abundant in gln3Δ and ura7Δ 
strains and thus, unlikely to support rapid mismatch extension. Figure was adapted from (SCHMIDT et al. 2017) 
 

Sequencing of the CAN1 gene in independent canavanine resistant clones (CanR) (n ≥ 91 per 

genotype) revealed that the msh6 single and double mutant mutation spectra were dominated by 

base substitutions. In the WT 75% of all sequenced mutation events were base substitutions, 

whereas in msh6 and msh6 double mutants base substitutions were found in 92% and 99% of 

all sequenced events, respectively (Table 4.10). The msh6 CAN1 mutation spectrum was in 

comparison to the WT strongly enriched for G-C to A-T transitions (54.1% in msh6 compared to 

19.6% in WT), suggesting that this type of replication error is efficiently repaired by MMR in the WT 

background. The additional knockout of SHM2, URA7 or GLN3 in the msh6 background further 
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increased G-C to A-T mutations, which accounted for 80.2%, 94.5% and 95.8% of all sequenced 

CanR events, respectively. 

Statistical analysis of the CAN1 spectra revealed that the double mutant CAN1 mutation spectra 

were significantly different to the msh6 spectrum (Fisher’s exact test, p value 0.0005 for msh6 

shm2, 4.0 x 10-12 for msh6 gln3 and 1.3 x 10-10 for msh6 ura7). Further analysis revealed 

mutational hotspots, in which specific mutational events were observed at least in 5% of all 

sequenced clones (Table 4.11).  

 

Table 4.11 Mispair base substitution hotspots identified in msh6Δ gln3Δ, msh6Δ ura7Δ and msh6Δ 
shm2Δ mutants. 

Position Mutation No of occurrences  

(% of total) 

Mutation rate  

(x10-8) 

Fold increase  

over msh6Δ 

Predicted intermediate 

gln3Δ: 0.6 x dCTP, 4.0 x dTTP, 2.9 x dATP, 2.4 dGTP 

overall  96 2400 25.0  

788 G → A 15 (15.6) 375.0 434 
 

806 G → A 5 (5.2) 125.0 ≥145  

980 G → A 18 (18.8) 450.0 87 
 

1018 G → A 13 (13.5) 325.0 94  

1622 G → A 5 (5.2) 125.0 ≥145 
 

ura7Δ: 0.5 x dCTP, 3.3 x dTTP, 3.8 x dATP, 2.7 dGTP 

overall  110 3800 39.6  

268 C → T 6 (5.5) 207.3 240 
 

670 G → A 11 (10.0) 380.0 439 
 

788 G → A 16 (14.5) 552.7 633 
 

980 G → A 14 (12.7) 483.6 92 
 

1018 G → A 11 (10.0) 380.0 110  

shm2Δ: 1.0 x dCTP, 1.1 x dTTP, 1.1 x dATP, 1.1 dGTP 

overall  96 210 2.2  

497 G → A 6 (6.3) 13.1 2 
 

670 G → A 7 (7.3) 15.3 18 
 

788 G → A 7 (7.3) 15.3 18 
 

980 G → A 10 (10.4) 21.9 4  

Mutations are shown relative to the coding strand. The predicted mutation is noted in red. Nucleotides following the mutation 

and which dNTP pools are increased in the mutants in comparison to WT are noted in green. dNTP levels are shown as fold 

over the WT (Table 4.9B). The mutation spectra analysis was done in an msh6Δ background. A mutation hotspot is defined 

as a specific mutation found in more than 5% of all sequenced CANR clones in the indicated genotype. Mutation hotspots 

that are significant different to the msh6Δ control (Fisher’s exact test, p-value ≤ 0.05) are shown in bold. Table was adapted 

from (Schmidt et al. 2017). 
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All mutational hotspots in msh6 gln3 and msh6 ura7 strains were most likely driven by the 

altered dCTP to dTTP ratio (1:15 in the mutants in comparison to 1:2 in WT), which favored dTTP 

incorporation opposite of a template G. Furthermore, all identified hotspots in msh6 gln3 and 

msh6 ura7 are in agreement with a rapid mispair extension, promoted by increased dTTP, dATP 

and dGTP pools (Table 4.11). A frequent mutational hotspot in msh6 gln3 and msh6 ura7 

CAN1 mutation spectra was the misinsertion of dTTP opposite of the template G at position 788 

(Fig. 4.11B). In these backgrounds, the misinsertion is presumably driven by the dCTP to dTTP 

ratio and the high levels of the dNTPs required to extend the mispair (next-nucleotide effect). In 

contrast, misinsertion of a dTTP opposite of the template G at position 497 was frequently identified 

in the msh6 and msh6 shm2 CAN1 mutation spectra, but not in msh6 gln3 and msh6 

ura7 CAN1 mutation spectra (Fig. 4.11C). To continue DNA replication after the mispair at 

position 497, dCTP is required. Therefore, low dCTP pools, like in gln3 or ura7, may 

counterselect for rapid extension giving more time for DNA proofreading. Taken together, the 

absence of Gln3 or Ura7 induces a severe dNTP imbalance that favors G-C to A-T mutations and 

shapes the CAN1 mutation spectra. 

4.3.6 Pol  and Pol  contribute to DNA replication in the absence of Ura7. 

In the course of this work, an alternative model for DNA replication was proposed by the Prakash 

lab, in which Pol  replicates the leading and lagging DNA strands, and Pol  functions primarily 

during origin assembly, S-phase checkpoint activation and proofreading of the leading strand 

(JOHNSON et al. 2015). The here presented genome-wide screen identified a group of genes 

(GLN3, SHM2, URA7 and EXO1) that exclusively interacted with the proposed lagging strand DNA 

polymerase alleles pol1-L868M and pol3-L612M, but not with the leading strand allele pol2-M644G 

(Table 4.5). One explanation for the observed bias could be that pol2-M644G does not contribute 

to genome replication in the absence of the identified genes. To investigate this possibility and to 

further characterize the basis for the observed synergistic mutator interactions, CAN1 mutation 

spectra analysis was performed in WT, ura7, pol2-M644G, pol2-M644G ura7, pol3-L612M and 

pol3-L612M ura7 (Table 4.12). In agreement with the msh6 ura7 CAN1 mutation spectrum 

(Table 4.10), more base substitution events were observed in the ura7 CAN1 mutation spectrum 

(75% in WT and 87.1% in ura7). Even in the presence of high-fidelity DNA polymerases and 

functional MMR, G-C to A-T mutations in ura7 were 2 times more abundant than in the WT and 

represented 53% of all observed base pair substitution events (Table 4.12). Statistical comparison 

of WT and ura7 CAN1 mutation spectra revealed that the type of replication errors produced were 

significantly different in the presence and absence of Ura7 (Fisher’s exact test, p value 0.0016).  

In line with previous reports (PURSELL et al. 2007; NICK MCELHINNY et al. 2008) specific mutational 

signatures were observed in pol2-M644G and pol3-L612M expressing cells (Table 4.12). The pol2-

M644G allele favors T-T mispairs (PURSELL et al. 2007) and consequently A-T to T-A mutations 

were 9-fold more abundant in the pol2-M644G spectrum than in the WT (Table 4.12). In contrast, a 

3-fold increase in G-C to A-T mutations was detected in the pol3-L612M CAN1 mutation spectrum 

(Table 4.12)(NICK MCELHINNY et al. 2008).  



RESULTS 

88 
 

Consistent with reduced dCTP levels in the absence of Ura7 (Table 4.9B), inactivation of URA7 in 

pol3-L612M further increased the fraction of G-C to A-T mutations from 58.3% in pol3-L612M to 

71.4% of all sequenced CanR events in pol3-L612M ura7. Interestingly, in the pol3-L612M ura7 

mutation spectrum one-base-pair frameshifts were also increased (23.1% in pol3-L612M ura7 in 

comparison to 12.5% in pol3-L612M). Moreover, the type of one-base-pair frameshifts varied 

between WT, pol3-L612M and pol3-L612M ura7. Whereas the one-base-pair frameshifts detected 

in the WT or pol3-L612M were dominated by A:T deletions or insertions (73% in WT and  92% in 

pol3-L612M), which were most frequently found in longer mononucleotide runs, the pol3-L612M 

ura7 CAN1 mutation spectrum showed an increased fraction of G:C one-base-pair frameshifts 

(68% of the total one-base-pair frameshifts). These G:C one-base-pair frameshifts were located all 

over the spectrum and were found primarily at single nucleotides or short mononucleotide runs (n  

3). Both, pol3-L612M and pol3-L612M ura7 shared the mutational hotspot at position 788 and 

1018 (Table 4.13). Interestingly, the mutational hotspot 671 was exclusively found in pol3-L612M 

but was not mutated in pol3-L612M ura7, which instead showed a mutational hotspot at position 

670 (Table 4.13). The difference can be explained by the mutational sequence context and the 

altered dNTP pools. Rapid mismatch extension at position 671 requires dCTP directly following the 

misinsertion.  

 

Table 4.12 CAN1 mutation spectra of ura7Δ and polymerase mutants. 

 

WT ura7Δ 

pol2-

M644G 

pol2-

M644G 

ura7Δ 

pol3-

L612M 

pol3-

L612M 

ura7Δ 

CanR clones 

sequenced 
91 91 94 95 96 95 

Mutations overall* 92 (100) 93 (100) 94 (100) 95 (100) 96 (100) 95 (100) 

Base substitutions 69 (75.0) 81 (87.1) 82 (87.2) 82 (86.3) 81 (84.4) 72 (75.8) 

A-T to G-C 6 (6.5) 4 (4.3) 2 (2.1) 1 (1.1) 12 (12.5) 2 (2.2) 

G-C to A-T 18 (19.6) 43 (46.2) 9 (9.6) 20 (21.1) 56 (58.3) 68 (71.4) 

G-C to T-A  29 (31.5) 19 (20.4) 5 (5.3) 10 (10.5) 8 (8.3) 1 (1.1) 

A-T to C-G  3 (3.3) 7 (7.5) 1 (1.1) 1 (1.1) 2 (2.1) 1 (1.1) 

A-T to T-A 7 (7.6) 1 (1.1) 62 (66.0) 49 (51.6) 2 (2.1) 0 (0.0) 

C-G to G-C 6 (6.5) 7 (7.5) 3 (3.2) 1 (1.1) 1 (1.0) 0 (0.0) 

Transitions 24 (26.1) 47 (50.5) 11 (11.7) 21 (22.1) 68 (70.8) 70 (73.6) 

Transversions 45 (48.9) 34 (36.6) 71 (75.5) 61 (64.2) 13 (13.5) 2 (2.2) 

One-base-pair 

frameshifts 
15 (16.3) 8 (8.6) 8 (8.5) 11 (11.6) 12 (12.5) 22 (23.1) 

Complex mutations† 8 (8.7) 4 (4.3) 4 (4.3) 2 (2.1) 3 (3.1) 1 (1.1) 

Mutation spectra analysis based on DNA sequencing of the CAN1 gene in independent CanR mutants, shown as the 

number of clones containing the indicated mutations, and in parenthesis as the percentage relative to the total. (Fig. S7.1 

and Fig. S7.7-11) 

*In few cases (about 1-2% of the sequenced clones) two simultaneous CAN1 mutations (more than 100 bp apart) were 

found. These mutations were included in the analysis and considered as independent mutational events. 
† includes: multiple mutations within 10 nucleotides, insertions or deletions of more than 1 nucleotide and duplication events. 
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Table 4.13 Mispair base substitution hotspots identified in ura7Δ and polymerase mutants. 

Position Mutation No of 

occurrences  

(% of total) 

 Mutation 

rate  

(x10-8) 

Fold increase  

over WT 

Predicted intermediate 

 ura7Δ: 0.5 x dCTP, 3.3 x dTTP, 3.8 x dATP, 2.7 dGTP 

overall  91  10 1.4  

1018 G → A 11 (12.1)  1.2 ≥15.3  

 pol2-M644G: 3.9 x dCTP, 4.0 x dTTP, 4.4 x dATP, 3.5 dGTP 

overall  94  84 11.7  

103 A → T 19 (20.2)  17.0 ≥214.6  

271 A → T 5 (5.3)  4.5 ≥56.5 
 

475 A → T 13 (13.8) 
 

11.6 ≥146.8 
 

1417 A → T 14 (14.9) 
 

12.5 158.1 
 

 ura7Δ pol2-M644G: not determined 

overall  95  110 15.3  

103 A → T 8 (8.4)  9.3 ≥117.1 
 

475 A → T 8 (8.4)  9.3 ≥117.1 
 

1018 G → A 6 (6.3)  6.9 ≥87.8  

1417 A → T 17 (17.9)  19.7 ≥248.8 
 

 pol3-L612M: 1.1 x dCTP, 0.9 x dTTP, 0.9 x dATP, 0.9 dGTP 

overall  96  93 12.9  

671 G → A 6 (6.3)  5.8 ≥73.5 
 

788 G → A 5 (5.2)  4.8 ≥61.2 
 

1018 G → A 14 (14.6) 
 

13.6 ≥171.4 
 

 ura7Δ pol3-L612M: not determined 

overall  95  1560 218  

670 G → A 7 (7.4) 
 

114.9 ≥1452.8 
 

788 G → A 14 (14.7)  229.9 ≥2905.6 
 

1018 G → A 13 (13.7)  213.5 ≥2698.1  

Mutations are shown relative to the coding strand. The predicted mutation is noted in red. Nucleotides following the mutation 

and which dNTP pools are increased in the mutants in comparison to WT are noted in green. dNTP levels are shown as fold 

over the WT (Table 4.9B). For ura7Δ double mutants, in which dNTP pools were not determined, the predicted 

intermediates are color-coded as if dCTP pools were limiting. A mutation hotspot is defined as a specific mutation found in 

more than 5% of all sequenced CANR clones in the indicated genotype. Mutation hotspots that are significant different to the 

WT control (Fisher’s exact test, Benjamini and Hochberg corrected p-value ≤ 0.05) are shown in bold. 

 

Therefore, the low dCTP levels in the absence of Ura7 presumably counteract rapid extension and 

facilitate proofreading. In contrast, rapid extension of a misinsertion at position 670 is supported on 

the expense of proofreading by the high abundance of dTTP, dATP and dGTP required for the 

synthesis of the next 11 nucleotides following the misinsertion (position 669-659). Thus, the dNTP 
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imbalance induced by the URA7 inactivation facilitates the existing mutational bias of the pol3-

L612M allele and this combination may cause the hypermutator phenotype. 

Inactivation of URA7 in pol2-M644G reduced the fraction of A-T to T-A mutations from 66% in pol2-

M644G to 51.6% of all identified events in pol2-M644G ura7. G-C to A-T mutations were 

increased 2-fold in the pol2-M644G ura7 double mutant in comparison to the pol2-M644G CAN1 

mutation spectrum, presumably due to the dNTP imbalance in ura7 cells (Table 4.9B). However, 

statistical analysis revealed that the pol2-M644G ura7 CAN1 mutation spectrum was not 

significantly different to the pol2-M644G spectrum (Fisher’s exact test, p value 0.155) supporting 

the role of pol2-M644G as replicating DNA polymerase even in the absence of Ura7. Furthermore, 

the strong A to T mutational hotspots at position 103, 475 and 1417 identified in pol2-M644G were 

also found in pol2-M644G ura7. However, the relative contribution of the individual hotspot to the 

total spectrum changed. For example, the hotspots at position 103 and 475 were identified less 

frequently in pol2-M644G ura7 than in pol2-M644G, presumably because dCTP levels are 

reduced in ura7 strains and dCTP is required at these hotspots for rapid mispair extension (even 

though not as direct adjacent nucleotide) (Table 4.13). Furthermore, as in the ura7 single mutant, 

a G to A mutation hotspot at position 1018 was detected that most likely originated from lagging 

strand replication and was presumably driven by low dCTP levels. Thus, the CAN1 mutation 

spectrum analysis of pol2-M644G ura7 suggests that the absence of a synergistic mutator 

interaction between pol2-M644G and ura7 is not due to absent DNA replication by pol2-M644G, 

but rather that the mutational bias of pol2-M644G is not supported by the ura7 induced dNTP 

imbalance. Nevertheless, the dNTP imbalance influences the relative frequency of mutational 

hotspots produced by pol2-M644G and impacts also on lagging-strand replication fidelity.  
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4.4  A RNR1 random mutagenesis screen reveals specific residues in RNR1 with 

crucial functions for dNTP homeostasis and uncovers a highly mutagenic 

dNTP imbalance. 

4.4.1 RNR1 screen identifies key residues for dNTP homeostasis and genome stability.  

The genome-wide screen had identified two genes GLN3 and URA7 that when absent caused a 

dNTP imbalance (Fig. 4.10B, Table 4.9B) by affecting the concentration of one substrate required 

for dNTP biosynthesis (Fig. 4.10A, Table 4.9A). The mutational potential of this dNTP imbalance 

was normally buffered by DNA polymerase nucleotide selectivity and proofreading as well as MMR 

but resulted in a hypermutator phenotype if any of the aforementioned processes were defective 

(Table 4.5 and 4.7). Similar synergistic mutator interactions between dNTP pool alterations and 

defects in other DNA replication fidelity mechanisms have been previously described. However, 

several open questions remain to be answered: Why certain dNTP pool alterations are more 

mutagenic than others? Which dNTP pool alterations favor frameshift mutations in vivo and which 

type of dNTP pool alteration is the most detrimental in S. cerevisiae? To address these questions 

and to further investigate the mutagenic potential of different dNTP pool alterations an RNR1 

random mutagenesis screen was conducted. Mutagenesis of RNR1 and mutator screening in an 

exo1 background was performed based on three lines of evidence: First, Rnr1 is the major large 

subunit of RNR, the master regulator of dNTP pools. Rnr1 does not only contain the C-site, but 

also the two allosteric regulatory sites making Rnr1 a critical determinant of dNTP pools 

homeostasis (Fig. 1.7) (NORDLUND AND REICHARD 2006). Second, previous studies have described 

a small number of rnr1 mutant alleles, some of them only viable in the presence of a second 

suppressed WT-RNR1 copy, with different dNTP pool alterations and effects on DNA replication 

fidelity (CHABES et al. 2003; KUMAR et al. 2010) suggesting that additional, previously unrecognized 

rnr1 alleles exist that affect dNTP pool homeostasis. Third, a chemical mutagenesis screen in 

budding yeast revealed besides MMR mutant alleles also one rnr1 allele (rnr1-G271S) as an 

exo1-dependent mutator. However, the rnr1-G271S allele was not characterized in detail at that 

time (AMIN et al. 2001). Taken together, these evidence suggested that the exo1 background 

might be used, similar to the low-fidelity DNA polymerase backgrounds in the genome-wide screen 

(SCHMIDT et al. 2017), as “sensitized mutator background” in a plasmid-based RNR1 random 

mutagenesis screen. This screen may reveal novel rnr1 alleles resulting in elevated mutator 

phenotypes driven by dNTP pool alterations.  

To identify novel rnr1 alleles that increase mutagenesis in an exo1 background, a library of 

different rnr1 alleles was generated using error-prone PCR followed by in vivo gap repair and 

screening for increased mutagenesis using three different mutator assays (CAN1 inactivation 

assay and hom3-10 and lys2-10A frameshift reversion assay) (Fig. 4.12A). In this plasmid-based 

screen approximately 39,000 Leu+ transformants were tested. Finally, 24 different rnr1 alleles were 

identified that conferred an increased mutator phenotype in the absence of Exo1 (Fig. 4.12B and C, 

Table 4.14). 11 of the 24 alleles were found more than once. For example, the rnr1-S269P, rnr1-

Y285C and rnr1-K243E alleles were found 14, 10 and 10 times, respectively.  
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Fig. 4.12 rnr1 mutations identified in a RNR1 random mutagenesis screen cluster in the S-site. 
(A) Schematic representation of the rnr1 random mutagenesis screening strategy. Briefly, a PCR-mutagenized 

rnr1 was co-transfected with a linearized plasmid (CEN6, ARSH4, LEU2) in HHY6555 for in vivo gap repair. 

The WT-RNR1-URA3 plasmid was counterselected by replica-plating on SD media containing 5-FOA followed 
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by screening for increased papillation on three mutator assay plates (hom3-10, lys2-10A and CAN1 

inactivation assay). (B) Schematic representation of the Rnr1 protein. The positions of identified mutations are 

shown as red arrows. Loop 1 and loop 2 are shown as light blue and violet boxes, respectively. Below a 

sequence alignment of S. cerevisiae Rnr1 (aa 223-294) with human, mouse and E. coli homologs is shown. 

Identified mutations are colored red. Mutated residuals that are conserved from E. coli to human are labeled 

with an asterisk. (C) Model of the Rnr1-Rnr1 homodimer based on crystal structure (PDB 2vvv in green and 

3hne superimposed in white). Identified mutations are shown as blue spheres in one subunit. (D) and (E) 

Zoom-in in the S-site (PDB 2cvv). Mutated amino acids are shown as balls and sticks model. (F) Zoom-in in 

the A-site (PDB 3hne). The mutated Phe15 and the previously described Asp57 are shown as balls and sticks 

model. 

 

This indicates a good saturation of the screen and suggests that under the screening conditions 

used not many other rnr1 alleles can be identified. 

Interestingly, most of the identified mutations (21 of the 24) clustered between amino acid (aa) 226 

and 291 of Rnr1 (Fig. 4.12B,C). This region forms the S-site and based on the available crystal 

structure of S. cerevisiae Rnr1 (XU et al. 2006a) some of the identified residuals form direct or 

indirect interactions with the bound effector nucleotide (Fig. 4.12C-E). Furthermore, two mutations 

(A245V and S425L) were located closer to the C-site and two mutations (G8D and F15S) were 

identified at the N-terminal A-site (Fig. 4.12 F).  

Taken together, this comprehensive rnr1 random mutagenesis screen identified 24 different 

mutagenic rnr1 alleles, most of them affecting residues located at the S-site between aa 226 and 

291.   

4.4.2 rnr1 mutant alleles confer exo1-dependent and exo1-independent mutator 

phenotypes. 

To validate the mutator phenotypes of the identified rnr1 alleles, mutation rates of exo1 rnr1 cells 

expressing the rnr1 alleles on a centromeric plasmid were determined using the CAN1 inactivation 

assay as well as the lys2-10A and hom3-10 frameshift reversion assay (Table 4.14). Some rnr1 

alleles like rnr1-A245V, rnr1-I262V, rnr1-G271S, rnr1-M275T, and rnr1-T282A conferred only a 

weak mutator phenotype (CAN1 inactivation rate  10-fold). Others, like rnr1-D226G/V/N, rnr1-

K243E, rnr1-I262V,M275T and rnr1-S269P caused strongly increased mutator phenotypes with up 

to 80-fold increases in the CAN1 mutation rates (Table 4.14). Remarkably, some of the rnr1 alleles 

in the absence of Exo1 were even stronger mutators than a completely MMR-deficient strain 

(msh2 + WT-RNR1) (Table 4.14).  

To examine whether the rnr1 alleles conferred a mutator phenotype in the presence of Exo1, rnr1 

alleles were expressed on a centromeric plasmid in WT-EXO1 rnr1 strains and the lys2-10A 

frameshift mutator phenotype was qualitatively evaluated (Fig. 4.13). Most of the rnr1 alleles did 

not cause increased lys2-10A reversion (as evaluated by increased papillation on -lysine mutator 

plates). However, three rnr1 alleles rnr1-K243E, rnr1-I262T,M275I and rnr1-I262V,N291D resulted 

in strongly increased lys2-10A mutator phenotypes even in the presence of Exo1. This finding 

suggests that the presumed dNTP pool alteration in the presence of these alleles is extremely 

mutagenic and overwhelms the buffer capacity of the cellular DNA replication fidelity machinery.  

Moreover, to test whether the identified rnr1 alleles also increase mutagenesis in other partially 

MMR-defective backgrounds (MARSISCHKY et al. 1996), the WT-RNR1 and four rnr1 alleles (rnr1-  
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Table 4.14 Mutation rates caused by rnr1 mutations expressed on a centromeric plasmid in the exo1Δ 
rnr1Δ mutant. 

 Mutation Rate (fold increase)* 

Allele† CanR Thr+ Lys+ 

+ RNR1-WT 1.7 [1.5-3.0] x 10-6 (1) 2.4 [1.8-3.2] x 10-8 (1) 2.2 [1.6-3.0] x 10-7 (1) 

+ rnr1-G8D,V278A 3.5 [3.1-4.9] x 10-6 (2) 2.5 [1.6-3.5] x 10-7 (10) 4.0 [2.8-8.6] x 10-6 (19) 

+ rnr1-F15S 2.6 [1.9-3.9] x 10-5 (16) 3.8 [2.7-5.0] x 10-6 (158) 3.2 [2.6-5.8] x 10-6 (15) 

+ rnr1-D226G 1.3 [0.4-1.8] x 10-4 (80) 1.8 [0.9-3.5] x 10-4 (7523) 9.3 [5.3-25.9] x 10-5 (424) 

+ rnr1-D226V 1.1 [0.5-1.7] x 10-4 (66) 1.9 [0.7-3.2] x 10-4 (7737) 1.6 [0.7-2.8] x 10-4 (753) 

+ rnr1-S117P‡,D226N 4.5 [3.0-9.0] x 10-5 (27) 1.1 [0.4-2.8] x 10-4 (4612) 1.4 [1.0-1.9] x 10-4 (645) 

+ rnr1-I231T,T244A 8.4 [6.9-11.0] x 10-6 (5) 3.3 [2.3-5.2] x 10-6 (137) 3.3 [2.9-4.5] x 10-5 (150) 

+ rnr1-S242T 4.5 [3.1-7.7] x 10-5 (27) 9.5 [6.4-16.3] x 10-6 (396) 1.6 [1.3-2.8] x 10-4 (750) 

+ rnr1-K243E 1.0 [0.7-1.2] x 10-4 (63) 3.9 [2.6-8.1] x 10-5 (1613) 2.6 [1.8-4.9] x 10-4 (1185) 

+ rnr1-T244I,V278A 1.4 [0.9-2.5] x 10-5 (8) 1.0 [0.8-2.1] x 10-5 (423) 5.7 [1.3-11.0] x 10-5 (262) 

+ rnr1-A245V 1.3 [0.9-2.3] x 10-5 (8) 5.0 [2.8-11.7] x 10-6 (207) 3.4 [2.1-6.6] x 10-6 (16) 

+ rnr1-R256H,Y779C 2.3 [1.3-3.6] x 10-5 (14) 2.9 [1.9-5.6] x 10-5 (1214) 1.6 [0.9-2.4] x 10-4 (741) 

+ rnr1-I262T,M275I 1.1 [0.8-1.9] x 10-5 (69) 2.0 [0.7-2.6] x 10-4 (8165) 4.5 [3.0-11.2] x 10-4 (2077) 

+ rnr1-I262V,N291D 6.4 [4.5-9.6] x 10-5 (39) 1.7 [1.0-2.8] x 10-5 (711) 1.8 [1.2-2.8] x 10-4 (815) 

+ rnr1-I262V 2.8 [2.1-3.4] x 10-6 (2) 2.8 [2.2-3.1] x 10-7 (12) 3.3 [1.8-6.3] x 10-6 (15) 

+ rnr1-T265A 6.3 [3.9-7.9] x 10-6 (4) 1.9 [0.9-4.1] x 10-6 (81) 3.3 [1.1-5.9] x 10-5 (153) 

+ rnr1-G267C 3.9 [2.2-7.8] x 10-5 (23) 1.0 [0.6-2.0] x 10-5 (428) 2.1 [1.8-2.8] x 10-4 (957) 

+ rnr1-S269P 8.4 [6.6-13.0] x 10-5 (51) 2.1 [1.2-4.1] x 10-4 (8595) 2.8 [2.0-4.3] x 10-4 (1276) 

+ rnr1-G271S 3.7 [3.4-4.5] x 10-6 (2) 1.1 [0.9-1.3] x 10-6 (47) 1.7 [1.4-3.6] x 10-6 (8) 

+ rnr1-P274L 5.9 [3.9-10.2] x 10-6 (4) 9.4 [5.5-11.5] x 10-7 (39) 2.7 [1.7-3.9] x 10-5 (123) 

+ rnr1-M275T 1.8 [1.0-2.4] x 10-6 (1) 2.6 [2.0-4.1] x 10-7 (11) 2.1 [1.3-6.3] x 10-6 (9) 

+ rnr1-T282A 2.9 [2.4-4.6] x 10-6 (2) 1.0 [0.8-1.5] x 10-7 (4) 2.0 [1.6-2.2] x 10-6 (9) 

+ rnr1-T282S 3.3 [2.4-6.4] x 10-6 (2) 3.3 [2.3-6.4] x 10-7 (14) 3.0 [1.5-5.5] x 10-5 (138) 

+ rnr1-A283V,S425L 8.2 [6.4-9.4] x 10-6 (5) 1.1 [0.9-1.5] x 10-6 (48) 3.1 [2.1-6.4] x 10-5 (140) 

+ rnr1-Y285C 1.1 [0.8-1.3] x 10-5 (7) 4.5 [3.5-7.1] x 10-6 (187) 7.7 [6.4-13.0] x 10-5 (35) 

msh2Δ + RNR1-WT 4.0 [2.4-6.2] x 10-5 (24) 4.3 [2.4-7.9] x 10-5 (1792) 2.3 [1.5-2.7] x 10-4 (1045) 

* Median rates for the CAN1 (CanR) inactivation assay and for hom3-10 (Thr+) and lys2-10A (Lys+) frameshift reversion 

assays with 95% confidence interval in square brackets and fold increase in parentheses, relative to rnr1Δ exo1Δ strain 

complemented with the WT-RNR1 plasmid. † Allele expressed on a low-copy number plasmid in an rnr1Δ exo1Δ strain. As 

reference for total MMR deficiency an rnr1Δ msh2Δ strain complemented with the WT-RNR1 plasmid was included. Site 

directed mutagenesis (or subcloning) was used to independently generate rnr1 single point mutants for all plasmids 

containing more than one mutation. Passenger mutations are indicated with ‡.  

 

F15S, rnr1-S242T, rnr1-I262V,N291D and rnr1-Y285C) that differed in the strength of the mutator 

phenotypes in exo1 and EXO1 backgrounds, were expressed on centromeric plasmids in msh3 

rnr1 and msh6 rnr1 cells and mutation rates were determined (Table 4.15). In comparison to 

the WT-RNR1 increased mutation rates were measured for all tested rnr1 alleles in these partially 

mismatch recognition-compromised backgrounds. In agreement with a primary role of Msh6 in 

mispair recognition and Msh3 in the detection of insertions and deletions (MARSISCHKY et al. 1996), 

increased CAN1 inactivation were predominantly found in msh6 double mutants and hom3-10 

reversions were more abundant in msh3 double mutants 

Thus, the here identified rnr1 alleles presumably induce dNTP pool alterations that not only 

facilitates misinsertions, but also slippage events, leading to increased mutagenesis in MMR-

compromised backgrounds. Remarkably, three rnr1 alleles caused presumably such a mutagenic 
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dNTP pool alteration that increased frameshift mutations were detected even in an MMR-proficient 

WT background.  

 

 

Fig. 4.13 rnr1 mutation screen identifies exo1Δ-dependent and independent mutator phenotypes. 
Qualitative patch test of rnr1Δ strains expressing WT-RNR1 or rnr1 mutant alleles on a centromeric LEU2 

plasmid. Increased papillation is indicative for an elevated frameshift mutator phenotype. Three colonies per 

genotype were patched. rnr1 alleles which confer a strong frameshift mutator phenotype in the WT rnr1Δ 

background are colored in red. Passenger mutations are labeled with asterisks. As positive mutator control 

rnr1Δ exo1Δ complemented with rnr1-G271S expressed from a centromeric LEU2 plasmid was used. 

 

Table 4.15 Mutation rates of rnr1 mutants expressed from a centromeric plasmid in an msh3Δ rnr1Δ 
and msh6Δ rnr1Δ background. 

 Mutation Rate (fold increase)* 

Allele† CanR Thr+ Lys+ 

WT + RNR1-WT 2.8 [1.9-3.2] x 10-7 (1) 5.3 [3.5-7.1] x 10-9 (1) 1.6 [0.9-3.2] x 10-8 (1) 

msh2Δ + RNR1-WT 4.0 [2.4-6.2] x 10-5 (145) 4.3 [2.4-7.9] x 10-5 (8090) 2.3 [1.5-2.7] x 10-4 (14470) 

msh3Δ + RNR1-WT 8.4 [6.6-13.1] x 10-7 (3) 2.4 [2.0-3.7] x 10-7 (46) 1.1 [0.9-2.3] x 10-6 (72) 

msh3Δ + rnr1-F15S 4.4 [2.6-6.1] x 10-6 (16) 9.0 [6.4-14.4] x 10-7 (169) 1.3 [0.7-1.6] x 10-6 (81) 

msh3Δ + rnr1-S242T 6.3 [3.5-11.2] x 10-6 (23) 3.9 [2.3-6.8] x 10-6 (726) 5.7 [3.6-8.2] x 10-6 (365) 

msh3Δ + rnr1-I262V,N291D 1.9 [1.4-2.4] x 10-5 (69) 1.2 [0.8-1.5] x 10-5 (2332) 3.1 [2.0-4.2] x 10-5 (2011) 

msh3Δ + rnr1-Y285C 1.5 [1.1-2.5] x 10-5 (55) 2.0 [1.6-2.6] x 10-6 (385) 2.5 [1.2-3.7] x 10-6 (160) 

msh6Δ + RNR1-WT 1.3 [1.0-2.0] x 10-5 (47) 1.2 [0.6-1.5] x 10-7 (22) 2.6 [1.5-4.3] x 10-6 (169) 

msh6Δ + rnr1-F15S 8.3 [6.0-12.0] x 10-5 (298) 5.9 [2.9-9.4] x 10-7 (111) 1.8 [1.2-4.1] x 10-6 (116) 

msh6Δ + rnr1-S242T 6.4 [4.2-11.8] x 10-5 (232) 2.7 [1.6-6.4] x 10-6 (514) 2.4 [1.2-3.7] x 10-5 (1564) 

msh6Δ + rnr1-I262V,N291D 1.2 [0.4-1.5] x 10-4 (436) 1.3 [0.9-2.4] x 10-6 (248) 4.4 [1.4-5.7] x 10-5 (2827) 

msh6Δ + rnr1-Y285C 1.3 [1.0-1.7] x 10-4 (453) 2.6 [1.9-3.5] x 10-6 (495) 9.4 [6.8-24.9] x 10-6 (606) 

* Median rates of inactivation of CAN1 gene (CanR) and lys2-10A (Lys+) and hom3-10 (Thr+) frameshift reversion with 95% 

confidence interval in square brackets and fold increase in parentheses, relative to the WT-RNR1 plasmid.  

† Allele expressed from a low copy number plasmid in rnr1Δ msh3Δ or rnr1Δ msh6Δ background. 
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4.4.3 rnr1 mutant alleles rely differentially on DNA damage response, DNA proofreading 

and MMR.  

Mutations in RNR1 can severely compromise RNR catalytic activity, so that cells depend on an 

active S-phase checkpoint and expression of the alternative large RNR subunit RNR3 to produce 

sufficient amounts of dNTP for DNA replication (KUMAR et al. 2010). Moreover, as observed for the 

ura7 + pol3-01 (Fig. 4.8), the combination of mutagenic dNTP pool alterations and the absence of 

DNA proofreading or MMR can result in hypermutator phenotypes that severely impair viability 

leading to growth defects (GD) or even synthetic lethality (SL). Thus, the dependency of the rnr1 

mutants on functional DDR, as well as potential GD/SL genetic interactions with DNA proofreading 

and MMR mutants were investigated using plasmid shuffling (Fig. 4.14, 4.15).  

 

 

Fig. 4.14 Specific rnr1 mutant alleles depend on DNA damage checkpoint for survival.  
(A) Schematic representation of the experimental outline to investigate genetic interactions by plasmid 
shuffling. Centromeric LEU2 plasmids encoding the WT and mutant rnr1 alleles were transformed in WT and 
DNA damage checkpoint- or DNA replication fidelity-compromised rnr1Δ backgrounds complemented with 
WT-RNR1-URA3 plasmid. Overnight cultures were spotted in serial dilution on SD medium lacking Leu and 
containing 5-FOA to counterselect for the WT-RNR1-URA3 plasmid and screened for synthetic interactions.  
(B) Representative images of yeast strains of the indicated genotypes (complemented by WT or mutant rnr1 
plasmids), serially diluted and spotted onto Leu- +5-FOA containing media. Images were taken after 4 days at 
30 °C. 
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In the absence of Rnr3 SL interactions were observed in the rnr1-D226G/V/N, rnr1-R256H,Y779C 

and rnr1-I262T,M275I and a GD was detected for rnr1-S269P (Fig. 4.14B). Similar dependency of 

these alleles was observed for the DDR kinase Dun1, which is required to inactivate the negative 

regulators of RNR. Previous reports suggested two branches of the S-phase checkpoint, one 

Rad9- and the other Mrc1-dependent (PARDO et al. 2017). To test, whether the identified rnr1 

alleles relied more on one or the other branch, plasmid shuffling was performed in backgrounds 

either deficient for Rad9 or Mrc1. No rnr1 allele conferred severe GD in the absence of Rad9 or 

Mrc1 suggesting that both checkpoint mediators can compensate for each other and support 

growth of the Rnr3-dependent rnr1 alleles even if one of them is absent (Fig. 4.14B).  

 

 

 

The identified genetic interactions between the rnr1 alleles and DNA polymerase proofreading-

defective strains (pol3-01 and pol2-04) and MMR-deficient mutant (msh2) (Fig. 4.15), in 

combination with the mutator phenotypes in the presence (Fig. 4.13) or absence of Exo1 (Table 

4.14) were used to categorize the identified rnr1 alleles in four groups (summarized in Table 4.16).  

Fig. 4.15 Specific rnr1 mutant alleles depend on DNA 
proofreading or DNA mismatch repair for survival. 
A) and (B) Representative images of yeast strains of the 

indicated genotypes (complemented by WT or mutant rnr1 

plasmids), serially diluted and spotted onto Leu- +5-FOA 

containing media. Images were taken after 4 days at 30 °C. 
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Table 4.16 Summary of rnr1 mutant alleles identified in this study, including their genetic interactions 
and mutator phenotypes. 

 synthetic growth defect/lethality CAN1 

mutator 

phenotype 

in exo1Δ (1) 

frameshift 

mutator 

phenotype 

in EXO1-

WT (2) 

Allele* rnr3Δ‡ pol3-01 pol2-04 msh2Δ 

group 1 (no interaction or just with pol3-01) 

rnr1-G8D,V278A - - - - weak - 

rnr1-F15S - - - - strong - 

rnr1-I231T,T244A - - - - weak - 

rnr1-T244I,V278A - SL - - moderate - 

rnr1-I262V - - - - weak - 

rnr1-T265A - GD - - weak - 

rnr1-P274L - GD - - weak - 

rnr1-M275T - - - - weak - 

rnr1-T282A - - - - weak - 

rnr1-T282S - - - - weak - 

rnr1-A283V,S425L - SL - - weak - 

group 2 (interaction with pol2-04 and pol3-01) 

rnr1-A245V - SL GD - moderate - 

rnr1-G271S - SL GD - weak - 

rnr1-Y285C - SL GD - moderate - 

group 3 (interaction with pol2-04, pol3-01 and msh2Δ) 

rnr1-D226G SL GD GD GD strong - 

rnr1-D226V SL GD GD GD strong - 

rnr1- D226N‡,S117P SL GD GD GD strong - 

rnr1-S242T - SL GD GD strong - 

rnr1-R256H,Y779C SL SL GD GD strong - 

rnr1-G267C - SL GD GD strong - 

rnr1-S269P GD SL GD GD strong - 

group 4 (interaction with pol2-04, pol3-01 and msh2Δ and mutator in EXO1-WT) 

rnr1-K243E - SL GD GD strong mutator 

rnr1-I262T,M275I SL SL GD GD strong mutator 

rnr1-I262V,N291D - SL GD GD strong mutator 

* Indicated allele expressed on a low-copy number plasmid was used for complementation studies in strains lacking the 

chromosomal RNR1 gene in addition to the indicated mutations. Passenger mutations are marked with †. "-" indicates 

growth similar to WT-RNR1; "GD", growth defect; "SL", synthetic lethality. ‡rnr1 alleles showing GD or SL in the absence of 

RNR3 also showed GD or SL in the absence of DUN1. 

(1) mutator phenotype according to the CAN1 inactivation rate (Table 1) fold increase over WT-RNR1 (in rnr1Δ exo1Δ): 2-5 

= weak; 6-10 = moderate; ≥ 11 = strong. 

(2) frameshift mutator phenotype (lys2-10A assay) in EXO1-WT rnr1Δ background (Fig. 4.13). 

 

Group 1 consists of rnr1 alleles that did not interact with any of the tested alleles or just with pol3-

01 (rnr1-G8D,V278A, rnr1-F15S, rnr1-I231T,T244A, rnr1-T244I,V278A, rnr1-I262V, rnr1-T265A, 

rnr1-P274L, rnr1-M275T, rnr1-T282A, rnr1-T282S and rnr1-A283V,S425L). Most of the rnr1 alleles 

in this group caused weak mutator phenotypes in the absence of Exo1 (5-fold in CAN1 

inactivation). Group 2 rnr1 alleles showed GD/SL exclusively with the DNA proofreading defective 

alleles (pol3-01 and pol2-04), but not in the absence of MMR (rnr1-A245V, rnr1-G271S and rnr1-
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Y285C). These rnr1 alleles conferred weak or moderate mutator phenotypes in the absence of 

Exo1 (10-fold in CAN1 inactivation). Group 3 contains the rnr1 alleles that showed GD/SL in the 

absence of DNA proofreading and MMR (rnr1-D226G/V/N, rnr1-S242T, rnr1-R256H,Y779C, rnr1-

G267C and rnr1-S269P). The mutator phenotype of the rnr1 alleles in this group was strong in the 

absence of Exo1, but no elevated frameshift mutator phenotype was observed in the presence of 

Exo1. Finally, group 4 includes the rnr1 alleles that showed GD/SL in the absence of DNA 

proofreading and MMR and strongly increased mutagenesis in the absence and presence of Exo1 

(rnr1-K243E, rnr1-I262T,M275I and rnr1-I262V,N291D). This distinct dependencies on DNA 

proofreading and MMR suggest that replication errors caused by the potentially dNTP pool 

alterations rely differentially on DNA proofreading and MMR for repair.  

4.4.4 rnr1 mutants cause either overall increased or imbalanced dNTP pools. 

To validate that the measured increased mutator phenotypes and the detected genetic interactions 

of the rnr1 alleles were caused by altered dNTP pools, NTP and dNTP concentrations were 

measured by HPLC (collaboration with Chabes lab, Umeå University) for those rnr1 alleles above a 

defined mutator threshold (5-fold increase in CAN1 assay or 40-fold increase in hom3-10 assay 

 

Table 4.17 NTP concentrations in strains expressing rnr1 mutant alleles on a centromeric plasmid. 

 NTP concentration (pmol per 108 cells)* 

Allele CTP UTP ATP GTP 

+ WT-RNR1 2139 ± 165 (1.0) 4249 ± 130 (1.0) 13792 ± 870 (1.0) 3232 ± 197 (1.0) 

group 1 (no interaction or just with pol3-01) 

+ rnr1-F15S 2073 ± 50 (1.0) 3926 ± 8 (0.9) 14255 ± 40 (1.0) 2753 ± 86 (0.9) 

+ rnr1-I231T,T244A 2105 ± 72 (1.0) 3734 ± 36 (0.9) 14223 ± 34 (1.0) 2854 ± 81 (0.9) 

+ rnr1-T244I,V278A 2066 ± 7 (1.0) 3810 ± 32 (0.9) 14108 ± 8 (1.0) 2888 ± 15 (0.9) 

+ rnr1-T265A 2122 ± 1 (1.0) 3912 ± 197 (0.9) 14480 ± 448 (1.0) 2947 ± 42 (0.9) 

+ rnr1-A283V,S425L 2143 ± 37 (1.0) 4050 ± 118 (1.0) 13975 ± 383 (1.0) 2610 ± 61 (0.8) 

group 2 (interaction with pol2-04 and pol3-01) 

+ rnr1-A245V 1930 ± 56 (0.9) 4132 ± 119 (1.0) 15154 ± 182 (1.1) 3450 ± 37 (1.1) 

+ rnr1-G271S 2267 ± 39 (1.1) 4218 ± 6 (1.0) 15307 ± 11 (1.1) 3674 ± 50 (1.1) 

+ rnr1-Y285C 2100 ± 105 (1.0) 3904 ± 80 (0.9) 14817 ± 173 (1.1) 2907 ± 62 (0.9) 

group 3 (interaction with pol2-04, pol3-01 and msh2Δ) 

+ rnr1-D226G 2202 ± 61 (1.0) 3913 ± 114 (0.9) 14276 ± 518 (1.0) 2870 ± 56 (0.9) 

+ rnr1-D226V 2096 ± 26 (1.0) 3809 ± 33 (0.9) 13770 ± 124 (1.0) 2921 ± 47 (0.9) 

+ rnr1-S117P,D226N 2029 ± 70 (0.9) 3728 ± 281 (0.9) 13955 ± 1034 (1.0) 3047 ± 81 (0.9) 

+ rnr1-S242T 2185 ± 14 (1.0) 3849 ± 193 (0.9) 14395 ± 462 (1.0) 2915 ± 55 (0.9) 

+ rnr1-R256H,Y779C 2103 ± 60 (1.0) 4101 ± 88 (1.0) 13750 ± 58 (1.0) 3005 ± 41 (0.9) 

+ rnr1-G267C 2182 ± 2 (1.0) 4068 ± 8 (1.0) 14103 ± 105 (1.0) 2828 ± 15 (0.9) 

+ rnr1-S269P 1922 ± 35 (0.9) 4154 ± 136 (1.0) 14738 ± 1198 (1.1) 3013 ± 233 (0.9) 

group 4 (interaction with pol2-04, pol3-01 and msh2Δ and mutator in EXO1-WT) 

+ rnr1-K243E 2173 ± 9 (1.0) 4177 ± 114 (1.0) 14350 ± 222 (1.0) 2703 ± 18 (0.8) 

+ rnr1-I262T,M275I 2075 ± 22 (1.0) 3905 ± 54 (0.9) 13932 ± 242 (1.0) 2843 ± 52 (0.9) 

+ rnr1-I262V,N291D 2110 ± 15 (1.0) 4432 ± 136 (1.0) 15045 ± 131 (1.1) 2970 ± 51 (0.9) 

* NTP concentrations (pmol per 108 cells) are the average of two biological replicates ± standard deviation with the fold 

increase over WT in parentheses. NTP concentrations were measured by the Chabes lab. 
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or 150-fold increase in the lys2-10A assay (the difference in the mutator thresholds takes into 

consideration the different linear range of the used assays)). In agreement with a function of Rnr1 

downstream of NTP biosynthesis, NTP concentrations were largely unchanged in comparison to 

the WT (Table 4.17). All rnr1 alleles caused altered dNTP pools (Fig. 4.16A, Table 4.18) supporting 

the idea that the observed phenotypes in DNA replication fidelity-compromised backgrounds were 

due to dNTP pool alterations. Except for one rnr1 allele (rnr1-F15S) that caused overall increased 

dNTP levels (in average 6.5-fold over WT), all other alleles induced dNTP pool imbalances. All 

dNTP imbalances were characterized by elevated pyrimidine levels, relatively low dATP levels and 

either low or increased dGTP pools. In contrast to the dCTP/dTTP ratio, which was relatively stable 

(0.9-1.6 fold) between the different mutants, the rnr1 alleles differed strongly in the dGTP/dATP 

ratio (0.6-13.4 fold), which was primarily a consequence of the altered dGTP levels (Table 4.18). 

 

Table 4.18 dNTP concentrations in strains expressing rnr1 mutant alleles on a centromeric plasmid. 

 dNTP concentration (pmol per 108 cells)* 

Allele dCTP dTTP dATP dGTP 

+ WT-RNR1 117 ± 17 (1.0) 260 ± 17 (1.0) 170 ± 20 (1.0) 73 ± 4 (1.0) 

group 1 (no interaction or just with pol3-01) 

+ rnr1-F15S 866 ± 34 (7.4) 1439 ± 129 (5.5) 1125 ± 156 (6.6) 461 ± 31 (6.3) 

+ rnr1-I231T,T244A 525 ± 17 (4.5) 1065 ± 78 (4.1) 287 ± 59 (1.7) 256 ± 24 (3.5) 

+ rnr1-T244I,V278A 783 ± 12 (6.7) 1377 ± 22 (5.3) 352 ± 2 (2.1) 255 ± 7 (3.5) 

+ rnr1-T265A 436 ± 62 (3.7) 833 ± 61 (3.2) 205 ± 0 (1.2) 164 ± 7 (2.3) 

+ rnr1-A283V,S425L 370 ± 17 (3.2) 741 ± 61 (2.8) 314 ± 19 (1.8) 682 ± 49 (9.4) 

group 2 (interaction with pol2-04 and pol3-01) 

+ rnr1-A245V 524 ± 84 (4.5) 1005 ± 105 (3.9) 123 ± 21 (0.7) 30 ± 7 (0.4) 

+ rnr1-G271S 711 ± 106 (6.1) 1426 ± 97 (5.5) 343 ± 59 (2.0) 101 ± 10 (1.4) 

+ rnr1-Y285C 950 ± 76 (8.1) 1662 ± 43 (6.4) 166 ± 40 (1.0) 74 ± 4 (1.0) 

group 3 (interaction with pol2-04, pol3-01 and msh2Δ) 

+ rnr1-D226G 521 ± 43 (4.5) 896 ± 73 (3.4) 204 ± 18 (1.2) 238 ± 22 (3.3) 

+ rnr1-D226V 565 ± 11 (4.8) 945 ± 8 (3.6) 200 ± 0 (1.2) 235 ± 8 (3.2) 

+ rnr1-S117P,D226N 338 ± 44 (2.9) 599 ± 66 (2.3) 149 ± 4 (0.9) 169 ± 23 (2.3) 

+ rnr1-S242T 559 ± 30 (4.8) 1033 ± 39 (4.0) 87 ± 3 (0.5) 358 ± 51 (4.9) 

+ rnr1-R256H,Y779C 1155 ± 80 (9.9) 1771 ± 80 (6.8) 121 ± 3 (0.7) 303 ± 13 (4.2) 

+ rnr1-G267C 548 ± 18 (4.7) 1030 ± 28 (4.0) 141 ± 7 (0.8) 583 ± 39 (8.0) 

+ rnr1-S269P 2135 ± 273 (18.3) 3032 ± 338 (11.6) 340 ± 70 (2.0) 312 ± 2 (4.3) 

group 4 (interaction with pol2-04, pol3-01 and msh2Δ and mutator in EXO1-WT) 

+ rnr1-K243E 765 ± 36 (6.6) 1331 ± 76 (5.1) 259 ± 7 (1.5) 968 ± 61 (13.3) 

+ rnr1-I262T,M275I 720 ± 50 (6.2) 1163 ± 87 (4.5) 168 ± 6 (1.0) 536 ± 86 (7.4) 

+ rnr1-I262V,N291D 404 ± 35 (3.5) 852 ± 22 (3.3) 140 ± 14 (0.8) 780 ± 16 (10.7) 

* dNTP concentrations (pmol per 108 cells) are the average of two biological replicates ± standard deviation with the fold 

increase over WT in parentheses. dNTP concentrations were measured by the Chabes lab.  

 

To examine whether the observed genetic interactions could be correlated to the measured dNTP 

pools, the log2 of the dGTP/(dCTP+dTTP) ratio normalized to the WT was plotted against the 

relative fraction of dATP to the total dNTP pool (Fig. 4.16B). As all rnr1 alleles, except rnr1-F15S, 

showed a relative decrease in the fraction of dATP to the total dNTP pool in comparison to the WT, 
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the ratio between dGTP and pyrimidines can discriminate between an equal increase and a 

relatively stronger increase in either dGTP or pyrimidines. Thus, alleles, which caused an equal 

increase in dGTP and pyrimidines were plotted on the x-axis (y = 0), whereas alleles that resulted 

in relatively stronger increases of dGTP or pyrimidines were plotted above (y  0) and below (y  0) 

the x-axis, respectively. Interestingly, rnr1 alleles that interacted exclusively with the proofreading-

deficient alleles (group 2, colored in blue) caused at least a 4-fold stronger increase in pyrimidines 

than in dGTP (y  -2). In contrast, the rnr1 alleles that showed GD/SL in DNA proofreading and 

MMR-deficient backgrounds (group 3 (orange) and group 4 (red)) clustered in a region defined by 

less than 12% dATP of the total dNTP pool and a dGTP/pyrimidine ratio  0.25. In comparison to 

group 3, group 4 mutants, that additionally caused a frameshift mutator phenotype in the presence 

of Exo1, showed the strongest increases in the dGTP pools. One exception is the rnr1-G267C 

allele, which was almost indistinguishable from the rnr1-I262T,M275I allele in terms of dNTP pool 

alterations, but did not caused a frameshift mutator phenotype in the presence of Exo1. This 

discrepancy might be explained by differences in cell cycle progression and Rnr3 dependency (Fig. 

4.14B, Table 4.16). 

 

 

Fig. 4.16 Identified rnr1 mutant alleles cause increased dNTP pools or dNTP pool imbalances. 
(A) dNTP concentration measurement in the indicated rnr1Δ strains after plasmid shuffling (Table 4.18). Data 
is shown as fold over WT. The numbers on top represent the fold over WT. Fold increases are colored in 
green, whereas decreased levels are labeled red. rnr1 alleles are grouped and color-coded according to 
genetic interactions (Table 4.16). (B) Graphical representation of the log2 of the ratio between dGTP and the 
sum of dCTP and dTTP normalized to the WT against the %dATP of the total dNTP pool. rnr1 alleles are 
color-coded according to genetic interactions (Table 4.16) 
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Taken together, the rnr1 alleles identified in the RNR1 random mutagenesis screen caused four 

different types of dNTP pool alterations with distinct genetic interactions: First, overall increased but 

balanced dNTP pools (rnr1-F15S) did not cause any genetic interactions (part of group 1, grey). 

Second, a dNTP imbalance characterized by elevated pyrimidine pools and low purine pools (“low 

purines” or “2 out of 4”) depended on DNA proofreading but not MMR for survival (group 2, blue). 

Third, low dATP pools and increased pyrimidine and dGTP pools (“low dATP” or “3 out 4”) 

characterized the rnr1 alleles that were dependent on DNA proofreading and MMR (group 3, 

orange). Fourth, dNTP imbalances with low dATP pools, elevated pyrimidines and strongly 

increased dGTP pools (“low dATP + high dGTP” or “3 out 4 + high dGTP”). These alleles were 

dependent on DNA proofreading and MMR for survival and conferred a mutator phenotype in the 

presence of Exo1 (group 4, red).  

4.4.5 rnr1 alleles expressed at the endogenous locus cause dNTP pool alteration, 

checkpoint activation and increased mutagenesis.  

To further characterize the identified rnr1 alleles and their dNTP pool alterations, two 

representative examples of each type of dNTP pool alteration were integrated at the endogenous 

chromosomal locus. As only one rnr1 allele (rnr1-F15S) was identified in the screen that caused an 

overall increased dNTP pool, the previously reported rnr1-D57N allele, which is refractory to dATP 

inhibition at the A-site, resulting in overall increased dNTPs (CHABES et al. 2003), was included in 

the analysis. For the “low purine” type of dNTP imbalance the rnr1 alleles with the lowest purine 

pools were selected (rnr1-A245V and rnr1-Y285C). For the “low dATP” type of dNTP imbalance the 

rnr1-S242T and rnr1-R256H,Y779C were chosen, representing a Rnr3-independent and -

dependent allele, respectively. Finally, for the “low dATP + high dGTP” type of dNTP pool 

imbalance the two alleles (rnr1-K243E and rnr1-I262V,N291D) with the highest increases in dGTP 

were integrated at the endogenous locus. Next, mutation rates were determined in the presence 

and absence of Exo1 (Table 4.19). Only mild mutator phenotypes were measured in the WT 

background (1-4 fold increase in CAN1 inactivation rate), except for rnr1-K243E and rnr1-

I262V,N291D. The latter mutants caused 92- and 164-fold higher CAN1 inactivation rates 

compared to WT, respectively. Remarkably, these high CAN1 mutation rates are 1.5- and 2.6-fold 

higher than in a completely MMR-deficient msh2 strain (Table 4.19). Moreover, both rnr1 alleles 

caused strong frameshift mutator phenotype in the range of a complete MMR-defect. Thus, in line 

with the results obtained with rnr1 alleles expressed on centromeric plasmids (Fig. 4.13), only rnr1-

K243E and rnr1-I262V,N291D caused strong mutator phenotypes in a WT background and the 

mutagenic potential of the other rnr1 alleles was buffered by other DNA replication fidelity 

mechanisms.   

In the absence of Exo1, strong increases in all three mutator assays were observed for all rnr1 

alleles except for the rnr1-D57N allele (Table 4.19). Even though rnr1-F15S and rnr1-D57N caused 

similar increases in the CAN1 inactivation assay in the presence of Exo1 (4- and 3-fold, 

respectively), only rnr1-F15S showed synergistically increased mutation rates in combination with 

exo1 suggesting that the dNTP pool alteration in rnr1-F15S is more severe in comparison to rnr1-

D57N. Furthermore, the rnr1-K243E exo1 double mutant could not be obtained by mating in 
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several attempts presumably due to the high mutational load in the double mutant or due to DNA 

replication-independent defects. 

 

Table 4.19 Mutation rates caused by rnr1 mutations integrated at the RNR1 genomic locus in Exo1-
proficient and Exo1-deficient backgrounds. 

 Mutation Rate (fold increase)* 

Relevant genotype CanR Thr+ Lys+ 

WT 8.7 [7.2-10.0] x 10-8 (1) 2.0 [1.1-3.0] x 10-9 (1) 2.1 [1.8-2.3] x 10-8 (1) 

exo1Δ 7.4 [6.3-9.8] x 10-7 (9) 8.7 [6.1-15.0] x 10-9 (4) 1.4 [0.9-1.8] x 10-7 (7) 

msh2Δ 5.4 [4.4-7.2] x 10-6 (62) 6.4 [5.2-12.9] x 10-6 (3200) 9.9 [8.1-10.8] x 10-5 (4714) 

“overall increased” 

rnr1-F15S 3.5 [2.8-4.2] x 10-7 (4) 5.3 [4.4-7.6] x 10-9 (3) 2.0 [1.6-2.6] x 10-8 (1) 

rnr1-F15S exo1Δ 5.1 [3.9-6.3] x 10-6 (59) 6.5 [4.0-8.9] x 10-7 (330) 1.9 [1.3-2.3] x 10-6 (93) 

rnr1-D57N  2.2 [2.0-3.7] x 10-7 (3) 4.2 [2.5-7.5] x 10-9 (2) 1.6 [1.3-2.3] x 10-8 (1) 

rnr1-D57N exo1Δ 6.5 [4.0-9.1] x 10-7 (7) 1.6 [1.2-1.8] x 10-8 (8) 4.6 [3.5-6.4] x 10-8 (2) 

“low purines” 

rnr1-A245V 1.1 [0.8-1.4] x 10-7 (1) 3.1 [2.1-4.2] x 10-8 (16) 3.8 [2.2-5.3] x 10-8 (2) 

rnr1-A245V exo1Δ 2.0 [1.1-3.7] x 10-6 (22) 1.1 [0.6-2.1] x 10-5 (5405) 1.3 [0.8-3.1] x 10-5 (634) 

rnr1-Y285C 3.2 [1.8-5.1] x 10-7 (4) 4.8 [3.7-8.7] x 10-8 (24) 1.6 [0.9-2.0] x 10-7 (8) 

rnr1-Y285C exo1Δ 1.6 [1.1-3.2] x 10-5 (184) 4.6 [3.0-7.8] x 10-5 (23037) 1.9 [1.6-5.5] x 10-4 (9139) 

“low dATP” 

rnr1-S242T 2.6 [2.0-5.1] x 10-7 (3) 1.6 [1.1-3.1] x 10-8 (8) 1.3 [0.8-2.7] x 10-7 (6) 

rnr1-S242T exo1Δ 2.4 [1.9-4.0] x 10-5 (273) 9.4 [5.8-18.5] x 10-6 (4743) 1.7 [1.3-3.0] x 10-4 (8017) 

rnr1-R256H,Y779C 9.5 [7.1-16.0] x 10-8 (1) 2.6 [1.4-4.0] x 10-8 (13) 9.2 [7.2-11.6] x 10-8 (4) 

rnr1-R256H,Y779C exo1Δ 2.2 [1.5-3.3] x 10-6 (25) 3.2 [2.1-3.2] x 10-6 (1619) 7.3 [5.4-8.8] x 10-6 (351) 

“low dATP + high dGTP” 

rnr1-K243E† 8.1 [4.4-11.3] x 10-6 (92) 1.5 [1.1-2.4] x 10-5 (7362) 2.7 [2.0-4.6] x 10-5 (1319) 

rnr1-I262V,N291D 1.4 [0.9-2.4] x 10-5 (164) 5.4 [3.8-8.3] x 10-6 (2731) 6.7 [4.5-10.8] x 10-5 (3216) 

rnr1-I262V,N291D exo1Δ 4.3 [3.1-7.1] x 10-5 (489) 1.9 [0.7-3.0] x 10-5 (9366) 2.1 [0.9-3.4] x 10-4 (10103) 

* Median rates of inactivation of CAN1 gene (CanR) and hom3-10 (Thr+) and lys2-10A (Lys+) frameshift reversion, with 95% 

confidence interval in square brackets and fold increase relative to WT strain in parentheses. Strains with partial or total loss 

of mismatch repair activity (exo1Δ and msh2Δ, respectively) were included as reference.  
† The rnr1-K243E exo1Δ strain could not be obtained by mating. 

 

Next, NTP and dNTP concentrations of the rnr1 mutant alleles integrated at the endogenous RNR1 

locus were measured by HPLC (Table 4.20). NTP levels were indistinguishable from WT levels 

(Table 4.20A). The dNTP concentration of rnr1 mutant alleles integrated at the endogenous RNR1 

locus (Fig. 4.17A, Table 4.20B) were in agreement with the dNTP concentrations measured in cells 

expressing rnr1 alleles on a centromeric plasmid (Table 4.18). Minor changes might be based on 

the difference between the expression from the endogenous chromosomal locus and from a low 

copy number plasmid. In line with the literature report (CHABES et al. 2003), the rnr1-D57N allele 

showed an overall increase in dNTP pools (in average 3.6-fold over WT), but the increase was 

approximately 50% weaker than in rnr1-F15S suggesting indeed that the lack of interaction with 

exo1 is due to the less severe dNTP pool alteration. 

In some of the rnr1 mutants, like rnr1-A245V and rnr1-R256H,Y779C, dNTP pools below the WT 

levels were found (Figure 4.17A, Table 4.20B). To evaluate the cell cycle and DDR activation, the 
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DNA content and induction of RNR subunits were analyzed in logarithmically growing cells. DNA 

content analysis by flow cytometry revealed that overall increased dNTP pools did not severely 

alter the cell cycle, whereas reductions of 30% and more in one individual dNTP pool resulted in an 

accumulation of cells in S phase (Fig. 4-17A,B). Furthermore, cells with a “low dATP and high 

dGTP” type of dNTP imbalance did not accumulate in S phase, but nevertheless showed an altered 

cell cycle distribution and an accumulation of cells in G2 phase (Fig. 4.17B). 

 

Table 4.20 NTP and dNTP concentrations in strains containing rnr1 mutant alleles integrated at the 
endogenous RNR1 locus 

A  

Relevant genotype CTP UTP ATP GTP 

WT 2195 ± 18 (1.0) 5449 ± 93 (1.0) 11386 ± 363 (1.0) 3473 ± 10 (1.0) 

“overall increased”     

rnr1-F15S 2110 ± 103 (1.0) 5411 ± 111 (1.0) 11773 ± 169 (1.0) 3519 ± 42 (1.0) 

rnr1-D57N 2167 ± 12 (1.0) 5376 ± 212 (1.0) 11754 ± 178 (1.0) 3455 ± 64 (1.0) 

“low purines”     

rnr1-A245V 1997 ± 33 (0.9) 5384 ± 152 (1.0) 11725 ± 165 (1.0) 3730 ± 4 (1.1) 

rnr1-Y285C 2004 ± 34 (0.9) 5322 ± 84 (1.0) 11916 ± 77 (1.0) 3702 ± 132 (1.1) 

“low dATP”     

rnr1-S242T 2125 ± 14 (1.0) 5804 ± 62 (1.1) 11751 ± 96 (1.0) 3246 ± 47 (0.9) 

rnr1-R256H, Y779C 2325 ± 22 (1.1) 5094 ± 124 (0.9) 11370 ± 251 (1.0) 3468 ± 30 (1.0) 

“low dATP + high dGTP”    

rnr1-K243E 2283 ± 6 (1.0) 5312 ± 803 (1.0) 12946 ± 1484 (1.1) 2953 ± 85 (0.9) 

rnr1-I262V,N291D 1907 ± 435 (0.9) 5039 ± 333 (0.9) 14892 ± 12222 (1.3) 3152 ± 118 (0.9) 

B     

Relevant genotype dCTP dTTP dATP dGTP 

WT 146 ± 18 (1.0) 292 ± 27 (1.0) 158 ± 17 (1.0) 80 ± 7 (1.0) 

“overall increased”     

rnr1-F15S 972 ± 99 (6.7) 1672 ± 116 (5.7) 1151 ± 145 (7.3) 522 ± 58 (6.6) 

rnr1-D57N 521 ± 181 (3.6) 984 ± 250 (3.4) 640 ± 236 (4.0) 294 ± 99 (3.7) 

“low purines”     

rnr1-A245V 1057 ± 71 (7.2) 1712 ± 130 (5.9) 69 ± 2 (0.4) 54 ± 4 (0.7) 

rnr1-Y285C 1304 ± 48 (8.9) 2226 ± 62 (7.6) 139 ± 2 (0.9) 114 ± 2 (1.4) 

“low dATP”     

rnr1-S242T 935 ± 44 (6.4) 1596 ± 66 (5.5) 133 ± 14 (0.8) 762 ± 45 (9.6) 

rnr1-R256H, Y779C 481 ± 20 (3.3) 784 ± 16 (2.7) 80 ± 3 (0.5) 221 ± 3 (2.8) 

“low dATP + high dGTP”    

rnr1-K243E 1796 ± 123 (12.3) 2891 ± 292 (9.9) 536 ± 7 (3.4) 1656 ± 28 (20.8) 

rnr1-I262V,N291D 404 ± 88 (2.8) 869 ± 10 (3.0) 190 ± 1 (1.2) 1365 ± 290 (17.1) 

NTP (A) and dNTP (B) concentrations (pmol per 108 cells) are the average of two biological replicates ± standard deviation 

with the fold increase over WT in parentheses. NTP and dNTP concentrations were measured by the Chabes lab. 
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Fig. 4.17 rnr1 mutant alleles expressed at the endogenous chromosomal locus cause dNTP pool 
alterations and DNA damage checkpoint activation. 
(A) dNTP concentration measurement in the indicated strains (Table 4.20B). Data is shown as fold over WT. 

The numbers on top of each bar represent the fold over WT. Fold increases are colored in green, whereas 

decreased levels are labeled red. The blue number represents the fold over WT in the CAN1 mutation rate 

measured in the rnr1 WT-EXO1 strains (Table 4.19). rnr1 alleles are grouped and color-coded according to 

genetic interactions, type of dNTP pool alteration and mutator phenotype (Table 4.16). (B) DNA content 

profiles of logarithmically growing strains of the indicated genotypes in A. Cells in S phase were approximated 

using FlowJo’s cell cycle plugin. (C) Whole cell lysates of logarithmically growing indicated strains were 

analyzed by SDS-PAGE and immunoblotting against Rnr1-4 and tubulin. As positive control for the activation 

of the DNA damage response, WT cells treated for 3 h with 200 mM HU were used. 

 

In agreement with the strongest accumulation of cells in S phase, the highest RNR subunit 

expression levels were found in rnr1-R256H,Y779C and though to a lesser extend in rnr1-A245V 

expressing cells (Fig. 4.17C). No RNR induction was observed for cells expressing the rnr1-F15S, 

rnr1-D57N, rnr1-S242T or rnr1-Y285C alleles. All of them had in common that no individual dNTP 

was reduced more than 20% compared to WT levels (Fig. 4.17A) and no strong accumulation of 

cells in S phase was observed (Fig. 4.17B). Interestingly, the rnr1-K243E expressing cells activated 

the DDR (Fig. 4.17C) showing neither dNTP levels below the WT (Fig. 4.17A, Table 4.20B) nor 

strong accumulation of cells in S phase (Fig. 4.17B). Moreover, rnr1-I262V,N291D belonging to the 

same type of dNTP imbalance with low dATP and very high dGTP pools, slightly induced Rnr3, but 

not Rnr1, Rnr2 or Rnr4. Thus, the altered DNA content profiles and the DDR activation in these 

mutants might suggest that the very high dGTP pools in these mutants interfere with processes 

outside S phase. 



RESULTS 

106 
 

Taken together, the analysis of rnr1 alleles expressed from the endogenous RNR1 locus revealed 

first, that dNTP imbalances characterized by low dATP and high dGTP (3 out of 4 + high dGTP) 

were the most mutagenic dNTP imbalances resulting in very high mutation rates even in the 

presence of high-fidelity DNA polymerases and functional MMR and second, that limitation in one 

individual dNTP pool of at least 30% activated the DDR. 

4.4.6 Elevation of “3 out of 4” dNTPs promotes base pair mutations and frameshifts.  

To examine whether the three different types of dNTP imbalances influence the type of replication 

error generated, CAN1 mutation spectra analysis in WT, rnr1-Y285C, rnr1-R256H,Y779C and rnr1-

I262V,N291D strains was performed (Fig. 4.18A, Table 4.21). All rnr1 mutation spectra were 

significantly different to the WT (Fisher’s exact test, p value 2.5 x 10-11 for rnr1-Y285C, 0.0029 for 

rnr1-R256,Y779C and 2.2 x 10-16 for rnr1-I262V,N291D).  

 

Table 4.21 CAN1 mutation spectra in strains carrying rnr1 mutant alleles. 

 WT‡ rnr1-Y285C 
rnr1- 

R256H,Y779C 

rnr1- 

I262V,N291D 

Mutants sequenced 91 93 96 96 

Mutations total* 92 (100) 94 (100) 96 (100) 98 (100) 

Base substitutions 69 (75.0) 80 (85.1) 55 (57.3) 18 (18.4) 

A-T → G-C 6 (6.5) 14 (14.9) 9 (9.4) 13 (13.3) 

G-C → A-T 18 (19.6) 9 (9.6) 17 (17.7) 2 (2.0) 

G-C → T-A 29 (31.5) 5 (5.3) 6 (6.3) 0 (0.0) 

A-T → C-G 3 (3.3) 20 (21.3) 6 (6.3) 1 (1.0) 

A-T → T-A 7 (7.6) 28 (29.3) 6 (6.3) 2 (2.0) 

C-G → G-C 6 (6.5) 4 (4.3) 11 (11.5) 0 (0.0) 

Transitions 24 (26.1) 23 (24.5) 26 (27.1) 15 (15.3) 

Transversions 45 (48.9) 57 (60.6) 29 (30.2) 3 (3.1) 

One-base-pair frameshifts 15 (16.3) 12 (12.8) 30 (31.3) 80 (81.6) 

ΔA/T 5 (5.4) 9 (9.6) 25 (26.0) 79 (80.6) 

ΔG/C 3 (3.3) 3 (3.2) 4 (4.2) 0 (0.0) 

+A/T 6 (6.5) 0 (0.0) 1 (1.0) 1 (1.0) 

+G/C 1 (1.1) 0 (0.0) 0 (0.0) 0 (0.0) 

Complex† 8 (8.7) 2 (2.1) 11 (11.5) 0 (0.0) 

Mutation spectra analysis based on DNA sequencing of the CAN1 gene in independent CanR mutants, shown as the 

number of clones containing the indicated mutations, and in parenthesis as the percentage relative to the total. (Fig. 

S7.1 and Fig. S7.12-14) 

*In few cases (about 1-2% of the sequenced clones) two simultaneous CAN1 mutations (more than 100 bp apart) 

were found. These mutations were included in the analysis and considered as independent mutational events. 
† includes: multiple mutations within ten nucleotides, insertions or deletions of more than one nucleotide and 

duplication events. 
‡CAN1 mutation spectrum of WT strain was taken from (SCHMIDT et al. 2017). 

 

In the rnr1-Y285C mutant with low purine and elevated pyrimidine pools increased base pair 

substitutions were detected in comparison to the WT (85.1% vs. 75.0%). The CAN1 spectrum was 

dominated by A-T to C-G and A-T to T-A mutations, which were 6.5 and 3.9 times more frequently 

found than in WT and approximately detected in half of all sequenced CanR clones (10.9% in WT). 

Hotspots at position 538, 680 and 946 were frequently mutated in rnr1-Y285C (Table 4.22). For 
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example, hotspot 538 is presumably driven by low levels of dATP and increased dCTP pools, 

which result in a dATP/dCTP ratio of 1:9 (1:0.9 in WT) supporting the misincorporation of dCTP 

opposite of the template T. The elevated dCTP and dTTP levels present in rnr1-Y285C facilitate 

rapid mispair extension over proofreading (Fig. 4.18B).  

 

 

Fig. 4.18 dNTP imbalances caused by rnr1 mutants shape mutation spectra. 
(A) Independent CanR clones (n ≥ 91 per genotype) were sequenced for CAN1 mutations. The graphs 
represent the type of the identified mutations in percentage (Table 4.21). (B) The A-to-C mutation hotspot at 
nucleotide 538 identified in rnr1-Y285C. Predicted mutation is noted in red. Nucleotides marked in green are 
more abundant in rnr1-Y285C than in the WT and facilitate rapid extension of the mispair. (C) The ΔA 
mutation at nucleotide 964-969 was frequently identified in rnr1-I262V,N291D. Predicted slippage event is 
noted in red. Nucleotides marked in green are more abundant in rnr1-I262V,N291D than in the WT and 
facilitate rapid extension of the mismatch. (D) Independent 5-FOAR clones (n ≥ 99 per genotype) were 
sequenced for URA3 mutations. The graphs represent the type of the identified mutations in percentage 
(Table 4.23). WT mutational spectrum was taken from (LANG AND MURRAY 2008). 

 

The CAN1 mutation spectra in rnr1-R256H,Y799C and rnr1-I262V,N291D strains one-base-pair 

frameshifts were 3.5 and 9.3 times more frequently detected than in the WT and consisted in large 

of A:T deletion events (Table 4.21). Moreover, the only hotspots identified in those two mutants 

were in two 6 A:T mononucleotide runs at position 964-969 and 1381-1386, the latter only identified 

in rnr1-R256H,Y779C (Table 4.22). The A mutation hotspot at position 964-969 is presumably 

facilitated by low dATP pools in rnr1-R256H,Y779C and rnr1-I262V,N291D, which favor 

polymerase slippage events in the mononucleotide run of 6 A, followed by insertion of a dGTP 

directly after the mononucleotide run, strand misalignment and rapid extension due to elevated 

dCTP, dTTP and dGTP levels (Fig. 4.18C). Remarkably, the mutational hotspot at position 964-969 

was detected in about 2/3 of all sequenced rnr1-I262V,N291D clones, suggesting that under the 

dNTP imbalance present in rnr1-I262V,N291D DNA polymerases are especially error-prone at this 
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sequence context. Even though base substitution events contributed only 18.4% to all observed 

CanR events in rnr1-I262V,N291D, 72% of the base pair substitutions were A-T to G-C mutations 

presumably as consequence of the increased dGTP:dATP ratio (7:1 in rnr1-I262V,N291D to 0.5:1 

in WT). To investigate the effect of the “low dATP + high dGTP” dNTP imbalance on the generation 

of replication errors in more detail the URA3 gene of individual 5-FOA resistant rnr1-I262V,N291D 

clones was sequenced and the URA3 mutation spectra was analyzed (Table 4.23). As already 

observed in the CAN1 mutations spectrum, base pair substitutions in the rnr1-I262V,N291D URA3 

mutation spectrum were dominated by A-T to G-C mutations (53% of all observed mutations and 

75% of all base pair substitutions). In comparison to the WT (LANG AND MURRAY 2008), the rnr1-

I262V,N291D URA3 mutation spectrum was significantly different (Fisher’s exact test, p value  2.2 

x 10-16)  and A-T to G-C mutations were detected 28 times more frequent in rnr1-I262V,N291D. 

Remarkably, also in the URA3 mutation spectrum one-base-pair deletions and A/T frameshifts 

were found 2.5 and 4.7 times more frequent in rnr1-I262V,N291D than in WT. Thus, the “low dATP 

+ high dGTP” type of dNTP imbalance facilitates not only base pair substitutions, but also one-

base-pair deletions independently of the used mutational reporter. 

 

Table 4.22 CAN1 mutation hotspots identified in strains carrying rnr1 mutant alleles. 

Position Mutation 
No of occurrences 

/ total 

Mutation rate 

(x10-8) 

Fold increase 

over WT 
Predicted intermediate 

rnr1-Y285C: 8.9 x dCTP, 7.6 x dTTP, 0.9 x dATP, 1.4 dGTP; CANR = 3.2 x 10-7 (4) 

538 A → C 10 / 94 3.4 ≥36 
 

680 A → T 10 / 94 3.4 ≥36 
 

946 T → C 5 / 94 1.7 ≥18 
 

rnr1-R256H,Y779C: 3.3 x dCTP, 2.7 x dTTP, 0.5 x dATP, 2.8 dGTP; CANR = 9.5 x 10-8 (1) 

964-969 ΔA 6 / 96 0.6 6 

 

1381-1386 ΔT 9 / 96 0.9 9 
 

rnr1-I262V,N291D: 2.8 x dCTP, 3.0 x dTTP, 1.2 x dATP, 17.1 dGTP; CANR = 1.4 x 10-5 (164) 

964-969 ΔA 63 / 98 900 9517 
 

Mutations are shown relative to the coding strand. The predicted mutation is noted in red. Nucleotides incorporated after the 

mutation from dNTPs at higher concentrations than WT, are shown in green. dNTP levels are shown as fold over WT and 

CAN1 inactivation rate as median, with fold increase relative to WT in parentheses. A mutation hotspot is defined as a 

specific mutation found in more than 5% of all sequenced CANR clones in the indicated genotype. Mutation hotspots that are 

significant different to the WT control (Fisher’s exact test, Benjamini and Hochberg corrected p-value ≤ 0.05) are shown in 

bold. 

 

Taken together, mutation spectra analysis of rnr1 alleles revealed that distinct dNTP pool 

imbalances shape the mutation spectra in agreement with the observed genetic interactions (Table 

4.16). The “low purines” type of dNTP pool imbalances generated primarily base pair substitutions 

(Table 4.21) and exclusively relied on DNA proofreading, but not on MMR for survival (Table 4.16). 

In contrast, “low dATP” and “low dATP + high dGTP” type of dNTP pool imbalances favored base 
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pair substitutions and one-base-pair deletions (Table 4.21 and 4.23). Consequently, these types of 

dNTP pool imbalances relied on DNA proofreading and MMR for survival (Table 4.16).  

 

Table 4.23 URA3 mutation spectrum in rnr1-I262V,N291D mutant strain. 

 WT‡ rnr1-I262V,N291D 

Mutants sequenced 207 131 

Mutations total* 207 (100) 100 (100) 

Base substitutions 167 (80.7) 71 (71.0) 

A-T → G-C 4 (1.9) 53 (53.0) 

G-C → A-T 42 (20.3) 2 (2.0) 

G-C → T-A 68 (32.9) 1 (1.0) 

A-T → C-G 11 (5.3) 2 (2.0) 

A-T → T-A 22 (10.6) 10 (10.0) 

C-G → G-C 20 (9.7) 3 (3.0) 

Transitions 46 (22.2) 55 (55.0) 

Transversions 121 (58.5) 16 (16.0) 

One-base-pair frameshifts 25 (12.1) 26 (26.0) 

ΔA/T 11 (5.3) 25 (25.0) 

ΔG/C 11 (5.3) 1 (1.0) 

+A/T 2 (1.0) 0 (0.0) 

+G/C 1 (0.5) 0 (0.0) 

Complex† 15 (7.2) 3 (3.0) 

Mutation spectra analysis based on DNA sequencing of the URA3 gene independent 5-FOAR mutants, shown as the 

number of clones containing the indicated mutations, and in parenthesis as relative percentage (Fig. S7.15). 

*In few cases (about 1-2% of the sequenced clones) two simultaneous URA3 mutations (more than 100 bp apart) were 

found. These mutations were included in the analysis and were considered as independent mutational events.  
† includes: multiple mutations within ten nucleotides, insertions or deletions of more than one nucleotide and duplication 

events.  
‡ URA3 mutation spectrum of WT strain was taken from (LANG AND MURRAY 2008). 
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5 DISCUSSION 

5.1 A genome-wide screen identifies genes that prevent the accumulation of 

mutations. 

Genome-wide screens in S. cerevisiae are powerful tools to uncover genetic interactions as well as 

to investigate phenotypes on a genome-wide level. Here, the yeast non-essential gene deletion 

collection was screened in a “semi-high-throughput” 96-well format for increased mutagenesis 

using the CAN1 forward inactivation assay and the frameshift-specific lys2-10A reporter. The 

screen was performed in a WT background as well as in the presence of low-fidelity active-site 

mutants (pol1-L866M, pol2-M644G, pol3-L612M) of the three major eukaryotic DNA polymerases 

(Fig. 4.1). In the WT background, 39 single-gene deletions were identified that caused increased 

mutator phenotypes (Table 4.1). With the exception of MET7, all other identified genes have known 

roles in DNA replication and repair and have been previously linked to increased mutagenesis. In 

comparison to a previous screen scoring for increased CAN1 inactivation in a WT background 

(HUANG et al. 2003), only two of the reported genes (SOD1 and SKN7) were not identified in the 

here presented screen, whereas both screens share 28 genes. Moreover, the here performed 

screen unraveled 11 additional genes that have not been identified in the first screen (HUANG et al. 

2003). However, with the exception of MET7, all other gene deletions were previously linked to 

increased mutagenesis (TISHKOFF et al. 1997; BERTRAND et al. 1998; FLORES-ROZAS AND KOLODNER 

1998; SCOTT et al. 1999; BRUSKY et al. 2000; HOWLETT AND SCHIESTL 2004; SMITH et al. 2004; 

COLLURA et al. 2012). By making use of the lys2-10A frameshift reversion assay all known MMR 

components, except of mlh2 that shows a mutator phenotype almost indistinguishable from WT 

(HARFE et al. 2000; CAMPBELL et al. 2014), were identified. Consistent with a previous report 

(HUANG et al. 2003), inactivation of ELG1, that promotes the unloading of PCNA (KUBOTA et al. 

2013), also caused increased frameshift mutations most likely by affecting PCNA levels on 

chromatin. Thus, these findings suggest that the here performed screen not only in large 

recapitulated previous results obtained by different genome-wide screens (HUANG et al. 2003; 

SMITH et al. 2004) and other studies (TISHKOFF et al. 1997; BERTRAND et al. 1998; FLORES-ROZAS 

AND KOLODNER 1998; SCOTT et al. 1999; BRUSKY et al. 2000; HOWLETT AND SCHIESTL 2004; 

COLLURA et al. 2012) but also was sensitive enough to identify one previously unrecognized gene 

(MET7). A potential explanation why MET7 has not been identified in previous screens may lay in 

the severe growth defect characteristic of met7Δ strains (DESOUZA et al. 2000). Thus, the 

identification of MET7 in this screen suggest that in the subset of genes present in the yeast non-

essential gene deletion collection used, no additional unrecognized gene deletions may exist that 

confer a CAN1 and/or lys2-10A mutator phenotype in a WT background. Nevertheless, it cannot be 

excluded that additional genes may exist that prevent the accumulation of mutations due to the 

following reasons: First, some gene deletions may cause similar to met7 severe growth defects 

(MERZ AND WESTERMANN 2009). The initial qualitative mutator phenotype screening depends on 

growth so that mutants may not be detected due to severely compromised growth. Second, some 

gene deletions have reported defects in mating and sporulation (DEUTSCHBAUER et al. 2002; 

ENYENIHI AND SAUNDERS 2003), so that their mutator phenotype cannot be investigated because the 
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finally tested strains cannot be generated by the SGA protocol. Third, approximately 8.5% of the 

non-essential genes have a homologue in the yeast genome (GIAEVER et al. 2002) and this 

homologue may compensate the defect of the gene deletion. Fourth, the used collection may lack 

the gene deletion. The budding yeast genome consists of approximately 6131 genes of which 4803 

are inactivated in the BY4742 non-essential gene deletion collection (GIAEVER et al. 2002). During 

the construction of the collection the deletion of roughly 215 genes failed and consequently these 

genes are not part of the deletion collection (GIAEVER et al. 2002). To screen a more 

comprehensive collection, 65 of those genes were manually inactivated by the Hombauer lab and 

included in the screen. Fifth, as part of this screen, only non-essential gene deletions were 

investigated, remaining essential genes excluded from the analysis. Indeed, a screen that tested 

813 mutant alleles of 525 essential genes revealed 47 alleles in 38 essential genes that conferred 

increased CAN1 inactivation (STIRLING et al. 2014) highlighting that both non-essential and 

essential genes prevent genome instability. As a frameshift mutational reporter has not been used 

systematically in the subset of essential genes it might be informative to screen alleles of essential 

genes (temperature sensitive-, DAmP- or Tet-OFF-collections)(MNAIMNEH et al. 2004; BEN-AROYA 

et al. 2008; BRESLOW et al. 2008) for increased frameshift mutator phenotypes. Sixth, some gene 

deletions may cause increased mutator phenotypes but are not supporting growth on canavanine 

containing mutator plates or plates lacking lysine and are therefore not found in this screen. For 

example, CanR mutants require a functional arginine biosynthesis pathway to grow on canavanine 

containing mutator plates, which lack arginine. Similarly, lys2-10A mutator plates lack lysine and 

cells that require external lysine supplementation will not grow even in the presence of a reverted 

lys2-10A allele. One example for this is CCS1 (previously called LYS7 (CULOTTA et al. 1997)), a 

copper chaperone for SOD1 playing a role in the oxidative stress response (LAMB et al. 2000). In 

the absence of CCS1 and in the presence of oxygen, cells require lysine and methionine for growth 

(CULOTTA et al. 1997). Inactivation of CCS1 results in an increased CAN1 mutator phenotype 

(Table 4.1) (HUANG et al. 2003) and a mildly increased frameshift reversion rate (3-fold increase 

over WT in hom3-10 frameshift reversion rate (HUANG et al. 2003)). However, as ccs1 cells 

require lysine in the presence of oxygen, no conclusion about the lys2-10A frameshift mutator 

phenotype in this mutant can be made under standard growth conditions. Consequently, CCS1 

was not found in the screen as a gene that suppresses frameshift mutations. To avoid these 

potential restrictions for the frameshift assay, initially the SGA generated mutants should be tested 

for increased frameshift mutations not only in the lys2-10A but also in the hom3-10 frameshift 

reversion assay. For this, a HIS3 cassette was integrated downstream of the hom3-10 reporter in 

all four SGA query strains. However, as a subset of the non-essential gene deletion collection was 

HIS3 and not his31, the HIS3 selection marker could not be used to follow the hom3-10 reporter. 

Consequently, the mutator phenotype of the SGA generated mutants were exclusively evaluated 

based on the lys2-10A and the CAN1 reporter. Thus, to complement the here performed screen in 

the subset of non-essential genes, a second screen using the hom3-10 frameshift reversion assay 

and the URA3 forward inactivation assay that scores for 5-FOA resistant events (BOEKE et al. 

1984) could be performed. However, it is questionable whether additional previously unrecognized 

genes that suppress mutations might be identified in a WT background using these two alternative 
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mutator assays. Due to the shorter mononucleotide run in the hom3-10 reporter, the hom3-10 

frameshift reversion rate in a WT strain is approximately 7-fold lower than the lys2-10A frameshift 

reversion rate (Table 4.7). Therefore, to be detected as mutator in a qualitative hom3-10 mutator 

screening, mutants have to confer a relatively strong frameshift mutator phenotype. This makes it 

in comparison to the lys2-10A assay less likely to identify weak mutators with the hom3-10 assay. 

All in all, it is therefore unlikely that within the used non-essential gene deletion collection additional 

single gene deletions exist that cause base pair substitutions and frameshift mutations in a WT 

background.  

An additional approach to screening in a WT background is to use DNA replication fidelity-

compromised backgrounds as “sensitized mutator backgrounds”. In the here described genome-

wide screen low-fidelity active-site mutants of the three major DNA polymerases were successfully 

used as “sensitized mutator backgrounds” to identify gene deletions (gln3, rrm3, shm2 and 

ura7) that showed strong synergistic mutator interactions with some of the DNA polymerase 

alleles (Table 4.5) (discussed in section 5.3). Importantly, inactivation of none of the four genes 

conferred a mutator phenotype in the presence of high-fidelity DNA polymerases suggesting that 

the defects are buffered under WT conditions by DNA polymerases and MMR (Table 4.5). Thus, 

screening in different DNA replication fidelity-compromised backgrounds may reveal additional 

mutational enhancers and improve the understanding of this second layer of genome stability 

genes, which become critically important for genome stability when DNA replication fidelity is 

compromised. 

5.2 The folylpolyglutamate synthetase Met7 suppresses dUTP accumulation and 

genome instability. 

5.2.1 Genomic uracil is a prerequisite, but not sufficient to cause GCRs in S. cerevisiae. 

The genome-wide screen performed in the WT background identified Met7 as a suppressor of 

mutations according to the CAN1 inactivation assay (Table 4.2). Furthermore, the absence of Met7 

not only resulted in increased CAN1 inactivation, but also in elevated GCRs (Table 4.2). Thus, this 

work showed that the yeast folylpolyglutamate synthetase (FPGS) Met7 is an integral part of the 

cellular genome stability network and characterized how Met7 suppresses mutation and GCRs. 

Moreover, this study highlights how metabolic defects due to the absence of Met7 cause a complex 

genome instability phenotype characterized by increased mutations and GCRs as well as short 

telomeres (Fig. 5.1). Met7 catalyzes the polyglutamylation of folates in budding yeast (DESOUZA et 

al. 2000) which increases the cellular retention of folates and their affinity to folate-metabolizing 

enzymes (SCHIRCH AND STRONG 1989). Consequently, in the absence of FPGS intracellular folate 

pools are depleted (MCBURNEY AND WHITMORE 1974; RAZ et al. 2016). Folates serve as cofactors in 

different metabolic pathways including dTMP, purine and methionine biosynthesis (APPLING 1991; 

DUCKER AND RABINOWITZ 2017). In agreement with a previous study (RUBINSTEIN et al. 2014), 

inactivation of MET7 caused a dNTP imbalance that is characterized by low dTTP and dGTP pools 

and elevated dCTP and dATP pools (Fig. 4.5A, Table 4.3B). Given that dNTP levels peak during S 

phase (CHABES et al. 2003) and met7 cells showed in comparison to the WT an accumulation of 

cells in S phase (Fig. 4.3B)(KOREN et al. 2010), dNTP pools measured in met7 cells are 
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approximately 2-3-fold overrepresented. This suggests that normalized to a WT cell cycle 

distribution, the dTTP and dGTP pool reductions would be even more severe in met7 cells. Thus, 

cells lacking Met7 present a severe dNTP imbalance with strongly reduced dTTP and dGTP pools. 

Remarkably, dNTP pool measurements in mammalian cells treated with either the antifolate 

methotrexate or the antimetabolites 5-fluorouracil or 5-fluorodeoxyuridine (the latter two both 

targeting thymidylate synthase), revealed very similar dNTP pool imbalances as Met7-deficient 

yeast cells. In the presence of these drugs, dTTP and dGTP pools were strongly reduced, dATP 

pools were elevated and dCTP pools were either stable or increased (TATTERSALL AND HARRAP 

1973; RITTER et al. 1980; YOSHIOKA et al. 1987). Thus, these measurements suggest that the dNTP 

pool alteration observed in the absence of Met7 is likely a consequence of folate deficiency. Due to 

the absence of folate polyglutamylation in met7 cells, folate pools are depleted. Consequently, 

dTMP biosynthesis, as one major folate requiring metabolic pathway (FOX AND STOVER 2008), is 

reduced resulting in low dTTP levels. Interestingly, binding of dTTP to the allosteric S-site in RNR 

primes RNR’s C-site for reduction of GDP to dGDP (BROWN AND REICHARD 1969), suggesting that 

the low dGTP concentrations in the absence of Met7 or upon antifolate treatment might be a 

consequence of low dTTP levels that may not be sufficient to trigger dGDP production. This idea is 

further supported by dNTP pool measurements in fission yeast cells deficient for the dCMP 

deaminase DCD1 (SANCHEZ et al. 2012). In agreement with converting dCMP to dUMP, which is 

further metabolized to dTTP (Fig. 1.6), dCTP pools were 30-fold increased and dTTP pools were 4-

fold decreased in the absence of Dcd1. Moreover, dGTP pools were decreased ~2-fold and dATP 

levels were 2.5-fold increased suggesting that the decrease in dGTP and presumably also the 

increase in dATP is a general consequence of reduced dTTP levels. 

Inhibition of dTMP biosynthesis not only results in reduced dTTP pools and a dNTP imbalance, but 

also in an accumulation of the thymidylate synthase substrate dUMP and of the upstream 

metabolite dUTP (VAN TRIEST et al. 2000; LONGLEY et al. 2003). Indeed, dUTP strongly 

accumulated in the absence of Met7 (Fig. 4.5). WT yeast counteract the accumulation of dUTP by 

the action of the dUTPase Dut1 (GADSDEN et al. 1993; GUILLET et al. 2006) and consequently dUTP 

pools under normal growth conditions are extremely small and difficult to quantify (ZHANG et al. 

2011). The finding that dUTP was no longer detectable in met7 cells that overexpress the 

dUTPase DUT1 (Fig. 4.5A), suggests that the dUTP accumulation in the absence of Met7 is so 

severe that the catalytic capacity of endogenous Dut1 is saturated. Consequently, the dUTP/dTTP 

ratio in the absence of Met7 is dramatically shifted and dUTP contributes to 7% of the total dUTP 

and dTTP pool (Fig. 4.5B). This is in particular detrimental for DNA replication fidelity, as DNA 

polymerases cannot discriminate between dTTP and dUTP as substrates (SHLOMAI AND KORNBERG 

1978; WARNER et al. 1981; TINKELENBERG et al. 2002). Thus, the ratio between dUTP and dTTP 

directly determines which nucleotide is incorporated opposite of a template A during DNA 

replication. Therefore, under the assumption that nucleotides are randomly distributed according to 

their average occurrence in the budding yeast genome (approximately 31% As and Ts, and 19% 

Gs and Cs) (GOFFEAU et al. 1996), in the absence of Met7 in average two dUTPs will be 

incorporated every 100 nucleotides polymerized. In line with the increased dUTP/dTTP ratio in the 

absence of Met7 (Fig. 4.5B), strong uracil accumulation was detected in an uracil accumulation 
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assay, in which the observed fragments ranged from high molecular weight species to fragments 

below 250 nt (Fig. 4.5C). Reasons for the difference in fragment size can be for example different 

nucleotide distributions within the genetic sequence, like GC-rich regions, preferential incorporation 

of dUTP in actively-transcribed genes (KIM AND JINKS-ROBERTSON 2009) and the acquisition of 

suppressor mutations during the growth of the culture in a subset of cells, which than accumulate 

less uracil. Overexpression of DUT1 in met7 cells not only suppressed dUTP accumulation (Fig. 

4.5A) and genomic uracil incorporation (Fig. 4.5C), but also the GCR phenotype (Table 4.2). This 

finding suggests that GCRs in the absence of Met7 are triggered by dUTP accumulation. Moreover, 

the GCR phenotype in met7 cells could be partially suppressed by the inactivation of Ung1 (Table 

4.2). This indicates that first, accumulation of genomic uracil alone is a prerequisite but not 

sufficient to induce GCRs in budding yeast and second, that processing of genomic uracil and 

presumably subsequent futile-repair cycles contribute to the GCR phenotype in the absence of 

Met7. This idea is further supported by the finding that cells expressing the dut1-1 allele, a DUT1 

allele with reduced dUTPase activity (~95% reduction in dUTPase activity) (GUILLET et al. 2006), 

conferred neither a CAN1 mutator nor a GCR phenotype (Table 4.2) despites showing strong 

genomic uracil accumulation (Fig. 4.5C). The absence of any mutator phenotype in the presence of 

dut1-1 was unexpected as a previous study (GUILLET et al. 2006) reported a 45-fold increase over 

WT in the CAN1 mutation rate. Furthermore, the dut1-1 expressing cells of the previous report 

showed a growth defect and altered cell cycle progression (GUILLET et al. 2006), phenotypes that 

were not observed for the here investigated dut1-1 expressing cells (Fig.4.6C,D). The discrepancy 

between the previous study and the here presented results may originate from additional mutations 

present in the initially dut1-1 expressing cells. The former study identified the dut1-1 allele in a UV 

mutagenesis screen. As result of this random mutagenesis screen, it is possible that the identified 

clone carrying the dut1-G82S mutation (dut1-1) contains additional mutations that may contribute 

to the observed phenotype. In contrast to this previous study, in the here presented work the dut1-

G82S mutation was integrated at the endogenous DUT1 locus using a non-mutagenic approach 

(pop-in/pop-out strategy) followed by mating. Neither the initial dut1-1 strain nor spores obtained 

from different individual crosses showed increased mutagenesis or growth defects. Thus, it is likely 

that the mutator phenotype and growth defect described in the previous study result from a 

combinational effect of the dut1-G82S mutation and other co-occuring mutations. Alternatively, it is 

also possible that the observed differences are the result of different yeast backgrounds used in 

both studies.  

5.2.2 A DSB repair defect is required for dUTP-driven GCRs. 

The observations that first, the GCR phenotype in met7 cells is triggered by dUTP accumulation 

and second, dut1-1 expressing cells show no GCR phenotype despite uracil accumulation in 

genomic DNA, argues for additional requirements to induce a dUTP-driven GCR phenotype in 

budding yeast. In comparison to cells lacking Met7, dut1-1 expressing cells neither induced a dNTP 

imbalance nor activated the DNA damage checkpoint. Moreover, dut1-1 cells did not accumulate in 

S phase and did not show increased sensitive to phleomycin or a petite phenotype (Fig. 4.6). 

Despite dut1-1 cells accumulated uracil into the genome (Fig. 4.5C), dUTP concentrations were 
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below the detection limit of the used HPLC method, suggesting that dUTP levels in dut1-1 cells are 

lower than in met7 cells. Moreover, in addition to increased dUTP pools also reduced dTTP pools 

were found in met7 cells, resulting in a presumably more severe dUTP/dTTP ratio. To investigate 

the effect of a higher dUTP/dTTP ratio on genome stability, the dCMP deaminase DCD1 was 

inactivated in dut1-1, which should presumably result in lower dTTP pools (SANCHEZ et al. 2012). 

Supporting this idea, similar to met7 strain, the dut1-1 dcd1 double mutant showed an elevated 

GCR phenotype in a qualitative patch test (Fig. 4.6D), increased sensitivity to phleomycin and a 

petite phenotype (Fig. 4.6E). However, dut1-1 dcd1 double mutant cells neither activated the DDR 

(Fig. 4.6B) nor accumulated in S phase (Fig. 4.6C). The latter findings suggest that the presumed 

reduction in either dTTP or any other dNTP is not severe enough to active the DDR. Analysis of 

dNTP pools and S-phase checkpoint activation in gln3, ura7 (Fig. 4.9B-C, Table 4.9B) and rnr1 

mutant cells (Fig. 4.17, Table 4.20B) revealed that a reduction of dCTP or dATP to levels below 

dGTP concentrations in WT cells were required to activate the S-phase checkpoint. This would 

suggest that the dTTP concentration in dut1-1 dcd1 cells is still higher than the dGTP 

concentrations measured in WT or in other words dTTP pools are reduced less than 60%. 

Moreover, the finding that dut1-1 dcd1 cells accumulate in G1 phase may hint to a problem in G1 

to S phase transition. A delayed G1 to S phase transition has been previously linked to increased 

dNTP pools in G1 (CHABES AND STILLMAN 2007; FRANZOLIN et al. 2013) suggesting that dut1-1 

dcd1 cells presumably showed elevated dNTP pools in G1. Thus, to complement these 

observations it would be informative to measure dNTP concentrations in dut1-1 dcd1 cells.  

Interestingly, as met7 cells, dut1-1 dcd1 cells also showed a petite phenotype (Fig. 4.6E). A 

previous study proposed that the reduced dTTP production in the absence of Met7 results in 

dysfunctional mitochondria based on the finding that the petite phenotype in a special met7 

background could be suppressed by external supplementation of the media with dTMP (DESOUZA 

et al. 2000). Potential reasons for the rescue of the petite phenotype of met7 with constant dTMP 

supplementation are: First, incorporation and processing of mitochondrial uracil results in the petite 

phenotype of met7 cells. Thus, dTMP supplementation of met7 cells decreases the dUTP/dTTP 

ratio leading to less uracil incorporation in genomic and mitochondrial DNA, preventing loss of 

mitochondrial DNA. Second, low dGTP levels interfere with mitochondrial genome stability. dTMP 

supplementation increases dTTP pools. dTTP binds to RNR’s S-site and promotes dGTP 

production. In contrast to the nucleus where dGTP pools represent the smallest dNTP pool, dGTP 

is the most abundant dNTP pool in mitochondria (SONG et al. 2005; NIKKANEN et al. 2016) 

suggesting that high dGTP pools, presumably due to the oxidative environment, are required for 

mitochondrial genome maintenance. Third, dTMP supplementation allows the production of fMet-

tRNA and mitochondrial protein biosynthesis. In contrast to mammalian cells, budding yeast cells 

can synthesize folates de novo (CHEREST et al. 2000). Thus, supplementation with dTMP may 

reduce the cellular need for folates dramatically, so that the de novo generated folates are 

sufficient to produce enough fMet-tRNA to maintain mitochondrial protein biosynthesis and 

consequently functional mitochondria. For cells lacking Met7, none of the possibilities can be 

excluded and eventually several of these explanations may contribute to the petite phenotype. 
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However, for dut1-1 dcd1 cells it is rather unlikely that defects in mitochondrial protein 

biosynthesis are accounting for the observed petite phenotype as neither Dut1 nor Dcd1 directly 

affect the cellular folate pools (Fig. 1.6). Thus, the petite phenotype of dut1-1 dcd1 cells suggests 

that altered dNTP pools, most likely an increased dUTP/dTTP ratio, are sufficient to induce 

mitochondrial dysfunction, presumably also in cells lacking Met7.  

Both, cells in the absence of Met7 and dut1-1 dcd1 cells showed increased sensitivity to the DSB 

inducing agent phleomycin (Fig. 4.6E) suggesting that both mutant backgrounds have problems in 

DSB repair. The finding that met7 cells either overexpressing DUT1 or deficient for Ung1 were as 

sensitive as met7 cells to phleomycin (Fig. 4.7C) argues for the hypothesis that the phleomycin 

sensitivity of met7 cells is not driven by dUTP accumulation and processing of genomic uracil. 

Upon DNA damage, such as DSB, budding yeast cells activate the DDR which results among 

others, in elevated dNTP pools (PARDO et al. 2017). In met7 and met7 pGPD-DUT1 cells, the 

DDR is constantly activated (Fig. 4.7A-B) still dTTP and dGTP pools were reduced (Fig. 4.5A, 

Table 4.3B). Thus, one explanation for the observed phleomycin sensitivity in the absence of Met7 

may be that met7 cells are unable to increase dTTP and dGTP pools to sufficiently high levels to 

facilitate DSB repair. However, dut1-1 dcd1 cells did not show a constitutively activated 

checkpoint (Fig. 4.6B). Presumably, dut1-1 dcd1 cells can increase dNTP pools by activating the 

DDR, but were anyway sensitive to phleomycin. Thus, at least in dut1-1 dcd1 cells the inability to 

increase dNTP pools is most likely not the cause for the detected phleomycin sensitivity. An 

alternative explanation for the phleomycin sensitivity in met7 and dut1-1 dcd1 cells may be the 

petite phenotype. Mitochondrial dysfunction has been previously shown to cause defects in iron-

sulfur cluster biogenesis (LILL AND MÜHLENHOFF 2008). Iron-sulfur clusters are required for various 

proteins including DNA polymerases and DNA repair proteins (VEATCH et al. 2009) and 

consequently for genome stability (DIRICK et al. 2014). Thus, inactivation of MET7 (or dut1-1 

dcd1) causes, most likely induced by the increased dUTP/dTTP ratio, the loss of mitochondrial 

DNA that results in a petite phenotype and defective iron-sulfur cluster biogenesis. Defects in the 

biosynthesis of iron-sulfur clusters compromises the activity of DNA polymerases and DNA repair 

proteins, which results in DSB repair defects and sensitivity to phleomycin. Moreover, the DSB 

repair defects induced by iron-sulfur cluster deficiency may explain why in met7 cells uracil 

incorporation into DNA is toxic and causes increased GCRs, whereas dut1-1 expressing cells can 

handle genomic uracil accumulation without compromising genome stability (Table 4.2). Thus, to 

test the hypothesis that the GCR phenotype of met7 cells is caused by the combination of uracil 

incorporation into DNA and a DSB defect due to the petite phenotype, it would be interesting to 

investigate the GCR phenotype of dut1-1 expressing cells depleted of mitochondrial DNA (e.g. rho0 

cells obtained after treatment with high doses of ethidium bromide (DIRICK et al. 2014)).  

5.2.3 DDR activation and short telomeres in the absence of Met7 are not driven by dUTP 

accumulation. 

Similar to the phleomycin sensitivity, the DDR activation and the telomere phenotype of met7 was 

neither suppressed by overexpression of DUT1 nor by inactivating UNG1 (Fig. 4.7). This findings 
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suggest that the DDR activation in met7 cells is not driven by uracil-induced damage, but as 

met7 and met7 pGPD-DUT1 cells showed reduced dTTP and dGTP levels (Fig. 4.5A, Table 

4.3B) rather by limiting dTTP and/or dGTP pools. This is in agreement with other mutants 

characterized in this study (gln3, ura7 and rnr1 mutants), which induced dNTP pool imbalances 

with limiting dNTPs (Fig. 4.10B, 4.17A) and DDR activation  (Fig. 4.9B,C, 4.17C). 

 

 

Fig. 5.1 Met7 prevents folate depletion and genome instability. 
The absence of Met7 results in folate depletion, a dNTP imbalance characterized by low dTTP and dGTP 
levels, dUTP accumulation and an increase in the dUTP/dTTP ratio, which favors dUTP incorporation into 
DNA. Processing of genomic uracil by Ung1 results in transient abasic sites causing under these conditions 
either futile-repair cycles or double-strand breaks (DSB) and finally due to potential DNA double strand repair 
defect gross-chromosomal rearrangements (GCRs). Moreover, the dNTP imbalance and the low dGTP pools 
cause increased replication errors and short telomeres, respectively. 

 

The increased uracil incorporation into the genome did not account for the short telomere 

phenotype in the absence of Met7 because neither overexpression of DUT1 nor inactivating UNG1 

increased the telomere length (Fig. 4.7D). Previous reports have correlated increased dGTP pools 

with increased telomere length (GUPTA et al. 2013; MAICHER et al. 2017). According to the model 
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low dGTP pools reduce telomerase activity and prevent re-elongation of short telomeres. Strikingly, 

the dGTP levels of met7 and met7 pGDP-DUT1 cells were reduced (Fig. 4.5A, Table 4.3B) 

suggesting that the short telomere phenotype in the absence of Met7 is indeed a consequence of 

the very low dGTP pools. 

Taken together, this work on Met7 emphasizes the importance of folate polyglutamylation for the 

cellular metabolism and characterizes the detrimental consequences on genome stability when this 

process is compromised (Fig. 5.1). As the absence of Met7 in yeast mimics folate depletion and 

antifolate treatment, inhibitors of human FPGS might be an interesting alternative drug to target the 

folate-one-carbon metabolism in cancer cells. Moreover, this work may help to dissect different 

consequences of therapeutically applied antifolates. For example, based on the observed 

phleomycin sensitivity of met7 cells, the combination therapy of antifolates and DSB-inducing 

drugs or ionizing radiation may be beneficial for the treatment outcome. Indeed, these 

combinations are already in use in the clinics and are more potent than the single therapies 

(LONGLEY et al. 2003). Unfortunately, inactivation of FPGS is a common resistance mechanism of 

human cancer cells upon antifolate treatment (RAZ et al. 2016). Thus, it would be interesting to 

investigate whether FPGS-deficient cancer cells induced upon classical antifolate treatment are 

more sensitive to certain drugs or treatments, which could then be applied in targeted therapies. 

5.3 Nucleotide precursor pool imbalances induced by the inactivation of GLN3 or 

URA7 cause dNTP pool imbalances and hypermutator phenotypes. 

5.3.1 Exo1, Gln3, Shm2 and Ura7 contribute to lagging-strand DNA replication fidelity. 

Similar as reported for Exo1 (HOMBAUER et al. 2011a; LIBERTI et al. 2013), inactivation of GLN3, 

SHM2 or URA7 exclusively increases the mutator phenotypes in the presence of the lagging-strand 

DNA polymerase alleles pol1-L868M and pol3-L612M, but not in combination with the leading-

strand DNA polymerase allele pol2-M644G (Table 4.5). In contrast, inactivation of MMR (msh2) 

causes synergistic increases in mutation rates in both the leading-strand (pol2-M644G) and the 

lagging-strand (pol3-L612M) DNA polymerase-compromised background (NICK MCELHINNY et al. 

2008; HOMBAUER et al. 2011a). There are four not mutually exclusive possible explanations for the 

Pol /lagging-strand bias observed in combination with exo1, gln, shm2 and ura7 mutations: 

First, higher replication fidelity of the leading-strand is achieved by the activation of the S-phase 

checkpoint (NAVAS et al. 1995; PURSELL et al. 2007; KUMAR et al. 2011). This may give more time 

for DNA proofreading and repair. Second, compared to Pol , Pol  conferred an approximately 10-

fold higher nucleotide selectivity (ST CHARLES et al. 2015). Third, there are intrinsic differences 

between the low-fidelity active-site DNA polymerase mutant alleles (PURSELL et al. 2007; NICK 

MCELHINNY et al. 2008) and presumable also how they compromise leading- and lagging-strand 

DNA replication fidelity. Fourth, as proposed by a highly controversial report (JOHNSON et al. 2015), 

Pol  may be the major lagging- and leading-strand DNA polymerase. Based on the data presented 

here, none of the possibilities can be ultimately excluded. However, the CAN1 mutation spectra 

analysis of strains expressing the WT or low-fidelity active-site DNA polymerase alleles pol2-

M644G or pol3-L612M in the presence or absence of Ura7 supports a role for Pol  as one of the 



DISCUSSION 

122 
 

two major DNA polymerases and thus the “division of labor” model (LUJAN et al. 2016). So, the 

pol2-M644G CAN1 spectra in the presence or absence of Ura7 were not significantly different from 

each other (Table 4.12). Moreover, the same pol2-M644G-specific mutation hotspots were 

detected independent whether Ura7 was present or not (Table 4.13). Thus, the CAN1 mutation 

spectra analysis supports the “division of labor” model and argues against Pol  as major DNA 

polymerase. Moreover, the CAN1 mutation spectra analysis rather suggests that the synergistic 

mutator bias is based on either the different mutational signature of the used DNA polymerase 

alleles or a more general difference in the leading- and lagging-strand DNA replicases. Mutation 

spectra of mutational reporters, like CAN1 or URA3 mutation spectra, are informative and relatively 

inexpensive proxies for the general mutational landscape present in specific backgrounds. 

However, only mutations resulting in a specific event, for example CAN1 inactivation conferring 

resistance to the drug canavanine, are detected using this type of analysis. Thus, to examine the 

global mutational landscape and the effect of a defined dNTP imbalance on DNA replication fidelity 

in an unbiased way, whole-genome sequencing of these mutants has to be performed. To avoid 

any editing of MMR, the analysis should be also performed in the absence of MMR. For this, 

homozygous diploids expressing the WT, pol2-M644G or pol3-L612M DNA polymerase alleles in 

the presence or absence of Ura7 and/or Msh2 were generated to investigate in collaboration with 

the Kunkel lab (NIH, US) the mutational landscape of these strains using whole-genome 

sequencing.  

Interestingly, a previously reported rnr1 allele (rnr1-Q288A) caused increased mutagenesis, 

activation of DDR, a dNTP pool imbalance characterized by very low dCTP pools and a 

consequently strongly increased dTTP/dCTP ratio (KUMAR et al. 2010). The CAN1 mutation 

spectrum analysis in the presence of the rnr1-Q288A allele revealed several mutational hotspots 

(G670A, G788A and G1018A) that were also detected in the msh6 ura7 CAN1 mutation 

spectrum (G788A and G1018A hotspots were as well detected in msh6 gln3) (Table 4.11). In the 

previous report the observed mutational hotspots in rnr1-Q288A expressing cells were predicted to 

originate from replication errors occurring during lagging-strand replication. Therefore, the 

observed common bias for lagging-strand infidelity in the absence of Gln3 or Ura7 or in the 

presence of rnr1-Q288A might be due to the dNTP imbalance with reduced dCTP pools. Upon 

limiting dNTP pools, the leading-strand DNA polymerase Pol  activates the S-phase checkpoint 

(NAVAS et al. 1995), which may facilitate replication fidelity preferentially on the leading-strand by 

increasing the time for DNA proofreading and/or MMR. To comprehensively address the observed 

lagging-strand bias, common to most of the here identified mutational enhancers, further studies, 

like the analysis of the mutational landscape on a genome-wide scale, will be required.  

5.3.2 Rrm3 and Shm2 suppress the accumulation of mutations. 

The helicase Rrm3 facilitates replication fork progression through difficult to replicate genomic 

regions with natural replication fork barriers (IVESSA et al. 2003; MOHANTY et al. 2006; AZVOLINSKY 

et al. 2009). Here, Rrm3 was found to preferentially prevent mutations generated by the low-fidelity 

active-site mutant alleles of the two major DNA polymerases (pol2-M644G and pol3-L612M) (Table 

4.5), which together synthesize approximately 98.5% of the S. cerevisiae genome (REIJNS et al. 
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2015). Moreover, compared to Pol α, Pol  and Pol  replicate also longer DNA stretches. 

Therefore, Pol  and Pol  are presumably more prone to fork pausing and consequently more 

dependent on Rrm3 for high-fidelity replication. Alternatively, it is also possible that the increased 

dNTP pools measured in the absence of Rrm3 (O'ROURKE et al. 2005; POLI et al. 2012) promote 

fork progression on the expense of DNA proofreading. In contrast to Pol α, Pol  and Pol  confer a 

DNA proofreading function (LUJAN et al. 2016). Thus, the combination of reduced nucleotide 

selectivity in the presence of the active-site DNA polymerase allele and compromised DNA 

proofreading due to the increased dNTP pools may cause the observed elevated mutator 

phenotype. A third possibility is that replication fidelity is increased by a helicase-independent 

function of Rrm3. This function has been described to restrict DNA replication in situations of 

replication stress (SYED et al. 2016). To clarify, if Rrm3’s role facilitating replication fidelity in the 

context of low-fidelity active-site DNA polymerase alleles is or not dependent on Rrm3’s helicase-

activity, it would be interesting to investigate the effect on replication fidelity of the reported rrm3 

separation-of-function mutant alleles in combination with the low-fidelity active-site mutant alleles. 

The cytoplasmic serine hydroxymethyltransferase Shm2 is part of the folate-one-carbon 

metabolism (Fig. 1.8) and catalyzes the production of 5,10-methylene-THF (5,10-CH2-THF), a 

precursor for the purine and pyrimidine biosynthesis (MCNEIL et al. 1994; KASTANOS et al. 1997). 

This study identified that inactivation of SHM2 in the presence of low-fidelity DNA polymerase 

alleles (pol1-L868M, pol3-L612M or pol2-04), but not in a WT background or an MMR-deficient 

background (msh2) cause an increase in CAN1 mutation rate (Table 4.5, 4.7). These findings 

suggest that mutations induced upon inactivation of SHM2 are not repaired by MMR and are 

efficiently counteracted by WT DNA polymerases. Despite the known function in the production of a 

precursor for purine and pyrimidine biosynthesis (MCNEIL et al. 1994; KASTANOS et al. 1997), 

surprisingly, inactivation of SHM2 caused neither an NTP nor dNTP pool imbalance (Fig. 4.10, 

Table 4.9) and did also not activate the DDR (Fig. 4.9B-C). One possible explanation is that the 

absence of Shm2 results in increased oxidative damage. Under these oxidizing conditions, 

modified pyrimidine bases might be incorporated during DNA replication and eventually undergo 

deamination events that frequently drive C-T transitions. In agreement with this model, a report in 

mammalian cells using quantitative metabolic fluctuation analysis identified that approximately 40% 

of the cellular NADPH production is based on oxidation of 5,10-CH2-THF (FAN et al. 2014). 

Alternatively, it is possible that the absence of Shm2 may cause dUTP accumulation and increased 

mutagenesis. Shmt1, the mammalian homolog of budding yeast Shm2, has been reported to 

prevent genomic uracil accumulation in mice (MACFARLANE et al. 2008; MACFARLANE et al. 2011) 

and in human lung cancer cells (PAONE et al. 2014). Moreover, mammalian Shmt1 was shown to 

function as a scaffold protein for DHFR and thymidylate synthase at the nuclear lamina and to 

support de novo dTMP biosynthesis (ANDERSON et al. 2012). However, in S. cerevisiae inactivation 

of SHM2 neither caused altered NTP and dNTP pools nor DDR activation. Furthermore, in contrast 

to the dUTP-driven mutator phenotype upon MET7 inactivation, the pol3-L612M shm2 mutator 

phenotype was neither suppressed by the overexpression of DUT1 nor by inactivating UNG1 (data 

not shown). Taken together, these findings suggest that if dUTP accumulate in shm2 cells, the 

accumulation is much milder than in met7Δ cells. Alternatively, the consequence of inactivating the 
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cytoplasmic serine hydroxymethyltransferase might be different in S. cerevisiae and mammalian 

cells. 

5.3.3 Low dCTP pools are an Achilles’s heel of DNA replication fidelity.   

Within the identified mutants, loss of the transcription factor Gln3 or the CTP synthetase Ura7 

resulted in the strongest mutator interactions with low-fidelity polymerase, partial or complete MMR 

defects (Table 4.4, 4.7). CAN1 mutation spectra analysis in msh6 gln3 and msh6 ura7 cells 

revealed that the absence of Gln3 or Ura7 causes primarily base pair substitutions (Table 4.10). 

Nevertheless, in exo1 and msh6 backgrounds, but not in the absence of Msh2 or Msh3, 

inactivation of GLN3 or URA7 resulted in a small increase in frameshift mutations (Table 4.7). 

However, the increase in frameshift mutations was relatively small about 10% of the increase 

observed in a completely MMR defective msh2 strain (Table 4.7). Therefore, the increased 

frameshift phenotype is most likely not a direct consequence of the altered dNTP pools in gln3 

and ura7 cells, but rather indirect due to the saturation of MMR.  

Ura7 is the major CTP synthetase, which contributes to 70-80% of the total CTP biosynthesis in 

budding yeast (OZIER-KALOGEROPOULOS et al. 1991; OZIER-KALOGEROPOULOS et al. 1994)(Table 

4.9A). However, the consequences of reduced CTP biosynthesis on dNTP pool homeostasis has 

not been previously investigated. This study showed for the first time, that inactivation of Ura7 

reduced not only the CTP pools, but also caused a severe dNTP imbalance characterized by a 

50% reduction in dCTP and increased levels in the other three dNTPs (Fig. 4.10, Table 4.9). 

Surprisingly, not only the absence of Ura7, but also loss of the transcription factor Gln3 induced an 

NTP and dNTP pool imbalance characterized by low CTP and dCTP levels (Fig. 4.10, Table 4.9). 

The GATA-transcription factor Gln3 is negatively regulated by TOR and is activated upon 

glutamine limitation (COURCHESNE AND MAGASANIK 1988; BECK AND HALL 1999; CRESPO et al. 2002). 

However, a role of Gln3 in dNTP homeostasis has not been previously described. The finding that 

the severe mutator phenotype in gln3 double mutants could be suppressed by supplementing 

media with glutamine (Fig. 4.9E) suggests that the mutator synergies in the absence of Gln3 are 

largely driven by glutamine deficiency. Glutamine is an important cellular metabolite that is required 

not only for protein biosynthesis but also as nitrogen source for the de novo purine and pyrimidine 

biosynthesis. Moreover, some cancer cell lines depend on external glutamine for survival 

(“glutamine addiction”) (WISE AND THOMPSON 2010; HENSLEY et al. 2013). Consequently, glutamine 

analogs counteract cancer cell proliferation by inhibiting glutamine-requiring enzymes like CTP 

synthetase (DENTON et al. 1982; WEBER et al. 1982). Interestingly, although glutamine is required 

for purine and pyrimidine de novo biosynthesis, glutamine limitation due to GLN3 inactivation in 

budding yeast or inhibition of glutamine-requiring enzymes by the glutamine analog Acivicin in 

mammalian cells result in decreased CTP and dCTP pools and increased UTP levels (Fig. 4.10, 

Table 4.9)(NEIL et al. 1979; DENTON et al. 1982). Thus, in eukaryotes CTP synthetase and 

consequently CTP/dCTP pools seem to be most sensitive to glutamine limitations. It would be 

interesting to examine whether a low glutamine condition, either induced by glutamine analogs or 

as previously described for the central core of solid tumors (PAN et al. 2016), causes increased 
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mutagenesis in cancer cells and so facilitates tumor evolution and adaptation to cancer drug 

treatments. 

The observation that the inactivation of DUN1 suppressed the strong mutator phenotypes 

measured in double mutants carrying gln3 or ura7 mutations in DNA replication fidelity-

compromised backgrounds suggests that the DDR contributes in part to the observed mutator 

phenotypes (Fig. 4.9D, Table 4.8). dNTP pool measurement in dun1 gln3 and dun1 ura7 cells 

revealed that the inactivation of DUN1 in gln3 and ura7 cells suppressed dTTP, dATP and dGTP 

below WT levels, whereas dCTP levels remained almost unchanged in comparison to dCTP 

concentrations measured in the absence of Gln3 or Ura7 (Fig. 4.10B, Table 4.9B). Thus, the 

inactivation of DUN1 reduces the severity of the dNTP pool imbalance and “normalizes” the ratio 

between dCTP to the other dNTP by inhibiting RNR induction (Fig. 4.10B, Table 4.9B).  

The DNA content profiles of dun1 gln3 and dun1 ura7 strains are in agreement with the 

different functional requirements for Gln3 and Ura7. Ura7 as major CTP synthetase (OZIER-

KALOGEROPOULOS et al. 1994) is required primarily during S phase (KOREN et al. 2010) where the 

demand for dCTP is highest (CHABES et al. 2003). Consequently, dun1 ura7 cells that not only 

lack the major CTP synthetase, but also confer overall reduced dNTP biosynthesis due to DUN1 

inactivation (Fig 4.10B, Table 4.9B) (FASULLO et al. 2010), progress slower though S phase and 

therefore show a stronger accumulation of cells in S phase compared to the single mutants (Fig. 

4.9C). In contrast, Gln3 activity is primarily required in situations of glutamine limitations (CRESPO et 

al. 2002). In the absence of Dun1 the dNTP production is reduced (FASULLO et al. 2010). 

Therefore, it might be that the cellular demand for glutamine in the absence of Dun1 is lower than 

in the presence of Dun1. Consequently, dun1 cells are less prone to generate a situation of 

glutamine limitation, in which the presence of Gln3 becomes critical. Thus, it could be that dun1 

gln3 cells did not strongly accumulate in S phase (Fig. 4.9C) because in the absence of Dun1 

glutamine pools are not severely depleted and therefore cells do not require Gln3 activity. 

RNR is considered the master regulator of dNTP pool homeostasis (NORDLUND AND REICHARD 

2006). RNR possess two allosteric sites, one that controls the overall enzymatic activity (A-site) 

(Fig. 1.7C) and a second that regulates the substrate specificity (S-site) (Fig. 1.7B). Surprisingly, 

the absence of either Gln3 or Ura7 causes limitations in the dNTP precursor pool which result in a 

dNTP imbalance for which neither RNR nor any other mechanism downstream of RNR can 

compensate. Interestingly, RNR binds at the S-site all dNTPs except dCTP, consequently it can not 

respond to changes in dCTP concentrations (Fig. 1.7B)(BROWN AND REICHARD 1969). Instead, 

budding yeast cells compensate high dCTP pools through the activity of Dcd1, which converts 

dCMP into dUMP (Fig.1.6)(MCINTOSH AND HAYNES 1984; SANCHEZ et al. 2012). However, no 

compensatory mechanism for low CTP/dCTP pools exists in budding yeast cells, suggesting that 

low dCTP pools are the blind spot of dNTP pool homeostasis regulation (Fig. 1.6). Low dCTP pools 

due to the absence of Gln3 or Ura7 results in replication stress and activation of the DDR (Fig. 

4.9B,C)(KOREN et al. 2010). However, as in cells lacking Gln3 or Ura7 the dCTP precursor pool is 

limiting, the increased activity of RNR due to DDR activation is unable to generate more dCDP. 

Thus, instead of compensating for the low dCTP pools, the DDR increases the severity of the 

dNTP pool imbalance (Fig. 4.10B, Table 4.9B). 
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Presumably additional gene deletions exist that may interfere with the synthesis of substrates 

required for dNTP biosynthesis. However, they might not be mutagenic as dNTP imbalances may 

have been buffered by RNR. In these cases, RNR is able to senses the limiting dNTP pools and 

prevent that the limiting substrate manifests in a dNTP imbalance. Thus, given the sophisticated 

allosteric regulation of RNR (Fig. 1.7)(BROWN AND REICHARD 1969), gene deletions affecting CTP 

biosynthesis are most likely the only ones that not only induce a precursor pool alteration but also 

cause a dNTP imbalance that compromises DNA replication fidelity.  

In agreement with the altered dNTP imbalance, CAN1 mutation spectra analysis revealed that the 

dNTP pool imbalance largely shapes the mutation spectra. So, the msh6 gln3 and msh6 ura7 

CAN1 mutation spectra were dominated by G-C to A-T mutations (Table 4.10). These mutations 

originate most likely from dTTP misinsertions opposite of a template G and were driven by the 

severe dCTP:dTTP ratio of 1:15 present in gln3 or ura7 cells (Table 4.9B). Moreover, the 

manifestation of replication errors at all mutational hotspots was supported by the next-nucleotide 

effect (KUNKEL 1992; REHA-KRANTZ 2010) as each mutational hotspot was followed by at least 

three nucleotides that were more abundant than WT concentrations.  

 

  

 

Taken together, loss of the transcription factor Gln3 or the CTP synthetase Ura7 results in 

decreased CTP levels, which leads to reduced dCTP pools and activation of the DDR (Fig. 5-2). 

Paradoxically, activation of the DDR instead of counteracting the low dCTP pools induces RNR 

activity creating an even more severe dNTP imbalance. Interestingly, this severe dNTP imbalance 

does not trigger increased mutagenesis in the presence of WT DNA polymerases and functional 

MMR, highlighting once more the superb buffer capacity of the eukaryotic DNA replication fidelity 

 
Fig. 5.2 Gln3 or Ura7 promote DNA replication fidelity by 
counteracting dNTP pool imbalances. 
Inactivation of GLN3 or URA7 results in low CTP and dCTP 

pools, checkpoint activation, increased RNR levels and a 

severe dNTP pool imbalance. If combined with defects in 

DNA polymerase fidelity, proofreading or MMR, this dNTP 

pool imbalances cause a hypermutator phenotype. Figure 

was adapted from (Schmidt et al. 2017). 
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system. However, the combination of this severe dNTP pool imbalance with either compromised 

DNA polymerase or MMR function results in a hypermutator phenotype. 

5.4 A RNR1 random mutagenesis screen reveals specific residues in RNR1 with 

crucial functions in dNTP homeostasis and uncovers a highly mutagenic 

dNTP imbalance. 

5.4.1 A RNR1 screen identifies novel rnr1 alleles inducing mutagenic dNTP pool 

alterations. 

Screening a library of mutant rnr1 alleles for increased mutagenesis in an exo1 background 

revealed 24 rnr1 alleles (Fig. 4.12) that conferred different mutator phenotypes in the CAN1 

inactivation and the two frameshift reversion assays lys2-10A and hom3-10 (Table 4.14). The 

identified mutations were located either at the A-site, in the surrounding of the S-site (but not 

restricted to the previously mutagenized loop 2 (KUMAR et al. 2010)), at the Rnr1-Rnr1 interface or 

close to the C-site (Fig. 4.12). dNTP concentration measurements showed that all tested alleles 

either caused overall increased dNTP pools or imbalanced dNTP pools (Fig. 4.16, Table 4.18), 

indicating that the measured mutator interactions between the rnr1 alleles and the absence of Exo1 

are driven by dNTP pool alterations. All rnr1 alleles that resulted in synthetic lethality in the 

absence of Rnr3, the alternative DNA-damage inducible RNR subunit, or the checkpoint kinase 

Dun1 (Table 4.16) and presented a constitutive S-phase checkpoint activation (Fig. 4.17B-C) had 

at least one limiting dNTP concentration. Further analysis of the rnr1 alleles expressed from the 

endogenous RNR1 chromosomal locus revealed that a reduction of up to 20% in the dATP levels 

cause neither DDR activation (Fig. 4.17C) nor strong accumulation of cells in S phase (Fig. 4.17B). 

However, a 50% reduction in dATP levels resulted in a constitutive S-phase checkpoint activation 

(Fig. 4.17B-C). Interestingly, in budding yeast 50% of dATP levels correspond approximately to the 

dGTP concentration in WT cells, the smallest dNTP pool in budding yeast (CHABES et al. 2003) but 

also in mammalian cells (MATHEWS AND JI 1992; MARTOMO AND MATHEWS 2002). Furthermore, 

inactivation of GLN3 or URA7 caused reduced dCTP concentrations below the WT dGTP 

concentration (Fig. 4.10B, Table 4.9B) that also triggered DDR activation (Fig. 4.9B-C). Therefore, 

the results obtained in the presence of rnr1 alleles or absence of either Gln3 or Ura7 argue for the 

existence of a dNTP limitation threshold for S-phase checkpoint activation in budding yeast. Thus, 

it is very likely that reductions in the levels of any of the four dNTPs resulting in concentrations 

below this threshold (determined by dGTP levels in WT cells) will activate the S-phase checkpoint. 

Given the screening strategy, in which mutations were introduced randomly into RNR1 using 

mutagenic PCR the here presented approach is unbiased and not restricted to certain domains or 

regions of Rnr1. Furthermore, screening for mutator phenotypes using three different mutator 

assays in an exo1 background allowed the identification of key residues in Rnr1 with important 

consequences on dNTP pool homeostasis (the limitations of the used mutator assays are 

discussed below). Moreover, as the used screening strategy depends on cell growth, all identified 

rnr1 alleles expressed on a centromeric plasmid had to confer sufficient catalytic activity to 

complement the rnr1 background and support cell viability.  
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Previous studies introduced mutations in the highly conserved loop 2 based on the Rnr1 crystal 

structure (KUMAR et al. 2010; KUMAR et al. 2011). Characterization of these alleles in budding yeast 

revealed that some of the alleles, like rnr1-Q288A and rnr1-R293A, caused severe dNTP pool 

imbalances and growth defects, but were only viable in the presence of a suppressed WT-RNR1 

allele (KUMAR et al. 2010; KUMAR et al. 2011). Thus, the here-described screening strategy 

overcomes limitations of previous studies characterizing rnr1 alleles. 

A previous mutator screen of NrdA and NrdB, the large and small subunit of E. coli RNR, identified 

NrdA and NdrB alleles that conferred increased mutagenesis and dNTP pool alterations 

(AHLUWALIA et al. 2012). As observed with the here described rnr1 mutations, NrdA mutations also 

cluster at the A-site and S-site. Although S. cerevisiae Rnr1 and E. coli NrdA share 29% protein 

sequence identity, none of the here identified mutated residues in Rnr1 have been found mutated 

previously in the NrdA screen. This was unexpected as some of the here identified residues, like 

Asp226 or Arg256 and others, directly coordinate the specificity effector (Fig. 4.12D-E) and are 

conserved from E. coli up to humans (Fig. 4.12B). The discrepancy between both screens may 

originate at least in part from the screening strategies using different mutator assays and in case of 

the S. cerevisiae RNR1 screen use of the exo1 as “sensitized mutator background”. Importantly, 

one advantage of screening in S. cerevisiae over screening in E. coli is the high protein sequence 

conservation (67% protein sequence identity) between budding yeast RNR1 and human RRM1. 

So, in contrast to the E. coli NrdA screen in which 6 out of the 15 identified residues were 

conserved in human (AHLUWALIA et al. 2012), 21 out of the 22 identified residues in the S. 

cerevisiae RNR1 screen were conserved in humans (Fig. 4.12B). The high degree of protein 

conservation suggest that mutating these residues in human RRM1 may have similar 

consequences for dNTP pool homeostasis as observed in budding yeast.  

In the E. coli screen not only mutations in E. coli NrdA, but also in the small E. coli RNR subunit 

NrdB were found to cause dNTP pool alterations and increased mutagenesis (AHLUWALIA et al. 

2012). Based on this previous observation, a similar screen as the one described here for RNR1 

was conducted, but in which a RNR2 randomly mutagenized library was screened for increased 

mutagenesis in an exo1 rnr2 strain. Surprisingly, no rnr2 alleles could be identified that resulted 

in increased mutagenesis (data not shown). This discrepancy may argue for structural differences 

or different regulatory requirements between E. coli and S. cerevisiae RNR. 

One unpredicted finding of the RNR1 screen was that all dNTP pool imbalances shared relatively 

low dATP pools (Fig. 4.16A, Table 4.18). In part, this communality can be rationalized by the 

frameshift mutator assays, which were used in addition to the CAN1 forward inactivation assay to 

identify the rnr1 alleles. The lys2-10A mutator assays scores for a single A:T deletion event in a 

defined 10 A:T long mononucleotide run (TRAN et al. 1997), whereas the hom3-10 frameshift 

reversion assay is reverted by a single T:A deletion event in a 7 T:A long mononucleotide run 

(MARSISCHKY et al. 1996). Thus, low dATP pools may facilitate slippage events in A:T or T:A 

mononucleotide runs and therefore, rnr1 alleles causing a dNTP imbalance characterized by low 

dATP are likely to be identified with the used screening approach. However, low dTTP pools 

should, similar to low dATP pools, support the reversion of both frameshift mutator assays, 

however, none of the identified rnr1 alleles caused low dTTP levels (Table 4.18). One possible 
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explanation for the absence of dNTP imbalances with low dTTP may rely in the activity of Dcd1, 

which converts dCMP to dUMP and compensates dTTP levels downstream of RNR (MCINTOSH AND 

HAYNES 1984; SANCHEZ et al. 2012). Given that the overall RNR activity is negatively regulated by 

dATP at the A-site (Fig. 1.7C) (CHABES et al. 2003; FAIRMAN et al. 2011), it is likely that low dATP 

pools allow more severe dNTP imbalances independently of DDR activation, like in rnr1-S242T or 

rnr1-Y285C. Thus, it would be interesting to perform a rnr1-F15S screen, in which not the WT-

RNR1 but the rnr1-F15S allele is randomly mutagenized. By screening in a rnr1-F15S background 

that is most likely refractory to dATP inhibition at the A-site (see 5.4.2) and thus showed in average 

6.5x increased dNTP pools (Table 4.18, 4.20B), presumably more severe dNTP pool alterations 

and eventually dNTP imbalances with high dATP pools might be detected. Furthermore, similar to 

the here presented RNR1 random mutagenesis screen, additional screens making use of other 

frameshift reporters scoring for example for single G:C deletion or insertion events (e.g. (TRAN et al. 

1997)) and/or general forward inactivation assays (e.g. (WHELAN et al. 1979; BOEKE et al. 1984)) 

could be performed. It would be interesting to evaluate which type of dNTP pool alteration is 

facilitating the reversion or inactivation of these reporters. Moreover, this analysis would 

complement the understanding of how different dNTP pool alterations shape the mutational 

landscape in vivo. 

5.4.2 rnr1-F15S interferes with A-site regulation. 

The rnr1-F15S allele was the only allele identified in the RNR1 screen that did not result in a dNTP 

pool imbalance, but an overall increase in dNTPs (in average 6.5-fold higher than WT) (Table 

4.18). The F15S mutation is located at the ATP cone of the A-site in a region that propably affects 

RNR hexamerzation (Fig. 4.12F). Interestingly, the Phe15 is directly adjacent to the Asp16 

residual, which was mutated by the Dealwis group to investigate the eukaryotic RNR’s A-site 

regulation (FAIRMAN et al. 2011). In their study, purified human rrm1-D16R was unable to form 

catalytic inactive dATP-dependent hexamers and showed in comparison to the WT increased 

catalytic activity in the presence of dATP (FAIRMAN et al. 2011). Due to the position and analogy, it 

is therefore likely that the F15S mutation also prevents dATP-dependent hexamerization and is 

refractory to dATP inhibition at the A-site. This may explain the increased, balanced dNTP pools 

measured in the presence of this mutation (Table 4.18 and 4.20B). These overall increased dNTP 

pools due to the rnr1-F15S allele resulted in no synthetic growth defect or synthetic lethal 

interaction (Table 4.16) and a 4-fold and 59-fold increase over WT in the CAN1 inactivation rates in 

the presence and absence of Exo1, respectively (Table 4.19). Thus, overall increased dNTP pools 

most likely do not promote the generation of more replication errors by the DNA polymerases, but 

rather prevent the correction of errors by DNA proofreading due to a strong next-nucleotide effect 

(KUNKEL 1992; REHA-KRANTZ 2010). However, most replication errors that escape DNA 

proofreading are then subsequently repaired by MMR (Fig. 5.3).  

5.4.3 Two potential mechanisms for rnr1 mutants that cause low purine dNTP imbalances. 

Three identified rnr1 alleles (rnr1-A245V, rnr1-G271S and rnr1-Y285C) caused a dNTP imbalanced 

characterized by high pyrimidine and low purine pools (Fig. 4.16 A, Table 4.18). Interestingly, in a 

S. cerevisiae Rnr1 crystal structure two of the identified residues (Gly271 and Tyr285) indirectly 
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interact with the effector bound to the S-site (XU et al. 2006a). Both, the backbone oxide of Gly271 

and the side chain of Tyr285 form a hydrogen-bond with a water molecule that interacts with the 2’-

hydroxy group of the bound AMP-PNP effector suggesting that similar interactions might be 

possible with ATP, but not with dNTP effectors. Additionally, a previous study postulated that the 

Tyr244 in Salmonella typhimurium, which is the homolog residue of Tyr285 in S. cerevisiae, 

prevents NTP binding to the S-site because of a steric clash between the 2’-hydroxy group of the 

ribonucleotides and the tyrosine side-chain (UPPSTEN et al. 2003). According to this hypothesis and 

as NTP concentrations in budding yeast are in average 50-times higher than dNTP concentrations, 

mutating Tyr285 will favor the binding of the most abundant NTP at the S-site, which correspond to 

ATP. Under these special conditions, increased ATP binding at the S-site may result primarily in 

the reduction of pyrimidine nucleotides. The importance of the Tyr285 side chain for dNTP 

homeostasis is further supported by the observation that not only the here characterized rnr1-

Y285C allele (Table 4.18 and 4.20B), but also the previously described rnr1-Y285A allele and to a 

lesser extend the rnr1-Y285F allele, resulted in low purine and elevated pyrimidine pools (KUMAR et 

al. 2010). Thus, Tyr285 and most likely also the Gly271 are both critical for the discrimination of 

dNTP over NTP binding at the S-site and mutating those residues results in an ATP-driven 

increase in pyrimidine pools.  

In contrast to Gly271 and Tyr285 that are located at the S-site, Ala245 is located closer to the C-

site. Interestingly, replacing the alanine at position 245 with valine resulted in a 60% and 30% 

reduction in dATP and dGTP pools, respectively and elevated pyrimidine pools (Fig. 4.17A, Table 

4.20B). The bulkier side chain of valine in respect to alanine may decrease the space at the C-site, 

facilitating the binding of smaller pyrimidine NDPs over larger-size purine NDPs, leading to a dNTP 

imbalance characterized by low purines and elevated pyrimidines. In conclusion, two different 

mechanisms resulting in the same type of dNTP imbalance characterized by low purines and 

elevated pyrimidines are proposed: In the first one, low purine and elevated pyrimidine pools are 

the consequence of missing ATP discrimination at the S-site due to mutations in Gly271 or Tyr285, 

whereas in the second one, a mutation in Ala245 results in a smaller C-site, which favors 

pyrimidine NDP over purine NDP reduction at the C-site. 

5.4.4 Different dNTP pool alterations rely differentially on DNA proofreading and MMR. 

Most of the identified dNTP alterations caused strong mutator phenotype and/or synthetic genetic 

interactions only in DNA polymerase- or MMR-compromised backgrounds. These findings, similar 

to the results obtained with GLN3 or URA7 deficient strains (Fig. 5-2), highlight the remarkable 

buffer capacity and robustness of the DNA replication fidelity machinery. Moreover, the collection of 

rnr1 mutant alleles and their systematic characterization allows evaluating the in vivo requirements 

for high-fidelity DNA replication in the presence of different dNTP pool alterations. 
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Fig. 5.3 Specific dNTP pool alterations rely differentially on DNA polymerase proofreading and MMR 
for mutation avoidance. 
The funnels below each dNTP pool alteration represent DNA replication errors that are corrected by DNA 

polymerase proofreading and/or MMR. dNTP pool alterations and funnels are color-coded based on their 

genetic interactions, dNTP pool alteration and mutator phenotype as in Fig. 4.17. dNTP imbalances 

characterized by low dATP levels and high dGTP levels cause a mutator phenotype even in the presence of 

high-fidelity DNA polymerase and functional MMR. 

 

Overall increased dNTP pools with unchanged ratios between the different dNTPs do not increase 

the amount of replication errors generated by the DNA polymerases. However, overall increased 

dNTP pools cause a strong next-nucleotide effect that interferes with the proofreading of the 

generated DNA replication errors. Thus, more DNA replication errors escape DNA proofreading 

and these replication errors depend on MMR for repair. However, as the amount of generated DNA 

replication errors in the presence of overall increased dNTP pools is low, MMR can to in large 

extent correct replication errors that escaped DNA polymerase proofreading. Consistently, overall 

increased dNTP pools did neither cause a mutator phenotype in a WT background nor synthetic 

growth defects or synthetic lethality in the absence of DNA proofreading or MMR (Table 4.16). 

Furthermore, in agreement with the next-nucleotide effect being most detrimental for base 

substitution replication errors or indels in short mononucleotide runs (KROUTIL et al. 1996; KUNKEL 

2009), increased mutation rates in the presence of overall increased dNTP pools were primarily 

observed in the CAN1 forward inactivation assay and to a lesser degree in the two frameshift-

specific reporters (Table 4.19). 

In contrast to the overall increased dNTP pools, imbalanced dNTP pools facilitate the generation of 

DNA replication errors by DNA polymerases as altered ratios between the different dNTPs directly 

affect DNA polymerases’ nucleotide selectivity. Interestingly, different dNTP pool alterations rely 

differentially on DNA proofreading and MMR. The “low purines” (or “2 out of 4”) dNTP imbalances 

characterized by low purines and elevated pyrimidines showed synthetic growth defects or lethality 

in the presence of DNA polymerase proofreading-defective alleles, but not in the absence of MMR 



DISCUSSION 

132 
 

(Table 4.16). Moreover, CAN1 mutation spectrum analysis in rnr1-Y285C expressing cells revealed 

that the mutation spectrum is dominated by base substitutions (Table 4.21). Thus, the “low purines” 

dNTP imbalance supports primarily the generation of base substitutions and is therefore more 

dependent on DNA polymerase proofreading than on MMR for survival. This bias for base pair 

substitutions can be further rationalized by the ratios between the different dNTPs, which strongly 

affects the nucleotide selectivity of the replicating DNA polymerases. Assuming that the increase in 

the elevated dNTP pools are similar, a dNTP imbalance with “2 out of 4” elevated dNTP pools, like 

a “low purines” dNTP imbalance, confers altered ratios in 4 of the 6 dNTP ratios, whereas a dNTP 

imbalance in which “3 out of 4” dNTPs being elevated, like the “low dATP” dNTP imbalance, has 3 

out of the 6 dNTP ratios altered and an overall increase in dNTP pools does not change the dNTP 

ratios at all. Thus, theoretically a “2 out of 4” dNTP imbalance is most challenging for DNA 

polymerase nucleotide selectivity and consequently more prone for the generation of base 

substitutions. 

In comparison to a “low purines” dNTP imbalance, the “low dATP” or “low dATP + high dGTP” 

dNTP imbalances showed increased amount of one-base-pair deletions in the mutation spectra 

analysis and relied on DNA polymerase proofreading as well as on MMR for survival (Table 4.21 

and 4.23). This suggests in line with in vitro DNA replication experiments (BEBENEK et al. 1992) that 

limitation in one of the dNTP pools and an increase in the remaining three dNTP pools (“low dATP” 

or “low dATP + high dGTP”) not only facilitates the generation of base substitutions but also DNA 

polymerase slippage events, in particular at mononucleotide runs requiring for their replication the 

limiting dNTP. Moreover, the increase in three out of four dNTPs result in a strong next-nucleotide 

effect, which favors mismatch extension over polymerase proofreading leading to more replication 

errors and a strong dependency on MMR for mutation avoidance. Interestingly, the dNTP pool 

precursor imbalance upon GLN3 or URA7 inactivation also results in a “3 out of 4” dNTP imbalance 

with one limiting dNTP (dCTP) and three elevated dNTP pools (Table 4.9B). Although strong 

mutator phenotypes were measured in the absence of Gln3 or Ura7 in DNA replication fidelity-

compromised backgrounds (Table 4.5,4.7) and a growth defect in the ura7 pol3-01 double mutant 

was observed (Fig. 4.8 and data not shown), the consequences for DNA replication fidelity of a 

“low dCTP” dNTP imbalance were less severe as a “low dATP” dNTP imbalance. One possible 

explanation may be the composition of the budding yeast genome, which consists out of 

approximately 31% As and Ts, and 19% Gs and Cs (GOFFEAU et al. 1996). So, a “3 out of 4” dNTP 

imbalance that is low in dATP or dTTP may have more severe consequences for DNA replication 

fidelity, simply because of the higher representation of the former bases in the budding yeast 

genome. 

An exception among the identified rnr1 alleles were those alleles that caused a dNTP imbalance 

characterized by low dATP pools, elevated pyrimidine pools and strongly increased dGTP pools 

(“low dATP + high dGTP”) (Fig. 4.16A, 4.17A, Table 4.18, 4.20B). This type of dNTP imbalance 

resulted in strong CAN1 inactivation and frameshift mutator phenotypes even in the presence of 

DNA proofreading and functional MMR (Fig. 4.13, Table 4.19). For example, strains expressing the 

rnr1-K245E or rnr1-I262V,N291D alleles at the endogenous chromosomal RNR1 locus, presented 

CAN1 mutation rates and frameshift reversion rates similar to a strain with a complete MMR 
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deficiency (msh2) (Table 4.19). These findings suggest that in the context of the “low dATP” type 

of dNTP imbalance strongly elevated dGTP levels confer a high mutagenic potential and are 

extremely detrimental for DNA replication fidelity. Why are “low dATP + high dGTP” dNTP 

imbalances so mutagenic? Three not mutually exclusive, potential explanations are: First, strongly 

elevated dGTP levels in the context of a “low dATP” dNTP imbalance enhance the mutagenic 

potential of the dNTP imbalance, resulting in increased DNA replication errors and consequently 

saturation of MMR. As dGTP is the smallest dNTP pool under WT conditions (MATHEWS AND JI 

1992; MARTOMO AND MATHEWS 2002; CHABES et al. 2003), changes in the dGTP concentration 

have the strongest impact on the ratios between the different dNTPs, which directly influence DNA 

polymerase nucleotide selectivity. Second, dGTP as smallest dNTP pool functions as an intrinsic 

brake during DNA replication. Low dGTP pools may slow down DNA replication, giving so more 

time for DNA proofreading and potentially also for repair. In contrast, high dGTP concentrations 

may facilitate DNA polymerization at expenses of DNA proofreading and repair. Third, elevated 

dGTP concentrations could cause inhibition of DNA polymerase proofreading. During DNA 

proofreading, dNMPs are excised from the nascent DNA strand. These dNMPs can bind to the 

exonuclease active site and inhibit DNA proofreading to prevent excessive excision. Earlier studies 

on DNA replication have shown that dNMPs (as dGMP) cause inhibition of DNA polymerase 

proofreading in vitro (QUE et al. 1978; FERSHT AND KNILL-JONES 1983). Despite the fact that in vivo 

dNMPs concentrations are extremely low (ZHANG et al. 2011), it is possible that dGMP levels may 

accumulate when dGTP levels are severely increased. Thus, the accumulation of dGMP may 

potentially inhibit DNA proofreading and in combination with a dNTP imbalance cause a severe 

mutator phenotype. 

To better understand the molecular mechanism causing this severe mutator phenotype additional 

experiments are required. So, it would be very interesting to investigate whether DNA replication 

forks are progressing faster in the presence of the “low dATP + high dGTP” dNTP imbalances in 

comparison to WT and ”low dATP” dNTP pools. Moreover, dGMP concentration measurements in 

the presence or absence of a “low dATP + high dGTP” dNTP imbalance may support the third 

previously mentioned scenario.  

Interestingly, both chromosomally integrated rnr1 alleles that induce the “low dATP + high dGTP” 

dNTP imbalance, showed an altered DNA content profile and an accumulation of cells in G2/M 

(Fig. 4.17B) suggesting that very high dGTP pools may affect also other cellular processes outside 

S phase. This idea is supported by the in vitro observation that dGTP facilitates tubulin nucleation 

better than GTP (HAMEL et al. 1984). As dGTP pools represent up to 50% of the GTP pools 

measured in these strains (Table 4.20), dGTP may interfere with microtubule dynamics and 

chromosome segregation. Furthermore, two studies positively correlate the dGTP concentrations 

with telomere length (GUPTA et al. 2013; MAICHER et al. 2017), suggesting that dGTP, as smallest 

dNTP pool, may not only play an important role for DNA replication fidelity but also in the regulation 

of other genome maintenance pathways. 
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5.5 Concluding remarks 

The here presented genome-wide screen identified genes that prevent the accumulation of 

mutations. Among others, the folylpolyglutamate synthetase Met7 as well as the transcription factor 

Gln3 and the major CTP synthetase Ura7 were identified as novel important factors for genome 

stability.  

In the absence of Met7, cells accumulate and incorporate dUTP during DNA replication given the 

altered dUTP/dTTP ratio. Increased uracil incorporation in combination with a DSB repair defect 

seems to trigger increased genome instability (GCRs) (Fig. 5-1).  

The absence of the CTP synthetase Ura7 or upon glutamine limitation due to the lack of the 

transcription factor Gln3, both cause reduced de novo CTP biosynthesis resulting in a mutagenic 

dNTP imbalance (Fig. 5-2). This can neither be compensated by RNR nor by any other mechanism 

downstream of RNR. Thus, the here presented data emphasizes the importance of the dNTP 

precursor metabolism for dNTP homeostasis and uncovers CTP/dCTP levels as blind spot in dNTP 

regulation. 

The systematic characterization of different mutagenic dNTP pool alterations induced by rnr1 

alleles revealed differential requirements on DNA proofreading and MMR for cellular survival (Fig. 

5-3). In line with in vitro data (BEBENEK et al. 1992), dNTP imbalances with one limiting dNTP 

facilitate DNA polymerase slippage events resulting in frameshift mutations in vivo. Within the 

examined dNTP pool alterations, a “low dATP + high dGTP” dNTP imbalance was most detrimental 

for DNA replication fidelity and caused base substitutions and frameshift mutations even in the 

presence of WT DNA polymerases and functional MMR. Moreover, the comparison of different 

dNTP pool alterations and DDR activation argues for a dNTP limitation threshold for S-phase 

checkpoint activation in budding yeast, which is defined by approximately the dGTP concentration 

reported in WT cells.  

Taken together, this work highlights the pivotal role of the cellular metabolism and dNTP pool 

homeostasis on DNA replication fidelity. The here identified genes and mutant alleles might act as 

mini-drivers during human cancer evolution and might represent interesting candidates for future 

drug target or prognostic markers.  
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7 SUPPLEMENT 

7.1 Supplementary data 

 

Fig. S 7.1 CAN1 mutation spectrum of the WT. 
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown.  
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Fig. S 7.2 CAN1 mutation spectrum of met7.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown.  
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Fig. S 7.3 CAN1 mutation spectrum of msh6.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.4 CAN1 mutation spectrum of msh6 gln3.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.5 CAN1 mutation spectrum of msh6 shm2.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.6 CAN1 mutation spectrum of msh6 ura7.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.7 CAN1 mutation spectrum of ura7.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.8 CAN1 mutation spectrum of the pol2-M644G.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.9 CAN1 mutation spectrum of pol2-M644G ura7.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.10 CAN1 mutation spectrum of pol3-L612M.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.11 CAN1 mutation spectrum of pol3-L612M ura7 
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.12 CAN1 mutation spectrum of rnr1-Y285C.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.13 CAN1 mutation spectrum of rnr1-R256H,Y779C.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.14 CAN1 mutation spectrum of rnr1-I262V,N291D.  
Genomic DNA of individual CanR clones was purified, the CAN1 gene amplified and sequenced. Individual 

mutations are shown. Mutational hotspots are indicated in blue. 
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Fig. S 7.15 URA3 mutation spectrum of the WT and rnr1-I262V,N291D. 
Genomic DNA of individual 5-FOAR clones was purified, the URA3 gene amplified and sequenced. Individual 
mutations are shown. Mutational hotspots are indicated in red. The WT spectrum was taken from (LANG AND 

MURRAY 2008). 
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