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Abstract

Intensity modulated proton therapy (IMPT) plans precisely balance thousands of proton
beamlets, giving high dose to the tumor while trying to spare healthy tissues. However, plan
quality is affected by factors including: 1) dose calculation inaccuracies, 2) underestimation
of the biological effect of the dose in sensitive areas and geometrical changes like 3) patient
movement or 4) changes in posture and anatomy. All these factors are addressed in the
projects here presented.

Project 1, in collaboration, introduces an upgraded version of a Monte Carlo package for
graphics processing units (GPU-MC) to provide fast and accurate dose calculations. This
package is extended to serve as the unique dose calculation engine in the following projects.

Project 2, in collaboration, presents a prioritized optimization method to reduce the
potential biological effect of the radiation in organs at risk near the tumor.

Project 3 compares computationally efficient strategies to take into account the patient
respiratory motion by defining planning target volumes based on a 4DCT of the patient.
Density overwrites considering water-equivalent-path-length to voxels across the 4DCT
targets works best.

Project 4 demonstrates an online algorithm that maintains IMPT plan quality through
treatment, adapting it to the daily patient posture and anatomy using GPU-MC calculations.

Kurzfassung

In der Bestrahlungsplanung für intensitätsmodulierten Protonentherapie (IMPT) werden
tausende von Protonenbündeln präzise addiert mit dem Ziel einer hohen Tumordosis bei
gleichzeitigem schonen von gesundem Gewebe. Die Qualität des Bestrahlungsplans wird
jedoch durch folgende Faktoren beeinflusst: 1) Dosisberechnungsungenauigkeiten, 2) Un-
terschätzung der biologischen Wirkung der Dosis in sensiblen Bereichen und geometrische
Veränderungen hervorgerufen durch 3) Bewegung des Patienten oder 4) Veränderungen
in Haltung und Anatomie. All diese Faktoren werden in den hier vorgestellten Projekten
behandelt.

Projekt 1 (in Zusammenarbeit) führt eine verbesserte Version eines Monte-Carlo Programs
für Grafikprozessoren (GPU-MC) ein, um schnelle und genaue Dosisberechnungen zu
ermöglichen. Dieses Program wurde erweitert, um in den folgenden Projekten als bevorzugte
Dosisberechnungsmethode zu dienen.

Projekt 2 (in Zusammenarbeit) präsentiert eine priorisierte Optimierungsmethode, um
die potentielle biologische Wirkung der Strahlung in gefährdeten Organen in der Nähe des
Tumors zu reduzieren.

Projekt 3 vergleicht recheneffiziente Strategien, um die Atembewegung des Patienten
zu berücksichtigen basierend auf Planungszielvolumina definiert mit Hilfe von 4DCT des
Patienten. Dichteüberschreibungen unter Berücksichtigung der Wasseräquivalenz-Pfadlänge
zu Voxeln über die 4DCT-Ziele sind hier am genauesten.

Projekt 4 demonstriert einen Online-Algorithmus, der die Qualität des IMPT-Plans
während der fraktioniertene Behandlung garantiert und sie mit Hilfe von GPU-MC- Berech-
nungen an die tägliche Haltung und Anatomie des Patienten anpasst.
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Chapter 1

Introduction

Proton therapy is a type of radiation therapy that leverages the nature of proton interactions
with matter to irradiate tumors, while trying to spare the healthy tissues as much as possible.
As such, the behavior of the radiation field and therefore its therapeutic effectiveness ulti-
mately shares its dependencies with the basic physics laws that governs the interactions of
protons with matter.

It would be ideal to be able to perfectly predict what radiation field a patient will receive
during treatment and what the particular effect the field will have. However, errors and
uncertainties arise from several sources and steps, some of which are:

1. Calculation of a proton field in a known, static geometry, like a patient.

2. Nonexistence of a static 3D geometry to irradiate, due to patient movements like
respiration.

3. Variation of the static 3D geometry to irradiate after its initial determination, due to
patient positioning and/or anatomy evolution.

4. Lack of understanding of the biological effect of the energy deposited in the patient.

The potential effects these uncertainty sources produce should be minimize, to improve
proton treatments quality. Hence, this thesis leverages the understanding of particle interac-
tions with matter to propose solutions to specific aspects of the previous four items.

In order to motivate the goals of this thesis and to present the core concepts in proton
therapy, this chapter gives an introduction to proton therapy, explaining its rationale, the
current practice workflow and how it is delivered to the patient. Then, the previous points are
explained and, finally, the thesis structure and goals are defined. The basics of the interactions
of protons with matter are given separately in chapter 2 due to its extension and will be
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often referred from this introduction. If the reader is not familiar with the physics basics or
quantities of interest in proton therapy, it is recommended to acquire the basic notions by
referring to the aforementioned chapter.

Finally, in occasions throughout this thesis many publications could be cited that support
a certain claim, however only a few references may be given for clarity and to avoid too long
citation list that would otherwise affect the document readibility. It is not the intention of the
author to remove any recognition from the uncited publications.

1.1 Proton therapy background

1.1.1 Rationale and history

Proton therapy is a type of external radiation therapy for cancer treatment. The radiation
field aims to give a homogeneous dose (energy per unit mass) to the tumor, while trying
to spare healthy tissues. As opposed to the more common radiation therapy that employs
X-ray beams, proton therapy delivers the therapeutic radiation field by way of proton beams.
There are geometric advantages in the achievable dose distribution employing this type of
radiation due to the manner protons interact with the human body. Protons, and other ions,
deposit most of their energy in the medium at the end of their range, forming the so-called
Bragg peak, shown in figure 1.1, and allowing the deposition of high dose levels at the tumor
position. The proton dose stops at a certain point and downstream tissues are not irradiated.
For an in-depth explanation of why this happens, refer to chapter 2.

X-rays (20 MeV)

X-rays (4 MeV)

Proton Bragg peak
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Depth (a.u.)
Tumor
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(a) (b)

Fig. 1.1 Proton pencil beam dose deposition as a function of depth. a) compared with X-rays.
b) original figure by R. Wilson in his 1946 publication [Wil46].
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The comparisons in figure 1.1a show that protons can be used to deliver a bigger fraction
of the total dose to the tumor than X-rays, better sparing the healthy tissue from being
damaged. This was the observation initially published by Robert Wilson in 1946 [Wil46],
where he suggested the usage of collimated proton beams to treat deep-seated tumors. This
publication, illustrated with image 1.1b extracted from it, effectively started the proton
therapy field, even suggesting to modulate the penetration of a continuously delivered proton
beam by a rotating wheel to create the spread-out Bragg peak (SOBP). The SOBP, shown in
figure 1.1a, is the result of summing the dose contributed by many single beamlets to create
homogeneous dose fields.

The first proton therapy patients were treated at Berkeley in 1954 and by the end of 2016,
a total of ~150000 patients had received proton therapy. In the last decades, the number of
patients have increased exponentially and so has the number of active proton centers: 80
active, 46 under construction and 25 in planning stage (patient data from December of 2016
and center totals as of this date, both according to the Particle Therapy Co-Operative Group,
PTCOG, website: https://www.ptcog.ch).

Despite the dose-depth profiles shown in figure 1.1 display a distribution favourable to the
proton modality as compared to the X-rays’, it is not to be concluded that protons will always
perform significantly better than X-rays in the treatment of cancer. In fact, the selection
of cases that would benefit the most from such technique is an active area of research (see
[PK10] for example). There are many aspects that may make a modality more favourable
than the other, being the economic and the availability of appropriate treatment centers two of
the most simple, yet important, factors. It is widely accepted, however, that most ocular and
pediatric tumors and tumors with the target very close to sensitive organs should in principle
benefit from proton therapy [PK10]. Moreover, the ceiling of the quality achievable by a
proton therapy plan depends on many aspects, some of which are specific to the way the
radiation field is delivered to the patient.

1.1.2 Workflow

It is important in order to follow this thesis to understand what workflow is implemented in
proton therapy since the patient receives a diagnostic until the treatment finalizes. Generally,
all proton plans follow these steps:

1. Diagnosis and prescription: A physician closely studies a patient scan and produces a
diagnosis with a prescription of dose to the tumor and dose limits to the healthy organs.

Along with the total dose prescribed to the tumor, the delivery schedule is also specified.
Plans are generally delivered daily for several weeks. Each daily session is called a

https://www.ptcog.ch
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fraction and the selection of total fractions and how often they are delivered is referred
to as fractionation scheme. Section 1.1.4 explains fractionation and its impact on the
uncertainties studied in this thesis. An example of prescribed dose to the target is 60
Gray (Gy) in 30 daily fractions.

2. Planning computed tomography (CT) scan: A CT scan is taken if not yet available to
have an image of the patient that can be related to material information and proton
stopping power. In preparation for this scan, the patient is immobilized in a specific
setup that must be reproduced for each fraction. The CT scan consists of a 3D
cube divided in a number of voxels of a given size, for example 512× 512× 250
0.5×0.5×2.5 mm3. Each voxel contains a value in Hounsfield units, which is a scale
representing the total attenuation coefficient of the X-rays generated in the CT at each
patient position. From this scale, it is possible to infer the material composition of the
patient and the other physical quantities required to calculate the proton treatment.

3. Definition of patient structures in the CT: Information from all available scans are
used in order to define a set of contoured regions in the CT image that enclose the
different patient structures. Common delineated structures are the patient him-/herself,
important organs at risk (OARs), tumor/s, areas the radiation fields should not traverse,
etc. This is a laborious process that can take several hours. It is common to refer to the
resultant defined regions as structures or contours and both terms are employed in this
thesis.

4. Field definitions: The direction of the proton fields and the target they aim for are
defined. They are chosen trying to avoid OARs or areas that can cause uncertainty in
the final dose distribution. Usually 3-4 fields are used with initial proton energies in
the range of 50-300 MeV.

5. Plan optimization: The contribution of all individual fields is carefully optimized to
deliver the prescription dose to the target while minimizing the dose to the OARs
(following clinical criteria). The optimization process depends on the delivery tech-
nique. If the optimized fluence from each field does not produce a satisfactory dose
distribution, the process may be sent back to item 3 or 4.

6. Patient setup: Before each fraction is delivered, the patient is carefully setup in the
same position recorded in the CT. If this is achieved, the planned dose distribution can
be reproduced at the fraction.
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7. Fraction delivering: The fraction is delivered to the patient. The patient should maintain
the position during the fraction delivery.

At any point during treatment, the original plan can be re-evaluated.

1.1.3 Delivery techniques

The potential benefit of a proton therapy treatment is dependent on what treatment delivery
technique is used. Proton therapy treatments are mainly delivered with two techniques:
passive scattering (PS) and pencil beam scanning (PBS).

1.1.3.1 Passive scattering

In passive scattering the desired dose distribution is delivered to the target using one or several
continuous radiation fields, each generally covering the whole tumor. Depending on the
number of scattering foils used, passive scattering is divided into single and double scattering
(DS). Double scattering is more widely used because of the limited dose homogeneity that
single scattering can provide, however, single scattering can be employed for very small
targets, such as choroidal melanoma [Kim+18]. The following explanation corresponds to
double scattering, the working principles of single sattering can be derived from it.

A schematic representation of the beamline is shown in figure 1.2, with the beam in blue
going from left to right as it leaves the particle accelerator and traverses each of the main
components until it reaches the target. This representation is a simple example that aims to
explain the underlying ideas of each component, the real design of the beamline is much
more complex.
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Fig. 1.2 Double scattering beamline schematic representation. A pencil beam is shaped to
provide tumor coverage, but the SOBP modulation (SOBP width) causes high dose to be
deposited on the healthy tissue located close to the proximal end of the target.
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A nearly monoenergetic pencil beam undergoes the following transformations (numbering
respected in the figure):

1. A modulator wheel is employed to create a SOBP (as suggested by R. Wilson [Wil46]).
The wheel spins, making the initial pencil beam traverse different material thicknesses,
losing different amounts of energy depending on the wheel position. The size of the
resultant SOBP is called modulation and is generally fixed across the field (orange area
in figure 1.2). Of course, designs other than a wheel are possible, but they all share the
same working principle.

2. A double scattering system widens the mixed energy beam creating a beam with
homogeneous fluence on a wide cross section. The first of the scatterers increases
the beam emittance due to the multiple Coulomb scattering in the material (a process
explained in section 2). Because the result is a nearly-Gaussian profile, a second
scatterer is employed to flatten the distribution. The design and composition of this
second scatterer was an active topic of research with different models proposed, but
the underlying idea that was found to work best was to act differently at different radial
positions of the field, scattering more the central part (refer to [Tak94; Tak02; KSS77;
Gru+94] for further details).

3. An aperture fabricated from a high absorbent material adjusts the proton field to the
beam’s-eye-view tumor contour per field.

4. A range compensator takes the tumor’s distal shape into account by absorbing more or
less energy depending on the position within the field.

The main limitation of this delivery modality is the fixed modulation across the radiation
field. The components described above do not conform the field to the proximal end of the
target due to the fixed modulation. To alleviate this, complex patching techniques can be
used to increase the conformity of the dose to the required desired distribution by blocking
certain regions for specific fields. This limitations is naturally solved using PBS, increasing
the conformity of the dose to the target. This is the reason why PBS is slowly being replacing
DS in many applications.

1.1.3.2 Pencil Beam Scanning

In PBS, the desired dose distribution is delivered by hundreds or thousands of individual
quasi-monoenergetic pencil beams that are deflected by magnets to deposit their energy
along a desired path. The beamlets are organized in fields, impinging on the target from
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different angles. The total dose is generated by summing the dose given by each individual
pencil beam. The beamlers are delivered in a sequential manner and it takes time to adjust
the machine parameters preparing for the next beamlet, creating a delivery time structure.
Because changing the energy between beamlets is the most time consuming operation, each
treatment field is usually organized in energy layers.

The treatment modality used with this delivery is termed intensity modulated proton
therapy (IMPT), in a parallelism to its X-ray counter part: intensity modulated radiation
therapy (IMRT). It should be noted that in IMPT, not only the beamlets intensity is modulated,
but also the energy, making the term slightly misleading.
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Fig. 1.3 Pencil beam scanning beamline schematic representation. Many pencil beams are
produced one after the other and deflected by the magnets to reach the desired destination in
the tumor.

The number of protons per beamlet in IMPT plans is optimized to provide the desired
dose to the target while maintaining the dose to the healthy tissue as low as possible. This
optimization procedure allows high conformity of the dose to the desired distribution and
a brief introduction to it is given in section 3.2. The result of the optimization procedure
is usually that each field utilized during the treatment gives a inhomogeneous dose to the
tumor, but the dose from all fields creates a homogeneous dose in it, just like the plan shown
in figure 1.4.

Because the dose per field is inhomogeneous, there is no fixed modulation as in DS,
improving dose conformity to the target. This is possible when multi-field optimization
(MFO) is used. Nevertheless, if homogeneous doses per field are desirable in a particular
situation, single field optimization (SFO) can be employed to create single field uniform dose
(SFUD) plans.

While the increased dose conformity is a positive trait, IMPT plans are very sensitive to
geometry changes. As it will be explained in chapter 2, the shape and penetration depth of
each beamlet highly depends on the tissues traversed. Due to the high degree of dependency
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Fig. 1.4 Example of a homogeneous IMPT dose distribution (center) delivered by 4 inhomo-
geneous dose distributions (left and right).

of the total dose on the dose of each beamlet, changes in the tissues traversed by each beamlet
impact the total dose. Therefore, geometrical changes like a setup error causing patient
mispositioning, breathing motion or anatomical changes through the course of treatment
impact the plan quality. Additionally, the high dose inhomogeneity given by each field may
have radiobiological implications, potentially increasing the impact of the dose in healthy
tissues. Section 1.2 analyzes these aspects.

1.1.4 Treatment fractionation

Before entering the treatment uncertainties section, it is important to discuss the time scales
present in proton therapy. Proton therapy is usually given in a fractionated schedule. For
example, a 60 Gy plan may be delivered in a 2 Gy per week-day schedule until the total
dose is given to the tumor. In each fraction the same dose distribution is usually delivered,
unless otherwise decided. Depending on the complexity of the plan, fractions for a given
case might take longer than for others, but 30 min can be given as representative figure,
mostly due to preparation and positioning of the patient on the treatment couch. However,
the irradiation time is just a few minutes, around 5 min for the purpose of the discussion
here. Splitting the radiation treatment into fractions is not an arbitrary decision or motivated
by scheduling or management of the treatments of many patients. After all, most time is
dedicated to preparation. The reason behind fractionation is to improve the treatment quality
by better sparing the healthy tissues.

The traditional fractionation wisdom relies on what is known as the 4 Rs of radiobiology:
repair, reassortment, repopulation and reoxygenation. The detailed analysis of each of these
is beyond the scope of this thesis, but it is still important to note them because they are the
ultimate reason radiation therapy works. After giving a fraction, normal cells repair sublethal
DNA damage better than tumor cells due to their better repairing mechanisms, survivor
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tumor cells may cycle into more sensitive phases of the cell cycle and become more sensitive
in the next fraction (reassortment), healthy tissues recover through cell repopulation and,
finally, the tumor radiation sensitivity may be increased by reoxygenation. These improves
the therapeutic impact of radiation as opposed to give all the dose in a single delivery, which
could seriously damage healthy tissues.

The fractionated schedule is taken as reference to define the time frame some particular
effects and uncertainties act on. Notably for this thesis, on the one hand, intrafractional
geometrical changes refer to patient movements while the fraction is being delivered. By far,
the most important of which is the respiratory motion, although bowel movements may also
have some limited impact. On the other hand, interfractional geometrical changes refer to
the patient being positioned at each fraction slightly different from the reference planning
position, in what is called a setup error. Another source of uncertainty in the interfractional
scale is the anatomy of the patient changing throughout treatment via weight loss or tumor
shrinkage, for example. Importantly, some of the random fluctuations caused by these
uncertainties on both intra- and interfraction scales, might average out to some degree as
more and more fractions are delivered to the patient. Therefore, fractionation can also be
seen as a forgiving situation for uncertainties causing random errors. However, the traditional
fractionated delivery has been challenged in recent years, proposing to deliver the treatment
in a hypofractionated schedule giving more dose per fraction and less total fractions obtaining
an improve therapeutic ratio [Lai+16].

The main driver behind hypofrationation is that the increased dose conformity to the tumor
of modern radiation techniques spares better the healthy tissues [Lai+16]. Hypofractionation
has been mainly studied for X-rays in breast [Smi+11; Kar+14; RSK15], prostate [DP99;
RSK15; BTD17] and brain metastases [Ino+14]. However, proton treatments are also
expected to benefit from it and have already been investigated in lung (non-small cell lung
cancer) [Nih+06; Hat+07; Bus+13], liver [Chi+05; Fuk+09; Bus+11; Kom+11] and prostate
[Shi+95; Sla+04; Zie+10]. See [Lai+16] for a review on hypofractionation results with
X-rays, protons and carbon ions, including a brief radiobiological discussion.

Under the scope of this thesis, it is important to discuss the consequences of hypo- and
hyperfractionation on the studied uncertainties. In hypofractionated treatments, random
fluctuations may not even out as each fraction has a bigger importance, making the plan
more sensitive to random errors such as patient mispositioning on the treatment couch. The
specific relation between the fractionation and treatment uncertainties is discussed at each
uncertainty section below.
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1.2 Treatment uncertainties under the scope of this thesis

The following subsections explain the uncertainties tackled in this thesis, along with the
strategy employed to analyze and reduce them. One uncertainty is approached per project.
The sections respect the same order as the publications included in chapters 4–7.

1.2.1 Dose calculation uncertainty

The presence of uncertainties in dose calculation limits the achievable quality of IMPT plans
[Pag12]. In order to generate IMPT plans, the dose in each point of a patient has to be
calculated for each individual beamlet. To calculate the 3D dose distribution in a patient,
one should solve the linear Boltzmann transport equation (LBTE) describing how protons
traverse a medium, however this is a very complicated task in a geometry such as a human
being. In the clinical practice, the so-called analytical dose calculation (ADC) algorithms
are usually employed. These algorithms are a way of approximating the LBTE and they have
been shown to present inaccuracies in areas of high tissue heterogeneity, like lung or head
and neck [Saw+08; Pag12; Gra+14; Sch+15; Yep+18] (among other authors), usually due to
the miscalculation of the scattering component of the equation [Saw+08]. On the contrary to
ADC, Monte Carlo (MC) particle transport simulations converge to the exact solution of the
LBTE and are considered the gold standard for dose calculations.

Monte Carlo simulations allow the statistical estimation of macroscopic quantities, such
as deposited energy inside a region in a patient, arising from the step-by-step evaluation of
the interaction probabilities of particles with their microscopic environment and the sampling
of the products of these interactions. MC simulations of proton plans consist of the transport
of millions of primary protons and the secondaries they create until all particles have lost all
their initial kinetic energy through interactions or have left the region of interest and therefore
cannot affect the patient anymore and are discarded. Of course, there are uncertainties present
in MC simulations, specifically, in the interaction cross-sections and models, which might
not be well understood. However, within the scope of proton therapy dose calculations in
patients, MC presents high accuracy [Pag12], comparable to the experimental measurements
used to verify the treatment plans [Tes+13]. Section 3.1 includes a brief introduction of how
the simulations in gPMC work, which illustrates the functioning of most MC codes.

Dose calculation uncertainties have a high impact in treatment quality due to the ballistic
properties of protons and their influence on the range determination. Range uncertainties,
some of which are produced by the dose calculation, can be handled either by extending the
region considered as target adding safety margins or by considering several error scenarios
and performing robust treatment optimization on them. Without getting into details in either
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option, both of them have the common consequence of increasing the area irradiated with
high dose, giving higher doses to healthy tissue [Wat+16]. Reducing the dose calculation
uncertainty by employing MC simulations would have a positive impact, shrinking the region
receiving high dose levels [Pag12].

Despite the high potential of MC simulations to reduce this uncertainty, their clinical
usage is not widespread due to their low computation efficiency. As briefly explained
before, MC simulations explicitly consider all the interactions suffered by every particle,
which produces calculation times too long to be used in the clinical routine. Therefore, MC
simulations have historically been relegated to a second-opinion tool to evaluate already-
created treatment plans with high risk or when the ADC result was not trusted. However,
modern implementations of MC engines on highly parallelizable devices such as graphics
processing units (GPU) have drastically improved the efficiency of the simulations, making
them viable for calculations within the clinical context [Jia+12; Ma+14; TMB15; Wan+16].

The GPU-MC package gPMC was previously developed in collaboration with UT South-
western [Jia+12]. However, the validation of the code in patient cases against TOPAS showed
errors attributable to the different handling of nuclear interactions in gPMC and TOPAS
[Gia+15]. TOPAS [Per+12], TOol for PArticle Simulation, is a sophisticated wrapper around
Geant4 [Ago+03] that allows easy and reliable simulations with greatly reduced development
time and has been extensively benchmarked against experimental data [Tes+13].

Project 1 was dedicated to improve gPMC, making possible its reliable use by improving
the nuclear interaction models. Also, to facilitate its usage in a wide variety of GPU and
CPU devices, translation from the original CUDA language [Nic+08] to OpenCL [SGS10]
was intended. Additionally, the improvements may bring the usage of MC simulations in
routine calculations in the clinic one step closer. Finally, its capabilities were extended to
tally fluence and LET to allow other studies, like the one introduced in the following section.

1.2.2 Radiobiological effect uncertainty

When protons traverse matter, they lose energy to the medium as they slow down. This energy
is transferred by ionizing the medium’s atoms or by reactions with the nuclei. Either way,
subproducts like electrons, secondary protons and others travel some distance while reacting,
further dispersing the initial energy in a chain reaction. When occurring in a biological
system, all this reaction may destroy molecules or distort their structure, changes that may
end up being fatal.

The particular radiobiological effect a radiation field will have in a tissue is very hard to
predict. It depends, for example, on the radiation sensitivity of the tissue and the density and
type of secondary particles liberated in the medium. Additionally, the radiation sensitivity of
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a given tissue is patient-dependent and currently can only be taken into account by observing
the effect of the treatment as it progresses. However, the energy captured by a region per
unit length, or linear energy transfer (LET), has been found to be a good surrogate of the
amount of entities capable of causing damage in the tissue. Therefore, the LET of a radiation
field should be somehow proportional to its radiobiological effect. The LET is a property
of each particle, but in this case it is intended as a well-defined property at each patient
position crossed by many particles. Reality is that when LET is referred to a patient location,
it is usually assumed that the LET values presented by all the particles in that location are
somehow averaged, in the case of this project, the dose-averaged LET is employed (see
section 2.4.3 for a formal definition). The exact radiobiological effect of protons is described
by the radiobiological relative effectiveness (RBE), see section 2.4.4 for a more in depth
explanation and references.

The LET is a purely physical quantity and calculations with MC simulations have shown
that it increases towards the end of range of a beamlet and away from the central axis,
just like the average proton energy decreases. Due to the fact that IMPT plans are formed
by many individual beamlets coming from several directions, they tend to present highly
inhomogeneous LET distributions [GP11; Gia+13]. Despite having a more favourable
physical dose distribution over DS plans [Gia+18], areas of high LET placed near the edge
of the target or at organs at risk can have an increased radiobiological effect which would
impact the treatment quality. Despite the exact consequences of the increased radiobiological
effect are no predictable, it would be advisable to avoid any potential complication arising
from it. The high number of degrees of freedom of IMPT plans should allow the goal of
preventing these elevated LET areas in organs at risk (OARs) without affecting the physical
dose.

Project 2 was dedicated to achieve the goal of reducing the risk of high radiobiological
effect of the dose given to OARs close to the target. Therefore, the GPU-MC package gPMC
was extended to also tally dose-averaged LET. Optimization matrices were constructed
from the product of dose-averaged LET and physical dose and employed in a prioritized
optimization scheme to achieve the proposed goal without affecting the physical dose.

1.2.3 Respiratory motion and lung cancer

As stated in section 1.1.3.2 and explained in chapter 2.1, IMPT plans are very sensitive to
geometry changes. When treating moving targets like in lung tumors, the target moves while
the fraction is being delivered due to the patient respiration (respiratory cycle ~5 s, irradiation
~5 min). This intrafractional movement should be taken into account in the creation of the
IMPT plan due to its impact on the plan quality [Phi+92; BD11]. There are two different
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levels at which this movement has consequences [Sec+08]. On the first level, part of the
dose may simply not be given to the tumor as it moved away from the position where the
dose is being delivered. The direct dosimetric consequence is that the dose profiles are not
as sharp as planned and more healthy tissue is irradiated. This affects all proton delivery
modalities. In the second level, the interplay effect between the movement characteristic of
the PBS delivery of IMPT plans (see section 1.1.3.2) and the tumor movement gives rise to
under- and over-dose areas in the target and surrounding tissues.

The solution of solve the interplay effect is to allow statistics to average out the high-
and low-dose regions. The simplest way of doing this is to take advantage of the multi-
ple fractions usually delivered to the patient, which force a rescan of the patient at each
fraction and eventually the fluctuations are smoothed. If hypofractionation is desired and
the number of fractions are not enough to properly average out the interplay effect, active
rescanning techniques can be applied. Active rescanning consists of splitting each fraction in
n subfractions, each delivering 1/n times the planned dose in the session.

Of course, the ideal situation would be not having to deal with the respiratory motion.
This could be achieved if the dose to the tumor was given fast enough, using very high
dose rate of tens of Gy per second. There could be also an additional benefit from utilizing
high dose rate. It has been shown in in vivo experiments that high dose rate electrons spare
better the healthy tissue while maintaining tumor control, providing an additional beneficial
biological effect [Pat+18]. Experiments with protons have yet to be conducted to assess this
hypothetical biological effect [Pat+18]. However, the tumor motion can not be neglected
if IMPT plans are to be delivered this way. Because PBS delivery takes time to adjust the
machine parameters between a beamlet and the next, the tumor position should be tracked in
order to deliver the beamlets when intended. A possible option would be to deliver the dose
when the tumor is at a predefined region, in a technique called gating. In any case, this high
dose rate irradiations have yet to be developed and therefore are not an option to manage
motion.

Another possible solution to manage the respiratory motion would be to perform four-
dimensional (4D) plan optimization and deliver the plan precisely to the tumor while tracking
its position. However precise tracking is technically very challenging [Zha+13; Zha+14]
and errors in the determination of the tumor position would systematically deliver the
dose to unwanted areas. Without tracking, 4D-optimized IMPT plans taking the patient
respiratory motion into account have been shown to deliver good dose distributions in each
treatment fraction if active rescanning techniques are employed [ERK06; Gra17; Ber+17b].
Nevertheless, 4D optimizations are generally very time consuming as they need to take into
account the PBS delivery time structure and the patient breathing pattern. Even when highly
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optimized algorithms are designed to perform this task, the dose distribution delivered to
the patient is very sensitive to the breathing patter of the patient, which is not predictable
[Ber+17b].

Simpler approaches considering static 3D CTs modified to contain information of the
movement have been reported to yield good results when used with rescanning and/or gating
techniques. In these approaches, it is common to define the static CT as the average of
a 4DCT and then define the target to be irradiated with an internal tumor volume (ITV).
Usually an ITV contour delineates the total area the tumor has occupied during the breathing
motion. Several proposals to define this contour have been published either by modifying the
ITV delineation itself of altering the content the ITV delineates [EK05; Kan+07; GDB12;
Kno+13; Wan+13; Gra+15]. However, these techniques had not been compared with high
calculation accuracy.

Project 3 was dedicated to perform this comparison. In order to compare the approaches
accurately, MC simulations were employed as they have been reported as the recommended
dose calculation technique in lung cases [GLP15; Sch+15; Yep+18]. Therefore, a 4D GPU-
MC framework to simulate the delivery of IMPT plans to moving patients taking the beam
delivery time structure into account was developed. The different planning CT definitions
proposed in [EK05; Kan+07; GDB12; Kno+13; Wan+13; Gra+15] were implemented for
a set of lung patients, the cases were optimized using GPU-MC-generated optimization
matrices and their performance evaluated on the 4DCTs was compared.

An important tool to evaluate the total dose given to a deforming geometry is deformable
image registration (DIR). DIR is employed to create vector fields mapping the anatomy of
the patient at different moments during the respiratory motion. The vector fields contain
the information of the patient deformation, describing how each position of the patient is
displaced as the respiration proceeds. Ultimately, these vector fields can be applied to the
coordinates of the different dose distributions calculated at different moments during the
respiratory cycle and therefore the dose can be accumulated in the corresponding positions
of a reference coordinate system. The technique is described in section 3.3.

1.2.4 Patient anatomy evolution and positioning

Additionally to the intrafractional geometry changes produced by movement, patients also
may undergo interfractional changes. The most notable cases concern the patient positioning
(setup) and anatomy. Given the high influence of geometry on IMPT plans, if the original
patient position or anatomy recorded in the planning CT is not conserved through the course
of treatment the plan quality may drop drastically. A site where this is of particular importance
is head and neck, where OARs are very close or overlapping the target [Ahn+14] (among
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other publications). In this situation, interfractional changes may shift the high dose region
to an OAR causing toxicities and not treating the target properly.

Studying only the effect of patient positioning uncertainties, Liebl et al. [Lie+14]
have reported min/median/max standard deviations of proton range differences at 90%
dose falloff using anatomy-based positioning, giving -12.7/0.5/12.5 mm water equivalent
distances (WED). At 50% dose falloff, a more conservative measure, they were -6.3/0/6.1
mm WED, respectively. This is a large deviation that can account for up to 14% tumor
control probability drop, although only for few cases [Lie+14]. Their findings, represent
just an example of possible effects and are dependent on the planning strategy and delivery
technique (passive scattering). The anatomy uncertainty in patients is very hard to forecast
as it is very patient dependent, but its dosimetric effects can be estimated, showing the wide
dosimetric implications this uncertainty may have [Alb+08].

One approach to try to alleviate the underdosage of the tumor caused by these uncertainties
is to expand the area to be treated, changing the target contour. Even if this approach maintains
a decent dose distribution in a given fraction, it is not a general solution in proton therapy due
to the finite proton range and the steep gradients. A more advanced approach is performing
robust optimization. Robust optimization consists of optimizing the plan taking into account
different error scenarios so that the plan performs well if one of them occurs. This can be
used for setup uncertainties, but anatomical changes are hard to forecast. Additionally, the
bigger the number of positioning errors and anatomy changes scenarios taken into account,
the bigger the high dose volume around the nominal target, which increases the dose to
OARs [Wat+16; Dij+16; Pla+17]. Therefore, a common consequence of both strategies,
target expansion and robust optimization, is to expand the volume receiving high dose levels,
while not being able to guarantee high plan quality throughout the treatment. Additionally,
none of these approaches guarantee coverage at any given fraction, which is a requirement in
hypofractionated treatments.

The ideal approach would be to automatically adjust the plan parameters to the daily
patient setup and anatomy at every fraction while the patient is at treatment position, removing
the need to forecast the patient position and anatomy changes. Such a technique, called
online IMPT plan adaptation, would maintain high plan quality throughout the treatment.
There have been several studies proposing adaptation procedures [Kur+16; Mor+17; Jag+17;
Ber+18; Jag+18] based on ADC algorithms. The presented algorithms, with variable success,
address the setup and anatomical uncertainty, but using ADC algorithms the range uncertainty
is not addressed.

Project 4 was dedicated to design an online adaptation algorithm capable of adjusting
IMPT plans to the daily patient setup and anatomy while maintaining high dose calcula-
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tion accuracy through GPU-MC simulations. This way the setup, anatomical and range
uncertainties are minimized on a daily base.

1.3 Thesis structure and specific aims

Chapter 1 has given an overview of proton therapy and its uncertainties, motivating the goals
of this thesis.

Chapter 2 will present the theoretical aspects of proton interactions with matter from a
physical and biological perspective, within the energy range of interest in proton therapy.
Quantities of interest in proton therapy will also be introduced.

Chapter 3 will briefly introduce the rationale behind the speed up of MC algorithms
in GPUs in section 3.1, including the (unpublished) extensions implemented in gPMC for
the development of the projects in this thesis. Afterwards, a basic overview of IMPT plans
optimization and the tools employed to create IMPT plans in this thesis will be given in
section 3.2. Finally, deformable image registration (DIR) and it uses will be explained in 3.3.
These last two items are not a research focus in this thesis, but tools employed throughout it,
therefore a very brief outline is provided. The extensions of gPMC to allow fast and flexible
IMPT simulations at the Massachusetts General Hospital (MGH) were instrumental to all the
other goals, but not a specific aim itself, therefore it will be explained in this methods and
materials chapter.

One result chapter is dedicated to each project. The specific aims of this thesis are:

• Chapter 5: Investigate the feasibility and estimate the impact of reducing the radiobi-
ological effect of IMPT plans with high LET×D in organs at risk close to or in the
target for ependymoma, meningioma and chordoma patients.

• Chapter 6: Investigate and compare definition strategies of treatment planning targets in
3D static planning CTs for the treatment of mobile lung tumors with IMPT, maintaining
high dose calculation accuracy.

• Chapter 7: Minimize the impact of geometrical changes and therefore reduce the
geometrical uncertainty during the course of IMPT treatments of head and neck tumors
through the development of an online IMPT plan adaptation algorithm with high dose
calculation accuracy.

At the beginning of each of these chapters my role in each study is explained along with
comments on the adaptation of the publication to the thesis format. A reference to the original
publication has been included when fit.
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Chapter 8 is dedicated to the discussion of each project, focusing on the outlook. The
conclusions are contained in chapter 9.





Chapter 2

Proton interactions with matter and
quantities of interest

This chapter analyzes first the main proton interaction mechanisms in proton therapy and
then some of the quantities of interest to proton therapy.

Within the energy range employed in proton therapy treatments (3-300 MeV), there are
three important mechanisms through which protons interact with matter. All three affect
protons differently and have very distinct dosimetric effects in proton beams. A very brief
summary to set the ground goes as follows:

1. Inelastic scattering with electrons: per individual interaction the incoming proton
losses very little energy, that adds up to a quasi-continuous energy loss process,
removing more and more energy from the proton as it travels slower, ultimately
making the proton stop. Dosimetric effect: creates the Bragg peak.

2. Elastic scattering with nuclei: the proton is scattered, changing its incoming direction
with negligible energy loss. Many individual deflections generate a quasi-Gaussian
profile. Effect: broadening of incoming beam.

3. Nuclear reactions: less likely than the previous two, protons undergo nuclear reactions
with nuclei with several outcomes. Effect: proton beam fluence reduction, secondary
protons, wide angle scattering giving dose to out-of-beam regions, secondaries such as
neutrons, photons and others.
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2.1 Proton stopping

Protons lose energy as they traverse a material until they have no kinetic energy left, in a
process usually referred to as stopping. This process is studied as the energy loss per unit
path length, with the stopping power concept. Many authors have contributed to the current
knowledge of charged particle stopping. A good reference for a more in depth analysis of
this process not limited to the scope of proton therapy can be found in the work by Ziegler
[Zie99].

The loss of kinetic energy may be produced by collisions with the particles of the medium
or by irradiation of photons in a process named Bremsstrahlung. Therefore, the total stopping
power (S) is divided between the collision and the radiative terms:

− 1
ρ

dE
dx

=
S
ρ
=

Scol +Srad

ρ
≈︸︷︷︸

mp, Tclin

Scol

ρ
(2.1)

Within the clinically employed proton energy range (Tclin ∈ 3−300 MeV) and taking
the proton mass (mp) into account, the radiative contribution to the stopping power due to
Bremsstrahlung (Srad) can be neglected, leaving the so-called collision stopping power (Scol)
as main contributor. Note that equation 2.1 focuses on the mass stopping power, dividing by
the material density (ρ) because it allows for a more general framework as it will be shown
later. The collision stopping power is often called electronic stopping power, but in this
section both will be simplified tostopping power, as the radiative component is neglected.

The understanding of the stopping power has a long history. A simple but powerful
expression without much physical insight can be employed to obtain the stopping power at a
position z in an absorber [Bor97]:

S
ρ
=− 1

ρ

dE
dx

≈− 1
ρ

(αE p − z)1/p−1

pα1/p
(2.2)

In this equation, E is the initial energy of the proton and p = 1.77 and α = 2.2×10−3

are parameters fitted to experimental data.

2.1.1 Bohr’s approach

Much more physical insight than with equation 2.2 can be obtained following Bohr’s approach
to calculate the stopping power produced by unbound electrons [Boh15]. I will develop
his estimation step by step in order to illustrate how the main dependencies of the stopping
power arise. Bohr estimated the impulse given to unbound electrons by an incoming proton
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with a velocity β = v/c, as a function of the impact parameter b. He started by computing
the momentum gained ∆p by an unbound electron in a collision with a proton with impact
parameter b, as represented in figure 2.1:

b

e-

p+

dV

y

x

Fig. 2.1 Proton-electron collision with impact parameter b.

∆p =
∫

F dt = e
∫

Eydt = e
∫

Ey
dt
dx

dx =
e

cβ

∫
Eydx∫

Eds =
∫

Ey2πbdx = 4πze =⇒
∫

Eydx =
2ze
b

 =⇒ ∆p =
2ze2

cβb
(2.3)

Where e is the electron’s charge and ze is the projectile charge. Gauss’ law was used to
calculate the total electric field the electron is subject to:

∫
Ey dx. This gives the energy

gained by such electron of mass me as a function of the impact parameter:

∆E(b) =
(∆p)2

2me
=

2z2e4

mec2β 2b2 (2.4)

Of course, the amount energy loss by the proton is the same as the one gained by the
electron. However, in a material there are more than one electron in a given volume, therefore,
the total energy lost by the incoming proton is −dE (b) = ∆E dN. Considering the electron
density of the material ne, dN can be rewritten as dN = nedV = ne · 2πbdbdx. Finally,
integrating over the range of b, the stopping power in a material is obtained as a function of
bmax and bmin:

−dE(b) = ∆E(b)nedV =
4πz2e4

mec2β 2 ne
db
b

dx =⇒

−dE(b)
dx

=
4πz2e4

mec2β 2 ne ln
(

bmax

bmin

)
(2.5)
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Only bmin and bmax need to be computed now. bmin can be obtained considering the maximum
energy given to an electron by a proton collision (not demonstrated here):

∆Emax = 2mec2
β

2
γ

2

[
1+2γ

me

mp
+

(
me

mp

)2
]−1

≈︸︷︷︸
me ≪ mp

2mec2
β

2
γ

2 (2.6)

∆Emax =
2z2e4

mec2β 2b2
min

= 2mec2
β

2
γ

2 =⇒ bmin =
ze2

γmec2β 2 (2.7)

bmax is obtained from the fact that the interaction is not adiabatic and therefore the interaction
time must be at most the atom’s average orbital period ⟨τ⟩. The adiabatic limit is ∆t ≈ ⟨τ⟩,
thus:

∆t =
bmax

γcβ
= ⟨τ⟩ =⇒ bmax = γcβ ⟨τ⟩= γcβ

⟨ν⟩
(2.8)

Some last touches can be added to make the notation closer to the modern version of the
equation. The electron density can be defined from the mass density, the atomic number Z,
the mass number A and Avogadro’s number NA: ne = ρNAZ/A. Plugging bmin, bmax and the
definition of the electron density, Bohr’s stopping power equation becomes.

− 1
ρ

dE(b)
dx

=
4πe4NA

mec2
Z
A

z2

β 2 ln
(

γ2c3β 3me

⟨ν⟩ze2

)
(2.9)

The most important features seen in equation 2.9 are the dependencies of the stopping
power on projectile charge and velocity. The higher the projectile charge the more energy
it looses. More importantly for proton therapy, where the charge is fixed, the slower the
projectile travels, the bigger the stopping power, which creates the Bragg peak at the end of
the beam’s range described in the introduction (figure 1.1). The stopping power has linear
dependencies on the material density and Z/A ratio. However, the Z/A ratio does not change
substantially among elements. With the exception of hydrogen that has a Z/A ≈ 1, the other
elements can be found in the 0.4 ≤ Z/A ≤ 0.5 region and can be estimated by a straight line
Z/A ≈ 0.48−0.00092 Z. Therefore, the mass stopping power is a rather stable quantity with
respect to the absorber material.

− dE
dx

∝ ρ
Z
A

z2

β 2 (2.10)

2.1.2 Modern description

The basis for the modern stopping power theory was laid by Bethe and Bloch in the early
1930’s [BH34; Blo33] and further corrections have been developed to account for different
quantum effects. Equation 2.11 shares the main dependencies with the equation calculated
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by Bohr.

− 1
ρ

dE(b)
dx

= 4πNAr2
emec2 Z

A
z2

β 2

[
ln
(

2mec2β 2

I(1−β 2)

)
−β

2 − δ

2
− C

Z

]
(2.11)

In this equation, re is the classical electron radius, I is the mean excitation energy of
the material, δ/2 is the density correction from the shielding of electrons by closer ones
(reduction of energy loss for very high energies), and C is the shell correction item (important
only for very low energies, close to the adiabatic limit). The other quantities have been
previously defined. I is an important quantity in proton therapy and the uncertainties in its
value that can be in the order of 10-15% is an importance source of possible range deviations
with high clinical impact [Pag12; BPB13].

Figure 2.2 shows the electronic (collision) and nuclear stopping powers in water for
protons.

Fig. 2.2 Proton stopping power in water, obtained from NIST’s PSTAR database [Ber+17a].

Due to the stochastic nature of particle interactions, after a given absorber depth or
thickness, not all protons will have lost the same amount of energy due to random fluctuations
in the energy loss. This phenomenon is called energy straggling and several models have
been proposed to account for it. A Gaussian approximation may be employed if the absorber
thickness is not very small and/or the particle’s β is not close to 1 [SB64], which are the
usual conditions in proton therapy. Nevertheless, Vavilov’s distribution is considered more
exact. The main consequence of energy straggling is the broadening of the proton energy
spectrum as the beam traverses the material. This ultimately affects the Bragg peak, making
it broader and with a smaller maximum (figure 1.1).

In order to compute the stopping power in mixed media, each element in the compound
is taken into account weighting by the fraction of electrons belonging to it. This is called the
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Bragg’s additivity rule:
S
ρ
= ∑

i
ωi

Si

ρ
(2.12)

2.1.3 CSDA range

The kinetic energy loss in each of the proton-electron collision is limited due to the mass ratio
between protons and electrons, as expressed in equation 2.6. As a consequence, the stopping
process can be regarded as quasi-continuous. This approach is called the continuous slowing
down approximation (CSDA) and it allows for a simple definition of particle range from the
initial particle energy E0 (equation 2.13). The total stopping power (electronic and nuclear)
must be taken into account in this calculation. As seen in figure 2.2, the nuclear stopping
power is not negligible at very low energies (< 0.01 MeV). The CSDA range (RCSDA) should
be interpreted as the distance traveled inside the absorber, not as the total penetration depth
in it. Although protons travel almost in a straight line, the penetration depth will be smaller
than the range due to scattering, however only about ~0.1% at clinical energies [Jan82].

Bragg and Kleeman [BK05] observed that an exponential equation is a good descriptor
of the range.

RCSDA =
∫ E0

0

(
S(E)

ρ

)−1

dE ≈ αE p (2.13)

The range of projectiles with the same kinetic energy in a material is related. Therefore,
if the proton range in a material Rp is known for a given kinetic energy, the range of other
projectiles with different mass and charge but with the same velocity β can be estimated,
again, disregarding lateral scattering:

R1

R2
=

z2
2m1

z2
1m2

=⇒ R =
1
z2

m
mp

Rp (2.14)

2.1.4 Raytracing

Raytracing of protons is a practical application of the CSDA, where protons are traced in
straight lines through a geometry, like a voxelized patient CT in the case of this thesis. The
traces are forced to lose energy gradually until they stop following the CSDA. Raytracing is
useful to predict the approximate end of range location of a set of beamlets within a patient.
In homogeneous media, the positions predicted by raytracing is the depth at 80% maximum
dose after the Bragg peak (R80). This position marks the 50% remaining proton fluence
and is independent of the initial beam energy spread and also to energy straggling if the
Gaussian approximation is valid. However, when a beam traverses different tissues, the
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Bragg peak shape is distorted because some sections traverse materials different than other.
In this situation R80 no longer has the same meaning and therefore the traces may represent
better other dosimetric indices.

In order to take into account lateral inhomogeneities and make raytracing predict an
average end of range postion for each beamlet, each trace may be assigned a Gaussian
distribution dependent on depth that take the material composition of surrounding voxels
into account assigning Gaussian weights. Although this improves the estimation quality, in
highly heterogeneous media there is no well defined end of range position because some
regions of the beam penetrate further than others.

In order to calculate the energy loss per voxel, the easiest approach consists of applying

∆E = S(E0)∆l, (2.15)

while limiting the step length ∆l so that a constant S(E0) can be used at each step, that is, so
that S(E)≈ S(E0).

2.2 Proton scattering

Proton beams scatter inside a medium, gradually increasing the beam profile width due
to the combination of many small deflections of individual protons undergoing Coulomb
interactions with the material nuclei. The scattering probability is called scattering power,
similarly to the concept of stopping power. In this case, given the symmetry of the scattering
angle, the average θ is 0 and therefore, the scattering power depends on ⟨θ 2⟩:

θ

p

Fig. 2.3 Multiple Coulomb
scattering in a material.

T
ρ
=

d⟨θ 2⟩
dx

(2.16)

The description of elastic Coulomb scattering depends on the number of scattering events
(Ns) in an absorber. In the case of a single event, Rutherford’s scattering theory can be
applied. However, multiple Coulomb scattering (MCS; Ns ≥ 20) has to be described with
statistical approaches to calculate the net deflection angle θ shown in figure 2.3.

The solution for MCS was given by Molière [HMS47] assuming that each individual
event is deflected by a small angle, which is consistent with Rutherford’s theory. Molière’s
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theory is usually termed as “a bit too complicated” for the precision required in medical
physics, so I will give a brief introduction based on the published work by Gottschalk
[Got+93; Got10] and the review on proton therapy physics by Newhauser [NZ15].

Molière’s theory approximates the scattering distribution P(θ) with a power series on the
inverse of the reduced target thickness (1/B)

P(θ) =
1

2πθ 2
M

1
2

[
f0(θ

′)+
f1(θ

′)

B
+

f2(θ
′)

B2

]
, (2.17)

where θM is the characteristic multiple scattering angle for the given target and incident
particle. θM depends on the characteristic single scattering angle χc as in

2θ
2
M = χ

2
c B (2.18)

χ
2
c = 4πNAe4 zZ2

A
t

(pcβ )2 , (2.19)

where t is the absorber thickness, p the particle’s momentum and the other variables are
consistent with previous definitions in this section. B can be computed with numerical
methods from 2.20, with previous calculation of c2. h̄ is the reduced Planck constant.

B− lnB =
c2

pc2 (1.13+3.76α
2) (2.20)
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In equation 2.17, fi(θ) are defined using the Bessel function J0(θy) as follows:

fi(θ) =
1
n!

∫
∞

0
ydy J0(θy)e−

y2
4

(
y2

4
ln

y2

4

)n

(2.23)

The evaluation of these expressions is a complex process and approximations are generally
employed for practical reasons. The good news is that the most common approximation
relies on limiting the scattering distribution P(θ) to the first term of the polynomial, reducing
the expression to a Gaussian. In practice this means that large scattering angles might not
be well represented, but for most cases this is not of crucial importance in medical physics
applications because protons that are scattered with big angles after MCS are not very
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energetic and do not travel far.

P(θ)≈ 1
2πσ2 exp

{
− θ 2

2σ2

}
(2.24)

Many parametrizations P(θ) have been proposed [Got+93], but one of the most com-
monly used approximations is the one proposed by Highland [Hig75]. Highland observed
that the description of the target properties in MCS had similar dependencies as the radiation
length LR [Got+93], which can be found tabulated for different materials. He proposed
expression 2.25, allowing the simple estimation of θ in situations like the one in figure 2.3.
Rossi and Greisen [RG41] also proposed a parametrization of the Gaussian width, shown in
equation 2.26 where Es is a fitting parameter.

σ =
13.6 MeV

pcβ
z
√

t
LR

[
1+0.038ln

(
t
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)]
(2.25)

σ
2 =

(
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β p

)2 t
LR

(2.26)

Using either of this widths in equation 2.24, θ can be sampled fast and so they are
commonly found in many MC simulation packages. In this case, often times t is reinterpreted
as the step length. Some algorithms allow the user to select the scattering model beyond
the small angle approximation as a parameter. FRED [Sch+17], for example, also models
MCS as a double Gaussian and a Gauss-Rutherford peak. In gPMC, the GPU-MC code
employed in this thesis, the Rossi and Greisen parametrization [RG41] of the small angle
approximation is employed, but two Es values are included depending on the energy of the
proton, with the changing point empirically set at 70 MeV.

2.3 Nuclear interactions

Additionally to the elastic electromagnetic interactions with nuclei, protons may also undergo
nuclear reactions. The main result of these interactions is the absorption of the primary proton
by the nucleus, reducing the incoming beam fluence. All protons undergo electromagnetic
interactions, but only about a quarter undergo head-on collisions with the material’s nuclei
[Pag02] (depending on the energy). After a collision, the nucleus is left in an excited state
and it usually emits the energy in excess in the form of prompt gammas, neutrons, nuclear
fragments like alpha particles and secondary protons. The presence of secondary protons in
part mitigates the loss of primary fluence. The final fluence reduction is ~1 %cm−1 [Pag02].
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There is a minimum proton energy of about ~8 MeV because the incoming proton must
overcome the Coulomb potential of the atom to interact via the strong force [Pag02].

In summary, nuclear interactions are responsible for the following:

• Fluence reduction.

• Neutron production: they deliver a small dose to the patient inside and outside the main
dose region, also interacting with the treatment room. In double scattering delivery,
the neutrons are mainly generated in the delivery nozzle when protons traverse the
modulator, scatterers and other components, while in pencil beam scanning they are
created within the patient.

• Secondary protons: they are scattered at higher angles than the primaries scattered by
MCS and have a high contribution to the dose to the lateral region of the beam (up to
≈ 10 %) [GP11]. This is the most common secondary from the nuclear interactions
[Pag02].

• In the case of target fragmentation heavier particles do not travel much within the
patient and therefore their energy is deposited very close to their creation.

• Some subproducts of nuclear interactions offer possibilities of beam monitoring.
Positrons emitted by radioactive fragments may be employed for imaging the beam path
through positron emission tomography (PET). Also, nuclear de-excitation processes
emit prompt gamma that can also be detected.

Often times, precise calculation of species other than secondary protons produced within
a patient is not required in proton therapy [FS04]. Internal nuclear cascade models are as well
not often necessary in proton therapy [FS04]. On the one hand, charged secondaries heavier
than neutrons or protons (nuclear fragments) do not travel far due to their usually high charge
and very low velocity (see equations 2.10 and 2.11), so the location of the energy deposition
can be assigned to the location of the interaction point. Also, the usual resolution of the
scoring grids employed in proton therapy is too big to accurately represent the displacement
of these secondaries. On the other hand, gammas or neutrons travel far, so they provide
a very low dose bath to the whole patient that can, again, be neglected [FS04]. Therefore
when calculating the dose given by an IMPT plan with negligible beam contamination from
other species, the MC package employed is not necessarily required to perform accurate
simulations of the nuclear interactions. This means that the major implementation step
of nuclear interactions in a simulation package for proton therapy is the cross section or
interaction probability for each reaction. Usually, this data is employed either via look-up
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tables or by evaluating fits to them. This simple approach to nuclear interactions is the one
followed in gPMC, where nuclear cross sections were fitted [Jia+12].

A more involved discussion of the nuclear interaction channels in proton therapy can be
found in the publications by Paganetti [Pag02] and Newhauser [NZ15].

2.4 Quantities of interest in proton therapy

2.4.1 Fluence

The particle fluence φ across a surface is defined as the number of particles N crossing the
surface area A. The energy fluence ϕ is the total energy crossing such surface and can be
expressed as a function of the energy spectrum ψ . It can also be easily related to φ for
monoenergetic beams of energy E0:

φ =
N
A

[
m−2] (2.27)

ϕ =
1
A

∫
ψ(E)dE =︸︷︷︸

ψ(E)dE=E0dN

E0
N
A
= E0 φ

[
MeVm−2] (2.28)

2.4.2 Dose

In proton therapy the treatment prescription is given in terms of the dose. The microscopic
dose D deposited in a region with mass dm is given as a function of the energy dε:

D =
dε

dm

[
Jkg−1 = Gy

]
(2.29)

In a macroscopic region, such as a voxel in a Computed Tomography (CT) scan, the dose
can be calculated from the total energy deposited E by all the interactions in the region, the
volume V and density ρ:

D =

∫
dε

ρ
∫

dV
=

E
ρV

(2.30)

The dose deposited in a volume can be written in terms of the fluence by knowing the
amount of energy lost while traversing the material (eq. 2.31). The stopping power is a
function of the energy, but assuming the energy loss is small with respect to the stopping
power change and the incoming beam is monoenergetic, the dose in a volume can be easily
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computed (eq. 2.32):

D =
1
V

∫ E

E0

dE ψ(E)
S(E)

ρ
(2.31)

= φE0
S(E0)

ρV
(2.32)

2.4.3 Linear energy transfer

The linear energy transfer (LET) is a concept similar to the electronic stopping power. While
the stopping power expresses the amount of energy lost by an incoming proton, the LET
describes how much of the energy lost is deposited in the vicinity of the proton particle
track. This definition leaves one free parameter undefined: the concept of vicinity. Vicinity
is expressed as a threshold of the secondary electrons energy. Only those interactions that
produce a secondary electron with energy E < ∆ are considered in the LET, as those electrons
do not have enough energy to leave the track vicinity.

LET∆ =
dE
dl

[
keVµm−1] (2.33)

We speak of unrestricted LET when ∆ is higher or equal to the maximum energy of the
secondary electrons that can be produced. Restricted LET is used otherwise. The unrestricted
LET is numerically equal to the electronic stopping power, although the concept is different
as the scope in this case is focused in the medium in which the energy is deposited, not on
the effect the medium has on the incoming track.

When considering the LET produced by a non-monoenergetic beam in a region, like a
voxel in a CT, the LET presents a spectrum of values that arise from the stochastic nature of
the energy loss and from the different energies of the incoming particles. If a single LET
value per region is required, the LET spectrum can be averaged with different techniques
[GS15; Gua+15]. One of the most common way of computing this average is to weight by
dose deposited at each interaction in the region, yielding the dose-averaged LET, or LETD.

LETD =
∑i diLET∆i

∑i di
(2.34)

2.4.4 Biological effect of the dose

The biological dose refers to the effect of a dose deposited on a biological system. While
physics is rather simple, damage to a biological system through radiation can produce a
whole array of outcomes, which makes this relation hard to study. The majority of the studies
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of the relation of dose versus a particular endpoint have been developed using X-rays. An
example of such study could be to irradiate a cell population and plot the cell survival against
the absorbed dose, where the endpoint would be cell survival. Such studies are the basis to
prescribe the dose to treat a certain lesion, so the dose is given as if the lesion were treated
with X-rays. Therefore, a way to draw endpoint equivalences between the effect of a certain
X-ray dose and a proton dose is necessary.

The relative biological effect (RBE) is used to establish dose equivalences between the
dose given by X-rays DX and that given by protons D for a particular endpoint:

RBE =
D

DX
(2.35)

Although the concept is easily explained, in reality the RBE is a complex function of the
characteristics of the irradiated medium and the dose distribution. There is an expected
dependency of the RBE on LET, because it represents the energy locally absorbed in the
vicinity of the track, which should be correlated via some tissue-specific parameters with the
final effect. Many studies have been published on parametrizations of these RBE dependency,
including [WO04; Car+12; CA12; WLH13; Pag14; MSP15] among others. However, this is
not the only main parameter of RBE models that has been proposed [SS04; SS06; Ste+11;
Ste+15; Fri+13; Fre+11; Car+08]. Nevertheless, the parametrization presented by McNamara
et al. [MSP15] is given here to illustrate the complexity of the relation:

RBE[D, (α/β )X , LETd] =
1

2D
· (2.36)
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p0 = 0.991 (SE 0.014), p1 = 0.356 (SE 0.015), p2 = 1.101 (SE 0.006)

p3 =−0.00387 (SE 0.00091), R2 = 0.255

In the previous equation, D is the proton dose, (α/β )X characterizes the biological effect of
the equivalent photon dose and is tissue dependent, LETd is the dose average LET introduced
in the previous section describing the local ionization density and p0→3 are the fitting
parameters. This parametrization was calculated on the data collected by Paganetti [Pag14],
however, the high uncertainty in these data is transferred to the parametrization (see R2

measuring the data variance explained by the model in the previous set of equations). As a
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consequence, it is not possible to give values of the RBE with high precision and a constant
RBE of 1.1 is usually employed as a conservative compromise.

The RBE for neutrons and ions heavier than protons is higher and if they are used as
therapy projectiles, a constant value would not be a good compromise. This is nevertheless
outside the scope of this thesis.



Chapter 3

Materials and methods

This chapter describes aspects and concepts used in the papers here included that are not
central to the investigation and are therefore not given enough credit in the manuscripts.
All tools are commonly used in medical physics and are therefore only mentioned in the
manuscripts as no further description is usually necessary.

The first section is an introduction to Monte Carlo transport simulations of protons and
the additional extensions implemented in gPMC in order to carry out the projects. The second
section briefly discusses the creation and optimization procedure of IMPT plans. The last
one deals with deformable image registration (DIR) and its uses.

3.1 Monte Carlo simulations and gPMC

Monte Carlo (MC) simulations are the gold standard for dose calculations in proton therapy,
producing accurate results in highly heterogeneous patient regions where analytical dose
calculation algorithms do not [GLP15; Sch+15; Yep+18].

The following gives a brief introduction to MC simulations. Next, unpublished improve-
ments included in gPMC in order to carry out the projects here presented and others will be
detailed.

3.1.1 Monte Carlo background

As briefly defined in the introduction chapter, Monte Carlo transport simulations allow the
statistical estimation of macroscopic quantities arising from the evaluation of the interaction
probabilities of particles with their microscopic environment and the sampling of the products
of these interactions. In a more general definition, the Monte Carlo method comprises a
collection of techniques that allow the estimation of the moments of probability density
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functions through statistical sampling. These methods can be applied to integrate complex
functions as well as to calculate the moments of complex distributions. The utilization of the
Monte Carlo method for particle transport simulation dates back to the Manhattan project in
the 1940’s, where it was applied to neutron transport calculations. In principle and if all the
physical models have been correctly implemented, MC simulations should converge to the
exact solution of the linear Boltzmann transport equation (LBTE) due to the central limit
theorem.

A Monte Carlo particle transport algorithm can be defined as a repetition of the following
3 steps:

1. Get constant context: get particle being simulated, surrounding material information,
geometrical constrains and mean free path (λ ) resulting from the particle type and
momentum and the surroundings.

2. Get interaction and step length s by statistical sampling and constraints:

(a) Get constraints on the step: distance to the voxel border in which the material
changes (sgeo) or a maximum allowed step length in the algorithm (smax). The
rationale behind specifying a smax is given below.

(b) Sample step length to next interaction point sλ = − ln(η)/λ , using a random
number η ∈ [0,1]. The sampling function follows from the probability density
function (PDF) of an interaction p(x)dx = λe−λx dx with mean free path λ ,
calculating the cumulative density function (CDF) η =

∫ sλ

0 λe−λx dx and solving
for sλ .

(c) Get the minimum of the three steps: s = min(sgeo, smax, sλ )

3. Move s and sample interaction if s = sλ and produce secondaries if necessary.

Many adaptations of this simple recipe have been proposed, but gPMC has been designed
following the published algorithm by Fippel et al. implemented in VMCpro [FS04]. A
thorough description of the implementation ported to gPMC has been included in the initial
code presentation by Jia et al. [Jia+12].

Item 3 of the previous enumeration is a complicated term than involves a lot of physical
concepts and modeling due to the particle interactions, specially when nuclear interactions
occur. Protons are charged particles and present many small interactions with the electrons in
the material, as it was explained in section 2.1 (specially 2.1.3). If all the small interactions
were to be explicitly simulated, the simulation would take a very long time to converge
to the solution. Instead, variance reduction techniques (VRT) are applied to increase the
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convergence rate. Often not classified as VRT due to its ubiquity, the condense history
method class II (CHII), introduced by Berger [Ber63], is used in most charged particles
simulations to cluster together many small interactions into single steps, while explicitly
simulating important collisions. At the end of the condensed steps, the incoming proton (or
charged particle) losses some energy and is deflected through MCS. This method can bias the
simulation if not performed carefully, deviating the result from the LBTE. Its classification
as VRT here might be polemic, but the characteristics of the method and consequences when
misused are the similar to other VRT, while serving the same purpose of increasing the
convergence rate (with respect to time, not to number of simulated histories).

Therefore, the concept of moving in item 3 may hide many small interactions in a single
step in proton simulations. It is often required to set some limits on the CHII method by
defining a maximum allowable step length (included in item 2 of the previous list) and a
maximum allowable energy loss to maintain the simulation unbiased. In the condensed steps,
the stopping power is considered constant, which means that the nominal energy loss in the
step is ε = S(E) · s and it can not be big with respect to the particle’s original energy E. In
order to calculate the total energy loss ∆E, straggling has to be considered. This can be
done by sampling ξ from a Gaussian distribution, as the conditions outlined in section 2.1 to
employ the Gaussian model are generally met in proton therapy. Therefore, the energy loss
in a proton condensed step is ∆E = ε +ξ . The angular deflection of the incoming proton
due to multiple Coulomb scattering can be sampled from a Gaussian expression as well, like
the one proposed by Highland [Hig75] (see section 2.2). In some situations, specially when
simulating electrons, the sampled step length might be too long to accurately describe the
lateral displacement, so a random hinge can be used to split the step into two substeps at a
random position, as introduced in PENELOPE [Bar+95]. This is not necessary with protons
[FS04].

After performing the condensed step, if s = sλ , it is decided by sampling whether the
production of a high energy electron or the interaction with another proton or nucleus occurs.
Any subproduct is stored in a stack to be simulated at a later moment. In proton therapy,
however, due to the combination of the projectile nature, its energy and the spatial scale at
which results are needed, only secondary protons have to be explicitly simulated in most
cases [FS04]. Electrons and charged particles heavier than protons can be assumed to deposit
all their energy in the creation point and neutral particles like gammas and neutrons travel
too far to contribute a significant dose to any specific patient position. It is beyond the scope
of this background introduction to define the exact interaction models employed during the
simulations as they vary from code to code. For the example of gPMC, refer to chapter 4
for the updated nuclear models, mainly dealing with secondary sampling from the reactions.
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Refer also to [Jia+12] for electronic interactions and general implementation and [FS04] for
the algorithm rationale.

Therefore, in gPMC simulations of proton plans, millions of primary and secondary
protons are simulated until they have lost all their initial kinetic energy through interactions
or have left the region of interest.

It is interesting to consider the reasons why MC simulations gain such speed up factors
when implemented in GPUs. First and foremost, the problem type allows the simulation of
all protons as independent particles with no interactions between them. Therefore they can
be calculated in parallel without any synchronization needed. Second, the combination of
energy range and spatial scale employed in proton therapy allows the usage of simplified
algorithms where some secondary particles do not need to be tracked [FS04], allowing easier
implementation in the GPU device while maintaining memory consumption low. This last
reason also allows for faster CPU implementations, of course. In gPMC, both factors are
exploited to increase the simulation efficiency.

3.1.2 Further gPMC developments

Aside from the improvements presented in chapter 4, other unpublished improvements have
been implemented in order to provide further capabilities, giving support for the projects
presented in chapters 5–7 and others like [Gia+17; Ver+17].

The following is a non-exhaustive list of the extensions and improvements implemented.
Minor features, bugs fixes and code refactoring are omitted.

1. Physics development mode: Extra control over parameters and additional hyper-
parameters for physics benchmark and development as compilation option. Added
cylindrical scorers to take advantage of the symmetric profiles often used for physics
benchmark.

2. Particle source: The initial version of gPMC imported the primary protons from a
single phase space file generated by a different code. This was not an ideal solution,
not only because it was produced by a different code increasing the number of steps
required to perform a simulation, but also because the other code did not take advantage
of GPU parallelization. Also, this implied a disconnect between gPMC and the files
defining treatments in the clinic. To solve this, a particle source was implemented
that reads the treatment files and samples primaries employing a beam model selected
by the user from several available options (see next item). The particle source was
implemented in the GPU, causing a minor overhead to the whole simulation.
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3. PBS beam models: Beam models to use in IMPT treatment simulations were imple-
mented following [GLP15]. The beam model from MGH was also implemented, along
others characterizing a range of beamlet widths (σ ) to support studies with several
beamlet sizes (σ ). Ideal sources with zero initial σ and/or energy spread were also
included. A parameter is passed to the CUDA kernel running the particle source to
select the beam model to sample primaries from. All beam models present Gaussian σ

and energy spread.

4. Simulation levels: The original version of gPMC disregarded the treatment hierarchy
in fields, beamlets and individual protons. Four execution levels with parameters
exposed to the user were implemented to select what level within the hierarchy should
be simulated and how it should be reported:

• Simulate all fields and output the results.

• Simulate all fields, but output the results per field.

• Simulate all fields, but output the results per beamlet.

• Simulate a single field.

• Simulate a single field, but output the results per beamlet.

• Simulate a single beamlet.

5. Treatment devices: Added lucite (hardcoded) range shifters and binary apertures with
automatic beamlet filtering. Automatic beamlet filtering in the aperture refers to only
testing those beamlets that are likely to be cropped by the aperture, speeding up the
process.

6. Additional scored quantities: gPMC was extended not only to score dose to medium
or water per voxel, but also other quantities that can be activated by the user:

• Energy deposited.

• Proton dose-averaged LET: A maximum allowed LET value was included at
100 keVµm−1 to prevent LET spikes. LET spikes are an artifact created by the
transportation of particles in a voxelized geometry in MC simulations. Near the
border of a voxel, very short steps depositing a relatively high energy can cause
these spikes. The maximum unrestricted LET in water is in the order of ~83
keVµm−1 [Ber+17a].

• Proton end of tracks: Accumulate the number of protons stopping per voxel. This
is a more stable quantity than LET and could be employed as a surrogate to take
into account high RBE areas.
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• Proton spectrum: The proton spectrum can be scored with a variable number of
bins per voxel for the application of prompt gamma spectroscopy to range verifi-
cation. The spectrum can then be utilized to evaluate prompt gamma production
cross sections [Hue+18].

7. Scoring masks: The code accepts a set of arbitrarily shaped binary masks in a cartesian
grid to define a sensitive region in the scoring grid. The mask may represent the
planning target, main OARs and/or a desired sensitive region. If more than one mask
are passed, they are combined. This implementation allows scoring in a single structure,
paving the way to score per structure and to take the structures into account during
the simulation for variance reduction techniques or uncertainty levels assessment for
intelligent simulation stopping. The results are given within the scoring grid, leaving 0
outside the mask and the tallied quantities inside of it.

8. Scoping mask mode: Transforms a 3D scoring grid into a linear index defined by
a scoping mask. The scoping mask attribute can be attached to the scoring masks.
Because there is no scoring outside the scoring mask, this option removes the voxels
outside the mask by linearizing the grid, drastically reducing the necessary memory
space allocated in the GPU memory. The implementation of this attribute is driven by
the necessity to employ more aggressive binnings on the original scoring grid, like for
example creating a scoring grid per beamlet.

9. Dose/LET matrices for optimization: Create and fill an array of n beamlets × m
voxels for optimization. A scoring grid is allocated per beamlet, multiplying the
memory required in the GPU. In order to maintain the memory requirements within
the capabilities of the GPU, this feature can be used while scoring in arbitrarily shaped
scoped regions and simulating field by field. It is therefore a mixture between a scorer
and an execution mode due to its influence in other parameters.

10. Native scoring grid: Transport particles in the CT grid, but score in scoring grid,
as opposed to navigate and score in the CT grid and interpolate to scoring grid after
the calculation. When doing this, the interaction point were quantities are recorded
becomes important due to the high impact of the CT voxel borders.

11. Random interaction point within step: Randomly use scoring position along step,
as opposed to scoring at the end of the step. Scoring at the end of step causes artifacts
when scoring in grids other than the CT because a step is forced at each voxel change.
Therefore many interactions are recorded at the voxel interfaces. Another option
would be to split the quantity to be scored between the voxels contained in the step
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(weighting by the step length per voxel). The random position was chosen over this
option, because the results were satisfactory and it reduced race conditions in the GPU
because a single memory location is used, as opposed to writing to multiple locations.

In some special situations the interaction point model can cause artifacts if histories
are highly correlated. If most histories start from the same position, with the same
momentum and are forced a given step length, then the interaction point model will
create different characteristic artifact shapes when scoring energy/dose. An example of
this is when transporting protons with the same starting position and momentum in air,
with small voxels and large mean free path compared to the maximum step length. The
voxel maximum step length will limit the steps and the dose profile within the voxel
will present artifacts following a characteristic shape. The artifacts will disappear with
depth as more particles present steps other than the ones forced by the voxel crossing.
Figure 3.1 illustrates this issue. This artifacts were mainly present when generating
data for physics development and do not affect patient simulations so a more general
solution to this issue was not seeked.
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Fig. 3.1 Characteristic shape of dose deposition
along the step of highly correlated histories with
mean free path equal to the voxel size (1 unit
of length). The dose deposition is considered
proportional to the step length because all the
particles have the same starting energy, therefore
equation 2.32 applies. End of step, random po-
sition and averaging the total dose across voxels
are compared. Scoring at the end of the step
shows a peak dominating the distribution.

12. Other improvements: Allow user specification of density or energy scaling for range
uncertainty studies, isocenter shifts and CT rotations for setup uncertainties and online
adaptation algorithm (chapter 6) and user defined scoring grids.

3.2 IMPT plans creation

This section gives a brief overview of the data flow and the mathematical optimization
process employed in the presented projects for the generation of IMPT plans.
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3.2.1 Data flow

The flow of data to create a treatment plan in the projects here presented consisted of 6 steps:

1. The patients structures (tumor, OARs, etc.) were contoured in MiM (MiM Software
Inc.).

2. The contoured patient scans were exported to XiO (Elekta) to define the field angles.
The field angles were selected following current clinical practice, minimizing the
dose given to OARs, uncertainties caused by imaging artifacts in the CT and potential
anatomy changes in the patient.

3. The plans were imported into Astroid [Koo+10], the software clinically employed for
IMPT planning at MGH. Astroid houses an ADC algorithm and because within the
projects here presented accurate dose calculation was necessary, Astroid was used only
to define the set of beamlets to be considered for plan optimization.

4. The data needed to simulate the patients with gPMC was queried from Astroid’s
database and transformed to the appropriate format using an upgraded version of
MCAUTO [Ver+16].

5. A dose-influence optimization matrix per field was created by simulating each indi-
vidual beamlet with gPMC and then combining the result into a compressed format.
The compressed format employed a sparse histogram compression, neglecting voxels
with dose smaller than 0.001 Gy per 109 initial protons. Post-processing is necessary
because dose-influence matrices are big (millions of elements) and do not fit into the
limited GPU memory. Newer GPU cards might challenge the previous sentence.

6. The dose-influence matrices were then fed to an external optimizer, Opt4D [Tro+05],
to find the set of beamlet weights that give the best dose distribution. Further details
about the optimization procedure are given in the following section.

3.2.2 Plan optimization

Many authors have contributed to the literature of IMPT plan optimization, for example and
just to cite some of them [Lom+01; TB03]. Treatment planning systems employed to create
IMPT plans have different types of specialized optimizers embedded, but they all perform
the task of finding the minimum of a given cost function [Pfl+08]. The optimizer tries to
answer the following question: having the dose per unit of fluence given to each point of
the patient CT by each candidate beamlet characterized in the dose-influence matrix D, how
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many units of fluence x should be delivered per beamlet so that the final dose distribution d
fulfills the clinical criteria of tumor coverage and OAR sparing? This is the same as finding
the vector x in equation 3.1 such that the dose d fulfills the clinical criteria at each patient
position. The solution is found by minimizing a cost function f that includes all the criteria
for the given plan.

Dx = d, explicitly: (3.1)
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As it was introduced in the previous section, in the projects presented in this thesis, the
optimization package Opt4D was employed to minimize f . Opt4D was initially developed
for temporo-spatial studies [Tro+05] and it approximates x using an implementation of the
quasi-Newtonian L-BFGS (Limited-memory Broyder-Fletcher-Goldfarb-Shanno) algorithm.
D was generally constructed after post-processing of the dose array of each individual beamlet
calculated with gPMC. However, when the problem was small enough, the extensions of
gPMC explained in section 3.1.2, allowed for D to be directly generated during the simulation
in the GPU.

The cost function f definition depended on the specific patient and goals. The cost
function is a weighted sum of objectives ωigi that depend on the dose distribution d and the
region R they are applied to:

f = ∑
i

ωigi(R,d) (3.2)

It is common to include constraints in the cost functions that force the solution to be within a
certain space, but constraints in Opt4D are objectivized so the only hard condition is for all
elements in x to be positive (xi ≥ 0). In the included papers, the objectives employed were
not explicitly defined, therefore, some are here stated along with their rationales to allow a
better understanding of the optimizations. The summation index i refers to the voxels in the
region:
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• Enforce the minimum dose in the target as prescription dose dp (3.3) and penalize over
a certain maximum dose in the target (T ), set as 105 % of the prescription dose (3.4):

g = ∑
i∈T

(di −dp)2
− (3.3)

g = ∑
i∈T

(di −1.05 ·dp)2
+ (3.4)

• Penalize when the dose in a given voxel is superior or inferior (3.5 or 3.6) to a
predefined variable dose map M in a given region R. Utilized for dose conformance to
the target in IMPT planning and to fill the remaining dose to the target in the online
adaptation algorithm:

g = ∑
i∈R

(di −Mi)
2
+ (3.5)

g = ∑
i∈R

(di −Mi)
2
− (3.6)

• Minimize the mean dose in a specific region R∈OARs or outside the target
⋃

R∈Pat.R\T
(in the latter case the summation limits would change):

g =
1

NR
∑
i∈R

di (3.7)

• Minimize the generalized equivalent uniform dose (gEUD) in a region with a parameter
a depending on the dose-volume characteristics of the organs represented by the region.
The gEUD is a convex function and can represent the minimum, mean or maximum
dose for a = 0, 1 or ∞. For OARs, a = 5 was generally employed.

g =

(
1

NR
∑
i∈R

da
i

)1/a

(3.8)

The subindex conditions z+/− used in the notation are defined as:

z+ =

0 if z ≤ 0

1 otherwise
z− =

0 if z ≥ 0

1 otherwise
(3.9)

One of the main concerns in plan optimization is the consideration of uncertainties
associated with dose calculations, treatment delivery and patient positioning, among others.
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A solution to handle these uncertainties is to employ robust optimization [UCB07; PWO08;
UP18], calculating and array of D matrices, one per each scenario, and solving equation 3.1
taking all of them into account, which can be done in different ways. The expected result
with this technique is that the quality of the final plan would not suffer significantly when
an error in treatment delivery occurs. In the projects here presented, robust optimization
was not performed, therefore it is not explained here. However, in some early results for
the continuation of the online adaptation project it has been utilized and it is dicussed in the
project itself (chapter 7 and in the discussion in chapter 8).

3.3 Deformable image registration

Deformable image registration (DIR) is a technique that can be applied to establish a mapping
between points in a coordinate system to points in another one. In the case of patient images,
DIR the registration of each of the respiratory phases in a 4DCT to one selected as reference,
as in the example given in figure 3.2. Another application is to relate a patient scan taken
after a patient has lost some weight and the original patient scan. Registration in this context
should be understood as the procedure to establish a relation between an image and another.
The mapping resultant from this operation is usually called a vector field (v). Again, in
the case of images of a patient during the breathing motion, the resultant v would contain
the deformation of the patient anatomy during the breathing process and as the treatment
progresses. If the patient geometry has not been deformed, but translated or rotated, rigid
image registration can be applied by limiting the solution space to translations in x,y,z and
rotations about x,y,z.

One of the most important applications of v is to use it to reassign the dose calculated
in a given location in a certain image to a reference image. This procedure, called dose
accumulation is used, for example, in 4D dose simulations using respiratory data to assess
the effect of movement on the total dose or the effect of the evolving anatomy of a patient on
the quality of a treatment plan. Examples of both applications are found in chapters 6 and 7,
respectively.

Deformable registration is an ill-posed problem that lacks a unique solution. The mapping
g is calculated such that it defines a vector field v between the coordinate system (x,y,z) in
which image I0(x,y,z) is defined to the coordinate system (x′,y′,z′) = (x+ vx,y+ vy,z+ vz)

by minimizing or maximizing a similarity metric between g(I0(x,y,z)) and the target image
I(x′,y′,z′). This procedure assumes that the imaging dataset is accurate and that the cost
function can guide the optimization process to the global minimum. In equation 3.10
describing the cost function f to be minimized, the similarity metric is mean squared error
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(a) (b)

Fig. 3.2 Patient deformation and DIR examples. (a) Overlay of lung cancer patient at end of
inhalation (red) and expiration (green). (b) VF representing the deformation over the end of
expiration.

(MSE) of the intensity between images. N can be the number of voxels or a set of points.

f =
1
N

N

∑
i=1

(I(x+ vx,y+ vy,z+ vz)i − I0(x,y,z)i)
2 (3.10)

Even without a unique solution, the solution space should be limited by physically
unsound deformations. Therefore, penalties in the optimization process can be applied to
select more physically sound transformations using regularization techniques [Sha+12].

In the studies here presented, Plastimatch (http://plastimatch.org), an open source soft-
ware for high-performance registration with a GPU-implemented cubic B-Spline DIR algo-
rithm [SKS10], was used for DIR. B-Splines are piece-wise polynomials that can be linearly
combined to describe the mapping. Please, refer to [SKS10] for an in-depth discussion
of the implementation. Several registration stages with increasingly finer B-spline grid
and decreasing regularization lambda were employed for the registrations in the projects
here presented. The MSE similarity metric was employed. This registration procedure was
inspired by [SKS10; Sha+12].

One of the challenges of DIR is the verification of the resultant v. The simplest procedure
for patient images is to have both image sets contoured and measure the overlap of corre-
sponding structures after applying the v. If both image sets are not contoured, which was the
case in the projects here introduced, visual verification can be used in the visible structures
to accept the accuracy of the v. This effectively limits the applicability of DIR in automated
frameworks, however, it is not a big burden for studies such as the ones here presented.

http://plastimatch.org
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DIR is also a key step in dose accumulation. Dose accumulation allows to calculate the
total dose given to each point of a moving geometry, such as the lung patient shown in figure
3.2. Because v relates the coordinates systems of the two images, it holds the information to
relocate dose depositions in I to depositions in I0.





Chapter 4

Results I: Further development of the
GPU-MC package

In section 4.2 of this chapter, the following publication is reproduced:

Nan Qin, Pablo Botas, Drosoula Giantsoudi, Jan Schuemann, Zhen Tian, Steve B Jiang,
Harald Paganetti, and Xun Jia. “Recent developments and comprehensive evaluations of a
GPU-based Monte Carlo package for proton therapy”. In: Physics in Medicine & Biology

61.20 (2016), p. 7347.

My role in the publication is clearly stated in the following subsection. Some comments
on the adaptation of the publication are also given.

4.1 Role in study

This study was developed in collaboration, mainly with Dr. Qin. My role in the collaboration
was: provide nuclear cross section data, simulate dose and LET distributions for benchmark-
ing, general project discussion and manuscript discussion. All the physics data was extracted
from Geant4 10.2 [Ago+03] using TOPAS [Per+12].

Comments on the adaptation of the paper: The position of figures and tables may differ
from the published manuscript. The citation style and the internal figure, table and equation
numbers have been altered, but the underlying meaning has been conserved.
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4.2 Recent developments and comprehensive evaluations
of a GPU-based MC package for proton therapy

N. Qin1, P. Botas2,4, D. Giantsoudi2,3, J. Schuemann2,3, Z. Tian1, S. B. Jiang1, H.
Paganetti2,3, X. Jia1

1 Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
2 Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.

3 Harvard Medical School, Boston, MA, USA.
4 Department of Physics, University of Heidelberg, Heidelberg, Germany.

Abstract Monte Carlo (MC) simulation is commonly considered as the most accurate dose calcula-
tion method for proton therapy. Aiming at achieving fast MC dose calculations for clinical applications,
we have previously developed a graphics-processing unit (GPU)-based MC tool, gPMC. In this paper,
we report our recent updates on gPMC in terms of its accuracy, portability, and functionality, as
well as comprehensive tests on this tool. The new version, gPMC v2.0, was developed under the
OpenCL environment to enable portability across different computational platforms. Physics models
of nuclear interactions were refined to improve calculation accuracy. Scoring functions of gPMC
were expanded to enable tallying particle fluence, dose deposited by different particle types, and
dose-averaged linear energy transfer (LETd). A multiple counter approach was employed to improve
efficiency by reducing the frequency of memory writing conflict at scoring. For dose calculation,
accuracy improvements over gPMC v1.0 were observed in both water phantom cases and a patient
case. For a prostate cancer case planned using high-energy proton beams, dose discrepancies in beam
entrance and target region seen in gPMC v1.0 with respect to the gold standard tool for proton Monte
Carlo simulations (TOPAS) results were substantially reduced and gamma test passing rate (1%/1
mm) was improved from 82.7%-93.1%. The average relative difference in LETd between gPMC and
TOPAS was 1.7%. The average relative differences in the dose deposited by primary, secondary, and
other heavier particles were within 2.3%, 0.4%, and 0.2%. Depending on source proton energy and
phantom complexity, it took 8-17 s on an AMD Radeon R9 290x GPU to simulate 107 source protons,
achieving less than 1% average statistical uncertainty. As the beam size was reduced from 10×10
cm2 to 1×1 cm2, the time on scoring was only increased by 4.8% with eight counters, in contrast
to a 40% increase using only one counter. With the OpenCL environment, the portability of gPMC
v2.0 was enhanced. It was successfully executed on different CPUs and GPUs and its performance on
different devices varied depending on processing power and hardware structure.

4.2.1 Introduction

The Monte Carlo (MC) method is widely regarded as the gold standard for proton therapy
dose calculations [Pag+08; Sch+14; Sch+15]. Computational efficiency has been a major
issue preventing its wide application in the clinic and hindering its utilization in research.
Over the years, there have been tremendous efforts devoted to accelerating proton MC dose
calculation [Koh+03; FS04; Li+05]. In particular, graphics-processing unit (GPU) platforms
have been recently employed to speed up the computations and significant acceleration
factors have been achieved [Yep+09; Jia+12; JZJ14; Ma+14; TMB15]. We have developed a
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proton MC dose calculation package, gPMC v1.0 on GPU [Jia+12]. The transport physics
of gPMC was mainly based on that developed by Fippel and Soukup [FS04]. GPU-friendly
implementations were designed to achieve a high computational efficiency. With an NVIDIA
Tesla C2050 GPU, the simulation time for 107 source protons ranged from 6-22 s depending
on the source proton energy and the phantom or patient complexity [Jia+12].

Despite the success, the gPMC code left room for improvement regarding its acc uracy,
functionality, and suitability for clinical uses. It is desirable to refine the model for nuclear
interaction to improve accuracy. There existed a few approximations in the original gPMC
physics model [FS04]. In a study evaluating dose calculation in 30 patients, gPMC was
compared to the gold standard MC package TOPAS [Per+12; Tes+13]. Sufficient accuracy
of gPMC in most cases was reported with gamma passing rate (1%/1 mm) over 94% for
voxels within 10% isodose line. However, ~2% systematic overestimation of dose in the
entrance region and 1-2% underestimation in the target was observed for prostate cancer
cases [Gia+15]. This discrepancy was ascribed to the relatively simple model of nuclear
interactions, which appeared less accurate in dose calculations for a high-energy proton beam
because of the ~1% primary protons undergoing a nuclear interaction per cm water equivalent
depth. Recently, another GPU-based proton MC simulation package was developed [TMB15],
which utilized a more accurate nuclear interaction model. Yet the inclusion of a complex
model inevitably impacted the computational efficiency. Hence, it was our aim to refine the
physics model in gPMC to maintain its simplicity, while achieving a sufficient level of dose
calculation accuracy for clinical applications.

Furthermore, the suitability of gPMC for clinical and research applications was previously
limited by several factors. First, the use of NVidia’s Compute Unified Device Architecture
(CUDA) [NVI11] tied gPMC to NVidia GPU cards, hindering its portability to other GPUs
and conventional CPUs. Recently, Open Computing Language (OpenCL) was introduced
into the high-performance computing field. It provides a framework for developers to write
programs that are executable across different platforms, including conventional CPUs, CPU
clusters, and GPUs from different manufacturers. There has been an initial study regarding the
use of OpenCL as the development platform for GPU-based MC dose calculation [Tia+15].
In this paper, we will present our implementations of gPMC on the OpenCL environment.

In addition, there is a great desire to use MC to compute quantities other than just
the physical dose. For instance, there has been growing interest in research to consider
the variation of the proton relative biological effectiveness (RBE) in treatment planning
instead of using a constant value of 1.1 [Pag14]. Due to the complexity of computing tissue
specific RBE values, it was proposed to use linear energy transfer (LET) as a surrogate
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[Gia+13]. Enabling accurate and fast computation of LET in gPMC would greatly facilitate
its application in proton biology. Hence, we have included functions in gPMC to score LET.

Our new study also includes a comprehensive evaluation of gPMC’s accuracy. This
evaluation yields an in-depth understanding about the capability and limitation of gPMC
depending on different applications. The total physical dose has typically been the quantity
of interest when establishing the accuracy of a fast MC code. To obtain a more detailed
evaluation of the performance of our updated gPMC code, this paper will also compare
deposited dose differentiated by particle types, LET, and particle fluence to gold standard
results computed by TOPAS.

4.2.2 Methods

4.2.2.1 Updates in physics model

Protons undergo different types of interactions when propagating in a medium. For an
electromagnetic interaction channel, gPMC employed a class II condensed history simulation
scheme. The accuracy of transport in this channel has been previously demonstrated [Jia+12]
by performing simulations with only this channel and comparisons with TOPAS.

Protons also undergo interactions with nuclei. gPMC v1.0 followed the empirical strategy
developed previously by Fippel and Soukup [FS04] to model interactions in three channels:
proton-proton elastic interaction, proton-oxygen elastic interaction and proton-oxygen inelas-
tic interaction. The total cross section data in this model were obtained through an empirical
fit. In gPMC v2.0, the data were extracted and tabulated from the Geant4 system (release
10.2). In addition, we employed a new model to sample the proton angular distribution after
nuclear interactions. For proton-proton elastic scattering, the kinetic energy of the scattered
proton was sampled from a uniform distribution in gPMC v1.0 and the scattering angle was
determined via kinematics. In the new version of the code, we sample the proton scattering
angle θ according to the differential cross section in the center-of-mass frame given by
[Ran72]

dσel

dΩ
≈ A1.63 exp

(
14.5A0.66t

)
+1.4A0.33 exp(10t) , (4.1)

where A is the mass number of the target and t ≡−2p2(1−cosθ) is the invariant momentum
transfer (p being the momentum of the scattered proton). Sampling of the variable t is
achieved via a rejection method. Specifically, we first sample t uniformly in the interval
[0,−4p2]. Then another random variable ξ is uniformly sampled between 0 and A1.63 +

1.4A0.33 to reject the sampled t, if ξ is greater than dσel
dΩ

. Other kinematic quantities, including
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the θ and recoil proton momentum, are determined and transformed to the laboratory
coordinate system.

For proton-oxygen inelastic scattering, the deflection angle of secondary protons in gPMC
v1.0 was sampled such that cosθ is uniformly distributed in the interval [2Ts/Tp − 1,1] ,
where Ts and Tp are the kinetic energies of the secondary proton and incidental primary
proton, respectively. However, the proton scattering angles generated as such were not
sufficiently forward peaked and the unphysical cutoff at cos−1(2Ts/Tp −1) excluded some
large scattering angles. To overcome these problems, we empirically modified the sampling
methods to yield a distribution of cosθ that is forward peaked within [0,π]. The new
probability density function is

P{x ≤ cosθ < x+dx}= ξ eξ x

eξ − e−ξ
dx . (4.2)

This is achieved by sampling cosθ as

cosθ = ln
[
η

(
eξ − e−ξ

)
+ e−ξ

] 1
ξ
, (4.3)

where η is a random number uniformly distributed in [0,1] and ξ ≡ λTs/Tp. λ is a parameter
fitted to be 6.5 according to nuclear data published by the ICRU [Mal01].

The main difference between gPMC and TOPAS lies in the simulation of nuclear inter-
actions. By default, TOPAS uses the quark gluon string model for high-energy hadronic
interactions of protons, and the binary cascade model for low energy interaction of protons
and ions [Ago+03]. These models describe physics processes in detail and provide good
agreement with experiments [WYD15]. Due to the sophisticated calculations involved,
simulating according to these models is time consuming. On the contrary, gPMC employs
simpler models, as described above, to achieve high efficiency and sufficient accuracy for
dose calculations in radiation therapy. The empirical cross section for elastic collision in
equation 4.1 matches with experimental data [Bel+66] and is convenient for sampling. The
total cross section data for inelastic collisions are from the fitted model developed in Fippel
and Soukup [FS04]. The angular distribution of secondary protons is empirically chosen to
match published data.

4.2.2.2 OpenCL implementation

We have rewritten gPMC in OpenCL to improve code portability across various platforms
and devices. An OpenCL program is composed of a host program and one or more kernel
functions. A host program is the outer control logic that performs the configuration and
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usually runs on a general purpose CPU. Kernel functions are C-based routines executed on a
computing device, e.g. a GPU. In OpenCL, parallel computing is achieved by simultaneously
executing kernel functions with independent elements, namely work-items (which NVIDIA
refers to as “CUDA threads”). At a hardware level, each work-item corresponds to a multiple
processing core. A collection of related work-items that execute on a single computing unit
(composed of one or more multiple processing cores) is called a work-group. Devices such as
GPUs and CPU clusters that have a large number of processing cores can thus be programed
to accomplish high performance computation. This structure is essentially the same as in
CUDA. Hence, we transformed gPMC from the previous CUDA platform to the OpenCL
platform with the code structure remaining unchanged.

Memory management is another critical issue in parallel computing. The memory model
in OpenCL defines four virtual memory regions on the computing device with different
size, accessibility, read/write speed and other features. The global memory is accessible
to all work-items and has the largest size but low speed. In gPMC v2.0, physics data and
patient data are stored as image objects in the global memory. The image object also supports
fast hardware interpolations using built-in sampler functions. The position, momentum and
weight of the protons are initialized as buffer objects, which are dynamically allocated on
the host side and transferred to the global memory. Because the protons frequently change
position, direction and energy, it is inefficient to repeatedly visit the buffer objects in the
global memory during simulation. Therefore, at the beginning of the particle transport kernel
execution, the information of one particle is read by the corresponding work-item from the
global memory into its individual private memory, which is small but allows fast access. The
dose, LET and fluence counters, as well as the stack for secondary protons, are allocated as
buffer objects in the global memory, since they require relatively large memory space and
need to be accessible to all work-items.

Since there is no OpenCL-based library for random number generators, we implemented
a random number generator (RNG) using the MT19937 algorithm [MN98] to generate a
random sequence with a period of 219937 − 1. The random seeds in each work-item are
initialized with the system clock and its unique thread ID at the code initialization stage.
Therefore the random number sequences generated by different work-items are assumed to
be independent.

To achieve high efficiency, single precision floating-point variables are used, because
GPUs have much higher processing power on single precision than double precision (e.g.
~3.5 times higher in peak performance in GFLOPS (giga-floating-point operations per second)
for NVidia TITAN GPU and ~8 times higher for AMD Radeon R9 290x GPU). In addition,
the image objects and their associated fast hardware interpolation on GPU cards are only
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available for single precision. However, a pitfall of using single precision floating-point
variables is the potential loss of precision, particularly when two numbers with a largely
different order of magnitude are added [Mag+15]. This could occur during a simulation when
a large number of protons are simulated, and hence the dose deposition from an additional
proton is much smaller than the total dose. To avoid such a problem, gPMC runs in a batched
fashion. After each batch of simulation, the code copies data from dose counters to an
additional memory buffer. This method effectively eliminates the large difference between
each dose deposition and the total dose, hence avoiding the potential loss of precision
[Mag+15].

4.2.2.3 Memory writing conflict

The memory conflict during dose scoring limited the overall computational efficiency in
gPMC v1.0 [Jia+12]. Specifically, when more than one work-item tried to write to the same
block of memory, the writing actions were serialized to avoid unpredictable results. This
serialization counteracts the parallel processing efficiency achieved by GPUs. To mitigate
this problem, a multi-counter technique is employed in gPMC v2.0. As such, a number
of M dose counters are allocated at the code initialization stage. During particle transport
simulation, when a work-item tries to update a dose counter, it randomly chooses one counter
and deposits the dose to it. This approach reduces the scoring time, because the probability of
two worktems updating the same counter is inversely proportional to the number of counters.
However, the number of counters M, is limited by the memory size of computing devices,
especially in the cases with a high-resolution phantom. gPMC v2.0 checks the memory size
at its initialization stage and notifies users if the memory becomes a limitation. The use of
multiple counters also leads to additional overheads, such as memory allocation, memory
addressing when depositing energy to a certain counter, and combining data from different
counters. The impact of these factors will be analyzed in detail later in section 4.2.3.5.

4.2.2.4 Scoring quantities

In gPMC v1.0, only the physical dose was scored. However, recent research on proton RBE
suggests using LET for biological dose calculations [MSP15; Pol+15]. We thus implemented
the scoring of dose-averaged LET (LETd) in gPMC v2.0. LETd in each voxel was calculated
as

LETd =
∑i δEi ×

δEi

δ li
ρ ∑i δEi

, (4.4)
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where ρ is the voxel density, δEi is the energy deposition corresponding to a step δ li plus
the energy of the δ -electron that were created along the step, and the summation is over
all energy deposition events in a given scoring volume. During simulation, it is possible to
have a proton moving a very small step but kicking out a δ -electron with relatively large
energy. In such cases δEi/δ li can give values of several thousand MeVcm−1, known as LET
spikes. Given that the maximum proton LET in water is around 830 MeVcm−1 (ICRU 49),
we applied a cutoff at 1000 MeVcm−1 on δEi/δ li to avoid these spikes. In case an event is
neglected by the cutoff, its energy is not taken into account when averaging the LET by dose.

gPMC v2.0 also supports scoring particle fluence defined as

φ j =
∑i δ li j

V
, (4.5)

for voxel j where ∑i δ li j is the summation of all step lengths in that voxel and V is the voxel
volume. During proton transport, secondary protons and other heavier ions are produced in
nuclear interactions. To distinguish the contribution of different components, the dose of
primary protons, secondary protons and other heavier ions are scored separately in gPMC
v2.0.

4.2.2.5 Validation cases

A set of studies was performed to demonstrate the functionality of the new gPMC code,
as well as to comprehensively validate its accuracy. Specifically, the total dose, the dose
of primary protons, secondary protons and other heavier ions, fluence of primary protons
and secondary protons, as well as LETd were compared to the results computed by TOPAS
[Per+12]. For dose comparison, a pencil beam with zero width was simulated and the
result was integrated laterally to obtain the dose distribution of a broad beam with a size
of 5×5 cm2. The choice of a pencil beam was because dose and fluence distributions on
the central beam axis from this infinitesimal beam are very sensitive to discrepancies in
angular deflection and the angular distribution of protons. In contrast, the broad beam is more
realistic and was hence used to evaluate the accuracy in a more clinically relevant setup. For
LETd comparison, 2×2 cm2 broad beams were studied. The phantom we used was a pure
water phantom of 10.1× 10.1× 30 cm3 in dimension with a voxel size of 0.1× 0.1× 0.1
cm3; 100 MeV and 200 MeV mono-energetic beams normally impinged on the phantom
surface.

The second scenario studied was a prostate cancer patient. gPMC v1.0 was reported to
have a systematic overestimation in the dose at the entrance region and underestimation at
the target for prostate cases due to approximations in nuclear interaction models [Gia+15].
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To demonstrate the improvements made in this new version, a prostate cancer patient with
two laterally opposite beams was used. The dose in this patient was computed with gPMC
v1.0, gPMC v2.0 and TOPAS.

The efficiency and cross-platform portability of gPMC v2.0 were tested with several
different devices, including an NVidia GeForce GTX TITAN GPU card, an AMD Radeon R9
290x GPU card, an Intel i7-3770 CPU processor and an Intel Xeon E5-2640 CPU processor.
We also conducted tests with different numbers of dose counters to investigate its impact on
the memory conflict issue.

Fig. 4.1 (a) Angular distribution of scattered protons after proton-proton elastic scattering
with incoming proton energies of 100 MeV and 200 MeV. (b) Angular distributions of
secondary protons with kinetic energy around 67 MeV and 27 MeV after proton-oxygen
inelastic scattering with incoming proton energy of 100 MeV. Adapted from [Qin+16].

4.2.3 Results

4.2.3.1 Angular distribution corrections

The physics model of proton-proton elastic scattering and proton-oxygen inelastic scatter-
ing was modified in gPMC v2.0. The total cross section data was updated as well. The
improvement of proton-proton elastic scattering is illustrated in figure 4.1(a). In gPMC v1.0,
distributions of the scattering angle are almost identical among different incoming proton en-
ergies. On the contrary, the distributions are energy dependent and are more forward-peaked
in gPMC v2.0, according to equation 4.1. The improvement of scattering angle distributions
in the proton-oxygen inelastic interaction channel shown in figure 4.1(b) demonstrates a
better agreement of scattering angles with the ICRU data in gPMC v2.0 as compared to
gPMC v1.0. The inaccurately modeled scatter angle in gPMC v1.0 does not cause a large
dose discrepancy in broad beam cases. However, the problem will appear in pencil beam
cases that are more sensitive to proton scattering angles, as will be shown later.
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4.2.3.2 Dose and fluence distributions in a water phantom

Figures 4.2 and 4.3 present the dose calculations in comparison with the TOPAS results. The
dose distributions of pencil beams were computed and the results were integrated laterally to
obtain the corresponding result of broad beams. The uncertainty σ in each voxel is estimated
by the dose results in all multi-counters in our simulation. All the figures below the error
bars for the gPMC v2.0 results correspond to 2σ values after simulating 1× 107 primary
protons. Those for the TOPAS results are not drawn for clarity. We have also calculated
average uncertainty σ/D, over a high dose region where the local dose exceeds 10% of Dmax

inside the entire phantom. For all the cases σ/D is less than 1%.

Fig. 4.2 Depth dose (top row) and fluence (bottom row) curves of 100 MeV (blue) and
200 MeV (red) proton pencil beams (left column) and broad beams (right column) in a
homogeneous water phantom considering only electromagnetic interactions.

Electromagnetic interactions We first present the simulation results in the water phantom
with only electromagnetic interactions, because protons deposit energy mainly through this
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channel. Figure 4.2 shows the depth dose and fluence curves of 100 MeV and 200 MeV proto-
ns. The broad beam doses and fluences match very well with the TOPAS simulation results,
except at the gradient Bragg peak region. The accuracy of broad beam dose calculations has
been demonstrated previously. For the pencil beam cases considered in this paper, small dose
differences (within 2%) are observed and can be ascribed to the difference in the modeling
of multiple scattering. Because pencil beams are the most sensitive cases, these simulations
are where discrepancies in multiple scattering become apparent. In contrast, differences are
smeared out rapidly with increasing beam width leading to a negligible difference for broad
beams. The relatively large discrepancy at the beam’s end of range was due to a sub-mm
difference in the beam ranges.

Fig. 4.3 Depth dose (top row) and fluence (bottom row) curves of 100 MeV (blue) and
200 MeV (red) proton pencil beams (left column) and broad beams (right column) in a
homogeneous water phantom with all interactions considered. Adapted from [Qin+16].

Nuclear interactions Figure 4.3 illustrates the depth dose and fluence curves of 100 MeV
and 200 MeV protons transport in water when switching on the feature of simulating nuclear
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interactions. For comparison, dose distributions calculated with gPMC v1.0 are also presented.
The most significant improvement is in the entrance region, where the dose overestimation
from gPMC v1.0 was removed in gPMC v2.0 as a result of the improved nuclear interaction
models. Dose discrepancies around the Bragg peak region are also significantly reduced. For
gPMC v2.0, the dose distributions of broad beams match well with TOPAS, but for pencil
beams, a relative difference up to 3% were observed. The relatively large dose discrepancy
at the end of the beam due to a small range difference was also observed.

In figure 4.4, we present the dose contributions from different particle components for
both 100 MeV and 200 MeV broad beams. The dose from primary protons is the major
component and matches well with TOPAS. However, discrepancies in the secondary proton
dose and other heavier particle doses can be identified for two reasons. First, gPMC and
TOPAS use different physics models for nuclear interactions. Second, in gPMC, secondary
ions (heavier than protons) are assumed to have ranges smaller than a voxel and hence their
energies are locally deposited instead of tracking.

To quantitatively evaluate the agreement, the relative dose difference was computed
for each component, defined as

∣∣∣di
gPMC −di

TOPAS

∣∣∣/dt
max. Here | · | is the standard L2 vector

norm, di is a vector consisting of the dose for the ith component (i = 1, 2, 3 for primary
protons, secondary protons, and heavy particles) in voxels with doses greater than 10% of
the maximum dose (within 10% isodose line), and dt

max is the maximal value of the total
dose computed by TOPAS. The results are 1.1%, 0.1%, and 0.2% for the 100 MeV beam and
2.3%, 0.4%, and 0.2% for the 200 MeV beam, respectively.

4.2.3.3 LETd distributions

Figure 4.5 illustrates the LETd distributions in water for 100 MeV and 200 MeV mono--
energetic broad beams. The physical dose calculated by gPMC is also presented for reference.
The LETd spikes are observed laterally outside the beam width and beyond the Bragg peak
region due to secondary protons in low dose regions. This artifact needs to be corrected for
biological dose computations (this is done within TOPAS by evoking different user-defined
scoring techniques). The low proton numbers in these regions resulted in LETd values with
a large uncertainty. Quantitatively, we computed the relative difference between the two
LETd results as

∣∣LETdgPMC −LETdTOPAS
∣∣/LETdmax, where LETd is a vector consisting of

calculated results in voxels within the 10% isodose line. This difference was found to be
0.7% and 1.1% for 100 MeV and 200 MeV beams respectively, indicating a good agreement.
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Fig. 4.4 Dose from different components including primary protons, secondary protons and
heavy ions after 100 MeV (top) and 200 MeV (bottom) broad proton beams impinging on a
homogeneous water phantom. Adapted from [Qin+16].

Fig. 4.5 Left: LETd depth curves of 100 MeV (blue) and 200 MeV (red) proton beams; right:
lateral profile of 100 MeV beam at 60 mm depth and 200 MeV beam at 250 mm depth as
indicated by dashed vertical lines in left. Adapted from [Qin+16].

4.2.3.4 Patient case

One of the motivations to improve physics modeling was to resolve the dose discrepancies
observed between gPMC v1.0 and TOPAS calculations for prostate cancer cases. The
main reason was the inaccuracy of the nuclear interaction model and data. After the model
refinement in this study, significant improvements are observed, as illustrated in figure 4.6.
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Fig. 4.6 2D comparison between gPMC v2.0 and TOPAS for doses in a prostate cancer
patient. (a) TOPAS-calculated dose distribution. (b) gPMC v2.0-calculated dose distribution.
(c) Relative dose difference of gPMC v1.0 as ((gPMC v1.0-TOPAS)/prescribed dose). (d)
Relative dose difference of gPMC v2.0 as ((gPMC v2.0-TOPAS)/prescribed dose). Adapted
from [Qin+16].

Both the overestimation in the entrance region and the underestimation in the target region
seen in gPMC v1.0 are largely reduced. To further investigate the accuracy, we calculated
the gamma index with a GPU-based gamma index computational tool [GJJ11]. The passing
rate for the 1%/1 mm criterion improved from 82.7%-93.1% in the region with doses greater
than 10% of the maximum dose.

4.2.3.5 Efficiency and portability evaluations

We first compared the computational efficiency of gPMC v2.0 with a different number of
dose counters to study the impact of the memory writing conflict. Table 4.1 illustrates the
simulation time of different beams on two GPUs with 1, 4, 8 and 16 dose counters. As
expected, memory conflicts are more severe for pencil beams because most protons are not
scattered beyond the central axis voxels, and hence almost all the threads simultaneously
update the same memory address when scoring the dose. With multiple dose counters, the
speed of simulating pencil beams is significantly improved, especially for low energy protons,
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Table 4.1 Simulation time in seconds for cases with a different number of dose counters on
NVidia and AMD GPUs. Adapted from [Qin+16].

Number of dose counters

Beam Device 1 4 8 16

100 MeV pencil
beam

NVidia GeForce GTX
TITAN

50.35 8.36 7.73 7.77

AMD Radeon R9 290x 23.07 8.27 7.99 10.44

100 MeV 10×10
cm2 beam

NVidia GeForce GTX
TITAN

5.63 6.32 6.89 7.71

AMD Radeon R9 290x 4.85 6.44 7.77 10.72

200 MeV pencil
beam

NVidia GeForce GTX
TITAN

35.51 20.59 20.03 20.39

AMD Radeon R9 290x 27.92 16.26 16.57 18.95

200 MeV 10×10
cm2 beam

NVidia GeForce GTX
TITAN

16.77 19.05 20.21 21.19

AMD Radeon R9 290x 13.46 15.93 17.41 20.67
Note: For each case 1×107 primary protons in water were simulated.

since most of them still remain in the central axis voxels at the end of their range where
energy deposition events and consequent memory writing happens more frequently. On the
other hand, the memory writing conflict was not a significant problem for broad beams and
hence a single dose counter worked well. To further understand this effect, we recorded the
dose deposition time as a function of field size and number of dose counters. The results are
plotted in figure 4.7. As the beam size was reduced from 10×10 cm2 to 1×1 cm2, the time
on scoring was only increased by 4.8% with eight counters, in contrast to a ~40.0% increase
of the scoring time when using only one counter.

Table 4.2 Simulation time in seconds of gPMC v2.0 on different devices. Adapted from
[Qin+16].

Beam NVidia
GeForce GTX
TITAN GPU

AMD
Radeon R9
290x GPU

Intel
i7-3770
CPU

Intel Xeon
E5-2640
CPU

100 MeV pencil beam 7.73 7.99 187.06 24.29
200 MeV pencil beam 20.03 16.57 554.13 67.68
Note: For each case we used 8 dose counters to simulate 1×107 primary protons in water.
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Fig. 4.7 Dose deposition time as a function of field size f and number of dose counters M.
Adapted from [Qin+16].

To further understand the factors of scoring time, let us denote the number of dose
deposition events in a simulation as N and the probability of memory conflict as p. The total
dose deposition time can be expressed as the sum of three terms t = tNon-conflict + tConflict +

tCounter. The first term is the time for deposition events executed in parallel by all GPU
threads without encountering the memory conflict issue. Hence tNon-conflict = N(1− p)∆t/Nt ,
where ∆t is the dose deposition time per event and Nt is the total number of threads. The
second term tConflict is the time for dose deposition events with memory conflict. Suppose
these events occurred in Nv voxels. Since events at different voxels do not encounter any
memory conflict, tConflict = N p∆t/Nv. Furthermore, let us denote the field size as f 2. Nv is
then proportional to f 2, namely Nv = β f 2. The probability of memory conflict p is inversely
proportional to f 2 and the number of dose counters M, namely p = α/(M f 2). The third term
corresponds to the overhead due to the use of multiple dose counters, which is proportional to
M, namely tCounter = λM. Putting everything together, we can write the total dose deposition
time as

t =
N∆t
Nt

(
1− α

M f 2

)
+

αN∆t
βM f 4 +λM (4.6)

With this model, we fitted our experimental data as a function of M and f and the results are
shown in figure 4.7. The successful data fitting confirms our model. Note that multiple dose
counters also require a larger memory space, so one should be careful when running the code
on computing devices which have limited memory. gPMC v2.0 allows users to specify the
number of dose counters.
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To test the portability of gPMC v2.0, we ran it on two Intel CPUs and two GPUs
manufactured by NVidia and AMD, respectively. Simulation times are presented in table 4.2.
The performances of the two GPUs were of the same order, as the two cards have similar
computation power. For high energy beams, the performance of the AMD card was slightly
better than the NVidia card. This was also observed in a previous article of an OpenCL MC
dose engine for photon radiation therapy, in which it was attributed to the superiority of the
AMD card over the NVidia card at the hardware level. The speed of the CPUs was lower
than the GPUs since CPUs have much fewer cores. Between the two CPUs, the 32-core Intel
Xeon E5-2640 CPU performed much better compared to the Intel i7-3770 CPU that has only
eight cores.

4.2.4 Conclusion and discussion

Our recent updates on the GPU-based MC dose calculation package, gPMC, are reported in
this paper. The new version, gPMC v2.0, was developed under the OpenCL environment to
enable portability across different platforms. Physics models of nuclear interactions were
refined to improve calculation accuracy. Scoring functions of gPMC were expanded to enable
tallying particle fluence and LET in addition to absorbed dose. A multiple counter approach
was employed to mitigate memory writing conflict problems. Comprehensive evaluations
on accuracy, efficiency and portability of gPMC v2.0 were also performed. Accuracy
improvements over gPMC v1.0 were observed for both homogeneous water phantoms as well
as a prostate patient case. In particular, for a prostate cancer treatment requiring high-energy
beams, dose discrepancy in beam entrance and target regions seen in gPMC v1.0 with respect
to the gold standard TOPAS calculations has been substantially reduced as a consequence
of refined nuclear interaction models. Besides the total dose, particle fluence, LETd, and
dose contributed by different particle components were also compared with TOPAS results,
showing reasonable agreements.

The computation time of gPMC v2.0 was found comparable to the previous 1.0 version.
The multi-counter approach was also found to be effective. As the beam size was reduced
from 10× 10 cm2 to 1× 1 cm2 , the time for scoring only increased by 4.8% with eight
counters in contrast to a 40.0% increase of the scoring time when using only one counter.
With the OpenCL environment, the portability of gPMC was enhanced. It was successfully
executed on different CPUs and GPUs, and its performance on different devices was found
to vary depending on hardware processing power and structure. Meanwhile, the OpenCL
code is not always the best option for a specific GPU type in terms of performance. For
instance, CUDA has a higher efficiency than OpenCL on NVidia’s GPU. Hence, we have
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also maintained the CUDA version of gPMC. The physics refinement, LETd scoring and
multi-counter approach reported in this manuscript were also included in the CUDA version.

Scoring of LET is a new and useful feature in gPMC v2.0 that could facilitate a number of
studies regarding proton radiobiological effects. It has been proposed in recent studies to use
LET as a surrogate for RBE in order to evaluate plan quality from a biological perspective.
It can be incorporated into treatment planning to develop treatment plans, not only optimal
in terms of physical dose, but also in terms of LET [Gia+13; Pag14; Wan+16]. For plan
optimization studies, the new gPMC version is expected to be beneficial compared to Monte
Carlo codes, such as TOPAS, because of its capability for rapid LET calculation. Especially
for LET-based inverse treatment planning, the fast computation will be critical to ensure
clinical applicability of this method.

The validity of using gPMC does depend on specific problems of interest. For clinical
studies on dose calculation, the overall agreement between gPMC and TOPAS is acceptable.
There is a discrepancy between the two MC engines in terms of secondary proton and
heavier particle doses, as illustrated in figure 4.4. This is mainly due to the fact that different
nuclear interaction models are employed in gPMC and TOPAS. Because these components
account for only a small fraction of primary proton dose (2-3 orders of magnitude less),
this discrepancy does not significantly impact the total dose distribution. Yet, one should
be cautious when using gPMC to study the effects sensitive to secondary protons or other
heavier particles in proton therapy.

The RNG used in gPMC was implemented in a straightforward fashion. Each GPU
thread kept its own random number state, which was updated each time a random number
was produced. It is noted that efficient RNG SFMT19937 under the single instruction
multiple data (SIMD) scheme has been previously developed [SM08]. This method stores
a global state array of 128 bit integers of length 156. The block generation approach can
efficiently produce a group of random numbers employing the SIMD scheme. However,
it may be difficult to incorporate this method in our MC simulation. If only one global
state array is allocated, since different GPU threads perform particle transport simulation
in a random fashion, they will need to access and modify the state array randomly, which
will cause memory-writing conflict. On the other hand, if each GPU thread holds its own
global state array, due to the large number of GPU threads, GPU memory size would
become a limiting factor. The solution to incorporate the SFMT19937 in our MC simulation
problem is to develop novel schemes to coordinate transport simulations among GPU threads.
Investigations along this direction will be in our future study.
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Chapter 5

Results II: Radiobiological optimization

In section 5.2 of this chapter, the following publication is reproduced:

Jan Unkelbach, Pablo Botas, Drosoula Giantsoudi, Bram L Gorissen, and Harald Paganetti.
“Reoptimization of intensity modulated proton therapy plans based on linear energy transfer”.

In: International Journal of Radiation Oncology* Biology* Physics 96.5 (2016), pp.
1097-1106.

My role in the publication is clearly stated in the following subsection. Some comments
on the adaptation of the publication are also given.

5.1 Role in study

This study was developed in collaboration, mainly with Dr. Unkelbach. My role in the
collaboration was general project discussion, provide the tools to generate dose-influence
and LET×D-influence matrices for optimization and create the matrices, writing parts of the
manuscript and discussing it.

In order to generate the optimization matrices, gPMC needed to be connected to the
patient data systems in MGH. Once the connectionw as developed, for each patient case,
each beamlet was simulated in the patient’s planning CT and the optimization matrices were
generated post-processing the resultant dose distributions. Each beamlets was simulated
using 106 protons. A beam model that represents a modern proton beam line with spot sizes
ranging from 5.6 to 2.2 mm sigma and energy spreads from 0.56 to 0.82 MeV for nominal
proton energies between 60 and 230 MeV was implemented and used for this study. Pencil
beams were placed at 1 sigma lateral distance within an energy layer. Energy layers were
separated by 0.7 times the Bragg peak width at 80%. Bragg peaks were placed within the
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target volume plus a 1-2 cm margin surrounding the target, depending on the case. The
large margin for spot placement was applied to provide sufficient degrees of freedom for the
reoptimization step and not restrict the ability to redistribute LET×D by spot placement. On
average, approximately 2000 pencil beams per field were used. The average calculation time
per pencil beam was 3-4 s on a NVIDIA Tesla C2075, corresponding to 2 hours computation
time per field. Routines to produce other data files required by Opt4D were also created
(structure masks, dose map for conformity to target . . . ).

For this study, the particle source and beam models were implemented as CPU subrou-
tines, creating a sequence of particle buffers that were transferred to the GPU for simulation
(previous gPMC versions relied on external phase space files). The code’s execution was
made more flexible to permit the treatmet simulation at different levels of the hierarchy, al-
lowing the simulation of individual fields and/or beamlets. Finally, a maximum threshold was
implemented into the dose-averaged LET scorer after observing LET spikes. The maximum
was defaulted to 100 keVµm−1 after studying dose-averaged LET spectra in patients. From
the list of specific developments of gPMC in section 3.1.2, items 2–5 were created and the
dose-averaged LET scorer was tuned, item 6.

Comments on the adaptation of the paper: Minor changes were made on the published
manuscript. In this reproduction, the short form of IMPT and LET were employed in the title
to keep it shorter. The distribution of subfigures in figs. 5.1–5.3 was adjusted, which affects
the appreciation of the colorbar scales. Comments in italics were included in the captions of
the affected figure to explain the changes and clarify the color scales. The position of figures
and tables may differ from the published manuscript. The citation style and the internal
figure, table and equation numbers have been altered, but the underlying meaning has been
conserved.

5.2 Reoptimization of IMPT Plans based on LET

J. Unkelbach1,2, P. Botas1,3, D. Giantsoudi1,2, B. L. Gorissen1,2 and H. Paganetti1,2
1 Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.

2 Harvard Medical School, Boston, MA, USA.
3 Department of Physics, University of Heidelberg, Heidelberg, Germany.

Abstract Purpose: We describe a treatment plan optimization method for intensity modulated
proton therapy (IMPT) that avoids high values of linear energy transfer (LET) in critical structures
located within or near the target volume while limiting degradation of the best possible physical dose
distribution.
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Methods and Materials: To allow fast optimization based on dose and LET, a GPU- based Monte
Carlo code was extended to provide dose-averaged LET in addition to dose for all pencil beams. After
optimizing an initial IMPT plan based on physical dose, a prioritized optimization scheme is used to
modify the LET distribution while constraining the physical dose objectives to values close to the
initial plan. The LET optimization step is performed based on objective functions evaluated for the
product of LET and physical dose (LET×D). To first approximation, LET×D represents a measure of
the additional biological dose that is caused by high LET.
Results: The method is effective for treatments where serial critical structures with maximum dose
constraints are located within or near the target. We report on 5 patients with intracranial tumors
(high-grade meningiomas, base-of-skull chordomas, ependymomas) in whom the target volume
overlaps with the brainstem and optic structures. In all cases, high LET×D in critical structures could
be avoided while minimally compromising physical dose planning objectives.
Conclusion: LET-based reoptimization of IMPT plans represents a pragmatic approach to bridge the
gap between purely physical dose-based and relative biological effectiveness (RBE)-based planning.
The method makes IMPT treatments safer by mitigating a potentially increased risk of side effects
resulting from elevated RBE of proton beams near the end of range.

5.2.1 Introduction

In vitro cell survival experiments suggest an increase in proton relative biological effec-
tiveness (RBE) toward the end of range. Although the data from in vitro experiments vary
substantially, they suggest that, depending on the dose and the tissue parameters, the RBE
might increase from values between 1.0 and 1.1 in the entrance region to values around 1.3
at the Bragg peak and 1.6 in the falloff region [Pag14]. It is typically assumed that this RBE
increase is explained by an increase of linear energy transfer (LET) toward the end of range.
By contrast, proton treatment planning and dose reporting have been based on physical dose
and a constant RBE of 1.1.

This creates a dilemma for proton therapy planning, especially for intensity modulated
proton therapy (IMPT). Underestimation of RBE may lead to underestimation of normal
tissue complication probabilities. IMPT treatments with highly modulated fields may deliver
highly inhomogeneous LET distributions. This may result in LET hot spots in critical
structures within or near the target volume, with LET values higher than those observed
for passive scattering or single field uniform dose (SFUD) treatments. By contrast, large
uncertainties in endpoint-specific RBE values, and the fact that dose reporting has historically
been based on physical dose, discourage RBE-based IMPT planning approaches that lead to
drastic changes compared with current practice.

Previous works have investigated IMPT optimization based on biological dose instead of
physical dose [WO04; Fre+11]. However, such approaches are yet to be adopted clinically.
If treatment planning objectives for target coverage are evaluated only in terms of biological
dose, such methods typically lead to lower physical doses in parts of the target, based on
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the assumption that the RBE is larger than 1.1 in areas of high LET. There is a danger that
this could lead to underdosage to the target if the RBE is overestimated. Other authors have
redressed this issue by combining physical dose optimization with the goal of additionally
influencing the LET distribution [Wan+16; Fag+15; Bas+10; Gia+13; Gra+11]. Most works
[Wan+16; Fag+15; Bas+10] focus on increasing LET in radioresistant tumors to achieve a
higher biological effect.

Unlike previous studies, our work is primarily concerned with the risk of normal tissue
complications. We introduce a hybrid method between physical dose and LET-based IMPT
planning. In contrast to previous works, our method does not assume knowledge of RBE
to perform biological IMPT planning. Instead, it is designed to facilitate IMPT planning in
the absence of reliable normal tissue RBE values. We first determine an IMPT plan based
on physical dose objectives, as is current clinical practice. In a second step, we modify the
LET distribution to avoid high LET in critical structures. This is done using a prioritized
optimization scheme [Wil+07; JMF07] in which LET-based objectives are optimized while
limiting the degradation of the physical dose distribution. In that sense, IMPT treatment
plans

5.2.2 Methods and Materials

5.2.2.1 Patients

We reviewed patients with intracranial tumors that were treated with passively scattered
proton beams at our institution. For this study, we selected patients in whom the clinical
target volume was directly adjacent to, or overlapping, with serial organs at risk (OARs) (i.e.,
structures where the risk of side effects mainly depends on the maximum dose). We discuss 3
selected patients in detail: 1 patient with an atypical meningioma in whom the target volume
overlapped the brainstem, optic nerve, chiasm, and pituitary gland (Fig. 5.1a), 1 patient with
an ependymoma in whom the target volume involved parts of the brainstem (Fig. 5.2a), 1
patient with a base-of-skull chordoma in whom the target abutted the brainstem (Fig. 5.3a).
The results for 2 additional patients (1 ependymoma, 1 base-of-skull chordoma) are presented
in Appendix D (available online at www.redjournal.org). For the current study, these patients
were replanned for IMPT using the beam directions from the clinically delivered treatment.
The pencil beam sizes used represent the latest generation of proton machines (2.2-5.6 mm
sigma at isocenter in air for energies of 230-60 MeV). For all patients, the gross tumor
volume (GTV) and clinical target volume (CTV) were taken from the clinical treatment plan.
An isotropic 2-mm margin was added to the CTV to obtain a planning target volume (PTV)
for IMPT planning.
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5.2.2.2 Parameterization of biological effects

We consider the exponential cell survival model:

S = exp(−αd) (5.1)

where d is the physical dose and S is the surviving fraction of cells. To a first approxima-
tion, it is assumed [WO04; Car+10; MSP15; WLH13] that the radiosensitivity parameter α

increases linearly with dose-averaged LET, which we denote by L:

α = α0(1+ cL) (5.2)

In analogy to the biologically effective dose (BED) model, the total biological dose b can
be defined as:

b =− log(S)
α0

= (1+ cL)d = d + cLd (5.3)

Hence, the product of LET and dose, scaled by a parameter c, can be interpreted as the
additional biological dose due to the LET effect, which is added to the physical dose to
obtain the total biological dose b. Alternatively, (1+ cL) can be interpreted as the RBE, so
that b represents the RBE-weighted dose (see discussion in Appendix A; available online at
www.redjournal.org).

For IMPT planning, the biological dose model is extended to multiple pencil beams. Let
Di jx j denote the physical dose that pencil beam j delivers to voxel i. Here, Di j denotes the
dose contribution of pencil beam j to voxel i for unit fluence, and x j denotes the fluence of
pencil beam j. The total cell survival in voxel i is given by:

Si = ∏
j

exp
(
α0
(
1+ cLi j

)
Di jx j

)
(5.4)

where Li j is the dose-averaged LET of pencil beam j in voxel i. The RBE-weighted dose is
thus given by:

bi =− log(Si)

α0
= ∑

j
(1+ cLi j)Di jx j = di + c∑

j
Li jDi jx j (5.5)

where di is physical dose in voxel i. By defining the dose-averaged LET over all pencil
beam contributions as:

Li =
∑ j Li jDi jx j

di
(5.6)

www.redjournal.org
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Fig. 5.1 Plan comparison for the atypical meningioma (patient 1). (a) Contours for target
volume (red), GTV (brown), brainstem (green), and optic structures and pituitary gland
(yellow). (c and e) Physical dose and LET×D for the reference plan. (d and f) Physical
dose and LET×D for the reoptimized plan. (b) Difference in physical dose. Positive values
indicate higher doses in the reference plan. (A color version of this figure is available at
www.redjournal.org). Adapted from [Unk+16]. Note: The distribution of subfigures has been
edited from the original publication. The colorbar in (d) also applies to figure (c) and the
one in figure (f) also to (e). “Reference” and “Reoptimized” have also been shortened in (e)
and (f) to “Ref.” and “Reopt.”, respectively.

the biological extra dose due to the LET effect is given by the product of physical dose
and dose-averaged LET, cLidi. The calculation of dose and LET contributions, Di j and Li j,
is performed using a fast GPU-based Monte Carlo code [Jia+12; Gia+15] as detailed in
Appendix B (available online at www.redjournal.org). Given the dose coefficients Di j and
LET coefficients Li j, the additional biological dose due to elevated LET is a linear function
of the optimization variables x j. Hence, the same mathematical optimization techniques as
in physical dose optimization can be applied.

www.redjournal.org
www.redjournal.org
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(a) Geometry.
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Fig. 5.2 Plan comparison for the ependymoma (patient 2). (a) Contours for target volume
(red), GTV (brown), brainstem (green), and optic structures and pituitary gland (yellow). (c
and e) Physical dose and LET×D for the reference plan. (d and f) Physical dose and LET×D
for the reoptimized plan. (b) Difference in physical dose. Positive values indicate higher
doses in the reference plan. (A color version of this figure is available at www.redjournal.org).
Adapted from [Unk+16]. Note: The distribution of subfigures has been edited from the
original publication. The colorbar in (d) also applies to figure (c) and the one in figure (f)
also to (e). “Reference” and “Reoptimized” have also been shortened in (e) and (f) to “Ref.”
and “Reopt.”, respectively.

5.2.2.3 Treatment plan optimization

To perform treatment planning in a manner consistent with current clinical practice, we first
optimize an IMPT plan based on physical dose. We used the following objectives:

1. Deliver a prescribed physical dose of 50 Gy to the target volume, and penalize dose
above 52.5 Gy (implemented by quadratic penalty functions).

www.redjournal.org
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Fig. 5.3 Plan comparison for the base-of-skull chordoma (patient 3). (a) Contours for target
volume (red), GTV (brown), brainstem (green), and optic structures and pituitary gland
(yellow). (c and e) Physical dose and LET×D for the reference plan. (d and f) Physical
dose and LET×D for the reoptimized plan. (b) Difference in physical dose. Positive values
indicate higher doses in the reference plan. (A color version of this figure is available at
www.redjournal.org). Adapted from [Unk+16]. Note: The distribution of subfigures has been
edited from the original publication. The colorbar in (d) also applies to figure (c) and the
one in figure (f) also to (e). “Reference” and “Reoptimized” have also been shortened in (e)
and (f) to “Ref.” and “Reopt.”, respectively.

2. Penalize dose above 50 Gy in OARs (optic structures, brainstem, pituitary gland)
(implemented by quadratic penalty functions).

3. Conformity (implemented by quadratic penalty functions with a maximum dose that
depends linearly on the distance from the target).

4. Minimize the generalized equivalent uniform dose (gEUD) in the brainstem.

5. Minimize the mean dose in the brain.

www.redjournal.org
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The details of treatment plan optimization can be found in Appendix C.1 (available online
at www.redjournal.org). This initial step yields a plan that is optimal in terms of the chosen
physical dose objectives, which we refer to as the reference plan below.

In the second step, the plan is adjusted to avoid high values of Lidi in the brainstem and
other OARs. This is performed with a prioritized optimization scheme [Wil+07; JMF07] (i.e.,
a second IMPT optimization problem is solved where all physical dose planning goals are
handled through constraints). In our application, target coverage should not be compromised.
Also, the physical dose in OARs should not increase above 50 Gy, and conformity should
not deteriorate. Hence, the values of objectives 1, 2, and 3 are constrained to the optimal
value in the reference plan. However, it is expected that plan modifications will lead to small
increases in integral dose and the brainstem gEUD. We therefore allow a 3% increase for
objectives 4 and 5.

The only objective in the second IMPT optimization problem is to reduce Lidi in the
OARs (brainstem, optic structures, pituitary gland). This can be done using quadratic
penalty functions that penalize Lidi values that are higher than the minimum value that can
realistically be achieved for the given prescription dose. To obtain such a minimum value,
we consider the histogram of Lidi values in the target volume for the reference plan. We
determine a threshold value Ldre f such that 95% of the target volume receives Lidi values
higher than Ldre f . We then introduce the objective function:

fL = ∑
i∈OARs

(
Lidi −Ldre f

)2

+
(5.7)

which is minimized to obtain the final treatment plan (see Appendix C.2; available online
at www.redjournal.org, for details).

5.2.2.4 Visualizing LET× distributions

The treatment planning approach as described above does not require any quantification of
RBE effects (ie, the parameter c that scales the biological dose contribution Lidi does not
have to be known). However, for visualization and estimating the potential benefit of LET
redistribution, it is useful to select the parameter c so that di + cLidi reflects an estimate of
the RBE-weighted dose. For this work, we set c = 0.04 µm/keV, which yields an RBE of
1.1 in the center of a spread-out Bragg peak of 5 cm modulation and 10 cm range where
the dose-averaged LET is approximately L ≈ 2.5 keV/µm. For a pristine Bragg peak, this
corresponds to an RBE of approximately 1.3 at the Bragg peak (see Appendix A available
online at www.redjournal.org).

www.redjournal.org
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Although difficult to verify for clinically relevant endpoints in normal tissues, it has been
hypothesized that the RBE increase with LET is steeper for normal tissues with low α/β

values than for tumors with higher α/β values. Therefore, the RBE-weighted dose resulting
from c = 0.04 µm/keV can be considered a reference point, but the RBE may be higher by
an unknown amount. For example, at a dose of 1.67 Gy per fraction (50 Gy in 30 fractions),
the RBE model by McNamara et al. [MSP15] predicts an approximately linear increase of
RBE with LET corresponding to c ≈ 0.02 µm/keV for α/β = 10 and c ≈ 0.05 µm/keV for
α/β = 2.

5.2.3 Results

5.2.3.1 Atypical meningioma (patient 1)

We first illustrate the method for the meningioma patient shown in Figure 5.1a. Figure 5.1c
shows the physical dose distribution of the reference plan, and Figure 5.1e the corresponding
LET×D distribution reflecting the extra biological dose due to elevated LET. The average
value of cLidi in the target volume is 5.8 Gy (for c = 0.04 µm/keV). However, in the
high-dose region of the brainstem, the pituitary gland, the chiasm, and the optic nerve, cLidi

reaches values of approximately 12 Gy, corresponding to RBE-weighted doses exceeding 60
Gy. If the value c = 0.04 µm/keV underestimates the LET effect on RBE in these critical
structures, the RBE-weighted dose will be even higher.

Figures 5.1d and 5.1f show the reoptimized treatment plan that penalizes cLidi values
in critical structures exceeding Ldre f = 3.8 Gy. Figure 5.1f demonstrates that LET×D hot
spots in OARs are avoided; LET×D is reduced to values close to the mean target LET×D
of 5.8 Gy. Corresponding dose-volume histograms (DVH) evaluated for LET×D confirm
the reduction in LET×D in OARs (Fig. 5.4b). Table 1 quantifies the LET×D reductions
in the brainstem for specific DVH points. Figures 5.1d and 5.4a confirm that the physical
dose distribution in the vicinity of the target is close to the reference plan as enforced by the
constraints.

It is clear that, to modify the LET×D distribution in critical structures, the dose to these
regions must be delivered by different pencil beams. This is illustrated in Figure 5.1b,
which shows the difference between the physical dose distributions (the reoptimized plan is
subtracted from the reference plan). The fluence of pencil beams incident from the patient’s
left (right side of the image) that stop in the OARs is reduced. Instead, more dose is delivered
by pencil beams incident from the patient’s right (left side of the image).
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Table 5.1 LET×D values (scaled with c = 0.04 µm/keV) in the brainstem for the reference
and reoptimized plans. Adapted from [Unk+16].

Patient

Plan 1: Meningioma 2: Ependymoma 3: Chordoma 4: Chordoma 5: Ependymoma

Tumor volume, cc 92 69 51 62 53
Beam directions 3 (2 coplanar) 3 coplanar 3 (2 coplanar) 6 coplanar 3 coplanar
Reference plan

LET×D max (Gy) 12.0 11.5 14.8 13.4 13.1
LET×D 0.1 cc (Gy) 11.2 10.3 13.0 10.2 11.6
LET×D 0.5 cc (Gy) 9.9 9.2 10.6 7.7 9.3
Ldre f (Gy) 3.8 3.1 5.0 4.4 3.5
Mean PTV LET×D (Gy) 5.8 5.0 7.1 6.8 5.2

Reoptimized plan
LET×D max (Gy) 7.4 8.5 8.5 8.9 8.7
LET×D 0.1 cc (Gy) 5.9 6.7 6.9 6.5 6.6
LET×D 0.5 cc (Gy) 5.2 5.4 6.2 5.3 5.6

Abbreviations: LET×D = product of linear energy transfer × physical dose; PTV = planning target volume.
The maximum LET×D value in the brainstem is reported, as is the LET×D value that is exceeded in 0.1 cc and 0.5 cc.

For comparison, Ldre f (see equation 7) and the mean LET×D value in the target are reported.

5.2.3.2 Ependymoma (patient 2)

Figure 5.2 shows results for a patient with ependymoma in whom the target volume includes
parts of the brainstem. In the reference treatment plan, elevated LET×D values are observed
in the brainstem (Fig. 5.2e). After reoptimization, LET×D hot spots in the brainstem can
be avoided (Fig. 5.2f). Figure 5.2b illustrates how the LET×D distribution is modified.
The reference plan heavily uses pencil beams from the left-posterior beam (right side of the
image) that stop within the brainstem. The reoptimized plan increases the fluence of pencil
beams in the right-posterior beam (left side of the image), which traverse the brainstem and
deliver low-LET irradiation to the region where target and brainstem overlap.

5.2.3.3 Base-of-skull chordoma (patient 3)

Figure 5.3 shows a base-of-skull chordoma where the target volume abuts the brainstem. The
patient is treated with 2 coplanar beams and a superior oblique beam. Similar to patients 1
and 2, treatment planning based on physical dose alone leads to high LET×D values in the
brainstem as a result of pencil beams incident from the patient’s left (right side of the image)
that stop in front of the brainstem (Fig. 5.3e). LET×D values can be reduced (Fig. 5.3f) by
using pencil beams in the posterior beam that avoid the brainstem laterally (Fig. 5.3b).



80 Results II: Radiobiological optimization

5.2.3.4 Summary of results

Table 1 summarizes the results for LET×D reductions after reoptimization for the brainstem,
which is the OAR common to all 5 patients. For all cases, LET×D hot spots exceeding
twice the mean target LET×D value were observed in OARs in the reference plan. After
reoptimization, LET×D in OARs was reduced to values close to the mean value in the
target. DVH comparisons for patients 2 to 5 are shown in Appendix F (available online at
www.redjournal.org).

(a) (b)

Fig. 5.4 Dose-volume histogram (DVH) comparison for the atypical meningioma (patient 1)
between reference plan (solid lines) and reoptimized plan (dashed lines). (a) Physical dose
DVHs, showing identical target coverage for both plans. (b) DVHs evaluated for LET×D
(scaled with c = 0.04 µm/keV). In the LET×D DVH of the brainstem, voxels that receive
less than 10 Gy physical dose in the reference plan were removed for better visualization.
The black lines correspond to all normal tissue voxels in a 1-cm margin around the target
volume. (A color version of this figure is available at www.redjournal.org). Adapted from
[Unk+16].

Fig. 5.5 Difference in physical dose
(Gy) between the dose-escalated plan
and Fig. 5.1e (ie, the figure shows
the additional physical dose on top of
50 Gy, which can be delivered to the
gross tumor volume without worsen-
ing any normal tissue dose objective).
The corresponding LET×D distribu-
tion is shown in Appendix E.2 (avail-
able online at www.redjournal.org).
Adapted from [Unk+16]. 1
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5.2.4 Discussion

Compared with passive scattering and SFUD techniques, IMPT has the potential to improve
conformity and reduce the integral normal tissue dose. However, as a consequence of highly
modulated fields, IMPT plans may yield highly inhomogeneous LET distributions, even for
homogeneous physical dose distributions. In particular, IMPT may yield high LET values in
serial critical structures within or near the target volume that exceed the values observed in
passive scattering or SFUD. This could lead to an increased rate of adverse events, but this
concern is yet to be underpinned by clinical evidence.

We suggest a method based on prioritized optimization that reoptimizes IMPT plans
for their LET distribution while limiting degradations of the physical dose distribution. We
applied the method to intracranial tumors where the brainstem or optic structures overlapped
with the target volume. For the cases studied here, high LET values in these structures
could be avoided at little cost: degradations to the optimal physical dose distributions were
minor. However, in general the method’s degree of success depends on the patient’s geometry
and beam arrangement (see also patient 5 in Fig. 8 of Appendix D; available online at
www.redjournal.org). For example, high LET in a critical structure overlapping the target
can be avoided only if that structure falls within the entrance region of some pencil beams (ie,
the structure can not only receive dose from Bragg peaks placed at its location). If this is not
fulfilled, changing the incident beam directions may be necessary to reduce LET hot spots.

5.2.4.1 LET× redistribution beyond OARs

The objective in the above examples was to reduce potential areas of high RBE in OARs.
As seen in Figures 5.1, 5.2 and 5.3, this is achieved mostly by shifting LET hot spots to
other regions at the periphery of the target, which may still contain functioning brain tissue.
Hence, it is implicitly assumed here that OARs are contoured to represent structures that are
more important to spare than the remaining normal brain. Additional iterations of prioritized
optimization can be applied to reduce LET×D in all of the normal brain inside and outside of
the PTV, and to concentrate high LET exclusively in the GTV. However, these modifications
are typically associated with more substantial degradation of the physical dose distribution.
The treatment plan that minimizes the healthy tissue dose in the beam entrance regions
preferentially uses Bragg peaks placed at the distal edge of the target because these pencil
beams deposit additional dose for free while traversing the target. Unfortunately, this leads
to high LET×D values in the periphery of the GTV and to low values in the center of the
GTV (Figs. 5.1d, 5.2d, and 5.3d). By contrast, high LET in the GTV is achieved if as many
protons as possible stop within the GTV. In terms of physical dose, this corresponds to an

www.redjournal.org
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inefficient use of protons, which conflicts with the goal of minimizing dose to healthy tissue
in the entrance region.

At first glance, it appears plausible to maximize LET×D in the GTV as a means to
increase the RBE-weighted dose. However, the alternative strategy is to allow higher physical
dose in the GTV. Hence, to assess the potential benefit of LET×D escalation in the GTV,
such treatment plans should be compared with what physical dose escalation can achieve. In
this context, we point out that higher doses in parts of the GTV can often be achieved without
increasing normal tissue dose. This effect is also referred to as the price of uniformity, a term
that alludes to the mathematical certainty that adding an IMPT optimization objective that
penalizes hot spots in the GTV will worsen the combined remaining planning objectives.

To illustrate this, we consider the atypical meningioma patient (Fig. 5.1). We apply
an additional prioritized optimization step to the treatment plan in Figures 5.1e and 5.1f.
The only objective is to maximize the mean physical dose in the GTV. The physical dose
constraints are the same as for the plan in Figures 5.1e and 5.1f, except that the penalty for
overdosing the GTV has been removed (while keeping the overdose penalty for the part of the
PTV that is not GTV). The exact formulation is provided in Appendix E.1 (available online
at www.redjournal.org). Figure 5.5 shows the difference in physical dose between the dose-
escalated plan and Figure 5.1e. By construction, the normal tissue receives approximately
the same dose, but much higher doses of up to 100 Gy can be achieved in the center of the
GTV. The mean physical GTV dose is increased from 51 Gy to 58 Gy without compromising
conformity or increasing integral dose to the healthy tissue. Hence, if dose escalation in
the GTV is the goal, physical dose and LET×D should be considered jointly, rather than
reoptimizing the LET×D distribution alone while constraining the physical dose.

5.2.4.2 RBE- versus LET-based IMPT planning

Whereas this report suggests an IMPT planning method based on LET, other authors have
proposed IMPT planning based on RBE-weighted dose [WO05; Fre+11; Wan+16; Fag+15].
Whether LET-guided or RBE-based planning is appropriate depends on the application and
the goals of treatment planning. Both methods may coexist. The approach in this report is
motivated by the following scenario:

1. We are concerned about serial OARs with maximum dose constraints that are located
within/near the target. We would like to avoid LET hot spots in these OARs because
they may increase the risk of adverse events by an unknown amount.

2. We do not want to lower the physical dose in the target volume in comparison with
current practice. Multiple reasons support this practice, such as skepticism regarding
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the accuracy of RBE models for the tumor and the necessity to comply with clinical
trial protocols that specify the physical prescription dose.

3. While reducing LET hot spots in OARs, we want to assess and control physical dose
increases in normal tissues compared with the treatment plan that is optimal in terms
of physical dose alone. This is because the tradeoff between the clinical value of LET
reduction versus physical dose increase is unknown.

These goals are achieved with the proposed combination of physical dose and LET-guided
planning using prioritized optimization. However, in other situations, IMPT optimization
based on RBE-weighted dose may be appropriate. For example, if dose escalation in the
GTV is the goal, as described above and similarly by Tseung et al. [Wan+16] and by Fager et
al. [Fag+15], this can be achieved by objective functions evaluated for RBE-weighted dose.

Potentially, plan improvements can be achieved by lowering the physical dose in the
target in areas of high LET, based on the assumption that RBE is larger than 1.1. The reduced
target dose may in turn lead to lower doses in normal tissue. Such treatment plans can be
created by evaluating target coverage objectives for RBE-weighted dose rather than physical
dose [WO05; Fre+11]. Currently, practitioners are hesitant to pursue this approach because
it risks under-dosing the tumor if the RBE is overestimated. However, advances in RBE
measurements [Gua+15] may facilitate such approaches in the future.

5.2.5 Conclusion

We describe a prioritized optimization method to reoptimize IMPT plans in terms of their LET
distributions while limiting the degradation of the best possible physical dose distribution.
The method does not depend on tissue or patient-specific RBE, which currently is associated
with large uncertainties. It can be applied to patients in whom serial critical structures are
located within or adjacent to the target volume, to avoid high LET values in these structures.
This makes the use of IMPT safer, considering that the risk of side effects associated with
high LET is largely unknown.
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Chapter 6

Results III: Lung planning

In section 6.2 of this chapter, the following publication is reproduced:

P Botas, C Grassberger, G Sharp, and H Paganetti. “Density overwrites of internal tumor
volumes in intensity modulated proton therapy plans for mobile lung tumors”. In: Physics in

Medicine & Biology 63.3 (2018), p. 035023.

My role in the publication is clearly stated in the following subsection. Some comments
on the adaptation of the publication are also given.

6.1 Role in study

I was the main author in this study, writing all required software and performing the analysis.
This includes:

• Creation of the patient’s planning CTs with the ITV density overwrites.

• Implementation of the dose delivery time structure from the cyclotron.

• Development of the 4D framework to connect the DIR software, Plastimatch [Sha12],
with the dose delivery time structure model and gPMC.

• Plastimatch development to support multiplication and maximum image filters from
ITK (Insight Segmentation and Registration Toolkit).

• Results analysis scripts, mainly written in R using the tidyverse libraries (https://www.
tidyverse.org/).

• Manuscript writing.

Discussions were held with all the authors, providing key insights.

https://www.tidyverse.org/
https://www.tidyverse.org/


88 Results III: Lung planning

Comments on the adaptation of the paper: The position of figures and tables may differ
from the published manuscript. The citation style and the internal figure, table and equation
numbers have been altered, but the underlying meaning has been conserved.

6.2 Density overwrites of ITV in IMPT plans for mobile
lung tumors

P. Botas1,2, C. Grassberger1,3, G. Sharp1,3 and H. Paganetti1,3
1 Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.

2 Department of Physics, University of Heidelberg, Heidelberg, Germany.
3 Harvard Medical School, Boston, MA, USA.

Abstract The purpose of this study was to investigate internal tumor volume density overwrite
strategies to minimize intensity modulated proton therapy (IMPT) plan degradation of mobile lung
tumors.
Four planning paradigms were compared for nine lung cancer patients. Internal gross tumor volume
(IGTV) and internal clinical target volume (ICTV) structures were defined encompassing their
respective volumes in every 4DCT phase. The paradigms use different planning CT (pCT) created
from the average intensity projection (AIP) of the 4DCT, overwriting the density within the IGTV to
account for movement. The density overwrites were: (a) constant filling with 100 HU (C100) or (b)
50 HU (C50), (c) maximum intensity projection (MIP) across phases, and (d) water equivalent path
length (WEPL) consideration from beam’s-eye-view. Plans were created optimizing dose-influence
matrices calculated with fast GPU Monte Carlo (MC) simulations in each pCT. Plans were evaluated
with MC on the 4DCTs using a model of the beam delivery time structure. Dose accumulation was
performed using deformable image registration. Interplay effect was addressed applying 10 times
rescanning.
Significantly less DVH metrics degradation occurred when using MIP and WEPL approaches. Target
coverage (D99 geq 70 Gy(RBE)) was fulfilled in most cases with MIP and WEPL (D99WEPL =
69.2 ± 4.0 Gy (RBE)), keeping dose heterogeneity low (D5 - D95WEPL = 3.9 ± 2.0 Gy(RBE)). The
mean lung dose was kept lowest by the WEPL strategy, as well as the maximum dose to organs at risk
(OARs). The impact on dose levels in the heart, spinal cord and esophagus were patient specific.
Overall, the WEPL strategy gives the best performance and should be preferred when using a 3D
static geometry for lung cancer IMPT treatment planning. Newly available fast MC methods make it
possible to handle long simulations based on 4D data sets to perform studies with high accuracy and
efficiency, even prior to individual treatment planning.

6.2.1 Introduction

Radiation therapy is the mainstay of treatment for inoperable non-small-cell lung cancer
(NSCLC). However, NSCLC tumors usually show significant respiratory motion, to which
particle therapy is especially sensitive due to the resulting range variations [KL13]. Addi-
tionally, the tumor often moves in an orthogonal direction from beam’s-eye-view, which
may exacerbate the effect. There are techniques to reduce the dosimetric effects of motion
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during delivery of a certain plan. Gated therapy can be employed to deliver the plan only
when the tumor is within a predefined region; rescanning of IMPT can be employed to
give a more homogeneous dose by reducing the interplay effect between the pencil beam
scanning delivery pattern of the IMPT plan and the tumor movement; or even delivering the
treatment without limitations with the free breathing technique. Regardless of the delivery
approach, the tumor motion must be taken into account during the planning stage. It is
common practice to define an internal tumor volume (ITV) extracted from a 4-dimensional
CT (4DCT), representing the patient geometry and the variations the field would encounter
during delivery. By planning in such contour, the plan is more robust towards dosimetric
effects caused by geometry changes.

Protons have the potential to offer a dosimetric advantage over photons because they
stop within the patient releasing most of their energy at a certain position. This adds an
extra degree of freedom for treatment optimization [Lom99; Lom+04] but also introduces
additional uncertainties due to the need to precisely predict the range in patients [Lom08b;
Lom08a; Unk+09; Pag12]. The range uncertainty is particularly important in lung due to the
low density of lung tissue and high-density areas in the beam path such as ribs. For this site
it has been shown that analytical dose calculation algorithms as available in proton planning
systems are significantly less accurate than Monte Carlo (MC) simulations [Yam+12; Gra+14;
Sch+15; Zhe+16; Zvo+17]. Precise dose calculations and plan evaluation with MC methods
is therefore important for proton therapy for NSCLC.

The low convergence rate of MC methods has prevented researchers from studying 4D
treatment planning approaches with high accuracy, thus focusing mainly on retrospective data
analysis. In 4D treatment planning, each plan should be evaluated on each phase of the 4DCT,
which, due to the MC simulation times, is often unpractical. However, recent developments
in computing architectures, such as graphics processing units (GPU), offer the possibility
to exploit the parallelizable nature of MC methods while keeping high accuracy [Jia+12;
TMB15]. Another tool necessary to study the effect of patient movement on the delivered
dose distribution is deformable image registration (DIR). DIR allows the registration of
the different 4DCT phases to a reference phase. The cubic B-spline algorithm has been
reported to have sufficient accuracy for dose accumulation in the thorax region [Mur+11].
Implementation of this algorithm for GPUs allows fast registration of the 4DCT phases
[SKS10]. As a consequence of these GPU based developments, it is now possible to perform
prospective planning studies in 4D based on MC dose calculations.

The efforts found in the literature towards 4D treatment planning can be clustered in
two main directions. One is to perform plan optimization on the 4DCT using time-resolved
optimization matrices [ERK06; Gra17]. A simpler and more clinically efficient approach
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that has been reported to yield good results is to perform plan optimization on one or more
static 3D planning CT constructed from the 4DCT that represent the moving geometry
[EK05; Kan+07; GDB12; Kno+13; Wan+13; Gra+15]. The goal of this work was to perform
a comparison of 4DCT-based IMPT planning strategies using ITV density overwrites for
NSCLC cases. Additionally, it was intended to demonstrate that such studies are feasible
with high accuracy dose calculation using state of the art dose calculations techniques to
improve accuracy. To this end we have developed a GPU-based framework to study 4D
treatment planning approaches in IMPT for NSCLC.

In particular we studied 4 strategies for the definition of ITVs. For all strategies, the
intensities of the planning CT outside the internal gross tumor volume (IGTV) were defined
by the average image projection (AIP) across the 4DCT. Within the IGTV, intensities were
set according to four different intensity fillings: constant intensity fillings of 100 HU (C100)
and 50 HU (C50), maximum image projection (MIP) filling, and water equivalent path length
(WEPL) dependent filling. The reason behind choosing these strategies was that they have
been already proposed in the literature as potentially working solutions, but they had not been
compared consistently. Kang et al. [Kan+07] have compared AIP CT, free breathing CT,
MIP CT and C100 filling of the IGTV within AIP CT, demonstrating that the latter gave the
best results. Graeff et al. [GDB12] has reported that a WEPL strategy similar to the concept
introduced here yields better results than a purely geometric definition of the ITV. Knopf et al.
[Kno+13] also compared a geometrical definition of the ITV contour with a WEPL-adapted
definition, proving the latter to be superior; Grassberger et al. [Gra+15] used a C50 filling
within AIP CT. Wang et al. [Wan+13] reported the MIP approach presented in their study to
be the best when compared with AIP and end-exhale images. All four techniques, although
some with different implementations, have been included in our study.

6.2.2 Methods and materials

The steps followed in this study were as follow: first, targets were defined for each patient;
next, for each patient, the CT intensities within the IGTV were filled following four different
strategies and the intensities outside the IGTV were set to the average of the 4DCT; next,
treatment plans were optimized for each strategy with the beamlets data calculated with GPU
MC; finally, a 4D evaluation was performed applying GPU MC.

6.2.2.1 Patient cohort and contour definition

A set of nine NSCLC patients with a representative range of tumor volumes and movement
amplitudes was used for this retrospective study under IRB-approved protocol. For each



6.2 Density overwrites of ITV in IMPT plans for mobile lung tumors 91

Table 6.1 Patient characteristics. Amplitude is peak-to-peak motion amplitude. The Dice
coefficient is a measure of the minimum overlap between GTVs as defined in two phases of
the 4DCT. Previously included in [Bot+18].

Patient number GTV vol. (cm3) Amplitude (mm) Min. GTV Dice coefficient Number of fields: angles

1 21.1 30.6 0.70 4: 150, 180, 220, 270
2 64.9 3.5 0.87 2: 180, 270
3 26.0 10.7 0.92 2: 90, 180
4 4.0 14.6 0.64 2: 60, 140
5 21.7 10.0 0.84 2: 100, 210
6 2.6 5.1 0.82 2: 240, 310
7 15.4 15.1 0.74 2: 50, 120
8 24.5 9.1 0.87 3: 0, 40, 270
9 100.0 6.5 0.93 2: 250, 330

Average: 31.1±31.5 11.7±8.1 0.8±0.1 −

patient, the gross tumor volume (GTV) was manually contoured at end-of-expiration phase
of the 4DCT (50 % or p50). The clinical target volume (CTV) was defined as an isotropic 8
mm expansion of the GTV to account for microscopic disease. The IGTV and internal CTV
(ICTV) were defined in the MIP CT, encompassing the GTV and CTV in every phase of the
4DCT. Both were validated in the 4DCT by examining the entire respiratory cycle. The liver
and the tumor overlapped in the MIP in one case, for which the IGTV was created as the
union of the GTV in all phases. The planning target volume (PTV) was defined as a 5 mm
expansion of the ICTV, accounting for patient setup and DIR uncertainties. Normal lung
was defined in the planning CT as the combination of both lungs minus the IGTV and at the
reference phase as the combination of both lungs minus the GTV.

Table 6.1 summarizes the patient cohort. Tumor volumes ranged from 2.6 to 100.0 cm3,
tumor movement amplitude was between 4.5 and 30.6 mm. The dice coefficient, measuring
the overlap between the tumor positions during the respiratory cycle, ranged between 0.64
and 0.93, meaning that at any respiratory phase at least 64 % of the tumor volume overlaps
with the volume at a different phase.

6.2.2.2 Strategies to define planning CTs

Treatment plans were designed for each patient in four different planning CTs. Each of
the planning CTs was defined following a different strategy to mitigate the effect of patient
movement and limit plan degradation. For all planning CTs we defined two components: the
AIP of the 4DCT outside the IGTV and the intensity filling overwrite inside the IGTV. For
all strategies, the intensities of the planning CT outside the IGTV were defined by the AIP.
Within the IGTV, intensities were set according to four different strategies: constant intensity
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fillings of 100 HU (C100) and 50 HU (C50), MIP filling, and WEPL dependent filling.
Choosing the AIP around the target was a measure to balance under- and overestimations
of the range to the proximal end of the target. Underestimations would then be taken into
account by selecting conservative fillings of the IGTV.

In C100 and C50, the intensity values in the IGTV were set to 100 and 50 HU, respectively
(expression 6.1). The values chosen for the constant fillings were inspired by literature, from
previous studies on 4D planning [Kan+07; Gra+13] and studies of tissue changes after
treatment, where values of 50-100 HU are shown to represent tumor intensities [May+98;
Aki+15]. From the cohort here included, the chosen values have been observed to be close
representations of the 99 and 70 percentiles of intensity distribution of the GTV of all patients
on all phases combined. Specifically for our patients, these values correspond to 99 and
48 HU. Therefore, the two selected values represent two conservative measures of GTV
intensities (figure 6.2a). Both referenced 4D studies have reported the constant fillings to
maintain tumor coverage at acceptable dose to normal tissue. C100 is more conservative than
C50 in terms of maintaining target dose levels to plan quality, but with potentially higher
OAR doses.

Ii = 100 or Ii = 50 ∀i ∈ IGTV (6.1)

The MIP filling sets each voxel in the IGTV to its maximum intensity across the 4DCT
phases (expression 6.2). Due to the tumor densities observed across the patients, the MIP
filled IGTV usually presents lower intensities than the constant fillings, although in some
points it may have higher intensities. The MIP essentially selects the most conservative
intensity value across the phases. The scope of the technique is therefore limited to changes
in the IGTV.

Ii = max(Ii,p) ∀i ∈ IGTV, p ∈ 4DCT (6.2)

The WEPL adjusted target sets the intensity of each voxel in the IGTV to the intensity
it has in the 4DCT phase presenting the biggest WEPL at the voxel position (expression
6.2). The procedure is as follows: first, the WEPL is calculated per each voxel in each phase,
secondly the WEPLs are compared and lastly the voxel is set to the intensity corresponding
to the biggest WEPL. This method considers CT intensities outside of IGTV region on a
phase by phase basis, because the WEPL is integrated along the beam path. Consequently,
this strategy defines a planning CT per treatment field. The resultant intensity values in the
IGTV are, by definition, equal or smaller than the intensity values set with the MIP method.

Ii = Ii,p where Ii,p = argmax
Ii,p

WEPL(Ii,p) ∀i ∈ IGTV, p ∈ 4DCT (6.3)
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Figure 6.1 illustrates the strategies differences.

MIP WEPL

4DCT

AIP
C50 C100

Beami

Beamj Beamk70%

80%

90% 0% 10%

20%

30%

40%60%

50%

Fig. 6.1 Illustration of planning strategies: each planning CT (C50, C100, MIP, WEPL) was
created from the 4DCT (blue circle) and its average image projection (AIP, center). The AIP
was applied outside the IGTV, while the IGTV filling depends on the strategy. A color scale
was added in the IGTV to help the reader, representing low intensities with blue and higher
with red. Images extracted from patient 1. Previously included in [Bot+18].

(a) (b) (c)

Fig. 6.2 (a) Structures and field arrangements for patient 6. (b) Dose difference between the
planned and the 4D evaluated dose for the MIP strategy. (c) Intensity profiles on a line across
the phases of the 4DCT. Previously included in [Bot+18].

6.2.2.3 Treatment planning

For each patient, 4 IMPT plans were created using the different planning CTs described
above. The prescription dose was 70 Gy(RBE), delivered to at least 99 % of the ICTV and
95 % of the PTV. Dose was limited in both target structures to V110 ≤ 20 %. Normal tissue
constraints [Mar+10] were satisfied in all plans. Specifically for the lung, the mean dose was
kept below 20 Gy(RBE) and V20 < 30 %. Hotspots were avoided in the esophagus and spinal
cord. The beams were chosen as orthogonal to the main motion direction (superior-inferior).
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Most cases consisted of two coplanar fields. Gantry angles were chosen to minimize normal
tissue dose and to avoid placing a critical structure at the distal end of the beam. A constant
RBE of 1.1 was used.

Table 6.1 shows the field angles for each patient. Figure 6.2a shows patient 6 structures
and fields arrangement. Figure 6.2b shows the dose difference between the plan and the 4D
evaluation using the results from the same patient. Figure 6.2c shows the intensity profiles
across the 4DCT phases and the intensity profiles assigned by each strategy.

All dose calculations were performed with gPMC, a previously validated fast MC for
GPUs [Qin+16]. gPMC was employed to generate the dose-influence matrix (di j) of each
field in each planning CT. IMPT optimization of the di js was performed with Opt4D, an
in-house optimization tool originally developed for temporo-spatial studies [Tro+05].

6.2.2.4 Evaluation

For evaluation, each plan was split into 10 subplans, one for each 4DCT phase. Dose for
each subplan was computed on the corresponding phase, and finally the total dose was
accumulated. The subplans were generated using a model of the beam delivery time structure
at our institution and assuming a fixed duration per 4DCT phase of 0.5 s. To avoid a bias
in the results caused by the interplay effect, we performed 10 times rescanning by setting
the initial respiratory phase during the assignment to the subplans at every 4DCT phase and
averaging the subplan dose. This corresponds to 10× phase-averaged rescanning and has
been shown to eliminate the effect [Sec+09; Gra+13]. The dose delivered by each subplan
was then accumulated into the reference phase. The dose was warped with vector fields
generated by DIR between each phase and the reference. The DIR and the dose warping were
performed in Plastimatch, an open source suite for radiotherapy and medical imaging, using
its GPU parallelized B-spline algorithm [Sha12; SKS10]. The correctness of the registrations
was visually verified.

Target coverage was evaluated in the CTV of the reference phase after 4D simulation and
dose accumulation. The metrics analyzed were D99, V110 and D5-D95. Normal lung was
evaluated with mean lung dose (MLD), maximum dose and V20Gy(RBE). Maximum dose
was used for the spinal cord and esophagus. Strategy comparison was performed after 4D
evaluation. Because the same set of objectives and constrains are applied for all the strategies,
the final 4D-evaluated dose distribution is the only measure of the goodness of each strategy.

Specific comparisons between strategies were performed. The patient-by-patient differ-
ence between strategies for a given quantity X was calculated and one-tailed paired t-tests to
compare the resultant distribution were applied (H0 : mean

(
x j − xi

)
> 0 or mean

(
x j − xi

)
< 0,

depending on the case). This approach is discussed in detail in the following section.
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6.2.3 Results and discussion

Assessing the performance of the different strategies can be approached in two ways, either
with the study of the relative changes between the plan and the 4D accumulated dose or the
absolute plan performance at 4D evaluation.

When studying plan changes, there is an inconsistency in the plan baseline. Because
each strategy is designed with different densities in the target, different spots will be selected
by the optimizer to deliver the most optimal dose. This causes the plan dose distribution to
be different for different strategies within the same patient. As such, accidental differences
in plan quality arise between strategies, yielding no well-defined baseline per patient to
study plan changes. Additionally, the facts that proton dose distribution is very sensitive to
patient density heterogeneities [Sch+14] and that the planning CTs are somewhat an artificial
construct, suggest that the planned dose distribution is as well an artificial construct. Hence,
studying its change might not be meaningful. Therefore, as introduced in the previous section,
strategy comparisons we performed after 4D evaluation. The results are summarized in table
6.2.

The boxplots in this section show the 1st (Q1), 2nd (Q2) and 3rd (Q3) quartiles with
the colored box, the lower fence is the smallest observation bigger than Q1 −1.5 · IQR and
the upper fence is the largest observation smaller than Q3 + 1.5 · IQR . The IQR is the
inter-quartile range (Q3 −Q1). The two fences are shown with the vertical lines. Data points
beyond the fences are outliers. Individual patient points have been plotted over the boxplots
to allow outlier identification.

6.2.3.1 Framework performance

4D plan simulation with GPU MC takes an average of 5 min per patient on one GPU unit
(NVIDIA Tesla K40C). The total process, including DIR of the 4DCT phases to the reference
phase takes place in 10 min if serial calculations are performed. Parallel calculations in a
cluster could speed up the process considerably. Both, MC and DIR could be parallelized on
multiple CPUs to perform the 4D plan evaluation in less than 1 min.

6.2.3.2 Target coverage

Figure 6.3 shows the target coverage metrics for each strategy after 4D dose simulation. In
all metrics C100 and C50 have been observed to perform more poorly than the MIP and
WEPL strategies.

The delivered D99 meets at least the prescription dose in 7 out of 9 cases (77.7 %) planned
with the MIP and WEPL strategy. The average D99 with the MIP and WEPL strategies were
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Table 6.2 Strategy averages across patients per contour and dose metric. WEPL in absolute
values, others as a difference with respect to WEPL values. One tailed paired t-tests were
performed to assess the significance of the difference between strategies, with null hypothesis
H0 : mean(xi − xWEPL)> 0. Previously included in [Bot+18].

Strategy

Structure
Metric Gy(RBE),
unless specified

WEPL MIP C50 C100
(Absolute) (Average absolute difference w.r.t. WEPL and p-value)

CTV
D99 69.2±4.0 −0.3±0.9 0.92 -3.3±2.8 > 0.99 −3.3±2.8 > 0.99
V110 (%) 2.7±6.1 2.1±3.1 0.04 6.9±9.8 0.03 8.9±13.6 0.04
D5-D95 3.9±2.0 1.1±1.7 0.05 4.9±3.7 < 0.01 5.2±4.0 < 0.01

Lung
D 6.9±2.6 0.1±0.1 0.09 0.2±0.4 0.06 0.3±0.5 0.06
V20Gy(RBE) (%) 11.9±4.6 0.2±0.3 0.08 0.8±1.3 0.04 1.0±1.4 0.04
Dmax 76.7±3.0 1.1±1.3 0.02 5.3±5.2 0.01 5.2±4.5 < 0.01

Spinal Cord Dmax 7.8±13.5 1.4±2.8 0.08 3.5±7.0 0.09 3.9±7.1 0.07

Heart
V25Gy (%) 6.3±10.4 −0.2±1.1 0.64 0.2±0.5 0.12 0.5±0.4 0.01
(without Pat. 6) 2.6±3.6 0.2±0.4 0.13 0.4±0.4 0.03 0.5±0.5 0.02

Esophagus Dmax 15.1±18.0 1.5±1.7 0.02 2.1±8.0 0.24 1.8±7.5 0.26

68.9±3.8 and 69.2±4.0 Gy(RBE), respectively. The 2 patients not fulfilling the prescribed
dose present an average D99 = 63.4 Gy(RBE), 9.4 % below prescription. Performing the
MIP and WEPL comparison as described at the beginning of this section shows that the
WEPL strategy consistently yields a higher D99 (p = 0.08).

(a) (b) (c)

Fig. 6.3 Target (CTV) coverage metrics. From left to right: D99, V110 and D5-D95. C100
and C50 provide inappropriate coverage. MIP and WEPL provide coverage, having WEPL a
higher D99 index and lower V110 and D5-D95. Previously included in [Bot+18].

V110 was also similar for the MIP and WEPL strategies. Their average V110 were
4.7±8.2 and 2.7±6.1 %, respectively. Most cases show a V110 below 5 % of prescription
dose. The WEPL strategy produces less hotspots than the MIP strategy (p = 0.04), which
results in a higher average D5-D95 for the MIP strategy than for the WEPL, with 5.0±3.4
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(a) (b) (c)

Fig. 6.4 Lung dose metrics. From left to right: mean dose, V20Gy(RBE) and Max dose.
Lower dose levels are given by the WEPL strategy. Previously included in [Bot+18].

and 3.9±2.0 Gy(RBE). The WEPL strategy produces more homogeneous dose than the MIP
(p = 0.05).

Patient 1 was the only outlier in all three target metrics with the MIP and WEPL strategies.
As shown in table 6.1, this case presents the biggest amplitude in the patient cohort with 30.6
mm, which may explain the observed behavior. In this case, the WEPL strategy has a higher
V99 than the MIP, with 95.3 % and 82.1 %, respectively, but is insufficient to provide target
coverage.

6.2.3.3 Lung dose

Figures 6.4a shows the mean lung dose, V20Gy(RBE) (6.4b) and maximum dose (6.4c) for
each strategy after 4D dose simulation and accumulation. The difference between strategies
is not as clear as in the target dose levels (figure 6.3). Still, C100 and C50 are seen to
perform poorer than the MIP and WEPL strategies, giving higher MLD, V20Gy(RBE) and
maximum dose. The maximum lung dose is not a clinical constraint but it serves to estimate
the magnitude of hotspots that could arise in normal tissue close to the target, where other
critical structures such as esophagus might be located in certain patients.

The MLD is kept by all strategies below 20 Gy(RBE) and V20Gy(RBE) is also below
30 %, fulfilling the plan constrains. The average MLD for C100, C50, MIP and WEPL are
7.2±2.7, 7.1±2.7, 6.9±2.6 and 6.9±2.6 Gy. The MLD ranges from 2.7 to 10.1 Gy(RBE).

Hotspots are present in normal lung when employing C100 and C50 (figure 6.4c). MIP
and WEPL reduce the hotspots. Comparing MIP and WEPL, the latter produces lower MLD,
V20Gy(RBE) and maximum dose (p = 0.09, p = 0.09 and p = 0.02, respectively).
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6.2.3.4 Impact on other OARs

Dose to OARs downstream the target, mainly the heart, esophagus and spinal cord, depends
on the specific combination of tumor movement, spot maps and beam angles. As such, the
dose per patient in these OARs presented a wide range. This can be seen in figure 6.5.

(a) (b) (c)

Fig. 6.5 Dose metrics for spinal cord, heart and esophagus. From left to right: max dose to
spinal cord, V25Gy(RBE) in the heart and max dose to esophagus. Lower dose levels are
given by the WEPL strategy. Previously included in [Bot+18].

The maximum dose to the spinal cord is kept within the constraints for all patients by C50
and WEPL, as shown in figure 6.5a. The average maximum dose is, however, significantly
lower in the WEPL case than in C50: 9.8±13.5 and 13.3±17.9 Gy(RBE). MIP and WEPL
are the strategies with lowest average maximum doses. The dose level for MIP is 11.2±16.2
Gy(RBE). The patient-by-patient comparison shows the WEPL gives smaller maximum dose
to the spinal cord (p = 0.08).

As shown in figures 6.5b and 6.2a, patient 6 presents hotspots in the heart, spinal cord
and esophagus as a result of tumor movement. However, it is only in the case of the heart
that patient 6 can be considered an outlier. The fact that the WEPL strategy has a higher
V25Gy(RBE) for this patient increases its average, thus making it higher than with the MIP
strategy. Removing this patient from the analysis shows that the WEPL strategy consistently
produces lower V25Gy(RBE) in the heart than the MIP (p = 0.13). In summary, the WEPL
strategy usually delivers less dose (V25Gy(RBE)) to the heart than the other strategies. The
WEPL strategy also limits the average maximum dose in the esophagus.

6.2.3.5 Discussion

As shown in figures 6.3-6.5 and table 6.2, the WEPL strategy is superior to the MIP, C50
and C100 strategies in the current study. Target coverage is provided by the WEPL and MIP
strategies, with less overdose given by the WEPL. The dose to OARs was kept lower by the
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WEPL strategy as well. OARs other than the lung show big differences between patients,
but, with some outliers, the WEPL strategy consistently showed better dose metrics.

The fundamental idea behind the WEPL strategy here studied has already been introduced
previously [GDB12; Kno+13]. In any WEPL-dependent approach, field specific information
has to be included in the planning process, either before or after the creation of the di j for
optimization. In the approach by Knopf et al. [Kno+13] field specific ITVs as a function of
the WEPL are generated making the di j agnostic of the movement information. However, the
lack of a common or generalized target contour implies a limitation for IMPT planning as it
can only be jointly optimized using single field uniform dose (SFUD) conditions or by joining
the ITVs, considerably augmenting the target volume. On the other hand, the methods by
Graeff et al. [GDB12] and the one introduced in our work include the movement information
in the optimization matrix itself, providing a well-defined target for full IMPT optimization.
The only difference between the two approaches is that, contrary to our approach, Graeff et
al. define adapted intensity-WEPL conversion curves for each beamlet in each field. These
curves scale the WEPL seen inside the target by the dose calculation algorithm to cover the
minimum and maximum WEPL found along the beamlet across the phases of the 4DCT.
After being calculated with this curve, each beamlet is included in the di j for optimization.
This method, depending on the specific implementation, should yield similar results to the
WEPL method presented in this manuscript, although out approach is simpler. Note that, if
the plans are done with the SFUD method, all three WEPL dependent methods will yield
very similar results.

In order to apply the WEPL method here discussed, the treatment planning system has to
be able to deal with as many CTs as fields in the plan during the di j calculations.

One main caveat in this study is the assumption that the 4DCT is a good representation of
the breathing pattern of the patient at treatment time. Some studies have reported significant
changes in the tumor baseline and tumor motion pattern as the treatment progresses [Yi+11;
Zha+13; Phi+15; Tak+16]. Some deformation of the tumor may also occur during this time
[Yi+11]. These effects are not captured in the current study design, which relies on the 4DCT.
Nevertheless, from the data presented in this study it can be hypothesized that the MIP and
WEPL strategies are the most robust towards these changes as well. As shown in figure
6.2c, strategies C100 and C50 are the most conservative because they force the optimizer to
employ beamlets with higher energy due to the higher density overwrite. Therefore, they
could be expected to be more robust than MIP and WEPL against patient geometry changes
not captured in the 4DCT that involve an increase in patient water-equivalent thickness from
beam’s eye view. Nevertheless, even in this case, being C100 and C50 more robust does not
mean that their plan quality would be superior to the MIP and WEPL strategies because the
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performance baseline, as studied in this manuscript, is better in the latter strategies. More
importantly, in lung cancer, especially during a prolonged treatment regimen with concurrent
chemotherapy, tumor shrinkage is usually more likely, which would lead to more beamlets
being placed behind the target in the constant overwrite strategies (C50/100). The same
argument could potentially be employed with other patient-specific constant fillings. Any
constant filling strategy would be deduced mainly from the study of the tumor intensity
spectra across the 4DCT, ultimately simplifying it to a single point. On the contrary, non-
constant fillings do not show this limitation, hence including more information. In summary,
the robustness of these strategies towards patient changes should be compared, although the
authors do not expect differences in plan degradation to overcome the plan quality baseline
differences seen in this study. Other constant filling strategies remain to be investigated;
however, the authors do not expect an improvement on the MIP or WEPL strategies analyzed
herein.

6.2.4 Conclusions

Respiratory motion degrades the planned IMPT dose distribution. Four strategies to limit the
plan degradation produced by the patient’s respiratory motion were studied using state of the
art Monte Carlo simulations. A fast GPU-framework was developed for treatment planning
and 4D dose evaluation. Of the four considered strategies, the AIP of the 4DCT along with
the WEPL-dependent IGTV filling best capture different patient geometries represented in
the 4DCT in one planning CT. This strategy keeps prescription dose levels to the target, while
maintaining low dose to OARs. The WEPL strategy is accordingly recommended as a good
approach in any case involving collapsing different patient geometries, such as respiratory
phases, into a representative construct. Concerning its applicability, the treatment planning
system has to be able to handle as many CT volumes as fields in the plan for the generation
of the optimization matrices. No other special requirements are necessary for the IMPT
optimization.

Additionally, we show that it is possible to assess the quality of a treatment plan on
4D geometries on a patient-per-patient basis with high accuracy calculations. Assuming
the 4DCT is a representative geometry of the patient’s breathing cycle during delivery, the
developed GPU MC framework could be implemented as a treatment plan validation of
NSCLC proton therapy.
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Chapter 7

Results IV: Online adaptation of IMPT
plans

The contents of this chapter, section 7.2, have been submitted for publication to Physics in
Medicine and Biology. The contents are currently being reviewed for publication. The final
published version is expected to differ from the one here contained after receiving the input
from the reviewers.

7.1 Role in study

I was the main author in this study, developing the software and analysis. This includes:

• Conceptualization and creation of the online adaptation algorithm and creation of
a single button software with several adaptation modes and automatic dashboard
reporting based on Python data analysis and plotting libraries (Pandas, Matplotlib,
Seaborn). See manuscript for details.

• Conceptualization and implementation in gPMC of the masked scorer and scoping
mode, items 7 and 8 in the enumeration in section 3.1.2.

• Conceptualization and implementation in gPMC of the dose matrices for optimization
scorer, item 9 in the enumeration in section 3.1.2.

• Results analysis scripts, mainly written in R using the tidyverse libraries (https://www.
tidyverse.org/).

• Manuscript writing.

Discussions were held with all the authors.

https://www.tidyverse.org/
https://www.tidyverse.org/
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7.2 Online adaption approaches for intensity modulated
proton therapy for head and neck patients based on
cone beam CTs and Monte Carlo simulations

P. Botas1,2, J. Kim1,3, B. Winey1,3 and H. Paganetti1,3
1 Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.

2 Department of Physics, University of Heidelberg, Heidelberg, Germany.
3 Harvard Medical School, Boston, MA, USA.

Abstract Purpose: To develop an online plan adaptation algorithm for intensity modulated proton
therapy (IMPT) based on fast Monte Carlo dose calculation and cone beam CT (CBCT) imaging.
Methods: A cohort of 10 head and neck cancer patients with an average of 6 CBCT scans were
studied. To adapt the treatment plan to the new patient geometry, contours were propagated to the
CBCTs with a vector field (VF) calculated with deformable image registration between the CT and
the CBCTs. Within the adaptive planning algorithm, beamlets were shifted following the VF at their
distal falloff and raytraced in the CBCT to adjust their energies, creating a geometrically adapted
plan. Four geometric adaptation modes were studied: unconstrained geometric shifts (Free), isocenter
shift (Iso), a range shifter (RS), or isocenter shift and range shifter (Iso RS). After evaluation of the
geometrical adaptation, the weights of a selected subset of beamlets were automatically tuned using
MC generated influence matrices to fulfill the original plan requirements. All beamlet calculations
were done with a fast Monte Carlo running on a GPU (Graphics Processing Unit).
Results: Geometrical adaptation alone only worked with small anatomy changes. The weight tuned
adaptation worked for every fraction, with the Free and Iso modes performing similarly and being
superior than the two range shifters modes. The mean V95 and V107 were 99.4 ± 0.9 and 6.4 ± 4.7
% in the Free mode with weight tuning. The calculation time per fraction was ~5 min, but further task
parallelization could reduce it to ~1-2 min for delivery adaptation right after patient setup.
Conclusions: An online adaptation algorithm was developed that significantly improved the treatment
quality for inter fractional geometry changes. Clinical implementation of the algorithm would allow
delivery adaptation right before treatment and thus allow planning margin reductions for IMPT.

7.2.1 Introduction

Head and neck (H&N) tumors are often very close to organs at risk (OARs) such as the
parotids, larynx, submandibular glands, or others. Due to the proximity of CTVs to OARs,
H&N cases benefit from steep dose gradients in the planned dose distribution to better spare
the OARs while giving therapeutic doses to the target. Intensity modulated proton therapy
(IMPT) is capable of producing such steep gradients while also reducing dose to OARs and
integral dose, thus offering dosimetric benefits over photon treatments [Ahn+14; Bla+16;
McK+16; Sio+16; Lee+17]. However, proton plans, and in particular IMPT plans, can be
very sensitive to geometrical changes that may distort the planned dose distribution impacting
the treatment quality [Ahn+14; Alb+08; Art+17; Lie+14; Lom08b; Pag12; Stü+17; Sze+16].
There are several reasons why the patient’s geometry might be different from the one used
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for the planned dose distribution, including uncertainties in patient setup or interfractional
anatomy changes. The setup uncertainty arises from the patient location on the treatment
couch being different to the one recorded in the planning CT. The anatomy changes arises
from the patient anatomy evolution throughout the course of treatment, not only due to loss of
weight modifying subcutaneous tissue and/or structure locations, but also due to the posture
on the treatment couch. Both uncertainty sources might modify the radiological pathway,
by introducing high/low density materials in the beamlet’s path, affecting the planned dose
distribution and affecting the planned target coverage and OAR sparing. This is particularly
true in proton therapy due to the impact of uncertainties and geometrical changes on the
predicted range of each beamlet.

These uncertainty sources are usually taken into account during the planning procedure
with the creation of margins (PTV plus range margin) around the target in an attempt to
guarantee treatment quality throughout the treatment course. As a consequence, the high dose
volume in the patient is enlarged and organs at risk (OARs) may receive higher doses. It is
therefore desirable to shrink the margin to improve IMPT plan quality. More importantly,this
method does not guarantee target coverage and OAR sparing throughout the treatment. An
alternative to the target expansion is to perform robust IMPT optimization, which entails
optimizing the plan considering different scenarios derived from uncertainty models. With
this approach, the resultant plan provides target coverage within OAR constraints at delivery,
as long as the current situation was included as a scenario during the optimization [Liu+13;
Stu+13; Dij+16]. As it is shown in the cited studies, robust optimization is generally able to
maintain the original plan target coverage and OAR sparing better than the margin approach.
However, robust planning usually softens dose gradients, which, again, results in enlarged
high dose volumes and higher dose to OARs compared to a plan performed in a single
scenario [Wat+16]. Uncertainties can also be minimized by careful selection of beam angles,
but this does not offer a general solution to account for setup and anatomy uncertainties while
simultaneously shrinking margins.

Two solutions that might fulfill both requirements are to either perform online IMPT plan
adaptation at every fraction or to perform offline treatment re-planning in scenarios when the
robust IMPT plan does not fulfill treatment constraints and prescriptions. Online adaptation
has the advantages that the treatment delivery is not delayed and that it accounts for the
current setup and anatomy, potentially allowing margin reduction.

Online plan adaptation requires an imaging system capable of providing the patient
anatomy at treatment position and an updated set of contours localizing the target and OARs.
There are currently three options to provide the patient anatomy information: performing
a new CT in the treatment position, using the information of a cone beam CT (CBCT) to
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deform the original CT or using a CBCT directly [Kur+15; Kur+16b; Lan+15; Oli+18].
However, an adaptation algorithm should be agnostic of the image source. With the new
image, an algorithm would then generate an appropriate set of new or modified beamlets
for the new geometry. All these steps should occur in a few minutes to fit into the clinical
workflow.

Several studies have reported on online and offline IMPT adaptation. Automatic offline
full plan reoptimization for H&N cases on deformed planning CT and contours was reported
by [Kur+16a], where new beamlet maps were created and optimized. In 2017 Jagt et al.
published an online dose restoration procedure [Jag+17] and recently an adaptation algorithm
[Jag+18] capable of tailoring the daily dose distribution to the original plan in prostate cases
by adding new beamlets to the plan after correcting the beamlet energies. Also recently,
Bernatowicz et al. [Ber+18] extended the work presented by Jagt et at. to allow other
reoptimization strategies in the dose restoration, applying them to nasopharynx, H&N and
lung (1 case each). Except Jagt et al. (2018) [Jag+18], these approaches rely on full plan
reoptimization, which, in turn, requires the costly calculation of full dose-influence matrices.
A different approach was presented by Moriya et at. [Mor+17] in a different context. In
this study the range shifter thickness was adapted in passive scattering plans for lung cancer.
This methodology could be expected to have limited success if non-uniform energy shifts
are needed, but it is an example of possible adaptation approaches that do not require full
plan reoptimization. Although these studies have shown many advances towards online
adaptation, none of the proposed methods include Monte Carlo simulations (MC) as dose
calculation engine.

It has been shown that MC dose calculation significantly increases accuracy in proton
therapy. Specifically for H&N analytical dose calculations accuracy is compromised due
to tissue heterogeneities [Lom08a; Pag12; Sch+14; Gra+14; Sch+15; Gen+17]. Using MC
calculations for online adaptation imposes time constrains on the design and applicability of
the adaptation framework, as they are typically slower than analytical algorithms. Employing
graphics processing units (GPU) for MC simulations could potentially allow online IMPT
plan adaptation at acceptable efficiency.

The main goal of this work was to demonstrate the feasibility of online adaptation
of IMPT plans on daily acquired cone beam CT (CBCT) scans of H&N patients, with
automatically propagated deformed contours and using a GPU MC code gPMC [Jia+12;
Gia+15; Qin+16], as dose calculation engine. The adaptation would be applied while the
patient is on the couch and could potentially allow margins reduction and reduction of the
number of re-planning steps, increasing workflow efficiency. An immediate challenge of this
goal was to design an algorithm that minimized the calculation burden to allow its online
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application. As a secondary goal, different adaptation approaches were studied. Some plan
adaptation procedures may modify individual beamlet’s energy, drastically increasing the
number of energy layers and possibly rendering the new plan undeliverable. Other approaches
could be successful, yet simpler than using the delivery system to modify the energy and
position of individual beamlets independently. Therefore, the utilization of range shifters and
isocenter shifts was compared against the independent adaptation of individual beamlet’s
energies and positions.

7.2.2 Methods and materials

In this section, first, an adaptive delivery workflow is introduced to explain the adaptation
algorithm. Next, based on patient data, different approaches applying the algorithm’s
operation modes are explained along with the quantities selected to assess their performance.

7.2.2.1 Patient cohort and treatment planning

A representative set of 10 H&N patients with 5-7 CBCT each was studied, for a total of
60 scenarios. The CBCTs were taken weekly as opposed to daily but serve as proof of
principle for our daily adaptation workflow. The set is summarized in table 7.1. All patients
were treated with photons (IMRT) and new plans were created for IMPT. The plans were
designed as 60 Gy(RBE) to the clinical target volume (CTV) delivered with no PTV or
range uncertainty margin considered in as many fractions as the number of available CBCTs
per patient. A single homogeneous dose level was prescribed for the CTV, creating a more
challenging scenario for the plan adaptation, as allowing higher dose in the innermost part of
the CTV potentially reduces the number and relevance of cold spots in the periphery of the
structure. A specifically demanding situation for the adaptation algorithm was created on
purpose by assuming that all the uncertainties not directly addressed by the online adaptation,
i.e. all except for setup and patient anatomy, are considered by the original planning technique.
Hence, no robust optimization was employed on the original plans, effectively sharpening
the dose gradients around the target. The minimum and maximum doses in the CTV were
60 and 63 Gy(RBE), weighting the under/over-dose by 20 and 10, respectively. The dose
conformity was enforced by a voxel dependent gradient from the prescription dose at the edge
of the CTV to 15 Gy(RBE) at 1 cm from the CTV (overdose weight = 3). The generalized
uniform dose (gEUD) to the main OARs was minimized (exponent = 5, weight = 1). In cases
this approach did not provide appropriate sparing to specific OARs, additional objectives
were created to minimize the dose. The maximum and mean dose to the healthy tissue were
minimized (weight = 1).
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Table 7.1 Patient cohort.

Pat.
No.

Tumor loca-
tion

N
fields

N
CBCTs

Plan CTV
volume
(cm3)

Average CTV
vol. ratio change
(min, max)

Average CTV
dice (min, max)

1 Oropharynx 4 6 22.3 1.00 (0.97, 1.05) 0.58 (0.50, 0.67)
2 Tonsil 2 6 9.0 1.02 (0.94, 1.12) 0.87 (0.83, 0.90)
3 Oropharynx 3 7 30.7 0.93 (0.90, 1.00) 0.82 (0.77, 0.88)
4 R. Neck 4 6 81.3 1.03 (0.98, 1.06) 0.79 (0.75, 0.84)
5 Hypopharynx 3 5 59.6 0.97 (0.95, 0.98) 0.89 (0.87, 0.91)
6 Mouth 3 7 116.5 0.78 (0.75, 0.82) 0.87 (0.83, 0.90)
7 Larynx 3 6 25.0 1.21 (1.08, 1.34) 0.84 (0.77, 0.88)
8 Tongue 4 5 79.9 1.06 (1.04, 1.11) 0.87 (0.82, 0.91)
9 Tonsil 2 6 12.0 0.98 (0.95, 1.00) 0.87 (0.83, 0.93)
10 Oropharynx 3 7 95.9 0.96 (0.91, 1.02) 0.89 (0.85, 0.92)

Summary: 60 53.2 ± 38.4 0.99 ± 0.11 0.83 ± 0.09

The tumor locations included larynx, oropharynx, mouth, tonsil, tongue and hypophar-
ynx. Tumor volumes ranged from 9.0 to 116.5 cm3, with an average of 53.2± 38.4 cm3.
Deformable image registration between the CT and the CBCTs was performed to obtain
vector fields (VF) representing the patient evolution (see details in section 2.3).

The gPMC GPU based MC code [Jia+12; Gia+15; Qin+16] was utilized as dose calcu-
lation engine to create the IMPT plans. This approach provided high accuracy at this step
and a consistent framework throughout the study, avoiding systematic differences between
the adapted plan evaluations also performed with gPMC and a treatment planning system
(TPS). To create the IMPT plans, all the necessary information was extracted from the TPS,
including non-optimized fluence maps. Dose-influence matrices (D matrices) were created
with gPMC and optimized with Opt4D, an in-house optimization tool originally developed for
temporo-spatial studies [Tro+05]. The optimization was performed with an implementation
of the L-BFGS algorithm (Limited-memory Broyden-Fletcher-Goldfarb-Shanno). Beam
angles were selected to spare OARs and avoid artifact regions in the CT or CBCT.

7.2.2.2 Adaptation workflow

The current planning-delivery workflow shown in figure 7.1(left side) is sensitive to the uncer-
tainties of the patient positioning and anatomy, as explained in the introduction (uncertainties
are represented by the red arrows). This may be solved by employing an adaptive workflow,
shown in figure 1(right side).
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Fig. 7.1 The current (left) and adaptive (right) planning delivery workflows. The red arrows
indicate that the patient anatomy and setup might differ between the delivery and the planning
stage.

The first step of such an adaptive workflow would be to acquire information about the
patient geometry immediately before treatment, including a possible automatic generation of
contours. Then the original IMPT plan would be evaluated on the new patient geometry with
a GPU MC simulation. If the clinical requirements specified in the initial plan constraints in
target and OARs were still met, then the plan would be delivered. If the clinical requirements
were not met, the patient information would be used as input into an online adaptation
algorithm. If the adaptation was successful, the patient would be treated, else, a re-planning
and re-scheduling of treatment would be necessary. Our goal was to maintain high dose
calculation accuracy at every step by using GPU MC simulations, therefore, gPMC was
employed as dose calculation engine at the initial IMPT planning step, at the plan evaluation
on the individual CBCTs and within the adaptation algorithm.

7.2.2.3 Imaging inputs: CBCTs, vector field maps and contours

The adaptation decision is based on the patient geometry as obtained by CBCT, the VF
mapping the original planning CT to the CBCT, and a set of new contours localizing the
structures on the CBCT.

CBCTs are known to provide limited accuracy for dose calculation, but strategies have
been developed to reduce uncertainties [Ara+17; Kim+17; Kur+16a; Niu+10; NAZ12;
Par+15]. We applied an a priori planning CT-based scatter-correction algorithm developed
in-house [Par+15; Kim+17]. Park et al. have reported average accumulated WEPL errors
across different locations of 2.3 ± 1.9%. The CT and CBCTs were aligned at the plan
isocenter, which better maintains the target coverage of the original plan at every evaluation,
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as opposed to aligning to a given OAR. While we employed this method, our algorithm does
not depend on it and would be applicable if a given OAR needs to be prioritized.

The contours defined in the planning CT were propagated onto the CBCTs applying a
VF. The VF map was calculated between the planning CT and the CBCT with deformable
image registration (DIR) using the GPU parallelized B-spline algorithm in Plastimatch, an
open source suite for radiotherapy and medical imaging [SKS10; Sha12]. The correctness of
the structures on the CBCTs had to be visually verified because there is no automatic and
reliable procedure to validate the structure contours for H&N cases [Li+17; Per+12]. The
deformed contours represented well the visible structures, while the others were required
to present smooth deformations (i.e. the VF nominal values and Jacobian did not present
steep gradients) to be accepted. The target volume was observed to evolve throughout the
CBCT sets. The dice similarity coefficient, measuring the overlap between the original target
contour and the contour propagated to each CBCT, was on average 0.83±0.09 (see table
7.1). The small dice coefficient value in patient 1 was due to the fact that this oropharynx
case had a thin target and a small displacement.

The accuracy of the CBCTs and the VFs employed does not affect the evaluation of the
adaptation algorithm. The latter in the main goal of this manuscript. Even though the CBCTs
and VFs may not perfectly represent the current patient geometry and deformation, they
represent plausible and consistent geometries and deformations of the patient as well as the
propagated contours. Improvement of CBCT accuracy and automatic propagation/generation
of structure sets would be necessary to clinically apply the workflow here employed to test
the adaptation algorithm and is an active field of research [Li+17]. Several approaches have
been followed regarding the imaging modality best suited to perform online adaptation. An
alternative option to the one utilized here is to register and warp the planning CT to the
CBCT creating a virtual CV (vCT) [Vei+14; Vei+16]. However, this method, for instance
employed by Kurz et al. [Kur+16b], depends on the accuracy of the VF to physically displace
tissues, which may introduce artifacts if the VF did not capture the real patient deformation.
Therefore, any error in the VF will be transferred to the patient anatomy contained in the
vCT and that would imply range errors. Employing the CBCT circumvents this potential
issue, although its accuracy might have to be improved as previously pointed out.

7.2.2.4 Adaptation algorithm

The adaptation algorithm was designed as two consecutive methods connected by a GPU
based MC validation. First, the geometrical method adjusted the beamlets positions and
energies, creating a geometrically adapted plan. The geometrically adapted plan was verified
on the CBCT. If the result was satisfactory, the plan would be delivered, if not, the second
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adaptation method would be applied, performing the weight tuning of the beamlets of the
geometrically adapted plan. The algorithm performed the following steps:

1. Geometrical adaptation method

2. Verification with GPU-MC on CBCT

3. Weights tuning (if necessary)

The algorithm was implemented in C++/OpenMP with the raytracing parallelized for
NVIDIA GPUs with CUDA. The GPU MC code, gPMC, and the IMPT optimizer, Opt4D,
were spawned as subprocesses, automatically providing the required inputs.

Geometrical adaptation The geometrical adaptation method adjusted the position and
energy of the beamlets to the new geometry as depicted in figure 7.2(left). Each beamlet
was raytraced along its central axis until the end of range in the planning CT (step 1 in
figure 7.2(left)). The locations resulting from the raytracing are called endpoints. Each
beamlet has a lateral profile, causing different protons in it to traverse different voxels in a CT.
Therefore, in heterogeneous media there is no well defined range in a beamlet. To capture the
heterogeneity of the patient’s tissue and the subsequent deformation of the Bragg peak in the
raytracing algorithm, the density of each voxel along the central axis was averaged with its
surroundings. The averaging procedure consisted of adding a set of 8 radial probes defined
as an octagon on the orthogonal plane around the central axis, which contained the central
probe. The radius of the octagon was equal to the σ of the beamlet profile (Gaussian) in
water at the equivalent radiological depth. The radial probes weights were set from the same
Gaussian profile. The angular position of the first radial probe was randomized. Because
the patient deformation was captured in the VF, the set of original endpoints defined in the
CT was warped by applying the VF, yielding the position that should be occupied in the
new geometry by each endpoint, and, therefore, by the high dose region of each beamlet
(step 2 in figure 7.2(left)). This was the same deformation previously applied to the contours
propagation. Next, the new position of each warped beamlet in the particle source plane
was calculated (step 3 in figure 7.2(left)). Then, the shifted beamlets were raytraced in the
CBCT applying the averaging procedure (step 4 in figure 7.2(left)). Finally, the energies
were adjusted to match the end of ranges in the CBCT with the warped endpoints (step 5 in
figure 7.2(left)).

In some situations, the endpoints calculated in the original CT (step 1 in figure 7.2(left))
were located far from the CTV. This could happen for example, if during the definition of
the set of useful beamlets, prior to the optimization, large margins around the CTV were
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employed and the optimizer used the dose from beamlets that contribute to the CTV but
are relatively far from it. In these situation, the VF would have been probed far from the
CTV and the beamlets potentially moved a distance and a direction not representing the
CTV deformation. To avoid this issue, the endpoints were forced to be within successive
expanded CTVs called shells: CTV + 1.0, 1.5, 2.0 and 3.0 cm. Figure 7.2(right) exemplifies
this procedure. The shells are ordered by importance, being the innermost the most important.
The endpoint of a beamlet was taken as the last position within the shell of the highest
importance its central axis traversed. This assures that the deformation of the CTV, or at least
its vicinity, is applied to the beamlets.
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Fig. 7.2 Left: Geometrical adaptation method. (see text for explanation). Right: Beamlets
endpoint selection following the expanded CTV shells. The endpoints are represented with
the red dots and the end of range position of each beamlet with the rhomboid.

After the geometrical adaptation, the adjusted plan was simulated with gPMC on the
CBCT. If the dose distribution fulfilled the clinical requirements, the plan would be delivered.
If not, the weight tuning method would be applied.

Weight tuning The IMPT optimization solves an expression of the form of equation 7.1,
with some objectives and constraints to the final dose distribution d. In equation 7.1, D
is the dose-influence matrix containing the dose distribution given at each voxel by each
beamlet and unit of fluence. ω represents the beamlets weights to be optimized. Therefore,
D provides all the information required.

Dω = d (7.1)
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However, calculating a D matrix with GPU MC with similar uncertainty per beamlet to
solve such a problem is computationally demanding and generally not suitable for online
applications. In order to comply with the requirements of an online application, a solution
to extract enough information to define a smaller D matrix from the geometrically adapted
plan validation was found. We found that a minority of the beamlets in an IMPT plan carried
the majority of the weight and, therefore, deliver the majority of the dose to the patient. In
MC simulations the simulation uncertainty decreases as the number of simulated protons
increase. As a consequence, this implies that there was a subset of beamlets simulated at the
verification step with enough precision to be used for the weight tuning. Additionally, this
subset has the biggest influence on the plan performance.

d = d0 +ds = d0 +(ωs0Ds)ωs (7.2)

Consequently, the dose distribution calculated as verification after the geometrical adap-
tation was stored in the GPU beamlet by beamlet, forming a weighted matrix containing
all the beamlets (ω0FDF , where ω0 are the original IMPT weights and F stands for full).
Accumulating the dose of each beamlet, the total dose per voxel given by the geometrically
adapted plan was retrieved. The smallest set of beamlets carrying at least 50% of the total
weight was extracted from ω0FDF , obtaining the matrix representing the subset s ω0sDs. The
number of selected beamlets was enforced to be at least 10% of the total to provide more
flexibility to the weight tuning process. The dose provided by the non-selected beamlets d0

was accumulated as baseline dose for each voxel, represented in figure 7.3 for a hypothetical
target with the dose baseline curve. The prescription dose in the target minus the baseline d0

was the dose that the selected beamlets should provide, ds in equation 7.2 and green shaded
area in figure 7.3. The weights of the selected beamlets were then tuned to complement the
baseline and give the dose prescription in the target while sparing the OARs with the same
set of objectives and constraints as in the original plan. Equation 7.1 was therefore changed
to equation 7.2, where ωs are scaling factors of the initial plan weights of the beamlets in s
ω0s. Figure 7.3 illustrates the role of the beamlet subset.

The same optimizer, Opt4D, from the original IMPT plan was used (see section 7.2.2.1).
The same target and OAR objective values from the original plans were enforced. Because the
dose baseline provided by the non-selected beamlets was not homogeneous, the prescription
dose in the target was given to the optimizer as a voxel-dependent objective complementing
the baseline. The same was done to set the maximum acceptable overdose in the target. After
the weight tuning, another verification with GPU MC would not be required, as the new plan
dose is simply d = d0 +ds.
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The D matrices can be large files that could cause an overflow in the GPU memory during
simulations. Usually, to facilitate storage and speed up the optimization, D matrices are
compressed. However, this approach cannot be used while D is being constructed in the
GPU because that information is only available after all the protons have been simulated.
Therefore, to fit the D matrices in the GPU, gPMC was extended to score dose in arbitrarily-
shaped regions of interest defined by voxelized masks, allowing a significant reduction of the
D matrices size. The region of interest defined by the masks covered the dose bath.

The conditions to select the subset of beamlets (the minimum weight of 50% they had to
provide, being at least 10% of the total plan spots) were chosen empirically by observing the
shape of the cumulative weight distribution and early adaptation results. Different optimizers
produce different weight distributions, some giving more weight to individual beamlets and
others producing more balanced plans. The L-BFGS algorithm, implemented in Opt4D
and utilized here, produces individual beamlets with high weights. The performance of
our method would for sure depend on the individual optimizer. Additionally, selecting
the beamlets with higher weights may bias the selection towards the beamlets with higher
energies. However, when employing several fields this situation should be alleviated.
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7.2.2.5 Studied approaches and evaluation metrics

The geometrical adaptation method and geometrical+weights adaptation methods were
studied separately. The geometrical adaptation method was applied in four modes:

1. Free: Allowing free beamlet position and energy changes by the delivery system.

2. Iso: Changing the plan isocenter with an isocenter shift, calculated from the average
probed VF at the beamlet’s endpoints. The energies were changed as in the Free mode.

3. RS: Changing the energy with range shifters, calculated from the average energy shift
per field. The positions were changed as in the Free mode.

4. Iso-RS: Constraining the position and energy changes with a isocenter and constant
range shift.

The geometrical adaptation method is the basis of the weight tuning method, therefore
each of these modes was studied with and without weight tuning. Thus, forming 8 adaptation
approaches that were compared against the original plans and the original plans delivered to
the CBCTs without adaptation.

Dosimetric comparisons in the target were performed based on V95, V98, V107, V110,
D2 and D98 (all in % of structure volume or prescription dose). The dose to OARs was
analyzed in terms of mean and maximum dose. The performance was analyzed based on
the cumulative dose at the end of treatment (cum.) and also on the individual CBCT scans,
extrapolating the values per scan to full treatment for easier comparison. Although the
cumulative dose is more clinically meaningful, this is a procedure to be used at each fraction,
so its performance was judged on this basis as well. Also, if hypofractionation schemes
are employed, good performance at every fraction is desired. A constant RBE = 1.1 was
applied throughout the study. Boxplots were utilized to summarize the results, with the
median, the lower/upper hinges corresponding to the first and third quartiles (the 25th and
75th percentiles), the lower/upper whisker extending from the hinge to the smallest/largest
value no further than 1.5 times the inter-quartile range from the hinge, and observations
beyond the whiskers plotted individually as outliers.

7.2.3 Results and discussion

In this section, the performance of the original plans on the CBCT scans was analyzed first.
Afterwards, the adaptation performance was investigated and compared, first using only the
geometrical adaptation and secondly using also the weight tuning. Furthermore, the time it
took the algorithm to produce the adaptations was recorded. Additional results were included,
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in appendix 1, showing the example of 2 patients’ VFs as probed by the adaptation procedure
and the beamlet’s energy, positions and weights change.

7.2.3.1 Original plans on changing geometries

The performance of the original plans on the new geometries defined the corrections the
adaptation algorithms must achieve. This was expected to be challenging because the plans
were performed without margins around the CTV for the purpose of this study. The scans
were taken weekly, which may increase the observed anatomy evolution, but not the setup
errors.

Figure 7.4(left) shows V95unadapt - V95plan in the CTV for the cumulative (cum.) dose
and the dose in the individual CBCTs, per patient. The cumulative distribution was the result
of delivering the whole treatment to the successive CBCTs. The results per patient were also
plotted with boxplots to better represent the plan evolution trend. A gradual descent on the
value of this parameter was observed as treatment progressed from scan 1 to scan 7. All
the patients, except for 2 and 5, presented a 5% drop in at least one scan. Half the patients
showed a drop of the accumulated dose of at least 5% in V95, which was 100% in the plans
(see figure 7.5). If V95 = 95% were employed as re-planning criteria for the target coverage,
half the cases would have been re-planned. Few evaluations on the scans had a V100 > 90%
and, although not shown explicitly for brevity, only patient 5 presented a cumulative V100
> 90% (V100 = 91.0%), which might have triggered re-planning for all cases, depending
on the institution protocol. The average D98, mean and D2 dose percentage in the target
changed from 98.9, 103.3 and 106.9% at the original plans to 90.2, 101.8 and 108.4% in the
cumulative distributions. If maintaining target coverage in the target is the main goal, the
parameters measuring target overdose should be judged having the coverage in mind, as a
D2 value similar or better than the plan is only relevant if coverage is provided as well.

Some cases, such as patient 5, did not show large CTV coverage degradation (figure
7.4(top-right)), but the dose levels to OARs increased due to the geometry changes and the
loss of conformality. On the other hand, patients such as 4, 7 and 8 showed drastic drops in
plan quality. The original plan and cumulative dose DVHs for patient 7 are shown in figure
7.4(bottom-right).
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In general, the studied conditions produced a decrease in parameters measuring target
coverage with respect to the original plan, while parameters measuring target overdose
increased, smoothing the target DVH. Dose to OARs was increased on average. The evolution
of additional CTV DVH points was included in figure 7.5 and are explained in the next
subsection.

7.2.3.2 Geometrical adaptation method

Figure 7.5 shows V95, V98, V107, V110, D2 and D98 (%) for the 10 patients. Boxplots
for the original plans and the cumulative plan delivered to the CBCTs with and without
geometrical adaptation were included and separated by color, allowing the comparison of
several CTV DVH bands. Each boxplot illustrate the variations amongst the 10 patients.
Boxplots were included for the original plans in the planning CTs (Plan), the plans delivered
to the CBCT scans with no adaptation (None) and the 4 geometrical adaptation modes
described in the methods: free energy and position changes (Free), isocenter shifts (Iso),
range shifters (RS) and the last two combined (Iso-RS).
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The plot shows the original plan delivered 95 and 98% of the prescription dose to the
whole CTV volume (orange, leftmost boxplots). The volume percentage decreased as the
dose increased until it was ~5% for V107 and close to 0% at V110. The average D98 and
D2 doses were 99.0 and 107.0% for the original plans. However, this behavior was not
reproduced when the original plans were delivered to the CBCTs without adaptation (None
method, yellow, second boxplot from the left), as explained in the previous subsection.
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Fig. 7.5 Performance of the cumulative dose of the geometrical adaptation method compared
to the original plan and the original plan (Plan) delivered to the CBCTs (None). The
geometrical adaptation methods are split into the implemented modes: free energy and
positon changes (Free), isocenter shifs (Iso), range shifers (RS) and the last two combined
(Iso RS). The modes fail to reproduce the original plans values.

As shown in figure 7.5, the geometrical adaptation method failed to recover the original
plans’ prescriptions for all 4 modes. The Free and Iso modes improved in some cases the
performance with respect to not adapting the plan, according to V95 and V98, but in others
they performed worse. The beamlets movement created hot-spots in the CTV as show by
V107, V110 and D2. Both modes adapting with range shifters (RS, Iso-RS) worsened the
CTV coverage as shown with V95 and V98.

In general, the geometrical adaptation method did not recover target coverage. There
are several reasons, individually or in combination. Although theses methods relocated
the beamlets’ end-of-range position in the target according to the deformation, the change
of shape of the dose distribution of each beamlet after adaptation produced by the new
patient geometry could generate cold/hot spots in the target that impacted the plan quality.
Not only the materials traversed may have affected the adapted beamlets, but also the
beamlet energy may have changed, which would have changed the beamlet width and energy
spread. Additionally, the relative positions between endpoints may be different if the VF
contained non-parallel deformations, creating potential cold/hot-spots. Because the VFs
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were probed at certain individual positions, there was an underlying assumption that the VFs
behaved smoothly. Any non-smooth regions of the VFs might not be captured by the probing
procedure, but they would certainly be used to warp the original contours, potentially creating
deformations that the adaptation algorithm did not take into account. However, non-smooth
regions of the VFs, specially in low contrast tissue, might be an artifact of the DIR and not
actually represent the anatomy deformation.

7.2.3.3 Geometrical adaptation and weight tuning methods

The weight tuning algorithm was applied after simulating the geometrical adaptations in a
per-beamlet fashion.

Target coverage As shown in figure 7.6, the weight tuning was able to recover good plan
quality in terms of the CTV DVH parameters. Again, the boxplots represent the distribution
of values for the given parameter evaluated at every patient’s cumulative dose distribution.
The Free and Iso modes represented better the results by the initial plan boxplots for all
dosimetric indices, except for V107, where the modes showed higher values. These higher
values were not reflected in V110 indicating that the DVHs had high slopes in the V107-V110
region. Comparing against the non-adapted and the geometrical adaptation method in figure
7.5, all modes with weight tuning represented an improvement. The modes utilizing range
shifters necessitated higher dose levels to achieve similar coverage, as shown in V107, V110
and D2. Figure 7.6 provides information about the general distribution of DVH parameters
values in the same or similar scale as in figure 7.5, but it does not provide information about
what values each patient presents, specifically about the difference between the adaptation
and the original plan per patient.

Figure 7.7 shows the difference of each adaptation mode minus the original plan per
patient (mode - plan, ∆%). The modes utilizing range shifters were not included in this figure
for clarity and because the previous plot showed they had worse performance than the Free
and Iso modes. The previous plots focused on the cumulative dose as it was recognized as
having more clinical relevance. In this plot, however, the performance of the adaptations on
the individual CBCTs was included. Table 7.2 shows the results for the selected dosimetric
indices for the original plan, its performance on the CBCTs and the weight adaptation modes.

As shown in figure 7.7, the difference between the original plan and the Free and Iso
modes was small in the CTV. The Free mode showed slightly improved nominal values with
respect to the Iso mode, but the difference was not statistically significant. The average
difference across patients between the adaptations and the original plan for V95 was less
than 1% as shown in the figure and in table 7.2 (99.4 - 99.9 for the free mode). For V98
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Fig. 7.6 Performance of the cumulative dose of the weight tuned adaptation modes compared
to the original plan and the original plan (Plan) delivered to the CBCTs (None). The Free
and Iso modes closely reproduce the original plans values. RS and Iso RS present lower V95
and V98 and higher V107 and V110. The plot scale may have hidden the boxplot color, the
order is the same as in the legend. Please, note that the plotted range in this figure differs
from the one in figure 7.5.
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Fig. 7.7 Distribution of the difference between the adaptations and the original plans. The
difference was taken patient by patient, either using the cumulative dose distribution or
using the dose distributions on the individual scans. Both adaptation modes here included
behaved similarly. Target coverage was well maintained in the cumulative distribution. The
distributions on the individual CBCTs presented bigger fluctuations.

it was less than 2% (97.4 - 98.9 for the free mode). In order to deliver such coverage, the
adaptations increased V107 by ~4% on average, from 2.4 to 6.4%, however it impacted V110
by less than 1%. The minimum and maximum dose were also well maintained with average
differences smaller than 2%. These small differences contrast with the values shown by the
original plan without the adaptation algorithm.
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Table 7.2 Dosimetric values from the cumulative dose distributions and the dose distributions
on the individual CBCTs.

Cumulative Individual CBCTs

All in % Min Mean ± sd Median (IQR) Max Min Mean ± sd Median (IQR) Max

V95 Plan 99.6 99.9 ± 0.1 99.9 (0.0) 100.0 99.6 99.9 ± 0.1 99.9 (0.0) 100.0
Free 96.7 99.4 ± 0.9 99.7 (0.2) 99.9 96.1 99.0 ± 1.0 99.4 (0.6) 100.0
Iso 96.8 99.1 ± 1.2 99.7 (0.4) 100.0 94.9 98.9 ± 1.1 99.4 (0.7) 99.9

None 84.0 94.1 ± 5.2 95.6 (7.3) 99.4 79.2 93.9 ± 5.2 95.2 (8.0) 100.0

V98 Plan 97.2 98.9 ± 1.0 99.4 (1.4) 100.0 97.2 98.9 ± 1.0 99.4 (1.4) 100.0
Free 93.1 97.4 ± 1.7 98.2 (0.8) 98.6 92.1 96.4 ± 1.8 97.2 (2.6) 98.5
Iso 93.1 97.2 ± 2.0 98.0 (1.8) 99.0 90.6 96.5 ± 1.9 97.4 (2.0) 98.4

None 71.4 87.3 ± 9.4 89.2 (14.8) 97.7 63.7 86.0 ± 9.0 87.5 (13.4) 99.5

V107 Plan 0.2 2.4 ± 1.9 2.4 (3.2) 5.2 0.2 2.4 ± 1.9 2.4 (3.2) 5.2
Free 0.5 6.4 ± 4.7 5.1 (3.7) 14.5 5.2 12.8 ± 5.8 12.0 (8.4) 30.6
Iso 0.4 6.6 ± 6.2 4.1 (7.5) 19.2 4.6 12.3 ± 6.4 9.8 (9.9) 31.7

None 0.1 6.3 ± 5.9 4.9 (6.2) 19.5 0.8 9.0 ± 5.0 8.3 (5.3) 26.1

V110 Plan 0.0 0.1 ± 0.1 0.0 (0.0) 0.3 0.0 0.1 ± 0.1 0.0 (0.0) 0.3
Free 0.0 0.4 ± 0.7 0.1 (0.2) 2.1 0.0 2.1 ± 2.4 1.1 (2.5) 11.8
Iso 0.0 0.9 ± 1.9 0.0 (1.1) 6.0 0.1 2.1 ± 3.1 0.6 (2.9) 16.6

None 0.0 1.1 ± 1.3 0.6 (1.1) 3.8 0.0 2.2 ± 2.4 1.8 (1.6) 15.2

D98 Plan 97.5 98.9 ± 1.0 99.1 (1.3) 100.3 97.5 98.9 ± 1.0 99.1 (1.3) 100.3
Free 93.5 97.5 ± 1.5 98.2 (0.8) 98.5 91.2 96.7 ± 1.7 97.3 (1.3) 98.3
Iso 92.7 97.2 ± 2.1 98.0 (1.3) 99.0 86.5 96.6 ± 2.2 97.5 (1.5) 98.3

None 67.5 90.2 ± 8.9 92.8 (6.8) 97.8 40.5 89.5 ± 9.0 91.3 (8.8) 99.0

D2 Plan 105.8 106.9 ± 0.7 107.1 (1.0) 108.0 105.8 106.9 ± 0.7 107.1 (1.0) 108.0
Free 106.3 108.0 ± 1.1 107.9 (0.8) 110.2 107.8 109.7 ± 1.4 109.3 (2.0) 113.7
Iso 106.3 108.2 ± 1.8 107.6 (1.9) 112.3 107.7 109.8 ± 2.4 108.8 (2.3) 122.8

None 105.8 108.4 ± 1.7 108.8 (2.2) 110.7 106.3 109.8 ± 1.9 109.8 (1.5) 117.5

The results based on single CBCT images showed a wider distribution than the cumulative
doses and thus tended to be worse than the cumulative results. Fluctuations occurred at every
fraction that compensated each other when summing the total dose. In this case the Free
mode also performed slightly better than the Iso. The average V95 and V98 of the adaptations
on the individual CBCTs and Free mode were 99.0 and 96.4, i.e. a 0.9 and 2.3% drop from
the original plan, respectively. The bigger impact of the fluctuations in the individual CBCTs
were seen at V107, where differences of up to ~30% were observed, with an average increase
from 2.4 to 12.8 between the plan and the Free mode.

To better compare the adaptation modes, the Free mode was taken as reference and
dosimetric indices differences were calculated per patient (Iso/RS/Iso-RS - Free). The results
were plotted in figure 7.8, also including the OARs, which are analyzed in the next subsection.
The mean V95, V98, V107 and V110 difference were -0.23 ± 0.83, -0.23 ± 1.05, 0.21 ±
3.17 and 0.57 ± 1.66% in the cumulative doses, respectively. All the values indicate the Free
strategy had a better performance, but they did not reach a level of significance. The modes
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using range shifters delivered higher dose than the Free mode to the CTV. For the RS mode,
the mean difference in V107 and V110 were 9.55 ± 5.98 and 2.17 ± 2.70%, respectively.
For Iso-RS they were 10.49 ± 7.68 and 2.66 ± 3.40%. In both modes with range shifters
V107 was significantly worse than the Free strategy, with p = 0.0003 for the RS mode and
p = 0.0010 for the Iso-RS, at a 95% confidence level. The comparisons performed on the
individual scans’ dose distributions showed similar behavior as the cumulative distributions,
but with higher variance.
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Fig. 7.8 Comparison of weight tuned adaptation modes with respect to the Free mode. Each
of the adaptation modes in a row (labels on the right) and each contour in a column (labels
on top). The values show the difference between the given mode and the Free mode. The
Iso mode was seen to perform similarly to the Free mode, as most values are close to 0 or
symmetrical around it, but the Iso RS and RS performed worse. The mean differences were
plotted over the boxplots for the cumulative dose distributions and the dose distributions at
each individual scan.

OAR sparing Although the adaptation workflow focused on recovering tumor coverage,
OAR dose constraints need to be met. The difference in mean and max dose between the
weight tuned adaptations minus the original plans is shown in figure 7.9 for all adaptation
modes. Only the larynx, mandible and submandible glands had high enough dose levels
across patients to allow the comparison, so the analysis was focused on these structures. The
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OAR dose levels were kept similar to the original plan by the Free and Iso modes, as the
distribution of differences is close to 0. The modes with range shifters displayed increased
dose to the larynx and mandible. Because the patient anatomy changed, in some situations
the weight adaptation algorithm was able to find better sparing than the original plan in the
original patient geometry, confirming that the original plan dose distribution might not the
optimal for every patient geometry. This is expected to be very patient- and anatomy-specific.
In general, the adaptations gave similar dose levels as the original plans.
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Fig. 7.9 Dose difference given to OARs by the adaptations with respect to the plans. The
dose levels were well maintained by the adaptations, specially the Free and Iso modes.

The modes comparison in figure 7.8 showed that the Iso mode had lower dose to the
larynx, but higher to the submandibular glands w.r.t. the Free mode The modes with range
shifter had higher dose to OARs. However, the dose to OARs had a high dependency on the
specific case so that no conclusion could be drawn regarding the differences as to whether
the Free mode was better than the Iso. As in the CTV, the comparisons performed on the
individual scans’ dose distributions showed similar behavior as the cumulative distributions,
but with higher variance.

Patients DVHs Figure 7.10 shows DVHs of four patients with big plan degradation in
the CBCTs and the performance of the Free adaptation mode with weight tuning. The
adaptations restored the plan to a quality comparable to the original plan, both in the CTV
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and in the OARs. The CTV coverage and OAR sparing were similar as in the original plans,
as analyzed in detail in the previous sections.

Fig. 7.10 Patient DVHs of the original plan (doted line), the cumulative unadapted plan
(dashed line) and the cumulative plan adapted with Free geometrical adaptation and weight
tuning (solid line).

7.2.3.4 Time performance

The framework time is reported in table 7.3 without considering the time required for CBCT
imaging and the DIR. All calculations were performed on a Dell Precision 7600 workstation
(two Intel Xenon CPUs, 8 cores total at 2.4 GHz) with a NVIDIA Tesla K40 GPU obtained
from NVIDIA’s GPU Grant Program1.

The geometrical adaptation method times include all data transfers between the host and
the GPU, the VF probing and geometry changes to adapt to internal code coordinates. It
took an average of 16.9 seconds. Improvements could be implemented to minimize data
conversions and transfers, reducing the overhead of operations and increasing algorithm
speed. A CPU parallelization might improve the efficiency for this step. In the current GPU
implementation of the geometrical adaptation method, a beamlet is processed per thread,
but the number of beamlets might not be high enough so that the acceleration in the GPU
compensates the data transfer time. On the other hand, more modern connection ports
between the GPU and the host allow faster data transfer.

The simulation with gPMC took between 115.6 and 419.2 seconds. These values can
be drastically reduced by launching the calculation in a multi-GPU system. Newer GPUs
and motherboard-GPU connections would also improve the performance, although it is hard
to predict what the expected improvement would be. In system with 10 GPU of the ones

1NVIDIA GPU Grant Program: https://developer.nvidia.com/academic_gpu_seeding

https://developer.nvidia.com/academic_gpu_seeding
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Table 7.3 Time needed with the available hardware and software. To the right, expected time
with the improvements explained in the text.

(All in s) Minimum Average Maximum Expected

Geometrical adapt. 11.7 16.9 26.6 1-5
gPMC simulation 115.6 261.9 419.2 10-60
Weight tuning 12.0 44.8 198.0 5-120
Total - 322.7 - ~60-120

here utilized, the calculation time would be in the order of 10-60 s for any of the cases here
included.

The weight tuning with Opt4D presented a wide range of calculation times, from 12 to
198 s. All dose calculations were performed on the CT grid. Should this grid be resampled to
a coarser one, the optimization time would decrease as the problem size decreases. Another
factor impacting the weight tuning time was the number of beamlets to consider. Currently,
the beamlet selection criteria does not take into account the position of the problematic areas.
Including that information might reduce the number of beamlets to be considered, reducing
the total tuning time. Lastly, a multithreaded implementation of Opt4D would also have an
impact. Reducing the dose calculation grid and increasing the parallelization is expected to
reduce the duration of the optimization step to the range of 5-120 s.

7.2.4 Conclusions and outlook

An algorithm was presented that is capable of yielding adapted plans of similar quality as the
original treatment plans. Adaptation of beamlet positions and energies alone (geometrical
adaptation) was shown to be insufficient. However, tuning the weight of a subset of beamlets
after this geometrical adaptation was successful. Several geometrical adaptation modes
were individually tested and compared. It was shown that allowing the change of individual
beamlets position and energy (the Free mode) yielded the best results, although using an
isocenter shift with free energy changes yielded results very close to it. Using range shifters
for the energy adaptation gave higher doses to the CTV and OARs.

A consequence of these adaptation modes without range shifter is the creation of many
energy layers that might deem the plan undeliverable due to time limitations. This could
be alleviated by clustering them in a number of layers considered deliverable and will be
investigated in future projects. Furthermore, it is expected that future proton therapy delivery
systems might employ multi-energy extraction allowing faster energy switching [MDL17],
which would also alleviate the issue.
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The efficiency of our online adaptation workflow makes the method applicable for
on-line adaptation while the patient is set up for treatment. Parallelization and hardware
upgrade might improve the framework even further. The full adaptation workflow would
need to perform the CBCT acquisition and processing, the DIR calculation and the contour
propagation and verification. As indicated in the previous sections, a precise evaluation
of the accuracy of CBCT scans should be performed before any clinical implementation.
Additionally, an automated procedure to define the daily contours and evaluate the uncertainty
should also be investigated. Dose accumulation using DIR presents uncertainties as well
[Vei+15]. All these remaining uncertainties could be handled with daily robust optimization,
which may put more pressure on the adaptation algorithm computational efficiency. Once all
these uncertainties are properly taken into account, a quantitative evaluation of the adaptation
algorithm should be performed against robust optimization.

A final unresolved issue is the quality assurance test of the adapted plan. It comes down
to the definition of a new plan versus a corrected plan. A possible option would be to address
this issue by performing independent MC simulations of the plan or using the treatment
delivery log files.

Nevertheless, the algorithm here introduced may allow margin reduction due to setup,
anatomy and dose calculation uncertainties, with the consequential plan quality improvement.
It may also reduce the number of required re-plans for H&N cancer treatments, having a
positive impact on the quality of life of patients by reducing the number of visits and on total
treatment cost.
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Appendix I

This appendix illustrates the change in energy, position and weight for patients 4 and 9 during
the adaptation process. The adaptations consisted of the geometrical method in Free mode
and the weight tuning. The plots were automatically generated by the adaptation algorithm.

Figures 7.11 and 7.12 show the vector field (VF) at the probed positions for patient 4 and
9 from the first CBCT scan anatomy for each patient respectively. Please, see the captions
for the interpretation of each element in the figure.

Figure 7.11 shows a VF that resembles a shift in a single direction, with variable size.
The VF was well aligned with the Y axis, almost orthogonal with the X axis, had a median
modulus of ~3 mm and no probe presented a vector of 0 modulus. There were no noticeable
convergent/divergent regions, which indicated that the beamlets were moved in a similar
direction and only small cold/hot spots in the target would be expected.
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Fig. 7.11 Analysis of the patient 9 vector field at scan 1. Top-left: Histogram of the vector
modulus, the lines show the 1st, 2nd (median) and 3rd quartiles. Top-center: Histogram of
the angle subtended by the probed vectors with the X axis, weighted by the vector lengths.
Top-right: Same as the top-center, but with the Y axis. Bottom-left: Vector field in the
XY plane at the probed positions, with collapsed Z dimension. Bottom-right: Same as
bottom-left, but in the YZ plane. The colors in the top-left panel are the same as in the bottom
panels.
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Fig. 7.12 Analysis of the patient 4 vector field at scan 1. Top-left: Histogram of the vector
modulus, the lines show the 1st, 2nd (median) and 3rd quartiles. Top-center: Histogram of
the angle subtended by the probed vectors with the X axis, weighted by the vector lengths.
Top-right: Same as the top-center, but with the Y axis. Bottom-left: Vector field in the
XY plane at the probed positions, with collapsed Z dimension. Bottom-right: Same as
bottom-left, but in the YZ plane. The colors in the top-left panel are the same as in the bottom
panels.

The VF in figure 7.12 showed a more complex behavior. The target in this case was
bigger (see table 7.1 or plotting scale difference in bottom-left/right panels between figures
7.11 and 7.12), which increased the probability of having a non-uniform displacement. The
median modulus was smaller than in the previous case (~2.5 mm), but the modulus histogram
presented a wider range (from 0 to ~6 mm). The angular histogram showed a lot of variation
and this can also be seen in the bottom panels. This situation indicated that the deformation
would bring some beamlets closer together and some further apart, creating hot/cold spots
after the geometrical adaptation method that would be solved by the weight tuning method.

Figures 7.13 and 7.14 show the effect of the deformations of patient 9 and 4 (scan 1) on
the energy of the beamlets (top panels) and the beamlet’s weight correction performed by the
weight tuning method (bottom panels). Please, see the captions for the interpretation of each
element in the figure.

The beamlet’s energy changes of patient 9 in this scan were approximately between -6
and 0 MeV, with an average energy loss per layer of about 3%, which indicated a decrease in
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Fig. 7.13 Beamlet’s energy and weight changes of patient 9 at CBCT 1. Top-left: Energy of
each beamlet (spot). The original plan in black, showing the 9 energy layers, in red the new
energies after the geometrical method, in light gray, the new energies in descendant order,
the numbers represent the % change of the new average energies of the beamlets previously
forming a layer. Top-right: Histogram of the energy change, the lines show the 1st, 2nd
(median) and 3rd quartiles. Bottom-left: Histogram of the weight scaling factor after the
weight tuning (most beamlets are unchanged). Bottom-right: Boxplots of the weight scaling
factors as a function of the original energy layers. The boxplots follow the explanation given
at the end of the methodology section, the top-bottom hinge distance might be 0, the mean is
shown by the triangle.

the radiological depth of the patient. The small cold/hot spots in the target created by the
beamlet displacements (seen in figure 7.11) and the effects of the energy changes (seen in
the top panels of figure 7.13) were solved by the weight tuning method, while minimizing
the dose to OARs. The weight changes were plotted in the bottom panels of figure 7.13.
Most beamlet’s weight change ratios were kept at 1, by definition of the method, since it only
tuned the weights of a subset (bottom-left panel). The tuning method mostly changed the
weights of the most energetic layers (bottom-right), also by definition, since it selected the
higher weighted beamlets, which are usually among the most energetic.

On the other hand, figure 7.14 shows the plan for patient 4 with bigger changes at scan
1. The beamlet’s energies changed from -15 to 25 MeV, approximately. On the top-left
panel, it can be seen that at the beginning of the layers, the spots tended to lose energy, while
they gained energy towards the end of the layers. The beginning and ends of the layers
correspond to specific regions of the target, which means that some lost radiological depth,
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Fig. 7.14 Same as figure 7.13, but for patient 4 at CBCT 1.

while others gained. The median energy change was, however, close to 0. Most beamlets
did not experience weight tuning, so the ratio was 1 for the majority. Some beamlets were
rejected, while others were given ~4.5-5 times the number of initial protons (bottom panels).
Contrary to the previous case, the weight tuning was applied to beamlets belonging to less
energetic layers.



Chapter 8

Discussion and outlook

The projects included in this thesis have presented advances in four areas, namely: fast and
accurate dose calculation, consideration of the biological effect of proton treatments through
an approximation of the RBE, computationally efficient planning of moving targets and
automatic adaptation of IMPT plans to different patient setups and anatomies. The fast and
accurate dose calculation set the computational basis in order to perform the other projects.
In the following items, each project will be discussed, with the outlook as focusing point.

8.1 Project 1: GPU-MC

The ultimate goal of using GPU Monte Carlo in the clinic is to improve the dose calculation
accuracy in daily calculations and allow planning margin reductions. The code upgrades
presented in chapter 4 improving the nuclear interaction models, providing the dose-averaged
LET distribution and employing a programming language with broader usability brought
this goal one step closer for gPMC. Yet they do not mean that a system based on the current
version of gPMC can be applied in the clinic in any situation. There is an ubiquitous mantra
in Monte Carlo simulations reading garbage in, garbage out, which means that the results
obtained will be as good as the models utilized to calculate them. In the case of gPMC, the
main limiting factor is that the nuclear models there implemented are based on hydrogen
and oxygen only and it is assumed that the interactions with other nuclei (mainly carbon and
nitrogen) will be well represented on average [FS04; Qin+16]. The contribution of these
secondaries is small in comparison to the primaries, which makes the assumption true in most
cases in human tissues within the accuracy required for proton treatments. However, in the
presence of high Z materials in the patient, such as titanium implants, this assumption may
not hold in the vicinity of these implants and might have consequences downstream. More
importantly than implants, the assumption would not hold in cases were high Z materials are
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systematically placed in the beam path, for example when employing apertures [Dow+12;
Mot+16; Yas+18] or multi-leaf collimators [Moi+16b; Moi+16a] to sharpen the IMPT plan
penumbra for sites like prostate or when the facility spot size is large compared to the tumor
size [Mot+16]. Nevertheless, the expected deviations caused in these cases by the nuclear
models should appear at the entrance region of the field and the calculation accuracy might be
acceptable there. Other approximations in the code, such as not tracking electrons or photons
(see accuracy of the electromagnetic channel in [Jia+12; Qin+16]) or disregarding species
other than protons [GLP15] in the beam models should not cause major issues. Therefore,
awareness of the limitations of the code is required before the code implementation in daily
calculations to profit from its advantages, which are plenty.

In order to take full advantage of MC accuracy in the clinic, GPU-MC systems should be
employed for IMPT treatment planning and not only for plan verification. When employing
ADC algorithms for this task, the dose to the target in sites with high lateral and longitudinal
heterogeneity like head and neck, breast and lung can be overestimated in the calculation
by up to ~10% [Yep+18]. Subsequently the target receives less dose than planned in
reality and OARs may receive up to 10 Gy more, although the median difference has
been reported to be smaller than 2 Gy [Yep+18] (the prescription dose is not reported,
which makes the interpretation of the absolute difference complicated). Assessing the
range uncertainty analysis performed with passive scattering delivery by Schuemann et al.
[Sch+15], the resultant recommended dose calculation based range margin is ~5.8% in the
previous heterogeneous sites. This margin is transformed into a generic range margin of
6.3%+ 1.2 mm. It should be noted that these values might be too high because range is
defined at 90% of SOBP, which is a very sensitive point and it assumes that every field
from every fraction must give full target coverage. Having said this, coupling gPMC with a
treatment planning system would improve the quality of the treatments, setting the generic
range margin in around 2.4%+1.2 mm, as reported by Paganetti [Pag12]. For a 10 cm range
field, the amount of healthy tissue spared by using Monte Carlo simulations is 3.9 mm. These
values were extracted from the analysis of passive scattering proton treatment and can be
directly employed for IMPT plans with single field uniform dose.

In order to employ gPMC for routine IMPT optimizations, it might be necessary to find
solutions to decrease the computation time needed to calculate the optimization matrices.
gPMC is capable of simulating 106 primaries in ~1.4 s (see table 4.2), which means that an
optimization matrix for a plan with 3 fields and 1500 beamlets per field requires 6300 s, or
1.75 hours on a single NVidia GTX TITAN. If robust optimization is intended, the number
of optimization matrices required increases with the number of included scenarios, being 5
a common number of scenarios for a total of 8.75 hours. One option to alleviate this is to
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establish a dependency between the usage of a proton beamlet and the accuracy with which it
is simulated. This can be achieved, for example, by creating an iterative system that calculates
the optimization matrices without full accuracy, then optimizes the plan and keeps adding
more histories to the beamlets depending on their assigned weight until the intended accuracy
in a given region is reached. Such a system has already been proposed by Ma et al. [Ma+14].
A different option that has not yet been proposed to my best knowledge is to realize a hybrid
ADC-MC system. In such a system, heterogeneity indices could be employed to select the
beamlets in which ADC would perform well and only simulate the others with GPU-MC. In
this case, the margin employed for range uncertainty would be position dependent as it would
depend on which beamlets were calculated with ADC and which with GPU-MC. If robust
optimization is intended with the hybrid system, dose-influence matrices could be generated
forcing the beamlets generated with ADC to be recalculated in wider error scenarios than the
ones calculated with GPU-MC. Such system would be beneficial in sites like head and neck,
where some beamlets traverse fairly homogeneous tissues, while others do not. Of course,
the most effective solution to improve the computational efficiency is to simply employ more
GPUs.

In summary, gPMC is a good and flexible candidate to increase dose calculation accuracy
routinely in the clinic.

8.2 Project 2: LET-based optimization

The clinical application of the LET-based biological optimization presented in chapter 5
is intimately dependent on the clinical translation of GPU-MC for IMPT planning. In
this case GPU-MC simulations are again encouraged mainly by the higher calculation
accuracy, however, this is more important for LET because only recently analytical calculation
algorithms have modeled the lateral LET distribution [Mar+16; San+16; Hir+18]. In this
project a method to cope with the large biological uncertainties present in proton therapy was
proposed, leveraging the well established proportionality1 between the biological effect of a
radiation field in a given location and the quantity LET×D to reduce the potential impact of
the field in OARs. This method does not reduce the biological uncertainty globally, but it
does reduce its potential effects locally, where they might matter the most.

The ultimate goal however, would be to exactly predict the biological impact of the
field through the RBE. Until that goal is achievable (if ever), employing surrogates to take
the impact into account in a conservative manner can improve clinical outcomes, reducing
toxicities in OARs. The advantages of employing LET×D as surrogate are that (1) it is a

1The proportionality is established, not its exact value.
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linear function of the fluence, allowing the application of well-known optimization algorithms,
(2) it is readily available from MC simulations and recently from analytical calculations
[Hir+18] and (3) it can be interpreted as the biological extra effect produced by elevated LET,
to first approximation.

Robust optimization with range uncertainties has similar consequences for the final plan
as LET×D-based optimization. The LET×D distribution is dominated by the Bragg peak
present in the dose distribution, but the product with LET makes the peak position sit at
slightly deeper depth. Because the high LET×D is slightly beyond the Bragg peak, the
prioritized optimization penalizes beamlets that aim directly to an OAR, favoring those that
deliver the dose to the target borders with the lateral profile in sensitive regions. This is
also what robust optimization with range uncertainties does, as the lateral profiles are not
sensitive to small shifts in the Bragg peak depth. This realization was confirmed in [Gia+17],
observing that robust optimization with range uncertainty significantly lowered the median
LET in OARs, although not as efficiently as a dedicated term dependent on LET×D in the
objective function. A more involved analysis by Unkelbach and Paganetti on robust treatment
planning with physical and biological uncertainties can be found in a recent publication
[UP18].

The expected dependency on LET is not the only base of RBE models that have been
proposed, as cited in section 2.4.4 [SS04; SS06; Ste+11; Ste+15; Fri+13; Fre+11; Car+08].
However, the same expected dependency of RBE on high ionization areas might be parame-
terizable on other quantities. An alternative surrogate to LET is to employ the proton stop
positions as this distribution should be correlated to the LET. This tally is also supported
in gPMC (as reported in 6 in section 3.1.2). No studies have been published so far on this
topic to my best knowledge, but it could be used to drive high LET areas out of OARs. The
theoretical advantage of this quantity is that it does not suffer the spikes the LET distribution
presents when scored with MC methods in a voxelized geometry. Nevertheless, the quantity
LET×D employed in this project is more robust to those spikes as the low dose value in the
spikes regions lowers their impact.

In any case, GPU-MC would offers the necessary flexibility to score multiple quantities in
a realistic manner without having to develop a dedicated algorithm for it, allowing systematic
comparisons of different candidates. Ultimately, it would allow clinical translation of such
techniques.
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8.3 Project 3: Lung planning

The impact of range uncertainties arising from patient movement in lung is hard to minimize,
as studied in chapter 6. In the study there presented, the WEPL-dependent overwrite in the
ITV showed the highest performance among the studied strategies. This strategy should be
preferred over MIP or constant HU filling of the IGTV when ITVs are necessary.

Additionally, the presented 4D framework allows the systematic evaluation and com-
parison of planning strategies with high dose calculation accuracy. This framework can be
applied to other sites and techniques, such as gating for cardiac soft tissue sarcoma and
arrhythmia ablation [Lee+18]2. The 4D simulation framework is an important software that
can inform clinicians about the safety of a certain plan in movement conditions. However,
a dedicated package should be developed to ease this procedure, fully connecting it to the
clinical databases and allowing the flexibility to perform different studies. An aspect that
could be improved in the current form of the package is the dose accumulation strategy. So far
the dose is accumulated by warping a dose map, but this does not necessarily conserve energy.
There is currently not a definitive agreement on how to perform dose accumulation. The mass
and energy warping method conserves energy and is also commonly employed, however, it
has also been seen to create artifacts near density interfaces [SZ08; ZS09; Li+14; MWU14].
Experiments should be performed to measure the exact dose in a moving heterogeneous
geometry to validate the most optimal method.

8.4 Project 4: Online IMPT plan adaptation

The dosimetric effects of the anatomical changes convolved with the setup uncertainty effects
have been reported in chapter 7. It was seen that they can degrade the quality of IMPT plans
significantly when narrow margins are intended. Higher dose to OARs and lower dose to
target than initially planned were observed, increasing the toxicities and decreasing the tumor
coverage and therefore the tumor control probability. The algorithm presented in chapter 7
has shown that the plan quality can be recovered well by performing online plan adaptation,
minimizing the effect of the anatomical and setup uncertainties.

After applying the online adaptation algorithm, the target coverage is only slightly
decreased. The average initial plan V98 of 98.9±1.0 becomes 97.4±1.4 in the cumulative
dose to the patient and 96.4±1.8 in the daily doses. Although V98 is a rather unstable value
that tends to exaggerate the actual discrepancies, it shows very good coverage. V95, a more

2The reference cites a preliminary study using double scattering, not pencil beam scanning, presented at
2018 annual meeting of the AAPM in Nashville (TN, USA). The reference is given to cite the main researchers
in this project and avoid taking credit by citing the idea.
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stable value, shows 99.9±0.1 at initial plan, 99.4±0.9 at cumulative and 99.0±1.0 at daily
evaluations. For reference, the effect of setup and anatomy dropped the V98 and V95 from
the plan values given before to 87.3±9.4 and 94.1±5.2 in the cumulative and 86.0±9.0
and 93.9±5.2 in the daily. This shows that the online adaptation is capable of maintaining a
high degree of coverage in the target.

The idea of online IMPT plan adaptation is not new to the field as others have already
studied this procedure [Kur+16; Jag+17; Jag+18; Ber+18], but this has been the first study
proving online IMPT plan adaptation while limiting range uncertainty with MC simulations.
This fact should allow further shrinking of planning margins. It is important to note that
the comparisons against the dosimetric results of the original plans are only fair if daily
replanning with full quality is feasible. In reality, one would perform the original plan taking
uncertainties into account. A fair comparison of the performance of the daily plan adaptations
would then be against a robust plan against setup and anatomy uncertainties, which will be
the focus of future research. In such scenario, common uncertainties could be assumed to
not influence the study. Some preliminary results are included here.

Patient number 1, a complex oropharynx case planned with 4 fields (see table 7.1) was
replanned with robust optimization against setup and anatomy variations. Usually, in order
to perform the robust optimization, a set of plausible error scenarios is considered in which
the plan is intended to perform well. This is fairly straight forward for the setup uncertainty
because the patient anatomy can be shifted and rotated following a Gaussian uncertainty
model, but the anatomy evolution uncertainty is much more complicated to handle. In
these preliminary results, an ideal situation is studied in which the future setup errors and
anatomy evolution are known before the robust optimization is performed. This corresponds
to generating dose-influence matrices in the daily CBCTs, as opposed to generating them in
hypothetical error scenarios. This is why the first sentence reads robust optimization against
variations, instead of robust optimization against uncertainties. Of course, in such perfect
forecast situation one could generate as many plans as daily scans, but the point of the study
is to compare the online adaptation procedure against what could be understood as the ceiling
of a robustly optimized plan assuming error scenarios. It must also be understood that there
are several flavors of robust optimizations, with the strategy to bring together the n different
scenarios being the most important factor. The choice of approach would produce different
ceilings. Because this optimization is performed with perfect scenario forecast with equal
importance, the expected value-based optimization was employed with equal weight for
each scenario. The expected value optimization is expected to perform better than the worst
case scenario in this special case, specially in OAR sparing, based on the publication by
Fredriksson were the worst case scenario was seen to overestimate the dose to OARs [Fre12].



8.4 Project 4: Online IMPT plan adaptation 147

Generalizations of these two approaches might yield better results [Fre12], although in this
special case it is not clear if a significant improvement would be obtained. Finally, the term
robust might be misplaced here as there are no real uncertainties, but it serves the purpose of
illustrating the comparison here performed.

When comparing the robust plan against the daily adaptations for this single case, it
can be seen that the daily adaptations provided similar target coverage, while reducing the
dose to OARs. This is due to the fact that high dose volume is smaller when performing
plan adaptation. This can be observed in the dose levels received by the two submandible
glands and the CTV in figure 8.1. Given the special situation studied here, there is indication
that the online plan adaptation procedure could be an improvement over robustly optimized
plans. Specially when considering that the robustly optimized plan was performed on an
ideal situation. It is unclear how ideal this situation is and further investigation is required
before any definitive conclusion can be reached.

Fig. 8.1 “Robust” optimization on the daily scans vs daily adaptation (weights) on patient 1
on table 7.1. The bands contain the values obtained in the daily scans.

The proposed algorithm is mainly a proof of concept and there remain several improve-
ments that should increase the computational efficiency and maybe allow better techniques to
be employed. One major improvement would come from defining MC simulation-stopping
sensitive regions. These regions would record the simulation uncertainty and stop it whenever
a certain threshold is reached. Currently, all simulations were performed with a conservative
number of particles in order to be able to automatize the adaptation process for every case
studied. However this has an impact on the time needed for the adaptation that has not been
assessed yet. The reason this was not assessed in the publication in chapter 7 is that a general
recipe for the required number of protons to be simulated is not feasible as the uncertainty is
dependent on the specific plan and geometry studied. Therefore, the only possible general
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solution is to define regions to evaluate the uncertainty and stop the simulation when a
certain criterion is met. Another major improvement would be to tailor the optimizer to the
particular problem at hand. Currently, the same optimizer employed for the original IMPT
plan was used, which runs on CPUs in single-thread mode. Different algorithms should also
be investigated that could leverage the starting point of the objective function and might
be better suited to optimizing for variable dose maps. The two previous points should in
principle improve the computation efficiency, but they are not expected to have a great impact
on the final plan quality. In order to improve this, a better selection of spots to tune should be
performed. Currently they are selected based on the accuracy they have been simulated with,
but that is not necessarily the best approach. An iterative process could be implemented to
simulate/evaluate the beamlets’ effect on under-/over-dose areas and select the one with the
highest impact on them for the weight tuning. The same iterative process could be employed
to evaluate the uncertainty of the simulation.

Judging from the uncertainty levels, the MC-based algorithm should be superior to
ADC-based algorithms. However, it might be the case that the lower efficiency of MC simu-
lations becomes a computational bottleneck to implement more sophisticated optimization
procedures for the remaining uncertainties, such as robust optimization, having a detrimental
effect on the final adapted plan quality. It remains to be seen what the best approach is when
online adaptation algorithms are mature enough to allow a meaningful comparison. Publicly
available packages would greatly help improve this comparison.

Independently of what the ideal algorithm is, there remains an underlying issue with any
of the options given as references and the one here presented: the automatic definition of
the patient contours. There is yet no accepted solution to handle the contours in an adaptive
manner. The contours describe the position of each important organ and structure in the
patient. As such, they are used to drive the optimization and to evaluate the radiation field,
both physically and biologically. Any clinical implementation of the algorithm here presented
should first solve the automatic definition of the contours. Automatic contours definition is
a very active area of research without a generally accepted solution, see for reference the
review article by Sharp et al. [Sha+14]. Nevertheless, the particular case of online plan
adaptation may be a more forgiving situation than the general automatic contour definition
because there is a previous delineation of the patient to drive the automatic procedure. There
is, however, a remaining niche of investigation regarding how to handle the uncertainty of the
contours definition. It would be ideal to handle this as another source of uncertainty, which
in turn may ease the acceptance of automatically generated contours, since comparison of
non-binary distributions yield more robust results.
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In any case, online adaptation of proton plans based on MC simulation may drastically
improve the quality of IMPT plans and their reproducibility by minimizing setup, anatomy
and range uncertainty. Hopefully it can some day be safely implemented in routine treatments
and have a positive impact on patient outcomes.





Chapter 9

Conclusions

In this thesis 4 uncertainty sources present in proton therapy were studied and solutions
within specific approaches were proposed.

First, in order to reduce the dose calculation uncertainty an existing GPU Monte Carlo
code, gPMC, was improved with better nuclear interaction models, bringing the goal of
improving the dose routine calculation accuracy in the clinic one step closer. Additionally,
these improvements pave the way to perform many different studies with high calculation
accuracy, such as the ones that follow.

Second, other improvements included in gPMC, such as the LET scorer, were employed
to study the reduction of the potential harm of high biological impact radiation areas in
organs at risk (OARs) through an optimization method. This was done with a prioritized
optimization scheme of IMPT plans that maintained high quality physical dose plan, while
removing high LET×D areas from OARs as a first order approximation of the unknown
biological dose distribution, minimizing the potential effect of its uncertainties.

Third, computationally efficient planning strategies for lung tumors based on internal
tumor volume (ITV) density overwrites were compared. The results showed that overwriting
the internal GTV (IGTV) using the voxel intensity in the planning CT with the intensity
that voxel has in the 4DCT phase with higher WEPL gave the best performance. Outside
the IGTV, the average 4DCT image projection was used. This approach is applicable to
other sites with patient movement. Additionally, a 4D framework to simulate IMPT plans in
the presence of movement was developed that can be employed to accurately evaluate the
degradation due to the movement for any given plan.

Lastly, the patient setup and anatomy uncertainties were tackled and an online IMPT plan
adaptation algorithm was developed to adjust the original plan to the daily geometry, demon-
strating it in head and neck patients. This algorithm only employs GPU-MC simulations as
dose calculation engine, which also reduces the range uncertainty, which can be big due to
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tissue heterogeneity and interfaces in the studied site. The clinical application of such tool
would allow the reduction of planning margins, shrinking the volume receiving high dose
levels and potentially improving patient outcomes.
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